Resonances from short time complex-scaled cross-correlation probability amplitudes
by the Filter-Diagonalization Method

Edvardas Narevicius(*), Daniel Neuhauser(®)*, H. Jiirgen Korsch(®) and Nimrod Moiseyev(®%)
() Department of Chemistry Technion — Israel Institute of Technology Haifa 32000, Israel
®) Department of Chemistry, University of California, Los Angeles, 90095-1596, USA
() Fachbereich Physik, Universitit Kaiserslautern, D-67653 Kaiserslautern, Germany
(9 Minerva Center for Non-linear Physics of Complex Systems, Technion City, Haifa 32000, Israel

The Filter-Diagonalization Method is used to find the
broad and even overlapping resonances of a 1D Hamiltonian
used before as a test model for new resonance theories and
computational methods. It is found that the use of several
complex-scaled cross-correlation probability amplitudes from
short time propagation enables the calculation of broad over-
lapping resonances, which can not be resolved from the am-
plitude of a single complex-scaled autocorrelation calculation.

Filter-Diagonalization was recently introduced by
Neuhauser [1] and Neuhauser and Wall [2] as a general
method to extract frequencies (poles) from a given signal.
The approach has been extensively used to extract fre-
quencies and poles in both quantum dynamics and gen-
eral contexts, by several groups [3-5]. In this article, our
goal is to investigate the performance of the method for
a strict generic test-model of new approaches for extract-
ing resonance poles. While a general filter can be used, in
this derivation we follow Mandelshtam and Taylor who
recently used very successfully the simple box filter [3].
First, the method is briefly reviewed.

For a given Hamiltonian, one wishes to obtain the spec-
trum in the energy interval, Epny, < E < Empayx. (This
energy range can be much smaller than the total spec-
trum of the Hamiltonian; a power of the method is that it
can be applied, with very small overhead, to many energy
ranges, as explained below.) Let us first choose an initial
state, |¢1(0)), which is randomly populated over the en-
tire available phase space of the Hamiltonian. Then we
calculate |¢1(t)) = exp(—iHt/h)|$1(0)) by any prefer-
able propagation method up to time ¢ = T. Of course,
for long enough propagations when T is larger than the
inverse of the smallest energy difference between adjacent
eigenvalues of H, the spectrum can be resolved by carry-
ing out a Fourier transform of the autocorrelation func-
tion Cy(t) = (¢1(0)|#1(¢)). There are, however, many
motivations to avoid such long time propagations. For
example: For multi dimensional systems the long time
propagation is too expensive. There are also propagation
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methods which are efficient only for short time propaga-
tions. Moreover, broad resonances, which are associated
with large imaginary parts of the complex eigenvalues of
the Hamiltonian, have no contribution to the propagated
wave packet when ¢ > 3M#7/Im (E™") where M is the
number of digits of machine accuracy.

If we calculate the Fourier transform of Cy(t) from ¢t =
0 to 7" and the time interval is too short to resolve the
spectrum, we will not get the eigenfunctions but we can
Let us filter out
from ¢1(t) the hAw components at several frequencies w:

construct an effective small basis set.

T
[P, ) = %/0 dt exp(+iwt) exp(—iHt/h)|¢1(0)). (1)

We can use the |¥,) as a basis set to diagonalize
the Hamiltonian in the desired range [2]; here we follow
[3] and diagonalize instead the time evolution operator
U(r) = exp(—iH7/h) at time ¢ = 7. The eigenvalues of
U(r) are A = exp(—iE7/h), where F are the exact eigen-
values of the studied Hamiltonian (Note that from A one
gets only the eigenvalues £ modulo 27w /(h7). Therefore,
7 is taken as a short time interval. The stability of the re-
sults is checked by varying 7 = kdt; k = 1,2, 3.) The time
evolution matrix element is U(w’,w) = (W |U(7)|¥,).
It should be noted [2] that in the ‘bra’ we do not take
the complex conjugate as usual [6]. The motivation for
it will be clarified later. By inserting the definitions |¥,,)
and U(7) into the time evolution matrix elements, one
immediately obtains
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withty =1+t wy = (wxw')/2and A =T — T —14].
As one can see from Eq. (2), the 2D Fourier trans-
form is reduced to a 1D Fourier transform and the time
evolution matrix elements are given by

