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Abstract

Designing attractive public transport services is an important task towards the
Paris Climate Accords and the 17 Sustainable Development Goals. Both the
interests of passengers and the financial concerns of transport operators must be
taken into account. In this thesis, models for infrastructure optimization of a bus
rapid transit line and for tariff optimization are developed.

Motivated by the development of a new bus rapid transit (BRT) line around
Copenhagen, Part I of this thesis deals with the infrastructure optimization for
such a BRT line. The municipalities that are involved in the BRT line have to
decide which segments of the route of the BRT line should be upgraded with, for
example, dedicated bus lanes and priority at intersections. There is a trade-off
between attracting as many new passengers as possible by upgrading the bus
infrastructure and at the same time keeping the required budget small. This
problem is formulated as a bi-objective model. An ϵ-constraint-based solution
method is developed that can compute the complete Pareto front composed of
the number of passengers and the budget. A theoretical analysis is performed for
the bi-objective model as well as for the single-objective optimization problem
that is solved within the algorithm. The model is applied and evaluated in
computational experiments on artificial instances as well as on realistic instances
based on the case study of the BRT line around Copenhagen.

Part II deals with two models for the optimization of flat, distance and zone
tariffs in public transport. The first model minimizes the absolute deviation from
given reference prices. The resulting problems for flat and distance tariffs can be
identified as median problems, which allows for linear solvability. For zone tariffs,
different variants are compared with each other, and it is shown that the problem
is in general NP-hard for zone tariffs. The second model examines the trade-off
between the revenue and the number of passengers willing to use public transport
depending on the fare. While the Pareto front of this bi-objective problem can
be computed using the ϵ-constraint method, additional algorithms are developed
for the optimization of flat, distance and zone tariffs that exploit the structure of
the tariffs. Computational experiments for flat and distance tariffs show a good
performance of the corresponding algorithms, especially for instances with more
than one non-dominated point.
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Zusammenfassung

Die Gestaltung eines attraktiven öffentlichen Verkehrsangebots ist eine wichti-
ge Aufgabe, um das Pariser Klimaabkommen und die 17 Nachhaltigkeitsziele
umzusetzen. Dabei müssen sowohl die Interessen der Passagiere als auch die fi-
nanziellen Belange der Verkehrsbetreiber berücksichtigt werden. In dieser Arbeit
werden Modelle für die Infrastrukturplanung einer Schnellbuslinie und die Ge-
staltung von Tarifen im öffentlichen Verkehr entwickelt.

Motiviert durch das Projekt einer neuen Schnellbuslinie bei Kopenhagen be-
schäftigt sich Teil I der Arbeit mit der Infrastrukturplanung für eine solche Bus-
linie. Die Gemeinden, durch die die Schnellbuslinie führt, müssen dabei entschei-
den, welche Straßenabschnitte beispielsweise mit Busspuren und Vorrangschal-
tungen an Lichtsignalanlagen ausgestattet werden sollen. Es ergibt sich ein Ziel-
konflikt, möglichst viele neue Passagiere durch einen guten Ausbau der Busin-
frastruktur zu gewinnen und gleichzeitig das benötigte Budget gering zu halten.
Diese Fragestellung wird als bikriterielles Modell formuliert. Mithilfe eines Algo-
rithmus basierend auf der ϵ-beschränkten Methode kann die vollständige Pareto-
Front, die sich aus der Anzahl an Passagieren und dem Budget zusammensetzt,
berechnet werden. Es wird eine theoretische Analyse für das bikriterielle Modell
sowie für das einkriterielle Optimierungsproblem, das innerhalb des Algorithmus
gelöst werden muss, durchgeführt. Das Modell wird in Rechenexperimenten auf
künstliche sowie realistische Instanzen basierend auf der Fallstudie bei Kopenha-
gen angewendet und evaluiert.

Teil II befasst sich mit zwei Modellen für die Gestaltung von Einheits-, Distanz-
und Zonentarifen im öffentlichen Verkehr. Das erste Modell minimiert die abso-
lute Abweichung von gegebenen Referenzpreisen. Die resultierenden Probleme
für Einheits- und Distanztarife können als Median-Probleme interpretiert wer-
den, was eine lineare Laufzeit zum Lösen ermöglicht. Für Zonentarife werden
verschiedene Varianten miteinander verglichen und es wird gezeigt, dass das Ta-
rifproblem für Zonentarife im Allgemeinen NP-schwer ist. Das zweite Modell un-
tersucht den Trade-off zwischen den Einnahmen und der Anzahl an Passagieren,
die je nach Preis bereit sind, den öffentlichen Verkehr zu nutzen. Während die
Pareto-Front dieses bikriteriellen Problems ebenfalls mit der ϵ-beschränkten Me-
thode berechnet werden kann, werden zusätzliche Algorithmen für die Optimie-
rung von Einheits-, Distanz- und Zonentarifen entwickelt, die die Struktur der
Tarife ausnutzen. Rechenexperimente für Einheits- und Distanztarife zeigen eine
gute Performance der entsprechenden Algorithmen, besonders für Instanzen mit
mehr als einer Pareto-Lösung.
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Chapter 1

Introduction

The transition towards sustainable transport modes is a major task towards the
Paris Climate Accords and the 17 Sustainable Development Goals (SDGs). A re-
port of the UITP (Union Internale des Transports Publics, English: International
Association of Public Transport), published in 2023, explains that public trans-
port can directly contribute to 14 of the 17 SDGs [UIT23]. In addition to envi-
ronmental effects like a reduction of greenhouse gas emissions, public transport
can, for example, be a means of enabling participation in society by increasing
mobility of vulnerable groups such as children and elderly people. It is, therefore,
essential to provide an attractive public transport and to improve the passengers’
experiences.

To achieve these goals, optimization models can cater as a decision support
tool and can be applied to point out different options and their impact. Within
this thesis, two main perspectives are considered. On the one hand, the goal is
to attract (new) passengers by a pleasant experience and a good and affordable
public transport service. On the other hand, the financial concerns and require-
ments of the public transport operator have to be considered. Reducing costs or
increasing revenue is of great interest. In this thesis, both objectives are applied
in bi-objective and single-objective models in the settings of infrastructure op-
timization of a new bus rapid transit (BRT) line and of tariff optimization for
public transport.

In Part I of this thesis, the optimization of investments in dedicated infrastruc-
ture for a BRT line is considered. Based on a real-world case of planning a new
BRT line around Copenhagen, the question arises which segments of the route
of the new BRT line should be implemented as dedicated BRT infrastructure,
such as dedicated bus lanes or priority at intersections. Multiple municipalities
are involved that decide about their own infrastructure investments. While the
aim is to attract new passengers, there is also an interest to reduce the amount
of money spent. For this bi-objective setting in Part I, a thorough introduction
is given in Chapter 3.

In Part II, we consider tariff optimization for public transport. We deal with
the task to determine fares, i.e., the ticket prices (based on paths), for flat tariffs,
affine distance tariffs and zone tariffs, which are well-known and popular fare
structures in Germany as well as throughout the world. Here, we assume that
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Chapter 1 Introduction

the infrastructure is fixed and means of travel exist along given passengers’ paths.
The problem of optimizing tariffs is approached by two different models. The first
one relies on given reference prices for each origin-destination (OD) pair and the
aim is to design new fares such that the absolute deviation between the newly
determined fares and the given reference prices is minimized yielding a single-
objective problem. The second approach starts from the premise that passengers
have a limited willingness to pay and do not use public transport if the fare
exceeds the willingness to pay. For this, a bi-objective model is considered that
maximizes the revenue as well as the number of passengers. For Part II, an
introduction to tariff optimization is given in Chapter 8.

Related Literature

We refer to Chapter 3 for an overview of the literature on the infrastructure op-
timization of a BRT line and to Chapter 8 for literature on tariff optimization.
The design of the infrastructure and the fares are two of several steps in public
transport planning. Further planning steps, which are not discussed in this thesis,
are stop location, line planning, timetabling, vehicle and crew scheduling, delay
management as well as intermediate steps of demand estimation and passenger
routing. The general public transport planning process and the occurring opti-
mization problems are described and reviewed, for example, in [BWZ97; Sch06;
CCM15; Sch20; Gki22].

Publications

Part I is based on the publications [Hoo+22; Hoo+23; Hoo+24], which are joint
work together with Rowan Hoogervorst, Evelien van der Hurk, Philine Schiewe
and Anita Schöbel. For this thesis, the results have been revised and extended.
The author of this thesis has been responsible for the modeling and the theoretical
results in Chapters 4 and 5 and has contributed to the interpretation of the com-
putational experiments in Chapter 6. The implementation of the computational
experiments has been done by Rowan Hoogervorst.

In Part II, a paper based on Chapter 10, which is joint work together with
Anita Schöbel, is currently under review [SU25]. The tariff optimization models of
Chapter 10 are implemented in LinTim [Sch+; Sch+24] and are publicly available.
Sections 11.2 to 11.4 are based on and extend the publication [SSU24], which is
joint work together with Philine Schiewe and Anita Schöbel. For Theorem 11.10,
two new proofs that offer additional insights are provided in this thesis. The
computational experiments in Section 11.4 have been extended. The author of
this thesis is the main author of both papers [SSU24; SU25]. Section 11.5 is newly
developed for this thesis.
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Chapter 2

Preliminaries

In this chapter, we introduce the notation and recall the main concepts used
throughout this thesis. We assume basic knowledge on linear and integer pro-
gramming and multi-objective optimization as well as graph theory.

For simplicity, we introduce the following shorthand notation for sets:

[n] := {1, . . . , n} for all n ∈ N≥1,

[0] := ∅.

2.1 Linear and Integer Programming

In this thesis, we apply linear and integer programming to formalize optimization
problems and to obtain solution methods. In this section, we recall the main con-
cepts of linear and integer programming that are used based on [GLS93; NW99],
which provide a fundamental introduction to this topic.

First, we distinguish the following types of mathematical programs: linear
programs (LP), which have continuous variables, integer programs (IP), which
have discrete variables, and mixed-integer linear programs (MILP), which have
continuous as well as discrete variables. The constraints and objective functions
are linear in all cases.

It is well-known that Karmarkar’s interior point method combined with an
optimal rounding method is able to solve LPs in polynomial time finding an
optimal solution that is an extreme point. This can also be exploited for IPs
with the following property:

Definition 2.1 (Totally unimodular). A matrix A ∈ Zk×l with k, l ∈ N≥1 is to-
tally unimodular if the determinant of each square submatrix of A is in {0, 1,−1}.

If the coefficient matrix of an IP is totally unimodular and its right-hand side
is integral, the integrality theorem of Hoffman and Kruskal states that the corre-
sponding polyhedron is integral, i.e., all of its extreme points are integral. Hence,
solving the LP-relaxation of the IP with Karmarkar’s algorithm yields an integral
solution in polynomial time.

3



Chapter 2 Preliminaries

A sufficient criterion for a matrix to be totally unimodular is the consecutive
ones property, which is well known in the literature with various applications,
see, e.g., [RS04; Sch05; Dom+08].

Definition 2.2 (Consecutive ones property). A matrix A ∈ {0, 1}k×l with
k, l ∈ N≥1 satisfies the consecutive ones property on the rows if for all rows i ∈ [k]
it holds: If Ai,j = 1 and Ai,j′ = 1 for some j, j′ ∈ [l] with j < j′, then Ai,j̄ = 1 for
all j ≤ j̄ ≤ j′.

Note that a matrix with the consecutive ones property is also called an interval
matrix, e.g., in [NW99, Def. 2.2 in Sec. III.1.2].

Lemma 2.3. If a matrix A ∈ {0, 1}k×l with k, l ∈ N≥1 satisfies the consecutive
ones property, then A is totally unimodular.

Proof. A proof is given in [NW99, Cor. 2.10 in Sec. III.1.2].

2.2 Bi-objective Optimization

In this section, we recall some definitions and results of bi-objective optimization.
For an in-depth introduction to multi-objective optimization, we refer to [Ehr05].

A general bi-objective optimization problem is given as

max ϕ1(x)

max ϕ2(x)

s.t. x ∈ X,

(2.1)

where ϕ1 : X → R and ϕ2 : X → R are the objective functions and X denotes
the solution space. In particular, we aim to find a feasible solution x ∈ X that
maximizes two objectives at the same time. One or both of the maximizations
could also be replaced with minimizations. For the sake of simplicity, we stick to
maximization within this section.

Each feasible solution x ∈ X induces a two-dimensional vector of objective
function values. Hence, in this bi-objective setting, we need a different notion
of “optimality”. As usual in multi-objective optimization, we are interested in
finding the Pareto front and corresponding efficient solutions. Generally speaking,
we aim to find those feasible solutions that do not allow to improve one objective
function without deteriorating the other.

Definition 2.4 (Domination). Let a bi-objective optimization problem (2.1) be
given, and let x, x′ ∈ X. We say that x′ dominates x and (ϕ1(x

′), ϕ2(x
′)) dom-

inates (ϕ1(x), ϕ2(x)) if ϕ1(x) ≤ ϕ1(x
′) and ϕ2(x) ≤ ϕ2(x

′) and at least one in-
equality holds strictly.
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2.2 Bi-objective Optimization

Definition 2.5 (Efficient solution, non-dominated point and Pareto front). Let
a bi-objective optimization problem (2.1) be given. A feasible solution x ∈ X
is called efficient and its objective function value (ϕ1(x), ϕ2(x)) is called non-
dominated if there does not exist another feasible solution x′ ∈ X that domi-
nates x. The set of all non-dominated points is also called the Pareto front.

Note that there are several options what it means to “solve” a bi-objective
optimization problem [Ser87, Sec. 2; Ehr05, p. 24]. Within this thesis, the aim of
solving a bi-objective optimization problem is to determine the complete set of
non-dominated points, i.e., the Pareto front. Additionally, an (arbitrary) efficient
solution is sometimes stored for each non-dominated point.

In addition to efficient solutions, also weakly efficient solutions (Definition 2.6)
are considered in multi-objective optimization. By definition, every efficient solu-
tion is also weakly efficient. When determining the Pareto front of a problem, we
need to make sure that we actually obtain efficient solutions and not just weakly
efficient ones.

Definition 2.6 (Weakly efficient solution, weakly non-dominated point). Let
a bi-objective optimization problem (2.1) be given. A feasible solution x ∈ X
is called weakly efficient and its objective function value (ϕ1(x), ϕ2(x)) is called
weakly non-dominated if there does not exist another feasible solution x′ ∈ X
such that ϕ1(x) < ϕ1(x

′) and ϕ2(x) < ϕ2(x
′).

2.2.1 ϵ-Constraint Method

As a well-known solution method for bi-objective optimization problems, we ap-
ply the ϵ-constraint method (see, e.g., [CH83, Sec. 6.3; Ehr05, Sec. 4.1; LTZ06;
BGP09]). It is a scalarization method that considers the following single-objective
ϵ-constraint problems (Pi(ϵj)) in order to determine non-dominated points of a
bi-objective optimization problem (2.1):

(Pi(ϵj)) max
x

ϕi(x)

s.t. ϕj(x) ≥ ϵj

x ∈ X

(2.2)

with i, j ∈ {1, 2}, i ̸= j and ϵj ∈ R. The single-objective optimization problem
is obtained by moving one objective function to the constraints and requiring its
value to be at least ϵj.

While an optimal solution to one of the problems P1(ϵ2) or P2(ϵ1) for some
ϵ1, ϵ2 ∈ R is a weakly efficient solution for problem (2.1) by Lemma 2.7, the result
can be strengthened to obtain efficient solutions by Theorem 2.8. In particular,
every efficient solution can be found by solving ϵ-constraint problems with an
appropriate choice of ϵ1, ϵ2 by Theorem 2.8.
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Chapter 2 Preliminaries

Algorithm 2.1: ϵ-Constraint method
Input : Bi-objective optimization problem
Output: Set Γ of all non-dominated points

1 Initialize Γ← ∅.
2 Compute z̄2 ← max{ϕ2(x) : x ∈ X}.
3 Set ϵ2 ← ϕ2(x1) for some x1 ∈ argmax

x∈X
ϕ1(x).

4 while ϵ2 ≤ z̄2 do
5 Compute an optimal solution x1 to P1(ϵ2) with z1 ← ϕ1(x1).
6 Compute an optimal solution x2 to P2(z1) with z2 ← ϕ2(x2).
7 Update Γ← Γ ∪ {(z1, z2)}.
8 Choose ϵ2 > z2 such that no non-dominated point that is not yet in Γ

is cut off.
9 return Γ

Lemma 2.7 ([Ehr05, Thm. 4.3]). Let i, j ∈ {1, 2} with i ̸= j and ϵj ∈ R be given.
If x ∈ X is an optimal solution to problem Pi(ϵj), then x is weakly efficient for
problem (2.1).

Theorem 2.8 ([Ehr05, Thm. 4.5]). A feasible solution x ∈ X is efficient for
problem (2.1) if and only if there exist ϵ1, ϵ2 ∈ R such that x is an optimal
solution to P1(ϵ2) and P2(ϵ1).

Choosing the correct values for ϵ1, ϵ2 is a crucial task. For bi-objective opti-
mization problems with a finite set of non-dominated points, one way of applying
the ϵ-constraint method is given in Algorithm 2.1. When a point (z1, z2) is added
to Γ in line 7, it is a non-dominated point because the corresponding feasible so-
lution (x1, x2) is efficient by Theorem 2.8. The algorithm finds all non-dominated
points because we choose ϵ2 in line 8 such that the non-dominated points that
are already added to Γ are infeasible but no other non-dominated point is cut
of. Because the number of non-dominated points is finite by assumption and
a different non-dominated point is added to Γ in every iteration, of which one
non-dominated point is (z1, z̄2) with z1 ∈ max{ϕ1(x) : x ∈ X and ϕ2(x) = z̄2},
we eventually have ϵ2 > z̄2 and the algorithm terminates. The way ϵ2 is chosen
in line 8 is problem dependent and is discussed when Algorithm 2.1 is applied.

Remark 2.9. While Algorithm 2.1 computes one non-dominated point in every
iteration, there are also other options for implementing the ϵ-constraint method.
If we drop the computation of a second optimization problem in line 6 and
set z2 = ϕ2(x1), we still obtain weakly efficient solutions in every iteration by
Lemma 2.7. Solutions that are weakly efficient but not efficient can be filtered
during the iterations as implemented in Algorithm 5.1 or afterwards with Algo-
rithm 2.2. Note that in order to ensure that the algorithm terminates, we are
only allowed to look at finitely many weakly efficient solutions.

6



2.3 Complexity and Tractability

Algorithm 2.2: Filtering for non-dominated points
Input : Finite superset Γ′ ⊆ R2 of the set of non-dominated points of a

bi-objective optimization problem (2.1), |Γ′| = n
Output: Set Γ ⊆ Γ′ of all non-dominated points

1 Let (y1, z1), . . . , (yn, zn) be a sorting of Γ′ such that y1 ≥ . . . ≥ yn and such
that for all i ∈ [n− 1] with yi = yi+1, it holds that zi > zi+1.

2 Set Γ← {(y1, z1)}.
3 Set z̄ ← z1.
4 for i = 2, . . . , n do
5 if zi > z̄ then
6 Update Γ← Γ ∪ {(yi, zi)}.
7 Update z̄ ← zi.

8 return Γ

2.2.2 Filtering for Non-dominated Points

Let a bi-objective optimization problem (2.1) with a finite set of non-dominated
points be given. If Γ′ ⊆ R2 is a finite superset of the set of non-dominated points,
it can be filtered for the non-dominated points as described in Algorithm 2.2.
The points in Γ′ are first sorted in decreasing order by the first component and as
a second criterion by a decreasing second component. We then iterate over this
sorted list and add a point to Γ whenever the second component is higher than
the highest value so far. This ensures that, while the first component decreases,
the second component needs to increase to add a point to Γ. Hence, when the
algorithm terminates, Γ is the set of non-dominated points of the bi-objective
optimization problem (2.1).

The running time of Algorithm 2.2 is dominated by the sorting in line 1, which
can be done in O(n · log(n)) for a set Γ′ with n elements. Lines 2 to 7 are then
performed in O(n), which leads to an overall running time of O(n · log(n)).

2.3 Complexity and Tractability

In this thesis, we investigate whether there are polynomial time algorithms for
the analyzed problems (i.e., the problems are in P) or whether they are NP-hard.
For an introduction to complexity theory and to the classes P and NP, we refer
to [GJ79].

In general terms, a decision problem P is in NP if a solution to P can be verified
in polynomial time. It is NP-hard if it is at least as hard as every problem P ′

in NP, meaning that there is a polynomial time reduction from P ′ to P . In this
case, we cannot expect to find a polynomial time algorithm for the problem P
(unless P = NP). We say that a decision problem P is NP-complete if P is in NP

7



Chapter 2 Preliminaries

and NP-hard. Additionally, we call a single-objective optimization problem

max
x

ϕ(x) (with ϕ : X → R)

s.t. x ∈ X

NP-hard if its decision version “Given J ∈ R, is there a feasible solution x ∈ X
with ϕ(x) ≥ J?” is NP-complete. We use the same name for the optimization
problem and its decision version as it is clear from the context which is meant.

For a bi-objective optimization problem (2.1), we consider its canonical deci-
sion problem “Given J1, J2 ∈ R, is there a feasible solution x ∈ X with ϕ1(x) ≥ J1
and ϕ2(x) ≥ J2?” (see [Bök17, Def. 3]). Note that the canonical decision prob-
lem of problem (2.1) and the decision version of its single-objective ϵ-constraint
problem (2.2) with ϵ1 = J1 and ϵ2 = J2 coincide.

Tractability While the optimal objective function value is unique for single-
objective optimization problems, we are searching for a set of non-dominated
points for bi-objective optimization problems. The bi-objective problems that we
consider in this thesis have a finite Pareto front. Therefore, we make use of the no-
tion of (in-)tractability for multi-objective combinatorial optimization problems
(see, e.g., [Ehr05, Def. 8.13]). We call a bi-objective optimization problem with a
finite Pareto front intractable if the size of the Pareto front can be exponential in
the size of the problem instance. In this case, because of the exponential number
of non-dominated points, there is no polynomial time algorithm for finding the
complete Pareto front.

List of Problems We now state some problems that are known to be NP-
complete, which we use for polynomial time reductions:

Problem 2.10 (0-1 Knapsack). Given k elements with rewards gi ∈ N≥1 and
weights wi ∈ N≥1 for all i ∈ [k], a weight budget W and a bound H, is there a set
F ⊆ [k] such that

∑
i∈F wi ≤ W and

∑
i∈F hi ≥ H? This problem is NP-complete

by [GJ79, Problem MP9].

Problem 2.11 (Bipartite Subgraph). Given a graph G = (V,E), a positive
integer Q′ ∈ N≥1 with Q′ ≤ |E|, is there a subset E ′ ⊆ E with |E ′| ≥ Q′ such
that (V,E ′) is bipartite? This problem is NP-complete by [GJ79, Problem GT25].

Remark 2.12. The problem Bipartite Subgraph asks whether G has a bipar-
tite subgraph with at least Q′ edges. In other words: Can we obtain a bipartite
subgraph of G by deleting at most |E| −Q′ edges? Setting Q := |E| −Q′ and

int(A,B) := {{v1, v2} ∈ E : v1, v2 ∈ A} ∪ {{v1, v2} ∈ E : v1, v2 ∈ B},

it is hence equivalent to ask whether there is a bipartition (A,B) of V, i.e.,
A ∪B = V and A ∩B = ∅, such that | int(A,B)| ≤ Q.
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2.4 Public Transport Networks and Origin-Destination Data

Problem 2.13 (Multicut (special case)). Given a star graph G = (V,E), a
set of source-terminal pairs C ⊆ V × V and a non-negative integer Q ∈ N≥1, is
there a subset Ē ⊆ E with |E| ≤ Q such that all source-terminal pairs in C are
separated by Ē? This problem is NP-complete by [GVY97, Thm. 3.1].

Problem 2.14 (Partition). Given a set A = {a1, . . . , aK} ⊆ N≥1 with K ∈ N≥1

elements, is there a subset A′ ⊆ A such that
∑

a∈A′ a = 1
2

∑
a∈A a =

∑
a∈A\A′ a?

This problem is NP-complete by [GJ79, Problem SP12].

2.4 Public Transport Networks and
Origin-Destination Data

This section defines a public transport network (PTN) and origin-destination
(OD) data, which provide the central information for public transport planning.
A PTN represents the infrastructure and OD data gives information about the
(potential) passengers.

Definition 2.15 (PTN). A public transport network (PTN) G = (V,E) is an
undirected graph with a node set V given by a set of stops or stations and
an edge set E of direct connections between them. We assume that a PTN is
connected and has neither loops nor parallel edges. A subset of nodes Z ⊆ V is
called connected if its induced subgraph G[Z] is connected.

The PTN can be used to model railway, tram, or bus networks. In the following,
we call the nodes of the PTN stations, even if bus networks with stops are under
consideration.

Definition 2.16 (Path). Let an undirected graph G = (V,E) that has neither
loops nor parallel edges be given.

• A path W in G is a sequence (v1, e1, v2, . . . , vn−1, en−1, vn) of nodes and
edges with n ∈ N≥1 so that for all i ∈ [n − 1], we have that ei is an edge
from vi to vi+1. The node set of W is the multiset V (W ) = {v1, v2, . . . , vn}
and its edge set is the multiset E(W ) = {e1, e2, . . . , en−1}. We denote the
set of all paths in G byW . Since we assumed that G does not have parallel
edges or loops, a path is uniquely determined by its nodes, and we write
W = (v1, v2, . . . , vn).

• A path is called simple if no edge appears more than once.

• A path is called elementary if no node occurs more than once.

In public transport, paths are often simple or elementary. Nevertheless, if not
stated explicitly, the results of this thesis hold for arbitrary paths.

9



Chapter 2 Preliminaries

Definition 2.17 (OD data). For a given graph G = (V,E), we call the following
information the origin-destination (OD) data:

• a set D ⊆ (V × V ) \ {(v, v) : v ∈ V } with D ̸= ∅,

• for all d = (v1, v2) ∈ D, a path Wd ∈ W from v1 to v2,

• for all d ∈ D, a number td ∈ N≥1.

We call the elements of D the OD pairs. Passengers of OD pair d = (v1, v2) ∈ D
travel from their origin v1 along Wd to their destination v2. The number td is
the demand. This can for example be the current number of passengers or an
estimated passenger potential. We write (D,Wd, td) as a shorthand notation for
(D, (Wd)d∈D, (td)d∈D).

10



Part I

Infrastructure Optimization of a
Bus Rapid Transit Line

Bus rapid transit (BRT) systems can provide a fast and reliable service to passen-
gers at low investment costs compared to tram, metro and train systems. There-
fore, they can be of great value to attract more passengers to use public transport.
In this part, we thus focus on the BRT investment model: Which segments of a
single bus line should be upgraded when maximizing the number of newly attracted
passengers and minimizing the costs?
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Chapter 3

Introduction

Increasing the modal share of public transport is widely recognized as an impor-
tant path towards reducing greenhouse gas emissions [Mes+19]. Bus rapid transit
(BRT) lines can contribute to this goal because they can offer an attractive service
to passengers at relatively low investment costs compared to rail-based alterna-
tives [DN11]. A BRT line generally uses dedicated lanes for a large share of its
route and is therefore not sensitive to delays as a result of traffic jams caused
by private vehicles. Moreover, BRT lines often get priority at crossings. There-
fore, BRT lines are characterized by higher speed, higher frequency and higher
reliability of service in comparison to traditional buses.

This part of the thesis addresses the planning of a single BRT line. Specif-
ically, the BRT investment model poses the question of which segments of the
BRT line should be upgraded to a full BRT standard and which could remain
as a traditional mixed-traffic bus segment with the objectives to maximize the
ridership and to minimize the costs. Upgrading a segment includes investments
to establish separate bus lanes as well as to adapt intersections and traffic lights
to allow for priority of the BRT line. Thus, the number and the location of up-
graded segments have a direct impact on the quality of a passenger’s journey, and
thereby on the expected ridership of the BRT line. While there is a base amount
of ridership independent of upgrades, we focus on the number of passengers that
can be attracted additionally because of the improvements.

The BRT investment model is particularly motivated by the development of
a new BRT line in the urban area of Copenhagen (Greater Copenhagen), which
will connect multiple municipalities surrounding the city of Copenhagen [Mov20].
Each of these municipalities is responsible for the investments required for up-
grading segments on its territory. Because these investments come out of the
general budgets of the municipalities, which also cover other municipal expenses,
municipalities must weigh the costs of upgrades against the societal benefits they
generate. The willingness of the municipalities to work together towards a so-
cial optimum is shown through the collaboration within the transport agency
Movia, which is funded by the collective of municipalities in the Capital Region.
Moreover, due to the expertise available within the agency, Movia overall takes a
leading role in the design of the new BRT line and thereby provides suggestions
that then need to be approved by the municipalities. This process can be iter-
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Chapter 3 Introduction

ative: Municipalities discuss solutions and revise their budget, followed by new
suggestions from Movia. Due to the conflict of goals between increasing ridership
and reducing costs, we aim to quantify the impact of investments through con-
structing the Pareto front between the number of attracted passengers and the
investment budget that is split over all municipalities.

Additionally, a separate investment budget per municipality could lead to a bus
line that often blends in and out of mixed traffic, which may not make passengers
experience the line as very different from a traditional bus line. Therefore, the
BRT investment model also includes a BRT component constraint, which limits
the number of separate sequences of upgraded segments.

In the following, we formulate the BRT investment model as a bi-objective
MILP for two potential passenger responses to upgrades on the line: a linear and
a threshold relation. While an upgraded segment leads to a proportional number
of newly attracted passengers under the linear passenger response (Linear),
passengers are only attracted to the BRT line in the threshold passenger response
(MinImprov) if a certain minimum level of improvements is realized along their
journey. The latter can be interpreted as a mode choice being made by a group of
homogeneous passengers, where the passengers only switch to using the BRT line
when it becomes their fastest option. Considering these two different passenger
responses leads to two different variants of the BRT investment model, allowing
us to analyze the impact of the passenger response on the trade-off between
attracted passengers and investment budget.

The proposed model is intended to be used as a decision support tool within
the planning process of a new BRT line. While it can be applied in a setting
with a global decision maker without municipalities to find a social optimum, its
main application is the case of municipalities collaborating through a transport
agency, such as in Greater Copenhagen with the transport agency Movia.

Contribution and Outline

In Part I of this thesis, we propose the bi-objective BRT investment model with
a BRT component constraint and multiple investing municipalities for two alter-
native passenger responses to upgrades. The objectives reflect on the respective
passenger response and the overall investment budget. In Chapter 4, we define
the BRT investment model formally, introduce the two different passenger re-
sponses Linear and MinImprov and provide corresponding bi-objective MILP
formulations. In Chapter 5, we propose an ϵ-constraint-based algorithm to com-
pute the complete Pareto front of the BRT investment model. This is followed by
a theoretical analysis: we determine tractable and intractable cases of the BRT
investment model and identify both NP-hard and polynomially solvable cases of
the single-objective problem solved within the ϵ-constraint-based algorithm. In
Chapter 6, we perform an extensive computational study on artificial instances
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and realistic instances based on the Greater Copenhagen BRT line, where we
analyze among others the impact of the passenger response, the BRT component
constraint, the demand pattern, and the budget split among the municipalities.
Ideas for future research related to the BRT investment model are discussed in
Chapter 7.

Related Literature

The BRT investment model is most closely related to the network design step
of public transport planning, in which the public transport network (PTN) is
determined. An overview of the problem of PTN design and the models and
solution methods used to solve it is given in [LMO00] and [LM19].

While the focus in network design has traditionally been on designing a PTN
from scratch, recent work has increasingly focused on the improvement of exist-
ing PTNs. A number of papers focuses on adding dedicated bus lines within an
existing multi-modal network that is used by buses as well as private modes. In
[Yao+12], a bilevel programming model that determines the allocation of dedi-
cated bus lanes and bus frequencies in a multi-modal network minimizing the sum
of travel costs and transit operating costs is presented. A bi-objective problem
minimizing the travel time of bus and non-bus traffic is proposed in [KTM14].
Additionally to the allocation of dedicated bus lanes, time periods are determined
during which lanes are exclusive available for buses. In [BG21], a bilevel prob-
lem is under consideration that aims to determine the allocation of dedicated bus
lanes in order to reduce the total travel time within the network while accounting
for traffic dynamics. The paper [TKG21] deals with the trade-off between priori-
tizing buses and resulting traffic congestion when allocating dedicated bus lanes.
While the BRT investment model shares the main topic of upgrading segments
to dedicated bus lanes, it focuses on a different objective: the trade-off between
the number of attracted passengers and the investment budget. Moreover, it fo-
cuses on the context of a single line and considers the effect of a BRT component
constraint.

Another relevant addition to the network design problem is the consideration
of multiple investing parties. While it is typically assumed that all investment
decisions are made by one central authority, [WZ17] considers local authorities
that can only make upgrade decisions for their own parts of the network. In a
game-theoretic setting, the interaction of the local authorities is formulated in a
cooperative, competitive and chronological way (among others). Here, the aim
of the local authorities is to minimize the travel time by increasing the capacity
of edges under a budget constraint. In the BRT investment model, we take
into account the effect of multiple municipalities through separate municipality
budgets and through investigating different budget splits. Our setting differs in
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Chapter 3 Introduction

considering a bi-objective problem on a single line and through the addition of a
BRT component constraint.

The underlying mathematical structure of the BRT investment model also
shows similarities to the more general network improvement problem. This prob-
lem consists of choosing edges (and nodes) in a network to be upgraded while
minimizing costs or satisfying budget constraints [Kru+98; ZYC04; Bal+22].
The problem has seen applications, e.g., in the area of road network optimiza-
tion, where restricted resources can be used to upgrade edges in order to minimize
the travel time between certain source-destination pairs [LM15] or where roads
can be upgraded to all-weather roads to improve the accessibility of health ser-
vices [MC09]. The BRT investment model differs from the network improvement
problem through being bi-objective and through the consideration of the BRT
component constraint. Moreover, one of our passenger responses depends in a
non-linear way on the realized improvements.
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Chapter 4

BRT Investment Model

This chapter establishes the foundations of the BRT investment model. In Sec-
tion 4.1, we give a formal definition of the BRT investment model, in which one
objective reflects the passenger response and the other the investment budget. We
introduce two different passenger responses, namely Linear and MinImprov,
in Section 4.2 and notation for different variants of the BRT investment model
in Section 4.3. Further, we discuss the difference between the investment budget
and the investment costs in Section 4.4. Finally, in Section 4.5, we provide a
bi-objective MILP and prove its correctness.

4.1 Problem Definition

The BRT investment model models the allocation of upgrades along a bus line.
We denote the bus line by a linear graph G = (V,E). Upgrading a segment
results in a BRT segment, where the vehicles of the BRT line can operate inde-
pendently of other modes of transportation. We denote the costs of upgrading
a segment e ∈ E by ce ∈ N≥1, which encompasses all costs related to creating
BRT infrastructure for the segment. Note that the integrality of the costs is later
relevant for the ϵ-constraint based solution method in Section 5.1.

We consider a BRT line that crosses multiple municipalities, each of them being
responsible for investments in their respective parts of the line. We denote the
set of municipalities by M and let Em ⊆ E denote the set of segments within
municipality m ∈M . We assume that the sets Em contain consecutive segments
and form a partition of the set E, which means that the sets Em with m ∈ M
are non-empty, pairwise disjoint and E =

⋃
m∈M Em. This can often be achieved

by splitting the segments at the borders of the municipalities. Furthermore, we
suppose that each municipality is allocated a fixed budget share sm ∈ R>0 of a
(total) investment budget b ∈ R≥0 such that

∑
m∈M sm = 1. For further insights

into the evaluation of investments, we refer to Section 4.4.
We additionally include a BRT component constraint that limits the number

of separate sequences of upgraded segments. We denote the maximum number
of separate sequences by Z ∈ N≥1. As a result of the different municipalities,
each with its own budget, the upgraded segments might become spread out over
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the BRT line without such a constraint. Passengers may experience such a line
that constantly mixes in and out of blended traffic as not much different from a
general bus line. Moreover, such mixing into blended traffic might create delays,
reducing the reliability of the BRT line and thus making connected upgrades
more desirable. It might also be easier from an organizational perspective to re-
alize upgrades along several consecutive segments than on many (short) scattered
segments.

The number of new passengers that are attracted to the BRT line depends
on the set of segments chosen to be upgraded. We refer to this as the passen-
ger response to upgrades and let pass(F ) denote the number of passengers that
are newly attracted when the segments in F ⊆ E are upgraded. We evaluate
two possible passenger responses: a passenger response Linear, in which the
number of attracted passengers scales relatively to the improvement achieved on
the passengers’ paths, and a passenger response MinImprov, where passengers
are attracted when a certain minimum improvement is realized along their path.
These passenger responses are defined in Section 4.2.

We are now able to define the BRT investment model formally:

Definition 4.1 (BRT investment model). Let the following be given:

Infrastructure:

• a linear graph G = (V,E), where V = [n] for n ∈ N≥1 denotes the set of
stations and E =

{
ei = {i, i+1} : i ∈ [n− 1]

}
the set of segments between

the stations,

• upgrade costs ce ∈ N≥1 for all e ∈ E,

• an upper bound Z ∈ N≥1 on the number of BRT components,

Municipalities:

• a set of municipalities M ,

• a non-empty set of consecutive segments Em ⊆ E for all m ∈ M with⋃
m∈M Em = E and such that the sets Em are pairwise disjoint,

• a budget share sm ∈ R>0 for all m ∈M such that
∑

m∈M sm = 1,

Passenger Response:

• a function pass : 2E → R≥0 that determines the number of newly attracted
passengers, i.e., there are pass(F ) newly attracted passengers when upgrad-
ing the segments in F ⊆ E.
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4.2 Objective Functions Reflecting the Passenger Response

The aim is to determine combinations (F, b) of upgraded segments F ⊆ E and
an investment budget b ∈ R≥0 that

max pass(F ) (maximize the number of newly attracted passengers)
min b (minimize the investment budget)

and satisfy the following constraints:

• The budget constraints ∑
e∈F∩Em

ce ≤ smb for all m ∈M

restrict the investment of each municipality, where smb is the budget of
municipality m ∈M .

• The BRT component constraint restricts the subgraph G[F ] induced by the
set of segments F , i.e., the subgraph of G containing all edges in F and
their incident nodes, to have at most Z connected components.

In order to simplify notation, we call the connected components of G[F ] the
BRT components of F . Hence, the BRT component constraint limits the number
of BRT components of F to at most Z.

