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Abstract
Robust tracking of piece-wise constant reference signals for constrained sys-
tems with parametric plant uncertainty and additive disturbances is addressed
in this paper. The parametric uncertainty is decreased online by set-membership
estimation and a nominal model is updated for improving set-point tracking.
The online estimated parametric uncertainty is used for an online-determined
terminal set which enlarges the set of reachable references close to the system
constraints when compared to an offline worst-case consideration. An artifi-
cial target state is introduced which can deviate from the nominal target state.
This new target state is used to ensure recursive feasibility for unreachable refer-
ences and changes in the reference signal. Moreover, a novel “recovery mode” is
specified which is deployed in case the new nominal model yields an infeasible
control problem. Control algorithms are developed for time-invariant systems
and systems with arbitrarily fast changing plants but known relative bounds.
Constraint satisfaction and l2-stability are guaranteed for the proposed algo-
rithms. Controlling the engine load of a self-propelled work machine is used as
a practical example.
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1 INTRODUCTION

Model predictive control (MPC) is an optimization-based control technique which is able to handle systems with multiple
inputs and outputs under input, state and output constraints. At each sample step, an open-loop finite-horizon control
problem is solved using a model of the system and a sequence of control actions is calculated. The first element from
this sequence is applied to the system and the procedure is repeated at the next sample step. Disturbances and model
mismatches decrease the control performance1 and may lead to constraint violations. Robust MPC formulations deal
explicitly with disturbances and model uncertainty to ensure recursive feasibility of the control problem. As a downside,
the amount of uncertainty considered at the offline design phase may decrease the control performance and leads to
small domains of attraction.2 The introduced amount of conservatism is high for constant or slowly varying systems due
to the large and fixed uncertainty description. This is especially an issue for tracking applications when targets close to
the constraints cannot be reached.
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Adaptive MPC: Adaptive control methods can be used to identify the true system parameters online and to decrease
the level of conservatism. An MPC algorithm based on a condition for persistent excitation is used by Marafioti et al.3
which ensures convergence of the parameter estimation algorithm. An extension is dual MPC4 which actively performs
system identification and exploits the improved models. As a downside, the before mentioned adaptive MPC schemes do
not ensure recursive feasibility or stability. This shortcoming is addressed in this article by using an approach based on
robust adaptive MPC.

Robust adaptive MPC: The combination of adaptive control and guaranteed recursive feasibility and stability are
addressed in robust adaptive MPC schemes.5,6 Nominal system models are updated online to improve closed-loop perfor-
mance and constraint satisfaction is ensured by using robust MPC methods for a fixed uncertainty description. However,
the two cited algorithms do not fully utilize the benefits of adaptive control as the uncertainty description remains fixed
during the online execution phase.

There are several variants of robust adaptive MPC schemes with updates of the uncertainty description.7-13 The article
by Zhu et al.13 is limited to single-input systems with a special system matrix structure compared to the multi-input case in
this work. In the work by Lorenzen et al.,7 all possible state trajectories are bounded by the homothetic tube approach.14

The homothetic tube approach scales tube cross sections by checking the evolution of the states at every vertex of the
respective cross section. The uncertainty description is updated by set-membership estimation without any fixed shape
of the parameter set. This leads to a possibly unbounded number of half spaces for the set of the uncertainty description.
The algorithm by Köhler et al.8 addresses this issue by bounding the state evolution with a computationally efficient
but also conservative approach for non-linear control problems.15 In addition, the shape of the uncertainty description is
restricted to hypercubes. The state evolution can be also bounded by flexible tubes9,10 using a set-inclusion method.16 The
algorithm by Zhang et al.9 requires a re-calculation of tube parameters and the terminal set at every sample step which is
computationally demanding. In contrast, the approach by Lu et al.10 solves a min-max problem for the tube parameters
offline and online, new tube parameters are calculated by a simple convex combination. The set-membership estimation
is similar to the work of Köhler et al.8 but uses the more general shape of a zonotope.

This article uses the method described by Lu et al.10 to compute the tube parameters due to its balance of computa-
tional complexity and conservativeness. However, the least mean square filter given by Lorenzen et al.7 is used to update
the nominal model as tracking performance benefits more than using the projection-based update rule given by Lu et al.10

Terminal constraints for tracking MPC: The before mentioned robust adaptive MPC algorithms focus on the regulation
to a given set-point. The control problem becomes more difficult if tracking of a given reference is considered as the target
steady-state changes every time when a system model update occurs. This poses effectively a new control problem at
every time step which needs to be considered for proving stability and recursive feasibility.

Invariant sets are usually deployed as terminal constraints for MPC algorithms to ensure recursive feasibility. The
definition of such invariant sets for tracking of varying set-points is challenging as their shape and size depend on the
desired set-point. One approach uses a fixed shape of a terminal set for a known linear time-invariant system17 and scales
its size online depending on the set-point. Another approach for known linear time-invariant systems uses a terminal set
augmented with a steady-state parameter and a cost function with an artificial target state.18 This leads to an increased
domain of attraction and if a reference is unreachable, the artificial reference will converge to the closest feasible one.
This approach has been also used for linear control problems with plant uncertainty,19 additive disturbances20 and for
non-linear control problems.21 Another objective for tracking problems may be to ensure that a given error bound will
not be violated for varying references. This objective is discussed using a reference governor for linear systems22 and
non-linear systems.23

Terminal sets for robust tracking MPC: The definition of a suitable terminal set becomes even more involved for control
problems with parametric uncertainty and varying references. A steady-state based on a wrong system model will lead to
an equilibrium drift24(ch. 2.1.3) which may be interpreted as a disturbance depending on the target state and uncertainty.
Hanema et al.25 consider a linear parameter-varying (LPV) system, a terminal set for a given error bound and a reference
which is defined based on the reference governor approach.22 However, no offset-free tracking of the reference can be
guaranteed even if perfect model knowledge is available. The algorithm by Limon et al.18 can be extended to linear systems
with parametric uncertainty.19 The approach allows for varying, piece-wise constant references but offset-free tracking
can only be achieved if the true system matches a nominal model defined offline. Moreover, the terminal set is defined
offline and cannot be updated if the uncertainty decreases online.

A robust adaptive MPC algorithm for tracking different set-points is given by Köhler et al.8 However, the target
steady-state needs to be defined offline and the considered uncertainty is fixed. This may lead to a performance decrease
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8160 PESCHKE and GÖRGES

if set-points close to the system constraints should be reached. Those may be infeasible under the offline uncertainty but
become feasible during operation when the uncertainty is decreased.

This article provides a solution to the limitations of the previously mentioned methods by defining a suitable terminal
set. The terminal set is based on a steady-state which utilizes the latest update of a nominal model. This ensures offset-free
tracking if the nominal model converges to the true one. In addition, the terminal set is based on the latest update of the
online uncertainty estimate which decreases the conservativeness over time. The specific set-point does not have to be
considered during the offline design phase and can be freely chosen online which is important in many applications.

Contribution: This paper addresses the problem of tracking piece-wise constant references for systems with additive
disturbances and parametric plant uncertainty. The main goals are

• ensuring constraint satisfaction when the nominal model and set-point switch, and
• the definition of a terminal set for varying uncertainties, nominal models and set-points, and
• asymptotic stability and offset-free tracking if no additive disturbances and modeling errors exist.

Two types of systems are considered: linear time-invariant systems with unknown parameters and linear time-varying
systems with known relative bounds but unknown center which has not been addressed yet in robust adaptive MPC
literature. In order to achieve good control performance, for example, offset-free tracking with a low level of conservatism,
adaptive control methods are deployed. A set-membership algorithm is used to decrease the uncertainty online and point
estimates are used to estimate the true parameter vector. As the plant uncertainty and nominal model get updated at
every sample step, a terminal set is defined online which depends on the plant uncertainty and target state. A “recovery
mode” is introduced when the target state changes due to an update of the nominal parameter vector and the original
optimization problem becomes infeasible.

Uncertainty in the output matrix is considered in this work which leads to constraints which depend on the online
estimated uncertainty. The proposed algorithm utilizes the online estimated uncertainty for bounding the state evolution,
terminal set definition and system constraint definition. This is especially valuable if targets close to the system constraints
should be tracked which is also shown in a practical example.

This paper is organized as follows. The notation used in this work is presented in Section 2 and the considered system
in Section 3. The basic definition of tubes and their adaptation for the tracking problem is described in Section 5. The
adaptive algorithms and the tube construction are given in Section 4. The terminal set definition, the MPC algorithm and
its main properties are presented in Section 6 and its variants in Section 7. The results are illustrated in Section 8 with a
practical example.

2 NOTATION

The notations ||x||2R = x′Rx and |x| = ||x||1 are used where x′ denotes the transpose of a vector x or a matrix. In addition,
the ith row of a matrix is written as [⋅]i and In is the identity matrix of dimension n × n. A vector only containing ones
is denoted as 1. A set which is convex, compact and contains the origin in its interior is called a C-Set. A polytopic C-set
S = {x ∶ Vx ≤ 1} can be scaled by a scaling factor 𝜆 ∈ [0,∞)with 𝜆S = {x ∶ Vx ≤ 𝜆1}. A C-set S is 𝜆-contractive for system
xk+1 = Axk and 𝜆 ∈ [0, 1) if xk+1 ∈ 𝜆S holds for all x ∈ S. For 𝜆 = 1 the set S is positively invariant. The convex hull of a set
S is written as Co{S} and Pre{S} denotes the set of states which evolve into S in one time step. The Minkowski sum for
two sets 1 and 2 is written as 1 ⊕ 2. The set of integers from l to m is denoted as N

m
l and N0 is the set of non-negative

integers.

3 SYSTEM DESCRIPTION

A discrete-time, uncertain linear time-invariant system

xk+1 = A(𝜃∗)xk + B(𝜃∗)uk + wk,

yk = C(𝜃∗C)xk + ek (1)
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PESCHKE and GÖRGES 8161

is considered with 𝜃
∗ ∈ R

np and 𝜃
∗
C ∈ RnC as unknown but constant parameters.

Assumption 1. The true parameters 𝜃∗ and 𝜃
∗
C are contained in the respective known bounded convex sets

Θ ⊂ RnP and ΘC ⊂ RnC .

The variable x ∈ Rnx denotes the state vector, u ∈ Rnu the input vector, y ∈ R
ny the output vector and k ∈ N0 denotes

the time step.

Assumption 2. The state vector xk can be measured at time k.

