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4.4 Linear directed multigraph Ĝ of the element-based SPPRC repre-
sentation of the pricing problem . . . . . . . . . . . . . . . . . . . . 174

vii



List of Figures viii

4.5 Computation time per pricing iteration with (gray) and without
(blue) greedy heuristic for an exemplary instance . . . . . . . . . . 180

4.6 Modified linear directed multigraph G with Ryan-and-Foster sepa-
rate branching decisions {i1, i2} and {i2, i3} . . . . . . . . . . . . . . 195

4.7 Computation time per pricing iteration with (gray) and without
(blue) heuristic for the second instance with Q = 15, m = 20, n = 70 198

4.8 Computation time per pricing iteration with (gray) and without
(blue) heuristic for the fifth instance with Q = 20, m = 35, n = 50 . 198

4.9 Computation time per pricing iteration with (gray) and without
(blue) heuristic for the third instance with Q = 25, m = 50, n = 50 199

4.10 Computation time per pricing iteration with (gray) and without
(blue) heuristic for the fifth instance with Q = 35, m = 40, n = 85 . 199

4.11 Computation time per pricing iteration with (gray) and without
(blue) heuristic for the fifth instance with Q = 50, m = 55, n = 60 . 200



List of Tables
2.1 Overview of exact solution approaches to the OBP . . . . . . . . . 12
2.2 Summary results for different variants of our BPC algorithm . . . . 33
2.3 Comparison of our BPC algorithm with the approach of Muter and

Öncan (2015) for routing strategies traversal, return and midpoint
on the M&Ö instances . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Summary results of our BPC algorithm for the M&Ö and H&W in-
stances and all routing strategies . . . . . . . . . . . . . . . . . . . 36

2.5 Detailed results of our BPC algorithm for the M&Ö and H&W instances
and routing strategies traversal and optimal . . . . . . . . . . . . . 37

2.6 Comparison of our BPC-based heuristics SC-2 and BPC-DF-2 with
the ALNS/TS of Žulj et al. (2018) for the largest gap strategy on a
subset of the H&W instances . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Comparison of our BPC-based heuristics SC-2 and BPC-DF-2 with
the ALNS/TS of Žulj et al. (2018) for the traversal strategy on a
subset of the H&W instances . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Comparison of our BPC-based heuristics SC-2 and BPC-DF-2 with
the ALNS/TS of Žulj et al. (2018) for the traversal strategy on the
large-scale ZKS instances . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Summary results of our BPC-based heuristics with different time
limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.10 Percentage increase in total traveled distances compared to the op-
timal routing strategy . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.11 Summary results of our BPC algorithm for the M&Ö instances . . . . 58
2.12 Summary results of our BPC algorithm for the H&W instances . . . . 59
2.13 Summary results of our BPC algorithm for the ZKS instances . . . . 60
2.14 Summary results of our BPC algorithm for the M&Ö-ext instances . 60
2.15 Summary results of our BPC algorithm for the W&G-g instances . . 61
2.16 Summary results of our BPC algorithm for the W&G-u instances . . 62
2.17 Detailed results of our BPC algorithm for the M&Ö instances and the

traversal strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.18 Detailed results of our BPC algorithm for the M&Ö instances and the

return strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.19 Detailed results of our BPC algorithm for the M&Ö instances and the

midpoint strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ix



List of Tables x

2.20 Detailed results of our BPC algorithm for the M&Ö instances and the
largest gap strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.21 Detailed results of our BPC algorithm for the M&Ö instances and the
combined strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.22 Detailed results of our BPC algorithm for the M&Ö instances and the
optimal strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.23 Detailed results of our BPC algorithm for the H&W instances and the
traversal strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.24 Detailed results of our BPC algorithm for the H&W instances and the
return strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.25 Detailed results of our BPC algorithm for the H&W instances and the
midpoint strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.26 Detailed results of our BPC algorithm for the H&W instances and the
largest gap strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.27 Detailed results of our BPC algorithm for the H&W instances and the
combined strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.28 Detailed results of our BPC algorithm for the H&W instances and the
optimal strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.29 Detailed results of our BPC algorithm for the ZKS instances and the
traversal strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.30 Detailed results of our BPC algorithm for the ZKS instances and the
return strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.31 Detailed results of our BPC algorithm for the ZKS instances and the
midpoint strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.32 Detailed results of our BPC algorithm for the ZKS instances and the
largest gap strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.33 Detailed results of our BPC algorithm for the ZKS instances and the
combined strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.34 Detailed results of our BPC algorithm for the ZKS instances and the
optimal strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.35 Detailed results of our BPC algorithm for the M&Ö-ext instances
and the traversal strategy . . . . . . . . . . . . . . . . . . . . . . . 77

2.36 Detailed results of our BPC algorithm for the M&Ö-ext instances
and the return strategy . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.37 Detailed results of our BPC algorithm for the M&Ö-ext instances
and the midpoint strategy . . . . . . . . . . . . . . . . . . . . . . . 79

2.38 Detailed results of our BPC algorithm for the M&Ö-ext instances
and the largest gap strategy . . . . . . . . . . . . . . . . . . . . . . 80

2.39 Detailed results of our BPC algorithm for the M&Ö-ext instances
and the combined strategy . . . . . . . . . . . . . . . . . . . . . . . 81



List of Tables xi

2.40 Detailed results of our BPC algorithm for the M&Ö-ext instances
and the optimal strategy . . . . . . . . . . . . . . . . . . . . . . . . 82

2.41 Detailed results of our BPC algorithm for the W&G-g instances and
the traversal strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.42 Detailed results of our BPC algorithm for the W&G-g instances and
the return strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.43 Detailed results of our BPC algorithm for the W&G-g instances and
the midpoint strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.44 Detailed results of our BPC algorithm for the W&G-g instances and
the largest gap strategy . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.45 Detailed results of our BPC algorithm for the W&G-g instances and
the combined strategy . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.46 Detailed results of our BPC algorithm for the W&G-g instances and
the optimal strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.47 Detailed results of our BPC algorithm for the W&G-u instances and
the traversal strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.48 Detailed results of our BPC algorithm for the W&G-u instances and
the return strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.49 Detailed results of our BPC algorithm for the W&G-u instances and
the midpoint strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.50 Detailed results of our BPC algorithm for the W&G-u instances and
the largest gap strategy . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.51 Detailed results of our BPC algorithm for the W&G-u instances and
the combined strategy . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.52 Detailed results of our BPC algorithm for the W&G-u instances and
the optimal strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.53 Comparison of the BPC-based heuristics on the M&Ö instances . . . 95
2.54 Comparison of the BPC-based heuristics on the H&W instances . . . 96
2.55 Comparison of the BPC-based heuristics on the ZKS instances . . . 97
2.56 Comparison of the BPC-based heuristics on the M&Ö-ext instances . 99
2.57 Comparison of the BPC-based heuristics on the W&G-g instances . . 100
2.58 Comparison of the BPC-based heuristics on the W&G-u instances . . 101
2.59 Percentage increase in total traveled distances compared to the op-

timal strategy for the M&Ö instances . . . . . . . . . . . . . . . . . . 102
2.60 Percentage increase in total traveled distances compared to the op-

timal strategy for the H&W UDD instances . . . . . . . . . . . . . . . 103
2.61 Percentage increase in total traveled distances compared to the op-

timal strategy for the H&W CBD instances . . . . . . . . . . . . . . . 104
2.62 Percentage increase in total traveled distances compared to the op-

timal strategy for the ZKS instances . . . . . . . . . . . . . . . . . . 105



List of Tables xii

3.1 Overview of exact and heuristic solution approaches to the multi-
block OBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.2 Comparison of our BPC algorithm with the B&C approach of Valle
et al. (2017) for the optimal routing strategy on a subset of the
Foodmart instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.3 Comparison of our BPC algorithm with the B&C approach of Zhang
and Gao (2023) for the optimal routing strategy on a modified subset
of the Foodmart instances . . . . . . . . . . . . . . . . . . . . . . . 129

3.4 Summary results of our BPC algorithm for the Foodmart instances
and the optimal routing strategy . . . . . . . . . . . . . . . . . . . 130

3.5 Summary results of our BPC algorithm for the Scholz&Wäscher
instances and the optimal routing strategy . . . . . . . . . . . . . . 131

3.6 Summary results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and all routing strategies . . . . . . . . . 133

3.7 Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and the routing strategies optimal and
combined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.8 Comparison of our heuristics BPC-DF and SC with the DAA of
Valle and Beasley (2020) and the CGH of Briant et al. (2020) for a
subset of the Foodmart instances and the optimal routing strategy . 135

3.9 Comparison of our heuristics BPC-DF and SC for the routing strate-
gies optimal and combined with the DAA of Valle and Beasley
(2020) on a subset of large Foodmart instances . . . . . . . . . . . . 136

3.10 Summary results of our heuristics BPC-DF and SC for a subset of
large Foodmart instances and combined routing with different time
limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.11 Comparison of our heuristics BPC-DF and SC for the combined
routing strategy with the CGH of Briant et al. (2020) for very large
Foodmart instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.12 List of feasible states of the Foodmart instances . . . . . . . . . . . 145
3.13 Comparison of our BPC algorithm with the B&C approach of Valle

et al. (2017) on a subset of the Foodmart instances for the optimal
routing strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.14 Comparison of our BPC algorithm with the approach of Zhang and
Gao (2023) on a subset of the modified Foodmart instances for the
optimal routing strategy . . . . . . . . . . . . . . . . . . . . . . . . 148

3.15 Comparison of our heuristics BPC-DF and SC for the optimal rout-
ing strategy to the heuristic approaches of Valle and Beasley (2020)
and Briant et al. (2020) on a subset of the Foodmart instances . . . 149



List of Tables xiii

3.16 Comparison of our heuristics BPC-DF and SC for the routing strate-
gies optimal and combined to the heuristic approaches of Valle and
Beasley (2020) on a subset of large Foodmart instances . . . . . . . 150

3.17 Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and the routing strategy optimal . . . . 151

3.18 Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and the routing strategy no-reversal . . 152

3.19 Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and the routing strategy aisle-by-aisle . . 153

3.20 Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and the routing strategy combined . . . 154

3.21 Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and the routing strategy traversal . . . . 155

3.22 Summary results of our BPC-based heuristics for the Foodmart in-
stances and all routing strategies . . . . . . . . . . . . . . . . . . . 156

4.1 Summary results for pricing variants of our B&P for pagination
instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.2 Comparison of our B&P with the IPs ARF and SF-LEX-I of Jans
and Desrosiers (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.3 Detailed results of our B&P algorithm . . . . . . . . . . . . . . . . 183
4.4 B&P results for different amounts of memory allowed . . . . . . . . 184
4.5 Analysis of IRUP and MIRUP . . . . . . . . . . . . . . . . . . . . . 185
4.6 Summary results for different completion bounds of our B&P for

pagination instances . . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.7 Summary results of our B&P aggregated by number of elements . . 202
4.8 Summary results of our B&P aggregated by capacity . . . . . . . . 203
4.9 Summary results of our B&P aggregated by average frequency . . . 203
4.10 Summary results of our B&P aggregated by average cardinality . . 204
4.11 Summary results of our B&P aggregated by average number of items

per bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
4.12 Summary results of our B&P incorporating different UBs . . . . . . 206



Chapter 1

Introduction
In the context of rapid industrial advancement and evolving market demands,
warehousing operations and flexible manufacturing systems have become essen-
tial components of modern supply chains (Gu et al. 2007, Ghiani et al. 2013).
These systems play a critical role in the production, storage, and distribution of
goods, thereby maintaining operational continuity and enhancing competitive ad-
vantage (de Koster et al. 2007). Addressing these challenges requires sophisticated
decision-making tools capable of optimizing multifaceted problems under practical
constraints.

Combinatorial optimization, a specialized branch of mathematical optimization,
provides a powerful framework for tackling such problems. It focuses on identifying
optimal solutions within finite, yet often exponentially large, sets of feasible candi-
dates. This field is integral to discrete decision-making tasks, such as minimizing
costs or maximizing profits, under predefined constraints (Korte and Vygen 2018).
Beyond warehousing and manufacturing, combinatorial optimization addresses di-
verse applications in logistics, including transportation and routing, location and
network design, assignment and scheduling, as well as cutting and packing. For-
mally, these problems are often modeled using integer linear programming (IP).
While combinatorial algorithms have proven effective for solving many such prob-
lems to optimality (e.g., Irnich et al. 2014, Delorme and Iori 2020, Kellerer et al.
2004), the N P -hard nature of many problems makes exact solutions computa-
tionally challenging (Garey and Johnson 1979). Consequently, developing effective
exact methods remains an essential research area, not only for their theoretical
value but also as a foundation for heuristics that enable faster, reliable solving of
large-scale instances.

This thesis focuses on the exact solution of two combinatorial optimization prob-
lems that originate from warehouse operations and flexible manufacturing systems.
Section 1.1 provides an overview of the exact solution methods employed in this
research. The specific problems studied are detailed in Section 1.2. Section 1.3
summarizes the contributions and outlines the structure of the thesis.

1



Chapter 1. Introduction 2

1.1 Exact Solution Methods
Fundamental exact approaches to combinatorial optimization problems include
branch-and-bound (B&B) and branch-and-cut (B&C) methods. The idea of B&B is
to systematically explore the solution space, using bounds to prune large portions of
the space, and branching strategies to ensure integer feasible solutions (Dakin 1965,
Nemhauser and Wolsey 2014). Branching decisions in IP can be made not only
based on the values of individual variables but also on subsets of variables or specific
properties that those variables exhibit (e.g., Ryan and Foster 1981). However, the
branching rules employed must guarantee the exploration of the entire solution
space in such a way that integer solutions are always eventually found, provided
the problem is feasible. The B&C method dynamically integrates valid inequalities
(cuts) to the B&B approach (Padberg and Rinaldi 1988). These cuts are designed
to eliminate fractional solutions in the relaxed linear program, thereby improving
the quality of the relaxation. Notable examples of these include Chvátal-Gomory
cuts, which are general and applicable to all IP problems (Chvátal 1973, Gomory
1963). In contrast, specialized cuts, such as capacity cuts, are tailored to specific
problem types (Lysgaard et al. 2004, Baldacci et al. 2008). Violated constraints
are identified through a separation procedure, which detects and incorporates the
necessary cuts.

A specialized technique applicable to large-scale combinatorial optimization prob-
lems involves column generation (CG). This method is particularly effective for
solving linear programming relaxations of problems formulated with a large num-
ber of variables, such as those modeled through set-partitioning (Desrosiers et al.
2024). Notably, large-scale models often emerge from the decomposition of a com-
pact formulation, as introduced by Dantzig and Wolfe (1960). The core idea of
CG is to decompose the problem into a master problem and a pricing problem
(Gilmore and Gomory 1961). The master problem is solved with a restricted set of
variables, whereas the pricing problem generates new, potentially valuable columns
(variables) to be added to the master problem. This iterative process continues
until no further improving columns exist. The characteristics and complexity of
the pricing problem are closely tied to the underlying combinatorial structure of
the problem. For example, in packing or cutting problems, the pricing problem
can commonly be formulated as a binary knapsack problem or a variant thereof
(Martello and Toth 1990, Kellerer et al. 2004), both of which are N P -hard (Garey
and Johnson 1979). In routing problems, it often reduces to the shortest path prob-
lem with resource constraints (SPPRC, Irnich and Desaulniers 2005), which is also
N P -hard (Dror 1994). Effectively solving the pricing problem is crucial to the
overall performance of the CG approach. As highlighted by Irnich and Desaulniers
(2005), dynamic programming (DP)-based labeling algorithms (e.g., Dijkstra 1959,
Ahuja et al. 1995) serve as a primary method to address the SPPRC. To enhance
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the computational efficiency of these algorithms, specialized label elimination tech-
niques, such as dominance rules and completion bounds, are commonly applied.
These techniques help reducing the search space by discarding labels that cannot
contribute to an optimal solution of the SPPRC pricing problem. Additionally, in-
corporating heuristic pricing methods offers a complementary strategy to further
accelerate the solution process.

The integration of CG into B&B frameworks has led to the development of
branch-and-price (B&P) algorithms, where CG is applied at each node of the B&B
tree. This combination significantly enhances the ability to solve large instances
exactly by maintaining a manageable number of active variables throughout the
optimization process (Desrosiers et al. 2024). Branch-price-and-cut (BPC) algo-
rithms build upon this concept by incorporating valid inequalities to tighten the
formulation, thereby further reducing the solution space. However, both cutting
and branching decisions can impact the structure of the pricing problem and must
be carefully accounted for in the CG method. Essentially, CG-based exact so-
lution approaches, such as B&P and BPC, are not plug-and-play solvers; their
effectiveness hinges on a thorough understanding of the specific problem structure.

1.2 Considered Problems
The first problem addressed in this thesis is the order batching problem (OBP) in
warehousing. It involves designing a set of picking batches given a set of customer
orders, each containing one or more individual items to be picked. The objective is
to minimize the total distance traveled by the pickers in the warehouse, ensuring
that each customer order is assigned to exactly one batch while all batches adhere
to the capacity restrictions of the pickers (Wäscher 2004). To collect the items
of a batch, a picker traverses the warehouse according to a predefined routing
strategy. If the optimal routing strategy is employed – entailing the determination
of the minimum distance tour for each batch – the OBP becomes equivalent to the
soft-clustered vehicle routing problem, a variant of the prominent vehicle routing
problem, tailored to a warehouse environment (Aerts et al. 2021). Alternatively,
heuristic picker routing strategies can be used to simplify navigating, particularly
for human pickers (de Koster et al. 1999b).

Each item is assigned a unique storage location within a rectangular warehouse
with parallel aisles. A warehouse with two cross aisles, located at the front and back
of the picking aisles, is classified as a standard single-block warehouse. In contrast,
a multi-block warehouse includes three or more cross aisles, dividing the warehouse
into distinct blocks. Given the differing characteristics of these configurations and
the distinct routing strategies proposed for single-block and multi-block environ-
ments, this work addresses the single-block OBP and multi-block OBP separately.
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The second optimization problem explored in this thesis is the set-union bin
packing problem (SUBP), which has numerous practical applications. One notable
example is the tool switching instants problem in flexible manufacturing systems
(e.g., Konak et al. 2008). In these systems, each job requires a specific set of tools
to be loaded into a machine, with each machine having its own tool magazine. The
capacity of these magazines is typically insufficient to store all the tools needed
for every job, resulting in machine stops to switch tools. The objective is to mini-
mize the number of these machine stops, thereby improving production efficiency.
Similarly, the job grouping problem involves the objective of assigning all jobs to
machines such that the number of identical machines required is minimized (e.g.,
Tang and Denardo 1988).

The SUBP extends the well-known bin packing problem (BP) to model the un-
derlying optimization problem associated with these applications. In the SUBP,
a set of items is given, each requiring a specific subset of weighted elements. The
objective is to allocate all items into the minimum number of bins such that the
total weight of all elements needed by the items in a bin does not exceed the
bin’s capacity. In contrast to the classical BP, the SUBP allows for reduced total
capacity usage in a bin whenever items share overlapping element requirements.

1.3 Contributions and Outline
The primary goal of this thesis is to contribute to the development and analysis
of new exact solution approaches for the OBP, both in single- and multi-block
warehouse configurations, and for the SUBP. Specifically, it introduces novel CG-
based algorithms designed to address combinatorial optimization problems with
complex cost structures, thereby advancing the understanding and applicability of
CG techniques in the context of non-linear objective functions. The work presented
in Chapters 2–4 consists of three articles, each of which has either been published
in or is currently under review at a scientific journal. In the following, we outline
the structure of the thesis and detail the contributions of each chapter.

Chapter 2 introduces the first BPC approach developed for the OBP with general
weights. It targets the single-block OBP, employing various routing strategies
including traversal, return, midpoint, largest gap, combined, and optimal. The
CG pricing problem is formulated as an SPPRC on a linear directed multigraph.
The proposed DP labeling algorithm incorporates strong completion bounds and
is designed to heuristically terminate early, thereby accelerating computation. The
BPC algorithm integrates subset-row cuts and capacity cuts, with three different
separation techniques developed for the latter. A two-stage branching scheme,
including Ryan-and-Foster branching, is implemented. The DP labeling approach
accounts for both non-robust cuts and branching decisions. In addition, leveraging
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the powerful CG component, two BPC-based heuristic methods are introduced
for the OBP. Computational experiments demonstrate that the proposed exact
BPC approach substantially outperforms existing state-of-the-art exact solution
methods. Moreover, the heuristics show significant improvements in gap quality
compared to current leading heuristic approaches for the single-block OBP.

Chapter 3 addresses the multi-block OBP by extending the BPC approach in-
troduced in Chapter 2, incorporating suitable picker routing strategies. This work
pioneers the application of a BPC method to the multi-block OBP and is the first
to provide an exact solution approach for heuristic routing strategies to this prob-
lem. A key contribution of this study is the comprehensive examination of the
monotonicity properties of the multi-block routing strategies optimal, no-reversal,
aisle-by-aisle, traversal, combined, and largest gap. This analysis is pivotal for the
application of the BPC algorithm. Computational experiments further confirm
the efficiency of the BPC-based approaches, showcasing their superior performance
over both exact and heuristic state-of-the-art methods for the multi-block OBP.

Chapter 4 presents the first B&P approach for the SUBP. The corresponding
CG pricing problem, which is a set-union knapsack problem, is formulated in three
alternative ways: an IP, an item-based SPPRC, and an element-based SPPRC.
Both SPPRC formulations are addressed using DP labeling algorithms that forgo
dominance rules but incorporate sophisticated completion bounds. Additionally,
a greedy pricing heuristic is developed, significantly reducing the overall compu-
tational effort. The most effective pricing strategy identified combines the initial
greedy heuristic with the item-based labeling algorithm, which is also compatible
with the Ryan-and-Foster branching technique. The proposed B&P approach by
far outperforms current state-of-the-art IP formulations and improves the best-
known solutions for more than half of the considered benchmark instances.

Chapter 5 provides a summary of the findings and concludes the thesis.



Chapter 2
Branch-Price-and-Cut-Based
Solution of Order Batching
Problems
Julia Wahlen and Timo Gschwind

Abstract

Given a set of customer orders each comprising one or more individual items to
be picked, the order batching problem (OBP) in warehousing consists of designing
a set of picking batches such that each customer order is assigned to exactly one
batch, all batches satisfy the capacity restriction of the pickers, and the total dis-
tance traveled by the pickers is minimal. In order to collect the items of a batch,
the pickers traverse the warehouse using a predefined routing strategy. We propose
a branch-price-and-cut (BPC) algorithm for the exact solution of the OBP inves-
tigating the routing strategies traversal, return, midpoint, largest gap, combined,
and optimal. The column generation pricing problem is modeled as a shortest
path problem with resource constraints (SPPRC) which can be adapted to handle
the implications from non-robust valid inequalities and branching decisions. The
SPPRC pricing problem is solved by means of an effective labeling algorithm that
relies on strong completion bounds. Capacity cuts and subset-row cuts are used
to strengthen the lower bounds. Furthermore, we derive two BPC-based heuristics
to identify high-quality solutions in short computation times. Extensive computa-
tional results demonstrate the effectiveness of the proposed methods. The BPC is
faster by two orders of magnitude compared to the state-of-the-art exact approach
and can solve to optimality hundreds of instances that were previously unsolved.
The BPC-based heuristics are able to significantly improve the gaps reported for
the state-of-the-art heuristic and provide hundreds of new best-known solutions.

6
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2.1 Introduction
Warehousing is an essential part of a supply chain and involves receiving, storing,
picking, packing and shipping operations. It makes up about 20-25% of overall
logistics costs (Establish Inc. 2013). With a growing trend of online shopping and
e-commerce, the importance of efficient warehousing processes is likely to further
increase. The performance of warehouse operations is impacted to a large extend by
decisions regarding warehouse layout and technology, zoning, storage assignment,
and order picking. For a more detailed overview, we refer to the extensive surveys
(de Koster et al. 2007, Gu et al. 2010, Boysen et al. 2019).

In many warehouses, order picking, i.e., the process of retrieving articles from
their storage locations according to customer orders, is still done manually because
unlike automated systems humans can adapt to changes in real time (Grosse et al.
2014). Michel (2016), e.g., report that automated parts-to-picker systems are
used in less than 10% of the warehouses. In Western Europe, so-called low-level
picker-to-parts warehouses are predominant and account for the vast majority of
all warehouses (de Koster et al. 2007, Marchet et al. 2015) while the number of
fully automated warehouses is estimated to be only about 40 (Azadeh et al. 2019).
Low-level picker-to-parts warehouses describe systems in which items are stored in
shelves less than two meters high, and the pickers walk or ride along the aisles to
collect the items specified on a picking list (Caron et al. 2000). In particular in these
types of warehouses, order picking is highly labor-intensive and constitutes one of
the most cost-intensive operations in warehousing, accounting for more than 50%
of the total operating costs (Frazelle 2001, Tompkins et al. 2010, Richards 2017).

Within the order-picking process, the traveling of the pickers is a crucial activity
being the main factor responsible for the overall picking time (accounting for up
to 50%). The other activities’ times are either considered constant, e.g., searching
and picking time, or negligible, e.g., setup time (de Koster et al. 1999a, Tompkins
et al. 2010). Assuming that the speed of the pickers is constant, minimizing the
travel time is equivalent to minimizing the length of all order picking routes.

On an operational level, the order picking process is significantly influenced
by picker route planning and order batching (de Koster et al. 2007). Given a
warehouse layout, storage locations of all items, and a list of items to pick, picker
route planning, or short picker routing, describes the problem of how a single picker
should move through the warehouse to collect all items on the picking list while
minimizing the distance traveled. In their seminal work, Ratliff and Rosenthal
(1983) proposed a dynamic programming (DP) algorithm that exactly solves the
picker routing problem in a single-block warehouse with parallel aisles and whose
complexity is linear in the sum of the number of aisles and the number of picking
positions (Heßler and Irnich 2022b). Besides an optimal picker routing, several
heuristic picker routing strategies have been proposed in the literature, including
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traversal (or s-shape) (Goetschalckx and Ratliff 1988), return, midpoint, largest
gap (Hall 1993), composite (Petersen 1995), combined (Roodbergen 2001), and
mixed (Bahçeci and Öncan 2022). Such simple, rule-based strategies are often
encountered in practice, because they are typically more intuitive for the pickers
and may exhibit less risk of in-aisle congestion than an optimal routing (de Koster
et al. 1999b). More recent works on picker routing have generalized these routing
strategies (we include optimal routing in this term) to different warehouse layouts
(e.g., Roodbergen and de Koster 2001b, Çelik and Süral 2014, Pansart et al. 2018)
or other features like scattered storage and a decoupling of picker and cart (Goeke
and Schneider 2021).

Order batching is relevant whenever a batch picking strategy is pursued to fulfill
customer orders. Batch picking is one of the two basic order picking methods in
picker-to-parts warehouses, the other being single order picking (Petersen and Aase
2004). As opposed to single order picking where pickers collect one order at a time,
batch picking (or multi-order picking) allows pickers to fulfill multiple customer
orders that are combined into a picking batch in a single picking route. Typically,
customer orders should not be split and collected in different picking routes, as
splitting might lead to an unreasonable sorting effort. While single order picking
is the most common order picking method, batch picking has been shown to reduce
total picking times significantly (de Koster et al. 1999b) by decreasing the total
travel distance of pickers not only through reducing the number of trips but also
by shortening the length of each trip (Hong et al. 2012). The task of profitably
combining individual customer orders into picking batches is formalized by the
order batching problem (OBP). Given a warehouse layout, storage locations of all
items, and a set of customer orders each comprising one or more individual items,
the OBP consists of designing a set of picking batches such that each customer order
is assigned to exactly one batch, all batches satisfy the capacity restriction of the
pickers, and the total distance traveled by the pickers is minimal. In order to collect
the items of a batch, pickers traverse the warehouse using a predefined routing
strategy. For the optimal routing strategy, this gives rise to an integrated planning
problem coined the joint order batching and picker routing problem (JOBPRP,
Valle et al. 2016).

In this paper, we focus on the exact solution of the OBP in a rectangular single-
block parallel-aisles warehouse. We refer to this setup as the standard OBP. As
routing strategies, we consider traversal, return, midpoint, largest gap, combined,
and optimal. Computationally, the OBP is a challenging problem. On the the-
oretical side, it has been shown to be N P -hard when the number of orders per
batch is greater than two (Gademann and van de Velde 2005). On the practi-
cal side, a key difficulty for solution approaches to the OBP is the fact that the
travel distances of the batches are given by a function that is not separable in the
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comprised orders. This is true for all routing strategies that we investigate. Fea-
sibility of the batches, on the other hand, depends solely on a standard knapsack
constraint. The main contribution of this paper is the development of powerful
exact and heuristic solution procedures to the OBP. They are tested on several
sets of benchmark instances for all six considered routing strategies and are able
to significantly outperform the state-of-the-art exact and heuristic algorithms from
the literature.

2.1.1 Literature Review
For a general review of solution approaches to the OBP including construction
heuristics, metaheuristics, and exact algorithms, we refer to the extensive surveys
of de Koster et al. (2007) and Henn et al. (2012). An overview of more recent
heuristic approaches as well as related variants and extensions can be found in
(Žulj et al. 2018). In the following, we focus on the literature on exact solution
algorithms which is still limited, despite the high practical relevance of the OBP
and a growing interest in recent years.

Exact approaches to the OBP have been proposed by Gademann and van de
Velde (2005), Öncan (2015), Muter and Öncan (2015), Valle et al. (2016) and
Valle et al. (2017), and Bahçeci and Öncan (2022). Table 2.1 summarizes their
main characteristics, including our method.

Gademann and van de Velde (2005) consider a special case of the standard
OBP with optimal routing, in which all customer orders have unit weights. The
knapsack constraint of the batches, thus, reduces to a cardinality constraint (let
c be the maximum number of orders in a batch). They formulate the OBP as
a set-partitioning problem that is solved by means of a branch-and-price (B&P)
algorithm. The column generation (CG) pricing problem of their approach, which
consists of finding batches with negative reduced costs, is solved with a combinato-
rial branch-and-bound (B&B) algorithm. In each level of the B&B tree, they decide
on the inclusion of one additional order into a batch. Thus, the maximum level of
the B&B tree equals c. A simple lower bound estimating the maximum collectable
dual prices of the still undecided orders is used to prune unpromising B&B nodes.
The well-known Ryan-and-Foster branching rule is applied to guarantee integer
solutions. Problem instances with up to 32 orders and c = 10 are solved to proven
optimality.

Öncan (2015) considers the standard OBP with routing strategies traversal,
midpoint and return. Besides an iterated local search metaheuristic, the author
derives three mixed-integer programming (MIP) formulations each dedicated to
one of the three OBP variants specified by the respective routing strategy. The
MIPs are tested using a general-purpose MIP solver and three different classes of
instances including those from the benchmark by Henn and Wäscher (2012) which
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comprises instances with between 20 and 100 orders and a capacity between 30
and 75. Within a time limit of three hours, a small fraction of the smaller instances
of the benchmark are solved to optimality.

The standard OBP with the same three routing strategies traversal, midpoint
and return is also addressed by Muter and Öncan (2015). They propose a cut-
and-column generation approach with batch enumeration based on the same set-
partitioning formulation used by Gademann and van de Velde (2005). Their CG
pricing problem, however, involves a knapsack constraint instead of the simpler
cardinality constraint. For its solution, a DP labeling algorithm on a linear net-
work is proposed. Due to the non-separability of the travel-distance function, no
dominance relations between labels can be exploited. To eliminate unpromising
labels, they derive simple lower bounds generalizing the idea of Gademann and van
de Velde (2005) to the knapsack constraint: For each label, the LP relaxation of a
knapsack problem involving the yet undecided orders and their capacities and dual
prices is solved. To speed-up the CG process, a column pool comprising promis-
ing batches of previous pricing iterations is maintained and checked for negative
reduced-cost batches before calling the computationally expensive labeling algo-
rithm in each pricing iteration. Subset-row cuts are employed to strengthen the
set-partitioning formulation. To reach optimal integer solutions, Muter and Öncan
(2015) rely on a technique proposed by Baldacci et al. (2011) for vehicle routing
problems. Using upper bounds from the iterated local search of Öncan (2015),
they try to enumerate all batches with reduced costs smaller than the optimality
gap and solve the resulting reduced set-partitioning problem over all these batches
using a general-purpose MIP solver. They test their approach on a newly generated
testbed comprising instances with 20 to 100 orders and capacities 24, 36, and 48.
They are able to solve most of the smaller and some of the larger instances with
capacity 24, and very few of the smallest instances with capacity 36 and 48.

Valle et al. (2016) propose three MIP formulations for an OBP with optimal
routing in a rectangular parallel-aisles warehouse with multiple blocks divided by
cross aisles. They propose three MIP formulations, one with exponentially many
generalized subtour breaking constraints, the other two being compact formula-
tions based on network flows. The former is solved by a branch-and-cut (B&C)
algorithm, the latter two by a general-purpose MIP solver. In (Valle et al. 2017),
the same authors improve their B&C algorithm for the non-compact formulation
by introducing several families of valid inequalities based on a graph representation
of the warehouse. With their improved B&C algorithm, instances for a two-block
warehouse with up to 20 orders and a picking capacity of 40 can be solved opti-
mally.

The recent work of Bahçeci and Öncan (2022) considers the standard OBP and
proposes dedicated MIP formulations for composite, largest gap, optimal, and
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the newly introduced mixed routing strategies. To evaluate the routing strategies
and different storage assignment policies, they generate a new set of very small
instances with eight and 12 orders and a picking capacity between five and 30. A
general-purpose MIP solver is used to solve the proposed MIPs and the MIPs of
Öncan (2015) for routing strategies traversal, return, and midpoint for the new
instances.

Aerts et al. (2021) show that the JOBPRP can be modeled as a soft-clustered
vehicle routing problem (SoftCluVRP), a variant of the well-known vehicle routing
problem in which customers are grouped into clusters. Any exact approach to
the SoftCluVRP (e.g., Hintsch and Irnich 2020, Heßler and Irnich 2021) can in
principle be used to solve the JOBPRP. On the downside, these approaches do not
account for the warehouse layout.

2.1.2 Contributions
The main contribution of this paper is the development of a powerful and flex-
ible exact solution approach to the OBP. Furthermore, we derive two effective
heuristics based on the exact algorithm. Extensive computational experiments
demonstrate the competitiveness of the proposed methods. We elaborate on the
main contributions in the following.

The proposed exact approach is, to the best of our knowledge, the first full-
fledged BPC algorithm for the OBP with general weights. While the focus of this
paper is on the standard OBP and routing strategies traversal, return, midpoint,
largest gap, combined, and optimal, the proposed BPC is much more generic.
Indeed, it can directly be applied to any warehouse layout and routing strategy,
or to other features like scattered storage or decoupling of picker and picking cart
as long as (i) a method for solving the corresponding picker routing problem for a
given batch is available and (ii) the travel distances of the picker routes are given
by a function that is monotone in the orders to be picked.

Our BPC algorithm is based on the same set-partitioning formulation that has
been used for tackling the OBP (Gademann and van de Velde 2005, Muter and
Öncan 2015) and related problems like vehicle routing or bin packing with CG-
based methods like BPC. However, BPC is not an out-of-the-box solver. Crucial for
its effectiveness are typically (i) the effective solution of the CG pricing problem
and (ii) good strategies to obtain integer solutions using cuts to strengthen the
formulation and suitable branching rules. All of these building blocks are highly
problem specific and constitute major developing issues in the design of a BPC
approach. The core components of the developed method are as follows.

• We model the CG pricing problem as a shortest path problem with resource
constraints (SPPRC), which provides the flexibility to also handle the impli-
cations from non-robust valid inequalities and branching decisions.
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Table 2.1: Overview of exact solution approaches to the OBP
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• We derive strong completion bounds that enable the effective solution of the
SPPRC with a labeling algorithm. These bounds are adapted to account
for the implications of cutting and branching decisions and to remain tight
deeper in the search tree of the BPC.

• We introduce a highly effective pricing heuristic based on the premature
termination of the labeling algorithm.

• We employ two families of non-robust valid inequalities: capacity cuts (CCs)
and subset-row cuts (SRCs). For the separation of CCs, which are particu-
larly effective in strengthening the lower bounds, two heuristics and a MIP
formulation are derived.

The proposed CG method is very effective in solving the LP relaxation of the
set-partitioning formulation of the OBP. Closing the gap and finding an optimal
integer solution is by far the most time consuming part of the BPC. We exploit
this fact and derive two very effective BPC-based heuristics for the OBP.

Finally, extensive computational experiments on three large sets of benchmark
instances from the literature and on newly created larger-sized instances are re-
ported:

• We provide an in-depth computational analysis of the BPC algorithm and
its components.

• Compared to the state-of-the-art exact solution approach of Muter and Ön-
can (2015), who only consider routing strategies traversal, return, and mid-
point, our approach is faster by about two orders of magnitude and provides
more than three times the number of proven optima. Our BPC is able to
solve 90% of the two benchmarks by Henn and Wäscher (2012) and Muter
and Öncan (2015). Only a small fraction of these instances has been solved
to proven optimality before.

• With both our heuristics, we are able to drastically improve on the gaps of the
state-of-the-art heuristic solution approach of Žulj et al. (2018), who consider
only routing strategies traversal and largest gap. We improve almost 2,000
out of the 2,720 best-known solutions (BKS) reported by Žulj et al. (2018),
and confirm all remaining BKS except for two instances.

• We provide managerial insights on the quality of the six considered routing
strategies when applying optimal order batching decisions.

2.1.3 Organization of the Paper
The remainder of the paper is structured as follows. Section 2.2 formally defines
the OBP, presents a set-partitioning formulation of the problem, and specifies the
warehouse layout and routing strategies that we consider. The details of our exact
BPC algorithm and the BPC-based heuristics are given in Section 2.3. Section 2.4
presents our computational results. Final conclusions are drawn in Section 2.5.
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2.2 Problem Description and Mathematical
Formulation

Problem Definition Let O = {1, ..., n} be the set of customer orders. Each
order o ∈ O comprises a set of individual items to be picked. A sufficiently large
number of pickers with an identical picking capacity Q is available to pick the
ordered items. The capacity consumption of an order o ∈ O is qo ≥ 0. The
capacity consumption of the individual items is not relevant, because splitting of
the orders is not allowed.

The OBP consists of grouping the customer orders into picking batches, i.e.,
subsets of the customer orders, such that each customer order is assigned to exactly
one batch, each batch satisfies the capacity of the pickers, and the total distance
traveled is minimal. Thereby, each batch is assigned to a single picker that walks
through the warehouse and collects all items of the orders assigned to that batch.
The distance traveled by the pickers depends on the warehouse layout, the storage
locations of the items as well as the routing strategy used to traverse the warehouse,
all of which are assumed to be fixed a priori.

Set-Partitioning Formulation To formulate the OBP as a set-partitioning
problem, let Ω be the set of all feasible batches. Binary parameters aob indicate if
order o ∈ O is contained in batch b ∈ Ω (aob = 1) or not (aob = 0). The distance
needed to pick all individual items of a batch b ∈ Ω is given by cb. Note that the
distance function cb is not separable in the orders o ∈ b (see Section 2.3.1). Finally,
let λb be binary decision variables equal to one if batch b ∈ Ω is selected and zero
otherwise. Then the OBP can be formulated as follows:

min
∑
b∈Ω

cbλb (2.1a)

s.t.
∑
b∈Ω

aobλb = 1 ∀o ∈ O (2.1b)

λb ∈ {0, 1} ∀b ∈ Ω (2.1c)

The Objective (2.1a) minimizes the total traveled distance while Constraints (2.1b)
ensure that all orders are picked exactly once.

Because the number of feasible batches |Ω| is generally too large, Formula-
tion (2.1) cannot be solved directly. Instead, we resort to a BPC algorithm whose
details are presented in Section 2.3.

Warehouse Layout, Storage Locations, and Routing Strategies The stan-
dard OBP considers a rectangular warehouse with parallel aisles of equal length
and width. A top view of the layout is illustrated in Figure 2.1. Cross aisles at the
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Figure 2.1: Rectangular parallel-aisles single-block warehouse layout of the stan-
dard OBP

front and at the back of the warehouse connect the parallel vertical picking aisles.
The picking aisles are two-sided, i.e., there are racks on the left and on the right
side of each aisle (from a top view). Each rack consists of several storage locations
depicted by the gray squares. Each storage location may contain several items,
but every item is assigned to a single storage location. The start and end of each
picker route is a common depot which is located in front of the leftmost vertical
aisle. The pickers can travel in both directions in all picking aisles and both cross
aisles. Turnarounds are allowed everywhere.

Figure 2.1 depicts an instance of the standard OBP with n = 5 orders each
comprising up to six individual items which are labeled with the number of the
corresponding order o ∈ {1, . . . , 5}. We assume that the pickers always travel in
the horizontal middle of the picking aisles and that the retrieval of the items is
performed from the vertical middle of a storage location without the need of a
horizontal movement. The length of the storage locations is ` = 1 so that the
length of the racks is L = 6. The horizontal distance between two picking aisles
is W = 3. To enter or leave any picking aisle from the front or back cross aisle, a
distance of a = 0.5 units has to be traveled.

The main routing strategies that have been considered for the parallel-aisles
single-block warehouse specified above are traversal, return, midpoint, largest gap,
composite, combined, and optimal. In Appendix 2.A, we provide a detailed descrip-
tion of each strategy to clarify our exact interpretation and to allow reproduction
of our results. A general trend for all routing strategies is that larger batches com-
prising more items to pick tend to cause longer picker routes. We formalize this
observation as a property of the routing strategy in the following definition.

Definition 2.1. A routing strategy is monotone, if the corresponding distance
function cb is monotone, i.e., if for any two feasible batches b1 ⊆ b2 it follows that
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cb1 ≤ cb2.

While being monotone may also be a desirable property for a routing strategy
from a practical point of view, it certainly has important algorithmic implications.
If a monotone routing strategy is applied, partitioning constraints (2.1b) can be
replaced by the corresponding covering constraints in Formulation (2.1). This is
a common technique in CG-based approaches to (extended) set-partitioning prob-
lems, because the set-covering counterpart is typically easier to solve. Further-
more, monotonicity of the routing strategy is a requirement for the validity of our
bounding procedure to solve the CG pricing problem (see Section 2.3.1.3). The
following proposition shows that all mentioned routing strategies except composite
are monotone.

Proposition 2.1. The routing strategies return, midpoint, traversal, largest gap,
combined, mixed, and optimal are monotone.

The proof of Proposition 2.1 is provided in Appendix 2.B. A small counterex-
ample for the composite strategy is given in Appendix 2.C.

2.3 Branch-Price-and-Cut
A BPC algorithm is a B&B algorithm in which the lower bounds are computed by
CG and cuts are added dynamically to strengthen the linear relaxations. CG is
an iterative procedure that can tackle linear programs containing a huge number
of variables. The starting point of our BPC algorithm is the restricted master
problem (RMP) which is the linear relaxation of Formulation (2.1) defined over a
small subset Ω′ ⊂ Ω of batches. The CG algorithm then alternates between the
reoptimization of the RMP and the solution of the pricing problem to dynamically
generate missing batches with negative reduced costs and add them to the RMP,
if any exist. If no negative reduced-cost batch exists, an optimal solution to the
current RMP is found. The corresponding lower bound can be strengthened by
adding valid inequalities. Branching is required to finally ensure integer solutions.
For details on CG and BPC, we refer to (Barnhart et al. 1998, Lübbecke and
Desrosiers 2005).

2.3.1 Pricing Problem
Let πo be the dual price associated with Constraints (2.1b). The reduced cost of a
batch b is given by c̃b = cb − ∑

o∈b πo. The pricing problem consists of identifying
at least one feasible batch b ∈ Ω with negative reduced cost or to guarantee that
no such batch exists.
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Recall that the distance function cb is a function that is not separable in the
orders of b, meaning that cb always depends on the entire set of orders in b and
cannot be calculated, e.g., as the sum or product of some individual values of the
comprised orders. Because cb is a non-separable function in the orders, the reduced
costs c̃b of the batches are also not separable in the orders, which constitutes a core
difficulty in designing effective solution approaches to the pricing problem. This is
particularly true for combinatorial algorithms that build batches in an incremental
fashion.

2.3.1.1 SPPRC Formulation of the Pricing Problem

The pricing problem is modeled as an SPPRC as follows. Let G = (V, A) be a linear
directed multigraph with n + 1 vertices V = {0, . . . , n} and 2n arcs A. Vertex 0
is an artificial source. Vertices 1, . . . , n correspond with the n customer orders
in any given sorting. For ease of notation, we assume throughout this section
that in the SPPRC graph the orders are sorted by their number, meaning that
vertex v ∈ V \ {0} corresponds with order o = v. For each vertex v ∈ V \ {0},
there are two parallel arcs a1

v and a0
v connecting vertices v −1 and v and indicating

the inclusion or not, respectively, of order v. Each arc ak
v ∈ A, k ∈ {0, 1} is

associated with a capacity consumption qk
v , a dual price πk

v , and a set of orders Ok
v .

Accordingly, for arc a1
v we have q1

v = qv, π1
v = πv and O1

v = {v}, while for arc a0
v

we have q0
v = π0

v = 0 and O0
v = ∅. Associating sets of orders Ok

v with the arcs
allows the simultaneous consideration of multiple orders which is needed for the
incorporation of branching decisions in the pricing (see Section 2.3.3).

Any v0-vp-path (v0, ak1
v1 , v1, . . . , akp

vp
, vp) in G defines a batch b = ⋃p

i=1 Oki
vi

. It
is feasible, if ∑p

i=1 qki
vi

≤ Q. The reduced cost of batch b is cb − ∑p
i=1 πki

vi
. The

solution of the pricing problem is equivalent to finding a capacity-feasible 0-n-
path in G with minimum reduced cost. Figure 2.2 illustrates the graph G for
the example OBP instance of Figure 2.1 and dual prices πo. There are two arcs
between each pair of consecutive vertices, indicating the inclusion (blue arc) or
not (gray arc) of the order associated with the respective head vertex. Consider
vertex v = 1. The ingoing blue arc (3, π1, {1}) = a1

1 represents the inclusion of
the singleton order set O1

1 = {1} into a batch and is associated with the order’s
capacity consumption of q1 = 3 items and its dual price π1. The ingoing gray arc
(0, 0,∅) = a0

1 corresponds with not including any order (O0
1 = ∅) and therefore

q0
1 = π0

1 = 0.
This SPPRC representation has also been used for pricing problems with a sim-

ilar knapsack-type structure (e.g., Heßler et al. 2018, Gschwind et al. 2019). The
main advantage of the SPPRC representation of the pricing problem is its flexibil-
ity: Slight modifications of the underlying graph G and/or the labeling algorithm
for its solution suffice to account for typical cutting and branching decisions of
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0 1 2 3 4 5

(3, π1, {1})

(0, 0,∅)

(5, π2, {2})

(0, 0,∅)

(6, π3, {3})

(0, 0,∅)

(2, π4, {4})

(0, 0,∅)

(6, π5, {5})

(0, 0,∅)

Figure 2.2: SPPRC representation of the pricing problem: linear directed multi-
graph for the example in Figure 2.1 and dual prices πo

BPC algorithms as detailed in Sections 2.3.2 and 2.3.3. Notice that the proposed
SPPRC is different from the pricing problem representation of Muter and Öncan
(2015).

2.3.1.2 Basic Labeling Algorithm

SPPRCs are typically solved with DP labeling algorithms (Irnich and Desaulniers
2005). In a labeling algorithm, partial paths are iteratively extended from a given
source to a given sink. The partial paths are implicitly represented by labels
storing the accumulated resource consumption along the paths. The propagation
of the labels along the network arcs is realized using so-called resource extension
functions (REFs). To avoid enumerating all feasible paths, dominance relations
between labels to eliminate provably non-optimal paths and bounding procedures
to discard unpromising paths that cannot reach a given objective value threshold
can be applied.

In the OBP, a partial path PE = (0, ak1
1 , 1, . . . , akv

v , v) from the source 0 to some
vertex v is represented by a label E = (v(E), q(E), π(E), O(E), c̃(E)) storing its
last vertex v(E), its accumulated capacity consumption q(E) and dual price π(E),
the set of orders O(E) it comprises, and its reduced cost c̃(E). The initial label at
the artificial source 0 is given by (0, 0, 0,∅, 0). Because of the linear nature of G,
labels are processed vertex-by-vertex in our labeling algorithm. This means that
starting with the initial label at the artificial source, we always propagate all labels
at a given vertex v − 1 along the arcs a0

v and a1
v to vertex v, before all resulting

labels at vertex v are in turn propagated to vertex v +1, etc., until finally vertex n
is reached and 0-n-paths result.

The extension of a label E at vertex v − 1 to vertex v along arc ak
v is feasible, if

q(E) + qk
v ≤ Q. If the extension is feasible, a new label E ′ is created according to
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the following REFs:

v(E ′) = v (2.2a)
q(E ′) = q(E) + qk

v (2.2b)
π(E ′) = π(E) + πk

v (2.2c)
O(E ′) = O(E) ∪ Ok

v (2.2d)
c̃(E ′) = cO(E′) − π(E ′) (2.2e)

The non-separability of the reduced cost c̃(E ′) in the orders imposes two major
drawbacks on the labeling algorithm. First, in every label propagation, a costly
evaluation of the distance function cO(E′) is necessary in REF (2.2e). Second, it
renders infeasible the standard less-or-equal dominance relation of the reduced cost
resource applied in many labeling algorithms for SPPRC variants.

2.3.1.3 Bounding Procedure

Because no dominance rule is applied in our labeling algorithm, a strong bounding
procedure to eliminate unpromising labels is crucial for its effectiveness. Let LB(E)
be a lower bound on the reduced cost of any capacity-feasible 0-n-path in G that
contains the 0-v(E)-path PE corresponding to label E. Obviously, any label E
with LB(E) ≥ 0 can be discarded. In this section, we describe a method for
computing values LB(E) that is applicable for any monotone routing strategy and
that can be adapted to cope with the cutting and branching decisions of our BPC
algorithm.

For a label E, let R(E) be the set of v(E)-n-paths that can be appended to
the 0-v(E)-path PE to form capacity-feasible 0-n-paths. A path r ∈ R(E) is
called a completion of E. Denote by Er the label corresponding to path (PE, r)
and let O(r) := O(Er) \ O(E). For any monotone routing strategy, it holds that
c̃(Er) = cO(Er) − π(Er) ≥ cO(E) − π(Er) = c̃(E) − ∑

o∈O(r) πo. Thus, a valid lower
bound LB(E) on the reduced cost of any capacity-feasible 0-n-path containing
path PE is given by

LB(E) := c̃(E) − max
r∈R(E)

∑
o∈O(r)

πo. (2.3)

Intuitively speaking, the value maxr∈R(E)
∑

o∈O(r) πo represents the maximum
dual prices that can be collected when extending label E to a 0-n-path. Because
set R(E) comprises all completions r such that q(Er) = q(E)+∑

o∈O(r) qo ≤ Q, this
value is equivalent to the optimal solution value of a binary knapsack problem (KP)
over orders {o ∈ O : o > v(E)} with weights qo, profits πo, and capacity Q − q(E).
Note further that the sets R(E) are identical for all labels E with the same capacity
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consumption q := q(E) and last vertex v := v(E). Therefore, we can define
associated completion bounds Bv(q) := maxr∈R(E)

∑
o∈O(r) πo that are identical for

all such labels E and depend only on v and q.
We compute the completion bounds Bv(q) for all v ∈ V and q ∈ {0, . . . , Q}

by solving a single binary KP over all orders O and capacity Q using a labeling
algorithm that runs in pseudo-polynomial time O (nQ). The labeling algorithm is
applied on the SPPRC graph G of the pricing problem described in Section 2.3.1.1
in backward direction. In a backward labeling algorithm, backward paths are
gradually extended from the sink to the source.

A backward path (v, akv
v , . . . , akn

n , n) of the labeling algorithm for solving the
binary KP is represented by a label Ekp = (v(Ekp), q(Ekp), π(Ekp)) storing its first
vertex v(Ekp) and its accumulated weight q(Ekp) and profit π(Ekp). The initial
label at vertex n is given by (n, 0, 0). The extension of a label Ekp starting at
vertex v against the orientation of arc ak

v to vertex v − 1 is feasible if q(Ekp) + qk
v ≤

Q. If the extension is feasible, a new label E ′
kp = (v(E ′

kp), q(E ′
kp), π(E ′

kp)) with
v(E ′

kp) = v − 1, q(E ′
kp) = q(Ekp) + qk

v , and π(E ′
kp) = π(Ekp) + πk

v is created.
A label Ekp dominates another label E ′

kp starting at the same vertex if

q(Ekp) ≤ q(E ′
kp), (2.4a)

π(Ekp) ≥ π(E ′
kp). (2.4b)

All dominated labels can be discarded as long as, for each of them, at least one
dominating label is kept.

By its termination, the labeling algorithm provides at each vertex v ∈ V a
set Ev of undominated labels corresponding with Pareto-optimal knapsack pack-
ings. More precisely, an undominated label Ekp ∈ Ev corresponds with the optimal
solution of a binary KP over orders {o ∈ O : o > v(Ekp) = v} with weights qo,
profits πo, and capacity q(Ekp). The completion bounds can then be determined
as

Bv(q) = max
Ekp∈Ev :q(Ekp)≤Q−q

π(Ekp). (2.5)

For each vertex v, the corresponding bounding function Bv(q) is a non-increasing
step function with |Ev| constant pieces.

Summing up, in each pricing iteration the solution approach proceeds as follows.
Before invoking the main labeling algorithm, we solve the single binary KP on
graph G in backward direction to set up the bounding functions Bv(q). Then,
in the forward labeling process of the main algorithm, any label E with c̃(E) ≥
Bv(E)(q(E)) is immediately discarded.