In the following, we are interested in finding the non-dominated points and
corresponding efficient solutions that constitute the Pareto front with respect to
the number of newly attracted passengers and the investment budget.

4.2 Objective Functions Reflecting the Passenger
Response

It remains to define the passenger response functions. Information about poten-
tial passengers is given as OD data (D,Wd, td) (Definition 2.17). As we consider
a single line, for each OD pair d ∈ D, we assume the path Wd ∈ W to be the
unique simple path along the line. The number td ∈ N≥1 reflects the number
of potential passengers who would like to travel along OD pair d ∈ D in case
the full set of segments is upgraded, which we assume to be known. Such an
estimate could, for example, be derived from a traffic study which assumes that
all sections are upgraded.

Additionally, for all segments e ∈ E, we assume a value ue ∈ R>0 to be given,
which we call the infrastructure improvement of segment e. If a segment e is
upgraded, passengers benefit from the infrastructure improvement ue that en-
compasses the reduction in travel time due to upgrading the segment e to a full
BRT standard but it could, for example, also represent the improved reliability
as a result of upgrading the segment.

19



Chapter 4 BRT Investment Model

achieved improvement

0
∑

e∈E(Wd)

ue

at
tr

ac
te

d
pa

ss
en

ge
rs

td

(a) Linear

achieved improvement

0
∑

e∈E(Wd)

ueLd

at
tr

ac
te

d
pa

ss
en

ge
rs

td

(b) MinImprov

Figure 4.1: Illustration of the passenger responses Linear and MinImprov for
a fixed OD pair d ∈ D.

The passenger responses Linear and MinImprov determine the number of
newly attracted passengers for each OD pair d ∈ D based on the passenger
potential td and the sum of infrastructure improvements ue realized along the
path Wd. These two passenger responses are illustrated in Figure 4.1. The
passenger response Linear leads to a number of newly attracted passengers
that is proportional to the realized infrastructure improvements, i.e., realizing
x% of the potential improvements leads to x% of the potential passengers being
attracted. The passenger response MinImprov instead relies on a threshold
Ld ∈ R>0, which represents the point at which potential passengers switch over to
actually using the BRT line. An infrastructure improvement below this threshold
leads to no passengers being attracted, while all potential passengers are attracted
if the realized infrastructure improvement exceeds the threshold.

We now formally define the passenger responses Linear and MinImprov:

Definition 4.2 (Passenger response). Let the following be given:

• OD data (D,Wd, td) (Definition 2.17), where the paths Wd ∈ W are the
unique simple paths from v1 to v2 along the line for all d = (v1, v2) ∈ D,

• infrastructure improvements ue ∈ R>0 for all e ∈ E,

and additionally for the passenger response MinImprov:

• an improvement threshold level Ld ∈ R>0 for each d ∈ D that satisfies
Ld ≤

∑
e∈E(Wd)

ue.

Let F ⊆ E be the set of upgraded segments, and let an OD pair d ∈ D be given.
In Linear, the number of newly attracted passengers of OD pair d ∈ D is
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(5;4) (12;11) (4;4) (6;5) (ce;ue)

td Ld

d3 200 18
d2 200 15
d1 100 3

Figure 4.2: Example instance for the BRT investment model.

passd(F )

OD pair d
∑

e∈E(Wd)

ue

∑
e∈F∩E(Wd)

ue Ld td Linear MinImprov

d1 4 4 3 100 100 100
d2 20 15 15 200 150 200
d3 24 15 18 200 125 0

Table 4.1: Infrastructure improvements and number of attracted passengers per
OD pair for the example instance in Example 4.3.

determined by

passd(F ) :=

∑
e∈F∩E(Wd)

ue∑
e′∈E(Wd)

ue′
· td.

In MinImprov, the number of newly attracted passengers of OD pair d ∈ D is
determined by

passd(F ) :=

{
td if Ld ≤

∑
e∈F∩E(Wd)

ue,

0 otherwise.

Hence, the total number of newly attracted passengers dependent on the set of
upgraded segments is given by pass : 2E → R≥0, F 7→∑

d∈D passd(F ).

An example of both passenger responses as well as the notation introduced in
Definitions 4.1 and 4.2 is given in Example 4.3.

Example 4.3. Consider the example instance given in Figure 4.2. The graph
(V,E) with five nodes is given at the bottom with costs ce and infrastructure
improvements ue below the edges. The red, dashed segments belong to munici-
pality m1 and the blue, solid segments belong to municipality m2. The bold edges
form the set F of segments to be upgraded. Three OD pairs are given above,
where the line width corresponds to the number of potential passengers td.

In this example, municipality m1 invests 12 and municipality m2 invests 4.
Because both upgraded segments in F are next to each other, F has only one
BRT component, i.e., F satisfies the BRT component constraint for any Z ∈ N≥1.
Table 4.1 shows the infrastructure improvements for each OD pair as well as the
number of newly attracted passengers passd(F ) for Linear and MinImprov.
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Parameter Value Explanation

λ1

Linear
MinImprov
⋆

passenger response Linear
passenger response MinImprov
any of the passenger responses

λ2

Z ≥ 1
Z = k
Z =∞

any limit on the number of BRT components
fixed limit k on the number of BRT components
no limit on the number of BRT components

λ3
|M | ≥ 1
|M | = k

any number of municipalities
fixed number k of municipalities

Table 4.2: Overview of the allowed values in the classification of the problem
variants.

4.3 Problem Variants

We consider several problem variants for which we use a scheduling-like notation.
Each variant of the BRT investment model is classified as BRT(λ1/λ2/λ3) as
follows:

λ1: The function chosen to represent the passenger response.

λ2: The upper bound on the number of BRT components of the BRT line.

λ3: The number of municipalities that are present.

An overview of the possible values that λ1, λ2, λ3 can take is given in Table 4.2.
We remark that we use the symbolic notation “Z = ∞” to denote the setting
in which the BRT component constraint is not applied, i.e., it indicates a model
without a constraint limiting the number of BRT components. Lemma 4.4 shows
that the BRT component constraint is always fulfilled for values of Z ≥

⌈
|E|
2

⌉
.

Therefore, we regard BRT(⋆/Z = ∞/|M | ≥ 1) as a special case of BRT(⋆/
Z ≥ 1/|M | ≥ 1).

Lemma 4.4. Let an instance of BRT(⋆/Z = k/|M | ≥ 1) be given. The BRT
component constraint is always fulfilled if Z ≥

⌈
|E|
2

⌉
.

Proof. Let an arbitrary subset F ⊆ E be given. Then G[F ] has the maximum
number of connected components if F is a maximum matching in G, which would
be to take every second segment. This yields at most

⌈
|E|
2

⌉
connected compo-

nents. Hence, the number of connected components of G[F ] is always less or
equal Z if Z ≥

⌈
|E|
2

⌉
. In this case, the BRT component constraint is satisfied.
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4.4 Evaluating the Investment

In our solution method (Algorithm 5.1), we also encounter a single-objective
BRT investment model that maximizes the number of passengers pass given a
fixed budget b, which is part of the input. These single-objective variants are
classified with an asterisk, i.e., as BRT*(λ1/λ2/λ3).

4.4 Evaluating the Investment

An efficient solution (F, b) to the BRT investment model and its objective function
value (pass(F ), b) represent the set of upgraded segments, the number of newly
attracted passengers and the investment budget. For a given set of upgraded
segments F , the corresponding minimum investment budget b is the minimum
budget such that all budget constraints are satisfied for F , i.e.,

b = min

{
b′ ∈ R :

∑
e∈F∩Em

ce ≤ smb
′ for all m ∈M

}

= max

{
1

sm

∑
e∈F∩Em

ce : m ∈M

}
.

Note that in any efficient solution (F, b), we have that b is the minimum invest-
ment budget corresponding to F and is uniquely determined by F . For practical
applications, however, the investment costs cost(F ) given as

cost(F ) :=
∑
e∈F

ce,

which state the actual costs incurred by upgrading the segments in F , are another
important figure. Because of the budget split among the municipalities based
on the budget shares, for a fixed set of upgraded segments F , the investment
costs cost(F ) can be less than the available investment budget b.

By solving the BRT investment model, we obtain the Pareto front with respect
to the investment budget. It is not immediately clear if this Pareto front overlaps
with the one where the investment costs cost(F ) constitute the second objective
function. We show that both Pareto fronts coincide when there is a global decision
maker (i.e., |M | = 1) in Lemma 4.5. However, this is generally not the case when
there are multiple municipalities, which we illustrate with a counterexample in
Example 4.6.

Lemma 4.5. The problems BRT(⋆/Z ≥ 1/|M | = 1) and

max pass(F )

min cost(F )

s.t. there are at most Z BRT components,
(4.1)
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where we minimize the investment costs instead of the investment budget, are
equivalent in the sense that for every efficient solution of one problem there is an
efficient solution of the other problem with the same objective function value and
with the same set of upgraded segments F ⊆ E. In particular, in this case, the
sets of non-dominated points coincide.

Proof. Let (F, b) be an efficient solution to the BRT investment model with its
corresponding non-dominated point (pass(F ), b). Because |M | = 1, the bud-
get constraint reduces to cost(F ) ≤ b. Because (F, b) is efficient, the constraint
needs to hold with equality, i.e., cost(F ) = b. We show that F is efficient and
(pass(F ), b) = (pass(F ), cost(F )) is a non-dominated point of problem (4.1). As-
sume that F is not efficient. Then there is a feasible solution F ′ to problem (4.1)
such that pass(F ′) ≥ pass(F ) and cost(F ′) ≤ cost(F ) and at least one inequality
holds strictly. In both cases, we have a contradiction to (F, b) being efficient
because the solution (F ′, cost(F ′)) would dominate (F, b).

Now let F be an efficient solution to problem (4.1) with its corresponding non-
dominated point (pass(F ), cost(F )). We set b := cost(F ). Assume that (F, b)
is not an efficient solution to the BRT investment model. Then there is a fea-
sible solution (F ′, b′) to BRT(⋆/Z ≥ 1/|M | = 1) such that pass(F ′) ≥ pass(F )
and b′ ≤ b and at least one inequality holds strictly. Again, we have a contra-
diction to F being efficient because the solution F ′ would dominate F because
cost(F ′) ≤ b′ ≤ b = cost(F ).

Example 4.6. We consider the instance given in Figure 4.3 with two municipal-
ities M = {m1,m2} and their corresponding segments Em1 = {e1} (red, dashed)
and Em2 = {e2} (blue, solid). Moreover, the investment budget is split such that
municipality m1 receives two thirds and municipality m2 one third, i.e., sm1 =

2
3

and sm2 =
1
3
.

The different sets of upgraded segments with their corresponding invest-
ment costs, minimum investment budgets and numbers of passengers as well
as an evaluation which solutions are efficient for the respective problems are
given in Table 4.3. This yields for the BRT investment model that the set
of non-dominated points of the form (pass(F ), b) is {(3, 3), (0, 0)} for the pas-
senger response Linear as well as for MinImprov. When considering prob-
lem (4.1), the set of non-dominated points of the form (pass(F ), cost(F )) are
given by {(3, 3), (2, 2), (1, 1), (0, 0)} for the passenger response Linear and by
{(3, 2), (2, 1), (0, 0)} for the passenger response MinImprov. Comparing the
sets of non-dominated points, where the second objective is once the investment
budget and once the investment costs, we see that they do not coincide, neither
for the passenger response Linear nor for the passenger response MinImprov.
One does not even need to be contained in the other.

In contrast to Lemma 4.5, also a set of upgraded segments F ⊆ E may lead
to an efficient solution in one problem but not in the other problem, which Ta-
ble 4.3 shows for MinImprov in both directions and for Linear in one direction
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efficient solutions

pass(F ) Linear MinImprov

F cost(F ) b Linear MinImprov BRT cost BRT cost

∅ 0 0 0 0 x x x x
{e1} 2 3 2 3 x x x
{e2} 1 3 1 2 x x
{e1, e2} 3 3 3 3 x x x

Table 4.3: Overview of the solutions of Example 4.6. For all sets F ⊆ E of up-
graded segments, the investment costs cost(E), the corresponding minimum
investment budget b and the number of attracted passengers pass(F ) for Lin-
ear and MinImprov are given. The solutions are evaluated whether they
are efficient solutions in BRT(⋆/Z ≥ 1/|M | = 1) and in the investment cost
related problem (4.1) for Linear and MinImprov.

(2;1) (1;1) (ce;ue)

td Ld

d2 2 1

d1 1 1

Figure 4.3: Instance for Example 4.6 with municipality m1 containing segment e1
(red, dashed) and municipality m2 containing segment e2 (blue, solid).

in this example. We remark that it is possible to also construct an instance
with an efficient solution to the BRT investment model that is not efficient for
problem (4.1).

The idea of the BRT investment model using the investment budget b as an
objective function is that the municipality budgets are relative to each other,
for example, depending on sociocultural, economical or political factors. In the
computational experiments in Sections 6.1 and 6.2, we compute the efficient so-
lutions and the Pareto fronts with respect to the investment budget b. Because
of the practical relevance, we evaluate the results, however, also with respect to
the investment costs cost(F ).

4.5 MILP Formulation

We now provide a bi-objective MILP for the BRT investment model. This for-
mulation uses the following variables:

25



Chapter 4 BRT Investment Model

• a binary variable xe ∈ {0, 1} for all e ∈ E that denotes whether segment e
is upgraded,

• an auxiliary binary variable zi ∈ {0, 1} for all i ∈ [n− 2], which has value 1
if exactly one of the segments ei and ei+1 is upgraded,

• [only if λ1 = MinImprov:] an auxiliary binary variable yd ∈ {0, 1} for all
d ∈ D, which satisfies in every efficient solution that yd = 1 if and only if
Ld ≤

∑
e∈F∩E(Wd)

ue for the set F ⊆ E of upgraded segments,

• a continuous variable b ∈ R≥0 denoting the investment budget.

We obtain the following MILP formulation, which differs with respect to the
passenger response. An explanation of the constraints is given below.

objective function

λ1 = Linear :

max
∑
e∈E

ũexe

min b

with ũe := ue ·
∑
d∈D:

e∈E(Wd)

td∑
e′∈E(Wd)

ue′

λ1 = MinImprov :

max
∑
d∈D

tdyd

min b

s.t. Ldyd ≤
∑

e∈E(Wd)

uexe for all d ∈ D

budget constraints∑
e∈Em

cexe ≤ smb for all m ∈M

BRT component constraints

xei − xei+1
≤ zi for all i ∈ [n− 2] (4.2a)

xei+1
− xei ≤ zi for all i ∈ [n− 2] (4.2b)

xe1 +
n−2∑
i=1

zi + xen−1 ≤ 2Z (4.2c)

variable domains

xe, zi, yd ∈ {0, 1} for all e ∈ E, i ∈ [n− 2], d ∈ D

b ∈ R≥0.
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z0 z1
. . .

zn−2 zn−1e0, dummy

not upgr.

e1 en−1 en, dummy

not upgr.

Figure 4.4: Visualization of the BRT component constraints (4.2) for Lemma 4.7.

In these bi-objective formulations of the BRT investment model, the objectives
are to maximize the number of attracted passengers and to minimize the invest-
ment budget. The number of attracted passengers is determined either according
to the passenger response Linear or MinImprov. Note that the objective re-
garding the number of attracted passengers for λ1 = Linear is reformulated
as

∑
d∈D

(
td ·
∑

e∈E(Wd)
uexe∑

e′∈E(Wd)
ue′

)
=
∑
e∈E

 ∑
d∈D:

e∈E(Wd)

td ·
ue∑

e′∈E(Wd)
ue′

xe =
∑
e∈E

ũexe.

For λ1 = MinImprov, a constraint is added to ensure that the variable yd
takes value 1 only if the minimum improvement Ld is realized for an OD pair
d ∈ D. The remaining constraints are the same for both passenger responses. The
budget constraints determine the available budget for each municipality based on
the budget shares sm. Moreover, the BRT component constraints (4.2) ensure
that the number of BRT components is not larger than Z. They are based on
the observation that it suffices to count the number of times where an upgraded
segment is succeeded by a segment that is not upgraded and vice versa. We
present the idea and its correctness formally in the following lemma:

Lemma 4.7. Let an instance of the BRT investment model and F ⊆ E be given.

We reflect F by setting xe :=

{
1 if e ∈ F,

0 if e ∈ E \ F.
Then it holds that F has at most Z BRT components if and only if there is a
vector z ∈ {0, 1}n−2 such that the BRT component constraints (4.2) are satisfied.

Proof. Let F ⊆ E be given with K BRT components, i.e., G[F ] has K connected
components, denoted by F1, . . . , FK . We modify the linear graph by adding
dummy edges e0 and en at the front and end as depicted in Figure 4.4 that are
not upgradable, i.e., we fix xe0 = xen = 0, and we add the binary variables
z0 ∈ {0, 1} and zn−1 ∈ {0, 1}. Based on that, we define the vector z̄ ∈ {0, 1}n
by z̄i := |xei − xei+1

| for all i ∈ {0, . . . , n− 1}. By definition, z̄ is feasible for the
constraints (4.2a) and (4.2b), and it has exactly 2K entries with value 1, namely
one for each start and end of a BRT component Fi with i ∈ [K]. Furthermore,
because xe0 = xen = 0, we have z̄0 = xe1 and z̄n−1 = xen−1 .
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Chapter 4 BRT Investment Model

For the first direction, let F have at most Z BRT components, i.e., K ≤ Z.
Then

xe1 +
n−2∑
i=1

z̄i + xen−1 =
n−1∑
i=0

z̄i = 2K ≤ 2Z.

Hence, the constraints (4.2) are satisfied for the vector (z̄1, . . . , z̄n−2) ∈ {0, 1}n−2.
For the second direction, we suppose that there is some z∗ ∈ {0, 1}n−2 such

that the constraints (4.2) hold. Due to the constraints (4.2a) and (4.2b), for all
i ∈ [n − 2], we have that |xei − xei+1

| = 1 implies z∗i = 1. Hence, z̄i ≤ z∗i for all
i ∈ [n− 2]. Then K ≤ Z because

2K =
n−1∑
i=0

z̄i ≤ xe1 +
n−2∑
i=1

z∗i + xen−1 ≤ 2Z.
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Chapter 5

Solution Methods and
Theoretical Analysis

In this chapter, we conduct a theoretical analysis of the BRT investment model
and provide solution methods. In Section 5.1, we present an algorithm based
on the ϵ-constraint method to solve the BRT investment model, and we analyze
the size of its Pareto front. The impact of the BRT component constraint is
investigated in Section 5.2, and the complexity of the single-objective problems
solved within the ϵ-constraint method is studied in Section 5.3. In Section 5.4, we
consider relaxations of the single-objective problem. A summary of the results of
Chapter 5 is given in Section 5.5.

5.1 Solution Method and Tractability

Solving the BRT investment model requires computing the set of non-dominated
points of an instance of BRT(⋆/Z ≥ 1/|M | ≥ 1). To do so, we employ the
ϵ-constraint method (see Algorithm 2.1 with ϕ1 = pass and Remark 2.9). Note
that the Pareto front of BRT(⋆/Z ≥ 1/|M | ≥ 1) is finite because there are only
finitely many options to choose the set of upgraded segments F ⊆ E, and thus
pass(F ) attains only finitely many values.

The method for solving the BRT investment model is given in Algorithm 5.1.
In this algorithm, we place an upper bound on the investment budget objective,
this means that we solve single-objective problems BRT*(⋆/Z ≥ 1/|M | ≥ 1) (see
Section 4.3), which take b as input. We start by finding the investment budget b at
which all segments can be upgraded, meaning that all passengers will be attracted.
In every iteration of the algorithm, we then reduce b in such a way that no non-
dominated points are missed. This is repeated as long as the investment budget b
is non-negative. We store weakly non-dominated points in (p∗, b∗) until we know
that we have a non-dominated point, which we then add to Γ.

In this algorithm, we use the integrality of the upgrade costs to identify a step
size δ in each iteration that does not cut off any non-dominated point. To do
so, we first identify the minimum budget at which the current solution remains
feasible and the municipalities for which this minimum budget is tight. Due to the
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integrality of the upgrade costs, we know that the individual budget for each such
tight municipality can be reduced by 1 without cutting off any non-dominated
point that we have not found yet. Similarly, we can reduce the individual budget
for each non-tight municipality to the next integer level without cutting off any
non-dominated point. We then choose the step size as the minimum value that
leads to a budget satisfying these conditions for each municipality.

We formally prove that the algorithm is able to find the complete set of non-
dominated points in Theorem 5.1.

Theorem 5.1. Algorithm 5.1 computes the set of all non-dominated points for
BRT(⋆/Z ≥ 1/|M | ≥ 1).

Proof. The algorithm starts with p∗ =
∑

d∈D td, which is the upper limit on
the number of attracted passengers that can be realized by all municipalities
m ∈ M upgrading all segments, this means investing

∑
e∈Em

ce. This in-
vestment is possible for each municipality if the investment budget is set to

b∗ = b = max

{
1
sm
· ∑
e∈Em

ce : m ∈M

}
. The idea of the algorithm is to iteratively

compute all non-dominated points by solving BRT*(⋆/Z ≥ 1/|M | ≥ 1) for a
budget b and then reducing b by δ.

For this ϵ-constraint based method, we have to make sure that δ > 0 does not
cut off any non-dominated points (Step 1) and that the algorithm only considers
a finite number of weakly non-dominated points and thus terminates (Step 2).

Step 1: No non-dominated point is cut off. The step width δ is computed
in line 10. Because 1

sm
> 0 for all m ∈ M and x − ⌈x − 1⌉ > 0 for all x ∈ R≥0,

it holds that δ > 0. We need to ensure that the step width δ does not cut off
solutions with a budget b′ < b̄. We do so by showing that if a set of upgraded
segments F ′ ⊆ E is feasible for a budget b′ < b̄, it is also feasible for the investment
budget b̄− δ. So let F ′ ⊆ E be feasible with a corresponding investment budget
b′ < b̄ and let m ∈M be arbitrary. It holds that∑

e∈F ′∩Em

ce ≤ sm · b′ < sm · b̄.

Because ce ∈ N≥1 for all e ∈ E, we obtain∑
e∈F ′∩Em

ce ≤ ⌊sm · b′⌋ ≤ ⌈sm · b̄− 1⌉.

Now let δ be chosen as in line 10 and update b := b̄ − δ. This means that the
right-hand side of the budget constraint of municipality m in the next iteration
is

sm · (b̄− δ) ≥

sm ·
(
b̄− 1

sm

)
= sm · b̄− 1

(∗)
= ⌈sm · b̄− 1⌉ if m ∈ M̄,

sm ·
(
b̄− sm·b̄−⌈sm·b̄−1⌉

sm

)
= ⌈sm · b̄− 1⌉ if m ∈M \ M̄,
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5.1 Solution Method and Tractability

Algorithm 5.1: Computing the set of non-dominated points for
BRT(⋆/Z ≥ 1/|M | ≥ 1)
Input : Instance I of BRT(⋆/Z ≥ 1/|M | ≥ 1)
Output: Set Γ of all non-dominated points

1 Initialize
2 Γ← ∅,
3 p∗ ←∑

d∈D td,

4 b∗ ← max

{
1
sm
· ∑
e∈Em

ce : m ∈M

}
,

5 b← b∗.
6 while b ≥ 0 do
7 Compute BRT*(⋆/Z ≥ 1/|M | ≥ 1) for instance I with investment

budget b. Let F ⊆ E be an optimal solution and p̄ be the optimal
objective function value.

8 Compute the minimum investment budget b̄ such that F remains
feasible as

b̄← max

{
1

sm
·
∑

e∈F∩Em

ce : m ∈M

}
.

9 Determine the set of municipalities M̄ for which the investment
budget b̄ is tight as

M̄ ←
{
m ∈M :

∑
e∈F∩Em

ce = sm · b̄
}
.

10 Compute the step width δ as

δ ← min

{
min
m∈M̄

(
1

sm

)
, min
m∈M\M̄

(
sm · b̄− ⌈sm · b̄− 1⌉

sm

)}
.

11 if p̄ < p∗ then
12 Update Γ← Γ ∪ {(p∗, b∗)}.
13 Update p∗ ← p̄.

14 Update b∗ ← b̄.
15 Update b← b̄− δ.

16 Update Γ← Γ ∪ {(p∗, b∗)}.
17 return Γ

31



Chapter 5 Solution Methods and Theoretical Analysis

where (∗) holds because m ∈ M̄ and thus sm · b̄ =
∑

e∈F∩Em
ce ∈ N≥0. Hence,

the solution F ′ with investment budget b′ < b̄ is not cut off.

Step 2: The algorithm terminates. In every iteration, we consider a dif-
ferent (weakly) efficient solution to BRT(⋆/Z ≥ 1/|M | ≥ 1): In lines 7 and 8, a
set of upgraded segments F and its minimum investment budget b̄ such that F
remains feasible are computed. In line 15, the bound b on the investment budget
is then reduced by δ > 0 so that F is not a feasible solution to BRT*(⋆/Z ≥ 1/
|M | ≥ 1) with the investment budget b = b̄ − δ in the next iteration. Because
there are only finitely many sets F ⊆ E of which one is F = ∅ with b̄ = 0,
the stopping criterion b < 0 is met after a finite number of iterations and the
algorithm terminates.

Note that the algorithm simplifies for the special case in which there is a global
decision maker, i.e., for BRT(⋆/Z ≥ 1/|M | = 1). In this special case, lines 8
and 10 in Algorithm 5.1 simplify to

b̄←
∑
e∈F

ce,

δ ← 1.

This means that the minimum investment budget for a given solution corresponds
to the investment costs to realize it and we can always choose the step size
to be equal to 1 because of the integral costs ce ∈ N≥1. This finding relates
to Lemma 4.5, in which we found that the Pareto front with respect to the
investment costs coincides with the one for the investment budget.

To analyze the running time of Algorithm 5.1, we consider the complexity of the
single-objective problem solved in line 7, the number of iterations and the number
of non-dominated points of BRT(⋆/Z ≥ 1/|M | ≥ 1). We give upper bounds on
the last two values in Lemma 5.2. Theorem 5.3 shows that 2n−1 is a tight bound
and that the BRT investment model is generally intractable, meaning that its
Pareto front may contain an exponential number of non-dominated points. In
Lemma 5.4, we deduce from the upper bound (5.1) that the number of non-
dominated points is polynomial for the special case where all segment upgrade
costs are equal

Lemma 5.2. The number of non-dominated points of BRT(⋆/Z ≥ 1/|M | ≥ 1)
and the number of iterations of Algorithm 5.1 are limited by 2n−1 and∣∣∣∣∣

{
1

sm

∑
e∈F∩Em

ce : m ∈M,F ⊆ Em

}∣∣∣∣∣ . (5.1)

Proof. For every non-dominated point (pass(F ), b̄) with a set of upgraded seg-
ments F , we have that b̄ is the minimum investment budget such that all segments
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in F can still be upgraded. Moreover, in every iteration of Algorithm 5.1, we con-
sider a different minimum investment budget b̄, which is strictly decreasing with
every iteration. Therefore, the number of non-dominated points and the number
of iterations of Algorithm 5.1 are limited by the number µ of different minimum
investment budgets that can occur:

µ =

∣∣∣∣∣
{
max

{
1

sm

∑
e∈F∩Em

ce : m ∈M

}
: F ⊆ E

}∣∣∣∣∣ .
We obtain upper bounds on µ by taking one value for every set F ⊆ E:

µ ≤ |{F ⊆ E}| = 2n−1,

and by dropping the maximization and taking one value b̄ for every municipality
m ∈M and every set F ⊆ Em:

µ ≤
∣∣∣∣∣
{

1

sm

∑
e∈F∩Em

ce : m ∈M,F ⊆ Em

}∣∣∣∣∣ .
Theorem 5.3. BRT(⋆/Z ≥ 1/|M | ≥ 1) is intractable, even if Z = ∞ and
|M | = 1.

Proof. We consider an instance of BRT(⋆/Z =∞/|M | = 1) with

• a linear graph (V,E) with |V | = n,

• ue = 1 for all e ∈ E,

• D := {di = (i, i+ 1) : i ∈ [n− 1]},

• tdi := 2i−1 and cei := 2i−1 for all i ∈ [n− 1],

• Ld = 1 for all d ∈ D (if applicable).

Because the paths of all OD pairs only contain one segment, upgrading a seg-
ment ei ∈ E results in attracting tdi = 2i−1 passengers both for Linear and
MinImprov. Upgrading any set of segments F ⊆ E hence results in attracting∑

i∈I 2
i−1 passengers with investment costs and hence also an investment budget

of
∑

i∈I 2
i−1 with I = {i ∈ [n− 1] : ei ∈ F}. Because{∑

i∈I

2i−1 : I ⊆ [n− 1]

}
=
{
0, . . . , 2n−1 − 1

}
,

there is a solution of BRT(⋆/Z =∞/|M | = 1) with objective function value (k, k)
for each number k ∈ {0, . . . , 2n−1 − 1}. We can easily see that all these points
are non-dominated. Thus the set of non-dominated points has size 2n−1.
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Lemma 5.4. Let c ∈ N≥1. For BRT(⋆/Z ≥ 1/|M | ≥ 1) with ce = c for all
e ∈ E and sm = 1

|M | for all m ∈ M , then there are at most n non-dominated
points and Algorithm 5.1 terminates after at most n iterations, where n is the
number of nodes in the linear graph.

Proof. We plug the input into the bound (5.1):

(5.1) =
∣∣{|M | · |F ∩ Em| · c : m ∈M,F ⊆ Em

}∣∣
= max{|Em| : m ∈M}+ 1 ≤ n.

Thus, by Lemma 5.2, the number of non-dominated points and the number of
iterations of Algorithm 5.1 are limited by n.

Note, in particular, that Lemma 5.4 is applicable for BRT(⋆/z ≥ 1/|M | = 1)
with ce = c for all e ∈ E.

Next, we identify two special cases for Linear with only one municipality in
which the Pareto front can be computed in polynomial time, see Lemmas 5.5
and 5.6. The setting in item 2 of Lemma 5.5 occurs for example if we con-
sider unit infrastructure improvements ue = 1 for all e ∈ E and a maximal
set of OD pairs D = V × V \ {(v, v) : v ∈ V } with a passenger potential
that is distributed evenly over all OD pairs, i.e., td = td′ for all d, d′ ∈ D.
A cost pattern as in item 2 of Lemma 5.6 occurs for example if the costs are
less expensive in the middle of the line but are increasingly expensive towards its
ends. Recall that cost(F ) =

∑
e∈F ce and pass(F ) =

∑
e∈F ũe for all F ⊆ E with

ũe := ue ·
∑
d∈D:

e∈E(Wd)

td∑
e′∈E(Wd)

ue′
for all e ∈ E.

Lemma 5.5. Let an instance of BRT(Linear/Z =∞/|M | = 1) with unit costs
ce := 1 for all e ∈ E be given. Let e(i) for i ∈ [n − 1] denote a sorting of the
segments such that ũe(1) ≥ . . . ≥ ũe(n−1)

.

1. If b ∈ {0, . . . , n − 1} and F = {e(i) : i ∈ [b]}, then (F, b) is an efficient
solution.

2. If there is some ī ∈ [n − 1] such that ũej ≤ ũej′
for all j ≤ j′ ≤ ī and

ũej ≥ ũej′
for all ī ≤ j ≤ j′, then for every non-dominated point (p, b),

there is an efficient solution (F, b) with pass(F ) = p such that the segments
in F are connected.

3. The instance can be solved in polynomial time.

Proof. Note that for all F ⊆ E, we have cost(F ) = |F |.
1. First, (F, b) is feasible because cost(F ) = |F | = b, hence, the budget con-

straint is satisfied. Second, suppose it is not efficient. Then it is dominated
by some solution (F ′, b′). First, assume b′ < b, then

|F ′| = cost(F ′) ≤ b′ < b = cost(F ) = |F |
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and hence by definition of the e(i) also

pass(F ′) =
∑
e∈F ′

ũe <

b∑
i=1

ũe(i) =
∑
e∈F

ũe = pass(F ).

Next, assume pass(F ′) > pass(F ). In this case, |F ′| > |F | because F
contains the b segments with the highest value ũe. This implies

b′ ≥ cost(F ′) > cost(F ) = b.

Because we have a contradiction in both cases, there cannot be a solution
that dominates (F, b), and (F, b) is efficient.

2. Let (p, b) be a non-dominated point. Thus, b ∈ {0, . . . , n− 1} because the
budget constraint must be satisfied with equality. By assumption, we can
suppose that e(1) = eī. Because ũe increases monotonically until eī and
decreases monotonically afterwards, we can assume that e(2) ∈ {eī−1, eī+1}.
Iteratively, we get that if {e(1), . . . , e(k)} = {ej : j ∈ {l, . . . , l + k − 1}} for
some l ∈ [n − 1], then e(k+1) ∈ {el−1, el+k}. Therefore, F := {e(i) : i ∈ [b]}
is connected. Because of item 1, (F, b) is an efficient solution, and thus
pass(F ) = p.

3. From Lemma 5.4, we know that there are at most n non-dominated points,
one for each investment budget value b ∈ {0, . . . , n− 1}. The sorting of the
segments with respect to the values ũe can be done in O(n·log(n)). Because
we can find the optimal set of upgraded segments F corresponding to a fixed
investment budget value b as shown in item 1, we can find all non-dominated
points in polynomial time by iterating over the investment budget values
b ∈ {0, . . . , n− 1}, determining F and then computing pass(F ).

Lemma 5.6. Let an instance of BRT(Linear/Z = ∞/|M | = 1) with ũe := 1
for all e ∈ E be given. Let e(i) for i ∈ [n − 1] denote a sorting of the segments
such that ce(1) ≤ . . . ≤ ce(n−1)

.

1. Let k ∈ {0, . . . , n− 1}. If b =
∑k

i=1 ce(i) and F = {e(i) : i ∈ [k]}, then (F, b)
is an efficient solution.

2. If there is some ī ∈ [n − 1] such that cej ≥ cej′ for all j ≤ j′ ≤ ī and
cej ≤ cej′ for all ī ≤ j ≤ j′, then for each non-dominated point (p, b), there
is some efficient solution (F, b) with pass(F ) = p such that the segments
in F are connected.

3. The instance can be solved in polynomial time.

Proof. Note that for all F ⊆ E, we have pass(F ) = |F |.
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1. First, (F, b) is feasible by construction. Second, suppose it is not ef-
ficient. Then it is dominated by some solution (F ′, b′). First, assume
pass(F ′) > pass(F ). This implies |F ′| > |F | = k, and hence by definition
of the e(i) also

b′ ≥ cost(F ′) =
∑
e∈F ′

ce >

k∑
i=1

ce(i) = b.

Next, assume b′ < b. In this case |F ′| < |F | because F contains the k
segments with the lowest costs ce and cost(F ) = b. This implies that
pass(F ′) < pass(F ). Therefore, there cannot be a solution that dominates
(F, b), and (F, b) is efficient.

2. The proof is analogous to the proof of Lemma 5.5, item 2.

3. Because there are n different values for the number of newly attracted
passengers, namely pass(F ) = |F | ∈ {0, . . . , n − 1} for all F ⊆ E, and
ce > 0 for all e ∈ E, there are n non-dominated points, one per number
of segments in F . We can sort the segments according to their costs in
O(n · log(n)). Using the formulas for b and F in item 1, we can then find
all non-dominated points in polynomial time by iterating over the number
of upgraded segments k ∈ {0, . . . , n − 1}, determining b and F and then
computing pass(F ).

5.2 Exploiting the Structure of the BRT
Component Constraint

The BRT component constraint limits the number of BRT components and, as
a result, it also limits the number of feasible sets of upgraded segments F ⊆ E.
This can have an impact on both the number of non-dominated points and the
running time needed to solve the single-objective problems in Algorithm 5.1. For
that reason, we further analyze the complexity of the BRT investment model in
the context of this component constraint.

We start by considering BRT(⋆/Z = k/|M | ≥ 1), where k is fixed and not
part of the input, and show that all non-dominated points can be found in poly-
nomial time by an enumeration algorithm, see Theorem 5.7. This means that the
problem is “slice-wise polynomial” and, hence, in the complexity class XP [DF13,
Ch. 27; Cyg+15, Sec. 1.1]. We remark that Theorem 5.7 does not imply that
BRT(⋆/Z ≥ 1/|M | ≥ 1) is in FPT, the set of fixed-parameter tractable problems,
because the degree of the polynomial depends on the parameter k.

Theorem 5.7. BRT(⋆/Z = k/|M | ≥ 1) can be solved in polynomial time for a
fixed k ∈ N≥1.
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5.2 Exploiting the Structure of the BRT Component Constraint

Proof. Let k ∈ N≥1 be fixed. We consider an instance of BRT(⋆/Z = k/|M | ≥ 1),
which has |V | = n and |E| = n− 1. Each BRT component is uniquely defined by
a pair (q, q′) ∈ V × V with q < q′ marking the first and last station of the BRT
component. A feasible set of upgraded segments F ⊆ E can have at most k BRT
components determined by (q1, q

′
1), . . . , (qk, q

′
k). There are at most n possible

values for each qi and q′i for all i ∈ [k]. Hence, the number of sets satisfying the
BRT component constraint is in O(n2k). For each such set F , we can compute
the minimum investment budget in O(n − 1) (see Section 4.4) and the number
of attracted passengers in O(|D| · (n− 1)). A solution (F, b) can only be efficient
if b is the minimum investment budget for which F is feasible. Therefore, the
above procedure gives a superset of the set of non-dominated points of BRT(⋆/
Z = k/|M | ≥ 1), which we can filter with Algorithm 2.2 to obtain the Pareto
front. Hence, BRT(⋆/Z = k/|M | ≥ 1) can be solved in polynomial time for a
fixed k ∈ N≥1.

Note that the result of Theorem 5.7 is especially useful for finding the set of
non-dominated points for instances with a small value of k. We next consider
the case with many BRT components. From Lemma 4.4 we know that the BRT
component constraint is always fulfilled if Z ≥

⌈
|E|
2

⌉
. For the passenger response

Linear, Lemma 5.8 shows how we can use BRT*(Linear/Z = ∞/|M | ≥ 1)
to obtain bounds on the optimal objective function value of the single-objective
problem BRT*(Linear/Z = k/|M | ≥ 1) for any fixed k ∈ N≥1. Such a bound
could, e.g., be used to obtain an approximate Pareto front for instances in which
it is hard to solve the single-objective problems in Algorithm 5.1 to optimality.

