Interpreting Topology Preserving Networks

Jurgen Rahmelt and Thomas Villmann?

TCentre for Learning Systems and Applications
Hnstitute for Industrial Mathematics
University of Kaiserslautern
PO Box 3049, 67653 Kaiserslautern, Germany

e-mail:rahmelQin formatik.uni-kl.de

Abstract

In this report, we first propose a dichotomy of topology preserving network models based
on the degree to which the structure of a network is determined by the given task. We
then look closer at one of those groups and investigate the information that is contained in
the graph structure of a topology preserving neural network. The task we have in mind is
the usage of the network’s topology for the retrieval of nearest neighbors of a neuron or a
query, as it is of importance, e.g., in medical diagnosis systems. In general considerations,
we propose certain properties of the structure and formulate the respective expectable results
of network interpretation. From the results we conclude that both topology preservation as
well as neuron distribution are highly influential for the network semantics. After a short
survey on hierarchical models for data analysis, we propose a new network model that fits
both needs. This so called SplitNet model dynamically constructs a hierarchically structured
network that provides interpretability by neuron distribution, network topology and hierarchy
of the network layers. We present empirical results for this new model and demonstrate its
application in the medical domain of nerve lesion diagnosis. Further, we explain a view how
the interpretation of the hierarchy in models like SplitNet can be understood in the context
of integration of symbolic and connectionist learning.

1 Introduction and Motivation

Topology preserving neural networks are a widely ranged type of neural vector quantizers which
are used for example in data visualization, feature extraction, principle component analysis,
image processing, classification tasks, robotics and other. Since the early works from WILLSHAW
AND V.D. MALSBURG [WdM76] and AMARI [Ama80] several models were introduced; the most
known of them are developed by KoHONEN [Koh84], LuTTRELL [Lut88], LiNSKER [Lin89] and
MARTINETZ [MS94]. In the present paper the authors focus onto the discussion of the properties
and the interpretation of the Self-Organizing Map (SOM) of KoHONEN [Koh95] and some of its
relations to the Topology Representing Network (TRN) of MARTINETZ.



1 INTRODUCTION AND MOTIVATION

1.1 Basic Models

Both networks, the SOM and the TRN, map data vectors w of a data set V' C IR onto a set A
of neurons 7 which is formally written as

wV—>A V=oAL (1.1)

For each neuron there is an associated pointer w; € R* which all form the set w = {Wi};ca of
weight vectors. The mapping description of (1.1) is a winner take all rule, i.e. a stimulus vector
w € V is mapped onto that neuron s € A the pointer wy of which is closest to w,

Uy g twer s(w) =argmin|w—wg (1.2)
€A
called "winner’ neuron or best matching unit (bmu). The set

m:{weuﬂs@ozwmmmw—wm} (1.3)
tEA

forms the receptive field of the neuron 7 and R; = R; NV is called the masked receptive field.
However, in the SOM the neurons are arranged a priori on a fixed grid! whereas in the TRN
the topological structure of A is a object of learning itself. This is realized by different dynamics
for the adaptation of the weight vectors during the learning process: a stimulus w is randomly
presented to the network according to a certain data distribution P (V). In the case of the SOM
we have as the adaptation rule

Aw; = ehsom (w,0) (W — W) (1.4)

202

whereby the neighborhood function is usually of Gaussian shape: hsoa (w, o) = exp <— M)

evaluated in the output space A. For the TRN we get a similar rule

swi = coxp (~H) (0w (1.5)

ki (w,w)
A

However, here the neighborhood function hrgry (w, A) = exp (— ) is computed in the in-

put space V with k; (w, w) gives the number of pointers w; for which the relation [jw — w;|| <
lw — w;|| is valid [MBS93]. The parameter ¢ plays the role of a learning parameter whereas o
and A describe the range of neighborhood in the SOM and TRN, respectively.

Several variants of these algorithms have been established in the recent years. An expansive
overview is given in [Koh95]. Here we only remark that the structure of the network can be an
objective of learning itself, i.e. in addition to the learning dynamic of the weight vector one has

a learning strategy for the adaptation of the number of neurons and the topological structure of
the network. For the SOM we refer to [Fri93a], [Him95] and [BV96], for the TRN it is published

'Usually the grid A is chosen as a da—dimensional hypercube and then one has i = (1,... ,i4,). Yet, other
ordered arrangements are also admissible [KKL90]. If it is not specified otherwise we assume the rectangular
arrangement.



1 INTRODUCTION AND MOTIVATION

in [Fri95]. Section 3.4 introduces a network model that in addition constructs a hierarchy in the
network during the training phase, thus providing a means of gaining structured knowledge.

Depending on the specification of the given task and the kind of topology preserving model
that is used, we can distinguish two different approaches to the application of such network
models. On one hand, the network interpretation might be prespecified, so a particular network
topology is fixed for the training. On the other hand, the development of the structure of the
network might have more degrees of freedom. Then, suitable principles and algorithms are needed
to extract knowledge from the trained network. The following subsections will further explain
those views and demonstrate the position of this report in the framework.

1.2 Prespecified network interpretation

If a network is to be applied for a task, where the required interpretation of the training result is
given by the user, the degrees of freedom for the network are quite restricted. Examples for this
setting are:

e Visualization of satellite data in colour plots = mapping of high-dimensional data onto a

color cube (e.g. [GS93])

e Learning of control data for a robot arm = mapping onto a 3-d network (e.g. [RMS91])

e Visualization of data features = projection of principal components onto a 2-d network

e Quantization of the input signal (e.g. [NY88])

This list could be further extended and examples of these approaches are numerous. The
point we want to make about these approaches to the application of topology preservation is that
the nature of these applications restrict the degrees of freedom for the definition and training of
network models. The design choices are confined with respect to:

e Network topology, type of lattice

e Network dimension

Number of neurons

Choice of similarity measure

e Choice of training samples

The question that is to be answered when using this appraoch is: how well is the specified
interpretability achieved for the trained network? In other words, it has to be checked, how
the constraints given above lead to a satisfying training result. While the network’s topology,
dimension and often the number of neurons is mostly determined by the task, there is a range of
choice for the similarity measure for the training vectors in input space. The image registration
procedure in [HRW96] or the similarity based clustering [Rah95] are applications with a specially



1 INTRODUCTION AND MOTIVATION

defined similarity measure for training vectors, in the former there is also a selection of training
samples by indentification of regions of interest. Ways of evaluating the training result are for
example:

e Visual inspection by domain experts and comparison with network results (applicable in
restricted areas only)

e measurement of resulting performance, i.e. classification, control or reconstruction accuracy

e Measurement of topology preservation

1.3 Interpreting a trained network

In contrast to the preceding observations, the growing interest in dynamical and hierarchical net-
work models implies the need to interpret a network structure that developed during the training
procedure instead of being fixed at the beginning. The Neural-Gas algorithm learns positions and
topological connections of a given number of reference vectors while the Competitive Hebbian
Learning rule [Mar93] uses prepositioned neurons to add the topology preserving connections,
possibly masked by the given input distribution. The Growing Cell Structures (GCS) [Fri93b]
use simplices with a fixed dimension for vector quantization and dimension reduction with a
variable number of neurons. The SplitNet model (cf. Sec. 3.4) dynamically adapts the num-
ber of neurons while including topological connections to the network structure and it builds a
hierarchical structure over the neuron set.

All these models have in common that a training algorithm forms a network topology, which
is not fixed in advance and that has to be interpreted in order to extract the trained knowledge.
In general, we observe the following degrees of freedom:

e Network size, i.e. number of neurons

Position of neurons, distribution of weight vectors
e Network dimension

e Network topology, connections between neurons

Hierarchy of neuron sets

The dynamic models self-develop with respect to these aspects and the interpretation compo-
nent has to combine external knowledge (about the principal properties of a training algorithm
and the expected results) and internal knowledge (stored in the actually trained network) to make
best use of the information given through the training data. For the extraction of knowledge from
the network structure, we can note various open questions including;:

e What is the semantics of the neuron distribution?

e What is expressed by the network topology? How can it be used?



1 INTRODUCTION AND MOTIVATION

e How good is the topology preservation? How does this influence the interpretation of the
topology?

e What is the semantics of the hierarchical structure?

This report is aimed to provide a step towards the answers of the above questions. Further
insight might help to develop new training algorithms or to improve existing ones. If, for exam-
ple, the connection between the neuron distribution and the training data distribution is fully
understood and controllable, we might construct training algorithms that influence the neuron
positions corresponding to various criteria like, e.g., misclassification rates or given cost func-
tions. The gain would be the representation of different concepts by a single distance measure
and the modified neuron distribution. For example, incorporating misclassification costs in the
distance measure between vectors of different classes moves class borders towards class centers
with higher costs (the class is proposed, only if the similarity to class prototypes is large enough).
These modified decision regions can be approximated by a modified neuron distribution together
with an unmodified (e.g. euclidean) distance measure. Thus, local estimates of neuron distribu-
tion may replace global knowledge of misclassification costs and different distance measures, a
method that might be helpful regarding the scaling problems of many of the learning algorithms,
both connectionist and symbolic.

An important tool for the measurement of topology preservation was developed in [VDDHM94],
[VDHMO96]. We will use it to evaluate the construction of topology and take it as a basis for
the discussion on the interpretation of the network’s topology. We will demonstrate how the
connections in the network support retrieval tasks, a class of problems that occur in many different
fields of applications.

Another aspect is the meaning and utility of the hierarchy, as it is developed by the SplitNet
model. It has to be investigated, how this approach can be compared to other hierarchical or tree
structured methods and what benefits for training and explanation tasks are to be expected by
adding this conceptual dimension to a network.

1.4 Contents of this report

This report will not deal with the problems of convergence of any particular network training
algorithm. We will not go into the questions of the existence and uniqueness of the solution for
the stochastic processes involved or the time and space complexity for the cited algorithms. The
aim of this report is to show the possibilities of network interpretation when neuron distribution
and topology preservation are degrees of freedom in the network training.

Section 2 will investigate the measurability of topology preservation and the efficiency of re-
trieval algorithms with various degrees of search depths. We introduce a heuristic search algorithm
that improves the retrieval by orders of magnitude. In Sec. 3, we discuss hierarchical and tree
structured models for data analysis and introduce a new neural network model called SplitNet.
We show the basics of its training algorithm and present simulation results. The description of
an application for medical diagnosis tasks finishes this section. The interpretation of hierarchical
structures is discussed in Sec. 4, where we again look at the models described in the preceding
section and compare them with respect to the information content in the hierarchical structure.



