Combining SNLP-like Planning and Dependency-Maintenance

Frank Weberskirch
University of Kaiserslautern, Dept. of Computer Science
P.O. Box 3049, D-67653 Kaiserslautern, Germany

E-mail: weberski@informatik.uni-kl.de

Abstract

Real world planning tasks like manufacturing process planning often don’t allow to
formalize all of the relevant knowledge. Especially, preferences between alternatives are
hard to acquire but have high influence on the efficiency of the planning process and the
quality of the solution. We describe the essential features of the CAPLAN planning ar-
chitecture that supports cooperative problem solving to narrow the gap caused by absent
preference and control knowledge. The architecture combines an SNLP-like base plan-
ner with mechanisms for explict representation and maintenance of dependencies between
planning decisions. The flexible control interface of CAPLAN allows a combination of au-
tonomous and interactive planning in which a user can participate in the problem solving
process. Especially, the rejection of arbitrary decisions by a user or dependency-directed
backtracking mechanisms are supported by CAPLAN.

1 Introduction

In real world planning tasks, the performance of a system often decreases because it’s impos-
sible to formalize all of the relevant knowledge. A generative planning system is left alone
with the general domain specification and has to perform en exhaustive search as preferences
between alternatives are hard to acquire. Nevertheless, this control knowledge plays a very
important role and highly influences the efficiency of the solution process and the quality
of the result. Unfortunately, autonomous problem solving, especially so-called precondition
achievement planning, lacks efficient general purpose mechanisms and heuristics to control
such a search process (Drummond, 1993).

(Wilkins, 1984) proposed a combination of automatic and interactive plan generation to be
a suitable way for solving complex real world problems that cannot be solved autonomously
by a planning system within a justifiable amount of time. Such a system that is able to
work together with an user (usually a domain expert) will be able to solve even complex
problems, because for the human expert often it’s easy to decide how to solve some of
the goals of a problem although he might not be able to make a general rule from his
decision. He probably will solve the main difficulty of a planning problem and might reduce
the remaining planning work to a (simple) routine matter. Both, system and user profit from
each other: the user often can decide how to solve some critical points of a problem where
many alternatives exist but no concrete preferences are defined for the system, the system
easily can do uninteresting routine work for the user. Additionally, such a system should
offer opportunities of intervention to the user by enabling him to reject decisions taken by
the system that are wrong or not adequate from his point of view.

This report describes the CAPLAN (Computer Assisted Planning) architecture that was
motivated by the scenario illustrated above. The CAPLAN architecture is based on two
pillars:

e an SNLP-like (McAllester and Rosenblitt, 1991) base level planner and

e a mechanism for dependency maintenance to support user interactions, learning, and
sophisticated backtracking.

SNLP (McAllester and Rosenblitt, 1991) has been chosen as the basic planning algorithm
because of two main reasons:

e The main application domain of CAPLAN is manufacturing process planning (Paulokat
and Wess, 1994) that is characterized by the fact that it contains many subgoal inter-
actions. Using the terminology of (Barrett and Weld, 1994) it can be established that
this domain is trivially serializable for the SNLP/POCL planner (Barrett and Weld,
1994) but laboriously serializable for a total-order planner. So, a plan-space planner
seemed to be a better choice than a state-space planner. (Minton et al., 1991; Minton
et al., 1994) confirm this hypothesis.

e SNLP is a sound, complete and systematic planning algorithm (McAllester and Rosen-
blitt, 1991). Especially, the fact of being complete was an important foundation as this
property is a guarantee that the system can find a solution if one exists.

The resulting architecture CAPLAN also was expected to be an interactive system that can
act as an planning assistant as described above. Here we need a mechanism for dependency
maintenance as, especially, interactions of a user (the rejection of planning decisions) should
be possible at any time during a solution process. The system is expected to have an oppor-
tunistic behaviour, i.e., if a user rejects a certain planning decision the system should be able
to reject exactly all dependent decisions, independent parts of the partial solution should be
preserved. For doing this job, the generic REDUX architecture (Petrie, 1991b; Petrie, 1992)
was chosen and the SNLP-like planner was built on top of REDUX. Thus, CAPLAN is a
combination of SNLP as a planning algorithm and REDUX for dependency maintenance and
it can be used for any combination of autonomous and interactive planning.

The CAPLAN system is fully implemented using the object-oriented technology of Smalltalk
(VisualWorks 2.0) and runs on serveral hardware platforms. Preferred development platforms
are Sun Sparc workstation and IBM PC. The sources of the system can be obtained from
the author of this report.

The following pages are organized as follows: Section 2 summarizes the important ideas of
the SNLP-like (McAllester and Rosenblitt, 1991; Barrett and Weld, 1994) base level planner
of CAPLAN, the plan representation, the extended domain and problem specification facili-
ties. CAPLAN has a very flexible control interface to enable different search and backtrack
strategies. Section 3 gives an overview of this control interface. Section 4 then presents the
CAP1LAN architecture itself which is a combination of the SNLP algorithm with extended
mechanisms to represent domain and problem knowledge and the generic REDUX architec-
ture (Petrie, 1991b; Petrie, 1992) that is used to maintain dependencies between planning
decisions. The report ends with some conclusions about the presented architecture.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

2 The SNLP-like Base Level Planner

The CAPLAN architecture is based on an SNLP-like (McAllester and Rosenblitt, 1991; Bar-
rett and Weld, 1994) domain-independent generative planner. Given a domain and problem
specification it searches in the space of partial plans for a solution. In this section we sum-
marize the important aspects of this base level planner. We start with the representation of
plans in CAPLAN and the general plan refinement methods of the algorithm. The extended
domain and problem specification meachanisms are explained then. The last part recalls the
basic planning algorithm and the necessary extensions for CAPLAN.

2.1 Plan Representation

CAPlan is a planning architecture that is based on a plan-space planner. It searches in the
space of partial plans. Partial means two things, plan steps are only partially ordered with
respect to each other, and variables of steps may only be partially instantiated.

A partial plan is a triple (5,0, B) where
e S is set of plan steps,

e O is a set of ordering constraints that define a partial order among the steps, and

e B are the variable binding constraints over variables occurring in plan steps.

Plan steps represent the possible actions in the planning world and are defined by the operator
schemata of the domain specification (see section 2.3). Each plan step is associated with
exactly one operator schema, we say that the step is an instance of the schema. The operator
schema defines preconditions, effects and constraints of this step. Of course, there can be
multiple different plan steps that are instantiated from the same operator schema.'

Figure 1: Partial Plan

S always contains two special steps, sop and s., which represent the problem to solve. The
effects of sy correspond to conditions true in the initial state of the problem. Similarly, the
preconditions of s, correspond to the goals of the problem. Following the least commitment
approach (Weld, 1994) the set of ordering constraints O establishes a partial order among the
plan steps in which parts of the plan remain in parallel as long as possible (see figure figure 1),
therefore, we also speak about a partially ordered plan. The set of binding constraints B
contains the conventional codesignation and noncodesignation constraints (Chapman, 1987).
CAPLAN additionally allows to use type constraints (see section 2.3).

'For this reason, other publications (McAllester and Rosenblitt, 1991; Kambhampati et al., 1995b) use a
symbol table that maps step names to domain operators.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

The planning process starts with an initial plan

(SQ, Oo, Bo) = ({807 Soo}, {80 < 500}7 @)

that only consists of the two steps sy and s, that are necessary to represent the problem
and an initial ordering between them. In this initial plan the preconditions of the final plan
step s, are not explicitly established, we say these conditions are open. It is the job of the
planner to find explicit establishments for each open goal. During the planning process, new
plan steps with new open preconditions might be added. We call both open conditions or
open goals as long as the planner didn’t establish them and denote an open goal g as a tupel
(p, s) where p is a preconditions of step s.2

Plan Consistency. The notion of a consistent plan is important for later sections. Basi-
cally, a plan (5,0, B) is said to be consistent if the following obvious conditions hold:

e No step is ordered before sy or after s...

e There are no cycles with respect to the ordering of steps, i.e., there exist no steps
s,de S with s <dand d < vy, -, v, <sforuv €85.

e The set of variable binding constraints B is consistent.

The first two conditions are also called the ordering consistency property of plans, the last
one binding consistency.

Solutions and Complete Plans. A solution to a planning problem is a (totally ordered)
sequence of plan steps (actions), which when executed from the initial state, results in a
world state in which all goals are satisfied. So, a partial plan (5,0, B) is a kind of shorthand
notation (cf. (Kambhampati et al., 1995a)) for a set of totally ordered action sequences that
are consistent with constraints in O and B. (McAllester and Rosenblitt, 1991) calls a totally
ordered action sequence that is derived from a partially ordered plan a topological sort. A
topological sort only extends the orderings of a partially ordered plan. A partial plan is
complete if every topological sort of this plan is a solution to the planning problem. Thus,
finding a complete plan is the goal of a planning process.

2.2 Plan Refinement Methods in Plan-space Planning

The planning process starts with an initial plan and refines this plan repeatedly until a
termination criterion detects a solution plan or no more plan refinements are possible, i.e.,
no solution can be found at all. (Kambhampati et al., 1995b) calls this planning process
refinement search and illustrated the possible plan refinements within this framework.

Given a partial plan (5,0, B) a refinement method is a function that maps a partial plan P,
to another partial plan P; by adding one ore more elements (steps, orderings, or bindings)
to the plan. The following refinement methods have to be considered in SNLP-like planning:

e step addition (adding a new plan step)

2In the following text we will also call p an open goal if step s is clear from the context, e.g., given a problem
(I, G) we might speak about the planning goals g1, -, gn € G and mean exactly (g1, 8x0), ", (gn, Sa0) € G.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

o simple establishment (adding an ordering)
e promotion/demotion (adding an ordering)
e separation (adding variable binding constraints)
Each of these refinement methods modifies the current plan by adding steps, ordering con-

straints or binding constraints. None of them will ever remove constraints or steps. Thus, the
current partial plan is monotonously growing in the number of steps, orderings and binding

constraints.
Inital Plan Inital Plan
N RN
N TN NS VAN
] \ \ \ \
Figure 2: Plan refinement as graph search Figure 3: Search tree of SNLP

The search process in the space of partial plans is comparable with a graph search, where
graph nodes are partial plans and a directed edge from F; to P; indicates that P; is obtained
by applying one of the refinement methods listed above to P; (see figure 2). In the special
case of SNLP this graph in fact is a tree (see figure 3) because of the systematicity of the
algorithm as each plan state is reached at most once during a planning episode (McAllester
and Rosenblitt, 1991). But from the beginning there was discussion about the use of sys-
tematicity (e.g., (Kambhampati, 1993)) and there are examples where it is an advantage to
have this property as well as examples where it doesn’t improve the planning process.

In fact, this tree can also represents the search process performed by SNLP. The planning
process searches through the space of partial plans. The edges of the search tree represent
the planning decisions (corresponding to a refinement method) that transform for example
plan state P; into P;. During search, this tree (or in general the graph) is traversed in some
way depending on the concrete search procedure and search control. In case of SNLP we
have a bounded depth-first search where the algorithm backtracks if no further consistent
refinement is possible or the cost bound is exceeded. Later we will come back to this way
of understanding the search process of SNLP as it’s helpful to explain different backtracking
strategies.

2.3 Extended Domain Specification

CAPLAN is a domain-independent planner and needs to be told about the planning world in
which it has to find plans. CAPLAN uses a STRIPS-like notation for domain specifications
and it is a typical example for the so called precondition achievement planners (Drummond,
1993)): operators are primitive actions in the planning world that have preconditions and ef-
fects. One major difference to many typical planners described around SNLP is the extension
of the a domain specification by type taxonomies and, as a result of this, type constraints in
the definition of operator schemas.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

A domain specifications of CAPLAN basically consists of three parts, a definition of

e object types,
e predicate names and

e operator schemata.

