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INTRO DUC TIO N

It is a particular challenge for winegrowers to grow 
healthy grapes in order to produce high-quality wines, 
as grapevine is susceptible to several fungal diseases. 
Thus, depending on the pathogen pressure, vineyards are 
sprayed 12–15 times with fungicides per year in European 
temperate regions (Pertot et  al.,  2017; Reiff et  al.,  2023). 
Surprisingly, organically managed vineyards are sprayed 
as often or even more frequently than conventional ones 
(Reiff et al., 2021, 2023; Kaczmarek et al., 2023). Whereas or-
ganic sprayings are mainly based on copper and sulphur, 
conventional sprayings allow for the use of synthetic fun-
gicides (Cabras & Conte, 2001; Provost & Pedneault, 2016; 
Reiff et  al.,  2023). Fungicides applied under both organic 
and conventional management may impact beneficial ar-
thropods (Thomson & Hoffmann,  2006; Nash et  al.,  2010; 
Reiff et  al.,  2023). For instance, some single synthetic 

fungicides are documented to cause lethality on predatory 
mites and spiders (Pékar, 2002; Miles & Green, 2004; Fiedler 
& Sosnowska, 2014) and particularly sulphur, which is fre-
quently applied in organic viticulture, is highly detrimental 
to natural enemies such as parasitoids and predatory mites 
(Thomson et al., 2000; Gent et al., 2009).

Beyond mortality, fungicides may affect metabolic 
processes, arthropod fecundity, and prey consump-
tion ability (Papaefthimiou & Theophilidi,  2001; Miles & 
Green, 2004; Gadino et al., 2011; Beers & Schmidt, 2014). 
However, knowledge on sublethal effects of fungicides 
and their consequences on arthropod communities is 
still scarce (Desneux et al., 2007). In addition, combined 
applications of at least two fungicides (including the 
mixtures of active ingredients and adjuvants) as com-
monly sprayed in viticulture may result in synergistic in-
teractions with even more detrimental impact (Vandame 
& Belzunces,  1998; Chen & Stark,  2010). Furthermore, in 

O R I G I N A L  A R T I C L E

Arthropods in the spotlight – identifying predators of vineyard 
pest insects with infrared photography

Jo Marie Reiff1,2   |    Konrad Theiss1,2  |    Christoph Hoffmann2  |    Martin H. Entling1

Received: 17 April 2023  |  Accepted: 12 December 2023

DOI: 10.1111/eea.13456  

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided 
the original work is properly cited.
© 2024 The Authors. Entomologia Experimentalis et Applicata published by John Wiley & Sons Ltd on behalf of Netherlands Entomological Society.

1RPTU Kaiserslautern-Landau, iES Landau, 
Institute for Environmental Sciences, Landau 
in der Pfalz, Germany
2Julius Kühn Institute, Federal Research 
Institute for Cultivated Plants, Institute 
for Plant Protection in Fruit Crops and 
Viticulture, Siebeldingen, Germany

Correspondence
Jo Marie Reiff, RPTU Kaiserslautern-Landau, 
iES Landau, Institute for Environmental 
Sciences, Fortstraße 7, D-76829, Landau in 
der Pfalz, Germany.
Email: jo.reiff@rptu.de

Funding information
German Federal Ministry of Education and 
Research, Grant/Award Number: 031A349I

