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A formalism is developed for calculating the quasienergy
states and spectrum for time-periodic quantum systems when
a time-periodic dynamical invariant operator with a non-
degenerate spectrum is known. The method, which circum-
vents the integration of the Schrodinger equation, is applied
to an integrable class of systems, where the global invariant
operator is constructed. Furthermore, a local integrable ap-
proximation for more general non-integrable systems is de-
veloped. Numerical results are presented for the double-
resonance model.

PACS number(s): 03.65.-w, 05.45.4+b

I. INTRODUCTION

The time dependent Schrodinger equation can be in-
tegrated directly [1], or approximated, e.g. by analytic
Dyson or Magnus [2—-4] expansions to obtain the evolu-
tion of the system in the form of the fundamental propa-
gator. For time periodic systems, the Floquet theory [5,6]
provides a unique functional form for a propagator, which
permits to construct the solution for any time from the
first cycle. Using the periodic form of the Floquet prop-
agator, the problem can be reformulated in terms of so-
lutions (quasienergy states) and eigenvalues (quasiener-
gies) which characterize and determine the dynamics of
the system. Nevertheless, the Schrodinger equation has
still to be integrated over the first cycle.

We know from classical mechanics that an integrable
system, when perturbed, leads to soft chaos in the sense
of the KAM theorem [7]. That is, the phase space of the
integrable system is entirely stratified by invariant tori,
specified by actions I;, on which the motion is linear in
time and characterized by the frequencies w; = w;(I;).
The neighborhood of the resonance tori corresponding to
commensurable frequencies with rational winding num-
bers Q = w;/w; = r/s (integer r, s) are usually destroyed
in the presence of perturbations. For the remaining tori,
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the EBK quantization [7,8] allows a semiclassical approx-
imation of the quasienergy spectrum.

We present here an entirely quantum mechanical for-
malism, which allows us to construct the quasienergy
spectrum and quasienergy states from the knowledge of a
global invariant operator of the system. In this way, the
integration of the Schrodinger equation, often a laborious
task, can be avoided.

It is well known that generic time-periodic Hamilto-
nians are non-integrable and both regular and chaotic
motions coexist [9,10]. Here we discuss systems, where
the chaotic component can still be considered as small
and the main characteristics are dominated by regular
dynamics. For an approximate treatment of such sys-
tems, two different strategies can be employed: First,
one can make use of the semiclassical EBK quantization
to quantize the states supported by classical invariant
tori [8] (by means of interpolation, this method can also
be used to quantize weak chaotic components [11,12]).
Alternatively, one can construct an integrable approxi-
mation to the Hamiltonian, which can then be treated
quantum mechanically in (almost) closed form.

In Sect. T1, the general formalism is developed and, in
the following two sections, applied to integrable systems
and non-integrable ones for which approximate (local)
invariant operators are constructed. First, in Sect. III,
a class of integrable systems is presented and its invari-
ant operator form is derived. Then the formalism is ap-
plied to a specific example: a single resonance system.
In Sect. IV, the non-integrable double-resonance model
is treated as an example where an approximate invariant
operator can be constructed. Approximate quasienergies
and quasienergy states are computed and compared with
exact results and a previously suggested harmonic oscil-
lator approximation. Finally, in Sect. V, we summarize
our results.

II. FORMALISM

A quantum system described by a time-periodic Hamil-
tonian (period T') evolves from an initial state [W(0))
to the state |[¥(¢)) = U(t) |¥(0)) according to the
Schrodinger equation



() = () U(), (1)

where U(t) is the unitary evolution operator with the ini-
tial condition U(O) =1. As I:I(t) is T-periodic, Floquet
theory [5,6] provides a fundamental set of solutions: the
Floquet or quasienergy states

o)) = U@)[Wa(0)) = et/ |64(1)), (2)

where |¢a(t +T)) = |¢a(t)) and e, is the quasienergy.
The quasienergy states are obtained as the eigenvalues
and eigenvectors of the Floquet operator — the time evo-
lution operator 0(T) over one period T of the system:

U(T) [9a(0)) = e~"*=T/" [04(0)). (3)

Let us now assume that the system possesses a hermitian
invariant operator I(t) = I'(t),

di(t)  aI(t)
Sdt T ot

+ o [F(0), A ()

0, (4)

which is one of a complete set of commuting observables,
so that there is a complete set of eigenstates of 1(t).
Furthermore, 7(t) should not involve time-derivative op-
erators. Then, following Lewis and Riesenfeld [13], the
general solution of the Schrodinger equation is

