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Abstract
Pseudopalisading is an interesting phenomenonwhere cancer cells arrange themselves
to form a dense garland-like pattern. Unlike the palisade structure, a similar type of
pattern first observed in schwannomas by pathologist J.J. Verocay (Wippold et al. in
AJNR Am J Neuroradiol 27(10):2037–2041, 2006), pseudopalisades are less orga-
nized and associated with a necrotic region at their core. These structures are mainly
found in glioblastoma (GBM), a grade IV brain tumor, and provide a way to assess the
aggressiveness of the tumor. Identification of the exact bio-mechanism responsible for
the formation of pseudopalisades is a difficult task, mainly because pseudopalisades
seem to be a consequence of complex nonlinear dynamics within the tumor. In this
paper we propose a data-driven methodology to gain insight into the formation of
different types of pseudopalisade structures. To this end, we start from a state of the
art macroscopic model for the dynamics of GBM, that is coupled with the dynamics of
extracellular pH, and formulate a terminal value optimal control problem. Thus, given
a specific, observed pseudopalisade pattern, we determine the evolution of parameters
(bio-mechanisms) that are responsible for its emergence. Random histological images
exhibiting pseudopalisade-like structures are chosen to serve as target pattern. Hav-
ing identified the optimal model parameters that generate the specified target pattern,
we then formulate two different types of pattern counteracting ansatzes in order to
determine possible ways to impair or obstruct the process of pseudopalisade forma-
tion. This provides the basis for designing active or live control of malignant GBM.
Furthermore, we also provide a simple, yet insightful, mechanism to synthesize new
pseudopalisade patterns by linearly combining the optimal model parameters respon-
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sible for generating different known target patterns. This particularly provides a hint
that complex pseudopalisade patterns could be synthesized by a linear combination
of parameters responsible for generating simple patterns. Going even further, we ask
ourselves if complex therapy approaches can be conceived, such that some linear com-
bination thereof is able to reverse or disrupt simple pseudopalisade patterns; this is
investigated with the help of numerical simulations.

Keywords Optimal control · Pseudopalisades · Data driven modeling · Pattern
formation

Mathematics Subject Classification 35K59 · 35Q92 · 49J20

1 Introduction

Biological phenomenaproduce someof thevisuallymost appealingpatterns, but unfor-
tunately not all of them can be associated with a beneficial outcome. For example, skin
and tissue patterns of animals could actually indicate the onset/progression of a harm-
ful process. Pseudopalisades belong to such category, wherein themicroscopic cellular
arrangement, although both visually and dynamically quite intriguing, indicates the
most advanced stage of glioblastomamultiforme (GBM), a type of brain tumor, which
in most cases is lethal. Such patterns are actually used to pathologically characterize
the aggressiveness ormalignancy of the tumor (Wippold et al. 2006). Unlike the highly
regular palisade structure observed in schwannoma cells, pseudopalisade structures
are less organized and more irregular in appearance. The initiation of such pathologi-
cal structures is not very clear, but is mainly hypothesized (see Brat et al. 2004) to be a
complex interaction of different biophysical processes such as: (i) rapidly proliferating
neoplastic cells, (ii) cells being highly resistant to apoptosis and (iii) cells migrating
away from the toxic debris formed by cellular necrosis, as a consequence of hypoxia
and acidosis.

In contrast, the microenvironment surrounding pseudopalisades is fairly better
understood. According to the studies (Rong et al. 2006; Wippold et al. 2006; Brat
et al. 2004; Martínez-González et al. 2012) the cells made of such structures are
mainly hypoxic and have less proliferating capabilities. These cells, however, show
increased vascular endothelial growth factor (VEGF) expression, that results in devel-
opment of microvascular structures (Zagzag et al. 2000; Plate et al. 1992). Due to the
dense structure of the brain tissue, this additional vascular growth is very irregular
and even results in the formation of glomeruloid bodies. The area enclosed by pseu-
dopalisades is composed of mainly dead cells and other cellular debris forming the
necrotic core. Moreover, due to the vascular aberrations there exist anisotropic oxygen
gradients, with the center being hypoxic.

As hypoxia is closely associatedwith acidosis (Brahimi-Horn andPouysségur 2007;
Chiche et al. 2010; Jing et al. 2019), it is well possible that the migratory cells have
switched to a glycolytic pathway, which in turn exacerbates the micro-acidity and
promotes migratory behavior of the cells (Estrella et al. 2013; Piasentin et al. 2020).
Because GBM is the most dominant type of malignant brain tumors (Dolecek et al.
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2012) and since the detection of pseudopalisades indicates a worsening condition of a
glioma patient (Brat andMapstone 2003; Kleihues et al. 1995), it is highly important to
get insight into the formation and behavior of these structures. For this purpose, math-
ematical models have proven to be highly effective, especially for understanding and
validating the dynamics of biological processes. In the context of GBM, various types
of models have been proposed. Nice reviews on the chronological evolution of such
models can be found in Hatzikirou et al. (2005), Harpold et al. (2007), Martirosyan
et al. (2015), Alfonso et al. (2017). Broadly speaking, there are mainly two classes of
models: discrete and continuous. The former mainly comprise rule-based computa-
tional models (e.g. Sander et al. 2002; Khain et al. 2011; Böttger et al. 2012; Kim and
Roh 2013 that try to identify the self-organization behavior of the cells. These models
take advantage of the computational power to explore different rule-configurations
that could explain the phenomena. On the other hand, continuous models are based
on continuous abstraction of the evolution of physical processes. The most simple,
yet effective continuous models are ODE based. They not only employed to study
the proliferating capabilities of glioma (Sturrock et al. 2015), but also for assess-
ing the effects of radio- and chemotherapy (Yu et al. 2021). However, when one is
interested in studying the invasive behavior of GBMs, space becomes important, thus
spatial dynamics needs to be taken into account. Most of the cancer invasion mod-
els, inspired by the early works of Murray (2002), are based on reaction-diffusion
based settings, see e.g., (Jbabdi et al. 2005; Swanson et al. 2011; Hatzikirou et al.
2012; Martínez-González et al. 2012; Kim and Roh 2013; Alfonso et al. 2016). They
only consider movement based on random motion with very limited ability to incor-
porate direction/orientation information from the microenvironment, e.g. only via
some anisotropic diffusion coefficient. These models were generalized in Hinow et al.
(2009), Kim et al. (2009), Colombo et al. (2015), where advection/taxis terms were
introduced to incorporate the relevant microenvironment information such as tissue
structure, vasculature etc.

Because cancer growth and spread is a complex multiscale process, mere macro-
scopic models fail to illicit the outcomes of cross-scale interactions. Many cellular
motion models originate at the subcellular or cellular scale by first considering the
dynamics of individual cells followed by modeling the interactions with other cells
and physical/chemical components of the environment. This is then upscaled to the
tissue level, where experimental observations are possible. Suchmultiscale framework
has been considered in Painter and Hillen (2013), Engwer et al. (2015, 2016a, b), Hunt
and Surulescu (2016), Corbin et al. (2018), Conte et al. (2020), Conte and Surulescu
(2021), Corbin et al. (2021), Dietrich et al. (2022), Conte et al. (2022) to study the
invasive patterns of glioma. Thereby, mainly parabolic scaling is used to obtain a
corresponding macroscopic PDE which consequently involves diffusion and reaction
coefficients that are coupled with the dynamics of the lower scales. In contrast to the
deterministic models, authors in Hiremath and Surulescu (2015, 2016, 2017), Hire-
math et al. (2018) have used stochastic multiscale settings to illicit transient invasive
patterns of cancer.

The kind of models considered so far are in some sense phenomenological descrip-
tions that try to explain or justify in vivo or in vitro observations. This is a bottom-up
approach, where theoretical reasoning is used to explain the observed data. In contrast,
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one could resort to statistical techniques to infer relevant properties of the dynamics
directly from the data without considering any biophysical model. Alternatively, one
could simply complement the phenomenological model by statistically incorporat-
ing the observed data. Such models are called data-driven, where the data and the
(bio)physics model are coupled through an optimization formulation. This type of
inverse problem formulation has been used e.g., in Hogea et al. (2008), Konukoglu
et al. (2010), Gholami et al. (2016) to estimate patient specific model parameters that
can subsequently be used for making predictions. Similar to these approaches, in this
paper we formulate an optimal control problem with the aim of gaining insight into
the dynamical processes responsible for generating a specific type of pseudopalisade
patterns. Unlike previous studies (Kim et al. 2009; Caiazzo and Ramis-Conde 2015;
Martínez-González et al. 2012; Kumar et al. 2021, 2022) where a more or less phe-
nomenological approach was employed, we adopt a data-driven approach where all
model unknowns along with the involved model parameters are estimated from the
data itself. Starting from a macroscopic model (Kumar et al. 2021), which in turn is
obtained using a multiscale modeling technique, given some arbitrary initial condition
and a target pseudopalisade pattern, we compute the optimal model parameters such
as growth rate, diffusion coefficient, taxis direction, such that the initial tumor density
optimally evolves to the final pseudopalisade pattern. The advantages of this approach
are the following:

1. Given some fixed arbitrary initial condition u0 and different target (final) patterns
(Ok)k∈N, we can compute corresponding optimal model parameters θOk and solu-
tions uOk (see (13)) which are able to directly explain the data. By analyzing the
qualitative properties of the obtained parameters it is possible to gain insight into
their interactions that eventually result in the formation of the observed struc-
tures. Furthermore, this approach also provides a way to directly compare the
differences in the model parameters, and thereby also the internal microscopic
dynamics, which eventually resulted in different end patterns.

2. By reversing the initial and target (final) conditions, we can identify the optimal
parameters that can reverse or undo the developed pattern. A typical application of
thiswould be in developing strategies to renormalize or neutralize the tumormicro-
environment with the aim of reducing the malignancy of the developed tumor. In
cases where direct intervention on the tumor is conceivable, appropriate additional
parameterized equations (based on the type of intervention) can be introducedwith
the aim of stopping further progression of the pattern.

3. By combining the parameters θOk which are responsible for generating simple
target patterns Ok , in order to obtain a new parameter vector θO ′ , we can synthesize
new unseen patterns O ′. E.g., we can define θO ′ := ∑N

k=1 ckθOk , for N ∈ N, ck ∈
R, and simulate the dynamics to synthesize a new pattern O ′. Themain application
of this would be that, if therapy strategies can be designed leading to simpler
pseudopalisade patterns, then a similar linear combination of interventions could,
putatively, also work in neutralizing complex pseudopalisade patterns. Whether
this is useful for conceiving new therapy approaches remains arguable, however
it can help understanding the histological patterns.
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Based on the above discussion, the rest of the document is organized in the following
manner. In Sect. 2 we present a multiscale mathematical model for acid modulated
cancer dynamics and we formulate a terminal optimal control problem (TOCP), (13),
for formation of the observed pseudopalisade pattern. In Sect. 3.2 we establish the
wellposedness of the model (Theorem 5). Following that, in Sect. 3.3 we establish the
existence of a solution to (13) (Theorem 8). To find a suitable minimizing sequence via
a first order gradient descent method, we first establish the existence of the gradient
of the objective functional w.r.t to the parameter θ (Theorem 9) and Lemma 10 and
show its continuity property in Theorem 11. Next, in Theorem 12 we show that the
minimizing sequence generated by Algorithm 1 is indeed the minimizing sequence for
the formulated optimization problem (13). Subsequently, in Sect. 4 we implement the
algorithm and investigate its performance and results. Following this, in Sect. 5 we not
only discuss the application of TOCP to therapy problems, but also for the synthesis of
new unseen patterns along with its plausible value for interventions. Finally, in Sect. 6
we discuss the results and draw conclusions.

2 Modeling

The goal of this section is to set up a system of equations that is able to mimick the
complex interactions of cancer cells with their host tissue. Because we are interested
in analyzing the influence of tissue acidity on the type of glioma patterns that emerge,
we restrict the description to mainly the interactions between cancer cells and protons
in the extracellular region. The latter is modeled by accounting for the dynamics of
extracellular proton concentration H . Since protons aremuch smaller than cancer cells,
their dynamics is much faster, thus it can be considered directly at the macroscopic
level. Following this reasoning, the evolution of acid is described by the following
reaction-diffusion equation:

∂t H = Ds�H − αH + β f2(C, H), (1)

where Ds is the effective proton diffusion coefficient, α is the effective acid removal
rate by vasculature, and β represents the effective expulsion rate of protons by cancer
cells mainly as a byproduct of the glycolytic energy cycle (Gatenby and Gawlinski
2003). Here f2(C, H) := CH

(1+C2+H2)2
models the efflux of protons by cell membrane

transporters such as MCT, NHE (Webb et al. 1999, 2004). Since the activity of these
membrane transporters is dependent on the interaction between intra-/extracellular
proton concentration, by approximating the concentration of intracellular protons to
be proportional to the cell density C , the activity of the transporter is modelled as
the interaction between the cancer cells and extracellular protons, resulting in the
numerator term CH . However, since the activity of membrane transporters saturates
with increasing ion concentrations, we introduce the denominator term to capture this
behavior. Lastly, we note that the coefficients α and β are considered to be functions
of space and time.

On the other hand, the dynamics of cancer cells ismuch slower, so it can bemodelled
not only by considering intracellular events, but also transmembrane and extracellular
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interactions. This basically results in multiscale modeling of tumor evolution, which
for the case of GBM has been done previously by several authors Painter and Hillen
(2013), Engwer et al. (2015), Engwer et al. (2016b), Hunt and Surulescu (2016), Swan
et al. (2018). For our study, we refer to the more recent works (Kumar et al. 2021;
Kumar and Surulescu 2020), particularly to the former, where the activity of proton-
specific transmembrane units was considered to deduce a kinetic transport equation
for the evolution of tumor density which was subsequently upscaled. The parabolic
scaling procedure resulted in a myopic-diffusion-based PDEwhich not only translates
the averaged random fluctuations at the microscopic level to the macroscopic one, but
also adequately incorporates the advection term representing directed movement of
cells. The resulting parabolic PDE in the non-dimensionalized form reads:

∂tC = ∇ · (∇ · (DC)) + ∇ · (δ(H)CD∇H) + μC(1 − C)(1 − H), (2)

where C is the density of cancer cells, D is the anisotropic diffusion tensor, δ(H) is
the pH taxis coefficient, and μ is the proliferation rate. For our study, we consider a
slightly modified version of the macroscopic equation, given as:

∂tC = ∇ · (σ (t, x)∇C + C∇κ(t, x)) + ∇ · (δ(t, x)C∇H) + μ(t, x) f1(C, H),

(3)

where we have reduced the diffusion tensor D and pH taxis coefficient δ(H) to space-
time functionsσ and δ, respectively. The growth term ismodified to a bounded function
f1(C, H) := C(1−C)(1−H)

(1+C2+H2)2
and the rate constant μ is taken be a space-time function.