Example domains available for CAPLAN are versions of the well known blocks world domain,
the transportation domain (Veloso, 1994), and artificial domains from (Barrett and Weld,
1994; Kambhampati, 1993; Veloso and Blythe, 1994). The actual application domain of CA-
PLAN is concerned with manufacturing process planning for rotary symmetrical workpieces
(Paulokat and Wess, 1994) and will be referred to as the workpiece domain in the following
sections. Although this application domain is restricted to rotary symmetrical workpieces
it’s a quite large domain that contains difficulties of various other domains. It will be char-
acterized in the following section before the elements of a domain specification are explained
in more detail.

2.3.1 Characteristics of CAPlans Main Application Domain

The domain we are concerned with in CAPLAN is manufacturing process planning for rotary-
symmetrical workpieces to be machined on a lathe. A planning problem in this domain is
given by a geometrical description of a workpiece and of a stock. Workpieces description are
designed using an AutoCAD application as a tool for the construction process (see figure 4).
This AutoCAD application communicates with the planning system to submit geometrical
descriptions and to start the planning process for a certain workpiece.

_if - AutoCAD Graphics Window — Amp_mnt‘home/veberskifacadAvelle [

File v) Assistv) Drawv} Constructv} Modify v) Uiewv} Settings v) Renderv) Model v)

{WLayer BACKGROU Snap —71.00, 103, 00 DLt AUTOCAD
Z0OM:

Al

Centre
Dynan ¢
EXTEnts

|
A | H i AZ
|

zc0n
#11/Center/Dynamic/Extents ALeft/Frevious Amax indow/ <Scale(R/up)e: d
anmand ;

i

Figure 4: A rotary symmetrical workpiece.

The description of a workpiece is built up from geometrical primitives like cylinders, cones and
toroids that describe monotone areas of the outline, possibly augmented by features (threads,
undercuts, surface conditions, etc). For such a planning problem a sequence of processing
operations is to be found that will machine the workpiece considering available resources
(i.e. tools, machines) and technological constraints related to the use of these resources. The

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

manufacturing process starts with clamping the stock on a lathe machine that rotates it at a
very high speed. In most cases, the outline of the workpiece cannot be machined in one step
but repeated cutting operations are necessary to cut the difference between the raw material
and the workpiece in thin horizontal or vertical layers.

For detecting the interactions between parts of the workpiece, a domain dependent system
called the geometrical reasoner is used. It establishes constraints on the order for manufac-
turing certain parts of the workpiece (see also section 2.4). As each part of the workpiece
constitutes a goal in the problem description, these constraints are interpreted as ordering
constraints that must be met by any plan for manufacturing that workpiece. Further, these
constraints are stated by the geometrical reasoner before the planning process begins, as they
depend only on the geometry of the workpiece and not on available tools or on the clamping
material. For example, for the workpiece given in figure 4, the geometrical reasoner estab-
lishes that the horizontal processing area H must be manufactured before the undercuts U1
and U2. These constraints must be met by any partial-ordered plan for manufacturing that
workpiece.

Figure 5: Outline of a manufacturing plan.

Figure 5 shows a plan fragment for the workpiece in figure 4. Boxes represent the plan
steps and arcs the orderings among them. There are steps for specifying a fixturing method,
inserting cutting tools and for the cutting operations itself. E.g., for processing the second
half of the area U2 in STEP-8, using a certain cutting tool (a “right cutting tool”, R1) has
been chosen (STEP-6). The plan in figure 5 also is consistent with the additional ordering
requirements established by the geometrical reasoner for this problem, i.e., the processing
area H is manufactured before the two undercuts are manufactured.

2.3.2 Types and Constraints

It’s quite usual for a planning system to use variables and allow constraints to be defined
on these variables. Many planners user typeless variables and only have simple codesigna-
tion/noncodesignation constraints (Chapman, 1987) that constrain one variable to have the
same or not the same binding like another variable. In CAPLAN all we additionally allow to
define types and type constraints.

Types. In CAPLAN all objects of a planning problem must have a certain type, e.g., in
the blocks world domain there are the two types Block and Table. Object types can be
organized in taxonomies by assigning at most one supertype to each type. Figure 6 shows
a part of a type taxonomy of the workpiece domain as an example. In this domain we have
more than 50 different types that are organized in several taxonomies.

As we will see later, types are used in the definitions of operators and problems: operator
schemata can define type constraints over variables, problem definitions specify a type for
each of its object.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

ProcessingArea Tool

ExteriorOutline RotatoryTool
LeftAscendingOutline LeftRotatoryTool
RightAscendingOutline RightRotatoryTool
HorizontalOutline FeatureTool

ExteriorFeature Drill3
Slope Drill4
Finish Drills
Prickout ThreadCuttingTool
Roundoff ThreadTappingTool
Thread MillingTool

Figure 6: Part of a type taxonomy (workpiece domain).

Constraints. CAPLAN allows two kinds of constraints: simple codesignation or noncodes-
ignation constraints (Chapman, 1987) that can be found in nearly every planner, and, as a
major extension to standard SNLP, we have type constraints.

Codesignation and noncodesignation constraints are denoted as

e Same(x,y) and

e NotSame(x,y)
and force variables x and y to have the same or a different binding.
There are two possibilities for type constraints:

e IsOfType(<TYPE>,x) forces variable x to be of type <TYPE>,

e IsNotOfType(<TYPE>,y) forces variable y not to be of type <TYPE>.

Both types of constraints can be used within the specification of operator schemata (see
section 2.3.4).

2.3.3 Predicates

Predicates express relations between objects and are obligatory to be able to describe sit-
uations (states) in the planning world as well as effects or preconditions of operators. The
definition of a predicate consists of its name and arity. The blocks world domain, for exam-
ple, contains a binary predicate On and an unary predicate Clear. The workpiece domain of
CAPLAN is much more complex and has 38 predicates. Figure 7 shows some examples for
predicates of the workpiece domain of CAPLAN.

subarea(U1l, H) processed(s1)
noSubareaThread (A1) processed(H)
leftRotatoryTool(1lm1) processed(U1)
unprocessedSide(S1) processedUndercutHalf1(U2, H)
toolHolderFree() processedUndercutHalf2(U2, H)

Figure 7: Examples for predicates (workpiece domain)

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

2.3.4 Operators

Operator schemata are the most important part of a domain definition. While types and
predicates basically define a language for describing problem situations, operators define the
primitive elements a solution is composed of, the possible primitive actions in the planning
world.

In CAPLAN domain operators are specified in an extended STRIPS operator formalism (Fikes
and Nilsson, 1971) and consist of

o (typed) preconditions,
o cffects (purposes and side effects) and

e constraints (codesignation, noncodesignation, and type constraints).

Figure 8 shows an example for an operator schema, the operator InsertFeatureTool of the
workpiece domain. Operator schemata are instantiated to plan steps during the planning
process. This instantiation will replace variables used in the definition of the schema by con-
crete plannning objects of the problem or planning variables that are bound by the constraint
propagation algorithm. The current version of the workpiece domain consists of about 25
different operator schemata.

InsertFeatureTool (tool)
Constraints: IsOfType(FeatureTool,tool)
Purpose: toollInserted(tool)
Side effects: —toolHolderFree()
Phantoms: toolAvailable(tool)
Subgoals: toolHolderFree()

Figure 8: Example for an operator definition (workpiece domain).

Beside the type taxonomies and type constraints, the example operator from figure 8 shows
the two basic extensions in the definition of an operator schemata. CAPLAN distinguishes
between

e purposes and side effects of an operator and

e uses different types of operator preconditions.

Both extensions aren’t new in planning but they were presented for hierarchical planners like
SIPE (Wilkins, 1988) or NONLIN (Tate, 1977) but not for SNLP-like planners.

Purposes and Side Effects. Distinguishing purposes and side effects was first proposed
for SIPE (Wilkins, 1984; Wilkins, 1988). Purposes are thought to be the main reasons for
adding an operator instance to the plan and CAPLAN uses the heuristic to prefer operators
with matching purposes to operators with matching side effects.®> This heuristic is a default
that can be overwritten by control components if necessary (see section 3.2.1).

#Restricting operator selection to the set of operators which have matching purposes will destroy the
algorithms completeness property, so this distinction can only be used for a heuristic.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

Typed Preconditions. Another aspect reflected in the definition of preconditions is the
distinction between two types of preconditions,

e normal preconditions and

e applicability conditions, called phantom preconditions.

Phantom preconditions of CAPLAN are also known as filter conditions from hierarchical
planning, e.g., they are called only-use-when conditions in NONLIN (Tate, 1977) or O-
PLAN (Tate et al., 1994). Normal preconditions define conditions for the executability of
an operator. The idea behind filter conditions is to give the planner some information about
the applicability of an operator hoping that they will prevent applying operators in some
situations. The primary usage of filter conditions in hierarchical planners like NONLIN or
SIPE is to rule out operators, but they do not explicitly consider them for establishment.
As discussed below, they are implicitly also necessary to find the correct binding for some
variables of an operator schema. So, filter conditions are treated very differently from normal
preconditions. (Collins and Pryor, 1992) pointed out that using filter conditions this way
within SNLP will lead to loss of completeness.

(Kambhampati, 1995) stated another view on filter conditions on which phantom precondi-
tions of CAPLAN are based. Here, filter conditions are treated like normal preconditions in
that they become open goals if a step is added for which filter conditions are defined. The
planner explicitly tries to establish filter conditions also, but there is a difference to normal
preconditions that can be best explained by the possibilities available for the establishment
of an open condition. In general, there are two ways to satisfy a precondition also known as
simple establishment and step addition. Simple establishment searches the plan for existing
plan steps that can be used to satisfy a precondition (such a step is called the establisher of
the precondition). Step addition uses an operator schema of the domain to instantiate a new
plan step and add it to the plan as the establisher of the precondition. CAPLAN puts the
following restriction on phantom preconditions:

Restriction for phantom preconditions: A phantom precondition is characterized by
the fact that only simple establishment will be allowed to satisfy it while for normal
preconditions CAPLAN allows both types of establishment.

So, the planner tries to find an already existing establisher for open phantom preconditions.
Sometimes however, the planner even will have to wait for this establisher to be added to the
plan. Of course, the existence of phantom preconditions and the restriction for them affects
the completeness of the planning algorithm (cf. (Collins and Pryor, 1992)), so allowing them
makes it necessary to modify the control structure of the planning as waiting for an establisher
is not what the original SNLP algorithm does (see section 2.5.3).

Filter Conditions in NONLIN. There was one observation about the use of filter con-
ditions in NONLIN that motivated the use of them in CAPLAN. On the one hand, they
define conditions for the applicability of an operator and will rule out an operator if it filter
conditions cannot be proved to be true. On the other hand, they are necessary to find correct
bindings for free variables of the operator if it is applied. An operator is applicable if concrete
bindings for all free variables of the operator schema can be found, so the filter conditions
play a very important role for correct instantiation of operators in NONLIN. Therefore, they
cannot be omitted in NONLIN and should not only be seen as an efficiency hack to speed-up
the planner.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

If we only have simple STRIPS-like operators in such a case, we also cannot omit filter
conditions. But here, we have to add them normal preconditions to an operator although we
know that these preconditions must be true in the plan without doing extra work to achieve
them (i.e., adding new steps).