2 INTERPRETATION OF TOPOLOGY

2 Interpretation of Topology

The scenario we will deal with throughout this section is the m-nearest-neighbor approach to
classification. The problems are (i) to find the number and positions of neurons that are useful
and efficient for the given data and (ii) to retrieve a set of m nearest neighbors for a presented
query ¢ that is to be classified. This number m is not necessarily known a priori. The need
to increase the number of visited neighbors may arise with the results of an already conducted
analysis. Consider for example medical diagnosis (see Sec. 5), where the search for nearest
neighbors of a query is needed to determine the class of the query. If the class assignment is
unique, only very few neighbors are sufficient to ensure the correct result. If, on the other hand,
inspection of the first neighbors leads to a tie between two or more possible classes, a decision
cannot be made. In this case there is a need to visit more neighbors until the suggestion of the
network is clear. Thus, in order to be able to continue search instead of starting from scratch
each time m is augmented, it is desirable to develop incremental retrieval algorithms.

After introducing some notations, we present a systematic approach of interpreting a given
network topology with respect to retrieval problems. Disregarding the construction of a graph
G in this chapter, we will postulate some properties for this graph and investigate the possible
retrieval algorithms. This will clarify the requirements a network model has to fullfil in order
to be applicable for the retrieval task. In Sec. 3.4, we then propose a new hierarchical network
model that fits those needs.

2.1 Terms and notations

For the formal description of the network structure and its properties, we transform a given
network into a graph G = (V; F), where the set V = {vy,...,v,} of nodes is given by positions
Wi, ..., w, of the neurons Ny, ..., N, of the network. The topology of the network is represented
by the set £ of edges, where e;; € F iff IV; and N; are direct neighbors in the network topology.
By F; := {e;; € I} we denote the set of edges starting at v; and V; := {v; | e;; € F;} is the
set of direct neighbors of a node v;. As indicated above, knowledge is contained in the topology,
representing spatial relations of the data points. We denote the distance between two points z
and y in data space by d(z,y), assuming d(.,.) to be a distance measure defined according to
the needs of the domain. For visualization purposes, d(.,.) will be the euclidean distance in the
figures below.

The problem for a dataset D = {d,,...,dy} with records d; € R* is now to find correct and
complete retrieval algorithms for any given graph G and a query ¢ € R*. The query might be
a newly encountered problem that is to be solved with the help of the nearest neighbors stored
so far in the network. We now consider the retrieval result for a query ¢. The nodes v;,,...,v;,,
retrieved as first m neighbors for the query are renamed to [ly,...,l,, being members of the
retrieval list L C V. Such a list L = (I4,...,1,) with {l1,...,[,,} C V of nearest neighbors to
the query is said to be correct, if d(q,l;) < d(g,!;) holds for all j > 4. The list L is said to be
complete, if there exists no v; ¢ L with d(q,v;) < d(q,l;) for any [; € L. A retrieval algorithm
is said to be correct (complete) if the retrieved list L is correct (complete). The correctness is
only a matter of sorting the list, but for incremental retrieval algorithms, i.e., where the m+41-st
neighbor is determined with the m previously found list elements, completeness at every step m



2 INTERPRETATION OF TOPOLOGY

Figure 1: A sample data set, perfect topology preservation and the candidate sets constructed
by algorithm RETRIEVE,,

implies the correctness of the retrieval.

2.2 Complete storage of data

In this section, we assume a complete storage of data records in the graph G, i.e., V = D. Thus,
for each data vector in the training set, there exists a neuron that uniquely represents this vector.
This is a highly idealized assumption, because in real world applications there will nearly always
be too much data to be stored exhaustively in easy accessible memory structures, but we start
from this point in order to clarify the optimal situation and to be able to evaluate the additional
retrieval effort that has to be done when weaker properties are considered.

2.2.1 Perfect topology preservation

For the graph structure a perfect topology preservation, which means that e;; € £ < RN R; # 0
where R; denotes the Voronoi region of node v; (cf. equation (1.3) for the definition of the Voronoi
region). Thus, the graph corresponds to the so called Delaunay triangulation of the set V with
respect to the used distance measure.

Figure 1 shows a sample data set of two dimensional vectors (crosses) and the set of edges
(lines). Given a query ¢, retrieval of the m nearest neighbors of ¢ (which then constitute the list
L) can be done as follows. First, determine the nearest node and let it be [, the first element
in the list L. This can be done very fast by using an external search tree [Kel91] or by using an
inherent hierarchical structure of the network (cf. Sec. 3.4).

With the best neighbor known, build the candidate set K for the next nearest neighbor,
consisting of all direct neighbors of elements in L. Choose the node in K which is closest to the



2 INTERPRETATION OF TOPOLOGY

query ¢q. Repeat this process until || = m, where |.| denotes the cardinality of the list. The step
that creates the candidate set explicitly uses the perfect topology preservation of the graph G.
By this, the algorithm also uses the information that is contained in the distance measure that
is needed to create the Voronoi regions.

This retrieval algorithm RETRIEVE,, can be formalized as follows? :

1. Let s := 1.

2. Determine [y, let Ly := () .

3. Let Ksy1 = (Ugipery Vi) \ Ls.

4. Choose v, € Koy with d(v,, q) < d(vj,q) for all v; € K44
5. Let ls41 1= vy, Loy1 := (Ls, ls41)-

6. If s+ 1 = m, then return Ls4q, STOP.

7. Let s := s+ 1, goto step 3.

This algorithm is inherently of incremental nature. The elements of the list L and the current
candidate set are used for determining the next nearest neighbor. For any number m the following
statement holds:

Theorem 2.1
The retrieval algorithm RETRIEVE,), is correct and complete.

The proof of this and the following theorems can be found in Appendix A. The computational
effort of this retrieval algorithm is in the worst case, even for the highly idealized assumptions of
this section, quite high. Let ¢ be the average number of edges leading from a node to its neighbors.
For the search of m nearest neighbors to a query we have to determine the best neighbor, e.g.
by a tree search procedure, and then successively grow the candidate set. Thus, at step s, the
number of visited nodes is estimated by

s—1
logN +c+2c+ -+ (s—1)ec= logN+cZi =logN + %(32 - s)c. (2.1)
=1

Now, since the nodes in the surrounding of a point tend to have common neighbors, this
estimation is likely to be unrealistic in the average case. Figure 2 shows the worst case with an
average connectivity ¢ = 5 compared to the real number of visited nodes for a set of 400 points
randomly drawn from a square, when the 40 nearest neighbors were determined incrementally.
It can be seen, that the number of necessary distance calculations grows almost linearly, with an
incline of less than 2.

As stated at the beginning of this section, the postulated graph properties correspond to the
construction of the Voronoi tesselation or equivalently the Delaunay triangulation of the given
data space. As this is computationally intractable for realistic data dimension (k > 20), we will
now investigate weaker properties.

2The index cp means complete storage, perfect topology preservation



2 INTERPRETATION OF TOPOLOGY

100 T T T T

average case for square data ——
worst case estimation -+

# of visited nodes

5 10 15 20 25 30 35 40
# of nearest neighbors

Figure 2: Worst case and real values for the algorithm RETRIEVE,,

2.2.2 Imperfect topology preservation, a first approach

Imperfect topology preservation means that the set K of edges in G now is only a subset of the
complete Delaunay triangulation. The positions in the graph, where a node v; is not connected
to node v; even though R; N R; # () holds, are called topological defects. They strongly influence
the complexity of the retrieval process. In the course of this report, we will concentrate on only
one direction of the mapping process considered for the measurement of topology preservation,
namely the mapping from input vectors onto the network topology. A rigorous discussion of
general case can be found in [VDHM96].

For measuring those defects, we use a modification of the topographic function @ described
in [VDM94]. A function f;(¢) counts the number of nodes v;, the Voronoi regions of which are
adjacent to the region of v; but which are exactly ¢ steps away from v; in the graph G:

fit) = {gllvi = vjllg = t; Ri ) Rj # D} (2.2)

As long as G consists of exactly one connected component, all neighboring nodes are reachable
by traversing edges in G. Now @ is defined as

TOES S (2.3

i 1>t

The largest t* > 0, for which ®(¢) # 0 still holds, determines the size of the largest topo-
logical defect in G. This ¢t controls the efficiency of the retrieval of the nearest neighbors. For
the graph in figure 3 we have t+ = 2. By V! := {v; | ||v; — v;||g < ¢} we denote the set of nodes,
that are reachable from v; with at most ¢ steps in G.



2 INTERPRETATION OF TOPOLOGY

Figure 3: A sample data set, imperfect topology preservation and the candidate sets constructed
by algorithm RETRIEVE,;

The retrieval algorithm RETRIEVE,; for the imperfect topology preservation is very similar to
RETRIEVE,. Only the construction of the candidate set K differs, because now ¢ steps have

to be considered to include all neighboring nodes. Thus, we replace this step in RETRIEVE,, for
RETRIEVE,; by:

3. Let I(s+1 = (U{i|vi€Ls} V2t+) \ L.

Also for this algorithm we can state:

Theorem 2.2
RETRIEVE,; is correct and complete.

The problem is the efficiency of RETRIEVE,;, because in the worst case estimation, the number
of visited neighbors of a node grows exponentially ((:7f+ for an average node connectivity ¢ = [F]).
For the number of node visits, we can adapt equation (2.1) and get:

s—1
1
logN + ot + 20" + 4 (s— 1)ct+ = logN + ot Zz =logN + 5(32 — .e)ct+.
i=1 (2.4)

As in the case of perfect topology preservation, the real number of visited nodes during the
retrieval of nearest neighbors is expected to be much lower than this worst case estimation. Again,
there is a kind of saturation of the candidate set and its size grows slower than the formula above
indicates. Figure 4 shows sample curves for different values of t* compared to the worst case.

10



2 INTERPRETATION OF TOPOLOGY

300 T T T
i
i defect size 2 +—
i defect size 3 -+
| defect size 4 &
L i | i
250 ! o defect size 5 -
i worst case estimation for defect size 2 -+ X
" XXX
X
200 i e b
7] ” XX
L : Xagex X
Qe i e Je=N
S { XXX R=N=pcl
Q 150 ! X pa®® B
‘0 A X e-Roac
S v : .
! x  _BB88888 -a P
5 i gBB88808 L
#* FO B A
100 | P D—D'D’ /,+—+ i
« * - /*_++~+
? Eﬂ,,f ‘+/++7++/++—++—++—4‘
e
i
. et
Lo’ T |
50 o
T
73
4
0 . . . . . . .
5 10 15 20 25 30 35 40

# of nearest neighbors

Figure 4: Worst case and real values for the algorithm RETRIEVE.; with different values of the
defect measure ¢+

It can be observed from the figure that for larger numbers of nearest neighbors to be retrieved,
the incremental search effort rises almost linearly. The drawback is the fact that for higher values
of t1 there is a large increase at the beginning, i.e. relatively many nodes have to be visited in
order to find the first few nearest neighbors. The retrieval effort for the first three neighbors with
tT = 5 is nearly 6 times as high as for tT = 2.

