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Abstract

The accurate prediction of thermodynamic properties is pivotal for chemical engineering
as experimental data are scarce. While established physics-based methods face limita-
tions in prediction accuracy and scope, emerging machine learning approaches, such as
matrix completion methods (MCMs), offer promising alternatives. MCMs exploit the
fact that experimental data for binary mixtures can be represented as elements of a
sparse matrix, with rows and columns corresponding to the components that make up
the mixture. Hence, MCMs can be used for closing the gaps in these matrices. In the
present thesis, new methods for predicting thermodynamic properties of mixtures are
developed that combine probabilistic MCMs with established physical methods. The
resulting hybrid methods yield significantly improved predictions for key properties of
binary mixtures, such as Henry’s law constants, activity coefficients at infinite dilu-
tion, and diffusion coefficients at infinite dilution, even when only limited experimental
training data are available. In addition to predicting mixture properties directly, this
thesis demonstrates that MCMs can also be applied to the pair-interaction parame-
ters of physical group-contribution (GC) methods, which suffer from incomplete and
improvable parameter sets limiting their applicability and accuracy. By using MCMs
to infer the pair-interaction parameters, a comprehensive and consistent parameter set
can be generated. This approach extends the applicability of widely used GC methods
such as UNIFAC and modified UNIFAC (Dortmund), ultimately increasing their scope,
predictive power, and robustness.





Kurzfassung XI

Kurzfassung

Eine präzise Vorhersage thermodynamischer Eigenschaften ist in der chemischen Indus-
trie von zentraler Bedeutung, da experimentelle Daten nur in begrenztem Umfang ver-
fügbar sind. Während etablierte physikalische Methoden hinsichtlich Vorhersagegenauig-
keit und Anwendungsbreite an ihre Grenzen stoßen, bieten neue Ansätze des maschinel-
len Lernens, insbesondere sogenannte Matrixvervollständigungsmethoden (Matrix Com-
pletion Methods, MCMs), vielversprechende Alternativen. MCMs schließen vorhandene
Datenlücken, indem sie ausnutzen, dass experimentelle Daten für binäre Mischungen
als Elemente einer spärlich besetzten Matrix dargestellt werden können, deren Zeilen
und Spalten den Komponenten der Mischungen entsprechen. In der vorliegenden Dis-
sertation werden neue Methoden zur Vorhersage thermodynamischer Eigenschaften von
Mischungen entwickelt, die probabilistische MCMs mit etablierten physikalischen Me-
thoden kombinieren. Diese hybriden Ansätze erzielen selbst bei geringer Verfügbarkeit
experimenteller Trainingsdaten hohe Vorhersagegenauigkeiten für wichtige Eigenschaf-
ten binärer Mischungen wie Henry-Konstanten, Aktivitätskoeffizienten bei unendlicher
Verdünnung und Diffusionskoeffizienten bei unendlicher Verdünnung. Neben der direk-
ten Vorhersage von Mischungseigenschaften zeigt diese Dissertation, dass MCMs auch
zur Parametrisierung von Gruppenbeitragsmethoden (GC-Methoden) verwendet wer-
den können, die durch unvollständige Parametersätze eingeschränkt sind. Durch den
Einsatz von MCMs zur Ermittlung der Paarwechselwirkungsparameter kann ein voll-
ständiger und konsistenter Parametersatz erzeugt werden. Dieser Ansatz erweitert den
Anwendungsbereich weit verbreiteter GC-Methoden wie UNIFAC und modified UNI-
FAC (Dortmund) und erhöht zusätzlich ihre Vorhersagegenauigkeit und Robustheit.
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1 Introduction 1

1 Introduction

Knowledge of the thermodynamic properties of mixtures is crucial for designing and
optimizing industrial processes. However, experimental data are often lacking due to
the high cost and complexity of measurements. As a result, predictive methods are
essential to estimate these properties.

While physical methods for predicting mixture properties are well established, they often
only have a limited scope and lack accuracy. To overcome these limitations, new machine
learning (ML) approaches have recently been explored [1–3]. In the present thesis, ma-
trix completion methods (MCMs) from ML, which are well established in recommender
systems [4–6], are used to improve the prediction of thermodynamic properties.

The basic idea of an MCM is simple: sparse data for binary mixtures can be conveniently
stored in a matrix. Predicting the missing entries in such a matrix constitutes a matrix
completion problem. A variety of MCMs exist to address this [7], but a particularly ef-
fective and straightforward approach is matrix factorization. Thereby, the data matrix
is decomposed into two lower-dimensional matrices containing so-called features. Dur-
ing training, these features are learned, and their product reconstructs the completed
matrix, as detailed in Chapter 2.

For the prediction of thermodynamic properties of mixtures, MCMs can be applied
in two key ways, both of which are used in this thesis. First, they can directly com-
plete sparse experimental data matrices. Second, they can complete matrices of binary
interaction parameters of physical models. This embedding of MCMs in a physical
framework yields powerful hybrid models with increased applicability, e.g., by enabling
extrapolation to unstudied conditions and components.

First applications of MCMs to predict thermodynamic properties have focused on activ-
ity coefficients γ∞ij of solutes i infinitely diluted in solvents j, which describe liquid-phase
non-ideality [8–11]. This thesis builds on this approach and introduces improved meth-
ods for predicting γ∞ij . Additionally, it applies MCMs to predict Henry’s law constants
Hij, which describe the gas solubility, and diffusion coefficients at infinite dilution D∞ij ,
which characterize molecular motion in mixtures. In this thesis, different training strate-
gies of MCMs have been tested, ranging from training only on sparse experimental data
to training on extended databases augmented with synthetic data from various sources.
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These synthetic data are derived from physical methods and a new prediction method
developed in this thesis that is based on component similarity derived from quantum-
chemical descriptors.

Physical group-contribution (GC) methods are widely employed for the prediction of
thermodynamic properties but suffer from incomplete interaction parameter matrices,
limiting their accuracy and applicability. In this thesis, these limitations are overcome
by embedding MCMs in GC methods to complete the essential pair-interaction para-
meter matrices. This novel approach is applied to the most successful GC methods,
UNIFAC [12] and modified UNIFAC (Dortmund) [13], which model the excess Gibbs
energy of mixtures and can predict related properties. Extensive training sets of experi-
mental data for activity coefficients and, in the case of modified UNIFAC (Dortmund),
excess enthalpies, taken from the Dortmund Data Bank, were used. The proposed meth-
ods can be easily implemented in existing software packages and can be easily updated
as new experimental data become available or adapted to specific industrial needs.

The present thesis is organized as follows: In Chapter 2, the concept of matrix comple-
tion by matrix factorization is explained and a brief introduction into Bayesian model-
ing is given, forming the basis for all MCMs presented in Chapters 4 and 5. Chapter 3
presents the similarity-based method (SBM), a novel approach for predicting thermody-
namic properties of binary mixtures that is based on quantifying the pairwise similarity
of components by comparing their quantum-chemical descriptors. As an example, the
SBM is applied to the prediction of missing entries in a matrix containing isothermal
activity coefficients at infinite dilution (γ∞ij ). In Chapter 4, Bayesian MCMs for the pre-
diction of essential thermodynamic properties in binary mixtures (Hij, γ∞ij , and D∞ij ) are
presented. In Chapter 5, the application of Bayesian MCMs to the prediction of missing
pair-interaction parameters in the most successful GC models in chemical engineering,
UNIFAC and modified UNIFAC (Dortmund), is discussed.
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2 Bayesian Matrix Factorization

Matrix completion methods (MCMs) aim to estimate missing entries in a sparse data
matrix Z. A widely used approach is matrix factorization, which models each matrix
entry Zij, where i denotes the row and j denotes the column, as the dot product of two
vectors, ui and vj [14]:

Zij = ui ⋅ vj + εij (1)

Here, ui and vj are the model parameters, specific for row i and column j, respectively,
which are often referred to as features. These features are fitted to the observed data in
matrix Z to minimize the residuals εij during the training of the model. This approach
relies on correlated entries in the matrix. The MCM learns these correlations and
captures them through the features.

In a Bayesian approach, each data point (Zij) and each feature (ui, vj) are modeled as
random variables with associated probability distributions. Two key probability distri-
butions thereby define a Bayesian model: the prior and the likelihood.

The prior constitutes a probability distribution over the model’s features before any
data are observed, representing the initial assumptions about the features. Thus, the
prior contains a priori information about the features prior to the actual training step.

The likelihood determines how the features relate to the observed data by specifying
a probability distribution over the data conditioned on the features. This distribution
also influences how the observations update the features during training. The choice of
the probability distribution used as the likelihood can be considered a model hyperpa-
rameter, influencing the model’s flexibility, generalization, and sensitivity to noise and
outliers. For example, while the normal distribution is often chosen for its simplicity
and stability, the Cauchy distribution, with its heavy tails, is preferred in noisy data
sets to provide robustness against outliers and extreme values.

Bayesian inference aims to determine the so-called posterior of the features, which is a
probability distribution over the features and integrates both prior assumptions (through
the prior) and evidence from observed data (through the likelihood). Formally, Bayes’
theorem states:
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p(ui, vj ∣Zij) ∝ p(Zij ∣ui, vj) ⋅ p(ui, vj) (2)

where p(Zij ∣ui, vj) is the likelihood and p(ui, vj) is the prior. Thus, the posterior
p(ui, vj ∣Zij) represents the updated beliefs about the features after incorporating both
the initial assumptions and the empirical evidence.

However, the exact computation of the posterior is often intractable due to the lack of a
closed-form solution or excessive computational cost [15]. To address these issues, two
prominent strategies are commonly used to achieve Bayesian inference: Markov chain
Monte Carlo (MCMC) sampling [16, 17] and variational inference (VI) [15, 18]. MCMC
methods generate samples from the posterior distribution by constructing a Markov
chain that sequentially explores the parameter space. Although MCMC provides a
flexible approach, its iterative nature and requirement for many samples can lead to
significant computational costs, especially when dealing with very large data sets. In
contrast, VI transforms the inference problem into an optimization task: it posits a
family of simpler, tractable probability distributions and finds the member of this family
that is closest to the true posterior with respect to a chosen divergence measure. This
often results in faster inference and improved scalability compared to MCMC, but at
the cost of introducing an approximation bias.

Throughout this thesis, VI is applied to approximate the posterior for the Bayesian
MCMs. Specifically, in Chapters 4 and 5.1, Gaussian mean-field VI is used with the
Automatic Differentiation Variational Inference (ADVI) algorithm [19], implemented
in the Stan probabilistic programming language [20]. MatlabStan, which allows seam-
less integration of Stan code into MATLAB scripts [21–23], is thereby used. However,
training hybrid group-contribution methods on hundreds of thousands of experimental
data points (cf. Chapter 5.2) requires extensive computing power and, thus, GPU par-
allelization capabilities, which are not supported by Stan. In these cases, Pyro [24],
a Python-based probabilistic programming language supported by PyTorch, is used to
perform stochastic VI under the mean-field assumption [15]. Each latent feature is
approximated by a normal variational distribution, and during VI, the evidence lower
bound (ELBO) is maximized using the Adam optimizer [25] with a learning rate of 0.15,
ensuring efficient and scalable training.

All MCMs presented in this thesis follow the Bayesian approach described in this chap-
ter, with one exception: the similarity-based method (SBM) introduced in Chapter 3.
The SBM is unique not only in its inference strategy. In general, MCMs can also be
categorized by the type of information they use. Content-based filtering methods incor-
porate direct item-specific details (e.g., properties of rows and columns) [26], whereas
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collaborative-filtering methods rely solely on observed matrix entries and uncover latent
patterns to predict missing values [4, 27]. According to this classification, the SBM is
content-based, while all other MCMs in this thesis fall into the collaborative-filtering
category.
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3 Similarity-Based Imputation

3.1 Introduction

Thermodynamic properties of mixtures are fundamental for the design and optimization
of processes. In this chapter, a novel approach is described for predicting properties of
binary mixtures based on similarities between components. This novel similarity-based
method (SBM) is built on the fundamental assumption that similar components exhibit
similar properties (similia similibus solvuntur), making component similarities highly
informative inputs for predictive thermodynamic models.

Molecular similarity is commonly used in computational chemistry and pharmaceutical
research for database searching and component selection in high-throughput screening.
The goal of these applications is to find components that exhibit a behavior that is
similar to that of a reference component with desired properties. This is achieved by
identifying similar substructures or calculating overall similarity measures, resulting in
a list of the most similar molecules in the database and, ultimately, guiding drug dis-
covery and optimization. To perform these pairwise molecular comparisons, a molecular
representation of the components and a method to evaluate the similarity based on these
representations are required. Various approaches have been proposed for this purpose
in the literature, each with its own merits and limitations [28, 29].

The most common molecular representations for similarity searches are molecular fin-
gerprints, which encode structural information into bit vectors, such as the presence of
specific functional groups [29, 30]. Analyzing fingerprint similarities is computationally
efficient, as it only involves comparing bit strings. The Tanimoto coefficient is the most
popular metric for assessing fingerprint similarity [30–32]. Other molecular represen-
tations for assessing similarity include molecular graphs, molecular descriptor vectors,
SMILES, SMARTS, and pharmacophores [28, 29, 33]. Molecular descriptors based on
quantum-chemical charge distribution calculations, such as σ-profiles [34], are rarely
used to assess similarities in pharmaceutical research, despite their potential [35, 36].

While the idea of using similarities is implicitly at the heart of many models for pre-
dicting thermodynamic properties for unstudied systems, the proposed similarity-based
method (SBM) exploits that idea based on a measure of similarity directly.
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Among the thermodynamic properties of mixtures, the activity coefficient is particularly
significant since it quantifies the non-ideality of liquid mixtures, which is essential for
accurately modeling reaction and phase equilibria [37]. A highly informative limiting
case is the activity coefficient γ∞ij of a solute i infinitely diluted in a solvent j, as many
mixture properties can be predicted based on the knowledge of the limiting activity
coefficients. However, despite their importance, experimental data for γ∞ij are scarce,
even in comprehensive databases for thermophysical properties such as the Dortmund
Data Bank [38], due to the high cost and time required for their measurement [39, 40].
Consequently, reliable prediction methods are essential.

Activity coefficients are usually calculated from models of the excess Gibbs energy
GE. Predictions for binary mixtures, for which no data are available, can be obtained
from group-contribution methods, namely UNIFAC [12, 41] and modified UNIFAC
(Dortmund) [13, 42], or using the COSMO-RS approach [34, 43, 44], which is based
on quantum-chemical component descriptors, the σ-profiles. Open-source versions of
COSMO-RS include COSMO-SAC [45, 46] and COSMO-SAC-dsp [47]. The σ-profiles
describe the screening charge density of a molecule embedded in an electrically con-
ductive continuum by a probabilistic distribution p(σ) across the molecule’s surface
segments, where σ is the charge of the segment [34].

In addition to these physical prediction methods, new machine learning (ML) methods
and hybrid models that combine physics with ML have been developed recently [1, 2].
These methods include graph neural networks (GNN) [48], transformer models [49], and
matrix completion methods (MCM) [8–10]. Additionally, many ML methods have been
developed to predict activity coefficients over the entire concentration range, which could
also be applied to the special case of activity coefficients at infinite dilution [50–54].

The SBM is applied here to predict activity coefficients at infinite dilution γ∞ij in binary
mixtures. The SBM thereby relies on two sources of information: a novel similarity
measure Smn between two components m and n and available experimental data for
γ∞ij . The similarity measure Smn is based on a comparison of σ-profiles of the pair
of components and used to screen the experimental database, identifying γ∞ij values
from similar mixtures that are then used for predictions by imputation. The developed
SBM is benchmarked with modified UNIFAC (Dortmund) [13], COSMO-SAC [46], and
COSMO-SAC-dsp [47] as three well established physics-based methods for predicting
γ∞ij . It is emphasized that the SBM for predicting γ∞ij is an example; the approach is
generic and can be transferred to any other binary property.
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3.2 Database

Experimental data on activity coefficients at infinite dilution in binary mixtures, γ∞ij ,
were obtained from the Dortmund Data Bank (DDB) [38]. In the preprocessing step,
all data sets containing undefined components or labeled as "poor quality" by the
DDB were discarded. The focus was restricted to binary mixtures at a temperature
of T = 298.15±1 K. If multiple measurements existed for the same binary mixture,
the median of these values was adopted. For scaling purposes, the logarithmic activity
coefficients, ln γ∞ij , were used throughout this chapter.

The proposed SBM uses σ-profiles obtained from quantum-chemical COSMO calcula-
tions to calculate the similarity between two components. In this chapter, the σ-profiles
were taken from the open-source database provided by Bell et al. [55], which features
results for 2,261 different components. Components not available in this database were
excluded from the data set.

Finally, for evaluating the model using leave-one-out analysis, at least two experimental
data points were required for each solute and solvent; therefore, data for which this
condition was violated were removed. The final data set is visualized in Fig. 1 and
comprises 3,568 data points for γ∞ij , covering 221 solutes and 198 solvents.

Solvents

S
ol

ut
es

Figure 1: Matrix representing the experimental data on logarithmic activity coefficients
at infinite dilution ln γ∞ij for binary mixtures at 298.15±1 K from the DDB [38]
after preprocessing (see text). Experimental data are available for 3,568
binary mixtures, constituting about 8% of all possible combinations of the
considered 221 solutes and 198 solvents.
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3.3 Similarity-Based Method

3.3.1 Similarity Score

Here, a novel similarity score Smn between two components m and n based on quantum-
chemical COSMO calculations is introduced. The score Smn is scaled such that its
values range from 0 (highly dissimilar components) to 1 (highly similar components)
and consists of two contributions, as also indicated in Fig. 2: the similarity based on
surface charge distributions Sσ

mn and the similarity of the surface area SA
mn as it is also

used in the COSMO method; Sσ
mn and SA

mn, which are described in detail in the following,
are also defined to range from 0 to 1. The final similarity score Smn is obtained from a
weighted sum of Sσ

mn and SA
mn:

Smn = wσ ⋅ Sσ
mn + (1 −wσ) ⋅ SA

mn (3)

where wσ is the weighting factor that controls the relative importance of the surface
charge distribution similarity compared to the surface area similarity.

Figure 2: Schematic depiction of calculating the similarity between two components
(water and ethanol in this example) as proposed in this chapter. The final
similarity score Smn is composed of two contributions: a similarity based on
charge distribution Sσ

mn and a size similarity derived from the surface areas
SA

mn, which are combined in a weighted sum.
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The size similarity SA
mn is defined as the cavity surface area A of the smaller molecule

divided by the one of the larger molecule:

SA
mn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Am

An
, if Am < An

An

Am
, if Am > An

(4)

For the similarity of the surface charge distributions Sσ
mn, the overlapping proportion of

the σ-profiles of the two components is used, which is calculated using discrete bins for
σ via:

Sσ
mn =

Nσ

∑
k=1

min (p̄m(σk), p̄n(σk)) (5)

where p̄m(σk) and p̄n(σk) are modified σ-profiles, preprocessed as described in the fol-
lowing. All σ-profiles are given here in a discretized version with σ being divided into
Nσ = 51 bins ranging from -0.025 e Å−2 to 0.025 e Å−2 with a constant step size of
0.001 e Å−2. These values will be referred to as σk for k = 1, . . . , 51. Thus, pm(σk) is the
fraction of the surface area of the component m associated with the screening charge
density σk.

The σ-profiles are modified by introducing wP, which is applied to control the weight
on the polar regions in the σ-profiles by being either 0 (no influence) or 2 (more focus
on polar regions):

p∗m(σk) = pm(σk) ⋅ (103σk)wP (6)

By setting wP = 2, the similarity calculation emphasizes charge-dense regions, which can
be crucial in cases where the behavior of the components is mainly determined by polar
interactions.

In the case of wP = 2, the resulting p∗m(σk) does not integrate to 1. Therefore, it is
normalized again:

p∗∗m (σk) =
p∗m(σk)

Nσ

∑
k=1

p∗m(σk)
(7)

In the final processing step, a potential issue associated with discretized σ-profiles is ad-
dressed. Specifically, when calculating the similarity score by comparing the σ-profiles of
two molecules bin-wise, small shifts in σ can prevent the detection of structurally similar
molecules. Therefore, a moving average with a sliding window of width 2 (corresponding
to 0.002 e Å−2) is applied to all profiles to increase the robustness:

p̄m(σk) =
p∗∗m (σk−1) + p∗∗m (σk)

2 (8)
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The resulting σ-profiles p̄m(σk) are used for calculating the similarity of the surface
charge distributions Sσ

mn (see Eq. (5)). Together with the similarity of the surface area
SA

mn (see Eq. (4)), the final similarity score Smn is calculated (see Eq. (3)).

The two introduced weights wσ (in Eq. (3)), and wP (in Eq. (6)) are hyperparame-
ters, which were determined by a grid search. The value ranges of the hyperparameters
explored in the grid search are detailed in the "Studied Model Variants" section. In
addition to these two weights, other modifications to the calculation of Sσ

mn (e.g., em-
phasizing hydrogen-bonding surface segments) and of SA

mn (e.g., including component
volume) were tested in preliminary studies, but showed no significant impact on the
performance of the SBM and were, therefore, discarded.

3.3.2 Prediction of Activity Coefficients

In this section, it is explained how the similarity score defined in the previous section
is applied for predicting activity coefficients at infinite dilution ln γ∞ij in unstudied mix-
tures, where, basically, the ln γ∞ij is just an example for a property of a binary mixture.
The respective method introduced is called the similarity-based method (SBM). The
central idea of the SBM is to find mixtures similar to the unstudied mixture that is of
interest but for which experimental data on ln γ∞ij are available. The activity coefficient
in the unstudied mixture, ln γ∞,pred

ij , is then predicted simply by arithmetically averaging
the corresponding experimental values ln γ∞,exp

ij of all similar mixtures.

Here, a similar mixture is defined as one with the same solute i (or the same solvent j)
but a different solvent n (a different solute m) for which the similarity score Snj (Smi)
is higher than a predefined threshold ξ, i.e., Snj > ξ (Smi > ξ). Consequently, at least
one similar mixture for which an experimental data point is available must be in the
training set to make a prediction. As a result, there will always be a trade-off when
applying the SBM: increasing the threshold value ξ will increase the accuracy, but it
will lower the range of applicability. Vice versa, decreasing the value of ξ will increase
the range of applicability but decrease the accuracy.

A leave-one-out approach [56] was applied to assess the SBM to guarantee true predic-
tions. These predictions are also used in comparing the SBM results with the physical
benchmark models, which results in a bias in favor of the physical models, as they were
very likely also trained with at least some of the data considered here. All calculations
of the present chapter were carried out using Matlab [22].
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3.3.3 Studied Model Variants

The SBM described in the previous sections uses two weights, wσ and wP, in calculating
the similarity score Smn. These weights were varied in a grid search to explore their
effects on model performance. Specifically, wσ was varied from 0 to 1 in increments
of 0.1, while wP was set to either 0 or 2. This setup resulted in 22 distinct SBM
configurations, each representing a different approach to the Smn calculation. The goal
of this grid search was to identify the SBM (i.e., weight combination) that performs
best for two, often conflicting, objectives: optimizing the accuracy in predicting ln γ∞ij
in terms of mean absolute error (MAE) and maximizing the scope, i.e., the number of
predictable mixtures.

The best-performing SBM, according to these objectives, retains one further adjustable
hyperparameter: the threshold ξ, which allows users to balance the trade-off between
accuracy and scope. Increasing ξ typically results in more accurate predictions but
limits the number of predictable data points since higher similarities are demanded for
making predictions. Conversely, lowering ξ increases the number of predictable points
but reduces the predictive accuracy since data for less similar components are used for
the predictions. To assess the impact of ξ, it was varied from 0.5 to 1 in increments of
0.01 for each of the 22 SBM configurations.
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3.4 Results and Discussion

3.4.1 Overall Performance of Different Similarity-Based
Methods

Fig. 3 shows the predictive accuracy in terms of the MAE of the predicted ln γ∞ij over
the number of predictable data points N from the data set for all tested SBM variants
(by varying the weights and ξ).
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Figure 3: Mean absolute error (MAE) of the predicted ln γ∞ij from the leave-one-out
analysis over the number of predictable experimental data points N for all
tested SBM variants. The results of the best-performing SBM (as specified
with the weights w) are highlighted in orange.

The model variants in Fig. 3 scatter across a broad range of MAE and N , underscor-
ing the substantial impact of the selected hyperparameters on model performance. This
range highlights the inherent trade-off between predictive accuracy and scope, represent-
ing a Pareto optimization problem. In such cases, a solution is considered Pareto-optimal
if no feasible solution improves at least one objective without worsening another. Here,
certain hyperparameter combinations yield Pareto-optimal SBM variants that achieve
maximum accuracy for a given scope and vice versa. The set representing all Pareto-
optimal solutions is called the Pareto front.

One particular SBM (with variable ξ) consistently lies on or near the Pareto front,
highlighted in orange in Fig. 3. This "best" SBM, defined by wσ = 0.6 and wP = 2,
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requires only the final tuning of ξ by users to achieve a near-optimal solution tailored
to their specific preferences.

The balanced value of wσ = 0.6 in the best SBM indicates that components must share
similarities in both surface charge distribution and surface area to exhibit comparable
values of ln γ∞ij . Furthermore, wP = 2 emphasizes the importance of a similar surface
charge distribution in the polar regions of the components for similar ln γ∞ij .

Figs. A.1 and A.2 in Appendix A show further analysis of specific hyperparameter
choices. The similarity scores calculated by the best SBM can be used to identify
the most similar components for a target component, as exemplified in Appendix A
(cf. Tables A.2 and A.3).

3.4.2 Comparison to Physical Benchmark Models

The best-performing SBM (wσ = 0.6, and wP = 2) selected in the grid search is further
evaluated in the following by comparison against the state-of-the-art physical bench-
mark methods for predicting activity coefficients: modified UNIFAC (Dortmund) [13],
COSMO-SAC [46], and COSMO-SAC-dsp [47]. As shown in Fig. 4, the methods are
compared using the MAE and the scope regarding the number of predictable data points
N in the data set. Additionally, the deviations of the predictions from the experimental
data are plotted in histograms for the SBM with ξ = 0.93, modified UNIFAC (Dort-
mund), and COSMO-SAC-dsp. Modified UNIFAC (Dortmund) has some extreme out-
liers, which were excluded from the MAE calculations in Fig. 4. A detailed analysis of
these outliers can be found in Appendix A, cf. Table A.1.
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Figure 4: Mean absolute error (MAE) of the best-performing SBM (with varied thresh-
olds ξ), modified UNIFAC (Dortmund), COSMO-SAC, and COSMO-SAC-
dsp for the prediction of ln γ∞ij over the number of predictable experimental
data points N . Insets provide histograms of the deviations of the predictions
with the SBM with ξ = 0.93, modified UNIFAC (Dortmund), and COSMO-
SAC-dsp from the experimental data, considering only mixtures that all three
methods can describe. The shown interval in the histograms contains 99.9%
(SBM), 96.7% (modified UNIFAC (Dortmund)), and 96.9% (COSMO-SAC-
dsp) of the relevant 1,748 data points.

In Fig. 4, the scope is discussed regarding the number of predictable data points from
the experimental database. An additional discussion of scope, in terms of the filling
level of the entire matrix as shown in Fig. 1, i.e., the predictions for mixtures for which
no experimental data are available, is provided in Appendix A.

First of all, it is evident from Fig. 4 that for the physical models, there is also a trade-off
between the scope of the method and its accuracy. COSMO-SAC-dsp is more accurate
than COSMO-SAC, but in its current parameterization [55], it is not applicable to
components containing certain halogens due to missing parameters for the dispersion
part, resulting in a slightly smaller scope. Both COSMO variants have a larger scope
than modified UNIFAC (Dortmund) but achieve less accurate results.

Compared to each physical benchmark method, one can always find an SBM variant (by
varying ξ) that outperforms it in terms of prediction accuracy and scope by selecting an
appropriate threshold. Specifically, at ξ = 0.62, the SBM can, like COSMO-SAC, predict
all binary systems in the database but achieves a better MAE (0.62 compared to 0.67).
At ξ = 0.85, the SBM has a broader scope than COSMO-SAC-dsp (N = 3, 301 compared
to N = 3, 199) and achieves a better MAE (0.30 compared to 0.61). Similarly, the SBM
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with ξ = 0.87 has a broader scope than modified UNIFAC (Dortmund) (N = 3, 115
compared to N = 2, 987) and achieves a better MAE (0.27 compared to 0.33).

For the following analysis, the threshold is fixed to ξ = 0.93. While this value is, in
principle, arbitrary, the resulting model can predict more than half of the available ex-
perimental data in the database with relatively high predictive accuracy. The deviations
of the predictions from the experimental data for each method are also represented as
histograms in Fig. 4. Most of the predictions of the SBM with ξ = 0.93 show deviations
from experimental data smaller than ±0.1, which is within the typical range of experi-
mental uncertainty of ln γ∞ij , underscoring the high quality of the predictions that can
be obtained with the proposed model.

To further analyze the performance of the best-performing SBM, the respective objec-
tives (MAE and N) are plotted over the threshold ξ, as shown in Fig. 5.
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Figure 5: Mean absolute error (MAE) for the prediction of ln γ∞ij (panel a) and number
of predictable experimental data points N (panel b) of the best-performing
SBM over the threshold ξ. The results for the SBM with ξ = 0.93 are high-
lighted.

Fig. 5a shows that increasing ξ results in a nearly linear decrease in MAE, indicating
improving accuracy. In contrast, the relationship between N and ξ in Fig. 5b is more
complex. For ξ ≤ 0.62, the model achieves its maximum scope, i.e., predicting all
experimental data points, while for ξ > 0.98, none of the mixtures can be predicted.
Between these two boundaries, N first decreases slowly with increasing ξ, followed by a
steep decrease as ξ approaches 1. This sensitivity of N to ξ emphasizes the importance
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of selecting an optimal threshold. Overall, Fig. 5 supports the choice of ξ = 0.93,
marked by the diamond, as a balance point that combines high predictive accuracy
with substantial scope. While selecting a lower threshold would yield a broader scope,
ξ = 0.93 is preferred here as it achieves an MAE in the range of typical experimental
uncertainties.

A detailed analysis of the results for the similarity Smn of all pairs of solutes and all
pairs of solvents is presented in Fig. 6. The results are plotted in matrices, which are
symmetric as Smn = Snm. In these matrices, the solutes (solvents) were arranged so that
similar solutes (solvents) were positioned nearby, which was done using a clustering
algorithm adopted from Ref. [57]. The chosen arrangement of the solutes (solvents)
leads to high values of Smn along the diagonal, cf. Fig. 6.

Solutes

S
ol

ut
es

(a)

Solvents

S
ol

ve
nt

s

(b)

Solutes

S
ol

ut
es

(c)

Solvents

S
ol

ve
nt

s

(d)

0.0

0.2

0.4

0.6

0.8

Si j

0.0

0.2

0.4

0.6

0.8

Si j

Figure 6: Heatmaps showing results for the pairwise similarity scores Smn of the con-
sidered solutes (panel a) and solvents (panel b). For illustration, pairs with
Smn > 0.93 are highlighted in panels c and d.
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The heatmaps in Fig. 6a and b reveal only a few strong similarities among the solutes
and solvents in the database, as indicated by the few bright yellow areas. A notable
exception is observed in the lower right corner of the solute matrix, cf. Fig. 6a, where
a yellow square primarily represents alkanes classified as very similar according to the
developed metric.

This observation becomes even more apparent when highlighting the solute-solute and
solvent-solvent combinations with Smn higher than ξ = 0.93, the threshold chosen for the
detailed analysis discussed above, cf. Fig. 6c and d. Interestingly, only very few, or even
just one, similar solutes or solvents for the mixture of interest are needed for the SBM
to achieve the excellent predictive accuracy discussed earlier. Thus, for a set of similar
mixtures, i.e., those with at least one similar solute or solvent according to the similarity
metric, it is sufficient to measure ln γ∞ij for just one of them. The other mixtures can
then be predicted with high accuracy using the SBM. This finding is exciting for the
planning of experiments in several ways. For example, it opens up ways to replace
substances that are difficult to handle experimentally by suitable proxies, and it can
also be used to devise strategies for an efficient design of experiments (DOE) to improve
the accuracy and scope of the SBM with a minimum amount of additional experimental
data.

3.5 Conclusions

This chapter has two primary outcomes: the first is a new way to measure the similarity
between two components. It only needs the components’ σ-profiles and their surface
areas as input, information that can be obtained for basically any molecule from a
quantum-chemical calculation or databases. Hence, the new measure of similarity is
highly versatile. The information on these two properties of the two components m and
n is compared and the result is combined in a similarity score Smn, which is defined
in such a way that the values always range between 0 and 1. The definition of this
score contains hyperparameters (weights) that can be adapted to different tasks. In
the present chapter, the goal was to use Smn to develop a new method for predicting
the limiting activity coefficient γ∞ij of a solute i in a solvent j in systems for which no
experimental data are available. The hyperparameters have been chosen so that the
resulting similarity scores are beneficial for this task. However, the resulting definition
of the similarity score should also be helpful for many other tasks related to predicting
or assessing the thermodynamic properties of binary liquid systems.

The second outcome of this chapter is the new similarity-based method (SBM) for
predicting isothermal activity coefficients at infinite dilution γ∞ij . The idea behind the
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method is simple. Starting with a database on γ∞ij at the temperature of interest, the
value for a certain combination i + j for which no data are available is predicted. Let
us assume we have a data point for γ∞in for a system with the solute i of interest in
combination with another solvent n. Whether the solvents j and n are sufficiently
similar (i.e., Sjn > ξ) is simply checked and then the result for γ∞in is taken as a proxy
for γ∞ij . (The same works if the problem is not the solvent but the solute). Of course,
there must be rules on handling cases in which several such proxies are found. A simple
arithmetic average is applied in this case, but taking the arithmetic average of the results
of sufficiently similar substances is only one option; others could be explored. In the
procedure of predicting γ∞ij , another hyperparameter is introduced, the threshold ξ. This
threshold is left open, and the user can specify it. The functions that relate the chosen
value of ξ to the number of systems for which predictions are possible and the expected
accuracy of the prediction (measured, e.g., by the MAE obtained in a leave-one-out
study) can be easily established, and give guidance for the application of the method.
In general, the higher ξ, the more accurate the prediction will be, but high values of ξ

will compromise the method’s applicability.

The SBM that has been developed here for predicting γ∞ij shows a remarkable accuracy,
even though the database is not large and typically contains only very few (if any) highly
similar systems for any given combination of solute i and solvent j. The new SBM out-
performs the established physical benchmark methods modified UNIFAC (Dortmund),
COSMO-SAC, and COSMO-SAC-dsp.

The approach for designing SBMs based on the new similarity score Smn is generic and
can be transferred to any physical property of binary liquid mixtures. For thermo-
dynamic applications, the hyperparameters of Smn determined in the present chapter
should be a good starting point but could be adapted for other applications.

The observation that data for only a few similar mixtures are sufficient to achieve accu-
rate predictions suggests that a comparatively low number of targeted experiments can
considerably improve SBMs. More generally, this finding could form the basis for new
guiding principles for the design of experiments in binary systems.
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4 Matrix Factorization of
Thermodynamic Properties

4.1 Henry’s Law Constants at 298 K

4.1.1 Introduction

Knowledge on the solubility of gases in solvents is essential for the design of many
technical processes, such as gas absorption; and it is also needed for understanding many
processes in nature. Gas solubility is usually described by Henry’s law (cf. Eq. (B.1) in
Appendix B), in which the key property is the Henry’s law constant Hij. The number
of Hij depends only on the temperature and the nature of the solute i and the solvent
j. The solute is typically supercritical at the studied temperature, which is why it is
called “gas”. A large Henry’s law constant Hij corresponds to a low solubility and vice
versa.

Experimental data on Hij are scarce compared to the variety of possible combinations
of relevant solutes and solvents. In the present chapter, new prediction methods for
Hij from the field of machine learning (ML) are introduced: matrix completion methods
(MCMs). Various types of MCMs have been proposed in the literature [58–60], in
particular for recommender systems [4, 5], and received a lot of attention through the
Netflix Prize [6], an open competition of Netflix aiming at improving their system for the
prediction of user rating for movies and TV shows. This chapter introduces MCMs for
the prediction of Hij at constant temperature in binary systems and thereby a Bayesian
approach [8, 9, 61] is followed, which is known to be robust to overfitting without
requiring much parameter tuning [62].

MCMs are highly interesting for predicting thermodynamic properties of binary systems.
The idea behind this is that data for a given property of a binary system, such as the
Henry’s law constant Hij of a solute i in a pure solvent j at a given temperature, can be
stored conveniently in a matrix. The respective matrices containing the experimental
data are typically very sparse, since the measurement of fluid properties is in general
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tedious and expensive and, in addition, the number of components and systems of inter-
est is large. The prediction of the missing entries in such a matrix constitutes a matrix
completion problem. Refs. [8, 9] have recently introduced MCMs for the prediction of
activity coefficients at infinite dilution in binary systems at constant temperature. In
these studies, an in-depth discussion of the basic idea of applying MCMs for the predic-
tion of thermodynamic mixture data is given. Here, this approach is extended to the
prediction of Hij.

In the present chapter, only pure solvents are considered and the temperature is fixed
to 298.15 K±1 K (labeled as 298 K here, for simplicity), such that Hij is fully specified
by specifying the components i and j. The temperature dependence of the Henry’s
law constant is highly interesting, but was excluded from the present chapter, which is
focused on introducing new methods for predicting Hij. However, these methods can be
extended to include the temperature dependence of properties once they are established
for the isothermal case. A possible approach to implement such an extension for the
prediction of activity coefficients at infinite dilution γ∞ij has been shown in Ref. [10],
where the dependence of γ∞ij on the temperature T has been modeled by exploiting the
fact that it can be well described by ln γ∞ij (T ) = Aij + Bij/T with system-specific, but
temperature-independent, parameters Aij and Bij in many cases.

The accurate measurement of Hij requires an extrapolation to the limiting case xi Ð→ 0,
for which a series of experiments is necessary that makes these studies tedious. There-
fore, experimental data on Hij are missing for many practically relevant systems. This
is why methods for predicting the Henry’s law constant are so interesting.

Nevertheless, there are only comparatively few methods for predicting Henry’s law con-
stants so far. Most of these methods relate the Henry’s law constant to physical com-
ponent descriptors, mostly phenomenological descriptors like critical properties [63],
molecular descriptors like molecular masses and polarizability [64, 65], or SMILES rep-
resentations [66]. These Quantitative Structure Property Relationships (QSPR) [67] are
often based on nonlinear approaches like artificial neural networks or support vector
machines. In some cases, techniques from machine learning have been used for descrip-
tor selection, such as the Replacement Method [68, 69] and Genetic Algorithm tech-
niques [68, 70]. All of these methods are restricted to a special class of systems: they
either only consider aqueous solutions [64–66, 68, 69, 71] or can only be applied for the
prediction of the Henry’s law constant of a single solute in different ionic liquids [63, 70].
Since the scope of these methods is very restricted, they are not considered further here.

In contrast, group-contribution equations-of-state (GC EoS), from which the Henry’s law
constant can be determined by well established routes [72], have a wider applicability. In
GC EoS the EoS is typically combined with a mixing rule that is based on a model of the
excess Gibbs energy (GE). Using a group-contribution GE-model, such as UNIFAC [41]
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or modified UNIFAC (Dortmund) [13], then results in a GC EoS, of which several have
been proposed in the literature [72–74]. The EoS used in these approaches are often
simple cubic EoS for which the GE-mixing rules are known to give good results for a
large variety of systems [72, 75].

The group-contribution concept enables predictions for systems for which no data are
available. The prerequisite for carrying out this calculation is, however, that the group
interaction parameters of the GE-model are available. Parameter matrices including
typical supercritical solutes, as they are encountered in gas solubility problems, have
been established for GC EoS [76]; however, the parameter tables are still far from
covering all cases of interest.

One particularly successful GC EoS, which has also been implemented in commercial
process simulators, is the Predictive Soave-Redlich-Kwong (PSRK) EoS [76, 77]. The
PSRK EoS (simply named PSRK in the following for brevity) is a combination of the
cubic Soave-Redlich-Kwong EoS [78] with a mixing rule based on the original UNIFAC
model [41]. The parameter tables for PSRK include many supercritical compounds.
Specifically, the current public parameter table of the PSRK model distinguishes 81
main groups and comprises fitted pair-interaction parameters for 956 combinations of
them [76]. Based on the reported parameters, a large number of components and systems
can be modeled, and the PSRK model has also demonstrated to yield reliable predic-
tions for many different systems [76, 79], although its predictive accuracy decreases for
highly asymmetric systems [80]. However, note that there is still a substantial number
of missing pair-interaction parameters of the PSRK model, namely for 2284 combina-
tions of the present main groups, that have not been reported yet, which hampers its
applicability. PSRK is used here as a physical reference model for assessing the perfor-
mance of the novel prediction methods based on matrix completion. Furthermore, the
physics-based PSRK is used in the development of a novel hybrid prediction method
by combining it with a data-driven ML method as described in detail in the following
sections.

The Henry’s law constant Hij(T ) can in principle also be determined from the pure
component vapor pressure ps

i(T ) and the activity coefficient at infinite dilution γ∞ij (T )
using information on the Poynting correction as well as on the pure component saturated
vapor fugacity coefficient; for details, see Eq. (B.4) in Appendix B. However, determining
Hij(T ) in this way implies that the solute i is subcritical at the temperature T . In this
case, typically Raoult’s law would be used to describe the equilibrium condition of the
component i, rather than using Henry’s law, so that the Henry’s law constant is not
needed at all. Nevertheless, a substantial part of the experimental literature data on
Hij(T ) refers to this case. These data were included here, but it is emphasized that the
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main area of application of Hij(T ) is the description of the solubility of supercritical
components i.

This chapter is organized as follows: the database for Hij used in this chapter is first
described. Two different MCMs for predicting Hij are then introduced: one that is
completely data-driven and another that constitutes a hybrid of a data-driven MCM
and the physics-based PSRK. Subsequently, the results are presented and discussed.

4.1.2 Database

The experimental data on Henry’s law constants Hij of solutes i in solvents j at 298 K
used in the present chapter were taken from the Dortmund Data Bank (DDB) [81].
298 K was chosen since at this temperature, by far the most data points for Hij are
reported in the DDB, as shown in Fig. B.1 in Appendix B. The raw data on Hij were
preprocessed as described in the following. Data points that were labeled to be of
poor quality in the DDB were excluded. Furthermore, only solutes and solvents for
which data for at least two different binary systems were available were considered,
as this is a prerequisite for the application of the leave-one-out analysis as described
in detail below. Finally, for those binary systems for which multiple data points in
the temperature range of 298.15±1 K were available, the arithmetic mean of Hij was
calculated and used. The resulting data set comprises I = 101 solutes and J = 247
solvents and can, hence, be represented in a I × J matrix, which is depicted in Fig. 7;
information on the considered solutes and solvents is summarized in Tables B.1 and B.2
in Appendix B, respectively. This matrix has 24,947 elements, but only 2,661 of them
are occupied with experimental data, corresponding to 10.7%. In Fig. 7, the systems
for which experimental data are available are represented as colored entries with the
color code indicating the corresponding numerical value of Hij, whereas the systems for
which no experimental data are available are represented as black entries. The natural
logarithm of Hij, i.e., ln Hij, is thereby used in Fig. 7 and throughout this chapter for
scaling purposes.
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Figure 7: Matrix representing the experimental data on Henry’s law constants Hij of
solutes i in pure solvents j at 298.15±1 K as reported in the DDB [81] after
preprocessing (see text). The color code indicates the numerical value of
ln Hij. The order of the solvents is arbitrary, while the solutes are arranged
according to their critical temperature Tc according to the DDB from low
(top) to high (bottom).

Only 16 of the 101 solutes are supercritical at the considered temperature. This is an
extremely small number, considering the importance of gas solubility. In order to have
a sufficiently large database, sub- and supercritical solutes were not differentiated in the
present chapter and all available data in the DDB were simply operated on.

It is interesting that the entries in a single row in Fig. 7 show a fairly uniform color, i.e.,
for a given solute, the numbers of Hij are similar for most solvents. In contrast, for a
given solvent, the numbers of Hij vary strongly, depending on the solute it is combined
with. Furthermore, the color code indicating the values of Hij in Fig. 7 reveals a strong
correlation between the critical temperature of a solute and its solubility: for solutes
with lower critical temperature, in general higher Hij are observed and vice versa.

There are, however, a few apparent exceptions: most of the considered solutes are hy-
drophobic and therefore substantially poorer soluble in water (H2O) and heavy water
(D2O) than in other solvents, cf. labeled columns in Fig. 7. Furthermore, the solute
sulfur trioxide (SO3) exhibits rather high Henry’s law constants (poor solubilities) de-
spite a comparatively high critical temperature; however, as for SO3 only data for two
solvents are available, this finding should not be overly interpreted.

Twenty-nine of the components are present both as solute and solvent in the data set,
cf. Tables B.1 and B.2 in Appendix B. The corresponding solute-solvent combinations
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would be pure components and were therefore not considered in the present chapter; for
a detailed discussion of these cases, it is referred to Appendix B.

For subcritical solutes, Henry’s law constants can also be calculated from the solute’s
vapor pressure and its activity coefficient at infinite dilution. In principle, this could
have been used for augmenting the database on Hij here. This option was considered
but discarded, firstly, as it would have further increased the already large fraction of
data for subcritical solutes, and, secondly, as the corresponding calculation requires
assumptions on the fugacity coefficient of the solute and the Poynting correction, which
introduce additional errors.

4.1.3 Matrix Completion Methods

Two different matrix completion methods (MCMs) were used in this chapter for predict-
ing Henry’s law constants Hij for binary systems at 298 K. Both MCMs are based on
a Bayesian approach [8, 9], which considers random variables drawn from a probability
distribution instead of scalar parameters and which enables the incorporation of prior
knowledge in a straightforward manner, as described in detail below. Both MCMs are
collaborative-filtering methods [4, 27] that do not incorporate any direct information on
the pure components, such as physical component descriptors, but use only the available
mixture data for the binary systems, from which they infer so-called latent variables
(LVs) during the training.

In both MCMs, the natural logarithm of Hij is modeled as a stochastic function of LVs:

ln HMCM
ij = ui ⋅ vj + bu

i + bv
j (9)

where ui and vj are vectors of length K, whereas bu
i and bv

j are scalars. ui and bu
i

represent the LVs of the solute i, vj and bv
j those of the solvent j. Hence, in both

MCMs, each solute and each solvent is described by K + 1 component-specific LVs,
which are determined from data on the mixture property ln Hij (all LVs are initially
unknown and inferred from the training data on ln Hij during the training of the MCMs).
K is a hyperparameter of the models and was set to K = 4 in all cases based on
preliminary studies using cross-validation; however, the presented MCMs are robust
regarding variations of K as demonstrated in Fig. B.10 in Appendix B.

