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Abstract 1
Learning-based solutions have revolutionized the field of Artificial Intelligence (AI), pushing
it to new frontiers in a variety of domains. AI advancements owe much to highly curated
datasets that enable the training and testing of complex deep learning models, leading
to excellent accuracy in controlled academic environments. However, it is essential to
acknowledge that the efficacy of these models in these lab settings does not fully encapsulate
the complexities and challenges encountered in real-life applications. To ensure the practical
applicability of learning-based solutions, it is crucial to understand their limitations and
performance under diverse and challenging measurements. This requires bridging the gap
between academic benchmarks and the complexities of the real world.

In this thesis, we take a step toward better understanding the limitations of current deep
learning models in handling corner cases and challenging scenarios, with a focus on com-
puter vision tasks across image and video domains. Through this exploration, we identify
areas and ways to improve the robustness of computer vision solutions.

In the image domain, we study image classification and analyze the model behavior when
processing images containing background noise and clutter. We extend this study to
investigate salient image classification, a scenario in which multiple objects are present in a
scene, and the model is expected to classify the most prominent or salient one.

In the video domain, we explore the fundamental task of spatiotemporal feature correspon-
dence learning. This task has diverse applications, such as video object segmentation and
tracking. Our investigation delves into challenging scenarios, including tracking smaller
objects, managing occlusion, coping with crowded scenes, and efficiently processing longer
videos. Furthermore, we investigate self-supervised learning methods for spatiotemporal
correspondence learning, motivated by the high cost of annotating video data for this task
and the challenges that arise when training on small datasets. Finally, we study the problem
of out-of-domain generalization on video data, a critical issue that affects the applicability
of learning-based solutions. To this end, we evaluate several ways for using self-supervised
learning to mitigate the adverse effects of domain shift, enabling the model to perform well
in new, unseen domains.

We hope this work fosters advancements in the field of AI by providing insights and
directions for designing more robust models that deliver enhanced performance in diverse
and complex scenarios.
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Introduction 3
Artificial Intelligence (AI), the art of creating machines that can reason similar to the human
cognitive system, is a long-standing ambition that goes back centuries to centuries ago when
philosophers like Aristotle were hypothesizing about the workings of the human mind and
the systematic way of thinking. However, the official establishment of the AI field known
to us today did not happen until the summer of 1956 during the Dartmouth Workshop, the
first academic gathering where researchers from various areas came together to explore
the possibilities of creating machines that could exhibit intelligent behavior, marking a
turning point in the history of AI [Moo06; MC04]. Led by John McCarthy, Marvin Minsky,
Nathaniel Rochester, and Claude Shannon, participants in this workshop formulated early
AI concepts and proposed ambitious goals, setting the stage for decades of exploration,
innovation, and advancements in AI technologies [McC+06].

Following this event, the field of AI witnessed the emergence of different approaches and
viewpoints, including symbolic AI. This paradigm, also known as classical or traditional
AI, focused on representing knowledge and performing reasoning using symbolic logic and
formal rules [Lev86; Nil82]. Aiming to create intelligent systems by explicitly encoding
human knowledge and rules in the form of logical relationships, symbolic AI researchers
developed expert systems, knowledge-based systems, and rule-based systems that employed
symbolic representations and inference mechanisms to solve problems in specific domains
[Lug05]. These methods enjoyed initial success, with expert systems being widely deployed
in various industries. However, in the 1980s and early 1990s, the field experienced a period
known as the AI winter. During this time, the limitations of symbolic AI became evident
as the reliance on manually crafted rules and the inability to learn from data and deal with
complex real-world problems hindered further progress, leading to a decline in interest in
the field [Nil10].

The resurgence of AI in the early 2010s was fueled by remarkable advancements in deep
learning methods, which were made possible by significant progress in hardware, particularly
the utilization of Graphics Processing Units (GPUs) and the availability of large-scale
datasets such as ImageNet [Den+09; KSH12]. Over the past decade, deep learning methods
such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Transformers have revolutionized the field of AI, demonstrating exceptional performance
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across various tasks, surpassing traditional AI methods by a wide margin [Wan+23; SVL14;
Vas+17].

This pivotal shift in the AI landscape has prompted researchers to increasingly adopt data-
driven approaches. As a result, within a relatively short span of about a decade, deep
learning models have become the fundamental building blocks of numerous AI applications,
driving breakthroughs in areas such as computer vision, natural language understanding,
and autonomous systems. As examples of these unprecedented advancements, one can
think of Reinforcement Learning (RL) techniques being successfully applied to develop AI
systems capable of playing complex strategy games like Go, surpassing human performance.
Another notable breakthrough is the development of large language models such as chatGPT
[Bro+20] that can engage in interactive conversations and provide human-like responses
across various topics. Moreover, in the realm of AI generation, generative algorithms like
Diffusion models [HJA20] and CLIP [Rad+21] have exhibited extraordinary advancements,
empowering the generation of highly realistic outputs in domains like image synthesis and
text generation.

However, despite the remarkable advancements in deep learning methods and the significant
role AI plays in our daily lives, there is still much progress to be made. One key limitation
hindering the widespread applicability of these methods stems from their development and
evaluation within controlled laboratory settings with a focus on optimizing performance
scores on specialized datasets. Yet, there is a growing recognition that real-world scenarios
can be significantly different, often presenting unique challenges that are not well-captured
by existing benchmarks. For instance, factors like data bias, robustness, and out-of-domain
generalization pose ongoing challenges that need to be addressed for deep learning solutions
to be more reliable and trustworthy. These aspects motivate the progress of this thesis, as
elaborated in the following.

3.1 Motivation

To truly rely on learning-based solutions, it is imperative to thoroughly analyze the behavior
of these models beyond the performance scores on academic datasets and evaluations
under controlled lab settings. In this thesis, we aim to uncover the weaknesses of existing
deep learning methods in challenging real-world measurements, paving the way for more
robust and reliable systems with a focus on computer vision applications. Undoubtedly,
this is a formidable challenge that can be addressed from multiple, potentially orthogonal
perspectives. As such, we embark on a journey toward better understanding the limitations
of current approaches, hoping to take a step toward solving these issues.
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This work investigates the limitations of deep learning solutions across multiple domains
within the field of computer vision. In the image domain, our primary focus lies in image
classification, a well-established task that serves as a standard benchmark for evaluating deep
learning architectures. In the video domain, we investigate spatiotemporal correspondence
learning—the crucial task of identifying the matching features across both spatial and
temporal dimensions within video data. Establishing these correspondences unlocks various
practical applications, such as Video Object Segmentation (VOS) and Multi-Object Tracking
(MOT), illustrated in Figure 3.1. The learning of these correspondences is accomplished
by training neural networks that can compute distinctive and representative image features,
ensuring that features belonging to the same object instance are grouped closely together in
the embedding space while those from different instances are well-separated.

Image Domain: Classification

In image classification, we investigate a scenario where images contain a high level of back-
ground noise and clutter. We note that the state-of-the-art classifiers have been developed
using datasets such as CIFAR [KH+09] and ImageNet [Den+09] that exhibit high levels
of curation in terms of containing unoccluded and prominent objects relatively located at
the image center with minimal background noise. These datasets were meant to answer the
question: can learning-based solutions distinguish between all object classes in the dataset?
While these datasets have been crucial for advancing machine learning solutions, they do not
fully represent the conditions encountered in natural image classification. This discrepancy
raises a fundamental question: even if we successfully solve ImageNet, have we truly solved
the challenges of image classification as encountered in real-world scenarios? This is an
important question as the answer to that determines if we can reliably use current models in
real-world scenarios, including various levels of noise, lighting conditions, and object sizes.
These factors motivate conducting further research on methods that can effectively tackle
these aspects.

Video Domain: Spatiotemporal Correspondence Learning

Video Object Segmentation (VOS). In the video domain, our exploration begins with
the task of VOS. This task aims to densely track a set of target objects starting from
the segmentation mask provided in the first frame. One of the prominent paradigms for
addressing VOS is through propagation-based algorithms. These methods involve the
continuous propagation of the object mask from one frame to the next, leveraging feature
similarity and motion information. We start our investigation with a close examination of a
state-of-the-art propagation-based method. We are particularly interested in this method as
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Fig. 3.1: Visual examples for spatiotemporal correspondence learning applications. The first and
second rows showcase video object segmentation and multi-object tracking applications.

it leverages the power of RNNs, enabling the integration of both visual and motion cues
within a single architecture and in an end-to-end manner. However, our analysis reveals
that the model’s performance deteriorates when tracking smaller objects and capturing
fine object details around the edges. Furthermore, we observed a decline in accuracy for
occluded objects and longer videos. It is important to note that these particular cases are
relatively under-represented in current datasets [Pon+17; Xu+18]; as a result, the models
may obtain a high accuracy without resolving these aspects. Nevertheless, it is crucial to
address these issues to enhance the method’s robustness and make it applicable in these
challenging real-world settings.

Self-supervised Learning for Correspondence Learning. One of the known limitations
of the learning-based solutions is dependence on labeled data. This concern becomes
particularly pronounced in the context of spatiotemporal learning, where annotators must
label every frame of a video with multiple object instances. Consequently, the scarcity and
labor-intensive nature of obtaining such extensive annotations limits harnessing the full
potential of these models. While under lab conditions and with small datasets, we have per-
frame labels for a set of desired object categories, it becomes infeasible to label a sufficient
volume of data covering diverse scenarios required for training large deep learning models.
In this context, self-supervised solutions emerge as a crucial practical approach, especially
for tasks demanding an abundance of spatiotemporal video labels, such as MOT.

Recently, there has been a surge in efforts to devise self-supervised methods tailored to
spatiotemporal correspondence learning. These proposed solutions mainly center around
proxy objectives based on color constancy assumptions across video frames. However,
using color information as the supervision signal leads to shortcomings in crowded scenes
featuring multiple similar objects with the same color. This is particularly problematic in
the context of MOT, where traffic scenarios frequently involve vehicles sharing identical
colors, rendering color information ineffective as a discriminative signal in such situations.
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Therefore, further research in this domain is much needed to develop effective solutions and
design more robust models.

Test Time Adaptation on Video Data. In the next part of this thesis, we delve into a
longstanding challenge of out-of-domain generalization in deep learning models, focused on
video data. It is well known that machine learning solutions only work well when training
and testing data follow the same distribution. However, this requirement is frequently
unattainable in real-world applications. For instance, training a VOS model on data captured
in sunny weather may prove inadequate when facing a testing scenario comprising data
samples from snowy weather. Clearly, attempting to finetune the model on the test data,
where labels are likely unavailable, is not a feasible approach.

Several methods have been recently proposed in the image domain under the name of Test
Time Adaptation (TTA), aiming to mitigate the impact of covariate shift. Assuming the
availability of a limited amount of unlabeled images from test distribution, these approaches
try to capture the approximate statistics of the test domain. By adapting the network weights
based on these statistics, they show promising results in alleviating the adverse effects of
the distribution gap between training and testing data. While TTA has shown considerable
potential in the image domain, its effectiveness in the video domain remains a topic of
inquiry. Video data introduces additional complexities and temporal dynamics, which may
affect the transferability of TTA-based observations from images to videos. As such, further
research is needed to investigate optimal ways for applying TTA techniques in the video
domain.

In the following, we summarize the research questions investigated in this thesis motivated
by the discussions above, followed by our proposed solutions and contributions.

3.2 Research Questions and Contributions

The contributions of this work are divided into three main chapters, looking into different
challenges in image and video processing:

3.2.1 Image Domain

Question 1: How robust is an image classifier to background clutter? How can we
mitigate the performance drop caused due to this effect? Our study focuses on a scenario
where the input image exhibits severe background clutter, and the object is located at a
random position in the image. We experimentally observe that these data characteristics
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considerably deteriorate the classifier’s performance. To facilitate this issue, we propose a
novel approach that geometrically transforms the input image to discard the background
clutter and center the main content, thereby enhancing classification accuracy. To this
end, We train an additional network to acquire the desired transformations for gradually
enhancing the classifier’s input. Accordingly, we name the proposed model Sequential
Spatial Transformer Network (SSTN) as it sequentially transforms the input image intending
to remove the background noise. This research question is discussed in Section 5.3.

Question 2: Can the transformations generated by SSTN be leveraged for curriculum
learning? Curriculum learning is a widely recognized technique for improving the training
of neural networks in terms of training stability and final accuracy. It involves starting the
training process with easier tasks and gradually increasing the difficulty level. However,
automatically generating the curriculum remains a challenge. Inspired by the progressive
image transformations performed by SSTN, we hypothesize that these transformations create
a spectrum of data ranging from easy to hard. Hence, we explore multiple ways to utilize
the SSTN-generated intermediate data during the training in the context of curriculum
learning. We empirically demonstrate that the proposed training scheme considerably
enhances classification performance. This research question is discussed in Section 5.4.

Question 3: Can the principles of SSTN be extended to multiple objects? In our study
of SSTN, we focused on a simplified scenario where images contained artificial clutter,
with only one actual object present in the scene. Building on the insights gained from
SSTN, we explore the possibility of extending this approach to a more challenging scenario
with multiple actual objects. In this case, the model is expected to identify and focus
on the salient object. This outline is inspired by human perception, where in the first
glance, the attention is automatically drawn to the most salient object in the scene [BSI13].
However, the task of identifying the salient object is challenging, primarily because of
the inherent ambiguity in the definition of saliency. To tackle this, we hypothesize that
object size correlates with saliency and consider the largest object in the scene as the most
salient. Consequently, we develop a variant of the SSTN model that learns to prioritize
the largest/salient object, thereby improving the classification accuracy for that object.
Our investigation encompasses several challenges associated with this study, such as the
assumption of object size determining saliency and the implications faced due to the
unavailability of a specialized dataset for this task. This research question is discussed in
Section 5.5.
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3.2.2 Video Domain

Question 4: How can the performance of video object segmentation models be im-
proved for scenarios involving smaller objects? The subsequent section of the thesis
delves into video processing applications, with a specific focus on video object segmentation
and tracking. Given the inherent temporal richness of video data, it is natural to employ
architectures based on recurrent neural networks (RNNs) to leverage spatiotemporal fea-
tures. Motivated by this notion, we conduct a thorough investigation of a well-established
RNN-based approach for video object segmentation. Through this exploration, we identify
limitations of the model when faced with challenging scenarios, particularly when tracking
smaller objects and accurately segmenting object boundaries. To address these limitations,
we propose two effective solutions based on architecture and training objective enhance-
ments that significantly improve the model’s performance in such scenarios. These solutions
contribute to improved tracking of smaller objects and more precise segmentation of object
boundaries. This research question is discussed in Section 6.3.

Question 5: Can we extend the VOS model’s performance to effectively process longer
videos depicting partially occluded objects? A limitation of RNN-based solutions for
processing sequences is the phenomenon known as catastrophic forgetting, whereby the
model tends to forget information from earlier time steps as the sequence length increases.
Consequently, the performance of such models deteriorates, particularly in occluded scenes
and longer videos. To mitigate this effect, we propose a hybrid architecture that combines
the strengths of RNNs in leveraging spatiotemporal features with correspondence-matching
techniques for improved handling of longer videos. Furthermore, we explore two archi-
tecture variations: multi-task learning with optical flow integration and a bidirectional
architecture. This research question is discussed in Section 6.4 and Section 6.5.

Question 6: Can we still attain a robust performance in crowded scenes under limited
label availability for (various) spatiotemporal tasks? Data labeling is a costly process that
poses limitations on unlocking the full potential of data-driven solutions. This scarcity of
labeled data is particularly evident in the video domain, where frame-level labels are required.
To address this challenge, recent efforts have emerged in the form of self-supervised learning
methods aiming to train models for spatiotemporal correspondence learning. However, these
methods often rely on color information as a supervisory signal, and their performance
significantly degrades in crowded scenes with multiple visually similar objects. To this end,
we propose a straightforward yet highly effective framework based on pseudo-labels that
directly trains the model on the final objective of correspondence learning. Importantly,
our approach eliminates the need for video-level labeled data, allowing for improved
scalability and versatility in training data acquisition. This research question is discussed in
Section 7.3.
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Question 7: Can we overcome distributional shifts between training and testing phases
for spatiotemporal correspondence learning? As the last contribution of this thesis,
we delve into the crucial aspect of model generalization, which greatly influences the
practicality and applicability of the learning-based methods. To address the challenges faced
due to the covariate shift between training and testing data, we explore the emerging field
of Test Time Adaptation, which aims to adapt deep learning models to new distributional
settings. Recognizing the abundant structural and temporal information inherent in video
data, we investigate several approaches to utilize unlabeled videos for adapting the model to
various domain shift scenarios and experimentally confirm the efficacy of these methods
for out-of-domain generalization in spatiotemporal correspondence learning. This research
question is discussed in Section 7.4.
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Background and Toolbox 4
In this chapter, we provide an introduction to the background and tools employed throughout
this thesis. Firstly, we introduce the three fundamental learning paradigms governing this
research: supervised, self-supervised, and reinforcement learning. Subsequently, we provide
an overview of the utilized low-level neural network components. This is followed by an
explanation of the key neural network architectures and optimization techniques that have
enabled the progress of this thesis.

4.1 Learning Paradigms

Deep learning methods can be divided into multiple classes based on the learning objective
and the utilization of the labeled data, such as supervised learning, unsupervised learn-
ing, semi-supervised learning, meta-learning, and reinforcement learning. The following
subsections briefly describe the three main learning categories employed in this thesis.

4.1.1 Supervised Learning

In supervised learning, the model receives direct supervision from labeled data, commonly
known as ground truth. It was in the domain of supervised learning that initial breakthroughs
in deep learning were achieved (Deng et al., 2009; Krizhevsky et al., 2017). In this learning
paradigm, the learner (neural network) is trained to estimate a complex function that maps
the data from the input domain to corresponding output labels. This is accomplished by
minimizing a task-specific loss function through the use of various optimization algorithms.
The objective is to train the model such that it can generalize well, making accurate
predictions on unseen data with a distribution similar to the training dataset.

One of the main advantages of supervised learning is stable training and achieving high
accuracy when trained on large datasets. However, there is a practical desire to develop
algorithms that are less dependent on labeled data, as acquiring such data can be resource-
intensive. This motivates the exploration of other learning paradigms, such as unsupervised
learning and semi-supervised learning, which aim to reduce reliance on labeled data and
provide the potential for more efficient and scalable learning algorithms.
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4.1.2 Self-supervised Learning

In contrast to supervised learning, unsupervised methods aim to learn the underlying data
distributions without any labeled data [Sch+21]. Self-supervised learning is a sub-category
of the unsupervised methods where the model is trained with a supervision signal obtained
from the data instead of using human annotations. These approaches have become highly
popular in recent years due to their scalability and practical advantages. The goal of these
algorithms is mainly to learn data representations that can be transferred to downstream
tasks, such as classifications, by designing a variety of pretext tasks with auto-generated
labels. Through training the model for solving these tasks, it can extract meaningful
representations by learning the visual patterns and the contextual relations in an image.
Examples of these tasks are predicting certain properties or relationships within the input
data, such as predicting missing parts of an image, the next frame in a video sequence, or
the context of a word in a sentence.

Other types of self-supervised techniques include contrastive learning and pseudo-labeling.
In contrastive learning, the model is trained to compute features from the input data such
that features from members of the same category are pulled together while pushed away
from the other classes. Differently, in pseudo-labeling methods, various resources such as
prior knowledge or trained models are used to generate the (potentially noisy) ground truth
labels.

4.1.3 Reinforcement Learning

Reinforcement learning (RL) is the process of learning by experience. In this methodology,
a neural network called agent is trained to interact with a defined environment and draw
actions from a specific action set to maximize a cumulative reward signal. Hence, the agent
receives feedback in the form of positive or negative rewards based on the selected actions,
and its goal is to learn an action-selection policy that maximizes the cumulative reward over
time. The reinforcement learning process can be summarized as follows:

• The agent observes the current state of the environment.

• The agent selects an action based on the observed state.

• The environment transitions to a new state and sends a reward signal to the agent.

• The agent updates its action policy based on the received signal.
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This process is repeated for several steps, known as an episode, to maximize the cumulative
reward over time.

One of the main advantages of reinforcement algorithms is their ability to optimize for
non-differentiable objectives. As a result, they offer more flexibility in terms of the training
objectives compared to other learning categories that are bound to differentiability, opening
up possibilities for tackling a broader range of complex and challenging problems. However,
training reinforcement learning agents can also be challenging, as they often require large
amounts of trial and error to learn effective policies.

4.2 Deep Neural Networks

A deep neural network architecture is often comprised of various layers that are specifically
designed to capture the necessary functional requirements for the network to fulfill the task
at hand. In the following, we provide an overview of the layers and components used in this
thesis.

4.2.1 Fully-connected Layer

A fully-connected layer in a neural network that performs a linear transformation of the input
data through matrix multiplication, mapping the input to the output using the equation:

y = Wx+ b (4.1)

Here, x ∈ Rdin represents the input, W ∈ Rdout×din denotes the learnable weight matrix,
and b ∈ Rdout is the learnable bias vector. The dimensions din and dout correspond to the
input and output dimensions, respectively. The term fully-connected layer originates from
the concept that every neuron or node in a given layer is connected to every neuron in the
subsequent layer through the dense matrix ofW ; hence, this layer is also commonly referred
to as dense layer.

Due to the linear nature of the operations performed within this layer, it inherently lacks the
capability to effectively model complex non-linear functions. Therefore, employing multiple
layers in conjunction with non-linear activation functions is necessary to approximate non-
linear functions.
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4.2.2 Convolution Layer

Convolutional networks share similarities with fully-connected layers in terms of their
learnable weights and biases. However, convolutional layers introduce a distinct mechanism
by applying trainable filters/kernels to different regions of the input image in a sliding-
window manner, performing dot products. In the case of images, the 2D convolution
operation can be formalized as [GBC16]:

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (4.2)

Here, I andK represent the image and kernel, while (i, j) are locations within the structured
input grid (pixels in the case of an image). Similar to fully-connected layers, convolutions
are usually combined with non-linear activation functions to enhance the expressive power
of the network.

Convolutional layers are widely used in deep learning models and have contributed signif-
icantly to advancements in computer vision. They excel at capturing visual patterns and
extracting powerful features from visual inputs by leveraging several inductive biases to
exploit specific characteristics of visual data [Li20; GBC16]. These inductive biases are
briefly described in the following.

Parameter sharing: Convolutional layers leverage the assumption that visual patterns,
such as edges and blobs, are recurring patterns across an image. As a result, they perform
parameter sharing by applying the same kernels to different image regions, eliminating the
need to assign new weights for every part of the image. This strategy reduces the number
of parameters in the network and enables the network to generalize better and effectively
handle variations of the same pattern across different regions of the input image.

Local connectivity: Convolutional layers usually employ small-size kernels and exploit the
locality of connections. This is particularly advantageous when processing high-dimensional
input data like images and videos, as it significantly reduces the computation costs compared
to connecting each element in the input and output. This results in efficiently capturing
spatial dependencies within the input, focusing on smaller receptive fields rather than
considering the entire input at once.

Regular input structure: Visual inputs exhibit a structured arrangement within a fixed and
regular grid, such as a spatial image grid or a spatiotemporal video grid. This characteristic
distinguishes them from irregular data formats like point clouds. The regularity of the input
domain offers a distinct advantage to convolutional networks, as they can process data using
kernels of fixed shapes, facilitating efficient computations.
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4.2.3 Activation Layer

In deep learning architectures, various linear operations, such as convolutions, are intercon-
nected using non-linearity or activation layers. This enables the network to model highly
complex and nonlinear functions. One of the most commonly used activation functions is
the Rectified Linear Unit (ReLU), defined as:

ReLU(x) = max(0, x) (4.3)

Other popular activation functions include the Sigmoid function:

Sigmoid(x) = 1
1 + exp(−x) (4.4)

and the Hyperbolic Tangent (Tanh) function:

Tanh(x) = exp(x)− exp(−x)
exp(x) + exp(−x) (4.5)

In today’s deep learning architectures, the ReLU activation function is favorable against
Sigmoid and Tanh functions for several practical reasons, such as improved computational
efficiency, faster convergence, and avoidance of saturation issues faced in Sigmoid and
Tanh non-linearities. However, these activation functions still serve specific purposes and
have their own applications. Sigmoid is frequently utilized in the output layer for binary
classification problems, where the goal is to obtain a probability value between 0 and 1.
Tanh, on the other hand, proves useful in scenarios where the output needs to be normalized
within the range of -1 to 1, particularly when dealing with data centered around zero.

Another commonly used activation function used as the output layer is the softmax layer
which maps the output of the neural network to a multi-class probability distribution:

Softmax(xi) = exp(xi)∑
j exp(xj)

(4.6)

Utilization of different activation functions gives deep learning models more expressive
power and enables them to model complex functions, capturing various patterns and rela-
tionships in the input data.

4.2.4 Pooling and Un-pooling Layers

Pooling layers are frequently used in conjunction with convolution layers to reduce the fea-
ture’s spatial dimensions. Dimension reduction serves practical purposes, such as reducing
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memory consumption, capturing the most salient features of an image, and providing spatial
invariance by lowering sensitivity to small spatial shifts in the input image. The downstream
task can also dictate downsampling; for example, in image classification, it is necessary to
condense the image information into a feature vector that can be mapped to a classification
label. This can be achieved by employing different kinds of pooling functions.

In the pooling operation, the input features are divided into windows of size k×k, where the
windows are spaced by the stride parameter. The output feature map is then computed by
applying the function f to the content of each kernel window in the input. Depending on the
pooling variant, f can serve various purposes, such as computing the average or maximum
value in a window. Considering a simplified scenario with no padding and dilation, the
output feature dimensions (height, width) can be computed as follows:

dout = ⌊din − k
s

+ 1⌋, (4.7)

where d stands for dimension, k is the kernel size and s is the stride parameter.

In structured prediction tasks such as segmentation, where a label is needed for every pixel
in the image, generating an output label map at the original input resolution is required.
To achieve this, after encoding the input image through multiple convolutions and pooling
layers, several un-pooling or upsampling layers are applied to decode the features into the
output space and restore the original resolution. Upsampling layers increase the spatial
size of the features and can be implemented using various interpolation techniques, such as
nearest neighbor or bilinear interpolation. The architecture resulting from applying a series
of pooling and upsampling layers is often referred to as an encoder-decoder architecture.
This design is further discussed in Section 4.3.2.

4.2.5 Recurrent Neural Networks (RNNs)

Feed-forward neural networks consisting of fully-connected layers and convolutions do not
have the tools for modeling memory functionalities for incorporating past information. This
is crucial for sequence processing tasks such as machine translation and video processing,
where the model needs to consider the temporal context. RNNs enable the model to keep
track of past events via a feedback connection that writes to a memory vector called hidden
state ht.

ht = fwx(ht−1, xt)

yt = fwy(ht)
(4.8)

where fwx and fwy are small neural networks with appropriate activation functions selected
to facilitate the model’s training.
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Fig. 4.1: The overall LSTM architecture. Image taken from [Li20].

The vanilla RNNs described above suffer from several limitations, such as unstable training
due to the well-known vanishing gradient problem caused by the chain multiplication of the
gradients over time. Furthermore, the limited capacity in the memory vector ht makes it
difficult to remember long sequences, leading to the model losing information about the
earlier time steps and only keeping the short-term memory. In the following, we discuss
architectural designs that address these limitations.

Long-Short Term Memory (LSTM). To address the challenges in training the RNNs,
Hoch et al. propose a modified architecture that significantly improves the stability in
training the vanilla RNNs [HS97]. To this end, they propose a recurrent model with several
gating mechanisms as well as an additional cell state that facilitates the gradient flow during
the optimization process by providing shortcut paths for passing the gradients to earlier
time steps and resolving the vanishing gradient problem. The equations determining the
operations in LSTM can be summarized as follows [Li20]:

i

f

o

g

 =


σ

σ

σ

Tanh

W
(
ht−1

xt

)
(4.9)

ct = f ⊙ ct−1 + i ⊙ g

ht = o ⊙ Tanh(ct)
(4.10)

where i, f, o, g are the introduced gates, W is the weight matrix of a fully-connected layer,
σ represents the sigmoid functions, and ct is the cell state. The overall architecture of the
LSTM module is shown in Figure 4.1.

Convolutional LSTM Layer (ConvLSTM). In the original LSTM architecture [HS97],
the recurrent layers are implemented using fully-connected layers followed by sigmoid and
Tanh nonlinearities. However, this architecture may not be suitable for processing high-
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dimensional visual data. To address this limitation, Xingjian et al. propose an LSTM variant
that replaces the fully-connected layers with convolutions [Xin+15]. This modification
allows the LSTM to better leverage the power of convolutional operations for capturing
spatial patterns in visual data. The resulting architecture, known as Convolutional LSTM, is
governed by the following set of equations [Xin+15]:

it = σ(Wxi ∗ xt +Whi ∗ ht−1 +Wci ◦ ct−1 + bi)

ft = σ(Wxf ∗ xt +Whf ∗ ht−1 +Wcf ◦ ct−1 + bf )

ct = ft ◦ ct−1 + it ◦ tanh(Wxc ∗ xt +Whc ∗ ht−1 + bc)

ot = σ(Wxo ∗ xt +Who ∗ ht−1 +Wco ◦ ct + bo)

ht = ot ◦ tanh(ct)

(4.11)

Variants of ConvLSTM layers are widely utilized for video processing applications such as
action recognition, video segmentation, and tracking.

4.2.6 Attention Layer

In [Bah+16], Bahadanau et al. introduced the attention mechanism as a solution to address
the limited memory issue in LSTMs. The main concept is to incorporate an additional
context vector to augment the memory ht by providing contextual information related to
the current time step. In [Bah+16], the authors developed the attention layer for machine
translation tasks, where the goal is to translate an input sentence from one language to
another. At the time, this task was approached using an RNN-based architecture, where the
model first encoded the sentence into a single vector and then gradually decoded it into the
target language. The formulation was as follows:

hi = f(hi−1, yi−1) (4.12)

Here, hi represents the hidden state in LSTM, yi is the model output (decoded word) at
time step i, and f denotes a neural network. To improve this formulation, Bahadanau et al.
proposed the following modification:

hi = f(hi−1, yi−1, ci) (4.13)

with ci representing the context vector computed for time step i. The context vector scans
all the input words from the previous and potentially future words and summarizes them
into a single vector based on their similarity to hi. Mathematically, this can be expressed
as:

ci =
Tx∑
j

αijsj (4.14)
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Here, αij represents the attention weights. In the context of machine translation discussed
in [Bah+16], s is the mapping from the input sentence to a sequence of embeddings through
the encoder network. The normalized attention weights are then computed as follows:

αij = exp(eij)∑Tx
k=1 exp(eik)

eij = a(hi−1, sj)
(4.15)

where a is a simple neural network such as an MLP that computes the un-normalized atten-
tion weights. Although the attention layer was initially developed for machine translation, it
has been successfully applied to various domains, with slight modifications in the definition
of the context vector to adapt to specific tasks.