For the Kohonen network we can have quite large values for tT, compared to the overall
number of nodes, if a dimension reduction takes place during the training (cf. section 3.4.6).
Thus we conclude that an important point for the applicability of a topology preserving network
model for retrieval purposes is the ability of the model to keep the topological defects in a very
restricted range. As for most of the applications the inherent structure of the data space is not
known a priori, this fact implies that the topology of the network must be constructable and
changeable during the training process.

In order to tackle this problem from the theoretical side and to increase the efficiency for
imperfectly topology preserving networks we developed a search heuristic that uses precalculated
lengths of the edges in the graph to exclude certain nodes from the distance calculation during
the retrieval phase.

2.2.3 Imperfect topology preservation, an optimized approach

Extending the naive and exhaustive approach described in the last section, we now introduce an
improved version of the retrieval algorithm that is able to avoid nearly all of the node visits in
the far neighborhood of the list elements. The advantage at retrieval time has to be paid for by
additional effort during generation time of the network but the extra work has to be done only
once and can then be used for any retrieval operation in the network structure.

11



2 INTERPRETATION OF TOPOLOGY

So far, the edges in the graph were used only for determination of the topologic neighbors
of nodes in the graph G. Now, we will associate some information with those edges. After the
training of the network is finished, we run once through the edge set and compute the length
of every edge. These additional distance calculations (and the additional strorage space for this
length information) are the only effort we have to make. Now, the optimized algorithm can use
these distances together with the distances already computed for some of the nodes to replace
possibly expensive distance calculations for nodes (representing complex cases) by inexpensive
addition and comparison of real numbers.

Figure 5 explains the use of the edge lengths in the optimized algorithm. On the left, it shows
a little section of a network structure. Suppose that the first three neighbors to the query ¢
were already found (L = (Iy,l2,13)) and the distances d(q,1),...,d(q,5) are already known. If
the fourth neighbor is to be determined and ¢t is supposed to be greater than 2, the exhaustive
algorithm RETRIEVE.; would have calculated the distances d(q,6) and d(q,7). For the example
¢ =d(q,6), we demonstrate, that this calculation is superfluous.

L=(1,2,3); I,= 7

Figure 5: The heuristic of the optimized retrieval algorithm is explained for the determination of
the fourth nearest neighbor (see text). Left: a section of the network topology. Right: distance
calculation for ¢ can be suspended, because it cannot be shorter than a.

The heuristic applied in this case is the preference of short distances between list elements and
candidates. Thus, the edge length also determines the search order through the set of neighbors
of a node. For the situation in Fig. 5 this means that node 5 and its neighbors are checked
after node 4, which is closer to the list elements than node 5. Now, when the algorithm comes
to check node 5 and its neighbors, the currently known best distance for the fourth neighbor is
a = d(q,4). The base distance b = d(q,5) for this case is already known and greater than a.
Node 6 is a possible candidate, but we can use the already known distances to decide that ¢ is
not to be calculated now. As we have a < b —d and ¢ > b — d we can conclude a < ¢ without
knowing the actual value of ¢ = d(q,6). If further neighbors of node 6 are to be considered, we
can use bye,, = b — d as the new base distance. This strategy saves many of the useless distance
calculations in the farther neighborhood of the list elements. The exhaustive search still ensures
the correctness and completeness of the retrieval, but Fig. 6 shows, how the number of distance
computations is reduced by the optimization. In the figure, we compare the case of t+ = 2 with
tt = 5, both are shown with and without the heuristic approach. The computational effort for
the weaker topology preservation is reduced to nearly the rate for the stronger one. Even for the
critical case of retrieving only a few nearest neighbors, the optimized algorithm shows its power
of saving computation effort.

We can formalize the optimized algorithm RETRIEVE,; ,,; as follows:

12



2 INTERPRETATION OF TOPOLOGY

250 T T T
defect size 2, full search —-——
defect size 2, optimized -+---
defect size 5, full search -=---
defect size 5, optimized -
200 1
O-8-8
B-8-8
H,Br
0 N=RcR=Ncy
g 150 [ 1
c oot o-O
B B,EI—B'E]"’
2] o
> =
‘S 100 ”D—D/ i
* E,B—Bﬂ‘ﬂﬂ'ﬂ”d s &
:E” P x ></><7>< +~+/*/+*/
50 | e=al .
x,,¥—++/+‘*"+“+‘+
X _
:‘ Xege X 5
0 . . . . . . .
5 10 15 20 25 30 35 40

# of nearest neighbors

Figure 6: Comparison of the exhaustive and the optimized approach to retrieval with two different
values for the defect measure ¢+

1. Let s := 1.
2. Determine [y, let L := (I1) .
3. Let d,,; := 0. Let [, := nil.
4. For all [; € Ly:
o Let dpyse :=d(q,1;).
o checkNeighbors(l;,t™, dyase)
5. Let Ly = (Ls, lnext)-
6. If s+ 1 = m, then return Lsy1, STOP.

7. Let s := s+ 1, goto step 3.

Like the algorithms before, at step s RETRIEVE ops runs through a set of candidates to
determine the s + 1-st nearest neighbor. But now, instead of collecting an increasing set of
candidates to select the next list element from, the algorithm stores information in the nodes
themselves and keeps track of the best choice. Starting from each of the list elements retrieved so
far, a search with depth ¢ is executed to judge the mere possibility of a node to be a successful
candidate.

We rather informally present now the procedure checkNeighbors that is called recursively to
run through all neighboring nodes of a list element with the required search depth ¢+, marking a
node as rejected at step s, if the distance calculation can be suspended for the above explained
reasons. Otherwise, the distance to the query is to be determined and is stored in the node.

13



2 INTERPRETATION OF TOPOLOGY

In both cases, the search continues at the currently examined node until the needed depth is
reached.

Algorithm check N eighbors(currentN ode, depth, base Distance):

1. If depth = 0, then return.
2. Let Kgopy := sorted list of neighbors for currentNode (with respect to the edge lengths).

3. For all K; € Kgort/Ls

o Let newBase := baseDistance — d(currentNode, K;).
o If K; was marked rejected during loop s of RETRIEVE,; ;s
then:
checkNeighbors(K;, depth — 1, new Base).
else:
If newBase < dp;p
then:
Compute d(K;, query), if not already known.
If d(K;, query) < dpip,
then:
Let dpin 1= d(K;, query), lpest == K.
checkNeighbors(K;, depth — 1, d(K;, query)).
else:
Mark currentNode as rejected in loop s.
checkNeighbors(K;, depth — 1, newBase).

From the explanations given above it can be seen the heuristic of choosing near neighbors of
list elements first in the course of the retrieval will affect the efficiency of the procedure, but not
the correctness of completeness. Depending on the selection order RETRIEVE,; .,y Will compute
for more or less nodes their distance to the query, but it will never suspend the computation for
a real candidate.

Theorem 2.3
RETRIEVE,; 4y is correct and complete.

2.3 Incomplete storage of data

This section deals with the incomplete storage of data points, a situation that will be most
appropriate for application purposes, since storage capacity is limited and generalization will
naturally occur. Now we have for the graph G that |V| < |D|, which means that in general
several data records d; are associated with a graph node v;. By D, := {d; | d(d;,v;) < d(d;, vp)}
for all p # j we denote this set of data records mapped onto a certain node.

Figure 7 shows a sample data set (small crosses) and a distributon of graph nodes (large
crosses). For now, no assumptions are made about the topology, so we omitted the graph edges

14



2 INTERPRETATION OF TOPOLOGY

X X y
XXX X§(
X
X%
X X
><>?< x &q
X
v,
X X/q
X XK X X
X X x

Figure 7: A sample data set with incomplete storage of data vectors

in the figure. The query ¢ falls into the Voronoi region of the node labelled v,, whereas the nearest
data vectors remain unvisited. So ¢ would at first be associated with the data records in D,,,
which are not the ones closest to ¢. In fact, no algorithm can guarantee to traverse any given
topology (even the perfect one) with a predefined number of steps and construct a complete list
L of nearest data vectors.

Thus, in order to minimize the risk of error the distribution of the graph nodes is not arbitrary.
Therefore, let us consider the reconstruction error

E, = /V st(w) - pr P (w) dw (2.5)

where P (V) is again the distribution of the data set V' C R* as introduced above. A vector
quantization algorithm which minimizes £, distributes its weight vecor set w = {w;},. , according
to

P(V)x P(w)” (2.6)
where « is the magnification factor. 1t is coupled to p—value via

k

= — 2.7
o= @)

[Zad82]. Furthermore, let be II; denote the probability that the neuron 7 is the best matching
unit bmu. The entropy H is then defined as

H=-> 1l-logll;, (2.8)

€A
and H becomes maximal if @ = 1 holds [Bra90]. However, for the SOM in the case of mapping of a
one—dimensional input space onto a chain of neurons one gets asopy = % [RS86]3. For the TRN
one finds in general arpy = kkﬁ [MBS93], i.e. argrn only depends from the dimensionality of the
data set V embedded in the R*. These results yield that the entropy does not become maximal
and, on the other hand, the SOFM minimizes the (somewhat strange) reconstruction error E%

and the TRN the more usual Fy. A neural vector quantizer the goal of which is to maximize H

this result is valid also for higher-dimensional cases which separate

15



3 HIERARCHICAL MODELS

is the above mentioned network of LINSKER [Lin89]. Yet, recently in [HBD95, BDH96] a variant
of the original SOM algorithm is published which allows a control of the magnification factor
asorm of the SOM. It is based on a localized learning parameter ¢ which now is defined as

(€;) = egP (w;)™ (2.9)
where the brackets (...) denote the average in time. The learning rule (1.4) now is written as
Aw; = eu)ho (1w, W) (W — w;) (2.10)
which leads to the new magnification factor
dsom = asom - (m+1) . (2.11)

Hence, one is able to control the magnification factor &gpops via the parameter m and, as the
consequence, also the reconstruction error F, from (2.5).