Example: Imagine the operator PutOn(x,y) from the blocks world domain as defined in
(Barrett and Weld, 1994). Its purpose is to achieve On(x,y) but it doesn’t make any
sense to apply this operator if there isn’t a z, x#z#y, with On(x,z). This z is the
block from which x has to be taken and, of course, it doesn’t make sense to apply this
operator if such a z doesn’t exist, i.e., On(x,y) is already true. Additionally, z must
be known as it appears in side effects of this operator, Clear(z) and —0n(x,z).
NONLIN here would simply define a filter condition On(x,z) to ensure that this vari-
able is bound to the right value whenever this operator schema is instantiated. With
the STRIPS-like operators of SNLP we have to declare On(x,z) to be a normal pre-
condition. But SNLP doesn’t know that this precondition has to be satisfied by phan-
tomization (simple establishment) and will also try to establish it using step addition,
so SNLP cannot take advantage of the knowledge that this operator would not make
sense if we cannot establish this precondition by simple establishment.

In CAPLAN we may declare such preconditions to be phantom preconditions which will
prevent adding steps to the plan to establish them.

2.4 Extended Problem Specification

Problem specifications for planners with STRIPS-like operators traditionally consist of an
initial state and the planning goals. In CAPLAN a problem specification is extended by
additionally being able to define orderings between planning goals. These orderings are
optional and are used to speed up planning as they give information about orders in which
goals have to be achieved in the solution plan. The goal orderings are established prior
to the beginning of the planning process by an external reasoner (e.g., a domain specific
reasoner or a user) and are thought to help the planner in finding the solution by giving
additional constraints that must be met by any solution. E.g., in the domain of process
planning the external reasoner is a geometrical reasoner that establishes constraints on the
order for manufacturing certain parts of a workpiece (Munioz-Avila and Hiillen, 1995). The
case-based control component CBC of CAPLAN takes advantage of them by allowing a more
powerful indexing mechanism for the case base based on this goal orderings (Munoz-Avila
and Hiillen, 1995).

A planning problem in CAPLAN is a triple (I, G, <g), where

e [is the initial state consisting of a set of predicates that describe the initial situation,
e G={g1,-,gn} is the set of goals and

e < is an ordering relation on the set of goals.

If there are no goal ordering constraints (<g=), we have the traditional way of specifying
a planning problem with initial state and goals and we will abbreviate (I, G, 0) with (I,G).
Otherwise, <g# 0, this goal orderings put additional constraints with respect to the ordering
of plan steps on potential solution plans, we say a solution plan must be consistent modulo
<¢ to be a candidate.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

Extended plan consistency. Given a partial plan (5,0, B) for a problem (I,G, <g) the
goal orderings < put some additional constraints on the plan with respect to the ordering
of the establishers of the ordered goals, i.e., the plan steps that we chosen to achieve the
goals.

The plan (5,0, B) is said to be consistent modulo <¢ if the following conditions hold:

e (5,0, B) is a consistent plan (see definition of plan consistency in section 2.1).

e Lorall g1 <g g2 with sy = establisher(g1), s2 = establisher(gs) the ordering O of the
plan must contain s; < s;.

Figure 9 illustrates the second condition. The problem specification contains a goal ordering
g1 <@ g2 for two goals g1, g2 € (G, s1 is the plan step that achieves g1 (the establisher of g1)
and s is establisher of g3. Goals like gy, g2 that occur in goal ordering definitions will be
referred to as ordered goals. This goal ordering forces that in any solution plan g, is achieved
before gs. In terms of plan elements it forces the ordering constraint s; < s3 to be added to
the plan.

Ordering constraint on solution:

Problem: 9 92
" established by
(I, {91, 923,191 <G 92}) ‘ ‘

—ls>[s >

Figure 9: Ordering constraints on planning goals

Interpretation of Goal Orderings. There are relations between the extended problem
specification and hierarchical task network (HTN) planning (Erol et al., 1994a; Erol et al.,
1994b) where we have an initial task network that describes a certain problem by specifying
a set of partially ordered tasks that have to be solved to solve the problem. This partially
ordered set of task is comparable to the partially ordered set of goal in CAPLAN.

There is an interesting way of explaining the co-operation of a domain definition D with
the orderings of an extended problem definition (I,G, <¢):* the orderings in <& combined
with the domain D can be seen to be equivalent to a problem-specific domain definition D’
for this problem in which the special ordering requirements are taken into consideration (see
figure 10). It can be imagined that the operator definitions of D’ itself will force orderings
equivalent to the orderings in <g of the extended problem specification. But as the goal

(I,G,<g)+D ~ (I,G,0)+ D,

where:

- D is a problem independent domain specification and

- D, is a problem-specific domain

Figure 10: Co-operation of extended problem and domain specification

*Motivated by S. Kambhampati (private communications in September 1995).

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

orderings < are part of the problem definition they will dynamically create a specific domain
definition for the problem that takes its specific ordering requirements into account. So, if we
want to use the knowledge < about a certain problem, the advantage is obvious: instead of
having to find an improved domain specification D for each problem where orderings <g
can be determined, in CAPLAN it’s enough to have the general domain specification that
doesn’t make any assumption about such necessary orderings. CAPLAN will dynamically
be able to take advantage of problem specific orderings without any change in the domain
specification.

2.5 The Basic Planning Algorithm of CAPlan

CAPLAN is a domain independent planner that is based on the SNLP planning paradigm.
Given a domain and a problem specification the planning process consists of repeatedly
picking an open precondition and establishing it, or alternatively, resolving conflicts between
steps in the plan. Both types of refinement operations add further constraints to the partial
plan, they never delete any existing constraints (see section 2.2).

Within the following description of the basic planning algorithm of CAPLAN we mostly
use standard vocabulary of SNLP (McAllester and Rosenblitt, 1991). Other notations are
adopted from (Kambhampati et al., 1995a).

2.5.1 Basic Concepts

There are two key concepts that are important for SNLP planning. The first is to protect
the establishment of a precondition using so-called causal links.> The second concept, threats
to causal links, represent interactions between plan steps.

Causal Links: A causal link s; L s; records the fact that step s; has been selected to
establish the precondition p of step s;. The existance of s; SN s; forces s; to be

ordered before s;, so if the planner add a causal link s; LN s; it will always add an
ordering s; < s; to the current plan.

Threats: Causal links help to detect interactions between plan steps called threats. A threat
tis a tripel (sg,s; LN s;,C), where s; has an effect ¢ (notation: s; + ¢). C are the
binding constraints that make ¢ necessarily equal to p or —p. If ¢ is equal to p we call
t a positive threat, if ¢ is possibly equal to —p we call it a negative threat.®

An important point here is that the definition of threats above doesn’t make any assumption
about the consistency of the constraints of the threat or orderings of the current plan that are
responsible for a threat to be harmful. Others, e.g., (Kambhampati et al., 1995a), only speak
about a threat if its constraints are in fact consistent and the threatening step is definitely
in parallel to the causal link, i.e., the threat is really harmful. This distinction is important
for CAPLAN as we will see later.

5There are other names for the same idea, e.g. range (Tate, 1977), protection interval (Kambhampati and
Hendler, 1992), but with (McAllester and Rosenblitt, 1991) the term causal link became well known.

Tn this terms SNLP and NONLIN differ by the fact that SNLP, a descendant of NONLIN, resolves positive
and negative threats while NONLIN only cares about negative threats.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

Active and Potential Threats. Motivated by the fact that the validity of a threat de-
pends on the elements of the current plan and based on the definition of threats given above,
CAPLAN explicitly distinguishes between two kinds of threats: (let ¢ = (s, s; LN s;,C) be
a threat and (5,0, B) the current plan)

Active threat: A threat is called active if s; can come in between s; and s; (i.e., s; < s; and
sk < s; are consistent with O) and all necessary binding constraints C' are consistent
with the set of current binding constraints B. This is the kind of threat considered in
the standard SNLP.

Potential threat: Otherwise the threat is called potential and either s < s; € O or 55 <
si € O is valid or the necessary binding constraints C' are inconsistent with the set of
current constraints B. Potential threats are always annotated with a justification that
encapsulates the reason for which the threat is potential (see section 4.4.2).

A potential threats records a dependency between a causal link and a step that currently
is not harmful, either because of existing orderings or binding constraints. The reason that
makes a threat to be potential is determined by CAPLAN and is stored as an annotation
of this threat. The advantage is that CAPLAN never has to check the same threat twice as
an evaluation of this annotation is enough to see whether the threat is still potential or not.
Thus, the costs of the threat computation are reduced. Section 4.4.2 will show that such a
reason that justifies a threat to be potential is stored in the dependency network of CAPLAN
with the effect that evaluation is done automatically by the propagation algorithm for the
dependency network.

In fact, the distinction of these two kinds of threats doesn’t cause more computational over-
head than threat computation of SNLP does. SNLP, that only considers the active threats,
has to check exactly the conditions mentioned above for the two kinds of threats, i.e., check-
ing the consistency of constraints C' and orderings between s; and the steps of the causal
link. While SNLP will not care about a threat if it is only potential, CAPLAN also collects
this kind of threats and the results of consistency tests to save work later on.

Besides that, later sections will show that the distinction is also helpful for CAPLAN as a
planning assistant when it allows arbitrary planning decisions to be rejected. There are two
main reasons why arbitrary (non-chronological) rejection can happen:

e user interactions, a user wants to modify a certain part of the plan by rejecting planning
decisions, or

o dependency-directed backtracking that doesn’t backtrack chronologically and so has to
keep track of dependencies between planning decisions.

In both cases no recomputation of all threats possibly occurring in the plan after a rejection
is necessary as the evaluation of the annotations of all known potential threats is enough to
find all possible active threats after the rejection.

2.5.2 The Planning Algorithm

Figure 11 shows the basic planning algorithm of CAPLAN that was derived from the POCL
algorithm (Barrett and Weld, 1994). There are only a few differences to POCL that are due
to the distinction between active and potential theats (section 2.5.1), other extensions are
summarized later.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

Algorithm CAPlanBase((S,0, B),G, L, T, T))
1. Termination: If G = and T =), then stop (with success).
2. if T'# () then

(a) Threat selection: ¢ := select-threat(T)

(b) Threat resolution: op := select-protection(t) (backtracking point)
S'=S
O’ = O U orderings(op)
B’ = B U bindings(op)
(c) Threat update:
T, := {t|t € T potential threat}
Justify-threats(T,)
T =T {t} T,
T;;ot =Tt UT,

3. else if G # () then

(a) Goal selection: (p, speeq) := select-goal(G)

(b) Goal establishment: op := select-op(p, sneea) (backtracking point)
Sqdd ‘= establisher(op) where sqqq € S or new step that adds p before speeq
S/ = S U {Sadd}
O'=0u {Sadd < Sneed}
B’ = B U {binding-constraints, so that s,4s adds p}
G' = G — {(p, Sneed) } U preconditions(sqdq)
L'="LU {Sadd L> Sneed}
(c) Threat detection:
T, := {t|t € T potential threat in(S’,O', B')}
Justify-threats(T,)
T' = T U {t|t new active threat in(S',0', B')}

Téot =T UT,

endif
4. Recursive call: CAPlanBase((S',0',B"),G', L', T, T!..)

' T pot

Figure 11: The basic planning algorithm

The parameters of the algorithm are:

e a partial plan (5,0, B),
e aset GG of open goals (as defined in section 2.1) and
e the following SNLP-specific parameters:

— a set L of causal links,
— aset T of unresolved (active) threats and

— aset T}, of detected potential threats.