Following the tremendous success of attention mechanisms in enhancing the performance
of various sequential processing tasks, this module has been extensively incorporated into
numerous architectures. More recently, attention has even been utilized as a standalone
component, eliminating the need for the LSTM layer. In this design, a key-query operation
is employed to retrieve the output based on attention weights calculated from the similarity
between a query and the inputs. Formally, given inputs x ∈ RN×D and a query q ∈ RD,
the output is computed as follows:

k = xWk, v = xWv

eij = qj · ki√
D

, aij = exp(eij)∑
i exp(eij)

yj =
∑
i

aij · vi

(4.16)

Through these operations, the input x is transformed into a set of key (k) and value (v)
vectors using fully-connected layers with weight matrices Wk and Wv, respectively. The
similarity between the query q and the keys k is calculated in terms of the dot product,
normalized by the square root of the dimensionality D. The attention weights (aij) are then
obtained by applying the softmax function to the similarity scores (eij). Finally, the output
(yj) is computed as the weighted sum of the values (vi) using the attention weights (aij).

Axial attention. The attention layer, commonly used in deep learning models, has high
memory consumption of O(Nd), with d representing the number of data dimensions. For
instance, in the case of images, d = 2 (width and height), and for video data, d = 3 (width,
height, and time).

This high memory consumption becomes a significant obstacle when applying the attention
layer to high-dimensional data. To overcome this limitation, a variant called axial attention
was proposed in [Ho+19]. The axial attention layer breaks down the attention operation
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into d hops or passes, allowing attention to be performed across each dimension separately.
This division across dimensions reduces the memory requirements to O(dN), which is a
substantial improvement compared to the original attention layer. Essentially, the axial
attention layer performs the attention operation independently across each dimension and
aggregates the results. This design enabled applying attention to high-dimensional data and
designing architectures that are entirely based on attention mechanism, such as AxialNet in
[Wan+20b].

4.2.7 Regularization Layers

There are several techniques in the literature for enhancing the training process and improv-
ing the generalization of neural networks by mitigating the effects of overfitting. These
methods, known as regularization, introduce additional constraints to the loss function or
modifications to the model during training. They aim to prevent the model from overly
focusing on the training data and encourage it to learn more generalized patterns that can
be applied to unseen examples. In the following, we overview three main regularization
strategies used in this thesis.

Weight regularization. Weight regularization, also known as weight decay, is a simple yet
effective technique used in neural networks to facilitate overfitting by adding an additional
constraint on the L1 or L2 norm of the network weights [KH91]. Overfitting occurs when a
model obtains high accuracy on the training set but has a low performance on the unseen test
data. One contributing factor to overfitting is the presence of large network weights, which,
according to [RM99], can adversely affect generalization by causing significant output
changes for even small input variations. This effect can lead to the network becoming too
specialized to the training data, hindering its ability to make accurate predictions on unseen
test data. Weight regularization counteracts these issues by simply imposing penalties on
the magnitude of the weights during the training process. This is implemented by adding a
regularization term proportional to the magnitude of the weights to the loss function.

Two commonly used weight regularization techniques are L1 and L2 regularization. In these
variants, the terms γ||W ||1 and γ||W ||2 are added to the training objective, respectively. In
this setup, γ determines the strength of the regularization, and W represents the network
weights.

Feature normalization. Normalization layers are components developed to normalize
the intermediate features in a neural network to improve stability and convergence during
training. There are different normalization methods based on the way that the normalization
parameters are computed. Batch normalization is a commonly used layer paired with
convolution layers, normalizing the features by adjusting them based on the mean and
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standard deviation acquired from the input batch [IS15]. The operation performed by this
layer can be summarized as follows:

y = x− E(x)√
Var(x) + ϵ

γ + β (4.17)

where γ and β are additional learnable parameters that allow the network to adjust the
features more flexibly. By normalizing the inputs, batch normalization helps address the
issue of internal covariate shift, where the input data distribution to each network layer
may change during training. The behavior of the batch normalization layer differs between
the training and testing phases. During training, the mean and standard deviation values
are computed from the current batch, which allows the model to adapt to the statistics of
the specific batch. Training with larger batch sizes is generally more stable and can better
represent the overall data statistics and characteristics. During inference, however, the
model must be independent of the batch size. Therefore, the accumulated parameters from
the training phase, including the running mean and standard deviation, are utilized during
inference. These statistics capture the overall distribution of the training data.

However, the effectiveness of models utilizing batch normalization heavily relies on training
with an appropriate batch size, which can be problematic when working with large models
or high-dimensional inputs that may not fit into memory with a large batch. To tackle this
challenge, several alternative normalization layers have been proposed in the literature,
including layer normalization and group normalization. These normalization techniques
compute the normalization parameters across different dimensions rather than relying on
the batch size alone, thereby mitigating the dependency on batch size and enabling more
flexible training setups.

Dropout. One of the challenges in training neural networks is that only a small subset
of neurons activate during the training process. Consequently, the model tends to focus
on specific characteristics of the data and disregards others. This selective attention can
amplify overfitting and hinder generalization. To address this issue, the dropout layer was
introduced in [Hin+12]. During training, this layer randomly drops a portion of the neurons,
encouraging the model to consider all aspects of the data and train all network weights,
promoting better generalization. The Dropout layer helps mitigate overfitting and enhances
the robustness of neural networks by preventing the model from relying too heavily on a
subset of neurons. We note that the dropout layer is only used during training and deactivated
during inference.
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Fig. 4.2: The architecture of ResNet layer. Image taken from [He+16].

4.3 Deep Learning Architectures

Designing neural network architectures that effectively combine the low-level layers to
model the requirements for optimal processing of input data, leading to improved accu-
racy, stable training, generalization, and efficiency, has been an active research area since
the advent of deep learning [He+16; Sze+17; SZ14]. Over the past decade, remarkable
progress has been made in this domain. In the following, we will briefly describe three key
architectures used in this thesis. These designs have proven influential in solving different
problems and gained prominence in the vision community, inspiring the development of
various architectures leading to further progress in the field.

4.3.1 ResNet

Despite the success of several early deep neural network architectures in image classifica-
tion [KSH12; SZ14], designing and customizing layers to facilitate successful training and
improving the model accuracy were challenging. While it has been evident that increasing
the depth of neural networks enhances their representative capacity, it also introduced
challenges in training due to the vanishing gradient problem. To address this limitation,
He et al. proposed Residual Networks, ResNet in short [He+16]. In ResNet, a modular
design of convolution layers was combined with a residual connection that allows infor-
mation to bypass certain layers and directly flow through the network (see Figure 4.2). By
incorporating these skip connections, ResNet effectively mitigates the vanishing gradient
problem and facilitates the training of deeper models. The idea of residual connections has
been broadly adopted in numerous recent architectures and has become a common feature
in deep learning frameworks [Dos+20].
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Fig. 4.3: The overall UNet architecture. Image taken from [RFB15].

4.3.2 UNet

As mentioned in Section 4.2.4, the encoder-decoder architecture is a widely used framework
in deep learning. The encoder component progressively decreases the spatial dimensions
and increases the number of channels while the decoder performs the inverse operation,
decoding the computed features to generate the desired output. However, a drawback
of this architecture is the loss of fine details caused by extensive down-sampling. This
limitation becomes problematic in tasks like segmentation, where accurate preservation
of fine details and small objects is essential. To address this issue, the UNet architecture
proposed incorporating skip connections between the encoder and decoder layers [RFB15],
as shown in Figure 4.3. These skip connections serve as direct pathways between the
encoder and decoder sections at different resolutions. By preserving and integrating features
from higher resolution levels, UNet enables the decoder to access and leverage fine-grained
information that would be lost otherwise. This mechanism significantly improves the
model’s ability to capture and segment fine details and small objects.

4.3.3 Feature Pyramid Networks (FPN)

The FPN (Feature Pyramid Network) architecture was initially proposed to tackle the
challenge of multi-scale object detection and segmentation by processing visual input at
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Fig. 4.4: Feature pyramid network architecture. Image taken from [Lin+17].

different scales [Lin+17]. The concept of multi-scale processing has been successfully
employed in traditional computer vision methods, such as computing SIFT features [Low04],
to achieve scale invariance. To bring the advantages of multi-scale processing into deep
learning architectures, Lin et al. introduced FPN, an architecture that generates a feature
pyramid from a backbone network, typically a convolutional neural network like ResNet
[He+16]. In FPN architecture illustrated in Figure 4.4, the vertical pathway involves
upsampling the higher-level feature maps to match the spatial resolution of the lower-level
feature maps, allowing the network to propagate high-level semantic information to finer
spatial scales. Moreover, horizontal connections are established between the upsampled
higher-level feature maps and the corresponding lower-level feature maps, fusing the high-
level semantic information with the more detailed spatial information in the lower-level
feature maps. This utilization of information across multiple scales enables the network to
detect objects of varying sizes while maintaining precise localization.

4.4 Optimization

Backward propagation of errors (backpropagation) is currently the dominant algorithm for
training deep-learning models. After computing the loss function as an error measurement
between the model predictions and the ground-truth labels, the gradients of the error with
respect to the network’s parameters are computed using the backpropagation algorithm
[GBC16]. Having the gradients, various optimization methods can be employed to minimize
the loss function and train the network parameters.

The origins of backpropagation can be traced back to [Wer74], a Ph.D. thesis written by Paul
Werbos in 1974. However, at the time, the significance of his work went largely unnoticed by
the neural network community. In 1986, Rumelhart et al. published a seminal paper titled
“Learning Representations by Backpropagating Errors,” reintroducing backpropagation
as a promising way for training neural networks. Since then, numerous advancements
have been made to enhance the efficiency and stability of gradient descent optimization
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algorithms, aiming to establish better ways for updating network parameters to achieve
improved convergence. The general form of gradient descent involves updating the network
weights to reduce a total cost function J :

θ = θ − α∇J(θ) (4.18)

where θ represents the network weights, α is the learning rate determining the size of the
update, and ∇J(θ) is the gradients of J with respect to θ computed by the backpropagation
algorithm. In practice, parameter updates are performed using a mini-batch of data as
gradients from individual data points can be very noisy, and computing updates from the
entire dataset is very time-consuming. In the following, we overview two optimization
algorithms employed in this thesis.

4.4.1 SGD with Momentum Optimizer

One of the limitations of vanilla SGD in Equation 4.18 is gradient oscillation around local
minima. To address this issue, Qian (1999) proposes the use of a momentum parameter that
controls this behavior. The updated equations are as follows:

mt = γmt−1 + α∇θJ(θ) (4.19)

θ = θ −mt (4.20)

If we consider the loss landscape to be ravine-shaped, where the objective is to find pa-
rameters that yield the minimum loss within the ravine, the momentum intuitively controls
the velocity around the bottom. This is achieved by reducing the momentum term for
dimensions where the gradients alternate in sign.

4.4.2 Adam Optimizer

One of the limitations of the optimization algorithms discussed above is using the same
learning rate for updating all the network parameters. However, it would be preferable to
assign a higher learning rate to the weights associated with less frequent data features. The
Adam optimization algorithm [KB14] addresses this issue by incorporating information
about accumulated past gradients. Assuming gt = ∇θJ(θt), Adam computes moving
average of gt and g2

t as:
mt = β1mt−1 + (1− β1)gt (4.21)

νt = β2νt−1 + (1− β2)g2
t (4.22)
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where β1 and β2 are hyperparameters. Subsequently, the updated equation can be summa-
rized as follows:

θt+1 = θt + α
√
vt + ϵ

mt (4.23)

with α as the learning rate. From Equation 4.23, we can see that the learning rate is adaptively
tuned based on past gradients, and a higher learning rate is assigned to parameters with
lesser past gradients (vt). For more details, please refer to [KB14].
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Cluttered Image Classification 5
5.1 Introduction

Standard classification architectures are well-known for achieving remarkable performance
on specialized image classification datasets containing clean and well-centered images
[KH+09; Den+09]. However, their accuracy tends to decline significantly when confronted
with images that are cluttered with background noise or lack proper centering [JSZ+15;
Hen+21]. While previous research has mainly focused on enhancing network architectures
to create more robust classifiers [He+16; Sze+17], this chapter takes a different approach by
exploring modifications to the input image itself, aiming to facilitate easier classification
for the network. By adopting this orthogonal perspective, we seek automated ways of
preprocessing the input data to improve classification accuracy and ultimately enhance the
model’s performance in the presence of background noise and clutter.

In the first contribution, we design an iterative algorithm that sequential transforms the
input image by simple affine transformations and focuses on the main content in the image.
We formulate the task as a Markovian Decision Process (MDP) and use Reinforcement
Learning (RL) to solve this sequential decision-making problem. We refer to the proposed
model as Sequential Spatial Transformer Network, SSTN in short. Thanks to the RL-based
formulation in our method, we are not bound to the differentiability of the training objective;
hence, we experiment with a variety of differentiable and non-differentiable objectives, such
as the cross-entropy classification loss and maximizing the model accuracy.

As our second contribution, we leverage the developed strategy for sequentially modifying
the input data toward an easier distribution for curriculum learning. Curriculum learning is
a bio-inspired training technique that is widely adopted in machine learning for improved
optimization and better training of neural networks regarding the convergence rate or
obtained accuracy. The main concept in curriculum learning is to start the training with
simpler tasks and gradually increase the level of difficulty. Therefore, a natural question
is how to determine or generate these simpler tasks. As SSTNs have been proven to be
capable of removing the clutter from the input images and obtaining higher accuracy in
image classification tasks, we hypothesize that images processed by SSTNs can be seen
as easier tasks and utilized in the interest of curriculum learning. To this end, we study
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multiple strategies developed for shaping the training curriculum using the data generated
by SSTNs.

In the last section, we extend the proposed SSTN algorithm to the more challenging task
of salient object classification in real-world images. To this end, we employ the recent
advances in Q-learning for processing high-dimensional input data such as images, as well
as a variety of reward function definitions. Unlike the usual setting of having a single object
per image in classification datasets, we consider a setup where multiple objects are present
in the scene, and the model is expected to distinguish and classify the salient object. We
note that the setup is similar to human perception, where our attention is drawn to the
most salient object in an image. We perform extensive experiments on the PASCAL VOC
dataset and analyze different aspects concerning the method design and training data, such
as dataset bias.

The content in this chapter is based on the published papers [Azi+19; Azi+23; Azi+22a].

5.2 Related Work

This section provides the theoretical preliminaries for the RL algorithms utilized in this
chapter, followed by an overview of related work in cluttered image classification and
curriculum learning fields.

5.2.1 Reinforcement Learning Preliminaries

The goal of reinforcement learning is to learn by experience, similar to the learning process
in humans. In this methodology, the learner (often referred to as agent) interacts with
the environment and is trained to maximize a predefined reward during multiple decision-
making or action-selection steps. The theory of modern reinforcement learning algorithms
is based on the Markovian Decision Process (MDP) formulation [SB18]. The Markovian
property indicates a memoryless process where the future state of a stochastic process can
be entirely determined based on the current state without any dependency on the past:

P (st+1|s0, . . . , st) = P (st+1|st). (5.1)

The components describing an MDP are the set of possible states s ∈ S, the set of actions
a ∈ A, and the set of rewards r ∈ R. The overall scheme of the MDP is illustrated in
Figure 5.1. At each time step t, the agent samples an action at from a learned probability
distribution. Based on the action taken and interaction with the environment, the agent
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Agent

Environment

Fig. 5.1: The working of the Markovian Decision Process [SB18]. Starting from state s, the agent
selects an action a based on an action selection policy. Following applying the action
and interaction with the environment, the agent receives a reward r, and the state of the
environment transitions to s′

receives the reward rt, and the state of the environment changes from st to st+1. The
goal of the RL agent is then to maximize the expected overall reward over a sequence of
decision-making steps:

J(θ) = Eτ∼pθ

[∑
t

r(st, at)
]

(5.2)

where τ is a sequence of state-action transitions with length of T , referred to as an episode.
An episode is sampled from the probability distribution based on which the agent selects
the actions (pθ in Equation 5.2). This probability is referred to as the policy. Finally,
r =

∑t=T
t=0 Rt is the overall reward obtained at the end of an episode.

The RL literature provides two main categories of algorithms for training the agent: Policy
Gradient (PG) and Q-learning. We note that both categories aim to find the optimal policy,
which is a state-action probabilistic distribution that results in the highest expected reward.
In PG, this is addressed by directly estimating the optimal policy pθ. In Q-learning, however,
a value function Qs,a is learned to estimate the associated value (expected total reward) to
each state-action pair. Having this function learned, at each state, the agent greedily selects
the action that leads to the maximum reward from each step onward, hence maximizing
the overall reward. In the following, we briefly describe both algorithms as they are the
foundation for the methods developed in this chapter.

Policy Gradient

As previously mentioned, the main components in RL framework are the State Space (S),
the Action Space (A), and the Reward Signal (R). Moreover, an episode τ consists of a
sequence of state-action transitions. From Equation 5.2 we have:

5.2 Related Work 27



Fig. 5.2: In Reinforce algorithm, the parameters of an action selection policy are learned via
backpropagation to maximize the expected returned reward J(θ). Image Source: [Lev21].

J(θ) =
∫
pθ(τ)r(τ)dτ ≈ 1

N

∑
i

∑
t

r(si,t, ai,t), (5.3)

with t representing time step and i indexing the state-action pair. Assume the policy function
pθ is approximated with a neural network. In Policy Gradient, the parameters θ are directly
optimized to maximize the expected reward J :

θ⋆ = argmax(Jθ). (5.4)

Consequently through differentiation of Jθ we have:

∇θJ(θ) =
∫
∇θpθ(τ)r(τ)dτ. (5.5)

Using the equality pθ(τ)∇θlogpθ(τ) = pθ(τ)∇θpθ(τ)
pθ(τ) = ∇θpθ(τ) in the equation above we

obtain:
∇θJ(θ) =

∫
pθ(τ)∇θlogpθr(τ)dτ = Eτ∼pθ

[∇θlogpθ(τ)r(τ)]. (5.6)

Having the gradients∇θJ(θ), the parameters are updated with a learning rate of α, as:

θnew = θold + α∇θJ(θ). (5.7)

This is the working mechanism of the Reinforce algorithm, as illustrated in Figure 5.2. As
can be seen from Equation 5.7, during the iterative optimization in the Rreinforce algorithm,
the model weights are tuned towards generating a higher expected reward.

Reinforce algorithm offers a straightforward formulation; however, it suffers from slow
convergence and high variance (note that in Equation 5.5, r(τ) can be noisy, resulting in
noisy gradients and slow convergence). A simple idea for reducing the variance is to update
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Fig. 5.3: In Q-Learning algorithm, the function Q parametrized by a neural network ϕ is trained to
estimate the expected return from the state s for each possible action a. Accordingly, the
agent at each state selects an action that maximizes the returned reward. Image source:
[Lev21].

Equation 5.3 by replacing
∑t=T
t=1 r(st, at) to

∑t=T
t=t′ r(st, at), as intuitively, he past rewards

subsequent from past actions should not impact the current gradients. This term is called
reward-to-go. The next solution proposed in the literature is to reduce the variation in
∇θJ(θ) in Equation 5.5 by subtracting a baseline b:

∇θJ(θ) =
∫
∇θpθ(τ)(r(τ)− b)dτ (5.8)

This is the motivation behind Actor-Critic algorithms, as discussed in Section 5.2.1, after
introducing the Q-Learning algorithm.

Q-Learning

In Q-learning, the optimal policy is found by estimating the Q function, as shown in
Figure 5.3. The Q function estimates the expected total reward from the current state for
each possible action as:

Qπ(st, at) = Eπθ

[
T∑
t′=t

(r(st′ , at′ |st, at))
]
. (5.9)

Having the Q function for each state-action pair, the agent finds the optimal policy by
always selecting the action leading to a higher Q value.

The Q function can be approximated with a neural network as a mapping from different
possible state-action pairs to the expected return. The objective for training the Q function
is the Bellman optimality equation:
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Q∗
ϕ(s, a) = r(s, a) + γmax

a′
Q∗
ϕ(s′(s, a), a′), (5.10)

where γ is a hyperparameter and ϕ represents the network parameters. Note that the
Equation 5.10 is greedy due to the max operator. However, at the beginning of the training,
when the network weights are initialized randomly, the network output is unreliable. Hence,
the greedy action selection strategy in Equation 5.10 may hinder the training and finding
the actions that result in higher rewards. To address this issue, an ε-greedy action selection
strategy is deployed during the training phase to accommodate a trade-off between the
exploration of the potential of different state-action pairs and the exploitation of the network
knowledge. The ε-greedy policy is defined as:

at =

random action, if p < ε+ (1− ε) · e− n
d

argmax Q∗(s, a), otherwise
(5.11)

Note that exploration decreases with the progress of training (number of taken steps n with
a decay of d). For more details, please refer to [SB18; Lev21].

Double Deep Q-Learning (DDQN). As observed from Equation 5.10, the consecutive
updates are highly correlated. This is problematic as estimating the current value and
the target Q by the same function (neural network) results in a moving target and slow
convergence. This limitation is addressed by utilizing a replay memory [Mni+13] as a
way to break the correlation between the training samples. To this end, each experience
(st, at, rt, st+1) is stored in replay memory with a large buffer. Accordingly, training
samples are randomly drawn from the memory during the training phase. Moreover,
[Mni+13] proposes using two separate networks to model the current and the target Q
functions to facilitate the moving target problem (hence named Double Q-learning). The
target network, however, is not trained with gradient descent, but its weights are periodically
updated from the Q network after each N training steps.

Actor-Critic

The Actor-Critic method aims to alleviate the high variance problem in policy gradient
by subtracting a baseline from the reward function. This is similar to mean subtraction, a
common practice in data normalization for stable training. Specifically, the baseline in the
Actor-Critic algorithm is defined as the expected value of the Q function:

V π(st) = Eat∼πθ
[Qπ(st, at)] (5.12)
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Essentially, V is the value associated with state st, computed as the average of outcomes
for different actions. The value function V can also be learned by training a neural network
to approximate this function. Accordingly, the value network is trained to estimate the total
reward from time step t onward. Therefore, the sum of rewards from t to the end of the
episode (

∑T
t=t′ r(t)) can serve as the ground truth for training the value network using a

proper loss function. For more details, please refer to [SB18; Lev21].

5.2.2 Cluttered Image Classification

Invariance against different transformations is crucial in many tasks, such as image classifica-
tion and object detection. Therefore, computing invariant features has been a long-standing
area of research for decades [Low87; Ste01; YC99; Low99; Mik02; BL02]. In [HS+88],
the authors consider corners as representative rotation-invariant features and develop a
corner-detection algorithm utilizing intensity information based on the observation that
in corners, there should be a high shift in intensity in every direction. Traditional feature
extraction methods such as SIFT [Low99; Low04] and SURF [Bay+08], introduce scale in-
variance into the feature computation by processing the image at several scales. In [Cal+10;
RD06; Rub+11], the authors propose more efficient feature extraction alternatives to SIFT
by employing techniques such as PCA compression. [Alh+08] improves SIFT by dividing
and processing features into multiple frequency domains, resulting in improved feature
matching, and Brown et al. propose interest-point (intensity local minima and maxima)
grouping as a solution for obtaining invariant image descriptors [BL02]. Triggs et al. employ
a local appearance model toward computing invariant features [Tri04] while in [TC00], the
authors suggest computing the Fourier transform of the image intensity profiles as invariant
to affine transformations. Though complex, these hand-crafted feature extraction schemes
lack generalizability to new scenes and scenarios.

During the last decade, there has been a breakthrough in various areas of computer vision
mainly caused by the advances in Convolution Networks [LeC+98; KSH12]. Introducing
deeper and more complex classification network architectures [He+16; Sze+15; Hua+17]
have alleviated the need for hand-designed feature extraction methods, resulting in achieving
high accuracy in challenging datasets such as ImageNet [Den+09]. Although CNNs are
translation equivariant and, to some extent, robust to small geometric transformations due
to the max-pooling layer used in these architectures, their invariance is limited because
of the fixed structure of the learned kernels and receptive fields. Learning-based models
usually address this limitation by utilizing data augmentation techniques and including
enough variation in the training data [SK19; PW17; MG18]. However, the drawback of
data augmentation lies in the assumption of including all the possible transformations in
the training data. To address this limitation, [Su+19; JK17; Dai+17; Jia+16] propose new
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convolution blocks where the kernel shape is learned through backpropagation in contrast
to the fixed kernel shape in traditional convolution block. The flexibility in filter shape
allows for more invariance to geometric transformations. Differently, [Che+17a; Luo+16]
adapt multi-scale processing techniques to increase the receptive fields of CNNs, improving
scale-invariability in these models. In [Zha19], the authors deploy anti-aliasing methods
such as low-pass filtering commonly used in signal processing fields for improving shift in
variance CNNs.

Clutter and background noise are another major challenge limiting the performance of deep
learning models [Vas+22]. To this end, several works have developed various attention
mechanisms that help the model focus on the image’s main content [Cao+15; Has+22;
Soy22]. For example, Mnih et al. design an RNN-based architecture that starts by processing
the whole image at low resolution and iteratively constraining the attention span towards
focusing on the main content and high-resolution processing of only the image area that
contains the primary object, resulting in improved classification accuracy and computational
efficiency [MHG+14]. Similarly, [BMK14; SFR14] employs RNN-based attention models
for multi-object classification. Different from these methods, [JSZ+15; LL17] propose
algorithms for removing clutter and geometric inconsistencies from the input image by
learning the parameters of an affine transformation and then processing the enhanced image
for classification.

5.2.3 Curriculum Learning

Curriculum learning is a bio-inspired training technique that is widely adopted in machine
learning for improved optimization and better training of neural networks regarding the
convergence rate or obtained accuracy. The main concept in curriculum learning is to start
the training with easy tasks and gradually increase the difficulty level. Several works in the
field of cognitive science and animal training have demonstrated that humans and animals
learn faster when the concepts are presented in an organized way with gradually increasing
levels of difficulty [Pet04; Ski58; Pav10]. In [Ski58], the authors discuss the importance
of successive reinforcement and examine the impact of various scheduling methods to
accelerate the learning process in the case of birds. Moreover, Kruger et al. [KD09] study
the effect of the shaping mechanism concerning the arrangement of the presented tasks based
on the complexity factor. According to their analysis, training time increases proportionally
with task complexity; however, different ways of shaping and scheduling can considerably
reduce this time.

Inspired by these findings, [Ben+09] proposes applying the same methodology to machine
learning, which at best aims to imitate the learning process of humans. They formulate
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curriculum learning as a training policy that favors easier samples at the beginning of
the training and gradually increases complexity. They illustrate the effectiveness of this
approach in improving generalization, achieving faster convergence, and finding better
local minima in language modeling and shape recognition tasks. Zaremba et al. [ZS14]
demonstrate the efficacy of curriculum learning in training recurrent neural networks for
executing simple computer programs. Their scheme is based on a gradual increase in the
length and the number of nested loops in the program. To develop a curriculum learning-
based training strategy, [HW19] proposes a sorting method to order the tasks based on an
increase in hardness, and in [Gra+17; Gra+16], they utilize learning progress signals such
as loss value or prediction gain to automatically select a training path for the neural network
in order to enhance learning efficiency. Similarly, in [Ben+15], the authors study the use
of curriculum learning in sequence prediction. They suggest replacing the ground truth
with the model’s prediction following a probabilistic scheme. When training is starting, the
ground-truth labels are used for the model to predict the target in the next time steps; then,
gradually, the ground truth is replaced with the model’s prediction, and the task’s difficulty
is increased. In [Flo+17], the authors use curriculum learning in the context of goal-oriented
Reinforcement Learning where an agent is expected to navigate an environment towards a
target by reversing the task instead of placing the agent at a random location and training
it to find the goal state, they start from this state and progressively increase the distance,
and hence, the task complexity. In another work, Wang et al. use curriculum learning to
address the challenges of training with imbalanced data where the dataset is not following an
independent and identical distribution [Wan+19]. They propose a data sampling method that
is responsible for sampling balanced samples and a loss scheduler that dynamically balances
the weighting scheme between different loss components in their multi-task setup.

Another closely related line of work is the Teacher-Student training approach [HVD15]
in which two agents are trained intertwined such that the teacher network conditions
certain aspects of the student network’s training, such as the optimization objective or task
complexity assortment [Mat+19]. [Jia+18] uses this training policy to mitigate challenges
faced when training with noisy data and to prevent the network from overfitting on erroneous
labels. To this end, they train a mentor network that generates a curriculum in the form
of a weighting scheme for each training sample based on its importance and reliability.
Subsequently, this weighting scheme is used for training the base classifier (student network),
resulting in improved generalization. In [Fan+18], the authors investigate what constitutes a
good teacher in the context of training neural networks. They suggest a framework where
teacher and student networks interact in a way where the student undergoes the standard
training, and the teacher receives a feedback signal from the student to decide about the
training data, loss function, and the hypothesis space.
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5.3 Learned Transformations for Robust Classification

Unconstrained image classification, where the main image content is cluttered with back-
ground noise, is considerably more challenging than curated scenarios with clean images
centered around the target object. To this end, obtaining image features that are robust
enough to various transformations and the background noise but also sufficiently discrimina-
tive to distinguish between different classes is crucial. One of the solutions proposed in the
literature is to simplify the classification by transforming the input image [JSZ+15]. Hence,
an important question to ask is "what are the suitable transformations?". In [JSZ+15], the
authors introduce Spatial Transformer Networks (STN) for learning the geometric transfor-
mations that modify the input such that it is easier to classify. In this method, the geometric
transformations are learned by minimizing the classification loss. Although it is possible to
use different transformations, here we focus only on affine transformation.

The main components of an STN are the localization network, the grid generator and
the sampler module, as illustrated in Figure 5.4. The localization network takes the input
image and generates the affine transformation parameters. The grid generator computes
the location of each output pixel in the input image. To warp the input image based on the
estimated transformation, each pixel in the output should be computed using a sampling
kernel applied to the input image. The sampler uses the grid generator output and the
bilinear sampling kernel to generate output pixels from the input image:

Vij =
H∑
n

W∑
m

Unmmax(0, 1− |xi −m|)max(0, 1− |yj − n|) ∀i, j ∈ [1 ... H], [1 ...W ],

(5.13)
where H and W are the height and width of the image respectively, and V and U are
the corresponding pixel values in the output and input image. The coordinate (xi, yi) is
the location in the input where the sampling kernel is applied. The sampling module is
differentiable within a local neighborhood:

δVij
δxi

= Unmmax(0, 1− |yj − n|)


0 if |m− xi| ≥ 1,

1 if m ≥ xi,

−1 if m ≤ xi.

(5.14)

and similarly for δVij

δyj
. Therefore, the parameters of the localization network are gradually

updated using backpropagation through the classification loss within a local window.

