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Abstract

For periodically driven systems, quantum tunneling between classical resonant
stability islands in phase space separated by invariant KAM curves or chaotic regions
manifests itself by oscillatory motion of wave packets centered on such an island, by
multiplet splittings of the quasienergy spectrum, and by phase space localisation of
the quasienergy states on symmetry related flux tubes. Qualitatively different types
of classical resonant island formation — due to discrete symmetries of the system
— and their quantum implications are analysed by a (uniform) semiclassical theory.
The results are illustrated by a numerical study of a driven non-harmonic oscillator.



1 Introduction

The generic phase space structures of classical Hamiltonian systems show an intricate
mixture of regular motion on invariant tori and chaotic space filling dynamics. The quan-
tum manifestation of this Poincaré scenario in the statistics of energy spectra, fluctuation
of expectation values and wave packet dynamics is still debated today. An important
aspect 1n this classical-quantum correspondence is the tunneling dynamics between clas-
sical regular regions in phase space divided by separatrices or chaotic layers. Whereas the
tunneling phenomenon is easily understood semiclassically for tunneling through potential
barriers, the general case of dynamical tunneling [1], e.g. tunneling through a classically
chaotic region, 1s far from being fully explored.

The present paper addresses several aspects of a semiclassical analysis of dynamical
tunneling. For simplicity, we will confine our discussion to the case of one-dimensional
time-periodic systems, which model, e.g., atomic or molecular dynamics in laser fields
or driven mesoscopic systems. Such ‘one and a half’ dimensional systems show most of
the relevant dynamics and allow on the other hand extensive numerical studies in the
semiclassical regime of small k. A considerable number of previous studies on dynamical
tunneling have been carried out for systems of this type, as for instance the studies of
a driven double well oscillator by Lin and Ballentine [2, 3|, Peres [4], Plata and Gomez
Llorente [5], and Hanggi and coworkers [6]-[10], the analysis of a generalized kicked rotator
[11, 12] or a harmonically driven planar rotor [13] as well as the kicked Harper model
[14, 15]. Very recently, the level splitting distribution in chaos-assisted tunneling in two
space dimensions has been studied by Leyvraz and Ullmo [16].

In Sect. 2, we give a brief description of the classical dynamics of the model system.
Based on the semiclassical pendulum quantization of KAM resonances derived in a pre-
ceding paper [17] — in the following denoted as paper I — a semiclassical analysis of the
quaslenergy quantization of resonances is presented in Sect.4. The tunneling splitting of
the quasienergies is discussed in Sect.5. In particular the structure of the quasienergy
spectra, the tunneling integral over the classical forbidden region and the scaling with A
are discussed, as well as the differences for the cases of tunneling between classically con-

nected or disconnected flux tubes. In Sect. 6, the semiclassical dynamics of wave packet



tunneling between the stability regions is studied.

2 Classical division of phase space

In the present study, we choose as an example the linearly forced anharmonic oscillator
2

b
H(p,z,t) = 2p—m + 1 z* — Az cos(wt) (1)

with units m=b=w=1, which is time-periodic with period T = 27 /w.

For A = 0, the system reduces to the time-independent (and therefore integrable)
quartic oscillator, where a phase space point moves on the energy shell H(p,z) = E
with a frequency w;, which increases with E. For small values of the force amplitude
A, the oscillations in resonance with the diving force, wi:w = r:s with integer r and
s, are typically distorted, and a chain of elliptic and hyperbolic fixed points appears.
For increasing values of A, the resonance zones grow and the separatrix dividing the
resonance motion from the outer non-resonant oscillation develops into a chaotic layer.
Finally, the resonance zones overlap and global chaos sets in. For the parameter A =
2/81/3 ~ 0.0142556 (see [18] for the motivation of this special choice) the phase space
1s predominantly filled by regular motion with isolated resonances, the largest ones at
wiiw =2:4, 1:3, 2:8, 1:5 and 1:7 as shown in the stroboscopic Poincaré section at times
t=nT,n=0,1,2,...,1n Fig. 1.

The Hamiltonian (1) is invariant under the discrete symmetry
(p,2,t) — (£p,—2,t+ T/2), (2)

which appears also in the driven double-well potential (see, e.g., [3, 4]). The dynamical
symimetry (2) has important consequences for the phase space organization of the resonant

motion. There are two possibilities:

(1) The phase space tube surrounding the periodic orbit at the center of the resonance
is invariant under the symmetry (2). In this case, a Poincaré section of the flux
tube at ¢t = (n + 1/2)T will be a mirror image with respect to z = 0 (and p = 0) of

the Poincaré section at t = nT, as, e.g., for the ‘odd’ resonances 1:3 and 1:5.



(ii) There are groups of disconnected resonance tubes, each of which violates the sym-
metry and transforms into another member of this group under the symmetry op-
eration (2). This is a general consequence of the symmetry of the time translation
t - t+T/2: it can be shown that every even resonance chain breaks up into two
disconnected ones, where neighboured islands belong to different chains. A Poincaré
section at time ¢t = (n+1/2)T will interchange these pairs. In the present case, this

1s observed for the even 2:4 and 2:8 resonance.

