Diagnosis with Topological Maps

Jirgen Rahmel
University of Kaiserslautern
Centre for Learning Systems and Applications
67653 Kaiserslautern, Germany
e-mail:rahmel@Qin formatik.uni-kl.de

Abstract

This technical report is a compilation of several papers on the task of solving
diagnostic problems with the help of topology preserving maps. It first reviews the
application of Kohonen’s Self-Organizing Feature Map (SOFM) for a technical di-
agnosis task, namely the fault detection in CNC-Machines with the KoDiag system
[RWO3], [RW94]. For emergent problems with coding attribute values, we then in-
troduce fuzzy coding, similarity assignment and weight updating schemes for three
crucial data types (continuous values, ordered and unordered symbols). These tech-
niques result in a SOFM type network based on user defined local similarities, thus
being able to incorporate a priori knowledge about the domain [Rah95].

1 Introduction

The Self-Organizing Feature Map SOFM [Koh89] is a widely known algorithm for data
clustering and feature extraction. It realizes a mapping from a usually high-dimensional
data space to a two-dimensional space of neurons located in the map layer of the network.
The mapping is topology preserving, i.e. neurons, that are neighbors in the map represent
data points, that are somewhat similar in input space. The SOFM has found many ap-
plications, some of which are in the domain of engineering. The KoDiag system [RW94]
described in Sect. 3 has shown a way to build a diagnosis system for CNC-machines with
the additional concept of semantic maps [RK89]. The possibility of assigning semantics
to certain areas in the map is used to design an iterative, explained and user controlled
diagnosis process. Thus, a diagnosis process can be performed, that simulates the way of
human problem solving in such situations. The user is guided by a tree-structured graphical
representation and has various possibilities of interaction to control the diagnosis process.

However, the data used in the KoDiag approach was containing binary values only. In
order to use other data sets with different types like scalar values or ordered/unordered
symbols for the attribute values, there are different coding techniques that can be applied
to the data (see [Han88] for a short compilation of coding schemes). But different schemes

imply different representations and therefore impose a different bias on the clustering in
the Kohonen algorithm, which uses euclidean distances between input data and weight
vectors (cf. Section 2). Additionally, in some domains of application, certain correlations
of attribute values might be known in advance. These correlations should be preserved by
the resulting representation of the data set, which makes it difficult to find the appropriate
coding scheme. The idea of this work is to construct a neural network that is based on
the neighborhood preserving weight adaptation of the Kohonen algorithm, but uses local
and global similarity relations instead of the minimal distance criterion to determine the
winning node. Local similarity is determined seperately for the value of each attribute by
means of a similarity matrix, that can easily be set up according to the facts known about
the domain. Also, nonstandard concepts of similarity like nonsymmetry can be modeled
that way. The result is propagated to the map neurons, which calculate their activation
by the global similarity relation.

The report is organized as follows. In Section 2 we restate the Kohonen algorithm for
the SOFM and explain the concept of semantic maps. Section 3 reviews the application of
KoDiag, a SOFM-based system, for technical diagnosis and the results of this approach. In
Section 4 we introduce fuzzy coding, similarity assignment and weight updating schemes
for three crucial data types and describe the similarity calculations and weight dynamics.
These techniques result in a SOFM type network based on user defined local similarities.
The applicability of the techniques for diagnostic tasks and results are shown in Section
4.4. A summary will conclude the paper.

2 The Kohonen Self-Organizing Feature Map

For readers not familiar with the SOFM, this section shall present the original algorithm as
proposed by Kohonen [Koh90] and the concept of semantic maps. Details of convergence
analysis are omitted here and can be found (for the one-dimensional case) in [CF86] and

[E0S92].

2.1 The Kohonen Algorithm

Let p Neurons [N ... N,| be arranged on a rectangular p; x py grid, p;p, = p (other grid
forms, e.g. hexagonal are possible, but not considered here). Those neurons of the so
called Kohonen layer are fully connected to the neurons of the input layer [X; ... X}], the

activations of which will be set to the values of the current input vector x = (zy, z,. .., a:k)T
at each training step. Each connection from X; to N; has an associated weight value w;,
by wi = (w],w} ..., w])T we denote the weight vector of neuron N;.

In order to obtain the topology preserving property of the SOFM, the weight adaptation
at each training step not only affects one neuron but a whole group U, of neurons around
a center N, of activation. The weight vector w° of this neuron N, is the one, that best
fits to the current input vector x according to the applied distance or similarity measure.
Kohonen proposes two different ways to determine N,. The inner product x’w’ can be

used to measure the similarity of the input and weight vector of neuron N;, if the vectors
are normalized. An often more convenient criterion is the minimization of the euclidean
distances between input and weight vectors. Thus, the center N. is the one, for which the

following holds:

I — we|| = min{[lx — w'|}. (1)

Different forms of the neighborhood are possible. U. may be defined by a hard set with
neurons nearer than some radius being in U,, others being outside. In our case, we use the
biologically more plausible continuous bell-shaped membership function

[r —c”

) (2)

hye = hoexp(—
o

where r and ¢ are the lattice positions of neurons N, and N, respectively, and o = o(1) is
a suitable decreasing function, like e.g.

o(l) = o; (ﬂ) = (3)

i

where {,,,, 1s the predefined duration of the training and o; and o denote the initial
and final radius of the neighborhood, respectively. After presenting an input vector and
determining the winning neuron N. by (1), weights are updated by the following rule

wi(t+1)=w'(t)+ ah.(x(t) —w(t)), (4)

where a = a(t) is a decreasing function in time, called the learning rate. Summarizing,
the algorithm consists of a finite alternating sequence of

1. presenting an input vector, randomly chosen from the data set,
2. determining the center neuron N, by equation (1) and

3. adapting the weights of the neurons in the Kohonen layer by equation (4).

