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Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for qualita-

tive and quantitative analysis. However, for complex mixtures, determining the

speciation from NMR spectra can be tedious and sometimes even unfeasible. On

the other hand, identifying and quantifying structural groups in a mixture from

NMR spectra is much easier than doing the same for components. We call this

group-based approach “NMR fingerprinting.” In this work, we show that NMR

fingerprinting can even be performed in an automated way, without expert

knowledge, based only on standard NMR spectra, namely, 13C, 1H, and 13C

DEPT NMR spectra. Our approach is based on the machine-learning method of

support vector classification (SVC), which was trained here on thousands of

labeled pure-component NMR spectra from open-source data banks. We demon-

strate the applicability of the automated NMR fingerprinting using test mixtures,

of which spectra were taken using a simple benchtop NMR spectrometer. The

results from the NMR fingerprinting agree remarkably well with the ground

truth, which was known from the gravimetric preparation of the samples. To

facilitate the application of the method, we provide an interactive website

(https://nmr-fingerprinting.de), where spectral information can be uploaded

and which returns the NMR fingerprint. The NMR fingerprinting can be used in

many ways, for example, for process monitoring or thermodynamic modeling

using group-contribution methods—or simply as a first step in species analysis.
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1 | INTRODUCTION

Nuclear magnetic resonance (NMR) spectroscopy is an
established technique for elucidating the structure of
unknown components. However, this usually requires

expert knowledge and may be tedious, especially if mix-
tures are studied. Therefore, computer-assisted structure
elucidation (CASE) programs have been developed to
facilitate this process.[1] As input, these programs typi-
cally require a set of 1D and 2D NMR spectra of the
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unknown sample and information on the molecular for-
mula of the components to be identified, usually obtained
by high-resolution mass spectrometry.[2–5] CASE pro-
grams then propose the most probable molecular struc-
tures to the user by applying a set of rules and logic and
comparing the recorded spectra to the predicted spectra
of the candidate molecules. Unfortunately, CASE pro-
grams are currently restricted to pure components, which
strongly limits their applicability in practice.

NMR spectroscopy has also successfully been applied
for the component-specific analysis of mixtures, yielding
both qualitative and quantitative information on the
composition.[6–11] However, in complex mixtures, eluci-
dating all components and determining their concentra-
tions is only tedious in the best case; in the worst case, it
is infeasible. Suppose all components in a mixture are
known, and only their concentrations are unknown. In
that case, the situation is comparatively simple, and vari-
ous methods for the automated quantification exist, even
for situations where peaks overlap.[12–17] If, on the other
hand, the mixture contains unknown components,
already the first step in the evaluation, namely, the deci-
sion which peaks to consider, is generally ambiguous and
subject to the user, although first machine-learning
(ML) approaches for automation have been developed.[18]

A data-driven approach to facilitate the evaluation of
NMR spectra applicable to mixtures and employed, for
example, in metabolomics,[19] is dereplication.[20–22] In
dereplication, individual components in a mixture are
identified by comparison of the experimental NMR spec-
trum of the mixture with the NMR spectra of pure com-
ponents retrieved from a data bank. While this approach
is, in principle, straightforward, its main problem is that
even the largest NMR data banks contain only a tiny frac-
tion of all possible components,[4] so dereplication
approaches are limited to specific applications. Moreover,
methods that rely on comparing measured NMR spectra
to those of data banks are often sensitive to differences in
conditions of the experiments.[4] Hence, there is currently
no broadly applicable, reliable, and robust way for auto-
matically elucidating the components in mixtures from
NMR spectra.

Compared with the elucidation of the components of
a mixture by NMR spectroscopy, identifying the struc-
tural groups that make up the components is a much sim-
pler task. We call the respective procedure of obtaining
the group-specific information from NMR spectra “NMR
fingerprinting” in the following. NMR fingerprints can be
of great practical relevance, for example, for monitoring
reaction and separation processes or as a basis for pre-
dicting the properties of mixtures by thermodynamic
group-contribution methods.[23–28] Another potential
application field is the so-called biofluid analysis using

benchtop NMR spectrometers,[29–31] for example, for
detecting diseases in combination with ML methods.