[U()) = 3" exr [ar (), [9a(t)) = €O |\ ks1), (5)

W

where |\, k;t) are the normalized instantaneous eigen-
states of I(t) with eigenvalues A. The index k describes
the degeneracy of the eigenvalue A and the cy; are ¢-
independent. We call the particular state |¢xr(f)) a
Lewis and Riesenfeld Ak solution. The Lewis phases
ai(t) are determined by the expectation value of the
Floquet operator i#d/dt—H () with respect to the eigen-
states of the invariant:

ha(t) = (A kil i — A0 kD), (0

provided that the (\, k;t| ihd/dt—H (t) |\, k;t) are zero
for k' # k (this is always possible, because the Floquet
operator 159/t — H(t) is hermitian and is therefore di-
agonalizable).

In addition, we assume that the invariant operator
is T-periodic and its eigenvalues are non-degenerate:
[A, k;t) =, |A;t). In this case, they are also T-periodic
[A; T) = |A;0), and a particular A solution |y (t)) of (5)

after one period is

U(T) [#2(0)) = [$a(T)) = e?“m |4;0)
=) [4,(0)). (7)

Comparing (3) with (7), the quasienergies are identified
as

h
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1 (T Y
_T/o <A,t|zhE—H(t) |A;2)dt mod hw  (8)

up to a factor of hw = 27h/T. Rewriting [1x(t)) as

[9a(t)y = T g5 (1)) (9)
|¢)\(t)> — ei(ou(t)—ou(T)t/T) |)\;t>, (10)

where |¢x(t)) is the T-periodic state vector in (2), be-
cause of ax(t +T) = ax(t) + ax(T), and |A;t) is T-
periodic. It is clear that the Lewis and Riesenfeld solu-
tions |15 (t)) are the quasienergy states.

As mentioned in the introduction, there is no need here
to know the evolution operator U(t), whose calculation
is frequently a difficult task. If a T-periodic invariant op-
erator f(t) not involving ¢-derivatives can be found with
a complete set of non-degenerate eigenstates |A;t), the
quasienergy spectrum can be determined from (8), being
in one-to-one relation with the spectrum of the invariant,
while (9) and (10) determine the quasienergy states.

In a previous article [14,15], we have shown that it is in
principle possible to find such an invariant operator for
systems whose Hamiltonian is generated by a dynamical
algebra closed with respect to the action of the commu-
tator. We have treated there two examples of such inte-
grable systems, the generalized harmonic oscillator and
the two-level system.

In the following section, we apply the formalism to a
class of integrable systems, constructing first its invariant
operator and then considering a single resonance system
as a specific example.

III. AN INTEGRABLE CASE

Examples of integrable systems are rare, but because
of their conceptual importance they are discussed repeat-
edly in the literature. By far the most intensively ana-
lyzed system is the celebrated time-dependent harmonic
oscillator, where the importance of the dynamical Lewis
invariant is well established (see, e.g., [14] and references
given there). Here we discuss a very simple example of

an integrable system with Hamiltonian form

H = H(: — wt, p) (11)

with [Z,p] =ih (w is a real number). Transforming into
a rotating frame

B =F—wt

t'=1 (12)

the Schrodinger equation can be written as

ih N, 0) = (A7)~ e ¥ ). (19)



with p' = —ihd/d2' = p. The operator H(#',p') — wp'
does not depend explicitly on time in this frame and is
therefore a constant of motion. Thus, going back to the
former frame, this constant of motion will define an in-
variant operator for the system defined by the Hamilto-
nian (11):

I(& —wt,p) = H(& — wi, p) —wp (14)

as can be easily checked by inserting (14) into (4).

For this class of systems, regardless on the particular
form of the p or Z dependence as far as time-dependence
goes together with # as in (11), an invariant operator of
the form (14) exist and the Lewis and Riesenfeld phase
can be found from (6) as

a;k(t):—%t, (15)
where X is the (time independent) eigenvalue of the in-
variant (14).

