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Abstract

Abstract

In this thesis, we study �nite reductive groups and their modular representations in
non-de�ning characteristic.
In 1990, Geck stated a conjecture on the unitriangularity of decomposition matrices of
these groups. Decomposition matrices encode the link between ordinary representations
(over a �eld of characteristic zero) and modular representations (over a �eld of positive
characteristic ℓ). In 2020, Brunat�Dudas�Taylor showed this conjecture for unipotent
blocks for a very good prime number ℓ, introducing Kawanaka characters. Thanks to
the Morita equivalence between unipotent blocks and non-isolated ones, Feng�Späth
extended this result to non-isolated blocks in 2021. The aim of this thesis is to study
possible generalisations of Brunat�Dudas�Taylor result.
Firstly, we extend this result for a bad prime ℓ in the case of simple groups for the
unipotents blocks. Inspired by the Brunat�Dudas�Taylor method, we study the decom-
position of some Kawanaka characters in terms of ordinary characters in the unipotent
blocks. In order to do so, we compute the values of the characteristic functions of char-
acters sheaves on mixed conjugacy classes, based on previous work of Lusztig.
Lastly, we show through the examples of G2 and F4 how the obtained method allows
us to study the unitriangularity of isolated blocks for exceptional groups of adjoint types.

Keywords: Modular representations, �nite reductive groups, decomposition matri-
ces, character sheaves.
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Abstract

Résumé

L'objet de cette thèse est l'étude des groupes réductifs �nis et plus particulièrement de
leurs représentations modulaires en caractéristique transverse.
En 1990, Geck a énoncé une conjecture portant sur l'unitriangularité des matrices de
décomposition de ces groupes. Les matrices de décomposition encodent le passage des
représentations irréductibles dites ordinaires (sur un corps de caractéristique nulle) aux
représentations modulaires (sur un corps de caractéristique positive un nombre pre-
mier ℓ). En 2020, Brunat�Dudas�Taylor ont démontré cette conjecture dans le cas des
blocs unipotents pour un ℓ très bon avec l'introduction des caractères de Kawanaka.
Grâce à l'équivalence de Morita entre les blocs unipotents et les blocs non-isolés, Feng�
Späth ont étendu ce résultat aux blocs non-isolés en 2021. Le but de cette thèse est
d'étudier des généralisations possibles du théorème de Brunat�Dudas�Taylor.
Dans un premier temps, on étend ce résultat pour ℓ mauvais dans le cas des groupes
adjoints simples pour les blocs unipotents. En s'inspirant de la méthode de Brunat�
Dudas�Taylor, on étudie la décomposition de certains caractères de Kawanaka. Pour ce
faire, nous calculons les valeurs des fonctions caractéristiques des faisceaux caractères
sur des classes de conjugaison mixtes. On se base sur les travaux de Lusztig.
Dans un second temps, on généralise la méthode obtenue a�n d'étudier l'unitriangularité
des blocs isolés pour les groupes exceptionnels de type adjoint. Nous traitons les cas des
groupes simples adjoints de type G2 et F4.

Mots-clés: Représentations modulaires, groupes réductifs �nis, matrices de décompo-
sition, faisceaux characters.
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Abstract

Zusammenfassung

Der Gegenstand dieser Dissertation ist die Untersuchung endlicher reduktiver Gruppen
und insbesondere ihrer modularen Darstellungen in transversaler Charakteristik.
Im Jahr 1990 stellte Geck eine Vermutung auf, die sich auf die Unitriangularität der Zer-
legungsmatrizen dieser Gruppen bezog. Die Zerlegungsmatrizen kodieren den Übergang
von gewöhnlichen irreduziblen Darstellungen (über einem Körper der Charakteristik
Null) zu modularen Darstellungen (über einem Körper von positiver Charakteristik ℓ).
Im Jahr 2020 bewiesen Brunat�Dudas�Taylor diese Vermutung im Fall von unipotenten
Blöcken für sehr gutes ℓ durch die Einführung von Kawanaka-Charakteren. Mit Hilfe
geigneter Morita-Äquivalenzen zwischen unipotenten und nicht-isolierten Blöcken haben
Feng�Späth dieses Ergebnis im Jahr 2021 auf nicht-isolierte Blöcke ausgeweitet. Das Ziel
dieser Dissertation ist, mögliche Verallgemeinerungen zu untersuchen.
Zunächst erweitern wir dieses Ergebnis auf schlechte Primzahlen ℓ im Fall von einfachen
adjungierten Gruppen für unipotente Blöcke. In Anlehnung an die Methode von Brunat�
Dudas�Taylor wird die Zerlegung bestimmter Kawanaka-Charaktere untersucht. Dazu
bestimmen wir die Werte der charakteristischen Funktionen der Charaktergarben auf
gemischten Konjugationsklassen. Wir stützen uns dabei auf die Arbeit von Lusztig.
In einem zweiten Schritt ho�en wir, die erhaltene Methode zu verallgemeinern, um die
Unitriangularität von isolierten Blöcken für exzeptionelle Gruppen vom adjungierten
Typ untersuchen zu können. Wir behandeln die Fälle von G vom Typ G2 und F4.

Stichwörter: modulare Darstellungen, endliche reduktive Gruppe, Zerlegungsma-
trizen, Charaktergarben.
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Introduction

Context

Groups as mathematical objects are very elementary to de�ne. They satisfy a small list
of axioms (existence of the neutral element, of inverses and associativity). However, this
modest set of rules leaves room for a wide diversity of objects.
To restrict our �eld of study, we focus on the groups that are the �building blocks� of
the other groups: the simple groups. The �nite simple groups have been completely
classi�ed into three families:

� the cyclic groups of prime order,

� the alternating groups Altn for n ≥ 5,

� and the �nite groups of Lie type,

as well as 26 sporadic groups who do not belong to any of the previously listed fami-
lies. The proof of the Classi�cation of Finite Simple Groups (CFSG) is a monumental
work spanning over at least 30 years. It was �rst announced in 1983 by Gorenstein, see
[Asc04], [Sol18] for updates on the proof. This thesis concentrates on the last and in a
sense most varied family, the �nite groups of Lie type.

The majority of introductory books on group theory motivates their subject as the
exploration of symmetry. A symmetry is an action that leaves the object we consider
invariant, and groups formalise this notion. Therefore, it seems natural to investigate
the action by linear maps of the elements of a group G on an F-vector space V , for F
a �eld. We say that V is an F[G]-module. Note that the action of G de�nes a group
homomorphism ρ ∶ G → GL(V ). This is called an F-representation of G. In other
words, representation theory allows us to study an arbitrary �nite group G by turning
it into something we better comprehend, a subgroup of the invertible matrices GL(V ).
We then have the tools of linear algebra at our disposal. We often further assume that
the �eld F is algebraically closed or at least contains all the ∣G∣th roots of unity, in order
to be able to triangularise the elements ρ(g) for g ∈ G.

There are two distinct �avours to the representation theory of a �nite group G;
whether the characteristic of F divides the order of G or not. The second case is called

1



Introduction

ordinary and is much better understood than the �rst one, referred to as modular.
One reason is that when the characteristic of F is coprime to ∣G∣ the F[G]-modules
are semisimple (they decompose into direct sums of irreducible submodules), whilst it
is not true for modules over a �eld of characteristic ℓ dividing ∣G∣. Nonetheless, both
approaches consider the same group G and accordingly there should exist a link between
them. Such a connection is encoded in the ℓ-decomposition matrices. Assuming we know
everything about the ordinary representations of G and that we have computed the ℓ-
decomposition matrix, we could extensively comprehend the irreducible representations
of G over Fℓ. However, fully determining the ℓ-decomposition matrix for an arbitrary
group G is in general an arduous task.
For cyclic groups of prime order, it is trivial. For sporadic groups, the ℓ-decomposition
matrices can sometimes be explicitly computed, see for instance [HHM99]. However,
already for symmetric groups, despite our very good knowledge of the ordinary repre-
sentations, we do not yet know the ℓ-decomposition matrix.

One easier problem is to ascertain the unitriangularity of the ℓ-decomposition ma-
trix. If this property holds, then we can label the irreducible Fℓ-representations of G.
Moreover, it might help echelonise any set of projective characters. This yields valuable
information in order to compute the rest of the decomposition matrix, as Dudas and
Malle applied in [DM20b].
The unitriangularity of the ℓ-decomposition matrix has been established in the case of
the symmetric groups [Jam78, Cor. 12.3], but it surprisingly fails for alternating groups,
c.f. [BGJ23, Sect. 3.2]. In this work, we focus our attention on �nite groups of Lie type.

Any ℓ-decomposition matrix has a decomposition into ℓ-blocks. For �nite reductive
groups, one union of blocks, called the unipotent ℓ-blocks, is of particular interest. In-
deed, most other ℓ-blocks (the non-isolated blocks) are Morita equivalent to unipotent
ℓ-blocks of smaller groups.

In 1985, Dipper showed the unitriangularity of the ℓ-decomposition matrix ofGLn(Fq)
for q a power of an odd prime p ≠ ℓ, [Dip85, Cor. 6.17], under certain conditions on ℓ,
for instance ℓ ∣ q − 1. His proof relies on the fact that the Weyl group of GLn(q) is a
symmetric group and hence has unitriangular decomposition matrix. Five years later,
Geck made the following conjecture.

Conjecture ([Gec90, 2.5]). Let G be a �nite group of Lie type over Fq where q is a
power of a prime p. For any prime ℓ ≠ p, the ℓ-decomposition matrix of the unipotent
ℓ-blocks of G is lower-unitriangular.

The next year, in [Gec91, Cor. B], he showed that the whole ℓ-decomposition matrix
of the general unitary groups GUn(Fq) is unitriangular. Geck employed di�erent tools
than the ones used by Dipper for GLn(Fq). He combined the generalised Gelfand�Graev
characters and the power of the theory of character sheaves developed by Lusztig.
The subject made a major step forward in 2020 when Brunat, Dudas and Taylor showed
that Geck's conjecture holds under certain assumptions on p and ℓ, such as p and ℓ good

2



Content of the thesis

for G, see [BDT20, Thm. A]. They pushed further the techniques of Geck by consider-
ing summands of generalised Gelfand�Graev characters, called the Kawanaka characters.

The goal of this thesis is to remove some conditions in [BDT20, Thm. A] on the
prime ℓ by extending the methods of Brunat�Dudas�Taylor. The case of the classical
groups at the unique bad prime ℓ = 2 was already treated by Geck in [Gec94] and Chaneb
in [Cha21, Thm. 2.8], and we therefore focus on the exceptional groups. The main
involved issue is to better understand the restriction of character sheaves to conjugacy
classes. We show the following main theorem.

Theorem. Let G be a simple exceptional group of adjoint type de�ned over k, an alge-
braically closed �eld of characteristic p with Frobenius endomorphism F . Assume that p
is good for G. Let ℓ be a bad prime for G, then the decomposition matrix of the unipotent
ℓ-blocks of GF is lower-unitriangular.

Combined with the previous results, the following statement holds true.

Theorem. Let G be a connected reductive group de�ned over k, an algebraically closed
�eld of characteristic p with Frobenius endomorphism F . We suppose that the derived
subgroup of G is adjoint. Assume that p is good for G. Let ℓ be a prime di�erent from p,
then the decomposition matrix of the unipotent ℓ-blocks of GF is unitriangular.

The proof of our main result leads us to develop methods that we believe are ap-
plicable to the remaining blocks. As a trial, we apply them to the isolated ℓ-blocks for
groups of type G2 and F4.

Content of the thesis

This manuscript is divided into three parts, each of them consisting of two chapters.
This description re�ects the main elements we need to show the unitriangularity of the
decomposition matrix of a union of blocks B for a �nite reductive group G.

Our strategy relies on the fact that it is su�cient to show the unitriangularity of a
decomposition matrix of modular projective modules (not necessarily indecomposable)
into the irreducible ordinary modules in B. To do so, we �rst need to compute the num-
ber n of projective modules needed, that is the number of irreducible Fℓ[G]-modules in
the union of blocks B. We then �nd n candidates for the irreducible ordinary modules
and n candidates for the projective modular modules and lastly, check that the corre-
sponding decomposition matrix is unitriangular. The last two chapters are dedicated to
applying this strategy in our cases.

However, to �nd candidates for the ordinary modules, we �rst need to understand
them. This is the aim of the �rst two chapters, where we present some known and
signi�cant results on the representation theory of �nite reductive groups.

Nonetheless, our knowledge is not yet su�cient to be able to directly compute the
decomposition matrix. To achieve our goal, we need to go to the other side of the
mirror and look at the character sheaves of G. There, we are able to compute the
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values of character sheaves at certain conjugacy classes, and conclude the proof of the
unitriangularity of the decomposition matrix. This technical part is detailed in the third
and fourth chapters.

Representation theory of �nite groups of Lie type (Chapters 1
and 2)

The �rst two chapters are purely expository and gather some well-known results in the
theory of �nite reductive groups, statements that can be found in most textbooks. Our
principal resource is the book by Geck and Malle [GM20].

Finite reductive groups

In Chapter 1, we de�ne the �nite reductive group G ∶= GF as the �xed points un-
der a Steinberg endomorphism F of a connected reductive algebraic group G de�ned
over k = Fp for p a prime number. This underlying in�nite group will play an indis-
pensable role throughout this thesis. For instance, algebraic groups come with some
purely combinatorial data, known as the root datum which allows us to classify them.
We also take advantage of this chapter to collect facts on the unipotent and semisimple
conjugacy classes of G.

Parameterisation of the ordinary characters

After laying out the general setup, we outline the ordinary representation theory of G
in Chapter 2. The pivotal idea to treat the complex-valued representations of all the
�nite reductive groups at once came o� the back of the work undertaken by Deligne and
Lusztig [DL76]. They looked at certain G-equivariant varieties and then considered the
alternating sum of their cohomologies with compact support. This construction gives a
virtual character of G (a Z-linear combination of irreducible ordinary characters).

This method enables us to partition the set irrC(G) of irreducible complex charac-
ters into rational series E (G,s) indexed by a set of representatives of the semisimple
conjugacy classes in the dual group (G∗)F ∗ . The series indexed by the neutral ele-
ment is called unipotent and is denoted by Uch(G). If the centre Z(G) is connected,
then there exists a bijection between E (G,s) and Uch(CG∗(s)F

∗
), thanks to the Jordan

decomposition of characters [Lus84a, Thm. 4.23].
Moreover, Lusztig showed in [Lus84a] that each series can be further partitioned into

families, themselves labelled in terms of a small �nite group, the ordinary canonical
quotient. To each family is also associated a family of characters of the Weyl group
of C○G∗(s) and a unipotent conjugacy class of G, called the unipotent support. This
class gives information on the values of the characters in the corresponding family. In the
case of the unipotent characters, to each family corresponds a di�erent unipotent conju-
gacy class, called special. Furthermore, this class completely determines the ordinary
canonical quotient.
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Content of the thesis

On character sheaves (Chapters 3 and 4)

The character sheaves on G mirror in the geometric world the ordinary representations
of G. When looking at the ordinary representations of G, we consider G-equivariant
perverse sheaves on G-equivariant varieties. In a series of papers in the eighties, Lusztig
developed a theory where he studied certain G-equivariant perverse sheaves on G-equi-
variant varieties: the character sheaves. This geometric approach is formidable to get
information on the ordinary representation theory of G.

A geometric mirror of the ordinary representations

Firstly, characteristic functions of the F -stable character sheaves form a new basis for
the class functions of G. On top of that, if the centre Z(G) is connected, we understand
the change of basis between characteristic functions of the F -stable character sheaves
and ordinary irreducible characters of G ([Sho95b]).

Moreover, the set Ĝ of character sheaves can be labelled in a similar way as irrC(G).
Firstly, by the way they are constructed, each character sheaf belongs to a unique se-
ries Ĝs where s runs over a set of representatives of the semisimple conjugacy classes
in G∗. Each series Ĝs itself decomposes into families associated to families of the Weyl
group of C○G∗(s) and parameterised using the same small �nite group as for the ordinary
irreducible characters.

Thus character sheaves are the counter part on the algebraic group G of the complex
irreducible modules. We then have an easier access to the geometry of G and we can
hope to deduce more information on the values of their characteristic functions than
what we currently know on the values of ordinary characters.
In the fourth chapter, we use these properties to compute the values of character sheaves
on certain conjugacy classes. To explain our methods, we �rst need to recall a second
partition of Ĝ.

A labelling in terms of characters of relative Weyl groups

This di�erent parameterisation is given in terms of cuspidal induction data of the
form m = (L,Σ,E0) where L is a Levi subgroup of G, Σ = D0Z○(L) where D0 is a
conjugacy class of L whose semisimple part is isolated, and E0 is a local system on Σ.
The character sheaves in Ĝ(m) are labelled thanks to the irreducible characters of an
algebra Am. In [Lus84b], Lusztig showed that this algebra is isomorphic to the group
algebra of a certain relative Weyl group Wm twisted by a cocycle. If D0 is a unipotent
conjugacy class, then he proved that the cocycle is trivial anf fully described this iso-
morphism. When G is simple and adjoint, Shoji con�rmed that the cocycle is trivial in
general ([Sho95a]). Assuming that p is good for G and that G is of adjoint type, we
give a description of the isomorphism Qℓ[Wm] ≅ Am in Lemmas 3.2.21 and 3.2.22. We
base our reasoning on previous work by Bonnafé [Bon04] when D0 is unipotent.

This partition of the character sheaves already gives us information on their values
at a mixed conjugacy class D = (su)G with s ∈ G a semisimple element and u ∈ C○G(s)
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unipotent. Again, let A be a character sheaf coming from the cuspidal induction da-
tum m = (L,Σ,E0). Then A restricted to D is zero if the semisimple part of Σ does not
contain a G-conjugate of s.

Restriction to a unipotent conjugacy class

As a �rst step towards our main goal, we recall how to compute the restriction of
character sheaves to a unipotent conjugacy class C. It is a consequence of the generalised
Springer correspondence, a famous result due to Lusztig [Lus84b].
Let A be a character sheaf coming from the cuspidal induction datum m = (L,Σ,E0).
Then the character sheaf A restricted to C is zero unless Σ is of the form C0Z○(L)
where C0 is a unipotent conjugacy class of L. Assume this is the case, then the local
system E0 comes from a local system EC0 on C0 and another one EZ on Z○(L).
If EZ is trivial, the generalised Springer correspondence tells us that A corresponds to a
unique unipotent conjugacy class CA of G and that A restricted to CA is an irreducible
local system on CA. Moreover, if C /⊆ CA, then A restricted to C is zero as well.
On the other hand, if EZ is not trivial, we get information on A restricted to C thanks
to the isomorphism Qℓ[Wm] ≅ Am �xed by Lusztig. Let m′ = (L,Σ,E ′0) be the cuspidal
induction datum where E ′0 is constituted of EC0 and the trivial local system on Z○(L).
The groupWm is a subgroup ofWm′ . If the character sheaf A is labelled by a character ϕ
of Wm, then the restriction of A to C comes from the restriction of the character sheaves
in Ĝ(m′) labelled by characters ψ of Wm′ whose restriction contains ϕ.

Restriction to a mixed conjugacy class

When D = (su)G is a mixed conjugacy class with u ∈ C○G(s) unipotent and s ∈ G
semisimple, computing the stalk of A at su boils down to computing the stalk of s∗A
at u. Here s∗ denotes the pullback by the translation by s. Building on the previous
work of Lusztig for the induction of a character sheaf, we decompose (s∗A)(u)C○

G
(s) (up to

a shift) into a direct sum of characters sheaves of H ∶= C○G(s) restricted to the unipotent
class (u)H. These character sheaves on H come from cuspidal induction data of H of
the form (Ls,Σs,E) with Σs consisting of a unipotent conjugacy class of H times the
centre of Ls. We are thus back to the previous setting.
As before we want to use the labelling in terms of characters of the relative Weyl groups.
That is why we needed to explicit the isomorphism Qℓ[Wm] ≅ Am. The details are
laid out in Subsection 4.3.3 for the unipotently supported character sheaves and in
Subsection 4.3.4 when G is simple of adjoint type and p is a good prime for G.

The unitriangularity of the ℓ-decomposition matrix (Chapters 5
and 6)

In the last chapters, we focus on the main goal of this thesis. We �x a prime ℓ ≠ p and
an ℓ-modular system (O,K,Fℓ) for G.
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Content of the thesis

Thanks to Broué and Michel ([BM89]), the partition of the irreducible ordinary char-
acters of G into ℓ-blocks is compatible with the partition into rational series: we can �nd
a union of blocks B(G, t), for a semisimple ℓ′-element t of (G∗)F ∗ , such that the set of
ordinary characters belonging to B(G, t) is a union of rational series of the form E(G, ts)
where s ∈ (G∗)F ∗ is an ℓ-element. The union of blocks indexed by the neutral element is
called the unipotent ℓ-blocks and the ones indexed by isolated elements are said to be
isolated. A semisimple element t ∈ G is said to be isolated if its connected centraliser
is not contained in a proper Levi subgroup of G.

Moreover, Bonnafé and Rouquier [BR03] showed a version of Jordan decomposition
for the blocks: if CG∗(t) is a Levi subgroup then the union of blocks B(G, t) is Morita
equivalent to B(L,1) where L is the Levi subgroup of G in duality with CG∗(t). There-
fore, we concentrate on the unipotent and isolated ℓ-blocks.

Strategy of the proof

Let B be a union of ℓ-blocks of G. To show the unitriangularity of the decomposition
matrix of B, we apply the following strategy.

Step 1 Compute the number n of projective indecomposable modules in B.

Step 2 Choose n ordinary irreducible modules V1, . . . , Vn ∈ IrrK(G) belonging to B.

Step 3 Choose n projective modules P1, . . . , Pn of Fℓ[G].

Step 4 Check that the decomposition matrix D, given by dij ∶= ⟨Vi, PO
j ⊗O K⟩ for

1 ≤ i, j ≤ n is lower-unitriangular.

Note that it is su�cient to consider any projective modules of Fℓ[G], not necessarily
indecomposable ones.

Step 1 of the proof

Concerning the �rst step, when ℓ is good and Z(G) is connected, the number n is
known for any union of blocks B(G, t) for a semisimple ℓ′-element t of (G∗)F ∗ . This
is a result of Geck and Hiss [GH91]. When ℓ is bad and G of classical type or for
the unipotent ℓ-blocks, it was also computed by Geck and Hiss in [Gec94] and [GH97].
In Proposition 5.1.14, we explain how one can use similar arguments to compute the
number n of projective indecomposable modules in B(G, t) for an isolated semisimple ℓ′-
element t of (G∗)F ∗ , when G is of exceptional type, simple modulo its centre, and p is
good for G. These numbers can be found in Appendix B.2.

Steps 2 and 3 of the proof

For Steps 2 and 3, we base our methods on the ones developed by Geck in [Gec91] and
Brunat, Dudas and Taylor in [BDT20]. Fix a semisimple ℓ′-element t of (G∗)F ∗ . We
determine the unipotent supports C1, . . . ,Cr of the characters belonging to B(G, t) with
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a total ordering C1 < ⋅ ⋅ ⋅ < Cr, such that Ci < Cj if dimCi ≤ dimCj for all 1 ≤ i < j ≤ r.
Then, for each 1 ≤ i ≤ r,

� we choose ni irreducible modules V i
1 , . . . , V

i
ni
∈B(G, t) with wave front set Ci (that

is whose dual under Alvis�Curtis duality has unipotent support Ci),

� and ni projective Fℓ[G]-modules P i
1, . . . , P

i
ni
.

We require ∑1≤i≤r ni = n. In the unipotent case, the numbers ni are conjectured by
Chaneb [Cha19]. For the projective Fℓ[G]-modules, we choose the generalised Gelfand�
Graev characters (GGGCs) or certain summands called the ℓ-Kawanaka modules. Thanks
to their properties, the decomposition matrix D has the following shape.

C1 C2 Cr

P 1
1 P 1

n1
P 2
1 P 2

n2
P r
1 P r

nr

V 1
1

D1

V 1
n1

V 2
1 * * *

* * * D2

V 2
n2

* * *

* * * * * *

* * * * * * *

* * * * * * * *

V r
1 * * * * * * * * *

* * * * * * * * * Dr

V r
nr * * * * * * * * *

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Step 4 of the proof

The �nal chapter consists in verifying that the matrices Di are lower-unitriangular for
each unipotent class Ci we consider. Our current understanding of the values of ordinary
characters as such is however not su�cient. Nonetheless, we know another basis for the
class functions of G on which we hope to have more control: the characteristic func-
tions of F -stable character sheaves. Therefore, we instead compute the decomposition
of a Fourier transform of the Kawanaka characters into certain characteristic functions
of F -stable character sheaves with unipotent support Ci.
This is when the restriction of character sheaves to mixed conjugacy classes of Chapter 4
becomes useful.

In the unipotent case, when ℓ is good for G, the proof of Brunat�Dudas�Taylor uses
a theorem of Lusztig [Lus15] which predicts the value of a character sheaf restricted to a
conjugacy class whose unipotent part is its unipotent support. As we tried to reproduce
a proof of this theorem, we found some counter-examples in the exceptional families
of E7 and E8.
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Content of the thesis

In our proof for simple exceptional groups of adjoint type for the unipotent blocks, we
instead apply the formulas of Chapter 4 using CHEVIE [Mic15] to derive the information
we need to show the unitriangularity. The general arguments are similar to the ones
of Brunat�Dudas�Taylor but do not rely on [Lus15] and thus involve more case-by-
case analysis. For ℓ bad, in order to avoid too many computations, we also use some
properties of GGGCs given by Geck and Hézard in [GH08].
In the last section, we treat the cases of the isolated blocks of G2 and F4, applying
similar methods.

Links between the chapters

The following �gure summarises the various links between the chapters. An arrow from A
to B means that B requires results stated in A.

Proof of the
unitriangularity

Chapter 6

Steps 1 and 2:
Basic sets
Chapter 5

Step 3:
GGGC and

Kawanaka modules
Chapter 5

Step 4
Chapter 6

Knowledge of
IrrC(G)
Chapter 2

Values of
character sheaves

Chapter 4

Character sheaves
Chapter 3

Properties of
G and G
Chapter 1

Figure 1: Links between the chapters
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Perspectives

The themes discussed during this thesis open the door to new questions both about
decomposition matrices of �nite reductive groups, but also on the level of character
sheaves.

About the unitriangularity of the ℓ-decomposition matrices

One innate problem is to conclude the proof of the unitriangularity of the ℓ-decomposition
matrix of the �nite reductive groups. Our results could be extended in di�erent direc-
tions. Firstly, similar methods should be applicable to the isolated ℓ-blocks of the adjoint
simple groups of type E6, E7, and E8, assuming p is good. For the classical groups when
the prime ℓ is good, we would need to understand the combinatorics behind the param-
eterisation of the ordinary characters instead of using CHEVIE [Mic15].
Another question would be to look at groups that are not necessarily simple of adjoint
type. A �rst example to consider could be the isolated ℓ-blocks of Spn(Fq), again as-
suming that the prime p is good.
Investigating the properties of the basic sets might also be worthwhile to group theorists.
For instance, we could verify if they iare stable under group automorphisms.
Furthermore, we could ask how to remove the assumption on p. This seems a much
more di�cult question which requires the development of new tools. In particular, we
would have to �rst de�ne generalised Gelfand�Graev characters for a bad prime which
satisfy the same properties as the GGGCs when p is good. So far, this has not been
proven for the de�nition of GGGCs in bad characteristic given by Geck in [Gec21a].
At a more fundamental level, we could wonder if there is a conceptual reason behind the
unitriangularity of the ℓ-decomposition matrices of �nite groups of Lie type. In [CR17],
Chuang and Rouquier explain that this result might be a consequence of a stronger
version of Broué's abelian defect group conjecture ([Bro90, Sect. 6]). This local-global
statement a�rms the existence of a perverse equivalence between a block of the group
algebra K[G] with abelian defect and its Brauer correspondent. Some progress has
been made towards proving this conjecture, but contrary to other conjectures in the
�eld, there is no reduction to simple groups, see the survey in [Mal17].

About character sheaves

Since we have a formula for the restriction of character sheaves to a mixed conjugacy
class, it would be natural to try to derive a formula for the characteristic functions of
the F -stable character sheaves. To do so, we would need to keep track of the isomor-
phism de�ning the characteristic function. If the resulting formula is relatively practical
to use, this would have blatant applications to computing the character tables of �nite
reductive groups.
A second fascinating problem is to try to use our better understanding of the translation
of character sheaves to understand their labelling in the same vein as Lusztig does in
[Lus15]. If a character sheaf A on G is parameterised by an element a of the ordinary
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canonical quotient, then the restriction of A to a conjugacy class (su)G is zero unless
the semisimple element s �corresponds� to a.
Finally, character sheaves and ordinary characters are closely related. One could inquire
if a modular version of character sheaves, similarly connected to the modular charac-
ters, exists. A modular generalised Springer correspondence has already been identi�ed
by Achar, Henderson, Juteau and Riche, see [AHJR19]. Moreover, modular character
sheaves on Lie algebras have been de�ned very recently by Sandvik in [San24] who ex-
tended ideas of Mirkovi¢ in the ordinary case. It relies on properties of the Lie algebra
which are however not available for connected reductive groups, such as the Fourier
transform.

11



Notation

We list the basic notation and conventions taken in this thesis. Most of them have
either been introduced in the introduction, can be found in the Appendix A or are very
standard. The rest of the symbols introduced along the course of this manuscript can
be found in the Index.
For the rest of this thesis, we �x p a prime number, q a power of p and ℓ another prime
number. We will always assume that p ≠ ℓ.

Fields and rings

Λ any ring
F any �eld
F the algebraic closure of the �eld F
C �eld of complex numbers
Q �eld of rational numbers
Z ring of integers
N set of natural numbers
Qℓ algebraic closure of the �eld of ℓ-adic numbers.
Fq �nite �eld of order q
k ∶= Fp the algebraic closed �eld of characteristic p
(Q/Z)p′ the group of all elements in Q/Z of order prime to p
Z(p) the localisation of Z at the prime ideal pZ

The majority of the representation theory of �nite reductive groups is de�ned over
the ℓ-adic numbers. However, to compute the scalar product of characters, it is useful to
consider complex conjugates. We therefore identify Qℓ and C via a �xed isomorphism.

12



Notation

Modules and characters

Let H be a �nite group.

Λ[H] the group algebra of H with coe�cient in the ring Λ
Λ[H] -mod category of left �nite dimensional &∣[visibleon =< 4− >]∣ ∗H]-modules
irrF(H) set of the irreducible characters of H over F
Z irrF(H) set of Z-linear combinations of the irreducible characters of H over F

(if Z ⊆ F)
IrrF(H) set of the isomorphisms classes of irreducible F[H]-modules
(O,K,k) a splitting ℓ-modular system for H where O is a complete discrete

valuation ring of characteristic 0 with maximal ideal M , the fraction
�eld K = Frac(O) has characteristic 0 and enough roots of unity
(contains all the ∣H ∣th roots of unity) and k =O/M is an algebraically
closed �eld of characteristic ℓ, i.e. k = Fℓ

Proj(H) set of projective k[H]-modules
χV character associated to V ∈K[H] -mod
Vϕ a K[H]-module with character ϕ ∈ irrK(H)
PW projective indecomposable module, projective cover of W ∈ Irrk(H)
PO the O[H]-module (unique up to isomorphism) such that PO⊗O k ≅ P

for P ∈ Proj(H)
ΨP ∶= ϕPO⊗OK character of the K[H]-module PO ⊗O K for P ∈ Proj(H)
VO free O[H]-module such that VO ⊗O K ≅ V for V a K[H]-module
⟨χ,ψ⟩ scalar product of two characters χ and ψ of H,

⟨χ,ψ⟩ ∶=
1

∣H ∣
∑
h∈H

χ(h)ψ(h) = ⟨Vχ, Vψ⟩K

⟨V,V ′⟩F scalar product of two F[H]-modules V,V ′,

⟨V,V ′⟩F ∶= dimFHomFH(V,V
′)

[P,V ] the decomposition number of V into PO ⊗O K,

[P,V ] ∶= ⟨P,VO ⊗O k⟩k = ⟨P
O ⊗O K, V ⟩K = ⟨ΨP , ϕV ⟩

for P ∈ Proj(H) and V ∈K[H] -mod
DH the decomposition matrix of H with entries indexed by V ∈ IrrK(H)

and W ∈ Irrk(H)
dHV,W = d

H
ϕV ,ΨP

∶= [PW , V ]
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(Algebraic) group structure

For H a group, any elements h,h′ ∈ H and any subset J ⊆ H, we use the following
notation.

∣H ∣ order of H
CH(h),CH(J) centraliser of h or J in H
NH(h),NH(J) normaliser of h or J in H
Z(H) centre of H
[H,H] derived subgroup of H
(h)H conjugacy class of h in H
hh′, hJ conjugation by h on the left, hh′ ∶= hh′h−1, hJ ∶= {hj ∣ j ∈ J}
h′h, Jh conjugation by h on the right h′h ∶= h−1h′h, hJ ∶= {jh ∣ j ∈ J}

Let G be an algebraic group.

G○ connected component of G containing the identity
ad(g) ∶G→G adjoint map sending h↦ ghg−1 for h ∈G
Lie(G) the Lie algebra of G, the group G acts on Lie(G) via the di�erential

of the adjoint map
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Chapter 1

Finite groups of Lie type

In this chapter, we gather all the principal notions and necessary results concerning the
�nite groups of Lie type. Roughly speaking, these groups are the �xed points under an
endomorphism of a (connected reductive) linear algebraic group, i.e. an a�ne variety
equipped with a group structure such that the group operation and the inversion are
morphisms of varieties. This geometric aspect has crucial repercussions on the descrip-
tion of the �nite groups of Lie type.

We recall the following vocabulary:

De�nition 1.0.1. Let G be an algebraic group over k ∶= Fp , where p is a prime number.
We say that g ∈G is unipotent if g is a p-element. If g is a p′-element, g is said to be
semisimple.
We denote by Ru(G), the unipotent radical of G, that is the maximal connected normal
subgroup of G containing only unipotent elements. If Ru(G) = {1}, we say that G is
reductive. A connected reductive algebraic group is called semisimple if its center is
�nite. Lastly, if G is non-trivial and contains no proper, non-trivial closed connected
normal subgroups, then G is said to be simple.

The main results of this thesis (Chapter 6) are concerned with simple or semisimple
groups. However, we will often come across reductive groups, for instance as subgroups.
We notice that connected reductive groups G are in some sense not too far from being
semisimple. We have G = [G,G]Z○(G) and the derived subgroup [G,G] is semisimple
(see [MT11, Cor. 8.22]).

In Section 1.1, we state the classi�cation of connected reductive groups thanks to
their root data. We review in the following section how these notions translate to
�nite groups after taking �xed points. It will allow us to study these groups and their
representations in a generic way. As later on we will consider class functions, we use
the last section to give an overview of the unipotent and semisimple conjugacy classes
as well as their centralisers.
All the material exposed in this chapter can be found in greater detail in graduate
textbooks. We mostly follow [GM20], [MT11] and [Car85].

15



Chapter 1. Finite groups of Lie type

1.1 Reductive groups

We assume that the reader is familiar with some basic notions concerning linear algebraic
groups and algebraic geometry. If wanted, the books of Geck [Gec03] and Hartshorne
[Har77] as well as Section 1.1 of [GM20] provide great introduction.

The main purpose of this section is to recall the de�nition of root datum and how
it classi�es the connected reductive algebraic groups. This combinatorial notion and
some variants are powerful tools used to describe algebraic groups, Lie algebras, �nite
re�ection groups, and other related concepts.

1.1.1 Root data

The notion of root datum was �rst introduced in [DG11, Exposé XXI]. We state here the
de�nition and some basic properties, following [GM20, � 1.2] and [MT11, Appendix A].

De�nition 1.1.1 ([GM20, � 1.2.1]). Let X and X̆ be free abelian groups of the same
�nite rank such that there is a bilinear pairing ⟨ , ⟩ ∶ X × X̆ → Z which induces iso-
morphisms X̆ ≅ Hom(X,Z) and X ≅ Hom(X̆,Z), i.e., a perfect pairing. Let Φ ⊆ X
and Φ̆ ⊆ X̆ be �nite subsets. The quadruple (X,Φ, X̆, Φ̆) is called a (reduced) root
datum if the following conditions hold.

(Φ1) There is a bijection Φ
∼
→ Φ̆, α ↦ ᾰ, such that ⟨α, ᾰ⟩ = 2 for all α ∈ Φ.

(Φ2) If α ∈ Φ, then 2α ∉ Φ.

(Φ3) For α ∈ Φ, we de�ne endomorphisms

sα ∶X →X s̆α ∶ X̆ → X̆

λ↦ λ − ⟨λ, ᾰ⟩α ν ↦ ν − ⟨α, ν⟩ᾰ

and we require that sα(Φ) = Φ and s̆α(Φ̆) = Φ̆ for all α ∈ Φ.

We call the elements in Φ the roots and the elements in Φ̆ the co-roots.
The sets W ∶= ⟨sα ∣ α ∈ Φ⟩ and W̆ ∶= ⟨s̆α ∣ α ∈ Φ⟩ are the Weyl groups of Φ and Φ̆
respectively.

By [GM20, Lem. 1.2.3a], there is a unique group isomorphism δ ∶ W
∼
→ W̆ such

that δ(sα) = s̆α for each α ∈ Φ. Moreover,

⟨w−1(λ), ν⟩ = ⟨λ, δ(w)ν⟩ for allw ∈W, λ ∈X, ν ∈ X̆.

From now on, we identify W with W̆ using the isomorphism δ.

Since X ≅ Hom(X̆,Z), we can see X as a subgroup of Hom(ZΦ̆,Z). If they are
equal, we say that the root datum is simply connected. On the other hand, we
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1.1. Reductive groups

always have ZΦ ⊆ X. If the two sets are equal, we say that the root datum is of ad-
joint type (c.f. [MT11, Def. 9.14]).

Remark that we can extend scalars from Z to Q, settingXQ ∶=X⊗ZQ. In that case, Φ
is a reduced crystallographic root system in the subspace QΦ of XQ ([Bou68, Chap. VI,
� 1, Déf. 1]). Therefore, there is a subset ∆ ⊆ Φ which is linearly independent in QΦ and
such that every root can be written as either a Q≤0-linear combination or a Q≥0-linear
combination of elements in ∆. We say that ∆ is a base for Φ and we call its elements
simple roots. If α ∈ Φ is such that α = ∑β∈∆ xββ with xβ ∈ Q≥0 for β ∈ ∆, we call α a
positive root. The set of positive roots is denoted by Φ+ and we set Φ− ∶= − Φ+. We
thus have Φ = Φ+ ⊔Φ−. In fact, it can be shown that every positive root is a Z≥0-linear
combination of elements in ∆.
Moreover, W is a Weyl group with generators {sβ ∣ β ∈ ∆} and relations (sβsγ)mβγ = 1
where mβγ denotes the order of sβsγ. To a Weyl group, one associates a Dynkin di-
agram de�ned as follows. Its vertices are labelled by ∆. For α,β ∈ ∆ with α ≠ β,
the corresponding vertices are joined by ∣⟨β, ᾰ⟩∣ edges if ∣⟨β, ᾰ⟩∣ ≤ ∣⟨α, β̆⟩∣. If more-
over, ∣⟨β, ᾰ⟩∣ > 1, the edge is oriented towards the vertex labelled α.
We say that a root system Φ is indecomposable if the underlying graph of its associated
Dynkin diagram is connected. Weyl groups are determined by their Dynkin diagrams.
Furthermore, connected Dynkin diagrams have been classi�ed (see Table 1.1.1), and so
have root systems [Hum78, Thm. 11.4]. We also �x a labelling of the simple roots of
each indecomposable root system following the notation taken in CHEVIE [Mic15].

Classical types Exceptional types

An
n≥1

1 2 n − 1 n
E6

1

2

3 4 5 6

Bn
n≥2

nn − 121
E7

1

2

3 4 5 6 7

Cn
n≥3

nn − 121
E8

1

2

3 4 5 6 7 8

Dn
n≥4

nn − 143
1

2

G2

1 2

F4

1 2 3 4

Table 1.1: Dynkin diagrams of the indecomposable crystallographic root systems

Lastly, we observe that if (X,Φ, X̆, Φ̆) is a root datum, then (X̆, Φ̆,X,Φ) is also a root
datum, called the dual root datum ([GM20, Lem. 1.2.3b]). The notion of dual comes
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Chapter 1. Finite groups of Lie type

from the fact that the dual of Q⊗ZX with respect to the pairing ⟨ , ⟩ can be identi�ed
with Q ⊗Z X̆. In particular, we de�ne for each simple root α ∈ ∆ a fundamental co-
weight ω̆α ∈ Q⊗Z X̆ such that ⟨α, ω̆β⟩ = δα,β for α,β ∈∆.
Notice that the two root systems Φ and Φ̆ are not always isomorphic. However, this is
the case if Φ is of exceptional type since we easily check that the Dynkin diagrams are
isomorphic. Moreover, if the root datum is adjoint (resp. simply connected) then its
dual is simply connected (resp. adjoint), see [GM20, Ex. 1.5.20].

1.1.2 Root data of reductive groups

We can always associate a root datum to a connected reductive algebraic group, and
thus deduce a classi�cation. In this subsection, we explain how this process works. Let
us consider G, a connected reductive algebraic group over k. We also �x a maximal
torus T ≤G, that is, an abelian algebraic subgroup of G, isomorphic to a direct product
of �nite copies of k× of maximal dimension.
We �rst de�ne two free abelian groups of the same rank with a perfect pairing following
[GM20, � 1.1.11].

De�nition 1.1.2. A homomorphism of algebraic groups λ ∶ G → k× is called a char-
acter and the abelian group of all characters is denoted by X(G). Symmetrically,
a homomorphism of algebraic groups ν ∶ k× → G is a co-character and it belongs
to X̆(G).

We consider X(T) and X̆(T). These two groups are free abelian, of �nite rank the
dimension of T. We can also de�ne a pairing ⟨ , ⟩ ∶ X(T) × X̆(T) → Z by the condition
that λ(ν(ξ)) = ξ⟨λ,ν⟩ for all λ ∈X(T), ν ∈ X̆(T) and ξ ∈ k×.

We now de�ne the roots, following [GM20, �1.1.12]. Let Lie(G) be the Lie algebra
of G. The maximal torus T acts on Lie(G) via the adjoint representation. To each
character λ ∈X(T), we associate the weight subspace

Lie(G)λ ∶= {x ∈ Lie(G) ∣ t.x = λ(t)x for all t ∈ T}.

If Lie(G)λ is not empty and λ ≠ 0, we say that λ is a root of G relative to T. We
denote by Φ(G,T) ∶= Φ(T) the set of all roots of G relative to T.
Since G is reductive, we have dimLie(G)α = 1 for all α ∈ Φ(T) (see [GM20, �1.1.12]).
We setUα(T) for the unique one-dimensional closed connected unipotent subgroup ofG
normalized by T with Lie(Uα(T)) = Lie(G)α, and we called it a root subgroup. Note
that there is a canonical way to embed the Lie algebra Lie(Uα(T)) in Lie(G).
Associated to a maximal torus, there is aWeyl group WG(T) ∶= NG(T)/T. This group
acts via automorphisms on X(T) and X̆(T) as follows. For w ∈ WG(T), we denote
by ẇ a representative of w in NG(T). For λ ∈X(T) and ν ∈ X̆(T), we set

w.λ(t) ∶= λ(ẇ−1tẇ) for t ∈ T and (w.ν)(ξ) ∶= ẇν(ξ)ẇ−1 for ξ ∈ k×.
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1.1. Reductive groups

Following [GM20, �1.3.1-1.3.2], we de�ne for each α ∈ Φ(T) a re�ection sα ∈ WG(T)
and a co-root ᾰ ∈ Φ̆(T) such that

sα.λ = λ − ⟨λ, ᾰ⟩α for allλ ∈X(T).

Then the quadruple (X(T),Φ(T), X̆(T), Φ̆(T)) is a root datum withWeyl groupWG(T).

There is a natural notion of isomorphisms of root data, see [GM20, �1.2.2]. If we
choose another maximal torus T′ of G then the root data (X(T),Φ(T), X̆(T), Φ̆(T))
and (X(T′),Φ(T′), X̆(T′), Φ̆(T′)) are isomorphic. Therefore, we might now speak of
the root datum of G. Moreover, the root data classify the connected reductive groups.

Theorem 1.1.3 (Chevalley Classi�cation Theorem, [Spr09, Thm. 9.6.2, Thm. 10.1.1]).
Two connected reductive algebraic groups over k are isomorphic if and only if they have
isomorphic root data. Furthermore, for each root datum there exists a connected reductive
algebraic group which realises it. Lastly, a connected reductive group is simple if and only
it is a semisimple group with an indecomposable root datum.

Notation 1.1.4. If the context is clear, we might drop the symbol T and write

(X,Φ, X̆, Φ̆) ∶= (X(T),Φ(T), X̆(T), Φ̆(T)) and W ∶=WG ∶=WG(T).

As stated in Theorem 1.1.3, the root datum associated to G contains a lot of infor-
mation on the structure of G. We have

G = ⟨T,Uα ∣ α ∈ Φ⟩ see [MT11, Thm. 8.17(g)].

We could wonder what happens if we take a subset of Φ instead. Let us now �x ∆ a
base for Φ and Φ+ the corresponding positive roots. For instance, we may consider

B = ⟨T,Uα ∣ α ∈ Φ
+⟩.

This is a Borel subgroup of G, i.e., a maximal closed connected solvable subgroup of G.
Recall that all Borel subgroups of G are conjugate ([MT11, Thm. 6.4]).

Remark 1.1.5. If we choose another base for Φ, then we get another Borel subgroup
of G. Conversely, if we �x a Borel subgroup B′ ⊆G with T ⊆ B′, there is a unique base
of G such that B′ is generated by T and the positive root subgroups relative to this
new base [GM20, Rmk. 1.3.4]. Therefore, we might sometimes speak of the root datum
of G relative to T and B to indicate that we have �xed a base.

For a subset I ⊆∆, we de�ne

ΦI ∶= Φ ∩∑
α∈I

Zα.

Then ΦI is a root system in QΦI with base I and Weyl group WI ∶= ⟨sα ∣ α ∈ ΦI⟩, see
[MT11, Prop. 12.1]. We de�ne

PI ∶= ⟨T,Uα ∣ α ∈ Φ
+ ∪ΦI⟩.
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Chapter 1. Finite groups of Lie type

The subgroup PI is closed, connected, self-normalising and contains B. All overgroups
of B in G arise in this way. Moreover, the subgroup PI is isomorphic to PJ for J ⊆∆ if
and only if I = J ([MT11, Prop. 12.2]). We call PI a standard parabolic subgroup
of G and a G-conjugate of PI is simply said to be parabolic.
Notice that the parabolic subgroups are not necessarily reductive. However, we can
decompose PI into its unipotent radical

Ru(PI) = ⟨Uα ∣ α ∈ Φ
+/ΦI⟩ =∶UI

and a complement group LI ∶= ⟨T,Uα ∣ α ∈ ΦI⟩, which is connected reductive. We write
PI = UI ⋊ LI and this decomposition is called the Levi decomposition of PI , c.f.
[MT11, Prop. 12.6, Def. 12.7]. We say that LI is a (standard) Levi subgroup. It has
root system ΦI . More generally, for J ⊆ Φ, we denote by ΦJ the root system generated
by the roots in J , i.e.

ΦJ ∶= Φ ∩ ∑
α∈J

Zα.

and WJ the Weyl group generated by the re�ections sα for α ∈ ΦJ .

Another important way of rewriting G is through the Bruhat decomposition.

Theorem 1.1.6 (Bruhat decomposition, [MT11, Thm. 11.17]). For w ∈ W , we �x a
representative ẇ ∈ NG(T). The group G can be decomposed as follows:

G = ⊔
w∈W

BẇB.

More precisely, every g ∈ G can be written uniquely as g = uẇb where b ∈ B, w ∈ W
and u ∈ ⟨Uα ∣ α ∈ Φ+,w.α ∈ Φ−⟩.

This result comes from the fact that B and NG(T) form a BN -pair for G in the
sense of [MT11, Def. 11.15].

Lastly, we consider the various possibilities for a semisimple group with a �xed root
system Φ (but di�erent root data). Recall that a root datum might be adjoint or
simply connected or neither. If the root datum of a semisimple group is adjoint (resp.
simply connected), we say that G is adjoint (resp. simply connected). If G is
adjoint, then its centre is trivial. In general, we have Z(G) ≅ Hom(X/ZΦ, k×) ([GM20,
Rmk. 1.3.5(b)]).

Proposition 1.1.7 ([GM20, Prop. 1.5.8]). Let G be a semisimple group with root da-
tum (X,Φ, X̆, Φ̆) with respect to a maximal torus T and some Borel subgroup B ≥ T.
There exists a surjective homomorphism f̃ ∶ Gsc → G where Gsc is simply connected
semisimple with root datum (X(Tsc),Φ(Tsc), X̆(Tsc), Φ̆(Tsc)) relative to a maximal
torus Tsc ⊆ Bsc, and Φ(Tsc) = Φ. Moreover, f̃ has �nite central kernel, f̃(Tsc) = T
and f̃(Bsc) = B.
Symmetrically, there exists a surjective homomorphism f ′ ∶ G → Gad where Gad is ad-
joint semisimple with root datum (X(Tad),Φ(Tad), X̆(Tad), Φ̆(Tad)) relative to a maxi-
mal torus Tad ⊆ Bad and Φ(Tad) = Φ. Moreover, f ′ has �nite central kernel, f ′(T) = Tad

and f ′(B) = Bad.

20



1.2. Finite reductive groups

Simply connected or adjoint groups satisfy interesting properties that can be carried
over to any semisimple group thanks to the above proposition. In the rest of this thesis,
we will often consider adjoint groups in order to avoid a disconnected centre.

1.2 Finite reductive groups

Thanks to the previous section, we can now recall how the classi�cation of reductive
groups passes down to �nite groups of Lie type. We start by stating some basic prop-
erties of Frobenius endomorphisms. We then use Section 1.1 to infer the de�nition of a
complete root datum, as a way to classify our objects of study.

1.2.1 De�nition and properties of the Frobenius

As stated in [MT11, Thm. 1.7], algebraic groups can be seen as matrix groups with co-
e�cients over the in�nite �eld k = Fp. We would like to study their �nite counterparts,
that is matrix groups de�ned over a �nite �eld Fq for a p-power q.
Firstly, we can see Fq as the �xed points in k under the standard Frobenius
map Fq ∶ k → k, x↦ xq. More generally, we denote by Fq any map de�ned as follows

Fq ∶ k
n ∼→ kn, (x1, . . . , xn) ↦ (x

q
1, . . . , x

q
n), for somen ∈ Z≥1.

This bijection is a morphism of varieties with �xed point set equal to Fnq .
Moreover, we would like to keep track of the geometrical structure of algebraic groups.
An a�ne variety V is de�ned over Fq or has an Fq-rational structure if there
is n ∈ Z≥1 and an isomorphism of a�ne varieties ι ∶ V → V ′ such that V ′ ⊆ kn is
closed and stable under the standard Frobenius map Fq. Hence, F ∶= ι−1 ○ Fq ○ ι is a
bijective endomorphism of V , and we call it the Frobenius morphism of V with
respect to the Fq-structure. We write V F for the �xed points of V under Fq and in
fact

V F ≅ V ′Fq = {v ∈ V ′ ∣ v ∈ Fnq }.

In particular, this de�nition applies to any algebraic group G seen as an a�ne variety
over k. Nonetheless, we doubtless also want to keep the group structure in mind. Thus,
we additionally require that F ∶ G → G is a group homomorphism. If this is the case,
we say that G is de�ned over Fq as an algebraic group [GM20, �1.4.5]. Note that the
group of �xed points GF is a �nite group. However, we do not get all the �nite groups
encompassed in the notion of �nite reductive groups. For instance, we miss the Suzuki
and Ree groups. Thus, we need to extend the de�nition.

De�nition 1.2.1 ([GM20, Def. 1.4.7]). LetG be an algebraic group. An endomorphism
of algebraic groups F ∶G→G is a Steinberg endomorphism if there exists m ∈ N such
that Fm is the Frobenius morphism of the group G with respect to some Fq-structure,
for a p-power q.
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Chapter 1. Finite groups of Lie type

The �xed point set of a Steinberg endomorphism is always �nite, and if G is simple
this property gives another characterisation of a Steinberg endomorphism, c.f. [Ste68,
Thm. 10.13].

De�nition 1.2.2 ([GM20, Def. 1.4.7]). Let G be a connected reductive group and
let F ∶ G → G be a Steinberg endomorphism. We call G ∶=GF a �nite group of Lie
type or a �nite reductive group.

Notation 1.2.3. From now on, the bold script G always denotes the algebraic group
while the normal script G is used for the �nite group, provided that we have �xed a
Steinberg endomorphism F . This applies to any algebraic group with a �xed Steinberg
endomorphism. For instance, if L is an F -stable Levi subgroup of G, we write L ∶= LF .

An indispensable tool to transfer information on algebraic groups to �nite groups is
the classical Lang�Steinberg theorem.

Theorem 1.2.4 (Lang�Steinberg Theorem, [Lan56],[Ste68, Thm. 10.1]). Let G be a
connected algebraic group and F ∶G→G a Steinberg endomorphism. Then the following
map is surjective:

L ∶G→G

g ↦ g−1F (g).

Proof. For a proof, we refer the reader to [GM20, Thm. 1.4.8].

One application of this result is to understand how an F -stable G-orbit splits into G-
orbits.

Theorem 1.2.5 ([MT11, Thm. 21.11]). Let G be a connected algebraic group and
let F ∶ G → G be a Steinberg endomorphism. Let V ≠ ∅ be a set with a transi-
tive G-action and a compatible F -action F ′ ∶ V → V i.e. for all g ∈ G, v ∈ V , we
have F ′(g.v) = F (g).F ′(v). Then

(a) there exists v ∈ V such that F ′(v) = v,

(b) and if the stabiliser StabG(v) is closed for some v ∈ V , then for any v0 ∈ V F , there
is a natural 1 − 1 correspondence:

{G-orbits onV F ′}
1−1
←→ {F -classes inStabG(v0)/Stab

○
G(v0)}.

Here the F -classes are the orbits of StabG(v0)/Stab
○
G(v0) under F -conjugation.

We say that two elements g, g′ ∈ StabG(v0)/Stab
○
G(v0) are F -conjugate if there exists an

element h ∈G such that g = F (h)gh−1.

Remark 1.2.6. Let G be an algebraic group and F ∶ G → G be a Steinberg endomor-
phism. Let H be a F -stable connected normal subgroup of G. Then

GF /HF ≅ (G/H)F .
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1.2. Finite reductive groups

Indeed, consider the map f ∶GF → (G/H)F , g ↦ gH. It is well-de�ned. We check that
it is surjective. Let g ∈ G such that gH = F (gH). Then, H acts transitively on gH
and thus, by Theorem 1.2.5, there exists an element h ∈ H with F (gh) = gh ∈ GF .
Now, f(gh) = ghH = gH and thus the map f is surjective. Lastly, we observe that the
kernel ker(f) =GF ∩H =HF and we conclude that GF /HF ≅ (G/H)F .

As a consequence of the previous theorem, we get the following result.

Corollary 1.2.7 ([MT11, Cor. 21.12]). Let G be a connected algebraic group and
let F ∶G→G be a Steinberg endomorphism. Up to G-conjugation, there exists a unique
pair (T,B) consisting of an F -stable maximal torus T of G contained in an F -stable
Borel subgroup B.

De�nition 1.2.8. Let G be a connected algebraic group and F ∶G→G a Steinberg en-
domorphism. An F -stable maximal torus of G contained in an F -stable Borel subgroup
is said to be maximally split.

1.2.2 Classi�cation of the �nite reductive groups

We now come back to the notion of root datum and how it interacts with the Steinberg
endomorphisms. Let G be a connected reductive group and F ∶ G → G a Steinberg
map. We also �x a maximally split torus T0 of G contained in an F -stable Borel B0

and (X,Φ, X̆, Φ̆) the root datum of G relative to T0. By [GM20, Rmk. 1.3.4], there is
a unique base ∆ of Φ such that

B0 = ⟨T0,Uα ∣ α ∈ Φ
+⟩.

Since both B0 and T0 are F -stable, the map F permutes the root subgroups Uα

for α ∈ Φ+. Thus, F induces a permutation α ↦ α� on Φ+ which must leave ∆ in-
variant (see [MT11, Pf. of Lem. 11.10]). More precisely, F ∶ X → X is a p-isogeny of
root data in the sense of [GM20, Def. 1.2.9].
We describe the action of F on X. We set XR ∶= X ⊗Z R. There is d ≥ 0 such
that F d

∣X
= qdidX and F∣XR = qF0 for some q a fractional power of p and F0 ∈ Aut(XR) of

order d ([MT11, Prop. 22.2]). If d = 1, we say that F is split.
Let us instead look at the map F ′ = ad(ẇ−1)○F for some �xed w ∈W and ẇ ∈ NG(T0) a
representative of w. By [GM20, Lem. 1.4.14], the map F ′ is a Steinberg endomorphism
and GF ≅ GF ′ . Moreover, the torus T0 is also F ′-stable and the map F ′0 ∈ Aut(XR)
de�ned as above for F ′ is such that F ′0 = F0 ○w ([GM20, Rmk. 1.6.13]).
On the other hand, we could consider ϕ ∈ Aut(XR) a p-isogeny for some prime p such
that ϕ can be written as ϕ = qϕ0 for some ϕ0 ∈ Aut(XR) an invertible linear map of �nite
order which normalisesW and q ∈ R≥0. Then, there exists a Steinberg endomorphism Fϕ
such that Fϕ induces ϕ on XR ([GM20, Thm. 1.3.12, Prop. 1.4.18]). These considerations
lead to the following combinatorial de�nition.

De�nition 1.2.9 ([GM20, Def. 1.6.10]). Let (X,Φ, X̆, Φ̆) be a root datum with Weyl
group W . Let ϕ0 ∈ Aut(XR) be an invertible map of �nite order which normalises W .
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Chapter 1. Finite groups of Lie type

Assume that P, de�ned to be the set of q ∈ R≥0 such that qϕ0(X) ⊆ X and qϕ0 is
a p-isogeny of root data, is non-empty. We call the quintuple G ∶= (X,Φ, X̆, Φ̆, ϕ0W ) a
complete root datum. We set PG ∶=P.

Therefore, we observe that to each complete root datum G = (X,Φ, X̆, Φ̆, ϕ0W ) and
to each q ∈PG, we can associate a connected reductive group G (unique up to isomor-
phism) with root datum (X,Φ, X̆, Φ̆) and a Steinberg map Fqϕ0 . Writing G(q) ∶= GFqϕ0 ,
we obtain a family of �nite groups

{G(q) ∣ q ∈PG}

called the series of �nite groups of Lie type de�ned by G ([GM20, Rmk. 1.6.12]).

Similarly as for root data, the dual complete root datum ofG = (X,Φ, X̆, Φ̆, ϕ0W )
is the complete root datum G∗ ∶= (X̆, Φ̆,X,Φ, ϕtr

0W ) (see [GM20, Ex. 1.6.19]). Here ϕtr
0

is the transpose map de�ned through the perfect pairing ⟨ , ⟩ ∶ X × X̆ → Z extended
to ⟨ , ⟩ ∶ XR × X̆R → R. We have PG∗ = PG and for each q ∈ PG we obtain two �nite
groups G(q) and G∗(q) coming respectively from (G, F ) and (G∗, F ∗), where F = Fqϕ0
and F ∗ = Fqϕtr0 . Those two pairs are in duality as in [GM20, Def 1.5.17]. In particular,

if T0 (resp. T∗0) is a maximally split torus of G de�ning the root system (X,Φ, X̆, Φ̆)
(resp. (X̆, Φ̆,X,Φ)) then

λ ○ F∣T0
= F ∗

∣T∗0
○ λ for allλ ∈X.

Let us introduce a little more terminology. The Steinberg endomorphism F ∶G→G
induces as well an automorphism on W , that by abuse of notation, we still denote
by F ∶ W → W . In particular, for each α ∈ Φ, we have F (sα) = sα� , see [GM20, 1.6.1].
We distinguish between the following cases.

De�nition 1.2.10 ([Lus84a, 3.1]). If for any α ≠ β ∈ Φ in the same �-orbit, the order of
the re�ection sαsβ is either 2 or 3, we say that F is ordinary.
If F induces the identity on W , we say that G = GF is untwisted. If F is ordinary
but not the identity, we say that G is twisted. Lastly, if F is not ordinary, the �nite
group G is called very twisted.

Notice that if F is a Frobenius map for G, then F is always ordinary. In this thesis,
we will most of the times assume F to be ordinary.

Hypothesis 1. From now on, we �x G a connected reductive group over k with
Steinberg map F ∶G→G. We also let T0 ⊆ B0 be a maximally split torus in an F -
stable Borel subgroup B0 of G with associated root datum (X,Φ, X̆, Φ̆), base ∆
of Φ and Weyl group W .
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1.3. Interesting conjugacy classes and their centralisers

1.3 Interesting conjugacy classes and their centralisers

In the rest of this thesis, conjugacy classes will play a preponderant role as we will study
di�erent bases of the space of class functions. Notice that every rational conjugacy
class (g)G is contained in a geometric conjugacy class (g)G for g ∈ G. Moreover, we
also have CG(g) = CG(g)F . We mainly concentrate on geometric conjugacy classes.
Clearly, for any g ∈ G there exists a unique semisimple element gs ∈ G and a unique
unipotent element gu ∈ G such that g = gsgu = gugs. This is called the Jordan de-
composition of g and we will use this notation from now on1. In particular, we
have CG(g) = CCG(gs)(gu). Thus, we focus on the conjugacy classes of semisimple and
unipotent elements. For each case, we give a parameterisation of the conjugacy classes
and a description of their centralisers.

1.3.1 Semisimple conjugacy classes

We start by giving a parameterisation of the semisimple conjugacy classes.

Proposition 1.3.1. The set of semisimple conjugacy classes of G is in bijection with
the orbits of W on T0. Moreover, the set of semisimple geometric conjugacy classes of G
is in bijection with the F -stable orbits of W on T0.

Proof. The proof relies on the Bruhat decomposition, see [Car85, Prop. 3.7.1, Cor. 3.7.2].

Centralisers of semisimple elements

Next, we consider the centraliser CG(s) of a semisimple element s ∈ G. The element
s belongs to a maximal torus T of G. Since T is abelian and connected, T ≤ C○G(s)
if and only if s ∈ T. Moreover, if a unipotent element u ∈ G belongs to CG(s), then
in fact u ∈ C○G(s) [MT11, Prop. 14.7]. As we can see, the connected centraliser of s
already contains a maximal torus and all the unipotent elements of CG(s). In fact, we
sometimes have control on CG(s)/C○G(s).

Theorem 1.3.2. If [G,G] is simply connected, then CG(s) is connected.
More generally, if G is semisimple and π ∶Gsc →G is a simply connected covering of G
(as in Proposition 1.1.7), then CG(s)/C○G(s) is isomorphic to a subgroup of ker(π).
Moreover, if the order of s is prime to the order of ker(π), then CG(s) is connected.

Proof. For the proof of the �rst statement, see [Car85, Thm. 3.5.6].
For the second fact, let g ∈ CG(s) and take s̃, g̃ ∈ Gsc such that s = π(s̃) and g = π(g̃).
Then, [g̃, s̃] = g̃s̃g̃−1s̃−1 ∈ ker(π) and we de�ne a map

ν ∶ CG(s) → ker(π), g ↦ [g̃, s̃].

1The analogous result requires more work when G is de�ned over a �eld of characteristic zero, c.f.
[MT11, Sect. 2].
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This map is a group homomorphism since ker(π) ⊆ Z(Gsc). Moreover, since ker(π)
is �nite, the image of C○G(s) under ν is trivial. On the other hand, if the commuta-
tor [g̃, s̃] = 1, then g̃ ∈ CGsc(s̃) = C

○
Gsc
(s̃), whence g ∈ C○G(s). Thus, the group homomor-

phism ν induces a bijective map from CG(s)/C○G(s) to a subgroup of A of ker(π).
For the last statement, we show inductively that [g̃, s̃n] = [g̃, s̃]n for any n ∈ N since

[g̃, s̃]n = [g̃, s̃n−1][g̃, s̃] = g̃s̃ns̃−1g̃−1s̃s̃−n[g̃, s̃] = g̃s̃n(s̃−1g̃−1[g̃, s̃]s̃)s̃−n = [g̃, s̃n].

Therefore, if s has order n coprime to the order of ker(π), then s̃n ∈ Z(Gsc) and [g̃, s̃]n = 1
for any g ∈ CG(s). Thus, every element in A has order dividing n. Since n is coprime to
the order of ker(π), it means that A is trivial. Hence, so is CG(s)/C○G(s) and CG(s) is
connected.

We now focus on the structure of CG(s). Since all maximal tori of G are conjugate
([MT11, Cor. 6.5]), there is h ∈G, such that s ∈ hT0. Without loss of generality, we may
assume that s ∈ T0.

Theorem 1.3.3 ([MT11, Thm. 14.2]). Let s ∈ T0. Let Φ(s) ∶= {α ∈ Φ ∣ α(s) = 1}. Then

CG(s) = ⟨T0,Uα, ẇ ∣ α ∈ Φ(s),w ∈W with sw = s⟩,

where ẇ denotes a representative of W in NG(T0). Moreover,

C○G(s) = ⟨T0,Uα ∣ α ∈ Φ(s)⟩.

