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Abstract

Abstract

In this thesis, we study finite reductive groups and their modular representations in
non-defining characteristic.

In 1990, Geck stated a conjecture on the unitriangularity of decomposition matrices of
these groups. Decomposition matrices encode the link between ordinary representations
(over a field of characteristic zero) and modular representations (over a field of positive
characteristic £). In 2020, Brunat-Dudas—Taylor showed this conjecture for unipotent
blocks for a very good prime number ¢, introducing Kawanaka characters. Thanks to
the Morita equivalence between unipotent blocks and non-isolated ones, Feng—Spéth
extended this result to non-isolated blocks in 2021. The aim of this thesis is to study
possible generalisations of Brunat-Dudas—Taylor result.

Firstly, we extend this result for a bad prime ¢ in the case of simple groups for the
unipotents blocks. Inspired by the Brunat-Dudas—Taylor method, we study the decom-
position of some Kawanaka characters in terms of ordinary characters in the unipotent
blocks. In order to do so, we compute the values of the characteristic functions of char-
acters sheaves on mixed conjugacy classes, based on previous work of Lusztig.

Lastly, we show through the examples of G5 and F; how the obtained method allows
us to study the unitriangularity of isolated blocks for exceptional groups of adjoint types.

Keywords: Modular representations, finite reductive groups, decomposition matri-
ces, character sheaves.
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Abstract

Résumé

L’objet de cette thése est I'étude des groupes réductifs finis et plus particuliérement de
leurs représentations modulaires en caractéristique transverse.

En 1990, Geck a énoncé une conjecture portant sur I'unitriangularité des matrices de
décomposition de ces groupes. Les matrices de décomposition encodent le passage des
représentations irréductibles dites ordinaires (sur un corps de caractéristique nulle) aux
représentations modulaires (sur un corps de caractéristique positive un nombre pre-
mier ¢). En 2020, Brunat-Dudas-Taylor ont démontré cette conjecture dans le cas des
blocs unipotents pour un ¢ trés bon avec I'introduction des caractéres de Kawanaka.
Grace & I’équivalence de Morita entre les blocs unipotents et les blocs non-isolés, Feng—
Spath ont étendu ce résultat aux blocs non-isolés en 2021. Le but de cette thése est
d’étudier des généralisations possibles du théoréme de Brunat—-Dudas—Taylor.

Dans un premier temps, on étend ce résultat pour ¢ mauvais dans le cas des groupes
adjoints simples pour les blocs unipotents. En s’inspirant de la méthode de Brunat—
Dudas—Taylor, on étudie la décomposition de certains caractéres de Kawanaka. Pour ce
faire, nous calculons les valeurs des fonctions caractéristiques des faisceaux caractéres
sur des classes de conjugaison mixtes. On se base sur les travaux de Lusztig.

Dans un second temps, on généralise la méthode obtenue afin d’étudier 'unitriangularité
des blocs isolés pour les groupes exceptionnels de type adjoint. Nous traitons les cas des
groupes simples adjoints de type G5 et Fj.

Mots-clés: Représentations modulaires, groupes réductifs finis, matrices de décompo-
sition, faisceaux characters.



Abstract

Zusammenfassung

Der Gegenstand dieser Dissertation ist die Untersuchung endlicher reduktiver Gruppen
und insbesondere ihrer modularen Darstellungen in transversaler Charakteristik.

Im Jahr 1990 stellte Geck eine Vermutung auf, die sich auf die Unitriangularitiat der Zer-
legungsmatrizen dieser Gruppen bezog. Die Zerlegungsmatrizen kodieren den Ubergang
von gewohnlichen irreduziblen Darstellungen (iiber einem Korper der Charakteristik
Null) zu modularen Darstellungen (iiber einem Koérper von positiver Charakteristik ¢).
Im Jahr 2020 bewiesen Brunat—Dudas—Taylor diese Vermutung im Fall von unipotenten
Blocken fiir sehr gutes ¢ durch die Einfiihrung von Kawanaka-Charakteren. Mit Hilfe
geigneter Morita- Aquivalenzen zwischen unipotenten und nicht-isolierten Blocken haben
Feng—Spith dieses Ergebnis im Jahr 2021 auf nicht-isolierte Blocke ausgeweitet. Das Ziel
dieser Dissertation ist, mdgliche Verallgemeinerungen zu untersuchen.

Zunichst erweitern wir dieses Ergebnis auf schlechte Primzahlen ¢ im Fall von einfachen
adjungierten Gruppen fiir unipotente Blocke. In Anlehnung an die Methode von Brunat—
Dudas—Taylor wird die Zerlegung bestimmter Kawanaka-Charaktere untersucht. Dazu
bestimmen wir die Werte der charakteristischen Funktionen der Charaktergarben auf
gemischten Konjugationsklassen. Wir stiitzen uns dabei auf die Arbeit von Lusztig.

In einem zweiten Schritt hoffen wir, die erhaltene Methode zu verallgemeinern, um die
Unitriangularitdt von isolierten Blocken fiir exzeptionelle Gruppen vom adjungierten
Typ untersuchen zu kénnen. Wir behandeln die Fille von G vom Typ G, und Fj.

Stichworter: modulare Darstellungen, endliche reduktive Gruppe, Zerlegungsma-
trizen, Charaktergarben.
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Introduction

Context

Groups as mathematical objects are very elementary to define. They satisfy a small list
of axioms (existence of the neutral element, of inverses and associativity). However, this
modest set of rules leaves room for a wide diversity of objects.

To restrict our field of study, we focus on the groups that are the “building blocks” of
the other groups: the simple groups. The finite simple groups have been completely
classified into three families:

e the cyclic groups of prime order,
e the alternating groups Alt,, for n > 5,
e and the finite groups of Lie type,

as well as 26 sporadic groups who do not belong to any of the previously listed fami-
lies. The proof of the Classification of Finite Simple Groups (CFSG) is a monumental
work spanning over at least 30 years. It was first announced in 1983 by Gorenstein, see
[Asc04], [Soll8] for updates on the proof. This thesis concentrates on the last and in a
sense most varied family, the finite groups of Lie type.

The majority of introductory books on group theory motivates their subject as the
exploration of symmetry. A symmetry is an action that leaves the object we consider
invariant, and groups formalise this notion. Therefore, it seems natural to investigate
the action by linear maps of the elements of a group G on an F-vector space V, for F
a field. We say that V is an F[G]-module. Note that the action of G defines a group
homomorphism p : G — GL(V'). This is called an F-representation of G. In other
words, representation theory allows us to study an arbitrary finite group G by turning
it into something we better comprehend, a subgroup of the invertible matrices GL(V").
We then have the tools of linear algebra at our disposal. We often further assume that
the field F is algebraically closed or at least contains all the |G|th roots of unity, in order
to be able to triangularise the elements p(g) for g € G.

There are two distinct flavours to the representation theory of a finite group G;
whether the characteristic of F divides the order of G or not. The second case is called
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ordinary and is much better understood than the first one, referred to as modular.
One reason is that when the characteristic of F is coprime to |G| the F[G]-modules
are semisimple (they decompose into direct sums of irreducible submodules), whilst it
is not true for modules over a field of characteristic ¢ dividing |G|. Nonetheless, both
approaches consider the same group G and accordingly there should exist a link between
them. Such a connection is encoded in the ¢-decomposition matrices. Assuming we know
everything about the ordinary representations of G and that we have computed the /-
decomposition matrix, we could extensively comprehend the irreducible representations
of G over Fy. However, fully determining the /-decomposition matrix for an arbitrary
group G is in general an arduous task.

For cyclic groups of prime order, it is trivial. For sporadic groups, the (-decomposition
matrices can sometimes be explicitly computed, see for instance [HHM99|. However,
already for symmetric groups, despite our very good knowledge of the ordinary repre-
sentations, we do not yet know the /-decomposition matrix.

One easier problem is to ascertain the unitriangularity of the ¢-decomposition ma-
trix. If this property holds, then we can label the irreducible F,-representations of G.
Moreover, it might help echelonise any set of projective characters. This yields valuable
information in order to compute the rest of the decomposition matrix, as Dudas and
Malle applied in [DM20b].

The unitriangularity of the /-decomposition matrix has been established in the case of
the symmetric groups [Jam78, Cor. 12.3|, but it surprisingly fails for alternating groups,
c.f. [BGJ23, Sect. 3.2]. In this work, we focus our attention on finite groups of Lie type.

Any /-decomposition matrix has a decomposition into ¢-blocks. For finite reductive
groups, one union of blocks, called the unipotent /-blocks, is of particular interest. In-
deed, most other ¢-blocks (the non-isolated blocks) are Morita equivalent to unipotent
(-blocks of smaller groups.

In 1985, Dipper showed the unitriangularity of the /-decomposition matrix of GL,,(F,)
for ¢ a power of an odd prime p # ¢, [Dip85, Cor. 6.17|, under certain conditions on ¢,
for instance ¢ | ¢ — 1. His proof relies on the fact that the Weyl group of GL,(q) is a
symmetric group and hence has unitriangular decomposition matrix. Five years later,
Geck made the following conjecture.

Conjecture (|Gec90, 2.5|). Let G be a finite group of Lie type over F, where q is a
power of a prime p. For any prime { # p, the (-decomposition matriz of the unipotent
C-blocks of G is lower-unitriangular.

The next year, in [Gec91, Cor. B|, he showed that the whole ¢-decomposition matrix
of the general unitary groups GU,,(F,) is unitriangular. Geck employed different tools
than the ones used by Dipper for GL,,(F,). He combined the generalised Gelfand-Graev
characters and the power of the theory of character sheaves developed by Lusztig.

The subject made a major step forward in 2020 when Brunat, Dudas and Taylor showed
that Geck’s conjecture holds under certain assumptions on p and /¢, such as p and ¢ good



Content of the thesis

for G, see [BDT20, Thm. A]. They pushed further the techniques of Geck by consider-
ing summands of generalised Gelfand-Graev characters, called the Kawanaka characters.

The goal of this thesis is to remove some conditions in [BDT20, Thm. A] on the
prime ¢ by extending the methods of Brunat-Dudas-Taylor. The case of the classical
groups at the unique bad prime ¢ = 2 was already treated by Geck in [Gec94| and Chaneb
in [Cha2l, Thm. 2.8, and we therefore focus on the exceptional groups. The main
involved issue is to better understand the restriction of character sheaves to conjugacy
classes. We show the following main theorem.

Theorem. Let G be a simple exceptional group of adjoint type defined over k, an alge-
braically closed field of characteristic p with Frobenius endomorphism F. Assume that p
15 good for G. Let ¢ be a bad prime for G, then the decomposition matrix of the unipotent
C-blocks of GI' is lower-unitriangular.

Combined with the previous results, the following statement holds true.

Theorem. Let G be a connected reductive group defined over k, an algebraically closed
field of characteristic p with Frobenius endomorphism F. We suppose that the derived
subgroup of G is adjoint. Assume that p is good for G. Let { be a prime different from p,
then the decomposition matriz of the unipotent (-blocks of GI' is unitriangular.

The proof of our main result leads us to develop methods that we believe are ap-
plicable to the remaining blocks. As a trial, we apply them to the isolated ¢-blocks for
groups of type Go and Fj.

Content of the thesis

This manuscript is divided into three parts, each of them consisting of two chapters.
This description reflects the main elements we need to show the unitriangularity of the
decomposition matrix of a union of blocks # for a finite reductive group G.

Our strategy relies on the fact that it is sufficient to show the unitriangularity of a
decomposition matrix of modular projective modules (not necessarily indecomposable)
into the irreducible ordinary modules in %. To do so, we first need to compute the num-
ber n of projective modules needed, that is the number of irreducible F,[G]-modules in
the union of blocks #. We then find n candidates for the irreducible ordinary modules
and n candidates for the projective modular modules and lastly, check that the corre-
sponding decomposition matrix is unitriangular. The last two chapters are dedicated to
applying this strategy in our cases.

However, to find candidates for the ordinary modules, we first need to understand
them. This is the aim of the first two chapters, where we present some known and
significant results on the representation theory of finite reductive groups.

Nonetheless, our knowledge is not yet sufficient to be able to directly compute the
decomposition matrix. To achieve our goal, we need to go to the other side of the
mirror and look at the character sheaves of G. There, we are able to compute the
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values of character sheaves at certain conjugacy classes, and conclude the proof of the
unitriangularity of the decomposition matrix. This technical part is detailed in the third
and fourth chapters.

Representation theory of finite groups of Lie type (Chapters 1
and 2)

The first two chapters are purely expository and gather some well-known results in the
theory of finite reductive groups, statements that can be found in most textbooks. Our
principal resource is the book by Geck and Malle [GM20).

Finite reductive groups

In Chapter 1, we define the finite reductive group G = GI as the fixed points un-
der a Steinberg endomorphism F' of a connected reductive algebraic group G defined
over k = Fp for p a prime number. This underlying infinite group will play an indis-
pensable role throughout this thesis. For instance, algebraic groups come with some
purely combinatorial data, known as the root datum which allows us to classify them.
We also take advantage of this chapter to collect facts on the unipotent and semisimple
conjugacy classes of G.

Parameterisation of the ordinary characters

After laying out the general setup, we outline the ordinary representation theory of G
in Chapter 2. The pivotal idea to treat the complex-valued representations of all the
finite reductive groups at once came off the back of the work undertaken by Deligne and
Lusztig [DL76]. They looked at certain G-equivariant varieties and then considered the
alternating sum of their cohomologies with compact support. This construction gives a
virtual character of G (a Z-linear combination of irreducible ordinary characters).

This method enables us to partition the set irrc(G) of irreducible complex charac-
ters into rational series & (G, s) indexed by a set of representatives of the semisimple
conjugacy classes in the dual group (G*)¥". The series indexed by the neutral ele-
ment is called unipotent and is denoted by Uch(G). If the centre Z(G) is connected,
then there exists a bijection between &(G, s) and Uch(Cg-+(s)¥"), thanks to the Jordan
decomposition of characters [Lus84a, Thm. 4.23].

Moreover, Lusztig showed in [Lus84a] that each series can be further partitioned into
families, themselves labelled in terms of a small finite group, the ordinary canonical
quotient. To each family is also associated a family of characters of the Weyl group
of Cg.(s) and a unipotent conjugacy class of G, called the unipotent support. This
class gives information on the values of the characters in the corresponding family. In the
case of the unipotent characters, to each family corresponds a different unipotent conju-
gacy class, called special. Furthermore, this class completely determines the ordinary
canonical quotient.
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On character sheaves (Chapters 3 and 4)

The character sheaves on G mirror in the geometric world the ordinary representations
of G. When looking at the ordinary representations of GG, we consider G-equivariant
perverse sheaves on G-equivariant varieties. In a series of papers in the eighties, Lusztig
developed a theory where he studied certain G-equivariant perverse sheaves on G-equi-
variant varieties: the character sheaves. This geometric approach is formidable to get
information on the ordinary representation theory of G.

A geometric mirror of the ordinary representations

Firstly, characteristic functions of the F-stable character sheaves form a new basis for
the class functions of G. On top of that, if the centre Z(G) is connected, we understand
the change of basis between characteristic functions of the F-stable character sheaves
and ordinary irreducible characters of G' (|[Sho95b]).

Moreover, the set G of character sheaves can be labelled in a similar way as irre (G).
Firstly, by the way they are constructed, each character sheaf belongs to a unique se-
ries GS where s runs over a set of representatives of the semisimple conjugacy classes
in G*. Each series G itself decomposes into families associated to families of the Weyl
group of Cg,(s) and parameterised using the same small finite group as for the ordinary
irreducible characters.

Thus character sheaves are the counter part on the algebraic group G of the complex
irreducible modules. We then have an easier access to the geometry of G and we can
hope to deduce more information on the values of their characteristic functions than
what we currently know on the values of ordinary characters.

In the fourth chapter, we use these properties to compute the values of character sheaves
on certain conjugacy classes. To explain our methods, we first need to recall a second
partition of G.

A labelling in terms of characters of relative Weyl groups

This different parameterisation is given in terms of cuspidal induction data of the
form m = (L,%,&) where L is a Levi subgroup of G, ¥ = DyZ°(L) where Dy is a
conjugacy class of L whose semisimple part is isolated, and & is a local system on X.
The character sheaves in G(m) are labelled thanks to the irreducible characters of an
algebra ;. In [Lus84b|, Lusztig showed that this algebra is isomorphic to the group
algebra of a certain relative Weyl group W, twisted by a cocycle. If Dy is a unipotent
conjugacy class, then he proved that the cocycle is trivial anf fully described this iso-
morphism. When G is simple and adjoint, Shoji confirmed that the cocycle is trivial in
general ([Sho95al). Assuming that p is good for G and that G is of adjoint type, we
give a description of the isomorphism Q,[Wy] = 4%, in Lemmas 3.2.21 and 3.2.22. We
base our reasoning on previous work by Bonnafé [Bon04| when Dy is unipotent.

This partition of the character sheaves already gives us information on their values
at a mixed conjugacy class D = (su)g with s € G a semisimple element and u € Cg(s)
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unipotent. Again, let A be a character sheaf coming from the cuspidal induction da-
tum m = (L, X, &). Then A restricted to D is zero if the semisimple part of ¥ does not
contain a G-conjugate of s.

Restriction to a unipotent conjugacy class

As a first step towards our main goal, we recall how to compute the restriction of
character sheaves to a unipotent conjugacy class C. It is a consequence of the generalised
Springer correspondence, a famous result due to Lusztig [Lus84b].

Let A be a character sheaf coming from the cuspidal induction datum m = (L, %, &).
Then the character sheaf A restricted to C' is zero unless 3 is of the form CyZ°(L)
where Cj is a unipotent conjugacy class of L. Assume this is the case, then the local
system &y comes from a local system &g, on Cy and another one £ on Z°(L).

If £ is trivial, the generalised Springer correspondence tells us that A corresponds to a
unique unipotent conjugacy class C' 4 of G and that A restricted to C 4 is an irreducible
local system on C4. Moreover, if C' ¢ C 4, then A restricted to C' is zero as well.

On the other hand, if £; is not trivial, we get information on A restricted to C' thanks
to the isomorphism Q,[Wy,] = %, fixed by Lusztig. Let m’ = (L,%,&}) be the cuspidal
induction datum where &} is constituted of &, and the trivial local system on Z°(L).
The group W, is a subgroup of Wy,,.. If the character sheaf A is labelled by a character ¢
of Wy, then the restriction of A to C' comes from the restriction of the character sheaves
in é(m’) labelled by characters ¢ of W, whose restriction contains ¢.

Restriction to a mixed conjugacy class

When D = (su)g is a mixed conjugacy class with u € Cg(s) unipotent and s € G
semisimple, computing the stalk of A at su boils down to computing the stalk of s*.A4
at u. Here s* denotes the pullback by the translation by s. Building on the previous
work of Lusztig for the induction of a character sheaf, we decompose (S*A)(u)%(s) (up to

a shift) into a direct sum of characters sheaves of H := Cg (s) restricted to the unipotent
class (u)g. These character sheaves on H come from cuspidal induction data of H of
the form (Lg, >, &) with X, consisting of a unipotent conjugacy class of H times the
centre of L;. We are thus back to the previous setting.

As before we want to use the labelling in terms of characters of the relative Weyl groups.
That is why we needed to explicit the isomorphism Q,[W,] & o%,. The details are
laid out in Subsection 4.3.3 for the unipotently supported character sheaves and in
Subsection 4.3.4 when G is simple of adjoint type and p is a good prime for G.

The unitriangularity of the /-decomposition matrix (Chapters 5
and 6)

In the last chapters, we focus on the main goal of this thesis. We fix a prime £ # p and
an (-modular system (O, K,F,) for G.
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Thanks to Broué and Michel (|[BM89]), the partition of the irreducible ordinary char-
acters of G into ¢-blocks is compatible with the partition into rational series: we can find
a union of blocks B(G,t), for a semisimple (’-element ¢ of (G*)¥", such that the set of
ordinary characters belonging to #(G, t) is a union of rational series of the form £(G, ts)
where s € (G*)¥" is an f-element. The union of blocks indexed by the neutral element is
called the unipotent /-blocks and the ones indexed by isolated elements are said to be
isolated. A semisimple element ¢ € G is said to be isolated if its connected centraliser
is not contained in a proper Levi subgroup of G.

Moreover, Bonnafé and Rouquier [BR03| showed a version of Jordan decomposition
for the blocks: if C'g«(t) is a Levi subgroup then the union of blocks #(G,t) is Morita
equivalent to #(L,1) where L is the Levi subgroup of G in duality with Cg+(¢). There-
fore, we concentrate on the unipotent and isolated ¢-blocks.

Strategy of the proof

Let # be a union of ¢-blocks of G. To show the unitriangularity of the decomposition
matrix of Z, we apply the following strategy.

Step 1 Compute the number n of projective indecomposable modules in 4.
Step 2 Choose n ordinary irreducible modules Vi, ..., V,, € itk (G) belonging to %.
Step 3 Choose n projective modules Py, ..., P, of F,[G].

Step 4 Check that the decomposition matrix D, given by d;; = (V;,Pjo ®o K) for
1<1,j <n is lower-unitriangular.

Note that it is sufficient to consider any projective modules of F,[G], not necessarily
indecomposable ones.

Step 1 of the proof

Concerning the first step, when ¢ is good and Z(G) is connected, the number n is
known for any union of blocks #(G,t) for a semisimple ¢'-element t of (G*)¥". This
is a result of Geck and Hiss [GH91]. When ¢ is bad and G of classical type or for
the unipotent ¢-blocks, it was also computed by Geck and Hiss in [Gec94| and [GHI7]|.
In Proposition 5.1.14, we explain how one can use similar arguments to compute the
number n of projective indecomposable modules in Z(G, t) for an isolated semisimple ¢'-
element ¢ of (G*)¥", when G is of exceptional type, simple modulo its centre, and p is
good for G. These numbers can be found in Appendix B.2.

Steps 2 and 3 of the proof

For Steps 2 and 3, we base our methods on the ones developed by Geck in [Gec91| and
Brunat, Dudas and Taylor in [BDT20|. Fix a semisimple ¢-element ¢ of (G*)¥". We
determine the unipotent supports C, ..., C, of the characters belonging to #(G,t) with
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a total ordering C <--- < C,, such that C; < C; if dimC; <dimCj for all 1 <i<j<r.
Then, for each 1 <i <7,

e we choose n; irreducible modules VY, ... Vi € (G, t) with wave front set C; (that
is whose dual under Alvis—Curtis duality has unipotent support C;),

e and n; projective F,[G]-modules P, ..., Pi

ng°

We require Y ;.,n; = n. In the unipotent case, the numbers n; are conjectured by
Chaneb [Chal9]. For the projective F;[G]-modules, we choose the generalised Gelfand—
Graev characters (GGGCs) or certain summands called the (-Kawanaka modules. Thanks
to their properties, the decomposition matrix D has the following shape.

(& Cy C,
P! Pl P? P, Py P
v
Dy
Vi,
vz * * *
O Dy

2| * *
"/n o

Step 4 of the proof

The final chapter consists in verifying that the matrices D; are lower-unitriangular for
each unipotent class C; we consider. Our current understanding of the values of ordinary
characters as such is however not sufficient. Nonetheless, we know another basis for the
class functions of G on which we hope to have more control: the characteristic func-
tions of F-stable character sheaves. Therefore, we instead compute the decomposition
of a Fourier transform of the Kawanaka characters into certain characteristic functions
of F-stable character sheaves with unipotent support C;.

This is when the restriction of character sheaves to mixed conjugacy classes of Chapter 4
becomes useful.

In the unipotent case, when £ is good for G, the proof of Brunat—Dudas—Taylor uses
a theorem of Lusztig [Lus15| which predicts the value of a character sheaf restricted to a
conjugacy class whose unipotent part is its unipotent support. As we tried to reproduce
a proof of this theorem, we found some counter-examples in the exceptional families
of E7 and Eg.
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In our proof for simple exceptional groups of adjoint type for the unipotent blocks, we
instead apply the formulas of Chapter 4 using CHEVIE [Mic15| to derive the information
we need to show the unitriangularity. The general arguments are similar to the ones
of Brunat—Dudas—Taylor but do not rely on [Lusl5| and thus involve more case-by-
case analysis. For ¢ bad, in order to avoid too many computations, we also use some
properties of GGGCs given by Geck and Hézard in [GHOS|.

In the last section, we treat the cases of the isolated blocks of G5 and Fj, applying
similar methods.

Links between the chapters

The following figure summarises the various links between the chapters. An arrow from A
to B means that B requires results stated in A.

Proof of the
unitriangularity
Chapter 6

Steps 1 and 2: Step 3: Step 4
Basic sets GGGC and Chapter 6
Chapter 5 Kawanaka modules

Chapter 5

A

Values of
character sheaves
Chapter 4
A
Knowledge of Character sheaves
Irre(G) Chapter 3

Chapter 2

Properties of
G and G
Chapter 1

Figure 1: Links between the chapters
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Perspectives

The themes discussed during this thesis open the door to new questions both about
decomposition matrices of finite reductive groups, but also on the level of character
sheaves.

About the unitriangularity of the /-decomposition matrices

One innate problem is to conclude the proof of the unitriangularity of the /-decomposition
matrix of the finite reductive groups. Our results could be extended in different direc-
tions. Firstly, similar methods should be applicable to the isolated ¢-blocks of the adjoint
simple groups of type Eg, F7, and Eg, assuming p is good. For the classical groups when
the prime ¢ is good, we would need to understand the combinatorics behind the param-
eterisation of the ordinary characters instead of using CHEVIE [Mic15].

Another question would be to look at groups that are not necessarily simple of adjoint
type. A first example to consider could be the isolated ¢-blocks of Sp,(F,), again as-
suming that the prime p is good.

Investigating the properties of the basic sets might also be worthwhile to group theorists.
For instance, we could verify if they iare stable under group automorphisms.
Furthermore, we could ask how to remove the assumption on p. This seems a much
more difficult question which requires the development of new tools. In particular, we
would have to first define generalised Gelfand-Graev characters for a bad prime which
satisfy the same properties as the GGGCs when p is good. So far, this has not been
proven for the definition of GGGCs in bad characteristic given by Geck in [Gec21a].
At a more fundamental level, we could wonder if there is a conceptual reason behind the
unitriangularity of the ¢-decomposition matrices of finite groups of Lie type. In [CR17],
Chuang and Rouquier explain that this result might be a consequence of a stronger
version of Broué’s abelian defect group conjecture (|Bro90, Sect. 6]). This local-global
statement affirms the existence of a perverse equivalence between a block of the group
algebra K[G] with abelian defect and its Brauer correspondent. Some progress has
been made towards proving this conjecture, but contrary to other conjectures in the
field, there is no reduction to simple groups, see the survey in [Mall7].

About character sheaves

Since we have a formula for the restriction of character sheaves to a mixed conjugacy
class, it would be natural to try to derive a formula for the characteristic functions of
the F-stable character sheaves. To do so, we would need to keep track of the isomor-
phism defining the characteristic function. If the resulting formula is relatively practical
to use, this would have blatant applications to computing the character tables of finite
reductive groups.

A second fascinating problem is to try to use our better understanding of the translation
of character sheaves to understand their labelling in the same vein as Lusztig does in
[Lus15]. If a character sheaf A on G is parameterised by an element a of the ordinary

10
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canonical quotient, then the restriction of A to a conjugacy class (su)g is zero unless
the semisimple element s “corresponds” to a.

Finally, character sheaves and ordinary characters are closely related. One could inquire
if a modular version of character sheaves, similarly connected to the modular charac-
ters, exists. A modular generalised Springer correspondence has already been identified
by Achar, Henderson, Juteau and Riche, see [AHJR19]. Moreover, modular character
sheaves on Lie algebras have been defined very recently by Sandvik in [San24] who ex-
tended ideas of Mirkovié¢ in the ordinary case. It relies on properties of the Lie algebra
which are however not available for connected reductive groups, such as the Fourier
transform.

11



Notation

We list the basic notation and conventions taken in this thesis. Most of them have
either been introduced in the introduction, can be found in the Appendix A or are very
standard. The rest of the symbols introduced along the course of this manuscript can
be found in the Index.

For the rest of this thesis, we fix p a prime number, ¢ a power of p and ¢ another prime
number. We will always assume that p # (.

Fields and rings

any ring

any field

the algebraic closure of the field F

field of complex numbers

field of rational numbers

ring of integers

set of natural numbers

algebraic closure of the field of /-adic numbers.
finite field of order ¢

the algebraic closed field of characteristic p
the group of all elements in Q/Z of order prime to p
the localisation of Z at the prime ideal pZ

olzZzNO A HSA >

=

N

= @ i S
N =
N
%\

The majority of the representation theory of finite reductive groups is defined over
the {-adic numbers. However, to compute the scalar product of characters, it is useful to
consider complex conjugates. We therefore identify @, and C via a fixed isomorphism.

12
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Modules and characters

Let H be a finite group.

A[H]
A[H]-mod
irrp(H)
Zirrp(H)

Irrp(H)
(O,K, k)

<V7 V,>]F

[P, V]

DH

the group algebra of H with coefficient in the ring A

category of left finite dimensional &|[visibleon =< 4— >]| * H J-modules
set of the irreducible characters of H over

set of Z-linear combinations of the irreducible characters of H over F
(if Z c IF)

set of the isomorphisms classes of irreducible F[ H ]-modules

a splitting /-modular system for H where O is a complete discrete
valuation ring of characteristic 0 with maximal ideal M, the fraction
field K = Frac(O) has characteristic 0 and enough roots of unity
(contains all the |H[th roots of unity) and k = O/M is an algebraically
closed field of characteristic , i.e. k =T,

set of projective k[ H ]-modules

character associated to V' € K[H ]-mod

a K[ H]-module with character ¢ € irrg (H)

projective indecomposable module, projective cover of W € Irry(H)
the O[ H ]-module (unique up to isomorphism) such that PO @ k = P
for P € Proj(H)

character of the K[ H]-module P° ®c K for P € Proj(H)

free O[H ]-module such that Vo 0 K 2V for V' a K[H ]-module
scalar product of two characters x and ¢ of H,

06 ) = e S (B = (Vi Vi

- |H| heH

scalar product of two F[ H]-modules V, V',
(V,V')g = dimp Hompy (V, V")
the decomposition number of V' into P° ®¢ K,
[P,V]=(P,Vo ®0 k)i = (P° ® K,V)k = (Vp, év)

for P € Proj(H) and V e K[H ]-mod
the decomposition matrix of H with entries indexed by V € Irrx (H)
and W e Irr(H)

dityy =df ., =[Pw,V]

13
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(Algebraic) group structure

For H a group, any elements h,h’ € H and any subset J € H, we use the following

notation.

|H|
Z(H)
[H, H]
(W)
hh’, hJ
h/h7 Jh

order of H

centraliser of h or J in H

normaliser of h or J in H

centre of H

derived subgroup of H

conjugacy class of h in H

conjugation by h on the left, "h’ == hh/h=1, "] = {hj|je J}
conjugation by h on the right h'* :== h=1h'h, ".J = {j*| j € J}

Let G be an algebraic group.

Go
ad(g): G -G
Lie(G)

connected component of G containing the identity

adjoint map sending h — ghg! for h e G

the Lie algebra of G, the group G acts on Lie(G) via the differential
of the adjoint map

14



Chapter 1
Finite groups of Lie type

In this chapter, we gather all the principal notions and necessary results concerning the
finite groups of Lie type. Roughly speaking, these groups are the fixed points under an
endomorphism of a (connected reductive) linear algebraic group, i.e. an affine variety
equipped with a group structure such that the group operation and the inversion are
morphisms of varieties. This geometric aspect has crucial repercussions on the descrip-
tion of the finite groups of Lie type.

We recall the following vocabulary:

Definition 1.0.1. Let G be an algebraic group over k = Fp , where p is a prime number.
We say that g € G is unipotent if g is a p-element. If g is a p’-element, ¢ is said to be
semisimple.

We denote by R, (G), the unipotent radical of G, that is the maximal connected normal
subgroup of G containing only unipotent elements. If R,(G) = {1}, we say that G is
reductive. A connected reductive algebraic group is called semisimple if its center is
finite. Lastly, if G is non-trivial and contains no proper, non-trivial closed connected
normal subgroups, then G is said to be simple.

The main results of this thesis (Chapter 6) are concerned with simple or semisimple
groups. However, we will often come across reductive groups, for instance as subgroups.
We notice that connected reductive groups G are in some sense not too far from being
semisimple. We have G =[G, G]Z°(G) and the derived subgroup [G, G] is semisimple
(see [MT11, Cor. 8.22]).

In Section 1.1, we state the classification of connected reductive groups thanks to
their root data. We review in the following section how these notions translate to
finite groups after taking fixed points. It will allow us to study these groups and their
representations in a generic way. As later on we will consider class functions, we use
the last section to give an overview of the unipotent and semisimple conjugacy classes
as well as their centralisers.

All the material exposed in this chapter can be found in greater detail in graduate
textbooks. We mostly follow [GM20], [MT11] and [Car85].

15



Chapter 1. Finite groups of Lie type

1.1 Reductive groups

We assume that the reader is familiar with some basic notions concerning linear algebraic
groups and algebraic geometry. If wanted, the books of Geck |Gec03] and Hartshorne
[Har77] as well as Section 1.1 of [GM20] provide great introduction.

The main purpose of this section is to recall the definition of root datum and how
it classifies the connected reductive algebraic groups. This combinatorial notion and
some variants are powerful tools used to describe algebraic groups, Lie algebras, finite
reflection groups, and other related concepts.

1.1.1 Root data

The notion of root datum was first introduced in [DG11, Exposé XXI]. We state here the
definition and some basic properties, following |[GM20, § 1.2] and [MT11, Appendix A].

Definition 1.1.1 ([GM20, § 1.2.1]). Let X and X be free abelian groups of the same
finite rank such that there is a bilinear pairing (, ) : X x X — 7 which induces iso-
morphisms X = Hom(X,Z) and X 2 Hom()z',Z), i.e., a perfect pairing. Let ® ¢ X
and ® ¢ X be finite subsets. The quadruple (X,@,)Z',i)) is called a (reduced) root
datum if the following conditions hold.

(®1) There is a bijection ® > &, o > &, such that (o, &) = 2 for all a € P.
(P2) If a € P, then 2a ¢ O.

(®3) For a € @, we define endomorphisms

v v

So: X > X S X > X
A A= (A d)a vev—{a,v)a
and we require that s,(®) = ® and 5,(P) =  for all o € .

We call the elements in ® the roo:cs and the elements in ® the co-roots. y
The sets W = (s, | @« € @) and W = (3, | @ € ®) are the Weyl groups of & and P
respectively.

By |[GM20, Lem. 1.2.3a|, there is a unique group isomorphism ¢ : W - W such
that 0(s,) = $, for each o € . Moreover,

(W (\), ) = (N, 6(w)v) for allwe W, Ae X, veX.
From now on, we identify W with W using the isomorphism §.

Since X = Hom(X,Z), we can see X as a subgroup of Hom(Z®,Z). If they are
equal, we say that the root datum is simply connected. On the other hand, we

16



1.1. Reductive groups

always have Z® c X. If the two sets are equal, we say that the root datum is of ad-
joint type (c.f. [MT11, Def. 9.14]).

Remark that we can extend scalars from Z to Q, setting X = X ®7Q. In that case, @
is a reduced crystallographic root system in the subspace Q® of Xg ([Bou68, Chap. VI,
§ 1, Déf. 1]). Therefore, there is a subset A ¢ ® which is linearly independent in Q® and
such that every root can be written as either a Qg-linear combination or a QQs¢-linear
combination of elements in A. We say that A is a base for ® and we call its elements
simple roots. If o € ® is such that a = Y 5.0 738 with x5 € Qs for 8 € A, we call a a
positive root. The set of positive roots is denoted by ®* and we set &= = — &+, We
thus have & = ®* 1y ®~. In fact, it can be shown that every positive root is a Zsg-linear
combination of elements in A.
Moreover, W is a Weyl group with generators {sz | 5 € A} and relations (sgs,)™ =1
where mg., denotes the order of sgs,. To a Weyl group, one associates a Dynkin di-
agram defined as follows. Its vertices are labelled by A. For o, € A with a # 5,
the corresponding vertices are joined by [(f,a)| edges if |(5,a)| < ](04,5’)|. If more-
over, |(5,a)| > 1, the edge is oriented towards the vertex labelled a.
We say that a root system & is indecomposable if the underlying graph of its associated
Dynkin diagram is connected. Weyl groups are determined by their Dynkin diagrams.
Furthermore, connected Dynkin diagrams have been classified (see Table 1.1.1), and so
have root systems [Hum78, Thm. 11.4]. We also fix a labelling of the simple roots of
each indecomposable root system following the notation taken in CHEVIE [Micl5|.

Classical types Exceptional types
1 2 n-1 mn
A o —a . o Eg L 3 4 5 ¢

n>1 . . I . .
2

B, e<e—e— —o— FE;
2

C, e—eo—e— —o—e Fj

1
3 4 n-1 n 1 2
D, —eo—o (G, &=
n>4
2

Fy, e—e=—0—o

Table 1.1: Dynkin diagrams of the indecomposable crystallographic root systems

Lastly, we observe that if (X, ®, X, ®) is a root datum, then (X, ®, X, ®) is also a root
datum, called the dual root datum (|GM20, Lem. 1.2.3b]). The notion of dual comes
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Chapter 1. Finite groups of Lie type

from the fact that the dual of Q ®; X with respect to the pairing (, ) can be identified
with Q ®7 X. In particular, we define for each simple root a € A a fundamental co-
weight &, € Q ®z X such that (a,dg) = 6,3 for a, § € A.

Notice that the two root systems ® and ® are not always isomorphic. However, this is
the case if @ is of exceptional type since we easily check that the Dynkin diagrams are
isomorphic. Moreover, if the root datum is adjoint (resp. simply connected) then its

dual is simply connected (resp. adjoint), see [GM20, Ex. 1.5.20].

1.1.2 Root data of reductive groups

We can always associate a root datum to a connected reductive algebraic group, and
thus deduce a classification. In this subsection, we explain how this process works. Let
us consider G, a connected reductive algebraic group over k. We also fix a maximal
torus T < G, that is, an abelian algebraic subgroup of G, isomorphic to a direct product
of finite copies of £* of maximal dimension.

We first define two free abelian groups of the same rank with a perfect pairing following
[GM20, § 1.1.11].

Definition 1.1.2. A homomorphism of algebraic groups A : G - k* is called a char-
acter and the abelian group of all characters is denoted by X(G). Symmetrically,
a homomorphism of algebraic groups v : k* - G is a co-character and it belongs
to X(G).

We consider X (T) and X(T). These two groups are free abelian, of finite rank the
dimension of T. We can also define a pairing (, ) : X(T) x X(T) - Z by the condition
that A(v(€)) =&MW for all A e X(T),ve X(T) and & € k.

We now define the roots, following [GM20, §1.1.12|. Let Lie(G) be the Lie algebra
of G. The maximal torus T acts on Lie(G) via the adjoint representation. To each
character A € X (T), we associate the weight subspace

Lie(G)y = {z e Lie(G) | t.x = A(t)z for allt e T}.

If Lie(G), is not empty and A # 0, we say that X is a root of G relative to T. We
denote by ®(G,T) = ®(T) the set of all roots of G relative to T.

Since G is reductive, we have dimLie(G), =1 for all a € ®(T) (see [GM20, §1.1.12]).
We set U, (T) for the unique one-dimensional closed connected unipotent subgroup of G
normalized by T with Lie(U,(T)) = Lie(G),, and we called it a root subgroup. Note
that there is a canonical way to embed the Lie algebra Lie(U,(T)) in Lie(G).
Associated to a maximal torus, there is a Weyl group W&(T) = Ng(T)/T. This group
acts via automorphisms on X(T) and X(T) as follows. For w € WG(T), we denote
by w a representative of w in Ng(T). For A e X(T) and v € X(T), we set

wA(t) = Nw ) forteT and (w.v)(€)=wv(é)w" foré ek
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1.1. Reductive groups

Following [GM20, §1.3.1-1.3.2|, we define for each v € ®(T) a reflection s, ¢ WE(T)
and a co-root & € ®(T) such that

Sad=A—(\&)a for all\ e X(T).

Then the quadruple (X (T), ®(T), X(T), ®(T)) is a root datum with Weyl group WE(T).

There is a natural notion of isomorphisms of root data, see [GM20, §1.2.2]. If we
choose another maximal torus T’ of G then the root data (X(T),®(T), X(T),d(T))
and (X (T7),®(T"), X(T"),®(T")) are isomorphic. Therefore, we might now speak of
the root datum of G. Moreover, the root data classify the connected reductive groups.

Theorem 1.1.3 (Chevalley Classification Theorem, [Spr09, Thm. 9.6.2, Thm. 10.1.1]).
Two connected reductive algebraic groups over k are isomorphic if and only if they have
1somorphic root data. Furthermore, for each root datum there exists a connected reductive
algebraic group which realises it. Lastly, a connected reductive group is simple if and only
it s a semisimple group with an indecomposable root datum.

Notation 1.1.4. If the context is clear, we might drop the symbol T and write
(X,®,X,®) = (X(T),®(T), X(T),®(T)) and W =W =W(T).

As stated in Theorem 1.1.3, the root datum associated to G contains a lot of infor-
mation on the structure of G. We have

G=(T,U,|ae®) see|MTI1l, Thm. 8.17(g)].

We could wonder what happens if we take a subset of ® instead. Let us now fix A a
base for ® and ®* the corresponding positive roots. For instance, we may consider

B=(T,U,|acd").
This is a Borel subgroup of G, i.e., a maximal closed connected solvable subgroup of G.

Recall that all Borel subgroups of G are conjugate ([MT11, Thm. 6.4]).

Remark 1.1.5. If we choose another base for ®, then we get another Borel subgroup
of G. Conversely, if we fix a Borel subgroup B’ € G with T ¢ B’, there is a unique base
of G such that B’ is generated by T and the positive root subgroups relative to this
new base [GM20, Rmk. 1.3.4]. Therefore, we might sometimes speak of the root datum
of G relative to T and B to indicate that we have fixed a base.

For a subset I ¢ A, we define

P;=0n) Za.

ael

Then ®; is a root system in Q®; with base I and Weyl group W; = (s, | a € @), see
[MT11, Prop. 12.1]. We define

P;=(T,U, | aecd udy).
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The subgroup P; is closed, connected, self-normalising and contains B. All overgroups
of B in G arise in this way. Moreover, the subgroup P; is isomorphic to P; for J ¢ A if
and only if I = J ([MT11, Prop. 12.2]). We call P; a standard parabolic subgroup
of G and a G-conjugate of P; is simply said to be parabolic.

Notice that the parabolic subgroups are not necessarily reductive. However, we can
decompose P; into its unipotent radical

Ru(PI) = <Ua | € (I>+\(I)I) = U[

and a complement group L; = (T, U, | « € ®;), which is connected reductive. We write
P; = U; x L; and this decomposition is called the Levi decomposition of P;, c.f.
[MT11, Prop. 12.6, Def. 12.7]. We say that L; is a (standard) Levi subgroup. It has
root system ®;. More generally, for J ¢ &, we denote by ®; the root system generated
by the roots in J, i.e.
Py;=dn ) Zao.
aeJ
and W; the Weyl group generated by the reflections s, for o € ®.

Another important way of rewriting G is through the Bruhat decomposition.

Theorem 1.1.6 (Bruhat decomposition, [MT11, Thm. 11.17]). For w € W, we fiz a
representative W € Ng(T). The group G can be decomposed as follows:
G=| | BuB.
weW
More precisely, every g € G can be written uniquely as g = wwb where b € B, w e W
and u e (U, | e dT w.a € 7).

This result comes from the fact that B and Ng(T) form a BN-pair for G in the
sense of [MT11, Def. 11.15].

Lastly, we consider the various possibilities for a semisimple group with a fixed root
system @ (but different root data). Recall that a root datum might be adjoint or
simply connected or neither. If the root datum of a semisimple group is adjoint (resp.
simply connected), we say that G is adjoint (resp. simply connected). If G is
adjoint, then its centre is trivial. In general, we have Z(G) 2 Hom(X /Z®, k*) (|JGM20,
Rmk. 1.3.5(b)]).

Proposition 1.1.7 ([GM20, Prop. 1.5.8]). Let G be a semisimple group with root da-
tum (X, ®, X, i)) with respect to a maximal torus T and some Borel subgroup B >T.
There exists a surjective homomorphism f GrSC - G where Gg. is simply connected
semisimple with root datum (X (Tys),P(Ts), X(TSC) ®(T..)) relative to a maxzmal
torus Ty, € B, and ®(Ty.) = ®. Moreover, [ has finite central kernel, f(TSC) =
and f(Bs) = B.

Symmetrically, there exists a surjective homomorphism f': G - Guq where G,q is ad-
joint semisimple with oot datum (X (Taq), ®(Taa), X (Taa), ®(Taq)) relative to a mai-
mal torus Taq € Bag and ®(Taq) = . Moreover, f' has finite central kernel, f'(T) =
and f'(B)=B
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1.2. Finite reductive groups

Simply connected or adjoint groups satisfy interesting properties that can be carried
over to any semisimple group thanks to the above proposition. In the rest of this thesis,
we will often consider adjoint groups in order to avoid a disconnected centre.

1.2 Finite reductive groups

Thanks to the previous section, we can now recall how the classification of reductive
groups passes down to finite groups of Lie type. We start by stating some basic prop-
erties of Frobenius endomorphisms. We then use Section 1.1 to infer the definition of a
complete root datum, as a way to classify our objects of study.

1.2.1 Definition and properties of the Frobenius

As stated in [MT11, Thm. 1.7|, algebraic groups can be seen as matrix groups with co-
efficients over the infinite field k = Fp. We would like to study their finite counterparts,
that is matrix groups defined over a finite field F, for a p-power q.

Firstly, we can see I, as the fixed points in k& under the standard Frobenius
map F,:k — k,x ~ 29. More generally, we denote by Fj, any map defined as follows

F,: k" > k", (x1,...,2,) v~ (2f,...,22), for somen € Zs.

This bijection is a morphism of varieties with fixed point set equal to F}.

Moreover, we would like to keep track of the geometrical structure of algebraic groups.
An affine variety V is defined over F, or has an F,-rational structure if there
is n € Zs1 and an isomorphism of affine varieties + : V' — V' such that V’ ¢ k" is
closed and stable under the standard Frobenius map F,. Hence, F =110 F 0. is a
bijective endomorphism of V', and we call it the Frobenius morphism of V' with
respect to the F -structure. We write V¥ for the fixed points of V under F; and in
fact

VExVH={veV' |veF}}.

In particular, this definition applies to any algebraic group G seen as an affine variety
over k. Nonetheless, we doubtless also want to keep the group structure in mind. Thus,
we additionally require that F': G - G is a group homomorphism. If this is the case,
we say that G is defined over F, as an algebraic group |[GM20, §1.4.5]. Note that the
group of fixed points G is a finite group. However, we do not get all the finite groups
encompassed in the notion of finite reductive groups. For instance, we miss the Suzuki
and Ree groups. Thus, we need to extend the definition.

Definition 1.2.1 (|[GM20, Def. 1.4.7]). Let G be an algebraic group. An endomorphism
of algebraic groups F': G - G is a Steinberg endomorphism if there exists m € N such
that F™ is the Frobenius morphism of the group G with respect to some F,-structure,
for a p-power gq.
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Chapter 1. Finite groups of Lie type

The fixed point set of a Steinberg endomorphism is always finite, and if G is simple
this property gives another characterisation of a Steinberg endomorphism, c.f. [Ste68,
Thm. 10.13].

Definition 1.2.2 (|[GM20, Def. 1.4.7]). Let G be a connected reductive group and
let F: G - G be a Steinberg endomorphism. We call G := G a finite group of Lie
type or a finite reductive group.

Notation 1.2.3. From now on, the bold script G always denotes the algebraic group
while the normal script G is used for the finite group, provided that we have fixed a
Steinberg endomorphism F'. This applies to any algebraic group with a fixed Steinberg
endomorphism. For instance, if L is an F-stable Levi subgroup of G, we write L = LF.

An indispensable tool to transfer information on algebraic groups to finite groups is
the classical Lang—Steinberg theorem.

Theorem 1.2.4 (Lang-Steinberg Theorem, [Lan56],|Ste68, Thm. 10.1]). Let G be a
connected algebraic group and F': G - G a Steinberg endomorphism. Then the following
map 1s surjective:

Z:G->G
g+ 9" F(g).
Proof. For a proof, we refer the reader to [GM20, Thm. 1.4.8|. ]

One application of this result is to understand how an F-stable G-orbit splits into G-
orbits.

Theorem 1.2.5 (|[MT11, Thm. 21.11]). Let G be a connected algebraic group and
let F': G — G be a Steinberg endomorphism. Let V # & be a set with a transi-
tive G-action and a compatible F-action F' :'V -V d.e. for all g € G,v € V, we

have F'(g.v) = F(g).F'(v). Then
(a) there exists v eV such that F'(v) = v,

(b) and if the stabiliser Stabg(v) is closed for some v € V, then for any vy € V', there
1$ a natural 1 —1 correspondence:

{G-orbits on V') = {F-classes in Stabg (vo)/Stabg (vo) }-

Here the F-classes are the orbits of Stabg(vg)/Stabg(vg) under F-conjugation.
We say that two elements g, g’ € Stabg(vg)/Stabg (vg) are F-conjugate if there exists an
element h € G such that g = F'(h)gh™.

Remark 1.2.6. Let G be an algebraic group and F': G - G be a Steinberg endomor-
phism. Let H be a F-stable connected normal subgroup of G. Then

GF/H' = (G/H)F.
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1.2. Finite reductive groups

Indeed, consider the map f: G - (G/H)¥, g » gH. Tt is well-defined. We check that
it is surjective. Let g € G such that gH = F(¢gH). Then, H acts transitively on gH
and thus, by Theorem 1.2.5, there exists an element h € H with F(gh) = gh € GF.
Now, f(gh) = ghH = gH and thus the map f is surjective. Lastly, we observe that the
kernel ker(f) = GF nH = HF and we conclude that GF/H" 2 (G/H)*.

As a consequence of the previous theorem, we get the following result.

Corollary 1.2.7 ([MT11, Cor. 21.12|). Let G be a connected algebraic group and
let F': G — G be a Steinberg endomorphism. Up to G-conjugation, there exists a unique
pair (T,B) consisting of an F-stable mazimal torus T of G contained in an F-stable
Borel subgroup B.

Definition 1.2.8. Let G be a connected algebraic group and F': G - G a Steinberg en-
domorphism. An F-stable maximal torus of G contained in an F-stable Borel subgroup
is said to be maximally split.

1.2.2 Classification of the finite reductive groups

We now come back to the notion of root datum and how it interacts with the Steinberg
endomorphisms. Let G be a connected reductive group and F': G - G a Steinberg
map. We also fix a maximally split torus Ty of G contained in an F-stable Borel B
and (Xﬁb,)u(,i)) the root datum of G relative to To. By [GM20, Rmk. 1.3.4], there is
a unique base A of ® such that

BO = (To,Ua ’ Q€ (I)+>

Since both By and T, are F-stable, the map F permutes the root subgroups U,
for « € ®*. Thus, F induces a permutation o — af on ®* which must leave A in-
variant (see [MT11, Pf. of Lem. 11.10]). More precisely, F': X - X is a p-isogeny of
root data in the sense of [GM20, Def. 1.2.9].

We describe the action of FF on X. We set Xg = X ®; R. There is d > 0 such
that Flgl( = ¢Yidx and Fx, = ¢Fy for some ¢ a fractional power of p and Fjy € Aut(Xg) of
order d (|[MT11, Prop. 22.2|). If d = 1, we say that F is split.

Let us instead look at the map F’ = ad(w™")o F' for some fixed w € W and w € Ng(Ty) a
representative of w. By [GM20, Lem. 1.4.14], the map F" is a Steinberg endomorphism
and GF = GF'. Moreover, the torus Ty is also F’-stable and the map F} € Aut(Xg)
defined as above for F” is such that Fj = Fyow (|[GM20, Rmk. 1.6.13|).

On the other hand, we could consider ¢ € Aut(Xg) a p-isogeny for some prime p such
that ¢ can be written as ¢ = g¢g for some ¢y € Aut(Xg) an invertible linear map of finite
order which normalises W and g € Ryo. Then, there exists a Steinberg endomorphism Fy
such that Fj induces ¢ on Xg (|[GM20, Thm. 1.3.12, Prop. 1.4.18]). These considerations
lead to the following combinatorial definition.

Definition 1.2.9 ([GM20, Def. 1.6.10]). Let (X, ®, X, ®) be a root datum with Weyl
group W. Let ¢ € Aut(Xg) be an invertible map of finite order which normalises .

23



Chapter 1. Finite groups of Lie type

Assume that &, defined to be the set of ¢ € Ryo such that g¢o(X) ¢ X C al
a p-isogeny of root data, is non-empty. We call the quintuple G = (X, ®, X CI>, ®oW) a
complete root datum. We set &g = &,

Therefore, we observe that to each complete root datum G = (X, ®, )2', <f>, poW') and
to each q € &g, we can associate a connected reductive group G (unique up to isomor-
phism) with root datum (X, ®, X, ®) and a Steinberg map Fj4,. Writing G(q) = GFeo,
we obtain a family of finite groups

{G(q) | g€ Zc}

called the series of finite groups of Lie type defined by G (|[GM20, Rmk. 1.6.12|).

Similarly as for root data, the dual complete root datum of G = (X, , X, o, doW)
is the complete root datum G* = (X, P, X, P, o) (see [GM20, Ex. 1.6.19]). Here ¢}
is the transpose map defined through the perfect pairing (, ) : X x X — Z extended
to (,): Xg x Xg » R. We have Pg. = P¢ and for each ¢ € P we obtain two finite
groups G(¢) and G*(¢) coming respectively from (G, F') and (G*, F*), where F' = F 4,
and F* = F 4. Those two pairs are in duality as in [GM20, Def 1.5.17]. In partlcular

if Ty (resp. T}) is a maximally split torus of G defining the root system (X, ®, X, )
(resp. (X, P, X,®)) then

Ao Fip, =F|fr80)\ for all \ € X.

Let us introduce a little more terminology. The Steinberg endomorphism F': G - G
induces as well an automorphism on W, that by abuse of notation, we still denote
by F : W — W. In particular, for each o € &, we have F'(s,) = s,t, see [GM20, 1.6.1].
We distinguish between the following cases.

Definition 1.2.10 ([Lus84a, 3.1]). If for any « # 5 € ® in the same f-orbit, the order of
the reflection s,sp is either 2 or 3, we say that F'is ordinary.

If F induces the identity on W, we say that G = G is untwisted. If F' is ordinary
but not the identity, we say that G is twisted. Lastly, if F' is not ordinary, the finite
group G is called very twisted.

Notice that if I is a Frobenius map for G, then F' is always ordinary. In this thesis,
we will most of the times assume F' to be ordinary.

Hypothesis 1. From now on, we fix G a connected reductive group over k with
Steinberg map F': G - G. We also let T € By be a maximally split torus in an F-
stable Borel subgroup By of G with associated root datum (X,@,X',fi)), base A
of & and Weyl group W.
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1.3 Interesting conjugacy classes and their centralisers

In the rest of this thesis, conjugacy classes will play a preponderant role as we will study
different bases of the space of class functions. Notice that every rational conjugacy
class (g)¢g is contained in a geometric conjugacy class (g)g for g € G. Moreover, we
also have C(g) = Ca(g)f. We mainly concentrate on geometric conjugacy classes.
Clearly, for any g € G there exists a unique semisimple element g, € G and a unique
unipotent element g, € G such that ¢ = gs9, = gu.gs. This is called the Jordan de-
composition of g and we will use this notation from now on!. In particular, we
have C(9) = Ceg(g.)(9u)- Thus, we focus on the conjugacy classes of semisimple and
unipotent elements. For each case, we give a parameterisation of the conjugacy classes
and a description of their centralisers.

1.3.1 Semisimple conjugacy classes

We start by giving a parameterisation of the semisimple conjugacy classes.

Proposition 1.3.1. The set of semisimple conjugacy classes of G is in bijection with
the orbits of W on Ty. Moreover, the set of semisimple geometric conjugacy classes of G
18 in bijection with the F-stable orbits of W on T.

Proof. The proof relies on the Bruhat decomposition, see [Car85, Prop. 3.7.1, Cor. 3.7.2].
]

Centralisers of semisimple elements

Next, we consider the centraliser Cg(s) of a semisimple element s € G. The element
s belongs to a maximal torus T of G. Since T is abelian and connected, T < Cg(s)
if and only if s € T. Moreover, if a unipotent element u € G belongs to Cg(s), then
in fact u € Cg(s) [MT11, Prop. 14.7]. As we can see, the connected centraliser of s
already contains a maximal torus and all the unipotent elements of Cg(s). In fact, we
sometimes have control on Cg(s)/Cg(s).

Theorem 1.3.2. If [G, G] is simply connected, then Cg(s) is connected.

More generally, if G is semisimple and 7 : Gg. = G is a simply connected covering of G
(as in Proposition 1.1.7), then Cg(s)/Cg(s) is isomorphic to a subgroup of ker(m).
Moreover, if the order of s is prime to the order of ker(m), then Cg(s) is connected.

Proof. For the proof of the first statement, see [Car85, Thm. 3.5.6].
For the second fact, let g € Cg(s) and take §,g € G such that s = 7(38) and g = 7(g).
Then, [g,5] = §g5g7157! € ker(7) and we define a map

v:Cg(s) = ker(m), g+ [g,5]

!The analogous result requires more work when G is defined over a field of characteristic zero, c.f.
[MT11, Sect. 2].
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Chapter 1. Finite groups of Lie type

This map is a group homomorphism since ker(w) ¢ Z(Gg.). Moreover, since ker()
is finite, the image of Cg(s) under v is trivial. On the other hand, if the commuta-
tor [§,5] =1, then g e Cq,. (5) = Cg_(3), whence g € Cg(s). Thus, the group homomor-
phism v induces a bijective map from Cg(s)/Cg(s) to a subgroup of A of ker(r).

For the last statement, we show inductively that [g,§"] = [g, §]" for any n € N since

[3,3]" =[g,5""][g,8] = gs"s'g'857"(g,8] = g5 (55 [g,5]3)5™" = [g, 5"].
Therefore, if s has order n coprime to the order of ker(), then 5" € Z(Gy.) and [g,5]" =1
for any g € Cg(s). Thus, every element in A has order dividing n. Since n is coprime to

the order of ker(7), it means that A is trivial. Hence, so is Cg(s)/Cg(s) and Cg(s) is
connected. O

We now focus on the structure of Cg(s). Since all maximal tori of G are conjugate
(IMT11, Cor. 6.5]), there is h € G, such that s € Ty. Without loss of generality, we may
assume that s € T.

Theorem 1.3.3 (|[MT11, Thm. 14.2]). Let s € Ty. Let ®(s):={aec®|a(s)=1}. Then
Ca(s) =(To, Uy, | a € (), w e W withs™ = s),
where w denotes a representative of W in Ng(Tg). Moreover,
C&(s) =(To, U, | v e D(s)).
Furthermore, the algebraic group Cg(s) is reductive, with root datum (X, ®(s),X,D(s))
and Weyl group We(s) = (s | € ®(s)) where O(s) ={a|aeP(s)}.
Proof. The proof relies on the Bruhat decomposition, see [MT11, Thm. 14.2|. O

Remark 1.3.4. We keep the notation of Theorem 1.3.3. Let W(s) = {w e W | s* = s}.
Then the quotient W (s)/W°(s) is isomorphic to the quotient Cg(s)/Cg(s).

As a corollary of the above theorem, we notice that up to conjugation, there is
only a finite number of centralisers of semisimple elements, even though there is an
infinite number of semisimple conjugacy classes. Moreover, thanks to [Der81|, we may
always choose s (up to conjugation) such that ®(s) is generated by a subset A(s)
of A= Au {-ap}, where aq is the highest root of @, i.e. oy = ¥ ca No and for any
100t 5 =Y e Do € @, we have n,, > b, for all simple roots « € A (see [MT11, Prop. 13.10]
for the existence). If A(s) ¢ A, then Cg(s) is a Levi subgroup of G. Consequently,
a pseudo-Levi subgroup designates any subgroup of the form Cg(s) for a semisimple
element s € G, as in [MS03|. This motivates the following definition.

Definition 1.3.5. We say that a semisimple element s € G is quasi-isolated if Cg(s)
is not included in a proper Levi subgroup. If Cg(s) itself is not contained in a proper
Levi subgroup, we call the element s isolated.

An element ¢ € G with Jordan decomposition g = ¢,g, is isolated if its semisimple
part g is isolated.

Centralisers of isolated and quasi-isolated elements often stand out when studying
algebraic groups because it is harder to apply inductive arguments. For instance, if s € G
is an isolated element, then |A(s)| = |A] (|[Bon05, Cor. 1.4]).
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Quasi-isolated conjugacy classes

We now give a parameterisation of the semisimple quasi-isolated conjugacy classes, fol-
lowing [Bon05]. This time, we will see that the number of quasi-isolated classes is finite
and that moreover, this number does not depend on p, if p is not too small. We first
need to introduce some notation.

For the rest of this subsection, we assume that G is simple (see Remark 1.3.8 for a more
general setting). We fix an isomorphism

(1.1) ¢ (Q/Z2)y > kX,
and 7 the composition Q - (Q/Z),, - k*. We now consider

Z(T():(@®Z)zv_)T0

(1:2) re X~ Ai(r)).