The topology of the cable of intertwined flux tubes in (z,p,t) space can be very
complicated. Various graphical illlustrations of such a cable can be found in the literature
(see, e.g., [19, Fig. 8.3-3] for an outstanding example). Here we will confine ourselves to
the group of flux tubes of single isolated resonances, as illustrated in paper Iin (z,p,t)
space. Figure 2 shows as an example the projection of such a group of flux tubes on
the (z,t) plane for the 2:4 resonance. As discussed in (ii) above, we see two pairs of
disconnected tubes. QQuantum mechanically, these four segments of tubes will lead to four

(almost degenerate) quasienergy states, as discussed in detail in the following sections.

Table 1 lists the important parameters of the classical resonance dynamics, the area
A_ enclosed by the largest invariant non-resonant curve below the resonance, the area A,
enclosed by the smallest invariant non-resonant curve above the resonance and the reso-
nance area A = A, — A_. The average of the areas A, and A_ determines approximately
the average action-variable I = ¢ pdz /27 of the resonance zone

A+ A). (3)

1
o= —
10 47r(

tiwoT at the stable fixed point are

In addition, the eigenvalues of the stability matrix e
needed in the following, as well as the action integral SF = along the s-periodic orbit at
the fixed point.

In the following, we will analyse in detail the dynamics of the 1:3 resonance cen-
tered at the periodic orbit started at, e.g., (p,z) = (0,0.385) and the 2:4 resonance, i.e.
the symmetry-related pair of 2-periodic orbits started at, e.g., (p,z) = (0,—0.600) or

(0.246,—0.027) , respectively (compare Fig. 2).
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3 Quantum quasienergies and scaling properties

The quantum dynamics of a time (T')-periodic system can be conveniently described in

terms of the quasienergy (Floquet) states
T, (t) = e 7 uy(t) with w,(t+7T) = wu(t), (4)

which closely resemble the eigenstates of time-independent systems. The quasienergies
¢, are only defined by (4) up to integer multiples of hw (w = 27/T). It is therefore

convenient to define the quasiangles
8, =e,T/h. (5)

For Hamiltonian (1), the quasienergy spectrum is a pure point spectrum [20].
The time-periodic Schrodinger equation

L0 R O% b, ,
1ha——%w+<zx —)\;vcos(wt) O (6)

can be simplified by scaling the variables and parameters as

b1/2 bl/2 b
tI:wt s I,:IW s )\,:AW s h,:h

which transforms (6) mnto

L 00 RO (1,
ot 2 0x?

The quasienergies scale as

7 (9)

and the quasiangles are, of course, independent of the scaling.

Here we will use the scaled quantities (dropping the prime in the following sections). In
the classical limit, the dynamics depends only on a single parameter, A, and the (scaled)
Planck constant &’ of the quantum dynamics can be controlled by changing the frequency

w.



4 Pendulum quantization and semiclassical analysis

Semiclassical EBK quantization techniques for the quasienergy states for time-periodic
systems have been developed and studied recently [21, 22]. They allow a quantization in
two independent steps, in contrast to related methods for general two-dimensional systems
(see, e.g., [23, Chap. 7.3] and references therein).

For a non-resonant motion, the first quantization step determines the classical torus
with quantized action

1
L:ﬁfipdx:h(nﬁ%), mo=0,1,..., (10)

where 7, 1s a closed path following the intersection of the torus with the stroboscopic
Poincaré section and g is the Maslov index of the path (e.g. g1 = 2 for a librational motion

with two turning points). The subsequent step simply determines the quasienergies
K1
Enyyng = W1 (nl + Z) — < L> + hwny (11)
in terms of the torus average or, equivalently, the long time average of the Lagrangian

1 kT
<L>= lim ﬁ/o L(z,z,t)dt. (12)

k—oco

The frequency w; in (11) is the angular frequency corresponding to the action I;. It
should be noted that the quantum mechanical quasienergies are only determined up to
multiples of hw, and the term hw ny in (11) is irrelevant.

Due to the phase space organization in the one-dimensional case, the quantization
condition (10), which labels the torus supporting the quasienergy state nq, also counts
the number of states supported by the phase space region enclosed by the curve vy, which

is given by
1
n+1= E(area enclosed by71> + % . (13)

We therefore expect (for 14y = 2) Nj = AL /h +1/2 states supported by the phase space
region inside the quantized invariant torus above the resonance (state nf = N, — 1)
and N_ = A_/h + 1/2 states below the resonance region, i.e. the quasienergy state
with quantum number n7 = N_ — 1 is the highest state below. The Ny — N_ = A/h



resonance states must be labelled in a different manner. For the value A = 0.0005 we have
N = A/h = 26 states localized on the 1:3 resonance islands chain and N = A/h ~ 14
states on the four 2:4 resonance islands.

In comparison with exact results, the semiclassical quantization of non-resonant tori,
1.e. tori outside the resonance zones, proved to yield very good results as demonstrated
in paper I. Even in cases close to resonances, where the quantizing tori are already de-
stroyed and chaotic layers exist, interpolation techniques yield good approximations to
the quasienergies, as long as the resonances zones are small compared to Planck’s constant
[22]. In paper I, the semiclassical quantization of the KAM resonances, and in particular
the case of large resonances supporting several quantum states, has been addressed in
more detail. At resonance, i.e. for a rational frequency ratio wi:w = ris (r,s € IN), the
relevant dynamics is described by a pendulum (see [24] for a related pendulum approxi-
mation applied to periodically driven hydrogen atoms). The wavefunction ®(p) for this

pendulum satisfies the Mathieu differential equation

(dd—goz +a—2q COS(SL,O)) P(p) =0, (14)

where ¢ is the pendulum angle.