Furthermore, the algebraic group C○G(s) is reductive, with root datum (X,Φ(s), X̆, Φ̆(s))
and Weyl group W ○(s) ∶= ⟨sα ∣ α ∈ Φ(s)⟩ where Φ̆(s) ∶= {ᾰ ∣ α ∈ Φ(s)}.

Proof. The proof relies on the Bruhat decomposition, see [MT11, Thm. 14.2].

Remark 1.3.4. We keep the notation of Theorem 1.3.3. Let W (s) ∶= {w ∈ W ∣ sw = s}.
Then the quotient W (s)/W ○(s) is isomorphic to the quotient CG(s)/C○G(s).

As a corollary of the above theorem, we notice that up to conjugation, there is
only a �nite number of centralisers of semisimple elements, even though there is an
in�nite number of semisimple conjugacy classes. Moreover, thanks to [Der81], we may
always choose s (up to conjugation) such that Φ(s) is generated by a subset ∆(s)
of ∆̃ = ∆ ∪ {−α0}, where α0 is the highest root of Φ, i.e. α0 = ∑α∈∆ nαα and for any
root β = ∑α∈∆ bαα ∈ Φ, we have nα ≥ bα for all simple roots α ∈∆ (see [MT11, Prop. 13.10]
for the existence). If ∆(s) ⊆ ∆, then C○G(s) is a Levi subgroup of G. Consequently,
a pseudo-Levi subgroup designates any subgroup of the form C○G(s) for a semisimple
element s ∈G, as in [MS03]. This motivates the following de�nition.

De�nition 1.3.5. We say that a semisimple element s ∈G is quasi-isolated if CG(s)
is not included in a proper Levi subgroup. If C○G(s) itself is not contained in a proper
Levi subgroup, we call the element s isolated.
An element g ∈ G with Jordan decomposition g = gsgu is isolated if its semisimple
part gs is isolated.

Centralisers of isolated and quasi-isolated elements often stand out when studying
algebraic groups because it is harder to apply inductive arguments. For instance, if s ∈G
is an isolated element, then ∣∆(s)∣ = ∣∆∣ ([Bon05, Cor. 1.4]).

26



1.3. Interesting conjugacy classes and their centralisers

Quasi-isolated conjugacy classes

We now give a parameterisation of the semisimple quasi-isolated conjugacy classes, fol-
lowing [Bon05]. This time, we will see that the number of quasi-isolated classes is �nite
and that moreover, this number does not depend on p, if p is not too small. We �rst
need to introduce some notation.
For the rest of this subsection, we assume that G is simple (see Remark 1.3.8 for a more
general setting). We �x an isomorphism

(1.1) ι ∶ (Q/Z)p′
∼
→ k×,

and ι̃ the composition Q→ (Q/Z)p′ → k×. We now consider

ι̃T0 ∶ Q⊗Z X̆ → T0

r ⊗ λ↦ λ(ι̃(r)).
(1.2)

We also �x some maximal tori Tsc ⊆Gsc and Tad ⊆Gad as in Proposition 1.1.7. We let

∆̃p′ ∶= {α ∈ ∆̃ ∣ ω̆α/nα ∈ Z(p) ⊗Z X̆(Tsc)},

where we set n−α0 = 1 and ω̆−α0 = 0.
When G is simply connected, the parameterisation of the semisimple isolated classes is
relatively easy to state.

Proposition 1.3.6 ([Bon05, Prop. 4.9]). Assume that G is simply connected. The
map ∆̃p′ → G, α ↦ tα ∶= ι̃T0(ω̆α/nα) induces a bijection between ∆̃p′ and the set of
conjugacy classes of semisimple isolated elements in G. Moreover, W ○(tα) =W∆̃−α and
the order of tα is equal to nαo(ω̆α), where o(ω̆α) denotes the order of the image of ω̆α
in (Q⊗Z X̆(Tsc))/X̆(Tsc).

In the other direction, when G is adjoint, we need to remove subsets of ∆̃ of size
bigger than 1 to accommodate for the quasi-isolated but not isolated elements. We
let Qp′ be the set of subsets Q of ∆̃p′ of size not divisible by p and on which their
stabiliser in N ∶= NW (∆̃) acts transitively. Let also Np′ be the set of p′-elements in N .

Proposition 1.3.7 ([Bon05, Thm. 5.1]). Assume that G is adjoint. Then a bijection
between the set of orbits of Np′ on Qp′ to the set of conjugacy classes of quasi-isolated
elements in G is induced by

Qp′ →G

Q↦ tQ ∶= ι̃T0(
1

∣Q∣
∑
α∈Q

ω̆α
nα
).

Moreover, W ○(tQ) =W∆̃−Q and the order of tQ is equal to nα for some α ∈ Q.
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Remark 1.3.8. For an arbitrary simple algebraic group, we need to replace N by the
preimage of X̆(T0)/X̆(Tsc) under the bijection

N
∼
→ X̆(Tad)/X̆(Tsc)

sα ↦ ω̆α

to get a parameterisation of the semisimple quasi-isolated conjugacy classes. We refer
the reader to [Bon05, Thm. 4.6] for a general result for semisimple groups. Thanks to
[Bon05, Prop. 2.3 and Rmk. 2.5], these results can be lifted to any connected reductive
group.

If p does not divide any nα for α ∈ ∆, then we in fact have ∆̃p′ = ∆̃. If for some
root β = ∑α∈∆ bαα, the prime p divides some bα, we say that p is bad for G, [Car85,
�1.14]. Otherwise, we say that p is good. The bad primes for the simple algebraic
groups are listed in Table 1.2.

An ∶ none
Bn (n ≥ 2),Cn (n ≥ 3),Dn (n ≥ 4) ∶ 2

G2, F4,E6,E7 ∶ 2,3
E8 ∶ 2,3,5

Table 1.2: Bad primes for the simple algebraic groups

In the rest of this thesis, we will almost always assume that p is good for G.

We recall a few more facts about isolated elements.

Lemma 1.3.9. Let G be a connected reductive group and s ∈G be a semisimple element.
If s is isolated, then

Z○(C○G(s)) = Z
○(G).

Proof. The inclusion Z○(G) ⊆ Z○(C○G(s)) is clear. For the other direction, note that by
[MT11, Prop. 12.10], CG(Z○(C○G(s))) is a Levi subgroup of G. However, the de�nition
of the centre implies that

C○G(s) ⊆ CG(Z
○(C○G(s))).

Thus, since the semisimple element s is isolated, we must have CG(Z○(C○G(s))) = G,
hence Z○(C○G(s)) ⊆ Z

○(G).

Lemma 1.3.10. Let G be a connected reductive group and L a Levi subgroup of G. Fix
an isolated semisimple element s of L. Set Ls = C○L(s) and Gs = C○G(s). Then

L = CG(Z
○(Ls)) NGs(L) = NGs(Ls), and NG(Ls) ⊆ NG(L).

Proof. Since Ls = L ∩Gs, it follows that NGs(L) ⊆ NGs(Ls).
Let us consider the other inclusion and the �rst assumption. Recall that L = CG(Z○(L))
([MT11, Prop. 12.6]). By the previous Lemma, we know that Z○(L) = Z○(Ls), and
thus L = CG(Z○(Ls)). Now we can conclude since

NGs(Ls) ⊆ NGs(Z
○(Ls)) ⊆ NGs(CG(Z

○(Ls))) = NGs(L).

By a similar argument, we deduce that NG(Ls) ⊆ NG(L).
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1.3.2 Unipotent conjugacy classes

We now turn our gaze to the p-elements. We write Ucl(G) for the set of unipotent
conjugacy classes of G.
Firstly, we explain how a geometric unipotent conjugacy class splits into rational ones.
Let u ∈ G be a unipotent element, then the conjugacy class C = (u)G is F -stable. Now,
the set CF might not be a unique rational G-conjugacy class. However, applying The-
orem 1.2.5 since CG(u) is closed, we have a bijection between the G-conjugacy classes
in CF and the F -classes in CG(u)/C○G(u).
The group AG(u) ∶= CG(u)/C○G(u) will play an important role in the rest of this thesis,
for instance for the parameterisation of the unipotent characters. In some cases, the
induced action of F on AG(u) is trivial, and the G-conjugacy classes in CF are in bijec-
tion with the conjugacy classes of AG(u). We denote by uC any F -stable element of C
such that AG(uC) = AG(uC)F . If the centre Z(G) of G is connected and G/Z(G) is
simple, such an element uC always exists for any C ∈ Ucl(G) by [Tay13, Prop. 2.4].

We now give two ways of labelling the unipotent conjugacy classes of G. The �rst
method uses co-characters and Levi subgroups. The second one associates to each class
a weighted Dynkin diagram. We make the following hypotheses.

Hypothesis 1.3.11. For the rest of this section, we assume that G is simple of
adjoint type and p is good for G.

Remark 1.3.12. Thanks to [Car85, Prop. 5.1], we may assume without loss of generality
that G is simple of adjoint type.
We also assume that p is good for G. In this case, the number and the structure of
unipotent orbits is similar to the characteristic zero case. However, the parameterisation
di�ers when p is bad. In both cases, the number of unipotent conjugacy classes is �nite
([Ric67], [Lus76, Thm. 13]).

Both methods use a bijection between the unipotent conjugacy classes of G and
the nilpotent orbits of the Lie algebra g of G under the action of G by the adjoint
map Ad ∶G × g→ g. We denote by gnil the variety of nilpotent elements of g associated
to G and by Guni the variety of unipotent elements of G. In characteristic zero, the
exponential map induces a G-equivariant morphism between Guni and gnil. By [McN05,
� 10], a similar result holds in positive characteristic.

Proposition 1.3.13 (Springer, Serre). Recall that G is simple of adjoint type and p is
good for G. There exists a homeomorphism of varieties Ψspr ∶ Guni → gnil such that
for all elements g ∈G and unipotent elements u ∈Guni,

Ψspr(
gu) = Ad(g)(Ψ(u)).

The induced map between the unipotent conjugacy classes of G and the nilpotent orbits
of g does not depend on the choice of Ψspr.
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Such maps are called Springer homeomorphisms. Note that they might not be
isomorphisms of varieties. If it is the case, we say that Ψspr is a Springer isomorphism.

Lemma 1.3.14 ([MS03, Prop. 5]). Recall that p is good for G. If G does not contain
any component of type An with n ≡ −1 mod p, then there is a Springer homeomorphism
which is an isomorphism of varieties.

More generally, we can �nd another condition which applies to any Springer home-
omorphism.

De�nition 1.3.15. The group G is proximate if some simply connected covering of
the derived subgroup of G is a separable morphism.

Lemma 1.3.16 ([Tay16, Lem. 3.4]). If G is proximate, then any Springer homeomor-
phism is an isomorphism of varieties.

We now �x a Springer homeomorphism Ψspr for G.

Bala�Carter classi�cation and some generalisations

Recall that a unipotent element u ∈ G is distinguished if Z○(G) is a maximal torus
of CG(u). Similarly, a nilpotent element in gnil is distinguished if it is the image by the
Springer map of a distinguished unipotent element.
For any unipotent element u ∈G, there is a Levi subgroup L such that u is distinguished
in L. Indeed, let T be a maximal torus of CG(u). Then, by [MT11, Prop. 12.10] the
group CG(T) is a Levi subgroup. By [Spr09, Prop. 6.4.2] the torus T is the unique
maximal torus of C○

CG(T)
(u), hence of CCG(T)(u). In particular, the torus T is central

and u is distinguished in CG(T).
Therefore, we obtain the map in the Bala�Carter classi�cation, which parameterises
unipotent conjugacy classes by conjugacy classes of pairs of a Levi subgroup L and a
distinguished unipotent element in L. McNinch and Sommers generalised this result to
take into account the relative unipotent conjugacy classes, that is the conjugacy classes
of AG(u).

Theorem 1.3.17 ([MS03, Thm. 1]). The G-conjugacy orbits of the pairs (u, tC○G(u))
with u ∈Guni and t ∈ CG(u) a semisimple element are in bijection with the G-conjugacy
orbits of triples (C○G(s), tZ

○(C○G(s)), u) where s ∈ G is semisimple, u ∈ C○G(s)uni is
distinguished in C○G(s) and C

○
G(tZ

○(C○G(s))) = C
○
G(s).

Remark 1.3.18. The bijection here is given by taking the pseudo-Levi CG(t,T) where T
is a maximal torus of C○G(u, t).

A second step is then to parameterise the distinguished unipotent conjugacy classes
in G.

De�nition 1.3.19. We say that λ ∈ X̆ is associated to e ∈ gnil if

1. for all ξ ∈ k×, λ(ξ).e = ξ2e, and
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2. there exists a Levi subgroup L of G such that e ∈ Lie(L) is distinguished
and λ(k×) ⊆ [L,L].

We then say that λ is associated to u ∈Guni if it is associated to Ψspr(u).

Lemma 1.3.20 ([Jan04, �5.3]). For any unipotent element u ∈ G, there exists a co-
character associated to u and all such co-characters are conjugate under the action of
C○G(u).

To each co-character, we associate a parabolic subgroup following [Car85, Chap. 5]
and [BDT20, �3.1].

De�nition 1.3.21. Let λ ∈ X̆ be a co-character ofT0. We de�ne the following subgroups
of G:

Pλ ∶= ⟨T0,Uα ∣ α ∈ Φ with ⟨α,λ⟩ ≥ 0⟩,

Lλ ∶= ⟨T0,Uα ∣ α ∈ Φ with ⟨α,λ⟩ = 0⟩,

Uλ ∶= ⟨Uα ∣ α ∈ Φ with ⟨α,λ⟩ > 0⟩.

The group Pλ is a parabolic subgroup of G with Levi subgroup Lλ and unipotent
radical Uλ. For any integer i > 0, we also de�ne

Uλ(i) ∶= ⟨Uα ∣ α ∈ Φ
+ with ⟨α,λ⟩ ≥ i⟩,

Uλ(−i) ∶= ⟨Uα ∣ α ∈ Φ
+ with ⟨α,λ⟩ ≤ −i⟩.

Notice that Uλ(−i) =U−λ(i).

Remark that Lλ = CG(λ). There is another way of describing Pλ via the Lie algebra.
The co-character λ induces a grading on the Lie algebra g = ⊕i∈Z g(λ, i) where

g(λ, i) = {x ∈ g ∣ λ(ξ).x = ξix for all ξ ∈ k×}.

Then

Lie(Pλ) = ⊕
i∈Z≥0

g(λ, i), Lie(Lλ) = g(λ,0) and Lie(Uλ) = ⊕
i∈Z>0

g(λ, i).

Moreover for any integer i,

Lie(Uλ(i)) =⊕
j≥i

g(λ, j) and Lie(Uλ(−i)) =⊕
j≥i

g(λ,−j).

Proposition 1.3.22 ([Jan04, Prop. 5.9]). Let u ∈G be a unipotent element. If λ,µ ∈ X̆
are associated to u, then the parabolic subgroups Pλ and Pµ are equal.
Moreover, CG(u) ⊆ Pλ.

For u ∈G unipotent and λ ∈X associated to u, we call Pλ the canonical parabolic
associated with u.

The distinguished elements are characterised as follows.
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Proposition 1.3.23 ([Car85, Cor. 5.7.5]). Let u ∈G be a unipotent element and λ ∈ X̆
be a co-character associated to u. Then, the element u is distinguished if and only
if dim(g(λ,0)) = dim(g(λ,2)).

Let u ∈ Guni and λ ∈ X associated to u. There is a unique unipotent conjugacy
class C ∈ Ucl(G) such that C ∩Uλ is open dense in Uλ. Moreover, C ∩Uλ is a single
Pλ-conjugacy class ([Car85, Thm. 5.2.1]). If λ is associated to a distinguished unipotent
element u ∈G, then C = (u)G, [Car85, Prop. 5.8.4]. The canonical parabolic subgroups
associated to distinguished elements have been classi�ed by Bala and Carter ([BC76a],
[BC76b]). They are the distinguished parabolic subgroups P =UP ⋊LP of G, i.e. the
parabolic subgroups such that

dim(Lie(LP)) = dim(UP/[UP,UP]).

A list can be found in Carter's book [Car85, after Thm. 5.9.6].

Remark 1.3.24. To summarise, the Bala�Carter parameterisation goes as follows. We
consider (L,PL) where PL is a distinguished parabolic subgroup of L. Let U be the
unipotent radical of PL and CL ∈ Ucl(L) be the unique unipotent conjugacy class such
that CL ∩U is open dense in U. Then, we associate the unipotent class C = (CL)G to
the G-conjugacy class of the pair (L,PL).
In the other direction, for C ∈ Ucl(G), the steps go as follows.

1. Choose u ∈ C.

2. Compute T a maximal torus of CG(u) and set L = CG(T). We may assume
without loss of generality that L is a standard Levi.

3. Find λ ∈ X̆(L,T0), a co-character associated to u.

4. Associate to C theG-conjugacy class of the pair (L,PL
λ), where P

L
λ is the canonical

parabolic of L associated to λ.

This parameterisation has the drawback that it is inductive. Moreover, it is not
obvious which co-characters are associated to a unipotent element. This is recti�ed
thanks to the weighted Dynkin diagrams.

Weighted Dynkin diagrams

We �rst concentrate on the characteristic zero case. We let GC be a reductive group
de�ned over C with Borel subgroup BC and maximal torus TC ⊆ BC such that it de�nes
an isomorphic root datum (Φ(TC),X(TC), Φ̆(TC), X̆(TC)) with base ∆(TC) to the one
associated to (G,B0,T0). We identify ∆ with ∆(TC) as well as Φ with Φ(TC).
To each non-zero nilpotent orbit O, one associate an sl2-triple {e, f, h} ⊆ gC ∶= Lie(GC)
such that e ∈ O, by the Jacobson�Morozov Theorem ([Car85, Thm. 5.3.2]). We may
further assume that α(h) ≥ 0 for all simple roots α ∈ ∆ after GC-conjugation of the
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triple {e, f, h}.
We then de�ne the weighted Dynkin diagram associated to O as the map

dO ∶∆→ Z, dO(α) = α(h),

that we extend linearly to a map on all roots ofGC. By convention, we set d{0}(α) = 0 for
all α ∈ Φ. The weighted Dynkin diagram dO de�ned above does not depend on the choice
of {e, f, h} up to conjugation. Moreover, two nilpotent orbits O and O′ have the same
weighted Dynkin diagram if and only if they are the same ([Car85, Prop. 5.6.8]). We
write D(∆,G) for the set of all the weighted Dynkin diagrams constructed as above.
We now come back to our algebraic group G. Notice that for d ∈ D(∆,Φ), the vec-
tor λd = ∑α∈∆ d(α)ω̆α is such that for all roots α ∈ Φ

d(α) = ⟨α,λd⟩,

where ⟨ , ⟩ is the pairing between X(TC) and X̆(TC). From the remark after [Car85,
Lem. 5.6.5], we see that λd ∈ ZΦ, whence we obtain a co-character λd ∈ X̆(T0).

This leads to the following bijection, see [Kaw86, Thm. 2.1.1], [Pre03, Thm. 2.7]
and [Tay16, 3.22]. For λ ∈ X̆, we denote by g(λ,2)reg the unique open dense Lλ-orbit
of g(λ,2).

Theorem 1.3.25 (Kawanaka, Premet). Recall that p is good for G. Then there is a
bijection between the weighted Dynkin diagrams and the nilpotent G-orbits, sending a
diagram d ∈ D(∆,Φ) to the orbit G ⋅ g(λd,2)reg.

Remark 1.3.26. The weighted Dynkin diagrams can be found in CHEVIE [Mic15] as a
�eld in the record of a unipotent class.

Lastly, we link the Bala�Carter classi�cation to the one by weighted Dynkin dia-
grams. We de�ne

X̆G
D ∶= {

gλd ∣ d ∈ D(∆,Φ), g ∈G}.

For u ∈Guni we de�ne X̆G
D (u) as the subset of λ ∈ X̆

G
D such that Ψspr(u) lies in g(λ,2)reg.

Lemma 1.3.27 (Premet, [BDT20, Lem. 3.6]). Let u ∈G be a unipotent element. Then,
the co-characters associated to u are exactly the co-characters in X̆G

D (u).

Centralisers of unipotent elements

We shortly give some indications on the structure of the centraliser of a unipotent
element u ∈ G. The group CG(u) is in general not reductive. However, its connected
component decomposes into C○G(u) = L(u) ⋅R(u) where R(u) is the unipotent radical
of CG(u) and L(u) is reductive. The fact that L(u) is reductive is shown through case
by case analysis, see for instance [Jan04, Prop. 5.11] for more references. These groups
can be better described thanks to the canonical parabolic associated to u.

Proposition 1.3.28 ([Jan04, Prop. 5.10]). Let u ∈ Guni and P the canonical parabolic
associated to u, with Levi decomposition P =U ⋊L. Then,

L(u) = L ∩CG(u) and R(u) =U ∩CG(u).
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Chapter 2

Representation theory of �nite groups

of Lie type

In the previous chapter, we have seen that we can study �nite reductive groups in a
generic way by considering complete root data. We now bring our attention to their
representations. In general, this is an extremely di�cult problem, especially if we con-
sider modular representations. Therefore, we will mostly focus on the ordinary char-
acters. The decomposition matrix should then give us insight on the characteristic ℓ
case. Firstly, we explain how to classify the complex-valued characters and then what
is known about their values.
Around seventy years ago, Green completely determined the character table of GLn(q)
for any prime power q ([Gre55]). Since then, other series of �nite reductive groups of
low rank have been considered. To treat �nite reductive groups as one, we present in
Section 2.1 the theory developed by Deligne and Lusztig [DL76] and extended further
by Lusztig. We mainly refer to [Lus84a] and [Lus76]. By making use of the geometric
properties of G, they constructed certain virtual characters, called the Deligne�Lusztig
characters (see De�nition 2.2.3).
From these, one deduces a partition of the irreducible characters of G into the so-called
rational series, indexed by the G∗-conjugacy classes of F ∗-stable semisimple elements
in the dual group G∗. The series corresponding to the neutral element 1 ∈ G∗ (called
the unipotent series) is essential as all other series of G can be seen as unipotent series
for smaller groups. This is the Jordan decomposition of characters (Theorem 2.2.16).
Moreover, thanks to Lusztig we know a complete labelling of the unipotent characters,
and hence of all irreducible ordinary characters. This classi�cation is the main content
of Section 2.2.
In the last section of this chapter, we present some of the well-known results on the
values of the characters as well as a short summary on what has been done at the time
of writing this thesis.

We keep the setting of Hypothesis 1: G is a connected reductive group over k with
Steinberg map F ∶ G → G, T0 ⊆ B0 is a maximally split torus in an F -stable Borel B0

of G with associated root datum (X,Φ, X̆, Φ̆), base ∆ and Weyl group W .
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2.1. Deligne�Lusztig induction

2.1 Deligne�Lusztig induction

We want to study the representation theory of �nite groups of Lie type in a generic way.
It means that we cannot rely on speci�c properties of a chosen �nite group GF . On
the other hand, all those groups come from the same algebraic group G, and thus we
would like to make use of the geometrical aspects. Grothendieck's fonctions-faisceaux
dictionary brings us to look at G-equivariant (perverse) sheaves instead of class functions
of G. We give a little more explanations, motivation and references in Subsection 2.1.1.
When one investigates the representations of a �nite group H, a very practical tool is
the induction process, which constructs representations of H from representations of its
subgroups. A simple example is the regular representationKH. It is the induction of the
trivial representation of the trivial subgroup and contains all the irreducible representa-
tions of H as direct summands.1 However, it is often a di�cult problem to determine
them.
In our case, the subgroups we want to consider are the F -stable Levi subgroups, one
reason being that they are again connected reductive. We make this more explicit by
de�ning Deligne�Lusztig induction in Subsection 2.1.2.
Lastly, we recall properties of a particular case of Deligne�Lusztig induction, called
Harish-Chandra induction and which has the great advantage of working well with the
modular representations.

2.1.1 Quick motivation for ℓ-adic cohomology

This subsection is not meant to give a detailed introduction to derived categories, equiv-
ariant sheaves or étale cohomology and we purposefully stay vague. Our goal is only to
motivate the objects appearing in the representation theory of �nite reductive groups.

Equivariant sheaves

We start by recalling the de�nition of equivariant sheaves. For more information, we
refer the reader to [BL94]. Here all the sheaves we consider are sheaves of �nite dimen-
sional Λ-modules, for Λ a ring. For Y a variety, the category of sheaves on Y will be
written Sh(Y ).

De�nition 2.1.1. Let H be an algebraic group over k (it can be �nite) and Y an
algebraic variety over k on which H acts continuously. Let a ∶ H × Y → Y denote the
action of H and p ∶ H × Y → Y the projection on the second coordinate. We also
denote by p23 ∶H×H×Y →H×Y the projection onto the second and third coordinates
and m ∶ H ×H → H the multiplication in H. An H-equivariant sheaf on Y is the
datum of a sheaf F on Y together with an isomorphism of sheaves ϕ ∶ a∗F

∼
→ p∗F such

that the co-cycle condition holds:

p∗23ϕ ○ (1 × a)
∗ϕ =m∗ϕ.

1Recall that K has characteristic zero and is �big enough� for H.
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Chapter 2. Representation theory of �nite groups of Lie type

The category of H-equivariant sheaves is denoted ShH(Y ).

The co-cycle condition implies at the level of stalks that for any g, h ∈H and x ∈ Y ,
the isomorphism ϕgh,x ∶ Fgh.x

∼
→ Fx is the same as the composition ϕh,x ○ ϕg,h.x.

Moreover, for h ∈H, let ih ∶ Y → {h} × Y →H × Y be the inclusion. Then, h∗F ∶= i∗ha
∗F

is isomorphic to i∗hp
∗F = F via i∗hϕ. So in some ways, the group H �acts on� F . Taking

global sections, we can see Γ(Y,F) ∶= F(Y ) as a Λ[H]-module. Alternatively, if M is
a Λ[H]-module, then we may see it as an H-equivariant sheaf on Y by looking at the
constant sheaf M on Y .

Derived categories and Grothendieck group

The functor of global sections Γ(Y,−) is only a left exact functor from the H-equivariant
sheaves on Y to the category of Λ[H]-modules. So, we instead compare the two derived
(bounded) categories.
The derived category D(C ) of a category C is a category whose objects are chain
complexes of objects of C . The subcategory whose objects are chains of complexes with
�nitely many non-zero cohomology groups is called bounded and we denote it Db(C ).
We get a total derived functor RΓ(Y,−) ∶D(Sh(Y )) →D(Λ−mod), where we apply the
global section functor Γ(Y,−) to each sheaf in the chain complex. If I● is an injective
resolution of a sheaf F on Y , we have

Hn(RΓ(Y, I●)) ∶=
ker(Γ(Y, In)) → Γ(Y, In+1))

im(Γ(Y, In−1) → Γ(Y, In))
.

We might sometimes abuse notation and write RΓ(Y,F) for RΓ(Y, I●). Note that there
is also a way to de�ne derived categories without taking injective resolutions. The precise
de�nition and the properties of derived categories can be found in [Gor21] and [Aub10].
Now, we could wonder how to get back from Db(Λ[G] -mod) to Λ[G] -mod. To do so,
we need to look at the Grothendieck groups. The Grothendieck group K0(C ) of
an additive category C can be seen as the free abelian group whose elements are the
isomorphism classes of objects in C and where the group law is given as follows: we
write [A] + [B] = [C] if there is a short exact sequence in C

1→ A→ C → B → 1.

For instance, the Grothendieck group of the category ofK[G]-modules is the group Z irrK(G)
of virtual ordinary characters of G.
For the Grothendieck group of the derived category Db(C ), the notion of short exact
sequence is replaced by the notion of distinguished triangle, i.e. any morphism of chain
complexes A● → B● can be extended to a distinguished triangle

A● → B● → C● → A[1]●.

HereA[1] is the complex shifted by 1, that isA[1]n = An+1. In that case, the Grothendieck
group K0(Db(C )) is the abelian group of isomorphism classes of objects in Db(C ) where
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2.1. Deligne�Lusztig induction

the group law is given by distinguished triangles.
In general, there is an isomorphism ([KS94, Ex. I.27])

K0(D
b(C ))

∼
→K0(C )

[A●] ↦∑
i∈Z
(−1)i[H i(A●)]

with inverse sending the object [A] ∈K0(C ) to [A●] where A0 = A and Ai = 0 for all i ≠ 0.

Etale cohomology and ℓ-adic cohomology

To be exact, we do not exactly consider the derived category of G-equivariant sheaves
for the Zariski topology. Indeed, this topology does not behave like complex topology
for cohomology, because it is too coarse. We need to add open sets. We will therefore
use étale sheaves and étale cohomology introduced by Grothendieck.
In the classical sense, sheaves on a topological space Y are functors from the category
of open sets of Y (where the morphisms are the inclusions) to the category of �nite
dimensional Λ-modules. An étale sheaf on a scheme2 Y is a functor from the category
of étale morphisms of �nite type from another scheme to Y . More details can be found
in [Aub10] and in the appendix of [Car85]. We denote by Shét(Y ) the category of étale
sheaves on Y .
If an algebraic group H over k acts on Y continuously, we could de�ne H-equivariant
(étale) sheaves and then take the derived category. However, this is not necessarily well-
de�ned ([BL94, 0.4]). Therefore, we will rather look at the H-equivariant complexes in
the bounded derived category of étale sheaves on a scheme Y and then take the derived
functor of global sections.

Assume that our �xed group G (from Hypothesis 1) acts on Y continuously. Notice
that to get di�erent ΛG-modules, we could either change the sheaf for a �xed variety Y
or change the variety itself. For the methods developed by Deligne and Lusztig, we will
often change the scheme Y but �keep� the constant sheaf Λ.
For instance, we will look at the case where Λ is a �eld of characteristic zero. However,
étale cohomology does not work well when Y is de�ned over a �eld whose characteristic
divides the characteristic of Λ. We have to take direct limits of cohomologies of the
constant sheaf Z/ℓnZ and then tensor over the ℓ-adic integers to get the cohomology with
coe�cients in Qℓ. We then extend scalars to get sheaves over the algebraic closure Qℓ.
Lastly, we prefer to consider schemes satisfying nice properties (proper schemes). In
general, we can embed any scheme Y in a proper scheme Y . We then extend by zero the
sheaf on Y to obtain a sheaf on Y and we look at its cohomology instead. For F an étale
sheaf on Y , we write Hn

c (Y,F) for this construction. This is called the (étale/ℓ-adic)
cohomology with compact support. Similarly, we set RΓc(Y,−) ∶= RΓ(Y,−). If Y
is a nice enough scheme, that is separated and of �nite type (for instance a variety)

2For simplication, we may think of scheme as a generalisation of varieties. In particular, any variety
is a scheme.
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Chapter 2. Representation theory of �nite groups of Lie type

then H●(RΓc(Y,Qℓ)) is a bounded complex ([Car85, Appendix (g)]). Moreover, the
cohomologies H i(RΓc(Y,Qℓ)) are �nite dimensional. For more accurate de�nitions, we
advise the reader to read the appendix of [Car85].
To summarise, we �rst choose a variety Y on which G acts continuously. We apply the
global sections functor and we get RΓc(Y,Λ) ∈Db(Λ[G] -mod). The �nite sum

∑
i∈Z
(−1)i[H i(RΓc(Y,Λ))]

is then a virtual Λ[G]-module in the Grothendieck group of Λ[G] -mod.

Remark 2.1.2. So far, we still have not taken into account the topology of the algebraic
group G. The idea is the following. Since we want to study Λ[G]-modules, we could
look at the category of G-equivariant constant sheaves on a variety Y and take global
sections. Alternatively, it su�ces to consider the category of G-equivariant sheaves on a
algebraic variety consisting of only one element. Instead of G-equivariant sheaves on the
point, we look at G-equivariant sheaves on G, but where the action of G on G is given
by F -conjugation (g.h = ghF (g)−1 for g, h ∈G). These two categories are equivalent by
the Lang�Steinberg theorem 1.2.4, see for instance [Éte23, below Cor. 1.2.2]. We give an
intuitive argument on the level of stalks. If F is a G-equivariant sheaf, then all its stalks
are isomorphic since the Lang�Steinberg map is surjective. Moreover, on a given stalk,
we also have an action of G. Consequently, by looking at F1 we get a G-equivariant
sheaf on the point.

This closes our general imprecise remarks.

2.1.2 De�nition and �rst properties of Deligne�Lusztig induc-
tion

In this section, we recall the powerful idea of Deligne and Lusztig on which a major part
of the construction of representations of �nite reductive groups relies. In their pioneering
article [DL76], they generalised the process of induction by taking another representation
than the regular one. Let M ≤H be two �nite groups and V a Λ[M]-module. Then the
induction is de�ned as follows:

IndHM(V ) ∶= Λ[H] ⊗Λ[M] V.

Instead of Λ[H], we could choose any Λ[H]-module-Λ[M], that is a module with a left
action of Λ[H] and a right action of Λ[M]. In our case, the ambient group is G, our
�nite group of Lie type. Deligne and Lusztig chose for the subgroup the �xed points T of
an F -stable maximal torus T. For the Λ[G]-module-Λ[T ], they constructed a module
coming from a variety on which both G and T act continuously. Later, in [Lus76],
Lusztig extended this process to replace the torus T by any F -stable Levi subgroup.
We mostly follow [DM20, Chap. 9], see also [Dud18].
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2.1. Deligne�Lusztig induction

De�nition 2.1.3. Let P = U ⋊ L be a Levi decomposition of a parabolic subgroup
of G, such that L is F -stable. The (generalised) Deligne�Lusztig variety associated
to L ⊆ P is de�ned as follows:

YL⊆P ∶= {gU ∈G/U ∣ g
−1F (g) ∈UF (U)}.

Remark 2.1.4. Observe that

YL⊆P ≅ {g ∈G ∣ g
−1F (g) ∈ F (U)}/(U ∩ F (U)),

see [DM20, Def. 9.1.1]. Moreover, if P is F -stable, then F (U) =U and

YL⊆P = {gU ∈G/U ∣ g
−1F (g) ∈U}

= {gU ∈G/U ∣ F (gU) = gU} = (G/U)F

= G/U,

where we can apply Remark 1.2.6 for the last line since U is connected.

Note thatG and respectively L act onG/U by left (respectively right) multiplication
and it induces an action of G and L on YL⊆P.

De�nition 2.1.5. Let P =U⋊L be a Levi decomposition of a parabolic subgroup of G,
such that L is F -stable. The Deligne�Lusztig induction functor IGL⊆P is given by

IGL⊆P ∶D
b(Λ[L] -mod) →Db(Λ[G] -mod)

C ↦ RΓc(YL⊆P,Λ)
L
⊗Λ[L] C.

If the ambient group is clear, we may write IL⊆P.

Remark 2.1.6. The Deligne�Lusztig induction functor is usually denoted with an R.
However, to emphasize the similarities with induction of characters (and parabolic in-
duction of character sheaves in De�nition 3.2.1) we chose the letter I.

Remark 2.1.7. We rewrite the Deligne�Lusztig induction functor in di�erent ways.
Let V be a Λ[L]-module, V ● an injective resolution corresponding to the constant
sheafM on YL⊆P and π ∶ YL⊆P → YL⊆P/L be the quotient map. Then by [BR03, Lem. 3.2],

IL⊆P(V
●) ≅ RΓc(YL⊆P/L,π∗Λ⊗ π∗V ).

Alternatively, we could look at the induction of sheaves which are equivariant for the
action given by F -conjugation, c.f. Remark 2.1.2 . We look at the following varieties

L
α
←Ð PF (P)

β
Ð→G

where L acts on L by F -conjugation, P acts on PF (P) by F -conjugation and lastly G
acts on itself also by F -conjugation. The map α is given by the Levi decomposition of
the parabolic P = U ⋊ L and the map β by inclusion. Let V be a Λ[L]-module, then
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Chapter 2. Representation theory of �nite groups of Lie type

we can consider the constant sheaf V on the point, and the corresponding L-equivariant
sheaf on L for the action by L-conjugation by Remark 2.1.2. Let V be the correspond-
ing L-equivariant complex of sheaves in the bounded derived category of Sh(L). Then,
the complex β∗α∗V is G-equivariant for the F -conjugation and corresponds to a com-
plex I(V) of G-equivariant sheaves on the point, hence a Λ[G]-module. By [Éte23,
Thm. 3.3.16], the above functor and the Deligne�Lusztig induction functor are equiva-
lent and give isomorphic modules.

The induction functor has a left adjoint functor, called the Deligne�Lusztig re-
striction functor, that we denote by ∗RG

L⊆P. It has an explicit description in terms of
a derived Hom-functor, see [Dud18, � 3.1].

The case where Λ = Qℓ

We list a few properties when Λ = Qℓ. In that case, it is often su�cient to work
with ordinary characters χ ∈ irrQℓ(G) to describe the representation theory of G, since

the group algebra Qℓ[G] is semisimple. Using the Grothendieck group, we now de�ne
Deligne�Lusztig induction on characters.

De�nition 2.1.8. Let P =U⋊L be a Levi decomposition of a parabolic subgroup of G,
such that L is F -stable. The Deligne�Lusztig induction of characters IGL⊆P is given
by

IGL⊆P ∶ Z irrQℓ(L) → Z irrQℓ(G)

χ↦ (g ↦ Tr(g,∑
i∈Z
(−1)iH i

c(IL⊆P(Vχ)))).

By [DM20, Prop. 9.1.6],

IGL⊆P(χ)(g) = ∣L∣
−1∑

l∈L

Tr((g, l),∑
i∈Z
(−1)iH i

c(RΓc(YL⊆P,Qℓ)))χ(l
−1).

The numbers

L ((g, l), YL⊆P) ∶= Tr((g, l),∑
i∈Z
(−1)iH i

c(RΓc(YL⊆P,Qℓ)))

are called Lefschetz numbers and are integers. The corresponding Deligne�Lusztig
restriction of characters is denoted by ∗RG

L⊆P.

The Deligne�Lusztig induction functor is transitive.

Proposition 2.1.9 ([DM20, Prop. 9.18]). Let Q ⊆ P be two parabolic subgroups of G
with respective Levi subgroups M ⊆ L. Assume that both M and L are F -stable. Then

IGM⊆Q ≅ I
G
L⊆P ○ I

L
M⊆L∩Q.
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2.1. Deligne�Lusztig induction

Like for the usual induction in �nite groups, we can write a Mackey-like formula
for the Deligne�Lusztig induction and restriction of characters. If this formula holds, it
implies that IGL⊆P is independent of the choice of the parabolic subgroup P (see above
[GM20, Thm. 3.3.8] and [DM91, Thm. 5.3.1]). We might sometimes write IGL instead
of IGL⊆P. However, the Mackey formula is not proven in full generality, see [GM20,
Thm. 3.3.7]. Nonetheless it holds for example if P is a Borel subgroup and L a maximal
torus. We will focus on the other special properties of this case in Section 2.2.

2.1.3 Harish-Chandra induction

In this subsection, we consider the special case where not only the Levi subgroup but also
the parabolic subgroups P are F -stable. We also assume that Λ is a �eld of characteristic
di�erent from p. In particular, we can choose Λ ∈ {K,k}. Historically, this construction
was introduced before Deligne�Lusztig induction (in [Har70]) and the second one can be
seen as a generalisation of the special case.

De�nition 2.1.10. Let P = U ⋊ L be a Levi decomposition of an F -stable parabolic
subgroup of G. The Harish-Chandra induction is given as follows:

IGL⊆P ∶ Λ[L] -mod→ Λ[G] -mod

V ↦ IndGP ○ Inf
P
L(V ).

Observe that by Remark 2.1.4, it makes sense to use the same symbol for the
Harish-Chandra induction and the Deligne�Lusztig induction. Indeed, we can con-
struct a canonical isomorphism between IndGP ○ Inf

P
L and Λ[G/U] ⊗Λ[L] −. Similarly

as for Deligne�Lusztig induction, we denote ∗RG
L⊆P for the adjoint functor, given by

− ⊗Λ[G]Λ[G/U], see [GM20, Def. 3.1.5].
We gather some results following [GM20, Sections 3.1, 3.2].

Since tensor product preserves projectivity we immediately get the following fact.

Corollary 2.1.11 ([GM20, Cor. 3.1.6]). The Harish-Chandra functors IGL⊆P and ∗RG
L⊆P

are exact and preserve projectives modules.

In this case, there is a Mackey formula ([GM20, Thm. 3.1.11]). The Harish-Chandra
functors are in fact independent of the parabolic containing a �xed Levi and we write
simply IGL and ∗RG

L .
By Proposition 2.1.9, the Harish-Chandra induction is transitive. The previous prop-

erties lead to the following de�nition.

De�nition 2.1.12. Let L be a Levi subgroup of G contained in an F -stable parabolic
subgroup and V an irreducible Λ[L]-module. We say that the pair (L, V ) is cuspidal
if there is no F -stable Levi subgroup M of G such that M ⊆ L and no Λ[M]-module
V ′ such that

⟨V ′, ∗RL
M(V )⟩ ≠ 0.

For a cuspidal pair (L, V ), we de�ne the Harish-Chandra series EΛ(G, (L, V )) to be
the set of all simple Λ[G]-modules V ′ such that
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Chapter 2. Representation theory of �nite groups of Lie type

1. the Levi subgroup L is minimal with ∗RG
L (V

′) ≠ 0 and

2. the module V is a composition factor of ∗RG
L (V

′).

Note that by [GM20, Prop. 3.1.16], these conditions are equivalent to V ′ being con-
tained in the socle of IGL (V ).
The Harish-Chandra series EΛ(G, (L, V )) depends only on theG-conjugacy class of (L, V ).
Moreover, it is non empty and it gives a partition of the isomorphism classes of simple
Λ[G]-modules, see [GM20, Cor. 3.1.17]. Lastly, the series EΛ(G, (L, V )) is in bijection
with the set of simple modules of the Hecke algebra associated to (L, V ) up to iso-
morphism [GM20, Thm. 3.1.18]. We make this more explicit in the case where Λ is of
characteristic zero.

The case where Λ of characteristic zero

We detail a parameterisation of the Harish-Chandra series in terms of the group algebra
of a (comparatively) small �nite group associated to the cuspidal pair.

De�nition 2.1.13 ([GM20, Def. 3.1.27]). Let (LI , V ) be a cuspidal pair forG, with I ⊆ ∆.
The relative Weyl group of LI is given by

WG(LI) ∶= NG(LI)/LI .

The relative Weyl group of LI is then

WG(LI) ∶= NG(LI)/LI .

The relative Weyl group of (LI , V ) is

WG(LI , V ) ∶= {n ∈ NG(LI) ∣ ad(n)(V ) ≅Λ[LI] V }/LI ⊆W
G(LI).

We may omit the superscript G when the ambient group is clear.

Note that despite the notation, the relative Weyl group WG(LI , V ) is not a Coxeter
group in general. If L is any Levi subgroup, then there are g ∈ G and I ⊆ ∆ such
that L = LgI . We de�ne the relative Weyl groups of L by conjugating the one for LI by g.

Theorem 2.1.14 (Howlett�Lehrer Comparison Theorem, [GM20, Thm. 3.2.5, Thm. 3.2.7]).
Assume Λ is a �eld of characteristic zero. Let (L, V ) be a cuspidal pair for G. For
any Levi subgroup L ≤ M ≤ G, there is a bijection HM

L,V from IrrΛ(WM(L, V )) to
EΛ(M, (L, V )). Moreover, the bijections can be chosen such that the following diagram
commutes for each such M. Here the left arrow is the usual induction in �nite groups.

Z IrrΛ(WG(L, V )) EΛ(G, (L, V ))

Z IrrΛ(WM(L, V )) EΛ(M, (L, V ))

HG
L,V

Ind

HM
L,V

IGM
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Using the Harish-Chandra restriction and induction, we de�ne a new self-adjoint
map on the space of class functions.

De�nition 2.1.15 ([GM20, Def. 3.4.1]). Let ∆′ be the set of Coxeter generators of W F

(in bijection with the F -orbits of∆). TheAlvis�Curtis duality operatorDG is de�ned
as follows:

DG ∶ Z irrQℓ(G) → Z irrQℓ(G), DG ∶= ∑
I⊆∆′
(−1)∣I ∣IGLI ○

∗RG
LI
.

For any χ,φ ∈ irrQℓ(G), the operator DG is self-adjoint:

⟨DG(χ), φ⟩ = ⟨χ,DG(φ)⟩.

Moreover DG ○ DG is in fact the identity, [GM20, Prop. 3.4.2, Cor. 3.4.5]. Lastly, it
permutes irreducible characters up to a sign.

Theorem 2.1.16 ([GM20, Prop. 3.4.7, Thm. 3.4.8]). Let χ ∈ EQℓ(G, (L, V )) for a
cuspidal pair (L, V ) of G. Then ϵLDG(χ) ∈ EQℓ(G, (L, V )) is irreducible. Here ϵL is
a sign depending only on L, ([GM20, Def. 2.2.11]). Furthermore, if WG(L, V ) is a
Coxeter group (for instance if Z(G) is connected), then for any ψ ∈ IrrQℓ(W

G(L, V )),

DG(H
G
L,V (ψ)) = ϵLH

G
L,V (ψ ⊗ ϵ)

where ϵ is the sign character of WG(L, V ).

2.2 Parameterisation of the ordinary characters

The Deligne�Lusztig induction enables us to construct many di�erent Λ[G]-modules.
In fact, we can already deduce a lot of information on the irreducible representations
by considering only the induction from an F -stable maximal torus. Similarly as for
Harish-Chandra induction, we get a partition of IrrΛ(G) into the so-called Lusztig series,
when Λ is a �eld of characteristic zero. One series, the unipotent series is of particular
interest. Any other one is in bijection with the unipotent series of a smaller group.
Furthermore, we see in Subsection 2.2.2 that the unipotent series can itself be partitioned
and parameterised.

Hypothesis 2.2.1. For the rest of this chapter, we always assume that Λ = Qℓ.

Notation 2.2.2. For A a �nite group, irr(A) denotes the set of irreducible characters
of A over Qℓ. For our purposes, we may identify the abstract �eld Qℓ with C and might
sometimes do so.
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Chapter 2. Representation theory of �nite groups of Lie type

2.2.1 Lusztig series

In the characteristic zero case, it is su�cient to consider characters instead of modules
by Maschke's theorem.

De�nition 2.2.3 ([DL76], [Lus76]). Let T be an F -stable maximal torus and B a
Borel subgroup containing T. Let θ ∈ irr(T ). The virtual character IGT⊆B(θ) is called a
Deligne�Lusztig character.

Since the virtual character IGT⊆B(θ) is independent of the Borel subgroup, we write I
G
T (θ).

These virtual characters allow us to get all the irreducible characters of G.

Theorem 2.2.4 ([GM20, Cor. 2.2.19]). For each χ ∈ irr(G), there exists a maximal
torus T of G and a character θ ∈ irr(T ), such that

⟨χ, IGT (θ)⟩ ≠ 0.

Moreover, we know when two Deligne�Lusztig characters share some constituents.

Proposition 2.2.5 ([GM20, Cor. 2.2.10]). Let T and T′ be F -stable maximal tori of G
and θ ∈ irr(T ), θ′ ∈ irr(T ′). Then IGT (θ) = I

G
T′(θ

′) if and only if there is g ∈ G such
that gTg−1 = T′ and θ ○ ad(g) = θ′. Moreover, if IGT (θ) ≠ I

G
T′(θ

′), then

⟨IGT (θ), I
G
T′(θ

′)⟩ = 0.

We now want to de�ne the Deligne�Lusztig characters uniquely in terms of the data
we have �xed in Hypothesis 1, that is the maximally split torus T0 of G and the corre-
sponding Weyl group W .
Let T be an F -stable maximal torus of G. There exists g ∈G such that gT0g−1 = T. No-
tice that g−1F (g) ∈ NG(T0). If t = gt0g−1 ∈ T is �xed by F , then F (t0) = F (g)−1gt0g−1F (g).
Let w = g−1F (g)T0 and �x a representative ẇ ∈ NG(T0) of w. We write

T0[w] ∶= {t ∈ T0 ∣ F (t) = ẇ
−1tẇ}.

We clearly have g−1Tg = T0[w]. We say that T is a torus of type w.
For any θ ∈ irr(T0[w]), we write

Iθw ∶= I
G
T (θ ○ ad(g)),

see [GM20, Lem. 2.3.19] for more details. By Proposition 2.2.5, if Iθw = I
θ′

w′ then the
pairs (w, θ) and (w′, θ′) are F -conjugate by an element of W . Observe that all Deligne�
Lusztig characters can be written as Iθw, for some w ∈W and θ ∈ irr(T0[w]).

Geometric series

We would like to partition the set of irreducible characters ofG using the Deligne�Lusztig
characters. We �rst note the following.
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Since we are considering virtual characters, there might exist a character χ ∈ irr(G)
such that ⟨IGT (θ), χ⟩ ≠ 0 and ⟨IGT′(θ

′), χ⟩ ≠ 0 even if ⟨IGT (θ), I
G
T′(θ

′)⟩ = 0. Therefore,
we cannot simply de�ne a partition of irr(G) by looking at the constituents of each
Deligne�Lusztig character.
Instead, we de�ne a partition by saying that two characters χ,χ′ are in the same equiv-
alence class if there exist χ = χ0, χ1, . . . , χn = χ′ ∈ irr(G) and Deligne�Lusztig charac-
ters IGTi(θi) for 1 ≤ i ≤ n such that ⟨χi−1, IGTi(θi)⟩ ≠ 0 and ⟨χi, I

G
Ti
(θi)⟩ ≠ 0 for 1 ≤ i ≤ n. In

other words, we construct a graph DL(G) with vertices irr(G), where two vertices are
connected by an edge if they belong to the same character IGT (θ). Then the equivalence
classes are the connected components of the graph.
There is another criterion to partially describe these equivalence classes, which gener-
alises Proposition 2.2.5. We de�ne the norm map for an F -stable maximal torus T ⊆G
and d ∈ Z≥0:

NF d,F ∶ T→ T, t↦ tF (t)⋯F d−1(t).

Theorem 2.2.6 (Exclusion Theorem [GM20, Thm. 2.3.2]). Let T and T′ be F -stable
maximal tori of G and θ ∈ irr(T ), θ′ ∈ irr(T ′). Then if IGT (θ) and I

G
T′(θ

′) have an irre-
ducible character of G in common, there exist d ∈ Z≥0 and g ∈GF d such that gTg−1 = T′

and θ○NF d,F ○ad(g) = θ
′○NF d,F . We then say that (T, θ) and (T′, θ′) are geometrically

conjugate.

Note that this result translates to a condition on the pairs (w, θ) for every w ∈ W
and θ ∈ irr(T0[w]).

De�nition 2.2.7. We say two characters χ,χ′ ∈ irr(G) are in the same geometric
series if there exist two geometrically conjugate pairs (T, θ) and (T′, θ′), where T
(resp. T′) is an F -stable maximal torus with θ ∈ irr(T ) (resp. θ′ ∈ irr(T ′)) such that
⟨χ, IGT (θ)⟩ ≠ 0 and ⟨χ′, IGT′(θ

′)⟩ ≠ 0.

Remark 2.2.8. If F is the standard Frobenius, then since k = Fp = ⋃n∈Z≥0 Fpn , it is clear
for any g ∈G, there is d ∈ Z≥0 such that g ∈GF d . So in some ways we could say that the
pairs (T, θ) and (T′, θ′) are conjugate over G, hence the term geometric.

We now give another description of the geometric series. Let λ ∈X and n a positive
integer prime to p. We de�ne the following sets

Zλ,n ∶= {w ∈W ∣ λ ○ F −w.λ ∈ nX},

Wλ,n ∶= {w ∈W ∣ λ −w.λ ∈ nX}

and W ○
λ,n ∶= {w ∈W ∣ λ −w.λ ∈ nZΦ}.

In general, the �rst and the second sets are not Coxeter groups. If the �rst one is not
empty, then it is a coset of the second one which is a group ([GM20, Lem. 2.4.12]).
However, the last group is indeed a Coxeter group with root system

Φλ,n ∶= {α ∈ Φ ∣ sα ∈Wλ,n},

see [GM20, 2.4.13]
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Chapter 2. Representation theory of �nite groups of Lie type

Remark 2.2.9. If Z(G) is connected, Wλ,n is a Coxeter group and Wλ,n =W ○
λ,n, [DM20,

11.2.1].

Recall that we have �xed an isomorphism ι ∶ (Q/Z)p′
∼
→ k× (1.1). Taking the expo-

nential and identifying Qℓ with C, it gives a �xed isomorphism

(2.1) i ∶ k×
∼
→ µp′ ∶= {x ∈ Qℓ ∣ x

n = 1 for some n ∈ Z≥0, p ∤ n}.

Assume that Zλ,n ≠ ∅ and let w ∈ Zλ,n. We consider λw ∶= 1
n(λ ○ F − w.λ). It restricts

to a character λw ∶ T0[w] → k× and composing with ψ, we get θw ∶= i ○ λw ∈ irr(T0[w]).
Observe that for any n′ ≥ 1, we have Zλ,n = Zn′λ,n′n. Moreover, the pairs (λ,n)
and (n′λ,n′n) give rise to the same character of T0[w], for a �xed w ∈Zλ,n.
As in [Lus84a, 6.1], we say that the pair (λ,n) is indivisible if there is no integer n′ ≥ 2
such that λ ∈ n′X and n′ divides n.
We thus get another description of the geometric series.

Theorem 2.2.10 ([DL76, 10.1],[Lus84a, 6.5]). Let (λ,n) ∈ X ×N be an indivisible pair
such that Zλ,n ≠ ∅. Then the set

Eλ,n(G) ∶= {χ ∈ irr(G) ∣ ⟨I
θw
w , χ⟩ ≠ 0 for some w ∈Zλ,n}

is a geometric series.
Moreover, if (λ′, n′) ∈ X ×N is another indivisible pair, we have Eλ,n(G) = Eλ′,n′(G) if
and only if n = n′ and there is w ∈W such that λ′ −w.λ ∈ nX.

Let w ∈ W , θ ∈ irr(T0[w]) and n be an integer prime to p such that θn = 1T0[w].
Then by [GM20, Lem. 2.4.8], there is λ ∈X such that w ∈Zλ,n and i ○λw = θ. Moreover,
if λ′ ∈ X also satis�es these conditions, then λ′ − w.λ ∈ nX. As a result, all geometric
series are of the form Eλ,n(G) for some indivisible pair (λ,n).
If we write Λ(G, F ) for the set of indivisible pairs as in the above theorem 2.2.10, then

irr(G) = ⋃
(λ,n)∈Λ(G,F )

Eλ,n(G).

If Z(G) is connected, then we get an even better description of Eλ,n(G). We make it
more explicit in Subsection 2.2.2.

We give yet another parameterisation of the geometric series, this time in terms of
semisimple conjugacy classes of the dual group of G. Let (G∗, F ∗) be a connected
reductive group with a Steinberg endomorphism in duality with (G, F ) as in 1.2.2.
Following [GM20, Sect. 2.5], we explain Lusztig's idea ([Lus84a, 8.4]) of associating to
each pair (λ,n) ∈ X × N a semisimple element of G∗. Let T∗0 be the maximally split
torus in G∗ which is in duality with T0. Using the map 1.2, we set

X ×N→ T∗0

(λ,n) ↦ ĩT∗0(
1

n
⊗ λ) =∶ tλ,n.
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This map induces a surjection between Λ(G, F ) and the F ∗-stable G∗-conjugacy classes
of semisimple elements in G∗. Moreover, two indivisible pairs (λ,n) and (λ′, n′) are sent
to the same conjugacy class if and only if n = n′ and λ′ −w.λ ∈ nX for some w ∈W , see
[GM20, Prop. 2.5.5]. For s ∈ T∗0 such that (s)G∗ is F ∗-stable, there is (λ,n) ∈ Λ(G, F )
such that (s)G∗ = (tλ,n)G∗ . It is then well-de�ned to set E (G, s) ∶= Eλ,n(G), and we get

irr(G) = ⊔
s

E (G, s),

where s runs over a set of representatives of F ∗-stable semisimple conjugacy classes
in G∗.

Remark 2.2.11. The map above induces a map from the set of pairs (w, θ) where w ∈W
and θ ∈ irr(T0[w]) to the F ∗-stable conjugacy classes of semisimple elements in G∗. As
explained after Theorem 2.2.10, we associate a pair (λ,n) to (w, θ), whence a semisimple
element sθ ∶= tλ,n. By [GM20, Lem. 2.5.7], this map is well-de�ned.

Combining what we have seen after Proposition 2.2.5 and in Remark 2.2.11, we
associate to each G-conjugacy class of pairs (T, θ) (where T is a maximal torus of G
and θ ∈ irr(T)) a G∗-conjugacy class of pairs (T∗, s) where T∗ is an F ∗-stable maximal
torus of G∗ and s ∈ (T∗)F ∗ , see [GM20, Cor. 2.5.14]. This map is in fact a bijection.
Therefore, we can set

IGT∗(s) ∶= I
G
T (θ).

Rational series

We now come back to our initial idea of partitioning irr(G) by the connected components
of the graph DL(G). As a matter of fact, this partition is actually easier to state when
we use the notation IGT∗(s).

De�nition 2.2.12. Let s ∈ G∗ be a semisimple element. The set E (G,s) consists of
all χ ∈ irr(G) such that ⟨IGT∗(s), χ⟩ ≠ 0 for some F ∗-stable maximal torus T∗ of G∗

containing s. It is called a rational series or a Lusztig series of characters of G.

Theorem 2.2.13 ([Lus77, 7.6]). If s1, s2 ∈ G∗ are semisimple and conjugate over G∗,
then E (G,s1) = E (G,s2). Moreover,

irr(G) = ⊔
s

E (G,s),

where s runs over a set of representatives of semisimple conjugacy classes in G∗. More-
over each rational series corresponds to a connected component of the graph DL(G).

For a detailed proof, we refer the reader to [GM20, Thm.2.6.2 and Rmk. 2.6.19]. Note
that each geometric series is a union of rational series. For a semisimple element s ∈ G∗,
we set

E (G, s) ∶= ⊔
t

E (G, t),
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Chapter 2. Representation theory of �nite groups of Lie type

where t runs over a set of representatives of the semisimple G∗-conjugacy classes of F ∗-
stable elements in (s)G∗ , see [GM20, Rmk. 2.6.3]. In particular, if Z(G) is connected,
then geometric and rational series coincide.

We explain how Deligne�Lusztig induction interacts with rational series.

Proposition 2.2.14 ([GM20, Prop.3.3.20]). Deligne�Lusztig induction preserves ratio-
nal series. Therefore, Harish-Chandra series are unions of rational series.

Remark 2.2.15. Note that the Alvis�Curtis duality operator �xes rational series, c.f.
[GM20, Cor. 3.4.6].

Jordan decomposition of characters

One astonishing result about the representation theory of �nite reductive groups is
that a lot of the information we want is concentrated in a unique rational series. It is
summarised in Theorem 4.23 of Lusztig's book on characters of �nite reductive groups
[Lus84a].

Theorem 2.2.16 (Jordan decomposition of characters). Assume that Z(G) is con-
nected. Let s ∈ G∗ be a semisimple element. Let H = CG∗(s)(= C○G∗(s)). Then there is
a bijection

E (G,s)
1−1
←→ E (H,1), χ↔ χu

such that for any F ∗-stable maximal torus T∗ ⊆H, we have

⟨IGT∗(s), χ⟩ = ϵGϵH⟨I
H
T∗(1T∗), χu⟩.

Here ϵG, ϵH are signs which can be read of the order of G, respectively H ([GM20,
Def. 2.2.11]).

This bijection is not unique, but can be made so by requiring additional condi-
tions ([DM90]). Moreover, a similar result holds when Z(G) is not connected ([Lus88],
[Lus08]).
We write Uch(G) ∶= E (G,1) and we call it the set of unipotent characters of G.

2.2.2 Parameterisation of the unipotent characters

By Theorem 2.2.16, we can now focus our attention on the unipotent characters. From
Theorem 2.1.14, we could envisage that the Weyl group W might play a role. We thus
start by recalling various properties of the characters of W . In general, there should be
more characters in Uch(G) than characters of W as there might be characters coming
from IGT (1T) where T is not included in an F -stable Borel subgroup. Nevertheless,
using the notions stated for the Weyl group, we de�ne families of unipotent characters
and state another prodigious aspect of [Lus84a, Theorem 4.23]. We will mostly follow
[GM20, Chap. 4.1, Chap. 4.2].
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2.2. Parameterisation of the ordinary characters

Families of characters in the Weyl group

We describe a few notions that will help us split the irreducible characters of a Weyl
group W into families.

De�nition 2.2.17. We de�ne the a-invariant inductively. If W = {1}, then we
set a1W = 0. Assume W ≠ {1} and that the a-invariant is de�ned for any character
of a proper parabolic subgroup of W . Then, for any ψ ∈ irr(W ), we set

a′ψ ∶=max{aϕ ∣ ϕ ∈ Irr(WI) for some I ⫋∆ and ⟨IndWWI
(ϕ), ψ⟩ ≠ 0}

and

ωψ ∶= ∑
s∈S

ψ(s)

ψ(1)
,

where S is the set of re�ections of W . Lastly, we set

aψ ∶=max{a′ψ, a
′
εψ − ωψ}.

Here, ε is the sign character of W .

Using the a-invariant, we recursively de�ne a partial order on irr(W ) which induces
an equivalence relation.

De�nition 2.2.18. We de�ne inductively an order relation ⪯ on irr(W ). If W = {1},
then 1W ⪯ 1W . Assume W ≠ {1} and the order ⪯ is de�ned for any proper parabolic sub-
group ofW . Let ψ,ψ′ ∈ irr(W ). We write ψ ⪯ ψ′ if there is a sequence ψ = ψ0, . . . , ψm = ψ′

such that for all 1 ≤ i ≤ m, there are Ii ⫋ ∆ and ϕi, ϕ′i ∈ irr(WIi) with ϕi ⪯ ϕ
′
i such that

either
⟨IndWWIi

(ϕi), ψi−1⟩ ≠ 0, ⟨Ind
W
WIi
(ϕ′i), ψi⟩ ≠ 0 and aϕ′i = aψi ,

or
⟨IndWWIi

(ϕi), εψi⟩ ≠ 0, ⟨Ind
W
WIi
(ϕ′i), εψi−1⟩ ≠ 0 and aεϕ′i = aεψi .

Each equivalence class is called a family of irr(W ).

Note that if ψ ⪯ ψ′, then aψ ≤ a′ψ ([GM20, Prop. 4.1.19]). As a result, aψ is constant
on families. We now consider another invariant.

De�nition 2.2.19. For ψ ∈ irr(W ), the b-invariant bψ of ψ is de�ned as the smallest
integer n ∈ Z≥1 such that ψ occurs in the character of the nth symmetric power of the
natural representation of W .

As the a-invariant is de�ned inductively, we consider what happens to the b-invariant
after induction.

Proposition 2.2.20 ([Lus92, 10.2a][Lus79, �3]). Assume that W ′ is a subgroup of W
generated by re�ections. For each ψ′ ∈ irr(W ′) and each ϕ ∈ irr(W ), if ⟨ϕ, IndWW ′(ψ′)⟩ ≠ 0,
then bϕ ≥ bψ′. Moreover, there exists a unique ψ ∈ irr(W ) such that ⟨ψ, IndWW ′(ψ′)⟩ = 1
and the b-invariants of ψ and ψ′ agree. The character ψ is called the j-induction of ψ′

and denoted jWW ′(ψ′).
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We now link the a- and the b-invariants.

Proposition 2.2.21 ([GM20, Prop. 4.1.20], [Lus79, Prop. 4]). Let ψ ∈ irr(W ). We
always have aψ ≤ bψ. If aψ = bψ, we say that ψ is special. There is exactly one special
character in each family. Moreover, if W ′ is a parabolic subgroup of W then the j-
induction from W ′ to W of any special character is special.

We lastly consider how the Steinberg endomorphism F of our group G interacts with
the families of the Weyl group. The following discussion can be extended to any Coxeter
group automorphism.
Recall that F acts on W , hence on the set of characters of W . We observe that F
preserves the a- and the b-invariants, as well as the order ⪯. In particular, it sends
families to families and special characters to special characters. Moreover, the F -stable
families are in fact F -�xed.

Proposition 2.2.22 ([Lus84a, 4.17]). Assume that F is ordinary. If F ⊆ irr(W ) is an
F -stable family, then all elements of F are F -stable.

Remark 2.2.23. Lusztig determined explicitly the families of irr(W ). From this, he was
able to state and prove the two previous propositions. However, there is so far no proof
which does not rely on case by case analysis.

Families of unipotent characters

We describe a classi�cation of Uch(G) into families. Firstly, we can restrict our discus-
sion to G simple of adjoint type, see [GM20, Rmk. 4.2.1]. For instance, there exists
a Steinberg map F ∶ G/Z(G) → G/Z(G) which commutes with F after taking the
quotient map π ∶G→G/Z(G). Then by [DL76, 7.10] the following map

Uch((G/Z(G))F ) Ð→ Uch(G), ρ↦ ρ ○ π

is a bijection.

Hypothesis 2.2.24. For the rest of this subsection, we assume that G is simple
adjoint.

We now describe a partition of Uch(G) into families. Recall that

Uch(G) = {χ ∈ irr(G) ∣ ⟨I
1T0[w]
w , χ⟩ ≠ 0 for some w ∈W}.