Lemma 5.8. Let an instance of BRT*(Linear/Z = ∞/|M | ≥ 1) be given.
Let p be the optimal objective function value of BRT*(Linear/Z =∞/|M | ≥ 1)
with an optimal solution F , and let pk be the optimal objective function value of
BRT*(Linear/Z = k/|M | ≥ 1) for a fixed k ∈ N≥1. Let K be the number of
BRT components of F . Then pk = p if k ≥ K, and p ≥ pk ≥ k

K
p if k < K.

Proof. Dropping the BRT component constraint is clearly a relaxation, hence,
p ≥ pk. Also if k ≥ K, then F is still feasible for the restricted problem
BRT*(Linear/Z = k/|M | ≥ 1). Therefore, pk = p in that case.

So let k < K, and let F1, . . . , FK be the BRT components of F . For ev-
ery i ∈ [K], we define gi :=

∑
e∈Fi

ũe as the gain in passengers when upgrad-
ing the i-th BRT component of F . We assume that they are sorted such that
g1 ≥ . . . ≥ gK ≥ 0. Allowing k BRT components means that F1 ∪ . . . ∪ Fk is a
feasible solution as it has exactly k BRT components. This yields that

pk ≥
k∑

i=1

gi ≥
k

K
p.

Here, the last inequality holds because of the following argument: Assume that
it is not true, i.e.,

∑k
i=1 gi <

k
K
p. This implies

∑K
i=k+1 gi = p−∑k

i=1 gi >
K−k
K

p.
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We then have that gk < 1
K
p because we would have

∑k
i=1 gi ≥ k · 1

K
p otherwise,

and gk+1 >
1
K
p analogously. This is a contradiction to gk ≥ gk+1.

5.3 Complexity of the Single-Objective Problem

While we showed in the previous sections that BRT(Linear/Z = ∞/|M | = 1)
with a special structure (see Lemmas 5.5 and 5.6) and BRT(⋆/Z = k/|M | ≥ 1)
for small values of k (see Theorem 5.7) can be solved in polynomial time, the
time needed to solve the single-objective problem BRT*(⋆/Z = ∞/|M | ≥ 1)
has a large impact on the running time of Algorithm 5.1 in other cases. In this
section, we show that the single-objective BRT investment model is related to the
well-known 0-1 Knapsack problem and is NP-hard in general, see Theorems 5.9
and 5.11. However, we also identify polynomially solvable cases in Lemmas 5.10
and 5.12.

Theorem 5.9. BRT*(Linear/Z ≥ 1/|M | ≥ 1) is NP-hard, even if Z = ∞,
|M | = 1 and ue = 1 for all e ∈ E.

Proof. We show that the decision version of BRT*(Linear/Z ≥ 1/|M | ≥ 1)
with a lower bound p on the objective function value is NP-complete.

Given a solution to BRT*(Linear/Z ≥ 1/|M | ≥ 1), we can check in poly-
nomial time whether the budget constraints and the BRT component constraint
are satisfied and a certain value in the objective function is reached. Hence, the
problem is in NP.

We reduce 0-1 Knapsack (Problem 2.10) to BRT*(Linear/Z ≥ 1/|M | ≥ 1).
Let k elements with rewards hi ∈ N≥1 and weights wi ∈ N≥1 for all i ∈ [k],
a weight budget W and a bound H be given. We construct an instance of
BRT*(Linear/Z ≥ 1/|M | ≥ 1) as follows: We set

• n := k + 1, so V = [k + 1] and E = {ei : i ∈ [k]},

• cei := wi and uei := 1 for all i ∈ [k],

• Z := k,

• M := {1} and s1 := 1,

• D := {(i, i+ 1) : i ∈ [k]},

• td := hi for all d = (i, i+ 1) with i ∈ [k],

• p := H,

• b := W .
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We show that every feasible solution F ′ ⊆ [k] of 0-1 Knapsack with an ob-
jective function value of at least H corresponds to a feasible solution F ⊆ E of
BRT*(Linear/Z ≥ 1/|M | ≥ 1) with an objective function value of at least p.
The solutions F ′ and F correspond to each other as follows: i ∈ F ′ if and only
if ei ∈ F . Then the claim holds because

∑
i∈F ′ wi =

∑
i∈F ′ cei =

∑
e∈F ce and

∑
i∈F ′

hi =
∑
ei∈F

t(i,i+1) =
∑

d=(i,i+1):
i∈[k]

(∑
e∈F∩{ei} 1

1
· td
)

=
∑
d∈D

(∑
e∈F∩E(Wd)

ue∑
e∈E(Wd)

ue

· td
)
.

Thus, the decision version of BRT*(Linear/Z ≥ 1/|M | ≥ 1) is NP-complete.

From Section 4.5, we obtain the following IP for the single-objective problem
BRT*(Linear/Z =∞/|M | ≥ 1) with a fixed b ∈ R≥0:

max
xe

∑
e∈E

ũexe

s.t.
∑
e∈Em

cexe ≤ smb for all m ∈M

xe ∈ {0, 1} for all e ∈ E.

(5.2)

From this formulation we can see that BRT*(Linear/Z = ∞/|M | ≥ 1)
and BRT*(Linear/Z = ∞/|M | = 1) are (multi-dimensional) 0-1 Knapsack
problems. Moreover, because the sets Em for m ∈ M are pairwise disjoint,
BRT*(Linear/Z = ∞/|M | ≥ 1) can be decomposed into |M | independent
0-1 Knapsack problems and hence can be solved in pseudo-polynomial time by
dynamic programming [KPP04, Sec. 9.3.2].

The special case of BRT*(Linear/Z = ∞/|M | ≥ 1) in which all segments
have unit upgrade costs can even be solved in polynomial time:

Lemma 5.10. BRT*(Linear/Z = ∞/|M | ≥ 1) can be solved in polynomial
time if ce = 1 for all e ∈ E.

Proof. Consider IP (5.2). Let A ∈ R|M |×|E| be the coefficient matrix of the budget
constraints, i.e., for all m ∈ M and e ∈ E, we have Am,e = 1 if e ∈ Em, and
Am,e = 0 otherwise. Because of the assumption that the municipalities contain
only consecutive segments, the matrix A satisfies the consecutive ones property.
Therefore, the problem can be solved in polynomial time (see Section 2.1).

Theorem 5.11. BRT*(MinImprov/Z ≥ 1/|M | ≥ 1) is NP-hard, even if
Z =∞, M = 1, ue = 1 for all e ∈ E and Ld = 1 for all d ∈ D.
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Proof. As in the proof of Theorem 5.9, BRT*(MinImprov/Z ≥ 1/|M | ≥ 1) is
in NP. Further, we apply the same reduction from 0-1 Knapsack (Problem 2.10)
to BRT*(MinImprov/Z ≥ 1/|M | ≥ 1) and additionally choose Ld := 1 for all
d ∈ D. It remains to show that the objective function value is the same for
solutions that correspond to each other. We have that∑

d∈D:
Ld≤

∑
e∈F∩E(Wd)

ue

td =
∑
i∈F ′

hi,

because{
d ∈ D :Ld ≤

∑
e∈F∩E(Wd)

ue

}
=

{
(i, i+ 1) : i ∈ [k] and 1 ≤

∑
e∈F∩{ei}

1

}
= {(i, i+ 1) : i ∈ [k] and ei ∈ F} = {(i, i+ 1) : i ∈ F ′}.

Also a special case of BRT*(MinImprov/Z = ∞/|M | ≥ 1) can be solved
in polynomial time, namely when all segments have unit upgrade costs and unit
improvements and at the same time only a single segment has to be upgraded to
attract the passengers for each OD pair:

Lemma 5.12. BRT*(MinImprov/Z = ∞/|M | ≥ 1) can be solved in polyno-
mial time if ce = 1 and ue = 1 for all e ∈ E and Ld = 1 for all d ∈ D.

Proof. The special case under consideration yields the following simplified for-
mulation:

max
xe, yd

∑
d∈D

tdyd

s.t.
∑
e∈Em

xe ≤ smb for all m ∈M∑
e∈E(Wd)

(−xe) + yd ≤ 0 for all d ∈ D

xe ∈ {0, 1} for all e ∈ E

yd ∈ {0, 1} for all d ∈ D.

The coefficient matrix of the budget constraints and of the constraints for the

objective is of the form A =

[
A1 0
−A2 I

]
, where I ∈ {0, 1}|D|×|D| is the unit

matrix, A1 ∈ {0, 1}|M |×|E| denotes whether a segment belongs to a municipality,
and A2 ∈ {0, 1}|D|×|E| denotes whether a segment is on the path of an OD pair.
Formally, we have for all m ∈M , d ∈ D and e ∈ E that

A1
m,e =

{
1 if e ∈ Em,

0 otherwise
and A2

d,e =

{
1 if e ∈ E(Wd),

0 otherwise.
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5.4 Relaxations of the Single-Objective Problem

The matrix A1 has the consecutive ones property because of the assumption
that municipalities contain only consecutive segments, and A2 has it because the
considered graph is a linear graph. As multiplying a row of a matrix by −1
only influences the sign of the determinant of the matrix and its submatrices, the

matrix
[
A1

−A2

]
is totally unimodular by Lemma 2.3. The coefficient matrix A,

which we obtain by appending a part of a unit matrix to this totally unimodular
matrix, is then also totally unimodular. Therefore, the problem can be solved in
polynomial time (see Section 2.1).

Lemmas 5.10 and 5.12 can also be applied if ce = c and ue = u for all e ∈ E and
Ld = u for all d ∈ D for some arbitrary but fixed c ∈ N≥1 and u ∈ R>0. In this
case, we can replace the budget constraints by

∑
e∈Em

xe ≤ sm · b/c for all m ∈M ,
and we can replace the objective function constraints Ldyd ≤

∑
e∈E(Wd)

uexe by
yd ≤

∑
e∈E(Wd)

xe. Then the assumptions of Lemmas 5.10 and 5.12 are satisfied.
If we consider a global decision maker (i.e., |M | = 1) in addition to the assump-

tions of Lemmas 5.10 and 5.12, those special cases also satisfy the conditions of
Lemma 5.4, and thus the complete Pareto front of BRT(⋆/Z =∞/|M | = 1) can
be constructed in polynomial time.

5.4 Relaxations of the Single-Objective Problem

Because BRT*(⋆/Z ≥ 1/|M | ≥ 1) is NP-hard for both passenger responses, we
study different relaxations, which yield dual bounds on the objective function
value, this is, upper bounds on the number of passengers. The trivial lower and
upper bounds are 0 and

∑
d∈D td, respectively.

First, it is easy to see that BRT*(⋆/Z = ∞/|M | ≥ 1) is a relaxation of
BRT*(⋆/Z ≥ k/|M | ≥ 1) because the BRT component constraint is omit-
ted, which expands the feasible set but the objective function stays the same.
Hence, BRT*(⋆/Z = ∞/|M | ≥ 1) yields an upper bound on the num-
ber of newly attracted passengers in BRT*(⋆/Z ≥ 1/|M | ≥ 1). However,
BRT*(⋆/Z =∞/|M | ≥ 1) is NP-hard itself for both passenger responses. Thus,
we consider the special cases of Lemmas 5.10 and 5.12, which are relaxations of
BRT*(Linear/Z = ∞/|M | ≥ 1) and BRT*(MinImprov/Z = ∞/|M | ≥ 1),
respectively, as the following results show.

Lemma 5.13. Let m ∈ M . If F ⊆ E satisfies the budget constraint of munici-
pality m, then it also satisfies |F ∩ Em| ≤ smb

min{ce: e∈Em} .

Proof. By assumption, we have

smb ≥
∑

e∈F∩Em

ce ≥
∑

e∈F∩Em

min{ce′ : e′ ∈ Em}.
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Hence, we also have that
smb

min{ce : e ∈ Em}
≥

∑
e∈F∩Em

1 = |F ∩ Em|.

From Lemma 5.13, we obtain the following relaxations:

Corollary 5.14. The problem

max
F

pass(F )

s.t. |F ∩ Em| ≤
smb

min{ce : e ∈ Em}
for all m ∈M

F ⊆ E

is a relaxation of BRT*(⋆/Z =∞/|M | ≥ 1).

For BRT*(Linear/Z =∞/|M | ≥ 1), the relaxation in Corollary 5.14 is of the
same form as the problem considered in Lemma 5.10 and can, hence, be solved
in polynomial time.

Additionally, for MinImprov, we can relax the requirement of gaining at
least Ld infrastructure improvement to attract passengers of OD pair d ∈ D
to needing one upgraded edge on the path. This can be modeled by unit in-
frastructure improvements ue = 1 for all e ∈ E and Ld = 1 for all d ∈ D.
This is indeed a relaxation because, if 0 < Ld ≤

∑
e∈F∩E(Wd)

ue, then we have
F ∩ E(Wd) ̸= ∅. We apply this in the following corollary:

Corollary 5.15. The problem

max
F

∑
d∈D:

F∩E(Wd )̸=∅

td

s.t. |F ∩ Em| ≤
smb

min{ce : e ∈ Em}
for all m ∈M

F ⊆ E

is a relaxation of BRT*(MinImprov/Z =∞/|M | ≥ 1).

The relaxation in Corollary 5.15 is of the same form as the problem considered
in Lemma 5.12 and can, hence, be solved in polynomial time.

5.5 Summary

To determine the Pareto front of BRT*(⋆/Z ≥ 1/|M | ≥ 1), an ϵ-constraint-based
solution method is presented in Algorithm 5.1, and an enumeration method is
considered in Theorem 5.7. Bounds on the objective function value of the single-
objective problem are given in Lemma 5.8 and in Section 5.4. We summarize the
tractability and complexity results in Table 5.1.
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5.5 Summary

passenger
response Z |M | add.

assump.
tractability/
complexity

reference

BRT ⋆ ≥ 1 ≥ 1 intractable Thm. 5.3

BRT ⋆ =∞ = 1 intractable Thm. 5.3

BRT ⋆ ≥ 1 ≥ 1 ce = c, tractable Thm. 5.4
sm = 1

|M |

BRT ⋆ ≥ 1 = 1 ce = c tractable Thm. 5.4

BRT ⋆ = k ≥ 1 in XP Lemma 5.7

BRT∗ Linear ≥ 1 ≥ 1 NP-hard Thm. 5.9

BRT∗ Linear =∞ = 1 ue = 1 NP-hard Thm. 5.9

BRT∗ Linear =∞ ≥ 1 ce = c polynomial Lemma 5.10

BRT∗ MinImprov ≥ 1 ≥ 1 NP-hard Thm. 5.11

BRT∗ MinImprov =∞ = 1 ue = 1, NP-hard Thm. 5.11
Ld = 1

BRT∗ MinImprov =∞ ≥ 1 ce = c, polynomial Lemma 5.12
ue = u,
Ld = u

Table 5.1: Overview of the tractability and complexity results for the BRT in-
vestment model. In the first column, BRT stands for the bi-objective BRT
investment model, and BRT∗ stands for the single-objective BRT investment
model encountered in Algorithm 5.1, which maximizes the number of passen-
gers pass given a fixed budget b.
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Chapter 6

Computational Experiments

In this chapter, we conduct computational experiments on artificial instances in
Section 6.1 as well as for a case study on the planned BRT line around Copen-
hagen in Section 6.2. The insights of the computational experiments are summa-
rized in Section 6.3.

6.1 Experiments on Artificial Instances

The Pareto front and the impact of the passenger response, the upper bound
on the number of BRT components and the existence of municipalities are at
the center of the computational experiments. These are analyzed in the context
of a large collection of artificial instances with different interplays between the
passenger potential and the upgrade costs. Moreover, to investigate the impact
of municipalities, we consider different options to split the investment budget
among them.

6.1.1 Description of Instances

All artificial instances consider a line (V,E) consisting of 25 stations with a
complete set of OD pairs D = V × V \ {(v, v) : v ∈ V }. The infrastructure
improvement ue is randomly chosen between 20 and 50 for each segment e ∈ E
and is the same in all instances. The artificial instances however differ in terms of
the graph scenario α = (α1, α2), which determines a cost pattern for the upgrade
costs per segment and a demand pattern, as well as in terms of the budget
scenario β, which determined the budget split among five municipalities. The
values considered for these parameters are given in Table 6.1.

The cost pattern α1 varies between uniform upgrade costs per segment (UNIT),
a pattern with higher upgrade costs in the center of the line (MIDDLE), and a
pattern with the highest upgrade costs at the ends of the line (ENDS). The cost
pattern MIDDLE could, for example, model the situation that segments in the
inner city are more complicated and hence more expensive to upgrade, while
ENDS could represent that long highway segments outside a city are expensive
to upgrade. The cost patterns together with the infrastructure improvements are
depicted in Figure A.1 in Appendix A.
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Parameter Value Explanation

α1 cost pattern

UNIT unit costs ce = 1 for all e ∈ E
MIDDLE more expensive towards the middle of the

line
ENDS more expensive towards the end stations

of the line

α2 demand pattern

EVEN same passenger potential for all OD pairs
HUBS centered around large stations, passengers

distributed according to the gravity model
[Rod20]

TERMINI high passenger potential between end sta-
tions of the line

β budget split

EQUAL budget distributed equally among munic-
ipalities, i.e., equal budget shares sm

COST budget shares sm proportional to the costs
of the segments in municipality m

PASS budget shares sm proportional to the num-
ber of potential passengers entering or ex-
iting in municipality m

Table 6.1: Parameters for generating artificial instances.

We consider three different demand patterns α2 that determine the number
of potential passengers td for each OD pair d ∈ D, namely EVEN, HUBS and
TERMINI, where the potential demand is evenly distributed over all OD pairs
(EVEN), centered around three large stations (HUBS) or especially high between
the end stations of the line (TERMINI). Figure A.2 in Appendix A shows the
location of the large stations on the line. Additionally, Figure 6.1 shows the load
profiles, this means the number of passengers traveling along each edge, resulting
from the three demand patterns for α2, where the height of a bar indicates the
load of a segment, and the colored shading indicates the length of the boarded
passengers’ paths. We can see that HUBS generally leads to shorter path lengths
than TERMINI and EVEN, whereas TERMINI has especially many passengers
traveling from one end station to the other one by design. Moreover, EVEN has
fewer passengers traveling around the terminals of the line than the other two,
which have large stations at one or both ends. For additional information regard-
ing the travel distances of passengers for these demand patterns, see Figure A.3
in Appendix A.

The budget split β describes the distribution of the total available investment
budget b among the municipalities. We consider a distribution according to
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(c) TERMINI

1 segment in path
2 segments in path
3 segments in path
4 segments in path
5 segments in path
6 segments in path
7 segments in path
8 segments in path
9 segments in path
10 segments in path
11 segments in path
12 segments in path

13 segments in path
14 segments in path
15 segments in path
16 segments in path
17 segments in path
18 segments in path
19 segments in path
20 segments in path
21 segments in path
22 segments in path
23 segments in path
24 segments in path

Figure 6.1: Load profiles of all demand patterns for the artificial instances. The
horizontal axis contains each of the 24 segments of the BRT line. Each bar
represents the number of potential passengers using the respective segment,
and the coloring of a bar depicts the total travel distance of passengers using
that segment.

equal budget shares (EQUAL), proportional to the costs required for upgrading
all segments in a municipality (COST), and according to the total potential
passenger volume that flows in and out of the stations that are assigned to a
municipality (PASS).

6.1.2 Computational Study Design

In our computational experiments, we compute the Pareto fronts for all instances,
focusing on the part where the investment budget does not exceed the investment
costs for upgrading all segments, i.e., b ≤ cost(E). As a consequence, dependent

47



Chapter 6 Computational Experiments

on the budget split, not all municipalities may have enough budget to upgrade
all of their segments. In addition to varying characteristics of the instances
(Section 6.1.1), we consider the different problem variants BRT(λ1/λ2/λ3) from
Section 4.3:

Passenger Response (λ1) All instances are evaluated for the objective func-
tions Linear and MinImprov. For MinImprov, we require that a minimum
of roughly 75% of the potential infrastructure improvements is achieved through
upgrades before the passengers corresponding to that OD pair are attracted, in
concrete terms:

Ld :=

0.75 · ∑
e∈E(Wd)

ue


for all OD pairs d ∈ D.

Number of BRT components (λ2) We consider upper bounds on the number
of BRT components Z ∈ {1, 2, 3,∞}. Our experiments show that the difference
between Z = 3 and Z =∞ is generally small (see Section 6.1.4 on the influence
of the number of BRT components), and therefore including more options for Z
than {1, 2, 3,∞} would not lead to further insights in our setting.

Municipalities (λ3) In order to determine the impact of the separate munici-
pality budgets, each instance is evaluated both in the context of a global decision
maker with a single budget (|M | = 1) as well as in the original context, where
each municipality has its own budget constraint (|M | = 5). In the former setting,
the global decision maker can spend the whole investment budget b, i.e., there
is a single municipality with s1 = 1, while in the latter setting, the investment
budget is distributed among the municipalities according to the budget split β
(see Table 6.1).

The combination of three cost patterns, three demand patterns, three options
for the budget split plus the the scenario of a global decision maker (|M | = 1) and
four upper bounds on the number of BRT components yield a total of 32 ·42 = 144
artificial instances that are evaluated regarding both passenger responses. The
data is available at https://doi.org/10.11583/DTU.23653893.

6.1.3 Running Time

All instances are solved with Algorithm 5.1 using the solver CPLEX 22.1 on a
computer with an Intel Xeon Gold 6126 processor, using 12 CPU cores and a total
of 24 GB of RAM. The running time for computing the non-dominated points for
the artificial instances is shown in Table 6.2. Here, we give the average time to

48

https://doi.org/10.11583/DTU.23653893


6.1 Experiments on Artificial Instances

passenger
response λ1

cost pat-
tern α1

BRT(⋆/Z ≥ 1/|M | = 1) BRT(⋆/Z ≥ 1/|M | = 5)

all points # points per point all points # points per point

Linear UNIT 0.17 25.00 0.007 0.09 7.47 0.012
Linear MIDDLE 3.53 179.83 0.020 0.52 37.53 0.014
Linear ENDS 1.95 107.00 0.016 0.39 28.25 0.014

MinImprov UNIT 14.96 25.00 0.599 1.12 7.42 0.152
MinImprov MIDDLE 768.00 105.42 5.098 3.93 26.08 0.139
MinImprov ENDS 68.65 77.17 0.639 3.02 25.00 0.117

Table 6.2: Running time in seconds, number of obtained Pareto points and run-
ning time per Pareto point for problem variants BRT(⋆/Z ≥ 1/|M | = 1) and
BRT(⋆/Z ≥ 1/|M | = 5). The results have been averaged over artificial in-
stances sharing the same cost pattern α1.

find the Pareto front, the average number of points on the Pareto front and the
average time for obtaining a single non-dominated point for each passenger re-
sponse, each cost pattern α1 and both municipality scenarios |M | ∈ {1, 5}. Note
that the reported values are averaged over all three demand patterns α2 and over
the considered upper bound on the number of BRT components Z ∈ {1, 2, 3,∞}.
Additionally, for the setting with municipalities (|M | = 5), the results are also av-
eraged over the different budget splits β. The data is also presented in Figures 6.2
to 6.4 dependent on the upper limit Z on the number of BRT components.

The results in Table 6.2 show that the Pareto fronts can overall be computed
quickly, especially for the passenger response Linear. Moreover, it can be seen
that the introduction of separate municipality budgets (|M | = 5) consistently
leads to a faster running time and fewer points on the Pareto front than the
consideration of a global decision maker (|M | = 1). This is likely a result of the
smaller solution space with separate municipality budgets, especially in combi-
nation with the upper bounds Z ∈ {1, 2, 3} on the number of BRT components,
where fewer combinations of items fit within the individual municipality bud-
gets. The longest running times can be observed for the cost pattern MIDDLE
in combination with the passenger response MinImprov, where especially the
long running time for the setting with a global decision maker (|M | = 1) stands
out. This might be explained by the middle segments often having the highest
passenger load as well as being the most expensive to upgrade when considering
the cost pattern MIDDLE. Looking at the number of points on the Pareto front,
it can be observed that the number of non-dominated points is often significantly
lower for the UNIT cost pattern than for the other cost patterns, which is in line
with Lemma 5.4.

In addition, Figures 6.2 to 6.4 give a better insight on how the number of
non-dominated points and the running time per point contribute to the total
running time for the different choices of the upper limit Z on the number of
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Figure 6.2: Running time in seconds of BRT(⋆/|M | = 1/Z ≥ 1) and
BRT(⋆/|M | = 5/Z ≥ 1) with a logarithmic scale on the vertical axis.
The values are averaged over all demand patterns and budget splits (if
applicable).

BRT components. The red plots represent the passenger response Linear and
the blue plots represent the passenger response MinImprov, while the line style
represents the number of allowed BRT components Z. Figure 6.3 shows that
there are at least as many non-dominated points for Linear as for MinImprov
for the artificial instances, which can be explained by the greater number of
values attainable by pass for Linear. Considering the running time per point
in Figure 6.4, we however see that Linear is faster, which might be due to the
discrete behavior of MinImprov and the additional discrete variable needed. For
Z =∞ together with the passenger response Linear, we see an especially small
running time per point. Lemma 5.10 shows that this setting is a polynomial time
special case.

Looking at the total running time in Figure 6.2, we can see that the average
running time increases with Z, which is mainly because of the growing number
of non-dominated points (see Figure 6.3), except for the linear special case of
Linear together with the cost pattern UNIT, in which it decreases. We further
see that the low running times per point for Linear lead to lower total running
times even though more non-dominated points need to be computed.

6.1.4 Analysis of Pareto Fronts

In this section, we analyze the influence of the passenger response, the number
of BRT components, the demand pattern and the municipalities on the Pareto
front. As described in Section 4.4, we compute the efficient solutions and the
Pareto fronts with respect to the investment budget, but we evaluate the results
with respect to the investment costs. Therefore, the following figures show the
investment costs on the horizontal axis and the newly attracted passengers on
the vertical axis. Both are given as percentage of the total number of potential
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Figure 6.3: Number of non-dominated points of BRT(⋆/|M | = 1/Z ≥ 1) and
BRT(⋆/|M | = 5/Z ≥ 1). The values are averaged over all demand patterns
and budget splits (if applicable).
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Figure 6.4: Running time per non-dominated point of BRT(⋆/|M | = 1/Z ≥ 1)
and BRT(⋆/|M | = 5/Z ≥ 1) with a logarithmic scale on the vertical axis. The
values are averaged over all demand patterns and budget splits (if applicable).

passengers and costs for upgrading all segments, respectively. Figure 6.5 shows
the evaluation for a global decision maker (|M | = 1). The red plots again repre-
sent the passenger response Linear and the blue plots represent the passenger
response MinImprov, while the line style represents the number of allowed BRT
components Z. All graphs in a row share the same cost pattern α1, and all graphs
in a column share the same demand pattern α2.

Influence of the Passenger Response In general, the non-linear objective
MinImprov leads to solutions with fewer passengers per investment bud-
get than Linear, with the exception of high level investments of at least
around 75% of the total budget or more. This cut-off point at 75% correlates
with the minimum improvement Ld of 75% required within MinImprov, for
(α1, α2) = (ENDS,TERMINI) the cut-off point is a bit lower. Furthermore, the
shape of the curve is typically more convex over a large range for MinImprov,
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Figure 6.5: Evaluation of the non-dominated points of BRT(Linear/Z ≥ 1/
|M | = 1) (red) and BRT(MinImprov/Z ≥ 1/|M | = 1) (blue) for artificial
instances representing all choices for parameters α1, α2 and Z. Both attracted
passengers and investment costs are given as percentage of the total number
of potential passengers and costs for upgrading all segments, respectively.
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in which the return on investment, meaning the increase in the number of
passengers attracted per investment, is generally increasing and only starts to
reduce much later than for the passenger response Linear. Linear rather
shows a higher return on investments at the lower investment levels. This can
be explained by looking at the passenger responses. For the passenger response
Linear, passengers of all OD pairs that are affected by upgrades are attracted
in proportion to the realized infrastructure improvements. For the passenger
response MinImprov, however, mainly passengers of OD pairs with a short
travel distance that are affected by an upgrade are attracted at a low investment
budget level. Only at higher investment budget levels, when sufficiently many
segments can be upgraded, long-distance travelers are also attracted. Because
the demand pattern TERMINI has around 14% of all passengers traveling along
all 24 segments and the aggregated demand over the other OD pairs decreases
only slowly in the path length (see Figure A.3 in Appendix A), the convexity
effect is most strongly pronounced for this demand pattern. In comparison, the
convexity effect is a bit less pronounced for EVEN and only weakly present for
HUBS, for which the demand of long-distance journeys is generally decreasing
with the path length. The gap between the two passenger responses is generally
smaller for high investment budgets.

These results indicate that the passenger response has a strong impact on
the trade-off between attracted passengers and investments. Investigating the
passenger behavior as part of BRT feasibility studies would thus be important to
determine an appropriate investment level.

Influence of the Number of BRT Components The impact of the upper
bound on the number of BRT components Z diminishes quickly with size, where
the numbers of attracted passengers and the investment costs of non-dominated
points for Z = 3 and Z = ∞ are almost identical. The impact of Z is higher
for larger investment budgets and also more prevailing for the passenger response
MinImprov. Additionally, for the cost pattern MIDDLE and the demand pat-
tern TERMINI we can see a big impact of the BRT component constraint.

In general, we see that restricting the number of BRT components to Z ∈ {2, 3}
comes at small costs in the setting of a global decision maker (|M | = 1), while
it could lead to lines that may be considered of higher quality from a passenger
perspective. Finally, from a computational perspective fixing Z can reduce the
computational complexity, as shown earlier in Theorem 5.7 and in Section 6.1.3.

Influence of the Demand Pattern Figure 6.6 depicts the effect of the demand
pattern on the sets of non-dominated points for BRT(⋆/Z =∞/|M | = 1) (solid
lines) and BRT(⋆/Z = 1/|M | = 1) (dotted lines) for the cost pattern UNIT. The
results for the cost patterns ENDS and MIDDLE are similar and can be seen
in Figure A.4 in Appendix A. For the passenger response Linear, the demand
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Figure 6.6: Evaluation of the non-dominated points of BRT(⋆/Z ≥ 1/|M | = 1)
for artificial instances with cost pattern α1 = UNIT and Z ∈ {1,∞} and all
choices for the demand pattern α2. Both attracted passengers and investment
costs are given as percentage of the total number of potential passengers and
costs for upgrading all segments, respectively.

patterns behave similarly. The only thing that stands out is that TERMINI
leads to slightly fewer attracted passengers compared to HUBS and EVEN. This
can also be seen for MinImprov. In addition, we see a large jump in attracted
passengers for MinImprov with demand pattern TERMINI when around 75% of
the budget is invested. This is due to the relatively high number of passengers that
travel along all 24 segments (about 14% of all passengers) because realizing 75%
of the potential improvement suffices to attract all those passengers according
to the definition of MinImprov. The influence of restricting the number of
connected components to Z = 1 is especially pronounced for the demand pattern
TERMINI. Here again, the high number of passengers using all 24 segments is
affected most by restricting the set of upgraded segments.

Influence of Municipalities The impact of the distribution of the investment
budget among the municipalities is depicted in Figure 6.7, which is similar in set-
up to Figure 6.5 with the difference that the line styles now represent different
budget splits among the municipalities, with the solid line representing the case of
a global decision maker. Moreover, all results in Figure 6.7 are obtained without
the BRT component constraint (Z =∞).

The introduction of municipalities generally leads to lower numbers of attracted
passengers. Because of the distribution of the investment budget among the mu-
nicipalities, compared to the case of a global decision maker, only a smaller share
can be invested and not always in the segments that would attract the most pas-
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Figure 6.7: Evaluation of the non-dominated points of BRT(Linear/Z = ∞/
|M | ≥ 1) (red) and BRT(MinImprov/Z = ∞/|M | ≥ 1) (blue) for artificial
instances with |M | ∈ {1, 5} and all choices for parameters α1, α2 and β. Both
attracted passengers and investment costs are given as percentage of the total
number of potential passengers and costs for upgrading all segments, respec-
tively.
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sengers. Moreover, considering several municipalities intensifies the findings of
the case with a global decision maker: MinImprov requires higher investments
for the same number of passengers until around 75% of investments and is char-
acterized by a return on investment that follows a more convex shape over a large
range compared to the passenger response Linear, with the same explanations
as for the case of a global decision maker. The impact of the chosen budget split
among the municipalities is typically higher for MinImprov as well. For the bud-
get split COST, all segments can be upgraded at an investment budget of 100% of
the total upgrade costs by definition of COST. However, if the investment budget
is only slightly smaller, there is one segment for each municipality, i.e., five in
total, that cannot be upgraded anymore, which leads to the jump in the number
of passengers for the budget split COST. For budget splits other than COST, the
full upgrade may not be achievable even at an investment budget equal to 100%
of the total upgrade costs because individual municipalities may not have enough
money available to upgrade all segments belonging to them. This is specifically
visible for α1 = MIDDLE, α2 = TERMINI, β = PASS: In this case, only about
30% of the passenger potential are attracted at 100% investment budget, showing
that the investment costs stagnate at 55% because of the interplay between the
budget split and the demand pattern. We also see that the budget split COST

The results indicate that, especially in case of a non-linear relationship be-
tween BRT upgrades and attracted passengers, establishing a framework for col-
laboration and co-commitment has a large influence on the number of attracted
passengers and thereby on the line potential.

6.2 Greater Copenhagen Case Study

We now focus on the case study for the planned BRT line in Greater Copenhagen.
We first describe the case study and the corresponding instances in Section 6.2.1.
Afterwards, we analyze the Pareto plots that are obtained for these instances in
Section 6.2.2.

6.2.1 Description of Instances

Currently, the Capital Region in Denmark (a regional government) is planning
to build a set of BRT lines within Copenhagen and the urban area surrounding
it, i.e., Greater Copenhagen. One of these new BRT lines will run foremost
along the route of the bus line 400S, which is currently a traditional mixed traffic
line. A pre-assessment study was conducted for the BRT line that calculated the
expected costs, travel durations and number of passengers per station for five
different route alternatives [VRM22]. These five route alternatives are shown in
Figure 6.8.
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6.2 Greater Copenhagen Case Study

Figure 6.8: Route alternatives for a new BRT line in Greater Copenhagen.
Adapted from [VRM22].

All five route alternatives run through a total of eight municipalities. These
municipalities have authority over their local investments in the BRT line, and
investments in local infrastructure would not be possible without their involve-
ment. In addition to the municipalities, also the Capital Region, the central
Danish government and Movia are involved in the planning process. Movia is a
public transport agency funded by the collective of municipalities in the Capital
Region, which highlights the willingness of the municipalities to work together
to find socially optimal solutions for public transport in the region. Moreover,
due to the expertise available within the agency, Movia overall takes a leading
role in the design of the new BRT line and thereby provides suggestions that
then need to be approved by the municipalities. This process can be iterative:
Municipalities discuss solutions and revise their budget levels, followed by new
suggestions from Movia. Hereby, the proposed model can advise Movia on how
sensitively the number of newly attracted passengers reacts to a reduction in the
investment budget. Thereby, it can illustrate the importance of achieving a high
upgrade level and may aid the transport agency in selecting its strategy.

57



Chapter 6 Computational Experiments

We use the data from the pre-assessment study to derive instances for the BRT
investment model for each of the five route alternatives. These instances contain
between 24 and 32 stations, depending on the route. The current plan includes
connecting the BRT line via Nybrovej to Lyngby station, even though the re-
sponsible municipality has indicated it is not willing to invest in upgrading the
infrastructure on their segments. Therefore, our case includes two segments that
cannot be upgraded. The remaining seven municipalities are willing to partake in
the BRT project. The upgrade costs per segment are derived from the required
infrastructure investments for the line provided in the pre-assessment. Moreover,
the potential benefit of upgrading a segment, this means the infrastructure im-
provement, is defined by the difference between expected travel time of the current
mixed traffic line and the new expected travel times of the BRT line as defined
in the pre-assessment. The upgrade costs and infrastructure improvements are
depicted in Figure A.5 in Appendix A.

In addition, we constructed an estimate of the future OD data by combining
the estimated passenger demand per station from the pre-assessment study with
the current OD data on the existing bus line 400S. A customized mapping was
built for OD pairs that do not yet exist on the bus line 400S. The resulting load
profiles were determined based on conversations with Movia. The obtained load
profiles are shown in Figure 6.9, where the height again indicates the load per
segment, and the coloring indicates the length of the boarded passengers’ paths.
Compared to Figure 6.1 for the artificial instances, more passengers travel only
short distances and fewer travel for more than 20 segments. We assume that a
fixed percentage of each OD pair can be attributed to passengers newly attracted
by infrastructure improvements.

We consider two potential budget splits between the seven municipalities that
are willing to invest in the line. These are the cost-based and the passenger-based
budget splits β ∈ {COST,PASS}, as described in Table 6.1. Because the actual
costs and the number of passengers per municipality vary strongly, considering
the EQUAL budget split is unrealistic. Additionally, we consider the scenario
of a global decision maker (|M |). The impact of the number of allowed BRT
components is evaluated for Z ∈ {1, 2, 3,∞}. There are thus 3 · 4 = 12 instances
for each of the five route alternatives, which yields a total of 60 instances for the
case study. The instances are available at https://doi.org/10.11583/DTU.
23664069.

6.2.2 Analysis of Pareto Fronts

We now look at the results of our experiments, where our aim is to analyze and
compare the investment trade-offs for the five BRT route alternatives, taking into
account the effect of the different passenger responses and budget splits over the
municipalities. Here, we use a similar computational set-up as described for the
artificial instances in Section 6.1.2. Moreover, the investment budget is limited
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Figure 6.9: Load profiles for the five route alternatives. The horizontal axis con-
tains each segment of the considered route alternative from north (Lyngby St.)
to south (Ishøj St.). Each bar represents the number of potential passengers
using the respective segment, and the coloring of a bar depicts the total travel
distance of passengers using that segment.

to the investment costs for upgrading all segments of the most expensive route
alternative for better comparability between the route alternatives. Dependent on
the budget split, not all municipalities may have enough budget to upgrade all of
their segments. The resulting Pareto fronts for the two passenger responses, with
and without municipalities, evaluated regarding the investment costs are given in
Figure 6.10 for the setting without a BRT component constraint (Z =∞). Here,
the plots in the top row provide the results when there is a global decision maker
(|M | = 1), and the plots in the bottom row are for the case with municipalities
(|M | = 7). Each graph indicates the investment costs as a percentage of the
costs for upgrading all segments of the most expensive route alternative on the
horizontal axis. The vertical axis indicates the attracted passengers relative to
the maximum number of potential passengers over all route alternatives. This
scaling on both axes allows to directly compare the route alternatives to each
other.