An example of the pricing procedure for the OBP instance of Figure 2.1 is
illustrated in Figure 2.3. The picking capacity is assumed to be Q = 8, the dual
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0

(0, 0, 0,∅, 0)

B0(q) =

0 q > 6
8 5 < q ≤ 6
33 3 < q ≤ 5
41 1 < q ≤ 3
42 0 < q ≤ 1
67 q ≤ 0



1

(1, 0, 0, ∅, 0)
(1, 3, 33, {1}, 27)

B1(q) =
0 q > 6
8 3 < q ≤ 6
34 1 < q ≤ 3
42 q ≤ 1



2

(2, 0, 0, ∅, 0)
(2, 3, 33, {1}, 27)
(2, 5, 34, {2}, 4)
(2, 8, 67, {1, 2}, 11)

B2(q) =
0 q > 6
8 2 < q ≤ 6
27 0 < q ≤ 2
35 q ≤ 0



3

(3, 0, 0, ∅, 0)
(3, 5, 34, {2}, 4)
(3, 6, 27, {3}, 45)

B3(q) ={
0 q > 6
8 q ≤ 6

}

4

(4, 0, 0, ∅, 0)
(4, 5, 34, {2}, 4)
(4, 2, 8, {4}, 6)
(4, 7, 42, {2, 4}, −2)

B4(q) = 0

5

(5, 7, 42, {2, 4}, −2)

B5(q) = 0
(3, 33, {1})

(0, 0,∅)

(5, 34, {2})

(0, 0,∅)

(6, 27, {3})

(0, 0,∅)

(2, 8, {4})

(0, 0,∅)

(6, 0, {5})

(0, 0,∅)

Figure 2.3: Exemplary pricing procedure with labels and completion bounds for
OBP instance of Figure 2.1

prices for the orders are π1 = 33, π2 = 34, π3 = 27, π4 = 8, and π5 = 0. The
return routing strategy is applied and the travel distances of the arising batches
are c{1} = 60, c{2} = 38, c{1,2} = 78, c{3} = 72, c{4} = 14, c{2,4} = 40, and
c{5} = 48. For each vertex v, the corresponding bounding functions Bv(q) are
given above the vertex. For example, at vertex 3 the backward labeling for the
binary KP provides two non-dominated knapsack packings: packing only order 4
with a weight (=capacity consumption) of two and a profit (=dual price) of eight
and packing neither of the orders for zero weight and profit. Accordingly, the
completion bound at vertex 3 is eight for labels with a capacity consumption
up to six units (implying a residual capacity of at least 8 − 6 = 2) while it is
zero for labels with a capacity consumption larger than six. The labels of the
main labeling algorithm are given below the corresponding vertices. Labels that
are discarded due to the bounding procedure are crossed out, capacity-infeasible
labels are not created in the algorithm and therefore not shown in the figure.
Consider label E = (1, 3, 33, {1}, 27) at vertex 1. It represents the batch b = {1}
comprising only order 1 with capacity consumption three, a collected dual price
of 33, and reduced cost of 27. The maximum dual prices that can be collected when
extending E to vertex v is B1(3) = 34 > 27, thus label E is kept. Extending E
along arc a0

2 = (0, 0,∅) results in label E ′ = (2, 3, 33, {1}, 27) representing the
same batch b = {1}. Because the corresponding completion bound at vertex 2
is B2(3) = 8 ≤ 27, label E ′ is immediately discarded. In the example, the batch
comprising orders 2 and 4 is the optimal solution of the SPPRC and the only batch
with negative reduced cost.
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2.3.1.4 Acceleration Strategies

Heuristic Pricing In CG, it is not necessary to identify a batch with minimal
reduced cost in every iteration. Instead, any negative reduced cost batch is suffi-
cient to continue the CG process and pricing heuristics can be applied to quickly
identify such batches. The exact solution algorithm for the pricing problem only
has to be invoked if the heuristic pricers fail to identify additional batches.

In our BPC approach, we use a straightforward but highly effective pricing
heuristic based on the exact labeling algorithm for the pricing problem. Recall
that any feasible 0-v-path PE in G represented by label E defines a feasible batch
b = O(E) with reduced cost c̃(E). Such a batch could immediately be returned
to the RMP without the need to complete the corresponding label to a 0-n-path.
Our pricing heuristic proceeds as follows. For each vertex, we count the number
of created labels with negative reduced costs (recall that labels are created and
extended vertex-by-vertex). As soon as this number reaches the threshold K =
0.35n for any vertex, the labeling algorithm terminates prematurely and all batches
with negative reduced costs are added to the RMP.

Storing Travel Distances The evaluation of the distance function cb is the
computationally most expensive part of the REFs (2.2) and the labeling algorithm.
During the course of the BPC, it can be expected that for many batches b ∈ Ω
function cb needs to be evaluated multiple times. We, therefore, analyzed the
use of a hash table to allow a fast retrieval in amortized constant time of those
values cb that have already been computed. This requires storing in the hash table
the key-value pairs (b, cb) whenever function cb is evaluated for the first time for
batch b.

Overall, using the hash table was not beneficial. We suspect that beside the
effort to calculate the hash values and the general overhead for maintaining the
hash table, a less effective usage of the CPU cache constitutes a main reason for
this behavior. Note that the hash-table implementation performed relatively bet-
ter for the routing strategies with computationally more costly distance functions
(in particular largest gap and optimal) compared to those with less costly dis-
tance functions and was almost comparable with the variant without hash table.
For more complex warehouse layouts and routing strategies, using a hash table
implementation may become beneficial.

2.3.2 Cutting
In our BPC algorithm, two families of valid inequalities are implemented: CCs and
SRCs. Both families are non-robust, i.e., they change the structure of the pricing
problem.
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2.3.2.1 Capacity Cuts

We consider a variant of CCs defined over the variables of Formulation (2.1) intro-
duced by Baldacci et al. (2008) for the capacitated vehicle routing problem. Let
S ⊆ O be any subset of customer orders and denote by κ(S) the minimum number
of batches needed to pick all orders in S. The associated CC is∑

b∈ΩS

λb ≥ κ(S), (2.6)

where ΩS := {b ∈ Ω : b ∩ S 6= ∅} is the subset of batches comprising at least one
order from subset S.

Impact on Pricing Problem The addition of CCs to the RMP requires the
following adjustments to the pricing problem. Let the active CCs be given by the
sets S ∈ S and denote by ρS > 0 the corresponding strictly positive dual prices.
The reduced cost of a batch b is then given by c̃b = cb − ∑

o∈b πo − ∑
S∈S:b∈ΩS

ρS,
i.e., the dual price ρS of S has to be subtracted if b comprises at least one of the
orders of S.

To account for the changes to the pricing problem in our solution approach,
we adapt graph G of the SPPRC representation and the labeling procedure as
follows. Each arc ak

v ∈ A is associated with an additional component cck
v(S) for

each active CC S ∈ S, with cck
v(S) = 1 if k = 1 ∧ v ∈ S, and cck

v(S) = 0
otherwise. Accordingly, in the labeling algorithm a label E comprises additional
resources ccS(E), one for each S ∈ S, counting the number of orders o ∈ S
included on path PE. The REFs for the new resources and the adapted REF for
the accumulated dual price when extending label E along arc ak

v ∈ A to create the
new label E ′ are

ccS(E ′) = ccS(E) + cck
v(S) ∀S ∈ S (2.7a)

π(E ′) = π(E) + πk
v +

∑
S∈S:ccS(E′)≥1∧ccS(E)=0

ρS (2.7b)

Due to the linear nature of G, the additional resource corresponding to a CC S ∈ S
can be disregarded for all labels E with S ∩ {v(E), ..., n} = ∅.

Impact on Completion Bounds If there are active CCs in the RMP, LB(E)
as defined in (2.3) is no longer valid as it does not account for the strictly positive
dual prices ρS, S ∈ S. Consider a label E and a completion r ∈ R(E). The
reduced cost of the corresponding label Er is

c̃(Er) = cO(Er) − π(Er) −
∑

S∈S:O(Er)∩S 6=∅
ρS. (2.8)
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For monotone routing strategies it holds that

c̃(Er) ≥ cO(E) − π(Er) −
∑

S∈S:O(Er)∩S 6=∅
ρS (2.9a)

= c̃(E) −
∑

o∈O(r)
πo −

∑
S∈S:O(r)∩S 6=∅∧O(E)∩S=∅

ρS. (2.9b)

With respect to the dual prices of the CCs, expression (2.9b) provides the strongest
lower bound on the reduced cost c̃(Er) exactly incorporating their impact on c̃(Er).
Because the last term directly depends on O(E), any completion bound based
on (2.9b) requires an individual calculation for each label E.

To obtain completion bounds that are more practicable, consider the following
weaker lower bound on the reduced cost c̃(Er) of Er

c̃(Er) ≥ c̃(E) −
∑

o∈O(r)
πo −

∑
S∈S:O(r)∩S 6=∅

ρS. (2.10)

A corresponding lower bound LB1(E) on the reduced cost of any capacity-feasible
0-n-path containing path PE is

LB1(E) := c̃(E) − max
r∈R(E)

(
∑

o∈O(r)
πo +

∑
S∈S:O(r)∩S 6=∅

ρS) (2.11)

with associated completion bounds

B1
v(q) := max

r∈R(E)
(

∑
o∈O(r)

πo +
∑

S∈S:O(r)∩S 6=∅
ρS) (2.12)

that depend only on the vertex v = v(E) and the capacity consumption q = q(E).
Similar to Bv(q), the values B1

v(q) are equivalent to the optimal solution values
of extended binary KPs accounting for the additional aspects from the CCs, i.e.,
the dual prices ρS have to be included whenever at least one of the orders of S is
packed.

The solution of these KP variants can again be realized by solving a single
extended binary KP with a backward labeling algorithm on the modified graph G.
To this end, the components of labels Ekp of Section 2.3.1.3 and the associated
REFs are modified as in the main labeling described above. Additionally, replacing
the dominance relation (2.4b) of the profit resource with

π(Ekp) −
∑

S∈S:ccS(Ekp)≥1∧ccS(E′
kp

)=0
ρS ≥ π(E ′

kp) (2.13)

avoids a point-wise comparison of the new resources ccS(Ekp) and ccS(E ′
kp) by

considering all S ∈ S for which a common extension of Ekp and E ′
kp may result in



Chapter 2. BPC-based Solution of the OBP 25

increasing the profit of E ′
kp without increasing that of Ekp. Again, the additional

complexity from the CCs can be reduced by disregarding the resources ccS(Ekp)
for all labels Ekp with S ∩{0, . . . , v(Ekp)} = ∅ exploiting the linear structure of G.

The completion bounds B1
v(q) can be retrieved from the undominated labels Ev

as in the case without CCs and the main labeling algorithm for the pricing problem
can proceed as described at the end of Section 2.3.1.3 using the modified completion
bounds B1

v(q) instead of Bv(q).
Pretests indicated that the lower bounds LB1(E) can be rather weak because

they include the dual prices ccS twice if both O(E) ∩ S 6= ∅ and O(r) ∩ S 6= ∅. A
stronger lower bound LB2(E) can be obtained using the following bound on the
reduced cost c̃(Er) of Er from equation (2.8). Let o ∈ O(E). Then,

c̃(Er) ≥ c̃(E) −
∑

i∈O(r)
πi −

∑
S∈S:O(r)∩S 6=∅∧o/∈S

ρS (2.14a)

= c̃(E) − (
∑

i∈O(r)
πi +

∑
S∈S:O(r)∩S 6=∅

ρS −
∑

S∈S:O(r)∩S 6=∅∧o∈S

ρS). (2.14b)

The validity of (2.14) follows directly from (2.9b) and the strict positivity of ρS.
Because (2.14) holds for all o ∈ O(E), we have

LB2(E) := c̃(E) − max
o∈O(E)

max
r∈R(E)

(
∑

i∈O(r)
πi +

∑
S∈S:O(r)∩S 6=∅

ρS −
∑

S∈S:O(r)∩S 6=∅∧o∈S

ρS).

(2.15)

LB2(E) corrects for some of the doubly-included duals ρS of LB1(E).
The corresponding completion bounds

B2
v,o(q) := max

r∈R(E)
(

∑
i∈O(r)

πi +
∑

S∈S:O(r)∩S 6=∅
ρS −

∑
S∈S:O(r)∩S 6=∅∧o∈S

ρS) (2.16)

to be used in the labeling are now defined for each order o. They can be computed
using the information from the solution by backward labeling of the same extended
binary KP used for determining B1

v(q) described above. In fact, we have

B2
v,o(q) := max

Ekp∈Ev :q(Ekp)≤Q−q
(π(Ekp) −

∑
S∈S:ccS(Ekp)≥1∧o∈S

ρS). (2.17)

Notice that the modified dominance relation (2.13) guarantees that no label E ′
kp /∈

Ev with q(E ′
kp) ≤ Q − q can provide a larger profit π(E ′

kp) − ∑
S∈S:ccS(E′

kp
)≥1∧o∈S ρS

than all labels Ekp ∈ Ev, even if 0 = ccS(E ′
kp) < ccS(Ekp) holds for some S ∈ S

with o ∈ S and a smaller amount is deducted from its profit when adjusting for
the dual prices of those CCs. Using functions B2

v,o(q) we have

LB2(E) = c̃(E) − max
o∈O(E)

B2
v(E),o(q(E)). (2.18)
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Separation Procedures In order to identify violated inequalities (2.6), we use
three different separation procedures: a greedy construction heuristic, a connected
component-based heuristic, and a MIP-based approach.

The exact determination of value κ(S) for a subset of orders S ⊆ O requires the
solution of a bin packing problem with items o ∈ S, weights qo and capacity Q.
In our separation procedures, we use lower bounds of κ(S) that can be computed
efficiently. The greedy heuristic and the connected component-based heuristic
consider the relaxation κ3(S) = max{κ1(S), κ2(S)} with κ1(S) :=

⌈
1
Q

∑
o∈S qo

⌉
and

κ2(S) :=
∣∣∣{o ∈ S : qo > Q

2

}∣∣∣ +
⌈

1
Q

∑
o∈S:qo= Q

2
qo

⌉
. The MIP-based approach only

uses relaxation κ1(S).
Denote by (λ̄b)b∈Ω′ the current fractional solution of the RMP and let λ̄S :=∑
b∈ΩS

λ̄b for any subset S ⊆ O of orders. Moreover, let Ω̄ := {b ∈ Ω : λ̄b > 0} be
the set of batches with positive value in the current solution, let Ω̄S := {b ∈ Ω̄ :
b ∩ S 6= ∅} be the set of batches with positive value comprising at least one order
from S, and let N̄S := ⋃

b∈Ω̄S
b \ S be the set of neighboring orders of subset S in

the current solution, i.e., orders o ∈ O \ S comprised in any batch of set Ω̄S. A
connected component of (λ̄b)b∈Ω′ is a subset S of orders with N̄S = ∅.

The first separation procedure is a randomized greedy construction heuristic. It
is initialized with a set S comprising a single order only and each order is tried as
a starting point several times. Iteratively, the heuristic adds to the current set S
a single order o ∈ N̄S maximizing the expression

go(S) := κ3(S ∪ {o}) − κ3(S)
λ̄S∪{o} − λ̄S

. (2.19)

To randomize the heuristic, go(S) is multiplied by a random number uniformly
drawn from the interval [0.7, 1.3]. The heuristic stops either if a violated inequal-
ity (2.6) is detected or if λ̄S > κ3(S) + 1 holds for the current set S. Overall,
the greedy construction heuristic tends to find violated CCs with sets S of small
cardinality.

The second separation procedure is inspired from a separation heuristic used by
Archetti et al. (2011) for the split delivery vehicle routing problem. The starting
point of the heuristic is the connected components of the RMP solution. For each
connected component S, the heuristic proceeds as follows. The batches b ∈ Ω̄S are
sorted by non-increasing value λ̄b − κ3(b). In each iteration, the heuristic selects
the next batch b in the sorting and removes from S all orders o ∈ b. This choice of
orders to remove from S provides subsets with a high potential of violating inequal-
ity (2.6), because it decreases the left-hand side by a large value and the right-hand
side by a small value. Whenever the current set S violates inequality (2.6) the cor-
responding cut is generated. The heuristic stops the removal process, when the
total number of orders removed from the initial connected component exceeds 25
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or when the current set S is empty. The procedure is then restarted a second time
for the same connected component, skipping the very first batch b in the sorting.
The connected component heuristic seems to predominantly identify violated CCs
with large sets S.

A third separation procedure uses a MIP formulation to exactly separate CCs
using relaxation κ1(S). The MIP (2.20) adapts to the OBP the formulation of
Martinelli et al. (2013) for exactly separating CCs for the capacitated arc routing
problem. It identifies a subset S and the corresponding right-hand side κ1(S)
maximizing the violation κ1(S) − ∑

b∈Ω̄S
λb of inequality (2.6). The MIP uses the

following variables. Binary variables yo indicate if order o ∈ O is in the searched
subset S or not. Binary variables xb indicate if batch b ∈ Ω̄ comprises any order
of the searched subset S or not. Integer variable K represents the value κ1(S)
while the continuous slack variable γ ∈ [0, 1) describes the fractional difference of
applying the ceiling function in the determination of κ1(S). Our separation MIP
can then be stated as follows:

max K −
∑
b∈Ω̄

xbλ̄b (2.20a)

s.t. K = γ +
∑
o∈O

qoyo

Q
(2.20b)

xb ≤
∑
o∈b

yo ∀b ∈ Ω̄ (2.20c)

|b|xb ≥
∑
o∈b

yo ∀b ∈ Ω̄ (2.20d)

xb ∈ {0, 1} ∀b ∈ Ω̄ (2.20e)
yo ∈ {0, 1} ∀o ∈ O (2.20f)
K ∈ Z+

0 (2.20g)
γ ∈ [0, 1) (2.20h)

The Objective (2.20a) maximizes the violation of the CC. Equation (2.20b) ensures
the correct value of K. Linking constraints (2.20c) force the indicator variables xb

to zero if none of the orders o ∈ b is selected, while linking constraints (2.20d) force
the indicator variables xb to one if at least one of the orders o ∈ b is selected. The
variable domains are defined in (2.20e)–(2.20h).

2.3.2.2 Subset-Row Cuts

SRCs were first introduced by Jepsen et al. (2008) for the vehicle routing problem
with time windows. They are Chvátal-Gomory rank-1 cuts based on subsets of
the set-partitioning constraints (2.1b). As proposed by Jepsen et al. (2008) and
followed in the majority of works, we restrict ourselves to subsets of cardinality
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three. Let U ⊂ O be a set of three orders. The associated SRC is given by∑
b∈Ω

⌊∑
o∈U aob

2

⌋
λb ≤ 1. (2.21)

Violated SRCs can be separated by straightforward enumeration.

Impact on Pricing Problem The addition of SRCs to the RMP changes the
pricing problem as follows. Let the active SRCs be given by the sets U ∈ U . The
corresponding strictly negative dual prices are σU < 0. The reduced cost of a
batch b is now c̃b = cb − ∑

o∈b πo − ∑
U∈U :|U∩b|≥2 σU , i.e., the dual price σU of U has

to be subtracted if b comprises at least two of the orders of U .
The altered pricing problem requires adjustments to graph G of the SPPRC

representation and the labeling algorithm for its solution similar to the CC case.
With each arc ak

v ∈ A is associated an additional component srk
v(U) for each

active SRC U ∈ U , with srk
v(U) = 1 if k = 1 ∧ v ∈ U , and srk

v(U) = 0 otherwise.
Likewise, for each U ∈ U , an additional resource srU(E) is added to the labels E of
the labeling algorithm. It counts the number of orders o ∈ U included on path PE.
The propagation of label E along arc ak

v ∈ A to obtain a new label E ′ uses the
following new and modified REFs:

srU(E ′) = srU(E) + srk
v(U) ∀U ∈ U , (2.22a)

π(E ′) = π(E) + πk
v +

∑
U∈U :srU (E′)≥2∧srU (E)≤1

σU . (2.22b)

As in the CC case, the linear structure of G can be exploited to disregard all
SRCs U ∈ U for labels E with U ∩ {v(E), ..., n} = ∅.

Impact on Completion Bounds The completion bounds Bv(q), B1
v(q), and

B2
v(q) as defined in Section 2.3.1.3 and above remain valid also in the presence of

SRCs, because the dual prices σU are strictly negative for all U ∈ U . Therefore,
no modifications to the bounding procedure are needed.

Incorporating the dual prices from the SRCs generally results in stronger comple-
tion bounds. Similar to the CC case, these refined bounds require solving extended
binary KPs accounting for the additional aspects from the SRCs. Pretests have
shown that the additional effort for computing the refined bounds incorporating
the SRCs outweighs their benefit of allowing more labels to be discarded in the
main labeling. Thus, in our BPC, we ignore the SRCs in the completion bounds.

2.3.3 Branching
We use a two-stage hierarchical branching scheme. On the first level, we branch on
the number of pickers ∑

b∈Ω̄ λ̄b, if fractional, and create the two branches ∑
b∈Ω λb ≤
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⌊∑
b∈Ω̄ λ̄b

⌋
and ∑

b∈Ω λb ≥
⌈∑

b∈Ω̄ λ̄b

⌉
. Both decisions are implemented by adding

the respective linear constraint to the RMP. No structural changes to the pricing
problem are involved.

On the second level, we apply the well-known Ryan-and-Foster branching rule.
Let fo1o2 := ∑

b∈Ω̄ ao1bao2bλ̄b be the information if the orders o1, o2 ∈ O are assigned
to the same batch or not. We branch on pairs (o1, o2) of orders for which fo1o2 is
fractional. Two branches are created, the separate branch, which ensures fo1o2 = 0
by forcing variables λb with ao1b = ao2b = 1 to zero, and the together branch,
which ensures fo1o2 = 1 by forcing variables λb with ao1b + ao2b = 1 to zero. Both
types of decisions can be straightforwardly implemented in the RMP by fixing
the corresponding variables to zero but impose structural changes to the pricing
problem.

Impact on Pricing Problem In the pricing problem, the generation of variables
that are incompatible with the Ryan-and-Foster branching decisions has to be
prevented. This can be realized by modifying the underlying graph G of the
SPPRC representation of the pricing problem. The basic idea is to group together
the orders that are affected by mutual branching decisions, representing them
by a single vertex in G and to decide on the inclusion of the orders of a group
simultaneously. On the modified graph, the same labeling algorithm presented in
the previous sections can be applied to solve the pricing problem in the presence
of branching decisions.

For ease of notation, we identify a Ryan-and-Foster branching decision by the
set I = {o1, o2} comprising the two involved orders. The type of decision, separate
or together, can be ignored for the moment. Let I = {I1, . . . , Ip} be the set of
active branching decisions at a given B&B node.

Let I1, . . . , Iq be a partition of I into subsets, i.e., groups of branching decisions,
such that the different subsets are non-overlapping with respect to the involved
orders, i.e., (⋃

I∈Ii I) ∩ (⋃
I∈Ij I) = ∅ holds for all pairs i, j ∈ {1, ..., q}, i 6= j, while

each individual subset consists of overlapping branching decisions. The branching
decisions of a set I i := {I i

1, . . . , I i
r} are overlapping if they can be ordered such

that (I i
1 ∪ · · · ∪ I i

j−1) ∩ I1
j 6= ∅ for all j ∈ {1, ..., r}. For each I i, i ∈ {1, . . . , q},

denote by O(I i) := ⋃
I∈Ii I the set of involved orders. Furthermore, let O0(I i) =

∅, O1(I i), . . . , Os(I i) be all feasible combinations (=subsets) of the orders in O(I i)
such that the branching decisions and the picking capacity are respected.

In the modified graph G, each set O(I i) associated with a group of branch-
ing decisions I i is represented by a single vertex, say vertex v. For each feasi-
ble combination of orders Ok(I i), k ∈ {0, . . . , s}, an arc ak

v from vertex v − 1 to
vertex v is created. The components associated with arc ak

v are determined as
qk

v = ∑
o∈Ok(Ii) qo, πk

v = ∑
o∈Ok(Ii) πo, Ok

v = Ok(I i), srk
v(U) = |Ok(I i) ∩ U | for
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0 1 2

(3, 33, {1}, (1, 0), (1))

(5, 34, {2}, (1, 1), (0))

(6, 27, {3}, (1, 1), (1))

(9, 60, {1, 3}, (2, 1), (2))

(0, 0,∅, (0, 0), (0))

(8, 8, {4, 5}, (1, 2), (1))

(0, 0,∅, (0, 0), (0))

Figure 2.4: SPPRC representation of the pricing problem for the example in-
stance of Figure 2.3 and Ryan-and-Foster branching decisions {1, 2}s,
{2, 3}s, and {4, 5}t

all U ∈ U , and cck
v(S) = |Ok(I i) ∩ S| for all S ∈ S. Each of the remaining or-

ders o ∈ O \ ⋃
I∈I I not involved in any branching decision is associated with a

single vertex and two ingoing arcs in G as described in Section 2.3.1.1.
An example of graph G after branching is illustrated in Figure 2.4. It contin-

ues the example pricing instance of Figure 2.3 except for the capacity which is
assumed to be not binding. Furthermore, we assume that I comprises the three
active branching decisions {1, 2}s, {2, 3}s, and {4, 5}t, where the superscript s (t)
refers to a separate (together) constraint, resulting in two groups I1 and I2 of
branching decisions with involved orders O(I1) = {1, 2, 3} and O(I2) = {4, 5}
and corresponding vertices 1 and 2 in G, respectively. Additionally, there are two
active CCs S1 = {1, 2, 3, 5} and S2 = {2, 3, 4, 5} and one active SRC U = {1, 3, 4}.
Figure 2.4 now depicts the modified graph G showing all arcs ak

v with their com-
ponents (qk

v , πk
v , Ok

v , (cck
v(S))S∈S , (srk

v(U))U∈U). Consider vertex 1 associated with
orders O(I1) = {1, 2, 3}. The five ingoing arcs represent all subsets of orders from
the set O(I1) that respect the mutual branching decisions {1, 2}s, {2, 3}s, i.e.,
that can be feasibly included in a batch. Now consider arc (9, 60, {1, 3}, (2, 1), (2))
corresponding with the inclusion of the orders 1 and 3. It is associated with a ca-
pacity consumption of 3+6 = 9, a dual price of 33+27 = 60, the information that
orders 1 and 3 are both comprised in CC S1, one of them (order 3) is comprised
in CC S2, and both are comprised in SRC U .

To contain the size of the B&B tree, we apply strong branching at the second
stage of the branching scheme as detailed in Appendix 2.D.

The node selection strategy is best-bound first, because the primary goal of our
BPC is to improve the dual bound.
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2.3.4 BPC-based Heuristics
In Section 2.4, it becomes apparent that the proposed CG method is very effective,
being able to quickly solve the LP relaxation of Formulation (2.1). Closing the gap
and finally proving optimality is the hard part where the BPC algorithm spends
almost all the computation time for most instances. We, therefore, propose two
straightforward BPC-based heuristics to provide high-quality solutions in limited
computation time.

The first heuristic (denoted SC ) consists in solving a restricted version of For-
mulation (2.1) comprising only the columns generated up to the root node of the
BPC with a general-purpose MIP solver. Any cuts generated while solving the
root node are removed before invoking the solver. For this heuristic, no branching
at all needs to be implemented.

The second heuristic (denoted BPC-DF) changes the node selection strategy of
the BPC algorithm to a combination of best-bound-first and depth-first search in
order to quickly identify high-quality feasible solutions. The search strategy first
selects a node according to the best-bound-first rule. It then explores the subtree
rooted at this node in a depth-first fashion until the current node either provides
an integer solution or can be pruned. The next node to evaluate is again selected
according to the best-bound-first rule. Setting a hard time limit guarantees a quick
termination of the approach.

2.4 Computational Results
Our BPC algorithm and the BPC-based heuristics were implemented in C++ and
compiled into 64-bit single-thread code with MS Visual Studio 2019. CPLEX 20.10
with default parameters (except for the time limit and allowing only a single
thread) is used to reoptimize the RMPs and as MIP-solver for the MIP-based
separation of CCs and the SC heuristic. The computations were carried out on
the HPC cluster Elwetritsch of the University of Kaiserslautern-Landau consisting
of several Intel Xeon Gold 6126 processors running at 2.60 GHz. Notice that the
performance of a single thread of the cluster is comparable to that of a standard
desktop processor.

An overview of additional design choices and implementation details for our
BPC algorithm as well as the specific values used for different parameters of the
algorithm is given in Appendix 2.D. These values were obtained in pretests on a
small subset of the instances used in our main computational study. Notice that
the same computational setup was used for all routing strategies and instances.

More detailed results can be found in Tables 2.11–2.62 of Appendix 2.F. Further-
more, instance-by-instance results of our main BPC and the two BPC-based heuris-
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tics together with the BKS are provided at https://logistik.wiwi.uni-kl.de/
obp-bpc-detailedresults.

2.4.1 Benchmark Instances
Benchmark instances for the standard OBP have been proposed by Henn and
Wäscher (2012) (H&W), Muter and Öncan (2015) (M&Ö), Žulj et al. (2018) (ZKS),
and Bahçeci and Öncan (2022) (B&Ö). The main focus of our computational study
are the H&W and M&Ö instances. We also report results for the large-scale ZKS
instances. To further test the limits of the proposed solution approaches and to
allow the comparison of new exact and heuristic algorithms with our approaches
in solving larger-sized instances, we additionally consider the M&Ö instances with
enlarged capacities (M&Ö-ext) and have created two new sets of larger instances
with uniform (W&G-u) and general weights (W&G-g) following the work of Hwang and
Kim (2005). Results for the latter three sets are reported mainly in Appendix 2.F.
The very small-scale B&Ö instances, of which the largest ones are smaller than the
smallest M&Ö instances, are not included in our study. All considered instances
are available at https://logistik.wiwi.uni-kl.de/obp-instances. They are
described in more detail in Appendix 2.E.

2.4.2 Evaluation of Algorithmic Components
We first investigate the impact of different components of our BPC algorithm on its
performance. To this end, we consider variants of the BPC with and without strong
branching (StrBr and noStrBr), with and without SRCs (SRC and noSRC ), and
with and without CCs (CC and noCC ). When using CCs, we further distinguish
variants according to the separation procedures that are used: only the connected
component heuristic (CC|cp), only the greedy heuristic (CC|gr), only the MIP-
based approach (CC|MIP), or all of them (CC|all).

The results for benchmark sets M&Ö and H&W and all six routing strategies are
summarized in Table 2.2 and Figure 2.5. Table 2.2 reports the percentage number
of instances solved to proven optimality within the time limit (%Opt) and the
average solution time in seconds (t[s]) where unsolved instances are included with
the time limit of 3,600 seconds. Rows All (eq.) report average numbers using an
equal weighting for the two benchmark sets. Figure 2.5 depicts the performance
profiles of the different algorithm variants. The performance profile of an algorithm
variant specifies the percentage of instances solved by this variant within τ times
the time taken by the fastest variant in an instance-by-instance comparison.

The largest benefit is clearly achieved by the integration of CCs. All variants
without CCs perform substantially worse. This is especially true for the M&Ö in-
stances where with CCs the computation times are more than halved and the num-

https://logistik.wiwi.uni-kl.de/obp-bpc-detailedresults
https://logistik.wiwi.uni-kl.de/obp-bpc-detailedresults
https://logistik.wiwi.uni-kl.de/obp-instances
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No capacity cuts With capacity cuts
noSRC SRC noSRC,CC|all SRC,CC|cp SRC,CC|gr SRC,CC|MIP SRC,CC|all

Class %Opt t[s] %Opt t[s] %Opt t[s] %Opt t[s] %Opt t[s] %Opt t[s] %Opt t[s]
Panel A: No strong branching

M&Ö 45.4 2,099 48.1 2,000 69.9 1,266 75.4 1,054 47.8 2,007 72.8 1,138 75.9 1,039
H&W 74.5 1,018 76.8 937 87.0 596 88.8 513 76.7 939 88.0 551 89.3 503
All (eq.) 59.9 1,558 62.5 1,468 78.4 931 82.1 784 62.3 1,473 80.4 844 82.6 771

Panel B: With strong branching
M&Ö 50.2 1,916 53.0 1,857 80.8 920 85.8 796 52.7 1,860 80.4 994 84.2 852
H&W 78.3 888 79.9 842 91.2 457 92.2 412 79.9 839 91.0 471 92.4 414
All (eq.) 64.2 1,402 66.4 1,349 86.0 689 89.0 604 66.3 1,350 85.7 733 88.3 633

Table 2.2: Summary results for different variants of our BPC algorithm

ber of solved instances is increased by around 60%. The positive impact of strong
branching and SRCs is also evident, but much smaller than for the CCs. Again, the
effect is more pronounced for the M&Ö instances than for the H&W instances. Regard-
ing the separation procedures for the CCs, using only the connected component
heuristic is overall slightly superior to using all separation routines (the picture
is reversed for the H&W instances) which is in turn slightly superior to only using
the MIP-based separation. The greedy heuristic alone is not beneficial, performing
similar to the variants without CCs. Summing up, the best performing variant,
which is also used in the following sections, utilizes strong branching, both types of
cuts, and only the connected component heuristic. Note that the variant using all
separation procedures for the CCs was able to provide substantially more optima
for the H&W instances with traversal strategy as well as for the ZKS instances.

Notice that without the pricing heuristic, we run into memory issues already for
moderately sized instances, e.g., around Q = 36/n = 50-60 and Q = 48/n = 50 for
the M&Ö benchmark. This is why we did not include variants without the pricing
heuristic in our comparison. The same is true when using the weaker completion
bounds B1

v(q) in the solution of the pricing problem with CCs.

2.4.3 Computational Analysis of BPC Algorithm
We first compare our BPC with the state-of-the-art exact approach to the standard
OBP of Muter and Öncan (2015) who only consider routing strategies traversal,
return, and midpoint and the M&Ö instances. Table 2.3 summarizes the comparison.
It provides the number of instances solved to optimality (Opt) and the average
solution times in seconds (t[s]). Note that the computation times reported in Muter
and Öncan (2015) and, therewith, in Table 2.3 comprise only the computation
times for the cut-and-column generation phase including the batch enumeration of
their approach but not the time for solving the reduced set-partitioning problem
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noStrBr,noSRC,noCC noStrBr,SRC,noCC noStrBr,noSRC,CC|all noStrBr,SRC,CC|cp
noStrBr,SRC,CC|gr noStrBr,SRC,CC|MIP noStrBr,SRC,CC|all
StrBr,noSRC,noCC StrBr,SRC,noCC StrBr,noSRC,CC|all StrBr,SRC,CC|cp
StrBr,SRC,CC|gr StrBr,SRC,CC|MIP StrBr,SRC,CC|all
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Figure 2.5: Performance profiles of different variants of our BPC algorithm for
the H&W instances (left) and the M&Ö instances (right)

with CPLEX. Note further that they allow one hour of computation time for
each of the two phases of their algorithm. We still count unsolved instances with
3,600 seconds in the average solution times also for their approach. Note finally
that their computer is about 30% slower than ours according to the single-thread
performance reported on www.passmark.com.

Table 2.3 indicates that our BPC clearly outperforms the method of Muter
and Öncan (2015). While they solve 55, 71, and 75 out of the 270 instances for
strategies traversal, return, and midpoint, respectively, our BPC is able to solve
more than three times the number of instances, namely 208, 237, and 244. A
meaningful comparison of computation times is only possible for a small number
of instance groups. For the majority of groups, the averages for the method of
Muter and Öncan (2015) are dominated by the time limit (notice that no results
for individual instances are available).

Table 2.4 summarizes the results of our BPC for the benchmarks M&Ö and H&W
and all considered routing strategies aggregated by capacity Q. As expected, in-
stances with larger capacities (and more orders) are harder to solve. Regarding the
routing strategies, traversal seems to be the most difficult for our BPC. Compared
to the other strategies, substantially less optima are provided and the average com-
putation times are much higher. Routing strategies return, largest gap, combined,
and optimal appear to be of very comparable difficulty, while midpoint seems to
be slightly easier. For all routing strategies except traversal, the M&Ö instances

www.passmark.com
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Traversal Return Midpoint
M&Ö† Our method‡ M&Ö† Our method‡ M&Ö† Our method‡

Q n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]
24 20 10 10 7.0 10 0.2 10 7.0 10 0.1 10 5.0 10 0.0

30 10 7 1,095.4 10 0.7 9 377.1 10 1.1 9 373.5 10 0.4
40 10 8 807.2 10 8.6 7 1,105.2 10 1.9 10 35.0 10 1.6
50 10 4 2,205.6 10 14.8 6 1,491.6 10 13.0 6 1,472.4 10 3.0
60 10 6 1,516.8 10 11.5 6 1,519.2 10 3.0 7 1,210.2 10 5.2
70 10 2 2,901.6 10 37.9 5 1,938.5 10 73.8 3 2,564.7 10 17.3
80 10 1 3,315.1 10 392.4 2 2,944.2 10 128.3 4 2,325.2 10 39.2
90 10 2 2,928.0 8 1,097.6 3 2,621.1 10 570.1 3 2,625.3 10 269.3

100 10 2 2,959.4 10 493.0 2 2,936.0 10 274.8 4 2,362.0 9 582.6
Subtot. 90 42 1,970.7 88 228.5 50 1,660.0 90 118.5 56 1,441.5 89 102.1

36 20 10 6 1,450.8 10 2.1 9 396.0 10 0.6 8 744.8 10 0.3
30 10 4 2,170.4 10 25.4 7 1,154.2 10 5.6 6 1,478.4 10 2.5
40 10 0 3,600.0 10 43.5 1 3,255.5 10 30.8 0 3,600.0 10 7.2
50 10 0 3,600.0 9 649.2 0 3,600.0 10 59.3 0 3,600.0 10 27.1
60 10 0 3,600.0 10 805.8 0 3,600.0 10 137.9 0 3,600.0 10 85.1
70 10 0 3,600.0 8 1,125.5 0 3,600.0 10 791.9 0 3,600.0 10 160.4
80 10 0 3,600.0 5 2,141.7 0 3,600.0 8 1,829.8 0 3,600.0 10 989.0
90 10 0 3,600.0 6 2,295.7 0 3,600.0 10 1,098.1 0 3,600.0 10 1,402.3

100 10 0 3,600.0 4 2,394.8 0 3,600.0 5 2,971.8 0 3,600.0 8 2,107.6
Subtot. 90 10 3,202.4 72 1,053.7 17 2,934.0 83 769.5 14 3,047.0 88 531.3

48 20 10 3 2,535.0 10 3.6 4 2,193.6 10 1.2 5 1,866.5 10 0.5
30 10 0 3,600.0 10 146.5 0 3,600.0 10 21.8 0 3,600.0 10 46.4
40 10 0 3,600.0 9 612.7 0 3,600.0 10 32.0 0 3,600.0 10 57.3
50 10 0 3,600.0 6 2,285.0 0 3,600.0 10 613.0 0 3,600.0 10 187.0
60 10 0 3,600.0 6 1,677.9 0 3,600.0 10 363.6 0 3,600.0 10 268.6
70 10 0 3,600.0 3 2,951.5 0 3,600.0 5 2,208.9 0 3,600.0 6 2,286.7
80 10 0 3,600.0 1 3,316.5 0 3,600.0 5 2,381.6 0 3,600.0 7 2,197.2
90 10 0 3,600.0 1 3,276.8 0 3,600.0 1 3,387.3 0 3,600.0 3 3,160.0

100 10 0 3,600.0 2 3,039.8 0 3,600.0 3 3,140.0 0 3,600.0 1 3,387.8
Subtot. 90 3 3,481.7 48 1,923.4 4 3,443.7 64 1,349.9 5 3,407.4 67 1,287.9

Total 270 55 2,884.9 208 1,068.5 71 2,679.2 237 746.0 75 2,632.0 244 640.4

Table 2.3: Comparison of our BPC algorithm with the approach of Muter and
Öncan (2015) for routing strategies traversal, return and midpoint on
the M&Ö instances

†: Windows computer with an Intel Xeon X5460 processor, single thread score
(www.passmark.com): 1370

‡: Linux computer with an Intel Xeon Gold 6126 processor, single thread score
(www.passmark.com): 2019



Chapter 2. BPC-based Solution of the OBP 36

Traversal Return Midpoint Largest gap Combined Optimal
Q Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]

Panel A: M&Ö instances
24 90 88 228.5 90 118.5 89 102.1 89 87.8 90 108.2 88 131.3
36 90 72 1,053.7 83 769.5 88 531.3 80 714.2 81 861.7 79 802.0
48 90 48 1,923.4 64 1,349.9 67 1,287.9 66 1,355.1 63 1,458.4 65 1,451.2

Total 270 208 1,068.5 237 746.0 244 640.4 235 719.0 234 809.4 232 794.8
Panel B: H&W instances

30 1,440 1,420 55.6 1,440 0.1 1,440 0.1 1,440 0.1 1,438 5.2 1,440 1.6
45 1,440 1,352 307.8 1,419 98.0 1,438 20.7 1,434 39.3 1,419 104.1 1,424 78.9
60 1,440 1,020 1,203.4 1,356 380.8 1,384 276.2 1,374 348.2 1,355 428.5 1,346 456.0
75 1,440 720 1,960.2 1,247 820.8 1,262 732.6 1,228 848.8 1,249 798.0 1,204 923.9

Total 5,760 4,512 881.8 5,462 325.0 5,524 257.4 5,476 309.1 5,461 333.9 5,414 365.1

Table 2.4: Summary results of our BPC algorithm for the M&Ö and H&W instances
and all routing strategies

are overall more difficult (less instances solved and larger computation times) than
the H&W instances. Following the trend for the largest M&Ö and H&W instances, only
a limited number of the larger-sized instances from benchmarks M&Ö-ext, W&G-g,
and W&G-u can be solved to optimality (see Tables 2.14–2.16 in Appendix 2.F).
We can also observe, that the instances with uniform order weights seem slightly
easier for our BPC than those with general weights.

A detailed analysis averaged by capacity of our BPC is provided in Table 2.5 for
routing strategies traversal and optimal. The latter is representative also for the
remaining strategies return, midpoint, largest gap and combined. The additional
columns are the average time for solving the LP relaxation in seconds (tLP), the
average optimality gap with respect to the BKS of the LP relaxation (Gp), the
average optimality gap with respect to the BKS before the first node resulting from
a Ryan-and-Foster branching is solved (GpRF), the average number of B&B nodes
solved (Nds), and the average number of CCs (CC ) and SRCs (SRC ) added.

The most striking observation when comparing the two routing strategies is the
difference in the number of solved B&B nodes. On average, this number is twice
as large on the M&Ö instances and seven times as large on the H&W instances for
traversal than for optimal. This is the main reason, why traversal is more difficult
to solve than the other strategies. The solution time for a single node, on the other
hand, is much smaller for traversal than for optimal and the other strategies as
indicated by the average time for solving the LP relaxation. This can be explained
by the fact that the distance function for traversal is computationally the least
expensive of all strategies.

Overall, Table 2.5 reveals that the times needed for solving the LP relaxations
are very short (note that the maximum for any of the instances is 84 seconds and
only six instances require more than 60 seconds) and the average optimality gaps
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Traversal Optimal
Q Inst Opt t[s] tLP Gp GpRF Nds CC SRC Opt t[s] tLP Gp GpRF Nds CC SRC

Panel A: M&Ö instances
24 90 88 228.5 0.2 0.98 0.31 2,346 21 42 88 131.3 0.3 0.80 0.23 1,070 12 36
36 90 72 1,053.7 1.2 2.12 0.54 2,633 41 91 79 802.0 2.7 1.74 0.40 1,716 38 69
48 90 48 1,923.4 5.3 2.98 0.68 1,750 55 113 65 1,451.2 16.6 2.74 0.66 558 67 99

Tot. 270 208 1,068.5 2.2 2.03 0.51 2,243 39 82 232 794.8 6.5 1.76 0.43 1,114 39 68
Panel B: H&W instances

30 1,440 1,420 55.6 0.0 0.30 0.03 533 8 1 1,440 1.6 0.0 0.22 0.01 45 2 1
45 1,440 1,352 307.8 0.1 0.57 0.23 7,103 21 27 1,424 78.9 0.2 0.40 0.16 1,396 10 21
60 1,440 1,020 1,203.4 0.4 0.96 0.34 20,562 21 54 1,346 456.0 0.7 0.77 0.29 3,147 22 40
75 1,440 720 1,960.2 1.0 1.29 0.36 21,534 28 80 1,204 923.9 2.1 1.19 0.38 2,569 37 57

Tot. 5,760 4,512 881.8 0.4 0.78 0.24 12,433 19 41 5,414 365.1 0.7 0.65 0.21 1,789 18 30

Table 2.5: Detailed results of our BPC algorithm for the M&Ö and H&W instances
and routing strategies traversal and optimal

are rather small: less than 2% for the LP relaxation, and less than 0.5% after
adding cuts. This is also true when considering the individual instance groups
for all routing strategies and benchmark sets from the literature as shown by the
detailed results in Appendix 2.F. Comparing the two benchmark sets, we see that
LP times and gaps are larger for the M&Ö instances than for the H&W instances,
which can be an explanation why the former are overall harder to solve.

The main insights taken from Table 2.5 are also valid for the larger-sized in-
stances M&Ö-ext, W&G-g, and W&G-u. Note that with increasing instance sizes, the
times for solving the LP relaxation also strongly increases. In fact, for the largest
instances of the W&G-g and W&G-u benchmarks, our BPC was consistently not able
to solve the LP relaxation within the time limit.

2.4.4 Computational Analysis of BPC-based Heuristics
We now analyze our BPC-based heuristics SC and BPC-DF and compare it to
the state-of-the-art heuristic approach of Žulj et al. (2018), who proposed a hybrid
of an adaptive large neighborhood search and a tabu search (ALNS/TS) for the
routing strategies traversal and largest gap. They report results only for subsets
of the H&W benchmark and for the large-scale ZKS instances.

Tables 2.6–2.8 summarize the comparison on these instances. The results for
both BPC-based heuristics are obtained using a hard time limit of two minutes
indicated by the suffix -2. The tables report the average gap with respect to
the best-known lower bound (Gp) and the average computation time in seconds
(t[s]). On all subsets of instances considered by Žulj et al. (2018), we are able to
drastically improve on their gaps with both types of heuristics. For example, for the
H&W instances with CBD and the largest gap strategy they obtain an average gap
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H&W CBD/largest gap instances H&W UDD/largest gap instances
SC-2‡ BPC-DF-2‡ ALNS/TS§ SC-2‡ BPC-DF-2‡ ALNS/TS§

n Gp t[s] Gp t[s] Gp t[s] n Gp t[s] Gp t[s] Gp t[s]
40 0.10 0.8 0.00 2.2 0.24 11.2 40 0.12 2.7 0.01 8.6 0.20 10.9
60 0.09 5.0 0.02 21.2 0.63 34.6 60 0.11 13.9 0.06 36.1 0.53 32.1
80 0.19 22.3 0.07 48.9 0.85 75.3 80 0.38 36.4 0.20 57.0 0.84 72.0

100 0.35 44.8 0.17 66.4 1.00 141.9 100 0.56 53.6 0.34 69.7 0.92 133.5
Total 0.18 18.2 0.07 34.7 0.68 65.7 Total 0.29 26.7 0.15 42.8 0.62 62.1

Table 2.6: Comparison of our BPC-based heuristics SC-2 and BPC-DF-2 with
the ALNS/TS of Žulj et al. (2018) for the largest gap strategy on a
subset of the H&W instances

‡: Linux computer with an Intel Xeon Gold 6126 processor, single thread score
(www.passmark.com): 2019

§: Windows computer with an Intel Core i7-3770 processor, single thread score
(www.passmark.com): 2071

of 0.68% while SC-2 and BPC-DF-2 achieve gaps of 0.18% and 0.07%, respectively.
For largest gap, these reductions even come with much shorter computation times
for both SC-2 and BPC-DF-2. For the large-scale ZKS instances, we are again able
to reduce the average gap from 2.56%, which represents the instance-wise best
out of three runs of the ALNS/TS, to 0.65% and 1.10% for SC-2 and BPC-DF-2,
respectively. Surprisingly, our BPC-based heuristics seem to scale much better
than the ALNS/TS of Žulj et al. (2018), because the latter gaps are obtained with
an average computation time of 48.8 seconds (SC-2) and 115.8 seconds (BPC-DF-
2) compared to 1,570.4 seconds (ALNS/TS).

Table 2.9 provides a very aggregated summary by benchmark set of the BPC-
based heuristics investigating the impact of the allowed computation time on SC
and BPC-DF. We report results for both heuristics and with hard time limits of
two, three, and five minutes indicated with a corresponding suffix. For both types
of heuristics, the average gaps strictly decrease with increasing time limit, i.e., there
is a direct trade-off between allowed computation time and solution quality. On all
benchmark sets, BPC-DF consumes on average more of the allowed computation
time than SC. However, BPC-DF also seems to benefit more from larger time limits
in the sense that it is able to generate larger improvements in solution quality than
SC with increasing computation time. Overall, BPC-DF performs better than SC
for the M&Ö and H&W instances, while for the ZKS instances the picture is reversed.

With the computations carried out to obtain the results of Table 2.9, we are also
able to improve on hundreds of BKS. For the H&W benchmark, there are 2,720 in-
stances for which BKS have been reported by Žulj et al. (2018). We confirm
763 BKS and provide 1,955 new BKS. Only for two instances, we were not able
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H&W CBD/traversal instances H&W UDD/traversal instances
SC-2 BPC-DF-2 ALNS/TS SC-2 BPC-DF-2 ALNS/TS

n Gp t[s] Gp t[s] Gp t[s] n Gp t[s] Gp t[s] Gp t[s]
20 0.10 0.1 0.00 0.6 0.05 0.4
30 0.07 0.4 0.01 9.2 0.42 1.2 40 0.06 0.9 0.02 40.4 0.29 2.1
40 0.08 1.1 0.01 21.4 0.35 2.4 60 0.08 6.4 0.11 61.1 0.62 6.2
50 0.10 2.8 0.04 40.9 0.83 4.5 80 0.09 17.2 0.21 73.1 0.86 14.5
60 0.08 6.2 0.05 50.5 0.91 6.9 100 0.16 36.9 0.22 87.4 1.06 26.7

Total 0.09 2.1 0.02 24.5 0.51 3.1 Total 0.10 15.3 0.14 65.5 0.71 12.4

Table 2.7: Comparison of our BPC-based heuristics SC-2 and BPC-DF-2 with the
ALNS/TS of Žulj et al. (2018) for the traversal strategy on a subset
of the H&W instances

SC-2 BPC-DF-2 ALNS/TS
Q n Gp t[s] Gp t[s] Gp t[s]
6 200 0.05 2.3 0.08 108.1 0.99 221.2

300 0.03 8.0 0.11 108.1 1.18 747.9
400 0.03 18.6 0.23 109.8 1.60 1,737.9
500 0.02 40.2 0.48 120.0 1.84 3,388.3
600 0.02 53.7 1.04 120.0 1.91 5,616.7

9 200 0.16 28.3 1.48 120.0 2.45 248.6
12 200 1.49 119.6 1.73 120.0 4.49 289.1
15 200 3.41 119.6 3.68 120.0 6.01 313.2
Total 0.65 48.8 1.10 115.8 2.56 1,570.4

Table 2.8: Comparison of our BPC-based heuristics SC-2 and BPC-DF-2 with
the ALNS/TS of Žulj et al. (2018) for the traversal strategy on the
large-scale ZKS instances

SC heuristic BPC-DF heuristic
SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Class Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s]
M&Ö 0.96 41.8 0.83 56.5 0.70 82.0 0.43 60.7 0.29 85.7 0.17 132.6
H&W 0.17 16.4 0.15 20.6 0.13 26.8 0.08 34.8 0.07 48.6 0.05 73.9
ZKS 0.48 52.1 0.41 68.9 0.36 98.6 0.84 118.1 0.63 177.0 0.51 294.7

Table 2.9: Summary results of our BPC-based heuristics with different time limits
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to reach the previously reported BKS. For the ZKS benchmark, we improve the
BKS for all 80 instances that have been considered before, i.e., those for routing
strategy traversal.

For the larger instances of the benchmarks M&Ö-ext, W&G-g, and W&G-u, the
considered hard time limits of two, three, or five minutes are sufficient for the
straightforward BPC-based heuristics to consistently provide high-quality solu-
tions. Indeed, in many cases, the provided solution is simply the best one of those
provided by the randomized savings heuristic used for initializing the RMP (see
Appendix 2.D) with gaps around 20 to 25% with respect to the best-known lower
bound. More refined strategies like, e.g., premature termination of the CG process,
seem necessary to tackle those instances with BPC-based heuristic approaches.

2.4.5 Comparison of Routing Strategies
Systematic studies on the quality of different routing strategies have been carried
out, e.g., in (Petersen 1997, Roodbergen and de Koster 2001a, Hwang et al. 2004).
To the best of our knowledge, the only evaluation of routing strategies in combina-
tion with optimal order batching decisions has recently been performed by Bahçeci
and Öncan (2022) on the small-scale B&Ö instances. In Table 2.10, we analyze the
quality of the considered routing strategies on the larger M&Ö and H&W instances.
The table reports for each strategy the percentage increase in traveled distance
compared to the optimal routing averaged by capacity. For the H&W instances, we
further differentiate the two storage assignment policies CBD and UDD. Notice
that the averages in Table 2.10 are taken over all instances using the BKS when-
ever an instance is not solved to proven optimality. Because of the very small gaps
of these BKS, the impact on the results is marginal.

Table 2.10 reveals that the picking capacity is a major influencing factor for
the quality of the routing heuristics relative to the optimal routing. Strategies
return, midpoint, and largest gap become worse with increasing capacity, while
strategies traversal and combined become better. The number of orders does not
seem to have an impact on the relative quality of the heuristics (see detailed results
in Appendix 2.F). Overall, the combined strategy provides the best results of
the routing heuristics with travel distances only 2-3% longer than with optimal
routing for large capacities. Furthermore, the largest gap strategy performs quite
well for small capacities, while traversal does so for large capacities. Strategies
return and midpoint perform rather poorly in general. Regarding the storage
assignment, strategies largest gap and midpoint perform relatively better for CBD,
while traversal, return, and combined perform relatively better for UDD.

Summing up, when applying a good routing heuristic, the loss compared to an
optimal routing is around 2% in the best case (for large capacities and uniformly
distributed demands) and around 5% on average. With a poor routing heuristic,
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Q Traversal Return Midpoint Largest gap Combined
Panel A: M&Ö instances

24 10.4% 32.8% 9.9% 5.8% 3.7%
36 7.1% 34.9% 13.5% 8.2% 2.5%
48 5.3% 36.5% 17.1% 10.8% 1.8%

Total 7.6% 34.7% 13.4% 8.2% 2.7%
Panel B: H&W UDD instances

30 17.4% 52.7% 15.4% 8.9% 7.2%
45 10.0% 53.9% 20.5% 12.5% 4.2%
60 7.5% 55.4% 24.6% 15.9% 2.9%
75 6.3% 56.9% 28.1% 19.0% 2.2%

Total 10.2% 54.7% 22.1% 14.0% 4.1%
Panel C: H&W CBD instances

30 19.2% 52.2% 9.4% 5.4% 8.7%
45 12.0% 52.4% 12.4% 7.2% 5.7%
60 9.1% 53.2% 15.2% 9.3% 4.1%
75 7.5% 54.1% 18.0% 11.3% 3.2%

Total 11.8% 53.0% 13.7% 8.3% 5.4%

Table 2.10: Percentage increase in total traveled distances compared to the opti-
mal routing strategy

the loss can be around 10–20% in many cases, going up to over 50% for the return
strategy.