We then consider combinations of Iθww so that they are this time indexed by the irre-
ducible characters of W or rather of W̃ ∶= W⋊ < F >, to take into account the action
of F on W . For ψ ∈ irr(W ) which is F -stable, we choose an extension ψ̃ of ψ to W̃ such
that ψ̃(w) ∈ R for all w ∈ W . Such an extension exists by [Lus84a, 3.2, 14.2]. We now
de�ne the almost character associated to ψ as

Rψ̃ ∶=
1

∣W ∣
∑
w∈W

ψ(w)I
1T0[w]
w .
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By [Lus84a, Prop. 3.9], for ψ,ψ′ ∈ irr(W )F ,

⟨Rψ̃,Rψ̃′⟩ = ⟨ψ,ψ
′⟩ = δψ,ψ′ .

Now, similarly as with Deligne�Lusztig characters, we de�ne a graph with ver-
tices Uch(G), where two vertices are connected by an edge if they belong to the same
almost character Rψ̃. The connected components of the graph are called the families
of Uch(G).

Remark 2.2.25. The Alvis�Curtis duality sends families to families of unipotent charac-
ters [GM20, Prop. 4.2.8].

Remark 2.2.26. We can de�ne almost characters for any geometric series Eλ,n(G), by
extending the de�nition. Fix w0 ∈ Zλ,n the unique element of Zλ,n of minimal length
([GM20, Lem. 2.4.14]). For ψ ∈ irr(W ○

λ,n) which is F -stable, we �x a chosen extension ψ̃

of ψ to W̃λ,n such that ψ̃(w) ∈ R for all w ∈Wλ,n. The almost character is the following

Rψ̃ ∶=
1

∣Wλ,n∣
∑

w∈Wλ,n

ψ(w)I
θw0w
w0w .

The next question is to understand the numbers

⟨Rψ̃, χ⟩

for any ψ ∈ irr(W )F and χ ∈ Uch(G). Note that they might depend on the choice of
the extension ψ̃. There are at most two possibilities such that ψ̃(w) ∈ R for all w ∈W ,
since F -extensions are unique up to a root of unity ([GM20, Prop.2.1.14]). We �x one,
following [LuCS4, 17.2]. It is called the preferred F -extension of ψ.
To each family F of irr(W ), we de�ne the family F̃ which consists of all irreducible
characters of W⋊ < F > / < F c > such that their restriction to W belongs to F . Here c
denotes the order of the action of F on W .

If F is ordinary, two characters ψ,ψ′ ∈ irr(W )F are in the same F -stable family if and
only if the constituents of the almost characters Rψ̃, Rψ̃′ lie in the same family ([GM20,
Prop. 4.2.3]). Thus, there is a bijection between the set of families of the Weyl group
and the set of families of Uch(G). This means that for many questions, we can consider
each family individually, in particular to compute the values ⟨Rψ̃, χ⟩.

In [Lus84a], Lusztig described in an extraordinary way each family U of Uch(G). To
each family U , he associates a �nite group ĀU , that he called the canonical quotient.
With the help of these groups, he could label all the characters in a given family as well
as compute the numbers ⟨Rψ̃, χ⟩. Before recalling his theorem, we need to introduce a
little more notation.

De�nition 2.2.27 (Lusztig's non abelian Fourier transform). Let A be any �nite
group. We de�ne M(A) as the set of A-conjugacy classes of pairs (a,ϕ) with a ∈ A
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and ϕ ∈ irr(CA(a)). We write [a,ϕ] for the conjugacy class of (a,ϕ) as above. We also
de�ne a pairing as in [Lus79, � 4]:

{ , } ∶ M(A) ×M(A) → C

([a,ϕ], [b,ψ]) ↦
1

∣CA(a)∣∣CA(b)∣
∑

g∈A,a∈CA(gbg−1)

ϕ(gbg−1)ψ(g−1a−1g).

Let Ã be another �nite group such that A is a normal subgroup of Ã and Ã/A is cyclic
of order c ∈ Z≤0 with a generator A′ ⊆ Ã, a coset of A. The set M(A ⊆ Ã) consists of
all Ã-conjugacy classes of pairs (b,ψ) ∈ A× irr(CÃ(b)) such that CÃ(b) ∩A

′ ≠ ∅ and the
restriction of ψ to CA(b) is irreducible.
Lastly, the setM(A ⊆ Ã) consists of all Ã-conjugacy classes of pairs (a,ϕ) ∈ A′ × irr(CA(a)).
We get a new pairing induced by the one inM(Ã):

{ , } ∶ M(A ⊆ Ã) ×M(A ⊆ Ã) → C
([a,ϕ], [b,ψ]) ↦ c{[a, ϕ̃], [b,ψ]},

where ϕ̃ is the in�ation of ϕ to CÃ(c).

Remark 2.2.28. Observe that µc ∶= {ξ ∈ Qℓ

×
∣ ξc = 1} acts on M(A ⊆ Ã) as follows: for

each ξ ∈ µc, we let ϵξ ∶ Ã→ C such that ϵξ is the trivial character on A and ϵξ(a) = x for
each a ∈ A′. Then we consider the action of ξ sending [b,ψ] to [b,ψ ⊗ ϵξ].

Theorem 2.2.29 (Lusztig, [Lus84a, Thm. 4,23]). We assume that F is ordinary and
let c be the order of F on W . To each family U of Uch(G) with corresponding F -stable
family F ⊆ irr(W )F , one can associate �nite groups ĀF ⊴ ÃF with ∣ÃF ∶ ĀF ∣ = c such
that there exist an injection

F̃ ↪M(ĀF ⊆ ÃF ), ψ ↦ xψ

and a bijection
U

∼
Ð→M(ĀF ⊆ ÃF ), χ↦ xχ

such that, for all χ ∈ U and ψ ∈ F with preferred extension ψ̃, we have

⟨Rψ̃, χ⟩ =∆(xχ){xχ, xψ̃},

where ∆(xχ) ∈ {1,−1} depends only on χ and can be computed explicitly.

This result is remarkable in many ways. First of all, the set of unipotent characters,
the partition into families and the decomposition of the almost characters are generic
and depend only on the complete root datum of (G, F ). Moreover, the groups ĀF

depend only on the root system. They were at �rst de�ned in an ad-hoc way, even if
Lusztig proposed another de�nition in [Lus84a, 13.1.3] that he proved in [Lus14]. To
state this reinterpretation, we need the Springer correspondence (see Section 4.1 and
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De�nition 5.1.16).
In the setting above, we can rewrite

Rψ̃ = ∑
χ∈U

∆(xχ){xχ, xψ}χ.

More generally, every element x ∈ M(ĀU ) can be seen as an element x ∈ M(ĀU ⊆ ÃU )
and we de�ne the unipotent almost character

Rx = ∑
χ∈U

∆(xχ){xχ, x}χ.

The unipotent almost characters have a geometric meaning in terms of characteristic
functions of certain character sheaves, see Section 3.3.

Remark 2.2.30. The main Theorem 4.23 of Lusztig ([Lus84a, Thm. 4.23]) is stated for any
series of characters and thus implies the Jordan decomposition of characters (Theorem
2.2.16). Assume that Z(G) is connected and �x (λ,n) ∈ Λ(G, F ). There is an element
w ∈W such that Zλ,n = wWλ,n = wW ○

λ,n. Moreover, there is a group homomorphism σ ∶
Wλ,n →Wλ,n given by σ = F ○ ad(w). Assume furthermore that F is ordinary and σ has
order c ∈ N. In the same way as for W , we split irr(Wλ,n) into families and associate to
each family F a group ĀF . To each σ-stable family F ⊆ irr(Wλ,n)σ, one can associate
�nite groups ĀF ⊴ ÃF with ∣ÃF ∶ ĀF ∣ = c such that there exist injections

F̃ ↪M(ĀF ⊆ ÃF ), ψ ↦ xψ

and a bijection
Eλ,n(G)

∼
Ð→⊔

F

M(ĀF ⊆ ÃF ), χ↦ xχ,

where F runs over the F -stable families of irr(Wλ,n), such that, for all χ ∈ Eλ,n(G)
and ψ ∈ F with preferred extension ψ̃, we have

⟨Rψ̃, χ⟩ =∆(xχ){xχ, xψ̃},

where ∆(xχ) ∈ {1,−1} depends only on χ and can be computed explicitly. Similarly, one
could de�ne for any x ∈ M(ĀF ⊆ ÃF ), the almost character

Rx = ∑
χ∈Eλ,n

(−1)ℓ(w)∆(xχ){xχ, x}χ.

2.3 Computing ordinary characters

Thanks to the Jordan decomposition of characters (Theorem 2.2.16) and the discussion
in the previous section, we now have a labelling of all ordinary irreducible characters
of G. Notwithstanding, it is not obvious from the de�nitions how to compute their
values, and it is undeniably a challenging question. In this section, we give some general
results and an overview on the subject. However, the main current method reduces the
problem to computing almost characters seen as characteristic functions of character
sheaves. We will elaborate on this in Section 3.3.
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2.3.1 Computing Deligne�Lusztig characters

The values of Deligne�Lusztig characters are not easy to compute. Nonetheless, some
results are known from the theory. As we have seen the class of Deligne�Lusztig char-
acters of the form IGT (1T ) are of particular interest as they give rise to the unipotent
characters. It transpires from the next theorem that they also play an eminent role to
compute the character values.

De�nition 2.3.1. Let T ⊆ G be an F -stable maximal torus. The Green func-
tion QG

T ∶ G
F
uni → Qℓ is de�ned by

QG
T(u) ∶= I

G
T (1T )(u) for u ∈GF

uni.

The Green functions take values in the integers, and therefore QG
T(u) = Q

G
T(u

−1) for
any u ∈ GF

uni ([GM20, Def. 2.2.15]). Besides, they do not depend on the G-conjugacy
class of T by Proposition 2.2.5. Each Deligne�Lusztig character can be expressed thanks
to the Green functions.

Theorem 2.3.2 (Character formula [DL76, 4.2]). Let g ∈ G with Jordan decomposi-
tion g = su = us where s ∈ G is semisimple and u ∈GF

uni. Let H ∶= C
○
G(s). Then for any

F -stable maximal torus T ⊆G and θ ∈ irr(T ),

IGT (θ)(g) =
1

∣H ∣
∑

x∈G,s∈xT

QH
xT(u)θ(x

−1sx).

From the above theorem, we easily see that IGT (θ)(g) = 0 if s is not G-conjugate to
an element of T . Furthermore, for u ∈GF

uni,

IGT (θ)(u) = Q
G
T(u) ∈ Z

for any θ ∈ irr(T). The character formula reduces the computation of Deligne�Lusztig
characters to two problems:

1. computing the values of the Green functions and

2. understanding the set of all x ∈ G such that s ∈ xT.

We will discuss in more details how the �rst question can be tackled in Section 4.1. Note
that the Green functions have been completely determined when p is good for G (for G
of type F4 in [Sho82], for G of classical type in [Sho83] and for type E6, E7 and E8 by
[BS84]). The bad characteristic case has been closed less than a year ago by Lübeck
([Lüb24]) who considered groups of type E8 (see also [Gec20]).

2.3.2 Ordinary characters on semisimple or unipotent conjugacy
classes

Using the previous character formula, Deligne and Lusztig inferred the values of a char-
acter at semisimple elements.
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Proposition 2.3.3 ([DL76, 7.6]). Let χ ∈ irr(G) and s ∈ G be semisimple.
Let H ∶= C○G(s). Then

χ(s) =
1

∣H ∣
∑
(T,θ)

ϵHϵT⟨I
G
T (θ), χ⟩θ(s),

where the sum runs over the pairs (T, θ) such that T is an F -stable maximal torus
with s ∈ T and θ ∈ irr(T ). Here ϵH, ϵT are signs which can be read of the order of H,
respectively T ([GM20, Def. 2.2.11]).

For a unipotent character χ, we have ⟨IGT (θ), χ⟩ ≠ 0 implies that θ = 1T and we obtain

χ(s) =
1

∣H ∣
∑
T

ϵHϵT⟨I
G
T (1T ), χ⟩,

where T runs over the F -stable maximal tori of H. Thus, the value of χ(s) depends
only on H and on the coe�cients ⟨IGT (1T ), χ⟩. Moreover, the numbers ⟨IGT (1T ), χ⟩ are
fully determined (see Theorem 2.2.29) and can be accessed in CHEVIE [Mic15].

We now consider the values of ordinary characters at unipotent elements. Again,
this is a di�cult problem. Nonetheless, we can to some extent determine if the value is
zero or not.

Theorem 2.3.4 ([Lus92, Thm. 11.2], [Tay19, �9]). Assume that p is good forG and Z(G)
is connected. Assume as well that F is a Frobenius map. Let χ ∈ irr(G). There exists
an F -stable unipotent class C ∈ Ucl(G) such that for any g ∈ G with unipotent part u,
we have

χ(g) ≠ 0 ⇐⇒ dim(u)G < dimC or (u)G = C.

Moreover, there is g ∈ G with unipotent part u such that (u)G = C and χ(g) ≠ 0. The
unipotent class C is called the unipotent support of χ.

In fact, in [GM00] Geck and Malle showed that the condition χ(g) ≠ 0 can be
replaced by a condition on the average value of χ on the F -stable unipotent class C.
The unipotent supports have all been determined for unipotent characters. We will
explain a method to describe them in Section 4.1. It uses the Springer correspondence.
The unipotent support gives us another way of characterising the families of unipotent
characters.

Theorem 2.3.5 ([GM00, Prop. 4.2 and Cor. 5.2]). We keep the same hypotheses as in
Theorem 2.3.4. Two unipotent characters of G belong to the same family if and only
they have the same unipotent support.

2.3.3 Current state of knowledge

Thanks to Deligne�Lusztig theory, we now have a complete parameterisation of the or-
dinary characters of a �nite group of Lie type. However, the description of the character
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tables is far from being achieved.
For groups of classical type, no other series than GLn(q) has been treated for each in-
teger n. The most recent and complete results are from around thirty years ago with
SO+8(q) by Geck and Pfei�er [GP92] for q odd and Geck [Gec95] for q even as well as
with SO−8(q) by Lübeck [GHLMP96]. Nonetheless, in 2020, Malle and Rotilio described
in [MR20] and [Rot21] how to compute the generic character table of Spin+8(q), the 8-
dimensional spin group in odd characteristic, whose centre is disconnected of order 4.
For exceptional groups, the case G2 has been known for a long time. Indeed, the char-
acter tables of G2(q) were fully determined in 1974 by Chang and Ree [CR74] in good
characteristic, in 1976 by Enomoto [Eno76] when p = 3 and ten years later by Enomoto
and Yamada [EY86] for even q. Recently, Geck described a strategy to compute the
character table of F4, E6 and 2E6 in even characteristic, see [Gec23], [Gec24].
For a complete list of the determined character tables, we refer the reader to [GM20,
Table 2.4].
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Character sheaves

In the previous chapter, to de�ne Deligne�Lusztig characters, we have looked at vari-
eties with an action of the �nite group G and then considered G-equivariant (perverse)
sheaves on them. Alternatively, we could have seen them as G-equivariant sheaves on G
for the twisted action by the Steinberg map F (see Remark 2.1.2). We could instead
consider varieties which have an action of the algebraic group G and are moreover F -
stable, or to be exact, varieties de�ned over Fq via the map F that we necessarily assume
to be a Frobenius endomorphism. Similarly, we will look at G-equivariant, (this time
for the action by conjugation) and F -stable perverse sheaves on those varieties. This
new approach has multiple bene�ts. Firstly, we notice that in some ways the conditions
we require seem stronger, going from G- to G-equivariance. In particular, we can have a
better grasp on the G-equivariant perverse sheaves and do not need to (mainly) restrict
ourselves to the constant sheaf.
Moreover, it means that we may at �rst completely forget about the Frobenius map F .
This is what we will do in the �rst two sections of this chapter. Nonetheless, we still
want to gain information about the ordinary characters of G and we will imitate the
construction of Deligne�Lusztig characters to de�ne character sheaves (De�nition 3.1.9).
These are certain G-equivariant irreducible perverse sheaves on G. Additionally, we will
see that we can also mimic the Harish-Chandra induction thanks to parabolic induction
in Section 3.2.
In the third section, we �nally add the Frobenius map F and bring our attention to the
F -stable character sheaves. This allows us to describe a new basis of the space of class
functions for G (Theorem 3.3.5). Furthermore, Lusztig conjectured in [Lus84a] that this
new basis coincides with the set of almost characters. It appears to be true (at least in
the connected centre case) thanks to the work of Shoji, c.f. [Sho95a], [Sho95b].

Most of this powerful theory was developed by Lusztig in a series of papers, [LuCS1]
to [LuCS5], following his precursor article [Lus84b]. These are our main references for
this chapter.

As in Hypothesis 1, we assume that G is a connected reductive group over k with
Steinberg map F ∶ G → G, T0 ⊆ B0 is a maximally split torus in an F -stable Borel B0
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of G with associated root datum (X,Φ, X̆, Φ̆), base ∆ and Weyl group W .

3.1 De�nition of character sheaves

Character sheaves on G are constructed to be the geometric analogue of characters
of G. In this section, we de�ne them following Lusztig and his paper [LuCS1]. As
for characters, we start by introducing some notions on perverse sheaves that we need
along this chapter. We then de�ne character sheaves and explain how to partition their
isomorphism classes. Along the way, we will try to convince the reader of the similarities
with the characters.

3.1.1 Reminder on G-equivariant perverse sheaves

Recall that Deligne�Lusztig characters are de�ned thanks to an alternating sum of the
cohomology groups with compact support of the derived global section functor

∑
i∈Z
(−1)iH i(RΓc(Y,Qℓ)),

for a Deligne�Lusztig variety Y (c.f. De�nitions 2.1.3, 2.1.8). In this case, it happens that
most terms of the sum are zero, except when 0 ≤ i ≤ 2dim(Y ), see [Car85, Property 7.1.1].
We make this property more formal and general by considering perverse sheaves
introduced by Beilinson, Bernstein and Deligne in [BBD82]. Our very short (and thus
incomplete) introduction follows [LuCS1, Sect. 1.1] and [MS89, Sect. 1]. For the general
reference on perverse sheaves, we advise the reader to read [BBD82].

The bounded derived category of constructible Qℓ-sheaves

On the character side, we were only looking at the constant étale sheafQℓ over a variety Y
over k. To be able to change varieties or schemes, we often take the pushforward or
pullback along morphisms of varieties. However, the pushforward of the constant sheaf
is in general not the constant sheaf anymore. More generally, a local system is an
étale sheaf which is locally constant, that is constant on an open neighborhood of any
point (open for the étale cohomology). Again, the pushforward of a local system might
not be locally constant anymore. Therefore, we look at constructible sheaves, i.e.,
sheaves on a scheme1 Y such that there is a strati�cation into �nitely many locally closed
subsets of Y where the restriction is a �nite locally constant sheaf, see [Del80, I.I]. We
then consider the bounded derived category of constructible Qℓ-sheaves over a scheme Y
over k, that we denote by Db

c(Y,Qℓ).
If f ∶ Y → Z is a morphism of algebraic varieties, then there exist functors between their
respective bounded derived categories of constructible sheaves:

� the inverse image functor (or pullback) f∗ ∶ Db
c(Z,Qℓ) → Db

c(Y,Qℓ) with right
adjoint (the pushforward) f∗ ∶Db

c(Y,Qℓ) →Db
c(Z,Qℓ),

1In the rest of this chapter all the schemes will be algebraic varieties.
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� the direct image functor with compact support (or proper pushforward) f! ∶Db
c(Y,Qℓ) →

Db
c(Z,Qℓ) with left adjoint (the proper pullback) f ! ∶Db

c(Z,Qℓ) →Db
c(Y,Qℓ).

Note that if f is proper, we have f! = f∗. There is a self-equivalence duality functor

D ∶Db
c(Y,Qℓ) →Db

c(Y,Qℓ)

such that D2 ≅ IdDbc(Y,Qℓ) called the Verdier duality. It comes from the proper pullback
of the canonical morphism from Y to the point, see [Aub10, Def. 7.4] for the de�nition.

Perverse sheaves

We consider cohomologies and complexes where the cohomology vanishes in a �nice"
way. Let F ∈Db

c(Y,Qℓ) be a complex. We de�ne the support of H i(F) for i ∈ Z as

supp(H i(F)) ∶= {y ∈ Y ∣H i(F)y ≠ 0}

and the support of F is then

supp(F) ∶= {y ∈ Y ∣H i(F)y ≠ 0 for some i ∈ Z}.

We then consider the category D≤0(Y ) which is the full subcategory of Db
c(Y,Qℓ) whose

objects F are such that for all i ∈ Z,

dimsupp(H i(F)) ≤ −i.

Observe that in particular supp(H i(F)) = ∅ for any positive i ∈ Z≥0. We also de�ne the
dual of D≤0(Y ), the category D≥0(Y ) which is the full subcategory of Db

c(Y,Qℓ) whose
objects are of the form D(F) for F ∈D≤0(Y ).
The category of perverse sheaves on Y , denoted by M (Y ), is then the full subcat-
egory2 whose objects belong to D≤0(Y ) and D≥0(Y ). This category is abelian and all
objects have �nite length ([BBD82, Thm. 1.3.6, Thm. 4.3.1]). Observe that this is also
the case for the category of Qℓ[G]-modules, whilst the category Db

c(Y,Qℓ) is additive but
not abelian. However, contrary to Qℓ[G] -mod, the category M (Y ) is not semisimple.
The irreducible perverse sheaves have been fully determined in [BBD82, Thm. 4.3.1 (ii)].
Let V be a locally closed, smooth, irreducible subvariety of Y and L an irreducible local
system on V . We see L as a complex in Db

c(V,Qℓ) by considering the chain complex
whose cohomology groups are all trivial, except at i = 0 where it is equal to L. Moreover,
the shifted complex L[dim(V )] is an irreducible perverse sheaf on V . There is a unique
way to extend L[dim(V )] to a perverse sheaf on V . It is the shift by dim(V ) of the inter-
section cohomology complex IC(V ,L), de�ned by Deligne, Goresky and MacPher-
son ([GM83]). The shifted intersection cohomology complex F = IC(V ,L)[dimV ] is
characterised by the following properties (as explained in [Sho88, 3.3]):

2We do not want to introduce t-structures in this thesis, but this construction can be made much
more general. The category M (Y ) is then the heart of Db

c(Y,Qℓ).
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1. H i(F) = 0 if i < −dimV ,

2. H−dimV (F)V = L,

3. dimsupp(H i(F)) < −i if i > −dimV , and

4. dimsupp(H i(D(F))) < −i if i > −dimV .

Extending F by 0 to Y , we get an irreducible perverse sheaf on Y . Moreover, all simple
objects in M (Y ) arise in this way, [BBD82, 4.3.1].

From Db
c(Y,Qℓ) to M (Y )

It turns out that if f ∶ Y → Z is a morphism of algebraic varieties and F ∈M (Y ), we do
not necessarily have f∗F ∈M (Z). We thus would like to turn complexes of sheaves in
Db
c(Y,Qℓ) into perverse sheaves. The inclusion of D≤0(Y ) (resp. D≥0(Y )) in Db

c(Y,Qℓ)
has a right (resp. left) adjoint denoted by τ≤0 (resp. τ≥0). The functors τ≤0τ≥0 and τ≥0τ≤0
are canonically isomorphic [BBD82, Prop. 1.3.5]. Therefore, pH0 ∶= τ≤0τ≥0 is a functor
from Db

c(Y,Qℓ) to M (Y ). It is a cohomological3 functor in the sense that if

F → F ′ → F ′′ → F[1]

is a distinguished triangle, then the sequence

pH0(F) → pH0(F ′) → pH0(F ′′)

is exact, by [BBD82, Thm. 1.3.6]. This sequence can be made into a long exact sequence.
We set pH i(F) ∶= pH0(F[i]) for any i ∈ Z. For the same distinguished triangle as above,
we then have a long exact sequence

⋅ ⋅ ⋅ → pH i(F) → pH i(F ′) → pH i(F ′′) → pH i+1(F) → . . .

Besides, pH i(F) = 0 for all but �nitely many integers i ∈ Z.
We may now de�ne semisimple objects in Db

c(Y,Qℓ). A complex F ∈ Db
c(Y,Qℓ) is split

if F is isomorphic in Db
c(Y,Qℓ) to the direct sum ⊕i∈Z

pH i(F)[−i]. If moreover all
the pH i(F)[−i] are semisimple, then F is said to be semisimple.
We now state the crucial decomposition theorem.

Theorem 3.1.1 (Decomposition Theorem, [BBD82, Thm. 6.2.5]). Let f ∶ Y → Z be a
proper morphism. Let F be a simple perverse sheaf on Y such that there exists a �nite
étale covering π ∶ Ỹ → Y where π∗F is a constant sheaf (i.e. with �nite monodromy).
Then the pushforward f∗F ∈Db

c(Z,Qℓ) is semisimple.
3This is the notion corresponding to exact functors in triangulated categories
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Equivariant perverse sheaves

Recall that in Subsection 2.1.1, we de�ned G-equivariant sheaves (De�nition 2.1.1). We
generalise this notion to perverse sheaves.

De�nition 3.1.2. Let Y be an algebraic variety (over k) on which a connected algebraic
group H (over k) acts. Let a ∶H×Y → Y denote the action of H and p ∶ H × Y → Y
the projection on the second coordinate. A perverse sheaf F ∈ M (Y ) is said to
be H-equivariant if the perverse sheaves a∗F[dimH] and p∗F[dimH] are isomor-
phic in M (H × Y ).
A split complex F ∈Db

c(Y,Qℓ) is H-equivariant if all pH i(F) are H-equivariant.

Note that a∗F[dimH] and p∗F[dimH] are indeed perverse sheaves due to the fol-
lowing fact: if f ∶ Y → Z is smooth morphism of varieties with connected �bers of
dimension d then f∗[d] is a functor from M (Z) to M (Y ) [LuCS1, 1.7.4]. Moreover,
as in De�nition 2.1.1, an H-equivariant perverse sheaf also comes with a �xed isomor-
phism ϕ ∶ a∗F[dimH]

∼
→ p∗F[dimH] satisfying a cocycle condition.

Remark 3.1.3. We consider the particular case of H-equivariant local systems on Y
where the action of H on Y is transitive, following [Sho88, 3.5]. Let L be a local system
on Y . We see L in Db

c(Y,Qℓ) and L[dim(Y )] ∈M (Y ). Assume L is H-equivariant, that
is L[dim(Y )] is H-equivariant. By de�nition, there is an isomorphism

ϕ ∶ a∗L[dimH + dimY ]
∼
→ p∗L[dimH + dimY ].

Fixing y ∈ Y , we get an isomorphism

ϕh,y ∶ Ly
∼
→ Ly,

for each h ∈ H such that a(h, y) = y. We write StabH(y) for the set of such elements
in H and AH(y) for the component group StabH(y)/Stab

○
H(y). The action of Stab○H(y)

on Ly is always trivial, and therefore we can see Ly as a Qℓ[AH(y)]-module. If L is
irreducible, then Ly is irreducible as a Qℓ[AH(y)]-module.
On the other hand, let π ∶ H/Stab○H(y) → H/StabH(y) be the quotient map. It is a
�nite étale covering with group AH(y). Since the action of H on Y is transitive, there
is an isomorphism H/StabH(y) ≅ Y and we can consider the pushforward π∗Qℓ. It is
semisimple and decomposes as follows

π∗Qℓ ≅ ⊕
V ∈Irr(End(π∗Qℓ))

LV ⊗ V,

where LV ∶= HomEnd(π∗Qℓ)(V,π∗Qℓ) is an irreducible local system on Y . By de�nition

of the map π, the algebra End(π∗Qℓ) is isomorphic to Qℓ[AH(y)]. Moreover, (LV )y is
isomorphic as a Qℓ[AH(y)]-module to the dual module of V . This de�nes a bijection
between the irreducible H-equivariant local systems on Y and Irr(AH(y)).
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The notion of equivariance works well with respect to taking subquotients, pullback
or proper pushforward. Let H be a connected algebraic group, Y,Z be two varieties
on which H acts, and f ∶ Y → Z be an H-equivariant morphism of varieties. Let F be
an H-equivariant perverse sheaf on Y , and F ′ be an H-equivariant perverse sheaf on Z.
The following facts can be found in [LuCS1, �1.9].

Lemma 3.1.4. Keeping the notation as given above, the following properties hold.

1. Any subquotient of F is H-equivariant.

2. The perverse sheaves pH i(f!F) are H-equivariant for all i ∈ Z.

3. The perverse sheaves pH i(f∗F) are H-equivariant for all i ∈ Z.

4. Assume that H acts trivially on Z and freely on Y . Suppose that for each z ∈ Z,
there is an open neighborhood V ⊆ Z with z ∈ V and an H-equivariant map fV ∶
f−1(V ) → H × V such that p2 ○ fV = f where p2 is the projection on the second
coordinate. In other words f is a locally trivial principal �bration with group H.
Then K ∈M (Y ) is H-equivariant if and only if there is K′ ∈M (Z) such that K
is isomorphic to f∗K′[dimH].

Note that if Y = H × Z and f is the projection on the second coordinate, we then
may write K′ = i∗K[−dimH] with i ∶ Z → H × Z, z ↦ (1, z) where 1 ∈ H is the neutral
element. Otherwise we use a glueing argument.

Characteristic functions

Lastly, we want to use G-equivariant perverse sheaves to understand the representation
theory of the �nite group G. So we need to take into account the action of the Frobenius
map.

De�nition 3.1.5 ([LuCS2, �8.4]). Fix q a power of the prime p. Let Y be an alge-
braic variety de�ned over Fq via a Frobenius morphism F (c.f. above De�nition 1.2.1)
and F ∈ Db

c(Y,Qℓ). The complex F is said to be F -stable if there exists an isomor-
phism φ ∶ F ∗F

∼
→ F . It induces isomorphisms for each i ∈ Z and each y ∈ Y ,

φi,y ∶H
i(F)F (y)

∼
→H i(F)y.

The characteristic function of F (with respect to φ) is given by

χF ,φ ∶ Y
F → Qℓ

y ↦∑
i∈Z
(−1)iTr(φi,y,H

i(F)y).

Note that the sum is �nite because we consider bounded complexes and the H i(F)y
are �nite-dimensional vector spaces. Let H be a connected algebraic group de�ned over
Fq. If H acts on Y with an action de�ned over Fq, then the characteristic function of
an H-equivariant perverse sheaf on Y is an H(Fq)-equivariant function on Y F [Sho95a,
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1.1]. Thus, we will consider G-equivariant perverse sheaves over G and we will have to
restrict ourselves to the case where we assume that F is a Frobenius map for our �xed
group G.

Remark 3.1.6. The characteristic functions play in some ways the same role as characters
for representations. Keeping the notation of the above de�nition, we can also de�ne the
functions χF ,φn ∶ Y Fn → Qℓ for n ∈ N≥1. If F is a semisimple perverse sheaf, the
functions (χF ,φn)n≥1 determine F up to isomorphism, c.f. [MS89, 1.3.4].

3.1.2 De�nition of character sheaves

We are now ready to de�ne character sheaves. We will see that the construction is very
similar to the one leading to the geometric series Eλ,n (Theorem 2.2.10). For λ ∈X and
n a positive integer coprime to p, we want to de�ne �Deligne�Lusztig character sheaves"
in the way that Iθww was de�ned for w ∈Zλ,n.

Kummer local systems

Firstly, we need to construct the equivalent of irreducible Qℓ-modules of T0 (= TF
0 as

�xed in Hypothesis 1). If V ∈ Irr(T0), then there is some integer m such that V ⊗m is the
trivial module. In algebraic geometry, the sheaves on T0 with this property are called
Kummer local systems.

De�nition 3.1.7. We say that a Qℓ-local system L on T0 is Kummer (or tame) if
there is m ∈ N, coprime to p, such that L⊗m ≅ Qℓ. We denote by S(T0) the set of
isomorphism classes of Kummer Qℓ-local systems on T0.

Kummer local systems on T0 are constructed as follows, see [LuCS1, 2.2]. Firstly,
we �x for the rest of this thesis an injective group homomorphism

(3.1) j ∶ {x ∈ k× ∣ xn = 1 for some n ∈ N} → Q×ℓ .

We may choose j as the restriction of i (2.1). A Kummer local system has the following
form:

1. Let n ∈ N such that (p, n) = 1, and µn ∶= {x ∈ k× ∣ xn = 1}. De�ne ρn ∶ k → k,
x↦ xn. Then µn acts on the local system (ρn)∗Qℓ.

2. Set En,j the summand of (ρn)∗Qℓ on which µn acts according to j.

3. Fix λ ∈X and consider the Qℓ-local system on T0 of the form λ∗En,j.

Note that for any n′ ∈ N coprime to p the pairs (λ,n) and (n′λ,n′n) give rise to isomor-
phic Kummer local systems. Therefore, we may assume that each local system comes
from an indivisible pair (see before Theorem 2.2.10).

Let w ∈ W and ẇ ∈ NG(T0) a representative of w. Fix L = λ∗En,j a Kummer local
system for (λ,n) ∈X ×N with n coprime to p. The action of w on T0 induces an action
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on S(T0) sending the isomorphism class of L to the isomorphism class of ad(ẇ)∗L.
Observe that T0 acts trivially on L, since λ ○ ad(t) = λ for all t ∈ T0. We de�ne

WL ∶= {w ∈W ∣ ad(w
−1)∗L ≅ L}.

Observe that WL is not always a Coxeter group. We set

ΦL ∶= {α ∈ Φ ∣ sα ∈WL},

andW ○
L
the Weyl group generated by {sα ∣ α ∈ ΦL}. By [LuCS1, � 2.2.2], for each w ∈WL,

there exists a character λw ∈ X such that ad(w−1)∗L = ad(w−1)∗λ∗En,j = (λnwλ)∗En,j. In
other words, an element w ∈W belongs to WL if and only if λ −w.λ ∈ nX. Thus,

WL =Wλ,n, W ○
L =W

○
λ,n and ΦL = Φλ,n,

by comparing with the de�nitions for the above groups below De�nition 2.2.7.

Remark 3.1.8. By [LuCS1, 2.2.2], an element w ∈WL if and only if L is equivariant for
the action of T0 given by acw ∶ T0 ×T0 → T0, (t, t′) ↦ ẇ−1tẇt′t−1.

Character sheaves

We now give the de�nition of character sheaves. Recall that the Harish-Chandra induc-
tion from the torus goes as follows: we �rst in�ate a character of T0 to the Borel B0 and
then induce it to the whole group G. In the setting of perverse sheaves and character
sheaves, the �in�ation" of a Kummer local system L onT0 is simply the pullback pr∗L un-
der the projection map B0 = T0⋉U0 → T0. Since we consider perverse sheaves, we in fact
look at the intersection cohomology complex IC(B0, pr∗L). It is a B0-equivariant per-
verse sheaf on B0. The analogue for induction should give us aG-equivariant complex in
Db
c(G,Qℓ) from a B0-equivariant complex in Db

c(B0,Qℓ). We �rst look at IC(B0, pr∗L)
extended by 0 to G−B0 as a B0-equivariant complex of G. For equivariant complexes,
there is a usual induction in Db

c(G,Qℓ): the inverse of the induction equivalence functor
of [BL94, Def. 2.6.3] (from Db

c(G,Qℓ) to Db
c(G×B0 G,Qℓ)) followed by the pushforward

to G via the action map (in our case, the conjugation).
To de�ne Deligne�Lusztig characters, we somehow twist the Harish-Chandra induction
by some w ∈W . For character sheaves, it might even be easier to see how the twisting
works as we only change B0 = B01B0 to B0ẇB0. We make explicit this above discussion
by following the construction given in [MS89, Def. 5.1.2].

Let L ∈ S(T0) and w ∈WL. Fix ẇ a representative of w in NG(T0) and set

Gw ∶= B0ẇB0.

Any element g ∈Gw decomposes as g = uẇtu′ for some u,u′ ∈U0 and t ∈ T0. We consider
the projection map prw ∶Gw → T0 sending such g = uẇtu′ to t ∈ T0. We then set

ALw ∶= IC(Gw,pr
∗
w(L))[dimGw].
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3.1. De�nition of character sheaves

By [MS89, Lem. 4.1.2], this perverse sheaf is B0-equivariant for the action by conju-
gation. We apply the induction from B0-equivariant complexes to G-equivariant com-
plexes. We have the following diagram:

G G ×G G ×B0 G G
β γ

where

� the variety G×B0 G is the quotient of G×G by the action b.(g, g′) = (gb−1, bg′b−1)
for g, g′ ∈G and b ∈ B0,

� the map β is the quotient map,

� and the map γ is the conjugation map γ ∶ (g, g′) ↦ gg′g−1 for g, g′ ∈G.

Since ALw is B0-equivariant, by fact 4 of Lemma 3.1.4, there exists a canonical irreducible
perverse sheaf ÃLw onG×B0G such that β∗ÃLw ≅ Qℓ⊠A

L
w[dimG−dimB0]. Here ⊠ denotes

the external tensor product of perverse sheaves. This process so far is the description
of the inverse of the induction equivalence functor as de�ned in [BL94, Def. 2.6.3]. We
now put

K̄Lw ∶= (γ)∗(Ã
L
w)[−dimG − ℓ(w)].

This is a semisimple complex by Lusztig [LuCS3, Prop. 12.8]. Indeed, γ is proper and
we can apply the Decomposition Theorem (Theorem 3.1.1). Here ℓ(w) is the value of
the length function of W at w ∈W . These K̄Lw then play the role of the Deligne�Lusztig
characters.

De�nition 3.1.9. A character sheaf is an irreducible perverse sheaf which is an irre-
ducible constituent of pH i(K̄Lw) for some L ∈ S(T0), w ∈WL and i ∈ Z. We denote by ĜL
the set of isomorphism classes of character sheaves coming from the local system L. We
say that a character sheaf A is unipotent if its isomorphism class belongs to ĜQℓ .

We will from now on often abuse notation and write A for the isomorphism class of
a character sheaf A and write A ∈ Ĝ. Note that it follows from the de�nition, and the
fact that γ is proper, that character sheaves are G-equivariant.

Remark 3.1.10. We explain why pr∗w(L) is B0-equivariant. Let w ∈WL and b = u1t1 ∈ B0.
By Remark 3.1.8, L is equivariant under the action of T0 given by acw. In particular,
we have acw(t1,−)∗L ≅ L. Lastly, we observe that

prw ○ad(b) = prw ○acw(t1,−)

which allows us to conclude that ad(b)∗ pr∗w L ≅ L.

We make a few remarks concerning the de�nition of character sheaves. Firstly,
since ALw is zero outside Gw, we could replace the above diagram by its restriction
to Gw:
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Gw G ×Gw G ×B0 Gw G
β γ

Moreover, we could in fact �rst do everything at the level of local systems. That was
the initial de�nition of Lusztig [LuCS1, �2.4 and Def. 2.10], that we recall here.
We let B be the variety of all Borel subgroups of G. For each w ∈W , we de�ne

O(w) ∶= {(B1,B2) ∈B ×B ∣ ∃g ∈G such that gB1 = B0,
gB2 =

ẇB0}.

For L ∈ S(T0) and w ∈WL, we have the following diagram:

T0 Ẏw Yw G
pr i πw

with

� the set Ẏw ∶= {(g, hU) ∈G ×G/U ∣ h−1gh ∈ B0wB0},

� the map pr sending (g, hU) to prẇ(h−1gh) = prẇ(uẇtu′) = t for u,u′ ∈U and t ∈ T0

such that h−1gh = uẇtu′ is the Bruhat decomposition,

� the set Yw ∶= {(g,B′) ∈G × B ∣ (B′,gB′) ∈ O(w)} =G ×B0 Gw,

� the map i ∶ (g, hU) ↦ (g, hB) for g, h ∈G,

� and the projection map πw ∶ (g,B′) ↦ g for g ∈G,B′ ∈ B.

The inverse image pr∗L is T0-invariant. Thus, by fact 4 of Lemma 3.1.4, there exists a
canonical Q∗ℓ -local system L̃ on Yw such that pr∗L ≅ i∗(L̃). We put

KLw ∶= (πw)∗(L̃).

By [LuCS3, Prop. 12.7] a perverse sheaf A is an irreducible constituent of pH i(KLw) for
some i ∈ Z and w ∈ WL if and only if it is a constituent of pHj(K̄Lw′) for some j ∈ Z
and w′ ∈WL, that is, if A is a character sheaf.
This method has the advantage that it is often easier to keep track of the local systems,
but the downside is that the complex KLw is in general not semisimple.

3.1.3 Series of character sheaves

The next step to mimic the case of ordinary characters is to consider the parameterisation
of character sheaves. First, we need to check if the sets ĜL de�ne a similar partition as
the geometric series in Theorem 2.2.10.

Proposition 3.1.11 ([LuCS3, Prop. 11.2]). Let L and L′ be two Kummer local systems
of T0 coming from the indivisible pairs (λ,n) and (λ′, n′). Then ĜL ∩ ĜL′ ≠ ∅ if and
only if L and L′ are in the same W -orbit. Moreover, in that case ĜL = ĜL′.
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3.1. De�nition of character sheaves

Note that L and L′ are in the same W -orbit if and only n = n′ and w.λ−λ′ ∈ nX for
some w ∈W . From the above proposition, we can write

Ĝ = ⊔
L∈S(T0)/W

ĜL.

Now, similarly as for the geometric series of characters, we could instead label the
series of characters sheaves via the semisimple conjugacy classes in G∗. Recall the map

X ×N→ T∗0

(λ,n) ↦ ĩT∗0(
1

n
⊗ λ) =∶ tλ,n.

This map induces a surjection from the set of indivisible pairs (λ,n) to the set of con-
jugacy classes of semisimple elements in G∗. Moreover, two indivisible pairs (λ,n)
and (λ′, n′) are sent to the same conjugacy class if and only if n = n′ and λ′ −w.λ ∈ nX
for some w ∈W . Fora semisimple element s ∈ T∗0, there is an indivisible pair (λ,n) ∈X×N
such that (s)G∗ = (tλ,n)G∗ . It is then well de�ned to set Ĝs ∶= Ĝλ∗En,j , and we get

Ĝ = ⊔
s
Ĝs,

where s runs over a set of representatives of the semisimple conjugacy classes in G∗.
The only di�erence with the geometric series case is that we do not require Zλ,n ≠ ∅ nor
the semisimple conjugacy classes to be F ∗-stable.

To perfect the resemblance with characters, we de�ne �almost character sheaves"
and families of character sheaves. In order to achieve the �rst goal, we need to pass
to the Grothendieck group K0(M (G)) of the perverse sheaves and more precisely to
the subgroup K̂0(M (G)) spanned by the isomorphic classes of character sheaves. We
set ⟨−,−⟩ as the bilinear form on K̂0(M (G)) ⊗Qℓ de�ned by

⟨A1,A2⟩ ∶= δA1,A2 ,

for A1,A2 ∈ Ĝ considered as elements of K̂0(M (G)). Let L ∈ S(T0) and ψ ∈ irr(WL).
Following [LuCS3, 14.10], we set

Rψ ∶=
1

∣WL∣
∑

w∈WL

ψ(w−1)∑
i∈Z
(−1)i+dimG pH i(KLw).

We state the equivalent of Theorem 2.2.29.

Theorem 3.1.12 (Lusztig, [LuCS4, 17.8.3], [Lus12]). Assume that Z(G) is connected.
To each family F of irr(WL) (recall that WL =W ○

L
), one can associate a �nite group ĀF

such that there exist an injection

F ↪M(ĀF ), ψ ↦ xψ
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and a bijection
ĜL

∼
→⊔

F

M(ĀF ), A ↦ xA,

where F runs over the families of irr(WL), such that for all A ∈ ĜL and ψ ∈F ,

⟨Rψ,A⟩ = ϵA{xA, xψ},

where ϵA ∶= (−1)codim(suppA) ∈ {1,−1} depends only on A.

The result was �rst stated for p a good prime for G and then extended to any prime
in [Lus12]. Note that amazingly, the groups ĀF are the same as the ones �xed by Lusztig
in the setting of Theorem 2.2.29 for characters (so the notation is consistent). If Z(G)
is not connected, then the group WL might not be a Weyl group. However, Lusztig still
de�ned families of WL and associated to them groups such that the same conclusion
holds (c.f. [LuCS4, �17.8]).

The above result allows us to split the character sheaves of ĜL into families. We say
that A1,A2 ∈ ĜL are in the same family G of ĜL if there exist a family F ⊆ irr(WL)
and ψ1, ψ2 ∈F with

⟨Rψ1 ,A1⟩ ≠ 0 and ⟨Rψ2 ,A2⟩ ≠ 0.

3.2 Parabolic induction of character sheaves

We continue on our path to describe various properties of character sheaves, based on
what we use for ordinary characters. Like for representations of the �nite group G, we
would like to have some induction process for character sheaves. This is what Lusztig
de�ned as parabolic induction and it resembles Harish-Chandra induction in many ways.
In particular, we will see the independence from the parabolic, de�ne cuspidal character
sheaves and label the induction series associated to them thanks to some relative Weyl
group.

3.2.1 De�nition and �rst properties of parabolic induction

Following [MS89, �7.1] and [LuCS3, �3 and �4], we de�ne parabolic induction. Similarly
to Harish-Chandra induction, the functor is de�ned in two steps: in�ation from a Levi
subgroup to a parabolic subgroup of G followed by induction to the whole group G.
However, for this de�nition to work, for instance to have an adjoint functor, we need to
work in the derived category of complexes Db

c(G,Qℓ).

Parabolic induction and restriction

De�nition 3.2.1. Let P ∶= U ⋊ L be a Levi decomposition of a parabolic subgroup P
of G. Consider the following diagram

L P G ×P G ×P P G
prL⊆P α β γ
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3.2. Parabolic induction of character sheaves

with

� the projection map prL⊆P ∶ P→ L sending g = ul to l ∈ L,

� the map α ∶ (g, p) ↦ p for g ∈G, p ∈ P,

� the variety G×PP for the quotient of G×P by the P-action p.(g, q) = (gp−1, pqp−1)
for p, q ∈ P, g ∈G,

� the quotient map β,

� and the conjugation map γ ∶ (g, p) ↦ gpg−1 for g ∈G, p ∈ P.

If K is an L-equivariant perverse sheaf on L, then pr∗L⊆PK[dimU] is a P-invariant
perverse sheaf on P (this is the in�ation). Moreover,

α∗ pr∗L⊆GK[dimG + dimU] ≅ Qℓ ⊠ pr
∗
L⊆PK[dimU + dimG]

is a P-equivariant sheaf on G × P. Thus by Lemma 3.1.4, there exists a canonical
perverse sheaf K̃ on G ×P P such that α∗ pr∗L⊆P(K)[2dimU] ≅ β∗(K̃). Moreover, K̃
is G-equivariant. We de�ne the parabolic induction of K as

IndG
L⊆P(K) ∶= γ∗(K̃).

Thus IndG
L⊆P is a functor from the L-equivariant perverse sheaves on L to Db

c(G,Qℓ).
Observe that the perverse sheaves pH i(IndG

L⊆P(K)) are G-equivariant for conjugation,
since γ is proper. In fact if K is irreducible so is K̃. From the decomposition theorem
(Theorem 3.1.1), we conclude that IndG

L⊆P(K) is semisimple.

There is a functor from the G-equivariant perverse sheaves on G to Db
c(L,Qℓ) called

parabolic restriction ([LuCS1, 3.8]) and denoted ResGL⊆P. For F ∈ Db
c(G,Qℓ), we

let iP⊆G ∶ P→G be the inclusion. Then

ResGL⊆P(F) ∶= (prL⊆P)!i
∗
P⊆G(F)[dimU] ∈Db

c(L,Qℓ).

Properties of the parabolic induction of character sheaves

We now describe the properties of the parabolic induction and restriction functors when
we apply them to character sheaves. Let P ∶= U ⋊ L be a Levi decomposition of a
parabolic subgroup P of G such that T0 ⊆ L and B0 ⊆ P.
If A ∈ Ĝ, then ResGL⊆P(A) ∈ D

≤0(L) and is semisimple ([LuCS1, Thm. 4.4c, Thm. 3.9]).
In fact, we may write ResGL⊆P(A) as a direct sum of (shifted) character sheaves.
Furthermore, if A ∈ L̂, then IndG

L⊆P(A) ∈M (G) ([LuCS1, Thm. 4.4b]) and is semisimple
since A is irreducible.

We now list a few properties of parabolic induction which are shared with Harish-
Chandra induction. Firstly, the parabolic restriction behaves like a right adjoint functor.
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Proposition 3.2.2 ([MS89, Prop. 7.1.3]). Let P = U ⋊ L be a Levi decomposition of a
parabolic subgroup P of G. Let K be a G-equivariant perverse sheaf on G and K′ be
an L-equivariant perverse sheaf on L. Assume that ResGL⊆P(K) ∈D≤0(L). Then

HomDbc(G,Qℓ)
(K, IndG

L⊆P(K
′)) = HomDbc(L,Qℓ)

(ResGL⊆P(K),K
′).

Furthermore, the parabolic induction functor is transitive for character sheaves. More
generally, it is transitive for any perverse sheaf under certain conditions.

Proposition 3.2.3 ([LuCS1, Prop. 4.2]). Let Q ⊆ P be two parabolic subgroups of G
with respective Levi subgroups M ⊆ L. Let K ∈M (M) and assume that IndL

M⊆L∩Q(K)
lies in M (L). Then

IndG
M⊆Q(K) = Ind

G
L⊆P ○ Ind

L
M⊆L∩Q(K).

Moreover, there is a Mackey formula for character sheaves (see [MS89, Prop. 10.1.2]
or [LuCS3, Prop. 15.2] for a di�erent proof).

Lastly, parabolic induction preserves series of character sheaves.

Proposition 3.2.4 ([LuCS1, Prop. 4.8]). Let P ∶= U ⋊ L be a Levi decomposition of a
parabolic subgroup P of G such that T0 ⊆ L and B0 ⊆ P. Let L ∈ S(T0) and A ∈ L̂L.
Then the irreducible components of IndG

L⊆P(A) belong to ĜL.

3.2.2 Cuspidal character sheaves and induction series

We now would like to de�ne induction series of character sheaves in analogy with Harish-
Chandra series and describe another partition of Ĝ.

Cuspidal character sheaves

Firstly, we de�ne the cuspidal character sheaves. The initial de�nition of Lusztig
([LuCS1, Def. 3.10]) concerns perverse sheaves and goes as follows:

De�nition 3.2.5. Let K ∈M (G) be G-equivariant. We say that K is cuspidal if and
only if it satis�es the two following conditions.

� There exists an integer n ∈ Z≥1, invertible in k, such that K isG×Z○(G)-equivariant
for the action ofG×Z○(G) given by (h, z).g ↦ znhgh−1 for z ∈ Z○(G) and h, g ∈G.

� For any proper parabolic subgroup P = U ⋊ L ≠ G such that T0 ⊆ L and B0 ⊆ P
we have

dimsupp(H i(ResGL⊆P(K))) < −i.

We notice that any character sheaf satis�es the �rst condition by [LuCS1, Prop. 2.18b].
Moreover, thanks to [LuCS1, Thm. 6.9], the restriction of a character sheaf A is in fact
a perverse sheaf, in particular H i(ResGL⊆P(A)) = 0 for all i ≠ 0. We thus may take the
following more intuitive de�nition for cuspidal character sheaves.
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De�nition 3.2.6. Let A ∈ Ĝ. We say that A is cuspidal if and only if for any proper
parabolic subgroup P =U⋊L ≠G such that T0 ⊆ L and B0 ⊆ P we have ResGL⊆P(A) = 0.

In a tour de force, Lusztig showed through case-by-case analysis that every irre-
ducible cuspidal perverse sheaf is a character sheaf [LuCS5, Thm. 23.1.b]. Therefore, we
can forget the �rst de�nition of a cuspidal perverse sheaf (if it is irreducible). Moreover,
we could set the de�nition of character sheaves as the irreducible constituents of the
parabolic induction of irreducible cuspidal perverse sheaves. However, with that de�ni-
tion we would lose the partition into series ĜL for L ∈ S(T0).

Character sheaves are irreducible perverse sheaves and as such can be written in terms
of intersection cohomology complexes of irreducible local systems on some irreducible
varieties. Thanks to [LuCS1, Prop. 3.12], we describe the structure of the intersection
cohomology complex de�ning any cuspidal character sheaf.

Theorem 3.2.7. Any cuspidal character sheaf on a Levi subgroup L of G with T0 ⊆ L is
an intersection cohomology complex IC(Σ̄,E)[dimΣ] where Σ is the inverse image under
the map L → L/Z○(L) of an isolated conjugacy class of L/Z○(L) (see De�nition 1.3.5)
and E is a local system on Σ. Moreover, Σ and E are unique up to isomorphism.

We say that any such triple (L,Σ,E) (with in particular T0 ⊆ L) which gives rise to
a cuspidal character sheaf is a cuspidal induction datum and we write MG for the
set of all cuspidal induction data of G. If m = (L,Σ,E) is a cuspidal induction datum,
we write

Am ∶= IC(Σ,E)[dim(Σ)],

for the cuspidal character sheaf on L.

Remark 3.2.8. Thanks to the proof of [LuCS1, Prop. 3.12], the pair (Σ,E) is cuspidal
for L in the sense of [Lus84b, Def. 2.4]. In particular, suppose that Σ contains unipotent
elements. Let C ∈ Ucl(L) be the unipotent class of L such that Σ = CZ○(L). We
canonically identify Σ with C × Z○(L) via the map i ∶ CZ○(L) → C × Z○(L). In this
case, there exist Z ∈ S(Z○(L)) and E0 a local system on C with (L,Σ,E0 ⊠Qℓ) being an
induction datum for G, such that

IC(Σ̄,E)[dimΣ] ≅ IC(Σ̄, i∗(E0 ⊠Z))[dimΣ].

Cuspidal character sheaves satisfy another interesting property.

Proposition 3.2.9 ([LuCS5, Thm. 23.1.a]). For any cuspidal indution datum m =
(L,Σ,E) ∈MG, the cuspidal character sheaf Am is clean, that is its restriction to Σ−Σ
is zero.

Another description of the parabolic induction

We now describe the induction of a cuspidal character sheaf following [LuCS2, 8.2]. As
a matter of fact, we will see that it does not depend on the parabolic subgroup, but only
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on the induction datum.
Let P ∶=U⋊L be a Levi decomposition of a parabolic subgroup P of G such that T0 ⊆ L
and B0 ⊆ P. We �x Σ the inverse image under the map L → L/Z○(L) of an isolated
conjugacy class and E an L-equivariant local system on Σ. We consider the intersection
cohomology complex

K ∶= IC(Σ,E)[dimΣ].

We construct a perverse sheaf isomorphic to the induced perverse sheaf IndG
L⊆P(K).

We have the following diagram

Σ G ×Σreg G ×L Σreg YL,Σ
α β γ

with

� the set Σreg ∶= {h ∈ Σ ∣ C○G(hs) ⊆ L} and the set YL,Σ ∶= ⋃g∈G gΣregg−1,

� the map α which is the projection on Σ of the second coordinate,

� the set G ×L Σreg, quotient of G × Σreg by the L-action l.(g, h) = (gl−1, lhl−1) for
l ∈ L, g ∈G and h ∈ Σreg,

� the quotient map β,

� and the conjugation map γ ∶ (g, h) ↦ ghg−1 for g ∈G, h ∈ Σreg.

Since E is L-equivariant, there exists a unique (up to isomorphism) local system Ẽ
on G ×L Σreg such that α∗E ≅ β∗(Ẽ). Then, thanks to [Lus84b, Prop. 4.5], there is a
canonical isomorphism

IndG
L⊆P(K) ≅ IC(YL,Σ, γ∗(Ẽ))[dimYL,Σ].

Now, for an induction datum m = (L,Σ,E) as before, we write

Km ∶= IC(YL,Σ, γ∗(Ẽ))[dimYL,Σ] ≅ Ind
G
L⊆P(Am).

Remark 3.2.10. Note that Σreg is open dense in Σ̄, thus

IC(Σ,E)[dimΣ] = IC(Σreg, (E)Σreg)[dimΣreg].

Therefore, it makes sense to �rst consider the restriction of E to Σreg.
Moreover, the set YL,Σ is a locally closed smooth irreducible subvariety of G of dimen-
sion equal to dim(G) − dim(L) + dim(Σ) which depends only on the G-conjugacy class
of (L,Σ). Lastly, the sets YL,Σ for (L,Σ) as above de�ne a �nite partition of G. In-
deed for g ∈ G we may take L to be the minimal Levi subgroup containing C○G(gs)
and Σ = (g)LZ○(L), see [Lus84b, � 3.1] for all those facts.
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3.2. Parabolic induction of character sheaves

Induction series

We �nally de�ne induction series and see how they induce a partition of Ĝ.

De�nition 3.2.11. Let m = (L,Σ,E) ∈MG be a cuspidal induction datum. We de�ne
the induction series Ĝ(m) as the set of all character sheaves which are constituents
of Km.

Note that by Proposition 3.2.4, all the constituents of Km are character sheaves. By
[LuCS1, Thm. 4.4a], every character sheaf belongs to some Ĝ(m) for some m ∈ MG.
Thus, we can write

Ĝ = ⋃
m∈MG

Ĝ(m).

Furthermore, let m = (L,Σ,E),m′ = (L′,Σ′,E ′) ∈MG be two cuspidal induction data.
If A ∈ Ĝ is a component of both Km and Km′ , then there exists an element g ∈ G such
that gL = L′, gΣ = Σ′ and ad(g−1)∗E = E ′, see [LuCS2, Cor. 7.6]. We say that m and m′

are G-conjugate. Therefore, we obtain

Ĝ = ⊔
m
Ĝ(m),

where m runs over a set of representatives for the G-orbits in MG. By [LuCS1, 4.3.1],
all character sheaves in Ĝ(m) have support Y L,Σ.

Remark 3.2.12. This is very similar to the Harish-Chandra series of characters which de-
pend only on the G-conjugacy classes of the cuspidal pairs (see below De�nition 2.1.12).

We are left to discuss how to label the character sheaves in an induction series, as we
did for characters in Harish-Chandra series in the Howlett�Lehrer Comparison Theorem
(Theorem 2.1.14). That is what we do in the next subsection.

3.2.3 Decomposition of an induced cuspidal character sheaf

For the rest of this subsection we �x m = (L,Σ,E) ∈ MG a cuspidal induction datum
for G. Recall that Km is a semisimple perverse sheaf and thus decomposes into a direct
sum of character sheaves. In fact, we can write

Km ≅ ⊕
V ∈Irr(End(Km))

AV ⊗ V,

where V runs over a set of representatives of isomorphism classes of irreducible End(Km)-
modules. Here AV ∶= HomEnd(Km)(V,Km) are the character sheaves in Ĝ(m). Based on
our analogy with Harish-Chandra series, we would like to de�ne a bijection between the
algebra End(Km) and the group algebra of some relative Weyl group. Lusztig showed
that this idea works up to a twist by a 2-cocycle. We present some cases where one can
show that this cocycle is trivial.
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Relative Weyl groups

We �rst de�ne the relative Weyl group associated to the cuspidal datum m.

De�nition 3.2.13. The relative Weyl group of (L,Σ) is given by

WL,Σ ∶= NG(L,Σ)/L with NG(L,Σ) ∶= {n ∈G ∣ nLn
−1 = L, nΣn−1 = Σ}.

The relative Weyl group of m is then

Wm ∶= NG(m)/L with NG(m) ∶= {n ∈ NG(L,Σ) ∣ ad(n)
∗E ≅ E}.

Notation 3.2.14. To simplify the notation, we also set WL ∶= WG(L) = NG(L)/L. If
we want to emphasise the ambient group, we might write it as a superscript, e.g., WG

L

or WG
m .

Remark 3.2.15. In general, Wm is not a Coxeter group but the semi-direct product of
a Coxeter group with an abelian group. We describe it following Achar and Aubert
[AA10, �4.1]. Assume that L = LI for I ⊆∆. Let E be the real vector space on which W
acts via its natural representation and EI the subspace generated by all the α ∈ I.
For any α ∈ Φ, if w(I ∪ {α}) ⊆ ∆ for some w ∈ W , then I ∪ {α} is a base for the root
system it generates. If J is a base for the root system it generates, we write wJ for the
longest element of the corresponding generated re�ection group. We set

Dm ∶= {α ∈ Φ ∣ ∃w ∈W such that w(I ∪ {α}) ⊆∆, wI∪{α}wI = wIwI∪{α} ∈Wm},

D+m ∶=Dm ∩Φ
+, Ωm = {w ∈Wm ∣ wD

+
m ⊆D

+
m} and Φm ∶= {α +EI ∣ α ∈Dm}.

We de�ne W ○
m to be the Weyl group generated by the re�ections sα for α ∈ Φm. Then by

[AA10, Prop. 4.1]
Wm =W

○
m ⋊Ωm.

This description generalises the one given by Howlett for WL ([How80]).

We now relabel the irreducible modules of End(Km) using the relative Weyl group
of m.

Theorem 3.2.16 ([LuCS2, � 10.2]). The algebra End(Km) is isomorphic to the group
algebra Qℓ[Wm] twisted by a 2-cocycle.

Wemake the isomorphism above more explicit, following [Lus84b, �3.4 and Prop. 3.5].
Recall the construction of Km. Let Ẽ be the canonical local system on G ×L Σreg such
that α∗E ≅ β∗Ẽ . By the de�nition of intersection cohomology complexes, we have by
[Lus84b, 4.4.1],

End(Km) ≅ End(γ∗Ẽ).

We thus have to de�ne an isomorphism between End(γ∗Ẽ) and Qℓ[Wm] twisted by a 2-
cocycle. Beforehand, for each w ∈Wm, we �x a representative ẇ ∈ NG(L) and de�ne

AE ∶= ⊕
w∈Wm

Hom(ad(ẇ)∗E ,E).

We then follow the three next steps.
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3.2. Parabolic induction of character sheaves

Step 1. Show that AE comes with a natural pairing which makes it isomorphic to the
group algebra Qℓ[Wm] twisted by a 2-cocycle.

Step 2. For each w ∈ W (m) and each isomorphism ϕẇ ∶ ad(ẇ)∗E
∼
→ E , construct an

endomorphism Φw of γ∗Ẽ independent of the choice of representatives ẇ.

Step 3. Check that the map w ↦ Φw de�nes an algebra isomorphism from AE to End(γ∗Ẽ).

Let us describe the above steps in more details.
Step 1. Let w,w′ ∈Wm. We set

AE,w ∶= Hom(ad(ẇ)
∗E ,E).

This vector space has dimension 1 since E is irreducible. There is a natural pairing

AE,w ×AE,w′ →AE,ww′

(f, g) ↦f × g ∶= f ○ ad(ẇ)∗(g).

Note that this pairing is associative. We �x basis elements bw ∈ AE,w for each w ∈Wm.
For all w,w′ ∈Wm, there exists a scalar λw,w′ ∈ Qℓ such that

bw × bw′ = λw,w′bww′ .

By associativity of the pairing, one can show that the mapWm×Wm → Qℓ, (w,w′) ↦ λw,w′
is a 2-cocycle. Thus AE is isomorphic to Qℓ[Wm] twisted by a 2-cocycle.

Step 2. Let w ∈Wm. We have the following commutative diagram:

Σ G ×Σreg G ×L Σreg YL,Σ

Σ G ×Σreg G ×L Σreg YL,Σ

ad(ẇ) φẇ

βα

φ̄ẇ

γ

id

α β γ

with

� the L-equivariant map φẇ ∶G ×Σreg →G ×Σreg, (g, h) ↦ (gẇ−1, ẇhẇ−1)

� and φ̄ẇ ∶G ×L Σreg →G ×L Σreg, β((g, h)) ↦ β((gẇ−1, ẇhẇ−1)).

Note that the map φ̄ẇ is well de�ned since φẇ is L-equivariant. Moreover, we have

φ̄ẇl = φ̄ẇ for any l ∈ L.

Hence, we can write φ̄w ∶= φ̄ẇ.
Let us �x an isomorphism ϕẇ ∶ ad(ẇ)∗E

∼
→ E . It induces a homomorphism

α∗ϕẇ ∶ φ
∗
ẇα
∗E = α∗ ad(ẇ)∗E

∼
→ α∗E .
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Chapter 3. Character sheaves

From it, and from the isomorphism α∗E ≅ β∗Ẽ , we de�ne a homomorphism

β∗φ̄∗wẼ = φ
∗
ẇβ
∗Ẽ → β∗Ẽ .

It gives rise to a homomorphism ϕ̃ẇ ∶ φ̄∗wẼ → Ẽ . Lastly, precomposing γ∗ϕ̃ẇ by the
canonical isomorphism due to base change (id∗γ∗Ẽ ≅ γ∗φ̄∗wẼ), we get an endomorphism

Φẇ ∶ γ∗Ẽ → γ∗φ̄
∗
wẼ → γ∗Ẽ .

We make a few observations.

� The morphism ϕ̃ẇ (and thus Φẇ) depends only on ϕẇ, the local system Ẽ and the
isomorphism α∗E ≅ β∗Ẽ . We did not make any choice in the construction.

� Since E is irreducible, ϕẇ is unique up to multiplication by a scalar. Let ϕ′ẇ = λϕẇ
for λ ∈ Qℓ, then ϕ̃′ẇ = λϕ̃ẇ.

� For l ∈ L and ϕl ∶ ad(l)∗E → E , the morphism ϕ̃ẇl coming from ϕẇ ○ ad(ẇ)∗ϕl is
in fact equal to ϕ̃ẇ (see [Lus84b, Proof of Prop. 3.5]). We choose ϕl to be the
morphism coming from the L-equivariance of E . Therefore, we can set ϕ̃w ∶= ϕ̃ẇ
and Φw ∶= Φẇ.

Therefore, after �xing a basis {ϕẇ ∣ w ∈Wm} of AE , we have de�ned a linear map

AE = ⊕
w∈Wm

AE,w → End(γ∗Ẽ).

