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Abstract

Shape optimization using gradients computed via the adjoint method has become a

common feature and also, practically, a requirement among the major computational

fluid dynamics (CFD) and multi-physics solvers. Accurate sensitivities are widespread

available for single-zone steady-state problems, with unsteady or multi-physics adjoint

solvers being less common. Yet, gradient availability is a desirable feature for all primal

simulation capabilities. Many practical flows of industrial interest are unsteady in na-

ture, and for the simulation of heating/cooling devices the coupling between a fluid and

solid domain is essential to accurately capture the system’s behavior.

Combining these two general observations of the demand for sensitivities and unsteady

conjugate heat transfer applications, is the objective of the present work. Consequently,

this dissertation presents the development and application of an unsteady discrete ad-

joint solver for conjugate heat transfer (CHT).

Based on the framework available in the open-source multi-physics and design solver

SU2, an efficient method to compute shape sensitivities via the discrete adjoint method

for transient CHT problems is presented. The handling of the algorithmic differentia-

tion (AD) tool together with the orchestration of the numerous time-steps and various

involved zones is crucial, to retain a code that is efficient with respect to memory and

compute time. Therefore, a modular approach for the evaluation of the various derivative

terms (diagonal, cross, dual-time-step) is used.

Beyond design for time-accurate simulations, capabilities for steady state optimization

of repeating heat exchanger geometries, as pin-fin arrays, are developed.

For both tested CHT configurations (one unsteady and one steady), the gradient

validation shows excellent accuracy against finite differences and successful constrained

optimization highlights the practical applicability in a design chain.

The current development is not presented in isolation, but as a part of the SU2-project,

for which detailed information is provided in the appropriate context.

iii





Zusammenfassung

Die gradientenbasierte Formoptimierung mittels adjungierter Methoden, ist ein gängiges

Feature und praktisch auch eine Anforderung an die gängigen Computational Fluid

Dynamics (CFD) und Multiphysik-Löser geworden. Präzise Sensitivitäten sind weit

verbreitet für stationäre Probleme mit einer einzelnen physikalischen Zone, während ad-

jungierte Löser für instationäre oder multiphysik Probleme deutlich seltener vorhanden

sind. Im Allgemeinen ist die Verfügbarkeit von Gradienten ein angestrebtes Feature

für alle primären Simulationsmethoden. Viele industrierelevante Strömungen sind von

Natur aus instationär, und für die Simulation von Heiz-/Kühlsystemen ist die Kopplung

zwischen einer Strömungs- und einer Wärmeleitungsdomäne (CHT) unerlässlich, um das

Verhalten des Systems simulieren zu können.

Das Ziel der vorliegenden Arbeit ist es, diese beiden allgemeinen Beobachtungen zu

kombinieren: den Bedarf an Sensitivitäten und Anwendungen im Bereich des insta-

tionären, konjugierten Wärmetransports. Dementsprechend wird in dieser Dissertation

die Entwicklung und Anwendung eines instationären, diskreten adjungierten Lösers für

konjugierten Wärmetransport vorgestellt. Basierend auf dem Framework des Open-

Source Multi-Physik und Design Lösers SU2 wurde eine effiziente Methode zur Berech-

nung der genannten Sensitivitäten entwickelt. Um einen effizienten Code bezüglich Spe-

icher und Rechenzeit zu erhalten, ist die Handhabung des Tools zum Algorithmisches

Differenzieren (AD) zusammen mit der Orchestrierung der Zeitschritte und der ver-

schiedenen involvierten physikalischen Zonen entscheidend. Daher wird ein modularer

Ansatz für die Auswertung der auftretenden Ableitungsterme verwendet.

Über das Design für instationäre Simulationen hinaus, wurden Methoden für die sta-

tionäre Optimierung von sich-wiederholenden Geometrien für Wärmetauscher entwick-

elt, wie zum Beispiel Pin-basierte Kühlkörper. Für beide simulierten CHT-Testfälle, sta-

tionär und instationär, zeigt die Gradientenvalidierung zwischen adjungierter und Finite-

Differenzen Methode eine sehr gute Genauigkeit und die Optimierung unter Nebenbedin-

gungen belegt die praktische Anwendbarkeit in einer automatisierten Formoptimierung.

Die in dieser Arbeit behandelten Methoden wurden nicht isoliert entwickelt, sondern

sind als Teil des internationalen SU2-Projekts der Allgemeinheit zugänglich.
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Nomenclature

This nomenclature separately lists Latin and Greek symbols, sub- and superscripts and

abbreviations. Some entries serve multiple meanings in different contexts, which are all

listed separately. Note that the Unit-column is left empty when no unique unit can be

determined, and the entry [− ] signaling a dimensionless quantity. Few symbols are not

listed in this nomenclature for the sake of brevity and are introduced without exception

in the specific context.

Latin symbols

Symbol Unit Description

cp [ J/(kg ·K) ] specific heat capacity at constant pressure

D [m ] cylinder diameter in the unsteady testcase

f [ 1/s ] (shedding) frequency

F̄ c convective fluxes

F̄ v viscous fluxes

G fixed point iterator

h [W/(m2 ·K) ] heat transfer coefficient
¯̄I [− ] identity matrix

J scalar objective function

k [ J/kg ] turbulence kinetic energy

L Lagrangian

ṁ [ kg/s ] mass flow rate

n̄ [− ] outward facing unit normal vector

n̄A [− ] outward facing area normal vector, i.e. 2 norm of vector is

Area

p [Pa ] physical pressure (or recovered pressure)

p̃ [Pa ] reduced/periodic pressure

po [Pa ] operating pressure

P∆ [Pa ] pressure difference between periodic surfaces
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Symbol Unit Description

Prlam [− ] laminar Prandtl number

Prt [− ] turbulent Prandtl number

q̇ [W/m2 ] heatflux

Q arbitrary source term

Q̇ [W ] rate of heat flow

R [ J/(mol · kg) ] universal gas constant

R primal residual operator

Re [− ] Reynolds number

S generic source term

St [− ] Strouhal number

S∆ [− ] surface mesh deformation

t [ s ] physical time

t̄ [m ] translation vector between periodic surfaces

t̄ [m ] tangential vector to unit normal

tp [m ] distance to domain point from reference node in direction

of the translation vector

T [K ] physical temperature (or recovered temperature)

T [ s ] period length

T̃ [K ] reduced temperature

T∆ [K ] temperature difference between periodic surfaces

U general-working/conservative variables

v̄ [m/s ] velocity vector with components (u, v, w)T

V primitive variables

x̄ [m ] position vector of a point in the domain

x̄∗ [m ] position vector of a reference point on the periodic surface

which serves as inlet

X [m ] vector of mesh node coordinates

X∆ [m ] update to the vector of mesh node coordinates

y+ [− ] dimensionless wall distance

xii
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Greek symbols

Symbol Unit Description

α [m ] design variables, FFD-box point displacements

β [− ] pseudo speed of sound

δij [− ] Kronecker delta

ϵ [− ] user-provided factor to pseudo speed of sound

κ [W/(m ·K) ] thermal conductivity

λ adjoint variables

µ [Pa · s ] dynamic viscosity

µlam [Pa · s ] laminar dynamic viscosity

µt [Pa · s ] turbulent dynamic viscosity

ρ [ kg/m3 ] density

τ [Pa ] shear stress tensor in the Navier-Stokes equations

τ [ s ] pseudo time variable

ϕ [− ] relaxation factor

ω [ 1/s ] turbulence specific dissipation rate

Ω [m3 ] computing domain

Ωi [m3 ] volume of mesh element

Sub- and superscripts

Symbol Description

·f fluid domain

·i quantitiy associated with node i

·j quantitiy associated with node j

·ij quantitiy associated with edge connecting node i and j

·m quantitiy associated with zone m

·n quantitiy associated with timestep n

·p quantitiy associated with pseudo-timestep p

·s solid domain

∥·∥2 Euclidean 2 norm

xiii
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Abbreviations

AD Automatic Differentiation

CFD Computational Fluid Dynamics

CHT Conjugate Heat Transfer

CS Computer Science

DA Discrete Adjoint

(D)DES (Delayed) Detached Eddy Simulation

DNS Direct Numerical Simulation

Eq., Eqs. equation, equations

FD Finite Difference

FDS Flux Difference Splitting

FFD Free Form Deformation

GNU recursive acronym for ”GNU’s Not Unix!”

IDE Integrated Development Environment

LES Large Eddy Simulation

(L)GPL (Lesser) General Public License

PDE Partial Differential Equation

PR Pull Request

RANS Reynolds Averaged Navier Stokes

RHRK Regionales HochschulRechenzentrum Kaiserslautern

SA Spallart-Allmaras

SST Shear-Stress-Transport

SU2 Stanford University Unstructured

TU Technical University

URANS Unsteady Reynolds Averaged Navier Stokes
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1 Introduction

1.1 Motivation

Numerical simulations are an indispensable tool for research and development in the field

of Computational Fluid Dynamics (CFD) and are widely used across multiple industries

such as aerospace, automotive, medical technology and many more. Optimizing the

product design/shape with respect to specific objectives in the early stage of virtual

prototyping can greatly improve the product’s performance and thus fulfill regulators

and market demands.

In order to determine optimized designs in a vast design space, gradient-based op-

timization methods are a valuable tool and this work focuses on efficiently providing

accurate gradients for such methods. As the general optimization problem considered in

this work is not assumed to be convex, gradient-based methods would have to be com-

bined or replaced by suitable methods for global optimization. Gradient-based methods

are suitable to find a local optimum efficiently, but generally are not able to find other,

potentially more optimal points. Sampling the design space is a suitable approach to

find the global optimum, and by employing a surrogate model, the choice of succeeding

sampling points can be enhanced. A comprehensive discussion of gradient-free methods

and surrogate modeling can be found in [MN21], chapter 7 and chapter 10, respectively.

As the name suggests, gradient-based optimization methods require the ability to

determine the gradient of an objective function with respect to the designated set of

design variables. The straight-forward approach of computing these sensitivities using

finite differences scales linearly in computational time with the number of design vari-

ables (i.e. inputs), which quickly becomes computationally infeasible. Especially in an

optimization cycle where repeated gradient computation with respect to the most recent

design is required. Consider a three-dimensional free form deformation (FFD) box that

encloses the to be deformed surface with 10 control points along each edge, which results

in 3000 design variables, as each control point can be deformed in each Cartesian coor-

dinate direction. And this example potentially only offers reduced design freedom, with

higher FFD resolutions or other methods requiring even more design variables With a
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1 Introduction

single primal evaluation in the realm of CFD often lasting a number of minutes up to

multiple days on modern HPC hardware, the finite difference approach can be rendered

computationally infeasible for practical use in industry.

A suitable alternative to compute the necessary gradients are adjoint methods, where

the computational cost scales with the number of outputs (i.e. objectives) and not the

number of inputs, which can be huge for geometry parametrizations. Adjoint methods

can be generally separated in continuous and discrete adjoint methods. Independent

on the type of adjoint method, the compute cost for an adjoint evaluation associated

with one objective function is roughly considered to be of the same order of magnitude

as one primal evaluation. This makes it the method of choice for gradient-based shape

optimization approaches, where the amount of design variables almost always greatly

exceeds the objective functions.

In the continuous adjoint approach, the adjoint model is derived directly from the

governing equations and then discretized to be solved. Not only is this a meticulous and

cumbersome task that needs to be repeated every time altering equations are considered,

but one also encounters equations that are not analytically differentiable, e.g. some

turbulence models.

The second adjoint method to compute the required gradients with adequate accuracy

is the discrete adjoint (DA) method, where the adjoint model is derived based on the

discretized partial differential equations (PDE’s), i.e. the source code of the numerical

solver. This process, when automatized by adequately employing algorithmic differenti-

ation (AD), results in an efficient algorithm in compute time and memory, enabling the

computation of sensitivities required for optimizing complex problems.

In Conjugate Heat Transfer (CHT), the fluid zone is coupled with heat conduction

in solid zones, which is crucial to accurately simulate cooling/heating applications. The

CHT application considered in this work are pin-fin heat exchangers, where tens to

thousands of pins are arranged in a pin array to dissipate heat generated by e.g. power

electronics, into a cooling liquid that flows through the array. With advancing electrifi-

cation and simultaneous miniaturization in especially the automotive field, the need for

customized high-performance cooling is of ever-growing importance. Residential heating

is another wide-spread example where often natural gas boilers, which potentially are

replaced by hydrogen boilers in the future, have to efficiently exchange heat between a

high-temperature air stream and a cooler water stream, while simultaneously respecting

the regulator’s emission requirements.

Due to the high computational cost, these CHT simulations and optimizations are of-

ten performed in a steady-state manner, i.e. the physical process is assumed to be time-

2



1.2 State of the Art

independent. Employing unsteady Reynolds averaged Navier-Stokes (URANS) simula-

tions represents a suitable middle ground between prohibitively expensive scale-resolving

(e.g. (D)DES, LES, DNS) and steady-state simulations to model large-scale transient

effects that are neglected in steady-state simulations.

The available code framework SU2, which this thesis builds upon, is a key enabler for

obtaining industrially relevant results. SU2 is a global software project with a community

including multiple institutions in academia and industry, working with industry-standard

collaborative tools. The code is able to solve multiphysics problems and is written in

hybrid-parallel (MPI+OpenMP), and thus features the necessary requirements to make

use of modern high-performance computing infrastructure.

1.2 State of the Art

This section explores the research status of the fields that are associated to this thesis. It

thus constitutes the foundation for the subsequent section 1.3, which covers the contri-

butions to the research fields made by this work. The state of the art is chronologically

structured based on the contents of this thesis. Note that throughout that main body

of this thesis, extended explanations on the research status are given where appropriate.

The open-source computer code SU2 is used as the research platform and extended

with own implementations. The SU2 code was initially developed in Stanford by Palacios

et al. [Pal+13; Pal+14], hence the acronym SU2 which stands for Stanford University

Unstructured. At the early stage in the SU2 project, the focus in sensitivity computa-

tion was solely on the continuous adjoint method, with applications ranging from hy-

personic inlet design [KA17], over adjoint-based goal-oriented mesh adaptation [Cop+]

to optimization of a pitching wing in turbulent flow using URANS [Eco14]. The last-

mentioned contribution constitutes an early application of adjoint methods to unsteady

CFD phenomena in the context of a widely available multi-purpose implementation. It

also features exclusively forced motions by a user-defined pitching or rotation frequency,

which simplifies the objective function definition to an a priori known and fixed time

interval.

The book of Blazek [Bla15] provides an excellent resource for a general introduction

to a multitude of aspects concerning CFD codes, complementing the research literature

written by the various authors in the SU2 community. The choice to utilize SU2 as

a code framework for sensitivity computation is not arbitrary, but rather because SU2

was written with sensitivity computation in mind and not an afterthought. The most

notable alternative open-source code framework is OpenFOAM [Wel+98; OI01], which

3



1 Introduction

also offers adjoint-based design capabilities [STN14; Tow18].

The flow equations considered in this thesis are the incompressible Navier-Stokes equa-

tions in both, laminar and turbulent regime. An implementation in SU2 for steady state

flows was contributed by Economon [Eco20], which in turn was based on earlier work

by Weiss and Smith [WS95; WMS97].

Handling of fully developed flow via additional source terms in the momentum and

energy equation, that arise from a decomposition of pressure and temperature in a truly

periodic and linear component, was pioneered by Patankar [PLS77]. In addition to the

original paper, a discussion of the implementation for finite volume codes was done by

Beale [Bea05; Bea06], who also presents an early application to an offset-fin plate-fin

heat exchanger.

As mentioned above, the continuous adjoint initially was the predominant method

to compute sensitivities within SU2. The application of the adjoint method to fluid

mechanics was pioneered by Giles [GP97; GP00] and Jameson [Jam03]. In this thesis,

solely the discrete adjoint method, constructed via algorithmic differentiation, is em-

ployed. The initial implementation in SU2 was contributed by Albring et al. [ASG15;

ASG16], who applied the operator overloading AD-tool CoDiPack developed by Sage-

baum et al. [SAG19]. Early fundamental research on the discrete adjoint method based

on algorithmic differentiation applied to attractive fixed points was conducted by Chris-

tianson [Chr94].

A framework for discrete adjoint computations handling unsteady flows was developed

by Zhou et al. [Zho+16] who later added aeroacoustic capabilities [Zho+17] based on the

Ffowcs Williams-Hawkings (FW-H) method. Specialized work on reducing the compu-

tational cost in wall time and memory for the unsteady discrete adjoint comprises spatial

and temporal coarsening techniques by Nimmagadda et al. [Nim+18], investigations on

time-averaging steady vs. full unsteady adjoint by Hückelheim [Hue+15] or harmonic

balance by Rubino et al. [Rub+18], to name a selection.

With the release of primal multi-physics solvers (FSI, CHT) in SU2, the development

of adjoint-based design capabilities for these coupled problems naturally followed. A

discrete adjoint implementation for FSI problems was presented by Sanchez [San17]. A

generalized multi-physics discrete adjoint solver was presented by Burghardt [BGE19;

Bur+22], which independently treats solvers in separate zones which are coupled via

communication over arbitrary interfaces. The framework offers the flexibility to accu-

rately compute sensitivities for combined steady state CHT and FSI cases, as presented

in [Bur+22] at the example of a cooled turbine under an aerodynamic load. A discrete

adjoint solver for CHT applications based on a black-box approach was also shown in
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1.3 Contributions of this Thesis

OpenFOAM by Gkaragkounis et al. [GPG19].

For FSI, the multi-physics discrete adjoint was extended to unsteady flows with a

limitation to URANS cases by Crome [Ven20]. Applications range from forced motion

of rotating or plunging airfoils to vortex shedding behind stationary objects as cylinders

or airfoils. The current thesis extends the applicability to unsteady CHT cases, building

on the existing generalized framework.

With regard to the primary application considered in this thesis, pin-design in heat-

exchangers, a broad discussion exists in literature. From work exploring general design

primitives as staggered or in-line pin formations [Pat+18; Kha04], over various pin-shape

designs (round vs. elliptical vs. drop-shaped, straight vs. tapered, etc.) in [CB16],

towards adjoint-optimization on a steady state fluid domain in [Vid20].

1.3 Contributions of this Thesis

This section first defines two major research goals and subsequently discusses the con-

tributions made by this thesis towards their achievement. Motivated by the previous

sections the two research goals in a brief summary are:

• Providing accurate gradients for unsteady CHT simulations via a computationally

efficient discrete adjoint method, and thus enabling shape optimization.

• Identification and realization of suitable methods to efficiently evaluate a pin-

shape’s performance in an extended pin-array, as well as evaluation of validated

gradients for a shape optimization workflow.

An indispensable initial groundwork in the first research goal for unsteady CHT sim-

ulations in the context of the here considered heat exchanger applications, is the in-

volvement in the implementation of the unsteady incompressible Navier-Stokes solver.

Beyond the validation of the single-zone primal implementation, the validity of the sen-

sitivities computed via the discrete adjoint method was ensured. With respect to the

transition to multi-physics systems, the author enabled an operational unsteady CHT

discrete adjoint solver. The implementation yields very accurate sensitivities compared

to finite differences, including a complete shape design chain with geometry parameter-

ization based on FFD boxes and a subsequent volume mesh deformation. This proves

the consistency of the discrete adjoint gradient to the exact discrete primal problem

formulation. Within the bounds of an ordinary application case of a hollowed cylinder

in crossflow, the framework showcased its robustness over a complete optimization cycle

including a secondary constraint function and simple geometry constraints. This thesis
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1 Introduction

contributes a suitable approach, including the derivation thereof, to compute unsteady

CHT gradients and their practical usability in a design chain. To the best of the au-

thor’s knowledge, this constitutes the first unsteady discrete adjoint method in the field

of coupled CHT simulations, that yields high-precision sensitivities.

The second research goal is principally concerned with steady state simulations, but

in its general findings equally applicable to time-accurate simulations. The concept of

streamwise periodic flow was implemented, in order to perform simulations on an ele-

mentary unit cell that is representative for a fully extended array. This naturally involves

an approximation to the concrete application, but enables the performance evaluation of

a pin-shape in computationally feasible cost, and thus wall time and memory. Notable

extended features are the possibility of massflow prescription, inclusion of eddy viscosity

into the derivation and applicability to CHT simulations by replacing the energy equa-

tion’s volume heat sink by a periodic outlet heat sink. In order to achieve an accurate

gradient validation for streamwise periodic simulations with prescribed massflow, the

occurring fixed point iteration in the applied pressure drop needs to be treated equiva-

lently to the solution variables. The identification of this circumstance and subsequent

specialized treatment in the implementation constitute a limited but crucial contribu-

tion to the applicability to the here considered application. With the fully validated

gradient, the consequent progression towards free-form shape optimization using FFD-

boxes was made to highlight the stability in a fully automated design chain. For this

purpose, the periodicity-preserving geometry and mesh deformation setup to retain a

single pin-shape for the whole array in the simulation presents a sophisticated use-case

for otherwise limited usability of FFD-boxes.

All mentioned implementations and contributions are fully implemented and openly

available in the main version of the open-source PDE solver SU2. Within the scope of

the listed main contributions, numerous less integral code modifications and especially

corrections were made by the author. The involved rigorous orientation towards sustain-

able and maintainable code allows and ensures the practical usability and modifiability

of the contributions by a broader scientific audience.

1.4 Thesis Layout

Following this introduction which motivated the conducted research, presented the state

of the art and highlighted the contributions to the research field made by this thesis,

the main body provides detailed insights and explanation to the relevant contents. The

second chapter 2 first covers an overview of the open-source SU2 project in its entirety,
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focusing on a broad description including many essential non-technical aspects. In the

second section of chapter 2, the majority of primal modeling required for the simulations

conducted in this thesis is presented. The development of an efficient adjoint-based de-

sign capability is the subject of chapter 3. Therefore, the concept of streamwise periodic

flow with the implemented extensions is detailed, before covering the discrete adjoint

method constructed via AD. Considerations with respect to implementation, sustain-

ability and maintainability of the code development process are presented in chapter 4.

A particular focus is put on the reproducibility of all results shown in this thesis. The

developed methods from the previous chapters are applied to selected testcases in chap-

ter 5. Validations of the gradient accuracy are conducted for the developed methods.

Two CHT applications are featured in chapter 5, first a steady-state case on an elemen-

tary unit cell of a pin-fin heat exchanger, and second, a time accurate simulation of a

cylinder in crossflow. The thesis closes with conclusions and outlook in chapter 6.
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The first Sec. 2.1 of this chapter gives an overview of the SU2 project in its entirety,

covering general information about the codebase, general development principles, com-

munity organization and various other topics. In the second Sec. 2.2 the primal solution

procedure of the time-accurate incompressible Navier-Stokes solver and the extension to

coupled CHT simulation is presented.

2.1 The SU2 project

First and foremost, SU2 represents a piece of software solidifying itself in a codebase,

which will be explored in Sec. 2.1.1 in various aspects including file structure, license,

build system, version control and testing framework. But the creation of said codebase

is and was highly influenced, and even made possible in parts, by other factors discussed

in this section. These include the employed development platform in Sec. 2.1.2, the

role of the community and foundation in Sec. 2.1.3, as well as documentation aspects in

Sec. 2.1.4. Figure 2.1 presents a mind-map featuring the most relevant keywords in the

context of SU2, following this section’s structure.

The code is predominantly used as a research platform for academia and industry by

providing state-of-the-art numerical methods in a hybrid-parallel code with an extensive

testcase library. This alleviates the need to write from scratch, thoroughly test and to

maintain standard solver features within each organization or even for each individual

PhD student. This dramatically reduces the time necessary for a project to present first

results as the general framework including parallel file-IO, linear solver infrastructure,

domain decomposition, etc. can be taken off-shelf.

Above all, SU2 distinguishes itself from other available Open-Source CFD and mul-

tiphysics codes with the straight-forward availability of sensitivities via the discrete ad-

joint method constructed with AD. The sensitivities determined by the discrete adjoint

method are predominantly used for shape optimization in the context of SU2, but gen-

eral applications in the field of topology optimization [GP20], optimal control [Car+13]

or uncertainty quantification [Wan09] are possible as well.
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Figure 2.1: Mind-map of the SU2 project, representing the four parts of this section.

2.1.1 Codebase

SU2 is an open-source collection of software tools written in C++ and Python for

the analysis of partial differential equations (PDE’s) and PDE-constrained optimiza-

tion problems on unstructured meshes with state-of-the-art numerical methods. The

primary applications are computational fluid dynamics and aerodynamic shape opti-

mization, but has been extended to treat a great variety of equations such as structural

dynamics, heat equation and species transport.

The general-purpose programming language C++ offers considerable performance

benefits and a large, active community, such that many performance critical libraries

are optimized for most frequently used hardware. Especially with respect to scalability

over multiple cores and nodes in a high-performance computing system, C++ is a pop-

ular choice, partly due to the extensive experience of the high-performance community.

On the downside C++ requires detailed knowledge of the language and also sometimes

the specific hardware to produce fast, correct and stable code. This leads to extended
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training times for new, inexperienced developers. For many not performance critical

tasks that wrap the main solver in e.g. an optimization loop, the python programming

language is used. It is more straight-forward to learn, especially compared to C++ as it

simplifies certain concepts e.g. does not require strict type specification for variables or

automated garbage collection. These simplifications are of course paid for with decreased

performance, but Python makes up for this by extensive, well-documented packages for

numerical computation, data-processing, visualization and many more. This allows for

quick implementation and automation of otherwise cumbersome tasks. This thesis for

example, successfully uses the SLSQP implementation of the SciPy python package off-

shelf for the optimization results presented in Sec. 5.1.5 and Sec. 5.2.3. Ultimately, it is

the developer’s task to carefully weigh the benefits and disadvantages of the potential

programming languages and their infrastructure for the specific task at hand.

SU2 consists, as nearly all larger software projects, of the code written specifically

for the project and included libraries as well as other software packages that take over

certain specific tasks. Using well-established libraries often greatly reduces development

effort by not having to write, test and maintain the code. Examples in SU2 include the

widely used domain decomposition tool ParMETIS [KSK97] or the C++ unit testing

framework Catch21.

The compiled code features multiple modules, i.e. different binaries, that serve special

purposes. For example, the binary SU2 CFD evokes the primal solution capabilities while

SU2 DEF is used for all mesh deformation related aspects. The modules share a structure

of header and implementation files, e.g. the functionalities to read and interpret a

configuration file are used by most modules while the specific code for source term

residual contributions is merely used by the main solver module. As the file- and class

structure is subject to constant change, a detailed layout here would only represent one

snapshot in time.

The most recent code structure can be easily explored by compiling the Doxygen2 doc-

umentation to the available codebase as it provides a class hierarchy overview, extracts

function prototype explanation, lists class variables and much more in a developer-

friendly fashion. In order to create such documentation, the code must contain specially

formatted comments that Doxygen can extract. Largely, the code follows a one-class-

per-file policy, but this rule is disregarded for certain exceptions.

For a project with the size of SU2, the author heavily recommends the usage of an

Integrated Development Environment (IDE) that provides proper syntax highlighting,

1https://github.com/catchorg/Catch2 (Accessed 2022-08-15)
2https://www.doxygen.nl Doxygen is a documentation generation tool for source trees, that gener-

ates .html, .pdf, etc. files containing the output.
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code completion, visual debugging, etc. IDE’s like Visual-Studio(-Code), Qt-creator or

Eclipse to name a few, support the developer to achieve his tasks faster and with fewer

mistakes.

License

The code of SU2 is distributed under the GNU Lesser General Public License (LGPL)

in the version 2.1. The LGPL is a compromise between the GPL license that enforces

a strong copyleft and permissive licenses such as MIT. LGPL code can be included in

a software (even proprietary) as a shared library without having to distribute the own

software under LGPL, so the strong copyleft of the GPL does not apply for LGPL.

Modifications to LGPL code have to published under the same license though.

As stated above, SU2 includes a variety of third-party software packages and libraries

that all have their own license that needs to be respected individually. The most notable

for the present work are CoDiPack and MeDiPack as well as ParMETIS. CoDiPack and

MeDiPack are distributed under the GPL license, which enforces a strong copyleft.

They are not shipped with SU2 itself and are only an integral component when the

code is compiled with discrete adjoint capabilities. Therefore the distribution of the

SU2 codebase which does not include the source code to the mentioned packages, does

not trigger the GPL copyleft. In the case of ParMETIS, the original author gave the

permission to use the software under some condition, which is proper referencing and

inclusion of the original code and documentation.

The choice of license for an open-source software has to balance multiple interests

and can have a significant influence on its adoption in the community. For one thing, a

permissive license allows for the greatest possible distribution in that every programmer

can include the piece of software without having to worry about incompatible licenses,

on the other hand, a strong copyleft license potentially leads to a developer adopting the

license instead of a proprietary one for a new project, resulting in more free software that

others can benefit of. Highlighting the downsides, software with a permissive software

might be vastly modified/extended and distributed in closed-source, proprietary code,

but never shared with the community. A strong copyleft might discourage potential users

to include the software due to license incompatibilities, this is especially true for projects

with commercial interests. Ultimately, to some extent, open-source license choice at a

project start is also down to personal preference.
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Version Control

The used version control system Git is the de facto standard tool to track file-changes in

a source tree, with its application ranging from small projects created by one person to

large-scale international collaborative software development. The notable alternatives,

svn and Mercurial, are no longer widely spread although legacy codes still use version

control systems other than Git.