The product ui ⋅vj in Eq. (9) describes the contribution of specific pairwise interactions
between solute i and solvent j to ln Hij, whereas bu

i and bv
j can be interpreted as a general

solubility of a solute i and a general dissolving capacity of a solvent j, respectively,
irrespective of specific binary interactions. In the following, bu

i and bv
j are referred to

as solute bias and solvent bias, respectively, or summarized under the term component



4.1 Henry’s Law Constants at 298 K 27

biases. Such biases are also commonly considered for users and movies in recommender
systems of, e.g., movie streaming services, where they take into account that some users
are generally more critical than others when rating movies, and that some movies are
in general rated higher than others [26]. They turn out to improve the model also
in the present application for predicting Hij. The consideration of the solute bias bu

i

is motivated in particular by the observation that some solutes show poor solubility
in almost all studied solvents whereas other solutes are highly soluble in most solvents,
cf. Fig. 7. A similar behavior was not observed for activity coefficients at infinite dilution,
which was studied in Refs. [8, 9].

A Bayesian approach is used here, cf. Chapter 2. As inference method, variational
inference [15, 19] was chosen. From the posterior, i.e., the inferred LVs, ln Hij can also
be predicted for previously unreported binary systems following Eq. (9). In each case, a
probability distribution for ln Hij is thereby predicted, which also provides information
on the model uncertainties. In the following sections, the characteristics of the two
MCMs developed in this chapter are discussed in more detail.

4.1.3.1 Data-Driven MCM

The first MCM is purely data-driven: its LVs are trained only to the sparse available
experimental data for ln Hij from the DDB, cf. Fig. 7; no other information is used.
This method is referred to as MCM-data in the following. Fig. 8 shows an overview of
how MCM-data is trained and used to predict ln Hij.

Figure 8: Schematic illustration of the prediction of ln Hij with MCM-data. The MCM
is trained on experimental data on ln Hij (exp) with specified hyperparame-
ters. The inferred LVs are subsequently used with Eq. (9) to obtain predic-
tions (pred) for all possible solute-solvent combinations.

In the case of MCM-data, no information about the LVs is available prior to the train-
ing. Therefore, a rather broad, thus non-informative, probability distribution was used
as prior here. Specifically, a normal distribution centered around zero and standard
deviation σP = 1 for ui and vj, and σP,CB = 10 for bu

i and bv
j was chosen:
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p(ui,k) = N(0, σP), for k = 1...K (10)

p(vj,k) = N(0, σP), for k = 1...K (11)

p(bu
i ) = N(0, σP,CB) (12)

p(bv
j) = N(0, σP,CB) (13)

In general, the smaller the values for the standard deviations (σP and σP,CB) are chosen,
the stronger the LVs are restricted and the smaller is the influence of the training data
on the LVs. In contrast, a very broad prior distribution (large values of σP and σP,CB)
barely constrains the LVs, such that the posterior is predominantly determined by the
experimental data. The influence of the choice of the hyperparameters was investigated
in preliminary studies. The values reported here represent good compromises between
the extremes "too narrow, i.e., too restrictive" and "too broad, i.e., too irrelevant".
However, the window, in which good results are obtained is wide and similar results as
the ones presented below can also be obtained with other choices of the hyperparameters.

As likelihood, which models the probability of the data on ln Hij conditioned on the LVs,
a normal distribution with standard deviation σL = 0.2 centered around ui ⋅ vj + bu

i + bv
j

was chosen:

p(ln Hij ∣ui, vj, bu
i , bv

j) = N(ui ⋅ vj + bu
i + bv

j , σL)

= N(ui,1 ⋅ vj,1 + ... + ui,K ⋅ vj,K + bu
i + bv

j , σL) (14)

The choice of the hyperparameter σL = 0.2 was motivated by the uncertainty of the
available experimental data, i.e., twice the value found on average for the experimental
uncertainty was chosen. All data points were thereby treated equally, i.e., σL = 0.2 was
used throughout.

4.1.3.2 Hybrid MCM

The second MCM is hybrid, as it is not only trained on (sparse) experimental data
on ln Hij but also incorporates information from the Predictive Soave-Redlich-Kwong
(PSRK) equation-of-state [76] in the form of PSRK predictions. Consequently, this
MCM is referred to as MCM-hybrid in the following. MCM-hybrid is based on the
so-called Whisky approach proposed for the prediction of activity coefficients at infinite
dilution in Ref. [8] and is therefore only briefly discussed here; it is referred to Ref. [8]
for more details. Fig. 9 shows an overview of how MCM-hybrid is trained and used to
predict ln Hij.
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Figure 9: Schematic illustration of the prediction of ln Hij with MCM-hybrid. In the
pretraining step, the hyperparameters are specified and the MCM is trained
on simulated data for ln Hij from PSRK. The inferred (preliminary) LVs are
used to generate an informative prior for the refinement step, in which the
MCM is trained on experimental data on ln Hij (exp). The resulting (final)
LVs are subsequently used with Eq. (9) to obtain predictions (pred) for all
possible solute-solvent combinations.

As MCM-data, MCM-hybrid models ln Hij according to Eq. (9). However, in contrast
to MCM-data, MCM-hybrid takes full advantage of the Bayesian approach to matrix
completion by using an informative prior. The training of MCM-hybrid consists of two
steps. In the first step, MCM-hybrid was trained on simulated data for ln Hij that
were generated with PSRK. With PSRK in its current public parameterization [76],
predictions for 7,760 (31.1%) of all possible binary systems of the considered solutes
and solvents can be obtained; hence, the matrix with this simulated data for the first
training step is more densely occupied than the matrix with the experimental data,
cf. Fig. 7. During the first training step, the MCM infers (provisional) LVs of the solutes
and solvents from the predictions of PSRK, cf. Eq. (9). This step can be considered as
extracting the physical knowledge on the solutes and solvents that is implicitly encoded
in PSRK and explicitly provided in the form of PSRK predictions for ln Hij, and storing
this knowledge in LVs. However, as the PSRK predictions are less reliable than the
experimental data, the LVs obtained in this pretraining step are only preliminary and
are therefore not directly used for predicting ln Hij. Instead, they are used to generate
an informative prior for a second training step of the MCM. In the second training
step, MCM-hybrid is, similarly to MCM-data, trained on the sparse set of available
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experimental data on ln Hij. The second step can be understood as a revision of the
preliminary LVs (inferred from the PSRK predictions alone) based on the experimental
data; this step is referred to as refinement step in the following. The refinement step
of MCM-hybrid yields the final set of LVs that contain information from the PSRK
predictions and the experimental data. In the pretraining step of MCM-hybrid, the
same broad normal distribution as in MCM-data, i.e., a normal distribution centered
around zero with standard deviation σP,CB = 10 for the component biases and σP = 1 for
the remaining LVs, was used as prior:

p(ui,k) = N(0, σP), for k = 1...K (15)

p(vj,k) = N(0, σP), for k = 1...K (16)

p(bu
i ) = N(0, σP,CB) (17)

p(bv
j) = N(0, σP,CB) (18)

A Cauchy distribution with scale λL = 0.2 was chosen as likelihood, which is in contrast
to the training of MCM-data:

p(ln Hij ∣ui, vj, bu
i , bv

j) = Cauchy(ui ⋅ vj + bu
i + bv

j , λL)

= Cauchy(ui,1 ⋅ vj,1 + ... + ui,K ⋅ vj,K + bu
i + bv

j , λL) (19)

The reason for using a Cauchy likelihood is that for some combinations of solutes and
solvents, PSRK gives extremely (and unreasonably) large/small predictions for ln Hij as
shown in Fig. B.5 in Appendix B. These extreme outliers are attributed to badly chosen
binary interaction parameters of PSRK; the problematic predictions are basically limited
to hydrochloric acid (HCl) dissolved in alcohols. To prevent a negative impact due to
these obvious outliers in the pretraining step of MCM-hybrid, the Cauchy distribution
was chosen as it is more robust towards extreme outliers than the normal distribution.

Of course, the pretraining step can extract information from the PSRK predictions only
for those solutes and solvents that can in general be modeled by PSRK, i.e., for which
at least one ln Hij within the considered matrix can be predicted. With the present
public version of PSRK [76], this is the case for 81 of the 101 studied solutes (80.2%)
and 142 of the 247 studied solvents (57.5%). Hence, only for those 81 solutes and
142 solvents, meaningful preliminary LVs can be inferred from the PSRK predictions
and, as a consequence, an informative prior for the subsequent refinement step can be
generated. For those solutes and solvents that can not be modeled by PSRK, the same
uninformative prior as for the training of MCM-data was chosen in the refinement step
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of MCM-hybrid: a normal distribution centered around zero with standard deviation
σP = 1 for ui and vj, and σP,CB = 10 for bu

i and bv
j .

For those solutes and solvents that can be modeled by PSRK, an informative prior for
the LVs in the refinement step was generated from the posterior of the pretraining step
as described in the following. Since the posterior of the pretraining step of the studied
LVs was approximately normally distributed in all cases, they were fitted with normal
distributions, yielding a mean and standard deviation for each LV. The means were
adopted, whereas the standard deviations of all informed solute and solvent biases were
subsequently scaled with a constant factor, such that the mean of all resulting standard
deviations was σP,CB = 5; similarly, the standard deviations of the remaining informed
LVs were scaled to yield a mean standard deviation of σP = 0.5. The scaling factors,
which can be seen as hyperparameters, were set to 6.44 for σP and 172.08 for σP,CB, re-
spectively, to obtain the specified mean standard deviations. This scaling procedure is
necessary, since the predictions of PSRK are in general less trustworthy than the experi-
mental data, and show some extreme outliers as exemplified in Fig. B.5 in Appendix B.
Without this scaling, the predictions of PSRK and the experimental data would be
basically treated in the same way, resulting in an exaggerated influence of the PSRK
predictions on the training of the hybrid MCM. By setting the mean standard deviation
to half of the values for the uninformed prior (σP = 1 or σP,CB = 10, cf. above), a stronger
prior was obtained for those LVs for which a priori information could be extracted from
the PSRK predictions. However, these informed prior probability distributions for the
LVs are still broad enough to give enough flexibility in the refinement step, if sufficient
evidence is provided by the experimental training data.

The scaling of the posterior distributions from the pretraining step can in general lead to
distributions that are broader than the uninformed prior. Therefore, a last processing
step was introduced to ensure that the informed prior for those solutes and solvents
for which a priori information could be extracted from the PSRK predictions is always
stronger than the uninformed prior for those solutes and solvents for which this is not
the case. This was achieved by multiplying the scaled posterior from the pretraining step
with the respective uninformative prior distributions, resulting in the final informative
prior for the refinement step of MCM-hybrid:

p(ui,k) = N(u∗i,k, σ∗P), for k = 1...K (20)

p(vj,k) = N(v∗j,k, σ∗P), for k = 1...K (21)

p(bu
i ) = N(bu∗

i , σ∗P,CB) (22)

p(bv
j) = N(bv∗

j , σ∗P,CB) (23)
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Again, normal prior distributions were used for all LVs, but not centered around zero (as
in the pretraining step of MCM-hybrid and the training step of MCM-data) but centered
around an initial guess for each LV (u∗i , v∗j , bu∗

i , bv∗
j ) based on the posterior of the preced-

ing pretraining step; also the standard deviations of the prior distributions (σ∗P, σ∗P,CB)
in the refinement step were set based on the posterior of the preceding pretraining step.

The final prior (informative for components that can be modeled with PSRK, uninfor-
mative for components that can not be modeled with PSRK) was ultimately used in
the refinement step of MCM-hybrid, in which the method was trained on the available
experimental data for ln Hij from the DDB, cf. Fig. 7. In the refinement step, a nor-
mal likelihood with standard deviation σL = 0.2 was chosen, which is in analogy to the
(single) training step of MCM-data:

p(ln Hij ∣ui, vj, bu
i , bv

j) = N(ui ⋅ vj + bu
i + bv

j , σL)

= N(ui,1 ⋅ vj,1 + ... + ui,K ⋅ vj,K + bu
i + bv

j , σL) (24)

Similar to MCM-data, preliminary studies have shown that MCM-hybrid exhibits robust
behavior for hyperparameters over a wide range. The procedure can be adapted as
needed, but the one proposed here works well for predicting Henry’s law constants.

Computational Details

Both MCMs introduced in this chapter were implemented in the probabilistic program-
ming language Stan [20]; details on the models including the source code to run them
in Stan are given in Figs. B.2 - B.4 in Appendix B. As inference method, which inverts
the generative process of the probabilistic model and reasons about the LVs for given
data (ln Hij here), Gaussian mean-field variational inference [19] was used. All pre- and
postprocessing steps were performed in MATLAB® R2019b [21].

For evaluating the predictive performance of the two MCMs, a leave-one-out analy-
sis [56] was used. Each MCM was thereby trained multiple times, and in each run, one
of the 2,661 available experimental data points was withheld during the training and
subsequently predicted by the MCM; the prediction was then compared to the withheld
experimental value. This leave-one-out analysis requires that for each solute and each
solvent at least two data points for different systems are available. If this condition is
satisfied, there is at least one data point for each component in the training set (after
withholding the test data point), such that the MCMs have at least some information
for learning the features of each component. Considering the deviations between predic-
tion and experimental value of all available data points, the overall scores mean absolute
error (MAE) and mean squared error (MSE) were calculated and compared among the
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MCMs and with those from PSRK. The latter comparison is, however, not trivial: both
MCMs developed here allow for the prediction of ln Hij for all possible combinations of
the studied solutes and solvents and therefore for notably more binary systems within
the considered matrix than PSRK. They are assessed using leave-one-out analysis, i.e.,
based on real predictions, since the respective data point was not used for training the
MCMs. In contrast, the deviations reported for PSRK are simply those from the trained
method as it is reported in the literature [76]. Unfortunately, the training set that was
used for obtaining the parameters of PSRK has not been disclosed in the literature. It
may be speculated that it contained a large fraction of the data points that are con-
sidered here. Hence, even though formally the same statistical quantities are used to
characterize the deviations for the MCMs on one side and PSRK on the other, they
refer to different types of deviations. Of course, in contrast to the MCMs, PSRK can
as a group-contribution method be used to describe additional components besides the
101 solutes and 247 solvents considered here.

In Ref. [82], all "final" LVs for all solvents and solutes are reported. They were inferred
by MCM-hybrid using all 2,661 experimental data points for ln Hij (without applying
a leave-one-out strategy). The idea behind this is to obtain a single set of parameter
values that enables a direct application of the MCM for predicting ln Hij. Comparing
the numbers for the LVs reported in Ref. [82] and those obtained in the leave-one-
out analysis reveals, as expected, only minor differences. Consequently, the numerical
values in Ref. [82] constitute a complete parameter set of the final MCM-hybrid model
and allows the prediction of ln Hij for any binary combination of the studied solutes and
solvents at 298 K.

4.1.4 Results and Discussion

In Fig. 10, the performance of the two developed matrix completion methods (MCM-
data and MCM-hybrid) for the prediction of Henry’s law constants ln Hij in binary
systems of a solute i and a solvent j at 298 K is evaluated in terms of MAE and MSE
and compared to the performance of PSRK [76]. As described above, the scores of
the MCMs are thereby obtained by applying a leave-one-out analysis and comparing
the predictions with the respective experimental data from the Dortmund Data Bank
(DDB) [81]. Note that in addition to the two MCMs discussed here, a third MCM
was tested. It is a variant of MCM-data but without considering component biases,
cf. Eq. (9). The results are presented in Appendix B and show that using the biases
yields substantially better results.

In Fig. 10, only those data points that can be described with PSRK are considered. By
using the latest published parameterization given by Horstmann et al. [76], PSRK can



34 4 Matrix Factorization of Thermodynamic Properties

predict ln Hij for 1,438 of the 2,661 binary systems (54.0%) for which experimental data
are available in the DDB [81], cf. Fig. 7.
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Figure 10: Mean absolute error (MAE) and mean squared error (MSE) of PSRK,
MCM-data, and MCM-hybrid for the prediction of ln Hij for binary systems
at 298 K. (a) Considering the full data set (1,438 data points). (b) Without
considering the worst 11 outliers of PSRK, cf. Fig. B.5 in Appendix B.

The results in Fig. 10a show that the MAE and MSE of PSRK are substantially larger
than the respective scores of both MCMs (note the logarithmic scale). However, a closer
analysis shows that the poor scores of PSRK can mainly be attributed to only a handful
of data points that are extremely badly predicted by PSRK, as exemplified in Fig. B.5 in
Appendix B. Most of these extreme outliers correspond to the solute hydrochloric acid
(HCl) dissolved in alcohols as solvents and can be attributed to poor group-interaction
parameters between the HCl group and the alcohol group of PSRK. To obtain a fairer
comparison, these extreme outliers have also been omitted for calculating the MAE and
MSE of the methods and the respective scores are represented in Fig. 10b.

When omitting the PSRK outliers, the performance of MCM-data is similar to that of
PSRK. The hybrid approach MCM-hybrid clearly outperforms PSRK and MCM-data
in both scores irrespective of whether the PSRK outliers are taken into account or not.
It is interesting to realize that MCM-hybrid, which combines information from PSRK
predictions with scarce experimental data in the training, apparently does not suffer from
the extreme PSRK outliers. This underpins the robustness of MCM-hybrid. The results
shown in Fig. 10 also demonstrate that the Bayesian approach for the hybridization
works well and combines advantages of PSRK with those of the data-driven MCM,
while not being impaired by the weaknesses of the individual methods.
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In Fig. 11, the predictions of PSRK, MCM-data, and MCM-hybrid are compared in a
parity plot (panel a) and a histogram representation of the deviations from the experi-
mental data (panel b).
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Figure 11: Comparison of the predictions (pred) for ln Hij with PSRK, MCM-data, and
MCM-hybrid without considering the worst 11 outliers of PSRK. (a) Parity
plot of predictions over experimental data (exp) from the DDB. (b) His-
togram of the deviations of the predictions from the experimental data.
N is the number of binary systems. The shown interval in the histogram
contains 97.8% (PSRK), 98.4% (MCM-data), and 99.5% (MCM-hybrid) of
all considered data points.

The representations in Fig. 11 support the findings described above. Fig. 11a clearly
indicates that the hybrid approach particularly improves the prediction of those data
points that are rather poorly predicted with PSRK or MCM-data (or both), which is
consistent with the observation of a substantially lower MSE in Fig. 10. This again indi-
cates that MCM-hybrid represents an extremely robust combination of two approaches
that benefits from additional information but is not notably prone to shortcomings of
the individual methods. Furthermore, Fig. 11b illustrates that MCM-hybrid predicts
most data points with a very high accuracy; the deviations are often in the range of
∣∆ ln (Hij/kPa) ∣ < 0.1, corresponding to deviations that are in the order of the expe-
rimental uncertainty in the determination of Henry’s law constants. For instance, the
experimental uncertainty of ln Hij has been estimated by calculating the mean standard
deviation for those binary systems for which multiple data points in the temperature
range of 298.15±1 K were available in the DDB and a value of almost exactly 0.1 was
found.

Unlike the proposed MCMs, PSRK is, as group-contribution method, also able to model
systems outside the considered matrix, which is not the case for all MCMs presented
here. However, one major disadvantage of PSRK is that its application is limited to those
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components and systems for which the method has been parameterized. As described
above, only about 54.0% of the experimental data on Hij taken from the DDB in this
chapter can be predicted with the present public version of PSRK, which is why the
comparison in Figs. 10 and 11 was only carried out based on those 54.0% of the data
points. This restriction does not apply for the MCMs developed in this chapter, as they
allow the prediction of Hij of all possible binary systems of the considered solutes and
solvents. This enables the evaluation of the predictive performance of the MCMs based
on all 2,661 available experimental data points for Hij by leave-one-out analysis, which
is discussed in the following.

Fig. 12 shows the MAE and MSE of the predictions with MCM-data and MCM-hybrid;
Fig. B.11 depicts the predictions of both methods in a parity plot (panel a) and a
histogram representation (panel b) similar to Fig. 11. In Fig. B.12 in Appendix B, a
parity plot that additionally includes information on the model uncertainties is given.

M
CM

-d
at

a

M
CM

-h
yb

rid

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
AE

, M
SE

 MAE
 MSE

Figure 12: Mean absolute error (MAE) and mean squared error (MSE) of MCM-data
and MCM-hybrid for the prediction of ln Hij in binary systems at 298 K.
For the evaluation, all 2,661 experimental data points from the DDB were
considered here.

The observations are similar to those discussed above. The scores are slightly worse
when all available data are considered than when only data that can be modeled with
PSRK are considered. This is not unexpected, as those components that cannot be
described with PSRK are in general less studied, i.e., for these components, less data
for training the MCMs are available.

In the following, it is briefly discussed how MCMs can not only be applied for the
prediction of mixture properties (ln Hij here) but also enable interesting physical insights
into the mixture data. Therefore, the LVs of the solutes and solvents inferred during the
training of MCM-hybrid from the mixture data (PSRK predictions and experimental
data on ln Hij) are studied in more detail.
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Fig. 13 shows the component biases bu
i and bv

j of all solutes (panel a) and all solvents
(panel b), respectively; the solutes and solvents are ordered in analogy to Fig. 7, i.e., the
solutes are sorted according to their critical temperature in ascending order, while the
solvents are arranged by their DDB number (which is rather arbitrary). Similar figures
for the remaining LVs (ui and vj) are shown in Figs B.13 and B.14 in Appendix B.
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Figure 13: Component biases of all solutes ((a), ordered according to the critical tem-
perature) and solvents ((b), ordered according to the DDB number) as
inferred by MCM-hybrid. Means (symbols) and standard deviations (error
bars) were calculated from the results of the leave-one-out runs assuming
normal distributions for the predictions. Solutes and solvents for which
only data for two different systems are available in the data set are marked
red.

The number of data points that was considered for each solute (solvent) in Fig. 13 equals
the number of different binary systems in the data set that contain the respective solute
Ni (solvent Nj). This number of data points is attributed to the performed leave-one-
out analysis, where one experimental ln Hij was withheld in each run and all LVs were
trained. Thereby, only those LVs were saved that were obtained when the considered
solute (solvent) was part of the one system that was withheld. From the selected data
points, mean and standard deviation of bu

i (bv
j ) were calculated and are depicted as

symbols and error bars in Fig. 13, respectively. While Ni = 2 and Nj = 2 often lead to
high standard deviations, rather small standard deviations are observed for most solutes
and solvents that appear at least three times in the data set, i.e., for Ni ≥ 3 and Nj ≥ 3,
respectively.

In Refs. [8, 9], where matrix completion methods were employed for the prediction of ac-
tivity coefficients at infinite dilution, no component biases were used. This is motivated
by the fact that there is no such thing as a solute that exhibits in general small (or in
general large) activity coefficients in any solvent, and, analogously, there is no solvent
that in general leads to small (large) activity coefficients of any solute. By contrast,
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there are, e.g., gases whose solubility is in general rather small (or large) irrespective
of the solvent, and this fact is taken into account by considering component biases for
the prediction of Henry’s law constants here; of course, a single gas does not exhibit
the exact same solubility in all solvents, which is taken into account by the other latent
variables that are considered. For the solute bias bu

i , a clear correlation with the solute’s
critical temperature Tc,i is found: bu

i decreases with increasing Tc,i, cf., Fig. 13a. This
is consistent with Fig. 7 and the expectation that solutes with high critical tempera-
tures generally have a higher solubility than solutes with low critical temperature. For
instance, helium and hydrogen, which have a very low critical temperature, are quite
poorly soluble irrespective of the considered solvent. For the solvent bias bv

j , no trend
and only rather small variations are found (except for "extreme" molecules like water
and heavy water), cf. Fig. 13b, which supports the hypothesis discussed in the analysis
of Fig. 7 that the type of solute has a stronger influence on Hij than the type of sol-
vent. These observations do not only allow interesting physical insights, but also open
the path for an estimation of the solute and solvent biases of components that are not
included in the current data set. For instance, bu

i could roughly be estimated from Tc,i

using the correlation shown in Fig. 13a, whereas for bv
j , the average value of all solvent

biases depicted in Fig. 13b could be used. The situation is more complicated when the
other LVs are considered, cf. Figs. B.13 and B.14 in Appendix B. However, the examples
shown in Fig. 13 underline that correlations of the LVs with physical descriptors can be
found, even though they may not be as simple as in these fortunate cases.

4.1.5 Conclusions

In the present chapter, a new class of prediction methods for Henry’s law constants Hij,
namely matrix completion methods (MCMs), has been introduced and their applicability
for Hij of solutes i in pure solvents j at 298 K has been demonstrated. The idea behind
this approach is that binary data can conveniently be stored in a matrix and that MCMs,
which are well established in machine learning, can be applied for completing matrices
even in cases where they are only sparsely occupied with experimental data, as it is the
case for Hij (and many other mixture properties). Two MCMs for predicting Hij were
implemented in the present chapter using a Bayesian framework and the probabilistic
programming language Stan. The first MCM is purely data-driven, i.e., it is trained only
on the scarce available experimental data on Hij, while the second MCM follows a hybrid
approach by additionally incorporating predictions from the Predictive Soave-Redlich-
Kwong (PSRK) equation-of-state. The performance of both MCMs for predicting Hij

for 101 solutes i and 247 solvents j was evaluated by a leave-one-out analysis using
experimental data from the Dortmund Data Bank (DDB) [81]. While with the purely
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data-driven MCM a predictive accuracy comparable to that of PSRK was found, a
substantially better performance was obtained with the hybrid MCM.

The introduced MCMs have broad applicability: they are capable of predicting the Hij

for all 24,947 possible binary systems of the considered solutes and solvents as they are
not limited by unavailable parameters; in contrast, PSRK can only predict ln Hij for
31.1% of these binary systems. Of course, as group-contribution method, PSRK can
in principle also be applied for predicting Hij in systems containing other solutes and
solvents than those studied here. Furthermore, while the refinement and extension of
physics-based prediction methods like PSRK is very elaborate, the MCMs presented in
this chapter can be adapted in a straightforward manner when additional data become
available. Moreover, the presented matrix completion approach is not restricted to the
prediction of Henry’s law constants but can be transferred to other thermodynamic
properties in a straightforward manner. The success of the MCMs is thereby based
on uncovering structure in the respective mixture data, which can also be expected for
many other thermodynamic properties.



40 4 Matrix Factorization of Thermodynamic Properties

4.2 Temperature-Dependent Henry’s Law Constants

4.2.1 Introduction

Information on the gas solubility is of fundamental importance for designing and optimiz-
ing many chemical processes, such as gas absorption. Gas solubilities can be described
by Henry’s law constants Hij, where i is the gas dissolved in the solvent j. Even if only
binary systems, i.e., the solubility of a pure-component gas in a pure-component solvent,
are considered, the number of relevant possible combinations exceeds those that have
been studied in experiments by far, making predictive methods for Hij indispensable in
practice.

Group-contribution (GC) equations-of-state (EoS) have become a cornerstone for pre-
dicting gas solubilities by combining an EoS with a mixing rule based on a GC model of
the excess Gibbs energy (GE) [72]. However, the applicability of this approach depends
on the availability of parameters for all structural groups in the system, and even for the
most successful GC EoS, the Predictive Soave-Redlich-Kwong (PSRK) EoS [76, 77], sig-
nificant gaps in the parameter table remain, preventing its application for many systems.
PSRK serves as a baseline model, providing a benchmark against which the accuracy of
the newly developed prediction methods are assessed.

A data-driven alternative to physical prediction methods for properties of binary systems
is using matrix completion methods (MCMs) from machine learning, which are well
established in recommender systems [4–6]. In recent work, it has been demonstrated
that the MCM concept can be transferred to thermodynamics [1, 2, 8–10, 51, 54, 57, 82–
85]. The basic principle of using MCMs in this field is to organize data of a given property
of binary mixtures into matrices, where the matrix’s rows and columns correspond to
the components that make up the mixtures. These matrices are only sparsely populated
with experimental data in basically all cases, as data are missing. However, from the
available mixture data, similarities between the different components can be inferred
and used to predict the missing entries, hence completing the matrix.

Specifically, an MCM was introduced in Chapter 4.1 for predicting Hij for binary systems
at a constant temperature of 298 K, where most data points for Hij have been reported in
the literature. While this MCM outperformed PSRK in prediction accuracy, it cannot
generalize over the temperature, which hampers its applicability. Therefore, in the
present chapter, the MCM from Chapter 4.1 is extended to a model for the prediction
of temperature-dependent Hij(T ).

The temperature-dependent Hij(T ) data can be represented in a three-dimensional ten-
sor, where the third dimension is used to include the temperature. Tensor completion
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methods could, in principal, be used to fill this tensor [11]. However, in the present
chapter, a strategy similar to recent advancements in predicting activity coefficients at
infinite dilution γ∞ij [10] is adopted, and a physical equation is employed that captures
the temperature dependence by introducing system-specific, yet temperature-invariant,
parameters, which can be represented in matrices. These matrices are, again, only
sparsely populated since experimental data for parameter fitting are only available for
some systems. This way, the tensor completion problem is reduced to a problem of the
completion of some matrices (here three) and an MCM for predicting their entries is
developed.

This chapter is organized as follows: the database for Hij(T ) used for training and
evaluating the developed prediction methods is first described. Two different MCMs for
predicting Hij(T ), which are based on a physical three-parameter approach for modeling
the dependence of Hij on temperature, are then presented: one is fully data-driven,
and the other is a hybrid of a data-driven MCM and the physics-based PSRK EoS.
Subsequently, the results are presented and discussed.

4.2.2 Database

Experimental data on Henry’s law constants Hij(T ) in binary systems covering the
temperature range between 173.15 K and 573.15 K were taken from the Dortmund Data
Bank (DDB) [86], which is the largest database of thermodynamic mixture properties.
The DDB compiles experimental data on gas solubility collected from various sources
dating back over a century to the present day, making it an ideal basis for model training
and validation. Only a few reported raw data points for Hij(T ) at extreme temperatures
were a priori excluded (921 out of 63,484), as depicted in Fig. C.1 in Appendix C.

The preprocessing of the data was conducted as follows. Since the experimental Hij

values span several orders of magnitude, ln Hij was consistently applied for scaling pur-
poses. Data labeled as poor quality in the DDB were discarded. Additionally, for
binary systems with multiple data points within a 1 K temperature range, such as
298.15±0.5 K, the median of ln Hij(T ) was computed and utilized. Furthermore, a
prerequisite for learning the temperature dependence of ln Hij(T ) is the availability of
data points measured at various temperatures. Consequently, only systems with data
spanning a temperature range of at least 10 K were considered.

For assessing predictive accuracy by leave-one-out analysis, data for at least two distinct
binary systems per solute and solvent have to be available. Hence, all data sets that
did not fulfill this requirement were discarded. The application of the different criteria
resulted in a data set comprising 20,565 data points for 3,297 binary systems involving
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I = 122 solutes and J = 399 solvents, as detailed in the Excel files supplied in Ref. [87].
In Fig. 14, all considered binary systems are displayed in an I × J matrix, using a color
code representing the number of data points for each system (i.e., the number of different
temperatures at which the system has been studied); black indicates the absence of data.
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Figure 14: Matrix representing the number of experimental data points Nexp for Hij(T )
of solutes i (rows) in solvents j (columns) between 173.15 K and 573.15 K
as reported in the DDB [86] after preprocessing (see text). The order of the
solutes and solvents is arbitrary. White color corresponds to binary systems
studied at more than 20 different temperatures, black color indicates that
no experimental data are available.

Fig. 14 shows that the experimental data cover only a small fraction (6.77%) of the
potential 48,678 solute-solvent combinations in the matrix. Furthermore, the heatmap’s
color coding reveals that most systems have been studied at only a few different temper-
atures. Specifically, for 65% of the studied systems, no more than five data points are
available. A notable exception is water, which has been subject to considerably more
extensive research than any other solvent.

In the data set, 32 components are present both as solute and solvent. The correspond-
ing solute-solvent combinations would result in pure components and have thus been
excluded from this study.

4.2.3 Matrix Completion Methods

This chapter introduces two probabilistic MCMs to predict temperature-dependent
Henry’s law constants Hij(T ). The first MCM is purely data-driven, relying exclu-
sively on experimental data on ln Hij(T ). The second MCM is a hybrid approach
incorporating predictions from the PSRK model as additional training data. Although
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other equations-of-state are also possible choices for hybridization, PSRK is used be-
cause of its broad applicability, resulting from the large number of publicly available
group-interaction parameters [76].

Both MCMs are only trained on the available mixture data for the binary systems (here
ln Hij(T )), from which they infer component-specific characteristics, so-called features,
during the training, without the need of any additional information on the pure com-
ponents. In a Bayesian modeling approach, these features are considered to be random
variables drawn from a probability distribution instead of scalar parameters, cf. Chap-
ter 2.

The experimental data span a three-dimensional tensor based on solute i, solvent j,
and (discretized) temperature T , necessitating reduction to two-dimensional matrices
for applying MCMs. Therefore, the temperature dependence of ln Hij(T ) is modeled
by [88]:

ln(Hij /kPa) = Aij +
Bij

T /K +Cij (ln(
T

T0
) + T0 − T

T
) (25)

where the reference temperature is T0 = 298 K. The three system-specific but temperature-
independent parameters Pij (Aij, Bij, Cij) can each be arranged in a matrix spanned by
the solutes i and solvents j, which is the prerequisite for using MCMs. Both MCMs de-
veloped in the present chapter predict each parameter P pred

ij using a stochastic function
of features:

P pred
ij = ui ⋅ vj + bu

i + bv
j ∀P ∈ (A, B, C) (26)

where ui and vj are vectors of length K, and bu
i and bv

j are scalars representing so-
lute and solvent biases, respectively. This formulation leads to each solute and solvent
being characterized by K + 1 features per parameter. As for the prediction of Hij at
298 K (cf. Chapter 4.1), the predictive accuracy was very robust to variations in K in
preliminary studies, based on which K = 3 was selected for both models.

The dot product ui ⋅ vj in Eq. (26) models the specific pairwise interactions between
solute i and solvent j. In contrast, the component-specific biases bu

i and bv
j relate to

the intrinsic contributions of the individual solutes and solvents, respectively. These
biases are referred to here as solute bias for bu

i and solvent bias for bv
j , or, collectively,

as component biases. It was demonstrated in Chapter 4.1 that using these component
biases significantly improves the predictive accuracy of MCMs, and they have therefore
been employed here as well.

In both MCMs introduced here, the features describing the parameter matrices Aij, Bij,
and Cij are not inferred individually but simultaneously through end-to-end training on
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the ln Hij data. To ensure consistency across the parameter matrices and facilitate this
simultaneous learning process, scaling factors to the parameters Bij and Cij are applied:
Bij is scaled by 10−2 and Cij by 10−1. This adjustment results in values of Aij, Bij, and
Cij of similar order of magnitude.

To determine the posterior, Gaussian mean-field VI is employed through the Automatic
Differentiation Variational Inference (ADVI) algorithm [19], implemented in the proba-
bilistic programming language Stan [20]. The MatlabStan implementation was utilized,
allowing the Stan code to be directly embedded in MATLAB [22] scripts. MATLAB
was also used to perform all necessary pre- and postprocessing steps.

In this chapter, the predictive accuracy of the MCMs is evaluated using leave-one-out
analysis [56]. Therefore, an MCM is trained on the available data, excluding those
for one binary system, which are subsequently used as the test set. This approach
enables the model to learn the characteristics (features) of the solute and solvent of the
test system from the remaining data, which are finally used for predicting ln Hij(T )
for the test system. These predictions are then stored and compared to the respective
experimental values of the withheld binary system. The training and prediction process
is iteratively repeated, each time excluding a different binary system, until all systems
have been omitted once. To quantify the predictive accuracy of the method, standard
error scores are employed, namely the mean absolute error (MAE) and the mean squared
error (MSE). A prerequisite for the leave-one-out analysis is that each component, i.e.,
each solute and solvent, appears in at least two binary systems within the experimental
data set. This ensures that, even when one system is excluded, the method has access
to some data on each component.

Besides the three parameter correlation of the temperature dependence of the Henry’s
law constant given in Eq. (25), also the case in which Cij is set to zero was studied. The
results for the MCMs based on this two-parameter correlation of the van’t Hoff type
are reported in Appendix C. These results are only slightly worse compared to those
obtained with the three-parameter correlation, highlighting that for many systems, even
a simple equation can effectively capture their temperature dependence. Therefore, more
complex equations with additional parameters were not considered.

4.2.3.1 Data-Driven MCM

The purely data-driven MCM developed in the present study, hereafter referred to as
MCM-data, relies only on the information contained in the sparse experimental data on
ln Hij(T ) from the DDB.

For training MCM-data, a rather broad, thus uninformative, prior is employed. Specif-
ically, the entries of ui, vj, and the biases bu

i , bv
j are modeled with normal distributions
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centered at zero:

p(ui,k) = N(0, σP), for k = 1...K (27)

p(vj,k) = N(0, σP), for k = 1...K (28)

p(bu
i ) = N(0, σP,CB) (29)

p(bv
j) = N(0, σP,CB) (30)

The standard deviations in Eqs. (27) to (30) are hyperparameters, which were set to
σP = 1 for ui and vj, and σP,CB = 10 for the biases, based on findings from Chapter 4.1,
in which the effects of the choice of hyperparameters were investigated systematically.
It was observed that the MCMs show robust behavior to variations in the standard
deviations of the priors, allowing for flexible hyperparameter selection.

The likelihood for ln Hexp
ij given the features covering the entries of ui, vj, and the

biases bu
i , bv

j for all parameters Pij is modeled with a Cauchy distribution, chosen for its
robustness to outliers, centered around the prediction formula of Eq. (25):

p(ln(Hexp
ij /kPa) ∣ features) = Cauchy(Aij +

Bij

T /K +Cij (ln(
T

T0
) + T0 − T

T
) , λ) (31)

Here, Aij, Bij, and Cij are functions of their respective features as defined in Eq. (26),
with λ = 0.15 chosen as the scale parameter for the Cauchy distribution based on pre-
liminary studies.

4.2.3.2 Hybrid MCM

The hybrid model, referred to as MCM-hybrid, enhances the purely data-driven method
by integrating predictions from the physics-based PSRK EoS using its latest public
parameterization [76]. This hybridization strategy was introduced for the prediction of
Hij at 298 K in Chapter 4.1 and is therefore only briefly discussed here. The training of
MCM-hybrid involves two steps: in the pretraining step, the physical knowledge in the
PSRK data is extracted and serves as prior knowledge for the training of MCM-hybrid
on experimental data in the second step, which is referred to as the refinement step.
This process is illustrated in Fig. 15. The corresponding, very simple schematic for
MCM-data is shown in Fig. C.3 in Appendix C.
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Figure 15: Schematic illustration of the prediction of ln Hij with MCM-hybrid. In the
pretraining step, the hyperparameters are specified, and the MCM is trained
on simulated data for ln Hij from PSRK. The inferred (preliminary) features
are used to generate an informative prior for the refinement step, in which
the MCM is trained on experimental data for ln Hij. The resulting (final)
features are subsequently used in Eq. (26) to obtain predictions (pred) for
the parameters Aij, Bij, and Cij of the function that is used for describing
the temperature dependence of ln Hij (Eqs. (25) or (C.1)), from which the
Henry’s law constant can be calculated for any temperature.

In the pretraining step, PSRK predictions serve as training data to infer preliminary
features. Due to incomplete parameter tables, PSRK predictions could only be obtained
for 11,407 binary systems of the considered solutes and solvents, accounting for 23.4%
of all possible combinations. Extreme outliers in the PSRK data set, i.e., predictions
outside the range -10 < ln Hij /kPa < 25, were generally excluded. These boundaries
are chosen referring to the minimum and maximum values of the Henry’s law constants
in the experimental database. The impact of extreme outliers on applying PSRK as a
reference method is discussed in more detail in the subsequent section.

PSRK enables predictions in a wide range of temperatures. However, using predictions
at three distinct temperatures within the 173.15 K to 573.15 K range was found to be
sufficient. The selection of temperatures for which PSRK predictions were used was
system-specific, since the minimum and maximum temperature at which PSRK can be
used depends on the solute and solvent. Specifically, PSRK predictions were calculated
in 5 K steps within the specified temperature range for all systems, and results at low
and high temperatures, for which PSRK provided no results or extreme outliers, were
excluded as previously discussed. From the remaining temperature range, the predicted
ln Hij values at the minimum, mean, and maximum temperature were selected.
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Similar to MCM-data, an uninformative normal distribution is employed for the pre-
training step’s prior, cf. Eqs. (27) - (30), and the likelihood in the pretraining step
is modeled by a Cauchy distribution centered around the PSRK prediction, compare
Eq. (31). With both the prior and the likelihood defined, the posterior, which incorpo-
rates the physical information extracted from the PSRK predictions, can be calculated
through variational inference [19].

Subsequently, a normal distribution is fitted to samples from the posterior distribution
of each feature, representing preliminary features that form the basis of an informative
prior for the refinement step. The approach to generating an informative prior is anal-
ogous to the approach proposed in Chapter 4.1, except that the features learned here
model the three parameter matrices (Aij, Bij, Cij), which are treated independently.
For transferring the informative prior to the refinement step, the means of the prelimi-
nary features are kept, while the standard deviations are scaled in such a way that their
average is σP = 0.5 and σP,CB = 5, respectively. In general, features supported by exten-
sive data retain smaller standard deviations, indicating higher confidence. Conversely,
features with less supporting data exhibit larger standard deviations, denoting lower
confidence. The distributions are then multiplied by the respective uninformative prior
distribution. These adjustments take into account the information that was gained in
the pretraining step in a soft form, while still ensuring that all informative prior distri-
butions have smaller standard deviations than their uninformative counterpart.

For each of the three parameter matrices (Aij, Bij, Cij), the resulting informative prior
for the refinement step can be expressed as a normal distribution centered around the
initial guess of each feature (u∗i,k, v∗j,k, bu∗

i , bv∗
j ) with the standard deviations (σ∗P, σ∗P,CB).

These normal prior distributions are unique for each feature and are pre-trained for
those solutes and solvents with at least one PSRK-predictable data point. However,
MCM-hybrid is not limited to components that can be modeled with PSRK; it can
also be applied to all other considered components as well. In these cases, the same
uninformative prior is used as in the training of MCM-data.

In the refinement step, the features defined by the informative priors are refined through
training on experimental data from the DDB [86]. Thereby, the likelihood is employed
analogously to the data-driven approach, as specified in Eq. (31), with λ = 0.15 main-
tained throughout both the pretraining and refinement steps.

The training on experimental data in the refinement step results in the final set of
features, based on the PSRK predictions and the experimental data. Subsequently,
these final features enable predictions of ln Hij(T ) for any solute-solvent combination
from the matrix and for any temperature by applying Eqs. (25) and (26).
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4.2.4 Results and Discussion

Fig. 16a presents results for the MAE and MSE obtained in the leave-one-out analysis
of both MCMs developed in the present chapter using the full data set on Henry’s law
constants. The scores were calculated by averaging individual system scores, ensuring
an equal contribution of each binary system. In Fig. 16b, the results of the MCMs
are compared with those of PSRK. The experimental data set used for this comparison
is a subset of that used in Fig. 16a, as PSRK can only be used for a part (53.7%) of
the systems for which data are available. Furthermore, 190 data points for 21 systems,
for which PSRK yielded extreme outliers, were removed as their inclusion would have
drastically deteriorated the MAE and MSE of PSRK, as highlighted in Fig. C.2 in
Appendix C.
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Figure 16: Mean absolute error (MAE) and mean squared error (MSE) for the pre-
diction of ln Hij averaged over all binary systems. (a) Comparison of the
developed MCMs considering all data from the DDB (3,297 systems). (b)
Comparison of the developed MCMs with PSRK considering only systems
that can be described by PSRK (1,574 systems). 190 data points for 21
systems for which PSRK yielded extreme outliers were removed.

Fig. 16a shows that MCM-hybrid gives better results than MCM-data, as expected. The
improvement in MAE is only small, but it is considerable in MSE, indicating that, as a
result of the pretraining, there are fewer large errors for MCM-hybrid.

Moving from the complete database (Fig. 16a) to the subset of the data that can be
described with PSRK (Fig. 16b) leads to better scores for both MCM-data and MCM-
hybrid. The better results can be attributed to the fact that the subset of the data
studied in Fig. 16b contains more systems with common components that have also
been studied in many other systems, which is obviously an advantage for the MCM.
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Going from Fig. 16a to Fig. 16b, the improvement is more pronounced for MCM-hybrid
than for MCM-data. This is not astonishing as MCM-hybrid uses PSRK data in the
pretraining and, therefore, implicitly carries information on systems that can be modeled
with PSRK.

The comparison with PSRK in Fig. 16b shows a clear improvement in both scores for
MCM-hybrid. MCM-data and PSRK have similar MAE, but MCM-data has a much
higher MSE indicating that there are outliers in the predictions.

It is important to realize that the comparison of the results from PSRK to those from
both MCMs carried out here is biased in favor of PSRK. The results for the MCMs
were obtained from a leave-one-out analysis and are therefore strict predictions: the
predicted data were not used for training the model, which is why a similar performance
may be expected for new data. However, this is not the case for PSRK: it is likely
that many of the experimental data that are used here for comparison were used in
the training of PSRK. In comparing the MCMs with PSRK, it is also important to
consider the different ranges of applicability. The MCMs can be applied for all systems
of the matrix, while this is only the case for 23.4% of these systems for PSRK due
to missing interaction parameters. On the other hand, PSRK is a group-contribution
approach and can therefore also be applied to systems outside of the matrix, as long as
their components can be built from parameterized groups. Furthermore, PSRK can, of
course, do more than just predicting the Henry’s law constant.

All predictions of MCM-hybrid used to calculate the scores in Fig. 16 are reported in
an accompanying Excel sheet in Ref. [87]. The MCMs also provide information on
the uncertainties of the predictions since a probability distribution is obtained for each
ln Hij; these uncertainties are also reported in terms of standard deviations. To facilitate
practical application of the hybrid MCM results, an additional Excel sheet contains the
set of final parameters, i.e., the filled matrices Aij, Bij, and Cij, for all solute-solvent
combinations. Unlike the leave-one-out approach discussed earlier, these parameters are
derived from training MCM-hybrid on all experimental ln Hij(T ) data. Consequently,
users can directly apply these final parameters using Eq. (25) to predict ln Hij(T ) for
all combinations of solutes and solvents in the matrix. The final parameters can also be
used to calculate the enthalpy of absorption of the solute in the solvent, as discussed in
Appendix C.

The total MAEs depicted in Fig. 16b can be further broken down for individual systems
in the form of a histogram, which is shown in Fig. 17.
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Figure 17: Histogram representation of the MAE for the predictions of ln Hij(T ) with
PSRK, MCM-data, and MCM-hybrid considering only systems predictable
by PSRK (1,574 systems). NSystems is the number of binary systems pre-
dicted with a specific MAE. The shown interval in the histogram contains
96.32% (PSRK), 94.79% (MCM-data), and 96.63% (MCM-hybrid) of all
considered binary systems.