Step 3. We see that, by construction, the map above is injective. For a more detailed
proof, we refer the reader to [Lus84b, Proof of Prop. 3.5]. There Lusztig also showed
that the dimension of End(γ∗Ẽ) is at most ∣Wm∣, which implies the bijectivity.

This concludes the description of the isomorphism

AE
∼
→ End(γ∗Ẽ),

and hence of the isomorphism between End(Km) and the group algebra Qℓ[Wm] twisted
by a 2-cocycle.
We now consider various cases where one can show that the 2-cocycle is in fact trivial.

Character sheaves with unipotent support

When the support of Km contains unipotent elements, Lusztig made some choices for
the basis elements of AE such that the cocycle is trivial.

Proposition 3.2.17 ([Lus84b, Thm. 9.2], [Lus86, Section 2]). Let m = (L,Σ,E) ∈MG

be a cuspidal induction datum. Assume that Σ contains unipotent elements of G. Then
there is an isomorphism

Qℓ[Wm] ≅ AE .
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3.2. Parabolic induction of character sheaves

Proof. We are in the setting of Remark 3.2.8. Let C ∈ Ucl(L) be the unipotent
class of L such that Σ = CZ○(L). Let i ∶ Σ → C × Z○(L) be the canonical map
and π ∶ CZ○(L) → C,uz ↦ u. We write E as i∗(E0 ⊠Z) where Z ∈ S(Z○(L)) and E0 is a
local system on C such that (L,Σ,E0 ⊠Qℓ) is an induction datum for G.

We �x a basis of AE following [Lus86, Section 2], which will induce a trivial cocycle.
In other words, for each w ∈ Wm with representative ẇ, we �x θw ∈ Hom(ad(ẇ)∗E0,E0)
and ϕZw ∈ Hom(ad(ẇ)∗Z,Z) and consider bw ∶= i∗(θw⊠ϕZw). Observe that for w,w′ ∈Wm,

bw × bw′ = i
∗(θw × θw′ ⊠ ϕ

Z
w × ϕ

Z
w′).

Alternatively, we could �x

θ′w ∈ Hom(ad(ẇ)
∗(E0 ⊠Qℓ),E0 ⊠Qℓ) and ψ

Z
w ∈ Hom(ad(ẇ)

∗(Qℓ ⊠Z),Qℓ ⊠Z)

and consider bw ∶= i∗(θ′w ⊗ ψZw ), where ⊗ denotes the tensor product.
Firstly, we observe that by [Lus84b, Thm. 9.2b], ad(n)∗(E0 ⊠ Qℓ) ≅ E0 ⊠ Qℓ for

any n ∈ NG(L). Thus,

Wm = {n ∈ NG(L) ∣ ad(n)
∗Z ≅ Z}/L.

Next, for any w ∈WL, Lusztig �xed in [Lus84b, Thm. 9.2d] a homomorphism

θ′w ∶ ad(ẇ)
∗(E0 ⊠Qℓ) → E0 ⊠Qℓ

by some condition on KL,Σ,E0⊠Qℓ . This basis satis�es that

θ′w × θ
′
w′ = θ

′
ww′ for any w,w′ ∈WL.

Finally, for w ∈Wm, we �x the unique isomorphism ϕZw ∶ ad(ẇ
−1)∗Z

∼
→ Z such that (ϕZw)1

is the identity (as in [Lus86, �2.3]). Let w,w′ ∈Wm, then

(ϕZw × ϕ
Z
w′)1 = (ϕ

Z
w)1 ○ (ad(ẇ)

∗ϕZw′)1 = id ○ (ϕ
Z
w′)ẇ1ẇ−1 = id.

Thus, for any w,w′ ∈Wm,
ϕZw × ϕ

Z
w′ = ϕ

Z
ww′ .

We then consider the basis

bZw ∶= i
∗(θ′w ⊗ π

∗ϕZw) for w ∈Wm.

The 2-cocycle de�ned by the natural pairing of this basis is then trivial. Hence, we have
constructed an isomorphism of algebras

Qℓ[Wm]
∼
→ AE .
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Chapter 3. Character sheaves

The isomorphism above induces an isomorphism

Qℓ[Wm]
∼
→ End(γ∗Ẽ),

as we have described before, lifting each isomorphism bZw to an endomorphism BZw of γ∗Ẽ .
Thanks to this construction, we can write

Km ≅ ⊕
V ∈Irr(Wm)

AZV ⊗ V,

where V runs over a set of representatives of irreducible Qℓ[Wm]-modules. Here the char-
acter sheaf AZV ∶= HomQℓ[Wm]

(V,Km) is de�ned via the isomorphism Qℓ[Wm]
∼
→ End(Km)

induced by the basis de�ned by θ′w and ϕZw for w ∈Wm. The AZV are the character sheaves
in Ĝ(m).

Remark 3.2.18. In [Bon04, �6.A], Bonnafé de�ned another isomorphism from Qℓ[Wm] to
End(γ∗Ẽ). He �xed u ∈ C and showed that there exists a representative ẇ of w ∈ Wm

which belongs to CG(u) [Bon04, Eq. 5.4]. He chose for any w ∈WL, the unique isomor-
phism σw ∶ ad(ẇ)∗E0

∼
→ E0 such that σw is the identity at the stalk at u. He then

looked at the basis b′w ∶= σw ⊠ ϕZw . If L = T0 or L = G, then in fact π∗σw = θ′w [Bon04,
Cor. 6.9].

Remark 3.2.19. Let E ′ ∶= i∗(E0 ⊠Qℓ) and m′ ∶= (L,Σ,E ′). We have an embedding of
algebras

AE = ⊕
w∈Wm

AE,w → ⊕
w∈WL

AE ′,w = AE ′

bZw = i
∗(θ′w ⊗ π

∗ϕZw) ↦ i∗(θ′w ⊗ π
∗ϕQℓ

w ) = b
Qℓ
w .

In [Lus86, �2.6], Lusztig constructed an isomorphism between the restrictions (Km)Guni

and (Km′)Guni
compatible with the θ′w for w ∈WL. In other words, he de�ned a canonical

isomorphism (Km)Guni

∼
→ (Km′)Guni

such that for any w ∈ Wm, the following diagram
commutes:

(Km)Guni
(Km′)Guni

(Km)Guni
(Km′)Guni

BZw B
Qℓ
w

Therefore, this isomorphism induces an isomorphism in Db
c(Guni,Qℓ):

(AZV )Guni
≅ (A

Qℓ
Ind

WL
Wm
(V )
)
Guni

for any V ∈ Irr(Wm), where IndWL

Wm
(V ) is the induced module.
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Character sheaves in simple groups of adjoint type

If we strengthen the assumptions on G, then one can show that the 2-cocycle is trivial
for any induction series.

Proposition 3.2.20 ([Sho95a, Lem. 5.9]). Assume that G is simple modulo its centre.
Then, for any cuspidal datum m = (L,Σ,E) ∈MG, there is an isomorphism

Qℓ[Wm] ≅ AE .

In the proof, Shoji used the following argument of Lusztig ([Lus84b, �9.4]): assume
that there exists a one-dimensional module V of AE . Then, we choose for basis elements
aw ∈ AE,w the isomorphisms acting as identity on V . To show that such a one-dimensional
module of AE exists, Shoji considered the equivalent statement that there exists a char-
acter sheaf A ∈ Ĝ(m) such that ⟨A,Km⟩ = 1 and treated it by a case-by-case analysis.

We would like to have a better understanding of the basis elements. The idea is to
construct from m another induction datum m′ = (L′,Σ′,E ′) for a subgroup of G such
that Σ′ contains unipotent elements. We de�ne basis elements for AE ′ that we could lift
to basis elements of AE .

Recall that Σ is the pullback under the quotient map L → L/Z○(L) of an isolated
conjugacy class in L/Z○(L). In other words, there exist a semisimple element s ∈ L
and a unipotent element u ∈ CL(s) such that Σ = (su)LZ○(L) and sZ○(L) is isolated
in L/Z○(L). By [Bon04, Prop. 2.3b], s is isolated in L.

We now �x Ls = C○L(s) and Gs = C○G(s). We also consider

C ∶= {u ∈ Ls ∣ su ∈ Σ, u unipotent}.

By [LuCS2, Prop. 7.11c], the set C is in fact a single unipotent conjugacy class of Ls,
i.e.,

C = (u)Ls .

Recall that by Lemma 1.3.9, we have

Z○(Ls) = Z
○(L).

We abuse notation and set s the translation map s ∶ (u)LsZ○(Ls) → Σ, x↦ sx. Then by
[LuCS2, Prop. 7.11a], the irreducible perverse sheaf IC(CZ○(Ls), s∗E)[dimCZ○(Ls)] is
cuspidal, whence ms = (Ls,CZ○(L), s∗E) is a cuspidal datum for Gs.

Lemma 3.2.21. We keep the notation above. Assume that NGs(Ls)/Ls ≅ NG(L)/L
under the map gLs ↦ gL. Then, the algebra End(Km) is isomorphic to the group alge-
bra Qℓ[Wm] (that is, the 2-cocycle is trivial).
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Proof. Thanks to Lemma 1.3.10, the map NGs(Ls)/Ls → NG(L)/L, gLs ↦ gL is well
de�ned. For each w ∈WG

m , we �x ẇ ∈ NGs(Ls) such that ẇL = w. Note that if the rep-
resentatives ẇ, ẇ′ ∈ NGs(Ls) satisfy ẇL = ẇ′L, then ẇLs = ẇ′Ls. Moreover, by [Bon04,
Eq. 5.4], we may even choose ẇ ∈ CGs(u). Thus, ẇ belongs toNGs(Ls,CZ

○(Ls)). Lastly,
we observe that ẇ ∈ NGs(ms) since

ad(ẇ−1)∗(s∗E) ≅ s∗ ad(ẇ−1)∗(E) ≅ s∗(E).

Therefore, setting ws = ẇLs ∈W
Gs
ms , we have de�ned a group isomorphism

Wm
∼
→WGs

ms , w ↦ ws.

Finally, for each ws ∈W
Gs
ms , we �x basis elements bws ∈ As∗E as in the proof of Proposi-

tion 3.2.17. In particular, the map w ↦ bws induces an isomorphism from Qℓ[W
Gs

m′ ]
to As∗E . Now for each w ∈ Wm, we choose the unique isomorphism aw ∈ AE,w =
(Hom(ad(ẇ)∗E ,E)) such that

(aw)su = (bws)u.

We check that the 2-cocycle is trivial. For w,w′ ∈Wm, we have

(aw × aw′)su = (aw ○ ad(ẇ)
∗(aw′))su = (aw)su ○ (aw′)su

= (bws)u ○ (bw′s)u = (bw)u ○ (ad(ẇs)
∗bw′s)u

= (bwsw′s)u = (aww′)su.

Thus we get an isomorphism between Qℓ[Wm] and Am, whence an isomorphism be-
tween Qℓ[Wm] and End(Km).

A similar result holds for classical groups.

Lemma 3.2.22. Assume that G is simple of adjoint type and p is good for G. Let
(Σ,E) be a cuspidal pair of a Levi subgroup L of G. Then, there exists a semisimple
element t ∈ L, isolated in L, such that the semisimple part of Σ is (t)LZ○(L), the element
t is isolated in G, and NG(L)/L = NC○G(t)

(C○L(t))/C
○
L(t).

Proof. Firstly, we observe that the case where L = T is trivial as we may choose t = 1.
Similarly, for the cases where Σ is the preimage of a unipotent class of L/Z○(L), we may
assume that t = 1. The case where L =G comes from [Lus84b, Prop. 2.7].
For the exceptional groups, we check the leftover cases (as listed in [AA10, Table 1]) using
CHEVIE [Mic15]. We always have an embedding NC○G(t)

(C○L(t))/C
○
L(t) → NG(L)/L so

we just check that these two �nite groups have the same order.
We know focus on the classical groups. If G is of type A, then the Levi subgroups of
the cuspidal induction data of G are maximal tori of G. Thus, we now assume that G
is of type B, C or D.
Firstly, we may assume without loss of generalities that L is a standard Levi subgroup,
that is L = LI for some subset ∅ ≠ I ⊂ ∆, I ≠ ∆. Note that L has connected centre
([Car85, Prop. 8.1.4]) and is a product of classical groups, of which at most one of type
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di�erent from A. We rephrase what we have just said in order to �x notation.
Let n = ∣∆∣, then we set S = [1, n]. Moreover, we let J1, . . . , Jk be disjoint intervals,
included in S, such that

I =
k

⊔
i=1

Ik where Ii ∶= {αj ∣ j ∈ Ji} for 1 ≤ i ≤ k.

Next, [Lus84b, Prop. 2.7] tells us that there exists a semisimple isolated element t ∈ L
such that Σ = (t)LZ○(L).
We now recall some results of Subsection 1.3.1 on isolated elements. Let αi0 be the
highest short root of ΦIi . The connected reductive group C○L(t) has Weyl group WI(t).
This Weyl group is generated by the re�ections indexed by the root system ΦI(t), which
has base I(t). Since t is isolated in L, by [Bon05, Thm. 4.6] and since p is good for G,
we may assume that for each 1 ≤ i ≤ k, there is ji ∈ Ji such that

I(t) =
k

⊔
i=1

Ik/{αji} ∪ {−α
i
0}.

We write αi0 = ∑α∈Ii n
i
αα. By [Bon05, Table I], since L is a classical group, niα ≤ 2 for

each α ∈ Ii and each 1 ≤ i ≤ k. If WI has only components of type A, niα ≤ 1 for each
root α ∈ Ii and each 1 ≤ i ≤ k. In this case, WI(t) = WI and thus, t ∈ Z○(L), a case we
have already treated. Thus, there is 1 ≤ d ≤ n such that J1 = [1, d] and L has exactly
one component of the same type X as G.
Moreover, we can rewrite, up to L-conjugation,

I(t) = I1/{αj1} ∪ {−α
1
0} ⊔

k

⊔
i=2

Ii.

Now, we �x

t′ ∶= ι̃T0(
ω̆αj1
nαj1
) ∈ T0.

Thanks to Proposition 1.3.7, the semisimple element t′ is isolated in G and W (t′) has
base ∆(t′) = ∆/{αj1} ∩ {−α0} where α0 is the highest short root of Φ. We claim that t′

is L-conjugate to t. For this, it su�ces to observe that

t′ = ι̃T0(
ω̆αj1
nαj1

+
k

∑
i=2

ω̆−αi0)

and thus
I − I(t) = I − I(t′)

and then apply [Bon05, Thm. 4.6].

From now on, we set t = t′. We need to show that ∣NG(L)/L∣ ≤ ∣NC○G(t)
(C○L(t))/C

○
L(t)∣.

By [MT11, Cor. 12.11], it is equivalent to showing that

∣NW (WI)/WI ∣ ≤ ∣NW (t)(WI(t))/WI(t)∣.

81



Chapter 3. Character sheaves

Now, thanks to [How80, Cor. 3], this reduces to showing that

∣NW (I)∣ ≤ ∣NW (t)(I(t))∣.

We analyse each classical type individually.
First, we assume that G is of type B. To simplify the visualisation, we write down in
Table 3.1 the shape of the Dynkin diagrams of the various involved Weyl groups. As

W
n21

WI

d21

W (t)
j121 j1 + 2 n − 1

n

α0

WI(t)
j121 j1 + 2 d − 1

d

αI0

Table 3.1: Dynkin diagrams of the relative Weyl groups for type B

we explained before, WI is a Coxeter group, which is a product of one group of type Bd

and nl groups of type Al for 1 ≤ l ≤ s ∶= n− d− 1 for some 2 ≤ d ≤ n− 1. By [How80, after
Lem. 10], we know that NW (I) is a Weyl group of type

Bn1 × ⋅ ⋅ ⋅ ×Bns ×Bk, where k = n − (d + ∑
1≤i≤s

(i + 1)ni).

On the other hand, we can read o� from [Bon05, Table II] that ∆(t) yields a Weyl group
of type Bj1×Dn−j1 for some 1 ≤ j1 ≤ d−1. Similarly, I(t) is the base of a Weyl group which
is a product of groups of type Bj1 , Dd−j1 and nl groups of type Al for 1 ≤ l ≤ s. Thanks
to [How80, after Lem. 10], we observe that NW (t)(I(t)) contains a Coxeter subgroup of
type

Bn1 × ⋅ ⋅ ⋅ ×Bns ×Bk′ where k′ = (n − j1) − ((d − j1) + ∑
1≤i≤s

(i + 1)ni) = k.

Thus, ∣NW (I)∣ ≤ ∣NW (t)(I(t))∣ and we are done with the type B.

Now, we assume that G is simple of adjoint type C. In this case, WI is product
of one Coxeter group of type Cd and nl groups of type Al for 1 ≤ l ≤ s ∶= n − d − 1 for
some 3 ≤ d ≤ n − 1. By [How80, after Lem. 10], the group NW (I) is of type

Bn1 × ⋅ ⋅ ⋅ ×Bns ×Bk, where k = n − (d + ∑
1≤i≤s

(i + 1)ni).
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From [Bon05, Table II], we deduce that ∆(t) yields a Weyl group of type Cj1 ×Cn−j1 for
some 1 ≤ j1 ≤ ⌊d/2⌋. Moreover, WI(t) is a product of groups of type Cj1 , Cd−j1 and nl
groups of type Al for 1 ≤ l ≤ s. Finally, we conclude by observing that NW (t)(I(t))
contains a Coxeter subgroup of type

Bn1 × ⋅ ⋅ ⋅ ×Bns ×Bk′ where k′ = (n − j1) − ((d − j1) + ∑
1≤i≤s

(i + 1)ni) = k.

Lastly, we assume that G is of type D. Then, WI is product of one Coxeter group of
type Dd and nl groups of type Al for 1 ≤ l ≤ s ∶= n − d − 1 for some 4 ≤ d ≤ n − 1. By
[How80, after Lem. 10], the group NW (I) is again of type

Bn1 × ⋅ ⋅ ⋅ ×Bns ×Bk, where k = n − (d + ∑
1≤i≤s

(i + 1)ni).

Next, we observe from [Bon05, Table II] that∆(t) yields a Weyl group of typeDj1×Dn−j1

for some 1 ≤ j1 ≤ ⌊d/2⌋. Moreover, WI(t) is a product of groups of type Dj1 , Dd−j1 and nl
groups of type Al for 1 ≤ l ≤ s. As before, thanks to [How80, after Lem. 10], we observe
that NW (t)(I(t)) contains a Coxeter subgroup of type

Bn1 × ⋅ ⋅ ⋅ ×Bns ×Bk′ where k′ = (n − j1) − ((d − j1) + ∑
1≤i≤s

(i + 1)ni) = k.

This concludes our case by case analysis.

3.3 Another basis for the space of class functions

From the previous two sections, we have established a clear parallel between char-
acter sheaves of a connected reductive group G and characters of a �nite reductive
group G =GF . In this section, we complete this analogy by �nally bringing the Frobe-
nius map F into play. We consider F -stable character sheaves, and see that their char-
acteristic functions do not only de�ne a basis for the space of class functions, but in
fact agree in general with the almost characters (see below Theorem 2.2.29). This fa-
mous result, known as (one of) Lusztig's conjecture(s) was proven by Shoji in 1995
in two consecutive papers [Sho95a], [Sho95b] under certain assumptions such as Z(G)
connected.

Hypothesis 3.3.1. In this section, we always assume that the Steinberg map F
�xed in Hypothesis 1 is a Frobenius map and gives G an Fq-structure, for q a power
of the prime p.

3.3.1 The F -stable character sheaves

Let A be an F -stable character sheaf on G. We write that A belongs to ĜF . By
de�nition A is a constituent of some pH i(K̄Lw) for some local system L ∈ S(T0), w ∈WL
and i ∈ Z. Moreover, A also belongs to the induction series coming from some cuspidal
datum m ∈MG. In this subsection, we see that we may in fact choose m such that it
is F -stable as well.
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Chapter 3. Character sheaves

F -stability and the de�nition of character sheaves

Let L ∈ S(T0) be a Kummer local system on T0 and assume that there exists an F -
stable character sheaf A which is a constituent of pH i(K̄Lw) for some w ∈WL and i ∈ Z.
Then, F ∗A is an irreducible constituent of F ∗pH i(K̄Lw). By [LuCS1, 1.8.1],

F ∗pH i(K̄Lw) =
pH i(F ∗K̄Lw).

We follow De�nition 3.1.9 to compute F ∗K̄Lw. Since F ∗ pr∗w L = pr
∗
F−1(w)

F ∗L, we see that

F ∗ALw ≅ A
F ∗L
F−1(w),

whence
F ∗K̄Lw ≅ K̄

F ∗L
F−1(w).

By Proposition 3.1.11, since A is isomorphic to F ∗A, the local systems L and F ∗L are
in the same W -orbit, that is writing L = λ∗En,j for λ ∈ X and n ∈ N coprime to p, there
is some w′ ∈W such that

λ ○ F −w′.λ ∈ nX( ⇐⇒ w′ ∈Zλ,n).

Now, from Proposition 3.1.11 and the analogue for characters (see below Theo-
rem 2.2.10), we can write

ĜF = ⊔
s
ĜF
s ,

where s runs over a set of representatives of the F ∗-stable semisimple conjugacy classes
in G∗.

Lastly, we consider the F -stable character sheaves in view of the parameterisation
in Theorem 3.1.12. Let L be an F -stable Kummer local system on T0 and ψ ∈ irr(WL),
then

F ∗Rψ = RF.ψ.

Therefore, for any F -stable character sheaf A ∈ ĜF
L
, the following holds:

⟨Rψ,A⟩ = ⟨Rψ, F
∗A⟩ = ⟨F ∗Rψ,A⟩ = ⟨RF.ψ,A⟩.

Thus, ⟨Rψ,A⟩ ≠ 0 if and only if ⟨RF.ψ,A⟩ ≠ 0. As a consequence, Theorem 3.1.12 tells us
the character F.ψ belongs to the same family as ψ, hence to an F -stable family. Since F
is ordinary (because it is a Frobenius map), then in fact F.ψ = ψ (Proposition 2.2.22).
Generalising this result to any F -stable Kummer local system, Theorem 3.1.12 can then
be rewritten as

Proposition 3.3.2 ([Sho95a, � 5]). Assume that Z(G) is connected. To each F -stable
family F of irr(WL) (recall that WL = W ○

L
), one can associate a �nite group ĀF such

that there exist an injection

F ↪M(ĀF ), ψ ↦ xψ,
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3.3. Another basis for the space of class functions

and an injection
ĜF
L ↪⊔

F

M(ĀF ), A ↦ xA,

where F runs over the F -stable families of irr(WL), such that for all A ∈ ĜF
L
and ψ ∈F ,

⟨Rψ,A⟩ = ϵA{xA, xψ},

where ϵA ∶= (−1)codim(suppA) ∈ {1,−1} depends only on A.

F -stability and parabolic induction

Let m = (L,Σ,E) ∈ MG be a cuspidal induction datum and A ∈ Ĝ(m) be an F -
stable character sheaf. Following [LuCS2, �10.5], we may assume that L, Σ and E
are F -stable. Indeed, F ∗A is an irreducible component of F ∗Km = KF ∗m, where F ∗m =
(F −1(L), F −1(Σ), F ∗E). Since A ≅ F ∗A, the two induction data m and F ∗m must be
conjugate by an element g ∈G (see below De�nition 3.2.11), i.e.,

F −1(L) = gLg−1, F −1(Σ) = gΣg−1 and F ∗E = ad(g)∗E .

We can then consider the induction datum m′′ = (hL, hΣ,ad(h)∗E) for some h ∈G such
that F (g) = h−1F (h). Such an element h exists by the Lang�Steinberg theorem 1.2.4.
Note that here we de�ne everything with respect to hT0 ⊆ hL instead of T0. Then,
the character sheaf A is (isomorphic to) a component of Km′′ and m′′ is F -stable. By
following the diagram de�ning Km, we observe that Km ≅ Km′′ . Therefore, we may assume
that if A is F -stable, it belongs to an induction series indexed by an F -stable induction
datum. Observe that the perverse sheaf Km′′ is also F -stable. Indeed, since E ′′ ∶= ad(h)∗E
is F -stable, there is an isomorphism φ0 ∶ F ∗E ′′

∼
→ E ′′. By [LuCS2, 8.1.3], it lifts to an

isomorphism φ ∶ F ∗Km′′
∼
→ Km′′ .

3.3.2 Characteristic functions of character sheaves

Let A ∈ Ĝ be a character sheaf of G. Assume that A is F -stable and �x an isomor-
phism φ ∶ F ∗A

∼
→ A. Since A is irreducible, any other isomorphism between F ∗A and

A is of the form λφ for some scalar λ ∈ Q×ℓ . In [LuCS5, �25.1], Lusztig gave guidelines
to choose the isomorphism φ that we now describe. Let m ∈MG such that A ∈ Ĝ(m),
i.e. A is a constituent of Km, see De�nition 3.2.11. Then supp(A) = YL,Σ and we
let d = dimsuppA. By [LuCS3, Thm. 14.2a], there exists an isomorphism φA as above
such that for any n ∈ N and any y ∈ YL,Σ with F n(y) = y, the eigenvalues of

(φA)
n
d,y ∶H

−d(A)Fn(y) →H−d(A)y

have norm qn(dimG−d)/2. Such an isomorphism φA is determined up to a root of unity
in Qℓ.

Notation 3.3.3. Since we will refer it, we call � the condition determining φA.
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We explain another way of choosing an isomorphism ϕA ∶ F ∗A
∼
→ A using the induc-

tion data. Assume that A belongs to Ĝ(m) for m = (L,Σ,E) ∈ MG. By the previous
discussion, we may assume that m is F -stable. In particular, we �x an isomorphism of
local systems ϕ0 ∶ F ∗E

∼
→ E over Σ which induces a map of �nite order on the stalk of E at

any F -rational point of Σ. Recall the de�nition of parabolic induction de�ning Km. By
[LuCS2, 8.1.3], the varieties G ×Σreg, G ×L Σreg and YL,Σ have a natural Fq-structure.
The isomorphism ϕ0 gives rise to an isomorphism of local systems ϕ̃0 ∶ F ∗Ẽ

∼
→ Ẽ

and thus to an isomorphism F ∗γ∗Ẽ → γ∗Ẽ . Hence we have constructed an isomor-
phism ϕm ∶ F ∗Km

∼
→ Km. By the de�nition of Km as an intersection cohomology

complex coming from a local system on YL,Σ, the map ϕm acts on H−d(Km)y as a map
of �nite order.
Let ϕA ∶ F ∗A → A be any isomorphism. Thanks to [LuCS2, 10.4], the following map

σA ∶ Hom(A,Km) → Hom(A,Km)

v ↦ ϕm ○ F
∗(v) ○ ϕ−1A

is an isomorphism of Qℓ-vector spaces which is AE -semilinear, i.e. such that for all θ ∈ AE
and v ∈ Hom(A,Km), we have σA(θ.v) = (ϕm ○ F ∗(θ) ○ ϕ−1m ).σA(v).
The decomposition

⊕
A

A⊗ VA ≅ Km,

where A runs over the set of irreducible components of Km gives rise for any i ∈ Z and
any g ∈G, to an isomorphism

⊕
A

H i(A)g ⊗ VA ≅H
i(Km)g.

In particular, the endomorphisms ϕA ⊗ σA are compatible with ϕm under this isomor-
phism ([LuCS2, 10.4.1]).
We �x a particular choice of ϕA as follows. Recall that VA ∶= Hom(A,Km) is an irre-
ducible AE -module. Since σA is AE -semilinear, there is a certain power m of σA such
that σm

A
acts as an automorphism on the irreducible AE -module VA, hence as multipli-

cation by a scalar. Thus, we may now choose ϕA such that σA is of �nite order. Note
that this determines ϕA up to a root of unity.

We now would like to relate the isomorphisms φA and ϕA, following [Het23a, 3.2.25]
in our more general case. Since A is irreducible, there exists a scalar ξ ∈ Q×ℓ , such
that φA = ξϕA. We set

θA ∶ Hom(A,Km) → Hom(A,Km)

v ↦ ϕm ○ F
∗(v) ○ φ−1A .

Note that θA = ξ−1σA. Moreover, for any y ∈ Y F
L,Σ , we can identify φA ⊗ θA with ϕm. By

de�nition of φA, the eigenvalues of

(φA)d,y ∶H
−d(A)y →H−d(F)y
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have norm q(dimG−d)/2. Since ϕm acts on H−d(Km)y as a map of �nite order, the eigen-
values of θA have norm q−(dimG−d)/2. Hence, the map q(dimG−d)/2θA = q(dimG−d)/2ξ−1σA is
a map of �nite order, like σA. In particular, we could �x ϕA as q−(dimG−d)/2φA. In that
case, we have

χA,φA = q
(dimG−d)/2χA,ϕA .

The isomorphism ϕA satis�es a nice property that we will need later on.

Lemma 3.3.4. Let D be an F -stable conjugacy class of G and A an F -stable character
sheaf of G(m) for an F -stable induction datum m = (L,Σ,E). Then, for any h ∈ DF ,
the map ϕA has de�ned above induces a map (ϕA)a0,h which acts on Ha0(A)h as q(a0+d)/2

times a map of �nite order, where a0 ∶= −dim(D) − dim(Z○(L)).

Proof. The proof of this lemma is a slight modi�cation of [LuCS5, 24.2.4] to our more
general case. We keep the notation �xed before, in particular let h ∈ DF . We �x an F -
stable parabolic subgroup P with Levi decomposition P = L ⋊UP and B0. We de�ne
the following sets

X ∶= {(g, xP ) ∈G ×G/P ∣ x−1gx ∈ ΣUP},

X ∶= {(g, xP ) ∈G ×G/P ∣ x−1gx ∈ ΣUP},

and
X̂ ∶= {(g, x) ∈G ×G ∣ x−1gx ∈ ΣUP}.

Let Am = IC(Σ,E)[dimΣ]. Then IndG
L⊆P(Am) may be de�ned as follows. Consider the

following diagram

Σ P X̂ X Y ,Σ.
prL⊆P γ̂ β α̂

with

� the projection map prL⊆P ∶ P→ L sending g = ul to l ∈ L,

� the conjugation map γ̂ ∶ (g, x) ↦ x−1gx for g ∈G, x ∈G,

� the quotient map β,

� and the projection map α̂ ∶ (g, xP ) ↦ g for g ∈G, x ∈G.

Note that it is a reformulation of the diagram in De�nition 3.2.1. We let Am ∶= IC(X,E)
where E is the canonical local system on X such that β∗E ≅ γ̂∗ pr∗L⊆P E . Moreover, we
have γ̂∗ pr∗L⊆PAm[dimG+dimUP] ≅ β∗Am[dimP]. As we have already seen, by [Lus84b,
Prop. 4.5], Km is canonically isomorphic to α̂∗Am.
Therefore, for any a ∈ Z,

Ha(Km)h =H
a
c (α̂

−1(h) ∩X,Am).

However, by Lemma 3.2.9, the perverse sheaf Am is clean and thus Am = E[dimΣ] and

Am = E[dim(G) + dimUP − dimP + dimΣ].
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Consequently, Ha(Km)h =Ha
c (α̂

−1(h) ∩X,E[d]) =Ha+d
c (α̂

−1(h) ∩X,E).
Now the map ϕ0 gives rise to an isomorphism ϕ0 ∶ F

∗E
∼
→ E which induces a map

of �nite order on the stalk of E at any F -rational point of X. If we can show that
dim α̂−1(h)∩X ≤ 1

2(a0 +d), then it follows that ϕ0 acts on Ha0+dimsupp(A)(α̂−1(h)∩X,E)
as q(a0+dimsupp(A))/2 times a map of �nite order, and hence, so does ϕm on Ha0(Km)h.
According to the isomorphism ⊕AH i(A)g ⊗ VA ≅ H i(Km)g, the map ϕm on Ha0(Km)g
corresponds to the map ϕA⊗σA on Ha0(A)g⊗VA. We conclude that ϕA acts on Ha0(A)g
as q(a0+d)/2 times a map of �nite order.
We are left to show that dim α̂−1(h) ∩X ≤ 1

2(a0 + dimsupp(A)). We �rst observe that

α̂−1(h) ∩X = {xP ∈G/P ∣ x−1hx ∈ ΣUP} ∶=Xh.

We rewrite Σ =D0Z○(L) where D0 is a conjugacy class of L and we obtain, since L acts
normally on UP,

Xh = ⊔
z∈Z○(L)

{xP ∈G/P ∣ x−1hx ∈D0zUP}.

Next, we verify that there is a �nite number of z ∈ Z○(L) such that

Xh,z ∶= {xP ∈G/P ∣ x
−1hx ∈D0zUP} ≠ ∅.

Without loss of generality, we may assume that the semisimple part hs of h is such
that D0 = (hsv)L for some unipotent element v ∈ CL(hs). Thus the number of z ∈ Z○(L)
such that Xh,z ≠ ∅ is smaller than ∣Z○(L) ∩ h−1s (hs)G∣. Let T be a maximal torus of G,
we then have

Z○(L) ∩ h−1s (hs)G ⊆ (hs)G ∩T.

The right-hand-side set is �nite by a standard linear algebra argument: we may see ev-
erything sitting inside a general linear group and T as subgroup of the diagonal matrices.
Conjugation preserves the eigenvalues and we can conclude.

By [Lus84b, Prop. 1.2b] or the rewriting in [Sho88, Thm. 1.4i], we know that for
each z ∈ Z○(L),

dim({yP ∣ y−1hy ∈D0ziUP}) ≤
1

2
(dimG − dimL + dim(D0) − dim(D)).

Thus, since dim(Σ) = dimD0 + dimZ○(L), dim(α̂−1(h) ∩X) ≤ 1
2(a0 + d) and this ends

the proof of this lemma.

If we further assume that AD ≅ L[−a0], then we de�ne an isomorphism ψ ∶ F ∗E
∼
→ E

by the requirement that q(a0+d)/2ψ corresponds to the map ϕA ∶ Ha0(A) → Ha0(A).
Thanks to the above lemma, ψh ∶ Eh → Eh is of �nite order for any h ∈DF .
In particular, for any h ∈DF ,

(3.2) χA,φA(h) = q
(a0+d)/2q(dimG−d)/2χL,ψ(h) = q

(dim(G)−dim(D)−dim(Z○(L)))/2χL,ψ(h).
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3.3.3 F -stable character sheaves and representation theory of
�nite reductive groups

Recall from Subsection 3.1.1 that for an F -stable G-equivariant complex in Db
c(G,Qℓ),

the characteristic function is a G-equivariant function, that is a class function. In this
subsection, we �nally see how characteristic functions of F -stable character sheaves relate
to the ordinary characters of G.

From now on, we �x for each F -stable character sheaf an isomorphism φA satisfying
the condition � (Notation 3.3.3). This might lead us to abuse notation and write the
characteristic function of A and denote it by χA for χA,φA as in De�nition 3.1.5.
Since A is G-equivariant, the map χA,φA is in fact a class function on G.

Theorem 3.3.5 ([LuCS5, Thm. 25.2], [Lus12, 3.10]). The set of characteristic functions

{χA,φA ∣ A ∈ Ĝ, A F -stable}

is an orthonormal basis for the space of class functions of G.

As a consequence, there are as many isomorphism classes of F -stable character
sheaves of G as ordinary characters of G.

Therefore, Theorem 3.3.5 tells us that to compute ordinary characters, it su�ces to
solve the two following problems:

1. understand the change of basis from the set of characteristic functions of the F -
stable character sheaves to the set of irreducible ordinary characters,

2. and compute the characteristic functions of the F -stable character sheaves.

Lusztig's conjecture and Shoji's theorem

We now consider the �rst problem. In his book about ordinary characters of �nite
reductive groups, Lusztig conjectured that the almost characters (see Remark 2.2.26)
are in fact characteristic functions of certain F -stable perverse sheaves [Lus84a, 13.6].
Around ten years later, Shoji provided a proof of this conjecture in the case where the
centre of G is connected.

Theorem 3.3.6 ([Sho95a, Thm. 5.7], [Sho95b, Thm. 3.2, Thm. 4.1]). Assume that Z(G)
is connected. Let L ∈ S(T0) be a Kummer local system and A ∈ ĜF

L
. We may assume

that L is F -stable. Let F be an F -stable family of irr(WL) such that xA ∈ M(ĀF )
under the injection of Proposition 3.3.2. Then, in the setting of Theorem 2.2.29 and
Remark 2.2.30, there exists x ∈ M(ĀF ⊆ ÃF ) and a root of unity ζx such that

Rx = ζxχA,φA .

Symmetrically, for every x ∈ M(ĀF ⊆ ÃF ), there exists A ∈ ĜF
L
such that xA ∈ M(ĀF )

and
Rx = ζxχA,φA ,

where ζx is a root of unity.
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Therefore, thanks to Remark 2.2.30, to solve the �rst problem, one needs to de-
termine the scalar ζx. Note that ζx depends on the choice of isomorphism φA. This
question has been settled by Shoji for classical groups in [Sho97] in good characteristic
and for even characteristic in [Sho09]. For exceptional groups, this work spans over
various articles by di�erent authors. For type F4, it is due to Marcelo�Shinoda [MS95],
completed by Geck in [Gec19] and [Gec21b]. In these two papers, Geck also treated the
groups of type E6 (p ≠ 3) and E7 (p ≠ 2). This was completed by Hetz in [Het19] and
[Het22] who also considered groups of type E8 and 2E6 in [Het24].

Concerning the second problem, the values of the characteristic functions of F -stable
character sheaves are known in principle thanks to a strategy presented by Lusztig. We
advise the reader to read [Het23a, Section 3.2] for an exhaustive exposition. In the next
chapter, we will focus on describing the character sheaves when restricted to a conjugacy
class. To deduce results on ordinary characters, one still needs to understand how to
keep track of the isomorphisms φA and how to compute the characteristic functions
afterwards.
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Restricting character sheaves

In this chapter, we analyse the restriction of a character sheaf to a conjugacy class. This
is a �rst step towards the computation of characteristic functions of character sheaves.
This question was raised along the course of this PhD thesis in order to generalise
methods developed by Brunat�Dudas�Taylor [BDT20] for unipotent characters to non-
unipotent characters.

In the �rst section, we will focus on the restriction of character sheaves to unipotent
conjugacy classes. In this case, the generalised Springer correspondence described by
Lusztig [Lus84b] gives us a full and complete answer.
In the next two sections, we will treat the general case of a conjugacy class (su)G
with s ∈ G semisimple and u ∈ CG(s)uni by considering the translation of character
sheaves by the element s and then restricting to (u)C○G(s). We will �rst assume that s is
central and then move on to an arbitrary semisimple element.
In both situations, we start by considering how the translation impacts the complex Km

for some cuspidal induction datum m ∈MG. We will construct an isomorphism from the
complex (s∗(Km))(u)C○

G
(s) to a direct sum of induction complexes Km′ of C○G(s) as done

in [LuCS2, �8]. For the last step, we will study how this isomorphism behaves when we
restrict it to a character sheaf A ∈ Ĝ(m).

We keep the notation introduced in Chapter 1 and Chapter 3. So in particular, we
assume that G is a connected reductive group with an Fq-structure given by a Frobenius
map F .

4.1 The importance of the unipotent variety: gener-

alised Springer correspondence

Thanks to Proposition 2.3.3, we know the values of the ordinary characters of G at
semisimple elements. For character sheaves, the theory developed by Lusztig gives us
information about their values at unipotent conjugacy classes.
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First and foremost, the induction series determines whether the restriction of a char-
acter sheaf to Guni is zero or not. Indeed, let A ∈ Ĝ be a character sheaf in the induction
series Ĝ(m), where m = (L,Σ,E) ∈MG. We write Am ∶= IC(Σ,E)[dimΣ] for the cus-
pidal sheaf on L. By de�nition, there exists a parabolic subgroup P ⊆ G with Levi
decomposition P =UP ⋊L such that IndG

L⊆P(Am) ≅ Km and A is direct summand of Km.
By [Lus86, 2.9], the support of A is completely determined by P and m:

supp(A) = ⋃
g∈G

g supp(Am)UPg
−1.

By Proposition 3.2.9, this means that

(4.1) {y ∈ Y ∣H i(A)y ≠ 0 for some i ∈ Z} ⊆ ⋃
g∈G

gΣUPg
−1.

Therefore,

{y ∈ Y ∣H i(A)y ≠ 0 for some i ∈ Z} ∩Guni ⊆ ⋃
g∈G

gΣUP ∩Gunig
−1

and

{y ∈ Y ∣H i(A)y ≠ 0 for some i ∈ Z} ∩Guni ≠ ∅ ⇐⇒ Σ ∩Guni = Σ ∩Luni ≠ ∅.

Therefore, to study the restriction of character sheaves to the unipotent varieties,
we place ourselves in the setting of Remark 3.2.8 and assume that Σ = CZ○(L) with C
a unipotent conjugacy class of L and E = E0 ⊠ Z with Z ∈ S(Z○(L)) and E0 is an L-
equivariant irreducible local system on C.

4.1.1 Character sheaves restricted to unipotent conjugacy classes

In this subsection, we discuss the restriction of character sheaves to the unipotent vari-
ety Guni. We now �x a cuspidal induction datum m = (L,CZ○(L),E0 ⊠Z) where C is a
unipotent class of L, E0 is an irreducible L-equivariant local system on C and Z ∈ S(Z○(L)).
Recall that Km is semisimple and

Km ≅ ⊕
V ∈Irr(End(Km))

AV ⊗ V,

where V runs over a set of representatives of the isomorphism classes of irreducible End(Km)-
modules and AV ∶= HomEnd(Km)(V,Km) are the character sheaves in Ĝ(m). Thus,

(Km[−dimZ○(L)])Guni
≅ ⊕
V ∈Irr(End(Km))

(AV [−dimZ○(L)])Guni
⊗ V.

We want to understand the complexes (AV [−dimZ○(L)])Guni
for V ∈ Irr(End(Km)).

Note that it is not a priori clear if the complexes (AV [−dimZ○(L)])Guni
are semisimple.
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4.1. The importance of the unipotent variety: generalised Springer correspondence

The generalised Springer correspondence (or the case when Z = Qℓ)

We assume that Z = Qℓ. By [Lus84b, 6.6.1], the complex Km[−dimZ○(L)]Guni
=∶ K1

is also semisimple and therefore decomposes (see also [Sho88, 11.1.1]). Moreover, the
natural map End(Km) → End(K1) is an isomorphism ([Lus84b, 6.8] or [Sho88, 11.3]).
Therefore, we conclude that

K1 ≅ ⊕
V ∈Irr(End(Km))

A′V ⊗ V

where A′V ≅ (AV [−dimZ○(L)])Guni
is an irreducible G-equivariant perverse sheaf in

the category M (Guni). The irreducible G-equivariant perverse sheaves in M (Guni)
are shifted intersection cohomology complexes over G-stable locally closed smooth irre-
ducible subvarieties of Guni. Therefore, those varieties are unions of unipotent conju-
gacy classes ofG and by irreducibility, they are simply unipotent conjugacy classes (since
there are �nitely many unipotent conjugacy classes). Hence, for each V in Irr(End(Km)),

(AV [−dimZ○(L)])Guni
≅ A′V = IC(CV ,EV )[dimCV ],

where CV ∈ Ucl(G) and EV is an irreducible G-equivariant local system on CV .
Recall that End(Km) ≅ Qℓ[Wm] = Qℓ[WL], c.f. Proposition 3.2.17 and its proof. Thus,
we have de�ned an injective map

SprC,E0 ∶ Irr(WL) → {(C
′,E ′) ∣ C ′ ∈ Ucl(G), E ′ irreducible G-equivariant local system on C ′}.

Note that this map depends on C and E0.
Let us denote byNG a set of representatives of theG-conjugacy classes of all pairs (C ′,E ′)
where C ′ is a unipotent class on G and E ′ is an irreducible local system on C ′. We
write NG

0 for the subset of NG consisting of pairs (C ′,E ′) such that the induction
datum(G,C ′Z○(G),E ′ ⊠ Qℓ) is cuspidal for G. So in other words, for each Levi sub-
group L of G and each pair (C,E0) ∈NL

0 , there is an injective map

SprC,E0 ∶ Irr(WL) ↪NG.

In the other direction, if (C ′,E ′) ∈ NG, then there are a unique Levi subgroup L and a
unique pair (C,E0) ∈NL

0 (up to G-conjugation) such that (C ′,E ′) belongs to the image
of SprC,E0 , see [Lus84b, Prop. 6.3]. In this way, Lusztig has constructed a bijective map

Spr ∶ ⊔
L
⊔

n∈NL
0

Irr(WL)
∼
→NG,

where L runs over the Levi subgroup of G up to conjugation ([Lus84b, Thm. 6.5]). We
call this map the generalised Springer correspondence. This theorem was inspired
by results of [BM81] and [Spr76] who only considered the special case where the Levi
subgroup is the maximal torus T0. In that case it is called the (ordinary) Springer
correspondence.
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Chapter 4. Restricting character sheaves

Remark 4.1.1. In its original de�nition by Springer, the map di�ers from the one de�ned
by Lusztig by tensoring by the sign character of W .

The generalised Springer correspondence has been completely determined. Thanks
to [Lus84b, 10.1], it su�ces to consider the case where G is simple and simply connected
and then to proceed inductively, assuming that the cuspidal pairs for all proper Levi
subgroups are known. This work was started by Lusztig in [Lus84b], carried on by
Lusztig�Spaltenstein for classical groups [LS85] and Spaltenstein for most exceptional
groups [Spa85], and concluded by Lusztig in [Lus19] and Hetz [Het23b] for the leftover
cases in E8.
These results are accessible in CHEVIE [Mic15].

Remark 4.1.2. Let us now brie�y consider the characteristic functions. Assume that the
character sheaf A = AV is the direct summand of the semisimple sheaf Km correspond-
ing to the pair (C ′,E ′) ∈ NG under the generalised Springer correspondence. Recall
that we may choose a representative uC′ of C ′ such that F acts trivially on AG(uC′).
Moreover, by Remark 3.1.3, we assume that E ′ corresponds to the irreducible charac-
ter ϕ ∈ irr(AG(uC′)). We can always choose an isomorphism φ ∶ F ∗A

∼
→ A such that

for any g ∈ G with guC′ ∈ G, the characteristic function takes values

χF ,φ(
guC′) = q

1
2
(dimG−dim(C′)−dimZ○(L))ϕ(g−1F (g)C○G(uC′)).

The normalisation follows from Subsection 3.3.2 and in particular Equation 3.2.

The case when Z is arbitrary

The generalised Springer correspondence combined with Remark 3.2.19 allows us to de-
scribe the restriction of any character sheaf to the unipotent variety Guni.
We now assume that Z is not necessarily the constant perverse sheaf, so the cuspidal
induction datum m has the following shape: m = (L,CZ○(L),E0⊠Z) where C is a unipo-
tent class of the Levi subgroup L, E0 is an irreducible L-equivariant local system on C
and Z ∈ S(Z○(L)). From the isomorphism in Remark 3.2.19, we get for any V ∈ Irr(Wm),

(AZV )Guni
≅ (A

Qℓ
Ind

WL
Wm
(V )
)
Guni

.

Here AZV is a constituent of Km. Using the generalised Springer correspondence, we then
conclude:

(AZV )Guni
[−dimZ○(L)] ≅ ⊕

V ′∈Irr(WL)

⟨IndWL

Wm
(V ), V ′⟩IC(CV ′ ,EV ′)[dimCV ′].

Remark 4.1.3. Note that this correspondence depends on C and E0 as well as the choice
of the isomorphism �xed in Remark 3.2.19.

As a particular case, we consider the restriction of the character sheaf to a certain
unipotent class C0 ∈ Ucl(G). We decompose the previous sum into three parts: the �rst
one with the V ′ ∈ Irr(WL) such that CV ′ = C0, the second one with the V ′ ∈ Irr(WL)
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4.1. The importance of the unipotent variety: generalised Springer correspondence

such that CV ′ ≠ C0 and C0 ⊆ CV ′ , and the rest of the sum. To rephrase it, we de�ne the
natural partial order on the unipotent classes. For C,C ′ ∈ Ucl(G), we write

C ⪯ C ′ ⇐⇒ C ⊆ C ′.

The previous isomorphism yields

(AZV )C0
[−dimZ○(L)] ≅ ⊕

V ′∈Irr(WL)

⟨IndWL

Wm
(V ), V ′⟩(IC(CV ′ ,EV ′)[dimCV ′])C0

≅ ⊕
V ′∈Irr(WL),
CV ′=C0

⟨IndWL

Wm
(V ), V ′⟩(IC(CV ′ ,EV ′)[dimCV ′])C0

⊕ ⊕
V ′∈Irr(WL),
C0⪯̸CV ′

⟨IndWL

Wm
(V ), V ′⟩(IC(CV ′ ,EV ′)[dimCV ′])C0

⊕ ⊕
V ′∈Irr(WL),

C0≠CV ′ ,C0⪯CV ′

⟨IndWL

Wm
(V ), V ′⟩(IC(CV ′ ,EV ′)[dimCV ′])C0

.

The description of the intersection cohomology complex (see Subsection 3.1.1) implies
that

(IC(CV ′ ,EV ′)[dimCV ′])C0
= 0

if C0 ⪯̸ CV ′ . Moreover, if CV ′ = C0,

(IC(CV ′ ,EV ′)[dimCV ′])C0
= EV ′[dimCV ′].

Therefore, we rewrite

(AZV )C0
[−dimZ○(L)] ≅ ⊕

V ′∈Irr(WL),
CV ′=C0

⟨IndWL

Wm
(V ), V ′⟩EV ′[dimCV ′]

⊕ ⊕
V ′∈Irr(WL),

C0≠CV ′ ,C0⪯CV ′

⟨IndWL

Wm
(V ), V ′⟩(IC(CV ′ ,EV ′)[dimCV ′])C0

.

Thus, if C0 is �big enough�, the restriction of the character sheaf AZV to C0 is zero or a
(non necessarily irreducible) local system, i.e., something relatively easy to understand.
We will see in the next subsection what �big enough� means.

Deducing information about the characteristic function from the structure of a char-
acter sheaf is not necessarily clear or natural. When F is split and L is contained in
an F -stable parabolic subgroup of G, Lusztig gives an answer in [Lus86]. It was later
extended independently by Taylor in [Tay14] and Digne�Lehrer�Michel in [DLM14].

4.1.2 The unipotent support of character sheaves

For a given character sheaf A ∈ Ĝ, we would like to de�ne in some way �the biggest�
conjugacy class D of G such that A∣D ≠ 0. Since so far in this thesis, we only really
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Chapter 4. Restricting character sheaves

know the restriction of a character sheaf to a unipotent class, this will have to appear in
the de�nition. Hence, the �biggest" must be an adjective concerning the unipotent part
of D. On the other hand, we cannot blindly copy the de�nition of unipotent support of
ordinary characters as stated in Theorem 2.3.4. Indeed, it might happen that AGuni

= 0,
and thus that there is no C ∈ Ucl(G) such that AC ≠ 0. This leads us to the following
de�nition.

De�nition 4.1.4 ([Lus92, 10.6]). Let G be a family of ĜL for L ∈ S(T0). The unipo-
tent support CG of G is the unique unipotent class of G satisfying the following
properties:

1. for any character sheaf A ∈ G and for any conjugacy class D of G with unipotent
part C ′ ∈ Ucl(G) such that CG ≠ C ′ and dimCG ≤ dimC ′, the restriction A∣D = 0,
and

2. there exists a conjugacy class D of G and a character sheaf A ∈ G such that the
unipotent part of D is CG and A∣D ≠ 0.

We also say that CG is the unipotent support of any character sheaf A ∈ G .

Since character sheaves are G-equivariant, it is clear that such a unipotent class
exists for each character sheaf of a family G . Lusztig showed in [Lus92, Thm. 10.7]
that such a unipotent class is unique and gave another characterisation assuming some
conditions on p.

Description of the unipotent support

We unravel this description under the assumption that Z(G) is connected and that p is
acceptable for G (see [Tay16, Def. 6.1]). If G is a simple exceptional group of adjoint
type, then any good prime is acceptable. Let G be a family of ĜL for L an irreducible
Kummer local system on T0. Theorem 3.1.12 allows us to associate to G a unique
family F of the Weyl group WL =W ○

L
. We �x ψ ∈ irr(WL), the unique special character

of F (see Proposition 2.2.21). We then consider the j-induction ψ′ = jWWL(ψ) of ψ as in
Proposition 2.2.20. Lastly, we let (C ′,E ′) ∈ NG be the image of ψ′ under the Springer
correspondence. Lusztig showed in [Lus92, Thm. 10.7] that C ′ is then the unipotent
support of G . Moreover, the local system E ′ is trivial. This was later generalised to p
good by Taylor [Tay13]
If Z(G) is not connected andWL is not necessarily a Weyl group, then this construction
still works, but one needs at �rst to extend the de�nition of special character to WL.

We make a few remarks concerning the unipotent support. Firstly, we come back
to the setting of the previous subsection. We assume that A belongs to the induction
series Ĝ(m) with m = (L,CZ○(L),E0⊠Z) ∈MG where C is a unipotent class of the Levi
subgroup L, E0 is an irreducible local system on C and Z ∈ S(Z○(L)). Then A = AZV
for some V ∈ Irr(Wm). Let CA be the unipotent support of A. The de�nition of the
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unipotent support implies that the restriction of A to CA is a sum of irreducible local
systems:

(AZV )CA
[−dimZ○(L)] ≅ ⊕

V ′∈Irr(WL),
CV ′=CA

⟨IndWL

Wm
(V ), V ′⟩EV ′[dimCA].

In the principal series case, that is if L = T0, and hence Z ∈ S(T0), we conclude
that

(AZV )CA
[−dimT0] ≅ ⊕

V ′∈Irr(W ),
CV ′=CA

⟨IndWWZ(V ), V
′⟩EV ′[dimCA].

Here WZ is the relative Weyl group of the Kummer local system Z ∈ S(T0) (see below
De�nition 3.1.7). Therefore, if V ∈ Irr(WZ) is a module corresponding to a special char-
acter of WZ , then the trivial local system Qℓ appears in the sum and (AZV )CA ≠ 0.

Lastly, let us consider the particular case when G is a family of unipotent character
sheaves. Since the Springer correspondence is injective, we observe that two distinct
families of unipotent character sheaves have di�erent unipotent supports. Therefore, we
obtain an analogous statement as Theorem 2.3.5 for ordinary unipotent characters.

Remark 4.1.5. The similarities between the unipotent support of character sheaves and
the unipotent support of characters is not due to chance. In fact, the above description
through the Springer correspondence also holds for the unipotent support of characters
(see for instance [GM00, Thm. 3.7]) and leads to Theorem 2.3.5.

Special conjugacy classes

By a semantic shift, we say that a unipotent class C ∈ Ucl(G) is special if there is
special character ϕ ∈ irr(W ) such that Spr(ϕ) = (C,Qℓ). In other words, a unipotent
class is special if and only if it is the unipotent support of a unipotent character sheaf.
Moreover, we get a bijection between the families of irr(W ) and the special unipotent
classes of G.

More generally, we say that an element g ∈G with Jordan decomposition g = su = us
(with s ∈ G semisimple, u ∈ Guni) is special if u is an element of a special unipotent
class of C○G(s). As a result, we obtain a new parameterisation of the character sheaves.
To begin with, recall that the Kummer local system L ∈ S(T0) is de�ned thanks to
an indivisible pair (λ,n) ∈ X × N (see below De�nition 3.1.7) which itself corresponds
to a semisimple conjugacy class (s)G∗ in the dual group G∗ of G. Furthermore, we
partition Ĝs = ĜL into families indexed by the families of irr(WL) (WL ≅ Ws), c.f.
Theorem 3.1.12. Here Ws is the Weyl group of C○G∗(s). Thus we obtain

Ĝs = ⊔
F

Ĝs,F

where F runs over the families of irr(Ws) and Ĝs,F is the family of Ĝs corresponding
to F . Lastly, the Springer correspondence associates to each family F ∈ irr(Ws) a
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special unipotent class (u)C○G∗(s), whence a special element gF = su ∈ G∗. Therefore,

setting ĜgF
∶= Ĝs,F the partition of character sheaves becomes

Ĝs = ⊔
F

ĜgF

where F runs over the families of irr(Ws).
On the other hand, let us consider a special element g = su ∈G∗ with s ∈G∗ semisimple
and u ∈ CG∗(s) unipotent. To the special unipotent class (u)C○G∗(s) is associated a
unique family Fg of irr(Ws) and it satis�es g = gFg for gFg as constructed above. Thus,
setting Ĝg ∶= Ĝs,Fg allows us to write

Ĝ = ⊔
g
Ĝg,

where g runs over a set of representatives of the conjugacy classes of special elements
in G∗.

Notation 4.1.6. Let g ∈ G∗ be special, we denote by Cg the unipotent support of the
characters in the family Fg.

Remark 4.1.7. We obtain a similar decomposition for ordinary characters assuming that
the centre Z(G) is connected and p is good for G. For g = su ∈ G∗ as before, if g
is F ∗-stable, then we write irr(G)g for the family of ordinary characters in E (G,s)
corresponding to the family F of irr(Ws) and we get

irr(G) = ⊔
g
irr(G)g,

where g runs over a set of representatives of the F ∗-stable conjugacy classes of special
elements in G∗.

To summarise, the generalised Springer correspondence allows us to get a good un-
derstanding of character sheaves when restricted to the unipotent variety Guni and an
excellent one when restricted to their unipotent support. In the next sections, we will
consider the restriction of character sheaves to any conjugacy class.

4.2 Translation of character sheaves

Let A ∈ Ĝ be a character sheaf, s ∈G be a semisimple element and u ∈ CG(s) a unipotent
element. To compute the characteristic function of A at su ∈G, we need to understand
the stalks H i(A)su for i ∈ Z. Equivalently, we could look at H i(s∗A)u where we abuse
notation and write s ∶ G → G, g ↦ sg, for the translation by s on the left. This brings
us back to looking at the restriction of s∗A to the unipotent elements.

For the rest of this section, unless precised otherwise, we �x an element s ∈ T0 as
well as the translation s ∶G→G, g ↦ sg, for g ∈G.
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4.2.1 Translation and families of character sheaves

For any L ∈ S(T0), we show in this subsection that the families of ĜL are stable for the
translation by s, as stated in [LuCS4, 17.17]. We �rst consider the translation of local
systems.

Lemma 4.2.1. Let T ⊆G be any torus and consider L ∈ S(T). Then for any s ∈ T,

s∗L ≅ L.

Proof. Fix s ∈ T. Let λ ∈ Hom(T, k×) be a character of T and n ∈ N an integer coprime
to p such that L = λ∗En,j. For any c ∈ Qℓ, we write mc ∶ Qℓ → Qℓ, x ↦ cx for the
multiplication by c. Then, λ ○ s =mλ(s) ○ λ, whence

s∗λ∗En,j = λ
∗m∗λ(s)En,j.

Recall that for any m ∈ N, the Kummer local system (λm)∗Enm,j is isomorphic to L. In
particular, if m denotes the order of s, our claim holds since

s∗L = s∗λ∗En,j ≅ s
∗(λm)∗Enm,j = (λ

m)∗m∗λm(s)Enm,j = (λ
m)∗Enm,j ≅ L.

We now consider the induction series.

Lemma 4.2.2. Let L ∈ S(T0). For any w ∈WL, and any s ∈ Z(G),

s∗K̄Lw ≅ K̄
L
w.

Therefore, if A ∈ ĜL, then s∗A ∈ ĜL. Moreover, the families of character sheaves in ĜL
are stable under translation by s.

Proof. Fix w ∈WL and s ∈ T0. We show that s∗K̄Lw ≅ K̄
(w−1sw)∗L
w and then conclude using

Lemma 4.2.1. Recall the de�nition of K̄Lw. We have the following commutative diagram:

G G ×G G ×B0 G G

G G ×G G ×B0 G G

s id×s

β

α

id×B0
s

γ

s

α β γ

By de�nition, K̄Lw = γ∗ÃLw. By base change,

s∗K̄Lw = s
∗γ∗Ã

L
w ≅ γ∗(id×B0s)

∗ÃLw.

Showing the existence of an isomorphism between s∗K̄Lw and K̄(w
−1sw)∗L

w reduces then to
exhibiting an isomorphism between (id×B0s)

∗ÃLw and Ã(w
−1sw)∗L

w .

By de�nition, Ã(w
−1sw)∗L

w is the only irreducible perverse sheaf on G ×B0 G up to iso-

morphism such that β∗Ã(w
−1sw)∗L

w ≅ Qℓ ⊠ A
(w−1sw)∗L
w . Thus, we need to show that the
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complex β∗(id×B0s)
∗ÃLw is isomorphic to Qℓ ⊠ A

(w−1sw)∗L
w . To do so, we consider the

following sequence of isomorphisms

β∗(id×B0s)
∗ÃLw = (id×s)

∗β∗ÃLw ≅ (id×s)
∗(Qℓ ⊠A

L
w) = Qℓ ⊠ s

∗ALw.

Now, by the characterisation of shifted intersection cohomology complexes, we observe
that s∗ALw = IC(Gw, s∗ pr∗w(L))[dimGw] = A

(w−1sw)∗L
w since s∗ pr∗w(L) = pr∗w(w−1sw)∗L.

Therefore, there exists an isomorphism between s∗K̄Lw and K̄
(w−1sw)∗L
w . Since (w−1sw)∗L ≅ L

by Lemma 4.2.1, we deduce that s∗K̄Lw ≅ K̄Lw.
The last statement follows from Theorem 3.1.12.

Even though the translation preserves the families of character sheaves, it might
not �x them individually. It is in general not clear how the labelling of the families
is impacted by the translation. However, Lusztig described this phenomenon in the
particular case when the translation is by a central element.
Let A ∈ ĜL and consider z∗A when z ∈ Z(G). Theorem 3.1.12 might also be stated when
the centre Z(G) is not connected, see [LuCS5, Thm. 23.1]. In particular, the character
sheaf A belongs to a family G of ĜL, to which we associate a �nite group ĀG such that
there is a bijection between G and M(ĀG ). If A is sent to the class [x,σ] ∈ M(ĀG ),
then z∗A is sent to [x,σ ⊗ σz] ∈ M(ĀG ) where σz is a character of ĀG depending only
on z. Moreover, for any z′ ∈ Z○(G), σz = σzz′ and σz′ is trivial.

4.2.2 Translation and induction series

Character sheaves are also partitioned into induction series. Let A ∈ Ĝ(m) for m ∈MG,
then A = AV where V is an irreducible module of End(Km). In this subsection, we
explain to which induction series s∗AV belongs.

First recall that we have assumed that T0 ⊆ L and that we have �xed s ∈ T0,
whence s−1L = L. The �rst problem we encounter is that s∗E might not be L-equivariant.
Thus, s∗m = (L, s−1Σ, s∗E) does not de�ne an induction datum and we cannot hope for
an isomorphism between s∗Km and Ks∗m in general. However, it does work if s ∈ Z(L)
and this is the case we consider now. In the next section, we will investigate what
happens when we translate by an arbitrary element s ∈ T0.

Lemma 4.2.3. Let m = (L,Σ,E) ∈MG. For any z ∈ Z(G),

z∗Km ≅ Kz∗m,

where z∗m = (L, z−1Σ, z∗E).

Proof. The proof goes along exactly the same lines as in Lemma 4.2.2, where we instead
consider the following commutative diagram, coming from 3.2.2:

z−1Σ G × z−1Σreg G ×L z−1Σreg YL,z−1Σ

Σ G ×Σreg G ×L Σreg YL,Σ

z id×z

β

id×Lz

γ

z

α β γ
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We �rst observe that z∗Km = IC(z−1YL,Σ, z∗γ∗(Ẽ))[dim z−1YL,Σ] and since z−1YL,Σ = YL,z−1Σ,

z∗Km = IC(YL,z−1Σ, z
∗γ∗(Ẽ))[dimYL,z−1Σ].

We then study z∗γ∗(Ẽ) and observe that it is isomorphic to γ∗(z̃∗E).

Observe that by de�nition of the parabolic restriction, for any proper parabolic
subgroup P =U⋊L of G such that T0 ⊆ L and B0 ⊆ P, Res

G
L⊆P(z

∗Km) = z∗Res
G
L⊆P(Km).

Thus, if Km is cuspidal, so is z∗Km.

4.2.3 Central translation of unipotently supported character sheaves.

From now on, we consider the particular case where the character sheaves are unipotently
supported. We are in the setting of Remark 3.2.8. We �x a cuspidal induction datum
m = (L,Σ,E) ∈MG with C ∈ Ucl(L) such that Σ = CZ○(L). We describe E = i∗(E0 ⊠Z)
with Z ∈ S(Z○(L)), E0 an irreducible local system on C, and i ∶ Σ → C × Z○(L) the
canonical map.
We also �x z ∈ Z○(L). Observe that

z∗m = (L,Σ, z∗E) = (L,Σ, i∗(E0 ⊠ z
∗Z)).

Therefore, by Lemma 4.2.1, there is an isomorphism between z∗Z and Z. Hence, if
z ∈ Z(G), we have z∗Km and Km are isomorphic.

Thanks to the isomorphism Qℓ[Wm]
∼
→ End(Km) de�ned in Proposition 3.2.17, we

label the character sheaves of Ĝ(m) by the irreducible Qℓ[Wm]-modules. Recall that
this isomorphism is the composition of two isomorphisms: one between Qℓ[Wm] and AE
and a second between AE and End(Km). The latter, that we call Lift, consists in lifting
the isomorphisms ad(w)∗E

∼
→ E to endomorphisms of Km. The �rst one was �xed as

follows:

1. For each w ∈Wm, choose a representative ẇ.

2. For each w ∈ Wm, �x an isomorphism θ′w ∶ ad(ẇ)
∗(E0 ⊠ Qℓ)

∼
→ E0 ⊠ Qℓ following

Lusztig [Lus84b, Thm. 9.2d]

3. Choose the unique isomorphism ϕZw ∶ ad(ẇ)
∗Z

∼
→ Z such that (ϕZw)1 is the identity,

for w ∈Wm.