2.5 Conclusions
In this paper, we have proposed an exact branch-price-and-cut (BPC) algorithm
for the order batching problem (OBP). A main building block of the approach is
the representation of the column generation (CG) pricing problem as a shortest
path problem with resource constraints (SPPRC), which can be adapted to handle
the implications from non-robust valid inequalities and branching decisions. The
SPPRC pricing problems are solved by means of an effective dynamic programming
labeling algorithm that relies on strong completion bounds. To strengthen the
underlying set-partitioning formulation of the OBP, two families of non-robust
valid inequalities are used. Moreover, we have presented two heuristic approaches
to the OBP that are based on the proposed BPC.

The focus of this paper has been on the OBP in a rectangular single-block
parallel-aisles warehouse and routing strategies traversal, return, midpoint, largest
gap, combined, and optimal. The proposed BPC and the derived heuristics, how-
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ever, are much more generic. They can immediately be applied to variants of the
OBP with different warehouse layouts and routing strategies, or including addi-
tional aspects such as scattered storage or a decoupling of picker and picking cart,
whenever the corresponding picker routing problem for a given batch can be solved
and the travel distances of the batches are given by a monotone function in the
comprised orders. Even more, the proposed methods or slightly modified variants
might be viable approaches to other optimization problems featuring a knapsack
substructure with complex cost function such as the job grouping problem (Tang
and Denardo 1988) or bin packing problems with general costs (Anily et al. 1994,
Hu et al. 2018) that are relevant, e.g., in flexible manufacturing or courier logistics.

In an extensive computational campaign, we have highlighted the competitive-
ness of the proposed methods. Our BPC clearly outperforms the state-of-the-art
exact approach of Muter and Öncan (2015) for the routing strategies (traversal,
midpoint, return) and instances considered in their paper: it is faster by about
two orders of magnitude and provides more than three times the number of proven
optima (201 vs. 689 of 810 instances). Overall, our BPC is able to solve 90% of the
benchmarks of Henn and Wäscher (2012) and Muter and Öncan (2015) and a small
number of the large-scale instances from the benchmark of Žulj et al. (2018). Only
a small fraction of these instances has been solved to optimality before. The two
BPC-based heuristics substantially improve on the gaps reported for the state-of-
the-art heuristic approach of Žulj et al. (2018) for the routing strategies (traversal,
largest gap) and instances considered in their paper. For the Henn and Wäscher
(2012) instances, computation times are comparable. For the large-scale Žulj et al.
(2018) instances, our heuristics are faster by more than one order of magnitude on
average. Overall, our heuristics improve almost 2,000 out of the 2,720 best-known
solutions reported by Žulj et al. (2018), and confirm all remaining ones except for
two instances.

As indicated by the computational results, the proposed CG method is very
powerful and can solve the LP relaxation of the set-partitioning formulation very
quickly. The BPC spends most of its time in the search tree trying to find an
optimal integer solution and to prove its optimality. Viable avenues of future
research may thus focus on techniques to raise the dual bounds more effectively
and on more refined strategies to identify high-quality solutions within the BPC.

Another promising avenue of future research is to consider integrated optimiza-
tion problems with an order-batching and picker-routing component such as the
joint planning of order batching, picker routing, and sequencing (e.g., van Gils
et al. 2019, Cano et al. 2020). The proposed BPC can serve as a central building
block for exact and heuristic solution approaches to these problems.
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Appendix

2.A Detailed Description of Routing Strategies
In the following, we thoroughly describe the routing strategies return, midpoint,
traversal, largest gap, composite, combined, and optimal for the rectangular paral-
lel aisles single-block warehouse specified in Section 2.2. The descriptions provide
all necessary details to clarify our exact interpretation of the strategies and to al-
low reproduction of our results. For completeness, we also provide a description of
the mixed strategy that has recently been proposed by Bahçeci and Öncan (2022).
We use the terms required location and required aisle for those storage locations
and picking aisles, respectively, in which there is at least one item to pick, given
a set of orders. Figures 2.6a–2.6i depict exemplary picker routes for picking the
batch comprising orders 2, 4, and 5 and each routing strategy. The items and cor-
responding storage locations are highlighted in blue and the picker route following
each strategy is shown with a dashed line.

Return Starting at the depot, the picker moves along the front cross aisle to the
rightmost required aisle, i.e., the required aisle furthest from the depot. On the
way, the picker enters each required aisle from the front cross aisle, travels towards
the required location closest to the back cross aisle, makes a U-turn, and exits the
aisle again to the front cross aisle. After exiting the rightmost required aisle, the
picker returns to the depot on the front cross aisle.

Midpoint The warehouse is virtually divided into a front and a back part such
that all storage locations closer to the front (back) cross aisle are assigned to the
front (back) part. Storage locations that are exactly in the middle between front
and back cross aisle are assigned to the front part. Starting at the depot, the
picker moves along the front cross aisle to the leftmost required aisle, i.e., the
required aisle closest to the depot. This aisle is traversed completely by entering
from the front and exiting to the back cross aisle. The picker then moves along the
back cross aisle to the rightmost required aisle. Similar to the return strategy, the
picker enters from the back cross aisle all aisles that contain at least one required
location in the back part of the warehouse, travels towards the required location
closest to the middle, makes a U-turn, and exits the aisle again to the back cross
aisle. The rightmost required aisle is traversed completely and the picker returns
along the front cross aisle to the depot. All aisles between the left- and rightmost
that contain at least one required location in the front part of the warehouse are
visited from the front cross aisle in the analog fashion as those of the back part.
In the special case that there is only a single required aisle, the route is the same
as in the return strategy.
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Traversal Starting at the depot, the picker moves horizontally to the rightmost
required aisle. Each required aisle is traversed completely so that the picker enters
from and exits to different cross aisles. After each traversal, the horizontal move-
ment to the rightmost required aisle is continued on the opposite cross aisle. If the
number of required aisles is even, the picker traverses the last one from the back
to the front cross aisle and travels back to the depot on the front cross aisle. If the
number of required aisles is odd, the picker visits the last one in a return fashion
entering from and exiting to the front cross aisle and travels back to the depot on
the front cross aisle.

Largest Gap This strategy is similar to the midpoint strategy. If there is only a
single required aisle, the route is the same as in the return strategy. Otherwise, the
picker travels horizontally on the front cross aisle from the depot to the leftmost
required aisle, traverses this aisle completely, continues horizontally on the back
cross aisle to the rightmost required aisle, traverses this aisle completely, and travels
back to the depot on the front cross aisle. The other required aisles are visited on
the way from/to the depot in a return fashion either from and to only one of the
cross aisles or from and to both cross aisles, depending on the largest gap in this
aisle. The largest gap in an aisle is the largest value of any of the following: (i) the
distance between the front cross aisle and its closest required location, (ii) the
distance between the back cross aisle and its closest required location, or (iii) the
distance between any pair of required locations for which no third required location
is closer to both locations. The aisle is then visited such that the largest gap in this
aisle is not traversed. In Figure 2.6d, the largest gaps are highlighted in orange.
If the largest gap is between the front (back) cross aisle and the required location
closest to it as in the second (fourth) aisle, then a return from and to the back
(front) cross aisle is performed. If the largest gap is between any two required
locations (third aisle), then returns from and to both cross aisles are performed.

Composite The composite strategy combines elements of the traversal and re-
turn strategies. Starting from the depot and on the front cross aisle, the picker
moves horizontally to the rightmost required aisle visiting all required aisles on
the way and returns on the front cross aisle to the depot. Each required aisle is
either traversed completely (changing from the front to the back cross aisle and
vice versa) or visited in a return fashion entering from and exiting to the same
cross aisle. The choice on how to visit an aisle is made individually for each aisle
in a pure greedy fashion. There are two interpretations in the literature. For a
given required aisle and the cross aisle on which the picker arrives at this aisle, Pe-
tersen (1995) chooses traversal or return based on which of the two gives a shorter
distance between the farthest required location from the current cross aisle in the
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current aisle and the farthest required location from the current cross aisle in the
next required aisle. Roodbergen (2001) and Scholz and Wäscher (2017), on the
other hand, choose traversal whenever the distance between the farthest required
location and the current cross aisle is more than half of the distance of a full traver-
sal. Otherwise, they choose a return visit. In both interpretations, the rightmost
required aisle has to be visited such that the picker exits to the front cross aisle,
i.e., performing a traversal if the picker arrives at the rightmost require aisle on
the back cross aisle and performing a return visit otherwise.

Combined The combined strategy is an enhanced version of the composite strat-
egy. The only difference is that the choice whether an aisle is visited with a traversal
or a return is not made individually for each aisle in a greedy fashion. Instead,
these visits are performed such that the best possible route using only these in-
aisle visits results. To this end, a simple DP algorithm can be used. We refer to
Roodbergen (2001) for details.

Mixed The mixed routing strategy is similar to the midpoint and largest gap
strategies. It adds elements of the return strategy to the midpoint strategy. The
only difference from the midpoint strategy is that the required aisles between
the leftmost and rightmost required aisles can be visited according to either the
midpoint strategy, i.e., return visits to and from both cross aisles up to the middle
of the aisles, or the return strategy, i.e., a single return visit to and from the same
cross aisle. An alternative description is as follows. The mixed strategy differs
from the largest gap strategy by allowing visits from and to both cross aisles only
in the case that the gap that is not traversed is between two required locations
that are on different parts (front and back) of the warehouse. We refer to Bahçeci
and Öncan (2022) for details.

Optimal The optimal strategy follows a distance-minimal route of all possible
picker routes which can in principle be computed by solving a traveling salesman
problem (TSP) over the required locations. For a rectangular parallel-aisles single-
block warehouse, the problem can be solved in linear time (linear in the sum of
the number of aisles and the number of required locations) by means of a DP
approach. We refer to Ratliff and Rosenthal (1983) for a detailed description of
this DP algorithm. Note that the optimal strategy allows all possible in-aisle visits,
i.e., traversal, a single return visit from the front or back cross aisle, and a double
return visit from the front and back cross aisles as in the largest gap strategy, as
well as all possible traversals from one required aisle to the next.
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(b) Midpoint strategy, cb = 66
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(c) Traversal strategy, cb = 64
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(d) Largest gap strategy, cb = 64
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(e) Composite strategy (Petersen 1995),
cb = 62
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(f) Composite strategy (Roodbergen 2001),
cb = 64
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(g) Combined strategy, cb = 62
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(h) Mixed strategy, cb = 64
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(i) Optimal strategy, cb = 60
Figure 2.6: Picker routes for batch b = {2, 4, 5} and different routing strategies
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2.B Proof of Proposition 2.1
Proposition 2.1. The routing strategies return, midpoint, traversal, largest gap,
combined, mixed, and optimal are monotone.

Proof. Let b1 and b2 be two feasible batches with b1 ⊆ b2. We need to show that
cb1 ≤ cb2 holds for the routing strategies.

Let R denote the set of additional required locations of b2 compared to b1.
Without loss of generality, we assume in the following that R 6= ∅ (otherwise
cb1 ≤ cb2 obviously holds for all routing strategies). Note further that for any batch
and all strategies except optimal, the total horizontal distance traveled on the cross
aisles is exactly twice the distance from the depot to the rightmost required aisle.
Thus, this distance strictly increases if there is an additional required location in
R located in an aisle further from the depot than the rightmost required aisle
of b1. Otherwise it stays the same. For these strategies, it suffices to consider
the distances traveled within the required aisles (including the distances to enter
from/exit to the cross aisles) in the following.

Return Any additional required location in R that is located in a required aisle of
b1 but not closer to the back cross aisle than each required location of b1 in
this aisle does not change the distance traveled within the respective aisle.
Any additional required location in R that is located either in a required
aisle of b1 and closer to the back cross aisle than each required location of
b1 in this aisle or in an aisle that is not required in b1 strictly increases the
distance traveled within the respective aisle. Thus, cb1 ≤ cb2 obviously holds
for the return strategy.

Midpoint Consider first the special case of a single required aisle in b1. If all
additional required locations in R are also located in this aisle, then cb1 ≤ cb2

follows with the same arguments as for the return strategy. If there is at least
one additional required location in R located in a different aisle, then the left-
and rightmost required aisles are both traversed completely for b2 implying
a traveled distance of 2(L + 2a) within these aisles. The maximum possible
distance traveled within the single required aisle of b1 is 2(L − /̀2 + a) if a
required location is the one closest to the back cross aisle, so that cb1 ≤ cb2

also holds in this case.
Consider now the general case with multiple required aisles in b1. If the left-
or rightmost required aisles are not identical for b1 and b2, then different
aisles are traversed completely in b1 and b2. The distances traveled, however,
do not change. Then, cb1 ≤ cb2 immediately follows with similar arguments
as in the return strategy.
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Traversal We need to distinguish several cases:
(i) If the number of required aisles is even for b1 and b2, then any aisle

traversed in b1 is also traversed in b2 and cb1 ≤ cb2 obviously holds.
(ii) If the number of required aisles is odd for b1 and b2 and the rightmost

required aisle is identical for b1 and b2, then any aisle traversed in b1
is also traversed in b2 and, with the same arguments as for the return
strategy, the distance traveled in the rightmost required aisle for b2
cannot be smaller than the distance for b1 so that cb1 ≤ cb2 has to hold.

(iii) If the number of required aisles is odd for b1 and b2 but the rightmost
required aisle is not identical for b1 and b2, then any aisle traversed in
b1 is also traversed in b2 and there are at least two additional required
aisles in b2. At least one of these is also traversed completely in b2
(the other might be the rightmost required aisle of b2 which is not
traversed completely). In addition, the rightmost required aisle of b1
is also traversed completely in b2 instead of the return visit in b1. For
b2, the total distance traveled within these two aisles is thus 2(L + 2a).
For b1, the maximum possible distance traveled within its rightmost
required aisle is 2(L − /̀2 + a) if a required location is the one closest
to the back cross aisle, so that cb1 ≤ cb2 also holds in this case.

(iv) If the number of required aisles is odd for b1 but even for b2, then any
aisle traversed in b1 is also traversed in b2, there is at least one additional
required aisle in b2, and the rightmost aisle is traversed completely for
b2 instead of the return visit for b1. This additional required aisle as
well as the rightmost required aisle of b1 are traversed completely in
b2 resulting in a traveled distance of 2(L + 2a) within these two aisles.
For b1, the maximum possible distance traveled within its rightmost
required aisle is 2(L − /̀2 + a) if a required location is the one closest
to the back cross aisle, so that cb1 ≤ cb2 also holds in this case.

(v) If the number of required aisles is even for b1 but odd for b2, then any
aisle traversed in b1 is also traversed in b2 except for the rightmost
required aisle of b1, there is at least one additional required aisle in
b2, and the rightmost aisle is visited in return fashion for b2 instead of
the complete traversal for b1. The traversal of the additional required
aisle in b2 obviously implies the same distance as the complete traversal
of the rightmost required aisle in b1, and it immediately follows that
cb1 ≤ cb2 .

Largest Gap The special case of a single required aisle in b1 follows with the exact
same arguments as for the midpoint strategy. For the general case of multiple
required aisles in b1, recall that required aisles are visited such that the
largest gap between pairs of required locations or cross aisles and required
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locations is not traveled. Any additional required location in R can clearly
only decrease the largest gap in the corresponding aisle so that the distance
traveled within this aisle can only increase. The relation cb1 ≤ cb2 then
follows with similar arguments as for the midpoint strategy.

Combined The combined strategy allows visiting aisles either in return fashion
or by complete traversal. It chooses the distance-minimal picker route using
only these two in-aisle visits. Now, any additional required location in R does
not impact the distance of a complete traversal and can only increase the
distance traveled in a return visit of the corresponding aisle. Thus, cb1 ≤ cb2

obviously holds for the combined strategy.

Mixed The mixed strategy allows visiting aisles either in return or in midpoint
fashion choosing for each aisle the shorter of the two possibilities. Any
additional required location within an aisle can only increase the distance
traveled for visiting this aisle in both return and midpoint fashion. Then,
cb1 ≤ cb2 follows by the same arguments as for the midpoint and the largest
gap strategies.

Optimal Recall that the optimal strategy follows a distance-minimal route that
is equivalent to an optimal TSP tour over the required locations. Because
the distances between all storage locations satisfy the triangle inequality, any
additional required location in R can never decrease the length of an optimal
TSP tour and we immediately have cb1 ≤ cb2 .

2.C Non-Monotonicity of Composite Routing Strategy
Figure 2.7 provides a small example showing that the composite strategy is not
monotone, for neither of the interpretations by Petersen (1995) and by Roodbergen
(2001) and Scholz and Wäscher (2017).

For batch b1 comprising only order 6, both variants of the composite strategy
result in a picker route of length cb1 = 48 depicted with a blue dashed line. For
batch b2 = {6, 7}, the corresponding picker route of both variants is indicated with
a red dotted line and has a length of cb2 = 46. Because b1 ⊆ b2 but cb1 > cb2 , the
composite strategy is obviously not monotone.

2.D Algorithm Design Choices
In the following, we give some details on additional design choices made in our
BPC algorithm. We also present the specific values used for the parameters of
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Figure 2.7: Picker routes for both interpretations of the composite strategy and
batches b1 = {6} (in blue) and b2 = {6, 7} (in red), cb1 = 48, cb2 = 46

the algorithm. These values were obtained in pretests on a small subset of the
instances used in our main computational study.

Initialization of RMP We initialize the RMP with a subset Ω′ of feasible
batches obtained from a variant of the well-known savings heuristic by Clarke
and Wright (1964). The heuristic first calculates for each pair of customer orders,
the savings in travel distance if the customer orders are picked in one picking route
instead of two individual routes. Starting with individual batches for each order,
the heuristic then iterates over the savings in non-decreasing order and combines
the current batches of the two corresponding customer orders to one larger batch,
if feasible. To randomize the heuristic, the savings are multiplied with a number
randomly drawn from the interval [0.85, 1.15]. The heuristic is run several times
and all batches contained in any of the heuristic solutions are added to Ω′.

We further initialize the RMP with a lower bound on the number of pickers
needed by adding the corresponding inequality (2.6) for S = O using κ3(O). Notice
that in this case, no additional resource is needed in the labeling algorithm because
the dual price ρO has to be subtracted once from all batches.

Pricing Problem Solution In principle, any sorting of the orders can be used
when constructing graph G for the SPPRC representation of the pricing problem.
The sorting, however, has a substantial impact on the solution time of the pricing
problem. In our BPC, the orders are sorted non-increasingly by relative profit πo/qo

or, after branching, by a generalized version that takes the maximum relative profit
multiplied by the maximum capacity consumption of the feasible combinations of
an order group. With this sorting, negative reduced-cost batches can often be
identified early in the labeling allowing an early termination. Moreover, labels
with positive reduced costs tend to be discarded early because of the small-valued
completion bounds resulting from this sorting.
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Cutting and Branching Strategy In the BPC, branching on the number of
pickers, if fractional, is given priority over cutting. Furthermore, cuts are only
separated in the root node or in its two child nodes if they result from a branching
on the number of pickers.

The overall separation strategy is to first separate CCs with the greedy and
connected component heuristics. If they fail to identify any violated cuts, we
separate SRCs by enumeration. The computationally costly MIP-based separation
of CCs is only invoked when the other separation procedures fail. Moreover, we
set a hard time limit of five seconds for each call to the MIP.

To contain the size of the B&B tree, we apply strong branching at the sec-
ond stage of the branching scheme. The strong branching procedure considers a
candidate set of order pairs (o1, o2) with fractional fo1o2 . For each pair, a rough
evaluation of both child nodes is performed solving only the RMP with the corre-
sponding branching constraint without any CG. The decision on which candidate
branching is performed is taken according to the product rule (Achterberg 2007).
At the root node, the maximum size of the candidate set is 25 and we decrease the
size by two for each level of the B&B tree. We select the pairs (o1, o2) for which
fo1o2 is closest to 0.5 to enter the candidate set.

2.E Benchmark Instances
In the following, we provide a description of the considered benchmark sets by
Henn and Wäscher (2012) (H&W), Muter and Öncan (2015) (M&Ö and M&Ö-ext),
and Žulj et al. (2018) (ZKS) as well as the newly introduced instances (W&G-g and
W&G-u). The same warehouse layouts are shared by the H&W and ZKS instances and
by the M&Ö, M&Ö-ext, W&G-g, and W&G-u instances, respectively.

The H&W and ZKS benchmarks consider a rectangular single-block warehouse
with 10 parallel picking aisles and 45 storage locations on both sides of each aisle.
Each storage location has a length of one unit. Picking an item takes place in
the vertical middle of the corresponding storage location and does not require any
horizontal distance to be traveled. When entering/leaving an aisle from/to one
of the cross aisles, the order picker moves one unit in vertical direction. Thus, a
complete traversal of a picking aisle amounts to 47 units. The depot is located on
the front cross aisle in front of the leftmost aisle. There is no additional distance
to enter/leave the depot to/from the front cross aisle. The distance between two
consecutive picking aisles is five units.

The M&Ö, M&Ö-ext, W&G-g, and W&G-u benchmark sets assume a single-block
layout with 10 parallel picking aisles, 10 storage locations of length one on both
sides of each aisle, and a single depot located on the front cross aisle in front of the
leftmost aisle. Picking is performed as in the H&W and ZKS instances. The horizontal
distance between two consecutive picking aisles is 2.4 units. Unfortunately, we were
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not able to get any information about the distances needed to enter/leave an aisle
from/to one of the cross aisles or to enter/leave the depot for the M&Ö instances.
We interpreted these distances as specified for the H&W and ZKS instances also for
the benchmark sets M&Ö, M&Ö-ext, W&G-g, and W&G-u.

The H&W benchmark considers two different scenarios with respect to storage as-
signment: class-based demand (CBD) and uniformly distributed demand (UDD).
For CDB, items are assigned to storage locations according to their demand fre-
quencies: high-demand items in the leftmost aisle, medium-demand items in sub-
sequent aisles, and low-demand items in the right half of the warehouse. For UDD,
items are randomly assigned to storage locations. Henn and Wäscher (2012) orig-
inally introduced separate instances for strategies traversal and largest gap re-
sulting in the four subclasses CBD/traversal, CBD/largest gap, UDD/traversal
and UDD/largest gap. Obviously, all instances can be used for all routing strate-
gies. For all subclasses, there are 40 instances for each combination of capacity
Q ∈ {30, 45, 60, 75} and number of orders n ∈ {20, 30, ..., 100}. The number of
items per order is uniformly distributed in {5, ..., 25}. The complete benchmark
comprises 5,760 instances.

The ZKS benchmark comprises groups of 10 instances for the (n, Q)-pairs (200, 6),
(200, 9), (200, 12), (200, 15), (300, 6), (400, 6), (500, 6), and (600, 6) and order sizes
uniformly distributed in {1, ..., 5}.

The original M&Ö benchmark consists of instance groups characterized by capacity
Q ∈ {24, 36, 48} and number of orders n ∈ {20, 30, ..., 100}. The sizes of the
orders are randomly drawn from {2, ..., 10} and the individual items are randomly
distributed in the warehouse. Each group comprises 10 instances resulting in a total
of 270 instances. We additionally consider the M&Ö instances with larger values for
the capacities, namely Q ∈ {60, 72}, referred to as benchmark set M&Ö-ext which
comprises another 180 instances.

The W&G-g benchmark comprises groups of 10 instances where each group is
characterized by a capacity Q ∈ {24, 36, 48, 60, 72} and a number of orders n ∈
{125, 150, ..., 250}. The order sizes are randomly drawn from {2, ..., 10} and the
individual items are randomly distributed in the warehouse. The benchmark com-
prises a total of 300 instances.

The W&G-u benchmark comprises groups of 10 instances where each group is
characterized by a capacity Q ∈ {24, 36, 48, 60, 72} and a number of orders n ∈
{100, 150, 200, 250}. The orders have a uniform size of six items and the individual
items are randomly distributed in the warehouse. The benchmark comprises a
total of 200 instances.
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2.F Detailed Computational Results
In this section, we report detailed computational results of our BPC algorithm and
the BPC-based heuristics for the six considered routing strategies traversal, return,
midpoint, largest gap, combined and optimal. We report results for the three
benchmark sets from the literature by Muter and Öncan (2015) (M&Ö), Henn and
Wäscher (2012) (H&W), and Žulj et al. (2018) (ZKS). Furthermore, we report results
for the extended Muter and Öncan (2015) instances with enlarged capacities (M&Ö-
ext) and the newly created benchmark instances with general (W&G-g) and uniform
(W&G-u) order weights. Finally, we provide a comparison of the routing strategies in
terms of total traveled distances. Instance-by-instance results of our main BPC and
the two BPC-based heuristics together with the best-known solution are provided
at https://logistik.wiwi.uni-kl.de/obp-bpc-detailedresults.

Summary Results of BPC Algorithm

Tables 2.11–2.16 provide summary results for the six benchmark sets and all routing
strategies aggregated by capacity Q and number of orders n. They report the
number of instances solved to optimality within the time limit of one hour (Opt)
and the average solution time in seconds (t[s]).

Detailed Results of BPC Algorithm

Tables 2.17–2.52 provide detailed results for the six benchmark sets and all routing
strategies aggregated by capacity Q and number of orders n. They report the
number of instances solved to optimality within the time limit of one hour (Opt),
the average solution time in seconds (t[s]), the average time for solving the LP
relaxation in seconds (tLP), the average optimality gap with respect to the best
known solution of the LP relaxation (Gp), the average optimality gap with respect
to the best-known solution before the first node resulting from a Ryan-and-Foster
branching is solved (GpRF), the average number of B&B nodes solved (Nds), and
the average number of CCs (CC ) and SRCs (SRC ) added. In cases where no
average could be computed for a given group, e.g., because the LP relaxation
could not be solved for one of the comprised instances, the respective cell is left
blank.

https://logistik.wiwi.uni-kl.de/obp-bpc-detailedresults
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Traversal Return Midpoint Largest gap Combined Optimal
Q n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]
24 20 10 10 0.2 10 0.1 10 0.0 10 0.1 10 0.1 10 0.1

30 10 10 0.7 10 1.1 10 0.4 10 0.9 10 0.4 10 0.7
40 10 10 8.6 10 1.9 10 1.6 10 2.3 10 3.7 10 2.2
50 10 10 14.8 10 13.0 10 3.0 10 8.1 10 9.2 10 6.3
60 10 10 11.5 10 3.0 10 5.2 10 12.5 10 8.3 10 7.1
70 10 10 37.9 10 73.8 10 17.3 10 53.3 10 118.5 10 59.3
80 10 10 392.4 10 128.3 10 39.2 10 69.5 10 51.0 10 40.5
90 10 8 1,097.6 10 570.1 10 269.3 9 457.4 10 406.2 9 557.6

100 10 10 493.0 10 274.8 9 582.6 10 186.5 10 376.6 9 508.3
Subtot. 90 88 228.5 90 118.5 89 102.1 89 87.8 90 108.2 88 131.3

36 20 10 10 2.1 10 0.6 10 0.3 10 0.2 10 0.4 10 0.4
30 10 10 25.4 10 5.6 10 2.5 10 3.2 10 2.8 10 6.5
40 10 10 43.5 10 30.8 10 7.2 10 14.7 10 26.1 10 29.7
50 10 9 649.2 10 59.3 10 27.1 10 116.2 10 163.2 10 59.9
60 10 10 805.8 10 137.9 10 85.1 10 71.5 10 272.1 10 156.3
70 10 8 1,125.5 10 791.9 10 160.4 10 373.2 10 737.4 10 359.3
80 10 5 2,141.7 8 1,829.8 10 989.0 10 929.4 8 1,977.1 8 1,755.7
90 10 6 2,295.7 10 1,098.1 10 1,402.3 7 1,941.4 9 1,425.8 7 1,969.3

100 10 4 2,394.8 5 2,971.8 8 2,107.6 3 2,977.9 4 3,150.5 4 2,881.0
Subtot. 90 72 1,053.7 83 769.5 88 531.3 80 714.2 81 861.7 79 802.0

48 20 10 10 3.6 10 1.2 10 0.5 10 1.0 10 1.4 10 0.9
30 10 10 146.5 10 21.8 10 46.4 10 35.6 10 49.1 10 96.5
40 10 9 612.7 10 32.0 10 57.3 10 47.8 10 41.3 10 134.2
50 10 6 2,285.0 10 613.0 10 187.0 10 402.9 9 1,202.6 9 1,030.0
60 10 6 1,677.9 10 363.6 10 268.6 10 589.4 10 539.0 10 560.2
70 10 3 2,951.5 5 2,208.9 6 2,286.7 5 2,254.9 7 1,746.4 7 1,887.1
80 10 1 3,316.5 5 2,381.6 7 2,197.2 5 3,031.7 7 2,345.8 7 2,471.7
90 10 1 3,276.8 1 3,387.3 3 3,160.0 3 2,828.2 0 3,600.0 1 3,574.5

100 10 2 3,039.8 3 3,140.0 1 3,387.8 3 3,004.0 0 3,600.0 1 3,305.2
Subtot. 90 48 1,923.4 64 1,349.9 67 1,287.9 66 1,355.1 63 1,458.4 65 1,451.2

Total 270 208 1,068.5 237 746.0 244 640.4 235 719.0 234 809.4 232 794.8

Table 2.11: Summary results of our BPC algorithm for the M&Ö instances
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Traversal Return Midpoint Largest gap Combined Optimal
Q n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]
30 20 160 160 0.0 160 0.0 160 0.0 160 0.0 160 0.0 160 0.0

30 160 160 0.0 160 0.0 160 0.0 160 0.0 160 0.0 160 0.0
40 160 160 0.1 160 0.1 160 0.0 160 0.0 160 0.0 160 0.0
50 160 160 0.1 160 0.0 160 0.0 160 0.0 160 0.0 160 0.0
60 160 158 45.2 160 0.1 160 0.1 160 0.1 160 0.1 160 0.1
70 160 158 45.2 160 0.2 160 0.1 160 0.1 160 0.2 160 0.1
80 160 155 129.2 160 0.2 160 0.1 160 0.2 159 22.9 160 13.9
90 160 154 157.5 160 0.2 160 0.1 160 0.2 159 22.8 160 0.2

100 160 155 123.1 160 0.3 160 0.1 160 0.3 160 0.3 160 0.4
Subtot. 1,440 1,420 55.6 1,440 0.1 1,440 0.1 1,440 0.1 1,438 5.2 1,440 1.6

45 20 160 160 0.2 160 0.1 160 0.1 160 0.1 160 0.1 160 0.1
30 160 160 11.0 160 0.8 160 0.4 160 0.7 160 1.0 160 0.5
40 160 160 34.1 160 1.6 160 1.1 160 2.6 160 1.7 160 2.1
50 160 157 113.5 160 6.6 160 2.3 159 24.5 160 17.2 160 5.7
60 160 152 221.5 159 35.2 160 6.9 160 7.9 159 81.6 160 15.7
70 160 150 334.3 158 80.2 160 10.7 160 24.9 158 105.2 159 56.4
80 160 145 491.4 156 146.5 160 22.0 160 32.1 157 157.0 157 142.6
90 160 136 745.1 158 178.9 160 37.2 159 78.9 157 176.0 157 140.7

100 160 132 818.8 148 432.2 158 105.9 156 182.5 148 396.6 151 346.6
Subtot. 1,440 1,352 307.8 1,419 98.0 1,438 20.7 1,434 39.3 1,419 104.1 1,424 78.9

60 20 160 160 1.3 160 0.3 160 0.2 160 0.2 160 0.3 160 0.3
30 160 159 49.5 160 1.9 160 1.9 160 1.9 160 2.2 160 2.0
40 160 149 325.4 160 8.0 160 5.0 160 8.3 160 12.9 160 11.9
50 160 138 657.8 159 53.5 160 25.0 160 45.2 158 70.5 159 64.7
60 160 130 932.1 159 132.8 158 127.6 159 142.9 157 212.4 159 130.8
70 160 102 1,503.0 155 333.3 153 283.7 154 323.7 153 411.9 152 403.6
80 160 79 2,031.4 146 626.3 147 501.5 142 693.6 147 671.5 135 951.9
90 160 64 2,432.1 134 890.4 147 608.5 143 765.3 137 1,018.8 141 996.3

100 160 39 2,898.1 123 1,381.1 139 932.1 136 1,152.7 123 1,456.0 120 1,542.8
Subtot. 1,440 1,020 1,203.4 1,356 380.8 1,384 276.2 1,374 348.2 1,355 428.5 1,346 456.0

75 20 160 160 36.8 160 0.4 160 0.3 160 0.5 160 0.8 160 0.9
30 160 140 598.3 160 4.8 160 3.7 160 4.0 160 5.9 160 5.4
40 160 130 881.6 160 28.3 160 18.8 160 26.0 160 29.4 160 36.1
50 160 93 1,731.2 160 139.2 160 100.4 159 157.5 158 153.5 160 162.9
60 160 83 2,031.8 155 360.1 157 304.6 155 382.2 155 375.6 157 457.1
70 160 50 2,633.9 152 721.9 144 778.8 143 892.4 139 898.9 144 878.2
80 160 36 2,966.8 122 1,473.2 134 1,088.1 125 1,426.8 129 1,364.3 108 1,835.8
90 160 15 3,362.6 111 1,901.0 109 1,857.3 101 2,036.9 111 1,854.2 98 2,099.8

100 160 13 3,399.2 67 2,758.6 78 2,441.8 65 2,712.8 77 2,499.2 57 2,838.7
Subtot. 1,440 720 1,960.2 1,247 820.8 1,262 732.6 1,228 848.8 1,249 798.0 1204 923.9

Total 5,760 4,512 881.8 5,462 325.0 5,524 257.4 5,476 309.1 5,461 333.9 5,414 365.1

Table 2.12: Summary results of our BPC algorithm for the H&W instances



Chapter 2. BPC-based Solution of the OBP 60

Traversal Return Midpoint Largest gap Combined Optimal
Q n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]
6 200 10 2 2,884.8 6 1,648.2 2 2,978.5 4 2,172.0 4 2,513.2 3 2,524.3

300 10 1 3,253.7 2 3,011.2 1 3,250.6 0 3,600.0 1 3,243.9 1 3,257.2
400 10 1 3,259.1 0 3,600.0 0 3,600.0 1 3,265.4 0 3,600.0 0 3,600.0
500 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 1 3,384.2 0 3,600.0
600 10 1 3,581.2 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

9 200 10 0 3,600.0 1 3,344.2 0 3,600.0 0 3,600.0 3 2,675.6 2 2,991.5
12 200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
15 200 10 0 3,600.0 1 3,510.9 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
Total 80 5 3,422.4 10 3,239.3 3 3,478.6 5 3,379.7 9 3,277.1 6 3,346.6

Table 2.13: Summary results of our BPC algorithm for the ZKS instances

Traversal Return Midpoint Largest gap Combined Optimal
Q n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]
60 20 10 10 13.3 10 1.2 10 2.3 10 1.7 10 4.5 10 7.7

30 10 10 330.1 10 99.2 10 38.6 10 60.6 10 215.0 10 444.3
40 10 6 1,590.0 10 139.1 10 81.7 10 169.9 10 294.5 9 745.6
50 10 7 1,791.3 9 535.5 10 850.1 10 557.8 8 1,387.5 8 1,112.2
60 10 4 2,596.3 5 2,358.5 6 1,760.1 6 2,339.4 5 2,389.4 6 2,403.0
70 10 2 3,090.8 7 1,685.2 3 2,823.2 3 3,145.2 5 2,645.1 2 3,220.8
80 10 0 3,600.0 1 3,371.3 2 3,054.8 0 3,600.0 2 3,107.1 0 3,600.0
90 10 1 3,262.8 2 3,063.7 1 3,357.8 0 3,600.0 1 3,317.4 1 3,402.8

100 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
Subtot. 90 40 2,208.3 54 1,650.4 52 1,729.8 49 1,897.2 51 1,884.5 46 2,059.6

72 20 10 10 3.8 10 4.4 10 5.0 10 7.0 10 9.8 10 29.8
30 10 10 368.8 10 74.6 10 226.4 10 249.0 10 195.5 10 1,010.6
40 10 8 841.6 10 980.8 9 509.8 10 717.2 9 901.6 10 487.2
50 10 4 2,728.1 6 1,760.4 8 1,525.1 7 1,798.4 6 1,692.2 8 1,417.6
60 10 6 2,141.7 3 2,863.8 5 2,326.9 2 3,272.1 2 3,074.3 6 2,216.9
70 10 2 2,903.7 2 3,227.4 2 3,187.4 0 3,600.0 3 2,825.8 0 3,600.0
80 10 0 3,600.0 1 3,462.0 1 3,529.1 0 3,600.0 0 3,600.0 0 3,600.0
90 10 1 3,356.4 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

100 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 1 3,316.4 0 3,600.0
Subtot. 90 41 2,171.6 42 2,174.8 45 2,056.6 39 2,271.5 41 2,135.1 44 2,173.6

Total 180 81 2,189.9 96 1,912.6 97 1,893.2 88 2,084.4 92 2,009.8 90 2,116.6

Table 2.14: Summary results of our BPC algorithm for the M&Ö-ext instances
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Traversal Return Midpoint Largest gap Combined Optimal
Q n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]
24 125 10 5 2,259.2 8 1,423.7 6 1,694.5 7 1,557.1 7 1,974.4 7 1,730.9

150 10 4 2,564.5 7 1,845.8 7 2,458.0 7 2,043.3 5 2,624.6 5 2,410.4
175 10 3 2,733.7 1 3,508.7 5 3,076.1 3 3,169.5 3 3,164.7 4 2,671.1
200 10 0 3,600.0 0 3,600.0 1 3,484.8 0 3,600.0 0 3,600.0 0 3,600.0
225 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 1 3,576.3 0 3,600.0

Subtot. 60 12 3,059.6 16 2,929.7 19 2,985.6 17 2,928.3 16 3,090.0 16 2,935.4

36 125 10 0 3,600.0 1 3,489.9 4 2,985.8 1 3,367.5 1 3,518.5 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
175 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
225 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

Subtot. 60 0 3,600.0 1 3,581.6 4 3,497.6 1 3,561.3 1 3,586.4 0 3,600.0

48 125 10 1 3,445.3 0 3,600.0 1 3,561.2 0 3,600.0 0 3,600.0 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
175 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
225 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

Subtot. 60 1 3,574.2 0 3,600.0 1 3,593.5 0 3,600.0 0 3,600.0 0 3,600.0

60 125 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
175 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
225 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

Subtot. 60 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

72 125 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
175 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
225 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

Subtot. 60 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

Total 300 13 3,486.8 17 3,462.3 24 3,455.3 18 3,457.9 17 3,495.3 16 3,467.1

Table 2.15: Summary results of our BPC algorithm for the W&G-g instances
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Traversal Return Midpoint Largest gap Combined Optimal
Q n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]
24 100 10 10 77.8 10 34.0 10 37.8 10 24.5 10 28.5 10 54.0

150 10 7 1,447.1 10 777.8 10 577.4 9 679.2 8 1,538.9 10 1,118.0
200 10 6 2,896.3 9 1,399.0 8 1,908.6 5 2,548.2 6 2,394.1 3 3,150.8
250 10 1 3,391.7 1 3,290.1 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

Subtot. 40 24 1,953.2 30 1,375.2 28 1,531.0 24 1,713.0 24 1,890.4 23 1,980.7

36 100 10 7 2,235.3 6 2,793.7 8 1,737.4 9 1,809.8 5 2,249.7 7 2,174.5
150 10 2 3,006.6 1 3,336.6 0 3,600.0 1 3,380.1 1 3,415.4 0 3,600.0
200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

Subtot. 40 9 3,110.5 7 3,332.6 8 3,134.4 10 3,097.5 6 3,216.3 7 3,243.6

48 100 10 2 3,320.0 3 3,251.1 1 3,538.3 0 3,600.0 1 3,577.4 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

Subtot. 40 2 3,530.0 3 3,512.8 1 3,584.6 0 3,600.0 1 3,594.3 0 3,600.0

60 100 10 1 3,542.6 0 3,600.0 0 3,600.0 0 3,600.0 1 3,423.7 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

Subtot. 40 1 3,585.6 0 3,600.0 0 3,600.0 0 3,600.0 1 3,555.9 0 3,600.0

72 100 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

Subtot. 40 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

Total 200 36 3,155.9 40 3,084.1 37 3,090.0 34 3,122.1 32 3,171.4 30 3,204.9

Table 2.16: Summary results of our BPC algorithm for the W&G-u instances
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 20 10 10 0.2 0.0 1.68 0.25 5 13 12

30 10 10 0.7 0.0 1.81 0.31 12 21 30
40 10 10 8.6 0.0 1.01 0.28 258 18 37
50 10 10 14.8 0.1 1.11 0.44 107 33 41
60 10 10 11.5 0.1 0.82 0.32 95 10 43
70 10 10 37.9 0.2 0.77 0.30 212 32 53
80 10 10 392.4 0.2 0.62 0.31 5,047 17 53
90 10 8 1,097.6 0.3 0.56 0.35 13,403 22 48

100 10 10 493.0 0.4 0.44 0.22 1,977 27 59
Subtotal 90 88 228.5 0.2 0.98 0.31 2,346 21 42

36 20 10 10 2.1 0.0 4.57 0.26 6 29 48
30 10 10 25.4 0.1 2.13 0.60 47 41 70
40 10 10 43.5 0.3 2.17 0.49 54 44 86
50 10 9 649.2 0.6 2.18 0.73 1,129 58 98
60 10 10 805.8 0.9 2.16 0.65 2,457 35 88
70 10 8 1,125.5 1.3 1.54 0.54 2,714 41 101
80 10 5 2,141.7 2.0 1.66 0.54 4,834 50 104
90 10 6 2,295.7 2.5 1.46 0.53 5,530 42 116

100 10 4 2,394.8 3.1 1.20 0.56 6,922 29 110
Subtotal 90 72 1,053.7 1.2 2.12 0.54 2,633 41 91

48 20 10 10 3.6 0.1 6.29 0.14 5 33 60
30 10 10 146.5 0.4 5.00 0.50 50 81 101
40 10 9 612.7 0.9 2.65 0.60 1,297 37 118
50 10 6 2,285.0 2.3 3.06 0.84 2,539 72 112
60 10 6 1,677.9 3.7 1.64 0.70 1,885 22 122
70 10 3 2,951.5 5.2 2.28 0.89 2,344 62 126
80 10 1 3,316.5 7.7 2.02 0.90 4,711 41 123
90 10 1 3,276.8 13.4 2.33 0.82 1,333 85 127

100 10 2 3,039.8 14.0 1.56 0.74 1,590 63 128
Subtotal 90 48 1,923.4 5.3 2.98 0.68 1,750 55 113

Total 270 208 1,068.5 2.2 2.03 0.51 2,243 39 82

Table 2.17: Detailed results of our BPC algorithm for the M&Ö instances and the
traversal strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 20 10 10 0.1 0.0 1.38 0.10 3 6 11

30 10 10 1.1 0.0 1.67 0.30 18 25 30
40 10 10 1.9 0.0 0.87 0.24 24 16 36
50 10 10 13.0 0.1 0.83 0.24 62 32 41
60 10 10 3.0 0.1 0.59 0.16 18 9 41
70 10 10 73.8 0.2 0.68 0.27 305 34 44
80 10 10 128.3 0.3 0.54 0.28 932 14 47
90 10 10 570.1 0.3 0.52 0.29 7,851 10 44

100 10 10 274.8 0.4 0.46 0.25 1,209 27 45
Subtotal 90 90 118.5 0.2 0.84 0.24 1,158 19 38

36 20 10 10 0.6 0.0 3.61 0.11 4 28 38
30 10 10 5.6 0.1 1.69 0.20 9 41 48
40 10 10 30.8 0.3 2.14 0.33 31 45 62
50 10 10 59.3 0.5 1.61 0.36 41 67 76
60 10 10 137.9 0.9 1.85 0.42 166 42 80
70 10 10 791.9 1.3 1.30 0.44 450 65 80
80 10 8 1,829.8 2.0 1.53 0.50 3,322 67 86
90 10 10 1,098.1 2.6 1.22 0.40 2,111 46 76

100 10 5 2,971.8 3.3 1.21 0.55 5,732 53 90
Subtotal 90 83 769.5 1.2 1.79 0.37 1,318 51 71

48 20 10 10 1.2 0.1 5.04 0.00 2 37 25
30 10 10 21.8 0.5 4.04 0.17 6 69 70
40 10 10 32.0 1.2 2.26 0.31 14 49 86
50 10 10 613.0 2.8 2.70 0.51 72 111 106
60 10 10 363.6 4.3 1.47 0.39 60 60 103
70 10 5 2,208.9 6.7 2.02 0.65 354 101 105
80 10 5 2,381.6 11.4 1.93 0.87 1,478 79 109
90 10 1 3,387.3 13.0 2.43 1.00 1,090 112 122

100 10 3 3,140.0 16.7 1.75 0.92 1,000 88 118
Subtotal 90 64 1,349.9 6.3 2.63 0.54 453 78 94

Total 270 237 746.0 2.6 1.75 0.38 976 49 67

Table 2.18: Detailed results of our BPC algorithm for the M&Ö instances and the
return strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 20 10 10 0.0 0.0 0.81 0.04 2 4 3

30 10 10 0.4 0.0 1.08 0.13 6 12 21
40 10 10 1.6 0.0 0.70 0.22 23 9 28
50 10 10 3.0 0.1 0.63 0.21 17 12 33
60 10 10 5.2 0.1 0.70 0.23 31 8 42
70 10 10 17.3 0.2 0.64 0.25 82 14 38
80 10 10 39.2 0.3 0.49 0.25 276 6 43
90 10 10 269.3 0.4 0.49 0.28 2,429 16 42

100 10 9 582.6 0.4 0.47 0.31 5,873 8 42
Subtotal 90 89 102.1 0.2 0.67 0.21 971 10 32

36 20 10 10 0.3 0.0 2.58 0.10 3 15 26
30 10 10 2.5 0.2 1.09 0.13 4 21 41
40 10 10 7.2 0.3 1.62 0.26 16 25 56
50 10 10 27.1 0.8 1.36 0.31 30 34 68
60 10 10 85.1 1.2 1.50 0.43 140 22 68
70 10 10 160.4 1.9 1.09 0.46 254 26 73
80 10 10 989.0 2.8 1.42 0.52 2,111 37 80
90 10 10 1,402.3 3.7 1.19 0.48 3,509 25 86

100 10 8 2,107.6 4.0 0.94 0.50 6,743 16 77
Subtotal 90 88 531.3 1.7 1.42 0.35 1,423 24 64

48 20 10 10 0.5 0.1 4.19 0.01 2 32 30
30 10 10 46.4 0.7 3.41 0.33 13 73 84
40 10 10 57.3 1.7 1.89 0.36 25 44 80
50 10 10 187.0 4.6 2.44 0.51 73 71 100
60 10 10 268.6 6.9 1.46 0.62 272 21 100
70 10 6 2,286.7 12.8 2.00 0.91 1,819 67 104
80 10 7 2,197.2 18.9 1.64 0.78 1,602 38 109
90 10 3 3,160.0 25.6 2.13 1.01 1,385 65 112

100 10 1 3,387.8 31.9 2.11 1.53 2,451 47 106
Subtotal 90 67 1,287.9 11.5 2.36 0.67 849 51 92

Total 270 244 640.4 4.4 1.48 0.41 1,081 28 63

Table 2.19: Detailed results of our BPC algorithm for the M&Ö instances and the
midpoint strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 20 10 10 0.1 0.0 1.16 0.02 2 7 9

30 10 10 0.9 0.0 1.22 0.19 12 14 27
40 10 10 2.3 0.1 0.77 0.19 34 12 28
50 10 10 8.1 0.1 0.74 0.29 51 13 38
60 10 10 12.5 0.2 0.67 0.25 94 6 41
70 10 10 53.3 0.2 0.63 0.26 261 16 42
80 10 10 69.5 0.3 0.49 0.27 487 6 46
90 10 9 457.4 0.4 0.49 0.28 5,550 12 43

100 10 10 186.5 0.5 0.41 0.26 1,114 8 43
Subtotal 90 89 87.8 0.2 0.73 0.22 845 10 35

36 20 10 10 0.2 0.1 2.46 0.00 1 12 14
30 10 10 3.2 0.2 1.22 0.20 6 23 41
40 10 10 14.7 0.4 1.72 0.23 22 30 59
50 10 10 116.2 1.2 1.48 0.42 166 40 70
60 10 10 71.5 1.5 1.49 0.38 167 24 69
70 10 10 373.2 2.5 1.16 0.51 444 27 73
80 10 10 929.4 3.8 1.45 0.50 1,712 40 78
90 10 7 1,941.4 4.4 1.21 0.51 6,519 22 73

100 10 3 2,977.9 5.8 1.23 0.76 6,745 18 78
Subtotal 90 80 714.2 2.2 1.49 0.39 1,754 26 62

48 20 10 10 1.0 0.2 4.16 0.04 2 24 26
30 10 10 35.6 1.1 3.59 0.24 10 65 84
40 10 10 47.8 2.5 1.97 0.32 23 38 80
50 10 10 402.9 7.2 2.52 0.60 187 60 99
60 10 10 589.4 12.4 1.48 0.69 448 26 99
70 10 5 2,254.9 18.9 1.99 0.88 1,162 62 100
80 10 5 3,031.7 31.2 1.60 0.79 2,119 32 101
90 10 3 2,828.2 37.2 2.44 1.28 1,580 67 103

100 10 3 3,004.0 50.5 1.80 1.26 1,290 44 105
Subtotal 90 66 1,355.1 17.9 2.40 0.68 758 46 89

Total 270 235 719.0 6.8 1.54 0.43 1,119 28 62

Table 2.20: Detailed results of our BPC algorithm for the M&Ö instances and the
largest gap strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 20 10 10 0.1 0.0 1.53 0.19 5 8 14

30 10 10 0.4 0.0 1.50 0.11 6 16 18
40 10 10 3.7 0.0 0.93 0.32 38 18 34
50 10 10 9.2 0.1 0.92 0.33 54 25 34
60 10 10 8.3 0.1 0.65 0.29 63 5 38
70 10 10 118.5 0.2 0.73 0.33 1,320 22 40
80 10 10 51.0 0.3 0.56 0.28 229 12 47
90 10 10 406.2 0.4 0.46 0.27 3,806 11 47

100 10 10 376.6 0.4 0.43 0.24 1,208 24 53
Subtotal 90 90 108.2 0.2 0.86 0.26 748 16 36

36 20 10 10 0.4 0.0 3.50 0.06 3 24 28
30 10 10 2.8 0.1 1.53 0.24 8 29 50
40 10 10 26.1 0.3 2.13 0.43 40 46 62
50 10 10 163.2 0.6 1.93 0.51 121 65 78
60 10 10 272.1 0.9 1.95 0.52 510 49 82
70 10 10 737.4 1.4 1.39 0.53 1,499 46 85
80 10 8 1,977.1 2.3 1.66 0.61 4,992 47 87
90 10 9 1,425.8 2.6 1.25 0.45 2,761 38 88

100 10 4 3,150.5 3.3 1.34 0.69 8,890 39 95
Subtotal 90 81 861.7 1.3 1.86 0.45 2,092 43 73

48 20 10 10 1.4 0.1 5.48 0.09 3 34 45
30 10 10 49.1 0.5 4.66 0.40 19 72 100
40 10 10 41.3 1.1 2.29 0.38 32 48 95
50 10 9 1,202.6 2.9 3.14 0.72 315 98 109
60 10 10 539.0 4.1 1.59 0.57 311 48 112
70 10 7 1,746.4 6.7 2.03 0.64 518 82 115
80 10 7 2,345.8 9.1 1.78 0.68 3,816 48 118
90 10 0 3,600.0 12.0 2.62 1.17 2,247 91 120

100 10 0 3,600.0 15.2 1.96 1.21 2,587 55 125
Subtotal 90 63 1,458.4 5.8 2.84 0.65 1,094 64 104

Total 270 234 809.4 2.4 1.85 0.45 1,311 41 71

Table 2.21: Detailed results of our BPC algorithm for the M&Ö instances and the
combined strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 20 10 10 0.1 0.0 1.36 0.15 3 8 14

30 10 10 0.7 0.0 1.53 0.20 9 15 25
40 10 10 2.2 0.1 0.89 0.27 22 14 37
50 10 10 6.3 0.2 0.75 0.23 38 18 36
60 10 10 7.1 0.2 0.59 0.24 42 7 36
70 10 10 59.3 0.3 0.69 0.26 342 20 44
80 10 10 40.5 0.5 0.51 0.23 163 10 45
90 10 9 557.6 0.6 0.49 0.29 6,205 7 46

100 10 9 508.3 0.7 0.41 0.23 2,803 13 41
Subtotal 90 88 131.3 0.3 0.80 0.23 1,070 12 36

36 20 10 10 0.4 0.1 3.30 0.05 2 24 22
30 10 10 6.5 0.3 1.48 0.20 8 38 50
40 10 10 29.7 0.7 2.04 0.37 30 47 64
50 10 10 59.9 1.4 1.61 0.42 74 38 69
60 10 10 156.3 1.9 1.76 0.44 199 38 76
70 10 10 359.3 2.9 1.35 0.47 443 43 82
80 10 8 1,755.7 4.8 1.56 0.51 4,018 46 76
90 10 7 1,969.3 5.3 1.31 0.49 4,764 34 84

100 10 4 2,881.0 6.8 1.26 0.65 5,905 30 94
Subtotal 90 79 802.0 2.7 1.74 0.40 1,716 38 69

48 20 10 10 0.9 0.2 4.89 0.01 2 34 22
30 10 10 96.5 1.4 4.31 0.31 11 83 87
40 10 10 134.2 3.4 2.45 0.45 38 55 95
50 10 9 1,030.0 7.2 3.07 0.73 228 96 110
60 10 10 560.2 10.3 1.50 0.55 283 43 100
70 10 7 1,887.1 17.7 2.16 0.79 466 83 114
80 10 7 2,471.7 27.7 1.67 0.58 1,498 54 123
90 10 1 3,574.5 38.3 2.51 1.18 1,091 84 118