NMR fingerprinting is facilitated by the fact that
NMR spectroscopy directly provides information about
the local environment of the studied nucleus, that is, the
structural group to which it belongs. Therefore, chemical
shift tables exist that depict characteristic ranges of struc-
tural groups in different NMR spectra.[32] However,
because the characteristic ranges of structural groups
often overlap, the peak assignment based on chemical
shift tables is not unambiguous. To overcome the prob-
lems associated with working with chemical shift tables,
in prior work,[33] we have proposed to use a supervised
ML method, namely, support vector classification (SVC),
for identifying and assigning structural groups to chemi-
cal shift regions in 13C NMR spectra, which also uses
information from 1H NMR spectra. During the training,
the SVC learned to map the information from the NMR
spectra (the input) to different structural groups (the out-
put). Although the SVC was trained only on pure-
component data, the method yields good results also for
mixtures.[33]

In this work, the NMR fingerprinting concept is sub-
stantially extended to also include information from 13C
DEPT NMR spectra in addition to 1H and 13C NMR spec-
tra of the sample. The 13C DEPT NMR spectra provide
direct information on the substitution degree of the car-
bon atoms and are used here to differentiate, for example,
between “CH3” and “CH2” groups in the respective
sample.

Furthermore, in this work, we introduce using
SMARTS in the NMR fingerprinting framework.
SMARTS is an acronym for SMILES arbitrary target spec-
ification strings,[34] which are based on the simplified
molecular-input line-entry system (SMILES),[35] which,
in turn, is a system to represent components by simple
text strings. SMARTS are used here for a rigorous defini-
tion of the distinguished structural groups in the NMR
fingerprinting framework and enable a fully automated
training workflow. SMARTS also provide great flexibility
in defining the groups so that the approach can be
straightforwardly tailored to a specific application.

Additionally, the NMR fingerprinting method was
extended in the present work to optionally consider prior
knowledge about the presence or absence of labile pro-
tons in the sample, that is, protons that show chemical
exchange with other protons in the sample, if such infor-
mation is available. Information about the presence of
labile protons can, for example, be identified by their
broad peak form in 1H NMR spectroscopy or from hetero-
nuclear single quantum coherence (HSQC) experiments.

The new method was trained on spectra of 2839 pure
components from two data banks, namely, the

SPECHT ET AL. 287

 1097458xa, 2024, 4, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/m

rc.5381 by U
niversität K

aiserslautern-L
andau, W

iley O
nline L

ibrary on [13/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



NMRShiftDB[36] and the Biological Magnetic Resonance
Data Bank (BMRB),[37] and was tested using rigorous
nested cross-validation (CV). Furthermore, a data augmen-
tation technique was developed to substantially increase
the training data set and address the fact that no compre-
hensive data bank for NMR spectra of mixtures is avail-
able. Finally, several test mixtures were analyzed with an
80 MHz benchtop NMR spectrometer, and the recorded
spectra were used as input for testing the new approach in
a practical setting.

Together with this paper, an interactive website
(https://nmr-fingerprinting.de) was published, which
enables testing and applying the method presented here
through a graphical user interface (GUI) without the
need for any program installation. The user supplies the
spectral information and gets the corresponding NMR
fingerprint.

2 | OVERVIEW OF THE
WORKFLOW

Figure 1 visualizes the workflow of the method developed
in this work, which can be used via the website (https://
nmr-fingerprinting.de). The method's goal is identifying
structural groups in an unknown sample and assigning
them to peaks in the 13C NMR spectrum of the sample.
In the present version, the NMR fingerprinting method
can differentiate thirteen structural groups, which are
summarized in Table 1. The groups are the same as in
our recent work,[33] but SMARTS strings for each group
are also provided here.