Abstract
Grape berry moths, particularly Lobesia botrana Denis & Schiffermüller (Lepidoptera: 
Tortricidae), and vinegar flies, such as Drosophila melanogaster Meigen and Drosophila 
suzukii Matsumura (Diptera: Drosophilidae), are important vineyard pests, causing se-
vere quality loss of grapes. Several arthropod taxa may be involved in the natural con-
trol of these pests. However, the role of arthropod predators in the natural control of 
vineyard pests remains unclear. We investigated 32 vineyards in the Palatinate region, 
southwest Germany, under organic and conventional management, which in both 
cases received either full or reduced fungicide applications (2 × 2 design). Predation 
of L. botrana eggs and pupae and D. melanogaster pupae on sentinel cards exposed in 
the vineyards was observed with infrared cameras. In total, nine predator taxa could 
be identified. The most dominant predator was the European earwig, Forficula au-
ricularia L. (Dermaptera: Forficulidae), with 90% of all predation events. We conclude 
that F. auricularia is likely a key predator of vineyard pests, and that special attention 
should be paid to maintain it at high population densities.
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some regions 1–4 insecticide treatments are mandatory 
to control the vector of the quarantine disease flaves-
cence dorée (Pertot et  al.,  2017; Beaumelle et  al.,  2023). 
This may also affect non-target organisms and can there-
fore impact natural pest control (Gurr et al., 2003; Bianchi 
et al., 2006; Geiger et al., 2010). Detrimental effects of in-
secticides on natural enemies such as spiders, ants, ear-
wigs, and parasitoids are well documented (Pékar, 2012; 
Masoni et  al.,  2017; Orpet et  al., 2019a; Schindler 
et al., 2022; Mansour et al., 2023). Thus, every application 
saved is potentially beneficial for non-target organisms. 
Conversely, if natural enemies of pests are protected 
from pesticide impacts, this might also lead to increased 
resilience and reduce reliance of non-mandatory insecti-
cide applications (Cahenzli et al., 2017).

The European grapevine moth, Lobesia botrana Denis & 
Schiffermüller (Lepidoptera: Tortricidae), is one of the major 
grapevine pests in Europe and beyond (Benelli et al., 2023). 
Larvae feed on inflorescences and grape berries. However, 
the main damage arises in quality loss due to subsequent 
infections with bunch rot (Botrytis cinerea Pers.) and sour 
rot. The latter disease complex induces the development 
of volatile acidity causing sensorial interference in wine 
(Lemperle, 2007). Vinegar flies such as Drosophila melano-
gaster Meigen and Drosophila suzukii Matsumura (Diptera: 
Drosophilidae) can severely affect must quality by infect-
ing grapes with sour rot (Entling & Hoffmann, 2020). Unlike 
D. melanogaster, which is able to oviposit only in overripe or 
damaged berries, D. suzukii can actively oviposit in healthy 
berries (Atallah et  al.,  2014). Both vinegar flies act as vec-
tor for yeasts and bacteria associated with sour rot but also 
trigger the development of the disease directly by larval 
development inside the grape berries (Barata et al., 2012; 
Hall et al., 2018). Several species of mites, spiders, and bush 
crickets as well as harvestmen, earwigs, ants, and lace-
wings are known to prey on L. botrana (Marchesini & Dalla 
Montà,  1994; Pennington et  al.,  2018; Papura et  al.,  2020; 
Reiff et  al.,  2021). Drosophila spp. and particularly D. su-
zukii are preyed on by earwigs, ants, bugs, harvestmen, 
spiders, rove beetles, and centipedes (Woltz & Lee,  2017; 
Wolf et al., 2018). However, the efficacy of this wide range 
of arthropod predators in vineyards remains poorly investi-
gated (Thiéry et al., 2018). In contrast to molecular analysis 
of the gut contents of a particular predator, which reveals 
the diversity of ingested prey, direct observations of a tar-
get prey provides information about the diversity of pred-
ators, their predation behaviour, and their voraciousness 
(Luck et al., 1988; Godfrey et al., 1989; Brust, 1991; Grieshop 
et  al.,  2012). Camera observations offer a straightforward 
opportunity for standardized monitoring of sentinel prey, 
particularly with regard to the large number of nocturnal 
predators (Merfield et al., 2004; Grieshop et al., 2012; Nagy 
et al., 2020). Using camera surveyed sentinel cards, the aim 
of this study was to identify the most dominant predators 
of L. botrana and Drosophila spp. in the Palatinate region 
(southwest Germany), and to compare predation pressure 
between management systems and over time.