100 10 1 3,305.2 43.5 2.07 1.35 1,401 67 121
Subtotal 90 65 1,451.2 16.6 2.74 0.66 558 67 99

Total 270 232 794.8 6.5 1.76 0.43 1,114 39 68

Table 2.22: Detailed results of our BPC algorithm for the M&Ö instances and the
optimal strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
30 20 160 160 0.0 0.0 0.71 0.04 3 1 0

30 160 160 0.0 0.0 0.42 0.04 5 2 1
40 160 160 0.1 0.0 0.30 0.04 14 6 1
50 160 160 0.1 0.0 0.28 0.02 7 4 1
60 160 158 45.2 0.0 0.27 0.03 966 8 1
70 160 158 45.2 0.0 0.21 0.03 387 10 2
80 160 155 129.2 0.0 0.20 0.03 1,295 12 2
90 160 154 157.5 0.0 0.16 0.02 1,230 10 1

100 160 155 123.1 0.0 0.17 0.02 888 16 2
Subtotal 1,440 1,420 55.6 0.0 0.30 0.03 533 8 1

45 20 160 160 0.2 0.0 1.15 0.28 13 8 10
30 160 160 11.0 0.0 0.73 0.29 933 9 15
40 160 160 34.1 0.0 0.61 0.24 1,845 14 19
50 160 157 113.5 0.0 0.58 0.26 5,001 22 26
60 160 152 221.5 0.1 0.47 0.23 7,458 21 29
70 160 150 334.3 0.1 0.43 0.21 10,293 25 31
80 160 145 491.4 0.2 0.41 0.20 10,162 27 36
90 160 136 745.1 0.2 0.38 0.19 13,483 33 38

100 160 132 818.8 0.3 0.36 0.19 14,740 30 41
Subtotal 1,440 1,352 307.8 0.1 0.57 0.23 7,103 21 27

60 20 160 160 1.3 0.0 2.03 0.35 71 15 25
30 160 159 49.5 0.0 1.33 0.36 2,911 12 31
40 160 149 325.4 0.1 1.05 0.39 11,555 16 43
50 160 138 657.8 0.2 0.88 0.36 21,302 15 50
60 160 130 932.1 0.3 0.80 0.34 21,348 21 55
70 160 102 1,503.0 0.4 0.73 0.34 29,825 24 60
80 160 79 2,031.4 0.6 0.66 0.32 33,341 26 68
90 160 64 2,432.1 0.9 0.61 0.31 33,915 25 75

100 160 39 2,898.1 1.2 0.59 0.29 30,792 32 81
Subtotal 1,440 1,020 1,203.4 0.4 0.96 0.34 20,562 21 54

75 20 160 160 36.8 0.0 2.30 0.29 1,512 18 45
30 160 140 598.3 0.1 1.79 0.39 16,026 17 53
40 160 130 881.6 0.2 1.55 0.38 19,846 21 67
50 160 93 1,731.2 0.4 1.41 0.42 27,441 27 72
60 160 83 2,031.8 0.7 1.12 0.40 26,043 26 83
70 160 50 2,633.9 1.1 0.99 0.36 28,428 30 93
80 160 36 2,966.8 1.5 0.87 0.35 27,565 35 96
90 160 15 3,362.6 2.2 0.86 0.36 24,390 39 105

100 160 13 3,399.2 2.8 0.75 0.33 22,555 39 108
Subtotal 1,440 720 1,960.2 1.0 1.29 0.36 21,534 28 80

Total 5,760 4,512 881.8 0.4 0.78 0.24 12,433 19 41

Table 2.23: Detailed results of our BPC algorithm for the H&W instances and the
traversal strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
30 20 160 160 0.0 0.0 0.50 0.02 2 1 0

30 160 160 0.0 0.0 0.27 0.01 3 1 1
40 160 160 0.1 0.0 0.23 0.03 9 3 1
50 160 160 0.0 0.0 0.19 0.01 3 2 1
60 160 160 0.1 0.0 0.17 0.01 5 3 1
70 160 160 0.2 0.0 0.13 0.01 7 4 1
80 160 160 0.2 0.0 0.12 0.01 17 3 1
90 160 160 0.2 0.0 0.10 0.01 10 3 2

100 160 160 0.3 0.0 0.11 0.01 7 4 2
Subtotal 1,440 1,440 0.1 0.0 0.20 0.01 7 3 1

45 20 160 160 0.1 0.0 0.90 0.15 8 7 7
30 160 160 0.8 0.0 0.62 0.19 64 9 14
40 160 160 1.6 0.0 0.50 0.19 61 10 16
50 160 160 6.6 0.0 0.50 0.21 262 16 20
60 160 159 35.2 0.1 0.39 0.19 1,294 12 24
70 160 158 80.2 0.1 0.37 0.18 2,553 17 25
80 160 156 146.5 0.1 0.33 0.17 3,636 15 27
90 160 158 178.9 0.2 0.30 0.16 3,526 15 28

100 160 148 432.2 0.2 0.31 0.17 8,045 12 32
Subtotal 1,440 1,419 98.0 0.1 0.47 0.18 2,161 13 21

60 20 160 160 0.3 0.0 1.70 0.18 8 17 19
30 160 160 1.9 0.0 1.14 0.26 72 19 28
40 160 160 8.0 0.1 0.89 0.28 106 20 34
50 160 159 53.5 0.2 0.77 0.31 1,209 21 40
60 160 159 132.8 0.3 0.70 0.31 2,314 27 43
70 160 155 333.3 0.4 0.65 0.30 5,415 26 45
80 160 146 626.3 0.6 0.61 0.31 7,452 24 48
90 160 134 890.4 0.8 0.54 0.30 8,265 23 53

100 160 123 1,381.1 1.0 0.56 0.33 10,414 27 54
Subtotal 1,440 1,356 380.8 0.4 0.84 0.29 3,917 23 40

75 20 160 160 0.4 0.0 2.11 0.09 4 21 24
30 160 160 4.8 0.1 1.68 0.26 22 27 45
40 160 160 28.3 0.3 1.45 0.34 102 33 53
50 160 160 139.2 0.5 1.31 0.37 992 38 56
60 160 155 360.1 0.8 1.07 0.38 2,263 39 59
70 160 152 721.9 1.3 0.95 0.38 3,866 37 65
80 160 122 1,473.2 1.9 0.94 0.43 5,625 44 70
90 160 111 1,901.0 2.7 0.91 0.46 6,157 42 71

100 160 67 2,758.6 3.3 0.99 0.59 9,209 42 77
Subtotal 1,440 1,247 820.8 1.2 1.26 0.37 3,138 36 58

Total 5,760 5,462 325.0 0.4 0.69 0.21 2,306 18 30

Table 2.24: Detailed results of our BPC algorithm for the H&W instances and the
return strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
30 20 160 160 0.0 0.0 0.48 0.03 3 1 0

30 160 160 0.0 0.0 0.26 0.01 2 1 0
40 160 160 0.0 0.0 0.20 0.01 2 1 1
50 160 160 0.0 0.0 0.16 0.01 2 1 0
60 160 160 0.1 0.0 0.16 0.01 3 2 1
70 160 160 0.1 0.0 0.12 0.01 3 2 1
80 160 160 0.1 0.0 0.11 0.01 5 3 1
90 160 160 0.1 0.0 0.09 0.00 3 2 1

100 160 160 0.1 0.0 0.08 0.00 3 3 1
Subtotal 1,440 1,440 0.1 0.0 0.18 0.01 3 2 1

45 20 160 160 0.1 0.0 0.69 0.12 5 5 6
30 160 160 0.4 0.0 0.49 0.15 17 6 11
40 160 160 1.1 0.0 0.40 0.15 45 6 16
50 160 160 2.3 0.0 0.40 0.15 72 8 19
60 160 160 6.9 0.1 0.33 0.16 227 6 21
70 160 160 10.7 0.1 0.32 0.16 218 5 23
80 160 160 22.0 0.2 0.30 0.15 332 7 27
90 160 160 37.2 0.2 0.30 0.15 529 6 27

100 160 158 105.9 0.3 0.29 0.16 1,683 5 30
Subtotal 1,440 1,438 20.7 0.1 0.39 0.15 347 6 20

60 20 160 160 0.2 0.0 1.08 0.11 4 13 15
30 160 160 1.9 0.0 0.88 0.25 43 12 26
40 160 160 5.0 0.1 0.72 0.30 57 13 31
50 160 160 25.0 0.2 0.63 0.30 586 12 36
60 160 158 127.6 0.3 0.63 0.34 2,784 16 40
70 160 153 283.7 0.5 0.58 0.33 5,145 13 40
80 160 147 501.5 0.6 0.54 0.32 6,486 12 42
90 160 147 608.5 0.9 0.50 0.31 5,916 14 46

100 160 139 932.1 1.2 0.49 0.32 7,246 11 48
Subtotal 1,440 1,384 276.2 0.4 0.67 0.29 3,141 13 36

75 20 160 160 0.3 0.0 1.48 0.08 3 18 21
30 160 160 3.7 0.1 1.32 0.24 23 20 39
40 160 160 18.8 0.3 1.17 0.34 128 26 47
50 160 160 100.4 0.6 1.09 0.43 684 30 50
60 160 157 304.6 0.9 0.94 0.44 2,179 27 56
70 160 144 778.8 1.5 0.86 0.47 5,038 24 57
80 160 134 1,088.1 2.2 0.78 0.45 4,933 29 59
90 160 109 1,857.3 3.1 0.84 0.52 7,098 28 62

100 160 78 2,441.8 4.0 0.90 0.61 8,481 27 66
Subtotal 1,440 1,262 732.6 1.4 1.04 0.40 3,174 25 51

Total 5,760 5,524 257.4 0.5 0.57 0.21 1,666 11 27

Table 2.25: Detailed results of our BPC algorithm for the H&W instances and the
midpoint strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
30 20 160 160 0.0 0.0 0.49 0.01 2 1 0

30 160 160 0.0 0.0 0.26 0.00 2 1 0
40 160 160 0.0 0.0 0.22 0.01 2 1 1
50 160 160 0.0 0.0 0.19 0.01 3 2 0
60 160 160 0.1 0.0 0.18 0.01 4 2 1
70 160 160 0.1 0.0 0.12 0.01 3 2 1
80 160 160 0.2 0.0 0.12 0.01 28 2 1
90 160 160 0.2 0.0 0.11 0.01 6 3 1

100 160 160 0.3 0.0 0.11 0.01 12 3 1
Subtotal 1,440 1,440 0.1 0.0 0.20 0.01 7 2 1

45 20 160 160 0.1 0.0 0.71 0.12 6 6 7
30 160 160 0.7 0.0 0.50 0.17 55 6 12
40 160 160 2.6 0.0 0.40 0.14 214 8 16
50 160 159 24.5 0.1 0.37 0.15 1,097 8 19
60 160 160 7.9 0.1 0.31 0.14 220 7 21
70 160 160 24.9 0.1 0.29 0.15 779 8 24
80 160 160 32.1 0.2 0.28 0.15 635 7 26
90 160 159 78.9 0.2 0.28 0.14 1,488 7 27

100 160 156 182.5 0.3 0.27 0.15 3,177 6 30
Subtotal 1,440 1,434 39.3 0.1 0.38 0.15 852 7 20

60 20 160 160 0.2 0.0 1.15 0.13 5 13 16
30 160 160 1.9 0.1 0.90 0.29 43 12 25
40 160 160 8.3 0.1 0.75 0.30 132 14 32
50 160 160 45.2 0.2 0.63 0.30 1,021 12 35
60 160 159 142.9 0.4 0.60 0.32 2,380 15 39
70 160 154 323.7 0.6 0.55 0.31 4,587 13 40
80 160 142 693.6 0.9 0.53 0.32 7,339 15 41
90 160 143 765.3 1.2 0.48 0.30 6,327 13 47

100 160 136 1,152.7 1.5 0.48 0.32 7,115 12 47
Subtotal 1,440 1,374 348.2 0.6 0.67 0.29 3,217 13 36

75 20 160 160 0.5 0.0 1.56 0.11 4 18 23
30 160 160 4.0 0.2 1.31 0.26 22 19 40
40 160 160 26.0 0.4 1.19 0.37 165 25 46
50 160 159 157.5 0.8 1.10 0.42 1,008 28 49
60 160 155 382.2 1.4 0.91 0.42 2,170 26 53
70 160 143 892.4 2.4 0.86 0.46 4,194 27 56
80 160 125 1,426.8 3.0 0.79 0.47 5,623 29 57
90 160 101 2,036.9 4.7 0.87 0.55 5,710 27 60

100 160 65 2,712.8 6.1 0.88 0.60 6,904 30 64
Subtotal 1,440 1,228 848.8 2.1 1.05 0.41 2,867 25 50

Total 5,760 5,476 309.1 0.7 0.58 0.21 1,736 12 27

Table 2.26: Detailed results of our BPC algorithm for the H&W instances and the
largest gap strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
30 20 160 160 0.0 0.0 0.57 0.02 2 0 0

30 160 160 0.0 0.0 0.34 0.02 2 2 0
40 160 160 0.0 0.0 0.24 0.02 5 2 1
50 160 160 0.0 0.0 0.23 0.01 2 3 1
60 160 160 0.1 0.0 0.21 0.01 10 4 1
70 160 160 0.2 0.0 0.17 0.01 24 4 1
80 160 159 22.9 0.0 0.16 0.01 123 5 1
90 160 159 22.8 0.0 0.14 0.01 35 5 1

100 160 160 0.3 0.0 0.14 0.01 14 5 1
Subtotal 1,440 1,438 5.2 0.0 0.24 0.02 24 3 1

45 20 160 160 0.1 0.0 0.93 0.20 18 7 8
30 160 160 1.0 0.0 0.60 0.22 77 7 12
40 160 160 1.7 0.0 0.52 0.19 58 10 18
50 160 160 17.2 0.1 0.49 0.23 933 12 21
60 160 159 81.6 0.1 0.40 0.20 3,769 13 24
70 160 158 105.2 0.1 0.35 0.19 3,345 14 24
80 160 157 157.0 0.2 0.35 0.19 3,995 13 29
90 160 157 176.0 0.2 0.31 0.17 3,176 17 29

100 160 148 396.6 0.3 0.30 0.17 7,161 10 31
Subtotal 1,440 1,419 104.1 0.1 0.47 0.20 2,504 12 22

60 20 160 160 0.3 0.0 1.76 0.17 7 16 20
30 160 160 2.2 0.1 1.22 0.30 68 17 29
40 160 160 12.9 0.1 0.98 0.32 200 22 36
50 160 158 70.5 0.2 0.76 0.29 1,958 20 40
60 160 157 212.4 0.4 0.73 0.32 4,234 24 44
70 160 153 411.9 0.5 0.66 0.30 6,443 28 48
80 160 147 671.5 0.7 0.61 0.29 6,860 27 51
90 160 137 1,018.8 1.0 0.56 0.31 9,098 23 57

100 160 123 1,456.0 1.3 0.53 0.30 10,721 27 58
Subtotal 1,440 1,355 428.5 0.5 0.87 0.29 4,399 23 43

75 20 160 160 0.8 0.0 2.23 0.15 8 21 31
30 160 160 5.9 0.2 1.73 0.29 34 23 47
40 160 160 29.4 0.3 1.43 0.34 99 30 55
50 160 158 153.5 0.6 1.34 0.35 980 35 61
60 160 155 375.6 1.0 1.09 0.37 2,474 38 65
70 160 139 898.9 1.7 0.96 0.37 5,198 36 74
80 160 129 1,364.3 2.4 0.88 0.35 5,179 45 79
90 160 111 1,854.2 3.0 0.83 0.36 6,282 44 82

100 160 77 2,499.2 4.3 0.85 0.43 7,245 42 89
Subtotal 1,440 1,249 798.0 1.5 1.26 0.34 3,055 35 65

Total 5,760 5,461 333.9 0.5 0.71 0.21 2,495 18 32

Table 2.27: Detailed results of our BPC algorithm for the H&W instances and the
combined strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
30 20 160 160 0.0 0.0 0.55 0.02 2 1 0

30 160 160 0.0 0.0 0.28 0.00 2 1 0
40 160 160 0.0 0.0 0.22 0.01 4 2 1
50 160 160 0.0 0.0 0.20 0.00 2 1 0
60 160 160 0.1 0.0 0.19 0.01 3 3 1
70 160 160 0.1 0.0 0.14 0.01 9 2 1
80 160 160 13.9 0.0 0.14 0.01 360 3 1
90 160 160 0.2 0.0 0.13 0.01 5 3 1

100 160 160 0.4 0.0 0.12 0.01 17 3 1
Subtotal 1,440 1,440 1.6 0.0 0.22 0.01 45 2 1

45 20 160 160 0.1 0.0 0.79 0.16 9 7 7
30 160 160 0.5 0.0 0.51 0.17 25 8 13
40 160 160 2.1 0.0 0.43 0.15 82 10 17
50 160 160 5.7 0.1 0.41 0.18 204 13 20
60 160 160 15.7 0.1 0.34 0.18 393 10 23
70 160 159 56.4 0.2 0.31 0.16 1,487 11 24
80 160 157 142.6 0.2 0.29 0.16 3,175 10 26
90 160 157 140.7 0.3 0.28 0.15 2,121 12 27

100 160 151 346.6 0.4 0.27 0.16 5,071 9 31
Subtotal 1,440 1,424 78.9 0.2 0.40 0.16 1,396 10 21

60 20 160 160 0.3 0.0 1.48 0.15 6 17 20
30 160 160 2.0 0.1 1.03 0.26 36 17 28
40 160 160 11.9 0.2 0.84 0.31 174 22 34
50 160 159 64.7 0.3 0.69 0.30 1,164 19 38
60 160 159 130.8 0.5 0.66 0.31 1,272 23 44
70 160 152 403.6 0.7 0.60 0.31 4,359 26 44
80 160 135 951.9 1.0 0.58 0.32 8,010 23 48
90 160 141 996.3 1.4 0.51 0.31 5,375 22 51

100 160 120 1,542.8 1.8 0.51 0.31 7,930 24 55
Subtotal 1440 1346 456.0 0.7 0.77 0.29 3,147 22 40

75 20 160 160 0.9 0.1 1.98 0.12 5 25 26
30 160 160 5.4 0.2 1.56 0.25 21 28 41
40 160 160 36.1 0.5 1.35 0.35 100 36 53
50 160 160 162.9 0.9 1.22 0.38 798 36 54
60 160 157 457.1 1.5 1.03 0.39 1,759 40 60
70 160 144 878.2 2.3 0.91 0.40 3,246 38 64
80 160 108 1,835.8 3.2 0.88 0.43 5,349 47 69
90 160 98 2,099.8 4.5 0.88 0.48 5,230 43 71

100 160 57 2,838.7 5.7 0.95 0.59 6,614 44 77
Subtotal 1,440 1,204 923.9 2.1 1.19 0.38 2,569 37 57

Total 5,760 5,414 365.1 0.7 0.65 0.21 1,789 18 30

Table 2.28: Detailed results of our BPC algorithm for the H&W instances and the
optimal strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
6 200 10 2 2,884.8 0.1 0.18 0.06 19,134 128 76

300 10 1 3,253.7 0.3 0.13 0.03 9,538 147 77
400 10 1 3,259.1 0.6 0.15 0.03 6,987 140 101
500 10 0 3,600.0 1.3 0.16 0.03 3,615 152 123
600 10 1 3,581.2 1.9 0.15 0.02 1,088 151 128

9 200 10 0 3,600.0 0.6 0.38 0.18 3,905 140 121
12 200 10 0 3,600.0 3.9 0.80 0.55 8,663 39 128
15 200 10 0 3,600.0 11.9 1.54 1.09 3,531 61 128
Total 80 5 3,422.4 2.6 0.44 0.25 7,058 120 110

Table 2.29: Detailed results of our BPC algorithm for the ZKS instances and the
traversal strategy

Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
6 200 10 6 1,648.2 0.1 0.24 0.07 10,474 92 63

300 10 2 3,011.2 0.3 0.15 0.04 11,391 133 82
400 10 0 3,600.0 0.7 0.15 0.05 4,407 155 120
500 10 0 3,600.0 1.2 0.13 0.05 2,706 150 128
600 10 0 3,600.0 1.9 0.13 0.04 1,080 138 128

9 200 10 1 3,344.2 0.5 0.41 0.15 4,235 92 123
12 200 10 0 3,600.0 1.6 0.60 0.34 3,552 35 128
15 200 10 1 3,510.9 5.8 0.82 0.49 1,862 20 128
Total 80 10 3,239.3 1.5 0.33 0.15 4,963 102 112

Table 2.30: Detailed results of our BPC algorithm for the ZKS instances and the
return strategy

Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
6 200 10 2 2,978.5 0.1 0.18 0.06 29,924 111 71

300 10 1 3,250.6 0.4 0.16 0.03 19,045 147 76
400 10 0 3,600.0 0.8 0.16 0.04 10,661 147 112
500 10 0 3,600.0 1.6 0.16 0.04 3,335 160 127
600 10 0 3,600.0 2.5 0.16 0.04 1,597 160 128

9 200 10 0 3,600.0 0.9 0.38 0.20 5,817 128 128
12 200 10 0 3,600.0 3.8 0.55 0.31 6,797 41 128
15 200 10 0 3,600.0 13.2 1.46 1.05 2,573 64 128
Total 80 3 3,478.6 2.9 0.40 0.22 9,969 120 112

Table 2.31: Detailed results of our BPC algorithm for the ZKS instances and the
midpoint strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
6 200 10 4 2,172.0 0.2 0.19 0.06 20,578 110 80

300 10 0 3,600.0 0.3 0.17 0.04 21,082 160 77
400 10 1 3,265.4 0.9 0.16 0.04 5,841 147 113
500 10 0 3,600.0 1.6 0.17 0.04 3,282 160 128
600 10 0 3,600.0 2.5 0.15 0.04 1,402 160 128

9 200 10 0 3,600.0 0.8 0.35 0.18 7,359 128 128
12 200 10 0 3,600.0 4.2 0.55 0.30 8,070 37 128
15 200 10 0 3,600.0 14.2 1.47 1.06 2,533 76 128
Total 80 5 3,379.7 3.1 0.40 0.22 8,768 122 114

Table 2.32: Detailed results of our BPC algorithm for the ZKS instances and the
largest gap strategy

Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
6 200 10 4 2,513.2 0.2 0.16 0.07 15,785 116 57

300 10 1 3,243.9 0.4 0.15 0.04 17,634 120 71
400 10 0 3,600.0 0.8 0.13 0.03 8,213 146 112
500 10 1 3,384.2 1.4 0.12 0.03 3,880 158 120
600 10 0 3,600.0 2.3 0.12 0.04 1,155 159 128

9 200 10 3 2,675.6 0.8 0.40 0.16 8,015 75 117
12 200 10 0 3,600.0 3.0 0.50 0.29 6,920 37 128
15 200 10 0 3,600.0 9.9 1.15 0.83 3,238 33 128
Total 80 9 3,277.1 2.4 0.34 0.19 8,105 106 108

Table 2.33: Detailed results of our BPC algorithm for the ZKS instances and the
combined strategy

Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
6 200 10 3 2,524.3 0.2 0.20 0.08 17,991 105 58

300 10 1 3,257.2 0.5 0.16 0.05 20,512 129 80
400 10 0 3,600.0 0.9 0.13 0.04 11,327 146 118
500 10 0 3,600.0 1.8 0.10 0.04 3,772 147 120
600 10 0 3,600.0 2.7 0.12 0.04 1,568 155 128

9 200 10 2 2,991.5 1.1 0.34 0.12 4,529 108 116
12 200 10 0 3,600.0 4.9 0.52 0.33 5,249 37 128
15 200 10 0 3,600.0 18.5 1.19 0.89 2,203 39 128
Total 80 6 3,346.6 3.8 0.35 0.20 8,394 108 109

Table 2.34: Detailed results of our BPC algorithm for the ZKS instances and the
optimal strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
60 20 10 10 13.3 0.1 6.16 0.06 4 41 48

30 10 10 330.1 0.9 3.35 0.34 144 60 85
40 10 6 1,590.0 2.0 3.20 0.41 298 75 126
50 10 7 1,791.3 4.8 4.40 0.84 827 64 128
60 10 4 2,596.3 9.6 3.98 0.94 999 71 124
70 10 2 3,090.8 15.7 2.15 0.75 1,266 72 128
80 10 0 3,600.0 26.2 2.39 0.97 1,203 56 128
90 10 1 3,262.8 36.7 2.35 0.68 1,126 44 128

100 10 0 3,600.0 48.0 2.24 0.88 683 73 128
Subtotal 90 40 2,208.3 16.0 3.36 0.65 728 62 114

72 20 10 10 3.8 0.2 7.55 0.02 3 60 23
30 10 10 368.8 1.3 8.97 0.48 25 108 126
40 10 8 841.6 3.8 6.59 0.48 47 86 116
50 10 4 2,728.1 13.6 5.92 224 100 93
60 10 6 2,141.7 24.9 4.58 0.63 234 83 128
70 10 2 2,903.7 42.8 3.00 275 89 120
80 10 0 3,600.0 60.1 3.61 0.91 386 91 128
90 10 1 3,356.4 84.4 3.03 0.84 226 114 128

100 10 0 3,600.0 104.4 1.99 0.51 344 69 128
Subtotal 90 41 2,171.6 37.3 5.03 196 89 110

Total 180 81 2,189.9 26.6 4.19 462 75 112

Table 2.35: Detailed results of our BPC algorithm for the M&Ö-ext instances and
the traversal strategy



Chapter 2. BPC-based Solution of the OBP 78

Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
60 20 10 10 1.2 0.2 4.34 0.00 2 29 5

30 10 10 99.2 1.5 3.15 0.06 4 83 86
40 10 10 139.1 4.6 2.67 0.24 13 66 102
50 10 9 535.5 11.2 3.33 0.36 29 83 121
60 10 5 2,358.5 23.2 3.85 0.66 121 130 124
70 10 7 1,685.2 32.5 1.93 0.57 133 102 124
80 10 1 3,371.3 62.0 2.64 1.25 457 114 127
90 10 2 3,063.7 76.6 2.33 0.82 730 73 127

100 10 0 3,600.0 95.2 2.58 1.25 428 114 128
Subtotal 90 54 1,650.4 34.1 2.98 0.58 213 88 105

72 20 10 10 4.4 0.4 7.30 0.00 2 81 14
30 10 10 74.6 4.2 7.75 0.06 3 121 72
40 10 10 980.8 17.2 6.01 0.31 32 117 97
50 10 6 1,760.4 62.7 4.45 0.56 60 133 128
60 10 3 2,863.8 131.0 4.86 135 127 128
70 10 2 3,227.4 169.6 3.20 1.14 142 130 128
80 10 1 3,462.0 321.3 4.21 1.56 166 131 128
90 10 0 3,600.0 496.7 4.50 2.29 89 146 128

100 10 0 3,600.0 545.9 4.63 2.87 115 132 128
Subtotal 90 42 2,174.8 194.3 5.21 83 124 106

Total 180 96 1,912.6 114.2 4.10 148 106 105

Table 2.36: Detailed results of our BPC algorithm for the M&Ö-ext instances and
the return strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
60 20 10 10 2.3 0.3 3.96 0.00 2 35 24

30 10 10 38.6 2.5 2.02 0.07 5 62 60
40 10 10 81.7 8.8 2.36 0.30 18 52 102
50 10 10 850.1 26.8 3.32 0.58 65 72 114
60 10 6 1,760.1 49.7 3.47 0.84 207 91 119
70 10 3 2,823.2 87.0 2.15 0.90 472 80 117
80 10 2 3,054.8 146.5 2.42 1.27 472 68 123
90 10 1 3,357.8 196.5 2.53 1.15 658 58 120

100 10 0 3,600.0 227.6 2.69 1.63 405 101 123
Subtotal 90 52 1,729.8 82.8 2.77 0.75 256 69 100

72 20 10 10 5.0 0.6 6.02 0.00 2 63 15
30 10 10 226.4 8.5 6.34 0.16 7 110 87
40 10 9 509.8 34.0 4.67 0.25 23 93 104
50 10 8 1,525.1 169.4 4.00 0.50 42 123 127
60 10 5 2,326.9 332.7 4.67 1.39 90 120 124
70 10 2 3,187.4 539.2 3.39 84 115 117
80 10 1 3,529.1 1,050.3 4.95 2.53 87 114 128
90 10 0 3,600.0 1,395.7 4.73 2.74 47 143 128

100 10 0 3,600.0 1,656.8 71 114 114
Subtotal 90 45 2,056.6 576.4 50 110 105

Total 180 97 1,893.2 329.6 153 90 103

Table 2.37: Detailed results of our BPC algorithm for the M&Ö-ext instances and
the midpoint strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
60 20 10 10 1.7 0.4 4.08 0.00 2 23 23

30 10 10 60.6 4.4 2.15 0.12 4 49 73
40 10 10 169.9 16.1 2.55 0.37 19 50 113
50 10 10 557.8 49.8 3.43 0.66 98 62 110
60 10 6 2,339.4 87.4 3.62 0.94 360 98 112
70 10 3 3,145.2 148.0 2.35 457 88 110
80 10 0 3,600.0 319.2 2.57 1.38 368 64 117
90 10 0 3,600.0 314.9 2.75 1.42 694 54 112

100 10 0 3,600.0 392.3 2.57 1.48 361 95 120
Subtotal 90 49 1,897.2 148.0 2.90 263 65 99

72 20 10 10 7.0 0.8 6.04 0.00 2 69 11
30 10 10 249.0 18.7 6.48 0.11 9 100 66
40 10 10 717.2 60.4 4.59 0.27 16 90 91
50 10 7 1,798.4 300.1 4.38 63 113 116
60 10 2 3,272.1 723.2 4.79 148 105 111
70 10 0 3,600.0 1,109.0 3.92 103 106 103
80 10 0 3,600.0 2,192.1 44 95 93
90 10 0 3,600.0 2,614.2 8 118 69

100 10 0 3,600.0 2,880.7 18 74 62
Subtotal 90 39 2,271.5 1,099.9 46 97 80

Total 180 88 2,084.4 624.0 154 81 90

Table 2.38: Detailed results of our BPC algorithm for the M&Ö-ext instances and
the largest gap strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
60 20 10 10 4.5 0.2 5.77 0.02 2 43 33

30 10 10 215.0 1.6 3.58 0.27 9 75 122
40 10 10 294.5 3.9 3.09 0.33 25 72 122
50 10 8 1,387.5 9.7 4.00 0.63 152 82 122
60 10 5 2,389.4 17.3 3.99 0.60 360 112 125
70 10 5 2,645.1 27.3 2.33 0.75 560 109 128
80 10 2 3,107.1 42.3 2.33 0.82 623 98 126
90 10 1 3,317.4 52.3 2.51 0.95 1205 60 125

100 10 0 3,600.0 66.7 2.33 0.95 563 110 128
Subtotal 90 51 1,884.5 24.6 3.33 0.59 389 84 114

72 20 10 10 9.8 0.4 7.60 0.00 2 71 34
30 10 10 195.5 4.2 8.45 0.18 7 109 71
40 10 9 901.6 10.9 6.52 0.39 48 123 104
50 10 6 1,692.2 39.7 4.51 0.56 144 106 128
60 10 2 3,074.3 78.3 4.80 0.78 220 116 128
70 10 3 2,825.8 118.0 3.14 0.92 116 119 128
80 10 0 3,600.0 190.8 3.95 0.92 221 119 128
90 10 0 3,600.0 234.9 4.60 2.22 120 146 128

100 10 1 3,316.4 280.2 3.08 1.37 149 114 128
Subtotal 90 41 2,135.1 106.4 5.18 0.82 114 114 109

Total 180 92 2,009.8 65.5 4.25 0.70 252 99 112

Table 2.39: Detailed results of our BPC algorithm for the M&Ö-ext instances and
the combined strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
60 20 10 10 7.7 0.5 5.44 0.00 2 44 24

30 10 10 444.3 4.0 3.35 0.29 10 78 116
40 10 9 745.6 12.1 3.14 0.57 80 68 110
50 10 8 1,112.2 32.3 3.67 0.53 68 82 108
60 10 6 2,403.0 61.0 3.85 0.67 244 110 121
70 10 2 3,220.8 79.6 2.44 522 103 123
80 10 0 3,600.0 155.5 2.58 1.15 464 95 124
90 10 1 3,402.8 154.1 2.44 0.98 721 66 127

100 10 0 3,600.0 215.7 2.44 1.09 311 120 128
Subtotal 90 46 2,059.6 79.4 3.26 269 85 109

72 20 10 10 29.8 1.1 7.90 0.00 2 95 42
30 10 10 1,010.6 13.8 8.16 0.34 42 127 84
40 10 10 487.2 38.7 5.81 0.26 15 116 127
50 10 8 1,417.6 154.9 4.31 0.50 54 112 126
60 10 6 2,216.9 306.0 4.59 60 117 115
70 10 0 3,600.0 377.1 3.67 148 122 94
80 10 0 3,600.0 734.3 4.50 124 125 116
90 10 0 3,600.0 883.5 5.06 59 146 112

100 10 0 3,600.0 1,070.4 5.25 91 112 115
Subtotal 90 44 2,173.6 397.7 5.47 66 119 104

Total 180 90 2,116.6 238.6 4.37 168 102 106

Table 2.40: Detailed results of our BPC algorithm for the M&Ö-ext instances and
the optimal strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 125 10 5 2,259.2 0.7 0.57 0.30 19,047 20 71

150 10 4 2,564.5 1.1 0.44 0.26 14,542 23 81
175 10 3 2,733.7 2.0 0.36 0.24 12,180 18 83
200 10 0 3,600.0 2.5 0.44 0.30 6,009 38 92
225 10 0 3,600.0 5.6 0.45 0.32 5,569 36 113
250 10 0 3,600.0 5.0 0.48 0.36 2,742 60 123

Subtotal 60 12 3,059.6 2.8 0.46 0.30 10,015 32 94

36 125 10 0 3,600.0 5.9 1.12 0.57 6,002 51 119
150 10 0 3,600.0 9.6 0.95 0.51 5,023 28 126
175 10 0 3,600.0 15.0 1.29 0.98 3,349 27 128
200 10 0 3,600.0 21.1 1.21 0.89 1,936 51 128
225 10 0 3,600.0 35.0 1.07 0.83 1,303 38 128
250 10 0 3,600.0 43.2 1.22 0.94 994 41 128

Subtotal 60 0 3,600.0 21.6 1.15 0.79 3,101 39 126

48 125 10 1 3,445.3 32.9 1.72 0.82 1,579 69 128
150 10 0 3,600.0 47.5 1.48 1.03 1,625 50 128
175 10 0 3,600.0 74.4 1.25 0.98 1,873 39 128
200 10 0 3,600.0 106.0 1.44 1.03 510 84 128
225 10 0 3,600.0 178.6 1.84 1.43 550 44 128
250 10 0 3,600.0 222.9 1.50 1.29 627 25 128

Subtotal 60 1 3,574.2 110.4 1.54 1.10 1,127 52 128

60 125 10 0 3,600.0 99.2 2.04 0.88 483 87 128
150 10 0 3,600.0 168.2 2.23 1.21 462 70 128
175 10 0 3,600.0 263.6 2.59 220 86 111
200 10 0 3,600.0 385.6 3.13 281 84 102
225 10 0 3,600.0 971.7 105 97 115
250 10 0 3,600.0 808.0 3.48 2.87 96 87 128

Subtotal 60 0 3,600.0 449.4 275 85 119

72 125 10 0 3,600.0 290.4 2.90 1.53 194 85 128
150 10 0 3,600.0 816.3 134 76 102
175 10 0 3,600.0 2,194.3 75 25 64
200 10 0 3,600.0 2,100.3 68 39 64
225 10 0 3,600.0 3,130.3 8 38 38
250 10 0 3,600.0 2,840.8 33 22 64

Subtotal 60 0 3,600.0 1,895.4 85 48 77

Total 300 13 3,486.8 495.9 2,921 51 109

Table 2.41: Detailed results of our BPC algorithm for the W&G-g instances and
the traversal strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 125 10 8 1,423.7 0.7 0.48 0.27 5,781 23 61

150 10 7 1,845.8 1.1 0.39 0.25 5,286 16 62
175 10 1 3,508.7 1.5 0.43 0.29 9,694 40 68
200 10 0 3,600.0 2.1 0.44 0.32 5,054 48 76
225 10 0 3,600.0 4.2 0.46 0.34 3,945 38 84
250 10 0 3,600.0 4.9 0.48 0.38 3,494 35 83

Subtotal 60 16 2,929.7 2.4 0.45 0.31 5,542 33 72

36 125 10 1 3,489.9 5.8 1.14 0.56 2,254 81 111
150 10 0 3,600.0 9.5 1.34 0.84 2,239 61 112
175 10 0 3,600.0 14.9 1.27 0.92 2,074 56 115
200 10 0 3,600.0 21.2 1.48 1.12 884 71 123
225 10 0 3,600.0 33.3 1.43 1.17 765 52 127
250 10 0 3,600.0 39.8 1.49 1.26 660 56 128

Subtotal 60 1 3,581.6 20.7 1.36 0.98 1,479 63 119

48 125 10 0 3,600.0 39.9 1.74 0.94 1,015 98 124
150 10 0 3,600.0 58.9 1.46 1.00 1,114 69 124
175 10 0 3,600.0 103.1 1.82 1.48 596 74 126
200 10 0 3,600.0 130.7 1.99 1.58 284 117 128
225 10 0 3,600.0 222.6 2.91 2.44 236 93 128
250 10 0 3,600.0 260.9 1.94 1.66 168 96 128

Subtotal 60 0 3,600.0 136.0 1.98 1.52 569 91 126

60 125 10 0 3,600.0 242.5 3.07 2.00 275 131 128
150 10 0 3,600.0 461.2 2.82 1.94 367 83 128
175 10 0 3,600.0 1,203.4 106 103 102
200 10 0 3,600.0 1,405.8 136 70 102
225 10 0 3,600.0 2,814.4 14 43 38
250 10 0 3,600.0 3,046.7 10 35 38

Subtotal 60 0 3,600.0 1,529.0 151 77 90

72 125 10 0 3,600.0 1,938.5 68 92 90
150 10 0 3,600.0 2,974.9 18 56 38
175 10 0 3,600.0 3,408.6 10 10 26
200 10 0 3,600.0 3,600.0 0 0 0
225 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0

Subtotal 60 0 3,600.0 3,187.0 16 26 26

Total 300 17 3,462.3 975.0 1,552 58 87

Table 2.42: Detailed results of our BPC algorithm for the W&G-g instances and
the return strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 125 10 6 1,694.5 0.8 0.50 0.32 9,695 16 54

150 10 7 2,458.0 1.2 0.37 0.23 11,454 22 59
175 10 5 3,076.1 2.0 0.34 0.24 7,997 25 66
200 10 1 3,484.8 2.6 0.36 0.27 7,086 23 71
225 10 0 3,600.0 5.3 0.43 0.34 6,644 11 80
250 10 0 3,600.0 5.6 0.42 0.33 3,475 21 95

Subtotal 60 19 2,985.6 2.9 0.40 0.29 7,725 19 71

36 125 10 4 2,985.8 8.4 0.92 0.52 3,840 29 96
150 10 0 3,600.0 12.9 1.12 0.70 3,319 29 101
175 10 0 3,600.0 19.7 1.25 0.94 2,121 33 110
200 10 0 3,600.0 28.8 1.10 0.81 1,444 23 117
225 10 0 3,600.0 47.0 1.23 1.02 1,284 20 124
250 10 0 3,600.0 52.7 1.41 1.18 826 26 123

Subtotal 60 4 3,497.6 28.3 1.17 0.86 2,139 27 112

48 125 10 1 3,561.2 67.0 1.47 0.86 1,670 36 113
150 10 0 3,600.0 95.2 1.98 1.54 1,115 39 122
175 10 0 3,600.0 150.9 2.03 1.79 825 36 125
200 10 0 3,600.0 238.1 1.97 1.61 360 68 128
225 10 0 3,600.0 348.8 2.46 2.12 390 31 128
250 10 0 3,600.0 425.2 2.18 1.91 248 54 128

Subtotal 60 1 3,593.5 220.9 2.01 1.64 768 44 124

60 125 10 0 3,600.0 593.4 2.42 1.55 287 97 126
150 10 0 3,600.0 941.7 3.10 2.37 280 50 125
175 10 0 3,600.0 1,993.7 76 83 102
200 10 0 3,600.0 2,026.9 7.16 6.69 77 73 127
225 10 0 3,600.0 3,393.6 5 12 20
250 10 0 3,600.0 3,452.8 2 16 26

Subtotal 60 0 3,600.0 2,067.0 121 55 88

72 125 10 0 3,600.0 3,055.6 32 38 49
150 10 0 3,600.0 3,591.8 0 2 13
175 10 0 3,600.0 3,600.0 0 0 0
200 10 0 3,600.0 3,600.0 0 0 0
225 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0

Subtotal 60 0 3,600.0 3,507.9 5 7 10

Total 300 24 3,455.3 1,165.4 2,152 30 81

Table 2.43: Detailed results of our BPC algorithm for the W&G-g instances and
the midpoint strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 125 10 7 1,557.1 0.9 0.45 0.25 7,845 15 49

150 10 7 2,043.3 1.3 0.42 0.27 7,625 14 62
175 10 3 3,169.5 2.1 0.42 0.32 7,396 22 66
200 10 0 3,600.0 2.9 0.36 0.27 8,043 17 73
225 10 0 3,600.0 4.8 0.44 0.33 4,892 14 86
250 10 0 3,600.0 6.6 0.43 0.37 4,093 10 87

Subtotal 60 17 2,928.3 3.1 0.42 0.30 6,649 16 70

36 125 10 1 3,367.5 10.3 1.01 0.60 4,941 26 88
150 10 0 3,600.0 15.3 1.15 0.76 3,505 19 94
175 10 0 3,600.0 24.9 1.38 1.08 1,838 26 109
200 10 0 3,600.0 33.1 1.26 0.99 1,360 24 118
225 10 0 3,600.0 51.2 1.32 1.13 1,139 24 121
250 10 0 3,600.0 61.8 1.41 1.20 729 20 125

Subtotal 60 1 3,561.3 32.8 1.26 0.96 2,252 23 109

48 125 10 0 3,600.0 96.6 2.05 1.42 1,181 48 113
150 10 0 3,600.0 142.8 1.93 1.48 964 34 122
175 10 0 3,600.0 219.2 1.78 1.52 542 37 127
200 10 0 3,600.0 318.2 1.91 1.55 327 58 128
225 10 0 3,600.0 662.2 2.52 2.17 314 30 126
250 10 0 3,600.0 578.8 2.31 2.06 191 53 128

Subtotal 60 0 3,600.0 336.3 2.08 1.70 587 43 124

60 125 10 0 3,600.0 985.3 3.15 2.33 227 79 122
150 10 0 3,600.0 1,520.5 3.48 2.74 166 52 128
175 10 0 3,600.0 2,421.3 57 91 103
200 10 0 3,600.0 3,035.0 16 65 70
225 10 0 3,600.0 3,555.9 0 7 13
250 10 0 3,600.0 3,600.0 0 0 0

Subtotal 60 0 3,600.0 2,519.7 78 49 72

72 125 10 0 3,600.0 3,542.2 3 4 26
150 10 0 3,600.0 3,600.0 0 0 0
175 10 0 3,600.0 3,600.0 0 0 0
200 10 0 3,600.0 3,600.0 0 0 0
225 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0

Subtotal 60 0 3,600.0 3,590.4 0 1 4

Total 300 18 3,457.9 1,296.4 1,913 26 76

Table 2.44: Detailed results of our BPC algorithm for the W&G-g instances and
the largest gap strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 125 10 7 1,974.4 0.8 0.56 0.30 8,877 32 57

150 10 5 2,624.6 1.2 0.41 0.25 9,788 26 76
175 10 3 3,164.7 1.8 0.37 0.25 7,062 26 77
200 10 0 3,600.0 2.8 0.41 0.29 5,734 34 85
225 10 0 3,600.0 5.1 0.46 0.34 4,413 29 93
250 10 1 3,576.3 6.0 0.46 0.36 2,895 53 112

Subtotal 60 16 3,090.0 2.9 0.45 0.30 6,462 33 84

36 125 10 1 3,518.5 6.9 1.15 0.59 3,545 55 117
150 10 0 3,600.0 10.4 1.20 0.67 2,953 48 117
175 10 0 3,600.0 15.6 1.38 1.01 2,443 28 128
200 10 0 3,600.0 22.2 1.39 1.01 962 57 126
225 10 0 3,600.0 35.6 1.11 0.87 1,012 33 128
250 10 0 3,600.0 42.0 1.31 1.07 784 36 128

Subtotal 60 1 3,586.4 22.1 1.26 0.87 1,950 43 124

48 125 10 0 3,600.0 30.3 1.72 0.93 1,351 71 128
150 10 0 3,600.0 50.4 1.36 0.92 1,278 52 126
175 10 0 3,600.0 76.1 1.83 1.48 771 46 128
200 10 0 3,600.0 112.7 1.73 1.34 386 80 128
225 10 0 3,600.0 181.2 2.55 2.07 326 75 128
250 10 0 3,600.0 205.2 2.18 1.91 303 60 128

Subtotal 60 0 3,600.0 109.3 1.90 1.44 736 64 128

60 125 10 0 3,600.0 142.0 2.41 1.33 446 108 128
150 10 0 3,600.0 543.7 442 46 115
175 10 0 3,600.0 992.0 185 77 102
200 10 0 3,600.0 1,137.3 151 57 102
225 10 0 3,600.0 1,332.3 56 98 102
250 10 0 3,600.0 1,913.5 46 56 77

Subtotal 60 0 3,600.0 1,010.1 221 74 105

72 125 10 0 3,600.0 849.0 125 113 113
150 10 0 3,600.0 1,495.6 60 110 90
175 10 0 3,600.0 2,158.2 49 55 77
200 10 0 3,600.0 2,425.2 27 66 77
225 10 0 3,600.0 3,514.7 0 2 13
250 10 0 3,600.0 3,299.9 4 18 51

Subtotal 60 0 3,600.0 2,290.4 44 61 70

Total 300 17 3,495.3 687.0 1,882 55 102

Table 2.45: Detailed results of our BPC algorithm for the W&G-g instances and
the combined strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 125 10 7 1,730.9 1.2 0.48 0.24 8,323 19 59

150 10 5 2,410.4 2.0 0.38 0.24 8,146 13 69
175 10 4 2,671.1 2.9 0.43 0.30 5,237 25 66
200 10 0 3,600.0 3.9 0.46 0.34 5,483 26 84
225 10 0 3,600.0 7.0 0.44 0.32 4,440 20 89
250 10 0 3,600.0 8.1 0.52 0.44 3,172 23 98

Subtotal 60 16 2,935.4 4.2 0.45 0.31 5,800 21 78

36 125 10 0 3,600.0 12.5 1.21 0.65 2,387 65 112
150 10 0 3,600.0 19.2 1.22 0.72 2,138 44 113
175 10 0 3,600.0 28.2 1.41 1.03 1,552 31 123
200 10 0 3,600.0 39.3 1.40 1.05 861 45 124
225 10 0 3,600.0 59.7 1.26 1.03 871 27 128
250 10 0 3,600.0 70.2 1.59 1.36 647 32 128

Subtotal 60 0 3,600.0 38.2 1.35 0.97 1,409 41 122

48 125 10 0 3,600.0 79.8 1.86 1.13 915 68 127
150 10 0 3,600.0 110.1 1.55 1.12 818 54 128
175 10 0 3,600.0 184.6 2.12 1.77 528 50 128
200 10 0 3,600.0 263.8 2.07 1.65 266 81 128
225 10 0 3,600.0 385.8 3.15 2.69 268 60 128
250 10 0 3,600.0 473.1 2.19 1.92 175 70 128

Subtotal 60 0 3,600.0 249.5 2.16 1.71 495 64 128

60 125 10 0 3,600.0 1,051.2 210 90 102
150 10 0 3,600.0 729.0 2.69 1.78 248 62 128
175 10 0 3,600.0 1,806.6 84 68 90
200 10 0 3,600.0 2,131.9 59 64 90
225 10 0 3,600.0 2,829.9 10 66 60
250 10 0 3,600.0 3,209.1 2 49 31

Subtotal 60 0 3,600.0 1,959.6 102 66 83

72 125 10 0 3,600.0 2,676.0 37 52 39
150 10 0 3,600.0 3,094.1 19 34 38
175 10 0 3,600.0 3,530.3 2 8 26
200 10 0 3,600.0 3,600.0 0 0 0
225 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0

Subtotal 60 0 3,600.0 3,350.1 10 16 17

Total 300 16 3,467.1 1,120.3 1,563 42 86

Table 2.46: Detailed results of our BPC algorithm for the W&G-g instances and
the optimal strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 100 10 10 77.8 0.3 0.36 0.21 688 0 61

150 10 7 1,447.1 1.0 0.37 0.18 4,133 28 74
200 10 6 2,896.3 3.1 0.21 0.12 10,114 2 102
250 10 1 3,391.7 5.4 0.20 0.10 2,057 84 122

Subtotal 40 24 1,953.2 2.5 0.28 0.15 4,248 28 90

36 100 10 7 2,235.3 2.3 1.12 0.57 4,202 31 118
150 10 2 3,006.6 7.0 0.62 0.47 6,439 0 128
200 10 0 3,600.0 17.0 0.87 0.55 3,571 19 128
250 10 0 3,600.0 35.5 0.72 0.59 2,368 10 128

Subtotal 40 9 3,110.5 15.4 0.83 0.54 4,145 15 125

48 100 10 2 3320.0 9.7 1.59 0.70 1,478 33 128
150 10 0 3,600.0 30.7 1.41 0.89 607 65 128
200 10 0 3,600.0 84.6 1.05 0.90 957 0 128
250 10 0 3,600.0 172.2 1.56 1.21 487 13 128

Subtotal 40 2 3,530.0 74.3 1.40 0.93 882 28 128

60 100 10 1 3,542.6 27.9 0.94 0.62 1,000 1 128
150 10 0 3,600.0 117.5 1.07 0.83 597 0 128
200 10 0 3,600.0 278.4 1.65 1.44 365 0 128
250 10 0 3,600.0 599.2 4.97 4.84 241 0 128

Subtotal 40 1 3,585.6 255.7 2.16 1.93 551 0 128

72 100 10 0 3,600.0 58.4 2.25 0.90 317 38 128
150 10 0 3,600.0 253.6 2.94 2.07 160 44 128
200 10 0 3,600.0 670.7 4.37 3.71 56 78 128
250 10 0 3,600.0 1,438.7 6.65 6.29 21 109 128

Subtotal 40 0 3,600.0 605.3 4.05 3.24 139 67 128

Total 200 36 3,155.9 190.7 1.75 1.36 1,993 28 120

Table 2.47: Detailed results of our BPC algorithm for the W&G-u instances and
the traversal strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 100 10 10 34.0 0.3 0.30 0.19 118 0 42

150 10 10 777.8 0.8 0.42 0.18 856 43 57
200 10 9 1,399.0 2.2 0.24 0.15 3,727 1 71
250 10 1 3,290.1 3.5 0.38 0.24 1,186 50 88

Subtotal 40 30 1,375.2 1.7 0.33 0.19 1,472 24 65

36 100 10 6 2,793.7 2.3 1.06 0.52 2,544 61 97
150 10 1 3,336.6 7.6 0.63 0.50 4,493 0 98
200 10 0 3,600.0 15.9 1.09 0.71 1,478 18 120
250 10 0 3,600.0 30.9 1.11 0.88 513 54 126

Subtotal 40 7 3,332.6 14.2 0.97 0.65 2,257 33 110

48 100 10 3 3,251.1 11.9 1.79 0.77 786 85 124
150 10 0 3,600.0 39.1 1.72 1.29 429 92 126
200 10 0 3,600.0 94.9 1.42 1.26 626 0 126
250 10 0 3,600.0 168.6 1.95 1.65 339 14 128

Subtotal 40 3 3,512.8 78.6 1.72 1.24 545 48 126

60 100 10 0 3,600.0 60.1 1.47 1.16 597 0 125
150 10 0 3,600.0 193.2 1.66 1.47 368 0 126
200 10 0 3,600.0 494.8 2.20 2.02 212 0 128
250 10 0 3,600.0 873.5 2.40 2.26 127 0 128

Subtotal 40 0 3,600.0 405.4 1.93 1.73 326 0 127

72 100 10 0 3,600.0 287.2 3.53 1.71 123 101 128
150 10 0 3,600.0 984.1 5.73 4.66 55 144 128
200 10 0 3,600.0 2,408.6 9.80 3 151 103
250 10 0 3,600.0 3,600.0 0 0 0

Subtotal 40 0 3,600.0 1,820.0 45 99 90

Total 200 40 3,084.1 464.0 929 41 104

Table 2.48: Detailed results of our BPC algorithm for the W&G-u instances and
the return strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 100 10 10 37.8 0.4 0.34 0.19 176 0 42

150 10 10 577.4 1.0 0.44 0.18 1,381 14 58
200 10 8 1,908.6 3.0 0.27 0.17 5,843 0 68
250 10 0 3,600.0 4.6 0.38 0.25 2,710 22 90

Subtotal 40 28 1,531.0 2.3 0.36 0.20 2,528 9 65

36 100 10 8 1,737.4 3.4 0.96 0.50 2,719 38 88
150 10 0 3,600.0 11.1 0.90 0.76 4,311 0 92
200 10 0 3,600.0 23.9 1.30 0.99 1,713 9 105
250 10 0 3,600.0 44.3 1.31 1.11 778 19 123

Subtotal 40 8 3,134.4 20.7 1.12 0.84 2,380 17 102

48 100 10 1 3,538.3 23.4 1.75 0.94 1,370 50 120
150 10 0 3,600.0 79.4 2.06 1.60 618 54 122
200 10 0 3,600.0 172.2 1.95 1.80 424 0 122
250 10 0 3,600.0 353.7 2.53 2.27 247 13 128

Subtotal 40 1 3,584.6 157.2 2.07 1.65 665 29 123

60 100 10 0 3,600.0 152.7 1.79 1.50 315 0 114
150 10 0 3,600.0 578.8 2.45 2.26 146 0 121
200 10 0 3,600.0 1,348.5 3.17 3.01 86 0 125
250 10 0 3,600.0 2,522.8 7.98 7.83 28 0 128

Subtotal 40 0 3,600.0 1,150.7 3.85 3.65 144 0 122

72 100 10 0 3,600.0 994.5 4.57 3.14 83 72 126
150 10 0 3,600.0 3,600.0 0 0 0
200 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0

Subtotal 40 0 3,600.0 2,948.6 21 18 32

Total 200 37 3,090.0 855.9 1,148 15 89

Table 2.49: Detailed results of our BPC algorithm for the W&G-u instances and
the midpoint strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 100 10 10 24.5 0.4 0.28 0.14 77 0 48

150 10 9 679.2 1.2 0.36 0.14 1,834 20 60
200 10 5 2,548.2 3.3 0.30 0.21 6,710 0 74
250 10 0 3,600.0 5.9 0.35 0.22 2,674 24 91

Subtotal 40 24 1,713.0 2.7 0.32 0.18 2,824 11 68

36 100 10 9 1,809.8 4.7 0.93 0.48 2,302 35 80
150 10 1 3,380.1 14.7 0.77 0.63 2,994 0 99
200 10 0 3,600.0 31.9 1.32 0.98 1,357 12 111
250 10 0 3,600.0 57.9 1.28 1.09 643 24 123

Subtotal 40 10 3,097.5 27.3 1.08 0.80 1,824 18 103

48 100 10 0 3,600.0 40.6 2.02 1.21 1,070 56 118
150 10 0 3,600.0 132.3 2.07 1.61 465 52 126
200 10 0 3,600.0 282.9 2.00 1.85 323 0 123
250 10 0 3,600.0 514.8 2.66 2.43 183 9 126

Subtotal 40 0 3,600.0 242.7 2.19 1.78 510 29 123

60 100 10 0 3,600.0 321.2 2.13 1.89 182 0 105
150 10 0 3,600.0 1,181.9 2.93 2.77 99 0 112
200 10 0 3,600.0 2,612.8 19.71 19.59 18 0 122
250 10 0 3,600.0 3,600.0 0 0 0

Subtotal 40 0 3,600.0 1,929.0 75 0 85

72 100 10 0 3,600.0 2,386.0 17.64 7 65 82
150 10 0 3,600.0 3,600.0 0 0 0
200 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0

Subtotal 40 0 3,600.0 3,296.5 2 16 21

Total 200 34 3,122.1 1,099.6 1,047 15 80

Table 2.50: Detailed results of our BPC algorithm for the W&G-u instances and
the largest gap strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 100 10 10 28.5 0.4 0.27 0.15 119 0 45

150 10 8 1,538.9 1.0 0.46 0.20 5,158 26 56
200 10 6 2,394.1 3.0 0.26 0.17 7,607 0 75
250 10 0 3,600.0 5.0 0.39 0.25 3,206 25 100

Subtotal 40 24 1,890.4 2.3 0.35 0.19 4,022 13 69

36 100 10 5 2,249.7 2.6 1.05 0.52 2,736 40 112
150 10 1 3,415.4 8.0 0.67 0.53 4,927 0 110
200 10 0 3,600.0 18.0 1.14 0.76 1,532 13 124
250 10 0 3,600.0 35.1 1.21 0.98 592 37 128

Subtotal 40 6 3,216.3 15.9 1.02 0.70 2,447 23 119

48 100 10 1 3,577.4 10.2 2.01 0.98 1,581 60 127
150 10 0 3,600.0 34.1 1.67 1.14 538 78 128
200 10 0 3,600.0 75.5 1.18 1.04 850 0 128
250 10 0 3,600.0 141.2 1.62 1.28 384 17 128

Subtotal 40 1 3,594.3 65.3 1.62 1.11 838 38 128

60 100 10 1 3,423.7 39.9 1.39 1.10 776 0 126
150 10 0 3,600.0 128.2 1.72 1.49 472 0 128
200 10 0 3,600.0 290.3 1.72 1.55 297 0 128
250 10 0 3,600.0 555.7 2.08 1.95 175 0 128

Subtotal 40 1 3,555.9 253.5 1.73 1.52 430 0 127

72 100 10 0 3,600.0 123.4 3.44 1.64 153 70 128
150 10 0 3,600.0 452.7 3.94 2.67 66 128 128
200 10 0 3,600.0 1,132.2 5.50 4.78 34 144 128
250 10 0 3,600.0 2,168.1 6.48 6.15 16 142 128

Subtotal 40 0 3,600.0 969.1 4.84 3.81 67 121 128

Total 200 32 3,171.4 261.2 1.91 1.47 1,561 39 114

Table 2.51: Detailed results of our BPC algorithm for the W&G-u instances and
the combined strategy
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Q n Inst Opt t[s] tLP Gp GpRF Nds CC SRC
24 100 10 10 54.0 0.7 0.29 0.17 183 0 54

150 10 10 1,118.0 1.9 0.41 0.17 2,564 28 54
200 10 3 3,150.8 4.7 0.28 0.19 7,668 0 73
250 10 0 3,600.0 8.0 0.43 0.29 2,241 34 85

Subtotal 40 23 1,980.7 3.8 0.35 0.20 3,164 16 66

36 100 10 7 2,174.5 5.8 1.02 0.49 1,810 50 102
150 10 0 3,600.0 19.2 0.83 0.67 2,292 0 112
200 10 0 3,600.0 37.2 1.14 0.79 1,008 17 127
250 10 0 3,600.0 67.9 1.24 1.04 505 36 128

Subtotal 40 7 3,243.6 32.5 1.06 0.75 1,404 26 117

48 100 10 0 3,600.0 32.4 1.83 0.84 820 76 124
150 10 0 3,600.0 108.5 1.84 1.36 373 85 128
200 10 0 3,600.0 223.9 1.55 1.40 343 0 128
250 10 0 3,600.0 406.4 2.35 2.06 202 14 128

Subtotal 40 0 3,600.0 192.8 1.89 1.42 434 44 127

60 100 10 0 3,600.0 161.4 1.57 1.28 261 0 121
150 10 0 3,600.0 532.4 2.04 1.85 153 0 128
200 10 0 3,600.0 1,126.5 2.08 1.92 91 0 128
250 10 0 3,600.0 2,035.2 4.32 4.18 43 0 128

Subtotal 40 0 3,600.0 963.9 2.50 2.31 137 0 126

72 100 10 0 3,600.0 648.4 3.72 1.88 67 92 128
150 10 0 3,600.0 2,437.4 15.16 10 136 115
200 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0

Subtotal 40 0 3,600.0 2,571.5 19 57 61

Total 200 30 3,204.9 752.9 1,032 29 100

Table 2.52: Detailed results of our BPC algorithm for the W&G-u instances and
the optimal strategy
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Detailed Results of BPC-based Heuristics

Tables 2.53–2.58 provide aggregated results per capacity Q for the proposed BPC-
based heuristics on the six benchmark sets and all considered routing strategies.
They compare variants of the set-covering heuristic (SC ) and the depth-first heuris-
tic (BPC-DF) with hard time limits of two, three, and five minutes (-2, -3, -5 ).
The average gap with respect to the best-known solution (Gp) and the average
computation time in seconds (t[s]) are reported. In cases where no average could
be computed for a given group, e.g., because no lower bound was available for one
of the comprised instances, the corresponding cell is left blank.