We also fix some maximal tori Ty, € Gs. and T,4q € G.q4 as in Proposition 1.1.7. We let
Ap/ = {Oz € A | C&a/na € Z(p) ®7 X(TSC)},

where we set n_,, =1 and w_,, = 0.
When G is simply connected, the parameterisation of the semisimple isolated classes is
relatively easy to state.

Proposition 1.3.6 ([Bon05, Prop. 4.9]). Assume that G is simply connected. The
map Ap/ - G, a~ ty = i1, (Wa/na) induces a bijection between Ap/ and the set of
conjugacy classes of semisimple isolated elements in G. Moreover, W°(t,) = Wx_,, and
the order of t, 1s equal to n,o(X,), where o(w,) denotes the order of the image of &,

in (Q ®7 X(TSC))/X(TSC)

In the other direction, when G is adjoint, we need to remove subsets of A of size
bigger than 1 to accommodate for the quasi-isolated but not isolated elements. We
let 2, be the set of subsets @) of Ap/ of size not divisible by p and on which their
stabiliser in .4 == Ny (A) acts transitively. Let also .4 be the set of p/-elements in .4

Proposition 1.3.7 (|[Bon05, Thm. 5.1]). Assume that G is adjoint. Then a bijection
between the set of orbits of Ny on 2, to the set of conjugacy classes of quasi-isolated
elements in G is induced by

2,-G
1 Wa

—~t 2:50— .

Q= to T(|@|z )

ae@ Na

Moreover, We(tq) = Wi_q and the order of tg is equal to ng for some a € Q.
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Remark 1.3.8. For an arbitrary simple algebraic group, we need to replace A by the
preimage of X (Ty)/X (Ts.) under the bijection

N5 X (Taa)/ X (Ts)
Sa P Wa
to get a parameterisation of the semisimple quasi-isolated conjugacy classes. We refer

the reader to [Bon05, Thm. 4.6] for a general result for semisimple groups. Thanks to
[Bon05, Prop. 2.3 and Rmk. 2.5], these results can be lifted to any connected reductive
group.

If p does not divide any n, for a € A, then we in fact have Apr = A. If for some
root 3 = ¥ ca ba, the prime p divides some b,, we say that p is bad for G, [Car85,
§1.14]. Otherwise, we say that p is good. The bad primes for the simple algebraic
groups are listed in Table 1.2.

A, : none
B,(n>2),C,(n>3),D,(n>4) : 2
GQ,F4,E6,E7 . 2,3
Ey @ 23,5

Table 1.2: Bad primes for the simple algebraic groups

In the rest of this thesis, we will almost always assume that p is good for G.

We recall a few more facts about isolated elements.

Lemma 1.3.9. Let G be a connected reductive group and s € G be a semisimple element.
If s is isolated, then
2°(Cg(s)) = 2°(G).

Proof. The inclusion Z°(G) ¢ Z°(Cg(s)) is clear. For the other direction, note that by
[IMT11, Prop. 12.10], Cg(Z°(Cg(s))) is a Levi subgroup of G. However, the definition
of the centre implies that
Cg(s) € Ca(Z°(Cg(s)))-
Thus, since the semisimple element s is isolated, we must have Cg(Z°(Cg(s))) = G,
hence Z°(Cg(s)) € Z°(G). O
Lemma 1.3.10. Let G be a connected reductive group and L a Levi subgroup of G. Fix
an isolated semisimple element s of L. Set Ly = C (s) and Gs = C&(s). Then
L-= C(;(ZO(LS)) NGQ(L) = NGS(Ls)a and N(;(LS) c N(;(L)

Proof. Since L; = L n Gy, it follows that Ng, (L) € Ng, (Ls).

Let us consider the other inclusion and the first assumption. Recall that L = Cq(Z°(L))
(IMT11, Prop. 12.6]). By the previous Lemma, we know that Z°(L) = Z°(Ls), and
thus L = Cg(Z°(Ls)). Now we can conclude since

Ng,(Ls) € Na,(2°(Ls)) € Ng,(Ca(2°(Ls))) = Ne.(L).
By a similar argument, we deduce that Ng(Ls) € Ng(L). O
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1.3. Interesting conjugacy classes and their centralisers

1.3.2 Unipotent conjugacy classes

We now turn our gaze to the p-elements. We write Ucl(G) for the set of unipotent
conjugacy classes of G.

Firstly, we explain how a geometric unipotent conjugacy class splits into rational ones.
Let u € G be a unipotent element, then the conjugacy class C' = (u)g is F-stable. Now,
the set C' might not be a unique rational G-conjugacy class. However, applying The-
orem 1.2.5 since Cg(u) is closed, we have a bijection between the G-conjugacy classes
in CF and the F-classes in Cg(u)/Cg(u).

The group Ag(u) = Cg(u)/Cg(u) will play an important role in the rest of this thesis,
for instance for the parameterisation of the unipotent characters. In some cases, the
induced action of F' on Ag(u) is trivial, and the G-conjugacy classes in C¥ are in bijec-
tion with the conjugacy classes of Ag(u). We denote by uc any F-stable element of C'
such that Ag(uc) = Ag(uc)f. If the centre Z(G) of G is connected and G/Z(G) is
simple, such an element uc always exists for any C' € Ucl(G) by [Tay13, Prop. 2.4].

We now give two ways of labelling the unipotent conjugacy classes of G. The first
method uses co-characters and Levi subgroups. The second one associates to each class
a weighted Dynkin diagram. We make the following hypotheses.

Hypothesis 1.3.11. For the rest of this section, we assume that G is simple of
adjoint type and p is good for G.

Remark 1.3.12. Thanks to [Car85, Prop. 5.1|, we may assume without loss of generality
that G is simple of adjoint type.

We also assume that p is good for G. In this case, the number and the structure of
unipotent orbits is similar to the characteristic zero case. However, the parameterisation
differs when p is bad. In both cases, the number of unipotent conjugacy classes is finite
(|Ric67], |[Lus76, Thm. 13]).

Both methods use a bijection between the unipotent conjugacy classes of G and
the nilpotent orbits of the Lie algebra g of G under the action of G by the adjoint
map Ad: G x g — g. We denote by gy the variety of nilpotent elements of g associated
to G and by Gy,; the variety of unipotent elements of G. In characteristic zero, the
exponential map induces a G-equivariant morphism between G,; and gny. By [McNO05,
§ 10|, a similar result holds in positive characteristic.

Proposition 1.3.13 (Springer, Serre). Recall that G is simple of adjoint type and p is
good for G. There exists a homeomorphism of varieties Wy, @ Guni — @ni Such that
for all elements g € G and unipotent elements u € Gy;,

Vopr(Yu) = Ad(g) (¥ (u)).

The induced map between the unipotent conjugacy classes of G and the nilpotent orbits
of g does not depend on the choice of Vg,
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Chapter 1. Finite groups of Lie type

Such maps are called Springer homeomorphisms. Note that they might not be
isomorphisms of varieties. If it is the case, we say that W), is a Springer isomorphism.

Lemma 1.3.14 ([MS03, Prop. 5|). Recall that p is good for G. If G does not contain
any component of type A,, with n=-1 mod p, then there is a Springer homeomorphism
which 1s an isomorphism of varieties.

More generally, we can find another condition which applies to any Springer home-
omorphism.

Definition 1.3.15. The group G is proximate if some simply connected covering of
the derived subgroup of G is a separable morphism.

Lemma 1.3.16 (|Tay16, Lem. 3.4|). If G is prozimate, then any Springer homeomor-
phism s an isomorphism of varieties.

We now fix a Springer homeomorphism ¥, for G.

Bala—Carter classification and some generalisations

Recall that a unipotent element u € G is distinguished if Z°(G) is a maximal torus
of Cg(u). Similarly, a nilpotent element in g, is distinguished if it is the image by the
Springer map of a distinguished unipotent element.

For any unipotent element u € G, there is a Levi subgroup L such that u is distinguished
in L. Indeed, let T be a maximal torus of Cg(u). Then, by [MT11, Prop. 12.10] the
group Cg(T) is a Levi subgroup. By [Spr09, Prop. 6.4.2] the torus T is the unique
maximal torus of C’gG(T)(u), hence of Cog(ry(w). In particular, the torus T is central
and u is distinguished in Cg(T).

Therefore, we obtain the map in the Bala—Carter classification, which parameterises
unipotent conjugacy classes by conjugacy classes of pairs of a Levi subgroup L and a
distinguished unipotent element in L. McNinch and Sommers generalised this result to

take into account the relative unipotent conjugacy classes, that is the conjugacy classes
of Ag(u)

Theorem 1.3.17 ([MS03, Thm. 1|). The G-conjugacy orbits of the pairs (u,tCg(u))
with u € Gy and t € Cg(u) a semisimple element are in bijection with the G-conjugacy
orbits of triples (Cg(s),tZ°(C&(s)),u) where s € G is semisimple, u € C&(S)uni 18
distinguished in Cg(s) and Cg(tZ°(Cg(s))) = Cg(s).

Remark 1.3.18. The bijection here is given by taking the pseudo-Levi Cg (¢, T) where T
is a maximal torus of Cg (u,t).

A second step is then to parameterise the distinguished unipotent conjugacy classes
in G.

Definition 1.3.19. We say that )\ € X is associated to ¢ € Guil if
1. for all £ e kX, A\(&).e = &%e, and
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1.3. Interesting conjugacy classes and their centralisers

2. there exists a Levi subgroup L of G such that e € Lie(L) is distinguished
and \(k*) ¢ [L,L].

We then say that A is associated to u € Gy if it is associated to Wy, (u).

Lemma 1.3.20 ([Jan04, §5.3]). For any unipotent element u € G, there exists a co-
character associated to w and all such co-characters are conjugate under the action of

To each co-character, we associate a parabolic subgroup following |Car85, Chap. 5|
and [BDT20, §3.1].

Definition 1.3.21. Let A € X be a co-character of Ty. We define the following subgroups
of G:

P, =(To, U, | a e ® with (a, \) > 0),
L) =(Ty, U, | a € ® with («, \) = 0),
U, = (U, | a € ® with (a;, \) > 0).

The group P, is a parabolic subgroup of G with Levi subgroup L, and unipotent
radical U,. For any integer i > 0, we also define

U, (i) = (U, | a € ®* with (a, \) >4},
U,(-i) = (U, | a € ®* with (o, ) < —i).
Notice that Uy(-i) = U_, ().

Remark that Ly = Cq(\). There is another way of describing P via the Lie algebra.
The co-character A induces a grading on the Lie algebra g = @,z g(\,7) where

a(\ i) ={zeg|\&).x =& for all £ ek*}.
Then

Lie(Py) = @ g(\,i), Lie(Ly)=g(X\,0) and Lie(Uy)= P g(\, ).

iEZzO iEZ>0

Moreover for any integer 7,

Lie(Un (i) = @a(A.j) and  Lie(Ur(-i)) = @a(A-)).

J>t J>t

Proposition 1.3.22 ([Jan04, Prop. 5.9]). Let u € G be a unipotent element. If A, € X
are associated to u, then the parabolic subgroups Py and P, are equal.
Moreover, Cg(u) € P,.

For u € G unipotent and A € X associated to u, we call P, the canonical parabolic
associated with u.
The distinguished elements are characterised as follows.
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Chapter 1. Finite groups of Lie type

Proposition 1.3.23 ([Car85, Cor. 5.7.5]). Let u € G be a unipotent element and A € X
be a co-character associated to w. Then, the element u is distinguished if and only

if dim(g(,0)) = dim(g(A,2)).

Let u € Gy and A € X associated to u. There is a unique unipotent conjugacy
class C' € Ucl(G) such that C'n U, is open dense in U,. Moreover, C'n U, is a single
P,-conjugacy class ([Car85, Thm. 5.2.1]). If A is associated to a distinguished unipotent
element u € G, then C = (u)g, [Car85, Prop. 5.8.4]. The canonical parabolic subgroups
associated to distinguished elements have been classified by Bala and Carter (|[BC76a],
[BC76b]). They are the distinguished parabolic subgroups P = Up x Lp of G, i.e. the
parabolic subgroups such that

dlm(Lle(Lp)) = dlm(Up/[Up, Up])

A list can be found in Carter’s book [Car85, after Thm. 5.9.6|.

Remark 1.3.24. To summarise, the Bala—Carter parameterisation goes as follows. We
consider (L,PY) where P is a distinguished parabolic subgroup of L. Let U be the
unipotent radical of P and Cf, € Ucl(LL) be the unique unipotent conjugacy class such
that Cp, nU is open dense in U. Then, we associate the unipotent class C' = (CL)g to
the G-conjugacy class of the pair (L, PL).

In the other direction, for C' € Ucl(G), the steps go as follows.

1. Choose u € C.

2. Compute T a maximal torus of Cg(u) and set L = Cg(T). We may assume
without loss of generality that L is a standard Levi.

3. Find A € X(L, Ty), a co-character associated to u.

4. Associate to C' the G-conjugacy class of the pair (L, P¥), where P} is the canonical
parabolic of L associated to A.

This parameterisation has the drawback that it is inductive. Moreover, it is not
obvious which co-characters are associated to a unipotent element. This is rectified
thanks to the weighted Dynkin diagrams.

Weighted Dynkin diagrams

We first concentrate on the characteristic zero case. We let G¢ be a reductive group
defined over C with Borel subgroup B¢ and maximal torus T¢ € B¢ such that it defines
an isomorphic root datum (®(T¢), X (T¢), ®(Tc), X (T¢)) with base A(T¢) to the one
associated to (G, By, To). We identify A with A(T¢) as well as & with ®(T¢).

To each non-zero nilpotent orbit O, one associate an sly-triple {e, f,h} € gc == Lie(Gc)
such that e € O, by the Jacobson—-Morozov Theorem ([Car85, Thm. 5.3.2]). We may
further assume that a(h) > 0 for all simple roots a € A after Ge-conjugation of the
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1.3. Interesting conjugacy classes and their centralisers

triple {e, f,h}.
We then define the weighted Dynkin diagram associated to O as the map

do:A—1Z, do(a)=a(h),

that we extend linearly to a map on all roots of G¢. By convention, we set dyo () = 0 for
all a € . The weighted Dynkin diagram do defined above does not depend on the choice
of {e, f,h} up to conjugation. Moreover, two nilpotent orbits O and O’ have the same
weighted Dynkin diagram if and only if they are the same ([Car85, Prop. 5.6.8|). We
write Z(A, G) for the set of all the weighted Dynkin diagrams constructed as above.
We now come back to our algebraic group G. Notice that for d € (A, ®), the vec-
tor Ay = Y aen d(a)w, is such that for all roots a € ®

d(@) = {a, Aa),

where (, ) is the pairing between X(T¢) and X (T¢). From the remark after [Car85,
Lem. 5.6.5], we see that A\, € Z®, whence we obtain a co-character \; € X (T)).

This leads to the following bijection, see [Kaw86, Thm. 2.1.1], [Pre03, Thm. 2.7|
and |Tayl6, 3.22]. For A € X, we denote by g(\,2).e the unique open dense Lj-orbit
of g(\,2).

Theorem 1.3.25 (Kawanaka, Premet). Recall that p is good for G. Then there is a
bijection between the weighted Dynkin diagrams and the nilpotent G-orbits, sending a
diagram d € Z(A, @) to the orbit G - g(Ag,2) ey
Remark 1.3.26. The weighted Dynkin diagrams can be found in CHEVIE [Micl5| as a
field in the record of a unipotent class.

Lastly, we link the Bala—Carter classification to the one by weighted Dynkin dia-
grams. We define }

XS =09\ |de 2(A,®), ge G}.

For u € Gy,; we define X'S(u) as the subset of \ € )?g such that Wy, (u) lies in g(A, 2)yeg.

Lemma 1.3.27 (Premet, [BDT20, Lem. 3.6]). Let u € G be a unipotent element. Then,
the co-characters associated to u are exactly the co-characters in XS (u).

Centralisers of unipotent elements

We shortly give some indications on the structure of the centraliser of a unipotent
element u € G. The group Cg(u) is in general not reductive. However, its connected
component decomposes into Cg(u) = L(u) - R(u) where R(u) is the unipotent radical
of Cg(u) and L(u) is reductive. The fact that L(u) is reductive is shown through case
by case analysis, see for instance [Jan04, Prop. 5.11| for more references. These groups
can be better described thanks to the canonical parabolic associated to w.

Proposition 1.3.28 ([Jan04, Prop. 5.10]). Let u € Gy and P the canonical parabolic
associated to u, with Levi decomposition P =U x L. Then,

L(u)=LnCg(u) and R(u)=UnCg(u).
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Chapter 2

Representation theory of finite groups
of Lie type

In the previous chapter, we have seen that we can study finite reductive groups in a
generic way by considering complete root data. We now bring our attention to their
representations. In general, this is an extremely difficult problem, especially if we con-
sider modular representations. Therefore, we will mostly focus on the ordinary char-
acters. The decomposition matrix should then give us insight on the characteristic ¢
case. Firstly, we explain how to classify the complex-valued characters and then what
is known about their values.

Around seventy years ago, Green completely determined the character table of GL,(q)
for any prime power ¢ (|Greb5]). Since then, other series of finite reductive groups of
low rank have been considered. To treat finite reductive groups as one, we present in
Section 2.1 the theory developed by Deligne and Lusztig [DL76] and extended further
by Lusztig. We mainly refer to [Lus84a| and [Lus76]. By making use of the geometric
properties of G, they constructed certain virtual characters, called the Deligne-Lusztig
characters (see Definition 2.2.3).

From these, one deduces a partition of the irreducible characters of GG into the so-called
rational series, indexed by the G*-conjugacy classes of F'*-stable semisimple elements
in the dual group G*. The series corresponding to the neutral element 1 € G* (called
the unipotent series) is essential as all other series of G can be seen as unipotent series
for smaller groups. This is the Jordan decomposition of characters (Theorem 2.2.16).
Moreover, thanks to Lusztig we know a complete labelling of the unipotent characters,
and hence of all irreducible ordinary characters. This classification is the main content
of Section 2.2.

In the last section of this chapter, we present some of the well-known results on the
values of the characters as well as a short summary on what has been done at the time
of writing this thesis.

We keep the setting of Hypothesis 1: G is a connected reductive group over k with

Steinberg map I': G - G, T ¢ Bj is a maximally split torus in an F-stable Borel B
of G with associated root datum (X, ®, X, ®), base A and Weyl group W.

34



2.1. Deligne-Lusztig induction

2.1 Deligne-Lusztig induction

We want to study the representation theory of finite groups of Lie type in a generic way.
It means that we cannot rely on specific properties of a chosen finite group G¥. On
the other hand, all those groups come from the same algebraic group G, and thus we
would like to make use of the geometrical aspects. Grothendieck’s fonctions-faisceaux
dictionary brings us to look at G-equivariant (perverse) sheaves instead of class functions
of G. We give a little more explanations, motivation and references in Subsection 2.1.1.
When one investigates the representations of a finite group H, a very practical tool is
the induction process, which constructs representations of H from representations of its
subgroups. A simple example is the regular representation KH. It is the induction of the
trivial representation of the trivial subgroup and contains all the irreducible representa-
tions of H as direct summands.! However, it is often a difficult problem to determine
them.

In our case, the subgroups we want to consider are the F'-stable Levi subgroups, one
reason being that they are again connected reductive. We make this more explicit by
defining Deligne-Lusztig induction in Subsection 2.1.2.

Lastly, we recall properties of a particular case of Deligne-Lusztig induction, called
Harish-Chandra induction and which has the great advantage of working well with the
modular representations.

2.1.1 Quick motivation for /-adic cohomology

This subsection is not meant to give a detailed introduction to derived categories, equiv-
ariant sheaves or étale cohomology and we purposefully stay vague. Our goal is only to
motivate the objects appearing in the representation theory of finite reductive groups.

Equivariant sheaves

We start by recalling the definition of equivariant sheaves. For more information, we
refer the reader to [BL94]. Here all the sheaves we consider are sheaves of finite dimen-
sional A-modules, for A a ring. For Y a variety, the category of sheaves on Y will be
written Sh(Y").

Definition 2.1.1. Let H be an algebraic group over k (it can be finite) and Y an
algebraic variety over k£ on which H acts continuously. Let a: HxY — Y denote the
action of H and p : HxY — Y the projection on the second coordinate. We also
denote by pos : HxH xY — HxY the projection onto the second and third coordinates
and m : Hx H - H the multiplication in H. An H-equivariant sheaf on Y is the
datum of a sheaf F on Y together with an isomorphism of sheaves ¢ : a*F - p*F such
that the co-cycle condition holds:

Pz (1xa) ¢=m"g.

'Recall that K has characteristic zero and is “big enough” for H.
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Chapter 2. Representation theory of finite groups of Lie type

The category of H-equivariant sheaves is denoted Shg(Y").

The co-cycle condition implies at the level of stalks that for any g,h e H and x € Y,
the isomorphism ¢y, » @ Fgne 5 F, is the same as the composition Ohg © Pg.ha-
Moreover, for h e H, let 45 : Y — {h} xY - H x Y be the inclusion. Then, h*F =ia*F
is isomorphic to i;p*F = F via i;¢. So in some ways, the group H “acts on” F. Taking
global sections, we can see I'(Y,F) = F(Y) as a A[H]-module. Alternatively, if M is
a A[H]-module, then we may see it as an H-equivariant sheaf on Y by looking at the
constant sheaf M on Y.

Derived categories and Grothendieck group

The functor of global sections I'(Y, ) is only a left exact functor from the H-equivariant
sheaves on Y to the category of A[H]-modules. So, we instead compare the two derived
(bounded) categories.

The derived category D(%) of a category ¥ is a category whose objects are chain
complexes of objects of €. The subcategory whose objects are chains of complexes with
finitely many non-zero cohomology groups is called bounded and we denote it D?(%).
We get a total derived functor RI'(Y,-) : D(Sh(Y)) - D(A-mod), where we apply the
global section functor I'(Y,-) to each sheaf in the chain complex. If I* is an injective
resolution of a sheaf F on Y, we have

n oy o Ker (DY, 1)) - DY, I™1))
HURE(Y. 1)) = im(T(Y, I"1) - (Y, I"))

We might sometimes abuse notation and write RI'(Y,F) for RI'(Y,I*). Note that there
is also a way to define derived categories without taking injective resolutions. The precise
definition and the properties of derived categories can be found in [Gor21| and [Aub10].
Now, we could wonder how to get back from D*(A[G]-mod) to A[G]-mod. To do so,
we need to look at the Grothendieck groups. The Grothendieck group K(%) of
an additive category % can be seen as the free abelian group whose elements are the
isomorphism classes of objects in ¥ and where the group law is given as follows: we
write [A] + [B] = [C] if there is a short exact sequence in €

1-A-C—-B->1.

For instance, the Grothendieck group of the category of K[G]-modules is the group Zirrg (G)
of virtual ordinary characters of G.

For the Grothendieck group of the derived category DP(%), the notion of short exact
sequence is replaced by the notion of distinguished triangle, i.e. any morphism of chain
complexes A* — B* can be extended to a distinguished triangle

A* - B* - C* - A[1]".

Here A[1] is the complex shifted by 1, that is A[1]™ = A™*!. In that case, the Grothendieck
group Ko(D?(%)) is the abelian group of isomorphism classes of objects in D*(%’) where
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the group law is given by distinguished triangles.
In general, there is an isomorphism ([KS94, Ex. 1.27])

Ko(D*(€)) > Ko(€)
[A%] = Y (-1)'[H(A%)]

i€,

with inverse sending the object [A] € Ko(%) to [A®] where A = A and A =0 for all ¢ # 0.

Etale cohomology and /-adic cohomology

To be exact, we do not exactly consider the derived category of G-equivariant sheaves
for the Zariski topology. Indeed, this topology does not behave like complex topology
for cohomology, because it is too coarse. We need to add open sets. We will therefore
use étale sheaves and étale cohomology introduced by Grothendieck.

In the classical sense, sheaves on a topological space Y are functors from the category
of open sets of Y (where the morphisms are the inclusions) to the category of finite
dimensional A-modules. An étale sheaf on a scheme? Y is a functor from the category
of étale morphisms of finite type from another scheme to Y. More details can be found
in [Aub10] and in the appendix of [Car85]. We denote by Sh*(Y") the category of étale
sheaves on Y.

If an algebraic group H over k acts on Y continuously, we could define H-equivariant
(étale) sheaves and then take the derived category. However, this is not necessarily well-
defined (|[BL94, 0.4]). Therefore, we will rather look at the H-equivariant complexes in
the bounded derived category of étale sheaves on a scheme Y and then take the derived
functor of global sections.

Assume that our fixed group G (from Hypothesis 1) acts on Y continuously. Notice
that to get different AG-modules, we could either change the sheaf for a fixed variety Y
or change the variety itself. For the methods developed by Deligne and Lusztig, we will
often change the scheme Y but “keep” the constant sheaf A.

For instance, we will look at the case where A is a field of characteristic zero. However,
étale cohomology does not work well when Y is defined over a field whose characteristic
divides the characteristic of A. We have to take direct limits of cohomologies of the
constant sheaf Z/¢"Z and then tensor over the (-adic integers to get the cohomology with
coefficients in Q,. We then extend scalars to get sheaves over the algebraic closure Q,.
Lastly, we prefer to consider schemes satisfying nice properties (proper schemes). In
general, we can embed any scheme Y in a proper scheme Y. We then extend by zero the
sheaf on Y to obtain a sheaf on Y and we look at its cohomology instead. For F an étale
sheaf on Y, we write H?(Y,F) for this construction. This is called the (étale/¢-adic)
cohomology with compact support. Similarly, we set R[.(Y,-) = R[(Y,-). If YV
is a nice enough scheme, that is separated and of finite type (for instance a variety)

2For simplication, we may think of scheme as a generalisation of varieties. In particular, any variety
is a scheme.
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then H*(RI.(Y,Q,)) is a bounded complex (|Car85, Appendix (g)]). Moreover, the

cohomologies Hi(RI'.(Y,Q,)) are finite dimensional. For more accurate definitions, we
advise the reader to read the appendix of [Car85|.

To summarise, we first choose a variety Y on which G acts continuously. We apply the
global sections functor and we get RI'.(Y,A) € D*(A[G]-mod). The finite sum

S (-1)'[H'(RT(Y,A))]

i€Z,
is then a virtual A[G]-module in the Grothendieck group of A[G]-mod.

Remark 2.1.2. So far, we still have not taken into account the topology of the algebraic
group G. The idea is the following. Since we want to study A[G]-modules, we could
look at the category of G-equivariant constant sheaves on a variety Y and take global
sections. Alternatively, it suffices to consider the category of G-equivariant sheaves on a
algebraic variety consisting of only one element. Instead of G-equivariant sheaves on the
point, we look at G-equivariant sheaves on G, but where the action of G on G is given
by F-conjugation (g.h = ghF'(g)~"! for g,h € G). These two categories are equivalent by
the Lang-Steinberg theorem 1.2.4, see for instance [Ete23, below Cor. 1.2.2]. We give an
intuitive argument on the level of stalks. If F is a G-equivariant sheaf, then all its stalks
are isomorphic since the Lang-Steinberg map is surjective. Moreover, on a given stalk,
we also have an action of G. Consequently, by looking at F; we get a G-equivariant
sheaf on the point.

This closes our general imprecise remarks.

2.1.2 Definition and first properties of Deligne—Lusztig induc-
tion

In this section, we recall the powerful idea of Deligne and Lusztig on which a major part
of the construction of representations of finite reductive groups relies. In their pioneering
article [DL76], they generalised the process of induction by taking another representation
than the regular one. Let M < H be two finite groups and V' a A[M ]-module. Then the
induction is defined as follows:

Ind}; (V) = A[H] ®apar V-

Instead of A[H], we could choose any A[H ]-module-A[M], that is a module with a left
action of A[H] and a right action of A[M]. In our case, the ambient group is G, our
finite group of Lie type. Deligne and Lusztig chose for the subgroup the fixed points T of
an F-stable maximal torus T. For the A[G]-module-A[T], they constructed a module
coming from a variety on which both G and T act continuously. Later, in |Lus76],
Lusztig extended this process to replace the torus T by any F-stable Levi subgroup.
We mostly follow [DM20, Chap. 9], see also [Dud18].
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Definition 2.1.3. Let P = U x LL be a Levi decomposition of a parabolic subgroup
of G, such that L is F-stable. The (generalised) Deligne—Lusztig variety associated
to L € P is defined as follows:

Yicp = {gU e G/U| g F(9) e UF(U)}.
Remark 2.1.4. Observe that
Yicp 2 {g€ G| g ' F(g) e F(U)}/(UnF(U)),
see [DM20, Def. 9.1.1]. Moreover, if P is F-stable, then F(U) = U and

Vier = {gU e G/U| g7 F(g) € U}
={gUeG/U| F(gU) = gU} = (G/U)"
= G/U7

where we can apply Remark 1.2.6 for the last line since U is connected.

Note that G and respectively L act on G/U by left (respectively right) multiplication
and it induces an action of G and L on Yicp.

Definition 2.1.5. Let P = UxL be a Levi decomposition of a parabolic subgroup of G,
such that L is F-stable. The Deligne—Lusztig induction functor Z{, is given by

Ifp : D’(A[L]-mod) - D°(A[G]-mod)
L
C = RT'.(Yrep, \) ®ar) C.
If the ambient group is clear, we may write Zycp.

Remark 2.1.6. The Deligne-Lusztig induction functor is usually denoted with an R.
However, to emphasize the similarities with induction of characters (and parabolic in-
duction of character sheaves in Definition 3.2.1) we chose the letter Z.

Remark 2.1.7. We rewrite the Deligne-Lusztig induction functor in different ways.
Let V be a A[L]-module, V* an injective resolution corresponding to the constant
sheaf M on Yrcp and 7 : Yoep = Yrcp/L be the quotient map. Then by [BR03, Lem. 3.2],

ILQP(V.) = RFC(YLQP/L, 7T,(.A ® W*V).

Alternatively, we could look at the induction of sheaves which are equivariant for the
action given by F-conjugation, c.f. Remark 2.1.2 . We look at the following varieties

L PrP)-L G
where L acts on L by F-conjugation, P acts on PF(P) by F-conjugation and lastly G

acts on itself also by F-conjugation. The map « is given by the Levi decomposition of
the parabolic P = U x L and the map § by inclusion. Let V be a A[L]-module, then
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we can consider the constant sheaf V' on the point, and the corresponding L-equivariant
sheaf on L for the action by L-conjugation by Remark 2.1.2. Let V be the correspond-
ing L-equivariant complex of sheaves in the bounded derived category of Sh(L). Then,
the complex *a,V is G-equivariant for the F-conjugation and corresponds to a com-
plex I(V) of G-equivariant sheaves on the point, hence a A[G]-module. By [Ete23,
Thm. 3.3.16], the above functor and the Deligne-Lusztig induction functor are equiva-
lent and give isomorphic modules.

The induction functor has a left adjoint functor, called the Deligne—Lusztig re-
striction functor, that we denote by *RSQP. It has an explicit description in terms of
a derived Hom-functor, see [Dud18, § 3.1].

The case where A =Q,

We list a few properties when A = Q,. In that case, it is often sufficient to work
with ordinary characters y € irr@/(G) to describe the representation theory of GG, since

the group algebra Q,[G] is semisimple. Using the Grothendieck group, we now define
Deligne—Lusztig induction on characters.

Definition 2.1.8. Let P = UxL be a Levi decomposition of a parabolic subgroup of G,
such that L is F-stable. The Deligne-Lusztig induction of characters I, is given
by

IEp: Lirrg, (L) > Zirrg,(G)

o (o0 10 T G0}

By [DM20, Prop. 9.1.6],
IE00000) = 1 3T (0.0, DD HR Oer G0,
The numbers
Z(01) Yiaw) = T (0.0, £ HCRE (Vi ©) |

are called Lefschetz numbers and are integers. The corresponding Deligne—Lusztig
restriction of characters is denoted by *RSQP.

The Deligne-Lusztig induction functor is transitive.

Proposition 2.1.9 ([DM20, Prop. 9.18]). Let Q € P be two parabolic subgroups of G
with respective Levi subgroups M € L. Assume that both M and L are F-stable. Then

G .G L
IMgQ =rep © IMgLnQ-
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2.1. Deligne-Lusztig induction

Like for the usual induction in finite groups, we can write a Mackey-like formula
for the Deligne—Lusztig induction and restriction of characters. If this formula holds, it
implies that I&P is independent of the choice of the parabolic subgroup P (see above
[GM20, Thm. 3.3.8] and [DM91, Thm. 5.3.1]). We might sometimes write [& instead
of I& . However, the Mackey formula is not proven in full generality, see [GM20,
Thm. 3.3.7]. Nonetheless it holds for example if P is a Borel subgroup and L a maximal
torus. We will focus on the other special properties of this case in Section 2.2.

2.1.3 Harish-Chandra induction

In this subsection, we consider the special case where not only the Levi subgroup but also
the parabolic subgroups P are F-stable. We also assume that A is a field of characteristic
different from p. In particular, we can choose A € {K, k}. Historically, this construction
was introduced before Deligne—Lusztig induction (in [Har70]) and the second one can be
seen as a generalisation of the special case.

Definition 2.1.10. Let P = U x L be a Levi decomposition of an F-stable parabolic
subgroup of G. The Harish-Chandra induction is given as follows:

ZEp : A[L]-mod - A[G]-mod
V e Ind$ o Inf? (V).

Observe that by Remark 2.1.4, it makes sense to use the same symbol for the
Harish-Chandra induction and the Deligne-Lusztig induction. Indeed, we can con-
struct a canonical isomorphism between IndfoInf] and A[G/U] ®pz) - Similarly
as for Deligne-Lusztig induction, we denote *R&., for the adjoint functor, given by
- ®a[c] A[G/U], see [GM20, Def. 3.1.5].

We gather some results following [GM20, Sections 3.1, 3.2].

Since tensor product preserves projectivity we immediately get the following fact.

Corollary 2.1.11 (|[GM20, Cor. 3.1.6]). The Harish-Chandra functors &y and *RE p
are exact and preserve projectives modules.

In this case, there is a Mackey formula ([GM20, Thm. 3.1.11]). The Harish-Chandra
functors are in fact independent of the parabolic containing a fixed Levi and we write
simply ZF and *RE.

By Proposition 2.1.9, the Harish-Chandra induction is transitive. The previous prop-
erties lead to the following definition.

Definition 2.1.12. Let L be a Levi subgroup of G contained in an F-stable parabolic
subgroup and V' an irreducible A[L]-module. We say that the pair (L, V) is cuspidal
if there is no F-stable Levi subgroup M of G such that M ¢ L and no A[M ]-module
V7 such that

(V' "Ry (V) #0.
For a cuspidal pair (L, V'), we define the Harish-Chandra series &, (G, (L, V")) to be
the set of all simple A[G]-modules V' such that
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1. the Levi subgroup L is minimal with *RE (V") # 0 and
2. the module V is a composition factor of *RE (V).

Note that by [GM20, Prop. 3.1.16], these conditions are equivalent to V' being con-
tained in the socle of ZZ (V).
The Harish-Chandra series &) (G, (L, V')) depends only on the G-conjugacy class of (L, V).
Moreover, it is non empty and it gives a partition of the isomorphism classes of simple
A[G]-modules, see [GM20, Cor. 3.1.17|. Lastly, the series &\ (G, (L, V")) is in bijection
with the set of simple modules of the Hecke algebra associated to (L,V’) up to iso-
morphism [GM20, Thm. 3.1.18]. We make this more explicit in the case where A is of
characteristic zero.

The case where A of characteristic zero

We detail a parameterisation of the Harish-Chandra series in terms of the group algebra
of a (comparatively) small finite group associated to the cuspidal pair.

Definition 2.1.13 (|GM20, Def. 3.1.27|). Let (L;, V') be a cuspidal pair for G, with I < A.
The relative Weyl group of L; is given by

WS (L) = Ng(L;)/L;.
The relative Weyl group of L; is then
WY(L;) = Ng(L;)/L;.
The relative Weyl group of (L;, V) is
WE (L, V) ={neNgL;)|ad(n)(V) 2arr,; V}/Lr c WE(Ly).
We may omit the superscript & when the ambient group is clear.

Note that despite the notation, the relative Weyl group W& (L;, V') is not a Coxeter
group in general. If L is any Levi subgroup, then there are g € G and I ¢ A such
that L = LY. We define the relative Weyl groups of L by conjugating the one for L; by g.

Theorem 2.1.14 (Howlett—Lehrer Comparison Theorem, [GM20, Thm. 3.2.5, Thm. 3.2.7]).
Assume A is a field of characteristic zero. Let (L,V') be a cuspidal pair for G. For
any Levi subgroup L < M < G, there is a bijection Hﬁ/fv from Trrxy(WM(L,V)) to
EN(M, (L, V). Moreover, the bijections can be chosen such that the following diagram
commutes for each such M. Here the left arrow is the usual induction in finite groups.

ZIrry(WE(L,V)) _ fv (G, (L,V))

IndT TII\G/I

ZImp (WM (L, V) ——— (M, (L,V))
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Using the Harish-Chandra restriction and induction, we define a new self-adjoint
map on the space of class functions.

Definition 2.1.15 (|[GM20, Def. 3.4.1]). Let A’ be the set of Coxeter generators of W ¥
(in bijection with the F-orbits of A). The Alvis—Curtis duality operator Dg is defined
as follows:

Dg : Zirrg (G) - Zirrg,(G), Dg = > (—1)'”[& o *RE.
IcA!

For any x, ¢ € irrg, (G), the operator Dg is self-adjoint:

(Da(x),¢) = (X, Da(v)).

Moreover Dg o Dg is in fact the identity, |[GM20, Prop. 3.4.2, Cor. 3.4.5|. Lastly, it
permutes irreducible characters up to a sign.

Theorem 2.1.16 (|GM20, Prop. 3.4.7, Thm. 3.4.8|). Let x € &5,(G,(L,V)) for a
cuspidal pair (L,V') of G. Then erDa(x) € &5,(G, (L,V)) is irreducible. Here e, is
a sign depending only on L, ([GM20, Def. 2.2.11]). Furthermore, if WS (L, V) is a
Cozeter group (for instance if Z(G) is connected), then for any 1 € rrg, (WE(L,V)),

DG(Hﬁv(w)) = ELHE,V(¢ ® €)

where € is the sign character of W& (L, V).

2.2 Parameterisation of the ordinary characters

The Deligne-Lusztig induction enables us to construct many different A[G]-modules.
In fact, we can already deduce a lot of information on the irreducible representations
by considering only the induction from an F'-stable maximal torus. Similarly as for
Harish-Chandra induction, we get a partition of Irra (G) into the so-called Lusztig series,
when A is a field of characteristic zero. One series, the unipotent series is of particular
interest. Any other one is in bijection with the unipotent series of a smaller group.
Furthermore, we see in Subsection 2.2.2 that the unipotent series can itself be partitioned
and parameterised.

Hypothesis 2.2.1. For the rest of this chapter, we always assume that A = Q,.

Notation 2.2.2. For A a finite group, irr(A) denotes the set of irreducible characters
of A over Q,. For our purposes, we may identify the abstract field Q, with C and might
sometimes do so.
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Chapter 2. Representation theory of finite groups of Lie type

2.2.1 Lusztig series

In the characteristic zero case, it is sufficient to consider characters instead of modules
by Maschke’s theorem.

Definition 2.2.3 (|[DL76|, [Lus76]). Let T be an F-stable maximal torus and B a
Borel subgroup containing T. Let ¢ € irr(7"). The virtual character IS 5(0) is called a
Deligne—Lusztig character.

Since the virtual character I 5 (6) is independent of the Borel subgroup, we write I$ ().
These virtual characters allow us to get all the irreducible characters of G.

Theorem 2.2.4 (|[GM20, Cor. 2.2.19|). For each x € irr(G), there ezists a mazimal
torus T of G and a character 0 € irr(T), such that

(x. I (0)) # 0.
Moreover, we know when two Deligne—Lusztig characters share some constituents.

Proposition 2.2.5 (|GM20, Cor. 2.2.10|). Let T and T’ be F-stable mazimal tori of G
and 0 € irr(T), 0" € irr(T"). Then IS(0) = IS(0") if and only if there is g € G such
that gTg~™' =T and O o ad(g) = 0. Moreover, if IS (0) = IS.(0), then

(18(6), IS(8))) = 0.

We now want to define the Deligne-Lusztig characters uniquely in terms of the data
we have fixed in Hypothesis 1, that is the maximally split torus Ty of G and the corre-
sponding Weyl group W.

Let T be an F-stable maximal torus of G. There exists g € G such that gTqg™' = T. No-
tice that g7'F'(g) € Ng(Ty). If t = gtog~! € T is fixed by F, then F(ty) = F(g) 'gtog™ F(g).
Let w=g'F(9)Ty and fix a representative w € Ng(Ty) of w. We write

To[w] = {te Ty | F(t) = 'tw}.

We clearly have g-'Tg = To[w]. We say that T is a torus of type w.
For any 0 € irr(To[w]), we write

I =I5 (¢ 0 ad(g)),

see [GM20, Lem. 2.3.19] for more details. By Proposition 2.2.5, if I = I?, then the
pairs (w, ) and (w’,0") are F-conjugate by an element of . Observe that all Deligne—
Lusztig characters can be written as I?, for some w € W and 6 € irr(Ty[w]).

(Geometric series

We would like to partition the set of irreducible characters of G using the Deligne-Lusztig
characters. We first note the following.
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Since we are considering virtual characters, there might exist a character y € irr(G)
such that (I£(0),x) # 0 and (I£(0"),x) # 0 even if (I$(0),1$(0")) = 0. Therefore,
we cannot simply define a partition of irr(G) by looking at the constituents of each
Deligne—Lusztig character.

Instead, we define a partition by saying that two characters y, x’ are in the same equiv-
alence class if there exist x = X0, X1,---,Xn = X' € irr(G) and Deligne-Lusztig charac-
ters I§ (6;) for 1 <4 <n such that (x;1, I$ (6;)) # 0 and (x;, I§ (6;)) # 0 for 1 <i<n. In
other words, we construct a graph DL(G) with vertices irr(G), where two vertices are
connected by an edge if they belong to the same character £ (6). Then the equivalence
classes are the connected components of the graph.

There is another criterion to partially describe these equivalence classes, which gener-
alises Proposition 2.2.5. We define the norm map for an F-stable maximal torus T ¢ G
and d € Zsq:

Npap:T =T, twtF(t)F7(t).

Theorem 2.2.6 (Exclusion Theorem [GM20, Thm. 2.3.2|). Let T and T’ be F-stable
mazimal tori of G and 6 € irx(T), 0" € irr(T"). Then if IS(0) and I$(0") have an irre-
ducible character of G in common, there exist d € Zsy and g € GF* such that ¢Tg~' = T"
and 0o Npa poad(g) = 0'oNpa p. We then say that (T,0) and (T’,0") are geometrically
conjugate.

Note that this result translates to a condition on the pairs (w, ) for every w e W
and 6 € irr(To[w]).

Definition 2.2.7. We say two characters x,x’ € irr(G) are in the same geometric
series if there exist two geometrically conjugate pairs (T,6) and (T’,6’), where T
(resp. T’) is an F-stable maximal torus with 6 € irr(T") (resp. €’ € irr(7")) such that
(x I§(9)) # 0 and (x', I§(0)) # 0.

Remark 2.2.8. If F' is the standard Frobenius, then since k = Fp = Unez., Fpr, it is clear
for any g € G, there is d € Zso such that g € GF’. So in some ways we could say that the
pairs (T,0) and (T',0") are conjugate over G, hence the term geometric.

We now give another description of the geometric series. Let X\ € X and n a positive
integer prime to p. We define the following sets

Ln={weW | o F-wAenX},
Wyn={weW|[A-wenX}
and WY, ={weW |A-w)enZd}.

In general, the first and the second sets are not Coxeter groups. If the first one is not
empty, then it is a coset of the second one which is a group (|[GM20, Lem. 2.4.12]).
However, the last group is indeed a Coxeter group with root system

Dy, ={aed]|s,ecWy,},

see [GM20, 2.4.13]
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Remark 2.2.9. If Z(G) is connected, W), is a Coxeter group and W, = Wy . [DM20,
11.2.1].

Recall that we have fixed an isomorphism ¢ : (Q/Z), - k* (1.1). Taking the expo-
nential and identifying Q, with C, it gives a fixed isomorphism

(2.1) 11k 5 py = {zeQ, | 2" = 1for some n € Zsyg,p + n}.

Assume that 2, ,, # @ and let w € £, ,,. We consider A, = %()\ o F'—w.\). It restricts
to a character A\, : To[w] = k* and composing with ¥, we get 0, =10 A, € irr(To[w]).
Observe that for any n’ > 1, we have 2, = Z, . Moreover, the pairs (A, n)
and (n'A,n'n) give rise to the same character of Ty[w], for a fixed w € 2 ,,.

As in [Lus84a, 6.1], we say that the pair (A, n) is indivisible if there is no integer n’ > 2
such that A e n’ X and n’ divides n.

We thus get another description of the geometric series.

Theorem 2.2.10 ([DL76, 10.1],[Lus84a, 6.5]). Let (A\,n) € X x N be an indivisible pair
such that 2, #+ @. Then the set

En(G) = {x eirr(Q) | (1%, x) # 0 for some w e 25, }

1S a4 geometric series.
Moreover, if (N,n") € X xN is another indivisible pair, we have &\ ,(G) = & (G) if
and only if n=n' and there is w e W such that N —w. A enX.

Let w e W, 6 € irr(To[w]) and n be an integer prime to p such that 6" = 1y ).
Then by [GM20, Lem. 2.4.8|, there is A € X such that w e 2, ,, and io A, = 0. Moreover,
if M € X also satisfies these conditions, then A’ —w.\ e nX. As a result, all geometric
series are of the form &) ,(G) for some indivisible pair (A, n).

If we write A(G, F') for the set of indivisible pairs as in the above theorem 2.2.10, then

irr(G) = U En(G).

(An)eA(G,F)

If Z(G) is connected, then we get an even better description of &),(G). We make it
more explicit in Subsection 2.2.2.

We give yet another parameterisation of the geometric series, this time in terms of
semisimple conjugacy classes of the dual group of G. Let (G*,F*) be a connected
reductive group with a Steinberg endomorphism in duality with (G, F) as in 1.2.2.
Following [GM20, Sect. 2.5], we explain Lusztig’s idea (|Lus84a, 8.4]) of associating to
each pair (A\,n) € X x N a semisimple element of G*. Let T be the maximally split
torus in G* which is in duality with Ty. Using the map 1.2, we set

X xN-T;

~ ]_
(/\,TL) — ZTS(Z ® /\) = t>\7n.
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This map induces a surjection between A(G, F') and the F*-stable G*-conjugacy classes
of semisimple elements in G*. Moreover, two indivisible pairs (A,n) and (A, n’) are sent
to the same conjugacy class if and only if n =n’ and X' —w.\ e nX for some w e W, see
[GM20, Prop. 2.5.5]. For s € Ty such that (s)g+ is F*-stable, there is (A\,n) € A(G, F)
such that (s)g* = (tAn)g+- It is then well-defined to set &(G,s) = &)\ ,,(G), and we get

irr(GQ) = |?| E(G,s),

where s runs over a set of representatives of F*-stable semisimple conjugacy classes
in G*.

Remark 2.2.11. The map above induces a map from the set of pairs (w, ) where w e W
and 0 € irr(To[w]) to the F*-stable conjugacy classes of semisimple elements in G*. As

explained after Theorem 2.2.10, we associate a pair (A, n) to (w,#), whence a semisimple
element sy =1, ,. By [GM20, Lem. 2.5.7|, this map is well-defined.

Combining what we have seen after Proposition 2.2.5 and in Remark 2.2.11, we
associate to each G-conjugacy class of pairs (T,0) (where T is a maximal torus of G
and 0 € irr(T)) a G*-conjugacy class of pairs (T*,s) where T* is an F*-stable maximal
torus of G* and s € (T*)f", see [GM20, Cor. 2.5.14]. This map is in fact a bijection.
Therefore, we can set

IS.(5) = IS(0).

Rational series

We now come back to our initial idea of partitioning irr(G) by the connected components
of the graph DL(G). As a matter of fact, this partition is actually easier to state when
we use the notation I, (s).

Definition 2.2.12. Let s € G* be a semisimple element. The set &(G,s) consists of
all x € irr(G) such that (IS (s),x) # 0 for some F*-stable maximal torus T* of G*
containing s. It is called a rational series or a Lusztig series of characters of G.

Theorem 2.2.13 (|[Lus77, 7.6|). If s1,82 € G* are semisimple and conjugate over G*,
then &(G,s1) = &(G, s2). Moreover,

irr(G) = |?| &(G,s),

where s runs over a set of representatives of semisimple conjugacy classes in G*. More-
over each rational series corresponds to a connected component of the graph DL(G).

For a detailed proof, we refer the reader to [GM20, Thm.2.6.2 and Rmk. 2.6.19]. Note
that each geometric series is a union of rational series. For a semisimple element s € G*,
we set

E(G,s)=|]&(G,1),
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where t runs over a set of representatives of the semisimple G*-conjugacy classes of F*-
stable elements in (s)g+, see [GM20, Rmk. 2.6.3]. In particular, if Z(G) is connected,
then geometric and rational series coincide.

We explain how Deligne-Lusztig induction interacts with rational series.

Proposition 2.2.14 (|[GM20, Prop.3.3.20]). Deligne—Lusztig induction preserves ratio-
nal series. Therefore, Harish-Chandra series are unions of rational series.

Remark 2.2.15. Note that the Alvis—Curtis duality operator fixes rational series, c.f.
[GM20, Cor. 3.4.6].

Jordan decomposition of characters

One astonishing result about the representation theory of finite reductive groups is
that a lot of the information we want is concentrated in a unique rational series. It is
summarised in Theorem 4.23 of Lusztig’s book on characters of finite reductive groups
[Lus84a].

Theorem 2.2.16 (Jordan decomposition of characters). Assume that Z(G) is con-
nected. Let s € G* be a semisimple element. Let H = Cg«(s)(= Cg.(s)). Then there is
a bijection

&(G.s) <> E(H,1), X< Xu

such that for any F*-stable mazximal torus T* ¢ H, we have

<ITG*(S)7X> = €G€H<I’}‘{*(1T*)7 Xu)

Here eg,enq are signs which can be read of the order of G, respectively H ([GM20,
Def. 2.2.11]).

This bijection is not unique, but can be made so by requiring additional condi-
tions ([DM90]). Moreover, a similar result holds when Z(G) is not connected ([Lus88|,
[Lus08]).

We write Uch(G) = &(G,1) and we call it the set of unipotent characters of G.

2.2.2 Parameterisation of the unipotent characters

By Theorem 2.2.16, we can now focus our attention on the unipotent characters. From
Theorem 2.1.14, we could envisage that the Weyl group W might play a role. We thus
start by recalling various properties of the characters of W. In general, there should be
more characters in Uch(G) than characters of W as there might be characters coming
from IS (1t) where T is not included in an F-stable Borel subgroup. Nevertheless,
using the notions stated for the Weyl group, we define families of unipotent characters
and state another prodigious aspect of [Lus84a, Theorem 4.23]. We will mostly follow
[GM20, Chap. 4.1, Chap. 4.2].
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Families of characters in the Weyl group

We describe a few notions that will help us split the irreducible characters of a Weyl
group W into families.

Definition 2.2.17. We define the a-invariant inductively. If W = {1}, then we
set ay,, = 0. Assume W # {1} and that the a-invariant is defined for any character
of a proper parabolic subgroup of W. Then, for any ¢ € irr(W), we set

ay, = max{ag | ¢ € Irr(Wr) for some I ¢ A and (Indyy, (¢),v) 0}

and

where S is the set of reflections of W. Lastly, we set
ay = max{a,, al, — wy}.
Here, ¢ is the sign character of W.

Using the a-invariant, we recursively define a partial order on irr(1') which induces
an equivalence relation.

Definition 2.2.18. We define inductively an order relation < on irr(W). If W = {1},
then 1y < 1. Assume W # {1} and the order < is defined for any proper parabolic sub-
group of W. Let ¢, 1’ € irr(W'). We write ¢ < 1)’ if there is a sequence 1) = 1y, ..., ¥, = ¢’
such that for all 1 < ¢ < m, there are I; ¢ A and ¢;, ¢! € irr(W,) with ¢; < ¢} such that
either

(Ind%i (i), %i1) #0, (Ind%i (¢7),%i) #0 and  ag =ay,,
or
(Ind%i (¢i),e1i) # 0, (Ind%i (¢7),eti1) 20 and  acy = Ay,

Each equivalence class is called a family of irr(W).

Note that if ¢ < ¢, then ay < ay, ([GM20, Prop. 4.1.19]). As a result, ay is constant
on families. We now consider another invariant.

Definition 2.2.19. For ¢ € irr(WW), the b-invariant b, of ¢ is defined as the smallest
integer n € Zs; such that ¢ occurs in the character of the nth symmetric power of the
natural representation of W.

As the a-invariant is defined inductively, we consider what happens to the b-invariant
after induction.

Proposition 2.2.20 ([Lus92, 10.2a][Lus79, §3|). Assume that W' is a subgroup of W
generated by reflections. For each 1’ € irr(W') and each ¢ € icr(W), if (¢, Indyy(¢")) # 0,
then by > by. Moreover, there exists a unique 1 € irr(W) such that (1, Indyy (¥")) = 1
and the b-invariants of 1 and 1" agree. The character v is called the j-induction of 1’
and denoted 33y, (¢").
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We now link the a- and the b-invariants.

Proposition 2.2.21 ([GM20, Prop. 4.1.20|, [Lus79, Prop. 4|). Let ¢ € irr(W). We
always have ay < by. If ay = by, we say that ¢ is special. There is exactly one special
character in each family. Moreover, if W' is a parabolic subgroup of W then the j-
induction from W' to W of any special character is special.

We lastly consider how the Steinberg endomorphism F' of our group G interacts with

the families of the Weyl group. The following discussion can be extended to any Coxeter
group automorphism.
Recall that F' acts on W, hence on the set of characters of W. We observe that F
preserves the a- and the b-invariants, as well as the order <. In particular, it sends
families to families and special characters to special characters. Moreover, the F-stable
families are in fact F-fixed.

Proposition 2.2.22 ([Lus84a, 4.17]). Assume that F is ordinary. If F# < irr(W) is an
F-stable family, then all elements of % are F-stable.

Remark 2.2.23. Lusztig determined explicitly the families of irr(1). From this, he was
able to state and prove the two previous propositions. However, there is so far no proof
which does not rely on case by case analysis.

Families of unipotent characters

We describe a classification of Uch(G) into families. Firstly, we can restrict our discus-
sion to G simple of adjoint type, see |[GM20, Rmk. 4.2.1|. For instance, there exists
a Steinberg map F : G/Z(G) - G/Z(G) which commutes with F after taking the
quotient map 7 : G - G/Z(G). Then by [DL76, 7.10] the following map

Uch((G/Z(G))") — Uch(G), prpom

is a bijection.

Hypothesis 2.2.24. For the rest of this subsection, we assume that G is simple
adjoint.

We now describe a partition of Uch(G) into families. Recall that

Uch(G) = {x € irr(G) | (]iTO[“’],X) # 0for some w e W}.

We then consider combinations of I9” so that they are this time indexed by the irre-
ducible characters of W or rather of W = Wx < F >, to take into account the action
of F on W. For ¢ €irr(W) which is F-stable, we choose an extension ¥ of 1 to W such
that ¢(w) € R for all w € W. Such an extension exists by [Lus84a, 3.2, 14.2]. We now
define the almost character associated to ¢ as

1

1
R:=—— 3 g(w) Lo,
v |W|w;v

20



2.2. Parameterisation of the ordinary characters

By [Lus84a, Prop. 3.9, for ¢, ¢’ € irr(W)F,
(R Ry} = (1, 0") = 0y

Now, similarly as with Deligne-Lusztig characters, we define a graph with ver-
tices Uch(G), where two vertices are connected by an edge if they belong to the same

almost character Rj. The connected components of the graph are called the families
of Uch(G).

Remark 2.2.25. The Alvis—Curtis duality sends families to families of unipotent charac-
ters [GM20, Prop. 4.2.8|.

Remark 2.2.26. We can define almost characters for any geometric series & ,(G), by
extending the definition. Fix wy € Z,, the unique element of %, , of minimal lengtl@
(IGM20, Lem. 2.4.14]). For v e irr(Wy, ) which is F-stable, we fix a chosen extension ¢

of 9 to WML such that @(w) € R for all w e W, ,. The almost character is the following

1
|W)\7n|

R; = S (w) Lot

wEWA’"

The next question is to understand the numbers

<R1Z;7X>

for any v € irr(W)¥ and y € Uch(G). Note that they might depend on the choice of
the extension ¢). There are at most two possibilities such that 1)(w) € R for all w € W,
since F-extensions are unique up to a root of unity ([GM20, Prop.2.1.14]). We fix one,
following [LuCS4, 17.2|. It is called the preferred F-extension of ).

To each family .# of irr(W), we define the family .% which consists of all irreducible
characters of Wx < F' > [ < F¢ > such that their restriction to W belongs to .%. Here ¢
denotes the order of the action of F' on W.

If F'is ordinary, two characters ¢, ¢’ € irr(W)F are in the same F-stable family if and
only if the constituents of the almost characters R, R, lie in the same family (|GM20,
Prop. 4.2.3]). Thus, there is a bijection between the set of families of the Weyl group
and the set of families of Uch(G). This means that for many questions, we can consider
each family individually, in particular to compute the values <R@Z7 X)-

In [Lus84al, Lusztig described in an extraordinary way each family % of Uch(G). To
each family %, he associates a finite group Ay, that he called the canonical quotient.
With the help of these groups, he could label all the characters in a given family as well
as compute the numbers (Rd, X). Before recalling his theorem, we need to introduce a
little more notation.

Definition 2.2.27 (Lusztig’s non abelian Fourier transform). Let A be any finite
group. We define M(A) as the set of A-conjugacy classes of pairs (a,¢) with a € A
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Chapter 2. Representation theory of finite groups of Lie type

and ¢ € irr(Ca(a)). We write [a, ¢] for the conjugacy class of (a,¢) as above. We also
define a pairing as in [Lus79, § 4]:

[, M(A) x M(A) > C
([a, 9], [b,4])

1
by “14714).
CA@CAD)] o 1, SO0 )

Let A be another finite group such that A is a normal subgroup of A and A/A is cyclic

of order ¢ € Z, with a generator A’ ¢ A, a coset of A. The set M(A c A) consists of
all A-conjugacy classes of pairs (b, 1) € A xirr(C;(b)) such that C;(b) n A’ # & and the
restriction of ¢ to Cy(b) is irreducible.

Lastly, the set M(A ¢ A) consists of all A-conjugacy classes of pairs (a,¢) € A’ x irr(Cy(a)).
We get a new pairing induced by the one in M(A):

{,}: M(AcA) x M(Ac A) > C
([a, ], [b,]) = ¢{[a, 9], [b, 91},

where ¢ is the inflation of ¢ to C;(c).

Remark 2.2.28. Observe that p. = {£ € Q, | € =1} acts on M(Ac A) as follows: for
each £ € fi., we let € : A — C such that e is the trivial character on A and ec(a) = x for
each a € A’. Then we consider the action of ¢ sending [b,1)] to [b,9 ® €].

Theorem 2.2.29 (Lusztig, [Lus84a, Thm. 4,23|). We assume that F is ordinary and
let ¢ be the order of ' on W. To each family % of Uch(G) with corresponding F'-stable
family F < irr(W)F, one can associate finite groups Az 9 Az with |Az : Az| = ¢ such
that there exist an injection

and a bijection

US> MArcAz), X~z
such that, for all x € % and ) € F with preferred extension 1;, we have

(qua X) = A('TX){‘CEXv qu)}?
where A(xy) € {1,-1} depends only on x and can be computed explicitly.

This result is remarkable in many ways. First of all, the set of unipotent characters,
the partition into families and the decomposition of the almost characters are generic
and depend only on the complete root datum of (G, F). Moreover, the groups Az
depend only on the root system. They were at first defined in an ad-hoc way, even if
Lusztig proposed another definition in [Lus84a, 13.1.3] that he proved in [Lusl4]. To
state this reinterpretation, we need the Springer correspondence (see Section 4.1 and
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2.3. Computing ordinary characters

Definition 5.1.16).
In the setting above, we can rewrite

RJ; = Z A(l‘x){l’x’fﬂw}x-

XEU

More generally, every element z € M(Ay ) can be seen as an element € M(Ay € Ay)
and we define the unipotent almost character

R, =) Az ){zy,x}x.
XEU
The unipotent almost characters have a geometric meaning in terms of characteristic
functions of certain character sheaves, see Section 3.3.