For a visualization of simple ordering processes and a demonstration of obtaining lo-
calized responses for particular input vectors, see [Koh90].

2.2 Semantic Maps

Using neural networks leads to the necessity of coding symbolic expressions into a dis-
tributed representation that can be processed by the network. But the similarity between
objects as it is derived from their attributes is not necessarily reflected in the encoding of
the symbols describing those objects. To choose a particular coding scheme always means
to introduce a bias into the similarity assignment for the encoded items. In addition to

the model described in Sect. 2.1, Ritter and Kohonen propose in [RK89] to divide the
input vector according to the semantics of the partial vectors. As the Kohonen model uses
metric differences between vectors, encoding discrete symbols leads to a problem, because
semantic similarities are commonly not reflected in the encoding vector. To reduce this
influence, the input vector is assumed to be a concatenation of two or more fields, for
example, one field specifying the symbol code and a second the attribute set, respectively.
Denoting the fields by xs and x,, the input vector X is written as:

X, X, 0

()= () g

If the values in the attribute part x, are weighted higher than those in the symbol
part, its norm will predominate over the norm of the latter, leading to a clustering in the
map, that mainly reflects the similarities of the attributes of the animals. But still, there
are memory traces from the map to the symbol part, that can be used in the application
phase to assign a symbol to a neuron in the map. Thus, the locations of the symbols of
the input data are ordered on the map in a way, that reflects the contextual appearance
of the items, controlled by the attributes. In the next section, this technique is extended
for building a diagnosis system. In this system, however, we use training vectors that are
composed of three different fields, so we define the weighting of the input pattern to be a

triplet (k,l,m), where k,l and m denote the coding values for the vector components in
the first, second and third field of the input, respectively (0 < k,[, m <).

3 The KoDiag Approach

This section describes the application of semantic maps [RK89] to the problem of diagnosis.
The idea of such a diagnosis system is to make use of prior cases with known solutions,
compare a new problem with the old cases and infer the solution of the most similar case
as diagnosis in the current problem (a case-matching system in terms of the Case-based
Reasoning community). The meaningfully localized responses of the SOFM allow for a
more sophisticated and flexible diagnosis process than with common neural classifiers.
After an introduction of notations, we review KoDiag, an application of semantic maps for
diagnosis tasks.

3.1 Notations and general considerations

The data records for the KoDiag system stem from a compilation of diagnosis cases for
a CNC-machine. First we define the necessary denotations to faciliate the discussion

(adapted from [Wes91]).

Symptom. A symptom S; is a technically measurable property and is denoted by
Si = (A;, Vi, vij), where A; is the name of the property (attribute), V; is the range of possible

values for this attribute and v;; is the actually measured value, v;; € V; U {unknown}. The
finite sets of all symptoms and attributes in the domain of interest are denoted by S and
A, respectively.

In the sequel, as an attribute is unique for a symptom, we often identify a symptom
with its attribute name. A test t; is a measurement, that obtains the value v; of attribute
A;. As tests are always coupled with the cost of their execution, the diagnosis process
should only require a restricted number of tests. Unlike classification, a diagnosis process
is a time dependent task. Therefore we define the current situation of the diagnosis process.

Situation. A situation Sit(t) is defined by the values v;; already known at time 7.
Thus, Sit(7) C S with S; € Sit & v;; € V;. We write short Sit, if the time is unambiguous.

Diagnosis. A diagnosis is a set of symptoms, that describes a faulty state of the
machine. It will be associated with a name D; € D = {Dy, D, ..., D,}, the set of possible
diagnoses. Thus, a diagnosis is a description of the source of error, but sometimes it will
be combined with a solution for the problem.

Case. The necessary information, that characterizes a faulty machine state and
provides a diagnosis for this problem is contained in a case Cy = (Sity, Dy).

The experience of an expert concerning the diagnosis task can be expressed by cases,
that associate a complete description of a situation with the diagnosis for that situation.
The case base C = {C1,Cs,...,C,} contains a history of problems with appropriate
solutions. The goal of the diagnosis system will be to solve a current problem Sit. by
finding a case C; € C, where Sil; is the situation, that is most similar to the current
problem. Then D; will be proposed as the solution for Sut..

A striking point in diagnosis is the fact, that in general Sit. is not known at the time
of occurrence of the fault. A sequence T = ({y,...,1,.) of tests has to be found, that
determines the relevant v; € Sit. and minimizes the cost of testing. For this reason, a
diagnosis system has to effectively realize at least two different tasks:

e the classification component compares Sit.(7) with the cases in C and proposes the
most probable solution

o the lest selection component determines a test ¢,41, derived from Sit.(7), to increase
the amount of information about Su¢..

In addition, explanatory functions should be available, that provide additional infor-
mation for the user, e.g. concerning alternatives of proposed solutions, and allow flexible
control of the diagnosis process. The graph in Figure 1 depicts the cyclic structure of this
diagnosis process, which is an iteration of classifying the actually known amount of infor-
mation Sit.(7) and trying to get more information, if necessary. In the beginning of the
process, Sit.(79) is not necessarily empty. Like in our domain of application, there often
are several symptoms, that are easily observed (for instance, the position of a moving part
can be determined simply by looking at it). Additionally, the internal diagnosis system of
a machine might output a machine error code, that will be the first clue to the problem.
Thus, Sit. (o) often contains one or two of these obvious symptoms.

| collect initial information |

i

Classification — — — - —>—‘ classify current situation ‘

classification yes .
possiblelacceptable

no

more information | no _
accessible no Solution

yes

Test selection — — — - —>>‘ select and execute atest ‘

]

Figure 1: A common diagnosis process

3.2 Training of the KoDiag Network

This section describes the data we use in KoDiag, the encoding and the 2-phases training,
a special training method for Kohonen semantic maps. The case examples, which we use in
the KoDiag system, are part of a large database, also used for symbolic case-based reasoning

systems like the PATDEX-System [Wes91]. They describe faulty states of CNC-machines.