Git is a distributed version control system, meaning that the repository downloaded by

a user contains all the source code of a project, which includes the history of all changes to

all files in all branches. A branch represents an independent line of development within

the existing code. Most notably, the master and develop branch are core branches

in the GitFlow branching model explained below. The common workflow in SU2 for

a developer is to create a separate branch of the code, giving it a specific name, e.g.

feature streamwise periodicity, and when the development is finished the code is

merged back into the develop branch. File changes are tracked on the scale of commits

and each commit represents a snapshot of the codebase at that moment in time. Commits

are identified by a unique commit-ID that for example can be shared to allow another

person to use the exact same code for result reproduction. Users have to create commits,

and based on personal preference this can be in small chunks or large-scale contributions.

Due to its popularity and widespread use, vast resources to learn and master Git exist

for all experience levels. The book of Straub and Chacon [CS14] provides an extensive

introduction.

As already mentioned, the usage of Git within the project needs to be introduced.

Namely, the popular GitFlow3 concept is used by and large, which generally includes

one main branch, one development branch and arbitrary many feature branches. The

feature branches get merged into the development branch once their development is

finished and in freely chosen intervals, the accumulated changes in the development

version get merged into the main branch. The accumulated changes that get merged

into the main branch represent official releases of the software that get tagged with a

three-part version number, e.g. version 7.3.1 where all code contributions of this thesis

are available in.

3See https://nvie.com/posts/a-successful-git-branching-model/ (Accessed 2022-08-14) for

the original blog post by Vincent Driessen, who first published and popularized GitFlow.
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Build system

Build systems are used to create executable binaries from a collection of C++ source

code files in a simple, user-friendly fashion. Most build systems for C++ code can be

generally split into two sections: first a configuration step where exact build instructions

are created including user-chosen options and the second step where those instructions

are executed to create the binaries which ultimately constitute the executable program.

SU2 uses a combination of meson4 and ninja5, where the former is the higher level build

system that creates the input files for the latter, which in turn ultimately makes the

appropriate calls to the specified compiler and linker.

It is not uncommon for developers to trigger incremental builds every other minute

over the course of hours, especially when actively debugging. For inexperienced devel-

opers or new users of the software, a build system should allow a seamless adaption to

their system, including their compilers and possible MPI-implementations. Therefore,

an easy to use and fast build system can make all the difference for users and in the

developers workflow.

Regression and Unit test

The code includes an extended set of integration/regression and unit tests that ship

with the codebase. These can be run locally by each developer to verify that the own

contribution does not invalidate existing code.

Unit tests are meant to test limited code sections (e.g. a function) without running

the entire code, which includes a multitude of possible error sources. Input values are

prescribed and the output values are compared to reference values that are also defined

within the unit test. A failing unit test isolates the cause to a very narrow code region

that is easier to debug compared to the whole code. Usually, some sort of mocking

framework is required, that provides all necessary values and data structures to let the

code run. In SU2 the unit testing framework Catch26 is used, with a notable alternative

in the C++ community, being Google Test7.

Integration or also called regression tests, on the other hand, apply the complete

compiled software binary on a problem that it is originally intended to solve. Within the

context of SU2, this means a regular simulation including a mesh and configuration file is

run for a fixed number of iterations before comparing the output with stored values. The

4https://mesonbuild.com/ (Accessed 2022-08-15)
5https://ninja-build.org/ (Accessed 2022-08-15)
6https://github.com/catchorg/Catch2 (Accessed 2022-08-15)
7https://github.com/google/googletest (Accessed 2022-08-15)
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integration tests framework for SU2 is self-written and mainly stores/compares screen

output values, e.g. residuals, objective functions, solver parameters, etc. Again, the

test fails if the reference values are not matched within a small margin to account for

minimal floating point arithmetic effects.

Integration tests are by and large easy to set up, as the framework can externally

operate the software and just has to extract screen output values, whereas creating

a mocking structure for unit tests to allow the specific code part to run requires an

increased effort in an inheritance-heavy code like SU2. An integration test, by definition,

tests the whole simulation run and can therefore detect a greatly increased number of

possible errors. On the downside, a failing regression test by itself does not give a good

indication what code part(s) broke the test. Interestingly, in the author’s experience,

due to the vast amount of integration test8 it is possible in some cases to pinpoint the

error quickly by the combination of integration tests that fail and checking what these

have in common.

2.1.2 Development Platform

This subsection highlights the role of the used code hosting platform for collaborative

development in the SU2 project: GitHub. GitHub is owned by Microsoft since 2018,

and although SU2 uses GitHub specifically, all relevant features are available on similar

platforms like GitLab or Bitbucket, or in combination with a further 3rd party tool to

take over e.g. the regression testing with Travis CI.

As the name suggest, GitHub’s primary task is to host Git repositories and therefore

provides a central place to upload and share the repository with its various branches and

commits. Although Git is a distributed version control system, all developers synchronize

their repositories with the one hosted on GitHub if the aim is to merge their work into

the official develop-branch. These merges are the final part of a Pull Request (PR) on

the platform that are examined in the following, but there are more comfort features

that facilitate the development process across the community, which are introduced

thereafter.

A Pull Request on GitHub signals in the majority of cases that the development of

a feature branch is finished, and the contributor wants to merge the changes into the

development branch of the repository. The Pull Request into develop represents the

major quality gate for developed code in the SU2 project, where multiple checks (in-

8462 to be precise (in version 7.3.1), although it should be noted that there are major overlaps, e.g.

the same configuration in a serial and parallel test. For the sake of completeness, there are 249

assertions tested in 28 unit test setups.

15



2 Open Source SU2 framework

person and automatic) have to be fulfilled before the merge can take place. Merges in

between feature branches or from the develop branch into the main branch do not have

the same significance in terms of community engagement and required checks, therefore

the process described below mainly relates to merges into the develop branch. In a

Pull Request, the code author presents the code changes and provides an explanation

of what could be relevant to the community to get a good overview without having to

dig through the code: purpose, methods used, coding techniques, showcasing results in

form of e.g. plots, etc. Other community members now have the possibility to generally

comment on the work or add specific comments to selected lines of the code changes. In

software development it became good practice to review code contributions by a different

community member to spot possible mistakes, streamline efforts of parallel developments

and to ensure an overall good quality of code. Ultimately, one member of the community

has to provide a review that specifically approves the changes, otherwise the code cannot

be merged by a regular member. In the SU2 project, one approving review is required

for merging. The contrary to an approval is also possible by requesting changes, which

consequently blocks the merge, even if another member approves the changes. This

signals the PR author to implement the requested changes or to discuss its necessity

until the person who blocked the PR lifts that restriction.

In addition to this in-person check, the regression and unit tests are automatically

run and their successful passing is required for the PR to be merged. To be precise, not

only the regression and unit tests are run, but also various build configurations of the

code are compiled to check their integrity. These tests run in a docker container and

the necessary computing resources are provided by GitHub itself. In the development

process of a new feature it is helpful, in the experience of the author, to monitor early

on if/which tests are failing to fix the introduced errors. Therefore, it is simplest to

open a so-called Draft Pull Request on GitHub in an early stage of the development

process as this will trigger the automatic builds and tests with every new commit, and

additionally, allows community members to already review the work and spot possible

issues or conflicts with other developments.

As a third pillar of automatic testing, multiple code quality tools are used that scan

the code for obvious weaknesses and mistakes, or just bad style. The tools used at the

time of writing are LGTM and CodeFactor, but there exists a multitude of tools and

are the ones used by SU2 at the moment are most likely subject to change in the future.

These tools are often called static code analysis tools, which in the case of SU2 are

not explicitly geared towards security concerns, but e.g. unsafe handling of memory is

reasonable to fix in any software. In modern software development, an increasing number
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of automatic tools are and will be deployed to support the developers in producing well-

written and bug-free code. That is also the case for SU2. Ultimately, in spite of best

efforts to thoroughly check every code contribution, it is impossible to prevent new bugs,

issues and incompatibilities to occur with every new Pull Request.

The GitHub platform includes a bug or issue tracker which allows anyone to write a

bug report or just describe their issue. In case someone wants to ask just a question

that does not qualify for an issue, the discussion tab can be used, also just to showcase

produced results. The benefit of having Pull Requests, issues and discussion all on the

same platform is the ease with which certain details can be cross-referenced and the

increased visibility of the variety of development efforts and problems potentially avoids

time-consuming work down the road.

Apart from the main code repository for SU2, multiple complementary repositories

are hosted on GitHub. Most notably are the Testcases repository that contains meshes,

restart files or any other larger supplementary file that is required to run the regression

tests, and the SU2 project’s website9.

2.1.3 Community & Foundation

Originally, the SU2 code was developed solely in Stanford with the first release in 2012,

hence the acronym Stanford University Unstructured. Today, there are developers and

users across multiple institutions from academia and industry that are organized without

an obvious hierarchical structure. The following outlines how the SU2 community is

composed and presents virtual and in-person communication spaces and formats. The

SU2 foundation that formed in 2019 is an integral part of the community, but it is given

its own subsection in this discourse due to its distinctive role.

Community

Three essential roles can be identified within the SU2 community: users, developers

and managers. These are not mutually exclusive such that one person can represent all

three roles to some extent. Think for example of a senior researcher that develops novel

methods for a specific use-case and concurrently supervises a master’s or PhD-student

that works on an associated subproject.

As already mentioned, no single institution determines the course of SU2. This is

ultimately done via the contributions from the involved organizations from academia

and industry, mainly led in the form of professors and industry managers. Resources

9https://su2code.github.io/ (Accessed 2022-08-14)
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are allocated, personnel is acquired, and research focuses are set based on the boundary

conditions in these specific institutions. By and large, that process is not widely com-

municated until countable facts can be presented. In order to make informed decision

in these processes, these managers coordinate the realizability of the envisioned project

with (mostly their) developers and users.

Most publicly known projects including SU2 involve some form of code development,

which naturally requires developers. The largest group of developers historically and

still nowadays, are PhD students from universities and also industry. This circumstance

leads to a constant developer rotation as some PhD’s finish their project and do not

continue to work with the code and others that are just starting their project. Therefore

it is crucial for the community to provide a welcoming and inclusive atmosphere to

support each new member as good as possible in their learning phase and beyond. New

developers always provide a new perspective and ideas which can be beneficial, but for

a successful project some longer standing members that act as mentors are definitely

an advantage. The main research task is set by their respective manager, but within

the work it is natural that side projects arise that have positive side effects on their

and other people’s project. The introduced development platform GitHub provides a

focal point for developers, as here their features are merged into the code, issues and

discussions directly concerning the code arise and other developer’s work is presented

and should be followed as it potentially has direct impact on their own course of the

project. The developers currently10 schedule a weekly video conference meeting with a

loose format in which everyone is invited to chat about their projects, problems, ideas,

etc., and all participants try to discuss the topic and to find solutions and guidance if

necessary. Although other formats were already used and probably will evolve over time,

the direct verbal contact in addition to text-based communication in forums represents a

crucial component to a productive community. No external determined hierarchy exists

among developers, albeit a form of meritocracy naturally evolved, in which experienced

developers take over a leading role.

Lastly, the group of users is difficult to capture in its entirety as communication

often only occurs in form the of bug or issue reports or publicly shared success stories,

whereas the former is much more common. As a more user-focused platform, a cfd-online

Forum11 was created, which covers mostly practical aspects of setting up configuration

files, installation problems, etc., but also can provide valuable bug reports for developers.

Beyond that, there are some other notable platform and channels, where the commu-

10As of 2022-08-16
11https://www.cfd-online.com/Forums/su2/ (Accessed 2022-08-14)
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nity manifests itself. A slack channel12 with some subgroups is usually best to reach

out easily to the majority of the community. Here, questions are posed, collaborators

are searched and announcements from the foundation or the developers are made. Ad-

ditional announcement channels are LinkedIn13 and Twitter14 to reach as many people

as possible that are usually outside of the community, e.g. information about an up-

coming conference. Ultimately, it does not matter on which platform a topic is started,

but how detailed and complete it is, e.g. a bug report with detailed information and

the possibility of reproduction for an outsider, is more likely to receive fast and helpful

advice.

Through the initiative of the community including users, developers and managers

around the world, SU2 is now a well established tool with wide applicability to aeronau-

tical, automotive, ship, and renewable energy industries, to name a few.

Foundation

In response to an ever-growing community, the need for a foundation arose, that acts as a

central point of contact for various topics around the SU2 project that can not naturally

be answered or taken over by individual organizations or persons. The self-imposed

principal purpose of the SU2 foundation is to ‘promote global software development and

education to increase the pace of innovation in the engineering sciences for the public

benefit of all society’ and to ‘provide a neutral forum for community collaboration by

offering efficient infrastructure and technical governance’. Both statements are taken

from the foundation’s bylaws that can be found in its entirety on their website15.

The foundations board16 is composed of selected community members from various

institutions. The aim is to have a representative for all stakeholder groups, such as

academia and industry, as well as developers and users.

A major, publicly visible event with the SU2 conference spanning 3 days is organized

by the SU2 foundation in 2022 for the 3rd time. In-person developer’s meetings were

held before, but the increased organizational and financial effort that come with a larger

community are easier to coordinate for a foundation, that considers that very task as a

central aspect.

12Messaging platform that allows direct messaging to individual people and multiple open feeds with

various focuses where public discussions or announcments can be made.
13https://www.linkedin.com/company/su2code/ (Accessed 2022-08-14)
14https://twitter.com/su2code (Accessed 2022-08-14)
15https://su2foundation.org/ (Accessed 2022-08-16)
16Comprised of 7 persons, as of 2022-08-16. The most recent cast can be reviewed on the foundation’s

website given above.

19

https://www.linkedin.com/company/su2code/
https://twitter.com/su2code
https://su2foundation.org/


2 Open Source SU2 framework

The foundation is also able to collect funding to finance certain activities within the

scope of its bylaws, e.g. supporting the SU2 conference. A long-term vision is to gather

sufficient funds to finance developers to work on code aspects that are partly neglected

by the remaining community. It is natural that general code maintenance tasks are

difficult to justify within the scope of a PhD student’s work, such that it would be

reasonable to take over these tasks through the foundation.

2.1.4 Documentation

For a numerical solver as SU2, which is embedded in a scientific community, multiple

types and levels of documentation in a broad sense have to be considered: research

papers, tutorials and testcases, explanation of physical and numerical models and finally

implementation aspects. Despite the various community efforts, it is not possible to

document all aspects in all detail, and some features even remain undocumented.

On the highest level, research papers present recent advances in a specific scientific

field and document the employed methods and achieved results. As such, research papers

do not only act as a documentation but also advertisement for the SU2 project. It is not

guaranteed though, that the code utilized to achieve the presented results in a paper, is

merged into the official SU2 version, or even publicly available at all in a feature branch.

Arguably the best way to get familiar with the software SU2 is to use it. For this

purpose, 33 tutorials are available on the SU2 website, ranging from the well known

2D NACA0012 airfoil in crossflow, over unsteady conjugate heat transfer to constrained

shape design of an ONERA M6 wing. The tutorials explain various aspects about usage

of involved code options, running the code in multiple configurations and discuss result

interpretation. The testcase suite used for the regression tests contains a great number of

simulation setups, i.e. mesh and configuration files, that provide a starting point getting

to know an option that is not featured in one of the tutorials. As a necessary prerequisite

to run the code, a detailed setup and installation guide for the code is available on the

website.

Physical and numerical models available in SU2 are, to the most part, either doc-

umented on the SU2-projects website, or are widely known in the broader scientific

community and their specific documentation is not strictly necessary as other resources

take over that task. For example, the classic Roe convective scheme is not explicitly

documented and can be found in literature as in e.g. the book of Blazek [Bla15] which

was used frequently in the development of standard CFD solver features.

In the last category, there is the code documentation itself. On the one hand side, the

code itself provides the true implementation and thus documents all methods and models
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in a sense, on the other hand code documentation includes all intermediate comments

that explain isolated code pieces. The comments in the code largely follow the syntax

that can be parsed by the automatic code documentation software Doxygen, that was

presented in the above Sec. 2.1.1. Note that the amount and verbosity of the code

comments are based on the individual programmer’s preference and in spite of review

checks during each Pull Request, the comments can be of inconsistent quantity and

quality throughout the code. While the three prior documentation aspects are geared

towards users and developers alike, the code comments are naturally developer-focused.

Lastly it should be noted, that due to the open-source nature of the code, anyone can

check specific simulation methods or attempt result reproduction if the original creator

provides a commit ID, that uniquely identifies the used code snapshot, and the utilized

configuration files. Section 4.3 details result reproducible for the results presented in

this thesis.

As an additional aspect, the accumulated content on the various platforms in cfd-

online threads, resolved issues, discussions and Pull Request on GitHub or SU2-conference

contents provide a vast knowledge resource with the downside of limited searchability.

2.2 Physical and numerical modeling

In this section, the governing equations for unsteady incompressible flow are described,

and a density-based solution method for solving the used low-Mach form of the Navier-

Stokes equations is derived17, Sec. 2.2.1. After a brief presentation of the turbulence

model employed in Sec. 2.2.2, the heat equation for solid zones, Sec. 2.2.3, and the

coupling between fluid and solid for CHT computations is introduced, Sec. 2.2.4.

2.2.1 Unsteady Incompressible Solver

Low-Mach formulations of the Navier-Stokes equations have been shown to be well suited

for incompressible flow while avoiding the complexity of the fully compressible form of

the Navier-Stokes equations [Eco20]. Importantly, it augments the range of validity of

compressible solvers for the analysis of low-speed applications across a range of flow

regimes using a single code base. Here they are presented for time-accurate, fluid equa-

tions in the domain Ω ⊂ R3:

R (U) =
∂U

∂t
+∇ · F̄ c (U)−∇ · F̄ v (U,∇U)− S = 0, (2.1)

17This part is a to a large extent joint work in cooperation with Crome, such that passages were taken

and adapted from the joint publication [Ven+19].
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where the conservative variables are U = {ρ, ρv̄, ρcpT}T and S is a generic source term.

In the scope of this thesis, S will hold contributions in the momentum equations due

to the streamwise periodic approach presented in Sec. 3.1, but a further example would

be asymmetric source terms. The sum of the terms in Eq. (2.1) is represented by the

Residual operator R. The relevant conditions to be fulfilled on the boundary (no-slip

wall, symmetry, periodicity and farfield) are introduced later in this Sec. 2.2.1.

The convective and viscous fluxes can be written as:

F̄ c(U) =


ρv̄

ρv̄ ⊗ v̄ + ¯̄Ip

ρcp T v̄

 , F̄ v(U,∇U) =


·
¯̄τ

κ∇T

 , (2.2)

where ρ is the fluid density, v̄ = {u, v, w}T ∈ R3 is the flow speed in Cartesian system

of reference. Dynamic pressure is given by p while the thermodynamic pressure, po, is

assumed constant throughout the domain and in time. The decoupled pressure-density

system of equations are closed using an equation of state for density as a function of

temperature alone. Assuming an ideal gas with gas constant R, density is given by

ρ = po/RT .

The energy equation is also included in Eq. (2.2) where cp is the specific heat at

constant pressure, T is the temperature, κ is the thermal conductivity. κ is defined in

SU2 via the laminar Prandtl number Prlam via:

Prlam =
cpµ

κ
. (2.3)

Viscosity is given by µ and ¯̄τ is the viscous stress tensor, which can be expressed as

¯̄τ = µ
(
∇v̄ +∇v̄T

)
− µ

2

3
¯̄I (∇ · v̄) . (2.4)

For laminar flows, viscosity is purely given by the fluid’s dynamic viscosity, µ, which

can be constant or assumed to vary with temperature according to Sutherland’s law [Whi17].

Note that in this work, no temperature-dependent material conditions are considered

for the application testcases. For turbulent flows, Reynolds-averaged Navier-Stokes

(RANS) equations are solved with either the Shear Stress Transport (SST) model of

Menter [Men94] or the Spalart-Allmaras (SA) [SA92] model. The coupling to the mean

flow is achieved via an increase to the laminar dynamic viscosity by a turbulent contri-

bution noted with subscript t, such that the total dynamic viscosity computes to:

µ = µlam + µt. (2.5)

Consequently, the thermal conductivity in turbulent flows is:

κ =
cpµlam

Prlam
+

cpµt

Prt
, (2.6)
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where the turbulent Prandtl number Prt is considered a constant of 0.9. The SST-model

variant utilized in this work is specified in Sec. 2.2.2.

If Euler flows are investigated, then the viscous terms are removed by setting F̄ v = 0,

in the presented governing Eqs. (2.1) and the no-slip boundary condition is replaced

with parallel flow conditions that are equivalent to the symmetry wall conditions in

their implementation.

A Density-Based Solution Method

The approach of Weiss and Smith [WS95] is applied to develop a time-accurate density-

based strategy for the low-Mach equations in Eq. (2.1). In this work, only incompressible

flows are considered rather than a unified approach for compressible and incompressible

flows. Identical to the density-based approach for steady incompressible flow given

by Economon [Eco20], this derivation for unsteady incompressible flow starts with the

assumption, that the equation of state for density is a function of both pressure and

temperature, ρ = ρ (p, T ). In the derivation, the dependence on the pressure p will be

eliminated as a consequence of infinite pressure wave speeds, which will leave ρ = ρ (T ).

For time-accurate solutions using an implicit solver scheme, a pseudo-time derivative

in τ that needs to be marched in each pseudo time-step is introduced to the governing

equations to give:

∂U

∂t
+

∂U

∂τ
+∇ · F̄ c (U)−∇ · F̄ v (U,∇U)− S = 0. (2.7)

The working variables for the incompressible solver will be set to the primitive variables,

V = {p, v̄, T}T. This is not only a natural choice for incompressible flows, but for

higher order spatial reconstruction, the gradients with respect to V rather than U are

required. However, the final governing equations remain in conservative form, and the

time derivative with respect to the physical time in the dual time-time formulation will

be retained in terms of conservative variables, U .

The derivation of the preconditioning matrix starts by transforming the initial Eqs. (2.1)

from conserved quantities U to primitive variables V as follows:

∂U

∂t
+

∂U

∂V

∂V

∂τ
+∇ · F̄ c (V )−∇ · F̄ v (V,∇V )− S = 0, (2.8)

where the Jacobian of the transformation between the conservative variable vector and
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the primitive vector was introduced:

∂U

∂V
=


ρp 0 0 0 ρT

ρpu ρ 0 0 ρTu

ρpv 0 ρ 0 ρTv

ρpw 0 0 ρ ρTw

ρpcpT 0 0 0 ρT cpT + ρcp

 . (2.9)

The partial derivatives of the equation of state with respect to pressure and temperature

are given by ρp = ∂ρ/∂p and ρT = ∂ρ/∂T , respectively. Note that cp still represents

the specific heat capacity at constant pressure and not a partial derivative. The equa-

tions are converted to non-conservative form through multiplication of an additional

transformation matrix K, given by

K =


1 0 0 0 0

−u 1 0 0 0

−v 0 1 0 0

−w 0 0 1 0

−cpT 0 0 0 1

 , (2.10)

to give

K
∂U

∂t
+K

∂U

∂V

∂V

∂τ
+K∇ · F̄ c −K∇ · F̄ v −KS = 0. (2.11)

The choice of K is motivated by the resulting matrix that premultilpies the pseudo-time

derivative term:

K
∂U

∂V
=


ρp 0 0 0 ρT

0 ρ 0 0 0

0 0 ρ 0 0

0 0 0 ρ 0

0 0 0 0 ρcp

 , (2.12)

insofar that upon inspection it can be noted, that the term ρp that multiplies the pres-

sure time derivative in the continuity equation controls the speed of propagation of

acoustic waves in the system. Under convergence the pseudo-time derivative tends to

zero, therefore the matrix in Eq. (2.12) can be manipulated without affecting the final

solution to V . For an incompressible flow, one has ρp = 0. Now to help with numerical

convergence, this term is replaced by a value inversely proportional to the magnitude of
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the velocity in the domain, instead of just zeroing the contributions:

Γnc =



1
β2 0 0 0 ρT

0 ρ 0 0 0

0 0 ρ 0 0

0 0 0 ρ 0

0 0 0 0 ρcp

 , (2.13)

where β is a factor related to the maximum velocity in the domain and the subscript nc

stands for non-conservative. This effectively controls the magnitudes of eigenvalues of

the system. The variable name choice of β is made to draw a link to the artificial com-

pressibility method, where β is typically used. A problem-independent scaling definition

is adopted here as:

β2 = ϵ2 (v̄ · v̄)max , (2.14)

where ϵ is a user-provided value and (v̄ · v̄)max is the maximum squared velocity in

the domain, which is updated with each time step for an adaptive β value. In the

experience of the author, the default value in the SU2 implementation for ϵ of 2.0 was

not necessary to be changed for flow convergence. After the preconditioning of the system

by replacing the matrix (2.12) with (2.13), the governing equations are transformed back

into conservative form by pre-multiplying with K−1. This effectively reverts the prior

multiplication with K in Eq. (2.11) with the exceptions being the modified matrix that

multiplies the pseudo-time derivative. The final form of the density-based approach in

conservative form, where the incompressible governing equations are recovered when the

pseudo-time derivative term is relaxed to zero, consequently writes:

R (V ) =
∂U

∂t
+ Γ

∂V

∂τ
+∇ · F̄ c −∇ · F̄ v − S = 0. (2.15)

The final preconditioner takes the form:

Γ =



1
β2 0 0 0 ρT
u
β2 ρ 0 0 ρTu
v
β2 0 ρ 0 ρTv
w
β2 0 0 ρ ρTw
cpT

β2 0 0 0 ρcp + ρT cpT

 . (2.16)

Treating the system with matrix Γ achieves pressure-velocity coupling and enables a

coupled solution approach for incompressible problems. The matrix Γ treats all equations
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simultaneously with a pressure time derivative term, rather than only the continuity

equation treatment seen in the classic artificial compressibility approach.

This approach results in a generic formulation for steady (by ignoring the physical

time derivative) and unsteady flows, which has the added benefit of simplifying the

implementation. Additional incorporation of grid movement into the incompressible

flow equations does not alter the preconditioner [Ven20] which allows a straight-forward

addition for unsteady flows.

Spatial Integration

Spatial integration methods are inherited from the steady solver implementation[Eco20].

Discretization in space is performed using a finite volume method (FVM) with edge-

based data structure on a vertex-centered dual grid with control volumes. Semi-discretized,

integral form of the governing equations are obtained by integrating Eq. (2.15) over a

control volume |Ωi| and applying the divergence theorem to give:∫
Ωi

∂Ui

∂t
dΩ +

∫
Ωi

Γi
∂Vi

∂τ
dΩ +

∑
j∈N (i)

(
F̃ c
ij − F̃ v

ij

)
∆Sij − Si |Ωi| = 0, (2.17)

where F̃ c
ij and F̃ v

ij are the numerical approximations of the convective and viscous fluxes

projected along an edge ij, that connects points i and j. The fluxes are evaluated at

the midpoint of each edge. ∆Sij is the area of the face associated with the edge ij, |Ωi|
is the volume of the dual control volume, and N (i) is the set of neighboring vertices to

vertex i.

The convective fluxes have been discretized using both an upwind flux difference split-

ting scheme (FDS) and a centered scheme based on a modified version of the Jameson,

Schmidt, and Turkel (JST) scheme [JST81]. For the upwind scheme, second-order accu-

racy can be achieved via reconstruction of the primitive variables on the cell interfaces

by a MUSCL approach [van79]. A detailed description of the convective schemes can be

found in the steady solver description [Eco20].

The viscous fluxes are computed using a corrected average-gradient method [WMS97]

by firstly obtaining the spatial gradients of the flow variables using a Green-Gauss or

weighted least-squares approach [Bla15] which are then averaged to obtain these gradi-

ents at the control volume faces. Source terms are approximated at each vertex using

piece-wise constant reconstruction within each of the dual control volumes.

For turbulent flows, the convective terms from a turbulence model are discretized

using a scalar upwind scheme. The viscous and source terms from the turbulence model

are handled similarly to the mean flow using a corrected average-gradient method and

piece-wise constant reconstruction, respectively.
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Time Integration

For time-accurate simulations, a dual-time stepping scheme is used as mentioned above.

The simulation is marched in physical time with an internal pseudo-time marching at

each physical time-step. Upon convergence of the inner iterations, the preconditioned

pseudo time derivative vanishes, but the physical time derivative remains. The coupled

system of partial differential equations represented by Eq. (2.17), can be rewritten as:

∂

∂t
(Ui|Ωi|) +

∂

∂τ
(ΓiVi|Ωi|) +Ri (V

n) = 0, (2.18)

where Ri (V
n) is the numerical residual that represents the integrated sum of all spatial

terms, i.e. convective and viscous terms plus source terms, for the control volume sur-

rounding vertex i with cell volume |Ωi|. The superscript n indicates the current physical

time step.