Remark 2.2.30. The main Theorem 4.23 of Lusztig ([Lus84a, Thm. 4.23)) is stated for any
series of characters and thus implies the Jordan decomposition of characters (Theorem
2.2.16). Assume that Z(G) is connected and fix (A\,n) € A(G, F'). There is an element
w € W such that 2, = wW,, = wW° . Moreover, there is a group homomorphism o :
Win = Wi, given by o = Foad(w). Assume furthermore that I is ordinary and o has
order c € N. In the same way as for W, we split irr(W) ,,) into families and associate to
each family .Z a group Az. To each o-stable family .% ¢ irr(Wy,,)?, one can associate
finite groups Az 4 A5 with |f17 : Az| = ¢ such that there exist injections

F o M(Azc Aﬁ% Yy

and a bijection

En(G) = LlM(A7CA7) X P> Ty,

where .# runs over the F-stable families of irr(W,,,), such that, for all x € & ,(G)
and ¢ € % with preferred extension 2/1, we have

(Rlz, x) = Az ){zy, xJ;}a

where A(z,) € {1,-1} depends only on x and can be computed explicitly. Similarly, one
could define for any = € M(Az € A), the almost character

R, = Z (‘DEW)A(%(){IX:I}X'

XEéE/\,n

2.3 Computing ordinary characters

Thanks to the Jordan decomposition of characters (Theorem 2.2.16) and the discussion
in the previous section, we now have a labelling of all ordinary irreducible characters
of G. Notwithstanding, it is not obvious from the definitions how to compute their
values, and it is undeniably a challenging question. In this section, we give some general
results and an overview on the subject. However, the main current method reduces the
problem to computing almost characters seen as characteristic functions of character
sheaves. We will elaborate on this in Section 3.3.
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Chapter 2. Representation theory of finite groups of Lie type

2.3.1 Computing Deligne—Lusztig characters

The values of Deligne—Lusztig characters are not easy to compute. Nonetheless, some
results are known from the theory. As we have seen the class of Deligne—Lusztig char-
acters of the form I$(17) are of particular interest as they give rise to the unipotent
characters. It transpires from the next theorem that they also play an eminent role to
compute the character values.

Definition 2.3.1. £et T ¢ G be an F-stable maximal torus. The Green func-
tion Q$: GE. - Q is defined by

uni

QS (u) =I1$(1r)(u) for ue GE

uni-

The Green functions take values in the integers, and therefore QS (u) = QS (u™1) for
any u € G . (JGM20, Def. 2.2.15]). Besides, they do not depend on the G-conjugacy

class of T by Proposition 2.2.5. Each Deligne-Lusztig character can be expressed thanks
to the Green functions.

Theorem 2.3.2 (Character formula [DL76, 4.2|). Let g € G with Jordan decomposi-
tion g = su =us where s € G is semisimple and we GE .. Let H = Cg(s). Then for any
F-stable mazimal torus T € G and 6 € irr(T),

IEO)(0) = = Y QU (u)h(asx).

|H| zeiG, s T

From the above theorem, we easily see that IS (0)(g) = 0 if s is not G-conjugate to

an element of T'. Furthermore, for ue GE

IF(0)(u) = QF (u) € Z

for any 6 € irr(T). The character formula reduces the computation of Deligne-Lusztig
characters to two problems:

1. computing the values of the Green functions and
2. understanding the set of all x € G such that s € *T.

We will discuss in more details how the first question can be tackled in Section 4.1. Note
that the Green functions have been completely determined when p is good for G (for G
of type Fj in [Sho82|, for G of classical type in [Sho83| and for type Eg, E7 and Eg by
[BS84]). The bad characteristic case has been closed less than a year ago by Liibeck
(|Liib24]) who considered groups of type Es (see also [Gec20]).

2.3.2 Ordinary characters on semisimple or unipotent conjugacy
classes

Using the previous character formula, Deligne and Lusztig inferred the values of a char-
acter at semisimple elements.
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2.3. Computing ordinary characters

Proposition 2.3.3 (|[DL76, 7.6]). Let x €irr(G) and s € G be semisimple.
Let H:=Cg(s). Then

S ZL EHET G S
x(s) ] 2, (I (0),x)0(s),

where the sum runs over the pairs (T,0) such that T is an F-stable maximal torus
with s € T and 0 € irr(T). Here ey, et are signs which can be read of the order of H,
respectively T ([GM20, Def. 2.2.11]).

For a unipotent character x, we have (I5(0), x) # 0 implies that 6 = 17 and we obtain

x(s) = Vi ;EHET<I’§(1T)aX>7

1

|
where T runs over the F-stable maximal tori of H. Thus, the value of x(s) depends
only on H and on the coefficients (I$(17), x). Moreover, the numbers (I£(1r), x) are
fully determined (see Theorem 2.2.29) and can be accessed in CHEVIE |[Mic15].

We now consider the values of ordinary characters at unipotent elements. Again,
this is a difficult problem. Nonetheless, we can to some extent determine if the value is
Zero or not.

Theorem 2.3.4 (|Lus92, Thm. 11.2|, |[Tay19, §9]). Assume that p is good for G and Z(G)
is connected. Assume as well that F is a Frobenius map. Let x € irv(G). There exists
an F-stable unipotent class C' € Ucl(G) such that for any g € G with unipotent part u,
we have

x(9) #+0 <= dim(u)g <dimC or (u)g = C.

Moreover, there is g € G with unipotent part u such that (u)g = C and x(g) # 0. The
unipotent class C' is called the unipotent support of x.

In fact, in [GMO0O0O] Geck and Malle showed that the condition x(g) # 0 can be
replaced by a condition on the average value of x on the F'-stable unipotent class C.
The unipotent supports have all been determined for unipotent characters. We will
explain a method to describe them in Section 4.1. It uses the Springer correspondence.
The unipotent support gives us another way of characterising the families of unipotent
characters.

Theorem 2.3.5 (|[GMO0O0, Prop. 4.2 and Cor. 5.2|). We keep the same hypotheses as in
Theorem 2.3.4. Two unipotent characters of G belong to the same family if and only
they have the same unipotent support.

2.3.3 Current state of knowledge

Thanks to Deligne-Lusztig theory, we now have a complete parameterisation of the or-
dinary characters of a finite group of Lie type. However, the description of the character
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Chapter 2. Representation theory of finite groups of Lie type

tables is far from being achieved.

For groups of classical type, no other series than GL,(g) has been treated for each in-
teger n. The most recent and complete results are from around thirty years ago with
SO¢(q) by Geck and Pfeiffer [GP92| for ¢ odd and Geck [Gec95] for ¢ even as well as
with SOg(q) by Liibeck |[GHLMP96]. Nonetheless, in 2020, Malle and Rotilio described
in [MR20] and [Rot21] how to compute the generic character table of Sping(q), the 8-
dimensional spin group in odd characteristic, whose centre is disconnected of order 4.
For exceptional groups, the case G5 has been known for a long time. Indeed, the char-
acter tables of G5(¢q) were fully determined in 1974 by Chang and Ree [CR74] in good
characteristic, in 1976 by Enomoto [Eno76| when p = 3 and ten years later by Enomoto
and Yamada [EY86] for even ¢. Recently, Geck described a strategy to compute the
character table of Fy, Fs and 2Fg in even characteristic, see [Gec23|, [Gec24].

For a complete list of the determined character tables, we refer the reader to [GM20,
Table 2.4].
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Chapter 3

Character sheaves

In the previous chapter, to define Deligne-Lusztig characters, we have looked at vari-
eties with an action of the finite group G and then considered G-equivariant (perverse)
sheaves on them. Alternatively, we could have seen them as G-equivariant sheaves on G
for the twisted action by the Steinberg map F' (see Remark 2.1.2). We could instead
consider varieties which have an action of the algebraic group G and are moreover F-
stable, or to be exact, varieties defined over I, via the map I that we necessarily assume
to be a Frobenius endomorphism. Similarly, we will look at G-equivariant, (this time
for the action by conjugation) and F-stable perverse sheaves on those varieties. This
new approach has multiple benefits. Firstly, we notice that in some ways the conditions
we require seem stronger, going from G- to G-equivariance. In particular, we can have a
better grasp on the G-equivariant perverse sheaves and do not need to (mainly) restrict
ourselves to the constant sheaf.

Moreover, it means that we may at first completely forget about the Frobenius map F'.
This is what we will do in the first two sections of this chapter. Nonetheless, we still
want to gain information about the ordinary characters of G' and we will imitate the
construction of Deligne-Lusztig characters to define character sheaves (Definition 3.1.9).
These are certain G-equivariant irreducible perverse sheaves on G. Additionally, we will
see that we can also mimic the Harish-Chandra induction thanks to parabolic induction
in Section 3.2.

In the third section, we finally add the Frobenius map F' and bring our attention to the
F-stable character sheaves. This allows us to describe a new basis of the space of class
functions for G (Theorem 3.3.5). Furthermore, Lusztig conjectured in [Lus84a| that this
new basis coincides with the set of almost characters. It appears to be true (at least in
the connected centre case) thanks to the work of Shoji, c.f. [Sho95a], [Sho95b].

Most of this powerful theory was developed by Lusztig in a series of papers, [LuCS]|
to [LuCS5|, following his precursor article [Lus84b|. These are our main references for

this chapter.

As in Hypothesis 1, we assume that G is a connected reductive group over k with
Steinberg map F': G - G, Ty ¢ By is a maximally split torus in an F-stable Borel B,
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Chapter 3. Character sheaves

of G with associated root datum (X, P, X, CTD), base A and Weyl group W.

3.1 Definition of character sheaves

Character sheaves on G are constructed to be the geometric analogue of characters
of G. 1In this section, we define them following Lusztig and his paper [LuCS1|. As
for characters, we start by introducing some notions on perverse sheaves that we need
along this chapter. We then define character sheaves and explain how to partition their
isomorphism classes. Along the way, we will try to convince the reader of the similarities
with the characters.

3.1.1 Reminder on G-equivariant perverse sheaves

Recall that Deligne-Lusztig characters are defined thanks to an alternating sum of the
cohomology groups with compact support of the derived global section functor

ZZ:(_l)ZHZ(RFc(Y7 Qé))a
for a Deligne-Lusztig variety Y (c.f. Definitions 2.1.3, 2.1.8). In this case, it happens that
most terms of the sum are zero, except when 0 < i < 2dim(Y’), see [Car85, Property 7.1.1].
We make this property more formal and general by considering perverse sheaves
introduced by Beilinson, Bernstein and Deligne in [BBD82]. Our very short (and thus
incomplete) introduction follows [LuCS1, Sect. 1.1] and [MS89, Sect. 1]. For the general
reference on perverse sheaves, we advise the reader to read [BBD82].

The bounded derived category of constructible Q,-sheaves

On the character side, we were only looking at the constant étale sheaf Q, over a variety Y’
over k. To be able to change varieties or schemes, we often take the pushforward or
pullback along morphisms of varieties. However, the pushforward of the constant sheaf
is in general not the constant sheaf anymore. More generally, a local system is an
étale sheaf which is locally constant, that is constant on an open neighborhood of any
point (open for the étale cohomology). Again, the pushforward of a local system might
not be locally constant anymore. Therefore, we look at constructible sheaves, i.e.,
sheaves on a scheme! Y such that there is a stratification into finitely many locally closed
subsets of Y where the restriction is a finite locally constant sheaf, see [Del80, I.I]. We
then consider the bounded derived category of constructible Q,-sheaves over a scheme Y’
over k, that we denote by DY(Y,Q,).

If f:Y - Z is a morphism of algebraic varieties, then there exist functors between their
respective bounded derived categories of constructible sheaves:

e the inverse image functor (or pullback) f* : Dg(_Z,@e) -~ DY,Q,) with right
adjoint (the pushforward) f.: D(Y,Q,) - D%(Z,Q,),

'In the rest of this chapter all the schemes will be algebraic varieties.
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3.1. Definition of character sheaves
e the direct image functor with compact support (or proper pushforward) f,: Di(Y, Q) »
D¥(Z,Q,) with left adjoint (the proper pullback) f': D2(Z,Q,) - Di(Y,Q,).
Note that if f is proper, we have f; = f,. There is a self-equivalence duality functor
D DS(Y, @@) - Dz(Ya @@)
such that D? 2 1d py(vg,) Called the Verdier duality. It comes from the proper pullback
of the canonical morphism from Y to the point, see [Aub10, Def. 7.4] for the definition.
Perverse sheaves

We consider cohomologies and complexes where the cohomology vanishes in a “nice"
way. Let F e D%(Y,Q,) be a complex. We define the support of Hi(F) for i € Z as

supp(H'(F)) ={y e Y | H'(F), # 0}

and the support of F is then

supp(F) ={yeY | H(F), # 0 for some i € Z}.

We then consider the category D<0(Y") which is the full subcategory of D2(Y,Q,) whose
objects F are such that for all 7 € Z,

dim supp(H*(F)) < —i.

Observe that in particular supp(H*(F)) = @ for any positive i € Z,o. We also define the
dual of D<°(Y"), the category D>9(Y") which is the full subcategory of Db(Y,Q,) whose
objects are of the form D(F) for F € D<O(Y).

The category of perverse sheaves on Y, denoted by .#(Y'), is then the full subcat-
egory? whose objects belong to D<0(Y) and D>°(Y"). This category is abelian and all
objects have finite length (|[BBD82, Thm. 1.3.6, Thm. 4.3.1]). Observe that this is also
the case for the category of Q,[G]-modules, whilst the category Db(Y,Q,) is additive but
not abelian. However, contrary to Q,[G]-mod, the category .#(Y) is not semisimple.
The irreducible perverse sheaves have been fully determined in [BBD82, Thm. 4.3.1 (ii)|.
Let V be a locally closed, smooth, irreducible subvariety of ¥ and £ an irreducible local
system on V. We see £ as a complex in D%(V,Q,) by considering the chain complex
whose cohomology groups are all trivial, except at ¢ = 0 where it is equal to £. Moreover,
the shifted complex £[dim(V")] is an irreducible perverse sheaf on V. There is a unique
way to extend L[dim(V)] to a perverse sheaf on V. It is the shift by dim (V") of the inter-
section cohomology complex IC(V, L), defined by Deligne, Goresky and MacPher-
son (J[GM83]). The shifted intersection cohomology complex F = IC(V,£)[dim V] is
characterised by the following properties (as explained in [Sho88, 3.3|):

2We do not want to introduce ¢-structures in this thesis, but this construction can be made much
more general. The category .# (Y) is then the heart of D(Y,Q,).
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Chapter 3. Character sheaves

1. Hi(F)=0ifi<-dimV,

2. H-dmV(F)y, =L,

3. dimsupp(H(F)) < —i if i > -dimV, and
4. dimsupp(Hi(D(F))) < =i if i > —dim V.

Extending F by 0 to Y, we get an irreducible perverse sheaf on Y. Moreover, all simple
objects in .Z (Y') arise in this way, [BBD82, 4.3.1].

From D(Y,Q,) to .Z(Y)

It turns out that if f:Y — Z is a morphism of algebraic varieties and F € . (Y"), we do
not necessarily have f,F e #(Z). We thus would like to turn complexes of sheaves in
Db(Y,Q,) into perverse sheaves. The inclusion of D<0(Y") (resp. D=(Y')) in D(Y,Q,)
has a right (resp. left) adjoint denoted by 7oy (resp. 7sg). The functors 7759 and 707
are canonically isomorphic [BBD82, Prop. 1.3.5]. Therefore, PH? := 74750 is a functor
from Db(Y,Q,) to .#(Y). It is a cohomological?® functor in the sense that if

F->F ->F"-> F[1]
is a distinguished triangle, then the sequence
PHOF) > PHO(F') > HY(F)

is exact, by [BBD82, Thm. 1.3.6]. This sequence can be made into a long exact sequence.
We set PHY(F) :=PHO(F[i]) for any i € Z. For the same distinguished triangle as above,
we then have a long exact sequence

_‘_>pHi(j_-)_>pHi(f/)_)pHi(f//)_)pHHl(Jr:-)_).”

Besides, PH*(F) =0 for all but finitely many integers i € Z.

We may now define semisimple objects in D(Y,Q,). A complex F € Db(Y,Q,) is split
if F is isomorphic in D?(Y,Q,) to the direct sum @, ?H(F)[~i]. If moreover all
the PH!(F)[—i] are semisimple, then F is said to be semisimple.

We now state the crucial decomposition theorem.

Theorem 3.1.1 (Decomposition Theorem, [BBD82, Thm. 6.2.5|). Let f:Y - Z be a
proper morphism. Let F be a simple perverse sheaf on'Y such that there exists a finite

étale covering m:Y —Y where 7*F 1is a constant sheaf (i.e. with finite monodromy).
Then the pushforward f.JF € D%(Z,Q,) is semisimple.

3This is the notion corresponding to exact functors in triangulated categories
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Equivariant perverse sheaves

Recall that in Subsection 2.1.1, we defined G-equivariant sheaves (Definition 2.1.1). We
generalise this notion to perverse sheaves.

Definition 3.1.2. Let Y be an algebraic variety (over k) on which a connected algebraic
group H (over k) acts. Let a: HxY — Y denote the action of Hand p: H x YV - Y
the projection on the second coordinate. A perverse sheaf F € .Z(Y) is said to
be H-equivariant if the perverse sheaves a*F[dimH] and p*F[dimH] are isomor-
phic in Z(HxY).

A split complex F € Db(Y,Q,) is H-equivariant if all P Hi(F) are H-equivariant.

Note that a*F[dim H] and p*F[dim H] are indeed perverse sheaves due to the fol-
lowing fact: if f:Y — Z is smooth morphism of varieties with connected fibers of
dimension d then f*[d] is a functor from .#(Z) to . (Y) |LuCS1, 1.7.4]. Moreover,
as in Definition 2.1.1, an H-equivariant perverse sheaf also comes with a fixed isomor-
phism ¢: a*F[dimH] > p*F[dim H] satisfying a cocycle condition.

Remark 3.1.3. We consider the particular case of H-equivariant local systems on Y
where the action of H on Y is transitive, following [Sho88, 3.5]. Let £ be a local system
on Y. We see £ in Db(Y,Q,) and L[dim(Y)] € .Z(Y). Assume L is H-equivariant, that
is L[dim(Y")] is H-equivariant. By definition, there is an isomorphism

¢:a*L[dimH +dimY] > p*L[dimH + dim Y].
Fixing y € Y, we get an isomorphism
Phy : Ly = Ly,

for each h € H such that a(h,y) = y. We write Stabg(y) for the set of such elements
in H and Ag(y) for the component group Stabg(y)/Staby;(y). The action of Stabgy(y)
on L, is always trivial, and therefore we can see £, as a Q,[Au(y)]-module. If £ is
irreducible, then £, is irreducible as a Q,[ A (y)]-module.

On the other hand, let 7 : H/Staby(y) — H/Stabu(y) be the quotient map. Tt is a
finite étale covering with group Ag(y). Since the action of H on Y is transitive, there
is an isomorphism H/Stabg(y) = Y and we can consider the pushforward 7,Q,. It is
semisimple and decomposes as follows

ﬂ-*@f = @ £V ® V,

Velrr(End(7+Qy))

where Ly = Homy, 4,5, (V 7.Q,) is an irreducible local system on Y. By definition

of the map 7, the algebra End(7,Q,) is isomorphic to Q,[Am(y)]. Moreover, (Ly), is
isomorphic as a Q[ Au(y)]-module to the dual module of V. This defines a bijection
between the irreducible H-equivariant local systems on Y and Irr(Ag(y)).
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The notion of equivariance works well with respect to taking subquotients, pullback
or proper pushforward. Let H be a connected algebraic group, Y, Z be two varieties
on which H acts, and f :Y - Z be an H-equivariant morphism of varieties. Let F be
an H-equivariant perverse sheaf on Y, and F’ be an H-equivariant perverse sheaf on Z.
The following facts can be found in [LuCS1, §1.9].

Lemma 3.1.4. Keeping the notation as given above, the following properties hold.
1. Any subquotient of F is H-equivariant.
The perverse sheaves PH'( fiF) are H-equivariant for all i € Z.

The perverse sheaves PH(f*F) are H-equivariant for all i € Z.

Assume that H acts trivially on Z and freely on Y. Suppose that for each z € Z,
there is an open meighborhood V € Z with z € V and an H-equivariant map fy :
(V) - H xV such that pyo fy = f where py is the projection on the second
coordinate. In other words f is a locally trivial principal fibration with group H.
Then K € A4 (Y') is H-equivariant if and only if there is K' € #(Z) such that K
is isomorphic to f*K'[dim H].

Note that if Y = Hx Z and f is the projection on the second coordinate, we then

may write ' = *[-dimH] with i: Z > Hx Z, z » (1,2) where 1 € H is the neutral
element. Otherwise we use a glueing argument.

Characteristic functions

Lastly, we want to use G-equivariant perverse sheaves to understand the representation
theory of the finite group G. So we need to take into account the action of the Frobenius
map.

Definition 3.1.5 (|[LuCS2, §8.4]). Fix ¢ a power of the prime p. Let Y be an alge-
braic variety defined over F, via a Frobenius morphism F' (c.f. above Definition 1.2.1)
and F € Db(Y,Q,). The complex F is said to be F-stable if there exists an isomor-
phism p: F*F 5 F. It induces isomorphisms for each i € Z and each y € Y,

Diy - Hi(f)p(y) = H'(F),.
The characteristic function of F (with respect to ¢) is given by

XFp+ Vi @e
y o ) (1) Tr(piy, H (F)y).
€2
Note that the sum is finite because we consider bounded complexes and the H*(F),
are finite-dimensional vector spaces. Let H be a connected algebraic group defined over
F,. If H acts on Y with an action defined over I, then the characteristic function of
an H-equivariant perverse sheaf on Y is an H(IF,)-equivariant function on Y [Sho95a,
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1.1]. Thus, we will consider G-equivariant perverse sheaves over G and we will have to
restrict ourselves to the case where we assume that F'is a Frobenius map for our fixed
group G.

Remark 3.1.6. The characteristic functions play in some ways the same role as characters
for representations. Keeping the notation of the above definition, we can also define the
functions yz,n ¢ YF" — Q, for n € Ny;. If F is a semisimple perverse sheaf, the
functions (x4 )ns1 determine F up to isomorphism, c.f. [MS89, 1.3.4].

3.1.2 Definition of character sheaves

We are now ready to define character sheaves. We will see that the construction is very
similar to the one leading to the geometric series &) ,, (Theorem 2.2.10). For X € X and
n a positive integer coprime to p, we want to define “Deligne-Lusztig character sheaves"
in the way that 1% was defined for w € -

Kummer local systems

Firstly, we need to construct the equivalent of irreducible Q,-modules of T (= TL as
fixed in Hypothesis 1). If V e Irr(7}), then there is some integer m such that V®™ is the
trivial module. In algebraic geometry, the sheaves on T with this property are called
Kummer local systems.

Definition 3.1.7. We say that a Q,-local system £ on Ty is Kummer (or tame) if
there is m € N, coprime to p, such that £#™ = Q,. We denote by S(Ty) the set of
isomorphism classes of Kummer Q,-local systems on T.

Kummer local systems on T are constructed as follows, see [LuCS1, 2.2|. Firstly,
we fix for the rest of this thesis an injective group homomorphism

(3.1) j:{zek*|x" =1 for some neN} - Q.

We may choose j as the restriction of i (2.1). A Kummer local system has the following
form:

1. Let n € N such that (p,n) = 1, and p, = {z € k* [ 2" = 1}. Define p, : k - k,
x ~ x". Then pu, acts on the local system (p,),Q,.

2. Set &,; the summand of (p,),Q, on which yu, acts according to j.
3. Fix A € X and consider the @g—local system on T of the form A\*&,, ;.

Note that for any n’ € N coprime to p the pairs (\,n) and (n’A,n'n) give rise to isomor-
phic Kummer local systems. Therefore, we may assume that each local system comes
from an indivisible pair (see before Theorem 2.2.10).

Let w e W and w € Ng(Ty) a representative of w. Fix £ = A*&,; a Kummer local
system for (A,n) € X x N with n coprime to p. The action of w on Ty induces an action
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on S(Ty) sending the isomorphism class of £ to the isomorphism class of ad(w)*L.
Observe that Ty acts trivially on £, since Ao ad(t) = A for all ¢t € To. We define

We={weW |ad(w)*L=L}.
Observe that W, is not always a Coxeter group. We set
Op={aed|s,eW},

and W7 the Weyl group generated by {s, | € ®.}. By [LuCS1, § 2.2.2|, for each w € W,
there exists a character A, € X such that ad(w™)*L = ad(w™)* \*&E,; = (A2A)*E,;. In
other words, an element w € W belongs to W, if and only if A —w.\A e nX. Thus,

We=Wy, Wg=W;, and ®p=®,,,

by comparing with the definitions for the above groups below Definition 2.2.7.

Remark 3.1.8. By [LuCSl1, 2.2.2|, an element w € W, if and only if £ is equivariant for
the action of T given by ac,, : Tg x Tg = T, (¢,t) » w Hwt't~ L.

Character sheaves

We now give the definition of character sheaves. Recall that the Harish-Chandra induc-
tion from the torus goes as follows: we first inflate a character of Tj to the Borel By and
then induce it to the whole group G. In the setting of perverse sheaves and character
sheaves, the “inflation" of a Kummer local system L on T is simply the pullback pr* £ un-
der the projection map By = ToxUy — T. Since we consider perverse sheaves, we in fact
look at the intersection cohomology complex IC(Byg, pr*L). It is a Bo-equivariant per-
verse sheaf on By. The analogue for induction should give us a G-equivariant complex in
Db(G,Q,) from a By-equivariant complex in D2(By, Q,). We first look at IC'(Bg, pr*L)
extended by 0 to G — Bg as a Bg-equivariant complex of G. For equivariant complexes,
there is a usual induction in D?(G,Q,): the inverse of the induction equivalence functor
of [BL94, Def. 2.6.3] (from D:(G,Q,) to D%(G xg, G,Q,)) followed by the pushforward
to G via the action map (in our case, the conjugation).

To define Deligne-Lusztig characters, we somehow twist the Harish-Chandra induction
by some w € W. For character sheaves, it might even be easier to see how the twisting
works as we only change By = Bo1B( to BowBy. We make explicit this above discussion
by following the construction given in [MS89, Def. 5.1.2].

Let £eS(Ty) and w e W,. Fix w a representative of w in Ng(Ty) and set
Gw = BowBo.

Any element g € G,, decomposes as g = uwtu’ for some u,u’ € Uy and t € Ty. We consider
the projection map pr,, : G, = Ty sending such g = vwtu’ to t € Ty. We then set

AL = IC (G, pry,(£))[dim G, ].
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By [MS89, Lem. 4.1.2], this perverse sheaf is Bg-equivariant for the action by conju-
gation. We apply the induction from Bg-equivariant complexes to G-equivariant com-
plexes. We have the following diagram:

G+— GxG—L5Gxp, G 25 G

where

e the variety G xg, G is the quotient of G x G by the action b.(g,9’) = (gb~1,bg’b™")
for g,¢' € G and b € By,

e the map [ is the quotient map,
e and the map ~ is the conjugation map v : (g,9') ~ gg'g~"! for g,¢' € G.

Since A% is Bg-equivariant, by fact 4 of Lemma 3.1.4, there exists a canonical irreducible
perverse sheaf AL on G xg, G such that 5* A~ = Q,®.A%[dim G-dim By ]. Here ® denotes
the external tensor product of perverse sheaves. This process so far is the description
of the inverse of the induction equivalence functor as defined in [BL94, Def. 2.6.3]. We
now put

K = (1) (AD)[-dim G - £(w)].

w

This is a semisimple complex by Lusztig [LuCS3, Prop. 12.8]. Indeed, v is proper and
we can apply the Decomposition Theorem (Theorem 3.1.1). Here £(w) is the value of
the length function of W at w € W. These K% then play the role of the Deligne-Lusztig
characters.

Definition 3.1.9. A character sheaf is an irreducible perverse sheaf which is an irre-
ducible constituent of P Hi(K£) for some £ € S(Ty), w € W, and i € Z. We denote by G
the set of isomorphism classes of character sheaves coming from the local system £. We
say that a character sheaf A is unipotent if its isomorphism class belongs to G@l.

We will from now on often abuse notation and write A for the isomorphism class of
a character sheaf A and write A € G. Note that it follows from the definition, and the
fact that ~ is proper, that character sheaves are G-equivariant.

Remark 3.1.10. We explain why pr? (£) is Bo-equivariant. Let w € W, and b = uyt; € By.
By Remark 3.1.8, £ is equivariant under the action of T given by ac,. In particular,
we have ac,,(t1,—)*L 2 L. Lastly, we observe that

pr, cad(b) = pr,, cac,(t1,-)

which allows us to conclude that ad(b)* pr: £ = L.

We make a few remarks concerning the definition of character sheaves. Firstly,
since AL is zero outside G,, we could replace the above diagram by its restriction
to Gy:
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G, +— GxG, —5 Gxp, Gy —> G

Moreover, we could in fact first do everything at the level of local systems. That was
the initial definition of Lusztig [LuCS1, §2.4 and Def. 2.10], that we recall here.
We let Z be the variety of all Borel subgroups of G. For each w e W, we define

O(U}) = {(Bl,Bg) EBxRPB | Elg € G such that gBl = Bo,gBQ = wBo}.
For £ € §(Ty) and w € W,, we have the following diagram:

pr . i T
T, ¢ Y, — Y, 4G

with
e the set Yy, = {(g,hU) € G x G/U | h-lgh e BowBy},

e the map pr sending (g, hU) to pry(h~tgh) = pry(uwtu’) =t for u,u’ € U and t € Ty
such that h~'gh = uwtu’ is the Bruhat decomposition,

e theset Y, :={(¢9,B")eGxB|(B'9B') e O(w)} = G xp, Gy,
e the map i: (g,hU) — (g,"B) for g,h € G,
e and the projection map 7, : (¢,B’) —» g for g€ G, B’ € B.

The inverse 1mage pr*L is To-invariant. Thus, by fact 4 of Lemma 3.1.4, there exists a
canonical Qg local system £ on Y,, such that pr*L = (ﬁ) We put

KE = (1)« (L).

By [LuCS3, Prop. 12.7] a perverse sheaf A is an irreducible constituent of P H!(K%) for
some i € Z and w € W, if and only if it is a constituent of PH7(K%,) for some j € Z
and w’ € W, that is, if A is a character sheaf.

This method has the advantage that it is often easier to keep track of the local systems,
but the downside is that the complex K% is in general not semisimple.

3.1.3 Series of character sheaves

The next step to mimic the case of ordinary characters is to consider the parameterisation
of character sheaves. First, we need to check if the sets G, define a similar partition as
the geometric series in Theorem 2.2.10.

Proposition 3.1.11 ([LuCS3, Prop. 11.2]). Let £ and L' be two Kummer local systems
of To coming from the indivisible pairs (A\,n) and (N',n’). Then G nGg # @ if and
only if L and L' are in the same W -orbit. Moreover, in that case G, = Gpr.
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Note that £ and L’ are in the same W-orbit if and only n =n’ and w.\- X € nX for
some w € W. From the above proposition, we can write

G- || Ge

LeS(To)/W

Now, similarly as for the geometric series of characters, we could instead label the
series of characters sheaves via the semisimple conjugacy classes in G*. Recall the map

X xN-> T}

~ 1
()\,n) = Z'TS(E ® )\) = trn-

This map induces a surjection from the set of indivisible pairs (A, n) to the set of con-
jugacy classes of semisimple elements in G*. Moreover, two indivisible pairs (\,n)
and (N, n') are sent to the same conjugacy class if and only if n =n’ and N —w.\ € nX
for some w € W. Fora semisimple element s € T, there is an indivisible pair (A, n) € XxN
such that (s)g« = (fan)g-. It is then well defined to set G := CA%,\*gnyj, and we get

G=|]G,,

where s runs over a set of representatives of the semisimple conjugacy classes in G*.
The only difference with the geometric series case is that we do not require %, ,, # @ nor
the semisimple conjugacy classes to be F'*-stable.

To perfect the resemblance with characters, we define “almost character sheaves"
and families of character sheaves. In order to achieve the first goal, we need to pass
to the Grothendieck group Ko(.#Z(G)) of the perverse sheaves and more precisely to
the subgroup Ko(.#(G)) spanned by the isomorphic classes of character sheaves. We
set (-, —) as the bilinear form on Ko(.Z(G)) ® Q, defined by

<'A17 AZ) = 5./41,./427

for A;, Ay € G considered as elements of Ko(.#(G)). Let £ € S(Ty) and 1 € irr(Wp).
Following [LuCS3, 14.10], we set

1 - ,
Ryi= o 3 w(w™) Y (1) S (K,
|W£| weWp i€Z
We state the equivalent of Theorem 2.2.29.

Theorem 3.1.12 (Lusztig, [LuCS4, 17.8.3], [Lus12]). Assume that Z(G) is connected.
To each family F of irv(W;) (recall that W =W}), one can associate a finite group Az
such that there exist an injection
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and a bijection

G > [ UM(Az), A ay,
7
where F runs over the families of irv(Wy), such that for all Ae G, and ¢ € Z,

(R¢7 -A> = GA{xA’ xw},
where €4 = (=1)ccdimsuwppA) ¢ [1 -1} depends only on A.

The result was first stated for p a good prime for G and then extended to any prime
in [Lus12|. Note that amazingly, the groups Az are the same as the ones fixed by Lusztig
in the setting of Theorem 2.2.29 for characters (so the notation is consistent). If Z(G)
is not connected, then the group W, might not be a Weyl group. However, Lusztig still
defined families of W, and associated to them groups such that the same conclusion
holds (c.f. [LuCS4, §17.8]).

The above result allows us to split the character sheaves of G into families. We say
that A;, Ay € G, are in the same family ¢ of G if there exist a family .# < irr(W;)
and 1,1, € F with

(RTZJNAl) +0 and <R¢2,A2> +0.

3.2 Parabolic induction of character sheaves

We continue on our path to describe various properties of character sheaves, based on
what we use for ordinary characters. Like for representations of the finite group G, we
would like to have some induction process for character sheaves. This is what Lusztig
defined as parabolic induction and it resembles Harish-Chandra induction in many ways.
In particular, we will see the independence from the parabolic, define cuspidal character
sheaves and label the induction series associated to them thanks to some relative Weyl

group.

3.2.1 Definition and first properties of parabolic induction

Following [MS89, §7.1] and [LuCS3, §3 and §4|, we define parabolic induction. Similarly
to Harish-Chandra induction, the functor is defined in two steps: inflation from a Levi
subgroup to a parabolic subgroup of G followed by induction to the whole group G.
However, for this definition to work, for instance to have an adjoint functor, we need to
work in the derived category of complexes D(G, Q).

Parabolic induction and restriction

Definition 3.2.1. Let P := U x L be a Levi decomposition of a parabolic subgroup P
of G. Consider the following diagram

LI pee GxP L5 GxpP 25 G
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with
e the projection map prycp : P - L sending g =ul to [ € L,
e the map a: (g,p) > pfor ge G, peP,

e the variety G xp P for the quotient of GxP by the P-action p.(g,q) = (9p~*, pgp™)
for p,qeP,g e G,

e the quotient map S,
e and the conjugation map ~: (g,p) » gpg~! for g€ G,p e P.

If K is an L-equivariant perverse sheaf on L, then prj _p K[dim U] is a P-invariant
perverse sheaf on P (this is the inflation). Moreover,

o pricg K[dim G + dim U] 2 Q, ® prj cp K[dim U + dim G|

is a P-equivariant sheaf on G x P. Thus by Lemma 3.1.4, there exists a canonical
perverse sheaf K on G xp P such that o* pri p(K)[2dim U] = 5*(K). Moreover, K
is G-equivariant. We define the parabolic induction of K as

Indgp (K) = 7. ().

Thus Ind$.p is a functor from the L-equivariant perverse sheaves on L to D(G, Q).
Observe that the perverse sheaves PH i(Indng(lC)) are G-equivariant for conjugation,

since v is proper. In fact if K is irreducible so is K. From the decomposition theorem
(Theorem 3.1.1), we conclude that Indfep(K) is semisimple.

There is a functor from the G-equivariant perverse sheaves on G to DQ(L,@Q called
parabolic restriction ([LuCS1, 3.8]) and denoted Resfep. For F € DY(G,Q,), we
let ipcg : P = G be the inclusion. Then

Respep(F) = (pricp )iipec (F)[dim Ul € D2(L, Q).

Properties of the parabolic induction of character sheaves

We now describe the properties of the parabolic induction and restriction functors when
we apply them to character sheaves. Let P := U x L be a Levi decomposition of a
parabolic subgroup P of G such that Ty ¢ L and By ¢ P.
If AeG, then ResC.p(A) € DO(L) and is semisimple ([LuCS1, Thm. 4.4c, Thm. 3.9]).
In fact, we may write Restp(A) as a direct sum of (shifted) character sheaves,
Furthermore, if A € L, then IndS.p(A) € .#(G) ([LuCS1, Thm. 4.4b]) and is semisimple
since A is irreducible.

We now list a few properties of parabolic induction which are shared with Harish-
Chandra induction. Firstly, the parabolic restriction behaves like a right adjoint functor.
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Proposition 3.2.2 (|]MS89, Prop. 7.1.3]). Let P = U x L be a Levi decomposition of a
parabolic subgroup P of G. Let K be a G-equivariant perverse sheaf on G and K' be
an L-equivariant perverse sheaf on L. Assume that Resyep(K) € DO(L). Then

Hompy g 3,) (K, Indg.p(K")) = Homp 1,3,) (Restp(K), K).

Furthermore, the parabolic induction functor is transitive for character sheaves. More
generally, it is transitive for any perverse sheaf under certain conditions.

Proposition 3.2.3 (|[LuCS1, Prop. 4.2|). Let Q ¢ P be two parabolic subgroups of G
with respective Levi subgroups M c L. Let K € .4 (M) and assume that Indk/lgLﬁQ(lC)
lies in A (L). Then

Indl(\;/lgq(’c) = Indfgp ° IndIMngQ(IC)'

Moreover, there is a Mackey formula for character sheaves (see [MS89, Prop. 10.1.2]
or |[LuCS3, Prop. 15.2] for a different proof).
Lastly, parabolic induction preserves series of character sheaves.

Proposition 3.2.4 ([LuCS1, Prop. 4.8]). Let P = U x L be a Levi decomposition of a
parabolic subgroup P of G such that To € L and By € P. Let L € §(To) and A€ L.
Then the irreducible components of IndS.p(A) belong to G.

3.2.2 Cuspidal character sheaves and induction series

We now would like to define induction series of character sheaves in analogy with Harish-
Chandra series and describe another partition of G.

Cuspidal character sheaves

Firstly, we define the cuspidal character sheaves. The initial definition of Lusztig
(|[LuCS1, Def. 3.10]) concerns perverse sheaves and goes as follows:

Definition 3.2.5. Let K € .#(G) be G-equivariant. We say that K is cuspidal if and
only if it satisfies the two following conditions.

e There exists an integer n € Z, invertible in &, such that K is GxZ°(G)-equivariant
for the action of Gx Z°(G) given by (h, 2).g = 2"hgh~! for z € Z°(G) and h, g € G.

e For any proper parabolic subgroup P = U x L # G such that To € L and B, c P
we have

dimsupp(H'(Resfp(K))) < —i.

We notice that any character sheaf satisfies the first condition by [LuCS1, Prop. 2.18b].
Moreover, thanks to [LuCS1, Thm. 6.9], the restriction of a character sheaf A is in fact
a perverse sheaf, in particular Hi(ReSS'gP(A)) =0 for all ¢ # 0. We thus may take the
following more intuitive definition for cuspidal character sheaves.
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Definition 3.2.6. Let Ae G. We say that A is cuspidal if and only if for any proper
parabolic subgroup P = UxL # G such that Ty ¢ L and B, € P we have Resfp(A) = 0.

In a tour de force, Lusztig showed through case-by-case analysis that every irre-
ducible cuspidal perverse sheaf is a character sheaf [LuCS5, Thm. 23.1.b|. Therefore, we
can forget the first definition of a cuspidal perverse sheaf (if it is irreducible). Moreover,
we could set the definition of character sheaves as the irreducible constituents of the
parabolic induction of irreducible cuspidal perverse sheaves. However, with that defini-
tion we would lose the partition into series G, for £ € S(Ty).

Character sheaves are irreducible perverse sheaves and as such can be written in terms
of intersection cohomology complexes of irreducible local systems on some irreducible
varieties. Thanks to [LuCS1, Prop. 3.12], we describe the structure of the intersection
cohomology complex defining any cuspidal character sheaf.

Theorem 3.2.7. Any cuspidal character sheaf on a Levi subgroup L of G with T € L is
an intersection cohomology complex IC (X, E)[dim X] where ¥ is the inverse image under
the map L - L/Z°(L) of an isolated conjugacy class of L] Z°(L) (see Definition 1.5.5)
and £ s a local system on 2. Moreover, ¥ and £ are unique up to isomorphism.

We say that any such triple (L, 3, &) (with in particular Ty € L) which gives rise to
a cuspidal character sheaf is a cuspidal induction datum and we write & for the
set of all cuspidal induction data of G. If m = (I, X, £) is a cuspidal induction datum,
we write

A = 1C(2,8)[dim(2)],
for the cuspidal character sheaf on L.

Remark 3.2.8. Thanks to the proof of [LuCS1, Prop. 3.12|, the pair (X,€) is cuspidal
for L in the sense of [Lus84b, Def. 2.4|. In particular, suppose that ¥ contains unipotent
elements. Let C' € Ucl(L) be the unipotent class of L such that ¥ = CZ°(L). We
canonically identify ¥ with C' x Z°(L) via the map i : CZ°(L) - C x Z°(L). In this
case, there exist Z € S(Z°(L)) and & a local system on C with (L, %, & ®Q,) being an
induction datum for G, such that

IC(Z,8)[dimX] 2 IC(X,i* (& ® Z))[dim X].
Cuspidal character sheaves satisfy another interesting property.

Proposition 3.2.9 ([LuCS5, Thm. 23.1.a]). For any cuspidal indution datum m =
(L, X, &) € MG, the cuspidal character sheaf Ay, is clean, that is its restriction to X — X
18 2€ero.

Another description of the parabolic induction

We now describe the induction of a cuspidal character sheaf following [LuCS2, 8.2]. As
a matter of fact, we will see that it does not depend on the parabolic subgroup, but only
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on the induction datum.
Let P :=UxL be a Levi decomposition of a parabolic subgroup P of G such that Ty c L
and By ¢ P. We fix ¥ the inverse image under the map L - L/Z°(L) of an isolated
conjugacy class and £ an L-equivariant local system on . We consider the intersection
cohomology complex

K:=1C(%,&)[dimX].

We construct a perverse sheaf isomorphic to the induced perverse sheaf IndS’gP(lC).
We have the following diagram

St Gx Ty — Gxp, Dy ——> Yoy

with

the set 3,., = {h e ¥ | C(hs) S L} and the set Yi 5 = Ujeg 9%reqg ™,

the map « which is the projection on ¥ of the second coordinate,

the set G xg, X,¢4, quotient of G x X,., by the L-action [.(g,h) = (gi™%, (hl™t) for
leL,ge G and heX,.,

the quotient map [,
e and the conjugation map v: (g,h) = ghg™! for ge G, h € ¥,,.

Since £ is L-equivariant, there exists a unique (up to isomorphism) local system £
on G xg, 3, such that a*€ = 5*(£). Then, thanks to [Lus84b, Prop. 4.5], there is a
canonical isomorphism

IdE.p () = IC(Vi, 7. (€))[dim Vi ]
Now, for an induction datum m = (L, 3, £) as before, we write
K = 1C (Vi 72 (€)) [lim Vi 5] & Tnd€op (Ag).
Remark 3.2.10. Note that X,., is open dense in %, thus
1C(,6)[dim =] = 1C(Srag, (€)s,,)[ditm Sy

Therefore, it makes sense to first consider the restriction of £ to X,,.

Moreover, the set Y1,y is a locally closed smooth irreducible subvariety of G of dimen-
sion equal to dim(G) — dim(L) + dim(X) which depends only on the G-conjugacy class
of (L,X). Lastly, the sets Yy, y for (L,X) as above define a finite partition of G. In-
deed for g € G we may take L to be the minimal Levi subgroup containing Cg&/(gs)
and ¥ = (g)L.Z°(L), see |[Lus84b, § 3.1| for all those facts.
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3.2. Parabolic induction of character sheaves

Induction series

We finally define induction series and see how they induce a partition of G.

Definition 3.2.11. Let m = (L, 3, &) € M be a cuspidal induction datum. We define
the induction series G(m) as the set of all character sheaves which are constituents
of K.

Note that by Proposition 3.2.4, all the constituents of K, are character sheaves. By
[LuCS1, Thm. 4.4a], every character sheaf belongs to some G(m) for some m € NG
Thus, we can write

G= UJ G(m).
meMNG

Furthermore, let m = (L, 2, &), m’' = (L', X/, &) € M be two cuspidal induction data.
IfAcGisa component of both K, and K, then there exists an element g € G such
that 9L = L/, 95 =37 and ad(g1)*€ = &', see [LuCS2, Cor. 7.6]. We say that m and m’
are G-conjugate. Therefore, we obtain

G = |G(m),

where m runs over a set of representatives for the G-orbits in MG, By [LuCS1, 4.3.1],
all character sheaves in G(m) have support Yy, .

Remark 3.2.12. This is very similar to the Harish-Chandra series of characters which de-
pend only on the G-conjugacy classes of the cuspidal pairs (see below Definition 2.1.12).

We are left to discuss how to label the character sheaves in an induction series, as we
did for characters in Harish-Chandra series in the Howlett-Lehrer Comparison Theorem
(Theorem 2.1.14). That is what we do in the next subsection.

3.2.3 Decomposition of an induced cuspidal character sheaf

For the rest of this subsection we fix m = (L,X,&) € ME a cuspidal induction datum
for G. Recall that IC,, is a semisimple perverse sheaf and thus decomposes into a direct
sum of character sheaves. In fact, we can write

Kn 2 @ Ay @V,

Velrr(End(Km))

where V' runs over a set of representatives of isomorphism classes of irreducible End (K, )-
modules. Here Ay = Hompguq(xc,)(V, ) are the character sheaves in G(m). Based on
our analogy with Harish-Chandra series, we would like to define a bijection between the
algebra End(K,,) and the group algebra of some relative Weyl group. Lusztig showed
that this idea works up to a twist by a 2-cocycle. We present some cases where one can
show that this cocycle is trivial.
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Chapter 3. Character sheaves

Relative Weyl groups
We first define the relative Weyl group associated to the cuspidal datum m.
Definition 3.2.13. The relative Weyl group of (L,Y) is given by
Wiy =Ng(L,X)/L with Ng(L,%):={neG |nLn!'=LnYn" =%}
The relative Weyl group of m is then
Wy = Ng(m)/L with Ng(m):={neNg(L,X) |ad(n)*=&}.

Notation 3.2.14. To simplify the notation, we also set Wy, :== W& (L) = Ng(L)/L. If
we want to emphasise the ambient group, we might write it as a superscript, e.g., W&
or WS.

Remark 3.2.15. In general, Wy, is not a Coxeter group but the semi-direct product of
a Coxeter group with an abelian group. We describe it following Achar and Aubert
[AA10, §4.1]. Assume that L = L; for I ¢ A. Let E be the real vector space on which W
acts via its natural representation and E; the subspace generated by all the v € I.

For any a € @, if w(Iu{a}) € A for some w € W, then I u{«a} is a base for the root
system it generates. If J is a base for the root system it generates, we write w; for the
longest element of the corresponding generated reflection group. We set

Dy i={a e ®|Jwe W such that w(Iu{a}) € A, wriaywr = wiwrogay € Wal,

Di=Duyn® Qu={weW,|wDicD;} and &,:={a+FE;|aecDy}.
We define W to be the Weyl group generated by the reflections s, for a € ®,. Then by
[AA10, Prop. 4.1]
W = Wa x Q.
This description generalises the one given by Howlett for Wy, ([How80]).

We now relabel the irreducible modules of End(K,,) using the relative Weyl group
of m.

Theorem 3.2.16 ([LuCS2, § 10.2]). The algebra End(Ky) is isomorphic to the group
algebra Q,[Wh] twisted by a 2-cocycle.

We make the isomorphism above more explicit, following [Lus84b, §3.4 and Prop. 3.5].
Recall the construction of K. Let € be the canonical local system on G xy, 2,4 such
that a*€ = $*€. By the definition of intersection cohomology complexes, we have by
|Lus84b, 4.4.1],

End(K,) 2 End(7,.€).
We thus have to define an isomorphism between End(.€) and Q,[Wy] twisted by a 2-
cocycle. Beforehand, for each w € Wy, we fix a representative w € Ng (L) and define

e = P Hom(ad(w)*€,E).

weWm

We then follow the three next steps.
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3.2. Parabolic induction of character sheaves
Step 1. Show that o7 comes with a natural pairing which makes it isomorphic to the

group algebra Q,[WW,] twisted by a 2-cocycle.

Step 2. For each w ¢ W(m) and each isomorphism ¢ : ad(w)*€ - £, construct an
endomorphism ®,, of v,& independent of the choice of representatives .

Step 3. Check that the map w ~ ®,, defines an algebra isomorphism from <7 to End(~.£).

Let us describe the above steps in more details.
Step 1. Let w,w’ € W,,. We set

e = Hom(ad(w) €, E).

This vector space has dimension 1 since £ is irreducible. There is a natural pairing

%,w X %,w’ ﬁﬂg,ww’
(f,9)  =fxg=foad(w) (9).

Note that this pairing is associative. We fix basis elements b,, € @ ,, for each w € Wy,
For all w,w" € Wy, there exists a scalar \,, s € Q, such that

bw X bw’ = )\w,w’bww"

By associativity of the pairing, one can show that the map Wy xWy, — Qy, (w,w') = Aw
is a 2-cocycle. Thus 7 is isomorphic to Q,[W,,] twisted by a 2-cocycle.

Step 2. Let w e W,,. We have the following commutative diagram:

X (L GXEreg i} GXL Zreg L} YL,E

ad(u»l l% l@b iid

Y7 G x X T) G xg, Xreg — Yix
with
e the L-equivariant map ¢, : G x X,¢y > G x Xy, (9, h) = (gL, whut)
e and @yt G xSy > G xSy B((9. 1)) > B(gui! b)),
Note that the map ¢,;, is well defined since ,, is L-equivariant. Moreover, we have
Ot = Py for any [ e L.

Hence, we can write @, = Q.
Let us fix an isomorphism ¢, : ad(w)*€ - €. Tt induces a homomorphism

Qg st = atad(w)*E > atE.
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Chapter 3. Character sheaves

From it, and from the isomorphism a*& =~ 3*€, we define a homomorphism
B@uE =€~ BE.

It gives rise to a homomorphism ¢3w : @;g - g; Lastly, precomposing 'y*ggu-, by the
canonical isomorphism due to base change (id*v.€ = v.¢:E), we get an endomorphism
Dy 1 7.E > 1o > 1.E.

We make a few observations.

e The morphism ¢, (and thus ®,) depends only on ¢y, the local system € and the
isomorphism o*& = §*€. We did not make any choice in the construction.

e Since & is irreducible, ¢, is unique up to multiplication by a scalar. Let ¢, = Ay,
for A € Q,, then ¢/, = A\dy.

e For [ ¢ L and ¢; : ad(l)*E - &, the morphism buy coming from ¢y, o ad(w)* ¢y is
in fact equal to ¢y (see [Lus84b, Proof of Prop. 3.5]). We choose ¢; to be the

morphism coming from the L-equivariance of £. Therefore, we can set ¢, = ¢y
and &, = &,.

Therefore, after fixing a basis {¢, | w € Wi} of o7, we have defined a linear map

de= B e~ End(%g).

weWm

Step 3. We see that, by construction, the map above is injective. For a more detailed
proof, we refer the reader to |Lus84b, Proof of Prop. 3.5]. There Lusztig also showed
that the dimension of End(~,£) is at most [Wy,|, which implies the bijectivity.

This concludes the description of the isomorphism
e > End(7,.€),

and hence of the isomorphism between End(K,,) and the group algebra Q,[W,] twisted
by a 2-cocycle.
We now consider various cases where one can show that the 2-cocycle is in fact trivial.

Character sheaves with unipotent support

When the support of K, contains unipotent elements, Lusztig made some choices for
the basis elements of @7 such that the cocycle is trivial.

Proposition 3.2.17 ([Lus84b, Thm. 9.2], [Lus86, Section 2|). Let m = (L,X, &) € M&
be a cuspidal induction datum. Assume that X contains unipotent elements of G. Then
there is an isomorphism

@Z[Wm] = JZ{E
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3.2. Parabolic induction of character sheaves

Proof. We are in the setting of Remark 3.2.8. TLet C' € Ucl(L) be the unipotent
class of L such that ¥ = CZ°(L). Let i : ¥ — C x Z°(L) be the canonical map
and 7: CZ°(L) - C,uz —» u. We write € as i*(& ® Z) where Z € S(Z°(L)) and & is a
local system on C' such that (L, %, & ®Q,) is an induction datum for G.

We fix a basis of o7 following [Lus86, Section 2|, which will induce a trivial cocycle.
In other words, for each w € W, with representative w, we fix 6,, € Hom(ad(w)*&y, &)
and ¢Z € Hom(ad(w)*Z, Z) and consider b,, =i*(0, & ¢Z). Observe that for w,w’ € W,

b X by = % (0 X Oy ® ¢Z x ¢Z,).
Alternatively, we could fix
0,, € Hom(ad(w)* (& ® Q,), €& ® Q) and ¢ € Hom(ad(w)*(Q,® 2), Q& Z)

and consider b,, = i* (0, ® )7 ), where ® denotes the tensor product. _
Firstly, we observe that by [Lus84b, Thm. 9.2b], ad(n)*(& ® Q) = & =& Q, for
any n € Ng(L). Thus,

Wa={neNg(L)|ad(n)*Z =z Z}/L.
Next, for any w € Wy, Lusztig fixed in [Lus84b, Thm. 9.2d] a homomorphism
6!, ad(w)* (& mQ,) - EwQ,
by some condition on Ky s ¢ o, This basis satisfies that
g, x0., =40, forany w,w eWy,.

Finally, for w € Wy, we fix the unique isomorphism ¢Z : ad(w1)*Z - Z such that (¢Z);
is the identity (as in [Lus86, §2.3]). Let w,w’ € Wy, then

((bi X ¢5’)1 - ((bi)l ° (ad(w)*¢5,)l =ido (gﬁi/) = id.

wlw~!

Thus, for any w,w’ € Wy,
zZ 2 _ 2
¢w X ¢w’ - Yww'*

We then consider the basis
b2 =i (0, @ ¢Z) for weWy.

The 2-cocycle defined by the natural pairing of this basis is then trivial. Hence, we have
constructed an isomorphism of algebras

Qé[Wm] ; JZ%5 ]
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Chapter 3. Character sheaves

The isomorphism above induces an isomorphism
@K[Wm] - End(7*5)7

as we have described before, lifting each isomorphism bZ to an endomorphism BZ of v, £.
Thanks to this construction, we can write

Knz @ AfeV,

Velrr (W)

where V runs over a set of representatives of irreducible Q,[W,,]-modules. Here the char-
acter sheaf AZ = Homyg, 1y, (V. Kw) is defined via the isomorphism Q[Wa] = End(Ky)
induced by the basis defined by 0/, and ¢Z for w € Wy,. The AZ are the character sheaves
in G(m).

Remark 3.2.18. In [Bon04, §6.A], Bonnafé defined another isomorphism from Q,[W,,] to
End(7.£). He fixed u € C' and showed that there exists a representative w of w € Wy,
which belongs to Cg(u) [Bon04, Eq. 5.4|. He chose for any w € Wy, the unique isomor-
phism o, : ad(w)*& - & such that o, is the identity at the stalk at u. He then
looked at the basis b, = 0, 8 ¢Z. If L = Ty or L = G, then in fact 7*c,, = 6!, [Bon04,
Cor. 6.9].

Remark 3.2.19. Let &' = i*(EO @4) and m’ = (L,X,&"). We have an embedding of
algebras

%z @ %,w_) @ %’,w:%’

weWm weWr,
b2 =i (0, @7 0Z) i (0, ® 7 0u' ) = b
In [Lus86, §2.6], Lusztig constructed an isomorphism between the restrictions (Kun)g._
and (K )g, = compatible with the ¢, for w € Wy,. In other words, he defined a canonical
isomorphism (Ku)g
commutes:

- (Kw)g,,, such that for any w € Wy, the following diagram

uni

uni uni

| L

(Kw)a,, — (Kw)a

uni uni

Therefore, this isomorphism induces an isomorphism in D?(G i, Q,):

2 ~[ 1C
R G

for any V € Irr(W,,), where Ind&v,:‘ (V) is the induced module.
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3.2. Parabolic induction of character sheaves

Character sheaves in simple groups of adjoint type

If we strengthen the assumptions on G, then one can show that the 2-cocycle is trivial
for any induction series.

Proposition 3.2.20 ([Sho95a, Lem. 5.9|). Assume that G is simple modulo its centre.
Then, for any cuspidal datum m = (L,X,&) € MS, there is an isomorphism

@E[Wm] = 42{8

In the proof, Shoji used the following argument of Lusztig (|Lus84b, §9.4]): assume
that there exists a one-dimensional module V' of .&7;. Then, we choose for basis elements
ay € g ,, the isomorphisms acting as identity on V. To show that such a one-dimensional
module of @7 exists, Shoji considered the equivalent statement that there exists a char-
acter sheaf A € G(m) such that (A, K,) =1 and treated it by a case-by-case analysis.

We would like to have a better understanding of the basis elements. The idea is to
construct from m another induction datum m’ = (L’, ¥/, ") for a subgroup of G such
that X’ contains unipotent elements. We define basis elements for o7 that we could lift
to basis elements of .o7.

Recall that X is the pullback under the quotient map L — L/Z°(L) of an isolated
conjugacy class in L/Z°(L). In other words, there exist a semisimple element s € L
and a unipotent element u € CL(s) such that ¥ = (su)pZ°(L) and sZ°(L) is isolated
in L/Z°(L). By [Bon04, Prop. 2.3b|, s is isolated in L.

We now fix Ly = C{(s) and G, = Cg(s). We also consider
C ={ueL,|sueX, uunipotent}.

By [LuCS2, Prop. 7.11¢|, the set C' is in fact a single unipotent conjugacy class of Ly,
ie.,

C = (U)Ls-
Recall that by Lemma 1.3.9, we have
Z°(Lg) = Z°(L).

We abuse notation and set s the translation map s: (u)y,Z°(Ls) - 3,  ~ sx. Then by
[LuCS2, Prop. 7.11a], the irreducible perverse sheaf IC(CZ°(L;), s*€)[dim CZ°(Ly)] is
cuspidal, whence m, = (Ly, CZ°(L), s*€) is a cuspidal datum for G.

Lemma 3.2.21. We keep the notation above. Assume that Ng, (Ls)/Ls 2 Ng(L)/L
under the map gLs = gL. Then, the algebra End(Ky) is isomorphic to the group alge-
bra QW] (that is, the 2-cocycle is trivial).
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Proof. Thanks to Lemma 1.3.10, the map Ng,(Ls)/Ls > Ng(L)/L, gLs — gL is well
defined. For each w e W&, we fix w € Ng,(Ls) such that wL = w. Note that if the rep-
resentatives w,w’ € Ng, (L) satisfy wL = w'L, then wL, = w'L,. Moreover, by [Bon04,
Eq. 5.4], we may even choose w € Cg_(u). Thus, w belongs to Ng,(Ls, CZ°(Ly)). Lastly,
we observe that w € Ng_(m;) since

ad(w™)*(s*E) 2 s ad(w 1) (&) = s*(&).
Therefore, setting w, = wl; € Wf’, we have defined a group isomorphism
W = Wn?ss, w > Ws.

Finally, for each w, € WS+, we fix basis elements b,,, € &« as in the proof of Proposi-
tion 3.2.17. In particular, the map w ~ b,, induces an isomorphism from @z[WS]
to eg. Now for each w € Wy, we choose the unique isomorphism a, € 2%, =
(Hom(ad(w)*&,€)) such that

(a’w)su = (bws)u‘

We check that the 2-cocycle is trivial. For w,w’ € W, we have

(aw x aw’)su = (aw o ad(w)*(aw’))su = (aw)su o (aw’)su
= (bws )u °© (bw;)u = (bw)u o (ad(ws)*bwg)u

= (b’wswg)u = (aww’)sw

Thus we get an isomorphism between Q,[Wan] and %, whence an isomorphism be-
tween Q,[W,] and End(K,,). O

A similar result holds for classical groups.

Lemma 3.2.22. Assume that G is simple of adjoint type and p is good for G. Let
(X,€) be a cuspidal pair of a Levi subgroup L of G. Then, there exists a semisimple
element t € L, isolated in L, such that the semisimple part of 3 is (t)1,Z°(L), the element
t is isolated in G, and Ng(L)/L = Nce, 1 (CE(2))/Cr(¢).

Proof. Firstly, we observe that the case where L = T is trivial as we may choose ¢t = 1.
Similarly, for the cases where X is the preimage of a unipotent class of L/Z°(L), we may
assume that ¢t = 1. The case where L = G comes from |Lus84b, Prop. 2.7|.

For the exceptional groups, we check the leftover cases (as listed in [AA10, Table 1]) using
CHEVIE [Mic15]. We always have an embedding Nce, 1) (Cy,(¢))/CE(¢) > Na(L)/L so
we just check that these two finite groups have the same order.

We know focus on the classical groups. If G is of type A, then the Levi subgroups of
the cuspidal induction data of G are maximal tori of G. Thus, we now assume that G
is of type B, C or D.