The intrinsic proliferation potential of the cell population is modeled by the logistic
growth term. The negative effect on cell proliferation due to excess extracellular acidity
(i.e. protons H ) is modeled via the multiplicative term (1−H), assuming H is already
expressed as a normalized object. Altogether, the numeratorC(1−C)(1−H)models
the acid modulated proliferation potential of cancer population. The denominator term
serves the following purposes: (i) the C2 term slows down the rate of proliferation at
regions of high cell density, (ii) the H2 term represents saturation of the membrane
transporters/receptors with increasing H concentration which consequently limits the
magnitude of the rate of acid induced cell death. Additionally, we have introduced the
advection term C∇κ to model haptotactic movement described by a tissue-dependent
time-varying function κ (to be estimated). Let T > 0 and I = (0, T ] ⊂ R+ be a
finite time interval. LetD ⊂ R

2 be a bounded spatial domain with sufficiently smooth
boundary. We assume there is no flux of cells or protons through the boundary. The
resulting coupled PDE system is given by the following initial boundary value problem
(IBVP):

∂tC = ∇ · (σ∇C + C∇κ) + ∇ · (δ C∇H) + μ f1(C, H) in (0, T ] × D (4a)

∂t H = �H − αH + β f2(C, H) in (0, T ] × D (4b)

C(0) = C0, H(0) = H0 in D

0 = (σ∇C + C∇κ) · n̂ on [0, T ] × ∂D

0 = ∇H · n̂ on [0, T ] × ∂D.
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The non-dimensionalized PDE system (4) serves as the abstract macroscopicmodel
for the underlying dynamics for the evolution of pseudopalisades in GBM under the
influence of acidity. Due to the nonlinear coupling of the reaction terms and interplay
between different taxis terms, the resulting dynamics ofGBMcan be very complex and
most importantly verymuch dependent on the qualitative and quantitative properties of
themodel coefficient functions (model parameters).As a result, accurately determining
the model parameters for a specific observed dynamics can be very challenging. The
usual way is to look for stationary solutions bymeans of linear stability and bifurcation
analysis. This process, although very effective during the modeling phase to gain
analytic insight, is, however, often unable to explain real and interesting experimental
observations which are usually very complicated. In order to explain each observation
accurately, it is usually required to formulate an inverse problem, which is in fact the
paradigm of this paper. To this end, starting from (4) we formulate a minimization
problem whose goal is to determine the optimal parameters for the model such that
the final state of the tumor closely matches the real observations. This is realized by
devising an optimal control problem (OCP) for which the objective function is based
on the final spatial distribution of the tumor, hence it is termed as the terminal optimal
control problem (TOCP). In the following sectionwe shall first establishwellposedness
of the dynamical model and then present the corresponding TOCP for which we prove
the existence of a minimizer which then paves the way for performing data based
numerics.

3 Analysis

3.1 Assumptions and prerequisites

Let I = (0, T ] ⊂ R+ be a finite time interval andD ⊂ R
2 be an open bounded spatial

domain with sufficiently smooth boundary. Letting H2
N := {

u ∈ H2
p(D) : ∂u

∂ν
= 0

}
,

we use the following notations for the common Lebesgue and Sobolev spaces:

L p := L p(D, ‖ · ‖L p ), L p
T := L p([0, T ] × D, ‖ · ‖L p

T
), L p

T ≡ L p([0, T ]; L p(D)),

V :=
(
L2(D), (·, ·)

)
, Z2 := H2

N (D), Z := Z1 := H2(D), W := H1(D), W := W × W ,

Z2(T ) := L2(I ; Z2), V := V × V , Z := Z1 × Z2, Z(T ) := Z1(T ) := L2(I ; Z),

W (T ) := L2(I ;W ), V(T ) := L2(I ;V),Z(T ) := L2(I ;Z), W(T ) := L2(I ;W),

Y := L∞(I × D), Y(T ) := L∞(I ;Z), C(T ) := C( Ī ;Z),

X := {u ∈ L2(I ;W ), u′ ∈ L2(I ;W ′)}, X := {u ∈ L2(I ;W) : u′ ∈ L2(I ;W′)}, (5)

with W ′ denoting the dual space of W . Also, we denote the space of linear operators
from U to U′ × Z by L(U;U′ × Z).
Finally, we define the solution space U and the parameter space � as

U := X ∩ Y(T ) ∩ Z(T ), and � :=
(
L2(I ; Z×6), (·, ·)�

)
. (6)
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3.1.1 Formulation of the data-driven model

The data-driven model comprises two main components: the first one being the model
for the dynamics of the system and the second being the objective/cost functional that
couples the observation data with the system dynamics. The former is described by
(4) which when coupled with a terminal type objective functional results in a terminal
valued optimal control problem (TOCP). We shall now recast (4) in an abstract form
so that it enables TOCP to be represented in a way that is conducive for mathematical
analysis. To this end, letu = (u1, u2)
 represent the cancer densityC and extracellular
acidity H , then Eq. (4) can be rewritten as

∂t u1 − ∇ · (σ∇u1 + u1∇κ) = ∇ · (δ u1∇u2) + μ f1(u1, u2) in (0, T ] × D (7a)

∂t u2 − �u2 + αu2 = β f2(u1, u2) in (0, T ] × D (7b)

u1(0) = u10 , u2(0) = u20 in D

(σ∇u1 + u1∇κ) · n̂ = 0, ∇u2 · n̂ = 0 on [0, T ] × ∂D,

where f1(u1, u2) := u1(1−u1)(1−u2)
(1+u21+u22)

2 , f2(u1, u2) := u1u2
(1+u21+u22)

2 .

Letting f̂1 := f1 + μu1, the weak formulation of (7) is given as:

(∂t u1, ϕ) + (σ∇u1,∇ϕ) + (μu1, ϕ) + (δu1∇u2,∇ϕ) = (μ f̂1, ϕ) − (u1∇κ,∇ϕ),

(8a)

(∂t u2, ψ) + (∇u2,∇ψ) + (αu2, ψ) = (β f2, ψ), (8b)

u1(0) = u1,0, u2(0) = u2,0.

∀ϕ,ψ ∈ W , and t ∈ (0, T ]. Let A : W → L(W;W′) and r : W → W′ be linear and
nonlinear operators, respectively, which for u, v,w ∈ W are defined as

A(w) :=
[
A1(w1) A2(w1)

0 A3(w2)

]

, r(u) :=
[
r1(u) + r2(u)

r3(u)

]

(
A1(w1)u1, v1

) := (σ∇u1,∇v1) + (μu1, v1), (r1(u), v) := (μ f1(u1, u2) + μu1, v1),(
A2(w1)u2, v1

) := (δw1∇u2,∇v1), (r2(u), v) := (−u1∇κ,∇v1),(
A3(w2)u2, v2

) := (∇u2,∇v2) + (αu2, v2), (r3(u), v) := (β f2(u1, u2), v2).
(9)

Then, ∀ϕ := (ϕ1, ϕ2)

 ∈ W, the above weak formulation can be rewritten in the

more compact form

(∂t u1, ϕ1) + (A1(u1)u1, ϕ1) + (A2(u1)u2, ϕ1) = (r1(u) + r2(u), ϕ1) t ∈ (0, T ]
(10a)

(∂t u2, ϕ2) + (A3(u2)u2, ϕ2) = (r3(u), ϕ2) t ∈ (0, T ] (10b)

u(0) = u0.
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Based on the definition of A, the corresponding trilinear form a : W ×W ×W → R

can be defined in the following way:

a(w)[u, v] := 〈A(w)u, v〉W′,W = (
A1(w1)u1, v1

) + (
A2(w1)u2, v1

) + (
A3(w2)u2, v2

)

= a1(w1)[u1, v1] + a2(w1)[u2, v1] + a3(w2)[u2, v2] (11)

= a1(w)[u, v] + a2(w)[u, v] + a3(w)[u, v].

Let the parameters appearing in (7) be represented by the vector function θ defined
as θ := (θ1, . . . , θ6)


 = (σ, κ, δ, α, β, μ)
. Based on this, we can now formulate the
TOCP. First, let the objective (or cost) functional J be defined as

J (u, θ) = 1

2
‖u1(T ) − O‖2L2 + λ

2
‖θ‖2V (T ), (12)

where λ ∈ R and O ∈ H1(D) is the image data of the observed pseudopalisade
pattern. The aim of the TOCP is to find u ∈ U and θ ∈ � such that u, θ satisfy the
state equation G(u, θ) = 0 while minimizing the functional J . Altogether, it results
in the following minimization problem: find (u�, θ�) with u� := u(θ�) and

u�, θ� = argmin
u∈U,θ∈�

J (u, θ) s.t. G(u; θ) = 0, with u ∈ U and θ ∈ �, (13)

where the equality constraint G(u; θ) = 0 represents the system dynamics specified
by (8). The mapping G : U × � → U′ × Z reads as

G(u, θ) =
⎛

⎝
(∂t u1, ·) + (σ∇u1,∇·) + (u1∇κ,∇·) + (δu1∇u2,∇·) − (μ f1, ·)

(∂t u2, ·) + (∇u2,∇·) + (αu2, ·) − (β f2, ·)
u(0) − u0.

⎞

⎠

(14)

Letting ‖·‖� := ‖·‖C( Ī ;Z×6), the subspace� ⊂ � is the set of admissible parameters
defined as

� :=
{
θ ∈ � ∩ C( Ī ; Z×6) : θ ∈ C( Ī ; Z×6), ‖θ‖� ≤ Mθ

}
.

Remark 1 It is actually sufficient to define � as

� :=
{
θ ∈ � ∩ C( Ī ; Z×6) : θi ∈ C( Ī ; Z), ‖θi‖C( Ī ;Z) ≤ Mθi ≤ Mθ , i ∈ {1, 2, 3}

}
.

For the sake of notational simplicity we shall avoid it here, since it does not bring any
major difference in the analysis.
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3.2 Model wellposedness

In this section we look at the wellposedness of the system and investigate the existence
of the optimal solution. For this purpose we first introduce the following general
assumptions.

3.2.1 Assumptions on f1, f2 and�

1. f1, f2 ∈ C∞, and f1(u, v), f2(u, v) ∈ W ∩ L∞(D) whenever u, v ∈ W , t ∈ I .
2. ∂u,v f1, ∂u,v f2 are elements ofW∩L∞(D) foru, v ∈ W , t ∈ I . Thus‖ f j‖C( Ī ;W ) ≤

M f j for j ∈ {1, 2}.
3. In particular, for our application we have that f1(u, v) := u(1−u)(1−v)

(1+u2+v2)2
and

f2(u, v) := uv
(1+u2+v2)2

, which satisfy the above conditions.
4. The model parameter functions θi ∈ {σ, κ, δ, α, β, μ} are such that:

0 < mθi ≤ θi (t, x) ≤ Mθi < ∞, for all t ∈ I , x ∈ D. Additionally, it is also
assumed that ‖θi‖C( Ī ;Z) ≤ Mθi .

3.2.2 Energy estimates of solutions

Lemma 1 Let u = (u1, u2) ∈ Z satisfy the Eq. (7). Then its components fulfill the
following energy estimates:

‖u1‖2W (T ) ≤ ku1‖u1,0‖2W and ‖u2‖2W (T ) ≤ ku2‖u2,0‖2W , (15)

with ku(T ) and kv(T ) appropriate constants.

Proof Multiplying by u2 both sides of (7b) we get

1

2

d

dt

∫

D
u22 +

∫

D
|∇u2|2+α

∫

D
u22 ≤ MβM f2‖u2‖2V ⇒ ‖u2‖2W (T )

≤ ‖u2,0‖2V exp(MβM f2T )

⇒ ‖u2‖2W (T ) ≤ ku2(T )‖u2,0‖2W ≤ Mu2(T ),

with sufficiently large Mu2(T ).
Similarly, multiplying by u′

2 both sides of (7b) we get

2‖u′
2‖2V + 1

2

d

dt

∫

D
|∇u2|2+α

d

dt
‖u2‖2V ≤ MβM f2

d

dt
‖u2‖2V ≤ MβM f2ku2‖u2,0‖2W

⇒ ‖u′
2‖2V (T ) + sup

t∈[0,T ]
‖∇u2‖2V ≤ (1 + MβM f2ku2T )‖u2,0‖2W ≤ Mu2(T ).

(16)

Lastly, the second derivative can be bounded from above as follows:

‖�u2‖V ≤ (Mα + MβM f2)‖u2‖V + ‖u′
2‖V
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≤ (Mα + MβM f2)[‖u2‖V + ‖u′
2‖V ]

≤ (Mα + MβM f2)(2ku2 + 1 + MβM f2ku2T )‖u2,0‖W
≤ Mu2(T ). (17)

Altogether, we get that u2 ∈ L∞([0, T ]; Z) and u′
2 ∈ L2(I ; V ). Additionally, dif-

ferentiating (7b) and multiplying with u′
2 and using (18) below and boundedness of

∂u1 f2, ∂u2 f2 we can get that u2 ∈ H1([0, T ];W ).
Now let us consider Eq. (7a). Like above, multiplying by u1 both sides of the equation
we get:

1

2

d

dt

∫

D
u21 + mσ

∫

D
|∇u1|2

≤ (Mκ + Mδ‖∇u2‖L∞)

∫

D
u11 · ∇u1 + 2MμM f1

∫

D

1

2
u21

≤ (Mκ + Mδ‖∇u2‖L∞)2

2mσ

‖u1‖2 + mσ

2
‖∇u1‖2 + 2MμM f1

1

2
‖u1‖2

⇒ 1

2

d

dt

∫

D
u21 + mσ

2

∫

D
|∇u1|2 ≤

[ (Mκ + MδMu2)
2

2mσ

+ 2MμM f1

]1

2
‖u1‖2

⇒ ‖u1‖2V (T ) ≤ exp(ku1T )‖u1,0‖2W and ‖∇u1‖2L2 ≤ exp(ku1T )‖u1,0‖2W
⇒ ‖u1‖2W (T ) ≤ exp(ku1T )‖u1,0‖2W .

Now multiplying by u′
1 both sides of (7a) we get

‖u′
1‖2 + mσ

2

d

dt
‖∇u1‖2 ≤ (Mκ + MδMu2 )(u11,∇u′

1) + 2MμM f1
1

2

d

dt
‖u1‖2 + Mσ ‖∇u1‖2

≤ (Mκ + MδMu2 )(u11,∇u′
1) + (2MμM f1 + Mσ ) exp(ku1T )‖u1,0‖2W (18)

Using integration by parts for the time derivative i.e.

∫ T

0

∫

D
u11 · ∇u′

1 =
∫

D

∫ T

0
u11 · ∇u′

1 =
∫

D
(u11 · ∇u1)

∣
∣
∣
T

0
−

∫ T

0

∫

D
u′
11 · ∇u1,

we get that (Mκ + MδMu2)
∫ T
0 (u1,∇u′

1) satisifes the following inequalities.