Assumption 3. System matrix A ∈ Rnx×nx and input matrix B ∈ Rnx×nu are affine functions of 𝜃 ∈ Θ with

(A(𝜃),B(𝜃)) =
(

A(0)
,B(0)

)
+

nP∑

j=1
[𝜃]j

(
ΔA(j)

,ΔB(j)
)
, (2)

and known matrices ΔA(j)
,ΔB(j), j ∈ N

nP
1 . Output matrix C(𝜃C) ∈ R

ny×nx is analogously defined as

C(𝜃C) = C(0) +
nC∑

j=1
[𝜃C]jΔC(j) (3)

with known matrices ΔC(j)
, j ∈ N

nC
1 . The additive disturbance wk and measurement noise ek lie in the

respective C-sets

W = {w ∶ Mww ≤ bw} (4)

and

E = {e ∶ Mee ≤ be} (5)

with Mw ∈ Rqw×nx , bw ∈ Rqw and Me ∈ R
qe×ny , be ∈ Rqe . State constraints, input constraints and output con-

straints are defined by the respective compact polytopic sets  , and . Possible couplings between the sets
are incorporated by defining

[
F

FCC(𝜃∗C)

]

xk + Guk ≤ 1. (6)

Assumption 4. Output constraints can be always expressed as state constraints:  = {x ∶ FCC(𝜃∗C)x ≤ 1}.

Assumption 5. For the number of outputs ny and number of inputs nu, it holds that ny ≤ nu and

rank

[
A(𝜃) − Inx B(𝜃)

C(𝜃C) 0

]

= nx + ny ∀ 𝜃 ∈ Θ , 𝜃C ∈ ΘC.

Assumption 5 ensures the existence of a steady-state xT and input uT such that C(𝜃C)xT = r, xT = A(𝜃)xT + B(𝜃)uT holds
for given parameters 𝜃, 𝜃C and reference r.

The control objective is to control the system output y of the uncertain plant (1) to the reference r while considering
state constraints, input constraints and output constraints (6). The following constrained optimization problem can be
used to express the control objective:

u∗k = arg min J(xk, xT,uT),
s.t. xl+1|k = A(𝜃∗) xl|k + B(𝜃∗) ul|k,∀ l ∈ N

N−1
0 ,

xl|k ∈  , ul|k ∈  , yl|k ∈  ,∀ l ∈ N
N−1
0 ,

xN|k ∈ XT , (7)
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8162 PESCHKE and GÖRGES

where J(xk, xT,uT) is a finite horizon cost with prediction horizon length N ∈ N0 which is linked to the predicted states
xl|k and predicted inputs uk = {u0|k, … ,uN−1|k}. As the true parameter vector 𝜃∗ is unknown, a parameter estimate �̂�k
needs to be used in problem (7) which is defined in Section 4. Moreover, the constraints on states and outputs cannot be
directly implemented due to the uncertain plant parameters which leads to a set of possible states at every prediction step.
A method for finding tighter estimates of the uncertainty is presented in Section 4 and the resulting uncertainty estimates
are then used in Section 5 to bound the evolution of states and outputs. A terminal set XT is used to ensure recursive
feasibility after the end of the prediction horizon and is defined in Section 6.

4 ADAPTIVE ALGORITHM

Set-membership algorithms are commonly used in adaptive control to find tighter bounds on the system uncertainty. For
robust adaptive control, set-membership estimation is used to update the time-varying set of all possible plant realiza-
tions.7,10 In case this set does not have a fixed structure as in the work by Lorenzen et al.,7 the number the number of
constraints may increase tremendously over time. In contrast, the algorithm from Lu et al.10 requires the set to be a zono-
tope, for example, a hypercube, which adds conservatism but yields a fixed computational complexity. In addition, the
conversion from a half-space description of polytopes to vertex representation can be easily done for zonotopes. In this
section, the algorithm by Lu et al.10 is shortly presented and adapted for systems with uncertainties in the output matrix.
Persistent excitation is a sufficient condition for convergence of the adaptive algorithm7 and can be enforced by choos-
ing an appropriate cost function.11 It should be noted that persistent excitation is not necessary to ensure stability and
recursive feasibility for the presented control algorithm but improves tracking performance.

4.1 Set-membership estimation

Two zonotopes

Θk = {𝜃 ∶ MΘ𝜃 ≤ bΘ,k} = Co{𝜃(1)k , … 𝜃
(m)
k } (8)

and

ΘC, k = {𝜃C ∶ MΘC𝜃C ≤ bΘC,k} = Co{𝜃(1)C, k, … 𝜃
(mC)
C, k } (9)

are defined with initial conditionsΘ ⊆ Θ0,ΘC ⊆ ΘC,0 and number of vertices m and mC. In the following,Θk andΘC,k are
assumed to be hyperrectangles with M𝜃 =

[
InP −InP

]′ and MΘC = [InC − InC]
′ to keep the computational complexity low.

In principle, any polytope of fixed shape can be used. The level of conservativeness introduced by the over-approximation
heavily depends on the original shape of Θ and ΘC and needs to be balanced with the computational complexity of more
involved approximations.

Matrices with all possible extreme state and output deviations compared to the nominal model for the adaptive
algorithm are defined with

D(x,u) =
[

ΔA(1)x + ΔB(1)u, … ,ΔA(nP)x + ΔB(nP)u
]

(10)

and

DC(x) =
[

ΔC(1)x, … ,ΔC(nC)x
]

, (11)

where D(x,u) ∈ R
nx×np and DC(x) ∈ R

ny×nC . Moreover, the nominal state prediction error is defined as

dk = A(0)xk−1 + B(0)uk−1 − xk (12)
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PESCHKE and GÖRGES 8163

and the nominal output prediction error as

dC, k = C(0)xk − yk. (13)

The sets of unfalsified parameters

𝜙k = {𝜃 ∶ xk − (A(𝜃)xk−1 + B(𝜃)uk−1) ∈ W}
= {𝜃 ∶ −MwD(xk−1,uk−1)𝜃 ≤ bw +Mwdk}
= {𝜃 ∶ M𝜙,k𝜃 ≤ b𝜙,k} (14)

and

𝜙C,k = {𝜃C ∶ yk − C(𝜃C)xk ∈ E}
= {𝜃 ∶ −MeDC(xk)𝜃 ≤ be +MedC,k}
= {𝜃 ∶ M𝜙C,k𝜃 ≤ b𝜙C,k} (15)

must lead to prediction errors which lie in the respective disturbance sets W and E. Tighter estimation results are
achievable if several measurements are considered in a block-window.26

The requirements Θk+1 ⊆ Θk and ΘC,k+1 ⊆ ΘC,k are needed to ensure recursive feasibility. This can be achieved by
computing Θ̃k+1 = Θk ∩ 𝜙k first and then using the following proposition10:

Proposition 1 (27). Given two polytopes S1 = {x ∶ F1x ≤ g1} and S2 = {x ∶ F2x ≤ g2}, then S1 ⊆ S2 if and
only if there exists a non-negative matrix H such that HF1 = F2 and Hg1 ≤ g2.

As pointed out by Kouvaritakis et al.2(ch. 5.5), a row-wise minimization

[bΘ,k+1]i = min
b,Hi∈R1×(2nP+qw)

b

s.t. Hi

[
MΘ

M𝜙,k

]

= [MΘ]i, Hi

[
bΘ,k
b𝜙,k

]

≤ b, Hi ≥ 0 (16)

can be performed to calculate a non-negative matrix H for Proposition 1 and a corresponding vector b𝜃,k+1. This leads to a
fixed complexity ofΘk as only b𝜃,k is updated. The number of linear programs to be solved is 2nP for box constrained sets.

The same steps needs to be analogously performed for the parameter set ΘC,k which yields

[bΘC,k+1]i = min
b,Hi∈R1×(2nC+qe)

b

s.t. Hi

[
MΘC

M𝜙C,k

]

= [MΘC]i, Hi

[
bΘC,k

b𝜙C,k

]

≤ b, Hi ≥ 0 . (17)

4.2 Update for nominal parameter vector

Offset-set free tracking of reference signals is a common goal for control applications. In contrast to regulation to the
origin, a correct nominal model is needed for tracking problems to reach the reference in absence of additive disturbances.
Here, a least mean square (LMS) filter is used to find a nominal model for the dynamics (26). In existing literature, least
mean square filters are used for FIR models28 and for robust adaptive control.7 A new parameter estimate �̂�k for nominal
system (26) is recursively defined

𝜃k = �̂�k−1 + 𝜇D(xk−1,uk−1)′(xk − x̂1|k−1) (18a)

�̂�k = arg min
𝜃∈Θk

||𝜃 − 𝜃k|| (18b)
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8164 PESCHKE and GÖRGES

with update gain 𝜇 ∈ R>0 and nominal state x̂1|k−1 = A(�̂�k−1)xk−1 + B(�̂�k−1)uk−1.

Proposition 2 (7). For a symmetric, positive definite matrix Q ∈ Rn×n and vectors a, b ∈ Rn, there exist
𝜖 > 0 such that

||a + b||2Q ≤
(

1 + 1
𝜖

)

||a||2Q + (1 + 𝜖)||b||2Q.

The proof for Proposition 2 can be found in Appendix A.

Proposition 3. If (xk,uk) ∈  × and 𝜃
∗ ∈ Θk, then parameter estimation (18) for �̂�k is bounded and there

exists a constant 𝜖 such that

||�̂�k+1 − �̂�k||
2
< (1 + 𝜖)𝜇2

𝜇
2
D||�̂�k − 𝜃

∗||2 +
(

1 + 1
𝜖

)

𝜇
2
𝜇D||wk||

2 (19)

holds with 𝜇D > sup
x∈ ,u∈

||D(x,u)||2.

Proof. It is

||�̂�k+1 − �̂�k||
2
≤ ||𝜃k+1 − �̂�k||

2

= ||𝜇D(xk,uk)′(xk+1 − x̂1|k)||2

≤ 𝜇
2||D(xk,uk)||2||x̃1|k + wk||

2

< 𝜇
2
𝜇D||x̃1|k + wk||

2

= 𝜇
2
𝜇D||D(xk,uk)′(𝜃∗ − �̂�k) + wk||

2

≤ (1 + 𝜖)𝜇2
𝜇

2
D||𝜃

∗ − �̂�k||
2 +

(

1 + 1
𝜖

)

𝜇
2
𝜇D||wk||

2
. (20)

The first inequality follows from the projection on Θk in (18b) and the first equality from (18a).
The second inequality is due to definitions x̂1|k = A(𝜃k)xk + B(𝜃k)uk, x̃1|k = A(𝜃∗)xk + B(𝜃∗)uk − x̂1|k and the
Cauchy–Schwarz inequality. The third inequality follows by the definition of 𝜇D and the second equality
follows from rewriting x̃1|k. The fourth inequality follows from Proposition 2 and considering || ⋅ ||2 = || ⋅ ||2I .

Boundedness follows from the set update Θk ⊆ Θk−1 and the projection of 𝜃k on Θk. ▪

This bound on the change of the parameter estimate is necessary for proving l2-stability in Section 6. Algorithm (18)
can be analogously defined for estimating the nominal output matrix

𝜃C,k = �̂�C,k−1 + 𝜇CDC(xk)′(yk − C(�̂�C,k−1)xk), (21a)

�̂�C,k = arg min
𝜃∈ΘC,k

||𝜃 − 𝜃C,k|| . (21b)

with update gain 𝜇C ∈ R>0.