An example case is as follows:

Case: Toolarmil0
Description: IoStateIN32 logical0
Code I41

ToolarmPosition back
IoStateOUT30 logical0
IoStateOUT28 logicall

Valve21Y2 switched
IoStateIN37 logicall
Diagnosis: IoCardFaultAtIN321i59

In the above case named Toolarm10, for example loStateIN32is an attribute with value
logical(). The string loCardFault AtIN32i59 describes the diagnosis that is appropriate when
attributes appear with the values stated in that case description. In the KoDiag system the
records of the case database are coded into a bit string that is used as input vector (also
called the training pattern) for the network. As stated above, the input vector consists
of three parts: the attribute field, the value field and the diagnoses field. Figure 2 shows
the way the appearance of attributes, values and diagnoses in a particular case is encoded.

For every attribute in the database, one bit in the attribute vector is reserved and the
same applies for the values in the vector of values and for diagnoses in the diagnoses part,
respectively.

Attribute field Vauefield Diagnosisfield
[1[afofol. .| | [Jolafofo[a[.[.[[[| Jofafo[.[[[[]]
List of attributes List of diagnoses
Attribute 1 Diagnosis 1
Attribute 2 Diagnosis 2
Attribute 3 : VaueC ‘ValueD ‘ValueE ‘ Diagnosisa

Figure 2: The coding of case in KoDiag

Despite the fact, that no modelling of the real CNC-machine is available in addition
to the case database for use in the background of the diagnostic system, some semantic
information can be extracted from the contextual appearance of features in the case records.
To strengthen the formation of clusters in the Kohonen layer due to the feature part of the
input vector, we designed the 2-phases training process. Two pattern P1 and P2 are called
a 2-phases pattern, if the information contained in P1 is a proper subset of the information

in P2.

Thus, the coding process described above constructs training pattern P2. Pattern P1
is obtained by setting the bits of the feature values to zero. The training of the network is
first carried out with P1 for a number of epochs. This leads to a coarse clustering of the
Kohonen map that is driven by the feature context in the case records. For about the last
quarter of the training time, the full pattern is presented as input vector and structures in
the layer are refined according to the feature values of the particular cases. In the context
of 2-phases training, the weighting (k,I,m) for a training pattern defines a weighting of
(k,0,m) in the first phase and (k,;m) in the second. Evaluation of the training results of
KoDiag’s Kohonen network with and without the 2-phases training is described in Sect.

3.5

3.3 Diagnosis with the KoDiag system

The concept of semantic maps was used to realize KoDiag, a neural system based on the
SOFM, that imitates the diagnosis process described above. The training of the network
results in storing the trained cases in a spatially ordered fashion that is determined by
the presence (or absence) of the most frequent S;. This ordering process gains additional
information by the contextual appearances of the attributes and values in the encoded
cases. As the output of the SOFM is a structured map and not a category information, we
need a method to extract the classification knowledge from the map. Among the methods
discussed in literature are the use of linguistic variables and fuzzy decision theory [PC92]
or the U-matrix method [Ult92]. We will describe a method based on iterative operations

on sets of responding neurons. This process is carried out in a stepwise manner, directed
by the test selection component of KoDiag. In this point our approach to CBR differs from
other connectionist models or systems in that field, e.g. [Thr89], [BJ89]. From a general
point of view, as stated above, diagnosis splits up into two tasks - classification and test
selection - and this iterative and natural way of problem solving can be preserved for the
computer aided approach. In addition, the system should be able to provide multiple
solutions and name alternatives for rejected outputs.

3.3.1 Classification

The diagnosis process of KoDiag is interactively controlled by the user of the system. If
a CNC-machine failure occurs, the machine gives some error messages, e.g. lighting a
particular bulb or stating a message on a display. This error message can be the first input
into the KoDiag system. In technical domains it is difficult even for an expert to decide
whether a given attribute value is of pathological nature or not. Error messages of the
machine are certainly pathological values, but it is not that clear for other parts of the
machine. Therefore, KoDiag has to tolerate a wrong user input in the beginning of the
diagnosis process.

KoDiag keeps track of the user inputs by a set P,(7) of excited neurons. In the begin-
ning, the set P,(7) is empty. If a new attribute/value pair (A;,v;;) is entered by the user
at time 7 + 1, the corresponding input vector x,;; for that symptom is presented to the
network, activating a set P;(7+ 1) of neurons in the map. To be independent of the order
of user inputs and robust against some wrong (i.e. not pathological) data, the union of the
sets is taken as a description of the input up to this point:

P+ 1)= P, (1)U P(T+1). (6)

The classification of the current situation Sitc(T + 1) is finished by determining the
diagnosis D; that is activated most, if we trace the connections from the neurons in Pu(T—I-l)
to the part x4 of the input layer. This diagnosis D;(7 + 1) is proposed as solution for
Sit.(t + 1). These actions are repeated as often as the user wants to make an input
without being asked by the system. Each step adds a level to the tree in the graphical
output window of KoDiag. Figure 3 shows an example of the solution tree after the first
input. The user decided to select attribute /0StatusIN32 from the menu and entered the
value logical() which could be read from a display and which is supposed to be of pathological
nature in the current situation. KoDiag then claculates as described above a number of
suggested diagnoses. If the user wants to enter another attribute/value pair, the second
attribute box will be drawn as another son of the first one and the new list of diagnoses is
then determined.