≤ (Mκ + MδMu2)
(
ε‖u′

1‖2V (T ) + 1

4ε
‖∇u1‖2V (T ) + 1

2
(‖u1,0‖2V + ‖∇u1,0‖2V

+ ‖u1,T ‖2V + ‖∇u1,T ‖2V )
)

≤ 1

2
‖u′

1‖2V (T ) + (Mκ + MδMu2)
2

2

(
‖∇u1‖2V (T ) + 1

2
(‖u1,0‖2V

+ ‖∇u1,0‖2V + ‖u1,T ‖2V + ‖∇u1,T ‖2V )
)

≤ 1

2
‖u′

1‖2V (T ) + (Mκ + MδMu2)
2

2

(
‖u1‖2W (T ) + 1

2
(‖u1,0‖2W + ‖u1,T ‖2W )

)
.
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Now plugging this in (18) we get that

‖u′
1‖2V (T ) + mσ sup

t∈[0,T ]
‖∇u1‖2V

≤ (Mκ + MδMu2)
2
(
‖u1‖2W (T ) + 1

2
(‖u1,0‖2W + ‖u1,T ‖2W )

)

+ (4MμM f1 + 2Mσ ) exp(ku1T )‖u1,0‖2W
≤

(
2(Mκ + MδMu2)

2 + 4MμM f1 + 2Mσ

)
exp(ku1T )‖u1,0‖2W .

Additionally, if u1 ∈ L∞([0, T ]; V ), we also have that

mσ ‖�u1‖V ≤ Mσ ‖∇u1‖V + Mκ‖∇u1‖V + ‖u1‖VMκ + MμM f1‖u1‖V + ‖u′
1‖V

+ Mδ(Mu2‖u1‖V + Mu2‖∇u1‖V + ‖u1‖L∞‖�u2‖V )

≤ (Mσ + Mκ + MμM f1 + MδMu2 )‖u1‖W + Mδ‖u1‖L∞‖�u2‖V + ‖u′
1‖V

≤ (Mσ + Mκ + MμM f1 + MδMu2 ) exp(ku1T )‖u1,0‖V
+ MδMu2‖u1‖L∞ + ‖u′

1‖V .

��

3.2.3 Non-negativity of solutions

Lemma 2 Let u = (u1, u2) ∈ Z satisfy system (7). Then u(t) ≥ 0 for all t ∈ I if
u0 ≥ 0.

Proof Let f1 := u1 f̃1, with f̃1 := (1−u1)(1−u2)
(1+u21+u22)

2 , q(u1) :=
{

1
2u

2
1 if u1 ∈ (−∞, 0)

0 else
.

Then the function Q(t) = ∫
D q(u1(t))dx is continuously differentiable. Its derivative

(using (7a)) is given by:

Q′(t) =
∫

D
q ′(u1)∇ · (σ∇u1 + u1∇κ) +

∫

D
q ′(u1)∇ · (δ u1∇u2) +

∫

D
q ′(u1)μu1 f̃1

= −
∫

D
∇q ′(u1) · σ∇u1 −

∫

D
∇κ · u1∇q ′(u1) −

∫

D
∇q ′(u1) · δu1∇u2

+ μ

∫

D
q ′(u1)u1 f̃1

≤ −
∫

D
σ∇q ′(u1) · ∇u1 + Mκ

∫

D
|∇q ′(u1) · 1u1| + Mδ

∫

D
|∇q ′(u1) · u1∇u2|

+ MμM f1

∫

D
q ′(u1)u1

≤ − mσ

∫

D
|∇q ′(u1)|2 + Mκ

∫

D
ε1|∇q ′(u1)|2 + Mκ

4ε1

∫

D
u21 + Mδ

∫

D
ε2|∇q ′(u1)|2

+ Mδ

4ε2

∫

D
u21|∇u2|2 + MμM f1

∫

D
q ′(u1)u1 (using Young’s inequality)
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≤ M2
κ

mσ

∫

D

1

2
u21 + M2

δM
2
u2

mσ

∫

D

1

2
u21 + MμM f1

∫

D

1

2
q ′(u1)u1

≤
[M2

κ

mσ

+ M2
δM

2
u2

mσ

+ MμM f1

] ∫

D
q(u1) := k(t) Q(t)

⇒ Q(t) = 0 ∀t ≥ 0 using Gronwall’s inequality.

Similarly, letting q(u2) :=
{

1
2u

2
2 if u2 ∈ (−∞, 0)

0 else
and Q(t) = ∫

D q(u2(t))dx ,

and using the above result that u1 ≥ 0, we get that Q′(t) ≤ MαQ(t). This in turn (due
to Gronwall) implies that Q(t) = 0 for all t ≥ 0. ��
Lemma 3 Let u be a solution to Eq. (7). Then u ∈ L∞(I × D).

Proof In order to prove uniform boundedness of u in DT := [0, T ] × D, following
the approach of Finotti et al. (2012), we partition DT along the time axis and show
that the increment of the magnitude of u over these different partitions tends to zero.
To this end, let the finite time sequence (ti )i , with i ∈ {0, . . . , K } and K ∈ N finite,
represent the partition of [0, T ]. Correspondingly, let Dti := [ti−1, ti ] × D represent
the i th partition of the time-partitioned space-time cylinder. Let u := (u, v) and let
the norm for the time-continuous H1(D) valued functions be denoted as

‖w‖C
H1
ti

(D) := sup
t∈[ti−1,ti ]

‖w(t)‖H1(D).

Based on the energy estimate (15)we have that ‖u‖C
H1
ti

(D) ≤ ku1 and ‖v‖C
H1
ti

(D) ≤ ku2

for every i ∈ N. Now let uk = max{u − k, 0} for k > k̂ := max{1 + ε, ‖u0‖L∞}.
Correspondingly, the supporting sets of uk are denoted by Duk (t) := {x ∈ D :
u(t, x) > k} and Dti (k) := {(t, x) ∈ Dti : u(t, x) > k} for each i ∈ N. Now, testing
(7a) with uk and letting f1 := u f̃1 we get

1

2

d

dt

∫

D
u2k + mσ

∫

D
|∇uk |2 ≤ −

∫

D
u∇κ · ∇uk −

∫

D
∇uk · δu∇v + Mμ

∫

D
uku f̃1

≤
∫

D
|∇uk · u∇κ| +

∫

D
|∇uk · δu∇v| + Mμ

∫

D
uku f̃1

=
∫

Duk

|∇uk · ∇κu| +
∫

Duk

|∇uk · δu∇v| + Mμ

∫

Duk

uku f̃1

≤
∫

Duk

ε1|∇uk |2 +
∫

Duk

M2
κ

4ε1
u2 +

∫

Duk

ε2|∇uk |2 +
∫

Duk

M2
δ

4ε2
u2|∇v|2

+ MμM f1

∫

Duk

uku

⇒ 1

2

d

dt

∫

D
u2k + mσ

2

∫

D
|∇uk |2≤

[M2
κ

mσ

+ M2
δ

mσ

M2
u2

] ∫

Duk

u2 + MμM f1

∫

Duk

uku
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1

2

d

dt

∫

D
u2k + mσ

2

∫

D
|∇uk |2 ≤

[M2
κ

mσ

+ M2
δ

mσ

M2
u2

] ∫

Duk

u2 + MμM f1

∫

Duk

uku

≤
[M2

κ

mσ

+ M2
δ

mσ

M2
u2 + MμM f1

] ∫

Duk

(u2 + uuk)

≤ 4
[M2

κ + M2
δM

2
u2

mσ

+ MμM f1

] ∫

Duk

((uk)
2 + k2)

= k(mσ ,Mκ ,Mu2 ,Mδ,Mμ,M f1)(t)‖uk‖2L2 + k2|Duk (t)|.

Integrating w.r.t. t ∈ [0, t1], with t1 > 0 small enough such that

t1 sup
t∈[0,t1]

k(mσ ,Mκ ,Mu2 ,Mδ,Mμ,M f1)(t) < 1/2,

we get that

‖uk‖2C
H1
t1

≤ 2k(mσ ,Mκ ,Mu2 ,Mδ,Mμ,M f1)k
2ηk , with ηk = |Dt1 |=

∫ t1

0
|Dk(t)|dt

⇒ ‖uk‖C
H1
t1

≤ ϑ1 k η
1
2
k . (19)

Let N0 := n0k̂ for some n0 > 1, let ki = N0(2 − 2−i ) for i ∈ N0, then ηk fulfills the
following inequality:

ki+1η
1
r
ki+1

= ki+1

( ∫ t1

0
|Dki+1 (t)|dt

) 1
r

= ki+1

( ∫ t1

0

∫

Dki+1 (t)
dx dt

) 1
r

= [ki + (ki+1 − ki )]
( ∫ t1

0

∫

Dki+1 (t)
dx dt

) 1
r

(20)

≤ [ki + (ki+1 − ki )]
( ∫ t1

0

∫

Dki (t)
dx dt

) 1
r

⇒ (ki+1 − ki )η
1
r
ki+1

≤
( ∫ t1

0

∫

Dki (t)
(ki+1 − ki )

r dx dt

) 1
r

(since ki > k̂ > 1 are constants)

=
( ∫ t1

0

∫

Dki (t)
(uki − uki+1 )

r dx dt

) 1
r

≤
(∫ t1

0

( ∫

Dki (t)
(uki − uki+1 )

r dx +
∫

Dc
ki

(t)
urki dx

)
dt

) 1
r

with Dc
ki (t) := D − Dki (t)

≤
( ∫ t1

0

( ∫

Dki (t)
urki dx +

∫

Dc
ki

(t)
urki dx

)
dt

) 1
r

=
( ∫ t1

0

∫

D
urki dx dt

) 1
r

⇒ (ki+1 − ki )η
1
r
ki+1

≤ ‖uki ‖Lr (Dt1 ). (21)
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Using the Sobolev embedding inequality for 2(ν + 1) =: r ∈ [2, 2d
d−2 ] with ν > 0 we

have that

‖uki ‖Lr (Dt1 ) ≤ γ0‖uki ‖H1(D) ≤ γ0ϑ1kiη
1
2
ki

, ∀i ∈ N0, γ0 > 1

⇒ η
1
r
ki+1

≤ γ0ϑ1ki
(ki+1 − ki )

η
1
r
ki+1

≤ 4γ0ϑ12
iη

1
2
ki

≤ 4γ0ϑ12
i (η

1
r
ki

)1+ν,

∀i ∈ N0, (since
ν + 1

r
= 1

2
).

In particular, by taking ki := k̂ and ki+1 := N0 and defining η
0

:= η
k0

we have

that η
1
r
0 ≤ γ0ϑ1

n0−1 (T |D|) 1
2 . Thus for n0 > 1 + γ0ϑ1(T |D|) 1

2 (4γ0ϑ1)
1
ν 2

1
ν2 we get that

η
1
r
0 ≤ (4γ0ϑ1)

−1
ν 2

−1
ν2 . Thus invoking Theorem 2.4.1 of Zacher (2010) we get that

(ηki )
1
r → 0 as i → ∞. In particular, we get that η

2N0
:= ηk∞ = 0. Consequently, we

get that u ≤ c1 := k∞ = 2n0k̂ on Dt1 . Now taking N ∈ N such that ∪N
i=1[ti−1, ti ] =

[0, T ] we get that u ≤ ∑N
i=1 ci < ∞ onDT . For the v component of u, by repeating

the above steps, we also get that v ≤ ∑N
i=1 cv,i inDT . Consequently, we get that u is

bounded in DT . ��

3.2.4 Properties of the operators a and r

Lemma 4 Let w,u, v ∈ W be non-negative, θ ∈ � ⊂ �. Then there exist
Ma,Mr,ma ∈ (0,∞) such that operators a and r appearing in (9) satisfy the follow-
ing inequalities:

|a[w](u, v)| ≤ Ma‖w‖W‖u‖W‖v‖W
a(w)[u,u] ≥ ma‖u‖2W

|a(w1)[u, v] − a(w2)[u, v]| ≤ Ma‖w1 − w2‖V ‖u2‖W‖v2‖W
‖r(u)‖W′ ≤ Mr‖u‖W

‖r(u1) − r(u2)‖W′ ≤ Mr‖u1 − u2‖W .

Proof First let us recall the definition of a and r (see (9), (11)). For any u, v,w ∈ W
they are defined as

a(w)[u, v] := a1(w)[u, v] + a2(w)[u, v] + a3(w)[u, v], r(u) :=
[
r1 + r2

r3

]

,

a1(w)[u, v] := (σ∇u1,∇v1) + (μu1, v1), r1(u)[v] := (μ f1(u1, u2) + μu1, v1),
a2(w)[u, v] := (δw1∇u2,∇v1), r2(u)[v] := (−u1∇κ,∇v1),

a3(w)[u, v] := (∇u2,∇v2) + (αu2, v2), r3(u)[v] := (β f2(u1, u2), v2)

Based on this, now let us verify the properties of the operator a : W×W×W → R.
For the boundedness property we have that:

a1(w)[u, v] = (σ∇u1,∇v1) + (μu1, v1)

≤ Mσ ‖∇u1‖‖∇v1‖ + Mμ‖u1‖‖v1‖
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≤ ka1(σ, μ)‖u1‖W‖v1‖W
a3(w)[u, v] = (∇u2,∇v2) + (αu1, v1)

≤ ‖∇u2‖‖∇v2‖ + Mα‖u2‖‖v2‖
≤ ka3(α)‖u2‖W‖v2‖W

a2(w)[u, v] = (δw1∇u2,∇v2)

≤ Mδ‖w1‖L6‖∇u2‖L3‖∇v2‖L2

≤ ka2(δ)‖w1‖W‖u2‖W‖v2‖W
⇒ |a(w)[u, v]| ≤ ka1‖u1‖W‖v1‖W + ka2‖u2‖W‖v2‖W

+ ka3‖u2‖W‖v2‖W
≤ Ma‖w‖W‖u‖W‖v‖W

with 0 < Ma < ∞ being a large enough generic constant independent of anyu, v,w ∈
W. Next, for the coercivity property let w = (w1, w2)


 be such that w1 ≥ 0, then for
any u ∈ W we have that:

a(w)[u, u] = a2(w)[u,u] + a2(w)[u,u] + a3(w)[u,u]
= (σ∇u1,∇u1) + (μu1, u1) + (∇u2, ∇u2) + (αu1, u1) + (δw1∇u2,∇u2)

= (σ, ‖∇u1‖2) + ‖∇u2‖2 + ‖μu1‖2 + ‖αu2‖2 + (δw1, ‖∇u2‖2)
≥ mσ (1, ‖∇u1‖2) + ‖∇u2‖2 + mμ‖u1‖2 + mα‖u2‖2 + mδ(w1, ‖∇u2‖2)
≥ k(σ, α, μ, δ)

(
‖∇u1‖2 + ‖∇u2‖2 + ‖u1‖2 + ‖u2‖2 + (w1, ‖∇u2‖2)

)

≥ k(σ, α, μ, δ)(‖u1‖2W + ‖u2‖2W ) (since w1 ≥ 0)

⇒ a(w)[u, u] ≥ ma‖u‖2W

with 0 < ma < ∞ is a small enough constant independent of any u,w ∈ W. Next,
for the Lipschitz continuity property let w1,w2 ∈ W, then we have that:

|a(w1)[u, v] − a(w2)[u, v]| = |a2(w1)[u, v] − a2(w2)[u, v]| = |(w1 − w2∇u2, ∇v2)|
≤ Mδ‖w1 − w2‖L2‖∇u2‖L3‖∇v2‖L6

≤ Mδ‖w1 − w2‖V‖u2‖W‖v2‖W
≤ Ma‖w1 − w2‖V‖u2‖W‖v2‖W

⇒ |a(w1)[u, v] − a(w2)[u, v]| ≤ Ma‖w1 − w2‖W

with 0 < Ma < ∞ beign a large enough generic constant independent of anyu, v,w ∈
W.