As a particular time-periodic example of the class of
systems defined by (14), we consider the Hamiltonian

= — = - .icos(go — wt) (16)

which models, e.g., the planar motion of a dipole (a
diatomic molecule in the rigid rotor approximation) in
a time-periodic electric field with circular polarization.
The invariant operator is given by (14) (the frequency
w of the field can be taken to be unity by rescaling
the time). Tt should be noted that for one-dimensional
systems with quadratic p-dependence, a general dynam-
ical invariant has been drived by Ray [16]. The dy-
namical invariant operator (14) with Hamiltonian (16)
is in complete agreement with this result up to an ir-
relevant constant term w?/2, which is evident by using
Ft)=w(l)=k=0,p(t) =1and G =—f/2cos(x —wt)
in eqns. (1.5) to (1.8) of [16].

To construct the quasienergy states, we solve the eigen-
value equation for the invariant operator

HONRDEPIIHN (17)
which leads to the Mathieu equation
i+ (a—2q cos2y)u =10, (18)

where the dots denote derivation with respect to y =
(p —t+ m)/2, and the parameter ¢ is given by

q=2f/n%. (19)

The characteristic values a determine the eigenvalues A

of the invariant
1 (h2a
A=—|——1 20
() o

and the wave functions are given by

go—t+7r>

5 (21)

(plhit) = PNy (
The 2m-periodic boundary conditions for the eigen-
states (21) yield m-periodic solutions of the Mathieu
equation. Now, the w-periodic solutions correspond
to the countable infinite set of characteristic values
can(q), n =0,1,...[19]. For convenience, they are often
separated in two sets: a2, (q), which yield even m-periodic
solutions u$, (y), and b2, (q), which yield odd m-periodic
solutions u$, (y). For fixed real ¢ > 0 the characteristic
values az, and by, are real and distinct (therefore they
are non-degenerate) and ordered as ag < by < az < by <
-+ . Therefore, the eigenstates |A;t) of the invariant sat-
isfying the boundary conditions are

L —t
(i) = M (BT o
As for this system the invariant operator satisfies the
conditions discussed above, the quasiangles 0,, = ¢, T/h,

from (8) and (15), are

0, — 27\, T <h262n

mod2m = —
4

- — ]) mod 27 (23)

determined by the characteristic values ¢, (¢) up to mul-

tiples of 2m. The quasienergy states are therefore (see (9)
and (10))

[t (1)) = 71 ean A= E20 |3 gy (24)

As demonstrated in the following section, an integrable
system of this type can be used to construct local ap-
proximations to the quasienergy states of non-integrable
systems. In this way, the spectral structure of the system
under consideration can be analyzed.

IV. A NON-INTEGRABLE CASE

As mentioned in the introduction, global non-
integrability of a system seems to be the rule. However,
for classical systems we know that some local approxi-
mate invariants may exist as can be easily seen by a sim-
ple inspection of the Poincaré surface of section. More-
over, Chirikov showed that, within a so-called secular
perturbation theory, dynamics in the vicinity of nonlinear
resonances can be described by the (integrable) motion
of a generalized pendulum [20,9]. Tt would be instructive
to construct approximations for these invariants in quan-
tum mechanics. In this section, we discuss the problem
for a typical example, the double-resonance model.
In dimensionless units, the Hamiltonian is

X h? 92

H:—§ W—fcostcosap, (25)



which, as before, represents, e.g., a rigid planar diatomic
molecule interacting with an electro-magnetic field whose
direction is now fixed in space, which makes the system
non-integrable. This system is also known as the double-
resonance model as is clearly seen by rewriting the Hamil-
tonian as

H=—— P [cos(p —t) + cos(p +1)] . (26)

Because of its fundamental importance, this model has
been studied by several authors [21-28,30] also because of
applications to collisional and spectroscopic experiments,
where molecules are oriented in an electric field [29].

For the classical system, two fundamental resonances
with frequencies Q(J3) =1 and Q(J-) = —1 at Jy =
+1 are immediately recognized, where the system rotates
clockwise or anti-clockwise with the field. The centers of
these main resonances appear as stable fixed points in the
stroboscopic Poincaré section shown in Fig. 1 for a scaled
field strength f = 0.1, where a few classical trajectories
are shown in momentum space at times ¢ = nT, n =
1,2,....

FIG. 1. Classical stroboscopic Poincaré section for a
driven rotor with force amplitude f = 0.1 at times
t =nT)n =1,2,..., where T' = 27 is the period of the
field (® = ¢ + m). Two primary resonances with winding
numbers Q(Jy) =1 and (J_) = —1 are clearly seen. As
a result of the perturbation between them, a secondary res-
onance coupling the motion of the two primary islands can

also be observed.

