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Abstract. The study of dynamical quantum systems, which are classically chaotic,
and the search for quantum manifestations of classical chaos, require large scale nu-
merical computations. Special numerical techniques developed and applied in such
studies are discussed: The numerical solution of the time-dependent Schrédinger equa-
tion, the construction of quantum phase space densities, quantum dynamics in phase
space, the use of phase space entropies for characterizing localization phenomena, etc.
As an illustration, the dynamics of a driven one-dimensional anharmonic oscillator is
studied, both classically and quantum mechanically. In addition, spectral properties
and chaotic tunneling are addressed.

1 Classical and Quantum Chaos

During the last three decades it has become evident that the dynamics of sim-
ple Hamiltonian systems can be remarkably complex. Typical examples of such
‘simple’ systems are a point mass in a two-dimensional time-independent po-
tential, or — even simpler — an explicitly time-dependent system with a single
degree of freedom. In many important cases, such a system can be considered as
time-periodic. The best studied case is certainly the celebrated forced or para-
metrically excited harmonic oscillator. Numerous papers have been published,
which analyze the classical or quantum dynamics of such a harmonic oscillator
in much detail. One should be aware of the fact, however, that the harmonic
oscillator is a very special case: The classical equations of motion are linear. For
all other systems this is not the case. Their behavior is the studied in ‘non-linear
dynamics’.

It is well-known that deterministic classical systems show erratic, irregular
behavior. Moreover, this chaotic dynamics is a generic property: Typical systems
show an intricate mixture of regular and irregular motion, whose structural
organization can be most conveniently displayed by means of Poincaré sections
of phase space. Rather than analyzing a full trajectory in the higher-dimensional
phase space, one considers only its intersections with a reasonably chosen surface.
In this way, the dynamics can be treated as a discrete mapping.

Such a discretization is of particular simplicity for time-periodic systems with
one degree of freedom: Here one can look at the system stroboscopically, i.e. at
timest, = nT, n=20,1,..., where T is the period. Figure 1 shows such a phase
space plot for a forced non-harmonic oscillator (see Sect. 4 for details). Shown is a
synoptic plot of several trajectories with different initial conditions. One observes
regular regions, where the phase space points generated by a trajectory trace out
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lines, the so-called invariant curves. Here the motion is regular. In addition, we
find points, which cover an area in phase space. In fact, all these points in
Fig. 1 are computed from a single trajectory, a chaotic one. Classically, a chaotic
trajectory — or more generally chaotic dynamics — is defined by an exponential
separation of initially nearby trajectories in the long time limit (more precisely
a positive Lyapunov exponent). Numerical studies (‘computer experiments’) of
this type are very helpful for studying chaotic dynamics and PC programs are
available for many systems of interest in physics (Korsch and Jodl 1994). More
details on the theory of the dynamics of Hamiltonian systems in context with
quantum dynamics can be found in textbooks (see, e.g., Tabor (1989), Ozorio

de Almeida (1988), Gutzwiller (1990)).
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Fig. 1. Stroboscopic Poincaré section for a classical driven anharmonic oscillator.

Quantum dynamics, however, is governed by the Schrodinger equation
ih) =Hv (1)

which is a linear equation, and it is therefore questionable if such a time evolution
can be chaotic. For example, it is straightforward to show that — for a finite
(N) dimensional Hilbert space — the time-dependent coefficients in a basis set
expansion 9(t) = Y ¢, (t)¢y satisfy a finite system of coupled linear equations.
Moreover, by separating real and imaginary parts, e.g. ¢, = ¢, + ip,, these



Quantum Chaos 3

differential equations can be written as the canonical equations of motion of a
classical N-dimensional harmonic oscillator, which is certainly not chaotic.

Nevertheless, classical mechanics is the limit of quantum mechanics for 4 — 0,
and therefore it is of fundamental importance to understand this highly non-
trivial limit, and considerable work has been done. This fascinating field of con-
temporary research is denoted as ‘quantum chaos‘ (Gutzwiller 1992) or ‘post-
modern quantum mechanics’ (Heller and Tomsovic 1993) and various excel-
lent books by Gutzwiller (1990), Reichl (1992), Haake (1992), Feng and Yuan
(1992), Nakamura (1993), as well as recent conference proceedings (Cvitanovié
et al. 1992, Gay 1992, Casati et al. 1993, Tkeda 1994) summarize the results.