In the classical limit, the pendulum motion can execute librational (for a > 2¢) or
rotational (for @ < 2¢) motion in different regions in phase space divided by the separatrix
(a = 2q). The area enclosed by the separatrix is 16,/q, which must be mapped onto the
classical resonance area A divided by h (compare Sect.2). This determines the Mathieu

parameter
q=(A/16R)>. (15)
The boundary conditions for the solutions of (14) are
2 27 7
@l(go—{—?):exp 1?(1—{_1) CI)I(SO)a 1207"'75_17 (16)

where the ‘Maslov index’ u is determined by

b (!
= ( 7T I1,0> mod s (17)
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(note the wrong sign in eq. (48) of paper I). Here, I; o is the location of the resonance,
which is given by the average action (3). It should be noted that the Maslov index p is
real valued, i.e. not equal to an integer.

As well known from the theory of the Mathieu equation, the boundary condition (16)
determines (for any value of 1) a characteristic value of a inside the stability bands
numbered by 7 = 0, 1, ..., i.e. one obtains the characteristic values a;;, which finally

map onto the quasienergies by

€4,1,ny :€;’l+hw(n2—|—£l) (18)
with
1 hewg par
Pt g+ ( | 2) heo M1 19
6],1 ST p.o. + 23\/& CL]J + q + w 48 ( )

The quasienergies €1, ,,, taken modulo hw/s agree with the ¢’ ;.

Let us recall from I that ST is the classical action along the s-periodic orbit centered
at the elliptic fixed point and wy is the characteristic frequency for the motion close to the
fixed point determined by the eigenvalues of the stability matrix. As discussed in detail
in I, an expression equivalent to (19) can be derived using data from the hyperbolic fixed
points.

In the following, the structural organization of the semiclassical resonance spectrum is
analyzed. Quite conveniently, we will use the solid state term ‘band’ to describe a set of
quasidegenerate levels (modulo hw(ny + r/s)) belonging to symmetry related flux tubes.

In paper I, a detailed comparison of exact quantum results demonstrated the qual-
ity of the semiclassical pendulum quantization for resonances as well as the semiclassical
assignment of quantum numbers, which reveals the underlying structure of the spec-
trum. In particular, the quasienergies of states localizing on a r:s resonance appear
as s-multiplets, which are almost degenerate if they are taken modulo hw/s. The pre-
sented uniform method provided already quasienergy splittings due to tunneling. The
characteristic values of the Mathieu equation (14) were determined numerically in paper
I.

It is, however, more informative in the present context of a semiclassical approximation

to treat also the quantization of the Mathieu equation semiclassically. A uniform semi-



classical solution of the one-dimensional time-periodic Schrodinger equation is known and
explored in particular in the Mathieu case. Here we follow the treatment by Connor et al.
[25]. The semiclassical quantization condition for the solution of the Mathieu equation

(14) with boundary condition (16) reads
cos(a —¢) =1+ exp(—27ré)]_1/2 fi ,I=0,...,s—1, (20)
where the factors

fi = cos 2% (l + %) (21)

satisfy the sum rule > f; = 0. Here,

o= /%"+ Va — 2qcos(sp) de (22)

is the action integral over the well and

¢
TE = :l:/
o

is the tunneling integral over the forbidden region (the ‘barrier’). The boundaries of

Va —2qcos(sp)|dp, (23)

integration are the zeros of the integrand (the ‘classical turning points’), which are real
valued for a < 2¢ and complex for @ > 2¢. The sign in (23) is chosen so that € is negative
below and positive above the barrier at a = 2q.

Because of the phase correction term

¢ple) = e+ argl (% + ie) —eln |e] = —¢(—¢) (24)

the semiclassical formula is valid uniformly below and above the barrier. For the Mathieu

case, the phase integrals can be expressed by

8 [ E(k) — K?K(k) a<?
o = Vg { KE(K™") a> 23 (25)
S E(K) - K2K(K) a < 2
e = VS { K(K|/k) — E(RI/E)  a>2 (26)

in terms of elliptic integrals E(k) and K(k) with k* = (a + 2q)/4¢q and k7 = 1 — k?
following the notation in [26]. At the separatrix a = 2¢q we have

aseng\/a and e=¢=0. (27)



Equation (20) can be rewritten [25] as

-1 : i
a—d=m(7+ =) —(—=1) arctan , 28
¢ (J 2) (1) V1 — f7 + exp(—2re) (28)
where 7 = 0,1,... counts the consecutive multiplicities of the arctan function and deter-

mines the ‘bandnumber’.