The physical time-dependent term is evaluated through an implicit discretization

scheme that can be chosen either first or second order accurate within the scope of

SU2. Using second-order backward difference approximation to illustrate the procedure,

the physical time derivative can be discretized to give:

∂

∂t
(Ui|Ωi|) =

3Un − 4Un−1 + Un−2

2∆t
|Ωi|. (2.19)

The system in Eq. (2.18) can be rewritten by adding the discrete physical time derivative

in Eq. (2.19) to the discrete spatial residualRi (V
n) to form an updated residualR⋆

i (V
n):

∂

∂τ
(ΓiVi|Ωi|) +R⋆

i (V
n) = 0. (2.20)

The conservative variables U required in the physical time derivative can be straightfor-

wardly recovered from the primitive variables Un (V n), such that R⋆
i remains dependent

only on the primitive variables V n. During the pseudo-time iterations, the known conser-

vative variables of the past physical time steps, Un−1 and Un−2, are naturally considered

to be constants, and thus R⋆
i is not written down to be dependent on those states for

the sake of brevity. As τ → ∞ the pseudo time derivative vanishes and the solution for

Un, respectively V n, is found.

In the discretization of the pseudo-time derivative, the subscript p indicates the current

pseudo timestep. The next pseudo-time level, p+ 1, is evaluated by a backwards Euler

method (or implicit Euler), as:

Γi
∆V n

i

∆τi
|Ωi| = −R⋆

i

(
V n
p+1

)
, ∆V n

i = (Vi)
n
p+1 − (Vi)

n
p . (2.21)
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A first-order linearization about pseudo time level p provides an approximation to the

unknown R⋆
i

(
V n
p+1

)
:

R⋆
i

(
V n
p+1

)
= R⋆

i

(
V n
p

)
+

∑
j∈N (i)∪i

∂R⋆
i

(
V n
p

)
∂V n

j

∆V n
i +O

(
(∆V n

i )
2) , (2.22)

where the sum over the Jacobian contributions already factors in the compact stencil

over neighboring nodes (including the node i itself) that are used in classical FVM codes.

Introducing Eq. (2.22) into Eq. (2.21), the following linear system should be solved to

obtain the solution update ∆V n
i :(

Γi
|Ωi|
∆τi

δij +
∂R⋆

i

(
V n
p

)
∂V n

j

)
∆V n

j = −R⋆
i

(
V n
p

)
, (2.23)

where entries with a subscript j have to be summed over j ∈ N (i)∪ i and δij represents

the Kronecker delta. If a flux F̃ij has a stencil of points {i, j}, then contributions are

made to the Jacobian at four points, or:

∂R⋆

∂V n
:=

∂R⋆

∂V n
+



. . .
∂F̃ij

∂V n
i

· · · ∂F̃ij

∂V n
j

...
. . .

...

−∂F̃ij

∂V n
i

· · · −∂F̃ij

∂V n
j

. . .


. (2.24)

For the density-based approach, the block contribution along the diagonal involving the

volume and time step is multiplied by the matrix Γi and added to the Jacobian matrix for

node i. In practice, the Jacobian terms are approximated to reduce the computational

effort for constructing the linear system, or simply because a symbolic construction is

infeasible. An exact Jacobian is naturally desired for optimal stability of the solution

procedure, but if the specific application can be iterated until convergence, the inexact

Jacobians are no longer relevant and theoretically do not influence the final solution.

Eq.(2.23) can be rewritten as a fixed point iterator V n = Gn (V n):

V n
p+1 = Gn

(
V n
p

)
:= V n

p −Q
(
V n
p

)
R⋆
(
V n
p

)
, (2.25)

where Q is our approximate Jacobian from Eqn. (2.23), also given by

Q
(
V n
p

)
:=

(
Γ
|Ω|
∆τ

δij +
∂R⋆(V n

p )

∂V n

)−1

. (2.26)
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In Eqs. (2.25) and (2.26) the subscripts i, j indicating a specific node were omitted for the

sake of brevity. The fixed-point iterator notation is useful in order to construct iterative

discrete adjoint equations that use the same approximate Jacobian as the primal solver.

The pseudo time-step ∆τ that respects stability limits needs to be chosen, and the user

can manipulate the pseudo-time step via the Courant-Friedrichs-Lewy(CFL) number.

Boundary Conditions

A numerical simulation can only model a part of the real physical domain, which requires

the prescription of physical conditions on the resulting boundaries. These boundaries

can be natural, like the no-slip wall which appears also in the real world, or motivated by

computational cost to reduce the simulation effort like symmetry, periodicity or farfield

conditions. Symmetry and periodic boundary conditions are crucial for reducing the

necessary domain and therefore mesh size in the considered pin-fin-array array applica-

tion in Sec. 5.1, and the farfield conditions delimit the domain for the unsteady pin in

crossflow application in Sec. 5.2. An extensive discussion on boundary conditions and

their implementation, for unstructured median-dual schemes in the case of SU2 but also

cell-centered schemes, can found in the book of Blazek [Bla15].

The no-slip wall conditions is:

v̄ = 0, (2.27)

with the condition being strongly enforced in SU2. This means, the respective degrees

of freedom on the boundary are set to the respective value and the associated row in the

linear system is neutralized by setting the diagonal entry to unity and others to zero.

Note that here only the developed incompressible solver with the primitive variables as

working variables is considered. In case of an active energy equation, either an isothermal

or a heatflux wall for the temperature degrees of freedom are set in the scope of this

thesis. In combination with the no-slip wall, one of the following conditions have to be

met:

T = TWall, isothermal wall (Dirichlet), (2.28)

q̇ = q̇Wall, heatflux wall (Neumann), (2.29)

q̇ = h (T∞ − T ) , heat transfer wall (Robin). (2.30)

The temperature on the isothermal wall, in contrast to velocity for the momentum equa-

tions, is weakly enforced via a flux. Instead of setting the prescribed temperature value

and deleting the degree of freedom from the linear system, a heatflux based on the

temperature difference to a nearest normal neighbor is applied such that the boundary
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condition is fulfilled upon convergence. For a prescribed heatflux wall, the residual con-

tribution to the cell is straight forward, as the remaining flux following Eq. (2.2) on a

no-slip wall is a heatflux that is replaced by the value prescribed by the boundary con-

dition. For heat transfer walls, the heatflux is not prescribed by the user, but computed

locally based on the a given heat transfer coefficient h, a given reference temperature

T∞ and the local temperature T .

On symmetry boundaries, the following mathematical conditions have to be fulfilled:

n̄ · ∇s = 0, (2.31)

n̄ · ∇ (v̄ · t̄) = 0, (2.32)

t̄ · ∇ (v̄ · n̄) = 0, (2.33)

where s stands for any scalar quantities, i.e. pressure and temperature. n̄ denotes the

normal vector and t̄ a vector that is tangential to the symmetry boundary. In SU2 a

reflected state is constructed that results in a flux which enforces these conditions18.

For periodic boundary conditions, the degrees of freedom on either side of the periodic

interface (note that SU2 requires a matching mesh on both sides of the interface) have

to be identical. So for a periodic node pair i and j the requirement:

Vi = Vj (2.34)

has to hold for the primitive variables. The occurring residuals, Jacobians, partial

volumes, gradient contributions, etc. of either side of the interface are communicated

between the periodic point-pairs such that upon convergence, each point-pair has an

identical solution.

With a farfield boundary, an infinite domain is approximated such that the boundary

condition that imposes free-stream conditions, optimally, has a negligible effect on the

flow solution. For the incompressible flow solver, the flux of the boundary point to a

constructed identical point that holds the free-stream values is computed.

2.2.2 Turbulence Modeling

The SST turbulence model as employed in SU2 is briefly introduced, as there are slight

deviations towards the original SST-1994 version as listed on the website of the Tur-

bulence model resource (TMR) of the Nasa Langley research center19. In order to stay

18This was implemented by the author in PR #657 https://github.com/su2code/su2/pull/657 and

PR #740 https://github.com/su2code/su2/pull/740.
19https://turbmodels.larc.nasa.gov/sst.html (Accessed 2022-08-09)
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close to the TMR resources for better comparison, the Einstein summation convention

is used in the subsequent equations. The motivation to implement a non-standard SST

variant into SU2 remains unclear to the author. For the sake of reproducibility, the

implemented SST variant is documented here, in case of a standard version, this would

not have been done.

In a desired comparison with a commercial CFD-solver, e.g. Ansys Fluent, this cir-

cumstance should be kept in mind. A detailed comparison between the original SST-

1994 [Men94], the updated SST-2003 [MKL03]20 and the SU2-variant, together with

implications on an axisymmetric nozzle application, can be found in the master’s thesis

of Heimgartner [Hei21], which was supervised by the author.

The transport equations for turbulent kinetic energy and specific dissipation rate are:

∂(ρk)

∂t
+

∂ρkuj

∂xj

= Pk − β∗ρωk +
∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
, (2.35)

∂(ρω)

∂t
+

∂ρωuj

∂xj

=
γ

νt
Pω − βρω2 +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2 (1− F1)

ρσω2

ω

∂k

∂xj

∂ω

∂xj

,

(2.36)

with σk, σω, β and γ being blended between two constant values, e.g. for a generic

variable ϕ one has:

ϕ = F1ϕ1 + (1− F1)ϕ2, (2.37)

with F1 being defined in Eq. (2.45) and as all the constants are unchanged to the given

TMR resource, they are not further listed here. νt is the turbulent kinematic viscosity.

The production term for turbulent kinetic energy Pk is:

Pk = µtS
2 − 2

3
ρk

∂ui

∂xi

, (2.38)

S =
√

2SijSij, Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (2.39)

with the strain magnitude (or strain invariant) S and the strain rate tensor Sij. For the

turbulent kinetic energy production in Eq. 2.35 an additional production limiter is used:

Pk = min (Pk, 20β
⋆ρωk) . (2.40)

20With PR #1560 https://github.com/su2code/SU2/pull/1560 (Accessed 2022-08-09) the SST-

2003 model is available in SU2, which was after the thesis results had been finalized.
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The production term for the specific dissipation rate Pω:

Pω = µtS
2 − 2

3
max

(
ω,

ΩF2

a1

)
∂ui

∂xi

, (2.41)

Ω =
√
2WijWij, Wij =

1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
, (2.42)

F2 = tanh
(
arg22

)
, arg2 = max

(
2

√
k

β⋆ωd
,
500ν

d2ω

)
, (2.43)

where Ω is the vorticity magnitude. For the production of specific dissipation rate, a

production limiter is employed as well:

Pω = max (Pω, 0.0) . (2.44)

The notable differences to the original SST-1994(m) version are, that the production

terms Pk and Pω are just computed as P = µtS
2 without any further terms, and there

is no production limiter for Pω.

The blending function F1 is computed by:

F1 = tanh
(
arg41

)
, arg1 = min

[
max

( √
k

β⋆ωd
,
500ν

d2ω

)
,
4ρσω2k

CDkωd2

]
, (2.45)

CDkω = min

(
2ρσω2k

1

ω

∂k

∂xj

∂ω

∂xj

, 10−20

)
, (2.46)

where d is the distance from the field point to the nearest wall.

The turbulent eddy viscosity is finally computed as:

µt = max

(
ρkmin

(
1

ω
,

a1
ΩF2

)
, 0.0

)
, (2.47)

with Ω is defined in Eq. (2.42) and F2 in Eq. (2.43).

2.2.3 Solid Heat Conduction

In addition to the fluid flow, heat conduction in solid bodies is considered. This section

introduces the PDE to be solved in the domain and the coupling of fluid and solid fields

is discussed in the subsequent Sec. 2.2.4.

Following the notation for the fluid Eqs. (2.1), the heat equation in the domain Ω ⊂ R3

is structured as follows:

R (U) =
∂U

∂t
+∇ · F̄ c (U)−∇ · F̄ v (U,∇U)− S = 0, (2.48)
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2.2 Physical and numerical modeling

where the working variables are simply U = {T}. The source term S could hold contri-

bution of e.g. Joule heating, if additional electrical current were to be considered.

There are no convective fluxes in the solid body, and the remianing viscous fluxes can

be written as:

F̄ c(U) =
{

·
}
, F̄ v(U,∇U) =

{
κ
ρcp

∇T
}
. (2.49)

As for the fluid equations, no temperature dependent material properties were considered

in this thesis.

The spatial discretization of viscous fluxes via the finite volume method is identical

to the fluid flow as well as the temporal discretization, both in pseudo and in physical

time.

In terms of boundary conditions, isothermal, constant heatflux and symmetry bound-

aries are considered. The isothermal boundary condition is again weakly enforced as

described for the fluid flow as well as the constant heatflux boundary, and for symmetry

again the normal component of the temperature gradient has to vanish which leads to

no additional flux contribution.

2.2.4 Conjugate Heat Transfer

In conjugate heat transfer problems, heat transfer between fluids and solids is coupled

through a fluid-solid interface. The continuity of temperature and heat-flux has to be

satisfied at the fluid-solid interface:

Tf = Ts, (2.50)

q̇f = q̇s, (2.51)

with the subscripts f, s indicating fluid or solid, respectively.

In SU2, the solution to the coupled problem is computed by exchanging suitable

boundary values between zones, which are otherwise iterated independently. This ap-

proach is referred to as the partitioned approach, which allows for independent develop-

ment of each solver and also of the coupling tools, e.g. using preCICE as coupling tool

in a CHT simulation with OpenFOAM to solve the fluid domain and CalculiX to solve

the solid domain as presented in cite. [Luc16]. The notable alternative of one unified

system that contains the degrees of freedom of the fluid and solid zone that is solved for

at once, is referred to as monolithic approach.

It remains to introduce the communicated values between zones and the applied

boundary conditions in each zone for the partitioned approach in SU2. Note that the

CHT applications shown in this work have a matching mesh interface which makes the
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2 Open Source SU2 framework

use of a nearest-neighbor mapping of boundary nodes viable. In case of strongly varying

mesh resolutions and a resulting non-matching interface mesh it is recommendable to

explore options of interpolating communicated values across the interface.

On the fluid side, Dirichlet boundary conditions for Temperature are imposed, there-

fore the solid side only needs to transfer its Temperature values. The Dirichlet boundary

condition for temperature on the fluid side of the CHT interface is strongly enforced, as

opposed to the weak imposition that is done for the standalone isothermal boundary.

In addition, no-slip conditions for the flow velocities are strongly enforced on the fluid

interface, just as for the regular isothermal or heatflux wall. On the solid side, a Robin

boundary condition (in this context often called convective or heat transfer boundary)

is applied that computes a resulting heatflux based on a heat transfer coefficient h and

a temperature difference between fluid and solid side:

q̇s = h (Ts − Tf ) , (2.52)

where the choice of h is not dependent on the material properties, but ultimately an

empirical quantity with implications on convergence speed, as shown in [ED16]. Alter-

natively, the resulting heatflux on the fluid interface could be transferred and applied

directly to the solid domain. Differences in stability and convergence behavior on ap-

plying a Dirichlet condition to the fluid and a Robin/Neumann boundary to the solid

or vice versa are discussed in [VS16].

The interface coupling process provides a natural possibility to introduce an additional

iteration level, in which multiple iterations are performed in a zone with a constant

interface boundary before updating the interface information by calling the respective

transfer routine. In an unsteady multizone simulations using dual-time stepping as in

this work, there are hence a total of three iteration levels: physical time iterations, outer

iterations in which interface communication takes place and finally inner iterations in

each zone with the interface boundary fixed. The specific applications considered in this

thesis only use a single inner iteration per outer iteration, i.e. the interfaces values are

always up-to-date with the zonal values, as no direct benefit of multiple inner iterations

could be observed.
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3 Development of an efficient

adjoint-based design capability

In the first Sec. 3.1 of this chapter, modeling capabilities for streamwise periodic flow

are introduced as an essential prerequisite for a computationally affordable evaluation

of periodically repeating geometries as investigated in the application Sec. 5.1. The

adjoint-based sensitivity computation leveraged by algorithmic differentiation follows in

Sec. 3.2 and provides the foundation for the efficient design capabilities that are applied

in this thesis.

3.1 Modeling streamwise periodic flow

Flows through periodically repeating geometries can be simulated (or approximated for

non-academic cases) solely on a representative unit cell using the approach presented in

this section. The following cyclic conditions of reoccurring conditions (or flow patterns)

characterize streamwise periodic, or often called fully developed, flow:

p (x̄) = p (x̄+ t̄) + P∆, (3.1)

v̄ (x̄) = v̄ (x̄+ t̄) , (3.2)

T (x̄) = T (x̄+ t̄)− T∆, (3.3)

where x̄ is any point in the flow domain, and t̄ the periodic translation vector that

connects two subsequent points in the domain, that exhibit the same flow pattern. The

length of t̄ represents the length in which flow patterns reoccur, therefore the simu-

lation domain length for streamwise periodic simulation is chosen as the length of t̄.

Fig. 3.1 sketches a simulation domain Ω together with various quantities that will be-

come relevant in the subsequent derivations. The domain can be placed arbitrarily in

the coordinate system for the following derivation, but in case the periodic translation

vector t̄ coincides with a coordinate axes and the domain inlet is placed on the origin,

much of the derivation simplifies.
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x̄− x̄⋆
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x̄⋆

t̄p

∂Ω

Ω

Figure 3.1: Illustration of the computation for the domain progress variable t̄p, in direc-

tion of the periodic translation vector t̄.

From Eq. (3.2) follows, that velocity behaves truly periodic, in that the same veloc-

ities can be observed periodically in direction of the periodic translation vector t̄. For

pressure in Eq. (3.1) and temperature in Eq. (3.3) the shape of the pressure/temperature

distribution at successive streamwise locations is identical but with a constant offset, P∆

or T∆. The signs in front of the constant offsets is motivated by pressure decreasing in

downstream direction and fluid temperature increasing in general cooling applications,

such that P∆ and T∆ itself represent positive values. But a reversal in that logic is

straight forward and does not require any change in the derivation.

Now in order to simulate streamwise periodic flow, the interfaces of the aforementioned

representative unit cell have to be connected via periodic boundary conditions in flow di-

rection. The prescription of periodic boundary conditions alone, at what is supposed to

be the designated inlet and outlet, leads to the trivial solution of zero flow velocities and

a constant pressure field. In many conducted internal flow simulations, a combination

of in- and outlet boundary, e.g. velocity inlet and pressure outlet, acts as a momen-

tum source term resulting in non-zero velocities. Therefore, additional source terms for

momentum and energy, based on the streamwise periodic conditions in Eqs. (3.1)-(3.3)

are derived in the following subsections based on the work of Patankar [PLS77] and

Beale [Bea05], with an additional focus on possible boundary condition adaptions as
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3.1 Modeling streamwise periodic flow

well as implications on RANS equations in Sec. 3.1.4 or CHT simulations in Sec. 3.1.3.

3.1.1 Pressure Periodicity through the Momentum Equations

The previously introduced condition for pressure in streamwise periodic flows in Eq. (3.1)

motivates the subdivision of the pressure field p into two components:

p (x̄) = p̃ (x̄)− P∆
tp
∥t̄∥2

, tp =
1

∥t̄∥2
|(x̄− x̄⋆) · t̄| , (3.4)

where the field p̃ is truly periodic with p̃ (x̄) = p̃ (x̄+ t̄) and relates to the local fluid

motions, whereas the second term relates to the global mass flow and increases linearly

along the periodic translation vector. The factor to the pressure drop, along a streamwise

unit P∆, is simply the progression along the periodic translation vector divided by its

total length and is thus zero at the beginning of the periodic domain and scales linearly

to one at the end of the domain. Fig. 3.1 motivates the computation of the domain

progress variable tp via orthogonal projection, with x⋆ being any point on the inlet

surface and ∥·∥2 the Euclidean norm.

Recall the previously introduced momentum equation in the incompressible Navier-

Stokes Eqs. (2.1) that contain a divergence term dependent on pressure:

∂v̄

∂t
+∇ ·

(
ρv̄ ⊗ v̄ + ¯̄Ip− ¯̄τ

)
= 0. (3.5)

Inserting the above definition for pressure in streamwise periodic conditions (3.4) yields:

∂v̄

∂t
+∇ ·

(
ρv̄ ⊗ v̄ + ¯̄I

(
p̃− P∆

tp
∥t̄∥2

)
− ¯̄τ

)
= 0. (3.6)

Evaluating only the divergence of the pressure related term:

∇ ·
(
¯̄I

(
p̃− P∆

tp
∥t̄∥2

))
= ∇ ·

(
¯̄Ip̃
)
−∇ ·

(
¯̄IP∆

tp
∥t̄∥2

)
= ∇ ·

(
¯̄Ip̃
)
− P∆

∥t̄∥22
t̄, (3.7)

leads to an additional volumetric source term that has to be added to the momentum

equations while the original pressure term is now formulated in terms of the periodic

pressure component instead of the physical pressure. Writing the momentum equations

adjusted to the streamwise periodic conditions with respect to pressure gives:

∂v̄

∂t
+∇ ·

(
ρv̄ ⊗ v̄ + ¯̄Ip̃− ¯̄τ

)
− P∆

∥t̄∥22
t̄ = 0. (3.8)

As a practical sidenote for implementation, one has ∥t̄∥22 = t̄ · t̄. Note that with the

change to the periodic pressure p̃ as the solvers working variable, the physical pressure,
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3 Development of an efficient adjoint-based design capability

if needed, has to be reconstructed as a post-processing step by evaluating the pressure

decomposition in Eq. (3.4) for each grid node. This is especially necessary for objective

functions based on physical pressure levels, e.g. the pressure drop between in- and outlet

is of course zero evaluated for the periodic pressure component, while the evaluation with

physical pressure yields the prescribed pressure drop P∆.

The pressure drop over the domain P∆ has to be provided by the user based on the

treated application, but the possibility to automatically determine the suitable P∆ for a

prescribed massflow through the periodic interface will be discussed later in this section.

The periodic translation vector t̄ is already uniquely defined by the periodic interface

pair that is given by the user. The introduced source term generates no additional

Jacobian contribution in case a P∆ is directly prescribed.

As no adaption to the time derivative term had to made, the dual-time stepping

approach employed in this thesis for time-accurate simulations remains valid as is. This

is also the case for the derivation for the energy equation in Sec. 3.1.2.

The boundary condition (noslip wall, symmetry, etc.) do not need to be adapted based

on the subdivision of the pressure field. In the upcoming Sec. 3.1.2 which introduces a

subdivision of the temperature field, a notable adaption needs to be made for heatflux

boundaries.

Prescribing a Fixed Massflow

In some real-world applications, the massflow over the periodic section is known (or

strictly enforced) but not the pressure drop. Up to now, only a pressure drop P∆ can

be prescribed by the user.

In order to prescribe a specific massflow ṁt (with subscript t for target), a continuous

update mechanism for P∆ is necessary, such that upon convergence a P∆ value is found

that results in the target ṁt. The initial guess for P∆ has to be given by the user based

on experience, but a good guess is not important in the author’s experience and taking

1 as an initial value works well. After performing the first iteration with the initial P∆,

the pressure drop can be updated based on the difference between current and target

massflow, i.e. ṁt − ṁ. The current massflow over a surface ∂Ω is computed by:

ṁ =

∫
∂Ω

ρv̄ · n̄ dS. (3.9)

Instead of simply updating the pressure drop based on the massflow difference and

relaxation factor, an approximation of the required pressure drop based on Bernoulli’s
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3.1 Modeling streamwise periodic flow

equation is done:

P n+1
∆ = P n

∆ + ϕ
1
2
ρ (ṁ2

t − ṁ2)

(ρA)2
, (3.10)

where the superscript n indicates the pseudo time iteration, A the surface area and

ϕ ∈ (0, 1] a relaxation factor. A relaxation factor of ϕ = 0.1 was found to be stable in

all tested configurations. Note that in case of variable density flow, ρ is recommended

to be area or massflow averaged over the periodic surface.

Note that Eq. (3.10) constitutes a fixed point equation for the streamwise periodic

pressure drop and thus has to be handled accordingly in the derivation of the discrete

adjoint equations that is based on fixed point operators. Sec. 3.2.4 covers the inclusion

of additional fixed point equations beyond the flow solutions, and Sec. 5.1.4 discusses

the implications on gradient accuracy.

3.1.2 Temperature Periodicity through the Energy Equation

The derivation for the inclusion of the temperature condition Eq. (3.3) in streamwise pe-

riodic flow is essentially identical to the previously performed derivation for the pressure

field. With the restriction, that only heatflux boundaries can be considered. In flows with

isothermal walls, Eq. (3.3) which states a reoccurring uniform temperature difference be-

tween streamwise cross-sections, does not hold as the flow temperature asymptotically

converges against the wall temperature until in the limit actually T (x̄) = T (x̄+ t̄) is

fulfilled. Methods for including constant isothermal walls in streamwise periodic flows

are presented in [PLS77; Bea06] but not further discussed in this work. In Sec. 3.1.3

an alternative approximate approach to handle streamwise periodic temperature is pre-

sented based on a boundary heat-sink, that is used to enable CHT simulations with

cyclic repeating temperature profiles. Note that for this derivation, all material prop-

erties are considered to be constant and explicitly not temperature dependent. This is

not a hard requirement per se, but the derivation would need to be redone taking this

circumstance under consideration.

Again, the temperature field is subdivided into two parts:

T (x̄) = T̃ (x̄) + T∆
tp
∥t̄∥2

, tp =
1

∥t̄∥2
|(x̄− x̄⋆) · t̄| , (3.11)

where T̃ is truly periodic with T̃ (x̄) = T̃ (x̄+ t̄) and accounts for local effects. The

second term, including T∆, accounts for global heat addition over the domain. Be-

fore inserting Eq. (3.11) into the low-Mach Navier-Stokes Eqs. (2.1), recall the energy
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3 Development of an efficient adjoint-based design capability

equation that exclusively contains terms based on temperature:

∂ (ρcpT )

∂t
+∇ · (ρcpT v̄ − κ∇T ) = 0. (3.12)

For the sake of simplicity, the time-derivative, advection and diffusion term are handled

separately. Starting with the time-derivative term:

∂ (ρcpT )

∂t
=

∂
(
ρcpT̃

)
∂t

+
∂
(
ρcpT∆

tp
∥t̄∥2

)
∂t

=
∂
(
ρcpT̃

)
∂t

, (3.13)

where no additional contribution has to be made as the second summand is time-

independent for the here considered incompressible flows. An additional source term

arises from the advection term:

∇ · (ρcpT v̄) = ∇ ·
(
ρcpT̃ v̄

)
+∇ ·

(
ρcpT∆

tp
∥t̄∥2

v̄

)
, (3.14)

= ∇ ·
(
ρcpT̃ v̄

)
+

ρcpT∆

∥t̄∥2
∇ · (tpv̄) , (3.15)

= ∇ ·
(
ρcpT̃ v̄

)
+

ρcpT∆

∥t̄∥2
[∇tp · v̄ + tp∇ · v̄] , (3.16)

= ∇ ·
(
ρcpT̃ v̄

)
+

ρcpT∆

∥t̄∥22
[t̄ · v̄] , (3.17)

using that ∇ · v̄ = 0 in incompressible flow with constant density. Note that in contrast

to the source term in the momentum equations which is constant in space, the source

term in the energy equation is spatially varying based on the local velocity vector. The

diffusion term does not add another source under the assumption that the gradient of

thermal conductivity is zero. That assumption holds for laminar flows but not for tur-

bulent flows with a non-zero eddy-viscosity gradient, which will be covered in Sec. 3.1.4.

The diffusion term expands to:

−∇ · (κ∇T ) = −∇ ·
(
κ∇T̃

)
−∇ ·

(
κ∇ T∆

∥t̄∥2
tp

)
, (3.18)

= −∇ ·
(
κ∇T̃

)
−∇ ·

(
κ
T∆

∥t̄∥22
t̄

)
, (3.19)

= −∇ ·
(
κ∇T̃

)
− T∆

∥t̄∥22
∇ · (κt̄) , (3.20)

= −∇ ·
(
κ∇T̃

)
− T∆

∥t̄∥22
[∇κ · t̄+ κ∇ · t̄] , (3.21)

= −∇ ·
(
κ∇T̃

)
− T∆

∥t̄∥22
∇κ · t̄, (3.22)

= −∇ ·
(
κ∇T̃

)
, if κ = const. (3.23)
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3.1 Modeling streamwise periodic flow

Writing the energy equation in terms of periodic temperature with the additional source

term arising from the advection term yields:

∂
(
ρcpT̃

)
∂t

+∇ ·
(
ρcpT̃ v̄ − κ∇T̃

)
+

ρcpT∆

∥t̄∥22
[t̄ · v̄] = 0. (3.24)

Up to now, the choice of T∆ was not discussed. In contrast to P∆, it is not a directly

user chosen quantity, but implicitly prescribed via the heatflux boundary condition that

dictate a T∆ in a steady state system via:

Q̇ = ṁcpT∆, (3.25)

⇒ T∆ =
Q̇

ṁcp
, (3.26)

where Q̇ is the rate of heat flow in watts, i.e. the integrated boundary heatflux. Q̇ is

computed based on the user specified boundary heatflux from the boundary condition

instead of the effective heatflux computed using the local temperature gradient times

thermal conductivity.