SC heuristic BPC-DF heuristic
SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Routing Q Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s]
Traversal 24 0.09 5.6 0.09 5.6 0.09 5.6 0.02 40.4 0.02 54.8 0.01 78.1

36 0.50 52.6 0.40 68.2 0.33 92.9 0.22 80.4 0.17 115.6 0.11 181.3
48 1.63 64.5 1.58 87.8 1.07 129.7 0.67 89.5 0.40 131.8 0.29 214.7

Subtotal 0.74 40.9 0.69 53.9 0.50 76.1 0.30 70.1 0.20 100.8 0.14 158.1

Return 24 0.08 6.1 0.08 6.7 0.08 7.0 0.04 30.3 0.03 38.8 0.01 55.0
36 0.44 49.9 0.33 65.8 0.31 88.0 0.20 64.2 0.16 91.4 0.08 141.9
48 2.02 64.7 1.50 89.7 1.41 136.1 1.19 75.2 0.70 108.5 0.36 168.6

Subtotal 0.85 40.2 0.64 54.1 0.60 77.0 0.48 56.6 0.30 79.6 0.15 121.8

Midpoint 24 0.06 4.7 0.06 4.7 0.06 4.7 0.01 24.1 0.01 31.7 0.01 46.5
36 0.61 45.6 0.56 62.4 0.42 87.1 0.17 60.0 0.15 83.3 0.09 127.5
48 2.30 70.4 1.89 100.9 1.61 152.0 1.02 77.8 0.62 112.4 0.32 176.4

Subtotal 0.99 40.2 0.84 56.0 0.70 81.3 0.40 54.0 0.26 75.8 0.14 116.8

L. gap 24 0.06 4.1 0.06 4.1 0.06 4.1 0.02 30.6 0.01 38.8 0.01 51.1
36 0.62 49.9 0.54 65.8 0.44 96.1 0.16 65.8 0.14 93.8 0.09 146.6
48 2.47 72.4 2.01 100.5 1.75 153.7 1.19 82.0 0.75 117.6 0.45 187.5

Subtotal 1.05 42.1 0.87 56.8 0.75 84.6 0.45 59.4 0.30 83.4 0.18 128.4

Combined 24 0.10 7.4 0.10 7.5 0.10 7.5 0.02 30.7 0.02 39.4 0.01 56.8
36 0.68 53.9 0.59 71.4 0.50 99.4 0.20 70.9 0.14 100.3 0.11 155.1
48 2.52 68.7 2.27 97.6 1.91 150.6 0.66 79.7 0.47 115.5 0.28 186.2

Subtotal 1.10 43.4 0.99 58.8 0.84 85.8 0.29 60.5 0.21 85.1 0.13 132.7

Optimal 24 0.09 4.9 0.09 4.9 0.09 4.9 0.02 31.5 0.02 42.0 0.01 56.9
36 0.75 53.7 0.61 72.7 0.52 104.4 0.27 70.3 0.21 99.1 0.16 152.4
48 2.31 73.0 2.17 101.3 1.82 151.5 1.73 88.3 1.12 127.9 0.67 204.8

Subtotal 1.05 43.9 0.96 59.6 0.81 86.9 0.67 63.4 0.45 89.7 0.28 138.0

Total 0.96 41.8 0.83 56.5 0.70 82.0 0.43 60.7 0.29 85.7 0.17 132.6

Table 2.53: Comparison of the BPC-based heuristics on the M&Ö instances
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SC heuristic BPC-DF heuristic
SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Routing Q Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s]
Traversal 30 0.00 0.1 0.00 0.1 0.00 0.1 0.00 4.3 0.00 6.0 0.00 9.4

45 0.06 1.7 0.06 1.7 0.06 1.7 0.02 38.0 0.02 52.3 0.02 78.0
60 0.10 14.5 0.10 15.8 0.10 16.9 0.11 72.8 0.09 104.9 0.08 166.0
75 0.23 33.1 0.20 40.2 0.18 49.3 0.25 90.7 0.21 133.4 0.18 216.2

Subtotal 0.10 12.3 0.09 14.4 0.08 17.0 0.10 51.5 0.08 74.2 0.07 117.4

Return 30 0.00 0.1 0.00 0.1 0.00 0.1 0.00 0.1 0.00 0.1 0.00 0.1
45 0.06 1.4 0.06 1.4 0.06 1.4 0.01 14.3 0.01 18.5 0.00 25.8
60 0.15 21.0 0.14 24.0 0.13 27.6 0.08 45.8 0.06 61.7 0.05 89.4
75 0.51 48.0 0.44 64.1 0.36 90.4 0.21 64.1 0.16 90.7 0.12 139.5

Subtotal 0.18 17.6 0.16 22.4 0.14 29.9 0.07 31.1 0.06 42.7 0.05 63.7

Midpoint 30 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
45 0.04 1.0 0.04 1.0 0.04 1.0 0.00 7.9 0.00 9.5 0.00 11.8
60 0.15 15.6 0.14 17.6 0.13 20.0 0.05 41.2 0.04 55.5 0.03 79.9
75 0.52 44.5 0.46 58.5 0.39 81.3 0.18 63.3 0.14 89.6 0.11 136.7

Subtotal 0.18 15.3 0.16 19.3 0.14 25.6 0.06 28.1 0.05 38.6 0.04 57.1

L. gap 30 0.00 0.1 0.00 0.1 0.00 0.1 0.00 0.2 0.00 0.3 0.00 0.5
45 0.04 1.1 0.04 1.1 0.04 1.1 0.00 9.6 0.00 11.5 0.00 14.6
60 0.14 18.5 0.13 21.0 0.12 23.1 0.06 44.6 0.05 61.4 0.04 90.7
75 0.57 47.1 0.50 62.7 0.43 88.5 0.25 67.0 0.20 95.1 0.15 147.0

Subtotal 0.19 16.7 0.17 21.2 0.15 28.2 0.08 30.4 0.06 42.1 0.05 63.2

Combined 30 0.00 0.1 0.00 0.1 0.00 0.1 0.00 0.6 0.00 0.8 0.00 1.2
45 0.05 1.6 0.05 1.6 0.05 1.7 0.01 17.5 0.01 22.3 0.01 29.9
60 0.14 22.8 0.13 26.1 0.12 29.4 0.10 50.6 0.08 69.6 0.06 103.8
75 0.42 43.6 0.35 56.8 0.28 77.0 0.22 65.8 0.18 93.7 0.13 145.6

Subtotal 0.15 17.0 0.13 21.2 0.11 27.0 0.08 33.6 0.07 46.6 0.05 70.1

Optimal 30 0.00 0.1 0.00 0.1 0.00 0.1 0.00 0.2 0.00 0.2 0.00 0.3
45 0.05 1.5 0.05 1.5 0.05 1.5 0.01 15.1 0.01 18.2 0.01 24.1
60 0.17 25.4 0.15 30.1 0.13 35.2 0.09 52.3 0.07 72.2 0.06 107.9
75 0.58 51.3 0.50 68.4 0.42 95.8 0.29 70.0 0.23 99.6 0.16 154.5

Subtotal 0.20 19.6 0.17 25.0 0.15 33.1 0.10 34.4 0.08 47.6 0.06 71.7

Total 0.17 16.4 0.15 20.6 0.13 26.8 0.08 34.8 0.07 48.6 0.05 73.9

Table 2.54: Comparison of the BPC-based heuristics on the H&W instances
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SC heuristic BPC-DF heuristic
SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Routing Q n Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s]
Traversal 6 200 0.05 2.3 0.05 2.3 0.05 2.3 0.08 108.1 0.07 162.1 0.07 270.1

6 300 0.03 8.0 0.03 8.0 0.03 8.0 0.11 108.1 0.06 162.1 0.05 270.1
6 400 0.03 18.6 0.03 18.8 0.03 18.9 0.23 109.8 0.17 163.8 0.15 271.7
6 500 0.02 40.2 0.02 41.8 0.02 41.8 0.48 120.0 0.44 180.0 0.38 300.0
6 600 0.02 53.7 0.02 59.5 0.02 60.0 1.04 120.0 0.62 180.1 0.38 300.0
9 200 0.16 28.3 0.16 28.2 0.16 28.3 1.48 120.0 1.25 180.0 1.06 300.0

12 200 1.49 119.6 1.14 179.4 1.07 293.8 1.73 120.0 1.46 180.0 1.09 300.0
15 200 3.41 119.6 2.98 179.4 2.69 298.9 3.68 120.0 2.20 180.0 1.67 300.0
Subtotal 0.65 48.8 0.55 64.7 0.51 94.0 1.10 115.8 0.78 173.5 0.61 289.0

Return 6 200 0.02 2.2 0.02 2.2 0.02 2.2 0.16 108.4 0.15 162.4 0.09 270.4
6 300 0.02 4.6 0.02 4.6 0.02 4.6 0.16 120.0 0.15 180.0 0.13 300.0
6 400 0.04 37.9 0.03 39.8 0.03 39.6 0.25 120.0 0.21 180.0 0.19 300.0
6 500 0.04 52.5 0.03 59.6 0.03 71.6 0.50 120.0 0.34 180.0 0.29 300.0
6 600 0.04 71.0 0.03 90.3 0.03 120.8 0.51 120.0 0.49 180.0 0.37 300.0
9 200 0.12 30.3 0.12 30.3 0.12 30.2 0.67 120.0 0.51 180.0 0.50 300.0

12 200 0.70 116.8 0.40 170.5 0.35 255.7 1.19 120.0 1.16 180.0 0.81 300.0
15 200 1.52 119.6 1.36 179.3 1.04 298.8 1.60 120.0 1.21 180.0 1.07 300.0
Subtotal 0.31 54.4 0.25 72.1 0.21 102.9 0.63 118.6 0.53 177.8 0.43 296.3

Midpoint 6 200 0.06 2.5 0.06 2.5 0.06 2.5 0.08 120.0 0.08 180.0 0.07 300.0
6 300 0.03 8.0 0.03 7.9 0.03 8.0 0.14 108.5 0.12 162.5 0.10 270.5
6 400 0.03 17.5 0.03 17.6 0.03 17.2 0.40 120.0 0.24 180.0 0.21 300.0
6 500 0.04 52.8 0.04 64.7 0.04 79.2 0.42 120.0 0.33 180.0 0.29 300.0
6 600 0.05 79.2 0.03 96.2 0.03 120.0 0.65 120.0 0.55 180.0 0.47 300.0
9 200 0.18 33.2 0.18 33.1 0.18 33.1 0.89 120.0 0.79 180.0 0.55 300.0

12 200 1.18 119.6 0.80 174.7 0.41 270.3 1.16 120.0 0.85 180.0 0.63 300.0
15 200 2.88 119.7 2.56 179.5 2.28 299.1 3.11 120.0 2.09 180.0 1.70 300.0
Subtotal 0.56 54.1 0.47 72.0 0.38 103.7 0.86 118.6 0.63 177.8 0.50 296.3

L. gap 6 200 0.05 2.8 0.05 2.8 0.05 2.8 0.10 108.6 0.09 162.6 0.08 270.6
6 300 0.04 7.3 0.04 7.3 0.04 7.3 0.17 120.0 0.13 180.0 0.10 300.0
6 400 0.03 18.9 0.03 19.0 0.03 18.8 0.25 120.0 0.24 180.0 0.22 300.0
6 500 0.03 41.9 0.03 42.8 0.03 42.8 0.56 120.0 0.48 180.0 0.36 300.0
6 600 0.03 67.4 0.03 80.0 0.03 101.6 1.44 120.0 0.58 180.0 0.52 300.0
9 200 0.15 47.1 0.15 53.3 0.15 65.1 1.03 120.0 0.81 180.0 0.64 300.0

12 200 0.85 112.9 0.49 166.7 0.51 251.5 1.14 120.0 1.07 180.0 0.85 300.0
15 200 2.54 119.6 2.30 179.3 1.86 298.8 2.71 120.0 2.42 180.0 1.69 300.0
Subtotal 0.47 52.2 0.39 68.9 0.34 98.6 0.93 118.6 0.73 177.8 0.56 296.3

Continued on the next page.

Table 2.55: Comparison of the BPC-based heuristics on the ZKS instances
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SC heuristic BPC-DF heuristic
SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Routing Q n Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s]
Combined 6 200 0.04 2.7 0.04 2.7 0.04 2.7 0.13 106.0 0.12 153.9 0.11 250.7

6 300 0.03 7.3 0.03 7.2 0.03 7.2 0.28 120.0 0.20 180.0 0.19 300.0
6 400 0.03 16.7 0.03 16.7 0.03 16.7 0.23 120.0 0.22 180.0 0.13 300.0
6 500 0.03 36.6 0.03 41.2 0.03 40.9 0.36 120.0 0.28 180.0 0.22 300.0
6 600 0.03 82.0 0.03 94.0 0.03 109.6 0.64 120.0 0.53 180.0 0.36 300.0
9 200 0.13 36.2 0.13 40.6 0.13 40.5 0.65 120.0 0.55 180.0 0.50 300.0

12 200 0.58 112.0 0.32 156.6 0.24 240.3 1.04 120.0 0.84 180.0 0.72 300.0
15 200 2.23 119.7 2.20 179.4 2.10 299.0 2.55 120.0 2.01 180.0 1.59 300.0
Subtotal 0.39 51.7 0.35 67.3 0.33 94.6 0.73 118.3 0.59 176.7 0.48 293.9

Optimal 6 200 0.05 2.8 0.05 2.8 0.05 2.8 0.13 111.3 0.13 165.1 0.10 273.1
6 300 0.05 12.1 0.05 12.0 0.05 12.2 0.16 120.0 0.15 180.0 0.12 300.0
6 400 0.03 17.0 0.03 17.0 0.03 16.9 0.27 120.0 0.21 180.0 0.15 300.0
6 500 0.03 31.3 0.03 31.2 0.03 31.2 0.32 120.0 0.29 180.0 0.24 300.0
6 600 0.03 78.0 0.03 95.9 0.03 111.3 1.20 120.0 0.47 180.0 0.33 300.0
9 200 0.09 33.0 0.08 33.2 0.08 33.2 0.87 120.0 0.61 180.0 0.59 300.0

12 200 0.88 119.3 0.63 177.0 0.41 273.5 1.24 120.0 1.03 180.0 1.02 300.0
15 200 2.71 119.6 2.51 179.4 2.27 299.0 2.13 120.0 1.37 180.0 1.18 300.0
Subtotal 0.48 51.6 0.43 68.6 0.37 97.5 0.79 118.9 0.53 178.2 0.46 296.6

Total 0.48 52.1 0.41 68.9 0.36 98.6 0.84 118.1 0.63 177.0 0.51 294.7

Table 2.55: Comparison of the BPC-based heuristics on the ZKS instances (cont.)
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SC heuristic BPC-DF heuristic
SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Routing Q Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s]
Traversal 60 4.52 84.6 3.99 120.3 3.55 185.3 1.71 94.5 0.98 139.8 0.50 226.4

72 7.51 87.1 6.18 122.9 5.18 190.8 6.56 100.6 4.05 147.1 1.57 234.8
Subtotal 6.02 85.8 5.08 121.6 4.36 188.1 4.14 97.5 2.51 143.4 1.04 230.6

Return 60 5.93 79.4 4.77 108.8 3.88 161.4 4.61 81.7 2.84 117.3 1.06 181.6
72 10.23 89.8 9.61 128.8 8.87 201.6 10.63 96.7 9.68 140.7 7.57 226.7

Subtotal 8.08 84.6 7.19 118.8 6.38 181.5 7.62 89.2 6.26 129.0 4.31 204.2

Midpoint 60 8.43 81.3 6.97 115.8 4.75 174.6 8.36 86.2 5.56 123.9 2.95 198.5
72 95.4 135.5 211.1 98.8 142.0 227.0

Subtotal 88.3 125.7 192.8 92.5 132.9 212.8

L. gap 60 10.20 89.3 9.48 126.4 7.14 197.7 9.51 91.9 8.73 133.8 6.33 212.9
72 99.0 143.5 229.3 102.1 148.7 238.8

Subtotal 94.2 135.0 213.5 97.0 141.2 225.9

Combined 60 6.51 87.2 5.56 122.9 4.40 186.7 2.96 88.3 1.93 127.3 0.88 202.9
72 8.79 86.7 8.64 121.4 8.00 190.4 8.55 97.8 7.41 141.6 4.92 227.9

Subtotal 7.65 86.9 7.10 122.1 6.20 188.6 5.75 93.1 4.67 134.4 2.90 215.4

Optimal 60 9.04 89.6 7.74 129.3 5.36 201.1 7.62 94.3 6.24 137.2 3.41 219.9
72 10.74 112.9 10.18 154.1 9.29 229.8 10.62 106.1 10.05 154.8 8.68 247.5

Subtotal 9.89 101.3 8.96 141.7 7.33 215.4 9.12 100.2 8.15 146.0 6.04 233.7

Total 90.2 127.5 196.7 94.9 137.8 220.4

Table 2.56: Comparison of the BPC-based heuristics on the M&Ö-ext instances
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SC heuristic BPC-DF heuristic
SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Routing Q Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s]
Traversal 24 1.08 111.0 0.81 158.8 0.56 240.3 2.10 120.0 0.96 179.4 0.47 297.0

36 3.69 119.8 3.10 179.5 2.94 299.1 7.75 120.0 4.44 180.0 1.88 300.0
48 15.73 119.9 13.63 179.9 7.75 299.6 16.66 120.0 14.36 180.0 9.33 300.1
60 120.0 180.0 299.9 120.0 180.0 300.0
72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 118.1 175.6 287.8 120.0 179.9 299.4

Return 24 0.90 104.2 0.71 148.9 0.52 229.0 0.67 120.0 0.42 179.0 0.34 297.0
36 4.76 119.8 3.22 179.7 2.93 299.3 7.33 120.1 5.25 180.0 2.38 300.0
48 15.68 120.0 13.78 179.9 10.90 299.7 16.81 120.0 14.99 180.0 11.09 300.1
60 120.0 180.0 300.0 120.0 180.0 300.0
72 120.0 180.0 300.0 120.0 180.0 300.1

Subtotal 116.8 173.7 285.6 120.0 179.8 299.5

Midpoint 24 0.94 107.5 0.80 151.1 0.67 226.4 0.52 118.7 0.38 177.4 0.33 293.3
36 5.41 119.8 3.18 179.6 3.08 299.2 7.33 120.1 4.35 180.0 1.82 300.0
48 18.96 120.0 15.90 179.9 12.85 299.7 20.38 120.0 17.61 180.0 12.83 300.1
60 120.0 180.0 300.0 120.0 180.0 300.0
72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 117.5 174.1 285.1 119.8 179.5 298.7
L. gap 24 1.02 104.2 0.93 148.6 0.70 228.5 0.59 119.2 0.48 178.2 0.31 294.4

36 5.93 119.8 3.32 179.2 3.20 296.8 7.69 120.0 5.85 180.0 2.30 300.0
48 18.53 120.0 17.36 180.0 13.38 299.8 19.23 120.0 17.90 180.0 14.79 300.0
60 120.0 180.0 300.0 120.0 180.0 300.0
72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 116.8 173.6 285.0 119.9 179.7 298.9

Combined 24 1.08 112.8 0.89 163.1 0.67 255.0 1.21 120.0 0.73 179.4 0.46 297.5
36 4.01 119.8 3.45 179.5 3.17 299.1 8.09 120.0 4.05 180.0 2.19 300.0
48 15.03 119.9 12.41 179.8 9.49 299.6 16.58 120.0 14.19 180.1 10.53 300.1
60 120.0 180.0 299.9 120.0 180.0 300.0
72 120.0 180.0 300.0 120.0 180.1 300.0

Subtotal 118.5 176.5 290.7 120.0 179.9 299.5

Optimal 24 0.98 111.4 0.90 157.8 0.75 244.2 1.00 120.0 0.58 180.0 0.39 299.5
36 6.84 119.9 3.68 179.7 3.26 299.3 9.76 120.2 6.72 180.0 2.50 300.0
48 18.01 120.0 16.48 180.0 13.06 299.8 18.01 120.0 17.33 180.0 14.53 300.1
60 120.0 180.0 300.0 120.0 180.0 300.0
72 120.0 180.0 300.0 120.0 180.0 300.4

Subtotal 118.2 175.5 288.7 120.1 180.0 300.0

Total 117.7 174.8 287.1 120.0 179.8 299.3

Table 2.57: Comparison of the BPC-based heuristics on the W&G-g instances
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SC heuristic BPC-DF heuristic
SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Routing Q Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s]
Traversal 24 0.15 61.7 0.09 75.7 0.06 90.0 1.04 103.5 0.62 151.9 0.13 247.0

36 3.63 116.7 3.35 172.4 3.05 278.7 6.00 120.0 1.22 180.0 0.90 299.1
48 12.79 119.9 11.84 179.7 7.47 299.4 13.26 120.0 8.54 180.1 5.59 300.0
60 21.50 119.9 19.53 179.8 18.34 299.6 20.10 120.0 16.44 180.0 14.64 300.0
72 23.12 120.0 22.99 179.9 21.46 299.8 24.17 120.0 22.00 180.0 20.51 300.0

Subtotal 12.24 107.6 11.56 157.5 10.08 253.5 12.91 116.7 9.76 174.4 8.35 289.2

Return 24 0.31 76.0 0.27 102.8 0.14 141.4 0.23 94.6 0.18 138.0 0.12 221.5
36 4.18 119.6 2.96 179.3 2.60 297.4 5.32 120.0 4.16 180.0 1.51 300.0
48 12.79 119.9 10.01 179.8 6.47 299.4 13.31 120.0 10.75 180.2 6.65 300.0
60 20.09 120.0 19.84 179.9 17.12 299.8 18.03 120.0 17.84 180.0 14.28 300.0
72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 111.1 164.4 267.6 114.9 171.6 284.3

Midpoint 24 0.38 78.5 0.32 105.7 0.20 157.2 0.21 97.7 0.17 140.0 0.12 217.8
36 7.26 117.2 3.71 169.8 3.59 272.8 5.96 120.2 4.36 180.0 1.06 298.3
48 19.30 120.0 17.18 179.9 11.55 299.7 19.09 120.0 17.18 180.0 13.59 300.0
60 26.44 120.0 25.48 180.0 23.20 299.9 26.44 120.0 26.44 180.0 21.16 300.0
72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 111.1 163.1 265.9 115.6 172.0 283.2

L. gap 24 0.39 74.0 0.32 103.8 0.22 158.7 0.22 89.2 0.17 131.1 0.14 208.2
36 7.28 119.8 3.66 178.4 3.49 292.0 6.73 120.2 5.38 180.0 0.99 300.1
48 19.34 120.0 18.52 179.9 15.60 299.8 19.71 120.0 18.33 180.0 14.73 300.0
60 120.0 180.0 300.0 120.0 180.0 300.0
72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 110.8 164.4 270.1 113.9 170.2 281.7

Combined 24 0.55 80.5 0.42 114.7 0.26 170.5 0.34 93.9 0.18 136.1 0.12 219.9
36 3.72 119.8 3.51 178.9 3.17 294.2 6.07 120.0 4.50 180.0 1.51 299.4
48 11.54 119.9 11.25 179.7 7.57 299.4 14.04 120.0 8.01 180.2 5.47 300.0
60 22.41 119.9 19.55 179.9 18.67 299.7 20.06 120.0 17.12 180.0 14.28 300.0
72 25.59 120.0 24.53 180.0 23.39 299.9 25.59 120.0 25.59 180.0 23.87 300.0

Subtotal 12.76 112.0 11.85 166.6 10.61 272.7 13.22 114.8 11.08 171.3 9.05 283.9

Optimal 24 0.61 79.2 0.40 113.5 0.29 172.3 0.90 101.8 0.24 143.9 0.14 225.6
36 6.94 119.0 4.44 175.9 3.29 285.6 8.40 120.1 5.55 180.0 3.09 300.0
48 17.79 120.0 17.17 179.9 12.48 299.8 18.97 120.0 17.39 180.0 13.30 300.0
60 22.10 120.0 21.51 180.0 20.17 299.9 22.10 120.0 22.10 180.0 17.78 300.0
72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 111.6 165.9 271.5 116.4 172.8 285.1

Total 110.7 163.6 266.9 115.4 172.1 284.6

Table 2.58: Comparison of the BPC-based heuristics on the W&G-u instances
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Comparison of Routing Strategies

Tables 2.59–2.62 provide a comparison of the different routing strategies with re-
spect to the total traveled distances for the benchmark sets M&Ö, H&W, and ZKS
aggregated by capacity Q and number of orders n. The columns report the per-
centage increase in the total traveled distances for the respective routing strategy
compared to the optimal strategy. For the comparison, we use the BKS for each
instance and routing strategy.

Q n Traversal Return Midpoint Largest gap Combined
24 20 11.8% 33.3% 9.5% 5.6% 4.3%

30 10.3% 32.3% 9.9% 5.4% 3.3%
40 11.0% 31.8% 10.3% 6.0% 4.2%
50 10.8% 34.0% 10.1% 6.3% 4.0%
60 9.3% 32.2% 10.0% 5.8% 3.3%
70 10.3% 32.9% 9.3% 5.4% 3.9%
80 10.1% 32.9% 9.8% 5.9% 3.6%
90 10.0% 32.7% 9.7% 5.6% 3.3%

100 9.8% 33.1% 10.1% 5.8% 3.2%
Subtotal 10.4% 32.8% 9.9% 5.8% 3.7%

36 20 8.7% 35.7% 14.1% 7.7% 3.0%
30 7.1% 35.2% 14.2% 8.4% 2.3%
40 7.6% 34.2% 13.7% 8.4% 2.9%
50 7.6% 35.7% 13.7% 8.6% 2.8%
60 6.6% 34.2% 13.6% 8.2% 2.2%
70 7.0% 34.8% 13.0% 7.9% 2.6%
80 6.6% 34.9% 13.2% 8.3% 2.5%
90 6.6% 34.4% 13.0% 8.0% 2.1%

100 6.3% 34.7% 13.1% 8.1% 2.2%
Subtotal 7.1% 34.9% 13.5% 8.2% 2.5%

48 20 7.0% 37.0% 18.2% 10.8% 2.6%
30 5.4% 36.3% 18.0% 11.1% 1.9%
40 5.6% 35.5% 17.3% 10.9% 1.8%
50 5.2% 37.2% 16.8% 10.8% 1.9%
60 4.9% 36.3% 17.8% 11.3% 1.4%
70 5.2% 36.8% 16.5% 10.5% 1.8%
80 5.4% 37.2% 16.8% 10.8% 2.0%
90 4.4% 36.1% 15.9% 10.5% 1.6%

100 4.1% 36.3% 16.7% 10.4% 1.6%
Subtotal 5.3% 36.5% 17.1% 10.8% 1.8%

Total 7.6% 34.7% 13.4% 8.2% 2.7%

Table 2.59: Percentage increase in total traveled distances compared to the opti-
mal strategy for the M&Ö instances
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Q n Traversal Return Midpoint Largest gap Combined
30 20 18.8% 52.9% 15.0% 8.5% 7.6%

30 17.7% 53.1% 15.2% 8.8% 7.6%
40 17.1% 52.0% 15.7% 9.1% 7.2%
50 17.6% 52.6% 15.4% 8.8% 7.1%
60 17.3% 52.5% 15.5% 8.9% 7.1%
70 17.4% 52.8% 15.3% 8.9% 7.1%
80 16.9% 52.5% 15.6% 9.0% 7.0%
90 17.0% 52.9% 15.5% 8.9% 7.1%

100 17.2% 52.9% 15.5% 9.0% 7.0%
Subtotal 17.4% 52.7% 15.4% 8.9% 7.2%

45 20 10.4% 53.6% 20.7% 12.5% 4.5%
30 10.3% 54.1% 20.8% 12.8% 4.3%
40 10.2% 54.1% 20.7% 12.5% 4.3%
50 10.0% 54.0% 20.5% 12.7% 4.2%
60 9.9% 54.2% 20.6% 12.6% 4.2%
70 10.0% 54.0% 20.5% 12.5% 4.3%
80 9.8% 53.7% 20.3% 12.4% 4.1%
90 9.5% 53.6% 20.5% 12.5% 4.0%

100 9.7% 53.5% 20.1% 12.4% 4.1%
Subtotal 10.0% 53.9% 20.5% 12.5% 4.2%

60 20 7.8% 56.0% 24.7% 15.9% 3.3%
30 8.0% 56.1% 25.2% 16.1% 3.1%
40 7.7% 55.4% 25.1% 16.2% 2.8%
50 7.6% 55.8% 24.6% 16.0% 3.0%
60 7.5% 55.2% 24.4% 15.7% 3.0%
70 7.5% 55.2% 24.5% 15.8% 2.9%
80 7.3% 54.9% 24.6% 15.8% 2.8%
90 7.1% 55.2% 24.2% 15.7% 2.8%

100 7.2% 55.2% 24.2% 15.6% 2.8%
Subtotal 7.5% 55.4% 24.6% 15.9% 2.9%

75 20 6.2% 56.8% 28.9% 19.1% 2.6%
30 6.9% 57.4% 28.8% 19.3% 2.5%
40 6.6% 57.2% 28.7% 19.2% 2.3%
50 6.6% 57.0% 27.9% 18.9% 2.3%
60 6.4% 57.0% 28.1% 19.0% 2.2%
70 6.3% 57.1% 27.9% 19.0% 2.2%
80 6.1% 56.8% 27.8% 18.9% 2.0%
90 5.8% 56.5% 27.6% 18.8% 1.9%

100 5.7% 56.7% 27.5% 18.7% 1.9%
Subtotal 6.3% 56.9% 28.1% 19.0% 2.2%

Total 10.2% 54.7% 22.1% 14.0% 4.1%

Table 2.60: Percentage increase in total traveled distances compared to the opti-
mal strategy for the H&W UDD instances
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Q n Traversal Return Midpoint Largest gap Combined
30 20 19.4% 51.9% 9.6% 5.4% 8.9%

30 19.7% 52.7% 9.2% 5.3% 8.9%
40 18.7% 52.4% 9.2% 5.3% 8.6%
50 19.3% 52.1% 9.3% 5.3% 8.7%
60 19.6% 52.1% 9.4% 5.4% 8.9%
70 19.1% 52.2% 9.6% 5.4% 8.6%
80 19.0% 52.4% 9.5% 5.4% 8.7%
90 18.7% 51.7% 9.5% 5.4% 8.4%

100 18.9% 52.2% 9.4% 5.3% 8.4%
Subtotal 19.2% 52.2% 9.4% 5.4% 8.7%

45 20 12.7% 52.3% 12.7% 7.4% 5.8%
30 12.8% 53.2% 12.9% 7.4% 6.1%
40 11.9% 52.2% 12.3% 7.2% 5.8%
50 12.1% 52.4% 12.5% 7.3% 5.7%
60 12.0% 52.6% 12.7% 7.3% 5.7%
70 11.7% 52.2% 12.5% 7.2% 5.4%
80 11.8% 52.3% 12.2% 7.0% 5.6%
90 11.6% 52.1% 12.0% 7.0% 5.3%

100 11.8% 52.3% 11.9% 7.1% 5.5%
Subtotal 12.0% 52.4% 12.4% 7.2% 5.7%

60 20 9.8% 52.7% 15.7% 9.3% 4.3%
30 9.7% 53.6% 15.5% 9.4% 4.3%
40 9.2% 53.9% 15.5% 9.4% 4.1%
50 9.0% 53.2% 15.3% 9.3% 4.2%
60 8.9% 52.8% 15.1% 9.1% 4.2%
70 8.7% 53.3% 15.1% 9.3% 4.1%
80 8.6% 52.9% 15.1% 9.2% 4.0%
90 8.7% 53.1% 15.2% 9.3% 4.0%

100 8.8% 53.2% 14.8% 9.1% 4.0%
Subtotal 9.1% 53.2% 15.2% 9.3% 4.1%

75 20 8.6% 54.6% 19.0% 11.6% 3.7%
30 8.0% 53.7% 18.7% 11.7% 3.3%
40 7.7% 54.4% 17.9% 11.4% 3.1%
50 7.5% 54.2% 18.2% 11.4% 3.2%
60 6.9% 53.8% 17.9% 11.4% 2.9%
70 7.1% 54.3% 17.8% 11.3% 3.0%
80 7.1% 54.2% 17.7% 11.2% 3.1%
90 7.2% 54.0% 17.4% 11.1% 3.1%

100 7.1% 53.7% 17.0% 11.0% 3.1%
Subtotal 7.5% 54.1% 18.0% 11.3% 3.2%

Total 11.8% 53.0% 13.7% 8.3% 5.4%

Table 2.61: Percentage increase in total traveled distances compared to the opti-
mal strategy for the H&W CBD instances
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Q n Traversal Return Midpoint Largest gap Combined
6 200 21.1% 30.7% 6.5% 6.2% 5.5%

300 21.0% 29.2% 6.8% 6.5% 5.3%
400 20.8% 28.9% 6.6% 6.3% 5.3%
500 21.2% 28.5% 6.6% 6.3% 5.3%
600 20.9% 28.0% 6.6% 6.2% 5.3%

9 200 17.4% 34.1% 6.1% 5.4% 5.2%
12 200 15.3% 38.8% 5.6% 4.5% 4.9%
15 200 14.2% 40.4% 6.1% 4.6% 4.5%
Total 19.0% 32.2% 6.4% 5.7% 5.2%

Table 2.62: Percentage increase in total traveled distances compared to the opti-
mal strategy for the ZKS instances
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Chapter 3
Solving the Multi-Block Order
Batching Problem with
Branch-Price-and-Cut
Julia Wahlen

Abstract

In the realm of warehouse optimization, the order batching problem (OBP) involves
partitioning customer orders into capacity-constrained batches, such that the total
distance traveled in the warehouse for picking all batches is minimized. This paper
addresses the OBP in rectangular warehouses consisting of two or more blocks with
parallel aisles, expanding upon a branch-price-and-cut (BPC) approach previously
applied to the OBP in single-block warehouses, as discussed in recent literature.
The generic BPC framework can, under certain conditions, handle the complex-
ities of multi-block warehouse layouts and support both optimal and heuristic
picker routing strategies. A key contribution of this work is the analysis of the
monotonicity properties of routing strategies in multi-block configurations, which
are crucial for the application of the BPC method. The extended approach is
thoroughly evaluated on publicly available benchmark instances. Computational
results demonstrate that both the exact BPC and BPC-based heuristics offer sig-
nificant improvements for solving the multi-block OBP compared to the current
state-of-the-art methods. Specifically, instances with up to 80 orders are solved to
proven optimality for five different routing strategies.
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3.1 Introduction
The efficiency of order picking operations is a critical determinant of overall ware-
house performance, particularly in large-scale distribution centers where order pick-
ing can account for a significant portion of operational costs (de Koster et al. 2007,
Tompkins et al. 2010, Richards 2017). Order consolidation is central to optimizing
these operations (Gademann and van de Velde 2005). It allows the order pickers
to fulfill multiple customer orders in a single picking tour through the warehouse,
which reduces both the number of picking tours and the total length of the tours
(Hong et al. 2012). Consequently, it significantly reduces the overall picking effort
compared to single order picking, where each order is fulfilled through a separate,
individual tour (de Koster et al. 1999b, Petersen and Aase 2004). The arising or-
der batching problem (OBP) consists of combining a given set of customer orders,
each consisting of one or more individual items, into batches such that each order
is assigned to exactly one batch, all batches satisfy the capacity restriction, and
the total distance traveled by the pickers in the warehouse to fulfill the batches
is minimized. The batch capacity is given by a maximal number of items that fit
into a batch. Each batch is handled by an order picker who navigates the ware-
house to collect the individual items required for all orders in the batch, following
a predefined routing strategy. The problem of determining the shortest route for
picking a set of items based on a predefined routing strategy has been coined the
single picker routing problem (SPRP) and constitutes a special case of the travel-
ing salesman problem (TSP, Burkard et al. 1998). The OBP for optimal routing,
which involves finding the minimum distance tour for each batch, is commonly
referred to in the literature as the joint order batching and picker routing prob-
lem (JOBPRP, e.g., Won and Olafsson 2005, Kulak et al. 2012, Valle et al. 2016,
Briant et al. 2020). This terminology emphasizes the simultaneous decisions of
assigning orders to batches and determining the shortest TSP tour for each batch.
Besides the optimal routing strategy, heuristic routing strategies can be employed
to solve the OBP. Those are often preferred in practice, as the resulting routes
tend to be more intuitive for the (usually human) pickers to follow (de Koster
et al. 1999b, Grosse et al. 2014). The OBP constitutes an N P -hard optimization
problem (Gademann and van de Velde 2005). We refer to Pardo et al. (2024) for
a comprehensive overview on variants of the OBP and their taxonomy.

Warehouses usually exhibit parallel picking aisles that can be accessed by the
pickers from both sides. Traditionally, research on the OBP has focused on a
rectangular single-block warehouse layout, where all aisles are connected by two
horizontal cross aisles (e.g., Gademann et al. 2001, Hong and Kim 2017, Menén-
dez et al. 2017, Boysen et al. 2017, Žulj et al. 2018). This layout allows to solve
the SPRP for relatively straightforward routing strategies. The picking tour for
optimal routing can be determined by a dynamic programming (DP) algorithm
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proposed by Ratliff and Rosenthal (1983) which exploits the structure of the rect-
angular single-block warehouse and solves the SPRP in linear time (Heßler and
Irnich 2022b). Heuristic routing strategies for the single-block warehouse are, for
example, traversal (Goetschalckx and Ratliff 1988), return, midpoint, largest gap
(Hall 1993), composite (Petersen 1995), combined (Roodbergen and de Koster
2001a), and mixed (Bahçeci and Öncan 2022).

However, many modern warehouses are equipped with multiple horizontal cross
aisles that partition the space into distinct blocks to improve picking efficiency and
flexibility (Roodbergen and de Koster 2001a, Schiffer et al. 2022). Studies indicate
that incorporating an additional cross aisle can significantly reduce the total travel
distance (e.g., Vaughan 1999, Valle and Beasley 2020). Nevertheless, a multi-block
configuration introduces more complex routing scenarios. In warehouses with two
blocks, an SPRP solution for the optimal routing strategy can be determined by
the DP method of Roodbergen and de Koster (2001b). Cambazard and Catusse
(2018) show that the DP approach can be scaled to any rectilinear Steiner tree
problem in the plane in polynomial time, allowing the SPRP to be solved for the
optimal routing strategy in any rectangular multi-block warehouse. Although its
complexity is exponential in the number of cross aisles, SPRP instances with a
reasonable number of blocks can be solved efficiently with the DP (Pansart et al.
2018). Several heuristic multi-block routing strategies have been proposed in the
literature, including aisle-by-aisle (Vaughan 1999), no-reversal (Valle et al. 2017),
traversal, combined, and largest gap (Roodbergen and de Koster 2001a). Notably,
the latter three are extensions of their respective single-block counterparts.

In a recent work, Wahlen and Gschwind (2023) present a branch-price-and-cut
(BPC) approach to solve the OBP in single-block warehouses for six routing strate-
gies. The BPC method offers a powerful tool for warehouse optimization as it can
be applied to any warehouse layout and routing strategy, provided that the cho-
sen routing strategy is monotone. A monotone routing strategy is characterized
by a distance function that is monotonously increasing as additional items are
picked. However, the introduction of a multi-block warehouse layout presents new
challenges in identifying such monotone routing strategies. Building on previous
research to solve the SPRP, this work focuses on exploring the monotonicity prop-
erty of six routing strategies in multi-block layouts. Our approach is to extend the
state-of-the-art BPC algorithm, along with two BPC-based heuristics, to address
the multi-block OBP for suitable routing strategies.

3.1.1 Contributions
This work contributes to the ongoing development of advanced order batching
methods, offering new insights for tackling the challenges of multi-block rectangular
warehouse environments. Building on the BPC approach of Wahlen and Gschwind



Chapter 3. Solving the Multi-Block OBP with BPC 110

(2023) which excels at solving the OBP in single-block warehouses, our research
extends this method to address the multi-block OBP. The key contributions of this
paper can be summarized as follows:

• We thoroughly investigate the monotonicity of six routing strategies in multi-
block warehouses, a crucial factor for the effective application of the BPC
method.

• We analyze the computational effects of five monotone routing strategies on
the BPC’s performance, providing insights into their impact on multi-block
order batching efficiency.

• The exact BPC approach and two derived BPC-based heuristics serve as a
new standard for future research as they outperform the current state-of-the-
art methods on publicly available two-block benchmark instances.

3.1.2 Organization of the Paper
The remainder of the paper is structured as follows. In Section 3.2, we review the
related literature. Section 3.3 formally defines the OBP, presents a set-partitioning
formulation of the problem, and briefly summarizes the BPC algorithm. The
considered multi-block warehouse layout and routing strategies are specified in
Section 3.4, where special attention is paid to the monotonicity property of the
multi-block routing strategies. Section 3.5 presents our computational results.
Final conclusions are drawn in Section 3.6.

3.2 Literature Review
In the following, we present the current state of research considering both exact
and heuristic solution approaches to solve the OBP in rectangular warehouses
consisting of two or more blocks. A summary of the approaches including our
methods is provided in Table 3.1.

To the best of our knowledge, there are three exact methods in the literature to
date, all of which use branch-and-cut (B&C) methods that can be applied to solve
the JOBPRP in warehouses with an arbitrary number of blocks.

Valle et al. (2016) introduce three integer linear programming (IP) formulations,
two of which are compact network flow formulations that can be solved with a
general-purpose mixed integer linear programming (MIP) solver. For the third
formulation, which contains exponentially many connectivity constraints, a B&C
method is presented. The approaches are evaluated on a benchmark generated
by Valle et al. (2016), which is based on publicly available data from the super-
market chain Foodmart (Thia 2008), referred to as Foodmart. Foodmart instances
with up to 15 orders can be solved by at least one of the three methods within
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Table 3.1: Overview of exact and heuristic solution approaches to the multi-block
OBP
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six hours of computation time. For small instances, the compact formulations
perform better overall, whereas the formulation with an exponential number of
constraints dominates with an increasing number of orders because of stronger
lower bounds obtained. Valle et al. (2017) add highly effective valid inequalities
to the non-compact formulation of Valle et al. (2016) exploring the warehouse lay-
out. The resulting extended B&C optimally solves Foodmart instances comprising
up to 20 orders for optimal and no-reversal routing within six hours. The pro-
posed method can also be used to solve the SPRP for the optimal routing strategy
with respect to a given set of orders. The authors exploit this by heuristically
determining batches for OBP instances with up to 5,000 orders and solving the
corresponding SPRP with the above-mentioned approach. Further improvements
of the IP formulation are suggested by Zhang and Gao (2023) by reconstructing
the connectivity constraints. Their B&C solves modified Foodmart instances with
up to 23 orders within 40 minutes of computation time for the routing strategies
optimal and no-reversal.

In most heuristic approaches, the decisions on batching and routing are made
separately. Kulak et al. (2012) present a cluster-based tabu search method in order
to obtain feasible batches of orders. The corresponding picking tours for optimal
routing are determined in a second step by applying a combination of nearest
neighbor and or-opt heuristics, or a combination of savings and 2-opt heuristics.
The approach demonstrates superior performance compared to a genetic algorithm
for the traversal routing strategy in terms of solution quality. An iterated local
search method for two-block warehouse layouts is proposed by Scholz and Wäscher
(2017). They apply the local search operators swap, shift, and perturbation to
solve the OBP for the routing strategies optimal, traversal, largest gap, aisle-by-
aisle, combined, combined+, and a heuristic based on the optimal strategy. The
approach is assessed by comparing the resulting distances across the different rout-
ing strategies, using self-generated instances referred to as Scholz&Wäscher. The
authors observe that the total distance resulting from their iterated local search
approach for the heuristic routing strategies is on average up to 25% longer than
that achieved for the optimal routing strategy. Valle and Beasley (2020) suggest
an edge-based distance approximation MIP to determine the assignment of orders
to batches without directly addressing the SPRP. The use of sub-tour elimination
constraints, which are usually very computationally extensive, becomes obsolete
with their formulation. Once the batches have been created on the basis of approx-
imated distances, their associated picking tours are determined for the strategies
optimal and no-reversal applying the SPRP approach of Valle et al. (2017). Com-
putational studies on the Foodmart benchmark with up to 75 orders show that
the distance approximation approach provides qualitatively similar results to the
B&C method of Valle et al. (2017) with significantly less computation time. Bri-
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ant et al. (2020) propose a column generation (CG) heuristic which is based on a
set-covering formulation of the OBP. The iterative CG process consists of solving
a relaxed pricing MIP, which underestimates the actual distance of the picking
tour and therefore the reduced cost of the batch. Only for batches with negative
estimated reduced costs, the corresponding SPRP for the optimal or no-reversal
routing strategy is solved with the approach of Cambazard and Catusse (2018).
After the CG procedure, the final OBP solution is determined by solving a set-
covering MIP based on the identified batches and their actual distances by a MIP
solver. The approach is complemented by a post-optimization process in the form
of a hill-climbing procedure initiated from the best feasible solution found. The CG
heuristic improves several best-known solutions (BKS) from (Valle et al. 2017) for
the Foodmart benchmark including very large-scale instances consisting of up to
5,000 orders. It also provides precise upper bounds for the more general industrial
instances introduced by Bué et al. (2019).

3.3 Problem Description and Solution Approach
In this section, we formally define the OBP and present a mathematical formulation
of it. We also provide an overview of the exact BPC and the BPC-based heuristics.

3.3.1 Problem Definition and Mathematical Formulation
Given a set of customer orders O = {1, . . . , n}, each consisting of a set of items
to be picked in the warehouse, and a sufficient number of pickers with capacity Q.
The capacity consumption of each order o ∈ O is given by qo ≥ 0. A feasible
batch represents an order subset b ⊆ O satisfying ∑

o∈b qo ≤ Q. We assume Q
to be sufficiently large to encompass any order, i.e. qo ≤ Q for all o ∈ O, as
splitting of the orders is not allowed. According to a predefined routing strategy,
an order picker navigates through the warehouse to retrieve the items required
to fulfill all orders within a batch. The OBP consists of grouping all orders into
capacity-feasible batches such that each order is assigned to exactly one batch, and
the total distance traveled to pick the batches is minimized.

Let Ω denote the set of all feasible batches. The distance traveled to pick
batch b ∈ Ω according to the routing strategy in use is given by a function cb.
Binary parameters rob indicate if order o ∈ O is contained in batch b ∈ Ω or not.
Binary decision variables λb are equal to one if batch b ∈ Ω is selected in the solu-
tion and zero otherwise. The set-partitioning formulation of the OBP is given as
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follows:

min
∑
b∈Ω

cbλb (3.1a)

s.t.
∑
b∈Ω

robλb = 1 ∀o ∈ O (3.1b)

λb ∈ {0, 1} ∀b ∈ Ω (3.1c)

The Objective (3.1a) minimizes the total distance traveled, and Constraints (3.1b)
ensure that each order is assigned to exactly one batch. Observe that the under-
lying warehouse layout and the given routing strategy are only taken into account
by the function cb, which generally allows application of Formulation (3.1) to any
warehouse scenario. However, cb is generally not separable in o ∈ b, i.e., the total
distance traveled for a batch cannot be separated into the individual orders the
batch comprises.

3.3.2 Branch-Price-and-Cut Method
Even with small instance sizes, enumerating all feasible batches leads to a large
set Ω, which makes it hardly possible to solve Formulation (3.1) directly. Therefore,
BPC-based approaches have been introduced for its solution. These are branch-
and-bound (B&B) methods where a CG technique is employed in each node of the
B&B tree to compute the lower bounds. The CG alternates between solving a re-
stricted master problem (RMP), which is the linear relaxation of Formulation (3.1)
considering only a subset Ω̄ ⊂ Ω of the batches, and solving a pricing problem
in order to augment Ω̄ with promising batches. To initialize the BPC process, a
start heuristic can be applied to generate an initial set of feasible batches Ω̄. The
pricing problem consists of identifying batches with negative reduced costs. Cuts
can be added to strengthen the linear relaxations.