Additionally, since unsupervised clustering uses no class information for the training cases,
minimizing an error measure like the reconstruction error is the best that can be done with the
training data. If we have access to class membership information for the data vectors, we can use
this additional information to control the training process of the network and minimize different
criteria, that consider, e.g. the classification error or the costs of misclassification as well. The
insertion rules of a dynamic network model like the SplitNet model described in Sec. 3.4 may be
chosen in a way that the selected criterion in optimized by the growing network.

3 Hierarchical Models

In this section, we first give a quick survey of existing hierarchical models for data analysis, both
from statistics and the neural networks field. Then, we present a new architecture, the SplitNet
model, that integrates the ideas and goals of both, the non-hierarchical topology preserving maps
and the hierarchically organized decision methods.

3.1 Hierarchical Cluster Analysis

The hierarchical cluster analysis, either the divisive or the agglomerative methods, are methods
that progressively split or link clusters of data. The result of the method can be visualized as a
dendrogramm, which is a two-dimensional tree structure that shows the order of linkage (for the
agglomerative case) and the distance or similarity at which this linkage of clusters was performed.
Thus, this method is able to display the clustering of data but it is not possible to reason about
the real spatial relationship of the observed pattern. There is no similarity information other than
the one for linked clusters. Similar statements are true of course for divisive methods. So the
hierarchical clustering methods are useful tools for a preliminary analysis of the data, but they
do not provide additional ways for explaining the classification result or reason on alternative
solutions based on neighborhood observations.

16



3 HIERARCHICAL MODELS

3.2 Classification and decision trees

The classification trees [BFOS84] are a tree-structured representation of a classifier consisting
of decision nodes, the nonterminal nodes in the tree, and class assignment nodes, the terminal
nodes. In the decision nodes, the solution space is separated into two subspaces by testing a
linear combination of attributes against a threshold. Thus, on a path through decision nodes on
a branch of the tree, a sequence of hyperplanes will classify a given input vector into the sub-
space belonging to one of the terminal nodes. The orientation of the hyperplanes is determined
separately for each decision node and chosen to optimize an a posteriori citerion like the misclas-
sification cost. This computationally expensive strategy is looking for an optimal division of the
current training set but may not be adaptable for incremental learning tasks. Additionally, like
for the clustering methods, the topological information of neighboring subspaces is lost during
the sequential splitting by hyperplanes.

Decision trees [Qui86] and the dynamic version C4.5 [Qui93] are symbolic learning methods
that construct a tree structure by considering an information gain criterion. According to this
criterion, at each level of the subtrees, an attribute and a partition value are selected, in order
to form a decision at this branch. Using the entropy criterion yields trees with shortest average
path length (i.e. the number of decision necessary to assign a class) but as in the other methods
decribed above, the successive seperation of the input space by orthogonal hyperplanes destroys
neighborhood relationships between the leaves of the tree, a fact that becomes important in
application with uncertain or fuzzy data.

3.3 Hierarchical Neural Models and Tree Networks

In the past, several hierarchical connectionist models have been introduced that inspired our
work, but differ in many aspects from the appraoch proposed in Chapter 3.4. An important
point for simulation of the SOM is the search for the best matching unit (dmu), i.e. the neuron
that matches best the current input vector according to some distance or similarity measure. The
distance measure is usually chosen to be the euclidean distance as in equation (1.2). However,
other distance measures are also applicable. The Probing Algorithm [LO89] uses the topological
neighborhood of the map to look for better units than the current candidate neuron that was
determined in a fixed amount of time by e.g. a projection method.

Tree structures obviously accelerate the search. The use of dynamic k-d-trees for efficient bmu
search in a regular map of fixed size is proposed in [Kel91]. Another way to benefit from tree like
structures is a hierarchical structured SOM itself. In [KO90] and [Ko0i94] the hierarchical network
TS-SOM is introduced, that has a SOM on each level of the hierarchy, with increasing number of
neurons in each subsequent level. The intermediate SOMs are fixed and the bmu search involves
the above mentioned Probing Algorithm to avoid the error accumulation from the smaller parent
SOMs to the lowest child SOM. However, the effect of the Probing Algorithm is limited by the
(in general) non optimal topology preservation of the maps and this problem is not tackled by

the TS-SOM.

There exist a number of neural network models that are called to be tree structured and
which, considering the network topology of nodes and propagating links, are indeed trees. The
construction of these neural trees however is not done in a hierarchical way by a neural training

17



3 HIERARCHICAL MODELS

mechanism.

Tree-structured MLP networks like the Perceptron Trees [Utg88] are quite comparable to
decision trees (see below) as they use an attribute test at each decision node. But unlike in
decision trees, now the terminal nodes are not class assignment nodes, but Linear I'reshold Units
(LTU), which divide the current subspace by a hyperplane. Thus, the terminal nodes require
an additional test and then provide a class assignment. A classification along a path in the
Perceptron Tree corresponds to a division of the solution space by hyperplanes perpendicular
to the attribute dimensions and only for the last test contained in the terminal node, arbitrary
orientation of the decision plane is allowed.

A model based on a competitive tree structured network is proposed in [FJW*91], [LFJ92].
Those binary Neural Trees have a predefined size and structure and may be trained with variants
of the competitive learning scheme. Input data is forwarded through the tree and at each level
takes the path with the winning neuron. The weight adaptation affects the complete subtree
of the first winning neuron. Thus, again we have a subsequential division of the data space by
hyperplanes, but for the Neural Trees, the orientation of the planes may change during weight
adaptation. The classification structure is more flexible then e.g. but the need to predefine the
network structure is a drawback.

3.4 The SplitNet Model: Hierarchical Clustering and Classification
3.4.1 Related work

The Learning Vector Quantization (LVQ) method [Koh90] as well as the k-means clustering
method (see e.g. [TGT74]) place a number of reference vectors into a set of data records and
iteratively minimize a certain quantization error criterion. The drawback of both methods is the
a priori setting of the number of reference vectors and the loss of topologic information during the
adaptation of positions. The SOM maintains topologic relationships but, as mentioned before,
due to the reduction of the data space to a predefined dimension it is unable to keep the topologic

defects small (cf. Sec. 3.4.6).

The Growing Cell Structures (GCS) [Fri93b] are a dynamic vector quantization model. Dif-
ferent criteria, e.g. the quantization error, determine the insertion position of a new neuron.
Removal strategies yield an adaptive quantizer that is superior to the original SOM, but the
GCS model also uses an a priori specified dimensionality (by the choice of simplices) and still
involves computations that are performed for all the neurons in the network. The Neural Gas
algorithm [MS91] also approximates the distribution of input data and constructs topology pre-
serving connections between its neurons. In [Mar93] another non-hierarchical model for topology
approximation is presented. This Competitive Hebbian Learning assumes a given distribution of
reference vectors and learns (in the limes) the Delaunay triangulation of these vectors.

The Growing Neural Gas algorithm [Fri95] is a dynamic variant of the Neural Gas, based
on the simplices of the original GCS that is free of parameters varying in time. A growing self-
organizing feature map constructing hypercubical structures is described in [BV96]. This model
is able to add a new dimension to the structure of the network, if topological defects occur during
training.

18



3 HIERARCHICAL MODELS

3.4.2 The SplitNet model

The SplitNet model introduces a new aspect compared to the existing models described above.
During training, it develops a hierarchical structure in the networks architecture, while still being
topology preserving on the flat, i.e. lowest, neuron level. Therefore, all considerations of Sec. 2
concerning the retrieval using the networks topological connections still hold in this context. In
addition, the network creates a hierarchy of sets of neurons that can be interpreted similar to a
decision or classification tree (Sec. 3 will deal with this topic).

Definition 3.1

Let I = {i1,...,i,} a deliberate set and let P.(I) the power set of I without the empty set.
Then, a system of sets # C Py (I) is called a hierarchy of I, if for two different sets B, C' from #
exactly one of the following three alternatives holds:

() BANC=0 or (i)BCC or (i) CC B.

The SplitNet model constructs such a hierarchy over its set of neurons by a combination of
divisive methods. The splitting of a neuron set occurs for one of the following reasons:

e topological defects,
e clustering aspects (outliers) or

e deletion of neurons.

Each splitting of a neuron set grows the hierarchy at the leaf node representing the splitted
set. Supposed the distance measure is given, the only ways of learning are adjusting the neuron
positions, creating topological connections as well as changing the number of neurons. Growing
neural networks start training with a low number of neurons and grow by repeatedly adding
neurons to the network structure. This insertion of neurons can be controlled by, e.g.:

e a vector quantization criterion,
e misclassification rates or

e misclassification costs.

The vector quantization criterion applies for unsupervised learning, where no class information
is available. SplitNet uses this criterion to approximate the input distribution by the distribution
of neurons. Both the other criteria can be used for supervised learning only. The goal is to
analyze the class distribution over the represented data vectors, a task that needs additional
considerations developed in part in the statistical classification field (see Sec. 3.4.7 for an outlook
on these issues).

As a model of unsupervised learning SplitNet provides an efficient quantization of data dis-
tributions of unknown dimensionality. It approximates the distribution by a growing number of
one-dimensional Kohonen chains that are linked in a topology preserving manner while keeping
topological defects small. This is achieved by repeatedly growing the existing chains, detecting
topological defects, resolving them by splitting the chain, augmenting the tree structure and
removing superfluous neurons. In the following we describe the principles of these tasks.

19



3 HIERARCHICAL MODELS

3.4.3 The tree structure

To faciliate the discussion, we introduce a formal notation for the resulting tree structure, that
represents the constructed hierarchy 7. The nodes of the tree are described by a tuple T;; =
(C, S, P,M,s,p,e), where i is the level of the tree and j numbers the nodes at the same level.
The indices for the elements of the tuple are omitted if they are unambiguous from the context.
C' stands for the Kohonen chain, that is actually represented by node 1T'. ' is empty, if the
corresponding chain was splitted. In that case, pointers to the nodes of the resulting chains are
included in the set S of sons of 7'. Thus, C' = () <= S # 0 holds. P represents the father node of
T;;. It is needed for propagating values like errors or centroids to the parent nodes of the actual
chains. The set M links C' to other chains adjacent in the topology of the input space. The values
s and p contain the size (represented number of neurons) and the center of centroid of a node,
respectively. They are defined recursively by

- if O
S5 = |Cj| IICJ ?é @ and (31)
Z{klciﬂ,kesij} Sit1,k else

1/si5 2N, ec;, Wk if Cij # 0

pij = Z{HCH_MGSU}5i+17k7’i+1,k olse . (3.2)

5
Z{k|ci+1,k €5;;} it Lk

Equation (3.1) counts the neurons of Cj; if this chain is not empty, else it sums up the sizes of
subsequent chains. Similarly, (3.2) determines the centroid of a node representing one or more
chains. The error related insertion variable e will be described in Sec. 3.4.5.