For using the method, a 1H NMR spectrum, a 13C
NMR spectrum, and 13C DEPT 90/135 NMR spectra of
the studied sample are required. Specifically, the chemi-
cal shift of all peaks in the 1H NMR (except the peaks of
labile protons) and in the 13C NMR spectrum as well as
the substitution degree of each carbon atom, which can
be automatically determined considering the signs of the
peaks in the DEPT 90/135 NMR spectra,[38] are needed for
defining the input of the method. The preprocessing of the
NMR spectra and peak picking is currently up to the user.
Automatic workflows as implemented in commercial soft-
ware like MNova can be (and were) used for this purpose
in the present work. However, these tools normally still
require human supervision, although there are attempts to
fully automatize the peak picking task by ML methods,[18]

which will be interesting to study in future work.
Furthermore, the method described here uses binary

information about the presence or absence of labile pro-
tons in the sample. In the Supporting Information, an
additional variant of the NMR fingerprinting method that
does not require this additional information on labile
protons is presented, which should be used in cases
where such information is unavailable.

The spectral information, as well as the information
on the presence or absence of labile protons, are used for
defining the input vector xi of a sample i for the SVC,
whereby the NMR spectra are in general equidistantly
binned and the peaks are assigned to the respective sec-
tions in the spectra (cf. Section 3.1 for details). The infor-
mation about the presence or absence of labile protons in
the sample can come from different sources. In many
cases, one will know if, for example, carboxylic acids or
alcohols are present in the sample. However, even if this
information is not available a priori, there are multiple
ways to its determination. For instance, labile protons can
often be recognized from the 1H NMR spectrum because
they usually show characteristic, very broad peaks. Alter-
natively, HSQC NMR spectra can be used, where peaks of
labile protons show no correlation with any carbon
nucleus in the sample. Another established method is the

FIGURE 1 Workflow of the developed NMR fingerprinting

method using an SVC for predicting structural groups based on

spectral information from 1H, 13C, and 13C DEPT NMR spectra as

well as using binary information about the presence or absence of

labile protons in the sample. In the Supporting Information, a

variant of the method that does not require information about

labile protons is presented.
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so-called D2O-shake, that is, the addition of a small
amount of deuterated water to the sample, which will
cause the peaks stemming from labile protons to vanish or
at least significantly change their position and/or ampli-
tude if compared to a 1H NMR spectrum before adding
D2O. Also, simple pH measurements can detect labile pro-
tons, specifically ones from carboxylic acids.

The SVC method was trained on labeled data for 2839
pure components to predict the structural groups sum-
marized in Table 1 (cf. Section 3.3 and Supporting Infor-
mation for details). Finally, by integrating the peaks in
the 13C NMR spectrum, the concentrations of all identi-
fied structural groups can be directly obtained.

3 | DATA AND METHODS

3.1 | Generation of input and output
data for training

For training the method, only experimental data for pure
components were used and retrieved from two NMR data
banks (cf. Section 3.2). Furthermore, synthetic mixture
data were generated to augment the training set by com-
bining the processed experimental pure-component data
in the nested CV (cf. below for details). In general, for
training the method and evaluating it on the pure-
component data, all peaks of labile protons were removed
from the 1H NMR spectra.

For generating the input data for the training, the sub-
stitution degree of each carbon atom in each pure compo-
nent, that is, primary (P), secondary (S), tertiary (T), or
quaternary (Q), was determined automatically based on
the structure of the component using RDKit[39]

(cf. Supporting Information for details). Furthermore, the
13C and 1H NMR spectra of all pure components from the
data set were divided into equidistant discrete sections.
For the 13C NMR spectra, the chemical shift range from
0 to 210 ppm was considered and divided into S

13C ¼ 21
sections of 10 ppm width. For the 1H NMR spectra, the
chemical shift range from 0 to 10 ppm was considered
and divided into S

1H ¼ 20 sections of 0.5 ppm width.
Following this binning procedure and taking into

account the information on the substitution degree of the
carbon atoms, the 13C NMR spectrum of component i
was translated into four bit vectors x13Ci (one for each sub-
stitution degree), each of the length S

13C in the following
way: starting from 0 ppm, the bit vector's entry for a spe-
cific section s was set to 1 if at least one peak associated
to a carbon atom with the respective substitution degree
was observed in the respective section. The four vectors
for the different substitution degrees were subsequently
concatenated to a single vector of length 4 �S13C. Further-
more, the input vector x1Hi resulting from the binned 1H
NMR spectrum was generated analogously and appended
to the carbon bit vector resulting in a single vector of
length 104 (4 �21þ20). If peaks were observed outside
the above-defined entire ranges of the NMR spectra, they
were assigned to the respective nearest (edge) sections.
Finally, a single bit indicating whether labile protons are
present (¼̂1 ) or absent (¼̂0) in the component was
appended, resulting in the input vector xi of length
105 for each component i. More details on the input data
generation can be found in the Supporting Information.