MATE R IAL S AN D M ETHO DS

Study sites

We investigated 32 vineyards in a 10-km radius around 
Landau in the Palatinate region, Germany (see Reiff 
et al., 2023, for detailed information). Of these vineyards, 18 
were managed by organic standards, including an organic 
spraying regime (mainly copper, sulphur, and potassium 
bicarbonate). The other 14 vineyards were treated with 
conventional plant protection products (mostly synthetic 
fungicides). In both management types, half of the vine-
yards were planted with susceptible cultivars (e.g., Riesling, 
Pinot blanc), and the other half with fungus-resistant varie-
ties (e.g., Cabernet blanc, Regent), which allowed a reduc-
tion of fungicide applications by 80% in organic and 50% in 
conventional vineyards (Reiff et al., 2023).

Camera surveillance of sentinel cards

Sentinel cards combined L. botrana eggs, L. botrana 
pupae, and D. melanogaster pupae. We chose D. mela-
nogaster rather than D. suzukii because of its easier culti-
vation. For rearing of L. botrana we followed Markheiser 
et  al.  (2018) and for rearing of D. melanogaster Entling & 
Hoffmann  (2020). Lobesia botrana was reared in 500-mL 
polyethylene cups on a semi-synthetic diet at 70% r.h. and 
L14 (23 °C):D8 (19 °C) photo-thermoperiod, + 1 h each of 
dusk and dawn. Moths originated from surrounding vine-
yards and were maintained in a laboratory rearing of the 
Julius Kühn-Institute, in Siebeldingen, Germany. To allow 
pupation and to ease collection of pupae, cups were lined 
with corrugated paper at later larval stages. Pupae were 
transferred to rearing containers which consisted of a paper 
bag closed by an acrylic glass cage (15 mm diameter, 15 mm 
high) to allow hatching and mating. For oviposition, the 
cage was either lined with a plastic bag to maintain rearing 
or with rings of polyethylene strips for later use in experi-
ments. Drosophila melanogaster was reared in cages with 
mesh side panels (30 × 30 × 30 cm) at 23 °C, 75% r.h., and 
L16:D8 photoperiod. Flies were obtained from a laboratory 
rearing of RLP AgroScience (Neustadt an der Weinstraße, 
Germany). Tubes (4 mm diameter, 8 mm high) with dros-
ophila cornmeal diet were placed inside the cages to allow 
oviposition and larval development. Egg-laden polyethyl-
ene strips were harvested after 24 h from L. botrana rearing 
containers. On average, 45 ± 29 eggs were present on each 
strip. Pupae of both insect species were harvested twice 
per week and stored at 4 °C until field exposure.

Each egg-laden strip was attached to an approximately 
2 × 4 cm cutting duct tape (HEB19L10GC, Toolcraft; Conrad 
Electronic, Hirschau, Germany) and five pupae of L. botrana 
or D. melanogaster were attached to the adhesive surface, 
respectively. The remaining adhesive surface was covered 
with sand to prevent predators from sticking. Sentinel 
cards were stored at 4 °C until exposure. Sentinel cards 
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were randomly attached to selected 1-year-old branches of 
grape plants (1.0–1.2 m above ground) and exposed to po-
tential predators for 24 h. The eggs and pupae were counted 
before and after exposure. Predation was monitored with 
two sentinel cards and two cameras 5 m apart, in the cen-
tre of each vineyard. To ease field work, the sampling sites 
were grouped in four touring blocks of eight vineyards. 
Half of the vineyards of each block were managed organi-
cally and half conventionally, comprising always both resis-
tant and susceptible varieties. The chronological order of 
sampling of each vineyard was the same both within the 

blocks and between the blocks. Monitoring was repeated 
four times between May and August of 2018, with at least 
4 weeks between two samplings within the same vineyard. 
This resulted in 256 days of camera observations. We used 
the camera system described in Pennington et  al.  (2018) 
consisting of a raspberry pi computer (3rd generation 
Model B; Raspberry Pi Foundation, Cambridge, UK) and a 
camera module with two infrared light-emitting diodes 
(SC15-Webcams-UK; Kuman, Glendora, CA, USA). The cam-
eras were programmed to take a picture every 10 s for 
24 h. Pictures were screened manually and predators were 

