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Abstract

Transitions from classical to quantum behaviour in a spin system with two
degenerate ground states separated by twin energy barriers which are asymmetric
due to an applied magnetic field are investigated. It is shown that these tran-
sitions can be interpreted as first— or second—order phase transitions depending
on the anisotropy and magnetic parameters defining the system in an effective
Lagrangian description.
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1 Introduction

Barrier penetration by tunneling processes is a purely quantum phenomenon
which does not arise in classical physics where only processes leading over the
barrier, e.g. thermal activity according to a classical Boltzmann distribution,
yield a nonzero barrier transition rate. At finite temperature, either tunneling
from thermally excited states (“lemperature assisted tunneling”) or thermal fluc-
tuations over the barrier (“thermal activity”) dominate the transition rate, and
the crossover from temperature assisted tunneling to thermal activity can be un-
derstood as a phase transition from the quantum phase to the classical phase of
a physical system which is of either first or second order.

Whereas the general theory of these phase transitions in an abstract potential
barrier setting is well known and clearly understood [I] (there is a remarkable
similarity to the Maxwell theory of phase transitions in the Van der Waals gas),
only very few models are known which allow an explicit and analytic investiga-
tion of the phase transitions in decay and transition rates which may even be
accessible to experimental verification. Hence the recent discovery that spin sys-
tems provide examples which exhibit first— and second-order phase transitions
[2] aroused interest in the investigation of such systems. In particular, a large
spin in an X0Y easy plane anisotropy with easy y—axis can be shown to exhibit
both first— and second—order phase transitions depending on the value of the
anisotropy parameter.

In the following, we consider this spin system with an additional applied mag-
netic field and investigate its influence on the dominant transition process. We
begin with the presentation of the model and its effective semiclassical Lagrangian
in Section 2, and then review the theory of temperature assisted quantum tunnel-
ing and thermal activity in Section 3. Section & contains some analytical results
which guided the numerical calculations presented in Section 4 and discussed in
the concluding Section ¥,

2 The model and its semiclassical approxima-
tion

We consider a giant spin in an X0Y easy plane anisotropy with easy axis along
the z—direction and external magnetic field B in the y—direction, perpendicular to
the easy direction. The corresponding Hamiltonian H involves the spin operator

S and is given by [3, ]
= K (82 4+ \S?) — 2upBS, (1)
where the easy ry-plane demands A < 1.

The physical situation described by this Hamiltonian is illustrated in Fig. 1,
where the spin operator is represented as a classical spin vector S € S'. For zero
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Figure 1: Classical visualization of the X0Y —easy plane z—easy axis spin system
with applied magnetic field in the y—direction.

magnetic field B = 0 the ground state is twofold degenerate, the classical spin
vector pointing along the positive or negative z—direction, i.e. along the easy axis.

Under the influence of an applied magnetic field in the y—direction, there are
still two degenerate spin ground state directions sz)'ru ST(,?Z)n in the easy zy—plane
moving towards the y—direction with increasing field B.

To change the direction of the spin from one of these ground state directions
to a neighbouring one, one has to avercome an energy barrier, moving the spin
along either path S or path L.

To study quantum tunneling and classical thermal effects of the discrete spin
system described by ]:[, we convert the spin operators to a continuous potential
problem. This can be achieved with the help of spin coherent state path integrals
[B] or using the Villain transformation [&]. Both approaches yield a semiclassical

description of the quantum system given by the effective Lagrangian

£(6.9) = s M(§)F - V(9) )

where
V(p) = KXs*(sin® ¢ — a)? (3)
and | 3
_ ._ HB
M(¢) = 2K (1 — Asin? ¢ + asin ¢)’ T Ks (4)

Here ¢ may be interpreted as a spherical parameter of the classical spin vector

§ = s(sin @ cos ¢, sin @ sin ¢, cos 0). (5)



The semiclassical approximation is exact in the limit of large spin, s — oo, in
the entire range of the anisotropy parameter A, 0 < X < 1 [i].