The general goal of the developed method is to
identify and assign the structural groups g from Table 1
to sections s in the 13C NMR spectrum of a component i.
Hence, as the output of the method, the matrix Y i was

TABLE 1 Structural groups distinguished in the present work and the respective SMARTS strings for their representation.

Label Group name SMARTS representation

CH3 Methyl [CX4;D1;!$(C[!#6])]

CHx Alkyl; x � 0,1,2f g [CX4;D2,D3,D4;!$(C[!#6]);!R]

cyCHx Cyclic alkyl; x � 0,1,2f g [CX4;!$(C[!#6]);R]

CHxOH Alcohol; x � 0,1,2,3f g [CX4;!$(C[OX2H0][CX3H1,CX3](=O))][OX2H]

CHxO Ether; x � 0,1,2,3f g [CX4;$(C[OD2]);!$(C[OX2H0][CX3H1,CX3](=O));!$(C[OX2H])]

CHx ¼ Aliphatic double bond; x � 0,1,2f g [CX3;!$(C�[!#6])]

CHar
x ¼ Aromatic carbon; x � 0,1f g [cX3;!$(c�[!#6])]

RO-CHar
x ¼ Aromatic carbon with oxygen substituent; x � 0,1f g [cX3;!$(c=O);$(c�[#8X2])]

COOR Ester/lactone/anhydride carbonyl [CX3H1,#6X3](=O)[#8X2H0]

ROOCHx Alkyl next to ester/lactone oxygen; x � 0,1,2,3f g [CX4;$(C[OX2H0;$(O(C(=O)))])]

COOH Carboxylic acid [CX3](=O)[OX2H1]

COald Aldehyde [CX3H1;!$(C[!#6])](=O)

COket Ketone [#6X3H0;!$([#6][!#6])](=O)

Note: Each group contains exactly one carbon atom, and x is the number of protons directly bonded to the carbon atom.
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defined for each component i from the data set, which is
a bit matrix of dimension S

13C x G, where Y iðs,gÞ¼ 1 indi-
cates the presence of at least one peak induced by struc-
tural group g in section s and G is the total number of
distinguished groups (G¼ 13; cf. Table 1). The output
matrix for each component was generated automatically
using the respective SMARTS strings (cf. Table 1) and
the RDKit package[39] (cf. Supporting Information for
details).

3.2 | Collection of pure-component NMR
data

Raw NMR spectra of 2839 pure components were
adopted from the BMRB[37] data bank and the
NMRShiftDB[36] data bank and used for training and
evaluation of the developed method, whereby spectra
from the NMRShiftDB were preferred if data for a given
component were available in both data banks. However,
not all components and respective spectra reported in
these NMR data banks were used. Therefore, besides
removing erroneous spectra (cf. Supporting Information
for details), the following criteria had to be met:

1. Both a 13C and a 1H spectrum of the component are
available.

2. The component is composed only of carbon (C),
hydrogen (H), and/or oxygen (O) and no other
elements.

3. The component can unambiguously be segmented
into structural groups from the list in Table 1.

The first restriction ensures that only components are
considered for which the complete spectral information
that is needed as input for the SVC method is available.
This could be relaxed in future work by the augmentation
of incomplete data sets by predicted NMR spectra, for
example, using hierarchically ordered-spherical descrip-
tion of environment (HOSE) methods,[40] density-
functional theory (DFT) calculations,[41] or ML
approaches.[42] The second restriction is needed because
the proposed structural groups are only made up of the
elements C, H, and O in the current work (cf. Table 1).
Considering additional elements will be interesting in
future work but will require additional analytical data,
for example, from further NMR experiments or other
analytical techniques. The third restriction is needed to
ensure that all components can be completely divided
into our list of structural groups. However, the extension
to further groups directly depends on the availability of
NMR spectra of components containing the group of
interest to ensure meaningful training of the method.