3.4.4 Creating the tree structure

One of the main tasks of the model presented here is to improve the topology preservation with
respect to the hierarchical arrangement of the substructures. This is achieved by detecting the
topological defects in the chains of the network and resolving them by splitting a folded chain
into two adjacent ones, each of which covers a part of the subspace of the former unsplitted chain.
Other splitting reasons are the detection of outliers in the data by observing variances in local
quantization estimates and the deletion of neurons at positions where the data probability is zero.
In the following, we present those splitting reasons in detail.

Topological Defects. As described in Sec. 2.2.2, topological defects are locations where close
input vectors are mapped to neurons that are not neighbors in the network topology. For the
one-dimensional Kohonen chain, we therefore get a topological defect, if the chain bends into the
input space and the ends of the chain come close to each other.

Figure 8a) shows a chain C1; folded into the two-dimensional input space [0;1]%. For each
neuron Nj the Voronoi region Ry, (cf. Equ. (1.3))is given by the dotted lines. It can be seen that
e.g., the neurons Ny and N7 are adjacent in input space but not in the topology of the chain.
Connecting them by an edge would form a cycle of topological neighbors both in input space and

20



3 HIERARCHICAL MODELS

p=(0.4,0.5)
s=7

| C={}

p=(0.4,05)
s=7

RN

Tu[C={1234 Ty C={567}

p=(0.31,0.68) < =| p=(0.51;0.26)
s=4 s=3

b)

Figure 8: Resolving a topological defect by splitting the chain and adding meta-edges (see text)

in the chain. During training, always after a predefined number of training steps, these cycles are
determined by the following suboptimal procedure.

Let C' and C? denote the set of neurons in the first and second half of a chain, respectively.
For pairs (c}, ¢?) of neurons with ¢} € C1 and ¢ € C* we calculate the midpoint ¢™4 = (! +c2)
and present it as input vector to the network (in test mode, without weight adaptations, of course).
If the first and second winner for this point ¢™* are just the points ¢! and ¢?, we have detected
a topological defect. This procedure is suboptimal, because even if one or two other neurons win
for this input, ¢! and ¢? may nevertheless have adjacent Voronoi regions and thus be neighbors,
forming a topological defect. Though, this heuristic works, because topological defects are mostly
occurring for several adjacent neurons and if one is overlooked by the procedure, the adjacent
one is likely to be found. The main advantage of this heuristic is avoiding costly calculation of

the correct Voronoi regions.

If topological defects are found, they are resolved by splitting the cycle in the middle between
the neurons of the defect, thus creating two new chains at this particular defect. Those new
chains Cy; and (' continue learning with their own increased neighborhood radii and are added
to the network tree in the set S of sons of Ty, while C'y; is now empty. Both, the edge that is
removed by the splitting and the edge that would have formed the cycle are added as meta-edges
(dashed lines) to the sets My and My, of the topologically adjacent chains.

The resulting chains and their centroids p (crosses) are depicted in Fig. 8b). The new tree
structure is shown on the right. The old chain 'y is empty, but T still represents the neurons
from the chains below.

The SplitNet model contains another type of meta-edges that is based on centroids of inter-
mediate levels of a larger tree and improves the topology preservation even more. Again after
some predefined number of training steps, for a certain level of the tree, the centroids are exam-
ined with respect to their neighborhood relations (with a procedure similar to the one detecting

21



3 HIERARCHICAL MODELS

defects). Neighboring centroids are connected by meta-edges and those meta-edges sink down in
the tree until they reach the neuron level, providing additional topologic information that might
be available only in higher levels of the tree.

The centroids are used to traverse the tree in order to find the best matching unit (bmu). As
in other hierarchical networks, e.g. the TS-SOM [Koi94], the search might be misleaded by the
upper levels. Here, the critical point is the decision according to the centroids. This may lead to
suboptimal results (consider the input marked by a circle in Fig. 8b)), and a procedure like the
Probing Algorithm [LLO89] can be used to find the real bmu. Now, as the topology preservation is
nearly optimized by the structuring of the network, the Probing Algorithm does not fail because
of local minima as it often is the case in the original SOM. With a strictly local search (just
following the topologic connectivity), all relevant nodes are found in the close neighborhood of
the first guess. As only the chain of the bmu is updated, the computations in the network during
training and structure learning only affect a very localized group of neurons and tree nodes per
time step, the largest part of the net remains unchanged.

Splitting for outliers. An observation often made through our experiments with various input
distributions was the fact that outliers in the data are represented by one or several members
of a chain, whereas the rest of this chain approximated a (part of a) different cluster. In order
to capture this conceptually, we let the network apply a graph-theoratical criterion formerly
introduced for cluster detection with minimal spanning trees [Zah71]. Inside a chain, the edge
lengths between the neurons are compared with each other. If an edge length is significantly larger
than the average edge length in that chain, this edge can be interpreted as a bridge, connecting
two independent regions in the input space. Thus, splitting is done at that edge, replacing it by
a meta-edge and thus increasing the corresponding subtree.

Deletion of neurons. Below, we describe reasons for deleting a neuron in a chain. If this
neuron is at the end of the chain, it simply is discarded. If on the other hand this neuron is
inside a chain, deletion of this neuron also invokes a split at that location, connecting the former
neighbors of the deleted neuron by a meta-edge and thus growing the tree at this level.

3.4.5 Shrinking and growing of chains

Because of the above splitting process it may happen that there exist neurons in places that
belong to the subspace of another chain. Those neurons are no longer useful for the function of
the net. If the lateral connections are not strong enough to pull them back into their homeground,
they should be removed. In order to discover those neurons, each neuron N; has a counter b;
that registers how long this unit has not been bmu although the chain of N; also included the
bmu:

1 if N;j =bmu
b; =14 b; — Abc if N; # bmu and N; € C'(bmu) (3.3)
b; else

After splitting, the counters of all neurons in the affected chains are reset to b; = 1. The
constant Abc can be chosen differently for each chain and is set to the reciprocal of a small

22



3 HIERARCHICAL MODELS

multiple of the chain size. Neurons with b; = 0 are removed from the chain. This removal
criterion is similar to the approach presented in [Fri93b], but it is modified to be strictly locally
computable. Only the neurons in the winning chain are updating their counters, thus no global
calculations are involved.

After repeatedly splitting chains, the neuron distribution in the input space may not reflect
the training data properly and may not be optimal for quantization or classification tasks. A
mechanism for adding neurons to the network according to some suitable insertion criteria is
needed. Incremental tasks require a criterion for spontaneous insertion in order to cope with new
relevant data subspaces. In this report, the discussion is limited to statistical insertion of neurons
according to a quantization error measure.

In order to achieve an optimal reduction of the network quantization error Fy¢q =3, [|x; —
Wimu||?P(%:), a new neuron should be inserted at a location, where the actual quantization error
is high. The contribution of a chain to Fyq is estimated with the help of the errors of its neurons.
At each step of the training process, the bmu adapts its error variable Fj,,, by an equation that
is similar to the Kohonen learning rule:

W+l . gt 2 1t
bb;lr-vu T bbmu t+a (dbmu - bbmu)? (34)
where dppy = ||Xi — Wiyl and x; is the current input vector. The learning rate can be set to a

small constant or can be reduced by a cooling scheme involving the error variance in the chain.
When the movement of the neurons stops after some training time, the expected value <d§> equals
the quantization error Fyq ; of neuron N;

(@) =D dip(d}) =3 (4} ) ojecpw,—epyP(@) = D dip(ai) = By,
d

d’ {zild?<d? Vk#j} (3.5)
thus also (F;) = Fyg ; holds. Now we estimate the relative error of a chain C' by

pt = o e B (3.6)
s8¢

where h¢ stands for the number of times the chain C contained the bmu. When the neuron N,
is inserted into the chain, its position is set to the point w,.,, = %(wi + w;) halfway between its
new neighbors N; and N;. The error variable F,.,, is initialized with (%EZ + %EJ) and F; and F;
are reduced by one third each, approximating that the new neuron had been there before. Thus,
the estimated overall error of the chain still is the same right after insertion, but the chain has
grown by the newly inserted neuron, reducing the relative error of the chain.

To determine the appropriate chain for insertion, we observe the reduction AFyq := E{}lé -

Ey’ of error caused by the insertion. We have

ABEyo = he ZjECold E; B he ZjECnew E; = o Z E(l ~ 1
¢ Y so+1 iECa s 14

) (3.7)

where the step marked by = is possible, because at insertion time Yiecus Fi = 2iccnen Fi
holds. Then, we get

23



3 HIERARCHICAL MODELS

1 Erel
AFEyvo =h i =€ 3.
Ve C.Z Js(s—l—l) s+ 1 (3.8)
7€C 014

Thus, the reduction of error is maximal, if the new neuron is inserted into the chain C, for

which

Egel
sc+1

€insert = (39)
is maximal. Thus, again only local computations are necessary to evaluate the insertion criterion
and a fast tree search determines the chain with the highest €;,5.-¢+. As in the case of splitting,
an increase of the neighborhood radius allows a rearrangement of neurons after insertion.

3.4.6 Empirical Results

The topology preservation as well as quantization error and retrieval speed were compared to the
original SOM, where both networks contained N = 40 neurons (SplitNet started with 10 neurons
and grew up to 40). The input vectors where chosen at random from the unit square [0; 1]2.

2.5 T T T T T T T
litNet -—
onen -+

Phi(t)

10 15 20 25 30 3 40
Topologic Distance t

Figure 9: Topology preservation of SplitNet and a regular Kohonen chain

Figure 9 shows a comparison of the values of the topographic function ® in (2.3) for the
Kohonen chain and the SplitNet model. Note the large sizes of topologic defects for the regular
Kohonen chain. The important point for SplitNet is the disappearance of ®(¢) for small ¢ (tt =5
in this example). That means that a moderate amount of search, e.g. by a kind of Probing
Algorithm, will suffice to guarantee that all topologic relevant nodes in the network structure
are encountered. For the Kohonen chain, t* = 37 holds, thus large portions of the structure are
unreachable by short range search in the network topology although those neurons are located
quite near in problem space.

These results show the utility of the SplitNet model for tasks that need to retrieve a number
of similar neighbors to a given query. With low values of ¢, the retrieval algorithms of Sec.
2 become applicable and thus SplitNet is a model that complies with the requirements of e.g.
diagnosis applications in the medical domain.