In order to find the quantum manifestations (if any) of classical chaos, much
of the recent research is supported by large scale computations (for small i the
dimension of the Hilbert space is large, the wave functions are highly oscillatory,
a long time propagation is of interest, etc) and special techniques for analyzing
the system’s behavior have been developed. Here, we will discuss some of these
methods and illustrate their application to the seemingly simple case of time-
periodic systems with one degree of freedom (see Casati and Molinari (1989) for
an overview of the properties of such systems).

2 Quantum Time Evolution

The time evolution of a quantum state ¢ is determined by the Schrodinger equa-
tion (1), which can be solved numerically by numerous methods. Among the most
popular and efficient ones is an expansion in a discrete basis set, which converts
the Schrodinger equation into a set of coupled linear differential equations, and
— with an increasing number of applications — the direct solution as a partial
differential equation in the coordinate representation, e.g.

0Y(x,1)

ih
BT
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=0 = (g VD) v @
In addition, also a mixed treatment is possible (and sometimes also the most
efficient strategy), where some of the degrees of freedom are treated by a basis
set expansion and the remaining ones by solving a set of coupled differential
equations.

One of the most powerful techniques for solving equation (2) is the so-called
split-operator method (Feit et al. 1982), where the time propagator U for the
Hamiltonian — splitted into a kinetic and potential energy part —

2
H1/;:<§—m+V(x)>1/;:(K+V)1/) (3)
can be approximated for a (small) time-step d by

U(d) = e WHO y em Koo 5 Vi KO (4)
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Observing now that the operator V is diagonal in the coordinate representation
(i.e. a simple multiplication by the number V(x)), whereas the operator K is
diagonal in the momentum representation (i.e. a multiplication by the number
p2/2m), the time-propagation can be easily carried out by switching between
the two representations by means of a Fast-Fourier-Transform (Press et al. 1986).

Different propagations schemes have been developed; for a critical comparison
see Leforestier et al. (1991). Some more recent techniques are the staggered-time
algorithm (Visscher 1991), the (unitary) forth oder method developed by De
Raedt and Michielsen (1994), a multi-grid method (Becker et al. 1996), and the
(¢,t")-method (Peskin and Moiseyev 1993) based on an extended phase space
description for explicitly time-dependent systems.

Here we will restrict ourselves to one degree of freedom, i.e. the numerical
solution of 5 , 12 g2 .
h(x ‘ h(z
GGLE s Ly @
with boundary conditions ¥ (Zmin,?) = ¥ (Zmax,t) = 0. We describe in some
detail a numerical method, the so-called Goldberg algorithm (Goldberg 1967),

(Koonin 1986), which works very well in this case.

First we discretize the coordinate z and construct the solution ; only at
points z; = Zmin + j€, for j = 1,..., jmax and Zjmax = Tmax-

Using a discrete expression for the second derivative

ih

A% 1 . 2
522 /. :6_2[¢j+1—21/’j+1/’j—1]+0(5 ) ) (6)
J
the action of the Hamiltonian is given by
B2
Hij = T Ome? (Vi1 — 205 + ¥51] + Ve - (7)

Discretizing the time in equidistant steps d, i.e. t,, = tg + nd, the wavefunction
41 at time £,41 is obtained from 1, by

gt = ety (8)

Here it is not possible to approximate the exponential operator by 1 — iHd/h,
because such a non-unitary approximation leads to instabilities of the time-
evolution. A uniform approximation is given by the Cayley form

i
, l— —HS§
= 210 (9)
1+ —H¢
+ 2h

which is correct up to second order in §. Inserting now (9) into (8) and moving
the denominator of (9) to the left hand side in (8), we obtain the iteration scheme

1/’;:'__11 + (ir— vl — 2)1/’?-'—1 + 1/{;11—11 ==l t (ir+ vl + 2)1/’? -7y (10)
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with X = 4me®/hd and v} = 2me?V (z;,t,)/h*. These difference equations
are stable and unitary, however implicit. The solution of the tridiagonal ma-
trix equation (10) is a standard problem of numerical mathematics, which is
solved by recursion (Goldberg 1967), (Koonin 1986) using the boundary condi-
tions ¢g =} = 0. This method can be easily implemented numerically and
allows a fast real-time solution of the Schrodinger equation on a PC. For the
time-independent case, PC programs with graphical representation are available
(Becker et al. 1988) and can be used for illustrating phenomena of elementary
quantum mechanics, e.g. motion of wavepackets in various potentials, dynamics
of coherent and squeezed harmonic oscillator states, tunneling through potential
barriers, etc.