For small values of the parameter f, the width of the
resonances is small compared to their distance leaving
the system almost integrable. As a result of the pertur-
bation between the two resonances, invariant tori around

the separatrix of each resonance are deformed. With in-
creasing parameter f more and more tori are destroyed
and the Poincaré section shows a (bounded) extended
chaotic zone generated by a single classical trajectory
[26]. In Fig. 1, the resonance layer is still very thin and
can only be seen as a thickening of the separatrix. A sec-
ondary resonance coupling the motion between the two
primary islands is also observed.

In a quantum treatment of this system, we can make
an attempt to construct a local invariant operator for
Around each primary reso-
nance the system has a slowly varying term (see (26))
and a rapidly varying one which, after averaging, yields
a negligible contribution [9,28]. Thus, we approximate
the system by the co- or counter-rotating Hamiltonian

the individual resonances.

HY = — - —— —Z cos(pF1), (27)

respectively. The H* are integrable, with an associated
invariant operator (14):

. - 0
It =H* +ih—. (28)
dp
Thus, following the formalism of Section 11, the approx-
imate quasienergy spectrum is given by (23) and its
quasienergy states |1 (f)) by (24) with

oI\, 1) = explti(p £ 1/h)] upa (o F 1 £ 7)/2) . (29)

Note that the quasienergies are identical for the two
cases.

In order to explore the validity of this simple approx-
imation, we solve the Schrodinger equation numerically
for the exact Hamiltonian given by (26) and compare
the results. The the evolution operator (3) is propagated
to t = T by means of the (¢,¢')-method [1]. For this
purpose, the quasienergy states (2) are expanded in the
free-rotor basis

[¥a(0)) = Y Cim,am) (30)

and then the coefficients C), o are determined numeri-
cally. The free-rotor Hamiltonian Ho = j2/2 is in the
following used to label the states by o« = 1,2,3,... in
increasing order of its expectation value

R 72
(Flo)a = (Wa (0)] G-
R

=5 > m? |Cmal®, (31)

m=—00

Wa(0))

i.e. the kinetic energy.
Because of the symmetry of the Hamiltonian, the
quasienergy states will have a definite parity. FEven



quasienergy states are obtained when the free-rotor states
|m) in the expansion (30) are

(el0) = \/%; (pe|m) = \/]E cos(mep) (32)
and odd ones, when the |m) are
Lo,
(polm) = 7 sin(mgp) (33)

form=1,2,....

In the numerical calculations, we use a value of h =
0.01, which yields converged results when the expan-
sion (30) is confined to |m| < 200. In order to identify
the quasienergy states which localize on the resonances,
one can construct and analyze the (Husimi) phase space
distribution of each quasienergy state. A much simpler
method [27] is to plot the expectation value of the kinetic
energy (31) against the entropy

Sa == |Cm,al’ In|Cimal*. (34)

of each state as a measure of the degree of delocalization
of the state a in the free-rotor basis. Such an energy-
entropy plot is shown in Fig. 2 for the even quasienergy
states (a similar diagram is obtained for the odd states).
We observe a clear distinction between three types of
quasienergy states. The upper branch corresponds to
states |¥,(0)) associated with the outer regular region
above the upper and below the lower resonance in Fig. 1.
The horizontal branch is made up of the states associ-
ated with the regular regions inside the fundamental res-
onances and the lower branch corresponds to states asso-
ciated with the region between the primary resonances.
In addition, there is a second horizontal branch with ap-
proximately zero kinetic energy, which is related to the
states localized on the inner resonance chain.
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FIG. 2. Expectation value of the free rotor Hamiltonian
with respect to the even quasienergy states (f]g)a against
its corresponding entropy S.. A few values of a are explic-
itly given. Three groups of states are distinguished. The in-
set shows a magnification of the boxed part of the spectrum,
where distorted separatrix states are clearly seen.

Let us discuss the primary resonance states in some
more detail.  The states on the horizontal branch
(Ho)o ~ 0.5 with small entropy S, correspond to the
localized inner states of the resonances. The state with
the smallest entropy, a = 79, localizes on the centers
of the upper and lower resonance as can be verified by
inspection of the Husimi distributions. With increasing
entropy S,, the states populate wider phase space re-
gions inside the resonance and the most highly delocal-
ized states with large values of S, are the ones near the
separatrix of the primary resonances.