In this work, we take a similar approach as in [JSZ+15] to modify the input data domain
toward attaining a higher classification accuracy. We formulate the transformation task as a
sequential decision-making problem, in which, instead of finding a one-step transformation,
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Fig. 5.4: An overview of the components in STN architecture. The localization network generates
the parameters of an affine transformation. The grid generator together with the sampler
module generates the transformed image.

the model searches for a combination of discrete transformations to improve the perfor-
mance. We use RL for solving the search problem and apply both Reinforce and Actor-Critic
algorithms [Sut+00; Sut84] and experiment with different reward designs, including maxi-
mizing classification accuracy and minimizing classification loss. As such, the proposed
method is flexible in potentially including both differentiable and non-differentiable types
of transformations and training objectives thanks to the RL-based formulation. Unlike
[JSZ+15], our method is not limited by partial differentiability and learns an interpretable
sequence of transformations, modifying the input toward an easier distribution.

5.3.1 A Reinforcement Learning Approach for Sequential Spatial
Transformer Networks

Our goal is to learn a sequence of simple image transformations T = Tn · Tn−1 · ... · T0,
which is applied to the input image and helps the classifier achieve better performance.
There are different image adjustments, including geometric transformations and filtering
methods. Here, we only consider affine transformations. The hypothesis is that the right
affine transformation can act as an attention module by focusing on relevant content in the
image. Consequently, this would simplify the classification.

To this end, we decompose the affine transformation into a sequence of specific and discrete
transformations instead of applying it in one step as in [JSZ+15]. We formulate the problem
of finding the affine parameters as an MDP and aim to learn picking the right transformation
at every time step of the sequence. Figure 5.5 shows our proposed architecture.

MDP Framework for SSTN

As mentioned in Section 5.2.1, the main parts in an RL framework are S, A, and R. In this
section, we elaborate on these elements in formulating our task.
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Fig. 5.5: SSTN architecture for finding the sequential affine transformation T = Tn · Tn−1 · ... · T0.
We compare the performance of different policy architectures with and without using
LSTM. The last layer of the policy network is a softmax which outputs the probability
distribution of the actions. When using LSTM, the one-hot encoded action from the
previous time step is merged into the feature map of imaget. At each time step, an action
corresponding to transformation Ti is sampled from the policy and applied to the image.

State Space (S): We consider two state space definitions and experiment with both of them.
First, we define a state as the transformed image at step t (imaget in Figure 5.5). Second,
we define the state as a combination of the current transformed image (imaget) and the
previous action (at−1). We merge the one-hot encoded action from the last time step into
the state as st = (imaget, actiont−1). To keep track of the order of sampled actions in
different time steps, the model utilizes an LSTM module [HS97], which is a recurrent neural
network with gate functions to avoid the vanishing gradient problem. This formulation is
closer to the Markovian assumption as the information from past actions helps the network
to learn the proper order of applying the transformations.

Action Space (A): Every action actiont is a specific transformation sampled from the policy,
which is applied at time step t and slightly transforms the image and the state. In order to con-
struct an affine transformation, we define the action space asA = {Translation,Rotation,
Scale, Identity}. The episode length is fixed to T for all images, and having the Identity
transformation allows for stopping the process for individual images before reaching T.
Having a fixed episode length allows us to train our model in mini-batches.

Reward (R): The agent learns the task while maximizing the reward; therefore, the reward
definition has to enfold the objective of the task. An intuitive reward definition would be
based on classification accuracy since the goal is achieving higher accuracy. Accordingly,
we give a discrete reward of +1 when a label prediction changes from false to correct as the
result of applying an action, and -1 for the opposite case; other cases get 0 reward:
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r1 =


1 if (predt−1 ̸= label ∧ predt = label),

−1 if (predt−1 = label ∧ predt ̸= label),

0 otherwise.

(5.15)

Here predt−1 and predt are predicted labels before and after applying the action at time
step t at.

Moreover, we can address maximizing the accuracy by minimizing the classification loss
similar to [JSZ+15]. This way, the reward design is simply the negated loss:

r2 = −loss. (5.16)

In this case, the reward is always negative as loss is a positive value; therefore, the maximum
expected reward would be zero. It means that the model tries to learn a policy that pushes
the classification loss toward zero.

Additionally, we can consider the reward as the loss difference between consecutive time
steps:

r3 = losst−1 − losst, (5.17)

where t is the time step. With this reward definition, the model tries to maximize the
difference in loss values between every two following steps toward a positive reward. In
other words, the model tries to pick an action resulting in a smaller loss value than the
previous time step.

After defining S, A, and R, we use the algorithms introduced in Section 5.2.1 to learn
combining a set of discrete transformations for improving the classifier performance. First,
we use the PG algorithm mainly due to its effectiveness and simplicity. In the next step, we
extend our implementation to the Actor-Critic algorithm. More details about the Actor-Critic
training algorithm for one epoch are presented in algorithm 1 (PG algorithm has a similar
pseudo-code without training the additional value network).

5.3.2 Experimental Setup

In this section, we discuss the experimental setting including the datasets, implementation
details, experimental results, and ablation studies.
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Algorithm 1: Actor-Critic Training Algorithm for SSTN (one epoch).
Input :Images and classification labels
Output :Classifier and sequential spatial transformer policy

1 Initialize classifier (ψ), actor (θ), and critic (ϕ) networks
2 for Image = 1 : N do
3 initialize state s, t = 0, RewardV alueList = [empty]
4 while t < episode-length do
5 pθ(at|st) = actor(st)
6 sample the action : at ∼ pθ(at|st)
7 imaget+1 = apply_action(imaget, at)
8 st+1 = (imaget+1,one_hot(at))
9 predictionst = classify(imaget, labels)

10 rewardt = compute_reward(predictionst)
11 valuet = critic(st)
12 append (rewardt, valuet) to RewardV alueList
13 t + = 1
14 end
15 Update parameters:
16 ∆ϕ = d

dϕMSE_loss(vt,
∑t=T
t=t′ γ

T−trt)
17 ∆θ = d

dθE[logpθ(
∑t=T
t=t′ γ

T−trt − vt)]
18 ∆ψ = d

dψCrossEntropy_loss(predicted_labels, labels)
19 Empty(RewardV alueList)
20 end

Datasets

We evaluate our method using cluttered MNIST [MHG+14] and cluttered Fashion-MNIST
datasets. Both datasets consist of 10 classes, encompassing digits in the former and clothing
items in the latter. These datasets have been used by several works to demonstrate visual
attention [Gre+15; MHG+14]. We followed the procedure suggested by [MHG+14] for
generating both datasets, using the publicly available code1. The generated images are
80 × 80, covered by clutter, and the main content is located at a random location within
the image boundaries. Both datasets include 500K training and 100K test images. Visual
samples from these datasets are shown in Figure 5.6.

Implementation Details

Our action space consists of 10 transformations, including ±4 pixels translation in x and
y direction, scaling of 0.8 in x, y, and xy direction (since the transformation is applied in
a backward mapping manner, scale < 1 has a zoom-in effect), rotation of ±10 degrees

1https://github.com/deepmind/mnist-cluttered
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Fig. 5.6: Data samples from the cluttered MNIST in the top row and cluttered Fahison-MNIST in
the second row.

Method CMNIST(%) CFMNIST(%)
MLP classifier 54.01 30.74
MLP classifier with STN 94.49 62.54
LeNet policy using PG algorithm 91.04 58.70
LeNet+LSTM policy using PG algorithm 95.88 70.27
LeNet+LSTM policy using AC algorithm 96.83 71.61

Tab. 5.1: Experiments with MLP classifier and STN as the baseline, followed by the SSTN approach
results. For all the experiments, the classifier architecture is the same. The episode length
for SSTN is set to 40. Our experiments cover the PG algorithm with different architectures
as well as applying the AC algorithm on the best architecture. CMNIST and CFMNIST
columns are classification accuracy for cluttered MNIST and Fashion-MNIST datasets,
respectively. We observe that with the proper definition of the state space, our approach
outperforms the STN method.

and Identity transformation. In Section 5.3.2, we show a comparison of the classification
accuracies using different reward definitions, and Tables 5.1 and 5.2 present results using
reward definition in Equation 5.17.

We evaluate our model in the following settings. First, we take a 2-layer fully connected
network as the classifier (referred to as MLP in the following). The reason for choosing this
simple classifier is to examine the improvement in classification accuracy based on only
image transformations. Keeping the classifier architecture unchanged, we experiment with
different policy architectures, including LeNet and LeNet combined with LSTM. We also
experiment with both PG and AC training algorithms.

For comparison, we implement our own version of the STN model and train it on our dataset
(the size of cluttered MNIST images is 60× 60 in STN paper). For the localization network
in Figure 5.4, we use the same LeNet architecture as in the policy network. In STN paper
[JSZ+15], they used SGD as optimizer; however, we reached better results using the Adam
optimizer, and we report the best-observed performance.
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Method CMNIST(%) CFMNIST(%)
LeNet classifier 95.94 72.40
LeNet classifier with STN 97.72 77.38
LeNet policy using PG algorithm 95.82 74.59
LeNet+LSTM policy using PG algorithm 98.23 83.16
LeNet+LSTM policy using AC algorithm 98.29 83.27

Tab. 5.2: Experiment results when using LeNet for the classifier network and the episode length of
40. CMNIST and CFMNIST columns are the accuracy results for cluttered MNIST and
Fashion-MNIST datasets, respectively.

The utilized LeNet architecture consists of two convolution layers with 32 and 64 kernels,
followed by max pooling and two fully-connected layers with ReLU non-linearity. In the
policy network, the last layer is a softmax, which generates the action probabilities. The
actions are sampled from a Categorical distribution fitted to the softmax output. For all
experiments, we use Adam optimizer with a learning rate of 10−4, and the episode length
is 40. In the next experiment setup, we change the classifier to LeNet and repeat similar
experiments.

Experimental Results

Tables 5.1 and 5.2 show the results of our experiments using MLP and LeNet classifiers.
We note that the impact of both the policy network in SSTN and the localization network in
STN is only to transform the image before feeding it to the classifier and not to increase the
power of the classifier.

For the policy network, first, we use a LeNet architecture and then combine it with LSTM.
We aim to investigate if considering the state as the current single image satisfies the
Markovian assumption. Based on the experiments with the LSTM module, we observe
that this is an essential element, and the single image does not include all the required
information. The reason is that the RL agent is supposed to learn the sequence of actions
constructing the optimal affine transformation; therefore, it needs the tool for remembering
the order of applying actions. The input to LSTM is the extracted feature map from the
current transformed image, concatenated with one-hot encoded previous action. Finally,
we take the best architecture from these experiments and train it with the AC algorithm.
In the AC algorithm, we use the same network as the policy for the critic. Although it
is possible to share weights between the actor and the critic, it is more stable if separate
networks are used [Bah+16]. As expected, applying the AC training algorithm leads to
further improvement; since it addresses some of the shortcomings in PG, as mentioned in
Section 5.2.1. As results in Table 5.2 show, the LeNet classifier serves as a strong baseline
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Fig. 5.7: Comparison between three different reward definitions using MLP classifier and
LeNet+LSTM policy network using PG algorithm and episode length of 20.

and achieves high accuracy, especially in cluttered MNIST dataset. However, we still can
get an improvement by modifying the input image before classifying.

Ablation Studies

In this section, we present an ablation study on the impact of the reward design and episode
length on performance.

Reward: Figure 5.7 illustrates the epoch-accuracy curve depicting the performance of
different reward definitions. While the performance is relatively similar across the different
definitions, it is noteworthy that r3 exhibits better performance compared to the others. We
believe this behavior is because r3 provides more concise information about the action
taken compared to the discrete reward in Equation 5.15. Furthermore, we observe that
the performance using r2 is comparatively poorer than the other reward definitions. We
posit that in rewards r1 and r3, we account for the change resulting from taking an action
between every two time steps. In contrast, r2 solely considers the loss value at the current
time step without considering the change. These results suggest that r2 incorporates less
comprehensive information in comparison to the other two formulations.

Episode Length: Another important hyper-parameter is the number of time steps per
episode. Figure 5.8 shows the performance of AC and PG algorithms for different time steps.
As the results illustrate, the accuracy is better for more extended episodes. However, this
can be seen as a trade-off between speed and accuracy. Another observation is that when
using LeNet as the classifier, the performance of PG and AC algorithms are very similar.
This indicates that using a stronger classifier decreases the variance in the reward signal.
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Fig. 5.8: Results for AC and PG algorithms with MLP and LeNet classifiers using different episode
lengths.

5.3.3 Summary

In this work, we study cluttered image classification, a scenario where images contain a
substantial amount of object-like clutter. To recover the classifier’s performance in this
challenging scenario, we develop a solution based on training an agent that learns to focus
on the main content in the image via applying a series of geometric transformations such
as translation and zooming. The training process of the agent relies on reinforcement
learning, utilizing various reward functions that aim to maximize classification accuracy
or minimize classification loss. To effectively capture the Markovian property crucial for
the reinforcement learning pipeline, we propose an LSTM-based architecture that enables
the model to summarize the selected actions in the previous time steps. We show the
effectiveness of our model with extensive experiments on cluttered MNIST and Fashion-
MNIST datasets, considerably outperforming the baselines.
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5.4 Spatial Transformer Networks for Curriculum
Learning

The learning process of intelligent beings such as humans and animals depends on many
factors, one of which is the method of teaching and the way the information is presented to
the learner. Numerous findings in the area of cognitive science demonstrate the importance
of teaching designs and shaping the way the tasks are presented to the student [Ski58;
Pet04]. Inspired by these findings on the learning mechanisms of humans, researchers
in the machine learning community have explored the potential of utilizing similar ideas
to improve the training process of neural networks [Elm93; Ben+09; San94; SSB85] to
achieve faster convergence, find better local minima, and improve generalization. This line
of research is referred to as curriculum learning.

There is a wide range of approaches addressing various aspects of this field in different
applications. Rohde et al. investigated the effect of starting from easy examples in the
task of language acquisition [RP99] and in [Ben+09], Bengio et al. studied where and
when curriculum learning can be beneficial for the training process in the context of shape
recognition tasks. Multiple efforts have looked into the impact of hard mining [CLM17;
Zha+17; SGG16; SU07], which is finding the more challenging samples from the network’s
perspective and assigning them a higher weight. In [WCA18; HW19], the authors proposed
various ways to sort the data samples based on an increase in difficulty. The goal is to
measure the hardness of each task and develop a schedule or sampling method that initially
exposes easier samples to the network.

Unlike the previous methods that focus on developing methods for distinguishing between
the easy and hard samples [HW19; WCA18], we intend to directly manipulate the data
distribution and generate the simpler tasks required for curriculum learning. Motivated by the
success of Spatial Transformer Networks (STNs) [JSZ+15; Azi+19] in image classification,
we take a new approach toward the preparation of easy and hard data samples for curriculum
learning. STNs learn affine transformations that modify input data such that it is easier
for the network to classify. In this work, we develop an approach to utilize the learned
transformations in favor of curriculum learning. We highlight that by easier data distribution,
we mean one that obtains a higher classification accuracy when using an identical classifier
architecture and network capacity. We hypothesize that the transformation by STN simplifies
all the intricacies of the original distribution that are caused by noise and clutter (see
Figure 5.9). The motivation is that the network first learns on data with a high signal-to-
noise ratio in the hope that, when the hard, noisy samples come, the model will be inclined
to ignore artifacts caused by the noise itself. It is worth remarking that we utilize the data
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Fig. 5.9: Data samples from cluttered MNIST dataset in the top row and the data transformed by
SSTN in the second row.

transformed by STN during the training but do not use the STN during the test phase, which
allows us to have a simpler inference framework.

We specifically use Sequential STNs (SSTNs) [Azi+19], as they allow us to access a range
of data that varies in difficulty, from the original image to all incremental transformations
thereof (Figure 5.5 illustrates the mechanism of the SSTN). Having a series of slightly
modified and improved images at each time step, we hypothesize that this provides a hard-
to-easy data distribution spectrum. We aim to use this characteristic in a curriculum learning
setup to improve the training process of the classifier. We introduce two main approaches
that exploit SSTN-processed data. The first variant, called Mixed-batch training, includes a
portion of the SSTN-processed data with each mini-batch during training. The rationale is
that the network can learn an embedding that is robust to the clutter of the original data by
concurrently optimizing on the decluttered samples produced by the SSTN. In the second
approach, called Incremental Difficulty training, optimization begins by exclusively using
data that has been fully processed by the SSTN (i.e., data has undergone the maximum
number of transformation steps). Then, we gradually increase the difficulty of samples
being used for training by decreasing the number of transformation steps that the SSTN
applies to each image (zero steps correspond to the original data).

5.4.1 Mixed-batch Curriculum Learning

As discussed earlier, transforming the input data through SSTN shifts the data distribution
of the input such that it is easier to classify (higher classification accuracy) compared to the
original data. Therefore, we measure the extent to which this easier distribution can be used
as part of a curriculum for image classifiers.

In the mixed-batch strategy, we investigate whether mixing the original input images with a
portion of data transformed by SSTN can facilitate the training process of the classifier. The
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hope is that by presenting the input samples from the SSTN-processed and original data, the
classifier can learn a representation that ignores the existing clutter and picks on the main
content of the image. In this regard, we explore two different mixing strategies as described
in the following.

In the first variant, we allocate a fixed portion of each mini-batch of input images to SSTN-
processed data throughout the training. Formally, assumeX = {xi}Ni=1 refers to the original
data distribution with N data samples. Consider ft as the transformation that is selected
by the SSTN at the tth time step, and xTi is the product of sequentially applying T discrete
transformations to xi. We refer to the modified data distribution as X̂ = {x̂i}Ni=1 where
x̂i = fT ◦ fT−1 . . . ◦ f1(xi) and T is the maximum number of transformation steps. In
Mixed-batch setup, each mini-batch Bj consists of a fixed portion from the original and the
modified data distribution: Bj ⊂ X ∪ X̂ .

Moreover, we experiment with the Mixed-batch idea in a slightly different fashion. Instead
of using a fixed share of SSTN-processed data in each mini-batch, we start the training
with each mini-batch fully transformed by SSTN; then, we gradually increase the ratio of
original-to-easy samples as training progresses such that towards the end of the training,
only the original data are used. The rationale is to start with a high portion of easy samples
and incrementally move toward the original data distribution, which will be used during the
inference. We refer to this scheme as Dynamic Mixed-batch training.

5.4.2 Incremental Difficulty Curriculum Learning

We note that the SSTN performs a series of small transformations toward the final processed
results. This allows us to have access to a spectrum of data distributions ranging from fully
processed images (an easier distribution with higher classification accuracy) to original
unprocessed data.

From the curriculum learning literature, we know that it is beneficial to the training of the
neural networks to start from simpler tasks and progressively increase the complexity. In
the Incremental difficulty setup, we identify a potential application of SSTN for generating
this series of tasks or data distributions. Having T step transformations in SSTN, we start
training the classifier with fully processed images and gradually decrease the number of
transformation steps as the training progresses toward the original data. Formally, we sample
each mini-batch Bj from the dataset X ′ = {fT ◦ fT−1 . . . ◦ f1(xi)}Ni=1 where the number
of transformation steps T gradually decreases from an initial maximum value to 0, resulting
in the original dataset X . In this regard, we experiment with various scheduling strategies,
including linear, cosine annealing, and exponential decay, where each method changes the
data distribution at a different rate.
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Method Cluttered MNIST(%) Cluttered Fashion-MNIST(%)
Baseline 87.9 72.6
Baseline* 91.2 83.6
Mixed-batch 89.9 83.5
Dynamic Mixed-batch 94.7 83.7
Incremental Difficulty 95.0 84.9

Tab. 5.3: Comparison of our proposed curriculum learning strategies with the baselines. Baseline
and Baseline* rows present the results of training the classifier network without and with
data augmentation, respectively. The results presented in this table are with the best-
found hyperparameters regarding the portion of SSTN-processed data in the Mixed-batch
approach and the number of transformation steps in Incremental Difficulty training.

5.4.3 Experimental Setup

In the following, we discuss the implementation details and provide the experimental results
on Cluttered MNIST and Cluttered Fashion-MNIST datasets described in Section 5.3.2.
Additionally, we include ablation studies to analyze various aspects of the proposed ap-
proach.

Implementation Details

The policy network consists of three convolution layers followed by an LSTM [HS97]
module, a fully-connected layer, and softmax activation, which generates the probability
distribution of the optimal action selection. The number of kernels in the convolution
layers is 32, 64, and 64, respectively. The action-set employed in SSTN consists of 8
distinct transformations, including a translation of ±4 pixels in vertical and horizontal
directions, scaling up with a factor of 1.2, clockwise and counter-clockwise rotation of
10 degrees, and Identity transformation. Each sequence of transformations consists of 40
transformation steps (T = 40) unless mentioned otherwise, as we obtained the best results
with this configuration. We use the Reinforce algorithm to train the policy. For more details
on training the policy network, please refer to [Azi+19].

For the experiments on cluttered MNIST, the classifier architecture consists of a single
convolution layer with 64 kernels followed by two fully-connected layers, referred to as
LeNet1. The classifier used for the experiments on cluttered Fashion-MNIST consists of
two convolution layers with 32 and 64 kernels and two fully-connected layers, referred to
as LeNet2. For all the experiments, we use the Adam optimizer [KB14], a learning rate of
10−4, and a batch size of 64.
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Experimental Results

Table 5.3 presents the experimental results on cluttered MNIST and Fashion-MNIST datasets.
For the baseline, we trained the model with and without data augmentation with the standard
training process (Adam optimizer and a learning rate of 10−4, trained until convergence).

For the Mixed-batch experiment, we tried different setups, including varying portions of
SSTN-processed data in each mini-batch. The best-found result is recorded in Table 5.3,
and the ablation on this hyperparameter is presented in Table 5.6. In Dynamic Mixed-batch,
initially, each mini-batch is composed of the images transformed by SSTN (easier). Then,
we gradually reduce the portion of easy-to-original by a rate of one sample per epoch. In the
Incremental difficulty experiment, we start the training with the data processed by SSTN for
a maximum of T time steps. The number of transformation steps is decreased by one every
five epochs, slowly shifting the data distribution from easy towards the original dataset.

Although both cluttered MNIST and Fashion-MNIST inherently include affine transforma-
tions (as it is used in the generation of these datasets), we observed that applying further
affine transformation during the training in the context of data augmentation is effective,
especially in the case of cluttered Fashion-MNIST. According to the results in Table 5.3, we
see that the Mixed-batch variant performs merely as well as standard data augmentation;
however, Dynamic Mixed-batch achieves substantially better performance compared to the
Mixed-Batch. Furthermore, we observe that the Incremental Difficulty training considerably
improves the performance compared to the baselines. From these results, we conclude
that it is important to finalize the training of the neural networks with the data distribution
which is to be used at the inference phase. We note that the accuracy improvement is
more pronounced in the case of cluttered MNIST dataset; we believe this is because the
underlying SSTN trained on cluttered MNIST does a better job of processing the input and
removing the clutter from the image. This is manifested in the higher performance gain
achieved when using SSTN for cluttered MNIST compared to the Fashion-MNIST.

In Table 5.4, we present the results for Incremental Difficulty training when experimenting
with three different scheduling methods. These functions are used to determine the rate at
which the number of transformation time steps is dropped from T to 0. In Linear scheduling,
the number of transformation steps is reduced by one every five epochs. The transformation
steps in Cosine Annealing follow ⌊cos( epoch.π2T )⌋ and Exponential Decay schedulers follows
⌊exp(− epoch.T

τ )⌋, where the hyperparameter τ determines the decay pace and is set to 30.
We obtained the best results using simple Linear scheduling.
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Method Cluttered MNIST(%) Cluttered Fashion-MNIST(%)
Linear Decay 94.8 84.9
Cosine Annealing 93.7 83.1
Exponential Decay 94.7 84.7

Tab. 5.4: The impact of three different scheduling functions on the Incremental Difficulty training.
The number of transformation steps T is set to 20 in this set of experiments.

Ablation Studies

In this part, we provide an ablation on the role of the number of transformation steps T in
the Incremental Difficulty as well as the impact of the portion of SSTN-processed data in
Mixed-batch curriculum learning. In Table 5.5, we present the results for the Incremental
Difficulty method with various T values (maximum number of transformation steps). We
see that the model performance converges with about 20 transformation steps.

Time-steps Cluttered MNIST(%) Cluttered Fashion-MNIST(%)
T : 1 92.6 83.1
T : 10 94.0 84.4
T : 20 94.8 84.9
T : 40 95.0 84.9

Tab. 5.5: An ablation on impact for T , the maximum number of transformation steps in our
Incremental Difficulty approach.

In Table 5.6, we experiment with different ratios of easy-to-original data in the Mixed-
batch training approach. In this approach, we obtained the best results by including 4
and 16 SSTN-processed samples in a mini-batch of 64 images in cluttered MNIST and
Fashion-MNIST datasets, respectively.

Ratio Cluttered MNIST(%) Cluttered Fashion-MNIST(%)
4/64 89.9 82.9
8/84 89.3 83.2
16/64 88.6 83.5
32/64 86.0 82.9

Tab. 5.6: Ablation on the Mixed-batch experiment, when using a different ratio of SSTN-processed
data in a mini-batch of size 64.

5.4.4 Summary

In this section, we present a new approach for curriculum learning by employing SSTN
[Azi+19] to generate the easy-to-hard task ordering, which is known to be advantageous
to the training of neural networks. STNs have been successful in de-cluttering the input
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image and modifying the input image such that it is easier for the network to classify,
i.e., the classifier achieves higher accuracy [JSZ+15; Azi+19]. In this work, we use this
characteristic to design a curriculum learning strategy without the need to manually define
an a priori ordering of training data by allowing the SSTN to modify all or part of the
training data according to a predefined strategy. We apply these methods to the problem of
training a classifier for cluttered versions of the MNIST and Fashion-MNIST datasets and
show that they increase the classifier accuracy for a given architecture. We observe that the
gained improvement was more significant in the case of the cluttered MNIST, potentially
due to having a more effective SSTN policy for this dataset. Therefore, a future research
direction that can directly benefit our work would be improvements in the design of the
SSTN algorithm.
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5.5 Image Classification in the Wild

In this section, we study image classification in the wild: a realistic scenario where there
are multiple object instances in the scene, and we are interested in classifying the image
based on the most salient object. Image classification has been a standard task in the vision
community for developing and improving deep learning architectures; however, the majority
of architectural advances [KSH12; He+16; Xie+17; Sze+17; Dos+20] evaluate the model
performance on highly curated images such as CIFAR [KH+09], or Imagenet [Den+09].
As such, a side-product of focusing on increasing the model accuracy on specialized and
curated datasets is the lack of out-of-domain generalization [HD19b] and poor performance
on images where the main content is not located at the image center, let alone if the scene is
cluttered [JSZ+15].

In this work, we investigate salient object classification on challenging PASCAL VOC
dataset [Eve+10], inspired by Spatial Transformer Networks [JSZ+15; Azi+19]. Our main
hypothesis is that zooming in on the salient object and cropping out secondary objects
regarded as clutter is beneficial for the classifier. Hence, increasing the Intersection over
Union (IoU) of the salient object (i.e., the ratio between the salient object’s bounding box
area and the image area) can be used as a training signal. Thanks to the availability of object
detection information in PASCAL VOC [Eve+10], we use bounding-box information to
compute the IoU of different object instances in the scene. Instead of relying on human
annotations for identifying the salient object, we resort to the approximate assumption that
the object size serves as an indicator of object saliency and consider the largest object as the
salient one.

Specifically, we build on top of the proposed SSTN algorithm [Azi+19], as the RL-based
solution in [Azi+19] offers a flexible framework that allows for employing various differ-
entiable and non-differentiable training objectives. We advance the algorithm proposed in
[Azi+19] by employing Q-Learning, an effective algorithm for scaling to high dimensional
input data such as images [Mni+13]. Moreover, we propose reward-shaping functions that
attempt to directly increase the IoU of the salient object, resulting in improved classification
accuracy. Our method, named DQ-SSTN, increases the IoU of the salient object by 11.31 pp
and the overall classification accuracy by 1.82 pp. We observe that our method is especially
effective for smaller objects (objects that cover less than 20 percent of the image area),
where we obtain an improvement of 3.63 pp in accuracy.
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Fig. 5.10: The overall architecture of DQ-SSTN. Our model sequentially modifies the input image
by applying a series of simple and discrete transformations (at) selected by an agent
trained to maximize the overall obtained reward (rt).

5.5.1 Sequential Spatial Transformer Networks for Salient Object
Classification

In this section, we elaborate on our proposed approach toward salient object classification,
where the object saliency is determined based on the object’s bounding box area. Our
goal is to extend the SSTN algorithm [Azi+19] for working with real-world images with
multiple object instances present in the scene. While SSTN uses Policy Gradient for training
the RL agent, we propose employing the Q-learning algorithm, as recent works [Mni+13]
confirm the effectiveness of this algorithm for better scaling to higher-dimensional data. We
experiment with various reward functions that, based on different metrics, aim to boost the
performance of the downstream classifier. Thanks to the RL-based framework, our model
is flexible to work with non-differentiable training objectives. Figure 5.10 visualizes the
overall architecture of our model.

As explained in Section 5.2.1, the first step in formulating an RL-based problem is to define
state space, action space, and reward functions required to describe the MDP framework.
For the state space st, we consider the transformed image at time t, which has undergone
a sequence of transformations (the actions selected by the agent). Our action space at

consists of 6 discrete affine transformations with fixed parameters, including translation in 4
directions, zooming, and identity. The identity action allows for batch training; as such, we
use a fixed number of transformations T , and the agent can decide if specific images in the
batch are already sufficiently transformed by choosing the identity action.