Proposition 4. If xk ∈  , y ∈  ⊕ E and 𝜃
∗
C ∈ ΘC,k, then the parameter estimate �̂�C,k using (21) is bounded

and the change in parameters is bounded by some constants 𝜇𝜃C , 𝜇e with

||�̂�C,k+1 − �̂�C,k||
2
< 𝜇𝜃C ||�̂�C,k − 𝜃

∗
C||

2 + 𝜇e||ek||
2
. (22)

Proof. Proof is similar to Proposition 3. ▪

Remark 1. It is also possible to use an update law based on projection on the parameter set as proposed by
Lu et al.11 This does not affect recursive feasibility and only marginally changes the stability result. However,
the LMS update may yield the correct parameter vector even if the parameter set does not converge to a point
which reduces the steady-state error.

 10991239, 2023, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6814 by U

niversität K
aiserslautern-L

andau, W
iley O

nline L
ibrary on [31/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PESCHKE and GÖRGES 8165

5 POLYTOPIC TUBES

In this work, a tube-based approach for bounding the state evolution is used with the following tube definition:

Definition 1 (29). Consider a sequence of control inputs {u0|k,u1|k, … ,uN|k} and a sequence of sets
(cross-sections) {X0|k,X1|k, … ,XN|k}with Xl|k ⊂ Rnx . This sequence is called a tube for the uncertain system
(1) if A(Θ)Xl|k ⊕ B(Θ)ul|k ⊕ W ⊆ Xl+1|k for all l ∈ N

N−1
0 .

For robust adaptive control with varying uncertainty, the tube can be re-computed for every update of the uncertainty
set.

A simple approach of updating the tube structure computes all extreme tube structures offline30 and online, new
matrices are calculated by a convex combination of the vertex realizations. This approach adds conservatism and the
computation of the offline-defined terminal set is complex as every combination of nominal plant and uncertainty needs
to be considered.

The conservatism induced by the above approach can be reduced by solving a min-max problem for determining the
extreme realizations of the tube structures.10 A proposition based on Farkas’ lemma is used for this purpose:

Proposition 5 (10). Given two polytopes S1 = {x ∶ F1x ≤ f1} and S2(𝜃) = {x ∶ F2(𝜃)x ≤ f2}, then S1 ⊆

S2(𝜃) ∀𝜃 ∈ Θ ⊂ R
np if and only if there exists H̄i such that

𝜃
′H̄i ≥ 0, H̄iF1 = F̄2,i, 𝜃

′H̄if1 ≤ [f2]i (23)

holds for all i ∈ N
n2
1 and 𝜃 ∈ Θ with F1 ∈ Rn1×nx , F2(𝜃) ∈ Rn2×nx , 𝜃′F̄2,i = [F2(𝜃)]i and H̄i ∈ R

np×n1 .

In contrast to the robust adaptive MPC algorithm using homothetic tubes in Lorenzen et al.,7 the presented approach
does not check all vertices of the tube at each prediction step but directly operates on the half space representation of the
polytope. This results in less inequality constraints for the MPC algorithm but may add conservatism.8

Tubes can be constructed to be invariant regarding disturbances or hyperparameters.16,19 These tubes are centered
around a nominal system trajectory which makes it difficult to prove recursive feasibility when the nominal model
changes. This issue can be circumvented for adaptive control when no nominal model for the tube construction is con-
sidered.10 This work extends the algorithm by Lu et al.10 for tracking applications when target states and target inputs are
changing.

5.1 Tube construction

The planned system input

ul|k = K(x̂l|k − x̂T,k) + cl|k + ûT,k , l ∈ N
N−1
0 (24)

consists of a linear feedback term K(x̂l|k − x̂T,k) for pre-stabilization around an artificial target state x̂T,k ∈ Rnx with artifi-
cial target input ûT,k ∈ Rnu . The artificial target state and target input are decision variables of the optimization problem
and are used to ensure recursive feasibility for changing references or nominal parameters.

In addition, a free control move cl|k is used for optimizing the trajectory of the system over the prediction horizon N.
The gain K is chosen such that

Φ(𝜃(j)0 )PΦ(𝜃
(j)
0 ) − P ≺ − (Q + K′RK) ∀j ∈ N

m
1 (25)

is fulfilled with positive definite state weight Q, input weight R, terminal weight P,Φ(𝜃) = A(𝜃) + B(𝜃)K as the closed-loop
system matrix and m is the number of vertices as defined in (8). The variable x̂l|k ∈ Rnx denotes the nominal system state
defined by the nominal system

x̂l+1|k − x̂T,k = Φ(�̂�k)(x̂l|k − x̂T,k) + B(�̂�k)cl|k (26)

with �̂�k as an estimate of the true system parameter derived by (18).
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8166 PESCHKE and GÖRGES

Definition 2. A set  = {x ∶ Vx ≤ 1} is called robust 𝜆-contractive for system (1) with u = Kx ∈  if ∀x ∈
 ∶ Φ(𝜃)x ∈ 𝜆 , ∀ 𝜃 ∈ Θ0.

Remark 2. Note that satisfaction of state constraints like  ⊆  is not required in Definition 2. State con-
straint satisfaction will be ensured online by the MPC algorithm and the set S is only used to obtain a suitable
structure for the tube cross-sections and the terminal set.

In order to ensure bounded growth of the tube under additive disturbances, the tube cross-section is required to
be a robust 𝜆-contractive set for the system under parametric uncertainty but without additive disturbances. The tube
cross-section Xl|k, which contains all possible state realizations at time predicted time l|k, is defined as

Xl|k = {x ∈ R
nx ∶ Vx ≤ 𝛼l|k}, (27)

where the vector 𝛼l|k is chosen online and scales each half space and V ∈ Rn
𝛼
×nx . This allows for a flexible shape of the

tube which consists of all consecutive Xl|k , l = 0, … ,N. All states evolving from Xl|k must be contained in Xl+1|k which
requires

Xl+1|k ⊇ A(𝜃)Xl|k ⊕ B(𝜃)ul|k ⊕ W ∀ 𝜃 ∈ Θk. (28)

Condition (28) holds true if there exists an input ul|k such that

V
(

A(𝜃)x + B(𝜃)ul|k + w
)
≤ 𝛼l+1|k, ∀𝜃 ∈ Θk, x ∈ Xl|k,w ∈ W,

⇔ V
(
Φ(𝜃)x + (A(𝜃) − Φ(𝜃))x̂T,k + B(𝜃)cl|k + B(𝜃)ûT,k + w̄

)
≤ 𝛼l+1|k, ∀𝜃 ∈ Θk, x ∈ Xl|k . (29)

This follows from the input parametrization (24) and wk is bounded by w̄ using

[w̄]i = max
w∈W

[V]iw. (30)

Similar to the work by Lu et al.,10 the tube construction is given by the following Proposition:

Proposition 6. The sequence of predicted state sets {X0|k,X1|k, … ,XN|k} satisfies tube condition (28) if for
all j ∈ N

m
1 , l ∈ N

N−1
0 it holds that

H(�̄�(j)k )V = VΦ(𝜃(j)k ) , (31a)

𝛼l+1|k ≥ H(�̄�(j)k )𝛼l|k + w̄ + V(Inx − Φ(𝜃
(j)
k ))x̂T,k + VB(𝜃(j)k )cl|k , (31b)

where �̄�
(j)′
k = [1 𝜃

(j)′
k ] and [H(�̄�(j)k )]i = �̄�

(j)′
k H̄i. The min-max problem for determining each H̄i can be stated as

the linear program

H̄i = arg min
H∈R

(np+1)×n𝛼

max
j∈N

m
1

�̄�
(j)′
0 H1

s.t. �̄�
(j)′
0 H ≥ 0 ∀ j ∈ N

m
1 , (32a)

HV =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[V]iΦ(0)

[V]iΔΦ(1)

⋮

[V]iΔΦ(nP)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(32b)

with ΔΦ(j) = ΔA(j) + ΔB(j)K.
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PESCHKE and GÖRGES 8167

Proof. For each matrix row, conditions (31) fulfill the inclusion conditions stated in Proposition 5 for S1 =
Xl|k and S2 = {x ∶ V(Φ(𝜃)x + (Inx − Φ(𝜃))x̂T,k + B(𝜃)cl|k) + w̄ ≤ 𝛼l+1|k}. Due to Θk ⊆ Θ0 and convexity of Θk,
inequalities (32a) ensure that �̄�′H̄i ≥ 0 from Proposition 5 holds for all 𝜃 ∈ Θk ⊆ Θ0. Moreover, equality (32b)
ensures that the first equality in (23) holds with F1 = V and F2(𝜃) = VΦ(𝜃).

The last condition �̄�
′H̄if1 ≤ [f2]i from Proposition 5 is fulfilled by (31b) for f1 = 𝛼l|k and f2 = 𝛼l+1|k. ▪

5.2 Constraints

System constraints (6) need to hold for all possible realization of 𝜃C ∈ ΘC,k. Hence, it needs to hold that

F̄(𝜃C)xl|k + Gul|k ≤ 1 ∀xl|k ∈ Xl|k, 𝜃C ∈ ΘC,k (33)

with

F̄(𝜃C) =

[
F

FCC(𝜃C)

]

∈ R
nF×nX .

Inequality (33) needs to hold for all possible xl|k ∈ Xl|k. Proposition 5 can be again applied by exploiting convexity of ΘC,k
and requiring that Xl|k is a subset of (33) which yields

HC(�̄�
(j)
C,k)V = F̄(𝜃(j)C,k) + GK (34)

and

HC(�̄�
(j)
C,k)𝛼l|k − GKx̂T,k + Gcl|k + GûT,k ≤ 1 (35)

for all j ∈ N
nC
1 , l ∈ N

N
0 with [HC(�̄�

(j)
C )]i = �̄�

(j)′
C H̄C,i, �̄�

(j)′
C = [1 𝜃

(j)′
C ].

Matrices H̄C,i can be determined similar to (32) by solving the linear program

H̄C,i = arg min
H∈R(nC+1)×n𝛼

max
j∈N

mC
1

�̄�
(j)′
C,0H1

s.t. �̄�
(j)′
C,0 H ≥ 0 ∀ j ∈ N

mC
1 ,

HV =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[F̄(0) + GK]i
[ΔF̄(1)]i
⋮

[ΔF̄(nC)]i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(36)

with and ΔF̄(j) = F̄(𝜃(j)C,0) − F̄(0).

6 CONTROL ALGORITHM

In order to increase the domain of attraction18 and to improve controller performance for changing targets, a cost function
is defined with an artificial target state x̂T,k as

JN =
N−1∑

l=0
||x̂l|k − x̂T,k||

2
Q + ||ul|k − ûT,k||

2
R + ||x̂N|k − x̂T,k||

2
P + ||x̂T,k − xT,k||

2
Tx
, (37)
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8168 PESCHKE and GÖRGES

where P solves the Lyapunov equation (25). The positive definite weight Tx penalizes deviations from the artificial target
state to the true target state xT,k. The level of sub-optimality introduced by the artificial target state can be reduced by
choosing Tx = 𝛾TP with 𝛾T as a large scalar value.