Given a planning problem (I,G, <) the planning process starts with the initial plan and
the initial planning goals. Planning proceeds by making decisions about the resolution of
threats (2.(a)-2.(c) in the algorithm) and the establishment of open conditions (3.(a)-3.(c) in

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

the algorithm). Each possible decision at the two backtracking points is represented with an
operator that will add elements to the plan before threats are checked or updated again:

o Threat resolution adds ordering or binding constraints depending on the selected threat
resolution method (promotion, demotion, separation).

e Threat update finds previously active threats that become potential because of the
selected protection.

e (Goal establishment also selects an operator that uses an existing step or adds a new step
as the so-called establisher for the open condition. Simple establishment is preferred to
step addition in CAPLAN here as this is important for this algorithm to find minimal
plans.

e Threat detection searches for new threats and divides them into active and potential
ones.

As mentioned before, potential threats are annotated with the reason for being potential (see
also section 4.4.2). This has some advantages for the threat detection mechanism. Threat
detection can be devided into two subtasks, each of which works incrementally even if an
arbitrary decision is rejected:

1. Finding new threats after a step addition: Only the new step has to be considered as a
source for new threats to existing causal links (potential or active). Of course, theats
to the added new causal link may occur too.

2. Updating potential threats: Threat update and threat detection both have to check
the currently active threats to see whether some have become potential because of the
selected threat resolution or goal establishment method.

Finally, the recursive calls to the algorithm terminate if there are no open conditions or
unresolved threats left, i.e., G = T = (. If a problem is unsolvable this algorithm will
terminate because there is no backtracking point left to which the algorithm could go back
(not shown in figure 11).

CAPlan-specific Extensions to the Algorithm

Section 2.3 and section 2.4 gave a detailed description of the domain and problem specification
in CAPLAN and already stated that there are some extended representation mechanisms.
Section 2.5.1 introduced the notion of potential threats.

All these extensions have consequences on the basic planning algorithm:

e The algorithm in figure 11 already takes the distinction between two kinds of threats
into consideration: threat detection and threat update distinguishes potential and ac-
tive threats and annotate potential threats with justifications.

e CAPLAN allows type constraints in operator specifications, so the algorithm needs a
more powerful constraint tester than the standard SNLP algorithm as steps 2.(b) and
3.(b), the two backtracking points of the algorithm, implicitly have to check consistency
of possibilities for threat resolution and goal establishment.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

The extended problem specification mechanism of CAPLAN allows to define orderings on the
set of goals of a problem that put additional constraints on a plan. This also forces some
extensions of the algorithm:

e The algorithm has to check the extended plan consistency that also considers the addi-
tional goal orderings specified in a problem description. This plan consistency criterion
is more restrictive than the simple consistency criterion.

e Whenever there are ordered goals and both are established by a plan step an ordering
contraints between both steps must be added. This reduces the extended consistency
test to the normal one with an extended set of orderings in the plan. It can be achieved
by extending step 3.(b) of the algorithm that is responsible for goal establishement:

3.(b): (...)
if isOrderedGoal((p, Speed)) and t = establisher((p, Sneed)) then
for all (p, Speed) < (p/, ") with t' = establisher((p',s')) do: O := 0" U{t < t'}
for all (p/,s') < (P, Sneed) With t' = establisher((p',s')) do: O :=O"U{t' <t}
endif

Finally, section 2.3 introduced the notion of phantom preconditions or filter conditions in
SNLP that force simple establishment for this type of conditions. The next section explains
the modification of the algorithm that are necessary to retain the completeness property.

2.5.3 Modifications for Filter Conditions

Allowing normal preconditions and filter conditions and establishing both in CAPLAN (see
section 2.3.4) causes the most complicated modification of the algorithm. (Collins and Pryor,
1992) already investigated the implementation of filter conditions in a complete and correct
partial-order planner and concluded that any such implementation fails to archieve the func-
tionality of filter conditions. These implementations use a modified version of the SNLP
planner in which filter conditions are ignored until all outstanding subgoals of a partial plan
are satisfied. So, filter conditions do not do much filtering in this implementation. (Collins
and Pryor, 1992) stated that it is problematic to consider filter conditions earlier in the plan-
ning process as in an incomplete plan it cannot be stated with certainty that a particular
filter condition cannot be established since it is possible that such a step will subsequently
be added to the plan.

But: While it is impossible to rule out an incomplete plan based on blocked” filter conditions,
there are still a number of ways to take advantage of them during the planning process. If
a normal precondition is blocked the algorithm from figure 11 will backtrack, i.e., it will
go to the last backtracking point, reject the selected alternative and try another one. This
behaviour is problematic for phantom preconditions (cf. (Collins and Pryor, 1992)). Treating
filter conditions like normal preconditions would then force backtracking on goal selection
whereas the fact that SNLP does not backtrack over goal selection was mostly seen as an
advantage.

In CAPLAN we make a compromise: phantom precondition are allowed in the definition of
operators and used during the planning process. Basically, phantoms are established like
normal conditions and they are preferred as the often do nothing else that binding free

TA goal is called blocked if there is no consistent way (operator) to establish it. Normally, a blocked goal
will cause backtracking to be invoked.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

variables of an operator (see section 2.3.4). The difference is that only existing establishers
will be used. But if a phantom precondition is blocked the algorithm behaves different than
in case a normal precondition is blocked. Blocked phantoms neither are completely ignored
or only used to penalize partial plans with unestablished filters (Collins and Pryor, 1992) nor
backtracking over goal selection is used to retain the completeness of the algorithm. Instead
CAPLAN reacts as follows if there exists at least one blocked phantom:

1. If there is no unestablished normal precondition left, then the planner backtracks as no
step addition is possible that could supply the blocked phantom with an establisher.

2. If there is a normal precondition that is not blocked, then ignore the blocked phantom
and select one of the not blocked phantoms or normal goals.

3. Whenever a phantom is blocked it doesn’t make much sense to resolve a threat as threat
resolution will never change anything with the blocked phantom. The only exception
are so-called forced threats (Peot and Smith, 1993), threats for which less than two
resolution possibilities are left. These are selected and resolved even if a phatom is is

blocked.

4. If there is an unresolvable active threat, then backtracking takes place.

The standard SNLP algorithm is complete, i.e., it will find a solution whenever one exists.
Now we will argue that completeness isn’t affected by the strategy that allows filter conditions
in SNLP described above. For each of the four cases listed above we have to show why
backtracking does jump over a solution:

e In case 1, we definitely loose a solution because there is no normal precondition that
could lead to a new plan step necessary to serve as the establisher of the blocked
phantom. This is the simplest case already stated in (Collins and Pryor, 1992) where
a phantom is ignored until all outstanding subgoals are satisfied and then helps to rule
out plans based on unestablished filter conditions.

e Case 2 follows the simple strategy of ignoring the blocked phantom. As there is another
unestablished normal preconditions there is still the possibility that a new step is added.
Avoiding backtracking here is necessary to be sure that the algorithm doesn’t jump over
a solution.

e Threat resolution will never add a plan step, so, it never will help to establish the
blocked phantom directly. But combining the strategy above with DUnf from (Peot
and Smith, 1993) seems to be promising. A forced threat can be resolved in at most
one way, so resolving it will add one more constraint to the plan without creating a
real backtracking point with a branching factor bigger than one. Especially no solution
will be lost as the forced threat also must be resolved in the solution.

e Case4 is comparable to the DRes strategy from (Peot and Smith, 1993) and also cannot
jump over a solution as all threats must be resolved in a solution. So, by selecting an
unresolvable threat the planner backtracks because of the threat not because of the
blocked phantom.

These arguments show that the compromize allows filter conditions on the one hand, and on
the other hand blocked filter conditions do not immediately cause backtracking and cause the
algorithm to becaome incomplete. Section 3.2.1 will describe the control component SNLP+
for CAPLAN that implements the compromise for taking advantage of filter conditions as
explained above.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

3 Controlling the Planning Process

The control structure of SNLP is very rigid: it always resolves threats before going on with
open conditions. (Harvey et al., 1993) has shown that this strategy is not inevitably necessary
for the algorithm to be complete. This motivated other control strategies (e.g., (Peot and
Smith, 1993; Joslin and Pollack, 1994)).

CAPLAN has a flexible control interface to be able to implement and test certain control
strategies. The next sections summarize the decision points of the planning algorithm, present
the control interface that allows to define control strategies and describe some important
control components available for CAPLAN, e.g., a control component for a combination of
autonomous and interactive planning.

3.1 Decision Points of the Algorithm

The algorithm from figure 11 has four direct decision points in which an alternative has to
be chosen from a set of possible candidates. These decision points are:

o threat selection (figure 11: 2.(a) select-threat(T)),
e threat resolution (figure 11: 2.(b): select-protection(t)),
e goal selection (figure 11: 3.(a): select-goal(G)) and

e goal establishment (figure 11: 3.(b): select-op(g)).

Goal and threat selection are not backtracking points. Given the fact that the algorithm is
complete even if threats aren’t resolved immediately (Harvey et al., 1993), there is a kind
of meta decision point beside the decision points listed above: the algorithm has to decide
whether to resolve threats or establish open conditions if both is possible.

3.2 The Control Interface of CAPlan

In CAPLAN the control aspect is taken into account using exchangable control components
(figure 12) for making the concrete selection at the decision points (including the meta
decision point) of the algorithm. Therefore, it is necessary to modify the algorithm from
figure 11 in a way that steps 2 and 3 can be processed in any order depending on the meta
decision of the current control component.

CAPlan : Search | | Backtracking
Control Control

Extensions Control Interface

SNLP

Figure 12: Exchangable Control Components

Another point for control decisions is backtracking. SNLP always was presented as an algo-
rithm that performs simple chronological backtracking. CAPLAN is more flexibel by using
exchangable backtracking control components to define the backtracking behaviour of the

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

planning algorithm. Besides the chronological backtracking there is a simple dependency-
directed strategy (backjumping) available for CAPLAN that retains the completeness prop-
erty of the algorithm.

3.2.1 Control Components

A control component defines the behaviour of the planning algorithm at the decision points
listed in section 3.1. Each control component has to define a set of five selection and decision
functions which correspond to decision points of the algorithm:

o process-threats(G,T): This function decides what to do first, whether to resolve a threat
from T or to establish a goal from G.

o select-threat(T), select-goal(G): These functions define which threat or goal should be
processed next.

o select-protection(t), select-op(g): These two functions represent the selection decisions
at the backtracking points of the algorithm. As said before, select-op(g) will prefer to
select operators that perform simple establishment.

Figure 13 sketches parts of a modified version of the planning algorithm from figure 11. It
shows how the five selection and decision functions of control components are integrated into
the planning algorithm.

Algorithm C'APlanBase
1. Termination-Check

2. Task-Selection:
if process-threats(G,T)=true then

(a) (figure 11: 2.a) t := select-threat(T)
(b) (figure 11: 2.b) op := select-protection(t) ...
(c) (figure 11: 2.c) ...

else
(a) (figure 11: 3.a) (p, Sneed) := select-goal(G)
(b) (figure 11: 3.b) op := select-op(p, Sneed) .-
(c) (figure 11: 3.c) ...

3. Recursive Invocation

Figure 13: Enbedding control components into the planning algorithm

Examples for Control Components: After the overview of the general mechanism for
defining control components we now give two examples for the concrete implementation of
main parts of two control components for CAPLAN:

e The simplest control component implements the standard SNLP strategy. The main
characteristic of SNLP is to prefer threat resolution to goal establishment what is ex-

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

pressed in the definition of the process-threats(G,T) function (figure 14). Additionally,
SNLP prefers simple establishment to step addition.

select-op(g)

process-threats(G,T) ||if conflictSet(g) = 0 then
if T =0 then backtrack

return false else if Jop € conflictSet(g) and isSimple Est(op) then
else return op

return true else

return some op € con flictset(g)

Figure 14: Control component SNLP

e Figure 15 shows the main control functions for the strategy SNLP+ to take advan-
tage of filter conditions (see section 2.5.3) by preferring the establishment of filter
conditions as this will bind free variables. But here the behaviour at the meta decision
point (process-threats(G,T)) changes with the presence of blocked phantom precondi-
tions. Phantom preconditions for which no consistent simple establishment exists in

process-threats(G,T) select-threat(T)
if dg € subset-of-phantoms(G) and blocked(g) ||if 3t € T and forced(t) then
then return t
if Ag’ € subset-of-normal-goals(G) then else
backtrack ... default selection of SNLP ...
else if 3t € T' and forced(t) then select-goal(G)
return true if 3g € subset-of-phantoms(G) and —blocked(t)
else then
return false return g
else else
... default selection of SNLP default selection of SNLP ...