The numerical solution of (20) or (28) determines the uniform semiclassical character-
istic values aj; of the Mathieu equation for boundary condition (16). Figure 3 illustrates
this for the case of a three island chain (s = 3) and parameter ¢ = 101.7 (adapted to the
period-three chain of resonances shown in Fig. 1), Maslov index p & 1 and wy = 0.07129.
Both sides of the equality (20) are shown separately as a function of @ (note that the right
hand side leads to three branches [ = 0,1,2 because of the factor f;). In Fig. 3, we have
fa =0, fo =0.867, and fi = —0.867 (note that for different parameters these values are
different, in particular we have f, # 0 and fy # — f1 as demonstrated numerically below).
The rhs of (20) changes continuously from zero to a plateau f; with a steep increase in the
vicinity of @ = 2q at the separatrix, where the tunneling integral is zero. The intersections
of the curves determine the characteristic values a;;. For the eight bands 7 =0,1,...,7
inside the separatrix at aqp = 2¢ ~ 203, the splittings of the a-values are small.

The numerical results for the quasiangles for the 1:3 resonance states are listed in
Tab. 2, where the quasiangles 8’ are taken modulo 27/3. The 8" appear as almost de-
generate triples, which are clearly organized in bands numbered by j. A first assignment
of the semiclassical quantum numbers [ = 0, 1,2 is supported by the shifts 71/3 of the
#-triple before the modulo operation. Also shown in the table are the present semiclassical
quasienergies (column scl(2) ) obtained from (19), which are in very good agreement with
the more elaborate ones in given in paper I (listed in column scl(1)). (Note that the [
numbering in I differs from the present one.) Furthermore one observes that the triple of
quasiangles for [ = 0,1,2 changes its order for odd or even values of the band number
7, which 1s easily explained semiclassically because of the alternating sign of the slope
of the cos-function in Fig. 3. Interestingly, the semiclassical quasienergy splittings yield
good approximations to the exact splittings even for states localizing definitely outside
the resonance, i.e. j > 8. There the underlying pendulum approximation looses its le-

gitimation, and the absolute values of the semiclassical quasienergies increasingly deviate
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from quantum values. The noticeable deviation between the semiclassical and the quan-
tum values for the extremely small splittings in the lowest bands is, however, due to the
limited accuracy in the quantum computations.

Figure 4 shows the quasiangles 6; for the 1:3 resonance states taken modulo 27 /3 as
a function of the band-number j (compare Fig. 6 of paper I). The quasiangles (modulo
27/3) appear as almost degenerate triples, where the splitting increases with j, as dis-
cussed in detail in the following section. For the average value f =", fi/s =0 we have

(compare (28))
a—qbzrr(j—l—%), (29)

which determines the band center @; as a function of j. More directly, the inverse function

~2o-9)-

where a and ¢ are given in (22) and (24) as a function of the parameter a, which can be

is explicitly given as

DN | =

determined from (19):

25\/q ST pHir
n I p.o.
a() = - (0 + 0 2w i 2q. (31)

Therefore, (30) provides the typical dependence of the band center as a function of the
quasiangle #" valid uniformly across the separatrix. Similarly, the semiclassical band edges

can be determined from (28) using the extreme cases f; = +1. This leads to
J+ = j + arctan (exp(me)) , (32)

which increases with e from zero below the separatrix to j £1/2, i.e. the j band width
approaches unity.

Both, the band center and the upper and lower band edges are also shown in Fig. 4
as dashed or dotted lines, respectively. We observe a marked change of the slope close to

the separatrix band number estimated as
Jsep = Afsh —1/2, (33)

which yields 75, = 8.06 in agreement with Fig. 4. For larger band numbers, the triple

of exact quantum values follow the semiclassical boundaries. Finally, is should be noted
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that well below the barrier —me is very large in the semiclassical limit and the tunneling

contribution in (28) can be neglected (¢ = 0) and we recover the primitive semiclassical

— <j+%> (34)

in agreement, of course, with the band center (29) for ¢ = 0. In this limit, €5y in (19) is

quantization (see paper I)

[-independent

(aj + 2q) + o (35)

Even more drastically, the elliptic functions in (26) can be expanded to first order in k?

and one obtains

1 1
TN Gt +hw0(]_§)+hwﬂ (36)

!
7 ST ~po-

i.e. a contribution from the central periodic orbit and an additive harmonic oscillator
ladder from the harmonically approximated pendulum. Formula (36) can also be obtained
from the torus quantisation by expanding expression (11) to the first order in the action
I, , which agrees with the narrow tube approximation by Bensch and Thylwe [27] for the
case of a single flux tube.

The localization properties of the states related to the 1:3 resonance are most clearly

detected in the quantum phase space densities, as for instance the Husimi density

o(p, ) = |{p, «|T)|" , (37)

which is simply the projection on minimum uncertainty states localized at point (p, ) in
phase space:

s\ /4 _sly=2? | i
o) = () e T (39)

Figure 5 shows the Husimi distribution for a number of selected states computed from the
exact quantum states. As in paper I, the exact quasienergy states are ordered according
to increasing expectation values <O/|I:I(f = 0)|a). Here we use an index 7y to number the
states in this way. In addition, the semiclassically assigned quantum numbers (j,[) are

given. As expected, states with 57 < 8 localize on the stability islands, as shown for the

12



lowest states (the resonance ‘ground states’) j = 0 and the excited states j = 3. With
increasing j, the Husimi distributions show an increasing number of maxima, but — for
low j — the distributions for the three [ substates are almost identical. This changes,
however, 1n the vicinity of the separatrix. The three ‘separatrix states’ with ;7 = 8 show a
pronounced localization in the vicinity of the hyperbolic fixed points, where two maxima
are observed close to these unstable fixed points. States (j,1) = (8,0) and (8,1) localize
predominantly on the outer, state (j,7) = (8,2) on the inner branch of the separatrix. The
states in the next higher band, y = 9, also populate the hyperbolic fixed points, however
clearly outside the classical separatrix (state (j,1) = (9,2) is shown as an example) and,
consequently, these states can be quantized also by primitive EBK torus quantization on

a torus outside the separatrix (see paper I).