The term ||x̂l|k − x̂T,k||
2
Q can be interpreted as the deviation between the nominal state to a time-varying, feasible

steady-state. The common steady-state equation

(
xT(𝜃, 𝜃C)
uT(𝜃, 𝜃C)

)

=

(
A(�̂�) − I B(�̂�)

C(�̂�C) 0

)−1 (
0
r

)

, (38)

is used to compute the targets xT,k = xT(�̂�k, �̂�C,k) and uT,k = uT(�̂�k, �̂�C,k). Note that the solution to (38) is always defined
due to Assumption 5.

Assumption 6. All references r lie in a compact set.

Assumption 6 ensures that the set of all possible target states = {xT ∶ (38), r ∈ , �̂�k ∈ Θ0, �̂�C,k ∈ ΘC,0} is bounded.

6.1 Modes of operation

When the nominal model is updated, a new target state is computed by (38) which may result in an infeasible optimization
problem. One solution could be to find an intermediate model update with a feasible target state. However, this is a
non-linear problem with a significant computation time. Instead, the approach presented in this work uses an artificial
target state and exploits that all steady-state manifolds intersect at the origin. First, one tries to directly use the new
nominal model while the algorithm is in “normal operation” as shown in Figure 1. In case no feasible solution can be
found, the algorithm enters a “recovery mode” and a new feasible input is constructed based on the solution from the
previous time step which is always feasible. At the next time step, the control problem is formulated using the last feasible
nominal model and the origin as a target state which always has a feasible solution due to the use of an artificial target
state. While the system is steered to the origin, the optimization problem is re-formulated using the latest nominal model.
If a feasible solution exists, the algorithms “jumps” to a new steady-state manifold as depicted in Figure 2. Otherwise,
a control input can be constructed from the last feasible solution which steers the system further to the origin. After N
steps, a new solution needs to be calculated using the last feasible nominal model and the origin as a target state. In the
worst case, the steady-state manifold can be always switched when the nominal system state reaches the origin. However,
it is expected that a new feasible solution can be found earlier as the distance between the steady-state manifolds decrease
while approaching the origin. When the new nominal model yields a feasible solution, the artificial target state converges
to the true target state or to a neighborhood of it. If the true target state is infeasible, the final artificial target state will be
the closest steady-state with respect to Tx.

In this “recovery” scheme, one MPC problem has to be to solved at every sample step. However, several other variants
can be constructed depending on computation time constraints.

6.2 Terminal set

In this section, a terminal set is defined online based on the current parameter sets Θk and ΘC,k. As a downside, the
proposed terminal set is not the maximum robust positive invariant set but a subset of the former. However, the online
determined terminal set might be larger during run-time than the offline-defined maximum terminal set as the plant
uncertainty decreases over time.

A necessary property of the terminal set is positive set invariance.31 Set invariance can be checked by backward
propagation of all states inside a candidate set. This sufficient condition can be stated as27

XT ⊆ Pre{XT}, (39)

where

XT = {x ∶ Vx ≤ 𝛼N} (40)
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PESCHKE and GÖRGES 8169

F I G U R E 1 Flow chart of the control algorithm. In case a new target state yields an infeasible optimization problem, the parts outside
the box describe a “Recovery Mode”. This mode transitions the control algorithm to a new stead-state manifold.

denotes the structure of the terminal set. Using condition (31b) for the state evolution then gives

H(�̄�(j)k )𝛼N|k + V
(

Inx − Φ(𝜃
(j)
k )

)

x̂T,k + w̄ ≤ 𝛼N|k (41)

with cN|k = 0 and j ∈ N
m
1 . The conservatism added by having a non-maximum invariant set is further reduced by allowing

x̂T,k to deviate from the current target state xT,k.
System constraints inside the terminal set are considered by

HC(�̄�
(j)
C,k)𝛼N|k − GKx̂T,k + GûT,k ≤ 1, ∀j ∈ N

mC
1 (42)

which can be derived from (35) and considering cN|k = 0. Hence, the terminal set directly depends on H(�̄�(j)k ) and HC(�̄�
(j)
C,k)

and changes its size and shape depending on the estimated uncertainty.
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8170 PESCHKE and GÖRGES

F I G U R E 2 Exemplary steady-state manifolds for two different parameter vectors. The dotted lines indicate possible transitions
between the manifolds.

6.3 Algorithm

The control algorithm can be now stated as:
Offline:

1. Choose a robustly stabilizing gain K and terminal weight P for system (1) such that equation (25) is fulfilled.
2. Compute the robust 𝜆-contractive set S and matrices H̄i and H̄C,i according to (32) and (36).
3. Define zonotopes Θ0 and ΘC,0 with Θ0 ⊇ Θ and ΘC,0 ⊇ ΘC, and initial parameter vectors �̂�0 ∈ Θ0 and �̂�C,0 ∈ ΘC,0.

Online Algorithm A:

1. Measure state vector xk. UpdateΘk andΘC,k according to the respective set-membership estimation (16) and (17). Use
LMS algorithms (18) and (21) to update the respective point estimates �̂�k and �̂�C,k.

2. Depending on the flow chart in Figure 1, either
(a) compute matrices H(�̄�(j)k ), HC(�̄�

(jC)
k ) based on the vertices of Θk and ΘC,k. Use the nominal parameter estimates �̂�k

and �̂�C,k for computing the nominal plant models A(�̂�k),B(�̂�k),C(�̂�C,k) and current target tuple (xT,k,uT,k) based on
(38). Solve

min
dk

JN

s.t. ∀l ∈ N
N−1
0 , j ∈ N

m
1 , jC ∈ N

mC
1 ∶

x̂l+1|k = Φ(�̂�k)(x̂l|k − x̂T,k) + B(�̂�k)cl|k + A(�̂�k)x̂T,k + B(�̂�k)ûT,k , (43a)

(A(�̂�k) − Inx)x̂T,k + B(�̂�k)ûT,k = 0 (43b)

H(�̄�(j)k )𝛼l|k + V
(

Inx − Φ(𝜃
(j)
k )

)

x̂T,k + VB(𝜃(j)k )cl|k + w̄ ≤ 𝛼l+1|k , (43c)

HC(�̄�
(jC)
C,k)𝛼l|k − GKx̂T,k + Gcl|k + GûT,k ≤ 1 , (43d)

H(�̄�(j)k )𝛼N|k + V
(

Inx − Φ(𝜃
(j)
k )

)

x̂T,k + w̄ ≤ 𝛼N|k , (43e)

HC(�̄�
(jC)
C,k)𝛼N|k − GKx̂T,k + GûT,k ≤ 1, (43f)

Vxk ≤ 𝛼0|k, (43g)

xk = x̂0|k, (43h)

or
(b) use the last feasible nominal models and current parameter sets. Set the origin as the target tuple (xT,k,uT,k). Replace

(43h) with Vx̂0|k ≤ 𝛼0|k and solve the modified quadratic program (43).
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PESCHKE and GÖRGES 8171

3. If the problem is feasible, then

uk = K(xk − x̂T,k) + c0|k + ûT,k, (44)

else

uk = K(xk − x̂T,k−i) + ci|k−i + ûT,k−i, (45)

where i denotes the number of samples to the last feasible solution.

The decision variable

dk = {x̂k, ck, 𝛼k, x̂T,k,ûT,k} ∈ D(xk,Θk,ΘC,k, �̂�k) (46)

is from the set of all admissible decision variables

D(xk,Θk,ΘC,k, �̂�k) = {dk ∶ (43a) to (43h)}. (47)

The underlined variables denote sequences over the prediction horizon of the respective variable.

Assumption 7. Consider two non-empty feasible sets 1 = D(x1
,Θ1

,Θ1
C, �̂�

1) and 2 = D(x1
,Θ1

,Θ1
C, �̂�

2).
Then for every input sequence c1 ∈ 1 and artificial steady-state x̂1

T ∈ 1, there exist c2 ∈ 2, x̂2
T ∈ 2 and a

constant L ∈ R>0 such that ||
[
c1 x̂1

T
]′ −

[
c2 x̂2

T
]′
||2 ≤ L||

[

�̂�
1 x1

T

]′
−
[

�̂�
2 x2

T

]′
||2 holds for all x1 ∈  ,Θ1

⊆

Θ0,Θ1
C ⊆ ΘC,0 and 𝜃

1
, 𝜃

2 ∈ Θ0, and x1
T = xT(𝜃1

, 𝜃C), x2
T = xT(𝜃2

, 𝜃C), 𝜃C ∈ ΘC,0.

Remark 3. The feasible set of a convex multi-parametric quadratic program with affine inequality constraints
is always Lipschitz continuous.32 It is very hard to verify similar properties for multi-parametric quadratic
programs with non-linear constraints regarding the parameter and optimizer as in (43).

Proposition 7. If problem (43) is feasible at time k + 1, then for ||𝛿xl|k+1||Q = ||x̂l|k+1 − x̂l+1|k||Q and l ∈ N
N
0

there exist positive constants 𝜎1, 𝜎𝛿x , 𝜎𝜃,1, 𝜎𝜃,2, 𝜎w,1 such that

||𝛿xl|k+1||
2
Q ≤ 𝜎

l
1𝜎𝛿x ||𝜃

∗ − �̂�k||
2
Q + 𝜎

l
1𝜎w,1||wk||

2
Q +

l−1∑

i=0
𝜎

i
1(𝜎𝜃,1||�̂�k+1 − �̂�k||

2
Q + 𝜎𝜃,2||�̂�C,k+1 − �̂�C,k||

2
Q) (48)

holds.

Proposition 7 builds on the results from Reference 11 and the proof for Proposition 7 can be found in the Appendix A.

Lemma 1. Let Assumptions 1 to 5 hold and consider the case for constant parameters �̂�k = �̂�k+1, �̂�C,k = �̂�C,k+1
and parameter setsΘk+1 ⊆ Θk andΘC,k+1 ⊆ ΘC,k. If 𝜃∗ ∈ Θ0, �̂�k ∈ Θk+1, 𝜃∗C ∈ ΘC,0 and problem (43) is feasible
at time k = 0 with D(xm,k,Θk,ΘC,k, �̂�k) ≠ ∅, then D(xm,k,Θk,ΘC,k, �̂�k) ≠ ∅ for all k ≥ 1.
Proof. A shifted, possibly sub-optimal solution d̃k+1 is considered. It consists of the shifted sequences
𝛼k+1, ck+1 and x̂k+1. Repeated targets x̂T,k+1 = x̂T,k,ûT,k+1 = ûT,k are used. As required in the derivation
of the terminal set condition (43e), new values 𝛼N|k+1 can be derived by repeating the previous values
𝛼N|k. In addition, cN|k+1 = 0 holds as defined in the derivation of (41). As shown in Appendix B the
shifted sequences form a feasible solution for (43c) and (43e) due to convexity of Θk, ΘC,k and Θk+1 ⊆ Θk,
ΘC,k+1 ⊆ ΘC,k. Then, the imposed system constraints (43d) and terminal constraints (43f) also hold with
cN|k+1 = 0. ▪

Theorem 1. Let Assumptions 1 to 5 hold and consider algorithm A. If 𝜃
∗ ∈ Θ0, 𝜃∗C ∈ ΘC,0 and problem

(43) is feasible at time k = 0 with D(xm,k,Θk,ΘC,k, xT,k, �̂�k) ≠ ∅, then algorithm A always yields a feasible
solution.