Figure 15: Standard control component SNLP+ of CAPLAN

the current plan (blocked phantoms) result in deferring backtracking until no normal
precondition exists. Additionally, SNLP+ prefers forced threats in this situation as
they don’t increase the branching factor.

It’s quite easy to define other control components, e.g., control components that delay threats
in certain situations (Peot and Smith, 1993) or the well known LCFR (Least Cost Flaw Re-
pair) presented in (Joslin and Pollack, 1994) that often is a very successful control component
although it does a lot of computations before it selects a flaw. All we have to do is to define
the behaviour at the decision points that are reflected in the strategy.

3.2.2 Controlling Backtracking

If goal establishment or threat resolution fail because there is no consistent alternative left
the planning algorithm backtracks. Similar to the control components for selecting among
different alternatives for threat resolution or goal establishement (section 3.2.1), CAPLAN
uses so-called backtracking control components to enable different backtracking strategies. A

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

backtracking control component defines the exact behaviour whenever the planner has to
backtrack. In general, a backtracking control component determines the decision point to
which the planner has to go back. Additionally, it rejects one or more decisions that are
found to be wrong by this component.

Chronological Backtracking. The simplest implemented backtracking strategy is the
default strategy of SNLP, chronological backtracking: backtracking here means to go back to
the last backtracking point, reject the current operator and select another consistent one or
to go back again until a consistent operator is found. To do this, the algorithm needs to keep
track of the order in which it processes open conditions or threats.

As mentioned in section 2.2, the search process with chronological backtracking can be rep-
resented as a tree (figure 16). Nodes are the goals that are selected to work on in a certain
plan state, where a goal can be to resolve a threat or to establish an open condition.® Leafs
in the tree represent a plan state were unresolvable inconsistencies occurred or a solution is
found. Edges from a node n; to successor nodes n; represent a refinement operator (pro-
tection or establishment operators) for goal n;,. We also speak about a decision d;; as the
specific corresponding to it has been selected from a set of alternatives.

-~ Operator
di: application

Figure 16: Chronological backtracking

Traversing the search tree in the order G1, G2, ..., G5, G4, G6, G7, ... is what chronological
backtracking leads to. The algorithm simply goes back to the last backtracking point no
matter what the real reason for this failure was.

Chronological backtracking is a simple backtracking strategy. A more sophisticated dependency-
directed backtracking mechanism is implemented for CAPLAN (see section 4.5) that is moti-
vated by the backjumping strategy (Ginsberg, 1993).

8Fach node labeled G represents a certain plan state (S, 0, B) and the goal G; is an unresolved threat or
an open condition in this plan that has been selected to be processed next.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

3.3 Interactive Planning

As already said in the introduction, CAPLAN was motivated by a scenario where a user can
participate in the planning process because a combination of autonomous and interactive
plan generation seems to be a promising way for solving complex real world problems. This
combination is one way to solve problems for which autonomous generative problem cannot
efficiently control the search process.

There are two possibilities how a user can participate in the planning process:

1. A user selects among several possible alternatives at a decision point.

2. A user rejects parts of an existing plan because, for example, it is wrong or not optimal
from his point of view.

CAPLAN supports both aspects. The first one can easily be done using the mechanisms
of the control interface of CAPLAN. A special interactive control component UC (User
Control) allows to control the planning process via a graphical user interface. E.g., the
interface in figure 17 shows the current lists of open goals and unresolved threats and enables
interactive selection for all possible decision points. Other elements of the graphical user

| - CAPlan System Browser [LCFR] [

File Planning Control Viewers Inspectors
GBTask (“leftRotatoryTool(lm1) @ STEP-S[BLCK]) =
[GETask ("leftRotatoryTool{lnTy @ STEP- Z[BLCK])
URGTask (unprocessedThreadithrl) @ STEP-8) Run
URGTask (processedihor) @ STEP-1)

URGTask (holdedTool{im1) @ STEF-1)
URGTask (processedUndercutHalfl thint1 hot) @ FINISH)

£ | >

URGTask (-Threat[STEP-3][1]) al
URGTask (- Threat[STEP-&][1])
URGTask (- Threat[STEP-&][1])

Figure 17: User interface for interactive planning with CAPLAN

interface show the current state of the plan, the so-called subgoal graph (see section 4.3.3)
and of the underlying dependency network.

Decision Rejection. Interactive planning also means that a user might have the oppor-
tunity to correct plans that are wrong or not optimal from his point of view. The task of
the system here is a little more complex: it should be able to identify parts of an existing
plan that are affected by an arbitrary rejection. CAPLAN always records dependencies be-
tween planning decisions using the generic REDUX architecture (see section 4.2 or (Petrie,
1991b; Petrie, 1992)) and is able to propagate such rejections. The propagation mechanism

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

effectively identifies all other decisions that are affected by the rejection. So, it makes a
conservative update of the current situation by removing only those parts of a plan that
definitely were based on the rejected part. Some details about the stored dependencies for
decision rejection and the advantages to stack oriented archtectures are described in (Weber-
skirch and Paulokat, 1995). The mechanism used here is similar to what has been published
for NONLIN in (Daniel, 1984), but in CAPLAN the integration of dependency maintenance
and planning algorithm more straightforward as the complete planning algorithm is realized
based on a system for dependency maintenance.

3.4 Control components for CAPlan

So far, the following control components for search control are available:

SNLP+: This control component carries out the control strategy of SNLP and is the default
control component. The main difference in comparison with SNLP is that it modifies
the control structure to be able to allow filter conditions. But completeness of the
algorithm is retained.

UC (User Control): This control component makes CAPLAN act as a planning assistant
and allows the user to make all decisions that come up. The degree of interaction with
the user is variable, e.g., it can be restricted to the selection of goals or operators or
can cover alle possible decision points. A special property of this control component
is that it also allows the user to reject arbitrary planning decision and determines the
minimal set of dependent decisions that have to be rejected as a consequence of the
users rejection.

CbC (Case-based Control): Work on CAPLAN originally was located in the area of case-
based plannning (Paulokat et al., 1992; Paulokat and Wess, 1993). Therefore, an addi-
tional objecture was to be able to integrate this work in the archtecture described here
and enable further improvements. In CAPLAN/CBC (Munoz-Avila et al., 1995) the
case-based control component CbC performs this integration. This control component
uses episodic knowledge in form of cases to guide the planner in selecting the right
operator for an open goal.

For backtracking control there are only two alternatives:

ChronBT: This is the simplest backtracking control component that performs chronological
backtracking.

BJ: Here the chronlogical backtracking is substituted by the more sophisticated backjumping
strategy (Ginsberg, 1993). In section 4.5 the idea of this backtracking strategies is
described in more detail.

Several other strategies have been realized for testing, e.g., the threat delay strategies from
(Peot and Smith, 1993), the least cost flaw repair strategy (Joslin and Pollack, 1994) or threat
subsumption strategy of (Yang, 1992). (Kettnaker, 1995) describes a mechanism to combine
several of these strategies to a complex control component for CAPLAN, control components
are plugged together from a toolbox of simple elemary strategies.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

4 The Planning Assistant CAPlan

After the last sections have described the base level planner and the control interface, this
sections gives some more details about the combination of this base level planner and the
REDUX architecture (Petrie, 1991b; Petrie, 1992) that provides mechanisms for dependency
maintenance. First, we give a general overview of the CAPLAN architecture. Section 4.2
will explain important concepts and mechanisms of REDUX. Finally, we will describe how
REDUX is used to build an SNLP-like planning application.

The all components of the CAPLAN system that are described in this report are fully im-
plemented using the object-oriented technology of Smalltalk (VisualWorks 2.0) and run on
serveral hardware platforms. Preferred development platforms are Sun Sparc (SunOS 4.1.x,
Solaris 2.x) and IBM PC (Windows 3.x, Windows 95). The sources of the system can be
obtained from the author of this report.

4.1 System Architecture of CAPlan: An Overview

Figure 18 shows a schematic overview of the architecture of CAPLAN. It is based on an
extension of the generic REDUX architecture (Petrie, 1991b; Petrie, 1992). The advantage
of REDUX is the explicit representation and maintenance of a various dependencies between
concepts relevant to planning — goals, operators and elements of a plan (see section 4.2).
CAPLAN uses the concepts and mechanisms of REDUX to represent knowledge about partially
ordered plans, the SNLP-like planning process, and dependencies between planning decisions.
REDUX+ in figure 18 indicates that REDUX had to be extended slighly to be adequate for the
purposes of SNLP-like planning. Especially, the subgoal tree of REDUX had to be extended
to a subgoal graph for a correct representation of threats (see section 4.3.3).

CAPlan Control Components
' sNLP+[| uc | |cbe
SNLP-based |
Planner Control Interface
REDUX+ ! !
E | subgoal | decision
plan ! graph 10 Q Rdependencies

Figure 18: The CAPlan architecture

In this way, CAPLAN is a combination of REDUX and the SNLP planning paradigm. It
inherits properties of both, the facilities for dependency maintenance that are very helpful for
interactive planning, sophisticated backtracking strategies or EBL-based learning strategies
on the one hand, and a promising partial-order planning paradigm (Barrett and Weld, 1994;
Minton et al., 1991; Minton et al., 1994) on the other.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

4.2 A Brief Redux Overview

REDUX (Petrie, 1991a; Petrie, 1991b; Petrie, 1992) is a generic architecture to represent
knowledge about plans and contingencies that occur during planning. It’s intend is to make
it easier to build applications embodying such knowledge where change is inevitable, e.g.,
planning or design applications. REDUX combines primary elements like goals, constraints,
and contingencies. This section will give a brief overview of basic REDUX concepts and
mechanisms, and the process of problem solving with a REDUX application.

4.2.1 Key Concepts of Redux

Central concpets of REDUX are goal and operator. These are also typical for the description
of planning or design problems: designing a complex object or planning a complex action is
the goal that has to be achieved. Operators represent ways to achieve such goals.”

Problem solving proceeds by applying operators to goals. The consequences of operator
application are new subgoals and assignments (figure 19). As different operators might be
applicable!® to a goal, we speak about the so-called conflict set of operators for a goal. The
selection of an operator from a conflict set represents a backtracking point for the search
process and is called a decision. A decision can be rejected if REDUX found a reason against
the application of an operator (e.g., inconsistencies with other valid decisions). We also
say the corresponding operator is rejected. These reasons for rejections are then explicitly
represented as justifications for the rejection of the decision. If the conflict set of a goal is
empty or if it contains only rejected operators, then the goal is called blocked. If an operator
has been applied to a goal, this goal is said to be reduced.

. -decision

| Subgoal-1 | -+ | Subgoal-n |

Figure 19: Operator application Figure 20: Subgoaling

Goals and subgoals build the subgoal graph, one of the basic dependencies recorded by REDUX.
The root node of the subgoal graph can be understood as the general goal to solve the
problem and the immediate successors of the root node are the goals specified in the problem
description. Successor nodes originate from operator application. Because of that, in REDUX
each goal can have only one parent goal, so the subgoal graph is in fact a tree (figure 20).
As we will see later, this is not completely adequate for an SNLP planning algorithm and so
has been extended for CAPLAN.