Regarding the reward rt, we initially experiment with the same functions proposed in
[Azi+19] referred to as Continuous loss-reward and Discrete Acc-reward. Continuous
loss-reward is the difference between the classification loss before and after applying the
selected action (hence the reward is positive when reducing the loss value, Equation 5.17).
Discrete Acc-reward rewards the agent with +1 if the classifier’s prediction changes from
incorrect to correct or −1 vice-versa (Equation 5.15).
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Algorithm 2: DDQN training algorithm for the proposed DQ-SSTN architecture illus-
trated in Figure 5.10 (one epoch).
Input :Images and classification labels
Output :Classifier and sequential spatial transformer policy

21 Initialize classifier (ψ), Q network (θ), and target network (ϕ),
Replay_Memory = [empty]

22 for Image = 1 : N do
23 s = s0, t = 0
24 while t < episode-length T do
25 # Select action through ε-greedy policy
26 if p < ε+ (1− ε) · e− n

d then
27 random at
28 else
29 at = argmax Q∗(s, a)
30 end
31 st+1 = apply_transformation(st, at)
32 rt = compute_reward(st, st+1)
33 Replay_Memory.append(st, at, rt, st+1)
34 end
35 pred = classifier.predict(sT )
36 ψ = ψ − α · ∇ψCrossEntropy_loss(pred, label) # update classifier
37 si, ai, ri, si+1 = Replay_Memory.sample() # update Q network
38 Qθ = Q network.action_values(si, ai)
39 Γ = ri + γ ·max

a′

(
DQ-SSTN.rate(si+1, a

′)
)

# Bellman optimality equation

40 θ = θ − α∇θHuberLoss(Qθ, Γ)
41 if iteration mod n ≡ 0 then
42 ϕ← θ
43 end
44 end

We further explore the possibility of improving the classifier accuracy by learning to increase
the IoU of the salient object. To this end, we positively reward the agent when the selected
action results in increasing the area of the salient object. This way, the agent is encouraged
to zoom around the salient object. This reward named Continuous IoU-reward is defined
as:

r
(c_iou)
t = IoUt − IoUt−1 (5.18)

Moreover, we experiment with the discrete version of the IoU and refer to it as Discrete
IoU-reward:

r
(d_iou)
t =


+1 if IoUt > IoUt−1,

−1 if IoUt < IoUt−1,

0 else.

(5.19)
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Finally, we experiment with a weighted combination of the IoU-based and loss-based reward
functions defined as:

r
(combined)
t = α · r(c_loss)

t + β · r(d_iou)
t (5.20)

where α and β are hyperparameters. Note that the IoU-based and discrete loss-based
rewards are non-differentiable objectives that can be optimized within the RL-based problem
formulation.

We train our model using the DDQN algorithm [Mni+13], explained in Section 5.2.1. As
proposed in the DDQN algorithm, we deploy a replay memory for storing the state-action
transitions (see Figure 5.10). Subsequently, uncorrelated training samples are randomly
drawn from this memory. Further, a target network [Mni+13] responsible for predicting
the expected reward is employed to break the inter-dependency in the Bellman update
rule (see Equation 5.10). During the training phase, the actions are selected following the
ε-greedy policy described in Equation 5.11. The overall training algorithm is presented in
algorithm 2.

5.5.2 Experimental Setup

In this section, we explain the characteristics of the dataset used for training and validation,
followed by a discussion on implementation details. Next, we present the evaluation results,
followed by several ablation studies aiming at better understanding the model behavior.

Dataset

PASCAL VOC [Eve+10] is a real-world dataset with pictures containing multiple objects
from 20 object classes. The dataset provides the bounding box and the category of each
object. We combine the dataset versions 2007 and 2012 to get as many images as possible,
resulting in a training set of 8218 and a test set of 8333 frames.

For the classification ground-truth label, we consider the category of the object with the
largest area. Consequently, the Top-1 accuracy depends on whether the prediction cor-
responds to the largest visible object. As additional metrics, we use the Top-2 and Any
accuracies for evaluation (we only optimize over Top-1 accuracy). The Top-2 accuracy
additionally allows the prediction to be the second largest object, and the Any accuracy
permits the prediction to match any object present within an image. We highlight that
using the PASCAL VOC dataset for single-class labeling results in a non-uniform class
distribution, where class person has more than 1700 images compared to other classes,
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which range from below 200 to 600 images per class. We discuss a possible bias towards
the dominant class in Section 5.5.2.

Implementation Details

The backbone of the classifier and the Q-network consists of a ResNet18 [He+16] where
the last fully-connected layer is modified to match the number of the object classes and
the number of actions, respectively. ResNet18 is an architecture quite successful in image
classification tasks, and the library PyTorch [Pas+17] provides pre-trained weights. We
downscale the input images to 224 × 224 to match the ResNet18s implementation and
perform horizontal flipping augmentations to increase the variety in the dataset.

In the Q-Learning objective (see Equation 5.10), we use γ = 0.95 and update our target
network after 100 agent updates. Our replay memory stores 1000 transitions. The ε-greedy
strategy Equation 5.11 uses d = 50000 and εend = 0.05. The DQ-SSTN action space
includes a translation of 4 pixels in each cardinal direction and zooming-in by a factor of
0.8, with a fixed number of transformation steps T = 10. In the corresponding experiments,
the weight factors in Equation 5.20 are set to α = 1 and β = 0.8. We train our model with
Adam [KB14] optimizer and a learning rate of 5 · 10−6 for 50 epochs.

Experimental Results

Table 5.7 provides a comparison between the baseline classifier without DQ-SSTN and our
proposed DQ-SSTN method using different reward functions. As can be seen from the
results, the best accuracy was obtained employing the discrete IoU reward, improving Top-1
accuracy by 1.82 pp, Top-2 accuracy by 1.86 pp and Any accuracy by 1.23 pp, respectively.

Method Top-1 (%) Top-2 (%) Any (%)
Baseline classifier 80.04 82.97 88.22
Continuous loss-reward (rc_loss) 80.84 83.75 88.83
Discrete Acc-reward (rd_acc) 80.43 83.61 88.67
Continuous IoU-reward (rc_iou) 80.15 83.09 88.19
Discrete IoU-reward (rd_iou) 81.86 84.83 89.45
Weighted combination-reward (rcombined) 81.54 84.56 89.27

Tab. 5.7: Comparison of classification accuracy of the baseline with our method when using
different reward functions, on PASCAL VOC [Eve+10]. We obtained the best results with
the discrete IoU-based reward signal.

In Figure 5.11, we provide an analysis of the IoU and classification accuracy before and after
applying the transformations selected by our DQ-SSTN model. To better understand the
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Fig. 5.11: IoU and classification accuracy before and after applying the DQ-SSTN transformations.
The dataset is split into five bins according to the initial IoU. Classification accuracy
changes are noted under each column. DQ-SSTN is especially useful for smaller objects
(first bin) where the classification accuracy is improved by 3.63 pp.

impact of the transformations on objects with different sizes, we divide the test-set images
into 5 bins, considering the initial IoU. Applying the DQ-SSTN transformations leads to
an average increase of 11.31 pp in the target class IoU (the dotted line in this figure shows
the average IoU per bin). Furthermore, we evaluate the classification accuracy for each bin
before and after applying transformations. We observe that our model is more effective in
improving the classification accuracy of smaller objects, increasing it by 3.63 pp for objects
with an IoU less than 20%. Interestingly, the IoU of the right-most bin decreases while the
accuracy increases; this behavior will be observed in Figure 5.13 again and discussed in
Section 5.5.2.

Visual examples of the transformations learned by our model are illustrated in Figure 5.12.

Hard Mining. Our derived version of the PASCAL VOC dataset adapted for classification
suffers from a considerable imbalance in both class distribution and IoU distribution (see
Section 5.5.2). This imbalance may hurt performance as the learned solution could be biased
towards the dominant category. Hard mining is a training technique that has been proven
effective [SGG16; DGZ17] to alleviate the effect of data imbalance by assigning a higher
weight to underrepresented (therefore more challenging) data samples.

To this end, we experiment with multiple hard-mining strategies and provide the results in
Table 5.8. As our overall objective consists of the classification and the reward maximization
terms, we can perform hard mining by re-weighting the classifier’s loss or the reward of the
more challenging data samples.

5.5 Image Classification in the Wild 55



t=0 (start) t=5 t=10 (end)

Fig. 5.12: Visual examples of our DQ-SSTN model gradually focusing on the salient object. The
bounding box of the largest object is visualized in red in the starting frame (t=0).

Initially, we consider IoU as a measure of a data sample hardness. Therefore, we reweight
either the loss function or the reward signal by the inverse of IoU, assigning higher impor-
tance to samples with smaller IoU (Weight reward by inverse IoU and Weight loss by inverse
IoU). Surprisingly, our results did not improve with this technique. Next, we reweigh the
data samples based on the performance of the baseline classifier. If an image is classified in-
correctly, we assign a weight of 1 and, if it’s predicted correctly, a constant weight < 1. This
assigns higher importance to those images that are more difficult for our classifier (Weight
reward by accuracy and Weight loss by accuracy). The results show minor improvements of
0.06 pp for either Top-1 or Top-2 accuracy; hence, we do not find these techniques helpful
to our algorithm.

Method Top-1 (%) Top-2 (%) Any (%)
Baseline classifier 80.04 82.97 88.22
DQ-SSTN without hard mining 81.80 85.25 89.72
Weight reward by inverse IoU 81.40 85.13 89.60
Weight loss by inverse IoU 81.08 84.72 89.32
Weight reward by accuracy 81.86 84.83 89.45
Weight loss by accuracy 81.75 85.31 89.69

Tab. 5.8: The impact of different hard-mining techniques tried on the classification accuracy. Whilst
the weight by accuracy methods improved the Top-1 or Top-2 metric, respectively, by
0.06pp, we do not consider this as a noteworthy improvement.
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Fig. 5.13: Our experiment indicates a correlation between salient object IoU and classification
accuracy (both in %). Zooming on the target object (increase in IoU) leads to better
classification accuracy for this object.

Ablation Studies

In this section, we provide several experimental studies to: 1) Confirm the relation between
the increase in an object’s IoU and the improvement in classification accuracy, 2) Analyze
the impact of dataset bias, and 3) Study the issues raised from the saliency assumption
where we consider the largest object as the salient one.

Correlation of IoU and Accuracy. The underlying assumption in DQ-SSTN is that
classification accuracy improves with increasing the target object’s IoU. To confirm this, we
run an experiment where we construct multiple datasets, each with a constant IoU enforced
synthetically. To this end, we determine the salient object by the size of the bounding box
and crop around it such that we achieve a fixed IoU for that object. Furthermore, we include
random translations to hinder the network from cheating and getting biased based on the
positioning of the object. This results in a dataset where each image’s salient object has the
same constant IoU.

After constructing 20 datasets with different IoUs, we train and evaluate a classifier on
each dataset separately. As can be seen in Figure 5.13, an increase in the IoU indeed
leads to improved classification accuracy. We observe that adjusting the IoU to more than
90% reduces the accuracy. This shows that extreme zooming has a negative impact on
performance, as informative parts of the object can be displaced out of the classifier’s
focus.

Bias of the Person Class. One property of the PASCAL VOC dataset is an imbalance in the
class distribution. Based on object size, about 20% of all images are assigned to person class.
As a result, we observe that the attention of our DQ-SSTN is drawn towards persons: If a
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(%) pred. person pred. other
person present 39.37 60.63

person not present 11.15 88.85

Tab. 5.9: The prediction of the classifier on images that were predicted incorrectly. If there is a
person present, the DQ-SSTN has a high chance of focusing on it.

30.9 %, Sofa 54.3 %, Car43.8 %, Bird 44.6 %, Aeoroplane

Fig. 5.14: Visual examples where the main object intersects with other objects. Red frames surround
the largest object, and blue frames the secondary ones. The value below each image is
the percentage of the largest (salient) object’s bounding box that intersects with other
bounding boxes, and the assigned true label is also given. The first image is an image
below threshold th = 0.4 but still considered cluttered, and the second one is vice versa.
The other two examples further highlight our choice of threshold.

person is present in the scene, the classifier is biased towards classifying the image as person
category. In Table 5.9, we provide statistics for misclassifications considering whether a
person is present as a secondary object. It is clearly visible that in cases where a person is
present, the classifier is biased toward this class. However, if there is no person in the image,
the classifier does not overly tend toward predicting one. Note that a random classifier
would select person class around 20% of the time, following the dataset distribution in the
training set. This is an inherent issue in the PASCAL VOC dataset, as there are far more
person objects throughout the dataset than compared to other classes.

Issues with Saliency Assumption. In our setup, we assume the object with the largest
bounding box to be the most salient one. Here, we investigate how often and to which extent
this assumption is violated and how this impacts the performance of the DQ-SSTN.

An example in contrast with our saliency assumption is when a smaller object is located
in front of a bigger one. Consider a person sitting on a sofa (as in Figure 5.14); in this
scenario, humans consider the person as the salient object, while based on our assumption,
the sofa is labeled as the salient category. Interestingly, we observed that in most cases, the
classifier also predicts the front object as the correct class (person in this example), but this
is considered a misclassification based on our evaluation.

To better understand this issue, we visualize the overlap characteristics of our data in Fig-
ure 5.15. In this figure, we see the portion of images in which the main object (largest/salient)
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Fig. 5.15: This histogram shows the composition of our dataset regarding the relation between
the most salient object and overlapping objects. Depending on the selected threshold,
between 5%(th = 0.7) to 35%(th = 0.1) of all images are to some extent covered by
another object instance, thus violating our saliency assumption.

is not overlapping with other objects in the scene, as well as the number of images in which
the main object intersects with other object instances considering different overlap thresh-
olds. For example, the column with th = 0.5 shows the number of images in which the
overlap between the main and the secondary objects is lower or higher than 50% of the
main object’s area. We observed that 41.4% of the images only have one object, and 10.8%
of all images are accompanied by secondary objects, but their bounding boxes do not
intersect with each other. This means that in 52.1% of the images, our assumption about
saliency strictly holds. However, in 47.89% of the images, the salient object is, to some
extent intersecting with (and possibly being occluded by) another object. Considering the
qualitative examples in Figure 5.14, we regard a threshold of th = 0.4 as critical; i.e., all
images that have more than 40% of their bounding-box concealed by another object do not
follow our saliency assumption based on object size. Based on this threshold, about 15% of
the dataset conflict with our saliency assumption.

To quantitatively examine the impact of our saliency assumption on the DQ-SSTN per-
formance, we divide the dataset into three categories; the images with the main object
not covered by any other objects and the images in which the main object is covered by
other instances more or less than 40% (th = 0.4 in Figure 5.15) We evaluate our model
separately on each group and present the results in Table 5.10. As expected, we observe that
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Accuracy (%)
Total 81.86
No clutter 86.05
Cluttered, below th = 0.4 82.83
Cluttered, above th = 0.4 64.88

Tab. 5.10: DQ-SSTN classification accuracy on each subset of PASCAL VOC when categorized
based on the overlap threshold of 0.4 (as shown in Figure 5.15).

the classification accuracy is significantly lower for the data in which the salient object has
an overlap of over 40% with other objects in the scene.

5.5.3 Summary

In this work, we study the task of salient object classification. We introduce DQ-SSTN, a
Sequential Spatial Transformer Network based on Deep Q-Learning. Our model learns to
zoom on the salient object by iteratively selecting an affine transformation to increase the
IoU of the largest object in an image. We experimentally demonstrate the effectiveness of
our method in improving the classification accuracy, especially for smaller objects, where
we achieve an improvement of 3.63 pp. Additionally, we conduct several ablation studies
to thoroughly analyze the behavior of our model and identify potential failure scenarios.
Through these studies, we uncover two primary limitations: the lack of specialized data and
the consideration of size as saliency, along with the presence of dataset bias.
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Video Object Segmentation 6
6.1 Introduction

Video Object Segmentation (VOS) is an active research area of the visual domain that aims
at pixel-wise tracking of a set of target objects. One of its fundamental sub-tasks is one-shot
VOS: given only the object segmentation mask in the first frame, the task is to provide
pixel-accurate masks for the object over the rest of the sequence. VOS plays an essential role
in various applications, such as video editing, autonomous driving, and robotics [Yao+20].
During the last years, a wide variety of learning-based solutions have been proposed for
VOS trying to maximize the segmentation accuracy via addressing different challenging
scenarios such as tracking smaller objects, handling occlusion, fast motion, and crowded
scenes with similar object instances [Gao+22].

The current approaches in the literature can be roughly categorized into two main groups of
propagation-based and matching-based methods. In propagation-based methodology, the
object mask is sequentially propagated to the subsequent frames by adjusting the mask’s
location and appearance using visual and motion information. In contrast, matching-based
techniques capture the target object’s mask in each frame by finding the correspondences
between the current frame and the provided object mask in the first frame. Each category
has certain advantages and limitations. For example, propagation-based algorithms capture
the object’s location and appearance evolution over time and utilize the motion information;
however, they suffer from error propagation as segmentation inaccuracy for each image
impacts the subsequent frames. In correspondence matching, on the other hand, the object’s
mask at every image is captured independently by comparison to a set of reference templates
(e.g., segmentation masks at t = 0). As a result, the model does not face the error
propagation issue, but the performance degrades when similar objects appear in the scene or
when the object’s appearance considerably changes compared to the reference template.

In this chapter, we start with an in-depth study of one of the popular propagation-based
baselines that uses RNNs for utilizing spatiotemporal information [Xu+18], as this model
offers a straightforward design with good performance and fast inference. This model
consists of an encoder-decoder that maps the RGB images to the segmentation mask
using an RNN module in the bottleneck for tracking the target object. We identify two
main limitations of this model for handling challenging video scenes for tracking smaller
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objects and accurately segmenting the object boundaries. We empirically observe that this
issue arises from spatial information loss in the bottleneck due to multiple downscale and
pooling operations in the encoder network. Furthermore, segmenting the pixels around
the object boundary is more difficult due to the potential mixup between the features from
the object and the background. Accordingly, we improve this approach by proposing a
model that manipulates multi-scale spatiotemporal information using memory-equipped skip
connections. Furthermore, we incorporate an auxiliary task based on distance classification,
which considerably enhances the quality of edges in segmentation masks, supported by
qualitative and quantitative experimental results.

Although the proposed solutions mentioned above improve the segmentation quality for ob-
ject boundaries and smaller objects, the model’s performance significantly deteriorates when
segmenting longer videos. This deterioration is mainly caused by the inherent limitations
of the RNN module, namely limited memory and error propagation. We take inspiration
from the matching-based VOS methods to address these issues and propose a hybrid archi-
tecture that employs a dual mask propagation strategy by fusing the spatiotemporal RNN
features with correspondence matching. Our experiments show that augmenting the RNN
with correspondence matching is a highly effective solution for adding extra modeling
capacity to the model and reducing the drift problem. Extensive analysis of our model’s
behavior in challenging cases such as occlusion and long sequences shows that the proposed
hybrid architecture significantly enhances the segmentation quality in these challenging
scenarios.

In the last section, we study several aspects regarding the behavior of the proposed hybrid
VOS model. First, we design a bidirectional architecture that additionally utilizes the
information from the future frames to generate the object mask at each time step. Second, we
investigate a multi-task training setup that combines the VOS architecture with unsupervised
optical flow estimation. Since optical flow estimation and VOS are essentially similar tasks,
we ask whether the VOS model can benefit from the additional flow information. Finally,
we perform an extensive benchmark to quantify the impact of the design choice for each
component in the hybrid VOS architecture. We evaluate the model performance with several
convolutional and attention-based backbones, different variants of the RNN module as well
as different designs for the fusion module responsible for combining the RNN and matching
information.

The content in this chapter is based on the publications [Azi+21a], [Azi+21b], and [Azi+21c].
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6.2 Related Work

A large body of research in Computer Vision literature has studied VOS during the last
decade. The classical methods for solving VOS were mainly based on energy minimization
[BM10; FI14; PF13; SSB15]. Brox et al. [BM10] propose a model based on motion
clustering and segment the moving object via the analysis of the point trajectories throughout
the video. They also use motion cues to distinguish foreground from background. Faktor
et al. [FI14] present a method based on consensus voting. They extract the superpixels
in each frame and, by computing the similarity of the superpixel descriptors, then use the
nearest neighbor method to cluster the most similar superpixels together in a segmentation
mask. [JG14] addresses the problem of fast motion and appearance change in the video by
extending the idea of using superpixels to using super-voxels (adding the time dimension)
and taking into account the long-range temporal connection during the object movement.

Since the advent of Deep Learning [KSH12], the Computer Vision community has witnessed
significant progress in the accuracy of VOS methods [Man+18; Per+17; TAS17]. The
success of learning-based methods can largely be accounted to progress made in learning
algorithms [KSH12; He+16] and the availability of large-scale VOS datasets such as
Youtube-VOS [Xu+18].

In one-shot VOS, there are two training schemes, namely offline and online training. Offline
training is the standard training phase in learning-based techniques where the model’s
weights are learned during the training phase and kept fixed during the inference. As the
segmentation mask of the first object appearance is available at test time, online training
refers to further fine-tuning the model on this mask with extensive data augmentation. This
additional step considerably improves the segmentation quality at the expense of slower
inference. Earlier learning-based methods for solving VOS heavily relied on online train-
ing. In [Man+18], authors extended a VGG-based architecture designed for retinal image
understanding [Man+16] for VOS. They start with the pre-trained weights on ImageNet
[Den+09] and then further train on a specialized VOS dataset [Per+16a]. This model relies
on online training and boundary snapping to achieve good performance. [VL17] further
improves this method by employing online adaption to handle drastic changes in the object’s
appearance. Moreover, some earlier works rely on object detection algorithms such as
RCNN [Ren+15; He+17]. For example, [LVL18] takes a multi-step approach, in which they
first generate the region proposals and then refine and merge promising regions to produce
the final mask. They additionally use optical flow to maintain temporal consistency. In
[Li+17], the authors integrate a re-identification module for recapturing objects occluded or
lost at some point in the video. These methods produce high-quality segmentation masks,
but their design is complex, their inference time is relatively high, and they still require
online training to perform well. However, more recent methods focus on the architecture
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design and improved task modeling toward obtaining accurate segmentation masks without
requiring the time-consuming online training phase [Wug+18; Joh+19]. This aspect is of
high practical importance as more VOS applications require real-time performance. In
the following, we review recent VOS approaches categorized into propagation-based and
matching-based algorithms.

Propagation-based Video Object Segmentation. Methods relying on object mask propaga-
tion for solving VOS utilize motion information and visual cues from the RGB input image
to propagate the mask from the current time step to the future frames, accounting for the
shift in the object’s location and appearance. To this end, [Xu+18; TAS17; Ven+19] employ
various forms of RNNs for processing motion and computing the spatiotemporal features.
Utilizing RNN enables the model to track the target object in a temporally consistent manner.
Differently, Perazzi et al. propose MaskTrack, a VOS solution based on guided instance
segmentation [Per+17]. They utilize a DeepLab architecture [Che+17a] and modify the
network to accept the previous segmentation mask as an additional input. Therefore, a
rough guidance signal is provided to the model to mark the approximate location where
the object of interest lies. Yang et al. [Yan+18] take a meta-learning approach and train
an additional modulator network that adjusts the middle layers of a generic segmentation
network to capture the appearance of the target object. In [Zha+20b], the authors develop a
model that propagates the segmentation mask based on an affinity in the embedding space.
They propose to model the local dependencies by using motion and spatial priors and the
global dependencies based on the visual appearance learned by a convolutional network.

To accurately propagate the object mask, MHP-VOS [Xu+19] generates multiple propa-
gation Hypotheses based on the object tracks from the previous frames and the detected
objects in the current frame. Consequently, they propose motion and appearance scores
based on which the model associates between the existing tracks and the newly detected
objects. In [BWL18], Bao et al. develop an algorithm using Markovian Random Fields
for propagating the object masks to the nearby pixels in the future frames, utilizing the
connectivity and neighborhood information for each pixel. Based on the assumption of
foreground objects having a different motion pattern than the background, the authors in
[Hu+18] compute the optical flow and drive the coarse object masks from the motion infor-
mation. A refinement network then refines these initial masks into the expected resolution.
However, the assumption made in this model can be largely violated in real-world scenarios.
In a different approach, [Xia+18] utilizes optical flow to align the features from the past and
the future frames, combining them to generate the object mask. They additionally compute
a motion prior by applying distance transformation to the optical flow and employ it for
enhancing the final object mask.
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Matching-based Video Object Segmentation. Matching-based VOS methods estimate the
object mask by comparing features extracted from each image to the object template features.
The template features for the specific objects are obtained utilizing the segmentation mask
provided for the first appearance. To this end, VideoMatch [HHS18] proposes a soft
matching layer for computing the similarity between the image features to the foreground
and background. FEELVOS [Voi+19] employs a local and global matching strategy in the
semantic embedding space for better capturing the fine segmentation details, robustness
to object appearance change, and modeling the long-range relations between objects, and
[YWY20] improves this method by additionally incorporating the background information to
attain a more robust and discriminative representation. In [Wug+18], a Siamese architecture
is used to segment the object based on its similarity to the mask template in the first frame
and the last predicted segmentation as extra guidance for the model. Similarly, [Yan+19]
proposes a VOS model where the object mask at every time step is detected based on the
similarity of the current frame to a set of assigned anchor frames. Following this idea,
[Joh+19] suggests a generative approach for segmenting the target object, introducing an
appearance module to learn the probabilistic model of the background and the foreground
object. [Bha+20] extends the idea of learning an appearance model by utilizing meta-
learning for training a parametric object appearance model. In [Che+18], the authors borrow
ideas from metric learning and develop a training objective for effectively capturing the
similarity between the image and the template features.

In STM [Oh+19], Oh et al. extend the template matching idea by employing an external
memory to utilize the object appearance model over multiple frames and model the object
appearance shift over time. [SHK20] improves STM by introducing Gaussian filtering into
the architecture. The filtering mechanism serves as a location prior and assigns a higher
matching weight to areas closer to the most recent object location. In [Hu+21], Hu et
al. propose employing position encoding and modeling the object relations for improved
segmentation consistency and robustness to distractors in the scene. [CTT21] suggests using
squared Euclidean distance as the feature similarity function instead of the dot product used
in [Oh+19]. To address the growing memory issue in these methods due to employing an
external memory bank, [Li+22c] develop a fusion module that aggregates the spatiotemporal
features based on relevance and importance hence keeping the memory size fixed. Similarly,
[Lin+22] addresses this problem using the Expectation Maximization algorithm for object
feature aggregation.

With the recent advances in transformers [Vas+17; Dos+20], recent works have attempted to
use transformers for VOS. For example, [Duk+21; FS22] integrate variations of transformers
to the VOS pipeline to benefit from the powerful non-local self-attention and cross-attention
operations deployed in these models. In [YWY21], the authors propose a transformer-based
association pipeline that allows for segmenting multiple objects simultaneously, considerably
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reducing the inference time. They do so by projecting the object masks to the same space as
the image features and concatenating them with the value vector in the attention module, in
contrast to appending each object mask to the RGB image and then extracting the features.
The follow-up work [YY22] further improves this method by decoupling the image features
into two separate branches for modeling the object-specific and object-agnostic features.

6.3 RNNs for Video Object Segmentation

As the objective in VOS is to accurately track a set of target objects in a video, a logical
solution would be to employ a memory component for memorizing the objects of interest
in the scene. This way, the model gains the ability to store the relevant portions of the
image that require tracking. However, training memory-based architectures such as RNNs
requires a considerable amount of training data [Wug+18]. With the release of YouTubeVOS
[Xu+18], the largest video object segmentation dataset to date, the authors demonstrated
that having enough labeled data makes it possible to train a sequence-to-sequence (S2S)
model for VOS.

In S2S [Xu+18], an encoder-decoder architecture is used following the architecture design
in [BKC17]. Furthermore, an RNN layer is employed after the encoder (referred to as
bottleneck) to track the object of interest in a temporally coherent manner. The choice of
RNN as the memory module has several advantages. First, the RNN spatiotemporal features
provide rich motion information and the object’s location at each frame. Second, RNNs
are more efficient compared to other types of external memory [Oh+19; SWF+15] and do
not add considerable overhead to the model. We note that architectures based on external
memory do not keep the order of events, and the memory size grows linearly with the length
of the video.

The S2S model is illustrated with yellow blocks in Figure 6.1 where the segmentation mask
is computed as (adapted from [Xu+18]):

h0, c0 = Initializer(x0, y0) (6.1)

x̃t = Encoder(xt) (6.2)

ht, ct = RNN1(x̃t, ht−1, ct−1) (6.3)

ŷt = Decoder(ht) (6.4)
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Fig. 6.1: The overall architecture of our approach. We utilize the information at different scales
of the video by using skip-memory (RNN2). Experiments with multiple skip-memory
connections are possible (only one is shown here for simplicity). We use an additional
distance-based loss to improve the contour quality of the segmentation masks. For this
purpose, a distance class is assigned to each pixel in the mask based on its distance to the
object boundary. We use a softmax at the distance classification branch and a sigmoid
at the segmentation branch to compute the Ldist and Lseg, respectively. Yellow blocks
show the architecture of the original S2S model (Equations (6.1) to (6.4)), and all other
blocks depict our extension to this model.

with x referring to the RGB image and y to the binary mask. In the next sections, we discuss
our proposed solutions for improving the performance of the S2S model in tracking smaller
objects and more accurate segmentation of the object boundaries.

6.3.1 Skip-Memory and Multi-Task Loss for RNN-based VOS

To better understand the role of the memory module used in the center of the encoder-
decoder architecture in the S2S [Xu+18], we replaced the RNN layer with simply feeding
the previous mask as guidance for predicting the next mask, similar to [Per+17]. Doing so,
we observed a drastic performance drop of about ten percent in the overall segmentation
accuracy. This suggests that only the guidance signal from the previous segmentation mask
is not enough and that features from the previous time step should be aligned with the
current time step. As a result, we hypothesize that the role of RNN in the architecture is
twofold: First, remembering the object of interest through the recurrent connections and the
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groundtruth sigmoid output

Fig. 6.2: In this image, the ground-truth mask is shown on the left, and the output of the decoder of
the S2S architecture is on the right. The output of the sigmoid function (last layer in the
decoder) acts like a probability distribution over the binary classification, measuring the
model confidence. The output of around 0.5 (white color coding) implies low confidence
in the prediction, while values close to 0 or 1 (blue and red colors) show confident outputs
w.r.t. to background and foreground classes). Our observation is that the model is not
often confident when predicting masks for small objects. This uncertainty propagates to
the following predictions causing the model to lose the target object within a few time
steps. We argue that part of this issue is because the RNN located in the bottleneck of the
encoder-decoder architecture does not receive enough information from the small objects.
This leads to losing the object after a few time steps.

hidden state and masking out the rest of the scene. Second, to align the features from the
previous step to the current step, having a role similar to optical flow.

Skip Memory

As mentioned earlier, the S2S model incorporates a memory module at the bottleneck of the
encoder-decoder network to memorize the target object. By closely inspecting the output of
this approach, we noticed that the predicted masks for small objects are often worse than the
other objects (see Figure 6.4 and Figure 6.5 for visual examples). The issue is that the target
object often gets lost early in the sequence, as shown in Figure 6.2. We reason that this is
partially due to the lack of information for smaller objects in the bottleneck due to several
pooling operations in the encoder network reducing the spatial resolution of the image
features. For image segmentation, this issue is resolved by introducing skip connections
between the encoder and the decoder [RFB15; BKC17]. This way, the information about
small objects and fine details is directly passed to the decoder. Using skip connections is
very effective in image segmentation; however, when working with video, if the information
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in the bottleneck (input to the memory) is lost, the memory concludes that there is no object
of interest in the scene anymore (since the memory provides information about the target
object and its location). As a result, the information in the simple skip connections will not
be very helpful in this failure mode.