Proof. Starting from “normal operation” in Figure 1, the solution of problem (43) can be either feasible or
infeasible. If infeasible, a feasible input can be constructed from the previous solution by choosing c0|k = c1|k−1,
ûT,k = ûT,k−1 as Θk ⊆ Θk−1, ΘC,k ⊆ ΘC,k−1 and Lemma 1 holds. At the next sample step, the origin is chosen as
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8172 PESCHKE and GÖRGES

the target state using the last feasible parameters for problem (43). This always yields a feasible solution as
the artificial target state may be the same as from the last feasible solution.

At the next sample step, problem (43) is formulated using the latest parameters �̂�k, �̂�C,k, Θk and ΘC,k. If no
solution exists, a control input can be constructed from the solution of the regulation problem which is again
feasible as the state always lies inside the predicted tube. If the solution vector of the regulation problem has
no predicted control input for the next sample step, then the regulation problem has to be solved again using
the last feasible parameters which always has a feasible solution. ▪

Theorem 2. Let Assumptions 1 to 7 hold. If problem (43) is feasible and algorithm A is in “normal operation”
and the reference r is constant, then system (1) is finite gain l2-stable with respect to the nominal trajectory x̂T,k
for all K ∈ N with

K∑

k=0
||xk − x̂T,k||

2
≤ 𝜎0 +

K∑

k=0
𝜎𝜃||�̂�k − 𝜃

∗||2 +
K∑

k=0
𝜎w||wk||

2 +
K∑

k=0
𝜎𝜃C ||�̂�C,k − 𝜃

∗
C||

2 +
K∑

k=0
𝜎e||ek||

2
, (49)

where 𝜎0, 𝜎𝜃, 𝜎w, 𝜎𝜃C , 𝜎e ∈ R>0.
Asymptotic stability without additive disturbances and model mismatch:

If the parameter vectors converge to their true values �̂�k = 𝜃
∗
, �̂�C,k = 𝜃

∗
C and wk = 0 holds, and (43e) and (43f)

are non-empty using x∗T, then system state xk converges to x∗T. If x∗T is infeasible for algorithm A, then the system is
steered towards the closest feasible steady-state x̂T,k depending on the choice of Tx.
Recovery mode: When algorithm A is in “recovery mode”, then it will return to “normal operation” using the latest
model parameters after a finite time.

Proof. Finite l2-gain for “normal operation”: The difference in the value function of the quadratic program (43)
for consecutive time steps can be bounded by VN(x0|k+1, �̂�k+1,Θk+1,ΘC,k+1, xT,k+1) − VN(x0|k, �̂�k,Θk,ΘC,k, xT,k) ≤
−𝜎0||x̂0|k − x̂T,k||

2 + 𝜎𝜃,0||�̂�k − 𝜃
∗||2 + 𝜎w,0||wk||

2 + 𝜎𝜃C,0||�̂�C,k − 𝜃
∗
C||

2 + 𝜎e,0||ek||
2 + ||x̂T,k+1 − xT,k+1||

2
Tx
− ||x̂T,k −

xT,k||
2
Tx

. The complete derivation for the difference of the value function is given in the Appendix and the
main steps are summarized here. Using Proposition 2, the predicted state trajectory at time k + 1 is separated
into to a trajectory based on the previous solution and a prediction error trajectory. Then Proposition 7 and
Assumption 7 are used bound the prediction error, changes in the free control move and artificial target states
by changes in the parameter vectors �̂�k and �̂�C,k. Then, inequality (49) can be derived summing up the cost
function decrease from 0 to K and bounding the final deviation x̂T,K − xT,K by a constant due to compactness
of  and  .

Asymptotic stability without additive disturbances and model-mismatch: In case no model-mismatch and
additive disturbances exist, it follows from standard stability proofs for MPC that xk converges to x̂T,k which
lies on the same steady-state manifold as xT,k = x∗T. From the main theorem in Limon et al.18 it follows that
the artificial steady state x̂T,k converges to the true target state x∗T if it is feasible with respect to the terminal
inequalities (43e) and (43f). If no feasible terminal set exists for x∗T, then the system is steered towards the
closest feasible steady-state depending on the choice of Tx as shown in Reference 33.

Finite time “recovery mode”: During “recovery mode”, the system is steered to the origin by solving problem
(43) with constant parameter vectors, the origin as the target state and the first nominal state as an additional
decision variable. Using standard stability proofs for constant parameter vectors, it can be shown that the
nominal system state x̂0|k converges to x̂T,k. In addition, using the main theorem in Limon et al.18 and that
x̂0|k = x̂T,k can be chosen if x̂0|k enters the terminal set for x̂T,k, it can be shown that the artificial steady state
x̂T,k converges to the origin. At some point in time, the state xk lies in the terminal set for the origin and then,
problem (43) is also feasible for the updated parameter vectors as all constraints are fulfilled if the origin is
chosen as the artificial target state. ▪

Remark 4. During “normal operation”, no convergence of x̂T,k to xT,k can be guaranteed if �̂�k ≠ 𝜃
∗
, �̂�C,k ≠ 𝜃

∗
C

and wk ≠ 0. In this case, only convergence to a neighborhood of xT,k can be guaranteed which depends on the
magnitude of Tx.

Remark 5. Changes in the reference r can be incorporated similar to changes in �̂�C,k for the stability proof. A
new term regarding the future change rk+1 − rk would appear in in (49).
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PESCHKE and GÖRGES 8173

The online quadratic program (43) has nF(N + 1)mC + n𝛼((N + 1)m + 1) inequality constraints, nx(N + 2) equality
constraints and nx(N + 2) + nu(N + 1) + (N + 1)n𝛼 decision variables.

7 VARIANT: BOUNDED TIME-VARYING PARAMETERS

A robust adaptive MPC algorithm for time-varying parameters with a bounded rate of variation has been considered in
Lorenzen et al.7 In this section, the main algorithm is extended for time-varying parameters which lie in a known convex
set with unknown center. No bounds on the rate of variation are assumed and in addition, no worst-case terminal set is
employed but an online-adapted terminal set based on the current parameter set estimate.

A discrete-time, linear system with bounded time-varying parameters

xk+1 = A(𝜃∗k )xk + B(𝜃∗k )uk + wk,

yk = C(𝜃∗C)xk + ek (50)

is considered. In the following, only time-variance of the parameter vector 𝜃
∗
k is considered for conciseness but the

results can be easily extended for a time-varying parameter vector 𝜃∗C. The parameter vector 𝜃∗k consists of an unknown
time-invariant vector 𝜃B and known relative bounds for possible deviations.

Assumption 8. For the time-varying parameter 𝜃∗k holds that

𝜃
∗
k ∈ 𝜃B ⊕ B ⊆ ΘB, (51)

where 𝜃B is an unknown but constant parameter, B a known convex set containing possible time-varying
variations and ΘB a convex set containing all possible realizations.

Assumption 9. The set

B = {𝜃 ∶ MB𝜃 ≤ bB} (52)

is centrally symmetric with MB ∈ RqB×nP .

The set-membership algorithm from Section 4 needs to be adapted due to the time variance of the parameter. At
every sample step, the set of unfalsified parameters 𝜙k depending on the current measurement is computed as before.
However, it may hold that 𝜙k ∩ 𝜙k+1 = ∅ due to the time-variance of the scheduling parameter 𝜃. Hence, the set 𝜙k needs
to be enlarged by the known bounds B. As the relative position of 𝜙k in B is not known, the worst-case is considered
by computing 𝜙k ⊕ 2B which always includes 𝜃B ⊕ B due to Assumption 9. In order to ensure recursive feasibility and
finding tighter set estimates, the updated parameter set is defined by Θk+1 = (𝜙k ⊕ 2B) ∩ Θk. The Minkowski sum is
computationally expensive for arbitrary polytopes but can be easily computed for polytopes with the same matrix for the
half-space representation:

Proposition 8. Given two polytopes S1 = {a ∶ M1a ≤ b1} and S2 = {b ∶ M1b ≤ b2}, the Minkowski sum
S3 = S1 ⊕ S2 = {x = a + b ∶ a ∈ A, b ∈ B} is defined by

S3 = {x ∶ M1x ≤ b1 + b2}. (53)

Proof. The result can be derived by adding S1 and S2 in half-space representation. ▪

In order to exploit Proposition 8, a set �̄�k = {𝜃 ∶ MB𝜃 ≤ b�̄�,k} ⊇ 𝜙k is computed first by solving

[b�̄�,k]i = min
b,Hi∈R1×qw

b

s.t. HiM𝜙,k = [MB]i, Hib𝜙,k ≤ b, Hi ≥ 0 . (54)

Remark 6. In case rank(M𝜙,k) ≠ rank(MB) due to the particular definition of
(
ΔA(j)

,ΔB(j)
)
, the set �̄�k ⊇ (𝜙k ∩

Θk) can be computed instead.
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8174 PESCHKE and GÖRGES

Then, the updated parameter set Θk+1 ⊇ (�̄�k ⊕ 2B) ∩ Θk is given by

[bΘ,k+1]i = min
b,Hi∈R1×(2nP+qB)

b

s.t. Hi

[
MΘ

MB

]

= [MΘ]i, Hi

[
bΘ,k

b�̄�,k + 2bB

]

≤ b, Hi ≥ 0 (55)

and can be used for the MPC algorithm (43).
The result of Proposition 3 using the LMS algorithm does not hold anymore due to the time-variance of 𝜃∗k . For this

reason, a simple projection on the current parameter set

�̂�k = arg min
𝜃∈Θk

||𝜃 − �̂�k−1|| (56)

is used to derive a new estimated parameter �̂�k which has converged to its final value ifΘk = 𝜃B ⊕ B. It holds that ||�̂�k+1 −
�̂�k|| ≤ ||�̂�k − �̂�

∗
k||. The same parameter update can be performed for �̂�C,k with

�̂�k = arg min
𝜃C∈ΘC,k

||𝜃C − �̂�C,k−1||. (57)

Theorem 3. Let Assumptions 1 to 9 hold. If 𝜃∗k ∈ 𝜃B ⊕ B ⊆ Θ0 and problem (43) is feasible at time k = 0 with
D(xm,k,Θk,ΘC,k, �̂�k) ≠ ∅, then algorithm A always yields a feasible solution for system (50) with Θk estimated by
(54), (55) and parameter vector �̂�k and �̂�C,k updated by (56) and (57). If algorithm A is in “normal operation”
and the reference r is constant, then system (50) is finite gain l2-stable with respect to the nominal trajectory x̂T,k
for all K ∈ N with

K∑

k=0
||xk − x̂T,k||

2
≤ 𝜎0 +

K∑

k=0
𝜎𝜃||�̂�k − 𝜃

∗
k ||

2 +
K∑

k=0
𝜎w||wk||

2 +
K∑

k=0
c𝜃C ||�̂�C,k − 𝜃

∗
C||

2 (58)

where 𝜎0, 𝜎w, 𝜎𝜃, 𝜎𝜃C ∈ R>0.
Recovery mode: When algorithm A is in “recovery mode”, then it will return to “normal operation” using the

latest model parameters after a finite time.