Now, for the nonlinear operator r : W → W′ let u, v ∈ W. Then we have that

|r(u)[v]| ≤ |r1(u)[v]| + |r3(u)[v]| + |r2(u)[v]| ≤ |(μ f1(u1, u2) + μu1, v1)|
+ |β( f2(u1, u2), v2)| + |(−u1∇κ,∇v1)|

≤ Mμ(1 + M f1)‖u1‖W‖v1‖W + MβM f2‖u2‖W‖v2‖W + Mκ‖u1‖W‖v1‖W
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≤ k(κ, μ, α, β, f1, f2) ‖u‖W ‖v‖W
⇒ ‖r(u)‖W′ ≤ Mr‖u‖W

with 0 < Mr < ∞ begin a big enough constant independent of any u, v ∈ W.
Next for the Lipschitz continuity, let u1,u2 ∈ W then we have that

|(r(u1) − r(u2))[v]| ≤ |(r1(u1) − r1(u2))[v1]| + |(r3(u1) − r3(u2))[v2]|
+ |(r2(u) − r2(v))[v1]|

≤ (Mμ‖∇ f1‖L∞ + Mβ‖∇ f2‖L∞)‖u1 − u2‖W ‖v‖W + Mμ‖u11 − u21‖W ‖v1‖W
+ Mκ‖u22 − u12‖W ‖v1‖W
≤ k(κ, μ, α, β, f1, f2)‖u1 − u2‖W‖v‖W

⇒ ‖r(u1) − r(u2)‖W′ ≤ Mr‖u1 − u2‖W

with 0 < Mr < ∞ being a large enough generic constant independent of any u1,u2 ∈
W. ��

3.2.5 Existence of a unique solution

Theorem 5 For every 0 ≤ u0 ∈ Z and θ ∈ �, the pseudopalisade system (7) possesses
a unique non-negative weak-solution

u ∈ U ∩ Y ∩ C(T ), u ≥ 0,

where T > 0 is dependent on ‖u0‖Z ≤ Mu0 and ‖θ‖� ≤ Mθ . Moreover, u satisfies
the following inequality:

‖u‖Y + ‖u‖C(T ) + ‖u‖X ≤ ku(Mu0 ,Mθ ).

Proof This is a direct consequence of Lemmas 1, 2, 3, 4 and Theorem 5.10 in Yagi
(2009). ��

3.3 Existence of an optimal parameter function

Let us recall that the state equation G(u, θ) = 0 (the weak form of Eq. (7)) is given
as:

G(u, θ) =
⎛

⎝
(∂t u1, ·) + (σ∇u1,∇·) + (u1∇κ,∇·) + (δu1∇u2, ∇·) − (μ f1, ·)

(∂t u2, ·) + (∇u2, ∇·) + (αu2, ·) − (β f2, ·)
u(0) − u0

⎞

⎠ , θ ∈ �.

Lemma 6 For a fixed θ ∈ �, the operator G : U × � → U′ × Z is infinitely Fréchet
differentiable. The partial derivativeGu := ∂uG ofG with respect to u at point (u, θ)
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is represented as a mapping (u, θ) �→ Gu[u, θ ], Gu : U × � → L(U;U′ × Z). Its
exact form is given by

Gu[u, θ ](v1, v2) =
⎛

⎜
⎜
⎝

(∂tv1, ·) + (σ∇v1, ∇·) + (v1∇κ,∇·) + (δv1∇u2,∇·) − (μ∂u1 f1v1, ·) + (δu1∇v2,∇·) − (μ∂u2 f1v2, ·)
(∂tv2, ·) + (∇v2,∇·) + (αv2, ·) − (∂u1 f2v1, ·) − (β∂u2 f2v2, ·)

v1(0)
v2(0)

⎞

⎟
⎟
⎠ .

(22)

Similarly, the partial derivative Gθ := ∂θG of G with respect to θ at the point (u, θ)

is represented as a mapping (u, θ) �→ Gθ [u, θ ], Gθ : U × � → L(�;U′ × Z). Its
exact form is given as

Gθ [u, θ ](φ1, . . . , φ6) =

⎛

⎜
⎜
⎝

(φ1∇u1, ∇·) + (u1∇φ2,∇·) + (φ3 u1∇u2,∇·) + (φ4 f1(u).·)
(φ5u2, ·) + (−φ6 f2(u), ·)

0
0

⎞

⎟
⎟
⎠ .

(23)

Proof By following the technique of Lemma 1.17 of Hinze et al. (2008) and by using
equation (1.95) of Yagi (2009) (due to Lemma 3) we can obtain the first partial Fréchet
derivatives Gu and Gθ as given in (22) and (23), respectively. For the latter, it is clear
that the higher-order derivatives ∂

(k)
θ G, k > 1 are equal to 0. However, the second

derivative ∂
(2)
u G reads

Guu[u, θ](v1, v2)(v3, v4) =
⎛

⎜
⎜
⎜
⎝

(δv1∇v4, ∇·) + (δv3∇v2,∇·) − (μ∂2
u1 ,u1

f1v1v3, ·) − (μ∂2
u2 ,u1

f1[v1v4 + v2v3], ·) − (μ∂u2 ,u2
f1v2v4, ·)

−(β∂2
u1 ,u1

f2v1v3, ·) − (β∂2
u2 ,u1

f2[v1v4 + v2v3], ·) − (β∂u2 ,u2
f2v2v4, ·)

0
0

⎞

⎟
⎟
⎟
⎠

.

Now, further derivatives ofG with respect to u are just multiples of the partial deriva-
tives ∂

(k)
u f1 and ∂

(k)
u f2. Since f1 and f2 are C∞ functions, we get that G is infinitely

Fréchet differentiable. ��
Lemma 7 The operator Gu ∈ L(U × �;U′ × Z) has a bounded inverse.

Proof Let U′ � g = (g1, g2) and Z � v0, let Gu be the operator Gu linearized at
u ∈ U, θ ∈ �. ThenGu is said to have an inverse if there exists a unique v = (v1, v2)

which satisfies the equation Gu(v) = g. This is to say that v satisfies the following
PDE in weak form:

(∂tv1, ·) + (σ∇v1 + ∇κv1,∇·) + (δ v1∇u2,∇·) + (δ u1∇v2,∇·)
= (g1 + μ∂u1 f1v1 + μ∂u2 f1v2, ·)

(∂tv2, ·) + (∇v2,∇·) + (αv2, ·) = (g2 + β∂u2 f2v2 + ∂u1 f2v1, ·)
v(0) = v0,
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which can be rewritten as

(∂tv1, ·) + (σ∇v1 + v1[∇κ + δ∇u2],∇·) + (δ u1∇v2,∇·) = (g1 + μ∂u1 f1v1 + μ∂u2 f1v2, ·)
(∂tv2, ·) + (∇v2,∇·) + (αv2, ·) = (g2 + β∂u2 f2v2 + ∂u1 f2v1, ·)

v(0) = v0.

This can be further simplified to

(∂tv1, ·) + (σ∇v1 + v1κ̃,∇·) + (δ u1∇v2,∇·) = (g̃1(u, v, θ), ·)
(∂tv2, ·) + (∇v2,∇·) + (αv2, ·) = (g̃2(u, v, θ), ·)

v(0) = v0,

where κ̃ := ∇κ +δ∇u2, g̃1(u, v, θ) := g1+μ∂u1 f1v1+μ∂u2 f1v2 and g̃2(u, v, θ) :=
g2 +β∂u2 f2v2 +β∂u1 f2v1. Since u ∈ U (cf. Theorem 5) and since f , ∇f are elements
of Z∩Y for all t ∈ I , Lemmas 4, 3 can be used to invoke Theorem 4.7 of Yagi (2009)
for obtaining the existence of a unique v that satisfies the equation Gu[u, θ ](v) = g.
Specifically, for g ∈ U′ ∩ V (T ), by performing computations similar to Lemma 1, it
follows that the solution v ∈ X ∩ Y satisfies the following inequality:

‖v‖W (T ) ≤ kGu(u, θ)(‖v0‖V + ‖g‖V (T ))

≤ kGu(‖v0‖Z + ‖g‖V (T ))

⇒ ‖G−1
u ‖L(U′,U) ≤ kGu(u, θ). (24)

��
As a consequence of this, we can apply the implicit function theorem to interpret u
as a function of θ via the mapping θ �→ u(θ). Moreover, it also follows that u(θ) is
infinitely differentiable, and thus also Lipschitz, with respect to θ . Now we are ready
to establish the existence of an optimal parameter θ .

Theorem 8 Let T ∈ (0,∞), u0 ∈ Z and u0 be non-negative. Then there exists an
optimal parameter vector θ ∈ � minimizing the functional J (θ) from (12).

Proof Clearly, by definition of J (θ), we have that J ≥ 0 thus inf
θ
J (θ) exists. Due to

continuity of the mapping θ �→ J (θ) and closedness of �, there exists a sequence
(θn)n∈N ⊂ � such that J (θn) → J (θ�) = inf

θ
J (θ). Since � ⊂ � is bounded, the

sequence (θn)n∈N is also bounded in �. Hence, we can extract a weakly convergent
sub-sequence (θ j ) j∈N such that θ j⇀θ� in �. Now, since the mapping � � θ �→
u(θ) ∈ X is a bounded operator (due to Lemma 3 and Theorem 5) we can let (u j ) j∈N
be a sequence of solutions corresponding to the parameter sequence (θ j ) j∈N. Since,
due to Lemma 3, the sequence (u j ) j∈N is bounded in X, there exists a sub-sequence
(u jk )k∈N such that u jk⇀u� in W (T ). Moreover, we also have that (u′

jk
)k∈N ∈ W (T )′

is a bounded sequence. Now, applying the Lions-Aubin compactness theorem (see
e.g., Necas et al. 1996) we get that:

u jk → u� in V (T ), ∇u jk⇀∇u� in V (T ), and u′
jk⇀u′∗ in W (T )′.
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Due to uniqueness, we get that u� is the solution to (7) corresponding to θ�, i.e.
θ� �→ u�(θ�). Finally, due to the weak lower semicontinuity of the norm and the weak
convergence of u(θ jk ) to u

�(θ�) in V (T ), we have that

J (u�(θ�), θ�) = J (u�, θ�) ≤ liminf
k→∞ J (u jk , θ jk ) = inf

θ
J (u(θ), θ) ≤ J (u�(θ�), θ�).

Thus J (u(θ�), θ�) is indeed equal to inf
θ
J (u(θ), θ). ��

Next we shall construct the minimizing sequence by deducing the adjoint equation
and the necessary optimality condition.

Theorem 9 Let (ū, θ̄) be an optimal solution to problem (13). Then there exists an
adjoint state p̄ ∈ U ⊂ U′′ s.t. the following optimality condition holds

G(ū, θ̄) = 0 (25a)

G∗
u(ū, θ̄)p̄ = −Ju(ū, θ̄) (25b)

(Jθ (ū, θ̄) + G∗
θ (ū, θ̄)p̄, θ − θ̄)� ≥ 0 (25c)

where G∗
θ and G∗

u denote the adjoint operator of Gθ and Gu, respectively.

Proof Due to Theorem 5 and Lemma 7 we can invoke Theorem 1.48 of Hinze et al.
(2008) for the reduced cost function Ĵ (θ) := J (u(θ), θ), which ensures that the local
solution θ̄ ∈ � satisfies the following variational inequality:

〈 Ĵ ′(θ̄), θ − θ̄〉�′,� ≥ 0 ∀θ ∈ �.

For ϑ := θ − θ̄ , θ ∈ � we have that

〈 Ĵ ′(θ̄),ϑ〉�′,� = 〈Ju(ū, θ̄), ū′ϑ〉U′,U + 〈Jθ (ū, θ̄),ϑ〉�′,�

= 〈(ū′)∗ Ju(ū, θ̄),ϑ〉�′,� + 〈Jθ (ū, θ̄),ϑ〉�′,�

Based on the state equation Ĝ(θ) := G(u(θ), θ) = 0, we have that Guu′(θ) +
Gθ = 0. This implies u′(θ) = −G−1

u Gθ , Consequently, we get that u′(θ)∗ Ju =
−G∗

θ (G
∗
u)

−1 Ju. Defining p := −(G∗
u)

−1 Ju we get the following adjoint equation:

G∗
up = −Ju in U′. (26)

Explicitly, the equation can be written as

(−∂t − ∇ · (œ∇) + (∇κ + δ∇u2) · ∇ −∇ · (δu1∇)

0 −∂t − � + α

) (
p1
p2

)

=
(

μ∂u1 f1(u) μ∂u2 f1(u)

β∂u1 f2(u) β∂u2 f2(u)

) (
p1
p2

)

∇n p1 = 0, ∇n p2 = 0, p1(T ) = u1(T ) − O, p2(T ) = 0. (27)
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− (∂t p1, ϕ) + (σ∇ p1, ∇ϕ) + ((∇κ + δ∇u1) · ∇ p1, ϕ) + (δu1∇ p2, ϕ)

= −(μ∂u1 f1 p1, ϕ) − (ν∂u2 f1 p2, ϕ),

− (∂t p2, ψ) + (∇ p2, ∇ψ) + (α p2, ψ) = −(β∂u2 f2 p2, ψ) − (∂u1 f2 p1, ψ),

p1(T ) = u1(T ) − O, p2(0) = 0. (28)

In light of (26) and using the Riesz isomorphism associated to the corresponding
duality pairing, the optimality condition reads as:

(G∗
θp + Jθ , θ − θ̄)� ≥ 0, ∀θ ∈ �. (29)

��
We now establish the stability result for the adjoint equation

Lemma 10 Let p1,p2 be two solutions to Eq. (27) generated by two u1, θ1 and u2, θ2

respectively. Then inequality (31) holds.