As a solution, we propose a system that keeps track of features at different scales of the
spatiotemporal data by using an RNN module in the skip connection as shown in Figure 6.1.
In this work, we use Convolutional LSTM (ConvLSTM) [Xin+15] as the RNN module.
We note that some technical considerations should be taken into account when employing
ConvLSTM at higher image resolutions. As we move to higher resolutions (lower scales)
in the video, the motion is larger, and also the receptive field of the memory is smaller.
As stated in [Red+18], capturing the displacement is limited to the kernel size used in the
ConvLSTM module. Therefore, adding ConvLSTMs at lower scales in the decoder without
paying attention to this aspect might have a negative impact on the segmentation accuracy.
Moreover, during our experiments, we observed that it is crucial to keep the simple skip
connections (without ConvLSTM) intact in order to preserve the uninterrupted flow of the
gradients. Therefore, we add the ConvLSTM in an additional skip connection (RNN2 in
Figure 6.1) and merge the information from different branches using weighted averaging
with learnable weights. Hence, it is possible for the network to access information from
different branches in an optimal way.

For the training objective of the segmentation branch in Figure 6.1, we use the sum of the
balanced binary-cross-entropy loss [Cae+17] over the sequence of length T , defined as:

Lseg(W ) =
T∑
t=1

(−β
∑
j∈Y+

logP (yj = 1|X;W )−(1−β)
∑
j∈Y−

logP (yj = 0|X;W )) (6.5)

where X is the model input, W is the learned weights, Y+ and Y− are foreground and
background labeled pixels, β = |Y−|/|Y |, and Y is the total number of pixels.

Multi-Task Loss: Border Classification

As the second contribution, we build upon the previous work of Bischke et al. [Bis+19] and
train the network parameters in addition to the object segmentation mask with an image
representation based on a distance transformation (see Figure 6.3 for an example). This
image representation was successfully used in a multi-task learning setup to explicitly bias
the model to focus more on those pixels which are close to the object boundary and more
error-prone for misclassification compared to the ones further away from the edge of the
object.
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Fig. 6.3: In this figure, we show a binary mask (left) together with a heatmap depicting the distance
classes (right) as explained in Equation 6.6. The number of distance classes is determined
by two hyper-parameters for the number of border pixels around the edges and the bin size
for each class. The visualization shows that, unlike previous works, our representations
capture distance classes inside (reddish colors) as well as outside of the objects (blueish
colors). The heatmap illustrates the distance classes with red for the inner class and blue
for the outer class.

In order to derive this representation, we first apply the distance transform to the object
segmentation mask. We truncate the distance at a given threshold to only incorporate the
nearest pixels to the border. Let Q denote the set of pixels on the object boundary and C
the set of pixels belonging to the object mask. For every pixel p we compute the truncated
distance D(p) as:

D(p) = δp inf{ min
∀q∈Q

d(p, q), R },

where δp =

+1 if p ∈ C

−1 if p /∈ C

(6.6)

where d(p, q) is the Euclidean distance between pixels p and q and R is the maximal radius
(truncation threshold). The pixel distances are additionally weighted by the sign function
δp to represent whether pixels lie inside or outside objects. The continuous distance values
are then uniformly quantized with a bin-size s into ⌊Rs ⌋ bins. Considering both inside
and outside border pixels, this yields 2× R

s binned distance classes as well as two classes
for pixel distances that exceed the threshold R. We one-hot encode every pixel p of this
image representation into k classification maps DK(p) corresponding to each of the border
distance classes.

We optimize the parameters of the network with a multi-task objective by combining the
loss for the segmentation mask Lseg and the loss for the border distance mask Ldist as a
weighted sum as follows. Since we consider a multi-class classification problem for the
distance prediction task, we use the cross-entropy loss. Ldist is defined as the cross entropy
loss between the derived distance output representation DK(p) and the network output:
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Ltotal = λ Lseg + (1− λ) Ldist (6.7)

The loss of the object segmentation task is the balanced binary-cross-entropy loss as defined
in Equation 6.5. The network can be trained end-to-end.

6.3.2 Experimental Setup

In this section, we provide the implementation details followed by experimental results, a
comparison with state-of-the-art methods, and qualitative results from our proposed method
confirming the efficacy of our contributions in tracking smaller objects. We evaluate our
method on the YouTubeVOS dataset [Xu+18], which is currently the largest dataset for
video object segmentation. We use the standard evaluation metrics [Per+16b], reporting
Region Similarity and Contour Accuracy (J&F ). J corresponds to the average intersection-
over-union between the predicted segmentation masks and the ground truth, and F is defined
as F = 2precision×recall

precision+recall , regarding the boundary pixels after applying sufficient dilation to
the object edges. For overall comparability, we use the overall metric of the dataset [Xu+18]
that refers to the average of J&F scores.

Implementation Details

Initializer and Encoder Networks: The backbone of the initializer and the encoder
networks in Figure 6.1 is a VGG16 [SZ14] pre-trained on ImageNet [KSH12]. The last
layer of VGG is removed, and the fully-connected layers are adapted to a convolution
layer to form a fully convolutional architecture as suggested in [LSD15]. The number of
input channels for the initializer network is changed to 4, as it receives the RGB and the
binary mask of the object as the input. The initializer network has two additional 1 × 1
convolution layers with 512 channels to generate the initial hidden and cell states (h0, c0) of
the ConvLSTM at the bottleneck (RNN1 in Figure 6.1). For initializing the ConvLSTMs at
higher scales, up-sampling followed by convolution layers are utilized in the same fashion
as the decoder. Additional convolution layers are initialized with Xavier initialization
[GB10].

RNNs: The ConvLSTM 1, 2 (shown as RNN1 and RNN2 in Figure 6.1) both have a kernel
size of 3 × 3 with 512 channels. The ConvLSTM at the next level has a kernel size of
5× 5 with 256 channels. Here, we chose a bigger kernel size to account for capturing larger
displacements at lower scales in the image pyramid obtained from the encoder (x̂).
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Decoder: The decoder consists of five up-sampling layers with bi-linear interpolation, each
followed by a convolution layer with a kernel size of 5× 5 and Xavier initialization [GB10].
The number of channels for the convolution layers are 512, 256, 128, 64, 64, respectively.
The features from the skip connections and the skip-memory are merged using a 1 × 1
convolution layer. To adapt the decoder for the multi-task loss, an additional convolution
layer is used to map 64 channels to the number of distance classes. This layer is followed by
a softmax to generate the distance class probabilities. The distance scores are merged into
the segmentation branch, where a sigmoid layer is used to generate the binary segmentation
masks.

Training Details: We use the Adam optimizer [KB14] with an initial learning rate of 10−5.
In our experiments, we set the value of λ in Equation 6.7 to 0.8. We choose this value by
means of casual hyper-parameter tuning. When the training loss is stabilized, we decrease
the learning rate by a factor of 0.99 every 4 epoch. Due to GPU memory limitations, we
train our model with batch size 4 and a sequence length of 5 to 12 frames.

Border Output Representation: The number of border pixels and the bin size per class are
hyper-parameters that determine the resulting number of distance classes. In our internal
experiments (see Section 6.3.2), we noticed better results could be achieved if the number of
distance classes is increased. In the following experiments, we set the border_pixels=20, the
bin_size=1. Thereby we obtain for each object a segmentation mask with 42 distance classes
(the number of output classes is 2× border_pixels

bin_size + 2). Having the edge as the center, we
have border_pixels

bin_size classes at each of the inner and outer borders plus two additional classes
for pixels that do not lie within the borders (inside and outside of the object) as shown in
Figure 6.3.

Data Pre- and Post-Processing: In line with the previous work in multiple object video
segmentation, we follow a training pipeline in which every object is tracked independently,
and at the end, the binary masks from different objects are merged into a single mask. For
pixels with overlapping predictions, the label from the object with the highest probability is
taken into account. For data loading during the training phase, each batch consists of a single
object from a different sequence. We noticed that processing multiple objects of the same
sequence degrades the performance. The images and the masks are resized to 256× 448 as
suggested in [Xu+18]. For data augmentation, we use random horizontal flipping and affine
transformations. We have not used any refinement step (e.g., CRF [KK11]) or inference-time
augmentation. Moreover, we note that pre-training on image segmentation datasets can
significantly improve the results due to the variety of present object categories in these
datasets. However, in this work, we have solely relied on pre-trained weights from ImageNet
[KSH12].
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Method Online training Jseen Junseen Fseen Funseen overall
OSVOS [Cae+17] Yes 59.8 54.2 60.5 60.7 58.1
MaskTrack [Per+17] Yes 59.9 45.0 59.5 47.9 53.1
OnAVOS [VL17] Yes 60.1 46.6 62.7 51.4 55.2
OSMN [Yan+18] No 60.0 40.6 60.1 44.0 51.2
RVOS [Ven+19] No 63.6 45.5 67.2 51.0 56.8
S2S [Xu+18] No 66.7 48.2 65.5 50.3 57.7
S2S++(ours) No 68.68 48.89 72.03 54.42 61.0

Tab. 6.1: Comparison of our best-obtained results with the state of the art approaches in video
object segmentation using YoutubeVOS dataset. The values are reported in percentages
and divided into columns for each score as in [Xu+18]. The table is divided to two parts
for methods with and without online training. We can see that our approach (even without
online training) achieves the best overall score.

Experimental Results

In Table 6.1, we provide a comparison between the results from our model and the state-
of-the-art methods with and without online training. Online training is the process of
further training at test time through applying a lot of data augmentation on the first mask
to generate more data. This phase greatly improves the performance at the expense of
slowing down the inference phase. As it can be seen in Table 6.1, the scores are measured
for two categories of seen and unseen objects. This is a difference between other datasets
and YoutubeVOS [Xu+18], which consists of new object categories in the validation set.
Specifically, the validation set in the YoutubeVOS dataset includes 474 videos with 65
seen and 26 unseen categories. The score for unseen categories serves as a measure of the
generalization of different models. As expected, the unseen object categories achieve a
higher score when using online training (since the object is already seen by the network
during the online training). However, despite not using online training (and therefore also
having lower computational demands during test time), S2S and S2S++ achieve higher
overall performance. It is worth mentioning that both Fseen and Funseen scores improve by
more than 4pp in our approach compared to the S2S model.

Figure 6.4 illustrates a qualitative comparison between our results and the ones from the
S2S method. We provide additional examples in Figure 6.5. As can be seen from these
examples, our proposed method can successfully track and segment smaller objects in the
scene.

Ablations

Since the S2S method is the base of our work and the source code is not available, we
provide a comparison between our implementation of S2S and our S2S++ in Table 6.2 when
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Fig. 6.4: Qualitative comparison between the results obtained from S2S approach (first row) and
the results from our method (second row). The first mask (t = 0) is provided at test time
and the target objects are segmented independently throughout the whole sequence. Every
second frame is shown here and the brightness of the images is adjusted for better visibility.
As it can be seen, our approach successfully tracks the target airplanes throughout the
sequence while the S2S method loses and mixes the object masks early in the sequence.

Method Jseen Junseen Fseen Funseen overall
S2S 65.4 43.6 67.9 47.5 56.1
S2S + multi-task loss 67.7 44.6 70.8 49.8 58.2
S2S + 1 skip-memory 66.9 46.8 69.2 50.1 58.3
S2S + 1 skip-memory + multi-task loss 67.2 47.0 70.2 52.3 59.2
S2S + 2 skip-memory + multi-task loss 68.7 48.9 72.0 54.4 61.0

Tab. 6.2: Ablation study on the impact of skip-memory and multi-task loss. We can notice that
multi-task loss and skip-memory individually improve the results but lead to the best
results when combined.

adding each component. As can be seen from the results, the best performance is achieved
when using two skip-memory modules and multi-task loss. The additional skip-memory
connections are incorporated at higher resolutions of the features computed by the encoder
network.

We then take this model and experiment with different hyper-parameters for multi-task loss,
as shown in Table 6.3. The results show that a higher number of border classes that is closer
to regression yields a higher overall score.

It is worth mentioning that the distance loss (Ldist) has less impact on small objects,
especially if the diameter of the object is below the border size (in this case, no extra
distance classes will be added). Hence, we suspect the improvement in segmenting small
objects (shown in Figure 6.4 and Figure 6.5) is mainly due to the use of skip-memory
connections.
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Fig. 6.5: Additional examples for qualitative comparison between the S2S method in the first row
and ours in the second row. In the top part, the yellow frames were zoomed in for better
visibility. We can observe a better capacity for tracking small objects.

border size bin size number of classes Jseen Junseen Fseen Funseen overall
20 10 6 68.4 47.7 71.5 52.4 59.9
20 1 42 68.9 48.8 72.0 54.4 61.0
10 1 22 68.4 47.9 71.6 52.8 60.2

Tab. 6.3: Results for different hyper-parameters for the multi-task loss on our best model. We can
see that a higher number of distance classes slightly improves the metrics.

6.3.3 Summary

In this work, we build on top of the S2S model, a sequence-to-sequence approach for
video object segmentation. We empirically identify a limitation of this model for tracking
small objects. To this end, propose using skip-memory connections for utilizing multi-scale
spatiotemporal information of the video data. Moreover, we incorporate a distance-based
multi-task loss to improve the predicted object masks for video object segmentation. In our
experiments, we demonstrate that this approach outperforms state-of-the-art methods on the
YouTubeVOS dataset [Xu+18]. Our extensions to the S2S model require minimal changes
to the architecture and considerably improve the contour accuracy score (F) and the overall
metric.
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6.4 Correspondence Matching for Video Object
Segmentation

Another approach proposed in the literature for solving VOS is through correspondence
matching, that is, finding image features belonging to the object of interest compared to a
set of reference features. The main idea is to estimate the object mask by computing the
similarity between object features in the first frame (f0) and image features at each time step
(xt), as the first mask of the object appearance is provided (note that ft ∈ xt). Accordingly,
the image areas with the highest similarity to the reference object are marked as the current
object features ft.

One of the models proposed in the literature that builds on this idea is RGMP [Wug+18]. In
this model, a Siamese architecture is employed with one encoder responsible for computing
the reference object features fref and the second encoder for extracting the image features
xt. The computed features are then concatenated and passed to the matching block, which
is implemented using a global convolution (GC) module. The GC module has a large
receptive field; hence, it can adequately compute the similarity between features at different
locations in the image. Having a sufficiently large receptive field is crucial as the features
in the reference and current frames may not be located in the same neighborhood due
to the object’s movement. Finally, a decoder network consisting of multiple upsampling
and refinement layers is employed to map the collected object features ft to the final
segmentation mask with the expected resolution. The overall architecture of this method
can be seen in Figure 6.6

Pros and Cons of the Matching-based and RNN-based Methods

Matching-based methods work solely based on visual cues and similarity information;
as a result, they fail under any circumstances where the object’s appearance significantly
changes. Moreover, similarity measures are not sufficient for distinguishing between similar
objects.

RNN-based methods also suffer from several limitations. One of the main constraints of
RNN-based models, such as S2S, is the fixed-sized memory, which can be insufficient
to capture the whole sequence and long-term dependencies [BCB14]. Therefore, as the
sequence length grows, access to information from earlier time steps decreases. This issue
and the vanishing gradient problem adversely impact the segmentation quality in longer
sequences, especially in videos with occlusion, where the target object can be absent for
an extended period. Another obstacle with this category of approaches is drift and error
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Fig. 6.6: In RGMP [Wug+18] method, a Siamese architecture is used for computing the reference
object features as well as the image features. Consequently, a matching block computes
the similarity between the image and the reference features. Finally, a decoder network
maps the estimated object features to the segmentation mask at the expected resolution.
Image source: [Wug+18].

propagation. Due to the recurrent connection, the model output is fed back to the network;
thus, the prediction error propagates to the future, and erroneous model predictions affect
the performance for future time steps. This issue is another contributing factor to the
performance drop in later frames.

In the following, we propose an architecture that attempts to address the shortcomings of
RNN- and matching-based methods by developing a hybrid architecture that combines the
best of both worlds.

6.4.1 Feature Propagation and Matching Fusion for VOS

Based on the challenges in the matching- and RNN-based models, we propose Hybrid-
S2S, a hybrid architecture combining the RNN output with information derived from
correspondence matching. In our model, the segmentation mask is predicted using the
location prior obtained from the RNN, as well as similarity matching between the video
frames at t − 1 and t. The merits of using the spatiotemporal model from RNN-based
models and the matching-based methods are complementary. When multiple similar objects
are present in the scene, the matching-based approaches struggle to distinguish between the
different instances. Hence, the location prior provided by the spatiotemporal features from
the RNN can resolve this ambiguity. Moreover, the information obtained from similarity
matching provides a reliable measurement for propagating the segmentation mask to the
next time step (as investigated in [Yan+19] for zero-shot VOS). Using this additional data
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Fig. 6.7: This figure indicates how utilizing the first frame as the reference can help the model
recover from occlusion. Here, the object of interest is a bear overlaid with the red mask,
which is absent from the middle row frames (from t = 30 to t = 70). We observe that the
model can detect the animal after it appears again, and by looking at the saliency map of
the first frame, we note that the model has correctly captured the correspondence between
the bear in the first frame and the frame right after the occlusion.

helps the model reduce the prediction error, improving the drift problem and obtaining better
segmentation quality for longer sequences.

To encode the frame at t − 1, we redefine the initializer network’s task in S2S to a refer-
ence encoder (as shown in Figure 6.8), initializing the hidden states of the RNN module
with zeros. In our experiments, we observed that the initializer network does not play a
crucial role, and it is possible to replace it with zero-initialization with little change in the
performance.

To perform the similarity matching between the RNN hidden state (ht) and the reference
encoder’s output features, one can use different techniques such as using the cosine distance
between the feature vectors. Here, we follow the design in [Wug+18] and use a Global
Convolution [Pen+17] to accomplish the task (merge layer in Figure 6.8). Global Convo-
lution (GC) approximates a large kernel convolution layer efficiently with less number of
parameters. The large kernel size is essential to model both the local connections (as re-
quired for localization) and the dense global connections required for accurate classification
(foreground, background). This way, the model directly accesses the features from time
steps 0 and t− 1. We note that this operation can also be interpreted as self-attention, as the
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Fig. 6.8: In this figure, we depict the overall architecture of S2S [Xu+18] (Equations (6.1) to (6.4))
and our HS2S method (eqs. (6.8) to (6.13)). In HS2S, we initialize the RNN hidden
states (h0 and c0) with zeros, instead of using the initializer network. We keep track of
the target object by feeding the previous segmentation mask (yt−1) to the encoder as an
additional input channel, similar to [Per+17]. Furthermore, we use a separate reference
encoder to process the input to the matching branch. We highlight that the functions
approximated by these two encoders differ, as the inputs to the Reference Encoder are
aligned in time, but this is not the case for the Encoder network. Finally, the hidden
state of the RNN (ht) is combined with the encoded features from the matching branch
via a fusion layer and passed to the decoder to predict the segmentation mask. The skip
connections between the encoder and the decoder networks are not shown for simplicity.

features at the current time step, which share a higher similarity to the object features from
the reference frames, get a higher weight via the convolution operation in the merge layer.

As shown in Figure 6.8, we do not use weight sharing between the Reference Encoder and
the Encoder, as we observed a considerable performance drop in doing so. We believe the
underlying reason is that the functions approximated by these two modules are different;
the input images to the Reference Encoder are aligned in time, while the inputs to the
Encoder are not. We highlight that compared to S2S [Xu+18], the only added element is the
lightweight Merge Layer (see Figure 6.8). The rest of the components remain unchanged by
modifying the task of the Initializer Network to Reference Encoder.

Attention to the First Frame. As suggested in [Ebe+17] for the Video Prediction task,
the first frame of the sequence is of significant importance as it contains the reference
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information which can be utilized for recovering from occlusion. We note that by definition,
the target object is present in the first frame. By computing the correspondences between
the object appearance after occlusion and in the first frame, the model is able to re-detect
the target. Additionally, [Yan+19; Wug+18] demonstrate the effectiveness of using the first
frame as an anchor or reference frame. In [Wug+18], the authors propose a Siamese archi-
tecture that learns to segment the object of interest by finding the feature correspondences
between the target object in the first frame and the current frame. Although this model’s
performance suffers in scenarios with drastic appearance changes, it reveals the importance
of rigorously using the data in the first frame. We use the same reference encoder and
merge layer for integrating the first frame features. We hypothesize that this modification
can be considered as an attention mechanism [BCB14], where the attention span is limited
to the first frame. Using attention is a standard solution to address this finite memory in
the RNNs, by providing additional context to the memory module. The context vector is
usually generated from a weighted combination of the embeddings from all the time steps.
However, in high-dimensional data such as video, it would be computationally demanding
to store the features and compute all the frames’ attention weights.

The resulting architecture is shown in Figure 6.8 and can be formulated as:

h0, c0 = 0 (6.8)

x̃0 = Reference_Encoder(x0, y0) (6.9)

x̃t−1 = Reference_Encoder(xt−1, yt−1) (6.10)

x̃t = Encoder(xt, yt−1) (6.11)

ht, ct = RNN(x̃t, ht−1, ct−1) (6.12)

ŷ = Decoder(x̃0, x̃t−1, h) (6.13)

where x and y are the RGB image and the binary segmentation mask, and 0 ∈ Rd with d as
the feature dimension. Here the merge layer is considered as part of the decoder. We train
our proposed method end-to-end using the objective in Equation 6.7.

6.4.2 Experimental Setup

In this section, we present implementation details, quantitative and qualitative results, as
well as an ablation study on the impact of different components in our HS2S method. Similar
to the setup described in Section 6.3.2, we evaluate our model on the YouTubeVOS [Xu+18]
dataset and report the Region Similarity and Boundary Accuracy (F&J scores) [Per+16b]
for seen and unseen object categories. Moreover, we evaluate our method on DAVIS2017
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dataset [Pon+17] without further finetuning to measure the generalizability of our proposed
approach.

Implementation Details

Encoder Networks: In the original S2S model, a VGG network [SZ14] is used as the back-
bone for the initializer and encoder networks. In this work, we utilize a ResNet50 [He+16]
architecture, pre-trained on ImageNet [Den+09]. We remove the last average pooling and
the fully-connected layers, which are specific for image classification. Furthermore, we
add an extra 1× 1 convolution layer to reduce the number of output channels from 2048
to 1024. The number of input channels is altered to 4 as we feed the RGB image and the
binary segmentation mask to the encoder. We utilize skip connections [RFB15] between the
encoder and the decoder at every spatial resolution of the feature map (5 levels in total) to
capture the fine details lost in the pooling operations and reducing the spatial size of the
feature map. Moreover, we use an additional RNN module in the first skip connection, as
suggested in [Azi+21a]. The impact of changing the backbone network in the S2S model
from VGG to ResNet on the segmentation accuracy is studied in Table 6.8.

Fusion Layer: The role of the fusion module is to perform correspondence matching
between the RNN hidden state (the spatiotemporal features) and the outputs from the
reference encoder. There are different ways that can be used for this layer based on similarity
matching and cosine distance. Similar to [Wug+18], we utilize Global Convolution (GC)
layers [Pen+17] for this function. Two GC layers with an effective kernel size of 7× 7 are
employed to combine the RNN hidden state with the reference features and the features
from the previous time step x̃0 and x̃t−1 as in Equations (6.9) and (6.10)). The outputs of
these two layers are then merged using a 1× 1 convolution and then fed into the decoder
network. For the RNN layers and the Decoder network, we follow the same setup described
in Section 6.3.2.

Training Details: For data augmentation, we apply random horizontal flipping as well as
affine transformations. We use Adam optimizer [KB14] with an initial learning rate of
10−4. We gradually lower the learning rate in the final phase of training when the loss is
stable. During the training, we use video snippets with 5 to 10 frames and a batch size of 16.
Additionally, we apply a curriculum learning method as suggested for sequence prediction
tasks [Ben+15]. To this end, we use the ground-truth for the segmentation mask input in the
earlier stages of training where the model output is not yet satisfactory. This phase is known
as teacher forcing. Next, with a pre-defined probabilistic scheme [Ben+15], we randomly
choose between using the ground-truth or the model-generated segmentation mask on a
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Method Online training Jseen Junseen Fseen Funseen overall
OSVOS [Man+18] Yes 59.8 54.2 60.5 60.7 58.8
MaskTrack [Per+17] Yes 59.9 45.0 59.5 47.9 50.6
OnAVOS [VL17] Yes 60.1 46.6 62.7 51.4 55.2
S2S(OL) [Xu+18] Yes 71.0 55.5 70.0 61.2 64.4
OSMN [Yan+18] No 60.0 40.6 60.1 44.0 51.2
RGMP [Wug+18] No 59.5 45.2 - - 53.8
RVOS [Ven+19] No 63.6 45.5 67.2 51.0 56.8
S2S(no-OL) [Xu+18] No 66.7 48.2 65.5 50.3 57.7
S2S++ [Azi+21a] No 68.7 48.9 72.0 54.4 61.0
HS2S(ours) No 73.6 58.5 77.4 66.0 68.9

Tab. 6.4: A comparison with the state-of-the-art methods on the Youtube-VOS dataset [Xu+18].
The upper part of the table shows models with online training and the lower part without.
All scores are in percent. RVOS, S2S, and S2S++ are thN-based architectures. As shown
in this table, our hybrid model outperforms the S2S(no-OL) baseline model with an
average improvement of 11.2 pp.

per-frame basis. This process helps to close the gap between the training and inference data
distributions (during the inference, only the model-generated masks are used).

Experimental Results

Table 6.4 shows a comparison of our model with other state-of-the-art methods. The upper
and lower sections include the methods with and without online training. During online
training, the model is further fine-tuned on the first frame (where the segmentation mask
is available) at test time. Although this stage significantly improves the segmentation
accuracy, it results in slow inference, which is not practical for real-time applications.
Despite this, our model without online training still outperforms the S2S model with
online training. The performance improvement compared to RGMP [Wug+18] (matching-
based) and S2S [Xu+18] (RNN-based) models strongly indicates that both propagation
and matching information are required for better segmentation quality. Moreover, our
method achieves similar performance to STM [Oh+19] when training on the same amount
of data (not using synthetic data generated from image segmentation datasets) without
relying on an external memory module. Therefore, our model is less memory-constrained
during the inference stage compared to methods using external memory that are prone to
memory overflow for longer sequences (in [Oh+19], authors save every 5th frame to the
memory to avoid the GPU memory overflow during the test phase).

Figures 6.9 and 6.10 illustrate visual examples from our model, also in comparison with the
S2S baseline [Xu+18]. As we observe, our model can properly track the target object in the
presence of similar object instances as well as occlusion.
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Fig. 6.9: Visual samples of our model on Youtube-VOS validation set. As can be observed, our
method can successfully segment sequences with similar object instances, even in the
presence of occlusion.

Method J F F&J
S2S [Xu+18] - - -
RVOS [Ven+19] 52.7 58.1 55.4
RGMP [Wug+18] 58.1 61.5 59.8
HS2S- (ours) 58.9 63.4 61.1

Tab. 6.5: A comparison between the independent RNN-based (RVOS) and matching-based (RGMP)
models and our hybrid method on the DAVIS2017 dataset [Pon+17] (test-val). HS2S-
shows the results of our model trained on Youtube-VOS without fine-tuning on
DAVIS2017. The results of the S2S model on DAVIS2017 were not available.

To assess the generalization of our model after training on Youtube-VOS, we freeze the
weights and evaluate the model on DAVIS2017 dataset [Pon+17]. The results are provided
in Table 6.5. We observe that our hybrid model outperforms the independent RNN-based
and matching-based methods, even without fine-tuning on this dataset.

Ablations

Performance analysis for longer videos. To quantitatively assess our model’s effectiveness,
we evaluate it in challenging scenarios such as occlusion and longer sequences. As the
validation set of the Youtube-VOS dataset is not released, we use the 80:20-splits of the
training set from [Ven+19] for training and evaluation. For the S2S model results, we further
used our re-implementation as the code for their work is not publicly available. Furthermore,
we use the ResNet50 architecture as the backbone for both models for a fair comparison (to
our disadvantage, as it improves the overall evaluation score of 57.3% for S2S (as reported
in [Xu+18]) to 60% for our re-implementation S2S*).

Figure 6.11 shows the sequence length distribution of the Youtube-VOS training set (one
sequence per object in each video). As can be seen, the length varies between 1 to about
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Time

Fig. 6.10: Visual Comparison between the S2S and HS2S results in the upper and lower rows,
respectively. We observe that our hybrid method can successfully maintain the segmenta-
tion accuracy at the later time steps.

35 frames in a very non-uniform fashion. To study the impact of the video length on the
segmentation scores, we pick the sequences longer than 20 frames and measure the scores
for frames with t < 10 (considered as early frames) and frames with t > 20 (considered as
late frames) separately.

As presented in Table 6.6, we observe that the hybrid model improves the late frame accuracy
significantly and reduces the performance gap between the early and late frames. This
observation confirms the effectiveness of the hybrid path for utilizing the information from
spatiotemporal features as well as correspondence matching.

Performance analysis for occluded videos. The histogram in Figure 6.12 shows the number
of sequences with occlusion in YouTube-VOS training set. Each bin in the histogram shows
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Fig. 6.11: Distribution of the sequence length (per object) in the Youtube-VOS dataset. In Youtube-
VOS, the video frame rate is reduced to 30 fps, and the annotations are provided every
fifth frame (6 fps). Therefore, a sequence with 36 labeled frames spans 180 time steps in
the original frame rate.

Method Fl<10 Jl<10 Fl>20 Jl>20
S2S* 74.4 73.7 54.5 54.6
HS2S(ours) 77.1 76.3 65.5 64.2

Tab. 6.6: A study on the impact of sequence length on segmentation accuracy. For this experiment,
we picked video sequences with more than 20 frames. Then we compute the F and J
scores for frames earlier (t < 10) and later (t > 20) in the sequence. As the results show,
there is a performance drop as the time step increases. However, our hybrid model’s
performance drops a lot less than the baseline’s.

the occlusion duration, and the y axis indicates the number of sequences that belong to each
bin. As can be seen from this plot, the occlusion duration varies between 2 to 25 frames.

To study our model’s effectiveness in handling occlusion, we report the scores for frames
appearing after a first occlusion in Table 6.7. An occlusion is considered a scenario where
the object leaves the scene entirely and re-appears again. As the areas below 100 pixels are
almost not visible (and could be considered as labeling noise), we also consider occlusions
at three different thresholds of 0, 50, and 100 pixels. As we can see in the table, occlusion
is a challenging scenario with significantly lower scores than the average sequence scores.

Method avg th : 0 th : 50 th : 100
S2S* 63.3 33.6 30.8 33.1
HS2S (ours) 69.0 40.2 39.3 47.7

Tab. 6.7: A study on the impact of occlusion on the segmentation quality. The scores presented in
this table are the average of F and J scores in percentages, when considering different
thresholds (in pixels) for occlusion. The avg score refers to the average result for all the
sequences in the 20-split. For the other columns, we only considered the frames after
ending the first occlusion period (when the target object re-appears in the scene).
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Fig. 6.12: The number of occluded sequences (per object) in YouTube-VOS train set for different
occlusion lengths and with three occlusion thresholds (shifted by 1/3 for better visibility).