For general information on CG and branch-and-price, we refer to (Desrosiers
et al. 2024). In the following, we briefly describe the main components of the
exact BPC and the two BPC-based heuristics employed, and refer to (Wahlen and
Gschwind 2023) for further details on the algorithms and the computational setup.

3.3.2.1 Exact BPC

Pricing Problem The reduced cost of a batch b ∈ Ω is defined as c̃b = cb −∑
o∈b πo, where πo denotes the dual prices associated with Constraints (3.1b). The

CG pricing problem involves either identifying at least one feasible batch b ∈ Ω
with a negative reduced cost or proving that no such batch exists. If no batch
with a negative reduced cost exists, the current solution is optimal for the relaxed
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Formulation (3.1), and thus, the CG algorithm terminates. Otherwise, at least one
batch with negative reduced cost is added to the RMP.

The pricing problem can be formulated as a shortest path problem with resource
constraints (SPPRC) on a linear directed multigraph G = (V, A) with n+1 vertices
V = {0, . . . , n} and 2n arcs A. Vertex 0 serves as an artificial source, whereas
vertices 1, . . . , n correspond to the n orders. For each v ∈ V \{0}, there is a pair of
parallel arcs connecting vertices v−1 and v, representing the inclusion or exclusion
of order v, respectively. Each arc is associated with the dual price and the capacity
consumption that result from the inclusion (exclusion) of order v, specifically πo

and qo (0 and 0). Solving the pricing problem for the OBP is equivalent to finding a
capacity-feasible 0-n-path in G with minimum reduced cost. SPPRCs are typically
addressed using DP labeling algorithms (Irnich and Desaulniers 2005). In our
BPC, each label represents a partial path containing information such as the last
vertex, the set of included orders, the accumulated capacity consumption, and the
reduced cost. Those labels are iteratively extended from a given source (0) to a
given sink (n) along the network arcs via dedicated resource extension functions.

The non-separability of the distance function presents two main challenges for
the labeling algorithm. First, each label propagation requires a computationally
extensive evaluation of the distance function to determine the label’s reduced cost.
Second, the commonly established dominance relation between labels in order to
reduce the number of generated labels cannot be applied. To mitigate these issues,
the particular labeling algorithm relies on a strong bounding procedure to avoid
the enumeration of all feasible paths. It consists of calculating a lower bound for
the reduced cost of each capacity-feasible 0-n-path in G that contains the 0-v-path
corresponding to a given label at vertex v. The completion bounds can be cal-
culated by solving a single binary knapsack problem. Any labels that cannot be
extended to yield a negative reduced cost through any capacity-feasible extension
(i.e., those for which the sum of their reduced cost and the corresponding com-
pletion bound is greater than or equal to zero) can be discarded. However, the
validity of this bounding procedure requires monotonicity of the routing strategy.

Cutting Valid inequalities in the form of capacity cuts (CCs) and subset-row
cuts (SRCs) are added dynamically to strengthen the RMP. CCs ensure that for
a subset of orders, the number of batches covering these orders is not smaller
than a minimum number of batches needed to accommodate all orders comprised
in the subset. Three different methods are used for their separation: a greedy
construction procedure, a connected component-based heuristic, and a MIP-based
approach. SRCs guarantee that the number of batches containing two or more
orders from any subset of three orders is not greater than one. They are separated
by simple enumeration. Both types of cuts are non-robust. The CCs additionally
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influence the computation of the completion bounds.

Branching Branching is first performed on the number of batches, if fractional,
by adding a linear constraint to the RMP. On the second level, a branching pro-
cedure based on (Ryan and Foster 1981) is applied. If in the current solution of
the RMP, two orders i, j ∈ O are assigned to the same batch b that has a frac-
tional value λb, we can branch on that order pair. One branch ensures that i
and j are assigned to separate batches by forcing variables λb with rib = rjb = 1
to zero, whereas the other branch ensures that i and j are together in a batch
by forcing variables λb with rib + rjb = 1 to zero. Both types of decisions can be
realized in the RMP by excluding the corresponding batch columns that must also
be prevented from being regenerated in the CG. As the node selection strategy,
the best-bound-first search is used.

3.3.2.2 BPC-based Heuristics

Building on the powerful CG component of the BPC, two heuristics are derived
to solve the OBP. The first one, known as the set-covering heuristic (SC) employs
a MIP solver to address Formulation (3.1) over all batch columns generated up
to the root node, without utilizing branching techniques. The second heuristic,
referred to as depth-first (BPC-DF), integrates best-bound-first and depth-first
search strategies as the node selection method within the BPC algorithm. These
approaches are specifically designed to quickly generate strong upper bounds, pri-
oritizing speed over achieving proven optimality.

3.4 Multi-Block Routing Strategies
In this section, we describe the considered multi-block warehouse layout and pro-
vide a detailed description of the routing strategies that can be used to solve the
SPRP in a multi-block layout. Furthermore, we formally define the monotonic-
ity property of a routing strategy and investigate it for each of the introduced
strategies.

3.4.1 Warehouse Layout
We consider a rectangular warehouse layout with parallel vertical aisles of equal
length and width. The standard single-block warehouse features two perpendicular
cross aisles that end the front and back of each aisle. In this paper, we focus on a
generalized layout with one or more additional horizontal cross aisles at interme-
diate positions of the aisles, dividing the warehouse into two or more blocks and
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each aisle into just as many sub-aisles. We refer to this kind of warehouse layout
as a multi-block layout, consisting of H ≥ 2 blocks {1, 2, . . . , H} and H + 1 cross
aisles {0, 1, . . . , H}, both indexed according to decreasing distance from the depot.
Each sub-aisle of a block h ∈ {1, 2, . . . , H} can be entered from both its back
cross aisle h − 1 and front cross aisle h. Racks are positioned on both the left and
right side of each sub-aisle. Each rack contains several storage locations and each
storage location can hold multiple items. We assume, however, that each item is
assigned to a single, predetermined storage location. Pickers always travel in the
horizontal center of the aisles and cross aisles. The retrieval of items is performed
from the vertical center of a storage location, eliminating the need for horizontal
movement. The starting and ending point of each picking tour is a common depot
located in cross aisle H in front of the leftmost vertical aisle.

Figure 3.1 presents a top-down view of an exemplary instance of the OBP con-
sisting of n = 5 orders in a warehouse with H = 3 blocks and S = 6 aisles. Each
sub-aisle exhibits five storage locations on both sides. The individual storage lo-
cations of the required items are labeled with the order number o ∈ {1, . . . , 5} to
which they belong. In the following examples, we assume a vertical length of ` = 1
per storage location so that each rack has a length of L = 5. Let the horizontal
distance between two adjacent aisles be W = 3, and the distance to enter or leave
a sub-aisle from a cross aisle be a = 1.

3.4.2 Detailed Description of Routing Strategies
In general, heuristic routing strategies offer an initial advantage over optimal rout-
ing due to their intuitive design, making them easier for pickers to apply in prac-
tice. However, as the number of blocks in a warehouse increases, the complexity of
heuristic picking routes also potentially grows, diminishing this advantage. On the
other hand, as demonstrated by our computational study in Section 3.5, the trade-
off between total distance traveled and computation time suggests that addressing
the multi-block OBP for heuristic routing strategies may still be a justified choice.

All multi-block routing strategies examined in this paper – optimal, no-reversal,
aisle-by-aisle, traversal, combined, and largest gap – are detailed below. We desig-
nate a block, aisle or sub-aisle as required if it contains at least one storage location
with an item that needs to be picked and has not yet been accessed. The resulting
picking routes are depicted in Figure 3.2 for batch b = {1, 2, 3, 4, 5}, illustrating
the respective routing strategies employed.

Optimal In an SPRP tour for the optimal routing strategy, all required sub-aisles
are visited either by a single traversal, a double traversal, a return trip (U-turn)
from the front or back cross aisle, or a double return visit omitting the largest gap
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Figure 3.1: Rectangular parallel-aisles three-block warehouse layout

between two required storage locations of the sub-aisle. Each cross aisle section
between two adjacent aisles is passed through a maximum of two times. The
minimum distance of all feasible picking tours that start and end at the depot can
be determined by solving a DP based on the aforementioned sub-aisle and cross
aisle transitions. We refer to (Cambazard and Catusse 2018, Ratliff and Rosenthal
1983) for a description of the general DP algorithm and to (Pansart et al. 2018)
for details on its application to the SPRP in multi-block warehouses.

No-Reversal The no-reversal strategy proposed by Valle et al. (2017) seeks a
minimum distance tour that completely traverses all required sub-aisles. It does
not allow return movements within a sub-aisle but only in the cross aisles, which
can help to avoid congestion within the aisles. A no-reversal picking tour can
be determined by applying the distance-minimizing DP for the optimal routing
strategy, omitting all return moves in the sub-aisles. In other words, it is an
“optimal” tour under the constraint that return movements are prohibited.
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Aisle-by-Aisle The aisle-by-aisle strategy was specifically designed by Vaughan
(1999) for use in multi-block warehouses. The core concept is to enter each aisle
no more than once, visiting all required sub-aisles of an aisle consecutively. A
DP algorithm is used to determine the cross aisles that minimize the total travel
distance when transitioning between consecutive aisles, moving from left to right
through the warehouse. Note that the original approach terminates after visiting
the rightmost required aisle. We extend this by incorporating the order picker’s
return to the depot using its closest cross aisle, following the method proposed by
Roodbergen and de Koster (2001a).

Traversal The multi-block traversal (also known as the S-shape) strategy pre-
sented by Roodbergen and de Koster (2001a) operates sequentially, advancing from
block to block based on increasing index. In this approach, all items within a block
are picked consecutively before moving on to the next block. Starting from the
depot, the picker enters the leftmost required aisle and traverses it entirely up to
the front cross aisle of the farthest required block, which is traversed horizontally
to access the block’s leftmost required sub-aisle. Each required sub-aisle in that
block is fully traversed from left to right. If the number of required sub-aisles in
the block is odd, the rightmost required sub-aisle is visited by a return move in
order to exit into the block’s front cross aisle. Roodbergen and de Koster (2001a)
define that the picker then moves to the closest of either the leftmost or rightmost
required sub-aisles in the next block that is closer to the depot. In this block, the
process of traversing all required sub-aisles is repeated, and this continues for each
subsequent block until the depot is reached. In case of an even number of required
sub-aisles, a return move is performed in the respective last approached sub-aisle.
If a block between the farthest required block and the depot is not required, it is
just traversed. The picker returns to the depot using the foremost cross aisle.

To ensure monotonicity of the traversal strategy – which is not guaranteed by the
above definition provided by Roodbergen and de Koster (2001a), as demonstrated
in Section 3.4.3 – we establish the horizontal travel direction for each block as
follows: All odd-indexed blocks are traversed from left to right, whereas all even-
indexed blocks are traversed from right to left. This definition does not alter
the fact that the leftmost required aisle is always traversed to reach the farthest
required block first. As previously stated, each required sub-aisle is traversed,
and the picker exits each block into its corresponding front cross aisle, which may
necessitate a return in the last visited sub-aisle. If there is only one required sub-
aisle in the farthest required block, it is visited by a return move. Otherwise, the
leftmost required sub-aisle is traversed. If the block has an odd index, the picker
collects all remaining items in this block moving toward the rightmost required
sub-aisle, according to the previously described policy. In contrast, if the block
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has an even index, the picker moves horizontally along the block’s back cross aisle
to reach the rightmost required sub-aisle. Starting from there, the picker visits
all required storage locations (that have not yet been accessed) within the block,
moving toward the left. Subsequently, when approaching the next required block, if
it is even (odd), the picker moves horizontally to the rightmost (leftmost) required
sub-aisle of that block and visits all required sub-aisles, proceeding toward the
leftmost (rightmost) required sub-aisle of the block.

Our revised definition of the traversal strategy, ensures consistency of the picking
tours, which not only enhances intuitiveness for the pickers but also preserves
monotonicity of the routing strategy within a multi-block warehouse layout (see
Section 3.4.3). In a two-block setting, our definition offers significant potential for
reducing the total travel distance compared to the conventional definition, as the
resulting horizontal distance is consistently either smaller or equal, whereas the
number of traversal and return moves remains unchanged. Note that Roodbergen
and de Koster (2001a) suggest a similar improvement. However, in warehouses
with more than two blocks, this strategy may be less advantageous in terms of
total distance traveled.

Combined According to the combined routing strategy given by Roodbergen
and de Koster (2001a), either a traversal or a return move is performed in each re-
quired sub-aisle. By solving a DP for each individual block, the minimum distance
intra-block picking routes are determined which consist only of these two sub-aisle
transitions. First, the leftmost required aisle is traversed to the front cross aisle
of the farthest required block. After picking all items in that block from left to
right according to the DP solution and leaving the block in its front cross aisle, the
picker approaches the closest out of the leftmost required and rightmost required
sub-aisles of the next block. The procedure is repeated block by block and the
picker uses the foremost cross-aisle to return to the depot.

We propose a revised version of the combined approach by specifying horizontal
travel directions for each block to guarantee monotonicity, a property not assured
by the traditional definition given by Roodbergen and de Koster (2001a). Specif-
ically, blocks with an odd index are visited from left to right, and blocks with an
even index from right to left, if required. This approach adopts the sequence of
required sub-aisle visits proposed for the traversal strategy. Excluding the leftmost
required aisle, which is traversed first towards the farthest required block, the DP
process for each block begins at the corresponding back cross aisle and terminates
at the front cross aisle. An exception occurs when the farthest required block has
an odd index or only one required sub-aisle, where the DP process is both initiated
and concluded at the front cross aisle. In contrast, if the farthest required block
has an even index, a traversal is performed within the leftmost required sub-aisle,
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(c) Aisle-by-aisle strategy

1

1

1

1

1

2

2
2

2

2

3

4
4

5

5
5

5

5

Depot

(d) Traversal strategy

Figure 3.2: Picking routes for batch b = {1, 2, 3, 4, 5} and different routing strate-
gies
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(f) Largest gap strategy

Figure 3.2: Picking routes for batch b = {1, 2, 3, 4, 5} and different routing strate-
gies (cont.)

allowing the DP process to begin at the back of the rightmost required sub-aisle.
It is evident that in a two-block layout, our revised combined strategy results in
a total horizontal distance that is either smaller than or equal to that of the tra-
ditional definition, similar to the improvement suggested by Roodbergen and de
Koster (2001a). However, this advantage does not necessarily extend to the general
multi-block scenario.

Largest Gap The multi-block largest gap routing strategy proposed by Rood-
bergen and de Koster (2001a) proceeds by visiting the blocks in increasing order
of their index. The concept is to enter each required sub-aisle from both enclos-
ing cross aisles in a manner that leaves out the maximum distance between two
adjacent required storage locations within the sub-aisle, or between an enclosing
cross aisle and its nearest required storage locations in the sub-aisle. The set of
items in a block located above the gap is picked from the block’s back cross aisle,
the others from the respective front cross aisle. Starting at the depot, the leftmost
required aisle is traversed to the front of the farthest required block. If there is only
one sub-aisle required in this block, it is visited by a return move. Otherwise, the
leftmost required sub-aisle of the block is traversed and the picker moves towards
the rightmost required sub-aisle collecting all items that have to be picked from
the back cross aisle. The last required sub-aisle of the block is traversed completely



Chapter 3. Solving the Multi-Block OBP with BPC 123

and the picker collects the remaining items of that block from the front cross aisle
in opposite horizontal direction. The picker then navigates to the farthest required
sub-aisle among the next block’s leftmost and rightmost required sub-aisles, visit-
ing all required storage locations from the block’s back cross aisle by following the
shortest path. The farthest required sub-aisle is traversed and the picker picks the
remaining items of the block from its front cross aisle. This procedure is repeated
block by block towards the depot.

3.4.3 Monotonicity Property
The monotonicity of a routing strategy allows both modeling the OBP as a set-
covering problem by replacing Constraints (3.1b) with covering restrictions, and
using a dedicated bounding procedure to solve the CG pricing problem, consti-
tuting a key feature of the BPC approach (see Section 3.3). The monotonicity
property can be formally defined as follows.

Definition 3.1. A routing strategy is monotone if its distance function cb is mono-
tone, i.e., if for any two feasible batches b1 ⊆ b2 follows cb1 ≤ cb2.

All routing strategies discussed, with the exception of the largest gap strategy,
exhibit monotonicity in a warehouse with H ≥ 1 blocks, as demonstrated by the
following proposition.

Proposition 3.1. The routing strategies optimal, no-reversal, aisle-by-aisle, traver-
sal, and combined are monotone in a multi-block warehouse layout.

Proof. Let R denote the set of storage locations required by orders in b2 \b1. With-
out loss of generality, we assume in the following that R is non-empty (otherwise
cb1 ≤ cb2 obviously holds).

Optimal The optimal routing strategy follows a distance-minimizing TSP tour
over all required storage locations allowing all sub-aisle and cross aisle tran-
sitions. Since the distances between all storage locations satisfy the triangle
inequality, an additional location in R can never reduce the length of an
optimal TSP tour and we immediately have cb1 ≤ cb2 .

No-Reversal The no-reversal routing strategy selects the minimum distance pick-
ing tour over all required storage locations allowing all cross aisle transitions
but restricting movement within sub-aisles to traversal only. Because an ad-
ditional location in R does not impact traversal length and cannot decrease
the number of sub-aisles to be traversed, cb1 ≤ cb2 obviously holds for the
no-reversal strategy.
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Aisle-by-Aisle The aisle-by-aisle routing strategy chooses the distance-minimizing
picking route, entering each required aisle exactly once. By definition, the to-
tal horizontal distance traveled for a batch is exactly twice the distance from
the depot to the rightmost required aisle. This distance increases strictly if
an additional storage location in R is located in an aisle that is further to
the right than the rightmost required aisle of b1. Otherwise it remains the
same. Because the addition of a location in R does not affect the sub-aisle
traversal length but may increase the distance of a return move, the total
vertical traveled cannot decrease. Therefore, the inequality cb1 ≤ cb2 holds
for the aisle-by-aisle strategy.

Traversal Due to the predefined sequence of sub-aisles to be visited according to
our definition of the traversal strategy, the total horizontal distance traveled
cannot be reduced by an additional required storage location in R. Con-
versely, any location in R that is positioned further to the right than the
rightmost required sub-aisle or further to the left than the leftmost required
sub-aisle of b1 in any block may only result in additional horizontal distance.
With regard to the vertical distances, any location in R does not affect the
distance of a traversal but may only increase the distance for a return in the
corresponding sub-aisle. Further, each additional required sub-aisle results in
additional vertical distance (i.e., two traversals instead of a single return, or
an additional return move) which has been shown by Wahlen and Gschwind
(2023). Thus, the traversal strategy satisfies cb1 ≤ cb2 .

Combined Within each block, our definition of the combined strategy chooses the
distance-minimizing picking route using only the sub-aisle moves traversal
and return, given the sequence of the sub-aisles to be visited. Any locations
in R do not influence the distance of a traversal move, but can only increase
the distance for returns in the corresponding sub-aisles. Accordingly, any
additional required sub-aisle will result in an increase in the vertical distance
traveled. Furthermore, any location in R that is located further to the right
than the rightmost required sub-aisle or further to the left than the leftmost
required sub-aisle of b1 in any block can only increase the total horizontal
distance traveled. Consequently, cb1 ≤ cb2 holds for the combined strategy.

The traditional definitions of the multi-block routing strategies traversal and
combined, as proposed by Roodbergen and de Koster (2001a), do not adhere
to the monotonicity property. Because the horizontal travel directions are not
fixed a priori, the vertical distance traveled within a block may decrease if the
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picking sequence of sub-aisles in the block is reversed due to an additional re-
quired storage location. Figure 3.3 shows the resulting picking tours for the tradi-
tional definition of the two strategies in a two-block layout. The picking route of
batch b1 = {2} is illustrated with a dashed blue line. The red dotted route is ob-
tained for batch b2 = b1∪{3}. The corresponding distances are cb1 = 49 > cb2 = 46.
In contrast, according to our revised definitions of traversal and combined, the tour
for b1 follows the red dotted path without entering block 1, resulting in a total dis-
tance of 43.

2
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2
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Depot

Figure 3.3: Picking routes for the traditional definitions of traversal and com-
bined and batches b1 = {2} (blue) and b2 = {2, 3} (red)
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Figure 3.4: Picking routes for the largest gap strategy and batches b1 = {1}
(blue) and b2 = {1, 4} (red)

The largest gap strategy exhibits non-monotone behavior in warehouses with
H ≥ 2 blocks, as illustrated by the example in Figure 3.4 within a two-block
layout. The picking route corresponding to batch b1 = {1} comprising only order 1
is shown in blue dashed lines. Note that the largest gap in the second sub-aisle
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of block 1 is between the two required storage locations in that sub-aisle, hence
the sub-aisle needs to be visited twice by return moves from both enclosing cross
aisles 0 and 1. Comparing the tour for batch b2 = b1 ∪ {4}, shown as a red dotted
line, the largest gap in the mentioned sub-aisle is now between the front cross
aisle 1 and the nearest item. Accordingly, a single return move from cross aisle 0
is executed in this sub-aisle and there is no re-entering from cross aisle 1, making
redundant any horizontal movement in that cross aisle. The resulting distances
are cb1 = 90 > cb2 = 67, which contradicts the monotonicity property.

3.5 Computational Results
Our BPC-based approaches were implemented in C++ and compiled into a 64-bit
single-thread executable with MS Visual Studio 2022. CPLEX 20.10 with de-
fault parameters (except for the time limit and allowing only one thread) was
used as a MIP solver. The computations were carried out on the HPC cluster
Elwetritsch of the University of Kaiserslautern-Landau consisting of several Intel
Xeon Gold 6126 processors running at 2.60 GHz. The computational setup uti-
lized in this study aligns with that described in (Wahlen and Gschwind 2023) for
all routing strategies and instances, with one notable exception: the travel dis-
tances of batches are stored in a hash table upon their initial computation. This
method, previously discussed and tested by Wahlen and Gschwind (2023), was
found to be ineffective for the single-block OBP. However, pretests demonstrated
significant speedups for the multi-block OBP, thereby justifying its implementa-
tion in the current study. We set the time limit for each instance to 3,600 seconds.
Unsolved instances are considered with the time limit of 3,600 seconds in our anal-
ysis. Instance-by-instance results are provided at https://wiwi.rptu.de/fgs/
logistik/obp-multiblock-detailedresults.

3.5.1 Benchmark Instances
We focus our computational study on the benchmark prepared by Valle et al.
(2016, 2017), which is derived from an industrial database (Foodmart), and on
the instances generated by Scholz and Wäscher (2017) (Scholz&Wäscher). Only
a small fraction of the considered instances have been solved to proven optimality
before.

The Foodmart instances are based on anonymized online grocery purchases made
at the supermarket chain Foodmart over a period of two years. All purchases made
by a customer within a given number of days have been merged into a single order.
Each instance consists of the n orders with the highest number of different items
requested during the first ∆ days, such that order size is positively correlated with

https://wiwi.rptu.de/fgs/logistik/obp-multiblock-detailedresults
https://wiwi.rptu.de/fgs/logistik/obp-multiblock-detailedresults
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the number of days. The Foodmart benchmark is characterized by the number
of orders n ∈ {5, 6, . . . , 49, 50, 75}, the number of days ∆ ∈ {5, 10, 20}, and the
warehouse configuration including a number of aisles S ∈ {8, 16}. The benchmark
comprises 282 instances. Additionally, six large-scale instances consisting of up
to 5,000 orders are considered for the heuristic approaches. The capacity of each
picker is assumed to be Q = 8 boxes, each of which can accommodate up to
40 items belonging to the same order. The capacity consumption of each individual
order o ∈ {1, . . . , n} consisting of |o| items therefore corresponds to qo =

⌈
|o|
40

⌉
boxes

(with qo ≤ 2 for the given instances). For more details on the instance generation,
we refer to (Valle et al. 2017). The considered warehouse layout has H = 2 blocks
either consisting of S = 8 aisles with rack lengths of L1 = 16 in block 1 and L2 = 17
in block 2, or S = 16 aisles with L1 = 8 and L2 = 9. The length of a single storage
location is ` = 1. Entering a sub-aisle corresponds to a travel distance of a = 1.5.
The distance between two adjacent aisles is W = 5. The depot is located one
unit distant from its nearest cross aisle in front of the leftmost aisle. The distance
between the depot and the cross aisle is measured Euclidean, i.e, at the level of
aisle s ∈ {1, . . . , S} it is

√
(1 + a)2 + ((s − 1)W )2.

Note that for the routing strategies optimal and no-reversal, the remote de-
pot location in this setup is technically equivalent to introducing an additional
block H + 1. It results in over 100 feasible states in the DP approach for solving
the SPRP, compared to only 25 feasible states when the depot is located directly
at cross aisle H of the warehouse (Roodbergen and de Koster 2001b). A detailed
explanation of the state generation process, along with a comprehensive list of
feasible states for the Foodmart instances, is provided in Appendix 3.A.

The Scholz&Wäscher instances are each specified by the number of orders n ∈
{20, 40, 60, 80}, the capacity Q ∈ {30, 45, 60, 75}, and the number of aisles S ∈
{10, 30} in the warehouse. The number of items per order o ∈ {1, . . . , n} is uni-
formly distributed over [5, 25] and defines its capacity consumption qo. In the
considered warehouse with H = 2 blocks, the length of each rack is L = 25, and
the length of a single location is ` = 1. The horizontal distance between two adja-
cent aisles is W = 5. To enter a sub-aisle, a distance of a = 1 must be traveled.
There are 50 instances per (n, Q, S)-combination and thus, the Scholz&Wäscher
benchmark comprises a total of 1,600 instances.

3.5.2 Comparison with State-of-the-Art
We first compare our BPC with the state-of-the-art B&C approaches of Valle et al.
(2017) and Zhang and Gao (2023) for the optimal routing strategy. Valle et al.
(2017) consider all Foodmart instances with n ∈ {5, 6, . . . , 14, 15, 20, 25, 30} orders
and S = 8 aisles, and set a time limit of 21,600 seconds (six hours), whereas the
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study of Zhang and Gao (2023) is based on the subset of Foodmart instances with
n ∈ {5, 10, 15, 16, 17, . . . , 24, 25, 30} and S = 8 with a time limit of 2,400 seconds
(40 minutes). Tables 3.2 and 3.3 show the comparison aggregated on the number of
orders n, respectively. The tables contain information on the number of instances
(Inst), the number of optimal solutions (Opt) and the average solution time in
seconds (t[s]) of each approach. Note that the data presented for (Valle et al.
2017) in Table 3.2 is sourced from (Valle and Beasley 2020), who rerun the B&C
calculations. Note further that Zhang and Gao (2023) simplistically assume a depot
position within cross aisle 2, neglecting the Euclidean distances to the depot. In
order to nevertheless allow a fair comparison with their algorithm we make the
same assumption, causing our computation times stated in Table 3.3 to differ from
those in the other tables. Instance-specific results are provided in Tables 3.13
and 3.14 in Appendix 3.B.

Tables 3.2 and 3.3 demonstrate that the BPC clearly outperforms both B&C
methods. Whereas Valle et al. (2017) and Zhang and Gao (2023) optimally solve
35 and 27 of 42 considered instances, respectively, we solve all of these instances to
proven optimality. Furthermore, our BPC method is on average more than three
orders of magnitude faster than each of the B&C approaches for the considered
instances. A striking conclusion from comparing the two tables is that the average
computation time of the BPC reduces to a fraction when adopting the assumption
of Zhang and Gao (2023) with respect to the depot location (e.g., 24.9 seconds vs.
4.6 seconds on average for n = 30). This demonstrates the exponential increase in
the complexity of the DP algorithm used to solve the SPRP for optimal routing as
a function of the number of blocks H in the warehouse (Cambazard and Catusse
2018).

3.5.3 Computational Analysis of BPC Algorithm
We consult both the Foodmart and the Scholz&Wäscher instances to examine
which input parameters influence the performance of the BPC for the optimal
routing strategy. The results are presented in Tables 3.4 and 3.5 where the addi-
tional columns each indicate the percentage of optimally solved instances (%Opt).

Table 3.4 shows the analysis of the Foodmart instances aggregated by the number
of aisles S, the number of days ∆, and intervals of the number of orders n. The
difficulty of the instances most significantly depends on n. All instances with
n ≤ 20 are solved in few seconds, but the computation time steadily increases
with each interval of n. Only one out of six instances with n = 75 can be solved
within one hour. Doubling S results in slightly fewer solvable instances (97.2%
vs. 98.6%) and more than doubles the average computation time (410.3 seconds
vs. 164.6 seconds), although the effective warehouse size in terms of of available
storage locations remains almost identical. Interestingly, the average number of
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VBC (2017) Our method
n Inst Opt t[s] Opt t[s]

5 3 3 3.1 3 0.0
6 3 3 7.6 3 0.0
7 3 3 7.5 3 0.0
8 3 3 13.5 3 0.0
9 3 3 59.5 3 0.0

10 3 3 83.7 3 0.1
11 3 3 325.7 3 0.2
12 3 3 311.0 3 0.2
13 3 3 455.1 3 0.4
14 3 3 1,480.8 3 0.4
15 3 3 1,003.6 3 0.3
20 3 2 11,852.9 3 3.1
25 3 0 21,600.0 3 7.1
30 3 0 21,600.0 3 24.9

Total 42 35 4,200.3 42 2.6

Table 3.2: Comparison of our BPC algorithm with the B&C approach of Valle
et al. (2017) for the optimal routing strategy on a subset of the
Foodmart instances

Z&G (2023) Our method
n Inst Opt t[s] Opt t[s]

5 3 3 0.4 3 0.0
10 3 3 10.9 3 0.0
15 3 3 41.6 3 0.1
16 3 3 282.3 3 0.1
17 3 3 737.3 3 0.2
18 3 3 451.0 3 0.3
19 3 2 900.3 3 0.6
20 3 2 898.3 3 0.6
21 3 2 893.0 3 2.1
22 3 2 917.0 3 0.9
23 3 1 1,696.7 3 0.4
24 3 0 2,400.0 3 1.1
25 3 0 2,400.0 3 2.6
30 3 0 2,400.0 3 4.6

Total 42 27 1,002.1 42 1.0

Table 3.3: Comparison of our BPC algorithm with the B&C approach of Zhang
and Gao (2023) for the optimal routing strategy on a modified subset
of the Foodmart instances
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S = 8 S = 16
∆ n Inst %Opt t[s] Inst %Opt t[s]

5 (0, 10] 6 100.0 0.0 6 100.0 0.0
(10, 20] 10 100.0 1.1 10 100.0 3.5
(20, 30] 10 100.0 22.7 10 100.0 58.8
(30, 40] 10 100.0 201.9 10 100.0 424.5
(40, 50] 10 100.0 391.1 10 90.0 1,829.7
(50, 75] 1 0.0 3,600.0 1 0.0 3,600.0

Subtotal 47 97.9 207.8 47 95.7 569.5
10 (0, 10] 6 100.0 0.0 6 100.0 0.0

(10, 20] 10 100.0 1.8 10 100.0 7.7
(20, 30] 10 100.0 16.0 10 100.0 51.6
(30, 40] 10 100.0 155.2 10 100.0 288.5
(40, 50] 10 100.0 373.1 10 100.0 1,084.4
(50, 75] 1 0.0 3,600.0 1 0.0 3,600.0

Subtotal 47 97.9 192.8 47 97.9 381.3
20 (0, 10] 6 100.0 0.0 6 100.0 0.0

(10, 20] 10 100.0 0.3 10 100.0 0.7
(20, 30] 10 100.0 4.3 10 100.0 11.5
(30, 40] 10 100.0 43.6 10 100.0 124.4
(40, 50] 10 100.0 221.9 10 100.0 820.5
(50, 75] 1 100.0 1,679.5 1 0.0 3,600.0

Subtotal 47 100.0 93.2 47 97.9 280.2
Total 141 98.6 164.6 141 97.2 410.3

Table 3.4: Summary results of our BPC algorithm for the Foodmart instances
and the optimal routing strategy

different items per order seems to have an opposing effect, as instances with larger
parameter ∆ are more likely to be solved optimally. For example, 96.8% of the
instances with ∆ = 5 are solved, compared to 99.0% with ∆ = 20.

In the Scholz&Wäscher benchmark, the number of aisles S, the capacity Q, and
the number of orders n are varied. The aggregated results of our BPC for these
instances are presented in Table 3.5. Although the Scholz&Wäscher instances are
significantly larger in terms of both warehouse size and number of orders, our BPC
method performs almost equally well in solving them for optimal routing. This
result can likely be attributed to the differing depot locations assumed in the two
instance classes. In line with the findings from the Foodmart instances, we observe
that the instance difficulty increases with higher values of n. However, the impact
of S on performance appears less consistent compared to the Foodmart instances.
Although Scholz&Wäscher instances with more aisles tend to be more challenging



Chapter 3. Solving the Multi-Block OBP with BPC 131

S = 10 S = 30
Q n Inst %Opt t[s] Inst %Opt t[s]

30 20 50 100.0 0.0 50 100.0 0.0
40 50 100.0 0.0 50 100.0 0.0
60 50 100.0 0.1 50 100.0 0.1
80 50 100.0 0.1 50 100.0 0.1

Subtotal 200 100.0 0.0 200 100.0 0.1
45 20 50 100.0 0.1 50 100.0 0.1

40 50 100.0 1.0 50 100.0 0.6
60 50 100.0 10.1 50 100.0 2.9
80 50 100.0 22.6 50 100.0 11.8

Subtotal 200 100.0 8.5 200 100.0 3.8
60 20 50 100.0 0.3 50 100.0 0.3

40 50 100.0 8.1 50 100.0 7.3
60 50 98.0 207.0 50 96.0 262.7
80 50 86.0 778.4 50 92.0 666.8

Subtotal 200 96.0 248.5 200 97.0 234.3
75 20 50 100.0 0.8 50 100.0 1.2

40 50 100.0 25.7 50 100.0 35.1
60 50 94.0 636.1 50 98.0 640.9
80 50 66.0 1,918.1 50 42.0 2,584.0

Subtotal 200 90.0 645.2 200 85.0 815.3
Total 800 96.5 225.5 800 95.5 263.4

Table 3.5: Summary results of our BPC algorithm for the Scholz&Wäscher in-
stances and the optimal routing strategy

for our BPC on average, we generally observe a performance improvement for
instances with Q ≤ 60 as the number of aisles S increases from 10 to 30. The
impact of Q is comparable to that of n. All instances with a small capacity
(Q ≤ 45) are solved optimally within an average of approximately three seconds.
In contrast, only 87.5% of the instances with Q = 75 are solved, requiring an
average computation time of more than 730 seconds.

Overall, the difficulty of the considered instances increases with an increasing
number of orders n, an increasing number of aisles S, an increasing capacity Q
(Scholz&Wäscher), or with a decreasing number of days ∆ (Foodmart).

3.5.4 Evaluation of Routing Strategies
Table 3.6 summarizes the results for all instances per routing strategy, aggregated
on the number of orders n (Scholz&Wäscher) or intervals of n (Foodmart). The
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additional columns show the percentage deviation in the total travel distances for
the respective routing strategy compared to the optimal strategy (dev). Overall,
the choice of the routing strategy significantly influences both the solution quality
and the computational performance of the BPC. Recall that the warehouse layout
and especially the location of the depot in the Foodmart instances significantly in-
creases the complexity of the SPRP solution for the routing strategies optimal and
no-reversal (see Appendix 3.A), whereas it barely affects the other heuristic rout-
ing strategies. As anticipated, the optimal and no-reversal routing strategies pose
greater computational challenges for the BPC method on the Foodmart instances
compared to aisle-by-aisle, combined, and traversal. With each of the latter three
strategies, 98.6% of the Foodmart instances are solved in an average runtime of
approximately two minutes. In contrast, the average computation time for optimal
and no-reversal is significantly higher, often by several multiples, and less optima
are provided (97.9% and 94.0%). For the Scholz&Wäscher instances, computa-
tional performance across all strategies is more consistent, with the proportion of
optimally solved instances ranging from 94.2% (no-reversal) to 96.6% (aisle-by-
aisle) and average computation times between 212.1 seconds (aisle-by-aisle) and
330.3 seconds (no-reversal).

For all routing strategies considered, the difficulty increases as n increases.
Table 3.6 reflects a significantly smaller percentage deviation in results for the
Foodmart instances compared to the Scholz&Wäscher instances. This disparity
can be attributed to the considerably larger warehouse dimensions (number and
length of aisles) in the Scholz&Wäscher instance set. In both classes of instances,
the no-reversal strategy yields the largest average travel distances, followed by the
traversal strategy. Among the heuristic strategies, the combined strategy consis-
tently achieves the shortest average travel distances. Notably, for the Foodmart
instances, the BPC method for combined routing yields shorter total travel dis-
tances than the optimal routing strategy for n = 75, on average. This is because
the BPC for optimal routing fails to solve the majority of these instances to opti-
mality within the imposed time limit.

3.5.5 Detailed Analysis
A detailed analysis of our BPC is provided in Table 3.7 for the Foodmart and
the Scholz&Wäscher instances and the routing strategies optimal and combined,
aggregated on n. The two strategies are representative of a group of routing strate-
gies each in terms of computation time and number of optimally solved instances
(see Table 3.6). More detailed results for all routing strategies are provided in
Appendix 3.C. The additional columns provide the average time to solve the LP
relaxation in seconds (tLP), the average optimality gap of the LP relaxation with re-
spect to the BKS for the respective routing strategy (GpLP), the average optimality
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Optimal No-reversal Aisle-by-aisle Traversal Combined
n Inst %Opt t[s] %Opt t[s] dev %Opt t[s] dev %Opt t[s] dev %Opt t[s] dev

Panel A: Foodmart instances
(0, 10] 36 100.0 0.0 100.0 0.0 9.5 100.0 0.0 5.3 100.0 0.0 7.3 100.0 0.0 2.0

(10, 20] 60 100.0 2.5 100.0 3.5 8.2 100.0 1.0 5.2 100.0 0.3 6.5 100.0 0.4 2.1
(20, 30] 60 100.0 27.5 98.3 183.7 7.9 100.0 7.6 5.3 100.0 16.9 6.5 100.0 7.7 1.8
(30, 40] 60 100.0 206.4 96.7 381.1 7.6 100.0 41.8 5.1 100.0 70.2 6.3 100.0 54.3 1.5
(40, 50] 60 98.3 786.8 86.7 1,011.7 7.8 100.0 141.5 5.0 100.0 249.5 6.3 100.0 206.7 1.6
(50, 75] 6 16.7 3,279.9 0.0 3,600.0 11.9 33.3 3,078.6 3.6 33.3 2,876.9 5.4 33.3 3,034.5 −0.5
Total 282 97.9 287.5 94.0 412.8 8.2 98.6 106.3 5.1 98.6 132.9 6.5 98.6 121.8 1.7

Panel B: Scholz&Wäscher instances
20 400 100.0 0.3 100.0 0.5 20.9 100.0 0.3 10.1 100.0 0.3 18.7 100.0 0.2 5.5
40 400 100.0 9.7 100.0 31.0 20.0 100.0 12.0 9.8 100.0 10.2 18.0 100.0 9.1 5.3
60 400 98.2 220.0 95.0 376.7 19.7 98.5 151.1 9.6 97.0 229.5 17.8 97.5 212.9 5.2
80 400 85.8 747.7 81.8 913.2 19.9 88.0 685.1 9.5 86.2 718.7 17.6 86.8 736.8 5.1

Total 1,600 96.0 244.5 94.2 330.3 20.1 96.6 212.1 9.7 95.8 239.7 18.0 96.1 239.8 5.3

Table 3.6: Summary results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and all routing strategies

gap with respect to the BKS before the first Ryan-and-Foster branching is applied
(GpRF), the average number of B&B nodes solved (Nds), and the average number
of CCs (CC ) and SRCs (SRC ) added. Note that three of the largest Foodmart
instances (n = 75) have been excluded from the gaps reported for optimal routing,
as the algorithm provided no root node solution in the given time.

The LP gap and the gap after incorporating cuts are consistently small across all
routing strategies and instances, with the exception of cases where n = 75. On av-
erage, Scholz&Wäscher instances exhibit significantly smaller gaps than Foodmart
instances, and gaps are generally smaller for optimal routing compared to combined
routing. For combined routing, solving the LP relaxation is highly effective, with
average computation times of 2.7 seconds for Foodmart instances and 1.5 seconds
for Scholz&Wäscher instances. In contrast, the corresponding times for optimal
routing are significantly longer, at 104.8 seconds and 13.2 seconds, respectively. As
a result, the total computation times for the BPC method are shorter for combined
routing than for optimal routing, even though the average number of nodes in the
B&B tree is considerably larger for combined routing.

When comparing instance classes, Scholz&Wäscher instances have an average
B&B tree size more than ten times that of Foodmart instances. Nevertheless, for
optimal routing, the average computation time is smaller for Scholz&Wäscher in-
stances due to much shorter computation times per node, which can be attributed
to differences in the underlying warehouse layouts. Conversely, for combined rout-
ing, the computation time for Scholz&Wäscher instances is approximately double
that for Foodmart instances on average. This discrepancy arises because, despite
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Optimal Combined
n Inst Opt t[s] tLP GpLP GpRF Nds CC SRC Opt t[s] tLP GpLP GpRF Nds CC SRC

Panel A: Foodmart instances
(0, 10] 36 36 0.0 0.0 1.55 1.55 1 4 1 36 0.0 0.0 1.67 1.67 1 4 1

(10, 20] 60 60 2.5 1.2 2.40 2.28 2 29 10 60 0.4 0.0 2.36 2.13 2 26 12
(20, 30] 60 60 27.5 17.1 1.39 0.75 4 32 36 60 7.7 0.3 1.53 0.78 6 31 42
(30, 40] 60 60 206.4 91.8 1.40 0.42 34 32 68 60 54.3 1.8 1.37 0.50 38 30 65
(40, 50] 60 59 786.8 344.5 1.40 0.43 102 40 79 60 206.7 5.6 1.53 0.52 146 37 77
(50, 75] 6 1 3,279.9 380.1 10.78 10.16 332 29 44 2 3,034.5 49.3 9.78 9.01 1,140 38 86
Total 282 276 287.5 104.8 1.83 1.24 37 29 42 278 121.8 2.7 1.87 1.24 65 28 44

Panel B: Scholz&Wäscher instances
20 400 400 0.3 0.1 0.76 0.42 6 10 10 400 0.2 0.0 0.81 0.41 5 9 11
40 400 400 9.7 1.7 0.52 0.22 43 14 24 400 9.1 0.3 0.55 0.26 67 13 24
60 400 393 220.0 11.6 0.55 0.34 1,007 14 29 390 212.9 1.4 0.69 0.47 1,068 13 29
80 400 343 747.7 39.4 1.49 1.36 1,699 14 30 347 736.8 4.4 1.60 1.45 2,072 13 31

Total 1,600 1,536 244.5 13.2 0.83 0.58 689 13 23 1,537 239.8 1.5 0.91 0.65 803 12 24

Table 3.7: Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and the routing strategies optimal and
combined

similar average computation times for the root node across instance classes, the
larger B&B tree size in Scholz&Wäscher instances drives up the total computation
time. The number of CCs and SRCs generated is comparable across all routing
strategies within each instance class. However, Foodmart instances require gener-
ating approximately twice as many cuts as Scholz&Wäscher instances.

3.5.6 Computational Analysis of BPC-based Heuristics
As exposed in Table 3.7, the majority of computation time in the BPC process is
spent on closing the optimality gap, with comparatively little time dedicated to
solving the root node. This insight is leveraged by the BPC-based heuristics SC
and BPC-DF. Table 3.22 in Appendix 3.C provides a comprehensive summary of
our heuristic results across all Foodmart instances and routing strategies.

Our initial objective is to evaluate the two heuristics for the optimal routing
strategy in comparison to the distance approximation approach (DAA) proposed
by Valle and Beasley (2020) and the column generation heuristic (CGH) intro-
duced by Briant et al. (2020). Following the methodology outlined by the au-
thors, we focus on a subset of Foodmart instances characterized by S = 8 and
n ∈ {5, 6, . . . , 14, 15, 20, 25, 30}. Recall that all instances considered were solved to
proven optimality using our BPC approach for optimal routing, with an average
runtime of 2.6 seconds per instance (see Table 3.2). Valle and Beasley (2020) im-
pose a time limit of six hours (21,600 seconds) and Briant et al. (2020) allow two
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DAA CGH BPC-DF SC
n Inst t[s] Gp t[s] Gp t[s] Gp t[s] Gp

5 3 1.2 0.00 0.9 0.00 0.0 0.00 0.0 0.00
6 3 1.0 0.61 1.2 0.00 0.0 0.00 0.0 0.00
7 3 1.6 2.40 3.9 0.00 0.0 0.00 0.0 0.00
8 3 1.7 3.85 5.1 0.00 0.0 0.00 0.0 0.00
9 3 3.0 2.74 17.5 0.08 0.0 0.00 0.0 0.00

10 3 2.7 3.46 21.7 0.14 0.1 0.00 0.1 0.00
11 3 2.5 2.00 60.1 0.29 0.2 0.00 0.1 0.88
12 3 2.7 1.78 90.1 0.00 0.2 0.00 0.2 0.33
13 3 3.1 1.60 94.2 0.32 0.4 0.00 0.3 0.86
14 3 4.8 3.41 123.1 0.18 0.4 0.00 0.4 0.00
15 3 3.9 3.49 147.9 0.07 0.3 0.00 0.3 0.00
20 3 11.7 2.91 1,057.4 1.08 3.0 0.00 2.1 0.42
25 3 90.5 3.40 4,404.2 0.80 6.4 0.00 4.7 0.72
30 3 3,724.4 3.55 7,293.7 2.37 21.0 0.00 18.5 0.05

Total 42 275.3 2.51 951.5 0.38 2.3 0.00 1.9 0.23

Table 3.8: Comparison of our heuristics BPC-DF and SC with the DAA of Valle
and Beasley (2020) and the CGH of Briant et al. (2020) for a subset
of the Foodmart instances and the optimal routing strategy

hours plus an additional 12 minutes for post-optimization (7,920 seconds in total).
The gap columns (Gp) reported in Table 3.8 represent the percentage deviation
from the optimal solution aggregated on n. An instance-by-instance comparison
is available in Table 3.15 in Appendix 3.B.

Among the two methods from the literature, Valle and Beasley (2020) achieve
a shorter average computation time of less than five minutes, with an average
optimality gap of 2.51%. Briant et al. (2020) reduce the gap to an average of 0.38%
at the cost of more than tripling the average computation time. In comparison,
BPC-DF solves all considered instances to optimality with an average computation
time of 2.3 seconds, whereas SC achieves even faster results, requiring 1.9 seconds
of computation time and exhibiting a gap of 0.23% from the optimal solution on
average. The results presented in Table 3.8 clearly demonstrate that both BPC-
DF and SC outperform the DAA (Valle and Beasley 2020) and the CGH (Briant
et al. 2020) for the instances under consideration, offering superior performance in
terms of both computation time and solution quality.

We extend our analysis to larger Foodmart instances with n ∈ {25, 30, 50, 75}
orders and S ∈ {8, 16} aisles, as suggested by Valle and Beasley (2020). Given
the rapid root node computation times and the relatively small deviations from
the BPC solution for optimal routing (see Tables 3.6 and 3.7), exploring the BPC-
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BPC-DF SC
DAA Optimal Combined Optimal Combined

n Inst t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp
25 6 4,685.8 3.13 14.9 0.00 1.0 1.60 12.7 0.61 0.7 1.78
30 6 12,707.5 3.50 41.9 0.00 6.4 1.94 40.4 0.02 2.3 2.13
50 6 21,652.1 6.50 1,766.4 0.00 971.7 1.55 545.4 0.61 44.1 2.85
75 6 21,655.7 7.71 3,517.4 5.43 3,600.0 0.68 2,324.5 5.80 1,035.0 1.78

Total 24 15,175.3 5.21 1,335.2 1.36 1,144.7 1.44 730.7 1.76 270.5 2.13

Table 3.9: Comparison of our heuristics BPC-DF and SC for the routing strate-
gies optimal and combined with the DAA of Valle and Beasley (2020)
on a subset of large Foodmart instances

based heuristics for combined routing in addition to the optimal routing strategy
appears promising. An evaluation of the methods aggregated on n is provided
in Table 3.9, with an instance-by-instance comparison detailed in Table 3.16 in
Appendix 3.B. Valle and Beasley (2020) set a time limit of 21,600 seconds for their
DAA, in addition to the time required for computing the optimal SPRP solution.
The overall BKS per instance across all routing strategies constitutes the basis
for the reported gaps. All BPC-based heuristic variants demonstrate a significant
reduction in the gaps, with computation times less than one-tenth of those reported
by Valle and Beasley (2020). The highest-quality solutions, characterized by an
average gap of approximately 1.4% relative to the BKS, are obtained using BPC-
DF for either optimal or combined routing, with an average solution time of around
20 minutes. Notably, SC exhibits even shorter computation times than BPC-DF,
with averages of 270.5 seconds for combined routing and 730.7 seconds for optimal
routing, while maintaining relatively small gaps of 2.13% and 1.76%, respectively.

Table 3.10 confirms that the BPC-based heuristics yield favorable results, even
with significantly reduced computation times. The table presents aggregated re-
sults for combined routing respecting time limits (TL[s]) of 100, 600, 1,800, and
3,600 seconds for the previously considered subset of large Foodmart instances. For
both heuristics, the average gaps consistently decrease as the time limit increases,
indicating a clear trade-off between computational time allowance and solution
quality. SC utilizes a smaller proportion of the available computation time on
average, whereas BPC-DF consistently provides gaps that are approximately one-
third smaller across all time limits.

Finally, we evaluate our BPC-based heuristics on the basis of six very large-scale
Foodmart instances with S = 8, ∆ = 10, and n ∈ {100, 200, 500, 1000, 2000, 5000}.
For this analysis, we set a time limit of 7,200 seconds and employ the combined
routing strategy. Briant et al. (2020) extend this time limit by an additional
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BPC-DF SC
TL[s] t[s] Gp t[s] Gp

100 46.0 2.63 35.1 3.75
600 233.2 1.56 135.4 2.36

1,800 622.3 1.47 251.7 2.18
3,600 1,144.7 1.40 270.5 2.10

Table 3.10: Summary results of our heuristics BPC-DF and SC for a subset of
large Foodmart instances and combined routing with different time
limits

CGH BPC-DF SC
n t[s] UBCG UB t[s] UB t[s] UB
100 TL 3,080.9 2,882.5 6,438.7 2,782.6 3,585.6 2,819.3
200 TL 6,716.3 5,608.8 OOM 5,088.4 7,177.4 5,345.6
500 TL 15,972.0 13,237.0 OOM 12,018.5 7,170.4 13,181.1

1,000 TL 30,719.3 25,504.2 OOM 29,218.4 OOM 29,670.5
2,000 TL 57,763.5 48,173.0 TL 56,643.2 OOM 56,643.2
5,000 TL 137,165.4 128,811.7 TL 133,207.0 TL 135,884.0

Table 3.11: Comparison of our heuristics BPC-DF and SC for the combined rout-
ing strategy with the CGH of Briant et al. (2020) for very large
Foodmart instances

720 seconds to conduct a post-optimization process following the execution of
their CGH. Table 3.11 presents the best upper bound (UB) achieved by each ap-
proach, as well as the UB prior to the post-optimization phase in (Briant et al.
2020) (UBCG). Both BPC-DF and SC exhibit superior performance compared to
the pure CGH without post-optimization, yielding smaller UBs and shorter com-
putation times. This advantage persists even for instances where the root node
could not be solved due to memory limitations (exceeding 18 GB, indicated as
OOM ) or time constraints (indicated as TL). In many such cases, our UB aligns
with the value obtained from our initialization heuristic for the RMP, highlighting
the competitiveness of this approach, even for the largest instances. For instance
sizes of up to 500 orders, the two BPC-based heuristics consistently outperform the
CGH, even when post-optimization is applied. However, for very large instances
involving 1,000 orders or more, the performance of our BPC-based methods de-
clines. In these cases, Briant et al. (2020) achieve stronger UBs, primarily due to
their dedicated post-optimization process, which offers a notable advantage over
our approaches for the largest instances.
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3.6 Conclusions
In this study, we exploited a branch-price-and-cut (BPC) approach to address the
order batching problem (OBP) in warehouses with multiple blocks, a complex logis-
tical challenge crucial for enhancing operational efficiency in large-scale facilities.
To the best of our knowledge, no BPC method has previously been applied to solve
the OBP in multi-block warehouse environments. Moreover, no exact solution ap-
proach has yet been proposed to tackle the multi-block OBP for various heuristic
routing strategies.

Our approach extends the BPC framework developed by Wahlen and Gschwind
(2023) for the single-block OBP, demonstrating its adaptability to accommodate
various warehouse layouts and routing strategies, given a monotone distance func-
tion. Specifically, we evaluated the monotonicity of six established routing strate-
gies: optimal, no-reversal, aisle-by-aisle, traversal (or s-shape), combined, and
largest gap, two of which were modified for this evaluation. We proved that all
these strategies, except for largest gap, are monotone in a rectangular warehouse
with parallel aisles and an arbitrary number of blocks. Through extensive compu-
tational experiments using publicly available datasets, the BPC approach outper-
formed existing state-of-the-art methods, achieving a higher number of optimally
solved instances and significantly reducing computation times. Notably, we suc-
cessfully solved instances with up to 80 orders to proven optimality for all five
monotone routing strategies. Our experimental results indicate that, among the
heuristic routing strategies, the combined routing strategy offers an effective bal-
ance between computation time and solution quality for the BPC approach. Fur-
thermore, BPC-based heuristics demonstrated superior performance over existing
specialized methods for instances involving up to 500 orders, improving many of the
best-known solutions while maintaining short computation times. Performance de-
clines were observed only for instances involving 1,000 orders or more, where more
refined strategies, such as the post-optimization method by Briant et al. (2020),
proved advantageous. Overall, these findings highlight the potential of the BPC –
both in its exact form and heuristic variants – to significantly enhance warehouse
operations by optimizing order batching in multi-block environments.