The final energy equation formulated in terms of periodic temperature then is:

∂
(
ρcpT̃

)
∂t

+∇ ·
(
ρcpT̃ v̄ − κ∇T̃

)
+

Q̇ρ

ṁ ∥t̄∥22
[t̄ · v̄] = 0, (3.27)

with the straight-forward Jacobian contribution:

∂

∂V

(
Q̇ρ

ṁ ∥t̄∥22
[t̄ · v̄]

)
=

(
0,

Q̇ρ

ṁ ∥t̄∥22
t̄, 0

)T

. (3.28)

Boundary conditions

The now formulated energy equation uses the periodic temperature component as the

working variable, but the heatflux boundary condition is still given regularly based on

the physical temperature gradient q̇ = −κ∇T · n̄ in watts per square meter.

For the derivation of the adaption for the heatflux boundary condition, the finite

volume method is applied to the energy equation in periodic temperature formulation

and the known conditions on the boundary are inserted in the equation. This is a

standard approach to translate the prescribed conditions on the boundary into flux

contributions. For a heatflux wall, it is known that v̄ = 0 and q̇ = −κ∇T · n̄. First the
energy equation is integrated over a finite volume followed by the applications of the

divergence theorem. The advection term contribution vanishes by inserting the no-slip
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condition, and considering that the temporal derivative contribution and the previously

derived additional source term are applied to each grid node in any case leaves the

diffusion term:

−
∫
∂Ω

(
κ∇T̃

)
· n̄ = −

∫
∂Ω

(κ∇T ) · n̄dS +

∫
∂Ω

(
κ
T∆

∥t̄∥22
t̄

)
· n̄dS, (3.29)

where the subdivision of the temperature field from Eq. (3.11) was inserted ‘backwards’

again for the periodic temperature component. As in the source term derivation, T∆ is

replaced by the formulation based on the rate of heat flow into the domain:

−
∫
∂Ω

(κ∇T ) · n̄dS +

∫
∂Ω

κ
Q̇

ṁcp ∥t̄∥22
[t̄ · n̄] dS = 0, (3.30)

which is now a formulation based on the physical temperature gradient such that the

normal heatflux boundary condition can be applied with the addition of one extra term

that accounts for the streamwise periodic effects.

The derivation on symmetry walls identical up to Eq. (3.30), with the exception, that

the advection term on the boundary is zero based on the flow tangency condition v̄·n̄ = 0.

The second, additional, term is zero, as a symmetry wall has to fulfill t̄ · n̄ = 0. The

normal vector of the symmetry plane and the translation vector between the periodic

surfaces have to be perpendicular to one another. This leaves the diffusion term that is

zero based on the requirement ∇T · n̄ = 0 on symmetry walls, such that ultimately again

no flux contribution has to be made for the energy equation, just as in the non-periodic

case.

In the context of boundary conditions it shall be noted that there is no ‘anchor’

for the absolute level of temperature in the absence of isothermal walls, inlets with a

prescribed temperature or other boundaries that include a fixed temperature of some

kind. The overall temperature level therefore depends on the initial conditions and

the convergence history. This circumstance is especially noteworthy for temperature-

based objective function, e.g. area averaged surface temperature, in that they should

not be used for optimization as a higher/lower temperature might exploit numerical

properties rather than a physical effects. Performing the same simulation with varying

MPI-ranks and/or OpenMP threads can greatly influence convergence properties and

thus the temperature level, which is certainly an unwanted property for a simulation

tool. A possible remedy for this issue is an artificial temperature anchor, e.g. dialing in

a massflow averaged temperature at the periodic inlet, as presented in the subsequent

Sec. 3.1.3 on the treatment for CHT applications. The gradient of temperature however,

i.e. local differences of temperature, is uniquely defined by the simulation setup and can

thus be used in a straight-forward fashion for objective functions and other comparisons.
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3.1 Modeling streamwise periodic flow

For using temperature dependent material properties, the above presented derivation

needs to be revised as gradients of the properties in question are no longer zero. Addi-

tionally, it needs to be taken care of, that the material property is evaluated based on

the recovered/physical temperature and the periodic component which represents the

solvers working variable.

3.1.3 Alternative Treatment in coupled CHT Applications

In CHT simulations, isothermal boundaries are applied to the interface on the fluid side

as established in Sec. 2.2.4 which disqualifies the use of true temperature periodicity as

introduced in the previous section. The alternative presented in this section consists

of keeping the unmodified energy equation formulated in physical temperature, but

extracting the integrated heatflux induced over all boundaries via an artificial source

term at the outlet. In essence, the total rate of heat flow Q̇ in the previous approach is

extracted via a volume heat sink, while here this is achieved via a heat sink at the outlet

boundary. The quantity of Q̇ given in watts is computed via integrating the heatflux over

the outer boundary of the CHT simulation domain, which excludes fluid-solid interfaces.

The outlet source term for the total rate of heat flow Q̇ can be either area or massflow

weighted, where massflow weighting was found to me more suitable to maintain the

temperature profile over the periodic interface. The temperature level is bounded as the

incoming and outgoing rate of heatflow over domain boundaries is balanced. In CHT

applications as in Sec. 5.1, it is not unreasonable to assume that the fluid boundaries

consists purely of interfaces, symmetry and periodic faces and the heat-load is applied

to surfaces in the solid.

The resulting residual contribution to each vertex on the periodic outlet surface thus

becomes:

Res −=
ṁlocal

ṁ
Q̇, (3.31)

where the total rate of heatflow is massflow weighted for each element, with ṁlocal being

the massflow through the element and ṁ the massflow through the periodic surface.

In addition to the boundary heat sink, a residual term based on the difference of the

massflow averaged inlet surface temperature to a user-given value is employed at the

very same boundary. Upon convergence, this fixes the inlet temperature Tinlet to the

user-value Tuser and remedies the issue of the arbitrary absolute temperature level:

Res +=
1

2
ṁlocal cp (Tinlet − Tuser) . (3.32)

This temperature fixture might also be used in conjunction with the true streamwise

periodic temperature approach in Sec. 3.1.2.
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Note that with using the temperature fixture in Eq. (3.32), the initially constructed

outlet heat sink based on integrating all boundary heat fluxes in Eq. (3.31) becomes

obsolete, as Eq. (3.32) extracts as much rate of heat flow as required to dial in the fixed

temperature. It is reasonable though to keep both for faster converging temperature

levels.

3.1.4 Implications on RANS Turbulence Modeling

In this section, the inclusion of transport equations for turbulence models in streamwise

periodic setups is discussed. In SU2 the widely used Spallart-Allmarras (SA, 1 equation)

and Menter Shear-Stress-Transport (SST, 2 equations) models are implemented that are

based on Boussinesq’s approximation, see Eq. (2.5). With that, the viscosity field is no

longer constant in space in case a constant laminar viscosity is prescribed, due to the

spatially varying eddy viscosity field.

No adaptions have to be done for the transport equations of the scalar turbulent quan-

tities, nor for their boundary conditions. The turbulence models are solely dependent on

the velocity field and not on pressure or temperature, which would require an adaption

based on the subdivision in a periodic and linear component.

In the derivation of the additional momentum source term for periodic pressure in

Sec. 3.1.1, the circumstance of a zero gradient for the viscosity field is never used, thus

no adaptions have to made for the momentum equations.

For the temperature periodicity through the energy equation, the gradient of thermal

conductivity is considered to be constant in the derivation of the diffusion term, see

Eq. (3.23). The thermal conductivity κ is a function of viscosity, see Eq. (2.6), and as

such, also a function of eddy viscosity such that ∇κ ̸= 0 in turbulent flows. Inserting

Eq. (2.6) at Eq. (3.23) alters the derivation of the diffusion term to:

−∇ · (κ∇T ) = −∇ ·
(
κ∇T̃

)
− T∆

∥t̄∥2
∇κ · t̄, (3.33)

= −∇ ·
(
κ∇T̃

)
− cpT∆

∥t̄∥2
∇
(

µL

PrL
+

µT

PrT

)
· t̄, (3.34)

= −∇ ·
(
κ∇T̃

)
− cpT∆

∥t̄∥2 PrT
[∇µT · t̄] . (3.35)

Formulating the novel source term contribution in terms of rate of heat flow as introduced

in Eq. (3.26) yields:

− cpT∆

∥t̄∥2 PrT
[∇µT · t̄] = − Q̇

ṁ ∥t̄∥2 PrT
[∇µT · t̄] . (3.36)
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3.2 Discrete Adjoint Method

The transport equation for energy in periodic temperature now writes:

∂
(
ρcpT̃

)
∂t

+∇ ·
(
ρcpT̃ v̄ − κ∇T̃

)
+

Q̇ρ

ṁ ∥t̄∥22
[t̄ · v̄]− Q̇

ṁ ∥t̄∥2 PrT
[∇µT · t̄] = 0, (3.37)

In conclusion, an additional source term in the energy equation of the Navier-Stokes

equations is introduced, but otherwise the transport equations of the turbulence models

can be included without further modifications. Note that the source term requires the

gradient of the eddy viscosity, which is usually not required in standard FVM codes and

thus has to be constructed and stored specifically for this purpose.

3.2 Discrete Adjoint Method

This section starts with selected fundamentals of AD in subsection 3.2.1, as it provides

the necessary methods to solve the terms occurring in the adjoint equations that will

be derived in subsection 3.2.2. A more in-depth and complete introduction to AD tech-

niques can be found in [GW08]. In order to approach the unsteady multizone discrete

adjoint problem, the derivation is made for a steady singlezone problem first, followed

by the unsteady singlezone and the steady multizone problem. The additional differen-

tiation of the volume and surface mesh workflow is handled in subsection 3.2.3, followed

by remarks on the inclusion of additional fixed point equations that can occur in the

streamwise periodic flow implementation in subsection 3.2.4. The section is closed with

selected remarks on a memory-efficient implementation of the discrete adjoint solver in

subsection 3.2.5.

3.2.1 Fundamentals of Algorithmic Differentiation

Algorithmic Differentiation builds on the fact, that every computer program, how com-

plex it might be, is a mere sequence of elementary operations, e.g. addition, multipli-

cation, sinus-function, etc. Each of those elementary operations is easy to differentiate

with respect to their inputs. The chain rule can be applied to all elementary operations

in the sequence to compute the required derivatives with machine accuracy. Only first

order derivatives are required in this work, but higher order derivatives are possible to

be computed with AD as well.

A distinction has to be made to both, symbolic differentiation and finite differences

(or often called numerical differentiation). While symbolic differentiation provides exact

derivatives, it is usually infeasible to provide the derivative in a mathematical expression
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3 Development of an efficient adjoint-based design capability

for a complex computer program like a CFD-code, with the numerous occurring branches

(e.g. every if -statement) and sheer number of operations involved. Note, that AD com-

putes the derivative at a specific evaluation point, and the process has to be repeated

if another point is chosen. Opposed to the mathematical expression in symbolic differ-

entiation that, once constructed, provides a straight-forward evaluation over a range of

inputs. Finite Differences, on the other hand, are straight-forward to apply without any

required knowledge of the program’s internals (i.e. in a black-box fashion), but due to

the discretization error introduced by the user-chosen finite stepsize, the method is not

as accurate as the two other. First-order forward differences are used later in this thesis,

in Sec. 5.1.3 and 5.2.1, for the gradient validations against the sensitivities computed

using the discrete adjoint method. In all methods, when executed with a computer,

round-off errors are present due to the inexactness of how real numbers are represented

in a computer (e.g. most prominently for this work the double datatype).

AD can have two general modes: forward and reverse, which are introduced in the

following, where the reverse mode is the important technique for the discrete adjoint

method in this work. Within the scope of this thesis, it is not crucial to understand how

AD works in all detail, but it is important to understand what AD is capable of, and

how to generally operate it.

In the SU2 software package the AD-tool Codipack [SAG19], written in and for C++

code, is used for its performance and its extension packages MeDiPack and OpDiLib

[BSG21], which allow differentiating through MPI and OpenMP routines as well. Nu-

merous other AD-tools for most programming languages exists 1.

Codipack uses operator overloading AD, with the notable alternative being source code

transformation AD. Very briefly, source code transformation AD tools create new, self-

sufficient code containing the differentiated primal program, while operator overloading

AD tools replace the computation datatype (e.g. double or float) which allows for primal

evaluation and derivative computation within the same computer program. Next up,

more details including some supporting illustrations on the functioning of forward and

reverse mode for a generic operator overloading AD tool will be given.

Forward mode AD

In forward mode (or tangent-linear) AD, the derivative of arbitrary many outputs with

respect to a single input (i.e. a scalar value) can be computed within a single pro-

gram evaluation. In that characteristic, forward mode AD is equal to the complex step

1See https://www.autodiff.org/ (Accessed 2022-07-10) for a curated list of AD-software packages.

46

https://www.autodiff.org/


3.2 Discrete Adjoint Method
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primal
tangent

(a) The tangent of the scalar input is seeded

with 1, all other tangents are initialized

with 0.

F

JV

1

∂J
∂V

(b) After evaluating F, the desired derivative

can be extracted from the tangent of the

output.

Figure 3.2: Forward-mode AD.

method, or finite differences with the difference that finite differences requires 2 function

evaluations. The sole input quantity has to be chosen a priori, and the sensitivities with

respect to the chosen input of all intermediate values are computed alongside the primal

value.

The forward mode of AD with an operator overloading tool, is illustrated in figure 3.2.

The function F , representing an arbitrary computer program, computes a vector of

outputs J based on the scalar input V and the task is to evaluate ∂J
∂V

. The usual

datatype used in the computation (e.g. float or double) is replaced by a pair of the

datatype (e.g. double-double), indicated by the two circles that represent one instance

of the overloaded datatype. The value pair stores the regular primal value and derivative

value with respect to the chosen input variable, also referred to as tangent value and

often indicated by a dot over the variable, e.g. J̇ is the tangent value to J . Now the

tangent value of the input V , V̇ , is given the value of 1, while all other tangent values

in the program are initialized to 0. This process of initialization of the derivative value

is also referred to as seeding. During the subsequent evaluation of the program F , the

derivative of every intermediate binary or unary operation f with input x and output y

is evaluated as:

y = f (x) , ẏ +=
∂f

∂x
ẋ. (3.38)

Analytical derivatives for all occurring binary operations (including 2 operands for 1

output, like multiplication, addition, etc.) and unary operations (including 1 operand

for 1 output like negation, trigonometric functions, etc.) have to be implemented in the

AD-tool. The sensitivity information is propagated through the program alongside the

primal computation, and once the outputs J are computed, the desired derivative ∂J
∂V

can be extracted from the tangent value J̇ .

In case of multiple inputs, the described process has to be repeated for each scalar
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input. The increased cost with respect to compute resources can be mitigated by the

so-called vector mode, or multi-directional forward mode, which is not further elabo-

rated here. Even in the worst case of many inputs and one output, forward mode AD

can be of valuable use: for gradient validation and in the discrete adjoint solver while

preaccumulating during the recording phase, see subsection 3.2.5.

Reverse mode AD

With reverse mode AD, it is possible to compute the derivative of a chosen output with

respect to arbitrary many inputs in a single execution. Thereby serving the opposite

cause compared to forward mode AD. In contrast to forward mode AD, the derivatives

are not computed alongside the execution of the primal program, but a reverse sweep is

required in addition to the primal evaluation. Note, that for the purpose of this introduc-

tion, some presented concepts are introduced differently to their actual implementation

in CoDiPack as used in SU2. These generalizations will be refined at the end of this

subsection.

The working principle is explained with the aid of Fig. 3.3. Consider a computer

program with the input vector V and the scalar output J . The computational datatype

is again overloaded to hold its primal value and its derivative value, or called adjoint

value.

Unfortunately, the term adjoint variable/value is used for two different concepts within

the scope of this thesis, which requires a clear distinction. Therefore, the just introduced

adjoint value used by the AD-tool will be referred to as AD-adjoint, and the second

adjoint variables introduced in the next subsection for the derivation of the discrete

adjoint equations, will retain just that very name. In mathematical formulas, this thesis

adopts the common notation for AD-adjoint values of an overbar, e.g. x̄ is the AD-

adjoint of x.

First, the primal program has to be evaluated. During that primal sweep, the so-called

tape is recorded. In subfigure 3.3a, the red arrow points out, that the program evaluation

is the active part and the black arrow at the tape indicates, that the additions to the

tape are a mere consequence. The tape stores information about each computational

operation (operation type and operands involved), such that the Jacobian with respect

to the inputs of each operation can be provided at a later stage. The tape is a separate

data structure that naturally grows with program length and causes an increased memory

consumption compared to just a primal evaluation. Once the program evaluation reached

the designated scalar output, the AD-adjoint of just that scalar output is set to unity, see

subfigure 3.3b. This process is again referred to as seeding. All other AD-adjoint values
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Figure 3.3: Reverse mode AD with a scalar output variable and arbitrary many inputs.
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are initialized to zero. Subsequently, the statements stored on the tape are interpreted

in antichronological order, thus sweeping through the operations of the primal program

in reverse order. This hierarchy is again indicated in subfigure 3.3c by a red and black

arrow at the tape and program F , respectively. For each primal elementary operation

f with inputs x and output y, the contribution to the input’s AD-adjoints, x̄ are:

y = f (x) , x̄ +=
∂f

∂x

T

ȳ. (3.39)

The symbolic derivatives of the elementary operations involved are again provided by

the AD-tool itself. Finally, the derivative of the program’s scalar output J with respect

to the input vector U , can be extracted from the AD-adjoint of the input-vector, see

subfigure 3.3d. In case, the sensitivities with respect to multiple outputs are to be

computed, the procedure has to be repeated once for each output.

For the discrete adjoint equations that are derived in the next subsection, it is required

to solve terms with the following structure

λT ∂G

∂V
, (3.40)

with λ, G required to be vectors of identical size, and V a vector with not necessarily

the same dimension. The function G represents a fixed point operator for a PDE-

solver in this thesis’ application, but the presented algorithm works for generalized cases.

Ultimately, the generic input vector V will be replaced in the following subsection 3.2.2

by the PDE’s solution state and the vector of all mesh node coordinates.

Applying either forward or reverse mode AD as introduced up to now for computing

the matrix ∂G/∂V alone is computationally expensive in case G and V are both of high

dimension. Forward mode AD scales with the number of inputs and reverse mode AD

with the number of outputs, which renders both impractical for the problem at hand.

Instead of evaluating the derivative and then computing the matrix-vector product, the

whole expression in Eq. (3.40) can be evaluated efficiently using reverse mode AD in one

procedure instead.

The evaluation of terms as in Eq. (3.40) using reverse mode AD, is illustrated in

Fig. 3.4. The process is similar to the previous application of reverse mode AD featur-

ing a scalar output, with the exception of the seeding process. After the tape is created

alongside the primal evaluation, the vector λ is seeded into the output vector of G in-

stead of just unity. After the interpretation of the tape, the solution of the vector matrix

product λT ∂G
∂V

can be extracted from the input vector. The described algorithm to solve

for Eq. (3.40) is the core building block to evaluate the resulting discrete adjoint equa-

tions. Complications arise due to the involved multiple time steps and computational

zones, that require additional care in their implementation.
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Figure 3.4: Reverse mode AD for a product of a vector and a Jacobian matrix. This

scheme represent a core building block of the discrete adjoint in SU2.
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With the general mode of operation of reverse mode of AD described above, some

clarifications on the implementation in CoDiPack are made in the following, as mentioned

at the start of the subsection. For further, in-depth information on CoDiPack, please

consult [SAG19]. The AD-adjoint values introduced with the aid of Fig. 3.3a, are not

stored alongside in the overloaded datatype itself, but in a separate list owned by the

AD-tool. The overloaded datatype only carries the pointer to the location in that list,

where the associated adjoint value resides.

There are two notable approaches to implement a tape, that stores the necessary

information to be able to provide the required Jacobians during the tape interpretation

phase: Jacobi-tape and primal-value-tape. The former computes the Jacobian entries

during the primal sweep and only stores those directly on the tape. The latter stores

the operation type and the involved operand values on the tape, and the Jacobian is

computed during the tape interpretation based on those information. CoDiPack provides

both approaches, but the Jacobi tape (in combination with expression templates) is used

in SU2 due to its increased runtime efficiency [SAG19].

Expression templates enable the storage of complete assignments onto the tape as

opposed to mere statements, i.e. a complex assignment such as y = sin ((a+ b) ∗ c)
writes one tape entry as opposed to the three statements (addition, multiplication and

sine function) for each elementary operation. The associated reduced memory usage and

tape interpretation time are an important feature for an efficient operator overloading

AD-tool.

So far, the provided illustrations were presented as isolated programs, where in reality,

it is required to perform the AD evaluations only over specific parts of a program. In

order to save memory, AD-tools provide functionalities to switch tape recordings on and

off. In addition, specifically registering input allows to only write program parts on the

tape which are dependent on these very inputs. All other computations are not relevant

for the derivative computation and thus can only be executed with their primal values,

excluding an entry on the tape.

Due to the cyclic properties of fixed point iterations of the primal program examined

in this work, which override the solution variables for each iteration, it is not possible to

refer to the AD-adjoints of the inputs by a variable in memory anymore. This requires

the storage of indices of the inputs on the tape in a separate data structure.

In some literature instances [ASG15; ASG16] the primal program, e.g. G in Fig. 3.4,

is considered to be treatable like a black-box using AD, making the development and

implementation of the discrete adjoint solver independent of the particular implementa-

tion of the primal program. It is certainly true that the discrete adjoint solver has been
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implemented in a general way within SU2, such that a consistent discrete adjoint for

evolutions and extensions of the primal capabilities will be available upon recompilation

without the need to manually differentiate the new components. Nonetheless, there are

relevant performance features in the discrete adjoint implemented in SU2, that require

additional attention and programming effort such that the primal program is, in fact,

not treated like a true black-box. The end of this section covers some of these features

like external function handling for the linear solver, local preaccumulation in Sec. 3.2.5

or inclusion of additional fixed points in Sec. 3.2.4.

3.2.2 Derivation of Discrete Adjoint Equations

The adjoint method is a highly efficient sensitivity analysis technique that allows the

calculation of the derivative of a single objective function (e.g. average temperature,

pressure-drop, drag etc.) with respect to an arbitrary number of control parameters

(design variables) at a fixed cost that is roughly equivalent to an additional solution

of the primal problem. These sensitivities are used for gradient-based design optimiza-

tion in the scope of this work, but application in the field of topology optimization,

uncertainty quantification, etc. are possible, or even for simply gaining intuition into a

complex system. With the primal problem formally defined in Sec. 2.2 and 3.1, we can

now detail the process of constructing the discrete adjoint via algorithmic differentiation

(AD) as implemented within SU2 [ASG15; ASG16]. There are multiple ways to derive

the discrete adjoint equations, where here the method of Lagrange multipliers is used in

conjunction with the solution residual based on the convergence of a fixed point itera-

tion. The dissertation of Gomes [Ped21] provides a broad discussion of various aspects

like derivation approaches, interpretation of adjoint variables, detailed implementation

aspects, and more, which is a valuable resource, especially for SU2 developers.

Steady Singlezone Problems

The typical PDE-constrained optimization problem writes:

min
X

J (U,X) , (3.41)

subject to U = G (U,X) ,

where J , the scalar objective function, depends on the design variables X (potentially

a large vector) and the PDE state variables U of the discretized primal problem, e.g.

pressure, velocities and temperature at each node for the present incompressible CFD-

solver. The converged fixed point with fixed point operator G in the constraint implies
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a valid solution to the PDE problem. Through the constraint, the PDE state U is an

implicit function of the design variables X [MN21]. To compute the objective J for a

given set of DV’s X, in practice, the PDE state U has to be found first.

For gradient-based optimization, knowledge of the derivative dJ
dX

is required. In order

to compute said derivative, first the Lagrangian to the above optimization problem is

set up, to transform the constrained optimization problem into an unconstrained one:

L (U,X, λ) = J + λT [G (U,X)− U ] , (3.42)

where the Lagrange multipliers λ are referred to as adjoint variables in this context.

Since G− U = 0, it follows that L = J and therefore dL
dX

= dJ
dX

. Consequently, the total

derivative of the Lagrangian is taken:

dL

dX
=

∂L

∂X
+

∂L

∂U

dU

dX
. (3.43)

Note that ∂L
∂λ

= G − U = 0. This works uses the convention that vectors, e.g. G,U

and X, are considered to be column vectors only, and Jacobians are of dimension

Rdim(numerator)×dim(denominator), e.g. ∂a
∂b

∈ Rn×m with a ∈ Rn and b ∈ Rm. In the total

derivative, it is beneficial to avoid the evaluation of the computationally prohibitively

expensive last term dU
dX

. Sensitivities with respect to U involve the complete solution

procedure of the PDE, e.g. the Navier-Stokes equations. G and J are mere operators

which are much more straight-forward to differentiate. The DV’s are fixed, the PDE

solution is implied by the constraint, but the adjoint variables can be chosen freely. In

order to avoid computation of dU
dX

the adjoint variables are chosen such that:

∂L

∂U
!
= 0, (3.44)

which results in what is referred to as the adjoint equation:

∂J

∂U
+ λT

[
∂G

∂U
− I

]
= 0, (3.45)

or equivalently, written in a fixed point formulation for the adjoint variables λ:

λT =
∂J

∂U
+ λT∂G

∂U
. (3.46)

With the iteration scheme being:

λT
p+1 =

∂J

∂U
+ λT

p

∂G

∂U
. (3.47)
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In accordance with the pseudo time steps of the primal solve, the internal iterations of

the adjoint fixed-point iterator are denoted with the subscript p.

By introducing the fixed-point formulation, an adjoint can be constructed that resem-

bles the iterative flow solver and enables the use of the same approximate Jacobian from

the primal solve. Through the fixed-point formulation, the adjoint problem inherits the

convergence properties of the primal problem [ASG15]. In particular, if the primal fixed

point iterator G is contractive, the discrete adjoint fixed point scheme in Eq. (3.47) is

contractive.

After solving the adjoint equation, the final derivative computes to the remaining term

in Eq. (3.43):
dJ

dX
=

dL

dX
=

∂L

∂X
=

∂J

∂X
+ λT ∂G

∂X
, (3.48)

which is just a single evaluation. In conclusion, the adjoint equations (3.46) have to be

solved before evaluating the desired derivative via Eq. (3.48). The occurring terms can

be evaluated using AD with the methods presented in the previous Sec. 3.2.1.

The partial derivative terms in Eqs. (3.47), (3.48) for J can be evaluated following

Fig. 3.3 and the matrix-vector products, including the partial derivative with respect

to G, following Fig. 3.4. Instead of evaluating both terms in each equation individually

and to add them up (alternatively, it is possible to add the OF gradient to the seed

vector of the fixed point’s output), it is possible to evaluate the linear combination, i.e.

the complete equation, in one sweep. The process is illustrated in Fig. 3.5. Instead of

taping the operators J and G individually, the operator G is written to the same tape,

prior to J , see Fig 3.5a. Both seeds are set just as in the individual evaluations before,

and the full tape is evaluated subsequently, see Fig. 3.5b. The linear combination as e.g.

required in the adjoint equations can be extracted from the AD-adjoints of the input to

G. At this point, the choice to make a clear distinction between the AD-adjoints and the

adjoint variables from the Lagrange approach prevents possible confusion. Consider the

evaluation of the above introduced adjoint equation (3.47) using the presented linear-

combination approach, where the updated adjoint solution is set to the AD-adjoint

variables of the input of G. If the distinction had not been made, a valid statement as

‘The adjoint variables are set to the adjoint values’ might be unnecessarily confusing.

It would also be possible, to tape the consecutive evaluation of G and J with both, U

and X, as input. This eliminates the need to re-record the tape with respect to X for the

final derivative evaluation, but increases the number of entries on the tape that require

evaluation during the tape reversal. The adjoint fixed point iteration (3.47), which only

requires a tape with the input U , is done potentially thousands of times. It is therefore

computationally more efficient to retape with respect to X afterwards which comes at a
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(a) Record the fixed point and the objective Function in one sweep on the tape.
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(b) Seed both outputs, interpret the tape and extract the derivative at the inputs.

Figure 3.5: Evaluation of the discrete adjoint equations for the single zone implementa-

tion in SU2. Computation of the linear combination using AD.

constant time cost, compared to the additional tape interpretation cost that grows with

the number of iterations to solve the fixed point.

In the above formulated optimization problem (3.41), the vector of design variables

X was introduced without further specification. In this work, FFD-boxes are used to

deform the surface mesh, which is subsequently used in a linear-elasticity based volume
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mesh-deformation routine that yields the deformed volume mesh. To be precise, not

the updated surface mesh itself is used by the volume mesh-deformation routine, but

only the vector containing the resulting deformations of said surface mesh. This vector

of surface mesh deformations is denoted with S∆. The updated surface mesh is never

explicitly used in the design cycle, and therefore the following optimization problem uses

the deformation S∆ as an intermediate result.