The shape of the potential V(¢) is shown in Fig. 2, together with the field—
dependent mass M(¢) which is a special feature of this model. For small magnetic
and anisotropy parameters, i.e. A < 1, @ < 1, one can approximate the mass
function by a constant value M(¢) ~ 5= [4], but we are here particularly in-
terested in the effect of nonconstant mass on quantum tunneling and thermal
activity. Therefore we restrict the mass only to be positive which yields the con-
dition A(14a) < 1 for the magnetic parameter o, but keep the full ¢p—dependence
of M(¢).

The degenerate spin ground states are given by the two different types of
minima of V(¢) at 2l + arcsina and (2] 4+ 1)m — arcsina. These minima are
separated by a small barrier S with height

% (g) — KAs*(1 = a)? = B (6)

and a large barrier L with height

% (37”) — KAs(1 +a)? = By (7)

which correspond to the paths S and I shown in Fig. ..

Since ¢ and ¢ + 27 describe the same physical state, we restrict ourselves to
the first twin barrier pair at ¢s = Z and ¢, = 2*. The maximum positions @g
and @y, are called “sphalerons” in the usual field theoretical terminology. The
vacua surrounding these barriers are denoted by

)

Cfg) = arcsin o ~ Ci)g = 27 + arcsin « (8)

and } }
Cl)g) =T —arcsina = CI)S). (9)

We observe that barriers of different height only exist for 0 < o < 1. For vanishing
magnetic field (a = 0), the two barriers are equally high [§], whereas in the limit
a — 1, the magnetic field dominates the easy axis effect and there is only one
ground state pointing along the y—direction.

3 The theory of quantum tunneling and thermal
activity
We consider transitions between spin states built around the two degenerate vacua

at finite temperature, i.e. we assume the quantum spin states to be populated
according to a Boltzmann distribution.
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Figure 2: Asymmetric twin barrier potential V(¢), field dependent mass M (o)
and small and large barrier periodic instantons.



The rate of thermal activity over the small or large barrier is to first order

given by the Boltzmann factor,

r ST & Ei

[i(T) ~ 3T, SiT) == (10)
with « = S, L and kg = 1. gs(T) and gL(T) are called the thermodynamic
actions of the small and the large barrier, respectively.

The temperature assisted tunneling rate can be estimated by a Boltzmann av-
erage over the tunneling probabilities from excited states with energy F. These
tunneling probabilities can be approximated by the semiclassical WKB expo-
nents, Pi(E) = e”WilF),

1

Wi =2v2 [ M@V - e, =S ()

M (

where CI)g’Q)(E), (I)S’Q)(E) are the turning points for the small (S) or large (L)
barrier at energy F, i.e. the solutions of the equation V(¢) = E. It is easy to see
that

E
CI)g)(E) = arcsin (a+ K/\s?)

0< E < Es (12)

K )\s?

E
oWy = _ ; I B
. 1 (F) T — arcsin (a ”K/\SQ
[ K
CD(LQ)(E) = 27 + arcsin (a - m)

Taking the Boltzmann average over the tunneling probabilities from excited

FE
q)g)(E) = 7 — arcsin (oz + )

0<E<E, (13)

states P;(F) yields the temperature assisted tunneling rate,
FKT):i/dek‘§R(E):1/dek‘%”““ﬁ. (14)
0 0

This integral can be estimated by the steepest descent method, using the concept
of periodic instantons [I; §]. These are classical solutions of the Euclidean Euler—
Lagrange equations of the semiclassical Lagrangian (2), i.e.

1dM(¢) ;  dV(9)
2 do do
(dots now denote derivatives with respect to Fuclidean time 7 = it) with finite
energy F as integration constant in the first integral,

1 .

