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Abstract

We consider N coupled linear oscillators with time-dependent coefficients.
An exact complex amplitude - real phase decomposition of the oscillatory
motion is constructed. This decomposition is further used to derive N exact
constants of motion which generalise the so-called Ermakov-Lewis invariant
of a single oscillator. In the Floquet problem of periodic oscillator coefficients
we discuss the existence of periodic complex amplitude functions in terms of
existing Floquet solutions.



The construction of time-dependent integrals of motion for the parametric
harmonic oscillator is currently of interest for the canonical formulation of
more general parametric systems [1, 2, 3, 4], their semiclassical quantisation
[5, 6] and the theory of coherent and squeezed states [7, 8, 9, 10]. Integrals of
one-dimensional motion that are quadratic in position and momentum were
rediscovered by Lewis [11, 12, 13], unaware of Ermakov’s results [14]. Time-
dependent constants of motion, which are linear in momentum and position,
have been developed beyond the single degree of freedom [15]. In either case
the connection to the abstract symmetries of Noether’s theorem has been
established [16], and for the quadratic case the relation to Berry’s phase is
also revealed [17]. Previous studies of the invariants for N-dimensional linear
oscillators haven been mainly restricted to the (decoupled) anisotropic case
18

or to the isotropic oscillator

(see, e.g., [18, 19, 20, 21]). Here we report the first construction of the
(quadratic) Ermakov-Lewis invariant for coupled parametric oscillators.

In the recent applications of the Ermakov-Lewis tnvariant in semiclassical
narrow-tube quantisations [5, 22] and time-dependent normal-form transfor-
mations [4] and [23], the amplitude-phase analysis [14, 24] of solutions has
been an important ingredient. We briefly summarise the basic equations for
the single degree of freedom.

In the parametric oscillator equation:

i+ k(t)z =0, (3)

the amplitude-phase ansatz z(t) = p(t)exp(i¢(t)) with real and positive
functions p(t) and ¢(t), results in two separated equations:
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with an arbitrary parameter A > 0. The Ermakov-Lewis invariant (see Ref.
[11], and more recent comments in Lichtenberg and Lieberman [25]):

1 N2 2 2
£ = g ((po(t) = ap()* + A% (a/p())°) (6)
is a non-trivial combination of the canonical variables (p,q) = (#,z), and

p(t), where p(t) is a particular solution of the auxiliary Milne equation (4).
For time-periodic coeflicients k(t), the Ermakov-Lewis invariant is an explicit
expression for the invariant cross section (at fixed times) of the phase-space
flow on vortex tubes, provided p(t) > 0 is a particular periodic Milne (am-
plitude) solution.

Indeed, since we consider an integrable case, the trajectories can be de-
scribed in terms of an action variable and an angle variable. The Ermakov-
Lewis invariant is identical to the action variable, but the corresponding an-
gle variable has a time-dependent time-derivative (i.e. the angular velocity
is time-dependent). In the periodic case they parametrize, together with the
time variable, the surface of a manifold which has the topology of a cylinder,
a so-called vortex tube, and the whole phase space is entirely stratified into
such vortex tubes. The vortex tubes can be considered closed with the natu-
ral angle identification 0 = 27, as discussed in [5, 22]. When one is actually
mapping a single calculated trajectory in the interval [0, 27] of (p, ¢, t)-space,
this will appear winding along one of the vortex tubes and eventually it fills
its surface.

This completes the brief summary.

In the present work we generalise the amplitude-phase idea to coupled
equations of classical parametric oscillators, and later use this idea in the
construction of the new invariants, which reduce to the Ermakov-Lewis in-
variants in the uncoupled limit.

The equations of motion for the coupled oscillators are given by

F+ k(t)r =0, (7)

where we have introduced the N-dimensional column vector

:v1(t)

= " 8

QZN(t)



and the real symmetric N x N ’angular velocity’” matrix

k() - Ew(t)
k= + i | (9)
Eni(t) -+ knwn(t)

Equation (7) appears in many different branches of theoretical physics: col-
lisions of atoms, molecules and nuclei; scattering of wave components propa-
gating in inhomogeneous media; mechanical oscillations, stability analysis of
nonlinear oscillations, etc..