Fig. 17 reveals that both MCMs achieve high accuracies (small deviations of the pre-
dictions from the experimental data) for more systems than PSRK, with MCM-hybrid
outperforming MCM-data. While MCM-data predicts a larger number of systems with
high precision compared to PSRK, it also exhibits more outliers falling outside the
histogram’s depicted range. These observations align with the findings for Fig. 16,
underlining MCM-hybrid’s ability to merge the strengths of both methods, leading in
particular to an improved prediction of those systems that tend to be poorly predicted
with PSRK or MCM-data.

Fig. 18 presents six examples of predicted temperature-dependent Henry’s law constants
in binary systems and compares them to experimental test data. Three of the examples
can be predicted with all methods, the other systems can only be modeled with MCM-
data and MCM-hybrid.
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Figure 18: Temperature-dependent Henry’s law constants for six binary systems pre-
dicted with PSRK, MCM-data, and MCM-hybrid (lines) and comparison
with experimental (exp.) test data (circles). The results of the MCMs are
true predictions obtained with a leave-one-out analysis. PSRK is only ap-
plicable for three of the systems.

The results demonstrate the ability of especially MCM-hybrid to accurately predict
Henry’s law constants over a wide temperature range. This study is extended in the
following, where the performance of all methods for predicting ln Hij(T ) in different
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temperature ranges is analyzed in more detail. To facilitate this analysis, the experi-
mental data set is divided into eight temperature bins, with the MAE calculated for
each bin as shown in Fig. 19.
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Figure 19: MAE of the predictions for ln Hij(T ) with PSRK, MCM-data, and MCM-
hybrid as a function of the temperature averaged over all binary systems
in each temperature bin. Percentages denote the fraction of experimental
data points in the respective temperature range. (a) Considering all data
from the DDB [86]. (b) Considering only systems that can be described by
PSRK.

Fig. 19 reveals PSRK’s consistent performance across all temperature ranges, exhibiting
relatively uniform MAEs. In contrast, the MCMs’ predictive performance depends on
the temperature, with MCM-data showing a similar trend but inferior predictive accu-
racy compared to MCM-hybrid. This variation in the performance of the MCMs aligns
with the distribution of the training data, which is disproportionately concentrated in
the ambient temperature range, as highlighted in Fig. 19 and Fig. C.1 in Appendix C.
This underscores the critical importance of obtaining reliable experimental training data
at different temperatures for further improving the MCMs. PSRK is more reliable in
temperature ranges for which there are little experimental data, i.e., at extreme tem-
peratures. However, despite the uneven data distribution, MCM-hybrid significantly
outperforms PSRK in a wide temperature range (223 – 423 K), in which 93.4% of the
experimental data lie.

4.2.5 Conclusions

In this chapter, two matrix completion methods (MCMs) based on Bayesian machine
learning are introduced to predict temperature-dependent Henry’s law constants Hij(T )
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in binary mixtures of solutes i in pure solvents j. As the data depend on three vari-
ables (i, j, and T ), a direct application of matrix completion approaches is impossible.
Therefore, physical relations are employed to model the temperature dependence of Hij,
whose system-specific but temperature-independent parameters can be organized in a
matrix, facilitating matrix completion.

Furthermore, two variants are introduced: MCM-data and MCM-hybrid. While MCM-
data is purely data-driven and trained solely on the scarce available experimental data
on Hij(T ) from the Dortmund Data Bank [86], MCM-hybrid additionally incorporates
results from the physics-based Predictive Soave-Redlich-Kwong (PSRK) equation-of-
state [76] in a pretraining step. The predictions from the MCMs are evaluated using
leave-one-out analysis. As expected, the pretrained MCM-hybrid yields better predic-
tions. MCM-hybrid also outperforms PSRK. Both MCMs show an excellent accuracy
over a wide temperature range, which only declines for extreme temperatures (below
223 K and above 423 K), for which only few data are available for training. Using the
MCMs, Hij and the enthalpy of absorption habs

ij can now be predicted for all combina-
tions of the considered 122 solutes and 399 solvents over a wide temperature range. The
new MCMs can be updated easily when new data become available. This chapter also
underlines that the idea of matrix completion can be applied successfully for predicting
basically any binary physicochemical property, either in a purely data-driven way, or
in a hybrid way by including physicochemical knowledge, which further enhances the
performance of the resulting models.
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4.3 Activity Coefficients at Infinite Dilution

4.3.1 Introduction

Reliable prediction methods for thermodynamic properties of mixtures are essential for
the design and optimization of many processes in chemistry and chemical engineering. A
particularly important property is the activity coefficient, which describes the deviation
from the ideal mixture and is widely used for modeling reaction and phase equilibria in
mixtures. Common physical prediction methods for activity coefficients include group-
contribution (GC) models, such as UNIFAC [12, 41] and modified UNIFAC (Dortmund)
(mod. UNIFAC) [13, 42], as well as models based on quantum chemistry like COSMO-
RS [34, 43, 44] and COSMO-SAC-dsp [47].

While these physical methods are well established, numerous alternative methods for
predicting activity coefficients have recently been developed based on machine learning
(ML). Some of them learn exclusively from available experimental data [1, 8, 48, 89],
others are hybrid methods that combine the strengths of ML with those of physics [2, 9,
10, 49–54, 57, 82–85, 90]. An example for such a hybrid model is the so-called Whisky
method [9], which belongs to the class of matrix completion methods (MCMs). It was
developed for the prediction of activity coefficients of solutes i at infinite dilution in
solvents j γ∞ij at 298 K in unstudied binary mixtures. The MCM exploits the fact
that the properties of binary mixtures can be stored conveniently in matrices, which
are only sparsely occupied by experimental data in all relevant cases. In the Whisky
method, a Bayesian approach is used to complete the matrix, exploiting similarities
between components that are learned in the training. This training involves two steps,
named in analogy to Whisky production: a distillation step, in which information from
mod. UNIFAC predictions is distilled into prior knowledge, followed by a maturation
step, in which the model is refined using experimental data. This hybrid approach, which
combines the physics-based mod. UNIFAC with a data-driven MCM, has demonstrated
superior performance compared to a purely data-driven MCM and the mod. UNIFAC
model alone [9]. For more technical details on the Whisky method, see Ref. [9].

As an alternative to the Whisky method, the so-called similarity-based method (SBM)
(cf. Chapter 3) for predicting activity coefficients at infinite dilution has been developed.
The SBM is based on the idea that similar mixtures should have similar properties,
following the ancient alchemistic knowledge "similia similibus solvuntur". Consequently,
the SBM uses the available experimental data for activity coefficients in similar mixtures
to predict the activity coefficients in an unstudied mixture of interest by simply averaging
the data for similar mixtures. At its core, the SBM calculates similarities between
mixture components to determine mixtures for which data are available and which are
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sufficiently similar to the (unstudied) mixture of interest so that the data can be used
for the prediction.

It is clear that the accuracy and the range of applicability of the SBM are inversely
correlated: the higher the demanded accuracy, the stricter the required similarity, and
the lower the chance of finding sufficiently similar mixtures in a given data set. In the
SBM, the same chemical descriptors as they are used in the COSMO models [34, 55] are
used for defining a similarity score. The SBM achieves a high prediction accuracy, often
within typical experimental uncertainties, whenever sufficient similar data are available.

In this chapter, a novel model combining the Whisky approach with the SBM is pro-
posed. Specifically, synthetic data from the SBM are integrated in the training process
of the Whisky method, basically doubling the amount of training data in Whisky’s
maturation step. Therefore, a strict similarity criterion has been applied in the SBM,
leading to precise predictions (at the cost of the number of mixtures for which the SBM
yields predictions). The novel model, which is called Blended Whisky, thereby com-
bines the strengths of both underlying methods: the Whisky method enables a broad
scope by filling the entire matrix of missing data, while the SBM contributes precise
predictions, which act as a powerful substitute for actual experimental data, increasing
the prediction accuracy. This synergy leads to a more robust and accurate predictive
framework that consistently outperforms its predecessors.

In addition to introducing the Blended Whisky method, this chapter discusses and em-
phasizes the implications of model assessment and training data design for ML models,
particularly MCMs. By analyzing the correlations between the training data quantity
and type (synthetic or experimental), the similarity between the mixtures of interest and
those in the training set, and the overall model performance, fundamental insights are
obtained for the efficient training of MCMs, laying the foundation for their advancement,
particularly in data-sparse regions.

4.3.2 Development of the Blended Whisky Method

The Blended Whisky method is an MCM that combines two approaches for predicting
isothermal activity coefficients at infinite dilution γ∞ij in binary mixtures: the Whisky
method [9], a probabilistic MCM using experimental data and synthetic data from the
physical mod. UNIFAC [13] model for training, and the SBM (cf. Chapter 3), which
makes predictions using similarity-based imputation. Details on the Whisky method
are provided in Ref. [9].
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The Blended Whisky method developed here is a probabilistic model that calculates
logarithmic activity coefficients at infinite dilution as follows:

ln γ∞ij = ui ⋅ vj + εij (32)

where ui and vj are feature vectors of the solute i and solvent j, respectively, and εij is a
random variable that captures experimental noise and model inaccuracies. The solute-
and solvent-specific feature vectors can be aggregated into two feature matrices, U and
V , representing the learned characteristics of all solutes and all solvents, respectively,
in the data set.

Blended Whisky is a Bayesian method (cf. Chapter 2) and, in contrast to simple
MCMs [8], which infer the component features (ui and vj) only from the available
experimental data in a single step, it (analogously to the Whisky method [9]) is based
on a two-step approach with different data sources. Fig. 20 shows a schematic of the
training process of Blended Whisky.

Train MCM

Distillation Maturation Prediction

lnγUNIFAC

69.8%
lnγbW

100%
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Features

Refined
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U*, V* U, V

lnγexp+SBM

8.2%+9.8%

Train MCM

Figure 20: Schematic illustration of the Blended Whisky method. In the distillation
step, an MCM is trained on mod. UNIFAC predictions for ln γ∞ij at 298 K.
The thereby fitted MCM parameters, stored in component feature matrices
U∗ and V ∗, are used as informative prior for the maturation step, where
a second MCM is trained on the available experimental data augmented
with SBM predictions. The final MCM parameters are used for making
predictions for unstudied ln γ∞ij .

In the first step, the distillation step, knowledge from mod. UNIFAC captured in its
predictions is distilled and this knowledge is stored in a first set of component features.
Thereby, a rather broad, uninformative prior is used for each feature, specifically, a
normal distribution with a mean of µ = 0 and a standard deviation of σ = 0.8. As
likelihood, a Cauchy distribution with scale parameter λ = 0.15 centered around the
product of preliminary feature vectors is used:
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p(ln γ∞,mod. UNIFAC
ij ∣u∗i , v∗j ) = Cauchy(u∗i ⋅ v∗j , λ) (33)

For all components for which mod. UNIFAC predictions were available during the dis-
tillation step, the resulting posterior mean is retained and is, in combination with a
standard deviation of σ = 0.5, used as informative prior for the subsequent maturation
step. For all other components, i.e., those for which mod. UNIFAC can not predict the
activity coefficients in the distillation step, a broader normal distribution with a mean
of µ = 0 and a standard deviation of σ = 3 is used as the prior for the maturation step.

In the maturation step, the features obtained from the distillation step are refined
by training on experimental data (ln γ∞,exp

ij ) and, in contrast to the Whisky method,
synthetic training data obtained from the SBM, as described below. This way, the
otherwise sparse experimental training set is substantially augmented with synthetic
data of high quality (cf. Chapter 3). The likelihood in the maturation step follows a
Cauchy distribution with a scale parameter of λ = 0.15 for the experimental data and
λ = 0.2 for the SBM data.

The synthetic data used for augmenting the training data in the maturation step of the
Blended Whisky method were obtained using the SBM approach from Chapter 3, which
is based on a similarity score S derived from quantum-chemically calculated σ-profiles.
The SBM makes predictions for ln γ∞ij by averaging the experimental data from mixtures
that are similar to the one of interest. Thereby, a similar mixture is defined as one with
the same solute i (solvent j) and a different solvent n (solute m) that has a similarity
score with the solvent of interest j (solute of interest i) higher than a threshold, which
was set to 0.93, i.e., Snj > 0.93 (Smi > 0.93). The similarity score has values between
0 (no similarity) and 1 (full similarity). The choice of the threshold value ξ = 0.93
indicates that a high degree of similarity is required, leading to reliable predictions of
the γ∞ij with the SBM. The downside is that choosing a high value of ξ leads to the fact
that there will be only a few mixtures for which sufficiently similar mixtures for which
data exist can be found. In this case, the SBM with ξ = 0.93 yielded only additional
results for 9.3% of the entries of the matrix. However, since only for 8.6% of the entries
experimental data were available, the database for the maturation step of the Blended
Whisky method could be more than doubled. Whenever an experimental value and an
SBM prediction were available, the experimental value was used.

The Blended Whisky method was trained on 30,597 synthetic data points from mod. UNI-
FAC in the distillation step, and 3,568 experimental data points along with 4,277 syn-
thetic data points from the SBM in the maturation step. All experimental ln γ∞,exp

ij data
were taken from the Dortmund Data Bank (DDB) [38]; in total, 221 different solutes
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and 198 different solvents were considered. These experimental data and the synthetic
training data obtained from the SBM are identical to the ones in Chapter 3.

Blended Whisky was implemented in the probabilistic programming language Stan [20]
and trained using Gaussian mean-field variational inference. The hyperparameters,
namely the standard deviations of the prior and the scale parameters of the likelihood,
were determined through preliminary studies.

The performances of the studied MCMs (MCM-data, Whisky, and Blended Whisky) and
the SBM were evaluated using a leave-one-out analysis. Thereby, for each binary mixture
with available experimental data (ln γ∞,exp

ij ), the corresponding data point was excluded
from the training set. The remaining data were then used to generate predictions for
the excluded mixture. This approach ensures that the predictions are independent
of the experimental data for that particular mixture, providing a more rigorous test
of the predictive performance of the method. All calculations were performed using
Matlab [23].

4.3.3 Results and Discussion

4.3.3.1 Overall Performance of Blended Whisky

In Fig. 21, the performance of the Blended Whisky method for predicting ln γ∞ij at 298 K
obtained by a leave-one-out analysis is shown in terms of the mean absolute error (MAE)
and the mean squared error (MSE). It is compared to the performances of the building
blocks of Blended Whisky, the SBM (cf. Chapter 3), and the Whisky method [9], as
well as that of a purely data-driven MCM (MCM-data) [8] and the physical benchmarks
mod. UNIFAC [13], COSMO-SAC [46], and COSMO-SAC-dsp [47]. The results are
plotted as a function of the number N of predictable data points in the experimental
data set, containing Nmax = 3568 data points. For COSMO-SAC and COSMO-SAC-dsp,
the implementations by Bell et al. [55] were used.



4.3 Activity Coefficients at Infinite Dilution 59

2000 2500 3000 3500
N

0.0

0.2

0.4

0.6

0.8

1.0

M
A

E

(a)

COMSO-SAC
COMSO-SAC-dsp
mod. UNIFAC
MCM-data
Whisky
Blended Whisky
SBM(ξ = 0.93)

2000 2500 3000 3500
N

0.0

0.2

0.4

0.6

0.8

1.0

M
S

E

(b)

COMSO-SAC
COMSO-SAC-dsp
mod. UNIFAC
MCM-data
Whisky
Blended Whisky
SBM(ξ = 0.93)

Figure 21: Mean absolute error (MAE, panel a) and mean squared error (MSE,
panel b) of the predictions of ln γ∞ij for the Blended Whisky method as
a function of the number N of predictable data points in the data set. For
comparison, the results of mod. UNIFAC, COSMO-SAC, COSMO-SAC-
dsp, MCM-data, the Whisky method, and the SBM(ξ = 0.93) are shown.
Error bars denote standard errors of the means.

The SBM(ξ = 0.93) achieves the highest prediction accuracy in both error scores; how-
ever, its scope is the smallest of all methods compared, as it is limited by the requirement
for training data on mixtures similar to those of interest. Mod. UNIFAC offers broader
applicability but at the cost of reduced accuracy. COSMO-SAC-dsp extends the scope
further, albeit with even lower prediction accuracy. COSMO-SAC, MCM-data, Whisky,
and Blended Whisky can predict all test data points. Among them, COSMO-SAC
exhibits the poorest accuracy, while the Blended Whisky method achieves the high-
est accuracy (MAE = 0.26, MSE = 0.34), slightly outperforming the Whisky method
(MAE = 0.28, MSE = 0.38). Although this overall reduction of the error scores may
seem small, it was achieved without additional data compared to its predecessors, as
both the SBM and Whisky are trained on the same database.

Notably, both hybrid MCMs (Whisky and Blended Whisky) significantly reduce out-
liers in their predictions, as evidenced by their lower MSE values than MCM-data. In
contrast, mod. UNIFAC exhibits some extreme outliers, which have even been excluded
from the error score calculations in Fig. 21. Appendix A provides a detailed analysis of
these outliers. Remarkably, despite including these outliers during the training of both
the Whisky and Blended Whisky methods in their distillation steps, the MCMs still
achieve high prediction accuracies, outperforming mod. UNIFAC, demonstrating the
robustness of the hybrid models. Of the benchmark methods, only the SBM(ξ = 0.93)
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achieves a lower MAE than the Blended Whisky method; however, this score is based
on only the 60% of test data that the SBM(ξ = 0.93) can predict.

4.3.3.2 Influence of Training Data on Predictive Performance

In the following, two factors that influence the predictive performance of the MCMs
are systematically examined. The first factor is the amount of experimental training
data for each solute i and solvent j, corresponding to the number of data points in
each row and column of the experimental data matrix. A binary mixture i + j is thus
characterized by the number of data points available for solute i and the number of data
points available for solvent j. Only the smaller of these two values is used, representing
the less frequently measured component, and it is denoted as Nmin in the following.

In Fig. 22, it is analyzed how the prediction accuracy correlates with Nmin. It shows the
MAE and MSE of all studied methods (excluding the SBM(ξ = 0.93) due to its limited
scope) on a shared test data set containing only mixtures predictable by all methods.
Mixtures with rarely measured components (Nmin ≤ Ncutoff) and frequently measured
components (Nmin > Ncutoff) are differentiated, using a cutoff value of Ncutoff = 5.
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Figure 22: Mean absolute error (MAE) and mean squared error (MSE) of predictions
of ln γ∞ij for the Blended Whisky method in comparison to Whisky, MCM-
data, mod. UNIFAC, COSMO-SAC, and COSMO-SAC-dsp. Error bars
denote standard errors of the means. (a) Binary mixtures containing com-
ponents with five or less studied mixtures in the data set (Nmin ≤ 5; 361
data points). (b) Binary mixtures where both components were studied in
more than five mixtures in the data set (Nmin > 5; 2,418 data points).

All methods depicted in Fig. 22 show higher average accuracy for mixtures with Nmin > 5
as for mixtures with Nmin ≤ 5. The observed improvement in accuracy for the MCMs
with increasing Nmin is expected, given that these models are explicitly trained on
the available experimental data in the database and rely on learning the component-
specific features from these data; hence, more available data for a specific component
can be expected to increase the quality of the learned features. In contrast, the physical
benchmark methods (mod. UNIFAC, COSMO-SAC, and COSMO-SAC-dsp) have been
evaluated "as-is", using their published parameters, without any additional training or
fine-tuning on the data set used in this chapter. Since the training sets for these methods
are not fully disclosed, it is plausible that they may have been optimized or validated
using data sets that overlap with frequently measured components in the database used
here, which could explain their improved performance for those mixtures. Alternatively,
the mixtures in Fig. 22a may pose greater challenges for all methods due to higher
molecular complexity or less predictable interaction effects.
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For mixtures with only frequently studied components (Nmin > 5), all three MCMs
significantly outperform the three physical benchmark models. In contrast, for the
mixtures with Nmin ≤ 5, mod. UNIFAC and the Blended Whisky method prove to be
the best-performing approaches. Especially when comparing the performance of Blended
Whisky to Whisky and MCM-data, the positive impact of integrating synthetic data
from mod. UNIFAC and the SBM(ξ = 0.93) into the training process becomes evident,
particularly reducing the MSE.

While so far, only the influence of data quantity for specific solutes or solvents has been
investigated, the influence of whether data for similar mixtures are available on the
performance of the MCMs is now investigated. This distinction is not relevant to the
physical benchmarks, as their performance does not depend on the presence of similar
mixtures in the training data; hence, they are not further discussed in the following.
The impact of similar mixtures in the training data on the performance of the different
MCMs for mixtures with Nmin > 5 is first explored, as shown in Fig. 23. For this
purpose, the data set from Fig. 22b is split by categorizing each mixture according to
the availability of at least one similar mixture (defined by a similarity score above a
threshold of ξ = 0.93) in the training set. All mixtures meeting this condition can also
be predicted using the SBM(ξ = 0.93), which also requires at least one data point of a
similar mixture for prediction. Consequently, the error scores of the SBM(ξ = 0.93) are
included in Fig. 23a.
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Figure 23: Mean absolute error (MAE) and mean squared error (MSE) of predictions
of ln γ∞ij for the Blended Whisky method in comparison to Whisky and
MCM-data, focusing only on mixtures where both components were studied
in more than five mixtures in the data set (Nmin > 5; 2,418 data points).
Error bars denote standard errors of the means. (a) Binary mixtures for
which experimental training data of similar mixtures are available (1,600
data points); similar mixtures are defined by a similarity score above a
threshold of ξ = 0.93. An additional comparison with the SBM(ξ = 0.93) is
performed here. (b) Binary mixtures for which no experimental data with
similar mixtures are available (818 data points).

Fig. 23 shows that similar mixtures in the training set significantly enhance the per-
formance of all MCMs, emphasizing that a large amount of data alone is not sufficient
for efficient training of data-driven methods; the similarity between the unstudied mix-
ture of interest and the studied ones in the training set is, hence, a crucial factor for
prediction accuracy. The performance of the different MCMs is generally similar here, al-
though MCM-data performs slightly worse than the hybrid MCMs (Whisky and Blended
Whisky), especially in terms of MSE, for both cases in Fig. 23.

Fig. 24 shows the influence of available similar mixtures in the training set on the pre-
diction accuracy for mixtures with rarely measured components (Nmin ≤ 5; cf. Fig. 22a).
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Figure 24: Mean absolute error (MAE) and mean squared error (MSE) of predictions of
ln γ∞ij for the Blended Whisky method in comparison to Whisky and MCM-
data, focusing only on mixtures containing components with five or less stu-
died mixtures in the data set (Nmin ≤ 5; 361 data points). Error bars denote
standard errors of the means. (a) Binary mixtures for which experimental
training data of similar mixtures are available (148 data points); similar
mixtures are defined by a similarity score above a threshold of ξ = 0.93.
An additional comparison with the SBM(ξ = 0.93) is performed here. (b)
Binary mixtures for which no experimental data with similar mixtures are
available (213 data points).

Fig. 24 shows again that the MCMs benefit strongly from the availability of training
data for similar mixtures. Again, MCM-data performs worse than the hybrid meth-
ods and Blended Whisky yields better results than Whisky. This is especially true if
similar mixtures are available, because in that case, the SBM(ξ = 0.93) yields excellent
results and effectively supports Blended Whisky via the accurate synthetic data in the
distillation step. The Blended Whisky method (MAE=0.24, MSE=0.15) even slightly
surpasses the SBM(ξ = 0.93) (MAE=0.27, MSE=0.17) while covering a significantly
broader scope.
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4.3.4 Conclusions

In this chapter, the Blended Whisky method has been developed, a hybrid matrix com-
pletion method (MCM) that successfully combines the strengths of two previously devel-
oped approaches, the Whisky method and the similarity-based method (SBM), to pre-
dict γ∞ij with high accuracy and broad scope. By incorporating synthetic data from the
SBM as supplementary training data in the Whisky method’s framework, the Blended
Whisky method achieves superior performance compared to physical benchmarks and
its predecessors, especially in data-sparse regions that previously challenged the Whisky
method.

Furthermore, a detailed analysis has been carried out to examine how the training data
affects the accuracy of different MCMs. When only limited experimental training data
are available for the components that make up the mixtures of interest, the prediction
accuracy of the MCMs suffers but can be significantly improved by pre-training on
predictions from mod. UNIFAC. Additionally augmenting the experimental training set
with synthetic data from the SBM, as used in the proposed Blended Whisky method,
leads to further improvements. On the other hand, the sheer amount of training data is
not everything that is important to achieve very high prediction accuracy. The training
data must contain information on mixtures that are similar to the target mixtures.
These insights are valuable for selecting training data for MCMs and other data-driven
prediction methods and pave the way for developing targeted design-of-experiments
(DOE) strategies. This chapter also shows that using similarity measures is helpful
for ML studies of pure components and mixtures in different ways: in analyzing and
selecting training data as well as in assessing uncertainties of the predictions.
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4.4 Diffusion Coefficients at Infinite Dilution

4.4.1 Introduction

Diffusion plays a central role in many processes in nature and industry. Despite this,
experimental data on diffusion coefficients are astonishingly scarce. In the present the-
sis, this topic is addressed for diffusion coefficients of a solute i highly diluted in a
solvent j, which are particularly important both for practical and theoretical reasons,
by developing novel methods for their prediction.

In general, mutual diffusion must be distinguished from self-diffusion. Mutual diffusion
refers to the motion of collectives of molecules of different components in a mixture,
and is directly relevant for describing technical processes. Self-diffusion, on the other
hand, refers to the Brownian motion of individual molecules, and is defined for pure
components as well as for mixtures.

There are two common approaches for describing mutual diffusion: the Fickian and the
Maxwell-Stefan approach. Only binary mixtures are studied here, so that the following
discussion is limited to this case. The Fickian diffusion coefficient Dij and the Maxwell-
Stefan diffusion coefficient Ðij in a binary mixture (i + j) are related by Eq. (34):

Dij = ÐijΓij (34)

where Γij is the thermodynamic factor. Both Dij and Ðij are in general functions of
temperature, pressure, and composition. The influence of pressure on diffusion coeffi-
cients in liquids is small and neglected here, and the temperature is fixed to 298±1 K,
because this temperature is of particular interest and more data on diffusion coefficients
are available for 298 K than for any other temperature. Furthermore, only diffusion co-
efficients at infinite dilution are considered here, for which the thermodynamic factor is
unity. Moreover, mutual and self-diffusion are identical at the state of infinite dilution
by definition. Hence, at infinite dilution, the three cases discussed here need not be
distinguished:

D∞ij = Ð∞ij =D∞i (35)

Here, i refers to the infinitely diluted component, j to the solvent, the index ∞ to the
state of infinite dilution, and Di to the self-diffusion coefficient of component i. Only
the symbol D∞ij will be used in the following.

Information on D∞ij is directly relevant in problems in which the diffusing component is
diluted. Furthermore, there are methods to estimate Ðij at finite concentrations from the
respective values at infinite dilution, i.e., of Ð∞ij and Ð∞ji , most notably that of Vignes [91]
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for binary mixtures, which has also been extended to multi-component mixtures where
experimental data on diffusion coefficients are lacking almost completely [92].

Several correlations for the prediction of D∞ij in binary liquid mixtures have been pro-
posed in the literature [93], of which the most commonly used ones are those of Wilke and
Chang (1955), Reddy and Doraiswamy (1967), Tyn and Calus (1975), and the Stokes-
Einstein Gierer-Wirtz Estimation (SEGWE) of Evans at al. (2018) [94–97]. They are all
empirical extensions of the Stokes-Einstein equation [98] and may therefore be classed
as semiempirical models.

A large number of further semiempirical models for the prediction of D∞ij in binary
liquid mixtures or extensions upon the previously mentioned ones exist in the literature,
but most of them are either less general (in the scope of the components that can be
modeled by them) or less accurate than these [99]. Power-law models, which have also
been applied in the literature for modeling diffusion coefficients [100–102], suffer from
a similar restriction in generality as they must be “calibrated” to a specific substance
group, and they depend strongly on the type of components investigated. For a more
detailed discussion of such approaches and their delimitation from the semiempirical
models investigated here, the author refers to the review of Evans [103].

As an alternative to physical and semiempirical prediction methods for thermophysical
properties in general, data-driven approaches from machine learning (ML) are presently
gaining much attention [1, 104–106]. In most of the respective works, ML algorithms
are thereby used for correlating thermophysical properties of pure components to a
set of selected pure-component descriptors in a supervised manner. As such, most
of these approaches can be classified as quantitative structure-property relationships
(QSPR) [67].

Descriptor-based methods of the QSPR type can also be used for predicting mixture
properties, and of course also for the prediction of diffusion coefficients. In particular,
artificial neural networks (ANNs) have been used successfully in QSPR approaches by
several authors [107–110], however, these studies were often restricted to specific mix-
tures, such as diffusion in water [109, 110] or diffusion in hydrocarbon mixtures [107];
general-purpose models for the prediction of diffusion coefficients at infinite dilution
based on ML methods are still missing to date.

An interesting class of unsupervised ML algorithms for the prediction of thermophysical
properties of mixtures in general, and of D∞ij in particular, are matrix completion meth-
ods (MCMs), which are already established in recommender systems, e.g., for providing
suitable movie recommendations to customers of streaming providers [111, 112]. The
relevance of MCMs for predicting thermophysical properties of binary mixtures has only
been realized recently [1, 8]. In particular, they have been applied very successfully for
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predicting activity coefficients and Henry’s law constants [8–10, 82, 84]. In the present
chapter, the MCM approach is extended to the prediction of diffusion coefficients.

The experimental database of liquid-phase diffusion coefficients at infinite dilution D∞ij
in binary mixtures at 298.15±1 K consolidated by Großmann et al. [83] is used in the
following. These data can be represented in an m×n matrix, in which the rows represent
the solutes (m = 208) and the columns represent the solvents (n = 51). However, only 353
of the 10,608 elements of that matrix are occupied with experimental data, corresponding
to 3.3%. For the rest, experimental data are missing.

In this thesis, a data-driven MCM for the prediction of D∞ij , which is trained only on
the few available experimental data points on D∞ij from the database, as well as two
hybrid MCMs, which combine the semiempirical SEGWE method [97] with the data-
driven MCM in different ways, have been developed. The performance of the MCMs
have been systematically evaluated and compared to four widely applied semiempirical
methods for the prediction of D∞ij , namely those of Wilke and Chang [94], Reddy and
Doraiswamy [95], Tyn and Calus [96], and SEGWE [97].

All MCMs presented in this chapter are collaborative-filtering approaches that learn only
from the available data for the mixture property D∞ij , but do not require information
on additional descriptors of the solutes and solvents, which is in contrast to supervised
QSPR methods [27]. The predictions of the MCMs were compared to each other and to
the results from the established semiempirical models.

4.4.2 Database

As a result of the consolidation procedure of Großmann et al. [83], a database on D∞ij
containing 353 data points for 208 solutes i and 51 solvents j was obtained. The database
is represented in Fig. 25 in matrix form, where the rows represent the solutes i and the
columns represent solvents j, both of which are simply identified by numbers. The value
for D∞ij is indicated by the color of the respective matrix entry. The order of the solutes
and solvents does not have a meaning but was chosen to be ascending with regard to the
DDB identification numbers; Table D.1 in Appendix D gives a list with the names of all
considered solutes and solvents and their identification numbers. The numerical values
for D∞ij are given in Ref. [83]. The values are censored in cases in which they have been
directly adopted from the DDB and licensing restrictions prohibit their publication.
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Figure 25: Overview of the experimental data for liquid-phase diffusion coefficients D∞ij
of solutes i in solvents j at infinite dilution at 298.15 ± 1 K. Solutes and
solvents are simply identified by numbers, see Table D.1 in Appendix D.
The color code denotes the values of D∞ij , and white cells indicate missing
entries.
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To the best of the author’s knowledge, this database is the first comprehensive database
of diffusion coefficients at infinite dilution. However, of the 10,608 different possible
combinations of the considered solutes and solvents, data are available only for 353
(3.3%). Furthermore, the resulting matrix is not only sparsely but also heterogeneously
filled with observed entries, cf. Fig. 25; for instance, for the solvent water (column 28),
a very large number of data points (with different solutes) is available, whereas many
other solvents (and solutes) have been studied in only a very limited number of mixtures.
In fact, a substantial share of the solutes that were studied in combination with water
have not been studied in combination with any other solvent with regard to D∞ij .

4.4.3 Prediction of Diffusion Coefficients

4.4.3.1 Semiempirical Models

The experimental database shown in Fig. 25 was used for studying the performance of
four established semiempirical models for the prediction of D∞ij , namely those of Wilke
and Chang (1955) [94], Reddy and Doraiswamy (1967) [95], Tyn and Calus (1975) [96],
and the Stokes-Einstein Gierer-Wirtz Estimation (SEGWE) by Evans at al. (2018) [97].
All considered models have in common that they predict D∞ij as a function of the quotient
T /ηj, where T is the temperature in Kelvin and ηj is the dynamic viscosity of the solvent
j. Hence, information of ηj at the temperature of interest is required. Furthermore,
they all require information on the pure solute i, namely either the molar volume vi, the
molar mass Mi, or the parachor Pi - or some combination thereof. All pure-component
properties were obtained in the present chapter from DIPPR correlations taken from
the DIPPR database [113]. The Wilke-Chang and SEGWE models additionally require
solvent-specific parameters. The authors provide some values of these parameters in
the original publications, but in practice the parameters are typically first fitted to
experimental data on D∞ij in the respective solvent j.

For the comparison of the semiempirical models with the MCMs, the solvent-specific
parameters of Wilke-Chang and SEGWE have been fitted to data on D∞ij using a leave-
one-out procedure (cf. Section 4.4.3.2.4). This procedure ensures a fair comparison
between the semiempirical models and the MCMs. However, when SEGWE was used
as prior information for the hybrid MCMs, the parameter was not fitted but instead a
fixed global value was used. More information on the hybridization of SEGWE and an
MCM is given in Sections 4.4.3.2.2-4.4.3.2.3.

Furthermore, details on the semiempirical models are provided in Appendix D.1.
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4.4.3.2 Matrix Completion Methods

Three different MCMs were developed and evaluated in the present chapter: one MCM
that is purely data-driven, i.e., which is only trained on the available experimental data
for D∞ij . Furthermore, two hybrid MCMs, which additionally incorporate information
from the SEGWE model in different ways as described below. All MCMs follow a
Bayesian approach, cf. Chapter 2.

While different priors were chosen in the different MCMs, the same likelihood in form
of a Cauchy distribution with scale λ = 0.2 was chosen for all MCMs. Both the form
of the prior and the likelihood, including the scale parameter λ, are hyperparameters
of the model. In preliminary studies with different configurations, the hyperparameter
set from Chapter 4.1 proved to be most suitable, which was therefore adopted here. All
feature vectors are of length K, where K is the number of features considered for each
solute and each solvent. K is a further hyperparameter of the model and is a priori
unknown; it must be chosen so that over- and underfitting are avoided. In preliminary
studies, K = 2 was found the most suitable choice and was therefore used for all models
here.

Gaussian mean-field variational inference has been employed using the Automatic Dif-
ferentiation Variational Inference (ADVI) [19] option implemented in the probabilistic
programming framework Stan [20], which was used for training all models. The code is
attached in Appendix D.6.

4.4.3.2.1 Data-Driven Matrix Completion Method

The training of the purely data-driven MCM is based only on uncovering structure in the
sparse matrix of experimental D∞ij . Each ln D∞ij is thereby modeled as the dot product
of the two latent feature vectors ui and vj:

ln D∞ij = ui ⋅ vj + εij (36)

Here, ln D∞ij ≡ ln(109D∞ij

m2/s ) is defined as the natural logarithm of the numerical value of
the diffusion coefficient in 10−9 m2/s, which is used for scaling purposes.

During the training of the MCM, the generative model first draws two vectors ui and
vj of length K with features for each solute i and solvent j from the prior, for which
a normal distribution centered around zero with a standard deviation σ0 = 1 was cho-
sen here. It then models the probability of each experimental data point ln D∞ij as a
Cauchy distribution with scale λ centered around the dot product of the respective fea-
ture vectors, cf. Eq. (36), and thereby adjusts the features so that they are best suited
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for describing the training data, i.e., minimizing the εij. When performing Bayesian
inference, the probabilistic model is thereby inverted to obtain the posterior, i.e., the
probability distribution over the features after considering the training data. The final
features of the solutes and solvents were then obtained by taking the mean of the pos-
terior, which was subsequently used for calculating predictions for ln D∞ij with Eq. (36)
(while setting εij to zero).

4.4.3.2.2 Hybrid Matrix Completion Method "Boosting"

This MCM combines information from the experimental data on D∞ij with information
from SEGWE and is thereby based on the concept of Boosting [114]. The idea of this
hybrid approach is to train an MCM not on the experimental data for D∞ij (or ln D∞ij ),
but on the residuals resij of the SEGWE model:

resij = ln D∞,SEGWE
ij − ln D∞,exp

ij = ui ⋅ vj + εij (37)

Hence, in this case, the MCM is not employed to uncover structure in the experimental
data, but in the deviations of the SEGWE predictions from the experimental data.

For the Boosting approach, SEGWE was applied in a purely predictive manner; this
means that the parameter ϱeff, cf. Eq. (D.5), was not treated as a fit parameter but
globally set to the value ϱeff = 619 kg/m3 as suggested by the original authors [97].

SEGWE has been chosen for the Boosting approach for two reasons: first, SEGWE
proved to be the best-performing of the studied semiempirical models, cf. Section 4.4.4.1.
Second, in the chosen variant of SEGWE, the only component descriptors required in
the model equation are the viscosity of the solvent and the molar masses of solute and
solvent; information on these properties is readily available.

The training of this hybrid MCM was carried out analogously to the data-driven ap-
proach, and with the same hyperparameters (prior and likelihood as well as number of
features per solute / solvent K). After the training, MCM-Boosting yields predictions of
the residuals of the SEGWE model for specified mixtures i, j. The respective predicted
ln D∞ij (and thus D∞ij ) can then be calculated from the predicted residuals by rearranging
Eq. (37).

4.4.3.2.3 Hybrid Matrix Completion Method "Whisky"

Furthermore, a second hybrid MCM for the prediction of D∞ij , which also combines
information from experimentally available D∞ij with information from SEGWE, was
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considered here. In contrast to MCM-Boosting, this hybrid model does not operate on
the residuals of SEGWE, but is trained in two subsequent steps on two different data
sets. The approach can be considered as a form of distillation of a model, which is why
it is labeled MCM-Whisky. The approach is similar to the one recently introduced for
the prediction of activity coefficients [9]. Therefore, only a brief description is given
here, and the original work is referred to for an in-depth discussion.

The training of the Whisky model consists of two steps. In the first training step, the
predictions of ln D∞ij obtained with SEGWE (again with globally fixed ϱeff = 619 kg/m3)
for all combinations of the considered solutes and solvents were used for training a data-
driven MCM according to Eq. (36) (while again using the same hyperparameters as in the
MCMs described above). As result, preliminary feature vectors u∗i and v∗j of the solutes
i and solvents j, respectively, were obtained. This training step can be interpreted as
distilling the essence of the SEGWE model and storing it in the preliminary feature
vectors ui and vj; therefore, this first training step is referred to as the distillation step
in the following.

In the second training step, the preliminary feature vectors u∗i and v∗j were refined using
the (sparse) experimental data on D∞ij from the database; the second training step is
therefore referred to as the maturation step in the following. In the maturation step,
the preliminary u∗i and v∗j were used for creating an informed prior for the training
of an additional MCM, which was then trained on the experimental D∞ij . Specifically,
the means of the respective preliminary features were adopted, whereas the standard
deviations of the features were scaled with a constant factor, such that the mean of all
resulting standard deviations was σ = 0.5.

This scaling procedure was carried out analogously to the approach described in Chap-
ter 4.1 and ensures that the model remains flexible enough to reasonably consider the
experimental training data. The final informative prior for the maturation step of the
hybrid MCM was then obtained by multiplying the scaled posterior from the distillation
step with the uninformed prior distribution as used in the data-driven MCM. This last
step ensures that the informed prior is in all cases stronger than the uninformed prior.

Hence, in this hybrid MCM, information from SEGWE is included and transferred via
the prior in the maturation step. However, the model is still capable of overruling the
prior information from SEGWE via the likelihood, if the available experimental data
for D∞ij is convincing enough to do so.

In both training steps of the Whisky model, the same likelihood (Cauchy with scale
parameter λ = 0.2) and the same number of features per solute and solvent (K = 2) as
in the other MCMs were used.
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While both hybrid approaches, MCM-Boosting and MCM-Whisky, incorporate infor-
mation from the SEGWE model, the difference is how the knowledge from the semiem-
pirical model is encoded in the MCM as described above. MCM-Boosting can only lead
to improvements over the baseline model (here: SEGWE) if that model shows system-
atic prediction errors. Only then can the MCM reveal structure in the residuals of the
model and thereby refine the predictions. Furthermore, any information from SEGWE
for mixtures for which no experimental data is available is inevitably discarded in the
Boosting approach. In the Whisky approach, in contrast, different classes of training
data are combined: predictions with the SEGWE model, which can be obtained for
many mixtures (for the present data set, they could be obtained for all combinations of
solutes and solvents) but are rather uncertain, and experimental data, which are rare
(see Section 4.4.2) but more reliable than model predictions. For components for which
there are many experimental data, the Whisky approach can be expected to hardly im-
prove the predictive performance compared to a data-driven MCM. On the other hand,
for components for which there are only few experimental data for training, the largest
improvements compared to the data-driven MCM can be expected with the Whisky
approach.

4.4.3.2.4 Leave-One-Out Analysis and Reduced Database

The predictive performance of all MCMs developed in this chapter was evaluated by a
leave-one-out analysis [115]. Following this concept, each MCM was trained on a subset
of the experimental data on D∞ij that includes all observed entries except for the one to be
predicted. The single left-out data point, which is called test data point in the following,
was then predicted by the MCM. This procedure was repeated by subsequently defining
all data points once as test data point, until true predictions for all available D∞ij were
obtained. Finally, these predictions were compared to the respective experimental D∞ij
to evaluate the performance of the MCMs.

By nature, such a leave-one-out analysis of an MCM demands a database in which at
least two distinct data points are available for each solute i and each solvent j, so that
after declaring one of these data points as test data point, there is at least one data point
for each component in the training set to allow the model to learn its characteristics.
Hence, if the database is arranged in matrix form with solutes and solvents representing
the rows and columns, respectively, at least two observed entries per row and per column
are required for a meaningful analysis.

Therefore, for developing the MCMs, a reduced database for D∞ij that satisfies the afore-
mentioned condition was defined. To enable a direct comparison, the predictive per-
formance of the semiempirical models was also evaluated based on this reduced data
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set. Thereby, the solvent-specific parameters of the models of Wilke and Chang and
SEGWE were also fitted to experimental data for D∞ij in a leave-one-out approach
(cf. Appendix D.1.5).

The reduced database is presented in Fig. 26. It is the basis for the comparison of
the performance of the three MCMs and the semiempirical models for predicting D∞ij
considered in the present chapter.

While the MCM only works for mixtures within the matrix shown in Fig. 26, the semiem-
pirical models can also give predictions for additional mixtures outside the matrix,
namely for all mixtures for which the required pure-component properties are known.

The reduced database comprises data for 45 solutes and 23 solvents. The corresponding
matrix, which is shown in Fig. 26, has about 16% observed entries: for 166 of the 1035
possible mixtures experimental data are available.

Figure 26: Overview of the experimental data for the liquid-phase diffusion coefficients
D∞ij at infinite dilution at 298.15± 1 K in the reduced database; these data
points were used for evaluation of the MCMs developed in the present
chapter and comparison of the results to those of the semiempirical models.
Solutes and solvents are identified by numbers, see Tables D.2 and D.3 in
Appendix D. The color code indicates the value of D∞ij , and white cells
denote missing data.

Four particularly well-filled columns can be discerned for j = 3, 14, 15, and 18. The
respective solvents are ethanol, methanol, n-propanol, and water. They are common
solvents for which experimental data were measured in combination with many solutes.
Moreover, a column-based structure can be observed in the absolute values of D∞ij them-
selves (and not just in the availability of data): for example, the diffusion coefficients
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in the solvent methanol (j = 14) are consistently higher than the respective diffusion
coefficients in the solvent n-propanol (j = 15), which is readily seen by the darker colors
in that column in Fig. 26. Two further solvents, n-hexane and n-heptane (j = 12 and
j = 13, respectively), exhibit even darker colors, corresponding to even higher values
of D∞ij . Similar structural relationships in the matrix exist also for the rows, e.g. for
carbon dioxide (i = 39) comparatively large diffusion coefficients are found. It will be
shown below that the MCMs developed in the present chapter are able to pick up on
these relationships and even identify more complex relationships in the data structure,
which are veiled before the human eye.

The predictive performance of the methods was analyzed and compared in terms of a
relative mean absolute error (rMAE), cf. Eq. (38), and a relative root mean squared
error (rRMSE), cf. Eq. (39), which were calculated by comparing the predictions (pred)
obtained during the leave-one-out analysis to the respective experimental data (exp):
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where N is the total number of available experimental data points for D∞ij in the reduced
database and the summation is iterated over all considered solutes i and solvents j.

4.4.4 Results and Discussion

In Fig. 27, the performance of the four studied semiempirical models, as well as that
of the three developed MCMs for the prediction of the D∞ij from the reduced database,
are compared in terms of the relative mean absolute error (rMAE) and the relative root
mean squared error (rRMSE), cf. Section 4.4.3.2.4.
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Figure 27: Relative mean absolute error (rMAE, yellow) and relative root mean
squared error (rRMSE, blue) of the predicted D∞ij with the studied semiem-
pirical models and the developed MCMs for the experimental data from the
reduced database.

4.4.4.1 Prediction of D∞ij with Semiempirical Models

Let us first compare the results of the four semiempirical models.

A similar performance of all semiempirical models in both error metrics is observed.
The rMAE is about 0.20, and below 0.25 in all cases, with the largest value (poorest
performance) found for the model of Reddy and Doraiswamy and the lowest value (best
performance) found for SEGWE. Also, the values for the rRMSE vary only slightly be-
tween the different models and range from 0.31 (Reddy-Doraiswamy) to 0.28 (SEGWE).
Although the four semiempirical models do not vary substantially in their rRMSE scores,
a continuously decreasing rRMSE with the year of publication of the respective model
can be observed. It can be speculated that this is an effect of the increasing availability
of experimental data to which these models were fitted.

It is also important to note that, at the time these works were published, the authors
presumably used the entirety of available data on D∞ij for developing their models. This
means that substantial parts of the data on which their performance is evaluated have
already been seen by the semiempirical models.

Comparing the rMAE and the rRMSE from the semiempirical models directly with the
corresponding values from the MCMs, as it is done in Fig. 27, therefore creates a bias,
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which favors the semiempirical models; the calculation of the rMAE and RMSE for the
MCMs, in contrast, is based on a strict application of the leave-one-out strategy, i.e.,
none of the predicted values was part of the training set, which is not the case for the
development of the semiempirical models. The fact that the fitting of solute-specific
model parameters (of Wilke-Chang and SEGWE) was carried out with a leave-one-
out technique does not change the above statement, as the model development was
nonetheless based on all available data at that time.