Firstly, we may assume without loss of generalities that L is a standard Levi subgroup,
that is L = L; for some subset @ #+ I ¢ A, I # A. Note that L has connected centre
(|Car85, Prop. 8.1.4]) and is a product of classical groups, of which at most one of type
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3.2. Parabolic induction of character sheaves

different from A. We rephrase what we have just said in order to fix notation.
Let n = |Al, then we set S = [1,n]. Moreover, we let Ji,...,J; be disjoint intervals,
included in S, such that

N

I=| ]Iy where I;={a;|jeJ;}forl<i<k.

i=1
Next, [Lus84b, Prop. 2.7] tells us that there exists a semisimple isolated element ¢ € L
such that X = (¢)Z°(L).
We now recall some results of Subsection 1.3.1 on isolated elements. Let af be the
highest short root of ®;,. The connected reductive group Cj (t) has Weyl group W;(t).
This Weyl group is generated by the reflections indexed by the root system ®;(t), which
has base I(t). Since t is isolated in L, by [Bon05, Thm. 4.6| and since p is good for G,
we may assume that for each 1 <7 <k, there is j; € J; such that

Hﬂ=QhH%JU%%}

We write ofy = Y oe7, nh,a. By [Bon05, Table I|, since L is a classical group, ni, <2 for
each a € I; and each 1 < i < k. If W; has only components of type A, n?, < 1 for each
root « € I; and each 1 <i < k. In this case, W;(t) = W} and thus, t € Z°(L), a case we
have already treated. Thus, there is 1 < d < n such that J; = [1,d] and L has exactly
one component of the same type X as G.

Moreover, we can rewrite, up to L-conjugation,

uo:hw%gu&aaugn

Now, we fix

Ve T (d)ajl )
=1Llr, € To.

Moy,
Thanks to Proposition 1.3.7, the semisimple element ¢’ is isolated in G and W(t') has

base A(t) = A\{aj, } n{-ap} where oy is the highest short root of ®. We claim that ¢’
is L-conjugate to t. For this, it suffices to observe that

r_ o~ (:)0‘1'1 d v
U =tp,| — + Zw_aé
najl =2

and thus
I-I1(t)=1-1(t)

and then apply [Bon05, Thm. 4.6].

From now on, we set ¢t = ¢’. We need to show that |Ng (L)/L| < [Nee, ) (Cr.(1))/Cr (1)].
By [MT11, Cor. 12.11], it is equivalent to showing that

|Nw (W) [Wi| < |Nw @y (Wi (t))/Wr(t)].

81



Chapter 3. Character sheaves

Now, thanks to [How80, Cor. 3|, this reduces to showing that

[Nw (D] < [Nw @y (1(2))].

We analyse each classical type individually.
First, we assume that G is of type B. To simplify the visualisation, we write down in
Table 3.1 the shape of the Dynkin diagrams of the various involved Weyl groups. As

1 2 n
%74 ——» T
1 2 d
Wi ——e ® —_—e ~— —o—@
n
1 2 [ ) n-1
Wit) e—e—e— —0 o— —— .
Qo
d
1 2 jl jl +2 (l -1
Wi(t) e=——e—— —o o— o —o—4eo

I
Qg

Table 3.1: Dynkin diagrams of the relative Weyl groups for type B

we explained before, W; is a Coxeter group, which is a product of one group of type By
and n; groups of type A; for 1 <l <s:=n-d-1for some 2<d<n-1. By [How80, after
Lem. 10|, we know that Ny (1) is a Weyl group of type

By, x+-x B, x By, where k=n-(d+ ) (i+1)n).
1<i<s
On the other hand, we can read off from [Bon05, Table II] that A(t) yields a Weyl group
of type Bj, xD,,_;, for some 1 < j; < d-1. Similarly, I(¢) is the base of a Weyl group which
is a product of groups of type Bj,, D4_;, and n; groups of type A; for 1 </ <s. Thanks
to [How80, after Lem. 10|, we observe that Ny« (I(t)) contains a Coxeter subgroup of
type

Bnlx"'XBnSXBk’ where k?’:(n—jl)—((d—jl)-i‘ Z (Z+1)TZZ)=]€

1<i<s

Thus, |Nw (I)| < |[Nw ) (1(t))| and we are done with the type B.

Now, we assume that G is simple of adjoint type C. In this case, W; is product
of one Coxeter group of type C; and n; groups of type A; for 1 <l <s:=n-d-1 for
some 3 <d<n-1. By [How80, after Lem. 10|, the group Ny (I) is of type

By, x++x By, x By, where k=n-(d+ ) (i+1)n;).

1<i<s
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3.3. Another basis for the space of class functions

From [Bon05, Table II|, we deduce that A(t) yields a Weyl group of type C}, x C,,_;, for
some 1 < j; < |d/2]. Moreover, Wi(t) is a product of groups of type C},, Cy_;, and ny
groups of type A; for 1 <[ < s. Finally, we conclude by observing that Ny ) (I(t))
contains a Coxeter subgroup of type

By, x-++x By, x By where k' =(n-j)-((d-j)+ Y, (i+1)n;) =k.

1<i<s
Lastly, we assume that G is of type D. Then, W; is product of one Coxeter group of
type Dy and n; groups of type A; for 1 <l <s=n-d-1 for some 4 <d<n-1. By
[How80, after Lem. 10], the group Ny (1) is again of type
By, x-+-x By, x By, where k=n-(d+ Y (i+1)n;).
1<i<s

Next, we observe from [Bon05, Table II| that A(t) yields a Weyl group of type D;, xD,,_;,
for some 1 < j; < |d/2]. Moreover, W;(t) is a product of groups of type D;,, Dq_;, and n,
groups of type A; for 1 <1 <s. As before, thanks to [How80, after Lem. 10|, we observe
that Ny () (I(t)) contains a Coxeter subgroup of type

Bnlx-nXanXBk/ where l{?IZ(TL—jl)—((d—jl)-f— Z (2+1)n1)=k

1<i<s

This concludes our case by case analysis. O]

3.3 Another basis for the space of class functions

From the previous two sections, we have established a clear parallel between char-
acter sheaves of a connected reductive group G and characters of a finite reductive
group G = G, In this section, we complete this analogy by finally bringing the Frobe-
nius map F' into play. We consider F-stable character sheaves, and see that their char-
acteristic functions do not only define a basis for the space of class functions, but in
fact agree in general with the almost characters (see below Theorem 2.2.29). This fa-
mous result, known as (one of) Lusztig’s conjecture(s) was proven by Shoji in 1995
in two consecutive papers [Sho95a|, [Sho95b| under certain assumptions such as Z(G)
connected.

Hypothesis 3.3.1. In this section, we always assume that the Steinberg map F
fixed in Hypothesis 1 is a Frobenius map and gives G an [F -structure, for ¢ a power
of the prime p.

3.3.1 The F-stable character sheaves

Let A be an F-stable character sheaf on G. We write that A belongs to GF. By
definition A is a constituent of some ? Hi(K%) for some local system L € S(Ty), w e Wy
and i € Z. Moreover, A also belongs to the induction series coming from some cuspidal
datum m € 9MG. In this subsection, we see that we may in fact choose m such that it
is F-stable as well.

83



Chapter 3. Character sheaves

F-stability and the definition of character sheaves

Let £ € S(Ty) be a Kummer local system on Ty and assume that there exists an F-
stable character sheaf A which is a constituent of P H*(Kf) for some w € W and i € Z.
Then, F*A is an irreducible constituent of F*PH!(K%). By [LuCS1, 1.8.1],

FPHU(KE) =PH(F*KE).

We follow Definition 3.1.9 to compute F*KZ. Since F* pr¥ L = pr},l(w) F* L, we see that

* AL ~ *L
F Aw = -'41{:71(1”)’

whence
“ L ~ PFL
F' Ky = Kt
By Proposition 3.1.11, since A is isomorphic to F*A, the local systems £ and F*L are

in the same W-orbit, that is writing £ = A*&,,; for A € X and n € N coprime to p, there
is some w’ € W such that

Ao F—w' AenX(<= w'eZ,).

Now, from Proposition 3.1.11 and the analogue for characters (see below Theo-
rem 2.2.10), we can write

G =G,

where s runs over a set of representatives of the F'*-stable semisimple conjugacy classes
in G*.

Lastly, we consider the F-stable character sheaves in view of the parameterisation
in Theorem 3.1.12. Let £ be an F-stable Kummer local system on Ty and ¢ € irr(Wp,),
then

F*Rw = RF.w.

Therefore, for any F-stable character sheaf A e GE , the following holds:
(R, A) = Ry, F* A) = (F* Ry, A) = (R, A).

Thus, (Ry,A) # 0 if and only if (Rg,A) # 0. As a consequence, Theorem 3.1.12 tells us
the character F.¢) belongs to the same family as 1/, hence to an F-stable family. Since F
is ordinary (because it is a Frobenius map), then in fact F.i) = ¢ (Proposition 2.2.22).
Generalising this result to any F-stable Kummer local system, Theorem 3.1.12 can then
be rewritten as

Proposition 3.3.2 ([Sho95a, § 5]). Assume that Z(G) is connected. To each F-stable
family F of irr(W) (recall that Wy = W2 ), one can associate a finite group Az such
that there exist an injection
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and an injection

GE o | [M(Az), Aw xy,
f
where F runs over the F-stable families of irt(Wp), such that for all A € Gf and ) € F,

(Ry, A) = ea{wa, vy},

where €4 = (—1)cdimswrA) ¢ {1 -1} depends only on A.

F-stability and parabolic induction

Let m = (L,X,E) € MG be a cuspidal induction datum and A € G(m) be an F-
stable character sheaf. Following |LuCS2, §10.5|, we may assume that L, ¥ and &
are F-stable. Indeed, F*A is an irreducible component of F*K,, = Kpsy, where F*m =
(F-Y(L), F-Y(2), F~*€). Since A = F*A, the two induction data m and F*m must be
conjugate by an element g € G (see below Definition 3.2.11), i.e.,

FH(L)=gLg?, FYX)=g¢Xg" and F*&=ad(g)*¢.

We can then consider the induction datum m” = (*L,"3 ad(h)*E) for some h € G such
that F'(¢g) = h"1F(h). Such an element h exists by the Lang-Steinberg theorem 1.2.4.
Note that here we define everything with respect to "Ty € "L instead of Ty. Then,
the character sheaf A is (isomorphic to) a component of Ky~ and m” is F-stable. By
following the diagram defining K,, we observe that K, 2 K». Therefore, we may assume
that if A is F-stable, it belongs to an induction series indexed by an F-stable induction
datum. Observe that the perverse sheaf Ky is also F-stable. Indeed, since £ = ad(h)*E
is F-stable, there is an isomorphism ¢, : F*£” = £”. By [LuCS2, 8.1.3], it lifts to an
isomorphism ¢ : F*KCur = Kur.

3.3.2 Characteristic functions of character sheaves

Let A € G be a character sheaf of G. Assume that A is F-stable and fix an isomor-
phism ¢ : F* A 5 A. Since A is irreducible, any other isomorphism between F*A and
A is of the form A for some scalar A € Q,. In [LuCS5, §25.1], Lusztig gave guidelines
to choose the isomorphism ¢ that we now describe. Let m € MG such that A € G(m),
i.e. A is a constituent of Ky, see Definition 3.2.11. Then supp(A) = m and we
let d = dimsupp.A. By [LuCS3, Thm. 14.2a], there exists an isomorphism ¢ 4 as above
such that for any n € N and any y € Yy, », with F"(y) =y, the eigenvalues of

(Pa)yy : H U (A)pnyy = H(A),

have norm ¢(dimG-d)/2 Syuch an isomorphism ¢4 is determined up to a root of unity

in Qg.

Notation 3.3.3. Since we will refer it, we call T the condition determining ¢ 4.
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Chapter 3. Character sheaves

We explain another way of choosing an isomorphism ¢ 4 : F'* A > A using the induc-
tion data. Assume that A belongs to G(m) for m = (L, X, &) € ME. By the previous
discussion, we may assume that m is F-stable. In particular, we fix an isomorphism of
local systems ¢ : F*€ = € over ¥ which induces a map of finite order on the stalk of £ at
any F-rational point of 3. Recall the definition of parabolic induction defining K. By
[LuCS2, 8.1.3|, the varieties G x ,.4, G x1, ¥,¢, and Y, s, have a natural F,-structure.
The isomorphism ¢, gives rise to an isomorphism of local systems do : F*E 5 €
and thus to an 1somorphlsm F*~,E - ~,E. Hence we have constructed an isomor-
phism ¢, : F*K, — K. By the definition of K as an intersection cohomology
complex coming from a local system on Yy, 5, the map ¢y acts on H-4(Ky), as a map
of finite order.

Let ¢4 : F*A— A be any isomorphism. Thanks to [LuCS2, 10.4], the following map

o4 : Hom(A, Ky) — Hom(A, Ky)
U"’¢m°F*(U)O¢:41

is an isomorphism of Q,-vector spaces which is .@Z-semilinear, i.e. such that for all 6 € o7
and v € Hom(A, Ky ), we have 0 4(6.v) = (¢m 0 F*(0) 0 ¢5l).04(v).
The decomposition

@A@VAEK
A

where A runs over the set of irreducible components of Iy, gives rise for any i € Z and
any g € G, to an isomorphism

@HZ(A)Q RV, Hi(/Cm)g.
A

In particular, the endomorphisms ¢4 ® 04 are compatible with ¢, under this isomor-
phism ([LuCS2, 10.4.1]).

We fix a particular choice of ¢4 as follows. Recall that V4 = Hom(A, ) is an irre-
ducible .@Z;-module. Since o4 is @/-semilinear, there is a certain power m of o4 such
that o} acts as an automorphism on the irreducible @Zc-module V4, hence as multipli-
cation by a scalar. Thus, we may now choose ¢4 such that o4 is of finite order. Note
that this determines ¢4 up to a root of unity.

We now would like to relate the isomorphisms ¢4 and ¢ 4, following [Het23a, 3.2.25]
in our more general case. Since A is irreducible, there exists a scalar £ € @Z, such
that pyq = 4. We set

04 :Hom(A, Ky) - Hom(A, Ky,)
V> o F*(v) ol

Note that 64 = {10 4. Moreover, for any y € Y{y, , we can identify ¢4 ® 64 with ¢,. By
definition of ¢ 4, the eigenvalues of

(@A)d,y : H_d(-A)y - H_d(]:)y
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3.3. Another basis for the space of class functions

have norm ¢(mG-d)/2_ Since ¢y, acts on H 4(Ky), as a map of finite order, the eigen-
values of 04 have norm ¢ (dmG-d)/2 Hence, the map ¢(dmG-d/20 , = ¢(dimG-d)/2¢-15 g
a map of finite order, like o 4. In particular, we could fix ¢4 as ¢-(dmG-d)/2 , In that
case, we have

_ g(dimG-d)/2

XAvSOA XA7¢.A :

The isomorphism ¢ 4 satisfies a nice property that we will need later on.

Lemma 3.3.4. Let D be an F-stable conjugacy class of G and A an F-stable character
sheaf of G(m) for an F-stable induction datum m = (L,X,E). Then, for any h € DF,
the map ¢ 4 has defined above induces a map (¢.4)ao.n which acts on H®(A), as ¢(@0*d/2
times a map of finite order, where ay = —dim(D) - dim(Z°(L)).

Proof. The proof of this lemma is a slight modification of [LuCS5, 24.2.4| to our more
general case. We keep the notation fixed before, in particular let h e DF. We fix an F-
stable parabolic subgroup P with Levi decomposition P = L x Up and By. We define
the following sets

X :={(g,2P) e G x G/P | v gr e XUp},

X ={(g9,2P) e G xG/P |27 gz e ¥Up},

and R _
X ={(9,2) eGxG |27 gr e XUp}.

Let Ay = IC(Z,€)[dimX]. Then Indf.p(Ag) may be defined as follows. Consider the
following diagram

< PlLcp ¥ % B .~ & %
¥ < P < X >y X —— Y5

with

the projection map prycp : P - L sending g =ul to [ € L,

the conjugation map 7 : (g,z) — z7tgx for g€ G, z € G,

the quotient map [,

and the projection map & : (g,xP) — g for ge G,z € G.

Note that it is a reformulation of the diagram in Definition 3.2.1. We let An=I1C(X,E)
where £ is the canonical local system on X such that §*& = 4* prj _p €. Moreover, we
have 4* pri .p An[dim G+dim Up] 2 8* A, [dim P]. As we have already seen, by [Lus84b,
Prop. 4.5, Ky, is canonically isomorphic to a* Ay,.

Therefore, for any a € Z,

HY(Ko)n = HY(G (h) n X, An).
However, by Lemma 3.2.9, the perverse sheaf Ay, is clean and thus A, = £[dim 2] and

An = E[dim(G) + dim Up — dim P + dim X].
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Chapter 3. Character sheaves

Consequently, Ho(Ky)s = H2(a72(h) n X, E[d]) = Ho*(aL(h) n X, E).

Now the map ¢ gives rise to an isomorphism g_zbo : F*€ 5 € which induces a map
of finite order on the stalk of £ at any F-rational point of X. If we can show that
dim &' (h) N X < 3(ag +d), then it follows that ¢, acts on Haordimsuep(A)(4-1(h) n X, &)
as qaordimsupp(A))/2 times a map of finite order, and hence, so does ¢n on H%(Ky)p.
According to the isomorphism @4 H(A), ® Va4 2 H(Kyw)g, the map ¢ on H%(KCy),
corresponds to the map ¢ 4®0.4 on H%(A),®V,4. We conclude that ¢4 acts on H(A),
as q(@0+d/2 times a map of finite order.

We are left to show that dima~'(h) n X < 1(ag + dimsupp(A)). We first observe that

al(h)nX ={zP e G/P |z 'hz e XUp} = X,.

We rewrite ¥ = DyZ°(L) where Dy is a conjugacy class of L and we obtain, since L acts

normally on Up,

Xn= | ] {2PeG/P |z hx e DyzUp}.
zeZ°(L)

Next, we verify that there is a finite number of z € Z°(L) such that
X, ={2P e G/P |z hz € Dy2Up} # @.

Without loss of generality, we may assume that the semisimple part hs of h is such
that Dy = (hsv)y, for some unipotent element v € C,(hs). Thus the number of z € Z°(L)
such that X}, . # & is smaller than |Z°(L) nh;!(hs)c|. Let T be a maximal torus of G,
we then have

Z°(L)nh*(hs)g € (hs)enT.

The right-hand-side set is finite by a standard linear algebra argument: we may see ev-
erything sitting inside a general linear group and T as subgroup of the diagonal matrices.
Conjugation preserves the eigenvalues and we can conclude.

By [Lus84b, Prop. 1.2b] or the rewriting in [Sho88, Thm. 1.4i], we know that for
each z € Z°(L),

1
dim({yP |y 'hy € Dyz;Up}) < §(dimG —dim L+ dim(Dy) - dim(D)).
Thus, since dim(X) = dim Dy + dim Z°(L), dim(a (k) n X) < 2(ao + d) and this ends
the proof of this lemma. O

If we further assume that Ap = L[-ag], then we define an isomorphism 1 : F*€ > &
by the requirement that q(a0+d/2¢) corresponds to the map ¢4 : H%(A) - H*(A).
Thanks to the above lemma, 1y, : £, — &}, is of finite order for any h € DF.
In particular, for any h € D,

(32) XA,QOA(h) — q(a0+d)/2(](dimG_d)/2X57¢(h) — q(dim(G)—dim(D)—dim(ZO(L)))/QXLﬂ/)(h)‘
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3.3. Another basis for the space of class functions

3.3.3 ['-stable character sheaves and representation theory of
finite reductive groups

Recall from Subsection 3.1.1 that for an F-stable G-equivariant complex in D?(G,Q,),
the characteristic function is a G-equivariant function, that is a class function. In this
subsection, we finally see how characteristic functions of F'-stable character sheaves relate
to the ordinary characters of G.

From now on, we fix for each F-stable character sheaf an isomorphism ¢ satisfying
the condition { (Notation 3.3.3). This might lead us to abuse notation and write the
characteristic function of A and denote it by x4 for x 4,4 as in Definition 3.1.5.

Since A is G-equivariant, the map x 4,4 is in fact a class function on G.

Theorem 3.3.5 (|[LuCS5, Thm. 25.2|, [Lus12, 3.10]). The set of characteristic functions
{Xapa | A€ G, A F-stable}
s an orthonormal basis for the space of class functions of G.

As a consequence, there are as many isomorphism classes of F-stable character
sheaves of G as ordinary characters of G.

Therefore, Theorem 3.3.5 tells us that to compute ordinary characters, it suffices to
solve the two following problems:

1. understand the change of basis from the set of characteristic functions of the F-
stable character sheaves to the set of irreducible ordinary characters,

2. and compute the characteristic functions of the F-stable character sheaves.

Lusztig’s conjecture and Shoji’s theorem

We now consider the first problem. In his book about ordinary characters of finite
reductive groups, Lusztig conjectured that the almost characters (see Remark 2.2.26)
are in fact characteristic functions of certain F-stable perverse sheaves [Lus84a, 13.6].
Around ten years later, Shoji provided a proof of this conjecture in the case where the
centre of G is connected.

Theorem 3.3.6 ([Sho95a, Thm. 5.7, [Sho95b, Thm. 3.2, Thm. 4.1|). Assume that Z(G)
is connected. Let L € §(Ty) be a Kummer local system and A € GE We may assume
that L is F-stable. Let F be an F-stable family of irr(W;) such that x4 € M(Az)
under the injection of Proposition 3.3.2. Then, in the setting of Theorem 2.2.29 and
Remark 2.2.30, there exists x € M(Az € Az) and a root of unity C, such that

R, = C.”L‘X.A,QDA .

Symmetrically, for every x € M(Az ¢ Az), there exists Ae GE such that x4 € M(Az)
and

Rx = Ca?X.A,gO,m

where (, 1S a root of unity.
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Chapter 3. Character sheaves

Therefore, thanks to Remark 2.2.30, to solve the first problem, one needs to de-
termine the scalar (,. Note that (, depends on the choice of isomorphism ¢ 4. This
question has been settled by Shoji for classical groups in [Sho97| in good characteristic
and for even characteristic in [Sho09]. For exceptional groups, this work spans over
various articles by different authors. For type Fy, it is due to Marcelo-Shinoda |[MS95],
completed by Geck in [Gec19| and [Gec21b]. In these two papers, Geck also treated the
groups of type Es (p # 3) and E7 (p # 2). This was completed by Hetz in [Het19] and
[Het22] who also considered groups of type Eg and 2FEg in [Het24].

Concerning the second problem, the values of the characteristic functions of F-stable
character sheaves are known in principle thanks to a strategy presented by Lusztig. We
advise the reader to read [Het23a, Section 3.2] for an exhaustive exposition. In the next
chapter, we will focus on describing the character sheaves when restricted to a conjugacy
class. To deduce results on ordinary characters, one still needs to understand how to
keep track of the isomorphisms ¢4 and how to compute the characteristic functions
afterwards.
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Chapter 4

Restricting character sheaves

In this chapter, we analyse the restriction of a character sheaf to a conjugacy class. This
is a first step towards the computation of characteristic functions of character sheaves.
This question was raised along the course of this PhD thesis in order to generalise
methods developed by Brunat-Dudas—Taylor [BDT20| for unipotent characters to non-
unipotent characters.

In the first section, we will focus on the restriction of character sheaves to unipotent
conjugacy classes. In this case, the generalised Springer correspondence described by
Lusztig [Lus84b] gives us a full and complete answer.

In the next two sections, we will treat the general case of a conjugacy class (su)g
with s € G semisimple and u € Cg(s)un by considering the translation of character
sheaves by the element s and then restricting to (U)Cg;(s)- We will first assume that s is
central and then move on to an arbitrary semisimple element.

In both situations, we start by considering how the translation impacts the complex K,
for some cuspidal induction datum m € 9ME. We will construct an isomorphism from the
complex (s*(lCm))(u)C&(s) to a direct sum of induction complexes Ky of Cg(s) as done

in [LuCS2, §8]. For the last step, we will study how this isomorphism behaves when we
restrict it to a character sheaf A € G(m).

We keep the notation introduced in Chapter 1 and Chapter 3. So in particular, we
assume that G is a connected reductive group with an F,-structure given by a Frobenius
map F'.

4.1 The importance of the unipotent variety: gener-
alised Springer correspondence

Thanks to Proposition 2.3.3, we know the values of the ordinary characters of G at
semisimple elements. For character sheaves, the theory developed by Lusztig gives us
information about their values at unipotent conjugacy classes.
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Chapter 4. Restricting character sheaves

First and foremost, the induction series determines whether the restriction of a char-
acter sheaf to G,; is zero or not. Indeed, let A € G be a character sheaf in the induction
series G(m), where m = (L, %, &) € ME. We write Ay, = IC(Z,E)[dimX] for the cus-
pidal sheaf on L. By definition, there exists a parabolic subgroup P ¢ G with Levi
decomposition P = Up x L such that Indf.p (Ay) & Ky and A is direct summand of Ky,
By [Lus86, 2.9], the support of A is completely determined by P and m:

supp(A) = |J gsupp(An)Upg .

geG
By Proposition 3.2.9, this means that
(4.1) {yeY | H'(A), #0 for some i e Z} c | J g¥Upg ™.
geG
Therefore,
{yeY | H'(A), #0 for some i € Z} N Gy € |J 9ZUp N Guuig™"
geG
and

{yeY | H(A), #0 forsome i € Z} N Gypi # @ <= XN Gypi = XN Ly # @.

Therefore, to study the restriction of character sheaves to the unipotent varieties,
we place ourselves in the setting of Remark 3.2.8 and assume that ¥ = CZ°(L) with C
a unipotent conjugacy class of L and £ = & ® Z with Z € §(Z°(L)) and & is an L-
equivariant irreducible local system on C.

4.1.1 Character sheaves restricted to unipotent conjugacy classes

In this subsection, we discuss the restriction of character sheaves to the unipotent vari-
ety Guni. We now fix a cuspidal induction datum m = (L,CZ°(L),& & Z) where C is a
unipotent class of L, & is an irreducible L-equivariant local system on C'and Z ¢ S(Z°(L)).
Recall that K, is semisimple and

K:mg @ .AV(X)‘/,

Velrr(End(Kwm))

where V runs over a set of representatives of the isomorphism classes of irreducible End(Ky,)-
modules and Ay = Homgpq(k,.)(V, Kn) are the character sheaves in G(m). Thus,

(Ka[-dimZ°(L)])g,. 2 @  (Av[-dimZ°(L)])g, V.
Velrr(End(Km))

We want to understand the complexes (Ay[-dim Z°(L)])g  for V e Iir(End(Ky)).
Note that it is not a priori clear if the complexes (Ay[-dim Z°(L)])g  are semisimple.
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4.1. The importance of the unipotent variety: generalised Springer correspondence

The generalised Springer correspondence (or the case when Z = Q,)

We assume that Z = Q,. By [Lus84b, 6.6.1], the complex Ky[-dim Z°(L)]q,. = K,
is also semisimple and therefore decomposes (see also [Sho88, 11.1.1]). Moreover, the
natural map End(/C,) - End(K;) is an isomorphism (|Lus84b, 6.8] or [Sho88, 11.3]).
Therefore, we conclude that

ICl = @ .A%/ eV
Velrr(End(Kw))

where Aj, = (Ay[-dim Z°(L)])g . is an irreducible G-equivariant perverse sheaf in
the category .#(Guni). The irreducible G-equivariant perverse sheaves in A (Gyui)
are shifted intersection cohomology complexes over G-stable locally closed smooth irre-
ducible subvarieties of Gy,;. Therefore, those varieties are unions of unipotent conju-
gacy classes of G and by irreducibility, they are simply unipotent conjugacy classes (since
there are finitely many unipotent conjugacy classes). Hence, for each V' in Irr(End(/Cy,)),

(Av[-dim 2°(L)]) g, 2 Ay = IC(Cy,&v)[dim Cy ],

where Cy € Ucl(G) and &y is an irreducible G-equivariant local system on Cy .
Recall that End(Ky,) = Q,[Wan] = Q,[WL], ¢.f. Proposition 3.2.17 and its proof. Thus,
we have defined an injective map

Gprog, Iir(Wr) » {(C7, &) | C" € Ucl(G), £ irreducible G-equivariant local system on C'}.

Note that this map depends on C and &,.

Let us denote by ME a set of representatives of the G-conjugacy classes of all pairs (C’,E")
where C” is a unipotent class on G and £’ is an irreducible local system on C’. We
write NG for the subset of MG consisting of pairs (C’,€’) such that the induction
datum(G,C"Z°(G),E' = Q,) is cuspidal for G. So in other words, for each Levi sub-
group L of G and each pair (C,&) € M, there is an injective map

Spreg, : Irr(Wy) - NE.

In the other direction, if (C’,£") € MG, then there are a unique Levi subgroup L and a
unique pair (C, &) € N§ (up to G-conjugation) such that (C”,E’) belongs to the image
of Gprog,, see [Lus84b, Prop. 6.3]. In this way, Lusztig has constructed a bijective map

Gpe:| | [ ] Tr(W) > NG,

L neml

where L runs over the Levi subgroup of G up to conjugation ([Lus84b, Thm. 6.5]). We
call this map the generalised Springer correspondence. This theorem was inspired
by results of [BM81]| and [Spr76] who only considered the special case where the Levi
subgroup is the maximal torus Ty. In that case it is called the (ordinary) Springer
correspondence.
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Chapter 4. Restricting character sheaves

Remark 4.1.1. In its original definition by Springer, the map differs from the one defined
by Lusztig by tensoring by the sign character of W.

The generalised Springer correspondence has been completely determined. Thanks
to [Lus84b, 10.1], it suffices to consider the case where G is simple and simply connected
and then to proceed inductively, assuming that the cuspidal pairs for all proper Levi
subgroups are known. This work was started by Lusztig in |Lus84b|, carried on by
Lusztig—-Spaltenstein for classical groups [L.S85] and Spaltenstein for most exceptional
groups [Spa85|, and concluded by Lusztig in [Lus19] and Hetz [Het23b] for the leftover
cases in FEy.

These results are accessible in CHEVIE [Micl5|.

Remark 4.1.2. Let us now briefly consider the characteristic functions. Assume that the
character sheaf A = Ay is the direct summand of the semisimple sheaf I, correspond-
ing to the pair (C",€") € MG under the generalised Springer correspondence. Recall
that we may choose a representative uc: of C’ such that F' acts trivially on Ag(ucr).
Moreover, by Remark 3.1.3, we assume that £’ corresponds to the irreducible charac-
ter ¢ € irr(Ag(ucr)). We can always choose an isomorphism ¢ : F*A - A such that
for any g € G with 9ucr € G, the characteristic function takes values

X (Pucr) = g2 (Am G-dm(E)-dm 2 W) o (gL F () O (ucr)).-

The normalisation follows from Subsection 3.3.2 and in particular Equation 3.2.

The case when Z is arbitrary

The generalised Springer correspondence combined with Remark 3.2.19 allows us to de-
scribe the restriction of any character sheaf to the unipotent variety G;.

We now assume that Z is not necessarily the constant perverse sheaf, so the cuspidal
induction datum m has the following shape: m = (L, CZ°(L), & Z) where C is a unipo-
tent class of the Levi subgroup L, & is an irreducible L-equivariant local system on C'
and Z € §(Z°(L)). From the isomorphism in Remark 3.2.19, we get for any V' € Irr(W,,),

2 N Q
(AV ) Guni (Alnedm? ) ) Guni ‘

Here AZ is a constituent of Ky,. Using the generalised Springer correspondence, we then
conclude:

(A%)G [~dimZ°(L)]z @ <1nd$j;(V),v’)[c@v,,gv,)[dimcv,]
. V'elrr(Wy,)

Remark 4.1.3. Note that this correspondence depends on C' and & as well as the choice
of the isomorphism fixed in Remark 3.2.19.

As a particular case, we consider the restriction of the character sheaf to a certain
unipotent class Cy € Ucl(G). We decompose the previous sum into three parts: the first
one with the V' € Irr(Wy) such that Cy = Cy, the second one with the V' € Irr(W1,)
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4.1. The importance of the unipotent variety: generalised Springer correspondence

such that Cy # Cy and Cy € Cy, and the rest of the sum. To rephrase it, we define the
natural partial order on the unipotent classes. For C,C" € Ucl(G), we write

C=<C — Cc(C"
The previous isomorphism yields

(Aé)CO[— dim Z°(L)] = § IE?W )(Ind% (V), VY IC(Cyr,Evr)[dim CV,])CO
@D (Indy:(V),V)IC(Cvr, &v)[dim Cy])

V'elrr(WL),
Cy1=Co

@B (Indy=(V), V) IC(Cyr, &) [dimCy]),
V'elrr(Wy), 0
Co£Cyr
@ (Inda//::(V),V’)([C(ﬁvr,gvr)[dlm OV,])CO'

V'elrr(Wy),
Co #CV/ ,C(] 5Cvl

IR

The description of the intersection cohomology complex (see Subsection 3.1.1) implies
that B
([O(Cvl, SVI) [dlm CV,])CO =0

if Cy £ Cy. Moreover, if Cy = C,
(IC(?\//, 5‘/!) [dlm CV/] )Co = E\/r[dlm C\//] .
Therefore, we rewrite

(A7), [FdimZ°(L)] = @  (IndyE(V), V') [dim Cy/]
0 V'elrr (W), "
Cyr1=Co

@D (Indy=(V),V)(IC(Cvr,Ev)[dim Cyi]),, .
V'elrr(Wy),
C’O;tCV/ ,Coﬁcvl

Thus, if Cj is “big enough”, the restriction of the character sheaf AZ to Cj is zero or a
(non necessarily irreducible) local system, i.e., something relatively easy to understand.
We will see in the next subsection what “big enough” means.

Deducing information about the characteristic function from the structure of a char-
acter sheaf is not necessarily clear or natural. When F' is split and L is contained in
an F-stable parabolic subgroup of G, Lusztig gives an answer in |Lus86]. It was later
extended independently by Taylor in [Tay14] and Digne-Lehrer—Michel in [DLM14].

4.1.2 The unipotent support of character sheaves

For a given character sheaf A € G, we would like to define in some way “the biggest”
conjugacy class D of G such that Ajp # 0. Since so far in this thesis, we only really
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Chapter 4. Restricting character sheaves

know the restriction of a character sheaf to a unipotent class, this will have to appear in
the definition. Hence, the “biggest" must be an adjective concerning the unipotent part
of D. On the other hand, we cannot blindly copy the definition of unipotent support of
ordinary characters as stated in Theorem 2.3.4. Indeed, it might happen that Ag . =0,
and thus that there is no C' € Ucl(G) such that Ag # 0. This leads us to the following
definition.

Definition 4.1.4 (|[Lus92, 10.6]). Let ¢ be a family of G/ for £ € S(T,). The unipo-
tent support Cy of ¢ is the unique unipotent class of G satisfying the following
properties:

1. for any character sheaf A € ¢4 and for any conjugacy class D of G with unipotent
part C" € Ucl(G) such that Cy # C” and dim Cy < dim C”, the restriction A, =0,
and

2. there exists a conjugacy class D of G and a character sheaf A € ¢ such that the
unipotent part of D is Cy and A, # 0.

We also say that Cy is the unipotent support of any character sheaf A€ ¥.

Since character sheaves are G-equivariant, it is clear that such a unipotent class
exists for each character sheaf of a family ¢. Lusztig showed in [Lus92, Thm. 10.7
that such a unipotent class is unique and gave another characterisation assuming some
conditions on p.

Description of the unipotent support

We unravel this description under the assumption that Z(G) is connected and that p is
acceptable for G (see [Tayl6, Def. 6.1]). If G is a simple exceptional group of adjoint
type, then any good prime is acceptable. Let ¢ be a family of G/ for £ an irreducible
Kummer local system on Tj. Theorem 3.1.12 allows us to associate to ¢ a unique
family .7 of the Weyl group W, = W32. We fix ¢ € irr(W;), the unique special character
of F (see Proposition 2.2.21). We then consider the j-induction ¢’ = jji (¥) of ¢ as in
Proposition 2.2.20. Lastly, we let (C",E") € MG be the image of ¢’ under the Springer
correspondence. Lusztig showed in [Lus92, Thm. 10.7] that C’ is then the unipotent
support of 4. Moreover, the local system &’ is trivial. This was later generalised to p
good by Taylor [Tay13]
If Z(G) is not connected and W is not necessarily a Weyl group, then this construction
still works, but one needs at first to extend the definition of special character to W,.
We make a few remarks concerning the unipotent support. Firstly, we come back
to the setting of the previous subsection. We assume that A belongs to the induction
series G(m) with m = (L, CZ°(L), & & Z) € ME where C is a unipotent class of the Levi
subgroup L, & is an irreducible local system on C' and Z € S(Z°(L)). Then A = AZ
for some V' € Irr(W,,). Let Cy4 be the unipotent support of A. The definition of the
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unipotent support implies that the restriction of A to C4 is a sum of irreducible local
systems:
(A7) [FdimZ°(L)]z D (Indjy= (V), V') Ev[dim C.a].
V'elrr(Wy,),
Cyr=Ca
In the principal series case, that is if L = Ty, and hence Z € §(Ty), we conclude
that
(A7), [FdimTolz @ (Indy, (V),V)E[dimCa).
A V'elrr(W),
Cyr=Ca
Here Wz is the relative Weyl group of the Kummer local system Z € S(Ty) (see below
Definition 3.1.7). Therefore, if V' € Irr(Wz) is a module corresponding to a special char-

acter of Wz, then the trivial local system Q, appears in the sum and (AZ). #0.

Ca
Lastly, let us consider the particular case when ¢ is a family of unipotent character
sheaves. Since the Springer correspondence is injective, we observe that two distinct
families of unipotent character sheaves have different unipotent supports. Therefore, we
obtain an analogous statement as Theorem 2.3.5 for ordinary unipotent characters.

Remark 4.1.5. The similarities between the unipotent support of character sheaves and
the unipotent support of characters is not due to chance. In fact, the above description
through the Springer correspondence also holds for the unipotent support of characters
(see for instance [GMO00, Thm. 3.7]) and leads to Theorem 2.3.5.

Special conjugacy classes

By a semantic shift, we say that a unipotent class C' € Ucl(G) is special if there is
special character ¢ € irr(W) such that Spr(¢) = (C,Q,). In other words, a unipotent
class is special if and only if it is the unipotent support of a unipotent character sheaf.
Moreover, we get a bijection between the families of irr(W') and the special unipotent
classes of G.

More generally, we say that an element g € G with Jordan decomposition g = su = us
(with s € G semisimple, u € Gy,;) is special if u is an element of a special unipotent
class of Cg&(s). As a result, we obtain a new parameterisation of the character sheaves.
To begin with, recall that the Kummer local system £ € S(Ty) is defined thanks to
an indivisible pair (A,n) € X x N (see below Definition 3.1.7) which itself corresponds
to a semisimple conjugacy class (s)g+ in the dual group G* of G. Furthermore, we
partition G, = G into families indexed by the families of irr(We) (We =2 Wy), cf.
Theorem 3.1.12. Here Wy is the Weyl group of Cg.(s). Thus we obtain

N

Gs = |_| Gs,.ﬁz

where .% runs over the families of irr(W,) and Gsr; is the family of Gs corresponding

to Z#. Lastly, the Springer correspondence associates to each family % € irr(W) a
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special unipotent class (U)Ca*(s), whence a special element gz = su € G*. Therefore,

setting Ggg == G, the partition of character sheaves becomes

~

G; = Ggﬁf

C

F

where .% runs over the families of irr(Wj).

On the other hand, let us consider a special element g = su € G* with s € G* semisimple
and u € Cg+(s) unipotent. To the special unipotent class (u)ce, (s) is associated a
unique family %, of irr(W;) and it satisfies g = g, for gz, as constructed above. Thus,

setting G, = G, 7, allows us to write
G = |_| va
g

where g runs over a set of representatives of the conjugacy classes of special elements
in G*.

Notation 4.1.6. Let g € G* be special, we denote by C, the unipotent support of the
characters in the family F,.

Remark 4.1.7. We obtain a similar decomposition for ordinary characters assuming that
the centre Z(G) is connected and p is good for G. For g = su € G* as before, if g
is F*-stable, then we write irr(G), for the family of ordinary characters in &(G,s)
corresponding to the family % of irr(W;) and we get

irr(G) = |?|irr(G)g,

where g runs over a set of representatives of the F'*-stable conjugacy classes of special
elements in G*.

To summarise, the generalised Springer correspondence allows us to get a good un-
derstanding of character sheaves when restricted to the unipotent variety Gy, and an
excellent one when restricted to their unipotent support. In the next sections, we will
consider the restriction of character sheaves to any conjugacy class.

4.2 Translation of character sheaves

Let A € G be a character sheaf, s € G be a semisimple element and u € Cg(s) a unipotent
element. To compute the characteristic function of A at su € G, we need to understand
the stalks H*(A)g, for i € Z. Equivalently, we could look at H*(s*A), where we abuse
notation and write s : G - G, g — sg, for the translation by s on the left. This brings
us back to looking at the restriction of s*A to the unipotent elements.

For the rest of this section, unless precised otherwise, we fix an element s € T as
well as the translation s: G - G, g — sg, for g € G.
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4.2.1 Translation and families of character sheaves

For any £ € S(Ty), we show in this subsection that the families of G are stable for the
translation by s, as stated in [LuCS4, 17.17]. We first consider the translation of local
systems.

Lemma 4.2.1. Let T ¢ G be any torus and consider L € S(T). Then for any s€T,
s*LxL.

Proof. Fix s € T. Let A e Hom(T,£*) be a character of T and n € N an integer coprime
to p such that £ = A\*&,;. For any c € Q,, we write m, : Q, - Q,z = cx for the
multiplication by c. Then, Ao s =m)) oA, whence

SN Eny = Ny En

Recall that for any m € N, the Kummer local system (A™)*&,,,; is isomorphic to £. In
particular, if m denotes the order of s, our claim holds since

SL=5"NEpy 25 (AN) Epmyj = (Am)*m;m(s)é’nm,j = (A") Enmy 2 L. O
We now consider the induction series.
Lemma 4.2.2. Let L€ S(Ty). For any we W,, and any s € Z(G),
s*KE = KE.

Therefore, if A€ G, then s* A e Gz. Moreover, the families of character sheaves in G,
are stable under translation by s.

Proof. Fix w e W and s € Ty. We show that s*K£ = K7™ and then conclude using
Lemma 4.2.1. Recall the definition of K££. We have the following commutative diagram:

G+— GxG—L5 Gxp, G2+ G

S\L \Lid xS iid XBy$ \LS

G(TGXGTGXBOGT)G
By definition, K£ = ~,.AZ. By base change,
S*KE = s*y, AL = v, (id xg, s)* AL,

(wlsw)* L
w

Showing the existence of an isomorphism between s*KZ% and K reduces then to

exhibiting an isomorphism between (id xg,s)*.A% and Alptsor e,
~ -1 *
By definition, A% *)"% is the only irreducible perverse sheaf on G xg, G up to iso-

morphism such that B*A&w_lsw)w ~ Q, Alptsw)e Thus, we need to show that the
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complex (*(id xg,s)* A% is isomorphic to Q, AL Ty g so, we consider the
following sequence of isomorphisms

B*(id xp,s)* A% = (id xs)*3* AL = (id x5)*(Q (QrAL)=Q = s AL

Now, by the characterisation of shifted intersection cohomology complexes, we observe
that s* AL = IC(G,,, s* pr;,(£))[dim G, ] = AL Gince 5% pr: (L) = pri (wtsw)* L.
Therefore, there exists an isomorphism between s*K£ and KL Since (wlsw)*L =
by Lemma 4.2.1, we deduce that s*K% = K£.

The last statement follows from Theorem 3.1.12. [

Even though the translation preserves the families of character sheaves, it might

not fix them individually. It is in general not clear how the labelling of the families
is impacted by the translation. However, Lusztig described this phenomenon in the
particular case when the translation is by a central element.
Let A € G, and consider z* A when z € Z(G). Theorem 3.1.12 might also be stated when
the centre Z(G) is not connected, see [LuCS5, Thm. 23.1]. In particular, the character
sheaf A belongs to a family ¢ of Gg, to which we associate a finite group Ay such that
there is a bijection between ¥ and M(Ay). If A is sent to the class [z,0] € M(Ag),
then 2*A is sent to [z,0 ® 0.] € M(Ag) where o, is a character of Ay depending only
on z. Moreover, for any 2’ € Z°(G), 0, = 0, and o0,/ is trivial.

4.2.2 Translation and induction series

Character sheaves are also partitioned into induction series. Let A € G(m) for m e MG,
then A = Ay where V is an irreducible module of End(K,). In this subsection, we
explain to which induction series s* Ay belongs.

First recall that we have assumed that T, ¢ L and that we have fixed s € T,
whence s7'L = L. The first problem we encounter is that s*& might not be L-equivariant.
Thus, s*m = (L, s71X, s*&) does not define an induction datum and we cannot hope for
an isomorphism between s*K,, and K, in general. However, it does work if s € Z(L)
and this is the case we consider now. In the next section, we will investigate what
happens when we translate by an arbitrary element s € T.

Lemma 4.2.3. Let m=(L,X, &) e M. For any z € Z(G),
Z*,Cm = Icz*ma
where z*m = (L, 271X, 2*E).

Proof. The proof goes along exactly the same lines as in Lemma 4.2.2, where we instead
consider the following commutative diagram, coming from 3.2.2:

2_12 — G x Z_lzreg L) G XL Z_lzreg L) YL,Z’lz

| [ [

b (T GXETEQ T> G’XL Zreg T> YL7Z
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We first observe that 2* Ky, = IC(27 1Y 5, 27, (£))[dim 271Yg, 5] and since 2 1Yy 5 = Vg .1y,
Z*ICm = ]C(YL,Zflz,Z*’Y*(g))[dimyhzﬁz].

We then study z*7,(€) and observe that it is isomorphic to v,(z*€). O

Observe that by definition of the parabolic restriction, for any proper parabolic
subgroup P = UxL of G such that Ty ¢ L and By € P, Restep (2*Kq) = 2* Respep (Kn).
Thus, if K, is cuspidal, so is z*/Cy,.

4.2.3 Central translation of unipotently supported character sheaves.

From now on, we consider the particular case where the character sheaves are unipotently
supported. We are in the setting of Remark 3.2.8. We fix a cuspidal induction datum
m= (L, %, &) e MG with C € Ucl(L) such that X = CZ°(L). We describe £ = i*(§yR 2Z)
with Z € §(Z°(L)), & an irreducible local system on C, and i : ¥ — C' x Z°(L) the
canonical map.

We also fix z € Z°(L). Observe that
z'm=(L,%,2*8) = (L, X, " (& r 2 2)).

Therefore, by Lemma 4.2.1, there is an isomorphism between z*Z and Z. Hence, if
z € Z(G), we have z*IC,, and Ky, are isomorphic.

Thanks to the isomorphism Q,[W,] > End(Ky) defined in Proposition 3.2.17, we
label the character sheaves of G(m) by the irreducible Q,[W;]-modules. Recall that
this isomorphism is the composition of two isomorphisms: one between Q,[W,,] and .27
and a second between o7 and End(K,,). The latter, that we call Lift, consists in lifting
the isomorphisms ad(w)*€ = € to endomorphisms of K. The first one was fixed as
follows:

1. For each w € Wy, choose a representative w.

2. For each w € Wy, fix an isomorphism @/, : ad(w)*(& = Q,) > & = Q, following
Lusztig [Lus84b, Thm. 9.2d]

3. Choose the unique isomorphism ¢Z : ad(w)*Z - Z such that (¢2); is the identity,
for w e W,,.

4. Construct the basis elements bZ : 0!, ® (id ® ¢Z) for w € Wy, and consider the
isomorphism

bz :@E[Wm] ; %

w e bZ.

101



Chapter 4. Restricting character sheaves

Let V e Irr(WWy,), then we set
AV = HomEnd(Km)(Llft(bZ(v))a ’Cm)

Here by Lift(b%(V')) we mean the module V' seen as an End (K, )-module via the action
induced by the isomorphism Lift o bZ.

Therefore,
2" Ay = Homgpa(z k) (z* (Lift(bZ(V))), z*ICm).

The isomorphism z*(Lift o b%) : Q/[W,«n] = End(K.«y) sends the element w € Wy,
to 2*bZ : z*ad(w)*€ - 2*& and then lifts 2*bZ to End(2*Ky). In general, it is not
true that z*bZ € o,+¢.

From now on, we assume furthermore that z € Z(G) n Z°(L). In this case, the
translation by z commutes with the conjugation by w and z*ad(w)*€ = ad(w)*z*E,
hence 2*bZ € o7+¢. Thanks to the isomorphism 2*/Cy, 2 K.« of Lemma 4.2.3, we obtain

Z*.A\/ = HomEnd(lCZ*m) (Llft(z*bZ(V)), ]Cz*m).

However, the isomorphism z*bZ differs from the isomorphism b*'Z and thus we cannot
write 2* Ay = Ay. To overcome this problem, we need to further investigate the isomor-
phism b%.

When considering the translation by z € Z(G)nZ°(L) and the local system &®Rz*L, the
first two steps in the definition of b% stay exactly the same. We thus turn our attention
to ¢Z with w e Wi,.

Description of the isomorphism ¢Z

We want to get a better understanding of the isomorphism ¢Z : ad(w)*Z - Z for a
Kummer local system Z € S(Z°(L)) and w € Wy,.

By the description of Kummer local systems, there is A € Hom(Z°(L),k*) = X (Z°(L))
and n € N coprime to p such that Z = A\*&,, ;. For w € Wy, the isomorphism ad(w)*Z = Z
implies that Aoad(w)-A e nX(Z°(L)). Namely, there exists a character \,, € X(Z°(L))
such that A oad(w) = AA?. This character does not depend on the choice of representa-
tive w since for any [ € L, Aoad(l) = \.

The isomorphism ¢Z : ad(w)*Z — Z is thus an isomorphism ¢Z : (AN2)*E,; > A*E,;.
More generally, for any A,y € X(Z°(L)) and any n € N coprime to p, we will describe
the isomorphisms

¢A,n,7 : (/\Vn)*gnvi > /\*57”
such that (¢ ,.~)1 is the identity.

We fix such n € N and \,v e X(Z°(L)). We start with a few observations, defining
some morphisms and keeping track of their restriction to the stalks.
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In the first place, we recall that &,; is the summand of (p,).Q, on which u, acts
according to j. Therefore, to understand the isomorphism ¢, ,, it suffices to define
a [l,-equivariant isomorphism

(I))\,n,’y : (AVn)*(Pn)*@e > (pn)*@z
We do this in three steps.

Step 1. Define a u,-equivariant isomorphism
™) (n) . Qe = (N (£0). Qe ®,, (1) (P0). Q-
Step 2. Define a u,-equivariant isomorphism
(7")*(Pa). Qe > C,
where C is the constant sheaf on Z°(L) which takes value Q,[f,].

Step 3. Combine the two previous isomorphisms to get a p,-equivariant isomorphism:
Pony ()"Yn)*(pn)*@e - (Pn)*@e-

Beforehand, let us describe the stalks of &,;. For c € k*, the stalk ((Pn)*@e)c can be
seen as the n-dimensional Q,-vector space Q,[p;'(c)], with action of p, on p;'(c) by

multiplication. In that setting, (&,.;), is the Q-vector subspace of dimension one on
which the action of = € u, is simply multiplication by j(x).

Step 1. As stated in [MS89, 2.1.2|, there is a p,-equivariant isomorphism:
(A1) (0n),. Qe = (V) (), Qe . (1) (£0). Qo
On the stalk at ¢t € Z°(L), we get a morphism of y,,-modules
QLo AT = Qelpn (ME)] ®,, Qel! (7(1))]-

Step 2. Let us write C for the constant sheaf on k* which takes value Q[ pn]-
The adjunction &, : (p,)" (pn),Q; =~ Q, is given by the p,-equivariant isomorphism

(Pn)*(Pn)*@e > Cp.

Taking the pullback by v, we get a u,-equivariant isomorphism

(v")* (). Qp = 7" (pn) " (pn) Qs > 7*Cp.

By definitions of the pullback and of constant sheaves, v*Cy = C. On the stalk at t € Z°(L),
we get an isomorphism of p,,-modules

QLo (v (1)) = Qu[y(t) ] = Q1]
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by multiplication by ~(¢)!.

Step 3. Combining the two previous u,-equivariant morphisms, we get an isomorphism

Dyt (M) (0n),Qr > (N (), Qe®, (V") (00), Qe > (A)* (90), Qe®,1,C > (A)* (), Qs

On the stalk at ¢ € Z°(L), we get an isomorphism of p,-modules

Qelon (A0 ()] = Qv ()" (A1))] > QoL (M),

given by multiplication by v(¢)~!. In particular, if " = 1, then v(¢)~! € p,, and so this
morphism is simply the action of ~(¢)~!.
This pi,-equivariant morphism @, ,, , restricts to an isomorphism:

Qﬁ/\’n’fy : ()\’}/n)*gmj —~> )\*gmj.

On the stalk at t € Z°(L) such that t” = 1, we get an automorphism of j,-modules

Eni)xmm = Enidray

given by the action of v(¢)~! € p,, that is, multiplication by j(y(¢)~!). In particular, at
the stalk ¢ = 1, the isomorphism is simply the identity.
The above discussion leads to the following result.

Lemma 4.2.4. Let Z = \*€, € S(Z°(L)) for n e N and X € X(Z°(L)). Let w e Wy,
such that ad(w)*Z = Z. Recall that there is A, € X(Z°(L)) such that X oad(w) = A\Z.
Then

ng = ¢A,n,)\w-
Proof. Since Z is irreducible, it suffices to check that (¢x ., ), is equal to (¢Z),, which
is the identity by definition. The claim follows from the previous discussion. m

Central translation of a unipotently supported character sheaf.

Lemma 4.2.5. Let z € Z(G) and m = (L,CZ°(L),& ® Z) be a cuspidal induction
datum, with C' € Ucl(L), & a local system on C, and Z € S(Z°(L)) such that Z = \*E,,;
where A € X(Z°(L)). Let V € Irr (W) and Ay be the summand of Ky corresponding
to V under the isomorphism fized in Proposition 3.2.17. Assume that z € Z(G)nZ°(L),
then

ZPAE 2 AL Z

where X = is the one-dimensional module of Q,[Wy] whose character is x. : w + j(Au(2)).

Proof. As we discussed before, we need to compare the two isomorphisms z*b% and b*" 2.
Firstly, we claim that z*¢Z =j(A,(2) 1)@z 2 for any w € W,. Since z*Z is an irreducible
local system, the vector space Hom(ad(w)*z*Z, 2* Z) is one-dimensional. Thus, the two
isomorphisms z*(¢Z) and ¢z Z differ by a scalar. To determine this scalar, it suffices to
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consider the stalks at 1. On one hand, by definition, (gbzw*z)l is the identity. On the other
hand, by Lemma 4.2.4, (2*(¢Z)); = (éxn,),- The latter is given by multiplication by
the scalar j(A,(2)7') as A\y(2) € pp. Indeed, by definition A7 = Xoad(w) - A
and ad(w)(z) = z, s0 A\,(2)" =1. We conclude that

202 = (h(2) )5 %

Therefore, 2*0% = x.®b*" 2. We now observe that 2*b% (V') = (b*"#)*(V®X.) where X is
the one-dimensional module with action of Q,[WWy,] given by multiplication by j(Ay(2)).
O

To conclude this section, we would like to describe j(A,(z)) more precisely. We
generalise different facts due to Lusztig [LuCS3, § 11.8] when L =T,

Lemma 4.2.6. Let z € Z(G), L =X "(&,;) € S(Z°(L)). The following hold:
1. For any we Wy and any z € Z°(G), j(Ap(2)) = 1.
2. For any we W2, any z € Z(G), i(A\p(2)) = 1.

3. If Z(G) c Z°(L), the map Wu/We - Hom(Z(G)/Z°(G), Q,), w i (z (A (2))),

18 1njective.

Proof. Fact 1. As we have seen in the proof of Lemma 4.2.5, \,(2) € u, for each
element w € W, and z € Z(G). Besides, A\, induces a continuous map from Z(G)
to fin, hence \,(Z°(G)) = 1.

Fact 2. If w € W2, then w is a product of s, for v € ®,. Let v € @, then s,.A = A—(\, @)a.
On the other hand, if a € ®,, then s, € W,. In particular, there is \;, € X such
that so.A — XA = n),,. Hence, (\,@) =0 modn and A\, = n,« for some n, € N.
Therefore, for any w € W2, the character )\, is in the root lattice ®,. In particular, it
means that A\, (Z(G)) =1 (]MT11, Thm. 8.17(h)]).

Fact 3. If Z(G) = Z°(G), then by |[AA10, Prop.4.4] the group W,, is a Coxeter group
and Wy, = Wg. We assume now that Z(G) is not connected and let w € W, ¢ WF
such that \,(Z(G)) = {1} and set G = (G x Z°(L))/Z(G) where Z(G) is embedded
diagonally. The group G has a connected centre. We set L =(LxZ°(L))/Z(G) and we
note that Z°(L) = (Z°(L)xZ°(L))/Z(G). Furthermore, W can be identified with W,
As in [LuCS3, § 11.8], we extend A to a character

A Z9(L) =k, (2,2)2(G) = A2)Mw ™ 2'w) ™.
Observe that for (z,2")Z(G) € Z°(L),

wA((2,2)2(G)) = Mwzw A (wzw ™)
=AM wZw )TN (2)
= M((2,2)Z(G)) N (2).
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We set ) .
Ao Z°(L) = K, (2,2)Z(G) = \y(2).

By hypothesis (A,(Z(G)) = 1), this character is well-defined and w.\ = S\Z\g.ﬁingg G
has connected centre, w is a product of reflections s, for a € ® such that s,. A = A\Z .
Restricting to Z°(L), we conclude that s, € W2 and thus w e Wg. O

Remark 4.2.7. This lemma does not allow us to completely describe the character y, of
Lemma 4.2.5. However, it does gives us some information. For instance, if Wy, /W3 is a
cyclic group of order 2 generated by wWg, and Z(G)/Z°(G) is also cyclic of order 2,

then y, is the trivial character if z € Z°(G). If z ¢ Z°(G), then the character y, takes
value =1 on wWg and 1 on Wg.

4.3 Restriction of a character sheaf to a mixed conju-
gacy class

We now come back to our initial goal of understanding the restriction of a character
sheaf A € G to any conjugacy class (su)g where s € G is semisimple and u € Cg(s) is
unipotent. As we have discussed at the beginning of the previous section, in order to
compute the cohomology H'(A),, for i € Z, we could instead focus on (S*A)(U)COG(S) .

We will proceed in a similar way to our discussion in Subsection 4.2.2. For the rest of
this section, we fix an induction datum m = (L, X, &) € MG where L is a Levi subgroup
of a parabolic subgroup P ¢ G, ¥ is the inverse image under the map L - L/Z°(L) of
an isolated conjugacy class, and £ is a local system on Y. We will study the character
sheaves in G(m) restricted to the mixed conjugacy class (su)g. As we have argued
before, A(su) # 0 implies that up to G-conjugation we may assume that s € L and
that ¥ = (sv)pZ°(L) for some v € Cg(s).

We start by studying the complex (s*K,) and show that it is isomorphic to a

(Wee, (s
G
direct sum of some K,y for some different cuspidal data m’ of Cg(s). In a second step,
we will see how to go down to the constituents of K, that is we will study how the
isomorphism behaves with respect to the action of End(Ky,). As before, we focus on the

cases where we know that End(Ky,) is isomorphic to Q,[Wy].

To simplify notation, we write G, = Cg(s).

4.3.1 Restriction of an induced cuspidal perverse sheaf to the
centraliser of a semisimple element

Following [MS89, Section 8] and [LuCS2, § 8|, we decompose (5*Kn)(G,),.; into a direct

sum of semisimple complexes on G;. To do so, recall that Ky, = IC (Yo x,7.(€))[dim Y, ]

Therefore as a first approach, we need to understand the set s™' supp(Kn) N (Gs)uni and
the restriction of s*p, (&) to this set. By Remark 3.2.10, the variety G is partitioned
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4.3. Restriction of a character sheaf to a mixed conjugacy class

into varieties Y1y, where L’ is a Levi subgroup of G, and Y’ is the preimage of an
isolated class in L’/Z°(L’). Thus

8_1 Supp(lcm) N (Gs)uni = |_| YL’,Z’ N S_l Supp(lcm) N (Gs)uni7

(L3
where (L', ¥') runs over the pairs of G as defined above. We make two observations.
1. The condition Y1 svN(Gs)uni # @ means that ¥’ = C’Z°(L’) for some C' € Ucl(L’).

2. By Equation 4.1, this condition implies that there exist g € G and z € Z°(L) such
that s71gszg~! belongs to the semisimple part of X! = {h € ¥’ | Cg(hs) ¢ L}.

reg
In particular, we may assume that L/ = C¢ (s7'gszg™') = Cg (gszg™'); see Re-
mark 3.2.10.

We thus define the two following sets
M:={meG|m'sme(s),Z°(L)}
and
M =G,)\M/L.

Remark 4.3.1. Let m € M. There are [ € L and z € Z°(L) such that m~tsm = [t]712.
Then ml € M and Cg(s)mL = Cg(s)mlL. Therefore, for each p € M, we may and will
fix a representative 1 € M such that p~'sj = sz, for some z, € Z°(L). We will often
abuse notation and write only pu for /i for any pe M.

To each u € M, we associate a cuspidal induction datum m, = (L,,%2,,&,) of G,

where
L, =aLi ' n Gy,

¥, =2°(L,)C, with C, = {u € G, | u unipotent, f ' sufi € 3},

and
Eu=T € for 7,18, > X, g~ [ sgj.