FM(9)0" = V(g) = —E. (16)

M(¢)6 + ¢ — =0 (15)



For 0 < E < Es or 0 < E < Ey, there are solutions ¢%(7), o¥(r) oscillating
around the small or large barrier with period ps(FE), pr(E), respectively. These
solutions can be derived by integrating eq. (16) which leads to elliptic integrals,
but it is impossible to solve the resulting expressions for the explicit 7—dependence
of the solutions p%, ¥ which are visualized in Fig. 2.

Nonetheless it is possible to compute the periods and the Fuclidean actions
of these periodic instantons from eq. (il6) which yields

(2
= V2 / v \ Vg - B (17)
(2

S =2V3 [ M@)(V(8) — B)o+piE = WiE) 4. (19

o

and

In the steepest descent approach, the integral (14) is dominated by the con-
figuration satisfying

= = pi(E), (19)

i.e. the period of the periodic instanton has to be identified with the inverse
temperature. This yields the usual periodic instanton tree approximation for the
temperature assisted tunneling rate,

[i(T) = e 5™ (20)

where S;(T) is the Euclidean action of the periodic instanton with period % = p;.

Hence, there are two different physical processes and two different energy
barriers involved in the evaluation of the finite temperature spin transition rate.
Ignoring the effect of the field dependent mass, it is obvious that the small barrier
processes always dominate large barrier ones, and it has to be checked whether
this changes by taking into account the field dependence of the mass, depending
on the parameters A and a. Can transitions involving the large barrier become
dominant over those involving the small barrier for specific values of these pa-
rameters?

Another question to be analyzed is that of the crossover from temperature as-
sisted tunneling to thermal activity for the the small and the large barriers which
can be understood as phase transitions of either first or second kind, depending
on the shape of the function p;(E) [, 10]. This crossover can be visualized in
a diagram showing both the thermodynamic and the periodic instantons action
depending on temperature, i.e. T — {5;(T), SE(T)} The phase transition occurs
where the two curves intersect (sharp crossover, first—order phase transition) or
join (smooth crossover, second-order phase transition) at lowest action.

From eq. (18), we obtain £ = g—gﬁ and thus S; = [ Fdp;. The period p;(F)

of the periodic instantons usually decreases monotonically for increasing £ near



FE = 0. Hence if p;( ) increases again after a certain critical value with increasing
energy F (“first-order behaviour”), the inverse function E(p;) is double—valued
and so is S;(T'). This leads to an intersection of the lower branch of S;(7') with
SYZ(T) which is the first—order phase transition at temperature 7', whereas the
upper branch of S;(T") joins SYZ(T) at some temperature TM, TM < T,

If p;(F) is monotonically decreasing (“second-order behaviour”), there is only
one branch of S;(7") which smoothly joins SNYZ(T) at a temperature TC = TM: this

yields a second-order phase transition.

4 Analytical results

To investigate the two questions mentioned, we calculate the functions pg(F),
Ss(T) and pr(FE), Sp(F) numerically and analyse their dependence on A and c.
To obtain some analytical hints for this numerical analysis, we first discuss the
FE — 0, E — E; limits of the periodic instanton periods p;(E), 1 = S, L.

In the limit £ — 0, the periodic instantons reduce to the usual (vacuum)
instantons describing ground state tunneling at zero temperature through the
small or the large barrier [4]. Tt is a special feature of this model (and an effect of
the field—-dependent mass) that although the vacuum instantons are not periodic,
they reach the vacua between which they interpolate at finite time, i.e. p;(£ =
0) < oo. Nonetheless, since p;(F = 0) is very large, the vacuum instantons
dominate the integral (14) also for 7' = 0 and hence describe vacuum tunneling
as can also be seen from the comparison with the vacuum WKB tunneling rate.