Overall, SEGWE shows the best performance of the studied semiempirical models in
both rMAE and rRMSE, and was therefore considered as benchmark against which the
MCMs developed in the present chapter are compared in the following.

4.4.4.2 Prediction of D∞ij with Matrix Completion Methods

The performance of the methods for the prediction of D∞ij developed in this chapter is
discussed in the following. These methods include the purely data-driven MCM and
the hybrid approaches based on Boosting, which is called MCM-Boosting, and the one
based on model distillation, which is called MCM-Whisky.

The rMAE and rRMSE scores of the data-driven MCM are 0.42 and 1.56, respectively,
which is much higher than those of all studied semiempirical models, cf. Fig. 27. The
data-driven MCM thereby strongly suffers from a poor prediction of D∞ij in mixtures with
the solvent 1,2-propanediol; namely the D∞ij in the mixtures (benzene + 1,2-propanediol)
and (1,3-dihydroxybenzene + 1,2-propanediol) are predicted with extremely large rel-
ative errors of 1,397% and 1,339%, respectively, which results in a large rMAE and a
particularly large rRMSE score for the data-driven MCM. As shown in Fig. 26, the expe-
rimental D∞ij for the solvent 1,2-propanediol (j = 19) are extremely small, namely about
2 orders of magnitude lower than the bulk of the data. Hence, already small absolute
deviations between prediction and experimental D∞ij lead to extremely large errors on
the relative scale, i.e., large values of rMAE and rRMSE, here. Excluding just the two
mentioned data points from the evaluation improves the score of the data-driven MCM
to 0.26 (vs 0.42 with the points included) in the rMAE and 0.42 (vs 1.56 with the points
included) in the rRMSE - still slightly worse, but in the same range as the performance
of the semiempirical methods.

An important requirement for the success of data-driven prediction methods in general,
and the introduced data-driven MCM here in particular, is the availability of training
data. One way to evaluate the data situation is comparing the number of available data
points for training the model to the number of model parameters, which, among others,
depends on the number of different components considered by the model. Therefore,
an observation ratio robs = Nobs

m+n can be assessed, as done in Ref. [10], where Nobs is
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the number of observed entries of the sparsely populated matrix and m and n are
the numbers of rows and columns of the matrix, i.e., considered solutes and solvents,
respectively.

In Ref. [10], a strong correlation of the predictive performance of MCMs for the predic-
tion of activity coefficients at infinite dilution was found with robs, which was between
4.4 and 9.2 in that study [10]. Rather high values of robs led to a significantly better
performance than rather low values. In the present study, the value of robs is 2.4, which
is substantially smaller than the lowest studied value in Ref. [10]. This indicates that the
situation regarding availability of training data is highly challenging here, in particular
for the data-driven MCM, which leaves ample room for improvements. It is noted here
that other factors besides the mere number of training data points are also important,
such as the heterogeneity in the number of available data for different components.

Such improvements can, as shown in Fig. 27, be achieved by hybridizing the data-driven
MCM with information from SEGWE: both hybrid MCMs perform significantly better
than all established semiempirical models and the data-driven MCM in both error scores
rMAE and rRMSE. Let us first discuss the results of MCM-Boosting.

The key idea of MCM-Boosting is to train the algorithm on the residuals of the SEGWE
model, and not on experimental data directly, cf. Section 4.4.3.2.2. In Fig. 28, the
residuals between the SEGWE predictions and the data from the reduced database,
cf. Eq. (37), are plotted. Here, SEGWE was applied in the purely predictive variant
with a globally fixed ϱ = 619 kg/m3 to ensure that no information on the test data point
was included in the training of MCM-Boosting. Fig. 28 basically shows the performance
of SEGWE for each individual data point from the reduced database. Large deviations
are observed, indicated by the color code in Fig. 28, in particular for the solutes water
(i = 27) and carbon dioxide (i = 39), but beyond that no apparent structure in the resid-
uals is immediately recognizable. A more detailed discussion of the mixtures for which
SEGWE gives predictions with particularly large errors is included in Appendix D.1.6.
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Figure 28: Residuals resij of the SEGWE predictions from the experimental data for
D∞ij at 298.15±1 K from the reduced database. Solutes i and solvents j are
identified by numbers, see Tables D.2 and D.3 in Appendix D. The color
code indicates the value of resij, and white cells denote missing data.

The diffusion coefficients predicted by MCM-Boosting show overall a very good agree-
ment with the literature values. The rMAE and rRMSE (cf. Fig. 27) are 0.130 and
0.184, respectively. The performance of MCM-Boosting is not just better in the aver-
aged scores: as shown in Fig. D.3 of Appendix D, the maximum prediction error found
for any mixture is lower for MCM-Boosting than for all other investigated methods.

The second hybrid model, MCM-Whisky, which uses - besides information from the
experimental training data – information from SEGWE via an informed prior, cf. Sec-
tion 4.4.3.2.3, also performs significantly better than the data-driven MCM and all
semiempirical models. The rMAE and rRMSE of MCM-Whisky are 0.143 and 0.202,
respectively, cf. Fig. 27, making the overall performance close to but slightly worse than
that of MCM-Boosting.

For an improved evaluation of the results of the hybrid MCMs, the respective predic-
tions for D∞ij are additionally shown in parity plots over the experimental data from
the reduced database in Fig. 29. For comparison, a parity plot showing the predic-
tions of the best semiempirical model, namely SEGWE with a solvent-specific fitted ϱeff

(cf. Section D.1.4), is also included in Fig. 29.



4.4 Diffusion Coefficients at Infinite Dilution 81

Figure 29: Parity plots of the predictions (pred) of D∞ij with SEGWE and both hybrid
MCMs developed in this chapter over the experimental data (exp) from the
reduced database. The solid lines indicate perfect predictions, the dashed
lines indicate relative deviations of ±25%.

The parity plots for the two hybrid MCMs show a narrow spread of the data points
around perfect predictions (solid lines), and in general only few outliers that are pre-
dicted with very large deviation; most of the predicted data points lie within the ±25%
boundaries (dashed lines). Slightly more data points are underestimated by MCM-
Whisky compared to MCM-Boosting, which is the reason for the slightly higher rMAE
and rRMSE scores. In contrast, SEGWE shows a comparatively large number of pre-
dictions outside the ±25% boundaries.

The results of MCM-Boosting (the overall best-performing MCM) are also compared
to those of SEGWE (the overall best-performing semiempirical model) in a histogram
representation in Fig. 30, which shows the number of data points that are predicted
with a certain relative deviation from the experimental data.
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Figure 30: Histogram of the number of data points N from the reduced database that
are predicted with a defined relative deviation from the respective experi-
mental data δD∞ij = (D

∞,pred
ij −D∞,exp

ij ) /D∞,exp
ij by SEGWE (red) and MCM-

Boosting (blue).

Fig. 30 underpins the performance of the hybrid MCM-Boosting: more D∞ij are predicted
with low deviation compared to the predictions by SEGWE. For instance, 116 data
points are predicted with a relative error ∣δD∞ij ∣ < 15% with MCM-Boosting, whereas
for SEGWE, this is the case for only 99 data points. The differences are even clearer
when looking at predictions with a relative error ∣δD∞ij ∣ < 5%: MCM-Boosting predicts
53 mixtures with such high accuracy, versus just 36 in the case of SEGWE.

4.4.4.3 Completed Database

As a final result, the completed matrices of D∞ij predictions using MCM-Boosting and
MCM-Whisky are provided for the 10,608 possible combinations of all 208 solutes i and
51 solvents j from the full database, as introduced in Section 4.4.2. In this case, the
MCMs have not been trained following a leave-one-out strategy, but using all data points
from the database; the same hyperparameters were thereby used as in the previously
described analysis. The complete predicted data set is provided in Ref. [83] in a machine-
readable format, namely as a .csv file, together with the learned feature vectors ui and
vj, from which the data can also be constructed. If predictions for unstudied D∞ij are
required, they can be taken from this table.
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For MCM-Boosting, the completed matrix of D∞ij predictions is visualized in Fig. 31,
together with the uncertainties of the predictions. The corresponding visualization for
MCM-Whisky is in Fig. D.4 of Appendix D.

Figure 31: Predictions of D∞ij by MCM-Boosting (left) and the uncertainties of the
predictions (right) for all solutes i and solvents j (identified by numbers,
see Table D.1 in Appendix D) from the full database. The color code
indicates the values of D∞ij .



84 4 Matrix Factorization of Thermodynamic Properties

A significant advantage of the Bayesian approach of matrix completion, which has been
followed here, is that probability distributions for all predicted D∞ij with the MCMs are
obtained. This allows the reporting of not only the predictions for D∞ij , but also the
corresponding uncertainties. That information is also provided both for MCM-Boosting
and MCM-Whisky in the .csv files in Ref. [83].

The methods presented in this chapter were applied here only to a single isotherm. The
semiempirical models, on the other hand, describe diffusion data at arbitrary temper-
atures. In principle, the studies done in this chapter could be extended to include the
influence of the temperature on D∞ij , as it was done by Damay et al. for the prediction
of activity coefficients at infinite dilution [10]. However, such an endeavour is likely to
encounter problems as the database on D∞ij is extremely narrow outside the range of
ambient temperatures [83]. To achieve substantial advances, more data are needed, and
in particular more data that cover a wider temperature range.

4.4.5 Conclusions

In the present chapter, a comprehensive database of liquid-phase diffusion coefficients at
infinite dilution D∞ij in binary mixtures at 298.15±1 K was used. The database contains
353 experimental data points for D∞ij and covers 208 solutes i and 51 solvents j. It
has been used for systematically evaluating four established semiempirical models for
predicting D∞ij , namely the methods of Wilke and Chang, Reddy and Doraiswamy, Tyn
and Calus, and SEGWE; the best performance was found for the most recent of these
models, which is SEGWE.

Furthermore, novel methods have been developed for the prediction of D∞ij based on the
machine learning concept of matrix completion. Three such matrix completion methods
(MCMs) are presented here: a purely data-driven MCM, which was trained only on the
data on the experimental D∞ij , and two hybrid MCMs that combine information from
SEGWE with the experimental data. The purely data-driven MCM suffers from the
sparsity of the available data and performs not as well as the semiempirical models.
This is different for the two hybrid MCMs, for which significant improvements in terms
of predictive accuracy compared to all semiempirical models were found.
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5 Matrix Factorization of Group
Interactions

5.1 Training on Group-Interaction Parameters:
UNIFAC 1.1

5.1.1 Introduction

Methods for predicting thermodynamic properties are of paramount importance in chem-
ical engineering, simply because there are too many relevant substances to study them
all in experiments. The scale of this problem soars when going from pure components to
mixtures, for simple combinatorial reasons. Also methodologically, predicting properties
of mixtures is a demanding task. It can be tackled basically from two sides: on the one
hand, one can look for similarities between substances (which is basically a data-driven
approach), on the other hand, one can try to base predictions on physical theory.

The most successful methods in the field combine these two aspects. Among these, meth-
ods that rely on the concept of group-contributions (GC) play an important role. They
are based on the idea that components can be characterized by the structural groups they
contain and take advantage of the fact that the number of relevant structural groups is
many orders of magnitude smaller than the number of relevant components. As a con-
sequence, GC methods can be used for describing a very large number of components
based on a relatively small number of group-specific parameters: any component that
can be built from groups, for which parameters are available, can be modeled.

Basically all thermodynamic models of mixtures rely on describing pair interactions.
Component-specific models, like UNIQUAC [116, 117] or NRTL [118], thereby describe
the pairwise interactions between components using component-specific pair-interaction
parameters, which need to be fitted to experimental data. Usually, data for binary
mixtures are used for this purpose, which means that for modeling multi-component
mixtures, binary mixture data are needed for all binary subsystems of the studied mix-
ture. Unfortunately, due to the combinatorial problem, even data for binary mixtures
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are often missing, which strongly limits the applicability of the component-specific mod-
els.

GC methods circumvent this problem. By dividing components into structural groups,
GC methods only rely on group-specific pair-interaction parameters, namely group-
interaction parameters, which are fitted to experimental mixture data, whereby the
amount of required training data compared to component-specific models is significantly
reduced.

One of the most successful thermodynamic group-contribution method for mixtures is
UNIFAC, which was first introduced in 1975 [41] and has been significantly extended
and refined since then [12, 119–123]. Also, several tailored versions of UNIFAC fitted
for specific applications are available [124–126]. And there is also a commercial version
of UNIFAC, provided within the UNIFAC-Consortium, which is based on the same
model equations as the public versions of UNIFAC, but whose parameter tables have
been revised and extended on a regular basis since 1996 [127] using both public data
and non-public data provided or generated within the consortium. The scope of the
commercial version is therefore larger than that of the public versions of UNIFAC. Since
the commercial version is not freely accessible, the focus is placed here on the most
recent public version of UNIFAC [12], which is referred to simply as UNIFAC in the
following for brevity. The author has also access to the commercial version of UNIFAC,
called UNIFAC-TUC in the following, but this version is used for comparisons only.

UNIFAC was derived from the component-specific lattice model UNIQUAC [116, 117]
and describes the molar excess Gibbs energy gE of a mixture as a function of temperature
T and composition x. Both energetic and entropic contributions to gE are considered
in the model. All versions of UNIFAC use geometric parameters for the individual
structural groups, which describe their volume and surface and determine the entropic
contribution. Furthermore, parameters describing the pairwise energetic interactions
between the different structural groups in the mixture are used. These group-interaction
parameters play the central role in the model.

From the excess Gibbs energy gE, many properties that are essential in chemical en-
gineering can be determined, most importantly the activity coefficients γi of the com-
ponents i in the mixture, based on which phase equilibria can be predicted [41]. Over
the years, many structural groups have been included in the UNIFAC parameter tables,
so that a huge number of components of practical interest can be modeled. UNIFAC
presently considers 54 main groups, which are further divided into 113 subgroups [12].
The difference between main groups and subgroups is that each subgroup k has in-
dividual geometric parameters, namely the group volume Rk and group surface area
Qk [128], while all subgroups that belong to the same main group m share the same
group-interaction parameters. There are two distinct group-interaction parameters for
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each binary combination of different main groups (m, n); they are generally labeled as
amn and anm, and have, as a result of the fit, usually different values, i.e., amn ≠ anm.

While Qk and Rk are reported for 113 individual subgroups, there are still significant
gaps regarding the group-interaction parameters amn and anm between the 54 main
groups: there are 1,431 distinct binary combinations of unlike main groups (m ≠ n), for
which only for 635 (44%) group-interaction parameters have been reported yet. Fig. 32
schematically shows the publicly available set of group-interaction parameters between
the first 50 main groups of UNIFAC [12]. The first 50 main groups were chosen here
since for all of these, group-interaction parameters with at least five other main groups
are publicly available to date. This threshold was chosen since, as described in detail
below, the missing group-interaction parameters were predicted based on information
from the available parameters only. For the sake of completeness, Fig. E.1 in Appendix E
shows for which of the group combinations parameters are available in the commercial
UNIFAC-TUC.

Figure 32: Matrix representing the availability of group-interaction parameters of
UNIFAC [12] up to main group 50. Blue: parameters available.

Hence, the availability of the parameters describing the individual groups Rk and Qk

generally poses no problem, whereas missing group-interaction parameters amn and anm

significantly limit the applicability of all versions of UNIFAC. The main reason why these
gaps still persist, after so many years of work on the development of UNIFAC, is that
the database for their determination is simply too narrow. There are structural groups
that occur in many molecules, such as the methyl group or the hydroxyl group, and
there are less common groups. It is particularly these less common groups for which the
parameters are lacking. This is not to say that these groups do not occur in interesting
components, but there are simply less data on binary mixtures containing components
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with these groups. It is evident that this causes problems in the parameterization of
UNIFAC.

A further drawback is that fitting group-interaction parameters is still not a routine,
but rather artwork, in particular regarding the selection of the considered data sets,
including their initial evaluation and consistency checking, and regarding the selection
of a suitable objective function to be minimized during the fitting procedure. For a more
detailed description of the fitting procedure of UNIFAC group-interaction parameters,
it is referred to the literature[41, 129–131].

In this chapter, a method for the prediction of the complete set of the group-interaction
parameters of group-contribution methods based on an existing parameter set is pre-
sented, without requiring new experimental data. The basic idea is to consider the
group-interaction parameters as entries of a squared matrix (which is only partially
filled, as several parameters are missing), and to use a matrix completion method
(MCM) [14, 132] to estimate the missing entries. To demonstrate the applicability
of this approach, it is applied to UNIFAC [12], for which the complete set of the group-
interaction parameters for the first 50 main groups is predicted. Fig. E.2 in Appendix E
gives an overview of this approach.

Following an idea developed in a recent paper [84], in which an MCM has been applied
for estimating the component-specific pair-interaction parameters of UNIQUAC, the
asymmetric group-interaction parameters (amn ≠ anm) are not used directly, but rather
the symmetric group-interaction energies Umn = Unm. The parameters of the two types
(a and U) are connected by:

amn = Umn −Unn

anm = Unm −Umm

(40)

Hence, according to Eq. (40), amn and anm are not independent but correlated.1 Despite
this, for parameterizing UNIFAC, amn and anm are usually considered to be uncorre-
lated. The fitting then results in a parameter set that does not comply with Eq. (40),
cf. Ref. [84]. The approach proposed in this chapter overcomes this inconsistency.

In a series of recent papers, the capabilities of MCMs for predicting different types of
thermodynamic data of mixtures using various component-based approaches have been
demonstrated [1, 8–10, 82, 84]. However, these component-based approaches are in-
herently limited regarding the number of components that are covered; the respective
1For an N -component mixture, there are N2

−N asymmetric pair-interaction parameters of the a-type
(the diagonal remains empty or is filled with zeros), while there are (N2

−N)/2 +N symmetric pair-
interaction energies of the U -type (the diagonal is occupied by the pure-component energies, but only
one of the triangular matrices has to be filled due to the symmetry). It is always possible to determine
the a-parameters from the U -parameters, but not vice versa.
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models complete a matrix spanned by the components that are part of the mixtures
in the training set. This is not the case for the group-contribution methods, which are
considered in the present chapter: as the groups form building blocks from which com-
ponents can be created flexibly, the scope of the group-contribution methods for mixture
properties is inherently extremely large – and it can now be extended substantially by
using an MCM to complete the set of group-interaction parameters.

The approach proposed here should also be applicable to any other version of UNIFAC
and to other group-contribution models for predicting thermodynamic properties of
mixtures that are based on pair interactions. One advantage of the approach is that it
can be put into practice, for example, by being integrated into existing process simulators
in a very simple and straightforward manner: the existing UNIFAC parameter set of
the model implementation only needs to be replaced by the predicted one provided by
the proposed approach. For other machine-learning approaches, like artificial neural
networks operating on molecular graphs [48, 133] or SMILES representations of the
components [49], this might be more complicated in practice.

5.1.2 Method

The applicability of using MCMs for the prediction of group-interaction parameters
of thermodynamic group-contribution methods is demonstrated by applying it to UNI-
FAC [12]. The resulting new version of UNIFAC (in which the predicted new parameters
are used) is called UNIFAC-MCM in the following.

The MCM that was used in the present chapter is based on Bayesian matrix factorization
(cf. Chapter 2) and similar to the ones used in Refs. [1, 8, 9, 82, 84]. In principle, the
MCM could have been applied directly to the matrix of the a-type parameters, i.e., the
matrix containing the group-interaction parameters amn and anm. However, this option
was discarded for the following reasons: firstly, the available values for amn and anm are
inconsistent with Eq. (40). Also, fitting amn and anm to mixture data can give different
combinations of these parameters yielding basically equivalent results for the physical
properties to which they were fitted [134]. This hinders an interpretation of these
parameters and makes them poor candidates for applying an MCM. These problems
were overcome by working with the group-interaction energies Umn as explained below.
Furthermore, in applying the MCM to the a matrix, the target function would have
been to achieve an optimal representation of the a-type parameters. However, with
UNIFAC-MCM, an optimal description of activity coefficients is rather of interest than
a representation of model parameters. UNIFAC-MCM was therefore trained on pseudo-
data for activity coefficients as described in the next section.
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5.1.2.1 Training Data

As training data for UNIFAC-MCM, pseudo-data have been generated for the logarith-
mic activity coefficients ln γmn in hypothetical binary mixtures of the "pure main groups"
of UNIFAC (m and n) at different temperatures and group mole fractions. Here, ln γmn

represents the logarithmic activity coefficient of m in the binary mixture with n. For
any given temperature and mole fraction, there are two distinct values ln γmn and ln γnm,
respectively, which can be represented in a matrix. The diagonal elements of this matrix
are occupied with ones by definition and were not considered here. For simplicity, ln γmn

will simply be used in the following to refer to that matrix, which includes the values
from both triangular matrices, ln γmn and ln γnm.

Specifically, ln γmn have been calculated for all binary combinations of the first 50 main
groups of UNIFAC for which the required parameters were available, which holds for 619
combinations (or 50.5% of all possible binary combinations of these main groups). The
grid was spanned by T ∈ {250, 300, 350, 400, 450} K for the temperature, which covers the
temperature of most of the available experimental data, and xm ∈ {0.01,0.2,0.4,0.6,0.8,
0.99} mol/mol for the composition.

For generating the pseudo-data for ln γmn, the UNIFAC equations (cf. Eqs. (E.1) - (E.11)
in Appendix E) were used in the common manner for hypothetical components that were
composed of a single main group in all cases. For main groups with several subgroups
k (with individual geometric parameters Qk and Rk), the values of Qk and Rk for one
of the respective subgroups were selected, for details see Table E.1 in Appendix E. In
principle, UNIFAC-MCM could also be trained on data for the residual part of the
activity coefficients alone, which describes the energetic interactions (cf. Eq. (E.7) in
Appendix E), because the interaction parameters only occur in this term. Also, this
option has been tested, and the results were found to be very similar to those reported
here, as expected.

5.1.2.2 Matrix Factorization

At its heart, UNIFAC-MCM factorizes the matrix of group-interaction energies Umn

between UNIFAC main groups m and n. The unlike Umn (m ≠ n) are modeled as the
sum of two dot products:

Umn = Unm = θm ⋅βn + θn ⋅βm (41)

where θm and βm as well as θn and βn are vectors of length K containing a priori
unknown (latent) features of the UNIFAC main groups m and n, respectively. θm,
βm, θn, and βn are parameters of UNIFAC-MCM, while K is a hyperparameter that
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controls the number of features considered per main group and thereby determines the
flexibility of the model. Based on results of Ref. [84], K was set to K = 3 here. The
form of Eq. (41) was chosen to ensure that all resulting group-interaction energies are
symmetric, as required by the lattice model. Besides the unlike interaction energies, also
like group-interaction energies Umm are needed, cf. Eq. (40). They were not included in
the factorization (Eq. (41)) but determined directly in the fit.

For training UNIFAC-MCM on the pseudo-data for ln γmn, cf. Section "Training Data",
the matrix factorization of the group-interaction energies Umn, cf. Eq. (41), as well as
Eq. (40), which relates the Umn to the group-interaction parameters amn, were embedded
in the UNIFAC equations, cf. Eqs. (E.1) - (E.11) in Appendix E. This establishes a
generative probabilistic model for the ln γmn. The training data were hence modeled by:

ln γmn(T , xm) = UNIFAC(T , xm, θm, θn, βm, βn, Umm, Unn) + εmn (42)

where εmn is the deviation between the modeled ln γmn and the training data. The
model parameters θm, θn, βm, βn, Umm, and Unn were fitted in a Bayesian framework
to minimize these deviations. For more details on the implementation of the model and
the training procedure, it is referred to Appendix E.

5.1.2.3 Prediction of UNIFAC Group-Interaction Parameters

UNIFAC-MCM only contains parameters for the "pure" main groups, namely θm, βm,
θn, βn, Umm, and Unn, which were fitted to the "group-mixture" data, namely the
pseudo-data for ln γmn, during the training of the model as described above. Based
on the learned parameters, the group-interaction energies Umn of all combinations of
the considered main groups can be calculated based on Eq. (41), from which, in turn,
the commonly used group-interaction parameters of UNIFAC amn and anm can be pre-
dicted from Eq. (40). Hence, a complete parameterization of UNIFAC regarding the
first 50 main groups is obtained by this procedure, which can be used for predicting
temperature- and concentration-dependent activity coefficients ln γi of all components i

in any (binary or multi-component) mixture, if all components that make up the mixture
can be segmented using the first 50 main groups of UNIFAC. The predicted complete
set of amn (and of Umn) are reported as a .csv file in Ref. [84]. Note that this set of amn

is consistent in terms of fulfilling Eq. (40) as demanded by the lattice theory, which is
in contrast to the previously available UNIFAC parameter tables that were obtained by
fitting amn individually.

The latter also explains why a direct matrix factorization of the reported amn is not
expedient, and instead the pseudo-data for ln γmn were used for training UNIFAC-MCM;
the reported amn matrix simply lacks structure that could be exploited by the MCM.
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5.1.3 Results and Discussion

In the following, the quality of UNIFAC-MCM is evaluated by considering predictions
of vapor-liquid equilibria (VLE), which is probably the most important field in which
activity coefficients are applied. As basis for this evaluation, all VLE data sets for
binary mixtures from the Dortmund Data Bank (DDB) [135–137] that comply with the
following conditions have been used:

• both components of the mixture can be built from the first 50 main groups of
UNIFAC [12];

• the data set contains information on temperature, pressure, and composition of
the liquid and vapor phase;

• the data set is labeled as "thermodynamically consistent" in the DDB, i.e., it fulfills
area and point-to-point tests [138–140];

• Antoine parameters for calculating the pure-component vapor pressure at the tem-
perature of the VLE are available in the DDB for both components;

• the pressure is not higher than 10 bar to justify the assumption of an ideal gas
phase.

In the present version of the DDB, such VLE data are available for 2,246 distinct binary
systems. This complete set of binary systems will be called "complete horizon" in the
following.

The VLE were predicted using extended Raoult’s law assuming an ideal vapor phase
and a pressure independence of the chemical potentials in the liquid phase:

ps
i(T ) xi γi(T , xi) = p yi (43)

For the calculations, the mole fractions xi in the liquid phase as well as either the pressure
p (for isobaric data sets) or the temperature T (for isothermal data sets) were specified,
the pure component vapor pressure ps

i was calculated with the Antoine equation using
the parameters from the DDB, and the activity coefficients γi of the components in the
liquid phase were predicted with UNIFAC-MCM. The mole fractions yi in the vapor
phase and the pressure p (for isothermal data sets) or the temperature T (for isobaric
data sets) were then calculated from the system of equations resulting from applying
Eq. (43) to both components. The results were compared to the experimental data from
the DDB, with a focus on the gas phase mole fractions of the low-boiling component.

For comparison, the same calculations were also carried out with UNIFAC [12]; albeit,
this is only possible for a subset of 2,068 systems from the complete horizon ("UNIFAC
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horizon"). At a first glance, it may look disappointing that by using UNIFAC-MCM,
with its substantially enlarged parameter table, only 178 additional systems for which
data are available can be modeled. However, this is as expected: the lack of data on these
systems has hindered the extension of the UNIFAC parameter table so far. Furthermore,
also the commercial version UNIFAC-TUC has been used for comparison, which enabled
predictions of VLE for 2,237 of the studied systems ("UNIFAC-TUC horizon"). The
results from UNIFAC-TUC have been included in the comparison (even though it is not
publicly available) for two reasons: firstly, it is the best available benchmark method
and, secondly, it allows to evaluate the predictive performance UNIFAC-MCM also on
systems that can not be modeled by UNIFAC, which is the basis of UNIFAC-MCM.
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Figure 33: Mean Absolute Percentage Error (MAPE) of the predicted vapor-phase
mole fractions of the low-boiling component in VLE with UNIFAC-MCM
for the "complete horizon" (2,246 systems, left) and comparison to the
commercial UNIFAC-TUC for the "UNIFAC-TUC horizon" (2,237 systems,
middle), and to the public UNIFAC [12] for the "UNIFAC horizon" (2,068
systems, right). Error bars denote standard errors of the means.

The results are shown in Fig. 33, where the horizons in the three panels differ: in the left
panel, it is the complete horizon, in the middle panel, it is the UNIFAC-TUC horizon,
and in the right one, it is the smallest horizon, that of UNIFAC [12].

The results obtained with UNIFAC-MCM on the complete horizon are shown in Fig. 33
(left), where the Mean Absolute Percentage Error (MAPE) in yi of the low-boiling
component of the predictions with UNIFAC-MCM averaged over all 2,246 systems is
plotted, which was calculated by comparing the UNIFAC-MCM predictions system-wise
to the respective experimental data from the DDB. As the results indicate, UNIFAC-
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MCM predicts the vapor-phase mole fractions for all 2,246 studied binary systems with
an average error of 5.3%, which is not much larger than the typical uncertainty of
experimental data for vapor-phase mole fractions. The MAPE of UNIFAC-MCM in
the pressure p, averaged over all isothermal data sets from the complete horizon, is
5.0±0.2%; the MAPE in the absolute temperature T in K, averaged over all isobaric
data sets from the complete horizon, is 0.48±0.02%.

In the middle panel of Fig. 33, the performance of MCM-UNIFAC is compared to
that of UNIFAC-TUC, and in the right panel, it is compared to UNIFAC [12] as well
as to UNIFAC-TUC. The highest accuracy among the three models is found for the
commercial UNIFAC-TUC (MAPE of 4.6% on the UNIFAC-TUC horizon, cf. middle
panel, and 4.2% on the UNIFAC horizon, cf. right panel), which is not surprising since
a lot of effort has been put into refining its parameterization during the last decades.
However, the scores of UNIFAC-MCM (MAPE of 5.3% on the UNIFAC-TUC horizon,
cf. middle panel, and 4.7% on the UNIFAC horizon, cf. right panel) are only slightly
worse than that of UNIFAC-TUC.

On the UNIFAC horizon, cf. Fig. 33 (right), the scores of UNIFAC-MCM (MAPE of
4.7%) and of the public UNIFAC (MAPE of 4.5%) are very similar. This demonstrates
two things: first, that the additional flexibility of the UNIFAC model achieved by the
inconsistent individual fitting of group-interaction parameters amn and anm compared
to the sole physical consideration of group-interaction energies Umn (including the like
group-interaction energies Umm and Unn) is unnecessary; for the complete matrix of the
considered 50 main groups of UNIFAC, there are 2,450 distinct group-interaction pa-
rameters amn and anm, but only 1,275 distinct group-interaction energies Umn (including
50 like energies Umm). And second, the MCM, which is at the heart of UNIFAC-MCM,
is able to capture the structure within the unlike group-interaction energies using six
latent parameters for each main group.

It is interesting to also study the performance of UNIFAC-MCM and UNIFAC-TUC only
for those systems that cannot be modeled with UNIFAC [12]; this gives an impression
of the performance of UNIFAC-MCM when applied for true predictions, namely for
systems containing combinations of main groups for which no interaction parameters of
UNIFAC are available, as it is unlikely that data on any of these systems were used in
the development of UNIFAC [12], on which UNIFAC-MCM is based. In contrast, it may
be assumed that basically all these additional VLE data were used for the development
of UNIFAC-TUC, so that for UNIFAC-TUC, such a comparison shows basically only
if the correlation of these additional data was successful. The respective results are
presented in Fig. 34. Most of the systems within the complete horizon can be modeled
not only with UNIFAC-MCM but also with UNIFAC-TUC. The few systems for which
this is not the case, are treated separately in Fig. 34 (left panel).
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Figure 34: Mean Absolute Percentage Error (MAPE) of the predicted mole fraction
of the low-boiling component in the vapor phase in VLE with UNIFAC-
MCM for the systems that can only be modeled by UNIFAC-MCM (left,
"MCM only", 9 systems), and those systems that can also be predicted
with UNIFAC-TUC but not with UNIFAC (right, "UNIFAC-TUC only",
169 systems). Error bars denote standard errors of the means.

The first message from Fig. 34 is that the deviations increase compared to the ones
shown in Fig. 33, which holds both for UNIFAC-TUC and UNIFAC-MCM. Averaged
over all systems that can be modeled by both models (but not by UNIFAC), cf. Fig. 34
(right), the MAPE for UNIFAC-TUC is now 9.0%, that for UNIFAC-MCM is 12.7%.
However, considering that the results from Fig. 34 obtained with UNIFAC-MCM are
bold predictions, while those from UNIFAC-TUC are basically only correlations, the
difference between both methods is unexpectedly small.

Comparing the results from Fig. 34 with those from Fig. 33 is most informative when
referring to Fig. 33 (right), where the UNIFAC horizon is shown, because it then gives
an impression on the changes when carrying out the comparison for complementary data
sets: the UNIFAC horizon, for which the results are shown in Fig. 33 (right), covers all
systems that can also be modeled by the public UNIFAC; Fig. 34, on the other hand,
shows the results for all remaining systems from the data set, i.e., for the ones that
cannot be modeled by the public UNIFAC.

Carrying out this comparison for UNIFAC-TUC (for which the results are correlations
in both cases) clearly shows that the systems studied in Fig. 34 are more difficult to
describe than those studied in Fig. 33 (right). The details of these additional difficulties
are not discussed here, which can be related to different factors, including spotty and
uncertain data (cf. also Fig. E.3 in Appendix E) as well as to the fact that many of
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the respective systems contain components with special properties (highly halogenated
or reactive components), which substantially complicates the accurate modeling with
UNIFAC.

Hence, the results for UNIFAC-TUC indicate that most of the increase of the MAPE
scores observed also for UNIFAC-MCM when going from Fig. 33 (right) to Fig. 34 is
simply due to the increased difficulties in describing the data considered in Fig. 34, and,
thus, cannot be attributed to a lack of predictive power.

It is noted here that the scope of the developed UNIFAC-MCM is much larger than can
be demonstrated here, simply due to the fact that for many of the group-interaction
parameters that can now be predicted, no experimental data for testing are available,
cf. Fig. E.3 in Appendix E. An alternative representation of the results of UNIFAC-MCM
in the form of histograms is given in Fig. E.4 in Appendix E.

Fig. 35 shows some typical examples for the prediction of vapor-liquid phase diagrams
with UNIFAC-MCM and compares the results to those obtaiend with UNIFAC-TUC.
Only systems that cannot be modeled by the public UNIFAC version were therefore
chosen, such that the results of UNIFAC-MCM are true predictions. This is, again,
not the case for UNIFAC-TUC, as the data shown in Fig. 35 were available for the
development of the method. In all cases, UNIFAC-MCM represents the different types
of phase behavior well.
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Figure 35: Prediction of vapor-liquid phase diagrams for binary systems with UNIFAC-
MCM (solid lines) and UNIFAC-TUC (dashed lines) and comparison to
experimental data from the DDB (symbols). For each system, the MAPE
in the predicted vapor-phase mole fraction of the low-boiling component is
given for both models. All shown systems can not be predicted with the
public UNIFAC version. Blue: dew point curves. Red: bubble point curves.

Fig. 36 shows two further examples for the prediction of VLE phase diagrams with
UNIFAC-MCM. The chosen systems can neither be modeled by the public UNIFAC,
nor with the commercial UNIFAC-TUC due to missing group-interaction parameters
in both models. An almost perfect agreement of the predictions with UNIFAC-MCM
and the experimental data is observed, but it is also noted that systems with poorer
agreement are found (cf. Fig. E.4 in Appendix E).
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Figure 36: Prediction of vapor-liquid phase diagrams for binary systems with UNIFAC-
MCM (lines) and comparison to experimental data from the DDB (sym-
bols). For both system, the MAPE in the predicted vapor-phase mole
fraction of the low-boiling component is given. Both systems can neither
be predicted with the public UNIFAC version, nor with the commercial
UNIFAC-TUC. Blue: dew point curves. Red: bubble point curves.

UNIFAC-MCM should in general be used in cases in which required group-interaction
parameters of UNIFAC are missing, while in cases in which all parameters are available,
their use is recommended. The reason is that UNIFAC-MCM is basically a derivate of
UNIFAC, i.e., based on the available parameter tables, and it would only be by chance
that it would be better than its basis for certain systems. However, it is emphasized
that the differences between UNIFAC and UNIFAC-MCM are not expected to be large,
as shown in Fig. 33.

5.1.4 Conclusions

Group-contribution methods for the prediction of thermophysical properties are highly
important in chemical engineering. One of the most successful of these methods is UNI-
FAC. However, the applicability of UNIFAC is still substantially hampered by missing
group-interaction parameters, which is in particular due to the lack of suitable mixture
data for fitting the parameters. As a consequence, there are still significant gaps in the
matrix in which these UNIFAC parameters are usually represented.

In the present chapter, an approach to complete the group-interaction parameter set of
UNIFAC using a matrix completion method (MCM) from machine learning is presented.
This approach, termed UNIFAC-MCM, was trained in a purely data-based manner
solely on pseudo-data generated with UNIFAC and approximately doubles the number
of available group-interaction parameters.
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The performance of UNIFAC-MCM for the prediction of vapor-liquid equilibria (VLE)
of 2,246 binary systems from the Dortmund Data Bank has been evaluated. This set
can be divided into data that can be predicted with the public UNIFAC (2,068 systems)
and data for which this is not the case, but which can be predicted with the developed
UNIFAC-MCM (169 systems). The latter set is comparatively small, as the missing
groups in UNIFAC are rather uncommon ones, i.e., only present in components for
which only few data have been measured.

Where a direct comparison is possible, UNIFAC and UNIFAC-MCM show a similar
performance. This alone is astonishing since UNIFAC-MCM is based only on consistent
group-interaction energies, whereas in UNIFAC the number of the parameters to describe
the pairwise interactions has almost been doubled, simply to increase the flexibility,
which is, however, not well founded in the physical lattice theory from which UNIFAC
was derived. For the systems for which UNIFAC can not be applied, the performance
of UNIFAC-MCM is poorer but still acceptable, especially given the fact the this set
contains basically only demanding systems, as also the commercial version UNIFAC-
TUC, which was used for comparison here, shows significantly larger error scores.

This chapter has shown that working with consistent group-interaction energies is not
only a feasible alternative to the common procedure of fitting UNIFAC parameters,
but also a highly attractive one: a similar quality is obtained by a significantly smaller
(approx. 50%) number of parameters, which promises a higher predictive performance
and could be useful also for the fitting of new UNIFAC parameters in the future.
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5.2 End-to-End Training on Thermodynamic
Properties

5.2.1 UNIFAC 2.0

5.2.1.1 Introduction

Understanding the thermodynamic properties of mixtures is indispensable in chemical
engineering and various related disciplines. However, the vast combinatorial diversity
of mixtures makes it impossible to study each relevant mixture experimentally, neces-
sitating reliable prediction methods. Group-contribution (GC) methods address this
challenge by deconstructing components into structural groups, significantly reducing
the number of parameters since the number of structural groups is much smaller than
those of individual components. These methods rely on modeling pair interactions be-
tween these structural groups to describe mixture behavior. The effectiveness of GC
methods hinges on selecting suitable groups and accurately determining their inter-
action parameters, both of which depend crucially on the database used for method
development and parameterization.

Among GC methods, UNIFAC stands out as the most sophisticated and widely adopted
approach for predicting activity coefficients in liquid mixtures. Since its introduction
in 1975 [41], UNIFAC has undergone continuous refinement and improvement [12, 119–
123], becoming integral to industrial process simulations. Available in both public [12]
and commercial [141] formats, UNIFAC supports diverse applications, including variants
like UNIFAC LLE [124] for predicting liquid-liquid equilibria. All UNIFAC variants rely
on the same equations but differ in the number and type of groups considered and their
parameterization. The process of finding suitable UNIFAC parameters was, in the past,
sequential and based on a stepwise extension whenever data became available. This
tedious process makes it very difficult to modify decisions taken at early steps.

This chapter addresses the challenges of updating and improving UNIFAC by leveraging
modern computational techniques, aiming to enhance prediction accuracy and expand
its applicability across a broader range of components and mixtures.

Throughout this chapter, the latest published version of UNIFAC is referenced. It was
trained on a broad data basis focusing on vapor-liquid equilibrium data to develop
a widely applicable model, not one for some specific purpose [12]. It is astonishing
that, despite the importance of UNIFAC, this version is about 20 years old. The leading
developers of UNIFAC have updated the method since then, but they have not disclosed
these updates – they are only available for members of the UNIFAC-Consortium. One
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might ask why no one else has updated this important method since then. The answer
to this question is undoubtedly related to the considerable effort required to do this
when the conventional strategy is used. Another issue is the accessibility of suitable
data. For simplicity, the reference version of UNIFAC [12] will be labeled as UNIFAC
1.0 here.

UNIFAC describes the molar excess Gibbs energy, gE, of a mixture as a function of
temperature, T , and composition. From gE, the activity coefficients of the components i,
γi, in the mixture are obtained. UNIFAC contains group-specific parameters, namely,
a size parameter (Rk) and a surface parameter (Qk), as well as binary pair-interaction
parameters (there are two for each group combination amn ≠ anm, which will be often
referred to simply as amn). UNIFAC 1.0 considers 54 main groups, subdivided into 113
subgroups [12].

Applying UNIFAC 1.0 to a given mixture requires the following: i) all components of
the mixture must be decomposable into the 113 subgroups, ii) the parameters Rk and
Qk must be available for each relevant subgroup k, and iii) the pair-interaction param-
eters amn must be available for each binary combination of the relevant main groups
m and n (all subgroups of a given main group share the same interaction parameters).
The group parameters Rk and Qk are available for all 113 groups [38], but interaction
parameters amn are missing for many pairs of groups. Specifically, numbers for the
interaction parameters are only available for 44% of all pairs of groups; Fig. F.1 in Ap-
pendix F illustrates this. The missing pair-interaction parameters, in some cases due to
the challenging fitting process and in other cases due to the lack of experimental data
for direct fitting, severely hampers the applicability of UNIFAC 1.0 (a single missing
relevant parameter prevents the application of the model).

In this chapter, a new way of determining the interaction parameters of GC methods
based on machine learning is introduced. The pair-interaction parameters can be treated
as elements of a square matrix with dimensions 54 × 54, where the size corresponds
to the number of structural groups. Since experimental data are only available for a
fraction of the pair-interaction parameters, many entries of this matrix cannot be fitted
directly, resulting in a matrix completion problem that can, in general, be solved by
matrix completion methods (MCMs) [4, 14, 61]. As numbers for all entries are found,
the problem of missing parameters does not exist anymore. In the MCM, so-called
group features are determined for all groups from a fit to experimental data on activity
coefficients. The entire data set is considered during the fit, and a well-defined learning
algorithm is applied. This method replaces the sequential, intuitively guided procedure
previously used to determine pair-interaction parameters. As the number of features
to be determined scales linearly with the number of main groups NMG (O(NMG)), it
is much lower than the number of interaction parameters (O(N2

MG)). Consequently,
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the parameterization of the MCM is significantly more robust than a direct fit of the
interaction parameters to the experimental data.

From the features of any two groups m and n of interest, the entries of the interac-
tion parameter matrix amn are found by a simple matrix multiplication, resulting in
a complete set of interaction parameters, thus facilitating the prediction of the activ-
ity coefficients for any binary mixture given its structural group composition at any
temperature and concentration.

The result is UNIFAC 2.0, a hybrid model consisting of the framework of the physical
UNIFAC model, in which an MCM from machine learning is embedded. While the
MCM used for predicting missing interaction parameters from group-specific features is
rather simple, UNIFAC 2.0 fully retains the non-linear UNIFAC equations, allowing it
to also describe complex interactions between structural groups.

MCMs have already been employed for directly predicting thermodynamic properties
of binary mixtures [8–10, 82, 83]. It has also been shown that MCMs are suitable for
predicting pair-interaction parameters of components [84] and structural groups using
synthetic training data (cf. Chapter 5.1). The synthetic training data in Chapter 5.1
were derived from the existing parameter tables of UNIFAC 1.0, providing a practical
starting point. However, the limited prediction accuracy of this approach underscores
the need for a more comprehensive approach. In this chapter, the first application of
MCMs to the development of GC methods for predicting activity coefficients with direct
end-to-end training on several hundred thousand experimental data points is presented.

5.2.1.2 Development of UNIFAC 2.0

5.2.1.2.1 General Framework

Fig. 37 illustrates UNIFAC 2.0 with end-to-end training of MCM features, which is
compared to UNIFAC 1.0 with sequential parameter fitting. Both UNIFAC variants
are based on the same structural groups and physical model equations. UNIFAC 2.0
was trained on experimental logarithmic activity coefficients (ln γi) in binary mixtures
derived from vapor-liquid equilibrium data for binary mixtures, cf. Section "Data" for
details.
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Figure 37: Comparison of UNIFAC 1.0 and UNIFAC 2.0. UNIFAC 1.0 relies on se-
quential parameter fitting guided by intuition, whereas UNIFAC 2.0 inte-
grates a matrix completion method (MCM) for predicting pair-interaction
parameters into the UNIFAC framework. UNIFAC 2.0 is trained end-to-
end on experimental logarithmic activity coefficients (ln γi) derived from
binary vapor-liquid equilibrium (VLE) data. After training, the completed
pair-interaction parameter matrix facilitates accurate predictions of phase
diagrams for a wide range of binary or multi-component mixtures.

The MCM can only work if the available entries of the matrix are correlated. The
MCM learns these correlations and represents them by the features. This enables the
prediction of missing matrix entries through learned features. Each pair-interaction
parameter amn is thereby modeled as follows:

amn = θm ⋅βn (44)

Here, θm and βn are vectors of length K, with K representing the latent dimension,
a hyperparameter that was determined in preliminary studies and set to K = 8. The
feature vectors θm and βn are an abstract characterization of the structural groups
determining their interactions with other groups.

A Bayesian approach is applied to train the model, treating each logarithmic activity
coefficient ln γi, each feature, and each interaction parameter amn as a random variable
following a probability distribution, detailed further in the Section "Probabilistic Model".
From the model training, a probability density is obtained for each amn, the mean of
which is used to obtain the scalar value for each parameter. These scalar values are
then used in all subsequent evaluations. The completed set of interaction parameters
amn, derived from training on all considered binary data, and the subgroup-specific size
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parameters Rk and Qk for using UNIFAC 2.0 are provided freely in Ref. [54]. The size
parameters are identical to those of the published UNIFAC 1.0 version.

The relevance of UNIFAC 2.0 becomes apparent when analyzing the applicability of UNI-
FAC 1.0 and 2.0 considering an example: the Dortmund data bank (DDB), which is the
most extensive database for thermodynamic properties, presently lists 39,587 unique
components that can be broken down into the published UNIFAC subgroups, which
translates into more than 783 million possible binary mixtures. Of these binary mixtures,
UNIFAC 1.0 is limited to predicting only 58% due to missing pair-interaction parame-
ters, whereas UNIFAC 2.0 can be applied to all these mixtures. For multi-component
mixtures, the fraction of mixtures that can only be predicted with UNIFAC 2.0 increases
dramatically with an increasing number of components, as a mixture drops out if only
a single parameter (pair) is missing.