By [LuCS2, Prop. 7.11], the complex
Ay = An, =10(Z,,€,)[dimX,]

is indeed an irreducible cuspidal character sheaf of L,. Moreover, C, is a unipotent
conjugacy class of L, so C,, = (fiwpi™!)y,. Lastly, we set K, = Ky, as a semisimple
complex on Gy.

Remark 4.3.2. Alternatively, to each element i € M, we associate a cuspidal induction
datum mg, = (Lo, CoZ°(Lo), &) of Cg(s2,), where

Lo = Ci(s) =i L, Co= (0)xg

and &, is the local system on ¥, = CyZ°(Lg) obtained as the inverse image of £ under
the map ¥y » X, g = sz,9. Then setting Ay, = An, ,, we have

A# = ad(ﬂ_l)*AO,u-
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Chapter 4. Restricting character sheaves

Using the previous notation, we are finally able to state the following theorem.

Proposition 4.3.3 (|[LuCS2, §8|). There is an open neighborhood sU of s in G, such
that (Gg)un € U and there is an isomorphism

T o5 (Kn)er) > @ (K)o [dim(G) - dim(G,)].

peM

Proof. We give a sketch of the proof by firstly describing the isomorphism on the level of
local systems thanks to the proof of [MS89, Prop. 8.2.3] and the discussion following it.
The definition of parabolic induction at the level of local systems leads to the following
commutative diagram for each p € M:

o B v
Yy Gy x ey — G XL, Ypreg —= YL, 5,

Y GxXy T> Gxg Xpeg —— Yo v
with
e the map 7,: g+ 17 lsgj,
e the map s, : (h,g) ~ (hf, 17tsgp), for he Gy and g € X, g,
e and the map s: g~ sgfor ge Yy, =, .

To be able to navigate the diagram, we define a few more sets:

S = ’}/_l(SU N YL,Z)) SM = ’y/;l(U N YLH,EM) and lastly TN = SN(SN)'

Since K = IC (Y, 7. (€))[dim Y, 2], we study s*(%(fj)smyhz) = (s*%(g))msthx.
By [LuCS2, below 8.7.12], we have (sU n Yy x) = U,eir 7(7,.) and thus

5 (1 (E)svavns) & D *(1(E))(z)-

peM
By the change of basis theorem,
s (7 (En,)) 2 ()+si(€n,) = (1) ((576)5,)-

We check that (S;(S’N)SM = (EM)SM. By definition of £, as the unique local system up to
isomorphism such that a*&, = 5;51“ it suffices to check that ﬁ;js;é ~ o€, Following
the diagram, we see

* KO A QRO N K KO k%O %
Busp€ =s,8"€2s,a"E =a;1,E =&,

whence s7& = €,. Therefore, we have defined an isomorphism

T: S*(V*(g’)sUﬁYL,z) - EB ('7#)*(5#5) = @ ((7#)*5#)UOYLM,EM‘

peM peM
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4.3. Restriction of a character sheaf to a mixed conjugacy class

By definition of intersection cohomology complexes, the above discussion gives rise to
an isomorphism

T 8" ((Kn)svaws) = @D (Kvawy, s, [dim Y s - dim Yy, 5, ].

peM

By [LuCS2, 8.8.4-8.8.7|, this isomorphism can be uniquely extended to an isomorphism

T3 S*((Km)sU) > @ (K“)U[dimyhg - dimYngu].

el
We conclude thanks to [MS89, Lem. 8.2.6 ii|, from which we know that

dimYy, s, =dimG, -dimL +dim¥ and dimYy sz =dim G -dimL +dim Y. [

Remark 4.3.4. Observe that s*((Indg (K));7) might not be a semisimple perverse sheaf
since (K,)s-1p[dim G — dim G,] are not necessarily semisimple perverse sheaves. How-
ever, Lusztig showed in [Lus15, Prop. 1.4] that

$ ((Kan)s(G)u)) [ dim(G) + dim(G;) - dim(Z°(L))] = D (K, () [~ dim(Z°(L))],

peM
is indeed semisimple.

Notation 4.3.5. For the rest of this chapter, we set
d=-dim(G) + dim(G;) - dim(Z°(L)) and e = —dim(Z°(L)).

We would like to use this isomorphism to deduce the decomposition of s*( Ay, )u.)

for any character sheaf A € G(m) Firstly, we consider the restriction of A to a conjugacy
class whose unipotent part is the unipotent support of A.

Proposition 4.3.6 ([Lus15, Thm. 1.2]). Assume that p is good for G. Let Ae G with
unipotent support C'. Let D be any conjugacy class of G such that its unipotent part is
equal to C. Then Ap = L[dim(D) +dim(Z°(L))], where L is a local system on D.

Proof. We give the outline of the proof given by Lusztig in [Lus15, § 1.7]. By assumption
there is a semisimple element s € G and a unipotent element u € C' with su = us such that
D is the conjugacy class of su. Assume that A belongs to the induction series indexed
by m = (L, X, £). Using Proposition 4.3.3 and the remark following it, we deduce that
the complex s*( Ay, ) [d] decomposes into a direct sum of irreducible G-equivariant
perverse sheaves Ay, ..., A,

S*(AS(G.s)uni)[d] = (A]-)(Gs)uni @ T @ (An)(Gs)uni‘
For each 1 <i < n, there is a unique unipotent class C; of Gy such that (A4;)¢ is a local

system £;[dim C;] and for any unipotent class C’" of G, (A;); =0if C" ¢ C;. This is
the same argument as for the generalised Springer correspondence in Subsection 4.1.1
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Chapter 4. Restricting character sheaves

applied to (K,.)(q,)..;[—dim(Z°(L))] for each p € M. We consider the restriction to the
class (su)g. We write Cy = (u)g,. The decomposition becomes then

S*(-AS(U)GS ) [d] = @7(‘Ai)(u)Gs :
CocC;

On the other hand, for any v € G, unipotent,
(w)a, € (v)a, — (v)g, implies (u)g € (v)g - (v)a-

Indeed, (v)a. € (v)g and if (u)g = (v)g then dim(u)g, = dim(v)g, and we conclude
since the set (v)g, — (v)g, consists of unipotent conjugacy classes of dimension strictly
smaller than dim(v)g,.

By definition of the unipotent support, we must have 5*((A)sw)g,) = 0 if (u)a,

(v)q. — (v)q,. Therefore,
o (Aa)ld-el= @ (Aa

Thus, the restriction s*(Agwyg,)[d] = L[dim(Cp)] for some local system L on Cj,
whence A, [d-dim(Cy)] is a local system.
We decompose s(u)g = U, sC] where C! are unipotent conjugacy classes of G;. Notice
that dim(C?) = dim(Cy) for each 1 <i <r. Applying the same argument to each C/, we
conclude that Ap[d - dim(Cp)] is a local system. The proof is closed by observing that
dim(D) = dim(G) - dim(Cg(su))
=dim(G) - dim(Cg(su))
=dim(G) - (dim(Cg(s)) — dim(u)cg(s))
=dim(G) - dim(Gy) + dim(Cy),
whence d - dim(Cy) = —-dim(G) + dim(G;) — dim(Z°(L)) - dim(Cy) = -dim(D) -
dim(Z°(L)). O
We want to get a better description of the local system L. Before that, we describe
the set M in greater detail.

Action of W, on M

As in [Lus15], we define an action of Wy, on the set M. For each w € Wy, we fix a
representative w € Ng(m).

Definition 4.3.7. We define the action of Ng(m) by nm = mn~! for all m € M and
all n € Ng(m). It induces a well defined action of Wy, on the finite set M by

w.p = w.GL = Gy 'L
for all e M, we Wy, B
We fix a set A of orbit representatives for the action of Wy, on M,

M= | Wah
AeA
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4.3. Restriction of a character sheaf to a mixed conjugacy class

We may then write

s (1 (E)svrmis) 2D D ((W)Evmmi, s, -

AeA peWm A

We want to understand the set Wi, A for A € A.
Firstly, we observe that for any p € M, the stabilizer of i by the action of Ng(m) is
given by Stabygm)(/t) = Na(m) n L 'Ggfi. Since L ¢ Ng(m),

Stabygm) (1) = LNy, p(m) = Nyag,,(m)L.
Therefore, the stabiliser of u € M under the action of Wy, is
Wi = Stabw,, (1) = Nirg,u(m) /(L0 7' G ft) = Ny-1g,5(m)/Lo.

We describe this stabiliser more precisely.

Lemma 4.3.8. Let e M and write GY = 17 Gj1, then

Ngr(L,%)/Lo = W, and W ¢ WS .
Moreover, if se Z(L) or Wy = Wiy, then
Wk =Wt

mo,p

Proof. Firstly, we note that Ly = Cy(s) = Cyp(sz,) and G = Cg(ftsi) = Cg(sz,).
Since sz, is isolated in L, by Lemma 1.3.10,

NG‘;(L) = NG?(LO)'

Next, we claim that Ngu(L,X) = Ngr (Lo, 3o). We first show that Ngr (L, X) € Ngr (Lo, o).
We notice that the support ¥ = CyZ°(Lg) and that Cy = 171C), [t is the set of unipotent
elements u € G¥ such that j~tsjui~tf = sz,u € ¥. Thus, since any n € Ngu (L, X) fixes
sz, we can conclude.

For the other direction, let n € Ngu (Lo, X9). Then, there is [ € Ly such that non=t = (vl
whence

-1 _ 1, -1 -1 -
nsun_ =nsz,z, vn = slvl 2Nz,

Therefore, n¥n~t = (Isvl~tz,nz,'n"1)Z°(L) = %.

For the last statements, we recall that the local system &, is the inverse image un-
der the map sz, : 39 - X,9 = sz,9. Now if n € Nge(m), then n € Ngu(Log, %)
and ad(n) commutes with the translation by sz,. Since ad(n)*€ = £, we conclude
that Nge(m) ¢ Nge(mg,).

Assume now that s € Z(L), then L = Ly and Xy = s7'¥. The map sz, : £y - X is
therefore a bijection and & is the preimage under the map z,'s™ : X - g of & ,. A
similar argument as before allows us to deduce that Ngu(mg,) = Ngr(m).

Finally, assume that W, = Wy . For any n € Nge(mg,) € Ngu(L,X), there is an
element n' € Ng(m) and [ € L such that n =n’l. Then

ad(n)*€ =ad(n'l)*€ =ad(l)*ad(n')*€ 2 €,

1, -1 _ -1 1, -1
n~ =lsvl Zunz, no.

since & is L-equivariant. n
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Chapter 4. Restricting character sheaves

Now, we fix a set of representatives VA ¢ W, such that Wy, = | |,er vW2. In other
words, we write

Wad={vA|ve V),

and the isomorphism 7 becomes

5 (1 (E)svans) = D B ((’Yv.)\)*gv.)\)UmYvagv_A-

AeA peV A
Let us rewrite &, , for A € A and v e V.

Lemma 4.3.9. Let A€ A and veV?>. Then
Loa=Ly, Cyon=0C\, X,\=2X\.

Moreover, i ~
gv-)\ = S;@ng
where 3, : G xg, Sreg - G xt, Sregy B((9.1)) o> B((g071, 8hir 1)),

Proof. By definition, we have L, = A0 'LoA n Gy, X, = Z°(Ly0)Cy-1. Now, by
definition of Wy, v € Ng(L), whence L, = Ly. Moreover since the conjugation by ©
stabilises >, Cy4-1 = Cly.

From the proof of Proposition 4.3.3, we recall that E~v,,\ ~ s;/\g. Noting that s, = p,08),
we conclude that

Evr2sioiE. O
In particular, the isomorphism of Proposition 4.3.3 can be rewritten as

T 5" (1 () s) = B B (1)1 vaw, =, -

AN peVA

We will use this isomorphism to understand the restriction of a character sheaf to a
mixed conjugacy class.

4.3.2 Restriction of a character sheaf to a mixed conjugacy class

Let A e G(m) be a character sheaf. There exists a unique V € Irr(End(Ky)) such that
the character sheaf A = Ay = Homgpac,)(V, Cw). Then

[d]) (‘/’ S* (]Cm)s(Gs)uni [d])7

where V' now denotes the (not necessarily irreducible) End(s*(KCx)s(c,)u;[d])-module
with underlying vector space V' and action of § € End(s*(Ku)s(c.).:[d]) given by the
action of ¢ € End(ICyy) when 6 = s*¢gq.),.;[d] . Using the isomorphism 7 of Proposi-
tion 4.3.3, we get

8" (A) (@ )ums (4] = Hompnags (k60) e

s)uni

() (V: @ (K (@)umL€]);

pneM

8" (A)s(Go)us @] 2 HoMpna(e .11 (5,0)

s)uni
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4.3. Restriction of a character sheaf to a mixed conjugacy class

where, this time, V' is viewed as an End(@® 7 (Ky)(q.).,[€])-module with the action
of TofoT 1 € End( i1 (Ky.)(G.)uL€]) given by the action of 0 € End(s* (K )s(G.)un [])-
As for the central translation, it is not very clear what the End(@® i (K,.)(c.)wL€])-
module V actually is, firstly because we do not know the End(K,)-module V. To be
able to discuss this further, we make the following hypothesis.

Hypothesis 4.3.10. For the rest of this section, we assume that End(Ky,) is iso-
morphic to the group algebra Q,[W,].

We also fix an isomorphism from Q,[Wy] to End(K,) as we did in Subsection 3.2.3:

1. For each w € Wy, we choose a representative w € Ng(L).

2. We fix basis elements a,, : ad(w)*E - € for w € Wy, and consider the isomorphism
a: @Z[Wm] - %
W Ay

3. We lift each isomorphism a,, to a,, : @;g’ S €.

4. We precompose the isomorphism 7.a,, by the isomorphism bc, : 7*5 > %@;g (due
to base change) to get an endomorphism A, : 7.€ - 7.£.

5. Lastly, we use the isomorphism I¢: End(v.E) > End(Ky) given by the definition
of K.

Therefore, for a character sheaf A € G(m) there is a unique V € Irr(Q,[Wy]) such
that A = Hompguacc,)(V, ), where we see V' as an End(K,)-module via the action
of Ie(Ay) € End(Ky) given by the action of w € Wi,

We now would like to understand V' seen as an End(@ 57 (K,.) (G, ). [€])-module. Namely,
for each w € Wi,, we want to describe the isomorphism 7 o s*(Ic(Ay)sunyyy) © T, or

rather the isomorphism 7 o s*((Ay)svnyys) 0T ' € End(EBuEM((%)*gy)UmYLwZ# ). Alter-

natively, we will instead describe @#GNj((%)*éH)UOYLwEH) seen as a Q[ Wy, ]-module via
the action of w € W, given by

Bw = To S*((Aw)(sUﬂYL,z)) o T_l'
By [LuCS2, 8.7.13], the set sUNYL s = Lxea s(U N Y1, 5, ), whence

S*((Aw)(sUnYL,E)) = /\e?\ 5*((Aw)s(UmYL/\,2A))'
We now decompose B,, into B, = @ B;), where
Bz);z =To S*((AW)S(UOYLA,EA)) ° T_l'

In particular, each By belongs to End(@vevx(('y,\)*sf\@;g)\)ynyh%). We now describe

for each A € A the Q,[Wy,]-module @, ((’y,\)>H9§\951*,45'~)Um/%ZA where the action of w € Wy,
is given by B).
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Chapter 4. Restricting character sheaves

Lemma 4.3.11. For each A € A and each w € Wy, the map B induces an endomor-
phism b}, € End((7x)+53E), which gives (7).s3E the structure of a Q[W2]-module.
Furthermore, there is an isomorphism of @Z[Wm]—modules

@ ((")/A)’rS))%\@Z“-;?)Urﬂ/L>\,2A = Ind%z\((("}//\)yrS;“-:?)UNYL)\,EA )7

’U€V>\
where Wy, acts on the left-hand side via By for w € Wy, and W) acts on ((VA)*SXS)UOYLA,EA
via (by)vew,, s, for weWga.

Proof. We fix w € Wy,. To simplify notation, we denote by ¢ the inclusion UnYy,, v, € Y1, 5,-
By construction of A,

B{}, =T 0i* syt oT LoT 0i*s*bey, o T L.
Using the proof of Proposition 4.3.3, we make explicit 7. We set
bea(€) 115 7, E = i (72)51E

to be the isomorphism due to base change. For each v € V), we write bcv(g) : fy*é: - ’y*@;r‘j
for the isomorphism induced by base change. Then

T = @ bea(@:€) 0i*s*be,(£).

’l)EV)\
We first describe T oi*s*be,, o T 1. For each v € V), there exists wg € W, and v’ € V), such
that wv = v'wy. Then, we have
T 0i*s*bew(E) = @ bex(@r@LE) 0 i*sbey (¢5E) 0i*s*bey (£)
UEV/\

=P bc,\(@;vc‘j) o i*s"bcwv(c‘:’)

UGV)\

= @ bC)\(@Z/wa) °© Z.*S*bcv'wo (g)

UGV)\

= P bea (@, Bl 0175 beyy (P1E) 0 1% 5 bey ().

UEV)\

By Lemma 4.3.8, AwoA~! € Wf; In particular, the isomorphism @y,ox-1 @ Gg X, 2Xxreg
is well defined. We observe that sy o @y,oa-1 = Pu, © Sx. Therefore,

bex (Pl Pir€) 018" by (P1E) = 1*berugr-1 (S3P1E) 0 ber (P E),

where bC)\wO/\—l(Sj'\@;,g) denotes the isomorphism (WA)*(SK@;,SN) - (%)*@f\wox—l(si@;’g)
due to base change. We conclude that

T 0i*s*bey = @ i*berwort (5305E) 0 bex(@E) 0 i*s*bey (£).

’UEV)\

Thus, T oi*s*be, o T~ is the morphism which consists of first rearranging the terms of
the sum, sending v to v/, and then acting on each summand via i*bcyyor-1(s305E).
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4.3. Restriction of a character sheaf to a mixed conjugacy class

We now consider T o i*s*y,a, o T~'. By definition, the isomorphisms induced by base
change are natural, and therefore,

Toi*s* Vatwo T 1= @ i*(72)+S3Ps -

”L)GV)\

To conclude, we consider the following isomorphism

Xi= @i (12)e83a0: @ i (1)+550:E > B i (1) 53E.

’UEV)\ UGV)\ ’UEV)\

It gives @yery i*(72)- 5/\5 the structure of Q,[Wy]-module via the action of w e Wy,

by X o B) o X~!'. The morphism X o7 oi*s*bc, o T 1o X! consists of rearranging
the terms of the sum and acting on each of the terms by Z.*bC)\wO)\—l(S;é). Moreover, by
definition of a,,, and thanks to the hypothesis 4.3.10 of a trivial cocycle,

Xo @ i (12)e53Phi = @ 1 () e53un = B * (1) 53 Phiiu © @ 1* (12300

’UEVA ’UEVA ’UEV)\ ’UEVA

Therefore, w € Wy, acts on @y, i*(%)*sj\g by first rearranging the terms, then acting
via 0% (0) e3P, g © 1 DCruor-1 (53E). For each wy € W, we set

by = (72) 483w, © berwor1 (55E) € End((72).5%E).

By definition of the induction of modules, we conclude

P i*(%\)*s;g = Ind%}: (@'*(m)*s;g)

UEVA
for the action of W2 on i*('y)\)*sf\g given by i*b} . This proves the lemma. 0

Corollary 4.3.12. Let Ae G(m) and V € rr(Q,[Wh]) such that A= Homgna(icn) (V, K-

Then
5" (A)s(@)um[d] 2 EB(AReSme)[e](GS)W

where A’

Res!Vm v

= HomEnd((w)*Sig)(ResW;g V, (70).5%E) with the restriction Reswﬁ V viewed

m

as an End((%)*sf\g)—module under the isomorphism given by by, for w e W.

Proof. By definition of the action of Q,[Wy] on @jer Boev, (1)« S;@;S)UQYL/\ s, the

isomorphism 7 commutes with the action of Q,[Wy,]. Therefore, by Lemma 4.3.11 and
the adjunction between restriction and induction, we obtain

8*("4)3(Gs)um @(ARQSW"'[ 1% ](Gs)uni'
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Remark 4.3.13. Let A € A and w € AWQA™. Then w € W by Lemma 4.3.8. Let
wo = AtwA € W, The Q,[W3]-module (7,).s5@;€ may be seen as a Q[AWIAL]-
module via the action of w e AWA™! given by b)), = b3, . By definition

DY = (72) e 55ar1u © bew(51E).

By construction of ay-1,,, and diagram chasing, we see that the map s}ay-1, is the lift
of T;(a)\—lw)\) € Qfgx.

Note that the action of AWML ¢ Wn(i we have fixed might differ from the action
given by the isomorphism in Proposition 3.2.17. In particular, we cannot directly apply

Remark 3.2.19 to compute A;)Leswmv[e](c’\s')uni' To compare the two actions, it suffices
WA

to look at the two isomorphisms Z;;U and 75 (ay-1,,) as defined in Proposition 3.2.17 for
each w € AWAA"1. In the next subsections, we compare these two actions in different
scenarios.

Before that, we first describe the set A.

A description of the set A

As in [AAT0, § 6.2], we fix a set R c M such that the groups L, for » € R are not
conjugate under Gy, but for all o € M, there is h € G, and r € R such that L, = "L,. We
set for all r € R, B B
M, ={ue M |L, ="L, for some h e G,},
and we have B B
M=||M,.
reR
Observe that since L, = L, , for all w € Wy, the set M, is Wy-invariant for all r € R.

Lemma 4.3.14 (|[AA10, Thm. 7.2|). If G is semisimple, quasi-simple and different from
the projective symplectic groups PSp,,,, the projective simply orthogonal groups PSOaq,,
the half-spin groups 1/2Spin,,, and E; simply-connected, then |R| = 1.

Lemma 4.3.15. Assume that Wy, s, = Wy,. Then for all r € R, the map
G g
w: VVL/VVLOS - M,
wWp = Gy 'L
15 a Wa-equivariant bijection.

Proof. We first show that the map w is well-defined and Wy,-equivariant. B
Fix wWI(j)S € WL/WE(; Since Wy, x = Wy, we have 7w~ € M and GyrwtL € M, for
all w e Wy,. Furthermore, let n € Ng(L) and [ € L such that nl = w. Since w € Ng(L),

G, nL = G/l 'L = Gy ' L.
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4.3. Restriction of a character sheaf to a mixed conjugacy class

Now, let wyq € WS)T Since wy € G,
G g L = Gy i 'L = G ' L.
Lastly, we fix v e Wy,. Observe that
w(vwWSjr) =G 0 L =0.Gri 'L = v.w(wWLG;”).

Therefore, w is a well-defined Wy,-equivariant map.

We show that the map w is surjective. Let p € M,. By definition of M,, there
is h € Gg such that “Ly =L, = "L, = ""Ly. In particular, it means that u=thr € Ng(Ly),
whence p~'hr € Ng(L) by Lemma 1.3.10. We write n = pu~thr. We have

w(nLWg*") = Gyin 'L = Ggr ' h 'L = G,uL

and the map w is surjective.
We are left to show that the map w is injective. Let wq,wy € W1, be two elements such
that w(w Wy*) = w(wsWy."). Then there is h € Gy, [ € L such that hiwy'l = iy
Thus,

7L hy = will_lwl € Ng(L) N Gg c Nc;g(L) c NGQ(LO)a

r

G’ G C
whence w1WLO" = wQWLOS and w is injective. O

Corollary 4.3.16. If |[R| = 1 and Wy 5 = Wy, the map w induces a bijection from the
set of double cosets Wm\WL/Wf’;S to A.

Remark 4.3.17. The assumption Wy, 5, = WY, is satisfied in particular when:
o L =G (then Wg s =Wg=1),
e L=T (then ¥=T),
e Y is the preimage of a unipotent class (|[Lus84b, Thm. 9.2.b]),

e ) is the unique preimage of an isolated class which belongs to a cuspidal pair of
L (up to L-conjugation),

e or Ky, is unipotent and Z(QG) is connected, since in this case Wy, = Wy, by [AA10,
Prop. 4.4].

4.3.3 Restriction of a unipotently supported character sheaf to
a mixed conjugacy class

We suppose that ¥ contains unipotent elements. In other words ¥ = (v),Z°(L) and
we assume that s € Z°(L). By Remark 3.2.8, we write £ = i*(§ ® Z) where & is
an irreducible local system on (v)r, £ = p*&,; is a Kummer local system on Z°(L)
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Chapter 4. Restricting character sheaves

with p e X(Z°(L)) and n € N coprime to p, and i : 3 — (v)g, x Z°(L) is the canonical
map. For A € A, the local system &£y on 3, = AX A7 is

s*ad(\)*i* (& & 2) = ad(\)* (AsA ) i* (& & 2)

ad(N\)*(sz))* 1" (& m Z)
ad(A)*i* (& (s20)* 2).

We make a specific choice of a,, for w € Wy, following Proposition 3.2.17.
We set a,, = bZ : 0!, ® (id= ¢Z) for 0!, as given by Lusztig in [Lus84b, Thm. 9.2d] and the
morphism ¢Z : ad(w)*Z — Z is determined by the condition that (¢Z); is the identity.
Similarly, for w € W&+, the choice of b5 : ad(w)*Ey - &, is fixed in Proposition 3.2.17,

with b = ad(A)*b5)1%. Observe that 7@y = ad()*(s20)*bZ,

sends g € Xy to A 1sg)\ We then obtain the following result.

" a-1; since the map 7y

Lemma 4.3.18. Let Ae G(m) and V e Irr(Q,[Wy]) such that A= Homgua(icn) (V, Ka)-
Then for any s € Z°(L),

8*(’A)S(Gs)uni [d] = @(A;{eswﬂé (V)@Xi)[e](Gs)unﬂ
wGs

AeA oy

where A’

Re sxm (V)®X;

IT'I)\ ~

We see Resg“(‘; (V) ® X5 as an End((7x)«s3€)-module under the isomorphism given
1\1A

by b5 forw e WS+ and X3 is the Q[WSe -module with character x5 : w v j(pr-1,0 (ASA™)).

= HomEnd(m)*s;S)(Resx"éf (V) ® X35, (72)+55E)-

Proof. By Corollary 4.3.12 and Remark 4.3.13,

S*(A)S(Gs)um @( V)[e](Gs)uni7

)\W>‘ -1

where A7 Kvwmh v
an End((y2).s:€)-module under the isomorphism given by b2 for each w € W2. By
Lemma 4.3.8, \AWA\! = WS,

We need to compare b5 and b}, or alternatively bg“Z;le and (szy)* b/\ \o1- Applying
Lemma 4.2.5 and its proof, we obtain b, = j(fux-1px (ASA™L) 165

Any End((7)).s%€)-module V under the isomorphism given by b} for w e W2 is then
isomorphic to the End((7y).s:&)-module V ® x5 under the isomorphism given by b5
for w e W), Therefore,

8*(A)5(Gs)un1 @(ARGSWm (V)@XS)[e](Gs)uni

= HomEnd(m)*s*g)(Res V,(72).5%5E) with Res!” V seen as

AWAN-L ,\WA,\ 1

under the assumptions of the lemma. O
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4.3. Restriction of a character sheaf to a mixed conjugacy class

Corollary 4.3.19. Let Ae G(m) and V € rr(Q,[Wa]) such that A= Homgna(icn) (V, K-
For any s € Z°(L), s*(A)s(G,)u:Ld] is isomorphic to

G

wes
D @  (Respw, (V)oX;, Res @ (V'oad(w™)))(ad(w ™) Ap)[el(G.um:
mw’l mw_l

V'elrr(Wﬁf ) weWm\WL, /WSJS

where Ay, = Homgnq(ic,, ) (V' Ky ) withmg = (L, 3, EomQy). We see V' as an End(Kmy))-
module under the isomorphism defined in Proposition 3.2.17 and X3, is the module
of Q (W=, ] whose character is x5, = wo = }(Huwgew-1 (wsw™)).

w

Proof. This is a consequence of Lemma 4.3.18, Remark 3.2.19 and Corollary 4.3.16 (to
rewrite the indexes of the sum). O

Corollary 4.3.20. Let Ae G(m) and V € Irr(Q,[Wa]) such that A= Homgna(icn) (V, K)-
Assume that A is a unipotent character sheaf in the principal series and that Z(G) is
connected. Then, s*(A)s(G )~ diM(G) + dim(G,) — dim(Ty)] is isomorphic to

@D (Resiye. (V). V) (A [~ dim To .,

V'elrr(WGs)

where Aj,, = HomEnd(,cmO)(V’,lCmO) with mg = (To, Ty, Q) € MGs. We see V' as an
End(Ky, )-module under the isomorphism defined in Proposition 3.2.17.

Proof. Since A is unipotent, W, =W and Ng(m) = Ng(Ty). Moreover,
Wl =Staby, (1) = WS

which is a Weyl group, because it is the Weyl group of the connected reductive group G.
Applying Lemma 4.2.6, we conclude that the character x2 in the previous corollary is
trivial. []

4.3.4 Restriction of a character sheaf from a simple group of
adjoint type

In this subsection, we focus on the particular case when G is a simple group of adjoint
type. Moreover we assume that s ¢ Z°(L). Otherwise we are in the case of the previous
section.

Thanks to [Lus84b, 2.3], we may write £ = i*(F ® L) with

e i:L->L/Z°(L)xL/[L,L],
e F a local system on L/Z°(L), and

o Z =&, saKummer local system on L/[L, L] with ¢ € X (L/[L,L]) whose inverse
image under j : Z°(L) - L/[L,L] is a Kummer local system Z’ = (o j)*&E,4
on Z°(L).
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Chapter 4. Restricting character sheaves

We now fix the isomorphisms a, for each w e W, following Lemma 3.2.21. By
Lemma 3.2.22, we choose ¢t € L such that ¢ = lsl='z for some [ € L and z € Z°(L)
and Ng(L)/L = Nee,1y(Cp(1))/Cr(t). Note that without loss of generality, we may
assume that [ = 1. Recall from the proof of Lemma 3.2.21 that we have defined a group
isomorphism

W — Wf;t, w > wy = why,
where G, = Cg(t), and m; = (L, %, &) with L, = C3(t) = Lo, £, = (v)1, Z°(Ly) = X,
and the local system &; is the inverse image of £ under the map ¢ :Y; - ¥, g - tg. In
particular, we can write & = ¢*(t*F ® Z;) where the inverse image of Z; = z*Z under the
map Z°(L) = Z°(L;) - L;/[L;, L;] is the Kummer local system z*Z’.
Finally, for each w € W,$*, we fix basis elements bZ! € @7.¢ as in the proof of Proposi-
tion 3.2.17. For each w € W,,, we choose the unique isomorphism a,, such that

(aw)tu = (bﬁ )u

For A\ € A, the local system &, on X, is in fact ad(N\)*(tzxz71)*E = ad(N\)*(2xz71)*&;.
For each w € Wf;s, the choice of b5 : ad(w)*&, — &, is fixed in Proposition 3.2.17,
with b5 = ad(\)*b{77 )2

Now, exactly as in the unipotently supported case we obtain the following description
of the restriction of a character sheaf.

Lemma 4.3.21. Let Ae G(m) and V e Irr(Q,[Wy]) such that A= Homgna(icn) (V, Ka)-
Then

8* (A)S(Gs)uni [d] ; @('A%eswm (V)@Xf\ ) [6] (Gs)uni )

AeA AWAA-L
where
4

Wi s x &
AResz/\ L (Nexy - HomEnd((w)*sié)(Res,\wné,\-l(V) ® X3, (1)«853€)
AWQAN

with ResKVV‘['}A/\_l(V) ® X viewed as an End((y2).5:€)-module under the isomorphism
given by b5 for w e AWRAAL and X5 is the module of Q[AWAN] whose character is

given by x5 w > j(pr-r1pa (A2 2AT)).

Proof. As for the proof of the unipotently supported case (see Lemma 4.3.18), we need to
compare b5 and b, or alternatively (bf\zﬁfv_;)*zt)zfzu and (bfﬁ)u. Applying Lemma, 4.2.5
and its proof, we obtain b} =j(px-1,r (A2 2A1) )05

Any End((73).s:€)-module V' under the isomorphism given by b} for w € W, is then
isomorphic to the End((%\)*sf\é )-module V ® x* under the isomorphism given by b5
for w e W3. Therefore,

* ~ /
S (A)S(Gs)uni[d] = @\(ARGSQ/%& (V)@Xs)[e]((;s)uni

m/\

under the assumptions of the lemma. O]
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4.3. Restriction of a character sheaf to a mixed conjugacy class

Corollary 4.3.22. Let Ae G(m) and V € Irr(Q,[Wa]) such that A= Homgna(icn) (V, K-
Then s*(A)s(G,)uld] is isomorphic to

ws / _ —1\* A/
® B (R (VeXiRes |, (Voad(u))(ad(w ) Ap)[el@ns.

V'elrr(Wﬁf Y weWm\WL, /WSJS

where Ay, = Homgnq(ic,, ) (V' K, ) with mg = (Lo, o, s*FrQ,). Wesee V' as an End(Ky,)-
module under the isomorphism defined in Proposition 3.2.17 and X3, is the module
of QE[W‘%—J whose character is x5, : Wo = J(flywuw-1 (W22 wL)).

Proof. This is a consequence of Lemma 4.3.21, Remark 3.2.19 and 4.3.16. m
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Chapter 5

Ordinary and projective
representations in blocks of Brauer
characters

After introducing the finite groups of Lie type and their representation theory, both in
terms of ordinary characters and of character sheaves, we are finally ready to approach
the main theme of this thesis: the unitriangularity of the decomposition matrices.

To do so, we treat this question block of k[G] by block of k[G], or to be precise, union
of blocks by union of blocks. Let us describe a first strategy to show that 4, a union
of ¢-blocks of k[G], has a lower-unitriangular decomposition matrix.

Step 1 Compute the number n of projective indecomposable modules in 4.
Step 2 Choose n ordinary irreducible modules Vi, ..., V,, € itk (G) belonging to A.

Step 3 Find the n projective indecomposable modules Py, ..., P, of k[G] belonging to
the union of blocks 4.

Step 4 Check that the decomposition matrix given by (V;, P].O ®o K) for 1<i,j<nis
lower-unitriangular.

The obvious problem with this method is that we would like to use the decomposition
matrix to get information about the PIMs of k[G] and not the other way around. If we
could do Step 3, then computing the decomposition matrix would be a much easier task.
Fortunately, the following result allows us to simply look at projective k[G]-modules,
not necessarily indecomposable ones.

Proposition 5.0.1 ([Gec94, Lem. 2.6]). Let A be a finite group. Let B be a union
of £-blocks of the group A and n = |irr(A)|. Assume that there exist irreducible K[ A]-
modules Vi,...,V, in B and projective k[ A]-modules P,..., P, such that the decom-
position matriz ([Vi, Pj])1<ij<n s lower unitriangular. Then the (-decomposition matriz
of B 1is unitriangular.

Therefore, in our plan, Step 3 and Step 4 become
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5.1. Counting modular representations

Step 3 Choose n projective modules P, ..., P, of k[G].

Step 4 Check that the decomposition matrix (Vi,PjO ®o K) for 1 < 4,5 < n is lower-
unitriangular.

This chapter focus on the first three steps of our plan whilst the following one is

dedicated to showing the last step in some cases. In both chapters, our reasoning and
ideas are very much inspired by the notions developed by Brunat, Dudas and Taylor in
[BDT20).
In Section 5.1, we will define the union of blocks we will focus on and give some in-
dication about a basic set, slightly generalising results of Geck and Hiss from [GH91|,
[Gec94]. We will describe some projective modules of k[G], called the Kawanaka mod-
ules, in Section 5.2.

We ecall that in Hypothesis 1, we have fixed G a connected reductive group defined
over k = Fp. We look at the /-decomposition matrices of G = G for a prime ¢ # p. Some
arguments in this chapter and the next one require us to make use of characteristic
functions of character sheaves. We thus make the following hypothesis.

Hypothesis 2. For the rest of this thesis, we assume that the Steinberg endomor-
phism F'in Hypothesis 1 is a Frobenius map and gives the group G an [F,-structure.

5.1 Counting modular representations

This section is concerned with the first two steps of our strategy to show the unitri-
angularity of the ¢-decomposition matrix of G. After partitioning the decomposition
matrix into a union of ¢-blocks compatible with Lusztig series thanks to Broué-Michel
(|IBM89]), we will count the number of irreducible modular representations in a union
of ¢-blocks. We will also find a labelling of the characters in it.

For the unipotent (-blocks, a basic set was found by Geck and Hiss [GH91| when ¢ is
good and Z(G) is connected. Its parameterisation is a consequence of Lusztig’s results.
When G is simple modulo its centre and ¢ bad, Geck-Hiss established the number of
irreducible Brauer characters in [GH97| and a labelling was determined by Chaneb. We
generalise the results of Geck—Hiss to isolated blocks when ¢ is bad.

5.1.1 The /-blocks of the decomposition matrix

As we have seen in the introduction, the group algebra k[G] is partitioned into ¢-blocks
k[G]l=%10---& %,.

In particular, we can split the irreducible modules according to the block to which they
belong.
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Chapter 5. Ordinary and projective representations in blocks of Brauer characters

On the other hand, the ordinary characters are also partitioned into geometric series
indexed by the F*-stable semisimple conjugacy classes of the dual group G*, see Theo-
rem 2.2.10.

Thanks to Broué—Michel [BM89], these two partitions are compatible.

Theorem 5.1.1 (|[BM89, Thm. 2.2|). Let t € (G*)F" be a semisimple element of order
prime to £. Define
&(G,t) = |8(G,st),

where s runs over a set of representatives of F*-stable geometric conjugacy classes

of semuisimple (-elements of G* which commute with t. There exists a union of -
blocks (G, t) of G such that

(G, t) =irr(B(G,1)).
Remark 5.1.2. Since geometric series are a union of rational series,

6(G.0) = LILIE(G. ),

where s runs over a set of representatives of F'*-stable conjugacy classes of semisimple
l-elements of G* which commute with ¢, and s’ runs over a set of representatives of the
semisimple G*-conjugacy classes of F*-stable elements in (st)g+ If Z(G) is connected,
rational series and geometric series coincide. In particular,

(G, 1) =G ts),

where s runs over a set of representatives of conjugacy classes of semisimple /-elements
of (G*)¥" which commute with t.

Definition 5.1.3. We call the union of blocks #(G,1) the unipotent ¢-blocks. If ¢
is isolated in G*, we say the the union of ¢-blocks #(G,t) is isolated.

These unipotent f-blocks are particularly important as all non-isolated unions of
blocks are Morita equivalent to a union of unipotent /-blocks of a smaller connected
reductive group, thanks to Bonnafé and Rouquier.

Theorem 5.1.4 (|[BR03, Thm. 11.8]). Let t € (G*)F" be a semisimple element of order
prime to 0. Assume that Cg+(t) is contained in a Levi subgroup L* of G*. Let L be the
Leuvi subgroup of G in duality with L. Then, Z(L,1) and B(G,t) are Morita equivalent.

Therefore, in this thesis, our priority will be the unipotent ¢-blocks, followed by the
isolated /-blocks.
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5.1. Counting modular representations

5.1.2 The number of modular representations

We fix t € G* an isolated ¢’-element. We want to know the number of Brauer characters
in the union of blocks #(G,t). More precisely, we want to find a basic set for (G, t).

Definition 5.1.5. Let % be a union of blocks of G. A set of Brauer characters is a
basic set for & if it is a Z-basis for the set of Brauer characters in 4.

The set of Brauer characters corresponding to the irreducible k[G]-modules in 2 is
always a basic set. However, this is obviously not the one we are looking for.
If x is a virtual ordinary character of GG, then its restriction y to the ¢’-elements is a
virtual Brauer character. We would rather find a basic set consisting of the restriction to
the ¢’-elements of virtual ordinary characters or even of ordinary irreducible characters.
If the basic set comes from ordinary characters, we say that it is ordinary.

In order to do so, we follow Geck—Hiss and require some conditions on the centre
of G.

Hypothesis 5.1.6. For the rest of this section, we assume Z(G) is connected.

When 7 is good for G, the problem of finding a basic set has been solved for any
union of blocks #(G,t), for t € G* an (’-element.

Theorem 5.1.7 (|[GH91, Thm. 5.1]). Assume that ¢ is good for G. Lett e G* be an

isolated 0'-element. Then the set &(G,t) ={X | x € &(G,t)} is an ordinary basic set of
the union of blocks B(G,1).

When 7 is bad, the situation is less neat and requires some more analysis to be stated.

A basic set when /¢ is bad

From now on, we assume that ¢ is bad for G.

Firstly, we suppose that G is of classical type. In that case, the prime ¢ is equal to 2
and all isolated elements of G* are 2-elements (|[GH91, Prop. 2.1]). Therefore, we only
consider the unipotent /-blocks.

Theorem 5.1.8 ([Gec94, Prop. 2.4 and Thm. 2.5|). Assume that G has only simple
components of classical type. Then |B(G,1)| equals the number of unipotent conjugacy
classes of G. Moreover, there exists an ordinary basic set for B(G,1).

We now focus on the case where G is of exceptional type, applying the same meth-
ods as the ones developed by Geck—Hiss in [GH97| to compute the number of Brauer
characters in the unipotent blocks. We follow their reasoning, adapting their chapters 5
and 6 to our case.
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Chapter 5. Ordinary and projective representations in blocks of Brauer characters

Hypothesis 5.1.9. For the rest of this section, we assume that G is of exceptional
type, simple modulo its centre, and that p is good for G. We also suppose that /£ is
bad for G.

The idea is that instead of considering ordinary characters, we could look at the
other basis for the class functions given by (a subset) of the almost characters, or thanks
to Theorem 3.3.6 the basis given by the characteristic functions of character sheaves.

For each F-stable character sheaf A € G, we have fixed in Subsection 3.3.3 an iso-
morphism ¢4 : F* A - A which leads to the characteristic function y 4. For s € G*, we
write

Z(G) = {xa| AeG,, where Ais F-stable}.

Recall that if A € G, then there is an induction datum m = (L, %, &) € ME such that A
appears as a composition factor of Ky, induced from A, = IC (2, £)[dim X] and A, € L.
Moreover, m is unique up to G-conjugation. By Proposition 3.2.20

G(m)| = [Lr(Q[Wa])l-

Now if A is F-stable, we may choose m to be F-stable as well (see Subsection 3.3.1).
We write )
En(G) ={xu | A G(m), where A is F-stable}.

Moreover, by |[Lus90, 9.2| and [Sho96, Thm. 4.2],

IT (Xaw) = EXKm

for some ¢ « @; Note that A, is a character sheaf of L and x4, is then an almost
character of L up to a sign. Lastly, we say that y4 is cuspidal if and only if A is
cuspidal.

We now slightly adapt the proof of [GH97, Thm. 6.3] to obtain the following result.

Proposition 5.1.10. Every Brauer character in (G, t) is a K-linear combination of
elements in &(G,t) ={x| x € &(G,1)}.

Proof. By Theorem 5.1.1, the restriction of the ordinary characters in &(G,t) to the
('-elements generate the Brauer characters in (G, 1).

Instead of ordinary characters, we may consider almost characters or the character-
istic functions of character sheaves. In other words, we want to show that for each
l-element s € Cg+(t) and each x € Z;(G), the restriction x can be written as a K-linear
combination of elements in {¢ | ¢ € Z(G)}. We fix s ¢ G* a semisimple /-element
and x € Z5(G).

There is a cuspidal induction datum m = (L, 3, &) € MG such that x € =,(G) where L
is a non-necessarily proper Levi subgroup of G. In particular, ¢ = x4, € Zis(L). If y is
cuspidal, y = 1.
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Claim: There is ¢' € Z,(L) such that =1

Firstly, we observe that ts € Z(L*). Indeed, it is obvious if L* is a maximal torus, since
then Z(L*) = L*. If x is cuspidal (i.e. L = G), ts € Z(G*) since all cuspidal charac-
ter sheaves of an adjoint exceptional group belong to a central series (see for instance
[DLM14, Appendix C.]). If L is not a maximal torus nor the whole group G, then L
is of type By, Dy, Eg or E;. In each case, the only possibility for 1) to be cuspidal is
if st e Z(L*), thanks to [LuCS4, Proof of Prop. 19.3].

We claim that Cp+(s) = L*. Indeed, let = € L*, then ztsz~! = ts. Let o(t) and o(s)
denote the order of ¢ and s respectively. Since s and ¢t commute, zs°Mz~1 = s°() Now
the orders o(t) and o(s) are coprime. Thus, there exists an integer a such that ao(t)
is congruent to 1 modulo o(s). Thus, (s°®)e = s and we conclude that xsz~! = s. In
particular, the element s is central in L*.

Let \; be the linear character of L “dual” to s: (Ag)T, is sent to s under the map
from irr(Ty) to T ([GM20, Prop. 2.5.20], [Lus77, 7.4.2]). It has order a power of /.
The character ¢’ defined by ¥ = ¢’ belongs to Z;(L) by the Jordan decomposition of
characters ([GM20, Thm. 4.7.1(3)]) and ¢ = 4.

The proof then follows by the exact same argument as in [GH97, Thm. 6.3]. By
[LuCS2, 10.4.5 and 10.6.1], there are a,, € K for each w € W, such that

X = Z an.Amw,cpi w’
weWm mw
where m* = (wLw™ !, wXw™t ad(w1)E) and ¢, : F*ad(w )€ - ad(w1)E is a fixed
isomorphism. In particular, Ayw € wLw™ ;s,-1. In other words, there are a/, ¢ K
for w e W,,, such that

X = Z a;u[fwal (X.Amw )7
weWm

with X4, € Zwstw-1 ((WLw™1)T) cuspidal. Now, Deligne-Lusztig induction commutes
with restriction to ¢’-elements ([DM20, Prop. 10.1.6]). Therefore, thanks to the claim,
the character y is a K-linear combination of restrictions of elements in =;. O

Remark 5.1.11. Observe that the proof of the claim shows that ¢ € Z(L*).

In fact, following the proof of [GH91, Thm. 3.1], we could even prove a stronger
result.

Proposition 5.1.12. Assume that t # 1. Suppose as well that F' acts trivially on W.
Every Brauer character in B(G,t) is a Z-linear combination of elements in &(G,t)
except possibly if G is of type Eg and € € {2,3}.

Proof. Let s be a semisimple /-element of (G*)¥" commuting with ¢ and y € £(G, ts).
We want to show that ¥ is a Z-linear combination of elements in &(G,t). If s € Z(G*),
similarly as in the previous proof, we can show that there is x’ € £(G,t) such that y = Y.
Otherwise, by the description of the isolated semisimple elements, we know that all the
semisimple elements have order a prime power (expect one conjugacy class in Eg of
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order 6). Thus, the element ¢s is not isolated and there is a Levi subgroup L of G such
that its corresponding dual L* in G* contains Cg-(ts). Therefore, there is ¢ € E(L,ts)
and € € {-1,1} such that

X =elg (¥)
by [DM87, Prop. 6.6].
After choosing the Levi subgroup L* minimal such that Cg+(ts) ¢ L*, we conclude that
Cg+(ts) = CL+(ts) is not contained in a proper Levi subgroup of L*. Note that since
Z(G) is connected, G* is simply connected and Cg-(ts) is a connected reductive group
(Theorem 1.3.2). If G is not of type Eg, then the isolated elements of L* also have order
a prime power and hence L* = Cp+(ts). If G is of type Es and ¢ = 5, then the order of
st is divisible by 5 and st is not isolated in L*. Thus st € Z(L*).
By the same argument as in the claim, we conclude that there is ¢’ € £(L,t) such
that 1/? = QZ'. Since Deligne-Lusztig induction commutes with restriction to ¢’-elements
(IDM20, Prop. 10.1.6]) and preserves Lusztig series, we conclude that x is a Z-linear
combination of elements in &(G, ). O

Remark 5.1.13. The condition that F' acts trivially on W ensures that the Levi subgroup
L is F-stable.

Another small modification of the proof of [GH97, Thm. 6.4] for the unipotent ¢-
blocks (¢ = 1) leads us to find a basis for the lattice of the Brauer characters in #(G,t).

Proposition 5.1.14. The following set is a K-basis for the Brauer characters in B(G,t):

S = {IE () | (L,w) e £}
where

Zl={(L,¥) | ¢ = €xa, is an almost character of L for m = (L, X, &) e MC
and some € e K*, Ay € Ly F-stable, ¥ + 0}.

Moreover, (L, %), (M, ) € 2} are such that IS () = IS() if and only if (L) and (M, 0)

are conjugate in G.

Proof. We follow the steps of the proof of [GH97, Thm. 6.4]. Firstly, by Proposi-
tion 5.1.10, the above set generates the space of Brauer characters in Z(G,t). We
now check that they are linearly independent.

(a) Letus fixm = (L,X,&) € M such that ¢ = Ex 4, € Z¢(L) for some root of unity £ € K
and z/v; # (. Since every cuspidal character sheaf is clean by Proposition 3.2.9, ¢ has
support (sv)Z°(L) where v € L is unipotent and sZ°(L) is a semisimple isolated
element in L/Z°(L). Since ¥ # 0 and £ # p, there must be z € Z°(L) such that sz is
an F-stable /’-element. Therefore, we may assume that s is an F-stable ¢’-element
and ¥ = (sv)Z°(L).
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We now define ¢’ := 3.1 - A, where z runs over the {-elements of Z(L*) and A, is
the character of L dual to z. Clearly, we have w’ = aw where a is the number of
elements z in the sum.

Moreover, as in the proof of [GH97, Thm. 6.4], we claim that for x € L if ¢/(z) # 0
then z is f-regular. We write x = xpxp, where x, is an (-element commuting with x
which is l-regular. If ¢'(x) # 0, then ¢(x) # 0 and x € (sv)Z°(L). Hence by (a),
we have xy € Z°(L). On the other hand, ¢’(z) # 0 also implies that Y, A,(z) # 0.
Therefore, by the orthogonality relations of the characters of a finite abelian ¢-group,
we must have z, € N, ker(\,), whence z, € [L, L]. Consequently, x, € Z([L, L]). Now,
in the proof of [GH97, Thm. 6.4], Geck and Hiss recall that |Z([L, L])| divides the
determinant d of the Cartan matrix of L. We list for each possible L the value of d.
Thanks to [GH97, 5.5], we notice that if L is of type By, D, or E7, then 3 is the

L|T|By|Dy|FEs|E;|Gy| Fy| Eg
di11{2 (4 (3 {2 |1 |1 |1

preimage of a class of some 2-elements. If L is of type Fj, then X is the preimage of
a conjugacy class of some 3-elements. By (a), we must have ¢ # o(s). Thus, ¢ does
not divide d. We conclude that z, = 1.

Therefore, ¢’ = @E’.

Observe that ¢ - A, € Z,,(L) for each l-element z € Z(L*) by [DM91, Thm. 13.30].
Then, thanks to [GH97, Prop. 5.4¢|], we conclude that I&(A,) # 0 for each (-
element z € Z(L*). Thus, since Deligne-Lusztig induction preserves geometric
series by Proposition 2.2.14,

(15 (W) A5 (¥1) = YUE (A:), I (¥A2)) # 0

In particular, y y

IF(¥) = It (¥) = I (1/ay') = 1faI (4') #0.
Thus no virtual character in = is zero.
The last step is exactly the same as in [GH97|.

We let m; = (L;, %;,&;) be cuspidal induction data such that 1; = X An, € =/(L) and
zZi + 0 for 1 <i <n. Assume furthermore that for 1 <i,j <n, if ¢ # j then ff (V) #
fg (). We show that (jﬁ(wi))lgign are linearly independent. Suppose there are
a; € K for 1 <i <n such that Y1, allvf’(wz) = 0. Using the same construction as in
step (b), with ¢/ = al1);, we see that Y7, al-/agfvf; () =0.

Fix 1<i<n. We claim that (I8 (1), IS (¢1)) # 0 if and only if i = j. One direction
is given by (c). Assume that (jf (%’)7—7& (¥5)) # 0 for some j. By definition, there

are z € Z(L}) and 2" € Z(Lj), both {-elements, such that (ff (Vi).), .7& (jA.)) #0.
The class functions ¥; A\, and ¥;\,, are cuspidal almost characters and thus there
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are m = (L, X, &),m' = (L',X,&") € MG and & ¢ € K such that fg(wi)\z) = &XK,,
and fﬁ(wj)\zl) = &'xk,,- In particular, (xx,,xx, ) # 0. By [LuCS2, Cor. 9.9] and
[LuCS5, Thm. 25.6], it means that there is g € G such that L = gL’g™!, ¥ = g¥/g7!

and £ = ad(g)*€&’, whence x4, = x4, ©ad(g). By a character formula similar to
Theorem 2.3.2 (see [DM20, Prop. 10.1.2]), we get that Iﬁ(wi)\z) = Iri (1;A.), hence

I8 (1) = I (W) = IZ (Vid.) = IE (M) = IE (45) = I (vy)

and 7 = j by assumption. We conclude that a;/a] = (ff ()), Z?zlai/agluﬁ (1)) = 0.
Therefore a; = 0 for each 1 <i <n and 2 is a free set.

Lastly, we show that if (L,v),(M,6) € Z; are such that IS(v)) = IS(#) then (L,v)
and (M, ) are conjugate under G. The arguments are very similar to steps (c¢) and (d).
We use the same construction as in step (b) with ¢/ = agp and 6’ = bf. Then, the
virtual character I (¢’) is a scalar multiple of I5(0") and (IS (v),I[5(6")) # 0. In
particular, there is an f-element z € Z(M*) such that (IZ(¢),I5(0).)) # 0. By a
similar argument as in step (d), we conclude that & (¢) = I (A\,). Since induction
preserves the geometric series, the semisimple elements ¢ and ¢z are conjugate in G. Now
since t is an ¢’-element which commutes with the /-element z, we must have z = 1. Thus,
the two virtual characters are equal, & (¢) = I§(#). Now, by a similar argument as in
step (d), we conclude that (L,v) and (M, 0) are G-conjugate. ]

Using this, we can derive a basic set for the non-unipotent isolated series when ¢ is
bad.

ProposiEion 5.1.15. Assume that t + 1. Suppose as well that F acts trivially on W.
The set &(G,t) is a basic set for the Brauer characters in B(G,t) except possibly if G
is of type Eg and ( € {2,3}.

Proof. Thanks to Proposition 5.1.12, we know that cf’(G, t) is a generating set. Thus, we
need to check that |&£(G,t)| is smaller than the number of Brauer characters in #(G, t).
To compute this number, we compute the size of the K-basis defined in Proposition
5.1.14. To do so, we find a set of representatives (L, 1) for all the cuspidal pairs in =]
up to G-conjugation and then for each representative (L,1)) compute the number of
G-conjugacy classes in

{(gLg™", Y oad(g))|geG,gLg™!,9oad(g) both F-stable}.

In other words, we find the number of F-conjugacy classes in Ng(L,%)/L or if (L,)
corresponds to the cuspidal induction datum m € 9SG, the number of F-conjugacy classes
in Wy,. By [AA10, Prop. 4.4], this number equals the number of F*-conjugacy classes
in Neg. 1 (Cr(1))/Cr ().

Thanks to Appendix B.1, we observe that unless G is of type Eg and ¢ € {2,3}, all the
cuspidal induction data m such that A, € L, satisfy x4, # 0 for any prime number ¢.
Moreover, we observe that the proof of Proposition 5.1.14 does not depend on ¢ good or
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bad. In particular, the number of Brauer characters in #(G,t) is independent of ¢ in
this case. Therefore, thanks to Theorem 5.1.7, this number is equal to |£(G,t)| and we
can conclude. ]

For completeness, we give in Appendix B.2 the number of Brauer characters in each
union of isolated blocks of each simple exceptional group of adjoint type. When ¢t =1
the number of Brauer characters in the unipotent ¢-blocks can be found in [GH97, 6.6].

5.1.3 A parameterisation of the modular representations

We have determined the number of Brauer characters in the union of blocks we are
considering. When / is good, we even know a basic set; it is a Lusztig series. In particular,
thanks to Theorem 2.2.29 and the follow-up remark 2.2.30, we get a parameterisation
of the basic set, firstly splitting it into families %7 and then labelling each character in
a family thanks to a certain group Ay .

We would like to generalise this parameterisation to cover the case ¢ bad. To do so, we
follow Chaneb [Cha21]. This allows us to determine a conjectural basic set of Brauer
characters.

When / is good

When 7 is good, the unipotent characters form an ordinary basic set for the unipotent
block #(G,1). We rephrase the parameterisation of the unipotent characters from
Theorem 2.2.29 and in particular give a definition of the finite groups appearing in the
theorem.

They are partitioned into families according to their unipotent support which is a special
unipotent class of G (Definition 4.1.4 and the discussion about special conjugacy classes).
Each family % ¢ Uch(G) is in bijection with M(Ay € Ay ).

Definition 5.1.16. Let C' € Ucl(G) be a unipotent class. For ¢ € irr(Ag(uc)) such
that there exists 0 € irr(W) with Gprg(0) = (C,¢), we set ay = ag. Here Gprg is the
map defined by the Springer correspondence (Subsection 4.1.1). If no such 6 exists, we
set a,, := 0. We define the ordinary canonical quotient A as the quotient of Ag(uc)
by the intersection of the kernels of the v € irr(Ag(uc)) with a,, maximal.

Notation 5.1.17. Let C € Ucl(G) be a unipotent class. We might write 4, = Ac
for u e C. Morever, we write AS when we want to emphasise the ambient group.

By |Lus14, Thm. 0.4], if % is a family of unipotent characters with unipotent sup-
port C, then ) )
Aog/ = Ac.
For Ay, we then take Ac, the semi-direct product of Ao with a cyclic group of order c,

where c is the order of the action of F on W and the cyclic group acts on Ag by the
action given by F' acting on Ag(uc). Thus, if ¢ is good,

|2(G,1)| = %: IM(Ac € Ac),
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where C' runs over the F-stable special unipotent conjugacy classes of G.

Remark 5.1.18. Note that if £ is good, there are no isolated /-elements of G. In particular,
if s € G* is a semisimple (-element, then W is a parabolic subgroup of W (seen as the
Weyl group of G*), since Z(G) is connected. By the description of the unipotent
support and Proposition 2.2.21, the unipotent support of any character in &(G,s) is
special. Thus, 3

|%(G,1)| = %: IM(Ac € Ac)l,

where C' runs over the unipotent supports of characters in &(G,1).

For the other unions of blocks, the Jordan decomposition (Theorem 2.2.16) leads us
to a similar result.

‘When 7 is bad

When 7 is bad, the unipotent characters do not form a basic set anymore. For instance, as
explained in [GH91, §1.2], the unipotent characters of G(¢q) are a generating set but not
a basic set when ¢ = 2. Observe as well that there are 10 unipotent characters but only
nine irreducible Brauer characters in the unipotent block (see Table B.6). We generalise
the notion of special unipotent classes and canonical quotient following [Chal9|.

Definition 5.1.19. Anirreducible character ¢’ € irr(W) is ¢-special if there is an isolated
semisimple (-element s € G* and a special character ¢ € irr(W;) such that j“fvls(w) =)',

Definition 5.1.20. A unipotent class C' € Ucl(G) is (-special is there is an irreducible
(-special character ¢ € irr(W) such that Gprg () = (C,1).

Lemma 5.1.21. An F-stable unipotent class C € Ucl(G) is (-special if and only if it is
the unipotent support of an irreducible character in &(G,s) where s € G* is an isolated
(-element.

Proof. Assume that there is an isolated /-element s € G* such that C' is the unipotent
support of a character x € &(G, s). By the description of the unipotent support, there
exists a special character ¢ € irr(Wy) such that ¢’ = jii” () satisfies Sprg(¢') = (C,1).
Thus, the class C' is (-special.

For the other direction, ¢’ € irr(WW) is ¢-special and let C' such that Gpr(¥') = (C,1).
By definition, there are s € G* an isolated (-element and a special character ¢ € irr(Wy)
such that ji (1) = ¢’. The character ¥ belongs to a family .7 of irr(W;). We then
consider any character in the family % ¢ & (G, s) corresponding to .#. By the description
of the unipotent support, these characters have unipotent support C. O

Remark that any F-stable special class is ¢-special. Moreover, when /¢ is bad, an F-
stable unipotent class is /-special if and only if it is the support of a character in &,(G, 1).
The /(-special classes for the exceptional cases are listed in Appendix B.3. To compute
them, we use the Springer correspondence.

We now extend the definition of canonical quotient.
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Definition 5.1.22. Let C be an /-special class. Let P be a projective indecomposable
module of k[ Ag(uc)] and W its character. We set

ay =min{ag | 6 € irr(W), Sprg(8) = (C,¢), (¥, V) 0.}

We define the /-canonical quotient flac as the quotient of Ag(uc) by the intersection
of the kernels of the projective indecomposable modules P with ay maximal.

The above definition is indeed a generalisation of the canonical quotient thanks to
the following lemma.

Lemma 5.1.23 (|Chal9, Prop. 2.3.15]). If £ is good, then Ac = Ayc.

The proof consists in checking that |[Ag(uc)| is divisible only by bad primes for any
unipotent class C' € Ucl(G).

Finally, we count the number of Brauer characters. For any finite group A, we
write M*(A) for the set of A-conjugacy classes of pairs [a, ¢] with a € A and ¢ € irr (A).
We set

Ny c = |M[(Ag7c)|.