F I G U R E  1   Identified predators of Lobesia botrana and Drosophila melanogaster on camera-surveilled sentinel cards: (A) Chrysopidae larvae, (B) 
Forficula auricularia, (C) Vespula sp., (D) Blattoptera nymph, (E) Meconema meridionale male, (F) Formicidae, (G) Opiliones, (H) Cheiracanthium sp., (I) 
Philodromus sp.
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detected by the same observer. Predators were identified 
to the lowest possible taxonomic level with comparison to 
communities from beat-sheet samples of the same vine-
yards and sampling intervals (Reiff et al., 2023). We defined 
predation events when a predator was visibly preying on 
the sentinel cards (e.g., head and/or chelicera moving, or 
carrying pupae away) and eggs or pupae were removed 
or damaged after final collection and counting. It could 
not be excluded that single individuals visited the sentinel 
cards several times in the same night, or even in different 
months. Thus, no differentiation in terms of predation rate 
per individual was done.

Data analysis

All statistical analyses were executed in R v.4.3.1 (R Core 
Team, 2023). Due to low numbers of predation events, sta-
tistical analysis of predation by single taxa was only pos-
sible for earwigs. In this case, data were summed over all 
sampling dates, resulting in one observation per vineyard. 
Further, predation events of all observed predators were 
summed to analyse temporal differences. Taking zero 
counts into account, we used generalized linear mixed-
effect models fitted with the function ‘glmmTMB’ in both 
cases (R package glmmTMB; Brooks et al., 2017). For preda-
tion by earwigs, models contained ‘site’ as a random factor 
and ‘grape variety’ plus ‘management’ as the explana-
tory variables, including their interaction. For temporal 
variance, models contained ‘site’ as a random factor and 
‘date’ as the explanatory variable. Model distribution was 
checked graphically using the function ‘simulateResiduals’ 
(R package DHARMa; Hartig & Lohse, 2022) and family dis-
tribution was chosen accordingly. Post-hoc tests were con-
ducted with the function ‘emmeans’ (R package emmeans) 
using Tukey adjustment and a confidence level of 0.95.

R ESULTS

We could identify predators on 100 of 257 observation days 
with 52 positive observation days for egg predation, 59 for L. 
botrana pupae predation, and 80 for D. melanogaster pupae 
predation. We observed nine taxa preying on the sentinel 
cards (Figure 1, Table 1). The European earwig, Forficula au-
ricularia L. (Dermaptera: Forficulidae), accounted for 93% of 
L. botrana egg predation, for 90% of L. botrana pupae preda-
tion, and for 89% of D. melanogaster pupae predation.

Predation rates did not differ significantly between or-
ganic vs. conventional management, nor between resis-
tant vs. susceptible grape varieties. However, we found a 
trend that L. botrana eggs were preyed more frequently 
in resistant grapes under conventional compared to or-
ganic management. In addition, L. botrana pupae tended 
to be more frequently preyed in susceptible grapes under 
organic than under conventional management (Figure  2, 
Table 2). T

A
B

L
E

 1
 

N
um

be
r L

ob
es

ia
 b

ot
ra

na
 e

gg
s 

an
d 

pu
pa

e 
an

d 
D

ro
so

ph
ila

 m
el

an
og

as
te

r p
up

ae
 o

n 
se

nt
in

el
 c

ar
ds

 p
re

ye
d 

by
 v

ar
io

us
 id

en
tif

ie
d 

pr
ed

at
or

s,
 in

 3
2 

vi
ne

ya
rd

s 
un

de
r o

rg
an

ic
 v

s.
 c

on
ve

nt
io

na
l 

m
an

ag
em

en
t, 

pl
an

te
d 

w
ith

 re
si

st
an

t v
s.

 s
us

ce
pt

ib
le

 v
ar

ie
tie

s.
 T

ot
al

 n
um

be
rs

 o
f i

ni
tia

lly
 e

xp
os

ed
 e

gg
s 

an
d 

pu
pa

e 
ar

e 
di

sp
la

ye
d 

in
 th

e 
bo

tt
om

 ro
w

.