Both p;(F = 0) and the Euclidean action of the vacuum instanton,

(2

3
S = Sipi(E=0) = V2 [\ \[M()V(6)ds. (21)

can be estimated explicitly in terms of elliptic integrals. Defining the parameters

8/ A4 + \a?
ol = AR, g2 = VAT D)

ara ’ (22)
where
WA A e =), e =2V
(1)—a+7(2)_a_7(3)_ (1—a)a+7(4)_ (1+a)a_
(23)
and

ae = VA + a2 +2VA + VX, a_ = VA+ ra? + 2V — oA 24
+ 9 )

the vacuum limits of the periods are given by

ps(E=0) = ol Q—é@)ﬁ { {(ag)Q - (al)Q} IT <arcsin (é) ,(a3)?, k)




+ (al)QF <arcsin <i> ,k‘)} (25)

Qa3

pr(F=0) = oln 2_%)\/@ { {(a4)2 — (052)2} II <arcsin <Oéi4) ,(ay)?, k)

+ (ag)QF <arcsin <ozi4) ,k)} , (26)

whereas the vacuum instanton actions are given by
v INA—a 1
Se¢ = d4ds LH (arcsin <—) ,(ag)Z,k)
Jara_ Qs

+ e _\Q/Q—F a)F (arcsin <ai4> ,k)} (27)

Sp, = A4s {Qﬁ(%— ta) - Rl <arcsin <i) ,(a4)2,k)

a+ai Qy

N (a— —2v/N)ay + 2\/Xaa_F (arcsin <i) ’k>} . (28)

apa® Oy
From these results, it is easy to check that the large barrier vacuum instanton
action is always greater than that of the small barrier, Sp > Sg for all values
of A, a considered. If both the large and the small barrier have second—order
type periods pr(F), ps(FE), then both Sp(T) and Ss(T') have only one branch
which is strictly decreasing with increasing temperature 7'. These branches end

at T = TM with S;(TM) = Si(TM). Eq. (1) yields Sp(TM) > Ss(TM) for all

values of A, a leading to second—order behaviour for both barriers, hence

SL(T) > Ss(T), (29)

i.e. tunneling through the small barrier always dominates tunneling through the
large barrier if the crossover to thermal activity is a second—order phase transition
for both barriers. Whether a first-order transition behaviour for one or both of
the barriers allows large barrier tunneling to become dominant over small barrier
tunneling has to be analyzed numerically.

In the second limit £ — F;, 1 = S5, L, the periodic instantons reduce to the
sphalerons

m o

SofsE) o 5 = s (30)
3

= = (31)

Near the maximum energy, £ — E; < 1, the periodic instantons can be approx-
imated by small oscillations near the bottom of the inverted potential, and the

9



frequencies w; of these oscillations determine the periods p;(E = E;) = i—” of the

static limits of the periodic instantons. To estimate these frequencies, one inserts
¢ = @; + d¢ into the Euler-Lagrange equation (1%) and expands to second order
in d¢. This yields harmonic oscillator equations with frequencies

ws = VAKX (1 —a)(1 = A(1 —a)) (32)
wi = A (14 a)(1 = A1 +a)). (33)

Hence, the periodic instanton action curves S;(T') smoothly join the thermody-
namic action S;(T) at TM = p,(Ele,) = % Tt is worth noting that 7} > T¥

for A < %, but TM < TH for X > % This suggests to investigate the parameter
ranges A € (0, %) and ) € (%, 1) separately.

5 Numerical results

For vanishing magnetic field, o = 0, both barriers are equally high and the peri-
odicity functions coincide, pr,(E) = ps(E) =: p(F), a situation already discussed
[B]. For 0 < A < 1, p(E) has second-order behaviour, whereas for £ < X < 1,
p(E) changes to first-order behaviour.

DS % remains a critical value of the anisotropy parameter if an applied
magnetic field is considered. The main influence of the magnetic field on the type
of phase transition is shown in Fig. 8 for s* = 1000, K = 1. For A = 0.45 < X\*,
pr(F) changes from second-order behaviour to first—order behaviour when « is
increased (Fig. 3(L)), whereas ps(F) which is not plotted is of second-order type
for all values o € (0,1). On the other hand, for A = 0.8 > X*, ps(F) varies
from first-order behaviour to second-order behaviour with increasing o (Fig.
3(S)), and one should note that the allowed values of a for A > 1 are restricted
by A(1 + a) < 1. pr(FE) for A = 0.8 which is not plotted exhibits first-order
behaviour for all allowed values of a.