24



3 HIERARCHICAL MODELS

Scale: 1.0&@1.0 . 1ol Srale: 1.3281.33

Ny
A

+

Figure 10: A sample data set (left), the interconnected SplitNet chains (middle) and Voronoi
diagram with decision regions (right)

The quantization results of both networks are quite comparable with a slight advantage for
the SplitNet model in the simulations done. However, the simulation and retrieval times of the
SplitNet model were at least one order of magnitude faster than those of the regular Kohonen
chain and this advantage can be expected to increase with more complex applications.

Figure 10 depicts the behaviour of SplitNet for a sample data set (left). SplitNet develops a
structure of interconnected chains (middle) and quickly approximates the decision regions of the
data records as they appear in the Voronoi diagram (left and right, bold lines).

The real value of a model can only be estimated when it is applied to real world data or
even better when it is evaluated in a real world application environment. We currently establish
the application of SplitNet for medical diagnosis and monitoring tasks, some details of which are

described in Sec. 5.

3.4.7 Future extensions

Right now, the hierarchical structure of the network is constructued by a purely divisive algorithm.
We defined several splitting criteria and divide a neuron set, i.e. a chain, into subsets, the sub
chains. Especially when we consider the fact that the network is growing from a very small
initial configuration we can conclude that early splits might become obsolete in later stages of
the training. Despite a correct representation of the training data by neuron distribution and
topological connections, the inherent grouping by the chains of the network might be improveable
by some agglomerative methods. This would possibly reduce the number of chains in favour of a
better comprehensibility and interpretability of the hierarchy in applications like the one described
in Sec. 5.

In order to incorporate these ideas, it might be necessary to abandon the chain based archi-
tecture and develop a more general variant of the model. For the growth process of the network
we then try to apply insertion criteria based on misclassification rates and cost functions. By this,
we can control the training of the network by more information than contained in the distribution
of training vectors. Additional knowledge of misclassification costs will improve the performance
of the network in cost sensitive applications.

25



4 INTERPRETATION OF HIERARCHY

4 Interpretation of Hierarchy

In this section, we outline the semantics of the hierarchy in the models described in the previous
section. The different meanings of tree traversal in those models as well as the utility of topology
interpretation (cf. Sec. 2) demand efforts on the integration of different approaches on a common
basis. This is one objective of our current research.

4.1 Hierarchical Cluster Analysis

The dendrogram constructed by Hierarchical Cluster Analysis is a hierarchy on the set of data
vectors (cf. Definition 3.1) that can be drawn as a binary tree. Figure 11 shows an example
for arbitrarily chosen data vectors a,..., f. On top level, the root of the tree represents the
whole data set whereas at each lower level a branching represents a split of a set into subsets or
linkage of to sets into a larger set (depending on the nature of the construction method). As the
tree levels are related to the distance at which the split or linkage occurred, a tree traversal can
provide information on the distance of data subsets occurring on the selected path.

124 !
ab,cdef
9 €
ab,cde

671 ab,c
5 €

de
i F‘j

a b c d e f

Figure 11: An example of a dendrogram as it is produced by Hierarchical Cluster Analysis

If we assume an agglomerative method for the following discussion, we can read from the
dendrogram the order of linkage. The most similar vectors are @ and b and they are combined to
{a,b} at distance 2. Next, d and e are linked to {d, e} at distance 5, then {a,b} and ¢ are linked
to {a, b, c} and so on. What we do not know from the dendrogram is, e.g., the relative position of
single data vectors or groups of vectors to each other. Vector f is linked last to the other vectors
and thus is quite far off the group {a, b, ¢, d, e}, but in which direction? There is no information
on that contained in the dendrogram. Additionally, the dendrogram itself provides no decision
information for the processing of new vectors to be classified. It does not produce or represent
decisions regions of any kind.

Thus, the Hierarchical Cluster Analysis is a useful means of displaying the structure of a data
set as a preliminary data analysis, but it seems to be inadequate for tasks that require processing
and decision capabilities.

26



4 INTERPRETATION OF HIERARCHY

4.2 Classification and decision trees

As described in Sec. 3.2, both the classification and the decision trees construct a tree that
represents a sequence of hyperplanes. Those hyperplanes successively subdivide the data space
into regions and subregions according to the respective criterion. Figure 12 gives an idea of the
kind of division of the data space by a decision tree method that selects attributes and then
determines a suitable attribute value for the positioning of the hyperplane.

y
80—+ X
70— X %
60+ %
50” O O >< ><
40+ OO

0~ 0 Xx X
30+ o X
X

20+ 0,0 X
10+ X X

a) b)

Figure 12: An example data set for three classes, a possible division of the data space by hyper-
planes and its representation in a decision tree

First, the whole data set is divided into two subspaces, those subspaces are divided again and
so on. The resulting structure is a binary tree with decisions at each branch. The leaves contain
only data vectors of one single class. Thus, for a new data vector the tree traversal according to the
node decisions yields a classification result. This result is gained with the lowest misclassification
rate for the classification tree and with the least average number of decisions for the decision
tree. Nevertheless, the path has to be followed down to the leaf, because intermediate stages
cannot assign a class membership to the query. And once a leaf is reached there is, like in the
Hierarchical Cluster Analysis, no information on similar data vectors in neighboring subspaces.
One can see from Fig. 12b) that each class has representants in the left subtree as well as in the
right subtree, albeit each class consists of only one cluster. The similar vectors of the same class
are far away in the tree, only reachable by extensive backtracking.

A classification of a query is completely based on the strict path decisions inside the tree nodes.
Uncertain or vague information cannot be processed in the tree, due to the lack of neighborhood
information. Thus, the strengths of the classification and decision trees are the deterministic
construction of tree structures that minimize a given criterion (see above), but the methods are
not suitable for the retrieval of similar vectors or the processing of fuzzy information.

27



4 INTERPRETATION OF HIERARCHY

4.3 Hierarchical Neural Models and Tree Networks

For the Perceptron Trees described in Sec. 3.3 many of the above statements regarding the
decision trees hold. The only difference is that the leaf of the Perceptron Tree is also a decision
node and provides a decision of class membership only after the test. The orientation of the
dividing hyperplanes is flexible and trainable, but again the sequence of tests along a path in
the tree consists of crisp decisions and neighborhood relationships of the original data are lost.
Like for the classification and decision trees the sequence of space divisions is determined during
construction according to the class information of the training set.

The Neural Tree model mentioned in Sec. 3.3 is an unsupervised method and produces a more
data driven organization of the tree structure. The positioning of the given neurons is done by
the competitive learning rule, thus each neuron represents a cluster or a part of a cluster that
is covered by several neurons. The lack of class information during training leads to a more
cluster oriented division of the data space and thus the model is rather a quantization than a
classification tool. Like in the methods analyzed above, there are no interconnections between
neurons at the same level of the tree, so again the missing of information on similar vectors limits
the applicability of the Neural Trees for real world tasks that involve retrieval and inspection of
similar cases.

4.4 The SplitNet Model

In the above methods, the hierarchy plays the essential role in functionality and interpretability.
The sequence of decisions according to the constructed set of hyperplanes yields the classification
result for a given query and the construction method determines the efficiency of the applica-
tion. But all the models have the drawback that they cannot compare their result to alternative
possibilities or simply retrieve a (possibly incrementally growing) set of similar cases for a query.
In the SplitNet model, we integrate the retrieval approach described in Sec. 2 that is crucial for
efficient k-nearest-neighbor class assignment and evaluation of alternative solutions with the tree
structured decision methods, that effectively divide the relevant data space. The advantage of
this integration is obvious: the k-nearest-neighbor approach is suitable for unsupervised training
methods and the tree structure is a very efficient method for locating best matches to a given

query.

The hierarchy in the SplitNet model serves, similar to the structure of the Neural Tree, as
an efficient access structure for fast determination of the neuron the weight vector of which is
most similar to a given query. Again, the path decision during traversal of the hierarchy is made
with respect to hyperplanes. These hyperplanes are not represented explicitly like in the decision
nodes of the classification and decision trees, but in each node implicitly defined by the positions
of all (possibly more than 2) successor nodes. Thus, they can have arbitrary orientation and
are controlled by the distribution of the data vectors. As demonstrated in Fig. 10, page 25, the
location of neurons and consequently the orientation of hyperplanes preserve the natural decision
regions as they are observed with the specified distance measure.

The hierarchy of SplitNet is only one part of network structure that is constructed during
training, the topology of the network being the other, but the hierarchy itself can be of great
importance for the visual inspection of the principal structure of a data set. In the next section,

28



5 APPLICATION: MEDICAL DIAGNOSIS

we show how the hierarchical structure, printed as a two-dimensional tree, is used for inspection
of the training result and interpretation of neuron contents with respect to a medical diagnosis
and monitoring problem.

5 Application: Medical Diagnosis

5.1 Goals of the Research

Together with researchers from the Bad Neustadt Hand Center we are working on new methods
for the diagnosis of Ulnar nerve lesions. While assessing ulnar sensory function is easy, objective
and quantitative analysis of motor funtion is quite difficult. Kspecially improvement of fine
motor activities are difficult to quantify. Motor dysfunction of the ulnar nerve is described
based on personal experience and is paraphrased as ’clawing’ or rolling’ (the static and dynamic
dysfunction, respectively). Until now there is no convenient measurement system to distinguish
finger movement patterns. We tried to establish a system for measurement and classification
of finger movement patterns in ulnar nerve palsy. From the medical point of view, there are a
number of goals a new and successful diagnosis method should aim at:

e Diagnosis of less severe cases (as for example entrapment or compression neuropathies)
e Analysis of different stages of static and dynamic dysfunctions

e Detection of combination of static and dynamic dysfunction

e Potential discovery of new functional loss pattern

e Judgement of success after surgical reconstruction either of a nerve or of motoric function

5.2 Methods for data generation

Finger movement is controlled by several muscles. The intrinsic muscles innervated by the ulnar
nerve basically coordinate the movement of the three finger joints. There are many ways of
moving the fingers. We used finger movement from full extension to maximal fist closure back
to full extension (movement cycle) as a model, because all three joints are involved to achieve
maximum range of motion.

The examination of possible disturbances of the motoricity must be easily and quickly exe-
cutable in vivo, so the angles in the three joints of the finger (see figure 13) are measured by
an ultrasound device. The patients are asked to open and close their fist several times and the
result of measurement is the course of the angles depending on time (figure 14). No particular
properties can be read from these original curves, so they have to be processed further. A first
approach reconstructs the movement of the finger and, at special positions of the fingertip, writes
out current angle data. These data sets characterize the motion of the finger and are used for the
training of the network. Right now, this pattern set is generated by an expert who analyzes the
steps of the finger movement by hand. Current efforts are concerned with automatic and more
powerful methods of data generation and feature extraction, but the currently available data is
sufficient to demonstrate the principle of the expected analysis.