A few remarks on a reasonable choice of the parameters will be helpful. First,
the mesh width ¢ determines the smallest wavelength, which can be accurately
described on a discrete grid. A typical choice is € = h/5pmax, Where pmax is the
largest classical momentum. A reasonable choice of the time step is § = me?/h,
leading to a balance of the errors induced by time and space discretization (see
(Goldberg 1967), (Koonin 1986), (Press et al. 1986) for more details).

It should be noted that a direct extension of the Goldberg algorithm to
systems with more degrees of freedom requires a matrix inversion at each time
step (the solution by recursion is no longer possible) and is therefore inefficient.
Special techniques have been developed, however, which reduce the problem to
intertwined one-dimensional ones; for details see (Schneider 1987), (Schneider

and Wolter 1988, 1991).

3 Quantum State Tomography

3.1 Phase Space Distributions

In classical dynamics, the equations of motion (or experimental measurements)
yield the trajectory ¢(¢) of the system for given initial conditions. This trajectory
contains all information, but important dynamical features are only visible, if
they are carefully extracted, e.g. by plotting the trajectory in adequate variables.
Typically, one analyzes the dynamics in phase space (p, ¢), where the momentum
p(t) can be obtained from ¢(¢) by differentiation. In addition, one can restrict
oneself to a section of phase space, the Poincaré section, as, e.g., the stroboscopic
plot shown in Fig.1 for a driven anharmonic oscillator. Such a plot reveals the
dynamical properties of the system for all initial conditions and it provides a
global description of the dynamical features of the system.

In quantum mechanics the situation is similar. As described above, one can
numerically generate the wavefunction v (z,?) in coordinate space as a function
of time, but the essential dynamical features are still to be determined. The
absolute square |¢)(z,t)|? yields the probability to find the particle at a given
position, and by means of a Fourier transform of (z,t) to momentum space one
obtains the overall probability for the momentum. In order to obtain information
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about the momentum distribution at a given position, one can use the Gabor
(or Fourier window) transformation

{p,alv) = \/7/ [_S v —a) —i% (r—%)] P(z)dz . (1)

This is a Fourier transform to momentum (p) space, which is weighted by a
Gaussian window centered at position ¢. The so-called squeezing parameter s
controls the width of the window. Up to a multiplicative factor, {p, ¢|1) is equal
to the momentum distribution for s = 0, and the coordinate representation is
reproduced for large s. Equation (11) can also be expressed as a projection of
the wavefunction onto a so-called minimum uncertainty wavepacket (also called
a coherent state):

ot = oo [T -] o

a state with mean values ¢ and p for position and momentum, respectively, and
the uncertainties Ap = +/hs/2, Aq = \/h/2s, Ap Aq = h/2. The squeezing
parameter s = Ap/Aq determines the ratio of the uncertainties and can be
adapted to the problem under investigation. The absolute square

2

pu(p:q) = [{p, a|¥)|? ‘/azsp,q (13)

with normalization

1
27h

pu(p,q)dpdg =1 (14)

is called the Husimi density (Husimi 1940). It provides a quantum mechanical
(quasi) probability distribution in phase space for a given wavefunction v and is
very useful in an analysis of the classical — quantum correspondence in dynamical
systems (Takahashi 1989).