But, as the number of neurons in P,(7) is growing, no convergence of the process can
be expected. In fact, it is not necessary to make more than two or three inputs to KoDiag
without being asked by the system. To reduce the size of P,(7) and to increase the quality
of suggested diagnoses, the test selection facility of KoDiag is to be called.

CbrokenCabll%RelaisZIKSD

|OStatusiN32 /’{ IOFauIt(,)A%NSZiSQ) suggested

logical0 Diagnoses
clawOi IBu7b60£Leaky]

Figure 3: The solution tree after the first user input

3.3.2 Test Selection

As shown above, there might be a need to execute one or more additional tests to gain
more information about the current situation. If the user decides to stop the deliberate
entering of attributes and corresponding values, the KoDiag system can take control over
the diagnosis process. The test selection strategy chooses, depending on Sut.(7), the tests
t; that are most likely to be useful in the actual context and with respect to the case base
C, see Fig. 4. This is done by using the set P,(7) of neurons responding to Sit.(r) and
tracing back their connections to the attributes part x, of the input layer. The strongest
(not yet specified) attribute A; is suggested to be tested next by t,.

CbrokenCabi&gRelailekS)

IOFaultAtIN32i59) suggested
0.76 Diagnoses
clawOilTubesL eaky
0.76
|OStatusIN32 X0
logical0 -/-
T 088 . ! suggested
| TooIarr/nPostlon } Tests
Lo __ T __ !
053 ‘
! OilTubes }
|

Figure 4: Test selection called after the first user input

By executing the test and entering the value v;, the user starts another cycle of the

diagnosis process, but this time, the intersection of the two neuron sets involved is calcu-
lated:

P+ 1)=P,(r)N P(T+1). (7)

This is an allowed operation now, because the attribute/value pair was entered on
request of the system, so there is no deliberate ordering in the input of the user. As

described for the classification, KoDiag is calculating a diagnosis proposal for the new
situation Sit.(7+ 1). While repeating these classification and test selection steps, the size
of P,(7) now is decreasing and the diagnosis process is guaranteed to converge. The end
of the diagnosis process is reached, if

1. KoDiag proposes a unique diagnosis,

2. the user accepts the output with respect to the relative importances of the diagnoses

(see Fig. 5) or

3. the set P,(7) is empty, due to poor conformity of the present situation with the
learned cases.

CbrokenCablsRelalekS) C IOFauItAtI N32i59) C IOFauItAtI N32i59)
1.0 1.0
10OFaultAtIN32i59 mechanics magneticSwitch21Y 1Fault
0.76 0.65 0.30
clawQilTubesL eaky magneti cSNl tch21Y 1Fau|5 Tool CI avvFauIt)
0.76
1.0 1.0 1.0
10StatusiN32 _ Code ToolarmPosition MovingT oolBackwar ds
logical0 141 - back -
T 088 ! o 074 AN 097 T !
w TooIarr/nPosi tion | | 10S@usOUT29 ! w IOStatu/sOUT3O !
R AU N Lo T O N !
T 053 ! N v ! P 0% !
| Oi IT/ubes | ! 10StatusOUT30 ‘ ! | OStatu/sOUng ‘
| -f=

,,

Figure 5: A complete solution tree with acceptable diagnosis TOFaultAtIN32i59

As shown in Fig. 5, the relative importances that are given together with the list of
attributes allow the user to choose a test from the list. The test actually executed need
not be the one with the hightest score, if other considerations are in favor of a test with
a slightly lower score. The relative weightings of the diagnoses help in deciding how well
the top diagnosis is established in comparison to other alternatives. Figure 6 resumes the
diagnosis process of KoDiag.

3.4 Explanation

As indicated in Figure 6, KoDiag not only proposes one solution or test per step but
a bundle of alternatives with relative ratings. The user is free in choosing alternatives
according to his own considerations, and is supported by the graphical display of the
solution tree, containing all chosen and neglected alternatives and showing the currently
followed path. This allows for a recapitulation of the whole process at any time instead
of having to accept a unique, uncommented solution as with common neural classifiers.
Intermediate results are stored in the nodes of the tree, thus a rejection of the current
path and resuming at a deliberate level of the tree is possible. Figure 7 shows an example
for this. After entering value 155 for the attribute Code, the test selection component

10

Problem

.) Diagnosis
situation ag

Partial Classification Partial
Problem Solution

Data
Input

Rating,
Alternatives

Test Selection

Figure 6: The diagnosis process in KoDiag, schematically

suggested checking the attribute OulTubes. But as execution of this test is very expensive,
the user may decide to follow the slightly less weighted path below and enter the value for
attribute ToolarmPosition. In this example, a unique diagnosis was then proposed by the
system.

C inhibitedClawM ovement) CinhibitedCIaWM ovement)
1.0 1.0

Tool ClawFault brokenCablesRelais21k5
0.68 0.84
ToolNotRemovable ToolClawFault
0.66 0.30
10 '___1_.0___';
ToolSlot Code 1 OilTubes
clean 155 = -/ 1
”””” 088 _ 0.91
|0StalusouT27 | ToolarmPosition (Valve21Y 5Fauilt)
fffffff A4 left 1.0
””””””””” | 0 Y X T |
10StatusOUT30 | w |OStatusiN32 !
2~ ‘ A

Figure 7: An example for rejection of an attribute

Another idea allows separation of similar weighted diagnoses. As the representation of
the cases in the network is ruled by relative frequencies and not by discriminant functions,
it it sometimes convenient to shorten the iterative process by comissioning KoDiag to
find out the test, which will differentiate between two selected diagnoses. This can be
achieved by collecting the most important attributes of either diagnosis, determining the
discriminating attribute or attribute value.