4. Construct the basis elements bZw ∶ θ′w ⊗ (id ⊠ ϕZw) for w ∈ Wm and consider the
isomorphism

bZ ∶ Qℓ[Wm]
∼
→ AE

w ↦ bZw .
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Chapter 4. Restricting character sheaves

Let V ∈ Irr(Wm), then we set

AV ∶= HomEnd(Km)(Lift(b
Z(V )),Km).

Here by Lift(bZ(V )) we mean the module V seen as an End(Km)-module via the action
induced by the isomorphism Lift ○ bZ .
Therefore,

z∗AV = HomEnd(z∗Km)(z
∗(Lift(bZ(V ))), z∗Km).

The isomorphism z∗(Lift ○ bZ) ∶ Qℓ[Wz∗m]
∼
→ End(Kz∗m) sends the element w ∈ Wm

to z∗bZw ∶ z∗ ad(w)∗E → z∗E and then lifts z∗bZw to End(z∗Km). In general, it is not
true that z∗bZw ∈ Az∗E .

From now on, we assume furthermore that z ∈ Z(G) ∩ Z○(L). In this case, the
translation by z commutes with the conjugation by w and z∗ ad(w)∗E = ad(w)∗z∗E ,
hence z∗bZw ∈ Az∗E . Thanks to the isomorphism z∗Km ≅ Kz∗m of Lemma 4.2.3, we obtain

z∗AV ≅ HomEnd(Kz∗m)
(Lift(z∗bZ(V )),Kz∗m).

However, the isomorphism z∗bZ di�ers from the isomorphism bz
∗Z and thus we cannot

write z∗AV ≅ AV . To overcome this problem, we need to further investigate the isomor-
phism bZ .
When considering the translation by z ∈ Z(G)∩Z○(L) and the local system E0⊠z∗L, the
�rst two steps in the de�nition of bZ stay exactly the same. We thus turn our attention
to ϕZw with w ∈Wm.

Description of the isomorphism ϕZw

We want to get a better understanding of the isomorphism ϕZw ∶ ad(ẇ)
∗Z

∼
→ Z for a

Kummer local system Z ∈ S(Z○(L)) and w ∈Wm.
By the description of Kummer local systems, there is λ ∈ Hom(Z○(L), k×) = X(Z○(L))
and n ∈ N coprime to p such that Z = λ∗En,j. For w ∈Wm, the isomorphism ad(ẇ)∗Z ≅ Z
implies that λ○ad(ẇ)−λ ∈ nX(Z○(L)). Namely, there exists a character λw ∈ X(Z○(L))
such that λ ○ ad(ẇ) = λλnw. This character does not depend on the choice of representa-
tive ẇ since for any l ∈ L, λ ○ ad(l) = λ.
The isomorphism ϕZw ∶ ad(ẇ)

∗Z → Z is thus an isomorphism ϕZw ∶ (λλ
n
w)
∗En,j → λ∗En,j.

More generally, for any λ, γ ∈ X(Z○(L)) and any n ∈ N coprime to p, we will describe
the isomorphisms

ϕλ,n,γ ∶ (λγ
n)∗En,j

∼
→ λ∗En,j

such that (ϕλ,n,γ)1 is the identity.

We �x such n ∈ N and λ, γ ∈ X(Z○(L)). We start with a few observations, de�ning
some morphisms and keeping track of their restriction to the stalks.
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In the �rst place, we recall that En,j is the summand of (ρn)∗Qℓ on which µn acts
according to j. Therefore, to understand the isomorphism ϕλ,n,γ it su�ces to de�ne
a µn-equivariant isomorphism

Φλ,n,γ ∶ (λγ
n)∗(ρn)∗Qℓ

∼
→ (ρn)∗Qℓ.

We do this in three steps.

Step 1. De�ne a µn-equivariant isomorphism

(λγn)∗(ρn)∗Qℓ
∼
→ (λ)∗(ρn)∗Qℓ ⊗µn (γ

n)∗(ρn)∗Qℓ.

Step 2. De�ne a µn-equivariant isomorphism

(γn)∗(ρn)∗Qℓ
∼
→ C,

where C is the constant sheaf on Z○(L) which takes value Qℓ[µn].

Step 3. Combine the two previous isomorphisms to get a µn-equivariant isomorphism:

Φλ,n,γ ∶ (λγ
n)∗(ρn)∗Qℓ

∼
→ (ρn)∗Qℓ.

Beforehand, let us describe the stalks of En,j. For c ∈ k×, the stalk ((ρn)∗Qℓ)c can be

seen as the n-dimensional Qℓ-vector space Qℓ[ρ
−1
n (c)], with action of µn on ρ−1n (c) by

multiplication. In that setting, (En,j)c is the Qℓ-vector subspace of dimension one on
which the action of x ∈ µn is simply multiplication by j(x).

Step 1. As stated in [MS89, 2.1.2], there is a µn-equivariant isomorphism:

(λγ)∗(ρn)∗Qℓ → (λ)
∗(ρn)∗Qℓ ⊗µn (γ)

∗(ρn)∗Qℓ.

On the stalk at t ∈ Z○(L), we get a morphism of µn-modules

Qℓ[ρ
−1
n (λ(t)γ(t))] → Qℓ[ρ

−1
n (λ(t))] ⊗µn Qℓ[ρ

−1
n (γ(t))].

Step 2. Let us write Ck for the constant sheaf on k× which takes value Qℓ[µn].
The adjunction εn ∶ (ρn)

∗
(ρn)∗Qℓ → Qℓ is given by the µn-equivariant isomorphism

(ρn)
∗
(ρn)∗Qℓ

∼
→ Ck.

Taking the pullback by γ, we get a µn-equivariant isomorphism

(γn)∗(ρn)∗Qℓ = γ
∗(ρn)

∗
(ρn)∗Qℓ

∼
→ γ∗Ck.

By de�nitions of the pullback and of constant sheaves, γ∗Ck = C.On the stalk at t ∈ Z○(L),
we get an isomorphism of µn-modules

Qℓ[ρ
−1
n (γ

n(t))] = Qℓ[γ(t)µn]
∼
→ Qℓ[µn]
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by multiplication by γ(t)−1.

Step 3. Combining the two previous µn-equivariant morphisms, we get an isomorphism

Φλ,n,γ ∶ (λγ
n)∗(ρn)∗Qℓ

∼
→ (λ)∗(ρn)∗Qℓ⊗µn(γ

n)∗(ρn)∗Qℓ
∼
→ (λ)∗(ρn)∗Qℓ⊗µnC

∼
→ (λ)∗(ρn)∗Qℓ.

On the stalk at t ∈ Z○(L), we get an isomorphism of µn-modules

Qℓ[ρ
−1
n (λ(t)γ

n(t))] = Qℓ[γ(t)ρ
−1
n (λ(t))]

∼
→ Qℓ[ρ

−1
n (λ(t))],

given by multiplication by γ(t)−1. In particular, if tn = 1, then γ(t)−1 ∈ µn and so this
morphism is simply the action of γ(t)−1.
This µn-equivariant morphism Φλ,n,γ restricts to an isomorphism:

ϕλ,n,γ ∶ (λγ
n)∗En,j

∼
→ λ∗En,j.

On the stalk at t ∈ Z○(L) such that tn = 1, we get an automorphism of µn-modules

(En,j)λ(t)γn(t) → (En,j)λ(t),

given by the action of γ(t)−1 ∈ µn, that is, multiplication by j(γ(t)−1). In particular, at
the stalk t = 1, the isomorphism is simply the identity.
The above discussion leads to the following result.

Lemma 4.2.4. Let Z = λ∗En,ψ ∈ S(Z○(L)) for n ∈ N and λ ∈ X(Z○(L)). Let w ∈ WL

such that ad(w)∗Z ≅ Z. Recall that there is λw ∈ X(Z○(L)) such that λ ○ ad(ẇ) = λλnw.
Then

ϕZw = ϕλ,n,λw .

Proof. Since Z is irreducible, it su�ces to check that (ϕλ,n,λw)1 is equal to (ϕ
Z
w)1, which

is the identity by de�nition. The claim follows from the previous discussion.

Central translation of a unipotently supported character sheaf.

Lemma 4.2.5. Let z ∈ Z(G) and m = (L,CZ○(L),E0 ⊠ Z) be a cuspidal induction
datum, with C ∈ Ucl(L), E0 a local system on C, and Z ∈ S(Z○(L)) such that Z = λ∗En,j
where λ ∈ X(Z○(L)). Let V ∈ Irr(Wm) and AV be the summand of Km corresponding
to V under the isomorphism �xed in Proposition 3.2.17. Assume that z ∈ Z(G)∩Z○(L),
then

z∗AZV ≅ A
z∗Z
V ⊗Xz ,

where Xz is the one-dimensional module of Qℓ[Wm] whose character is χz ∶ w ↦ j(λw(z)).

Proof. As we discussed before, we need to compare the two isomorphisms z∗bZ and bz∗Z .
Firstly, we claim that z∗ϕZw = j(λw(z)−1)ϕz

∗Z
w for any w ∈Wm. Since z∗Z is an irreducible

local system, the vector space Hom(ad(w)∗z∗Z, z∗Z) is one-dimensional. Thus, the two
isomorphisms z∗(ϕZw) and ϕz

∗Z
w di�er by a scalar. To determine this scalar, it su�ces to
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4.2. Translation of character sheaves

consider the stalks at 1. On one hand, by de�nition, (ϕz∗Zw )1 is the identity. On the other
hand, by Lemma 4.2.4, (z∗(ϕZw))1 = (ϕλ,n,λw)z. The latter is given by multiplication by
the scalar j(λw(z)−1) as λw(z) ∈ µn. Indeed, by de�nition λnw = λ ○ ad(ẇ) − λ
and ad(w)(z) = z, so λw(z)n = 1. We conclude that

z∗ϕZw = j(λw(z)
−1)ϕz

∗Z
w .

Therefore, z∗bZ = χz⊗bz
∗Z . We now observe that z∗bZ(V ) = (bz∗Z)∗(V ⊗Xz) where Xz is

the one-dimensional module with action of Qℓ[Wm] given by multiplication by j(λw(z)).

To conclude this section, we would like to describe j(λw(z)) more precisely. We
generalise di�erent facts due to Lusztig [LuCS3, � 11.8] when L = T0.

Lemma 4.2.6. Let z ∈ Z(G), L = λ∗(En,j) ∈ S(Z○(L)). The following hold:

1. For any w ∈Wm and any z ∈ Z○(G), j(λw(z)) = 1.

2. For any w ∈W ○
m, any z ∈ Z(G), j(λw(z)) = 1.

3. If Z(G) ⊆ Z○(L), the mapWm/W ○
m → Hom(Z(G)/Z○(G), Q×ℓ ), w ↦ (z ↦ j(λw(z))),

is injective.

Proof. Fact 1. As we have seen in the proof of Lemma 4.2.5, λw(z) ∈ µn for each
element w ∈ Wm and z ∈ Z(G). Besides, λw induces a continuous map from Z(G)
to µn, hence λw(Z○(G)) = 1.
Fact 2. If w ∈W ○

m, then w is a product of sα for α ∈ Φm. Let α ∈ Φ, then sα.λ = λ−⟨λ, ᾰ⟩α.
On the other hand, if α ∈ Φm, then sα ∈ Wm. In particular, there is λsα ∈ X such
that sα.λ − λ = nλsα . Hence, ⟨λ, ᾰ⟩ ≡ 0 mod n and λsα = nαα for some nα ∈ N.
Therefore, for any w ∈ W ○

m, the character λw is in the root lattice Φm. In particular, it
means that λw(Z(G)) = 1 ([MT11, Thm. 8.17(h)]).
Fact 3. If Z(G) = Z○(G), then by [AA10, Prop.4.4] the group Wm is a Coxeter group
and Wm = W ○

m. We assume now that Z(G) is not connected and let w ∈ Wm ⊆ WG
L

such that λw(Z(G)) = {1} and set G̃ ∶= (G × Z○(L))/Z(G) where Z(G) is embedded
diagonally. The group G̃ has a connected centre. We set L̃ = (L×Z○(L))/Z(G) and we
note that Z○(L̃) = (Z○(L)×Z○(L))/Z(G). Furthermore,W G̃

L̃
can be identi�ed withWG

L .
As in [LuCS3, � 11.8], we extend λ to a character

λ̃ ∶ Z○(L̃) → k×, (z, z′)Z(G) ↦ λ(z)λ(w−1z′w)−1.

Observe that for (z, z′)Z(G) ∈ Z○(L̃),

w.λ̃((z, z′)Z(G)) = λ(wzw−1)λ(wz′w−1)−1

= λ(z)λ(wz′w−1)−1λnw(z)

= λ̃((z, z′)Z(G))λnw(z).
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We set
λ̃w ∶ Z

○(L̃) → k×, (z, z′)Z(G) ↦ λw(z).

By hypothesis (λw(Z(G)) = 1), this character is well-de�ned and w.λ̃ = λ̃λ̃nw. Since G̃
has connected centre, w is a product of re�ections sα for α ∈ Φ such that sα.λ̃ = λ̃λ̃nsα .
Restricting to Z○(L), we conclude that sα ∈W ○

m and thus w ∈W ○
m.

Remark 4.2.7. This lemma does not allow us to completely describe the character χz of
Lemma 4.2.5. However, it does gives us some information. For instance, if Wm/W ○

m is a
cyclic group of order 2 generated by wW ○

m, and Z(G)/Z○(G) is also cyclic of order 2,
then χz is the trivial character if z ∈ Z○(G). If z /∈ Z○(G), then the character χz takes
value −1 on wW ○

m and 1 on W ○
m.

4.3 Restriction of a character sheaf to a mixed conju-

gacy class

We now come back to our initial goal of understanding the restriction of a character
sheaf A ∈ Ĝ to any conjugacy class (su)G where s ∈ G is semisimple and u ∈ CG(s) is
unipotent. As we have discussed at the beginning of the previous section, in order to
compute the cohomology H i(A)su for i ∈ Z, we could instead focus on (s∗A)(u)C○

G
(s) .

We will proceed in a similar way to our discussion in Subsection 4.2.2. For the rest of
this section, we �x an induction datum m = (L,Σ,E) ∈MG where L is a Levi subgroup
of a parabolic subgroup P ⊆ G, Σ is the inverse image under the map L → L/Z○(L) of
an isolated conjugacy class, and E is a local system on Σ. We will study the character
sheaves in Ĝ(m) restricted to the mixed conjugacy class (su)G. As we have argued
before, A(su)G ≠ 0 implies that up to G-conjugation we may assume that s ∈ L and
that Σ = (sv)LZ○(L) for some v ∈ CG(s).
We start by studying the complex (s∗Km)(u)C○

G
(s) and show that it is isomorphic to a

direct sum of some Km′ for some di�erent cuspidal data m′ of C○G(s). In a second step,
we will see how to go down to the constituents of Km, that is we will study how the
isomorphism behaves with respect to the action of End(Km). As before, we focus on the
cases where we know that End(Km) is isomorphic to Qℓ[Wm].

To simplify notation, we write Gs = C○G(s).

4.3.1 Restriction of an induced cuspidal perverse sheaf to the
centraliser of a semisimple element

Following [MS89, Section 8] and [LuCS2, � 8], we decompose (s∗Km)(Gs)uni into a direct
sum of semisimple complexes onGs. To do so, recall thatKm = IC(YL,Σ, γ∗(Ẽ))[dimYL,Σ].
Therefore as a �rst approach, we need to understand the set s−1 supp(Km)∩(Gs)uni and
the restriction of s∗µ∗(Ẽ) to this set. By Remark 3.2.10, the variety Gs is partitioned
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into varieties YL′,Σ′ where L′ is a Levi subgroup of Gs and Σ′ is the preimage of an
isolated class in L′/Z○(L′). Thus

s−1 supp(Km) ∩ (Gs)uni = ⊔
(L′,Σ′)

YL′,Σ′ ∩ s
−1 supp(Km) ∩ (Gs)uni,

where (L′,Σ′) runs over the pairs of Gs as de�ned above. We make two observations.

1. The condition YL′,Σ′∩(Gs)uni ≠ ∅ means that Σ′ = C ′Z○(L′) for some C ∈ Ucl(L′).

2. By Equation 4.1, this condition implies that there exist g ∈G and z ∈ Z○(L) such
that s−1gszg−1 belongs to the semisimple part of Σ′reg = {h ∈ Σ′ ∣ C

○
G(hs) ⊆ L}.

In particular, we may assume that L′ = C○Gs
(s−1gszg−1) = C○Gs

(gszg−1); see Re-
mark 3.2.10.

We thus de�ne the two following sets

M ∶= {m ∈G ∣m−1sm ∈ (s)LZ
○(L)}

and
M̄ ∶=Gs/M/L.

Remark 4.3.1. Let m ∈ M . There are l ∈ L and z ∈ Z○(L) such that m−1sm = ltl−1z.
Then ml ∈M and C○G(s)mL = C○G(s)mlL. Therefore, for each µ ∈ M̄ , we may and will
�x a representative µ̇ ∈ M such that µ̇−1sµ̇ = szµ for some zµ ∈ Z○(L). We will often
abuse notation and write only µ for µ̇ for any µ ∈ M̄ .

To each µ ∈ M̄ , we associate a cuspidal induction datum mµ = (Lµ,Σµ,Eµ) of Gs

where
Lµ ∶= µ̇Lµ̇

−1 ∩Gs,

Σµ ∶= Z
○(Lµ)Cµ with Cµ ∶= {u ∈Gs ∣ u unipotent, µ̇−1suµ̇ ∈ Σ},

and
Eµ ∶= τ

∗
µE for τµ ∶ Σµ → Σ, g ↦ µ̇−1sgµ̇.

By [LuCS2, Prop. 7.11], the complex

Aµ ∶= Amµ = IC(Σµ,Eµ)[dimΣµ]

is indeed an irreducible cuspidal character sheaf of Lµ. Moreover, Cµ is a unipotent
conjugacy class of Lµ, so Cµ = (µ̇vµ̇−1)Lµ . Lastly, we set Kµ ∶= Kmµ as a semisimple
complex on Gs.

Remark 4.3.2. Alternatively, to each element µ ∈ M̄ , we associate a cuspidal induction
datum m0,µ = (L0,C0Z○(L0),E0,µ) of C○G(szµ), where

L0 ∶= C
○
L(s) = µ̇

−1Lµµ̇, C0 ∶= (v)L0

and E0,µ is the local system on Σ0 ∶= C0Z○(L0) obtained as the inverse image of E under
the map Σ0 → Σ, g ↦ szµg. Then setting A0,µ ∶= Am0,µ , we have

Aµ = ad(µ̇
−1)∗A0,µ.
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Using the previous notation, we are �nally able to state the following theorem.

Proposition 4.3.3 ([LuCS2, �8]). There is an open neighborhood sU of s in Gs, such
that (Gs)uni ⊆ U and there is an isomorphism

T ∶ s∗((Km)sU)
∼
→ ⊕

µ∈M̄

(Kµ)U[dim(G) − dim(Gs)].

Proof. We give a sketch of the proof by �rstly describing the isomorphism on the level of
local systems thanks to the proof of [MS89, Prop. 8.2.3] and the discussion following it.
The de�nition of parabolic induction at the level of local systems leads to the following
commutative diagram for each µ ∈ M̄ :

Σµ Gs ×Σµreg Gs ×Lµ Σµreg YLµ,Σµ

Σ G ×Σreg G ×L Σreg YL,Σ

τµ

αµ βµ

sµ

γµ

sµ s

α β γ

with

� the map τµ ∶ g ↦ µ̇−1sgµ̇,

� the map sµ ∶ (h, g) ↦ (hµ̇, µ̇−1sgµ̇), for h ∈Gs and g ∈ Σµ,reg,

� and the map s ∶ g ↦ sg for g ∈ YLµ,Σµ .

To be able to navigate the diagram, we de�ne a few more sets:

S ∶= γ−1(sU ∩ YL,Σ), Sµ ∶= γ
−1
µ (U ∩ YLµ,Σµ) and lastly Tµ = sµ(Sµ).

Since Km = IC(YL,Σ, γ∗(Ẽ))[dimYL,Σ], we study s∗(γ∗(Ẽ)sU∩YL,Σ) = (s
∗γ∗(Ẽ))U∩s−1YL,Σ .

By [LuCS2, below 8.7.12], we have (sU ∩ YL,Σ) = ⋃µ∈M̄ γ(Tµ) and thus

s∗(γ∗(Ẽ)sU∩YL,Σ) ≅ ⊕
µ∈M̄

s∗(γ∗(Ẽ))γ(Tµ).

By the change of basis theorem,

s∗(γ∗(ẼTµ)) ≅ (γµ)∗s
∗
µ(ẼTµ) = (γµ)∗((s

∗
µẼ)Sµ).

We check that (s∗µẼ)Sµ ≅ (Ẽµ)Sµ . By de�nition of Ẽµ as the unique local system up to
isomorphism such that α∗µEµ ≅ β∗µẼµ, it su�ces to check that β∗µs∗µẼ ≅ α∗µEµ. Following
the diagram, we see

β∗µs
∗
µẼ = s

∗
µβ
∗Ẽ ≅ s∗µα

∗E = α∗µτ
∗
µE = α

∗
µEµ

whence s∗µẼ ≅ Ẽµ. Therefore, we have de�ned an isomorphism

T ∶ s∗(γ∗(Ẽ)sU∩YL,Σ)
∼
→ ⊕

µ∈M̄

(γµ)∗(ẼµSµ) = ⊕
µ∈M̄

((γµ)∗Ẽµ)U∩YLµ,Σµ .
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By de�nition of intersection cohomology complexes, the above discussion gives rise to
an isomorphism

T ∶ s∗((Km)sU∩YL,Σ)
∼
→ ⊕

µ∈M̄

(Kµ)U∩YLµ,Σµ [dimYL,Σ − dimYLµ,Σµ].

By [LuCS2, 8.8.4-8.8.7], this isomorphism can be uniquely extended to an isomorphism

T ∶ s∗((Km)sU)
∼
→ ⊕

µ∈M̄

(Kµ)U[dimYL,Σ − dimYLµ,Σµ].

We conclude thanks to [MS89, Lem. 8.2.6 ii], from which we know that

dimYLµ,Σµ = dimGs − dimL + dimΣ and dimYL,Σ = dimG − dimL + dimΣ.

Remark 4.3.4. Observe that s∗((IndG
B(K))∣U) might not be a semisimple perverse sheaf

since (Kµ)s−1U[dimG − dimGs] are not necessarily semisimple perverse sheaves. How-
ever, Lusztig showed in [Lus15, Prop. 1.4] that

s∗((Km)s(Gs)uni))[−dim(G) + dim(Gs) − dim(Z
○(L))] ≅ ⊕

µ∈M̄

(Kµ)(Gs)uni[−dim(Z
○(L))],

is indeed semisimple.

Notation 4.3.5. For the rest of this chapter, we set

d ∶= −dim(G) + dim(Gs) − dim(Z
○(L)) and e ∶= −dim(Z○(L)).

We would like to use this isomorphism to deduce the decomposition of s∗(As(Gs)uni)

for any character sheaf A ∈ Ĝ(m). Firstly, we consider the restriction of A to a conjugacy
class whose unipotent part is the unipotent support of A.

Proposition 4.3.6 ([Lus15, Thm. 1.2]). Assume that p is good for G. Let A ∈ Ĝ with
unipotent support C. Let D be any conjugacy class of G such that its unipotent part is
equal to C. Then AD ≅ L[dim(D) + dim(Z○(L))], where L is a local system on D.

Proof. We give the outline of the proof given by Lusztig in [Lus15, � 1.7]. By assumption
there is a semisimple element s ∈G and a unipotent element u ∈ C with su = us such that
D is the conjugacy class of su. Assume that A belongs to the induction series indexed
by m = (L,Σ,E). Using Proposition 4.3.3 and the remark following it, we deduce that
the complex s∗(As(Gs)uni)[d] decomposes into a direct sum of irreducible Gs-equivariant
perverse sheaves A1, . . . ,An

s∗(As(Gs)uni)[d] = (A1)(Gs)uni ⊕ ⋅ ⋅ ⋅ ⊕ (An)(Gs)uni .

For each 1 ≤ i ≤ n, there is a unique unipotent class Ci of Gs such that (Ai)C is a local
system Li[dimCi] and for any unipotent class C ′ of Gs, (Ai)′C = 0 if C ′ /⊆ Ci. This is
the same argument as for the generalised Springer correspondence in Subsection 4.1.1
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applied to (Kµ)(Gs)uni[−dim(Z
○(L))] for each µ ∈ M̄ . We consider the restriction to the

class (su)G. We write C0 = (u)Gs . The decomposition becomes then

s∗(As(u)Gs)[d] = ⊕
C0⊆Ci

(Ai)(u)Gs .

On the other hand, for any v ∈Gs unipotent,

(u)Gs ⊆ (v)Gs − (v)Gs implies (u)G ⊆ (v)G − (v)G.

Indeed, (v)Gs ⊆ (v)G and if (u)G = (v)G then dim(u)Gs = dim(v)Gs and we conclude
since the set (v)Gs − (v)Gs consists of unipotent conjugacy classes of dimension strictly
smaller than dim(v)Gs .
By de�nition of the unipotent support, we must have s∗((A)∣s(v)Gs) = 0 if (u)Gs ⊆

(v)Gs − (v)Gs . Therefore,

s∗(AsC0)[d − e] = ⊕
C0=Ci

(Ai)C0 .

Thus, the restriction s∗(As(u)Gs)[d] = L[dim(C0)] for some local system L on C0,
whence As(u)Gs [d − dim(C0)] is a local system.
We decompose s(u)G = ⋃ri=1 sC

′
i where C

′
i are unipotent conjugacy classes of Gs. Notice

that dim(C ′i) = dim(C0) for each 1 ≤ i ≤ r. Applying the same argument to each C ′i , we
conclude that AD[d − dim(C0)] is a local system. The proof is closed by observing that

dim(D) = dim(G) − dim(CG(su))

= dim(G) − dim(CG(su))

= dim(G) − (dim(CG(s)) − dim(u)CG(s))

= dim(G) − dim(Gs) + dim(C0),

whence d − dim(C0) = −dim(G) + dim(Gs) − dim(Z○(L)) − dim(C0) = −dim(D) −
dim(Z○(L)).

We want to get a better description of the local system L. Before that, we describe
the set M̄ in greater detail.

Action of Wm on M̄

As in [Lus15], we de�ne an action of Wm on the set M̄ . For each w ∈ Wm, we �x a
representative ẇ ∈ NG(m).

De�nition 4.3.7. We de�ne the action of NG(m) by nm ∶= mn−1 for all m ∈ M and
all n ∈ NG(m). It induces a well de�ned action of Wm on the �nite set M̄ by

w.µ ∶= w.Gsµ̇L ∶=Gsµ̇ẇ
−1L

for all µ ∈ M̄ , w ∈Wm.
We �x a set Λ of orbit representatives for the action of Wm on M̄ ,

M̄ = ⊔
λ∈Λ

Wm.λ.
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We may then write

s∗(γ∗(Ẽ)sU∩YL,Σ) ≅ ⊕
λ∈Λ

⊕
µ∈Wm.λ

((γµ)∗Ẽµ)U∩YLµ,Σµ .

We want to understand the set Wm.λ for λ ∈ Λ.
Firstly, we observe that for any µ ∈ M̄ , the stabilizer of µ̇ by the action of NG(m) is
given by StabNG(m)(µ̇) = NG(m) ∩Lµ̇−1Gsµ̇. Since L ⊆ NG(m),

StabNG(m)(µ̇) = LNµ̇−1Gsµ̇(m) = Nµ̇−1Gsµ̇(m)L.

Therefore, the stabiliser of µ ∈ M̄ under the action of Wm is

W µ
m ∶= StabWm(µ) = Nµ̇−1Gsµ̇(m)/(L ∩ µ̇

−1Gsµ̇) = Nµ̇−1Gsµ̇(m)/L0.

We describe this stabiliser more precisely.

Lemma 4.3.8. Let µ ∈ M̄ and write Gµ
s ∶= µ̇−1Gsµ̇, then

NGµ
s
(L,Σ)/L0 =W

Gµ
s

L0,Σ0
and W µ

m ⊆W
Gµ
s

m0,µ
.

Moreover, if s ∈ Z(L) or Wm =WL,Σ, then

W µ
m =W

Gµ
s

m0,µ
.

Proof. Firstly, we note that L0 = C○L(s) = C
○
L(szµ) and Gµ

s = C○G(µ̇
−1sµ̇) = C○G(szµ).

Since szµ is isolated in L, by Lemma 1.3.10,

NGµ
s
(L) = NGµ

s
(L0).

Next, we claim thatNGµ
s
(L,Σ) = NGµ

s
(L0,Σ0).We �rst show thatNGµ

s
(L,Σ) ⊆ NGµ

s
(L0,Σ0).

We notice that the support Σ0 = C0Z○(L0) and that C0 = µ̇−1Cµµ̇ is the set of unipotent
elements u ∈Gµ

s such that µ̇−1sµ̇uµ̇−1µ̇ = szµu ∈ Σ. Thus, since any n ∈ NGµ
s
(L,Σ) �xes

szµ we can conclude.
For the other direction, let n ∈ NGµ

s
(L0,Σ0). Then, there is l ∈ L0 such that nvn−1 = lvl−1,

whence
nsvn−1 = nszµz

−1
µ vn

−1 = slvl−1zµnz
−1
µ n

−1 = lsvl−1zµnz
−1
µ n

−1.

Therefore, nΣn−1 = (lsvl−1zµnz−1µ n−1)LZ○(L) = Σ.
For the last statements, we recall that the local system E0,µ is the inverse image un-
der the map szµ ∶ Σ0 → Σ, g ↦ szµg. Now if n ∈ NGµ

s
(m), then n ∈ NGµ

s
(L0,Σ0)

and ad(n) commutes with the translation by szµ. Since ad(n)∗E ≅ E , we conclude
that NGµ

s
(m) ⊆ NGµ

s
(m0,µ).

Assume now that s ∈ Z(L), then L = L0 and Σ0 = s−1Σ. The map szµ ∶ Σ0 → Σ is
therefore a bijection and E is the preimage under the map z−1µ s−1 ∶ Σ → Σ0 of E0,µ. A
similar argument as before allows us to deduce that NGµ

s
(m0,µ) = NGµ

s
(m).

Finally, assume that Wm = WL,Σ. For any n ∈ NGµ
s
(m0,µ) ⊆ NGµ

s
(L,Σ), there is an

element n′ ∈ NG(m) and l ∈ L such that n = n′l. Then

ad(n)∗E = ad(n′l)∗E = ad(l)∗ ad(n′)∗E ≅ E ,

since E is L-equivariant.
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Now, we �x a set of representatives V λ ⊆ Wm such that Wm ∶= ⊔v∈V λ vW
λ
m. In other

words, we write
Wm.λ = {v.λ ∣ v ∈ V

λ},

and the isomorphism T becomes

s∗(γ∗(Ẽ)sU∩YL,Σ) ≅ ⊕
λ∈Λ
⊕
v∈V λ
((γv.λ)∗Ẽv.λ)U∩YLv.λ,Σv.λ .

Let us rewrite Ẽv.λ for λ ∈ Λ and v ∈ V λ.

Lemma 4.3.9. Let λ ∈ Λ and v ∈ V λ. Then

Lv.λ = Lλ, Cv.λ = Cλ, Σv.λ = Σλ.

Moreover,
Ẽv.λ ≅ s

∗
λφ̄
∗
v Ẽ ,

where φ̄v ∶G ×L Σreg →G ×L Σreg, β((g, h)) ↦ β((gv̇−1, v̇hv̇−1)).

Proof. By de�nition, we have Lv.λ = λv̇−1Lv̇λ−1 ∩Gs, Σv.λ = Z○(Lv.λ)Cλv̇−1 . Now, by
de�nition of Wm, v̇ ∈ NG(L), whence Lv.λ = Lλ. Moreover since the conjugation by v̇
stabilises Σ, Cλv̇−1 = Cλ.
From the proof of Proposition 4.3.3, we recall that Ẽv.λ ≅ s∗v.λẼ . Noting that sv.λ = φ̄v ○sλ,
we conclude that

Ẽv.λ ≅ s
∗
λφ̄
∗
v Ẽ .

In particular, the isomorphism of Proposition 4.3.3 can be rewritten as

T ∶ s∗(γ∗(Ẽ)sU∩YL,Σ)
∼
→⊕

λ∈Λ
⊕
v∈V λ
((γλ)∗s

∗
λφ̄
∗
v Ẽ)U∩YLλ,Σλ .

We will use this isomorphism to understand the restriction of a character sheaf to a
mixed conjugacy class.

4.3.2 Restriction of a character sheaf to a mixed conjugacy class

Let A ∈ Ĝ(m) be a character sheaf. There exists a unique V ∈ Irr(End(Km)) such that
the character sheaf A = AV = HomEnd(Km)(V,Km). Then

s∗(A)s(Gs)uni[d] = HomEnd(s∗(Km)s(Gs)uni [d])
(V, s∗(Km)s(Gs)uni[d]),

where V now denotes the (not necessarily irreducible) End(s∗(Km)s(Gs)uni[d])-module
with underlying vector space V and action of θ ∈ End(s∗(Km)s(Gs)uni[d]) given by the
action of ϕ ∈ End(Km) when θ = s∗ϕs(Gs)uni[d] . Using the isomorphism T of Proposi-
tion 4.3.3, we get

s∗(A)s(Gs)uni[d] ≅ HomEnd(⊕µ∈M̄ (Kµ)(Gs)uni [e])
(V,⊕

µ∈M̄

(Kµ)(Gs)uni[e]),
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4.3. Restriction of a character sheaf to a mixed conjugacy class

where, this time, V is viewed as an End(⊕µ∈M̄(Kµ)(Gs)uni[e])-module with the action
of T ○θ○T −1 ∈ End(⊕µ∈M̄(Kµ)(Gs)uni[e]) given by the action of θ ∈ End(s

∗(Km)s(Gs)uni[d]).
As for the central translation, it is not very clear what the End(⊕µ∈M̄(Kµ)(Gs)uni[e])-
module V actually is, �rstly because we do not know the End(Km)-module V . To be
able to discuss this further, we make the following hypothesis.

Hypothesis 4.3.10. For the rest of this section, we assume that End(Km) is iso-
morphic to the group algebra Qℓ[Wm].

We also �x an isomorphism from Qℓ[Wm] to End(Km) as we did in Subsection 3.2.3:

1. For each w ∈Wm, we choose a representative ẇ ∈ NG(L).

2. We �x basis elements aw ∶ ad(ẇ)∗E → E for w ∈Wm and consider the isomorphism

a ∶ Qℓ[Wm]
∼
→ AE

w ↦ aw.

3. We lift each isomorphism aw to ãw ∶ φ̄∗wẼ
∼
→ Ẽ .

4. We precompose the isomorphism γ∗ãw by the isomorphism bcw ∶ γ∗Ẽ
∼
→ γ∗φ̄∗wẼ (due

to base change) to get an endomorphism Aw ∶ γ∗Ẽ → γ∗Ẽ .

5. Lastly, we use the isomorphism Ic ∶ End(γ∗Ẽ)
∼
→ End(Km) given by the de�nition

of Km.

Therefore, for a character sheaf A ∈ Ĝ(m) there is a unique V ∈ Irr(Qℓ[Wm]) such
that A ≅ HomEnd(Km)(V,Km), where we see V as an End(Km)-module via the action
of Ic(Aw) ∈ End(Km) given by the action of w ∈Wm.
We now would like to understand V seen as an End(⊕µ∈M̄(Kµ)(Gs)uni[e])-module. Namely,
for each w ∈ Wm, we want to describe the isomorphism T ○ s∗(Ic(Aw)sU∩YL,Σ) ○ T

−1, or
rather the isomorphism T ○s∗((Aw)sU∩YL,Σ)○T

−1 ∈ End(⊕µ∈M̄((γµ)∗Ẽµ)U∩YLµ,Σµ). Alter-

natively, we will instead describe ⊕µ∈M̄((γµ)∗Ẽµ)U∩YLµ,Σµ) seen as a Qℓ[Wm]-module via
the action of w ∈Wm given by

Bw ∶= T ○ s
∗((Aw)(sU∩YL,Σ)) ○ T

−1.

By [LuCS2, 8.7.13], the set sU ∩ YL,Σ = ⊔λ∈Λ s(U ∩ YLλ,Σλ), whence

s∗((Aw)(sU∩YL,Σ)) = ⊕
λ∈Λ

s∗((Aw)s(U∩YLλ,Σλ)).

We now decompose Bw into Bw = ⊕λ∈ΛBλ
w where

Bλ
w = T ○ s

∗((Aw)s(U∩YLλ,Σλ)) ○ T
−1.

In particular, each Bλ
w belongs to End(⊕v∈V λ((γλ)∗s

∗
λφ̄
∗
v Ẽλ)U∩YLλ,Σλ). We now describe

for each λ ∈ Λ theQℓ[Wm]-module⊕v∈V λ((γλ)∗s
∗
λφ̄
∗
v Ẽ)U∩YLλ,Σλ where the action of w ∈ Wm

is given by Bλ
w.
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Lemma 4.3.11. For each λ ∈ Λ and each w ∈ W λ
m, the map Bλ

w induces an endomor-
phism bλw ∈ End((γλ)∗s

∗
λẼ), which gives (γλ)∗s∗λẼ the structure of a Qℓ[W

λ
m]-module.

Furthermore, there is an isomorphism of Qℓ[Wm]-modules

⊕
v∈Vλ

((γλ)∗s
∗
λφ̄
∗
v Ẽ)U∩YLλ,Σλ ≅ Ind

Wm

Wλ
m
(((γλ)∗s

∗
λẼ)U∩YLλ,Σλ),

whereWm acts on the left-hand side via Bλ
w for w ∈Wm andW λ

m acts on ((γλ)∗s∗λẼ)U∩YLλ,Σλ
via (bλw)U∩YLλ,Σλ for w ∈W λ

m.

Proof. We �x w ∈Wm. To simplify notation, we denote by i the inclusion U∩YLλ,Σλ ⊆ YLλ,Σλ .
By construction of Aw,

Bλ
w = T ○ i

∗s∗γ∗ãw ○ T
−1 ○ T ○ i∗s∗bcw ○ T

−1.

Using the proof of Proposition 4.3.3, we make explicit T . We set

bcλ(Ẽ) ∶ i
∗s∗γ∗Ẽ → i∗(γλ)∗s

∗
λẼ

to be the isomorphism due to base change. For each v ∈ Vλ, we write bcv(Ẽ) ∶ γ∗Ẽ → γ∗φ̄∗v Ẽ
for the isomorphism induced by base change. Then

T = ⊕
v∈Vλ

bcλ(φ̄
∗
v Ẽ) ○ i

∗s∗bcv(Ẽ).

We �rst describe T ○ i∗s∗bcw ○ T −1. For each v ∈ Vλ there exists w0 ∈W λ
m and v′ ∈ Vλ such

that wv = v′w0. Then, we have

T ○ i∗s∗bcw(Ẽ) = ⊕
v∈Vλ

bcλ(φ̄
∗
vφ̄
∗
wẼ) ○ i

∗s∗bcv(φ̄
∗
wẼ) ○ i

∗s∗bcw(Ẽ)

= ⊕
v∈Vλ

bcλ(φ̄
∗
wvẼ) ○ i

∗s∗bcwv(Ẽ)

= ⊕
v∈Vλ

bcλ(φ̄
∗
v′w0
Ẽ) ○ i∗s∗bcv′w0(Ẽ)

= ⊕
v∈Vλ

bcλ(φ̄
∗
w0
φ̄∗v′ Ẽ) ○ i

∗s∗bcw0(φ̄
∗
v′ Ẽ) ○ i

∗s∗bcv′(Ẽ).

By Lemma 4.3.8, λw0λ−1 ∈W
Gs
mλ . In particular, the isomorphism φ̄λw0λ−1 ∶ Gs ×Lλ Σλ,reg

is well de�ned. We observe that sλ ○ φ̄λw0λ−1 = φ̄w0 ○ sλ. Therefore,

bcλ(φ̄
∗
w0
φ̄∗v′ Ẽ) ○ i

∗s∗bcw0(φ̄
∗
v′ Ẽ) = i

∗bcλw0λ−1(s
∗
λφ̄
∗
v′ Ẽ) ○ bcλ(φ̄

∗
v′ Ẽ),

where bcλw0λ−1(s
∗
λφ̄
∗
v′ Ẽ) denotes the isomorphism (γλ)∗(s∗λφ̄

∗
v′ Ẽ) → (γλ)∗φ̄

∗
λw0λ−1

(s∗λφ̄
∗
v′ Ẽ)

due to base change. We conclude that

T ○ i∗s∗bcw = ⊕
v∈Vλ

i∗bcλw0λ−1(s
∗
λφ̄
∗
v′ Ẽ) ○ bcλ(φ̄

∗
v′ Ẽ) ○ i

∗s∗bcv′(Ẽ).

Thus, T ○ i∗s∗bcw ○ T −1 is the morphism which consists of �rst rearranging the terms of
the sum, sending v to v′, and then acting on each summand via i∗bcλw0λ−1(s

∗
λφ̄
∗
v′ Ẽ).
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We now consider T ○ i∗s∗γ∗ãw ○ T −1. By de�nition, the isomorphisms induced by base
change are natural, and therefore,

T ○ i∗s∗γ∗ãw ○ T
−1 = ⊕

v∈Vλ

i∗(γλ)∗s
∗
λφ̄
∗
v ãw.

To conclude, we consider the following isomorphism

X ∶= ⊕
v∈Vλ

i∗(γλ)∗s
∗
λãv ∶ ⊕

v∈Vλ

i∗(γλ)∗s
∗
λφ̄
∗
v Ẽ

∼
→ ⊕

v∈Vλ

i∗(γλ)∗s
∗
λẼ .

It gives ⊕v∈Vλ i
∗(γλ)∗s∗λẼ the structure of Qℓ[Wm]-module via the action of w ∈ Wm

by X ○ Bλ
w ○ X

−1. The morphism X ○ T ○ i∗s∗bcw ○ T −1 ○ X −1 consists of rearranging
the terms of the sum and acting on each of the terms by i∗bcλw0λ−1(s

∗
λẼ). Moreover, by

de�nition of ãw, and thanks to the hypothesis 4.3.10 of a trivial cocycle,

X ○ ⊕
v∈Vλ

i∗(γλ)∗s
∗
λφ̄
∗
v ãw = ⊕

v∈Vλ

i∗(γλ)∗s
∗
λãwv = ⊕

v∈Vλ

i∗(γλ)∗s
∗
λφ̄
∗
w0
ãw0 ○ ⊕

v∈Vλ

i∗(γλ)∗s
∗
λãv′ .

Therefore, w ∈Wm acts on ⊕v∈Vλ i
∗(γλ)∗s∗λẼ by �rst rearranging the terms, then acting

via i∗(γλ)∗s∗λφ̄
∗
w0
ãw0 ○ i

∗bcλw0λ−1(s
∗
λẼ). For each w0 ∈W λ

m, we set

bλw0
∶= (γλ)∗s

∗
λãw0 ○ bcλw0λ−1(s

∗
λẼ) ∈ End((γλ)∗s

∗
λẼ).

By de�nition of the induction of modules, we conclude

⊕
v∈Vλ

i∗(γλ)∗s
∗
λẼ = Ind

Wm

Wλ
m
(i∗(γλ)∗s

∗
λẼ)

for the action of W λ
m on i∗(γλ)∗s∗λẼ given by i∗bλw0

. This proves the lemma.

Corollary 4.3.12. Let A ∈ Ĝ(m) and V ∈ Irr(Qℓ[Wm]) such that A ≅ HomEnd(Km)(V,Km).
Then

s∗(A)s(Gs)uni[d] ≅ ⊕
λ∈Λ

(A′
ResWm

Wλ
m
V
)[e](Gs)uni ,

where A′
ResWm

Wλ
m
V
= HomEnd((γλ)∗s

∗
λ
Ẽ)(Res

Wm

Wλ
m
V, (γλ)∗s∗λẼ) with the restriction ResWm

Wλ
m
V viewed

as an End((γλ)∗s∗λẼ)-module under the isomorphism given by bλw for w ∈W λ
m.

Proof. By de�nition of the action of Qℓ[Wm] on ⊕λ∈Λ⊕v∈Vλ((γλ)∗s
∗
λφ̄
∗
v Ẽ)U∩YLλ,Σλ , the

isomorphism T commutes with the action of Qℓ[Wm]. Therefore, by Lemma 4.3.11 and
the adjunction between restriction and induction, we obtain

s∗(A)s(Gs)uni[d] ≅ ⊕
λ∈Λ

(A′
ResWm

Wλ
m
V
)[e](Gs)uni .
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Remark 4.3.13. Let λ ∈ Λ and w ∈ λW λ
mλ
−1. Then w ∈ WGs

mλ by Lemma 4.3.8. Let
w0 = λ−1wλ ∈ W λ

m. The Qℓ[W
λ
m]-module (γλ)∗s∗λφ̄

∗
v Ẽ may be seen as a Qℓ[λW

λ
mλ
−1]-

module via the action of w ∈ λW λ
mλ
−1 given by bλw ∶= bλw0

. By de�nition

bλw = (γλ)∗s
∗
λãλ−1wλ ○ bcw(s

∗
λẼ).

By construction of ãλ−1wλ and diagram chasing, we see that the map s∗λãλ−1wλ is the lift
of τ∗λ (aλ−1wλ) ∈ AEλ .

Note that the action of λW λ
mλ
−1 ⊆ WGs

mλ we have �xed might di�er from the action
given by the isomorphism in Proposition 3.2.17. In particular, we cannot directly apply
Remark 3.2.19 to compute A′

ResWm

Wλ
m
V
[e](Gs)uni . To compare the two actions, it su�ces

to look at the two isomorphisms bw and τ∗λ (aλ−1wλ) as de�ned in Proposition 3.2.17 for
each w ∈ λW λ

mλ
−1. In the next subsections, we compare these two actions in di�erent

scenarios.
Before that, we �rst describe the set Λ.

A description of the set Λ

As in [AA10, � 6.2], we �x a set R ⊂ M̄ such that the groups Lr for r ∈ R are not
conjugate under Gs, but for all µ ∈ M̄ , there is h ∈Gs and r ∈ R such that Lµ = hLr. We
set for all r ∈ R,

M̄r ∶= {µ ∈ M̄ ∣ Lµ =
hLr for some h ∈Gs},

and we have
M̄ = ⊔

r∈R

M̄r.

Observe that since Lµ = Lw.µ for all w ∈Wm, the set M̄r is Wm-invariant for all r ∈ R.

Lemma 4.3.14 ([AA10, Thm. 7.2]). If G is semisimple, quasi-simple and di�erent from
the projective symplectic groups PSp2n, the projective simply orthogonal groups PSO2n,
the half-spin groups 1/2Spin2n and E7 simply-connected, then ∣R∣ = 1.

Lemma 4.3.15. Assume that WL,Σ =WL. Then for all r ∈ R, the map

ω ∶WL/W
Gr
s

L0
→ M̄r

wW
Gr
s

L0
↦Gsṙẇ

−1L

is a Wm-equivariant bijection.

Proof. We �rst show that the map ω is well-de�ned and Wm-equivariant.
Fix wWGr

s

L0
∈ WL/W

Gr
s

L0
. Since WL,Σ = WL, we have ṙẇ−1 ∈ M and Gsṙẇ−1L ∈ M̄r for

all w ∈WL. Furthermore, let n ∈ NG(L) and l ∈ L such that nl = ẇ. Since ẇ ∈ NG(L),

GsṙnL =Gsṙlẇ
−1L =Gsṙẇ

−1L.
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4.3. Restriction of a character sheaf to a mixed conjugacy class

Now, let w0 ∈W
Gr
s

L0
. Since ẇ0 ∈Gr

s,

Gsṙẇ
−1
0 ẇ

−1L =Gsṙẇ
−1
0 ṙ
−1ṙẇ−1L =Gsṙẇ

−1L.

Lastly, we �x v ∈Wm. Observe that

ω(vwWGs
r

L0
) =Gsṙẇ

−1v̇−1L = v.Gsṙẇ
−1L = v.ω(wWGsr

L0
).

Therefore, ω is a well-de�ned Wm-equivariant map.
We show that the map ω is surjective. Let µ ∈ M̄r. By de�nition of M̄r, there
is h ∈ Gs such that µL0 = Lµ = hLr = hṙL0. In particular, it means that µ−1hṙ ∈ NG(L0),
whence µ−1hṙ ∈ NG(L) by Lemma 1.3.10. We write n = µ−1hṙ. We have

ω(nLWGs
r

L0
) =Gsṙn

−1L =Gsṙṙ
−1h−1µL =GsµL

and the map ω is surjective.
We are left to show that the map ω is injective. Let w1,w2 ∈WL be two elements such
that ω(w1W

Gr
s

L0
) = ω(w2W

Gr
s

L0
). Then there is h ∈ Gs, l ∈ L such that hṙẇ−11 l = ṙẇ

−1
2 .

Thus,
ṙ−1hṙ = ẇ−12 l

−1ẇ1 ∈ NG(L) ∩G
r
s ⊆ NGr

s
(L) ⊆ NGr

s
(L0),

whence w1W
Gr
s

L0
= w2W

Gr
s

L0
and ω is injective.

Corollary 4.3.16. If ∣R∣ = 1 and WL,Σ = WL, the map ω induces a bijection from the
set of double cosets Wm/WL/W

Gs

L0
to Λ.

Remark 4.3.17. The assumption WL,Σ =WL is satis�ed in particular when:

� L =G (then WG,Σ =WG = 1),

� L = T (then Σ = T),

� Σ is the preimage of a unipotent class ([Lus84b, Thm. 9.2.b]),

� Σ is the unique preimage of an isolated class which belongs to a cuspidal pair of
L (up to L-conjugation),

� or Km is unipotent and Z(G) is connected, since in this case Wm =WL by [AA10,
Prop. 4.4].

4.3.3 Restriction of a unipotently supported character sheaf to
a mixed conjugacy class

We suppose that Σ contains unipotent elements. In other words Σ = (v)LZ○(L) and
we assume that s ∈ Z○(L). By Remark 3.2.8, we write E = i∗(E0 ⊠ Z) where E0 is
an irreducible local system on (v)L, Z = µ∗En,j is a Kummer local system on Z○(L)

117



Chapter 4. Restricting character sheaves

with µ ∈ X(Z○(L)) and n ∈ N coprime to p, and i ∶ Σ → (v)L × Z○(L) is the canonical
map. For λ ∈ Λ, the local system Eλ on Σλ = λΣλ−1 is

s∗ ad(λ)∗i∗(E0 ⊠Z) = ad(λ)
∗(λsλ−1)∗i∗(E0 ⊠Z)

= ad(λ)∗(szλ)
∗i∗(E0 ⊠Z)

= ad(λ)∗i∗(E0 ⊠ (szλ)
∗Z).

We make a speci�c choice of aw for w ∈Wm following Proposition 3.2.17.
We set aw = bZw ∶ θ′w⊗(id⊠ϕZw) for θ′w as given by Lusztig in [Lus84b, Thm. 9.2d] and the
morphism ϕZw ∶ ad(w)

∗Z → Z is determined by the condition that (ϕZw)1 is the identity.
Similarly, for w ∈WGs

mλ , the choice of b
Eλ
w ∶ ad(w)∗Eλ → Eλ is �xed in Proposition 3.2.17,

with bEλw = ad(λ)∗b
(szλ)

∗Z

λwλ−1
. Observe that τ∗λaλwλ−1 = ad(λ)

∗(szλ)∗bZλwλ−1 , since the map τλ
sends g ∈ Σλ to λ̇−1sgλ̇. We then obtain the following result.

Lemma 4.3.18. Let A ∈ Ĝ(m) and V ∈ Irr(Qℓ[Wm]) such that A ≅ HomEnd(Km)(V,Km).
Then for any s ∈ Z○(L),

s∗(A)s(Gs)uni[d] ≅ ⊕
λ∈Λ

(A′
ResWm

W
Gs
mλ

(V )⊗Xs
λ

)[e](Gs)uni ,

where A′
ResWm

W
Gs
mλ

(V )⊗Xs
λ

= HomEnd((γλ)∗s
∗
λ
Ẽ)(Res

Wm

WGs
mλ

(V ) ⊗Xs
λ, (γλ)∗s

∗
λẼ).

We see ResWm

WGs
mλ

(V ) ⊗ Xs
λ as an End((γλ)∗s∗λẼ)-module under the isomorphism given

by bEλw for w ∈WGs
mλ and Xs

λ is the Qℓ[W
Gs
mλ ]-module with character χ

s
λ ∶ w ↦ j(µλ−1wλ(λsλ−1)).

Proof. By Corollary 4.3.12 and Remark 4.3.13,

s∗(A)s(Gs)uni[d] ≅ ⊕
λ∈Λ

(A′
ResWm

λWλ
mλ
−1 V
)[e](Gs)uni ,

where A′
ResWm

λWλ
mλ
−1 V
= HomEnd((γλ)∗s

∗
λ
Ẽ)(Res

Wm

λWλ
mλ−1

V, (γλ)∗s∗λẼ) with ResWm

λWλ
mλ−1

V seen as

an End((γλ)∗s∗λẼ)-module under the isomorphism given by bλw for each w ∈ W λ
m. By

Lemma 4.3.8, λW λ
mλ
−1 =WGs

mλ .
We need to compare bEλw and bλw, or alternatively b

(szλ)
∗Z

λwλ−1
and (szλ)∗bZλwλ−1 . Applying

Lemma 4.2.5 and its proof, we obtain bλw = j(µλ−1wλ(λsλ−1)−1)b
Eλ
w .

Any End((γλ)∗s∗λẼ)-module V under the isomorphism given by bλw for w ∈ W λ
m is then

isomorphic to the End((γλ)∗s∗λẼ)-module V ⊗ χsλ under the isomorphism given by bEλw
for w ∈W λ

m. Therefore,

s∗(A)s(Gs)uni[d] ≅ ⊕
λ∈Λ

(A′
ResWm

W
Gs
mλ

(V )⊗Xs
λ

)[e](Gs)uni

under the assumptions of the lemma.
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4.3. Restriction of a character sheaf to a mixed conjugacy class

Corollary 4.3.19. Let A ∈ Ĝ(m) and V ∈ Irr(Qℓ[Wm]) such that A ≅ HomEnd(Km)(V,Km).
For any s ∈ Z○(L), s∗(A)s(Gs)uni[d] is isomorphic to

⊕
V ′∈Irr(WGs

L0
)

⊕
w∈Wm/WL/W

Gs
L0

⟨ResWm

WGs
m
w−1
(V )⊗Xs

w,Res
WGs

L0

WGs
m
w−1
(V ′○ad(w−1))⟩(ad(w−1)∗A′V ′)[e](Gs)uni ,

where A′V ′ = HomEnd(Km0)
(V ′,Km0) with m0 = (L,Σ,E0⊠Qℓ). We see V ′ as an End(K(m0))-

module under the isomorphism de�ned in Proposition 3.2.17 and Xs
w is the module

of Qℓ[W
Gs
mw−1
] whose character is χsw ∶ w0 ↦ j(µww0w−1(wsw

−1)).

Proof. This is a consequence of Lemma 4.3.18, Remark 3.2.19 and Corollary 4.3.16 (to
rewrite the indexes of the sum).

Corollary 4.3.20. Let A ∈ Ĝ(m) and V ∈ Irr(Qℓ[Wm]) such that A ≅ HomEnd(Km)(V,Km).
Assume that A is a unipotent character sheaf in the principal series and that Z(G) is
connected. Then, s∗(A)s(Gs)uni[−dim(G) + dim(Gs) − dim(T0)] is isomorphic to

⊕
V ′∈Irr(WGs)

⟨ResWWGs(V ), V
′⟩(A′V ′)[−dimT0](Gs)uni ,

where A′V ′ = HomEnd(Km0)
(V ′,Km0) with m0 = (T0,T0,Qℓ) ∈ M

Gs. We see V ′ as an
End(Km0)-module under the isomorphism de�ned in Proposition 3.2.17.

Proof. Since A is unipotent, Wm =W and NG(m) = NG(T0). Moreover,

W 1
m = StabWm(1) =W

Gs

which is a Weyl group, because it is the Weyl group of the connected reductive groupGs.
Applying Lemma 4.2.6, we conclude that the character χsw in the previous corollary is
trivial.

4.3.4 Restriction of a character sheaf from a simple group of
adjoint type

In this subsection, we focus on the particular case when G is a simple group of adjoint
type. Moreover we assume that s /∈ Z○(L). Otherwise we are in the case of the previous
section.
Thanks to [Lus84b, 2.3], we may write E = i∗(F ⊗ L) with

� i ∶ L→ L/Z○(L) ×L/[L,L],

� F a local system on L/Z○(L), and

� Z = µ∗En,ϕ a Kummer local system on L/[L,L] with µ ∈X(L/[L,L]) whose inverse
image under j ∶ Z○(L) → L/[L,L] is a Kummer local system Z ′ = (µ ○ j)∗En,ϕ
on Z○(L).
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Chapter 4. Restricting character sheaves

We now �x the isomorphisms aw for each w ∈ Wm following Lemma 3.2.21. By
Lemma 3.2.22, we choose t ∈ L such that t = lsl−1z for some l ∈ L and z ∈ Z○(L)
and NG(L)/L = NC○G(t)

(C○L(t))/C
○
L(t). Note that without loss of generality, we may

assume that l = 1. Recall from the proof of Lemma 3.2.21 that we have de�ned a group
isomorphism

Wm →WGt
mt , w ↦ wt = ẇLt,

where Gt = C○G(t), and mt = (Lt,Σt,Et) with Lt = C○L(t) = L0, Σt = (v)LtZ
○(Lt) = Σ0,

and the local system Et is the inverse image of E under the map t ∶ Σt → Σ, g → tg. In
particular, we can write Et = i∗(t∗F ⊠Zt) where the inverse image of Zt = z∗Z under the
map Z○(L) = Z○(Lt) → Lt/[Lt,Lt] is the Kummer local system z∗Z ′.
Finally, for each w ∈ WGt

mt , we �x basis elements bZtwt ∈ At∗E as in the proof of Proposi-
tion 3.2.17. For each w ∈Wm, we choose the unique isomorphism aw such that

(aw)tu = (b
Zt
wt)u.

For λ ∈ Λ, the local system Eλ on Σλ is in fact ad(λ)∗(tzλz−1)∗E = ad(λ)∗(zλz−1)∗Et.
For each w ∈ WGs

mλ , the choice of bEλw ∶ ad(w)∗Eλ → Eλ is �xed in Proposition 3.2.17,

with bEλw = ad(λ)∗b
(zλz

−1)∗Zt
λ−1wλ

.

Now, exactly as in the unipotently supported case we obtain the following description
of the restriction of a character sheaf.

Lemma 4.3.21. Let A ∈ Ĝ(m) and V ∈ Irr(Qℓ[Wm]) such that A ≅ HomEnd(Km)(V,Km).
Then

s∗(A)s(Gs)uni[d] ≅ ⊕
λ∈Λ

(A′
ResWm

λWλ
mλ
−1(V )⊗X

s
λ

)[e](Gs)uni ,

where
A′

ResWm

λWλ
mλ
−1(V )⊗X

s
λ

= HomEnd((γλ)∗s
∗
λ
Ẽ)(Res

Wm

λWλ
mλ−1
(V ) ⊗Xs

λ, (γλ)∗s
∗
λẼ)

with ResWm

λWλ
mλ−1
(V ) ⊗ Xs

λ viewed as an End((γλ)∗s∗λẼ)-module under the isomorphism

given by bEλw for w ∈ λW λ
mλ
−1 and Xs

λ is the module of Qℓ[λW
λ
mλ
−1] whose character is

given by χsλ ∶ w ↦ j(µλ−1wλ(λz
−1
λ zλ

−1)).

Proof. As for the proof of the unipotently supported case (see Lemma 4.3.18), we need to

compare bEλw and bλw, or alternatively (b
(zλz

−1)∗Zt
λ−1wλ

)z−1
λ
zu and (b

Zt
wt)u. Applying Lemma 4.2.5

and its proof, we obtain bλw = j(µλ−1wλ(λz
−1
λ zλ

−1)−1)bEλw .

Any End((γλ)∗s∗λẼ)-module V ′ under the isomorphism given by bλw for w ∈ W λ
m is then

isomorphic to the End((γλ)∗s∗λẼ)-module V ⊗ χs under the isomorphism given by bEλw
for w ∈W λ

m. Therefore,

s∗(A)s(Gs)uni[d] ≅ ⊕
λ∈Λ

(A′
ResWm

W
Gs
mλ

(V )⊗Xs
)[e](Gs)uni

under the assumptions of the lemma.
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4.3. Restriction of a character sheaf to a mixed conjugacy class

Corollary 4.3.22. Let A ∈ Ĝ(m) and V ∈ Irr(Qℓ[Wm]) such that A ≅ HomEnd(Km)(V,Km).
Then s∗(A)s(Gs)uni[d] is isomorphic to

⊕
V ′∈Irr(WGs

L0
)

⊕
w∈Wm/WL/W

Gs
L0

⟨ResWm

w−1Ww−1
m w
(V )⊗Xs

w,Res
WGs

L0

w−1Ww−1
m w
(V ′○ad(w−1))⟩(ad(w−1)∗A′V ′)[e](Gs)uni ,

where A′V ′ = HomEnd(Km0)
(V ′,Km0) with m0 = (L0,Σ0, s∗F⊠Qℓ). We see V ′ as an End(Km0)-

module under the isomorphism de�ned in Proposition 3.2.17 and Xs
w is the module

of Qℓ[W
Gs
mw−1
] whose character is χsw ∶ w0 ↦ j(µww0w−1(wzz

−1
λ w

−1)).

Proof. This is a consequence of Lemma 4.3.21, Remark 3.2.19 and 4.3.16.
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Chapter 5

Ordinary and projective

representations in blocks of Brauer

characters

After introducing the �nite groups of Lie type and their representation theory, both in
terms of ordinary characters and of character sheaves, we are �nally ready to approach
the main theme of this thesis: the unitriangularity of the decomposition matrices.
To do so, we treat this question block of k[G] by block of k[G], or to be precise, union
of blocks by union of blocks. Let us describe a �rst strategy to show that B, a union
of ℓ-blocks of k[G], has a lower-unitriangular decomposition matrix.

Step 1 Compute the number n of projective indecomposable modules in B.

Step 2 Choose n ordinary irreducible modules V1, . . . , Vn ∈ IrrK(G) belonging to B.

Step 3 Find the n projective indecomposable modules P1, . . . , Pn of k[G] belonging to
the union of blocks B.

Step 4 Check that the decomposition matrix given by ⟨Vi, PO
j ⊗O K⟩ for 1 ≤ i, j ≤ n is

lower-unitriangular.

The obvious problem with this method is that we would like to use the decomposition
matrix to get information about the PIMs of k[G] and not the other way around. If we
could do Step 3, then computing the decomposition matrix would be a much easier task.
Fortunately, the following result allows us to simply look at projective k[G]-modules,
not necessarily indecomposable ones.

Proposition 5.0.1 ([Gec94, Lem. 2.6]). Let A be a �nite group. Let B be a union
of ℓ-blocks of the group A and n ∶= ∣ irrk(B)∣. Assume that there exist irreducible K[A]-
modules V1, . . . , Vn in B and projective k[A]-modules P1, . . . , Pn such that the decom-
position matrix ([Vi, Pj])1≤i,j≤n is lower unitriangular. Then the ℓ-decomposition matrix
of B is unitriangular.

Therefore, in our plan, Step 3 and Step 4 become
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5.1. Counting modular representations

Step 3 Choose n projective modules P1, . . . , Pn of k[G].

Step 4 Check that the decomposition matrix ⟨Vi, PO
j ⊗O K⟩ for 1 ≤ i, j ≤ n is lower-

unitriangular.

This chapter focus on the �rst three steps of our plan whilst the following one is
dedicated to showing the last step in some cases. In both chapters, our reasoning and
ideas are very much inspired by the notions developed by Brunat, Dudas and Taylor in
[BDT20].
In Section 5.1, we will de�ne the union of blocks we will focus on and give some in-
dication about a basic set, slightly generalising results of Geck and Hiss from [GH91],
[Gec94]. We will describe some projective modules of k[G], called the Kawanaka mod-
ules, in Section 5.2.

We ecall that in Hypothesis 1, we have �xed G a connected reductive group de�ned
over k = Fp. We look at the ℓ-decomposition matrices of G =GF for a prime ℓ ≠ p. Some
arguments in this chapter and the next one require us to make use of characteristic
functions of character sheaves. We thus make the following hypothesis.

Hypothesis 2. For the rest of this thesis, we assume that the Steinberg endomor-
phism F in Hypothesis 1 is a Frobenius map and gives the group G an Fq-structure.