The obtained Pareto plots show that many of the observations from the artifi-
cial results carry over to the Greater Copenhagen case study: It can be seen that
the number of attracted passengers is again in general higher for the passenger
response Linear than for the passenger response MinImprov, except for invest-
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(c) |M | = 7, Linear
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Figure 6.10: Comparing investment costs and attracted passengers for the five
different route alternatives for Z = ∞. The investment costs are given as
a percentage of the costs for upgrading all segments of the most expensive
route alternative, and the attracted passengers are given as a percentage of the
maximum number of potential passengers over all route alternatives.

ment levels that are above 75% to 80%, and that this effect is more pronounced
when including the different municipalities. Moreover, the introduction of munic-
ipality budgets has a significant impact on the number of attracted passengers,
especially under the passenger response MinImprov. However, especially ap-
parent in these case study results is the ability of the budget split β = COST to
achieve a significantly higher number of passengers at higher investment levels.
This effect can be attributed to the presence of segments with very high upgrade
costs, which are hard to upgrade for municipalities when they are not awarded
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6.2 Greater Copenhagen Case Study

a budget share that is in line with these upgrade costs. Also for budget split
COST, we can again see a big jump in the number of attracted passengers when
the investment budget reaches the total costs of a route alternative, which is the
case because slightly decreasing the investment budget simultaneously prevents
all seven municipalities from upgrading all of their segments. Furthermore, for
MinImprov, we cannot observe an apparent cut-off point as in some cases for
the artificial instances. This is most likely due to the higher number of passengers
that travel only a few segments and the small number of passengers that travel
long distances. In contrast, the demand pattern TERMINI, for which the cut-off
at around 75% of the investment costs is the most pronounced (see Figures 6.5
and 6.7), has a high number of passengers that travel for many segments.

When focusing on the comparison of the route alternatives, Figure 6.10 shows
that there is not a universal ordering of the route alternatives with respect to
the number of attracted passengers. Instead, this ordering depends on both the
investment level and the passenger response. For example, it can be seen that
the route alternatives 4 and 5 lead to the largest number of attracted passengers
for middle to high investment levels under both passenger responses for |M | = 1,
which can be explained by the higher total passenger potential for these alter-
natives. However, for |M | = 7 and at an investment level between 30% and
70%, the route alternatives 1 and 2 yield the highest numbers of attracted pas-
sengers for both passenger responses. For low investment levels, the numbers of
attracted passengers deviate less between the route alternatives, but it depends
on the precise investment level, which route alternative is best.

Our results thus show the importance of obtaining knowledge about the pas-
senger response and the willingness of municipalities to invest before a final route
alternative is chosen for the BRT line.

Influence of the Number of BRT Components It remains to analyze the
impact of the BRT component constraint for the Greater Copenhagen case study.
This effect is depicted in Figure 6.11, which analyzes the effect of the number
of allowed BRT components Z on the number of attracted passengers for each
of the five route alternatives and for both passenger responses. The results are
computed for the setting of a global decision maker (|M | = 1). Moreover, to make
the impact of the BRT component constraint more visible, this figure condenses
the Pareto plots to ten investment budget levels and shows the solution with the
highest number of attracted passengers with at most this investment budget level.

As with the artificial instances, Figure 6.11 shows that restricting the number
of components leads to a reduced number of attracted passengers for all route
alternatives. This effect is strongest for investment budget levels that are closer
to the middle and lower end. By design, no effect can be seen for the highest
investment level because all segments are upgraded. Comparing the passenger
responses Linear and MinImprov, an interesting difference is that the impact
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Figure 6.11: Influence of the upper bound on the number of BRT components
on the percentage of attracted passengers for the five route alternatives. This
figure condenses Pareto plots to ten investment budget levels and shows the
solution with the highest number of attracted passengers with at most this
investment budget level. The investment budget is given as a percentage of
the costs for upgrading all segments of the most expensive route alternative,
and the attracted passengers are given as a percentage of the maximum number
of potential passengers over all route alternatives.
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6.3 Summary

of restricting the number of BRT components is stronger for Linear for the very
low investment levels. A reason for this is that Linear gains passengers propor-
tional to the infrastructure improvement realized. In contrast to MinImprov,
Linear does not have an incentive to upgrade adjacent segments so that the
BRT component constraint poses a stronger restriction. In addition, it can be
seen that it is again especially the restriction to a single component that leads
to a strong reduction in the number of passengers. For instances of the case
study, there is a difference between allowing 2, 3 or arbitrarily many BRT com-
ponents for most available budget levels, although the solution for at most 3 BRT
components comes close to that of allowing arbitrarily many BRT components.

6.3 Summary

The computational experiments for artificial instances as well as for the Greater
Copenhagen case study analyze the impact of the passenger response, the separate
municipality budgets and the BRT component constraint.

The experiments indicate that splitting the investment budget over municipal-
ities significantly reduces the number of attracted passengers, which underlines
the importance of collaboration between the municipalities.

Also the requirement to only have one BRT component results in a significant
reduction in the number of attracted passengers in some cases. However, as soon
as two or three BRT components are allowed, the impact is far smaller. Therefore,
it seems reasonable to include a restriction on the number of BRT components
in order to obtain a more consistent BRT infrastructure and to improve the
passenger experience.

Regarding the artificial instances, the chosen threshold of 75% of the infra-
structure improvements being necessary to attract passengers for the passenger
response MinImprov is visible in the results: For investment costs below 75%
of the total costs for upgrading all segments, the passenger response Linear
indicates higher numbers of attracted passengers than the passenger response
MinImprov. This changes for higher investment costs, but the values are quite
close. The passenger response and the demand pattern contain crucial informa-
tion about the behavior of (potential) passengers and have a strong impact on
the results of the experiments. This emphasizes the need to further investigate
passenger behavior.

The Greater Copenhagen case study confirms many of these observations,
showing that they translate to real-world instances. Furthermore, the Greater
Copenhagen case study shows that the ranking of the route alternatives is highly
dependent on both the passenger response and the available investment budget.
Hence, obtaining a good estimate on how passengers respond to the upgrades and
on the extent to which municipalities are willing to invest is crucial for selecting
the best route alternative.
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Chapter 7

Outlook

In Part I of this thesis, we study the bi-objective BRT investment model, which
focuses on determining the set of segments to be upgraded for a BRT line bal-
ancing the number of attracted passengers and the investment budget. Munic-
ipalities are considered in this problem through separate municipality budgets.
Moreover, this problem allows the restriction of the number of separate sequences
of upgraded segments to prevent frequent switching between upgraded and non-
upgraded segments.

We analyze the two extreme cases of a linear (Linear) and a threshold
(MinImprov) passenger response to upgrades. Considering mixes of these two
passenger response functions would be a natural next step. Such a mix could,
e.g., be a piecewise linear response function to upgrades, where the impact of
an upgrade depends on the overall extent to which upgrades are realized. This
would include the special case where the number of passengers grows linearly
as soon as a certain threshold of infrastructure improvements is reached. Note
that piecewise linear objective functions can be integrated into the algorithmic
approach suggested in Section 5.1, meaning that the suggested ϵ-constraint-based
algorithm can still be used to find the complete Pareto front.

We assume an interest of the municipalities in a social optimum, which might
occur when there is a third party, such as a transport agency, that makes sug-
gestions to the municipalities as to which segments should be upgraded. With
the idea of acknowledging the individual interests of the municipalities and the
need to justify investment decisions, a variant of the BRT investment model is
considered in [Hoo+22], which is coauthored by the author of this thesis. In
[Hoo+22], the single-objective setting BRT*(⋆/Z = ∞/|M | ≥ 1) without the
BRT component constraint, a new constraint is considered for each municipality
that determines the municipality budget available based on the number of pas-
sengers that are attracted. More precisely, for every municipality, a set of OD
pairs is defined, which represents the target group of a municipality, for example,
all OD pairs that start or end in the respective municipality. For every attracted
passenger from the target group, a certain amount of budget is made available for
a municipality and can be invested. While a high investment of one municipality
might encourage investments of other municipalities, the model does not fully
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reflect on the individual interests of the municipalities. Note that not only the
impact of the municipality’s own investments is taken into account for releasing
budget, but also investments of other municipalities make budget available. For
future work it would thus be interesting to focus on a game-theoretic setting that
models the relation between the attracted passengers and the available budget
as well as interactions between the municipalities. Moreover, setting incentives
for investments could be considered within the context of a central government.
The aim could be to find a subsidy scheme to attract the most passengers with
minimum subsidies subject to the internal competition between municipalities
and their individual interests.

Another interesting direction of future work could be considering the invest-
ment problem in a network context instead of for a single line, either by including
the determination of the route of the BRT line or by considering that other lines
could (be rerouted to) profit from the upgraded BRT infrastructure as well. In a
network setting, other models and aspects for passenger behavior could be con-
sidered, e.g., including the travel time [SS20] and fares [SU22] as well as route
and mode choice. Also, the inclusion of operating constraints considering load
profiles, e.g., in the setting of self-driving minibuses with innovative operating
modes [GSH22] could be an interesting direction.

While this thesis is focused on the application of public transport, the BRT
investment model may as well be applied to the optimization of, for example,
infrastructure of bicycle highways. These are bicycle paths that are meant for
long-distance traffic. A well-developed cycling infrastructure increases safety of
cyclists (see, e.g., [Sch+21]) and provides an alternative for commuting. Here,
too, there is a need to determine where an upgrade of the infrastructure is par-
ticularly beneficial and financially feasible. Similar to the BRT line case study
in Greater Copenhagen, the BRT investment model could be used in feasibility
studies for cycling infrastructure. Here, route alternatives can be analyzed and
evaluated to provide additional information to decision makers.
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Part II

Fare Planning

Fare structures in public transport are an important design element that involves
the interests of both (potential) passengers and operators alike. For passengers,
fares are one among several criteria for mode and route choice. The affordability
and the perceived fairness of fares influence people’s decisions to opt for public
transport over other modes of transport. In this part, we study two models to
optimize fares: the fare deviation model and the revenue-passenger model.
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Chapter 8

Introduction

Fares for public transport usage affect the number of people traveling by public
transport as well as the passenger satisfaction, and they are important for cover-
ing the costs of the public transport operator. A variety of fare structures (which
assign prices to paths) are implemented worldwide, each with a different focus
and purpose. These can be flat or differential fares, where the latter are further
distinguished according to whether they depend on, e.g., a distance, duration,
time (e.g., time of day or season) or quality (e.g., standard/express train) com-
ponent of the journey [Fle+96; Sch+16; CB21]. In this thesis, we focus on flat,
distance and zone tariffs, which are very popular in many countries.

In a flat tariff, every ticket has the same price. This has the advantage that it
is very easy to understand, but on the other hand it is often perceived as unfair
because passengers with a short journey pay the same price as passengers with a
long journey.

At the other end of the spectrum, there are distance tariffs, which may, for
example, depend on the actual distance traveled in the network (network distance
tariff) or on the Euclidean distance between the start and the end station of the
journey (beeline distance tariff). In this thesis, we consider affine distance tariffs,
which are composed of a base amount and an additional distance price which
is multiplied with the network distance or the Euclidean distance, respectively.
Hence, the fare is directly linked to the length of a journey. The rising popularity
of mobile tickets and smart cards has led to an increased interest in distance tariffs
because check-in/check-out systems can be used to determine the distance.

Zone tariffs group stations to zones and set fares based on the traversed zones.
While for affine distance tariffs all station pairs have an individual price, there are
fewer different price levels in zone tariffs. In this thesis, we consider a counting-
zones pricing, which means that the area of the public transport operator is
divided into zones and the price of a journey is determined according to the
number of zones that are traversed. Hence, the number of zones can be seen
as an approximate distance measure. We distinguish between the option that a
zone is counted each time that it is entered (multiple counting) and that the total
number of different zones is counted, i.e., counting a zone at most once (single
counting). Furthermore, we consider zone tariffs with and without requiring
connected zones. In practice, zones are not always required to be connected
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which leads to separate parts of the same zone that can only be reached from
each other by traveling through other zones.

As two important criteria in practice for a fare structure to be fair and con-
sistent, we regard the no-elongation property and the no-stopover property in-
troduced in [SU20; SU22]. While the no-elongation property ensures that it is
not beneficial to buy a ticket for a longer journey that contains the actual path,
the no-stopover property makes sure that it is not beneficial to split a ticket
into several tickets for subpaths. When designing fare structures, we deem these
properties important because, on the one hand, they prevent the undercutting of
tariffs and, on the other hand, they make it easier to buy tickets because passen-
gers do not need to check whether other tickets are cheaper than that for their
actual journey. Note that in practice, these properties are not always fulfilled.
Furthermore, for insights into horizontal and vertical equity in fare planning, we
refer to [RSC20], which examines the geographical and distributional fairness of
flat, distance and zone tariffs.

In Part II, we address the optimization of tariffs. We consider two models: the
fare deviation model and the revenue-passenger model.

Fare Deviation Model The fare deviation model is a reference price model,
which means that the objective is to design fares that are close to reference
prices given for all OD pairs under the assumption of a fixed demand. The notion
of reference prices has been introduced in [HS95] and has further been used in
[BK03; HS04; Pal13; PM17; GMS17]. The reference prices can, for example, be
chosen as prices that are considered fair, in order to increase the acceptance of
the fares and attract more passengers, or as prices of a former fare structure to
maintain the prices passengers are used to. Here, in the fare deviation model, an
objective function is implemented that minimizes the weighted sum of absolute
deviations from reference prices.

Revenue-Passenger Model The affordability and the perceived fairness of
fares influence people’s decisions to opt for public transport over other modes
of transport, for example, their own car. When the fares exceed a certain price
limit (willingness to pay), it is reasonable to assume a deterrent effect leading
to a reduction in the attractiveness of public transport and, therefore, ridership.
Conversely, for operators, fares directly impact the revenue. An increase of prices,
for example, increases the income per sold ticket but might decrease the rider-
ship and therefore the total number of sold tickets. With the revenue-passenger
model, we investigate the trade-off between revenue and number of passengers.
For each OD pair, we consider multiple demand groups that differ in their will-
ingness to pay. If the fare for an OD pair exceeds the willingness to pay of a
demand group, this group does not use public transport. These demand groups
could, for example, be captive and choice passengers, where the willingness to
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pay is dependent on whether or not an alternative mode is available, e.g., a car.
Another categorization of demand groups could be based on age and income. We
introduce a bi-objective model that optimizes fare structures and considers the
Pareto front of revenue and number of passengers.

Contribution and Outline

In Part II, we study two tariff optimization models that balance the interests of
passengers and operators. To do so, in Chapter 9, we introduce formal definitions
of fare structures, in particular flat, affine distance and zone tariffs, and their
properties, which lays the foundation of the later modeling and analysis.

In Chapter 10, we study the fare deviation model, which minimizes the weighted
sum of absolute deviations from given reference prices. Under consideration are
flat, affine distance and zone tariffs. We identify the fare deviation model for
flat (F-FDM) and affine distance tariffs (D-FDM) as median problems and thus
show the solvability in linear time. Further, we analyze and compare different
variants of the fare deviation model for zone tariffs (Z-FDM) that appear in the
literature. Moreover, we investigate the complexity of the fare deviation model
for zone tariffs. In particular, we show NP-hardness in general, and develop
a polynomial time algorithm for the price-setting subproblem with fixed zones
satisfying the no-elongation property.

In Chapter 11, we introduce the revenue-passenger model, which is a bi-
objective model maximizing the revenue and the number of passengers. We
formulate a general model that can be applied for any fare strategy. Its com-
plete Pareto front can be determined with the ϵ-constraint method. We then
study the specific problem for flat tariffs (F-RPM) and affine distance tariffs
(D-RPM). In both cases, we identify a finite candidate set, based on which we
develop algorithms that compute the Pareto front in quasilinear or cubic time,
respectively. We also perform computational experiments on structured datasets
and analyze the number of non-dominated points and their respective efficient
solutions. The experiments emphasize the advantage in running time of the
specialized solution methods for affine distance tariffs compared to the MILP-
based ϵ-constraint method. Finally, we consider the revenue-passenger model for
zone tariffs (Z-RPM), which is NP-hard but admits a pseudo-polynomial time
algorithm.

Possible extensions of the tariff optimization models are discussed in Chap-
ter 12.
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Related Literature

In the literature, various optimization models are presented with the aim to de-
termine a fare structure. The maximization of revenue, demand, fairness or social
welfare can be objectives pursued in fare planning. Thereby, passenger choices
are considered to varying degrees: from fixed paths, maybe with a reference price,
a willingness to pay or elasticities to route choice subproblems and equilibrium
constraints. We first review publications that perform simulation studies and
regression analysis to examine given fare structures as well as publications on
cheapest paths. Our main focus then is on the fare planning literature that ap-
plies optimization models and techniques to determine optimal fares with respect
to the above mentioned objectives. We separately give an overview of literature
on distance- and zone-based fare structures.

Examination of Given Fare Structures A simulation study to evaluate the
impact of implementing a distance or a zone tariff on ridership and revenue is
conducted in [GM07]. Similarly, [CLC16] performs computational experiments
changing from a flat to a distance tariff in a congested network. Besides the
impact on ridership and profit, also implications for different segments of the
population are investigated. In [MS20], the effects of changes from a zone to a
distance tariff on route choice, total travel time, total fares paid and the amount
of walking are illustrated in a simulation study. In [CB21], the authors group fare
structures of eleven cities in Poland into flat, distance-, quality-, time- and zone-
based fare structures and apply regression analysis to evaluate by which function
type (linear, power, polynomial, logarithmic or exponential in the respective unit)
they are best described.

The computation of cheapest paths is considered for distance tariffs in a railway
context in [MS06] and for zone tariffs in [DPW15; DDP19]. In [EB19; ELB24],
the so-called ticket graph is presented which models transitions between tickets
via transition functions over partially ordered monoids and allows the design of
an algorithm for finding cheapest paths in fare structures that do not have the
subpath-optimality property. The cheapest ticket problem as well as the no-
elongation property and the no-stopover property are studied in [SU20; SU22]
for distance- and zone-based fare structures.

Tariff Optimization for Distance-based Fare Structures For distance-based
tariffs, [DSH88] presents a quadratic model for determining a base amount, a dis-
tance price and a price per transfer maximizing the revenue. As an increasing fare
reduces the demand, additional constraints for lower bounds on the demand as
well as lower and upper bounds on the fares are applied. In [Pal13; PM17; HB18],
a distance-based fare structure with two fare levels or an arbitrary but fixed num-
ber of fare levels, respectively, based on the number of traversed edges/stations is
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determined for a line. While [Pal13; PM17] minimize the weighted sum of squared
deviations from reference prices, which are given by a granular fare structure with
a fare level for each number of traversed edges, [HB18] maximizes the revenue or
the demand while in each case the other one is kept fixed. In [YH14], a bilevel
approach for maximizing the demand that is solved by a genetic algorithm is
presented. The upper level problem determines distance fares composed of a
base amount, a mileage price and surcharges for premier services, while passen-
gers choose routes that minimize their generalized user costs including various
time components in the lower level problem. Non-linear beeline distance fares
are designed in [Hua+16] while simultaneously optimizing the service frequency.
The problem is modeled as a three-player game between the transport authority,
the transit enterprise and the passengers. The authors show that the problem is
NP-hard and propose an artificial bee colony algorithm to solve it.

Tariff Optimization for Zone-based Fare Structures Research on the design
of zone-based fare structures has started with [HS95; Sch96; HS04]. They in-
troduce the objective of minimizing the deviation from given reference prices as
applied in this thesis. The sum of absolute and squared deviations is considered,
but the main focus lies on minimizing the maximum absolute deviation, where
passengers minimize the number of traversed zones. An arbitrary pricing, where
the price between each pair of zones is set individually, is applied as well as a
counting-zones pricing with multiple counting. While the prices can be deter-
mined by an explicit formula once the zones are given, the integrated problem
of determining zones and prices simultaneously is shown to be NP-hard for the
objective of minimizing the maximum absolute deviation for all fixed numbers of
zones greater than or equal to three. A greedy, a clustering and a spanning-tree
heuristic for the problem of determining zones are presented. These results are
expanded by [BK03] which considers the zone tariff design problem with arbi-
trary pricing, connected zones and minimizing the maximum absolute deviation.
The paper further investigates the complexity regarding NP-completeness and
polynomial cases on special graph structures. In [Pra04], the problem of finding
zones and prices is formulated as a bilevel program that is solved with a simu-
lated annealing heuristic. The objective is to minimize a weighted sum of revenue
increase and decrease. Furthermore, the authors of [Tav+07] point out that dis-
tricting problems occur in the context of different application areas, in particular,
as the problem of finding zones for a zone-based fare structure. The districting
problem is modeled as a multi-objective problem, and a local search evolutionary
algorithm is proposed to solve it. In [Koh13], an IP is presented with the aim to
determine zones for fixed prices given as a base amount and a price per zone that
minimize the maximum or average absolute deviation between zone fares and
reference prices, which are given by former distance fares. The constructed zones
need not be connected. Also for given prices, [CJS14] searches for a zone partition
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with connected zones along a linear graph that maximizes the revenue, where the
fares are determined according to a counting-zones pricing. A tree-based model
is used to enumerate the options for the zones. [Yan+20] faces a similar problem
and solves it with a local search method moving zone borders. The prices are then
chosen as average former ticket costs between pairs of zones. Another local search
heuristic with tabu search is developed by [GMS17] for the connected zone design
problem with given prices on a general graph. Fares are computed according to
a counting-zones pricing and the objective function is to minimize the maximum
absolute deviation from reference prices. The local search heuristic improves the
found solutions over the heuristics from [HS04]. The authors of [AM18] encounter
the problem of finding zones and setting prices (arbitrary pricing) in the context
of air cargo. The goal is to maximize the revenue. The problem is solved to
optimality by Benders decomposition, and a branch-and-bound method is de-
veloped that outperforms the Benders decomposition. The theoretical research
of [HS04] and [BK03] is further extended by [OB17]. The authors model dif-
ferent zone-based fare strategies, namely with connected or ring zones and with
counting-zones pricing (single counting), cumulative pricing or maximum pricing.
The objective function maximizes the revenue considering the willingness to pay
of the customers in the constraints. For these problems, MILP formulations are
provided and the complexity is analyzed. Recently, [MHR22] tackled the problem
of determining connected zones with a counting-zones pricing (multiple counting)
by modeling the problem in the dual graph. An IP formulation and a heuristic
are developed during which the prices are kept fixed. Iterating over a list of price
options, the goal is to find the zone tariff that maximizes the revenue or demand.
The authors propose an option to enforce certain spatial patterns such as rings
and stripes.

General Tariff Optimization A very general model for optimizing tariffs that
can deal with different fare strategies and objectives is proposed by [BKP12]. Also
monthly and reduced fares can be incorporated in the non-linear optimization
model based on a discrete route choice model.
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Chapter 9

Fare Structures and Properties

This chapter introduces the basic knowledge, terminology and notation for tariff
optimization. The definitions have originally been given in [SU20; SU22]. Here,
we assume a PTN (Definition 2.15) and a set of all paths in the PTN W (Defi-
nition 2.16) to be given. We start by defining a fare structure.

Definition 9.1 (Fare structure). Let a PTN be given, and let W be the set of
all paths in the PTN. A fare structure is a function π : W → R≥0 that assigns a
price to every path in the PTN.

Additionally, a fare strategy stipulates requirements (constraints) on a fare
structure. A fare structure π is of a certain fare strategy if π satisfies the cor-
responding strategy constraints. In the following, we study the design of fare
structures regarding flat, affine distance, affine beeline and counting zones fare
strategies, which we formally define in Sections 9.1 to 9.3.

With the aim to establish fairness and consistency, we want to design fare
structures that satisfy the no-elongation property and the no-stopover property.

Definition 9.2 (No-elongation property and no-stopover property). Let a PTN
be given, and let W be the set of all paths in the PTN.

1. A fare structure π satisfies the no-elongation property if

π((v1, . . . , vn−1)) ≤ π((v1, . . . , vn))

for all paths (v1, . . . , vn) ∈ W with n ∈ N≥2.

2. A fare structure π satisfies the no-stopover property if

π((v1, . . . , vn)) ≤ π((v1, . . . , vi)) + π((vi, . . . , vn))

for all paths (v1, . . . , vn) ∈ W with n ∈ N≥3 and all intermediate stations vi
with i ∈ {2, . . . , n− 1}.

The no-elongation property ensures that the fare for a path is not allowed to be
cheaper than the fare for any subpath. The no-stopover property ensures that it
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is not beneficial to split a ticket into several ones. This means that buying several
tickets to cover a path or making a stopover never decreases the total fare that
has to be paid for a path. From the perspective of the passengers, the properties
yield transparency and make the fare structure easier to understand. As shown
in [SU22, Thm. 1], it is cheapest to buy a ticket for exactly the path intended if
both properties are satisfied. From the perspective of a public transport operator
this yields consistency in the sense that passengers cannot undercut the fares.
This is, for example, relevant to correctly estimate the revenue.

9.1 Flat Tariffs

The simplest fare strategy is the flat tariff, in which all paths are assigned the
same fixed price. On the one hand, it is easy to understand and to apply. On the
other hand, it can be perceived as unfair because short trips are as expensive as
long trips. This can for example be used to attract more passengers with longer
journeys while at the same time not incentivizing pedestrians or cyclists to use
public transport.

Definition 9.3 (Flat tariff). Let a PTN be given, and let W be the set of all
paths in the PTN. A fare structure π is a flat tariff w.r.t. the fixed price f ∈ R≥0

if π(W ) = f for all W ∈ W .

From [SU20, Thm. 12], we know that a flat tariff always satisfies the no-
elongation property and the no-stopover property. We hence need not consider
the no-elongation property or the no-stopover property explicitly when we opti-
mize flat tariffs.

9.2 Distance Tariffs

Distance-based fare structures are widely perceived as fair because the ticket price
correlates with the distance between the start and the end station. This might
also encourage passengers traveling a short distance to use public transport.

We consider two options to determine the distance associated with a path:

Definition 9.4 (Network distance). Let a PTN (V,E) with weights le ∈ R>0 for
all edges e ∈ E be given. We define the network distance of a path W ∈ W as
l(W ) :=

∑
e∈E(W ) le.

Definition 9.5 (Metric distance). Let a metric dist : V × V → R≥0 on a set of
nodes V be given, i.e., for all v1, v2, v3 ∈ V it holds

dist(v1, v2) = 0 ⇐⇒ v1 = v2 (identity of indiscernibles),
dist(v1, v2) = dist(v2, v1) (symmetry),
dist(v1, v2) ≤ dist(v1, v3) + dist(v3, v2) (triangle inequality).
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Then we define the metric distance of a path W = (v1, . . . , vn) ∈ W as
l(W ) := dist(v1, vn), which is the distance between the start station v1 and
the end station vn measured by the metric dist.

Definition 9.6 (Affine distance tariff). Let a PTN be given, and let W be the
set of all paths in the PTN. Let l : W → R≥0 be a function that either measures
the network distance or the metric distance of a path. A fare structure π is an
affine (network/metric) distance tariff w.r.t. a distance price p ∈ R≥0 and a base
amount f ∈ R≥0 if π(W ) = p · l(W ) + f for all W ∈ W .

Note that if the edge lengths are given as the lengths of tracks or streets, then
l(W ) is the actual travel distance in the network along a path W ∈ W . We further
remark that for a metric distance tariff, the price of a ticket is independent of
the actual path but depends just on its start and end station. If the stations
are embedded in R2 and dist is the Euclidean distance, we call the corresponding
distance tariff a beeline distance tariff.

By [SU20, Thm. 15], an affine network distance tariff always satisfies the no-
elongation property and the no-stopover property. In [Urb20, Thm. 6.3; SU20,
Thm. 17], it is shown that an affine metric/beeline distance tariff satisfies the
no-stopover property. The no-elongation property is not satisfied for an affine
metric/beeline distance tariff [Urb20, Thm. 6.4; SU20, Ex. 18] but can be re-
covered by using a check-in/check-out system. We hence need not consider the
no-elongation property or the no-stopover property explicitly when we optimize
affine distance tariffs.

9.3 Zone Tariffs

Zone-based fare structures combine the properties of flat and distance-based fare
structures. The region of the PTN is divided into tariff zones. Here, we consider
a counting-zones pricing, in which the price of a path depends on the number of
zones traversed by the path. This means that within a zone (as well as for each
fixed number of zones) a flat tariff is applied while on a general path the distance
is approximated by the number of traversed zones. We distinguish between two
types of zone tariffs: with multiple counting and with single counting. In the
multiple counting case, we count a zone each time that it is entered, as it is
similarly done in Boston (USA) by MBTA for commuter rail. In the single
counting case, each zone is counted at most once, which is for example used
in Greater Copenhagen (Denmark) by DOT and by many German transport
associations, e.g., VRN and saarVV.

Let a PTN (V,E) be given. Formally, we regard the tariff zones as a parti-
tion Z = {Z1, . . . , ZL} with L ∈ N≥1 of the set of stations V, i.e., V =

⋃
i∈[L] Zi

and the Zi are non-empty and pairwise disjoint. We call Z a zone partition.
Further, we say that a path W = (v1, . . . , vn) ∈ W traverses a zone Z ∈ Z if
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vi ∈ Z for some i ∈ [n]. If there are i, j, k ∈ [n] with i < j < k and vi, vk ∈ Z and
vk /∈ Z for some Z ∈ Z, we say that W traverses the zone Z multiple times. Next,
we define a zone function σ : W → N≥0, which counts the number of traversed
zones on any path W ∈ W with its multiset of nodes V (W ) and its multiset of
edges E(W ). It is different for the two ways of counting.

Multiple Counting Let e = {v1, v2} ∈ E be an edge. We define the zone border
weight

b(e) = b(v1, v2) :=

{
0 if v1 and v2 are in the same zone,
1 otherwise.

From that, we derive for a path W ∈ W the zone function

σ(W ) := 1 + b(W ), where b(W ) :=
∑

e∈E(W )

b(e).

Single Counting For every path W ∈ W , the zone function that counts the
number of different zones that are traversed is defined as

σ(W ) := |{Z ∈ Z : V (W ) ∩ Z ̸= ∅}| .

Definition 9.7 (Zone tariff). Let a PTN together with a zone partition Z be
given, and let W be the set of all paths in the PTN. A fare structure π is a
zone tariff with multiple/single counting w.r.t. a price function P : N≥1 → R≥0 if
π(W ) = P (σ(W )) for all W ∈ W .

Theorem 9.8 states conditions for the no-elongation property and the no-
stopover property to hold in case of zone tariffs. These are independent of the
PTN and the zone partition Z and only depend on the price function P .

Theorem 9.8 ([Urb20; SU22]). Let a PTN, a zone partition Z and price function
P be given.

1. The zone tariff (with multiple or single counting) w.r.t. Z and P satisfies
the no-elongation property if P is monotonically increasing.

2. The zone tariff with multiple counting w.r.t. Z and P satisfies the no-
stopover property if

P (k) ≤ P (i) + P (k − i+ 1) for all k ∈ N≥1, i ∈ [k].

3. The zone tariff with single counting w.r.t. Z and P satisfies the no-stopover
property if

P (k) ≤ P (i1) + P (i2) for all k ∈ N≥1, i1, i2 ∈ [k] with i1 + i2 ≥ k + 1.
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Remark 9.9. It has been shown that an equivalence is obtained in Theorem 9.8
if the PTN and the zone partition are not fixed ([Urb20; SU22]). The sufficient
conditions of Theorem 9.8 are however not necessary for a specific PTN with
a fixed zone tariff because not all numbers of traversed zones are attained by
paths in the PTN: For example, a zone tariff with only one zone and a price
function with P (1) = 1, P (2) = 3 and P (3) = 2 satisfies the no-elongation
property although the prices are not increasing. Thus, a stronger proposition
could also be gained by only considering P for input values σ(W ) for W ∈ W .
The conditions of Theorem 9.8 are used in MILPs and algorithms to ensure the
no-elongation property and/or the no-stopover property.

In Lemma 9.10, we show that reducing the values of a price function to a given
value r̄ preserves the no-elongation property and the no-stopover property.

Lemma 9.10. Let a PTN (V,E) and r̄ ∈ R≥0 be given. Let π be a zone tariff
with a zone partition Z and a price function P . Then the zone tariff π′ with the
same zone partition Z and the price function P ′ : N≥1 → R≥0 defined by

P ′(k) :=

{
P (k) if P (k) ≤ r̄

r̄ if P (k) > r̄

for all k ∈ N≥1 satisfies the no-elongation property and the no-stopover property
if π satisfies them.

Proof. First, let π satisfy the no-elongation property. By Definition 9.2, it
holds for all paths W1 = (v1, . . . , vn),W2 = (v1, . . . , vn−1) ∈ W with n ≥ 2
and k1 := σ(W1) and k2 := σ(W2) that P (k2) ≤ P (k1). If P (k1) > r̄, then
P ′(k2) ≤ r̄ = P ′(k2). If P (k1) ≤ r̄, then P ′(k2) = P (k2) ≤ P (k1) = P ′(k1).
Hence, π′ satisfies the no-elongation property.

Second, let π satisfy the no-stopover property. By Definition 9.2, it holds for all
paths W = (v1, . . . , vn) ∈ W and subpaths W1 = (v1, . . . , vi), W2 = (vi, . . . , vn)
of W with n ≥ 3, i ∈ {2, . . . , n − 1} and with k := σ(W ), k1 := σ(W1) and
k2 := σ(W2) that P (k) ≤ P (k1) + P (k2). If P (k1) > r̄ or P (k2) > r̄, then we
have P ′(k) ≤ r̄ ≤ P ′(k1) + P ′(k2). If P (k1) ≤ r̄ and P (k2) ≤ r̄, then we
have P ′(k) ≤ P (k) ≤ P (k1) + P (k2) = P ′(k1) + P ′(k2). Hence, π′ satisfies the
no-stopover property.

If a PTN with zones and OD data (Definition 2.17) is given, then the zone
function can determine the number of zones that each OD pair traverses. We
introduce the following notation, which is useful if a zone partition is given and
only the price function of a zone tariff is optimized:

Definition 9.11 (Notation for given zones). Let a PTN (V,E), a zone par-
tition Z, a zone function σ (with single or multiple counting) and OD data
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(D,Wd, td) be given. We define K := maxd∈D σ(Wd) as the maximum number of
zones that are traversed along a path. For k ∈ [K], we set

Dk := {d ∈ D : σ(Wd) = k},

which is the set of all OD pairs that traverse k zones.

In general, K is bounded from above by the maximum number of nodes of a
path Wd for d ∈ D, which is at most |V | if the paths are elementary. In the
single counting case, note that K ≤ L, where L is the number of zones in the
zone partition Z.

Further, we are usually only interested in a price function with a finite number
of different values. We hence introduce the notion of a price list.

Definition 9.12. (Price list) Let K ∈ N≥1 and pk ∈ R≥0 for all k ∈ [K] be
given. Let P be a price function. We identify the list (p1, . . . , pK) with P if

P (k) =

{
pk if k ≤ K

pK if k > K.

In particular, in this case P (k) = P (K) for all k ≥ K. We call (p1, . . . , pK) a
price list.

While zone tariffs with a counting-zones pricing presented here are very popu-
lar, note that many additional specifications of zone-based fare structures exist,
for example: special metropolitan zones, overlapping zones, empty zones, cumu-
lative or maximum pricing with individual prices for the zones.
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Chapter 10

Fare Deviation Model

This chapter studies the fare deviation model, which aims to minimize the
weighted sum of absolute deviations of fares from given reference prices. The
general problem description is given in Section 10.1. We investigate the fare devi-
ation model for flat tariffs in Section 10.2, for affine distance tariffs in Section 10.3
and for zone tariffs in Section 10.4. A summary of the results of Chapter 10 is
given in Section 10.5.

10.1 Problem Definition

In the fare deviation model, we ask for a fare structure that minimizes the sum
of absolute deviation from given reference prices. These reference prices can for
example be the fares in a former fare structure when changing to a new one, or
prices that are considered as fair or otherwise desirable. We formally define the
fare deviation model as follows:

Definition 10.1 (FDM). The fare deviation model (FDM) is defined as follows:
Given a PTN G = (V,E) (Definition 2.15), OD data (D,Wd, td) (Definition 2.17)
and reference prices rd ∈ R≥0 for all OD pairs d ∈ D as well as potentially
specific input depending on the desired fare strategy, determine a fare structure π
regarding the desired fare strategy that minimizes the weighted sum of absolute
deviations from the reference prices, this means it minimizes

∑
d∈D td|rd−π(Wd)|.

The fare deviation model minimizing the weighted sum of absolute deviations
from reference prices is closely related to median problems as we show in the
following sections. We therefore recall the definition of a weighted median.

Definition 10.2 (Weighted median). Given a non-empty index set D, the
set of weighted medians of numbers (rd)d∈D with weights (td)d∈D denoted by
w-mediand∈D(rd, td) contains all values p̄ that satisfy∑

d∈D: rd<p̄

td ≤
∑

d∈D td

2
and

∑
d∈D: rd>p̄

td ≤
∑

d∈D td

2
. (10.1)

81



Chapter 10 Fare Deviation Model

We use the shorthand notation w-median(D) if the numbers (rd)d∈D and
weights (td)d∈D are clear from the context. Instead of taking a weighted median,
one can equivalently consider the median of the values (rd, . . . , rd︸ ︷︷ ︸

td times

: d ∈ D).

Also note that w-mediand∈D(rd, td) can consist of a single value or, because for-
mula (10.1) is a convex condition, a whole interval [p̄1, p̄2], where p̄1 satisfies
the first inequality of formula (10.1) with strict inequality and the second with
equality, and vice versa for p̄2. Then p̄1 is called the lower weighted median
and p̄2 the upper weighted median.

In the following sections, we consider the fare deviation model regarding flat,
distance and zone fare strategies.

10.2 Flat Tariffs

In this section, we consider the fare deviation model for flat tariffs (Definition 9.3).
Because the price is the same for all passengers independent of their paths in a
flat tariff, the PTN is not explicitly required as input to the fare deviation model
for flat tariffs but the OD data (even without paths) is sufficient:

Definition 10.3 (F-FDM). The fare deviation model for flat tariffs (F-FDM) is
defined as follows: Given are a PTN with OD data (D, td) and a reference price
rd ∈ R≥0 for all OD pairs d ∈ D. The aim is to determine a price f ∈ R≥0 such
that

∑
d∈D td|rd − f | is minimized.

If we drop the non-negativity requirement f ≥ 0 from F-FDM, we obtain a
weighted median problem as used in statistics (e.g., [Gur90]), or, equivalently, a
one-dimensional 1-median problem, where especially the two-dimensional version
is well known as Weber problem, as used in location theory (e.g., [Pla95; Dre+02]).