Extending the initial optimization problem by this two-stage mesh-deformation yields:

min
X

J (U,X) ,

subject to U = G (U,X) , (3.49)

X = M (S∆) ,

S∆ = O (α) ,

where the (now redefined) volume mesh X is computed by a routine M (S∆) with the

surface mesh deformations S∆ as input, which, for its part, is computed by a routine

O (α) that depends on the actual design variables α.

This does not invalidate the more general derivation above, but in the context of

SU2, X is considered to be the vector of all mesh node coordinates and the adjoint

solution process presented with the help of Fig. 3.5, only computes the sensitivities of

the objective function with respect to this very volume mesh. Sec. 3.2.3 discusses the

projection of the volume sensitivities onto the design variables in detail, i.e. how to

compute the sensitivities with respect to the design variables on the basis of the volume

mesh sensitivities. Ultimately, the resulting approach in SU2 allows the computation

of sensitivities that are consistent with the discretized primal problem and allow for an

exact gradient validation using finite differences in this work, see Sec. 5.1.3 and 5.2.1.

Unsteady Singlezone Problems

The steady single zone discrete adjoint derivation is extended by the concept of multiple

timesteps for the unsteady case. Instead of just a single solution vector U to the PDE,

the overall solution consists of one solution vector per timestep. The respective timestep

will be indicated by a superscript in the following, e.g. Un is the PDE solution in the n-

th timestep, and the state vector containing the solutions from each timestep is denoted

with U :=
(
U1, . . . , UN

)T
where N is the total number of time steps. The physical time

integration scheme chosen for this work is dual time stepping 2nd order, as presented in

the previous Sec. 2.2.1. This approach leads to a fixed point in each timestep n = 1..N

of the form Un = Gn (Un, Un−1, Un−2, X). The following derivation is based on that
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specific scheme, but the adjustments for dual time stepping schemes of varying order is

straight-forward.

Expressing the unsteady PDE-constrained optimization problem changes the initial,

steady-state formulation (3.41) to:

min
X

J (U, X) =
N∑

n=1

fn (Un, X) , (3.50)

subject to Un = Gn
(
Un, Un−1, Un−2, X

)
, n = 1..N,

where the objective function J can be expressed as a weighted sum of contributions in

each physical time step fn, that exclusively depend on the timestep’s solution Un and

the mesh state X. Any weighting of each timestep’s contribution, be it zero to construct

an objective function on a restricted time interval, is considered to be included in the

function fn. Note that the description here has been given for fixed-grid problems, for

unsteady discrete adjoints with grid motion, the mesh also needs to be treated as time-

dependent. The initial solutions U0 and U−1 to start/restart the simulation, are given

as constants.

We transform the constrained optimization problem in Eq. (3.50) into an uncon-

strained problem by forming the Lagrangian L:

L (U, X,λ) =
N∑

n=1

fn (Un, X) +
N∑

n=1

(λn)T
[
Gn(Un, Un−1, Un−2, X)− Un

]
, (3.51)

where the vector containing all adjoint solution states, λ :=
(
λ1, . . . , λN

)T
, is introduced

in the same fashion as U. Note, that the time indexing for the adjoint states is linked

to the primal solution, i.e. λn is the adjoint state corresponding to the primal solution

Un. Taking the total derivative writes:

dL

dX
=

∂L

∂X
+

N∑
n=1

∂L

∂Un

dUn

dX
, (3.52)

and to avoid the computation of the computationally expensive derivative of each PDE

solution state with respect to the mesh, the adjoint solution states are chosen such that:

∂L

∂Un

!
= 0, n = 1..N. (3.53)

Which results in a sequence of adjoint equations to be solved:

∂fn

∂Un
+ (λn)T

[
∂Gn

∂Un
− I

]
+
(
λn+1

)T ∂Gn+1

∂Un
+
(
λn+2

)T ∂Gn+2

∂Un
= 0, n = 1..N. (3.54)

58



3.2 Discrete Adjoint Method

Transformed into a fixed point formulation with iteration subscript p:

(λn)Tp+1 =
∂fn

∂Un
+ (λn)Tp

∂Gn

∂Un
+
(
λn+1

)T ∂Gn+1

∂Un
+
(
λn+2

)T ∂Gn+2

∂Un
, n = N..1. (3.55)

Note, that to compute the n-th adjoint state λn, knowledge of the adjoint solution states

λn+1 and λn+2, corresponding to the primal solutions at timesteps n + 1 and n + 2, is

required. Therefore, the adjoint solution has to be solved backwards in time, compared

to the primal evaluation. This circumstance is reflected in Eq. (3.55) by stating the

equation for n = N..1. Eq. (3.55) is only strictly correct for n = N − 2..1, as for

n = N,N−1, the respective derivative terms of the fixed points G, that exceed the time

iteration N , do not occur.

Once the adjoint flow states are computed, the final derivative can simply be evaluated:

dJ

dX
=

dL

dX
=

∂L

∂X
=

N∑
n=1

[
∂fn

∂X
+ (λn)T

∂Gn

∂X

]
. (3.56)

The resulting steps for the unsteady adjoint are therefore: compute the primal and

store the solution states that are required to accurately restart each fixed point opera-

tor for the taping process, solve the adjoint Eqs. (3.55) backwards in time and finally

solve (3.56) for the wanted derivative.

In a practical implementation, some efficiency considerations can be made with respect

to the computation of the required terms. In order to tape one instance of Gn for dual

time stepping 2nd order, the solutions of Un, Un−1, Un−2 are required as stated in the

optimization problem (3.50). The solution states of each time-step are stored on the

hard drive and read into memory as necessary. Compared to the overall adjoint solution

procedure, the required read/write times for the testcases regarded in this work are

negligible and keeping all solution states in memory can quickly consume the available

resources. A remedy in checkpointing strategies is discussed in Sec 3.2.5. Note that most

current HPC systems provide multiple storage locations to their users, e.g. home, scratch

and often specialized ones, with drastic performance implications. Writing numerous

small files or individual large files2 might require a special storage location for best

performance and the author recommends reading the local cluster guidelines or getting

in touch with the administrators. Both edge cases might occur for this type of unsteady

application. The first, if thousands of timesteps are computed for a tiny mesh and each

solution is written to disk, and the second, if the solutions for a large mesh are kept in

memory and written to disk in a single file for potential further postprocessing.

2The TU Kaiserslautern cluster Elwetritsch used for this work mentions 10 000 files with sizes below

100 kB for the former case and files larger than 500 GB for the latter https://elwe.rhrk.uni-kl.

de/elwetritsch/Kurse/Largefiles.pdf (Accessed 2022-08-01).
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3 Development of an efficient adjoint-based design capability

Now with the above-mentioned solution states for Gn, only the first two terms in the

adjoint equation (3.55) can be computed. For the remaining two terms that are constant

in the fixed point iteration, evaluation of the fixed points Gn+1 and Gn+2 is required.

Therefore, these terms are computed and stored in the respective earlier iteration and

just added to the fixed point iteration. Similarly, the sum in the final derivative (3.56)

is not evaluated in succession to the adjoint equation as this would require again to load

the solution states for all fixed points Gn, but the contribution of each time step to

Eq. (3.56) is evaluated after the respective adjoint time iteration.

Steady Multizone Problems

For steady multizone problems, the steady singlezone derivation has to be extended

by the concept of multiple zones. This work was done by Burghardt [Bur+22] and

the provided reference contains extended details on the derivation, implementation, etc.

compared to the explanation given here.

In the scope of this work, a zone is considered to be a separate mesh where altering

physics, e.g. RANS and heat equation, are solved that are coupled via some boundary

interfaces. A zone does not necessarily need to be a connected space, e.g. the 3 individual

pin segments in the pin-fin cooling application in Sec. 5.1 are treated as just one zone.

The provided derivation allows for a much more generalized view of a zone, in that the

type of fixed point in each zone and the coupling between zones is arbitrary. The zone

index is indicated by a subscript and similarly to the previous approach for the unsteady

singlezone adjoint, the solution states are U := (U1, . . . , UM)T, and the adjoint states

λ := (λ1, . . . , λM)T, considering M distinct zones. In addition, the combined mesh state

of the involved zones is X := (X1, . . . , XM)T.

Expressing the PDE-constrained optimization problem including multiple zones changes

the initial, steady-state formulation (3.41) to:

min
X

J (U,X) =
M∑

m=1

fm (Um, Xm) , (3.57)

subject to Um = Gm (U,X) , m = 1..M,

where J is a sum of contributions fm from each zone, that directly only depends on

the solution and mesh state of the respective zone. The fixed-point in each zone Gm

potentially depends on the solution and meshes state of all zones. In this work, this

dependence between zones is due to the interface coupling, where parts of the solution

and mesh state from one zone are used to prescribe a boundary condition in the other
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3.2 Discrete Adjoint Method

zone, see Sec. 2.2.4. Setting up the Lagrangian to the optimization problem (3.57):

L (U,X,λ) =
M∑

m=1

fm (Um, Xm) +
M∑

m=1

λT
m [Gm (U,X)− Um] . (3.58)

Taking the total derivative with respect to the mesh in zone m yields:

dL

dXm

=
∂L

∂Xm

+
M∑
l=1

∂L

∂Um

dUm

dXl

, m = 1..M. (3.59)

Similar to the unsteady singlezone derivation, the adjoint variables are chosen such that:

∂L

∂Um

!
= 0, m = 1..M, (3.60)

as this avoids the evaluation of the computationally expensive derivatives of the solution

states with respect the mesh parts. This requirement results in:

∂fm
∂Um

+ (λm)
T

[
∂Gm

∂Um

− I

]
+

M∑
l=0
l ̸=m

(λl)
T ∂Gl

∂Um

= 0, m = 1..M, (3.61)

which can be reformulated to a fixed point iteration for the adjoint variables:

(λm)
T
p+1 =

∂fm
∂Um

+ (λm)
T
p

∂Gm

∂Um

+
M∑
l=0
l ̸=m

(λl)
T ∂Gl

∂Um

, m = 1..M. (3.62)

The diagonal entry is listed individually as it carries the iteration subscript p and the

cross terms are collected in the sum. After solving the adjoint equation, the final deriva-

tive with respect to the mesh in each zone computes to:

dJ

dXm

=
dL

dXm

=
∂L

∂Xm

=
∂fm
∂Xm

+
M∑
l=0

(λl)
T ∂Gl

∂Xm

, m = 1..M. (3.63)

The resulting sensitivities with respect to each zonal mesh need to be projected onto some

set of design variables that unify the contributions from all zonal meshes. A straight-

forward deformation based on the mesh sensitivities in the context of a CHT simulation,

will most likely result in a non-matching interface that invalidates the solution. The

handling of the contributions from multiple zones towards design variables is discussed

in Sec. 3.2.3.

The implementation of the steady-state multizone discrete adjoint is significantly more

complex compared to its singlezone counterpart, that was explained with the help of
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3 Development of an efficient adjoint-based design capability

Fig. 3.5. In order to efficiently evaluate the objective function gradient, diagonal and

cross terms occurring in Eqs. (3.62) and (3.63), it is necessary to either create multiple

tapes for the individual fixed points or to allow for partial evaluation of a global tape.

The latter approach was implemented in SU2 by Burghardt [Bur+22] and consists of

separating the full recording into sections containing the registration of input variables,

dependencies capturing all pre- and postprocessing routines, objective function evalua-

tion, data transfer between zones interface and lastly a part for each primal iteration

including output registration. This separation allows for individual evaluation of the

occurring terms, which in turn requires additional storage capacities for the objective

function and the sum of cross terms as they have to be computed and stored prior to

the adjoint fixed point iteration of a zone.

In the adjoint Eqs. (3.62), the cross terms and objective function derivative have to be

available, and as it is not necessary to have all terms available separately, it is sufficient

to add all these external contributions up into one data structure for each zone which is

consequently named External in SU2. In the following unsteady multizone derivation,

the additional dual time contributions are added to External as well.

Due to the cyclic dependency between the adjoint solutions of the zones through the

cross terms, it is necessary to iteratively update the adjoint solutions in all zones and

to update the cross terms for each zone based on the updated adjoint solution. In a

straight-forward implementation, each zone performs one (inner) iteration of Eq. 3.62

before communicating updated cross terms (referred to as outer iteration). Prescribing

multiple inner iterations is possible within SU2, but for the CHT applications presented

in this work, one inner iteration only was used, as no benefit of multiple inner iterations

could be observed.

Unsteady Multizone Problems

For unsteady multizone problems, the required modifications for the discrete adjoint

derivation of multiple timesteps and multiple zones are brought together. This combi-

nation of complexities was pioneered by Crome [Ven20; VP20] for time-domain fluid-

structure interaction problems. The indexing is kept consistent with the previous deriva-

tions, in so far as the subscript is used for zones and superscripts for timesteps. A total

of M zones and N timesteps are considered. The aggregated solution states are defined

as:

U :=
(
U1
1 , . . . , U

N
1 , U1

2 , . . . , U
N
2 , . . . , U1

M , . . . , UN
M

)T
, (3.64)
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3.2 Discrete Adjoint Method

and additionally, just the solution of a specific timestep over all zones as:

Un := (Un
1 , . . . , U

n
M)T . (3.65)

The adjoint states are defined consistent to the solution states:

λ :=
(
λ1
1, . . . , λ

N
1 , λ

1
2, . . . , λ

N
2 , . . . , λ

1
M , . . . , λN

M

)T
. (3.66)

The mesh state of the zones, which are considered constant in time in this work, is

X := (X1, . . . , XM)T.

Expressing the unsteady multizone PDE-constrained optimization problem changes

the initial, steady-state formulation (3.41) to:

min
X

J (U,X) =
N∑

n=1

M∑
m=1

fn
m (Un

m, Xm) , (3.67)

subject to Un
m = Gn

m

(
Un, Un−1

m , Un−2
m ,X

)
, m = 1..M, n = 1..N,

where the objective function consists of granular contributions in each timestep and

zone, with fn
m containing a potential weighting factor/function as already described for

the unsteady singlezone adjoint. The primal fixed point Gn
m for a specific timestep n and

zone m potentially depends on the solution states and meshes from all other zones due

to the interface coupling, with the restriction that solution states of previous timesteps

are only required from the current zone m itself. Note that this circumstance:

∂Gn
m

∂Un−x
l

= 0, l ̸= m ∧ x > 0, (3.68)

i.e. that a fixed point from zonem does not depend on previous solution states from other

zones, will allow for a rather straight-forward extension of the multizone approach by

the unsteady regime. This a posteriori motivates the introduction of Un that collects all

zonal solution states of one timestep, as it facilitates the formulation of the optimization

problem.

The derivation does not deviate from the previous concepts employed for singlezone

unsteady and steady multizone cases, but the following discussion of the implications on

implementation is the principal concern. Setting up the Lagrangian:

L (U,X,λ) =
N∑

n=1

M∑
m=1

fn
m (Un

m, Xm) +
N∑

n=1

M∑
m=1

(λn
m)

T [Gn
m

(
Un, Un−1

m , Un−2
m ,X

)
− Un

m

]
.

(3.69)

Taking the total derivative with respect to one zonal mesh part:

dL

dXm

=
∂L

∂Xm

+
N∑

n=1

M∑
l=1

∂L

∂Un
m

dUn
m

dXl

, m = 1..M, (3.70)
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and choosing the adjoint variables such that the following equation holds, eliminates the

need to evaluate the computationally expensive derivatives of the solution states with

respect to the mesh parts:

∂L

∂Un
m

!
= 0, m = 1..M, n = 1..N. (3.71)

This requirement expands to:

∂fn
m

∂Um

+ (λn
m)

T

[
∂Gn

m

∂Un
m

− I

]
+
(
λn+1
m

)T ∂Gn+1
m

∂Un
m

+
(
λn+2
m

)T ∂Gn+2
m

∂Un
m

+
M∑
l=0
l ̸=m

(λn
l )

T ∂Gn
l

∂Un
m

= 0,

(3.72)

for m = 1..M and n = 1..N . The equation reformulates into a fixed point iteration for

the adjoint variables in every timestep and every zone:

(λn
m)

T
p+1 =

∂fn
m

∂Um

+ (λn
m)

T
p

∂Gn
m

∂Un
m

+
(
λn+1
m

)T ∂Gn+1
m

∂Un
m

+
(
λn+2
m

)T ∂Gn+2
m

∂Un
m

+
M∑
l=0
l ̸=m

(λn
l )

T ∂Gn
l

∂Un
m

.

(3.73)

Upon inspection, the adjoint iteration of the steady multizone approach in Eq. (3.62)

is merely extended by the two additional contributions from previous timesteps of the

regarded zone. Obviously, the reversal of the primal timestepping for the discrete adjoint

applies just as for the unsteady singlezone adjoint in Eq. (3.55). The above-mentioned

absent multizone cross terms due to previous solution states in Eq. (3.68), simply put, al-

lows to wrap the approach developed for the unsteady singlezone discrete adjoint around

the framework for multizone discrete adjoint without having to deal with a new type of

term. This becomes even more apparent in the evaluation of the final derivative of the

objective with respect to a mesh part. Compared to the steady multizone Eq. (3.63), the

equation is wrapped in a loop over all timesteps with the additional required superscripts

to indicate said timesteps:

dJ

dXm

=
dL

dXm

=
∂L

∂Xm

=
N∑

n=1

[
∂fn

m

∂Xm

+
M∑
l=0

(λn
l )

T ∂Gn
l

∂Xm

]
, m = 1..M. (3.74)

In the implementation, each zone therefore organizes the inclusion of the unsteady

contributions individually. In fact, this decentralized organization allows each zone to

use a different time integration method, if required. As for the unsteady singlezone

adjoint, the contributions of each timestep in the final derivative (3.74) are evaluated

after the converged adjoint variables for that very timestep are present, as all the re-

quired primal solution states to tape the program are present in memory. Similarly, all

considerations concerning primal solution storage and loading remain unchanged to the

unsteady singlezone section.

64



3.2 Discrete Adjoint Method

3.2.3 Projecting Sensitivities onto Design Variables

At this stage, sensitivities with respect to the volume mesh coordinates were computed.

Although it is theoretically possible to directly deform the volume mesh based on these

sensitivities for every mesh node coordinate, the method is most likely to be highly

unstable and will quickly result in self-intersecting meshes or otherwise nonphysical

mesh states with respect to a real application. In that sense, the projection on some

more coarse-grained design variables can be understood as a smoothing step for the raw

volume mesh node sensitivities. It is very well within reason though to validate the

volume mesh sensitivities directly using finite differences, or any other suitable method,

as the whole design chain is of course more prone to additional error sources.

In SU2, first a surface mesh is deformed by a set of design variables, e.g. FFD-boxes

in this work, and the resulting surface mesh deformations act as a Dirichlet boundary

condition3 for a linear-elasticity based volume mesh deformation algorithm. Therefore,

the sensitivities are projected onto the set of design variables in two additional process

steps, to yield the gradient that can be utilized for shape optimization. The linear

elasticity based volume mesh deformation is differentiated analytically without the help

of AD and for the final projection from the surface mesh towards the design variables,

AD is applied in a straight-forward fashion.

For both, surface mesh and volume mesh, an update (X∆, S∆) to the initial mesh

(X0, S0) is computed that is added onto said initial mesh to obtain the updated mesh

(X,S):

X = X0 +X∆, (3.75)

S = S0 + S∆. (3.76)

The initial meshes are given naturally as a constant and the volume mesh obviously

contains the surface mesh in both, initial and updated state.

From Volume Mesh Sensitivities to Surface Mesh Sensitivities

The necessary steps from volume mesh sensitivities towards final design variable sensitiv-

ities are independent on whether the simulation was steady or unsteady. This might not

be generalizable to cases with a non-constant mesh. For multizone cases, the outlined

process is done for each mesh part Xm independently, and the unification of sensitivity

contributions is done in the subsequent projection to the design variables.

3Note that this is not strictly true for symmetry conditions that are allowed to move in their respective

symmetry plane.
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At this stage, the derivative of the objective function with respect to the volume mesh

is known, so the chain is applied to the derivative of the objective function with respect

to the surface mesh update:
dJ

dS∆

=
dJ

dX

dX

dS∆

. (3.77)

To be precise, SU2 only deforms a subset of the complete surface mesh that can be

specified by the user, not necessarily the complete surface mesh. The remaining surface

boundaries remain unchanged, but this circumstance does not change the derivation.

The volume mesh nodes X are governed by an algorithm, that is denoted by M

with M(S∆) = X. In the case of SU2, this represents a linear-elasticity based mesh

deformation algorithm that solves one linear system of the form:

AX∆ = S̃∆ → X∆ = A−1S̃∆, (3.78)

followed by the straight-forward mesh update given in Eq. (3.75). S∆ is the update to

the surface mesh computed by the FFD-algorithm and S̃∆ extends that vector by zeros

for all volume mesh points, in order to achieve correct vector dimensions. The system

matrix A is a function of the initial surface mesh S0 as it uses inverse cell volume or

wall distance4 which includes the node positions of the original mesh, which includes the

surface. The system matrix A specifically does not depend on the update to the surface

mesh S∆, as everything is based on the initial mesh.

The chain rule in Eq. (3.77) can be transformed by expanding the volume mesh by its

specification:

dJ

dS∆

=
dJ

dX

d

dS∆

(X0 +X∆) =
dJ

dX

d

dS∆

(X∆) =
dJ

dX

d

dS∆

(
A−1S̃∆

)
, (3.79)

where the derivative with respect to the constant initial mesh is zero and the update of

the volume mesh was replaced by Eq. (3.78). Applying the product rule yields:

dJ

dX

d

dS∆

(
A−1S̃∆

)
=

dJ

dX

(
dA−1

dS∆

S̃∆ + A−1dS̃∆

dS∆

)
=

dJ

dX

(
A−1dS̃∆

dS∆

)
, (3.80)

where A, as introduced above, does not depend on S∆ and thus the derivative vanishes.

Lastly, the remaining terms are rearranged:

dJ

dX

(
A−1dS̃∆

dS∆

)
=

((
AT
)−1 ∂J

∂X

T)T
dS̃∆

dS∆

=
dJ

dS∆

, (3.81)

4Young’s modulus, a measure of the stiffness of the material, is computed based on either inverse

element volume or wall distance, see [Eco14] for further information.
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using associativity of matrix multiplications and for an invertible matrix one has (A−1)
T
=(

AT
)−1

. The terms in the transposed brackets in Eq. (3.81) can be interpreted as a solu-

tion to a linear system that needs to be solved prior to the multiplication with the outside

matrix. The solution procedure consequently is to first assemble the system matrix A to

then solve the derived linear system with the known vector dJ
dX

T
on the right-hand side.

The solution vector of that linear system is then multiplied with the matrix ∂S̃∆

∂S∆
which

can be interpreted as an extraction matrix. Extraction matrix, because it reshapes the

solution vector from the dimension of the volume mesh vector to the surface mesh vector

and extracts all the sensitivities associated with the update to the surface mesh.

The sensitivity of the update to the surface mesh can be computed without the use

of AD. This is possible as the algorithm to compute the volume mesh from the surface

mesh is a single linear system solve. Thus, the self-adjoint nature of linear systems can

be used.

From Surface Mesh Sensitivities to Design Variable Sensitivities

Now that the surface mesh sensitivities dJ
dS∆

are computed, the final step towards the

design variable sensitivities can be done. The chain rule of the derivative of the objective

function with respect to the design variables separated into the already known and

unknown parts writes:

dJ

dα
=

dJ

dS∆

dS∆

dα
. (3.82)

In order to compute the present matrix vector product, AD is applied as introduced in

Fig. 3.4. The program to compute the surface mesh update S∆ = O (α) is recorded after

registering α as input. Then the AD-adjoints of S∆ (i.e. S∆) are seeded with dJ
dS∆

. The

tape is interpreted, and the final derivative is extracted at ᾱ.

For multizone cases, this procedure is repeated for each zone independently and the

zonal sensitivity vectors are simply added up as just one global set of design variables

is used that acts on all zones:

dJ

dα
=

M∑
m=1

(
dJ

dα

)
m

. (3.83)

This concludes the general procedure for sensitivity evaluation of a scalar objective

function with respect to a set of design variables via the discrete adjoint method, as it

is available in SU2. In the following, a number of more specific aspects concerning the

discrete adjoint method via AD are discussed.
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3.2.4 Handling Additional Fixed-Point Solutions

In the present work, an additional fixed point iteration occurs for streamwise periodic

flow with a prescribed massflow, where a pressure drop is iterated until a user-defined

global massflow is achieved, see Eq. (3.10). The effects on the gradient validation, of not

taking this additional fixed point equation into account, are discussed with the help of

a steady state testcase presented in Sec. 5.1.4.

In the previous derivation of the discrete adjoint method, the fixed point of the PDE

state variables was introduced as a constraint to the optimization problem, e.g. in

Eq. (3.41). Thus far, this constraint only includes the field solution, e.g. pressure,

velocity and temperature at each mesh node for the incompressible Navier-Stokes solver.

In case an additional fixed point iteration is solved in the overall solution procedure, even

for an intermediate quantity, it has to be treated like the field solution using AD. That

means for the implementation: input and output have to be registered on the tape, an

additional adjoint variable is associated to the primal value and the seeding at the output

with said adjoint variable plus extraction at the input has to be performed. Formally,

this can be included by extending the solution vector U , and thus the adjoint vector

λ, by the additional variable and the remaining derivation is unchanged. An equivalent

approach is to add the additional fixed point equation as a further constraint to the

optimization problem, which closely resembles the steady multizone discrete adjoint

derivation.

For the sake of brevity, the extension to a steady singlezone optimization problem will

be discussed here as the here considered additional fixed point only directly depends on

and affects a single zone such that an extension to multizone or unsteady cases is possible

without any further modification. The optimization problem with the additional fixed

point equation writes:

min
X

J (U, P∆, X) ,

subject to U = G (U, P∆, X) ,

P∆ = A (U, P∆, X) ,

where P∆ represents the pressure drop for the streawmise periodic flow which its as-

sociated fixed point operator A. See Eq. (3.10) for the exact form of the fixed point

iteration for streawmise periodic pressure drop. Following the same approach as for the

optimization problem of the steady multizone Sec. 3.2.2, the following adjoint equations
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have to be solved:

(λ1)
T
p+1 =

∂J

∂U
+ (λ1)

T
p

∂G

∂U
+ (λ2)

T ∂A

∂U
, (3.84)

(λ2)
T
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∂J

∂P∆

+ (λ1)
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+ (λ2)
T
p

∂A

∂P∆

. (3.85)

With the final derivative analogously being:

dJ

dX
=

dL

dX
=

∂J

∂X
+ (λ1)

T ∂G

∂X
+ (λ2)

T ∂A

∂P∆

. (3.86)

In contrast to the previously presented multizone approach, no additional transfer rou-

tines, dependencies etc. have to be individually managed, which allows us to record all

operations onto the same tape without explicit tape sectioning and the linear combina-

tions in Eqs. (3.84), (3.85) and (3.86) are evaluated simultaneously after seeding both

adjoint states.

In general, the expectation of being able to treat the primal fixed point as a black-box

remains true, but additional fixed point equations might arise in different contexts that

are not directly obvious to developers/users. Therefore, this possibility should be taken

into consideration when debugging a failing gradient validation for an added feature. A

helpful intermediate step to check is whether the residuals of the primal iteration after

the taping process are in-line with the converged primal ones. If an additional variable

needs to be stored into a solution file to achieve perfect restarts, then this variable most

likely has to be treated as presented in this section.

A well-known example in CFD adjoint applications for a deliberately ignored addi-

tional fixed point is the frozen turbulence approach [SSP18], where the eddy viscosity

field is considered to be given as a constant in the derivation of the adjoint equations.

Especially in continuous adjoint applications, the frozen turbulence approach is often

employed, as the differentiation of turbulence models is cumbersome and not always

possible. Following that naming convention for the application in this work, it would

be possible to deliberately use a frozen pressure drop approach by not treating the ad-

ditional fixed point, but with discrete adjoint methods using AD there is no apparent

reason to do so.

3.2.5 Memory-efficient implementation

Compared to a regular primal simulation, the memory requirements for the associated

discrete adjoint computation is increased, due to the tape storing the computational

graph, as well as the additional fields that need to be stored for the adjoint solutions
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and intermediate containers that are required for multizone or unsteady adjoints. This

subsection highlights three techniques that can be used to reduce memory and disk

storage requirements in certain situations.

Handling of the Linear Solver

When solving the Navier-Stokes equations or other PDE’s, often an implicit Euler step

is used to discretize the pseudo-time derivative, which requires setting up and solving a

linear system of equations. This solution procedure for this linear system of equations

of the general form:

Ax = b (3.87)

is not taped during the one restarted primal iteration for the discrete adjoint, as it is

implemented in SU2. The linear solve involves a great number of operations that would

increase tape size considerably. The linear system of equations is self-adjoint, meaning

we can solve the following equations [Gil08] to compute the AD-adjoints of the inputs,

i.e. Ā and b̄, instead:

AT b̄ = x̄, (3.88)

Ā = −b̄xT . (3.89)

The AD-adjoints of the output, i.e. x̄, are computed by the AD-tool in the tape reversal

process and are known at this stage. The AD-adjoints of the right-hand side, i.e. b̄, are

the solution of a linear system with the already constructed system matrix A which is

solved similarly to the primal solve. The AD-adjoints for the system matrix, i.e. Ā, do

not need to be computed as x, the solution to the primal linear system, represents the

update to the solution variables which becomes zero if the fixed point is converged.