We define flac, the semi-direct product of Ax with a cyclic group of order ¢, where c is
the order of F' on W and the cyclic group acts on A¢ by the action given by F' acting
on Ag(uc). Lastly, the set Mg(flac c zzl&c) consists of all flg,c—conjugacy classes of
pairs (a,¢) € A’ xirr(Cy, ., (a)), where A’ C Ay is a coset generator of Ago/Asc

Proposition 5.1.24 (|Cha21, Thm. 3.16]). If G is simple of adjoint type not of type A,
then . .
[B(G,1)| =Y M (Are € Ao,
C

where C' runs over the unipotent supports of characters in &(G,1).

For the groups of exceptional type, the proof consists in comparing the numbers
obtained through the sum with the numbers in the tables in Appendix B.2.

5.2 Candidates for the projectives: the Kawanaka mod-
ules

In this section, we focus on the third step, that is, finding some candidates for the projec-
tive modules. A first class of candidates are the generalised Gelfand—Graev characters
(GGGCs). Thanks to their properties, we will see that the respective decomposition
matrix is block-triangular. However, there might not be enough GGGCs. The idea of
Brunat-Dudas-Taylor in [BDT20]| is to decompose the GGGCs into Kawanaka charac-
ters. This will be the projectives we will choose in order to show the unitriangularity of
the /-decomposition matrix of the unipotent blocks.
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5.2.1 Generalised Gelfand—Graev characters

We now recall the construction and the properties of the generalised Gelfand—Graev
characters following the notation in [BDT20, Section II.6]. These characters were first
defined in [Kaw86|, and another construction was given in [Tay16].

Definition of the generalised Gelfand—Graev characters

The idea behind GGGCs is in some ways opposite to the construction behind Deligne—
Lusztig characters. Instead of starting with a linear character on the maximal torus 7
corresponding to an F'*-stable semisimple element in G*, we start with a linear character
on some unipotent group U, corresponding to some rational unipotent element u € G.
To make this more precise, we use the notions introduced in Subsection 1.3.2 for unipo-
tent conjugacy classes. The two methods to classify the unipotent conjugacy classes use
a bijection between Ucl(G) and the nilpotent G-orbits on g, via a Springer homeomor-
phism. We require additional properties for this map.

Definition 5.2.1. Let JZ = (U, s, x,) with
e a Springer isomorphism Vg, : Gypi > Onil,

e a symmetric bilinear form s : g x g - F, which is G-invariant with respect to the
adjoint action, and is defined over [F,

e and a non-trivial character x, : F; — @;
We say # = (Vg s, X,) is a Kawanaka datum for G if the following hold:

(K1) for any A e X,
W (Ua(2)) = Lie(Ux(2)),

(K2) for any A e X and any i ¢ {1,2}, there exists a constant ¢; € F,, such that for any
u,v € Uy(7),

o U, (uv) - Uy (u) - Uy, (v) € Lie(Uy(i+ 1)),
o and Uy, ([u,v]) = ci[Vspr(u), Uspr(v)] € Lie(Uy(2i + 1)),

(K3) for any maximal torus S < G and root a € (S) we have

g ={veg|s(z,v)=0forallveg,}=Lie(S)e & g5
Be@(S)\{-a}

Kawanaka data do not always exist in general. For instance, a Springer homeomor-

phism might not be an isomorphism of varieties. However, with certain conditions on G,
one can show their existence.

134



5.2. Candidates for the projectives: the Kawanaka modules

Lemma 5.2.2 (|[BDT20, Lem. 6.3|). If G is prozimate (Definition 1.3.15), then there
exists a Kawanaka datum H# = (g, 8, xp) for G. Moreover, we may choose it such
that for any \ € X and any integer 1 > 2,

U, (Un(7)) = Lie(Uy(7)).

The second statement is a consequence of the proofs of [Tay16, Lem. 4.3 and Prop. 4.6].

From now on, we thus make the following hypothesis.

Hypothesis 3. For the rest of this thesis, we assume that G is proximate and we
fix a Kawanaka datum J# = (¥, s, x,) for G as in Lemma 5.2.2.

We now define a linear character on a unipotent group corresponding to some unipo-
tent element u € G. Recall from Proposition 1.3.22 that for u there is a corresponding
unique parabolic subgroup P, for some \ € X associated to u. The unipotent radical of
P_,, that is Uy(-1), is the unipotent group from which we induce a linear character.

We now define a character on Uy(-1). We construct from x,, a character x, : F} — Q,
as the composition of x, with the field trace Trp, /g, .

Definition 5.2.3. Let u € G,; be a rational unipotent element. We define the following
map:

775 ¢ Guni _’@E
v = Xq(§(Vapr (1), Uapr (V)
Remark 5.2.4. Observe that for any x € G, we have

z, G _ G
Ny = Ngyz-1-

Indeed, for any v € Gy, by the G-invariance of s and the definition of Wy,
() = 15 (@ o) = xy(s(Wapr ()., W (7 0)))
= Xq(5(Ad(2) Vg (u), Ad(2) Vs (27 0)))
= Xq(ﬁ(lllspr(xux_l), \Ifsp,«(v)))

= T/gux_l (U) °

Lemma 5.2.5. Let u € Gy be a unipotent element. For any \ € XS(U) an associated

F-stable cocharacter, the character nG restricts to a linear character Uy(-2)F — @Z

Proof. We need to check that n¢ : Uy(=2)F - Q, is a group homomorphism. Clearly
it preserves the neutral element. Now, let v,v" € U)\(-2)¥ = U_,(2). By (K2), we know
that Uy, (v0") = Wepr (v) + Uy, (V') + 2 with 2 € U_\(3) = Ur(-3). To conclude, we need to

135



Chapter 5. Ordinary and projective representations in blocks of Brauer characters

show that U, (-3) c ker(n$). By the definition of an associated co-character ®g,.(u) € g(\,2).
Thus, the kernel of ¢ contains the F-stable elements in W1 (g()A,2)*). By (K3) and
Lemma 5.2.2,

Vo (8(X,2)") =Un(1) @ Ly @ Ur(-3).

Thus, n¢ : Uy(-2)F - Q, is a group homomorphism. ]

If Uy(-2) = U,(-1), then we have constructed a linear character of Uy(-1)¥. Oth-
erwise, we need to induce the character nS.

Definition 5.2.6. Let u € G,; be a rational unipotent element and \ € XS(u)F We
define the following class function on U,(-1)F

—dim - Us(-1"
€6, = gmameO-D)2 [pgUr DY (6

Uy A(=2)F

Note that if Uy(~2) = Ux(-1), then dim(g(\,-1)) = 0.

This class function is in fact a character of U, (-1)*.

Lemma 5.2.7 (proof of [Tay16, Lem. 5.15]). Let u € Gy be a rational unipotent element
and X e XS (u)¥, then the class function 53)\ is an irreducible character of Uy(-1)F.

We associate to 51% a projective k[U,(=1)F]-module as U,(-1)F is a p-group,
G

whence an (’-group. Moreover, by Remark 5.2.4, for any z € G, *n$ = nS __, is a

linear character of U_=)(2) and
x¢G _56‘
u,A T STy, T

Definition 5.2.8 (Kawanaka). For u € G,,; a rational unipotent element and \ € Xg(u)F
an F-stable co-character associated to u, we define the corresponding generalised
Gelfand—Graev character (GGGC) of G as

VS = Ind%x(_l)F (55,\)

One can show that 7¢ does not depend on the choice of the co-character \ € Xg(u)F
(IBDT20, below Def. 6.6]). Moreover, by what we saw before, for any z € G,

’Yu = P)/C'u

In particular, for an F-stable unipotent conjugacy class C' of G, one could obtain

at most as many different generalised Gelfand-Graev characters of the form ~& for
some u € C'T as there are conjugacy classes of Ag(uc).
Observe as well that since U, (-1)* is a p-group, whence an ¢’-group and since induction
preserves projectivity, we may associate to each GGGC a projective k[G]-module. In
other words, there exists a projective k[G]-module T'¢ such that & is the character
associated to (I'S)° ®o K.
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Decomposition of GGGCs and wave front set

In the previous section, we have seen that a basic set for a union of blocks Z(G,t)
(t € G* a semisimple ’-element) is parameterised in terms of the unipotent supports of
the ordinary characters belonging to it. Using GGGCs, we define a dual concept to the
unipotent support. It will allow us to show that the decomposition matrix corresponding
to the GGGCs is block-triangular.

Definition 5.2.9. Let x € irr(G). A wave front set of x is an F-stable unipotent
conjugacy class C' of G such that:

1. there is v € CF satisfying (v, x) # 0 and

2. for any unipotent conjugacy class C' of G such that (75, x) # 0 for some v’ € C',
we have dim(C") < dim(C).

Similarly to the unipotent support, the wave front set is in fact unique.

Theorem 5.2.10 (|Tay16, Thm. 14.10, Thm. 15.2|). Let x € irr(G). Then x has
a unique wave front set, which we denote by Cy. Moreover, for any unipotent ele-

ment u € G, if ($,x) #0, then (v)g < C}.

For an irreducible character x € irr(G), we write

X* = iDG(X):

where the sign is the unique choice making the Alvis—Curtis dual Dg() an irreducible
character of GG, see Definition 2.1.15. Recall that Dg fixes rational series and sends

families to families (Remarks 2.2.15 and 2.2.25).
Unipotent supports and wave front sets are deeply linked:

Lemma 5.2.11 (|Tay16, Lem. 14.15]). Let x € irr(G). Then the unipotent support C,-
of x* is the wave front set C} of x.

Remark 5.2.12. Let us look at our plan we explained at the beginning of this chapter.
We choose a total ordering of the {-special unipotent conjugacy classes such that C; < C}
if dimC; <dimCj forall 1<e<j<r.

For the ordinary irreducible modules, we choose some characters belonging to A(G, 1)
with wave front set C; for each 1 <i <r. Alternatively, we take the Alvis—Curtis dual of
some characters with unipotent support C;.

For the projective modules, we choose the GGGCs of the form I'¢ for u € C; for
each 1 <i<r.

If there are enough GGGCs, ie. Y |irr(Ag(uc,))| = Yiqnec;, then we have al-
ready partially completed Step 4 and the corresponding decomposition matrix is block-
triangular by definition 5.2.9. In general, we have the number of conjugacy classes
in Ag(uc,) is smaller than nyc,. We will decompose the GGGCs into Kawanaka char-
acters to overcome this issue.
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5.2.2 Kawanaka characters

As we have seen, the GGGCs form an appealing class of candidates for the projective
modules. Their main drawback is that in general there are more irreducible Brauer
characters in a union of blocks than GGGCs.

In the unipotent case, what we would like is to have at least one projective character
per element [a, W] € M!(A,c) for each f-special class C. An approach is to find for
each [a,9] € M!(Ayc) a finite group A, € G surjecting onto the centraliser Cx,.(a)

and a character ¢ € irrg(A,), and then instead of considering Ind%k(_l)F (£5,) to look

at “Indgx(_l)pma (53/\ x ¢)". This does not work as such, but does with some technical
modifications.

Definition and existence of an admissible covering

As a first step, we define the groups A, and require certain properties such that Uy (-1)Fx A,,
or rather Uy (-1)F x A,, is a subgroup of G. We follow [BDT20].

Definition 5.2.13 ([BDT20, Def. 7.1]). Let u € Gyni be a rational unipotent element.
Let A < Cg(u) be a subgroup and A € X$ (u)f be an F-stable co-character. We say
that the pair (A, \) is admissible for u if the following hold:

(A1) the group A is a subgroup of LY
(A2) the subgroup A contains only semisimple elements,

(A3) and for all a € A, we have a € Cp (Ca(a)).

If Ais a quotient of Ag(u) on which F acts, we say that the pair (A, \) is an admissible
covering for A if:

(A4) the restriction of the map Cg(u) = A to A — A fits into the following short exact

sequence )
1l—7Z7—A—A—1

where Z < Z(A) is a central subgroup with Zn[A, A] = {1}.

Remark 5.2.14. Assume that (A, )) is an admissible covering of A, for C' € Ucl(G).
And let any a € A. Then Cy(a) is sent onto Cy, (@) under the map A — Ayc, a v a.
In fact, more generally, for A any quotient of Ag(u) on which F acts and (A4,)) an
admissible covering of A, there is a short exact sequence

1— 27— Cyla) — Cj(a) — 1

for each a € A with image a € A. The surjectivity follows from the fact that Z n [A, A] = {1}.

In [BDT20|, Brunat, Dudas and Taylor determine an admissible covering for each
ordinary canonical quotient of a unipotent special class.
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5.2. Candidates for the projectives: the Kawanaka modules

Proposition 5.2.15 (|[BDT20, Sections 9 and 10]). Assume that G is simple and ad-
joint. Let C' be an F'-stable special unipotent conjugacy class of G. Then there always
exists an admissible pair (Ac, \) for uc which is an admissible covering of Ac, and such
that Ac is abelian or A = Ac. Moreover |Ag| is divisible only by the bad primes for G.

We describe in more details the case of exceptional groups.

Proposition 5.2.16 ([BDT20, Section 10]). Assume that G is a simple exceptional
group of adjoint type. Let C' be a special unipotent conjugacy class of G. We distinguish
between the following cases:

1. If Ac is trivial, then we choose Ac = {1} € G for an admissible covering.
2. If G is of type Ey and C = Es(bg), then Ag(uc) = Ss and Ac = Ac = S,.

3. If G is of type E7 and C = Ay + Ay or G is of type Eg and C' is one of Eg(ay) +
Al, D7(a2),A4 + Al, then Ag(u(;) = AC = SQ and AC ~ (4.

4. Else, Ag is not trivial and Ag(uc) 2 Ac = Ac.

Definition of a Kawanaka character

Hypothesis 5.2.17. For the rest of this section, we fix an F-stable C € Ucl(G),
a rational unipotent element u € C¥, and an admissible pair (A, \) for u. We also
assume that p # 2.

To define the Kawanaka characters, we need to extend the characters qu, ), to characters
of Ux(-1)% x Cx(a) for u’ € CT and a € A.

As a first step, we need to fix representatives for the G-conjugacy classes in C*'. Note
that they are in bijection with the F-conjugacy classes of Ag(u) by Theorem 1.2.5. We
observe that A ¢ G stabilises each G-conjugacy class in C'F. Moreover, the group A acts
on the F-conjugacy classes of Ag(u) via the quotient map A - Ag(u), a = a = aCg(u).
By (A1), Ca(a) normalises U, (~1) for any a € A. To extend a character £ | for u’ e CF
to a character of Uy(-1)" x C4(a), we would like to verify that £, is fixed by the
action of Cy(a). In other words, for any b e C4(a), we would like ’

1?',,\ =t 1?',,\ = fgu,bx
In particular, we want ' € Cg(b)F and X € XCa(®),
The above discussion motivates the following definition.

Definition 5.2.18. A set {u, |a€ A} ¢ CF is a set of admissible representatives if
it satisfies the following conditions for all a € A:

1. Forall g € G such that 9u € (u,)gr, thereis x € Ag(u) such thata=xz"1g"1F(g)F(x),
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Chapter 5. Ordinary and projective representations in blocks of Brauer characters

2. for all be A, we have bu,b™! = upgp1,
3. and for all b e Cx(a), we have u, € Cg(b)F and A € X@Cé(b)(u).

Lemma 5.2.19 (|[BDT20, Lem. 7.6]). Let u € Gy be a rational unipotent element
and (A, \) be an admissible pair for u. Then there always exists a set of admissible
representatives.

We are now ready to fix an extension éfa L eirr(Ca(a) x Uy (=1)F) of €5 | fora € A.
We choose the one defined by Brunat-Dudas—Taylor in [BDT20, Def. 7.9]. The construc-
tion is very technical and we refer the reader to [BDT20, 7.3 and 7.4| for the details.
However, this extension is well-understood.

Lemma 5.2.20 ([BDT20, Lem. 7.11], [Gér77]|). There exists a class function € of A
such that for each a € A and t € Ca(a) the following hold:

1. €(t) € {£1},
2. and £ (1) = e(£)qmtieWE

We call the class function € the Weil-sign. Finally, we define Kawanaka modules as
a slight modification from the one given by Brunat—-Dudas—Taylor.

Definition 5.2.21. Assume a € A and let ¥ be the character of a projective indecom-
posable k[C'4(a)]-module P (i.e. the character of the K[C4(a)]-module P° ®cK). We
also write X, for a module of K[Cs(a) x U,(-1)F] affording the character é’fa , for
any a € A. We define the -Kawanaka module associated to the pair (a,¥) to be

TG Ca(a)xUx(-1)"
K(C;’\IJ) = IndCA(a)D(U)\(—l)F(((Xua)O ®O k) ® Infoi(a) o P)

Lemma 5.2.22. Let a € A and V be the character of a projective indecomposable k[ C4(a)]-

module P. Then Kg ) 18 @ projective K[G]-module.

Proof. Since Uy(-1) is a p-group, and p # ¢, the inflation of the module P is a pro-
jective k[Ca(a) x Uy(-1)F]-module. Tensoring and inducing preserve projectivity, thus
the module K((fl wy I8 projective. O

Definition 5.2.23. Let a € A and ¥ be the character of a projective indecompos-
able k[C4(a)]-module P. We denote by x¢ . the character afforded by the K[G]-

(a,%)
module (K ,1)° ®o0 K.

Observe that if C4(a) is an ¢'-group, VU is an irreducible character of C'4(a) and we
get back the initial definition of Kawanaka characters.

Definition 5.2.24 ([BDT20, Def. 7.13|). Let a € A and ¢ € irr(Cs(a)). We define the
Kawanaka character associated to the pair (a,®) to be

G o 1ndC e Ca(a)xUx(-1)"
/i(a7¢) = Inch(a)NUA(—l)F<fua,/\ ® Infci(a) A )
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It is the character of the Kawanaka module of K[G],

¢ oG Ca(a)<UA(-1)F
K& 4y =dg, ()0, e (X, @ I V),

where Vj is an irreducible K[C4(a)]-module affording the character ¢.

Lemma 5.2.25. Fiza € A and V the character of a projective indecomposable k[C'4(a)]-
module P. Then

a  _ G
Kawy = 2 ok
¢eirr(Cy(a))

Proof. For any ¢ € irr(Ca(a)), we write V,, for an irreducible K[C4(a)]-module affording

the character ¢. We observe that H(Ga ) is the character of

Ca(a)xUy(-1)F o
IndgA(a)xUA(—l)F(((Wua)o®k)®Infciga; 2D P) ®o K

O
= IndgA(a)xe(_l)F(((Wua)O ® k ® IngiEZixU)‘(_l)F P) ®o K)
ERe: Cala)xUL(-1)F 1)\©
= Inch<a>xUA<1)F(Wua ® (Infcie) V" P) @0 K)

— Tnd€ Ca(a)xUx(-1)T po
= Inch(a)KUA(—l)F<Wua ®Infcj(a) A P ®o K),

G Ca(a)xUy(-1)F
= IndCA(a)xU)\(l)F(Wua ® Infcjgai A( ) Z dd)’\ll‘/qs)

peirr(Ca(a))
G Ca(a)xUy (-1 F
— Z d¢7\11 IndCA(a)KUA(—l)F (Wua ® Infczga; A(=1) V¢)
¢eirr(Cx(a))
Thus, Hg,‘l’) = Zd)eirr(CA((l)) d¢7\11/f(G(17¢)- -

We collect a few properties of the Kawanaka characters H(Ga o foraeAand ¢ e irr(Ca(a))
as stated in [BDT20, 7.4].

Lemma 5.2.26. Let a€ A. Then,

%Ga = Z ¢(1)’€€1,¢)-

peirr(Ca(a))

Proof. We write p for the character of the regular representation of C4(a) over K. Then

G It Ca(a)xUy (-1)F
qﬁ(l)/ﬁgw):IndCA(a)KUA(_l)F(fi’A®Infczgag A(-1) p).

¢eirr(Ca(a))
Now we notice éﬁ \® Infg‘:EZ;KU*(_l)F p= Indgzgng*(_l)F ¢¢ | and we conclude by the
definition of GGGC. O]

Lemma 5.2.27 (|[BDT20, Rmk. 7.14|). The Kawanaka character does not depend on
the A-conjugacy class of the pairs (a,¢) € Axirr(Ca(a)). Namely, for any a,be A and
character ¢ € irr(Cy(a)), we have bgg’;)\ = fg} A and /<L(Gl7a bgy = li%; )"
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Chapter 5. Ordinary and projective representations in blocks of Brauer characters

We thus denote by KJ[C; 4] the Kawanaka character /i(Ga ) for each element [a, ]

in M(A) and k¢ _, for each element [a, U] in M!(A).

[a, V]

Lastly, we compute the values of the Kawanaka characters on mixed conjugacy
classes.

Proposition 5.2.28 (|[BDT20, Prop. 7.16]). Let [a,¢] € M(A). Let sv € G such that s is
semisimple and v e Cg(s) is unipotent. If s is not G-conjugate to an element in Cs(a),
then k{7, ,1(g) = 0.

Furthermore, for s € Ca(a) and for eacht € Ca(a)n(s)q, we fix x, € G such that xisx;t = t.
Then

56 (9 = m 3 o O ).

o F
where t runs over all the G-conjugates of s in Ca(a) and %?f(t) = Indgfggi(%cf(t) ).
G

The ¢(-Kawanaka modules are our candidates for the projective modules. In the next
chapter, we will partially describe their decomposition in terms of irreducible ordinary
modules.
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Chapter 6

Unitriangularity of the decomposition
matrix

This final chapter concludes our discussion about the unitriangularity of the decompo-
sition matrix. Let us look at our plan we explained at the beginning of Chapter 5.
Step 1 consists in computing the size of Z(G,t) for t € (G*)¥" an isolated ¢'-element.
This is the content of Theorem 5.1.7 for ¢ good and Theorem 5.1.8 combined with Propo-
sition 5.1.14 for ¢ bad.

Steps 2 and 3 concentrate on choosing candidates Vi,...,V,, € &(G,t) and projec-
tive k[G]-modules P, ... P,. Welet C4,...,C, be the unipotent supports of the charac-
ters in &;(G,t). We fix a total ordering C; < --- < C,, such that C; < C; if dim C; < dim C;
forall 1<i<j<r.

Then, for each 1 <7 <r, we choose

e 7, irreducible modules VY, ... Vi € &(G,t) with wave front set C;,

e and n; projective-modules P},..., P}, either (-Kawanaka modules of the form
K[i g for [a,®] e Mf(Ag,), where Ag, is an admissible covering of A¢, assuming

such an admissible covering exists, or GGGCs I'S for u e CF.

We require ¥, n; = n. The numbers n; are determined according to our need. For
instance, for the unipotent ¢-blocks, we fix n; = |M* (A, )| = nec.
To conclude and show Step 4, we need to prove that for each 1 <7 <r,

(A) ((V/', (P))© ®0 K))141,j<n, is lower unitriangular;
(B) and for all 1 <m <7, if m <i, (V" (P})°®0K) =0 forall 1 <l <n,, and 1 < j <n;.

Condition (B) is automatically satisfied by the definition of the wave front set (Defini-
tion 5.2.9). In this chapter, we focus on checking the condition A. In the first section, we
will state some general results about the decomposition of Kawanaka modules. The idea
is to use characteristic functions of character sheaves instead of irreducible characters.
The second section will focus on the unipotent blocks for simple exceptional groups of
adjoint type. In the last section, we will explain how to treat some isolated blocks by
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Chapter 6. Unitriangularity of the decomposition matrix

considering the particular cases of G of type G5 and Fj.

We recall the assumptions we made so far in Hypotheses 1, 2 and 3: the group G is
a connected reductive proximate group defined over k with Frobenius map F': G - G
and Weyl group W with respecto to the maximally split torus T in the Borel By. The
field k is algebraically closed of characteristic p # /. We also suppose the following.

Hypothesis 4. For the rest of this thesis, we assume that p is good for G.

6.1 Decomposition of the Kawanaka modules

Let C be a unipotent F'-stable conjugacy class of G and K an ¢-Kawanaka module
constructed from C', assuming an admissible covering of C' exists (see Definition 5.2.21).
In this section, we focus on describing the restriction of the decomposition of K© ®g K
in terms of ordinary irreducible representations with wave front set C.

Hypothesis 6.1.1. For this section, we fix an F-stable C' € Ucl(G), a rational
unipotent element u € C* and an admissible pair (A, \) for u (assuming it exists).

Notation 6.1.2. For # a class function of G and g € G* an F-stable special element, we
denote by pr,(#) the projection of § on the space spanned by the Alvis-Curtis duals of
irreducible characters in irr(G),. We write pr,(6) for the projection of § on the space
spanned by the Alvis—Curtis duals of irreducible unipotent characters with unipotent
support C. The above space is equal to the sapce spanned by Alvis—Curtis duals of the
almost characters of the R, with z ¢ M(A5S"¥) ¢ A5e*(9)y (see Remark 2.2.30). It is
also equal to the space spanned by the Alvis—Curtis duals of the characteristic functions
of the F-stable character sheaves in Gg by Theorem 3.3.6. Therefore, if x is a Kawanaka
character, to compute pl“g(li) we consider the restriction of a Fourier transform of k to
theAAlviSfCurtis duals of the characteristic functions of the F-stable character sheaves
in Gy.

6.1.1 Fourier transform of the Kawanaka characters

Definition 6.1.3. The Fourier transform of Kawanaka characters is given as follows.

For [a,¢] e M(A), we set
Ga= > Alaol e,

(0,4 ]eM(A)
Here {-, -} is the pairing for M(A) as defined in Definition 2.2.27

If Ais an F-stable character sheaf in Gg with unipotent support C, then to compute
the scalar product (¢pq,4], x4) We need the values of ¢, on mixed conjugacy classes.
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6.1. Decomposition of the Kawanaka modules

Proposition 6.1.4 (|[BDT20, Prop. 8.1]). Let [a,¢] € M(A). Let sv € G such that s
is semisimple and v € Cg(s) is unipotent. If s is not G-conjugate to an element in a,
then fla,)(sv) = 0.

Furthermore, if s =a, then

e(a)

Frae1(40) = 157 0]

> o)™ (v).

beC'y (a)

The proof of this result relies on the similar result for Kawanaka characters, see
Proposition 5.2.28.
As a corollary, we can in fact describe the Fourier transform of Kawanaka characters in
terms of GGGCs of smaller group. For any h € G, we write Cg(h) = Cg(h)F. We set
for each [a,d] e M(A),

. Cg(a)
V(a,0) = |C (a)| Z (b(b Vuy -

bEC'A(a)

Corollary 6.1.5 (|[BDT20, Cor. 8.4]). Under the same assumptions as in Proposi-
tion 6.1.4,

Frag) = €(a) Indgs (o) (@™ - 7(a))-

Here, a™! denotes the translation of Ve by a™, ie. a™ - Yue)(h) = Yae(ath)
for h e Cg(a).

Lemma 6.1.6. Assume that Z(G) is connected and p is good for G. Let A€ Gg’ for a
special element g = sv = vs € G* where s € (G*)F" semisimple and v € G* is unipotent

such that C, = C. Then for each [a,¢] e M(A),

|cf°(a))| 2. Doz O (v )xalau’),

(Fras)» Da(xa)) = =

where u' runs over the unipotent elements of Cg(a) which are Cg(a)-conjugate to w.
Proof. This statement can be found in the proof of [BDT20, Prop. 8.8|. H
We now consider the specific case of unipotent character sheaves.

Lemma 6.1.7. Assume that G is simple exceptional of adjoint type and that C is
special, different from Aq+ Ay if G is of type FEr and different from Ay+ Ay, Eg(ar) + Ay
and D7(az) if G is of type Eg. Assume furthermore that p is good for G. There exists
an F-stable unipotent character sheaf A of G with unipotent support C' such that for

all [b,¢] € M(A),
(f[GW], Dg(x4)) #0 < the image of b in A, is trivial and ¢ is trivial.

Moreover, in this case |(f[Gb7¢], Da(xa))| =
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Chapter 6. Unitriangularity of the decomposition matrix

Proof. Let ¢4 be a family of F-stable unipotent character sheaves of G with unipotent
support C' and .% be the corresponding family of characters in W as in Theorem 3.1.12.
Consider ¢ € .# the unique special character of .# and A, the principal series character
sheaf associated to it. Using CHEVIE [Micl5|, we show the following claim.

Claim: For each semisimple s € Ca(u), the restriction (s*Ay) (e, ., @ the trivial
o

local system Q,[-dim(C)-dim(Ty)] if the image of s in A, is trivial and zero otherwise.

To compute the restriction (s*Ay)(su)qe oy We apply Corollary 4.3.20. In particular,
G S

this formula does not depend on s but only on Cg(s), and there are finitely many pos-
sibilities for Cg(s) up to G-conjugation.

The image of s in Ag(u) comes from Theorem 1.3.17: the G-conjugacy orbits of the
pairs (u,tCg(u)) with u € Gy and ¢t € Cg(u) a semisimple element are in bijection with
the G-conjugacy orbits of triples (Cg(t'),tZ°(Cg(t')),u) where t’ € G is semisimple, the
unipotent element u € Cg (') is distinguished in Cg (') and Cg (tZ°(Cg(t'))) = Ca(t').
Let S be a maximal torus of Cg(u,s) and M be the pseudo-Levi subgroup Cga(s,S).
Then the G-conjugacy orbit of (u,sCg(u)) corresponds to the G-conjugacy orbit of the
induction datum (M, sZ°(M), u). Observe that M is contained in Cg(s).

If M is a Levi subgroup of G, then since G is adjoint, Z(M) is connected and s € Cg (u).
On the other hand, if M is not a Levi subgroup, then the image of s is Ag(u) is not
trivial. In other words, the image of s is trivial in Ag(u) if and only if there is a Levi
subgroup L contained in Cg(s) such that u belongs to L and is distinguished in L.

To compute the image of s in A,,, we observe that either the group Ag(u) is equal to A,
or A, is trivial, or lastly G is of type Fg and C'is the unipotent class Es(bg). In this last
case, we use the fact that there is a group homomorphism from Ace, () (u) to Ag(u) and
therefore from Aca(s)(u) to A, to deduce if s is trivial in A,. The code can be found in
Appendix C.3.

Since C'is a special conjugacy class, that is the unipotent support of ordinary char-
acters, the family .# is F-stable. Hence ¢ is fixed by F' and the character sheaf A,
is F-stable.

We now compute the characteristic function of Ay, at sv where s € Cg(u) and v is Cg(s)-
conjugate to u. To simplify notation, we set A= A,. First, by the claim, x4,(sv) =0
unless s is trivial in A,, no matter which isomorphism ¢ : F* A4 - A we fix to define
the characteristic function. Now, by the discussion in Subsection 3.3.2, we choose an
isomorphism @4 : F* A - A satisfying the condition 1 (Notation 3.3.3). Thanks to Equa-
tion 3.2 and since A(SU)0&<S> is the constant local system up to a shift, for any s € G with

trivial image in A, and z € Cg(s) such that zsuz~' € G we have
XA,pa (msuxil) = quCA,sv

where (4 is a root of unity and

d - %(dim(G) _ dim(su)g — dim Tg) = (dim(Ce(s1)) = dim Ty).

1
2
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6.1. Decomposition of the Kawanaka modules

Finally, we compute (f [b.6] ,DG(XA)) for any [b,¢] € M(A). The proof follows word-
for-word the proof of [BDT20, Thm. 8.8]. We reproduce it here for completeness. We

set XA = XApa-
From Lemma 6.1.6, for any [b,¢] € M(A),

e(b)
NEAOIK:

where v runs over the unipotent elements in Cg(b) which are Cg(b)-conjugate to wu.
From the previous discussion, we observe that this sum is zero unless the image of b
in A, is trivial.

We now assume that the image of b in A, is trivial. Then

(fiv.61: Da(xa)) = > Dee ) (Vb)) (V) xa (b0),

(o D) = 2esidorsd™T T o) T DewGiE)e)

aeC4(b) vE(u)CO )

Let 6 be the class function on Cg(b) defined by 6(g) = 1 if g € (u)L, > (b) and 0(g) =0
1) of [Gec99, (2.2)a]

where 1 is the trivial character of ACG(b)(u). The scalar product becomes

otherwise. The class function 6 is in fact the function Y, e,

_ G(b) dar Ce(b) .
<f[b,¢]7 DG(X.A)> ==+ ’CA(b)‘q CA,b aeczA:(b) ((l)(’}/u 9) Cg ()

From (2.4)b and ¢ and (2.3)c of [Gec99], we deduce that

(Yl © ) cewy =7
where d = 1(dim(Cg (b)) - dim(u)ce, by — dim Ty). Since d = d4, we conclude that
e(b —
(o1, Do (x)) =+ 4Tay 3 ola)g
[Ca(b)] aeCA(b)
= ie(b)g77b<¢» ]'CA(b))J

where 1c, ;) denotes the trivial character. The Weil-sign €(b) € {-1,1} allows us to
conclude. n

Remark 6.1.8. In [Lusl5, Thm. 2.4|, Lusztig stated a much more general result than
our claim about the restriction of character sheaves to mixed conjugacy classes. It can
be summarised as follows. Let A be a unipotent character sheaf in a family ¢ of G
with unipotent support C. If the character sheaf A is labelled by [b,¢] € M(A,),
then (S*A)(u)%(s) is zero unless the image s in A, is conjugate to b. Moreover, if s

has image b, then (s*A) ()., is the shift of a local system & on (u)ce,(s)- This local
.

system & comes from the inflation of ¢ under the map Ag(bu) - Cy, (b).
We observe that [Lusl5, Thm. 2.4] does not hold in full generality. For instance, if we
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consider G to be simple E; of adjoint type, there are two cuspidal unipotent charac-
ter sheaves (|[LuCS4, Prop. 20.3 ¢|). Their support is the closure of the G-conjugacy
class (su)g where s € G is semisimple with connected centraliser of type STy x STy x ST
and the unipotent element u € Cg(s) is such that (u)ce(s) is the regular class. Their
associated local systems correspond to the two non-real characters of Ag(su) 2 Cy. Both
belong to the same family of exceptional character sheaves with unipotent support (u)g
denoted by A4+ A; in CHEVIE notation. But, Theorem 2.4 in [Lusl5] claims that the
restriction of those character sheaves to their support is a local system corresponding to
the lift of a character of Ag(u) 2 S, which is necessarily real.

Similar situations occur for G of type FEg, when considering cuspidal characters in an
exceptional family. By explicit computations in CHEVIE [Mic15| similar to the ones
we did for the claim in the proof of Lemma 6.1.7, one can check when Theorem 2.4 of
[Lus15] holds true in exceptional type groups.

This amounts to a huge number of case-by-case analysis, that I do not wish to reproduce
in this thesis. I could not yet find a general argument for this result, but I would like to
pursue such matter in future work.

Lemma 6.1.9. Assume that G is simple exceptional of adjoint type E7 or FEg and that C
is the class Ay+ A1 if G is of type E7 or one of the classes Ay+ Ay, Eg(a1)+ A1 or Dz(as)
if G is of type Es. Assume furthermore that p is good for G and let A be the admissible
covering for Ac as in Proposition 5.2.16. There exists an F-stable unipotent character

sheaf A with unipotent support C' such that for all [b,¢] e M(A),

e(1) if [b,¢] = [1,1],
(f%(ﬂ,Dg(XA)) =1€(b)Cap if 0> =1,b+# 1 and ¢ is the sign character,

0 otherwise.

where Cayp 15 a root of unity depending only on b and A.

Proof. Note that in all those cases A @ (. Let ¢ be a family of unipotent character
sheaves with unipotent support C' and .# be the corresponding family of characters in W
as in Theorem 3.1.12. Consider ¢ € .% the unique special character of .# and A, the
principal series character sheaf associated to it. Let by € A be the non-trivial element of
order 2. Using CHEVIE [Mic15] and the precise description of A from [BDT20, § 10.3],
we verify that

(Ap) (e = Q[-dim(C) - dim(Ty)], (B340 (e, 19y = Lsgn[ = dim(C') = dim(To)],

and

(b"Ay) = (V" Ay) =0

(Weg, v (Wee, o)

where b,b' € A are the two elements of order 4 and Ly, is the local system on (u)ce, (sy)
corresponding to the sign character of Ace, (b,) (1)
The rest of the proof is very similar to the one of Lemma 6.1.7. We may choose the
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6.1. Decomposition of the Kawanaka modules

isomorphism ¢ : F* A, > A, satisfying the condition 1 (Notation 3.3.3) and such that
the characteristic function of A, satisfies

X4, (V) = ¢* for all ve CF,
and for any x € Cg(by) such that zbjuzr=' e G

Xa, (wbouz™) = ¢ vsgn(x1F (2))Capos

where (4,5 is a root of unity and d4, = 3(dim(G) - dim(byu)c — dim T).
The main difference with the proof of Lemma 6.1.7 occurs when computing

(Fo.e1: D (xa,));
for any ¢ e irr(Ca(by)). Let 6 be the class function on Cg(by) such that for g € Cg (by),

0(9) _ q_dAw C;l}boXA(ﬁ(bog) if g € (U)Cg(bo)
0 otherwise.

The class function 6 is in fact the function Y{(u).o ,,sen) Of [Gec99, (2.2)a] where sgn is
G
the sign character of Ace,5)(u). The scalar product becomes
e(b)

CO
(fiv.61: Da(xa,)) = + “ACan Y d(a) e, 0)cev)-
[Ca(b)] acCa(b)

From (2.4)b and ¢ and (2.3)c of [Gec99], we deduce that

(.0

Tl 0)ee vy = ¢ sgn(a),

with d = 3(dim(G) - dim(byu)g — dim Ty) = d 4. Therefore,

(fivo.0): Da(xa,)) = €(bo)Capo (@: 5810),

and we conclude the proof of the lemma. O

6.1.2 Decomposition of the Kawanaka characters

Using the decomposition of the Fourier transforms of Kawanaka characters into charac-
teristic functions of character sheaves, we deduce results about the Kawanaka characters
themselves.

Proposition 6.1.10. Assume that G is a simple exceptional group of adjoint type.
Let g = sve G* be a special element where s € (G*)F" is semisimple and v € Cg(s) is
unipotent such that C, = C (that is any character sheaf in Gg has unipotent support C ).
Assume the following:
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Chapter 6. Unitriangularity of the decomposition matrix

(KD1) (A, \) is an admissible covering of Ac,
(KD2) Az Ag(u)z AJe®) = AG,
(KD3) there exists an F-stable character sheaf A € Gg such that for all [b,¢] € M(A)

(7.7 Da(xa)) #0 <= [b,¢] = [1,1].

Then the set {prg(/i[Gm)]) | [a,¢] € M(A)} is an orthonormal set. Thus, the decom-

position of the character /ﬁz[Ga’(25
Alvis—Curtis dual of an irreducible character in irr(G), with unipotent support C' and it
occurs with multiplicity one.

Furthermore, every Alvis—Curtis dual of an irreducible character in irr(G), occurs in

exactly one /'i g1 for some [a,d] e M(A).

] into irreducible characters of G contains exactly one

Proof. We fix [a, ¢] e M(A). We compute

H[Cib,qﬁ] Z {[CL, ¢:|7 [bv ¢] }f[cl;;,w]

[y leM(4)
={la. oL (LG g+ X2 {la.oL [b.vI}G .,

(641 MCAN(L,L]
¢(1)

fﬁ 1 + Z {[a, Qﬂa [b7 ¢]}f€77¢]

[Cal@)l™ pggemGEnia

The last lign follows from the definition of the pairing {-, -} in M(A) (Definition 2.2.27).
We write G for the set of F-stable character sheaves in G By the assumption (KD3),
we obtain

pry (K[ 4)) = |C (a )|DG(XA) >, wa(la,¢])Da(xa),
A’eGg\{A}

with 2.4 € C< and 24 ([a, ¢]) € C for all A’ e G,\{A}.

The Alvis-Curtis duals of the characteristic functions of character sheaves in G, form
an orthonormal family by Theorem 3.3.5. Therefore, we get

(01, (56, ), (R ) = A Y ([0 d]) > 0
| A(a’)| AleGg\{A}

Now by construction, prg(/i[c(’; (ﬂ) is a character of GG, non-zero since x4 # 0. Thus for
all [a, @], [b,1] e M(A), we note that

(prg(’%[cthﬁ])v prg(ﬁ[G(’Lqﬁ])) 2 1)

and
(prg(ﬁ'/[cfz,gﬁ])J prg(ﬂ[Gb,qj;])) 2 0.
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6.1. Decomposition of the Kawanaka modules

By the decomposition of a GGGC into Kawanaka characters (Lemma 5.2.26), we get for
all a,be A,

(Pry () pry () = 20 2 () pry (AL 4p) Prg (K 4p))-

#eCa(a) peCa(b)

Hence,

(Pry(nua) Py (v )) 2 D (D) pry(sf ) prg(hfg)) > Yo o(D)™

¢eirr(Cx(a)) ¢peirr(Ca(a))
On the other hand, since Ag(u) = /_XUCG*(S), we may apply |[GHO8, Rmk 4.4,

(pry(Yua ) Pry(Vu)) = > o(1)%.

peirr(Cag (u) (@)

Moreover, if u, is not G-conjugate to u;, for a,b e A, then

(pry(Yu,)> Pry (7)) = 0
Consequently, for all [a,¢] # [b,4] e M(A) = M(A¢) = M(Ag(u)),

(prg(/{ﬁh(p])v prg(K[G(l,qS])) = 17

and
(prg(ﬁ[cfz’¢])7 prg(ﬁ[Gle])) =0.
Thus, the set {prg(/fﬁl ¢>]) | [a,¢] € M(A)} is orthonormal for the scalar product of

characters. Since by assumption, the Frobenius map F acts trivially on A, there
are exactly |[M(Ag)| = |[M(A)| irreducible characters in irr(G), with wave front set C.
Therefore, every Alvis—Curtis dual of an irreducible character in irr(G), occurs in exactly
one of /€[ , for [a, 0] e M(A). O

Propositlon 6.1.11. Assume that G is a simple exceptional group of adjoint type and
that C' is special. We choose (A, \) as in Proposition 5.2.16. In particular, it is an
admissible covering of A,.

Then, given [a,¢] € M(Ac), the character /s[ P has at most one unipotent constituent
with wave front set C' and it occurs with multzplzczty one. Furthermore, every unipotent
character with wave front set C' occurs in some /4; for [a,0] e M(A). In particular,

when A, = A, H[(Mb] = [bM if and only if [a,¢] = [ 2/1] for [a, @], [b,0] e M(A).

Proof. We follow the case distinctions of Proposition 5.2.16. Assume first that A, is
trivial. By definition, M(A) =1 and f[;,17 = /i[GM]. The result is then the consequence of
Lemma 6.1.7.

Assume now that A = Ag(u) = A,. The statement follows from Proposition 6.1.10 where
the last condition is satisfied by Lemma 6.1.7.
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Chapter 6. Unitriangularity of the decomposition matrix

We now focus on the unipotent classes such that Ag(u) 2 A, 2 S, and A= C,. In
that case, we reason similarly as in the proof of Proposition 6.1.10. Let A be as in
Lemma 6.1.9. The image of b€ A is trivial in A, if and only if b has order 2. Let by € A
be the non-trivial element of order 2. Since A is commutative, for any [a,¢] € M(A),

prg(’i[Ga,qs]):E{'(G(l)+(b(bo)sgn(a)CA,boE(bO))DG(XA)"‘ >, zwal[a é])De(xa),
AleGg\{A}

with 24 ([a, ¢]) € C for all A’ € G,\{A}. Here G, is the set of F-stable character sheaves
in G,. For each a € A, there are at least two ¢ € irr(A) such that

(pry(Kf, 51)s Da(xa)) # 0.

Hence, there are at least two ¢ € irr(A) such that prg(/iﬁl ¢]) # 0. Now, since Ag(u) = A,,

2= (pr,(Yu,) pr, () = 2 > s (pry (kS ), pry (K5 )

$eCa(a) PeCa(a)
2 Z (prg(ﬁﬁl’¢]), prg(KEiqS])) 2 2
¢eirr(Ca(a))

Therefore, there are ¢q, ¢y € irr(A) such that for each a € A, the projections pI‘g(I{[C; ¢1])
and prg(/{[Ga ¢2]) are two distinct irreducible characters. Furthermore, for any other
character ¢ € irr(A)\{¢1, P2}, prg(/i[Ga 1) = 0. By [Tay16, Prop. 15.4], every unipotent

character with wave front set C' occurs in some ¢ for some a € A. This allows us to
conclude the proof of the proposition in this case.

By the case distinctions of Proposition 5.2.16, we are left with the case where G is
of type Es and C'is the class labelled Eg(bg).
Thanks to CHEVIE |Mic15]|, we make the following observations.

e There are four unipotent character sheaves with unipotent support C'

e One of them, that we denote by 44, does not belong to the principal series and is
not unipotently supported, thus (A4)c = 0.

e The other three belong to the principal series and are labelled under the isomor-
phism of Proposition 3.2.17 by the characters ¢1 = @p2240,10], P2 = P[1400,1]; P3 =
Prsa0,13) € irr(W).

e Using the Springer correspondence (c.f. Section 4.1), we observe that ¢pi400,1]
corresponds to the class A;. Therefore, the restriction (Ay,)c = 0.

e Moreover, (Ay,)c = E[dim C'+dim T] where € is the irreducible local system on C'
corresponding to the sign representation of Ag(u).
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6.2. Unitriangularity of the unipotent blocks

e Lastly, the character ¢[a4010] is special, and thus (Ag, )c = Q,[dim C + dim T,]

where Q, is the trivial local system on C and corresponds to the trivial represen-
tation of Ag(u).

Applying the same arguments as in [BDT20, Theorem 8.8] that we have explained in
Lemma 6.1.7, we compute that <f[1,1]vXA¢3> = (0. By Lemma 6.1.7, the same reasoning
as in the proof of Proposition 6.1.10 tells us that for any [a, @], [b,¢] € M(A),

<pru("i[ci,¢])7 pru(’iﬁ;@] )) 2 17

and
(pru(liﬁz@])v pru(”f}id;])) 2 0.

Moreover, thanks to our discussion about the character sheaves we observe that

> pru(sf 4) = 201, (frun) = 26(1) Daxa,,)-
[a,p]eM(A)

Therefore,

4= Y pr(kfg) 2 prusg)) 2 Y (pru(sf e pro(kf ) > 4
[,6]M(4) [,6]M(4) eM(4)

Thus, for all [a,¢] € M(A), the characters pru(/f[Ga ¢]) are irreducible characters of G
and they are all distinct. O

Using [Lusl5, Thm. 2.4], Brunat—Dudas—Taylor showed the same result for any finite
adjoint group.

Proposition 6.1.12 ([BDT20, Thm. B and Thm. 8.9]). Assume that G is simple and
adjoint. We choose (A, \) as in Proposition 5.2.15. Given [a,¢] € M(Ac), the charac-
ter H[C; 1 has at most one unipotent constituent with wave front set C' and it occurs with

multip?icity one. Furthermore, every unipotent character with wave front set C' occurs
in some K(; . for some [a,¢] € M(A).

a,

6.2 Unitriangularity of the unipotent blocks

In this section, we show the unitriangularity of the unipotent ¢-blocks when G is a sim-
ple adjoint group of exceptional type. When ¢ is good for G, this was already shown in
more generality by Brunat-Dudas—Taylor [BDT20, Thm. A].

We come back to our plan from the introduction. Thanks to Proposition 5.1.24, we
know that the unipotent classes C1, ..., C, which are the unipotent support of the char-
acters in &;(G, 1) are the special classes. Moreover, we may assume that the number n;
equals |[M(Ag,)| for 1 <i<r.

Therefore, thanks to Proposition 6.1.11 the condition (A) is satisfied when ¢ is good.
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Chapter 6. Unitriangularity of the decomposition matrix

We thus assume that ¢ is bad. In order to reduce the number of cases we split our
analysis in three parts. We first consider the special classes and see how and in which
cases we can extend our results. In particular, we will see in Corollary 6.2.3 that the
conditions we need are satisfied in most cases. We then move on to all /-special classes
where it suffices to choose the GGGCs as projective modules in Step 3. This is the
case when the /-canonical quotient is trivial or when ¢ = 2 and the canonical quotient is
a group with two elements (Corollary 6.2.8). Three unipotent classes for G of type Eg
are not covered by this discussion and we treat them separately.

Hypothesis 6.2.1. In this section, we assume that G is a simple exceptional group
of adjoint type and that ¢ is bad for G. Recall that we have assumed that p is good.

6.2.1 Using Kawanaka modules for the special classes

For the special conjugacy classes, we want to use what we know about the decomposition
of Kawanaka characters into irreducible characters of G to deduce the decomposition of
the ¢-Kawanaka characters.

Proposition 6.2.2. Assume that G is exceptional simple of adjoint type. Let C be an
F-stable unipotent conjugacy class of G. Assume that

(K(1) there exists an admissible pair (A, \) for uc which is an admissible covering of Ac
such that for all a € A the (-decomposition matriz of Ca(a) is lower-unitriangular,

(K(2) there is g = sv = vs € (G*)I" | with s is an (-element and v € G* is a unipotent
special element, such that the characters sheaves in G, have unipotent support C,
and

(Kl3) given [a,¢p] € M(A), the character prg(ﬁg ¢]) is either an irreducible character
or zero. Furthermore, every character in irr(G), occurs in some mﬁl o) Jor some

[a, 9] € M(A).

Let d = |MY(Ag)|. If either € does not divide |A] or A= A , then there exist char-

(Wce, , (s)
G)&
acters pi, ..., pa € irr(G), € E(G, 1) with unipotent support C' and [ay, V1], ..., [aq, V4] €
ME(A) such that for 1<4,5<d,

0 i<y
* G _ )
<pi"‘£[aj,‘1’j])_{1 i=7.
Proof. By Lemma 5.2.25,

Ply. (“(sz,\p)) = Z dy.w pr, ("“(G;,w) )-
Yeirr(Cy(a))

Let us first assume that ¢ does not divide |A|. Then M*(A) = M(A). Moreover, { does
not divide A¢ either and M*(A¢) = M(A¢). Thus, the number d equals the number of
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6.2. Unitriangularity of the unipotent blocks

unipotent characters with wave front set C. The statement is then just a reformulation
of the third hypothesis (K¢3). For each [a,1] € M(A) = M*(A) there is exactly one
unipotent character pp, ) with wave front set C' such that pruC(/ig w]) = Pla)

Cgx(s)
(’U)COG* (s)

— ACDG* (S)

. For a € A, we write a for its image in A, : e (0"
G+’

Suppose now that A = A

Similarly, for ¢ € irr(C4(a)) we set ¢ for the character seen as a character of C3,(a).
Let {pp.y) | [b,0] € M(A,)} be the set of irreducible ordinary characters in irr(G), with
unipotent support C. By assumption, up to reindexing, we may write

G %
pI‘g(I{[a,w]) - p[ava]a
for each [a, 1] € M(A). In other words, for each a € A and ¥ the character of a projective
indecomposable k[C'4(a)]-module, we have

prg(ﬁgl,m): > dw,wprg(’faw)): 2 dqﬁv‘l’pfw]'
yeirr(Ca(a)) yeirr(Ca(a))

Therefore,

*

(p[aﬂb]’prg(“[Ga,\If])) =dy,w.
Furthermore, for b € A not A-conjugate to a, and any ¢ € irr(C4 (b)), we deduce that

*

<p[b7$]7pruc(’§[c;,\ll])> =0.
For each a € A, the ¢(-decomposition matrix of C4(a) is lower-unitriangular. Thus, we
can fix a total ordering of {U;|1<j < s,}, the set of characters of C'4(a) associated to

the projective indecomposable k[C'4(a)]-modules, and an ordering of the set {¢; | 1 <
i <ty} =irr(Ca(a)) such that for all 1< j<s, and for 1 <i<j,

d J0iti<y
Y T i =

Then for each 1 < j < s,, We set p; = ppa, 4, and the sets {p; | 1 < j < [M*(A)[} and
{H[C; ] | [a, U] e Mf(A)} satisfy the statement of the proposition. O

Corollary 6.2.3. Assume that G is simple exceptional of adjoint type. Let C be a
special F-stable unipotent conjugacy class of G and (A, \) be the admissible covering
of Ac, as in Proposition 5.2.16.

Assume that Ac = Ayc and that either ¢ does not divide |A| or A =~ Ac. Then,
there ewist unipotent characters py,...,pn,, € E(G,1) with unipotent support C and
[a1, V1], .. [angos Wy o] € MO(A) such that for 1<i,j <ngc,

0 1<y

* G )
().,/{:a. = . .
( ' []’\P]> {1 t=7.
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Chapter 6. Unitriangularity of the decomposition matrix

Proof. This is a consequence of Proposition 6.2.2. Firstly, we notice that Ac 2 Ac
implies that .o = |M£(Az7c)| = |M£(AC)|

We check that the hypotheses of Proposition 6.2.2 hold. By Proposition 5.2.16, there
exists an admissible covering (A,\) for Ac and the group A is either Sy, Ss,S,, Cy
or S5 and the primes are ¢ € {2,3,5}. We need to check the unitriangularity of the (-
decomposition matrices of the following groups: Ss,S3,54,S5, Cs,Cs x Cy, Dg, Cy, Cs
and Djy (group with 12 elements) and Cs. We already know that the (-decomposition
matrix of the symmetric group is unitriangular, see [Jam78, Cor. 12.3]. Moreover, it is
also trivially the case for groups of order a prime power. We can easily check that it is
also true for the group Dys.

For the assertion (K¢2), we simply choose g to be a unipotent element in the class C'
seen in G*. The last hypothesis (K¢3) is a reformulation of Proposition 6.1.11. O

Lemma 6.2.4. If G is simple exceptional of adjoint type, the only special unipotent
classes of G for which we cannot apply Corollary 6.2.8 are given in Table 6.1.

G 0=2 {=3
Fy AQa F4(a2)

E7 A4 + Ah E7(CL4), A3 + AQ
Ey Eﬁ(a1)+A17 D7(a2), Ay+ Ay, Es(b4)7 D?(al); ES(b6)
D5 + AQ, E7(a4), D4 + A27 A3 + A2

Table 6.1: Special unipotent conjugacy classes where we cannot apply Corollary 6.2.3.

Proof. This follows from the description of the admissible covering in Proposition 5.2.16
and from explicit computations in CHEVIE [Micl5| of the ordinary and ¢-canonical
quotients, c.f. Appendix B.3 and Appendix C.2. O]

6.2.2 Using generalised Gelfand—Graev characters

Let C be an F-stable unipotent conjugacy class of G. We now state some general results
about the restriction of the decomposition of the I'¢ in terms of ordinary irreducible
modules with wave front set C.

Definition 6.2.5 (|Héz04, Thm. A]). Let C' be an F-stable unipotent class of G and g
be a special element of G* with Jordan decomposition g = sv. We say that g satisfies
the property (P) with respect to C' if :

1. (I)((g)G*) = C7
2. |ASe* ™| = |Ag(uc)), and

3. the image of s in the adjoint quotient of G* is quasi-isolated.
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6.2. Unitriangularity of the unipotent blocks

If there exists such a g € G* such that s is additionally isolated and an /-element,
we say that C' is (-(P)-special. The list of ¢-(P)-special classes may be found in Ap-
pendix B.3.

An element g satisfying property (P) exists for any F-stable unipotent conjugacy class
of G, even if its semisimple part might not be an /-element.

Theorem 6.2.6 (|[Hez04, Thm. B|). Let C' be an F-stable unipotent class of G, then
there exists a special element g € (G*)F" satisfying property (P) with respect to C.

We know part of the restriction of the GGGCs I'¢ for u € CF to irreducible characters
of GI" with wave front set C'.

Proposition 6.2.7 ([GHO08, Prop. 4.3]). Let C' be an F-stable unipotent class of G
and uy, ..., uq be representatives for the G-conjugacy classes contained in C. Let g = sv =
vs € (G*)F" satisfying Property (P) with respect to C, with s € G* semisimple and v € G*
unipotent. Assume that AEG*(S)

that (X}, Yu;) = 0ij for 1<i,j <d.

is abelian. Then there exist x1,...,xq € irtr(GF), such

As a corollary, if C' as above is (-(P)-special and d = ny ¢, then considering the
generalised Gelfand-Graev characters is sufficient.

Corollary 6.2.8. Let C' be an F-stable (-(P)-special unipotent class of G. If Ayc is
trivial or £ = 2 and Ayc 2 Sy, then there exist P1s-- s Pny o € 1IT(G) in the unipotent
(-blocks with unipotent support C and generalised Gelfand-Graev characters 1, s Yo
such that for 1<i,5 <nyc,
(pi'>75) = 045

Proof. Let uq,...,uq be representatives for the G-conjugacy classes contained in CF.
Since C' is (-(P)-special, we can choose g € G* satisfying Property (P) with respect
to C, with g5 an (-element. By Proposition 6.2.7, there exist py,...,pq € irr(G), such
that (p},vy,) = 055 for 1 <4, j <d.

Recall that we choose uc € CF such that Ag(uc) is F-stable. Thus the number d of
representatives for the G-conjugacy classes contained in CF is equal to the number of
conjugacy classes of Ag(uc). Observe that if £ =2 and A, 2 Sy, then ny o =2. On the
other hand, if z‘_lf,c is trivial, then nyc = 1 for any prime ¢. In both cases, nyc < d and
the sets {p1,...,pn, o} and {7y, ... ,%nw} satisfy the statement. O

Proposition 6.2.9. If G is simple exceptional of adjoint type and { is bad for G, the
only (-special but not special unipotent conjugacy classes of G for which we cannot apply
Corollary 6.2.8 are when G 1is of type Ex,

1. 0 =2 and the unipotent conjugacy class is E;(as) and
2. 0 =3 and the unipotent conjugacy class is Eg(agz) + A;.

Moreover, the only special class for which we cannot apply Corollary 6.2.3 nor Corol-
lary 6.2.8 is the class Es(bg) of G of type Eg when (= 3.

Proof. This follows by inspection of the tables in Appendix B.3. O
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Chapter 6. Unitriangularity of the decomposition matrix

6.2.3 The leftover cases in Fjx

We finally consider the cases in Eg that we could not treat thanks to Corollary 6.2.3 or
Corollary 6.2.8. In this section, we assume that G is of type FEs.

The special unipotent conjugacy class Fs(bs) when ¢ =3

We first consider the special class.

Lemma 6.2.10. Let G be a simple group of type Eg and C' be the F-stable unipotent
class Eg(bs). Then, there exist ngc irreducible characters in the unipotent 3-blocks with
unipotent support C and nsc projective characters (either Kawanaka or GGGC) such
that the decomposition matriz restricted to these rows and columns is unitriangular.

Proof. We observe using CHEVIE [Mic15] that Ag(uc) 2 Az 2 S3 and ngz o = 5.
Firstly, thanks to Proposition 5.2.16, we can find an admissible covering A of the ordinary
canonical quotient associated to C. In this case, we have A = Ax = S,. We denote the
elements of M(A) by [1,1],[1,sgn],[-1,1],[-1,sgn], where sgn denotes the sign char-
acter. Thanks to Proposition 6.2.2 and since ¢ does not divide A, we find four unipotent
characters ppi1], P[1,sen]s P[-1,1]> P[-1,5gn] With unipotent support C, and construct four
Kawanaka characters with respect to A and C' such that for [b, ¢],[a,v] € M(A),

(" G 1 b=aand ¢ =1,
y R a = .

Plos) Faw] 0 otherwise.

Since |[M3(A30)| = 5, we need to find an irreducible character of G in the unipotent /(-

blocks, which has unipotent support C' but is not unipotent. As in [GHO08, Proof of

Prop. 4.3], for any unipotent character p with unipotent support C,

(6.) i[AGwo A (ug)F)(p,70) = el

np

()

where n,, is given by [Lus84a, 4.26.3]. In our case, since p is unipotent and Ac = S, we
have n, = 2. Moreover, as in [GM20, Example 2.7.8 c)|, we may assume that u; corre-
sponds to 1 (whence [Ag(u1) : Ag(u1)¥] = 1), uy corresponds to a 2-cycle (whence [Ag(us) :
Ag(uz)f] =3), and ug to a 3-cycle (whence [Ag(us) : Ag(uz)f] =2).

Let ¢ € irr(Sy) and 7,7 € {x1}. By Equation (5.2.26), there are two distinct GGGCs,
say 7§ and 7& | such that (p[*i7¢],fyg) = 0;;. By construction, we observe that 7§ =~
and 7§, = 7% . Inserting this into (6.1), we must have

<PE1,¢]7'YuGg,> =1 and <PE-1,¢]77%) =0.

Moreover, we can check using CHEVIE [Micl5| that the conjugacy class C is 3-(P)-
special. In other words, there is g = sv = vs € (G*)I" with s € (G*)¥" semisimple of
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6.2. Unitriangularity of the unipotent blocks

order a power of 3, and v € (G*)¥" unipotent such that AGer () & Sz and ®(g) = C. Now
by [Gec99, Prop. 6.7] and [Héz04, Rem. 4.4], there is a character p € £(G, s), such that

1 ifi=3,
0 otherwise.

(u*mi)={

We then choose the irreducible modules with characters i, p[117, Ppisen]s P[-1,1]> P[-1,5en]

and the projective k[G]-modules I'¢, K[Cf " K[Cf.sgn] , K[(fl 1 K[(fl «gn) i1t these orders. The
preceding computations show that the decomposition matrix of G restricted to these rows
of irreducible K[G]-modules and columns of projective k[G]-modules has the following

shape, where the empty entries are 0:
1
11
11 .
1
1

The two /-special but not special classes

For the last two cases, since we always have A¢ flac, it suffices to check the conditions
of Proposition 6.2.2. We want to show the following lemma.