These particular examples A = 0.45 and A = 0.8 are typical for the a-
dependence of the type of transitions in the anisotropy parameter ranges A €
(0, %) and A € (A*,1). We can thus distinguish four different situations in the
phase transition behaviour of the asymmetric twin barrier problem which are
shown in Figs. 4 to i for values of A and a which yield clear shapes of the func-
tions considered, again using s? = 1000, K = 1. These possible types of transition
process combinations are summarized in Table 1.

For A € (0, A*), we have second—order phase transitions at both barriers (Fig.
4) for o < a*(A), or second-order phase transitions at the small and and first—
order phase transitions at the large barrier (Fig. 5) for a > a*()). The function
a*(X) can be estimated numerically from the (A, a)-dependence of the period
pr(FE). In Table ¥(L), some typical values of this critical parameter are given,
showing that a*(\) decreases with A. For A < 0.25, there is no critical value

10



large barrier A=0.45

small barrier A=0.8

Figure 3: The periods of the periodic instantons of the large barrier py, for A =
0.45 and of the small barrier pg for A = 0.8, plotted against ¢ = =2

—— for several
K\s?
values of o with s? = 1000, K = 1.
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small barrier A=03 a=05 large barrier

Ps 0.9 PL 0.9
0.8 0.8
0.7 0.7
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0.4 0.4
0.3 0.3
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Figure 4: Phase transitions for A = 0.3, a = 0.5 with s* = 1000, K = 1. (S-a),
(L—a): The periods of the periodic instantons of the small and the large barrier
plotted against € = E%%ﬁ' (S—a), (L—a): Periodic instanton actions Ss(7"), Sp,(T')

and thermodynamical actions Ss(7'), Sz(T) for the small and the large barrier.
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Ps o.

small barrier A=045 a=0.8 large barrier

0

0.005 0.01 0.015 0.02 0.025 0.03 0.035
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TV =7¢ T e Ty T

(s-b) (L-b)

Figure 5: Phase transitions for A = 0.45, a = 0.8 with s = 1000, K = 1.
(S—a), (L—a): The periods of the periodic instantons of the small and the large
barrier plotted against ¢ = % (S—a), (L—a): Periodic instanton actions Ss(7T'),
Sp(T) and thermodynamical actions Ss(T), Si(T) for the small and the large

barrier.
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small barrier A=07 a=03 large barrier

Ps 0.4 PL 0.4

70

T 3 z 5 X3
T T

(s-b) (L-b)

Figure 6: Phase transitions for A = 0.7, o = 0.3 with s* = 1000, K = 1.
(S—a), (L—a): The periods of the periodic instantons of the small and the large
barrier plotted against ¢ = % (S—a), (L—a): Periodic instanton actions Ss(7T'),

Sp(T) and thermodynamical actions Ss(T), Si(T) for the small and the large
barrier.
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Figure 7: Phase transitions for A = 0.9, a = 0.1 with s? = 1000, K
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(S—a), (L—a): The periods of the periodic instantons of the small and the large

(S—a), (L—a): Periodic instanton actions Ss(7T'),

Sp(T) and thermodynamical actions Ss(T), Si(T) for the small and the large

barrier.
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A< A A > A

small barrier ‘ large barrier || small barrier ‘ large barrier

a < a*(A) || second-order | second—order first—order first—order

a > a*(A) || second—order first—order second—order | first—order

Table 1: Phase transition type combinations for the asymmtric twin barrier with
field—dependent mass.