As an example of the organization of quasienergies for an even resonance, the r:s =
2:4 resonance will be discussed in some detail. As already pointed out in Sect. 2, an
even resonance breaks up into two disconnected subchains, i.e. we observe a chain of four
2-periodic islands in the classical Poincaré section in Fig. 1, where the pairs of opposite
islands are connected by a flux tube. As shown in Fig. 2, the two pairs of disconnected
flux tubes interchange their position each half period T'/2. Therefore after one period T,
each pair of flux tubes is at its starting position, however the position of the flux tubes

within such a pair is restored only after 27T.

The total resonance area 1s A = 0.04323 and we expect 14 states localized inside the
resonance islands. The semiclassical parameter ¢ is therefore equal to 29.187 and the
separatrix band (33) is expected at jep & 2.9. Furthermore we have a Maslov index
p = 12.608. A semiclassical quantization of such an island chain has been derived in
Sect. 6 of paper I, which leads to a simple semiclassical quantization of each of the 2-
periodic flux tubes as discussed above. This yields two sets of quasiangles, which are

degenerate modulo 27 /s = 7.

The semiclassical and exact results are compared in Tab. 3 and in Figure 6, where
also the semiclassical band center and band edges are shown. The overall trend of the
quasienergy spectrum is reproduced semiclassically, in particular the approximate degen-

eracy (modulo 27/s), the formation of 4-tuples in separate bands, the variation of the
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band center as well as the increase of the band width. The levels inside a band are splitted
into two pairs ([ = 0,2 and [ = 1,3 ) with roughly the same quasienergy differences. The

position of these pairs inside a band interchange with odd/even bandnumber j.

5 Tunneling splittings of the quasienergies

Let us now look at the tunneling splittings of the quasienergies for narrow bands well below
the barrier, i.e. for parameters of the Mathieu equation (14) in the region —2¢ < a < 2gq.
Following [25], the splittings of the characteristic values a of the Mathieu equation are
approximated by expanding o — ¢ in the neighbourhood of the band center (29). The

half width of the band j 1s approximately given by

-1

d o — qé —me;
A] == % _ (& J (39)
with
d(a— ) -1 _ sT\/q (40)

da

— K(k)

aj
and € = €(a;) (note that —1 < f; < 1). Using again the expansions for the elliptic inte-
grals [26], the phase integral a over the well and the tunneling integral are approximately

given by

2
arn L Vak* (41)
s

_ 8 k? 4 k?

and the splitting of the a-values in band j can be written (using (34)) as

2 i+3-5%Va <2 >j+g
Z Ja .

s : e
Aj e — A (43)
g (3" s
The individual characteristic values inside band j are then given by
a1 = — (=1 A; fi, (44)

with an average value of @; .
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Semiclassically, the h-dependence of the tunneling splitting is of interest. With /g =

A/16h in (43) , the combined polynomial-exponential dependence can be written as
Aj ~ h0H3/2) o=d/h (45)

with 6 = A/2s. The approximate quasienergies in band j — taken modulo hw/s —

given in (19) are

e e+ A i, (46)
where Z is defined in (35), and
8h :

The splitting of the quasiangles (5) — modulo 27/s — can then be written equivalently

as
9;’1 = q + A¥'; f; (48)
with
8h -

which shows — up to the additional factor of A — the same h-scaling as (45):
(AB); ~ h=l+1/2) =8/ (50)
Two different origins of the splittings should be distinguished:

(1) The tunneling integral 7€, resulting from a classically forbidden transition between

the classical stability islands determines the overall splitting of the band, i.e. the
band width.

(ii) The quasienergies of individual states of the s-tuple in each band are splitted by the
terms hwrl/s (1 =0,...,s—1), which disappear when taken modulo hw/s, as well
as by the fi-terms (21). These splittings arise from the matching conditions for the

phases and are closely related to the symmetry properties of the states.
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Semiclassical tunneling through classically forbidden regions in phase space for two
dimensional time-independent systems has been discussed by Wilkinson [28], who conjec-

tured a scaling of the energy splittings as
AE ~ B2 =5/ (51)

where S is a constant, in agreement with the scaling (45) for the lowest band. This scaling
laws are, however, based on the existence of the classical tori, i.e. on the approximate
integrabilty of the system. Deviations from this simple scaling law for strongly distorted
systems are likely, where the classical separatrix develops into a chaotic layer (see [14] for

a recent study).

6 Wavefunctions and wave packet dynamics

In this section we will discribe the semiclassical wavefunction supported by a group of
flux tubes in more detail, as well as the symmetry and localization properties and the

suppression of tunneling.