Proof. Feasibility: The same proof as for Theorem 1 holds as Θk+1 ⊆ Θk is always ensured by (55).
Stability: The proof is analogous to Theorem 2 using ||�̂�k+1 − �̂�k||

2 ≤ ||�̂�k − �̂�
∗
k||

2 and ||�̂�C,k+1 − �̂�C,k||
2 ≤ ||�̂�C,k −

�̂�
∗
C||

2. ▪

8 PRACTICAL EXAMPLE

The proposed algorithm is evaluated for controlling the engine load of a self-propelled work machine with
velocity-dependent processing power. Examples of such machines are milling machines for removing asphalt layers
on roads and combine harvesters for cutting and threshing of crops. Self-propelled work machines share the proper-
ties of hard constraints on the maximum engine load and an uncertain throughput which depends on the velocity
and changing environmental conditions, for example, changing crop yields in a field. In addition, the relationship
between throughput and engine load depends on machine settings, which are selected differently for each working
condition. For example, a combine harvester is configured differently for each crop type which results in a new rela-
tionship between throughput and engine load. Moreover, it also common that the desired engine load changes for
process quality or machine feeding reasons during operation. In the following, a simple model of a self-propelled
work machine is given.34 It is not possible to measure all states in many practical applications. In this case, a
state observer for uncertain systems needs to be added which is addressed in robust output MPC, for example in
Kögel et al.35
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PESCHKE and GÖRGES 8175

The two main components of a self-propelled work machine are the throughput unit and the propulsion system

[
xth

k+1

xp
k+1

]

=

[
Ath(𝜃) Bth(𝜃)Cp

0 Ap

][
xth

k

xp
k

]

+

[
0

Bp

]

uk + wk, (59)

where the superscripts “th” and “p” denote states and matrices belonging to the throughput unit and the propulsion
system, respectively. The propulsion system usually consists of a hydrostatic transmission and is modeled here as a
second-order system. Measurable states of the hydrostatic transmission are the rotational velocity of the hydraulic motor
and the pressure difference inside the hydraulic circuit. The input uk denotes the speed command sent to a transmission
controller. The throughput system is modeled as an uncertain first-order system and its input depends on the machine’s
velocity and uncertain environment conditions.

The propulsion system is described by

Ap =

[
0.2034 −0.2972
0.1902 0.1294

]

, Bp =

[
0.0951
0.2786

]

, Cp =
[

0 3.125
]

(60)

and the uncertain throughput system by

[

Ath(𝜃(1)0 ) Bth(𝜃(1)0 )C
p
]

=
[

0.6065 0 0.0781
]

,

[

Ath(𝜃(2)0 ) Bth(𝜃(2)0 )C
p
]

=
[

0.8465 0 0.0781
]

,

[

Ath(𝜃(3)0 ) Bth(𝜃(3)0 )C
p
]

=
[

0.8465 0 0.3125
]

,

[

Ath(𝜃(4)0 ) Bth(𝜃(4)0 )C
p
]

=
[

0.6065 0 0.3125
]

, (61)

which describes the uncertainty in the filling dynamics of the throughput system and uncertainty in the relationship
between throughput and velocity.

In order to ensure a comfortable ride for the machine operator, the control problem is stated using theΔu formulation.
This allows to limit and weight changes in the ground speed command. This leads to the augmented system

⎡
⎢
⎢
⎢
⎣

xth
k+1

xp
k+1

uk

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

Ath(𝜃) Bth(𝜃)Cp 0
0 Ap Bp

0 0 Inu

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

xth
k

xp
k

uk−1

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

0
Bp

Inu

⎤
⎥
⎥
⎥
⎦

Δuk (62)

with the augmented state x̄k =
[
xth

k xp
k uk−1

]′. The system output is the engine load, which consists of power related to
throughput and propulsion

C(𝜃(1)C,0) =
[

1.0 0 0.3125 0
]

,C(𝜃(1)C,0) =
[

0.9 0 0.3125 0
]

(63)

where the uncertainty lies in the relationship between throughput and engine load.
The system output should not exceed 100% engine load with ||y||∞ ≤ 1 and the velocity should not exceed 10 kph and

be above 0 kph with 0 ≥ Cpxp
k ≥ 10. The system states are bounded by ||x̄k||∞ ≤ 10 and the change in input by ||Δuk||∞ ≤

0.5. The additive disturbance acts on all states with ||wk||∞ ≤ 0.01 and the measurement noise belongs to the set ||ek||∞ ≤

0.01. In simulation, the disturbances are realized as pseudorandom sequences of the respective vertices.
The true parameter vectors are 𝜃∗ =

[
0 1

]′ and 𝜃
∗
C = 0. The initial parameter set is a hypercube with MΘ =

[
I2 −I2

]′

and bΘ,0 =
[
1 1 0 0

]′. The initial parameter vectors are chosen as �̂�0 =
[
1 0

]′ and �̂�C,0 = 1. Weighting matrices
are defined as Q = 10Inx , R = Inu , Tx = 1e2P and for the pre-stabilizing gain K =

[
− 0.058 −0.031 −0.0144 −0.9234

]

holds. A prediction horizon of N = 6 is used.
First, the effect of the adaptive algorithms is evaluated. A reference signal r is used which starts at 0.5, then increases to

0.9 and 1 as depicted in Figure 3. It should be noted that the reference 1 is also a output constraint. Hence, it is desired that
the system output will be steered as close as possible to the reference without reaching it. The proposed control algorithm
from Section 6 without any adaptive elements converges to a state much higher than the desired reference of 0.5. This is
due to mismatches in the nominal model which leads to a wrong target state calculation. When the reference increases
to 0.9, the output of the non-adaptive algorithm only increases slightly. When the reference increases to 1, no increase
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8176 PESCHKE and GÖRGES

F I G U R E 3 Reference trajectory and system output for Algorithm A with and without adaptive elements.

F I G U R E 4 Tube evolution over the prediction horizon at sample step 100.

in the output is visible. This is due to the large uncertainty which keeps the artificial target state x̂T,k far away from the
desired set-point xT,k in order to ensure satisfaction of the output constraints. In contrast, the proposed algorithm yields a
system output which is close to the reference value considering the magnitude of the additive disturbance. The parameter
estimate converges to the true values which yields a correct steady-state target and an artificial target state close to the
constraints.

The state tube at sample step 100 is given in Figure 4, where areas with lighter colors are tube cross-sections at the
end of the prediction horizon. In addition, the four-dimensional tube-cross sections are projected on the first and third
state. The first tube cross-section is the smallest one and almost rectangular. The following tube cross-sections increase
in area due to the uncertain state evolution and share a noticeable boundary at the upper right side due to the output
constraints. In addition, the shape of the tube cross-sections changes over time as each half space of the polytope is scaled
individually by 𝛼l|k.

In Figure 5, the system operates close to the output constraints at sample step 200 and the resulting state tube is given.
Compared to Figure 4, the area of the tube cross-sections is much smaller which leads to a tight state evolution close to
the system constraints.

The same setup is repeated to evaluate the algorithm for systems with relative parameter bounds which are given by
MB =

[
I2 −I2

]′, bB =
[
0.05 0.05 0.05 0.05

]′ and 𝜃B =
[
0.05 0.95

]′. The set-estimation of the variant with relative
bounds is shown in Figure 6. The shaded areas indicate the parameter setsΘk and the red crosses are the parameter vector
estimate �̂�k. The estimated parameter set does converge to the minimal one but remains slightly larger. In addition, the
parameter vector estimate �̂�k does not converge to the central parameter 𝜃B but stays at the boundary of B.

This result also affects the tracking performance as shown in Figure 7. The reference is not tracked without offset on
average in contrast to Figure 3. In addition, the distance from the output constraint to the output signal is larger when
the reference equals to the output constraint.
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PESCHKE and GÖRGES 8177

F I G U R E 5 Tube evolution over the prediction horizon at sample step 200.

F I G U R E 6 Estimated parameter sets with relative bounds for fist 26 iterations.

F I G U R E 7 Reference trajectory and system output for algorithm from Section 7.

The simulations were run in MATLAB using “quadprog” with the “interior-point-convex”- algorithm on a Intel Core
i7-6820. The maximum computation time for the quadratic program of the main algorithm is 0.09s and the average
computation time is 0.04s.

9 CONCLUDING REMARKS

Robust adaptive model predictive control algorithms for tracking of piece-wise constant reference signals have been pre-
sented which provide l2-stability and recursive constraint satisfaction. The adaption of the parameter set decreases the
uncertainty online and a least-mean-squares filter is used to update a nominal model for time-invariant systems. This
increases tracking performance and operation close to the system constraints becomes less conservative. An artificial
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8178 PESCHKE and GÖRGES

target state and input are utilized to enhance recursive feasibility if the nominal system model or reference signal change.
This online-defined target state is especially useful in combination with the proposed terminal set which depends on the
estimated parameter set. When the uncertainty decreases, target states become feasible which had been initially infeasible.

The assumption on time-invariance of the plant is removed in a proposed variant of the algorithm. Instead, known
relative bounds but an unknown center of these bounds are assumed. Convergence of the parameter estimation to the
true bounds has been shown in a numerical example.

Future work may be devoted to combine robust adaptive tracking MPC with output feedback MPC when no state
measurements are available. Another interesting area is the incorporation of estimates about future variations of the plant
or uncertainty.
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14. Raković SV, Cheng Q. Homothetic tube MPC for constrained linear difference inclusions. Proceedings of the 25th Chinese Control and

Decision Conference. IEEE; 2013:754-761.
15. Köhler J, Soloperto R, Müller MA, Allgöwer F. A computationally efficient robust model predictive control framework for uncertain

nonlinear systems. IEEE Trans Autom Control. 2021;66(2):794-801. doi:10.1109/TAC.2020.2982585
16. Fleming J, Kouvaritakis B, Cannon M. Robust tube MPC for linear systems with multiplicative uncertainty. IEEE Trans Autom Control.