Method J F F&J
S2S [Xu+18] 57.5 57.9 57.7
S2S* 59.1 63.7 61.4
HS2S0 64.0 68.95 66.5
HS2St−1 63.6 68.7 66.2
HS2S 66.1 71.7 68.9
HS2Ssim 64.35 69.35 66.9

Tab. 6.8: An ablation study on the impact of different components in our model. S2S* is our
re-implementation of the S2S method with the same backbone as our model, for a fair
comparison (this version achieves a better segmentation accuracy). S2S0 refers to our
model without the hybrid propagation, only using the first frame as reference. S2St−1
is our model with hybrid propagation and without utilizing the first frame. In HS2Ssim,
we implemented the merge layer (Figure 6.8) using cosine similarity instead of Global
Convolution.

However, our proposed approach again succeeds in defending its considerable improvement
over the S2S baseline.

Ablation on model components and design choices. Table 6.8 presents the segmentation
scores when different components in our model are added one at a time. The results for
S2S* are obtained from our re-implementation of the S2S model with ResNet50 backbone.
As can be seen from the results, utilizing the first frame as the reference(HS2S0) and
using the hybrid match-propagate strategy(HS2St−1) both improve the segmentation quality.
Moreover, the enhancements add up when they are integrated into a single model(HS2S). In
addition, we provide the results for a variant of our model where we use cosine similarity
[Wan+18] for the fusion layer instead of global convolution (referred to as HS2Ssim).
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6.4.3 Summary

In this work, we present a hybrid architecture for the task of one-shot Video Object Segmen-
tation. To this end, we combine the merits of RNN-based approaches and models based on
correspondence matching. We show that the advantages of these two categories are comple-
mentary and can assist each other in challenging scenarios. Our experiments demonstrate
that both mechanisms are required to obtain better segmentation quality. Furthermore, we
provide an analysis of two challenging scenarios: occlusion and longer sequences. We
observe that our hybrid model achieves a significant improvement in robustness compared
to the baselines that rely on RNNs [Xu+18] and reference guidance [Wug+18]. However,
occlusion remains an open challenge for future investigation, as the performance in this
scenario is considerably lower than the average.
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6.5 A Closer Look at What Matters in Hybrid VOS

In this section, we experiment with two architecture variants of the proposed HS2S model
discussed in Section 6.4.1. In the first form, we explore the effectiveness of bidirectional
design [SP97] where in addition to utilizing the information from the past time steps,
we integrate the future frames via a bidirectional RNN network. In the second variation,
we explore a multi-task training setup by joint training the VOS model together with the
unsupervised optical flow objective. Our intuition is that since optical flow and VOS are well-
aligned tasks (in both cases, the model has to learn pixel motion between the consecutive
frames), training the model with both objectives might bring additional benefits via utilizing
the optical flow-related constraints. Moreover, we perform extensive experiments and
ablations on the YouTubeVOS dataset [Xu+18] to benchmark the role of various design
choices in the HS2S model, including investigating different feature extraction backbones
and memory modules.

6.5.1 Method I: Bidirectional Processing for VOS

In HS2S architecture, the video frames are processed sequentially, passing the information
from the past to the future. Bidirectional sequence-to-sequence architectures enable the
model to integrate information from the past as well as the future; they have been effective
in improving the performance of sequential processing tasks such as Machine Translation
[SP97; Sun+14; TAS17; GFS05]. Therefore, it is natural to conjecture that integrating the
information from the future frames might benefit the HS2S model. However, based on the
task definition in VOS, we need the object mask in the last frame (t = T ) to process the
video backward in time. Otherwise, the model will not recognize which object to track. To
address this challenge, we design the bidirectional HS2S (Bi-HS2S) architecture shown in
Figure 6.13.

As explained earlier, there are two different ways to inform the network about the object of
interest. One is through using an initializer network that processes the first RGB and the
mask frames and initializes the memory hidden states. The second way is by simply feeding
the segmentation mask from the previous time step to the encoder network as a guidance
signal. The second option does not fit the bidirectional design as in the backward processing
of the video sequence, we do not have access to the initial object mask. As a result, we
resort to the first alternative.

As illustrated in Figure 6.13, we initialize the memory hidden states with the initializer
network in the forward path. For the backward processing, we simply initialize the backward
memory with the last hidden state ht obtained from the forward path. Our intuition is that
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Fig. 6.13: The Bidirectional HS2S architecture. The hidden states from the forward and backward
RNNs are combined using a convolution layer and then merged with the reference
features and passed to the decoder.

ht contains information about the target object at t = T and can serve as a reasonable
initialization. Finally, we combine the information from the forward and backward paths
together with the reference features via the fusion block and pass it to the decoder to predict
the segmentation masks.

6.5.2 Method II: Multi-Task Training with Optical Flow Objective

In multi-task learning, several tasks are combined within a single problem formulation and
network architecture. This approach has been shown to be a successful training technique
when the combined tasks are aligned in objective and can provide supplemental information
to each other [Rud17]. In this section, we take inspiration from RAFT [TD20], a recent
state-of-the-art optical flow architecture, and design an architecture that combines video
object segmentation with optical flow prediction, referred to as RAFT-HS2S. Our intuition
is that VOS and optical flow objectives are similar as they both tend to learn the pixel
movement from one frame to the next. Accordingly, we explore whether combining
these two learning objectives brings additional information to the model and enhances the
segmentation accuracy.
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Fig. 6.14: The multi-task training setup in RAFT-HS2S, combining HS2S with an optical flow
method named RAFT. RAFT module computes the correlation between frames at t and
t − 1 using the inner product between the respective feature vectors and generates an
initial estimate of the optical flow between these consecutive frames. Then, it iteratively
refines the approximated flow using a ConvGRU module that performs lookup operations
based on the correlation volume and a context feature vector computed from the frame at
t− 1.

RAFT model [TD20] receives two consecutive images (xt and xt−1) as input and generates
the flow field capturing the pixel motion between the consecutive frames. It consists of two
encoders with the same architecture but separate weights; The first encoder extracts the
features ft and ft−1 while the second encoder only processes xt−1 to provide additional
context to the network. Inspired by traditional optical methods, RAFT iteratively refines
the estimated flow utilizing a ConvGRU [Su+20] that produces the flow delta at each time
step.

Motivated by the commonality in VOS and optical flow training objectives, we adapt HS2S
to accommodate the RAFT components as depicted in Figure 6.14. As can be seen in this
plot, the reference encoder additionally takes the role of context encoding for the RAFT
model, and the Encoder is employed for processing xt and xt−1. For the optical flow loss,
we use an unsupervised objective, namely photometric loss [Jon+20]:

Lphotometric =
∑
|x(1) − w(x(2))| (6.14)

Here Lphotometric is the photometric loss over all the pixels, and w is the warping operation
that warps x(2) to x(1) using the optical flow between these two frames. This term implies
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that having the precise motion, the pixel colors resulting from warping one image to the
other should match.

6.5.3 Experimental Setup

In this section, we provide the experimental results for the proposed methods, followed by
an extensive ablation on benchmarking the effect of various design choices on segmentation
accuracy. The implementation details in this section follow the setup in Section 6.4.2
unless mentioned otherwise. We report the J and F scores on the YouTubeVOS dataset
[Xu+18].

Experimental Results

In Table 6.9, we present the results obtained from bidirectional HS2S (Bi-HS2S) and
optical flow multi-task training (RAFT-HS2S) compared to the HS2S baseline and the
other state-of-the-art models. The results provided in the upper half of the table are for
the methods with additional online training. Using the first object mask, these approaches
further train the network at test time; as a result, they often achieve better accuracy but are
considerably slower. As can be seen from the results in Table 6.9, we observe that utilizing
the Bi-HS2S leads to further improvement of about 1pp while RAFT-HS2S achieves similar
performance as HS2S. This implies that the information provided from the optical flow loss
is already included in the VOS objective, and combining these additional terms does not
bring additional benefits to the model.

Ablations

RNN Module. One of the main blocks in the HS2S architecture is the RNN block, which is
accountable for memorizing the target object. In this section, we provide an ablation study
of the HS2S performance when deploying three different RNN-based memories. The first
variant is ConvLSTM [Xin+15]. This module is developed for processing sequential visual
data by replacing the fully-connected layers in LSTM with convolution layers and adjusting
the LSTM layer for visual pattern recognition.

As the second model, we study DeepRNN [Pan+19]. In this model, the authors address the
challenges in training deep RNN models. Although deeper networks are expected to learn
better representations compared to their shallow counterparts in the case of CNNs, deep
RNN architectures designed by simply stacking the RNN layers do not lead to considerable
improvement in the model accuracy. In [Pan+19], Pang et al. suggest this behavior roots in
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Method Online training Jseen Junseen Fseen Funseen Overall
OSVOS [Man+18] Yes 59.8 54.2 60.5 60.7 58.8
MaskTrack [Per+17] Yes 59.9 45.0 59.5 47.9 50.6
OnAVOS [VL17] Yes 60.1 46.6 62.7 51.4 55.2
S2S(OL) [Xu+18] Yes 71.0 55.5 70.0 61.2 64.4
OSMN [Yan+18] No 60.0 40.6 60.1 44.0 51.2
RGMP [Wug+18] No 59.5 45.2 - - 53.8
RVOS [Ven+19] No 63.6 45.5 67.2 51.0 56.8
A-GAME [Joh+19] No 66.9 61.2 - - 66.1
S2S(no-OL) [Xu+18] No 66.7 48.2 65.5 50.3 57.7
S2S++ [Azi+21a] No 68.7 48.9 72.0 54.4 61.0
STM- [Oh+19] No 67.1 63 69.4 71.6 68.2
TVOS [Zha+20b] No - - - - 67.2
HS2S [Azi+21b] No 73.6 58.5 77.4 66.0 68.9
Bi-HS2S (ours) No 74.9 59.6 78.0 66.7 69.8
RAFT-HS2S (ours) No 73.2 58.7 77.3 66.1 68.8

Tab. 6.9: Comparison of the experimental results on YouTubeVOS dataset [Xu+18]. The proposed
bidirectional architecture (Bi-HS2S) leads to about 1pp improvement in the overall score,
while multi-task training with optical flow estimation (RAFT-HS2S) does not improve
the results.

the complex optimization operation when dealing with RNNs. Processing the entangled
spatial and temporal information in sequential visual data leads to the optimization process
becoming overly complex. This condition could become even more extreme for deeper
RNNs, resulting in sub-optimal performance. To this end, they propose to disentangle
the information related to the spatial flow from the temporal flow. They design a Context
bridge module (CBM), which is composed of two computing blocks for processing the
representation and the temporal flows. By enforcing these sources of information to flow
independently, the optimization process could potentially be simplified. In our experiments,
we deployed a stack of 5 RNN layers following the setup proposed in [Pan+19].

In the third variant, TensorLSTM [Su+20], the authors attempt to improve the learning
of long-term spatiotemporal correspondences for processing longer videos. They design
a higher-order convolutional LSTM architecture named TensorLSTM that can better cap-
ture extended correlations. TensorLSTM consists of a preprocessing and a convolutional
tensor-train module. The preprocessing module computes feature vectors from multiple
overlapping sliding windows from the previous hidden states. These embeddings are then
further processed through the convolutional tensor-train module and passed to the LSTM.
Consequently, they are able to efficiently integrate the information from the previous hidden
states and improve the capturing of long-term correlations.

As it can be seen from the results in Table 6.10, TensorLSTM achieves a better segmentation
accuracy compared to the other variants. This implies that in HS2S architecture, we do
not require deeper RNNs to carry the information about the object of interest. However,
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Method Jseen Junseen Fseen Funseen overall
ConvLSTM [Xin+15] 73.6 58.5 77.4 66.0 68.9
DeepRNN [Pan+19] 72.4 57.3 75.8 64.9 67.6
Tensor-TrainLSTM [Su+20] 74.7 60.2 78.5 66.4 70.0

Tab. 6.10: An ablation on the choice of RNN module. Employing Tensor-TrainLSTM [Su+20]
results in improved segmentation performance.

accessing the information from multiple frames over an extended time period is beneficial
for the model. In a way, TensorLSTM applies attention to a limited past context via
the sliding-window mechanism in the preprocessing module. This observation is in line
with employing the dual propagation strategy in Section 6.4.1 where simply merging the
information from the time step t− 1 improves the segmentation results.

Fusion Module. In this section, we study the model’s performance when working with
three different fusion block architectures in Table 6.11. Intuitively, the fusion block needs to
provide global connections across the spatial dimensions as the object might be displaced to
a further location compared to the reference frames. Additionally, it has to assign higher
attention to the locations that belong to the foreground. In HS2Ssim, the spatiotemporal
RNN features are merged with the reference features based on cosine similarity. HS2SGC
merges these two branches using global convolution layers as suggested in [Pen+17] while
HS2Sattn replaces this operation with an attention layer [Ho+19]. We obtained similar
performance for different fusion architecture options, but the design using attention attained
the highest accuracy.

Method Jseen Junseen Fseen Funseen overall
HS2SGC 73.6 58.5 77.4 66 68.9
HS2Ssim 72.3 56.4 76.2 62.5 66.9
HS2Sattn 73.9 58.7 77.5 66.3 69.1

Tab. 6.11: Ablation on the impact of the fusion module combining RNN and matching information.
We observe that attention-based fusion outperforms the other solutions, including using
convolution layers with large kernel sizes.

Backbone Network. The encoder networks in Figure 6.8 are responsible for extracting
descriptive features which will be then processed through the memory and decoded into a
segmentation mask via the decoder network. Thus, improving the quality of the encoder
network is expected to directly reflect on the segmentation quality. In this section, we study
the behavior of HS2S model when employing various encoder architectures including VGG
[SZ14], ResNet50 [He+16], DeepLab [Che+17b], and Axial-DeepLab [Wan+20b].

The DeepLab backbone is a modified ResNet50 with fewer pooling operations resulting
in increased spatial feature dimension at the output (Higher spatial dimensions are pre-
sumably beneficial for dense prediction methods due to preserving fine local information).
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Furthermore, it consists of an Atrous Spatial Pyramid Pooling (ASPP) module composed of
a stack of convolution layers with various dilation rates. We experiment with a DeepLab
backbone pretrained on image segmentation, with and without the ASPP module. Different
than CNN-based backbones, Axial-DeepLab [Wan+20b] consists of fully-attentional blocks.
In this model, the authors propose to break the attention into horizontal and vertical atten-
tions to reduce the computational cost of the attention-based backbone (from quadratic to
linear). However, this model still requires significantly higher memory compared to CNN-
based backbones. Due to memory limitation, we experimented with small Axial-DeepLab
architecture as elaborated in [Wan+20b].

As can be seen in Table 6.12, we obtained the best results when applying the ResNet-
based encoder. Surprisingly, integrating the additional ASPP module from the DeepLab
architecture resulted in lower performance. This behavior can be due to the added complexity
resulting from combining the spatiotemporal RNN features with multi-scale processing in
the ASPP module resulting in a more challenging optimization problem and sub-optimal
performance.

6.5.4 Summary

In this work, we study two derived architectures building on our previously proposed HS2S
model for solving VOS. Firstly, we introduce an architecture that enables bidirectional
processing of video frames, effectively utilizing information from future frames. In the
second design, we investigate the effectiveness of multi-task training by combining the VOS
objective with optical flow estimation. This approach aims to leverage the additional infor-
mation provided by optical flow to enhance the segmentation performance. Furthermore, we
perform an extensive ablation study to quantify the impact of different components used in
the HS2S model by investigating different designs for feature extraction backbones, RNNs,
and fusion blocks used in the underlying architectures. These investigations reveal that our
bi-directional extension (Bi-HS2S) improves over HS2S architectures by nearly 1 pp in
the overall segmentation accuracy. To our surprise, our multi-task extension, also taking

Backbone Jseen Junseen Fseen Funseen overall
VGG16 [SZ14] 71.4 56.0 74.9 64.8 66.8
ResNet-50 [He+16] 73.6 58.5 77.4 66.0 68.9
ResNet-101 [He+16] 73.9 58.5 77.3 66.2 69.0
ResNet-50-DeepLab (W/o ASPP) [Che+17b] 73.3 59.1 77.2 66.0 68.9
ResNet-50-DeepLab (W/ ASPP) [Che+17b] 72.3 56.9 76.5 64.2 67.4
Axial [Wan+20b] 70.5 55.0 73.1 61.8 65.1

Tab. 6.12: An ablation on the impact of the backbone network. We find that in our VOS pipeline,
the ResNet architectures [He+16] perform better compared to other feature extractors.
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optical flow into account (RAFT-HS2S), failed to improve over HS2S. In the expanded
ablation study, we find that the ResNet-101-based backbone network, Tensor-TrainLSTM
RNN architecture, and attention fusion blocks are the most beneficial design choices.
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Self-supervised Learning for
Spatiotemporal
Correspondence Matching

7

7.1 Introduction

In this chapter, we focus on a key limitation of supervised learning in computer vision
tasks: the reliance on labeled data. In this regard, we introduce two critical scenarios where
the use of labeled data is especially problematic. The first scenario pertains to the high
cost associated with annotating spatiotemporal correspondences in videos, where every
object instance in each frame needs to be labeled. This intensive labeling process poses
practical difficulties. The second scenario concerns the applicability of supervised methods
when there is a mismatch between the data distribution during training and the inference;
for instance, a situation where the training data is collected under sunny weather while
the inference is conducted in foggy weather. This covariate shift can severely impact the
model’s performance. Although a trivial solution would be to fine-tune the model on the
data from the test distribution, labeling data from each newly seen distribution is not feasible.
Given these limitations, we ask the following question: Can we utilize self-supervised
learning to alleviate the constraints imposed by supervised methods?

Within the last years, self-supervised learning methods have become highly popular due to
their scalability and reducing the reliance on labeled data [Gui+23]. In particular, several
works have introduced specialized pretext tasks for spatiotemporal correspondence learning,
which involves learning feature correspondences over time and space [Jai+21; Von+18;
JOE20; LLX20]. This is a fundamental problem in computer vision, as learning this
objective enables the propagation of object features over time, benefiting various video
applications such as video object segmentation, video instance segmentation, and video
object tracking. However, the majority of the proposed approaches rely on color information
as the supervisory signal, employing pretext tasks such as colorization [Von+18; LLX20].
Consequently, the model learns to find correspondences purely based on color information,
resulting in a performance drop in crowded scenes with multiple similar objects. This
limitation highlights the need to enhance the robustness of self-supervised methods further
in challenging tracking scenarios.
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Motivated by these observations, we delve into recent advances in self-supervised video
correspondence learning in the first part of this chapter. Specifically, we concentrate on
correspondence learning within the context of multiple object tracking (MOT). MOT is a dif-
ficult task due to the high similarity between object instances in crowded scenes, occlusion,
and object appearance shift, with several applications in autonomous driving and robotics.
To tackle MOT, we propose a self-supervised pipeline for frame-wise object correspon-
dence/association learning that addresses several limitations of the current approaches under
the demanding scenarios mentioned above. We introduce an appearance-based model that
learns instance-aware object features tailored for identifying object correspondences. Our
approach relies on two key components: optimal transport for soft differentiable matching,
allowing for end-to-end training, and association pseudo labels derived from temporal and
multi-view data using optical flow and disparity information. Unlike most self-supervised
tracking methods that rely on pretext tasks for learning the feature correspondences, our ap-
proach is directly optimized for cross-object association in complex scenarios. As such, the
proposed method offers a reidentification-based MOT approach that is robust to training hy-
perparameters and does not suffer from local minima, which is a challenge in self-supervised
solutions.

In the second part of this chapter, we look into the issues raised due to the domain gap
between the training and testing data, with a focus on video object segmentation and
tracking, and seek potential remedies using self-supervised learning. In typical computer
vision problems revolving around video data, pre-trained models are simply evaluated
during the inference phase without any precautions to adapt the model to the test data
distribution. This general approach clearly cannot capture the shifts that will likely arise
between the distributions from which training and test data have been sampled [Wan+22].
Hence, adapting a pre-trained model to a new video encountered at test time could be
essential to avoid the potentially catastrophic effects of such shifts. However, given the
inherent impossibility of labeling data only available at test time, traditional fine-tuning
techniques cannot be leveraged in this highly practical scenario. Encouraged by these
challenges, we explore whether the recent progress in test time adaptation in the image
domain and self-supervised learning can be leveraged to adapt a model to previously unseen
and unlabelled videos presenting both mild (but arbitrary) and severe covariate shifts. Our
experiments show that test time adaptation approaches applied to self-supervised methods
are always beneficial. However, the extent of their effectiveness largely depends on the
specific combination of the algorithms used for adaptation and self-supervision as well as
the type of covariate shift taking place.

The content in this chapter is based on the publications [AMH23; Azi+22b].
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7.2 Related Work

This section provides an overview of the literature related to studies conveyed in this chapter,
including self-supervised learning in video data as well as its applications for domain
adaptation.

7.2.1 Self-supervised Representation Learning

During the last few years, the AI community has witnessed immense success in self-
supervised learning methods [JT20; LHS20]. These algorithms are of particular interest as
the independence from the laborious data labeling process enables training on the massive
amount of unlabeled data, alleviating the overfitting problem and improving generalization
[TH21]. Earlier methods for representation learning in vision focused on designing pretext
tasks such as rotation prediction [GSK18], solving jigsaw puzzles [NF16; Wei+19; Kim+18],
permutation learning [San+18], image colorization [ZIE16; LMS17], and image context
prediction [MHC18; DGE15]. The goal is to train the model to compute representative
image features by teaching it to solve a carefully designed proxy task that encourages the
model to understand meaningful visual patterns and contextual relations in an image.

Another popular line of work in self-supervised representation learning is contrastive
learning [Che+20a]. Different than the aforementioned methods based on pretext tasks,
contrastive learning trains the model by comparison [LHS20; He+20; Che+20b; Cui+21;
OLV18]. In these methods, the model is trained to predict whether the provided input
samples are similar based on a predefined similarity distance function. This way, the model
is encouraged to pull together features from positive samples close and push apart the ones
from negative samples to minimize the training objective. We note that the negative and
positive data samples are assigned to either class without the need for any additional manual
annotation.

However, the learned features by these approaches only perform well for recognition tasks
but do not scale well to fine-grained feature correspondence learning [XW21]. The reason
mainly lies within the proxy task design, conveying a relatively coarse objective (e.g., if
multiple views belong to the same object or not). The following provides an overview of
the algorithms specialized for self-supervised spatiotemporal learning.

Self-supervised Spatiotemporal Correspondence Learning. These methods design spe-
cialized proxy tasks to learn discriminative features essential for spatiotemporal correspon-
dence learning from unlabeled video data [Von+18; JOE20; LX19a]. In the seminal work of
Vondrick et al. [Von+18], the authors developed a self-supervised objective specialized to
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video correspondence matching for the first time. They proposed learning feature similari-
ties via video colorization, where they train a model to propagate color over video frames
based on feature similarity. Accordingly, they utilize color information as the supervision
signal. Follow-up works [LX19a; LLX20; WJE19] considerably improve the performance
of this work by adding several enhancements such as cycle consistency, improved training
procedure, using memory and attention mechanism to better represent the local and non-
local relations between the objects present in a video clip. Differently, Jabri et al. [JOE20]
formulate the problem of spatiotemporal correspondence learning as a contrastive random
walk where the spatiotemporal feature propagation is learned via minimizing a cycle consis-
tency training objective based on generating a palindrome from the video frames. [Bia+22]
further improves this method by developing a hierarchical coarse-to-fine feature search over
the temporal video frames. Alternative approaches formulate training objectives based on
time cycle consistency [WJE19], or utilize motion information as the main training signal
[Yan+21b]. In [Li+19a], Li et al. combine region-level correspondence matching (tracking)
with colorization while the authors in [Yan+21a; KF19] utilize motion information for dense
tracking.

In a different line of work, [XW21] successfully train a model for correspondence matching
by simply employing a contrastive loss that determines whether two frames belong to the
same video clip. In [Li+22b], the authors suggest enhancing the discriminative power of
learned features by utilizing frames from other videos as additional negative examples and
integrating the powerful location information using position encoding. [Jeo+21] develops
an improved policy for positive and negative mining required for contrastive learning. To
this end, the positive feature matches are selected based on a confidence measurement,
and negative samples are incorporated with increasing difficulty levels as the training pro-
gresses. Furthermore, [Son22] reduces the adverse effect of noisy feature matches by
introducing additional cycle consistency regularizations and considering the model uncer-
tainty via a probabilistic model averaging algorithm. [Li+22d] addresses the limitation of
self-supervised correspondence methods caused by purely utilizing pixel-level information
and discarding the semantics. Orthogonal to these works, [Li+22a; Hon+22] focus on
improving the architectural aspect and show that the simple ResNet-based feature extractor
is not sufficiently robust for learning the feature representation and modeling the object
relations in a video.

7.2.2 Object Correspondence Learning for Multi-object Tracking

In Multiple Object Tracking (MOT), the task is to track each detected object’s bounding
box throughout the object’s appearance in the video. One of the most successful paradigms
in MOT is tracking by detection. In this class of approaches, tracking is performed by
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finding the frame-wise object correspondences to propagate the object ID (also referred
to as the track ID). Classical methods that fall into this category rely on simple motion
modeling [Bew+16; BES17] such as employing a Kalman filter. These methods build on the
assumption that objects have a constant velocity – an assumption that is often violated in
real-world scenarios. The recent OC_SORT method [Cao+22] makes several modifications
to the Kalman-based formulation in [Bew+16], resulting in a considerable performance gain
and better handling of occlusion.

With the progress of deep learning methods and significantly enhanced accuracy in object
detection [Ren+15; Car+20], this improvement has naturally carried over to tracking by
detection methods [BML19a]. Moreover, deep networks have enabled learning of bet-
ter features which improves the association accuracy [WBP17; WB18]. Bergman et al.
[BML19b] extend an object detector to a tracker using a regression network that estimates
the object displacement, highlighting the importance of object detection in MOT pipelines.
In [He+21], the authors improve on the standard frame-wise data association in MOT by
modeling the intra-frame relationships between the tracks in the form of an undirected
graph and formulating the problem as a graph-matching task. Similarly, [BL20; LGJ20;
WKW21; Wan+21; Hyu+22] model the interaction between objects over multiple frames
as a graph and utilize graph neural networks (GNN) to globally reason over object inter-
actions and associations. In CenterTrack [ZKK20], a joint detection and tracking pipeline
is developed for first detecting the object centers and then associating between them over
consecutive frames via computing the distance between the object centers, taking the object
motion offset into account. The follow-up work PermaTrack [Tok+21] utilizes the notion of
physical object permanence and uses a recurrent module for memorizing the object track
history and surmounting occlusion. [Tok+22] further improves this method by employ-
ing a consistency-based objective for object localization in occluded videos. Motivated
by the success of transformer-based methods in vision applications [Vas+17; Dos+20],
transformers have also been deployed in tracking algorithms [Zen+22; Sun+20b; Mei+22;
Cai+22] to allow for better modeling of object relations. Sun et al. [Sun+20b] were the
first to suggest a transformer-based architecture for learning the object and track queries
used for detecting objects in succeeding frames and performing association. Trackformer
[Mei+22] proposes tracking by attention, a model which uses a transformer encoder and
decoder to perform the task of set prediction between the object detections and the tracks
in an autoregressive manner. MeMOT [Cai+22] additionally utilizes an external memory
for modeling the temporal context information. In MOTR [Zen+22], Zeng et al. extend the
deformable DETR [Zhu+20] by building on the idea of object-to-track and joint modeling
of appearance and motion by introducing a query interaction module and temporal context
aggregation. Although reaching accurate tracking results, these methods rely on video-level
tracking labels.
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Differently, Bastani et al. [BHM21] develop a self-supervised algorithm to learn the object
associates over multiple frames using a cross-input consistency objective that encourages
the same association via visual and motion information. Although this method achieves
good tracking results in high frame rate videos with minimal object motion, the performance
degrades in low frame rate setup and large object motion due to the inherent dependency on
motion smoothness assumption.

7.2.3 Domain Adaptation

Domain adaptation aims at adjusting a model trained on one domain to perform well on new
and unseen domains by addressing differences in characteristics such as image appearance
or lighting conditions. Based on the availability of labeled or unlabeled data from the target
domain (test data) during the training, domain adaptation techniques can be divided into
multiple sub-categories, as will be discussed in the following.

Unsupervised Domain Adaptation addresses a setup where the labeled data from a source
domain and unlabeled data from a target domain are available during the training phase.
The goal is to maximize the performance on the target domain [WC20]. In this regard,
[SFS17; HHK18; Kum+18] propose feature alignment and adjusting the statistics of the
source and target data distributions by applying linear transformations on the source features
to lessen the impact of domain shift. Carlucci et al. [Car+17] develop domain alignment
layers that apply domain-specific operations and align the features from the source and
target distributions to a reference and can be embedded in any network. Similarly, [Pen+19]
introduces a moment-matching component for multi-source domain adaptation, which is
responsible for adapting the input domains to a target distribution. [Tse+20] employs a
feature-wise transformation layer that learns the parameters of a linear operation used for
modulating the activations towards adapting them to the target task/domain. In a different
setup, Liang et al. [LHF20] suggest an effective transfer learning approach in a scenario
where a pre-trained model is to be adapted to a target domain without having access to the
source data.

Domain Generalization considers a more general scenario where the target data distribution
is unavailable during training [Zho+21]. The goal is to improve the performance on the
target domain with a focus on enhancing the training process. In this respect, [Car+19]
proposes a multi-task setup and shows that training together with the auxiliary task of
solving the jigsaw puzzle [NF16] improves the generalization to unseen domains. [Li+19b]
proposes a meta-learning approach in which the objective for improving the generalization
is learned itself, in contrast with methods that utilize manually designed loss functions
[MBS13; BSC18]. Several works have studied this aspect in an attempt to accustom the
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normalization layer to the target distribution [Li+16; Nad+20; Sch+20; Seo+20; Zha+20a;
BS21]. For example, [Zha+20a] develops a domain-invariant normalization layer for stereo-
matching by normalizing the features along the spatial and the channel dimensions to
enforce the domain invariance in the learned representation while [Seo+20] proposes a
domain-specific normalization layer for multi-source domain generalization by combining
batch normalization [IS15] with instance normalization [UVL16] where the combination
weights are learnable parameters of the network.

Test Time Adaptation, unlike the previously mentioned methods, performs domain general-
ization by learning from the data available at test time. In this respect, Sun et al. [Sun+20c]
propose a multi-task setup using supervised and self-supervised objectives where the auxil-
iary loss is used to further fine-tune the network during inference. In [Wan+20a], the authors
utilize entropy minimization [GB+05; Shu+18; Sai+19; Roy+19] to modify the modulation
parameters of the BN layer to mitigate the impact of covariate shift between the training and
testing data distributions and [Nad+20; Sch+20; Li+16] suggest updating the normalization
statistics of the BN layer as an effective way of adapting the features to the target domain.