6.1 Tunneling between flux tubes

The semiclassical (EBK) quantization of quasienergy states [17, 21, 22] provides semiclas-
sical wavefunctions v(t), which are supported by the single sT-periodic flux tube following
the periodic orbit at its center. Defining segments vj(-y)(t) =v;(t+vT), v=0,...,5s—1,
of length T', we can construct an s-fold cable of flux tubes in the period 0 <t < T (see
Fig. 2 in I for an illustration).

Neglecting tunneling, i1t was shown in paper I that the primitive semiclassical quasi-
energy states for the island chain can be built up from this flux cable. The quasienergy

wavefunction is given by

qjjvlvn2 (t> = e_i€j1l7”2t/h Iujvlyn2 (t> ~ e_iqt/h ujvlyn2 (t) (52>
where % is defined in (35) (the term hw pyr/4s is missing in in eq.(62) in I). The T-
periodic functions wj ,,(t) can be expressed as

s—1
Ui t,my (1) = (Z o(#) e”’"’“/-‘> elllr/stna)et (53)

v=0
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At the stroboscopic times t, = nT, we find in particular

s—1
Wt (1) = (Z o7 (0) /) eilr/otna)imm (54)

v=0

with UJ(-V)(nT) = v](-y-l-n)(()). By construction, there are only s different terms UJ(-O)

UJ(.S_I) .

4o oy

This does not depend on n,, so that we can drop this index. We will simplify the
notation even more by dropping — for the moment — also the band index j. Introducing

the abbreviations u; = u(0), o) = v(")(O) and o = e?™/s (54) reduces to

s—1
w = Z o o) (55)
v=0

which represents the quasienergy functions at the stroboscopic time as a linear combina-
tion of the semiclassical flux tube functions. It is of interest that the coefficient matrix
does not depend on the band number j. (As it stands, the transformation (55) from
the single flux tube states to the quasienergy states is not norm conserving; this can be
achieved, however, by multiplication with the s-root of the determinant of the transfor-
mation matrix.)

For the simple case of a two-island chain r:s=1:2 we have 0 = —1 and (54) reads

(ZD:(}_})(ZE‘K) (56)

First we observe that the state ug is symmetric in v(®) and v, whereas u; is antisym-

U(O) ]_ —]_ Ug
('U(1)>:%<]_ 1)(11,1)’ (57)

we see that states v®), which are localized on a single island, can be constructed by

metric. Inverting (56)

subtracting and adding the quasienergy states. These facts are, of course, well known
from tunneling in a symmetric double-well potential.

Somewhat more interesting is the case of the 1:3 resonance considered numerically
in the preceding sections. The three functions v®) localize on the three islands in the

classical Poincaré section in Fig. 1. With ¢ = €2™/3 | the transformation is

wo 11 1 v(©)
Uy = 1 o o o) . (58)
Uy 1 o o v(2)



The state ug is symmetric in the v*) and uy, uy transform into each other by interchanging
any pair of the v up to a factor ¢ or o*. In terms of the Cs symmetry, ug is the A-
state and wu;, uy are the E-states (compare also the discussion of a related semiclassical
quantization of the three-fold restricted rotation in [29, 23]). In fact, the matrix in (58)
agrees with the character table of this group. This holds also for the transformation (55)
in general, which is related to the Cy point group.

Inverting (58), we obtain

v(0) 1 —(1 + 0*) o o Ug
U(l) — _m a 1 —(]_ + (J') (251 s (59)
v(2) o —(140) 1 Uy

which can be used to construct quantumn states, which localize on a classical flux tube
v®) initially and follow the classical orbit v@t1), p®+2) F+3) — ) In addition, the
wavefunction ¥ picks up a phase factor e at each period, where @ = ET/FL is the
quasiangle. Very clearly, the wavepacket will return to its initial island localisation at
times 3nT.

This is, however, a simplified picture, because it neglects tunneling. If one starts,
e.g., a wavepacket constructed from a superposition of the three semiclassical quasienergy
states [ = 0, 1, 2, including the splitting — or, even more ambitious, the corresponding
exact quantumn states — the wavefunction will tunnel into the classically forbidden tubes
of the flux cable. One can gain some insight into this process by means of the narrow
band approximation of the preceding section. Starting a wavepacket localized on island
v in band j initially (we still suppress the band index in the equations):

T,(0) = v = Z dyr ug (60)
1=0,1,2
with coefficients d,; given in (59), we have at stroboscopic times 3nT

U,(3nT) = Z dui wg e 1013n (61)

1=0,1,2

=3 Fo(3n) o). (62)
The time dependent probability amplitudes

far(Bn) = > dyo¥teTn (63)

1=0,1,2
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_-_/. 7 . / [
~ e i6' 3n E dul Uule iA8 f; 3n (64)

1=0,1,2
(with f,,(0) = 4, ) show a quasiperiodic tunneling oscillation between the flux tubes
with frequencies

wi ~ |fr — fil = ‘QSing (l'—l—l—l— g) Cosﬁ(l'— . (65)

S

Within the narrow band approximation (48), (49), this oscillation is strictly periodic if

the ratio of two of the f; is rational.