For increasing field strength, the coupling between the
resonances is stronger and points on the lower and up-
per branch and the ones on the horizontal branch with
high values of S, develop into on a chaotic region. A
‘chaotic cloud’ of states with high entropy and almost
the same average kinetic energy appears [26,30]. The
beginning of this development is already seen in Fig. 2,
where some states do not really belong to the upper and
lower branches, but are distorted separatrix states.

As a semiclassical estimate, the number of states inside
the fundamental resonance is calculated from the area
inside the resonance divided by 27h, which leads to a
number of 57 states inside each resonance for f =0.1.

The horizontal branch in Fig. 2 consists of 59 even
states with « varying from 72 to 130. By simple inspec-
tion, one sees that the outer separatrix states are the
ones from a = 72 up to a = 130 for the even states
and a = 71 to 129 for the odd ones. The even states
with @ = 73,74,75 and 76, and the odd ones with
a = T72,73,74 and 75 belong to the resonance but they
are close to the separatrix and therefore considerably per-
turbed.

The states localized at the resonance should be or-
dered, as far as the resonance approximation works, by
the expectation value of the invariant operator I of the
single-resonance system (compare Sect. IIT), i.e.

(Pyo= (W 10, (0)) = T 37 m? Oy

/< . f .
_ 5;3‘3 (CrnyaCrgt,0) — ﬁRe (Co,aC5,). (35)

The lowest value of (f)a should correspond to the in-
nermost resonance state, the next to the second, and so
on, as illustrated in Fig. 3. The states 74 and 76 do not
follow the ordering with (I),. The states with a = 72
and 130 are completely out of the scale of this plot con-
firming the above criteria about the strongly perturbed
states. They all belong to the ‘chaotic cloud’.

We are now in position to make a comparison with
the quasienergy spectrum of the resonance states of the
integrable system of Sect. III. For the invariant approxi-
mation the ordering is clear: the first corresponds to the
lowest value of ¢y, ag, the second to by, and so on. For



the non-integrable system, we exclude the states with
a = 73,74 and 76 which can not be ordered in this
way. The results are shown in Table I, where the ex-
act numerical quasiangles, 5%, are compared with the
approximation (23), 6. (The characteristic values ¢,
were calculated from the roots of continuous fractions
[19, egs. (20.2.13),(20.2.21),(20.2.23)].)

The horizontal line in Table I marks the semiclassical
position of the separatrix for the integrable case. As one
can observe, the agreement is surprisingly good in view
of the crude approximation in terms of the invariant of
the single-resonance case. Also shown in the table is the
harmonic oscillator approximation 8¢ developed in [27].
This approximation describes the lowest resonance states
and breaks down already for the 7*! state, whereas the
present one works quite well up to the 54" state. In
particular, the approximation works well also for states
above the separatrix.

(Da

76 7
0.54 o
74 |

‘73 75 Y
0.52 }
0.5

82 K

0.48 N\
. 79—+ 80

0.5 0.51 0.52 0.53 (Ho)a

FIG. 3. Expectation value of the local invariant with re-
spect to the even quasienergy states (I)» against the expec-
tation value of the free-rotor Hamiltonian <H0>a for the same

states.

There is, however, a systematic deviation of about 0.1
for all the resonance states. This offset of the approxi-
mated quasiangles can be attributed to the deformation
of the trajectory of the stable fixed point at the center of
the resonance because of the perturbation by the second
one.

Quantitatively, this can be taken into account by a
(semi-)classical consideration: In [8] it has been discussed
in a general context in which way the resonant dynamics
can be mapped onto the integrable motion described by
the Chirikov—Hamiltonian H = Fgy + §p2 — % cos(p —
Zwt) (compare (16)) by using data directly drawn from
the classical dynamics. It was shown that the three pa-
rameters of this Hamiltonian are determined by the area
of the resonance as well as the rotational frequency wp.q.
and the action Sp.o. of the central elliptic orbit, where
the latter determines the constant energy shift Eq (for
more details see [8]; note, however, that the definition
of Ey given there differs slightly from the present one).

Assuming the other two parameters to be determined
correctly in (27) (i.e. G =1 and F = f), one easily finds
the constant energy shift to be

Eo=—Sp0 /27 +1/2+ f/2. (36)

Consequently, expression (20) adopts the generalized

form
Spo. 1 (Hh?
A=— p”+—(Ta+f)- (37)

2 2

Using the expansion ¢y, = —2¢ + 2,/g(2n + 1) + O(1)
of the characteristic values of the Mathieu—equation [19],
one obtains for the low-lying states the harmonic oscilla-
tor approximation

Sp.o.