3.2 Phase Space Entropy

The overall degree of localization in phase space can be obtained from the average
information content measured by the phase space entropy

1
S =— pu(p,q) Inpu(p,q)dpdq . (15)

2rh
This entropy satisfies the inequality S > 1 (Wehrl 1978), which corresponds to
the uncertainty relation Ap Aq > h/2. The quantity e measures the number
of minimum uncertainty states populated by the wavepacket and A = 27he’
is the space area covered by the phase space distribution. It is instructive to
calculate the entropy of a minimum uncertainty wavepacket (12) with squeezing
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parameter so analyzed by minimum uncertainty states with squeezing s;. The
result is simply

S0+ s1
S=1+1 . 16
MEN (16)
Note that for sy = s; one obtains the smallest possible entropy S = 1, as

expected for a minimum uncertainty state (Wehrl 1978).

As an example, Figs.2 and 3 show the time evolution of the Husimi distri-
bution of a minimum uncertainty wavepacket with sg = s; = 1 and sg = s1 = 2
moving in a harmonic potential with unit mass and frequency. In Fig. 2, the
wavefunction is a coherent state of the harmonic oscillator and moves without
changing its form. In Fig. 3, we have a squeezed oscillator state, which changes
its form and uncertainty product as monitored by the entropy S.
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Fig. 2. Contour plot of the Husimi dis-
tribution (squeezing parameter s; = 1)
for an initial minimum uncertainty
wavepacket (so = 1) moving in a har-
monic oscillator with unit mass and fre-
quency.

Fig. 3. Contour plot of the Husimi dis-
tribution (squeezing parameter s; = 2)
for an initial minimum uncertainty
wavepacket (so = 2) moving in a har-
monic oscillator with unit mass and fre-
quency.

4 Case Study: A Driven Anharmonic Quantum Oscillator

Various paradigmatic systems are investigated repeatedly in the literature to
explore the properties of quantum systems, which are classically chaotic. Here
we study the time evolution of a wavepacket for a forced quartic oscillator

2
H(p,q,t) = 2p_m + bg* — fqcos (wt) , (17)
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which is time-periodic with period T' = 27 /w. We choose parameter values b =
0.25, f = 0.5 and w = 1, a case for which the classical — quantum correspondence
(Ben-Tal et al. 1992, 1993) and the semiclassical EBK quantization of regular
quasienergy states (Bensch et al. 1992), (Thylwe and Bensch 1994a, 1994b) has
been investigated recently (see also Mirbach and Korsch (1994), where different
parameters are chosen).

4.1 Classical Phase Space Dynamics

The classical dynamics for this system is typical and shows a mixed regular
and chaotic behavior depending on the initial conditions. Solving the classical
equations of motion

dp oH dg O0H p

= —4bq3 + fCOS ((.dt) s E = (9_p = E (18)

dt — dq
for a specified initial condition (p(0),¢(0)) = (po,qo) one obtains the phase
space trajectory (p(t),q(t)). Figure 1 shows a stroboscopic plot of the trajectory
at times t, = nT, n=0,1,2, ..., for selected initial conditions. There is a clear
division of phase space into three different regions: A chaotic region generated by
a single trajectory is sharply separated from an outer regular region. A second
regular region is centered on a T-periodic trajectory and appears as a regular
island embedded in a chaotic sea. By closer inspection, one observes additional
smaller chains of stability islands close to the boundary between the inner island
and the chaotic sea. The phase space area of the inner island is 2.25 and the
chaotic sea covers an area of 7.85.

For different choices of the parameters, the overall appearance (a chaotic sea
bounded by an outer regular region) is the same. The detailed structure of the
inner stability islands changes, however, and shows characteristic bifurcations.
The case studied here is selected because of its structural simplicity.

4.2 Quantum phase Space Dynamics

A minimum uncertainty wavepacket 1, 4, (2, 0) (see Eq. (12)) localized initially
at a position (po,qo) in phase space is propagated in time using a value h =
0.05 (note that in the dimensionless units used here — by, e.g., setting the field
frequency equal to unity — the Planck constant of the system depends on the
parameters and can therefore be adjusted). At timest,, = nT, the Husimi density

2
pH(paq;p07q0;tn) = ‘/Qb;,q(x)djpmqo(xatﬂ)dm (19)

is computed on a grid of 50 x 50 points in (p, q) space. The grid covers the same
region as the classical phase space shown in Fig. 1.