The function φ : R→ R≥0, f 7→
∑

d∈D td|rd−f | is a continuous, piecewise linear
and convex function, for which it is known that the set of optimal solutions to
the weighted median (or one-dimensional 1-median) problem is equal to the set
of weighted medians w-mediand∈D(rd, td) (e.g., [Gur90]). Hence, for all optimal
solutions f ∗, it holds that f ∗ ≥ min{rd : d ∈ D}, and there is always an optimal
solution f ∗ with f ∗ ∈ {rd : d ∈ D}. Because min{rd : d ∈ D} ≥ 0, the non-
negativity requirement of F-FDM is not necessary and can be omitted. Therefore,
we can regard F-FDM as a weighted median problem. In case that the weighted
median is not unique, the lower median f1 leads to lower prices for the passengers,
whereas the operator generates a higher income by implementing the price f2 of
the upper median. These two values as well as all f ∈ [f1, f2] yield the same
objective function value because we consider the sum of absolute deviations.

The following well-known LP formulation uses a variable f ∈ R for the fixed
price and an auxiliary variable yd ∈ R for all d ∈ D to linearize the objective
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function:

min
f, p, yd

∑
d∈D

tdyd

s.t. rd − f ≤ yd for all d ∈ D

f − rd ≤ yd for all d ∈ D

f ∈ R≥0

yd ∈ R for all d ∈ D.

Apart from solving the LP formulation in polynomial time, also specialized
solution methods for finding a (weighted) median can be used. A linear time
selection method, which is in particular able to find a median, is developed by
[Blu+73]. Several methods to compute a weighted median in linear time are
reviewed by [Gur90]. Consequently, F-FDM can be solved in linear time O(|D|).

10.3 Distance Tariffs

We now turn our attention to the design of affine distance tariffs (Definition 9.6).

Definition 10.4 (D-FDM). The fare deviation model for affine distance tariffs
(D-FDM) is defined as follows: Given are a PTN with OD data (D,Wd, td), a
(network/metric) distance function l (Definitions 9.4 and 9.5) and a reference
price rd ∈ R≥0 for all OD pairs d ∈ D. The aim is to determine a distance price
p ∈ R≥0 and a base amount f ∈ R≥0 such that

∑
d∈D td|rd − (p · l(Wd) + f)| is

minimized.

In the following, we use for all d ∈ D the shorthand notation ld := l(Wd).
Note that in contrast to F-FDM, for affine distance tariffs neither p ≥ 0 nor

f ≥ 0 is ensured by non-negative reference prices rd ≥ 0 for all d ∈ D.
When we allow negative values for p and f , i.e., p, f ∈ R, the fare deviation

model for affine distance tariffs is a least absolute deviations regression with the
linear expression p · x+ f as used in statistics (e.g., [Kar58; Wag59]), or equiva-
lently, a 1-median-line location problem with vertical distances as used in location
theory (e.g., [MT83; Sch99a]). This means, one searches for a line

Lp,f := {(x, y) ∈ R2 : y = p · x+ f}.

Requiring p, f ≥ 0 leads to a restricted line location problem as studied in
[Sch99b].

In Theorem 10.5, we derive a finite candidate set for the set of optimal solutions
of D-FDM. To do so, we say that a solution (p, f) meets the reference price rd of
an OD pair d ∈ D exactly if rd = p · ld + f , i.e., the line Lp,f passes through the
point (ld, rd).
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Theorem 10.5. There is always an optimal solution (p∗, f ∗) to D-FDM such
that one of the following holds: The reference price of

• at least two OD pairs d, d′ with ld ̸= ld′ is met exactly,

• at least one OD pair is met exactly and, additionally, p∗ = 0 or f ∗ = 0.

Proof. We regard D-FDM as 1-median-line location problem with the additional
requirement that p, f ≥ 0. For this proof, we adopt the dual interpretation from
[Sch99a, Sec. 2.2]. We consider the transformation T that maps a point (l, r) ∈ R2

to a line T ((l, r)) := L−l,r and a non-vertical line Lp,f to a point T (Lp,f ) := (p, f).
The space of the transformed points and lines is called dual space. We call the
original space the primal space. An example is given in Figure 10.1. The vertical
deviation between a point (l, r) and a line Lp,f in the primal space is the same
as the vertical deviation between the transformed line L−l,r and the transformed
point (p, f) in the dual space because r−(p · l+f) = r−p · l−f = (−l ·p+r)−f .
Hence, it is equivalent to search for a line Lp,f with p, f ∈ R≥0 minimizing
the weighted sum of absolute deviations from the points (ld, rd) for d ∈ D in
the primal space or to search for a point (p, f) with p, f ∈ R≥0 (i.e., in the
first quadrant) that minimizes the weighted sum of absolute deviations from
the lines L−ld,rd for d ∈ D. The feasible space R≥0 × R≥0 in the dual space is
divided into two-dimensional polyhedra (cells) by the lines L−ld,rd for d ∈ D (see
Figure 10.1(b)). We can determine an optimal solution to the overall problem
by searching for an optimal solution in each cell and identifying the one with the
best optimal objective function value. In each cell, the sign of rd − p · ld − f
does not change for all d ∈ D because no line is crossed, which means that
the objective function can be written without the absolute value in each cell.
Hence, in each cell, the problem is feasible, the objective function is linear and
the optimal objective function value is finite. By the fundamental theorem of
linear programming, in each cell, there is an optimal solution that is an extreme
point of this cell. This is either the intersection of two lines, of a line with an
axis, or the origin. Let (p∗, f ∗) be the best of all the optimal solutions of all cells.
Interpreting the solution for D-FDM, this means that one of the following holds
for the solution (p∗, f ∗), i.e., with distance price p∗ and base amount f ∗ :

• two reference prices rd1 , rd2 with d1, d2 ∈ D are met exactly (if (p∗, f ∗) is the
intersection L−ld1 ,rd1

∩ L−ld2 ,rd2
of two lines in the dual space, in particular

ld1 ̸= ld2),

• one reference price rd with d ∈ D is met exactly and p∗ = 0 (if (p∗, f ∗) is
the intersection of L−ld,rd with the f -axis in the dual space),

• one reference price rd with d ∈ D is met exactly and f ∗ = 0 (if (p∗, f ∗) is
the intersection of L−ld,rd with the p-axis in the dual space),
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(a) Primal space: points (ld, rd) for four
OD pairs d ∈ {d1, d2, d3, d4} and the
line L0,2 of the optimal solution
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(b) Dual space: The four points (ld, rd)
with d ∈ {d1, d2, d3, d4} are trans-
formed to four lines L−ld,rd . The point
(0, 2) is the optimal solution and can
be transformed back to the line L0,2 in
the primal space.

Figure 10.1: Example with four OD pairs with one passenger each illustrating the
proof of Theorem 10.5. The optimal solution is (p∗, f ∗) = (0, 2). This shows
that the three options stated in Theorem 10.5 are not mutually exclusive.

• p∗ = 0 and f ∗ = 0 (if (p∗, f ∗) = (0, 0) is the origin in the dual space).

Note that p∗ = 0 and f ∗ = 0 can only be an optimal solution to D-FDM if
there is an OD pair d ∈ D with rd = 0: Assume that (p∗, f ∗) = (0, 0) is an
optimal solution and rd > 0 for all d ∈ D. For f ′ := min{rd : d ∈ D} > 0, the
objective function value of (0, f ′) is smaller than the objective function value of
(0, 0) because 0 < f ′ ≤ rd for all d ∈ D. Hence, there is an OD pair d ∈ D with
rd = 0 and this reference price is met exactly. Therefore the third case is already
contained in the second case.

We remark that, if an optimal solution to the restricted problem (p, f ∈ R≥0)
is also an optimal solution to the unrestricted problem (p, f ∈ R), then∑

d∈D: rd<p·ld+f

td ≤
∑

d∈D td

2
and

∑
d∈D: rd>p·ld+f

td ≤
∑

d∈D td

2

by [Sch98; Sch99a], similar to the weighted median (Definition 10.2). This means
that half of the passengers pay at most as much as their reference price and half
of the passengers pay at least as much in this case.
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D-FDM can be solved by means of the finite candidate set derived in Theo-
rem 10.5. It can also be formulated as an LP:

min
p, f, yd

∑
d∈D

tdyd

s.t. rd − p · ld − f ≤ yd for all d ∈ D

p · ld + f − rd ≤ yd for all d ∈ D

p, f ∈ R≥0

yd ∈ R for all d ∈ D.

(10.2)

Using this LP and a result of [Zem84], we can even show that the problem can
be solved in linear time O(|D|):

Theorem 10.6. D-FDM can be solved in linear time O(|D|).

Proof. In [Zem84], the author presents an algorithm that solves the dual of the s-
dimensional Multiple Choice Linear Programming Problem (sMCLPP)
in linear time with respect to the number of constraints. We now show that the
LP of D-FDM is of the required form for the algorithm and can hence be solved
in O(|D|). To do so, we consider 2MCLPP (i.e., s = 2), using the notation of
[Zem84]:

max
xj

∑
j∈N

cjxj

s.t.
∑
j∈N

aijxj = ai0 for all i ∈ {1, 2}∑
j∈Jk

bjxj = bk0 for all k ∈ [r]

xj ≥ 0 for all j ∈ N

xj ∈ R for all j ∈ N.

with r ∈ N≥1 and N = J0 ∪ J1 ∪ . . . ∪ Jr with 0 /∈ N and the sets Jk with
k ∈ {0, . . . , r} are pairwise disjoint. Dualizing the LP yields

min
wi, vk

a10w1 + a20w2 +
r∑

k=1

bk0vk

s.t. a1jw1 + a2jw2 ≥ cj for all j ∈ J0

a1jw1 + a2jw2 + bjvk ≥ cj for all j ∈ Jk, k ∈ [r]

wi, vk ∈ R for all i ∈ {1, 2}, k ∈ [r].
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We consider the special case with J0 = {1, 2}, a10 = a20 = 0, a11 = a22 = 1,
a12 = a21 = 0, c1 = c2 = 0, bj = 1 for all j ∈ Jk, k ∈ [r], which yields

min
wi, vk

r∑
k=1

bk0vk

s.t. cj − a1jw1 − a2jw2 ≤ vk for all j ∈ Jk

w1, w2 ≥ 0

wi, vk ∈ R for all i ∈ {1, 2}, k ∈ [r].

Let now r = |D|, and for each d ∈ D, let there be a k ∈ [r] such that Jk = {d+, d−}
and bk0 = td. For k ∈ [r] and j ∈ Jk, we set

cj =

{
rd if j = d+,

−rd if j = d−,
a1j =

{
ld if j = d+,

−ld if j = d−,
a2j =

{
1 if j = d+,

−1 if j = d−,

and p = w1, f = w2 and yd = vk for d ∈ D and k ∈ [r] with Jk = {d+, d−}. With
this, we obtain LP (10.2). Hence, by [Zem84], LP (10.2) can be solved in linear
time in the number of constraints, i.e., in O(|D|).

10.4 Zone Tariffs

Finally, we study the fare deviation model for zone tariffs (Definition 9.7).

Definition 10.7 (Z-FDM). The fare deviation model for zone tariffs (Z-FDM) is
defined as follows: Given are a PTN G = (V,E), OD data (D,Wd, td), reference
prices rd ∈ R≥0 for all OD pairs d ∈ D and an upper bound N ∈ N≥1 on the
number of zones. The aim is to determine a zone partition Z with at most N
zones and a price function P : N≥1 → R≥0 such that

∑
d∈D td|rd − P (σ(Wd))| is

minimized. Note that σ depends on the zone partition Z.

Remark 10.8. It suffices to consider N ∈ [|V |] because the zones form a zone
partition and it is not possible to have more than |V | sets in the partition. Fur-
ther, it is enough to determine the price function P for input values up to K,
where K is the maximum number of nodes of a path Wd for d ∈ D. Because the
value P (k) for all k ≥ K has no influence on the objective function value of Z-
FDM, we can simply set P (k) = P (K) for all k ≥ K. Therefore, we only need to
consider price functions P that attain a finite number of different values and can
hence be represented by a price list (p1, . . . , pK) (Definition 9.12). Note that if a
zone tariff with a price function P satisfies the no-elongation or the no-stopover
property, then so does the zone tariff with the price function represented by the
price list (P (1), . . . , P (K)).
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multiple counting single counting
(M) (S)

arbitrary zones (A) Z-FDM(MA) Z-FDM(SA)

connected zones (C) Z-FDM(MC) Z-FDM(SC)

Table 10.1: Variants of Z-FDM.

In addition to distinguishing between multiple and single counting, we also
distinguish two versions concerning the zones. Given a PTN G = (V,E), we say
that a zone Z ⊆ V is connected if its induced subgraph G[Z] is connected. While
there are no requirements in the problem formulation in Definition 10.7, which
allows arbitrary zones, we also consider that connected zones are demanded. This
means that each zone Z ∈ Z needs to be connected. We obtain the four variants
shown in Table 10.1.

Further, we consider Z-FDM with and without the requirement that the result-
ing fare structure satisfies the no-elongation property or the no-stopover property.

Subproblems of Z-FDM are the zone-partition subproblem and the price-setting
subproblem: In the zone-partition subproblem, we assume the price function P to
be given and only optimize the zone partition Z. Conversely, the zone partition Z
is given in the price-setting subproblem and the prices P are optimized.

10.4.1 General Properties and Relations Between the
Different Problem Variants

In this section, we observe some general properties of Z-FDM and explore the
relations between the different problem variants and the behavior of the objective
function values. We start by stating that the definitions of zone functions in the
case of single and multiple counting coincide under some circumstances.

Lemma 10.9. Let a PTN with a zone partition Z be given. Both definitions of
a zone function σ for multiple and single counting coincide for paths W ∈ W
that do not traverse a zone multiple times. In particular, this is the case when
W = (v1, v2) for some edge {v1, v2} ∈ E.

Proof. Let a path W ∈ W that does not traverse a zone multiple times be given.
In this case, every time that b(e) = 1 for e ∈ E(W ), a new zone is entered that
has not been traversed before. Hence, 1+

∑
e∈E(W ) b(e) is the number of different

zones on the path W, which is equal to |{Z ∈ Z : V (W ) ∩ Z ̸= ∅}|.

Next, we prove that an upper bound equal to the maximum reference price
r̄ := max{rd : d ∈ D} is valid for the price function of an optimal solution.

88



10.4 Zone Tariffs

Lemma 10.10. For all optimal solutions Z, P to Z-FDM(XY) with X ∈ {M, S}
and Y ∈ {A,C} with/without requiring the no-elongation property and with/with-
out requiring the no-stopover property, it holds that P (k) ≤ r̄ := max{rd : d ∈ D}
for all k ∈ N≥1 with Dk ̸= ∅ (see Definition 9.11).

In particular, there is always an optimal solution Z, P with P (k) ≤ r̄ for all
k ∈ N≥1.

Proof. Let Z, P be an optimal solution to Z-FDM(XY) with X ∈ {M, S} and
Y ∈ {A,C}. Assume that there is some k ∈ N≥1 with P (k) > r̄ and Dk ̸= ∅. We
define a new price function P ′ : N≥1 → R≥0 by

P ′(k) :=

{
P (k) if P (k) ≤ r̄,

r̄ if P (k) > r̄

for all k ∈ N≥1. In order to prove the claim, we show that the zone tariff π′ w.r.t.
Z, P ′ has the same properties and yields a better objective function value than
the zone tariff π w.r.t. Z, P , which leads to a contradiction.

First, we consider OD pairs d ∈ D with P (σ(Wd)) > r̄. By assumption, there
is at least one such OD pair. Because P (σ(Wd)) > r̄ ≥ rd and P ′(σ(Wd)) = r̄,
we have |P (σ(Wd))− rd| > |P ′(σ(Wd))− rd|. Second, for all d ∈ D with
P (σ(Wd)) ≤ r̄, nothing is changed. Hence, replacing P with P ′ decreases the
objective function value.

By Lemma 9.10, it holds that π′ satisfies the no-elongation property and the
no-stopover property if π satisfies them.

Note that we later show a stronger result for Z-FDM without the requirement of
the no-elongation property or the no-stopover property in Theorem 10.24, namely
that we can choose the values of the price function from the given reference prices.
This is particularly helpful for constructing zone tariffs in examples.

Regarding the upper bound N on the number of zones, the optimal objective
function value of each problem Z-FDM(XY) with X ∈ {M,S} and Y ∈ {A,C}
with/without requiring the no-elongation property and with/without requiring
the no-stopover property is monotonically decreasing with increasing N because
increasing the upper bound on the number of zones extends the feasible domain.

Note that this does not hold if the zone partition needs to consist of exactly N
non-empty sets as the following example shows: Consider the linear graph de-
picted in Figure 10.2(a), where the OD pairs with their reference prices and paths
are marked in orange. Every OD pair has one passenger, i.e., td = 1. With two
zones Z = {{1, 2}, {3}} (Figure 10.2(b)) the objective function value is 0, but
for three zones the only choice of zones is Z = {{1}, {2}, {3}} (Figure 10.2(c))
with an objective function value of 1. However, here, N is an upper bound on
the number of zones, which need not be met with equality.

In the remainder of this section, we compare the optimal objective function
values of the four variants of Z-FDM (see Table 10.1). Given an instance of
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v1 v2 v3
1

2
2

(a) PTN with OD data (or-
ange)

v1 v2 v3

(b) Two zones

v1 v2 v3

(c) Three zones

Figure 10.2: Instance showing that it can be better to implement fewer zones.

MA SA

MC SC

(a) On arbitrary PTNs

MA SA

MC SC

(b) On arbitrary PTNs,
N = |V |

MA SA

MC SC

(c) On trees

MA SA

MC SC

(d) On trees, N = |V |

x y z∗x = z∗y

x y z∗x ≤ z∗y , z
∗
y ̸≤ z∗x

x y z∗x ̸≤ z∗y , z
∗
y ̸≤ z∗x

Figure 10.3: Relationships between the optimal objective function values of the
four problem variants of Z-FDM in different cases (arbitrary PTN or tree,
arbitrary N ∈ N≥1 or N = |V |). Note that the results on trees are for the
case that the paths Wd are the unique simple paths for all OD pairs d (see
Lemma 10.11).

Z-FDM, let z∗MA, z∗MC, z∗SA and z∗SC be the respective optimal objective function
values of the four variants. The results of Lemma 10.11, Theorem 10.12 and
Examples 10.13 to 10.18 are summarized in Figure 10.3. All these results hold
with/without requiring the no-elongation property and with/without requiring
the no-stopover property (which is not explicitly mentioned in each result for the
sake of shortness).

Lemma 10.11 provides information about the relationship between the objec-
tive function values of the different problem variants in general as well as on
trees.

Lemma 10.11. Let an instance of Z-FDM be given. Then we have:

1. z∗MA ≤ z∗MC and z∗SA ≤ z∗SC. Both may hold strictly.

2. z∗MC = z∗SC if the graph is a tree and the paths Wd for d ∈ D are the unique
simple paths.
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v1 v2 v3
1

2
1

(a) PTN with OD data (orange)

v1 v2 v3

(b) Optimal zones for Z-FDM(MA)

Figure 10.4: Instance for Example 10.13.

Proof.

1. Requiring connectedness of the zones is a restriction on the solution space.
Examples 10.13 and 10.15 show that the inequalities can hold strictly.

2. Follows from Lemma 10.9.

If N = |V |, we also obtain equality for the multiple counting cases, i.e.,
z∗MA = z∗MC, as Theorem 10.12 shows. Note that it still may happen that less
than N zones are used, as in the example in Figure 10.2.

Theorem 10.12. Let an instance of Z-FDM with upper bound N ∈ N≥1 on the
number of zones be given. For every solution Z, P to Z-FDM(MA) with upper
bound N on the number of zones, there is a zone partition Z ′ such that Z ′, P is
feasible to Z-FDM(MC) with upper bound |V | on the number of zones and has
the same objective function value. In particular, if N = |V |, we have z∗MA = z∗MC.

Proof. Let Z, P be a solution to Z-FDM(MA) regarding N with Z = {Z1, . . . , ZL}
and L ≤ N . We enumerate all connected components of all zones: For all
i ∈ [L], let li, ki ∈ N≥1 with li ≤ ki, l1 = 1 and li+1 = ki + 1 for i ∈ [L − 1]
such that Z ′

li
, . . . , Z ′

ki
denote all connected components of G[Zi]. We set

Z ′ := {Z ′
li
, . . . , Z ′

ki
: i ∈ [L]}. Then L ≤ |V | and all Z ∈ Z ′ are connected.

For each OD pair, the number of zone borders that are crossed on its path are
the same for Z and Z ′ because no connected parts are split in the new zone
partition. Therefore, also the objective function value remains unchanged.

The following series of Examples 10.13 to 10.18 shows that there are no further
inequalities that hold in general, on trees or with N = |V |.

Example 10.13 (Example for z∗MA < z∗MC on a tree). Consider the PTN depicted
in Figure 10.4(a), which is a tree. The OD pairs with their reference prices and
paths are marked in orange. Every OD pair has one passenger, i.e., td = 1. Let
N := 2.

Then Z = {{v1, v3}, {v2}} (Figure 10.4(b)) with (p∗1, p
∗
2, p

∗
3) = (1, 1, 2) is an

optimal solution to Z-FDM(MA) with objective function value z∗MA = 0. The
only two structurally different connected zone partitions for Z-FDM(MC) are
Z = {{v1, v2, v3}} and Z = {{v1, v2}, {v3}}. In both cases it is optimal to set
(p∗1, p

∗
2, p

∗
3) = (1, 1, 1), yielding an optimal objective function value of 1. Hence,

z∗MA < z∗MC.
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v1 v2 v3 v4
1 2 2

3

(a) PTN with OD data (orange)

v1 v2 v3 v4

(b) Optimal zones for Z-FDM(MA)

Figure 10.5: Instance for Example 10.14.

v1 v2 v3

v4 v5

2 1

2

2

2

3

(a) PTN with OD data (orange)

v1 v2 v3

v4 v5

(b) Optimal zones for Z-FDM(SA)

Figure 10.6: Instance for Example 10.15

Example 10.14 (Example for z∗MA < z∗SA on a tree). Consider the PTN depicted
in Figure 10.5(a), which is a tree. The OD pairs with their reference prices and
paths are marked in orange. Every OD pair has one passenger, i.e., td = 1. Let
N := 2.

Then Z = {{v1, v2, v4}, {v3}} (Figure 10.5(b)) with (p∗1, p
∗
2, p

∗
3) = (1, 2, 3) is an

optimal solution to Z-FDM(MA) with objective function value z∗MA = 0. Because
it is not possible to observe three different prices with only two zones for the
single counting case, we have z∗MA < z∗SA.

Example 10.15 (Example for z∗SA < z∗SC on a tree with N = |V |). Consider
the PTN (V,E) depicted in Figure 10.6(a), which is a tree. The OD pairs with
their reference prices and paths are marked in orange. Every OD pair has one
passenger, i.e., td = 1. Let N := 5 = |V |.

Then Z = {{v1, v4}, {v2, v3}, {v5}} (Figure 10.6(b)) with (p∗1, p
∗
2, p

∗
3) = (1, 2, 3)

is an optimal solution to Z-FDM(SA) with objective function value z∗SA = 0.
In order to obtain z∗SC = 0, we need to find a zone partition Z and a price
function P such that P (σ(Wd)) = rd for all d ∈ D. Consider the OD pairs
d′ ∈ {(v1, v2), (v2, v4), (v4, v5)} with rd′ = 2, and d̄ = (v2, v3) with rd̄ = 1. Then
rd′ ̸= rd̄, and we hence need σ(Wd′) ̸= σ(Wd̄). For σ(Wd′) = 1, we must choose
Z = {{v1, v2, v4, v5}, {v3}}, which does not yield an objective function value of 0
because we cannot observe three different prices with only two zones. Hence,
σ(Wd′) = 2, for which we must choose Z = {{v1}, {v2, v3}, {v4}, {v5}}. However,
σ(W(v1,v4)) = 3 = σ(W(v2,v5)) but r(v1,v4) = 2 ̸= 3 = r(v2,v5). Therefore, there is no
zone partition Z and price function P with objective function value 0, and we
have z∗SA < z∗SC.

Example 10.16 (Example for z∗SA < z∗MA on a tree with N = |V |). Consider the
PTN depicted in Figure 10.7(a), which is a tree. The OD pairs with their reference
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v1 v2 v3 v4 v5
1 2

2

3

(a) PTN with OD data (orange)

v1 v2 v3 v4 v5

2

3

(b) Optimal zones for Z-FDM(SA)

Figure 10.7: Instance for Example 10.16.

v1 v2 v3

v4 v5

1

1

2
2

3

(a) PTN with OD data (orange)

v1 v2 v3

v4 v5

(b) Optimal zones for Z-FDM(MA) and
Z-FDM(MC)

Figure 10.8: Instance for Example 10.17

prices and paths are marked in orange. Every OD pair has one passenger, i.e.,
td = 1. Let N := 5 = |V |.

Then Z = {{v1, v2, v4}, {v3}, {v5}} (Figure 10.7(b)) with (p∗1, p
∗
2, p

∗
3) = (1, 2, 3)

is an optimal solution to Z-FDM(SA) with objective function value z∗SA = 0. In
order to obtain z∗MA = 0, we need to find a zone partition Z and a price function P
such that P (σ(Wd)) = rd for all d ∈ D. If σ(W(v1,v2)) = 1, then σ(W(v2,v3)) = 2
and σ(W(v3,v5)) = 3 because these OD pairs all have different reference prices.
But then also σ(W(v2,v4)) = 3, which yields an objective function value of 1.
Hence, σ(W(v1,v2)) = 2, σ(W(v2,v3)) = 1, σ(W(v3,v5)) = 3, and thus σ(W(v2,v4)) = 2,
which again yields an objective function value of 1. Therefore, there is no zone
partition Z and price function P with objective function value 0, and we have
z∗SA < z∗MA.

Example 10.17 (Example for z∗MY1
< z∗SY2

with N = |V | for Y1,Y2 ∈ {A,C}).
Consider the PTN depicted in Figure 10.8(a). The OD pairs with their reference
prices and paths are marked in orange. Every OD pair has one passenger, i.e.,
td = 1. Let N := 5 = |V |.

Then Z = {{v1}, {v2, v3, v5}, {v4}} (Figure 10.8(b)) with (p∗1, p
∗
2, p

∗
3) = (1, 2, 3)

is an optimal solution to Z-FDM(MA) and Z-FDM(MC) with objective function
value z∗MA = z∗MC = 0. In order to obtain z∗SY2

= 0, we need to find a zone
partition Z and a price function P such that P (σ(Wd)) = rd for all d ∈ D.
If σ(W(v1,v2)) = 1, then σ(W(v2,v3)) = 2 because these OD pairs have different
reference prices. But then also σ(W(v1,v3)) = 2, which yields an objective function
value of at least 1. Hence, σ(W(v1,v2)) = 2, σ(W(v2,v3)) = 1, σ(W(v1,v3)) = 2,
and also σ(W(v3,v5)) = 1, which means that v2, v3 and v5 are in the same zone.
Thus, σ(W(v2,v3)) ∈ {1, 2}, which both yield an objective function value of at
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v1 v2 v3

v4 v5

1

1

2
2

2

3

(a) PTN with OD data (orange)

v1 v2 v3

v4 v5

(b) Optimal zones for Z-FDM(SC)

Figure 10.9: Instance for Example 10.18

least 1 because r(d2,d5) /∈ {1, 2}. Therefore, there is no zone partition Z and price
function P with objective function value 0, which yields z∗MA = z∗MC < z∗SA and
z∗MA = z∗MC < z∗SC.

Example 10.18 (Example for z∗SY1
< z∗MY2

with N = |V | for Y1,Y2 ∈ {A,C}).
Consider the PTN depicted in Figure 10.9(a). The OD pairs with their reference
prices and paths are marked in orange. Every OD pair has one passenger, i.e.,
td = 1. Let N := 5 = |V |.

Then Z = {{v1}, {v2, v3, v5}, {v4}} (Figure 10.9(b)) with (p∗1, p
∗
2, p

∗
3) = (1, 2, 3)

is an optimal solution to Z-FDM(SA) and Z-FDM(SC) with objective function
value z∗SA = z∗SC = 0. In order to obtain z∗MY2

= 0, we need to find a zone par-
tition Z and a price function P such that P (σ(Wd)) = rd for all d ∈ D. As in
Example 10.17, σ(W(v1,v2)) = 1 does not yield an objective function value of 0.
Hence, σ(W(v1,v2)) = 2, σ(W(v2,v3)) = 1, σ(W(v1,v3)) = 2, and also σ(W(v3,v5)) = 1,
which means that v2, v3 and v5 are in the same zone. Further, σ(W(v1,v4)) = 3
because r(v1,v4) /∈ {1, 2}, but then σ(W(v2,v5)) = 3, which yields an objective func-
tion value of 1. Therefore, there is no zone partition Z and price function P with
objective function value 0, which yields z∗SA = z∗SC < z∗MA and z∗SA = z∗SC < z∗MC.

Because the price lists constructed in Examples 10.13 to 10.18 clearly satisfy
the no-elongation property and the no-stopover property, all these results hold
with/without requiring the no-elongation property and with/without requiring
the no-stopover property.

10.4.2 Complexity and Solution Methods

In [HS04, Thm. 2] it is shown that Z-FDM(MA) and Z-FDM(MC) with the ob-
jective to minimize the maximum absolute deviation from reference prices are
NP-hard in case that N ≥ 3 is fixed, the zone partition needs to consist of ex-
actly N (non-empty) sets and the passengers’ paths minimize the number of
traversed zones. Further, for fixed passengers’ paths, [OB17, Thm. 1] proves
NP-hardness of Z-FDM(SA) (even if N = 2) and Z-FDM(SC) with the objec-
tive to maximize the revenue, where passengers have a limited willingness to pay.
Also, [OB17, Thm. 4] shows that setting the prices can be done in O(K · |D|) in
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case the zones are given, where K is the maximum number of traversed zones.
We contribute to these results with a complexity analysis of Z-FDM(XY) for
X ∈ {M, S} and Y ∈ {A,C} that minimize the weighted sum of absolute devia-
tions from given reference prices including the no-elongation property and the
no-stopover property.

In order to analyze the complexity, we consider the decision version of Z-FDM,
which we call Z-FDM as well. The problem changes such that we have an ad-
ditional input parameter J ∈ R≥0 and search for a zone partition and a price
function such that

∑
d∈D td|rd − P (σ(Wd))| ≤ J .

Lemma 10.19. Z-FDM(XY) with X ∈ {M, S} and Y ∈ {A,C} with/without re-
quiring the sufficient conditions of the no-elongation property and the no-stopover
property (Theorem 9.8) as well as the corresponding zone-partition and price-
setting subproblems are in NP.

Proof. Let a certificate Z = {Z1, . . . , ZL}, P , where the price function is deter-
mined by a price list (p1, . . . , pK), where L ≤ N and K is the maximum number
of stations on a path, be given. We can check in polynomial time:

•
⋃

i∈[L] Zi = V as well as Zi ∩Zj = ∅ and Zi ̸= ∅ for all i, j ∈ [L] with i ̸= j,

•
∑

d∈D td|rd − P (σ(Wd)))| ≤ J ,

• connectedness of G[Zi] for all i ∈ [L],

• the no-elongation property and the no-stopover property according to The-
orem 9.8.

First, we show that Z-FDM with arbitrary zones is NP-hard.

Theorem 10.20. The problems Z-FDM(MA) and Z-FDM(SA) are NP-hard

• with/without requiring the no-elongation property,

• with/without requiring the no-stopover property,

• even if N = 2.

Proof. We show that the decision versions of Z-FDM(MA) and Z-FDM(SA) with
an upper bound J on the objective function value are NP-complete.

By Lemma 10.19, the problems are in NP.
We use a reduction from Bipartite Subgraph (Problem 2.11) using the

equivalent formulation of Remark 2.12. Let an instance G′ = (V ′, E ′), Q of
Bipartite Subgraph be given. We construct an instance of Z-FDM(XA),
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G′
u

x1

x2

(2,M
)

(2,M)

(1,M)(2,1)

Figure 10.10: Graph construction for the proof of Theorem 10.20. The node u is
an arbitrary but fixed node in the graph G′ (indicated by the ellipsoid). The
additional nodes x1 and x2 are connected with each other and with u. The OD
pairs correspond to the edges. The reference prices rd (red) and numbers of
passengers td (blue) per OD pair d ∈ D are given on the edges as (rd, td).

X ∈ {M, S}. Let x1 and x2 be additional nodes not contained in V ′, and let
u ∈ V ′ be chosen arbitrarily but fixed. We define:

V := V ′ ∪ {x1, x2},
E := E ′ ∪ {{u, x1}, {u, x2}, {x1, x2}},
D := {(v1, v2) : {v1, v2} ∈ E},

rd :=

{
2 for all d ∈ D \ {(x1, x2)},
1 for d = (x1, x2),

td :=

{
1 for all d ∈ D \ {(u, x1), (u, x2), (x1, x2)},
M := |E ′|+ 1 for all d ∈ {(u, x1), (u, x2), (x1, x2)},

Wd := d for all d ∈ D,

N := 2,

J := Q ≤ |E ′|.

This means that each OD pair corresponds to an edge and each edge in the
new network is a path used by one passenger with reference price 2 for the edges
in E ′, and by M > |E ′| passengers with reference price 1 or 2 for the edges
in E \E ′. For the maximum number K of nodes of a path, we thus have K = 2.
The construction is shown in Figure 10.10. Solving Z-FDM on this instance, we
need to determine two zones A and B and two prices (p1, p2) (see Remark 10.8).
For the zone partition, we have the following three options for x1, x2, u:

• First, x1, x2, u are in the same zone. Because σ((u, x1)) = σ((x1, x2)) = 1,
the contribution to the objective function value is at least

M · |2− p1|+M · |1− p1| ≥M = |E ′|+ 1 > Q = J.

Hence, this option does not yield a feasible solution.
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• Second, x1, u ∈ A, x2 ∈ B (analogously for swapping A and B and for
swapping x1 and x2). Because σ((u, x2)) = σ((x1, x2)) = 2, the contribution
to the objective function value is at least

M · |2− p2|+M · |1− p2| ≥M = |E ′|+ 1 > Q = J.

Hence, this option does also not yield a feasible solution.

• Third, x1, x2 ∈ A, u ∈ B (analogously for swapping A and B). The objec-
tive function value then is∑

d∈D

td|rd − P (σ(Wd))| = M · |1− p1|+ 2 ·M · |2− p2|

+
∑

e∈int(A,B)

|2− p1|+
∑

e∈E′\int(A,B)

|2− p2|.

If p1 = 2 or p2 = 1, then the objective function value exceeds J because
M = |E ′|+ 1 > Q = J . We therefore choose p∗1 = 1 and p∗2 = 2. This yields
an overall objective function value of | int(A,B)|.

It is hence only possible to obtain a feasible solution if x1 and x2 are in the same
zone and u is in the other zone. A solution to the remaining problem in this
third option is a solution to Bipartite Subgraph and the other way around:
In both cases, a bipartition of the nodes V into sets A and B has to be found
such that | int(A,B)| ≤ Q.

Note that the resulting prices satisfy the no-elongation property (due to the
monotonicity of the price list) and the no-stopover property (because the price
P (k) is constant for k ≥ 2). Hence, the construction does the same if these
properties are required. Because each path Wd with d ∈ D consists of only one
edge, the number of zones with multiple counting and with single counting are
the same by Lemma 10.9.

Next, we show NP-hardness of Z-FDM with the requirement of connected zones.
This does not follow from the proof of Theorem 10.20 because the resulting zones
will in most cases not be connected. For the NP-hardness proof, we make use of
the NP-complete problem Multicut, which was also used in [OB17].

Theorem 10.21. The problems Z-FDM(MC) and Z-FDM(SC) for connected
zones are NP-hard

• with/without requiring the no-elongation property,

• with/without requiring the no-stopover property,

• even if the graph is a tree.
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G′

x0 x1 x2 . . . xQ+1

Figure 10.11: Graph construction for the proof of Theorem 10.21. The star graph
G′ with center x0 is indicated in the ellipsoid. It is extended by a path consisting
of x0, . . . , xQ+1.

Proof. We show that the decision versions of Z-FDM(MC) and Z-FDM(SC) with
an upper bound J on the objective function value are NP-complete.

By Lemma 10.19, the problems are in NP.
We use a reduction from Multicut (Problem 2.13). Let an instance of

Multicut consisting of a star graph G′ = (V ′, E ′), source-terminal pairs C,
a non-negative integer Q be given. We construct an instance of Z-FDM(XC),
X ∈ {M, S}. Let x1, . . . , xQ+1 be additional nodes not contained in V, and let
x0 ∈ V be the center of the star graph G′. We define:

V := V ′ ∪ Vx with Vx := {xj : j ∈ [Q+ 1]},
E := E ′ ∪ Ex with Ex := {{xj, xj+1} : j ∈ {0, . . . , Q}},
G := (V,E)

D := C ∪Dx with Dx := {(xj, xj+1) : j ∈ {0, . . . , Q}},

rd :=

{
1 for all d ∈ Dx,

2 for all d ∈ C,
td := 1 for all d ∈ D,

Wd is the unique simple path in (V,E) for all d ∈ D,

N := Q+ 1,

J := 0.

This means that each OD pair has one passenger and corresponds either to a
source-terminal pair with a reference price of 2, or to a newly added edge with a
reference price of 1. Hence, for the maximum number K of nodes of a path, we
have K ≤ 3. Because Q < |C|, this is a polynomial reduction. The construction is
depicted in Figure 10.11. Solving Z-FDM on this instance, we need to determine
at most N zones and a price list (p1, p2, p3) (see Remark 10.8).

We show that there is a solution Ē to Multicut if and only if there is a
solution Z, P to Z-FDM(XC) with X ∈ {M, S}.

For the first direction, let Ē ⊆ E ′ be a solution to Multicut. Deleting an
edge e ∈ Ē in the star graph generates a new connected component. Thus
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(V,E \ Ē) has L := 1 + |Ē| ≤ 1 +Q = N connected components. We define the
connected components to be the zones Z1, . . . , ZL, in particular G[Zi] is connected
for all i ∈ [L]. Because all pairs in C are separated by Ē and Ē ∩ Ex = ∅, we
have σ(Wd) ∈ {2, 3} for all d ∈ D, and σ(Wd) = 1 for all d ∈ Dx. By setting
p∗1 = 1 and p∗2 = p∗3 = 2 =: p∗2,3, we obtain a feasible solution to Z-FDM(XC) with
X ∈ {M, S}: ∑

d∈D

td|rd − P (σ(Wd))| =
∑
d∈C

|2− p∗2,3|+
∑
d∈Dx

|1− p∗1|

=
∑
d∈C

|2− 2|+
∑
d∈Dx

|1− 1| = 0.