L.
 b

ot
ra

na
 e

gg
s

L.
 b

ot
ra

na
 p

up
ae

D
. m

el
an

og
as

te
r p

up
ae

O
rg

an
ic

Co
nv

en
ti

on
al

O
rg

an
ic

Co
nv

en
ti

on
al

O
rg

an
ic

Co
nv

en
ti

on
al

Re
si

st
an

t
Su

sc
ep

ti
bl

e
Re

si
st

an
t

Su
sc

ep
ti

bl
e

Re
si

st
an

t
Su

sc
ep

ti
bl

e
Re

si
st

an
t

Su
sc

ep
ti

bl
e

Re
si

st
an

t
Su

sc
ep

ti
bl

e
Re

si
st

an
t

Su
sc

ep
ti

bl
e

Fo
rf

ic
ul

a 
au

ric
ul

ar
ia

24
2

34
6

71
7

43
9

54
61

41
16

75
94

84
60

Fo
rm

ic
id

ae
33

-
-

33
1

-
-

1
12

-
6

3

Ch
ry

so
pi

da
e 

la
rv

ae
-

-
4

-
-

-
1

-
-

-
-

-

Ve
sp

ul
a 

sp
.

-
-

-
-

-
-

1
-

-
2

-
-

M
ec

on
em

a 
m

er
id

io
na

le
-

-
-

-
3

-
-

-
-

-
-

-

Bl
at

to
pt

er
a

-
-

-
-

-
-

-
-

2
-

-
-

O
pi

lio
ne

s
-

-
-

-
5

5
1

1
5

2
2

1

Ch
ei

ra
ca

nt
iu

m
 s

p.
-

40
-

-
-

-
2

-
-

-
-

-

Ph
ilo

dr
om

us
 s

p.
-

13
-

-
-

-
-

-
-

-
-

2

Ex
po

se
d

30
51

31
44

27
05

26
40

36
0

35
9

27
9

28
0

36
0

36
0

28
0

28
0

 15707458, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eea.13456 by U

niversität K
aiserslautern-L

andau, W
iley O

nline L
ibrary on [12/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



822  |      REIFF et al.

Overall predation rates of L. botrana eggs were highest 
in May and August (23.9% and 19.7%, respectively), whereas 
those of D. melanogaster pupae were highest in May and 
June (40.6% and 43.8%, respectively; Figure 3, Tables 3 and 
S1). Highest predator diversity on sentinel cards was found 
in May and July with six predatory taxa observed (Table S1).

D ISCUSSIO N

Earwigs were by far the most dominant predators in all 
studied vineyards and the sole taxon that was observed 
in all vineyards and on all sampling dates. Likewise, Frank 
et  al.  (2007) detected highest predation activities of ear-
wigs in the canopies of New Zealand vineyards. The domi-
nance of earwigs as predators is scarcely documented 
and studies are mainly restricted to orchards of cherry 
(Bourne et  al.,  2019), cherry, blackberry, and raspberry 
(Wolf et  al.,  2018), citrus (Romeu-Dalmau et  al.,  2012), 
and apple (Orpet et  al., 2019b). Although sometimes 
considered a pest in viticulture (Huth et  al.,  2011; Kehrli 
et  al.,  2012), earwigs may also contribute to pest control 
in vineyards (Pennington et al., 2018; Englert & Herz, 2019; 
Reiff et al., 2021). However, earwig abundance strongly var-
ies between viticultural regions and pest control potential 
by earwigs may vary accordingly (Reiff et  al., in prepara-
tion). For instance, high proportions of harvestmen were 
tested positive for grape berry moth DNA in southwestern 
France (Papura et  al.,  2020). In the same vineyards, har-
vestmen were considerably more abundant than earwigs 
(Muneret et al., 2019a). Sario et al. (2021) highlight the im-
portance of spiders, ants, and lacewings for natural control 
of D. suzukii in Portuguese orchards. Thus, the prevalence 
of different enemies can vary between study regions. 
Increased proportions of high biomass generalist preda-
tors (like harvestmen and earwigs) may on the other hand 
promote intra-guild predation (Ostandie et al., 2021). Shifts 
in predator communities towards single dominant gener-
alist predators may weaken resilience for biological control 
(Tscharntke et al., 2008).