Future research could benefit from expanding the BPC approach to a wider va-
riety of warehouse configurations. This exploration may include warehouses that
diverge from the traditional rectangular grid with parallel aisles and cross aisles
(e.g., Çelik and Süral 2014), implement scattered storage policies (e.g., Heßler and
Irnich 2024, Lüke et al. 2024), feature high-level racks that require picker elevation
to access storage locations (e.g., van Gils et al. 2019), or facilitate the decoupling
of pickers and trolleys (e.g., Goeke and Schneider 2021). Investigating these ar-
eas could help generalize our findings and yield deeper insights into the practical
application of the BPC method across various warehouse operations. Moreover,
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the monotonicity analysis and proofs presented in this paper can be leveraged
in other OBP solution techniques that either rely on or benefit from monotone
routing strategies. This includes, for example, methods based on (extended) set-
partitioning formulations, or cutting techniques that account for the distances
required to fulfill subsets of orders.
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Appendix

3.A Foodmart State Space
In this paper, the SPRP for optimal routing is solved following the DP method out-
lined by Pansart et al. (2018) for rectangular warehouses. In the case of Euclidean
distances between the depot and its nearest cross aisle, as given in the Foodmart
instances and illustrated in Figure 3.5a for batch b = {1, 2} in a warehouse with
H = 2 blocks, this approach cannot be seamlessly applied. To address this chal-
lenge, we adapt the original warehouse structure by incorporating an additional
artificial block, referred to as block 3 (i.e., H + 1). In block 3, feasible sub-aisle
transitions are limited to single traversal, double traversal, and void moves. Each
traversal within this block is assigned the initial Euclidean distance from the cor-
responding aisle to the depot. Notably, the horizontal distances along the artificial
cross aisle 3 at the level of the depot are assumed to be zero. However, the intro-
duction of an additional block, as depicted in Figure 3.5b, considerably increases
the computational complexity of the SPRP compared to the conventional layout,
where the depot is positioned directly in the foremost cross aisle (Cambazard and
Catusse 2018).
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Figure 3.5: Warehouse layout of Foodmart instances

The equivalent classes or states of partial tour subgraphs emerging in the DP
can be characterized by features of the four cross aisle vertices in a specific aisle.
A comprehensive list of feasible states for the Foodmart instances is presented
in Table 3.12, with the assumption that at least one storage location must be
visited. Each state is defined by the associated degree parities of the four cross
aisle vertices, their connectivity and, if crucial, the composition of the connected
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0000,1 E0UU,1 EEE0,2,01-2 EUUE,2,012-3
000E,1 UEU0,1 EEE0,2,0-12 EUUE,2,0-123
00E0,1 UU0E,1 EEE0,2,02-1 EUUE,2,03-12
0E00,1 UUE0,1 EEEE,2,012-3 EEUU,2,01-23
E000,1 EU0U,1 EEEE,2,01-23 EEUU,2,0-123
00EE,1 EUU0,1 EEEE,2,0-123 EEUU,2,023-1
0E0E,1 EEUU,1 EEEE,2,013-2 UUEE,2,012-3
E00E,1 UEEU,1 EEEE,2,023-1 UUEE,2,01-23
0EE0,1 UEUE,1 EEEE,2,03-12 UUEE,2,013-2
E0E0,1 UUEE,1 0EUU,2,1-23 UUUU,2,01-23
EE00,1 EUEU,1 0UEU,2,13-2 UUUU,2,03-12
00UU,1 EUUE,1 0UUE,2,12-3 0EEE,3
0U0U,1 UUUU,1 U0EU,2,03-2 E0EE,3
U00U,1 00EE,2 U0UE,2,02-3 EE0E,3
0UU0,1 0E0E,2 UE0U,2,03-1 EEE0,3
U0U0,1 E00E,2 E0UU,2,0-23 EEEE,3,01-2-3
UU00,1 0EE0,2 UEU0,2,02-1 EEEE,3,0-12-3
0EEE,1 E0E0,2 UU0E,2,01-3 EEEE,3,0-1-23
E0EE,1 EE00,2 UUE0,2,01-2 EEEE,3,0-13-2
EE0E,1 0EEE,2,12-3 EU0U,2,0-13 EEEE,3,02-1-3
EEE0,1 0EEE,2,1-23 EUU0,2,0-12 EEEE,3,03-1-2
EEEE,1 0EEE,2,13-2 UEEU,2,013-2 UEEU,3,03-1-2
0UUE,1 E0EE,2,02-3 UEEU,2,023-1 UEUE,3,02-1-3
0UEU,1 E0EE,2,0-23 UEEU,2,03-12 UUEE,3,01-2-3
0EUU,1 E0EE,2,03-2 UEUE,2,012-3 EEUU,3,0-1-23
U0EU,1 EE0E,2,01-3 UEUE,2,023-1 EUEU,3,0-13-2
U0UE,1 EE0E,2,0-13 EUEU,2,0-123 EUUE,3,0-12-3
UE0U,1 EE0E,2,03-1 EUEU,2,013-2 EEEE,4

Table 3.12: List of feasible states of the Foodmart instances

components. The degree parities are each classified as either even (E), odd (U ), or
zero (0 ) for cross aisle 0 to 3. The connectivity is represented by the total number
of components, which can range up to four. If the connectivity is not uniquely
defined by the preceding information, the assignment of the cross aisles to the
components is specified explicitly. The set of final states consists of all states that
feature a single connected component and exhibit only even or zero degree parities.

For instance, the state designation EEEE,2,012-3 denotes that all four cross aisle
vertices have an even number of incident edges (EEEE), and there are two con-
nected components (2 ). In this configuration, the upper three cross aisle vertices
are connected, whereas the depot’s cross aisle vertex forms a separate component
and is not connected with the others (012-3 ).
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3.B Instance-by-Instance Comparison
In this section, we present the instance-by-instance results of our multi-block BPC
approach, which are discussed in aggregate in Section 3.5.

Tables 3.13 and 3.14 provide a detailed comparison of our approach with the
B&C methods proposed by Valle et al. (2017) and Zhang and Gao (2023), respec-
tively. The tables provide the computation time in seconds (t[s]), the best integer
solution (UB), and the percentage deviation from the optimal solution (Gp) for
each of the approaches.

Table 3.15 depicts the comparison of our BPC-based heuristics for optimal rout-
ing with the heuristic approaches DAA (Valle and Beasley 2020) and CGH (Briant
et al. 2020). It presents the best-known (in this case, optimal) solution value
(BKS) for each instance, along with the computation time in seconds (t[s]) and
the optimality gap (Gp) for each approach.

Larger Foodmart instances (more orders and an enlarged warehouse) are con-
sidered in Table 3.16 to compare the performance of our heuristics for both the
optimal and the combined strategy against the DAA proposed by Valle and Beasley
(2020). The provided gaps are based on the overall BKS for each instance.

3.C Detailed Computational Results
In this section, we report detailed computational results of our BPC algorithm and
BPC-based heuristics for the five monotone routing strategies optimal, no-reversal,
aisle-by-aisle, combined, and traversal.

Tables 3.17–3.21 provide detailed results for the exact BPC and the two bench-
mark sets Foodmart and Scholz&Wäscher, aggregated by number of days ∆ and
number of orders n (Foodmart) or capacity Q and n (Scholz&Wäscher). The ta-
bles report the number of instances solved to optimality within the time limit of
one hour (Opt), the average solution time in seconds (t[s]), the average time for
solving the LP relaxation in seconds (tLP), the average optimality gap with respect
to the BKS of the LP relaxation (Gp), the average optimality gap with respect
to the BKS before the first node resulting from a Ryan-and-Foster branching is
solved (GpRF), the average number of B&B nodes solved (Nds), and the average
number of CCs (CC ) and SRCs (SRC ) added.

Table 3.22 presents a comparison of our BPC-based heuristics for the Foodmart
instances, aggregated by the number of orders n. It provides the average com-
putation time in seconds (t[s]) and the average gap with respect to the BKS per
instance across all routing strategies (Gp).
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VBC (2017) Our method
∆ n t[s] UB Gp t[s] UB Gp

5 5 1.3 348.6 0.00 0.0 348.6 0.00
6 0.6 364.8 0.00 0.0 364.8 0.00
7 1.7 374.8 0.00 0.0 374.8 0.00
8 7.2 503.8 0.00 0.0 503.8 0.00
9 8.0 539.6 0.00 0.0 539.6 0.00

10 8.1 581.4 0.00 0.1 581.4 0.00
11 13.0 613.5 0.00 0.2 613.5 0.00
12 22.5 621.4 0.00 0.3 621.4 0.00
13 14.8 623.4 0.00 0.3 623.4 0.00
14 46.9 639.3 0.00 0.6 639.3 0.00
15 37.3 653.4 0.00 0.4 653.4 0.00
20 3,035.2 870.4 0.00 3.3 870.4 0.00
25 21,600.0 1,123.5 2.52 9.8 1,095.9 0.00
30 21,600.0 1,263.5 7.63 46.0 1,173.9 0.00

Subtotal 3,314.0 651.5 0.73 4.4 643.2 0.00
10 5 0.4 371.1 0.00 0.0 371.1 0.00

6 1.5 377.1 0.00 0.0 377.1 0.00
7 6.7 549.8 0.00 0.0 549.8 0.00
8 7.1 584.2 0.00 0.0 584.2 0.00
9 55.0 637.4 0.00 0.0 637.4 0.00

10 63.9 661.8 0.00 0.1 661.8 0.00
11 655.0 699.8 0.00 0.3 699.8 0.00
12 39.5 707.7 0.00 0.3 707.7 0.00
13 497.9 725.7 0.00 0.8 725.7 0.00
14 3,889.3 727.8 0.00 0.5 727.8 0.00
15 664.6 882.6 0.00 0.4 882.6 0.00
20 10,923.4 992.4 0.00 5.3 992.4 0.00
25 21,600.0 1,266.1 6.42 3.9 1,189.7 0.00
30 21,600.0 1,345.6 5.79 21.9 1,272.0 0.00

Subtotal 4,286.0 752.1 0.87 2.4 741.4 0.00
20 5 7.7 573.8 0.00 0.0 573.8 0.00

6 20.6 656.2 0.00 0.0 656.2 0.00
7 14.0 689.8 0.00 0.0 689.8 0.00
8 26.1 697.8 0.00 0.0 697.8 0.00
9 115.6 727.7 0.00 0.0 727.7 0.00

10 179.1 920.5 0.00 0.0 920.5 0.00
11 309.0 980.5 0.00 0.1 980.5 0.00
12 871.0 1,004.3 0.00 0.1 1,004.3 0.00
13 852.7 1,009.1 0.00 0.2 1,009.1 0.00
14 506.1 1,011.1 0.00 0.1 1,011.1 0.00
15 2,308.9 1,028.7 0.00 0.2 1,028.7 0.00
20 21,600.0 1,373.5 2.98 0.6 1,333.7 0.00
25 21,600.0 1,692.3 4.47 7.5 1,619.9 0.00
30 21,600.0 1,944.7 4.81 6.8 1,855.5 0.00

Subtotal 5,000.8 1,022.1 0.88 1.1 1,007.8 0.00
Total 4,200.3 808.6 0.82 2.6 797.4 0.00

Table 3.13: Comparison of our BPC algorithm with the B&C approach of Valle
et al. (2017) on a subset of the Foodmart instances for the optimal
routing strategy
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Z&G (2023) Our method
∆ n t[s] UB Gp t[s] UB Gp

5 5 0.2 346.0 0.00 0.0 346.0 0.00
10 1.5 578.0 0.00 0.0 578.0 0.00
15 7.8 650.0 0.00 0.1 650.0 0.00
16 37.0 766.0 0.00 0.1 766.0 0.00
17 30.0 802.0 0.00 0.1 802.0 0.00
18 81.0 840.0 0.00 0.2 840.0 0.00
19 135.0 856.0 0.00 0.4 856.0 0.00
20 86.0 864.0 0.00 0.5 864.0 0.00
21 136.0 892.0 0.00 3.3 892.0 0.00
22 171.0 892.0 0.00 1.2 892.0 0.00
23 290.0 908.0 0.00 0.6 908.0 0.00
24 2,400.0 1,059.0 0.47 2.4 1,054.0 0.00
25 2,400.0 1,102.0 1.47 2.9 1,086.0 0.00
30 2,400.0 1,206.0 3.79 8.9 1,162.0 0.00

Subtotal 584.0 840.1 0.41 1.5 835.4 0.00
10 5 0.1 368.0 0.00 0.0 368.0 0.00

10 6.3 656.0 0.00 0.0 656.0 0.00
15 59.0 874.0 0.00 0.1 874.0 0.00
16 65.0 926.0 0.00 0.1 926.0 0.00
17 123.0 960.0 0.00 0.6 960.0 0.00
18 106.0 970.0 0.00 0.6 970.0 0.00
19 166.0 978.0 0.00 1.4 978.0 0.00
20 209.0 984.0 0.00 1.4 984.0 0.00
21 143.0 990.0 0.00 1.6 990.0 0.00
22 180.0 1,000.0 0.00 0.5 1,000.0 0.00
23 2,400.0 1,140.0 1.06 0.4 1,128.0 0.00
24 2,400.0 1,162.0 0.00 0.6 1,162.0 0.00
25 2,400.0 1,220.0 3.57 0.6 1,178.0 0.00
30 2,400.0 1,320.0 4.76 3.7 1,260.0 0.00

Subtotal 761.2 967.7 0.67 0.8 959.6 0.00
20 5 1.0 570.0 0.00 0.0 570.0 0.00

10 25.0 912.0 0.00 0.0 912.0 0.00
15 58.0 1,022.0 0.00 0.0 1,022.0 0.00
16 745.0 1,200.0 0.00 0.0 1,200.0 0.00
17 2,059.0 1,250.0 0.00 0.1 1,250.0 0.00
18 1,166.0 1,288.0 0.00 0.1 1,288.0 0.00
19 2,400.0 1,326.0 1.69 0.1 1,304.0 0.00
20 2,400.0 1,340.0 1.36 0.1 1,322.0 0.00
21 2,400.0 1,542.0 3.07 1.4 1,496.0 0.00
22 2,400.0 1,578.0 4.37 1.0 1,512.0 0.00
23 2,400.0 1,624.0 4.37 0.2 1,556.0 0.00
24 2,400.0 1,640.0 3.93 0.3 1,578.0 0.00
25 2,400.0 1,648.0 2.62 4.3 1,606.0 0.00
30 2,400.0 1,900.0 3.37 1.2 1,838.0 0.00

Subtotal 1,661.0 1,345.7 1.77 0.6 1,318.1 0.00
Total 1,002.1 1,051.2 0.95 1.0 1,037.7 0.00

Table 3.14: Comparison of our BPC algorithm with the approach of Zhang and
Gao (2023) on a subset of the modified Foodmart instances for the
optimal routing strategy
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DAA CGH BPC-DF SC
∆ n BKS t[s] Gp t[s] Gp t[s] Gp t[s] Gp
5 5 348.59 1.0 0.00 1.2 0.00 0.0 0.00 0.0 0.00

6 364.81 0.6 0.00 1.1 0.00 0.0 0.00 0.0 0.00
7 374.81 1.4 0.00 1.8 0.00 0.0 0.00 0.0 0.00
8 503.75 1.1 0.00 3.2 0.00 0.0 0.00 0.0 0.00
9 539.61 1.5 6.30 4.3 0.00 0.0 0.00 0.0 0.00

10 581.42 1.7 2.44 10.9 0.00 0.1 0.00 0.1 0.00
11 613.51 1.0 0.70 53.7 0.00 0.2 0.00 0.1 0.65
12 621.35 1.1 0.06 45.3 0.00 0.3 0.00 0.3 0.00
13 623.39 1.6 2.95 75.9 0.00 0.3 0.00 0.3 0.00
14 639.31 3.4 1.64 116.2 0.01 0.6 0.00 0.5 0.01
15 653.42 1.2 3.66 166.5 0.00 0.4 0.00 0.4 0.00
20 870.37 2.9 3.22 1,596.8 1.79 3.3 0.00 3.4 0.00
25 1,095.89 32.2 3.26 7,246.5 1.14 9.8 0.00 8.5 0.71
30 1,173.86 386.4 3.92 7,304.0 5.67 41.2 0.00 34.7 0.00

Subtotal 31.2 2.01 1,187.7 0.62 4.0 0.00 3.5 0.10
10 5 371.09 0.5 0.00 0.9 0.00 0.0 0.00 0.0 0.00

6 377.09 1.4 0.00 1.2 0.00 0.0 0.00 0.0 0.00
7 549.80 1.8 2.87 1.8 0.00 0.0 0.00 0.0 0.00
8 584.18 1.6 5.82 1.4 0.00 0.0 0.00 0.0 0.00
9 637.37 3.9 0.00 7.2 0.00 0.0 0.00 0.0 0.00

10 661.80 3.6 5.12 16.2 0.00 0.1 0.00 0.1 0.00
11 699.80 2.8 2.84 114.8 0.86 0.4 0.00 0.2 1.98
12 707.71 2.8 2.27 183.0 0.00 0.3 0.00 0.3 0.00
13 725.71 3.8 0.28 124.1 0.84 0.8 0.00 0.3 0.28
14 727.80 6.8 2.95 182.6 0.54 0.4 0.00 0.4 0.00
15 882.61 5.6 2.93 189.2 0.22 0.4 0.00 0.4 0.00
20 992.40 3.9 1.50 955.8 1.26 5.0 0.00 2.3 1.26
25 1,189.70 14.2 3.70 2,677.6 1.18 4.4 0.00 4.0 0.00
30 1,271.98 142.4 3.31 7,305.8 0.16 16.2 0.00 15.4 0.14

Subtotal 13.9 2.40 840.1 0.36 2.0 0.00 1.7 0.26
20 5 573.77 2.1 0.00 0.7 0.00 0.0 0.00 0.0 0.00

6 656.18 1.1 1.83 1.2 0.00 0.0 0.00 0.0 0.00
7 689.80 1.5 4.33 8.0 0.00 0.0 0.00 0.0 0.00
8 697.80 2.3 5.72 10.5 0.00 0.0 0.00 0.0 0.00
9 727.71 3.5 1.92 41.2 0.23 0.0 0.00 0.0 0.00

10 920.52 2.9 2.82 37.9 0.42 0.0 0.00 0.0 0.00
11 980.51 3.7 2.45 11.7 0.00 0.1 0.00 0.1 0.00
12 1,004.32 4.2 3.00 41.9 0.00 0.1 0.00 0.1 0.99
13 1,009.08 3.9 1.58 82.7 0.11 0.2 0.00 0.2 2.29
14 1,011.08 4.1 5.65 70.6 0.00 0.2 0.00 0.1 0.00
15 1,028.70 5.0 3.87 87.8 0.00 0.2 0.00 0.2 0.00
20 1,333.70 28.2 4.02 619.6 0.18 0.6 0.00 0.6 0.00
25 1,619.88 225.2 3.24 3,288.5 0.08 5.0 0.00 1.5 1.44
30 1,855.50 10,644.5 3.43 7,271.4 1.28 5.4 0.00 5.5 0.00

Subtotal 780.9 3.13 826.7 0.16 0.8 0.00 0.6 0.34
Total 275.3 2.51 951.5 0.38 2.3 0.00 1.9 0.23

Table 3.15: Comparison of our heuristics BPC-DF and SC for the optimal routing
strategy to the heuristic approaches of Valle and Beasley (2020) and
Briant et al. (2020) on a subset of the Foodmart instances
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BPC-DF SC
V&B (2020) Optimal Combined Optimal Combined

∆ n S BKS t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp
5 25 8 1,095.89 32.2 3.26 9.8 0.00 0.3 0.89 8.5 0.71 0.4 0.89

16 1,325.51 1,664.2 2.25 33.0 0.00 2.5 2.59 32.8 0.00 1.7 2.59
30 8 1,173.86 386.4 3.92 41.2 0.00 16.2 2.06 34.7 0.00 1.3 2.40

16 1,413.70 21,637.5 5.35 100.2 0.00 17.1 2.42 101.1 0.00 8.2 2.42
50 8 1,878.19 21,602.4 6.38 684.2 0.00 89.0 1.77 307.9 0.56 8.9 2.62

16 2,254.19 21,647.4 6.65 3,600.0 0.00 3,512.7 1.62 1,177.6 0.86 142.9 3.75
75 8 2,590.67 21,603.9 9.94 3,600.0 0.00 3,600.0 1.44 1,226.5 0.77 399.4 2.75

16 3,127.36 21,665.7 9.14 3,600.0 11.70 3,600.0 0.00 3,600.0 11.70 1,489.1 1.15
Subtotal 13,780.0 5.86 1,458.6 1.46 1,354.7 1.60 811.1 1.83 256.5 2.32
10 25 8 1,189.70 14.2 3.70 4.4 0.00 0.2 1.04 4.0 0.00 0.3 1.04

16 1,441.98 4,505.4 2.50 27.4 0.00 1.0 1.55 22.5 0.83 0.9 1.69
30 8 1,271.98 142.4 3.31 16.2 0.00 0.5 0.97 15.4 0.14 0.4 0.97

16 1,524.36 21,698.1 1.55 60.8 0.00 2.7 2.36 62.5 0.00 2.6 2.87
50 8 2,008.71 21,607.5 5.61 2,261.9 0.00 1,508.7 1.33 187.5 1.02 25.2 2.82

16 2,414.87 21,731.8 6.21 2,616.9 0.00 634.4 2.01 959.4 0.48 70.0 4.41
75 8 2,789.75 21,606.9 8.33 3,600.0 0.00 3,600.0 1.09 1,452.4 1.08 707.6 2.74

16 3,415.57 21,679.9 5.21 3,600.0 11.02 3,600.0 0.00 3,600.0 11.02 1,212.3 1.57
Subtotal 14,123.3 4.55 1,523.5 1.38 1,168.4 1.29 788.0 1.82 252.4 2.26
20 25 8 1,619.88 225.2 3.24 5.0 0.00 1.0 1.56 1.5 1.44 0.2 2.32

16 1,894.13 21,673.6 3.81 10.0 0.00 0.8 1.93 6.9 0.71 0.5 2.15
30 8 1,855.50 10,644.5 3.43 5.4 0.00 0.4 2.43 5.5 0.00 0.4 2.43

16 2,199.59 21,736.3 3.46 27.5 0.00 1.2 1.38 23.1 0.00 1.1 1.65
50 8 2,539.59 21,608.3 7.47 163.1 0.00 5.5 1.05 106.4 0.55 3.3 1.52

16 3,027.78 21,715.2 6.68 1,272.5 0.00 79.6 1.53 533.4 0.20 14.2 1.99
75 8 3,520.49 21,610.5 7.55 3,104.4 0.00 3,600.0 1.57 468.2 0.35 234.1 2.15

16 4,258.04 21,767.5 6.09 3,600.0 9.88 3,600.0 0.00 3,600.0 9.88 2,167.8 0.32
Subtotal 17,622.6 5.21 1,023.5 1.24 911.1 1.43 593.1 1.64 302.7 1.82
Total 15,175.3 5.21 1,335.2 1.36 1,144.7 1.44 730.7 1.76 270.5 2.13

Table 3.16: Comparison of our heuristics BPC-DF and SC for the routing strate-
gies optimal and combined to the heuristic approaches of Valle and
Beasley (2020) on a subset of large Foodmart instances
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Panel A: Foodmart instances
∆ n Inst Opt t[s] tLP GpLP GpRF Nds CC SRC

5 (0, 10] 12 12 0.0 0.0 1.34 1.34 1 2 0
(10, 20] 20 20 2.3 1.9 2.73 2.73 2 27 4
(20, 30] 20 20 40.8 28.2 1.62 0.93 3 34 38
(30, 40] 20 20 313.2 135.7 1.59 0.60 45 28 71
(40, 50] 20 19 1,110.4 517.9 1.94 0.50 77 41 87
(50, 75] 2 0 3,600.0 535.5 2.59 1.18 274 48 48

Subtotal 94 91 388.7 156.9 1.90 1.21 33 29 44
10 (0, 10] 12 12 0.0 0.0 1.93 1.93 1 5 0

(10, 20] 20 20 4.8 1.5 3.27 2.92 3 48 21
(20, 30] 20 20 33.8 17.5 1.64 0.81 4 42 42
(30, 40] 20 20 221.9 103.6 1.50 0.41 28 30 76
(40, 50] 20 20 728.8 355.9 1.32 0.43 93 39 86
(50, 75] 2 0 3,600.0 399.5 1.42 0.86 399 35 53

Subtotal 94 92 287.1 110.3 1.92 1.24 36 35 49
20 (0, 10] 12 12 0.0 0.0 1.37 1.37 1 6 2

(10, 20] 20 20 0.5 0.3 1.19 1.19 1 11 6
(20, 30] 20 20 7.9 5.7 0.91 0.50 5 19 29
(30, 40] 20 20 84.0 36.1 1.11 0.25 27 38 57
(40, 50] 20 20 521.2 159.6 0.93 0.36 134 39 65
(50, 75] 2 1 2,639.8 205.3 0.59 0.43 324 5 33

Subtotal 94 93 186.7 47.3 1.07 0.67 43 24 34
Total 282 276 287.5 104.8 1.63 1.04 37.1 29.3 42.3

Panel B: Scholz&Wäscher instances
Q n Inst Opt t[s] tLP GpLP GpRF Nds CC SRC

30 20 100 100 0.0 0.0 0.26 0.23 2 0 0
40 100 100 0.0 0.0 0.25 0.22 2 1 0
60 100 100 0.1 0.0 0.15 0.12 2 1 0
80 100 100 0.1 0.1 0.10 0.09 2 1 0

Subtotal 400 400 0.0 0.0 0.19 0.17 2 1 0
45 20 100 100 0.1 0.0 0.51 0.29 7 4 5

40 100 100 0.8 0.1 0.35 0.16 17 6 14
60 100 100 6.5 0.6 0.27 0.12 123 6 20
80 100 100 17.2 1.5 0.20 0.11 148 8 20

Subtotal 400 400 6.2 0.6 0.33 0.17 74 6 15
60 20 100 100 0.3 0.1 0.81 0.44 6 11 13

40 100 100 7.7 1.1 0.59 0.22 86 14 31
60 100 97 234.9 5.8 0.62 0.40 2,377 15 36
80 100 89 722.6 17.0 1.24 1.07 4,088 16 40

Subtotal 400 386 241.4 6.0 0.82 0.53 1,639 14 30
75 20 100 100 1.0 0.2 1.46 0.71 8 23 22

40 100 100 30.4 5.5 0.89 0.27 66 35 51
60 100 96 638.5 39.9 1.16 0.72 1,527 35 59
80 100 54 2,251.1 139.2 4.42 4.16 2,557 31 61

Subtotal 400 350 730.2 46.2 1.98 1.47 1,040 31 48
Total 1,600 1,536 244.5 13.2 0.83 0.59 689 13 23

Table 3.17: Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and the routing strategy optimal
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Panel A: Foodmart instances
∆ n Inst Opt t[s] tLP GpLP GpRF Nds CC SRC

5 (0, 10] 12 12 0.0 0.0 1.65 1.65 1 2 0
(10, 20] 20 20 4.5 1.2 3.31 2.73 6 17 24
(20, 30] 20 20 79.5 11.0 2.36 1.08 41 37 59
(30, 40] 20 20 244.5 49.9 2.01 0.84 192 24 78
(40, 50] 20 17 1,351.0 143.7 3.37 1.94 1,131 38 77
(50, 75] 2 0 3,600.0 816.4 20.74 19.38 1,656 52 98

Subtotal 94 89 433.9 61.2 3.00 2.03 327 26 53
10 (0, 10] 12 12 0.0 0.0 2.44 2.44 1 7 5

(10, 20] 20 20 4.1 0.8 3.69 2.93 5 38 22
(20, 30] 20 19 466.4 8.1 2.67 0.98 460 41 80
(30, 40] 20 20 384.8 35.1 2.34 0.85 539 30 84
(40, 50] 20 20 467.8 106.1 1.80 0.66 248 38 97
(50, 75] 2 0 3,600.0 857.8 19.28 18.62 1,368 51 86

Subtotal 94 91 358.1 50.2 2.96 1.86 296 33 63
20 (0, 10] 12 12 0.0 0.0 2.17 2.17 1 4 0

(10, 20] 20 20 1.9 0.2 1.70 1.06 43 13 22
(20, 30] 20 20 5.3 2.2 1.31 0.44 15 13 40
(30, 40] 20 18 513.8 11.9 1.84 0.62 3,481 45 66
(40, 50] 20 15 1,216.4 37.1 1.41 0.67 4,877 34 71
(50, 75] 2 0 3,600.0 330.3 7.33 7.09 4,006 9 76

Subtotal 94 85 446.3 18.0 1.76 1.02 1,876 23 44
Total 282 265 412.8 43.1 2.57 1.64 833 27 53

Panel B: Scholz&Wäscher instances
Q n Inst Opt t[s] tLP GpLP GpRF Nds CC SRC

30 20 100 100 0.0 0.0 0.30 0.28 2 0 0
40 100 100 0.0 0.0 0.19 0.16 2 2 0
60 100 100 0.1 0.0 0.12 0.09 3 1 1
80 100 100 0.1 0.0 0.10 0.08 2 1 1

Subtotal 400 800 0.0 0.0 0.18 0.15 2 1 0
45 20 100 100 0.1 0.0 0.66 0.38 6 4 7

40 100 100 1.6 0.1 0.51 0.24 80 5 16
60 100 100 16.6 0.3 0.42 0.21 581 5 20
80 100 99 52.7 0.7 0.31 0.17 859 5 24

Subtotal 400 798 17.7 0.3 0.48 0.25 381 5 17
60 20 100 100 0.4 0.0 1.22 0.57 11 10 19

40 100 100 15.6 0.5 0.81 0.42 377 12 33
60 100 96 312.5 2.4 0.82 0.54 5,926 12 43
80 100 86 931.1 6.2 1.57 1.37 9,513 14 47

Subtotal 400 764 314.9 2.3 1.11 0.73 3,957 12 35
75 20 100 100 1.3 0.1 1.90 0.67 13 18 30

40 100 100 107.0 2.3 1.28 0.59 1,165 30 54
60 100 84 1,177.8 12.8 2.02 1.52 7,290 30 67
80 100 42 2,668.7 37.8 6.56 6.24 9,265 32 71

Subtotal 400 652 988.7 13.2 2.94 2.26 4,433 27 56
Total 1600 3014 330.3 4.0 1.18 0.85 2,193 11 27

Table 3.18: Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and the routing strategy no-reversal
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Panel A: Foodmart instances
∆ n Inst Opt t[s] tLP GpLP GpRF Nds CC SRC

5 (0, 10] 12 12 0.0 0.0 0.96 0.96 1 2 0
(10, 20] 20 20 0.7 0.2 2.48 2.33 2 27 10
(20, 30] 20 20 7.2 2.0 1.55 1.02 3 40 40
(30, 40] 20 20 45.1 11.1 1.19 0.51 19 26 62
(40, 50] 20 20 213.3 34.9 1.92 0.63 100 31 84
(50, 75] 2 1 2,902.2 274.2 10.99 9.53 1,109 52 94

Subtotal 94 93 118.4 16.1 1.88 1.28 50 28 44
10 (0, 10] 12 12 0.0 0.0 2.95 2.95 1 8 1

(10, 20] 20 20 2.0 0.1 3.69 3.29 3 47 14
(20, 30] 20 20 13.7 1.6 1.77 0.84 5 37 46
(30, 40] 20 20 53.0 7.1 1.49 0.58 33 27 80
(40, 50] 20 20 110.2 22.3 1.24 0.42 52 31 90
(50, 75] 2 1 2,733.6 235.5 7.96 7.38 875 58 94

Subtotal 94 93 96.2 11.6 2.29 1.63 39 32 51
20 (0, 10] 12 12 0.0 0.0 1.16 1.16 1 3 1

(10, 20] 20 20 0.2 0.0 1.42 1.32 2 17 14
(20, 30] 20 20 2.0 0.4 1.04 0.49 8 18 35
(30, 40] 20 20 27.4 2.4 1.36 0.27 25 49 65
(40, 50] 20 20 101.1 9.9 0.95 0.29 68 39 62
(50, 75] 2 0 3,600.0 126.5 11.74 11.60 3,288 14 50

Subtotal 94 92 104.4 5.4 1.41 0.90 92 27 39
Total 282 278 106.3 11.0 1.86 1.27 60 29 44

Panel B: Scholz&Wäscher instances
Q n Inst Opt t[s] tLP GpLP GpRF Nds CC SRC

30 20 100 100 0.0 0.0 0.26 0.22 2 1 0
40 100 100 0.0 0.0 0.18 0.16 2 1 0
60 100 100 0.1 0.0 0.13 0.10 2 1 0
80 100 100 0.1 0.0 0.09 0.08 2 1 0

Subtotal 400 800 0.0 0.0 0.16 0.14 2 1 0
45 20 100 100 0.2 0.0 0.62 0.26 16 4 7

40 100 100 0.8 0.1 0.43 0.18 16 5 14
60 100 100 6.8 0.6 0.38 0.17 106 6 21
80 100 100 15.4 1.5 0.26 0.13 116 3 21

Subtotal 400 800 5.8 0.6 0.42 0.19 63 4 16
60 20 100 100 0.3 0.1 0.86 0.36 5 10 16

40 100 100 9.5 1.0 0.66 0.29 149 12 32
60 100 99 124.9 5.1 0.64 0.39 1,450 12 40
80 100 92 602.3 14.6 1.15 0.95 4,232 13 46

Subtotal 400 782 184.2 5.2 0.83 0.50 1,459 12 33
75 20 100 100 0.8 0.2 1.49 0.72 6 18 25

40 100 100 37.8 4.7 1.00 0.37 163 26 51
60 100 95 472.7 29.7 1.18 0.73 1,485 29 61
80 100 60 2,122.4 97.4 5.05 4.76 3,783 28 64

Subtotal 400 710 658.4 33.0 2.18 1.65 1,359 25 50
Total 1,600 3,092 212.1 9.7 0.90 0.62 721 11 25

Table 3.19: Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and the routing strategy aisle-by-aisle
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Panel A: Foodmart instances
∆ n Inst Opt t[s] tLP GpLP GpRF Nds CC SRC

5 (0, 10] 12 12 0.0 0.0 1.30 1.30 1 2 0
(10, 20] 20 20 0.2 0.0 2.53 2.33 2 20 5
(20, 30] 20 20 8.6 0.5 1.82 0.75 6 36 48
(30, 40] 20 20 76.9 2.9 1.47 0.70 44 26 65
(40, 50] 20 20 280.4 8.2 2.07 0.66 159 37 81
(50, 75] 2 0 3,600.0 63.2 16.21 14.88 1,090 55 85

Subtotal 94 92 154.5 3.8 2.19 1.43 68 27 44
10 (0, 10] 12 12 0.0 0.0 2.65 2.65 1 7 1

(10, 20] 20 20 0.9 0.0 3.35 3.12 2 45 20
(20, 30] 20 20 13.1 0.3 1.72 1.32 4 40 42
(30, 40] 20 20 73.1 1.9 1.55 0.51 50 33 74
(40, 50] 20 20 233.8 6.1 1.45 0.50 146 40 88
(50, 75] 2 1 2,818.8 56.4 6.59 5.82 916 52 108

Subtotal 94 93 128.3 3.0 2.20 1.62 63 36 50
20 (0, 10] 12 12 0.0 0.0 1.04 1.04 1 3 2

(10, 20] 20 20 0.1 0.0 1.21 0.93 2 14 11
(20, 30] 20 20 1.4 0.1 1.06 0.26 9 15 36
(30, 40] 20 20 12.9 0.6 1.09 0.29 21 31 55
(40, 50] 20 20 106.0 2.5 1.06 0.38 133 33 61
(50, 75] 2 1 2,684.8 28.4 6.55 6.33 1,413 9 65

Subtotal 94 93 82.7 1.3 1.21 0.66 65 20 36
Total 282 278 121.8 2.7 1.87 1.24 65 28 44

Panel B: Scholz&Wäscher instances
Q n Inst Opt t[s] tLP GpLP GpRF Nds CC SRC

30 20 100 100 0.0 0.0 0.29 0.26 2 0 0
40 100 100 0.0 0.0 0.24 0.23 2 0 0
60 100 100 0.0 0.0 0.13 0.11 2 1 0
80 100 100 0.1 0.0 0.12 0.09 3 1 0

Subtotal 400 800 0.0 0.0 0.19 0.17 2 1 0
45 20 100 100 0.1 0.0 0.54 0.28 8 5 5

40 100 100 1.0 0.0 0.37 0.19 38 6 13
60 100 100 3.6 0.1 0.31 0.13 50 7 19
80 100 100 9.8 0.3 0.22 0.11 73 5 21

Subtotal 400 800 3.6 0.1 0.36 0.18 42 6 15
60 20 100 100 0.2 0.0 0.92 0.44 6 11 14

40 100 100 6.1 0.2 0.60 0.27 82 12 30
60 100 100 141.6 0.8 0.51 0.29 1,650 13 37
80 100 93 594.6 2.2 1.10 0.92 4,324 14 41

Subtotal 400 786 185.6 0.8 0.78 0.48 1,516 12 31
75 20 100 100 0.6 0.1 1.49 0.65 6 21 24

40 100 100 29.3 0.9 0.99 0.36 145 32 51
60 100 90 706.4 4.8 1.79 1.34 2,568 34 60
80 100 54 2342.8 15.1 4.96 4.68 3,887 30 62

Subtotal 400 688 769.8 5.2 2.31 1.76 1,651 29 49
Total 1,600 3,074 239.8 1.5 0.91 0.65 803 12 24

Table 3.20: Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and the routing strategy combined
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Panel A: Foodmart instances
∆ n Inst Opt t[s] tLP GpLP GpRF Nds CC SRC

5 (0, 10] 12 12 0.0 0.0 2.01 2.01 1 3 1
(10, 20] 20 20 0.4 0.0 2.90 2.71 2 24 14
(20, 30] 20 20 16.0 0.3 2.28 0.66 10 42 66
(30, 40] 20 20 84.4 1.2 1.93 0.74 99 28 73
(40, 50] 20 20 306.2 3.4 2.31 0.91 232 39 81
(50, 75] 2 0 3,600.0 23.3 17.87 16.54 2,480 54 86

Subtotal 94 92 163.2 1.5 2.64 1.68 126 30 52
10 (0, 10] 12 12 0.0 0.0 2.44 2.44 1 6 1

(10, 20] 20 20 0.5 0.0 3.91 3.91 2 47 22
(20, 30] 20 20 33.3 0.2 2.26 0.68 14 41 75
(30, 40] 20 20 96.6 0.8 1.74 0.55 114 31 84
(40, 50] 20 20 257.1 2.5 1.62 0.62 210 41 91
(50, 75] 2 1 2,215.9 21.0 9.00 8.35 745 74 81

Subtotal 94 93 129.6 1.2 2.53 1.71 88 36 60
20 (0, 10] 12 12 0.0 0.0 1.65 1.65 1 4 2

(10, 20] 20 20 0.2 0.0 1.74 1.31 3 14 13
(20, 30] 20 20 1.3 0.1 1.13 0.25 7 19 38
(30, 40] 20 20 29.7 0.3 1.51 0.39 52 43 61
(40, 50] 20 20 185.3 1.0 1.25 0.53 332 34 65
(50, 75] 2 1 2,814.9 10.6 6.53 6.37 3,568 8 64

Subtotal 94 93 106.0 0.5 1.55 0.87 160 24 39
Total 282 278 132.9 1.1 2.24 1.42 125 30 50

Panel B: Scholz&Wäscher instances
Q n Inst Opt t[s] tLP GpLP GpRF Nds CC SRC

30 20 100 100 0.0 0.0 0.27 0.23 2 0 0
40 100 100 0.0 0.0 0.20 0.18 2 1 0
60 100 100 0.0 0.0 0.11 0.10 2 1 1
80 100 100 0.0 0.0 0.09 0.08 2 1 0

Subtotal 400 800 0.0 0.0 0.17 0.15 2 1 0
45 20 100 100 0.1 0.0 0.63 0.35 7 5 7

40 100 100 0.6 0.0 0.46 0.19 15 7 15
60 100 100 6.3 0.1 0.38 0.17 141 6 21
80 100 100 20.9 0.2 0.29 0.15 374 5 23

Subtotal 400 800 7.0 0.1 0.44 0.22 134 6 16
60 20 100 100 0.4 0.0 1.15 0.56 14 12 16

40 100 100 9.1 0.1 0.72 0.33 195 12 33
60 100 97 195.9 0.5 0.73 0.46 3,189 18 41
80 100 90 666.7 1.3 1.33 1.12 5,731 19 45

Subtotal 400 774 218.0 0.5 0.98 0.62 2,282 15 34
75 20 100 100 0.6 0.0 1.80 0.95 6 21 24

40 100 100 31.1 0.5 1.12 0.44 148 30 54
60 100 91 716.0 2.4 1.73 1.20 2,967 37 67
80 100 55 2,187 6.9 5.00 4.66 5,323 36 71

Subtotal 400 692 733.7 2.4 2.41 1.82 2,111 31 54
Total 1,600 3,066 239.7 0.8 1.00 0.70 1,132 13 26

Table 3.21: Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wäscher instances and the routing strategy traversal
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Optimal No-reversal Aisle-by-aisle Combined Traversal
∆ n Inst t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp

Panel A: BPC-DF heuristic
5 (0, 10] 12 0.0 0.00 0.0 10.70 0.0 6.80 0.0 2.50 0.0 9.40

(10, 20] 20 2.2 0.00 2.9 8.90 0.5 6.00 0.1 2.90 0.2 8.20
(20, 30] 20 41.5 0.00 47.4 8.20 5.4 5.60 5.1 1.90 6.0 7.30
(30, 40] 20 338.2 0.00 274.8 7.80 37.9 4.90 56.7 1.50 65.8 6.80
(40, 50] 20 1,408.3 0.00 1,708.4 8.10 335.6 4.90 502.0 1.70 340.3 6.80
(50, 75] 2 3,600.0 5.90 3,600.0 7.40 3,600.0 3.30 3,600.0 0.70 3,600.0 5.70

Subtotal 94 457.5 0.13 509.3 8.54 157.3 5.49 196.6 2.04 164.3 7.51
10 (0, 10] 12 0.0 0.00 0.0 8.60 0.0 3.90 0.0 1.70 0.0 6.20

(10, 20] 20 4.0 0.00 2.6 6.50 0.9 3.80 0.7 1.40 0.5 4.80
(20, 30] 20 30.4 0.00 443.7 7.60 5.9 4.90 4.3 1.50 6.4 5.90
(30, 40] 20 245.4 0.00 417.4 7.20 40.9 5.00 39.2 1.50 93.7 5.60
(40, 50] 20 980.2 0.00 684.2 6.90 105.2 5.10 260.5 1.50 356.7 5.80
(50, 75] 2 3,600.0 5.50 3,600.0 5.60 3,600.0 4.10 3,600.0 0.50 3,407.4 4.10

Subtotal 94 344.7 0.12 405.9 7.22 109.1 4.59 141.4 1.48 169.8 5.58
20 (0, 10] 12 0.0 0.00 0.0 9.30 0.0 5.10 0.0 1.80 0.0 6.40

(10, 20] 20 0.5 0.00 0.9 9.30 0.1 5.80 0.0 1.90 0.1 6.50
(20, 30] 20 7.3 0.00 4.6 8.00 1.0 5.30 0.5 1.80 0.4 6.20
(30, 40] 20 82.9 0.00 613.1 7.80 14.2 5.30 7.0 1.50 24.9 6.50
(40, 50] 20 588.5 0.00 1,466.8 7.40 132.7 4.90 88.9 1.50 289.4 6.30
(50, 75] 2 3,352.2 4.90 3,600.0 6.10 3,600.0 4.70 3,600.0 0.80 3,600.0 5.30

Subtotal 94 215.8 0.10 520.3 8.23 108.1 5.28 97.1 1.67 143.6 6.36
Total 282 339.3 0.12 478.5 8.00 124.8 5.12 145.0 1.73 159.2 6.48

Panel B: SC heuristic
5 (0, 10] 12 0.0 0.00 0.0 10.70 0.0 6.90 0.0 2.50 0.0 9.40

(10, 20] 20 2.2 0.20 1.5 9.20 0.3 6.20 0.1 3.00 0.1 8.60
(20, 30] 20 32.1 0.40 12.8 9.00 3.1 6.20 1.9 2.40 0.7 8.10
(30, 40] 20 159.5 0.70 56.2 9.20 14.9 5.60 8.3 2.30 5.9 8.40
(40, 50] 20 550.4 1.00 180.6 10.10 58.1 6.10 41.3 3.10 28.1 8.90
(50, 75] 2 2,413.2 6.20 1,619.0 8.60 156.1 5.50 944.2 1.90 704.7 7.30

Subtotal 94 209.7 0.62 87.9 9.53 19.6 6.13 31.1 2.66 22.4 8.59
10 (0, 10] 12 0.0 0.00 0.0 8.60 0.0 3.90 0.0 1.90 0.0 6.20

(10, 20] 20 1.8 0.80 1.1 7.30 0.2 4.80 0.1 2.20 0.1 6.20
(20, 30] 20 18.6 0.60 9.1 7.90 2.0 5.40 0.9 2.00 0.8 7.00
(30, 40] 20 115.4 1.00 41.0 8.20 12.1 6.00 6.7 2.60 5.6 6.60
(40, 50] 20 386.4 0.80 127.1 8.30 41.3 6.20 22.0 2.60 15.0 6.80
(50, 75] 2 2,526.2 6.00 1,229.3 6.70 272.8 6.30 959.9 2.20 1,117.1 5.70

Subtotal 94 164.9 0.81 64.1 7.99 17.6 5.40 26.7 2.29 28.3 6.57
20 (0, 10] 12 0.0 0.00 0.0 9.30 0.0 5.10 0.0 1.80 0.0 6.40

(10, 20] 20 0.5 0.20 0.3 9.40 0.1 6.00 0.0 2.00 0.0 6.60
(20, 30] 20 6.1 0.20 2.6 8.20 0.6 5.40 0.3 2.00 0.2 6.40
(30, 40] 20 38.8 0.40 14.1 8.50 3.0 5.90 2.1 1.80 1.1 7.30
(40, 50] 20 171.0 0.60 50.0 8.00 15.7 5.50 8.4 2.10 7.2 7.10
(50, 75] 2 2,034.1 5.10 386.5 7.10 1,080.2 6.10 1,200.9 1.20 236.6 5.80

Subtotal 94 89.3 0.41 22.5 8.59 27.1 5.63 27.8 1.94 6.8 6.77
Total 282 154.6 0.61 58.1 8.70 21.4 5.72 28.6 2.29 19.2 7.31

Table 3.22: Summary results of our BPC-based heuristics for the Foodmart in-
stances and all routing strategies
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Chapter 4
Branch-and-Price for the
Set-Union Bin Packing Problem
Julia Wahlen and Timo Gschwind

Abstract

Given a set of items, each requiring a set of elements, the set-union bin packing
problem (SUBP) consists of grouping all items into a minimum number of bins
such that each item is assigned to exactly one bin and the total weight of all
distinct elements required in a bin does not exceed its capacity. The SUBP is
a generalization of the well-known bin packing problem, where items can share
one or more elements in a non-additive fashion. In the literature, it has been ad-
dressed by various names such as pagination problem, job grouping problem, tool
switching problem, or bin packing problem with overlapping items. We propose a
branch-and-price (B&P) algorithm for solving the SUBP. For the column genera-
tion pricing problem, which is a set-union knapsack problem (SUKP), we present
and explore alternative solution methods, namely the direct solution of an integer
program with a general-purpose MIP solver and two labeling algorithms on ad hoc
defined graphs. The overall best B&P variant combines an upfront greedy pric-
ing heuristic and an item-based labeling approach without the application of any
dominance. The latter is based on the representation of the pricing problem as a
shortest path problem with resource constraints and relies on strong completion
bounds as acceleration technique. Ryan-and-Foster branching is applied to ensure
integer solutions. Extensive computational results demonstrate the effectiveness
of the proposed method. Our B&P significantly outperforms the state-of-the-art
IP formulations. It solves to optimality more than 10,000 instances from the lit-
erature that have only been solved heuristically before, improving the best-known
solutions for more than half of the benchmark.
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4.1 Introduction
The set-union bin packing problem (SUBP) is an extension of the well-known bin
packing problem (BP). Given a set of items, each requiring a set of weighted ele-
ments, the SUBP consists of grouping all items into a minimum number of bins
such that the total weight of all distinct elements required by the items in a bin
does not exceed the bin capacity. Unlike in the classical BP, packing together
two or more items into the same bin may occupy less capacity than the sum of
their individual capacity consumptions. As a generalization of the BP, the SUBP
is N P -hard (Tang and Denardo 1988). It appears in numerous industries (see,
e.g., Shirazi and Frizelle 2001, Crama et al. 2007) and related problems have been
considered in different fields. We briefly discuss selected areas of application.

The tool switching instants problem or machine stop minimization problem is a
classical and extensively studied problem in flexible manufacturing systems (Konak
and Kulturel-Konak 2007, Konak et al. 2008, Marvizadeh and Choobineh 2013,
Adjiashvili et al. 2015, Burger et al. 2015, Gokgur and Özpeynirci 2022). Within
automated manufacturing systems, every operation or task requires a specific set of
tools to be loaded into a machine and each machine is equipped with its individual
tool magazine. In general, the capacity of these magazines is insufficient to accom-
modate the complete range of tool slots needed for all operations so that machine
stops are necessary to switch tools. The objective is to minimize the number of
such machine stops.

In a job grouping or part grouping problem scheduling application, several jobs
have to be assigned to machines, with the aim of minimizing the number of identical
machines used. Each job requires a set of specific tools, which have to be installed
in the machine on which the job is to be processed. Each machine can only hold a
limited number of different tools (Hirabayashi et al. 1984, Tang and Denardo 1988,
Crama and Oerlemans 1994, Denizel 2003, Jans and Desrosiers 2013, Desrosiers
et al. 2013).

In the field of virtual machines (VMs), virtualization technology enables multi-
ple VMs to run simultaneously on a single physical server. VMs residing on the
same server can share identical content storage pages, resulting in a reduction of
cumulative storage requirements on server resources. The aim here is to minimize
the number of servers required in order to minimize costs. This problem has been
coined the virtual machine packing problem (Sindelar et al. 2011).

The equivalent pagination problem arises from the field of linguistics (Grange
et al. 2018, 2023). It asks for the distribution of a given collection of tiles into the
fewest number of pages. A tile is defined as a finite set of symbols from a given
alphabet and each pair of sets can share zero, one or more symbols. Once some
data from two tiles are packed into the same page, they do not need to be repeated
twice.
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In graph theory, the k-clique covering problem is defined on a hypergraph whose
vertices can be interpreted as elements connected by hyperedges that visualize the
affiliation to the items. The aim is to use the least number of cliques of size k (or
subsets of maximum k vertices) such that each edge is contained in at least one
such clique (Goldschmidt et al. 1996).

The SUBP describes the underlying optimization problem for all these applica-
tions. We study the exact solution of the SUBP using branch-and-price (B&P).
For the related BP, column generation (CG) and B&P based approaches have been
successfully applied (e.g., Gschwind and Irnich 2016, Wei et al. 2020, Baldacci
et al. 2024). There, the CG pricing problem is a binary knapsack problem (KP).
Analogously, solving the SUBP with B&P results in a set-union knapsack problem
(SUKP) as pricing problem. On the theoretical side, both SUBP and SUKP are
N P -hard (Tang and Denardo 1988, Crama and Oerlemans 1994). On the practi-
cal side, a key difficulty for solution approaches to both problems is the fact that
the capacity consumption of a bin is given by a function that is not separable in
the comprised items. A similar challenge occurs, e.g., for order batching problems
(OBP) in warehousing. Given a set of customer orders each comprising individual
items to be picked, the OBP consists of designing a set of picking batches such
that each customer order is assigned to exactly one batch, all batches satisfy the
capacity restriction of the pickers, and the total distance traveled by the pickers is
minimal. The travel distances of the picking batches are given by a function that
is not separable in the combined orders. The recent work of Wahlen and Gschwind
(2023) successfully applies B&P to solve the OBP. For the solution of the pricing
problem, they propose a labeling algorithm which does not apply any dominance
rules between labels (due to the non-separability of the cost function) but relies
on strong completion bounds to limit the number of generated labels.

4.1.1 Contributions
The main contributions of this paper are as follows:

• We propose, to the best of our knowledge, the first B&P algorithm for the
SUBP. The B&P is based on the set-partitioning formulation (SPF) of the
SUBP and is applicable for solving instances with general element weights.

• We propose and explore different exact solution approaches to the SUKP
pricing problem that are based on three alternative formulations: an inte-
ger programming (IP) formulation, an item-based shortest path problem with
resource constraints (SPPRC), and an element-based SPPRC. Furthermore,
we derive a greedy pricing heuristic following ideas of Arulselvan (2014) that
is able to quickly generate a large number of negative reduced cost-columns
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and typically leaves only few iterations to the exact pricer. The overall best
performing variant combines the upfront greedy pricing heuristic with an
item-based labeling algorithm that does not apply any dominance but re-
lies on strong completions bounds. While the general idea of the labeling
algorithm is generic and has also been applied by Wahlen and Gschwind
(2023) for the OBP, the bounding procedure, which is crucial for its effec-
tiveness, is strongly problem specific. We derive completion bounds that can
be effectively computed for each label by solving a binary KP.

• We show the competitiveness of the proposed algorithm on the large unit-
weight benchmark of Grange et al. (2018) and on new large-scale general-
weight instances based on He et al. (2018). Our B&P by far outperforms
the state-of-the-art IP formulations of Jans and Desrosiers (2013) and is able
to optimally solve 92% of the 10,986 instances by Grange et al. (2018). We
improve more than 5,800 best-known solutions (BKS) reported by Grange
et al. (2018) and confirm all remaining BKS except for 131.

• Thanks to the large number of proven optima, we can perform a first analysis
of the (modified) integer round up property ((M)IRUP) for the SUBP. We ob-
serve that for all instances the optimal objective value equals the rounded-up
value of the corresponding optimal LP relaxation plus one, i.e., the MIRUP
is satisfied.

4.1.2 Organization of the Paper
The remainder of the paper is structured as follows. In Section 4.2, we review
the related literature. Section 4.3 formally defines the SUBP and presents three
different IP formulations of the problem. The details of our exact B&P algorithm
are given in Section 4.4. Section 4.5 presents our computational results. Final
conclusions are drawn in Section 4.6.