Uw',w) =



1
T2w_

2T
/0 dty sin(w_A(ty)) e+ +Ci(ty + 7). (3)

For w' = w, the term sin(w_A(t}))/w_ in the above
expression should be replaced by A(¢;). The overlap
matrix elements, S(w’,w) = (¥,/|¥, ), are immediately
obtained by inserting 7 = 0 in (3).

It is clear that if we would have used the usual scalar
product instead of the c-product [6], then: (a) we would
need to calculate (¢1(0)|exp[—iH (¢ — t' + 7)/A]|$1(0)),
which implies backward propagation in time (Note that
H is the complex scaled Hamiltonian and therefore
Ci(—t) # Cf(t)); (b) we would not be able to replace
the 2D transform Fourier by a 1D one.

In addition, we should stress that as T' — oo, the over-
lap matrix S becomes diagonal. For finite values of T,
the ¥, form a non orthogonal basis set. This basis can
be a relatively small one and yet filter out the eigenvalues
within the desired energy interval if discrete values for w
are chosen. For example, we choose
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j=0,1,2,..., N,, where N,+1 needs to be chosen some-

what bigger than the the number of chosen frequencies
in the studied range (which can be much smaller than
the total number of frequencies in the spectrum of the
Hamiltonian).

We used this method to calculate the complex poles of
the 1D model Hamiltonian that has been used for many
years as a test-case for new theoretical and computational
approaches [7]:

H= %pi + (% x?— 0.8) e 017" 1 0.8. (5)
By using 700 particle-in-a-box basis functions, with a box
size of L. = 40 and A = 1, and by rotating the coordi-
nate z into the complex coordinate plane by the angle
6 = 0.75 (i.e., we scale z by exp(i6)) we calculate the
first 20 complex poles which are closest to the real axis in
more then six digits of accuracy and 20 more in less accu-
racy. The first seven ones are isolated resonances but only
the first two are narrow resonances (F7*® = 1.4209709 —
i0.5826663 - 10~%, F5* = 2.1271971 —40.015447319). All
the others are broad resonances. For example the 7-th
one is equal to FI* = 3.8243295 — 72.4874462. Between
3.0 to 4.5 there are nine poles with widths which vary
from about 10 to 20 (note that —2Im(E**) = T'). Since
we are interested in the calculation of the short lived res-
onances we choose Emin = 3.0 and Fmax = 4.5. Note
that there are overlapping resonances which have about
the same position and are very different with respect to
their widths.

The complex-scaled autocorrelation amplitude prob-
ability, Cy(t), was calculated for an initial state that

was constructed of a random complex superposition of
all eigenstates of the complex scaled Hamiltonian (not
only the poles) with energy above unity. This was done
to simplify the calculations and it is equivalent to pop-
ulate randomly the phase space from F =1 to E = 5.
(Equivalently, a completely random initial wavefunction
made of all eigenstates could be taken.)

The results presented in Fig.1 show that only the most
narrow isolated pole is accurately obtained (six signif-
icant digits for the position and four for the width),
whereas the three others were obtained in much less ac-
curacy. N, = 30 filter basis functions were found to
provide stable results in this calculation (for large value
of N, the overlap matrix becomes singular and needs to
be handled [2] with singular value decomposition). The
time step was dt = w/10. We have made no effort here to
study the required number of time steps, so that a large
number of steps (860) was taken.