Let us first study the quantum phase space dynamics for a wavepacket local-
ized at (po, go) = (0,0.6) initially, which is inside the classically chaotic region
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Fig.4. Contour plots of the first 20 Husimi distributions at times ¢, = nT.
Shown is the region [—3 : 3] with ¢ on the horizontal and p on the ver-
tical axis. Picture number 0 shows the initial minimum uncertainty state at
(po,q0) = (0,0.6) with squeezing parameter s = 5.
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Fig.5. Same as Fig.4 for times t,, n = 20,...,30. The last graph shows an
average over periods 20-120.

(the squeezing parameter of s = 5 is adapted to a harmonic approximation to the
center of the inner regular island). In the computation, the Goldberg algorithm
(see Sect.2) is used with mesh size £ = 0.005 and time-step § = 0.001. Fig-
ures 4 and 5 show the Husimi densities for the first 30 periods as contour plots.
Dark regions mark large probabilities and correspond to strong localization of
the wavefunction.

The first impression from Figs.4 and 5 is an approximately periodic circu-
lation of the center of the distribution with period 37. This can be checked
quantitatively by computing the autocorrelation

Ot to) = /1/;*(m,t0)1/;(m,t)d:b , (20)

which measures the overlap of the wavefunction at time ¢ with the initial distri-
bution, and the recurrence probability

Pr(t,to) = |C(t, 1) . (21)

Figure 6 shows the recurrence probability for the first 50 periods. Up tot = 20T,
one observes clear maxima at multiples of three. This periodicity is reflected in
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the corresponding Fourier spectrum shown in Fig.7. The strongest peak of the
frequency spectrum appears at v = 0.33/T, which corresponds to period three.
The same period-three circulation can be found if an initially Gaussian ensemble
is propagated classically.
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Fig.6. Probability C(t,tg) for recur- Fig.7. Fourier spectrum of the recur-
rence of the wavepacket to its initial po- rence probability shown in Fig. 6.
sition.

The increasing delocalization of the wavepacket can be measured quantita-
tively by means of the phase space entropy (15). Figure 8 shows the entropy

1
Sporqo (tn) = 37 pu (P, ¢; Po, qoi tn) In pr(p, ¢; po, go; tn) dpdg (22)

for the first 120 periods. Starting from the value of 1 for the initial minimum
uncertainty state at time zero, the entropy increases within the first 20 periods,
then it flattens into a plateau. For long times, the entropy fluctuates almost
erratically with an average value of about S = 3.1, which is somewhat below
the value of S = In(A/27h) = 3.2 obtained from the classical chaotic phase
space area A = 7.85. The entropy difference is due to the fluctuation of the
quantum dynamics in contrast to the classical one, which approaches a uniform
limiting distribution (see also the more detailed analysis for a driven rotor system
(Moiseyev et al. 1994) based on the random vector model).
One can also study the long time average of the Husimi distributions

1 N

pu(p,¢; po;go) = lim N_Not1l >~ pu(p, i po, q0itn) (23)
n=Ng
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Fig. 8. Time dependence of the phase space entropy for the distributions shown
in Figs.6 and 7.

(in numerical computations using a finite value of N, the first Ny distributions
during the initial delocalization should be neglected to improve the convergence).
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Fig.9. Contour plot of a time-averaged quantum Husimi distribution for
wavepacket (c) and classical Poincaré section for a chaotic trajectory.

Figure 10 shows three time-averaged Husimi distributions for different initial
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Fig.10. Time averaged Husimi distributions of a minimum uncertainty
wavepacket located initially at 1, 4, With po = 0 and (a) go = 1.4 (at the center
of the stability island), (b) go = 0.6 (in the chaotic region), and (¢) go = —1.0
(in the outer regular region).
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distributions centered at 1, 4, With po = 0 and (a) go = 1.4 (at the center of
the stability island), (b) go = 0.6 (in the chaotic region), and (c) ¢o = —1.0 (in
the outer regular region). The wavefunction has been propagated over N = 101
periods; the first Ny = 20 periods are not included in the average.