We try to develop an amplitude-phase decomposition which generalises
the approach in [5]. We put as basic amplitude-phase solutions:

r(t) = R;(t) = u;(t) exp(ig;(t)), (10)

where u,(t) is a so far unspecified complez vector function while the phase
¢j(t) is assumed to be real and positive. The important assumption is the
realness of the phase, this seems to rule out the realness of u;(¢) in the vector
case (but not in the scalar case). Similar considerations have been made by
Fulling [26, 27] in his search for approzimate solutions of (7) in a different
context.
An independent oscillatory solution given by the complex conjugate of
(10), i.e.
(1) = R3(1) = w(t) exp( i (1)), (11)
will also solve the equation (7) with real k(¢). The index refers to our expecta-

tion of finding N independent pairs of solutions of this form. On substituting
the ansatz (10) into (7), we find

ii; — o, + k(H)u, +i (G, + 26,1,) = 0. (12)

We have the freedom to introduce an auxiliary condition, since we in-
troduced the phase ¢;(t) in addition to the complex vector u;. In analogy
with the 1D case we could choose to set the imaginary parts of the equations
equal to zero; but this turns out to be too restrictive in general. Instead, by
suitable scalar multiplications of equation (12) and its complex conjugate,
followed by a subtraction, we find:

il — i) uy o+ 2 (¢, u? + b du?/dt) =0, (13)
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where u? = u; - uj is the ‘real amplitude’ squared. Our choice is to eliminate
the bracketed terms, which results in the generalized ‘local angular velocity’
relation for the amplitude-phase solutions:

: A;

P; = u_ga (14>

j

where A; 1s a constant that has been referred to as the angular momentum
parameter or the mixing parameter [4]. Provided the norms of the complex
amplitudes do not vanish, and A; # 0, the function ¢; has a definite sign. In
this work we consider A; > 0.

iFrom (13) we also see that:
u;-u; —u;-u; = const. (15)

A second look at the equation shows that the right hand side of (15) will
differ from zero if the initial conditions are not purely real. This can in
general be seen as an invariant for the vector-Milne solutions. Lets define
this vector-Milne invariant as a real quantity M from the equation

M= (i w) — i) uy) /(20) = Im iy - u)]. (16)
This invariant i1s always zero in the scalar Milne equation and plays no role
in the corresponding parametric oscillator dynamics.

Any solution of the oscillator equation (7) is specified by 2N independent
integration constants (e.g. the initial position and velocity). We associate
with this equation 2N complex fundamental solutions (f;,fY), j =1,---, N,
that later will be subject to the amplitude-phase decompositions (10) and
(11). ;From the theory of (more general) linear equations [28] with Hermi-
tian symmetry kf(¢) = k(¢), arbitrary real solutions r(#) would thus have
2N Wronskian constants (associated with any set of complex fundamental
solutions f;, j = 1,---, N), namely

Wy=p-f;—r-fj, (17)

with p = r. These constant Wronskians are, together with their complex
conjugates, nothing less than the ‘linear’ time-dependent integrals obtained
from Noether’s theorem by Castanos et. al. [15]. The values depend of course
on various initial conditions of the ingredients. To fit into the Hamiltonian



scheme of symplectic phase-space flow, it is important that the fundamental

solutions form a complexified version of a symplectic matrix basis, which is

always possible to construct (see Lichtenberg and Lieberman [25]). The main

requirement for complex fundamental solutions is the proper normalization
according to: . _

£ ;- £ =2, 5=1,2,--- N. (18)

The main item in the further refinement of the Ermakov-Lewis invariants

is the amplitude-phase decomposition of the set of fundamental solutions.

The differentiated expressions of our amplitude-phase solutions R; are given

by:

R, = (ﬁj + Z'Aj“—;') e, (19)
U’j
and
Yy . . ll;- —i;
R; = (u] — zAjp e, (20)
j

The normalization (18) is generally not satisfied by the basic amplitude-phase
functions. The normalization constants n; are therefore determined from the
initial values. We find the condition:

n?(u](O) . ll;(O) — u;(O) . llj(O) + QiA]‘) = Qi, j = 1,2, e, N, (21)

ie., from (15)
1

In terms of normalised amplitude-phase solutions, the Wronskian con-

(22)

n; =

stant W 1s now expressed as

Wj = 71 (i‘-u]-—r-ﬁj—iA]- (r.;lj>)ei¢j(t). (23)

J
Finally we construct the N generalised ‘Ermakov-Lewis invariants’ ac-

cording to the prescription

1
L= SWW;. (24)



We are thus left with only half of the number of integration constants, i.e. N;
one Ermakov-Lewis invariant for each dimension (or normal mode). Formula
(24) is the main result of this letter.

In the limit of decoupled oscillators the independent amplitude vectors
take the form

u;(t) =uj(t)=| pi(t) |, (25)

with the real function p;(¢) satisfying Milne’s differential equation (4) with
k(t) = kj;(t), and we immediately see that the realness of p;(t) implies that
M; = 0. Hence, the general Ermakov-Lewis invariants reduce to the form
(6) for each separate oscillator in agreement with previous studies [18].

The present result has a great potential of further developments. The
Ermakov- Lewis invariants are currently of interest in canonical formulations
of the action-angle type, where the angular velocities realistically follow the
true ‘geometric’ vortex-tube motion [4, 6, 22]. Indeed, some tubes in time-
periodic models [6] look dramatically flat and folded so that the winding pro-
cess is certainly not uniform. Furthermore, the approximations introduced
in [23] suggest a theoretical frame for systematic (higher-order) adiabatic
descriptions of coupled oscillators, related to Fulling’s work [26, 27].