For the other direction, let a zone partition Z = {Z1, . . . , ZL} with L ≤ N and
a price function P given by a price list (p∗1, p

∗
2, p

∗
3) be a solution to Z-FDM(XC)

with X ∈ {M, S}. Because J = 0, we have P (σ(Wd)) = rd for all d ∈ D. We set

Ē := {{v1, v2} ∈ E ′ : v1 ∈ Zi, v2 ∈ Zj, i ̸= j}.

It holds that |Ē| ≤ Q = N − 1 because G′ = (V ′, E ′) is a star graph and G[Zi] is
connected for all i ∈ [L]: Otherwise, if |Ē| > N − 1, there would be more than N
connected components, which would mean that at least one zone Zi would not
be connected. Next, we show that all source-terminal pairs in C are separated
by Ē. Note that it cannot happen that each of the nodes x1, . . . , xQ+1 forms a
singleton zone only containing that node because then at least Q+2 zones would
be needed, which is not feasible because Q+2 > N . Hence, there is an i ∈ [L] and
j ∈ {0, . . . , Q} such that {xj, xj+1} ⊆ Zi. Therefore, σ(W(xj ,xj+1)) = 1. Because
J = 0, we have that p∗1 = r(xj ,xj+1) = 1. Again because J = 0 and rd = 2 ̸= 1 = p∗1
for all d ∈ C, we obtain σ(Wd) ∈ {2, 3} for all d ∈ C and p∗2 = p∗3 = 2. Hence,
no source-terminal pair is in the same zone. This means that for all d ∈ C, there
exists an edge {v1, v2} ∈ E ′(Wd) with v1 and v2 in different zones, and hence
{v1, v2} ∈ Ē. Therefore, all source-terminal pairs in C are separated by Ē.

Note that the resulting prices satisfy the no-elongation property and the no-
stopover property. Because the zones are connected and the paths are the unique
simple paths in the tree, the number of zones with multiple counting and with
single counting are the same by Lemma 10.11.

Zone-Partition Subproblem Let us now consider the zone-partition subprob-
lem of Z-FDM, i.e., Z-FDM with a given price function and the task to optimize
the zone partition. For N = 1, this is simple because there is exactly one feasible
solution, namely all nodes are in the same zone. However, the zone-partition
subproblem with arbitrary zones is already NP-hard if we have N = 2, and the
zone-partition subproblem with connected zones is already NP-hard if the graph
is a tree as the following corollaries show.
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Corollary 10.22. The zone-partition subproblem of Z-FDM(MA) and of
Z-FDM(SA) (with arbitrary zones) is NP-hard, even if N = 2.

Proof. The proof of Theorem 10.20 works analogously if we set p∗1 := 1 and
p∗2 := 2 already in the construction of the instance of Z-FDM.

Corollary 10.23. The zone-partition subproblem of Z-FDM(MC) and of
Z-FDM(SC) (with connected zones) is NP-hard, even if the graph is a tree.

Proof. The proof of Theorem 10.21 works analogously if we set p∗1 := 1 and
p∗2 = p∗3 := 2 already in the construction of the instance of Z-FDM with connected
zones.

We remark that this is also true for the zone-partition subproblems with single
counting and with connected or ring zones with the objective of maximizing the
revenue in [OB17] because there the prices are always set to the same values
independent of the instance, as well.

Price-Setting Subproblem We have seen that the zone-partition subproblem
of Z-FDM remains NP-hard in both cases with and without the requirement of
connected zones. We now study the price-setting subproblem of Z-FDM, so let a
zone partition Z be given. In this setting, we use the notation of Definition 9.11.
The price-setting subproblem of Z-FDM takes OD data (D,Wd, td) and a par-
tition D1, . . . , DK of D as input and searches for a price list p = (p1, . . . , pK),
where K is the maximum number of zones traversed by an OD pair and Dk with
k ∈ [K] contains all OD pairs d ∈ D with σ(Wd) = k for the zone partition Z.
Note that only for determining the sets Dk with k ∈ [K] and for the according
no-stopover property it is important whether multiple or single counting is con-
sidered. Otherwise, the price-setting subproblem does not differ between the two
variants.

The price-setting subproblem of Z-FDM without requiring the no-elongation
property and without requiring the no-stopover property, which we call the un-
restricted price-setting subproblem, is

min
pk

K∑
k=1

∑
d∈Dk

td|rd − pk|

s.t. pk ∈ R≥0 for all k ∈ [K],

which breaks down into a problem of the form of F-FDM (see Section 10.2) for
each number of traversed zones k (see [HS04, Thm. 1]) and can hence be solved
in linear time by Theorem 10.24.

Theorem 10.24. A price list (p1, . . . , pK) is an optimal solution to the unre-
stricted price-setting subproblem of Z-FDM if and only if pk ∈ w-mediand∈Dk

(rd, td)
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if Dk ̸= ∅, and pk ∈ R≥0 arbitrary otherwise. Hence, the unrestricted price-setting
subproblem of Z-FDM can be solved in O(|D|).

In particular, there is an optimal solution with {p1, . . . , pK} ⊆ {rd : d ∈ D}.

Proof. The unrestricted price-setting subproblem breaks down into a problem of
the form of F-FDM for each number of traversed zones k ∈ [K]. As discussed
in Section 10.2, for each k ∈ [K] with Dk ̸= ∅, we have that pk is an optimal
solution to F-FDM corresponding to Dk if and only if pk ∈ w-median(Dk). These
values can be computed in

∑
k∈[K]O(|Dk|) = O(|D|).

If the no-elongation property and the no-stopover property are required, which
are implemented with their sufficient conditions (see Theorem 9.8, with different
constraints for multiple counting [M] and single counting [S]), the price-setting
subproblem can be solved in polynomial time with respect to |D| and K by the
following LP formulation:

min
pk, yd

∑
d∈D

tdyd

s.t. rd − pk ≤ yd for all d ∈ Dk, k ∈ [K]

pk − rd ≤ yd for all d ∈ Dk, k ∈ [K]

pk ≤ pk+1 for all k ∈ [K − 1]

[M] pk ≤ pi + pk−i+1 for all k ∈ [K], i ∈ [k]

[S] pk ≤ pi1 + pi2 for all k ∈ [K], i1, i2 ∈ [k]

with i1 + i2 ≥ k + 1

pk ∈ R≥0 for all k ∈ [K]

yd ∈ R for all d ∈ D.

(10.3)

The number of constraints for the no-stopover property in case of multiple count-
ing can be reduced slightly by only enforcing the constraint for k ∈ {3, . . . , K}
and i ∈ {2, . . . , ⌊k+1

2
⌋} as shown in [SU20, Thm. 19]. Similarly, the range of the

no-stopover property constraints for the single counting case can be reduced to
k ∈ {3, . . . , K} and i1 ∈ {⌈k+1

2
⌉, . . . , k}, i2 ∈ {k + 1− i1, . . . , i1}.

Because of the relevance of increasing prices in practice, we have a closer look at
the price-setting subproblem enforcing the no-elongation property by its sufficient
condition of a monotonically increasing price function (see Theorem 9.8), which
we call the monotonic price-setting subproblem:

min
pk

K∑
k=1

∑
d∈Dk

td|rd − pk|

s.t. pk ≤ pk+1 for all k ∈ [K − 1]

pk ∈ R≥0 for all k ∈ [K].

(10.4)
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The LP formulation of this problem still has |D|+K variables and 2 · |D|+K
constraints. Therefore, we aim to find a better solution method, which is moti-
vated by Lemma 10.25 and Remark 10.26.

For the unrestricted price-setting subproblem, we know by Theorem 10.24 that
in an optimal solution we have pk ∈ w-median(Dk) for all k ∈ [K] with Dk ̸= ∅.
Note that this does not hold in general for the monotonic price-setting subproblem
as the following simple example shows: Let K := 3 and we set D1 = {d1}, td1 = 1,
rd1 = 2 and D2 = {d2}, td2 = 2, rd2 = 1 and D3 = {d3}, td3 = 3, rd3 = 3. Then
p = (1, 1, 3) is an optimal solution to the monotonic price-setting subproblem but
1 /∈ {2} = w-median(D1).

Lemma 10.25. Let p = (p∗1, . . . , p
∗
K) be an optimal solution to the monotonic

price-setting subproblem of Z-FDM. If p∗1 < . . . < p∗K, then p∗k ∈ w-median(Dk)
for all k ∈ [K].

Proof. Let k ∈ [K] with Dk ̸= ∅. Assume p∗k /∈ w-median(Dk), and let
p′k ∈ w-median(Dk). By Section 10.2, p′k minimizes φk : pk 7→

∑
d∈Dk

td|rd − pk|,
and φk(p

′
k) < φk(p

∗
k). Because p∗k−1 < p∗k < p∗k+1 (with p∗0 := −∞ or p∗K+1 := +∞

if necessary), we can increase or decrease p∗k towards p′k so that the order of the
prices remains increasing. Because φk is convex and hence strictly decreasing
on R≤p′k

\ w-median(Dk) and strictly increasing on R≥p′k
\ w-median(Dk), this

leads to a reduction of the objective function value, which is a contradiction to
(p∗1, . . . , p

∗
K) being an optimal solution.

If we consider the example from before, we see that by merging D1 and D2 to
a common price level we indeed get 1 ∈ w-median(D1 ∪ D2). We formalize this
idea in Remark 10.26.

Remark 10.26. We can generalize the result of Lemma 10.25 by considering
distinct price levels as follows: Let 0 ≤ p∗1 ≤ . . . ≤ p∗K be an optimal solution
to the monotonic price-setting subproblem of Z-FDM. Let q1, . . . , qL ∈ R≥0 with
L ≤ K be the distinct price levels that satisfy {p∗1, . . . , p∗K} = {q1, . . . , qL} and
q1 < . . . < qL. For all l ∈ [L], we set Il := {k ∈ [K] : pk = ql}. Analogously to
Lemma 10.25, it holds that ql ∈ w-median(

⋃
k∈Il Dk).

Note however that Remark 10.26 only yields a necessary but not a sufficient
condition for optimal solutions of the monotonic price-setting subproblem: In the
previous example, we could set I1 = {1}, I2 = {2, 3} with q1 = 1, q2 = 3. Then
q1 < q2 and q1 ∈ w-median(D1), q2 ∈ w-median(D1 ∪D2), however p = (1, 3, 3) is
not an optimal solution. It is crucial that we only form a common price level for
consecutive prices that violate monotonicity if it is not enforced, as we see in the
rest of this section.

The relation of optimal solutions to the monotonic price-setting subproblem
to weighted medians motivates the development of Algorithm 10.1, which com-
putes an optimal solution in O(K · |D|) as we prove in Theorem 10.29, which is
polynomial in the size of the input.

102
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The idea of Algorithm 10.1 is to start with K price levels, one for each num-
ber of traversed zones, and to add constraints ensuring monotonicity when it
is violated. The list P of price levels (sorted by number of traversed zones) is
checked whether it is increasing. Every time a price level pk and its successive
price level pk+1 in P are not increasing, they are combined to one common price
level, meaning that the price must be the same for all OD pairs assigned to this
new combined level although they traverse different numbers of zones. The new
price is computed and the list of price levels P is checked again for monotonicity.
During the algorithm, D stores a list of corresponding OD pairs for every price
level, and I stores the corresponding index sets. The algorithm terminates when
the list of price levels is monotonically increasing.

Algorithm 10.1 consists of two main operations, which are performed within
the while-loop. We call lines 7 to 13 the merge operation and lines 14 to 15 the
move operation. For simplicity, we assume that the input sets D1, . . . , DK are
not empty. This condition can be achieved by already merging the empty levels
to neighboring ones, i.e., with the next lower or higher number of traversed zones.

Example 10.27. Before we prove correctness, we illustrate Algorithm 10.1 with
an example. The data for the sets of OD pairs traversing a certain number of
zones is derived from a PTN with fixed zones. To simplify notation, every OD
pair has one passenger (td = 1), and instead of the OD pairs, we here give a list R
of reference prices belonging to the OD pairs, and sort all lists. The initial state
is shown in Table 10.2(a). The OD pairs traverse between 1 and 6 zones, the
reference price within each level is the same and a weighted median is shown in
the last row. Because 1 ≤ 3, a move operation is performed in the first iteration.
Hence, the lists do not change. In the second iteration, however, we have 3 > 1,
which leads to a merge operation. The levels for traversing 2 and 3 zones are
combined, resulting in a new common price level of 3, shown in Table 10.2(b).
The next three iterations are again move operations because 1 ≤ 3, 3 ≤ 5 and
5 ≤ 6, so the state does not change. In the sixth iteration, a merge operation is
necessary because 6 > 4, resulting in Table 10.2(c). Because also 5 > 4 in the
seventh iteration, another merge operation is performed leading to Table 10.2(d).
Because then 3 ≤ 4, the while-loop terminates and (1, 3, 3, 4, 4, 4) is returned as
the final price list.

We prepare the correctness proof of Algorithm 10.1 by means of Lemma 10.28.

Lemma 10.28. Let (p′1, . . . , p′K) be an optimal solution to the unrestricted price-
setting subproblem of Z-FDM. If p′k > p′k+1 for some k ∈ [K − 1], then there
is an optimal solution (p∗1, . . . , p

∗
K) to the monotonic price-setting subproblem of

Z-FDM that has p∗k = p∗k+1.

Proof. Let k ∈ [K − 1] with p′k > p′k+1 for an optimal solution (p′1, . . . , p
′
K) to

the unrestricted price-setting subproblem be arbitrary but fixed. Let (p∗1, . . . , p∗K)
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Algorithm 10.1: Computing an optimal solution for the price-setting
subproblem of Z-FDM requiring increasing prices
Input : Set of OD pairs D with a partition D1, . . . , DK ̸= ∅, numbers of

passengers td and reference prices rd for all d ∈ D
Output: Monotonically increasing price list (p1, . . . , pK)

1 Initialize
2 I ← [{1}, . . . , {K}], // index sets
3 D ← [D1, . . . , DK ], // OD pairs
4 P ← [p1, . . . , pK ] with pk ∈ w-median(Dk) for all k ∈ [K], // prices
5 k ← 1. // Start list indexing at 1
6 while k ̸= length(P ) do

// Check whether the prices are increasing
7 if P [k] > P [k + 1] then

// Merge operation:
// For lists I, D, P, merge the entries at position k

and k + 1 and store them at position k
8 Update I[k]← I[k] ∪ I[k + 1].
9 Update D[k]← D[k] ∪D[k + 1].

10 Update P [k]← pk with pk ∈ w-median(D[k]).
// Delete the entry at position k + 1 and thus shorten

the lists
11 I.delete(k + 1), D.delete(k + 1), P .delete(k + 1)
12 if k ̸= 1 then
13 Update k ← k − 1.

14 else
// Move operation:

15 Update k ← k + 1.

16 for l = 1, . . . , length(P ) do
17 for k ∈ I[l] do
18 Set pk ← P [l].

19 return (p1, . . . , pK)
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I [1] [2] [3] [4] [5] [6]

R [1] [3, 3] [1] [5] [6, 6] [4, 4, 4, 4]

P 1 3 1 5 6 4

(a) State after the initialization

I [1] [2, 3] [4] [5] [6]

R [1] [1, 3, 3] [5] [6, 6] [4, 4, 4, 4]

P 1 3 5 6 4

(b) State after the second iteration

I [1] [2, 3] [4] [5, 6]

R [1] [1, 3, 3] [5] [4, 4, 4, 4, 6, 6]

P 1 3 5 4

(c) State after the sixth iteration

I [1] [2, 3] [4, 5, 6]

R [1] [1, 3, 3] [4, 4, 4, 4, 5, 6, 6]

P 1 3 4

(d) State after the seventh iteration and
final state

Table 10.2: States during performing Algorithm 10.1 in Example 10.27.

0 p′k+1 p′k p∗k p∗k+1

(a)

0 p∗k p′k p∗k+1

p′k+1

(b)

0 p∗k p∗k+1 p′k

p′k+1

(c)

Figure 10.12: Case distinction of the orders of the values p′k, p
′
k+1, p

∗
k, p

∗
k+1 in

Lemma 10.28.

be an optimal solution to the monotonic price-setting subproblem. If p∗k = p∗k+1,
we are done. So now assume that p∗k < p∗k+1. We show that we can modify the
solution until p∗k = p∗k+1. For i ∈ {k, k + 1}, we have that p′i is a minimum of
φi : pi 7→

∑
d∈Di

td|rd − pi| and we can increase/decrease p∗i towards p′i without
worsening the objective function value by Section 10.2. The following cases can
occur:

• If p′k ≤ p∗k, then we obtain the order depicted in Figure 10.12(a). We
decrease p∗k+1 to p∗k.

• If p∗k < p′k < p∗k+1, we obtain the order depicted in Figure 10.12(b). We
increase p∗k to p′k and decrease p∗k+1 to p′k.

• If p∗k < p∗k+1 ≤ p′k, we obtain the order depicted in Figure 10.12(c). We
increase p∗k to p∗k+1.

Because we only move p∗k and p∗k+1 towards each other, the price list remains
increasing. Hence, there is an optimal solution to the monotonic price-setting
subproblem with p∗k = p∗k+1.
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Theorem 10.29. Algorithm 10.1 solves the monotonic price-setting subproblem
of Z-FDM in O(K · |D|).

Proof. Running time: In every iteration of the while-loop, either a merge or a
move operation is performed. Merge can be performed at most K − 1 times be-
cause the length of the lists P,D and I is reduced by 1 by every merge operation.
Move also is performed at most K−1 times in total because the number of levels
to still look at, which is length(P )− k, is reduced by 1 by every move operation
and is also not increased by merge operations. Indeed, in every merge operation,
the difference is decreased by 1 if k = 1 and remains the same if k > 1. Hence, Al-
gorithm 10.1 terminates after at most 2K−2 iterations. The theoretical running
time is composed of O(|D|) for the initialization in lines 2 to 4, (K − 1) · O(|D|)
for at most K − 1 merge operations, (K − 1) · O(1) for at most K − 1 move
operations and O(K) for setting the final price list in lines 16 to 18. This yields
a total running time of O(K · |D|).

Correctness: The aim is to solve the monotonic price-setting subproblem. In
line 4 of Algorithm 10.1, the prices are set to weighted medians, which is an
optimal solution to the unrestricted price-setting subproblem by Theorem 10.24.
If the initialized price list P = (p′1, . . . , p

′
K) is increasing, this yields an optimal

solution also to the monotonic price-setting subproblem, and the algorithm ter-
minates after several move operations without changing the price list. Therefore,
we consider now the case that it is not increasing. Let k be minimal such that
p′k > p′k+1. By Lemma 10.28, there is an optimal solution (p∗1, . . . , p

∗
K) to the

monotonic price-setting subproblem with p∗k = p∗k+1. Therefore, we can ensure
monotonicity by adding the constraint pk = pk+1 to the problem formulation.
Equivalently, this means we condense the variables pk and pk+1 to a common
variable pk,k+1 with Dk,k+1 = Dk ∪Dk+1, hence reducing the number of variables
(price levels) by one. In Algorithm 10.1, this is implemented in form of the merge
operation. Computing the new median, the new list of price levels P is an optimal
solution to the unrestricted price-setting subproblem with the condensed input.
This process is repeated. If we always started checking monotonicity from the
beginning of the list P , we would be done. However, we can do a bit better. Be-
cause we always search for the smallest level for which monotonicity is violated,
it suffices to decrease the index that is currently looked at by 1 in line 15. This is
because when we perform a merge operation for index k, nothing is changed for
smaller indices k′ with k′ ≤ k − 2, and those prices are still increasing after the
iteration. Hence, upon termination, Algorithm 10.1 returns an optimal solution
to the price-setting subproblem with increasing prices.

Remark 10.30. For fixed K, Algorithm 10.1 is a linear time algorithm inO(|D|).
Note that the solution method of [Zem84] also can be applied to the LP formu-
lation of problem (10.4) if K is fixed analogously to the proof Theorem 10.6 but
with s = K, solving the problem in O(|D|) as well.
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10.4.3 MILP Formulation

We now provide MILP formulations for Z-FDM(XY) with X ∈ {M, S} and
Y ∈ {A,C} with constraints ensuring the no-elongation property and the no-
stopover property. It extends the formulation of [OB17] for connected zones
and single counting to all four cases of Table 10.1 and can also ensure the no-
elongation property and the no-stopover property by implementing their sufficient
conditions (see Theorem 9.8).

According to Lemma 10.10, we define r̄ := max{rd : d ∈ D}, and the maximum
number of zones traversed on a path is at most

K :=

{
maxd∈D |V (Wd)| if multiple counting,
min{N,maxd∈D |V (Wd)|} if single counting.

As in [OB17] (except for renaming), the following variables are used, where
only the variables for multiple counting are new:

• a binary variable xvz ∈ {0, 1} for all stations v ∈ V and zones z ∈ [N ] that
is 1 if and only if station v is assigned to zone Zz,

• [only for connected zones:] variables to model a single-commodity flow as
explained below the MILP, we assume 0 /∈ V :

– a continuous variable fv1v2 ∈ R≥0 for all stations v1, v2 ∈ V,

– a binary variable sv ∈ {0, 1} for all stations v ∈ V,

– a continuous variable f0v ∈ R≥0 for all v ∈ V,

• [only if multiple counting:] a binary variable be ∈ {0, 1} for all edges
e = {v1, v2} ∈ E that is 1 if and only if the stations v1 and v2 are in different
zones,

• [only if single counting:] a binary variable bzd ∈ {0, 1} for all OD pairs d ∈ D
and zones z ∈ [N ] that is 1 if and only if the path of OD pair d traverses
zone Zz,

• a binary variable ckd ∈ {0, 1} for all OD pairs d ∈ D and numbers of
traversed zones k ∈ [K] that is 1 if and only if the path of OD pair d
traverses exactly k zones,

• a continuous variable pk ∈ R≥0 for all numbers of traversed zones k ∈ [K]
that denotes the price for traversing k zones,

• a continuous variable πd ∈ R≥0 for all OD pairs d ∈ D that denotes the
price for traveling for OD pair d,
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• a continuous variable yd ∈ R for all OD pairs d ∈ D for linearizing the
objective function.

We present the MILP formulation in a modular way, where constraints (10.6),
(10.7) and (10.9) have previously been used in [OB17]. An explanation of the
constraints is given below.

objective function

min
∑
d∈D

td · yd

s.t. rd − πd ≤ yd for all d ∈ D

πd − rd ≤ yd for all d ∈ D

(10.5)

station assignment

N∑
z=1

xvz = 1 for all v ∈ V (10.6)

connected zones (optional)

f0v ≤ sv · |V | for all v ∈ V (10.7a)
3 ≥ sv1 + sv2 + xv1z + xv2z for all v1, v2 ∈ V,

v1 ̸= v2, z ∈ [N ]

(10.7b)

fv1v2 = 0 for all {v1, v2} ̸∈ E (10.7c)
fv1v2 ≤ (1 + xv1z − xv2z) · |V | for all {v1, v2} ∈ E, z ∈ [N ] (10.7d)∑

v2∈V ∪{0}

fv2v1 = 1 +
∑
v2∈V

fv1v2 for all v1 ∈ V (10.7e)

multiple counting (Alternative 1)

xv1z − xv2z ≤ be for all e = {v1, v2} ∈ E, z ∈ [N ] (10.8a)
be ≤ 2− xv1z − xv2z for all e = {v1, v2} ∈ E, z ∈ [N ] (10.8b)

K∑
k=1

ckd = 1 for all d ∈ D (10.8c)

∑
e∈E(Wd)

be =
K∑
k=1

(k − 1) · ckd for all d ∈ D (10.8d)
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10.4 Zone Tariffs

single counting (Alternative 2)

∑
v∈V (Wd)

xvz ≤ bzd · |V | for all d ∈ D, z ∈ [N ] (10.9a)

bzd ≤
∑

v∈V (Wd)

xvz for all d ∈ D, z ∈ [N ] (10.9b)

K∑
k=1

ckd = 1 for all d ∈ D (10.9c)

N∑
z=1

bzd =
K∑
k=1

k · ckd for all d ∈ D (10.9d)

price assignment

πd ≤ pk + (1− ckd) · r̄ for all d ∈ D, k ∈ [K] (10.10a)
pk ≤ πd + (1− ckd) · r̄ for all d ∈ D, k ∈ [K] (10.10b)

no-elongation property (optional)

pk ≤ pk+1 for all k ∈ [K − 1] (10.11)

no-stopover property (optional)

[M] pk ≤ pi + pk−i+1 for all k ∈ {3, . . . , K}, i ∈ {2, . . . , ⌊k+1/2⌋} (10.12a)
[S] pk ≤ pi1 + pi2 for all k, i1, i2 ∈ [K]

with i1, i2 ≤ k and i1 + i2 ≥ k + 1

(10.12b)

variable domains

xvz, sv, b
k
d, be, c

k
d ∈ {0, 1} for all v ∈ V, e ∈ E, z ∈ [N ], d ∈ D, k ∈ [K]

pk, πd, fv1v2 ∈ R≥0 for all k ∈ [K], d ∈ D, v1 ∈ V ∪ {0}, v2 ∈ V

yd ∈ R
(10.13)

The objective function to minimize
∑

d∈D td|rd − πd| is linearized in the con-
straints (10.5). The constrains (10.6) specify that each station is assigned to
exactly one zone.
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Chapter 10 Fare Deviation Model

Constraints for connected subgraphs based on single- or multi-commodity
flows or cuts are applied in many areas besides fare planning, for example, the
connected k-cut problem [Hoj+21], forest planning and wildlife conservation
[Con+07; DG10; Car+13] and price zones of electricity markets [Gri+17; KS19].
Recently, [BSS23] (for vertex covering with capacitated trees) and [VB22] (for
political districting) gave an overview on different formulations for connected
subgraphs and their performances, where single-commodity flows performed
well. The single-commodity flow constraints (10.7) to ensure connected zones in
this thesis have been adopted from [OB17]. The idea is to model a flow from an
additional source 0 to each station. It is not allowed to cross zone borders. Flow
starting from the source 0 can only be sent to stations that are assigned to the
source (10.7a), and at most one station per zone is assigned to the source (10.7b).
Flow can only be sent along edges of the PTN (10.7c) and only if the stations of
an edge belong to the same zone (10.7d). To see this, let an edge {v1, v2} ∈ E
be given. If there is some z ∈ [N ] such that v1, v2 ∈ Zz, i.e., xv1z = xv2z = 1,
then 1 + xv1z′ − xv2z′ = 1 for all z′ ∈ [N ] and fv1v2 is only restricted by the
number of stations |V |. On the other hand, if v1 and v2 are not in the same
zone, then there is some z ∈ [N ] such that 1 + xv1z − xv2z = 0, and the flow
fv1v2 is set to 0. Flow conservation with a demand of one flow unit is modeled
in the constraints (10.7e). Hence, because each station needs to receive one unit
of flow and at most one station per zone gets flow from the source and the flow
cannot be sent across zone borders, it is enforced that zones are connected. The
constraints (10.7) can be omitted if connected zones are not required.

The constraints (10.8) and (10.9) determine the counting variables for the
multiple and the single counting case, respectively. In case of multiple count-
ing, a variable bv1v2 corresponding to an edge {v1, v2} ∈ E is set to 1 if the
stations v1 and v2 belong to different zones (10.8a), and to 0 if they are in the
same zone (10.8b). The constraints (10.8c) and (10.8d) count the number of zone
border crossings and set the variable ckd for each OD pair d ∈ D to 1 if the path
Wd crosses k − 1 zone borders, which means that it traverses k zones. In case of
single counting, for all OD pairs d ∈ D and zones z ∈ [N ], the variable bzd is set
to 1 if there is a station along the path Wd that is assigned to zone Zz (10.9a).
It is set to 0 otherwise (10.9b). The constraints (10.9c) and (10.9d) determine
the total number of different zones that are traversed by each OD pair d ∈ D by
setting the corresponding variable ckd to 1 if k different zones are traversed and 0
otherwise.

Based on the number of traversed zones, the price of an OD pair d ∈ D is
assigned to the according price level by the constraints (10.10a) and (10.10b).
If ckd = 1 for some d ∈ D and k ∈ [K], then the constraints resolve to πd = pk.
For ckd = 0, the constraints are πd ≤ pk + r̄ and pk ≤ πd + r̄, which poses no re-
striction due to Lemma 10.10. The constraints ensuring the no-elongation prop-
erty (10.11) and the no-stopover property in case of multiple counting (10.12a)
or single counting (10.12b) are optional.
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10.5 Summary

Z-FDM no- no- complexity reference
MA MC SA SC elong. stop.

general x x w/wo w/wo NP-hard Thm. 10.20

zone-partition x x w/wo w/wo NP-hard Cor. 10.22

general x x w/wo w/wo NP-hard Thm. 10.21

zone-partition x x w/wo w/wo NP-hard Cor. 10.23

price-setting x x x x wo wo O(|D|) Thm. 10.24

price-setting x x x x w wo O(K · |D|) Thm. 10.29

price-setting x x x x w/wo w polynomial LP (10.3)

Table 10.3: Overview of the complexity results for the variants and subproblems
of Z-FDM. Abbreviations: w = with, wo = without.

10.5 Summary

We summarize the results of Chapter 10 for the fare deviation model.
F-FDM and D-FDM can be solved in polynomial time O(|D|) by Section 10.2

and Theorem 10.6, respectively. The complexity results for the variants and
subproblems of Z-FDM ranging from NP-hardness to linear solvability are sum-
marized in Table 10.3.

An optimal fixed price of a flat tariff can always be chosen from the set of
reference prices (Section 10.2). For an affine distance tariff, there is always an
optimal solution that satisfies one of the following cases: either the reference price
of at least two OD pairs with different distances is met exactly; or the reference
price of at least one OD pair is met exactly and, additionally, the distance price
is zero or the base amount is zero (Theorem 10.5). For Z-FDM, the price for each
occurring number of traversed zones is at most the maximum of all reference
prices and is related to weighted medians (see Theorem 10.24 and Lemma 10.25).
A summary of the relationships of the optimal objective function values of the
four problem variants of Z-FDM is provided in Figure 10.3 in Section 10.4.1.
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Chapter 11

Revenue-Passenger Model

The revenue-passenger model investigates the trade-off between revenue and num-
ber of passengers. In Section 11.1, the bi-objective problem definition is intro-
duced. Afterwards, we consider the revenue-passenger model for the case of flat
and affine distance tariffs in Sections 11.2 and 11.3, respectively. Based on the
solution methods developed to compute the Pareto fronts, we perform computa-
tional experiments in Section 11.4 to evaluate the running time and the structure
of the Pareto front. In Section 11.5, we study the revenue-passenger model for
zone tariffs. A summary of the results in Chapter 11 is given in Section 11.6.

11.1 Problem Definition

Let a PTN be given. To define the revenue-passenger model, we need OD data
that is more detailed than in Definition 2.17. Instead of a homogeneous demand
for each OD pair, the potential passengers of an OD pair can be distinguished by
their willingness to pay. This could for example reflect the degree of dependence
on public transport or the income. We define extended OD data in Definition 11.1.

Definition 11.1 (Extended OD data). For a given PTN (V,E), we call the
following information extended origin-destination (OD) data:

• a set D ⊆ (V × V ) \ {(v, v) : v ∈ V } with D ̸= ∅,

• for all d = (v1, v2) ∈ D, a path Wd ∈ W from v1 to v2,

• for all d ∈ D, a number Gd ∈ N≥1,

• for all d ∈ D and g ∈ [Gd], a number tgd ∈ N≥1 and a number wg
d ∈ R≥0

such that wg
d ̸= wg′

d for all g, g′ ∈ [Gd] with g ̸= g′.

We call the elements of D the OD pairs. Passengers of an OD pair d = (v1, v2) ∈ D
travel from their origin v1 along Wd to their destination v2. For each OD
pair d ∈ D, there are Gd demand groups, each with a number of passengers tgd
and a willingness to pay wg

d. We write (D,Wd, Gd, t
g
d, w

g
d) as shorthand notation

for (D, (Wd)d∈D, (Gd)d∈D, (t
g
d)d∈D,g∈[Gd], (w

g
d)d∈D,g∈[Gd]).
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Chapter 11 Revenue-Passenger Model

Additionally, we introduce the useful notation

Sdem := {(d, g) : d ∈ D, g ∈ [Gd]},

which is the set of all demand groups.

The revenue-passenger model is based on the assumption that a demand group
uses public transport whenever the ticket price does not exceed its willingness to
pay. The objective is to maximize the revenue and the number of passengers si-
multaneously. While the revenue is the key objective of the operator, the number
of passengers serves as an indicator of the success of the transition towards sus-
tainable transport modes. This is particularly significant when public transport
is used instead of private motorized transport modes such that the environmental
impact of traveling is reduced.

Given a fare structure π, the number of attracted passengers for OD pair d ∈ D
is determined as

passd(π(Wd)) :=
∑

g∈[Gd]:
π(Wd)≤wg

d

tgd.

The total number of passengers with respect to the fare structure π is

pass(π) :=
∑
d∈D

passd(π(Wd))

and the total revenue is

rev(π) :=
∑
d∈D

passd(π(Wd)) · π(Wd).

With this, we can now define the revenue-passenger model formally.

Definition 11.2 (Revenue-passenger model (RPM)). Let a PTN (V,E) (Def-
inition 2.15), extended OD data (D,Wd, Gd, t

g
d, w

g
d) (Definition 11.1) as well as

potentially specific input depending on the fare strategy be given. The aim of the
revenue-passenger model (RPM) is to determine fare structures π that maximize
the revenue rev(π) and the number of passengers pass(π), where a desired fare
strategy might be required. The bi-objective model RPM hence is given by:

max rev(π)
max pass(π)
s.t. π is of a desired fare strategy

π(Wd) ∈ R≥0 for all d ∈ D.
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11.2 Flat Tariffs

Note that the assumptions wg
d ̸= wg′

d for all d ∈ D and g, g′ ∈ [Gd] with g ̸= g′

made in Definition 11.1 hold without loss of generality: If wg
d = wg′

d for some
d ∈ D and g, g′ ∈ [Gd] with g ̸= g′, then the demand groups can be merged to
one group with demand tgd + tg

′

d .
Further, we remark that

∑
d∈D Gd is linear in the input because the numbers

tgd, w
g
d are explicitly given for all demand groups (d, g) ∈ Sdem by the extended

OD data. This is, for example, relevant for the running time of the algorithms
developed in this chapter.

Because there are only finitely many demand groups and pass calculates sums
over the number of passengers tgd of (some of) these demand groups, pass attains
finitely many values. Thus, the Pareto front of RPM is finite. The whole Pareto
front of RPM can be computed with the ϵ-constraint method (see Section 2.2.1).
This is done by setting ϕ1 = rev and ϕ2 = pass. Because the number of passengers
tgd is a natural number for all demand groups (d, g) ∈ Sdem, the objective function
pass always attains integral values. In this case, by increasing ϵ with a step width
of 1, i.e., choosing ϵ2 = z2 + 1 in line 8 of Algorithm 2.1, we do not miss any
non-dominated point.

In the following, we consider RPM in more detail for flat, affine distance and
zone tariffs.

11.2 Flat Tariffs

In this section, we study the revenue-passenger model with a flat tariff (Defi-
nition 9.3) as the desired fare strategy. Because a flat tariff π with fixed price
f ∈ R≥0 assigns the same price f to all paths in the PTN, we have π(Wd) = f
for all d ∈ D. Hence, we can drop the information to which OD pair a demand
group belongs.

We define Swill := {wg
d : (d, g) ∈ Sdem} as the set of all willingness to pay

values, and let

S :=

(w, t) : w ∈ Swill, t =
∑

(d,g)∈Sdem:wg
d=w

tgd

 (11.1)

be the set of all pairs of a willingness to pay and the respective demand with
exactly this willingness to pay. In particular, we have |S| ≤ ∑

d∈D Gd, with
equality if and only if the willingness to pay is different for every demand group.

For a flat tariff π with fixed price f ∈ R≥0, the objective functions simplify to

rev(π) = f ·
∑

(w,t)∈S:
f≤w

t and pass(π) =
∑

(w,t)∈S:
f≤w

t.

Because a flat tariff π is uniquely determined by f , we write rev(f) and pass(f)
instead of rev(π) and pass(π).
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Chapter 11 Revenue-Passenger Model

0 w1 w2 w3 w4f̄

Figure 11.1: Visualization of (the proof of) Lemma 11.4. Increasing f̄ /∈ Swill to
the next higher willingness to pay.

Definition 11.3 (F-RPM). Given a PTN with extended OD data, which yields
a set S as defined in formula (11.1), the bi-objective revenue-passenger model for
flat tariffs (F-RPM) is the following:

max rev(f) = f ·
∑

(w,t)∈S:
f≤w

t

max pass(f) =
∑

(w,t)∈S:
f≤w

t

s.t. f ∈ R≥0.

We now derive a finite candidate set for F-RPM, meaning a finite superset of
the set of efficient solutions. To do this, let (w1, t1), . . . , (w|S|, t|S|) be a sorting
of S such that w1 < . . . < w|S|.

Lemma 11.4. For all efficient solutions f̄ to F-RPM, it holds that f̄ ∈ Swill.

Proof. Let f̄ be an efficient solution, and assume that f̄ /∈ Swill. First, we have
that f̄ < maxSwill: Suppose that f̄ > maxSwill, which yields the objective func-
tion values (0, 0). Then f̄ is dominated by f := maxSwill = w|S| with the objective
function values (rev(f), pass(f)) = (t|S| · w|S|, t|S|), which is a contradiction to f̄
being efficient. Hence, f̄ < maxSwill and f ′ := min{w ∈ Swill : w > f̄} is well-
defined and is the next higher price compared to f̄ that is contained in Swill (see
Figure 11.1 for an example). By definition of f ′ and because f̄ /∈ Swill, we then
have f̄ < f ′ and {(w, t) ∈ S : f̄ ≤ w} = {(w, t) ∈ S : f ′ ≤ w}. This yields
pass(f̄) = pass(f ′) and

rev(f̄) = f̄ · pass(f̄) < f ′ · pass(f̄) = rev(f ′),

which is a contradiction to f̄ being efficient.

Corollary 11.5. F-RPM is tractable, i.e., the number of non-dominated points
is polynomial in the input, namely in O(|S|).
Proof. The claim follows from Lemma 11.4 because there are at most |Swill| = |S|
different efficient solutions and hence also non-dominated points.