Large Barrier Small Barrier
A a*(A) A a*(A)
<0.25 - 0.65 0.06
0.30 0.85 0.70 0.12
0.35 0.63 0.75 0.17
0.40 0.45 0.80 0.23
0.45 0.31 > 0.85 -

(L) (5)

Table 2: (L) Critical values a*(\) of the magnetic parameter at the large barrier
for A < A*, (S) critical values () of the magnetic parameter at the small barrier

for A > \*

a*(X) < 1, i.e. the phase transition at the large barrier is of second order regardless
of the magnetic parameter if the anisotropy parameter is sufficiently small.

The second range of the anisotropy parameter, A € (A*,1), allows second-
order transitions at the small and first—order transitions at the large barrier (Fig.
6) for @ < a*(A), or first-order transitions at both barriers (Fig. §) for o >
a*(X). Some typical values of a*(\), now estimated numerically from the (A, a)-
dependence of the period ps(E), are shown in Table 2(S). Here the critical value
of the magnetic parameter increases with increasing anisotropy parameter. For
A > 0.85, there is no critical value of « in the region (0, % — 13 restricted by the
requirement of positive mass. For A < 0.60, the numerical calculations failed due
to problems with the end—point integrations.

We note that it is not possible to have first-order transitions at the small
and second-order transitions at the large barrier for any allowed values of the
parameters A, a.

Moreover, the numerical analysis shows that processes involving the small
barrier always dominate over those involving the large barrier even if one or both
of the barriers exhibit a first—order phase transition behaviour.
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6 Summary and conclusions

Above we have analyzed the crossover from temperature assisted tunneling to
thermal activity for asymmetric twin barriers in a model with field-dependent
mass describing a large spin in an X0Y —easy plane with z—easy axis anisotropy
and an applied magnetic field in the y—direction.

The corresponding analytical and numerical analysis was guided by two ques-
tions:

1. Does the field-dependence of the mass allow the tunneling and/or ther-
mal processes involving the large barrier to become dominant over those
involving the small barrier?

and

2. What types of phase transitions are the crossovers from temperature as-
sisted tunneling to thermal activity, depending on the anisotropy parameter
A and the magnetic parameter a?

Summarizing, the first question must be denied, i.e. small barrier processes
always dominate large barrier processes which is physically obvious for constant
mass from the shape of the potential and remains true even if the field-dependence
of the mass is taken into account.

But concerning the second question, the field dependence of the mass is of
great importance because it leads to first—order phase transitons besides the usual
second—order behaviour. This can already be observed for zero magnetic field [§].
Three of the four possible type of combinations of phase transition types were
found: First—order transitions at both barriers, second—order transitions at both
barriers and second-order transition at the small, first—order transition at the
large barrier. The fourth possibility, first-order transitions at the small and
second—order transition at the large barrier, did not arise.

The types of combination of phase transitions depend on the values of the
parameters A, a where \* = %, the critical value at which second—order behaviour
turns to first-order behaviour for vanishing magnetic field (i.e. with equally high
barriers), remains a critical value if a magnetic field is applied. For A < A*, the
small barrier exhibits only second—order phase transitions; for A > A*, the large
barrier exhibits only first—order phase transitions. The transition order at the
other barrier, respectively, depends on the value of the magnetic parameter o
and changes from second-order to first order at the large barrier at a*(X) for
A < X* and from first-order to second-order at the small barrier at o*(\) for
A > X* for increasing o, 0 < a < min{l, % — 1}.

We considered only the tree approximation of the tunneling rate to analyze
its crossover to thermal activity. Taking one—loop corrections into account, i.e.
calculating the fluctuation determinant prefactor [11] in eq. (19), might perhaps
smoothen a sharp intersection of the two curves.
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Nonetheless, in experimental results a crossover between first and second order
transitions can be observed, e.g., in molecular nanomagnets of spin 10-20, hence
higher—order corrections are not expected to change the crossover behaviour sig-
nificantly. The results derived here for the two—anisotropy model which is of high
generality in small particle magnetism should therefore be helpful in experimental
tests.
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