Eight other taxa were identified to be involved in preda-
tion incidents. To our knowledge, predation by Blattoptera 
and Vespula sp. on L. botrana and Drosophila sp. in vine-
yards has not been recorded before. We assume that the 
range of natural enemies of important vineyard pests 
may be even broader than currently assumed. For exam-
ple, bush crickets are important predators of L. botrana in 
Austrian vineyards (Reiff et al., 2021). By contrast, our obser-
vations in the Palatinate region revealed just one predation 
event by the bush cricket Meconema meridionale (Costa). 
However, with climate change bush crickets may become 
more prominent predators in Palatinate vineyards (Buse & 
Griebeler, 2011).

Overall, 17% of L. botrana eggs, 15% of L. botrana pupae, 
and 27% of D. melanogaster pupae were preyed on in only 
24 h. For comparison, predation rates of L. botrana eggs 
were 2- to 5-fold higher than in our study when sentinel 

cards were exposed for 72 h in the same study region 
(Pennington et al., 2018; Reiff et al., 2023). Given that the 
natural development time of vineyard pests is consider-
ably longer (6 weeks for L. botrana; Thiéry & Moreau, 2005; 
10–30 days for D. suzukii; Winkler et al., 2020), the possibil-
ity for natural predation is higher, accordingly. We thus as-
sume that under natural conditions pest control could be 
higher than estimated with short-time exposed sentinel 
cards.

F I G U R E  2   Observed predation rates (%) of Forficula auricularia 
on (A) Lobesia botrana eggs, (B) L. botrana pupae, and (C) Drosophila 
melanogaster pupae in 32 vineyards under conventional vs. organic 
management, planted with resistant vs. susceptible varieties. In the 
boxplots, the top and bottom box indicate the first and third quartile of 
the data, the thick line in between is the median, the whiskers indicate 
1.5× the interquartile range, the black dots are outliers, and the white 
dot indicates the mean.
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The degree to which artificial predation experiments 
reflect true intensities of pest control is uncertain. For ex-
ample, prey may be more visible and clustered than under 
natural conditions and pest females may be able to avoid 
sites with high predation risk, e.g., by detecting chemical 
cues of predators (Dicke & Grostal, 2001). For instance, the 
eggs of L. botrana are usually laid solitarily and the pupae, 
covered by a silky cocoon, are hidden in grape bunches 
and leaves, on the ground, or between the bark (Benelli 
et  al.,  2023). Further, the artificial immobilisation of prey 
may favour attacks by arthropods which are naturally 
not able to overpower this type of prey, possibly leading 
to overestimation of natural pest control potential (Zou 
et al., 2017; Gardarin et al., 2023). Nevertheless, Pennington 
et  al.  (2018) demonstrated that, under reduced fungicide 
applications, the proportion of damaged berries after 
infestation with L. botrana eggs decreased to the same 
extent as egg predation on sentinel cards and predator 
abundance increased. Thus, we expect that the sentinel 
cards used in our experiments provide a useful proxy to 
indicate differences in the actual natural pest control on L. 
botrana eggs between vineyards.

Sentinel cards are a useful method to assess the po-
tential for natural pest control in comparative studies 
(Pennington et  al.,  2018; Muneret et  al.,  2019b; Gardarin 
et  al.,  2023). However, this method is also limited by the 
choice of prey, and the community of natural enemies and 
their control potential can be better estimated by the se-
lection of several prey types (Nagy et  al.,  2020; Gardarin 
et al., 2023). By using both eggs and pupae of L. botrana and 
pupae of D. melanogaster, we were able to address a broad 
spectrum of predators in the vineyard canopy. However, 
the use of several prey types on one sentinel card may also 
create bias. For instance, predators could have been more 
attracted by the diverse buffet which may have led to an 
overestimation of predation rates. Camera observations 
are considerably more time consuming and expensive 
than only exposing sentinel cards (Grieshop et  al.,  2012; 
Nagy et al., 2020). Yet, they may add valuable information 
on predator–prey interactions and identify hitherto unrec-
ognized predators (Merfield et al., 2004; Nagy et al., 2020). 
Therefore, we chose to expose multiple prey per card in 
order to maximize predator observations.