2015;60(4):1087-1092. doi:10.1109/TAC.2014.2336358

 10991239, 2023, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6814 by U

niversität K
aiserslautern-L

andau, W
iley O

nline L
ibrary on [31/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-4124-7195
https://orcid.org/0000-0002-4124-7195
https://orcid.org/0000-0001-5504-0972
https://orcid.org/0000-0001-5504-0972
http://info:doi/10.1016/S0005-1098(99)00214-9
http://info:doi/10.1002/acs.2414
http://info:doi/10.1016/j.automatica.2017.01.030
http://info:doi/10.1016/j.automatica.2013.02.003
http://info:doi/10.1016/j.automatica.2019.02.023
http://info:doi/10.1016/j.automatica.2020.108974
http://info:doi/10.1002/rnc.5175
http://info:doi/10.1109/TAC.2021.3050446
http://info:doi/10.1109/TAC.2019.2939659
http://info:doi/10.1109/TAC.2020.2982585
http://info:doi/10.1109/TAC.2014.2336358


PESCHKE and GÖRGES 8179

17. Simon D, Löfberg J, Glad T. Reference tracking MPC using dynamic terminal set transformation. IEEE Trans Autom Control.
2014;59(10):2790-2795. doi:10.1109/TAC.2014.2313767

18. Limon D, Alvarado I, Alamo T, Camacho E. MPC for tracking piecewise constant references for constrained linear systems. Automatica.
2008;44(9):2382-2387. doi:10.1016/j.automatica.2008.01.023

19. Peschke T, Görges D. Robust tube-based tracking MPC for linear systems with multiplicative uncertainty. 58th Conference on Decision and
Control. IEEE; 2019:457-462.

20. Limon D, Alvarado I, Alamo T, Camacho E. Robust tube-based MPC for tracking of constrained linear systems with additive disturbances.
J Process Control. 2010;20(3):248-260. doi:10.1016/j.jprocont.2009.11.007

21. Limon D, Ferramosca A, Alvarado I, Alamo T. Nonlinear MPC for tracking piece-wise constant reference signals. IEEE Trans Autom
Control. 2018;63(11):3735-3750. doi:10.1109/TAC.2018.2798803

22. Di Cairano S, Borrelli F. Reference tracking with guaranteed error bound for constrained linear systems. IEEE Trans Autom Control.
2016;61(8):2245-2250. doi:10.1109/TAC.2015.2491738

23. Falugi P. Model predictive control for tracking randomly varying references. Int J Control. 2015;88(4):745-753.
doi:10.1080/00207179.2014.972464

24. Blanchini F, Miani S. Set-Theoretic Methods in Control. 2nd ed. Birkhäuser; 2015.
25. Hanema J, Lazar M, Tóth R. Tube-based LPV constant output reference tracking MPC with error bound. IFAC-PapersOnLine.

2017;50(1):8612-8617. doi:10.1016/j.ifacol.2017.08.1430
26. Chisci L, Garulli A, Vicino A, Zappa G. Block recursive parallelotopic bounding in set membership identification. Automatica.

1998;34(1):15-22. doi:10.1016/S0005-1098(97)00160-X
27. Dorea C, Hennet J. (a, B)-invariant polyhedral sets of linear discrete-time systems. J Optim Theory Appl. 1999;103(3):521-542.
28. Hassibi B, Sayed AH, Kailath T. LMS is H∞ optimal. Proceedings of the 32nd Conference on Decision and Control. IEEE; 1993:74-79.
29. Limon D, Alamo T, Raimondo DM, et al. Input-to-State Stability: A Unifying Framework for Robust Model Predictive Control. Springer;

2009:1-26.
30. Peschke T, Görges D. Tube-based anticipative robust MPC for systems with multiplicative uncertainty. IFAC-PapersOnLine.

2020;53(2):7091-7096. doi:10.1016/j.ifacol.2020.12.463
31. Rawlings JB, Mayne DQ. Model Predictive Control: Theory and Design. Nob Hill Publishing; 2009.
32. Borrelli F, Bemporad A, Morari M. Predictive Control for Linear and Hybrid Systems. Cambridge University Press; 2017.
33. Alvarado I. Model Predictive Control for Tracking Constrained Linear Systems. PhD thesis. University of Sevilla; 2007.
34. Peschke T, Münch P, Görges D. Model predictive control of self-propelled work machines with spatial disturbance preview. Proceedings

of the 2018 American Control Conference. IEEE; 2018:2928-2933.
35. Kögel M, Findeisen R. Robust output feedback MPC for uncertain linear systems with reduced conservatism. IFAC-PapersOnLine.

2017;50(1):10685-10690. doi:10.1016/j.ifacol.2017.08.2186
36. Bemporad A, Morari M, Dua V, Pistikopoulos EN. The explicit linear quadratic regulator for constrained systems. Automatica.

2002;38(1):3-20. doi:10.1016/S0005-1098(01)00174-1

How to cite this article: Peschke T, Görges D. Robust adaptive tube tracking model predictive control for
piece-wise constant reference signals. Int J Robust Nonlinear Control. 2023;33(14):8158-8182. doi: 10.1002/rnc.6814

APPENDIX A. PROOFS FOR PROPOSITIONS

Proof of Proposition 2. It holds that

||a + b||2Q = |||a||2Q + ||b||2Q + a′Qb + b′Qa|

≤ ||a||2Q + ||b||2Q +
1
2𝜖

||(a′Q0.5)′||2 + 𝜖

2
||(Q0.5b)||2 + 𝜖

2
||(b′Q0.5)′||2 + 1

2𝜖
||(Q0.5a)||2

= ||a||2Q + ||b||2Q +
1
2𝜖

||a||2Q +
𝜖

2
||b||2Q +

𝜖

2
||b||2Q +

1
2𝜖

||a||2Q

=
(

1 + 1
𝜖

)

||a||2Q + (1 + 𝜖)||b||2Q .

The first equality follows from positive definiteness of Q. The first inequality follows from the triangle inequal-
ity, Cauchy-Schwarz inequality and from Young’s inequality. The second equality follows from the symmetry
of Q and Q0.5 and from the definition of || ⋅ ||2.

Proof of Proposition 7. First, the case l = 0 is considered with

||𝛿x0|k+1||
2 = ||x̂0|k+1 − x̂1|k||

2
Q
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= ||A(�̂�∗)x0|k + B(�̂�∗)(c0|k + K(x0|k − x̂T,k) + ûT,k) + wk −
(

A(�̂�k)x0|k + B(�̂�k)(c0|k + K(x0|k − x̂T,k) + ûT,k)
)
||2Q

= ||
∑

i
[(�̂�∗ − �̂�k)]iΔA(i)x0|k +

∑

i
[(�̂�∗ − �̂�k)]iΔB(i)(c0|k + K(x0|k − x̂T,k) + ûT,k) + wk||

2
Q

≤ 2||
∑

i
[(�̂�∗ − �̂�k)]iΔA(i)x0|k||

2
Q + 4||

∑

i
[(�̂�∗ − �̂�k)]iΔB(i)(c0|k + K(x0|k − x̂T,k) + ûT,k)||2Q + 4||wk||

2
Q

≤ 𝜎𝛿x ||�̂�
∗ − �̂�k||

2
Q + 𝜎w,1||wk||

2
Q .

The first inequality results from using Proposition 2. The second inequality follows from the existence of
constants 𝜎𝛿x , 𝜎w,1 ∈ R>0 due to compactness of  , and .

Now, the case 1 ≤ l ≤ N is considered for a feasible new target state and nominal states:

||𝛿xl|k+1||
2
Q = ||x̂l|k+1 − x̂l+1|k||

2
Q

= ||A(�̂�k+1)x̂l−1|k+1 + B(�̂�k+1)(cl−1|k+1 + K(x̂l−1|k+1 − x̂T,k+1) + ûT,k+1)

−
(

A(�̂�k)x̂l|k + B(�̂�k)(cl|k + K(x̂l|k − x̂T,k) + ûT,k)
)
||2Q

= ||
(

A(�̂�k+1) + B(�̂�k+1)K
) (

x̂l−1|k+1 − x̂l|k
)
+
∑

i
[�̂�k+1 − �̂�k]i(ΔA(i)x̂l|k + ΔB(i)cl|k + ΔB(i)Kx̂l|k)

+ B(�̂�k+1)(cl−1|k+1 − cl|k − K(x̂T,k+1 − x̂T,k) + ûT,k+1 − ûT,k) +
∑

i
[�̂�k+1 − �̂�k]iΔB(i)(ûT,k − Kx̂T,k)||2Q

≤ 𝜎1||𝛿xl−1|k+1||
2
Q + 𝜎2||�̂�k+1 − �̂�k||

2
Q + 𝜎3||x̂T,k+1 − x̂T,k||

2
Q + 𝜎4||ûT,k+1 − ûT,k||

2
Q + 𝜎5||𝛿cl−1|k+1||

2
Q

≤ 𝜎1||𝛿xl−1|k+1||
2
Q + 𝜎𝜃,1||�̂�k+1 − �̂�k||

2
Q + 𝜎𝜃,2||�̂�C,k+1 − �̂�C,k||

2
Q

≤ 𝜎1(𝜎1||𝛿xl−2|k+1||
2
Q + 𝜎𝜃,1||�̂�k+1 − �̂�k||

2
Q + 𝜎𝜃,2||�̂�C,k+1 − �̂�C,k||

2
Q) + 𝜎𝜃,1||�̂�k+1 − �̂�k||

2
Q + 𝜎𝜃,2||�̂�C,k+1 − �̂�C,k||

2
Q

≤ 𝜎
l
1𝜎𝛿x ||𝜃

∗ − �̂�k||
2
Q + 𝜎

l
1𝜎w,1||wk||

2
Q +

l−1∑

i=0
𝜎

i
1(𝜎𝜃,1||�̂�k+1 − �̂�k||

2
Q + 𝜎𝜃,2||�̂�C,k+1 − �̂�C,k||

2
Q) .

The first inequality follows from Proposition 2 and there exist suitable positive constants 𝜎1 to 𝜎5 ∈ R>0 due
to compactness of  , , and Θ.

For the second inequality, differences 𝛿cl−1|k+1 = cl−1|k+1 − cl|k, x̂T,k+1 − x̂T,k, ûT,k+1 − ûT,k can be set to
zero for constant parameters as the shifted sequence of the solution at time k can be used as a feasi-
ble candidate solution at time k + 1. For varying parameters, the shifted sequence might not be feasi-
ble due to a new target state. Consider two feasible sub-optimal solutions d̃k+1(xk+1,Θk+1 = Θk,ΘC,k+1 =
ΘC,k, �̂�k+1) and d̃k+1(xk+1,Θk+1 = Θk,ΘC,k+1 = ΘC,k, �̂�k) where the latter consists of the shifted sequence of
the previous solution. Denote c(�̂�k+1)l|k+1 and c(�̂�k)l|k+1 as the elements from the respective solution vec-
tors. Then it holds that ||𝛿cl−1|k+1||

2 = ||c(�̂�k+1)l−1|k+1 − c(�̂�k)l−1|k+1 + c(�̂�k)l−1|k+1 − c(�̂�k)l|k||2 = ||c(�̂�k+1)l−1|k+1 −
c(�̂�k)l−1|k+1||

2 ≤ L(||�̂�k+1 − �̂�k||
2 + ||�̂�C,k+1 − �̂�C,k||

2) due to Assumption 7, c(�̂�k)l−1|k+1 = c(�̂�k)l|k and as xT,k is a
Lipschitz continuous function of �̂�k, �̂�C,k. The same reasoning can be applied for the differences x̂T,k+1 − x̂T,k
and ûT,k+1 − ûT,k. The third and fourth inequalities follow from recursion.