? Although there are many similarities, goals and operators of REDUX should not and cannot be treated as
equivalent to goals and operators in planning. The primary use of goals and operators in REDUX is to model a
search process, e.g., for example the search in the space of partial plans performed by an SNLP-like algorithm.
The operators of REDUX cannot be elements of partial plans but they have effects that modify plans.

10The term applicable in the context of REDUX operators also should not be mixed up with this term in
the context of plan operators or plan steps where applicability requires the preconditions to be valid. In
most older planners, e.g., STRIPS (Fikes and Nilsson, 1971) or NONLIN (Tate, 1977), there is no distinction
between operators and plan steps. In REDUX, an operator is applicable to a goal if it in general represents a
way to achieve the goal, so for different types of goals we can define sets of applicable operators.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

Assignments represent the effects of an operator application and were originally thought
to assign values to variables. In the planning architecture discussed here the operators of
REDUX represent the different plan refinement operators for partial plans (see section 2.2)
and the assignments of an operator are the modifications of a plan caused by this operator
(new steps, orderings, or constraints). The current set of valid assignments determines the
elements of the current plan. Checking plan consistency means to check the current set of
valid assignments. An important point here is that REDUX will always be able to identify the
decision that added a certain assignment. This feature is a preassumption for dependency-
directed backtracking mechanisms which have to analyze sets of inconsistent assignments
and identify culprits (decisions) for these inconsistencies. The validity of assignments always
depends on the validity of the corresponding operator. This and other dependencies are
explicitly represented.

Basically, REDUX represents several aspects of goals and operators: validity and local opti-
mality of decisions and dependencies among them (see (Petrie, 1992) for details). Important
dependencies for CAPLAN are (see also figure 19):

subgoals depend on their parent goal,

subgoals depend on the decision that added them,

decisions depend on the goal they are applied to,

e assignments depend on the decision that added them.

Petrie suggested a TMS-based implementation for the maintenance of this dependencies.
Each aspect, e.g., the validity or blockade of a goal or the necessity to reject a decision,
is represented with a node in the TMS that can be justified. Thus, the dependencies are
expressed by justifications of nodes in the TMS. The rejection of a decision basically means
to add a justification to the node representing the reason for the rejection of the decision. A
propagation algorithm is used to determine the state of goals, decisions, and assignments.

4.2.2 Backtracking and Replanning

In general, a problem solver based on REDUX is not assumed to be able to find a solution
at once. It will make decisions that are locally good but may not be suitable in the context
of the complete problem. This will lead to situations in which no selectable operator exists
for an unreduced goal: in terms of REDUX this goal is blocked. REDUX, then, invokes a
backtracking mechanism to solve this blockade, i.e., the concrete backtracking mechanism
must identify one or more decisions and reject them, so that this goal is no longer blocked.

Backtracking isn’t the only situation that leads to the rejection of decision. REDUX also
defines the concepts of the admissibility and the local optimality of a decision (so-called
pareto optimality). As these concepts are unimportant for CAPLAN they are omitted here
and the reader may look at (Petrie, 1991b; Petrie, 1992) for a detailled discussion.

In general, REDUX allows arbitrary decisions to be rejected any time and will force replanning
for goals that become unreduced because of the rejection of a decision. There is one special
property of the rejection mechanism, the distinction between the necessity to reject a decision
(rejection) and the real process of retracting the decision (retraction). Both are connected
by the following relation:

1. The rejection of a decision always results in a retraction of the decision.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

2. If an operator is rejected (so also retracted) and the reason for rejecting it becomes
invalid, REDUX will NOT automatically change the decisions state, i.e., the fact that
it is retracted.

Instead of an automatic change of the state of an retracted decision REDUX will only inform
the problem solver about this event and give it a chance to react if necessary. This second
point is one of the reasons why REDUX is more than a simple JTMS in which relations that
are not bi-directional cannot be represented.

4.2.3 Problem Solving with Redux

Problem solving with REDUX means to reduce goals and to keep track of inconsistencies
among the assignments of operators and of blocked goals.

Initialization

Y
Initial Propagation

-

Agendaem\ptyT'YL> Ready

No

\ s

Select task _,.«""l\‘loY&s
Blockade?

\ L _

Process task determine culprit(s)
[select operator | \
Y reject culprit(s)
Propagate changes

Figure 21: Problem solving with REDUX

REDUX is an agenda driven system: for each open goal, i.e., a goal for which no valid operator
has been selected, there is a task on the agenda representing the necessity to find an operator
for this goal. Blocked goals are also represented with tasks that indicates that something has
to be done to handle this blockade. A selection mechanism picks the most important task
from this agenda and processes it (see figure 21):

e In case of an open goal it selects and applies an operator that is both, applicable to
the goal and consistent with the current plan. At this point REDUX needs application
specific modules to check the consistency of an operator and to create justification for
inconsistencies. Operator application then adds new assignments and/or subgoals.

e In case of a blocked goal REDUX determines and rejects one or more decisions to re-
solve the blockade. In general, this will result in some kind of backtracking, possibly
dependency-directed backtracking if the blockade is analyzed and decisions that are
responsible for it are rejected.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

Finally, the changes of processing the task are propagated. As mentioned above, Petrie
suggested a TMS-based implementation of REDUX, so propagation of changes is done by the
labelling mechanism of a JTMS (Doyle, 1979).

4.3 Building CAPlan on Redux

The last section gave some important details about the REDUX architecture. We will now
concentrate on how the planning assistant CAPLAN is built on the underlying REDUX ar-
chitecture. First we describe how basic concepts of the planning algorithm are mapped to
concepts of REDUX. Then some important modules of CAPLAN and aspects related to the
extensions of REDUX and the creation of justifications are summarized. The last section
presents an alternative to chronological backtracking, the so-called backjumping.

4.3.1 Mapping of SNLP-Concepts to Redux-Concepts

For building CAPLAN based on the REDUX architecture the partially ordered plan represen-
tation and the basic concepts of SNLP and CAPLAN have to be mapped to REDUX concepts.
The mapping is straightforward since both have the notion of goals and operators. Back-
tracking points become goals for REDUX and the different alternatives are expressed by the
different types of operators that can be applied to such goals.

There are two types of goals:

e goals to establish open conditions (precondition goal) and

e goals to resolve threats (protection goal).

Conflict sets for this two types of goals consist of operators that realize the plan refinement
operators for partial-order planning (see section 2.2).

Each refinement method is represented as a class of operators and concrete instances of it
can be chosen to be applied to such a goal. The concept of having assignments associated
with operators is used to represent the partially ordered plans: all elements of plans (steps,
orderings, constraints) and also causal links become assignments of operators.

The following are the four types of operators necessary to realize partial-order planning based
on REDUX. Each of them corresponds to one plan refinement method:

e phantom operators for simple establishment, they add a causal link and probably come
binding constraints as assignments,

e domain operators for step addition, they add a new plan step that corresponds to one
operator of the domain specification, a causal link and all constraints specified in the
domain definition,

e ordering operators for threat resolution by promotion/demotion, they add an ordering,

e separation operators for threat resolution by separation, they add one ore more con-
straints.

Phantom and domain operators are applicable to precondition goals whereas ordering and
separation operators are applicable to protection goals. The application of these operators
to a goal adds new assignments. The current plan is determined by the current set of valid
assignments and applying operators to goals changes the current plan.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

4.3.2 Modules of CAPlan

Figure 18 gave a schematic overview of CAPLAN — we will now put this in concrete form with
the more detailled figure 22 that highlights the most important aspects of the realization of
CAPLAN based on REDUX. The architecture is constituted by two main parts, the system
kernel and the user interface.

) CAPI an Control
Q User Interface
e
]] Problem & Domain
=
c Plan REDUX- Editiors
Q Viewer Interface
=) L
D C] ISt Test . . R A 0
< onsistency 1 ester Justification 1 ‘
T . | Problem !
X . _ Generator e |
orderings bindungs 1| objects ‘
§ | | invariants !
1%} | || start& goal |
o) Control 1 | goal orderings !
Components v ____ | !
Dynarmic [snep|[uc] cbe!! 1 |
Knowledge Base L,, _k 17;;‘1‘ ! Domain |
[S A i A A 2 |
I ! : t a I
| CAPlanKemnel |- | o2 o ||
| Plan N |
| o operators |
l assignments REDUX bt l
T plan steps L. |
} orderings ! Satic
! constraints TMS | Knowledge Base

Figure 22: Details of the CAPlan Architecture as a REDUX Application

System Kernel. The system kernel consists of the static knowledge base which holds the
current domain specifications and the dynamic knowledge base that holds information about
the planning progress for the current planning problem.

The dynamic knowledge base, the control components, and the two REDUX-specific, modules
consistency tester and justification generator, constitute in detail what is shown in figure 18.
The CAPLAN kernel is the already mentioned extension of REDUX that we called REDUX+.
The extensions are due to the integration of the control interface and the correct represen-
tation of threats. REDUX itself is based on a truth maintenance system for the maintenance
of dependencies, in CAPLAN we have a JTMS (Doyle, 1979). Consistency tester and justifi-
cation generator are two modules required by REDUX for the following purposes:

e The consistency tester checks the extended plan consistency property, as defined in
section 2.4, for a given set of new assignments with respect to the current set of valid
assignments.

e The justification generator uses the results of the consistency tester to generate various
kinds of justifications for the REDUX kernel. The most important justifications are

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

the rejection justification for inconsistent decisions and the satisfied justification for

potential threats (see section 4.4).

The REDUX kernel calls these modules whenever a consistency check is necessary or a justi-
fication is required, e.g., when a conflict set for a goal is computed and an operator is to be

selected (see section 4.2.3).

User Interface. The user interface consists of several components to define and manage
domains and problems or to view the current subgoal graph or the plan at various levels of
detail (see figure 23). Figure 17 on page 23 already has shown one of the central component

1] CAPlan Subgoal Viewer [N
~
Bl

5] subarea(thr?aufZ
[£] holding Tool(gm1)
-»STEP-2

HoldToal

[70] clamp From Tum (auf1 y

ClampTum

ProcessThread [}

—‘. 37

-=§TEP-7 [tool HolderFree]
HoldTool

[elamp From Tum (hintz)

26] “toal(im1

[- CAPIan Plan Viewer 4]

STEP-1

i -] CAPlan: Domain & Problems [ET]
| File Edit Show Start
[operators =l | ! sworkpieces]
- I
ClampMoTurn-MotFree [+
ClampNoTurn-Thread Eo |Forget definition(s)
ClampTurn B ALL
ClampTurn-MotFree ~
ClampTurn-Thread [Arguments: gumems
HoldTool #hint #kont #wzg #spannkant
MakeToolHolderFree : #saite?
ProcessOrill Constraints:
processeduUndercut b #{lsOfType RightRotaryTool K
Processinternedrea wizg)
ProcessOutline 4
ProcessPrickOut #(IsOfType ProcessingArea
ProcessRoundOff spannkont) Subgoals
ProcessShapedGroove #(NotSame kant spannkont) Fope—
processSide #{IsOfType ExteriorOutline kant)
ProcessSlope
ProcessThread #{1sOfType ExteriorUndercut
ProcessUndercutH1Lefl hint)
ProcessUndercutH1Ler #{IsOMType WpieceSideZ seite2)
ProcessUndercutH1Rig Purposes:

]

ProcessThread (thrz,aufe,gm1 aufly

ClampTurn(@ufl 51,52 aute)

STEP-7
HoldTool(im1)

STEP-B
ProcessOutline(aufz,im1, hint2y

Figure 23: Components of the User Interface

of the user interfaces to control the planner, the interface for interactive planning. Here the
user takes the role of the control component and selects at decision points.