Lemma 6.2.11. The two unipotent classes in Proposition 6.2.9 which are not special
satisfy the conditions of Proposition 6.2.2.

Thanks to Proposition 6.1.10, this amounts to checking the following:

(Kf1) there exists an admissible pair (A, \) for uc which is an admissible covering of A¢
such that for all a € A the (-decomposition matrix of C'4(a) is lower-unitriangular,

(K€2) there is g = tv = vt € (G*)F" where t is an (-element and v € G* is a unipotent
special element, such that the characters sheaves in G4 have unipotent support C,

(KD2) A=z Ag(u)z A5e" D ~ AG and
(KD3) there exists an F-stable character sheaf A € G, such that for all [b, ¢] € M(A)

(b5, Da(xa)) 0 = [b,0] = [1,1].

We recall some notation. For each simple root § € A, the fundamental dominant
co-weight @, € Q®ZX satisfies (a,05) = 04 p for a, B € A. We also fix a bijection n from
the semisimple elements of T§ to the Kummer local systems on T, see after Proposi-
tion 3.1.11. Note as well that since Eg is both adjoint and simply connected, as well as

self-dual, the centralisers of semisimple elements in G and G* are connected.
For the last condition (KD3), we will use CHEVIE [Mic15] to show that
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Chapter 6. Unitriangularity of the decomposition matrix

Claim: There exists A € Gg in the principal series such that for each s € A, the
restriction (s*A)(u)ge ., 18 the trivial local system Q,[-dim(C') - dim(To)] if the image
o (s

of s in A, is trivial and zero otherwise.

The same argument as in the proof of Lemma 6.1.7 will allow us to conclude the
result about the characteristic function. In order to show the claim, we reformulate
Corollary 4.3.19 for the principal series. For t € T} corresponding to the local system £
on Ty, i.e. n(t) = L, by [AA10, Prop. 4.4], we have

We 2 Neg. ) (T5) /T = WE.
Recall that we have set d := —dim(G) + dim(Gy) — dim(Ty) and e = —dim(T).

Corollary 6.2.12. Letm = (T, Ty, L) € MG andt € T such thatn(t) = L. Let A € G(m)
and V e Irr(Q,[WE]) such that A = Hompnacc,) (Vi Kn). For any s € Tg, s*(A)s(Go)um L]
18 1somorphic to

@ (Resyh (V)eXy st (Vioad(w™)))(ad(w) AT €] .y
V/elrr(WGs ) weWSG\W /W Gs ’ ’

where Wffw =W WGSOWtG, A@é = HomEnd(,Cmo)(V’, ICm()) with my = (To, TO»@K) € MG,
We see V' as an End(Km,))-module under the isomorphism defined in Proposition 3.2.17
and X3, is the module of Q,[WGnvWSE] whose character is x5, + wo = j(fwwyw-1 (Wsw™1)).

The code to compute the restriction as above can be found in Appendix C.3.

Notation 6.2.13. The labelling of the unipotent conjugacy classes follows CHEVIE [Mic15]
notation.

The unipotent conjugacy class Fg(az) + A; when (=3

We fix the setting in the case where the F-stable unipotent class is C' = Fg(as3) + A;.
We choose t € T such that Cg-(t) is of type EgAy and v e Cg-(t) lies in the unipotent
class As, 111 of Cg+(t).

Admissible covering We follow [BDT20, § 10.2]. We can choose s = wq,(1/2)
and uc € C&(s) F-fixed. In that case Cg(s) is of type Dg. We set G, = Cg(s).
Using CHEVIE [Micl5] (see code in Appendix C.3), we compute that only one unipo-
tent class of G, fuses into C. Therefore, we know that uc lies in the unipotent class 6631
of G4 which fuses into C' = Eg(as) + A;.

The group A := (s) can be chosen as an admissible covering of Ag(uc) for a fixed

co-character. Observe that B
A= Ag(uc) 2 AJer®

and if ¢ = 3, then A = A, . Thus the conditions (K¢1), (K¢2) and (KD2) are satisfied.
We are left to check the last condition of Proposition 6.1.10.
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6.2. Unitriangularity of the unipotent blocks

Character sheaves We fix £ = n(t) € S(Ty). We now consider a principal series
character sheaf of G coming from £ with unipotent support Fg(as) + A;. In CHEVIE
notation, we choose the one corresponding to the character ¢sp 15,111 of W,. Observe
that A = Aggo,ls,nl is F-stable.

We detail how we use CHEVIE [Mic15] to check that A satisfies the claim. This is
the function RestrictionMixedSupport in Appendix C.3.
We compute that WEs\W /W, = {1,g} for some g € W. Moroever, we check that the
groups W& n W, and WG n W, are both Weyl groups. Therefore xj and x3 from
Corollary 6.2.12 are trivial, by Lemma 4.2.6.
We consider the restriction to (suc)g. By the same argument as in the proof of [Lus15,
Thm. 2.4] (that we have reproduced in Proposition 4.3.6), we need to consider only
the character sheaves of G4 which correspond under the Springer correspondence to the
unipotent class 6631, that is character sheaves such that

(AL) Gy = IC((Wa,, €)[dim(Ty) - dim((u)a,)]

for E" € irr(WS:) and £ a local system on (u)g,. Indeed, let v € G, be a unipotent
element and E' € irr(W&s) such that (A%)G =I1C((v)a,,&")[dim(Ty) -dim((v)g.)]
for £ a local system on (v)g,. If (u)g, ¢ (v)g,, then

(A% e, = 1C((1) e &) e, = 0-

On the other hand, if (u)a, € (v)a. - (v)a., then (u)q € (v)a - (v)a. By definition of
the unipotent support, we must have s*((Ag)s(v)g,) = 0. Thus the character sheaf A%f
cannot appear in the decomposition of s*((Ag)|s(G.)un:)-

By the Springer correspondence, there is only one character E’ € irr(WGs) whose
image is ((u)a,,€&’) for £ a local system on (u)g,. In that case, £ is the trivial local
system on (u)g, corresponding to the trivial character of Ag,(u). Using CHEVIE, we
conclude that the coefficient is zero, whence

Aswye, =0

We see that there is an F-stable character sheaf A with unipotent support C such
that

° AI(SUc)ca(s) =0, and

o Aup)[—dim(C)-dim(Ty)] is alocal system corresponding to the trivial character
of AG (’lj,c) .

Therefore, for all [b,¢] e M(A)

(ffh.6 Da(xa)) #0 = [b,¢] =[1,1].

This concludes the analysis of the first case.
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Chapter 6. Unitriangularity of the decomposition matrix

The unipotent conjugacy class F;(as) when ¢ =2

We fix the setting in the case where the F-stable unipotent class is C' = E7(as). We
choose t € T such that Cg-(t) is of type E;A; and v € Cg+(¢) lies in the unipotent
class Dy(ay),11 of Cg=+(1).

Admissible covering We fix M the standard Levi subgroup of G of type E;. We
fix an element uc € M¥ such that (uc)g is the unipotent conjugacy class Er(as) and
F acts trivially on Ap(ue) 2 S3. We write Cy = (ueg)m- Using CHEVIE, we check
that the unipotent conjugacy class Cyy is distinguished in M. We fix a co-character
A e Y (u)F. By the same reasoning as in [BDT20, § 10.4], the group A = Cp, ) (uc) is
an admissible covering of Ani(uc). Then, by the argument at the end of [BDT20, § 10.5],
where they apply |[BDT20, Lem. 4.4], the admissible pair (A, \) is also an admissible
covering for Ag(uc). Observe that

Az A(;(Uc) = AgG* ®

and if £ =2, then A= Ay c.
Remark 6.2.14. Observe that by [MS03, Thm. 1] there are some hy, hy € G such that

Ac(uc) 2 (wa, (1/2)" C& (uc), wa, (1/3) Cg (uc)).

Character sheaves We fix £ :=n(t) € S(Ty). We consider a principal series character
sheaf of G coming from £ with unipotent support E7(as). Thanks to Lusztig’s map
(|[Lus92, Thm. 10.7]), we choose the one corresponding to the character of W, denoted
by ¢31516,11. We now check that A = A£315,16711 satisfies the claim.

Let us look at the case where s € A is an involution. Then, there exists x € G such
that a® = w,, (1/2) € To. We fix s = w,, (1/2) € T such that G = Cg(s) is of type Ds.
Using CHEVIE, since only one unipotent class of G, fuses into C', we know that v = uf,
lies in the unipotent class 7522 of G which fuses into Er(as).

We want to compute the restriction of the previous character sheaf to the mixed con-
jugacy class (su)g,. We compute that WEs\W /W, = {1,g} for some g € W. The
group WS n W, is a Coxeter group. On the other hand, W := WG n W, is not
a Coxeter group and we have WZ/(W1)° = Cy = Z(GY). Thus, by Lemma 4.2.6, x*
correspond to the lift of the sign character of W1/(W7)e.

Using CHEVIE, we compute that!

(A)swe, =0.

Lastly, we consider the case where s € A has order 3. By similar arguments as before,
using CHEVIE, we compute that

A(SUC)CG(S) =0.

lif we did not tensor by the sign character when applying Corollary 6.2.12, we would have
had (A)(suye, #0
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6.2. Unitriangularity of the unipotent blocks

We see that there is an F-stable character sheaf A with unipotent support C such
that

o A|(auc)ca(s) =0ifa#1 for any a € A.

® Aue)e[—dim(C)-dim(T)] is a local system corresponding to the trivial character
of AG (UC) .

Therefore, for all [b,¢] e M(A)

<fﬁ;,¢]>DG(XA)> #0) = [bv ¢] = [17 1]

This concludes our discussion about the last case.

6.2.4 The proof

We are now ready to prove our main result.

Theorem 6.2.15. Let G be a simple exceptional group of adjoint type defined over k,
an algebraically closed field of characteristic p with Frobenius endomorphism F. Assume
that p is good for G. If € is bad for G, then the decomposition matriz of the unipotent
C-blocks of G is unitriangular.

Proof. We fix a total ordering of the /-special unipotent conjugacy classes of G, C1, ..., C.
such that for all 1 <,m <r, we fix | <m if dim(C}) < dim(C,,).

Let C) be a unipotent (-special conjugacy class and ng ¢, = |M¢(A¢,)|. Thanks to our
previous discussion, we can find projective kG-modules P}, ..., P! 0, with characters ’/Té-
associated to their lift to K[G]-modules and irreducible characters of GG in the unipotent
(-blocks with unipotent support Cj, pt ... ,pﬁmcl, such that for all 1 <,7 <ny¢,

Iy 1 0 i< j’

((pz) ,7T]> - {1 i = ]
In particular, for a fixed [ the P! are all distinct.

Let C,, # C; be another unipotent ¢-special conjugacy class of G and p’ be an

irreducible character of G with unipotent support C,,,. Suppose that thereis 1 < j <nyc,,
such that ((p')*,7}) # 0.
We observe that if {(p’)*, 7)) # 0, then there exists v € Cf" and a generalised Gelfand-
Graev character v,, such that ((p’), 1) # 0. If P! is itself a GGGC, then this is obvious.
Otherwise it is a consequence of Lemmas 5.2.25 and 5.2.26. In any case, since (p')* has
wave front set C,,,, we conclude by the unicity of the wave front set ([Tay16, Thm. 15.2])
that (v)g = C; € Cp,, whence dim(C;) < dim(C,,) and thus [ < m.

Now for each 1 <l <rand 1 <i<ngc, weset ul=(pl)*. The irreducible character y!
lies in the unipotent ¢-blocks. Moreover, for 1 <m <r and 1 <j <nyc,,, we have

(ol 7Tm>_{Oifn<mor (n=m and i< j),

lifn=mandi=j.
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Chapter 6. Unitriangularity of the decomposition matrix

Therefore, summing over all the /-special unipotent conjugacy classes, we obtain the
exact number of indecomposable projective k[G]-modules in the unipotent ¢-blocks.
We conclude thanks to Proposition 5.0.1. O

The assumption that p is good is crucial as we do use a lot of properties for GGGC
which are not yet proven for the extension to bad primes as defined by Geck [Gec21a].
Since we do not know yet a basic set for the unipotent ¢-blocks for groups with a non-
trivial centre as described by Chaneb, we cannot extend our result to any finite reductive
group of exceptional type. For instance, it is not clear how to treat the case of simply
connected groups of type Fg or Fr.

Combining our result with the theorem of Brunat-Dudas—Taylor for £ good (|[BDT20,
Thm. A]) and the theorem of Chaneb for classical groups when ¢ = 2 [Cha21, Thm. 2.8,
we obtain

Theorem 6.2.16. Let G be a simple group of adjoint type defined over k, an alge-
braically closed field of characteristic p with Frobenius endomorphism F. Assume that p
18 good for G. Let { be a prime different from p. The decomposition matriz of the
unipotent £-blocks of G is unitriangular.

Remark 6.2.17. Note that all the proofs of this chapter and the preceding one that apply
for G of type Eg also for G of type 2Eg. Firstly, the number of projective indecomposable
modules in &(G, 1) is independent of whether F is of split or non-split type (see [GHI7,
6.6]). Similarly for Proposition 5.1.24, the parametrisation in terms of /-special classes is
independent of F' since, in the non-split case, the map F' acts on W by conjugation, and
thus trivially on irr(W). Therefore, the choice of candidates for the irreducible ordinary
modules in &(G, 1) does not depend on whether F' is split or not.

The definitions of the GGGRs and Kawanaka modules hold in both cases. In particular,
the admissible covering the admissible coverings fixed by Brunat-Dudas-Taylor for the
special classes does not depend on whether F' is split. To compute the restriction of
the Kawanaka modules to unipotent characters as in Corollary 6.2.3, we use unipotent
character sheaves. By [LuCS4, Cor. 20.4], the unipotent character sheaves are F-stable
independently of F. Moreover, Consequently, Corollary 6.2.3 also holds if F' is non-split.
Lastly, the cases covered by Corollary 6.2.8 are also independent of whether F' is split
or not.

6.3 Unitriangularity of the isolated blocks

In this final section, we explore how one can extend and apply the methods developed in
the rest of this thesis to consider non-unipotent isolated ¢-blocks of simple exceptional
groups of adjoint type.

We first gather some general arguments that we then apply to show the unitriangularity
of the decomposition matrices of the other isolated ¢-blocks for G of type G5 and F,. We
believe that similar methods will be sufficient to treat the case of the groups of type E,
for n=6,7,8 and intend to tackle these cases in the future.
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6.3.1 Some general arguments

In this part, we summarise three techniques used to show the unitriangularity of the
decomposition matrices when ¢ is bad for the isolated blocks. We fix ¢t € G* an isolated
non-trivial ¢’-element.

We follow the strategy explained at the beginning of this chapter.

Step 1 The number n of projective indecomposable k[G]-modules in (G, t) may be
found in Appendix B.2.

Steps 2 and 3 We determine the unipotent supports C1, . .., C, of the characters in & (G, t)
with a total ordering C; < --- < C,, such that C; < C; if dimC; < dim C} for all
l<i<j<r.

Then, for each 1 <7 <7,

e we choose n; irreducible modules VY, ..., V;i € &(G,t) with wave front set C;
e and n; projective-modules Pf,..,Pf;i, either /-Kawanaka modules of the
form K[C; g for [a,®] € ME(Ag,), where Ag, is an admissible covering of

Ac, assuming such an admissible covering exists, or GGGCs I'G for u € CF,
or sometimes projective induced from a Levi subgroup.

We require ), n; = n.
Step 4 Check the unitriangularity of the decomposition matrix of #(G,t).

When G is of type G5 or Fy, we notice that the number n determined in Step 1 does not
depend on ¢. Moreover, thanks to Proposition 5.1.15, we choose in Step 2 the ordinary
modules in &(G,t). Therefore our arguments apply to any ¢, good or bad for G.

For Step 4, as we have already discussed, we only need to verify that ([(V}")*, Pj])lsMSm
is lower unitriangular for each 1 <7 < r if the chosen projective k[G]-modules are sum-
mands of GGGCs. If we can show that ([(V}")*, P])1<j<n, is lower triangular (but not
necessarily with ones on the diagonal), then the decomposition matrix of the union of
blocks ZA(G,t) will also be lower triangular. Since &(G,t) is a basic set (Proposition
5.1.15), it implies that the decomposition matrix is lower unitriangular.

We present different methods to check if ([(V}")*, P}])i<i j<n, is lower triangular. We
describe them in an example once and then will just quote the arguments.

General arguments

We fix 1 <7 <r and consider C' = C; and n¢e = n;. Most of our arguments use the theory
of character sheaves.

For A€ G, an F-stable character sheaf, we fix an isomorphism o4 : F* A > A satisfying
condition T of Subsection 3.3.2. Assume that A4 has unipotent support C' and comes from
the F*-stable induction datum m = (L,X,£) € M. Let D be an F-stable conjugacy
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class of G with unipotent part equal to C. By Proposition 4.3.6, Ap is a local sys-
tem L[dim(D) +dim(Z°(L))]. In particular, thanks to Equation 3.2 and Lemma 3.3.4,

for any h e DF,
X.A(h) - q(dlm(G)—dlm(D)—dlm(Z (L))/2)X£,1/1(h)'

Here X, comes from an isomorphism ¢ : F*£ - £ of local systems on the class D such
that ¢y, : L, = L}, is of finite order.

(GGGC) using GGGCs when n¢ < |irr(Ag(uc))|. There are |irr(Ag(uc))|
different GGGCs associated to C. Suppose that we can choose ne of them (71, ..., V)
and n¢ characters sheaves A;,... A, € Gt with unipotent support C, which are F-
stable, such that the matrix

(73, De(xa,) ) 1sijene

is lower triangular with diagonal entries of norm 1. Assume furthermore that there
is a special g € G* with Jordan decomposition g = tv with v unipotent such that the
character sheaves Ay, ... A, € G, and the number |/\/l(/_1voé*(t))| of F-stable character
sheaves in Gg equals n¢. By simple inductive arguments, we will show that there exist
characters xi,...,Xno € itr(G), € &(G,t) (with unipotent support C) such that the
matrix

(&, X N1ijenc

is lower unitriangular. We give examples of such arguments in our case analysis for G
and Fj, see for instance the isolated blocks A;A; of Gs.

We describe how to compute the scalar product between a character sheaf and a
GGGC.
Let A e G, be an F-stable character sheaf as above. In particular, we assume that A has
unipotent support C' and comes from the F*-stable induction datum m = (L, X, £) € MG,
Suppose that Ac # 0. Then A is unipotently supported and ¥ = CyZ°(L) where Cj is a
unipotent conjugacy class of L. We write £ = §y® Z with & an irreducible L-equivariant
local system on Cj and Z € S(Z°(L)). Therefore, by Proposition 3.2.17, there exists an
irreducible K[Wy, ]-module V" such that

A = HomEnd(Km)(V, ICm)

Thanks to the discussion in Subsection 4.1.1 on the generalised Springer correspondence,
and by the same argument as in Proposition 4.3.6, we have

Ac[-dimZ°(L)] 2z @ (Indp=(V), V)& [dim C],
V'elrr(WL),
Cyr=C

where Spr(V’) = (Cyr, &) for V! € Wy, The local system Ey- is irreducible and cor-
responds to an irreducible ordinary character 6y, of the component group Ag(uc).
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Fix ¢y : F*Eyr = Eyr, an isomorphism of local systems, such that (¢¥y), : (Evr)u = (Evi)u
is an automorphism of finite order for any u € C¥. Then, for any element g € G such
that 9uc € CF, xg,, 4, (gucg™) is equal to Oy/(g7'F(g)Cg(uc)) up to a root of unity,
see for instance [DLM97, § 1.4]. Recall that we have fixed uc € C' such that F acts
trivially on Ag(uc).

Since A restricted to C' is a (shifted) local system, we can describe its characteristic
function: for any u e CF,

Xa(u) = M@ am@-dmZH DD HT (Indyt (V), V) Xey sy (w) G
V'elrr(WL),
Cyr=C
where ({,, are roots of unity. Thanks to our previous discussion for each V"’ € irrg (Wy,),
there is a root of unity ¢{, such that

Xa(gueg™) = (@ amO-dmZ AN H7 - (Indyk (V), V') by (97 F(9)C (uc)),
V'elrr(WL),
Cy1=C

for any g € G such that 9ugc € CF.
Now let u =9 uc € CF for some g € G. Thanks to [Gec99, 2.3 and 2.4],

(6.2) (s Da(xa)) = >, (Indy:(V), V)0 (97 F (9)C&(uc)),
V'elrr(WL),
Cyr=C

where (i is a root of unity.
To compute the restriction of a character sheaf to its unipotent support, we use CHEVIE
[Mic15] and the code in Appendix C.3.

(Kaw) using Kawanaka characters when n. = |[Ag(uc)|. In these cases, we use
the same arguments as for the two f-special but not special classes of Es. We rewrite
the conditions to check:

(Kf1) there exists an admissible pair (A, \) for uc which is an admissible covering of A¢
such that for all a € A the ¢-decomposition matrix of C4(a) is lower-unitriangular,

(K¢2) there is g = tv = vt € (G*)¥" where ¢ is an f-element and v € G* is a unipotent
special element, such that the characters sheaves in G4 have unipotent support C,

(KD2) Az Ag(u)z A7e* W = A4S and
(KD3) there exists an F-stable character sheaf A € G, such that for all [b, ¢] € M(A)

<fﬁ)7¢]7DG(X¢4)> 0 [ba ¢] = []‘7 1]
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(HC) using Harish-Chandra induction. We let L be a F-stable Levi subgroup
of G sitting in an F-stable parabolic subgroup P of G. If R is a projective module
of k[L], with character ¢, then the Harish-Chandra induction IF(R) is a projective
k[G]-module (Corollary 2.1.11). Moreover, we can write IZ(R9)®o K = IF(R° ®0 K),
and
IF(R°®oK)= Y [RV]IF(V).
Velrri (L)
Since Harish-Chandra induction commutes with induction from the relative Weyl groups
(by the Howlett-Lehrer Comparison Theorem 2.1.14), we obtain
WG
(6.3) I(R°®0K)= ), >, R Hypy, (B)]Hyiy, (Ind 0" E),

Wity
(M,Vo) Eeirrg (Wyy v, ) o

where the first sum runs over the cuspidal pairs of L and the maps Hﬁ% and HI{‘,LVO
come from the Howlett—Lehrer Comparison Theorem.

This way, we get more information about the decomposition matrix of G by the
knowledge of the decomposition matrix of L and of the relative Weyl groups. In partic-
ular, in our case, we will need to compute the projection of I&(R° ®c K) on the chosen
basic set which is included in & (G, t). Since Harish-Chandra induction preserves Lusztig
series (Proposition 2.2.14), we will restrict ourselves to the cuspidal pairs (M, Vp) such
that Vy € E(M, 1).

Remark 6.3.1. Note that here the relative Weyl groups depend on the action of F'.

6.3.2 The isolated blocks of (G5

In this subsection, we assume that G is simple, adjoint of type G, and that F' acts
trivially on the Weyl group W.

The isolated blocks A,

We choose a representative t = w,, (2/3) for the unique conjugacy class of isolated ele-
ment such that Cg«(%) is of type Ay. As we have computed in Table B.6, we need to
find three different characters of G. So in Step 1, we have n = 3.

Now for Step 2, we determine the unipotent supports of the characters in &(G,t). They
are labelled Az, Go(a1) and Go. We use CHEVIE [Micl5] and the function UnipSup-
portG in Appendix C.3. We also observe that there are three characters in |&(G,t)| each
with a different unipotent support. So we set no = 1 for each unipotent class Ay, Go(ay)
and G5. We have Yy ;.. n; =1+1+1=3=n and the condition is satisfied.

Moreover, we are in the setting of (GGGC). Therefore, in Step 3, we choose one gen-
eralised Gelfand—Graev character for each unipotent class Ay, Go(a;) and Go. Lastly,
we use CHEVIE for Step 4. We compute the scalar product of the GGGC associated
to the class C' with the Alvis—Curtis dual of the characteristic function of the character
sheaf in G, with unipotent support C, applying Equation 6.2. For each class C, the
scalar product has norm 1. Here Lusztig’s non-linear Fourier transform is trivial. We
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can easily deduce that the scalar product of the GGGC associated to the class C' with
the dual of the character in & with unipotent support C' has norm 1. We are done thus
with the last step.

The isolated blocks A;A4;

We choose a representative t = w,,(1/2) for the unique conjugacy class of isolated ele-
ments such that Cg«() is of type A1 A;. As we have computed in Table B.6, we need to
find four different characters of G. We summarise the unipotent support C, the number
ne of characters with the same unipotent support as well as Ag(uc¢) for the characters
in £(G,t). We have obtained this data using CHEVIE in the same way we explained for
the previous block.

C Al Gg(al) GQ
ne 1 |2 1
A(;(Uc) 1 53 1

When C is the class A; or G, we apply (GGGC) exactly in the same manner as for the
previous block.

We now describe the case where C'is the unipotent class Gy(a1). We are also in the
setting of (GGGC). Using CHEVIE, we compute that one character sheaf A; € G, with
unipotent support Ga(a;) has restriction to Ga(a;) corresponding to the trivial charac-
ter. The other character sheaf A, € G, with unipotent support Go(aq) has restriction
to G3(ap) corresponding to the direct sum of the trivial character and the reflection rep-
resentation of Sz = Ag(uc). Applying Equation 6.2, we compute the value of (x4 ,7j)k
for 1<i<2and je{1,(12),(123)} a system of representatives of the conjugacy classes
of Ag(u¢). This is summarised in the following table

#i! Y@a2) | V(123)
A |la a a

As | b+2c| b b-c

where a,b, c are some roots of unity. Let g € (G*)f" be special with semisimple part
equal to t and such that Cy = C, i.e. the F-stable character sheaves in G, are A; and
As. Firstly, we observe that

(Prg(V(m))a Prg(V(lz)»K = |CL|2 + |b|2
and hence prg(v(u)) = X; + x5 where x; and x2 are the two ordinary irreducible char-

acters in irr(G),. Now, (pr,(v(2)),pry(v123)))k = 2 - b¢ is a non-negative integer,
whence bc = + 1. Suppose that b¢ = —1. Then on one hand,

(pr,(va2)), Prg(v()))x =1+ 1+ 266 =0
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and thus pr (1)) = 0. On the other hand,

(pry(v)), pry(yy))x =1+ (b+2c)(b+2c) =1+ 1+4+2bC+ 2ch = 2,

which leads to a contradiction. Thus, b¢ =1 and pr,(7(123)) is an irreducible character.
In particular, there are two different GGGCs corresponding to C' and two ordinary char-
acters in &(G,t) with wave front set C' such that the decomposition matrix restricted
to these rows and columns is lower-unitriangular.

By the same arguments as in the proof of Theorem 6.2.15, we conclude the proof of
the unitriangularity of the /-decomposition matrix of the isolated blocks.

Proposition 6.3.2. Let G be a simple group of type G4 defined over k, an algebraically
closed field of characteristic p with Frobenius endomorphism F. Assume that p is good
for G and p £ £. The decomposition matriz of the isolated but non-unipotent (-blocks
of G is lower-unitriangular.

6.3.3 The isolated blocks of F}

In this subsection, we assume that G is simple, adjoint of type F; and that F' acts
trivially on W. The numbers of projective indecomposable modules in each block can
be found in Table B.7.

The isolated blocks A,A,

We choose a representative ¢ = wy, (2/3)wa, (1/3) for the unique conjugacy class of iso-
lated elements in G* such that Cg-(t) is of type AyA,. In this case, we need to find
9 projective characters. Using CHEVIE, we summarise the unipotent supports C, the
number n¢ of characters with the same unipotent support as well as Ag(uc) for the
characters in £(G,t).

C A2+A1 F4(CL3) Cg F4((12) F4(CL1) Bg F4
o 1 2 1T |1 2 1T |1
AG(UC) 1 54 1 SQ SQ 1 1

In all the cases where ng = 1, the argument (GGGC) applies.

We now consider the case C' = Fy(a3), where we would like to apply (GGGC). The two
character sheaves are parameterised by the characters 111,21 and 111,21 of We_, ).
Using CHEVIE and applying Equation 6.2, we compute the values (X;i,fyj)K for 7 €
{(111,21),(21,111)} and j € {1,(12),(123),(12)(34),(1234)}, a system of representa-
tives of the conjugacy classes of Ag(uc). These data are summarised in the following
table:

where a,b, c are some roots of unity. By the same type of arguments as we did for the
class G(ay) in Gy in the isolated blocks A;A;, we choose two different GGGCs corre-
sponding to C' and two ordinary characters in &(G,t) with wave-front set C' such that
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6.3. Unitriangularity of the isolated blocks

71 Y(12) | Y(12)(34) | V(123) | V(1234)
Aiiio1 [a+3b|a+b|a-b a a-b
Ao 111 | € c c c c

the decomposition matrix restricted to these rows and columns is unitriangular.

Lastly, we consider the case C' = Fy(a;). The two character sheaves are parameterised
by the characters 21,3 and 3,21 of W, 1) Firstly using CHEVIE and applying Equa-
tion 6.2, we compute the values (x% ,7j)x for i e {(21,3),(3,21)} and j € {1,(12)},
a system of representatives of the conjugacy classes of Ag(uc). These data are sum-
marised in the following table:

71 Y(12)
./421,3 a+bla-b
./43721 C C

where a, b, ¢ are some roots of unity. By similar analysis, we deduce that either a = b
or a = —b. Therefore, the decomposition matrix is lower triangular.

The isolated blocks B,

We choose a representative t = w,, (1/2) for the unique conjugacy class of isolated element
such that Cg+(t) is of type By. In this case, we need to find

lirr(Wey. 4))| + [ir1(Neg. (1) (Cr(5) ) [Cr+(t1))| =20 + 5

characters where L is a Levi subgroup of type B,. This is a consequence of |[GH97,
Thm. 6.4] and Proposition 5.1.14. Using CHEVIE, we summarise the unipotent sup-
ports C, the number n¢ of characters with the same unipotent support as well as Ag (uc¢)
for the characters in £(G,t).

C Al A2 F4((I3) Cg(al) B2 F4(a2) F4((11) Bg F4
ne 1 |4 |4+1 1 4 14 4 1 |1
Ag(uC) 1 52 S4 Sg SQ SQ SQ 1 1

In all the cases where n¢ = 1, we apply (GGGC).

We now consider the cases where ng = 4, where we would like to apply (Kaw).
Using the same notation and the same reasoning as in [BDT20, § 10.2|, we determine an
admissible covering in each case. For each unipotent class C, a subset Ko ¢ A such that
there exists an involution ac € G such that A(a.) = K¢, see below Remark 1.3.4. We
write the index of the roots in K¢, writing 0 for the root —agy. We then fix Ac = (ac).
Using the same methods as for the two non-special classes in Subsection 6.2.3, we are
able to check all the conditions.
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Chapter 6. Unitriangularity of the decomposition matrix

C A2 BQ F4(G,2) F4(0,1)
KC [0727374] [0717273] [0?27374] [0717273]

We now consider the case C' = Fy(a3). Using CHEVIE, we compute the values
of (X4, for 1 <i <2 and je {1,(12),(123),(12)(34), (1234)}, a system of rep-
resentatives of the conjugacy classes of Ag(uc) = S;. We gather the results in the
following table

M Y(2) | Y(2)(34) | Y(123) | V(1234)
Ao, |0 0 0 0 0
As11 | 2b+c|c 2b+c |b-c |c
./4‘31 3a a - 0 —a
Ap211 |0 0 0 0 0
Ai12 d d d d d

where a, b, c are some roots of unity. By further analysis, we obtain

Y1 | Y(2) | Y(2)(34) | V(123) | V(1234)
1 0|0 2 0 1
P2 0|0 2 0 1
03 3 |1 1 0 0
P4 3 |1 1 0 0
Pl |1 1 1 1

where {p; | 1 <i <4} ={p3),, 0511, 051, Pho11)-
Next, we use the Kawanaka characters and their Fourier transforms. Here the admissible

covering A was computed in [BDT20, 10.7]. We write down the values (x%,f[a,s])k
for [a,1] € M(A) and A a character sheaf in G, with unipotent support Fj(as) in
the family indexed by g € G* with four character sheaves. The computations are made
thanks to the code in Appendix C.3. We use CHEVIE notation. If fj, 4) does not appear
in the table, then its projection pr,(fi.,¢)) is equal to 0. The variables written in small
cases have norm one.

fr) | Fie) | Frooey | Frzan | Feen | frza | o | frzng | frznen | frznn | fan | fa-1
A 10 [0 |0 0 |0 0 |ay |0 a, |0 a; |0
Ayn by B |0 b, |0 0 |by |0 0 0 0 |0
./4_31 0 0 C1 Co 0 0 0 Cor 0 0 0 0
Al |0 [0 |0 0 | Xy |Yy |0 0 0 Xy |0 | X,

Applying the Fourier transform, we obtain the following table
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4&&71] 4/-{[?1’_1] 4&&71] 4&&7_[]
./4211, 2&4 —2614 0 0
Az 11 by +bor | by + by | by —bor | by — by
.A,31 C1+Cy | C1 +Cor | C1 —Cor | C1 — Cor
Apaaa | —2Xy | 2Xy 0 0

Thanks to the decomposition of 7(1234) into Kawanaka characters (Lemma 5.2.26), we
deduce that

prg(’%[cjl,l]) =0= prg(/i[cz;l,—l])

and
1
(pry (k1)) Pry(Kfi 1)) = 1—6(4 +4+4+41X4%) 21
1
<p1"g(l€[ci_1]), prg(/i[ci_l]» = 1_6(4 +4+4+4X,%) 21
1
(prg(K[Gzl,l])v prg(l{’[GzL,—l])> = 1_6(_4 +4+4- 4|X4|2)
Hence |X4| = 1 and up to renaming, we may assume that prg(mﬁvl]) = p1 and
prg(/ﬁ[i_l]) = pa.
We repeat this process and we get
8/@%,’1] 8/‘{/5/’6] 8H[G2/7€l]
Ao | 6agr + 2ay —2a9 + 2a4 6ay — 2a4
A2_11 b1 + 2b,1 + 2b2 + 3b2/ b1 + 2b,1 - 2b2 — er bl + 2b/1 - 2b2 + 362/
./4.31 —C1 + 2¢9 — Coy —C1 — 2¢c9 + 3cyr —C1 — 2¢9 — Cor
-ABQ:l.l —2X2/ + 2X4 —2X2/ + 2X4 —2X21 - 2X4
G G
85[2,76,,] 8,%[2,77,]
A211. —2@2/ - 2&4 —4&21
A2,11 bl + 26'1 + 2b2 - bg/ 2b1 + 46,1 - 2b2/
./4.31 —C1 + 202 + 362/ —261 - 2621
Apaii | —2Xy - 2X) 4 Xy

We observe that (pry(kg3, ), pry(sf; 7)) =0, whence | Xy[ =1 and

(prg(mg,’r]), pI‘g(FLS,’T]» =1.

We conclude that prg(mg,7r]) € {p3, ps}. Therefore, up to reordering of the p;, we have
found Kawanaka characters and GGGCs (which are all projective as £ # 2) such that the
decomposition matrix restricted to these rows and columns has the
following form:
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i)

We choose a representative ¢ = wa, (1/2)wa,(1/2) for the unique conjugacy class of iso-
lated element such that Cg«(t) is of type C3A;. In this case, we need to find

OO~
OOoOO—O
HOROO
OO0 O
—HOOoOO0O

The isolated blocks C3A;

it (Weg. o)l + it (Neg. (8)(Cre (5)) /Cre (1)) = 20 + 4

characters where L is a Levi subgroup of type Bs. Using CHEVIE, we summarise the
unipotent supports C, the number ng of characters with the same unipotent support as
well as Ag(uc) for the characters in £(G,t).

C Al +A1 AQ 03(&1) F4(a3) F4(CL2) F4(a1) B3 03 F4
ne 1 1 |4 4+1 4+1 4+1 1 /1 |1
Ag(uC) 1 1 SQ 54 SQ 52 1 1 1

In all the cases where ng = 1, we apply (GGGC). When C' = C3(ay), we choose the
admissible covering Ac = (ac) such that A(ac) = [0,1,2,3] and check the conditions
of (Kaw).

We consider the other cases individually, starting with C' = Fj(a3). Thanks to
CHEVIE [Micl5] and the Equation 6.2, we compute the values (x% ,7;)x for 1 < i < 2
and j € {1,(12),(123),(12)(34),(1234)}, a system of representatives of the conjugacy
classes of the finite group Ag(uc) = S;. We summarise the results in the following table

2! Y(12) Y(12)(34) Y(123) Y(1234)
Ai1.2 | 3a1 +3aq —aq +ay | —ay — as 0 ai + as
Aia12 | 3by +2bg + b3 | by + b3 —by +2by + by | =by + b3 | —by + b3
Ao 0 0 0 0 0
Apaai2 | 0 0 0 0 0
Annin |3 +co ci+cy | —ci+ce c1 -1+ ¢y

In particular <Xj411'1,11,’)/(123))K = 1. Next, we need to use the Kawanaka characters and
their Fourier transform. Here the admissible covering A was computed in [BDT20, 10.7].
We write down the values (x%, fla.u])x for [a,¥] e M(A) and A a character sheaf in G,
with unipotent support Fjy(az) in the family indexed by g € G* with four character
sheaves. The computations are made thanks to the code in Appendix C.3. We keep the
same conventions as in the previous case.
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6.3. Unitriangularity of the isolated blocks

iy | Frie) | Fooey | g | iz | free | Freen | Fizeg | fene | fenen | e | fra-1
Air2 |0 0 ay ay 0 as 0 0 0 0 0 0
Ai112 | by b 0 by by 0 0 0 0 0 0 0
Ao 0 0 0 0 Co 0 0 0 Cor ch 0 0
Apai12 |0 0 0 0 0 0 X5 Y, 0 0 Xo | Xy

By the same kind of analysis as before, we find some Kawanaka characters such that
the decomposition matrix is lower-unitriangular.

We now consider the case where C' = Fy(as). We cannot only take Kawanaka charac-
ters because then we would have only four projectives characters. Therefore, we apply
(HC) and induce projective characters from a standard Levi M := L 537 of G such
that M* ¢ Cg-+(t). We want projective characters P of k[ M ] such that for each charac-
ter p e E(G,t), we have [P : p*] # 0 if and only if p has unipotent support equal or bigger
to Fy(ag) (i.e. Fy(az), Fi(ay) or Fy). By [BDT20, Thm. A|, we know that the decom-
position matrix of the f-unipotent blocks of M is lower-unitriangular. Since ¢ € Z(M*),
we know that it is also the case of %B,(M,t). We parameterise the projective characters
in &(M,t) with the ordinary characters of £(M,t). Using CHEVIE [Micl5|, we check
that the projective modules Pi11, Py.11, P21 and Ppga.q satisfy the conditions and that the
decomposition matrix restricted to {Ind§,(Pi11.), Ind$; (Pr11), Ind$, (P21, Ind$, (Ppaay ) }
and {p111.2, P1.11,2, P.21.2, PB211,2} (the duals of some characters in £(M, t) with unipotent
support C) is diagonal. Moreover, their restriction to {p11.111} = {pjm} is zero. Lastly,
we check that the projection of I'y has non-zero restriction to pj , .

Finally, we consider the case where C' = Fy(a;). This time, we use Kawanaka charac-
ters to find four projective characters, applying (Kaw) and the induction of the projective
character P11 of M as before for the last projective character.

The isolated blocks A;A,

We choose a representative ¢ = w,, (1/2)wa,(1/2) for the unique conjugacy class of iso-
lated element such that Cg-(t) is of type AsA;. In this case, we need to find 10 charac-
ters. Using CHEVIE, we summarise the unipotent supports C, the number n¢ of char-
acters with the same unipotent support as well as Ag(u¢) for the characters in £(G,t).

C A2+A1 F4(a3) B3 F4(CL2) F4(CL1) BQ F4
ne 1 1 1+1]1+1 1+1 1 |1
A(;('LLc) 1 S4 1 SQ 52 SQ 1

When ne = 1, we apply (GGGC). For C = Fy(a;) and C' = Fy(ay) we use the
Kawanaka characters similarly as we did before. For C' = Bs, we need to use (HC)
with M = L[ 34) € G and the projective character Py 11, as well as the GGGC corre-
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Chapter 6. Unitriangularity of the decomposition matrix

sponding to C.

By the same proof as for the unipotent blocks in Theorem 6.2.15, we conclude this
last chapter by the following theorem.

Theorem 6.3.3. Let G be a simple group of type Fy defined over k, an algebraically
closed field of characteristic p with Frobenius endomorphism F. Assume that p is good
for G and p £ . The decomposition matrix of the isolated non-unipotent £-blocks of G
1s lower-unitriangular.
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Appendix A

Prerequisites on the representation
theory of finite groups

We recall a few facts on the representation theory of finite groups. A nice reference is
the book of P. Webb [Web16]. The lecture notes of C. Lassueur [Las23] are also very
clear and complete.

Let G be a finite group and A a commutative ring. We write A[G]-mod for the
category of A[G]-modules. An important class of A[G]-modules are the irreducible
modules, i.e. the ones who do not have any non-trivial proper submodules. We denote
by Irra (G) the irreducible A[G]-modules of the group G up to isomorphism.

Two isomorphic A[G]-modules have the same character: let p: G - GL(V') be given by
the action of G on V| the character of V is the class function

xv:G—>F
g~ Tr(p(g),V).

To denote the ordinary irreducible characters of the group G, we use irrg(G). When the
underlying field is clear, we might sometimes drop the subscript F.

Assume that A = F is a field of characteristic zero, then the isomorphism class of an F[G]-
module V' is completely determined by its character, [Web16, Cor. 3.3.3]. If ¢ is a
character of G, we write V,, for an F[G]-module with character ¢.

We define the scalar product of two F[G]-modules V' and W:

When F ¢ C, and x, ¢ are two characters of GG, we define a scalar product of characters:
1 N
(x,¢) = el > X(9)v(g) = (Vi, Vi)

geG

We now move on to the modular representation theory. We fix a splitting /~-modular
system (O, K, k) where
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e O is a complete discrete valuation ring of characteristic 0 with a unique maximal
ideal M,

e K is the field of fractions of O, also of characteristic zero. We assume that K is big
enough for the group G we are considering, that is it contains all the |G|th roots
of unity. In particular, with respect to the inclusion K ¢ C, we have irrg(G) =
irre (G).

e k=0/M is a field of characteristic £. We assume k = F,.

If W elIrrg(G), we set Py for its projective cover ([Las23, Def. 23.3]). It is a projective
indecomposable module. Recall that to any projective k[G]-module P corresponds a
projective O[G]-module P© such that PO ®ok = P ([Las23, Cor. 32.6]), and the K[G]-
module PO ®g K is unique up to isomorphism.

On the other hand, to any K[G]-module V' corresponds at least one O[G]-module Vo,
free over O such that Vo ®0 K = V. Then Vo ®0 k is an k[G]-module (|Las23,
Prop. 14.6]). For any K[G]-module V' and any projective k[G]-module P, we have
by Brauer reciprocity (|Las23, Thm. 34.2]),

(P,Vo®o k) =(P°®0 K, V)k =[P, V].
We denote the decomposition matrix of G by D¢ = (d‘G/’W)VeirrK(G),Weirrk(G) with entries
Sy = [Pw,V].
For a projective k[G]-module P, let Wp denote the character associated to the K[G]-
module PO ®g K. We say that ¥p is a projective character. We may sometimes write
dXVa‘I’PW = [PW7 V] = (WPVWXV)

for Ve lrrg (G) and W € Irr (G). For W e irr (G), we write ¢y for its Brauer character.
This class function on the ¢’-elements of GG is defined as follows. If g € G is a /’-element
(that is the prime ¢ does not divide the order of g), then the trace of the action of g
on W is a sum of roots of unity of k. The lift of this sum to O ¢ K gives then the value
of Yy (g). We may sometimes extend this function by zero to all of G. All these facts
and more can be found in [Web16, Chapt. 10].

The group algebra k[G] is partitioned into ¢-blocks
k[G|=%B & & B,,

which corresponds to a set of central orthogonal primitive idempotents {eq,...,e,}
with %; = k[G]e;. An indecomposable module W e Irr(G) belongs to a block %;
it e,W = W, and we write W € Irr(%). This block is unique. It leads to the
block-diagonal shape of the ¢-decomposition matrix. Two ordinary irreducible mod-
ules V' and V' of G belong to the same (-block A if there exist Wy, ..., W, € Irr(AB)
and V =Vq,...,V, =V’ e itk (G) such that

(Vi, Pw, @0 K) #0 and (Viy1, Py, ®0 K)#0 for 1 <i<n-1.
We write V € Irrg (%). We refer the reader to [Web16, Section 12.1] for all these facts.
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Appendix B
Tables

B.1 Induction data of exceptional adjoint groups

In the following tables, we collect some information about the various cuspidal induction
datam = (L,%,€) for G a simple exceptional group of adjoint type. This information
comes from the summary in [DLM14, App. A] and [AA10, Table 1], which themselves
come from [LuCS4] and [LuCS5|. We only consider the cases where L is not a maximal
torus. In the first column, we describe the series Gt such that & € f,t. Let s € L such
that s belongs to the semisimple part of ¥. In the third column, we write Cr(s). In
the fourth column, we describe a representative of s as follows. We choose L such that
it is a standard Levi subgroup and s € G is written using the “additive” notation of
CHEVIE [Mic15]. The following column describes, if known, the unipotent part of X
as a unipotent conjugacy class in Cp(s) using CHEVIE notation. In the last column,
we give the number n of cuspidal character sheaves on L with unipotent support X
belonging to the series L;.

Go

All the cuspidal character sheaves of G of type GGy are unipotent. Moreover, if L is a
proper Levi subgroup which is not a torus, then L is adjoint of type A; and does not
have any cuspidal character sheaf.

Ca-(t) |L |CL(s)|s unipotent class in CL(s) | n
GQ 1 Gg(al) 1
Go Gl Ay [(0,1/3) |3 2
AAr [ (1/2,0) ] (2,2) 1

Table B.1: Induction data of G,
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Fy

All the cuspidal character sheaves of G of type Fj are unipotent. The only Levi sub-
group L with cuspidal character sheaves is of type Bs. For L,.q there is one unipotent
cuspidal character sheaf and another one in the series indexed by a central element
of (Laq)*. Thus, L has cuspidal character sheaves which belong to the unipotent and
the central series of L tensored by a local system pulled back from a Kummer local sys-
tem on the abelianisation L/[L,L], c.f. [DLM14, facts p. 493] or [LuCS4, 17.9, 17.10].
In particular, there is one cuspidal character sheaf in the unipotent series, one coming
from the central series of L/Z°(L) and one indexed by another central element of L*.

Ca-(t) |L |CL(s)|s unipotent class in CL(s) | n
F4 1 F4(CL3) 1

OgAl (]./2, O, 0, 0) (2,4) X 2 1

- F, | By ](0,0,0,1/2) (1,3,5) 1
4 AyA, |(0,1/3,0,0) reg 2
AszA; | (0,0,1/4,0) reg 2

By | AjAy | (1/2,0,1/2,1/2) 1

Bs B, | A4, [ (1/2,0,1/2,1/2) 1
CaA, Bo | A4, [ (1/2,0,1/2,1/2) 1

Table B.2: Induction data of Fy

Eg

There are two cuspidal character sheaves per central series when G is of type Fg; they
all have the same support. The only Levi subgroup L with cuspidal character sheaves
is of type D4. For L.q there is one cuspidal character sheaf per central series of L,q.
There is no cuspidal character sheaf of L which belongs to an isolated non-unipotent
series of G.

Ca+(t) |L |CL(s) s unipotent class in Cp(s) | n
E E6 A2A2A2 (070,0,1/370,0) reg 2
6 Dy | A1ATALA [ (1/2,0,0,1/2,0,1/2) 1

Table B.3: Induction data of Eg

Eq

There are two cuspidal character sheaves per central series when G is of type E;; they
all have the same support. The Levi subgroups with cuspidal character sheaves are of
type Dy and Fg. For L of type Eg no isolated non-unipotent series contains character
sheaves coming from a cuspidal character sheaf of L. The isolated series DgA; is the
only one containing character sheaves coming from a cuspidal induction datum with L
of type Djy.
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Ca+(t) |L | CL(s) s unipotent class in CL(s) | n
E; | A3A3A (0,0,0,1/4,0,0,0) reg 2
E; Eg | Ay A3 A (0,0,0,1/3,0,0,1/3) | reg 2
Dy | A A A A, [ (1/2,0,0,1/2,0,1/2,0) 1
DeA, | Dy | A AA [(1/2,0,0,1/2,0,1/2,0) 1

Table B.4: Induction data of Er

By

All the cuspidal character sheaves of G of type Eg are unipotent. The Levi subgroups
with cuspidal character sheaves are of type Dy, Fg, and E;. If L is of type E7 then L.g
has cuspidal character sheaves in the central series for E7, in particular in the series E7A;.

Ca+(t) |L | CL(s) s unipotent class in CL(s) | n
ES 1 F4(CL3) 1

A E; (0,0,0,0,0,0,0,1/2) reg x (A1 + Dg(as)) 1

AsEg (0,0,0,0,0,0,1/3,0) reg x (A + As) 2

Es | DsAq (0,0,0,0,0,1/4,0,0) (3,7) x reg 2

- ALA, (0,0,0,0,1/5,0,0,0) reg 4
8 A1 A A5 1(0,0,0,1/6,0,0,0,0) reg 2
Ds (1/2,0,0,0,0,0,0,0) (1,3,5,7) 2

E. | A3A3 A, [(0,0,0,1/4,0,0,0,1/4) | reg 2

Bs | AsAsA; | (0,0,0,1/3,0,0,1/3,0) | reg 2

Dy | A A A A, | (1/2,0,0,1/2,0,1/2,0,0) 1

B | A3A3A, [(0,0,0,1/4,0,0,0,1/4) | reg 2

B A, Bs | AsAsAs  1{0,0,0,1/3,0,0,1/3,0) | reg 2
Dy | LA A A, | (1/2,0,0,1/2,0,1/2,0,0) i

Eg | AyAsAs (0,0,0,1/3,0,0,1/3,0) | reg 2

E¢Ay Dy [ A, A A A, [ (1/2,0,0,1/2,0,1/2,0,0) 1
DsAs | Dy | ALAAA, | (1/2,0,0,1/2,0,1/2,0,0) 1
Ds Dy | AL A A A, | (1/2,0,0,1/2,0,1/2,0,0) 1

Table B.5: Induction data of Eg
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B.2 On the number of Brauer characters

We collect the number of Brauer characters in each isolated union of blocks #(G,1t)
for G simple exceptional of adjoint type, F' acting trivially on W and ¢t € G* isolated.
The rows of the tables are indexed by the type of Cg+«(t). If ¢ is not an ¢’-element,
we write nothing in the corresponding cell. This information has been obtained using
CHEVIE |[Micl5| and the code in Appendix C.2. Note that it depends on the action of
the Frobenius map on Cg-(%).

Cgood [(=2|0=3
G 10 9 8
Ag 3 3 -
A1A; |4 - 4

Table B.6: Number of Brauer characters in the isolated blocks for G2(q)

Cgood [(=2|(=3

Fy 37 28 |35
By 25 - 25
C3A; |24 - 24
AQAQ 9 9 -

2A22A2 9 9 -

AzA; | 10 - 10
2A3A1 10 - 10

Table B.7: Number of Brauer characters in the isolated blocks for Fy(q)

lgood [ (=2]0=3
Es 30 27 |28
A A, 22 — 22
AsAs Ay | 27 27 |-
As(q°) 3 3 -
2A5A5(¢%) | 9 9 -

Table B.8: Number of Brauer characters in the isolated blocks for Eg(q)

183



Appendix B. Tables

Cgood [£=2|0=3

E, 76 64 |72
A, 22 — 22
24, 22 22

AsAs 33 33 -
2A5%A, 33 33 -

A3A1A3 50 - 50
2453 A,%A5 | 50 - 50
As(q?)A; | 10 - 10
DgA,; 84 - 84

Table B.9: Number of Brauer characters in the isolated blocks for E7(q)

lgood [(=2|0=3|(=5

Eg 166 131 | 150 | 162
E A, 152 - 144 | 152
EgA, 90 81 - 90
2Fg2A, 90 81 - 90
D5 As 100 - 100 | 100
2D52A; 100 - 100 | 100

AgAy 49 49 |49 -
2A4%A, 49 49 |49 -

A0 |7 7|7 |-
A, A A5 | 66 — [= 66
24, 4,245 | 66 — [= 66
A A, |44 = (44 |44
AzZA, |44 B VR Y
Ag 30 30 |- |30
2Aq 30 30 |- |30
Ds 120 |- [120 |120

Table B.10: Number of Brauer characters in the isolated blocks for Eg(q)

B.3 The /-special classes for simple exceptional groups
of adjoint type

The following tables collect the ¢-special classes for simple exceptional groups of adjoint
type. The first column contains the name of the unipotent class C, the second column
the group Ag(uc), the third the ordinary canonical quotient if the class is special. We
then compute the (-canonical quotient for the (-special classes for each bad prime /. In
the last columns, one can read if the class is /-P-special or not, see Definition 6.2.5. For /¢
good for G, it is a consequence of [GH91, Thm. 5.1|, see Theorem 5.1.7. When ¢ is bad
for G, this information when ¢ is bad has been obtained thanks to Proposition 5.1.14
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and the discussion below.

C Ac(ue) | Ac /4_1270 /_1370 2-P-special | 3-P-special
1 1 1 1 1 true true
Go(ay) | Ss Ss | S35 | Sy |true true

Go 1 1 1 1 true true

Ay 1 - 1 - true -

Ay 1 - |- 1 - true

Table B.11: The /-special classes of G5

C Aq(uc) | Ac | Ago | A3 | 2-P-special | 3-P-special
1 1 1 1 1 true true
Ay So Sy | Ssy So true true
A +A 1 1 1 1 true true
1212 1 1 1 1 true true
A, So 1 So 1 true false
Fy(as) | S, Sy | Sy S, | true true
Cs 1 1 1 1 true true
Bs 1 1 1 1 true true
Fy(ay) | S 1 1.5 1 true false
Fi(ay) | S Sy | Ss Sy | true true
Fy 1 1 1 1 true true
A 1 - |1 - true -

Ay + A | 1 - |1 - true -

B, So - |5 - true -
Cz(ay) | So - | Sy - true -
As+ A, |1 - |- 1 - true

Table B.12: The /-special classes of F}
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C Ag(ue) | Ac | Asc | Asc | 2-P-special | 3-P-special
FEg 1 1 1 1 true true
Egs(ay) |1 1 |1 1 true true
Dy 1 1 1 1 true true
Es(as3) S Sy | Ss S true true
Ds(ay) |1 1 |1 1 true true
Ag+A |1 1 1 1 true true
D, 1 1 1 1 true true
Ay 1 1 1 1 true true
Dy(ay) | S3 Ss | S5 | S3 | true true
As 1 1 1 1 true true
2A5 1 1 1 1 true true
Ay +24, |1 1 1 1 true true
A+ A, |1 1 1 1 true true
Ao So Sy | Sy So true true
24, 1 1 1 1 true true
Ay 1 1 1 1 true true
1 1 1 1 1 true true
As 1 - |1 - true -
As+A; |1 - |1 - true -
3A; 1 - 1 - true -
245+ A, |1 - |- 1 - true
Table B.13: The f-special classes of Ejg
C Ac(uc) | Ac | Asc | Asc | 2-P-special | 3-P-special
Dg 1 - 1 - true -
Dg(as) 1 - |1 - true -
Al 1 - |1 - true -
D,+ A 1 - 1 - true -
Az +24; |1 - |1 - true -
(As+ A7) |1 - |1 - true -
4A, 1 - 1 - true -
3A 1 - |1 - true -
As + Ay 1 - |- - true
24, +A; |1 - |- - true

Table B.14: The /¢-special but not special classes of E-
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C Ac(uc) | Ac | Ago | Asc | 2-P-special | 3-P-special
FEr 1 1 1 1 true true
Eq(ay) 1 1 |1 1 true true
Er(as) 1 1 |1 1 true true
Eg 1 1 1 1 true true
E;(a3) S So | Sy | Sy | true true
Eg(ay) S Sy | Ssy Sy true true
E7(ay) Sy 1 ]9 1 true false
Ag 1 1 true true
Ds + Ay 1 1 true true
Dg(ay) 1 1 true true
E7(as) Ss Ss | Sy | S5 |true true
Ds 1 1 1 1 true true
Es(as3) S Sy | Ssy S true true
Ds(ay) +A; |1 1 |1 1 true true
Ay + Ay 1 1 1 1 true true
Al 1 1 1 1 true true
Ds(ay) S Sy | Ssy Sy true true
As+ A S Sy | Sy Sy true true
Dy 1 1 1 1 true true
As+ Ay + A | 1 1 1 1 true true
Ay So Sy | Sy So true true
Az + Ay Sy 1 Sy 1 true false
Dy(ay) + Ay | So Sy | Sy Sy true true
Dy(ay) Sy Ss | S3 Sy true true
(As+ A" |1 1 |1 1 true true
2A, 1 1 1 1 true true
As 1 1 1 1 true true
Ay + 34,4 1 1 1 1 true true
Ay +24A, 1 1 1 1 true true
Ay + Ay So Sy | Sy So true true
Ao Sy Sy | S Sy true true
3AY 1 1 ]1 1 true true
2A, 1 1 1 1 true true
Ay 1 1 1 1 true true
1 1 1 1 1 true true

Table B.15: The special classes of E;
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C Ac(ue) | Ac /4_1270 As o | As ¢ | 2-P-special | 3-P-special | 5-P-special
E; 1 - 1 - - true - -
D, 1 - 1 - - true - -
Er(as) 1 - |1 - - true - -
Dg 1 - 1 - - true - -
Aq 1 - 1 - - true - -
Ds + Ay 1 - |1 - - true - -
E;(as) Ss - |55 - - true - -
Dg(as) S - | Sy - - true - -
Ds(ay) + Ay | 1 - |1 - - true - -
As 1 - |1 - - true - -
D, + A 1 - |1 - - true - -
2A3 1 - |1 - - true - -
As+Ay+ A | 1 - |1 - - true - -
Ag+2A, 1 - |1 - - true - -
Az + Ay 1 - |1 - - true - -
As + 34, 1 - |1 - - true - -
4A, 1 - |1 - - true - -
3A; 1 - 1 - - true - -
Es+ Ay 1 - |- 1 - - true -
Es(as) + Ay | Sy - |- S - - true -
245 +2A; 1 - |- 1 - - true -
245 + Ay - |- 1 - - true -
Ay + Az - |- - 1 - - true

Table B.16: The /-special but not special classes of Eg
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C Ag(uc) | Ac | Asc | Asc | As o | 2-P-special | 3-P-special | 5-P-special
FEg 1 1 1 1 1 true true true
Es(ay) 1 1 |1 1 1 true true true
Es(as) 1 1|1 1 1 true true true
Es(a3) S Sy | So Sy Sy | true true true
Es(ay) S Sy | Ss S Sy | true true true
Es(by) Sy 1 1.5 1 1 true false false
E(ay) 1 1 |1 1 1 true true true
Es(as) S Sy | Ss S Sy | true true true
Es(bs) S Ss |S3 | S35 |S3 |true true true
Es(ag) Ss Ss |Sg |S3 |Ss |true true true
D7(ay) So 1 So 1 1 true false false
FEy 1 1 1 1 1 true true true
E;(as3) S Sy | Ssy S Sy | true true true
Es(bs) Ss So | Sy | S3 | Sy | false true false
Egs(ay) + Ay | Sy Sy | So Sy Sy | true true true
D~(as) S Sy | Ss S Sy | true true true
Es(ay) S Sy |Sy | Sy | Sy |true true true
Ds + A, Sy 1 Sy 1 1 true false false
Er(ay) S 1 1.5 1 1 true false false
A+ Ay 1 1 1 1 1 true true true
Dg(ay) S Sy |Sy | Sy | Sy |true true true
Ag 1 1 1 1 1 true true true
Es(a7) S5 Ss | Ss S5 Ss | true true true
Ds 1 1 1 1 1 true true true
Es(as) S Sy |Sy | Sy | Sy |true true true
Dy + Ay Sy 1 Sy 1 1 true false false
Ag+Ay+ A | 1 1 1 1 1 true true true
Ds(a) + Ay |1 1 |1 1 1 true true true
Ds(ay) S Sy | Sy | Sy | Sy |true true true
Ay + Ay 1 1 1 1 1 true true true
Ay + 24, Sy So | Sy Sy So true true true
Ap+ Ay So Sy | Sy So S true true true
Dy 1 1 1 1 1 true true true

Table B.17: The special classes of Fg
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C Ag(u) | Ac | Agc | Aso | Asc | 2-P-special | 3-P-special | 5-P-special
Ay So Sy | Sy So So true true true
Dy(ay) + Ay | Sy So |9y S Sy true true true
As+ Ay So 1 S 1 1 true false false
Dy(ar) + Ay | Ss Sy | S3 |S3 | S3 |true true true
Dy(ay) S Ss | S3 | S3 | S3 |true true true
Az 1 1 1 1 1 true true true
2A5 Sy Sy | Sy S S true true true
As + 24, 1 1 1 1 1 true true true
Ay + Ay So So | Sy So So true true true
As So Sy | Ssy So So true true true
24, 1 1 1 1 1 true true true
A 1 1 true true true
1 true true true

Table B.18: The special classes of Eg continued
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Appendix C
Code

C.1 Induction data of exceptional adjoint groups

This is the code for the proof of Lemma 3.2.22.

