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ABSTRACT

A new approach with BRST invariance is suggested to cure the degeneracy
problem of ill defined path integrals in the path—integral calculation of quantum
mechanical tunneling effects in which the problem arises due to the occurrence
of zero modes. The Faddeev—Popov procedure is avoided and the integral over
the zero mode is transformed in a systematic way into a well defined integral
over instanton positions. No special procedure has to be adopted as in the
Faddeev—Popov method in calculating the Jacobian of the transformation. The
quantum mechanical tunneling for the Sine-Gordon potential is used as a test
of the method and the width of the lowest energy band is obtained in exact
agreement with that of WKB calculations.

1. Introduction

Quantum tunneling has attracted considerable interest because of its wide appli-
cation in areas ranging from condensed matter to high energy physics. The instanton
method is a powerful tool for the calculation of tunnehng effects. Recent interests in
tunneling effects were initiated by the work of Ringwald®, who argued that although
the cross section of the standard electroweak theory is proportional to an exponen-
tially small WKB suppression factor, it is nevertheless rapidly growing with energy
due to multiple production of Higgs and vector bosons. However, it has been observed
that instantons interpolate between neighbouring vacua and satisfy vacuum boundary
conditipns and therefore may not be adequate for a description of tunneling at high
energy:g. Motivated by the instanton—induced baryon—number violating processes the
instanton method of quantum tunneling has recently been extended to,tunneling at
finite, nonzero energy by means of nonvacuum or periodic instantons? which have
become the subject of extensive investigation under the name of sphalerons‘i”'{’.

It is well known that due to the translational invariance of the action, functional
integrals in nonlinear field theory are not well defined when expanded about the
classical solutions of the field equations. The translational symmetry results in zero
eigenmodes of the second variation operator of the action which are a reflection of
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the arbitrariness of locations in space of solitons or instantons (in Euclidean time).
Obviously physical quantities are independent of such center—of-mass—like locations.
A consequence of the existence of these normalizable “zero modes” which belong to
the spectrum of linearised fluctuations in the soliton’s background is a divergence
one encounters when quantizing the theory in the background of these solitons or
instantons. In essence the change of variables in field theory converts the zero modes
into corresponding collective coordinates. However, calculation of the Jacobian of the
transformation of,yariables in the path integral formalism usually involves a Faddeev—
Popov proceduref?.

Here we report an alternative method to carry out the transformation of variables
and the evaluation of the related Jacobian in a systematic way with BRST invariance,
and we apply it to quantum tunneling processes. The crucial point of the method
is the exploitation of a shift invariance of the fluctuation action. As a test case
the quantum tunneling effect in 1 4+ 0 dimensions is calculated for_the Sine-Gordon
(SG) potential. In the usual collective coordinate method %1% time-dependent
collective coordinates are associated with the D (spatial) dimensional (static) solitons
indicating the motion of the kink or center of mass and one has to deal with phase—
space functional integrals in 1 + D dimensions. Unlike this procedure our BRST
invariant treatment does not evoke the time-dependence in one higher dimension
and works on configuration—space path—integrals. Tunneling in the case of the Sine—
Gordon potential is itself an interesting subject in view of similar features of the O(3)
nonlinear sigma model in the discussion towards understanding instanton induced
baryon-number violating processes 1214,

2. Energy band structure for the SG potential and the transition ampli-
tude for quantum tunneling

The 1 4+ 0 dimensional Lagrangian we consider is
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where g > 0 denotes a dimensionless coupling constant. The classical solution which
extremizes the action is seen to satisfy the equation of motion which after one inte-
gration with integration constant zero is

with the SG potential

3 (i) v .

with euclidean time 7 = . Mass m = 1 and natural units ¢ = h = 1 are used
throughout. The relevant classical solution which interpolates between neighbourung
vacua, say, ¢y = g and ¢_ = —g, is

2.
b, = ;sm [tanh(7 + a)] (4)

where the integration constant a is interpreted as the position of the instanton.