Besides the hybrid model described above, a variant that is based on symmetrical pair-
interaction energies Umn = Unm between main groups instead of the asymmetric param-
eters amn was developed and tested. The symmetric model has fewer parameters and
performs almost as well as the asymmetric model. The asymmetric model is reported on
here, as it is the standard way to use UNIFAC, and the results can be implemented and
used in a very simple manner. Details on the symmetric model are given in Appendix F.
For a short background discussion of the two variants applied to component-wise pair
interactions, see Ref. [84].

5.2.1.2.2 Probabilistic Model

The proposed probabilistic model integrates observations (ln γi) and the latent variables
(LVs) that characterize UNIFAC main groups (θm, βn) within a Bayesian framework,
cf. Chapter 2. All ln γi and LVs are modeled as independent random variables. A
standard normal distribution, i.e., a normal distribution with the mean µ = 0 and the
standard deviation σ = 1, is used as prior for each LV. The likelihood of observing ln γi,
given the LVs, follows a Cauchy distribution centered around the predicted activity
coefficients ln γUNIFAC 2.0

i with scale parameter λ:

p(ln γi ∣θm, βn) = Cauchy(ln γUNIFAC 2.0
i , λ) (45)

where ln γUNIFAC 2.0
i is determined via the standard UNIFAC equations [12] using the

predicted interaction parameters amn:

ln γUNIFAC 2.0
i = UNIFAC(amn, Rk, Qk, x, T ) (46)
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Here, Rk and Qk are the subgroup-specific size parameters, T is the temperature, and
x corresponds to the composition (expressed as mole fractions) of the considered bi-
nary mixture. The use of a Cauchy distribution for the likelihood is motivated by its
robustness to outliers in the experimental data. Unlike the normal distribution, the
heavy-tailed nature of the Cauchy distribution reduces the influence of extreme values,
ensuring that the training process remains stable even when the data set contains flawed
data points.

Written in Pyro, a probabilistic programming language based on Python and PyTorch
support [24], the probabilistic model adopts stochastic variational inference (VI) [15]
for posterior approximation. This approach leverages the Adam optimizer [25], with a
learning rate of 0.15. A normal distribution is employed as the variational distribution,
with all LVs being treated independently. During training, this approach facilitates
learning variational parameters, specifically the mean and standard deviation, for each
LV. Based on preliminary studies that have shown robust behavior in terms of predictive
performance, the hyperparameters K = 8 and λ = 0.4 were chosen.

Post-training, the LVs inferred from the posterior enable, via Eqs. (44) and (46), the
prediction of ln γi for any binary or multi-component mixture, including unstudied ones,
whose components can be decomposed in the 113 UNIFAC subgroups.

5.2.1.2.3 Data

Experimental data on vapor-liquid equilibria (VLE) and activity coefficients at infinite
dilution in binary mixtures were taken from the largest database for thermodynamic
properties, the DDB [38]. In the preprocessing phase, data points identified as poor
quality by the DDB were excluded, and the focus was narrowed to binary mixtures
whose components can be decomposed into UNIFAC subgroups. Furthermore, only
VLE data points from which the activity coefficients γi of components i in the mixture
could be calculated using the extended Raoult’s law (cf. Eq.(43)), assuming an ideal gas
and neglecting the pressure dependence of the chemical potential in the liquid phase,
were used. The VLE data were limited to pressures up to 10 bar.

5.2.1.3 Results

5.2.1.3.1 Overall Performance of UNIFAC 2.0

To evaluate the performance of UNIFAC 2.0 and compare it to that of the original
UNIFAC 1.0, the mean absolute error (MAE) and the mean squared error (MSE) in the
logarithmic activity coefficients ln γi are employed, which are calculated mixture-wise
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(from the scores for each binary mixture) to ensure that each mixture is weighted equally
in the final score and frequently measured mixtures do not lead to a false impression of
the model quality.

In the following, focus is placed on the predictions of UNIFAC 2.0 obtained after training
the hybrid model on all available data points from the database. This way for assessing
the model has been chosen since this is likely also the case for UNIFAC 1.0, as the people
maintaining UNIFAC and the DDB are essentially the same (although the exact training
set of UNIFAC 1.0 has not been disclosed). Therefore, the comparison is considered fair.
Nevertheless, as described in the following sections, two additional extrapolation tests
were carried out with UNIFAC 2.0 to dispel doubts about its predictive capacity.

The performance of UNIFAC 2.0 on all available experimental data is shown in Fig. 38
and compared to UNIFAC 1.0. Since UNIFAC 2.0 has a more extensive scope than
UNIFAC 1.0, a distinction is made: all data points that can be predicted with both
methods are labeled as the "UNIFAC 1.0 horizon", whereas all data points that can only
be predicted with UNIFAC 2.0 are labeled as "UNIFAC 2.0 only".
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Figure 38: Comparison of results for ln γi with UNIFAC 1.0 and UNIFAC 2.0 for dif-
ferent data sets: the "UNIFAC 1.0 horizon" comprises 210,767 data points
for 15,758 binary mixtures, while an additional 13,795 experimental data
points for 2,957 binary mixtures can only be predicted with UNIFAC 2.0
("UNIFAC 2.0 only"). (a) Mean absolute error (MAE) and mean squared
error (MSE) of the model predictions. Error bars denote standard errors of
the means. (b) Histogram of the number of binary mixtures Nmix that can
be predicted with an MAE in a certain interval. The MAE range shown in
panel (b) comprises 98.8% (UNIFAC 1.0) and 99.4% (UNIFAC 2.0) of all
mixtures.
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Fig. 38 (a) clearly shows the superior prediction accuracy of UNIFAC 2.0 over UNIFAC
1.0 in both error scores. The MSE can almost be halved compared to the original,
demonstrating UNIFAC 2.0’s effectiveness in reducing the occurrence of outliers. Ta-
ble F.1 in Appendix F highlights the 20 binary mixtures with the largest improvement
in prediction accuracy (MSE) achieved by UNIFAC 2.0 compared to UNIFAC 1.0. No-
tably, mixtures involving methoxy groups paired with silane groups and those with water
paired with chlorinated aromatic components show significant improvements, indicating
that these specific interactions benefit greatly from the updated parameters in UNIFAC
2.0. Even more importantly, the new method not only improves accuracy for data points
within the predictive range of UNIFAC 1.0, but it also maintains this accuracy for data
points beyond the scope of UNIFAC 1.0, cf. the results for the "UNIFAC 2.0 only" set.

In Fig. 38 (b), a detailed analysis of the MAE for the UNIFAC 1.0 horizon in the form of
a histogram of individual binary mixture scores is shown. It underpins that UNIFAC 2.0
achieves an exceptional prediction accuracy: for 7,133 mixtures, the MAE is below 0.1,
and thereby in the range of the experimental uncertainty. This accuracy is achieved for
only 6,133 mixtures with UNIFAC 1.0.

The activity coefficients obtained by UNIFAC 2.0 can be used directly to predict phase
equilibria of mixtures, which are at the core of many tasks in chemical engineering. For
instance, vapor-liquid phase diagrams are crucial for designing and optimizing distilla-
tion processes, where the separation efficiency relies on accurate predictions of boiling
and dew points. They also play a key role in azeotropic and extractive distillation,
where deviations from ideality must be accurately modeled in order to select suitable
entrainers. Beyond distillation, they are also directly applicable in absorption and strip-
ping processes, where the vapor-liquid phase equilibrium determines the efficiency of gas
capture or solvent recovery. Fig. 39 shows six examples of isothermal vapor-liquid phase
diagrams predicted by UNIFAC 2.0, cf. Section "Data" for computational details. All
six mixtures are part of the "UNIFAC 2.0 only" set, i.e., they cannot be modeled with
the original UNIFAC 1.0. UNIFAC 2.0 accurately describes the phase behavior of all
these mixtures. The examples shown in Fig. 39 represent typical cases and were selected
to cover different types of phase behavior, ranging from small deviations of the ideal
behavior to low-boiling azeotropes.
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Figure 39: Prediction of isothermal vapor–liquid phase diagrams for binary mixtures
with UNIFAC 2.0 (lines) and comparison to experimental data from the
DDB (symbols). Blue: bubble point curves. Orange: dew point curves.

Furthermore, although no data on multi-component mixtures were used for training
UNIFAC 2.0, the underlying physical framework of UNIFAC also enables predictions
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for such mixtures. As examples, Fig. 40 shows isothermal vapor-liquid phase diagrams
for two ternary mixtures selected from the "UNIFAC 2.0 only" set, i.e., for which UNI-
FAC 1.0 is not applicable. For each data point, the temperature and the liquid-phase
composition (blue symbols in Fig. 40) were specified and used to predict the correspond-
ing vapor-phase composition in equilibrium with UNIFAC 2.0 (shown as filled orange
symbols), which was then compared to the experimentally determined vapor-phase com-
position (open orange symbols). Excellent accuracy is found.
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Figure 40: Prediction of isothermal vapor-liquid phase diagrams for ternary mixtures
with UNIFAC 2.0 (pred) and comparison to experimental data (exp) from
the DDB. The temperature and the composition of the liquid phase were
specified, and the composition of the corresponding vapor phase in equilib-
rium was predicted. Solid lines are experimental conodes, dashed lines are
predicted conodes.

The results demonstrate the very good performance of UNIFAC 2.0, which outperforms
UNIFAC 1.0 not only in terms of applicability by closing all gaps in its parameter table
but even in terms of prediction accuracy. This highlights UNIFAC 2.0 as a compelling
approach to predicting activity coefficients, particularly as it retains the classic UNIFAC
framework. This retention facilitates straightforward implementation in process simula-
tors, ensuring broad accessibility and automatic applicability to multi-component mix-
tures – a significant advantage over other state-of-the-art machine learning approaches.
Among these, HANNA, a recently developed hard-constraint neural network [53], is,
to the author’s knowledge, currently the most accurate model for predicting activity
coefficients in binary mixtures. HANNA’s accuracy is achieved through a much more
flexible architecture, using more than 70 times the number of parameters compared to
UNIFAC 2.0, complicating its direct use in process simulators. Furthermore, HANNA
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is presently restricted to binary mixtures, whereas UNIFAC 2.0 can intrinsically and
consistently extrapolate to multi-component mixtures. These trade-offs highlight the
complementary strengths of UNIFAC 2.0 and other machine learning approaches like
HANNA, which address different aspects of activity coefficient prediction and meet dif-
ferent user needs.

5.2.1.3.2 Extrapolation to Unseen Components

In a study to evaluate the capacity of UNIFAC 2.0 to extrapolate to unseen components,
100 randomly selected components were intentionally excluded from the training by
withholding all data points for systems containing any of these components from the
training set and using the systems removed from the training set as the test set. This
test set contains 27,287 data points and covers 2,603 different binary mixtures. The
results for this test set are shown in Fig. 41, which, again, contains the result from
UNIFAC 1.0 for comparison.
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Figure 41: Mean absolute error (MAE) and mean squared error (MSE) of the predicted
ln γi of mixtures containing unseen components with UNIFAC 2.0 (pred).
For comparison, the results of UNIFAC 2.0 trained on all experimental data
and UNIFAC 1.0 are also shown (fit). The "UNIFAC 1.0 horizon" comprises
25,998 data points for 2,202 binary mixtures, while an additional 1,289
experimental data points for 401 binary mixtures can only be predicted by
UNIFAC 2.0 ("UNIFAC 2.0 only"). Error bars denote standard errors of
the means.

Fig. 41 shows that the accuracy of the true predictions with UNIFAC 2.0 obtained
by withholding the test data during the training (open symbols) is only marginally
lower than that of the UNIFAC 2.0 version that was trained on all data points (closed
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symbols); this holds for both the "UNIFAC 1.0 horizon" and the "UNIFAC 2.0 only"
data sets. Furthermore, also in this true predictive test case, UNIFAC 2.0 outperforms
UNIFAC 1.0, especially considering the MSE, even though it is likely that UNIFAC 1.0
has been trained on most of the test data points, as discussed above. These findings
highlight, on the one hand, the robustness of UNIFAC 2.0 and, on the other hand, the
predictive qualities of this hybrid model.

5.2.1.3.3 Extrapolation to Unseen Pair-Interaction Parameters

Another, even more challenging, test was carried out by randomly choosing 100 combina-
tions of UNIFAC main groups for which experimental data are available and withholding
the data on all systems in which any of the chosen combinations of groups occurs from
the training of UNIFAC 2.0. In this way, the capacity of the hybrid model to predict
pair-interaction parameters amn that cannot be obtained by direct fitting is investi-
gated. For each of the 100 selected main group combinations, illustrated in Fig. F.4 in
Appendix F, a test set was created that includes the data for those systems in which
the selected group combination occurs. All other data points were used to train the
model, and the predictions on the test set were evaluated. This process was repeated
for all selected main group combinations. MAE and MSE were calculated for each test
set. Fig. 42 shows the average error scores over all 100 test sets. Again, the results
are compared to those of UNIFAC 1.0 and the UNIFAC 2.0 version trained on all data
points. Note that the 100 test sets vary strongly in the number of data points and
different binary mixtures, as shown in Table F.2 in Appendix F. This table also includes
the MAE for each individual test set.
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Figure 42: Mean absolute error (MAE) and mean squared error (MSE) of the pre-
dicted ln γi averaged over 100 test sets with UNIFAC 2.0 (pred). The test
sets were created by selecting all data points for which a specific inter-
action parameter amn is relevant, cf. F.2 in Appendix F. The results for
UNIFAC 2.0 trained on all experimental data and UNIFAC 1.0 are shown
for comparison (fit). Error bars denote standard errors of the means.

The comparison of the UNIFAC 2.0 predictions to the UNIFAC 1.0 predictions on the
"UNIFAC 1.0 horizon" in Fig. 42 reveals that the truly predicted pair-interaction param-
eters of UNIFAC 2.0 outperform those of UNIFAC 1.0, which were presumably fitted to
the experimental data used for evaluation here; this is particularly evident considering
the MSE. When comparing the true predictions with UNIFAC 2.0 (open symbols) to
those of UNIFAC 2.0 trained on the whole experimental database (full symbols), a slight
reduction in prediction accuracy is observed, as expected. However, the differences are
small, which demonstrates the robustness of UNIFAC 2.0. The increased standard error
associated with the MSE for UNIFAC 1.0 can be attributed to individual test sets for
which the predictions are extremely poor.

The results of these tests demonstrate the capability of UNIFAC 2.0 to accurately pre-
dict pair-interaction parameters, which enormously increases the scope of this group-
contribution method. UNIFAC 2.0 is not only much more applicable than UNIFAC 1.0,
but its predictions are also more accurate, as shown by the comparison on the shared
horizon. Hence, UNIFAC 2.0 should not only be used when UNIFAC 1.0 cannot be
applied, but it should replace UNIFAC 1.0 as the default method for predicting activity
coefficients. The fact that UNIFAC 2.0 performs better than UNIFAC 1.0 as measured
by lumped criteria, such as the MAE and MSE, that have been used here for describing
the performance on a broad database does not exclude, of course, that for specific sys-
tems, UNIFAC 1.0 may give better results. Implementing UNIFAC 2.0 is as simple as
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possible: one must only substitute the original (incomplete) UNIFAC parameter table,
e.g., in an established process simulator, with the completed one, which are provided
in Ref. [54]. This ease of implementation clearly distinguishes UNIFAC 2.0 from other
machine learning methods for property prediction.

5.2.1.4 Conclusions

Group-contribution (GC) methods are widely used workhorses for the prediction of
thermodynamic properties of materials. Here, the focus is placed on how they can be
combined with methods from machine learning to obtain hybrid models that outperform
their physical parent models. This is demonstrated here for the GC model UNIFAC for
predicting activity coefficients in liquid mixtures. UNIFAC is one of the most important
GC methods, broadly used in engineering, and implemented in basically all process
simulation packages. Like most GC methods for predicting properties of mixtures,
UNIFAC is based on the concept of group pair interactions. It is demonstrated that these
pair interactions can be learned and predicted with matrix completion methods (MCM)
from machine learning. The resulting new hybrid model, UNIFAC 2.0, is systematically
compared to its physical parent model, UNIFAC 1.0. In contrast to the UNIFAC 1.0
parameter table, which has significant gaps, the parameter table of UNIFAC 2.0 obtained
from the MCM has no gaps, leading to a substantial increase in the range of applicability.
One could expect to have to pay for this increase in applicability with a deterioration
of the accuracy of the predictions - but this is not the case: UNIFAC 2.0 is better than
its parent model in both regards.

The hybrid approach described here also has essential advantages regarding the work-
flow: as the physical framework is kept, the new model can be implemented very easily
in existing software packages; only parameter tables have to be updated to use its ad-
vantages. The full UNIFAC 2.0 parameter table is provided in Ref. [54]. Furthermore,
the end-to-end training of the hybrid model to experimental data can be carried out
in an automated manner so that updates can be supplied easily if new data become
available or targets shift; also, tailored versions of the model, adapted to special needs,
can be obtained easily.
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5.2.2 Modified UNIFAC 2.0

5.2.2.1 Introduction

Understanding the thermodynamic properties of mixtures is essential for chemical en-
gineering. Due to the impracticality of studying each relevant mixture experimentally,
reliable prediction methods are crucial. Group-contribution (GC) methods offer an
efficient solution by decomposing molecules into structural groups, significantly reduc-
ing the number of parameters and enabling extrapolations to unstudied components
and mixtures. The most successful GC method in chemical engineering is probably
UNIFAC [41], which is available in different versions [12, 13, 124, 141]. UNIFAC is a
model for predicting the excess Gibbs energy of mixtures and derived properties, such
as activity coefficients and excess enthalpies. It has been widely adopted for describing
reaction and phase equilibria in mixtures and is implemented in all relevant process
simulators [142–144].

However, UNIFAC has important drawbacks: Firstly, the most comprehensive versions
of UNIFAC, namely, original UNIFAC [12] and modified UNIFAC (Dortmund) [13],
have been regularly updated, but only up to 2003 [12] and 2016 [13], respectively. Since
then, the work on UNIFAC updates has continued, but only commercially within the
so-called UNIFAC-Consortium (TUC) [141], so the latest UNIFAC versions are not
publicly available. Furthermore, the applicability of all UNIFAC versions, including the
commercial ones, is limited by the availability of pair-interaction parameters between
structural groups. These parameters are derived from vapor-liquid equilibrium (VLE)
and other thermodynamic data of mixtures, leaving substantial gaps when no suitable
training data are available, severely hampering the applicability of UNIFAC.

Compared to the original UNIFAC [12], in which two parameters are used to describe
the interactions between a given pair of groups, modified UNIFAC [13] considers the
temperature dependence of these parameters by a simple function, leading to up to six
parameters that can be adjusted for a given pair of groups. This increased flexibil-
ity often improves accuracy in describing different mixtures, making modified UNIFAC
(Dortmund) arguably the best GC method presently available. For simplicity, the latest
public version of modified UNIFAC (Dortmund), used here as the reference, will be la-
beled as mod. UNIFAC 1.0. Mod. UNIFAC 1.0 considers 63 main groups, subdivided into
125 subgroups. While each subgroup k has individual size parameters describing their
surface area (Qk) and volume (Rk), which are reported for all 125 defined subgroups,
pair-interaction parameters are defined between main groups m and n. In the current
parameterization of mod. UNIFAC 1.0, these interaction parameters are reported for
only 39% of all possible pairs of main groups; Fig. G.1 in Appendix G illustrates this.
This situation significantly hampers the applicability of mod. UNIFAC 1.0 since a single



5.2 End-to-End Training on Thermodynamic Properties 115

missing group pair-interaction parameter for a given mixture prevents the use of the
method.

Consequently, the pair-interaction parameters of mod. UNIFAC 1.0, which are asym-
metric (amn ≠ anm, bmn ≠ bnm, cmn ≠ cnm), can be arranged in (sparsely filled) matrices,
making the prediction of the missing parameters a matrix completion problem, for which
matrix completion methods (MCMs) from machine learning (ML) [4, 14] can be used.
The applicability of MCMs in thermodynamics has been demonstrated in Refs. [8–
10, 51, 82–84], where MCMs have been developed to predict different thermodynamic
properties of mixtures [8–10, 82, 83] and different types of pair-interaction parame-
ters [51, 84]. Most importantly, UNIFAC 2.0 has been introduced (cf. Chapter 5.2.1),
a hybrid model that embeds an MCM into the framework of the original UNIFAC
model [12]. Through this integration, the MCM predicts the missing pair-interaction
parameters between the main groups of original UNIFAC. UNIFAC 2.0 was trained on
experimental activity coefficients derived from binary VLE data and limiting activity
coefficient data taken from the Dortmund Data Bank (DDB) [38] in an end-to-end man-
ner, avoiding the sequential and often intuitive approaches that have characterized the
traditional fitting process of UNIFAC. It has been demonstrated in Chapter 5.2.1 that
the hybrid UNIFAC 2.0, based on a learned completed pair-interaction parameter table,
outperforms the original UNIFAC method in terms of scope and accuracy.

In this chapter, the concept of embedding an MCM in GC methods is transferred from
original UNIFAC to mod. UNIFAC and mod. UNIFAC 2.0 is introduced. Similar to
UNIFAC 2.0, mod. UNIFAC 2.0 exhibits complete pair-interaction parameterizations
and was trained end-to-end on an extensive database of more than 500,000 data points
from the DDB. As the consideration of the temperature dependence of the group inter-
actions makes mod. UNIFAC more flexible, experimental data on the excess enthalpy,
in addition to data on activity coefficients, have been included in the training process
of mod. UNIFAC 2.0.

By retaining the mod. UNIFAC equations, mod. UNIFAC 2.0 maintains the high ac-
cessibility of the original model and can easily be implemented in process simulators
by simply replacing the parameter sets with the ones freely provided in Ref. [145].
At the same time, mod. UNIFAC 2.0 eliminates the most significant limitation of the
original model by filling all gaps in the pair-interaction parameter tables, tremendously
increasing the applicability to any mixture whose components can be represented by the
presently defined structural groups. The subgroup-specific size parameters Rk and Qk

for using mod. UNIFAC 2.0, which are identical to those of the published mod. UNIFAC
1.0 version, are also provided in Ref. [145].
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5.2.2.2 Development of Mod. UNIFAC 2.0

5.2.2.2.1 General Framework

Fig. 43 illustrates how mod. UNIFAC 2.0 was developed by embedding an MCM into
the mod. UNIFAC framework. The resulting method was trained end-to-end on ex-
perimental logarithmic activity coefficients (ln γi) and excess enthalpies (hE) in binary
mixtures. The ln γi were obtained from the limiting activity coefficient database of the
DDB and derived from binary VLE data, cf. Section "Data" for details. Mod. UNIFAC
2.0 is compared here to mod. UNIFAC 1.0, which uses the same structural groups and
physical model equations as mod. UNIFAC 2.0 but whose parameters were obtained by
sequential parameter fitting on a data basis that includes only data taken before 2016.
Additionally, mod. UNIFAC 1.0 was trained on additional mixture properties beyond
those included here [13, 72].
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parameter tables 
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βθT

predicted
lnγi data 

experimental 
lnγi data 

incomplete amn, bmn, cmn
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Figure 43: Comparison of mod. UNIFAC 1.0 [13] and mod. UNIFAC 2.0. Mod. UNI-
FAC 1.0 relies on sequential parameter fitting, whereas mod. UNIFAC
2.0 integrates a matrix completion method (MCM) for predicting pair-
interaction parameters into the mod. UNIFAC framework. Mod. UNI-
FAC 2.0 was trained end-to-end on experimental logarithmic activity coef-
ficients (ln γi) and excess enthalpy (hE) data. After training, the completed
pair-interaction parameter matrices facilitate predictions of thermodynamic
properties for a vast range of binary and multi-component mixtures.

Mod. UNIFAC 1.0 extends the parameter Ψnm of the original UNIFAC model by in-
troducing a temperature dependence through the additional interaction parameters bmn

and cmn:
Ψnm = exp(−anm + bnmT + cnmT 2

T
) (47)

Setting bmn = cmn = 0 results in the original UNIFAC definition of Ψnm [12].
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However, in mod. UNIFAC 1.0, cmn parameters were fitted for only very few pairs of
groups, and cmn = 0 is used for most group combinations. Therefore, only amn and bmn

are used in mod. UNIFAC 2.0, which are modeled by an MCM trained to decompose
the two matrices containing the parameters amn and bmn, respectively, into the product
of two respective feature matrices. Each pair-interaction parameter is thereby modeled
as:

amn = θa
m ⋅βa

n (48)

bmn = θb
m ⋅βb

n (49)

Here, θa
m, θb

m, βa
n, and βb

n are vectors of length K, where K is called latent dimension.
This hyperparameter was determined in preliminary studies and set to K = 8. For
simplicity, the feature vectors are collectively referred to as θ and β in the following.

All parameters of mod. UNIFAC 2.0 are learned simultaneously, which is in sharp con-
trast to the sequential approach used in the original model. Mod. UNIFAC 2.0 was
trained within a Bayesian framework, treating each experimental data point (ln γi, hE),
feature (θ, β), and interaction parameter (amn, bmn) as random variables drawn from
probability distributions, cf. Chapter 2.

The prior for all features is a standard normal distribution, N(0, 1), which is uninfor-
mative and introduces no bias toward specific feature values, except for discouraging
very large values, thereby serving as a kind of regularization. This choice provides a
simple and effective starting point for learning features from the empirical data.

The likelihood defines the probability of observing the data (ln γexp
i and hE,exp) given

the features. It is modeled using a Cauchy distribution centered around the predicted
values ln γpred

i and hE,pred, respectively:

p(ln γexp
i ∣θ, β) = Cauchy(ln γpred

i , λ) (50)

p(hE,exp∣θ, β) = Cauchy(hE,pred, λ) (51)

where λ is the scale parameter of the Cauchy distribution, which was set to λ = 0.4 as in
Chapter 5.2.1. Predicted values for ln γpred

i and hE,pred are obtained using the standard
mod. UNIFAC equations, which are fully described in Refs. [42, 146]:

ln γpred
i =mod. UNIFAC(amn, bmn, Rk, Qk, x, T ) (52)

hE,pred = −RT 2
N

∑
i=1

xi (
∂ ln γpred

i

∂T
)

p,x
(53)
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where x is the composition vector (for binary mixtures, this reduces to x1), T is the
temperature, and amn and bmn are the predicted pair-interaction parameters of mod.
UNIFAC 2.0 calculated from the learned features according to Eqs. (48) and (49).

Using Pyro, a probabilistic programming language written in Python and supported by
PyTorch [24], the posterior has been approximated using stochastic variational inference
(VI) under the mean-field assumption [15], where all features are considered indepen-
dent, and a normal variational distribution approximates each. During this step, the
evidence lower bound (ELBO) was maximized using the Adam optimizer [25] with a
learning rate of 0.15, ensuring efficient and scalable learning over the large experimental
data set.

The result of training mod. UNIFAC 2.0 is a learned probability density for each fea-
ture, from which the means were used to calculate the final pair-interaction parameters
(cf. Eqs. (48) and (49)), which are subsequently plugged into the mod. UNIFAC equa-
tions [42, 146] to give predictions for unstudied activity coefficients.

The complete final set of pair-interaction parameters – derived from training mod. UNI-
FAC 2.0 on the entire database (see Section "Data") – is freely available in Ref. [145] as
.csv files. Additionally, the subgroup-specific size parameters Rk and Qk are provided,
which are identical to the published mod. UNIFAC 1.0 version [13].

5.2.2.2.2 Data

Experimental data for activity coefficients γi and excess enthalpies hE in binary mixtures
were used for training mod. UNIFAC 2.0. All data were taken from the most extensive
database for thermodynamic properties, the DDB [142]. During preprocessing, data
points that were considered to be of low quality by the DDB were excluded. Additionally,
the selection was restricted to binary mixtures whose components could be decomposed
into the mod. UNIFAC subgroups. Moreover, the VLE data were limited to pressures
up to 10 bar.

After preprocessing, the hE data set comprises 259,707 data points for 8,735 binary
mixtures. The data set for γi consists of 243,257 data points for 21,452 binary mixtures,
which was obtained by combining 68,642 data points for limiting activity coefficients
and 174,615 data points calculated from VLE data using the extended Raoult’s law
assuming an ideal gas phase2 and neglecting the pressure dependence of the chemical
potential in the liquid phase, cf. Eq.(43).
2At elevated pressures of up to 10 bar, some deviations from this assumption have to be expected.
The 10 bar limit was chosen as a compromise between limiting these deviations and losing interesting
systems from the database. Fugacity coefficients to correct for the non-ideality of the gas phase have
been neglected for computational reasons.
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5.2.2.3 Results and Discussion

5.2.2.3.1 Overall Performance of Mod. UNIFAC 2.0

For evaluating the performance of mod. UNIFAC 2.0 in predicting activity coefficients
ln γi and excess enthalpies hE, the mean absolute error (MAE) for each binary mixture
is used and the results are represented in box plots, as shown in Figs. 44 (for ln γi) and
45 (for hE). These plots also contain the corresponding results of mod. UNIFAC 1.0,
evaluated on the same basis, for comparison. The results shown in these figures were
obtained with a mod. UNIFAC 2.0 version trained on all available experimental data
in the database. However, as detailed in the subsequent sections, two extrapolation
tests have also been performed by withholding parts of the data during training to
demonstrate and validate the predictive capacities of mod. UNIFAC 2.0.

Although the exact training set for mod. UNIFAC 1.0 has not been disclosed, it is
reasonable to assume that the experimental data used in this chapter are similar to
the data used for its parameterization, which supports a fair comparison in Figs. 44
and 45. Note that the comparison between mod. UNIFAC 1.0 and mod. UNIFAC 2.0
is carried out on the "mod. UNIFAC 1.0 horizon", i.e., only those mixtures from the
data set that can be modeled with the incomplete parameter set of mod. UNIFAC 1.0.
Since mod. UNIFAC 2.0, with its completed parameter set, has a much larger scope, its
performance is additionally evaluated on those mixtures that cannot be predicted with
mod. UNIFAC 1.0, labeled as the "mod. UNIFAC 2.0 only" data set in Figs. 44 and 45.
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Figure 44: Mean absolute error (MAE) of the predicted ln γi with mod. UNIFAC 2.0
and comparison to mod. UNIFAC 1.0 for those mixtures that can also
be predicted by the latter model ("mod. UNIFAC 1.0 horizon"). The
"mod. UNIFAC 1.0 horizon" comprises 221,639 data points for 16,932 binary
mixtures, while an additional 21,618 experimental data points for 4,520 bi-
nary mixtures could only be predicted with mod. UNIFAC 2.0 ("mod. UNI-
FAC 2.0 only"). The boxes represent the interquartile ranges (IQR), and
the whiskers extend to the last data points within 1.5 times the IQR from
the box edges.

The results in Fig. 44 show an improved prediction accuracy for ln γi with mod. UNIFAC
2.0 compared to mod. UNIFAC 1.0 for those mixtures that can be described with both
models ("mod. UNIFAC 1.0 horizon"). This is particularly evident concerning the mean
of the MAE, which is nearly halved with mod. UNIFAC 2.0, demonstrating the ability of
mod. UNIFAC 2.0 to reduce very poorly predicted data points. Regarding the median of
the MAE and the interquartile range, mod. UNIFAC 2.0 also shows some improvements
compared to mod. UNIFAC 1.0.

These results indicate that using the holistic end-to-end training of mod. UNIFAC 2.0
results in an improved set of pair-interaction parameters compared to the one obtained
by the classical sequential fit carried out in the development of mod. UNIFAC 1.0.
However, the even more significant advantage of mod. UNIFAC 2.0 is that its parameter
set is complete, leading to a much broader applicability. By evaluating the results of
mod. UNIFAC 2.0 for those mixtures in the data set that cannot be modeled with
mod. UNIFAC 1.0 ("mod. UNIFAC 2.0 only") in Fig. 44, a high prediction accuracy
is found. It is similar to that of the results obtained with mod. UNIFAC 1.0 for the
mixtures to which this method can be applied.
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Fig. 45 shows the results for the prediction of hE, where a similar picture as for the pre-
diction of ln γi is seen: an improved performance of mod. UNIFAC 2.0 on the "mod. UNI-
FAC 1.0 horizon", and still high prediction accuracy on the "mod. UNIFAC 2.0 only"
data set, for which mod. UNIFAC 1.0 cannot be applied, is found.
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Figure 45: Mean absolute error (MAE) of the predicted hE with mod. UNIFAC 2.0 and
comparison to mod. UNIFAC 1.0 for those mixtures that can also be pre-
dicted by the latter model ("mod. UNIFAC 1.0 horizon"). The "mod. UNI-
FAC 1.0 horizon" comprises 239,770 data points for 7,776 binary mixtures,
while an additional 19,937 experimental data points for 959 binary mixtures
could only be predicted with mod. UNIFAC 2.0 ("mod. UNIFAC 2.0 only").
The boxes represent the interquartile ranges (IQR), and the whiskers ex-
tend to the last data points within 1.5 times the IQR from the box edges.

Fig. 46 provides a deeper insight into the overall performance of mod. UNIFAC 2.0 by as-
signing an MAE for predicting ln γi to each pair of main groups, visualized as heatmaps.
The shown MAEs are calculated by considering the predictions for all mixtures for
which the respective group combination is relevant, with the number of mixtures and
data points varying significantly among the pairs of main groups, as detailed in Fig. G.1b
of Appendix G. Panel (a) of Fig. 46 shows the MAEs calculated as described above on
the complete data set, while panel (b) visualizes improvements (or deteriorations) with
mod. UNIFAC 2.0 compared to mod. UNIFAC 1.0 by showing the differences in the
MAEs (∆MAE = MAEmod. UNIFAC 2.0 −MAEmod. UNIFAC 1.0) on the "mod. UNIFAC 1.0
horizon". Missing entries indicate that no data were available to compare the given
combination of groups.
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Figure 46: (a) Heatmap of the mean absolute error (MAE) of the predicted ln γi with
mod. UNIFAC 2.0 calculated for each pair of main groups by consider-
ing all data points for which that particular group combination is rele-
vant. Group combinations with an MAE above 1.5 are highlighted by red
frames. (b) Difference between the MAE in ln γi with mod. UNIFAC 2.0
and the MAE of mod. UNIFAC 1.0 on the "mod UNIFAC 1.0 horizon"
(∆MAE = MAEmod. UNIFAC 2.0 −MAEmod. UNIFAC 1.0) for each pair of main
groups. Group combinations with a ∆MAE below -1 are highlighted by
green frames, indicating the most significant improvements with mod. UNI-
FAC 2.0. Missing entries indicate that no data were available for the com-
parison of the given combination of groups.

Fig. 46a highlights the overall strong performance of mod. UNIFAC 2.0, with a small
MAE for most group combinations. Note that the prediction for a particular mixture
usually requires the consideration of multiple pair-interaction parameters. Hence, the
MAEs in Fig. 46a, although assigned to specific group combinations, cannot be at-
tributed to imperfections of the respective pair-interaction parameters alone, but are
also affected by other pair-interaction parameters. However, despite this complexity, a
clear trend can be observed. For instance, mixtures containing water (main group 7)
apparently represent a particular challenge, likely because of the unique properties of
water due to strong hydrogen bonding and polarity. While most group combinations
yield an MAE below 0.14, which is a very good result, a few show high prediction er-
rors. The three group combinations with an MAE greater than 2.0 are cases based on
extremely small test sets, each consisting of a single binary mixture with ten or fewer
data points. This suggests that the higher errors may also be due to limited data, and
caution should be taken not to over-interpret these results.

Fig. 46b shows that mod. UNIFAC 2.0 outperforms mod. UNIFAC 1.0 for most group
combinations. It significantly improves the results for 461 interaction parameters, with
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a mean ∆MAE of -0.31, whereas for the 267 combinations mod. UNIFAC 1.0 yields
better results; however, the deterioration is typically only minor with a mean ∆MAE of
only 0.05. Notable improvements are observed for parameters involving main groups 7
("H2O"), 18 ("PYRIDINE"), and 42 ("CY-CH2"), with ten group combinations showing
extremely high MAE reductions with ∆MAE < −4. In addition, parameters involving
the most common group, main group 1 ("CH3"), also show significant improvements.
For example, the mean MAE specific for the pair-interaction parameter between main
group 1 ("CH3") and main group 7 ("H2O"), known to be poorly fitted in mod. UNIFAC
1.0, is nearly halved, from 1.35 to 0.71.

Fig. 47 shows an example of the practical application of mod. UNIFAC 2.0. It is used
to predict vapor-liquid phase equilibria for binary mixtures, a critical task in chemical
engineering. Six typical examples are shown, covering a range of phase behaviors from
near-ideal mixtures to those with significant deviations, including low- and high-boiling
azeotropes. All shown mixtures are part of the "mod. UNIFAC 2.0 only" set, i.e., they
cannot be modeled with mod. UNIFAC 1.0. The predictions show an excellent agreement
with the experimental data, underscoring the method’s utility for modeling complex
phase behavior and making it a valuable tool for a wide range of industrial processes,
from distillation to solvent recovery.
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Figure 47: Prediction of ln γi and isothermal vapor–liquid phase diagrams for binary
mixtures with mod. UNIFAC 2.0 (lines) and comparison to experimental
data from the DDB (symbols). Mod. UNIFAC 1.0 is not applicable to the
mixtures shown.

Fig. 48 demonstrates the ability of mod. UNIFAC 2.0 to predict excess enthalpies hE in
binary mixtures. The figure presents six representative examples from the "mod. UNI-
FAC 2.0 only" data set, i.e., mixtures for which mod. UNIFAC 1.0 is not applicable,
cf. Fig. 45. The mixtures have been selected to highlight a variety of behaviors, rang-
ing from nearly ideal to strongly non-ideal systems with both positive and negative
deviations. The predicted excess enthalpy curves (solid lines) align closely with the ex-
perimental data (open circles), demonstrating the model’s ability to accurately capture
both the magnitude and the trend of hE across different mixtures.
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Figure 48: Prediction of excess enthalpies hE at 298.15 K for binary mixtures with
mod. UNIFAC 2.0 (lines) and comparison to experimental data from the
DDB (symbols). Mod. UNIFAC 1.0 is not applicable to the mixtures shown.

Furthermore, since mod. UNIFAC 2.0 is based on pairwise interactions between the
structural groups occurring in the mixture, for any number of components, it allows
for straightforward predictions of the properties of multi-component mixtures. Fig. G.3
in Appendix G shows examples for modeling ternary mixtures with mod. UNIFAC
2.0, which demonstrate its high predictive performance although being trained only on
binary data.

5.2.2.3.2 Extrapolation to Unseen Components

To study the ability of mod. UNIFAC 2.0 to extrapolate to mixtures involving compo-
nents for which no mixture data were used in the training (termed "unseen components"
in the following for simplicity), a test was carried out in which 100 components were
selected, and all data points containing any of these components were withheld from
the training set and used only for testing the predictions. This exclusion resulted in
a test set comprising 34,107 data points (20,912 for ln γi and 13,195 for hE), covering
1,865 different binary mixtures. Fig. 49 shows the results for the prediction of ln γi for
this test set, again represented as box plots of the mixture-specific MAE. Results from
mod. UNIFAC 1.0 are also shown for comparison.
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Figure 49: Mean absolute error (MAE) of the predicted ln γi of mixtures containing
unseen components with mod. UNIFAC 2.0 (shaded boxes). For compari-
son, the results of mod. UNIFAC 2.0 trained on all experimental data and
mod. UNIFAC 1.0 are also shown (plain boxes). The "mod. UNIFAC 1.0
horizon" comprises 19,015 data points for 1,254 binary mixtures, while an
additional 1,897 experimental data points for 280 binary mixtures could
only be predicted with mod. UNIFAC 2.0 ("mod. UNIFAC 2.0 only"). The
boxes represent the interquartile ranges (IQR), and the whiskers extend to
the last data points within 1.5 times the IQR from the box edges.

Fig. 49 shows that the predictive accuracy of mod. UNIFAC 2.0 for mixtures with com-
ponents that were excluded from the training set (shaded boxes) is only narrowly lower
than when the model is trained on the entire database (plain boxes). This consistency
across both the "mod. UNIFAC 1.0 horizon" and "mod. UNIFAC 2.0 only" data sets
underscores the robustness of the hybrid approach. Moreover, even on the test data,
mod. UNIFAC 2.0 outperforms mod. UNIFAC 1.0 on the "mod. UNIFAC 1.0 hori-
zon", which is noteworthy given that mod. UNIFAC 1.0 was likely trained on many
of these test data points, as discussed earlier. On the "mod. UNIFAC 2.0 only" data
set, mod. UNIFAC 2.0 shows slightly reduced predictive accuracy but still maintains
strong performance, while mod. UNIFAC 1.0 is not applicable. Overall, these results
highlight the predictive power of mod. UNIFAC 2.0. Similar trends were observed for
the prediction of hE, as shown in Fig. G.4 in Appendix G.

5.2.2.3.3 Extrapolation to Unseen Pair-Interaction Parameters

Another, even more challenging, test to assess mod. UNIFAC 2.0’s predictive capacities
is to test its ability to extrapolate to unseen pair interactions. For such a test, 100
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combinations of main groups have been randomly selected, and all experimental data
for mixtures for which the respective main group combinations are relevant have been
withheld from the training. For each of these 100 combinations, an individual test set
was created from the withheld data, while all other available data were used to train
mod. UNIFAC 2.0. The number of data points and binary mixtures for the 100 test
sets, as well as individual error scores, are given in Tables G.1 (for ln γi) and G.2 (for
hE) in Appendix G.

Fig. 50 shows the results of predicting ln γi with mod. UNIFAC 2.0 from this challenging
test by summarizing the MAEs for the 100 test sets in a box plot. For comparison, the
performance of mod. UNIFAC 2.0 trained on all experimental data and the results of
mod. UNIFAC 1.0 (on the "mod. UNIFAC 1.0 horizon") are included. Similar results
were obtained for hE and are summarized in Fig. G.6 in Appendix G.
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Figure 50: Mean absolute error (MAE) of the predicted ln γi with mod. UNIFAC 2.0 for
100 test sets, where all data points for which a specific main group combina-
tion is relevant were withheld during training (shaded boxes); cf. Table G.1
in Appendix G for numerical results. The results of mod. UNIFAC 2.0
trained on all experimental data and mod. UNIFAC 1.0 are shown for com-
parison (plain boxes). The boxes represent the interquartile ranges (IQR),
and the whiskers extend to the last data points within 1.5 times the IQR
from the box edges.

The results on the "mod. UNIFAC 1.0 horizon" demonstrate that mod. UNIFAC 2.0,
even when predicting truly unseen pair-interaction parameters, which could not directly
be fitted to the training data, achieves a performance comparable to mod. UNIFAC
1.0 with parameters that were likely fitted directly to the respective experimental data.
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Comparing mod. UNIFAC 2.0’s predictions for unseen pair interactions (shaded boxes)
with those trained on the entire database (plain boxes) reveals a decrease in accuracy,
as expected. However, the differences are modest, highlighting the robustness and reli-
ability of mod. UNIFAC 2.0 even in this extremely challenging test.

These tests emphasize the potential of mod. UNIFAC 2.0 not only to broaden the appli-
cability of this group-contribution method but also to improve its prediction accuracy
significantly. Unlike mod. UNIFAC 1.0, which is constrained by its limited parameter
tables obtained from sequential fitting, mod. UNIFAC 2.0 excels in both scope and per-
formance, making it a robust tool for predicting activity coefficients across a wide range
of mixtures. The superior accuracy demonstrated on the shared horizon confirms that
mod. UNIFAC 2.0 is not just a complementary option when mod. UNIFAC 1.0 fails but
a strong candidate to become the new standard.

Its ease of implementation sets mod. UNIFAC 2.0 apart from other ML-based or hybrid
models combining ML with physical modeling. Users can seamlessly adopt mod. UNI-
FAC 2.0 by simply replacing the original parameter tables in their existing process sim-
ulators (or similar software), in which mod. UNIFAC will most likely be implemented,
with the completed parameter tables provided in Ref. [145]. This way, the tedious im-
plementation of the ML model itself is eliminated, making mod. UNIFAC 2.0 directly
accessible for practical applications.

5.2.2.4 Conclusions

Mod. UNIFAC [13] is currently the industrial standard for predicting activity coefficients
and is implemented in basically all process simulation software packages. It is also
widely used in academia and is the workhorse for calculating phase equilibria with liquid
phases, such as vapor-liquid equilibria (VLE), liquid-liquid equilibria (LLE), and solid-
liquid equilibria (SLE). Due to temperature-dependent parameters, it is more flexible
than the original UNIFAC model [12] and often delivers better results. Furthermore,
mod. UNIFAC often gives better results than competing excess Gibbs energy models
based on quantum-mechanical calculations of energetic contributions, such as COSMO-
RS [34, 43, 44] and COSMO-SAC-dsp [47].

However, mod. UNIFAC has several important drawbacks. Firstly, the last published
version stems from 2016 and has therefore been fitted only to data that were available up
to then. Hence, the wealth of relevant data measured since then is omitted. More recent
updates of mod. UNIFAC are commercial and not publicly available. Secondly, and
more importantly, as a group-contribution method, mod. UNIFAC can only be applied
to make predictions for a given mixture if all pair-interaction parameters (between all
groups into which all components of the mixture are decomposed) are available. If
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only a single pair is missing, mod. UNIFAC will not work. The latest public version of
mod. UNIFAC has 63 main groups, and, hence, 1953 pairs of groups – but interaction
parameters are only available for 756 of these pairs (39%), which considerably limits the
method’s applicability.

Therefore, mod. UNIFAC 2.0 has been developed, which overcomes these drawbacks:
It was trained on data for activity coefficients and excess enthalpies published up to
2024 that were taken from the Dortmund Data Bank (DDB). All in all, more than
500,000 data points from 27,035 binary systems were used. The equations and the
groups used in mod. UNIFAC 2.0 are exactly the same as in the last published version,
called mod. UNIFAC 1.0 here, but the training differs drastically. While the parame-
ters of mod. UNIFAC 1.0 were determined in a sequential approach, without a chance
to fill gaps for interactions for which no relevant data were available, mod. UNIFAC
2.0 is trained using a matrix completion method (MCM) by which the entire interac-
tion parameter matrix is filled simultaneously. Consequently, there are no gaps in the
mod. UNIFAC 2.0 parameter tables. This leads to an important extension of the ap-
plicability of the method. However, not only was the applicability extended, but the
accuracy of the predictions was also improved. This was demonstrated in tests in which
mod. UNIFAC 2.0 was compared to mod. UNIFAC 1.0: In different studies, data were
deliberately excluded from the training and only used for the tests. Even in these tests,
mod. UNIFAC 2.0 performed consistently better than mod. UNIFAC 1.0, even though
they favor mod. UNIFAC 1.0, as it must be assumed that relevant parts of the test
set were used in its training. In-depth studies also reveal significant improvements for
technically important classes of mixtures, such as mixtures containing water.