In conclusion, the linear solve is not taped and during reverse accumulation, the linear

system in Eq. (3.88) is solved to retrieve the required AD-adjoints. The AD-tool needs

to support external function handling, i.e. allowing the programmer to provide the

Jacobians for specific areas of the code.

Local Preaccumulation

For the local preaccumulation method, the local Jacobi matrices of specific code sections

are evaluated during the taping process, instead of storing the Jacobians for each indi-

vidual statement (or expression) and processing those during the reverse accumulation.

Preaccumulation reduces the memory requirements if the respective code section has

only a few in- and outputs, but is comprised of many computational statements that
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would require tape entries5. The computational cost to evaluate these local Jacobi ma-

trices becomes negligible compared to the benefits from memory savings with increasing

iterations necessary to solve the adjoint fixed point. The Jacobian is evaluated with

AD in reverse mode itself, if a preaccumulation section has more (or equal) inputs than

outputs, and AD in forward mode in the remaining cases.

Note that the programmer has to identify suitable code sections and define inputs

and outputs manually, which constitutes added effort and an additional error source.

In doubt, it is therefore reasonable to deactivate local preaccumulation altogether when

debugging a failing gradient validation.

Checkpointing

The last discussed memory/disk space reduction technique in checkpointing makes ad-

joints feasible for long simulations with memory-intensive tapes, by storing only a fixed

number of checkpoints during the primal run. Intermediate sections of the full sim-

ulation can be restarted from these checkpoints, which are only then fully taped and

the adjoints are evaluated on these intermediate sections. This process of subsequently

adjoining parts of the program between the respective checkpoints can greatly reduce

peak memory consumption.

Checkpointing can be applied generally to AD programs, but time-stepping procedures

are particularly well suited if the computational cost of all time-steps is comparable as

the individual time-steps provide natural locations for checkpoints. The most straight-

forward technique is uniform checkpointing where checkpoints are set in fixed time inter-

vals, but there exists a nonuniform schedule for an a priori number of time-steps, that is

provably optimal with respect to total number of forwards steps and checkpoint writes

for a fixed number of available checkpoints, developed by Griewank and Walther [GW00].

Chapter 12 of the book [GW08] Evaluating Derivatives of the aforementioned authors

is recommended at this point for further reading. In case of time-stepping schemes

with not a priori known number of time-steps, dynamic checkpointing schemes exist,

e.g. [WMI09].

For time-stepping schemes of higher order, e.g. more than just the previous time-step

solution is required for restart, a checkpoint has to be comprised of multiple time-step

solutions. In the present work that uses dual time-stepping 2nd order, a restart requires

the solutions of two time-step.

5See https://www.scicomp.uni-kl.de/codi/d6/de7/Example_15_Preaccumulation_of_code_

parts.html (Accessed 2022-08-04) for the associated CoDiPack Tutorial showcasing the possible

memory savings.
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4 Implementation, Sustainability and

Maintainability Aspect

The first section 4.1 of this chapter points out the code contributions made by the author

to the SU2-project. In the second section 4.2 the efforts to ensure maintainable and thus

sustainable code are highlighted. The third and last section 4.3 is dedicated to result

reproducibility with respect to the simulation results presented in the subsequent veri-

fication and application chapter 5. Note that a clear separation of the treated subjects

in this chapter is not fully possible, and rather are interconnected to a certain degree.

4.1 Contributed code

Arguably the most direct way to support a coding project like SU2 and to ensure its

longevity, is through reviewed code contributions. The reviewing process deployed in

SU2 was introduced in Sec. 2.1.2. In the following, an overview over the total numbers1

with respect to the authors code contributions to the overall project is collected, before

then highlighting selected parts.

The author has 35 merged Pull Requests2 in the main code repository of SU2. Within

these Pull Requests over a 1000 discussion entries were made from various community

members, including review comments, code suggestions, explanations by the author etc.

Note that the content in these Pull Requests does not represent all contributions to the

code, as commits were made to other Pull Requests, that were not opened by the author

himself3. A total of 712 commits with 44 692 added and 56 263 deleted lines4 were made

to the main SU2 code repository. A change to an existing line counts as one deleted and

one added line.

1All numeric data in this section is collected at the 5th of July 2022.
2https://github.com/su2code/SU2/pulls?q=is%3Apr+is%3Amerged+author%3ATobiKattmann+
3See https://github.com/su2code/SU2/pull/1226 for an example of a PR abandoned by its original

author that was finished by the author.
4https://github.com/su2code/SU2/graphs/contributors
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Neither of the presented metrics are conclusive with respect to the involvement in the

code development. Pull requests can contain only a one-line bugfix that was found, fixed

and merged within one day, or the PR contains combined unrestricted work of half a

year. The number of total commits also is subject to the individual developer’s style,

whether progress is committed in smaller or larger chunks. And number of lines are

quickly misleading in large refactoring efforts, where big code blocks (e.g. whole classes)

are moved to different files but the code itself is not altered. Another example is falsely

committed mesh files that quickly contribute to added and removed lines up to multiple

millions. However, taking all metrics together and with a short overview over the actual

contributions and their consistency over time, it is reasonable to draw a conclusion on

the activity (or passivity) of an individual developer.

In addition to the contributions to the main code repository, the SU2 project features

multiple other repositories that complement the raw simulation code, as introduced in

Sec. 2.1.1. The author contributed to the Testcase repository with 11 merged Pull

requests5, most of which representing an added regression test. 8 Pull Requests were

made to the Tutorials repository6. The website, containing the documentation, tutorial

descriptions, etc., was supported with 11 merged Pull Requests7.

All above-mentioned contributions were made to the SU2 project itself, but as intro-

duced in section 2.1.1, various libraries are included in the code that SU2 depends on.

Hence, SU2 does not work on its own in a vacuum, but is embedded in, and surrounded

by other pieces of software, and ensuring smooth interoperability between software com-

ponents is a key factor. The author contributed one Pull Request each to MeDiPack8,

which handles AD for nearly all Message Passing Interface (MPI) functions, and to

FADO9, which is used as the optimization framework for the optimization runs per-

formed in section 5.1.5 and 5.2.3. Making relevant changes to a third-party repository

that are merged by the maintainer requires an increased effort compared to an accus-

tomed repository and therefore need to be assessed differently. Code layout, employed

data-structures, programming paradigms, etc. can differ quite drastically to the known

concepts from the familiar projects. Even a small fix or addition to a foreign repository

can therefore take a multiple of time compared to a similar contribution to the own main

5https://github.com/su2code/TestCases/pulls?q=is%3Apr+is%3Amerged+author%

3ATobiKattmann+
6https://github.com/su2code/Tutorials/pulls?q=is%3Apr+is%3Amerged+author%

3ATobiKattmann+
7https://github.com/su2code/su2code.github.io/pulls?q=is%3Apr+is%3Amerged+author%

3ATobiKattmann+
8https://github.com/SciCompKL/MeDiPack
9https://github.com/pcarruscag/FADO/
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project.

The symmetry boundary condition was completely redesigned and fixed to fulfill the

required conditions from Eqs. (2.31)-(2.33). The previous implementation was incorrect,

and the updated version is now utilized in the compressible and incompressible solver.

The elementary unit-cell approach used for the pin-array evaluation in Sec. 5.1 depends

on a correct symmetry boundary.

Another integral contribution for a well performing unit-cell approach are the addi-

tional source terms, adapted boundary conditions, etc. for streamwise periodic flow. The

accompanying explanations and derivations are given in Sec. 3.1, but are also available

on the project’s website in the theory guide alongside a detailed tutorial.

In the context of streamwise periodic flow the special handling of additional fixed

point iterations within the existing solver scheme was implemented, at the example of

iterated pressure drop to dial in a prescribed massflow. The theory with respect to the

adjoint equation is discussed in Sec. 3.2.4, and the consequences of neglecting said fixed

point iteration are showcased in Sec. 5.1.4.

As enabling and performing shape optimization is the final objective of this thesis, it is

consequently also necessary to be able to export the final designs in a widely utilized file-

format to further process the geometry for e.g. 3D printing. The simple, but widespread

supported STL format was added as an additional output option for that purpose.

A base class for transported scalar equations as e.g. for turbulence, species transport,

etc. was created that unified a significant amount of duplicated code for those solver

instances. The implications on maintainability of such a refactoring effort are discussed

in the upcoming Sec. 4.2.

The remaining feature additions, bug-fixes and refactoring efforts undertaken by the

author can be viewed on the development platform GitHub for further inspection, under

the link given at the beginning of this section.

4.2 Efforts ensuring Maintainability

This section explores software maintainability in the context of the SU2 project and

attempts to provide examples where possible. The author of this thesis strived to realize

these ideas in the previously displayed code contributions, but claiming by oneself to

have succeeded in that attempt is almost impossible. No formal, agreed-upon definition

of maintainability exists, and suitable metrics are hard to come by, so the following

reflects the author’s perspective of five consecutive years as a developer in the project.

First general coding aspects are introduced, followed by a larger scale with feature
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documentation, and the section closes with a few observations on maintainability in the

SU2 project.

Maintainable code is easy to modify or to extend, without the risk that change will

break existing code elsewhere. Before modifying existing code, it is crucial to first read

and understand the present state. A major aspect in enabling a good understanding are

naturally code comments, that allow to quickly get an overview of developer’s intentions

without having to decrypt the code itself. Comments are made on various scales: from

the general intention of a complete class, over the purpose of a certain code block, down

to the idea behind a specific line of code. More comments are definitely not better in

the general sense, as bloating a file can reduce readability and also a minimum level

of understanding needs to be expected from a developer. Another problem is that the

background knowledge of a potential reader it not a priori known, so that the comments

from one developer’s perspective might not be helpful for another developer. In doubt,

it is probably recommendable to stay consistent in amount and depth of commenting to

the existing code.

In addition to helpful comments, descriptive variable/function/etc. names should be

used to achieve readability without any comments at best. In that context, long and

complicated names are entirely possible, but arguably the most important aspect is

consistency. A common construct in SU2 are Get<VarName>() functions that simply

return the private class variable VarName. The implication of coming across such a Get-

function is of course the expectation of the just mentioned implementation, but if the

Get-function e.g. alters different class members or includes calls to other functions, the

developer might run into unexpected behavior. Another example of breaking consistency

is to implement e.g. Return<VarName>() that also simply returns VarName. In order

to increase the usage of consistent coding concepts, it is clearly beneficial to first get

familiar with the codebase before introducing the own ideas. Being a multiphysics solver,

SU2 developers might know a lot about one specific solver but not about the others. In

such a scenario, employing the same structure to a reasonable amount via a parent class

that all solvers inherit from, enables every developer to orient themselves on a high level

even in completely unknown sections of the code.

It is valuable to avoid unnecessary code duplication wherever possible and to encap-

sulate functionality on a high level. A single source of origin is easier to identify, and

all dependent code parts benefit from eventual changes. Unifying similar code from

various code regions usually comes at the cost of increasing code abstractions that can

reduce readability. Following that multiphysics solver example, the implementation of

certain features as e.g. boundary conditions might be overwhelmingly identical between
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different solvers such that keeping both in sync leads to increased maintenance work in

case of changes, or worse potential bugs might only be fixed for one implementation.

The symmetry boundary condition redesigned by the author was implemented in the

compressible and incompressible solver featuring identical code and was consequently

unified for both solvers to avoid that code duplication.

Making interfaces between different code modules as explicit as possible, can reduce

unpredictable and unwanted coupling effects. Modification of data-structures should

be prohibited if not required by a certain method, which can be achieved in C++ by

proper utilization of the const keyword. Being able to rule out certain data alteration

of a specific function by code design, can greatly reduce debugging efforts. In the worst

case, the developer is not aware of which methods alter what data, as that information

is obscured in a deep call stack.

It is not possible to avoid bugs altogether, but spotting them early on through error

handling and preparing the code to facilitate debugging can greatly reduce the accom-

panied effort to fix emerging bugs. Reasonable error handling checks, e.g. whether a

function output represent a physical meaningful value or whether a combination of con-

figuration options was tested to work, can signal a possible bug or a prohibited applica-

tion of certain configuration options to the user without having to interpret simulation

results first. With the implementation of a new feature, it is therefore sensible to only

allow the feature to be used within the tested bounds, and throw an error otherwise.

Once a further combination with that feature is tested, the restriction can be lifted for

that very combination. Error checking has its limits, as an excessive use can degrade

performance, e.g. if frequently arrays of the mesh size are checked for nonphysical values.

In case a bug is not caught by error handling, which probably represents the majority,

debugging efforts based on the nature of the error have to be made. Some debugging

tools require special instrumentation of the code, such as e.g. the fenv.h library that

was frequently employed by the author to find the occurrence of NaN ’s which are often

signaled by the screen output SU2 has diverged. The library is included in the source

code together with some simple commands to trigger specific options. When not used,

these options are disregarded in the compiled code, but upon uncommenting the specific

lines and recompilation, the developer can quickly determine whether an unwanted NaN

is the root cause. In conclusion, writing and instrumenting the code with the ability

to fix bugs later on, leads to more bugs being found early and fixed quickly, and thus

improves maintainability.

To some degree, each developer should be aware of the overall level of coding expertise

in the community. Many developers in the SU2 project are driven by an engineering
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application or numerical aspects rather than pure software development. The introduc-

tion of excessively complex software constructs by one developer might therefore be an

obstacle for the remaining majority of developers. Weighting the average community

member’s ability to contribute with e.g. increased performance through highly special-

ized code is certainly difficult. At best these highly specialized code sections can be

encapsulated with a clear to understand interface, such that even an entry-level devel-

oper can understand the purpose and usage of e.g. a function, but does not necessarily

has to fully grasp its implementation.

All of the above points are subject of discussion in each Pull Request, and it is the

reviewer’s task to judge the PR also with maintainability in mind. Especially aspects

like consistency, helpful comments, error handling or avoiding code duplication can be

enhanced by a proper review. The role of the PR review as a flawless quality gate can

naturally not be maintained at all times in a software project as SU2. If for example a

small feature addition in theory could motivate a larger refactoring effort to smoothly

incorporate the new feature along the existing ones, the original developer is potentially

not capable to do so due to time restrictions. Numerous code reviews were given and

received by the author, and it can be stated that reasonable amounts of this thesis

advances are enhanced by proper code reviews given by the community, that helped

with overall improved functionality, conciseness and maintainability of the contributed

code.

On a larger scale compared to coding aspects, feature documentation via tutorials,

testcases or simply a written guide, tremendously improves maintainability. A written

guide can provide a quick overview over the key components and operations of a feature

without the obfuscation through possible fragmentation of the operations over multiple

files, classes, etc. and over the program’s runtime. This is especially helpful for inexperi-

enced developers who get to know the codebase and the employed methods, as it is much

easier to recognize patterns in the code if the exact theory is written down. Knowing

what to look for avoids having to reverse engineer a whole feature purely based on the

code, which can be vastly time-consuming. Especially the streamwise periodicity feature

of the author has a theory guide on the project’s website, but also e.g. the symmetry

boundary condition theory is explained in an extensive comment at the respective func-

tions start. With respect to a complete feature often including multiple configuration

options, a working testcase, or at best tutorial, has to be available to ensure maintain-

ability of said feature. Otherwise, a developer who is unfamiliar with the specific feature

is unable to ensure its correctness, in particular when refactoring code parts. A working

testcase, which additionally is ideally part of the regression tests, acts as a safety net for
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unwanted side effects due to code changes to the features utilized in that very testcase.

Although not strictly enforced, larger features that are not checked through the regres-

sion tests should be consequently removed (or such regression test should be added) as

its correct working is questionable and the potential maintenance effort to repair the

feature is immense. In the various Pull Requests of the author, thorough regression

testing is performed, which also acts as a safeguard for continuous work against other

developer’s code breaking the own. One example is the unsteady regression test10 that

safeguards the developments on the unsteady CHT adjoint with the results presented in

Sec. 5.2.

In that context, a simplified approach to test-driven development, used and recom-

mended by the author, is sketched. In a strict sense, test-driven development means to

first design and implement a test and then developing the feature that ultimately has

to pass that very test. That kind of rigorous approach is not feasible for the integration

tests in SU2, that check for matching residuals, which is impossible to know in advance.

Yet, validation data can be matched in approximation or plausibility checks e.g. in the

limits of a feature’s validity, can be judged by a developer based on a testcase. The

author frequently designed these kinds of plausibility checks at the start of the feature

development which can be easily converted into an integration test, once the desired

result is reached. As an additional benefit of putting a test to use early on during the

development phase, is knowing when the test was altered by own changes, which might

reveal unwanted coupling effects that can then be resolved.

In a project like SU2, it cannot be assumed that the original author of any given

section will be around once another community member is required to modify that

exact code part. The necessary effort to thoroughly understand existing code such that

the required modifications can be made without breaking existing features cannot be

underestimated, and often times are on the same timescale as developing code from

scratch. The lack of continuity in personnel is a major weakness of a code that, by and

large, is developed by PhD students that have contracts with a temporary length and

then often times leave the project entirely after their thesis. In the position of a PhD-

candidate it often seems difficult to justify the additional effort for code generalization,

appropriate commenting, regression test setup etc. but in the author’s experience these

efforts will pay-off in the long run, even for a singe PhD-student. As a PhD project

usually spans 3 to 6 years, significant parts of the early written code will be used in

much later stages of the PhD-time. Having written well-tested, maintainable code in

10https://github.com/su2code/SU2/tree/master/TestCases/coupled_cht/disc_adj_

unsteadyCHT_cylinder
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the early stages allows modifications in the later stages at a greatly reduced effort, and

thus might save time overall. Another, less self-serving thought is if every developer were

to thoroughly write and merge their code, everyone will benefit in return from others

people contribution at some point and thus increase the research output of the whole

community, including oneself. On the contrary, if all developers were to be secretive

about their work, some developments will be done independently by different developers

and neither of their contribution will be suitable to be used by others. Another aspect

to consider is the funding source of a developer, which for PhD-students is often public

money from research funds. In return, the author derives from that circumstance an

increased obligation to openly publish their work in a usable format. According to

the above reasoning, the author took care of merging the developed features, carefully

documenting and safeguarding the contributed code and following the community advice

given through code reviews in order to provide a sustainable contribution to the SU2

project.

4.3 Result Reproducibility

The reproducibility of results is a key property, and to some degree even requirement,

for high-quality scientific work. The interpretation of what suffices to actually achieve

reproducibility is not rigorously defined nor enforced throughout the scientific computing

community. Is a research publication that details the implemented method without

providing the source code sufficient, or does every detail down to compiler versions have

to be provided together with the source code? The author is convinced that the latter

should be attempted wherever possible, and the motivation for this section is to achieve

result reproducibility to the best of the author’s knowledge and belief.

All methods utilized for the applications shown in this thesis are implemented in the

open source multiphysics and design solver SU2, and the results shown are created using

the git tag v7.3.1 with a clean working directory and unchanged submodules. This

git tag represents a specific commit11 in the master version of the code, therefore all

required code had to pass a quality-ensuring pull request into the develop version and

subsequently, into the master version. The only instance where another commit12 was

used, is section 5.1.4 where deliberately a code without a certain feature, which was

added by the author, was executed, to showcase the influence on solution’s behavior.

The code was compiled using gcc in the version 11.2.0 and the MPI implementation

11328a1b747a4785d13b749e7fb6cc4589fd1b9529
1204178124ffc9594da1ba97941f5a0bdca3a59305
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OpenMPI in the version 4.0.5. . Despite the availability of a shared-memory parallel

approach with OpenMP, this feature was not used, as core counts did not exceed a single

compute node.

All simulations were performed on the high-performance Computer Elwetritsch at the

TU Kaiserslautern Kaiserlautern which is run by the HPC-Team of the RHRK13. The

following data represents the state in July 2022. The cluster runs on the operating

system Scientific Linux 7.9 (Nitrogen) and features various hardware options from Intel.

Most notable are 299 Intel Skylake nodes with two XEON SP-6126 CPU’s and thus 24

cores, a total of 205 Intel Sandybridge nodes with the two XEON E5-2670 CPU’s (16

cores per node) in 32GB (105 nodes) and 64GB (100 nodes) options and 96 Intel Haswell

nodes using two 8-core Intel E5-2640v3 with 64G RAM per node14.

The optimization framework FADO was used with a specific commit15 that represent

a master version of the code.

Python is used in version 3.8.8 and the exact version numbers of the various used

packages (e.g. NumPy, SciPy, pandas, etc.) are determined by the Anaconda 2021.05

distribution, that ships a specific set of mostly scientific python packages. FADO and

various visualization scripts make use of Python.

The visualization software Paraview in version 4.4 is used for the contour plots in this

thesis and was used extensively throughout the development process for data visualiza-

tion. Paraview is available under a permissive BSD license16 and describes itself as ”an

open-source, multi-platform data analysis and visualization application”17.

All meshes were created using the open-source meshing tool gmsh [GR09] in the version

4.8.4. Gmsh is available on all common operating systems under the GPL 2.0 license18.

Altogether, the major components of the design chain utilized in this work consist of

open-source tools: gmsh for meshing, SU2 and FADO for simulation and optimization,

Paraview and Python for postprocessing, with all of these tools running on a Linux

distribution including non-proprietary compilers and interpreters. This tool-chain allows

nearly everyone with access to the internet and a CPU with x86-architecture to fully

reproduce, and even to freely modify or extend the presented results.

The simulation files (configuration files, gmsh mesh scripts and the meshes itself,

postprocessing and visualization scripts for the exact plots from the result section) for

13https://elwe.rhrk.uni-kl.de/ Accessed 2022-07-05
14https://elwe.rhrk.uni-kl.de/elwetritsch/hardware.shtml Accessed 2022-07-05
15d4dfa56b1f6f52e6e362c7954d2f2474b55b263d
16https://www.paraview.org/paraview-license/ Accessed 2022-07-08
17https://www.paraview.org/overview/ Accessed 2022-07-08
18https://gmsh.info/ Accessed 2022-07-08
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4 Implementation, Sustainability and Maintainability Aspect

full result reproduction shown in this thesis are available in a GitHub repository of

the author19. This is not only a mere attempt to ensure straightforward and exact

reproducibility, but also an invitation to modify or extend the capabilities to the reader’s

own needs, as this is ultimately a core characteristic of open-source.

19https://github.com/TobiKattmann/Thesis-Simulations
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5 Verification and Application

After the introduction of the required primal and adjoint simulation methods in connec-

tion with the operating principles of the SU2 solver in the previous chapters, this chap-

ter highlights two distinct applications with selected accompanying validations. First,

Sec. 5.1 deals with a steady state, streamwise periodic, pin-fin heat exchanger array on

an elementary unit cell. In the second application in Sec. 5.2, an unsteady CHT case is

considered with a cylinder in crossflow.

5.1 Steady coupled CHT Staggered Pin Array

This application case is for steady state, turbulent, incompressible flow through a 2D

array of heated cylinders with coupled solid domains representing the pins in the array.

A typical pin array, for e.g. power electronics cooling, can consist of tens up to a couple

of thousand individual pins. Instead of an (often prohibitively) expensive simulation on

the entire pin array, a common simplification is to only use a characteristic unit cell,

see Fig. 5.1. Through mirroring at symmetry boundaries and translating at periodic

boundaries, one recovers an approximation to the initial/full array. See Fig. 5.3 how

the elementary unit cell embeds into a larger part of a pin array. Note that this image

already features the constrained optimized pin design instead of the initial, round pin.

It is however within reason to presume that general design rules can be derived from

such a reduced, fast to evaluate, unit cell approach.

This section starts with a thorough case description including geometry/mesh descrip-

tion, material properties, boundary condition and finally, employed numerical methods.

The validity of the streamwise periodic approach is shown with a numerical experiment

in Sec. 5.1.1, followed by the complex, periodicity-preserving, mesh deformation rou-

tine in Sec. 5.1.2. An in-depth gradient validation is carried out in Sec. 5.1.3, with

a subsequent discussion in Sec. 5.1.4 of the consequences on gradient validation, that

come with incorporating additional fixed-point equations. Finally, Sec. 5.1.5 explains

the constrained optimization setup and explores the optimization process and results.
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5 Verification and Application

Solid Domain Heatflux BC

Periodic BC

Symmetry BC

Fluid Domain

Figure 5.1: Simulation domain schematic. The solid zones are contrasted in gray to the

white fluid body, where arrows indicate the overall flow topology. Heatflux

boundary conditions are indicated with red arrows and symmetry planes

with a dash-dotted line.

Figure 5.2: Fully structured mesh of the periodic simulation setup. The no-slip walls on

the fluid-solid interfaces are resolved such that y+ < 1 is achieved everywhere.

Geometry and Mesh description

The geometry of the simulation domain is fully characterized by three quantities: dis-

tance between pin midpoints 6.44mm (three neighboring pins form an equilateral trian-

gle which is oriented such that the downstream pin rows are staggered), the inner pin

radius 0.6mm and outer pin radius 2mm. The pins are true circles, i.e. no ellipsoidal

shapes. Additional symmetry and periodic boundaries are connected via straight lines

through the pin midpoints, as shown in Fig. 5.1.

The computational mesh is fully structured, e.g. only quadrilaterals are used, and

consists of 8477 elements in the fluid zone and 6747 elements in the solid zone, see

Fig. 5.2. The height of the first cell layer is chosen such that a y+ < 1 is obtained

84



5.1 Steady coupled CHT Staggered Pin Array

Figure 5.3: Extended pin array by mirroring and translating the original simulation do-

main that is indicated in red. The array features the constrained optimized

design, presented in Sec. 5.1.5, instead of the initially round pins. This setup

showcases the periodicity-preserving geometry and mesh deformation, as the

whole pin array only consists of a single pin-shape.

everywhere on the no-slip walls. The primary purpose of the unit cell application is

to verify the gradient accuracy of the discrete adjoint method in these cases and to

showcase the optimization abilities.

Material properties

The fluid’s material properties represent a generic automotive cooling liquid with, with

material properties generally similar to water. All parameters are considered to be

constant, with temperature dependency in particular not taken into account. The

density of the incompressible fluid is set to ρ = 1045 kg/m3, the specific heat ca-

pacity at constant pressure to cp = 3540 J/(kg K) and the laminar dynamic viscosity

µlam = 1.385e -3Pa s. The laminar and turbulent Prandtl numbers are Prlam = 11.7

and Prturb = 0.9, respectively, where the laminar Prandtl number implies a thermal

conductivity of κ = 0.42W/(mK) after Eq. (2.3).

The constant material properties in the solid represent an aluminum alloy with density

ρ = 2719 kg/m3, specific heat capacity cp = 871 J/(kg K) and thermal conductivity

κ = 200W/(mK). As an alternative to aluminum alloys, heat sinks manufactured

85



5 Verification and Application

from copper alloys are often installed due to its increased thermal conductivity of κ ≈
400W/(mK).

Boundary conditions

Inlet and outlet in the fluid domain are prescribed as periodic boundaries, and streamwise

periodicity (or fully developed flow) is used in conjunction, as introduced in Sec. 3.1.

The massflow over the domain is set to 0.85 kg/s and the inlet bulk temperature to

338K. By iterating over a pressure drop that is ultimately used in the associated

source term to achieve the prescribed massflow, the resulting pressure drop in the initial

configurations computes to 208.02Pa. The inlet bulk temperature is enforced by an

outlet heat sink, and theoretically allows for quick evaluation over various temperature

differences between fluid and solid that can occur over the downstream coordinate of a

pin-fin array due to the overall heating of the cooling liquid.

Symmetry boundaries on top and bottom of the domain are indicated in Fig. 5.1 by

dash-dotted lines. Alternatively, mirroring the domain along the lower symmetry axes

to obtain one full pin and applying periodic boundary conditions in spanwise direction

is possible in the SU2 framework as well. Due to the further complication of the mesh

deformation routine, and limited accuracy enhancements, the former approach using

symmetry boundaries is used.

Handling of the CHT-interfaces between fluid and solid is described in Sec. 2.2.4.

On the three inner pin arcs of the solids a constant heatflux of 5e5W/m2 is applied,

which represents the heat loss of an attached device, e.g. power electronics. All re-

maining walls are considered to be adiabatic. Note, that during optimization, the inner

pin surface remains clamped such that the integrated heatflux over the solid’s domain

boundary, i.e. the rate of heat flow in watts, does not change.

Numerical methods

Convective fluxes in the incompressible solver are discretized using a flux-difference-

splitting (FDS) with second order accuracy achieved by a MUSCL approach, see [Eco20]

for a detailed explanation. No limiters are used for variable reconstruction, and gradi-

ents are computed via the Green-Gauss theorem, for the variable reconstruction in the

MUSCL scheme and the viscous fluxes. The pseudo-time derivative is discretized using

an implicit Euler scheme. The Menter SST turbulence model as described in Sec. 2.2.2

without wall function is used.