5.1 Counting modular representations

This section is concerned with the �rst two steps of our strategy to show the unitri-
angularity of the ℓ-decomposition matrix of G. After partitioning the decomposition
matrix into a union of ℓ-blocks compatible with Lusztig series thanks to Broué�Michel
([BM89]), we will count the number of irreducible modular representations in a union
of ℓ-blocks. We will also �nd a labelling of the characters in it.
For the unipotent ℓ-blocks, a basic set was found by Geck and Hiss [GH91] when ℓ is
good and Z(G) is connected. Its parameterisation is a consequence of Lusztig's results.
When G is simple modulo its centre and ℓ bad, Geck�Hiss established the number of
irreducible Brauer characters in [GH97] and a labelling was determined by Chaneb. We
generalise the results of Geck�Hiss to isolated blocks when ℓ is bad.

5.1.1 The ℓ-blocks of the decomposition matrix

As we have seen in the introduction, the group algebra k[G] is partitioned into ℓ-blocks

k[G] =B1 ⊕ ⋅ ⋅ ⋅ ⊕Bn.

In particular, we can split the irreducible modules according to the block to which they
belong.
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Chapter 5. Ordinary and projective representations in blocks of Brauer characters

On the other hand, the ordinary characters are also partitioned into geometric series
indexed by the F ∗-stable semisimple conjugacy classes of the dual group G∗, see Theo-
rem 2.2.10.
Thanks to Broué�Michel [BM89], these two partitions are compatible.

Theorem 5.1.1 ([BM89, Thm. 2.2]). Let t ∈ (G∗)F ∗ be a semisimple element of order
prime to ℓ. De�ne

Eℓ(G, t) ∶= ⊔
s

E (G, st),

where s runs over a set of representatives of F ∗-stable geometric conjugacy classes
of semisimple ℓ-elements of G∗ which commute with t. There exists a union of ℓ-
blocks B(G, t) of G such that

Eℓ(G, t) = irr(B(G, t)).

Remark 5.1.2. Since geometric series are a union of rational series,

Eℓ(G, t) = ⊔
s
⊔
s′

E (G,s′),

where s runs over a set of representatives of F ∗-stable conjugacy classes of semisimple
ℓ-elements of G∗ which commute with t, and s′ runs over a set of representatives of the
semisimple G∗-conjugacy classes of F ∗-stable elements in (st)G∗ If Z(G) is connected,
rational series and geometric series coincide. In particular,

Eℓ(G, t) = ⊔
s

E (G, ts),

where s runs over a set of representatives of conjugacy classes of semisimple ℓ-elements
of (G∗)F ∗ which commute with t.

De�nition 5.1.3. We call the union of blocks B(G,1) the unipotent ℓ-blocks. If t
is isolated in G∗, we say the the union of ℓ-blocks B(G, t) is isolated.

These unipotent ℓ-blocks are particularly important as all non-isolated unions of
blocks are Morita equivalent to a union of unipotent ℓ-blocks of a smaller connected
reductive group, thanks to Bonnafé and Rouquier.

Theorem 5.1.4 ([BR03, Thm. 11.8]). Let t ∈ (G∗)F ∗ be a semisimple element of order
prime to ℓ. Assume that CG∗(t) is contained in a Levi subgroup L∗ of G∗. Let L be the
Levi subgroup of G in duality with L. Then, B(L,1) and B(G, t) are Morita equivalent.

Therefore, in this thesis, our priority will be the unipotent ℓ-blocks, followed by the
isolated ℓ-blocks.
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5.1. Counting modular representations

5.1.2 The number of modular representations

We �x t ∈G∗ an isolated ℓ′-element. We want to know the number of Brauer characters
in the union of blocks B(G, t). More precisely, we want to �nd a basic set for B(G, t).

De�nition 5.1.5. Let B be a union of blocks of G. A set of Brauer characters is a
basic set for B if it is a Z-basis for the set of Brauer characters in B.

The set of Brauer characters corresponding to the irreducible k[G]-modules in B is
always a basic set. However, this is obviously not the one we are looking for.
If χ is a virtual ordinary character of G, then its restriction χ̆ to the ℓ′-elements is a
virtual Brauer character. We would rather �nd a basic set consisting of the restriction to
the ℓ′-elements of virtual ordinary characters or even of ordinary irreducible characters.
If the basic set comes from ordinary characters, we say that it is ordinary.

In order to do so, we follow Geck�Hiss and require some conditions on the centre
of G.

Hypothesis 5.1.6. For the rest of this section, we assume Z(G) is connected.

When ℓ is good for G, the problem of �nding a basic set has been solved for any
union of blocks B(G, t), for t ∈G∗ an ℓ′-element.

Theorem 5.1.7 ([GH91, Thm. 5.1]). Assume that ℓ is good for G. Let t ∈ G∗ be an
isolated ℓ′-element. Then the set Ĕ (G, t) ∶= {χ̆ ∣ χ ∈ E (G, t)} is an ordinary basic set of
the union of blocks B(G, t).

When ℓ is bad, the situation is less neat and requires some more analysis to be stated.

A basic set when ℓ is bad

From now on, we assume that ℓ is bad for G.
Firstly, we suppose that G is of classical type. In that case, the prime ℓ is equal to 2
and all isolated elements of G∗ are 2-elements ([GH91, Prop. 2.1]). Therefore, we only
consider the unipotent ℓ-blocks.

Theorem 5.1.8 ([Gec94, Prop. 2.4 and Thm. 2.5]). Assume that G has only simple
components of classical type. Then ∣B(G,1)∣ equals the number of unipotent conjugacy
classes of G. Moreover, there exists an ordinary basic set for B(G,1).

We now focus on the case where G is of exceptional type, applying the same meth-
ods as the ones developed by Geck�Hiss in [GH97] to compute the number of Brauer
characters in the unipotent blocks. We follow their reasoning, adapting their chapters 5
and 6 to our case.
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Chapter 5. Ordinary and projective representations in blocks of Brauer characters

Hypothesis 5.1.9. For the rest of this section, we assume that G is of exceptional
type, simple modulo its centre, and that p is good for G. We also suppose that ℓ is
bad for G.

The idea is that instead of considering ordinary characters, we could look at the
other basis for the class functions given by (a subset) of the almost characters, or thanks
to Theorem 3.3.6 the basis given by the characteristic functions of character sheaves.

For each F -stable character sheaf A ∈ Ĝ, we have �xed in Subsection 3.3.3 an iso-
morphism φA ∶ F ∗A → A which leads to the characteristic function χA. For s ∈ G∗, we
write

Ξs(G) ∶= {χA ∣ A ∈ Ĝs, where A is F -stable}.

Recall that if A ∈ Ĝs, then there is an induction datum m = (L,Σ,E) ∈MG such that A
appears as a composition factor of Km, induced from Am = IC(Σ,E)[dimΣ] and Am ∈ L̂s.
Moreover, m is unique up to G-conjugation. By Proposition 3.2.20

∣Ĝ(m)∣ = ∣ Irr(Qℓ[Wm])∣.

Now if A is F -stable, we may choose m to be F -stable as well (see Subsection 3.3.1).
We write

Ξm(G) ∶= {χA ∣ A ∈ Ĝ(m), where A is F -stable}.

Moreover, by [Lus90, 9.2] and [Sho96, Thm. 4.2],

IGL (χAm) = ξχKm

for some ξ ∈ Q×ℓ . Note that Am is a character sheaf of L and χAm is then an almost
character of L up to a sign. Lastly, we say that χA is cuspidal if and only if A is
cuspidal.

We now slightly adapt the proof of [GH97, Thm. 6.3] to obtain the following result.

Proposition 5.1.10. Every Brauer character in B(G, t) is a K-linear combination of
elements in Ĕ (G, t) = {χ̆ ∣ χ ∈ E (G, t)}.

Proof. By Theorem 5.1.1, the restriction of the ordinary characters in Eℓ(G, t) to the
ℓ′-elements generate the Brauer characters in B(G, t).
Instead of ordinary characters, we may consider almost characters or the character-
istic functions of character sheaves. In other words, we want to show that for each
ℓ-element s ∈ CG∗(t) and each χ ∈ Ξts(G), the restriction χ̆ can be written as a K-linear
combination of elements in {ψ̆ ∣ ψ ∈ Ξt(G)}. We �x s ∈ G∗ a semisimple ℓ-element
and χ ∈ Ξts(G).
There is a cuspidal induction datum m = (L,Σ,E) ∈MG such that χ ∈ Ξm(G) where L
is a non-necessarily proper Levi subgroup of G. In particular, ψ ∶= χAm ∈ Ξts(L). If χ is
cuspidal, χ = ψ.
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5.1. Counting modular representations

Claim: There is ψ′ ∈ Ξt(L) such that ψ̆ = ψ̆′.
Firstly, we observe that ts ∈ Z(L∗). Indeed, it is obvious if L∗ is a maximal torus, since
then Z(L∗) = L∗. If χ is cuspidal (i.e. L = G), ts ∈ Z(G∗) since all cuspidal charac-
ter sheaves of an adjoint exceptional group belong to a central series (see for instance
[DLM14, Appendix C.]). If L is not a maximal torus nor the whole group G, then L
is of type B2, D4, E6 or E7. In each case, the only possibility for ψ to be cuspidal is
if st ∈ Z(L∗), thanks to [LuCS4, Proof of Prop. 19.3].
We claim that CL∗(s) = L∗. Indeed, let x ∈ L∗, then xtsx−1 = ts. Let o(t) and o(s)
denote the order of t and s respectively. Since s and t commute, xso(t)x−1 = so(t). Now
the orders o(t) and o(s) are coprime. Thus, there exists an integer a such that ao(t)
is congruent to 1 modulo o(s). Thus, (so(t))a = s and we conclude that xsx−1 = s. In
particular, the element s is central in L∗.
Let λs be the linear character of L �dual� to s: (λs)T0 is sent to s under the map
from irr(T0) to T∗0 ([GM20, Prop. 2.5.20], [Lus77, 7.4.2]). It has order a power of ℓ.
The character ψ′ de�ned by ψ = ψ′λs belongs to Ξt(L) by the Jordan decomposition of
characters ([GM20, Thm. 4.7.1(3)]) and ψ̆ = ψ̆′.

The proof then follows by the exact same argument as in [GH97, Thm. 6.3]. By
[LuCS2, 10.4.5 and 10.6.1], there are aw ∈K for each w ∈Wm such that

χ = ∑
w∈Wm

awχAmw ,φ
w
Amw

,

where mw = (wLw−1,wΣw−1,ad(w−1)E) and φw ∶ F ∗ ad(w−1)E → ad(w−1)E is a �xed
isomorphism. In particular, Amw ∈ ˆwLw−1wtsw−1 . In other words, there are a′w ∈ K
for w ∈Wm such that

χ = ∑
w∈Wm

a′wI
G
wLw−1(χAmw

),

with χAmw
∈ Ξwstw−1((wLw−1)F ) cuspidal. Now, Deligne�Lusztig induction commutes

with restriction to ℓ′-elements ([DM20, Prop. 10.1.6]). Therefore, thanks to the claim,
the character χ̆ is a K-linear combination of restrictions of elements in Ξt.

Remark 5.1.11. Observe that the proof of the claim shows that t ∈ Z(L∗).

In fact, following the proof of [GH91, Thm. 3.1], we could even prove a stronger
result.

Proposition 5.1.12. Assume that t ≠ 1. Suppose as well that F acts trivially on W .
Every Brauer character in B(G, t) is a Z-linear combination of elements in Ĕ (G, t)
except possibly if G is of type E8 and ℓ ∈ {2,3}.

Proof. Let s be a semisimple ℓ-element of (G∗)F ∗ commuting with t and χ ∈ E(G, ts).
We want to show that χ̆ is a Z-linear combination of elements in Ĕ (G, t). If s ∈ Z(G∗),
similarly as in the previous proof, we can show that there is χ′ ∈ E(G, t) such that χ̆ = χ̆′.
Otherwise, by the description of the isolated semisimple elements, we know that all the
semisimple elements have order a prime power (expect one conjugacy class in E8 of
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order 6). Thus, the element ts is not isolated and there is a Levi subgroup L of G such
that its corresponding dual L∗ in G∗ contains CG∗(ts). Therefore, there is ψ ∈ E(L, ts)
and ϵ ∈ {−1,1} such that

χ = ϵIGL (ψ)

by [DM87, Prop. 6.6].
After choosing the Levi subgroup L∗ minimal such that CG∗(ts) ⊆ L∗, we conclude that
CG∗(ts) = CL∗(ts) is not contained in a proper Levi subgroup of L∗. Note that since
Z(G) is connected, G∗ is simply connected and CG∗(ts) is a connected reductive group
(Theorem 1.3.2). If G is not of type E8, then the isolated elements of L∗ also have order
a prime power and hence L∗ = CL∗(ts). If G is of type E8 and ℓ = 5, then the order of
st is divisible by 5 and st is not isolated in L∗. Thus st ∈ Z(L∗).
By the same argument as in the claim, we conclude that there is ψ′ ∈ E(L, t) such
that ψ̆ = ψ̆′. Since Deligne�Lusztig induction commutes with restriction to ℓ′-elements
([DM20, Prop. 10.1.6]) and preserves Lusztig series, we conclude that χ̆ is a Z-linear
combination of elements in Ĕ (G, t).

Remark 5.1.13. The condition that F acts trivially onW ensures that the Levi subgroup
L is F -stable.

Another small modi�cation of the proof of [GH97, Thm. 6.4] for the unipotent ℓ-
blocks (t = 1) leads us to �nd a basis for the lattice of the Brauer characters in B(G, t).

Proposition 5.1.14. The following set is aK-basis for the Brauer characters in B(G, t):

Ξ̆′t ∶= {Ĭ
G
L (ψ) ∣ (L, ψ) ∈ Ξ

′
t}

where

Ξ′t ∶={(L, ψ) ∣ ψ = ξχAm is an almost character of L for m = (L,Σ,E) ∈MG

and some ξ ∈K×, Am ∈ L̂tF -stable, ψ̆ ≠ 0}.

Moreover, (L, ψ), (M, θ) ∈ Ξ′t are such that Ĭ
G
L (ψ) = Ĭ

G
M(θ) if and only if (L, ψ) and (M, θ)

are conjugate in G.

Proof. We follow the steps of the proof of [GH97, Thm. 6.4]. Firstly, by Proposi-
tion 5.1.10, the above set generates the space of Brauer characters in B(G, t). We
now check that they are linearly independent.

(a) Let us �x m = (L,Σ,E) ∈MG such that ψ = ξχAm ∈ Ξt(L) for some root of unity ξ ∈K
and ψ̆ ≠ 0. Since every cuspidal character sheaf is clean by Proposition 3.2.9, ψ has
support (sv)LZ○(L) where v ∈ L is unipotent and sZ○(L) is a semisimple isolated
element in L/Z○(L). Since ψ̆ ≠ 0 and ℓ ≠ p, there must be z ∈ Z○(L) such that sz is
an F -stable ℓ′-element. Therefore, we may assume that s is an F -stable ℓ′-element
and Σ = (sv)Z○(L).

128



5.1. Counting modular representations

(b) We now de�ne ψ′ ∶= ∑z ψ ⋅ λz where z runs over the ℓ-elements of Z(L∗) and λz is
the character of L dual to z. Clearly, we have ψ̆′ = aψ̆ where a is the number of
elements z in the sum.
Moreover, as in the proof of [GH97, Thm. 6.4], we claim that for x ∈ L if ψ′(x) ≠ 0
then x is ℓ-regular. We write x = xℓ′xℓ, where xℓ is an ℓ-element commuting with xℓ′
which is ℓ-regular. If ψ′(x) ≠ 0, then ψ(x) ≠ 0 and x ∈ (sv)Z○(L). Hence by (a),
we have xℓ ∈ Z○(L). On the other hand, ψ′(x) ≠ 0 also implies that ∑z λz(x) ≠ 0.
Therefore, by the orthogonality relations of the characters of a �nite abelian ℓ-group,
we must have xℓ ∈ ⋂z ker(λz), whence xℓ ∈ [L,L]. Consequently, xℓ ∈ Z([L,L]). Now,
in the proof of [GH97, Thm. 6.4], Geck and Hiss recall that ∣Z([L,L])∣ divides the
determinant d of the Cartan matrix of L. We list for each possible L the value of d.
Thanks to [GH97, 5.5], we notice that if L is of type B2, D4 or E7, then Σ is the

L T B2 D4 E6 E7 G2 F4 E8

d 1 2 4 3 2 1 1 1

preimage of a class of some 2-elements. If L is of type E6, then Σ is the preimage of
a conjugacy class of some 3-elements. By (a), we must have ℓ ≠ o(s). Thus, ℓ does
not divide d. We conclude that xℓ = 1.
Therefore, ψ′ = ψ̆′.

(c) Observe that ψ ⋅ λz ∈ Ξsz(L) for each ℓ-element z ∈ Z(L∗) by [DM91, Thm. 13.30].
Then, thanks to [GH97, Prop. 5.4c], we conclude that IGL (ψλz) ≠ 0 for each ℓ-
element z ∈ Z(L∗). Thus, since Deligne�Lusztig induction preserves geometric
series by Proposition 2.2.14,

⟨IGL (ψ
′), IGL (ψ

′)⟩ = ∑
z

⟨IGL (ψλz), I
G
L (ψλz)⟩ ≠ 0.

In particular,
ĬGL (ψ) = I

G
L (ψ̆) = I

G
L (1/aψ̆

′) = 1/aIGL (ψ
′) ≠ 0.

Thus no virtual character in Ξ̆′t is zero.
The last step is exactly the same as in [GH97].

(d) We let mi = (Li,Σi,Ei) be cuspidal induction data such that ψi ∶= χAmi
∈ Ξt(L) and

ψ̆i ≠ 0 for 1 ≤ i ≤ n. Assume furthermore that for 1 ≤ i, j ≤ n, if i ≠ j then ĬGLi(ψi) ≠

ĬGLj(ψj). We show that (ĬGLi(ψi))1≤i≤n are linearly independent. Suppose there are

ai ∈ K for 1 ≤ i ≤ n such that ∑ni=1 aiĬ
G
Li
(ψi) = 0. Using the same construction as in

step (b), with ψ′i = a
′
iψ̆i, we see that ∑

n
i=1 ai/a

′
iĬ

G
Li
(ψ′i) = 0.

Fix 1 ≤ i ≤ n. We claim that ⟨ĬGLi(ψ
′
i), Ĭ

G
Lj
(ψ′j)⟩ ≠ 0 if and only if i = j. One direction

is given by (c). Assume that ⟨ĬGLi(ψ
′
i), Ĭ

G
Lj
(ψ′j)⟩ ≠ 0 for some j. By de�nition, there

are z ∈ Z(L∗i ) and z
′ ∈ Z(L∗j ), both ℓ-elements, such that ⟨ĬGLi(ψiλz), Ĭ

G
Lj
(ψjλz′)⟩ ≠ 0.

The class functions ψiλz and ψjλz′ are cuspidal almost characters and thus there
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are m = (L,Σ,E),m′ = (L′,Σ′,E ′) ∈ MG and ξ, ξ′ ∈ K such that ĬGLi(ψiλz) = ξχKm

and ĬGLj(ψjλz′) = ξ
′χKm′ . In particular, ⟨χKm , χKm′ ⟩ ≠ 0. By [LuCS2, Cor. 9.9] and

[LuCS5, Thm. 25.6], it means that there is g ∈ G such that L = gL′g−1, Σ = gΣ′g−1

and E = ad(g)∗E ′, whence χAm = χAm′ ○ ad(g). By a character formula similar to
Theorem 2.3.2 (see [DM20, Prop. 10.1.2]), we get that IGLi(ψiλz) = I

G
Lj
(ψjλz′), hence

ĬGLi(ψi) = I
G
Li
(ψ̆i) = Ĭ

G
Li
(ψiλz) = Ĭ

G
Lj
(ψjλz′) = I

G
Lj
(ψ̆j) = Ĭ

G
Lj
(ψj)

and i = j by assumption. We conclude that ai/a′i = ⟨Ĭ
G
Li
(ψ′i),∑

n
i=1 ai/a

′
iĬ

G
Li
(ψ′i)⟩ = 0.

Therefore ai = 0 for each 1 ≤ i ≤ n and Ξ̆′t is a free set.

Lastly, we show that if (L, ψ), (M, θ) ∈ Ξ′t are such that ĬGL (ψ) = Ĭ
G
M(θ) then (L, ψ)

and (M, θ) are conjugate under G. The arguments are very similar to steps (c) and (d).
We use the same construction as in step (b) with ψ′ = aψ̆ and θ′ = bθ̆. Then, the
virtual character IGL (ψ

′) is a scalar multiple of IGM(θ
′) and ⟨IGL (ψ), I

G
M(θ

′)⟩ ≠ 0. In
particular, there is an ℓ-element z ∈ Z(M∗) such that ⟨IGL (ψ), I

G
M(θλz)⟩ ≠ 0. By a

similar argument as in step (d), we conclude that IGL (ψ) = I
G
M(θλz). Since induction

preserves the geometric series, the semisimple elements t and tz are conjugate in G. Now
since t is an ℓ′-element which commutes with the ℓ-element z, we must have z = 1. Thus,
the two virtual characters are equal, IGL (ψ) = I

G
M(θ). Now, by a similar argument as in

step (d), we conclude that (L, ψ) and (M, θ) are G-conjugate.

Using this, we can derive a basic set for the non-unipotent isolated series when ℓ is
bad.

Proposition 5.1.15. Assume that t ≠ 1. Suppose as well that F acts trivially on W .
The set Ĕ (G, t) is a basic set for the Brauer characters in B(G, t) except possibly if G
is of type E8 and ℓ ∈ {2,3}.

Proof. Thanks to Proposition 5.1.12, we know that Ĕ (G, t) is a generating set. Thus, we
need to check that ∣E (G, t)∣ is smaller than the number of Brauer characters in B(G, t).
To compute this number, we compute the size of the K-basis de�ned in Proposition
5.1.14. To do so, we �nd a set of representatives (L, ψ) for all the cuspidal pairs in Ξ′t
up to G-conjugation and then for each representative (L, ψ) compute the number of
G-conjugacy classes in

{(gLg−1, ψ ○ ad(g)) ∣ g ∈G, gLg−1, ψ ○ ad(g) both F -stable}.

In other words, we �nd the number of F -conjugacy classes in NG(L, ψ)/L or if (L, ψ)
corresponds to the cuspidal induction datum m ∈MG, the number of F -conjugacy classes
in Wm. By [AA10, Prop. 4.4], this number equals the number of F ∗-conjugacy classes
in NCG∗(t)(CL∗(t))/CL∗(t).
Thanks to Appendix B.1, we observe that unless G is of type E8 and ℓ ∈ {2,3}, all the
cuspidal induction data m such that Am ∈ L̂t satisfy χ̆Am ≠ 0 for any prime number ℓ.
Moreover, we observe that the proof of Proposition 5.1.14 does not depend on ℓ good or
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bad. In particular, the number of Brauer characters in B(G, t) is independent of ℓ in
this case. Therefore, thanks to Theorem 5.1.7, this number is equal to ∣E (G, t)∣ and we
can conclude.

For completeness, we give in Appendix B.2 the number of Brauer characters in each
union of isolated blocks of each simple exceptional group of adjoint type. When t = 1
the number of Brauer characters in the unipotent ℓ-blocks can be found in [GH97, 6.6].

5.1.3 A parameterisation of the modular representations

We have determined the number of Brauer characters in the union of blocks we are
considering. When ℓ is good, we even know a basic set; it is a Lusztig series. In particular,
thanks to Theorem 2.2.29 and the follow-up remark 2.2.30, we get a parameterisation
of the basic set, �rstly splitting it into families U and then labelling each character in
a family thanks to a certain group ĀU .
We would like to generalise this parameterisation to cover the case ℓ bad. To do so, we
follow Chaneb [Cha21]. This allows us to determine a conjectural basic set of Brauer
characters.

When ℓ is good

When ℓ is good, the unipotent characters form an ordinary basic set for the unipotent
block B(G,1). We rephrase the parameterisation of the unipotent characters from
Theorem 2.2.29 and in particular give a de�nition of the �nite groups appearing in the
theorem.
They are partitioned into families according to their unipotent support which is a special
unipotent class ofG (De�nition 4.1.4 and the discussion about special conjugacy classes).
Each family U ⊆ Uch(G) is in bijection withM(ĀU ⊆ ÃU ).

De�nition 5.1.16. Let C ∈ Ucl(G) be a unipotent class. For ψ ∈ irr(AG(uC)) such
that there exists θ ∈ irr(W ) with SprG(θ) = (C,ψ), we set aψ ∶= aθ. Here SprG is the
map de�ned by the Springer correspondence (Subsection 4.1.1). If no such θ exists, we
set aψ ∶= 0. We de�ne the ordinary canonical quotient ĀC as the quotient of AG(uC)
by the intersection of the kernels of the ψ ∈ irr(AG(uC)) with aψ maximal.

Notation 5.1.17. Let C ∈ Ucl(G) be a unipotent class. We might write Āu ∶= ĀC
for u ∈ C. Morever, we write AG

C when we want to emphasise the ambient group.

By [Lus14, Thm. 0.4], if U is a family of unipotent characters with unipotent sup-
port C, then

ĀU = ĀC .

For ÃU , we then take ÃC , the semi-direct product of ĀC with a cyclic group of order c,
where c is the order of the action of F on W and the cyclic group acts on ĀC by the
action given by F acting on AG(uC). Thus, if ℓ is good,

∣B(G,1)∣ = ∑
C

∣M(ĀC ⊆ ÃC)∣,
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where C runs over the F -stable special unipotent conjugacy classes of G.

Remark 5.1.18. Note that if ℓ is good, there are no isolated ℓ-elements ofG. In particular,
if s ∈G∗ is a semisimple ℓ-element, then Ws is a parabolic subgroup of W (seen as the
Weyl group of G∗), since Z(G) is connected. By the description of the unipotent
support and Proposition 2.2.21, the unipotent support of any character in E (G,s) is
special. Thus,

∣B(G,1)∣ = ∑
C

∣M(ĀC ⊆ ÃC)∣,

where C runs over the unipotent supports of characters in Eℓ(G,1).

For the other unions of blocks, the Jordan decomposition (Theorem 2.2.16) leads us
to a similar result.

When ℓ is bad

When ℓ is bad, the unipotent characters do not form a basic set anymore. For instance, as
explained in [GH91, �1.2], the unipotent characters of G2(q) are a generating set but not
a basic set when ℓ = 2. Observe as well that there are 10 unipotent characters but only
nine irreducible Brauer characters in the unipotent block (see Table B.6). We generalise
the notion of special unipotent classes and canonical quotient following [Cha19].

De�nition 5.1.19. An irreducible character ψ′ ∈ irr(W ) is ℓ-special if there is an isolated
semisimple ℓ-element s ∈G∗ and a special character ψ ∈ irr(Ws) such that jWWs

(ψ) = ψ′.

De�nition 5.1.20. A unipotent class C ∈ Ucl(G) is ℓ-special is there is an irreducible
ℓ-special character ψ ∈ irr(W ) such that SprG(ψ) = (C,1).

Lemma 5.1.21. An F -stable unipotent class C ∈ Ucl(G) is ℓ-special if and only if it is
the unipotent support of an irreducible character in E (G,s) where s ∈G∗ is an isolated
ℓ-element.

Proof. Assume that there is an isolated ℓ-element s ∈ G∗ such that C is the unipotent
support of a character χ ∈ E (G,s). By the description of the unipotent support, there
exists a special character ψ ∈ irr(Ws) such that ψ′ ∶= jWWs

(ψ) satis�es SprG(ψ
′) = (C,1).

Thus, the class C is ℓ-special.
For the other direction, ψ′ ∈ irr(W ) is ℓ-special and let C such that SprG(ψ

′) = (C,1).
By de�nition, there are s ∈G∗ an isolated ℓ-element and a special character ψ ∈ irr(Ws)
such that jWWs

(ψ) = ψ′. The character ψ belongs to a family F of irr(Ws). We then
consider any character in the family U ⊆ E (G,s) corresponding to F . By the description
of the unipotent support, these characters have unipotent support C.

Remark that any F -stable special class is ℓ-special. Moreover, when ℓ is bad, an F -
stable unipotent class is ℓ-special if and only if it is the support of a character in Eℓ(G,1).
The ℓ-special classes for the exceptional cases are listed in Appendix B.3. To compute
them, we use the Springer correspondence.

We now extend the de�nition of canonical quotient.
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De�nition 5.1.22. Let C be an ℓ-special class. Let P be a projective indecomposable
module of k[AG(uC)] and Ψ its character. We set

aΨ ∶=min{aθ ∣ θ ∈ irr(W ),SprG(θ) = (C,ψ), ⟨ψ,Ψ⟩ ≠ 0.}

We de�ne the ℓ-canonical quotient Āℓ,C as the quotient of AG(uC) by the intersection
of the kernels of the projective indecomposable modules P with aΨ maximal.

The above de�nition is indeed a generalisation of the canonical quotient thanks to
the following lemma.

Lemma 5.1.23 ([Cha19, Prop. 2.3.15]). If ℓ is good, then ĀC = Āℓ,C.

The proof consists in checking that ∣AG(uC)∣ is divisible only by bad primes for any
unipotent class C ∈ Ucl(G).

Finally, we count the number of Brauer characters. For any �nite group A, we
writeMℓ(A) for the set of A-conjugacy classes of pairs [a,ϕ] with a ∈ A and ϕ ∈ irrk(A).
We set

nℓ,C ∶= ∣M
ℓ(Āℓ,C)∣.

We de�ne Ãℓ,C , the semi-direct product of ĀC with a cyclic group of order c, where c is
the order of F on W and the cyclic group acts on ĀC by the action given by F acting

on AG(uC). Lastly, the set M
ℓ
(Āℓ,C ⊆ Ãℓ,C) consists of all Ãℓ,C-conjugacy classes of

pairs (a,ϕ) ∈ A′ × irrk(CĀℓ,C(a)), where A
′ ⊆ Ãℓ,C is a coset generator of Ãℓ,C/Āℓ,C

Proposition 5.1.24 ([Cha21, Thm. 3.16]). If G is simple of adjoint type not of type A,
then

∣B(G,1)∣ = ∑
C

∣M
ℓ
(Āℓ,C ⊆ Ãℓ,C)∣,

where C runs over the unipotent supports of characters in Eℓ(G,1).

For the groups of exceptional type, the proof consists in comparing the numbers
obtained through the sum with the numbers in the tables in Appendix B.2.

5.2 Candidates for the projectives: the Kawanaka mod-

ules

In this section, we focus on the third step, that is, �nding some candidates for the projec-
tive modules. A �rst class of candidates are the generalised Gelfand�Graev characters
(GGGCs). Thanks to their properties, we will see that the respective decomposition
matrix is block-triangular. However, there might not be enough GGGCs. The idea of
Brunat�Dudas�Taylor in [BDT20] is to decompose the GGGCs into Kawanaka charac-
ters. This will be the projectives we will choose in order to show the unitriangularity of
the ℓ-decomposition matrix of the unipotent blocks.
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5.2.1 Generalised Gelfand�Graev characters

We now recall the construction and the properties of the generalised Gelfand�Graev
characters following the notation in [BDT20, Section II.6]. These characters were �rst
de�ned in [Kaw86], and another construction was given in [Tay16].

De�nition of the generalised Gelfand�Graev characters

The idea behind GGGCs is in some ways opposite to the construction behind Deligne�
Lusztig characters. Instead of starting with a linear character on the maximal torus T0
corresponding to an F ∗-stable semisimple element inG∗, we start with a linear character
on some unipotent group U , corresponding to some rational unipotent element u ∈ G.
To make this more precise, we use the notions introduced in Subsection 1.3.2 for unipo-
tent conjugacy classes. The two methods to classify the unipotent conjugacy classes use
a bijection between Ucl(G) and the nilpotent G-orbits on g, via a Springer homeomor-
phism. We require additional properties for this map.

De�nition 5.2.1. Let K = (Ψspr, s, χp) with

� a Springer isomorphism Ψspr ∶ Guni
∼
→ gnil,

� a symmetric bilinear form s ∶ g × g → F̄p which is G-invariant with respect to the
adjoint action, and is de�ned over Fq,

� and a non-trivial character χp ∶ F+p → Q×ℓ .

We say K = (Ψspr, s, χp) is a Kawanaka datum for G if the following hold:

(K1) for any λ ∈ X̆,
Ψspr(Uλ(2)) = Lie(Uλ(2)),

(K2) for any λ ∈ X̆ and any i ∈ {1,2}, there exists a constant ci ∈ F̄p such that for any
u, v ∈Uλ(i),

� Ψspr(uv) −Ψspr(u) −Ψspr(v) ∈ Lie(Uλ(i + 1)),

� and Ψspr([u, v]) − ci[Ψspr(u),Ψspr(v)] ∈ Lie(Uλ(2i + 1)),

(K3) for any maximal torus S ≤G and root α ∈ Φ(S) we have

g⊥α ∶= {x ∈ g ∣ s(x, v) = 0 for all v ∈ gα} = Lie(S) ⊕ ⊕
β∈Φ(S)/{−α}

gβ.

Kawanaka data do not always exist in general. For instance, a Springer homeomor-
phism might not be an isomorphism of varieties. However, with certain conditions on G,
one can show their existence.
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Lemma 5.2.2 ([BDT20, Lem. 6.3]). If G is proximate (De�nition 1.3.15), then there
exists a Kawanaka datum K = (Ψspr, s, χp) for G. Moreover, we may choose it such
that for any λ ∈ X̆ and any integer i ≥ 2,

Ψspr(Uλ(i)) = Lie(Uλ(i)).

The second statement is a consequence of the proofs of [Tay16, Lem. 4.3 and Prop. 4.6].

From now on, we thus make the following hypothesis.

Hypothesis 3. For the rest of this thesis, we assume that G is proximate and we
�x a Kawanaka datum K = (Ψspr, s, χp) for G as in Lemma 5.2.2.

We now de�ne a linear character on a unipotent group corresponding to some unipo-
tent element u ∈ G. Recall from Proposition 1.3.22 that for u there is a corresponding
unique parabolic subgroup Pλ for some λ ∈ X̆ associated to u. The unipotent radical of
P−λ, that is Uλ(−1), is the unipotent group from which we induce a linear character.

We now de�ne a character on Uλ(−1). We construct from χp a character χq ∶ F+q → Q×ℓ
as the composition of χp with the �eld trace TrFq/Fp .

De�nition 5.2.3. Let u ∈ Guni be a rational unipotent element. We de�ne the following
map:

ηGu ∶ Guni → Qℓ

v ↦ χq(s(Ψspr(u),Ψspr(v))).

Remark 5.2.4. Observe that for any x ∈ G, we have

xηGu = η
G
xux−1 .

Indeed, for any v ∈ Guni, by the G-invariance of s and the de�nition of Ψspr

xηGu (v) = η
G
u (x

−1vx) = χq(s(Ψspr(u),Ψspr(x
−1vx)))

= χq(s(Ad(x)Ψspr(u),Ad(x)Ψspr(x
−1vx)))

= χq(s(Ψspr(xux
−1),Ψspr(v)))

= ηGxux−1(v).

Lemma 5.2.5. Let u ∈ Guni be a unipotent element. For any λ ∈ X̆G
D (u) an associated

F -stable cocharacter, the character ηGu restricts to a linear character Uλ(−2)F → Q×ℓ .

Proof. We need to check that ηGu ∶ Uλ(−2)F → Q×ℓ is a group homomorphism. Clearly
it preserves the neutral element. Now, let v, v′ ∈ Uλ(−2)F = U−λ(2). By (K2), we know
that Ψspr(vv′) = Ψspr(v)+Ψspr(v′)+x with x ∈ U−λ(3) = Uλ(−3). To conclude, we need to
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Chapter 5. Ordinary and projective representations in blocks of Brauer characters

show that Uλ(−3) ⊆ ker(ηGu ). By the de�nition of an associated co-character Φspr(u) ∈ g(λ,2).
Thus, the kernel of ηGu contains the F -stable elements in Ψ−1spr(g(λ,2)

⊥). By (K3) and
Lemma 5.2.2,

Ψ−1spr(g(λ,2)
⊥) = Uλ(1) ⊕Lλ ⊕Uλ(−3).

Thus, ηGu ∶Uλ(−2)F → Qℓ is a group homomorphism.

If Uλ(−2) =Uλ(−1), then we have constructed a linear character of Uλ(−1)F . Oth-
erwise, we need to induce the character ηGu .

De�nition 5.2.6. Let u ∈ Guni be a rational unipotent element and λ ∈ X̆G
D (u)

F . We
de�ne the following class function on Uλ(−1)F

ξGu,λ ∶= q
−dim(g(λ,−1))/2 Ind

Uλ(−1)
F

Uλ(−2)F
(ηGu ).

Note that if Uλ(−2) =Uλ(−1), then dim(g(λ,−1)) = 0.

This class function is in fact a character of Uλ(−1)F .

Lemma 5.2.7 (proof of [Tay16, Lem. 5.15]). Let u ∈ Guni be a rational unipotent element
and λ ∈ X̆G

D (u)
F , then the class function ξGu,λ is an irreducible character of Uλ(−1)F .

We associate to ξGu,λ a projective k[Uλ(−1)F ]-module as Uλ(−1)F is a p-group,
whence an ℓ′-group. Moreover, by Remark 5.2.4, for any x ∈ G, xηGu = η

G
xux−1

is a
linear character of U−xλ(2) and

xξGu,λ = ξ
G
xu,xλ.

De�nition 5.2.8 (Kawanaka). For u ∈ Guni a rational unipotent element and λ ∈ X̆G
D (u)

F

an F -stable co-character associated to u, we de�ne the corresponding generalised
Gelfand�Graev character (GGGC) of G as

γGu ∶= Ind
G
Uλ(−1)F

(ξGu,λ).

One can show that γGu does not depend on the choice of the co-character λ ∈ X̆G
D (u)

F

([BDT20, below Def. 6.6]). Moreover, by what we saw before, for any x ∈ G,

γGu = γ
G
xu.

In particular, for an F -stable unipotent conjugacy class C of G, one could obtain
at most as many di�erent generalised Gelfand�Graev characters of the form γGu for
some u ∈ CF as there are conjugacy classes of AG(uC).
Observe as well that since Uλ(−1)F is a p-group, whence an ℓ′-group and since induction
preserves projectivity, we may associate to each GGGC a projective k[G]-module. In
other words, there exists a projective k[G]-module ΓGu such that γGu is the character
associated to (ΓGu )O ⊗O K.
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Decomposition of GGGCs and wave front set

In the previous section, we have seen that a basic set for a union of blocks B(G, t)
(t ∈G∗ a semisimple ℓ′-element) is parameterised in terms of the unipotent supports of
the ordinary characters belonging to it. Using GGGCs, we de�ne a dual concept to the
unipotent support. It will allow us to show that the decomposition matrix corresponding
to the GGGCs is block-triangular.

De�nition 5.2.9. Let χ ∈ irr(G). A wave front set of χ is an F -stable unipotent
conjugacy class C of G such that:

1. there is v ∈ CF satisfying ⟨γGv , χ⟩ ≠ 0 and

2. for any unipotent conjugacy class C ′ of G such that ⟨γGv′ , χ⟩ ≠ 0 for some v′ ∈ C ′,
we have dim(C ′) ≤ dim(C).

Similarly to the unipotent support, the wave front set is in fact unique.

Theorem 5.2.10 ([Tay16, Thm. 14.10, Thm. 15.2]). Let χ ∈ irr(G). Then χ has
a unique wave front set, which we denote by C∗χ. Moreover, for any unipotent ele-
ment u ∈ G, if ⟨γGu , χ⟩ ≠ 0, then (u)G ⊆ C∗χ.

For an irreducible character χ ∈ irr(G), we write

χ∗ ∶= ±DG(χ),

where the sign is the unique choice making the Alvis�Curtis dual DG(χ) an irreducible
character of G, see De�nition 2.1.15. Recall that DG �xes rational series and sends
families to families (Remarks 2.2.15 and 2.2.25).
Unipotent supports and wave front sets are deeply linked:

Lemma 5.2.11 ([Tay16, Lem. 14.15]). Let χ ∈ irr(G). Then the unipotent support Cχ∗
of χ∗ is the wave front set C∗χ of χ.

Remark 5.2.12. Let us look at our plan we explained at the beginning of this chapter.
We choose a total ordering of the ℓ-special unipotent conjugacy classes such that Ci < Cj
if dimCi ≤ dimCj for all 1 ≤ i < j ≤ r.
For the ordinary irreducible modules, we choose some characters belonging to B(G, t)
with wave front set Ci for each 1 ≤ i ≤ r. Alternatively, we take the Alvis�Curtis dual of
some characters with unipotent support Ci.
For the projective modules, we choose the GGGCs of the form ΓGu for u ∈ Ci for
each 1 ≤ i ≤ r.
If there are enough GGGCs, i.e. ∑ri=1 ∣ irr(AG(uCi))∣ = ∑

r
i=1 nℓ,Ci , then we have al-

ready partially completed Step 4 and the corresponding decomposition matrix is block-
triangular by de�nition 5.2.9. In general, we have the number of conjugacy classes
in AG(uCi) is smaller than nℓ,Ci . We will decompose the GGGCs into Kawanaka char-
acters to overcome this issue.

137



Chapter 5. Ordinary and projective representations in blocks of Brauer characters

5.2.2 Kawanaka characters

As we have seen, the GGGCs form an appealing class of candidates for the projective
modules. Their main drawback is that in general there are more irreducible Brauer
characters in a union of blocks than GGGCs.
In the unipotent case, what we would like is to have at least one projective character
per element [a,Ψ] ∈ Mℓ(Āℓ,C) for each ℓ-special class C. An approach is to �nd for
each [a,ψ] ∈ Mℓ(Āℓ,C) a �nite group Aa ⊆ G surjecting onto the centraliser CĀℓ,C(a)

and a character ϕ ∈ irrk(Aa), and then instead of considering IndGUλ(−1)F
(ξGu,λ) to look

at �IndGUλ(−1)F×Aa
(ξGu,λ × ϕ)�. This does not work as such, but does with some technical

modi�cations.

De�nition and existence of an admissible covering

As a �rst step, we de�ne the groupsAa and require certain properties such thatUλ(−1)F×Aa,
or rather Uλ(−1)F ⋊Aa, is a subgroup of G. We follow [BDT20].

De�nition 5.2.13 ([BDT20, Def. 7.1]). Let u ∈ Guni be a rational unipotent element.
Let A ≤ CG(u) be a subgroup and λ ∈ X̆G

D (u)
F be an F -stable co-character. We say

that the pair (A,λ) is admissible for u if the following hold:

(A1) the group A is a subgroup of LFλ ,

(A2) the subgroup A contains only semisimple elements,

(A3) and for all a ∈ A, we have a ∈ C○
Lλ
(CA(a)).

If Ā is a quotient of AG(u) on which F acts, we say that the pair (A,λ) is an admissible
covering for Ā if:

(A4) the restriction of the map CG(u) → Ā to A→ Ā �ts into the following short exact
sequence

1Ð→ Z Ð→ AÐ→ ĀÐ→ 1

where Z ≤ Z(A) is a central subgroup with Z ∩ [A,A] = {1}.

Remark 5.2.14. Assume that (A,λ) is an admissible covering of Āℓ,C for C ∈ Ucl(G).
And let any a ∈ A. Then CA(a) is sent onto CĀℓ,C(ā) under the map A → Āℓ,C , a ↦ ā.
In fact, more generally, for Ā any quotient of AG(u) on which F acts and (A,λ) an
admissible covering of Ā, there is a short exact sequence

1Ð→ Z Ð→ CA(a) Ð→ CĀ(ā) Ð→ 1

for each a ∈ A with image ā ∈ Ā. The surjectivity follows from the fact that Z ∩ [A,A] = {1}.

In [BDT20], Brunat, Dudas and Taylor determine an admissible covering for each
ordinary canonical quotient of a unipotent special class.
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Proposition 5.2.15 ([BDT20, Sections 9 and 10]). Assume that G is simple and ad-
joint. Let C be an F -stable special unipotent conjugacy class of G. Then there always
exists an admissible pair (AC , λ) for uC which is an admissible covering of ĀC, and such
that AC is abelian or AC ≅ ĀC. Moreover ∣AC ∣ is divisible only by the bad primes for G.

We describe in more details the case of exceptional groups.

Proposition 5.2.16 ([BDT20, Section 10]). Assume that G is a simple exceptional
group of adjoint type. Let C be a special unipotent conjugacy class of G. We distinguish
between the following cases:

1. If ĀC is trivial, then we choose AC = {1} ⊆G for an admissible covering.

2. If G is of type E8 and C = E8(b6), then AG(uC) ≅ S3 and ĀC ≅ AC ≅ S2.

3. If G is of type E7 and C = A4 +A1 or G is of type E8 and C is one of E6(a1) +
A1,D7(a2),A4 +A1, then AG(uC) ≅ ĀC ≅ S2 and AC ≅ C4.

4. Else, ĀC is not trivial and AG(uC) ≅ ĀC ≅ AC.

De�nition of a Kawanaka character

Hypothesis 5.2.17. For the rest of this section, we �x an F -stable C ∈ Ucl(G),
a rational unipotent element u ∈ CF , and an admissible pair (A,λ) for u. We also
assume that p ≠ 2.

To de�ne the Kawanaka characters, we need to extend the characters ξGu′,λ to characters
of Uλ(−1)G ⋊CA(a) for u′ ∈ CF and a ∈ A.

As a �rst step, we need to �x representatives for the G-conjugacy classes in CF . Note
that they are in bijection with the F -conjugacy classes of AG(u) by Theorem 1.2.5. We
observe that A ⊆ G stabilises each G-conjugacy class in CF . Moreover, the group A acts
on the F -conjugacy classes of AG(u) via the quotient map A→ AG(u), a↦ a ∶= aC○G(u).
By (A1), CA(a) normalises Uλ(−1) for any a ∈ A. To extend a character ξGu′,λ for u

′ ∈ CF

to a character of Uλ(−1)F ⋊ CA(a), we would like to verify that ξGu′,λ is �xed by the
action of CA(a). In other words, for any b ∈ CA(a), we would like

ξGu′,λ =
b ξGu′,λ = ξ

G
bu′,bλ.

In particular, we want u′ ∈ CG(b)F and λ ∈ X̆CG(b).
The above discussion motivates the following de�nition.

De�nition 5.2.18. A set {ua ∣ a ∈ A} ⊆ CF is a set of admissible representatives if
it satis�es the following conditions for all a ∈ A:

1. For all g ∈G such that gu ∈ (ua)GF , there is x ∈ AG(u) such that a = x−1g−1F (g)F (x),
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2. for all b ∈ A, we have buab−1 = ubab−1 ,

3. and for all b ∈ CA(a), we have ua ∈ C○G(b)
F and λ ∈ X̆

C○G(b)

D (u).

Lemma 5.2.19 ([BDT20, Lem. 7.6]). Let u ∈ Guni be a rational unipotent element
and (A,λ) be an admissible pair for u. Then there always exists a set of admissible
representatives.

We are now ready to �x an extension ξ̃Gua,λ ∈ irr(CA(a)⋉Uλ(−1)F ) of ξGua,λ for a ∈ A.
We choose the one de�ned by Brunat�Dudas�Taylor in [BDT20, Def. 7.9]. The construc-
tion is very technical and we refer the reader to [BDT20, 7.3 and 7.4] for the details.
However, this extension is well-understood.

Lemma 5.2.20 ([BDT20, Lem. 7.11], [Gér77]). There exists a class function ϵ of A
such that for each a ∈ A and t ∈ CA(a) the following hold:

1. ϵ(t) ∈ {±1},

2. and ξ̃Gua,λ(t) = ϵ(t)q
dim(Lie(U

C○G(t)
λ

(−1)))/2.

We call the class function ϵ the Weil-sign. Finally, we de�ne Kawanaka modules as
a slight modi�cation from the one given by Brunat�Dudas�Taylor.

De�nition 5.2.21. Assume a ∈ A and let Ψ be the character of a projective indecom-
posable k[CA(a)]-module P (i.e. the character of the K[CA(a)]-module PO⊗OK). We
also write Xua for a module of K[CA(a) ⋉Uλ(−1)F ] a�ording the character ξ̃Gua,λ for
any a ∈ A. We de�ne the ℓ-Kawanaka module associated to the pair (a,Ψ) to be

KG
(a,Ψ) ∶= Ind

G
CA(a)⋉Uλ(−1)F

(((Xua)O ⊗O k) ⊗ Inf
CA(a)⋉Uλ(−1)

F

CA(a)
P).

Lemma 5.2.22. Let a ∈ A and Ψ be the character of a projective indecomposable k[CA(a)]-
module P . Then KG

(a,Ψ)
is a projective k[G]-module.

Proof. Since Uλ(−1) is a p-group, and p ≠ ℓ, the in�ation of the module P is a pro-
jective k[CA(a) ⋉Uλ(−1)F ]-module. Tensoring and inducing preserve projectivity, thus
the module KG

(a,Ψ)
is projective.

De�nition 5.2.23. Let a ∈ A and Ψ be the character of a projective indecompos-
able k[CA(a)]-module P . We denote by κG

(a,Ψ)
the character a�orded by the K[G]-

module (KG
(a,Ψ)
)O ⊗O K.

Observe that if CA(a) is an ℓ′-group, Ψ is an irreducible character of CA(a) and we
get back the initial de�nition of Kawanaka characters.

De�nition 5.2.24 ([BDT20, Def. 7.13]). Let a ∈ A and ϕ ∈ irr(CA(a)). We de�ne the
Kawanaka character associated to the pair (a,ϕ) to be

κG
(a,ϕ) ∶= Ind

G
CA(a)⋉Uλ(−1)F

(ξ̃Gua,λ ⊗ Inf
CA(a)⋉Uλ(−1)

F

CA(a)
ϕ).
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It is the character of the Kawanaka module of K[G],

KG
(a,ϕ) ∶= Ind

G
CA(a)⋉Uλ(−1)F

(Xua ⊗ Inf
CA(a)⋉Uλ(−1)

F

CA(a)
Vϕ),

where Vϕ is an irreducible K[CA(a)]-module a�ording the character ϕ.

Lemma 5.2.25. Fix a ∈ A and Ψ the character of a projective indecomposable k[CA(a)]-
module P . Then

κG
(a,Ψ) = ∑

ϕ∈irr(CA(a))

dϕ,Ψκ
G
(a,ϕ).

Proof. For any ϕ ∈ irr(CA(a)), we write Vϕ for an irreducibleK[CA(a)]-module a�ording
the character ϕ. We observe that κG

(a,Ψ)
is the character of

IndGCA(a)⋉Uλ(−1)F
(((Wua)O ⊗ k) ⊗ Inf

CA(a)⋉Uλ(−1)
F

CA(a)
P)

O

⊗O K

= IndGCA(a)⋉Uλ(−1)F
(((Wua)O ⊗ k⊗ Inf

CA(a)⋉Uλ(−1)
F

CA(a)
P)

O

⊗O K)

= IndGCA(a)⋉Uλ(−1)F
(Wua ⊗ (Inf

CA(a)⋉Uλ(−1)
F

CA(a)
P)

O

⊗O K)

= IndGCA(a)⋉Uλ(−1)F
(Wua ⊗ Inf

CA(a)⋉Uλ(−1)
F

CA(a)
PO ⊗O K),

= IndGCA(a)⋉Uλ(−1)F
⎛

⎝
Wua ⊗ Inf

CA(a)⋉Uλ(−1)
F

CA(a)
∑

ϕ∈irr(CA(a))

dϕ,ΨVϕ
⎞

⎠

= ∑
ϕ∈irr(CA(a))

dϕ,Ψ IndGCA(a)⋉Uλ(−1)F
(Wua ⊗ Inf

CA(a)⋉Uλ(−1)
F

CA(a)
Vϕ).

Thus, κG
(a,Ψ)

= ∑ϕ∈irr(CA(a)) dϕ,Ψκ
G
(a,ϕ)

.

We collect a few properties of the Kawanaka characters κG
(a,ϕ)

for a ∈ A and ϕ ∈ irr(CA(a))

as stated in [BDT20, 7.4].

Lemma 5.2.26. Let a ∈ A. Then,

γGua = ∑
ϕ∈irr(CA(a))

ϕ(1)κG
(a,ϕ).

Proof. We write ρ for the character of the regular representation of CA(a) over K. Then

∑
ϕ∈irr(CA(a))

ϕ(1)κG
(a,ϕ) = Ind

G
CA(a)⋉Uλ(−1)F

(ξ̃Gua,λ ⊗ Inf
CA(a)⋉Uλ(−1)

F

CA(a)
ρ).

Now we notice ξ̃Gua,λ ⊗ Inf
CA(a)⋉Uλ(−1)

F

CA(a)
ρ = Ind

CA(a)⋉Uλ(−1)
F

CA(a)
ξGua,λ and we conclude by the

de�nition of GGGC.

Lemma 5.2.27 ([BDT20, Rmk. 7.14]). The Kawanaka character does not depend on
the A-conjugacy class of the pairs (a,ϕ) ∈ A × irr(CA(a)). Namely, for any a, b ∈ A and
character ϕ ∈ irr(CA(a)), we have bξ̃Gua,λ = ξ̃

G
ubab−1 ,λ

and κG
(ba,bϕ)

= κG
(a,ϕ)

.
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We thus denote by κG
[a,ϕ]

the Kawanaka character κG
(a,ϕ)

for each element [a,ϕ]
inM(A) and κG

[a,Ψ]
for each element [a,Ψ] inMℓ(A).

Lastly, we compute the values of the Kawanaka characters on mixed conjugacy
classes.

Proposition 5.2.28 ([BDT20, Prop. 7.16]). Let [a,ϕ] ∈ M(A). Let sv ∈ G such that s is
semisimple and v ∈ CG(s) is unipotent. If s is not G-conjugate to an element in CA(a),
then κG

[a,ϕ]
(g) = 0.

Furthermore, for s ∈ CA(a) and for each t ∈ CA(a)∩(s)G, we �x xt ∈ G such that xtsx−1t = t.
Then

κG
[a,ϕ](g) =

1

∣CA(a)∣
∑
t

ϕ(t)ϵ(t)γ
CG(t)
ua (xtvx

−1
t ),

where t runs over all the G-conjugates of s in CA(a) and γ
CG(t)
ua ∶= Ind

CG(t)
F

C○G(t)
F (γ

C○G(t)
F

ua ).

The ℓ-Kawanaka modules are our candidates for the projective modules. In the next
chapter, we will partially describe their decomposition in terms of irreducible ordinary
modules.

142



Chapter 6

Unitriangularity of the decomposition

matrix

This �nal chapter concludes our discussion about the unitriangularity of the decompo-
sition matrix. Let us look at our plan we explained at the beginning of Chapter 5.
Step 1 consists in computing the size of B(G, t) for t ∈ (G∗)F ∗ an isolated ℓ′-element.
This is the content of Theorem 5.1.7 for ℓ good and Theorem 5.1.8 combined with Propo-
sition 5.1.14 for ℓ bad.
Steps 2 and 3 concentrate on choosing candidates V1, . . . , Vn ∈ Eℓ(G, t) and projec-
tive k[G]-modules P1, . . . Pn. We let C1, . . . ,Cr be the unipotent supports of the charac-
ters in Eℓ(G, t). We �x a total ordering C1 < ⋅ ⋅ ⋅ < Cr, such that Ci < Cj if dimCi ≤ dimCj
for all 1 ≤ i < j ≤ r.
Then, for each 1 ≤ i ≤ r, we choose

� ni irreducible modules V i
1 , . . . , V

i
ni
∈ Eℓ(G, t) with wave front set Ci,

� and ni projective-modules P i
1, . . . , P

i
ni
, either ℓ-Kawanaka modules of the form

KG
[a,Φ]

for [a,Φ] ∈ Mℓ(ACi), where ACi is an admissible covering of ĀCi assuming
such an admissible covering exists, or GGGCs ΓG

u for u ∈ CF
i .

We require ∑1≤i≤r ni = n. The numbers ni are determined according to our need. For
instance, for the unipotent ℓ-blocks, we �x ni = ∣Mℓ(Āℓ,C)∣ = nℓ,C .
To conclude and show Step 4, we need to prove that for each 1 ≤ i ≤ r,

(A) (⟨V i
l , (P

i
j )

O ⊗O K⟩)1≤l,j≤ni is lower unitriangular;

(B) and for all 1 ≤m ≤ r, if m < i, ⟨V m
l , (P

i
j )

O⊗OK⟩ = 0 for all 1 ≤ l ≤ nm and 1 ≤ j ≤ ni.

Condition (B) is automatically satis�ed by the de�nition of the wave front set (De�ni-
tion 5.2.9). In this chapter, we focus on checking the condition A. In the �rst section, we
will state some general results about the decomposition of Kawanaka modules. The idea
is to use characteristic functions of character sheaves instead of irreducible characters.
The second section will focus on the unipotent blocks for simple exceptional groups of
adjoint type. In the last section, we will explain how to treat some isolated blocks by
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considering the particular cases of G of type G2 and F4.

We recall the assumptions we made so far in Hypotheses 1, 2 and 3: the group G is
a connected reductive proximate group de�ned over k with Frobenius map F ∶ G → G
and Weyl group W with respecto to the maximally split torus T0 in the Borel B0. The
�eld k is algebraically closed of characteristic p ≠ ℓ. We also suppose the following.

Hypothesis 4. For the rest of this thesis, we assume that p is good for G.

6.1 Decomposition of the Kawanaka modules

Let C be a unipotent F -stable conjugacy class of G and K an ℓ-Kawanaka module
constructed from C, assuming an admissible covering of C exists (see De�nition 5.2.21).
In this section, we focus on describing the restriction of the decomposition of KO ⊗O K
in terms of ordinary irreducible representations with wave front set C.

Hypothesis 6.1.1. For this section, we �x an F -stable C ∈ Ucl(G), a rational
unipotent element u ∈ CF and an admissible pair (A,λ) for u (assuming it exists).

Notation 6.1.2. For θ a class function of G and g ∈G∗ an F -stable special element, we
denote by prg(θ) the projection of θ on the space spanned by the Alvis�Curtis duals of
irreducible characters in irr(G)g. We write pru(θ) for the projection of θ on the space
spanned by the Alvis�Curtis duals of irreducible unipotent characters with unipotent
support C. The above space is equal to the sapce spanned by Alvis�Curtis duals of the
almost characters of the Rx with x ∈ M(Ā

CG∗(gs)
gu ⊆ Ã

CG∗(gs)
gu ) (see Remark 2.2.30). It is

also equal to the space spanned by the Alvis�Curtis duals of the characteristic functions
of the F -stable character sheaves in Ĝg by Theorem 3.3.6. Therefore, if κ is a Kawanaka
character, to compute prg(κ) we consider the restriction of a Fourier transform of κ to
the Alvis�Curtis duals of the characteristic functions of the F -stable character sheaves
in Ĝg.

6.1.1 Fourier transform of the Kawanaka characters

De�nition 6.1.3. The Fourier transform of Kawanaka characters is given as follows.
For [a,ϕ] ∈ M(A), we set

fG
[a,ϕ] ∶= ∑

[b,ψ]∈M(A)

{[a,ϕ], [b,ψ]}κG
[b,ψ].

Here {−,−} is the pairing forM(A) as de�ned in De�nition 2.2.27

If A is an F -stable character sheaf in Ĝg with unipotent support C, then to compute
the scalar product ⟨ϕ[a,ϕ], χA⟩ we need the values of ϕ[a,ϕ] on mixed conjugacy classes.
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6.1. Decomposition of the Kawanaka modules

Proposition 6.1.4 ([BDT20, Prop. 8.1]). Let [a,ϕ] ∈ M(A). Let sv ∈ G such that s
is semisimple and v ∈ CG(s) is unipotent. If s is not G-conjugate to an element in a,
then f[a,ϕ](sv) = 0.
Furthermore, if s = a, then

f[a,ϕ](av) =
ϵ(a)

∣CA(a)∣
∑

b∈CA(a)

ϕ(b)γ
CG(a)

F

ub (v).

The proof of this result relies on the similar result for Kawanaka characters, see
Proposition 5.2.28.
As a corollary, we can in fact describe the Fourier transform of Kawanaka characters in
terms of GGGCs of smaller group. For any h ∈ G, we write C○G(h) ∶= C

○
G(h)

F . We set
for each [a,ϕ] ∈ M(A),

γ(a,ϕ) ∶=
1

∣CA(a)∣
∑

b∈CA(a)

ϕ(b)γ
C○G(a)
ub .

Corollary 6.1.5 ([BDT20, Cor. 8.4]). Under the same assumptions as in Proposi-
tion 6.1.4,

f[a,ϕ] = ϵ(a) Ind
G
C○G(a)

(a−1 ⋅ γ(a,ϕ)).

Here, a−1 denotes the translation of γ(a,ϕ) by a−1, i.e. a−1 ⋅ γ(a,ϕ)(h) = γ(a,ϕ)(a−1h)
for h ∈ C○G(a).

Lemma 6.1.6. Assume that Z(G) is connected and p is good for G. Let A ∈ ĜF
g for a

special element g = sv = vs ∈ G∗ where s ∈ (G∗)F ∗ semisimple and v ∈ G∗ is unipotent
such that Cg = C. Then for each [a,ϕ] ∈ M(A),

⟨f[a,ϕ],DG(χA)⟩ = ±
ϵ(a)

∣C○G(a)∣
∑
u′
DC○G(a)

(γ(a,ϕ))(u
′)χA(au′),

where u′ runs over the unipotent elements of C○G(a) which are C○G(a)-conjugate to u.

Proof. This statement can be found in the proof of [BDT20, Prop. 8.8].

We now consider the speci�c case of unipotent character sheaves.

Lemma 6.1.7. Assume that G is simple exceptional of adjoint type and that C is
special, di�erent from A4 +A1 if G is of type E7 and di�erent from A4 +A1, E6(a1)+A1

and D7(a2) if G is of type E8. Assume furthermore that p is good for G. There exists
an F -stable unipotent character sheaf A of G with unipotent support C such that for
all [b, ϕ] ∈ M(A),

⟨fG
[b,ϕ],DG(χA)⟩ ≠ 0 ⇐⇒ the image of b in Āu is trivial and ϕ is trivial.

Moreover, in this case ∣⟨fG
[b,ϕ]

,DG(χA)⟩∣ = 1.
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Chapter 6. Unitriangularity of the decomposition matrix

Proof. Let G be a family of F -stable unipotent character sheaves of G with unipotent
support C and F be the corresponding family of characters in W as in Theorem 3.1.12.
Consider ψ ∈F the unique special character of F and Aψ the principal series character
sheaf associated to it. Using CHEVIE [Mic15], we show the following claim.

Claim: For each semisimple s ∈ CG(u), the restriction (s∗Aψ)(u)C○
G
(s) is the trivial

local system Qℓ[−dim(C)−dim(T0)] if the image of s in Āu is trivial and zero otherwise.

To compute the restriction (s∗Aψ)(su)C○
G
(s) , we apply Corollary 4.3.20. In particular,

this formula does not depend on s but only on C○G(s), and there are �nitely many pos-
sibilities for C○G(s) up to G-conjugation.
The image of s in AG(u) comes from Theorem 1.3.17: the G-conjugacy orbits of the
pairs (u, tC○G(u)) with u ∈Guni and t ∈ CG(u) a semisimple element are in bijection with
theG-conjugacy orbits of triples (C○G(t

′), tZ○(C○G(t
′)), u) where t′ ∈G is semisimple, the

unipotent element u ∈ C○G(t
′)uni is distinguished in C○G(t

′) and C○G(tZ
○(C○G(t

′))) = C○G(t
′).

Let S be a maximal torus of C○G(u, s) and M be the pseudo-Levi subgroup CG(s,S).
Then the G-conjugacy orbit of (u, sC○G(u)) corresponds to the G-conjugacy orbit of the
induction datum (M, sZ○(M), u). Observe that M is contained in CG(s).
IfM is a Levi subgroup ofG, then sinceG is adjoint, Z(M) is connected and s ∈ C○G(u).
On the other hand, if M is not a Levi subgroup, then the image of s is AG(u) is not
trivial. In other words, the image of s is trivial in AG(u) if and only if there is a Levi
subgroup L contained in C○G(s) such that u belongs to L and is distinguished in L.
To compute the image of s in Āu, we observe that either the group AG(u) is equal to Āu,
or Āu is trivial, or lastly G is of type E8 and C is the unipotent class E8(b6). In this last
case, we use the fact that there is a group homomorphism from AC○G(s)(u) to AG(u) and
therefore from AC○G(s)(u) to Āu to deduce if s is trivial in Āu. The code can be found in
Appendix C.3.

Since C is a special conjugacy class, that is the unipotent support of ordinary char-
acters, the family F is F -stable. Hence ψ is �xed by F and the character sheaf Aψ
is F -stable.
We now compute the characteristic function of Aψ at sv where s ∈ CG(u) and v is C○G(s)-
conjugate to u. To simplify notation, we set A ∶= Aψ. First, by the claim, χA,φ(sv) = 0
unless s is trivial in Āu, no matter which isomorphism φ ∶ F ∗A

∼
→ A we �x to de�ne

the characteristic function. Now, by the discussion in Subsection 3.3.2, we choose an
isomorphism φA ∶ F ∗A → A satisfying the condition � (Notation 3.3.3). Thanks to Equa-
tion 3.2 and since A(su)C○

G
(s) is the constant local system up to a shift, for any s ∈ G with

trivial image in Āu and x ∈ C○G(s) such that xsux−1 ∈ G we have

χA,φA(xsux
−1) = qdAζA,s,

where ζA,s is a root of unity and

dA =
1

2
(dim(G) − dim(su)G − dimT0) =

1

2
(dim(CG(su)) − dimT0).
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6.1. Decomposition of the Kawanaka modules

Finally, we compute ⟨fG
[b,ϕ]

,DG(χA)⟩ for any [b, ϕ] ∈ M(A). The proof follows word-
for-word the proof of [BDT20, Thm. 8.8]. We reproduce it here for completeness. We
set χA ∶= χA,φA .
From Lemma 6.1.6, for any [b, ϕ] ∈ M(A),

⟨f[b,ϕ],DG(χA)⟩ = ±
ϵ(b)

∣C○G(b)∣
∑
v

DC○G(b)
(γ(b,ϕ))(v)χA(bv),

where v runs over the unipotent elements in C○G(b) which are C○G(b)-conjugate to u.
From the previous discussion, we observe that this sum is zero unless the image of b
in Āu is trivial.
We now assume that the image of b in Āu is trivial. Then

⟨f[b,ϕ],DG(χA)⟩ = ±
ϵ(b)

∣CA(b)∣∣C○G(b)∣
qdAζA,b ∑

a∈CA(b)

ϕ(a) ∑
v∈(u)F

C○
G
(b)

DC○G(b)
(γ

C○G(b)
ua )(v).