Besides that there are special interfaces for viewing the internal dependency structures es-
tablished by REDUX during a planning process , e.g., figure 24 show a viewer for the part of
the dependency network for a certain decision.

| - Decision nodes: processed(auf?) @ STEP-1/ ProcessQutline(auf2,Im1,hint2) i _ISJ

Tpfimality 055 [OUT]

g [&gimissibleOp [T

FelectedDecizion [OUT]

[El processed(aur2)

[6] processed{auf2)
-» 8TEF-3

ValaGoa]
clampF rom Tumhink2)
m WG TOOTI]
i

Decision [IM]

- STEF-3
FrocessOutline

FRetractedDecision [OUT]

EIGeA]

FrocessQutiine

Figure 24: Viewer for Parts of the Dependency Networks

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

4.3.3 Redux-+: Extensions to Redux
As said before, the CAPLAN kernel extends REDUX in the some ways:

e The CAPLAN kernel realizes the integration of REDUX, the control interface, extended
representation mechanisms, and several modules used by REDUX (consistency tester,
justification generator).

e The CAPLAN kernel also extends the represented dependencies for one type of goals
used in CAPLAN, the protection goals.

The second aspect will be explained a little more precise here.

Originally, REDUX makes the assumption that each goal can have only one parent goal, so
the subgoal graph is in fact a tree. However this is not adequate for building an SNLP-like
planner on REDUX for the following reason: threats are a kind of dependency between two
decisions, one that added a causal link as an assignment, another that added the threatening
step. As threat resolution is a backtracking point of the algorithm threats must be represented
with goals, protection goals in CAPLAN (see section 4.3.1). Protection goals are created as
subgoals of the two goals that are responsible for the threat, first, the goal Goal-1 with an
operator that added the threatened causal link, and second, the goal Goal-2 with an operator
that added the threatening step (see figure 25).

| Goal-1 | |Goal-2 |

Protection
Goal

Figure 25: Protection goal Figure 26: Subgoal graph

Figure 26 shows the consequence of this extension: we have a subgoal graph (not a tree). But
this extension is necessary to be able to identify threats and threat resolutions that become
invalid after the rejection of a decision (especially for interactive planning or dependency-
directed backtracking). For all nodes in this subgoal graph we can demand that a node is
valid only if all its predecessors are valid.

4.4 Justifications for Decisions and Goals

Adding justification to the dependency network is the way provided by REDUX to store
information that might be interesting later. Section 2.5.1 and section 4.2 already mentioned
that CAPLAN stores reasons for threats being potential and for inconsistencies of operators
to prevent having to do the same test more than once.

There are three situations in which such justifications are created to store interim results and
dependencies of the planning process:

e inconsistencies of operator,

e backtracking, and

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

e potential threats.

In each situation a justification has to be found for one aspect of the state of a decision or a
goal. The first and second concern rejection justifications of decisions, the third one concerns
the so-called satisfied justification of protection goals.

4.4.1 Rejection Justifications: Inconsistencies and Backtracking

There are two types of inconsistencies that can occur in a plan: ordering inconsistencies and
binding inconsistencies (see section 2.1). Both are detected by the consistency tester modul
of CAPLAN (see section 4.3.2) and in both cases the justification generator modul must give
a kind of local explanation for the detected inconsistency.

Figure 27 gives an example for an ordering inconsistency. It shows three steps that are
ordered with respect to each other. The new ordering o = s3 < s; is obviously inconsistent
because of the existence of the orderings oy and o0y. The consistency tester finds them by
trying to prove the opposite of the new ordering (ss successor of s1). This proof suceeds
because of these two orderings. As long as both are valid, o will be inconsistent, so 0oy and
0, are the reason for the inconsistency of o.

s > S =S | Inconsistent: ,<'S,

T IR - Reason: {) ,02}

Figure 27: Ordering inconsistency

It’s very similar for variable binding constraints. Imagine there are the two constraints
z #y,y # z. Then the constraints 2 = y is inconsistent because of the existence of these two
constraints. In general, the constraint system of CAPLAN computes connected components
in a graph consisting of variables as nodes and the valid constraints as edges. In the example,
both constraints are in the same connected component of this graph. In case of a binding
inconsistency, CAPLAN determines which variables are involved in the inconsistency (z,y, z
in the example), gets the set of connected components in which these variables can be found
and it always considers all the constraints in theses connected components to be responsible
for this inconsistency.'!

In both cases of inconsistencies, we get a set A = {a1,---,a,} of assignments (orderings or
binding constraints) as reasons for an inconsistency. As REDUX always allows to determine
the decision that was responsible for adding a certain assignment it’s easy to identify the
decisions D = {decision(a;),-- -, decision(a,)} that are responsible for the inconsistency.
They describe the situation where the new constraint is inconsistent. This set of decision
might be larger than necessary in some cases, but in general it’s hard to reduce the set to
the really necessary one. Besides that, for constructing correct justifications we doesn’t need
the minimal set but a set that is sufficient to describe the situation. CAPLAN exactly uses
sets of decisions D as described to justify the rejection of inconsistent decisions.

"1n the example it surely would be enough to store x # y as the reason for this inconsistency, but in general
it’s quite difficult problem to reduce the set of possible candidates (the connected component of the variables
z,y and the constraints = # y, y # z) in such a way.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

Chronological Backtracking. Backtrackingin REDUX is also realized the rejection of one
or more previously selected decisions. Again a justification has to be computed that reflects
the reason for the necessity to backtrack. The central idea here is to use the current context
in which backtracking over a certain decision occurs as the justification for the rejection of
that decision. The context is the the set of valid assignments or their associated decisions.

If we look back at figure 16 on page 22 we see that the current context, a certain plan state,
can be described by a set of valid decision, e.g., at node G5 where backtracking is necessary
we have the decisions Dyq10 = {- -, d21,d31,d41} (the edges on the path from the root node
to the current node). For chronological backtracking, we also have to keep track of the order
in which decisions are taken, so we for example know dj, s = d41. Chronological backtracking
now simply means that we have to reject dj,s; and the justifying context for the rejection is
the set Dyu1iq — {dias:} of decisions. This justification definitely prevents that dj,s; can be
selected in this context again.

Dependency-directed backtracking differs from chronological backtracking only by the fact
that some deyiprit € Dyqliq is chosen to be rejected but d.yipri¢ Will not necessarily be the last
decision before backtracking occured. The justification here again can be the full context
Dyatia — {dcuiprit} or a subset of that. The difficulty, however, is finding the culprit and a
sufficient subset to justify the rejection.

4.4.2 Satisfied Justifications: Potential Threats

Section 2.5.1 introduced the distinction between active and potential threats in CAPLAN.
Potential threats are a kind of interim result of the threat detection process that can be
useful for later threat computations. A potential threat (s, s; LN s;,C') is a threat that is
already resolved in the current plan, either because the threatening step is already ordered
with respect to the steps of the causal link (s; < s; or s; < si is valid), or the necessary
constraints C are inconsistent with the current constraints of the plan.

It’s easy to see that the justification for this situations are exactly the same as described
for inconsistencies in section 4.4.1. The only difference is that the justification now are used
for another purpose than the rejection of a decision, here as an annotation of a protection
goal saying that it is already satisfied. In REDUX this annotation again is represented as a
justification of a node in the dependency network indicating the fact that a goal is satisfied
or not. Because of the representation of this interim result in the dependency network, this
threat will not have to be tested again as long as its justification saying it is a potential
threat is still satisfied.

4.5 Backjumping

Chronological backtracking is a simple backtracking strategy. A more sophisticated back-
tracking mechanisms is implemented for CAPLAN that was motivated by backjumping (Gins-
berg, 1993), a simple form of dependency-directed backtracking.

Backjumping is characterized by the fact that the failure in finding a consistent operator for
a goal is analyzed to get some information about the real reason (an earlier decision) for this
failure. Backjumping still means to go back chronologically but depending on the results of
analyzing the failure it will probably go back more only than one step at once (figure 28).
This results in the rejection of more than one decision. In figure 28 for example, the failure
at G5 led to backtracking and the analyzing the failure may have determined Dg; to be

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

"culprit”

Figure 28: Backjumping

the nearest reason (culprit) for it. The savings with jumping back to G2 (and rejecting the
decision da41, d31, da1 between G5 and G2) are obvious. The critical point is to guarantee that
jumping back will not discard a part of the search space in which a solution can be found.

Analyzing a failure requires an explicit representation of the dependencies between decisions
and their effects on the plan (orderings, constraints). This feature is provided by the REDUX
architecture (see section 4.2). The conflict set of the failed goal has to be analyzed to identify
the reasons. It can contain either operators that failed because of backtracking or operators
that failed because of inconsistencies of the assignments of this operator with the current plan.
The last point is interesting for backjumping. If G; fails and the backtracking mechanism is
invoked to find the decision point to go back to, backjumping does the following: for each d;;
that failed because of inconsistencies of the assignments this rejection is justified with a set
D of decision (section 4.4.1). These are likely to be the real candidates D.q,q for the failure.
The algorithm now uses the available stack that stores the order in which decisions were
taken and goes back until a decision appears on top of this stack that is in the computed set
of candidates or until it reaches the so-called parent decision of G;, i.e., the decision that was
taken for an earlier goal GG, that added G; as a new subgoal. Not to jump over the parent
decision is the important condition here as rejecting the parent decision of a goal is always
a possible candidate that will remove the failure at this goal by simply removing the goal.
(Weberskirch, 1994) gives a proof that this strategy is enough conservative to guarantee that
it never jumps over a solution.

Savings of backjumping could be improved if a smaller set of candidates could be determined
(the smaller the better). This problem is connected with the problem of finding justification
for inconsistencies. There we don’t need minimal set of decisions that justify a rejection. For
backjumping, a better analysis of the justifications for inconsistencies will improve backtrack-
ing behaviour. But it’s a hard problem to determine the minimal set of reasons. Determining
such minimal sets has not been investigated yet.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

5 Conclusions

In this report we presented the main ideas of the CAPLAN architecture for domain indepen-
dent generative action planning. The most important features of this architectures can be
summarized as follows:

e CAPLAN s based on the idea to combine a complete base level planner with mechanisms
for dependency maintenance to support a partially interactive planning process.

e The base level planner of CAPLAN is a descendant of the SNLP algorithm (McAllester
and Rosenblitt, 1991). It uses extended mechanisms for domain specification (e.g.,
object types, types constraints in operator definitions, typed preconditions). Problem
specifications are also extended by ordering constraints on the planning goals that allow
to give additional information about the order in which the goals have to be achieved
in a solution plan. Problem specifications where goals can be ordered with respect to
each other are also known from HTN-planning (Erol et al., 1994a; Erol et al., 1994b).

e CAPLAN builds the SNLP-like planner on top of the REDUX architecture (Petrie,
1991b; Petrie, 1992) to integrate the planning algorithm and a mechanism for depen-
dency maintenance. This is done by modelling the search process in the space of partial
plans of SNLP by means of the REDUX concepts of goals, operators, and assignments.

e Being able to use and integrate various different control mechanisms to control the plan-
ning process motivated the control interface of CAPLAN. CAPLAN allows to define
a certain control strategy by defining independent modules called control components.
There are a number of control components available for CAPLAN, e.g., control com-
ponents that realize the search strategies of SNLP, and extended version SNLP+ that
also allows filter conditions, and several other strategies known from literature (Peot
and Smith, 1993; Joslin and Pollack, 1994; Yang, 1992).

e The most important and complex control components of CAPLAN so far are the inter-
active control component and a case-based control component.