11

3.5 Results for the KoDiag Approach

This description of the results refers to a subset of 101 cases of a larger database. Those
cases contain 62 attributes, 125 attribute values and 41 diagnoses, therefore the input
vector is made up of 228 bits. Throughout the evaluation process we use testvectors
with weighting (1,1,0), so no diagnoses are given as input. We had main interest in the
behaviour of KoDiag when information of the cases was lost or not available, because
when used interactively as a diagnostic tool the system should be robust against missing
data. On one hand, the user may forget some input, one the other hand, inquiries about
some attribute values may be too expensive to be made. For that reason, test vectors are
generated, which hold only a fraction of the original information in the fields of attributes
and attribute values.

100 Bz - T
o a -y KoDiag' ——
~g.- g '’ KoDi‘ag(set)’ -+-
! Patdex’ -8--
80
E‘,
60 |- R

40

Correct diagnosis in percent

20

40 60
Information loss in percent

Figure 8: Comparison of KoDiag and Patdex

Figure 8 shows the dependence of obtaining the correct diagnosis and loss of informa-
tion. Two curves are drawn for KoDiag, as we used two different evaluation methods. The
one denoted KoDiag refers to the 'unambigous’ approach, where a result was considered
correct, only if the system was able to suggest a diagnosis clearly separated from its alter-
natives. The curve named KoDiag(set) is obtained, when a set of nearly equally-weighted
diagnoses are suggested and that set included the correct diagnosis. In this example the
network size was 15 x 15, the weighting was (1,1,1) and training duration was 60 epochs
(no 2-phases training). For comparison the third curve named Patdex is drawn. It refers
to the performance of the state-of-the-art CBR-expert system Patdex [Wes91], based on
the same database and evaluated according to the 'unambigous’ approach.

The performance of KoDiag for larger information losses can be increased by the 2-
phases training method in combination with a different weighting of the input vector.
If we set the weighting to (1,0,0.5), the vector of attributes has most influence on the
structuring of the Kohonen map. Thus, in the first phase the arising clustering mainly
reflects the appearance of diagnoses in the context of merely the attributes. No attribute

12

values are considered in the training yet. In the second phase, the full vector is supplied
to the network with weighting (1,1,0.5). Figure 9 shows a comparison of the results of a
normal training and the 2-phases training where patterns were changed after 30 epochs,
with a total training duration of 40 epochs. Evaluation again is based on the 'unambigous’
approach.

100 T T T T

"normal ' —o—
' changeAt 30" -+--

80 -

60

40 -

Correct diagnosis in percent

20

L
40 60 80 100
Information loss in percent

Figure 9: Comparison of normal and 2-phases training

By changing patterns after about 70-80% of training time, the results for the range of
55-85% information loss can be increased by up to 15 percentage points, then beating even
the Hi-level expert system Patdex in that range. This is paid for by reduced performance
when (nearly) full information is available, but because a diagnostic tool is rarely used as
a stand-alone system, a suggestion of a few diagnoses at an early point can be seen as a
very useful output and in fact this was the main goal in the construction of KoDiag.

The stepwise diagnosis process and the explanation and control functions distinguish
KoDiag from the traditional approaches like [Thr89] or [BJ89] using neural nets as one-
shot black-box classifiers. However, the power of the system is limited in two ways. First,
what differs most from the way we humans solve diagnosis problems is the test selection
strategy. The quality of the test selection in KoDiag strongly depends on the cases in C.
In the domain mentioned above, the test selection component was very effective, leading
to good solutions after only a few cycles. But is has to be noted that one can construct
case bases, for which the strategy is very ineffective. Second, the use of semantic maps
is not an appropriate method to circumvent the anomalies introduced by certain coding
strategies. The similarity of attribute values is implicitly determined by the encoding,
e.g. the similarity of values v; and v; will be judged differently, depending on the use of
interpolation coding, continuous coding or any other coding scheme ([Han88]). The first
drawback can be approached by hybrid systems that support different methods, e.g. model-
based, for the selection of tests. The rest of the paper will propose a way to strengthen
the above diagnostic system by making similarities and dissimilarities in the data explicit.
Thus, additional domain knowledge is used to improve the performance of the diagnosis
process.

13

4 Similarity-based clustering

In the previous section, it was shown how the Kohonen network and its extension to
semantic maps can be applied to construct a diagnostic system. However, the data used for
the CNC-machine application was restricted to binary values. In more general domains at
least three different data types are needed for an adequate representation of the underlying
information of attribute A;:

e continuous values (V; = [a;b]),
e unordered symbols (V; = {vj1,viz, ..., vin})

e ordered symbols (V; = {vj1,vig, ..., v} and v < vz < -+ < v4p).

In KoDiag, each x,|4, was realized as a binary vector with |V;| dimensions, distance
calculation and weight adaptation were uniform over all x,. Now, each of the three types
will use a different processing policy. The ordered symbols need a weight updating scheme,
that produces valid weight vectors only (see below), and for the continuous values, there
might be a need for a range dependent distance/similarity. For that reason, the neurons
for the former part x, of the values in the input vector x are replaced by a collection
of cells [My...M], I = |A|, each locally processing the values of one attribute A;. The
M; calculate a similarity relation and propagate a similarity value Sim to the neurons of
the map layer, where the global similarity of this input vector is determined. We leave
the vectors x, of attributes and x; as they were in KoDiag. That way, we preserve the
properties of KoDiag concerning the flexible diagnosis process and handling of unknown
values (see Section 4.3).