The amplitude phase decomposition of a set of independent solutions is
the crucial step in the construction of the Ermakov-Lewis invariants. This
decomposition per se has an interesting theoretical aspect connected to it. It
introduces quantities (amplitude and phase) that can be made considerably
less oscillating than the solution itself. However, the decomposition used here
turns out not to be unique. In fact, the ‘mixing parameters’ A; are rather
arbitrary, and some choices of them can of course be inadequate for the
description of the solution (this will be demonstrated for Floquet solutions
below). Still all choices lead to exact representations of the solution. The
best choice can sometimes not be definitely determined, but there are cases
with particular symmetries that allow criteria for such choices.

For example, in the case of a time-periodic coefficient k(¢), one is in-
terested in finding periodic amplitude vectors u;(¢). The experience from
the research on 1D systems is that the single amplitude component (Milne’s



solution) should be periodic in order to describe the canonical phase-space
vortex flow correctly. For other choices of the amplitude function the in-
variant tube, corresponding to a given Ermakov-Lewis invariant, would not
be periodic with the same cross section area as the phase-space period map.
Hence, there is an obvious interest to secure periodic functions u,(¢) also in
this more general system.

One of the difficulties here is that we have to deal with complez quanti-
ties, another that we need vectors. Let us review the 1D stable parametric
oscillations in the complex-amplitude formulation and show the existence of
such periodic amplitudes (cf. [29] with real Milne solutions):

Our first assumption is that equation (3) with periodic and real k() has
two independent Floquet solutions given by

Bp(t) = P(t)e’™ and O (t) = P*(t)e™', (26)

with a periodic complex function P(t + T) = P(¢) and a real characteristic
coefficient & > 0. Without loss of generality we can always consider one
initial condition to be real and positive P(0) > 0, since the oscillator equation
is linear.

Our second main assumption is that any solution of (3) has its amplitude-
phase decomposition according to the complex version presented here, which
is exact. The new situation is that the complex amplitude functions sat-
isfy the one-component version of equation (12) rather than Milne’s original
equation (4).

Hence, we can conclude that the existing Floquet solution ®p(t) gives
rise to the following equation:

P(t)eiat = u(t)ei¢(t), (27)

with real and positive phase function satisfying ¢(0) = 0. The differentiated
equation, with due regard to (14), is then given by

Pt + 1aP(t emt = (u t) + A 'LL( ) e’¢(t)_ 28
(P(t) +iaP(t)) () + AT (28)
The two relations (27) and (28) allow us to specify the initial conditions for

the function w(t) and its derivative. We note that @(0) will depend on the
actual value used for the ‘mixing parameter’ A.



We now argue that u(¢) can be found periodic. From the equality (27) we
immediately see that the absolute value of the amplitude |u(t)|(= |P(¢)]) is
in fact periodic and independent of A, but perhaps not the phase of u(¢). The
parameter A thus monitors the amount of the total phase to be explicit in
¢(t) and the rest hidden in u(#). Since anyway |u(t)| is periodic and positive
and independent of A, we have

S(nT) = A [ u(t)|dt = ng(T), (29)

so that we can always find a suitable A = Ay to satisfy the equation ¢(T') =
o' As a result

oT
ANg=——"7-—"— 30
TP %)
and '
u(t) = P(t)e’(at_¢d(t)) (31)

is a periodic complex valued function, with ¢4(t) specified by the choice
A = A4. A closer look at the complex equation for u(t) in one dimension also
reveals that u(t) will be real if k() is real and Imu(0) = Im@(0) = 0.

In an equivalent proof we could have started with the equalities:
AP(t)eio‘t = u(t)ei¢(t), (32)

with any constant A, and

: . iat _ [ - o ult) ib(t
A(P(t) +iaP(t)) e = (u(t)—}—zAW) e, (33)
This leads finally to a different 'mixing parameter’ Aq(A) = Ayz/A%, which
is a consequence of the scaling symmetry of the Milne equation (4) which
prevails in (12). A generalisation to finding the periodic complex vectors
u;(t) if independent Floquet solutions of the above type exist is now straight
forward.

Our result can be summarised as follows: We have derived time-dependent
invariants which are linear as well as quadratic in momenta. Both types of
invariants are directly related to the well known Wronskian constants for
linear equations, but the Ermakov-Lewis invariant (quadratic in momenta)
also uses a non-trivial amplitude-phase decomposition of a fundamental set



of solutions. The theory is a new tool for analysing stable coupled oscillators
with varying (periodic or not) parameters. We note that amplitude-phase
decompositions have a wider applicability than Floquet solutions, since they
are valid notions also in non-periodic dependences of time.
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