For all 13C NMR spectra and 1H NMR spectra from
the data set, the chemical shifts of all peaks were
extracted with only one exception: the peaks in the 1H
NMR spectra originating from protons directly bonded to
oxygen. The reason for this is as follows: such protons are
often labile due to exchange with other protons in the
sample and, depending on the conditions during acquisi-
tion (like temperature and composition of the sample),
their position in the NMR spectrum can vary strongly,[38]

which makes their position less informative for our
method. More details on the processing of the data are
given in the Supporting Information.

Figure 2a gives an overview of the data set containing
the input and output data of the considered 2839 pure
components, which we call Dpure in the following.
Figure 2a thereby indicates the frequency of the

FIGURE 2 Positions of the peaks of the 2839 pure components

from our data set (a) in the 13C NMR spectrum and (b) in the 1H

NMR spectrum. The color code and the numbers inside the cells

denote Ns
g, which is the number of components in the data set that

contain the structural group g (row) that induces a peak in the

section s of the spectrum (column). White cells refer to Ns
g ¼ 0:
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13 distinguished structural groups in the considered com-
ponents and also in which sections of the 13C NMR spec-
trum the respective peaks appear. The assignment of
groups to sections in the spectra is not unique: peaks of
at least two different structural groups are found in each
section. Furthermore, there is a substantial imbalance
regarding the frequency of structural groups in the data set
and the frequency of peaks in the different sections of the
NMR spectrum. Figure S.1 in the Supporting Information
shows that by taking into account the information on the
different substitution degrees, multiple assignments of
groups to a single section are substantially reduced.

Figure 2b shows the respective information on the
data set for the 1H NMR spectrum. Similar to the 13C
NMR spectrum, the assignment of structural groups to
the sections is not unique, so at least two different struc-
tural groups are found in each section. Furthermore,
although there is a clear tendency for some groups to
show peaks most frequently in some areas of the spec-
trum, all groups cover several chemical shift sections.

3.3 | Training of support vector
classification

The core of the developed method is an SVC with a radial
basis function (RBF) kernel implemented in scikit-learn

1.2.0,[43] which was trained on the pure-component data
set Dpure.

During the development of the SVC method, Dpure

was repeatedly divided into three subsets by a double-
loop approach in the frame of a nested CV strategy[44]: a
training set for fitting the model parameters, a validation
set for optimizing the hyperparameters, and a test set for
evaluating the predictive performance of the method.
Details on how the data splits were performed are given
in the Supporting Information. Nested CV was applied
for each section of the 13C NMR spectrum separately,
whereby the data set for each section contained only
those data points that induce a peak in the respective
section of the 13C NMR spectrum.

In the outer loop of the nested CV, 10% of the pure-
component data were defined as test data, which was
repeated 10 times so that each pure-component data point
was part of the test set exactly once. In the inner loop, the
remaining 90% of the data were divided into 80% training
data and 20% validation data, which was repeated five
times for each run of the outer loop so that each pure-
component data point in the inner loop was in the valida-
tion set exactly once. Additionally, synthetic mixture data
were generated and used in the inner loop. However, the
synthetic data were not used in the outer loop (as test data)
to ensure a fair evaluation of the method (cf. Supporting
Information for details). The synthetic mixture data

FIGURE 3 F1 test scores (indicated by the color code) of the method for structural groups g and sections s of the 13C NMR spectra of the

pure components in our data set. The numbers inside the cells indicate the number of components Ns
g in the data set that contain the

respective structural group g (row) inducing a peak in the respective section s of the 13C NMR spectrum (column). White cells indicate

group/section combination with Ns
g ¼ 0, shaded cells with Ns

g <10:
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improves the variability of the data and, therefore, in par-
ticular, helps the method to identify the presence of
combinations of different structural groups that rarely
occur in a single pure component in the training set.