The time-averaged distributions can be compared with the classical Poincaré
section in Fig. 1. We observe a clear correspondence with classical phase space
dynamics in the three regions. In case (a) the distribution remains localized on
the stability island. In case (b) the distribution spreads out over the classically
chaotic region, showing, however, an additional quantum localization in three
regions of phase space (see Fig.9), which is a quantum interference phenomenon.
On the other hand, the strong concentration on the region close to (0,—1) in
case (c) is a classical effect (Bensch et al. 1992), which is also reproduced by
propagation of classical phase space densities.

4.3 Quasienergy Spectra

The time evolution of a wavepacket provides also information about the spectrum
of the system, which can be computed from the autocorrelation function (20).
In the present case of time-periodic Hamiltonians H (¢t + T) = H(t), this is the
spectrum of the quasienergies €, defined by the quasienergy states (or Floquet
states)

Valt) = e Mug(t) (24)

where the u, are T-periodic. This definition determines the quasienergies only
up to integer multiples of hw = h/T. Often it is therefore convenient to intro-
duce the quasiangles 6, = ¢,T/h. Expanding the wavefunction in terms of the
quasienergy states 1(t) = Y__ catPa(t) with constant coefficients ¢, the Fourier
transform of the autocorrelation

Cn = Cltn,to) = Y _ |ca|’e™H=" (25)

after n periods (compare Eq. (20)) yields

C(0) =) Cne®™ =213 [ea|*3(0 — 6a) (26)

In praxis, the computation is not extended to infinity and for a finite cutoff at
Nmax & window function, e.g. w, = (1 — cos(27n/Nmax) )/2, must be introduced
into the n-sum in Eq. (26), which reduces the spurious oscillations produced by
the cutoff and smoothes the d-functions into line shape functions £(6—80,), which
are determined by the window function. In addition, the quasienergy function
at time 7o = 0 is given by

N

Yo (0) o< > h(tn)wpel™" (27)

n
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Fig.11. Fourier transform of the autocorrelation function for a wavepacket
placed initially at (1,—0.8), which is inside the chaotic sea and close to the
boundary to the outer regular region (see Fig.1). The peaks appear at the
quasiangles 6,,.

where the proportionality constant is obtained by normalization. As an exam-
ple, Fig.11 shows the Fourier transform of the autocorrelation function for a
wavepacket initially placed at (1,—0.8), i.e. inside the chaotic region of Fig. 1.
The peaks appear at the quasiangles 6.

A subsequent analysis of the Husimi distributions of the corresponding quasi-
energy states 1, provides information about the localization properties on dif-
ferent regions in phase space. Furthermore, by computation of a sufficiently large
number of quasienergies or quasiangles, the statistical properties of the quasi-
energy spectra can be tested. The prediction is, e.g., that the nearest neighbor
distance follows a Poisson distribution for those states localizing on a regular
region, whereas those corresponding to a chaotic regime are Wigner distributed
(see, e.g., Haake (1992) and references therein).

4.4 Chaotic Tunneling

As an interesting application, one can investigate the influence of a time-periodic
field on the dynamics of a wavepacket moving in a bistable potential, e.g. a
double minimum potential. A system studied recently by various authors is the
potential

V(g,t) = bg* — dg* + fqcos(wt) , (28)

a frictionless Duffing oscillator, with values b = 0.5, d = 10, w = 6.07, and h = 1
for the parameters (Lin and Ballentine 1990, 1992).
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For vanishing external driving field, we have a simple time-independent double
well potential and the energy FE is conserved. For energies below the barrier, a
quantum wavepacket localized in the left potential well tunnels through the bar-
rier — the classically inaccessible region in phase space — and appears on the
right hand side. This process continues and we observe a tunneling oscillation
between the two minima. This phenomenon is well understood and can be de-
scribed semiclassically (see, e.g., Child (1991)) in terms of the action integral

o= " amlE Vg dg | (29)

over the barrier, where g1 are the turning points. Well below the barrier, i.e. for
large , the tunneling probability is e~2® and the tunneling splitting of the
almost degenerate energy eigenvalues is given by
hw
AE =~ e " (30)

™

where w is the classical frequency in a single well. A superposition of these states
oscillates with period Tyosc = 27h/AFE between the two wells.