Beyond the observed predation events, other taxa in 
different strata may be of importance for the control of 

vineyard pests. For example, D. suzukii larvae were re-
ported to be preyed on already inside infested fruits 
and D. suzukii pupae were predominantly found in the 
soil (Woltz & Lee, 2017), where also other taxa may be in-
volved in predation, such as staphylinid and carabid bee-
tles. Adult stages of L. botrana and Drosophila sp. which 
were not observed in this study may be rather regulated 
by, e.g., web-building spiders than by earwigs (Englert & 
Herz, 2019; Michalko et al., 2019). In conclusion, the num-
ber of predators and their pest control potential in vine-
yards is expected to be even higher than observed by our 
sentinel card snapshots.

Expected effects of organic management or reduced 
fungicide applications in resistant grapes were not signifi-
cant in this study. Nevertheless, the highest predation rates 
in conventional vineyards with resistant grape varieties co-
incided with the highest abundance of earwigs and total 
carnivores in the same vineyards in southwestern Germany 
(Reiff et al., 2023). Earwigs are sensitive to several insecti-
cides but appear to be unaffected by fungicides (Shaw & 
Wallis, 2010; Logan et al., 2011; Malagnoux et al., 2015). The 
use of insecticides was mainly avoided in this study, which 
may be one reason for high predation rates by earwigs. 
Other factors, such as soil management and the implemen-
tation of cover crops, could be significant bottlenecks for 
earwig abundance and predation. For instance, frequent 
tillage operations may affect earwig reproduction by dis-
rupting belowground nesting (Gobin et  al.,  2008; Orpet 
et  al., 2019a). Hitherto unaware of the dominance of ear-
wigs in vineyards, we did not systematically take into ac-
count these factors. The low predation rates in July and 
partly August may be explained by the high temperatures 
and low precipitation during these months in 2018. The ac-
tivity of many arthropods is known to be reduced under 
hot and dry conditions which consequently affects forag-
ing activity and predation pressure (Kessler & Guerin, 2008; 
Benoit, 2010; Romero et al., 2021). However, this may have 
little direct relevance for Drosophila pest management, 
as also pest species such as D. suzukii suffer from hot and 
dry conditions during summer (Tochen et al., 2014; Asplen 
et al., 2015; Gutierrez et al., 2016).

Our study highlights the added value of camera obser-
vations in sentinel prey experiments. We identified earwigs, 
which had hitherto been underestimated as predators in 
vineyards, as the key predators in the Palatinate viticultural 

T A B L E  2   Model parameters and output for the three fitted models of predation by earwigs. Model formula included response variable ~ 
management*variety + (1 | site).

Parameters Output: p (χ2)

Response variable Distribution df residuals Management Variety Management*variety

Lobesia botrana egg predation Tweedie 25 0.12 (2.3871) 0.95 (0.0047) 0.083 (3.0071)

L. botrana pupae predation Gaussian 26 0.12 (2.4351) 0.36 (0.8304) 0.080 (3.0618)

Drosophila melanogaster pupae 
predation

Gaussian 26 0.63 (0.2298) 0.87 (0.0283) 0.14 (2.1922)
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region. Vineyards provide suitable habitats for earwig pop-
ulations (perennial crop, fissured bark providing shelter) if 
insecticide use and frequent tillage operations are avoided. 
Other identified predators showed less control potential. 
However, with regard to agroecosystem resilience, the 
maintenance of a diverse predator community should be 
pursued. We recommend camera observations to identify 
key predators also in different predator–prey interactions, 
study systems, and regions.
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T A B L E  3   Model parameters and output for the three fitted models 
for temporal variance. Model formula included response variable ~ 
month + (1 | site).

Parameters Output: p (χ2)

Response variable Distribution
d.f. 
residuals Month

Lobesia botrana egg 
predation

Nbinom2 122 0.0038 (13.403)

L. botrana pupae 
predation

Tweedie 121 0.22 (4.459)

Drosophila melanogaster 
pupae predation

Tweedie 121 0.0086 (11.674)
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