From Lemma 11.4, we derive Algorithm 11.1, which computes the Pareto front
in O(|S| · log(|S|)). Note that |S| ≤∑d∈D Gd and hence |S| is polynomial in the
input.
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Algorithm 11.1: Computing the set of non-dominated points for F-RPM
Input : Set S (as defined in formula (11.1)) as instance of F-RPM
Output: Set Γ of all non-dominated points

1 Sort S = {(w1, t1), . . . , (w|S|, t|S|)} such that w1 < . . . < w|S|.

2 Initialize pass←
|S|∑
s=1

ts; rev← w1 · pass; Γ← {(rev, pass)}; rev∗ ← rev.

3 for s = 2, . . . , |S| do
4 Update pass← pass− ts−1.
5 Update rev← ws · pass.
6 if rev > rev∗ then
7 Update Γ← Γ ∪ {(rev, pass)}.
8 Update rev∗ ← rev.

9 return Γ

Theorem 11.6. Algorithm 11.1 computes the set of all non-dominated points for
F-RPM in O(|S| · log(|S|)).

Proof. Correctness: By Lemma 11.4 it suffices to consider the willingness to pay
values ws ∈ Swill as fixed prices of the flat tariff. Because w1 is the unique opti-
mum with respect to the objective function pass, we have that (rev(w1), pass(w1))
is a non-dominated point and is added to Γ in line 2. In rev∗ we store the max-
imum revenue that has occurred so far. Increasing the fixed price from ws−1 to
ws reduces the number of passengers by those that have a willingness to pay of
ws−1, which are ts−1 many. Hence, after the updates in lines 4 to 5, rev and pass
are the revenue and the number of passengers for a flat tariff with fixed price ws.
Because the number of passengers is strictly decreased in every iteration, the pair
(rev, pass) is non-dominated whenever the revenue rev is larger than any previous
revenue, i.e., if rev > rev∗. Therefore, in this case, the pair is added to Γ and the
maximum revenue rev∗ is updated.

Running time: Sorting S can be done in O(|S| · log(|S|)) (see, e.g., [Cor+09]).
The initialization of pass in line 2 is executed in O(|S|), whereas all other ini-
tializations and updates are in O(1). Hence, the for-loop takes O(|S|) in total.
Overall, we obtain a running time of O(|S| · log(|S|)).

11.3 Distance Tariffs

We consider the revenue-passenger model with an affine distance tariff (Defini-
tion 9.6) as the desired fare strategy.

Definition 11.7 (D-RPM). Given a PTN with extended OD data
(D,Wd, Gd, t

g
d, w

g
d) and a (network/metric) distance function l (Definitions 9.4
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ld1 ld2 ld3

f

Lp,f

distance l

price w

Figure 11.2: Example of three OD pairs with three demand groups each. Every
demand group (d, g) is represented by a point (ld, wg

d). The line Lp,f represents
the affine distance tariff with distance price p and base amount f . Demand
groups corresponding to points marked in blue are attracted, and demand
groups corresponding to points marked in gray are not attracted.

and 9.5), the bi-objective revenue-passenger model for affine distance tariffs
(D-RPM) is the following:

max rev(π)
max pass(π)
s.t. π(Wd) = p · l(Wd) + f for all d ∈ D

p, f ∈ R≥0.

In the following, we use for all d ∈ D the shorthand notation ld := l(Wd).
Here, we also write rev(p, f) and pass(p, f) instead of rev(π) and pass(π) because
an affine distance tariff is uniquely determined by f and p.

To get an intuition and to better understand D-RPM, we consider Figure 11.2:
Three OD pairs with three demand groups each are visualized based on their
distance ld and willingness to pay wg

d as points (ld, w
g
d). An affine distance tariff

with distance price p and base amount f is drawn as a line

Lp,f = {(x, y) ∈ R2 : y = p · x+ f}

in the same figure. All demand groups whose willingness to pay is as least as
high as the price of the affine distance tariff lie above the line and are marked in
blue. These demand groups are attracted as passengers, use public transport and
contribute to the revenue. The points that lie below the line (marked in gray)
belong to demand groups with a lower willingness to pay. Hence, these demand
groups do not use public transport for the given affine distance tariff.
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We introduce some additional useful notation for p, f ∈ R≥0:

Sdem(p, f) := {(d, g) ∈ Sdem : wg
d ≥ p · ld + f}, (11.2)

which is the set of demand groups that are attracted in case of an affine distance
tariff with distance price p and base amount f , i.e., pass(p, f) =

∑
(d,g)∈Sdem(p,f) t

g
d.

Lemma 11.8. For all efficient solutions (p̄, f̄) to D-RPM, it holds that
Sdem(p̄, f̄) ̸= ∅.
Proof. Assume that Sdem(p̄, f̄) = ∅. The objective function value then is (0, 0)
and is dominated by the solution (p′, f ′) := (0, 0) with objective function val-
ues (0, T ′) with T ′ :=

∑
(d,g)∈Sdem

tgd > 0.

11.3.1 MILP Formulation

For the ϵ-constraint method (Algorithm 2.1), the following MILP formulation
with a sufficiently large constant M ∈ R may be used, which is explained below:

max
∑

(d,g)∈Sdem

tgd · πg
d (11.3a)

max
∑

(d,g)∈Sdem

tgd · ygd

s.t. p · ld + f ≤ wg
d +M · (1− ygd) for all (d, g) ∈ Sdem (11.3b)

πg
d ≤ p · ld + f for all (d, g) ∈ Sdem (11.3c)

πg
d ≤M · ygd for all (d, g) ∈ Sdem (11.3d)
ygd ∈ {0, 1} for all (d, g) ∈ Sdem

p, f, πg
d ∈ R≥0 for all (d, g) ∈ Sdem.

The variables p and f determine the distance price and the base amount of
the affine distance tariff. In any efficient solution, the binary variable ygd ∈ {0, 1}
is 1 if and only if demand group (d, g) uses public transport. Finally, the variable
πg
d stores the price that is actually paid by the demand group (d, g). The con-

straints (11.3b) ensure that ygd is set to 1 only if the price according to the affine
distance tariff does not exceed the willingness to pay, for which a sufficiently
large constant M ∈ R is necessary. We show in Lemma 11.9 that such a constant
exists and can be determined based on the input. The constraints (11.3c) limit
the price of a demand group to the price of the affine distance tariff and the con-
straints (11.3d) set the price paid by a demand group to 0 if it does not use public
transport. Together the constraints (11.3c) and (11.3d) set the price paid by a
demand group to either 0 or the distance tariff price. Because of the interaction
with the objective functions, we also have in any efficient solution that ygd = 1 if
the price according to the affine distance tariff does not exceed the willingness to
pay.
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Lemma 11.9. For MILP (11.3), the constant M ∈ R can be chosen sufficiently
large based on the input, namely the extended OD data (D,Wd, Gd, t

g
d, w

g
d) and

the distances ld for all d ∈ D.
Proof. Let (p̄, f̄) be an efficient solution to D-RPM. By Lemma 11.8, it holds
that Sdem(p̄, f̄) ̸= ∅. Therefore, f̄ ≤ fmax := max {wg

d : (d, g) ∈ Sdem} and
p̄ ≤ pmax := max

{
wg

d

ld
: (d, g) ∈ Sdem

}
. Let lmax := max{ld : d ∈ D}. Setting

M := pmax · lmax + fmax, we have for all (d, g) ∈ Sdem that

πg
d

(11.3c)
≤ p̄ · ld + f̄ ≤ pmax · lmax + fmax = M.

Therefore, M is sufficiently large for the constraints (11.3b) and (11.3d).

MILP (11.3) can be strengthened by implementing the following set of inequal-
ities

yg2d2 ≤ yg1d1 for all (d1, g1), (d2, g2) ∈ Sdem with ld1 ≤ ld2 , w
g1
d1
≥ wg2

d2
. (11.4)

The inequalities (11.4) are valid for MILP (11.3), i.e., they do not cut off
any efficient solution. To see this, let an efficient solution p̄, f̄ , (πg

d)(d,g)∈Sdem ,
(ygd)(d,g)∈Sdem be given, and let (d1, g1), (d2, g2) ∈ Sdem with ld1 ≤ ld2 and
wg1

d1
≥ wg2

d2
. If yg2d2 = 1, then

p̄ · ld1 + f̄ ≤ p̄ · ld2 + f̄
(11.3b)
≤ wg2

d2
≤ wg1

d1
,

and hence yg1d1 = 1.

11.3.2 Specialized Solution Method for D-RPM

In addition to the MILP-based ϵ-constraint method, we now develop a specialized
solution method for D-RPM by exploiting the structure of the problem. As a
basis for the algorithm, we identify a finite candidate set that contains at least
one efficient solution for every non-dominated point of D-RPM. To do so, we
say that a solution (p, f) meets the willingness to pay wg

d of the demand group
(d, g) ∈ Sdem exactly if wg

d = p · ld + f , i.e., if the line Lp,f passes through the
point (ld, wg

d). The finite candidate set is given by Theorem 11.10. In particular,
it follows from Theorem 11.10 that D-RPM is tractable (see Corollary 11.11).
Theorem 11.10. For every non-dominated point of D-RPM, there is an efficient
solution (p̄, f̄) such that one of the following holds: The willingness to pay of

• at least two demand groups (d, g), (d′, g′) ∈ Sdem with ld ̸= ld′ is met exactly,

• at least one demand group is met exactly and, additionally, p̄ = 0 or f̄ = 0.
We approach the task of proving Theorem 11.10 in two different ways: first

from an illustrative perspective by shifting and rotating lines Lp,f corresponding
to affine distance tariffs (p, f), and afterwards from a line location perspective
using a dual interpretation similar to the proof of Theorem 10.5.
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ld1 ld2 ld3

Lp′,f̂

Lp′,f ′

distance l

price w

Figure 11.3: Every efficient solution (p′, f ′) has to meet at least one willingness
to pay exactly. Otherwise, we can increase the base amount from f ′ to f̂ so
that at least one willingness to pay is met exactly. This does not change the
demand groups that are attracted but increases the revenue because a higher
price is charged.

ld ld′

wg
d

wg′

d′

Lp′,f ′

Lp̄,f̄

distance l

price w

Figure 11.4: The line Lp′,f ′ (black, solid) passes through the point (ld′ , w
g′

d′) of
one demand group (d′, g′). We fix the point (ld′ , w

g′

d′) as a center of rotation.
The line Lp′,f ′ can then be rotated clockwise to the line Lp̄,f̄ (blue, dashed),
which passes through two points corresponding to two different demand groups
(d′, g′) and (d, g).

First Proof We explain the idea of the first proof using the visualization in
Figure 11.2. For an efficient solution (p′, f ′), we first show that the line Lp′,f ′

must pass through a point (ld′ , w
g′

d′): If this was not the case, we could shift the
line upwards by increasing the base amount to f̂ until it passes through a point
corresponding to a demand group as depicted in Figure 11.3. Next, we assume
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Chapter 11 Revenue-Passenger Model

that (p′, f ′) only meets the willingness to pay wg′

d′ of exactly one demand group
(d′, g′) ∈ Sdem and that p′ ̸= 0 and f ′ ̸= 0. Then, we can rotate the line Lp′,f ′

clockwise around the point (ld′ , wg′

d′) until either the slope is zero or the line passes
through an additional point (ld, wg

d) so that all points that lie above Lp′,f ′ still lie
above the new line. In other words, this means we decrease p′ and adapt f ′ accord-
ingly to obtain a new line Lp̄,f̄ with Sdem(p̄, f̄) ⊇ Sdem(p

′, f ′) (see formula (11.2)
for the definition of Sdem) that either satisfies p̄ = 0 or passes through an addi-
tional point (ld, w

g
d) corresponding to a demand group (d, g) ∈ Sdem with ld ̸= ld′

as depicted in Figure 11.4. We show that the new solution (p̄, f̄) has the same
objective function values as (p′, f ′).

Proof of Theorem 11.10. Let (p′, f ′) be an efficient solution.

Step 1: Efficient solutions meet the willingness to pay of at least one
demand group exactly. Assume that no willingness to pay is met exactly by
(p′, f ′). By Lemma 11.8, we have Sdem(p

′, f ′) ̸= ∅, and |Sdem(p
′, f ′)| <∞. Hence,

we can set δ := min{wg
d − f ′ − p′ · ld : (d, g) ∈ Sdem(p

′, f ′)}. Because (p′, f ′) does
not meet a willingness to pay exactly by assumption, we have that δ > 0. In-
creasing f ′ to f̂ := f ′ + δ, it holds that Sdem(p

′, f ′) = Sdem
(
p′, f̂

)
, and therefore

pass(p′, f ′) = pass
(
p′, f̂

)
and

rev(p′, f ′) < rev(p′, f ′) + δ · pass(p′, f ′) = rev
(
p′, f̂

)
,

which is a contradiction to (p′, f ′) being an efficient solution.
Thus, there is at least one willingness to pay w′ := wg′

d′ of a demand group
(d′, g′) ∈ Sdem with distance l′ := ld′ that is met exactly. We consider the case that
(p′, f ′) does not meet the willingness to pay of any demand group (d, g) ∈ Sdem

with ld ̸= l′ exactly and that p′ ̸= 0 and f ′ ̸= 0. In the following steps, we show
that there is an efficient solution (p̄, f̄) with the same objective function values
pass(p̄, f̄) = pass(p′, f ′) and rev(p̄, f̄) = rev(p′, f ′) that meets the willingness to
pay of the demand group (d′, g′) exactly and either also meets the willingness to
pay of an additional demand group (d, g) ∈ Sdem with ld ̸= l′ exactly or has p̄ = 0
or f̄ = 0.

Step 2: Considering lines that meet the willingness to pay of (d′, g′).
All lines Lp,f with p, f ∈ R≥0 that pass through the point (l′, w′) are uniquely
determined by p because f = w′ − p · l′. Moreover:

0 ≤ p and 0 ≤ f = w′ − p · l′ ⇐⇒ 0 ≤ p ≤ w′

l′
. (11.5)

Note that l′ ̸= 0 by definition. We set Sdem(p) := Sdem(p, w
′ − p · l′) and consider

the function revp′ , which only takes p as input, defined by

revp′(p) :=
∑

(d,g)∈Sdem(p′)

tgd · (w′ + p · (ld − l′)︸ ︷︷ ︸
= p·ld+f

).
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11.3 Distance Tariffs

By definition, revp′ is an affine function, and it holds for all p ∈
[
0, w

′

l′

]
with

Sdem(p) = Sdem(p
′) that revp′(p) = rev(p, w′ − p · l′).

Step 3: Sdem(p) and prices that meet a willingness to pay exactly. We
define

P :=

{
p ∈

[
0,

w′

l′

]
: wg

d = w′ + p · (ld − l′) for some (d, g) ∈ Sdem with ld ̸= l′
}
,

which is the set of all feasible distance prices corresponding to a solution that
meets the willingness to pay of (d′, g′) and of an additional demand group (d, g)
with ld ̸= l′ exactly. In particular, p′ /∈ P . Because |Sdem| < ∞ and for all
(d, g) ∈ Sdem there is at most one line Lp,w′−p·l′ with a feasible distance price p that
passes through (ld′ , w

g′

d′) and (ld, w
g
d), we also have |P | <∞. Let P = {p1, . . . , pL}

be an enumeration of P with 0 ≤ p1 < . . . < pL ≤ w′

l′
.

We claim that for all i ∈ [L−1] and q1, q2 ∈ R with pi < q1 < q2 < pi+1 it holds
that Sdem(q1) = Sdem(q2). We show the claim by a proof of contradiction. Assume
that Sdem(q1) ⊊ Sdem(q2). This means that there is a (d, g) ∈ Sdem(q2) \Sdem(q1),
which yields that w′+q2·(ld−l′) ≤ wg

d < w′+q1·(ld−l′). Because p 7→ w′+p·(ld−l′)
is an affine function, there is a q3 ∈ R with p1 < q3 ≤ q2 and w′+q3 ·(ld− l′) = wg

d.
This is a contradiction because pi < q3 < pi+1 and thus q3 /∈ P . The case for
Sdem(q1) ⊋ Sdem(q2) is analogous. Therefore, Sdem(q1) = Sdem(q2), which proves
the claim.

Step 4: The slope of revp′ is 0. Assume that the slope of revp′ is not 0.
Because of p′, f ′ > 0 together with (11.5) and because of p′ /∈ P and |P | < ∞,
there are q1, q2 ∈

[
0, w

′

l′

]
with q1 < p′ < q2 and Sdem(q1) = Sdem(p

′) = Sdem(q2)

by Step 3. By definition, revp′ is an affine function, so we have that either
revp′(q1) > revp′(p′) or revp′(q2) > revp′(p′), which is a contradiction to (p′, f ′)
being an efficient solution. Hence, the slope of revp′ is 0, meaning that revp′ is
constant.

Step 5: There is an efficient solution satisfying one of the characteristics
as sought. Let p̄ := max{p ∈ P ∪ {0} : p < p′}, which exists because p′ > 0,
p′ /∈ P and |P | <∞. Assume that Sdem(p̄) ⊊ Sdem(p

′). This means that there is a
(d, g) ∈ Sdem(p

′)\Sdem(p̄) with ld ̸= ld′ . Thus w′+p′·(ld−l′) < wg
d < w′+p̄·(ld−l′),

where the first inequality holds by assumption that (p′, f ′) does not meet the
willingness to pay of any (d̂, ĝ) with ld̂ ̸= l′, and the second holds by assumption
that (d, g) /∈ Sdem(p̄, f̄). This yields that there is a p̂ ∈ R with p̄ < p̂ < p′ and
w′ + p̂ · (ld − l′) = wg

d, which is a contradiction because p̂ /∈ P by choice of p̄.
Therefore, Sdem(p

′) ⊆ Sdem(p̄). Assuming Sdem(p
′) ⊊ Sdem(p̄) yields that

pass(p′, w′ − p′ · l′) < pass(p̄, w′ − p̄ · l′) and revp′(p′) = revp′(p̄) ≤ rev(p̄) by Step 4,
which is a contradiction to (p′, f ′) being efficient. Therefore, it holds that
Sdem(p

′) = Sdem(p̄) and thus pass(p′, w′ − p′ · l′) = pass(p̄, w′ − p̄ · l′) and, again
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(d2, 1)
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price w

(a) Primal space: Points (ld, w
g
d) for four

demand groups (d, g) with d ∈ {d1, d2}
and g ∈ [2] and lines L0.5,0.5 and L0,2

of the efficient solutions

1 2 3

1

2

3

(test)

slope p

intercept f
(d1, 1)
(d1, 2)
(d2, 1)
(d2, 2)

(b) Dual space: The four points (ld, w
g
d)

with d ∈ {d1, d2} and g ∈ [2] are
transformed to four lines L−ld,w

g
d
. The

points (0.5, 0.5) and (0, 2) are the effi-
cient solutions and can be transformed
back to the lines L0.5,0.5 and L0,2 in the
primal space.

Figure 11.5: Example with two OD pairs and two demand groups per OD pair
illustrating the proof of Theorem 11.10 using the dual interpretation. For
d ∈ {d1, d2}, we set tgd := 1 if g = 1 and tgd := 2 if g = 2. The efficient solutions
are (p̄1, f̄1) = (0.5, 0.5) and (p̄2, f̄2) = (0, 2).

by Step 4, also rev(p′, f ′) = rev(p̄, w′ − p̄ · l′). Hence, (p̄, w′ − p̄ · l′) is an efficient
solution as sought.

Alternative Proof Using the Dual Interpretation Similarly to the proof of
Theorem 10.5, we can use a dual interpretation to obtain the result of Theo-
rem 11.10, which we restate here for convenience. For better readability indepen-
dent of the proof of Theorem 10.5, we also repeat parts of the proof introducing
the transformation and the dual space.

Theorem 11.10. For every non-dominated point of D-RPM, there is an efficient
solution (p̄, f̄) such that one of the following holds: The willingness to pay of

• at least two demand groups (d, g), (d′, g′) ∈ Sdem with ld ̸= ld′ is met exactly,

• at least one demand group is met exactly and, additionally, p̄ = 0 or f̄ = 0.

Alternative proof of Theorem 11.10. We first introduce some notation (Steps 1
and 2) that is then used to prove that there is an efficient solution as sought
(Step 3).

Step 1: Introducing the transformation and the dual space. For this
proof, we adopt the dual interpretation from [Sch99a, Sec. 2.2]. We consider the
transformation T that maps a point (l, w) ∈ R2 to a line T ((l, w)) := L−l,w and a
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11.3 Distance Tariffs

non-vertical line Lp,f to a point T (Lp,f ) := (p, f). The space of the transformed
points and lines is called dual space. We call the original space the primal space.
An example is given in Figure 11.5.

The vertical deviation between a point (l, w) and a line Lp,f in the primal space
is the same as the vertical deviation between the transformed line L−l,w and the
transformed point (p, f) in the dual space because w− (p · l+ f) = w− f −p · l =
(−l · p + w) − f . Hence, a demand group (d, g) ∈ Sdem is attracted in an affine
distance tariff with distance price p and base amount f if the point (ld, w

g
d) is

on or above the line Lp,f in the primal space, or equivalently if the line L−ld,w
g
d

passes through the point (p, f) or is above it in the dual space.

Step 2: Considering the division of the dual space into cells. The feasible
space R≥0×R≥0 in the dual space is divided into two-dimensional polyhedra (cells)
by the lines L−ld,w

g
d

with (d, g) ∈ Sdem (see Figure 11.5(b)). Let C denote the set
of all cells. For all C ∈ C and (p, f) ∈ C, we define:

B(C) := {(d, g) ∈ Sdem : wg
d ≤ p · ld + f for all (p, f) ∈ C},

b(C) :=
{
(p, f) ∈ C : f ≤ f̂ for all

(
p, f̂

)
∈ C

}
∩

⋃
(d,g)∈B(C)

L−ld,w
g
d
,

Sdem(C) := {(d, g) ∈ Sdem : wg
d ≥ p · ld + f for all (p, f) ∈ C},

pass(C) :=
∑

(d,g)∈Sdem(C)

tgd,

revC(p, f) :=
∑

(d,g)∈Sdem(C)

tgd · (p · ld + f),

where

• B(C) is the set of all demand groups whose willingness to pay is at most the
price of the affine distance tariff with distance price p and base amount f
for all (p, f) ∈ C,

• b(C) describes the bottom of the cell C intersected with the union of all sup-
porting hyperplanes L−ld,w

g
d

of C with (d, g) ∈ B(C) (i.e., the hyperplanes
at the bottom of C),

• Sdem(C) is the set of all demand groups whose willingness to pay is at least
the price of the affine distance tariff with distance price p and base amount f
for all (p, f) ∈ C,

• pass(C) is the total number of passenger of demand groups in Sdem(C) and

• revC(p, f) is the revenue generated by the demand groups in Sdem(C) for
the affine distance tariff with distance price p and base amount f .
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Chapter 11 Revenue-Passenger Model

Note that B(C)∪Sdem(C) = Sdem and B(C)∩Sdem(C) = ∅ for all C ∈ C. Further,
we have for all C ∈ C and (p′, f ′) ∈ C \ b(C) and (p, f) ∈ b(C) that

Sdem(p
′, f ′) = Sdem(C), Sdem(p, f) ⊋ Sdem(C),

pass(p′, f ′) = pass(C), pass(p, f) > pass(C), (11.6)
rev(p′, f ′) = revC(p′, f ′), rev(p, f) > revC(p, f). (11.7)

Step 3: There is an efficient solution satisfying one of the characteristics
of the claim. Let (p′, f ′) ∈ R≥0×R≥0 with (p′, f ′) ̸= (0, 0). There is a cell C ∈ C
with (p, f) ∈ C \ b(C) because the sets C \ b(C) partition the space. We consider
the single-objective optimization problem

max revC(p, f)

s.t. (p, f) ∈ C,
(11.8)

which is feasible, the objective function is linear and the optimal objective func-
tion value is finite (note that the unbounded cell C ′ on the upper right has
Sdem(C

′) = ∅, so revC′(p, f) = 0 for all (p, f) ∈ C ′). By the fundamental theorem
of linear programming, there is an optimal solution (p̄, f̄) to problem (11.8) that
is an extreme point of C.

Case 1: If (p̄, f̄) ∈ C \ b(C), then pass(p̄, f̄) = pass(p′, f ′) by formula (11.6),
and rev(p̄, f̄) = revC(p̄, f̄) ≥ revC(p′, f ′) = rev(p′, f ′) by formula (11.7) and be-
cause (p̄, f̄) is an optimal solution to problem (11.8).

Case 2: If (p̄, f̄) ∈ b(C), then pass(p̄, f̄) > pass(p′, f ′) by formula (11.6), and
rev(p̄, f̄) ≥ revC(p̄, f̄) ≥ revC(p′, f ′) = rev(p′, f ′) by formula (11.7) and because
(p̄, f̄) is an optimal solution to problem (11.8).

In both cases, the objective function values of (p̄, f̄) are both at least as good
as the objective function values of (p′, f ′). This shows that there is always an
efficient solution that is an extreme point of a cell, which is either the intersection
of two lines, of a line with an axis or the origin.

Assume that (0, 0) is efficient, then there is a demand group (d, g) ∈ Sdem with
wg

d = 0 because otherwise (0, 0) would be dominated by the solution (0, w̄) with
w̄ := min{wg

d : (d, g) ∈ Sdem} > 0, which still attracts all passengers but generates
a positive revenue. Hence, (0, 0) meets the willingness to pay of one demand
group, and the case that the extreme point is the origin is contained in the case
of the intersection of a line with an axis.

Interpreting the extreme point solution (p̄, f̄) for D-RPM, this means that one
of the following holds for the affine distance tariff with distance price p̄ and base
amount f̄ :

• the willingness to pay of two demand groups (d, g), (d′, g′) ∈ Sdem with
ld ̸= ld′ is met exactly (if (p̄, f̄) is the intersection L−ld,w

g
d
∩ L−ld′ ,w

g′
d′

of two
lines in the dual space, hence ld ̸= ld′),

126



11.3 Distance Tariffs

• the willingness to pay of one demand group (d, g) is met exactly and p̄ = 0
(if (p̄, f̄) is the intersection of L−ld,w

g
d

with the f -axis in the dual space),

• the willingness to pay of one demand group (d, g) is met exactly and f̄ = 0
(if (p̄, f̄) is the intersection of L−ld,w

g
d

with the p-axis in the dual space).

Corollary 11.11. D-RPM is tractable, i.e., the number of non-dominated points
is polynomial in the input, namely in O((∑d∈D Gd)

2).

Proof. The claim follows from Theorem 11.10 because there are at most
∑

d∈D Gd

non-dominated points for efficient solutions (p̄, f̄) with p̄ = 0 and as many with
f̄ = 0, and at most (

∑
d∈D Gd)

2 non-dominated points that meet the willingness
to pay of two demand groups exactly.

Based on Theorem 11.10, we can now formulate Algorithm 11.2 to solve
D-RPM.

Theorem 11.12. Algorithm 11.2 computes the set of all non-dominated points
of D-RPM in O((∑d∈D Gd)

3).

Proof. Correctness: Theorem 11.10 gives a characterization of efficient solutions
from which all non-dominated points can be determined. In lines 2 to 5 of Al-
gorithm 11.2, a superset of all non-dominated points with an efficient solution
(p, f) with p = 0 is determined, in lines 6 to 9 a superset of all those with f = 0
and in lines 10 to 15 of all those that meet the willingness to pay of at least two
groups exactly are computed. Combinations of demand groups with the same
distance are omitted because this would yield an infeasible vertical line. There-
fore, Γ′ contains all non-dominated points. In line 16, all dominated solutions are
removed and, hence, Γ is the set of all non-dominated points.

Running time: The computations in lines 2 to 9 are in O((∑d∈D Gd)
2). In

lines 10 to 15, we iterate over the combinations of two demand groups and again
iterate over the demand groups for determining the revenue and the number of
passengers in line 15. This is done in O((∑d∈D Gd)

3). Filtering Γ′ for non-
dominated points in line 16 is done in O((∑d∈D Gd)

2 · log(∑d∈D Gd)). Hence, in
total, the algorithm is in O((∑d∈D Gd)

3).

Remark 11.13. Note that the running time is significantly influenced by the
number of OD pairs with the same distance because the for-loop in line 10 of
Algorithm 11.2 is only performed for OD pairs d′ with a larger distance than that
of OD pair d, but not for those with the same distance. Hence, the loops over the
demand groups and the computation of the objective function value are omitted
for OD pair combinations with the same distance.
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Algorithm 11.2: Computing the set of non-dominated points for D-RPM
Input : Extended OD data (D,Wd, Gd, t

g
d, w

g
d) and a distance ld ∈ R>0

for all d ∈ D as instance of D-RPM
Output: Set Γ of all non-dominated points

1 Initialize Γ′ ← ∅.
// Determine points with a solution with p = 0. This can also

be done with Algorithm 11.1.
2 for d ∈ D do
3 for g ∈ [Gd] do
4 Set f ← wg

d.
5 Update Γ′ ← Γ′ ∪ {(rev(0, f), pass(0, f))}.

// Determine points with a solution with f = 0.
6 for d ∈ D do
7 for g ∈ [Gd] do
8 Set p← wg

d

ld
.

9 Update Γ′ ← Γ′ ∪ {(rev(p, 0), pass(p, 0))}.

// Determine points with a solution that meets the
willingness to pay of two groups exactly.

10 for d, d′ ∈ D with ld < ld′ do
11 for g ∈ [Gd], g′ ∈ [Gd′ ] do

12 Set p← wg′
d′−wg

d

ld′−ld
.

13 Set f ← wg
d − p · ld.

14 if f > 0 and p > 0 then
15 Update Γ′ ← Γ′ ∪ {(rev(p, f), pass(p, f))}.

// Filter for non-dominated points.
16 Apply Algorithm 2.2 to filter Γ′ for non-dominated points and let Γ be its

result.
17 return Γ

11.4 Computational Experiments

We perform computational experiments for F-RPM and D-RPM on artificial in-
stances based on the datasets grid and mandl from the open source software
library LinTim [Sch+; Sch+24] in order to compare the running times of the
different solution methods and to learn more about the Pareto fronts. The PTNs
provided for each of the datasets (see Figure B.1 in Appendix B) can be used to
compute network and beeline distances between any pair of stations. The distri-
bution of the demand with respect to the network and beeline distances is shown
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Parameter Value Explanation

demand
groups G ∈ {1, 3, 5} number of groups Gd = G for all OD pairs d ∈ D

demand
split

equal ∀d ∈ D, ∀g ∈ [G] : tgd =
⌈
td
G

⌉
random ∀d ∈ D, ∀g ∈ [G] : tgd ∈ [td] random

with
∑G

g=1 t
g
d = td

increasing ∀d ∈ D, ∀g ∈ {2, . . . , G} : tgd =
⌈

td
2G+1−g

⌉
and t1d =

⌊
td

2G−1

⌋
decreasing ∀d ∈ D, ∀g ∈ [G− 1] : tgd =

⌈
td
2g

⌉
and tGd =

⌊
td

2G−1

⌋
willingness
to pay

w-flat
w-network
w-beeline

fare strategy used to generate willingness to pay

tariff
parameters

A
B
C

∀g ∈ [G] : fg = g, pg = 0.2
∀g ∈ [G] : fg = g, pg = 0.6− 0.1g
∀g ∈ [G] : fg = 1, pg = 0.1g

Table 11.1: Parameters for generating artificial instances.

in Figure 11.6. Data set mandl consists of 172 OD pairs that have 72 different
network distances and 84 beeline distances. While dataset grid even has 567
OD pairs, these belong only to 8 network distances and 14 beeline distances. An
overview of the parameters for generating the artificial instances is given in Ta-
ble 11.1: The demand data provided in LinTim is split into G ∈ {1, 3, 5} demand
groups to create the input demand data of the revenue-passenger model in four
different ways (equal, random, increasing, decreasing). The willingness
to pay for each group is generated using a flat tariff (w-flat) or an affine distance
tariff, where the distance is derived from the network distance (w-network) or
the Euclidean distance (w-beeline). The parameters fg and pg, which deter-
mine the tariff for generating the willingness to pay of demand group g ∈ [G],
are chosen from three options (A, B, C) for affine distance tariffs and one op-
tion (∀g ∈ [G] : fg = g) for flat tariffs. In total, we obtain 84 instances per
dataset. The instances are solved for F-RPM and D-RPM, determining flat,
network distance and beeline distance tariffs. As solution methods, we apply
Algorithms 11.1 and 11.2, respectively (which we call ALGO). For D-RPM, we
additionally evaluate the running time of the ϵ-constraint method (Algorithm 2.1)
with MILP (11.3) (which we call MILP1) and with MILP (11.3) including the
additional constraints (11.4) (which we call MILP2). The solution methods are
implemented in Python, the MILP-based approaches use Gurobi 9.1.2 [Gur24] for
solving the MILPs, and the experiments are run on a machine with an Intel(R)
Core(TM) i5-10310U and 16 GB of RAM.
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Figure 11.6: Demand data with respect to the different PTNs. The size of a point
reflects on the demand. Above and on the right hand side of the plots, the
demand with the same network or beeline distance, respectively, is aggregated.
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Figure 11.7: Running times in seconds for computing the complete Pareto fronts
with Algorithm 11.1 for F-RPM and with Algorithm 11.2 for network and
beeline D-RPM.

Running Time The running times of Algorithms 11.1 and 11.2 are depicted in
Figure 11.7. According to Theorems 11.6 and 11.12 the running time of Algo-
rithm 11.1 is quasilinear in the total number of demand groups while the running
time of Algorithm 11.2 is cubic. This can be observed in the running times:
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Figure 11.8: Running time and size of the Pareto front per instance for network
D-RPM with on dataset grid. The order of the instances is given by iterat-
ing over the demand splits [equal, random, increasing, decreasing] in
an outer loop and over the willingness to pay options [w-flat, w-network
(A, B, C), w-beeline (A, B, C)] in an inner loop. Note that for G = 1, all
demand splits yield the same demand t1d = td.
Figure 11.8(a) shows the running time per instance in seconds of network D-
RPM with Algorithm 11.2 (ALGO) and with the MILP-based method (MILP)
on dataset grid with a logarithmic scale. Each marker represents the running
time for computing the Pareto front of a single instance. The time limit for
solving each MILP within the ϵ-constraint method is set to 300 seconds. If a
MILP could not be solved to optimality within this time limit but a feasible
solution was found, then we continue with this feasible solution and label the
instance as “MILP, not solved optimally”. If no feasible solution is found, the
procedure terminates and we label the instance as “MILP, no feasible solution
within time limit” and depict it in this figure with the maximum running time
that occurred for any instance.
Figure 11.8(b) shows the size of the Pareto front per instance. A darker color
indicates a larger number of non-dominated points.
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ALGO MILP1 MILP2

G mean min max mean min max mean min max

1 0.56 0.51 0.62 0.23 0.20 0.25 2.16 1.58 4.54
3 1.65 1.26 2.07 111.70 0.51 725.24 33.68 9.59 160.47
5 3.53 2.69 4.91 630.27 0.91 1793.72 277.91 26.11 799.46

Table 11.2: Mean, minimum and maximum running times in seconds for solving
network D-RPM on the grid instances with Algorithm 11.2 (ALGO) and
with the MILP-based method (MILP1 and MILP2). Only the instances that
were solved optimally are considered.

F-RPM can be solved in 0.004/0.02/0.04 seconds for each grid instance and
in 0.01/0.03/0.06 seconds for each mandl instance with 1/3/5 demand groups,
while the running times of D-RPM are 0.67/2.31/6.78 seconds for grid and
0.6/5.04/17.24 seconds for mandl with 1/3/5 demand groups, respectively.

Figure 11.6 shows that the input data of grid is very structured and that only
a few different distances occur, especially for the network distance. As suggested
in Remark 11.13, this affects the running time, which is smaller for grid than
for mandl, even though grid has roughly three times as many OD pairs (see
Figure 11.7).

Figure 11.8(a) and Table 11.2 show the running times of ALGO, MILP1 and
MILP2 for network D-RPM. For many instances, the running times of ALGO
are orders of magnitude smaller compared to the running times of the ϵ-constraint
based approaches of MILP1 and MILP2. For MILP1 (MILP2), for 6 (2) of the
28 instances of grid with 5 demand groups, it was in some iteration not possible
to even determine any feasible solution within the time limit. With 3 demand
groups this still happened for 1 (1) of the 28 instances. In case of 5 demand
groups with MILP1, also 3 instances terminated with a feasible but not necessarily
optimal solution. In Figure 11.8(a), we see that the running time of ALGO only
shows small deviations for instances with the same number of demand groups.
In comparison, the running times of MILP1 and MILP2 depend more on the
specific instances and are often orders of magnitude higher than for ALGO. One
difference between the instances is the size of their Pareto fronts, which is shown in
Figure 11.8(b). MILP1 always performs best and MILP2 always performs worst
for instances with only one non-dominated point. For these instances, the buildup
of the additional constraints in MILP2 slows down the running time compared
to MILP1, whereas MILP2 is faster for all but 6 instances with at least two non-
dominated points. While the ϵ-constraint method benefits from a small size of the
Pareto front because only a few iterations have to be carried out, ALGO is not
affected by the size of the Pareto front but only by the number of demand groups.
The specialized solution method ALGO demonstrates a consistent running time
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for all instances with the same number of demand groups and a better overall
scaling than MILP1 and MILP2.

Size of the Pareto Front Figure 11.9 shows the number of points on the Pareto
front for the different options for the demand splits and for the generation of the
willingness to pay. We can observe two main effects:

First, a decreasing demand split leads to a small size of the Pareto front.
This is because the price increase cannot compensate for losing large demand
groups with a low willingness to pay. We see the reverse effect for increasing,
which leads to the most points on the Pareto front because losing only small
demand groups with a low willingness to pay is compensated in the revenue by
the increased price.

Second, if the fare strategy of the input tariff (for generating the willingness
to pay) and the output tariff coincide, the size of the Pareto front is smaller. In
this case, an output tariff might be chosen exactly as the willingness to pay of
one demand group level, which is in general not possible if they differ.

Structure of the Pareto Front, Efficient Tariffs and Input Data Fig-
ures 11.10 to 11.13 show the Pareto fronts in (a) and corresponding efficient
solutions in (b) and (c) for selected parameter settings for the mandl instances.
Additionally, (b) and (c) show the demand as points (ld, w

g
d) weighted with the

number of potential passengers tgd. The respective figures for grid are given in
Figures B.2 to B.5 in Appendix B. In these cases, we can see well that coinciding
input and output tariffs lead to a small sized Pareto front that even dominates
many of the points of the other tariff types. For w-beeline, the Pareto front
of beeline D-RPM dominates the Pareto front of network D-RPM, and vice
versa for w-network. Particularly in Figure 11.10, it is visible that the distinct
points on the Pareto front belong to solutions that are a flat tariff. Only in
this setting with the willingness to pay being generated by w-flat, we obtain a
Pareto front for F-RPM that is not dominated by the Pareto fronts of beeline
and network D-RPM. This is however not surprising because a flat tariff is a
special case of a distance tariff.