Optimizing the hyperparameters in the inner loop
was carried out using a Bayesian optimization algo-
rithm[45] to reduce computation time. Furthermore, only
the scores for structural group/section combinations with
at least 10 positive examples in the data set were consid-
ered for the optimization in the inner loop, which was
done to reduce the influence of atypical data points (out-
liers) on the developed method (cf. Supporting Informa-
tion for details).

Because an SVC is a priori only applicable to distin-
guish between two classes, that is, an SVC is a priori a
binary classifier, but multiple classes need to be assigned
to each data point here, the so-called one-vs-rest strat-
egy[46] was employed in this work. For this purpose, mul-
tiple binary SVCs (called “units” in the following) were
trained, one for predicting the presence or absence of
each of the considered structural groups. The raw output
of each binary SVC is its so-called decision function
value, where the sign of the value indicates if a structural
group is identified by the algorithm (positive value) or
not (negative value), and the absolute value is propor-
tional to the confidence of the method in the predic-
tion.[47] Therefore, the decision that structural group g
was assigned to a specific section s of the 13C NMR spec-
trum was made by considering the values of the decision
function dsg of all binary SVC units, whereby all groups
with dsg >0 were identified (cf. Supporting Information
for details). For applying the final SVC method to NMR
spectra of mixtures, this procedure was slightly adapted
as described in detail in the Supporting Information.

The predictive performance of the SVC was evaluated
here using the so-called F1 score F1,g for each structural
group g:

F1,g ¼ 2 �TPg

2 �TPgþFPgþFNg
, ð1Þ

TABLE 2 Overview of the test mixtures studied in this work.

Mixture Components i xi (molmol�1)

I

2-Butanone 0.0136

Ethyl acetate 0.0145

Water 0.9719

II

Cyclohexanone 0.0193

Malic acid 0.0198

1-Propanol 0.0197

Water 0.9412

III
1-Octanol 0.9023

tert-Butylhydroquinone 0.0977

IV

Acetone 0.1587

Butanal 0.1313

Oleic acid 0.7100

FIGURE 4 Results of the application of NMR fingerprinting to

mixture I (cf. Table 2) for the prediction of structural groups and

their assignment to peaks in the 13C NMR spectrum. Green color

indicates correct predictions. On the x-axis, the positions of all

peaks in the 13C NMR spectrum of the mixture are indicated.

FIGURE 5 Results of the application of NMR fingerprinting to

mixture II (cf. Table 2) for the prediction of structural groups and

their assignment to peaks in the 13C NMR spectrum. Green color

indicates correct predictions, and orange color indicates mistakes.

On the x-axis, the positions of all peaks in the 13C NMR spectrum

of the mixture are indicated.

292 SPECHT ET AL.

 1097458xa, 2024, 4, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/m

rc.5381 by U
niversität K

aiserslautern-L
andau, W

iley O
nline L

ibrary on [13/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



where TPg are the so-called true positives of group g, that
is, the data points (pure components from our data set)
that were correctly classified as containing group g; FPg

are the so-called false positives of group g, that is, the
components that were incorrectly predicted to contain
group g; and FNg are the so-called false negatives of
group g, that is, the components that contain group g but
were falsely predicted not to contain group g. F1 scores of
1 correspond to perfect predictions.

Additionally, a “final” method was trained following
the same procedure but a CV with a split of the data
set into 90% training and 10% validation data in each
run. The final method was trained with the same proce-
dure as the method that was used for testing the gener-
alization performance by calculating the F1 test scores.
The only difference is that in the final method, no outer
loop is needed where the test data are built. The final
method was therefore not used to calculate the reported

F1 scores on the pure-component data but only applied
to the experimentally studied mixtures in this work
(cf. Supporting Information for details).