In order to increase the accuracy of the results ob-
tained from the filter diagonalization calculations, we
replaced (following [2]) the autocorrelation probability
amplitude C(t) by the cross-correlation probability am-
plitudes, C"71(t) = (6,0(0)|6n(t)); n,n' = 1,...,N.
Let us first describe the motivation for this. The fil-
ter basis functions obtained from the autocorrelation
probability calculations are assigned two indices, w and
n =1,2,..., the latter associated with the selected ini-
tial condition. For example we can choose N different
initial wave packets that are randomly distributed in the
available phase space. The filter basis functions are now
Wy n);in = 1,2,...,N rather than |¥, ;) used above.
The time evolution matrix element U(w’,w) is denoted
by two more indices, n and n': U(w’, n',w, n). When dis-
crete values for w are taken, we will replace the notation
of w by wj = Wnin + j dw and of W’ by wj1 = wWmin + j'dw.
Therefore the matrices U and S are constructed from the
sub-matrices U7 and 8§[*"]. Since the integration over
time is carried out on a grid, tx = kdt; k=0,1,..., Ny,
we may replace the integrals in Eq. (3) by a summation.
The matrix elements of the sub-matrices of the time evo-
lution operator and of the overlap between two filter basis
functions are given by

2N,

U[” m] Z

exp zdtk(wj + WJ)) Ck[j_{] (6)

2N,
S[n n] _ ZFJ (k) exp(idtk(w; +‘-"g))0k[n n] (7)

with

Fji (k) =sin((T — |T — dt k|)(wjr — wj))/(wjr —wj) (8)

for j' # j and

F

(k) =T —|T —dtk|. (9)



Note that the cross-correlation probability amplitude
C'k[nl’n] is equal to (¢,(0)|dn(t = tg)); tx = kdt. The
desired spectrum, F, = i(h/7)InA,, is obtained by solv-
ing the generalized eigenvalue problem UW¥, = A,SY¥,,
where £ = 1,2,..., NN,,.

The results shown in Figs. 2-3 are obtained for four
and eight initial states, respectively, which randomly
populate the eigenstates of the Hamiltonian with ener-
gies larger then 1.4. Both the real and the imaginary
parts of the linear coefficients were randomly obtained.
The Apin = (6n(0)|¢n(0)) was c-normalized to unity
for n' = n and, for n' = 2,n = 1, |A12]? = 0.00475,
and |A173|2 = 0.1221, |A174|2 = 01845, |A2,3|2 = 00127,
|As,4]? = 0.000538, |A3,4]*> = 0.06035.

The comparison between Figs. 1,2 and 3 shows very
clearly that the use of cross-correlation functions not
only increases the accuracy of the calculations but also
enables us to obtain from short time dependent calcula-
tions broad overlapping poles. For example, the fifth pole
has an imaginary part which is equal to -1.1111 and its
contribution to the evolution in time of the propagated
wave packet decays to zero much before 860 time steps
of propagation (i.e. exp(—ImE™5t/h) ~ exp(—300), after
860 time steps). Since the main point of this illustrative
numerical example is in the comparison between the best
results one can get out of the time autocorrelation prob-
ability amplitude and the results obtained when several
cross-correlation functions are calculated, we did not try
to find out what is actually the minimal length of the
time propagation one can use.

We believe that the proposed method, which is a com-
bination of complex scaling and Filter-Diagonalization,
will be found to be useful for calculating the resonances
of other systems. The major new point we address in this
communication is that the energy spectra (not only broad
resonances but also narrow ones and bound states) can
be obtained from short time propagations of several ran-
domly selected initial wave packets and by calculating the
corresponding cross-correlation probability amplitudes.
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FIG. 1. The poles obtained from the autocorrelation prob-
ability amplitude, C;(¢), (full circles) in comparison with the
exact numerical results (open circles). The insert shows a

magnification of the first two low lying resonances.
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FIG. 2. The resonance poles as obtained by the fil-
ter-diagonalization method from four cross-correlation am-
plitude probabilities. The four initial states were taken at
t = 0 as random superposition of all eigenstates of the com-
plex scaled Hamiltonian above the threshold. 30 energy filter
points were used (N, = 30 and wmin = 3 and wmax = 4.5).
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FIG. 3. Asin Fig. 2, but eight cross-correlation amplitude
probabilities were used in the generation of the filter basis set.