APPENDIX B. PROOF OF THEOREMS

B.1 Feasibility proof
The same shifted sequence as in Section 6 is considered. The proof is given here for the terminal set dynamics and can be
easily adapted for the tube dynamics (43c).

[H(�̄�(j)k+1)𝛼N|k + w̄ + V(Inx − Φ(𝜃
(j)
k+1))x̂T,k]i

= [H(�̄�(j)k+1)]i𝛼N|k + [w̄]i + [V(Inx − Φ(𝜃
(j)
k+1))]ix̂T,k

=

[ m∑

l=1
𝜆
(l)H(�̄�(l)k )

]

i

𝛼N|k + [w̄]i +

[

V
( m∑

l=1
𝜆
(l)(Inx − Φ(𝜃

(l)
k ))

)
]

i

x̂T,k
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≤ max
l
[H(�̄�(l)k )]i𝛼N|k + [w̄]i + [V]i

(

Inx − Φ(𝜃
(l)
k ))x̂T,k

)

= [𝛼N|k]i

The second equality follows from convexity. The first inequality follows from the linear programming principle that a
maximum value lies on vertex of a convex set. The last equality follows from the consideration of all vertices in (43f).

B.2 Stability proof

Lemma 2. It holds that

VN(x0|k+1, �̂�k+1,Θk+1,ΘC,k+1, xT,k+1) − VN(x0|k, �̂�k,Θk,ΘC,k, xT,k)

≤ −𝜎0||x̂0|k − x̂T,k||2 + 𝜎𝜃,0||�̂�k − 𝜃
∗||2 + 𝜎w,0||wk||2 + 𝜎𝜃C,0||�̂�C,k − 𝜃

∗
C||2 + 𝜎e,0||ek||2 + ||x̂T,k+1 − xT,k+1||

2
Tx
− ||x̂T,k − xT,k||

2
Tx

.

with constants 𝜎0, 𝜎𝜃,0, 𝜎𝜃C,0, 𝜎w,0, 𝜎e,0 ∈ R>0.

Proof.

VN(x0|k+1, �̂�k+1,Θk+1,ΘC,k+1, xT,k+1) − VN(x0|k, �̂�k,Θk,ΘC,k, xT,k)

≤ Ṽ N(x0|k+1, �̂�k,Θk+1,ΘC,k, xT,k+1) − VN(x0|k, �̂�k,Θk,ΘC,k, xT,k)

=
N−1∑

l=0
||x̂l|k+1 − x̂T,k+1||

2
Q + ||cl|k+1 + K(x̂l|k+1 − x̂T,k+1)||2R + ||x̂N|k+1 − x̂T,k+1||

2
P + ||x̂T,k+1 − xT,k+1||

2
Tx
− ||x̂0|k − x̂T,k||

2
Q

− ||c0|k + K(x̂0|k − x̂T,k)||2R −
N−1∑

l=1
||x̂l|k − x̂T,k||

2
Q + ||cl|k + K(x̂l|k − x̂T,k)||2R − ||x̂N|k − x̂T,k||

2
P − ||x̂T,k − xT,k||

2
Tx

= −||x̂0|k − x̂T,k||
2
Q

+
N−2∑

l=0
||x̂l+1|k + 𝛿xl|k+1 − x̂T,k + x̂T,k − x̂T,k+1||

2
Q + ||cl+1|k + 𝛿cl|k+1 + K(x̂l+1|k + 𝛿xl|k+1 − x̂T,k + x̂T,k − x̂T,k+1)||2R

−
N−1∑

l=1
||x̂l|k − x̂T,k||

2
Q + ||cl|k + K(x̂l|k − x̂T,k)||2R

+ ||x̂N|k + 𝛿xN−1|k+1 − x̂T,k + x̂T,k − x̂T,k+1||
2
Q + ||𝛿cN−1|k+1 + K(x̂N|k + 𝛿xN−1|k+1 − x̂T,k + x̂T,k − x̂T,k+1)||2R

+ ||x̂N+1|k + 𝛿xN|k+1 − x̂T,k + x̂T,k − x̂T,k+1||
2
P − ||x̂N|k − x̂T,k||

2
P

+ ||x̂T,k+1 − xT,k+1||
2
Tx
− ||x̂T,k − xT,k||

2
Tx

≤ −||x̂0|k − x̂T,k||
2
Q + 𝜖

N−1∑

l=1
||x̂l|k − x̂T,k||

2
Q + ||cl|k + K(x̂l|k − x̂T,k)||2R + (N − 1)

(

1 + 1
𝜖

)

(1 + 𝜖)||x̂T,k+1 − x̂T,k||
2
Q

+ (N − 1)
(

1 + 1
𝜖

)

(1 + 𝜖)2||x̂T,k+1 − x̂T,k||
2
K′RK

+
(

1 + 1
𝜖

)

(1 + 𝜖)||x̂T,k+1 − x̂T,k||
2
P + (1 + 𝜖)

(

1 + 1
𝜖

)

||x̂T,k+1 − x̂T,k||
2
Q+K′RK

+ (1 + 𝜖)||x̂N|k − x̂T,k||
2
Q+K′RK + +(1 + 𝜖)||x̂N+1|k − x̂T,k||

2
P − ||x̂N|k − x̂T,k||

2
P + (1 + 𝜖)2||𝛿xN|k+1||

2
P

+
(

1 + 1
𝜖

)2N−1∑

l=0
||𝛿xl|k+1||

2
Q+K′RK +

(

1 + 1
𝜖

)2
(1 + 𝜖)

N−1∑

l=0
||𝛿cl|k+1||

2
R + ||x̂T,k+1 − xT,k+1||

2
Tx
− ||x̂T,k − xT,k||

2
Tx

≤ −||x̂0|k − x̂T,k||
2
Q + 𝜖

(N−1∑

l=1
||x̂l|k − x̂T,k||

2
Q + ||cl|k + K(x̂l|k − x̂T,k)||2R + ||xN|k − x̂T,k||

2
P

)

+ (1 + 𝜖)
(

−||x̂N|k − x̂T,k||
2
P + ||x̂N|k − x̂T,k||

2
Φ(�̂�k)′PΦ(�̂�k)

+ ||x̂N|k − x̂T,k||
2
Q+K′RK

)

+ (1 + 𝜖)
(

1 + 1
𝜖

)

N||x̂T,k+1 − x̂T,k||
2
Q+K′RK +

(

1 + 1
𝜖

)

(1 + 𝜖)||x̂T,k+1 − x̂T,k||
2
P
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+
(

1 + 1
𝜖

)2
𝜎QP

N∑

l=0
||𝛿xl|k+1||

2 +
(

1 + 1
𝜖

)2
(1 + 𝜖)𝜎R

N−1∑

l=0
||𝛿cl|k+1||

2

+ ||x̂T,k+1 − xT,k+1||
2
Tx
− ||x̂T,k − xT,k||

2
Tx

≤ −𝜎Q||x̂0|k − x̂T,k||
2 + 𝜖V̄ N(x0|k, �̂�k,Θk,ΘC,k, x̂T,k) +

(

1 + 1
𝜖

)2
𝜎QP

N∑

l=0
||𝛿xl|k+1||

2 +
(

1 + 1
𝜖

)

(1 + 𝜖)𝜎R

N−1∑

l=0
||𝛿cl|k+1||

2

+ (N + 1)
(

1 + 1
𝜖

)

(1 + 𝜖)𝜎QP||x̂T,k − x̂T,k+1||
2 + ||x̂T,k+1 − xT,k+1||

2
Tx
− ||x̂T,k − xT,k||

2
Tx

≤ −𝜎0||x̂0|k − x̂T,k||
2 + 𝜎11

N∑

l=0

[

𝜎
l
1𝜎𝛿x ||�̂�k − 𝜃

∗||2 + 𝜎
l
1𝜎w,1||wk||

2 +
l−1∑

i=0
𝜎

i
1(𝜎𝜃,1||�̂�k+1 − �̂�k||

2 + 𝜎𝜃,2||�̂�C,k+1 − �̂�C,k||
2
Q)

]

+ 𝜎𝜃,3(||�̂�k+1 − �̂�k||
2 + ||�̂�C,k+1 − �̂�C,k||

2) + ||x̂T,k+1 − xT,k+1||
2
Tx
− ||x̂T,k − xT,k||

2
Tx

≤ −𝜎0||x̂0|k − x̂T,k||
2 + 𝜎𝜃,0||�̂�k − 𝜃

∗||2 + 𝜎w,0||wk||
2 + 𝜎𝜃C,0||�̂�C,k − 𝜃

∗
C||

2 + 𝜎e,0||ek||
2

+ ||x̂T,k+1 − xT,k+1||
2
Tx
− ||x̂T,k − xT,k||

2
Tx
.

The first inequality is due to the consideration of a feasible, possibly sub-optimal solution
Ṽ N(x0|k+1, �̂�k+1,Θk,ΘC,k, xT,k+1). The second inequality follows from repetitive application of Proposi-
tion 2 and the third inequality from upper bounding || ⋅ ||2P and || ⋅ ||2Q+KR′K by 𝜎QP|| ⋅ ||2 and || ⋅ ||2R by
𝜎R|| ⋅ ||2. The fourth inequality follows Lyapunov inequality (25). In addition,

∑N−1
l=1 ||x̂l|k − x̂T,k||

2
Q + ||cl|k +

K(x̂l|k − x̂T,k)||2R + ||xN|k − x̂T,k||
2
P is the cost function of standard regulation problem to x̂T,k and written as

V̄ N(x0|k, �̂�k,Θk,ΘC,k, x̂T,k).
Following the proof of Theorem 14 in Lorenzen et al.,7 the cost V̄ N(x0|k, �̂�k,Θk,ΘC,k, x̂T,k) is a piece-wise

quadratic function of x̂0|k − x̂T,k
36 for every 𝜃 ∈ Θ0 and there exists a quadratic function which gives

an upper bound on the feasible set. Hence, on the feasible set there exists a constant 𝜎V such that
V̄ N(x0|k, �̂�k,Θk,ΘC,k, x̂T,k) ≤ 𝜎V||x̂0|k − x̂T,k||

2 holds due to compactness of Θk, ΘC,k and .
The fifth inequality is due to the existence of constants 𝜖, 𝜎0 ∈ R>0 such that −𝜎Q||x̂0|k − x̂T,k||

2 +
𝜖𝜎V||x̂0|k − x̂T,k||

2 ≤ −𝜎0||x̂0|k − x̂T,k||
2 holds. In addition, the terms containing 𝛿cl|k and x̂T,k+1 − x̂T,k are

bounded as in the proof for Proposition 7 and the terms containing 𝛿xl|k by Proposition 7.
The last inequality follows from Propositions 3 and 4. ▪
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