3.4 | Experimental methods

1H NMR, 13C NMR, and 13C DEPT NMR spectra with
pulse angles of 90� and 135� were recorded of four test
mixtures on an 80 MHz (proton frequency) benchtop
NMR spectrometer (Spinsolve 80 Carbon Ultra) from
Magritek. The experimental time for recording the 1H
NMR spectra of one sample was approx. 0.25 h. The total
experimental time for recording the 13C NMR and 13C
DEPT NMR spectra for one sample was about 13 h. Note
that the focus of the present work was not on the time
efficiency of the measurements; furthermore, obtaining a
sufficient signal-to-noise ratio depends strongly on the

FIGURE 6 Results of the application of NMR fingerprinting to mixture III (cf. Table 2). (a) Prediction of structural groups and

assignment to peaks in the 13C NMR spectrum. Green color indicates correct predictions. On the x-axis, the positions of all peaks in the 13C

NMR spectrum of the mixture are indicated. (b) Prediction of mole fractions of structural groups by integration of the peaks in the 13C NMR

spectrum; the results are shown individually for the different substitution degrees of the carbon atoms (P, S, T, and Q).
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concentration of the samples. Quantitative information
was obtained by integrating the respective peaks in the
quantitative 13C NMR spectrum, if applicable. In addi-
tion, the substitution degree of each carbon atom was
determined from the 13C DEPT NMR spectra of the
respective mixture. Details are given in the Supporting
Information.

4 | RESULTS AND DISCUSSION

4.1 | Prediction of structural groups
from pure-component spectra

Figure 3 shows the results for the F1 scores of the method
for identifying structural groups and assigning the respec-
tive peaks to the different sections in the 13C NMR

spectrum of the pure-component data set of this work.
White cells indicate group/section combinations with
zero positive examples in the data set, and shaded cells
indicate group/section combinations with one to nine
positive examples in the data set. However, the sections
with so little data were not considered in the evaluation
for the reasons explained in the previous section.

Overall, high F1 scores (>0.8) were obtained for all
group/section combinations with generally higher F1

scores for group/section combinations with larger
numbers of positive examples in the data set. In the
region 0–40 ppm, excellent results were obtained: The
CH3, CHx , and cyCHx groups can be distinguished reli-
ably. Excellent accuracy was also obtained in the region
190–210 ppm, where, for example, the COald group can
be differentiated from the COket and COOH groups
(cf. Figure 2). Some other groups, such as CHxOH,

FIGURE 7 Results of the application of NMR fingerprinting to mixture IV (cf. Table 2). (a) Prediction of structural groups and

assignment to peaks in the 13C NMR spectrum. Green color indicates correct predictions. On the x-axis, the positions of all peaks in the 13C

NMR spectrum of the mixture are indicated. (b) Prediction of mole fractions of structural groups in mixture IV by integration of the peaks in

the 13C NMR spectrum; the results are shown individually for the different substitution degrees of the carbon atoms (P, S, T, and Q).
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CHxO, and ROOCHx , are harder to distinguish but are
still reasonably predicted. In Figure S.11 in the Support-
ing Information, additional results for a variant of the
method that does not use information about the presence
or absence of labile protons are shown, which are slightly
worse, particularly for the COOH and CHxOH groups.

4.2 | Prediction of structural groups
from mixture spectra

In the following, the results of applying the NMR fin-
gerprinting method to four test mixtures are shown.
Two aqueous and two organic mixtures were chosen
for this purpose; the components used for preparing
these mixtures were selected randomly but in a way
that most of the structural groups (except CHxO
groups) covered by the developed method (cf. Table 1)
were represented in at least one of the mixtures. Table 2
summarizes information on the mixtures studied as
examples here.

4.2.1 | Results for aqueous mixtures

Because the signal-to-noise ratio of the aqueous mixtures
was relatively low due to the high dilution (cf. Table 2)
and the low magnetic field strength of the benchtop NMR
spectrometer, a signal enhancement strategy, namely,
based on the nuclear Overhauser effect (NOE), was used
for obtaining the shown results; in consequence, no quan-
titative results were obtained here.

Figure 4 shows the results for applying the method to
mixture I. All structural groups in the mixture were cor-
rectly identified and assigned to the respective peaks in
the 13C NMR spectrum. In Figure S.12 in the Supporting
Information, results for the variant of the method with-
out using prior information about the presence or
absence of labile protons are presented; the same holds
for the other studied mixtures discussed in the following.

Figure 5 shows the results of applying the method to
mixture II. In this case, the cyCHx groups were misinter-
preted as CHx groups, which can be considered a minor
error in many applications. All other groups are identi-
fied correctly.