Proof Let q := p1 − p2, v := u1 − u2 and ϑ := θ1 − θ2

(−∂t − ∇ · (σ 1∇) + (∇κ1 + δ1∇u12) · ∇ + μ1g11 −∇ · (δ1u11∇) + μ1g12
β1g21 −∂t − � + α1 + β1g22

) (
q1
q2

)

=
(
R1

R2

)

∇nq1 = 0, ∇nq2 = 0, q1(T ) = v1(T ), q2(T ) = 0. (30)

where R1 := ∇ · (ϑ1∇ p21) − (∇ϑ2 + δ1∇v2 + ϑ3∇u22) · ∇ p21 + ∇ · (δ1v11∇ p22 +
ϑ3u21∇ p22) + g3

R2 := ϑ4 p22 + g4, g3(v, ϑ) := g3,1(v) + g3,2(ϑ), g4(v, ϑ) := g4,1(v) + g4,2(ϑ),

g11 := ∂u1 f1(u
1), g12 := ∂u2 f1(u

1), g21 := ∂u1 f2(u
1),

g22 := ∂u2 f2(u
1), g311 := μ1∂2u1u1 f1(u

1)p21v1, g321 := μ1∂2u2u1 f1(u
1)p21v2,

g312 := μ1∂2u1u2 f1(u
1)p22v1, g322 := μ1∂2u2u2 f1(u

1)p22v2, g411 := β1∂2u1u1 f2(u)p21v1,

g421 := β1∂2u2u1 f2(u
1)p21v2, g412 := β1∂2u1u2 f2(u

1)p21v1, g422 := β1∂2u2u1 f2(u
1)p22v2,

g3,1 := g311 + g321 + g312 + g322 g4,1 := g411 + g421 + g412 + g422 g4,2 := ϑ6g21 p21 + ϑ5g22 p22
g3,2 := ϑ5g11 p21 + ϑ5g12 p22

Since p1,2 ∈ U ⊂ U′′, u1,2 ∈ U and θ1,2 ∈ �, the RHS terms R1 and R2 are elements
of Z(T ). Thus, letting R := (R1, R2) and G∗

u denote the adjoint opeartor of Gu the
above Eq. (30) can be abstractly written as:

G∗
uq = R in U′

Due to the invertibility of Gu we get the existence of a unique solution to (30). Con-
sequently, we have that

‖q‖U ≤ ‖(G∗
u)

−1R‖U ≤ ‖(G∗
u)

−1‖L(U′,U)‖R‖U′

≤ ‖G−1
u ‖L(U′,U)‖R‖U′

≤ kGu(u, θ)‖R‖Z. (31)

��
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Now we shall provide the smoothness (in terms of θ) result for the cost functional J .

Theorem 11 Let u ∈ Y, p ∈ Y and θ ∈ �, then the cost functional θ �→ Ĵ (θ) :=
J (u(θ), θ) is infinitely Frechet differentiable. Moreover, the mapping θ �→ ∇ Ĵ (θ),
∇ Ĵ : Y × Y × � → � is Lipschitz continuous.

Proof The infinite differentiability of Ĵ follows from the facts that θ �→ u(θ) is
a smooth mapping (due to Lemma 7) and J is a quadratic functional of u and θ .
Moreover, as already mentioned above, ∇ Ĵ takes the following form:

∇ Ĵ = λθ + F(θ), F(θ) := (G∗
θp)(θ) = −(G∗

θ (G
∗
u)

−1 Ju)(θ).

Moreover, based on (23), ∇ Ĵ can be explicitly written as

∇ Ĵ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∇u1 · ∇ p1 + λ θ1
∇ · (u1∇ p1) + λ θ2
u1∇u2 · ∇ p1 + λ θ3
∂u1 f1(u)p1 + λ θ4

u2 p2 + λ θ5
∂v f2(u)p2 + λ θ6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (32)

Since u,p ∈ Y, we get that F(θ) ∈ �. Due to the stability result of the adjoint p (see
Lemma 10) and the linear structure of Jθ , for the Lipschitz continuity of∇ J it suffices
to only consider the operator G∗

θp and establish its stability with respect to u,p and
θ . To this end we shall consider each component of the Jacobian vector function (32)

Component 1:

‖∇u1∇ p1 − ∇u2∇ p2‖V = ‖∇u1(∇ p1 − ∇ p2) + ∇ p2(∇u1 − ∇u2)‖V
≤ ‖∇u1‖L4‖(∇ p1 − ∇ p2)‖L4 + ‖∇ p2‖L4‖(∇u1 − ∇u2)‖L4

≤ ‖u1‖Z‖p1 − p2‖Z + ‖p2‖Z‖u1 − u2‖Z
⇒ ‖∇u1∇ p1 − ∇u2∇ p2‖V (T ) ≤ ‖u1‖Y (T )‖p1 − p2‖Z(T ) + ‖p2‖Y (T )‖u1 − u2‖Z(T ).

Component 2:

‖∇ · (u1∇ p1 − u2∇ p2)‖V = ‖∇ ·
(
u1(∇ p1 − ∇ p2) + p2(∇u1 − ∇u2)

)
‖V

≤ ‖∇ ·
(
u1(∇ p1 − ∇ p2) + p2(∇u1 − ∇u2)

)
‖V

≤ ‖∇ ·
(
u1(∇ p1 − ∇ p2)

)
‖ + ‖∇ ·

(
p2(∇u1 − ∇u2)

)
‖V

≤ ‖∇u1 · (∇ p1 − ∇ p2) + u1(�p1 − �p2)‖
+ ‖∇ p2 · (∇u1 − ∇u2) + p2(�u1 − �u2)‖V

≤ ‖∇u1‖L4‖∇ p1 − ∇ p2‖L4 + ‖u1‖L∞‖�p1 − �p2‖V
+ ‖∇ p2‖L4‖∇u1 − ∇u2‖L4

+ ‖p2‖L∞‖�u1 − �u2‖V
≤ ‖u1‖Z‖p1 − p2‖Z + ‖u1‖L∞‖p1 − p2‖Z + ‖p2‖Z‖u1 − u2‖Z
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+ ‖p2‖L∞‖u1 − u2‖Z
≤ (‖u1‖Z + ‖u1‖L∞ )‖p1 − p2‖Z + (‖p2‖Z + ‖p2‖L∞ )‖u1 − u2‖Z
≤ ‖u1‖Z‖p1 − p2‖Z + ‖u1‖L∞‖p1 − p2‖Z + ‖p2‖Z‖u1 − u2‖Z

+ ‖p2‖Z‖u1 − u2‖Z
≤ 2‖u1‖Z‖p1 − p2‖Z + 2‖p2‖Z‖u1 − u2‖Z

⇒ ‖∇ · (u1∇ p1 − u2∇ p2)‖V (T ) ≤ 2‖u1‖Y (T )‖p1 − p2‖Z(T ) + 2‖p2‖Y (T )‖u1 − u2‖Z(T ).

Component 3:

‖u1∇u1∇ p1 − u2∇u2∇ p2‖V = ‖u1∇u1(∇ p1 − ∇ p2) + u1∇ p2(∇u1 − ∇u2)

+ ∇u2∇ p2(u1 − u2)‖V
≤ ‖u1∇u1‖L4‖(∇ p1 − ∇ p2)‖L4 + ‖u1∇ p2‖L4‖(∇u1 − ∇u2)‖L4

+ ‖∇u2∇ p2‖V ‖u1 − u2‖L∞

≤ ‖u1∇u1‖L4‖p1 − p2‖W + ‖u1∇ p2‖L4‖∇u1 − ∇u2‖W
+ ‖∇u2∇ p2‖V ‖u1 − u2‖L∞

≤ ‖u1‖L∞‖∇u1‖L4‖p1 − p2‖W + ‖u1‖L∞‖∇ p2‖L4‖∇u1

− ∇u2‖W + ‖∇u2‖L4∇ p2‖L4‖u1 − u2‖L∞

≤ ‖u1‖L∞‖u1‖Z‖p1 − p2‖Z + ‖u1‖L∞‖p2‖Z‖u1 − u2‖Z
+ ‖u2‖Z‖p2‖Z‖u1 − u2‖L∞

≤ ‖u1‖Z‖u1‖Z‖p1 − p2‖Z + ‖u1‖Z‖p2‖Z‖u1 − u2‖Z
+ ‖u2‖Z‖p2‖Z‖u1 − u2‖Z

⇒ ‖u1∇u1∇ p1 − u2∇u2∇ p2‖V (T ) ≤ ‖u21‖Y (T )‖p1 − p2‖Z(T )

+ ‖u1 p2‖Y (T )‖u1 − u2‖Z(T )

+ ‖u2 p2‖Y (T )‖u1 − u2‖Z(T ).

Component 4:

‖∂u1 f 11 p1 − ∂u1 f
2
1 p2‖V ≤ ‖∂u1 f 11 p1 − ∂u1 f

1
1 p2 + ∂u1 f

1
1 p2 − ∂u1 f

2
1 p2‖

≤ ‖∂u1 f 11 p1 − ∂u1 f
1
1 p2‖V + ‖∂u1 f 11 p2 − ∂u1 f

2
1 p2‖V

≤ ‖∂u1 f 11 ‖W ‖p1 − p2‖W + ‖p2‖W ‖∂u1 f 11 − ∂u1 f
2
1 ‖W

≤ ‖∂u1 f 11 ‖W ‖p1 − p2‖W + ‖p2‖W ‖∂2u f 11 ‖L∞‖u1 − u2‖Z
⇒ ‖∂u1 f 11 p1 − ∂u1 f

2
1 p2‖V (T ) ≤ M f1‖p1 − p2‖Z(T ) + ‖p2‖Y (T )M f1‖u1 − u2‖Z(T )

Component 5:

‖u1 p1 − u2 p2‖V = ‖u1(p1 − p2) + p2(u1 − u2)‖V
≤ ‖u1‖L4‖(p1 − p2)‖L4 + ‖p2‖L4‖u1 − u2‖L4

≤ ‖u1‖W‖p1 − p2‖W + ‖p2‖W‖u1 − u2‖W
⇒ ‖u1 p1 − u2 p2‖V ≤ ‖u1‖Y (T )‖p1 − p2‖Z(T ) + ‖p2‖Y (T )‖u1 − u2‖Z(T ).
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Component 6:

‖∂u2 f 12 p1 − ∂u2 f
2
2 p2‖ ≤ ‖∂u2 f 12 p1 − ∂u2 f

1
2 p2 + ∂u2 f

1
2 p2 − ∂u2 f

2
2 p2‖

≤ ‖∂u2 f 12 p1 − ∂u2 f
1
2 p2‖V + ‖∂u2 f 12 p2 − ∂u2 f

2
2 p2‖V

≤ ‖∂u2 f 12 ‖W‖p1 − p2‖W + ‖p2‖W‖∂u2 f 12 − ∂u2 f
2
2 ‖W

≤ ‖∂u2 f 12 ‖W‖p1 − p2‖W + ‖p2‖W‖∂2u f 11 ‖L∞‖u1 − u2‖Z
⇒ ‖∂u2 f 12 p1 − ∂u2 f

2
2 p2‖ ≤ M f2‖p1 − p2‖W + ‖p2‖Y (T )M f2‖u1 − u2‖Z(T )

��
Finally, we need the following result for the numerical solution of the minimization
problem.

Theorem 12 Let θ� ∈ � be the solution of system (25). Then Algorithm 1., i.e. the
projected gradient descent method, generates a minimizing sequence (θn)n∈N ∈ �

that converges to θ� in �.

Proof Since � is a Hilbert space and � ⊂ � is a closed convex set, the optimality
condition can be written as

θ� = P�(θ� − γ∇ Ĵ (θ�)), (33)

where, γ > 0 is some arbitrary fixed constant, P�(θ) = argmin
θ̂∈�

‖θ̂ − θ‖� being
the projection operator onto the convex subset �. First we notice that any arbitrary
θ obtained via the Eq. (33) is an element of �. Without loss of generality, letting
γ := λ−1 we have that

θ� = P�(θ� − λ−1∇ Ĵ (θ�)) = P�(−λ−1F(θ�))

⇒ ‖θ�‖ ≤ ‖P�(0) + θ� − P�(0)‖
≤ ‖P�(0)‖ + ‖P�(−λ−1F(θ�)) − P�(0)‖
≤ ‖P�(0)‖ + λ−1‖F(θ�)‖

The last inequality follows from the nonexpansivenss property of the projection oper-
ator. Since F(·) ∈ � we get that θ� ∈ � and the projection operator P� ensures
θ� ∈ �. Finally, due to Lipschitz continuity of F , we can invoke Theorem 2.4 from
Hinze et al. (2008) to conclude that the projected gradient descent generates a mini-
mizing sequence (θ)k ⊂ �. ��
This completes the analysis section. Next we perform numerical simulations and dis-
cuss the obtained results.

4 Numerical simulations

In this section we present a numerical method to compute the optimal parameter vec-
tor θ ∈ � that generates a specified target state which is provided as an input data.
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There are two main paradigms for numerically solving the OCP (13): first optimize
then discretize and first discretize then optimize. In the case of a pure Galerkin approx-
imation, both techniques produce the same outcome. The former, however, not only
results in a strongly consistent scheme (in general), but also offers superior asymptotic
convergence properties (Collis and Heinkenschloss 2002; Becker and Vexler 2007).
Therefore, we adopt the former approach and use the optimality system (25) as the
starting point. Letting W to be a suitable Hilbert space, the state Eq. (25a) can be
represented in the weak form in the following way:

(∂t u1, ϕ) + (σ∇u1 + u1∇κ,∇ϕ) + (δu1∇u2,∇ϕ) = (μ f1, ϕ), ∀ϕ ∈ W

(∂t u2, ψ) + (∇u2,∇ψ) + (αu2, ψ) = (β f2, ψ), ∀ψ ∈ W

u1(0) = u1,0, u2(0) = u2,0.

Similarly, letting O represent the final (target) value of u1, i.e. u1(T ) = O , with O
being the specified data, the adjoint Eq. (25b) reads

−(∂t p1, ϕ) + (σ∇ p1, ∇ϕ) + ((∇κ + δ∇u1) · ∇ p1, ϕ) = −(δu1∇ p2, ϕ) − (μ∂u1 f1 p1, ϕ)

− (ν∂u2 f1 p2, ϕ),

−(∂t p2, ψ) + (∇ p2,∇ψ) + (α p2, ψ) = −(β∂u2 f2 p2, ψ) − (∂u1 f2 p1, ψ),

p1(T ) = u1(T ) − O, p2(0) = 0

Together, the above two equations can be compactly written as:

(
∂tu,ϕ

) + (
A(u; θ)u,ϕ

) = (
f(u; θ),ϕ

)
, ∀ϕ ∈ W

−(
∂tp,ψ

) + (
A∗(p; θ,u)p,ψ

) = (
g(u; θ)p,ψ

)
, ∀ψ ∈ W

u(0) = u0, p(T ) = pT

(34)

System (34) is numerically solved by discretizing it both spatially and temporally.
For the spatial discretization we use the finite element method. Consequently, we
replace the space W by a finite-dimensional subspace Wh ⊂ W which consists of
continuous piecewise polynomial functions of degree 1, spanned by a nodal basis
{ϕ j }Nh

j=1, with dim(Wh) = Nh . The time interval I := [0, T ], T ∈ R
+ is divided into

Nτ subintervals, each having width τ := |I |
Nτ

. Based on this, the temporal grid points

are denoted by Iτ := (tn)n∈{0,...,Nτ } with tn := nτ . Finally, let uhn := u(tn)h, θ
h
n :=

θ(tn)h,phn := p(tn)h denote the finite dimensional approximations of u,p, θ at time
point tn , respectively. Then for all ϕh,ψh ∈ Wh , the discrete version of (34) is given
as:

(
uhn+1,ϕ

h) + τ
(
A(uhn; θhn)u

h
n,ϕ

h) = (
uhn,ϕ

h) + (
f(uhn; θhn), τϕh), (35a)

(
phn,ψ

h) + τ
(
A∗(phn; θhn,u

h
n)p

h
n,ψ

h) = (
phn+1,ψ

h) + (
g(uhn; θhn)p

h
n, τψh), (35b)

uh0 = u(0), phNτ
= p(T )
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Fig. 1 Target pseudopalisade patterns

Given θh,τ := (θhn)n∈N,n<Nτ
, the finite-element scheme (35a) can be used to obtain

an approximate solution uh,τ := (uhn)n∈N,n<Nτ
of the state equation. Analogously,

given θh,τ and uh,τ , the finite element scheme (35b) can be used to generate an
approximate solution ph,τ := (phn)n∈N,n<Nτ

of the adjoint equation. Subsequently,
the approximates uh,τ and ph,τ can be used to compute a new θh,τ based on the opti-
mality relation (29). This basically leads to the following iterative method, commonly
known as the projected gradient descent method, for computing the optimal param-
eter function θ�. The sequential steps of the procedure are described in Algorithm
1. The algorithm can be viewed as a mapping (O,u0) �→ E(O,u0) = (u�, θ�),
E : H2(D) × H2(D) → U × �, which takes an initial value u0 and a final (target)
value O and computes the optimal solution û ∈ U and optimal parameter θ̂ ∈ �ad .
Since Algorithm 1, (i.e. the mapping E), is a numerical method, it is clear that û and
θ̂ are the discrete representatives of the corresponding true optimal functions u� and
θ� (Tables 1, 2).