Similar to the flow solver, the gradients in the heat conduction solver are computed via

the Green-Gauss theorem, and the pseudo-time derivative is evaluated with the implicit
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5.1 Steady coupled CHT Staggered Pin Array

Euler scheme.

In both solvers, the resulting linear system is solved using FGMRES with an ILU

preconditioner. The CFL number and number of linear solver iterations are modified

between primal and adjoint setup for optimal performance in either setup and for robust-

ness throughout the complete optimization history. In the author’s experience, lowering

the CFL number and/or increasing the amount of linear solver iterations can stabilize

the convergence of the adjoint problem. In the present case for example, the CFL num-

ber is decreased by an order of magnitude in both zones, and the increased amount of

linear solver iterations is used in primal and adjoint solver for an eased setup.

See Sec. 4.3 on result reproducibility, in case of any unclear or missing case description,

on how to obtain the used configuration scripts, meshes or visualization scripts.

337 345 350 355 361
Temperature [K]

Figure 5.4: Temperature contour lines for the streamwise periodic elementary unit cell

of a pin-fin heat exchanger.

To finalize the case introduction, the primal temperature contour lines are given in

Fig. 5.4 that show a thin temperature boundary layer on the middle pin and a noticeable

heat convection into the fluid body at the separation point at approximately 1 o’clock.

The upstream part of the pin exhibits an increased cooling compared to the downstream

portion, which is largely covered by a recirculation area beyond the separation point.

Yet, due to the high thermal conductivity in the solid compared to the fluid, the heat is

spread rather uniformly over the entire pin in contrast to the temperature distribution

in the fluid.

5.1.1 Validation of the Streamwise Periodic Approach

It has to be validated, that the streamwise periodic approach is capable of accurately pre-

dicting the flow state after arbitrary many pin rows in the array. It naturally depends on

the specific simulation setup (geometry, material properties, boundary conditions, etc.)
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5 Verification and Application

after how many downstream repeated geometries the flow is considered fully developed.

The question, after how many pin rows an approximate periodic state is reached, needs

to be answered for each application and simulation setup individually and whether it

therefore it is even reasonable to employ a streamwise periodic simulation. A simulative

validation is carried out, which additionally answers the previous question for this exact

unit-cell setup. The streamwise periodic result is compared to a simulation on a do-

main, that features multiple copies of the periodic domain in the downstream direction.

The massflow is held constant in all simulations. For the simulation with downstream

repeated unit-cells, the inlet boundary condition is changed to a velocity inlet and the

outlet to a pressure outlet with gauge pressure zero. For the velocity inlet, two cases

could be considered:

1. The inlet profile is a uniform block profile, thus the flow will develop to a down-

stream repeating nature only after a few pins.

2. The outlet/inlet profile from the streamwise periodic simulation is extracted and

prescribed at the non-periodic inlet. In this case, the flow should not be altered

in downstream repeating section.

In this thesis the former method, inlet-velocity block profile, is shown as the latter simply

replicates the exact profiles for all downstream cross-sections as intended and therefore

is not as suitable to showcase.

The results of the comparison between periodic and non-periodic results are plotted in

Fig. 5.5. The overall agreement after 16 pin-rows for velocity, pressure, temperature and

eddy viscosity is excellent and proves the validity of the streamwise periodic assumption.

For velocity, pressure and temperature, the profile match after 8 or 12 slices already is

quite significant and would justify the usage of the streamwise periodic approach, in case

no quantities that directly depend on eddy viscosity are of interest.

Comparing velocity profiles is straight-forward as it requires no scaling of the results,

and each cross-section should provide the exact same results. For pressure and temper-

ature, the simulation result needs to be adapted according to the streamwise periodic

assumption in order to be comparable. With a constant heatflux boundary condition

on the pin surface, the absolute temperature naturally rises from with increasing down-

stream length in the non-periodic setup, but the profile shape should stay constant. The

same concept applies to the pressure but with the reverse effect, as the pressure contin-

uously drops in downstream direction. In order to just compare the profile, free of the

absolute value, the profiles are linearly shifted such that the temperature or pressure at

the lowest y-coordinate position is zero.
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5.1 Steady coupled CHT Staggered Pin Array
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Figure 5.5: Comparison of x-velocity, pressure, temperature and eddy viscosity profiles

for a streamwise periodic simulation (red line) and an extended simulation

domain with many pin rows (profiles extracted at 4 locations indicated by

dashed lines with a darkening gray scale for further downstream locations).

Note, that the above test was performed using a fluid-only case, but the results using a

CHT case show no apparent difference, so they are excluded here for the sake of brevity.

In any case, the difference between a CHT and fluid-only case exclusively influences the

temperature profiles as the energy equation in the present scenario is only weakly coupled

to the continuity and momentum equations, meaning that the energy equation depends

on the velocity field, but the continuity and momentum equations do not depend on the

temperature field.
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5 Verification and Application

(a) FFD-setup for the optimization using three identical, but mirrored, FFD boxes.

(b) Deformation of the three FFD-boxes that yield equal pin shapes.

Figure 5.6: Mirrored FFD-box setup where equal deformation is applied to all three

FFD-boxes and thus the surface mesh. The complete FFD-lattice is in green

color while the control points that are active in the vertical axis are indicated

by a red dot or other symbol. These ‘special’ symbols represent an equal

point in all FFD-boxes and thus facilitate orientation.

5.1.2 Mesh Deformation Routine

Ensuring a suitable and robust geometry and mesh deformation setup for the optimiza-

tion was one of the major challenges for the present testcase. This is mostly due to the

two quarter pins on the periodic interface that have to undergo the same deformation

as the half pin in the middle of the domain. That approach of course enforces, that

the simulated pin-array consists of a single pin-shape only, as shown in Fig. 5.3 for the

constrained optimized pin. This also guarantees the required matching surface boundary

and mesh on the periodic interface1.

The main focus here will be on the surface deformation procedure using FFD, as for

the linear-elasticity based volume mesh deformation procedure, all used surfaces in the

setup are simply considered clamped.

As already introduced previously, the surface mesh and volume mesh deformation

procedures are separated in SU2. For the surface mesh deformation, the imposed FFD-

1The periodic boundary conditions, as implemented in SU2, require a matching mesh at the periodic

interfaces.
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5.1 Steady coupled CHT Staggered Pin Array

boxes setup is presented and showcased for a sample deformation in Fig. 5.6. The three

green lattices represent separate FFD-boxes and the symbols (e.g. red dots) indicate

actively used points, the remaining points stay clamped. Two rows on the top and

bottom are clamped specifically as B-Splines of 3rd order in y-direction are used as

the interpolation function for the FFD-boxes, which ensures no point movement of the

top and bottom symmetry boundaries. The B-Spline order in x-direction is 4 and this

parameter arguably influences the pin’s shape the most, given an otherwise fixed FFD-

box. Higher order B-Splines take more FFD-point deformations into account for the local

deformation of the surface mesh, while at the lower order, the local FFD-deformation

prevails, i.e. the support of the B-Spline depends on its order. The available alternative

to B-Splines in SU2 are Bézier blending functions, which have a support over the full

FFD-lattice and thus creates extremely smooth shapes at the expense of a decreased

design space, due to the lack of possible drastic local deformations. Bézier blending

functions are employed for the unsteady shape optimization in the subsequent Sec. 5.2.

A movement of FFD-points in x-direction is not considered in this work, as this creates

further complications when it comes to retaining a valid shape for the connected quarter

pins. If the pin midpoint section moves horizontally, points/elements would need to be

removed at one quarter pin and reattached at the other quarter pin to assure a suitable

mesh within this FFD framework.

The front and back FFD-box are mirrored in Fig 5.6 based on the middle box, and

of course translated, along the x-axis compared to the middle FFD-box. Some symbols

(brown square, orange diamond, pink cross) are used for easy identification of the same

point in each FFD-box. A sample deformation is applied to the orange diamond in

Fig. 5.6b to showcase the final working-wise of the FFD-box setup.

In order to apply an equal movement to each FFD-box in an optimization cycle, one

can either compute sensitivities for one FFD-box (in this case the middle one) and map

these appropriately onto the other FFD-boxes by mirroring, or compute sensitivities for

all FFD-boxes individually, average the values and then apply these averaged values to all

FFD-boxes. The former is used for the optimization presented Sec. 5.1.5. Note, that this

approach of course constitutes a slight inconsistency between the computed gradient and

applied shape optimization. Therefore, the mesh deformation for the gradient validation,

see the subsequent Sec. 5.1.3, will be restricted to the middle pin only.

For the gradient validation, only design variables according to Fig. 5.7 are considered.

The seven FFD-point displacements in vertical direction are only applied to the middle

pin in order to retain a fully consistent discrete adjoint gradient.

Each surface patch is now either clamped, i.e. remains unaltered, or is affected by
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5 Verification and Application

0 1 2 3 4 5 6

Figure 5.7: The FFD box in green encloses exclusively the middle half pin for the purpose

of gradient validation. Active design variables are marked in red, and are

only altered in the vertical y-coordinate, as indicated by the red arrows.

the FFD-Box movement. The inner-pin circle segments and the symmetry boundaries

are clamped, while consequently all other surface segments (fluid-solid interfaces and

periodic front- and backface) are moved by the FFD-box. An alternative, only deforming

the fluid-solid interface and allowing in-plane movement of surface mesh points in the

volume mesh deformation phase, was not viable due to a resulting non-matching mesh

on the periodic interface. This also motivates the extension of the FFD box over the

complete domain in vertical direction.

5.1.3 Gradient Validation
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Figure 5.8: Gradient validation of surface average temperature and pressure drop objec-

tive functions with a fixed finite difference stepsize of 1e -12.
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5.1 Steady coupled CHT Staggered Pin Array

Before attempting a full optimization, sensitivity computed via the discrete adjoint

method is validated against finite differences. Alternative approaches to finite differences

are the complex step method which is not implemented in SU2 or using forward mode

AD, which, at the time of writing is not operational for the here discussed testcases.

The particular type of finite difference used is the 1st order forward difference, which

for a scalar design variable and objective function writes:

dJ

dα
≈ J (α +∆α)− J (α)

∆α
, (5.1)

with ∆α being the stepsize. In this context note, that the design variables α in the FFD

approach are the deformations to the FFD-points in the Cartesian coordinate system,

and their value thus allows an intuitive understanding of resulting surface deformations.

That means, based on a characteristic length of the domain, a suitable finite difference

step (or a range thereof) can be defined. The author found a factor to the characteristic

length of 1e -6 to be a reasonable starting point.

The two objective functions considered for the elementary unit cell application are

surface average temperature, evaluated on the surface of the middle inner pin, and

pressure drop over the domain, that is taken between the two periodic interfaces which

represent the fluid ‘inlet’ and ‘outlet’, naturally using the physical (recovered) pressure

instead of the periodic pressure component, following Eq. (3.4).

A straight-forward result of the gradient validation for both objectives is given in

Fig. 5.8, that makes use of a fixed finite difference step size of 1e -12. The design

variable numbering of this figure and other figures in this paragraph follows the layout

in Fig. 5.7. Albeit not giving sophisticated insights in the exact gradient accuracy,

Fig. 5.8 attest a sufficient sensitivity accuracy, to confidently use the discrete adjoint

gradients in an optimization cycle.

A more in-depth discussion of the gradient validation can be done at the hand of

Tables 5.1 and 5.2 as well as Fig. 5.9. The former two tables feature the comparison

of discrete adjoint and finite difference sensitivity for two distinct design variables, with

one table for each objective. The latter figure plots the relative sensitivity difference

over the finite difference stepsize, and thus provides a more intuitive insight into the

table data.

The first row of the tables lists the finite difference step-size via a magnitude p, where

1e -p is the finite difference stepsize. The second column lists sensitivity values reported

by finite differences for one specific design variable, but the first row contains the discrete

adjoint gradient. Matching digits to the discrete adjoint gradient are colored black, and

non-matching in red for better visually indication. In the third, the respective relative
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magnitude p FD DV 3 rel diff (%) FD DV 4 rel diff (%)

DA -5.596844515e3 - -2.340265548e3 -

−4 -5.689626723e3 1.6578 -3.111159434e3 32.940

−5 -5.619300461e3 0.4012 -2.433546105e3 3.9859

−6 -5.596967922e3 0.0022 -2.340294692e3 0.0012

−7 -5.595393258e3 0.0259 -2.330330336e3 0.4245

−8 -5.595213906e3 0.0291 -2.329331556e3 0.4672

−9 -5.595199468e3 0.0294 -2.329235201e3 0.4713

−10 -5.595233574e3 0.0288 -2.329259701e3 0.4703

Table 5.1: Gradient validation for surface average temperature for DV3 and 4. Magni-

tude p indicates the finite difference stepsize with 1e -p. Relative difference

in % is computed after Eq. (5.2). The first row holds information for the

discrete adjoint gradient and matching numbers are indicated in red.

magnitude p FD DV 3 rel diff (%) FD DV 4 rel diff (%)

DA 1.15758245956e5 - 1.5445492703e4 -

−4 1.35501101282e5 17.055 2.9906661869e4 93.627

−5 1.17692049932e5 1.6706 1.6744531940e4 8.4105

−6 1.15894398048e5 0.1176 1.5551885104e4 0.6888

−7 1.15716304806e5 0.0362 1.5433860479e4 0.0753

−8 1.15698482188e5 0.0516 1.5422077800e4 0.1516

−9 1.15696751578e5 0.0531 1.5420951399e4 0.1589

−10 1.15697096987e5 0.0528 1.5421356920e4 0.1563

Table 5.2: Gradient validation for pressure drop for DV3 and 4. The remaining table

information are identical to table 5.1.

difference to the discrete adjoint gradient is shown, which is computed as follows:

rel. diff. =
|DASens − FDSens|

|DASens|
, (5.2)

with an additional factor of one hundred to convert the fraction to percent. Fourth and

fifth column shows the data for a different design variable. Design variables 3 and 4

were chosen due to their slightly enhanced gradient match.

With an outer pin radius of 1e -3m, the largest finite difference stepsize of 1e -4m

is not expected to provide an accurate comparison, but serves as an indication on how

aggressive the first geometry modification in the optimization run for this specific case
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Figure 5.9: Sweep over finite difference step range with relative gradient difference on

the y-axis. For average temperature objective on the left in red, and for

pressure drop in blue on the right.

can be chosen. The optimal stepsize at DV4 for the average temperature objective

is 1e -6m with a relative difference between the discrete adjoint and finite difference

sensitivity of just 0.0012%. For the same DV and the pressure drop objective, this

optimum is found at 1e -7m with 0.0754% relative difference. In Fig. 5.9 it is visible

at a glance, which finite difference stepsizes provide optimal gradient validation. When

continuously lowering the finite difference step, it is expected to initially see a lower

relative error, but then an increasing relative error due to subtractive cancellation, as

described in section 6 of [MN21]. The author cannot provide a conclusive explanation

for the plateau in relative difference for both objectives in the range of 1e -8m and 1e -

13m. For other design variables beyond 3 and 4, the relative differences have a similar

magnitude.

Note the opposite sign of the gradient between the two objectives, that suggest an

opposite shape change for both objectives. This circumstance indicates that the two

objective functions are conflicting, meaning that optimization of one, will lead to a

worsening of the other. Moving the FFD-box point, at e.g. DV3, up (enlarging the pin)

leads to a decreased average temperature but increased pressure drop. This conflict will

be handled in more detail in the following optimization Sec. 5.1.5.

Overall, the agreement between DA and FD sensitivities is very good, and the gradi-

ents are certainly suitable for accurately finding local optima. A clear justification for

the remaining deviations in gradient accuracy, especially for pressure drop, cannot be

given.
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Prior to the gradient validation, it is a necessary/advisable step to ensure perfectly

working restarts of the primal solution for the taping procedure in the discrete ad-

joint. This is not guaranteed and not trivial due to the combination of preprocessing

and postprocessing routines that are used to compute derived values and that handle

communication between solvers. With added complexity, like turbulence models or a

multizone CHT approach, the processes have to be well understood to ensure a proper

restart that exactly behaves like an additional iteration. Another frequent source of

error is the inexact resetting of the initial primal solution in the implementation. Over

the course of a discrete adjoint simulation the primal fixed-point is taped multiple times

and to ensure a consistent gradient, the initial primal solution has to be restored each

time.

5.1.4 Sensitivities with Additional Fixed-Point Equations

The sensitivities in a streamwise periodic setup with prescribed massflow require an ad-

ditional adjoint equation, to be correctly validated. Recall that for prescribed massflow

the pressure drop is subject to an iterative process after Eq. (3.10). The accompanying

theory is described in a previous chapter. 3.2.4.

This section highlights the consequences of neglecting the additional fixed point equa-

tions at hand of the just presented gradient validation from Sec. 5.1.3. Solely the straight-

forward plot 5.8 with a fixed finite difference stepsize is re-considered, as an in-depth

comparison does not provide any valuable insights, due to the large sensitivity devia-

tions. The first obvious observation in Fig 5.10 is of course that the finite difference

gradient remains unchanged to the previous gradient validation, as only the discrete

adjoint evaluation is altered.

The second evident feature is, that the pressure drop objective gradients reports sen-

sitivities close to zero without the additional adjoint equation across all design variables.

Without the additional adjoint equation, the sensitivity acts as if a constant pressure

drop were prescribed, in which case the sensitivity would of course be zero. The sensi-

tivity procedure is missing the link, that the pressure drop is a derived quantity which is

coupled to the flow solution. For the discrete adjoint program the pressure drop appears

to be fixed, thus the sensitivity is zero. It is evident that no optimization or any other

valuable contribution could be derived from such a defective sensitivity. An equivalent

example for applications with frozen turbulence would be to set up an objective function

that solely depends on the eddy viscosity field. The sensitivity will consequently report

a zero value, as the eddy viscosity field is assumed to be constant in frozen turbulence.

For the surface average temperature objective function, the deviation is large, albeit
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Figure 5.10: Unsuccessful Gradient Validation without special treatment of the pressure

drop fixed-point. Finite difference sensitivities equal to Fig. 5.8.

it might still be useful enough to in conjunction with a robust optimization workflow

that works well with imperfect gradients.

Note, that these results were not created using SU2 v7.3.1 but with a specific commit

ID2 which does not contain any handling of the mentioned additional fixed pint equation.

5.1.5 Constrained Shape-Optimization Results

At this stage, the primal solution method of streamwise periodic flow was validated

in Sec. 5.1.1, a suitable geometry parametrization and mesh deformation routine was

introduced in Sec. 5.1.2 and the validity of the gradients computed by the discrete

adjoint method was confirmed in Sec. 5.1.3. This necessary groundwork enables the set-

up of an optimization, with the confidence of getting a reasonable outcome. Naturally,

the optimization control parameters are chosen a priory and potentially require a few

adaptions to provide a well converging, and not prematurely failing, optimization setup.

Two examples are appropriate bounds to the FFD-box deformations to guarantee a

high-quality mesh, and scaling parameters to the objective and constraint to not overly

weight one over the other.

The optimization cycle in Fig. 5.113 pictures a simplified representation with the

fundamental steps. Based on an initial geometry that is governed by a set of design

variables, the optimization loop is entered. Given the mesh for the current design,

2with the commit ID 04178124ffc9594da1ba97941f5a0bdca3a59305
3Image layout taken from [Eco14] with minor adaptations.
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Figure 5.11: Optimization cycle: Based on an initial geometry the primal, adjoint and

mesh deformation routines are used until convergence is reported or other

exit criteria are met.

the primal solution is computed, which yields the objective and constraint functions

values J . In the subsequent step, the sensitivities for the objectives and constraint with

respect to the set of design variables are computed via the discrete adjoint method. The

following exit criterion block for the optimization is not uniquely placed, as the exit

criteria can be numerous: based on a tolerance of subsequent objective values, gradient

norm, optimizer iterations or others. The optimization loop can therefore be aborted in

all stages and not just a single block as in the simplified representation. If the gradient

computation was successful and no exit criterion is met, the optimizer determines a new

set of design variables to evaluate and the cycle repeats. It is also possible that the
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5.1 Steady coupled CHT Staggered Pin Array

optimizer decides not to evaluate the gradient to a specific design, if it is considered to

be worse than previous with respect to the objective and constraints. In this the thesis,

the optimization loop terminates predominantly because no design improvement can be

found in the available design space in spite of non-vanishing gradients norms.

The lightweight python tool FADO4 is used to orchestrate the entire optimization

process. It provides a general interface to compute objective functions, constraints,

sensitivities and intermediate steps like mesh deformation. For all the various tasks in

SU2, separate configuration files might be needed with only minor differences in between

them, which can easily be handled via replacement functions in FADO. This enables

the utilization of just a single configuration file, which eases later changes to common

options. It is also straight-forward to introduce additional pre- or postprocessing steps,

e.g. for the unsteady optimization in Sec. 5.2.3 the upper and lower side sensitivities are

averaged to yield a symmetric deformation.

The optimizer of choice employed in this thesis is SLSQP5 from the widely available

SciPy python package. The simplicity of setting up an operational workflow make the

SciPy implementation of SLSQP an appealing option.

The optimization target is set to minimize the surface average temperature on the

inner middle pin, whilst constraining the pressure drop over the domain for the fixed

massflow to not exceed the value of the initial design. For the equality constraint of

208.023Pa and the temperature-based objective function, separate gradients are com-

puted and combined by the optimizer, instead of a formulating a single, weighted ob-

jective function containing both. From the previous gradient validation and additional

optimizations of the objectives alone (that will be presented), it is known that the ob-

jectives are conflicting, i.e. the sensitivities of each objective generally suggest opposite

deformations. For the present case the average temperature gradient suggest an en-

largement of the pin whereas the pressure drop gradient suggests a reduction in pin

size.

The optimization history with function values is shown in Fig. 5.12, including the

respective gradient norm values in the same figure. As expected, the objective gets

minimized while the equality constrained value circles around the fixed value where

it closely fulfills the equality constraint at the optimization end. It is unreasonable

to expect the OF to be strictly monotonically decreasing or that the constraint stays

constantly fulfilled. The gradient, by its definition, is only valid in the current point of

evaluation, i.e. with an aggressive large deformation the non-linearity of the problem

4https://github.com/su2code/FADO
5https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
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Figure 5.12: Optimization history for the elementary unit cell of a pin-fin heat exchanger.

Objective function value and constraint value in the upper image and their

respective gradient norm values in the lower. Line elements are only drawn

if two subsequent evaluation points represent valid points, i.e. points miss

due to invalid meshes, or gradients are not computed because the optimizer

rejected the design for further evaluation.

might cause non-compliance with the constraint or worsening of the objective. The

resulting ‘zig-zag’ course balances large deformation steps into the objective direction

and subsequent restoration of compliance with the equality constraint. In the initial

∼ 30 iterations, the major improvements are made to the design, while in the second
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5.1 Steady coupled CHT Staggered Pin Array

half merely minor improvements are made until finally the optimizer is unable to find

better designs. The gradient norm of the objective drops by approximately a third, but

a vanishing gradient norm cannot be achieved, as the constraint and FFD-point bounds

hinder further deformations in the objective gradient direction. The optimizer allows for

a certain level of control via scaling parameters, but all things considered, the optimizer

is used as a black box to a certain degree. A suitable set of scaling parameters has to

be found by the user for a reasonably fast optimization.
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Figure 5.13: Comparison of full pin-shapes during the constrained (cte) optimization at

various design’s during the optimization, on the left. On the right, single

objective optimization designs of average temperature and pressure drop

are compared to the initial and cte-optimized shapes.

The optimized pin shape compared to the baseline geometry is shown in Fig. 5.13

together with two intermediate design steps that visualize the transition. The optimized

geometry is shaped like a wedge, increasing the surface area prior to the flow separation

at the newly formed sharp corner, thus allowing more heat to be effectively transported

into the fluid body. The recirculation region in the cylinder’s wake attributes only to

a reduced amount to the overall cooling of the pin. The wedge shape is a compromise

for the pressure drop constraint to be fulfilled whilst minimizing the temperature on
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the inner pin (which is not shown on these images). On the right side of Fig. 5.13,

the single objective optimized designs are shown in comparison. The pressure drop

optimized solution simply decreases the projected area against the flow direction and

only does not decrease its size further due to a failing meshing algorithm. The outer pin

surface gets too close to the clamped inner pin. The average temperature optimized pin

on the other hand enlarges specifically in the pin midpoint to yield a greatly increased

pin-surface. Due to the increased solid’s thermal conductivity compared to the fluid, a

larger surface area increases cooling capability of the pin. The pin-enlargement stops

due to reached FFD-box point bounds.
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Figure 5.14: FFD-boxes that yield the constrained and single-objective optimized de-

signs. Single-objective optimizations are severely limited by necessary FFD

bounds and limits in the mesh deformation workflow.

The exact FFD-box deformations for the optimized designs are shown in Fig. 5.14.

Note, that self-intersection of the FFD-lattice does not automatically yield an invalid

geometry, such that a prevention of this mechanism is not strictly required. All opti-
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5.2 Transient Coupled CHT Cylinder in Crossflow

mized FFD-boxes exhibit minor and even more drastic forms of self-intersection of the

FFD-box. The principal takeaway of the observed single-objective optimization is the

unveiling of available design space with the complete employed setup. That certainly

includes limitations of the FFD method itself, but large restrictions of the design space

can be attributed to the author’s choice of lattice resolution, B-Spline degree, active

FFD-points as well as boundary positioning choice e.g. the inner pin diameter.

5.2 Transient Coupled CHT Cylinder in Crossflow

The well-established 2D cylinder in crossflow is used as an unsteady testcase, with the

extension to a CHT case by introducing a hollowed solid pin. In previous joint work

with Crome [Ven+19], the primal unsteady incompressible solver was validated against

experimental and numerical data in literature, by monitoring lift, drag and the Strouhal

number for the exact primal fluid setup utilized in this work.

After a brief introduction to the simulation setup, a gradient validation is performed

in Sec. 5.2.1. The challenges in defining a suitable objective function for the present un-

steady testcase are discussed in Sec. 5.2.2, before closing the section with a presentation

of the optimization results in Sec. 5.2.3.

Geometry and Mesh description

The fluid domain around the cylinder is extended by a solid domain, which does not

fill the cylinder entirely, but leaves an inner cylinder surface in order to properly set

meaningful boundary conditions. Figure 5.15a sketches the geometry with all relevant

length specifications relative to the cylinder diameter D. The cylinder diameter is D =

1m for the geometry and mesh in this work. The inner cylinder, delimiting the solid

domain, has a diameter of 0.5D and the farfield boundary is 20D away from the pin

center.

The mesh is fully structured, i.e. only quadrilateral elements are used, and consists

out of 22200 elements in the fluid domain and 4800 elements in the solid domain. A

progression towards the no-slip fluid-solid interface is done in both zones, in order to

properly resolve the boundary interface. See figure 5.16 for a close-up view of the

mesh close to the cylinder. The remaining mesh topology stays fully structured, with a

coarsening of the grid resolution towards the farfield boundary.
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(a) Simulation domain setup with boundary

conditions. The pin diameter D being 1

meter.
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(b) FFD-lattice with numbering for the gradi-

ent validation. Arrows indicate that only

vertical displacement is considered.

Figure 5.15: Sketches of the simulation domain (left) and shape deformations setup

(right). Note that only the outer pin surface is deformed by the FFD-

box, the inner pin remains clamped.

Figure 5.16: Mesh close-up centered around the pin. Although not specifically labeled,

the mesh refinement at the fluid-solid interface reveals the different zones.

The mesh contains 22200 elements in the fluid domain and 4800 elements

in the solid domain.
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5.2 Transient Coupled CHT Cylinder in Crossflow

Material properties

All material properties listed in the following are used as constants, e.g. no temperature

dependent material properties are taken into account. The fluid represents water (note

that an incompressible solver is used) with the material properties are listed below:

name symbol value

density ρ 1e3 kg/m3

dynamic viscosity µlam 1e -3 Pa s

specific heat capacity cp 4180 J/(kg K)

laminar Prandtl number Prlam 6.96

Table 5.3: List of fluid material properties.

The used material for the solid domain represents an aluminum alloy, frequently used

in cooling application in various compositions. The material properties are given in the

table below:

name symbol value

density ρ 2719 kg/m3

thermal conductivity κ 200W/(mK)

specific heat capacity cp 0.8710 J/(kg K)

Table 5.4: List of solid material properties.

For the purpose of demonstration of optimization capability, the given value for the

specific heat capacity is chosen, in order to achieve a larger amplitude in surface average

temperature on the solid’s inner pin, as a reaction to the occurring vortex shedding.

Boundary conditions

The boundary condition setup for the present 2D CHT cylinder in crossflow is straight-

forward, and also indicated in figure 5.15a.