7.3 Self-supervised Learning for Video Object
Correspondences

Multiple object tracking (MOT) is a fundamental task in computer vision with applications
across domains, including scene understanding and autonomous driving. In many of these
applications, tracking plays a safety-critical role for downstream planning and control
algorithms. Accurate MOT requires precise detection of one or multiple object categories
and correctly associating them throughout object presence in a dynamic scene. This task
is challenging not only due to the similarity of object instances in the scene and highly
dynamic object motion paths but also the fundamental problem of partial and full occlusions,
which from the observer’s view, can break object paths into separate segments.

Although a large body of work has explored MOT during the last years approaching the task
from various viewpoints [WSH22; Rak+21; Cia+20; LKR22; He+21; Guo+21], the majority
of these methods are supervised and rely on a highly laborious data labeling process. This
limits the datasets that can be used to small ones like KITTI [GLU12], which only has
21 training sequences. As such, this often restricts the potential of tracking architectures,
as more data can significantly improve the performance of deep learning-based methods
[Tok+21]. In this work, we aim to utilize the large amount of unlabeled video data for MOT
by utilizing the recent advances in object detection models, as elaborated in the following.
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Fig. 7.1: We propose S3Track, a self-supervised method for learning the object associations through-
out a video by learning a robust appearance model. We use optimal transport for computing
the soft object assignments, enabling end-to-end training of our model with association
pseudo-labels. Our method shows strong performance in challenging scenarios such as
occlusion and fast motion in the top row, severe weather conditions, and appearance
change in the bottom row (see the objects pointed at with the white arrow). The track IDs
are visualized by the bounding box color and the number inside. Data samples are from
the nuScenes dataset [Cae+20] validation split using the provided detection bounding
boxes.

Object detection is closely related to MOT, as one of the main strategies for solving MOT is
Tracking by Detection which is learning to associate between the detected objects [Bre+09].
Object detection methods are trained on separate still images; thus, the labeling process is
significantly simpler than MOT, which requires annotating sequences. Furthermore, the field
has produced very accurate object detectors [Jia+19; Zai+22] that can be used to generate
the detections for MOT. Although recent object detection practices utilizing transformers
[Car+20; Liu+21] show promising performance, two-stage detection methods relying on
region proposals [Ren+15] are still faring among the best-performing models in a wide
range of detection tasks, thanks to employing techniques such as Region of Interest (RoI)
pooling and hierarchical feature processing that has been proven crucial for object detection
[He+15; Lin+17]. Nevertheless, it is an open question if we can rely on the accuracy of
these existing mature detection models for MOT.

In our work, we assume access to a trained object detector for generating the detection
bounding boxes and train an MOT model without using video-level association labels. With
per-frame detections in hand, we propose a method to obtain association pseudo-labels
using motion information over short video sequences. Using the detections and the RoI
pooling layer, we extract the object features and compute an affinity matrix between the
detections in the source and target frames. We propose differentiable optimal transport
for finding the soft assignments between the detections, facilitating end-to-end training of
our model using the association pseudo-labels. Thanks to this differentiable training, our
model is able to compute robust and discriminative features optimal for object association,
as shown in Figures 7.1 and 7.2. We validate the method on multiple tracking benchmark
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Fig. 7.2: Heatmaps a and b show the cosine distance between object embeddings from an instance-
agnostic model trained for object detection and our model trained for object association
using optimal transport soft assignment at frames t0 and t1. The soft assignment mecha-
nism is essential for obtaining instance-aware discriminative object features. Without this,
features from different objects are not well separated in the embedding space, resulting
in a low distance between multiple object instances and false matches (red in heatmap a
shows the false associations: cars 2, 5, 6, 7 at t1). Note that our method correctly matches
all detections and adequately initializes a new track ID here for car 6 entering at t1. (*:
unmatched detection resulting in a new track ID).

datasets, including KITTI [GLU12], Argo [Wil+21], nuScenes [Cae+20], and Waymo
datasets [Sun+20a], outperforming all tested unsupervised MOT methods.

The remaining of this section discusses the components of the proposed MOT pipeline,
including the architecture, the differentiable object assignment using optimal transport, and
the association pseudo-label generation. This is followed by discussing the implementation
details and presenting the experimental results.

7.3.1 S3Track: Self-supervised Tracking with Soft Assignment Flow

In conventional supervised MOT, a model is trained to predict a unique track ID for each
object by minimizing a classification loss. In our setting, we do not have access to the track
IDs; instead, we approach MOT as finding the frame-wise association between detected
objects in the reference and target frames. Our goal is to learn an affinity matrix measuring
the distance between detected objects in a reference (Ir) and a target video image (It).
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Considering these detections, we predict the unique correspondences between the objects
such that objects with the closest distance are matched.

At first glance, this resembles the common inference strategy in MOT approaches that for-
mulate a distance matrix based on motion or appearance information and use the Hungarian
algorithm to find the unique assignments. However, the bipartite matching via the Hungarian
algorithm is non-differentiable and hence, does not facilitate learning correspondences. To
tackle this challenge, we find soft associations between the reference and target objects
by posing association as an optimal transport [Cut13; Mun57] problem. Having defined
a differentiable matching step, we learn feature embeddings optimal for matching in an
end-to-end training approach. We find this differentiable matching step essential for the
proposed method; see Figure 7.2. We train our model with a negative log-likelihood objec-
tive where the ground truth association labels are replaced with assignment pseudo-labels
obtained from video motion information.

In summary, our algorithm is split into the following steps:

• Compute the object features using the detection bounding boxes in a reference and
target frame.

• Compute the distance matrix between the object features and find the object assign-
ments using optimal transport.

• Compute the association pseudo-labels based on object overlaps by first aligning the
detections using motion information (optical flow and disparity), then computing the
distance matrix using object IoUs, and finally applying the Hungarian algorithm for
obtaining the object assignments with the highest area overlap.

• Use the pseudo labels to train the model with a metric loss for learning the right
correspondences using visual similarity information.

The overall architecture is illustrated in Figure 7.3. In the following, we discuss all compo-
nents of the proposed method.

Optimal Transport for Soft Object Association

We solve the task of finding the corresponding objects in Ir and It with minimal assignment
distance using optimal transport [Cut13; Mun57]. We will see that this approach allows for
a fully differentiable matching process. Consider two discrete distributions a and b and a
matrix C, which represents the cost of transporting distribution a to b using a probability
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Fig. 7.3: The S3Track architecture. We use a feature pyramid pooling network as the backbone
and an RoI pooling layer for extracting the per-object features fRoI , followed by an RoI
Enhancer Module generating the instance-specific discriminative representation for each
object. We compute the final embeddings xi using an MLP and find the soft assignments
between the embeddings using the differentiable optimal transport layer.

matrix P (or transport matrix). Optimal transport is a linear assignment algorithm [Cut13]
that finds the P which minimizes the overall transport cost, that is

dC(a, b) := min
P∈U(a,b)

⟨P,C⟩, (7.1)

where U(a, b) is the set of possible transport strategies

U(a, b) := {P ∈ R+ | P1 = a, P T1 = b}. (7.2)

We are interested in finding the assignments between the detections in Ir and It such that
the objects with the highest similarity (lowest distance) are matched. In our work, we learn
features optimal for object association. Consider X1 := {x1,1, x1,2, . . . , x1,n1}, X2 :=
{x2,1, x2,2, . . . , x2,n2} as the set of extracted detection embeddings from the reference
and target frames, where xi,j ∈ R256. We define the following cost matrix for feature
similarity

Csim,ij = 1−
〈

x1,i
∥x1,i∥

,
x2,j
∥x2,j∥

〉
, (7.3)

where ⟨., .⟩ represents the Frobenius dot product.

Adding an entropy regularization term to Equation (7.1) [Cut13] turns the task into a convex
optimization problem that can efficiently be solved using the Sinkhorn algorithm [SK67].
This algorithm consists of differentiable operations, namely, iterative normalization of the
rows and columns of matrix C until convergence (or with a fixed number of iterations),
as shown in Figure 7.3. With this in hand, Equation (7.3) allows us to learn the feature
embeddings optimal for matching.
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Fig. 7.4: Object association pseudo-label generation process. We align the detection bounding
boxes using motion information between a reference and a target frame. We compute
a cost matrix based on the IoU between the aligned objects and employ the Hungarian
algorithm to find the corresponding objects with maximum bounding box overlap.

Flow-based Pseudo-label Generation

For training our association model, we recover pseudo-labels from temporal cues in video
sequences and multi-view cues in stereo captures as shown in Figure 7.4. To this end,
we perform motion compensation to align the object bounding boxes in the reference and
target frames. We first estimate the motion between the reference and target frames Ir and
It. Assume Br := {br,1, br,2, . . . , br,n1} and Bt := {bt,1, bt,2, . . . , bt,n2} are the detection
bounding boxes in Ir and It. Then we align the detections from the reference to the target
by forward warping

b′
r,i = br,i +M t

bi,r, (7.4)

where M t
bi,r

is the computed motion vector at the center of detection box br,i. In the next
step, we assign pseudo-labels based on the Intersection over Union (IoU) between the
motion-adjusted object bounding boxes. Assuming aligned bounding boxes bt and b′

r, we
match objects with the highest overlap with the distance matrix

CIoU
ij = 1− IoU(b′

r,i, bt,j). (7.5)

We compute the unique and hard object association labels (i, j) using the Hungarian
algorithm, which gives us object correspondences with the highest overlap (minimum cost).
Note that, at this stage, we can employ the Hungarian algorithm since we do not require
differentiability in the pseudo-label generation. When using temporal data, the Ir and It are
temporally spaced video frames, and motion M is estimated using optical flow. When using
stereo data, Ir and It are the left and right images, and M is the disparity between the two
views.

108 Chapter 7 Self-supervised Learning for Spatiotemporal Correspondence
Matching



RGB Disparity Occlusion Mask

L
ef
t
V
ie
w

Il Dl OMl

R
ig
h
t
V
ie
w

Ir Dr OMr

Fig. 7.5: Proposed occlusion masks for the stereo data. We generate OMl and OMr based on
the consistency assumption that for non-occluded regions, the result of warping the left
disparity Dl to the right view should match Dr and vice versa.

Occlusion Masks. Changes in camera view (from left to right stereo camera) and dynamic
objects can result in occlusions. Although tracking methods should be robust to changes in
appearance between frames, extreme occlusions can be detrimental to the training process.
Drastic appearance shifts and occlusion can occur for large baselines, as shown in Figure 7.5.
To handle this issue, we use an occlusion mask to discard objects that become heavily
occluded.

Specifically, we assume that for non-occluded regions, the disparity in one view should be
consistent with the disparity in the other view. We first compute the disparity maps, Dl and
Dr, for the left and right views, respectively. Next, we warp Dl to the right view, obtaining
D̂r. Subsequently, if the disparity difference for a pixel is above τocc, that pixel is marked
as occluded, that is,

D̂r =W(Dl, Dr) (7.6)

∆r = |D̂r −Dr|, OMr =

1 ∆r ≥ τocc
0 otherwise

, (7.7)

where the functionW(Dl, Dr) bi-linearly warps Dl to the right view using disparity Dr

and OMr denotes the occlusion map in the right view. Similarly, we compute the occlusion
mask for the left view (OMl) and discard objects with more than 50% occluded pixels in
either OMr or OMl from the training data.

Discriminative Feature Extraction

With our differentiable assignment in hand, we train a feature extractor tailored to multi-
object tracking in an end-to-end fashion. We find that extracting features from the detectors
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fails for object instance association as object detector features are instance-agnostic and
not sufficiently discriminative, as illustrated in Figure 7.2. To this end, we slightly modify
existing object detection architectures [Ren+15] for our purpose; see Figure 7.3. As input,
we feed the RGB image and the detection boxes from the separate detectors to the model.
The RGB image is initially processed as a whole through a feature pyramid network [Lin+17]
with ResNet50 [He+16] backbone; then, the RoI pooling layer extracts the context-aware
object features using the detection bounding boxes. Note that this contrasts with directly
cropping the object region and then extracting the features [BHM21], resulting in the
complete loss of informative contextual information. In the next step, we further process the
extracted features with an RoI enhancer module consisting of a stack of convolution and
non-linearity layers to obtain an instance-specific object representation specialized for the
association task. Finally, the enhanced features are projected to an embedding space ∈ R256

using a small MLP network. The resulting embeddings xi are used to construct the cost
matrix in Equation (7.3).

Training Loss. Assuming we have the correspondences between the detections in the
reference and the target frame (from pseudo-labels), we train our model using negative
log-likelihood LNLL and triplet loss Ltrip, where

LNLL = −
∑

(i,j)∈A
log(Pi,j), (7.8)

with A being the set of association pseudo-labels between detections in Ir and It.

The additional triplet loss Ltrip helps in learning more discriminative features. Specifically,
this loss minimizes the distance between the anchor and the positive samples and maximizes
the distance between the anchor and the negative samples up to a margin of m, that is

Ltrip(a, p, n) = max{d(ai, pi)− d(ai, ni) +m, 0}, (7.9)

where a, p, and n stand for anchor, positive and negative samples, and d(xi, yj) = |xi− yj |.
For this purpose, we select the anchor from Ir and choose the positive and the negative
samples from It. The final loss is the weighted sum of the terms above, that is

Ltrain = α Ltrip + β LNLL, (7.10)

where α and β are training hyperparameters.
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Implementation Details

We employ a feature pyramid network [Lin+17] based on ResNet50 [He+16] as the backbone
with 256 feature channels and initialize it with pre-trained weights on the COCO dataset
[Lin+14]. The RoI pooling layer resizes the extracted regions to a fixed resolution of
21× 21. The RoI enhancer module consists of a 4-layer convolutional network with Group
Normalization and ReLU non-linearity. The output of this block is flattened and projected
to the final embedding x ∈ R256 using a two-layer MLP network and ℓ2 normalization.

We train our model using SGD optimizer with an initial learning rate of 2 × 10−4, a
momentum of 0.9, a weight decay of 10−4, and a batch size of 8 on a single A100 GPU.

We pre-train our model on temporal and multi-view driving data described in subsection 7.3.2
where we resize the images to the same width as KITTI [GLU12], keeping the aspect
ratio unchanged. Additionally, we fine-tune our model on the training set of the datasets
used for evaluation. We did not find additional data augmentation beneficial to the final
performance.

As training hyperparameters, we set the α and β in Equation (7.10) to 1.0 and 0.5, re-
spectively. During inference, we define the cost matrix as the combination of appearance
similarity and IoU, that is

Cinf = σCsim + (1− σ)CIoU. (7.11)

The IoU information serves as a location prior that helps the model in cases where there
are similar objects present in the scene. The relevance of IoU information highly depends
on the data frame rate. Therefore, we use σ = 0.7 and σ = 1 for the test data captured at
higher (e.g., 10 FPS) and lower (e.g., 2 FPS) frame rates, respectively.

7.3.2 Experimental Setup

In this section, we describe the datasets, evaluation metrics, and assess S3Track and relevant
baselines on four autonomous driving datasets. We confirm our architecture choices with
ablation experiments.

Wide-baseline Stereo Pre-training Data. We capture a training dataset with four 8MP HDR
sensors placed at 3m height on a test vehicle with baseline distance (from reference camera
(cam0) as 0.7m, 1.3m, and 2m for cam01, cam02, and cam03, respectively. The primary
configuration during data capture uses four front-facing 8MP 20-bit HDR sensors (AR0820)
with 30 degrees horizontal field of view lenses mounted at the height of approximately 3m
from the ground and distributed over a 2m baseline. During snow and rain captures, the
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Fig. 7.6: Temporal cues used during the pre-training of our method. On our pre-training data, we
use optical flow to align the detections in the reference (Ir) and target (It) frames. The
association pseudo-labels are visualized by the color of bounding boxes in the first two
rows.

sensors are mounted behind the windshield at a height of around 1.5m. In all cases, the
cameras are mounted using a custom-made mounting plate to ensure that the cameras are
attached rigidly and that there is no significant orientation difference between each pair.
Calibration for the multi-baseline stereo was performed in two phases: lab-based offline
intrinsic parameter estimation and on-site calibration using charts with clearly detectable
patterns. Calibration captures were done while the vehicle was static and either in neutral
or with the engine turned off to reduce any artifacts due to camera vibration and rolling
shutter. Data capture was performed over multiple days to collect sufficient variety in
weather, illumination, and scene. A total of 52 hours of data were collected with the capture
scenes, including downtown and highways, under varying illumination conditions, including
noon with the sun directly above, dusk with the sun near the horizon (direct light on the
sensor), and night. Moreover, data were collected covering clear, rainy, and snowy weather
conditions. We will release a subset of 2 hours of driving data, evenly distributed for
different conditions, including data captured during day, night, dusk, day+rain, day+snow,
night+rain, and night + snow, in both downtown and highway traffic conditions. To obtain
detections on this dataset, we use a FasterRCNN meta-architecture [Ren+15] with ResNet50
as the backbone and train it on the annotated driving dataset. The visual samples from our
pre-training data are shown in Figures 7.6 and 7.7.

KITTI 2D tracking dataset [GLU12] consists of 21 training and 29 test videos collected
at 10 FPS deploying sensors mounted on top of a driving car. We fine-tune our model on
the train set and evaluate it on the test set using the detections obtained from PermaTrack
[Tok+21].
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Fig. 7.7: Multi-view cues (cam0&1) used during pre-training. When using stereo data, we use
disparity (Dl) to align the bounding boxes from the right image (Ir) to the left view (Il).
Additionally, occlusion masks OMl and OMr are utilized to discard objects that are less
than 50% visible in one of the views. In the first two rows, we see the left and right RGB
images with the association pseudo-labels visualized with bounding box color.

Waymo dataset [Sun+20a] is a large-scale corpus consisting of 798 training and 202
validation sequences each with a duration of 20 seconds at 10 FPS. We use the data captured
by the front camera for fine-tuning and evaluation.

nuScenes [Cae+20] includes 700 training videos which are annotated for 3D MOT at
2 FPS. Due to lower annotation frequency, this dataset has a larger appearance change
compared to the KITTI and Waymo datasets. We extract the 2D tracking labels from the 3D
annotations using the scripts provided by the dataset authors and use 70 percent of the data
for fine-tuning and 30 percent for validation.

Argoverse dataset [Wil+21] also provides data for 3D tracking with a training set of 65 and
a validation set of 24 videos. Using the script provided by this dataset, we extracted the 2D
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Method HOTA DetA AssA DetRe DetPr AssRe AssPr LocA

U
ns

up
. SORT [Bew+16] 71.2 71.6 71.8 74.8 83.5 74.4 88.2 84.8

IOU [BES17] 74.0 77.4 71.5 81.2 85.8 74.0 88.5 86.9
UNS20regress[BHM21] 62.5 61.1 65.3 67.7 73.8 69.1 83.1 80.3
OC_SORT [Cao+22] 76.5 77.3 76.4 80.6 86.4 80.3 87.2 87.0
S3Track (ours) 76.6 77.5 76.5 81.3 85.9 79.6 88.4 86.9

Su
pe

rv
is

ed

FAMNet [CL19] 52.6 61.0 45.5 64.4 78.7 48.7 77.4 81.5
CenterTrack [ZKK20] 73.0 75.6 71.2 80.1 84.6 73.8 89.0 86.5
mmMOT [Zha+19] 62.1 72.3 54.0 76.2 84.9 59.0 82.4 86.6
LGM [Wan+21] 73.1 74.6 72.3 80.5 82.1 76.4 84.7 85.9
EagerMOT [KOL21] 74.4 75.3 74.2 78.8 86.4 76.2 91.1 87.2
DEFT [Cha+21] 74.2 75.3 73.8 80.0 84.0 78.3 85.2 86.1
PermaTrack [Tok+21] 78.0 78.3 78.4 81.7 86.5 81.1 89.5 87.1
RAM [Tok+22] 79.5 78.8 80.9 82.5 86.3 84.2 88.7 87.1

Tab. 7.1: Tracking Evaluation on the KITTI test set [GLU12] for the Car category. In bold, we only
show the metrics relevant for measuring the association performance. All metrics are in
percentage. The proposed S3Track achieves the best performance in most of the metrics
in the unsupervised (Unsup.) category and fares better than most recent approaches in the
supervised category.

tracking labels at 5 FPS. We fine-tune on the training data and report the performance on
the validation set.

Evaluation Metrics. While a large set of metrics has been proposed to evaluate MOT
[Lui+21; Ris+16; BS08], some existing metrics, including MOTA, are biased towards
detection accuracy, hence not indicative in the context of evaluating association which is the
focus of our work. The most relevant metrics for measuring association performance are the
Association Accuracy (AssA), Association Precision (AssPr), Association Recall (AssRe)
[Lui+21], and the IDF1 score [Ris+16]. For completeness, we report the conventional
metrics from the KITTI tracking benchmark, including Detection Accuracy, Precision,
Recall (DetA, DetPr, DetRe), and the HOTA score, which combines the detection and
association performance into a single number [Lui+21].

Experimental Results

We evaluate our method on the four autonomous driving benchmarks discussed above.
On KITTI [GLU12], we compare our approach to existing supervised baselines and four
unsupervised methods. Like our work, the unsupervised methods do not use video-level
association annotations and assume the availability of detection bounding boxes, while
the supervised methods are trained using track labels. [Bew+16; Cao+22] utilize variants
of Kalman filtering for modeling the object motion, while the tracker in [BES17] works
purely based on IoU information. In [BHM21], the authors use a motion model based
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n Fig. 7.8: Qualitative Tracking on KITTI [GLU12]. We compare unsupervised S3Track and su-

pervised PermaTrack [Tok+21] on unseen sequences. The track IDs are visualized with
color coding and the unique number inside each bounding box. Our method shows robust
performance under heavy occlusion (see zoom-ins on the occluded regions). In both
scenes, S3Track correctly handles the heavy occlusion maintaining the track IDs, while
PermaTrack[Tok+21] suffers from several ID switches and fragmentation.

on bounding box information and an appearance model, and the self-supervised objective
aims to enforce consistency between the motion and the appearance model outputs. These
methods require small object motion to work well, an assumption often violated in driving
scenarios, especially with a low capture frame rate.

Table 7.1 reports tracking evaluations for the ‘Car’ class on the KITTI [GLU12] test set.
Together with OC_SORT [Cao+22], our method outperforms other unsupervised baselines
and even multiple supervised methods such as CenterTrack [ZKK20], EagerMOT [KOL21],
and DEFT [Cha+21] – which have access to track labels – and achieves comparable
results with PermaTrack [Tok+21] without using any video-level association labels. We
highlight that [Cao+22] is a purely motion-based approach and can be complementary to our
proposed appearance-based method. In Figure 7.8, qualitative examples show that S3Track
outperforms PermaTrack in complex occlusion scenarios.

In Table 7.2, we discuss MOT evaluations for the ‘Car’ category on several recent automotive
datasets, namely Waymo [Sun+20a], nuScenes [Cae+20], and Argoverse [Wil+21]. The
results for other baselines in Table 7.2 are obtained using the published code from the
respective authors. The evaluations validate that our S3Track performs well across all
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Waymo [Sun+20a] nuScenes [Cae+20] Argoverse [Wil+21]

Method AssA IDF1 AssRe AssPr AssA IDF1 AssRe AssPr AssA IDF1 AssRe AssPr

SORT [Bew+16] 62.2 71.9 63.9 93.1 56.5 66.1 59.2 82.1 63.2 75.5 63.9 93.1
IOU [BES17] 72.1 79.4 73.2 94.5 60.8 71.5 69.3 72.6 70.1 80.2 73.2 94.5
OC_SORT [Cao+22] 72.4 79.4 74.1 93.5 65.6 72.3 71.2 81.5 74.1 82.8 74.1 93.5
S3Track (ours) 77.8 83.7 78.5 97.7 73.4 81.9 79.0 87.7 77.8 83.7 78.5 93.5

Tab. 7.2: Evaluation on Waymo [Sun+20a], nuScenes [Cae+20], and Argoverse [Wil+21] datasets
for the Car category. Our method consistently outperforms the other unsupervised
methods with a considerable margin of about 4-8 points on AssA across all datasets. As
can be seen from the results, our method shows a robust performance when processing
low frame rate videos as in nuScenes dataset. This is contrary to the motion-based models
[Bew+16; BES17; Cao+22], where the association accuracy decreases at lower frame
rates with an increased object motion.

datasets and scales well to larger datasets with varying data characteristics such as weather
conditions and frame rate. This is in contrast with motion-based models [Cao+22; Bew+16;
BES17], where the performance considerably drops at lower frame rates.

Ablation Studies

We conduct ablation experiments that validate the effectiveness of different components of
our method. For all experiments, we train on the proposed wide-baseline stereo driving data
and evaluate on the (now unseen) KITTI training set where the detections are available.

Table 7.3 shows the contribution of the main components of S3Track. In the first row, we
assess the importance of the RoI pooling mechanism for extracting the context-aware object
features by first extracting object patches and then extracting features using a ResNet50
network. Next, we evaluate the effect of the RoI enhancer module. In this experiment,
we directly perform average pooling on the extracted RoI features to obtain the final
embeddings (xi ∈ R256). In the third ablation experiment, we inspect the role of the soft
assignment, which enables the end-to-end training of our model. Here, we compute the
embeddings similar to the previous experiment without further training and use pre-trained
object detection weights on the COCO dataset [Lin+14].

Method AssA AssRe AssPr IDF1

S3Track 96.1 97.5 97.7 97.6
w/o RoI Pooling 92.0 94.2 95.8 94.6
w/o RoI Enhancer 92.9 95.1 96.2 95.3
w/o soft assignment 83.5 88.2 90.1 89.1

Tab. 7.3: Ablation Experiments. We confirm the effectiveness of the RoI-based feature extraction,
RoI enhancing module, and soft object assignment with optimal transport. To quantify
the relevance of each component, we run an experiment without each component and
report the change in the association performance.
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Impact of the Distance Function. For the experiments presented in Tables 7.1 and 7.2, we
use cosine distance as the measure of closeness between object embeddings. In Table 7.4,
we provide experimental results when training the model with an alternative ℓ2 distance and
using a matching network for predicting the similarity score (instead of using a pre-defined
similarity/distance function). The architecture of the matching network is an MLP consisting
of 3 linear layers with 1024, 256, and 1 output channels, respectively (the output of the last
layer is the similarity score). We use ReLU non-linearity between linear layers. The input to
the matching network is the concatenation of different object-pair embeddings; this network
is expected to learn the function measuring the embedding similarity. We observe that using
the learnable function in the matching network under-performs the ℓ2 and cosine distance
functions.

Distance Function AssA AssRe AssPr IDF1

Cosine 94.8 96.5 96.8 96.9
ℓ2 94.4 96.2 96.6 96.7
MLP 90.7 92.4 95.7 93.9

Tab. 7.4: Ablation experiments evaluating the choice of the distance function. An embedding
distance using ℓ2 and cosine distance performs better than using a matching network
(MLP) for learning the object similarity score. The experiments are conducted using
temporal data at 5 FPS.

Influence of Pre-training Cues. We investigate the influence of different training cues
on the proposed method using the unseen KITTI [GLU12] training set (with detections
available).

In Table 7.5, we study the impact of frame rate when using temporal pre-training cues. We
observe that a high frame rate achieves sub-optimal performance as there is not enough
change in object appearance. A very low frame rate also decreases the accuracy due to
extreme appearance changes which differ from the testing data. These findings also transfer
to the stereo configuration.

FPS AssA AssRe AssPr IDF1

15 83.2 85.3 94.9 88.5
5 94.8 96.5 96.8 96.9
1 93.4 94.8 97.3 95.7

Tab. 7.5: Ablation experiments that investigate the impact of frame rate for temporal pre-training
data.
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Table 7.6 assesses the method when training with different data types, including temporal
video data, stereo data, and a combination of both. To evaluate the influence of stereo cues,
we tested with data from the three different camera pairs with varying baseline sizes, similar
to the ablation experiment on distance functions. Training with data from cam0&1 yields
better accuracy. The larger baseline in cam0&2 and cam0&3 results in a higher object
appearance shift between the two views, which, in this case, is detrimental to the accuracy
due to the domain gap with the KITTI data used for evaluation. Moreover, we find that
the combination of temporal and stereo data is beneficial for training a better appearance
model.

Data AssA AssRe AssPr IDF1

cam0&1 95.1 96.7 97.1 97.1
cam0&2 94.9 96.1 97.6 96.7
cam0&3 93.3 94.9 96.5 95.5
temporal 94.8 96.5 96.8 96.9
temporal + cam0&1 96.1 97.5 97.7 97.6

Tab. 7.6: Ablation experiments for temporal and stereo pre-training cues. Here, the temporal pre-
training data is sampled at 5 FPS.

In Table 7.7, we study the effect of the pre-training step on the final association performance
on the KITTI [GLU12] test set. In S3Track+, we first pre-train the model on our driving
dataset and then fine-tune it on the KITTI training set. In S3Track−, we initialize the model
with pre-trained weights on the COCO dataset [Lin+14] and directly train the model on the
KITTI training set.

Method Pre-training HOTA AssA AssRe AssPr

S3Track+ Yes 76.6 76.5 79.6 88.4
S3Track− No 75.2 73.9 76.3 88.0

Tab. 7.7: Ablation on the impact of pre-training on our driving dataset, evaluating on KITTI
[GLU12] test set.

7.3.3 Summary

We propose S3Track – a self-supervised method for multiple object tracking that operates
without any video-level track labels aiming at alleviating the expensive process of data
annotation for MOT. With object bounding boxes from an accurate object detector in hand,
our model performs MOT by learning the object associations over the video frames. To
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this end, we propose a soft differentiable assignment approach, which allows us to train our
model end-to-end using the association pseudo-labels acquired from motion information
in temporal and multi-view video data. The differentiable assignment makes it possible
to learn context-aware object features that are specialized for the association step. We
validate our method on four autonomous driving benchmarks and demonstrate favorable
performance across different datasets achieving on-par or better performance than other
unsupervised methods. Future directions include jointly learning association and motion
trajectory and exploring memory-based approaches for merging object appearance over
multiple frames.
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7.4 Self-supervised Learning for Test Time Adaptation
on Video Data

Most modern computer vision applications follow the general two-step paradigm of first
training a model on a large dataset and then deploying it on unseen test data. However,
the majority of these applications are still designed under the assumption that training and
test data have been sampled from the same distribution. As this assumption is frequently
violated in the real world, the applicability of these models can often be very limited [HD19b;
Rec+19]. It is thus important to seek strategies for adapting pre-trained models to the test
data. However, supervised fine-tuning on the domain from which the test data has been
sampled is often unfeasible. Even if the distribution from which the test data has been
sampled is accessible, labeling can be cumbersome and expensive. This issue is particularly
relevant for video tasks, which often require per-frame pixel-wise labels (e.g., [Dav+20;
Pon+17]). Nonetheless, videos contain a wealth of information, especially if we assume that
some (unlabeled) frames from the test distribution are available before actually performing
the evaluation. Consider the practical case in which a drone for aerial photography is
deployed in an unseen environment; snowy weather, for instance. It is then reasonable to
assume that the first few seconds of its unlabeled video feed can be used to adapt its models
to the surroundings in which it will soon be operating. Intuitively, collecting unlabeled
sample videos from the new domain is a significantly simpler task than obtaining labeled
data.