Algorithm 1: PGD
Data: O ∈ H2(D), u0 ∈ H2(D), ε > 0, τ, h > 0, Nτ ∈ N, T > 0
θ0h,τ

:= θ0

for k = 1, . . . do
uk+1
h,τ

= Shτ (θkh,τ
) using (35a)

pk+1
h,τ

= (Shτ )∗(uk+1
h,τ

, θkh,τ
) using (35b)

−∇ J (uk+1
h,τ

, pk+1
h,τ

, θkh,τ
) = −G∗

θ (uk+1
h,τ

, θkh,τ
)pk+1

h,τ
− λθkh,τ

θk+1
h,τ

(γk ) = P�(θkh,τ
− γk∇ J (uk+1

h,τ
, pk+1

h,τ
, θkh,τ

)), γ k ∈ {1, 1
2 , 1

4 , . . . }
if Ĵ (θk+1

h,τ
) < ε

exit
end

Ahistological image I of taken at a specific time T serves as the target state O ≈ û(T )

for the terminal optimal control problem (13). It represents the observation data, based
on which the above algorithm computes the optimal parameters for the model. The
raw images I cannot be used directly in the optimization algorithm, but instead each
need to be transformed into an image that represents the non-dimensionalized tumor
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Table 1 Simulation parameters

Numerical parameters

T (Total time) 10

τ (Temporal step size) 0.1

hx1 (Spatial step size along x1) 0.1

hx2 (Spatial step size along x2) 0.1

Nx1 (Grid resolution along x1) N (image col size)

Nx2 (Grid resolution along x2) M (image row size)

u1,0 (initial value for u1) 0.2

u2,0 (initial value for u2) 0.5

θ0i (initial value for θi , for i ∈ {1, . . . , 6}) [0.001, 0, 0, 0.02, 0.5, 0.01]T
λi (regularization parameter for θi for i ∈ {1, . . . , 6} ) 10−4

Table 2 Model parameters

Scalar factors for migration coefficients

Phenomenological relevance

γκ Speed of pH-taxis for cancer cells .01

γδ Speed of advection for cancer cells .001

γpH Constant diffusion coefficient for protons .01

Box constraints

σ ∈ [.0001, .01] κ ∈ [−.01, .01]
δ ∈ [−.01, .01] μ ∈ [.0001, 10]
α ∈ [.0001, 1] β ∈ [.0001, 10]

density. This pre-processing step is performed using Algorithm 2. Once again, the
algorithm can be viewed as a mapping I �→ P(I) =: O , P : L2(D) → H2(D),
that takes a raw data I ∈ L2(D) as input and transforms it to an observation variable
O ∈ H2(D).

The final processed image data O represents normalized volumetric concentration
of the cancer cells. Thus it serves as a valid measurement for the non-dimensionalized
model (7)

4.1 Evaluation of the optimization algorithm

In this section we numerically investigate the minimizing properties of the Algorithm
1. To this end we consider different noisy perturbations of a fixed target image and
evaluate the obtained outputs of the Algorithm 1. For the target image we consider
the processed image O = P(I) ( Fig. 2a) obtained after applying the Algorithm 2
to the raw image I (Fig. 1a). Let Gk,s be the discrete Gaussian filter with kernel size
k and sigma (standard deviation) s and Dn to be the n-fold down sampling filter.
Then a different perturbed version Ok of O is obtained applying Gk,s and Dn for
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Algorithm 2: Preprocessing steps
Data: I: an RGB image of the tissue, with size M × N
1. Ig = gray(I). Convert RGB to grayscale image

2. Igs = G ∗ Ig . Smoothen the image using a Gaussian filter G
3. Igs = M ∗ Igs . Remove ’salt and pepper’ noise by applying a median filter
4. Generate an image mask m by applying binary thresholding and performing morphological
operation:

4.1 apply binary to thresholding to extract dominant features
4.2 perform morphological open operation to remove isolated features. This results in the

required mask m
5. Igsm = Igs (m) ∧ Igs (m). Perform bitwise ’and’ operation of the smoothened gray image with
itself using the mask m.

6. Igsmi = 1 − Igsm/255. Normalize the image.

7. O = Igsmi [:: hx , :: hy ]. hx = M
m , hy = N

n . Downsample the M × N image to an m × n image.

different values of k, s and n. Based on this, Fig. 2b is obtained as O1 = G1, 15
(D4(O)).

Similarly, Fig. 2c, d are obtained as O3 = G3, 35
(D4(O)) and O5 = G5,1(D4(O))

respectively. Due to the smoothing property of the Gaussian filter, increasing the
kernel size and sigma results in smoother images, i.e. dampens spatial noise. As a
result, we obtain that O5 is smoother than O3, which is in turn smoother than O1.
Now applying the minimization algorithm E (Algorithm 1) to these perturbed inputs
we can gauge its performance. To this end, by letting (ûk, θ̂k) = E(Ok), we define
the following error metrics:

ek2 := ‖ûk(T ) − Ok‖L2 , ek∞ := ‖ûk(T ) − Ok‖L∞

ekrel := ‖ûk(T ) − Ok‖L2

‖Ok‖L2
, ekD(ε) := 1

|D|
∫

D
1{ek2>ε} dx .

Figure 3 depicts the error reduction profiles corresponding to the noisy target images
O1, O3, O5 (Fig. 2b–d). Based on this we can infer the following:

(1) as can be seen from Fig. 3b, the absolute error ek2 tends to a stable low value for

each Ok . It holds that e
k1
2 < ek22 when Ok1 is smoother than Ok2 .

(2) according to Fig. 3a, for smoother target images the error reduction is relatively
faster, especially for e∞ and eD.

The deterioration of error reduction for increased noise levels is expected and justified
since (based on Theorem 5) we expect û ∈ U, i.e. û(t) ∈ H2(D) for all t ∈ [0, T ].
Thus for a noisy target pattern, the optimization can only be suboptimal due to the
violation of spatial smoothness.

4.2 Pseudopalisade specific results

In this section we evaluate the ability of the model to replicate different realistic
pseudopalisade patterns On as shown in Fig. 1. We also consider other target patterns
which are displayed in pre-processed form. The generated optimal final distribution
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Fig. 2 Pre-processed version of the raw image I (cf. Figure1a) and its noisy perturbations (see text)

Fig. 3 Error reduction for noisy target images obtained using different standard deviation parameter sd =√
s ∈ {.2, .6, 1, 1.4} in the smoothing kernel G and downscalingsDn with n ∈ {1, 3, 5, 7}

of tumor cells corresponding to On is as shown in Figs. 4, 5, 6, and 7. Based on these
outputs we can observe the following:

1. The optimization algorithm is able to accurately generate/recreate the target
pseudopalisade pattern. This is evident by looking at the fourth column of the
Figs. 4, 5, 6, and 7, where we depicted the L2-norm of the error i.e. the difference
between the estimated final tumor density and the required target density. The
difference is mainly in the 2nd decimal and only for very small volume fractions.
Also, it is important to notice that the estimated final tumor cell density is much
smoother when compared to the required target density. This is a consequence of
the wellposedness Theorem 5 which stipulates that the solution û lies in U with
û(t) ∈ H2(D) for every t ∈ [0, T ].

2. Along with the cancer cell density, the algorithm also estimates the acid distri-
bution. This is depicted in the third column of Figs. 4, 5, 6, and 7. Based on this
we see that, at the regions of higher cancer cell density, in particular at areas of
pseudopalisade formation, the proton concentration is relatively low compared to
that of the surroundings. This supports the common hypothesis that the center of
a pseudopalisade is a necrotic region, with poor acid removal mechanisms, which
results in relatively low pH.

3. Another interesting observation is that certain localized areas in the interior region
encompassed by a pseudopalisade structure, show relatively high proton concen-
tration. This suggests that these localized regions were the sites of high tumor
activity which was likely to be a consequence of increased glycolysis activity
followed by growth and expansion of the tumor front. As a consequence of the
excess acid produced and the expanding tumor periphery, acid gets accumulated,
primarily in areas of poor vasculature such as the core of the pseudopalisade.
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Fig. 4 Optimal cancer and acid distribution for the given target pseudopalisade pattern (see Fig 7. Brat et al.
2004)

Fig. 5 Optimal cancer and acid distribution for the given target pseudopalisade pattern in Fig. 1a

Fig. 6 Optimal cancer and acid distribution for the given target pseudopalisade pattern in Fig. 1b

Fig. 7 Optimal cancer and acid distribution for the given target pseudopalisade pattern in Fig. 1c

In order to get a deeper understanding about the formation process of pseudopalisade
structures, we look at the estimated model parameter function θ . We do so for a fixed
target pattern, namely for Pattern-B (see Figs. 1a and 5). The obtainedmodel parameter
functions are depicted in Figs. 8, 9. Based on the dynamics of the parameters itself we
can infer the following:

1. The tumor growth rateμ and acid expulsion rateα resemble structurally verymuch
the target pattern. Initially the growth and expulsion rates are relatively high and
later near the end time, when the tumor distribution is approaching the required
pseudopalisade pattern, these rates stabilize. Moreover, it can be observed that μ

and α are positively correlated i.e. higher μ implies higher α, at least at the begin-
ning of tumor evolution. This positive feedback of growth rate and acid buffering
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indicates the presence of (reminiscent) vasculature and the supporting microen-
vironment to facilitate removal excess acid. Disruption of this vital supporting
element during tumor progression results in the formation of necrotic regions like
those appearing toward the end time.

2. The acid production rate β is higher mainly in the regions where there is less
tumor cell density. These regions of higher β mainly happen to be the area of
tissue necrosis, leading to the eventual accumulation of acid. These above aver-
age acid production rates could be attributed to the neoplastic transformation in
those regions where excessive glycolysis takes place, in order to fulfill the energy
requirements for proliferation.

3. Looking at themigration parameters we see that the diffusion coefficient σ is lower
in the sparsely populated tumor regions which are the main candidate areas for the
necrotic core formation. As the tumor progresses, the diffusion coefficient mainly
homogenizes and can be approximated to be spatially constant.

4. The advection coefficient κ is initially more pronounced at the outer margin of the
necrotic core which later progresses to the inner region of the core. This indicates
that an unfavorable region is likely to generate an aggressive stimulus making the
tumor cells more mobile.

5. The pH-taxis coefficient δ is mainly at the outer edges of areas with acid accumu-
lation, which corresponds to necrosis. Thus, pH-taxis seems to act mainly at the
interfacing/intersecting layer of high-density and low-density regions of tumor.
This suggests that acidity facilitates travelling-wave like behavior of tumor-host
interface.

6. Finally, the clear distinction between regions where the taxis and growth param-
eters are dominant supports the hypothesis of grow-or-go dichotomy in glioma
tumor progression (Höring et al. 2012).

5 Pattern synthesis and disruption

In this section we consider an application of the OCP (7), aiming to shed light on
pattern dynamics under various influences. One of the main advantages of data-based
parameter estimation is its potential use in patient-specific therapy design. The diag-
nostic histological samples obtained from a patient can be used to estimate the model
parameters which approximately characterize the (microscopic) dynamics of GBM
progression for that specific patient. Based on this, one can then design or hypothesize
different intervention mechanisms that can mitigate the development of GBM. One
such plausible way would be to understand how pseudopalisade pattern formation can
be disrupted or reversed. To incorporate such effects, we adapt the above model as
follows:

∂t u1 − ∇ · (σ∇u1 + u1∇κ) = ∇ · (δ u1∇u2) + μ f1(u1, u2) − ξ1u1 (36a)

∂t u2 − �u2 + αu2 = β f2(u1, u2) + ξ2u2 (36b)

(σ∇u1 + u1∇κ) · n̂ = 0, ∇ · u2 = 0, u1(0) = u10 , u2(0) = u20
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Fig. 8 Evolution of growth and decay parameter functions for target Pattern-B from Fig.1a. The columns
are sorted according to time (in days). The leftmost column is the tumor state at t = 20, the middle left
column is for t = 50 days, the middle right one for t = 70 days, and the rightmost column for t = 90. The
rows represent different parameter functions of the model (7). Arranged from top to bottom these are: the
growth coefficient μ (1st row), acid removal rate α (2nd row), acid production rate β (3rd row)

Here, ξ = (ξ1, ξ2) ∈ L2(I ; V×2) with ξ1 ≥ 0 is a disturbance term that models
the disruption of pattern formation mechanisms. Consequently, ξ is responsible for
neutralization or renormalization of the tumor microenvironment, which altogether
impedes tumor development. Motivated by this we refer to ξ as a pattern neutralizing
function. Having estimated the model parameters θ for different target patterns (see
pictures in Fig. 1) we can now ask what kind of external signal is needed to revert or
neutralize the cancerous microenvironment. This entails solving the following modi-
fied optimization problem:

u�, ξ∗ = argmin
u,ξ

J (u, θ, ξ) s.t. G(u; θ, ξ) = 0, (37)

where J is the quadratic cost function analogous to (12) andG(u; θ, ξ) = 0 represents
the state Eq. (36) in abstract form. Now, given a non-cancerous or a neutral tissue
pattern as the target state, we can solve for the optimal pattern neutralizing function
ξ∗. To be more precise, let θO be the optimal model parameter vector associated to
the target pattern Pattern-O where O ∈ {A, B,C, E} i.e. one of the target patterns
depicted in Fig. 1. Then given some starting value u0 (representing a non-cancerous
initial state) and fixing the model parameters θO , we apply Algorithm 1 to determine
ξ̂ that can counteract the effects of θO and result in a target state which corresponds to
a neutral non-cancerous tissue. Figures10 and 11 depict the result of the application
of the neutralizing function ξ∗ that is able to counteract the effects of the parameters
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Fig. 9 Evolution of tumor motility parameters. The columns are sorted according to time (in days). The
leftmost column is the tumor state at t = 20, the middle left column is for t = 50, the middle right one for
t = 70, and the rightmost column is for t = 90. The rows represent different parameter functions of the
model (7). Arranged from top to bottom these are: the diffusion coefficient σ (1st row), advection coefficient
κ (2nd row) and pH-taxis coefficient δ (bottom row)

Fig. 10 Final pseudopalisade patterns resulting after applying the pattern neutralizing function ξ̂ with the
corresponding pattern specific estimated model parameters θ̂

Fig. 11 Final proton distribution corresponding to the pseudopalisade patterns in Fig. 10

responsible for generation of the specific pseudopalisade patterns PatternB–PatternE
(see Fig. 1) and PatternA (see Brat et al. 2004 Fig. 7.).