On the outer circle of the fluid zone, a farfield boundary condition is applied. The cho-

sen Reynolds number for the case is Re = 100 which represents a laminar regime where

vortex shedding occurs behind the cylinder. In order to reach the specified Reynolds

number:

Re =
ρvD

µ
, (5.3)
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the remaining variable in the freestream velocity is set to 1e -4 m/s in positive x-

direction. The freestream temperature is set to 15 ◦C or equivalently 288.15K.

A heatflux boundary condition of 1e3W/m2 is applied on the inner pin of the domain,

representing a heating element that requires cooling, e.g. power electronics from various

applications. The heatflux boundary is indicated by red arrows in figure 5.15a.

Handling of the CHT-interfaces between fluid and solid is described in Sec. 2.2.4.

Numerical methods and time-stepping

The convective fluxes in the fluid are discretized using a flux difference splitting (FDS)

scheme, and second order accuracy is achieved by the MUSCL scheme without an addi-

tional slope limiter. Gradients for reconstruction of viscous fluxes are computed using

the Green-Gauss scheme. A constant CFL number is used but is reduced by one order

of magnitude for the adjoint computation, as this helps to stabilize the convergence in

the experience of the author.

For the solid heat conduction domain, the gradients are computed using the Green-

Gauss scheme as well. Apart from that, no noteworthy additional methods were used.

Note that the exact setups can be inspected in all detail as described in Sec. 4.3.

The following remarks on time-stepping are equally applied to the fluid and solid zone,

so unless explicitly specified, the description is valid for both. A dual-time stepping 2nd

order is used as described in section 2.2.1, thus the discretization of the pseudo-time

derivative is done using the implicit Euler scheme. A constant physical time-step length

is chosen to aim for 60 time-steps per full shedding cycle, and an a-prori estimation for

the required time-step length is based on the Strouhal number:

St =
fD

v
, (5.4)

with the frequency f in 1/s of the vortex shedding, the characteristic length D in m

(here the cylinder diameter) and flow velocity v in m/s. The Strouhal number for this

specific case of vortex shedding behind a circular cylinder at Reynolds number 100 is

known from literature and previous investigations using the identical solver [Ven+19;

Ven20] and is set to 0.166 for this estimation. The velocity is the freestream velocity at

1e -4m/s. The remaining quantity in the shedding frequency can thus be computed to

1.66e -5Hz. Via the period length T being T = 1/f and an aimed at 60 timesteps per

shedding cycle, the necessary time-step length is approximately 1004s.

The actual amount of time-steps per shedding cycle observed in the simulation is 61,

i.e. the estimation was slightly off, which cannot be completely avoided in a discrete

setting like the present. In the optimization section 5.2.3, 15 period lengths’ for a total
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5.2 Transient Coupled CHT Cylinder in Crossflow

of 915 timesteps will be used with an optimization window of 5 period lengths’ of 305

timesteps.

Geometry parametrization

The fluid-solid interface, i.e. the outer pin boundary, is the surface that we want to

deform. The farfield and first of all the inner pin boundary remain fixed. The fixed

inner pin surface guarantees a constant rate of heat flow in watts over the domain

boundary during the optimization.

An FFD-box is used for its ease of use in this application and availability in the

utilized code framework. The FFD-box fully encloses the pin and consists of 18 points.

Only the vertical y-movement is considered, leaving a total of 18 design variables, see

figure 5.15b. As the designing surface is fully submerged into the FFD-box, i.e. the

FFD-box boundaries do not cut any designing surface, the application is much more

straight-forward compared to the previous presented steady case, cf. section 5.1.2.

The used FFD blending is done via Bézier curves that results in smooth shapes de-

spite low-resolved FFD-boxes, and is preferred over B-splines in this application as no

limited support of the blending function is required. The downside is of course a limited

design space compared to a low-order B-Spline blending. For the gradient validation

and optimization the same FFD setup as before is used.

5.2.1 Gradient Validation

The sensitivities, computed by the discrete adjoint for the present unsteady CHT case,

are validated by comparison against first order forward finite difference sensitivities.

The simulation duration is one complete shedding cycle for both, primal and adjoint.

The objective functions, surface averaged inner pin temperature and drag of the cylinder

surface, are time-averaged over the full shedding cycle with equal weighting of each time-

step contribution.

The primal simulations are not run from freestream values, but from restart files that

restart the simulation at a lift and drag peak that could be interpreted as the start of

a shedding cycle. These files, from two timesteps for dual time-stepping 2nd order, are

extracted from a simulation that already reached the quasi-steady state of the periodic

shedding cycles. With 61 timesteps per shedding cycle, that results in a reasonably fast

to evaluate setup for the numerous primal simulations required for the finite difference

and the discrete adjoint.

In a straight-forward comparison of DA and FD sensitivities over all design variables

107



5 Verification and Application

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

DV

−4

−2

0

2

4

A
v
g.

T
em

p
.
G
ra
d
ie
n
t
[K

/m
]

DA

FD (1e-6)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

DV

−5.0

−2.5

0.0

2.5

5.0

D
ra
g
G
ra
d
ie
n
t
[1
/
m
]

×10−1

DA

FD (1e-6)

Figure 5.17: Gradient validation of surface averaged temperature and drag objective

functions. Note that the imperfect symmetry between upper and lower side

arises from inaccurate tracking of the exact shedding window with a limited

number of timesteps.

with an FD stepsize of 1e -6m, see figure 5.17, the overall agreement is excellent and

certainly sufficient for all practical optimization purposes. A closer inspection of the

gradient accuracy is performed below. The finite difference stepsize is simply chosen by

taking 1e -6m of a representative length of the to be designed object, which provides

a good starting point for gradient validations. In the present case the representative

length is naturally the pin diameter, but the choice becomes less clear for other, more

complex, applications.

In order to fully determine the achievable gradient accuracy, a range of finite difference

steps has to be evaluated for each design variable. This procedure also provides an

optimal FD-step for an overall evaluation with a fixed stepsize, as performed in the

previous paragraph.

For two selected design variables 4 and 13, being the middle points of the upper
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Figure 5.18: Sweep over finite difference step range with relative gradient difference on

the y-axis. For average temperature objective on the left in red, and for

drag in blue on the right.

‘

and lower row of the FFD-box, see Fig. 5.18, a sweep over multiple FD-stepsizes is

performed with a stride of one order of magnitude. The two DV’s are chosen as their

central position yields the largest deformations at the same displacement out of all design

variables. Figure 5.18 shows the results for the surface average temperature objective

function in red on the left, and for drag in blue on the right. The optimal accuracy

for both objectives is not achieved at the same FD-stepsize, but overall the relative

difference is below 0.1% across the observed values in a range of 10−3 to 10−10 . The

optimum is at 10−6 for surface average temperature and at 10−7 for drag, respectively.

The curve form for the relative difference sweeps in Fig. 5.18 is expected: for large

stepsizes a high truncation error occurs and after a valley with the optimal accuracy the

round-off errors through the primal solver get dominant.

Additionally, to the line plot in figure 5.18, the gradient validation results are shown in

table 5.5 and table 5.6 for both objective functions. The first row lists the DA derivative,

and the subsequent rows the FD derivative with the red color indicating non-matching

numbers. Additionally, the relative difference, computed after equation 5.2, to the DA

value is given. The achieved agreement between DA and FD derivative for this unsteady

CHT testcase is excellent, with relative differences below 0.00001% for all considered

cases. Visualizing matching digits is another intuitive mean of showcasing accuracy in

most cases but can be misleading at times, e.g. consider the edge case 1.000... versus

0.999... where no matching digits are achieved.
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magnitude p FD DV 4 rel diff (%) FD DV 13 rel diff (%)

DA -2.7852042730 - 2.5764232907 -

−1 -2.7820359710 1.1375474079e-1 2.5674963880 3.4648431850e-1

−2 -2.7855965580 1.4084605648e-2 2.5756228427 3.1068184045e-2

−3 -2.7852344518 1.0835432068e-3 2.5763533133 2.7160673582e-3

−4 -2.7852073878 1.1183694342e-4 2.5764162256 2.7421847623e-4

−5 -2.7852045832 1.1138609945e-5 2.5764224176 3.3887097505e-5

−6 -2.7852042308 1.5150111880e-6 2.5764231850 4.1021565999e-6

−7 -2.7852041739 3.5559178250e-6 2.5764228439 1.7339908113e-5

−8 -2.7852195216 5.4748887415e-4 2.5764165911 2.6003201919e-4

−9 -2.7851001505 3.7384150634e-3 2.5763142730 4.2313574733e-3

−10 -2.7853275241 4.4252114843e-3 2.5761437427 1.0850233230e-2

Table 5.5: Gradient validation for surface average temperature for DV4 and 13. Magni-

tude p indicates the finite difference stepsize with 1e -p. Relative difference

in % is computed after Eq. (5.2). The first row holds information for the

discrete adjoint gradient and matching numbers are indicated in red.

magnitude p FD DV 4 rel diff (%) FD DV 13 rel diff (%)

DA 0.3610934912 - -0.4025129357 -

−1 0.3782510748 4.7515626808e-0 -0.3812776084 5.2756881816e-0

−2 0.3628630057 4.9004329990e-1 -0.4004358762 5.1602306375e-1

−3 0.3612694443 4.8727844207e-2 -0.4023065028 5.1286027164e-2

−4 0.3611111003 4.8766139794e-3 -0.4024923214 5.1214067918e-3

−5 0.3610952552 4.8853072459e-4 -0.4025108740 5.1222613281e-4

−6 0.3610936669 4.8664178557e-5 -0.4025127289 5.1392192897e-5

−7 0.3610934906 1.6068829409e-7 -0.4025129207 3.7299883815e-6

−8 0.3610935106 5.3736165127e-6 -0.4025130007 1.6129263499e-5

−9 0.3610949317 3.9892418055e-4 -0.4025129118 5.9365719239e-6

−10 0.3611000387 1.8132465200e-3 -0.4025091371 9.4373457743e-4

Table 5.6: Gradient validation for drag for DV4 and 13. The remaining table information

are identical to table 5.5.

Similar to the gradient validation for the steady testcase in the previous chapter 5.1.3,

the sign difference of the derivative values between the objective functions indicates the

resulting optimization conflict. Consider the drag derivative value for DV 4, which has
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a positive value. DV 4 is on the top row of the FFD-box so displacing the FFD-point

in positive y-direction, thus enlarging the cylinder, will intuitively increase the cylin-

der’s drag coefficient. This intuitive expectation is confirmed by the positive derivative

value and thus provides a good sanity check. Between DV 4 and DV 13, the deriva-

tive obviously switches its sign, as a displacement in positive y-direction results in a

reduced cylinder size. The derivative sign switches for the surface averaged temper-

ature objective function compared to drag, which results in an opposite deformation

and explanation thereof. This circumstance showcases the conflicting nature of the two

considered objectives.

Due to the integration of one full period of the present periodic shedding process,

the theoretical expectation would be to obtain identical absolute derivative values with

opposite sign of two FFD-Box points at the same downstream location, but in the top

and bottom FFD-row. DV 4 and DV 13 present such a pair, and for the surface average

temperature objective the DA derivatives are approximately −2.8 and 2.6. A similar

effect can be observed for the other FFD-point pairs from upper side (DV’s 0-8) and lower

side (DV’s 9-17) of the cylinder’s FFD-box. The slight imperfection can be explained

with the inherent inaccurate temporal discretization of the shedding cycle which fails to

exactly track beginning, midpoint and end of the shedding cycle. With an increasing

number of timesteps the true period could be captured more precisely at the expense of

growing compute cost. The result is a marginally varying weighting of the upper and

lower side contributions.

5.2.2 Challenges in Objective Function Definition

The initial design provides a periodic vortex shedding behind the cylinder, which is

reflected in the periodically oscillating values of interest: surface average temperature

and drag. These values of interest over a time-series are then converted into a scalar

quantity via some form of representative time-average over a specific time window, that

is not necessarily the full simulation length. This section works out the challenges in

defining a physically reasonable objective function and adjoint integration length taking

computational costs into account, and discusses the approach employed in this thesis.

For the gradient validation in the previous section, the objective function was the

time average over the full simulation length, with the simulation running for exactly one

period starting from a converged solution. The discrete adjoint is integrated backwards

over the complete primal as well. The converged solution used is from the initial ge-

ometry and ‘converged’ means, that the initial nonphysical state set at the simulation

start, has no more influence on the solution, and periodic shedding occurs. The issue
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in terms of physical correctness with that approach is, that the utilized converged solu-

tions are only valid for the initial geometry, but for the finite difference, the deformed

geometries are restarted for just one period from that very same solution. That one

period is of course not enough for the solution to become independent of the initial

solution. However, albeit not physically sound, that approach is very well suited and

valid, to validate the gradients with respect to the discrete optimization problem. In an

optimization, independent of the chosen restart values, it is therefore necessary to ‘wash

out’ the nonphysical transient that comes with each design change before evaluating the

objective function.

In an optimization, the goal is of course to optimize the true time average value, i.e.

the simulation needs to reach its periodic (or otherwise cyclic) state before the time

averaged objectives can be known. A ‘brute-force’ approach would be to let each design

start from e.g. constant freestream values, and to update a running time average after

each time step until that very running average converges to a suitable exit condition.

Afterwards, by integration the adjoint over the complete time interval, the discrete

adjoint will yield a gradient that is fully consistent with the primal problem. That

approach is quite general and robust against significant period length shifts, including

that a design in the optimization cycle does not exhibit any more unsteady behavior.

The drawback is of course it being computationally quite expensive, and there is evidence

of instability of the gradient evoked by chaotic behavior. This becomes an issue with

increasing integration lengths and for scale-resolving simulations like (D)DES, LES or

DNS. A discussion of the topic and proposed remedy in windowing is presented and

applied in SU2 by Schotthöfer et al. [Sch+; Sch20]. Another issue with integrating

the adjoint over the complete time series is, that the resulting sensitivity then contains

an influence of the nonphysical initial transient phase. Which is desirable to avoid,

as only the physical, stabilized portion of the simulation is of interest. It is therefore

recommendable to only backwards integrate the adjoint over a fraction of the primal

time-window that constitutes a physical state.

In this work, a computationally less demanding approach was taken compared to the

‘brute-force’, by restarting each new design from the converged solution of the initial

design but letting the simulation run for 10 full periods before starting the optimization

window of 5 full periods. In the optimization window, the objective functions are time-

averaged with constant weighting factors, and the adjoint is integrated backwards only

for the optimization window of 5 periods. This of course makes for a primal simulation

duration of 15 periods, based on the initial design’s period length, which is fix. This

would become problematic if the period length increases up to the point, where the
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5.2 Transient Coupled CHT Cylinder in Crossflow

time average in the optimization window does not represent the true time average. The

occurring errors in the gradient due to missing tracking of period start and end are

accepted in a cost-accuracy trade-off for the present case.

See the dashed lines in figure 5.22 for the time-history of the objective function values

for the initial design, including indication of the optimization window. Note for that

figure, that drag and surface average temperature cycle twice during one period as both

exhibit an identical behavior, independent on whether a vortex sheds at the upper or

lower side.

The adjoint is integrated backwards in time only for the length of the optimization

window. Like so, only information of the design’s true shedding cycle has an influence

on the gradient, but as mentioned above, the optimization window most likely does not

contain an integer amount of cycles which results in a non-perfect time-average. The

cost-accuracy trade-off has to be made for each specific case by setting the period/time-

lengths of the optimization window and the initial transient phase to reach a physical

state. Unfortunately, the user has no real alternative in this approach other than making

an educated guess based on the time-solution of the initial geometry, but an a posterior

check has to be made whether the window length is still reasonable for the optimized

geometry. In figure 5.22 the solid line represents the solution of an optimized solution

and as the objectives are in a periodic state in the optimization window with only a

slight shift in period length, the chosen window lengths can be concluded as suitable.

In conclusion, the applied approach consists of using restart files of the initial design

throughout the complete optimization, and fixing an initial wash-out phase and a sub-

sequent optimization window. The shortcomings in inaccurate period resolution and

required a posterior checks are made up for and outweighed by the ease of set up and

low computational cost.

5.2.3 Optimization Results

After the introduction of the unsteady CHT case setup in Sec. 5.2, a gradient validation

in Sec. 5.2.1 and the discussion of a suitable objective function with the associated sen-

sitivity computation in Sec. 5.2.2, this section presents constrained shape optimization

results.

The optimization objective is to minimize time-averaged surface average temperature

on the inner pin surface, with an inequality constraint on time averaged drag of the

cylinder to not exceed the value of the initial geometry, 1.332.

The geometry parametrization is done via an FFD-box as presented in the previous

Sec. 5.2, with an additional step explained in the following to preserve symmetry along
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the downstream axis. It can not be assumed, that the gradients will be identical for

the top and the bottom row of the FFD-box. This leads to an asymmetrical pin, with

respect to the x-axis, and is not desired behavior as the cause for this behavior are slight

imperfections in the objective function definition and thus the gradient. Therefore, the

arithmetic average of the gradients of lower and upper side is equally set for both sides

and handed to the optimizer in a simple postprocessing step. This gradient postprocess-

ing can be easily incorporated within the FADO optimization framework via a simple

Python-script. The optimized designs with their associated, symmetric FFD-boxes are

shown in figure 5.21. The discrepancies in gradients between lower and upper side were

found to be small, but added up over multiple optimization steps the non-symmetric

nature of the shapes were noticeable, albeit the overall design direction was quite simi-

lar. Lastly, the bounds of the FFD-box point displacements is set to 0.3 in negative and

positive y-direction, especially in order to avoid a collapse of the outer pin-surface onto

the inner pin surface.

The optimization history is shown in figure 5.19, which features the evolution of

objective and constraint value as well as the respective normalized gradient norms.

As expected, the optimizer takes more aggressive steps in the first 10 iterations, thus

violating the constraint which is always recovered in at most 2 subsequent iterations. In

the following 30 iterations the gains per iteration are less significant, but the objective

continues to drop, and at iteration 42 the optimization can be considered as converged.

The constraint value in the final design is very slightly violated by 0.0009 at a value of

1.3329. The objective function in time-averaged surface average temperature dropped

by 3.7 Kelvin from 357.5K to 353.8K.

Due to the drag constraint and the reached FFD-box bounds for selected points,

the gradient norm of the objective function cannot vanish and only drops by about

∼12 percentage points. The gradient norm of the constraint is added for the sake of

completeness, and does allow for any conclusive statement. The normalization in the

plot is done via division by the initial design’s gradient norm.

Selected shapes from the optimization history are shown on the left side of Fig. 5.20.

The general design direction is towards a predominant wedge shape (or v-shape) with

the thickest cross-section being shifted downstream. In the front to middle section, the

pin shrinks, whereas it thickens in the rear section. A notable aspect is that design

17 is slightly slimmer in the front section compared to the final design, i.e. a more

aggressive wedge shape in design 17 is slightly reversed to arrive at the final constrained

optimized design. The optimized shape for this case resembles the steady optimized

shape from the pin-array in Sec. 5.1.5 in its primitive design rules, such that the same
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Figure 5.19: Optimization history for unsteady cylinder in crossflow. Objective function

value and constraint value in the upper image and their respective gradient

norm values in the lower. Line elements are only drawn if two subsequent

evaluation points represent valid points, i.e. points miss due to invalid

meshes, or gradients are not computed because the optimizer rejected the

design for further evaluation.

physical explanation applies. Note as well that, despite not being explicitly enforced, an

approximate pin-volume constraint is achieved by the constrained setup.

The right side of Fig. 5.20 features optimized design with respect to both objectives

functions without an additional constraint. The resulting shapes are straight-forward:
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Figure 5.20: Comparison of full pin-shapes during the constrained (cte) optimization at

various design’s during the optimization, on the left. On the right, single

objective optimization designs of average temperature and drag are com-

pared to the initial and cte-optimized shapes.

for surface average temperature the pin thickens to gain an increased surface area to

transfer heat into the fluid domain, and for drag the primitive design direction is natu-

rally to shrink the projected area against the flow direction and to ultimately collapse

entirely (which does not happen here due to FFD-limitations).

The average temperature optimized shape is mostly limited by the FFD-box bounds,

see Fig. 5.21. But the not-exceeded FFD-points in the pin’s front section indicate,

that a minimum of aerodynamic performance has to be retained. In the unconstrained

drag optimization, the limiting factor is a degrading mesh. Note that a fixed inner pin

surface sets a hard limit to the maximum shrinkage of the outer pin/cylinder. As the

mesh deformation process results in an invalid mesh beyond that shown design, the front

and back FFD-points remain nearly undeformed. The gradient value at the front and

back is much lower compared to the middle section, and with more conservative FFD-

bounds, these section would most likely shrink after the middle section stopping at the

bounds. Both unconstrained optimized designs are a valuable indicator for the available

design space, which the used geometry/mesh deformation and optimization setup is able

to achieve. The trivial shape solution to the unconstrained drag optimization would be
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Figure 5.21: FFD-boxes that yield the constrained and single-objective optimized de-

signs. Single-objective optimizations are severely limited by necessary FFD

bounds and limits in the mesh deformation workflow.

e.g. a fully collapsed pin, which is not achievable with the used setup.

As a final step to prove the validity of the chosen optimization window and start-

up length, the evolution of surface average temperature and drag of the constrained

optimized design is shown in Fig. 5.22, alongside the same values for the initial design.

Recall that all designs are restarted from the same converged solution based on the initial

design, and thus a ‘wash-out’ phase of the nonphysical transient response is required. It

can be noted, that the chosen 10 periods before the 5 periods of optimization window are

sufficient to reach a new stable periodic regime. To the right of Fig 5.22, additionally the

results of an FFT (Fast Fourier Transformation) analysis over the optimization window

are shown. The intuitive observations is confirmed that there is only a slight decrease

in period length, i.e. an increase of the dominant frequency. The less pronounced

frequency peak for the optimized design can be explained by the optimization window
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Figure 5.22: Time-history and FFT frequency analysis of the objective function and con-

straint value for the initial (dashed line) and constrained optimized (solid

line) design. The primal simulation duration features an initial transient

phase of 10 periods followed by 5 periods of the optimization window where

the objectives are recorded, and the adjoint is integrated backwards.

not capturing an integer number of cycles, which is known as spectral leakage.

In summary, the here presented optimization setup builds on an accurate and vali-

dated gradient, but introduces slight inconsistencies through the specific optimization

formulation that successfully balances computational cost and accuracy, and thus en-

ables time-efficient unsteady CHT optimizations.
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6.1 Conclusion

This thesis has investigated discrete adjoint-based shape optimization for steady and

unsteady conjugate heat transfer cases.

For this purpose, the available density-based incompressible was extended to handle

unsteady flows with a dual-time stepping scheme. This unsteady incompressible solver

was validated against literature data in preliminary work, and the identical primal fluid

zone setup was employed for the unsteady application in this thesis.

As the primary application considered in the present work are heat exchangers based

on pin-arrays, the concept of streamwise periodic flow was introduced to approximate

an extended pin-array on a computationally efficient representative elementary unit cell.

Pin-arrays potentially consist of thousands of pins, such that the implementation of

streamwise periodic flow enables a computationally feasible performance evaluation of

a pin design for steady state applications. In addition to the unsteady application,

a steady state testcase for a pin array was set up and investigated. The streamwise

periodic approach of momentum and energy source terms is extended to handle arbitrary

boundary conditions related to the energy equation, as required for CHT, by applying

an outlet heat sink to the energy equation as well as dealing with prescribed massflow. A

simulative validation of the streamwise periodic approach was made against a simulation

with numerous downstream repetitions of the unit cell domain.

The gradients of scalar objective functions with respect to an arbitrary set of design

variables, that are used for gradient-based shape optimization, were computed using the

discrete adjoint method. Based on a generic multi-physics discrete adjoint setup and a

discrete adjoint setup for unsteady FSI, the discrete adjoint for unsteady CHT applica-

tion was constructed. A detailed introduction into algorithmic differentiation was given,

to pave the way for a step-by-step explanation of the discrete adjoint method. The

discrete adjoint was first introduced on a plain singlezone steady formulation, and after

independent introduction of required modifications for singlezone unsteady and multi-

zone steady setups, the unsteady multizone discrete adjoint for CHT was constructed.
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For streamwise periodic flow, the additional fixed point equation in pressure drop for

a prescribed massflow required a treatment in the discrete adjoint approach, which is

consistent to the regular PDE state variables. The essential impact of this specialized

contribution was showcased at the example of the steady state application.

In the elementary unit cell application, a sophisticated geometry and mesh deforma-

tion workflow had to be set up. This workflow guarantees the preservation of a valid

periodic domain and symmetry boundary conditions, as well as equal deformation of all

involved pin-segments in order to retain just a single pin shape in the pin-array. The

gradient validation with respect to surface average temperature and pressure drop objec-

tives showed very good results. The subsequent optimization highlights the robustness

of the workflow, including mesh deformation, primal and adjoint computation, over a

complete shape optimization cycle.

Finally, the unsteady conjugate heat transfer application features a single cylinder in

laminar crossflow, with a hollowed inner pin as the solid domain. Excellent results were

achieved in the gradient validation of time-averaged surface averaged temperature and

drag. The challenges in defining a suitable objective function and setting up a discrete

adjoint workflow were discussed, and the approach used in this thesis of employing a

fixed nonphysical transient wash-out phase followed by a concise optimization window

was thus motivated. This constitutes an increased effort compared to steady-state cases,

that has to be reevaluated and tuned for each case and no one-fits-all solution could be

found. Successful optimization results for the unsteady setup underline the applicability

and validity of the unsteady multizone gradient over a considerable range of design

modifications.

The SU2 project in general was introduced, covering the codebase with its various

aspects including the development platform and affiliated documentation, as well as the

community and its engagement via various roles. The achievements of this thesis nat-

urally build on the existing SU2 framework developed by many researchers, showcasing

the flexible expandability of the project, which is substantially enabled by the concept of

open source built around an active community. All the methods are implemented in the

open-source solver SU2, and the author’s code contributions were highlighted through-

out the thesis. The results presented in this work are aimed at to be fully reproducible

and therefore easy to modify and extend, which is one of the primary motivations for

the extended effort that is accompanied by such aspiration.
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6.2 Outlook

The interest in multi-physics simulation has grown over the recent years, in parts due

to availability of coupled solvers in widespread commercial and open-source solvers, as

well as computational affordability due to advances in hard- and software. A similar

observation can be made for time-accurate simulations. Associated therewith is an

increased requirement of gradient availability for optimization efforts. The present thesis

contributes an efficient approach via the discrete adjoint method to compute shape

gradients for CHT applications at the example of a simple laminar cylinder in crossflow.

A natural progression in the field would be the extension to applications featuring

more complexities as e.g. turbulent regime, temperature dependent material properties,

increasing the design space in the optimization, 3D domain, less predictable unsteady

flow topology due to more challenging geometries, extending optimization windows, and

many more possibilities. This helps to better understand the practical limits of the

current implementation and can help to guide prioritization of future work.

An interesting comparison in terms of coupling approaches would be between the cur-

rent segregated approach and a monolithic solver. A monolithic solver loses parts of

the compelling generic nature of the segregated approach as implemented in SU2, but is

considered to be more stable and robust in the primal execution. In terms of impacts on

robustness of the unsteady adjoint in particular, windowing [Sch20] was mentioned as a

noteworthy remedy but also the method of least squares shadowing [WHB14; Blo+18]

was already successfully applied to fluid dynamics applications. It is known, that the

sensitivity computation for unsteady applications can break down, and thus becomes

unusable, due to chaotic behavior of the dynamical system [AZG19], and the aforemen-

tioned methods can supposedly alleviate this problem.

The principal application considered in this work were pin-fin heat exchanges. While

that constitutes a widespread application in industrial devices and therefore also a rich

research field, different CHT cases like turbine blade cooling or thermal management

of batteries under consideration of Joule heating offer intriguing research questions.

Introducing the developed methods and capabilities to a wider audience from other

fields is potentially best done by showcasing shape meaningful optimization for various

(unsteady) CHT applications.

If manufacturable designs are supposed to be generated by the optimization directly,

one has to additionally formulate and implement geometry constraints, which adds yet

another level of complexity to the existing design chain. This is often a necessity though

for industrial devices that can have quite restricting manufacturing processes, up to the

point where there is barely any available design space. In these cases, gradient-based
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optimization is potentially overkill, and methods like evolutionary algorithms might be

more straight-forward. To achieve widespread use and acceptance in the industrial world,

simulation tools like SU2 for gradient-based optimization have to provide a rich set of

applicable geometry constraints.

Quite generally, a ‘stacking of complexities’ can be observed, and this thesis that

builds on SU2 makes no exemption. Primal capabilities for unsteady incompressible

flow and heat domain needs to be coupled, streamwise periodic flow has to be available,

a discrete adjoint solver for the unsteady coupled problem needs to be validated and the

geometry and mesh deformation workflow needs to work as intended. All of that needs

to exhibit stable convergence over the optimization procedure for shape optimization,

and optimally, show a performance like industry-leading commercial tools. For a small,

rotating development team, mostly consisting of PhD-students, like in SU2, it therefore

is even more substantial to focus on sustainable feature development and maintenance.

Like so, even further advances can be made, without the incorporated chain of code

modules and methods breaking for every case anew.
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