4.2.2 | Results for organic mixtures

In Figure 6a, the results for identifying structural groups
in mixture III are shown, which was accomplished cor-
rectly for all groups. Quantitative results, namely, the
concentration of all identified structural groups in the

form of group mole fractions xg, are shown in Figure 6b.
The differences between the predicted group mole frac-
tions and the ground truth can mainly be attributed to
the experimental error of the NMR spectra indicated by
the signal-to-noise ratio.

Figure 7a shows the respective results for the identifi-
cation of structural groups in mixture IV. Again, all struc-
tural groups were predicted correctly. Also, the agreement
between the predicted mole fractions of the structural
groups and the ground truth is excellent, as shown in
Figure 7b.

5 | CONCLUSIONS

In this work, a method for the group-specific qualitative
and quantitative analysis of unknown samples based on
standard NMR experiments (1H NMR, 13C NMR, and 13C
DEPT NMR) is presented. The method is fully automated
and requires no prior information on the samples and
practically no expert knowledge, apart from that to carry
out the experiments, which could also be automated.
From the spectra, only the chemical shifts of the peaks,
which can usually be picked in a semi-automatic way,
are needed as input for the identification of the groups. If
also peak areas are supplied, quantitative results on the
group composition are provided. Furthermore, no expen-
sive high-field NMR devices are needed; benchtop NMR
devices are sufficient. In future work, it would be interest-
ing to combine the NMR fingerprinting with an automated
NMR acquisition: the experiments are automatically con-
ducted, the spectra are automatically processed, and the
interpretation of the data is presented.

The method is particularly interesting for applications
in which information on the complete speciation of the
sample is difficult to obtain, for example, in biotechnol-
ogy or refinery technology. In such applications, the
method opens up new routes for process monitoring and
process and quality control. It could also be beneficial in
the field of biofluid analysis in combination with
machine-learning (ML) methods for clinical diagnosis.
Furthermore, the results from the method also provide a
basis for quantitative physical modeling of mixtures with
group-contribution methods—without having to know
the complete speciation. This paper describes the method
and its background. However, we have also made it freely
available for testing and application via an interactive
website (https://nmr-fingerprinting.de) with a graphical
user interface and a tutorial.

While the method already has an extensive range of
applicability, it is still not more than a first version. It can
presently identify 13 different structural groups contain-
ing only C, H, and O atoms. The assignment of the peaks
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to these groups is accomplished by support vector classifi-
cation, which was trained on a large set of NMR data of
pure components from the literature. The initial tests car-
ried out in the present work confirm the method's reli-
ability, but more extensive testing would be desirable.
Furthermore, the studied samples only contained compo-
nents composed of the groups in the list. In practice, this
may not be the case and would inevitably lead to misas-
signments. In cases where false groups were identified,
they were similar to the actual groups. This is simply due
to the nature of NMR spectroscopy and the origin of the
chemical shift: we can expect a polar group to be falsely
interpreted as another polar group, which may not result
in significant deviations if the properties of the mixtures
are predicted based on the fingerprint.

Still, the list of groups needs to be extended in future
work, which should also involve groups containing atoms
other than C, H, and O. The definition of the structural
groups via SMARTS, as used in the present work, makes
the method very flexible so that new groups can easily be
included, simply by specifying a SMARTS pattern and
subsequently retraining the method. However, while
such an extension is straightforward, it requires including
knowledge from other NMR experiments to ensure a
meaningful differentiation of the groups, such as hetero-
nuclear multiple bond correlation (HMBC) or diffusion-
ordered spectroscopy (DOSY). Another issue is the pres-
ence of labile protons that are exchanging rapidly
between components, such as the protons of hydroxyl
groups. They lead to broad peaks in the 1H NMR spec-
trum that may strongly shift if experimental conditions
vary. The user must presently identify such peaks (which
is generally an easy task) and which are excluded from
the peak list.

A general problem in extending the method is the
availability of suitable training data. However, this could
be relaxed in future work by the augmentation of incom-
plete experimental data sets by predicted NMR spectra, for
example, using hierachically ordered-spherical description
of environment (HOSE) methods,[40] density-functional
theory (DFT) calculations,[41] or ML approaches.[42]
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