Alternatively, instead of applying the pattern neutralizing function that directly
acts on the cancer cells, one could also look for an indirect method which aims at
manipulating the micro-environment as a means to hinder tumor progression. This

123



4 Page 34 of 43 S. A. Hiremath, C. Surulescu

Fig. 12 Final pseudopalisade patterns resulting after applying the pH neutralizing function ξ̂2 with the
corresponding pattern specific estimated model parameters θ̂

Fig. 13 Final proton distribution corresponding to the pseudopalisade patterns in Fig. 12

means that instead of having two control variables ξ1 and ξ2 in (36) we have only
one control variable ξ2 that aims to disrupt the pseudopalisade pattern by appropri-
ately regulating the tissue acidity. Consequently, ξ2 is referred to as pH neutralizing
function. Following the above steps we can find the optimal ξ̂2 that alone can mitigate
the effects of pseudopalisade forming parameters θ̂0. Based on the results depicted
in Figs. 12 and 13, we can see that neutralizing the tissue acidity can also serve as an
effective pseudopalisade disruption mechanism. This seems to be in line with thera-
peutic approaches aiming at tumor alkalinization, e.g. see (Amiri et al. 2016; Yang
et al. 2020).

5.1 Synthesis of new patterns

In this sectionwe illustrate hownewpatterns can be synthesized by combining, linearly
or nonlinearly, the optimal parameters θ̂O corresponding to different target pseudopal-
isade patterns O . We let θ̂K L := (θ̂K + θ̂ L)/2, where θ̂K and θ̂ L are the estimated
optimalmodel parameters for target patterns Pattern-KandPattern-L, respectively. The
patterns generatedbydifferent such combinations are depicted inFigs. 15, and16.They
indicate that different complex patterns can arise by linear combination of processes
responsible for generating simpler patterns. This is again of particular importance for
therapy applications, where one can ask the question whether a similar linear com-
bination of pattern neutralizing functions can still be effective for disrupting the new
pattern. That is, if ξ̂ K and ξ̂ L are the pattern neutralizing functions that can counteract
the effects of θ̂K and θ̂ L respectively, would their combination ξ̂ K L := (ξ̂ K + ξ̂ L)/2
be able to counteract the effects of θ̂K L? Based on the obtained numerical results, as
shown in Figs. 17, 18, we can conclude that the same linear combination of pattern neu-
tralizing functions does indeed prove to be effective in counteracting the combined
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Fig. 14 Template patterns for synthesizing new ones

Fig. 15 Synthesized patterns for different combinations of the model parameters

Fig. 16 Tissue acid profiles for the synthesized patterns in Fig. 15

Fig. 17 Final tumor pattern after applying optimal pH neutralizing function for the synthesized patterns in
Fig. 15

effects of the processes responsible for generating simpler pseudopalisade patterns
(Fig. 13).

6 Summary and conclusion

In this paper we have formulated a terminal valued optimal control problem to under-
stand the process involved in the formation of pseudopalisade structures during the
progression of GBMs based on observed data. Starting from the state of the art mul-
tiscale model (Kumar et al. 2021) we proposed a modified model for the dynamics
of pseudopalisade structures under the influence of tissue acidity which served as a
dynamical state equation for the optimization problem. We then performed a well-
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Fig. 18 Tissue acid profiles for the tumor patterns in Fig. 17

posedness study based on which we are able to establish the existence of an optimal
solution to the TOCP. This paved the way to performing numerical simulations for
which we used the well known projected gradient descent method. For solving the
TOCP problem the required data was obtained by taking experimentally observed
images from available publications. Herewe also proposed an algorithm to convert raw
experimental images to model-specific non-dimensionlized volumetric/concentration
data. By using these processed images, we were able to successfully recreate the target
patterns by estimating the optimal model parameter functions. Because most of the
developed mathematical models only rely on simulation results to reproduce experi-
mentally observed qualitative behavior, the proposed procedure provides an effective
alternative approach to validate the model using real data. Based on the target-specific
optimal parameters we were able to shed light not only on the dynamical interplay
between reaction and migration terms, but also on the relationship between tumor
progression and acidity. This type of data-specific analysis of dynamics could be of
particular interest to medical professionals to perform patient-specific diagnosis and
in turn design patient-specific treatment. From this perspective, we also showed the
feasibility of different methods to normalize the tissue structure and obstruct tumor
progression. The computed pattern neutralizing function achieves this not only by
modifying the tissue acidity, but also by directly acting on the cancer cell population.
Additionally, we highlighted the strength of this data-based approach by its abil-
ity to synthesize different unobserved pseudopalisade patterns, by simply combining
already known optimal parameter functions computed from specific observed data.
This can be further used to determine probable pattern-neutralization functions for a
new unobserved pseudopalisade pattern by combining, in a similar way, the pattern-
neutralizing functions of the simpler ones. Further direction of research would be to
devise an active control strategy and a corresponding control problem for obstructing
GBM progression.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00285-023-01933-5.
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Appendix

In the following we display the evolution of the optimal parameters θ� for Patterns-A,
C and E. Furthermore, the figures and results presented in this work are submitted as
supplementary files (See Figs. 19, 20, 21, 22, 23, 24).

Fig. 19 Evolution of growth and decay parameter functions for target Pattern-A (see Fig. 4). The columns
are sorted according to time (in days). The leftmost column is the tumor state at t = 20, the middle left
column is for t = 50 days, the middle right one for t = 70 days, and the rightmost column for t = 90. The
rows represent different parameter functions of the model (7). Arranged from top to bottom these are: the
growth coefficient μ (1st row), acid removal rate α (2nd row), acid production rate β (3rd row)
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Fig. 20 Evolution of tumor motility parameters for target Pattern-A (see Fig. 4). The columns are sorted
according to time (in days). The leftmost column is the tumor state at t = 20, the middle left column is for
t = 50, themiddle right one for t = 70, and the rightmost column is for t = 90. The rows represent different
parameter functions of the model (7). Arranged from top to bottom these are: the diffusion coefficient σ

(1st row), advection coefficient κ (2nd row) and pH-taxis coefficient δ (bottom row)

Fig. 21 Evolution of growth and decay parameter functions for target Pattern-C (Fig. 1b). The columns are
sorted according to time (in days). The leftmost column is the tumor state at t = 20, the middle left column
is for t = 50 days, the middle right one for t = 70 days, and the rightmost column for t = 90. The rows
represent different parameter functions of the model (7). Arranged from top to bottom these are: the growth
coefficient μ (1st row), acid removal rate α (2nd row), acid production rate β (3rd row)
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Fig. 22 Evolution of tumor motility parameters for target Pattern-C (Fig. 1b). The columns are sorted
according to time (in days). The leftmost column is the tumor state at t = 20, the middle left column is for
t = 50, themiddle right one for t = 70, and the rightmost column is for t = 90. The rows represent different
parameter functions of the model (7). Arranged from top to bottom these are: the diffusion coefficient σ

(1st row), advection coefficient κ (2nd row) and pH-taxis coefficient δ (bottom row)

Fig. 23 Evolution of growth and decay parameter functions for target Pattern-E (Fig. 1c). The columns are
sorted according to time (in days). The leftmost column is the tumor state at t = 20, the middle left column
is for t = 50 days, the middle right one for t = 70 days, and the rightmost column for t = 90. The rows
represent different parameter functions of the model (7). Arranged from top to bottom these are: the growth
coefficient μ (1st row), acid removal rate α (2nd row), acid production rate β (3rd row)
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Fig. 24 Evolution of tumor motility parameters for target Pattern-E (Fig. 1c). The columns are sorted
according to time (in days). The leftmost column is the tumor state at t = 20, the middle left column is for
t = 50, themiddle right one for t = 70, and the rightmost column is for t = 90. The rows represent different
parameter functions of the model (7). Arranged from top to bottom these are: the diffusion coefficient σ

(1st row), advection coefficient κ (2nd row) and pH-taxis coefficient δ (bottom row)

References

Agamanolis DP (2017) Neuropathology: an illustrated interactive course for medical students and residents.
https://neuropathology-web.org/chapter7/chapter7bGliomas.html

Alfonso JC, Köhn-Luque A, Stylianopoulos T, Feuerhake F, Deutsch A, Hatzikirou H (2016) Why one-
size-fits-all vaso-modulatory interventions fail to control glioma invasion: In silico insights. Sci Rep
6:1–15. https://doi.org/10.1038/srep37283. arXiv:1604.05082

Alfonso JC, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch
A (2017) The biology and mathematical modelling of glioma invasion: a review. J R Soc Interface.
https://doi.org/10.1098/rsif.2017.0490

Amiri A, Le PU, Moquin A, Machkalyan G, Petrecca K, Gillard JW, Yoganathan N, Maysinger D (2016)
Inhibition of carbonic anhydrase ix in glioblastoma multiforme. Eur J Pharm Biopharm 109:81–92.
https://doi.org/10.1016/j.ejpb.2016.09.018

Becker R, Vexler B (2007) Optimal control of the convection-diffusion equation using stabilized finite
element methods. Numer Math 106(3):349–367. https://doi.org/10.1007/s00211-007-0067-0

Böttger K, Hatzikirou H, Chauviere A, Deutsch A (2012) Investigation of the migration/proliferation
dichotomy and its impact on avascular glioma invasion. Math Model Natl Phenom 7(1):105–135.
https://doi.org/10.1051/mmnp/20127106

Brahimi-Horn MC, Pouysségur J (2007) Hypoxia in cancer cell metabolism and pH regulation. Essays
Biochem 43:165–178. https://doi.org/10.1042/bse0430165

Brat D, Mapstone T (2003) Malignant glioma physiology: cellular response to hypoxia and its role in tumor
progression. Ann Intern Med 138:659–668. https://doi.org/10.7326/0003-4819-138-8-200304150-
00014

Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, Devi SN, Kaur B, Van
Meir EG (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases,
and are formed by an actively migrating cell population. Cancer Res 64(3):920–927. https://doi.org/
10.1158/0008-5472.CAN-03-2073

123

https://neuropathology-web.org/chapter7/chapter7bGliomas.html
https://doi.org/10.1038/srep37283
http://arxiv.org/abs/1604.05082
https://doi.org/10.1098/rsif.2017.0490
https://doi.org/10.1016/j.ejpb.2016.09.018
https://doi.org/10.1007/s00211-007-0067-0
https://doi.org/10.1051/mmnp/20127106
https://doi.org/10.1042/bse0430165
https://doi.org/10.7326/0003-4819-138-8-200304150-00014
https://doi.org/10.7326/0003-4819-138-8-200304150-00014
https://doi.org/10.1158/0008-5472.CAN-03-2073
https://doi.org/10.1158/0008-5472.CAN-03-2073


Data driven modeling of pseudopalisade pattern formation Page 41 of 43 4

Caiazzo A, Ramis-Conde I (2015) Multiscale modelling of palisade formation in Gliobastoma multiforme.
J Theor Biol 383:145–156. https://doi.org/10.1016/j.jtbi.2015.07.021

Chiche J, Brahimi-Horn MC, Pouysségur J (2010) Tumour hypoxia induces a metabolic shift causing
acidosis: a common feature in cancer. J Cell Mol Med 14(4):771–794. https://doi.org/10.1111/j.1582-
4934.2009.00994.x

Collis SS, Heinkenschloss M (2002) Analysis of SUPG method applied to the solution of optimal control
problems. Accessible at https://hdl.handle.net/1911/101983

Colombo MC, Giverso C, Faggiano E, Boffano C, Acerbi F, Ciarletta P (2015) Towards the personalized
treatment of glioblastoma: integrating patient-specific clinical data in a continuous mechanical model.
PLoS ONE 10(7):1–23. https://doi.org/10.1371/journal.pone.0132887

Conte M, Surulescu C (2021) Mathematical modeling of glioma invasion: acid- and vasculature mediated
go-or-grow dichotomy and the influence of tissue anisotropy. Appl Math Comput 407:126305. https://
doi.org/10.1016/j.amc.2021.126305

Conte M, Gerardo-Giorda L, Groppi M (2020) Glioma invasion and its interplay with nervous tissue and
therapy: a multiscale model. J Theor Biol 486:110088. https://doi.org/10.1016/j.jtbi.2019.110088

Conte M, Dzierma Y, Knobe S, Surulescu C (2022) Mathematical modeling of glioma invasion and therapy
approaches. https://doi.org/10.48550/ARXIV.2203.11578

Corbin G, Hunt A, Schneider F, Klar A, Surulescu C (2018) Higher-order models for glioma invasion: from
a two-scale description to effective equations for mass density and momentum.MathModels Methods
Appl Sci. https://doi.org/10.1142/S0218202518400055

CorbinG,KlarA, SurulescuC, EngwerC,WenskeM,Nieto J, Soler J (2021)Modeling glioma invasionwith
anisotropy- and hypoxia-triggered motility enhancement: from subcellular dynamics to macroscopic
pdes with multiple taxis. Math Models Methods Appl Sci 31(01):177–222. https://doi.org/10.1142/
S0218202521500056

Dietrich A, Kolbe N, Sfakianakis N, Surulescu C (2022) Multiscale modeling of glioma invasion: from
receptor binding to flux-limited macroscopic pdes. SIAMMultiscale Model Simul 2:685–713. https://
doi.org/10.1137/21M1412104

Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central
nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. https://doi.org/
10.1093/neuonc/nos218

Engwer C, Hillen T, Knappitsch M, Surulescu C (2015) Glioma follow white matter tracts: a multiscale
DTI-based model. J Math Biol 71(3):551–582. https://doi.org/10.1007/s00285-014-0822-7

Engwer C, Hunt A, Surulescu C (2016) Effective equations for anisotropic glioma spread with proliferation:
a multiscale approach and comparisons with previous settings. MathMed Biol 33(4):435–459. https://
doi.org/10.1093/imammb/dqv030

Engwer C, Knappitsch M, Surulescu C (2016) A multiscale model for glioma spread including cell-tissue
interactions and proliferation. Math Biosci Eng 13(2):443–460. https://doi.org/10.3934/mbe.2015011

Estrella V, Chen T, LloydM,Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y,
Rothberg JM, Sloane BF, Johnson J, Gatenby RA, Gillies RJ (2013) Acidity generated by the tumor
microenvironment drives local invasion. Cancer Res 73(5):1524–1535. https://doi.org/10.1158/0008-
5472.CAN-12-2796

FinottiH, SuzanneL,PhanTV(2012)Optimal control of advective direction in reaction-diffusionpopulation
models. Evol Equ Control Theory 1(1):81–107

Florian J (2010) Glioblastoma showing areas of pseudopalisading necrosis. https://commons.wikimedia.
org/wiki/File:GBM_pseudopalisading_necrosis.jpg