4.1 Local similarity

This section describes the local similarity assignment for the three data types mentioned
above. We need a way to effectively assign a similarity Sim,; = Sim(v;;, w’|4,) between
the current input value for attribute A; and the local weights of map neuron j. The notion
of fuzzy sets and numbers has shown to be a natural way for defining and understanding
the similarity of different values of attributes. An introduction to these concepts can be

found in [Bez81] or [KG88|.

4.1.1 Continuous values

Continuous values are difficult to handle with neural networks. Their range V; can be
discretized, but finding the best boundaries for discretization involves a priori knowledge,
which often is not available for the data in question. Also different ranges for different at-
tributes A; require normalization of the V; onto the interval [0; 1] to equalize their influence
on the global distance measure. But normalization has some unwanted side effects. Out-
liers will compress the data more than necessary while normalization fixes the predefined

14

range that is currently seen in the data. Future extension of the range, a crucial need for
incremental versions of the approach, is therefore possible only with a complete retraining.
Additionally, in practice it has shown to be necessary to have a range dependent similarity
function for continuous values, i.e. equal distances of two points v; and v; to a third one
not necessarily mean equal similarity of those pairs. As an example, consider an attribute
temperature in continuous coding. We might wish to declare distinct temperature zones
(normal, critical) and within the critical zone, a deviation of temperatures shall influence
similarity more rapid than in the normal zone. This kind of additional domain knowledge
often is available, but not used in diagnostic applications of neural networks.

Similarity assignment. For the above reasons, we use a similarity measure on un-
normalized data, that is defined with the help of Triangular Fuzzy Numbers and Trapezoidal
Fuzzy Numbers (TFN and TrFN, respectively). A range dependent similarity can now be
achieved by dividing the range into several regions simy of equal similarity assignment.
Figure 10 shows the definition of sim; 53 with three TrFN, each determining the member-
ship pi(z;) of value z; to simy, where x; = v;; in the case of continuous values.

u

S|m1 S|m2 S|I’TI:3

Figure 10: Definition of similarity ranges

Now, the simj can seperately be defined by _
TFNs in a way that takes into account the rela- Simi
tive position of z; and w’ on the range scale. The
TFN is based on the position of z; and similarity
can decrease differently whether w’ is above or
below z;. For the definition as in Figure 11, the
z; and w’ are considered more similar, if z; <
w’ and similarity decreases faster, if z; > w/.
Of course, there is no restriction of the general

Xi—Wj

method to TFNs. We chose them for convenience

Figure 11: Range dependent similarity
of their definition.

The local similarity Sim;; for the continuous attribute A; compared to the correspond-
ing weight of Neuron N is then calculated by summing up the contributions of the different
ranges:

15

Simij(xi,wj) = zk:,uk(:r;i) simk(xi,wj). (8)

Note that at most two of the u; are not equal to zero, if the simy are defined as shown
above.

Weight adaptation. The weight adaptation for continuous values is performed in a
straightforward way. Depending on its distance from the winning node N, in the map, the
neuron N; will be assigned a learning factor A = ahj.. The adaptation rule then reads:

wj(t+1) = wj(t)+/\(:1ci —wj(t)). (9)

4.1.2 Unordered symbolic values

We subsume under the term unordered symbolic values all sets of symbolic values V;, that
do not have a unique linear ordering. Unordered values appear in many real applications
of diagnosis and case-based systems, an example is a set of colors like V; ={red, black,
blue}. Even for such simple sets with no welldefined ordering, it is often necessary to
assign lateral similarities between certain members of the set. In a particular application
it might be known in advance, that black is more similar to blue than to red. The usual
orthogonal coding with one bit/color is not able to cope with such needs. Additionally, we
want to allow a nonbinary coding of the values to adopt a way of expressing uncertainty
of measurements.

Similarity assignment. An approach to employ background knowledge is the use
of a similarity matrix F = (fu), 1 <k, < |Vi| = n, that contains the lateral similarities
between the components v;;, and v;; of entities v; € V. The degree of presence of a value
v will be encoded by z;;, € [0; 1], thus providing a means to express imprecision of obser-
vations. The matrix F will transform the vector x; into a vector sim; of entity similarities,
that is used for further processing. The values f; are set by the user or calculated from
existing taxonomies within the set V;. The row vector fy = (fi1, fr2, .., fen) contains the
similarities between all entities and v;;. Thus, the fi; express the degree of membership of
vy in the set {v;}, denoted by pg in the theory of fuzzy sets. Note that for reasons emerg-
ing from cognitive psychology, it is not allowed to use those similarities in a transitive way,
i.e. inferencing fi,, from f; and fi,,. The fi; encode the imprecision and exchangeability
of the elements of V;. Thus, we calculate the vector sim; as

stm(vjy, ;) S fuza
sim; = : =Fx; = : . (10)

s1m(Vin, ;) S fuiza

16

This vector sim; represents the activation of the different entities in V; due to the
current input v; for the attribute A;. The weight vector w! = w|4, of neuron N; then is
compared with sim; by

Simij(Xi, Wj) = SlmZTWf = Z S1Miy, wfn (11)

n

resulting in the local similarity Sim;; for neuron N; with respect to attribute A;. If we
normalize sim; before applying equation (11), then Sim;; is reflexive.