6.2 Degeneracies and suppression of tunneling

Contrary to the energy eigenvalues for a one-dimensional double well potential, the
quasienergies can be degenerate. In the present context, this is easily achieved by vary-
ing the value of h, keeping thus the underlying classical dynamics unchanged. In view of
Sect. 3, this can be done, e.g., in an experiment by varying the frequency w. From (17) we
see, that the (quasi) Maslov index ;/4 is changed and two of the factors f; in (21) or (65)
can become degenerate. It might be helpful to illustrate this by the complex quantities
e2m+u/N/s | the roots of 2% = /2 ( fi = realz ), which are the n vertices of a regular
polygon, rotated by an angle mu/2, which depends on h.

The condition for such a degeneracy of states [ and [’ is
Ko / _
§—SN—Z—Z JN=1,2,..., (66)

i.e. whenever u/2 is equal to an integer, pairs of the f; — and hence the semiclassical
quasienergies ¢, — are degenerate. Such a degeneracy occurs simultaneously in all bands 5
(note that this results from the semiclassical approximation, but it is not a consequence
the narrow band approximation).

As an example, in Fig. 7 the characteristic value aj; of the Mathieu equation (14)
(i.e. the quasienergies (19) up to a linear transformation) are plotted as a function of
the (scaled) h for the 1:3 resonance bands. The curves show a steep increase up to the
separatrix value (which decreases with h because of age, = 2¢ = (A/4h)?) followed by a
widening of the bands, where the three substates oscillate regularly undergoing repeated

degeneracies in all bands. For even larger values of i the bands approach each other and
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the substates form a regular net, where the interband-crossings are small, however still
avolded.

In case of a degeneracy of substates [ and !’, one can construct a wavefunction, which
1s localized on any pair of flux tubes. The tunnelling to the third flux tube is suppressed,
i.e. one of the islands is not populated at times 3nT. Such an anti-localization on tube v
can be achieved by taking a linear combination of the quasienergy states

T(0) = Z Cyt Uy (67)
V'=0,1,2

with ¢ =0 ([ and I’ degenerate, [ # 1" #1") and

cp=—¢ for v=0 (68)

cp=—0o¢ or ¢ =—0o¢ for v=12. (69)
An initial state (67)—(69) shows a time variation at t = 3nT as

U(3n) = Z Cyt Uy o030 (70)

v'=0,1,2

= (crup+ qu) e~ — T(0) e~ s (71)

1.e. the probability distribution remains constant.

7 Concluding remarks

We have analysed the splittings of the quasienergy states in periodically driven quan-
tum systems due to tunneling between classical resonance flux tubes in continuation of
previous work on semiclassical EBK quantisation [17, 22]. The resulting semiclassical
approximation provides a simple method for computing the quasienergies and their split-
tings from a few classical data by means of phase integrals over the flux tube and the
dynamical barrier. Numerical applications to a driven quartic oscillator demonstrated
the applicability of this approximation, which may be useful for more realistic systems
because very small tunneling splittings are difficult to compute quantum mechanically.
Moreover, the semiclassical analysis provides a useful skeleton for the overall organisation

of the quasienergy spectrum, which can be labelled by semiclasscial quantum numbers.
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At present time, we are not aware of experimental data of quantum tunneling splittings
between classical flux tubes, which allow a direct quantitative application of the present
analysis. There is, however, a strong experimental effort to control and stabilize states of
atomic or molecular systems in time periodic fields, e.g. strong laser fields. In particular,
it should be possible to populate resonance island states, e.g. by controlling the time
variation of suitable system parameters. We hope that our prediction of tunneling between
flux tubes will be experimentally observed in near future.

In closing, we would like to point out that there are also some open problems in the
theoretical understanding of these tunneling processes, because the present analysis 1s
developed and tested for a system, which is almost regular. It should be of some interest
to study the influence of increasing chaoticity on the splittings for tunneling transitions

through the chaotic separatrix layer. Work along these lines is in progress.
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Table 1: Parameters of some classical r:s—resonances.

r.s

A_

Ay

A

WOT SI;I-_O_

1:1
2:4
1:3
1:5
2:5
1:7
2:7
1:9

3.09780
0.48528
0.11096
0.02837
0.86780
0.01112
0.31598
0.00534

5.09007
0.52851
0.19211
0.03610
0.88354
0.01216
0.32270
0.00553

1.99186
0.04323
0.08115
0.00754
0.01524
0.00088
0.00660
0.00000
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0.06448 1.06691
0.01426 0.12621
0.07219 0.03878
0.03181 0.00649
0.00694 0.65524
0.01069 0.00064
0.00813 0.23689
0.00314 0.00000



Table 2: Semiclassical and exact quantum quasiangles 6 = ¢, T/h (modulo 27/3) for
the 1:3 resonance states. The quantum numbers (j,1) are assigned semiclassically. The
exact quantum results are compared with the semiclassical approximation scl(2) and with
those obtained from the more elaborate method in I (scl(1)).

quasiangles energy—splittings
j 1 quantum scl(1) scl(2)  quantum scl(1) scl(2)
0o 0 0.5467 0.5458  0.5472
0o 1 0.5467 0.5458  0.5472 1.49e-09 1.31e-11 1.68e-11
0o 2 0.5467 0.5458  0.5472
1 0 0.9816 0.9818  0.9832