As a method based on the physical concept of pair interactions, mod. UNIFAC 2.0 can
be used to predict thermodynamic properties not only for binary mixtures but also for
multi-component mixtures. The new model can be seamlessly integrated into existing
workflows, as users only need to update the parameter tables in existing implemen-
tations. Ultimately, the end-to-end training process of mod. UNIFAC 2.0 allows for
straightforward updates as new experimental data become available or for tailoring the
model to specific industrial needs. Mod. UNIFAC 2.0 demonstrates how combining ma-
chine learning with established physical models can significantly enhance the prediction
of thermodynamic properties. Its expanded scope, improved accuracy, and ease of im-
plementation represent a powerful and scalable solution for modern chemical engineering
challenges. The complete parameter tables are freely provided in Ref. [145] as .csv files.
It is recommended to use mod. UNIFAC 2.0 as the default in all applications where, up
to now, the default was mod. UNIFAC 1.0.
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6 Conclusions

Knowledge of the thermodynamic properties of mixtures is essential in chemical engi-
neering and related fields. However, due to the vast combinatorial diversity of mixtures
and the high cost and effort related to measurements, experimental studies alone cannot
cover the full range of compositions and conditions required by industry and research.
Consequently, reliable and widely applicable prediction methods are required. In this
thesis, a new family of such methods – developed using matrix completion methods
(MCMs) from machine learning – is introduced. MCMs are based on the idea that data
relevant to thermodynamic properties of mixtures can often be arranged in matrix form
and MCMs can be used to complete these matrices even when they are only sparsely
populated. MCMs thereby are applied in two ways: to matrices containing thermo-
dynamic property data of binary mixtures and to matrices containing pair-interaction
parameters of well established physical group-contribution (GC) methods.

In the present thesis, an MCM for predicting activity coefficients at infinite dilution γ∞ij
in binary mixtures has been developed, which is based on a new way to measure the
similarity between two components. This similarity measure relies solely on input infor-
mation readily obtainable from quantum-chemical calculations or standard databases,
making it highly versatile. Despite the relatively small experimental database, this
similarity-based method (SBM) demonstrates remarkable accuracy and outperforms the
established physical benchmark methods modified UNIFAC (Dortmund) [13], COSMO-
SAC [46], and COSMO-SAC-dsp [47].

Furthermore, Bayesian MCMs have been developed to directly factorize various ther-
modynamic properties of binary mixtures, including Henry’s law constants Hij, ac-
tivity coefficients at infinite dilution γ∞ij , and diffusion coefficients at infinite dilution
D∞ij . For all considered thermodynamic properties, hybridization strategies that in-
corporate synthetic data from physical models into the MCM training process were
used to improve predictive performance. These hybrid MCMs outperform purely data-
driven ones and the physical benchmarks, such as the Predictive Soave-Redlich-Kwong
equation-of-state [76] for predicting Hij, modified UNIFAC (Dortmund), COSMO-SAC,
and COSMO-SAC-dsp for predicting γ∞ij , and semiempirical methods like SEGWE for
predicting D∞ij .
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Moreover, the significant limitations of GC methods, the previous gold standard for pre-
dicting thermodynamic properties of mixtures, due to incomplete sets of pair-interaction
parameters were addressed in the present thesis by embedding Bayesian MCMs in the
framework of physical GC methods. In the resulting models, the MCMs provide a com-
plete set of pair-interaction parameters and, therefore, substantially extend the applica-
bility of the GC methods. First, an MCM to complete the group-interaction parameter
set of UNIFAC [12] was developed that was trained solely on pseudo-data generated
with UNIFAC based on the original parameterization. This method already achieves a
similar performance as the original model while substantially extending its scope. By
developing another method of this type that was trained directly on experimental data
in an end-to-end manner, a consistently better performance than the original UNIFAC
was achieved. Applying this concept to modified UNIFAC (Dortmund) yielded compa-
rable improvements, again enhancing both accuracy and applicability. These upgraded
UNIFAC models can be integrated seamlessly into existing workflows, requiring only
parameter table updates. Moreover, as new experimental data become available, the
end-to-end training procedure allows for swift model updates, making the approach
flexible and adaptable to evolving industrial requirements.

Opportunities for future work include leveraging the insights from this work to develop
targeted design-of-experiments strategies. Specifically, it has been demonstrated that
the sheer amount of data is not sufficient for MCMs to achieve very high prediction
accuracy; the training data must contain information on mixtures that are similar to
the target mixtures, which can be assessed by the proposed similarity measure.

Furthermore, the strong performance of hybrid MCMs that factorize thermodynamic
properties motivates their extension to other conditions and the prediction of other
thermodynamic properties in future work. It is interesting that the matrix-completion
approach emerges not as a competitor to the established methods, but rather as a com-
plement, which could be an inspiration for future investigations of coupling machine
learning approaches with existing physical models to create the next generation of pow-
erful hybrid predictive models.

The hybrid UNIFAC models proposed in the present thesis can be extended in many
ways. The incorporation of additional training data on other mixture properties, such
as liquid-liquid equilibria, would be of great interest. In addition, overcoming the lim-
itations imposed by public tables that define component decompositions remains an
important goal. The introduction of improved sets of structural groups and an auto-
mated framework for decomposing components into these groups would greatly extend
the applicability of these methods.

Apart from the UNIFAC models, most physical models of thermodynamic properties of
mixtures are based on the concept of pair interactions. Hence, MCMs can be embedded



6 Conclusions 133

in all these models to predict the underlying pair interactions. This allows to obtain
parameters in cases where not sufficient experimental data for a conventional parame-
terization are available. The results from the present work have also demonstrated that
the consistent simultaneous approach for the parameterization of the models using an
end-to-end training on large data sets clearly outperforms the traditional stepwise pro-
cedure. Such advances would mark a significant step toward the creation of universally
adaptable and continuously updatable predictive models of thermodynamic properties
that support the design and optimization of complex chemical processes.
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A.1 Outliers of Modified UNIFAC (Dortmund)

The predictions of modified UNIFAC (Dortmund) [13] include eight extreme outliers,
cf. Table A.1, which can be attributed to poorly fitted group-interaction parameters.
Specifically, all of the relevant solutes contain main group 42 ("CY-CH2"), while all of
the relevant solvents contain main group 18 ("PYRIDINE").

The few observed outliers would drastically increase the mean absolute error (MAE)
and mean squared error (MSE) and thus lead to a false impression of the predictive per-
formance of modified UNIFAC (Dortmund); they were therefore removed. By removing
the eight listed outliers, the MAE decreases from 0.6477 to 0.3340.
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Table A.1: Binary systems with available experimental ln γ∞ij at 298.15 K where mod-
ified UNIFAC (Dortmund) predictions deviate significantly from the expe-
rimental data, likely due to inaccurate group-interaction parameters. Iden-
tifiers (DDB no.) are the original ones from the DDB [38].

Solute i Solvent j

DDB no. Name DDB no. Name

50 Cyclohexane 19 2-Methylpyridine

50 Cyclohexane 144 Pyridine

50 Cyclohexane 433 Quinoline

51 Cyclopentane 433 Quinoline

52 Cyclohexene 144 Pyridine

159 Tetrahydrofuran 144 Pyridine

401 Ethylcyclohexane 19 2-Methylpyridine

401 Ethylcyclohexane 144 Pyridine
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A.2 Results of the Hyperparameter Variations

The predictive performance of each SBM variant is shown in Fig. 3, focusing on the
MAE. By displaying the MSE in a similar way, Fig. A.1 supports the choice of the final
model, represented by the orange dots.
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Figure A.1: Mean squared error (MSE) of the predicted ln γ∞ij from the leave-one-out
analysis over the number of predictable experimental data points N for
all tested SBM variants. The results of the best-performing SBM (as
specified with the weights w) are highlighted in orange.

In Fig. A.2, a detailed analysis of the results is shown, focusing on the influence of dif-
ferent hyperparameter choices. From this analysis, the following heuristics are derived:

• A stronger weighting of the polar regions in the σ-profiles (wP = 2) enhances
both objectives, i.e., the predictive performance and the scope, especially near the
Pareto knee, cf. Fig. A.2a.

• Relying solely on surface area similarity (wσ = 0) results in poor predictions,
cf. Fig. A.2b.

• Focusing solely on charge distribution similarity (wσ = 1) achieves comparatively
good results at lower thresholds, where both the SBM scope and the MAE are gen-
erally large. However, increasing the threshold yields only small improvements in
predictive accuracy, cf. Fig. A.2c. In contrast, many model variants incorporating
surface area similarity (wσ < 1) perform significantly better here.
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Figure A.2: Mean absolute error (MAE) of the predicted ln γ∞ij from the leave-one-
out analysis over the number of predictable experimental data points N
for all tested SBM variants. In each panel, a subset of SBM variants
is highlighted in orange: (a) equal weighting of the polar and non-polar
regions in the σ-profiles (wP = 0), (b) using only the surface area similarity
(wσ = 0), (c) using only the charge distribution similarity (wσ = 1).

A.3 Scope of the Proposed Similarity-Based
Method

The performance of the final SBM, characterized through wσ = 0.6, and wP = 2, can be
influenced by varying the threshold ξ. Fig. A.3 illustrates the resulting trade-off between
scope and predictive accuracy, focusing not only on the scope in terms of the number
of predictable data points from the database (Fig. A.3a), but also on the number of
predictable data points from all possible solute-solvent combinations (Fig. A.3b).
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Figure A.3: Influence of the threshold ξ on the predictive performance and the scope of
the SBM. (a) Mean absolute error (MAE) of the SBM for the prediction of
ln γ∞ij . N represents the number of predictable experimental data points.
Four distinct thresholds are highlighted. (b) Matrices representing all
predictable solute-solvent combinations for the four ξ values highlighted
in (a).

In general, a large ξ results in a small scope and vice versa. Thereby, the percentage
of predictable data points from the experimental database is always higher than the
scope concerning the entire solute-solvent matrix. For example, the selected threshold
of ξ = 0.93 yields an SBM that can predict 59.9% of the experimental database but can
only populate 14.7% of the solute-solvent matrix. The SBM is limited in extrapolating
into the sparse region of the matrix, which is not surprising since it relies on experimental
data points of similar mixtures. In comparison, modified UNIFAC (Dortmund) [13] is
capable of predicting 83.7% of the experimentally studied mixtures and 69.9% of the
entire matrix, COSMO-SAC-dsp [47] achieves 89.7% and 85.4%, respectively, whereas
COSMO-SAC [46] can calculate ln γ∞ij for all considered binary mixtures.

By reducing ξ, the scope of the SBM could be extended so that almost any solute-
solvent combination can be predicted. However, this would lead to a significant loss
of predictive accuracy. Therefore, the SBM with ξ = 0.93 continues to be used as its
prediction accuracy is within the range of experimental uncertainty, and the limited
scope is accepted. The unprecedented performance of this SBM makes it a precious tool
in chemical process engineering, even if it is not applicable in all cases.
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A.4 Case Studies of Similar Components

The calculated similarity scores Sij between two components are not only the basis of
the proposed SBM for the prediction of activity coefficients at infinite dilution. They
also offer the possibility to identify the most similar components for a target component,
exemplified in Tables A.2 and A.3. Here, the Sij of the final SBM, obtained through
the grid search, are used.

Table A.2: Lists of top 10 components among the solutes most similar to ethanol or
n-butane.

Solutes Similar to Ethanol Solutes Similar to n-Butane

Solute Sij Solute Sij

1-Propanol 0.909 Cyclopentane 0.962

2-Propanol 0.869 2-Methylpropane 0.961

Methanol 0.850 Pentane 0.930

1-Butanol 0.835 2-Methylbutane 0.929

N-Methylformamide 0.829 Propane 0.917

2-Butanol 0.808 Methylcyclopentane 0.910

1-Pentanol 0.806 Cyclohexane 0.894

tert-Butanol 0.801 3-Methylpentane 0.890

2-Methyl-1-propanol 0.776 2-Methylpentane 0.886

Cyclohexanol 0.770 2,3-Dimethylbutane 0.881
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Table A.3: Lists of top 10 components among the solvents most similar to water or
chlorobenzene.

Solvents Similar to Water Solvents Similar to Chlorobenzene

Solvent Sij Solvent Sij

Methanol 0.716 Bromobenzene 0.977

Formamide 0.702 Iodobenzene 0.948

Ethanol 0.636 Fluorobenzene 0.921

1,2-Ethanediol 0.623 1-Chloronaphthalene 0.869

1-Propanol 0.599 1-Bromonaphthalene 0.861

2-Propanol 0.592 1,1-Dichloroethane 0.770

1,3-Propanediol 0.591 Toluene 0.746

1-Butanol 0.572 Methoxybenzene 0.743

1,4-Butanediol 0.572 Indene 0.742

1,2-Propanediol 0.569 Diiodomethane 0.740

Not surprisingly, many alkanes are similar to n-butane, and many halogenobenzenes are
similar to chlorobenzene. In contrast, water has no similar components, as it is unique
in being an extremely polar and rather small molecule.
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B.1 Henry’s Law

Eq. (B.1) shows Henry’s law for the description of gas solubilities:

Hij exp( 1
RT ∫

p

ps
j

v∞ij dp) xi γ∗i = p yi φi (B.1)

where Hij represents the Henry’s law constant of solute i in solvent j, R is the universal
gas constant, T the temperature, p the pressure, and v∞ij the partial molar volume of
solute i infinitely diluted in solvent j. Furthermore, xi and yi are the mole fractions of
solute i in the liquid and vapor phase, respectively. γ∗i represents the activity coefficient
defined by a normalization of the chemical potential according to Henry’s law and φi is
the fugacity coefficient of solute i in the vapor phase.

In many cases, an incompressible liquid phase and an ideal vapor phase are assumed,
which is often a valid assumption at low to moderate pressures. If, furthermore, only
small concentrations of solute i in the liquid phase are considered, γ∗i approaches unity
and Eq. (B.1) simplifies to:

Hij xi = p yi (B.2)

Henry’s law constants in systems with only subcritical components can in principle be
calculated from activity coefficients at infinite dilution and pure component properties
by applying Raoult’s law, which is defined as

ps
i φs

i exp( 1
RT ∫

p

ps
i

vidp) xi γi = p yi φi (B.3)

where ps
i and φs

i represent the pure component vapor pressure and the pure component
saturated vapor fugacity coefficient of solute i. Furthermore, vi is the molar volume of
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pure component i and γi is the activity coefficient of solute i in the mixture. The term
exp ( 1

RT ∫
p

ps
i
vidp) is called Poynting correction. Combining Eqs. (B.1) and (B.3) and

assuming infinite dilution leads to

Hij = ps
i φs

i exp( 1
RT ∫

p

ps
i

vidp) γ∞ij (B.4)

where γ∞ij is the activity coefficient of solute i infinitely diluted in solvent j. Note that at
infinite dilution of solute i in solvent j, the activity coefficient normalized according to
Henry’s law γ∗i becomes unity by definition, as does the exponential term from Eq. (B.1),
which is known as Krichevsky-Kasarnovsky correction, since the pressure p approaches
the vapor pressure of the pure solvent ps

j here.

Calculating Henry’s law constants from pure component vapor pressures and activ-
ity coefficients at infinite dilution requires information on the Poynting correction and
the pure component saturated vapor fugacity coefficients, which is not always avail-
able. Nevertheless, this has been tested and Henry’s law constants have been calculated
from activity coefficients at infinite dilution for all experimental data on Hij from the
DDB [81]. Large deviations between the predicted numbers and the experimental num-
bers have been found. Hence, including data obtained in this way in the training is
expected to lead to a deterioration rather than to improvements. Furthermore, the
number of additional values of Hij in the present matrix that could be obtained in this
way is rather small.
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B.2 Database

Fig. B.1 shows the temperature distribution of all experimental data on Hij.
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Figure B.1: Histogram of all experimental Henry’s law constants from the DDB [81]
over the reported temperature. Data points labeled in the DDB to be of
poor quality are not shown. N is the number of data points.

As shown in Fig. B.1, the majority of data points are measured at 298.15±1 K. Therefore,
this temperature range has been chosen in this chapter.

B.3 Probabilistic Model

B.3.1 Data-Driven MCM

The first MCM is purely data-driven, which means it is trained only to the sparse
available experimental data on ln Hij; it is called MCM-data in the following.

The number of latent variables (LVs) considered per component, K + 1, as well as the
standard deviations of the prior σP and σP,CB and of the likelihood σL are hyperparam-
eters of the model and were set by cross-validation to: K = 4, σP = 1.0, σP,CB = 10.0,
and σL = 0.2.

To put it in a nutshell, the generative model of MCM-data first draws a vector ui (vj) of
length K for the LVs for each solute i (each solvent j) from a normal prior distribution
with standard deviation σP = 1.0 centered around zero. Additionally it draws a scalar
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bu
i (bv

j ) from a normal prior distribution with standard deviation σP,CB = 10.0. It then
models the probability of each experimental ln Hij as a normal distribution with standard
deviation σL = 0.2 centered around ui ⋅ vj + bu

i + bv
j , which is equivalent to the modeled

value of ln Hij, cf. Eq. (9).

The Stan Code of MCM-data is shown in Fig. B.2.

Figure B.2: Stan code for MCM-data. Line 33 ensures that the method is only trained
to the observed entries of the matrix, since all unobserved entries were set
to -99 prior to the training.

B.3.2 Hybrid MCM

The second MCM is similar to the above described MCM-data and operates on the same
LVs (and the same number of LVs). However, in contrast to MCM-data, this MCM addi-
tionally incorporates information from the physics-based prediction method Predictive
Soave-Redlich-Kwong (PSRK) equation-of-state. This MCM is called MCM-hybrid in
the following and its training consists of two steps, a pretraining and a refinement step.
In the pretraining step, MCM-hybrid is not trained on experimental data but on PSRK
predictions for ln Hij. In the second step of the training of MCM-hybrid, the refinement
step, the method is trained on experimental data and an informative prior based on the
posterior of the preceding pretraining step is used.
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As for MCM-data, all hyperparameters of MCM-hybrid were chosen by cross-validation.
However, the models appeared very robust towards variations of the hyperparameters.
For the most significant hyperparameter K, a sensitivity study is given below.

The Stan Codes of MCM-hybrid are shown in Figs. B.3 and B.4. Additionally, all Stan
Codes are given as separate text files in Ref. [82].

Figure B.3: Stan code for the pretraining step of MCM-hybrid. Line 33 ensures that
the method is only trained to the observed entries of the matrix, since all
unobserved entries were set to -99 prior to the training.
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Figure B.4: Stan code for the refinement step of MCM-hybrid. Line 39 ensures that
the method is only trained to the observed entries of the matrix, since all
unobserved entries were set to -99 prior to the training.

B.4 Calculation of Model Predictions

After the training of the matrix completion methods (MCMs), the resulting posterior
probability distributions of all latent variables (LV) were used to calculate probability
distributions for the predictions of Henry’s law constants ln Hij for all combinations
of the studied solutes i and solvents j by sampling from the posterior. The mean for
each ln Hij was considered as predicted data point and compared to experimental data
and PSRK predictions if the respective experimental data point (PSRK prediction) was
available.

All predictions for ln Hij discussed in this chapter were thereby obtained after training
the MCMs to all available experimental data except for the data on the respective
system i − j in a so-called leave-one-out analysis. Hence, the respective ln Hij was
always excluded from the training data, which ensures that the method cannot cheat
by being trained to the ln Hij to be predicted.
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B.5 Additional Results

B.5.1 PSRK Outliers

The predictions with the Predictive Soave-Redlich-Kwong (PSRK) equation-of-state in-
clude several extreme outliers, which strongly deviate from the experimental data as
shown in Fig. B.5. Most of these outliers correspond to systems of the solute hydrochlo-
ric acid (HCl) in alcoholic solvents.

 MCM-hybrid

Figure B.5: Parity plot of the predictions (pred) for ln Hij with PSRK, MCM-data,
and MCM-hybrid over the experimental data (exp) from the DDB [81].
The worst 11 outliers of PSRK are marked.

In contrast to these findings, all proposed matrix completion methods (MCM) show a
robust performance on all available data and do not show extreme outliers. Even the
hybrid method MCM-hybrid, which combines PSRK with a data-driven MCM, does
not suffer from the extreme PSRK outliers if they are used during the training (in the
pretraining step).

B.5.2 Data-Driven MCM without Component Bias

In a simpler variant of MCM-data, referred to as MCM-0 in the following, no solute and
solvent biases were considered, i.e., bu

i = bv
j = 0 ∀ i, j, and, hence, ln Hij was modeled

as the product ui ⋅ vj alone, cf. Eq. (9). In analogy to MCM-data, ui and vj were
trained only to the available experimental data for ln Hij from the DDB, i.e., MCM-0 is
entirely data-driven. Except for neglecting bu

i and bv
j , MCM-0 is identical to MCM-data,
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including the choice of the hyperparameters. Hence, also MCM-0 constitutes a purely
data-driven method relying on a rather uninformative prior. MCM-0 is also similar to
the MCM from Ref. [9] for the prediction of activity coefficients at infinite dilution.

The performance of MCM-0 in terms of mean absolute error (MAE) and mean squared
error (MSE) is depicted in Fig. B.6 and compared to the respective scores of PSRK,
MCM-data, and MCM-hybrid.
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Figure B.6: Mean absolute error (MAE) and mean squared error (MSE) of PSRK and
the MCMs developed in this chapter for the prediction of ln Hij for binary
systems at 298 K. (a) Considering the full data set (1,438 data points).
(b) Without considering the worst 11 outliers of PSRK, cf. Fig. B.5.

The performance of MCM-0 is worse than that of MCM-data and MCM-hybrid and, if
the extreme PSRK outliers are omitted, cf. Fig. B.6b, also worse than that of PSRK. The
results demonstrate that the consideration of component biases is beneficial in MCMs
for the prediction of ln Hij. This agrees well with the expectations, in particular if the
solute-specific general solubility in different solvents is considered, cf. Fig. 7.

In Figs. B.7 and B.8 the performance of MCM-0, MCM-data, and MCM-hybrid for the
prediction of all available experimental data on ln Hij, irrespective whether they can
be predicted with PSRK, is compared. Again, the best performance is obtained with
MCM-hybrid, the worst with MCM-0.
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Figure B.7: Mean absolute error (MAE) and mean squared error (MSE) of the three
MCMs developed in this chapter for the prediction of Henry’s law con-
stants in binary systems at 298 K considering all 2,661 experimental data
points from the DDB.
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Figure B.8: Comparison of the predictions (pred) for ln Hij with MCM-0, MCM-data,
and MCM-hybrid considering all 2,661 experimental data points from the
DDB. (a) Parity plot of predictions over experimental data (exp) from
the DDB. (b) Histogram of the deviations of the predictions from the
experimental data. N is the number of binary systems. The shown interval
in the histogram contains 96.2 % (MCM-0), 97.6 % (MCM-data), and
98.5 % (MCM-hybrid) of the considered data points, respectively.
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B.5.3 Special Case: Solute and Solvent are Identical

The studied data set includes 29 components that are considered as both solutes i and
solvents j. For i = j, the respective entries of the matrix pertain to pure components
for which, in principle, also predictions can be obtained by the MCMs. In this case and
assuming an ideal vapor phase (φs

i = 1), the Henry’s law constant Hii corresponds to
the vapor pressure of the pure component i. In Fig. B.9, the predictions for these com-
ponents with MCM-hybrid are studied and compared to the vapor pressures obtained
with the Antoine equation [72], if the respecite parameters were available in the DDB.

ln
(H

ii /
 k
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ln(pi
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Figure B.9: Parity plot of predictions of ln Hij with i = j obtained with MCM-hybrid
(pred) over the respective pure component vapor pressures at 298 K cal-
culated with the Antoine equation and Antoine parameters from the DDB
(Antoine).

To obtain the predictions in Fig. B.9, MCM-hybrid was trained to all experimental data
on ln Hij (for true mixtures, i.e., i ≠ j, cf. reported parameters in Ref. [82]). With the
Antoine parameters available in the DDB [81], 25 of the 29 respective pure components
could be calculated; hence, only the predictions for those components are shown in
Fig. B.9. It is interesting that the general trend of the vapor pressure of the pure
components is well reproduced and predicted by the MCM after the training on mixture
data only.



168 Appendix B Supporting Information for Chapter 4.1

B.5.4 Influence of the Number of Latent Variables

K denotes the number of latent variables (LV) that are, in addition to one component
bias for each solute and solvent, considered by the MCMs for each component. K

is a hyperparameter of the MCMs and was chosen by cross-validation. However, in
Fig. B.10, it is shown show that the influence of K over a broad range on the predictive
performance of MCM-0 is rather small, i.e., that the MCM is quite robust towards
variations of K. MCM-0 is by nature the most sensitive of the studied MCMs with
regard to variations of K (MCM-data and MCM-hybrid both consider one additional
LV for each component), which is why it was chosen for this sensitivity study here.
Furthermore, similar behavior was also found for the other hyperparameters.

For the results shown in Fig. B.10, K was varied from 1 to 15, and for each case,
the corresponding mean absolute error (MAE) and mean squared error (MSE) for the
predictions obtained by a leave-one-out analysis are shown.
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Figure B.10: Influence of the number of LVs K of MCM-0 on the predictive perfor-
mance (mean absolute error (MAE) and mean squared error (MSE)) of
the method.

The scores displayed in Fig. B.10 indicate that K < 3 leads to underfitting, while K > 12
leads to overfitting. Hence, the number of LVs that are considered for MCM-0 can be
chosen over a broad range without notably impairing its predictive performance. In this
chapter, K = 4 was chosen since good results were achieved with this number without
unnecessarily complicating the model.
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B.5.5 Predictive Performance Based on All Experimental Data

Unlike the proposed MCMs, PSRK is limited to those components and systems for which
the method has been parameterized. By using the latest published parameterization [76],
PSRK can predict ln Hij for only 1,438 binary systems for which experimental data
are available in the DDB. In contrast, the MCMs developed in this chapter allow the
prediction of Hij for all possible binary systems of the considered solutes and solvents.
This allows the evaluation of the predictive performance of the MCMs based on all
2,661 available experimental data points, which is shown in Fig. B.11 for MCM-data
and MCM-hybrid similarly to Fig. 11.

 MCM-hybrid

(a)

 MCM-hybrid
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Figure B.11: Comparison of the predictions (pred) for ln Hij with MCM-data and
MCM-hybrid considering all 2,661 experimental data points from the
DDB. (a) Parity plot of predictions over experimental data (exp) from
the DDB. (b) Histogram of the deviations of the predictions from the ex-
perimental data. N is the number of binary systems. The shown interval
in the histogram contains 97.6 % (MCM-data) and 98.5 % (MCM-hybrid)
of the considered data points, respectively.
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B.5.6 Prediction Uncertainties

In Fig. B.12, the results of MCM-hybrid for all considered experimental data points from
the DDB are shown with error bars denoting the standard deviations of the predictions,
which are considered here as a measure of the model uncertainty.

 MCM-hybrid

Figure B.12: Parity plot of predictions (pred) for ln Hij with MCM-hybrid over all
2,661 experimental data points (exp) from the DDB. The error bars
correspond to the calculated standard deviations.

The standard deviation of a predicted ln Hij depends strongly on the number of experi-
mental data points available for solute i and solvent j, Ni and Nj, respectively. If, as an
example, only the predictions for those systems, of which at least one component is only
two times represented in the data set, i.e., Ni = 2 or Nj = 2 or both, a mean standard
deviation of 0.49 is obtained. By contrast, if the predictions for all other systems are
considered, i.e., for Ni ≥ 3 and Nj ≥ 3, the mean standard deviation is 0.16.
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B.5.7 Analysis of the Latent Variables

In Figs. B.13 and B.14, the LVs (except for the component biases), i.e., ui and vj, for
all studied solutes and solvents as inferred by MCM-hybrid are shown.
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Figure B.13: LVs of all solutes, sorted in ascending order according to the critical tem-
perature, as inferred by MCM-hybrid. Means (symbols) and standard
deviations (error bars) were calculated from the results of the leave-one-
out runs assuming normal distributions for the predictions. Solutes for
which only data for two different systems are available in the data set
are marked red. (a) ui,1. (b) ui,2. (c) ui,3. (d) ui,4.
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Figure B.14: LVs of all solvents, sorted in ascending order according to the DDB
number, as inferred by MCM-hybrid. Means (symbols) and standard
deviations (error bars) were calculated from the results of the leave-one-
out runs assuming normal distributions for the predictions. Solvents for
which only data for two different systems are available in the data set
are marked red. (a) vi,1. (b) vi,2. (c) vi,3. (d) vi,4.

Fig. 13 shows that the variation in the component bias of the solutes is substantially
higher compared to the component bias of the solvents. The remaining LVs behave in
the opposite way: there is a more substantial variation in vj, cf. Fig. B.14, than in ui,
cf. Fig. B.13. Furthermore, no clear correlation between the number of different binary
systems for each component (Ni, Nj) and the standard deviation can be found, but
Figs. B.13 and B.14 show that Ni = 2 and Nj = 2 often lead to a rather low standard
deviation.
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B.6 Parameter Set of the "Final" Model

In a separate excel sheet, Ref. [82] provides the final parameters of MCM-hybrid that
has been trained to all 2,661 experimental data points for ln Hij (without leave-one-out
analysis). These parameters, which are posterior means (µ) of all latent variables, allow
the prediction of ln Hij for any binary combination of the solutes and solvents included
in the training set by Eq. (B.5):

ln Hij = µui
⋅µvj

+ µbu
i
+ µbv

j
(B.5)

The excel sheet also contains the predicted mean and standard deviation of ln Hij for
all possible binary combinations of the studied solutes i and solvents j obtained by
sampling from the posterior.

B.7 Overview of the Studied Solutes and Solvents

Tables B.1 and B.2 contain the names, chemical formulas, and CAS numbers of all
considered solutes and solvents.

Table B.1: Considered solutes (101). All Hij data are extracted from the DDB [81].

Component name Chemical formula CAS number

Acetonitrile C2H3N 75-05-8

Acetone C3H6O 67-64-1

Ethanol C2H6O 64-17-5

2-Butanol C4H10O 78-92-2

Ethylbenzene C8H10 100-41-4

Chlorobenzene C6H5Cl 108-90-7

Benzene C6H6 71-43-2

1-Butanol C4H10O 71-36-3

2-Butanone C4H8O 78-93-3

n-Butane C4H10 106-97-8

Chloroform CHCl3 67-66-3

1,2-Dichloroethane C2H4Cl2 107-06-2
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Table B.1 continued.

Component name Chemical formula CAS number

Dichloromethane CH2Cl2 75-09-2

1,4-Dioxane C4H8O2 123-91-1

Hydrogen bromide HBr 10035-10-6

Hexane C6H14 110-54-3

Hydrogen fluoride HF 7664-39-3

Heptane C7H16 142-82-5

2-Propanol C3H8O 67-63-0

Methanol CH4O 67-56-1

Nitromethane CH3NO2 75-52-5

Octane C8H18 111-65-9

2-Pentanone C5H10O 107-87-9

Phosgene CCl2O 75-44-5

1-Propanol C3H8O 71-23-8

Hydrogen chloride HCl 7647-01-0

Carbon disulfide CS2 75-15-0

Tetrachloromethane CCl4 56-23-5

Toluene C7H8 108-88-3

Triethylamine C6H15N 121-44-8

Water H2O 7732-18-5

Ammonia H3N 7664-41-7

Propane C3H8 74-98-6

Chlorodifluoromethane [R22] CHClF2 75-45-6

Dichlorodifluoromethane [R12] CCl2F2 75-71-8

Perfluoropropylene C3F6 116-15-4

Perfluorocyclobutane [RC318] C4F8 115-25-3

2-Methylpropane C4H10 75-28-5

Chloroethane C2H5Cl 75-00-3

Furan C4H4O 110-00-9

1,3-Butadiene C4H6 106-99-0
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Table B.1 continued.

Component name Chemical formula CAS number

1-Butene C4H8 106-98-9

Chlorotrifluoromethane [R13] CClF3 75-72-9

trans-2-Butene C4H8 624-64-6

Isobutylene C4H8 115-11-7

1,3,5-Trimethylbenzene C9H12 108-67-8

Trimethylamine C3H9N 75-50-3

Chloroperfluoroethane [R115] C2ClF5 76-15-3

1,2-Dichlorotetrafluoroethane [R114] C2Cl2F4 76-14-2

Dimethyl ether C2H6O 115-10-6

Methyl chloride CH3Cl 74-87-3

1,1-Difluoroethane [R152a] C2H4F2 75-37-6

Ethanethiol C2H6S 75-08-1

1-Chloro-1,2,2,2-tetrafluoroethane [R124] C2HClF4 2837-89-0

Tetrafluoromethane [R14] CF4 75-73-0

Carbon dioxide CO2 124-38-9

Methane CH4 74-82-8

Oxygen O2 7782-44-7

Ethylene C2H4 74-85-1

Ethane C2H6 74-84-0

Propylene C3H6 115-07-1

Nitrogen N2 7727-37-9

Carbon monoxide CO 630-08-0

Argon Ar 7440-37-1

Chlorine Cl2 7782-50-5

Krypton Kr 7439-90-9

Dinitrogen monoxide N2O 10024-97-2

Xenon Xe 7440-63-3

Hydrogen H2 1333-74-0

Ethyne C2H2 74-86-2
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Table B.1 continued.

Component name Chemical formula CAS number

Hydrogen sulfide H2S 7783-06-4

Fluoroform [R23] CHF3 75-46-7

Difluoromethane [R32] CH2F2 75-10-5

Trichlorofluoromethane [R11] CCl3F 75-69-4

Hexafluoroethane [R116] C2F6 76-16-4

Pentafluoroethane [R125] C2HF5 354-33-6

Helium He 7440-59-7

Neon Ne 7440-01-9

Sulfur hexafluoride F6S 2551-62-4

Sulfur dioxide O2S 7446-09-5

Perfluoropropane [R218] C3F8 76-19-7

Deuterium D2 7782-39-0

Tetrafluoroethylene C2F4 116-14-3

Nitrogen oxide NO 10102-43-9

Carbonyl sulfide COS 463-58-1

Radon Rn 10043-92-2

1-Chloro-1,1-difluoroethane [R142b] C2H3ClF2 75-68-3

Diacetylene C4H2 460-12-8

Methyl fluoride [R41] CH3F 593-53-3

Cyclopropane C3H6 75-19-4

Cyclobutane C4H8 287-23-0

Propyne C3H4 74-99-7

Sulfur trioxide O3S 7446-11-9

Ozone O3 10028-15-6

1,1,1,2-Tetrafluoroethane [R134a] C2H2F4 811-97-2

1,1-Dichloro-1-fluoroethane [R141b] C2H3Cl2F 1717-00-6

1,1,1,2,3,3,3-Heptafluoropropane [R227ea] C3HF7 431-89-0

Perchlorylfluoride ClFO3 7616-94-6

1-Chloro-2,2,2-trifluoroethane [R133a] C2H2ClF3 75-88-7
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Table B.1 continued.

Component name Chemical formula CAS number

1-Chloro-2,2-difluoroethylene (R1122) C2HClF2 359-10-4

Chloroamine H2ClN 10599-90-3

Table B.2: Considered solvents (247). All Hij data are extracted from the DDB [81].

Component name Chemical formula CAS number

Acetonitrile C2H3N 75-05-8

Acetone C3H6O 67-64-1

1,2-Dibromoethane C2H4Br2 106-93-4

Ethyl bromide C2H5Br 74-96-4

1,2-Ethanediol C2H6O2 107-21-1

Ethanol C2H6O 64-17-5

Diethyl ether C4H10O 60-29-7

Ethylene oxide C2H4O 75-21-8

Formic acid CH2O2 64-18-6

Aniline C6H7N 62-53-3

Methoxybenzene C7H8O 100-66-3

2-Methylpyridine C6H7N 109-06-8

Ethyl acetate C4H8O2 141-78-6

2-Butanol C4H10O 78-92-2

Benzyl alcohol C7H8O 100-51-6

Ethylbenzene C8H10 100-41-4

Bromobenzene C6H5Br 108-86-1

Chlorobenzene C6H5Cl 108-90-7

Benzonitrile C7H5N 100-47-0

Nitrobenzene C6H5NO2 98-95-3

Benzene C6H6 71-43-2

2-Butoxyethanol C6H14O2 111-76-2

1-Butanol C4H10O 71-36-3
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Table B.2 continued.

Component name Chemical formula CAS number

2-Butanone C4H8O 78-93-3

n-Butane C4H10 106-97-8

Chloroform CHCl3 67-66-3

3-Methylphenol C7H8O 108-39-4

Cyclohexane C6H12 110-82-7

Cyclohexene C6H10 110-83-8

Methylcyclohexane C7H14 108-87-2

2-Methylcyclohexanone C7H12O 583-60-8

Dibutyl ether C8H18O 142-96-1

Decane C10H22 124-18-5

N,N-Dimethylaniline C8H11N 121-69-7

1,2-Dichloroethane C2H4Cl2 107-06-2

Dichloromethane CH2Cl2 75-09-2

N,N-Dimethylformamide (DMF) C3H7NO 68-12-2

1,4-Dioxane C4H8O2 123-91-1

2,6-Dimethylpyridine C7H9N 108-48-5

Dodecane C12H26 112-40-3

Benzaldehyde C7H6O 100-52-7

Butyl acetate C6H12O2 123-86-4

Methyl acetate C3H6O2 79-20-9

Acetic acid C2H4O2 64-19-7

Hexane C6H14 110-54-3

Heptane C7H16 142-82-5

Hydrazine H4N2 302-01-2

2-Propanol C3H8O 67-63-0

Diisopropyl ether C6H14O 108-20-3

2,2,4-Trimethylpentane C8H18 540-84-1

1-Hexene C6H12 592-41-6

Methanol CH4O 67-56-1
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Table B.2 continued.

Component name Chemical formula CAS number

2-Methoxyethanol C3H8O2 109-86-4

2-Methyl-1-propanol C4H10O 78-83-1

Nitromethane CH3NO2 75-52-5

1-Nonanol C9H20O 143-08-8

Octane C8H18 111-65-9

1-Octene C8H16 111-66-0

Pentane C5H12 109-66-0

1-Pentanol C5H12O 71-41-0

1-Propanol C3H8O 71-23-8

Propionic acid C3H6O2 79-09-4

Pyridine C5H5N 110-86-1

Nitric acid HNO3 7697-37-2

Carbon disulfide CS2 75-15-0

Dimethyl sulfoxide C2H6OS 67-68-5

tert-Butanol C4H10O 75-65-0

Tetradecane C14H30 629-59-4

Tetrachloromethane CCl4 56-23-5

Tetrahydrofuran C4H8O 109-99-9

Toluene C7H8 108-88-3

Triethylamine C6H15N 121-44-8

1’,1’,1’-Trifluorotoluene C7H5F3 98-08-8

Water H2O 7732-18-5

m-Xylene C8H10 108-38-3

p-Xylene C8H10 106-42-3

Nitroethane C2H5NO2 79-24-3

N,N-Diethylaniline C10H15N 91-66-7

Fluorobenzene C6H5F 462-06-6

1,1,2,2-Tetrachloroethane C2H2Cl4 79-34-5

Ammonia H3N 7664-41-7
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Table B.2 continued.

Component name Chemical formula CAS number

1,1-Dimethylhydrazine C2H8N2 57-14-7

1,2-Dimethoxyethane C4H10O2 110-71-4

1,1,2-Trichloro-1,2,2-trifluoroethane
[R113]

C2Cl3F3 76-13-1

N-Methylformamide C2H5NO 123-39-7

N,N-Dimethylacetamide C4H9NO 127-19-5

Glycerol C3H8O3 56-81-5

Acetic anhydride C4H6O3 108-24-7

Butyric acid C4H8O2 107-92-6

Propyl acetate C5H10O2 109-60-4

Cyclopentanone C5H8O 120-92-3

Cyclohexanone C6H10O 108-94-1

Cyclohexanol C6H12O 108-93-0

3-Methyl-1-butanol C5H12O 123-51-3

2-Ethoxyethanol C4H10O2 110-80-5

1,2-Propanediol C3H8O2 57-55-6

N-Methyl-2-pyrrolidone C5H9NO 872-50-4

3-Pentanone C5H10O 96-22-0

2-Methyltetrahydrofuran C5H10O 96-47-9

1-Hexanol C6H14O 111-27-3

Hexafluorobenzene C6F6 392-56-3

Cyclohexylamine C6H13N 108-91-8

Perfluoro-n-heptane C7F16 335-57-9

Perfluorotributylamine C12F27N 311-89-7

2-Methylpropanoic acid C4H8O2 79-31-2

cis-Decahydronaphthalene C10H18 493-01-6

o-Xylene C8H10 95-47-6

N-Methylaniline C7H9N 100-61-8

1-Heptanol C7H16O 111-70-6

1-Octanol C8H18O 111-87-5
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Table B.2 continued.

Component name Chemical formula CAS number

1-Decanol C10H22O 112-30-1

Isopropylbenzene C9H12 98-82-8

Propylbenzene C9H12 103-65-1

Ethyl butyrate C6H12O2 105-54-4

Acetophenone C8H8O 98-86-2

Isobutyl acetate C6H12O2 110-19-0

Cyclooctane C8H16 292-64-8

Tridecane C13H28 629-50-5

Nonane C9H20 111-84-2

Dipropylene glycol C6H14O3 25265-71-8

Quinoline C9H7N 91-22-5

Triethylene glycol C6H14O4 112-27-6

Chlorocyclohexane C6H11Cl 542-18-7

Diethylene glycol monomethyl ether C5H12O3 111-77-3

Carbonic acid dimethyl ester C3H6O3 616-38-6

Diethylene glycol ethyl ether C6H14O3 111-90-0

Diethylene glycol C4H10O3 111-46-6

Perfluorohexane C6F14 355-42-0

1,3,5-Trimethylbenzene C9H12 108-67-8

o-Nitrotoluene C7H7NO2 88-72-2

m-Nitrotoluene C7H7NO2 99-08-1

Diethylene glycol diethyl ether C8H18O3 112-36-7

Octamethylcyclotetrasiloxane C8H24O4Si4 556-67-2

Diphenyl ether C12H10O 101-84-8

1-Undecanol C11H24O 112-42-5

Hexadecane C16H34 544-76-3

Phthalic acid dibutyl ester C16H22O4 84-74-2

1,2,4-Trimethylbenzene C9H12 95-63-6

O-Deuteromethanol CH3DO 1455-13-6
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Table B.2 continued.

Component name Chemical formula CAS number

1-Dodecanol C12H26O 112-53-8

Sulfolane C4H8O2S 126-33-0

1,1,1,3,3,3-Hexafluoro-2-propanol C3H2F6O 920-66-1

Ethoxybenzene C8H10O 103-73-1

gamma-Butyrolactone C4H6O2 96-48-0

3-Methylheptane C8H18 589-81-1

Triethylene glycol dimethyl ether C8H18O4 112-49-2

Methyl oleate C19H36O2 112-62-9

Xylene (Isomer not specified) C8H10 1330-20-7

Perfluoromethylcyclohexane C7F14 355-02-2

Formamide CH3NO 75-12-7

n-Undecane C11H24 1120-21-4

Pentadecane C15H32 629-62-9

Propylene carbonate C4H6O3 108-32-7

2,4-Dimethylhexane C8H18 589-43-5

Tetrahydropyran C5H10O 142-68-7

Diethylene glycol dimethyl ether C6H14O3 111-96-6

cis-1,2-Dimethylcyclohexane C8H16 2207-01-4

Deuterium oxide (Heavy water) D2O 7789-20-0

N-Methylpyrrolidine C5H11N 120-94-5

Diiodomethane CH2I2 75-11-6

Trideuteromethanol CHD3O 1849-29-2

Perdeuteromethanol CD4O 811-98-3

Squalane C30H62 111-01-3

Chlorine Cl2 7782-50-5

2,2,2-Trifluoroethanol C2H3F3O 75-89-8

2,2,4,4,6,8,8-Heptamethylnonane C16H34 4390-04-9

Tributyl phosphate C12H27O4P 126-73-8

Oxepane C6H12O 592-90-5
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Table B.2 continued.

Component name Chemical formula CAS number

Diethyl succinate C8H14O4 123-25-1

N-Formylmorpholine C5H9NO2 4394-85-8

N-Ethylaniline C8H11N 103-69-5

alpha-Aminotoluene C7H9N 100-46-9

Hexamethylphosphoric acid triamide C6H18N3OP 680-31-9

Tripropyl phosphate C9H21O4P 513-08-6

Cycloheptanone C7H12O 502-42-1

Iodobenzene C6H5I 591-50-4

2,3-Dimethylhexane C8H18 584-94-1

Methylhydrazine CH6N2 60-34-4

Dinitrogen tetroxide N2O4 10544-72-6

Dibenzyl ether C14H14O 103-50-4

1-Bromoheptane C7H15Br 629-04-9

Cyanoacetic acid methyl ester C4H5NO2 105-34-0

1,1,7-Trihydroperfluoro-1-heptanol C7H4F12O 335-99-9

trans-1,2-Dimethylcyclohexane C8H16 6876-23-9

1,2,3-Propanetriol-triacetate C9H14O6 102-76-1

1,5-Dimethyl-2-pyrrolidone C6H11NO 5075-92-3

Carbonic acid diethyl ester C5H10O3 105-58-8

1,1,3,3-Tetramethyl urea C5H12N2O 632-22-4

Tricresyl phosphate (Isomer not specified) C21H21O4P 1330-78-5

1-Chlorohexane C6H13Cl 544-10-5

N-Methyl-2-piperidone C6H11NO 931-20-4

N-Methylcaprolactam C7H13NO 2556-73-2

Tetraethylene glycol dimethyl ether C10H22O5 143-24-8

Perfluoro (propyl vinyl) ether C5F10O 1623-05-8

2,6-Dimethylcyclohexanone C8H14O 2816-57-1

Perfluoro-di-n-butylether C8F18O 308-48-5

Perfluorodecalin (Isomer not specified) C10F18 306-94-5
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Table B.2 continued.

Component name Chemical formula CAS number

Hexamethyl phosphorous triamide C6H18N3P 1608-26-0

(Z)-9-Octadecenoic acid ethyl ester C20H38O2 111-62-6

(Z)-9-Octadecenoic acid butyl ester C22H42O2 142-77-8

Perfluorotoluene C7F8 434-64-0

Perfluoro-di-n-pentylether C10F22O 464-36-8

1,2-Dimethylhydrazine C2H8N2 540-73-8

Triethylene glycol butylethylether C12H26O4 184240-60-6

Triethylene glycol monobutyl ether C10H22O4 143-22-6

Perfluoro-N,N-bis-propyl-1-propanamine C9F21N 338-83-0

Octanoic acid, 1,2,3-propanetriyl ester C27H50O6 538-23-8

N-Ethyl-2-pyrrolidone C6H11NO 2687-91-4

1-Butyl-3-methylimidazolium hexafluo-
rophosphate

C8H15F6N2P 174501-64-5

1-Ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide

C8H11F6N3O4S2 174899-82-2

1-Butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide

C10H15F6N3O4S2 174899-83-3

1-Octyl-3-methylimidazolium tetrafluo-
roborate

C12H23BF4N2 244193-52-0

1-Butyl-3-methylimidazolium nitrate C8H15N3O3 179075-88-8

1-Ethyl-3-methylimidazolium tetrafluo-
roborate

C6H11BF4N2 143314-16-3

1-Butyl-3-methylimidazolium tetrafluo-
roborate

C8H15BF4N2 174501-65-6

Triethylene glycol isopropyl methyl ether C10H22O4 n.a.