27

An = —

1
+ hwp.o.(n + 5) s (38)

where wp.o. = 4/ f/2 is the frequency of rotation around
the elliptic orbit. For an alternative derivation of (38),
based on a canonical transformation to a coordinate
frame relative to the periodic orbit, see [12].

In a numerical simulation of the classical dynam-
ics, the action of the elliptic orbit was determined as
Sp.a. = 3.45475, yielding a global shift in the quasian-
gles of 8y = 2wEo/h = 0.1005. The semiclassical val-
ues, corrected by this shift, are listed as 1! in Table I.
They show for all states inside the separatrix an excel-
lent agreement with the exact numerical results. For the
states located outside the separatrix (listed in Table I be-
low the horizontal line) the agreement is gradually declin-
ing. For states in-between the two resonances (a < 72)
this is not unexpected, since the approximation of the
dynamics by one resonance only cannot work perfectly
there. One the other hand, for very large energy the sys-
tem approaches the free rotor, such that for very large
a the (non-corrected) approximate values 1 will slowly
converge towards the exact ones. This convergence is,
however, not visible within the range of presented results.

V. CONCLUSIONS

We have presented here a formalism for calculating the
quasienergy spectrum and states of T-periodic systems
when a T-periodic global invariant operator is known.
Although the association between the invariants and the
quasienergies is already clear for semiclassical quantiza-
tion theories, it appears here in a purely quantum con-
text and is definitely more direct: there is a one-to-one
relation between the spectrum and eigenstates of the in-
variant and the quasienergy spectrum and quasienergy
states. An example, the integrable single-resonance
model, has been studied in detail showing clearly this
correspondence.



Furthermore, the formalism was applied to a non-
integrable system where some local invariants can be ap-
proximated: the double-resonance model. It is however
made clear that the problem is here shifted to the search
of good invariant operator approximations, a problem
that for time-dependent quantum systems should be
studied with more detail.

An interesting problem arises here: when a non-
integrable system can be solved by the approximation
of several local invariants, one may be tempted to ask
whether it is possible to calculate their mutual perturba-
tion in a way similar to the one usually applied in the case
of double-well potentials. For the rigid-rotor presented
here, the invariants were approximated locally around
each resonance, yielding a double-degenerate quasienergy
spectrum. It seems to be possible — by an invariant in-
teraction analysis — to calculate the shifts and splittings
of the quasienergies. Work along this line is in progress
and results will appear elsewhere.
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TABLE 1. Quasiangles 6, for the rigid rotor for f = 0.1. The exact numerical values 65" are
compared with approximated 6 calculated using the invariant operator I i; 611 are the quasiangles
for the corrected invariant aproximation. The column 82 lists some results obtained from a har-
monic oscillator approximation for low states. The horizontal line is the location of the separatrix.
The states are numbered by the index o with increasing kinetic energy. In addition, the quantum
number n of the eigenstates of the invariant is given.

n o gex gl gl ghe n o gx 6! gt
0 79 0.8000  0.7011  0.8017  0.8026 : : : : :
1 80 21972  2.0982  2.1987  2.2076 51 78 27759 2.6737  2.7742
2 82  -2.6967 -2.7958  -2.6953  -2.6706 52 77 -2.7469  -2.8490  -2.7485
3 83  -1.3154 -1.4147 -1.3142 -1.2656 53 75 -2.0166 -2.1185  -2.0180
4 84  0.0576 -0.0417  0.0588  0.1393 54 74 -1.3385 -1.4400 -1.3395
5 86  1.4225 1.3230  1.4235 1.5443 55 76 -0.6590 -0.7604  -0.6599
6 87 27792  2.6796  2.7801  2.9492 56 73 -0.2083  -0.3087  -0.2080
7 89  -2.1555  -2.2553  -2.1548  -1.9289 57 72 0.7207 0.6165  0.7170
8 90 -0.8155 -0.9155 -0.8150 -0.5240 58 130  0.6133  0.5151  0.6156
9 92 0.5159  0.4158  0.5163  0.8807 59 71 1.9885 1.8626  1.9631
: : : : : : 60 131 1.9414 1.8626 1.9631
25 118  1.7332 1.6313  1.7318 61 70 -2.8061 -2.9352  -2.8347
26 120  2.9039  2.8019  2.9024 62 132  -2.8579 -2.9352  -2.8347
27 122 -2.2192 -2.3212 -2.2207