Let θ be the class function on C○G(b) de�ned by θ(g) = 1 if g ∈ (u)F
C○G(b)

and θ(g) = 0

otherwise. The class function θ is in fact the function Y((u)C○
G
(b),1) of [Gec99, (2.2)a]

where 1 is the trivial character of AC○G(b)(u). The scalar product becomes

⟨f[b,ϕ],DG(χA)⟩ = ±
ϵ(b)

∣CA(b)∣
qdAζA,b ∑

a∈CA(b)

ϕ(a)⟨γ
C○G(b)
ua , θ⟩C○G(b).

From (2.4)b and c and (2.3)c of [Gec99], we deduce that

⟨γ
C○G(b)
ua , θ⟩C○G(b) = q

−d,

where d = 1
2
(dim(C○G(b)) − dim(u)C○G(b) − dimT0). Since d = dA, we conclude that

⟨f[b,ϕ],DG(χA)⟩ = ±
ϵ(b)

∣CA(b)∣
qdAζA,b ∑

a∈CA(b)

ϕ(a)q−d

= ±ϵ(b)ζA,b⟨ϕ,1CA(b)⟩,

where 1CA(b) denotes the trivial character. The Weil-sign ϵ(b) ∈ {−1,1} allows us to
conclude.

Remark 6.1.8. In [Lus15, Thm. 2.4], Lusztig stated a much more general result than
our claim about the restriction of character sheaves to mixed conjugacy classes. It can
be summarised as follows. Let A be a unipotent character sheaf in a family G of Ĝ
with unipotent support C. If the character sheaf A is labelled by [b,ψ] ∈ M(Āu),
then (s∗A)(u)C○

G
(s) is zero unless the image s in Āu is conjugate to b. Moreover, if s

has image b, then (s∗A)(u)C○
G
(s) is the shift of a local system E on (u)C○G(s). This local

system E comes from the in�ation of ψ under the map AG(bu) → CĀu(b).
We observe that [Lus15, Thm. 2.4] does not hold in full generality. For instance, if we
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Chapter 6. Unitriangularity of the decomposition matrix

consider G to be simple E7 of adjoint type, there are two cuspidal unipotent charac-
ter sheaves ([LuCS4, Prop. 20.3 c]). Their support is the closure of the G-conjugacy
class (su)G where s ∈G is semisimple with connected centraliser of type SL4 ×SL4 ×SL2

and the unipotent element u ∈ C○G(s) is such that (u)C○G(s) is the regular class. Their
associated local systems correspond to the two non-real characters of AG(su) ≅ C4. Both
belong to the same family of exceptional character sheaves with unipotent support (u)G
denoted by A4 +A1 in CHEVIE notation. But, Theorem 2.4 in [Lus15] claims that the
restriction of those character sheaves to their support is a local system corresponding to
the lift of a character of AG(u) ≅ S2, which is necessarily real.
Similar situations occur for G of type E8, when considering cuspidal characters in an
exceptional family. By explicit computations in CHEVIE [Mic15] similar to the ones
we did for the claim in the proof of Lemma 6.1.7, one can check when Theorem 2.4 of
[Lus15] holds true in exceptional type groups.
This amounts to a huge number of case-by-case analysis, that I do not wish to reproduce
in this thesis. I could not yet �nd a general argument for this result, but I would like to
pursue such matter in future work.

Lemma 6.1.9. Assume that G is simple exceptional of adjoint type E7 or E8 and that C
is the class A4+A1 if G is of type E7 or one of the classes A4+A1, E6(a1)+A1 or D7(a2)
if G is of type E8. Assume furthermore that p is good for G and let A be the admissible
covering for ĀC as in Proposition 5.2.16. There exists an F -stable unipotent character
sheaf A with unipotent support C such that for all [b, ϕ] ∈ M(A),

⟨fG
[b,ϕ],DG(χA)⟩ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ϵ(1) if [b, ϕ] = [1,1],

ϵ(b)ζA,b if b2 = 1, b ≠ 1 and ϕ is the sign character,

0 otherwise.

where ζA,b is a root of unity depending only on b and A.

Proof. Note that in all those cases A ≅ C4. Let G be a family of unipotent character
sheaves with unipotent support C and F be the corresponding family of characters inW
as in Theorem 3.1.12. Consider ψ ∈ F the unique special character of F and Aψ the
principal series character sheaf associated to it. Let b0 ∈ A be the non-trivial element of
order 2. Using CHEVIE [Mic15] and the precise description of A from [BDT20, � 10.3],
we verify that

(Aψ)(u)G = Qℓ[−dim(C) − dim(T0)], (b
∗
0Aψ)(u)C○

G
(b0)
= Lsgn[−dim(C) − dim(T0)],

and
(b∗Aψ)(u)C○

G
(b) = (b

′∗Aψ)(u)C○
G
(b′) = 0

where b, b′ ∈ A are the two elements of order 4 and Lsgn is the local system on (u)C○G(b0)
corresponding to the sign character of AC○G(b0)(u).
The rest of the proof is very similar to the one of Lemma 6.1.7. We may choose the
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6.1. Decomposition of the Kawanaka modules

isomorphism φ ∶ F ∗Aψ
∼
→ Aψ satisfying the condition � (Notation 3.3.3) and such that

the characteristic function of Aψ satis�es

χAψ(v) = q
dAψ for all v ∈ CF ,

and for any x ∈ C○G(b0) such that xb0ux−1 ∈ G

χAψ(xb0ux
−1) = qdAψ sgn(x−1F (x))ζA,b0 ,

where ζA,s is a root of unity and dAψ =
1
2(dim(G) − dim(b0u)G − dimT0).

The main di�erence with the proof of Lemma 6.1.7 occurs when computing

⟨f[b0,ϕ],DG(χAψ)⟩,

for any ϕ ∈ irr(CA(b0)). Let θ be the class function on C○G(b0) such that for g ∈ C○G(b0),

θ(g) =

⎧⎪⎪
⎨
⎪⎪⎩

q−dAψ ζ−1
A,b0

χAϕ(b0g) if g ∈ (u)C○G(b0)
0 otherwise.

The class function θ is in fact the function Y((u)C○
G
(b),sgn) of [Gec99, (2.2)a] where sgn is

the sign character of AC○G(b)(u). The scalar product becomes

⟨f[b,ϕ],DG(χAψ)⟩ = ±
ϵ(b)

∣CA(b)∣
qdAζA,b0 ∑

a∈CA(b)

ϕ(a)⟨γ
C○G(b)
ua , θ⟩C○G(b).

From (2.4)b and c and (2.3)c of [Gec99], we deduce that

⟨γ
C○G(b)
ua , θ⟩C○G(b) = q

−dsgn(a),

with d = 1
2(dim(G) − dim(b0u)G − dimT0) = dAψ . Therefore,

⟨f[b0,ϕ],DG(χAψ)⟩ = ±ϵ(b0)ζA,b0⟨ϕ, sgn⟩,

and we conclude the proof of the lemma.

6.1.2 Decomposition of the Kawanaka characters

Using the decomposition of the Fourier transforms of Kawanaka characters into charac-
teristic functions of character sheaves, we deduce results about the Kawanaka characters
themselves.

Proposition 6.1.10. Assume that G is a simple exceptional group of adjoint type.
Let g = sv ∈ G∗ be a special element where s ∈ (G∗)F ∗ is semisimple and v ∈ C∗G(s) is
unipotent such that Cg = C (that is any character sheaf in Ĝg has unipotent support C).
Assume the following:
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Chapter 6. Unitriangularity of the decomposition matrix

(KD1) (A,λ) is an admissible covering of ĀC,

(KD2) A ≅ AG(u) ≅ Ā
CG∗(s)
v ≅ ĀG

C ,

(KD3) there exists an F -stable character sheaf A ∈ ĜF
g such that for all [b, ϕ] ∈ M(A)

⟨fG
[b,ϕ],DG(χA)⟩ ≠ 0 ⇐⇒ [b, ϕ] = [1,1].

Then the set {prg(κ
G
[a,ϕ]
) ∣ [a,ϕ] ∈ M(A)} is an orthonormal set. Thus, the decom-

position of the character κG
[a,ϕ]

into irreducible characters of G contains exactly one
Alvis�Curtis dual of an irreducible character in irr(G)g with unipotent support C and it
occurs with multiplicity one.
Furthermore, every Alvis�Curtis dual of an irreducible character in irr(G)g occurs in
exactly one κG

[a,ϕ]
for some [a,ϕ] ∈ M(A).

Proof. We �x [a,ϕ] ∈ M(A). We compute

κG
[a,ϕ] = ∑

[b,ψ]∈M(A)

{[a,ϕ], [b,ψ]}fG
[b,ψ]

= {[a,ϕ], [1,1]}fG
[1,1] + ∑

[b,ψ]∈M(A)/[1,1]

{[a,ϕ], [b,ψ]}fG
[b,ψ]

=
ϕ(1)

∣CA(a)∣
fG
[1,1] + ∑

[b,ψ]∈M(A)/{[1,1]}

{[a,ϕ], [b,ψ]}fG
[b,ψ].

The last lign follows from the de�nition of the pairing {−,−} inM(A) (De�nition 2.2.27).
We write Ĝg for the set of F -stable character sheaves in Ĝg. By the assumption (KD3),
we obtain

prg(κ
G
[a,ϕ]) =

xA
∣CA(a)∣

DG(χA) + ∑
A′∈Ĝg/{A}

xA′([a,ϕ])DG(χA′),

with xA ∈ C× and xA′([a,ϕ]) ∈ C for all A′ ∈ Ĝg/{A}.
The Alvis�Curtis duals of the characteristic functions of character sheaves in Ĝg form
an orthonormal family by Theorem 3.3.5. Therefore, we get

⟨prg(κ
G
[a,ϕ]),prg(κ

G
[a,ϕ])⟩ =

∣xA∣2

∣CA(a)∣2
+ ∑
A′∈Ĝg/{A}

xA′([a,ϕ])xA′([a,ϕ]) > 0.

Now by construction, prg(κ
G
[a,ϕ]
) is a character of G, non-zero since xA ≠ 0. Thus for

all [a,ϕ], [b,ψ] ∈ M(A), we note that

⟨prg(κ
G
[a,ϕ]),prg(κ

G
[a,ϕ])⟩ ≥ 1,

and
⟨prg(κ

G
[a,ϕ]),prg(κ

G
[b,ψ])⟩ ≥ 0.
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By the decomposition of a GGGC into Kawanaka characters (Lemma 5.2.26), we get for
all a, b ∈ A,

⟨prg(γua),prg(γua)⟩ = ∑
ϕ∈CA(a)

∑
ψ∈CA(b)

ϕ(1)ψ(1)⟨prg(κ
G
[a,ϕ]),prg(κ

G
[b,ψ])⟩.

Hence,

⟨prg(γua),prg(γua)⟩ ≥ ∑
ϕ∈irr(CA(a))

ϕ(1)2⟨prg(κ
G
[a,ϕ]),prg(κ

G
[a,ϕ])⟩ ≥ ∑

ϕ∈irr(CA(a))

ϕ(1)2.

On the other hand, since AG(u) ≅ Ā
CG∗(s)
v , we may apply [GH08, Rmk 4.4],

⟨prg(γua),prg(γua)⟩ = ∑
ϕ∈irr(CAG(u)(ā))

ϕ(1)2.

Moreover, if ua is not G-conjugate to ub for a, b ∈ A, then

⟨prg(γua),prg(γub)⟩ = 0.

Consequently, for all [a,ϕ] ≠ [b,ψ] ∈ M(A) =M(ĀC) =M(AG(u)),

⟨prg(κ
G
[a,ϕ]),prg(κ

G
[a,ϕ])⟩ = 1,

and
⟨prg(κ

G
[a,ϕ]),prg(κ

G
[b,ψ])⟩ = 0.

Thus, the set {prg(κ
G
[a,ϕ]
) ∣ [a,ϕ] ∈ M(A)} is orthonormal for the scalar product of

characters. Since by assumption, the Frobenius map F acts trivially on ĀC , there
are exactly ∣M(ĀC)∣ = ∣M(A)∣ irreducible characters in irr(G)g with wave front set C.
Therefore, every Alvis�Curtis dual of an irreducible character in irr(G)g occurs in exactly
one of κG

[a,ϕ]
for [a,ϕ] ∈ M(A).

Proposition 6.1.11. Assume that G is a simple exceptional group of adjoint type and
that C is special. We choose (A,λ) as in Proposition 5.2.16. In particular, it is an
admissible covering of Āu.
Then, given [a,ϕ] ∈ M(AC), the character κG

[a,ϕ]
has at most one unipotent constituent

with wave front set C and it occurs with multiplicity one. Furthermore, every unipotent
character with wave front set C occurs in some κG

[a,ϕ]
for [a,ϕ] ∈ M(A). In particular,

when Āu ≅ A, κG[a,ϕ] = κ
G
[b,ψ]

if and only if [a,ϕ] = [b,ψ], for [a,ϕ], [b,ψ] ∈ M(A).

Proof. We follow the case distinctions of Proposition 5.2.16. Assume �rst that Āu is
trivial. By de�nition,M(A) = 1 and f[1,1] = κ

G
[1,1]

. The result is then the consequence of
Lemma 6.1.7.
Assume now that A ≅ AG(u) ≅ Āu. The statement follows from Proposition 6.1.10 where
the last condition is satis�ed by Lemma 6.1.7.
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Chapter 6. Unitriangularity of the decomposition matrix

We now focus on the unipotent classes such that AG(u) ≅ Āu ≅ S2 and A ≅ C4. In
that case, we reason similarly as in the proof of Proposition 6.1.10. Let A be as in
Lemma 6.1.9. The image of b ∈ A is trivial in Āu if and only if b has order 2. Let b0 ∈ A
be the non-trivial element of order 2. Since A is commutative, for any [a,ϕ] ∈ M(A),

prg(κ
G
[a,ϕ]) =

1

∣A∣
(ϵ(1) + ϕ(b0)sgn(a)ζA,b0ϵ(b0))DG(χA) + ∑

A′∈Ĝg/{A}

xA′([a,ϕ])DG(χA′),

with xA′([a,ϕ]) ∈ C for all A′ ∈ Ĝg/{A}. Here Ĝg is the set of F -stable character sheaves
in Ĝg. For each a ∈ A, there are at least two ϕ ∈ irr(A) such that

⟨prg(κ
G
[a,ϕ]),DG(χA)⟩ ≠ 0.

Hence, there are at least two ϕ ∈ irr(A) such that prg(κ
G
[a,ϕ]
) ≠ 0. Now, since AG(u) = Āu,

2 = ⟨prg(γua),prg(γua)⟩ = ∑
ϕ∈CA(a)

∑
ψ∈CA(a)

ϕ(1)ψ(1)⟨prg(κ
G
[a,ϕ]),prg(κ

G
[a,ψ])⟩

≥ ∑
ϕ∈irr(CA(a))

⟨prg(κ
G
[a,ϕ]),prg(κ

G
[a,ϕ])⟩ ≥ 2.

Therefore, there are ϕ1, ϕ2 ∈ irr(A) such that for each a ∈ A, the projections prg(κ
G
[a,ϕ1]
)

and prg(κ
G
[a,ϕ2]
) are two distinct irreducible characters. Furthermore, for any other

character ϕ ∈ irr(A)/{ϕ1, ϕ2}, prg(κ
G
[a,ϕ]
) = 0. By [Tay16, Prop. 15.4], every unipotent

character with wave front set C occurs in some γGua for some a ∈ A. This allows us to
conclude the proof of the proposition in this case.

By the case distinctions of Proposition 5.2.16, we are left with the case where G is
of type E8 and C is the class labelled E8(b6).
Thanks to CHEVIE [Mic15], we make the following observations.

� There are four unipotent character sheaves with unipotent support C.

� One of them, that we denote by A4, does not belong to the principal series and is
not unipotently supported, thus (A4)C = 0.

� The other three belong to the principal series and are labelled under the isomor-
phism of Proposition 3.2.17 by the characters ϕ1 = ϕ[2240,10], ϕ2 = ϕ[1400,1], ϕ3 =
ϕ[840,13] ∈ irr(W ).

� Using the Springer correspondence (c.f. Section 4.1), we observe that ϕ[1400,1]
corresponds to the class A7. Therefore, the restriction (Aϕ2)C = 0.

� Moreover, (Aϕ3)C = E[dimC+dimT0] where E is the irreducible local system on C
corresponding to the sign representation of AG(u).

152



6.2. Unitriangularity of the unipotent blocks

� Lastly, the character ϕ[2240,10] is special, and thus (Aϕ1)C = Qℓ[dimC + dimT0]

where Qℓ is the trivial local system on C and corresponds to the trivial represen-
tation of AG(u).

Applying the same arguments as in [BDT20, Theorem 8.8] that we have explained in
Lemma 6.1.7, we compute that ⟨f[1,1], χAϕ3 ⟩ = 0. By Lemma 6.1.7, the same reasoning
as in the proof of Proposition 6.1.10 tells us that for any [a,ϕ], [b,ψ] ∈ M(A),

⟨pru(κ
G
[a,ϕ]),pru(κ

G
[a,ϕ])⟩ ≥ 1,

and
⟨pru(κ

G
[a,ϕ]),pru(κ

G
[b,ψ])⟩ ≥ 0.

Moreover, thanks to our discussion about the character sheaves we observe that

∑
[a,ϕ]∈M(A)

pru(κ
G
[a,ϕ]) = 2pru(f[1,1]) = 2ϵ(1)DG(χAϕ1).

Therefore,

4 = ⟨ ∑
[a,ϕ]∈M(A)

pru(κ
G
[a,ϕ]), ∑

[a,ϕ]∈M(A)

pru(κ
G
[a,ϕ])⟩ ≥ ∑

∈M(A)

⟨pru(κ
G
[a,ϕ]),pru(κ

G
[a,ϕ])⟩ ≥ 4.

Thus, for all [a,ϕ] ∈ M(A), the characters pru(κ
G
[a,ϕ]
) are irreducible characters of G

and they are all distinct.

Using [Lus15, Thm. 2.4], Brunat�Dudas�Taylor showed the same result for any �nite
adjoint group.

Proposition 6.1.12 ([BDT20, Thm. B and Thm. 8.9]). Assume that G is simple and
adjoint. We choose (A,λ) as in Proposition 5.2.15. Given [a,ϕ] ∈ M(AC), the charac-
ter κG

[a,ϕ]
has at most one unipotent constituent with wave front set C and it occurs with

multiplicity one. Furthermore, every unipotent character with wave front set C occurs
in some κG

[a,ϕ]
for some [a,ϕ] ∈ M(A).

6.2 Unitriangularity of the unipotent blocks

In this section, we show the unitriangularity of the unipotent ℓ-blocks when G is a sim-
ple adjoint group of exceptional type. When ℓ is good for G, this was already shown in
more generality by Brunat�Dudas�Taylor [BDT20, Thm. A].
We come back to our plan from the introduction. Thanks to Proposition 5.1.24, we
know that the unipotent classes C1, . . . ,Cr which are the unipotent support of the char-
acters in Eℓ(G,1) are the special classes. Moreover, we may assume that the number ni
equals ∣M(ĀCi)∣ for 1 ≤ i ≤ r.
Therefore, thanks to Proposition 6.1.11 the condition (A) is satis�ed when ℓ is good.
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Chapter 6. Unitriangularity of the decomposition matrix

We thus assume that ℓ is bad. In order to reduce the number of cases we split our
analysis in three parts. We �rst consider the special classes and see how and in which
cases we can extend our results. In particular, we will see in Corollary 6.2.3 that the
conditions we need are satis�ed in most cases. We then move on to all ℓ-special classes
where it su�ces to choose the GGGCs as projective modules in Step 3. This is the
case when the ℓ-canonical quotient is trivial or when ℓ = 2 and the canonical quotient is
a group with two elements (Corollary 6.2.8). Three unipotent classes for G of type E8

are not covered by this discussion and we treat them separately.

Hypothesis 6.2.1. In this section, we assume that G is a simple exceptional group
of adjoint type and that ℓ is bad for G. Recall that we have assumed that p is good.

6.2.1 Using Kawanaka modules for the special classes

For the special conjugacy classes, we want to use what we know about the decomposition
of Kawanaka characters into irreducible characters of G to deduce the decomposition of
the ℓ-Kawanaka characters.

Proposition 6.2.2. Assume that G is exceptional simple of adjoint type. Let C be an
F -stable unipotent conjugacy class of G. Assume that

(Kℓ1) there exists an admissible pair (A,λ) for uC which is an admissible covering of ĀC
such that for all a ∈ A the ℓ-decomposition matrix of CA(a) is lower-unitriangular,

(Kℓ2) there is g = sv = vs ∈ (G∗)F ∗, with s is an ℓ-element and v ∈ G∗ is a unipotent
special element, such that the characters sheaves in Ĝg have unipotent support C,
and

(Kℓ3) given [a,ϕ] ∈ M(A), the character prg(κ
G
[a,ϕ]
) is either an irreducible character

or zero. Furthermore, every character in irr(G)g occurs in some κG
[a,ϕ]

for some
[a,ϕ] ∈ M(A).

Let d = ∣Mℓ(ĀC)∣. If either ℓ does not divide ∣A∣ or A ≅ Ā
C○

G∗(s)

(v)C○
G∗
(s)
, then there exist char-

acters ρ1, . . . , ρd ∈ irr(G)g ⊆ Eℓ(G,1) with unipotent support C and [a1,Ψ1], . . . , [ad,Ψd] ∈
Mℓ(A) such that for 1 ≤ i, j ≤ d,

⟨ρ∗i , κ
G
[aj ,Ψj]

⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

0 i < j,

1 i = j.

Proof. By Lemma 5.2.25,

pruC(κ
G
(a,Ψ)) = ∑

ψ∈irr(CA(a))

dψ,Ψ prv(κ
G
(a,ψ)).

Let us �rst assume that ℓ does not divide ∣A∣. ThenMℓ(A) =M(A). Moreover, ℓ does
not divide ĀC either andMℓ(ĀC) =M(ĀC). Thus, the number d equals the number of
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6.2. Unitriangularity of the unipotent blocks

unipotent characters with wave front set C. The statement is then just a reformulation
of the third hypothesis (Kℓ3). For each [a,ψ] ∈ M(A) = Mℓ(A) there is exactly one
unipotent character ρ[a,ψ] with wave front set C such that pruC(κ

G
[a,ψ]
) = ρ∗

[a,ψ]
.

Suppose now thatA ≅ Ā
C○

G∗(s)

(v)C○
G∗
(s)
. For a ∈ A, we write ā for its image in Āg ∶= Ā

C○
G∗(s)

(v)C○
G∗
(s)
.

Similarly, for ϕ ∈ irr(CA(a)) we set ϕ for the character seen as a character of CĀg(ā).
Let {ρ[b,ψ] ∣ [b,ψ] ∈ M(Āg)} be the set of irreducible ordinary characters in irr(G)g with
unipotent support C. By assumption, up to reindexing, we may write

prg(κ
G
[a,ψ]) = ρ

∗

[ā,ψ]
,

for each [a,ψ] ∈ M(A). In other words, for each a ∈ A and Ψ the character of a projective
indecomposable k[CA(a)]-module, we have

prg(κ
G
(a,Ψ)) = ∑

ψ∈irr(CA(a))

dψ,Ψ prg(κ
G
(a,ψ)) = ∑

ψ∈irr(CA(a))

dψ,Ψρ
∗

[ā,ψ]
.

Therefore,
⟨ρ∗
[a,ψ],prg(κ

G
[a,Ψ])⟩ = dψ,Ψ.

Furthermore, for b ∈ A not A-conjugate to a, and any ϕ ∈ irr(CA(b)), we deduce that

⟨ρ∗
[b̄,ϕ]

,pruC(κ
G
[a,Ψ])⟩ = 0.

For each a ∈ A, the ℓ-decomposition matrix of CA(a) is lower-unitriangular. Thus, we
can �x a total ordering of {Ψj ∣ 1 ≤ j ≤ sa}, the set of characters of CA(a) associated to
the projective indecomposable k[CA(a)]-modules, and an ordering of the set {ψi ∣ 1 ≤
i ≤ ta} = irr(CA(a)) such that for all 1 ≤ j ≤ sa and for 1 ≤ i ≤ j,

dψi,Ψj =

⎧⎪⎪
⎨
⎪⎪⎩

0 if i < j

1 if i = j.

Then for each 1 ≤ j ≤ sa, we set ρj ∶= ρ[aj ,ψj] and the sets {ρj ∣ 1 ≤ j ≤ ∣Mℓ(A)∣} and
{κG
[a,Ψ]
∣ [a,Ψ] ∈ Mℓ(A)} satisfy the statement of the proposition.

Corollary 6.2.3. Assume that G is simple exceptional of adjoint type. Let C be a
special F -stable unipotent conjugacy class of G and (A,λ) be the admissible covering
of ĀC, as in Proposition 5.2.16.
Assume that ĀC ≅ Āℓ,C and that either ℓ does not divide ∣A∣ or A ≅ ĀC. Then,
there exist unipotent characters ρ1, . . . , ρnℓ,C ∈ E(G,1) with unipotent support C and
[a1,Ψ1], . . . , [anℓ,C ,Ψnℓ,C ] ∈ M

ℓ(A) such that for 1 ≤ i, j ≤ nℓ,C,

⟨ρ∗i , κ
G
[aj ,Ψ]

⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

0 i < j,

1 i = j.
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Chapter 6. Unitriangularity of the decomposition matrix

Proof. This is a consequence of Proposition 6.2.2. Firstly, we notice that ĀC ≅ Āℓ,C
implies that nℓ,C = ∣Mℓ(Āℓ,C)∣ = ∣Mℓ(ĀC)∣.
We check that the hypotheses of Proposition 6.2.2 hold. By Proposition 5.2.16, there
exists an admissible covering (A,λ) for ĀC and the group A is either S2, S3, S4,C4

or S5 and the primes are ℓ ∈ {2,3,5}. We need to check the unitriangularity of the ℓ-
decomposition matrices of the following groups: S2, S3, S4, S5, C3,C2 × C2,D8,C4,C5

and D12 (group with 12 elements) and C6. We already know that the ℓ-decomposition
matrix of the symmetric group is unitriangular, see [Jam78, Cor. 12.3]. Moreover, it is
also trivially the case for groups of order a prime power. We can easily check that it is
also true for the group D12.
For the assertion (Kℓ2), we simply choose g to be a unipotent element in the class C
seen in G∗. The last hypothesis (Kℓ3) is a reformulation of Proposition 6.1.11.

Lemma 6.2.4. If G is simple exceptional of adjoint type, the only special unipotent
classes of G for which we cannot apply Corollary 6.2.3 are given in Table 6.1.

G ℓ = 2 ℓ = 3
F4 A2, F4(a2)
E7 A4 +A1, E7(a4), A3 +A2

E8 E6(a1)+A1, D7(a2), A4+A1, E8(b4), D7(a1),
D5 +A2, E7(a4), D4 +A2, A3 +A2

E8(b6)

Table 6.1: Special unipotent conjugacy classes where we cannot apply Corollary 6.2.3.

Proof. This follows from the description of the admissible covering in Proposition 5.2.16
and from explicit computations in CHEVIE [Mic15] of the ordinary and ℓ-canonical
quotients, c.f. Appendix B.3 and Appendix C.2.

6.2.2 Using generalised Gelfand�Graev characters

Let C be an F -stable unipotent conjugacy class of G. We now state some general results
about the restriction of the decomposition of the ΓGu in terms of ordinary irreducible
modules with wave front set C.

De�nition 6.2.5 ([Héz04, Thm. A]). Let C be an F -stable unipotent class of G and g
be a special element of G∗ with Jordan decomposition g = sv. We say that g satis�es
the property (P) with respect to C if :

1. Φ((g)G∗) = C,

2. ∣ĀCG∗(s)
v ∣ = ∣AG(uC)∣, and

3. the image of s in the adjoint quotient of G∗ is quasi-isolated.
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6.2. Unitriangularity of the unipotent blocks

If there exists such a g ∈ G∗ such that s is additionally isolated and an ℓ-element,
we say that C is ℓ-(P)-special. The list of ℓ-(P)-special classes may be found in Ap-
pendix B.3.
An element g satisfying property (P) exists for any F -stable unipotent conjugacy class
of G, even if its semisimple part might not be an ℓ-element.

Theorem 6.2.6 ([Héz04, Thm. B]). Let C be an F -stable unipotent class of G, then
there exists a special element g ∈ (G∗)F ∗ satisfying property (P) with respect to C.

We know part of the restriction of the GGGCs ΓGu for u ∈ CF to irreducible characters
of GF with wave front set C.

Proposition 6.2.7 ([GH08, Prop. 4.3]). Let C be an F -stable unipotent class of G
and u1, . . . , ud be representatives for the G-conjugacy classes contained in C. Let g = sv =
vs ∈ (G∗)F

∗ satisfying Property (P ) with respect to C, with s ∈G∗ semisimple and v ∈G∗

unipotent. Assume that ĀCG∗(s)
v is abelian. Then there exist χ1, . . . , χd ∈ irr(GF )g such

that ⟨χ∗i , γuj⟩ = δij for 1 ≤ i, j ≤ d.

As a corollary, if C as above is ℓ-(P)-special and d = nℓ,C , then considering the
generalised Gelfand-Graev characters is su�cient.

Corollary 6.2.8. Let C be an F -stable ℓ-(P)-special unipotent class of G. If Āℓ,C is
trivial or ℓ = 2 and Āℓ,C ≅ S2, then there exist ρ1, . . . , ρnℓ,C ∈ irr(G) in the unipotent
ℓ-blocks with unipotent support C and generalised Gelfand�Graev characters γ1, ..., γnℓ,C
such that for 1 ≤ i, j ≤ nℓ,C ,

⟨ρ∗i , γj⟩ = δij.

Proof. Let u1, . . . , ud be representatives for the G-conjugacy classes contained in CF .
Since C is ℓ-(P)-special, we can choose g ∈ G∗ satisfying Property (P ) with respect
to C, with gs an ℓ-element. By Proposition 6.2.7, there exist ρ1, . . . , ρd ∈ irr(G)g such
that ⟨ρ∗i , γuj⟩ = δij for 1 ≤ i, j ≤ d.
Recall that we choose uC ∈ CF such that AG(uC) is F -stable. Thus the number d of
representatives for the G-conjugacy classes contained in CF is equal to the number of
conjugacy classes of AG(uC). Observe that if ℓ = 2 and Āℓ,C ≅ S2, then n2,C = 2. On the
other hand, if Āℓ,C is trivial, then nℓ,C = 1 for any prime ℓ. In both cases, nℓ,C ≤ d and
the sets {ρ1, . . . , ρnℓ,C} and {γu1 , . . . , γunℓ,C } satisfy the statement.

Proposition 6.2.9. If G is simple exceptional of adjoint type and ℓ is bad for G, the
only ℓ-special but not special unipotent conjugacy classes of G for which we cannot apply
Corollary 6.2.8 are when G is of type E8,

1. ℓ = 2 and the unipotent conjugacy class is E7(a5) and

2. ℓ = 3 and the unipotent conjugacy class is E6(a3) +A1.

Moreover, the only special class for which we cannot apply Corollary 6.2.3 nor Corol-
lary 6.2.8 is the class E8(b6) of G of type E8 when ℓ = 3.

Proof. This follows by inspection of the tables in Appendix B.3.
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Chapter 6. Unitriangularity of the decomposition matrix

6.2.3 The leftover cases in E8

We �nally consider the cases in E8 that we could not treat thanks to Corollary 6.2.3 or
Corollary 6.2.8. In this section, we assume that G is of type E8.

The special unipotent conjugacy class E8(b6) when ℓ = 3

We �rst consider the special class.

Lemma 6.2.10. Let G be a simple group of type E8 and C be the F -stable unipotent
class E8(b6). Then, there exist n3,C irreducible characters in the unipotent 3-blocks with
unipotent support C and n3,C projective characters (either Kawanaka or GGGC) such
that the decomposition matrix restricted to these rows and columns is unitriangular.

Proof. We observe using CHEVIE [Mic15] that AG(uC) ≅ Ā3,C ≅ S3 and n3,C = 5.
Firstly, thanks to Proposition 5.2.16, we can �nd an admissible covering A of the ordinary
canonical quotient associated to C. In this case, we have A ≅ ĀC ≅ S2. We denote the
elements of M(A) by [1,1], [1, sgn], [−1,1], [−1, sgn], where sgn denotes the sign char-
acter. Thanks to Proposition 6.2.2 and since ℓ does not divide A, we �nd four unipotent
characters ρ[1,1], ρ[1,sgn], ρ[−1,1], ρ[−1,sgn] with unipotent support C, and construct four
Kawanaka characters with respect to A and C such that for [b, ϕ], [a,ψ] ∈ M(A),

⟨ρ∗
[b,ϕ], κ

G
[a,ψ]⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

1 b = a and ϕ = ψ,

0 otherwise.

Since ∣M3(Ā3,C)∣ = 5, we need to �nd an irreducible character of G in the unipotent ℓ-
blocks, which has unipotent support C but is not unipotent. As in [GH08, Proof of
Prop. 4.3], for any unipotent character ρ with unipotent support C,

3

∑
i=1

[AG(ui) ∶ AG(ui)
F ]⟨ρ∗, γGui⟩ =

∣AG(u)∣

nρ
,(6.1)

where nρ is given by [Lus84a, 4.26.3]. In our case, since ρ is unipotent and ĀC ≅ S2, we
have nρ = 2. Moreover, as in [GM20, Example 2.7.8 c)], we may assume that u1 corre-
sponds to 1 (whence [AG(u1) ∶ AG(u1)F ] = 1), u2 corresponds to a 2-cycle (whence [AG(u2) ∶
AG(u2)F ] = 3), and u3 to a 3-cycle (whence [AG(u3) ∶ AG(u3)F ] = 2).
Let ϕ ∈ irr(S2) and i, j ∈ {±1}. By Equation (5.2.26), there are two distinct GGGCs,
say γGv1 and γGv−1 such that ⟨ρ∗

[i,ϕ]
, γGvj⟩ = δi,j. By construction, we observe that γGv1 = γ

G
u1

and γGv−1 = γGu2 . Inserting this into (6.1), we must have

⟨ρ∗
[1,ϕ], γ

G
u3⟩ = 1 and ⟨ρ∗

[−1,ϕ], γ
G
u3⟩ = 0.

Moreover, we can check using CHEVIE [Mic15] that the conjugacy class C is 3-(P)-
special. In other words, there is g = sv = vs ∈ (G∗)F ∗ with s ∈ (G∗)F

∗ semisimple of
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6.2. Unitriangularity of the unipotent blocks

order a power of 3, and v ∈ (G∗)F ∗ unipotent such that ĀCG∗(s)
v ≅ S3 and Φ(g) = C. Now

by [Gec99, Prop. 6.7] and [Héz04, Rem. 4.4], there is a character µ ∈ E(G, s)g such that

⟨µ∗, γGui⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

1 if i = 3,

0 otherwise.

We then choose the irreducible modules with characters µ, ρ[1,1], ρ[1,sgn], ρ[−1,1], ρ[−1,sgn]
and the projective k[G]-modules ΓGu3 ,K

G
[1,1]

,KG
[1,sgn]

,KG
[−1,1]

,KG
[−1,sgn]

in these orders. The
preceding computations show that the decomposition matrix ofG restricted to these rows
of irreducible K[G]-modules and columns of projective k[G]-modules has the following
shape, where the empty entries are 0:

(
1
1 1
1 1

1
1

).

The two ℓ-special but not special classes

For the last two cases, since we always have ĀC ≅ Āℓ,C , it su�ces to check the conditions
of Proposition 6.2.2. We want to show the following lemma.

Lemma 6.2.11. The two unipotent classes in Proposition 6.2.9 which are not special
satisfy the conditions of Proposition 6.2.2.

Thanks to Proposition 6.1.10, this amounts to checking the following:

(Kℓ1) there exists an admissible pair (A,λ) for uC which is an admissible covering of ĀC
such that for all a ∈ A the ℓ-decomposition matrix of CA(a) is lower-unitriangular,

(Kℓ2) there is g = tv = vt ∈ (G∗)F ∗ where t is an ℓ-element and v ∈ G∗ is a unipotent
special element, such that the characters sheaves in Ĝg have unipotent support C,

(KD2) A ≅ AG(u) ≅ Ā
CG∗(t)
v ≅ ĀG

C , and

(KD3) there exists an F -stable character sheaf A ∈ Ĝg such that for all [b, ϕ] ∈ M(A)

⟨fG
[b,ϕ],DG(χA)⟩ ≠ 0 ⇐⇒ [b, ϕ] = [1,1].

We recall some notation. For each simple root β ∈ ∆, the fundamental dominant
co-weight ω̆α ∈ Q⊗ZX̆ satis�es ⟨α, ω̆β⟩ = δα,β for α,β ∈∆. We also �x a bijection n from
the semisimple elements of T∗0 to the Kummer local systems on T0, see after Proposi-
tion 3.1.11. Note as well that since E8 is both adjoint and simply connected, as well as
self-dual, the centralisers of semisimple elements in G and G∗ are connected.
For the last condition (KD3), we will use CHEVIE [Mic15] to show that

159



Chapter 6. Unitriangularity of the decomposition matrix

Claim: There exists A ∈ Ĝg in the principal series such that for each s ∈ A, the
restriction (s∗A)(u)C○

G
(s) is the trivial local system Qℓ[−dim(C) − dim(T0)] if the image

of s in Āu is trivial and zero otherwise.

The same argument as in the proof of Lemma 6.1.7 will allow us to conclude the
result about the characteristic function. In order to show the claim, we reformulate
Corollary 4.3.19 for the principal series. For t ∈ T∗0 corresponding to the local system L
on T0, i.e. n(t) = L, by [AA10, Prop. 4.4], we have

WL ≅ NCG∗(t)(T
∗
0)/T

∗
0 ∶=W

G
t .

Recall that we have set d ∶= −dim(G) + dim(Gs) − dim(T0) and e = −dim(T0).

Corollary 6.2.12. Let m = (T0,T0,L) ∈MG and t ∈ T∗0 such that n(t) = L. Let A ∈ Ĝ(m)
and V ∈ Irr(Qℓ[W

G
t ]) such that A ≅ HomEnd(Km)(V,Km). For any s ∈ T0, s∗(A)s(Gs)uni[d]

is isomorphic to

⊕
V ′∈Irr(WGs)

⊕
w∈WG

t /W /W
Gs

⟨Res
WG
t

W s
t,w
(V )⊗Xs

w,Res
WGs

W s
t,w
(V ′○ad(w−1))⟩(ad(w−1)∗AQℓ

V ′)[e](Gs)uni ,

whereW s
t,w =

w WGs∩WG
t , AQℓ

V ′ = HomEnd(Km0)
(V ′,Km0) with m0 = (T0,T0,Qℓ) ∈ MGs.

We see V ′ as an End(K(m0))-module under the isomorphism de�ned in Proposition 3.2.17
and Xs

w is the module of Qℓ[W
Gs∩wWG

t ] whose character is χsw ∶ w0 ↦ j(µww0w−1(wsw
−1)).

The code to compute the restriction as above can be found in Appendix C.3.

Notation 6.2.13. The labelling of the unipotent conjugacy classes follows CHEVIE [Mic15]
notation.

The unipotent conjugacy class E6(a3) +A1 when ℓ = 3

We �x the setting in the case where the F -stable unipotent class is C = E6(a3) + A1.
We choose t ∈ T∗0 such that CG∗(t) is of type E6A2 and v ∈ CG∗(t) lies in the unipotent
class A2,111 of CG∗(t).

Admissible covering We follow [BDT20, � 10.2]. We can choose s = ωα1(1/2)
and uC ∈ C○G(s) F -�xed. In that case CG(s) is of type D8. We set Gs ∶= CG(s).
Using CHEVIE [Mic15] (see code in Appendix C.3), we compute that only one unipo-
tent class of Gs fuses into C. Therefore, we know that uC lies in the unipotent class 6631
of Gs which fuses into C = E6(a3) +A1.
The group A ∶= ⟨s⟩ can be chosen as an admissible covering of AG(uC) for a �xed
co-character. Observe that

A ≅ AG(uC) ≅ Ā
CG∗(s)
v

and if ℓ = 3, then A ≅ Āℓ,C . Thus the conditions (Kℓ1), (Kℓ2) and (KD2) are satis�ed.
We are left to check the last condition of Proposition 6.1.10.
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Character sheaves We �x L ∶= n(t) ∈ S(T0). We now consider a principal series
character sheaf of G coming from L with unipotent support E6(a3) +A1. In CHEVIE
notation, we choose the one corresponding to the character ϕ30,15,111 of WL. Observe
that A ∶= ALϕ30,15,111 is F -stable.

We detail how we use CHEVIE [Mic15] to check that A satis�es the claim. This is
the function RestrictionMixedSupport in Appendix C.3.
We compute that WGs/W /WL = {1, g} for some g ∈ W . Moroever, we check that the
groups WGs ∩WL and WGg

s ∩WL are both Weyl groups. Therefore χs1 and χsg from
Corollary 6.2.12 are trivial, by Lemma 4.2.6.
We consider the restriction to (suC)G. By the same argument as in the proof of [Lus15,
Thm. 2.4] (that we have reproduced in Proposition 4.3.6), we need to consider only
the character sheaves of Gs which correspond under the Springer correspondence to the
unipotent class 6631, that is character sheaves such that

(A
Qℓ
E′)(Gs)uni = IC((u)Gs ,E

′)[dim(T0) − dim((u)Gs)]

for E′ ∈ irr(WGs) and E ′ a local system on (u)Gs . Indeed, let v ∈ Gs be a unipotent

element and E′ ∈ irr(WGs) such that (AQℓ
E′)Gsuni

= IC((v)Gs ,E
′)[dim(T0)−dim((v)Gs)]

for E ′ a local system on (v)Gs . If (u)Gs /⊆ (v)Gs , then

(A
Qℓ
E′)(u)Gs = IC((v)Gs ,E

′)(u)Gs = 0.

On the other hand, if (u)Gs ⊆ (v)Gs − (v)Gs , then (u)G ⊆ (v)G − (v)G. By de�nition of

the unipotent support, we must have s∗((AE)s(v)Gs) = 0. Thus the character sheaf A
Qℓ
E′

cannot appear in the decomposition of s∗((AE)∣s(Gs)uni).

By the Springer correspondence, there is only one character E′ ∈ irr(WGs) whose
image is ((u)Gs ,E

′) for E ′ a local system on (u)Gs . In that case, E ′ is the trivial local
system on (u)Gs corresponding to the trivial character of AGs(u). Using CHEVIE, we
conclude that the coe�cient is zero, whence

A(su)Gs = 0.

We see that there is an F -stable character sheaf A with unipotent support C such
that

� A∣(suC)C○
G
(s) = 0, and

� A∣(uC)G[−dim(C)−dim(T0)] is a local system corresponding to the trivial character
of AG(uC).

Therefore, for all [b, ϕ] ∈ M(A)

⟨fG
[b,ϕ],DG(χA)⟩ ≠ 0 ⇐⇒ [b, ϕ] = [1,1].

This concludes the analysis of the �rst case.
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Chapter 6. Unitriangularity of the decomposition matrix

The unipotent conjugacy class E7(a5) when ℓ = 2

We �x the setting in the case where the F -stable unipotent class is C = E7(a5). We
choose t ∈ T∗0 such that CG∗(t) is of type E7A1 and v ∈ CG∗(t) lies in the unipotent
class D4(a1),11 of CG∗(t).

Admissible covering We �x M the standard Levi subgroup of G of type E7. We
�x an element uC ∈MF such that (uC)G is the unipotent conjugacy class E7(a5) and
F acts trivially on AM(uC) ≅ S3. We write CM ∶= (uC)M. Using CHEVIE, we check
that the unipotent conjugacy class CM is distinguished in M. We �x a co-character
λ ∈ YM

D
(u)F . By the same reasoning as in [BDT20, � 10.4], the group A = CLM(λ)(uC) is

an admissible covering of AM(uC). Then, by the argument at the end of [BDT20, � 10.5],
where they apply [BDT20, Lem. 4.4], the admissible pair (A,λ) is also an admissible
covering for AG(uC). Observe that

A ≅ AG(uC) ≅ Ā
CG∗(t)
v

and if ℓ = 2, then A ≅ Āℓ,C .

Remark 6.2.14. Observe that by [MS03, Thm. 1] there are some h1, h2 ∈G such that

AG(uC) ≅ ⟨ωα1(1/2)
h1C○G(uC), ωα2(1/3)

h2C○G(uC)⟩.

Character sheaves We �x L ∶= n(t) ∈ S(T0). We consider a principal series character
sheaf of G coming from L with unipotent support E7(a5). Thanks to Lusztig's map
([Lus92, Thm. 10.7]), we choose the one corresponding to the character of WL denoted
by ϕ315,16,11. We now check that A ∶= ALϕ315,16,11 satis�es the claim.

Let us look at the case where s ∈ A is an involution. Then, there exists x ∈ G such
that ax = ωα1(1/2) ∈ T0. We �x s ∶= ωα1(1/2) ∈ T0 such that Gs ∶= CG(s) is of type D8.
Using CHEVIE, since only one unipotent class of Gs fuses into C, we know that u ∶= uxC
lies in the unipotent class 7522 of Gs which fuses into E7(a5).
We want to compute the restriction of the previous character sheaf to the mixed con-
jugacy class (su)Gs . We compute that WGs/W /WL = {1, g} for some g ∈ W . The
group WGs ∩ WL is a Coxeter group. On the other hand, W g

L
∶= WGg

s ∩WL is not
a Coxeter group and we have W g

L
/(W g

L
)○ ≅ C2 ≅ Z(G

g
s). Thus, by Lemma 4.2.6, χs

correspond to the lift of the sign character of W g
L
/(W g

L
)○.

Using CHEVIE, we compute that1

(A)(su)Gs = 0.

Lastly, we consider the case where s ∈ A has order 3. By similar arguments as before,
using CHEVIE, we compute that

A(suC)CG(s)
= 0.

1if we did not tensor by the sign character when applying Corollary 6.2.12, we would have
had (A)(su)Gs

≠ 0
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6.2. Unitriangularity of the unipotent blocks

We see that there is an F -stable character sheaf A with unipotent support C such
that

� A∣(auC)C○
G
(s) = 0 if a ≠ 1 for any a ∈ A.

� A∣(uC)G[−dim(C)−dim(T)] is a local system corresponding to the trivial character
of AG(uC).

Therefore, for all [b, ϕ] ∈ M(A)

⟨fG
[b,ϕ],DG(χA)⟩ ≠ 0 ⇐⇒ [b, ϕ] = [1,1].

This concludes our discussion about the last case.

6.2.4 The proof

We are now ready to prove our main result.

Theorem 6.2.15. Let G be a simple exceptional group of adjoint type de�ned over k,
an algebraically closed �eld of characteristic p with Frobenius endomorphism F . Assume
that p is good for G. If ℓ is bad for G, then the decomposition matrix of the unipotent
ℓ-blocks of G is unitriangular.

Proof. We �x a total ordering of the ℓ-special unipotent conjugacy classes ofG, C1, . . . ,Cr
such that for all 1 ≤ l,m ≤ r, we �x l <m if dim(Cl) < dim(Cm).

Let Cl be a unipotent ℓ-special conjugacy class and nℓ,Cl ∶= ∣M
ℓ(Āℓ,Cl)∣. Thanks to our

previous discussion, we can �nd projective kG-modules P l
1, . . . , P

l
nℓ,Cl

with characters πlj
associated to their lift to K[G]-modules and irreducible characters of G in the unipotent
ℓ-blocks with unipotent support Cl, ρl1, . . . , ρ

l
nℓ,Cl

, such that for all 1 ≤ i, j ≤ nℓ,Cl

⟨(ρli)
∗, πlj⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

0 i < j,

1 i = j.

In particular, for a �xed l the P l
i are all distinct.

Let Cm ≠ Cl be another unipotent ℓ-special conjugacy class of G and ρ′ be an
irreducible character of G with unipotent support Cm. Suppose that there is 1 ≤ j ≤ nℓ,Cl ,
such that ⟨(ρ′)∗, πlj⟩ ≠ 0.
We observe that if ⟨(ρ′)∗, πlj⟩ ≠ 0, then there exists v ∈ CF

l and a generalised Gelfand�
Graev character γv, such that ⟨(ρ′), γv⟩ ≠ 0. If P l

j is itself a GGGC, then this is obvious.
Otherwise it is a consequence of Lemmas 5.2.25 and 5.2.26. In any case, since (ρ′)∗ has
wave front set Cm, we conclude by the unicity of the wave front set ([Tay16, Thm. 15.2])
that (v)G = Cl ⊆ Cm, whence dim(Cl) < dim(Cm) and thus l <m.

Now for each 1 ≤ l ≤ r and 1 ≤ i ≤ nℓ,Cl , we set µ
l
i ∶= (ρ

l
i)
∗. The irreducible character µli

lies in the unipotent ℓ-blocks. Moreover, for 1 ≤m ≤ r and 1 ≤ j ≤ nℓ,Cm , we have

⟨µli, π
m
j ⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

0 if n <m or (n =m and i < j),

1 if n =m and i = j.

163



Chapter 6. Unitriangularity of the decomposition matrix

Therefore, summing over all the ℓ-special unipotent conjugacy classes, we obtain the
exact number of indecomposable projective k[G]-modules in the unipotent ℓ-blocks.
We conclude thanks to Proposition 5.0.1.

The assumption that p is good is crucial as we do use a lot of properties for GGGC
which are not yet proven for the extension to bad primes as de�ned by Geck [Gec21a].
Since we do not know yet a basic set for the unipotent ℓ-blocks for groups with a non-
trivial centre as described by Chaneb, we cannot extend our result to any �nite reductive
group of exceptional type. For instance, it is not clear how to treat the case of simply
connected groups of type E6 or E7.

Combining our result with the theorem of Brunat�Dudas�Taylor for ℓ good ([BDT20,
Thm. A]) and the theorem of Chaneb for classical groups when ℓ = 2 [Cha21, Thm. 2.8],
we obtain

Theorem 6.2.16. Let G be a simple group of adjoint type de�ned over k, an alge-
braically closed �eld of characteristic p with Frobenius endomorphism F . Assume that p
is good for G. Let ℓ be a prime di�erent from p. The decomposition matrix of the
unipotent ℓ-blocks of G is unitriangular.

Remark 6.2.17. Note that all the proofs of this chapter and the preceding one that apply
for G of type E6 also for G of type 2E6. Firstly, the number of projective indecomposable
modules in Eℓ(G,1) is independent of whether F is of split or non-split type (see [GH97,
6.6]). Similarly for Proposition 5.1.24, the parametrisation in terms of ℓ-special classes is
independent of F since, in the non-split case, the map F acts on W by conjugation, and
thus trivially on irr(W ). Therefore, the choice of candidates for the irreducible ordinary
modules in Eℓ(G,1) does not depend on whether F is split or not.
The de�nitions of the GGGRs and Kawanaka modules hold in both cases. In particular,
the admissible covering the admissible coverings �xed by Brunat�Dudas�Taylor for the
special classes does not depend on whether F is split. To compute the restriction of
the Kawanaka modules to unipotent characters as in Corollary 6.2.3, we use unipotent
character sheaves. By [LuCS4, Cor. 20.4], the unipotent character sheaves are F -stable
independently of F . Moreover, Consequently, Corollary 6.2.3 also holds if F is non-split.
Lastly, the cases covered by Corollary 6.2.8 are also independent of whether F is split
or not.

6.3 Unitriangularity of the isolated blocks

In this �nal section, we explore how one can extend and apply the methods developed in
the rest of this thesis to consider non-unipotent isolated ℓ-blocks of simple exceptional
groups of adjoint type.
We �rst gather some general arguments that we then apply to show the unitriangularity
of the decomposition matrices of the other isolated ℓ-blocks for G of type G2 and F4. We
believe that similar methods will be su�cient to treat the case of the groups of type En
for n = 6,7,8 and intend to tackle these cases in the future.
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6.3. Unitriangularity of the isolated blocks

6.3.1 Some general arguments

In this part, we summarise three techniques used to show the unitriangularity of the
decomposition matrices when ℓ is bad for the isolated blocks. We �x t ∈ G∗ an isolated
non-trivial ℓ′-element.
We follow the strategy explained at the beginning of this chapter.

Step 1 The number n of projective indecomposable k[G]-modules in B(G, t) may be
found in Appendix B.2.

Steps 2 and 3 We determine the unipotent supports C1, . . . ,Cr of the characters in Eℓ(G, t)
with a total ordering C1 < ⋅ ⋅ ⋅ < Cr, such that Ci < Cj if dimCi ≤ dimCj for all
1 ≤ i < j ≤ r.
Then, for each 1 ≤ i ≤ r,

� we choose ni irreducible modules V i
1 , . . . , V

i
ni
∈ Eℓ(G, t) with wave front set Ci

� and ni projective-modules P i
1, . . . , P

i
ni
, either ℓ-Kawanaka modules of the

form KG
[a,Φ]

for [a,Φ] ∈ Mℓ(ACi), where ACi is an admissible covering of

ĀCi assuming such an admissible covering exists, or GGGCs ΓG
u for u ∈ CF

i ,
or sometimes projective induced from a Levi subgroup.

We require ∑1≤i≤r ni = n.

Step 4 Check the unitriangularity of the decomposition matrix of B(G, t).

WhenG is of type G2 or F4, we notice that the number n determined in Step 1 does not
depend on ℓ. Moreover, thanks to Proposition 5.1.15, we choose in Step 2 the ordinary
modules in E (G, t). Therefore our arguments apply to any ℓ, good or bad for G.
For Step 4, as we have already discussed, we only need to verify that ([(V i

l )
∗, P i

j ])1≤l,j≤ni
is lower unitriangular for each 1 ≤ i ≤ r if the chosen projective k[G]-modules are sum-
mands of GGGCs. If we can show that ([(V i

l )
∗, P i

j ])1≤l,j≤ni is lower triangular (but not
necessarily with ones on the diagonal), then the decomposition matrix of the union of
blocks B(G, t) will also be lower triangular. Since E (G, t) is a basic set (Proposition
5.1.15), it implies that the decomposition matrix is lower unitriangular.

We present di�erent methods to check if ([(V i
l )
∗, P i

j ])1≤l,j≤ni is lower triangular. We
describe them in an example once and then will just quote the arguments.

General arguments

We �x 1 ≤ i ≤ r and consider C ∶= Ci and nC ∶= ni. Most of our arguments use the theory
of character sheaves.
For A ∈ Ĝt an F -stable character sheaf, we �x an isomorphism φA ∶ F ∗A

∼
→ A satisfying

condition � of Subsection 3.3.2. Assume that A has unipotent support C and comes from
the F ∗-stable induction datum m = (L,Σ,E) ∈ MG. Let D be an F -stable conjugacy
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Chapter 6. Unitriangularity of the decomposition matrix

class of G with unipotent part equal to C. By Proposition 4.3.6, AD is a local sys-
tem L[dim(D) + dim(Z○(L))]. In particular, thanks to Equation 3.2 and Lemma 3.3.4,
for any h ∈DF ,

χA(h) = q
(dim(G)−dim(D)−dim(Z○(L))/2)χL,ψ(h).

Here χL,ψ comes from an isomorphism ψ ∶ F ∗L
∼
→ L of local systems on the class D such

that ψh ∶ Lh → Lh is of �nite order.

(GGGC) using GGGCs when nC ≤ ∣ irr(AG(uC))∣. There are ∣ irr(AG(uC))∣
di�erent GGGCs associated to C. Suppose that we can choose nC of them (γ1, . . . , γnC )
and nC characters sheaves A1, . . . ,AnC ∈ Ĝt with unipotent support C, which are F -
stable, such that the matrix

(⟨γGi ,DG(χAj)⟩)1≤i,j≤nC

is lower triangular with diagonal entries of norm 1. Assume furthermore that there
is a special g ∈ G∗ with Jordan decomposition g = tv with v unipotent such that the

character sheaves A1, . . .AnC ∈ Ĝg and the number ∣M(Ā
C○

G∗(t)
v )∣ of F -stable character

sheaves in Ĝg equals nC . By simple inductive arguments, we will show that there exist
characters χ1, . . . , χnC ∈ irr(G)g ⊆ E (G, t) (with unipotent support C) such that the
matrix

(⟨γGi , χ
∗
j ⟩)1≤i,j≤nC

is lower unitriangular. We give examples of such arguments in our case analysis for G2

and F4, see for instance the isolated blocks A1A1 of G2.

We describe how to compute the scalar product between a character sheaf and a
GGGC.
Let A ∈ Ĝt be an F -stable character sheaf as above. In particular, we assume that A has
unipotent support C and comes from the F ∗-stable induction datum m = (L,Σ,E) ∈MG.
Suppose that AC ≠ 0. Then A is unipotently supported and Σ = C0Z○(L) where C0 is a
unipotent conjugacy class of L. We write E = E0⊠Z with E0 an irreducible L-equivariant
local system on C0 and Z ∈ S(Z○(L)). Therefore, by Proposition 3.2.17, there exists an
irreducible K[Wm]-module V such that

A = HomEnd(Km)(V,Km).

Thanks to the discussion in Subsection 4.1.1 on the generalised Springer correspondence,
and by the same argument as in Proposition 4.3.6, we have

AC[−dimZ○(L)] ≅ ⊕
V ′∈Irr(WL),
CV ′=C

⟨IndWL

Wm
(V ), V ′⟩EV ′[dimC],

where Spr(V ′) = (CV ′ ,EV ′) for V ′ ∈ WL. The local system EV ′ is irreducible and cor-
responds to an irreducible ordinary character θV ′ of the component group AG(uC).
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6.3. Unitriangularity of the isolated blocks

Fix ψV ′ ∶ F ∗EV ′
∼
→ EV ′ , an isomorphism of local systems, such that (ψV ′)u ∶ (EV ′)u

∼
→ (EV ′)u

is an automorphism of �nite order for any u ∈ CF . Then, for any element g ∈ G such
that guC ∈ CF , χEV ′ ,ψV ′(guCg

−1) is equal to θV ′(g−1F (g)C○G(uC)) up to a root of unity,
see for instance [DLM97, � 1.4]. Recall that we have �xed uC ∈ C such that F acts
trivially on AG(uC).
Since A restricted to C is a (shifted) local system, we can describe its characteristic
function: for any u ∈ CF ,

χA(u) = q
(dim(G)−dim(C)−dim(Z○(L))/2) ∑

V ′∈Irr(WL),
CV ′=C

⟨IndWL

Wm
(V ), V ′⟩χEV ′ ,ψV ′(u)ζ

′
V ′

where ζ ′V ′ are roots of unity. Thanks to our previous discussion for each V ′ ∈ irrK(WL),
there is a root of unity ζ ′V such that

χA(gucg
−1) = q(dim(G)−dim(C)−dim(Z

○(L))/2) ∑
V ′∈Irr(WL),
CV ′=C

⟨IndWL

Wm
(V ), V ′⟩ζV ′θV ′(g

−1F (g)C○G(uC)),

for any g ∈G such that guC ∈ CF .
Now let u ∶=g uC ∈ CF for some g ∈G. Thanks to [Gec99, 2.3 and 2.4],

(6.2) ⟨γu,DG(χA)⟩ = ∑
V ′∈Irr(WL),
CV ′=C

⟨IndWL

Wm
(V ), V ′⟩ζ ′V ′θV ′(g

−1F (g)C○G(uC)),

where ζV ′ is a root of unity.
To compute the restriction of a character sheaf to its unipotent support, we use CHEVIE
[Mic15] and the code in Appendix C.3.

(Kaw) using Kawanaka characters when nc = ∣AG(uC)∣. In these cases, we use
the same arguments as for the two ℓ-special but not special classes of E8. We rewrite
the conditions to check:

(Kℓ1) there exists an admissible pair (A,λ) for uC which is an admissible covering of ĀC
such that for all a ∈ A the ℓ-decomposition matrix of CA(a) is lower-unitriangular,

(Kℓ2) there is g = tv = vt ∈ (G∗)F ∗ where t is an ℓ-element and v ∈ G∗ is a unipotent
special element, such that the characters sheaves in Ĝg have unipotent support C,

(KD2) A ≅ AG(u) ≅ Ā
CG∗(t)
v ≅ ĀG

C , and

(KD3) there exists an F -stable character sheaf A ∈ Ĝg such that for all [b, ϕ] ∈ M(A)

⟨fG
[b,ϕ],DG(χA)⟩ ≠ 0 ⇐⇒ [b, ϕ] = [1,1].
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(HC) using Harish-Chandra induction. We let L be a F -stable Levi subgroup
of G sitting in an F -stable parabolic subgroup P of G. If R is a projective module
of k[L], with character ψ, then the Harish-Chandra induction IGL (R) is a projective
k[G]-module (Corollary 2.1.11). Moreover, we can write IGL (R

O)⊗OK ≅ IGL (R
O⊗OK),

and
IGL (R

O ⊗O K) = ∑
V ∈IrrK(L)

[R,V ]IGL (V ).

Since Harish-Chandra induction commutes with induction from the relative Weyl groups
(by the Howlett�Lehrer Comparison Theorem 2.1.14), we obtain

IGL (R
O ⊗O K) = ∑

(M,V0)

∑
E∈irrK(W

L
M,V0

)

[R,HL
M,V0
(E)]HG

M,V0
(Ind

WG
M,V0

WL
M,V0

E),(6.3)

where the �rst sum runs over the cuspidal pairs of L and the maps HG
M,V0

and HL
M,V0

come from the Howlett�Lehrer Comparison Theorem.
This way, we get more information about the decomposition matrix of G by the

knowledge of the decomposition matrix of L and of the relative Weyl groups. In partic-
ular, in our case, we will need to compute the projection of IGL (R

O⊗OK) on the chosen
basic set which is included in E (G, t). Since Harish-Chandra induction preserves Lusztig
series (Proposition 2.2.14), we will restrict ourselves to the cuspidal pairs (M, V0) such
that V0 ∈ E(M, t).

Remark 6.3.1. Note that here the relative Weyl groups depend on the action of F .

6.3.2 The isolated blocks of G2

In this subsection, we assume that G is simple, adjoint of type G2 and that F acts
trivially on the Weyl group W .

The isolated blocks A2

We choose a representative t = ωα1(2/3) for the unique conjugacy class of isolated ele-
ment such that CG∗(t) is of type A2. As we have computed in Table B.6, we need to
�nd three di�erent characters of G. So in Step 1, we have n = 3.
Now for Step 2, we determine the unipotent supports of the characters in E (G, t). They
are labelled A2,G2(a1) and G2. We use CHEVIE [Mic15] and the function UnipSup-
portG in Appendix C.3. We also observe that there are three characters in ∣E (G, t)∣ each
with a di�erent unipotent support. So we set nC = 1 for each unipotent class A2,G2(a1)
and G2. We have ∑1≤i≤r ni = 1 + 1 + 1 = 3 = n and the condition is satis�ed.
Moreover, we are in the setting of (GGGC). Therefore, in Step 3, we choose one gen-
eralised Gelfand�Graev character for each unipotent class A2,G2(a1) and G2. Lastly,
we use CHEVIE for Step 4. We compute the scalar product of the GGGC associated
to the class C with the Alvis�Curtis dual of the characteristic function of the character
sheaf in Ĝt with unipotent support C, applying Equation 6.2. For each class C, the
scalar product has norm 1. Here Lusztig's non-linear Fourier transform is trivial. We
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can easily deduce that the scalar product of the GGGC associated to the class C with
the dual of the character in E with unipotent support C has norm 1. We are done thus
with the last step.

The isolated blocks A1A1

We choose a representative t = ωα2(1/2) for the unique conjugacy class of isolated ele-
ments such that CG∗(t) is of type A1A1. As we have computed in Table B.6, we need to
�nd four di�erent characters of G. We summarise the unipotent support C, the number
nC of characters with the same unipotent support as well as AG(uC) for the characters
in E(G, t).We have obtained this data using CHEVIE in the same way we explained for
the previous block.

C Ã1 G2(a1) G2

nC 1 2 1
AG(uC) 1 S3 1

When C is the class Ã1 or G2, we apply (GGGC) exactly in the same manner as for the
previous block.