29



5 APPLICATION: MEDICAL DIAGNOSIS

140 + '011-5lf.datwl ¢ -
'011-5If. dat.w2’ +

120k M A o~ Mvolw.dm.ﬁ o A
+ + 4 + + +
Lt + - + + L+
100 1 T .
N

80

60

40

Finger 20
Hand o
\ Yo
wl w3 20 1 1 1 1 | | |
Joints 0 2 4 6 8 10 12 14
Figure 13: Finger joints and Figure 14: The course of joint angles during fist
their angles during flexure opening and closing

5.3 First empirical results

We now present the results of applying the SplitNet model to the data generated by the method
mentioned in the last paragraph. The data sets are classified but the classes are not used in the
training process. They only serve for visualization of the results. The patients with an Ulnar
nerve lesion are coded with three letters while healthy subjects of a control group are represented
by three digits. Figure 15 shows a resulting tree structure for a small data set. The subject codes
are mapped to the tree node that contains the winner neuron for a pattern of this subject.

The tree structure serves for a fast classification of a new generated pattern and assigns
it to a leaf box that contains similar pattern. In addition to this decision tree like behaviour
(which is of course not entropy based in this example), the structure can be examined further,
considering the meta-edges in the topology of the network (dotted lines in the figure). Together
with distance information of these edges, it is possible to interpret the structure with respect to
size and proximity of clusters as well as the level in the tree on wich a separation occurred.

In our little example here, we note that subject 010 was separated first from the rest. It
was supposed to be a healthy person but this result indicates the need for a further medical
examination. In the second level, we have four sons of decision box 2, two of which are leaf
nodes that contain subjects with nerve lesions. On the next level, the other two boxes split the
remaining set into several clusters, that are linked amongst themselves. They contain the pattern
of the healthy subjects and two of the nerve lesion group. This shows an advantage of network
structure: the distance information of the meta-edges can be used to see that the pattern for
subject szi are somewhere between the lesion and the control group and subject akk falls back
into the control group. These facts can be supported by the medical explanation for these cases.
Subjects szi and akk are patients where the nerve is currently recovering quite well from a cut
and motoricity was judged by medical experts to be normal. The boxes with subjects cav, rap
and zit separate two cases of static dysfunction from one case of dynamic dysfunction. Thus we
succeeded in our first steps towards the goals given by medical research (see chapter 5.1).

An additional advantage that arises from the direct coding in networks like SplitNet is the

30



5 APPLICATION: MEDICAL DIAGNOSIS

decision
node 1
decision
node 2 010
decision decision
cav, rep node 3 node 4
i, 029 8% gkoﬁ 001 002,003| | o021

Figure 15: A tree structure for a restricted data set (see text for explanation)

fact that the weights of the neurons are retransferable into the form and semantics of the original
data. In our example this means that from a weight vector, we can reconstruct the steps of finger
movement that would have generated this weight vector as training pattern. Thus, each cluster
or even decision node in the tree might associated with the characteristic (generalized) movement
of the represented neurons that is easily interpretable by the medical experts. This might help in
identifying and describing new forms of motoric dysfunctions - another one of the medical goals.
Figure 16 shows an example of the retransformation of information from the neuron level to the
visualization of finger movements. This tree was generated for a new data set containing 9 steps
per movement cycle and with more patient records available [HRKB96]. The text-only version of
this tree is shown in Fig. 17. The nodes contain besides some network specific data that is used
for identification purposes only the mapped subject codes like in Fig. 15. Those two versions of
a tree can be used for interpreting the training result by the medical experts.

From the beginning the tree trunk #1 splits into two branches depending on layer #2 and #3.
Branch #3 contains mainly the physiological movement while #2 contains mainly pathological
ones. Further processing of branch #2 results in 6 leaves, four of them are of special interest.
Leaf #6 contains movements where in full extension wl-joints are hyperextended whereas w2-
and w3-joints never reach full extension (clawing). In contrast to this, leaf #14 represents mainly
dynamic dysfunction. Here, w2- and w3-joints flex before wl-joint flexion thus reassembling the
rolling of a carpet. Leaves #11 and #15 present different forms of combined clawing and rolling.

The leaves depending on branch #3 mainly contain physiological movement data. Among
these data are only a few data of patients with ulnar nerve lesion, e.g. data of (iyi) a young girl
with partial lesion of the ulnar nerve and minor changes in movement. Leaf #4 and #18 are of
special interest. They represent patients after Zancolli-lasso-plasty, a surgical reconstruction of
motoric function. Especially the movements of leaf #18 show exclusively w1-flexion initiating the
flexion curve and late w2 and w3 during fist closure. This movement simulates an intrinsic-plus
at the beginning.

31



5 APPLICATION: MEDICAL DIAGNOSIS

10

1

14
NS
7 \
y

c”\
\/ \ /

/
2R

3|

Figure 16: Finger movement pattern as a visualization for neuron content. Each pattern shows
nine steps of one movement cycle, five steps for the closing of the fist (black) and four steps for
the opening (gray)

32



5 APPLICATION: MEDICAL DIAGNOSIS

<[

(7).010.-(1).c00A1).010. (€)40U.(€).c0eI(1).0T0.
S T€¥Z 52 'sal
(1) 8T# Joke

-(€)re.(€).120.

ZT9:sal
(2) L1# 1ake

sal
(0) 0T# Joke

-(T)JAL(T).£00.(T).900.-(£).€00.-(T)JAL(T).£00.(T).900.
68T LT :sql
(€) ET# Joke]

:(1).21A1().200.:(€).620.(€).214.(2).900.-(2).900.(T).£00.

(€) 9T# Joke

€2z TT:sql
(€) 6# 1oke]

sal
(0) £# 19ke

sal
(0) G# Jaken
()OI,

¥ :sal

sal

-(€).125.:(2).enib,(T).Ad,:(2).2nib,(T).enID.-(€).1y2s.-(T).2Aed,(2).nib..(2).Aed,
0z 0€ 62 6T € sl
(9) GT# Jake

(0) zT# Joke
:(2).2ned(T1).nib,..(T).o1w,
8 T :sal

(2) TT# Joke

(T) v# Jake
Q) JON(C) NZ, (€) 4405 (1) JOA,
ze €T sal
(2) yT# 1oke

'sal
(0) 8# Joke

-(T).cnib,

ST :sql
(T) L# Joke
((T)z.(g).eyds. (g).
9T 92 82 T :sl
() 9# Joke

Figure 17: Text version of the previous tree. The leaf nodes contain identification numbers for
the chains and neurons of the network and the subject codes of the patients mapped onto the

representing neurons

33



A PROOFS OF THE THEOREMS

5.4 Discussion

Motor changes caused by ulnar nerve lesion are difficult to analyze. Joint angle measurements and
grip strength evaluation can only describe a static state of the underlying pathological process.
Real time measurement of motion is an well established procedure [AC91]. Usually they are used
in biomechanic laboratory rather than in clinical kinematic to obtain kinematic data as rotation
angles or velocity. Such data can be analysed by common statistical methods. In contrast there
are no investigations of movement pattern.

Our system is the first to apply pattern recognition by a neural net approach. In this sense
we are trying to build an expert system which can distinguish between normal and pathological
movement. Looking at our results we can conclude that the SplitNet model is principially able
to fulfill this task. In our study normal and pathological movements are already split at the level
of Branch #2 and #3. But beside these ’simple’ expert task SplitNet is able to do more. Most
Neural Networks are able to learn data by training, but usually the distribution of knowledge in
the network is not accessible. Training SplitNet with input data which are in fact an image of
the real movement, we can extract an image from each neuron after training. This allows the
interpretation of the learning processes which have happened. Thus interpretation of the images
enhances our knowledge about the movement pattern. For example we recognize that most of
the Zancolli-lasso-plasty are seperated, because they present a special type of movement pattern,
which resembles intrinsic-plus movement. At the moment we have data of only a small number of
patients. So we do not know, if we portray the whole spectrum of ulnar nerve dysfunction. More
data have to be recorded to decide how many different types of changes in movement pattern
there are. Data from non-traumatic lesions as compressions neuropathies have to be gathered.
The aim is to build up a neural net containing all types of normal and pathological movement.
Then we are able to classify all ulnar nerve lesions by recording finger movement and arranging
the movement pattern by the neural net at a typical location in the tree as well as having them
connected by the topology of the network and thus being able to quickly access all relevant
movement pattern of requested similarity.

A Proofs of the Theorems

Theorem 2.1 The retrieval algorithm RETRIEVE,, is correct and complete.

Proof:  As RETRIEVE., is an incremental retrieval algorithm, it is sufficient to prove the
completeness of each list Ly that is constructed in step 5 of the algorithm. If L,4; is complete
at any step s, then RETRIEVE,, is also correct.

We prove the completeness of the algorithm by induction on s. Let L, denote the list of
s nearest neighbors to the query g.

Hypothesis:
The node vy, is nearest neighbor to query ¢ = L; = (vy,) is complete.

Induction step:
Let Ls be complete. For the determination of the next nearest neighbor the candidate set

34



A PROOFS OF THE THEOREMS

KN,y = Uggiieery Ve) \ Lt is built (cf. step 3 of the algorithm). Then, Jv, € Ky,,, with
d(vr,q) < d(vj,q) for all v; € Kn,,, and Lsyy := (Ls,v.) is complete. Thus, the candidate for
the (s + 1)-st position really is in the candidate set Ky

s+1°
Proof:
We prove the step by contradiction. Assume Jv, for which Lsyy = (Ls,v,) is complete, but
v, € Ky, holds.
Then we have d(v,, q) < d(v;,q) for all v; € Kn_,,. (%)

Let R, be the Voronoi-Region belonging to node v. and Rp = U, ¢, Ry, be the union
of all regions for nodes in the list. From the assumption, we have R, N Rz, = 0. Define
d = (v, — q) to be the vector starting at ¢ in the direction of v,.. Then there exists a Ag > 0,
such that for pg = q + Aod holds: py € Rp, Apy € Ry,, i.e. po is neither in the voronoi region
of v,, nor in one of the regions of nodes belonging to the list. Thus, py is in the Voronoi region
of a newly encountered node vs, pg € R,,,, and d(v,, pg) > d(vs, po) holds. With lemma A.1 (see
below) we can conclude d(v,,q) > d(vs, q).

Case 1: vs € Kn,,, = Contradiction to ().
Case 2: vs &€ Kn,,, = Lsq1 is not complete, contradiction to the assumption.