In the following we consider the case of very high potential barriers with corre-
spondingly small tunneling contributions to the eigenvalues. Thus we suppose |0)4,
|0)_ are degenerate eigenstates in neighbouring wells with the same energy eigenvalue

&o such that H°|0)+ = &]0)+ where H° is the Hamiltonian of the harmonic oscillator
as the zeroth order approximation of the system. The degeneracy will be removed by
the small tunneling effect which leads to the level splitting. The eigenstates of the

Hamiltonian H then become
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with eigenvalues & + AE and & — AE respectively. AE denotes the shift of one
oscillator level. It is obvious that

L(0|H — H°|0)_ = AE. (6)

These shifts embrace the energy bands which result from the translational invariance
of V. We now calculate this energy resulting from tunneling with the instanton
method. The amplitude for a transition between neighbouring vacua due to instanton
tunneling can be written

(n—1)m

nm ¢
<¢f = ?7T|¢2 = 7_T> = I((Qbf; T; Qbia _T> = /d%‘f D{¢}€_S (7>

T |1 [(do\? |
s=[ 15(5%) +v
-T [2 (dT) +V(9)
is the Euclidean action. In the large time limit 7' — oo, we have

K = 3 (sln)(nle T ) (n'] 6:)
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where

dt (8)

~ Wo(ds)Wo(h:)e 2T sinh(2AET). (9)

3. Translation invariance of action and zero modes

As mentioned in the introduction the degeneracy of an action which possesses a
translation symmetry leads to ill defined functional integrals in perturbation expan-
sion about the classical configuration ¢. since the symmetry results in zero modes of
the second variation operator of the action. We consider this now in more detail. We
expand ¢(7) about the classical trajectory ¢.(7) and so set

¢(7) = be(7) + x(7) (10)
with the boundary conditions x(7') = x(—7") = 0 for the fluctuation. Substituting

&(1) of eq. (10) into eq. () and retaining only terms up to the second order in y for
the one-loop approximation we obtain

K =e5] (11)



where the classical action is evaluated along the trajectory ¢, so that
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The fluctuation integral I is seen to be

x(T)=0 AS
7= / Dix}e (13)
x(=T)=

with the fluctuation action .
AS = / yMydr (14)
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where
] d? -I-l 1 2 (15)
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is the self-adjoint operator of the second variation about the classical trajectory.
Expanding x(7) in terms of normalized eigenfunctions of M we set

=> ¢V, (16)

where .
MW, = E,V,,. (17)
Changing the integration variables of (13) to {c,,}, the functional integral I can be
formally evaluated to be
Ox(r
18
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which is seen to be divergent in view of the vanishing eigenvalue of the zero mode,
Fo = 0. Since the transformation (18) is linear the Jacobian ‘%ﬂ‘ is constant and

has therefore been factored out. To,cure the problem one normally resorts to the
so—called Faddeev-Popov procedure®® in order to transform the integral over the
zero mode ¢g into the continuous integration of a collective coordinate, which is the
instanton position @ in our case.

4. BRST invariance and “gauge fixing”

In the usual collective coordinate method, the essential ingredient is a change of
variables which is such that every collective coordinate which is time— dependent is

associated with a zero modet ™22, In our (1+0) dimensional case the procedure is not

appropriate. We therefore adopt an alternative method?1? which employs a BRST
invariance in dealing with the transformation of variables. If we identify euclidean
time 7 with a spatial coordinate, the equivalence of the present method with that of
a collective coordinate method with BRST invariance is similar to that demonstrated

in a previous paperd?.



After expansion about the classical trajectory ¢., the fluctuation action still re-
tains a shift symmetry expressed by the invariance

AS(x') = AS(x) (19)
where Y 96
P ch o c

X'=x+gr=x+ 5 (20)

In other words the action is invariant under a kind of “gauge transformation” of
the fluctuation variable y. This is an important observation. The key point of the
BRST procedure is to enlarge the number of degrees of freedom and invent a nilpotent
symmetry which mimics the structure of the gauge symmetry. Then one can achieve
the effects of gauge fixing without breaking the BRST invariance of the system. To
achieve this we first enlarge the configuration space by considering the parameter
a as a variable. We replace the transformation (201) by the introduction of new
anticommuting variables ¢ and ¢ and a Nakanishi-Lautrup auxiliary variable b (the
latter in such a way that it implements the gauge fixing condition as its equation of

motion, 1. e. b = fxddﬂch in analogy with the implementation of the Lorentz gauge

in QED) together with conjugate momenta P,, Il., II; such that

8950
X = %,
da = —c
dc = 27b
b = 0
e = 0. (21)

The variables a, ¢, ¢, x and their conjugate momenta are assumed to satisfy the
canonical Poisson relations