Gatenby R, Gawlinski ET (2003) The glycolytic phenotype in carcinogenesis and tumor invasion: insights
through mathematical models. Cancer Res 63(14):3847–54

GholamiA,MangA,BirosG (2016)An inverse problem formulation for parameter estimation of a reaction–
diffusion model of low grade gliomas. J Math Biol 72(1–2):409–433. https://doi.org/10.1007/s00285-
015-0888-x. arXiv:1408.6221

Harpold HL, Alvord EC, Swanson KR (2007) The evolution of mathematical modeling of glioma
proliferation and invasion. J Neuropathol Exp Neurol 66(1):1–9. https://doi.org/10.1097/nen.
0b013e31802d9000

HatzikirouH,DeutschA, Schaller C, SimonM, SwansonK (2005)Mathematical modelling of glioblastoma
tumour development: a review. Math Models Methods Appl Sci 15(11):1779–1794. https://doi.org/
10.1142/S0218202505000960

123

https://doi.org/10.1016/j.jtbi.2015.07.021
https://doi.org/10.1111/j.1582-4934.2009.00994.x
https://doi.org/10.1111/j.1582-4934.2009.00994.x
https://hdl.handle.net/1911/101983
https://doi.org/10.1371/journal.pone.0132887
https://doi.org/10.1016/j.amc.2021.126305
https://doi.org/10.1016/j.amc.2021.126305
https://doi.org/10.1016/j.jtbi.2019.110088
https://doi.org/10.48550/ARXIV.2203.11578
https://doi.org/10.1142/S0218202518400055
https://doi.org/10.1142/S0218202521500056
https://doi.org/10.1142/S0218202521500056
https://doi.org/10.1137/21M1412104
https://doi.org/10.1137/21M1412104
https://doi.org/10.1093/neuonc/nos218
https://doi.org/10.1093/neuonc/nos218
https://doi.org/10.1007/s00285-014-0822-7
https://doi.org/10.1093/imammb/dqv030
https://doi.org/10.1093/imammb/dqv030
https://doi.org/10.3934/mbe.2015011
https://doi.org/10.1158/0008-5472.CAN-12-2796
https://doi.org/10.1158/0008-5472.CAN-12-2796
https://commons.wikimedia.org/wiki/File:GBM_pseudopalisading_necrosis.jpg
https://commons.wikimedia.org/wiki/File:GBM_pseudopalisading_necrosis.jpg
https://doi.org/10.1007/s00285-015-0888-x
https://doi.org/10.1007/s00285-015-0888-x
http://arxiv.org/abs/1408.6221
https://doi.org/10.1097/nen.0b013e31802d9000
https://doi.org/10.1097/nen.0b013e31802d9000
https://doi.org/10.1142/S0218202505000960
https://doi.org/10.1142/S0218202505000960


4 Page 42 of 43 S. A. Hiremath, C. Surulescu

Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A (2012) ‘Go or grow’: the key to the emergence
of invasion in tumour progression? Math Med Biol 29(1):49–65. https://doi.org/10.1093/imammb/
dqq011

Hinow P, Gerlee P et al (2009) A spatial model of tumor-host interaction: application of chemotherapy.
Math Biosci Eng 6(3):521–546

Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2008) Optimization with PDE constraints. Theory and applica-
tions. Springer, Netherlands, Mathematical Modelling

Hiremath SA, Surulescu C (2017) Mathematical models for acid-mediated tumor invasion: from deter-
ministic to stochastic approaches BT—multiscale models in mechano and tumor biology. Springer
International Publishing, Cham, pp 45–71

Hiremath S, Surulescu C (2015) A stochastic multiscale model for acid mediated cancer invasion. Nonlinear
Anal Real World Appl 22:176–205. https://doi.org/10.1016/j.nonrwa.2014.08.008

Hiremath SA, SurulescuC (2016)A stochasticmodel featuring acid-induced gaps during tumor progression.
Nonlinearity 29(3):851–914. https://doi.org/10.1088/0951-7715/29/3/851

Hiremath SA, Surulescu C, Zhigun A, Sonner S (2018) On a coupled SDE-PDE system modeling acid-
mediated tumor invasion. Discrete Contin Dyn Syst B 23(9):3685–3715. https://doi.org/10.3934/
dcdsb.2018071

Hogea C, Davatzikos C, Biros G (2008) An image-driven parameter estimation problem for a reaction–
diffusion glioma growthmodel withmass effects. JMath Biol 56(6):793–825. https://doi.org/10.1007/
s00285-007-0139-x

Höring E, Harter P, Seznec J, Schittenhelm J, Bühring HJ, Bhattacharyya S, von Hattingen E, Zachskorn
C, Mittelbronn M, Naumann U (2012) The go or grow potential of gliomas is linked to the neu-
ropeptide processing enzyme carboxypeptidase e and mediated by metabolic stress. Acta Neuropathol
124(1):83–97. https://doi.org/10.1007/s00401-011-0940-x

Hunt A, Surulescu C (2016) A multiscale modeling approach to glioma invasion with therapy. Vietnam J
Math. https://doi.org/10.1007/s10013-016-0223-x

Jbabdi S,Mandonnet E, Duffau H, Capelle L, SwansonKR, Pélégrini-IssacM, Guillevin R, Benali H (2005)
Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Reson
Med 54(3):616–624. https://doi.org/10.1002/mrm.20625

JingX,Yang F, ShaoC,WeiK,XieM, ShenH, ShuY (2019) Role of hypoxia in cancer therapy by regulating
the tumor microenvironment. Mol Cancer 18(1):1–15. https://doi.org/10.1186/s12943-019-1089-9

Khain E, Katakowski M, Hopkins S, Szalad A, Zheng X, Jiang F, Chopp M (2011) Collective behavior of
brain tumor cells: the role of hypoxia. Phys Rev 83(3 Pt 1):31920. https://doi.org/10.1103/PhysRevE.
83.031920

Kim Y, Roh S (2013) A hybrid model for cell proliferation and migration in glioblastoma. Discrete Contin
Dyn Syst Ser B 18(4):969–1015. https://doi.org/10.3934/dcdsb.2013.18.969

KimY,LawlerS,NowickiMO,ChioccaEA,FriedmanA(2009)Amathematicalmodel for pattern formation
of glioma cells outside the tumor spheroid core. J Theor Biol 260(3):359–371. https://doi.org/10.1016/
j.jtbi.2009.06.025

Kleihues P, Soylemezoglu F, Schäuble B, Scheithauer BW, Burger PC (1995) Histopathology, classification,
and grading of gliomas. Glia 15(3):211–221. https://doi.org/10.1002/glia.440150303

Konukoglu E, Clatz O, Bondiau PY, Delingette H, Ayache N (2010) Extrapolating glioma invasion margin
in brain magnetic resonance images: suggesting new irradiation margins. Med Image Anal 14(2):111–
125. https://doi.org/10.1016/j.media.2009.11.005

Kumar P, Surulescu C (2020) A flux-limited model for glioma patterning with hypoxia-induced angiogen-
esis. Symmetry. https://doi.org/10.3390/sym12111870

Kumar P, Li J, Surulescu C (2021) Multiscale modeling of glioma pseudopalisades: contributions from the
tumor microenvironment. J Math Biol 82(6):1–45. https://doi.org/10.1007/s00285-021-01599-x

Kumar P, Surulescu C, Zhigun A (2022) Multiphase modelling of glioma pseudo palisading under acidosis.
Math Eng 4(6):1–28. https://doi.org/10.3934/mine.2022049

Martínez-GonzálezA,CalvoGF, PérezRomasantaLA, Pérez-GarcíaVM(2012)Hypoxic cellwaves around
necrotic cores in glioblastoma: a biomathematical model and its therapeutic implications. Bull Math
Biol 74(12):2875–2896. https://doi.org/10.1007/s11538-012-9786-1. arXiv:1204.3809

MartirosyanNL,Rutter EM,RameyWL,KostelichEJ,KuangY,PreulMC (2015)Mathematicallymodeling
the biological properties of gliomas: a review. Math Biosci Eng 12(4):879–905. https://doi.org/10.
3934/mbe.2015.12.879

123

https://doi.org/10.1093/imammb/dqq011
https://doi.org/10.1093/imammb/dqq011
https://doi.org/10.1016/j.nonrwa.2014.08.008
https://doi.org/10.1088/0951-7715/29/3/851
https://doi.org/10.3934/dcdsb.2018071
https://doi.org/10.3934/dcdsb.2018071
https://doi.org/10.1007/s00285-007-0139-x
https://doi.org/10.1007/s00285-007-0139-x
https://doi.org/10.1007/s00401-011-0940-x
https://doi.org/10.1007/s10013-016-0223-x
https://doi.org/10.1002/mrm.20625
https://doi.org/10.1186/s12943-019-1089-9
https://doi.org/10.1103/PhysRevE.83.031920
https://doi.org/10.1103/PhysRevE.83.031920
https://doi.org/10.3934/dcdsb.2013.18.969
https://doi.org/10.1016/j.jtbi.2009.06.025
https://doi.org/10.1016/j.jtbi.2009.06.025
https://doi.org/10.1002/glia.440150303
https://doi.org/10.1016/j.media.2009.11.005
https://doi.org/10.3390/sym12111870
https://doi.org/10.1007/s00285-021-01599-x
https://doi.org/10.3934/mine.2022049
https://doi.org/10.1007/s11538-012-9786-1.
http://arxiv.org/abs/1204.3809
https://doi.org/10.3934/mbe.2015.12.879
https://doi.org/10.3934/mbe.2015.12.879


Data driven modeling of pseudopalisade pattern formation Page 43 of 43 4

McKinney, C. Glioblastoma multiforme pseudopalisading necrosis. https://www.pinterest.com/pin/
471048442246524817/

Murray JD (2002) Mathematical biology I. An introduction, 3 edn, volume 17 of interdisciplinary applied
mathematics. Springer

Necas J, Malek J, Rokyta M, Ruzicka M (1996) Weak and measure-valued solutions to evolutionary PDEs.
Chapman and Hall/CRC Press

Painter KJ, Hillen T (2013) Mathematical modelling of glioma growth: the use of diffusion tensor imaging
(DTI) data to predict the anisotropic pathways of cancer invasion. J Theor Biol 323:25–39. https://
doi.org/10.1016/j.jtbi.2013.01.014

Piasentin N, Milotti E, Chignola R (2020) The control of acidity in tumor cells: a biophysical model. Sci
Rep 10(1):1–14

Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour
angiogenesis factor in human gliomas in vivo. Nature 359(6398):845–848. https://doi.org/10.1038/
359845a0

Rong Y, Durden DL, Van Meir EG, Brat DJ (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar
morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp
Neurol 65(6):529–539. https://doi.org/10.1097/00005072-200606000-00001

Sander LM, Deisboeck TS (2002) Growth patterns of microscopic brain tumors. Phys Rev 66(5 Pt 1):51901.
https://doi.org/10.1103/PhysRevE.66.051901

SturrockM, HaoW, Schwartzbaum J, Rempala GA (2015) Amathematical model of pre-diagnostic glioma
growth. J Theor Biol 380:299–308. https://doi.org/10.1016/j.jtbi.2015.06.003

Swan A, Hillen T, Bowman JC, Murtha AD (2018) A patient-specific anisotropic diffusion model for brain
tumour spread. Bull Math Biol 80(5):1259–1291. https://doi.org/10.1007/s11538-017-0271-8

Swanson KR, Rockne RC, Claridge J, Chaplain MA, Alvord EC, Anderson AR (2011) Quantifying the
role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and
histology. Cancer Res 71(24):7366–7375. https://doi.org/10.1158/0008-5472.CAN-11-1399

Webb S, Sherratt J, Fish R (1999) Mathematical modelling of tumor acidity: regulation of intracellular ph.
J Theor Biol 196(2):237–250. https://doi.org/10.1006/jtbi.1998.0836

Webb S, Sherratt J, Fish R (2004) Alterations in proteolytic activity at low ph and its association with
invasion: a theoretical model. Clin Exp Metas 17:397–407

Wippold FJN, Lämmle M, Anatelli F, Lennerz J, Perry A (2006) Neuropathology for the neuroradiologist:
palisades and pseudopalisades. AJNR Am J Neuroradiol 27(10):2037–2041

Yagi A (2009) Abstract parabolic evolution equations and their applications. Springer Monographs in
Mathematics. Springer

Yang M, Zhong X, Yuan Y (2020) Does baking soda function as a magic bullet for patients with cancer? A
mini review. Integr Cancer Ther. https://doi.org/10.1177/1534735420922579

Yu VY, Nguyen D, O’Connor D, Ruan D, Kaprealian T, Chin R, Sheng K (2021) Treating Glioblastoma
Multiforme (GBM) with super hyperfractionated radiation therapy: implication of temporal dose
fractionation optimization including cancer stem cell dynamics. PLoS ONE 16:1–16. https://doi.org/
10.1371/journal.pone.0245676

Zacher R (2010) De Giorgi–Nash–Moser estimates for evolutionary partial integro-differential equations.
Habilitationsschrift from Univ. Halle-Wittenberg, https://doi.org/10.25673/387

Zagzag D, Amirnovin R, Greco MA, Yee H, Holash J, Wiegand SJ, Zabski S, Yancopoulos GD, Grumet
M (2000) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept
for glioma growth and angiogenesis. Lab Invest 80(6):837–849. https://doi.org/10.1038/labinvest.
3780088

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://www.pinterest.com/pin/471048442246524817/
https://www.pinterest.com/pin/471048442246524817/
https://doi.org/10.1016/j.jtbi.2013.01.014
https://doi.org/10.1016/j.jtbi.2013.01.014
https://doi.org/10.1038/359845a0
https://doi.org/10.1038/359845a0
https://doi.org/10.1097/00005072-200606000-00001
https://doi.org/10.1103/PhysRevE.66.051901
https://doi.org/10.1016/j.jtbi.2015.06.003
https://doi.org/10.1007/s11538-017-0271-8
https://doi.org/10.1158/0008-5472.CAN-11-1399
https://doi.org/10.1006/jtbi.1998.0836
https://doi.org/10.1177/1534735420922579
https://doi.org/10.1371/journal.pone.0245676
https://doi.org/10.1371/journal.pone.0245676
https://doi.org/10.25673/387
https://doi.org/10.1038/labinvest.3780088
https://doi.org/10.1038/labinvest.3780088

	Data driven modeling of pseudopalisade pattern formation
	Abstract
	1 Introduction
	2 Modeling
	3 Analysis
	3.1 Assumptions and prerequisites
	3.1.1 Formulation of the data-driven model

	3.2 Model wellposedness
	3.2.1 Assumptions on f1, f2 and θ
	3.2.2 Energy estimates of solutions
	3.2.3 Non-negativity of solutions
	3.2.4 Properties of the operators a and r
	3.2.5 Existence of a unique solution

	3.3 Existence of an optimal parameter function

	4 Numerical simulations
	4.1 Evaluation of the optimization algorithm
	4.2 Pseudopalisade specific results

	5 Pattern synthesis and disruption
	5.1 Synthesis of new patterns

	6 Summary and conclusion
	Appendix
	References