When the field is switched on, the situation is much more complicated by the
fact, that the classical motion is chaotic and there is no conserved quantity in
the chaotic region between the wells, and hence no equivalent of the tunneling
integral (29). Typically, the two potential minima turn into stability islands and
the curve separating the single well motion from the double well oscillation at
higher energies (the ‘separatrix’) is destroyed by the interaction with the field.
Instead, a chaotic separatrix layer develops, which grows with increasing field
strength.

Tunneling through such a chaotic layer is still far from being understood
and the theory of such tunneling transitions is an active field of contemporary
research (see, e.g., Peres (1991), Plata and Gomez Llorente (1992), Casati et
al. (1994), or Grossmann et al. (1991a,b, ¢, 1993), Utermann et al. (1994) for
studies of a driven double well oscillator and Grobe and Haake (1987), Casati
et al. (1994), Averbuckh et al. (1995) for related studies of a kicked or driven
rotor).

Figure 12 shows a stroboscopic Poincaré section of the system (28) for the
parameters given above. Results from three classical trajectories are shown: One
trajectory generates the chaotic sea, the other two are regular and move around
the left or right island, respectively. Transitions between the left and the right
island are classically forbidden. Quantum mechanically, such a transition is al-
lowed, however.

On the right hand side of Fig. 12, a wavepacket started on the left island (more
precisely a minimum uncertainty wavepacket (12) centered at (po, go) = (0, —1.5)
with s = 1) is shown after one period T of the driving field. Tt is obvious, that
the distribution is beginning to populate the right stability island. After 58
periods, a considerable part of the distribution is found there, and after 115
periods almost the whole wavepacket has tunneled to the opposite island, as
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demonstrated in Fig. 13. It is remarkable that the distribution localizes on the
regular island again, despite of the fact, that it has tunneled through the region,
where the classical dynamics is chaotic.

The recurrence probability (21) in Fig. 14 shows the continuation of the tun-
neling process with increasing time. We observe an overall oscillation with period

Momentum p

KN
o
I

[N
o

Position q Position q

Fig.12. Poincaré section of classical phase space (left) and quantum Husimi
distribution (right) of a wavepacket started on the left island after one period.
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Fig. 13. Quantum Husimi distribution of a wavepacket started on the left island

after 58 (left) and 115 (right) periods.
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Fig. 14. Recurrence probability as a function of time.

1147T of a certain fraction of the distribution between the two islands. This ‘co-
herent tunneling’ (Lin and Ballentine 1990, 1992) can be explained in terms
of quasienergy (Floquet) states of different symmetry localizing on both islands
(Grobe and Haake (1987), Peres (1991), Plata and Gomez Llorente (1992), Aver-
buckh et al. (1995). Their superposition leads to states oscillating between the
islands with a period proportional to the inverse of the difference of the two
quasienergies. This can be checked by computing the quasienergies and the Husi-
mi distribution from the autocorrelation function as discussed in Sect. 4.4. The
results are shown in Figs. 15 and 16.

Recent observations from numerical computations suggest, that the quasien-
ergy splittings for chaotic tunneling do not follow the simple semiclassical law
(30) when h is varied (Roncaglia et al. 1994). Instead, they show a seemingly
irregular behavior.

5 Concluding Remarks

In this article we have tried to demonstrate some of the numerical techniques
used to explore the manifestation of classical chaos in the corresponding quantum
system. We have confined ourselves to the case of a driven anharmonic oscillator
and presented some of the techniques using quantum dynamics in phase space.
Let us finally give a brief description of a method suggested recently for develop-
ing a global picture of the phase space structure of a quantum system (Mirbach
and Korsch 1995). The basic idea is to compute the long time average S (po, go)
of quantum phase space entropy (22) for all initial positions (po, qo) of the initial
wavepacket. This function provides a quantitative measure of the phase space lo-
calization properties of the quantum system in analogy to the classical Poincaré
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Fig. 15. Quasienergy spectrum of the autocorrelation function (see Fig. 14). The
inset shows a magnification of the two strongest peaks.
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Fig.16. Husimi distributions of the quasienergy doublet shown in Fig. 15.

section. Numerical studies for a driven rotor system (Moiseyev et al. 1994) have
been reported recently (Mirbach and Korsch 1995) and the (semiclassical?) ex-
planation of this phenomenon is not yet clear.
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