{a, P,}
{e, 1}y
{C, HC}+

X, Wx} =

1
1
1
1 (22)

Then one finds that the BRST transformations can be generated by the following
BRST charge
0.

da

which is nilpotent. The following BRST invariant term may now be added to the
fluctuation Lagrangian to break the shift symmetry:

s :
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Q= —cP, —crm + I1:b (23)




Eliminating the Nakanishi-Lautrup auxiliary variable by using its equation of motion,
we obtain the final expression of the fluctuation functional integral

| PIxyD{eD{e}Dla)
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(In the following we neglect the term linear in the fluctuation x since it is of higher

2
order than the soliton mass M = [dr (%) ). Expanding the fluctuation variable y

in terms of the eigenmodes of M so that

Ov
S (26

we obtain (ignoring the higher order contribution proportional to x in the coefficient
of cc)

YD{c}yD{c}D{a} exp{ Y By —mcgM — ch} (27)
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where we used Fy = 0 and the fact that W, is a normalized eigenfunction, i. e. (from

(8) and (4))

1 99, _ dg.
Ty = Ao VMU, = - (28)

where M = 5, = g% is the classical action or instanton mass (as it is also called).
Integrating out all variables (and recalling that D{a} — da) the final result is

[ =
acm ;éo \ & \/7
where X
5% T \2
=156, I (m) ' (30)

In 7 the factor \/Lﬁ comes from the D{c} integration and M from integrating out

D{c}D{c}. We see therefore that the functional integration can be done without re-
sorting to the Faddeev—Popov method of inserting a delta function and interchanging
integration and limiting procedures. The BRST procedure converts the ill defined
integral over the zero mode into a Gaussian integral and leads to the integration over
the instanton position, da, which gives rise to 27"

5. The one—instanton transition amplitude and the contributions from one
instanton and an infinite number of instanton—antiinstanton pairs

The follow.lng calculations are similar to those of the level splitting for the double—
well potentlal' and of the decay rate for the inverted double—well potentlalé. The shift
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method which is effectively defined by the transformation

) =én) [ LD (31)
dde

where { = ¢ converts the functional integral into Gaussian form along with bound-
ary constraints which are then implemented with a delta function_trick analogout to
the Faddeev—Popov method which then leads to a finite result % Taking care of
the boundary condition constraint, the functional integral for the field fluctuations is
given by

1
= (32)
2 (1)E-T) [Ty
Considering the large time limit one finds
T—o0 1
I —= /—. (33)

27

Comparing with eq. (18) it is seen that

ng[o\/%: %@ (34)

The eigenvalue Ey vanishes only asymptotically when time T' tends to infinity; its fi-
nite value corresponds to a finite,time interval. Fy can be evaluated with a so—called
boundary perturbation method®2 which gives rise to a formula for the “unrenormal-

. . . . d
ized” eigenvalue—zero eigenfunction ¢ = %

d¢(T) dg(=T

oS - S — s [ g (33)
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Again we take the large time limit; the quasi zero eigenvalue due to the size effect is
obtained from eq. (33) as

EO = 46_2T. (36)

Replacing Iy in eq. (29) by eq. (34) with the value Fy of eq. (36), the fluctuation part
of the transition amplitude of the one-instanton sector is seen to be

- 2T\/_ V2 e T (37)

The contribution stemming from one instanton together with an instanton .a.ntnnstanton
pair can be calculated with the help of the group property for propagators 2. The
result is

1 = (25,)3[\/@3 [\/75] N (38)



where the determinant

A =

™ T—co

1
2
27942

is determined from the end point integration of the group property of the propagator
and is evaluated with a formula given in the literaturet by carefully taking the large
time limit. The contribution from one instanton plus n pairs is a straightforward
extension of eq. (3) and is found to be

2T In+1 2 2n+1
1) - 7((271 )+ 1),(\/M)Q”“ (%) AT (40)

The final result of the propagator is

QT% (z—z)%e_g%] . (41)

Comparing with eq. (§) we obtain the level shift, which is half of the width of the
lowest energy band, i. e.

1
<¢f7 T|¢27 _T> = EG_T sinh

1 25 %_%

which is in exact agreement with the result in the literature!2. The periodic potential
has also been dealt with in the literature2® but the width of the energy band has not
been given explicitly there.
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