1-Hexyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide

C12H19F6N3O4S2 382150-50-7

1-Hexyl-3-methylimidazolium tetrafluo-
roborate

C10H19BF4N2 244193-50-8

Ethylammonium nitrate C2H8N2O3 22113-86-6

Trihexyl tetradecyl phosphonium chloride C32H68ClP 258864-54-9
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Table B.2 continued.

Component name Chemical formula CAS number

1-Methyl-4-piperidinone C6H11NO 1445-73-4

1-Butyl-3-methylimidazolium
bis(perfluoroethylsulfonyl)imide

C12H15F10N3O4S2 254731-29-8

Trimethyl-butylammonium
bis(trifluoromethylsulfonyl)imide

C9H18F6N2O4S2 258273-75-5

Trihexyl tetradecyl phosphonium acetate C34H71O2P 460092-04-0

Trihexyl tetradecyl phosphonium
bis(trifluoromethylsulfonyl)imide

C34H68F6NO4PS2 460092-03-9

1-Hexyl-3-methylpyridinium
bis(trifluoromethylsulfonyl)imide

C14H20F6N2O4S2 n.a.

1-(3,3,4,4,5,5,6,6,6-Nonafluorohexyl)-
3-methylimidazolium
bis(trifluoromethylsulfonyl)imide

C12H10F15N3O4S2 n.a.

2-Hydroxyethyl ammonium acetate C4H11NO3 54300-24-2

2-Hydroxyethyl ammonium lactate C5H13NO4 n.a.

Tributylethylphosphonium diethylphos-
phate

C18H42O4P2 20445-94-7

Tributylmethylphosphonium methylsul-
fate

C14H33O4PS 69056-62-8

1-Hexyl-3-methylimidazolium
tris(pentafluoroethyl)trifluorophosphate

C16H19F18N2P 713512-19-7

1-Propyl-3-methylimidazolium
tris(heptafluoropropyl)trifluorophosphate

C16H13F24N2P n.a.

N-Methyl-2-hydroxyethylammonium
propanoate

C6H15NO3 n.a.

N-Methyl-2-hydroxyethylammonium pen-
tanoate

C8H19NO3 n.a.

Selexol C16H34O8 n.a.

1-Butyl-3-hydrogenimidazolium acetate C9H16N2O2 n.a.

1-Butyl-3-methylimidazolium
tris(pentafluoroethyl)trifluorophosphate

C14H15F18N2P 917762-91-5
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Table B.2 continued.

Component name Chemical formula CAS number

1-(Z-Octadec-9-enyl)-
3-methylimidazolium
bis(trifluoromethylsulfonyl)imide

C24H41F6N3O4S2 1264476-00-7

Octyl-trimethylphosphonium bis(2,4,4-
trimethylpentyl)phosphinate

C27H60O2P2 n.a.

Tetrabutylphosphonium caproate C22H47O2P n.a.

Tetrabutylphosphonium caprylate C24H51O2P n.a.

1-Butyl-3-methylimidazolium caproate C14H26N2O2 n.a.

1-Butyl-3-methylimidazolium caprylate C16H30N2O2 n.a.

N,N,N’,N’-Tetramethyl-
1,3-propanediamine
bis(trifluoromethylsulfonyl)imide

C9H19F6N3O4S2 n.a.

Bis(2-dimethylaminoethyl)ether
bis(trifluoromethylsulfonyl)imide

C10H21F6N3O5S2 n.a.

Tributylethylphosphonium stearate C32H67O2P n.a.
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C Supporting Information for
Chapter 4.2

C.1 Database

In this chapter, all experimental data on Henry’s law constants Hij(T ) were taken from
the 2021 version of the Dortmund Data Bank (DDB) [86]. The reported Hij(T ) values
are often derived from various coefficients characterizing gas solubility. Inaccuracies
occurring in the conversion of Ostwald coefficients were noticed, and consequently, data
from the 2020 version of the DDB were used for these specific instances.

Fig. C.1 shows the temperature distribution of all experimental data on Hij.
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m

T  /  K
Figure C.1: Temperature distribution of experimental Hij data as reported in the

DDB [86]. The order of the binary systems is arbitrary. The focus is
placed on data in the temperature range of 173.15 K to 573.15 K, cover-
ing 98.5% of the data set. These boundaries are indicated by blue lines.

It shows that the majority of the data were measured at ambient temperature. In this
chapter, the focus is placed on the temperature range from 173.15 K to 573.15 K, which
includes 98.5% of the total data points.
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C.2 PSRK Outliers

In this chapter, PSRK serves both as a benchmark and a source of additional training
data for the hybrid MCM. Based on the public parameterization [76], PSRK can predict
slightly more than half of the experimental data points (53.74%) from the data set
specified above. The results are shown in a parity plot in Fig. C.2.

- 1 0 - 5 0 5 1 0 1 5 2 0 2 5
- 5 0
- 4 0
- 3 0
- 2 0
- 1 0

0
1 0
2 0

ln(
H ij 

/ k
Pa

)pre
d

l n ( H i j  /  k P a ) e x p

Figure C.2: Parity plot comparing PSRK predictions for ln Hij in the temperature
range 173.15 K - 573.15 K against experimental data (exp) from the
DDB [86]. Of the 20,565 experimental data points considered in this chap-
ter, 11,051 can be predicted by PSRK. Among these, 190 were identified
as outliers (gray squares, criterion, see Chapter 4.2) and were not used
in this chapter; 118 outliers with ln Hij < −55 are not shown for scaling
purposes.

Outliers in the PSRK predictions are shown in Fig. C.2. The majority of the detected
outliers (183 out of 190) are associated with the solubility of hydrochloric acid (HCl)
in water or alcohols, and are probably due to inaccurate group-interaction parameters
within the PSRK model.
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C.3 Schematic Illustration of the Data-Driven
Approach

The workflow of the data-driven matrix completion methods (MCMs) is depicted below,
analogously to the hybrid approach illustrated in Fig. 15.

Figure C.3: Schematic illustration of the prediction of ln Hij with MCM-data. The
MCM is trained on experimental data for ln Hij. The inferred features
are subsequently used in Eq. (26) to obtain predictions (pred) for the
parameters Aij, Bij, and Cij of the function that is used for describing
the temperature dependence of ln Hij (Eqs. (25) or (C.1)), from which the
Henry’s law constant can be calculated for any temperature.

C.4 MCMs Based on a Two-Parameter Equation

The temperature dependence of the logarithmic Henry’s law constant, ln Hij(T ), is
commonly modeled using the van’t Hoff equation [147–150]:

ln(Hij /kPa) = Aij +
Bij

T /K (C.1)

where Aij and Bij are system-specific temperature-independent parameters. Eq. (C.1) is
used analogously to Eq. (25) for developing a data-driven and a hybrid MCM, with the
parameter matrices Aij and Bij being decomposed as described in Eq. (26). To facilitate
comparison and discussion, the abbreviations "2P" for the two-parameter methods and
"3P" for the three-parameter methods, respectively, are used in the following.

Fig. C.4 extends Fig. 16 by including error scores (MAE and MSE) for the two-parameter
(2P) versions of MCM-data and MCM-hybrid, as defined by Eq. (C.1). To ensure a
fair comparison with PSRK, only binary systems predictable by PSRK are considered
in Fig. C.4b. However, a direct comparison of PSRK with the MCMs is not trivial.
The MCMs are specifically designed to cover binary systems made up of the consid-
ered 122 solutes and 399 solvents, allowing them to predict ln Hij(T ) for all potential
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solute-solvent combinations. Thus, they are able to describe all 3,297 systems for which
experimental data are available in the DDB, cf. Fig. 14. In contrast, PSRK’s current
parameterization [76] allows it to model only 1,575 of these systems. However, as a
group-contribution method, PSRK has the flexibility to model systems beyond those
specifically considered in this chapter.

M C M - d a
t a  (

2 P )
M C M - h y

b r i d
 ( 2 P

)
M C M - d a

t a  (
3 P )

M C M - h y
b r i d

 ( 3 P
)

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

MA
E, 

MS
E

 M A E
 M S E

(a)

P S R K
M C M - d a

t a  (
2 P )

M C M - h y
b r i d

 ( 2 P
)

M C M - d a
t a  (

3 P )
M C M - h y

b r i d
 ( 3 P

)

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

MA
E, 

MS
E

 M A E
 M S E

(b)

Figure C.4: Mean absolute error (MAE) and mean squared error (MSE) for the pre-
diction of ln Hij averaged over all binary systems. (a) Comparison of
the developed MCMs considering all data from the DDB (3,297 systems).
(b) Comparison of PSRK with the developed MCMs considering only sys-
tems that can be described by PSRK (1,574 systems).

Fig. C.4 illustrates that both 2P-MCMs demonstrate higher predictive accuracies on the
data set predictable by PSRK. Furthermore, when relying on a two-parameter equation,
the hybrid approach outperforms both the data-driven MCMs and PSRK.

Fig. C.4b reveals no significant difference in the performance of MCM-hybrid (2P) and
MCM-hybrid (3P) against PSRK. However, MCM-hybrid (2P) demonstrates limitations
in accurately describing systems beyond PSRK’s predictive scope, highlighting its re-
liance on additional information provided during the pretraining step, cf. Fig. C.4a. The
performance of the hybrid MCMs is further analyzed in Figs. C.5 and C.6, where the
error scores MAE and MSE for each binary system are illustrated as histograms.
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Figure C.5: Histogram representation of the MAE and MSE for the predictions of
ln Hij with PSRK, MCM-hybrid (2P), and MCM-hybrid (3P) considering
only systems that can be described by PSRK (1,574 systems). NSystems
is the number of binary systems. (a) MAE. The shown interval in the
histogram contains 96.32% (PSRK), 96.63% (MCM-hybrid (2P)), and
96.63% (MCM-hybrid (3P)) of all considered binary systems. (b) MSE.
The shown interval in the histogram contains 93.58% (PSRK), 94.41%
(MCM-hybrid (2P)), and 94.03% (MCM-hybrid (3P)) of all considered
binary systems.
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Figure C.6: Histogram representation of the MAE and MSE for the predictions of
ln Hij with MCM-hybrid (2P), and MCM-hybrid (3P) considering all data
from the DDB (3,297 systems). NSystems is the number of binary systems.
(a) MAE. The shown interval in the histogram contains 94.51% (MCM-
hybrid (2P)), and 95.54% (MCM-hybrid (3P)) of all considered binary
systems. (b) MSE. The shown interval in the histogram contains 92.45%
(MCM-hybrid (2P)), and 93.27% (MCM-hybrid (3P)) of all considered
binary systems.
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Both MAE and MSE reveal the same trend in predictive accuracy: MCM-hybrid (2P)
achieves highly accurate predictions across a variety of systems, slightly outperforming
MCM-hybrid (3P). This suggests the difference in performance between MCM-hybrid
(2P) and MCM-hybrid (3P), as observed in Fig. C.4a, should not be interpreted as a lack
of overall efficacy of the 2P approach. Rather, it is primarily the impact of significant
outliers that cause the higher error scores.

C.5 Enthalpy of Absorption

The enthalpy of absorption of the solute i in the pure solvent j can be obtained from
the temperature derivative of the Henry’s law constant [72, 151, 152]:

∆habs
ij = −RT 2 ⋅

∂ ln Hij

∂T
(C.2)

or,

∆habs
ij = R ⋅

∂ ln Hij

∂ 1
T

(C.3)

with

∆habs
ij = h∞ij − hid

i (C.4)

where R is the universal gas constant, h∞ij is the partial molar enthalpy of solute i

infinitely diluted in solvent j, and hid
i is the molar enthalpy of component i in the ideal

gas state. Substituting ln Hij(T ) with the two-parameter equation (Eq. (C.1)) or the
three-parameter equation (Eq. (25)), yields the following expressions for ∆habs

ij :

∆habs, 2P
ij = R ⋅Bij (C.5)

∆habs, 3P
ij = R ⋅ (Bij −Cij(T − T0)) (C.6)

where Bij and Cij are the parameters of the respective equations, and T0 = 298 K is
the chosen reference temperature. Due to the scarcity of experimental data on ∆habs

ij ,
these values could not be utilized for training the developed MCMs or for systematically
evaluating their predictive accuracy. However, Fig. C.7 shows predicted ∆habs

ij for the
six examples discussed in Fig. 18.
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Figure C.7: Predicted enthalpies of absorption ∆habs
ij in six binary systems using

MCM-data (blue), and MCM-hybrid (grey). The results of the MCMs
are true predictions obtained using leave-one-out analysis.
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D Supporting Information for
Chapter 4.4

D.1 Semiempirical Models

In this section, the considered semiempirical models studied in the present thesis are
briefly presented. Further, it is shown exactly how D∞ij is calculated in each of these cases
from some pure-component properties of the solutes and solvents. The pure-component
properties needed for this purpose were calculated for the studied temperature T =
298.15 K by DIPPR correlations, which are provided in the DIPPR database [113]. For
the solutes i and solvents j, these include, depending on the model, some combination of
the molar masses Mi and Mj, the parachors3 Pi and Pj, and the saturated liquid phase
molar volumes ṽi and ṽj at the respective normal boiling temperatures of the solute and
solvent, as well as the viscosity ηj of the solute.

With the exception of SEGWE, the semiempirical models considered here need informa-
tion on the saturated liquid phase molar volume ṽi of the solute i at its normal boiling
temperature. However, for carbon dioxide this value is not defined since its triple point
pressure is above the ambient pressure; therefore, the liquid molar volume at the triple
point was used instead here. Similarly, also for perylene and 3-hydroxyaniline ṽi at the
normal boiling temperature cannot be measured since both components decompose be-
fore reaching the respective temperatures; therefore, a hypothetical value for ṽi has been
used for these components, which was calculated with the group-contribution method
of Schröder [154].

While the four semiempirical models have been developed as general-purpose correla-
tions that aim at describing a diverse set of mixtures and components, there are still
some restrictions in the scope of these models, which are briefly mentioned here. All
authors have limited their models to moderate viscosities and have excluded data for
viscous solvents (e.g., polymers) from their training sets. Further, none of the semiem-
pirical models were trained on data of mixtures containing electrolytes, i.e., neither
3The parachor is used here as defined by Quayle: Pi =

4
√

γivi, where γi and vi are the surface tension
and liquid molar volume of pure component i at the studied temperature, respectively [153].
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mixtures with salts as solutes nor with ionic liquids as solutes or solvents should be
expected to be predicted with high accuracy.

D.1.1 Wilke and Chang, 1955

One of the first widely applicable correlations for diffusion coefficients in liquids was
developed by Wilke and Chang [94]. According to the model of Wilke and Chang, D∞ij
is calculated by:

(
D∞ij
m2/s) = 7.4 × 10−12

¿
ÁÁÀϕj (

Mj

g/mol)
1

( ṽi

cm3/mol)
0.6
(T

K)
( ηj

mPa s)
(D.1)

where ϕj is a solvent-specific factor, which was introduced to improve the description
of diffusion coefficients in associating solvents; for some common solvents, values for
ϕj have been reported [94]. However, in this thesis, values for ϕj were fitted for each
solvent individually to experimental D∞ij from the database (cf. Section 4.4.3.2.4).

D.1.2 Reddy and Doraiswamy, 1967

Reddy and Doraiswamy sought to improve on the Wilke-Chang correlation by eliminat-
ing the factor ϕj and considering the molar volume ṽj of the solvent instead [95]. They
also changed the exponent of both ṽi and ṽj to 1

3 , an idea that was previously introduced
by Scheibel [155], resulting in Equation D.2:

(
D∞ij
m2/s) =KRS

√
Mj

g/mol

3

√
( ṽi

cm3/mol) (
ṽj

cm3/mol)

(T
K)

( ηj

mPa s)
(D.2)

The empirical constant KRS depends on the ratio of ṽi to ṽj:

KRS =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

10 × 10−12, for ṽj

ṽi
≤ 1.5

8.5 × 10−12, for ṽj

ṽi
> 1.5

(D.3)
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D.1.3 Tyn and Calus, 1975

Tyn and Calus found that the ratio of the parachors Pi and Pj correlates strongly with
D∞ij [96], and therefore proposed the following equation:

(
D∞ij
m2/s) = 8.93 × 10−12 6

¿
ÁÁÁÁÀ
( ṽi

cm3/mol)

( ṽj

cm3/mol)
2 (

Pj

Pi

)
0.6 (T

K)
( ηj

mPa s)
(D.4)

The Tyn and Calus model is subject to the following restrictions [96]:

• For the solute water, the authors suggest that water should be treated as a dimer,
i.e., the values of ṽi and Pi should be doubled. In this thesis, the values ṽwater =
37.4 cm3/mol and Pwater = 105.2 cm3 g1/4/(s1/2 mol) for the water dimer have been
used, as recommended by Poling [99].

• When the solute is an organic acid, the dimer value of 2ṽi and 2Pi should be used
in solvents other than water, methanol, and butanol. In the present thesis, this
suggestion has been followed.

• For nonpolar solutes in monohydroxy alcohol solvents, the values of ṽj and Pj

should be multiplied by the factor 8ηj, with the solvent viscosity ηj in units of
mPa s, which was done accordingly in the present thesis.

D.1.4 SEGWE (Stokes-Einstein Gierer-Wirtz Estimation)

In a recent work of Evans et al., the Stokes-Einstein equation [98] was extended by
introducing the Gierer-Wirtz [156] correction to loosen the assumption of the Stokes-
Einstein theory that the solvent is a continuum fluid [97]. Consequently, they named
their model SEGWE (Stokes-Einstein Gierer-Wirtz Estimation), which calculates D∞ij
as:

D∞ij =
kB

6π

(3α
2 +

1
1+α
)

3
√

3Mi

4πϱeffNA

T

ηj

(D.5)

where ϱeff is the effective density and α is the ratio of the solvent and solute radii, rj

and ri, respectively. Further, kB and NA are the Boltzmann and Avogadro constants,
respectively. Assuming that all molecules are hard spheres, α can also be expressed in
terms of the molar masses Mj and Mi:

α =
rj

ri

= 3

√
Mj

Mi

(D.6)
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The effective density ϱeff, which can be considered either as a solvent-specific parameter
or fitted to a global value, was fitted by the original authors to diffusion coefficient data
at 25 ○C for 109 combinations of 44 solutes and 5 solvents, yielding a global value of
619 kg/m3 [97].

In the present thesis, ϱeff is used as a solvent-specific parameter, which has been fit-
ted individually to the respective data on D∞ij for each solvent from the database; as
described above, a leave-one-out strategy was thereby followed (cf. Section 4.4.3.2.4).

D.1.5 Effect of Fitting the Model Parameters With a
Leave-One-Out Strategy

Both the Wilke-Chang and SEGWE models contain a solvent-specific fit parameter,
called ϕj and ϱeff,j, respectively. For a fair comparison to the MCMs, these were fitted to
the database using a leave-one-out strategy: i.e., for the prediction of each experimental
D∞ij , a ϕ

(i)
j (or ϱ

(i)
eff,j) was fitted to all available experimental data in that particular

solvent minus the data point i + j that is to be predicted. The optimum ϕ
(i),∗
j was

chosen for the minimum in the rRMSE:

ϕ
(i),∗
j = arg min

ϕ
(i)
j

∑
k≠i

⎛
⎜
⎝

D∞,pred
kj (ϕ(i)j ) −D∞,exp

kj

D∞,exp
kj

⎞
⎟
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2

(D.7)

However, it is also possible to apply the Wilke-Chang and SEGWE models in a purely
predictive manner: for Wilke-Chang this means using the (few) parameter values of ϕj

supplied by the original authors, for SEGWE the global value ϱeff = 619 kg/m3 is used.

For both models, there is only a small difference in the overall performance when com-
paring the purely predictive approach to that with the fitted parameter. The effect is
shown in Fig. D.1. For SEGWE, the rMAE and rRMSE decrease from 0.213 and 0.285
in the predictive approach to 0.193 and 0.276 in the fitted approach, respectively. For
Wilke-Chang, the rMAE decreases from 0.227 to 0.209, while, surprisingly, the rRMSE
slightly increases from 0.304 to 0.314. This paradoxical effect is due to the large number
of solvents in which data is available only for very little mixtures (i.e. solvents that
have been measured in combinations with few solutes). In such cases, the leave-one-out
strategy will lead to a good fit of ϕj to the (limited) available data, while the left-out
point may therefore be grossly mispredicted, resulting in a high rRMSE.
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Figure D.1: Relative mean absolute error (rMAE, yellow) and relative root mean
squared error (rRMSE, blue) of the predicted D∞ij for the experimental
data from the reduced database. The developed MCMs are compared
to the semiempirical models Wilke-Chang and SEGWE in two variants:
a purely predictive one and one that was fitted to the database using a
leave-one-out strategy.

D.1.6 Mixtures Poorly Described by Semiempirical Models

In this section, a closer look is taken at those mixtures from the database for which D∞ij
is only poorly described by the semiempirical models, and an attempt is made to specify
the groups of solutes and solvents for which this is the case. The focus is thereby placed
on SEGWE, while the other models are also briefly touched upon.

For discussing the performance of SEGWE in detail, Fig. 28, which shows the residu-
als of the SEGWE predictions from the experimental data, is referred to. One solute
that SEGWE is apparently struggling to describe accurately is water (solute i = 27,
cf. Fig. 28). In the reduced database, there are eight mixtures with the solute water;
the relative deviations of the SEGWE predictions from the experimental data for D∞ij
for these eight mixtures are shown in Fig. D.2.
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Figure D.2: Relative deviations δD∞ij = (D
∞,pred
ij −D∞,exp

ij ) /D∞,exp
ij of the SEGWE pre-

dictions for D∞ij of the solute water in different solvents from the experi-
mental data from the reduced database.

The largest positive relative deviations are found for mixtures in which strong hydro-
gen bonding occurs, namely the mixtures (water + ethanol) and (water + 1-propanol).
Slightly smaller, but still large positive relative deviations are found for mixtures of
water with solvents in which weaker hydrogen bonds are formed (acetone, butyl ac-
etate, N -methyl-2-pyrrolidone and methyl isopropyl ketone, cf. Fig. D.2). This is not
astonishing as the developers of SEGWE have explicitly excluded data for mixtures
with "aggregating components" in the development of SEGWE [97]. Aggregation leads
to lower diffusion coefficients; an effect which is not described by SEGWE, which, as
a consequence, overpredicts D∞ij in such mixtures, cf. Fig. D.2. High positive relative
deviations of the SEGWE predictions from the experimental data are also found for
many other hydrogen bonding systems in the database.

Furthermore, SEGWE mispredicts D∞ij in mixtures where the molecular mass in relation
to the molecule size strongly differs between both components. This is in particular the
case if one of the components contains heavy atoms, and the other does not. The reason
for this is that in the development of SEGWE, it was assumed that both solute and
solvent can be modeled as hard spheres, and that both spheres have an equal ratio of
mass to volume – the so-called effective density ϱeff of the mixture.
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An instructive example for this case is the result for the solute carbon dioxide (i = 39)
in Fig. 28. Carbon dioxide has a relatively large molecular mass in relation to its small
molecular volume, which leads to a rather high effective density compared to, e.g., typical
organic solvents. Accordingly, SEGWE significantly underestimates D∞ij for basically all
mixtures with carbon dioxide from the reduced database (cf. Fig. 28), and even for all
mixtures with carbon dioxide from the full database (not shown here).

Two other examples for solutes in the database with rather high effective densities are
methyl iodide (i = 19), which is due to the heavy iodine atom, and the fully fluorinated
hexafluorobenzene (i = 30); SEGWE also underestimates the diffusion in all mixtures
containing these two solutes. Returning to Fig. D.2 as a last example, the significant
underestimation of the experimental D∞ij in the mixture (water + hexadecane) can
likewise be explained by the higher effective density of water in relation to that of
hexadecane (and the absence of significant attractive forces in the mixture to counteract
this effect).

Finally, the limitations of the models of Wilke and Chang [94], Reddy and Doraiswamy [95],
and Tyn and Calus [96] are briefly touched upon. Due to their similar nature they are all
subject to similar restrictions, so that they will be discussed together here. Despite the
original authors’ intention to provide general-purpose correlations that work in nonpolar
and polar mixtures alike, all three models have been found to struggle significantly with
hydrogen bonding mixtures (as it is also the case for SEGWE). Hence, they overpredict
D∞ij for hydrogen bonding solvents, such as methanol, ethanol and 1-propanol. Further,
the Wilke-Chang model is inaccurate in the prediction of the diffusion of water in or-
ganic solvents, which has been described before in the literature [157]. Accordingly, a
significant overestimation of D∞ij by the Wilke-Chang model can be observed for nearly
all mixtures from the reduced database in which water is the solute, with the exception
of the mixture (water + hexadecane). This trend is not observed for the models of Tyn
and Calus or Reddy and Doraiswamy.

Lastly, it should be noted that MCMs can be used to identify such systematic deviations
in the predictions of (semiempirical) models, and that MCMs can also predict them,
which is used in the hybrid MCM based on "boosting" for improving the performance
of the semiempirical models, cf. Fig. 27.

D.2 Maximum Errors in the Predictive
Performance of the Studied Models

In Fig. D.3, the relative maximum absolute errors, defined by Equation D.8, of the
predictions for D∞ij with the four semiempirical models and the three MCMs studied in
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this chapter on the reduced database are shown. Similar results to those in Fig. 27 are
found, namely that the performance of the data-driven MCM suffers from some drastic
mispredictions (leading to the high relative maximum absolute error seen here), and
that both hybrid MCMs outperform the semiempirical models in this statistic as well.
Again, it is found that MCM-Boosting performs slightly better than MCM-Whisky in
terms of the relative maximum absolute error.

relative maximum absolute error =max
i,j

RRRRRRRRRRR

D∞,pred
ij −D∞,exp

ij

D∞,exp
ij

RRRRRRRRRRR
(D.8)

Figure D.3: Relative maximum absolute error of the predicted D∞ij with the studied
semiempirical models and the developed MCMs for the experimental data
from the reduced database.

D.3 Complete Predictions from MCM-Whisky

Analogous to the MCM-Boosting results in Fig. 31, the completed D∞ij matrix from
the MCM-Whisky predictions, together with the uncertainties of those predictions, are
shown in Fig. D.4.
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Figure D.4: Predictions of D∞ij by MCM-Whisky (left) and the uncertainties of the
predictions (right) for all solutes i and solvents j (identified by numbers,
see Table D.1) from the full database. The color code indicates the values
of D∞ij .
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D.4 Supplementary Tabular Files

Additional supplementary information is provided in a machine readable format in the
form of .csv files in Ref. [83]. The data are provided in two separate folders, named
"full" and "reduced", representing the full database and the reduced database. In each
folder, the following files are found:

• Boosting_Predictions.csv: Here, the predictions of D∞ij with the hybrid MCM
"MCM-Boosting" (cf. Section 4.4.3.2.2) are reported. The results were obtained
here after training the model on all data on D∞ij in the full (reduced) database.
The predictions are listed for all 10,608 (1,035) solute-solvent combinations and
include a large number of novel data points on D∞ij . In the same table, the model
uncertainty of each predicted D∞ij is listed next to the predicted value in the form
of standard deviations.

• Boosting_LV_Solutes.csv and Boosting_LV_Solvents.csv: Here, the results of
the training of MCM-Boosting on the full (reduced) database of D∞ij are reported,
which are the feature vectors ui and vj of the solutes and solvents, respectively.
The length of the feature vectors is K = 2.

• Whisky_Predictions.csv: Here, the predictions of D∞ij with the hybrid MCM
"MCM-Whisky" (cf. Section 4.4.3.2.2) are reported. The results were obtained
here after training the model on all data on D∞ij in the full (reduced) database.
The predictions are listed for all 10,608 (1,035) solute-solvent combinations and
include a large number of novel data points on D∞ij . In the same table, the model
uncertainty of each predicted D∞ij is listed next to the predicted value in the form
of standard deviations.

• Whisky_LV_Solutes.csv and Whisky_LV_Solvents.csv: Here, the results of the
training of MCM-Whisky on the full (reduced) database of D∞ij are reported, which
are the feature vectors ui and vj of the solutes and solvents, respectively. The
length of the feature vectors is K = 2.

An excerpt of this information is also provided in written form in Tables D.1-D.3.
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D.5 Tabular Material

Table D.1: Table of all components, subdivided into solutes and solvents, encountered
in the database on D∞ij developed in Ref. [83]. All components are listed
by their consecutive number, as used in all figures throughout this chapter,
together with their DDB identification number.

Cons. DDB Name Cons. DDB Name

No. No. No. No.

Solutes

1 2 Acetamide 105 3063 L-Ascorbic acid

2 3 Acetonitrile 106 3215 4-Hydroxy-3-methoxybenzaldehyde

3 4 Acetone 107 3258 2,2-Bis(hydroxymethyl)-1,3-propanediol

4 8 1,2-Ethanediol 108 3347 D-(+)-Saccharose

5 11 Ethanol 109 3410 1,3,5-Triisopropylbenzene

6 12 Diethyl ether 110 3468 DL-Phenylalanine

7 15 Formic acid 111 3523 1,4-Diaminobenzene

8 17 Aniline 112 3715 Benzenesulfonic acid

9 21 Ethyl acetate 113 3717 p-Toluenesulfonic acid

10 24 Benzyl alcohol 114 3724 L-Alanine

11 25 Ethylbenzene 115 3725 L-Serine

12 26 Bromobenzene 116 3729 Glycine

13 27 Chlorobenzene 117 3731 L-(+)-Aspartic acid

14 30 Nitrobenzene 118 3732 L-Glutamic acid

15 31 Benzene 119 3865 Piperazine

16 39 1-Butanol 120 3988 beta-Alanine

17 40 2-Butanone 121 3989 4-Aminobutyric acid

18 41 n-Butane 122 3990 5-Aminovaleric acid

19 46 Butyl chloride 123 3991 6-Aminohexanoic acid

20 47 Chloroform 124 4490 Potassium thiocyanate

21 49 3-Methylphenol 125 4577 Potassium chloride

22 50 Cyclohexane 126 4591 Cadmium chloride

23 72 N,N-Dimethylformamide 127 4592 Nickel chloride

24 77 2,6-Dimethylpyridine 128 4596 Ferrocene

25 78 Dodecane 129 4707 (+-)-alpha-Aminobutyric acid

26 79 Benzaldehyde 130 4708 alpha-Aminoisobutanoic acid

27 80 Butyl acetate 131 4771 Buckminsterfullerene

28 84 Acetic acid 132 4776 2-Acetoxy benzoic acid

29 85 Furfural 133 4792 Sodium nitrate

30 89 Hexane 134 4795 D-Mannose

31 91 Heptane 135 4801 !D-Xylose

32 99 Methyl iodide 136 4817 1,2,6-Hexanetriol

33 108 1-Methylnaphthalene 137 4911 Sodium chloride

34 110 Methanol 138 4955 Magnesium chloride

35 112 3-Methylpentane 139 4960 Magnesium sulfate

36 123 Naphthalene 140 4965 Potassium nitrite

37 129 1-Octene 141 5261 1,2-Ethanediol-D2 (deuterioglycol)

38 138 Phenol 142 5949 3,4-Dihydroxy benzoic acid

39 140 1-Propanol 143 6317 Iron(III) sulfate

40 141 Propionic acid 144 6319 Ammonium chloride

41 145 Nitric acid 145 6325 Ammonium sulfate

42 146 Hydrogen chloride 146 6326 Lead nitrate

43 147 Salicylic acid methyl ester 147 6353 Sodium perchlorate

44 153 tert-Butanol 148 6355 Potassium chlorate

45 157 Tetrachloromethane 149 6372 Sodium thiocyanate

46 161 Toluene 150 6465 N-Acetyl-p-aminophenol

47 168 Trichloroethylene 151 6529 Di-tert-butylsulfide

48 174 Water 152 7467 Titanium tetra-tert.butyloxide

49 230 Glycerol 153 7533 15-Crown-5 (15C5)

50 235 Butyric acid 154 7847 L-Valine

51 237 Propane 155 7848 L-Isoleucine

52 250 Cyclohexanone 156 7852 L-Tryptophane

53 269 Caprylic acid 157 7949 L-Cystine

54 284 N-Methyl-2-pyrrolidone 158 9329 7-Aminoheptanoic acid
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Table D.1 continued.
Cons. DDB Name Cons. DDB Name

No. No. No. No.

55 297 Hexafluorobenzene 159 10334 Tris(2,4-pentanedionato)chromium

56 308 2-Methyl-2,4-pentanediol 160 10571 Phenylphosphonic acid

57 322 o-Xylene 161 11004 D-Galactose

58 367 2,3-Dimethylbutane 162 11201 Sodium caprylate

59 372 Acetophenone 163 11202 Sodium dodecyl sulfate

60 425 Benzoic acid 164 11722 L-Threonine

61 430 Methyl isopropyl ketone 165 12706 D-Glucose

62 516 Hexadecane 166 13599 L-Lysine

63 546 Monoethanolamine 167 16447 1-Ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide

64 598 Trifluoroacetic acid 168 16583 1-Butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide

65 750 p-Chlorotoluene 169 16584 1-Ethyl-3-methylimidazolium ethylsulfate

66 766 1,2-Dihydroxybenzene 170 16731 Cadmium perchlorate

67 809 2-Methoxyphenol 171 17118 (-)-Epicatechin

68 810 o-Chlorophenol 172 17231 Calcium-L-lactate

69 812 p-Chlorophenol 173 17273 D-(-)-Arabinose

70 817 1,3-Dihydroxybenzene 174 17617 tert-Butan(ol-D)

71 894 2,2”-Diethanolamine (DEA) 175 18690 Monosodium glutamate

72 925 Anthracene 176 18840 Lysozyme

73 1050 Carbon dioxide 177 18842 L-3,4-Dihydroxyphenylalanine

74 1051 Methane 178 18845 1-Butyl-3-methylimidazolium methylsulfate

75 1052 Oxygen 179 18857 Monosodium L-aspartate

76 1053 Ethylene 180 19687 L-Arginine

77 1054 Ethane 181 20036 1-Butyl-3-methylimidazolium octyl sulfate

78 1055 Propylene 182 20046 alpha-Cyclodextrin

79 1056 Nitrogen 183 20047 beta-Cyclodextrin

80 1058 Argon 184 22696 5-Hydroxymethylfurfural

81 1059 Chlorine 185 23228 Isoquercitrin

82 1060 Krypton 186 23325 (.+-.)-.beta.-Aminobutyric acid

83 1061 Dinitrogen monoxide 187 26695 [EMIM] methylsulfate

84 1062 Xenon 188 26828 Platinum (II) acetylacetonate

85 1063 Hydrogen 189 33333 Gallic acid monohydrate

86 1064 Ethyne 190 33334 (+)-Catechin hydrate

87 1065 Hydrogen sulfide 191 33340 Peonidin-3-glucoside chloride

88 1086 2,2,2-Trifluoroethanol 192 33341 Malvidin-3,5-diglucoside chloride

89 1090 2,2-Dimethylpentane 193 34501 2-Hydroxypropyl-beta-cyclodextrin

90 1143 1,3-Butanediol 194 34550 1,8-Bis(trimethylammonium)octane dibromide

91 1264 alpha-Aminotoluene 195 34551 1,10-Bis(trimethylammonium)decane dibromide

92 1292 Helium 196 34552 1,12-Bis(trimethylammonium)dodecane dibromide

93 1293 Neon 197 36721 o-Sulfanilic acid

94 1594 Pyrene 198 37864 2-Hydroxypropyl-alpha-cyclodextrin

95 1642 1,4-Dihydroxybenzene 199 40775 DL-m-Tyrosine

96 1645 1,2,3-Trihydroxybenzene 200 40777 DL-o-Tyrosine

97 2186 Diisopropanolamine 201 40779 D,L-beta-Aminoisobutyric acid

98 2187 Methyldiethanolamine 202 43996 m-Sulfanilic acid

99 2245 Phosphoric acid 203 46014 p-Phenolsulfonic acid

100 2501 1,2-Benzenediamine 204 49211 beta-Cyclodextrin, sulfated sodium salt

101 2506 3-Methoxyphenol 205 51976 Lithium acetylacetonate

102 2542 Perylene 206 54011 N-Methylphenothiazine

103 2945 3-Hydroxyaniline 207 54491 L-Histidine methyl ester dihydrochloride

104 2994 DL-Tyrosine 208 61801 Tetrasodium tetraphenylporphyrintetrasulfonate

Solvents

1 3 Acetonitrile 27 161 Toluene

2 4 Acetone 28 174 Water

3 11 Ethanol 29 250 Cyclohexanone

4 12 Diethyl ether 30 282 1,2-Propanediol

5 21 Ethyl acetate 31 284 N-Methyl-2-pyrrolidone

6 25 Ethylbenzene 32 297 Hexafluorobenzene

7 26 Bromobenzene 33 367 2,3-Dimethylbutane

8 27 Chlorobenzene 34 430 Methyl isopropyl ketone

9 30 Nitrobenzene 35 451 Carbonic acid dimethyl ester
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Table D.1 continued.
Cons. DDB Name Cons. DDB Name

No. No. No. No.

10 31 Benzene 36 516 Hexadecane

11 39 1-Butanol 37 887 Deuterium oxide

12 40 2-Butanone 38 982 Perdeuteromethanol

13 46 Butyl chloride 39 1090 2,2-Dimethylpentane

14 47 Chloroform 40 3410 1,3,5-Triisopropylbenzene

15 50 Cyclohexane 41 4331 Hexamethyltetracosane

16 60 Decane 42 16447 1-Ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide

17 72 N,N-Dimethylformamide 43 16583 1-Butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide

18 78 Dodecane 44 16810 1-Octyl-3-methylimidazolium tetrafluoroborate

19 80 Butyl acetate 45 18162 1-Hexyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide

20 89 Hexane 46 18174 1-Hexyl-3-methylimidazolium tetrafluoroborate

21 91 Heptane 47 18642 1-Ethyl-3-methylimidazolium
bis(pentafluoroethylsulfonyl)imide

22 97 2,2,4-Trimethylpentane 48 18988 1-Ethyl-3-methylimidazolium trifluoromethylsul-
fonate

23 110 Methanol 49 20138 1-Butyl-3-methylimidazolium dicyanamide

24 112 3-Methylpentane 50 22417 1-Ethyl-3-methylimidazolium trifluoroacetate

25 140 1-Propanol 51 22674 1-Butyl-3-methylpyridinium tetrafluoroborate

26 157 Tetrachloromethane

Table D.2: Latent variables ui of the solutes for both hybrid MCMs, for the data set
of the reduced database.

MCM-Boosting MCM-Whisky

i Name ui1 ui2 ui1 ui2

1 Acetonitrile 0.0259 -0.3137 1.1140 1.0072

2 Acetone -0.0383 -0.6594 0.8325 1.0875

3 Ethanol -0.1208 -0.2232 1.2558 0.6697

4 Ethyl acetate 0.0183 -1.0212 1.2218 0.3069

5 Benzyl alcohol -0.0248 0.0109 0.9067 -0.2790

6 Ethylbenzene 0.0853 -0.3729 1.0475 -0.0265

7 Chlorobenzene 0.0830 -0.6592 1.0640 -0.0972

8 Benzene 0.0225 -0.7974 1.0589 0.6732

9 1-Butanol 0.0652 0.5200 0.8152 -0.3123

10 Butyl chloride -0.1005 -1.3470 0.9289 1.0876

11 3-Methylphenol 0.0168 0.0857 0.9696 -0.3696

12 Cyclohexane -0.0247 -0.1559 0.9850 0.0256

13 Dodecane -0.1310 0.4674 0.7540 -0.2834

14 Benzaldehyde -0.0026 -0.3415 0.9643 0.0233
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Table D.2 continued.

MCM-Boosting MCM-Whisky

i Name ui1 ui2 ui1 ui2

15 Butyl acetate 0.0583 -0.5567 1.0636 -0.1444

16 Acetic acid 0.1207 0.3451 1.0522 0.0817

17 Hexane -0.0562 0.4757 1.0284 0.1294

18 Heptane -0.1007 -0.3165 1.0001 -0.0528

19 Methyl iodide 0.0453 -1.8181 1.1878 0.5537

20 Methanol -0.0717 0.6005 1.2734 0.8127

21 Naphthalene 0.1071 -0.6001 1.0165 -0.0713

22 Phenol 0.1714 -0.1511 1.1026 -0.1210

23 1-Propanol 0.0338 0.4886 1.0087 -0.1563

24 Propionic acid 0.0481 0.1907 1.0585 0.0166

25 Tetrachloromethane 0.0657 -0.7153 0.9538 -0.2629

26 Toluene 0.0294 -0.4151 1.0385 0.1623

27 Water 0.0160 1.0622 1.2625 1.2361

28 Glycerol -0.0547 0.2778 0.9945 -0.4034

29 Butyric acid 0.0493 0.1375 0.9714 -0.0868

30 Hexafluorobenzene 0.0554 -1.2698 1.0224 -0.0083

31 2-Methyl-2,4-pentanediol 0.1493 -0.1078 0.7891 -0.4680

32 Acetophenone 0.0366 -0.2193 0.8595 -0.0045

33 Methyl isopropyl ketone -0.0220 -0.3874 1.0480 0.2781

34 Hexadecane -0.0178 0.6118 0.6210 -0.4563

35 p-Chlorotoluene 0.1212 -0.5070 1.0570 -0.1735

36 1,2-Dihydroxybenzene 0.0735 0.3086 0.8749 -0.5178

37 p-Chlorophenol 0.0550 -0.0153 0.9082 -0.4891

38 1,3-Dihydroxybenzene 0.1110 0.5870 1.0430 -0.8759

39 Carbon dioxide 0.0024 -2.1624 1.0677 2.6978

40 Pyrene 0.0411 -0.3815 0.7835 -0.4026

41 1,4-Dihydroxybenzene -0.0929 0.7952 1.0314 -0.9901

42 1,2,3-Trihydroxybenzene 0.0466 0.5331 0.8596 -0.8712
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Table D.2 continued.

MCM-Boosting MCM-Whisky

i Name ui1 ui2 ui1 ui2

43 Perylene -0.0153 -0.2712 0.6542 -0.6323

44 3-Hydroxyaniline 0.0221 0.5058 0.9982 -0.6519

45 Di-tert-butylsulfide -0.0455 -0.5260 0.8416 0.0409

Table D.3: Latent variables vj of the solvents for both hybrid MCMs, for the data set
of the reduced database.

MCM-Boosting MCM-Whisky

j Name vj1 vj2 vj1 vj2

1 Acetonitrile 0.0808 0.1552 1.0329 0.3479

2 Acetone -0.0143 0.3749 1.2012 0.0947

3 Ethanol 0.0235 0.4952 -0.0895 0.4689

4 Ethyl acetate 0.0245 -0.4662 0.5537 0.1355

5 Benzene 0.0041 0.3100 0.7094 0.2268

6 1-Butanol -0.0171 0.6077 -0.7692 0.4649

7 Butyl chloride -0.0616 0.0769 1.0076 0.0935

8 Chloroform -0.1435 0.0860 0.7535 0.2162

9 Cyclohexane -0.0421 0.4390 0.3997 0.2822

10 Dodecane 0.1043 -0.6007 0.1037 0.2835

11 Butyl acetate -0.0016 0.3710 0.5711 0.2338

12 Hexane -0.0297 0.0871 1.2860 0.0933

13 Heptane -0.0449 0.1479 1.1070 0.1109

14 Methanol -0.0325 0.3837 0.5793 0.4010

15 1-Propanol 0.0604 0.5545 -0.6209 0.5466

16 Tetrachloromethane 0.0471 -0.0292 0.2200 0.2178

17 Toluene -0.0317 0.0448 0.7320 0.1470

18 Water 0.0019 0.1685 0.0015 0.2546

19 1,2-Propanediol -0.0228 0.4908 -3.1392 0.5874
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Table D.3 continued.

MCM-Boosting MCM-Whisky

j Name vj1 vj2 vj1 vj2

20 N-Methyl-2-pyrrolidone -0.0056 0.2545 -0.4168 0.3778

21 Hexafluorobenzene -0.0188 -0.0455 0.3585 0.1540

22 Methyl isopropyl ketone -0.0201 0.3742 0.7499 0.1693

23 Hexadecane -0.0470 -1.1143 -0.3064 1.1473

D.6 Stan Code

In the following, the Stan codes for training all MCMs used in this chapter are provided:
the data-driven MCM, MCM-Boosting, and MCM-Whisky. For MCM-Whisky, the
codes of the two training steps, distillation and maturation, are given individually.
An executable form of this code is included for download in the form of .stan files in
Ref. [83]. To run the code, users will need to install an interface of their choice from the
project’s homepage (https://mc-stan.org/users/interfaces/). For further
information, Stan’s excellent documentation is referred to: https://mc-stan.org/
users/documentation/.

Furthermore, Ref. [83] provides a wrapper code for each MCM, i.e., a MATLAB script
that reads the training data from a .csv file, applies the developed MCMs for the pre-
diction of the full matrix, and exports the result to a .csv file.