We now describe the case where C is the unipotent class G2(a1). We are also in the
setting of (GGGC). Using CHEVIE, we compute that one character sheaf A1 ∈ Ĝt with
unipotent support G2(a1) has restriction to G2(a1) corresponding to the trivial charac-
ter. The other character sheaf A2 ∈ Ĝt with unipotent support G2(a1) has restriction
to G2(a1) corresponding to the direct sum of the trivial character and the re�ection rep-
resentation of S3 ≅ AG(uC). Applying Equation 6.2, we compute the value of ⟨χ∗

Ai
, γj⟩K

for 1 ≤ i ≤ 2 and j ∈ {1, (12), (123)} a system of representatives of the conjugacy classes
of AG(uC). This is summarised in the following table

γ1 γ(12) γ(123)
A1 a a a
A2 b + 2c b b − c

where a, b, c are some roots of unity. Let g ∈ (G∗)F ∗ be special with semisimple part
equal to t and such that Cg = C, i.e. the F -stable character sheaves in Ĝg are A1 and
A2. Firstly, we observe that

⟨prg(γ(12)),prg(γ(12))⟩K = ∣a∣
2 + ∣b∣2

and hence prg(γ(12)) = χ
∗
1 + χ

∗
2 where χ1 and χ2 are the two ordinary irreducible char-

acters in irr(G)g. Now, ⟨prg(γ(12)),prg(γ(123))⟩K = 2 − bc is a non-negative integer,
whence bc = ± 1. Suppose that bc = −1. Then on one hand,

⟨prg(γ(12)),prg(γ(1))⟩K = 1 + 1 + 2bc = 0
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and thus prg(γ(1)) = 0. On the other hand,

⟨prg(γ(1)),prg(γ(1))⟩K = 1 + (b + 2c)(b + 2c) = 1 + 1 + 4 + 2bc + 2cb = 2,

which leads to a contradiction. Thus, bc = 1 and prg(γ(123)) is an irreducible character.
In particular, there are two di�erent GGGCs corresponding to C and two ordinary char-
acters in E (G, t) with wave front set C such that the decomposition matrix restricted
to these rows and columns is lower-unitriangular.

By the same arguments as in the proof of Theorem 6.2.15, we conclude the proof of
the unitriangularity of the ℓ-decomposition matrix of the isolated blocks.

Proposition 6.3.2. Let G be a simple group of type G2 de�ned over k, an algebraically
closed �eld of characteristic p with Frobenius endomorphism F . Assume that p is good
for G and p ≠ ℓ. The decomposition matrix of the isolated but non-unipotent ℓ-blocks
of G is lower-unitriangular.

6.3.3 The isolated blocks of F4

In this subsection, we assume that G is simple, adjoint of type F4 and that F acts
trivially on W . The numbers of projective indecomposable modules in each block can
be found in Table B.7.

The isolated blocks Ã2A2

We choose a representative t = ωα1(2/3)ωα2(1/3) for the unique conjugacy class of iso-
lated elements in G∗ such that CG∗(t) is of type Ã2A2. In this case, we need to �nd
9 projective characters. Using CHEVIE, we summarise the unipotent supports C, the
number nC of characters with the same unipotent support as well as AG(uC) for the
characters in E(G, t).

C Ã2 +A1 F4(a3) C3 F4(a2) F4(a1) B3 F4

nC 1 2 1 1 2 1 1
AG(uC) 1 S4 1 S2 S2 1 1

In all the cases where nC = 1, the argument (GGGC) applies.
We now consider the case C = F4(a3), where we would like to apply (GGGC). The two
character sheaves are parameterised by the characters 111,21 and 111,21 of WCG∗(t).
Using CHEVIE and applying Equation 6.2, we compute the values ⟨χ∗

Ai
, γj⟩K for i ∈

{(111,21), (21,111)} and j ∈ {1, (12), (123), (12)(34), (1234)}, a system of representa-
tives of the conjugacy classes of AG(uC). These data are summarised in the following
table:
where a, b, c are some roots of unity. By the same type of arguments as we did for the
class G2(a1) in G2 in the isolated blocks A1A1, we choose two di�erent GGGCs corre-
sponding to C and two ordinary characters in E (G, t) with wave-front set C such that
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6.3. Unitriangularity of the isolated blocks

γ1 γ(12) γ(12)(34) γ(123) γ(1234)
A111,21 a + 3b a + b a − b a a − b
A21,111 c c c c c

the decomposition matrix restricted to these rows and columns is unitriangular.

Lastly, we consider the case C = F4(a1). The two character sheaves are parameterised
by the characters 21,3 and 3,21 of WCG∗(t). Firstly using CHEVIE and applying Equa-
tion 6.2, we compute the values ⟨χ∗

Ai
, γj⟩K for i ∈ {(21,3), (3,21)} and j ∈ {1, (12)},

a system of representatives of the conjugacy classes of AG(uC). These data are sum-
marised in the following table:

γ1 γ(12)
A21,3 a + b a − b
A3,21 c c

where a, b, c are some roots of unity. By similar analysis, we deduce that either a = b
or a = −b. Therefore, the decomposition matrix is lower triangular.

The isolated blocks B4

We choose a representative t = ωα2(1/2) for the unique conjugacy class of isolated element
such that CG∗(t) is of type B4. In this case, we need to �nd

∣ irr(WCG∗(t1))∣ + ∣ irr(NCG∗(t1)(CL∗(s))/CL∗(t1))∣ = 20 + 5

characters where L is a Levi subgroup of type B2. This is a consequence of [GH97,
Thm. 6.4] and Proposition 5.1.14. Using CHEVIE, we summarise the unipotent sup-
ports C, the number nC of characters with the same unipotent support as well as AG(uC)
for the characters in E(G, t).

C A1 A2 F4(a3) C3(a1) B2 F4(a2) F4(a1) B3 F4

nC 1 4 4 + 1 1 4 4 4 1 1
AG(uC) 1 S2 S4 S2 S2 S2 S2 1 1

In all the cases where nC = 1, we apply (GGGC).

We now consider the cases where nC = 4, where we would like to apply (Kaw).
Using the same notation and the same reasoning as in [BDT20, � 10.2], we determine an
admissible covering in each case. For each unipotent class C, a subset KC ⊆ ∆̃ such that
there exists an involution aC ∈ G such that ∆(ac) = KC , see below Remark 1.3.4. We
write the index of the roots in KC , writing 0 for the root −α0. We then �x AC = ⟨aC⟩.
Using the same methods as for the two non-special classes in Subsection 6.2.3, we are
able to check all the conditions.
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C A2 B2 F4(a2) F4(a1)
KC [0,2,3,4] [0,1,2,3] [0,2,3,4] [0,1,2,3]

We now consider the case C = F4(a3). Using CHEVIE, we compute the values
of ⟨χ∗

Ai
, γj⟩K for 1 ≤ i ≤ 2 and j ∈ {1, (12), (123), (12)(34), (1234)}, a system of rep-

resentatives of the conjugacy classes of AG(uC) ≅ S4. We gather the results in the
following table

γ1 γ(12) γ(12)(34) γ(123) γ(1234)
A211. 0 0 0 0 0
A2.11 2b + c c 2b + c b − c c
A.31 3a a −a 0 −a
AB2∶1.1 0 0 0 0 0
A11.2 d d d d d

where a, b, c are some roots of unity. By further analysis, we obtain

γ1 γ(12) γ(12)(34) γ(123) γ(1234)
ρ1 0 0 2 0 1
ρ2 0 0 2 0 1
ρ3 3 1 1 0 0
ρ4 3 1 1 0 0
ρ∗11.2 1 1 1 1 1

where {ρi ∣ 1 ≤ i ≤ 4} = {ρ∗211., ρ
∗
2.11, ρ

∗
.31, ρ

∗
B2∶1.1}.

Next, we use the Kawanaka characters and their Fourier transforms. Here the admissible
covering A was computed in [BDT20, 10.7]. We write down the values ⟨χ∗

A
, f[a,ψ]⟩K

for [a,ψ] ∈ M(A) and A a character sheaf in Ĝt with unipotent support F4(a3) in
the family indexed by g ∈G∗ with four character sheaves. The computations are made
thanks to the code in Appendix C.3. We use CHEVIE notation. If f[x,ϕ] does not appear
in the table, then its projection prg(f[x,ϕ]) is equal to 0. The variables written in small
cases have norm one.

f[1,1] f[1,σ] f[1,λ2] f[2,1] f[2,ϵ′′] f[2,ϵ] f[2′,1] f[2′,ϵ] f[2′,ϵ′] f[2′,r] f[4,1] f[4,−1]
A211. 0 0 0 0 0 0 a2′ 0 a′2′ 0 a4 0
A2.11 b1 b′1 0 b2 0 0 b2′ 0 0 0 0 0
A.31 0 0 c1 c2 0 0 0 c2′ 0 0 0 0
AB2∶1.1 0 0 0 0 X2 Y2 0 0 0 X2′ 0 X4

Applying the Fourier transform, we obtain the following table

172



6.3. Unitriangularity of the isolated blocks

4κG
[4,1]

4κG
[4,−1]

4κG
[4,I]

4κG
[4,−I]

A211. 2a4 −2a4 0 0
A2.11 b1 + b2′ b1 + b2′ b1 − b2′ b1 − b2′

A.31 c1 + c2′ c1 + c2′ c1 − c2′ c1 − c2′

AB2∶1.1 −2X4 2X4 0 0

Thanks to the decomposition of γ(1234) into Kawanaka characters (Lemma 5.2.26), we
deduce that

prg(κ
G
[4,I]) = 0 = prg(κ

G
[4,−I])

and

⟨prg(κ
G
[4,1]),prg(κ

G
[4,1])⟩ =

1

16
(4 + 4 + 4 + 4∣X4∣

2) ≥ 1

⟨prg(κ
G
[4,−1]),prg(κ

G
[4,−1])⟩ =

1

16
(4 + 4 + 4 + 4∣X4∣

2) ≥ 1

⟨prg(κ
G
[4,1]),prg(κ

G
[4,−1])⟩ =

1

16
(−4 + 4 + 4 − 4∣X4∣

2).

Hence ∣X4∣ = 1 and up to renaming, we may assume that prg(κ
G
[4,1]
) = ρ1 and

prg(κ
G
[4,−1]
) = ρ2.

We repeat this process and we get

8κG
[2′,1] 8κG

[2′,ϵ] 8κG
[2′,ϵ′]

A211. 6a2′ + 2a4 −2a2′ + 2a4 6a2′ − 2a4
A2.11 b1 + 2b′1 + 2b2 + 3b2′ b1 + 2b′1 − 2b2 − b2′ b1 + 2b′1 − 2b2 + 3b2′

A.31 −c1 + 2c2 − c2′ −c1 − 2c2 + 3c2′ −c1 − 2c2 − c2′

AB2∶1.1 −2X2′ + 2X4 −2X2′ + 2X4 −2X2′ − 2X4

8κG
[2′,ϵ′′] 8κG

[2′,r]

A211. −2a2′ − 2a4 −4a2′

A2.11 b1 + 2b′1 + 2b2 − b2′ 2b1 + 4b′1 − 2b2′

A.31 −c1 + 2c2 + 3c2′ −2c1 − 2c2′

AB2∶1.1 −2X2′ − 2X4 4X2′

We observe that ⟨prg(κ
G
[2′,r]),prg(κ

G
[4,1]
)⟩ = 0, whence ∣X2′ ∣ = 1 and

⟨prg(κ
G
[2′,r]),prg(κ

G
[2′,r])⟩ = 1.

We conclude that prg(κ
G
[2′,r]) ∈ {ρ3, ρ5}. Therefore, up to reordering of the ρi, we have

found Kawanaka characters and GGGCs (which are all projective as ℓ ≠ 2) such that the
decomposition matrix restricted to these rows and columns has the
following form:
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Chapter 6. Unitriangularity of the decomposition matrix

(
1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 1 0 1

).

The isolated blocks C3A1

We choose a representative t = ωα1(1/2)ωα3(1/2) for the unique conjugacy class of iso-
lated element such that CG∗(t) is of type C3A1. In this case, we need to �nd

∣ irr(WCG∗(t1))∣ + ∣ irr(NCG∗(t1)(CL∗(s))/CL∗(t1))∣ = 20 + 4

characters where L is a Levi subgroup of type B2. Using CHEVIE, we summarise the
unipotent supports C, the number nC of characters with the same unipotent support as
well as AG(uC) for the characters in E(G, t).

C A1 + Ã1 Ã2 C3(a1) F4(a3) F4(a2) F4(a1) B3 C3 F4

nC 1 1 4 4 + 1 4 + 1 4 + 1 1 1 1
AG(uC) 1 1 S2 S4 S2 S2 1 1 1

In all the cases where nC = 1, we apply (GGGC). When C = C3(a1), we choose the
admissible covering AC = ⟨aC⟩ such that ∆(aC) = [0,1,2,3] and check the conditions
of (Kaw).

We consider the other cases individually, starting with C = F4(a3). Thanks to
CHEVIE [Mic15] and the Equation 6.2, we compute the values ⟨χ∗

Ai
, γj⟩K for 1 ≤ i ≤ 2

and j ∈ {1, (12), (123), (12)(34), (1234)}, a system of representatives of the conjugacy
classes of the �nite group AG(uC) ≅ S4. We summarise the results in the following table

γ1 γ(12) γ(12)(34) γ(123) γ(1234)
A111.,2 3a1 + 3a2 −a1 + a2 −a1 − a2 0 a1 + a2
A1.11,2 3b1 + 2b2 + b3 b1 + b3 −b1 + 2b2 + b3 −b2 + b3 −b1 + b3
A.21,2 0 0 0 0 0
AB2∶11,2 0 0 0 0 0
A11.1,11 3c1 + c2 c1 + c2 −c1 + c2 c1 −c1 + c2

In particular ⟨χ∗
A11.1,11

, γ(123)⟩K = 1. Next, we need to use the Kawanaka characters and
their Fourier transform. Here the admissible covering A was computed in [BDT20, 10.7].
We write down the values ⟨χ∗

A
, f[a,ψ]⟩K for [a,ψ] ∈ M(A) and A a character sheaf in Ĝt

with unipotent support F4(a3) in the family indexed by g ∈ G∗ with four character
sheaves. The computations are made thanks to the code in Appendix C.3. We keep the
same conventions as in the previous case.
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6.3. Unitriangularity of the isolated blocks

f[1,1] f[1,σ] f[1,λ2] f[1,λ] f[2,1] f[2,ϵ′] f[2,ϵ′′] f[2,ϵ] f[2′,ϵ] f[2′,ϵ′] f[2′,r] f[4,−1]
A111.,2 0 0 a1 a′1 0 a2 0 0 0 0 0 0
A1.11,2 b1 b′1 0 b′′1 b2 0 0 0 0 0 0 0
A.21,2 0 0 0 0 c2 0 0 0 c2′ c′2′ 0 0
AB2∶11,2 0 0 0 0 0 0 X2 Y2 0 0 X2′ X4

By the same kind of analysis as before, we �nd some Kawanaka characters such that
the decomposition matrix is lower-unitriangular.

We now consider the case where C = F4(a2).We cannot only take Kawanaka charac-
ters because then we would have only four projectives characters. Therefore, we apply
(HC) and induce projective characters from a standard Levi M ∶= L[1,2,3] of G such
that M∗ ⊆ CG∗(t).We want projective characters P of k[M] such that for each charac-
ter ρ ∈ E(G, t), we have [P ∶ ρ∗] ≠ 0 if and only if ρ has unipotent support equal or bigger
to F4(a2) (i.e. F4(a2), F4(a1) or F4). By [BDT20, Thm. A], we know that the decom-
position matrix of the ℓ-unipotent blocks of M is lower-unitriangular. Since t ∈ Z(M∗),
we know that it is also the case of Bℓ(M, t). We parameterise the projective characters
in Eℓ(M, t) with the ordinary characters of E(M, t). Using CHEVIE [Mic15], we check
that the projective modules P111., P1.11, P.21 and PB2∶11 satisfy the conditions and that the
decomposition matrix restricted to {IndGM(P111.), Ind

G
M(P1.11), Ind

G
M(P.21), Ind

G
M(PB2∶11)}

and {ρ111.2, ρ1.11,2, ρ.21,2, ρB2∶11,2} (the duals of some characters in E(M, t) with unipotent
support C) is diagonal. Moreover, their restriction to {ρ11.1,11} = {ρ∗1.2,2} is zero. Lastly,
we check that the projection of Γ1 has non-zero restriction to ρ∗1.2,2.

Finally, we consider the case where C = F4(a1). This time, we use Kawanaka charac-
ters to �nd four projective characters, applying (Kaw) and the induction of the projective
character P.111 of M as before for the last projective character.

The isolated blocks A3Ã1

We choose a representative t = ωα1(1/2)ωα3(1/2) for the unique conjugacy class of iso-
lated element such that CG∗(t) is of type A3Ã1. In this case, we need to �nd 10 charac-
ters. Using CHEVIE, we summarise the unipotent supports C, the number nC of char-
acters with the same unipotent support as well as AG(uC) for the characters in E(G, t).

C A2 + Ã1 F4(a3) B3 F4(a2) F4(a1) B2 F4

nC 1 1 1 + 1 1 + 1 1 + 1 1 1
AG(uC) 1 S4 1 S2 S2 S2 1

When nC = 1, we apply (GGGC). For C = F4(a1) and C = F4(a2) we use the
Kawanaka characters similarly as we did before. For C = B3, we need to use (HC)
with M = L[1,3,4] ⊆ G and the projective character P11,111 as well as the GGGC corre-
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Chapter 6. Unitriangularity of the decomposition matrix

sponding to C.

By the same proof as for the unipotent blocks in Theorem 6.2.15, we conclude this
last chapter by the following theorem.

Theorem 6.3.3. Let G be a simple group of type F4 de�ned over k, an algebraically
closed �eld of characteristic p with Frobenius endomorphism F . Assume that p is good
for G and p ≠ ℓ. The decomposition matrix of the isolated non-unipotent ℓ-blocks of G
is lower-unitriangular.
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Appendix A

Prerequisites on the representation

theory of �nite groups

We recall a few facts on the representation theory of �nite groups. A nice reference is
the book of P. Webb [Web16]. The lecture notes of C. Lassueur [Las23] are also very
clear and complete.

Let G be a �nite group and Λ a commutative ring. We write Λ[G] -mod for the
category of Λ[G]-modules. An important class of Λ[G]-modules are the irreducible
modules, i.e. the ones who do not have any non-trivial proper submodules. We denote
by IrrΛ(G) the irreducible Λ[G]-modules of the group G up to isomorphism.
Two isomorphic Λ[G]-modules have the same character: let ρ ∶ G→ GL(V ) be given by
the action of G on V , the character of V is the class function

χV ∶ G→ F
g ↦ Tr(ρ(g), V ).

To denote the ordinary irreducible characters of the group G, we use irrF(G). When the
underlying �eld is clear, we might sometimes drop the subscript F.
Assume that Λ = F is a �eld of characteristic zero, then the isomorphism class of an F[G]-
module V is completely determined by its character, [Web16, Cor. 3.3.3]. If ϕ is a
character of G, we write Vϕ for an F[G]-module with character ϕ.
We de�ne the scalar product of two F[G]-modules V and W :

⟨V,W ⟩F ∶= dimF(HomF[G](V,W )).

When F ⊆ C, and χ,ψ are two characters of G, we de�ne a scalar product of characters:

⟨χ,ψ⟩ ∶=
1

∣G∣
∑
g∈G

χ(g)ψ(g) = ⟨Vχ, Vψ⟩.

We now move on to the modular representation theory. We �x a splitting ℓ-modular
system (O,K,k) where
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� O is a complete discrete valuation ring of characteristic 0 with a unique maximal
ideal M ,

� K is the �eld of fractions of O, also of characteristic zero. We assume that K is big
enough for the group G we are considering, that is it contains all the ∣G∣th roots
of unity. In particular, with respect to the inclusion K ⊆ C, we have irrK(G) =
irrC(G).

� k =O/M is a �eld of characteristic ℓ. We assume k = Fℓ.
If W ∈ Irrk(G), we set PW for its projective cover ([Las23, Def. 23.3]). It is a projective
indecomposable module. Recall that to any projective k[G]-module P corresponds a
projective O[G]-module PO such that PO⊗Ok ≅ P ([Las23, Cor. 32.6]), and the K[G]-
module PO ⊗O K is unique up to isomorphism.
On the other hand, to any K[G]-module V corresponds at least one O[G]-module VO,
free over O such that VO ⊗O K ≅ V . Then VO ⊗O k is an k[G]-module ([Las23,
Prop. 14.6]). For any K[G]-module V and any projective k[G]-module P , we have
by Brauer reciprocity ([Las23, Thm. 34.2]),

⟨P,VO ⊗O k⟩k = ⟨P
O ⊗O K, V ⟩K =∶ [P,V ].

We denote the decomposition matrix of G by DG = (dGV,W )V ∈irrK(G),W ∈irrk(G) with entries

dGV,W ∶= [PW , V ].

For a projective k[G]-module P , let ΨP denote the character associated to the K[G]-
module PO ⊗O K. We say that ΨP is a projective character. We may sometimes write

dχV ,ΨPW = [PW , V ] = ⟨ΨPW , χV ⟩

for V ∈ IrrK(G) andW ∈ Irrk(G). ForW ∈ irrk(G), we write ψW for its Brauer character.
This class function on the ℓ′-elements of G is de�ned as follows. If g ∈ G is a ℓ′-element
(that is the prime ℓ does not divide the order of g), then the trace of the action of g
on W is a sum of roots of unity of k. The lift of this sum to O ⊆K gives then the value
of ψW (g). We may sometimes extend this function by zero to all of G. All these facts
and more can be found in [Web16, Chapt. 10].

The group algebra k[G] is partitioned into ℓ-blocks

k[G] =B1 ⊕ ⋅ ⋅ ⋅ ⊕Bn,

which corresponds to a set of central orthogonal primitive idempotents {e1, . . . , en}
with Bi = k[G]ei. An indecomposable module W ∈ Irrk(G) belongs to a block Bi

if eiW = W , and we write W ∈ Irrk(B). This block is unique. It leads to the
block-diagonal shape of the ℓ-decomposition matrix. Two ordinary irreducible mod-
ules V and V ′ of G belong to the same ℓ-block B if there exist W1, . . . ,Wn−1 ∈ Irrk(B)
and V = V1, . . . , Vn = V ′ ∈ IrrK(G) such that

⟨Vi, PWi
⊗O K⟩ ≠ 0 and ⟨Vi+1, PWi

⊗O K⟩ ≠ 0 for 1 ≤ i ≤ n − 1.

We write V ∈ IrrK(B). We refer the reader to [Web16, Section 12.1] for all these facts.

179



Appendix B

Tables

B.1 Induction data of exceptional adjoint groups

In the following tables, we collect some information about the various cuspidal induction
data m = (L,Σ,E) for G a simple exceptional group of adjoint type. This information
comes from the summary in [DLM14, App. A] and [AA10, Table 1], which themselves
come from [LuCS4] and [LuCS5]. We only consider the cases where L is not a maximal
torus. In the �rst column, we describe the series Ĝt such that E ∈ L̂t. Let s ∈ L such
that s belongs to the semisimple part of Σ. In the third column, we write CL(s). In
the fourth column, we describe a representative of s as follows. We choose L such that
it is a standard Levi subgroup and s ∈ G is written using the �additive� notation of
CHEVIE [Mic15]. The following column describes, if known, the unipotent part of Σ
as a unipotent conjugacy class in CL(s) using CHEVIE notation. In the last column,
we give the number n of cuspidal character sheaves on L with unipotent support Σ
belonging to the series L̂t.

G2

All the cuspidal character sheaves of G of type G2 are unipotent. Moreover, if L is a
proper Levi subgroup which is not a torus, then L is adjoint of type A1 and does not
have any cuspidal character sheaf.

CG∗(t) L CL(s) s unipotent class in CL(s) n

G2 G2

G2 1 G2(a1) 1
A2 ⟨0,1/3⟩ 3 2
A1A1 ⟨1/2,0⟩ (2,2) 1

Table B.1: Induction data of G2
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F4

All the cuspidal character sheaves of G of type F4 are unipotent. The only Levi sub-
group L with cuspidal character sheaves is of type B2. For Lad there is one unipotent
cuspidal character sheaf and another one in the series indexed by a central element
of (Lad)∗. Thus, L has cuspidal character sheaves which belong to the unipotent and
the central series of L tensored by a local system pulled back from a Kummer local sys-
tem on the abelianisation L/[L,L], c.f. [DLM14, facts p. 493] or [LuCS4, 17.9, 17.10].
In particular, there is one cuspidal character sheaf in the unipotent series, one coming
from the central series of L/Z○(L) and one indexed by another central element of L∗.

CG∗(t) L CL(s) s unipotent class in CL(s) n

F4
F4

F4 1 F4(a3) 1
C3A1 ⟨1/2,0,0,0⟩ (2,4) × 2 1
B4 ⟨0,0,0,1/2⟩ (1,3,5) 1
A2A2 ⟨0,1/3,0,0⟩ reg 2
A3A1 ⟨0,0,1/4,0⟩ reg 2

B2 A1A1 ⟨1/2,0,1/2,1/2⟩ 1
B4 B2 A1A1 ⟨1/2,0,1/2,1/2⟩ 1
C3A1 B2 A1A1 ⟨1/2,0,1/2,1/2⟩ 1

Table B.2: Induction data of F4

E6

There are two cuspidal character sheaves per central series when G is of type E6; they
all have the same support. The only Levi subgroup L with cuspidal character sheaves
is of type D4. For Lad there is one cuspidal character sheaf per central series of Lad.
There is no cuspidal character sheaf of L which belongs to an isolated non-unipotent
series of G.

CG∗(t) L CL(s) s unipotent class in CL(s) n

E6
E6 A2A2A2 ⟨0,0,0,1/3,0,0⟩ reg 2
D4 A1A1A1A1 ⟨1/2,0,0,1/2,0,1/2⟩ 1

Table B.3: Induction data of E6

E7

There are two cuspidal character sheaves per central series when G is of type E7; they
all have the same support. The Levi subgroups with cuspidal character sheaves are of
type D4 and E6. For L of type E6 no isolated non-unipotent series contains character
sheaves coming from a cuspidal character sheaf of L. The isolated series D6A1 is the
only one containing character sheaves coming from a cuspidal induction datum with L
of type D4.
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CG∗(t) L CL(s) s unipotent class in CL(s) n

E7

E7 A3A3A1 ⟨0,0,0,1/4,0,0,0⟩ reg 2
E6 A2A2A2 ⟨0,0,0,1/3,0,0,1/3⟩ reg 2
D4 A1A1A1A1 ⟨1/2,0,0,1/2,0,1/2,0⟩ 1

D6A1 D4 A1A1A1A1 ⟨1/2,0,0,1/2,0,1/2,0⟩ 1

Table B.4: Induction data of E7

E8

All the cuspidal character sheaves of G of type E8 are unipotent. The Levi subgroups
with cuspidal character sheaves are of type D4, E6, and E7. If L is of type E7 then Lad

has cuspidal character sheaves in the central series for E7, in particular in the series E7A1.

CG∗(t) L CL(s) s unipotent class in CL(s) n

E8

E8

E8 1 F4(a3) 1
A1E7 ⟨0,0,0,0,0,0,0,1/2⟩ reg × (A1 +D6(a2)) 1
A2E6 ⟨0,0,0,0,0,0,1/3,0⟩ reg × (A1 +A5) 2
D5A3 ⟨0,0,0,0,0,1/4,0,0⟩ (3,7) × reg 2
A4A4 ⟨0,0,0,0,1/5,0,0,0⟩ reg 4
A1A2A5 ⟨0,0,0,1/6,0,0,0,0⟩ reg 2
D8 ⟨1/2,0,0,0,0,0,0,0⟩ (1,3,5,7) 2

E7 A3A3A1 ⟨0,0,0,1/4,0,0,0,1/4⟩ reg 2
E6 A2A2A2 ⟨0,0,0,1/3,0,0,1/3,0⟩ reg 2
D4 A1A1A1A1 ⟨1/2,0,0,1/2,0,1/2,0,0⟩ 1

E7A1

E7 A3A3A1 ⟨0,0,0,1/4,0,0,0,1/4⟩ reg 2
E6 A2A2A2 ⟨0,0,0,1/3,0,0,1/3,0⟩ reg 2
D4 A1A1A1A1 ⟨1/2,0,0,1/2,0,1/2,0,0⟩ 1

E6A2

E6 A2A2A2 ⟨0,0,0,1/3,0,0,1/3,0⟩ reg 2
D4 A1A1A1A1 ⟨1/2,0,0,1/2,0,1/2,0,0⟩ 1

D5A3 D4 A1A1A1A1 ⟨1/2,0,0,1/2,0,1/2,0,0⟩ 1
D8 D4 A1A1A1A1 ⟨1/2,0,0,1/2,0,1/2,0,0⟩ 1

Table B.5: Induction data of E8
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B.2 On the number of Brauer characters

We collect the number of Brauer characters in each isolated union of blocks B(G, t)
for G simple exceptional of adjoint type, F acting trivially on W and t ∈ G∗ isolated.
The rows of the tables are indexed by the type of CG∗(t). If t is not an ℓ′-element,
we write nothing in the corresponding cell. This information has been obtained using
CHEVIE [Mic15] and the code in Appendix C.2. Note that it depends on the action of
the Frobenius map on CG∗(t).

ℓ good ℓ = 2 ℓ = 3
G2 10 9 8

Ã2 3 3 −

Ã1A1 4 − 4

Table B.6: Number of Brauer characters in the isolated blocks for G2(q)

ℓ good ℓ = 2 ℓ = 3
F4 37 28 35
B4 25 − 25
C3A1 24 − 24

Ã2A2 9 9 −
2Ã2

2A2 9 9 −

A3Ã1 10 − 10
2A3Ã1 10 − 10

Table B.7: Number of Brauer characters in the isolated blocks for F4(q)

ℓ good ℓ = 2 ℓ = 3
E6 30 27 28
A5A1 22 − 22
A2A2A2 27 27 −

A2(q3) 3 3 −
2A2A2(q2) 9 9 −

Table B.8: Number of Brauer characters in the isolated blocks for E6(q)
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ℓ good ℓ = 2 ℓ = 3
E7 76 64 72
A7 22 − 22
2A7 22 − 22
A5A2 33 33 −
2A5

2A2 33 33 −

A3A1A3 50 − 50
2A3A1

2A3 50 − 50
A3(q2)A1 10 − 10
D6A1 84 − 84

Table B.9: Number of Brauer characters in the isolated blocks for E7(q)

ℓ good ℓ = 2 ℓ = 3 ℓ = 5
E8 166 131 150 162
E7A1 152 − 144 152
E6A2 90 81 − 90
2E6

2A2 90 81 − 90
D5A3 100 − 100 100
2D5

2A3 100 − 100 100
A4A4 49 49 49 −
2A4

2A4 49 49 49 −
2A4(q2) 7 7 7 −

A2A1A5 66 − − 66
2A2A1

2A5 66 − − 66
A1A7 44 − 44 44
A1

2A7 44 − 44 44
A8 30 30 − 30
2A8 30 30 − 30
D8 120 − 120 120

Table B.10: Number of Brauer characters in the isolated blocks for E8(q)

B.3 The ℓ-special classes for simple exceptional groups

of adjoint type

The following tables collect the ℓ-special classes for simple exceptional groups of adjoint
type. The �rst column contains the name of the unipotent class C, the second column
the group AG(uC), the third the ordinary canonical quotient if the class is special. We
then compute the ℓ-canonical quotient for the ℓ-special classes for each bad prime ℓ. In
the last columns, one can read if the class is ℓ-P-special or not, see De�nition 6.2.5. For ℓ
good for G, it is a consequence of [GH91, Thm. 5.1], see Theorem 5.1.7. When ℓ is bad
for G, this information when ℓ is bad has been obtained thanks to Proposition 5.1.14
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and the discussion below.

C AG(uC) ĀC Ā2,C Ā3,C 2-P-special 3-P-special
1 1 1 1 1 true true

G2(a1) S3 S3 S3 S3 true true

G2 1 1 1 1 true true

Ã1 1 − 1 − true −

A1 1 − − 1 − true

Table B.11: The ℓ-special classes of G2

C AG(uC) ĀC Ā2,C Ā3,C 2-P-special 3-P-special
1 1 1 1 1 true true

Ã1 S2 S2 S2 S2 true true

A1 + Ã1 1 1 1 1 true true

Ã2 1 1 1 1 true true

A2 S2 1 S2 1 true false

F4(a3) S4 S4 S4 S4 true true

C3 1 1 1 1 true true

B3 1 1 1 1 true true

F4(a2) S2 1 S2 1 true false

F4(a1) S2 S2 S2 S2 true true

F4 1 1 1 1 true true

A1 1 − 1 − true −

A2 + Ã1 1 − 1 − true −

B2 S2 − S2 − true −

C3(a1) S2 − S2 − true −

Ã2 +A1 1 − − 1 − true

Table B.12: The ℓ-special classes of F4
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C AG(uC) ĀC Ā2,C Ā3,C 2-P-special 3-P-special
E6 1 1 1 1 true true

E6(a1) 1 1 1 1 true true

D5 1 1 1 1 true true

E6(a3) S2 S2 S2 S2 true true

D5(a1) 1 1 1 1 true true

A4 +A1 1 1 1 1 true true

D4 1 1 1 1 true true

A4 1 1 1 1 true true

D4(a1) S3 S3 S3 S3 true true

A3 1 1 1 1 true true

2A2 1 1 1 1 true true

A2 + 2A1 1 1 1 1 true true

A2 +A1 1 1 1 1 true true

A2 S2 S2 S2 S2 true true

2A1 1 1 1 1 true true

A1 1 1 1 1 true true

1 1 1 1 1 true true

A5 1 − 1 − true −

A3 +A1 1 − 1 − true −

3A1 1 − 1 − true −

2A2 +A1 1 − − 1 − true

Table B.13: The ℓ-special classes of E6

C AG(uC) ĀC Ā2,C Ā3,C 2-P-special 3-P-special
D6 1 − 1 − true −

D6(a2) 1 − 1 − true −

A′5 1 − 1 − true −

D4 +A1 1 − 1 − true −

A3 + 2A1 1 − 1 − true −

(A3 +A1)′ 1 − 1 − true −

4A1 1 − 1 − true −

3A′1 1 − 1 − true −

A5 +A1 1 − − 1 − true

2A2 +A1 1 − − 1 − true

Table B.14: The ℓ-special but not special classes of E7
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C AG(uC) ĀC Ā2,C Ā3,C 2-P-special 3-P-special
E7 1 1 1 1 true true

E7(a1) 1 1 1 1 true true

E7(a2) 1 1 1 1 true true

E6 1 1 1 1 true true

E7(a3) S2 S2 S2 S2 true true

E6(a1) S2 S2 S2 S2 true true

E7(a4) S2 1 S2 1 true false

A6 1 1 1 1 true true

D5 +A1 1 1 1 1 true true

D6(a1) 1 1 1 1 true true

E7(a5) S3 S3 S3 S3 true true

D5 1 1 1 1 true true

E6(a3) S2 S2 S2 S2 true true

D5(a1) +A1 1 1 1 1 true true

A4 +A2 1 1 1 1 true true

A′′5 1 1 1 1 true true

D5(a1) S2 S2 S2 S2 true true

A4 +A1 S2 S2 S2 S2 true true

D4 1 1 1 1 true true

A3 +A2 +A1 1 1 1 1 true true

A4 S2 S2 S2 S2 true true

A3 +A2 S2 1 S2 1 true false

D4(a1) +A1 S2 S2 S2 S2 true true

D4(a1) S3 S3 S3 S3 true true

(A3 +A1)′′ 1 1 1 1 true true

2A2 1 1 1 1 true true

A3 1 1 1 1 true true

A2 + 3A1 1 1 1 1 true true

A2 + 2A1 1 1 1 1 true true

A2 +A1 S2 S2 S2 S2 true true

A2 S2 S2 S2 S2 true true

3A′′1 1 1 1 1 true true

2A1 1 1 1 1 true true

A1 1 1 1 1 true true

1 1 1 1 1 true true

Table B.15: The special classes of E7

187



Appendix B. Tables

C AG(uC) ĀC Ā2,C Ā3,C Ā5,C 2-P-special 3-P-special 5-P-special
E7 1 − 1 − − true − −

D7 1 − 1 − − true − −

E7(a2) 1 − 1 − − true − −

D6 1 − 1 − − true − −

A7 1 − 1 − − true − −

D5 +A1 1 − 1 − − true − −

E7(a5) S3 − S3 − − true − −

D6(a2) S2 − S2 − − true − −

D5(a1) +A2 1 − 1 − − true − −

A5 1 − 1 − − true − −

D4 +A1 1 − 1 − − true − −

2A3 1 − 1 − − true − −

A3 +A2 +A1 1 − 1 − − true − −

A3 + 2A1 1 − 1 − − true − −

A3 +A1 1 − 1 − − true − −

A2 + 3A1 1 − 1 − − true − −

4A1 1 − 1 − − true − −

3A1 1 − 1 − − true − −

E6 +A1 1 − − 1 − − true −

E6(a3) +A1 S2 − − S2 − − true −

2A2 + 2A1 1 − − 1 − − true −

2A2 +A1 1 − − 1 − − true −

A4 +A3 1 − − − 1 − − true

Table B.16: The ℓ-special but not special classes of E8
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C AG(uC) ĀC Ā2,C Ā3,C Ā5,C 2-P-special 3-P-special 5-P-special
E8 1 1 1 1 1 true true true

E8(a1) 1 1 1 1 1 true true true

E8(a2) 1 1 1 1 1 true true true

E8(a3) S2 S2 S2 S2 S2 true true true

E8(a4) S2 S2 S2 S2 S2 true true true

E8(b4) S2 1 S2 1 1 true false false

E7(a1) 1 1 1 1 1 true true true

E8(a5) S2 S2 S2 S2 S2 true true true

E8(b5) S3 S3 S3 S3 S3 true true true

E8(a6) S3 S3 S3 S3 S3 true true true

D7(a1) S2 1 S2 1 1 true false false

E6 1 1 1 1 1 true true true

E7(a3) S2 S2 S2 S2 S2 true true true

E8(b6) S3 S2 S2 S3 S2 false true false

E6(a1) +A1 S2 S2 S2 S2 S2 true true true

D7(a2) S2 S2 S2 S2 S2 true true true

E6(a1) S2 S2 S2 S2 S2 true true true

D5 +A2 S2 1 S2 1 1 true false false

E7(a4) S2 1 S2 1 1 true false false

A6 +A1 1 1 1 1 1 true true true

D6(a1) S2 S2 S2 S2 S2 true true true

A6 1 1 1 1 1 true true true

E8(a7) S5 S5 S5 S5 S5 true true true

D5 1 1 1 1 1 true true true

E6(a3) S2 S2 S2 S2 S2 true true true

D4 +A2 S2 1 S2 1 1 true false false

A4 +A2 +A1 1 1 1 1 1 true true true

D5(a1) +A1 1 1 1 1 1 true true true

D5(a1) S2 S2 S2 S2 S2 true true true

A4 +A2 1 1 1 1 1 true true true

A4 + 2A1 S2 S2 S2 S2 S2 true true true

A4 +A1 S2 S2 S2 S2 S2 true true true

D4 1 1 1 1 1 true true true

Table B.17: The special classes of E8
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C AG(u) ĀC Ā2,C Ā3,C Ā5,C 2-P-special 3-P-special 5-P-special
A4 S2 S2 S2 S2 S2 true true true

D4(a1) +A2 S2 S2 S2 S2 S2 true true true

A3 +A2 S2 1 S2 1 1 true false false

D4(a1) +A1 S3 S3 S3 S3 S3 true true true

D4(a1) S3 S3 S3 S3 S3 true true true

A3 1 1 1 1 1 true true true

2A2 S2 S2 S2 S2 S2 true true true

A2 + 2A1 1 1 1 1 1 true true true

A2 +A1 S2 S2 S2 S2 S2 true true true

A2 S2 S2 S2 S2 S2 true true true

2A1 1 1 1 1 1 true true true

A1 1 1 1 1 1 true true true

1 1 1 1 1 1 true true true

Table B.18: The special classes of E8 continued
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Code

C.1 Induction data of exceptional adjoint groups

This is the code for the proof of Lemma 3.2.22.

1 #####################################################################

2 # Check if N_G(L)/L = N_{C^o_\G(s)}(C^o_L(s))/C^o_L(s).

3

4 Same_relative_group := function(G,L,s)

5 local Gs, Ls, WL , WGsLs;

6 Gs := Centralizer(G,s).group;

7 Ls := Centralizer(L,s).group;

8 WL := Normalizer(G,L)/L;

9 WGsLs := Normalizer(Gs,Ls)/Ls;

10 return Size(WL)= Size(WGsLs);

11 end;

12

13 #####################################################################

14 # For s isolated in L, find z in Z^o(L) such that

15 # N_G(L)/L = N_{C^o_\G(sz)}(C^o_L(sz))/C^o_L(sz) and sz isolated in G

16 # Return sz.

17

18 Find_sz_with_same_relative_group_and_isolated := function(G,L,s)

19 local hyp , sz, y,c, possible_sz;

20 hyp := Same_relative_group(G,L,s) and IsIsolated(G,s);

21 sz := "still looking for sz";

22 if hyp = true then

23 sz := s;

24 else

25 # we try to find the correct z by multiplying s by some elements in

↪ the centre

26 for y in AlgebraicCentre(L).Z0.generators do

27 c := 1;

28 while hyp = false and c <100 do

29 possible_sz := s*SemisimpleElement(G,(1/c)*y);

30 hyp := Same_relative_group(G,L,possible_sz) and IsIsolated(G,

↪ possible_sz);

31 c := c+1;

191



Appendix C. Code

32 od;

33 od;

34 if hyp = true then

35 sz := possible_sz;

36 fi;

37 fi;

38 return sz;

39 end;

40

41 #####################################################################

42 # For all the exceptional adjoint groups and all their cuspidal

43 # data (L,(su)Z^o(L), E) s isolated in L, find z in Z^o(L) such

44 # that N_G(L)/L = N_{C^o_\G(sz)}(C^o_L(sz))/C^o_L(sz). Return sz.

45

46 Find_sz_with_same_relative_group_all_cases := function ()

47 local cusp_data_F4 ,cusp_data_E6 ,cusp_data_E7 ,cusp_data_E8 ,

↪ groups_and_data ,All_sz ,group_datum ,G,cusp ,All_sz_G ,L,s;

48 # we write down the data in CHEVIE

49 cusp_data_F4 := [[[2 ,3] ,[1/2 ,0 ,1/2 ,1/2]]];

50 cusp_data_E6 := [[[2,3,4,5], [1/2 ,0 ,0 ,1/2 ,0 ,1/2]]];

51 cusp_data_E7 := [[[2,3,4,5], [1/2,0,0,1/2,0,1/2,0]],

↪ [[1,2,3,4,5,6],[0,0,0,1/3,0,0,1/3]]];

52 cusp_data_E8 := [[[2,3,4,5], [1/2,0,0,1/2,0,1/2,0,0]],

↪ [[1,2,3,4,5,6],[0,0,0,1/3,0,0,1/3,0]],

↪ [[1,2,3,4,5,6,7],[0,0,0,1/4,0,0,0,1/4]]];

53 groups_and_data := [[ CoxeterGroup("F" ,4),cusp_data_F4], [CoxeterGroup

↪ ("E" ,6),cusp_data_E6], [CoxeterGroup("E" ,7),cusp_data_E7], [

↪ CoxeterGroup("E" ,8),cusp_data_E8 ]];

54

55 # we check for each group G and each cuspidal datum with L proper and

↪ not a maximal torus

56 All_sz := [];

57 for group_datum in groups_and_data do

58 G := group_datum [1];

59 All_sz_G := [];

60 for cusp in group_datum [2] do

61 L := ReflectionSubgroup(G,cusp [1]);

62 s := SemisimpleElement(G,cusp [2]);

63 Add(All_sz_G , Find_sz_with_same_relative_group_and_isolated(G,L,s

↪ ));

64 od;

65 Add(All_sz ,All_sz_G);

66 od;

67 return All_sz;

68 end;

69
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C.2 ℓ-special classes and number of Brauer characters

This is the code to determine the ℓ-special classes and to prove Proposition 5.1.24. This
code is a slight modi�cation of the one in [Cha19, Appendix B].

1 #####################################################################

2 # Computing the l-special classes

3 #####################################################################

4

5 #####################################################################

6 # Take a character E of the dual of W

7 # Return a character dualE of W via the isomorphism W^* to W.

8

9 Dualize := function(W,E)

10 local dualE;

11 dualE := E;

12 if IsomorphismType(W) = IsomorphismType(CoxeterGroup("G" ,2)) then

13 if E =3 then dualE :=4; elif E = 4 then dualE :=3;fi;

14 elif IsomorphismType(W) = IsomorphismType(CoxeterGroup("F" ,4)) then

15 if E =2 then dualE :=3; elif E = 3 then dualE :=2;fi;

16 if E =5 then dualE :=7; elif E = 7 then dualE :=5;fi;

17 if E =6 then dualE :=8; elif E = 8 then dualE :=6;fi;

18 if E =11 then dualE :=12; elif E = 12 then dualE :=11; fi;

19 if E =18 then dualE :=19; elif E = 19 then dualE :=18; fi;

20 if E =21 then dualE :=23; elif E = 23 then dualE :=21; fi;

21 if E =22 then dualE :=24; elif E = 24 then dualE :=22; fi;

22 fi;

23 return dualE;

24 end;

25

26 Dualize_list := function(W,listchar)

27 return List(listchar , E->Dualize(W,E));

28 end;

29

30 #####################################################################

31 # Give the order of a semisimple element in G.

32

33 Order_semisimple := function(G,s)

34 local id,n,t;

35 id := List ([1..G.rank], i-> 0);

36 n := 1;

37 t := s^n;

38 while t.v <> id do

39 n := n+1;

40 t := s^n;

41 od;

42 return n;

43 end;

44

45 #####################################################################

46 # Determine if a semisimple element is an l-element.

47

48 Is_l_element := function(G,s,l)
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49 local order;

50 order := Order_semisimple(G,s);

51 return (( order mod l =0) and IsPrimePower(order)) or order = 1;

52 end;

53

54

55 #####################################################################

56 # Give the list of l-special unipotent classes of G.

57

58 lspec := function(G, l)

59 local lspec ,Gstar ,lIsolated ,s,Ws ,specWs ,jind ,M,CharinWstar ,CharinW;

60 lspec :=[];

61 Gstar := Dual(G);

62 lIsolated := Filtered(QuasiIsolatedRepresentatives(Gstar), s->

↪ IsIsolated(Gstar ,s) and Is_l_element(Gstar ,s,l));

63 for s in lIsolated do

64 Ws := Centralizer(Gstar ,s).group;

65 specWs := Filtered ([1.. Length(ChevieCharInfo(Ws).a)], i->

↪ ChevieCharInfo(Ws).a[i]= ChevieCharInfo(Ws).b[i]);

66 jind:= jInductionTable(Ws,Gstar);

67 M:= Transposed(Transposed(jind.scalar){specWs });

68 CharinWstar := Filtered ([1.. Length(M)],i->Sum(M[i]) >0);

69 CharinW := Dualize_list(G,CharinWstar);

70 Add(lspec , List(UnipotentClasses(G).springerSeries [1]. locsys{

↪ CharinW},i -> i[1]));

71 od;

72 return Set(Flat(lspec));

73 end;

74

75 #####################################################################

76 # Computing the l-canonical quotient

77 #####################################################################

78

79 #####################################################################

80 # Return the list of conjugacy classes of l'-elements

81 # in the finite group A.

82

83 lprime_conj_classes := function(A,l)

84 return Filtered(ConjugacyClasses(A), i -> Gcd(Order(A,Representative(

↪ i)),l)=1);

85 end;

86

87 #####################################################################

88 # Count the number of l-modular representations of centralisers of

89 # l'-elements in the finite group A, i.e, |M^l(A)|.

90

91 lnumber := function(A,l)

92 return Sum(ConjugacyClasses(A),i -> Length(lprime_conj_classes(

↪ Centralizer(A,Representative(i)),l)));

93 end;

94

95 #####################################################################
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96 # A group and R a list of representations parameterised

97 # as in CharTable.

98 # Return the intersections of kernels of the representations in R.

99

100 Intersection_kernels := function(A,R)

101 local C;

102 C := Intersection(List(Rep , r->KernelChar(r)));

103 return Subgroup(A,Flat(List(C, i->Elements(ConjugacyClasses(A)[i]))))

↪ ;

104 end;

105

106 #####################################################################

107 # Return the group \bar{A}_{l,C} for C a unipotent conjugacy

108 # class of G.

109

110 Canonical_quotient := function(G,C, l)

111 local locsys , Au, Pos , DecMat , a, i, j, Fil , PIMs , PIMs_as_characters

↪ ,p,j,P;

112 locsys := UnipotentClasses(G).springerSeries [1]. locsys;

113 Au := C.Au;

114 # Give the position of all the Springer correspondents E_{C,phi} for

↪ each phi in irr(A_G(u_C)).

115 Pos := List ([1.. Length(CharTable(Au).irreducibles)], i ->

↪ PositionProperty(locsys , j -> UnipotentClasses(G).classes[j[1]] =

↪ C and j[2] = i));

116

117 # Create the list of all the a-values for the PIMs of A_G(u_C)

118 DecMat := Transposed(DecompositionMatrix(Au ,l));

119 a:=List ([1.. Length(DecMat)], i -> -1);

120 for i in [1.. Length(DecMat)] do

121 Fil:= Filtered ([1 .. Length(Pos)], j -> Pos[j] <> false and DecMat[i

↪ ][j]<>0);

122 if Fil <> [] then

123 a[i]:= Minimum(List(Pos{Fil}, j->ChevieCharInfo(G).a[j]));

124 fi;

125 od;

126

127 # Find the PIMS with the a-value maximal

128 PIMs := DecMat{Filtered ([1.. Length(DecMat)], i -> a[i]= Maximum ([0,

↪ Maximum(a)]))};

129 PIMs_as_characters := [];

130 for p in PIMs do

131 P := 0* CharTable(Au).irreducibles [1];

132 for j in [1.. Length(p)] do

133 P := P + p[j]* CharTable(Au).irreducibles[j];

134 od;

135 Add(PIMs_as_characters ,P);

136 od;

137 if Size(Intersection_kernels(Au,PIMs_as_characters)) = 1 then return

↪ Au;

138 else return Au/Intersection_kernels(Au,PIMs_as_characters); fi;

139 end;
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140

141 #####################################################################

142 # Return the number unipotent lmodular representations of the simple

143 # adjoint exceptionnal group of type G.

144

145 Size_unipotent_block := function(G,l)

146 local ls;

147 ls:= lspec(W,l);

148 return Sum(ls , i -> lnumber(Canonical_quotient(G,UnipotentClasses(G).

↪ classes[i],l),l));

149 end;

C.3 Mixed support of character sheaves

This is the code used in the proof of the unitriangularity to compute the restriction of
a character sheaf of the principal series to a mixed conjugacy class, see Chapter 6. The
second to last function allows us to prove the claim in Lemma 6.1.7. The last function
was used in the last non-special but ℓ-special cases of E8 in Subsection 6.1.7. Both
cases use the formula for the restriction of character sheaves in the principal series, c.f.
Corollaries 4.3.20 and 6.2.12.

1 #####################################################################

2 # Return the fusion of the unipotent classes of H to G.

3

4 UnipotentFusion := function(G,H)

5 local Ucl_G , Ucl_H , Ucl_G_dynkin , fusion , uH , uG_dynkin;

6 Ucl_G := UnipotentClasses(G).classes;

7 Ucl_H := UnipotentClasses(H).classes;

8 Ucl_G_dynkin := List(Ucl_G , c -> c.dynkin);

9 fusion := List(Ucl_G , x -> []);

10 for uH in [1.. Length(Ucl_H)] do

11 uG_dynkin := InducedLinearForm(G,H,Ucl_H[uH]. dynkin);

12 Add(fusion[Position(Ucl_G_dynkin , uG_dynkin)], uH);

13 od;

14 return fusion;

15 end;

16

17 #####################################################################

18 # Find the family of Uch(G) to which F belongs.

19

20 FindFamily := function(G,F)

21 return Filtered(UnipotentCharacters(G).families , f-> F in f.

↪ charNumbers)[1];

22 end;

23

24 #####################################################################

25 # Find the special character of Irr(W) in a family f of Uch(G).

26

27 FindSpecInFamily := function(W,f)

28 local C, R, spec , i,r;
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29 C := ChevieCharInfo(W);

30 R := f.charNumbers;

31 spec := Filtered ([1.. Length(C.a)],i->C.a[i]=C.b[i]);

32 return Filtered(R, r->r in spec)[1];

33 end;

34

35 #####################################################################

36 # Give the unipotent support of a character V coming

37 # from a ReflectionSubgroup H of the dual group of G.

38

39 UnipSupportG := function(G,H,V)

40 local Vspec , V0;

41 Vspec := FindSpecInFamily(H,FindFamily(H,V));

42 V0 := Dualize(G, PositionProperty(Transposed(jInductionTable(H,Dual(G

↪ )).scalar)[Vspec], l-> l<>0));

43 return UnipotentClasses(G).springerSeries [1]. locsys[V0 ][1];

44 end;

45

46 #####################################################################

47 # Find all the Gs=C^\ circ_G(s) such that s commutes with a

48 # conjugate huh^{-1} and whether the image of s in \bar{A}_(huh^{ -1})

49 # is trivial or not. This function uses the properties of simple

50 # adjoint groups of exceptional type.

51

52 List_pseudoLevi_commute_with_u := function(G,u)

53 local Ls,list_Gs_u , list_Gs ,image , Gs , list_u , Abar , u_in_Gs ,uGs ,

↪ Pos ,p, Lpos , L,uLs ,uLs_list , uGsdyn , Image_is_trivial;

54

55 # create the list of all connected centralisers of semisimple

↪ elements of which a unipotent clall fuses into (u)_G

56 list_Gs_u :=[];

57 list_Gs := List(SemisimpleCentralizerRepresentatives(G), h->

↪ ReflectionSubgroup(G,h));

58

59 Abar := Canonical_quotient(G,UnipotentClasses(G).classes[u],11);

60 image := Size(Abar) =1;

61 for Gs in list_Gs do

62 # look if there is a unipotent class of Gs fusionning into (u)_G

63 list_u :=[];

64 for u_in_Gs in UnipotentFusion(G,Gs)[u] do

65 # for each u, add u to the list and also check if u is

↪ distinguished in Gs

66 Add(list_u ,[u_in_Gs , Rank(AlgebraicCentre(Gs).Z0) = Rank(

↪ UnipotentClasses(Gs).classes[u_in_Gs ].red),image ]);

67 od;

68 if list_u <> [] then

69 Add(list_Gs_u ,[Gs,list_u ]);

70 fi;

71 od;

72

73 # determine whether the image of s in \bar{A}_(huh^{ -1}) is trivial

↪ or not.
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74 if Size(Abar) <> 1 then

75 # find the unique Levi L up to conjugation such that u is

↪ distinguished in L

76 Lpos := PositionProperty(list_Gs_u , Gs -> ForAny(Gs[2], us->us[2])

↪ = true and IsParabolic(Gs[1]));

77 L := list_Gs_u[Lpos ][1];

78

79 # determine whether the image of s in A_G(huh^{-1}) is trivial or

↪ not

80 for Gs in list_Gs_u do

81 for u_in_Gs in Gs[2] do

82 uGs := UnipotentClasses(Gs[1]).classes[u_in_Gs [1]];

83 # use the fact that there is a homomorphism from A_{Gs}(u) to

↪ A_G(u)

84 if GcdInt(Size(uGs.Au), Size(Abar)) =1 then

85 u_in_Gs [3] := true;

86 else

87 uGsdyn := uGs.dynkin;

88 Image_is_trivial := u_in_Gs [3];

89 Pos := Filtered(ParabolicRepresentatives(Gs[1]), p->Length(p)

↪ =Length(L.callarg [1]));

90 p := 0;

91 while Image_is_trivial <> true and p < Length(Pos) do

92 p := p+1;

93 Ls := ReflectionSubgroup(Gs[1],Pos[p]);

94 if IsParabolic(Ls) then

95 uLs_list := UnipotentFusion(G,Ls)[u];

96 if Length(uLs_list) = 1 then

97 uLs := UnipotentClasses(Ls).classes[uLs_list [1]];

98 if Rank(AlgebraicCentre(Ls).Z0) = Rank(uLs.red) then

99 Image_is_trivial := InducedLinearForm(Gs[1],Ls ,uLs.

↪ dynkin) = uGsdyn;

100 fi;

101 fi;

102 fi;

103 od;

104 u_in_Gs [3] := Image_is_trivial;

105 fi;

106 od;

107 od;

108 fi;

109 return list_Gs_u;

110 end;

111

112 #####################################################################

113 # For a unipotent character sheaf A_V in the principal series

114 # for V in irr(W), compute the restriction (s^*A_V)_{(uGs)_Gs}

115 # where (uGs)_G is the unipotent support of A_V for s

116 # commuting with uGs.

117

118 Unip_principal_series_restriction_at_Gs := function(G,V,Gs ,uGs)

119 local u,restV ,Gs,indTable ,restV_at_Gs ,V2;
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120 indTable := InductionTable(Gs ,G);

121 restV_at_Gs := [];

122 for V2 in PositionsProperty(UnipotentClasses(Gs).springerSeries [1].

↪ locsys , L ->L[1]= uGs) do

123 Add(restV_at_Gs ,[V2, indTable.scalar[V][V2]]);

124 od;

125 return restV_at_Gs;

126 end;

127

128 #####################################################################

129 # For a unipotent character sheaf A_V in the principal series

130 # for V in irr(W), for u is the unipotent support of A_V

131 # check that the restriction (s^*A_V)_{(u)_Gs} is trivial if s

132 # commutes with u and s has trivial image in the canonical

133 # quotient \bar{A}_u and that is zero otherwise.

134

135 Check_restriction_V_is_trivial_at_suGs := function(G,V,Gs)

136 local u, non_correct_rest , uGs ,restV_at_Gs_uGs , check , restV ,

↪ Image_springer;

137 non_correct_rest := [];

138 for uGs in Gs[2] do

139 restV_at_Gs_uGs := Unip_principal_series_restriction_at_Gs(G,V,Gs

↪ [1],uGs [1]);

140 if uGs [3] = false then

141 check := (Sum(List(restV_at_Gs_uGs , V2 ->V2[2])) = 0);

142 else

143 if Sum(List(restV_at_Gs_uGs , V2->V2[2])) <>1 then

144 check := false;

145 else

146 restV := Filtered(restV_at_Gs_uGs , V2 ->V2 [2]=1) [1][1];

147 Image_springer := UnipotentClasses(Gs[1]).springerSeries [1].

↪ locsys[restV];

148 check := ChevieCharInfo(UnipotentClasses(Gs[1]).classes[

↪ Image_springer [1]]. Au).positionId = Image_springer [2];

149 fi;

150 fi;

151 if not check then Add(non_correct_rest , Gs); fi;

152 od;

153 return non_correct_rest;

154 end;

155

156 #####################################################################

157 # Same function as before but for any s and

158 # any uGs such that (u)_G = (uGs)_G.

159

160 Check_restriction_V_is_trivial := function(G,V,u)

161 local non_correct_rest , Gs,i;

162 non_correct_rest := [];

163 for Gs in List_pseudoLevi_commute_with_u(G,u) do

164 if Check_restriction_V_is_trivial_at_suGs(G,V,Gs) <> [] then

165 Add(non_correct_rest , Check_restriction_V_is_trivial_at_suGs(G,V,

↪ Gs));
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166 fi;

167 od;

168 return non_correct_rest;

169 end;

170

171 #####################################################################

172 # For each family f of unipotent character sheaves , let u be the

173 # unipotent support and let A_V be the character sheaf

174 # for V in irr(W) the special character such that Spr(V) = (u,1),

175 # check that the restriction (s^*A_V)_{(u)_Gs} is trivial for all s

176 # commuting with u. Return the families and s and the restriction

177 # which are not trivial.

178

179 Char_sheaves_with_non_trivial_restriction := function(G)

180 local u, not_trivial_restriction , f,V, Check;

181 not_trivial_restriction := [];

182 for f in UnipotentCharacters(G).families do

183 V := FindSpecInFamily(G,f);

184 u := UnipotentClasses(G).springerSeries [1]. locsys[V][1];

185 Check := Check_restriction_V_is_trivial(G,V,u);

186 if Check <> [] then

187 Add(not_trivial_restriction , Check);

188 fi;

189 od;

190 return not_trivial_restriction;

191 end;

192

193 #####################################################################

194 # Let A be a character sheaf in the principal series coming from the

195 # induction datum m=(T_0 ,T_0 , loc) where loc is a Kummer local

196 # system on T_0. Let V be the character of Wm which corresponds to A.

197 # Note that Wm = Wloc =Wt where t in G* corresponds to loc.

198 # Compute the restriction of restriction (s^*A_V)_{(u)_Gs} where u is

199 # the unipotent support of A. Return a list of triples where the

200 # first element is the number of times the local system indexed by

201 # the character appears.

202

203 RestrictionMixedSupport := function(G, Wt ,Wloc , Gs ,V)

204 local formula , u, uGs , D, lambda , Ws_lambda , Ws_loc_lambda ,

↪ Ws_loc_lambda_Weyl , resV , sign ,t,Ten ,Tensign , res , uGs_lambda ,

↪ Ucl_Ws_lambda , v, F;

205 formula := [];

206 u := UnipSupportG(G,Wt,V);

207 uGs := UnipotentFusion(G,Gs)[u];

208 if uGs = [] then

209 Print("Error: The unipotent support of the character sheaf A

↪ indexed by", V, " doesn't commute with C_G(s).");

210 else

211 D := DoubleCosets(G,Gs,Wloc);

212 for lambda in D do

213 Ws_lambda := ConjugateSubgroup(Gs ,lambda.representative);

214 Ws_loc_lambda := Intersection(Wloc ,Ws_lambda);
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215 Ws_loc_lambda_Weyl := ReflectionSubgroup(G,Intersection(Ws_lambda.

↪ rootInclusion , Wloc.rootInclusion));

216 resV := InductionTable(Ws_loc_lambda ,Wloc).scalar[V];

217

218 # twist the restriction by the character chi_lambda of

↪ Ws_loc_lambda if we know how to do it.

219 if Size(Ws_loc_lambda) = 2*Size(Ws_loc_lambda_Weyl) then

220 # find the sign character of Ws_loc_lambda/Ws_loc_lambda_Weyl

221 sign := Filtered(PositionsProperty(Transposed(InductionTable(

↪ Ws_loc_lambda_Weyl , Ws_loc_lambda).scalar)[ChevieCharInfo(

↪ Ws_loc_lambda_Weyl).positionId], x->x<>0), y-> y<>1)[1];

222 t := CharTable(Ws_loc_lambda);

223 Ten := Tensored(t.irreducibles , [t.irreducibles[sign ]]);

224 Tensign := List(Ten , l-> PositionProperty(t.irreducibles , z->z=l)

↪ );

225 resV := resV{Tensign };

226 fi;

227

228 if Size(Ws_loc_lambda) > 2*Size(Ws_loc_lambda_Weyl) then

229 Print("Error: we cannot easily compute chi^d.");

230 else

231 # Compute the restriction of the possible characters of Ws_lambda

232 res := InductionTable(Ws_loc_lambda ,Ws_lambda).scalar;

233 uGs_lambda := UnipotentFusion(G,Ws_lambda)[u];

234 Ucl_Ws_lambda := UnipotentClasses(Ws_lambda);

235 for v in uGs_lambda do

236 for F in PositionsProperty(Ucl_Ws_lambda.springerSeries [1].

↪ locsys , l-> l[1] = v) do

237 Add(formula ,[resV*res[F], Ucl_Ws_lambda.springerSeries [1].

↪ locsys[F], Ucl_Ws_lambda.classes[v].Au]);

238 od;

239 od;

240 fi;

241 od;

242 fi;

243 return formula;

244 end;
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a �xed isomorphism φA . . . . . .89
χF ,φ characteristic function of F with

respect to φ . . . . . . . . . . . . . . . . . 62

χ∗ ∶= ±DG(χ) ∈ irrK(G) . . . . . . . . . . . . 137

D
D Verdier duality . . . . . . . . . . . . . . . . . . . 59
dO Dynkin diagram associated to the

nilpotent orbit O . . . . . . . . . . . . 33
∆(s) base of W ○(s) . . . . . . . . . . . . . . . . . 26
Db
c(Y,Qℓ) derived bounded derived

category of constructible
Qℓ-sheaves . . . . . . . . . . . . . . . . . . 58

D(C ) derived category of C . . . . . . . . .36
Db(C ) bounded derived category of C

36
[G,G] derived subgroup . . . . . . . . . . . . 15
DG Alvis�Curtis duality. . . . . . . . . . . . .43

E
Eℓ(G, t) irreducible characters belonging

to B(G, t) . . . . . . . . . . . . . . . . . 124
Eλ,j summand of (ρn)∗Qℓ . . . . . . . . . . . 63
Eλ,n(G) geometric series. . . . . . . . . . . . .46
E (G, s) geometric series. . . . . . . . . . . . .47
E (G,s) rational series . . . . . . . . . . . . . . .47

F
F family of characters of a Weyl group

49
fG
[a,ϕ]

Foruier transform of Kawanaka
characters . . . . . . . . . . . . . . . . . .144

Fq standard Frobenius map . . . . . . . . . 21
F ∗corresponding Steinberg map on the

dual group G∗ . . . . . . . . . . . . . . .24
F̃ set of irr(W⋊ < F > / < F c >)

restricting to the family F . . 51

203



Index

G
Gad adjoint quotient of G . . . . . . . . . . .20
ΓGu generalised Gelfand�Graev module

136
γGu generalised Gelfand�Graev character

136
Γ(Y,−) global sections functor. . . . . . .36
G complete root datum . . . . . . . . . . . . . 24
G∗ dual complete root datum of G . . 24
G∗ dual group of G . . . . . . . . . . . . . . . . .24
ĜF F -stable character sheaves of G . 83
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