Weight adaptation. The weights between neurons N; of the map and input cells M;
performing the above similarity processing are now vectors of dimension |V;|. Nevertheless,
the weight updating rule for the unordered symbolic values has the same form as (9), now
with vectors instead of scalar values:

w/ (L4 1) = w/ (1) + X (x; — w7 (1)). (9")

Please note, that the similarities contained in matrix F are used for determining the
winning node only. Weight adaptation is directed to the unchanged input vector x;. Thus,
the weights still represent original data, in contrast to a network with preprocessing, that
codes the similarity into the components of the input vector. This fact is essential, if the
application of the network, e.g. in a diagnosis task (cf. Section 3), is based on weight
inspection rather than black box usage of the trained network.

4.1.3 Ordered symbolic values

This section deals with the sets V; = {v;1,vi2,..., v} for which exists a strict ordering
v < Vg < v+ < Uy An example is the set {min, low, high, maz}, where the ordering is
obvious from the semantics of the v;;. To a certain degree, the ordered symbols are treated
in a manner comparable to the unordered symbols.

Similarity assignment. As in the case of unordered symbols, we make use of a
matrix F = (fi) = (pgr) to handle the lateral similarity of elements v;x and v;;, but for the
ordered symbols we force fi; = 0 for |k —[| > 1. This constraint is grounded in the strict
ordering of the elements and the resulting scale-like properties of V;. Now, since at most
two of the fy; are not zero, the row vector f; is convex and thus a fuzzy number on the
referential V;. The same restriction applies to the input vector x;.

We calculate the vector of entity similarities sim; and the global similarity Sim;; for
neuron N; and attribute A; as in equations (10) and (11), respectively.

17

Weight adaptation. Again, the weights between neurons N; of the map and the
input cells are vectors of dimension |V;|. But for ordered symbols, the orthogonal coding
with one bit per entity v;; has more degrees of freedom than are allowed with respect to the
strict ordering of the elements. Figure 12 shows this problem for the weights in the three
dimensions of an example set {low, medium, high}. The weight adaptation scheme has to
ensure, that the resulting weight vector w only moves on the path between low and medium
or between medium and high (bold line). The direct crossing from low to high (dotted line)
is forbidden, because it will lead to nonconvex and inconsistent representations of w.

This is accomplished by a projection of V; onto an inter-
high val (); C R. We associate each position of a value v;;, with
_ a number g;x, such that Vi : vy < vy = ¢ < ¢ and com-
N pute a number g, = 3°, %, ¢in, representing the projection
N W of x;. Analoguously, we compute ¢, for weight vectors of
< medium neuron NV;. The weight adaptation rule then operates on the

. projection values:

low

Figure 12: Allowed weight G (t+1) = qus () + Ao, = qur (1)), (12)

configurations
The resulting new value ¢, (¢ + 1) has to be transformed

back into a convex representation. The additional constraint };w] = 1 makes this opera-
tion unique and yields the vector w? (¢ + 1).

4.2 Global similarity

The global similarity controls the clustering process of the map. The original equation
(1) is no longer applicable for determining the winning node, when the local similarities
are set as described above. The winning node N, is determmed by ¢ = argmax{SIM,},
¢ = 1,...,p, where the global similarity SIM; of a neuron N; and the input vector x
obtained from case C} is calculated by

SIM; = 2|Tk (E xmwm + Z Simgj + Zxdiwéi)) (13)

k3

The normalization factor contains the size |Cg| of the current training case, what is
meant to be the number of symptoms in Sit;. Various simulations have indicated, that the
choice for similarity assignment as it is described here leads to results that are of the same
or slightly better quality as those of the normal SOFM (cf. Section 4.4). Thus, the gain of
the application of these schemes is the ability to explicitly define lateral and nonstandard
similarity concepts whenever available, in order to control the resulting topology of the
map according to the knowledge available on local structures.

18

4.3 Modeling unknown values

In case matching systems like KoDiag, there exist two types of unknown values, that have
to be dealt with. The first type are values of attributes, that are irrelevant for the case in
question, e.g. all symptoms S; that are not part of the situation described by a case Cj
are not relevant for the diagnosis in Cj and thus are unknown. The second type consists of
missing values for attributes appearing to be part of the case that seems to be appropriate
for the current situation.

The first type of unknown values (or better: unknown symptoms) is easily modeled by
the components of the vector x, of attributes. As the connection weights of this part of
the input and the value part are updated simultanuously, each component w,; of a neurons
weight vector w, represents the importance of attribute A; for that neuron. In a diagnostic
application, the test selection component will make use of exactly those vectors w, to find
out about the relevance of attributes.

Unknowns of the second type occur, if the test suggested by the test selection component
could not be executed for any reason. It can be seen from Section 3 that the strategy
employed in KoDiag is optimistic in the sense that missing values are not considered to be
restricting the scope of the current situation Sit.(7) in the diagnosis process.

4.4 Applicability and Results

First we demonstrate the necessity of the special weight update scheme for the ordered
symbolic values. The referential set is selected as V' = {v,vg,...,vg} with v; < vy < -+- <
vg. We chose only two attributes with values v;;, € V' and generated 300 training vectors
by selecting the values for A; and A; randomly from V. The training result of the value
vector can be visualized in a two-dimensional display. In order to localize the symbolic
values, they were associated with numbers 0, 0.2, ..., 1.0 in an order preserving manner.
Therefore, we have (v x v3) € [0;1]* and thus represent each neuron position in V? as
a point in the unit square, connecting adjacent neurons with lines. Figure 13 shows the
results for a 6 x6-network after training.

The network in part (a) was trained with the weight updating scheme in equation (12)
and spans the space as it is to be expected (cf. [Koh90], Fig. 3 for a continuous-valued
equivalent). The similarity matrix F was initialized with small values for directly adjacent
elements of V. Part (b) shows the effect of setting F = I, the identity matrix of the same
rank. The network in (c) had the matrix initialized as in (a), but was trained with the
normal weight update rule (9'). Since both of the nets (b) and (c¢) failed to produce a
topological ordering of the input space, we conclude that the information contained in the
lateral similarity and the update scheme are essential mechanisms in modeling ordered
symbols through orthogonal coding.