— The interacitve control components UC (User Control) realizes a combination
of autonomous and interactive planning. A user can participate in the planning
process at various levels of detail here. He also can modify or correct a plan by
rejecting planning decisions. Here the dependency network helps to propagate
such rejections and reject all depending parts of the plan.

— The control component CbC (Case-based Control) in CAPLAN/CBC (Munoz-
Avila et al., 1995; Mufioz-Avila and Hiillen, 1995) combines a case-based planning
approach with the generative system CAPLAN.

e CAPLAN not only allows to influence the behaviour of the basic planning algorithm
when searching foward but also the backtracking behaviour can be controlled with so-
called backtracking control components. Chronological backtracking and backjumping
are backtracking strategies for CAPLAN that are currently available.

The advantages of having two types of preconditions, normal preconditions and phantom
preconditions (filter conditions), are not clear in all situations, especially, if the planner
searches for a solution autonomously. There are situations in which we can observe that
blocked phantoms decrease the planning performance. The performance also can depend

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

on the definition of the domain. Whether phantoms are useful or not should be analyzed
very carefully. On the other hand, declaring phantom preconditions has positive effects for
interactive planning because it reduces the set of alternatives to be presented for a certain
goal to the user. This often helps selecting the correct alternative.

Backjumping is only a first attempt for more sophisticated backtracking strategies in the
context of SNLP planning. The implemented version only can analyze real inconsistencies
of operators in a conflict set. Operators of a conflict set that are rejected because of blind
backtracking do not contribute to finding the real reason for a failure. But here we might
need a propagation mechanism similiar to the one described in (Kambhampati et al., 1995a)
to explain the failure of such operators that are rejected because the backtracking.

Until now, autonomous problem solving, especially so-called precondition achievement plan-
ning, lacks efficient general purpose mechanisms and heuristics to control the search process.
(Drummond, 1993) argues that the success of the big three planning systems, NONLIN (Tate,
1977), SIPE (Wilkins, 1984; Wilkins, 1990), and O-Plan (Currie and Tate, 1991), is maily
attributed to the hierarchical action expansion, explicit languages for documenting a plan’s
causal structure, and to a very simple form of propositional resource allocation. Coding a do-
main in terms of plan fragments and expected causal structures in fact gives the planner more
strategic knowledge that the STRIPS-like operator definitions of precondition achievement
planners. In this context, (Young et al., 1994) presented an approach that allows complex
actions to be processed by an extension of the SNLP planner. This approach will also be
studied more detailled in CAPLAN.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

Contents

1 Introduction 1
2 The SNLP-like Base Level Planner 3
2.1 Plan Representation 3
2.2 Plan Refinement Methods in Plan-space Planning 4
2.3 Extended Domain Specification Lo 5
2.3.1 Characteristics of CAPLANs Main Application Domain 6

2.3.2 Types and Constraints 7

2.3.3 Predicates 8

234 Operators e e 9

2.4 Extended Problem Specification Lo 11
2.5 The Basic Planning Algorithm of CAPLAN 13
2.5.1 Basic Concepts 13

2.5.2 The Planning Algorithm oL 14

2.5.3 Modifications for Filter Conditions 17

3 Controlling the Planning Process 19
3.1 Decision Points of the Algorithm 19
3.2 The Control Interface of CAPLAN 19
3.2.1 Control Components 20

3.2.2 Controlling Backtracking Lo 21

3.3 Interactive Planning L 23
3.4 Control components for CAPLAN 24

4 The Planning Assistant CAPlan 25
4.1 System Architecture of CAPlan: An Overview 25
4.2 A Brief REDUX Overview e 26
4.2.1 Key Concepts of REDUX 26

4.2.2 Backtracking and Replanning o Lo 27

4.2.3 Problem Solving with REDUX 28

4.3 Building CAPLAN on REDUX 29
4.3.1 Mapping of SNLP-Concepts to REDUX-Concepts 29

4.3.2 Modules of CAPLAN 30

4.3.3 REDUX+: Extensions to REDUX 32

4.4 Justifications for Decisions and Goals L. 32
4.4.1 Rejection Justifications: Inconsistencies and Backtracking 33

4.4.2 Satisfied Justifications: Potential Threats 34

4.5 Backjumping 34

5 Conclusions 36

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications,

Kaiserslautern

References

Barrett, A. and Weld, D. (1994). Partial-order planning: Evaluating possible efficiency gains. Artificial
Intelligence, 67(1):71-112.

Chapman, D. (1987). Planning for conjunctive goals. Artificial Intelligence, 32:333-377.

Collins, G. and Pryor, L. (1992). Achieving the functionality of filter conditions in a partial order
planner. In Proceedings of AAAI-92, pages 375-380.

Currie, K. and Tate, A. (1991). O-plan: The open planning architecture. Artificial Intelligence,
52(1):49-86.

Daniel, L. (1984). Planning and operations research. In Artificial Intelligence: Tools, Techniques and
Applications, pages 423—-452. Harper & Row.

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence, 12(3):231-272.

Drummond, M. (1993). On precondition achievement and the computational economics of automatic
planning. In Proceedings of the 2nd European Workshop on Planning (EWSP-93).

Erol, K., Hendler, J., and Nau, D. (1994a). Htn planning: Complexity and expressivity. In Proceedings
of AAAI-94, pages 1123-1128.

Erol, K., Hendler, J., and Nau, D. (1994b). Umcp: A sound and complete procedure for hierarchical
task-network planning. In Proceedings of the 2nd International Conference on AI Planning

Systems (AIPS-94), pages 249-254.

Fikes, R. and Nilsson, N. (1971). Strips: A new approach to the application of theorem proving in
problem solving. Artificial Intelligence, 2:189-208.

Ginsberg, M. (1993). Dynamic backtracking. Journal of Artificial Intelligence Research, 1:25-46.

Harvey, W., Ginsberg, M., and Smith, D. (1993). Deferring conflict resolution retains systematicity.
In Proceedings of AAAI-93.

Joslin, D. and Pollack, M. (1994). Least-cost flaw repair: A plan refinement strategy for partial-order
planning. In Proceedings of AAAI-94, pages 1004-1009.

Kambhampati, S. (1993). On the utility of systematicity: Understanding tradeoffs between redun-
dancy and commitment in partial-order planning. In Proceedings of IJCAI-93, pages 116—125.

Kambhampati, S. (1995). A comparative analysis of partial order planning and task reduction plan-
ning. SIGART Bulletin, 6(1).

Kambhampati, S. and Hendler, J. (1992). A validation-structure-based theory of plan modification
and reuse. Artificial Intelligence, 55:193-258.

Kambhampati, S., Katukam, S., and Qu, Y. (1995a). Failure driven dynamic search control for partial
order planners: An explanation-based approach. Technical Report ASU-CSE-TR-95-010, Dept.
of Computer Science and Engineering, Arizona State University.

Kambhampati, S., Knoblock, C., and Yang, Q. (1995b). Planning as refinement search: A unified
framework for evaluating design tradeoffs in partial order planning. Technical Report ASU-CSE-
TR-94-002, Dept. of Computer Science and Engineering, Arizona State University.

Kettnaker, V. (1995). Konzeption und Realisierung einer Toolbox statischer Kontrollmethoden zur
Steuerung eines Causal Link Planers. Diplomarbeit, Universitat Kaiserslautern.

McAllester, D. and Rosenblitt, D. (1991). Systematic nonlinear planning. In Proceedings of AAAI-91,
pages 634-639.
Minton, S., Bresina, J., and Drummond, M. (1991). Commitment strategies in planning: a compara-

tive analysis. In Proceedings of IJCAI-91, pages 259-265.

Minton, S., Bresina, J., and Drummond, M. (1994). Total-order and partial-order planning: A
comparative analysis. Journal of Artificial Intelligence Research, 2:227-262.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

Munoz-Avila, H. and Hillen, J. (1995). Retrieving relevant cases by using goal dependencies. In
Proceedings of the 1st International Conference on Case-Based Reasoning (ICCBR-95).

Munoz-Avila, H., Paulokat, J., and Wess, S. (1995). Controlling non-linear hierarchical planning
by case replay. In Keane, M., Halton, J., and Manago, M., editors, Advances in Case-Based
Reasoning. Selected Papers of the 2nd European Workshop (EWCBR-94), number 984 in Lecture
Notes in Artificial Intelligence. Springer.

Paulokat, J., Praeger, R., and Wess, S. (1992). CAbPlan - fallbasierte Arbeitsplanung. In Messer, T.
and Winkelhofer, A.| editors, Beitrdge zum 6. Workshop ’Planen und Konfigurieren’ (PuK-92).
FORWISS.

Paulokat, J. and Wess, S. (1993). Fallauswahl und fallbasierte Steuerung bei der nichtlinearen hier-
archischen Planung. In Horz, A., editor, Beitrdge zum 7. Workshop 'Planen und Konfigurieren’

(PuK-93). GMD.

Paulokat, J. and Wess, S. (1994). Planning for machining workpieces with a partial-order nonlinear
planner. In Gil, Y. and Veloso, M., editors, AAAI-Working Notes ’Planning and Learning: On
To Real Applications’, New Orleans.

Peot, M. and Smith, D. (1993). Threat-removal strategies for partial-order planning. In Proceedings
of AAAI-93, pages 492-499.

Petrie, C. (1991a). Context maintenance. In Proceedings of AAAI-91, pages 288-295.

Petrie, C. (1991b). Planning and Replanning with Reason Maintenance. PhD thesis, University of
Texas at Austin, CS Dept.

Petrie, C. (1992). Constrained decision revision. In Proceedings of AAAI-92, pages 393-400.
Tate, A. (1977). Generating project networks. In Proceedings of IJCAI-77, pages 888-893.

Tate, A., Drabble, B., and Dalton, J. (1994). The use of condition types to restrict search in an ai
planner. In Proceedings of AAAI-94, pages 1129-1134.

Veloso, M. (1994). Planning and learning by analogical reasoning. Number 886 in Lecture Notes in
Artificial Intelligence. Springer Verlag.

Veloso, M. and Blythe, J. (1994). Linkability: Examining causal link commitments in partial-order
planning. In Proceedings of the 2nd International Conference on Al Planning Systems (AIPS-94),
pages 13-19.

Weberskirch, F. (1994). Realisierung eines nichtlinearen Planungssystems zur Unterstiitzung der
Arbeitsplanerstellung bei der computerintegrierten Fertigung (CIM). Diplomarbeit, Universitét
Kaiserslautern.

Weberskirch, F. and Paulokat, J. (1995). CAPlan - ein SNLP-basierter Planungsassistent. In Biundo,
S. and Tank, W., editors, Beitrdge zum 9. Workshop 'Planen und Konfigurieren’ (PuK-95).
DFKI.

Weld, D. (1994). An introduction to least commitment planning. Al Magazine, 15(4):27-61.

Wilkins, D. (1984). Domain-independent planning: Representation and plan generation. Artificial
Intelligence, 22(3):269-301.

Wilkins, D. (1988). Practical Planning - Ertending the classical AI Planning Paradigm. Morgan
Kaufmann.

Wilkins, D. (1990). Can ai planners solve practical problems? Computational Intelligence, 6:232-246.
Yang, Q. (1992). A theory of conflict resolution in planning. Artificial Intelligence, 58:361-392.

Young, R., Pollack, M., and Moore, J. (1994). Decomposition and causality in partial-order planning.
In Proceedings of the 2nd International Conference on Al Planning Systems (AIPS-94), pages
188-193.

LSA-Report LSA-95-10e, Centre for Learning Systems and Applications, Kaiserslautern