1 1 0.9816 0.9818  0.9832 3.82¢-09 1.28e-09 1.24e-09
1 2 0.9816 0.9818  0.9832

2 0 1.3969 1.3993  1.4007
1.3969 1.3993  1.4007 2.55e-08 5.79e-08 5.69e-08
2 2 1.3969 1.3993  1.4007

[3¥)
—

3 0 1.7913 1.7967  1.7981
1.7913 1.7967  1.7981 1.30e-06 1.61e-06 1.59¢-06
3 2 1.7913 1.7967  1.7981

w
—

4 0 0.0683 0.0776  0.0790
0.0683 0.0776  0.0791 2.56e-05 3.07e-05 3.04e-05
4 2 0.0683 0.0776  0.0791

-
—

5 0 0.4144 0.4284  0.4298
0.4140 0.4280  0.4294 3.29e-04 4.16e-04 4.13e-04
5 2 0.4144 0.4282  0.4296

[92]
—

6 0 0.7290 0.7475  0.7490
0.7325 0.7515  0.7530 3.52e-03 4.01e-03 3.99e-03
6 2 0.7296 0.7494  0.7509

o2}
—

7 0 1.0194 1.0460 1.0475
0.9954 1.0203 1.0219 2.39e-02 2.57e-02 2.56e-02
72 1.0099 1.0321  1.0337

-3
—

8 0 1.1995 1.2279  1.2296
1.2836 1.3162 1.3177  8.41e-02 8.83e-02 8.81e-02
8 2 1.2333 1.2639 1.2656

co
—

9 0 1.5619 1.5822  1.5837
1.3904 1.4194  1.4210 1.72e-01 1.63e-01 1.63e-01
9 2 1.4477 1.4941  1.4956

©
—

10 0 1.6174 1.6802 1.6816
10 1.8068 1.8903  1.8916 1.89e-01 2.10e-01 2.10e-01
10 2 1.7744 1.7820 1.7834

—

11 0 0.1430 0.1497  0.1509
11 2.0121 2.0032 2.0045 1.87e+00 1.98¢4+00 1.98e400
11 2 2.0144 0.0272  0.0285

—_

12 0 0.1796 0.2774  0.2786
12 0.4647 0.5454  0.5466 2.85e-01 2.68e-01 2.68e-01
12 2 0.3803 0.4089  0.4101

—

13 0 0.8951 0.9790  0.9801
13 0.6312 0.6855  0.6867 2.64e-01 2.93e-01 2.93e-01
13 2 0.7726 0.8305 0.8316

—
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Table 3: Semiclassical (first line, scl) and exact quantum (second line, qm) quasiangles
0%y = € T/h (modulo 27/2) for the 2:4 resonance states. The quantum numbers (7, 1) are
assigned semiclassically.
J =0 [=1 1=2 1=3
0 sc 1.0974 1.0975 1.0975 1.0975
gm 1.0958 1.0958 1.0958 1.0958

1 sc 1.2236 1.2240 1.2234 1.2231
qm 1.2218 1.2221 1.2216 1.2212

2 scl 1.3298 1.3266 1.3321 1.3363
qm 1.3281 1.3244 1.3296 1.3344

3 scl 1.4189 1.4411 1.4101 1.3986
qm 1.4141 1.4403 1.4099 1.3959

4 scl 1.4959 1.4658 1.5119 1.5517
qm 1.4984 1.4616 1.5041 1.5554

5 scl 1.6371 1.6877 1.6161 1.5707
qm 1.6258 1.6953 1.6218 1.5615
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Figures:

03

0.2

01

Figure 1: Stroboscopic Poincaré section for a weakly driven quartic oscillator showing
resonance regions for wy/w = 1/2,1/3, 1/5,... . The period-two motion appears as two
disconnected pairs of islands.
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Figure 2: Two pairs of resonant flux tubes surrounding an elliptic orbit of period two.
Two different trajectories are plotted as a function of time ¢t modulo T = 2.
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Figure 3: Semiclassical quantization condition (20) as a function of the Mathieu parameter
a for the period three (s = 3) chain in Fig. 1 (A = 0.0005). The three branches of the rhs
differ by the factor f;, 1 =0,1,2.
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Figure 4: Quasiangles ' (modulo 27/3) for the 1:3 resonance states as a function of the
band-number j (integer multiples of 27 /3 are added so that the data increase with j).
The almost degenerate triples for / = 0 (o), 1 (¢), and 2 (4) changes its order for odd or
even j. The broken and dashed curves show the variation of the semiclassical band center
and band boundaries.
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Figure 5: Quantum Husimi phase space distributions for a number of selected states with
semiclassically assigned quantum number (j,1) related to the 1:3 resonance. States with
J < 8 localize on the stability islands, as shown for the lowest states (the resonance
‘ground state’) j = 0 and the excited states j = 3. The states j = § localize on the
separatrix and 7 = 9 in the region outeside the separatrix.
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Figure 6: Quasiangles #' (modulo 27/2) for the 2:4 resonance states as a function of the
band-number j. The almost degenerate pair for I = 0,2 (o0, x) and [ = 1,3 (O, 4) change
their order for odd or even j. The broken and dashed curves show the variation of the
semiclassical band center and band boundaries.
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Figure 7: The characteristic Mathieu values a;; show sequential degeneracies as a function
of the scaled values of h simultaneously in all bands. Also shown is the seperatrix value
Asep ~ B2
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