Moreover, in many cases, the efficient tariffs are located on the lower levels
of the demand groups, meaning that it is not beneficial to increase the price to
the highest willingness to pay. Figure 11.10 constitutes an exception, where it is
an efficient solution to choose a flat tariff with a fixed price equal to the second
highest willingness to pay. However, we also see here that the highest willingness
to pay does not lead to an efficient solution.
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Figure 11.9: Size of the Pareto front dependent on the demand split and the tariff
used to generate the willingness to pay.
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Figure 11.10: Instance of mandl with parameters 5/increasing/w-flat/A.
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Figure 11.11: Instance of mandl with parameters 5/random/w-network/A.
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Figure 11.12: Instance of mandl with parameters 5/decreasing/w-beeline/B.
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Figure 11.13: Instance of mandl with parameters 5/equal/w-beeline/C.
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11.5 Zone Tariffs

Finally, we consider the revenue-passenger model with a zone tariff (Defini-
tion 9.7) as the desired fare strategy. The aim is to determine zone tariffs,
meaning zone partitions Z and price functions P that maximize the objective
functions rev and pass. Note that in [OB17], the single-objective problem of find-
ing a zone tariff that maximizes the revenue with connected zones or ring zones
is examined without explicitly considering the total number of passengers. Here,
we study a bi-objective setting.

Definition 11.14 (Z-RPM). Given a PTN (V,E) with extended OD data
(D,Wd, Gd, t

g
d, w

g
d) and an upper bound N ∈ N≥1 on the number of zones, the

bi-objective revenue-passenger model for zone tariffs (Z-RPM) is the following:

max rev(π)
max pass(π)
s.t. π is a zone tariff with a zone partition Z and a price list P,

Z consists of at most N zones,
[optional:] requiring connected zones,
[optional:] requiring the no-elongation property,
[optional:] requiring the no-stopover property.

Remark 10.8 also applies to Z-RPM, so we may consider price functions P that
attain a finite number of different values and can hence be represented by a price
list (Definition 9.12).

Lemma 11.15 shows that we can assume that the prices P (k) are bounded from
above by the maximum of all willingness to pay values.

Lemma 11.15. For every non-dominated point of Z-RPM with/without requir-
ing the no-elongation property and with/without requiring the no-stopover prop-
erty, there is a corresponding efficient solution π with a zone partition Z and a
price function P with

P (k) ≤ r̄ := max{wg
d : d ∈ D, g ∈ [Gd]}

for all k ∈ N≥1.

Proof. Let π′ w.r.t. a zone partition Z and a price function P ′ be an efficient
solution to Z-RPM corresponding to a non-dominated point (pass, rev). Suppose
that there is some k ∈ N≥1 with P ′(k) > r̄. We define a new price function
P : N≥1 → R≥0 by

P (k) :=

{
P ′(k) if P ′(k) ≤ r̄,

r̄ if P ′(k) > r̄
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11.5 Zone Tariffs

for all k ∈ N≥1. Let π be the zone tariff w.r.t. Z, P . By Lemma 9.10, we have that
π satisfies the no-elongation property and the no-stopover property if π′ satisfies
them. In order to prove the claim, we show that π has the same objective function
values as π′, namely (pass, rev). Because the zone partition Z is fixed, we can use
the notation from Definition 9.11.

Let k ∈ N≥1. Assume that P ′(k) > r̄ and that there is some d ∈ Dk and
g ∈ [Gd] with wg

d = r̄. Then we have passd(P ′(k)) = 0 < tgd = passd(P (k)) for the
number of passengers and 0 · P ′(k) = 0 ≤ tgd · P (k) for the revenue generated by
OD pair d. Note that all other demand groups g′ ∈ [Gd] \ {g} are not attracted
because by Definition 11.1, we have wg′

d ̸= wg
d = r̄ and hence wg′

d < wg
d. This

means that the objective function values improve when changing P ′(k) to P (k).
Thus, π′ dominates π, which is a contradiction to π being efficient. Therefore, we
have P ′(k) > r̄ and wg

d < r̄ for all d ∈ Dk and g ∈ [Gd], or we have P ′(k) ≤ r̄. In
this case, changing P ′(k) to P (k) does not affect the objective function values,
and the objective function values of π and π′ coincide, which means that π w.r.t.
Z, P is an efficient solution with P (k) ≤ r̄ for all k ∈ N≥1.

In Lemma 11.16, we show how Z-RPM is related to F-RPM.

Lemma 11.16. Let a zone tariff π w.r.t. a zone partition Z and a price func-
tion P be an efficient solution to Z-RPM without requiring the no-elongation prop-
erty and without requiring the no-stopover property, and let Dk for all k ∈ [K]
be derived from Z (see Definition 9.11). Then it holds for all k ∈ [K] with
Dk ̸= ∅ that P (k) is an efficient solution to F-RPM with the extended OD data
(Dk,Wd, Gd, t

g
d, w

g
d) as input. In particular, P (k) ∈ {wg

d : d ∈ Dk, g ∈ [Gd]}.

Proof. Assume that P (k′) for some k′ ∈ [K] with Dk′ ̸= ∅ is not an efficient
solution to F-RPM. Then there is another fixed price f ∈ R≥0 that dominates
P (k′) regarding Z-RPM, i.e., f yields a higher number of passengers or a higher
revenue for the OD pairs in Dk′ . Therefore, for the zone tariff π′ w.r.t. Z and P ′

with P ′(k′) := f and P ′(k) := P (k) for k ∈ N≥1 \ {k′}, we have rev(π′) ≥ rev(π)
and pass(π′) ≥ pass(π) with one inequality holding strictly. This means that π′

dominates π, which is a contradiction to π being an efficient solution.

For the ϵ-constraint method (Section 2.2.1), the following MILP, which is ex-
plained below, can be used with r̄ := max{wg

d : (d, g) ∈ Sdem}:
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max
∑

(d,g)∈Sdem

tgd · πg
d

max
∑

(d,g)∈Sdem

tgd · ygd

s.t. constraints (10.6) to (10.13)
πd ≤ wg

d + r̄ · (1− ygd) for all (d, g) ∈ Sdem (11.9a)
πg
d ≤ πd for all (d, g) ∈ Sdem (11.9b)

πg
d ≤ ygd · r̄ for all (d, g) ∈ Sdem (11.9c)

πd, pk ≤ r̄ for all (d, g) ∈ Sdem, k ∈ [K] (11.9d)
ygd ∈ {0, 1} for all (d, g) ∈ Sdem

πg
d ∈ R≥0 for all (d, g) ∈ Sdem

The constraints (10.6) to (10.13) from Section 10.4.3 for determining a zone
partition and for setting the values pk of the price list and the prices πd of the OD
pairs can be adopted. For Z-RPM, we add a continuous variable πg

d ∈ R≥0 that
specifies the price paid by a demand group (d, g) ∈ Sdem with πg

d = πd if πd ≤ wg
d

and πg
d = 0 otherwise. This relation is ensured by the binary variable ygd ∈ {0, 1}

with ygd = 1 if πd ≤ wg
d, and ygd = 0 otherwise. To see this, we consider a demand

group (d, g) ∈ Sdem:

• If ygd = 1, constraint (11.9a) requires πd ≤ wg
d, constraint (11.9c) is πg

d ≤ r̄
and redundant because πg

d ≤ πd ≤ r̄, and the objective function for the
revenue is maximized by setting πg

d = πd.

• If ygd = 0, constraint (11.9a) becomes redundant with πd ≤ wg
d + r̄ and

constraint (11.9c) enforces πg
d = 0.

Note that, if ckd = 0, the constraints (10.10) (price assignment) also reduce to
the redundant constraints πd ≤ pk + r̄ and pk ≤ πd + r̄. By Lemma 11.15, the
restrictions πd, pk ≤ r̄ in constraints (11.9d) are valid in the sense that the MILP
admits at least one feasible efficient solution for each non-dominated point.

The following constraints can be added to strengthen the formulation:

yg1d ≤ yg2d for all d ∈ D, g1, g2 ∈ [Gd] with wg1
d ≤ wg2

d .

These are valid because, if yg1d = 1, we have πd ≤ wg1
d ≤ wg2

d and hence also
yg2d = 1.

Price-Setting Subproblem In addition to Z-RPM, which determines zones and
prices, we also consider the price-setting subproblem of Z-RPM. This means that
we let a zone partition Z be given and only optimize the price function P . Using
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the notation of Definition 9.11 and Remark 10.8, the price-setting subproblem of
Z-RPM takes extended OD data (D,Wd, Gd, t

g
d, w

g
d) and a partition D1, . . . , DK

of D as input and searches for a price list p = (p1, . . . , pK), where K is the
maximum number of zones traversed by an OD pair and Dk with k ∈ [K] contains
all OD pairs d ∈ D with σ(Wd) = k for the zone partition Z. Here, we consider
the price-setting subproblem without requiring the no-stopover property, so it is
only important for determining the sets Dk with k ∈ [K] whether multiple or
single counting is considered. Because the zone partition is fixed in the price-
setting subproblem, we write rev(p) and pass(p) instead of rev(π) and pass(π).

11.5.1 Complexity and Intractability

In [OB17, Thm. 1], it has been shown that the single-objective problem maximiz-
ing the revenue (without explicitly considering the total number of passengers)
with single counting, requiring monotonically increasing prices and with con-
nected or ring zones is NP-hard, even on star graphs. In this section, we show
that the canonical decision problem of Z-RPM is NP-complete for the specifi-
cations stated in Theorem 11.17. Also the canonical decision problem of the
price-setting subproblem of Z-RPM is NP-hard, which is surprising because the
price-setting subproblem of Z-FDM is polynomially solvable (see Table 10.3), and
the price-setting subproblem in [OB17, Thm. 4] is polynomially solvable as well.
Moreover, we show that Z-RPM and the price-setting subproblem of Z-RPM are
intractable.

Theorem 11.17. The canonical decision problem of Z-RPM is NP-complete

• with multiple or single counting,

• with connected or arbitrary zones,

• without requiring the no-elongation property,

• without requiring the no-stopover property,

• even if the graph is linear and Gd = 2 for all d ∈ D.

Proof. In the canonical decision problem of Z-RPM, we denote the lower bounds
on the objective function values by rev and pass, respectively.

Let a certificate Z = {Z1, . . . , ZL}, P with L ≤ N be given. We can check in
polynomial time:

•
⋃

i∈[L] Zi = V and Zi ∩ Zj = ∅ and Zi ̸= ∅ for all i, j ∈ [L] with i ̸= j,

•
∑

(d,g)∈Sdem:
P (σ(Wd))≤wg

d

tgd ≥ pass,
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•
∑

(d,g)∈Sdem:
P (σ(Wd))≤wg

d

tgd · P (σ(Wd)) ≥ rev,

• connectedness of G[Zi] for all i ∈ [L].

Hence, the problem is in NP.
We use a reduction from Partition (Problem 2.14). Given an instance

A = {a1, . . . , aK} of Partition, we construct an instance of Z-RPM. Consider
a linear graph (V,E) with V := {v1, . . . , vK+1} and E := {{vi, vi+1} : i ∈ [K]},
and set N := K + 1 = |V |. Set D := {d1, . . . , dK} with dk := (v1, vk+1) for all
k ∈ [K]. The paths Wd for d ∈ D are the unique simple paths in the linear graph
(V,E). We set Gd := 2 for all d ∈ D and

t1dk := ak, w1
dk

:=
1

ak + 1
,

t2dk := 1, w2
dk

:= ak + 1.

Finally, we define constants rev := pass := K + 1
2

∑
a∈A a. We show that there is

a solution A′ to Partition if and only if there is a solution Z, P to the Z-RPM
with lower bounds rev and pass on the objective function values.

For the first direction, let A′ ⊆ A be a solution to Partition. We define the
zone partition Z := {Z1, . . . , ZK} by Z1 := {v1, v2} and Zk := {vk+1} for all
k ∈ {2, . . . , K}. This yields Dk = {dk} for all k ∈ [K], and the prices of the OD
pairs can be chosen independently. For all k ∈ [K], we set

pk :=

{
w1

dk
if ak ∈ A′,

w2
dk

if ak ∈ A \ A′.

and let the price function P be given by the price list p = (p1, . . . , pK) (Defini-
tion 9.12). Then the zone tariff π w.r.t. Z, P satisfies

pass(π) =
∑
k∈[K]

passdk(pk) =
∑
k∈[K]:
ak∈A′

(
t1dk + t2dk

)
+

∑
k∈[k]:

ak∈A\A′

t2dk

=
∑
a∈A′

(a+ 1) +
∑

a∈A\A′

1 = K +
∑
a∈A′

a = K +
1

2

∑
a∈A

a = pass,

rev(π) =
∑
k∈[K]

passdk(pk) · pk =
∑
k∈[K]:
ak∈A′

(t1dk + t2dk)w
1
dk

+
∑
k∈[K]:

ak∈A\A′

t2dkw
2
dk

=
∑
a∈A′

(a+ 1) · 1

a+ 1
+
∑

a∈A\A′

1 · (a+ 1) = K +
∑

a∈A\A′

a

= K +
1

2

∑
a∈A

a = rev.
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v1 v2 v3 v4 . . . vK+1

Figure 11.14: Construction of the PTN and the OD pairs in the proof of Theo-
rems 11.17 and 11.19.

For the other direction, let a zone tariff π w.r.t. a zone partition Z and a price
function P be a solution to Z-RPM. We set

A′ := {ak : k ∈ [K] with P (σ(Wdk)) ≤ w1
dk
}.

Then it holds that∑
a∈A′

a = −K +
∑
a∈A′

(a+ 1) +
∑

a∈A\A′

1
(⋆)
= −K +

∑
k∈[K]:
ak∈A′

(t1dk + t2dk) +
∑
k∈[K]:

ak∈A\A′

t2dk

≥ −K + pass(π) ≥ −K + pass = −K +K +
1

2

∑
a∈A

a =
1

2

∑
a∈A

a,

and∑
a∈A\A′

a = −K +
∑
a∈A

(a+ 1) · 1

a+ 1
+
∑

a∈A\A′

1 · (a+ 1)

(⋆)
= −K +

∑
k∈[K]:
ak∈A′

(t1dk + t2dk)w
1
dk

+
∑
k∈[K]:

ak∈A\A′

t2dkw
2
dk

≥ −K + rev(π) ≥ −K + rev = −K +K +
1

2

∑
a∈A

a =
1

2

∑
a∈A

a,

where we first add a zero, namely 0 = −K+
∑

a∈A′ 1+
∑

a∈A\A′ 1, and then both
equalities (⋆) hold by choice of tgd for (d, g) ∈ Sdem. Finally, both formulas hold
with equality because

∑
a∈A′ a+

∑
a∈A\A′ a =

∑
a∈A a. Hence, A′ is a solution to

Partition.
Note that the proof does not differentiate between multiple or single counting.

The constructed zone partition in the first direction is connected, thus the proof
works for arbitrary zones as well as with the requirement of connected zones. By
choice of the willingness to pay values of the demand groups, the no-elongation
property and the no-stopover property will in most cases not be satisfied.
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Corollary 11.18. The price-setting subproblem of Z-RPM with multiple or sin-
gle counting and without requiring the no-elongation property and without requir-
ing the no-stopover property is NP-hard, even if the graph is linear, Gd = 2 for
all d ∈ D and |Dk| = 1 for all k ∈ [K].

Proof. The claim follows from the proof of Theorem 11.17 by fixing the zone
partition Z := {Z1, . . . , ZK} with Z1 := {v1, v2} and Zk := {vk+1} for all
k ∈ {2, . . . , K − 1} beforehand.

In contrast to the revenue-passenger model for flat and affine distance tariffs,
Z-RPM and its price-setting subproblem are intractable (see Section 2.3).

Theorem 11.19. Z-RPM is intractable

• with multiple or single counting,

• with connected or arbitrary zones,

• without requiring the no-elongation property,

• without requiring the no-stopover property,

• even if the graph is linear and Gd = 2 for all d ∈ D.

Proof. We present an instance of Z-RPM such that there are exponentially many
non-dominated points. Consider a linear graph (V,E) with V := {v1, . . . , vK+1}
and E := {{vi, vi+1} : i ∈ [K]}. Set N := K + 1 = |V |. Let D := {d0, . . . , dK−1}
with dk := (v1, vk+2) for all k ∈ {0, . . . , K − 1}. The paths Wd for d ∈ D
are the unique simple paths in the linear graph (V,E). Let Gd = 2 for all
d ∈ D. We define the numbers of passengers and the willingness to pay for
all k ∈ {0, . . . , K − 1} by t1dk := t2dk := 22k and w1

dk
:= 1 and w2

dk
:= 3. For

this input, we choose the zone partition Z := {Z1, . . . , ZK} with Z1 := {v1, v2}
and Zk := {vk+1} for all k ∈ {2, . . . , K − 1}. This yields Dk = {dk−1} for all
k ∈ [K], and the prices of the OD pairs can be chosen independently. Therefore,
in any zone tariff with zone partition Z ′ and a price list P ′, we can replace Z ′

by Z and P ′ by P with P (σ(Wd)) := P ′(σ′(Wd)) without changing the objective
function values, where σ is the zone function with respect to Z, which satisfies
σ(Wd) ̸= σ(Wd′) for d ̸= d′, and σ′ is the zone function with respect to Z ′. Thus,
considering Z is not a restriction. For any efficient price list p = (p1, . . . , pK), we
hence have pk ∈ {w1

dk−1
, w2

dk−1
} = {1, 3} for all k ∈ [K] by Lemma 11.16. This

yields for the number of attracted passengers of OD pair dk:

passdk(pk+1) =

{
2 · 22k = 22k+1 if pk+1 = 1,

22k if pk+1 = 3,
(11.10)
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11.5 Zone Tariffs

and for the contribution of revenue of OD pair dk:

pk+1 · passdk(pk+1) =

{
22k+1 if pk+1 = 1,

3 · 22k = 3
2
· 22k+1 if pk+1 = 3.

(11.11)

By defining a vector a ∈ {0, 1}2K corresponding to p by a2k := 1 and a2k+1 := 0
if pk+1 = w2

dk
, and a2k := 0 and a2k+1 := 1 if pk+1 = w1

dk
for all k ∈ [0, . . . , K− 1],

we get that

pass(p) =
K−1∑
k=0

(
a2k2

2k + a2k+12
2k+1

)
=

2K−1∑
k=0

ak2
k.

Hence, a is the binary representation of pass(p). Because price lists p̄, p′ ∈ {1, 3}K
with p̄ ̸= p′ yield ā ̸= a′, we have |{1, 3}|K = 2K different values for pass(p) with
p ∈ {1, 3}K . Moreover, we show for p̄, p′ ∈ {1, 3}K that if pass(p̄) < pass(p′), then
rev(p̄) > rev(p′). For all p = (p1, . . . , pk) ∈ {1, 3}K , it holds by formulas (11.10)
and (11.11) that

passdk(pk+1) + pk+1 · passdk(pk+1) =

{
2 · 22k + 22k+1 = 4 · 22k if pk+1 = 1,

22k + 3 · (22k) = 4 · 22k if pk+1 = 3.

Therefore, for all p ∈ {1, 3}K , we have that pass(p)+ rev(p) =
∑

k∈{0,...,K−1} 4 ·22k
is constant. For p̄, p′ ∈ {1, 3}K with p̄ ̸= p′ and pass(p̄) < pass(p′), we thus have
that rev(p̄)) > rev(p′).

Thus, the number of non-dominated points is |{1, 3}|K = 2K , and Z-RPM is
intractable.

Corollary 11.20. The price-setting subproblem of Z-RPM with multiple or sin-
gle counting and without requiring the no-elongation property and without requir-
ing the no-stopover property is intractable, even if the graph is linear, Gd = 2 for
all d ∈ D and |Dk| = 1 for all k ∈ [K].

Proof. The claim follows from the proof of Theorem 11.19 by fixing the considered
zone partition Z beforehand.

11.5.2 Specialized Solution Methods for the Price-Setting
Subproblem of Z-RPM

We now develop two specialized solution methods for the price-setting subproblem
of Z-RPM without requiring the no-elongation property and without requiring
the no-stopover property. For simplicity, we assume that Dk ̸= ∅ for all k ∈ [K].
This can be achieved by dropping the empty sets and renumbering the remaining
ones. Because of the previous results, we cannot expect to find a polynomial time
algorithm.

143



Chapter 11 Revenue-Passenger Model

Enumeration The first approach makes use of Lemma 11.16. The idea is to
compute the Pareto front Γk of F-RPM regarding Dk for each k ∈ [K] and then
to compose objective function values of Z-RPM as

Γ′ =


∑

k∈[K]

yk,
∑
k∈[K]

zk

 : (yk, zk) ∈ Γk for all k ∈ [K]

 .

The set Γ′ is a superset of the Pareto front Γ of Z-RPM and can be filtered for
the non-dominated points by Algorithm 2.2. For each k ∈ [K], the set Γk can be
computed in O((∑d∈Dk

Gd) · log(
∑

d∈Dk
Gd)) by Algorithm 11.2. However, the

set Γ′ can be quite large, which is important for the running time of filtering with
Algorithm 2.2. We give an upper bound on the cardinality of Γ and Γ′:

|Γ| ≤ |Γ′| ≤
∏
k∈[K]

|Γk| ≤
∏
k∈[K]

(∑
d∈Dk

Gd

)
≤
(∑

d∈D Gd

K

)K

,

where the first inequality follows from the fact that the set Γk contains at most
one point for each willingness to pay belonging to Dk for k ∈ [K]. The second
inequality follows from the arithmetic mean-geometric mean (AM-GM) inequality
[Ste04, Problem 2.1], meaning that the product is maximized if the number of
points, and thus the number of demand groups Gd, is evenly distributed over the
sets Γk with k ∈ [K]. Corollary 11.20 shows that this bound is tight because
|Γ| = 2K . Depending on the number of demand groups per OD pair and the
number of demand groups per number of traversed zones, the running time of
the first approach might hence be quite large.

Dynamic Program The second approach investigates the ϵ-constraint approach
with an alternative IP formulation for the price-setting subproblem to obtain a
dynamic program. We set T̄ :=

∑
(d,g)∈Sdem

tgd as the total number of potential
passengers, and

Sk :=

(wg
d, T ) : d ∈ Dk, g ∈ [Gd], T =

∑
d∈Dk

∑
g∈[Gd]:w

g
d≥w

tgd

 , sk := |Sk|,

which is the set of all pairs of a willingness to pay and the total demand that is
attracted if the price for traversing k zones is set to this willingness to pay. For
all k ∈ [K], let Sk = {(w1

k, T
1
k ), . . . , (w

sk
k , T sk

k )} be an enumeration of Sk.
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11.5 Zone Tariffs

For ϵ ∈
[
0, T̄

]
, we obtain the following IP modeling the ϵ-constraint prob-

lem P1(ϵ) (2.2) for the price-setting subproblem of Z-RPM:

max
xi
k

∑
k∈[K]

∑
i∈[sk]

xi
k · wi

k · T i
k

s.t.
∑
k∈[K]

∑
i∈[sk]

xi
k · T i

k ≥ ϵ

∑
i∈[sk]

xi
k = 1 for all k ∈ [K]

xi
k ∈ {0, 1} for all k ∈ [K], i ∈ [sk].

(11.12)

For all k ∈ [K] and i ∈ [sk], setting the binary variable xi
k to 1 means pk = wi

k,
which contributes T i

k passengers and a revenue of wi
k · T i

k. We reformulate the
ϵ-constraint: Instead of setting a lower bound on the number of attracted passen-
gers, we set an upper bound on the number of passengers that are not attracted
and do not use public transport because their willingness to pay is smaller then
the designated price. To do so, we define for all k ∈ [K] and i ∈ [sk] a constant

qik :=
∑
d∈Dk

∑
g∈[Gd]:w

g
d<wi

k

tgd,

which is the number of passengers whose willingness to pay is smaller than wi
k.

We obtain: ∑
k∈[K]

∑
i∈[sk]

xi
k · T i

k ≥ ϵ

⇔ T̄ −
∑
k∈[K]

∑
i∈[sk]

xi
k · qik ≥ ϵ

⇔
∑
k∈[K]

∑
i∈[sk]

xi
k · qik ≤ T̄ − ϵ =: λ.

Hence, IP (11.12) is equivalent to

max
xi
k

∑
k∈[K]

∑
i∈[sk]

xi
k · wi

k · T i
k

s.t.
∑
k∈[K]

∑
i∈[sk]

xi
k · qik ≤ λ

∑
i∈[sk]

xi
k = 1 for all k ∈ [K]

xi
k ∈ {0, 1} for all k ∈ [K], i ∈ [sk]

(11.13)
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result reference

F-RPM tractable Cor. 11.5

F-RPM O(|S| log(|S|)) with |S| ≤∑d∈D Gd Thm. 11.6

D-RPM tractable Cor. 11.11

D-RPM O((∑d∈D Gd)
3) Thm. 11.12

Z-RPM canonical decision problem is NP-complete Thm. 11.17

Z-RPM price-setting canonical decision problem is NP-complete Cor. 11.18

Z-RPM intractable Thm. 11.19

Z-RPM price-setting intractable Cor. 11.20

Table 11.3: Overview of results for the revenue-passenger model. Note that the
running time of F-RPM and D-RPM refers to finding the complete Pareto
front.

with λ ∈ [0, T̄ ]. Because xi
k and qik are integral for all k ∈ [K] and i ∈ [sk],

it is sufficient to consider λ ∈ {0, . . . , T̄}. Note that IP (11.13) is a multiple-
choice knapsack problem. Solving it for a total budget of T̄ with a dynamic pro-
gram yields optimal solutions for all problems of IP (11.13) with λ ∈ {0, . . . , T̄}
in the dynamic programming table. By looking through the objective func-
tion values from λ = 0 to λ = T̄ and keeping a solution whenever the rev-
enue increases, we obtain the Pareto front of the price-setting subproblem of
Z-RPM (see Section 2.2.2). The dynamic program can be performed in pseudo-
polynomial time O(T̄ · ∑k∈[K] sk) [DW87, Sec. 3.5]. Here, the running time
depends on the total number of passengers T̄ , which may be quite large, and
on
∑

k∈[K] sk ≤
∑

k∈[K]

∑
d∈Dk

Gd =
∑

d∈D Gd, i.e., the total number of demand
groups.

11.6 Summary

We summarize the results of Chapter 11 in Table 11.3. An algorithm to com-
pute the Pareto front of F-RPM in pseudo-linear time is given in Algorithm 11.1.
The Pareto front of D-RPM is computed in cubic time by Algorithm 11.2, and
a MILP is provided in Section 11.3.1. For the price-setting subproblem of Z-
RPM, we present an enumeration method as well as a pseudo-polynomial dy-
namic programming method based on the multiple choice knapsack problem in
Section 11.5.2.

Furthermore, an optimal fixed price of a flat tariff can always be chosen as the
willingness to pay of a demand group (Lemma 11.4). For an optimal solution
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11.6 Summary

of an affine distance tariff, the willingness to pay of at least two demand groups
with different distances is met exactly; or the willingness to pay of at least one
demand group is met exactly and either the distance price is zero or the base
amount is zero (Theorem 11.10).
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Outlook

In Part II of this thesis, we study the single-objective fare deviation model and
the bi-objective revenue-passenger model. The aim is to determine flat, affine
distance or zone tariffs, where we minimize the weighted sum of absolute devi-
ations from given reference prices or consider the trade-off between revenue and
number of passengers, respectively.

While we often obtain similar results for the two models (see Sections 10.5
and 11.6), we want to highlight the difference in the case of the price-setting
subproblem for zone tariffs. For the fare deviation model, we develop a linear
time algorithm if the no-elongation property and the no-stopover property are
not required and it is still solvable in polynomial time if both are required. On
the other hand, for the revenue-passenger model, we prove that the problem is in-
tractable and that the canonical decision problem of the price-setting subproblem
is NP-complete.

Furthermore, the bi-objective revenue-passenger model explicitly considers the
number of passengers in one objective, while the single-objective fare deviation
model assumes a fixed demand and takes into account the passenger’s interests
through an objective function that deteriorates the more the fares exceed the
reference prices. Because of the relation of the fare deviation model for flat,
affine distance and zone tariffs to median problems, we often obtain that the
tariffs optimized by the fare deviation model satisfy that the price increases (de-
creases) for at most half of the passengers (see Section 10.2, formula (10.3) and
Theorem 10.24).

As an addition to the models for affine distance tariffs, future work could con-
sider affine distance tariffs with a maximum price. This a particularly interesting
in practice because fares that are unlimited are not desirable for passengers. For
comparison, the price function of a zone tariff is in practice usually given by a
price list and therefore has a maximum price limit.

To model the passenger information, we use OD data with one path per OD
pair and, in case of the fare deviation model, with one reference price per OD
pair. We remark that both the fare deviation model and the revenue-passenger
model can also be applied for OD data with several paths with a fixed number
of passengers each as well as with several reference prices per OD pair. This is
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Chapter 12 Outlook

possible by allowing the same combination of an origin and a destination multiple
times and thus splitting the OD pairs so that again each OD pair has one path
and one reference price.

In this thesis, we assume that the route choice of passengers is fixed, which
reflects that the main decision criterion is the travel time and not the price of
a journey. However, changes in the fare structure could lead to changes in the
preferred paths. In a flat or affine metric/beeline distance tariff, the fare is
independent of the actual path of the OD pair, and, in an affine network distance
tariff, a shortest path is also always a cheapest path [SU22, Cor. 1]. On the other
hand, in a zone tariff, the fare of a path does not only depend on the price function
but also the zone partition. Therefore, it is not possible to determine a cheapest
path a priori. Integrating route choice into the fare deviation model for zone
tariffs and the revenue-passenger model for zones would hence be interesting for
future research to further concern the passenger perspective during fare planning.

The developed fare deviation models have been added to the open-source soft-
ware library LinTim [Sch+24; Sch+] and can be solved with the implemented
MILP formulations presented here. First tests show that the fare deviation model
for flat and affine distance tariffs can be solved quickly even for large instances.
For the fare deviation model for zone tariffs, the running time using the solver
Gurobi [Gur24] grows quickly from few minutes for an instance with 15 stations
to instances with 20 to 30 stations that cannot be solved in reasonable time.
Therefore, in addition to solving the MILP with a solver like Gurobi, an interest-
ing working direction is the design of an alternative solution method for the fare
deviation model for zone tariffs, such as Benders decomposition or a branch-and-
bound algorithm. Both methods are, for example, used in [AM18] for determining
groups of service locations and prices for transportation with an application in
air cargo. Furthermore, symmetry breaking [SS01; Mar10; PR19] might help to
reduce the running time.

For the revenue-passenger model, the computational experiments for flat and
affine distance tariffs show that the algorithms exploiting the structure of the tar-
iffs perform better than the MILP-based ϵ-constraint method in most cases with
more than one non-dominated point. Computational experiments investigating
the running times of the MILP-based ϵ-constraint method and the specialized
algorithms for the price-setting subproblem of the revenue-passenger model for
zone tariffs would be interesting.
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Conclusion

In this thesis, we consider two different topics of public transport planning,
namely the optimization of infrastructure in the context of a bus rapid transit
(BRT) line in Part I and tariff optimization with a focus on flat, affine distance
and zone tariffs in Part II.

The common idea of the BRT investment model, the fare deviation model and
the revenue-passenger model is to take the perspective of the passengers as well as
of the operators. This is realized in the BRT investment model and the revenue-
passenger model by considering two objective functions that reflect, on the one
hand, the number of attracted passengers and, on the other hand, the financial
interests of the operator in terms of a budget or revenue. For these models, a
Pareto front showing the trade-off between both objectives is computed. For the
single-objective fare deviation model, the absolute deviation from reference prices
is considered, which thus accounts for price increases as well as price reductions.

Because optimization models serve as a decision support tool in practice, the
amount of information provided by the models about different options is crucial.
Thus, the author of this thesis deems the bi-objective models developed here
better suited to support informed decisions, in particular, because they allow
more insights into the impact of a decision on passengers. As stated in the
Introduction (Chapter 1), the transition towards sustainable transport modes is a
major task for which it is important to involve people. By providing a reliable and
comfortable public transport service as well as affordable fares, the attractiveness
of using public transport is increased and may engage more people’s attention.

Another important aspect for the applicability of optimization models in
decision-making processes is the regular comparison of the model with reality.
Within the project EASIER (sEAmless SustaInable EveRyday urban mobility) it
was possible to develop the BRT investment model based on the development of
a new BRT line in Greater Copenhagen. Also for fare planning, discussions with
the German public transport association saarVV took place, which, for example,
showed that affine distance tariffs with a fixed maximum price are of interest
in practice. Moreover, the implementation of the fare deviation models in the
open-source software library LinTim [Sch+; Sch+24] improves the visibility and
the availability of tariff optimization models for researchers and practitioners.
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Chapter 13 Conclusion

The integration of planning steps in public transport, as it is for example
studied in [Sch20; Gra24], takes more information into account and considers
interactions between different planning steps. Therefore, it has the potential
to yield models that better match real-world requirements. The downside of
such models is that they quickly grow in size and are even harder to solve than
the separate problems. Nevertheless, we may discuss the question as to how the
optimization of infrastructure fits in with the optimization of tariffs and how these
problems complement and enhance each other. We discuss this for the two bi-
objective models, namely the BRT investment model and the revenue-passenger
model:

• First, as we have just established, a common ground are the objectives,
namely a high ridership and passenger satisfaction as well as low investment
costs or a high revenue, respectively.

• Second, for the BRT investment model, we consider two passenger responses
to infrastructure upgrades of which one attracts the full potential demand
if a certain threshold of upgrades is reached, which is called MinImprov.
A more detailed passenger response to fares based on extended OD data
(Definition 11.1) is considered in the revenue-passenger model, where sev-
eral demand groups per OD pair are allowed, which models a piecewise con-
stant passenger response with multiple threshold levels for each OD pair.
Thus, MinImprov can be seen as a special case with only one demand
group per OD pair.

• Third, the travel time reductions realized by upgrades through infrastruc-
ture investments and the choice of tariffs and fares are both important
criteria for route and mode choice.

Based on the identified similarities, a combined model of infrastructure and
tariff optimization could be interesting to consider, especially in a network context
(instead of for a single line). A bi-objective model maximizing the number of
passengers and maximizing the difference between revenue and investment costs
would be a natural combination of the previous objectives. The demand could
be modeled by extended OD data with a threshold for the acceptable travel time
and a willingness to pay so that a demand group only uses public transport if
the travel time and the fare are small enough. In this setting, an infrastructure
upgrade might attract new passengers who in return pay fares so that the costs
for the infrastructure are (partially) compensated by the newly acquired revenue.
Especially interesting would be to also integrate the routing of the OD pairs
based on the fares and the travel time. Overall, we see that there are interesting
working directions that can be explored to develop models that reflect reality
even better and contribute to improving public transport services.
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Appendix A

Computational Experiments:
BRT Investment Model

In Appendix A, additional information about the experiments on artificial in-
stances (Section 6.1) and the Greater Copenhagen case study (Section 6.2) is
provided. Figures A.1 and A.5 show the upgrade costs and the infrastruc-
ture improvements per segment as well as which segments belong to the same
municipality for the artificial instances and the case study, respectively. Fig-
ure A.2 depicts the graphs of the artificial instances, marking the locations of
stations with high demand within the demand patterns HUBS and TERMINI.
Figure A.3 shows the corresponding histograms of the travel distances of the
passengers. Moreover, as a supplement to Figure 6.6, Figure A.4 shows the eval-
uation of the non-dominated points of BRT(⋆/Z ≥ 1/|M | = 1) for the artificial
instances with the cost patterns ENDS and MIDDLE. Further plots that depict
which segments are upgraded at certain investment budget levels are provided at
https://doi.org/10.11583/DTU.c.6805470.
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Figure A.1: Upgrade costs and infrastructure improvements per segment for the
cost patterns UNIT, MIDDLE and ENDS for the artificial instances. Each
bar represents a segment. The width of a bar represents the upgrade costs
while the height reflects the infrastructure improvements. The colors indicate
to which municipality a segment belongs.

(a) EVEN

(b) HUBS

(c) TERMINI

Figure A.2: Line graph of the artificial instances. Stations with a high demand in
the demand patterns HUBS and TERMINI are marked with filled black nodes.
There are no large stations in demand pattern EVEN.
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(c) TERMINI

Figure A.3: Histogram of the travel distances of passengers. The height of a bar
gives the demand of passengers traveling for a certain number of segments.
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(a) Linear, α1 = MIDDLE.
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(b) MinImprov, α1 = MIDDLE.
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(c) Linear, α1 = ENDS.
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Figure A.4: Evaluation of the non-dominated points of BRT(⋆/Z ≥ 1/|M | = 1)
for artificial instances with cost pattern α1 ∈ {ENDS,MIDDLE} and Z ∈
{1,∞}. Both attracted passengers and investment costs are given as percentage
of the total number of potential passengers and costs for upgrading all segments,
respectively.
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Figure A.5: Cost patterns and infrastructure improvements per segment for the
five route alternatives from north (Aldershvilevej) to south (Ishøj St.). Each
bar represents a segment. The width of a bar represents the upgrade costs
while the height reflects the infrastructure improvements. The colors indicate
to which municipality a segment belongs. Note that the two non-upgradable
segments in Lyngby municipality are excluded.
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Appendix B

Computational Experiments:
Revenue-Passenger Model

Appendix B contains supplementary material for the computational experiments
conducted for F-RPM and D-RPM in Section 11.4. Figure B.1 shows the PTNs
of the datasets grid and mandl used in the computational experiments in Sec-
tion 11.4.

(a) grid (b) mandl

Figure B.1: PTNs of the LinTim datasets grid and mandl.

For investigating the Pareto fronts, efficient tariffs and the input data in Sec-
tion 11.4, Figure B.2 to Figure B.5 show the Pareto fronts in (a) and correspond-
ing efficient solutions in (b) and (c) for selected parameter settings for the grid
instances. Additionally, (b) and (c) show the demand as points (ld, wg

d) weighted
with the number of potential passengers tgd.
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Figure B.2: Instance of grid with parameters 5/increasing/w-flat/A.
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Figure B.3: Instance of grid with parameters 5/random/w-network/A.
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Figure B.4: Instance of grid with parameters 5/decreasing/w-beeline/B.
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Figure B.5: Instance of grid with parameters 5/equal/w-beeline/C.
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