HHAHAHA BB BB A SRS H B R BH GRS B A BB A B A B A BB R AR B RS H B R BH GBS B A B A B AR A BB RB R B Y
# Check if N_G(L)/L = N_{C-0o_\G(s)}(C-o_L(s))/C-o_L(s).

Same_relative_group := function(G,L,s)
local Gs, Ls, WL, WGsLs;

Gs := Centralizer(G,s).group;

Ls := Centralizer(L,s).group;

WL := Normalizer (G,L)/L;

WGsLs := Normalizer(Gs,Ls)/Ls;

return Size(WL)= Size(WGsLs) ;

end ;

HHHHHH ARG GG GG B HHHHBH B H BB H AR S S #H#
# For s isolated in L, find z in Z-o(L) such that

# N_G(L)/L = N_{C-0o_\G(sz)}(C~o_L(sz))/C-o_L(sz) and sz isolated in G
# Return sz.

Find_sz_with_same_relative_group_and_isolated := function(G,L,s)
local hyp, sz, y,c, possible_sz;
hyp := Same_relative_group(G,L,s) and IsIsolated(G,s);
sz := "still looking for sz";
if hyp = true then
Sz = S;
else

# we try to find the correct z by multiplying s by some elements in
— the centre
for y in AlgebraicCentre(L).Z0.generators do
c := 1;
while hyp = false and c <100 do
possible_sz := s*SemisimpleElement (G, (1/c)*y);
hyp := Same_relative_group(G,L,possible_sz) and IsIsolated(G,
— possible_sz);
c := c+l;
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od;
od;
if hyp = true then
sz := possible_sz;
fi;
fi;
return sz;
end ;

HEHHHHSHBHBH R B R B SR B R BH R HB R B HH R HH A BB R B HH R B H A B SR B SRR AR SR B SRR SRR RS HH
# For all the exceptional adjoint groups and all their cuspidal

# data (L,(su)Z-o(L), E) s isolated in L, find z in Z~o(L) such

# that N_G(L)/L = N_{C-0o_\G(sz)}(C~o_L(sz))/C-o_L(sz). Return sz.

Find_sz_with_same_relative_group_all_cases := function ()
local cusp_data_F4,cusp_data_E6,cusp_data_E7 ,cusp_data_ES8,

< groups_and_data ,All_sz,group_datum,G,cusp,All_sz_G,L,s;
# we write down the data in CHEVIE

cusp_data_F4 := [[[2,3],[1/2,0,1/2,1/2]111;
cusp_data_E6 := [[[2,3,4,5], [1/2,0,0,1/2,0,1/2]1]1;
cusp_data_E7 := [[[2,3,4,5], [1/2,0,0,1/2,0,1/2,0]1],
- [[1,2,3,4,5,6],[0,0,0,1/3,0,0,1/3]111;

cusp_data_E8 := [[[2,3,4,5], [1/2,0,0,1/2,0,1/2,0,01],

-~ [[1,2,3,4,5,6],[0,0,0,1/3,0,0,1/3,01],
- [[1,2,3,4,5,6,7],[0,0,0,1/4,0,0,0,1/4]11];
groups_and_data := [[CoxeterGroup("F" ,4),cusp_data_F4], [CoxeterGroup
- ("E",6),cusp_data_E6], [CoxeterGroup("E",7),cusp_data_E7], [
— CoxeterGroup("E",8),cusp_data_E8]];

# we check for each group G and each cuspidal datum with L proper and
< not a maximal torus
All_sz := [];
for group_datum in groups_and_data do
G := group_datum[1];
All_sz_G := [];
for cusp in group_datum[2] do
L := ReflectionSubgroup(G,cusp([1]);
s := SemisimpleElement (G, cusp[2]);
Add (A1l_sz_G, Find_sz_with_same_relative_group_and_isolated(G,L,s
= ))s

od;

Add (All_sz ,All_sz_G);
od;
return All_sz;
end ;

192



C.2. [-special classes and number of Brauer characters

C.2 [(-special classes and number of Brauer characters

This is the code to determine the /-special classes and to prove Proposition 5.1.24. This
code is a slight modification of the one in [Chal9, Appendix B|.

HUBHBHB R R R AR AR A S H AR AR AR BB R BB R R HHHHSSH AR AR AR R BB BB R R R HH S S S S R R SRR H
# Computing the l-special classes
HASHAH BB R HHHAHH S SRS AR A R B AR B R R R B H A S S S S S SRR R R RS S S S S S SS R

HUSHHHH R R R AR AR S S SRR AR SRR BB BB R R A H A A S S S SRS R R RS S S S S RY
# Take a character E of the dual of W
# Return a character dualE of W via the isomorphism W~™* to W.

Dualize:= function(W,E)
local dualE;
dualE := E;

if IsomorphismType(W) = IsomorphismType(CoxeterGroup("G",2)) then
if E =3 then dualE :=4; elif E = 4 then dualE :=3;fi;

elif IsomorphismType (W) = IsomorphismType (CoxeterGroup("F",4)) then

if E =2 then dualE :=3; elif E = 3 then dualE :=2;fi;

if E =5 then dualE :=7; elif E = 7 then dualE :=5;fi;
if E =6 then dualE :=8; elif E = 8 then dualE :=6;fi;
if E =11 then dualE :=12; elif E = 12 then duvualE :=11;fi;
if E =18 then dualE :=19; elif E = 19 then dualE :=18;fi;
if E =21 then dualE :=23; elif E = 23 then dualE :=21;fi;
if E =22 then dualE :=24; elif E = 24 then dualE :=22;fi;

fi;

return dualkE;

end ;

Dualize_list := function(W,listchar)

return List(listchar, E->Dualize(W,E));

end ;

HASHAH B AR R HH A A B S S SR A AR R BB BB R R R B HH S S S S S SRR R R RS S S S SRS SRR
# Give the order of a semisimple element in G.

Order_semisimple := function(G,s)
local id,n,t;
id := List([1..G.rank], i-> 0);
n := 1;
t = s7n;
while t.v <> id do
n := n+l;
t = s7n;
od ;

return n;
end ;

HABRRRBRRRAHARAHHAA A AR AR R R BB BB R R HHHAHHHAA AR AR AR BB BB R R HHHHSSH AR SRR RS
# Determine if a semisimple element is an l-element.

Is_1l_element := function(G,s,1)
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49 local order;

50 order := (Order_semisimple(G,s);

51 return ((order mod 1 =0) and IsPrimePower (order)) or order = 1;
52 end ;

55 HAHHHBHARAH AR R B AR R HHH R B R AR A S AR R B R RS SRR B R AR AR SRR BB R A SRR R R R AR A SRR H
56 # Give the list of l-special unipotent classes of G.

58 lspec:=function(G, 1)
59 local lspec,Gstar,lIsolated,s,Ws,specWs,jind,M,CharinWstar ,CharinW;
6o  lspec :=[];

61 Gstar := Dual(G);

62 lIsolated := Filtered(QuasiIsolatedRepresentatives(Gstar), s->
— IsIsolated(Gstar,s) and Is_l_element(Gstar,s,1l));

63 for s in 1lIsolated do

64 Ws := Centralizer (Gstar,s).group;

65 specWs := Filtered([1l..Length(ChevieCharInfo(Ws).a)], i->

— ChevieCharInfo(Ws).a[i]=ChevieCharInfo(Ws).b[i]) ;
66 jind:=jInductionTable (Ws,Gstar);

67 M:=Transposed (Transposed (jind.scalar){specWs});

68 CharinWstar:=Filtered ([1..Length(M)],i->Sum(M[i])>0);

69 CharinW := Dualize_1list(G,CharinWstar);

70 Add (1spec, List(UnipotentClasses(G).springerSeries[1].locsys{
< CharinW},i -> i[1]1));

1 od;

2 return Set (Flat (lspec));

3 end ;

SN

HUBHAH AR B R R R A A S S HARAA AR SRR B BB R R R A S S S S SRR R R R SRS S S S S SSSRRS Y
# Computing the l-canonical quotient
HARRAHHRRRHHAHHHHAHH AR AR R BB BB R R R A AR A S HH AR AR AR AR BB B R R R HH A S S SRR R R RS

R

oo

P S B B B B S B |

©

HAHHHBHARAH AR R B R RAHHHHHBR AR A A A H R B R RS SRR BB R R AH B R R BB R AR SRR R R R RS R R H
# Return the list of conjugacy classes of 1’-elements
# in the finite group A.

0o oo o
N = O

o s
w

lprime_conj_classes:=function(A,1)

return Filtered(ConjugacyClasses(A), i -> Gcd(Order (A,Representative(
= i)),1)=1);

85 end;

R

87 HHBAHRARHRAHRARHRARHBRARARHBRAH BB R AR R B R B H R AR BRS R AR SR AH R AR S RRHHHH

88 # Count the number of l-modular representations of centralisers of
89 # 1’-elements in the finite group A, i.e, [M~1(A)]|.

90

91 lnumber :=function(A,1l)

92 return Sum(ConjugacyClasses(A),i -> Length(lprime_conj_classes(
< Centralizer (A,Representative(i)),1)));

93 end ;

94

95 HHHAHRAHHHAH R AR AR AR H BB R AR R BB H AR H R RS R B RS R RS SRR R AR S R RS H R RS R B RSB RRHHH
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# A group and R a list of representations parameterised
# as in CharTable.
# Return the intersections of kernels of the representations in R.

Intersection_kernels := function(A,R)
local C;
C := Intersection(List(Rep, r->KernelChar(r)));

return Subgroup(A,Flat(List(C, i->Elements(ConjugacyClasses(A)[i]))))
= 3
end ;

EEEEEEEEESEE R TR TR RS R TR R T R
# Return the group \bar{A}_{1,C} for C a unipotent conjugacy
# class of G.

Canonical_quotient := function(G,C, 1)

local locsys, Au, Pos, DecMat, a, i, j, Fil, PIMs, PIMs_as_characters
= ,P,j,P;

locsys:= UnipotentClasses(G).springerSeries[1].locsys;

Au := C.Au;

# Give the position of all the Springer correspondents E_{C,phi} for
— each phi in irr(A_G(u_C)).

Pos := List ([1..Length(CharTable (Au).irreducibles)], i ->
— PositionProperty(locsys, j -> UnipotentClasses(G).classes[j[1]] =
- C and j[2] = 1));

# Create the list of all the a-values for the PIMs of A_G(u_C)
DecMat :=Transposed (DecompositionMatrix (Au,1));
a:=List ([1..Length(DecMat)], i -> -1);
for i in [1..Length(DecMat)] do
Fil:=Filtered ([1 .. Length(Pos)], j -> Pos[j] <> false and DecMat[i
= 1[j1<>0);
if Fil <> [] then
al[i]l:=Minimum(List (Pos{Fil}, j->ChevieCharInfo(G).al[jl));
fi;
od;

# Find the PIMS with the a-value maximal
PIMs := DecMat{Filtered([1..Length(DecMat)], i -> al[il=Maximum([O,
< Maximum(a)]))};
PIMs_as_characters := [];
for p in PIMs do
P := O0*CharTable(Au) .irreducibles[1];
for j in [1..Length(p)] do
P := P + p[jl*CharTable (Au).irreducibles[j];
od;
Add (PIMs_as_characters ,P) ;
od;
if Size(Intersection_kernels (Au,PIMs_as_characters)) = 1 then return
= Au;
else return Au/Intersection_kernels (Au,PIMs_as_characters); fi;
end ;
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HAHHHBHARAH AR R B AR AR AR H R AR R R A S SRR B R RS SRR BB R R AR SRR BB R A SRR BB R RS HHH
# Return the number unipotent lmodular representations of the simple
# adjoint exceptionnal group of type G.

Size_unipotent_block:= function(G,1)

local 1s;

ls:=1spec(W,1);

return Sum(ls, i -> lnumber (Canonical_quotient (G,UnipotentClasses(G).
— classes[i],1),1));

end ;

C.3 Mixed support of character sheaves

This is the code used in the proof of the unitriangularity to compute the restriction of
a character sheaf of the principal series to a mixed conjugacy class, see Chapter 6. The
second to last function allows us to prove the claim in Lemma 6.1.7. The last function
was used in the last non-special but /-special cases of Eg in Subsection 6.1.7. Both

cases use the formula for the restriction of character sheaves in the principal series, c.f.
Corollaries 4.3.20 and 6.2.12.

HUBHAH AR B R AR A A S S S ARA AR AR B BB R R R A S S SA AR RRRRRRRRR R SRS SSSSSSSRRR Y
# Return the fusion of the unipotent classes of H to G.

UnipotentFusion := function(G,H)
local Ucl_G, Ucl_H, Ucl_G_dynkin, fusion, uH, uG_dynkin;
Ucl_G UnipotentClasses (G).classes;
Ucl_H := UnipotentClasses(H).classes;
Ucl_G_dynkin := List(Ucl_G, ¢ -> c.dynkin);
fusion := List(Ucl_G, x -> [1);
for uH in [1..Length(Ucl_H)] do
uG_dynkin := InducedLinearForm(G,H,Ucl_H[uH].dynkin) ;
Add (fusion[Position(Ucl_G_dynkin, uG_dynkin)], uH);
od;
return fusion;
end ;

HUEHHAHSHHAHHEHH A RSB HH RS R RS H A HH RS H RS R RS RS R B SRR RS H SRR SRR RS HH
# Find the family of Uch(G) to which F belongs.

FindFamily := function(G,F)

return Filtered(UnipotentCharacters(G).families, f-> F in f.
— charNumbers) [1];

end ;

HEHHABSHBABH G HA R B HH R BH AR SR B SHH A B H A B S ARG HH B H B SR H SRR RSB SRR SRR RS HH
# Find the special character of Irr(W) in a family f of Uch(G).

FindSpecInFamily := function(W,f)
local C, R, spec, i,r;
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C := ChevieCharInfo (W) ;

R := f.charNumbers;

spec := Filtered([1..Length(C.a)],i->C.al[i]l=C.b[i]);
return Filtered(R, r->r in spec) [1];

end ;

HASHAH B R R R HH A A S S S HA R AR R B R AR B R R R B R A S S S S S SR A AR R R RS S S S S S RR Y
# Give the unipotent support of a character V coming
# from a ReflectionSubgroup H of the dual group of G.

UnipSupportG := function(G,H,V)

local Vspec, VO;

Vspec := FindSpecInFamily(H,FindFamily(H,V));

VO := Dualize (G, PositionProperty(Transposed(jInductionTable (H,Dual (G
< )).scalar) [Vspec]l, 1-> 1<>0));

return UnipotentClasses(G).springerSeries[1].locsys[V0O][1];

end ;

HUBHHHH R R R A AR RS S H AR AR SRR R B R R R B H A A S S S A AR R SRR R R RS S S S S RY
# Find all the Gs=C~\circ_G(s) such that s commutes with a

# conjugate huh~{-1} and whether the image of s in \bar{A}_(huh~{-13})
# is trivial or not. This function uses the properties of simple

# adjoint groups of exceptional type.

List_pseudolevi_commute_with_u := function(G,u)
local Ls,list_Gs_u, list_Gs ,image, Gs, list_u, Abar, u_in_Gs,uGs,
—~ Pos,p, Lpos, L,uls,uls_list, uGsdyn, Image_is_trivial;

# create the list of all connected centralisers of semisimple
— elements of which a unipotent clall fuses into (u)_G

list_Gs_u :=[];

list_Gs := List(SemisimpleCentralizerRepresentatives(G), h->
— ReflectionSubgroup(G,h));

Abar := Canonical_quotient (G,UnipotentClasses (G).classes[u],11);
image := Size (Abar) =1;
for Gs in list_Gs do
# look if there is a unipotent class of Gs fusionning into (u)_G
list_ u :=[1;
for u_in_Gs in UnipotentFusion(G,Gs) [u] do
# for each u, add u to the list and also check if u is
— distinguished in Gs
Add(list_u,[u_in_Gs, Rank(AlgebraicCentre(Gs).Z0) = Rank(
— UnipotentClasses (Gs).classes[u_in_Gs].red) ,imagel]);
od ;
if list_u <> [] then
Add(list_Gs_u,[Gs,list_ul);
fi;
od ;

# determine whether the image of s in \bar{A}_(huh~{-1}) is trivial
= or not.
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74 if Size(Abar) <> 1 then
75 # find the unique Levi L up to conjugation such that u is
— distinguished in L

76 Lpos := PositionProperty(list_Gs_u, Gs -> ForAny(Gs[2], us->us[2])
— = true and IsParabolic(Gs[1]));
7 L := list_Gs_ul[Lpos][1];

9 # determine whether the image of s in A_G(huh~{-1}) is trivial or

= not

80 for Gs in list_Gs_u do

81 for u_in_Gs in Gs[2] do

82 uGs := UnipotentClasses(Gs[1]) .classes[u_in_Gs[1]];

83 # use the fact that there is a homomorphism from A_{Gs}(u) to
- A_G(u)

84 if GcdInt(Size(uGs.Au), Size(Abar)) =1 then

85 u_in_Gs [3] := true;

86 else

87 uGsdyn := uGs.dynkin;

88 Image_is_trivial := u_in_Gs[3];

89 Pos := Filtered(ParabolicRepresentatives(Gs[1]), p->Length(p)
— =Length(L.callarg[1]));

90 p := 0;

91 while Image_is_trivial <> true and p < Length(Pos) do

92 p := ptl;

93 Ls := ReflectionSubgroup(Gs[1],Pos[pl);

94 if IsParabolic(Ls) then

95 uLs_list := UnipotentFusion(G,Ls) [u];

96 if Length(uLs_list) = 1 then

97 ulLs := UnipotentClasses(Ls).classes[uls_list[1]];

98 if Rank(AlgebraicCentre(Ls).Z0) = Rank(uLs.red) then

99 Image_is_trivial := InducedlLinearForm(Gs[1],Ls,ulLs.
— dynkin) = uGsdyn;

100 fi;

101 fij;

102 fi;

103 od;

104 u_in_Gs[3] := Image_is_trivial;

105 fi;

106 od;

107 od;

108 fi;

109 return list_Gs_u;

110 end ;

112 HEHHARAHAH AR BB RARAH AR BHRARAHBHEH BB R AR BH B R BB R AR AR AR BH B RR AR AR AHBH R R RS
113 # For a unipotent character sheaf A_V in the principal series

# for V in irr (W), compute the restriction (s~ *A_V)_{(uGs)_Gs}

115 # where (uGs)_G is the unipotent support of A_V for s

# commuting with uGs.

114

117
118 Unip_principal_series_restriction_at_Gs := function(G,V,Gs,uGs)
119 local u,restV,Gs,indTable ,restV_at_Gs ,V2;
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144
145
146
147
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indTable := InductionTable (Gs,G);

restV_at_Gs := [];

for V2 in PositionsProperty(UnipotentClasses(Gs).springerSeries/[1].
- locsys, L ->L[1]=uGs) do
Add(restV_at_Gs ,[V2, indTable.scalar[V][V2]]);

od ;

return restV_at_Gs;

end ;

HHBAHRARHHAHH AR AR AR H B R B R AR AR AR H B RS R AR BB R RS R RS H B SR BR SR RSH AR SRRHH RS
For a unipotent character sheaf A_V in the principal series

for V in irr (W), for wu is the unipotent support of A_V

check that the restriction (s~ *A_V)_{(u)_Gs} is trivial if s
commutes with u and s has trivial image in the canonical

quotient \bar{A}_u and that is zero otherwise.

H o H R

Check_restriction_V_is_trivial_at_suGs := function(G,V,Gs)
local u, non_correct_rest, uGs,restV_at_Gs_uGs, check, restV,
—~ Image_springer;

non_correct_rest := [];
for uGs in Gs[2] do
restV_at_Gs_uGs := Unip_principal_series_restriction_at_Gs(G,V,Gs

< [1]1,uGs[1]);
if uGs[3] = false then

check := (Sum(List(restV_at_Gs_uGs, V2->V2[2])) = 0);
else
if Sum(List(restV_at_Gs_uGs, V2->V2[2]))<>1 then
check := false;
else
restV := Filtered(restV_at_Gs_uGs, V2 ->V2[2]=1)[1]1[1];
Image_springer := UnipotentClasses(Gs[1]).springerSeries([1].
— locsys[restV];
check := ChevieCharInfo (UnipotentClasses(Gs[1]).classes][
— Image_springer [1]].Au) .positionId = Image_springer [2];
fi;
fi;
if not check then Add(non_correct_rest, Gs); fij;
od ;
return non_correct_rest;
end ;

HUBHBHB R R R AR AR S S H AR AR AR AR BB R R R HHHHSFH AR AR AR R BB BB R R R HHHSSH SRR R RS
# Same function as before but for any s and
# any uGs such that (u)_G = (uGs)_G.

Check_restriction_V_is_trivial:= function(G,V,u)
local non_correct_rest, Gs,i;
non_correct_rest := [];

for Gs in List_pseudolevi_commute_with_u(G,u) do
if Check_restriction_V_is_trivial_at_suGs(G,V,Gs) <> [] then
Add (non_correct_rest, Check_restriction_V_is_trivial_at_suGs(G,V,
= Gs));
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166 fi;

167 od ;

168 return non_correct_rest;
169 end ;

171 HEHHAHRAHAHBHBH RS RAH AR BB R AR H AR S HSR SRR B S BBHA R AR AR AR B RRH AR AR BB R R HH

172 # For each family f of unipotent character sheaves, let u be the
173 # unipotent support and let A_V be the character sheaf

174 # for V in irr(W) the special character such that Spr(V) = (u,1),
175 # check that the restriction (s *A_V)_{(u)_Gs} is trivial for all s
176 # commuting with u. Return the families and s and the restriction
177 # which are not trivial.

178

179 Char_sheaves_with_non_trivial _restriction := function (G)

180 local u, not_trivial_restriction, f,V, Check;

181 not_trivial_restriction := [];

182 for f in UnipotentCharacters(G).families do

183 V := FindSpecInFamily(G,f);

184 u := UnipotentClasses(G).springerSeries[1].1locsys[V][1];

185 Check := Check_restriction_V_is_trivial(G,V,u);

186 if Check <> [] then

187 Add (not_trivial_restriction, Check);

188 fi;

189 od;

190 return not_trivial_restriction;

191 end ;

193 HEHHAHRAHAHBH BB RS RAH AR AR RAH AR R BB R AR H AR AR R R AR AR R RS RSH AR EH BB RR RS

194 # Let A be a character sheaf in the principal series coming from the
195 # induction datum m=(T_0,T_0O, loc) where loc is a Kummer local
196 # system on T_O0. Let V be the character of Wm which corresponds to A.
197 # Note that Wm = Wloc =Wt where t in G* corresponds to loc.
108 # Compute the restriction of restriction (s~*A_V)_{(u)_Gs} where u is
199 # the unipotent support of A. Return a list of triples where the
200 # first element is the number of times the local system indexed by
201 # the character appears.
202
203 RestrictionMixedSupport := function(G, Wt,Wloc, Gs,V)
204 local formula, u, uGs, D, lambda, Ws_lambda, Ws_loc_lambda,
—~ Ws_loc_lambda_Weyl, resV, sign,t,Ten,Tensign, res, uGs_lambda,
— Ucl_Ws_lambda, v, F;
205 formula := [];
206 u := UnipSupportG(G,Wt,V);
207 uGs := UnipotentFusion(G,Gs) [ul;
208 if uGs = [] then
209 Print ("Error: The unipotent support of the character sheaf A
— indexed by", V, " doesn’t commute with C_G(s).");
210 else
211 D := DoubleCosets(G,Gs,Wloc);
212 for lambda in D do
213 Ws_lambda := ConjugateSubgroup (Gs,lambda.representative);
214 Ws_loc_lambda := Intersection(Wloc,Ws_lambda) ;
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Ws_loc_lambda_Weyl := ReflectionSubgroup(G,Intersection(Ws_lambda.
— rootInclusion, Wloc.rootInclusion));
resV := InductionTable(Ws_loc_lambda ,Wloc).scalar[V];

# twist the restriction by the character chi_lambda of
<~ Ws_loc_lambda if we know how to do it.
if Size(Ws_loc_lambda) = 2xSize(Ws_loc_lambda_Weyl) then
# find the sign character of Ws_loc_lambda/Ws_loc_lambda_Weyl
sign := Filtered(PositionsProperty(Transposed(InductionTable (
— Ws_loc_lambda_Weyl, Ws_loc_lambda).scalar)[ChevieCharInfo (
— Ws_loc_lambda_Weyl) .positionId], x->x<>0), y-> y<>1)[1];

t := CharTable(Ws_loc_lambda) ;

Ten := Tensored(t.irreducibles, [t.irreducibles[sign]]);

Tensign := List(Ten, 1-> PositionProperty(t.irreducibles, z->z=1)
= )

resV := resV{Tensign};
fi;

if Size(Ws_loc_lambda) > 2*xSize(Ws_loc_lambda_Weyl) then
Print ("Error: we cannot easily compute chi~d.");

else

# Compute the restriction of the possible characters of Ws_lambda
res := InductionTable(Ws_loc_lambda ,Ws_lambda).scalar;
uGs_lambda := UnipotentFusion(G,Ws_lambda) [ul;
Ucl_Ws_lambda := UnipotentClasses (Ws_lambda) ;

for v in uGs_lambda do
for F in PositionsProperty(Ucl_Ws_lambda.springerSeries[1].
- locsys, 1-> 1[1] = v) do
Add (formula,[resV*res[F], Ucl_Ws_lambda.springerSeries/[1].
— locsys[F], Ucl_Ws_lambda.classes[v].Aul);
od;
od;
fi;
od;
fi;
return formula;
end ;

201






Index

A

A¢ ordinary canonical quotient for
CeUc(G)..ooveiriini.. 131

Ag(u) = Ca(u)/Cg(u) for u unipotent
29

Ay canonical associated to the family
2 51

ay a-invariant .................o L 49

Ag’c canonical quotient ............ 133

AL = IC(Gy,pr,(£))[dim Gy, ] ..... 64

g highest root of ®................. 26
af permutation on ® induced by F'..23
A, cuspidal character sheaf associated

to a cuspidal datum m....... 71
% = @weWm«Q{S,w .................... 74
e =Hom(ad(w)*€,€)............ 75
A, =AcforueC.................. 131

Ay = Homguq(x,) (V, Kin) character
sheaf corresponding to

Velrr(End(KCp)) - vvvvvnntn. 73
B
B Borel subgroup................... 19
A(G,t) union of blocks............ 124
by b-invariant ................ .. ... 49
bZ fixed basis element of g gz...... 77
C
C, unipotent support of character
sheaves in Gy ............... 98

Y4 characteristic function of A € G for

a fixed isomorphism @4...... 89
Xr,, characteristic function of F with
respect to @ ...l 62

203

X*=+Dg(x) eirrg(G) ... oovenn. 137
D
D Verdier duality ................... 59
do Dynkin diagram associated to the
nilpotent orbit O ............ 33
A(s) base of We(s)........c.cooo.t. 26
Db(Y,Q,) derived bounded derived
category of constructible
Qp-sheaves .................. 58
D(%) derived category of €......... 36
D*(%) bounded derived category of €
36
[G, G] derived subgroup ............ 15
D¢ Alvis—Curtis duality............. 43
E
&1(G,t) irreducible characters belonging
t0 B(G ) .o 124
&y summand of (p,),Q, ........... 63
Exn(G) geometric series............. 46
& (G, s) geometric series............. 47
&(G,s) rational series............... 47
F
Z family of characters of a Weyl group
49
f[Gm o) Foruier transform of Kawanaka
characters.................. 144
F, standard Frobenius map ......... 21

F*corresponding Steinberg map on the
dual group G*............... 24

Z set of irr(Wx < F> [ < Fe>)
restricting to the family .# .. 51



Index

G

G.q adjoint quotient of G........... 20

I'¢ generalised Gelfand-Graev module
136

~& generalised Gelfand-Graev character
136

['(Y,-) global sections functor. ... ... 36

G complete root datum
G* dual complete root datum of G .. 24
G* dual groupof G................. 24
GF F-stable character sheaves of G . 83
Gg character sheaves in the family
indexed by g € G* 98
G character sheaves coming from £ 65

G(m) induction series............... 73
G, character sheaves series indexed by
SeEG* 67
G 0) e 31
gni Dilpotent variety of g............ 29

G, =Cg(s) for se G
G, simply connected covering of G . 20

¢ family of character sheaves........ 68
G i unipotent elements of G ....... 29
Gw = Bou')Bo ........................ 64
H
H™(Y,-) cohomology with compact
7016] 0703 1 N 37
PHO: DY(Y,Q, - .#(Y) cohomological
functor.......... ... ......L. 60
PH?() functor PH? precompsed by the
shift by 1 € Z ..o ovoroi 60
I
1C(V, L) intersection cohomology
complex..................... 59
i:k* - py fixed isomorphism........ 46
I& 5 Deligne-Lusztig induction. ..... 40
T& p Deligne-Lusztig induction functor
39
I$(0) Deligne-Lusztig character . ... 44
ZE Harish-Chandra induction . ...... 41
Indf.p parabolic induction of perverse
sheaves.............. ... ... 69

204

1:(Q/Z)y - k* fixed isomorphism...27

ip,map from Q ®y XtoTo..oonn.... 27

irr(G), irreducible ordinary characters
in the family indexed by g € G*

98
J —
j:{xek*|am =1 for some neN} - Q,

fixed injective morphism..... 63
g, j-induction ... 49
K —
= F oo 15
IQ(C:; ») Kawanaka character.......... 140
K(, o) character of (K, ,))° ®0 K. 140
K(Cfl o) Kawanaka module........... 141
K(Cfl vy (-Kawanaka module......... 140
KE = (mu)e(L) oo 66
KE = (7). (AL)[-dim G - £(w)] .. ... 65

K induced perverse sheaf associated to
a cuspidal datum m ......... 72
H = (Yepr, 8, Xp) Kawanaka datum.134
Ky(%) Grothendieck group of € .... 36
Ko(.#(G)) subgroup of Ko(.#(G))
spanned by character sheaves 67

L
A orbits representatives for W, acting
on M ... 110
% Lang-Steinberg map ............. 22
L; standard Levi subgroup of P;....20
Lie(G) the Lie algebra of G......... 18
Lie(G), weight subspace............ 18
L, Levi subgroup of Py ............. 31
M

M={meG|mtsme(s)LZ°(L)}.107
M(A) Lusztig’s non abelian Fourier

transform ................... 51
M(ACA) oo 52
MACA) 52
{, } pairing in M(A) ............... 52
M=G\M/L...................... 107
m cuspidal induction datum......... 71

NG set of cuspidal induction data...71



my,, = (Lo, CoZ°(Ly), &) cuspidal
induction datum of Cg(sz,) for

m,, cuspidal induction datum of G for
peM . oo 107
A (Y') category of perverse sheaves . 59

N

MG pairs of unipotent classes and
irreducible local systems..... 93

NS cuspidal pairs of unipotent classes
and irreducible local systems 93

O

w, fundamental co-weight of « e A .. 18
P

O =P(T) rootS. .. oevvveeniiannnn 18
® = B(T) cOTOOtS. ... 19
®; root system generated by J c ®..20
®, ,, root system of Wy —............ 45
. root system of W3 e 64

®,, roots generating O,
®Z unique isomorphism such that (¢Z2);

is trivial ........ ... ... . 77
P; parabolic subgroup for T A..... 20
P, parabolig subgroup associated to

< partial order on Ucl(G)........... 95

pr,() projection the space spanned by
the Alvis—Curtis duals of
characters in irr(G), .......

pr,() projection the space spanned by
the Alvis—Curtis duals of
characters in Uch(G) with
unipotent support (u)g ....144

U, Springer homeomorphism ...... 29
Q
QS Green function.................. 54
R
R,(G) unipotent radical ............ 15

Resfgp parabolic restriction of perverse
sheaves.................. ... 69

205

Index

*RE L Deligne-Lusztig restriction ... 40
*RE p Deligne—Lusztig restriction
functor........ ... ..ol 40
*R¢ Harish-Chandra restriction. .. .. 41
RI(Y,-) right derived global section

functor............... ... ..., 36
Pnik—=k xwa™ . ... 63
R; almost character................. 50
R, alternated sum of character sheaves

67
R, unipotent almost character ...... 53
S
s, reflection associated to the root o 19
Sh(Y) sheaveson Y ................. 35
Sh®(Y) étale sheaveson Y .......... 37

Shy (Y') H-equivariant sheaves on Y .36

Gpr generalised Springer
correspondence.............. 93

Spre g, generalised Springer
correspondence associated to

() 93
s*m = (L, s71X%,s*€) for s € Ty and
m=(L,XE)eMG......... 100

S(Ty)Kummer local systems on Ty . 63
supp(H*(F)) support of the complex F

SUpp(H(F)) coeveeeeenn 59
supp(H(F)) support of the

cohomology Hi(F).......... 59
T
T isomorphism decomposing

S (Cn)st) e vveneneannn 108
To[w] torus of type w............... 44
U
U, (T) root subgroup ............... 18

uc F-stable element such that

A(;(UC) = A(;(UC)F ......... 29
Uch(G) unipotent characters........ 48
Ucl(G) unipotent conjugacy classes . 29
U, unipotent radical of P, .......... 31
Un(2) oo 31
Un (=) e oo 31
 family of unipotent characters ...51



Index

\)\%

W =WG(T) Weyl group............ 18
WG(Lj) relative Weyl group of Ly .. 42
WE(Ly) relative Weyl group of L; .. 42
W& (Ly, V) relative Weyl group of

(L, V) 42
W relative Weyl group of (A,n)...45
W3 . Coxeter subgroup of Wy ,,...... 45
WJ7 Weyl subgroup generated by J ¢ ®
20

W, relative Weyl group of £ € S(T) 64
W; Coxeter subgroup of W, 64
Wy, 5 relative Weyl group of (L,X) .. 74

W relative Weyl group of m........ 74
We Weyl subgroup of Wy, ........... 74
Wn/f:N/L_leu(m)/(LO) ............. 111

206

We(s) Weyl group of Cg(s)......... 26
X

X(G) character group of G......... 18
X (G) co-character group of G ...... 18

X = X(T) character group of T..... 18
X = X(T) character group of T..... 18
Es(G) characteristic functions of A € Gy

126
Y
Yircp Deligne-Lusztig variety ........ 39
YL,E = UgeGgEregg_l ................ 72
Z
2, twisted relative Weyl group of
(A7) e 45



References

[AAL0]

[AHJR19]

[Asc04]

[Aubl0]

[BC76a]

[BC76b]

[BBDS2]

[BL94|
[BS84]
[Bon04]
[Bon03|

[BRO3]

P. N. Achar and A.-M. Aubert. “Localisation de faisceaux caractéres”.
Adv. Math. 224.6 (2010), 2435-2471.

P. N. Achar, A. Henderson, D. Juteau, and S. Riche. “Modular generalized
Springer correspondence: an overview”. Tsinghua Lectures in Mathemat-
ics. Vol. 45. Adv. Lect. Math. (ALM). Int. Press, Somerville, MA, 2019,
77-99.

M. Aschbacher. “The status of the classification of the finite simple groups”.
Notices Amer. Math. Soc. 51.7 (2004), 736-740.

A.-M. Aubert. An introduction to perverse sheaves and character sheaves.
2010. url: https://www.researchgate.net/publication/228595960_
AN_INTRODUCTION_TO_PERVERSE_SHEAVES_AND_CHARACTER_SHEAVES.

P. Bala and R. W. Carter. “Classes of unipotent elements in simple al-
gebraic groups. I”. Math. Proc. Cambridge Philos. Soc. 79.3 (1976), 401
425.

P. Bala and R. W. Carter. “Classes of unipotent elements in simple al-
gebraic groups. 11”. Math. Proc. Cambridge Philos. Soc. 80.1 (1976), 1-
17.

A. A. Beilinson, J. Bernstein, and P. Deligne. “Faisceaux pervers”. Analy-
sis and Topology on Singular Spaces, I (Luminy, 1981). Vol. 100. Astérisque.
Soc. Math. France, Paris, 1982, 5-171.

J. Bernstein and V. Lunts. Equivariant sheaves and functors. Vol. 1578.
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1994.

W. M. Beynon and N. Spaltenstein. “Green functions of finite Chevalley
groups of type E,(n=6,7,8)". J. Algebra 88.2 (1984), 584-614.

C. Bonnafé. “Actions of relative Weyl groups. I”. J. Group Theory 7.1
(2004), 1-37.

C. Bonnafé. “Quasi-isolated elements in reductive groups”. Comm. Algebra
33.7 (2005), 2315-2337.

C. Bonnafé and R. Rouquier. “Catégories dérivées et variétés de Deligne—
Lusztig”. Publ. Math. Inst. Hautes Ftudes Sci. 97 (2003), 1-59.

207


https://www.researchgate.net/publication/228595960_AN_INTRODUCTION_TO_PERVERSE_SHEAVES_AND_CHARACTER_SHEAVES
https://www.researchgate.net/publication/228595960_AN_INTRODUCTION_TO_PERVERSE_SHEAVES_AND_CHARACTER_SHEAVES

References

[BMS1]

[Bou68)]

[Bro90]

[BM8Y]

[BDT20]

[BGJ23)|
[Car85|

[Chal9]

[Cha21]

[CR74]

[CR17]

[Del80]

[DL76]

IDG11]

W. Borho and R. MacPherson. “Représentations des groupes de Weyl et
homologie d’intersection pour les variétés nilpotentes”. C. R. Acad. Sci.
Paris Sér. I Math. 292.15 (1981), 707-710.

N. Bourbaki. Eléments de Mathématique. Fasc. XXXIV. Groupes et Algéb-
res de Lie. Chapitre IV: Groupes de Coxeter et Systémes de Tits. Chapitre
V: Groupes FEngendrés Par Des Réflexions. Chapitre VI: Systémes de

Racines. Vol. No. 1337. Actualités Scientifiques et Industrielles. Hermann,
Paris, 1968.

M. Broué. “Isométries parfaites, types de blocs, catégories dérivées”. Repré-
sentations linéaires des groupes finis - Luminy, 16-21 mai 1988. Astérisque
181-182. Société mathématique de France, 1990, 61-92.

M. Broué and J. Michel. “Blocs et séries de Lusztig dans un groupe ré-
ductif fini”. J. reine angew. Math. 395 (1989), 56-67.

O. Brunat, O. Dudas, and J. Taylor. “Unitriangular shape of decomposi-
tion matrices of unipotent blocks”. Ann. of Math. (2) 192.2 (2020), 583~
663.

O. Brunat, J.-B. Gramain, and N. Jacon. “On unitriangular basic sets for
symmetric and alternating groups”. J. Algebra 620 (2023), 257-292.

R. W. Carter. Finite Groups of Lie Type. Pure and Applied Mathematics
(New York). John Wiley & Sons, Inc., New York, 1985.

R. Chaneb. “Basic sets and decomposition matrices of finite groups of Lie
type in small characteristic”. Thése de Doctorat. Paris, France: Université
Paris Cité, 2019.

R. Chaneb. “Basic sets for unipotent blocks of finite reductive groups in
bad characteristic”. Int. Math. Res. Not. IMRN 16 (2021), 1-26 |12613—
12638 on table of contents|.

B. Chang and R. Ree. “The characters of G5(q)”. Symposia Mathematica,
Vol. XIIT (Convegno di Gruppi Abeliani & Convegno di Gruppi e loro
Rappresentazioni, INDAM, Rome, 1972). Academic Press, London-New
York, 1974, 395-413.

J. Chuang and R. Rouquier. Perverse equivalences. 2017. url: https :
//www.math.ucla.edu/"rouquier/papers.html.

P. Deligne. “La conjecture de Weil. II”. Inst. Hautes Etudes Sci. Publ.
Math. 52 (1980), 137-252.

P. Deligne and G. Lusztig. “Representations of reductive groups over finite
fields”. Ann. of Math. (2) 103.1 (1976), 103-161.

M. Demazure and A. Grothendieck. Schémas en groupes (SGA 3). 3:
Structure des schémas en groupes réductifs. Documents mathématiques 8.
Paris: Société Mathématique de France, 2011.

208


https://www.math.ucla.edu/~rouquier/papers.html
https://www.math.ucla.edu/~rouquier/papers.html

[Der81]

[DLM97]

[DLM14]

[DMS7]

[DMO90]

[DMO1]

[DM20]

[Dip85]

[Dud18]

[DM20b)

[Eno76]
[EYS6]

[Ete23]

[Gec90]

|Gec91|

References

D. I. Deriziotis. “Centralizers of semisimple elements in a Chevalley group”.
Comm. Algebra 9.19 (1981), 1997-2014.

F. Digne, G. Lehrer, and J. Michel. “On Gel’fand-Graev characters of
reductive groups with disconnected centre.” J. reine angew. Math. 491
(1997), 131-148.

F. Digne, G. Lehrer, and J. Michel. “On character sheaves and characters
of reductive groups at unipotent classes”. Pure Appl. Math. Q. 10.3 (2014),
459-512.

F. Digne and J. Michel. “Foncteurs de Lusztig et caractéres des groupes
linéaires et unitaires sur un corps fini”. J. Algebra 107.1 (1987), 217-255.
url: https://doi.org/10.1016/0021-8693(87)90087-1.

F. Digne and J. Michel. “On Lusztig’s parametrization of characters of
finite groups of Lie type”. Astérisque 181-182 (1990), 6, 113-156.

F. Digne and J. Michel. Representations of Finite Groups of Lie Type.
Vol. 21. London Mathematical Society Student Texts. Cambridge Univer-
sity Press, Cambridge, 1991.

F. Digne and J. Michel. Representations of Finite Groups of Lie Type.
Second. Vol. 95. London Mathematical Society Student Texts. Cambridge
University Press, Cambridge, 2020.

R. Dipper. “On the decomposition numbers of the finite general linear
groups”. Trans. Amer. Math. Soc. 290.1 (1985), 315-344.

O. Dudas. “Lectures on modular Deligne-Lusztig theory”. Local Repre-
sentation Theory and Simple Groups. EMS Ser. Lect. Math. Eur. Math.
Soc., Ziirich, 2018, 107-177.

O. Dudas and G. Malle. “Decomposition matrices for groups of Lie type in
non-defining characteristic”. To appear in Mem. Amer. Math. Soc. (2020,
preprint at arXiv:2001.06395).

H. Enomoto. “The characters of the finite Chevalley group Ga(q),q = 3/
Japan. J. Math. (N.S.) 2.2 (1976), 191-248.

H. Enomoto and H. Yamada. “The characters of Go(2")”. Japan. J. Math.
(N.S.) 12.2 (1986), 325-377.

A. Eteve. “Monodromique Sheaves, Deligne-Lusztig Theory and Depth 0
Cohomology of Stacks of Chtoucas”. Thése de Doctorat. Sorbonne Uni-
versité, 2023.

M. Geck. “Verallgemeinerte Gelfand-Graev-Charaktere und Zerlegungs-
zahlen endlicher Gruppen vom Lie-Typ”. Dissertation. RWTH Aachen,
1990.

M. Geck. “On the decomposition numbers of the finite unitary groups in
nondefining characteristic”. Math. Z. 207.1 (1991), 83-89.

209


https://doi.org/10.1016/0021-8693(87)90087-1

References

[Gec94|
[Gec95|
[Gec99)

[Gec03]

[Gecl9]
[Gec20]
[Gec21a]
[Gec23]
[Gec24]

[Gec21b]

[GHOS]
[GHO1]

[GHO7]

[GHLMP96]

|GMO0]

[GM20]

M. Geck. “Basic sets of Brauer characters of finite groups of Lie type. I11”.
Manuscripta Math. 85.2 (1994), 195-216.

M. Geck. “Beitrdage zur Darstellungstheorie von Iwahori-Hecke-Algebren”.
Habilitation. Aachen, 1995.

M. Geck. “Character sheaves and generalized Gelfand-Graev characters”.
Proc. London Math. Soc. (3) 78.1 (1999), 139-166.

M. Geck. An Introduction to Algebraic Geometry and Algebraic Groups.
Vol. 10. Oxford Graduate Texts in Mathematics. Oxford University Press,
Oxford, 2003.

M. Geck. “On the values of unipotent characters in bad characteristic”.
Rend. Semin. Mat. Univ. Padova 141 (2019), 37-63.

M. Geck. “Computing Green functions in small characteristic”. J. Algebra
561 (2020), 163-199.

M. Geck. “Generalised Gelfand—Graev representations in bad character-
istic?” Transform. Groups 26.1 (2021), 305-326.

M. Geck. “The character table of the finite Chevalley group Fy(q) for ¢ a
power of 2”. Arch. Math. (Basel) 121.5-6 (2023), 669-679.

M. Geck. On the character tables of the finite reductive groups Eg(q)aq
and ?E6(q)aq- 2024. arXiv: 2403.02434 [math].

M. Geck. “On the computation of character values for finite Chevalley
groups of exceptional type”. To appear in Pure Appl. Math. (). George
Lusztig special issue (2021, preprint at arXiv:2105.00722).

M. Geck and D. Hézard. “On the unipotent support of character sheaves”.
Osaka J. Math. 45.3 (2008), 819-831.

M. Geck and G. Hiss. “Basic sets of Brauer characters of finite groups of
Lie type”. J. reine angew. Math. 418 (1991), 173-188.

M. Geck and G. Hiss. “Modular representations of finite groups of Lie type
in non-defining characteristic”. Finite Reductive Groups (Luminy, 1994).
Vol. 141. Progr. Math. Birkhduser Boston, Boston, MA, 1997, 195-249.

M. Geck, G. Hiss, F. Liibeck, G. Malle, and G. Pfeiffer. “CHEVIE—a
system for computing and processing generic character tables”. AAECC.
Vol. 7. 1996, 175-210.

M. Geck and G. Malle. “On the existence of a unipotent support for the
irreducible characters of a finite group of Lie type”. Trans. Amer. Math.
Soc. 352.1 (2000), 429-456.

M. Geck and G. Malle. The Character Theory of Finite Groups of Lie
Type. Vol. 187. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, Cambridge, 2020.

210


https://arxiv.org/abs/2403.02434

References

[GP92] M. Geck and G. Pfeiffer. “Unipotent characters of the Chevalley groups
Dy(q), q odd”. Manuscripta Math. 76.3-4 (1992), 281-304.

|GérTT7] P. Gérardin. “Weil representations associated to finite fields”. J. Algebra
46.1 (1977), 54-101.

[Gor21] M. Goresky. Lecture notes on sheaves and perverse sheaves. 2021. arXiv:
2105.12045 [math.AG]. url: https://arxiv.org/abs/2105.12045.

[GM83| M. Goresky and R. MacPherson. “Intersection homology. II”. Invent. Math.
72.1 (1983), 77-129.

[Greb5] J. A. Green. “The characters of the finite general linear groups”. Trans.
Amer. Math. Soc. 80 (1955), 402-447.

|Har70| Harish-Chandra. “Eisenstein series over finite fields”. Functional Analysis

and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago,
Ill., 1968). Springer, New York-Berlin, 1970, 76-88.

[Har77] R. Hartshorne. Algebraic Geometry. Vol. No. 52. Graduate Texts in Math-
ematics. Springer-Verlag, New York-Heidelberg, 1977.

[HHM99| A. Henke, G. Hiss, and J. Miiller. “The 7-modular decomposition matrices
of the sporadic O’Nan group”. J. London Math. Soc. (2) 60.1 (1999), 58—

70.

[Het19] J. Hetz. “On the values of unipotent characters of finite Chevalley groups
of type Eg in characteristic 3”. J. Algebra 536 (2019), 242-255.

[Het22] J. Hetz. “On the values of unipotent characters of finite Chevalley groups
of type E7 in characteristic 2”. Osaka J. Math. 59.3 (2022), 591-610.

[Het23a| J. Hetz. “Characters and character sheaves of finite groups of Lie type”.
Dissertation. Universitit Stuttgart, 2023.

[Het23b] J. Hetz. “On the generalised Springer correspondence for groups of type
ES”. Represent. Theory 27 (2023), 973-999.

[Het24| J. Hetz. The values of unipotent characters at unipotent elements for
groups of type Eg and *Eg. 2024. arXiv: 2309.09915 [math].

[Héz04] D. Hézard. “Sur le support unipotent des faisceaux-caractéres”. Thése de
Doctorat. Lyon 1, 2004.

[How80] R. B. Howlett. “Normalizers of parabolic subgroups of reflection groups”.
J. London Math. Soc. (2) 21.1 (1980), 62-80.

[Hum78| J. E. Humphreys. Introduction to Lie Algebras and Representation The-

ory. Vol. 9. Graduate Texts in Mathematics. Springer-Verlag, New York-
Berlin, 1978.

[Jam78| G. D. James. The Representation Theory of the Symmetric Groups. Vol. 682.
Lecture Notes in Mathematics. Springer, Berlin, 1978, v+156.

211


https://arxiv.org/abs/2105.12045
https://arxiv.org/abs/2105.12045
https://arxiv.org/abs/2309.09915

References

[Jan04]

[KS94]

[Kaw86]

[Lan56]

[Las23]

[Liib24]
[Lus76]
[Lus77]
[Lus79)

[Lus84a|

[Lus84b|

[LuCS1]
[LuCS2]
[LuCS3|
[LuCs4]
[LuCS5|
[Lus86|

[Lus88]

[Lus90]

J. C. Jantzen. “Nilpotent orbits in representation theory”. Lie Theory.
Vol. 228. Progr. Math. Birkhduser Boston, Boston, MA, 2004, 1-211.

M. Kashiwara and P. Schapira. Sheaves on Manifolds. Vol. 292. Grund-
lehren der mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences|. Springer-Verlag, Berlin, 1994, x+512.

N. Kawanaka. “Generalized Gelfand—Graev representations of exceptional
simple algebraic groups over a finite field. I”. Invent. Math. 84.3 (1986),
575-616.

S. Lang. “Algebraic groups over finite fields”. Amer. J. Math. 78 (1956),
5955-H63.

C. Lassueur. Modular Representation Theory of Finite Groups: An Intro-
duction. Lecture notes for the class Representation Theory at TU Kaiser-
slautern. 2023.

F. Liibeck. Green functions in small characteristic. 2024. arXiv: 2403.
18190 [math].

G. Lusztig. “On the finiteness of the number of unipotent classes”. Invent.
Math. 34.3 (1976), 201-213.

G. Lusztig. “Irreducible representations of finite classical groups”. Invent.
Math. 43.2 (1977), 125-175.

G. Lusztig. “A class of irreducible representations of a Weyl group”. Ned-
erl. Akad. Wetensch. Indag. Math. 41.3 (1979), 323-335.

G. Lusztig. Characters of Reductive Groups over a Finite Field. Vol. 107.
Annals of Mathematics Studies. Princeton University Press, Princeton,
NJ, 1984.

G. Lusztig. “Intersection cohomology complexes on a reductive group”.
Invent. Math. 75.2 (1984), 205-272.

. Lusztig. “Character sheaves I”. Adv. in Math. 56.3 (1985), 193-237.

. Lusztig. “Character sheaves II”. Adv. in Math. 57.3 (1985), 226-265.
. Lusztig. “Character sheaves I1I”. Adv. in Math. 57.3 (1985), 266-315.
. Lusztig. “Character sheaves IV”. Adv. in Math. 59.1 (1986), 1-63.

. Lusztig. “Character sheaves V”. Adv. in Math. 61.2 (1986), 103-155.

. Lusztig. “On the character values of finite Chevalley groups at unipo-
tent elements”. J. Algebra 104.1 (1986), 146-194.

G. Lusztig. “On the representations of reductive groups with disconnected
centre”. Astérisque. 168. 1988, 10, 157-166.

G. Lusztig. “Green functions and character sheaves”. Ann. of Math. (2)
131.2 (1990), 355-408.

Q000 a0

212


https://arxiv.org/abs/2403.18190
https://arxiv.org/abs/2403.18190

References

[Lus92] G. Lusztig. “A unipotent support for irreducible representations”. Aduv.
Math. 94.2 (1992), 139-179.

[Lus08| G. Lusztig. “Irreducible representations of finite Spin groups”. Represent.
Theory 12 (2008), 1-36.

[Lus12] G. Lusztig. “On the cleanness of cuspidal character sheaves”. Mosc. Math.
J. 12.3 (2012), 621-631, 669.

[Lus14| G. Lusztig. “Families and Springer’s correspondence”. Pacific J. Math.
267.2 (2014), 431-450.

[Lus15] G. Lusztig. “Restriction of a character sheaf to conjugacy classes”. Bull.
Math. Soc. Sci. Math. Roumanie (N.S.) 58(106).3 (2015), 297-309.

[Lus19] G. Lusztig. “On the generalized Springer correspondence”. Representa-

tions of Reductive Groups. Vol. 101. Proc. Sympos. Pure Math. Amer.
Math. Soc., Providence, RI, 2019, 219-253.

[LS85] G. Lusztig and N. Spaltenstein. “On the generalized Springer correspon-
dence for classical groups”. Algebraic Groups and Related Topics (Ky-
oto/Nagoya, 1983). Vol. 6. Adv. Stud. Pure Math. North-Holland, Ams-
terdam, 1985, 289-316.

[Mall7] G. Malle. “Local-global conjectures in the representation theory of finite
groups’. Representation theory——current trends and perspectives. EMS Ser.
Congr. Rep. Eur. Math. Soc., Ziirich, 2017, 519-539.

[MR20] G. Malle and E. Rotilio. The 2-Parameter Green functions for §-dimensio-
nal Spin groups. 2020. arXiv: 2003.14231 [math].
[MT11] G. Malle and D. Testerman. Linear Algebraic Groups and Finite Groups

of Lie Type. Vol. 133. Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press, Cambridge, 2011.

[MS95] R. M. Marcelo and K.-i. Shinoda. “Values of the unipotent characters of
the Chevalley group of type F, at unipotent elements”. Tokyo J. Math.
18.2 (1995), 303-340.

|MS89| J. G. M. Mars and T. A. Springer. “Character sheaves”. Astérisque. 173-
174. 1989, 9, 111-198.

[MS03| G. J. McNinch and E. Sommers. “Component groups of unipotent cen-
tralizers in good characteristic”. J. Algebra 260.1 (2003), 323-337.

[McNO5| G. J. McNinch. “Optimal SL(2)-homomorphisms”. Comment. Math. Helv.
80.2 (2005), 391-426.

[Mic15] J. Michel. “The development version of the CHEVIE package of GAP3".
J. Algebra 435 (2015), 308-336.

[Pre03] A. Premet. “Nilpotent orbits in good characteristic and the Kempf-Rousseau

theory”. J. Algebra. Vol. 260. 2003, 338-366.

213


https://arxiv.org/abs/2003.14231

References

[Ric67]

[Rot24]

[Rot21]
[San24]
[Sho82]
[Sho83]
[Sho8s]
Sho95a]
Sho95b]
Sho96]

[Sho97]

[Sho09]

[Sol18]

[Spa85|

[Spr76|
[Spr09|

[Ste68|

R. W. Richardson Jr. “Conjugacy classes in Lie algebras and algebraic
groups”. Ann. of Math. (2) 86 (1967), 1-15.

M. Roth. Unitriangularity of decomposition matrices of the unipotent (-
blocks for simple adjoint exceptional groups. 2024. arXiv: 2402 . 17616
[math].

E. Rotilio. “The Generic Character Table of Sping (¢)”. Dissertation. Tech-
nische Universitit Kaiserslautern, 2021.

C. Sandvik. Modular character sheaves on reductive Lie algebras. 2024.
arXiv: 2407.14678 [math].

T. Shoji. “On the Green polynomials of a Chevalley group of type Fj”.
Comm. Algebra 10.5 (1982), 505-543.

T. Shoji. “On the Green polynomials of classical groups”. Invent. Math.
74.2 (1983), 239-267.

T. Shoji. “Geometry of orbits and Springer correspondence”. Astérisque.
168. 1988, 9, 61-140.

T. Shoji. “Character sheaves and almost characters of reductive groups”.
Adv. Math. 111.2 (1995), 244-313.

T. Shoji. “Character sheaves and almost characters of reductive groups,
IT". Adv. Math. 111.2 (1995), 314-354.

T. Shoji. “On the computation of unipotent characters of finite classical
groups”. AAECC. Vol. 7. 1996, 165-174.

T. Shoji. “Unipotent characters of finite classical groups”. Finite Reduc-
tiwe Groups (Luminy, 1994). Vol. 141. Progr. Math. Birkhduser Boston,
Boston, MA, 1997, 373-413.

T. Shoji. “Lusztig’s conjecture for finite classical groups with even charac-
teristic”. Representation Theory. Vol. 478. Contemp. Math. Amer. Math.
Soc., Providence, RI, 2009, 207-236.

R. Solomon. “The classification of finite simple groups: a progress report”.
Notices Amer. Math. Soc. 65.6 (2018), 646-651.

N. Spaltenstein. “On the generalized Springer correspondence for excep-
tional groups”. Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983).
Vol. 6. Adv. Stud. Pure Math. North-Holland, Amsterdam, 1985, 317-338.

T. A. Springer. “Trigonometric sums, Green functions of finite groups and
representations of Weyl groups”. Invent. Math. 36 (1976), 173-207.

T. A. Springer. Linear Algebraic Groups. second. Modern Birkhauser Clas-
sics. Birkhauser Boston, Inc., Boston, MA, 2009.

R. Steinberg. Endomorphisms of Linear Algebraic Groups. Vol. No. 80.
Memoirs of the American Mathematical Society. American Mathematical
Society, Providence, RI, 1968.

214


https://arxiv.org/abs/2402.17616
https://arxiv.org/abs/2402.17616
https://arxiv.org/abs/2407.14678

References

[Tay13] J. Taylor. “On unipotent supports of reductive groups with a disconnected
centre”. J. Algebra 391 (2013), 41-61.

[Tay14] J. Taylor. “Evaluating characteristic functions of character sheaves at
unipotent elements”. Represent. Theory 18 (2014), 310-340.

[Tay16] J. Taylor. “Generalized Gelfand-Graev representations in small charac-
teristics”. Nagoya Math. J. 224.1 (2016), 93-167.

[Tay19] J. Taylor. “The structure of root data and smooth regular embeddings of
reductive groups”. Proc. Edinb. Math. Soc. (2) 62.2 (2019), 523-552.

[Web16] P. Webb. A Course in Finite Group Representation Theory. 1st ed. Cam-

bridge University Press, 2016.

215



	Page de titre
	Abstract
	Acknowledgments
	Introduction
	Notation
	Finite groups of Lie type
	Reductive groups
	Root data
	Root data of reductive groups

	Finite reductive groups
	Definition and properties of the Frobenius
	Classification of the finite reductive groups

	Interesting conjugacy classes and their centralisers
	Semisimple conjugacy classes
	Unipotent conjugacy classes


	Representation theory of finite groups of Lie type
	Deligne–Lusztig induction
	Quick motivation for -adic cohomology
	Definition and first properties of Deligne–Lusztig induction
	Harish-Chandra induction

	Parameterisation of the ordinary characters
	Lusztig series
	Parameterisation of the unipotent characters

	Computing ordinary characters
	Computing Deligne–Lusztig characters
	Ordinary characters on semisimple or unipotent conjugacy classes
	Current state of knowledge


	Character sheaves
	Definition of character sheaves
	Reminder on G-equivariant perverse sheaves
	Definition of character sheaves
	Series of character sheaves

	Parabolic induction of character sheaves
	Definition and first properties of parabolic induction
	Cuspidal character sheaves and induction series
	Decomposition of an induced cuspidal character sheaf

	Another basis for the space of class functions
	The F-stable character sheaves
	Characteristic functions of character sheaves
	F-stable character sheaves and representation theory of finite reductive groups


	Restricting character sheaves
	The importance of the unipotent variety: generalised Springer correspondence
	Character sheaves restricted to unipotent conjugacy classes
	The unipotent support of character sheaves

	Translation of character sheaves
	Translation and families of character sheaves
	Translation and induction series
	Central translation of unipotently supported character sheaves.

	Restriction of a character sheaf to a mixed conjugacy class
	Restriction of an induced cuspidal perverse sheaf to the centraliser of a semisimple element
	Restriction of a character sheaf to a mixed conjugacy class
	Restriction of a unipotently supported character sheaf to a mixed conjugacy class
	Restriction of a character sheaf from a simple group of adjoint type


	Ordinary and projective representations in blocks of Brauer characters
	Counting modular representations
	The -blocks of the decomposition matrix
	The number of modular representations
	A parameterisation of the modular representations

	Candidates for the projectives: the Kawanaka modules
	Generalised Gelfand–Graev characters
	Kawanaka characters


	Unitriangularity of the decomposition matrix
	Decomposition of the Kawanaka modules
	Fourier transform of the Kawanaka characters
	Decomposition of the Kawanaka characters

	Unitriangularity of the unipotent blocks
	Using Kawanaka modules for the special classes
	Using generalised Gelfand–Graev characters
	The leftover cases in E8
	The proof

	Unitriangularity of the isolated blocks
	Some general arguments
	The isolated blocks of G2
	The isolated blocks of F4


	Appendices
	Prerequisites on the representation theory of finite groups
	Tables
	Induction data of exceptional adjoint groups
	On the number of Brauer characters
	The -special classes for simple exceptional groups of adjoint type

	Code
	Induction data of exceptional adjoint groups
	-special classes and number of Brauer characters
	Mixed support of character sheaves

	Index
	References