D.6.1 Data-Driven MCM

1 data {

2 int<lower=0> I; // number of solutes

3 int<lower=0> J; // number of solvents

4 int<lower=0> K; // number of latent dimensions

5 real ln_D[I,J]; // matrix of logarithmic diffusion

coefficients

6 real<lower=0> sigma_0; // prior standard deviation

7 real<lower=0> lambda; // likelihood scale

8 }

https://mc-stan.org/users/interfaces/
https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
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9
10 parameters {

11 vector[K] u[I]; // solute feature vectors

12 vector[K] v[J]; // solvent feature vectors

13 }

14
15 model {

16 // prior: draw feature vectors for all solutes and

solvents:

17 for (i in 1:I)

18 u[i] ~ normal(0,sigma_0);

19 for (j in 1:J)

20 v[j] ~ normal(0,sigma_0);

21 // likelihood: model the probability of ln_D as a normal

distribution

22 // around the dot product of the feature vectors:

23 for (i in 1:I) {

24 for (j in 1:J) {

25 if (ln_D[i,j] != -99) { // train to available data

only

26 ln_D[i,j] ~ normal(u[i]’ * v[j], lambda);

27 }

28 }

29 }

30 }

D.6.2 MCM-Boosting

1 data {

2 int<lower=0> I; // number of solutes

3 int<lower=0> J; // number of solvents

4 int<lower=0> K; // number of latent dimensions

5 real R[I,J]; // matrix of residuals of logarithmic

diffusion coefficients

6 real<lower=0> sigma_0; // prior standard deviation

7 real<lower=0> lambda; // likelihood scale

8 }

9
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10 parameters {

11 vector[K] u[I]; // solute feature vectors

12 vector[K] v[J]; // solvent feature vectors

13 }

14
15 model {

16 // prior: draw feature vectors for all solutes and

solvents:

17 for (i in 1:I)

18 u[i] ~ normal(0,sigma_0);

19 for (j in 1:J)

20 v[j] ~ normal(0,sigma_0);

21 // likelihood: model the probability of R as a normal

distribution around the dot product of the feature

vectors:

22 for (i in 1:I) {

23 for (j in 1:J) {

24 if (R[i,j] != -99) { // train to available data only

25 R[i,j] ~ normal(u[i]’ * v[j], lambda);

26 }

27 }

28 }

29 }

D.6.3 MCM-Whisky: Distillation

1 data {

2 int<lower=0> I; // number of solutes

3 int<lower=0> J; // number of solvents

4 int<lower=0> K; // number of latent dimensions

5 real ln_D[I,J]; // matrix of logarithmic diffusion

coefficients

6 real<lower=0> sigma_0; // prior standard deviation

7 real<lower=0> lambda; // likelihood scale

8 }

9
10 parameters {

11 vector[K] u[I]; // solute feature vectors
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12 vector[K] v[J]; // solvent feature vectors

13 }

14
15 model {

16 // prior: draw feature vectors for all solutes and

solvents:

17 for (i in 1:I)

18 u[i] ~ normal(0,sigma_0);

19 for (j in 1:J)

20 v[j] ~ normal(0,sigma_0);

21 // likelihood: model the probability of ln_D as a normal

distribution around the dot product of the feature

vectors:

22 for (i in 1:I) {

23 for (j in 1:J) {

24 if (ln_D[i,j] != -99) { // train to available data

only

25 ln_D[i,j] ~ cauchy(u[i]’ * v[j], lambda);

26 }

27 }

28 }

29 }

D.6.4 MCM-Whisky: Maturation

1 data {

2 int<lower=0> I; // number of solutes

3 int<lower=0> J; // number of solvents

4 int<lower=0> K; // number of latent dimensions

5 real ln_D[I,J]; // matrix of logarithmic diffusion

coefficients

6 real<lower=0> lambda; // likelihood scale

7 vector<lower=0>[K] sigma_0_u[I]; // Prior standard

deviation (Solutes)

8 vector<lower=0>[K] sigma_0_v[J]; // Prior standard

deviation (Solvents)

9 vector[K] mu_0_u[I]; // prior mean (Solutes)

10 vector[K] mu_0_v[J]; // prior mean (Solvents)
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11 }

12
13 parameters {

14 vector[K] u[I]; // solute feature vectors

15 vector[K] v[J]; // solvent feature vectors

16 }

17
18 model {

19 // prior: draw feature vectors for all solutes and

solvents:

20 for (i in 1:I)

21 u[i] ~ normal(mu_0_u[i],sigma_0_u[i]);

22 for (j in 1:J)

23 v[j] ~ normal(mu_0_v[j],sigma_0_v[j]);

24 // likelihood: model the probability of ln_D as a normal

distribution around the dot product of the feature

vectors:

25 for (i in 1:I) {

26 for (j in 1:J) {

27 if (ln_D[i,j] != -99) {//available data only

28 ln_D[i,j] ~ normal(u[i]’ * v[j], lambda);

29 }

30 }

31 }

32 }
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E Supporting Information for
Chapter 5.1

E.1 UNIFAC Model

E.1.1 UNIFAC Equations

For predicting the logarithmic activity coefficient ln γi of a component i in a mixture,
the UNIFAC model considers the sum of an entropic contribution, called combinatorial
part, ln γC

i and an energetic contribution, called residual part, ln γR
i [41]:

ln γi = ln γC
i + ln γR

i (E.1)

The combinatorial part ln γC
i is thereby calculated by:

ln γC
i = 1 − Vi + ln Vi −

z

2qi (1 −
Vi

Fi

+ ln Vi

Fi

) (E.2)

with

Vi =
ri

∑j rjxj

(E.3)

Fi =
qi

∑j qjxj

(E.4)

where ri and qi are the relative Van der Waals volume and surface area of component
i, respectively, xi is the mole fraction of component i in the mixture, and z is the
coordination number, which is set to z = 10 in basically all cases and was also used here.
Eqs. (E.1) - (E.4) are identical to the equations used in the UNIQUAC model [116]; the
difference between UNIQUAC and UNIFAC is that UNIQUAC is based on component-
specific parameters, whereas they are derived from group-specific parameters in UNIFAC.
Specifically, in UNIFAC, the relative Van der Waals volume ri and surface area qi of the
component i are calculated from the group volume and group surface parameters, Rk

and Qk, respectively, which are tabulated for multiple structural groups k [12, 119–123],
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as follows:

ri = ∑
k

ν
(i)
k Rk (E.5)

qi = ∑
k

ν
(i)
k Qk (E.6)

where ν
(i)
k denotes the frequency of group k in one molecule of component i.

The residual part ln γR
i of UNIFAC is calculated by:

ln γR
i = ∑

k

ν
(i)
k (ln Γk − ln Γ(i)k ) (E.7)

where Γk is the group activity coefficient of group k in the mixture and Γ(i)k is the group
activity coefficient of group k in the pure component i. Both Γk and Γ(i)k are calculated
similar to the residual part in the UNIQUAC model by:

ln Γk = Qk (1 − ln(∑
m

ΘmΨmk) −∑
m

ΘmΨkm

∑n ΘnΨnm

) (E.8)

where Θm is the surface fraction of group m in the mixture:

Θm =
QmXm

∑n QnXn

(E.9)

and Xm is the group mole fraction of group m, which is related to the mole fractions xj

of components j:

Xm =
∑j ν

(j)
m xj

∑j∑n ν
(j)
n xj

(E.10)

The parameters Ψnm and Ψmn in Eq. (E.8) contain the group-interaction parameters of
UNIFAC, anm and amn, between the groups m and n:

Ψnm = exp(−anm

T
) ; Ψmn = exp(−amn

T
) (E.11)
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E.1.2 UNIFAC Group-Interaction Parameters

In Fig. E.1, the current availability of group-interaction parameters of the public UNI-
FAC [12] and the commercial UNIFAC-TUC [127] is indicated.

Figure E.1: Matrix representing the availability of group-interaction parameters of
the public UNIFAC [12] (blue) and the commercial UNIFAC-TUC [127]
(green) up to main group 50. White cells: no parameters available.
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E.2 Model Details

E.2.1 Bayesian Matrix Completion

The model of the present chapter is similar to the one recently introduced in Ref. [84], in
which a matrix completion method (MCM) from machine learning has been combined
with the UNIQUAC model [116, 117]. In contrast to Ref. [84], the group-interaction
parameters among structural groups m and n (and not components), specifically between
main groups of UNIFAC, are predicted here. Fig. E.2 shows an overview of the proposed
UNIFAC-MCM model as well as of the training and evaluation procedure.

Figure E.2: Scheme representing the training and evaluation of UNIFAC-MCM. Be-
sides based on the vapor-phase composition y, the results were also eval-
uated based on deviations in the temperature T and the pressure p from
the experimental vapor-liquid equilibrium (VLE) data from the Dortmund
Data Bank (DDB).

The model has been trained on pseudo-data for logarithmic activity coefficients ln γmn

in hypothetical binary mixtures of groups, m and n, which have been generated with
the UNIFAC model using the current public parameterization [12] as described in Chap-
ter 5.1. Note that although these pseudo-data were generated based on an inconsistent
set of group-interaction parameters, the pseudo-data themselves are not inconsistent,
because very similar activity coefficients can be obtained by different combinations of
group-interaction parameters. This makes the values of the group-interaction parame-
ters less informative, whereas the generated pseudo-data contain the structure that is
recovered by the MCM during the training.
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Thereby, a Bayesian approach to matrix completion (cf. Chapter 2) has been employed,
which consists of multiple steps as described in the following.

First, a generative probabilistic model for ln γmn as a nonlinear function f of the groups
m and n, the temperature T , and the mole fraction xm of group m in the hypothetical
mixture has been specified. This function is basically defined by the UNIFAC equations,
cf. Eqs. (E.1) - (E.11), the correlation of the group-interaction parameters amn and anm

via the group-interaction energies Umn, Umm, and Unn, cf. Eqs. (40) and (41), and an
embedded matrix factorization for the unlike group-interaction energies Umn between
the groups, cf. Eq. (42). The function furthermore considers the following parameters:

• group-specific parameters considered in the UNIFAC model, specifically the group
volume parameters Rm and Rn and the group surface parameters Qm and Qn,
which were adopted from the latest public parameter table of UNIFAC, cf. Ta-
ble E.1;

• initially unknown (latent) feature vectors θm, θn, βm, and βn of the groups,
which are used for modeling the unlike group-interaction energies Umn between
the groups, as well as the like group-specific group-interaction energies Umm and
Unn.

The length K of the feature vectors, which controls the number of features that are
considered for each group, is in principle a hyperparameter of the model, which can be
adjusted during model selection. However, in this chapter, a comprehensive hyperpa-
rameter screening has not been carried out, and the hyperparameters from Ref. [84],
including the setting of K = 3, have simply been adopted.
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Table E.1: UNIFAC main groups m considered in the present chapter and the respec-
tive group volume and group surface parameters, Rm and Qm, used. Some
main groups include multiple subgroups, such that Rm and Qm could have
been chosen differently, whereby, however, no large impact is expected; in
such cases, usually one of the "intermediate" subgroups was chosen ran-
domly here (e.g., "CH2").

m Rm Qm m Rm Qm

1 0.6744 0.54 26 1.7818 1.56

2 1.1167 0.867 27 1.4199 1.104

3 0.5313 0.4 28 2.057 1.65

4 1.0396 0.66 29 1.651 1.368

5 1 1.2 30 3.168 2.484

6 1.4311 1.432 31 2.4088 2.248

7 0.92 1.4 32 1.264 0.992

8 0.8952 0.68 33 0.9492 0.832

9 1.4457 1.18 34 1.0613 0.784

10 0.998 0.948 35 2.8266 2.472

11 1.6764 1.42 36 2.3144 2.052

12 1.242 1.188 37 0.791 0.724

13 0.9183 0.78 38 0.6948 0.524

14 1.3692 1.236 39 3.0856 2.736

15 1.207 0.936 40 1.0105 0.92

16 0.9597 0.632 41 1.38 1.2

17 1.06 0.816 42 1.4443 1.0063

18 2.8332 1.833 43 1.303 0.7639

19 1.6434 1.416 44 3.981 3.2

20 1.3013 1.224 45 2.2287 1.916

21 1.238 0.952 46 1.9637 1.488

22 2.0606 1.684 47 1.8952 1.592

23 2.6401 2.184 48 1.3863 1.06

24 3.39 2.91 49 3.474 2.796

25 1.1562 0.844 50 2.6908 1.86
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θm, θn, βm, βn, Umm, and Unn constitute the parameters of the model that were inferred
during the training. For the training, the generative model defines a probability distribu-
tion over all used pseudo-data for ln γmn by specifying a stochastic process for generating
hypothetical data for ln γmn conditioned on θm, θn, βm, βn, Umm, and Unn, which are
initially unknown, Rm, Rn, Qm, and Qn, which were adopted from Refs. [41, 124–126],
and the temperature and the mole fraction of m in the mixture. The generative process
therefore draws θm, θn, βm, βn, Umm, and Unn from a normal prior distribution with
zero mean and a standard deviation of one. The type of distribution used as prior as
well as the mean and the standard deviation are also hyperparameters of the model,
but were, as K, also set as in Ref. [84]. Then, the generative process models the prob-
ability of the training data ln γmn as a Cauchy likelihood distribution with scale λ = 0.2
centered around the outcome of the function f with the θm, θn, βm, βn, Umm, and
Unn drawn from the prior and the fixed parameters and conditions. Again, the type of
distribution used as likelihood as well as the scale are hyperparameters, which were set
as in Ref. [84]. The likelihood can be written as follows:

ln γmn(T , xm) = Cauchy(f(T , xm, Rm, Rn, Qm, Qn, θm, θn, βm, βn, Umm, Unn), λ) + ϵmn

(E.12)
where the function f includes the UNIFAC equations, Eqs. (E.1) - (E.11), as well as
Eqs. (40) - (42) and ϵmn captures the deviations between the model results and the
pseudo-data ln γmn(T , xm) for training the model. In the next step, the parameters that
were to be learned, i.e., θm, θn, βm, βn, Umm, and Unn, were concurrently inferred for all
groups m based on the set of training data, which requires the inversion of the generative
model. Since full Bayesian inference is intractable except for very simple cases, Gaussian
mean-field variational inference [15, 18, 19] was used for this purpose. Simply put, this
procedure can be understood as a comparison of the generated hypothetical ln γmn to
the training data, i.e., the pseudo-data for ln γmn as obtained with UNIFAC using the
latest public parameterization, to subsequently adjust the initially unknown parameters.
This results in the posterior, which constitutes a probability distribution for all inferred
parameters.

Finally, the means of the approximated posterior distributions over θm, θn, βm, βn,
Umm, and Unn were used to predict the group-interaction parameters amn and anm for
all possible combinations of groups according to Eqs. (40) - (42). The predicted amn

and anm were, in turn, used for predicting the activity coefficients of components ln γi in
binary mixtures with Eqs. (E.1) - (E.11), which were finally used for predicting vapor-
liquid equilibrium (VLE) phase diagrams. This approach thereby basically changes
Eq. (E.11) to:
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Ψnm = exp(−θn ⋅βm + θm ⋅βn −Umm

T
) ; Ψmn = exp(−θn ⋅βm + θm ⋅βn −Unn

T
)

(E.13)

The predicted VLE phase diagrams were compared to experimental data from the Dort-
mund Data Bank (DDB) [137].

For performing the task of Bayesian inference, the Stan framework [20] was used.

E.2.2 Scope of UNIFAC-MCM

Since UNIFAC-MCM yields a complete set of group-interaction parameters for the
first 50 main groups of UNIFAC, the approach allows modeling any binary and multi-
component mixture whose components can be built from these groups. The scope of
the new approach is thereby much larger than can be demonstrated here, simply due to
missing experimental data for a more comprehensive assessment. This is also indicated
in Fig. E.3, which shows the number of binary systems from the data set for which VLE
data are available in the DDB [137] and which contain the respective combination of
UNIFAC main groups.

While there are several group-interaction parameters that are required for modeling a
large number of binary systems for the data set (dark-colored cells in Fig. E.3), approx-
imately 80% of all possible main group combinations are not represented in the data set
(white cells in Fig. E.3). The lack of experimental data inevitably prevents the parame-
terization of UNIFAC, both in its public and commercial versions, in the ordinary way,
as only those parameters can be fitted for which respective training data are available.
With UNIFAC-MCM, on the other hand, this problem is solved; UNIFAC-MCM yields
predictions also for the 80% of group-interaction parameters from Fig. E.3 for which
classical UNIFAC versions cannot achieve this based on the studied data set.
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Figure E.3: Heatmap showing the number N of binary systems for which VLE data
are available in the DDB and which contain the respective combination of
UNIFAC main groups. White cells indicate that no VLE data are available
for the given combination of groups.
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E.3 Additional Results

In Fig. E.4, the results of UNIFAC-MCM for the prediction of the VLE data are plot-
ted in histogram representations, which show the number of binary systems that are
predicted with a defined relative deviation from the experimental mole fraction of the
low-boiling component in the vapor phase ∆y. In the left panel, the results of UNIFAC-
MCM on the complete horizon are shown. In the middle panel, the results for those
systems from the complete horizon are shown that can not be modeled by the pub-
lic UNIFAC version, but by the commercial UNIFAC-TUC; here, the UNIFAC-MCM
predictions are compared to those of UNIFAC-TUC. In the right panel, the results
for those systems from the complete horizon are shown that can only be modeled by
UNIFAC-MCM.
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Figure E.4: Histogram representations of number of systems that are predicted by

UNIFAC-MCM with a defined relative deviation from the experimental
vapor mole fractions of the low-boiling components ∆y. Left: for the
complete horizon (2,246 systems). Middle: for those systems that can not
be predicted with public UNIFAC (169 systems). Right: for those systems
that can not be predicted with UNIFAC-TUC (9 systems).
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Chapter 5.2.1

F.1 UNIFAC Parameterization

Fig. F.1 (a) visualizes which pair-interaction parameters amn are already reported in
UNIFAC 1.0 and which amn can additionally be fitted to the considered database. The
heatmap in Fig. F.1 (b) indicates the number of experimental data points from the DDB
for which a specific amn is relevant. The figure reveals an extreme heterogeneity, e.g.,
while 109 amn (7.6% of the matrix) is required for at least 1,000 data points, 476 (33%)
are not represented in any available data point.
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Figure F.1: (a) Representation of the published UNIFAC pair-interaction parameters
amn [12] (green) and the ones that could additionally be fitted using the
experimental data from the DDB [38] (blue). (b) Heatmap of number of
experimental data points from the DDB requiring specific amn.

Fig. F.2 is an extension of Fig. F.1 (a), additionally including the interaction param-
eters available for members of the UNIFAC-Consortium. Note that more than the 54
considered main groups are defined for this UNIFAC variant, which are omitted here.
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Figure F.2: Matrix of existing UNIFAC parameters (amn) of the public UNIFAC 1.0
model [12] (green), supplemented by those of the commercial UNIFAC-
Consortium variant [141] (orange). Furthermore, group combinations are
marked, for which data are available, but no parameters have yet been
fitted (blue).

Although the UNIFAC-Consortium model has a substantially increased scope compared
to UNIFAC 1.0, Fig. F.2 still reveals significant gaps in the interaction parameter matrix,
which can be mainly attributed to the lack of available experimental training data. This
underlines the importance of methods like UNIFAC 2.0, which can extrapolate these
missing interaction parameters. Since the parameter tables of the UNIFAC-Consortium
model are not disclosed, an evaluation and comparison of its prediction accuracy could
not be conducted here.
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F.2 Prediction Accuracy for Selected Binary
Mixtures

Table F.1 lists the 20 binary mixtures with the greatest improvement in mean squared
error (MSE) achieved by UNIFAC 2.0 compared to UNIFAC 1.0. Most of these mixtures
involve either a methoxy group paired with a silane group (main groups 13 ("CH2O")
and 42 ("SIH2")) or water paired with chlorinated aromatic components (main groups 7
("H2O") and 25 ("ACCL")). This highlights that the corresponding pair-interaction pa-
rameters in UNIFAC 1.0 are poorly fitted, whereas UNIFAC 2.0 provides a significantly
more accurate representation.

Table F.1: Mean absolute error (MAE) and mean squared error (MSE) of predictions
using UNIFAC 1.0 and UNIFAC 2.0 for binary mixtures showing the largest
improvement in MSE.

Component i Component j MAE2.0
mix MSE2.0

mix MAE1.0
mix MSE1.0

mix

Octane Tetramethoxysilane 0.12 0.03 8.27 137.06

Heptane Tetramethoxysilane 0.06 0.01 7.42 110.19

Water 1,2-Dimethoxy-
3,4,5,6-
tetrachlorobenzene

0.08 0.01 7.19 103.46

Ethylcyclohexane Tetramethoxysilane 0.13 0.03 7.21 104.22

Hexane Tetramethoxysilane 0.00 0.00 6.56 86.24

Methylcyclohexane Tetramethoxysilane 0.06 0.01 6.37 81.22

Cyclohexane Tetramethoxysilane 0.05 0.01 5.57 62.02

Water 1,2-Dimethoxy-3,4,5-
trichlorobenzene

0.23 0.11 5.72 65.33

Water 1,2,4,5-Tetrachloro-
3-methyl-6-
isopropylbenzene

0.61 0.75 5.90 69.73

Water 2,3,4-Trichloroanisole 0.03 0.00 5.20 54.11

Water 2,4,6-Trichloroanisole 0.02 0.00 5.20 54.04

Water 2,4,6-Trichlorophenol 0.28 0.20 5.40 59.65

Water 2,3,4,5-
Tetrachloroanisole

1.09 2.40 5.70 64.91
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Table F.1 continued.

Component i Component j MAE2.0
mix MSE2.0

mix MAE1.0
mix MSE1.0

mix

Water 1,2,3-
Trichlorobenzene

0.17 0.06 4.60 42.50

Water 2,3,5,6-
Tetrachloroanisole

1.19 2.85 5.60 62.69

Water 1,2,4-
Trichlorobenzene

0.30 0.21 4.46 39.86

Phenol Tetrachloromethane 0.25 0.15 4.02 70.14

Benzene Tetramethoxysilane 0.18 0.07 3.90 30.42

Water 2,4-Dichlorophenol 0.12 0.07 3.75 28.60

Water 2,6-Dichloroanisole 0.04 0.00 3.59 25.83
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F.3 Sensitivity of the Selected Hyperparameters

Fig. F.3 shows the performance of UNIFAC 2.0 with varied latent dimension K and
scale parameter of the Cauchy likelihood λ on the test set in the extrapolation study
considering unstudied components, cf. Fig. 41. In both cases, UNIFAC 2.0 is rather
robust towards changes in the hyperparameters, with only very small values of K or λ

showing a significant deterioration in prediction accuracy. This underscores the choice
of setting the hyperparameters to K = 8 and λ = 0.4. However, other suitable values are
also possible.
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Figure F.3: Comparison of the predicted ln γi with UNIFAC 2.0 for different values of
the latent dimension K (panel a) and the scale parameter of the Cauchy
likelihood λ (panel b) evaluated on the complete horizon (27,287 data
points for 2,603 binary mixtures) of the extrapolation study with unstudied
components, cf. Fig. 41.
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F.4 Extrapolation of Unseen Pair-Interaction
Parameters

Fig. F.4 shows the selected group combinations for the extrapolation study. All data
points requiring the respective amn were omitted from the training and used as a test
set for each group combination. Since the considered amn are needed with varying
frequencies to predict the binary mixtures of the experimental database, the resulting
test sets fluctuate in the number of data points and mixtures. Table F.2 gives a detailed
overview of all 100 test sets.
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Figure F.4: Matrix of existing UNIFAC parameters (amn) of the public UNIFAC 1.0
model [12] (green) alongside additional group combinations for which ex-
perimental data are available (blue). Group-combinations that have been
selected for the extrapolation study are highlighted by orange frames,
cf. Table F.2.

In this extrapolation study, interaction parameters of UNIFAC 1.0 are available for 62
out of the 100 selected group combinations. However, the availability of these parameters
does not guarantee the predictability of all binary mixtures within the test set, as they
may need other necessary interaction parameters. To address this distinction, Table F.2
categorizes the data into two groups: those predictable with both UNIFAC 1.0 and
UNIFAC 2.0 ("UNIFAC 1.0 horizon") and those exclusive to UNIFAC 2.0 ("UNIFAC 2.0
only"). Consequently, the prediction of the remaining 38 test sets can solely be carried
out with UNIFAC 2.0.
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Table F.2: Test sets evaluated for predicting interaction parameters amn. Each set is
categorized into two groups: "UNIFAC 1.0 horizon" and "UNIFAC 2.0 only".
The structural group identifiers (m − n) are identical to UNIFAC 1.0 [12].
The table lists the number of data points (Ndata) and binary mixtures (Nmix)
for each set. It also includes the mixture-wise mean absolute errors, MAE1.0

mix
and MAE2.0

mix, for both UNIFAC methods.

m − n
UNIFAC 1.0 horizon UNIFAC 2.0 only

Ndata Nmix MAE2.0
mix MAE1.0

mix Ndata Nmix MAE2.0
mix

1-17 1017 134 0.32 0.22 92 71 0.18

1-29 392 52 0.32 0.18 73 25 0.32

1-32 685 143 0.40 0.11 89 33 0.18

1-49 482 32 0.36 0.16 43 6 0.22

1-55 1034 135 1.31 0.18 202 55 0.74

2-8 196 39 0.24 0.33 11 7 0.28

2-39 259 49 0.16 0.18

2-45 151 10 0.11

3-11 2064 308 0.14 0.16 110 29 0.19

3-15 442 43 0.26 0.27 73 7 0.27

3-25 4305 535 0.23 0.34 292 108 0.19

3-30 689 22 0.17 0.11 32 1 0.05

3-32 135 51 0.07 0.09 47 24 0.18

3-39 448 17 0.17 0.20

3-42 65 3 0.15 1.36 89 4 0.19

3-43 46 1 0.13 0.15 86 2 0.12

4-6 415 19 0.21 0.15 12 1 0.02

4-11 1221 132 0.11 0.13 76 13 0.18

4-12 102 7 0.17 0.12

4-48 75 11 0.21

4-49 95 6 0.05 0.07

5-6 1473 39 0.28 0.18 26 4 0.24

5-34 112 33 0.35 0.42 90 20 0.26

5-49 149 5 0.20 0.10

5-55 35 11 0.16 0.20
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Table F.2 continued.

m − n
UNIFAC 1.0 horizon UNIFAC 2.0 only

Ndata Nmix MAE2.0
mix MAE1.0

mix Ndata Nmix MAE2.0
mix

5-84 711 100 0.19 0.13 280 61 0.18

6-28 37 1 0.36 0.23

6-30 36 1 0.19 0.14

6-32 53 2 0.29 0.05

7-27 94 15 0.34 0.71 2 2 0.09

7-39 341 3 0.06 0.10

7-55 15 1 0.11 0.36

7-85 194 19 0.92

8-11 99 9 0.12 0.14

8-20 51 6 1.41 2.57

8-28 1 1 0.02 0.03

8-37 1 1 0.13

8-38 30 15 0.17

8-40 26 18 0.25

8-85 6 1 2.77

9-10 300 33 0.10 0.10

9-11 995 126 0.12 0.13 6 2 0.04

9-20 852 42 0.19 0.18 9 1 0.23

9-21 520 54 0.30 0.30 25 2 0.11

9-24 251 14 0.10 0.13

9-29 2 2 0.10 0.08

9-38 38 20 0.10

9-39 114 10 0.09 0.14

9-40 131 24 0.24

10-30 6 1 1.23

10-50 28 15 0.10

11-12 54 8 0.08 0.08 3 1 0.06

11-15 377 1 0.09 0.03
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Table F.2 continued.

m − n
UNIFAC 1.0 horizon UNIFAC 2.0 only

Ndata Nmix MAE2.0
mix MAE1.0

mix Ndata Nmix MAE2.0
mix

11-30 80 5 0.28 0.25

11-41 394 123 0.20 0.22 5 3 0.33

11-48 45 28 0.39

12-19 12 1 0.09 0.03

13-26 22 12 0.15 0.13 27 9 0.11

13-34 10 9 0.08 0.07 96 21 0.12

13-41 587 116 0.19 0.21 33 11 0.59

13-85 1594 315 0.15

14-19 23 5 0.36 0.26

14-35 15 1 0.26 0.28

14-41 24 22 0.29

14-43 27 3 0.14 0.15

15-24 52 2 0.09 0.10

15-49 9 1 0.07

16-32 1 1 0.17

16-34 10 10 0.10

18-25 9 9 0.07 0.06

18-32 3 3 0.12

18-38 32 3 0.22 0.24

18-48 31 1 0.42

19-21 150 21 0.16 0.20 1 1 0.24

19-35 40 1 0.27

20-33 103 2 0.14 0.13

20-34 12 4 0.10

20-46 154 3 0.39 0.37

22-55 5 1 0.18

23-25 25 3 0.06 0.07

23-30 14 1 0.26 0.17
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Table F.2 continued.

m − n
UNIFAC 1.0 horizon UNIFAC 2.0 only

Ndata Nmix MAE2.0
mix MAE1.0

mix Ndata Nmix MAE2.0
mix

23-45 27 4 0.09

24-45 2 1 0.04

25-39 35 2 0.45 0.45

25-46 2 2 0.21

26-30 2 1 0.22

27-38 193 104 0.11

28-37 35 1 0.09 0.04

30-50 2 1 0.05

31-32 1 1 0.44

31-47 36 1 0.10 0.21 43 3 0.16

32-50 2 2 0.64

33-38 43 8 0.09

35-37 3 3 0.59

38-47 23 15 0.13

39-47 9 1 0.02

40-41 160 70 0.23

41-42 3 2 0.22

41-51 9 2 0.28

47-48 20 7 0.18
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F.5 Symmetric UNIFAC Model

In the following, a modification to the UNIFAC method by considering the symmetry of
pair-interaction energies, denoted as Umn = Unm, is described. This contrasts with the
approaches of UNIFAC 1.0 and 2.0, which directly optimize asymmetric pair-interaction
parameters (amn ≠ anm) that are derived as follows:

amn = Umn −Unn (F.1)

anm = Unm −Umm (F.2)

This variant is called UNIFAC 2.0 sym and optimizes the symmetric interaction ener-
gies, aligning with the physical consistency highlighted in Chapter 5.1. The predictive
performance of this approach is depicted in Figure F.5, comparing the mean absolute
error (MAE) and mean squared error (MSE) for both UNIFAC 2.0 and UNIFAC 2.0
sym across the extensive data set of 18,715 binary mixtures.
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Figure F.5: Mean absolute error (MAE) and mean squared error (MSE) of the pre-
dicted ln γi with UNIFAC 2.0 and a model variant enforcing symmetric
interaction energies (UNIFAC 2.0 sym). The whole binary data set was
considered, comprising 224,562 data points for 18,715 binary mixtures.
Error bars denote standard errors of the means.

Although the symmetric model offers greater physical consistency, its reduced flexibility
slightly impacts prediction accuracy. Therefore, the primary focus is on UNIFAC 2.0.
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G Supporting Information for
Chapter 5.2.2

G.1 Modified UNIFAC Parameterization

Fig. G.1a provides a visualization of the pair-interaction parameters included in the
standard mod. UNIFAC 1.0 model [13], as well as those that can be additionally fitted
using the experimental database discussed in the "Data" section. Additionally, Fig. G.1b
illustrates the distribution of the experimental data points considered here associated
with each main group combination, highlighting the extent to which the respective pair-
interaction parameters are supported by the available data.
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Figure G.1: (a) Representation of the published mod. UNIFAC 1.0 pair-interaction
parameters [13] (green) and the ones that could additionally be fitted
using the experimental data from the DDB [142] (blue). (b) Heatmap
of the number of experimental data points (ln γi and hE) from the DDB
requiring specific main group combinations.

The heatmaps reveal a strong disparity in data coverage. For example, while 216 group
combinations (11% of the matrix) are associated with more than 1,000 data points, 248
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group combinations (13%) are only relevant in 20 or fewer data points. Even worse,
594 parameters (30%) do not appear in the available experimental data and can not be
directly fitted. This pronounced heterogeneity underscores the challenges of parameter
fitting and emphasizes the importance of models like mod. UNIFAC 2.0 that efficiently
use the available experimental data to fill the gaps.

Fig. G.2 extends Fig.G.1a by incorporating the interaction parameters available in the
commercial UNIFAC-Consortium model [141]. It is important to note that the UNIFAC-
Consortium version includes more main groups than the 63 considered in the public
version, which have been omitted for consistency here.
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Figure G.2: Matrix of existing pair-interaction parameters of the public mod. UNIFAC
1.0 model [13] (green), supplemented by those of the commercial UNIFAC-
Consortium version [141] (orange). Furthermore, group combinations are
marked for which data are available, but no parameters have yet been
fitted (blue).

While the UNIFAC-Consortium model provides a substantially broader scope than the
public mod. UNIFAC 1.0, the heatmap in Fig. G.2 still highlights significant gaps in the
interaction parameter matrix. These gaps are primarily due to the limited availability of
experimental training data, emphasizing the critical need for extrapolative methods such
as mod. UNIFAC 2.0. Unlike traditional models, mod. UNIFAC 2.0 can predict these
missing parameters, thus bridging the gaps in the interaction parameter space. However,
since the parameter tables for the UNIFAC-Consortium model are proprietary, a direct
evaluation or comparison of its predictive accuracy could not be performed.
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G.2 Extrapolation to Multi-Component Mixtures

Despite the absence of multi-component mixture data during the training of mod. UNI-
FAC 2.0, the physical principles of its framework allow it to make reliable predictions
for such systems. To illustrate this capability, Fig. G.3 shows isothermal vapor-liquid
phase diagrams for two ternary mixtures from the "mod. UNIFAC 2.0 only" data set, i.e.,
mixtures for which mod. UNIFAC 1.0 cannot be applied due to missing pair-interaction
parameters.

In these examples, the temperature and liquid-phase composition (shown as blue sym-
bols in Fig. G.3) were used as inputs to mod. UNIFAC 2.0. The model predicted the ac-
tivity coefficients from which the corresponding vapor-phase composition at equilibrium
(filled orange symbols) could be calculated using the extended Raoult’s law, cf. Eq. (43).
For comparison, the experimental vapor-phase compositions are also shown (open or-
ange symbols). The predictions are in excellent agreement with the experimental data,
demonstrating the model’s suitability for describing multi-component mixtures.
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Figure G.3: Prediction of isothermal vapor-liquid phase diagrams for ternary mixtures
with mod. UNIFAC 2.0 (pred) and comparison to experimental data (exp)
from the DDB. The temperature and the composition of the liquid phase
were specified, and the composition of the corresponding vapor phase in
equilibrium was predicted. Solid lines are experimental conodes, dashed
lines are predicted conodes. Mod. UNIFAC 1.0 is not applicable to the
mixtures shown.
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G.3 Prediction of Excess Enthalpies for Unseen
Components

The extrapolation capability of mod. UNIFAC 2.0 for mixtures containing unseen com-
ponents was evaluated by randomly selecting 100 components and training the model on
all available data (ln γi and hE) for those mixtures where these components do not occur.
The retained mixtures served as the test set. Fig. G.4 presents results for predicting hE

on this test set in a box plot, analogous to Fig. 49, which focuses on ln γi.
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Figure G.4: Mean absolute error (MAE) of the predicted hE of mixtures containing
unseen components with mod. UNIFAC 2.0 (shaded boxes). For compar-
ison, the results of mod. UNIFAC 2.0 trained on all experimental data
and mod. UNIFAC 1.0 are also shown (plain boxes). The "mod. UNIFAC
1.0 horizon" comprises 11,906 data points for 473 binary mixtures, while
an additional 1,289 experimental data points for 71 binary mixtures could
only be predicted with mod. UNIFAC 2.0 ("mod. UNIFAC 2.0 only"). The
boxes represent the interquartile ranges (IQR), and the whiskers extend
to the last data points within 1.5 times the IQR from the box edges.

On the "mod. UNIFAC 1.0 horizon", mod. UNIFAC 2.0 not only outperforms mod. UNI-
FAC 1.0 but also achieves comparable prediction accuracies whether trained on all ex-
perimental data or tasked with true extrapolation, demonstrating its robust extrapo-
lation capabilities. On the "mod. UNIFAC 2.0 only" set, slightly higher MAE values
are observed. However, the method still provides reasonable predictions for most mix-
tures, as evidenced by the low median, underscoring its applicability in scenarios where
mod. UNIFAC 1.0 cannot be applied.
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G.4 Extrapolation to Unseen Pair-Interaction
Parameters

Fig. G.5 shows the 100 main group combinations randomly selected for the second
extrapolation study, cf. Fig. 50. For each combination, all ln γi and hE data associated
with the corresponding interaction parameters were removed from the training set and
used exclusively for testing. The frequency of these group combinations varies in the
experimental database, resulting in test sets of different sizes and compositions. A
comprehensive summary of all 100 test sets, including the number of data points and
mixtures, is provided in Tables G.1 (for ln γi) and G.2 (for hE). These tables also include
MAEs for each individual test set.
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Figure G.5: Matrix of available pair-interaction parameters of the mod. UNIFAC 1.0
model [13] (green) alongside additional group combinations for which ex-
perimental data are available [142] (blue). Group combinations that have
been selected for the extrapolation study in this chapter are highlighted
by orange frames, cf. Tables G.1 and G.2.

In this extrapolation study, 53 of the selected group combinations were not parameter-
ized in mod. UNIFAC 1.0. Moreover, even when these parameters are available, they
do not guarantee that all binary mixtures within the test sets can be predicted, as
additional interaction parameters might also be required. To address this distinction,
Tables G.1 and G.2 categorize the data into two groups: mixtures that can be predicted
by both mod. UNIFAC 1.0 and mod. UNIFAC 2.0 (referred to as the "mod. UNIFAC
1.0 horizon") and those that can only be predicted by mod. UNIFAC 2.0 ("UNIFAC 2.0
only"). Since certain group combinations have data for either ln γi or hE (but not both),
they appear in only one of the following tables.
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Table G.1: Test sets for ln γi evaluated for predicting interaction parameters. Each
set is categorized into two groups: "mod. UNIFAC 1.0 horizon" and
"mod. UNIFAC 2.0 only". The main group identifiers (m−n) are identical
to mod. UNIFAC 1.0 [13]. The table lists the number of data points (Ndata)
and binary mixtures (Nmix) for each set. It also includes the mixture-wise
mean absolute errors, MAE1.0

mix and MAE2.0
mix, for both mod. UNIFAC meth-

ods.

m − n
mod. UNIFAC 1.0 horizon mod. UNIFAC 2.0 only

Ndata Nmix MAE2.0
mix MAE1.0

mix Ndata Nmix MAE2.0
mix

1-2 21164 3021 0.18 0.22 1617 535 0.21

1-7 19331 680 1.18 1.35 514 58 1.27

1-9 19557 1557 0.17 0.16 976 153 0.38

1-55 672 26 0.06 0.08 1447 58 0.18

1-90 1860 268 0.24 0.47 1115 224 0.26

2-17 92 20 0.09 0.91 15 13 0.25

2-19 741 275 0.19 0.14 131 101 0.11

2-34 206 21 0.08 0.05 85 25 0.25

2-35 37 15 0.16 0.16 19 10 0.41

3-5 10550 795 0.23 0.51 367 63 0.22

3-10 672 69 0.19 0.2 192 71 0.28

3-23 45 4 0.24 0.02 26 9 0.14

3-28 82 7 0.05 0.05 3 3 0.27

4-12 102 7 0.13 0.1

4-15 136 15 0.1 0.13 70 4 0.19

4-84 1971 284 0.2 0.18 632 145 0.18

4-89 450 70 0.37 0.34 109 37 0.18

5-17 97 6 0.32 0.13

5-19 994 70 0.17 0.17 29 8 0.14

5-25 818 29 0.11 0.11 25 5 0.08

5-32 50 14 0.06 0.06

5-35 200 8 0.29 0.21 48 5 0.28

5-87 143 35 0.05 0.07 42 7 0.08

6-19 269 8 0.17 0.12 7 3 0.11
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Table G.1 continued.

m − n
mod. UNIFAC 1.0 horizon mod. UNIFAC 2.0 only

Ndata Nmix MAE2.0
mix MAE1.0

mix Ndata Nmix MAE2.0
mix

6-31 69 1 0.22 0.17

6-43 372 7 0.13 0.14

6-52 88 1 0.09 0.03

6-98 56 10 0.35 0.46 13 3 0.31

7-12 136 14 0.56 0.31

7-14 1313 34 0.85 0.46

7-33 166 27 1.06 0.98 6 1 0.62

7-55 21 2 0.32

8-26 4 4 0.42

8-40 26 18 0.31

9-16 102 28 0.09 0.19 11 5 0.11

9-23 48 2 0.06 0.06

9-55 260 8 0.1

9-99 83 13 0.17

10-24 11 1 0.41

10-98 30 6 0.2

11-15 377 1 0.06 0.03

11-41 346 105 0.21 0.27 53 21 0.24

11-84 517 95 0.38

12-44 135 5 0.26 0.23

12-53 11 1 0.38

14-22 11 3 0.17

14-52 6 1 0.39

15-18 14 1 0.12

15-31 75 2 0.26

16-35 1 1 0.37

17-28 1 1 0.19

17-40 42 26 0.35



242 Appendix G Supporting Information for Chapter 5.2.2

Table G.1 continued.

m − n
mod. UNIFAC 1.0 horizon mod. UNIFAC 2.0 only

Ndata Nmix MAE2.0
mix MAE1.0

mix Ndata Nmix MAE2.0
mix

18-34 4 4 0.27

18-61 31 1 0.26

19-89 72 13 0.19

20-30 40 3 0.68

21-24 228 11 0.14 0.1 22 1 0.14

21-56 9 2 0.4 0.03

21-61 3 3 0.29

22-87 24 7 0.15

23-37 36 3 0.09 0.05 4 2 1.8

23-48 13 11 0.32

24-27 18 1 0.6 0.49

24-43 192 2 0.02 0.03

24-45 127 1 0.14 0.01

24-53 42 2 0.05

24-98 30 6 0.3

25-30 32 1 0.05

25-38 40 8 0.1

25-45 19 1 0.12 0.08 3 1 0.76

26-85 184 44 0.18

26-90 34 7 0.11

27-32 3 2 0.27

27-40 182 101 0.21

28-39 1 1 0.25

28-98 15 3 0.43

29-61 24 2 0.08

31-47 10 1 0.08 0.02

33-34 1 1 0.15

33-35 1 1 0



Appendix G Supporting Information for Chapter 5.2.2 243

Table G.1 continued.

m − n
mod. UNIFAC 1.0 horizon mod. UNIFAC 2.0 only

Ndata Nmix MAE2.0
mix MAE1.0

mix Ndata Nmix MAE2.0
mix

34-91 78 13 0.33

36-40 3 1 0.19

39-44 128 2 0.82 0.84

43-87 50 11 0.11

45-61 17 2 0.4

45-87 24 7 0.11

Table G.2: Test sets for hE evaluated for predicting interaction parameters. Each set is
categorized into two groups: "mod. UNIFAC 1.0 horizon" and "mod. UNI-
FAC 2.0 only". The main group identifiers (m − n) are identical to
mod. UNIFAC 1.0 [13]. The table lists the number of data points (Ndata)
and binary mixtures (Nmix) for each set. It also includes the mixture-wise
mean absolute errors, MAE1.0

mix and MAE2.0
mix, for both mod. UNIFAC meth-

ods.

m − n
mod. UNIFAC 1.0 horizon mod. UNIFAC 2.0 only

Ndata Nmix MAE2.0
mix MAE1.0

mix Ndata Nmix MAE2.0
mix

1-2 11734 599 0.15 0.26 392 28 0.31

1-7 15366 190 0.55 0.54 618 12 0.36

1-9 19871 611 0.2 0.19 797 40 0.27

1-55 1664 35 0.15 0.13 3442 114 0.22

1-90 349 19 0.86 0.46 3 1 0.03

2-17 114 8 0.16 0.27

2-19 281 17 0.2 0.22 11 2 0.76

2-34 51 6 0.05 0.12 15 1 0.49

2-35 23 3 0.26 0.34

3-5 10942 293 0.36 0.78 599 12 0.55

3-10 631 39 0.27 1.18 45 2 0.12

3-23 168 10 0.28 0.13 4 2 1.41

3-28 31 3 0.09 0.07 2 1 0.18
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Table G.2 continued.

m − n
mod. UNIFAC 1.0 horizon mod. UNIFAC 2.0 only

Ndata Nmix MAE2.0
mix MAE1.0

mix Ndata Nmix MAE2.0
mix

4-12 34 2 0.01 0.01

4-15 116 7 0.09 0.49 18 1 1.65

4-84 64 6 0.11 0.1 54 3 0.18

4-89 8 1 0.03 0.04 54 3 0.18

5-17 309 8 0.37 0.18 18 2 2.25

5-19 1118 34 0.19 0.25 21 1 0.74

5-25 513 24 0.23 0.4

5-32 37 2 0.32 0.38

5-35 633 18 0.33 0.24 149 7 0.74

5-44 83 9 0.16

6-19 135 5 0.07 0.15

6-31 160 1 0.21 0.02

6-43 286 3 0.14 0.08 10 1 0.02

6-52 38 1 0.3 1.12

7-12 53 3 0.29 0.43

7-14 876 14 0.91 0.38 85 2 0.8

7-33 20 1 0.63 0.43

9-16 364 20 0.32 0.33

9-23 70 6 0.24 0.19

9-55 378 16 0.06

10-24 76 5 0.11

11-15 204 9 0.21 0.14

11-41 945 35 0.24 0.13 66 7 0.15

12-26 57 2 0.04

12-52 30 1 0.01

14-38 20 1 0.01

14-46 33 1 0.34

14-48 36 2 0.42
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Table G.2 continued.

m − n
mod. UNIFAC 1.0 horizon mod. UNIFAC 2.0 only

Ndata Nmix MAE2.0
mix MAE1.0

mix Ndata Nmix MAE2.0
mix

15-18 33 4 0.1

15-31 8 1 1.84

15-56 40 1 0.23 0.12

15-84 18 1 0.47

16-35 24 1 1.13

17-89 36 2 1.22

18-34 14 2 0.64

18-44 33 1 3.86

21-24 556 18 0.14 0.09 68 2 0.39

23-39 15 1 0.04

23-48 3 1 1.04

24-43 603 9 0.16 0.16

24-45 106 1 0.33 0.01

24-53 281 5 0.09

25-38 84 6 0.07

25-45 8 4 0.17 0.27

28-39 1 1 0.1

29-61 10 1 0.17

31-47 10 1 0.22 0.01

31-85 21 1 0.19

31-91 9 1 0.19

33-35 126 5 0.72 0.45

40-49 16 1 0.82

45-61 51 3 0.91

Fig. G.6 shows the average error scores for predicting hE across all 100 test sets, analo-
gous to Fig. 50, which focuses on ln γi. As before, the performance of mod. UNIFAC 2.0
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is compared to that of mod. UNIFAC 1.0 and the version of mod. UNIFAC 2.0 trained
on the entire experimental database.
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Figure G.6: Mean absolute error (MAE) of the predicted hE with mod. UNIFAC 2.0
for 100 test sets, where all data points for which a specific main group
combination is relevant were withheld during training (shaded boxes);
cf. Table G.2 for numerical results. The results of mod. UNIFAC 2.0
trained on all experimental data and mod. UNIFAC 1.0 are shown for
comparison (plain boxes). The boxes represent the interquartile ranges
(IQR), and the whiskers extend to the last data points within 1.5 times
the IQR from the box edges.

Comparing the predictions of mod. UNIFAC 2.0 with those of mod. UNIFAC 1.0 on the
"UNIFAC 1.0 horizon" shows that the fitted pair-interaction parameters of mod. UNI-
FAC 2.0 outperform those of mod. UNIFAC 1.0, while its true predictions achieve com-
parable accuracy. When evaluating the true predictions of mod. UNIFAC 2.0 against
the model trained on the entire experimental data set, a slight but expected decrease in
accuracy is observed. Nevertheless, the differences remain moderate, underscoring the
robustness of mod. UNIFAC 2.0 in extrapolating to unseen interaction parameters, a
capability inherently lacking in mod. UNIFAC 1.0.
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