In order to verify the diagnostic capabilities, we tested the approach presented in this
paper against the model described in Section 3 for the CNC-machine domain that provided
no additional information on lateral similarities. Several simulations were executed for
both models and the trained networks were evaluated according to missing information.

19

Figure 13: Effects of weight update scheme

As the diagnosis task is to be solved iteratively and interactively, we had main interest
in the behaviour of the models, when information of situations was lost or not available.
Therefore, test vectors were generated, that contained only a fraction of the original amount
of information in the fields of attributes and diagnoses. Figure 14 shows a comparison of
the mean scores of five test runs for each model, depending on the information loss in the
test vectors. The results are quite comparable, with a slight advantage for the proposed
model, demonstrating the applicability even if no additional domain knowledge is coded
into the similarity matrix.

90

T
Kohonen network ro—i

80 - T e proposed nodel ==
70
60
50
40

30 |

Correct diagnoses in percent

20

10

40
Information loss in percent

Figure 14: Comparison: Kohonen network against proposed model

Simulations with a case base of car sales demonstrated the difference between our model
and the normal Kohonen network. Customer preferences, e.g. for price (continuous), engine

20

power (ordered) or color (unordered), can now be modeled from the experiences of the sales
persons and given to the network. This provides valuable information that might not be
contained in the sequence of training patterns. The diagnosis process described above is
now a process that searches a car according to the customers specifications and that is
influenced by the relations modeled by the lateral similarities in different attributes and
values.

The advantage of the proposed model appears for such cases, where no full matches to
the specification could be found. Then, alternative solutions are suggested that fit better
to the customers needs because the different local similarities favoured trained cases, the
normal Kohonen model wouldn’t have selected.

5 Summary

The subject of this work is the application of topological maps for diagnostic tasks. Af-
ter some general remarks on diagnosis processes and their requirements, we reviewed an
application of the SOFM in the area of CNC-machine diagnosis. This application raised
questions on how to encode continuous and symbolic data properly, in order to incorporate
additional domain knowledge that often remains unused. We proposed similarity assign-
ment and weight updating for fuzzy coded inputs of three different data types. The model
is able to explicitly deal with lateral local similarity between entities and supports range
dependent similarity as well as the nonstandard concept of nonsymmetry. The resulting
network is a SOFM, that is based on local and global similarity and still provides seman-
tically meaningful weight access to realize a diagnosis process as the one reviewed. The
results demonstrated the applicability of the proposed schemes.

Currently, models with increased topology preserving properties and dynamic learning
abilities are being developed in order to create diagnosis systems with more flexibility and
adaptability. Future effort will be concerned about introducing situation dependent similar-
ity, extending the explanatory facilities of the classification and test selection components
as well as integrating the model in hybrid planning and decision making systems.

References

[Bez81] J.C. Bezdek. Pattern recognition with fuzzy objective function algorithms. Plenum
Press, 1981.

[BJ89] L. Becker and K. Jazayeri. A connectionist approach to case-based reasoning.
In Proccedings DARPA Workshop on Case-based Reasoning. Morgan Kaufmann,
19809.

[CF86] M. Cottrell and J.-C. Fort. A stochastic model of retinotopy. Biological Cyber-
netics, 53:405-411, 1986.

21

[E0S92] E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: ordering, con-

[Han88|

[KGSS]

[Koh89]

[Koh90]

[PC92]

[Rah95]

[RKSY]

[RW93]

[RW94]

[Thr89)

[U1£92]

[Wes91]

vergence properties and energy functions. Biological Cybernetics, 67:47-55, 1992.

P.J.B. Hancock. Data representation in neural nets: an empirical study. Connec-

tionist Models Summer School, 1988.

A. Kaufmann and M.M. Gupta. Fuzzy Mathematical Models in Engineering and
Management Science. North-Holland, 1988.

T. Kohonen. Self-Organization and Associative Memory. Springer, 3rd edition,
19809.

T. Kohonen. The self-organizing map. Proceedings of the IEEFE, 78(9):1464-1480,
1990.

W. Pedrycz and H.C. Card. Linguistic interpretation of self-organizing maps. In
IEEFE Int. Conference on Fuzzy Systems, pages 371-378, 1992.

J. Rahmel. Similarity-based self-organized clustering. In EPIA 95: Workshop
Fuzzy Logic and Neural Networks in Engineering, 1995.

H. Ritter and T. Kohonen. Self-organizing semantic maps. Biological Cybernetics,

61:241-254, 1989.

J. Rahmel and A.v. Wangenheim. The KoDiag System: Case-based Diagnosis
with Kohonen Networks. In P.J.G. Lisboa and M.J. Taylor, editors, Proc. of the
Workshop on Neural Network Applications and Tools. Computer Society Press,
1993.

J. Rahmel and A.v. Wangenheim. KoDiag: A Connectionist Expert System. In
International Symposium on Integrating Knowledge and Neural Heuristics, Pen-

sacola, F1., 1994.

P. Thrift. A neural network model for case-based reasoning. In Proceedings

DARPA Workshop on Case-based Reasoning. Morgan Kaufmann, 19809.

A. Ultsch. Self-organizing neural networks for knowledge acquisition. In Neumann

B., editor, Proc. FCAI, pages 208-210, 1992.

S. Wess. PATDEX/2 - ein System zum adaptiven, fallfokussierenden Lernen
in technischen Diagnosesituationen. Technical report, SWP-91-01, University of
Kaiserslautern, 1991.

22