Motivated by these observations, we explore how unlabelled video data can be exploited
in order to adapt pre-trained models to the distribution to which the test set belongs. Self-
supervised methods are of particular interest for our scenario, as their objective allows
for “fine-tuning without labels.” In our evaluation, we address the task of video object
segmentation, also known as dense tracking [Cae+17], as it has often been used to compare
self-supervised methods trained on video data [Von+18; LLX20; JOE20]. In this task, the
pixel-wise mask of the target object is provided at test time in the first frame of the video,
and the goal is to track the object of interest throughout the video sequence by providing
per-frame masks.

Besides not having access to labeled data from the test distribution, in our experiments, we
consider another important condition: We assume to have received an already-trained model
and not have access to either its training routine or to the data it has been trained with. This
scenario has recently become of great interest because of the increasingly prohibitive cost
of training large-scale state-of-the-art models [Bom+21].
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Recently, several works in the image domain have studied a (de facto) similar setup under
the name of test-time adaptation. [Nad+20; Sch+20; Sun+20c; Wan+20a]. However, these
methods often rely on batch normalization and implicitly assume the availability of batches
with elements sampled i.i.d. from the test distribution to be used for adaptation. In contrast,
this assumption is inevitably violated when adapting the model with data originating from
a video stream, like in our case. In this work, we re-purpose several test-time adaptation
methods used in the image domain and experiment to which extent they can be useful
with video data. In particular, we are interested in evaluating how well we can exploit
unlabeled videos by using self-supervised objectives to improve the test performance on
the downstream task. To this end, we investigate two distinct scenarios of arbitrary and
severe domain shifts. In the first case, we perform the test-time adaptations on unseen
videos, whose originating distribution may differ from the distribution of the training data in
arbitrary and unknown ways. In the second case, we impose severe (but controlled) domain
shifts by artificially adding perturbations to the video frames.

In our experimental setup, we consider two outlines for the offline and online applications. In
offline applications such as video editing, all the video frames are available beforehand and
can be exploited for adaptation. However, this is clearly not possible in online applications
such as autonomous driving, as real-time inference is required. Nevertheless, it is still
reasonable to assume that we have access to a limited amount of unlabeled data from the
target domain. Therefore, we utilize all the video frames for test-time adaptation in the first
scenario and only use a fraction of the frames in the latter.

In summary, our contributions are two-fold: First, we introduce a novel problem formulation
to investigate the potential of using unlabeled video data for test-time adaptation in a self-
supervised manner. Then, we perform an extensive evaluation to understand the behavior of
current state-of-the-art dense tracking methods in the presence of several types of domain
shifts and the impact of test-time adaptation in alleviating their detrimental effects.

7.4.1 Problem Formulation and Methods

This section discusses our proposed problem formulation, followed by an overview of the
utilized baselines and test-time adaptation algorithms. Our primary focus lies on studying
the impact of covariate shifts in the task of self-supervised dense tracking and the possible
remedies utilizing unlabeled video data. We are interested in studying ways to adapt a
pre-trained model to the target data distribution without altering the training regime. This
setup is beneficial due to the many practical use cases in real-world conditions. Inspired
by test-time adaptation literature from the image domain [Sun+20c; Wan+20a; Nad+20;
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Sch+20], we explore utilizing unlabelled video data for addressing the problem of covariate
shift in the video domain.

Test-time adaptation methods in the image domain usually assume the availability of a
diverse batch of unlabeled data from the target distribution during inference. These data are
used for further fine-tuning the model with an unsupervised or self-supervised objective. As
a video contains much more information than a single image, in this work, we study the
extent to which unlabeled video frames can be utilized for test-time adaptation. We note that
the definition of domain in the literature is relatively imprecise. For example, it is unclear if
we consider a dataset as a single domain or a combination of multiple domains (each class
forming a cluster can be viewed as a separate domain). Hence, we initially contemplate a
hypothesis where each video can be considered as an individual domain. Next, we enforce
domain shift by manually adding various perturbations to the test videos [HD19b]. To this
end, we ask the following questions:

• Assuming each video represents a specific domain, how effective are the current
test-time adaptation methods when applied to the task of dense tracking in videos?

• Considering the self-supervised setups for dense tracking, can further fine-tuning the
model on the target video (essentially overfitting to a specific video domain using the
self-supervised objective) improve the performance on the downstream task?

• In the case of clear domain shift such as noisy data, how effective are these adaptation
methods for recovering the performance in self-supervised dense tracking tasks?

To answer these questions, we experiment with modified variants of three recent approaches
for test-time adaptation from the image domain, namely Prediction-time BN [Sch+20;
Nad+20], TENT [Wan+20a], and TTT [Sun+20c]. Prediction-time BN introduces the idea
of updating the batch normalization (BN) layer statistics using the test data to tackle the
impact of covariate shift on model performance. As mentioned in Section 4.2.7, the BN
layer relies on accumulated statistics from the training data during inference, which can lead
to performance degradation when there is a distribution shift between the training and test
data. To address this, TENT and TTT propose more intricate setups involving the updating
of both the BN statistics and network weights.

As our self-supervised dense tracking baselines, we chose two state-of-the-art methods of
VideoWalk [JOE20] and MAST [LLX20]. In the following, we explain the utilized test-time
adaptation methods as well as the selected dense tracking baselines.
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Test-time Adaptation

Prediction-time BN [Nad+20; Sch+20] suggests replacing the statics of the normalization
layer (µ, σ) with the ones estimated from the test data. [Nad+20; Sch+20] observe that in a
scenario where there is a domain shift between the training and testing data, it is sub-optimal
to normalize the activations with the µ and σ estimated from the training data. Assuming a
batch of data from the target distribution is available at inference time, they propose to either
replace [Nad+20] or update [Sch+20] the normalization statics with the ones computed
from the test data.

TENT [Wan+20a] algorithm proposes to update the normalization statistics as well as the
shift and scale parameters γ and β in the BN layer and adapt the feature modulation to
the target data distribution. In [Wan+20a], the authors use entropy minimization as their
optimization objective:

H(ŷ) = −
∑
c

p(ŷc) log p(ŷc) (7.12)

where p(ŷc) is the network output probability for class c. As mentioned earlier, in our
adopted variant of this method referred to as TENT*, we experiment with the self-supervised
objectives (Equation 7.17 and Equation 7.20) instead of the entropy loss in Equation 7.12.

Test-time Training (TTT) [Sun+20c] alters both the training and inference procedures. In
[Sun+20c], the authors modify the architecture to include a shared backbone as well as
two separate heads for the main task (image classification) and a self-supervision objective,
namely rotation classification. The model is then trained with the standard image classifica-
tion objective together with the auxiliary loss in a multi-task setup. During the test phase,
the model is further fine-tuned using the auxiliary objective. This way, the parameters of the
shared backbone are modified and adapted for the target distribution, but the classification
head remains unchanged. Therefore, the auxiliary head is utilized to adapt the backbone to
the target data distribution and mitigate the impact of the covariate shift between train and
test data distributions.

However, our setup is different from these methods, as discussed in the following: First,
the aforementioned methods are developed for image classification and assume that a
diverse batch of data from the target distribution will be available at test time. In our
setup, each video is considered an individual domain, and the frames sampled from a
single video comprise the batch, meaning the batch might not contain enough diversity.
Unlike the prediction-time BN scenario in [Nad+20; Sch+20], the captured statistics from a
video sequence may not be diverse enough, so replacing the normalization statistics in the
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normalization layer with those collected from the video frames might hurt the performance.
Therefore, we experiment with different momentum values:

x̂ = (1− α)× xold + α× xnew (7.13)

where xold is the statistics estimated from the training data, xnew is the statistics computed
from the video at hand, and α ∈ [0, 1] is the momentum. Second, these methods build on
top of models trained in a supervised manner while we examine baselines that are trained
in a self-supervised fashion. Third, we use a modified version of TENT [Wan+20a] where
the self-supervised objective substitutes the entropy loss. TENT minimizes the entropy
of the class prediction, while in dense tracking, the first mask is required for computing
the pixel-wise label probabilities. As we aim to solve fully unlabeled test-time adaptation,
we utilize the self-supervised objective instead of entropy minimization. We refer to this
adapted version as TENT*.

Self-supervised Dense Tracking

Recently, self-supervised methods for dense tracking have significantly improved, achieving
impressive performance comparable to supervised counterparts [LLX20; JOE20]. One
of the earliest works in this area was [Von+18], where the authors proposed to learn the
correspondences based on video colorization. This algorithm has been the basis for many
other approaches, such as [LX19b; LLX20]. In this method, a self-supervised objective
for correspondence matching is defined based on colorizing the frames in a video. To
this end, consider a colored reference frame where each pixel has a value ci ∈ Rd (colors
are quantized to d bins) and a grayscale target image. The colors in the target frame are
quantified as:

yj =
∑
i

Aijci (7.14)

where A is a similarity matrix computed as:

Aij = exp(fTi fj)∑
k

exp(fTk fj)
(7.15)

In Equation 7.15, f represents the image features computed by a neural network which is
trained by minimizing the following objective.

Loss =
∑
j

Cross_Entopy(yj , cj) (7.16)
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Here, cj is the correct quantized color, and yj is the predicted color class by the model,
based on Equation 7.14. During inference time, the learned features are utilized for various
applications such as pose tracking and video object segmentation.

MAST [LLX20] is one of the state-of-the-art methods based on colorization. In [LLX20],
the authors make several improvements to [Von+18] as explained in the following. First,
they suggest using lab color space instead of RGB due to less correlation between color
channels. Second, they enhance the architecture by incorporating a memory bank and
employing an attention mechanism to retrieve the color in each target frame from multiple
past frames using the attention weights. Third, they propose to replace the classification
objective in Equation 7.16 with regressions as:

Loss = 1
n

∑
i

0.5(Îit − Iit)2 if |Îit − Iit | < 1

|Îit − Iit | − 0.5 otherwise
(7.17)

where n is the number of pixels and Îit and Iit are the estimated and the actual color values
for the ith pixel, respectively. The intuition is that quantizing the colors to a limited number
of classes causes loss of important information and leads to sub-optimal performance,
whereas using regression preserves all the color information.

VideoWalk [JOE20], in contrast to MAST, develops a framework for correspondence
matching based on learning the patch-wise similarities across the video frames. In this
algorithm, a space-time graph is formed by dividing each frame into multiple nodes (patches)
and computing the edge weights based on a similarity metric between the neighboring nodes
(across time and spatial dimensions). Consequently, the task of finding the correspondences
across the video frames is devised as a contrastive random walk with patch-wise affinities
providing the transition probabilities.

Assume qit is the feature embedding of ith node/patch at time step t. The Affinity matrix
between every two nodes in consecutive frames can be calculated as follows:

At+1
t (i, j) =

exp(⟨qit, q
j
t+1⟩/τ)∑N

l=1 exp(⟨qit, qlt+1⟩/τ)
(7.18)

where τ is a temperature parameter. Subsequently, the long-range affinities between the
nodes from non-consecutive frames are computed as:

Ât+kt =
k−1∏
i=0

At+i+1
t+i = P (Xt+k|Xt) (7.19)

The goal is to train the embeddings such that higher weights are assigned to the edge between
similar patches so that the random walk likely follows the path of the corresponding nodes.
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To achieve this goal, [JOE20] uses an objective based on cycle consistency and creates a
palindrome of video frames so that for each node at the first time step, we know the target
node at the end of the walk. This objective can be formulated as follows:

Loss = Cross_Entropy(Ât+kt , Y t+k
t ) (7.20)

where Y t+k
t is the actual corresponding node which is known as a result of the palindrome

setup and the cycle consistency.

7.4.2 Experimental Setup

In this work, we experiment with DAVIS2017 [Pon+17] and TAO-VOS [Voi+20] datasets,
two standard benchmarks for evaluating dense tracking methods.

DAVIS2017 [Pon+17] validation set consists of 30 videos with an average duration of
3.4 seconds. As the videos in DAVIS are somewhat short, especially for the online setup
where half of the video frames are used for adaptation, we further benchmark this setup
on a sub-set of TAO-VOS [Voi+21; Dav+20]. The videos in this dataset are considerably
longer than DAVIS2017, with an average length of 36.7 seconds. Therefore even when
using half of the frames for the evaluation, we end up with longer videos than DAVIS2017.
We selected this subset based on two criteria: each video contains at least 1000 frames and
at most 2 target objects. The second condition is a practical consideration, as the current
self-supervised methods do not work well in scenes with many objects. Therefore, we resort
to relatively more straightforward videos with more frames, allowing us to use a subset of
data for test-time adaptations.

For the adaptation methods that require tuning the model parameters, we adhere to the
training setup outlined in the original paper of each deployed self-supervised algorithm.
Specifically, we utilize the identical optimizer with the learning rate maintained at the last
stage of the training process. We continue training the model until it reaches convergence,
typically achieved within approximately 200 iterations.

We report the standard evaluation metrics of dense tracking task, Region Similarity and
Contour Accuracy (J&F ) scores [Pon+17]. J refers to the intersection-over-union between
the model prediction and the ground-truth and F measures the quality of the estimated
object boundaries.
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Fig. 7.9: Samples from corrupted data distributions (Gaussian noise and Snow at the top row, Fog
and Motion Blur at the bottom row).

Experimental Results

Table 7.8 presents the results for offline and online setups on DAVIS2017 dataset. Each row
shows the J and F scores of the baselines in the presence of a specific domain shift, with
and without test-time adaptation. In the first block of rows, we investigate the efficacy of
test-time adaptation with a self-supervised objective on the test data with arbitrary domain
shifts (without any added perturbation). As we are working with self-supervised baselines,
a question naturally arises whether further tuning on a specific video is helpful and to what
extent it can improve the performance of the downstream task. Next, we study a scenario
with a substantial domain shift between the training and testing data distributions. In this
respect, we follow the proposed setup in [HD19a] and impose an artificial covariate shift to
the video frames. In particular, we experiment with Gaussian noise, Motion Blur, Fog, and
Snow perturbations, shown in Figure 7.9. Perturbations are generated according to the level
5 severity as described in [HD19b].

As can be seen from the results in Table 7.8, self-supervised test-time adaptation on the
data without perturbation slightly improves the results while considerably decreasing the
adverse effect of covariate shift for data with severe perturbations. The behavior in an
arbitrary domain shift scenario (without perturbation) implies that in situations with mild
distribution shift, overfitting to the current self-supervised objectives does not fully transfer
to the downstream task and only marginally improves the performance. However, these
methods can successfully adapt the features to the target domain when there is a severe
distribution shift between the training and testing data. Interestingly, in most cases, updating
the normalization statics (BN column) has an equal or superior positive impact on the

7.4 Self-supervised Learning for Test Time Adaptation on Video Data 127



Dense Tracking (Offline) Dense Tracking (Online) Test-time Adaptation

VideoWalk MAST VideoWalk MAST BN TENT* TTT Noise
J F J F J F J F

64.38 70.40 62.95 66.94 69.46 74.43 67.11 70.85 —
+1.00 +0.56 +0.47 +0.62 +0.67 +0.99 +1.04 +1.04 ✓
+1.04 +0.50 +0.32 +0.65 +0.70 +0.97 +0.20 +0.30 ✓
+1.17 +0.47 +0.09 +0.34 +0.64 +0.84 +0.27 +0.39 ✓

58.40 63.08 32.70 35.48 64.43 67.89 41.51 43.36 Gaussian
+1.85 +2.16 +19.82 +20.54 +2.07 +2.58 +18.21 +19.26 ✓
+1.91 +2.44 +17.98 +18.77 +3.73 +3.91 +15.90 +17.17 ✓
+2.67 +2.97 +18.06 +18.15 +2.11 +2.20 +15.37 +16.58 ✓

62.97 68.75 58.49 63.45 67.69 72.50 64.54 69.99 Motion Blur
+0.69 +0.51 +0.49 +0.80 +1.01 +1.62 +0.35 +0.10 ✓
+0.41 +0.34 -0.10 +0.13 +1.04 +1.69 -0.21 -0.22 ✓
+0.18 +0.11 +0.12 -0.18 +0.97 +1.28 -0.58 -0.43 ✓

50.89 54.77 51.12 53.08 56.44 59.20 58.51 59.68 Snow
+1.63 +2.78 +0.83 +0.77 +2.60 +2.80 +0.51 +0.46 ✓
+1.99 +2.80 +0.14 +0.34 +2.43 +2.52 +0.77 +0.99 ✓
+2.79 +3.92 +0.32 +0.39 +1.98 +1.91 +0.15 +0.38 ✓

19.27 26.32 35.55 38.05 24.76 30.76 43.42 45.03 Fog
+11.23 +10.76 0.00 0.00 +11.54 +9.860 0.00 0.00 ✓
+12.01 +12.23 +3.09 +2.66 +9.67 +9.22 +3.83 +3.51 ✓
+18.70 +18.42 +9.85 +8.50 +14.07 +14.21 +9.24 +9.54 ✓

Tab. 7.8: J and F scores for VideoWalk [JOE20] and MAST [LLX20] self-supervised dense
tracking methods on DAVIS2017 validation set in offline and online settings. In the
offline mode, all video frames are used for adaptation. In the online setup, we use the
first and the second half of the video for adaptation and evaluation, respectively. For each
perturbation variant, we compare the accuracy of the baseline model with three test-time
adaptation techniques as explained in Section 7.4.1. Results in cursive correspond to
absolute metrics, followed by their delta when using one of the test-time adaptation
methods. Best results per column are shown in bold.

dense tracking accuracy despite its simplicity. However, we note that Fog perturbation is an
exception where both MAST and VideoWalk methods achieve considerably better accuracy
with TENT* and TTT algorithms. Furthermore, the results show a similar pattern in offline
and online scenarios, suggesting that performing test-time adaptation is beneficial for both
circumstances.

For the results shown in column BN, we experimented with different momentum values
and updated the normalization statistics according to Equation 7.13. Here the results are
provided with the best-found momentum, and additional results can be seen in Figure 7.10.
From these plots, we see that partially updating the normalization statistics with those from
the target domain alleviates the impact of covariate shift, but completely replacing them
(momentum value of 1) can deteriorate the performance. This behavior can be due to a
lack of diversity in video frames, resulting in sub-optimal performance when ignoring the
information collected from the training data (the old normalization statistics). Moreover,
we observe varying trends in the VideoWalk and MAST methods; for example, in Fog
perturbation, VideoWalk benefits from updating the normalization statistics, whereas it is
better to keep the statistics unchanged for MAST. This can result from different training
objectives in these approaches as the self-supervised loss in MAST is purely based on
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Fig. 7.10: Ablation on the momentum in prediction-time BN (Equation 7.13) and the impact it has
on the performance of VideoWalk and MAST methods under different perturbations.
The first and second rows illustrate the results on DAVIS and TAO-VOS datasets, re-
spectively. The diagrams on DAVIS are from the offline setup (we observed a similar
trend in the online mode). The results indicate that, except for Fog, it is better to update
the normalization statics with a momentum value of less than one in most cases. In
VideoWalk, it is better to completely replace the statistics with those collected from the
target domain, while in MAST, it is better to keep the statistics unchanged.

color information (Equation 7.17), while VideoWalk additionally utilizes higher-level
correspondences between pixel embeddings (Equation 7.20).

As explained in Section 7.4.1, TTT [Sun+20c] and TENT [Wan+20a] approaches fine-tune
the network weights. We note that updating the model weights also depends on how the
normalization statistics in the BN layer are handled (i.e., training the model when freezing
or updating the BN statistics). In these methods, it is assumed that a diverse batch of data is
available, but this condition may not hold when sampling the batch from a video sequence.
Therefore, we need to consider this factor and carefully treat the BN layer. We experimented
with both cases of training with freezing and updating the normalization statistics. The
results in Tables 7.8 and 7.9, are with the best-found configuration.
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Dense Tracking Test-time Adaptation

VideoWalk MAST BN TENT* TTT Noise
J F J F

55.83 65.17 43.68 48.59 —
+0.83 +0.98 +1.49 +1.42 ✓
+1.23 +1.52 +1.21 +1.46 ✓
+1.42 +1.76 +0.85 +2.11 ✓

48.29 57.25 22.34 24.64 Gaussian
+6.51 +6.78 +14.40 +15.31 ✓
+3.56 +3.90 +13.79 +14.71 ✓
+4.35 +4.56 +14.21 +15.33 ✓
55.21 64.19 42.69 48.12 Motion Blur
+0.71 +0.29 +2.71 +2.95 ✓
+1.01 +1.09 +2.32 +1.93 ✓
+0.58 +0.43 +2.65 +2.71 ✓

38.79 48.16 31.53 35.07 Snow
+5.18 +4.35 +3.94 +3.95 ✓
+6.48 +5.88 +2.82 +2.81 ✓
+6.56 +5.31 +3.87 +4.11 ✓
14.47 21.96 14.60 17.67 Fog

+11.11 +10.07 +0.52 +0.49 ✓
+23.64 +24.62 +1.63 +2.10 ✓
+22.24 +22.20 +6.12 +5.48 ✓

Tab. 7.9: J and F scores for VideoWalk [JOE20] and MAST [LLX20] self-supervised methods on
a subset of the TOA-VOS dataset in an online setup when using half of the video for
adaptation and evaluation on the second half of the frames. Results in cursive correspond
to absolute metrics, followed by their delta when using one of the test-time adaptation
methods. Best results per column are shown in bold.

Considering the short duration of DAVIS2017 videos, utilizing half of the video may not
provide solid conclusions. Therefore, we also benchmark the baselines on a subset of
TAO-VOS, which contains about ten times longer videos than DAVIS2017. We follow
the same experimental setup described before. Table 7.9 presents the results for this
dataset in the online setting, where we use the first half of the video for adaptation and
the rest for evaluation. Furthermore, Figures 7.10c and 7.10d show the performance of the
baselines when updating the normalization statistics with varying momentum values, as in
Equation 7.13. The results in the BN column in Table 7.9 are obtained using the best-found
momentum based on this ablation.

Based on the quantitative results obtained from TAO-VOS, we observe a similar pattern to
the findings from DAVIS2017. Test-time adaptation consistently enhances performance in
the presence of domain shift. Nevertheless, the extent of improvement varies depending on
the specific type of domain shift encountered. These results validate the efficacy of test-time
adaptation for short and long videos encouraging further research in this domain.
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7.4.3 Summary

In this work, we investigate the role that self-supervision can have in alleviating the harmful
effect of distribution mismatch between train and test datasets of video data. We consider
two scenarios of practical relevance. One for offline applications, in which the entire video
sequence is available in advance. Another is for online applications, in which we are
interested in real-time inference and have access to some unlabeled data from the target
domain prior to inference. In both cases, we only consider a pre-trained model without
having access to the training data. We study the behavior of two recent self-supervised dense
tracking algorithms in the presence of several domain shifts, including Gaussian, Motion
Blur, Fog, and Snow perturbations. Our experimental results confirm that self-supervised
test-time adaptation is an effective method for decreasing the impact of covariate shifts
in dense tracking but that the extent of its efficacy largely depends on the specific shifts
and algorithms in question. For instance, when dealing with Gaussian noise, updating only
the statistics of the batch normalization layer outperforms other more complex approaches.
However, for perturbations such as Snow and Fog, updating the network parameters proves
to be more advantageous.
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Conclusion 8
Despite the excellent performance of deep learning models on academic datasets and
evaluations under controlled lab conditions, their performance is not robust enough for
unconstrained real-world situations. In this thesis, we investigated the limitations of current
deep learning models in computer vision applications across image and video modalities,
aiming to better understand these aspects and propose solutions that improve the robustness
and applicability of these models in day-to-day scenarios. The following summarizes the
key questions and contributions investigated in this work.

Image Domain

cluttered
image
classifications

In the image domain, we analyzed the performance of learning-based classifiers when
handling images with substantial background noise and clutter. We observed a significant
decline in classification accuracy under such conditions. To address this issue, we trained
an RL agent named SSTN to sequentially transform input images, removing clutter and
zooming in on the main content. Our experimental results confirmed this as a highly
effective solution for recovering the classifier’s accuracy.

curriculum
learning

In this context, we demonstrated that the transformations learned by SSTN systematically
modify the input data distribution, gradually moving it toward an easier one. As such,
the generated data provides a hard-to-easy spectrum that can serve as a curriculum policy.
Through experimenting with several strategies for deploying these data at different rates
during the training, we showcased how the data generated by SSTN can be leveraged to
enhance the training process of the classifier within the framework of curriculum learning.

salient image
classification

Based on the intuition developed from these experiments, we considered a more challenging
setup where the image clutter can be actual objects. To approach this scenario, we made the
assumption that object size correlates with saliency. Accordingly, we designed DQ-SSTN,
an RL-based model that learns to zoom in on the largest/primary object in the scene by
using object IoU information as a training signal. Our analysis demonstrated that zooming
in on the main object improves classification accuracy. However, we observed that the
model’s performance suffers from data-related aspects, such as dataset bias towards a
specific category.
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Video Domain

tracking
smaller objects

In the video domain, we focused on spatiotemporal correspondence learning, a fundamental
task that facilitates several applications such as VOS and MOT.

In VOS, we performed an in-depth study on a state-of-the-art model that utilizes RNNs for
effectively processing visual and motion cues for segmenting and tracking the target objects
[Xu+18]. We identified that despite having a good accuracy score, the model’s performance
declines when handling smaller objects and segmenting fine object details around the edges.
We argued that this is caused by information loss in the used encoder-decoder architecture
due to several down-sampling operations. We proposed the skip-memory module that,
by tracking objects at multiple feature resolutions, enhances the tracking of small objects.

segmenting the
object edges

Additionally, we integrated a multi-task objective based on border distance classification
that further improved the quality of the segmented object edges by incorporating additional
location information into the model.

tracking
longer videos

Another limitation we observed in current VOS models pertains to their ability to process
longer videos. This can occur due to several reasons. In longer videos, object appearance
changes over time compared to the reference frame, making locating the target object more
difficult. Moreover, due to model prediction inaccuracies, error accumulates over time,
resulting in drift. On top of that, RNN-based models struggle with longer videos due
to known RNN limitations such as vanishing gradient and catastrophic forgetting.

occlusion

This
becomes particularly problematic when tracking occluded objects. To this end, we developed
a hybrid VOS model that combines the merits of RNNs with template matching. For this
hybrid strategy, we design a feature fusion module that allows the model to flexibly utilize
information from the RNN- and matching-based branches. We experimentally showed
this using the additional matching information significantly boosts the VOS performance,
especially for longer videos and occluded objects. Moreover, we examined two architecture
variants: bidirectional processing using information from past and future and multi-task
learning with unsupervised optical flow objective, where we observed the bidirectional
design further betters the VOS performance.

annotation
scarcity for

videos

In the next part of this thesis, we discuss the challenges of spatiotemporal correspondence
learning for MOT application, given the scarcity of annotated data. Several self-supervised
methods have been recently proposed to facilitate correspondence learning on large amounts
of unlabeled videos. However, these methods do not scale well to crowded scenes containing
several similar objects, which is often the case in real-world tracking settings. To address
this, we introduced S3Track, a simple yet highly effective MOT framework that operates
without using any video-level annotations. In S3Track, the model is directly optimized
for the cross-frame object association, using a soft matching layer implemented using
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optimal transport and association pseudo labels obtained from motion information over
short video clips. As a result, the model is devoid of alignment issues between the proxy
objective and the downstream task, which can often pose a challenge in self-supervised
learning solutions. crowded

scenes,
occlusion

We empirically demonstrated that the synchronization between the
training objective and the inference task results in a strong appearance model in S3Track
that is robust in handling crowded scenes and occluded objects, achieving performance on
par with supervised baselines.

domain
adaptation
using
unlabeled
videos

In the last part of this thesis, we delved into a challenging setup that significantly affects
the applicability of learning-based methods in real-world measurements: covariate shift
between the distributions of training and testing data. Specifically, we focused on this
crucial aspect within the context of video correspondence learning. In this regard, we
took inspiration from recent TTA methods proposed to adjust trained neural networks to
new unseen domains, using self-supervision without requiring labeled annotations. We
introduced several strategies for adapting these methods to the video domain and conducted
a comprehensive benchmark to demonstrate the efficacy of the proposed solutions across
various domain shift scenarios.

8.1 Future Work

In this thesis, we attempted to facilitate several shortcomings that hinder the reliable
application of current deep-learning models in our daily lives. However, many challenges
remain that demand further attention and exploration.

Dataset generation. In recent years, self-supervised learning approaches have achieved
significant success in reducing the reliance on human-annotated data. However, supervised
learning remains vital in a variety of applications. As a result, there is an urgent need
for more extensive datasets that better reflect the complexities of real-world scenarios.
Additionally, a promising research direction is to explore ways to effectively combine limited
annotated data with a vast amount of unlabeled data in the context of semi-supervised
learning.

Active and continual learning. Active learning is a machine learning technique that allows
models to select the most informative data points to be labeled. This can help to improve
the performance of the model by reducing the risk of overfitting to overrepresented data
and ensuring that the model is exposed to a diverse range of data. Continual learning is a
technique that allows machine learning models to learn new information without forgetting
what they have already learned. This is a highly desired aspect for learning-based solutions,
considering the dynamic nature of the world where the data is constantly changing. Both
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these research areas are still in their early stages of development, but they have the potential
to benefit computer vision significantly.

Multi-task learning. This research direction concerns the development of models that can
perform multiple tasks sharing the same or the majority of the network parameters. As the
final goal is to create machines that can visually perceive the world, it is not sensible to rely
on several distinct neural networks, each specialized in a single task in an isolated manner.
While previous works have proposed unified architectures with shared models to solve
different tasks, specialized models still exhibit notably better performance. This presents an
intriguing avenue for research: creating models that can effectively handle various tasks,
leveraging the benefits of shared knowledge while preserving the advantages of task-specific
expertise.

Along a similar note, multi-modality learning is another promising research direction that
seeks to combine data from different modalities, such as images, text, or audio, to enhance
overall performance and enable a more comprehensive understanding of sensory inputs.
By exploring these research directions, the computer vision community can work towards
developing more versatile and holistic models that go beyond single-task specialization,
leading to more capable and intelligent vision systems with broader applications and
improved perceptual capabilities.
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