Thus, we have Lyiy := (Ls, v,) is complete, with v, € Kn,,. O

Lemma A.1
Let points p, ¢, r and s be given, for which the following holds: p € gF and d(s, p) < d(r,p). Then
we conclude d(s, ¢) < d(r,q).

Proof: Figure 18 illustrates the course of the proof.

Figure 18: The points p, r, s and their relation to query ¢
The bigger circle has the center ¢ and radius d(q,r), the smaller one is drawn around p with
radius d(p,r).

The assumption is d(s, p) < d(r, p). (%)

35



B ACKNOWLEDGEMENT

Thus, s is properly inside the dashed circle.

Now, suppose that d(s,q) > d(r,q) = s lies on or outside the large circle = Contradic-
tion to (*).

Therefore, we have d(s, q) < d(r,q). O
Theorem 2.2 RETRIEVE,; is correct and complete.

Proof: It remains to show that step 3 of the algorithm RETRIEVE,; includes all the nodes into
the candidate set that are neighbors to elements of the current list L, according to the Delaunay
graph. As the definition of the maximal size T of topological defects just uses the Delaunay
neighbors of nodes, a breadth-first search with depth ¢+ ensures the completeness of Kn,,,- Now
the correctness and completeness of RETRIEVE,; is shown as in the proof for Theorem 2.1.

g

Theorem 2.3 RETRIEVE,; ,,; is correct and complete.

Proof:  As described in the explanations for Fig. 6, the optimized algorithm suspends the
computation of a distance if and only if the triangle inequality ensures that the unknown distance
(c in the example of Sec. 2.2.3) cannot be smaller than the distance of another already known
distance (a). Thus, the heuristic in the algorithm RETRIEVE o+ only affects the efficiency but
not the correctness and completeness. O

B Acknowledgement

This research is supported by the Graduate College Technomathematics at the University of
Kaiserslautern. The authors wish to thank Christian Blum for implementing the medical appli-
cation system and especially Dr. Peter Hahn for inviting us to collaborate in a field of current
medical research.

36



REFERENCES

References

[ACO1]

[Amag0]

[BDH96]

[BFOS84]

[Bra90]

[BV96]

[FIW+91]

[Fri93a]

[Fri93b]

[Fri95]

[GS93]

[HEAm95]

[HBD95)

[HRKBYG6]

K. N. An and E. Y. S. Chao. Kinematic analysis. In K. N. An, R. A. Berger, and
W. P. Cooney 111, editors, Biomechanics of the Wrist Joint, pages 23—-36. Springer-
Verlag, New York, 1991.

S.-I. Amari. Topographic organization of nerve fields. Bulletin of Mathematical
Biology, 42:339-364, 1980.

H.-U. Bauer, R. Der, and M. Herrmann. Controlling the magnification factor of
self-organizing feature maps. Neural Computation, 8(4):to appear, 1996.

L. Breiman, J.H. Friedman, R.A. Olsen, and C.J. Stone. Classification and Regression
Trees. Belmont, CA, Wadsworth, 1984.

R. Brause. Optimal information distribution and performance in neighbourhood-
conserving maps for robot control. In Proc.2nd Int. IEEE Conference on Tools for
Artificial Intelligence, pages 451-456, Los Alamitos, CA, 1990. IEEE Comput. Soc.
Press.

H.U. Bauer and Th. Villmann. Growing a hypercubical output space in a self-
organizing feature map. IKKF Transactions on Neural Networks, 1996. to appear.

L. Fang, A. Jennings, W. X. Wen, K. Li, and T. Li. Unsupervised learning for neural
trees. In Proceedings of the IJCNN, 1991.

B. Fritzke. Growing cell structures - a self-organizing network for unsupervised and
supervised learning. Technical Report TR-93-026, Int. Computer Science Institute,
Berkeley, CA, 1993.

B. Fritzke. Growing cell structures - a self-organizing network for unsupervised and
supervised learning. Technical Report TR-93-026, ICSI, 1993.

B. Fritzke. A growing neural gas network learns topologies. In Tesauro G., Touretzky
D.S., and Leen T.K., editors, Advances in Neural Information Processing Systems 7.

MIT Press, 1995.

M.H. Gross and F. Seibert. Visualization of multidimensional image datasets using
a neural network. Visual Computer, 10:145-159, 1993.

A. Himéldinen. Using genetic algorithm in self-organizing map design. In Proceedings

of the ICANNGA’95, Arles, France, 1995.

M. Herrmann, H.-U. Bauer, and R. Der. Optimal magnification factors in self-

organizing feature maps. In F. Fogelman-Soulié and P. Gallinari, editors, Proc.
ICANN’95, Int. Conf. on Artificial Neural Networks, volume I, pages 75-80, Nan-
terre, France, 1995. EC2.

P. Hahn, J. Rahmel, B. Krapohl, and C. Blum. Classification of Movement Pattern
- The Ulnar Nerve Palsy. Journal of Hand Surgery, 1996. submitted.

37



REFERENCES

[HRWO6]

[Kel91]

[KKL90]

[KO90]

[Koh84]

[Koh90]

[Koh95]
[Koi9d]

[LEFJ92]

[Lin89]

[LOSY)

[Lut88]

[Mar93]

[MBS93]

[MS91]

[MS94]

St. Huwer, J. Rahmel, and A.v. Wangenheim. A new image registration method for
local deformations. Pattern Recognition Letters, 1996. to appear.

M. Kelly. Self-organizing map training using dynamic k-d trees. In T. Kohonen,
K. Mikisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks. Elsevier,
1991.

Jari A. Kangas, Teuvo K. Kohonen, and Jorma T. Laaksonen. Variants of Self-
Organizing Maps. IEEE Trans. Neural Networks, 1(1):93-99, 1990.

P. Koikkalainen and E. Oja. Self-organizing hierarchical feature maps. In Proc. of
the IJCNN, 1990.

Teuvo Kohonen. Self-Organization and Associative Memory. Springer, Berlin, Hei-
delberg, 1984. 3rd ed. 1989.

T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464-1480,
1990.

Teuvo Kohonen. Self-Organizing Maps. Springer, Berlin, Heidelberg, 1995.

P. Koikkalainen. Progress with the tree-structured self-organizing map. In A. Cohn,
editor, Proc. of the ECAI 1994.

T. Li, L. Fang, and A. Jennings. Structurally adaptive self-organizing neural trees.
In Proc. of the ICNN, 1992.

R. Linsker. How to generate maps by maximizing the mutual information between
input and output signals. Neural Computation, 1:402-411, 1989.

J. Lampinnen and E. Oja. Fast self-organization by the probing algorithm. In Proc.
of the IJCNN, Washington, 1989.

S. P. Luttrell. Self-organizing multilayer topographic mappings. In Proc. ICNN’88,
Int. Conf. on Neural Networks, volume I, pages 93-100, Piscataway, NJ, 1988. IEEE
Service Center.

Th. Martinetz. Competitive hebbian learning rule forms perfectly topology preserving
maps. In Proc. of the ICANN, Amsterdam, 1993.

Thomas M. Martinetz, Stanislav G. Berkovich, and Klaus J. Schulten. 'neural-gas’
network for vector quantization and its application to time-series prediction. IEFFE
Trans. on Neural Networks, 4(4):558-569, 1993.

K. Martinetz and K. Schulten. A Neural-Gas Network Learns Topologies. In T. Ko-
honen, K. Mikisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks,
pages 397-402, 1991.

Thomas Martinetz and Klaus Schulten. Topology representing networks. Neural
Networks, 7(2), 1994. (in press).

38



REFERENCES

[NYSS]

[QuiS6]
[Qui93]
[Rah95]

[Rah96a]

[Rah96b]

[Rah96¢]

[RH96]

[RMSO1]

[RSS6]

[TG74]
[Utg88]

[VDHM94]

[VDHMO6]

[VDM94]

[WdMT76]

[Zad82]

[ZahT71]

N.M. Nasrabadi and Feng Y. Vector Quantization of Images based Upon the Kohonen
Self-Organizing Feature Maps. In IFEF Int. Conf on Neural Networks, San Diego,
1988.

J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1993.

J. Rahmel. Similarity-based self-organized clustering. In EPIA 95: Workshop Fuzzy
Logic and Neural Networks in Engineering, 1995.

J. Rahmel. On the Role of Topology for Neural Network Interpretation. In
W. Wabhlster, editor, Proc. of the KFCAI, 1996.

J. Rahmel. SplitNet: A Dynamic Hierarchical Network Model. In Proc. of the AAAI
1996.

J. Rahmel. SplitNet: Learning of Hierarchical Kohonen Chains. In Proc. of the ICNN
’96, Washington, 1996.

J. Rahmel and P. Hahn. A Tree-Structured Approach to Medical Diagnosis Tasks.
In F. Kurfess, editor, FCAI-Workshop Neural Networks and Structured Knowledge,
1996. to appear.

H. Ritter, Th. Martinetz, and K. Schulten. Neural Networks. Addison Wesley, 1991.

H. Ritter and K. Schulten. On the stationary state of Kohonen’s self-organizing
sensory mapping. Biol. Cyb., 54:99-106, 1986.

J. T. Tou and R. C. Gonzales. Pattern Recognition Principles. Addison-Wesley, 1974.

P. Utgoff. Perceptron trees: A case study in hybrid concept representations. In Proc.
of the Nat. Conf. on Al pages 601-606, St. Paul, MN, 1988.

Th. Villmann, R. Der, M. Herrmann, and Th. Martinetz. Topology preservation
in self-organizing feature maps: General definition and efficient measurement. In
B. Reusch, editor, Fuzzy Logik, Theorie und Prazis. Springer, 1994.

Th. Villmann, R. Der, M. Herrmann, and Th. Martinetz. Topology preservation in
self-organizing feature maps: Exact definition and measurement. IEEFF Transactions
on Neural Networks, 1996. To appear.

Th. Villmann, R. Der, and Th. Martinetz. A new quantitative measure of topology
preservation in Kohonen’s feature maps. In Proc. of the ICNN, pages 645—648, 1994.

D. J. Willshaw and C. Von der Malsburg. How patterned neural connections can be
set up by self-organization. Proceedings of the Royal Society of London, Series B,
194:431-445, 1976.

P. L. Zador. Asymptotic quantization error of continuous signals and the quantization
dimension. [EFE Transaction on Information Theory, (28):149-159, 1982.

C. T. Zahn. Graph-theoretical methods for detection and describing gestalt clusters.
IEEFE Transactions on Computers, C-20(1):68-86, January 1971.

39