4.2 Literature Review
The SUBP was first introduced as the parts-grouping problem in a manufacturing
context by Hirabayashi et al. (1984), who propose a set-covering formulation. The
term set-union bin packing was established by Goldschmidt et al. (1994) to de-
scribe the problem in analogy to the related SUKP. The literature contains several
studies dealing with the SUBP addressed by various names such as job grouping
problem (Tang and Denardo 1988, Crama and Oerlemans 1994, Jans and Desrosiers
2013, Desrosiers et al. 2013), tool switching instants problem (Konak et al. 2008,
Konak and Kulturel-Konak 2007, Marvizadeh and Choobineh 2013, Gokgur and
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Özpeynirci 2022), virtual machine packing problem (Sindelar et al. 2011), machine
stop minimization problem (Adjiashvili et al. 2015), pagination problem (Grange
et al. 2018, 2023), bin packing problem with color constraint (Kochetov and Kon-
dakov 2017), subset bin packing problem (Dror and Haouari 2000, Izumi et al.
1998), or bin packing problem with overlapping items (Grange et al. 2018).

In the following, we focus on the current state of research on exact solution
approaches to the SUBP. For simplicity, we uniformly use the terminology item,
element and bin to describe the approaches, even if the authors use other terms
depending on the application. A discussion of SUBP variants and extensions can
be found, e.g., in (Calmels 2019, Locatelli 2023). We refer to (Wei 2021) for a broad
overview on approaches to the SUKP, which constitutes the CG pricing problem
of the SUBP.

The literature on exact solution approaches is still very limited, despite the high
practical relevance of the SUBP. Tang and Denardo (1988) present a SPF of the
SUBP and show that the SUBP is a generalization of the well-known BP. Further-
more, the authors propose an exact branch-and-bound (B&B) approach to solve
the SUBP. For bounding, a lower bound and an upper bound are determined in
each B&B node by a sweeping procedure and a maximum intersection minimum
union (MIMU) heuristic, respectively. In the B&B tree, each node corresponds
to a maximum class which is defined as a set of items whose union of required
elements respects the bin capacity and adding another item to this set violates
the bin capacity. Branching is realized by sequential maximum partition where
at each node of the tree, all maximum classes that contain an arbitrarily selected
item that was not part of a previously formed class are generated. To reduce the
computational cost and the number of B&B nodes, the item with the smallest
number of elements that still needs to be grouped is chosen. The B&B approach
is considered ’efficient’ for unit-weight instances with up to 30 items where a ca-
pacity of up to ten is assumed and the maximum number of elements is 20. The
study is of theoretical nature and does not show computational results in terms of
computation times.

Denizel (2003) utilizes an IP formulation of the SUBP presented by Crama and
Oerlemans (1994) to propose a Langrangean decomposition-based lower bounding
procedure. This lower bound, strengthened by adding valid inequalities to the de-
composed model, is then used in an exact B&B algorithm. In each node, an upper
bound is derived from the lower bound solution. For branching, the sequential
maximum partition idea of Tang and Denardo (1988) is refined. Instead of choos-
ing the least compatible item, the author selects the item that has not yet been
grouped and that requires the largest weight of additional elements. The algo-
rithm is able to optimally solve instances limited to a maximum of 30 unit-weight
elements, 20 items and a capacity of 19 within a time limit of 5,400 seconds. The
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procedure is also valid for the general-weight case.
Jans and Desrosiers (2013) analyze several IP formulations of the problem. They

consider variants of the symmetric IP formulation (SF) of Crama and Oerlemans
(1994) by adding symmetry breaking constraints such as, e.g., variable reduction
and lexicographic ordering restrictions. They also present a new formulation of
the SUBP based on the asymmetric representatives formulation (ARF) idea that
was first proposed for vertex coloring (Junglas 2007, Campêlo et al. 2008) and was
generalized for binary clustering problems by Jans and Desrosiers (2010). All IPs
are solved with CPLEX and outperform the existing solution approaches from the
literature. On the small instances of Denizel (2003), the new ARF is 40 times faster
compared to the pure SF and outperforms the B&B algorithm of Denizel (2003)
by factor seven. The other IPs with symmetry breaking also outperform the B&B
algorithm, providing a speedup of factor six (SF with variable reduction) to eleven
(SF with lexicographic ordering) compared to pure SF. On newly generated, larger
instances with up to 60 items, 30 elements and a maximum capacity of 27, the SF
with limited lexicographic ordering constraints performs best with a speedup of
factor five compared to the pure SF model.

4.3 Problem Description and Mathematical
Formulations

In this section, we formally define the SUBP and present three mathematical for-
mulations of it.

4.3.1 Problem Definition
We are given a set of items I = {1, . . . , n}, a set of weighted elements E =
{1, . . . , m} with weights we ≥ 0 for all e ∈ E, and an unlimited number of bins
with capacity Q. Each item i ∈ I requires a specific subset of elements Ei ⊂ E.
The bin capacity Q specifies the maximum total weight of distinct elements per
bin and we assume Q to be sufficiently large to encompass any item. The SUBP
consists of grouping the items I into the minimum number of bins such that each
item is assigned to exactly one bin and each bin satisfies the capacity restriction.
In contrast to the standard BP, items can share one or more elements in a non-
additive fashion, i.e., each element is considered only once in determining the total
weight of a given set of items, regardless of whether the element is required by
multiple of these items.

Example 4.1. Consider an instance of the SUBP with four items I = {i1, . . . , i4}
and five unit-weight elements E = {e1, . . . , e5}. The sets of required elements are
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b1 b2

i1 i2 i3i4

e5 e3e4 e1 e2 e4

Figure 4.1: Example solution of a unit-weight SUBP instance with four items
I = {i1, . . . , i4} requiring elements Ei1 = {e4, e5}, Ei2 = {e1}, Ei3 =
{e2, e4}, Ei4 = {e3, e4}, and Q = 3

Ei1 = {e4, e5}, Ei2 = {e1}, Ei3 = {e2, e4}, and Ei4 = {e3, e4}. The bin capacity is
Q = 3. Two bins are necessary to hold all items. Figure 4.1 depicts an optimal
solution where items i1 and i4 requiring elements {e3, e4, e5} are assigned to bin b1
while items i2 and i3 requiring elements {e1, e2, e4} are assigned to bin b2. Note
that element e4 is shared by items i1 and i4 in b1 so that the total weight in each
bin is three.

It is convenient to introduce some additional notation. For a subset E ′ ⊆ E of
elements, denote by w(E ′) = ∑

e∈E′ we the total weight of the elements E ′. For
a subset I ′ ⊆ I of items, denote by E(I ′) = ⋃

i∈I′ Ei the set of distinct elements
required by the items I ′ and by w(I ′) = w(E(I ′)) = ∑

e∈E(I′) we the total weight of
these elements. Furthermore, we define the frequency fe(I ′) = |{i ∈ I ′ | e ∈ Ei}|
of an element e ∈ E as the number of items in set I ′ ⊆ I that require element e.
Note that if there is no common element between any pair of items, i.e., fe(I) ≤ 1
for all e ∈ E, the SUBP reduces to the BP (Tang and Denardo 1988).

4.3.2 Symmetric Formulation
To formulate the SUBP as a generalization of the BP, let B be a sufficiently large
set of available bins, e.g., B = {1, . . . , n}. A more evolved estimate on the size
of B is described in Section 4.B of the appendix. The SF uses three types of
binary indicator variables. Variables xib equal to one if item i ∈ I is assigned to
bin b ∈ B, and zero otherwise. Variables yeb equal to one if element e ∈ E is
required in bin b ∈ B, and zero otherwise. Variables zb equal to one if bin b ∈ B
is used, and zero otherwise.
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The SF of Crama and Oerlemans (1994) reads as follows:

min
∑
b∈B

zb (4.1a)

s.t.
∑
b∈B

xib = 1 ∀i ∈ I (4.1b)
∑
e∈E

weyeb ≤ Qzb ∀b ∈ B (4.1c)

xib ≤ yeb ∀b ∈ B, i ∈ I, e ∈ Ei (4.1d)
xib ∈ {0, 1} ∀b ∈ B, i ∈ I (4.1e)
yeb ∈ {0, 1} ∀b ∈ B, e ∈ E (4.1f)
zb ∈ {0, 1} ∀b ∈ B (4.1g)

The Objective (4.1a) minimizes the total number of bins used. Constraints (4.1b)
ensure that all items are packed exactly once. Constraints (4.1c) guarantee compli-
ance with the capacity of each bin regarding its allocated elements. The coupling
of items and their required set of elements is enforced by Constraints (4.1d).

In order to avoid symmetric solutions, Jans and Desrosiers (2013) propose (among
others) the following symmetry breaking constraints, which can be added to For-
mulation (4.1): ∑

i∈I

2n−ixib ≥
∑
i∈I

2n−ixi,b+1 ∀b ∈ B \ {|B|}. (4.2)

Constraints (4.2) establish a lexicographic ordering of the bins according to the low-
est indexed item assigned to each bin. Formulation (4.1) together with Constraints
(4.2) was among the best formulations tested by Jans and Desrosiers (2013), in
particular for larger instances. It is referred to as SF-LEX-I in the following.

4.3.3 Asymmetric Representatives Formulation
The ARF proposed by Jans and Desrosiers (2013) identifies bins by the lowest-
indexed items packed into them. This makes redundant the use of bin setup
variables. More specifically, binary variables vih are equal to one if and only if
item i ∈ I is assigned to the bin identified by item h ∈ I, h ≤ i. Binary variables yeh

are now defined to equal one if and only if element e ∈ E is assigned to the bin
identified by item h ∈ I.
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The ARF reads as follows:

min
∑
h∈I

vhh (4.3a)

s.t.
∑

h∈I,h≤i

vih = 1 ∀i ∈ I (4.3b)
∑
e∈E

weyeh ≤ Qvhh ∀h ∈ I (4.3c)

vih ≤ vhh ∀i, h ∈ I, i ≥ h (4.3d)
vih ≤ yeh ∀i, h ∈ I, i ≥ h, e ∈ Ei (4.3e)
vih ∈ {0, 1} ∀i, h ∈ I, i ≥ h (4.3f)
yeh ∈ {0, 1} ∀h ∈ I, e ∈ E (4.3g)

The Objective (4.3a) minimizes the total number of bins used. Constraints (4.3b)
ensure that all items are assigned to exactly one bin. Constraints (4.3c) guarantee
compliance with the capacity of each bin with respect to its allocated elements. The
coupling of items and their bin identifier is enforced by Constraints (4.3d), while
Constraints (4.3e) ensure coupling of each item and its required set of elements.

4.3.4 Set-Partitioning Formulation
The SPF of the SUBP has been first proposed by Tang and Denardo (1988). An
item subset I ′ ⊆ I is said to be feasible if it satisfies w(I ′) ≤ Q. Let Ω be the set
of all feasible item subsets I ′. We refer to such (feasible) item subsets as (feasible)
bins in the following. Binary parameters rib indicate if item i ∈ I is contained in
bin b ∈ Ω (rib = 1) or not (rib = 0). Binary decision variables λb equal to one if
bin b ∈ Ω is selected and zero otherwise. Then, the SUBP can be formulated as
follows:

min
∑
b∈Ω

λb (4.4a)

s.t.
∑
b∈Ω

ribλb = 1 ∀i ∈ I (4.4b)

λb ∈ {0, 1} ∀b ∈ Ω (4.4c)

The Objective (4.4a) minimizes the total number of bins used, while Constraints (4.4b)
ensure that all items are packed exactly once.

4.4 Branch-and-Price Algorithm
Formulation (4.4) contains an exponential number of variables, i.e., feasible bins, so
that it typically cannot be solved directly. We, therefore, employ a B&P algorithm
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for its solution. A B&P algorithm is a B&B algorithm that uses CG to compute the
lower bounds. CG alternates between solving a restricted master problem (RMP),
in our case the linear relaxation of (4.4) comprising only a subset of the variables,
and solving a pricing problem that generates variables with negative reduced cost.
For details on CG and B&P, we refer to (Barnhart et al. 1998, Lübbecke and
Desrosiers 2005).

In Sections 4.4.1 and 4.4.2, we present the details of our B&P with respect to
pricing problem solution and branching, respectively. An overview of additional
design choices and implementation details can be found in Appendix 4.B.

4.4.1 Pricing Problem
Let πi be the dual prices associated with Constraints (4.4b). The reduced cost of
a bin b is given by c̃b = 1 − ∑

i∈b πi. The pricing problem consists of identifying
at least one feasible bin b ∈ Ω with negative reduced cost or to guarantee that
no such bin exists. Note that minimizing c̃b over b ∈ Ω is equivalent to finding a
feasible bin b that maximizes ∑

i∈b πi. The latter corresponds to solving a SUKP
over items i ∈ I with required elements Ei and profits πi, and bin capacity Q.
Whenever the resulting objective function value is greater than one, a feasible bin
with negative reduced cost is found. As shown by Goldschmidt et al. (1994), the
SUKP is N P -hard even for very restrictive cases.

In the following, we present different exact solution approaches to the pricing
problem that are based on three alternative formulations of it: an SUKP IP formu-
lation, an item-based SPPRC, and an element-based SPPRC. The former is solved
directly with a general-purpose MIP solver. The latter two are solved by ad hoc
defined labeling algorithms, both of them with and without dominance. Details
on a greedy pricing heuristic and further acceleration strategies to speed-up the
solution of the pricing problem are provided in Appendix 4.A.

4.4.1.1 IP Formulation

The SUKP pricing problem can be modeled using the IP formulation of Hirabayashi
et al. (1984). Let xi (ye) be binary variables indicating the inclusion or not of
item i ∈ I (element e ∈ E) into the bin.
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The formulation reads as follows:

max
∑
i∈I

xiπi (4.5a)

s.t.
∑
e∈E

yewe ≤ Q (4.5b)

xi ≤ ye ∀i ∈ I, e ∈ Ei (4.5c)
xi ∈ {0, 1} ∀i ∈ I (4.5d)
ye ∈ {0, 1} ∀e ∈ E (4.5e)

The Objective (4.5a) maximizes the total profit of included items. Constraints (4.5b)
ensure that the total weight of all required elements does not exceed the bin capac-
ity, while Constraints (4.5c) guarantee the coupling of each item with its required
elements. The solution of Formulation (4.5) with a general-purpose MIP solver
represents a first option for solving the pricing problem.

4.4.1.2 Item-based SPPRC

The pricing problem can also be modeled as an SPPRC on an ad hoc defined graph.
SPPRCs are typically solved with dynamic programming (DP) labeling algorithms
(Irnich and Desaulniers 2005). In a labeling algorithm, labels representing par-
tial paths are extended from a given source to a given sink along the network
arcs using resource extension functions (REFs). To avoid enumerating all feasible
paths, dominance relations between labels to eliminate provably non-optimal paths
and bounding procedures to discard unpromising paths that cannot reach a given
objective value threshold can be applied.

We describe two different types of SPPRC representations of the pricing problem
denoted item-based and element-based SPPRC and their solution by DP labeling
algorithms. All presented labeling algorithms heavily rely on a strong bounding
procedure to discard unpromising labels. SPPRC representations similar to the
item-based SPPRC have also been used for other pricing problems with a knapsack-
type substructure (e.g., Heßler et al. 2018, Gschwind et al. 2019).

Item-based Representation Let G = (V, A) be a linear directed multigraph
with n + 1 vertices V = {0, . . . , n} and 2n arcs A. Vertex 0 is an artificial source.
Vertices 1, . . . , n correspond with the n items in a given sorting. For ease of
notation, we assume throughout this section that in the SPPRC graph the items
are sorted by their index, meaning that vertex v ∈ V \ {0} corresponds with
item i = v. For each v ∈ V \ {0}, there are two parallel arcs a1

v and a0
v connecting

vertices v − 1 and v indicating the inclusion or not, respectively, of item v. Each
arc ak

v ∈ A, v ∈ V \ {0}, k ∈ {0, 1} is associated with a set of items Ik
v , a set of
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0 i1 i2 i3 i4

({i1}, {e4, e5}, π1)

(∅,∅, 0)

({i2}, {e1}, π2)

(∅,∅, 0)

({i3}, {e2, e4}, π3)

(∅,∅, 0)

({i4}, {e3, e4}, π4)

(∅,∅, 0)

Figure 4.2: Linear directed multigraph G of the item-based SPPRC representa-
tion of the pricing problem

elements Ek
v , and a dual price πk

v . Accordingly, for arc a1
v we have I1

v = Iv, E1
v = Ev,

and π1
v = πv, while for arc a0

v we have I0
v = E0

v = ∅ and π0
v = 0. Associating sets

of items Ik
v with the arcs allows the simultaneous consideration of multiple items

which is needed for the incorporation of branching decisions (see Section 4.4.2).
Note that the information Ek

v on the elements is redundant (it can be determined
from the items Ik

v ), but simplifies the presentation and the labeling algorithm.
Any 0-n-path (v0, ak1

v1 , v1, . . . , akn
vn

, vn) in G defines a bin b with items I(b) =⋃n
i=1 Iki

vi
requiring elements E(b) = ⋃n

i=1 Eki
vi

. It is feasible if w(E(b)) ≤ Q. Recall
that the capacity consumption w(E(b)), or w(b) for short, is a function that is not
separable in the items I(b) of a bin b, but always depends on the union of elements
required by the items in b. The reduced cost of bin b is c̃b = 1 − ∑n

i=1 πki
vi

. The
solution of the pricing problem is equivalent to finding a capacity-feasible 0-n-path
in G with minimum reduced cost.

Example 4.2 (continued). Figure 4.2 illustrates graph G for the example SUBP
instance and dual prices πi. There are two arcs between each pair of consecutive
vertices, indicating the inclusion (blue arc) or not (gray arc) of the item associated
with the respective head vertex. Consider vertex v = i1. The ingoing blue arc
({i1}, {e4, e5}, πi1) = a1

1 represents the inclusion of the singleton item i1, i.e., its
required set of elements Ei1 = {e4, e5}, into a bin and is associated with the dual
price πi1. The ingoing gray arc (∅,∅, 0) = a0

1 corresponds with not including any
item (I0

1 = E0
1 = ∅) and therefore π0

1 = 0. The path corresponding to bin b1
comprising items i1 and i4 (as shown in Figure 4.1) is visualized by bold arcs.

Item-based Labeling Algorithm A partial path PL = (0, ak1
1 , 1, . . . , akv

v , v)
from the source 0 to some vertex v is represented by a label

L =
(
v(L), E(L), I(L), c̃(L), w(L), IC(L)

)
storing its last vertex v(L), the set of required elements E(L), the set of items I(L),
the reduced cost c̃(L), the capacity consumption w(L), and the set of compati-
ble items IC(L). An item is considered compatible if it can be added with any
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capacity-feasible extension of label L to the sink vertex n. The initial label at
the artificial source 0 is given by (0,∅,∅, 1, 0, I). In the linear graph, labels are
processed vertex-by-vertex in our labeling algorithm. This means that starting
with the initial label at the artificial source, we always propagate all labels at a
given vertex v − 1 along the arcs a0

v and a1
v to vertex v, before all resulting labels

at vertex v are in turn propagated to vertex v +1, etc., until finally the sink vertex
is reached.

The extension of a label L at vertex v − 1 to vertex v along arc ak
v is feasible, if

w(E(L) ∪ Ek
v ) ≤ Q. If the extension is feasible, a new label L′ is created according

to the following REFs:

v(L′) = v (4.6a)
E(L′) = E(L) ∪ Ek

v (4.6b)
I(L′) = I(L) ∪ Ik

v (4.6c)
c̃(L′) = c̃(L) − πk

v (4.6d)
w(L′) =

∑
e∈E(L)∪Ek

v

we (4.6e)

IC(L′) = IC(L) \ {i ∈ IC(L) | q(E(L) ∪ Ek
v ∪ Ei) > Q ∨ i ∈ Ik

v } (4.6f)

REFs (4.6a)–(4.6d) update the current vertex, the set of elements, the set of
items, and the reduced cost in a straightforward manner according to the respective
component of arc ak

v . The total weight of all distinct elements is determined by
REF (4.6e). REF (4.6f) is used to identify the new set of compatible items by
reducing the former set of compatible items by the items whose inclusion would
cause the capacity to be exceeded and by the item(s) associated with arc ak

v .
The non-separability of the capacity consumption w(L′) in the items imposes

two major drawbacks on the algorithm when labeling on items. First, in every
label propagation, a more costly evaluation of the capacity consumption w(L′) is
necessary in REF (4.6e). Second, it renders infeasible the standard less-or-equal
dominance relation of the capacity resource as applied in many labeling algorithms
for SPPRC variants. Instead, the specific sets of packed elements have to be taken
into account:

Definition 4.1. Let L1 and L2 be two different labels associated with the same last
vertex v(L1) = v(L2). Label L2 is said to be dominated by label L1 if

c̃(L1) ≤ c̃(L2) ∧ E(L1) ⊆ E(L2). (4.7)

If L1 dominates L2, then L2 can be discarded. In case of mutual dominance, one
label has to be kept. Due to the rather strict condition E(L1) ⊆ E(L2), we can
expect this dominance rule to be weak in general. It is not clear whether or not
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the additional effort to test a set of labels for dominance relations pays off. We,
therefore, compare two variants of the proposed labeling algorithm in Section 4.5.2:
one that applies dominance and one that does not.

Bounding Procedure Let LB(L) be a lower bound on the reduced cost of any
capacity-feasible 0-n-path in G that contains the 0-v(L)-path PL corresponding to
label L. Obviously, any label L with LB(L) ≥ 0 can be discarded. In the following,
we describe a method for computing values LB(L) that can also be adapted to
cope with the branching decisions of our B&P algorithm (see Section 4.4.2).

For a label L, let R(L) be the set of v(L)-n-paths that can be appended to the
0-v(L)-path PL to form capacity-feasible 0-n-paths. A path r ∈ R(L) is called a
completion of L. Denote by Lr the label corresponding to path (PL, r) and let
I(r) = I(Lr) \ I(L) ⊆ IC(L). It holds that c̃(Lr) = c̃(L) − ∑

i∈I(r) πi. Thus, a
valid lower bound LB(L) on the reduced cost of any capacity-feasible 0-n-path
containing path PL is given by

LB(L) = c̃(L) − max
r∈R(L)

∑
i∈I(r)

πi. (4.8)

Intuitively speaking, the value maxr∈R(L)
∑

i∈I(r) πi represents the maximum dual
prices that can be collected when extending label L to a capacity-feasible 0-n-path.
Because set R(L) comprises all completions r such that w(Lr) ≤ Q, this value
is equivalent to the optimal solution value of a SUKP regarding the compatible
items i ∈ IC(L) each requiring the subset of elements Ei

′ = Ei \ E(L), with
profits πi, and capacity Q′ = Q − w(L). Note that the sets R(L) depend not only
on the capacity consumption w(L) and last vertex v(L), but on the specific sets
of compatible items IC(L) and elements E(L). Therefore, individual completion
bounds B(L) = maxr∈R(L)

∑
i∈I(r) πi have to be defined for each label L.

The exact solution of an SUKP for each label L is not practicable. Instead, we
solve a relaxation in order to obtain valid completion bounds. More specifically, we
solve a standard binary KP over items i ∈ IC(L) with ad hoc defined weights w̃i(L),
profits πi, and capacity Q′ using a DP algorithm that runs in pseudo-polynomial
time O (nQ) (Kellerer et al. 2004). The resulting optimal KP value constitutes
completion bound B1(L) ≥ B(L). For each item i ∈ IC(L), weight w̃i(L) is
constructed based on the relative (to their frequency in IC(L)) weights w̃e(L) =

we

fe(IC(L)) of its required relevant elements e ∈ Ei
′. For example, an element that

occurs in five compatible items (but not in any packed item) contributes one fifth
of its original weight to the weight of each of its comprising items. Elements that
are required by items already in the bin can be omitted. Reducing the weight of
each single required element to this fraction allows elements to be included multiple
times in the KP without exceeding their original weight that would accumulate in
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the SUKP. To foster an efficient table-based implementation of the DP algorithm,
integer item weights can be obtained by flooring. The resulting item weights yield
a valid but potentially weaker bound. Instead, we propose multiplying the sum of
relative element weights by a factor d ∈ N+ before rounding down. Formally, item
weights are computed as

w̃i(L) =
⌊
d ·

∑
e∈Ei

′
w̃e(L)

⌋
. (4.9)

Accordingly, however, the residual capacity and thus the dimension of the DP table
also increase by factor d. In pretests, we found that a value of d = 10 provides
a good tradeoff between strength of the bound and computational effort for its
determination.
Example 4.3 (continued). Consider the example in Figure 4.3. Let label L =
(i2, {e1}, {i2}, 0.5, 1, {i3, i4}) be a label at vertex i2 and assume dual prices πi3 = 0.4
and πi4 = 0.2. We have fe2({i3, i4}) = fe3({i3, i4}) = 1 and fe4({i3, i4}) = 2,
thus w̃e2 = w̃e3 = 1 and w̃e4 = 0.5. With d = 1, the resulting KP item weights
are w̃i3(L) = w̃i4(L) = b1 · 1.5c = 1 and the KP capacity is Q′ = 2. In the
corresponding optimal KP solution, both items i3 and i4 are added to the knapsack
and the completion bound value is Bd=1

1 (L) = 0.6. Because Bd=1
1 (L) > c̃(L), label L

cannot be discarded but needs to be further extended. Figure 4.3 reveals that with
d = 2, we have w̃i3(L) = w̃i4(L) = 3 and Q′ = 4. With these values, we obtain
Bd=2

1 (L) = 0.4 ≤ c̃(L) and label L can be discarded.
As an additional, computationally cheaper completion bound, we consider

B2(L) =
∑

i∈IC(L)
πi. (4.10)

It allows to quickly eliminate unpromising labels L with c̃(L) ≥ B2(L). Only for
labels L satisfying c̃(L) < B2(L), we compute the bound B1(L) by solving the
corresponding binary KP and discard L if c̃(L) ≥ B1(L).

We also experimented with other bounds, such as the sum of the dual prices πi

of all items i ∈ I, i > v denoted B3(v), which applies to all labels L with v(L) = v
and needs to be set up only once prior to the actual labeling process, or the solution
of the linear relaxation of Formulation (4.5) with respect to all i ∈ IC(L) denoted
B4(L). However, pretests showed that the combination of B1 and B2 was the most
promising (see Appendix 4.E).

4.4.1.3 Element-based SPPRC

We now present an alternative element-based SPPRC representation and solution
approach of the pricing problem. For conciseness, we focus on the differences com-
pared to our item-based SPPRC. Note that the element-based SPPRC approach is
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0 i1 i2

L = (i2, {e1}, {i2}, 0.5, 1, {i3, i4})

Data for B1(L) with d = 1

Q′ w̃e2 w̃e3 w̃e4 w̃i3 w̃i4 πi3 πi4

2 1 1 0.5 1 1 0.4 0.2

DP table for B1(L) with d = 1

Q′ i3 i4

2 0.4 0.6
1 0.4 0.4
0 0.0 0.0

Data for B1(L) with d = 2

Q′ w̃e2 w̃e3 w̃e4 w̃i3 w̃i4 πi3 πi4

4 1 1 0.5 3 3 0.4 0.2

DP table for B1(L) with d = 2

Q′ i3 i4

4 0.4 0.4
3 0.4 0.4
2 0.0 0.0
1 0.0 0.0
0 0.0 0.0

(∅,∅, 0)

({i2}, {e1}, π2)

Figure 4.3: Example representation for the determination of bound B1(L) for a
label L at vertex i2

similar to the element-based DP algorithm described by Goldschmidt et al. (1994)
to solve SUKPs.

Element-based Representation Let Ĝ = (V̂ , Â) be a linear directed multi-
graph with m + 1 vertices V̂ = {0, . . . , m} and 2m arcs Â. Vertex 0 is an artificial
source and vertices 1, . . . , m are associated with the m elements. Again, we assume
that the elements are sorted by their index so that vertex v̂ ∈ V̂ \ {0} corresponds
with element e = v̂. Each arc âk

v̂ ∈ Â, v̂ ∈ V̂ \ {0}, k ∈ {0, 1}, then indicates
the inclusion or not, respectively, of element v̂, and is associated with a set of
elements Ek

v̂ and a weight wk
v̂ . In contrast to the item-based SPPRC, the capacity

consumption of each inclusion is now evident from the corresponding arc. However,
the set of feasible items and the dual prices are not directly provided.

Any 0-m-path (v̂0, âk1
v̂1 , v̂1, . . . , âkm

v̂m
, v̂m) in Ĝ defines a bin b which is feasible if

w(b) = ∑m
e=1 wke

v̂e
≤ Q. The set of feasible items in b can be derived from the set of

comprised elements E(b) = ⋃m
e=1 Eke

v̂e
and is defined as I(b) = {i ∈ I | Ei ⊆ E(b)}.

Thus, the reduced cost of b is c̃b = 1 − ∑
i∈I(b) πi. The solution of the pricing

problem is equivalent to finding a capacity-feasible 0-m-path in Ĝ with minimum
reduced cost.

Example 4.4 (continued). Figure 4.4 illustrates graph Ĝ for the example SUBP
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0 e1 e2 e3 e4 e5

({e1}, 1)

(∅, 0)

({e2}, 1)

(∅, 0)

({e3}, 1)

(∅, 0)

({e4}, 1)

(∅, 0)

({e5}, 1)

(∅, 0)

Figure 4.4: Linear directed multigraph Ĝ of the element-based SPPRC represen-
tation of the pricing problem

instance with m = 5 elements e ∈ {e1, . . . , e5} and their unit weights we. The two
arcs between each pair of consecutive vertices indicate the inclusion (blue arc) or
not (gray arc) of the element associated with the respective head vertex. Consider
vertex v̂ = e1. The ingoing blue arc ({e1}, 1) = â1

1 represents the inclusion of
the singleton element e1 into a bin and is associated with its weight w1 = 1. The
ingoing gray arc (∅, 0) = â0

1 corresponds with not including any element (E0
1 = ∅)

and therefore w1 = 0. Bin b1 comprising items i1 and i4 from Figure 4.1 is shown
by the path consisting of the bold arcs.

Element-based Labeling Algorithm Each partial path P̂L = (0, âk1
1 , 1, . . . ,

âkv̂
v̂ , v̂) from the source 0 to a vertex v̂ is represented by a label L with the same label

components as defined in Section 4.4.1.2 for the item-based case. The extension
of a label L at vertex v̂ − 1 to vertex v̂ along arc âk

v̂ is feasible, if w(L) + wk
v̂ ≤ Q.

The REFs of the element-based labeling approach are:

v(L′) = v̂ (4.11a)
E(L′) = E(L) ∪ Ek

v̂ (4.11b)
I(L′) = I(L) ∪ {i ∈ IC(L) | Ei ⊆ E(L) ∪ Ek

v̂ } (4.11c)
c̃(L′) = c̃(L) −

∑
i∈IC(L):Ei⊆E(L)∪Ek

v̂

πi (4.11d)

w(L′) = w(L) + wk
v̂ (4.11e)

IC(L′) = IC(L) \ {i ∈ IC(L) | q(E(L) ∪ Ek
v̂ ∪ Ei) > Q ∨ Ei ⊆ E(L) ∪ Ek

v̂

∨ ∪κ∈{0,1}E
κ
v̂ ∩ Ei * Ek

v̂ }
(4.11f)

The REFs (4.11a), (4.11b), and (4.11e) update the current vertex, the set of
elements, and the capacity consumption in a straightforward manner according
to the respective components of arc âk

v̂ . The set of feasible items is augmented
by those compatible items that can be completely realized by the current set of
elements in REF (4.11c). REF (4.11d) updates the reduced cost by subtracting the
dual prices of all newly realized items. In REF (4.11f), the new set of compatible
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items is identified by reducing the former set by the items of three categories: (i)
items whose inclusion would cause the capacity to be exceeded, (ii) items that can
be realized by the current extension along arc âk

v̂ , and (iii) items requiring elements
that are excluded by the current extension along arc âk

v̂ (with the union ∪κ∈{0,1}E
κ
v̂

representing all elements associated with vertex v̂).
Because the additional capacity consumption is directly associated with the arcs,

the determination of w(L′) in REF (4.11e) is less expensive compared to (4.6e).
However, the set of feasible items I(L′) must be identified for each inclusion of an
element in order to be able to determine the reduced cost c̃(L′) of L′. Consequently,
REF (4.11c) is more costly than (4.6c). Again, the standard less-or-equal relations
of the reduced costs and the capacity consumptions are not sufficient to guarantee
dominance between labels. Instead, it has to be incorporated, which additional
items may potentially be included, i.e., which dual prices may be collected, by the
addition of elements that have not yet been considered:

Definition 4.2. Let L1 and L2 be two different labels associated with the same last
vertex v(L1) = v(L2). Label L2 is said to be dominated by label L1 if

c̃(L1) ≤ c̃(L2) ∧ w(L1) ≤ w(L2) ∧ IC(L1) ⊇ IC(L2). (4.12)

Similar to the item-labeling case, the dominance relation is expected to be weak
due to the rather strict condition IC(L1) ⊇ IC(L2) and we examine two variants
(with and without dominance) of the labeling algorithm in Section 4.5.2. Note
further, that the element-based labeling with dominance (but without bounding)
is essentially equivalent to the DP algorithm by Goldschmidt et al. (1994). In
their DP, the stages correspond with the elements (in a given sorting) and at
each stage the DP decides for each state whether or not to include the current
element. The states are characterized by their stage, the residual capacity, and
the set of those packed elements that are needed to include any item that can be
realized when adding elements of subsequent stages. The latter is equivalent to
directly considering the items that can be realized regarding packed elements and
subsequent elements, i.e., the compatible items IC(L).

Bounding Procedure The technique described in Section 4.4.1.2 for item-based
labeling can be transferred directly to the element-based approach. The label-
specific bounds B1 and B2 and their determination are identical.

4.4.2 Branching
We apply the well-known Ryan-and-Foster branching scheme (Ryan and Foster
1981) to ensure integrality. Denote by (λ̄b)b∈Ω′ the current fractional solution of
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the RMP. Let fij = ∑
b∈Ω′ ribrjbλ̄b indicate if the two items i, j ∈ I are assigned

to the same bin. If fij is fractional, we can branch on pair (i, j) by creating two
child nodes. The separate branch ensures fij = 0 by forcing variables λb with
rib = rjb = 1 to zero. The together branch ensures fij = 1 by forcing variables λb

with rib + rjb = 1 to zero. Both types of decisions can be easily realized in the
RMP by forbidding the corresponding bin columns.

Bins that are incompatible with the Ryan-and-Foster branching decisions must
also be prevented from being (re-)generated. This imposes structural changes
on the pricing problem requiring the adaptation of the corresponding solution ap-
proaches. A generally valid approach is to embed the original pricing algorithm into
a B&B algorithm that enforces consistency with the additional separate/together
constraints (see Gschwind et al. (2021) for details). For the element-based pricing,
this (or a similar technique) seems to be the only viable way, as it is not able
to explicitly decide on items. For the MIP-solver and item-based methods, more
effective approaches are possible. In the former, the IP Formulation (4.5) must
simply respect an additional linear constraint for each branching decision on an
item pair (i, j). In the separate branch, we add xi + xj ≤ 1 to Formulation (4.5)
while in the together branch, we add xi = xj. With item-based labeling, we alter
the graph G of the SPPRC representation of the pricing problem. The overall idea
is to group together the items affected by mutual branching decisions, represent
them by a single vertex in G, and decide on the inclusion of all items in a group
simultaneously. On the modified graph, the same labeling algorithm presented
in Section 4.4.1.2 can be applied to solve the pricing problem in the presence of
branching decisions. The details of the graph modification are described in Ap-
pendix 4.C.

4.5 Computational Results
Our B&P algorithm was implemented in C++ and compiled into 64-bit single-thread
code with MS Visual Studio 2019. CPLEX 20.10 with default parameters (except
for the time limit and allowing only a single thread) is used to reoptimize the
RMPs and as MIP-solver. The computations were carried out on the HPC cluster
Elwetritsch of RPTU Kaiserslautern-Landau consisting of several Intel Xeon Gold
6126 processors running at 2.60 GHz. Memory was limited to 6 GB per thread.
Notice that the performance of a single thread of the cluster is comparable to that
of a standard desktop processor. The same computational setup was used for all
instances and the time limit for each instance was set to 1,800 seconds. Unsolved
instances are considered with the time limit of 1,800 seconds in our analysis. All
used benchmark instances together with instance-by-instance results of our best
performing B&P variant are provided at https://wiwi.rptu.de/fgs/logistik/

https://wiwi.rptu.de/fgs/logistik/subp-detailedresults
https://wiwi.rptu.de/fgs/logistik/subp-detailedresults
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subp-detailedresults.

4.5.1 Benchmark Instances
We focus our computational study on the extensive unit-weight benchmark of
Grange et al. (2018) (denoted pagination) and on large-scale, general-weight in-
stances that are derived from the SUKP benchmark of He et al. (2018) (denoted
general). A description of both benchmark sets is provided in Appendix 4.D.
All considered instances have never been solved to proven optimality before (apart
from 43 of the smallest instances from (Grange et al. 2018) that have been solved
with CPLEX by the authors).

4.5.2 Analysis of Pricing Problem Solution Methods
We first investigate different pricing variants of our B&P algorithm on its perfor-
mance. To this end, we compare the different exact solution approaches proposed
in Section 4.4.1, namely solving Formulation (4.5) with CPLEX, item-based la-
beling with and without dominance, and element-based labeling with and with-
out dominance. Furthermore, we test all solvers with and without the upstream
greedy pricing heuristic (see Section 4.A of the appendix). Table 4.1 summarizes
the results for solving the root node of all pagination instances. It reports the
percentage number of instances with optimally solved LP relaxation (%SolLP) and
the average time for solving the LP relaxation in seconds (tLP).

Consider first the results without using the greedy heuristic. The performance
of all approaches decreases as n increases. Overall, IP and item-based labeling
clearly outperform the element-based labeling in terms of both the number of solved
instances and solution time. Although more instances can be solved using the IP,
item-based labeling (without dominance) shows on average shorter computation
times, in particular for large instances with n ≥ 75. For both labeling methods, the
application of dominance is not advantageous. A slight reduction in computation
time can be achieved only for instances with the smallest number of elements
(m = 20). A main reason for the poor performance of element-based labeling is the
extremely large number of generated labels. Apparently, the bounding procedure is
much less effective for element-based labeling compared to item-based labeling. As
a result, more than two thirds of instances exceed the memory limit if dominance
is not applied. If dominance is applied, memory issues are much less frequent but
the large number of labels requires a huge number of dominance tests (quadratic
in the number of labels).

All variants greatly benefit from integrating the greedy heuristic. Overall, the IP
and item-based labeling are still able to solve twice as many instances in a fraction
of the time compared to element-based labeling. Unlike without the heuristic,

https://wiwi.rptu.de/fgs/logistik/subp-detailedresults
https://wiwi.rptu.de/fgs/logistik/subp-detailedresults
https://wiwi.rptu.de/fgs/logistik/subp-detailedresults
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Item-based labeling Element-based labeling
IP No dominance With dominance No dominance With dominance

n %SolLP tLP %SolLP tLP %SolLP tLP %SolLP tLP %SolLP tLP

Panel A: No greedy heuristic
20 100.0 0.8 100.0 0.0 100.0 0.0 49.2 931.6 49.8 918.9
25 100.0 1.8 100.0 0.2 100.0 0.3 46.7 1,001.8 44.6 1,047.8
30 100.0 3.7 100.0 0.8 100.0 1.8 41.5 1,156.0 36.1 1,219.4
35 100.0 7.1 100.0 4.6 99.7 22.1 34.4 1,309.4 30.3 1,374.5
40 100.0 15.4 99.9 21.8 97.1 98.2 26.7 1,428.9 21.8 1,527.5
45 100.0 32.3 99.2 61.6 90.6 251.2 23.5 1,461.7 17.1 1,643.1
50 100.0 67.8 96.9 118.8 85.7 346.4 19.1 1,508.0 11.1 1,683.4
55 100.0 125.3 93.5 199.8 75.6 529.3 17.6 1,540.8 7.3 1,709.4
60 100.0 199.8 91.8 263.8 70.8 610.6 17.3 1,540.0 6.5 1,716.7
65 99.4 287.6 89.0 334.6 67.0 652.8 16.1 1,548.8 6.3 1,712.2
70 96.3 413.8 84.3 427.1 64.0 704.1 15.3 1,561.9 5.3 1,718.6
75 91.5 531.8 80.9 497.8 61.0 758.6 14.7 1,575.4 5.3 1,722.0
80 86.9 662.7 75.9 591.4 57.3 799.8 14.2 1,584.9 5.0 1,723.2
85 78.1 798.3 72.4 636.2 58.2 803.2 13.7 1,590.9 5.2 1,722.3
90 72.4 896.9 67.9 702.5 55.1 828.5 13.4 1,592.3 5.4 1,723.4
95 67.6 1,018.0 65.4 743.8 53.9 846.6 12.8 1,596.9 5.5 1,715.8

100 60.5 1,126.3 61.1 788.8 53.4 853.9 13.0 1,604.7 5.1 1,721.6
Total 91.3 365.1 86.9 318.1 75.8 478.2 22.8 1,444.5 15.8 1,563.7

Panel B: With greedy heuristic
20 100.0 0.2 100.0 0.0 100.0 0.0 96.5 137.8 50.0 900.2
25 100.0 0.4 100.0 0.0 100.0 0.0 90.7 295.8 50.0 907.7
30 100.0 0.9 100.0 0.0 100.0 0.0 82.7 464.2 48.7 1,003.4
35 100.0 1.8 100.0 0.1 100.0 0.1 77.2 626.9 43.0 1,149.1
40 100.0 4.5 100.0 0.3 100.0 0.3 66.7 817.3 32.8 1,336.0
45 100.0 10.0 100.0 0.8 100.0 1.0 61.1 934.7 26.3 1,443.5
50 100.0 22.2 100.0 2.1 100.0 3.0 53.9 1,061.5 20.8 1,545.2
55 100.0 41.0 100.0 4.5 100.0 8.6 48.6 1,148.5 17.1 1,610.3
60 100.0 66.6 100.0 8.2 99.9 25.6 47.2 1,195.6 13.9 1,641.2
65 100.0 96.8 100.0 13.7 99.9 51.1 43.5 1,235.0 11.0 1,655.4
70 99.7 149.1 100.0 23.4 97.7 119.6 42.0 1,268.8 10.0 1,667.9
75 99.1 208.3 100.0 34.4 96.5 175.1 38.3 1,294.8 9.1 1,673.2
80 95.8 304.0 100.0 59.8 91.7 294.9 36.7 1,307.4 8.7 1,678.1
85 93.8 392.6 100.0 80.5 88.0 371.5 34.1 1,336.0 8.4 1,678.3
90 89.7 469.9 99.1 133.3 83.2 453.2 33.3 1,350.8 8.6 1,677.1
95 84.1 569.8 97.8 185.8 77.5 532.7 31.8 1,371.3 8.3 1,676.1

100 79.8 660.4 96.9 232.8 73.6 611.2 32.1 1,380.1 8.7 1,672.6
Total 96.6 176.9 99.6 46.0 94.6 156.2 53.8 1,015.6 22.2 1,463.9

Table 4.1: Summary results for pricing variants of our B&P for pagination in-
stances



Chapter 4. B&P for the SUBP 179

item-based labeling without dominance now dominates the IP-based pricing for
all instance classes: it can solve significantly more instances in a fraction of the
average computation time.

In order to understand the different behavior of the B&P regarding the IP
and item-based labeling without dominance when using or not the greedy pricing
heuristic, we analyzed the CG process in more detail for those variants. Figure 4.5
depicts, for the fifth pagination instance with (Q, m, n) = (45, 85, 50), the com-
putation time in seconds for each individual pricing instance for solving the LP
relaxation when using the IP (4.5a) and the item-based labeling (4.5b) with (gray
plots) and without (blue plots) the upfront heuristic. Note that the behavior shown
in Figure 4.5 is representative for the complete benchmark. Additional examples
are shown in Appendix 4.F.

Recall that both the IP and item-based labeling are used in a partial-pricing
fashion and apply multiple-column pricing (see Appendix 4.A) so that they typi-
cally generate different columns. Consequently, we can expect the corresponding
B&P variants to follow different trajectories beyond the first iteration. Figure 4.5
reveals that without the heuristic, much fewer iterations are required when using
IP compared to item-based labeling, while the latter shows significantly shorter
computation times per pricing instance. Moreover, for IP, the computation times
per pricing instance show an increasing trend in the iteration number with the
longest computation times arising for the final pricing iterations. In contrast, for
item-based labeling, we observe kind of a bell curve with the final iterations being
computationally rather inexpensive. With the heuristic, two main observations
emerge. First, the number of iterations can be reduced for both approaches, how-
ever, substantially more iterations are saved with item-based labeling than with
IP. Second, for both approaches the computation times of the (relatively few) it-
erations of the exact pricer are of similar magnitude as those of the final iterations
without the heuristic. Consequently, while for item-based labeling the most time-
consuming iterations are replaced by the heuristic, the most time-consuming final
iterations still have to be performed for IP.

Summing up, the best performing pricing strategy for our B&P is to select the
item-based labeling without dominance but with upfront greedy heuristic. All
further calculations are carried out on the basis of this setting.

4.5.3 Comparison with State-of-the-Art
We now compare our B&P to the best-performing IPs ARF and SF-LEX-I of
Jans and Desrosiers (2013). Both formulations have been shown to significantly
outperform SF, amongst others, which is in line with small pretests that we con-
ducted. Table 4.2 summarizes the comparison on both benchmark sets pagination
and general. It provides for each approach the percentage of instances solved to
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Figure 4.5: Computation time per pricing iteration with (gray) and without

(blue) greedy heuristic for an exemplary instance

integer optimality (%Opt) and the average computation time in seconds (t[s]). Ad-
ditionally, we report for our B&P the number of new (New BKS), confirmed (Same
BKS), and not found (Missed BKS) BKS. For pagination, these columns refer
to the (previous) BKS reported by Grange et al. (2018) and quantify the number
of instances for which we have found a better, the same, or a worse solution, re-
spectively. Because the general instances have not been considered before and
the best solutions of our experiments are trivially new BKS, the corresponding
columns are left blank for them. We note that for general, 11 BKS are found by
both ARF and B&P, three only by ARF, and 136 only by B&P. Note further that
in the following the gaps of pagination instances are determined using the new
BKS, i.e., the minimum value of our best solution and the best solution reported
by Grange et al. (2018).

Table 4.2 indicates that our B&P clearly outperforms the IP formulations: It
solves more than five times more instances in a fraction of the average computation
times compared to the IPs. All methods tend to solve fewer instances as the number
of items n increases in the pagination benchmark. The effect, however, is much
more drastic with the IPs. ARF and SF-LEX-I show similar overall performance
in terms of the number of solved instances and computation times. While SF-
LEX-I performs better than ARF for larger unit-weight instances (n ≥ 45), a few
of the largest general instances can be solved with ARF but not with SF-LEX-I.
However, for the majority of groups, the average computation times for the IPs
are dominated by the time limit. Instances with more than 300 items or elements
all run out of memory with SF-LEX-I.

With the computations carried out, we are able to improve on thousands of
BKS reported by Grange et al. (2018) for the pagination benchmark. Overall,



Chapter 4. B&P for the SUBP 181

ARF SF-LEX-I Our method
n Inst %Opt t[s] %Opt t[s] %Opt t[s] New BKS Same BKS Missed BKS

Panel A: pagination instances
20 624 100.0 18.5 97.0 137.8 100.0 0.0 7 617 0
25 642 87.5 430.0 61.4 907.0 100.0 0.0 29 613 0
30 648 39.8 1,190.8 26.4 1,414.5 100.0 0.1 59 589 0
35 648 22.4 1,443.8 13.4 1,581.1 100.0 0.2 108 540 0
40 648 11.1 1,617.2 9.7 1,641.8 100.0 0.6 140 508 0
45 648 6.8 1,680.1 7.7 1,668.6 100.0 2.1 193 455 0
50 648 5.6 1,697.3 7.1 1,683.0 100.0 10.4 275 373 0
55 648 4.2 1,734.8 6.6 1,693.6 99.2 43.0 338 309 1
60 648 2.6 1,756.9 9.1 1,663.0 98.2 65.1 415 230 3
65 648 2.2 1,760.0 11.4 1,645.2 96.0 126.6 471 172 5
70 648 1.1 1,774.0 15.0 1,620.5 92.9 208.9 495 146 7
75 648 0.5 1,779.4 10.6 1,674.4 89.8 279.0 536 104 8
80 648 0.5 1,779.6 6.0 1,729.7 87.2 375.9 559 79 10
85 648 0.3 1,781.8 4.9 1,750.3 82.4 451.4 567 73 8
90 648 0.6 1,777.2 4.2 1,755.5 78.7 553.7 556 69 23
95 648 0.3 1,783.6 2.9 1,765.5 73.8 632.1 550 72 26

100 648 0.3 1,782.2 3.1 1,769.2 68.7 723.2 541 67 40
Total 10,986 16.6 1,520.8 17.2 1,538.7 92.1 204.8 5,839 5,016 131

Panel B: general instances
{85, 100} 30 0.0 1,800.0 0.0 1,800.0 70.0 614.9

{185, 200} 30 0.0 1,800.0 0.0 1,800.0 60.0 817.3
{285, 300} 30 6.7 1,681.4 0.0 1,800.0 76.7 538.7
{385, 400} 30 3.3 1,740.8 0.0 1,800.0 80.0 540.3
{485, 500} 30 3.3 1,743.6 0.0 1,800.0 90.0 395.0
Total 150 2.7 1,749.9 0.0 1,800.0 75.3 581.2

Table 4.2: Comparison of our B&P with the IPs ARF and SF-LEX-I of Jans and
Desrosiers (2013)

we confirm 5,016 BKS and provide 5,839 new BKS. Only for 131 instances, we are
not able to reach the previously reported BKS, which is to some extent caused by
memory limits (54 instances, see also Table 4.3). We can also observe that the
heuristics used by Grange et al. (2018) often find an optimal solution for small
instances, but commonly fail to do so for larger n.

4.5.4 Computational Analysis of B&P Algorithm
A more detailed analysis of our B&P is provided in Table 4.3. The additional
columns are the number of instances that could not be solved due to memory
limitations (OOM ), the number of instances without memory issues whose root
node could not be solved (No LP), the average percentage optimality gap of the
LP relaxation (GpLP), the average percentage optimality gap of the LP relaxation
excluding optimally solved instances (GpLP

u ), the average percentage optimality
gap when reaching the time limit excluding optimally solved instances (Gptree

u ),
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and the average number of B&B nodes solved (Nds). All unsolved instances are
considered with the time limit of 1,800 seconds in the average computation times.
We exclude instances with missing LP value in columns GpLP, GpLP

u , and Gptree
u .

Table 4.3 reveals that the times needed for solving the LP relaxations are short
for most pagination instances with an average of 46.0 seconds and only 10% of
instances for which this time is longer than 60 seconds. Only for very few instances,
our B&P fails to solve the LP relaxation. For the general benchmark, the com-
putation times for solving the LP relaxation are much longer (375.4 seconds on
average) and our B&P cannot solve the LP relaxation in 14 out of 150 instances.
Overall, the general instances appear to be more difficult than the pagination
instances for our B&P, with less optimal integer solutions obtained (75.3% vs.
92.1%) and longer average computations times (581.2 seconds vs. 204.8 seconds).
Compared to the pagination benchmark, the proportion of total computational
time allocated to solving the LP relaxation is substantially higher in the general
benchmark. Memory issues seem to consistently occur within the general bench-
mark and for a few of the larger pagination instances (n ≥ 55).

Table 4.3 further reveals that the percentage LP gaps for the pagination bench-
mark are rather large (6.1% on average) and much larger than those of the general
benchmark (average of 1.4%). However, this may be a bit misleading due to small
objective function values. Absolute gaps are generally small for both benchmark
sets (see following section). Table 4.3 also shows that the percentage LP gaps of
the unsolved instances are huge. Again, this may partly be attributed to the small
objective function values. In fact, of the 769 unsolved pagination instances (nine
instances for general) for which an LP value is available, 11 (zero) instances have
an absolute gap of strictly less than one, i.e., the BKS is proven to be optimal by
the lower bound of our B&P, 668 (six) an absolute gap within [1, 2), 90 (one) an
absolute gap within [2, 3), and zero (two) an absolute gap of three or more. We
believe that at least for the latter two groups, the BKS are not optimal. We can
further observe that gaps improve only marginally in the search tree. This can
partly be attributed to the depth-first node selection and partly to the nature of
the SUBP itself, which often allows for many symmetric solutions with identical
objective function values.

From Table 4.3, we have seen that memory limitations can be an issue for
our B&P with 54 pagination and 14 general instances running out of mem-
ory. We, therefore, perform a sensitivity analysis regarding the allowed memory in
Table 4.4. Specifically, it reports the change in the number of instances for which
the B&P runs out of memory (∆OOM ), the number of instances with solved root
nodes (∆LP), and the number of optimally solved instances (∆Opt) for different
memory limits relative to the baseline of six GB. As expected, the number of in-
stances that exhaust available memory decreases as more memory is allowed. For
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n Inst Opt %Opt OOM No LP t[s] tLP GpLP GpLP
u Gptree

u Nds
Panel A: pagination instances

20 624 624 100.0 0 0 0.0 0.0 5.5 – – 1.0
25 642 642 100.0 0 0 0.0 0.0 5.4 – – 1.1
30 648 648 100.0 0 0 0.1 0.0 5.9 – – 1.2
35 648 648 100.0 0 0 0.2 0.1 5.5 – – 1.4
40 648 648 100.0 0 0 0.6 0.3 5.8 – – 1.7
45 648 648 100.0 0 0 2.1 0.8 6.1 – – 4.1
50 648 648 100.0 0 0 10.4 2.1 6.1 – – 9.7
55 648 643 99.2 1 0 43.0 4.5 6.5 21.3 20.5 22.2
60 648 636 98.1 3 0 65.1 8.2 6.0 22.2 21.3 26.5
65 648 622 96.0 4 0 126.6 13.7 6.0 20.0 19.4 44.6
70 648 602 92.9 7 0 208.9 23.4 6.2 17.9 17.4 50.1
75 648 582 89.8 7 0 279.0 34.4 6.2 19.0 18.4 114.3
80 648 565 87.2 9 0 375.9 59.8 6.3 17.4 16.8 97.4
85 648 534 82.4 4 0 451.4 80.5 6.5 17.1 16.7 98.4
90 648 510 78.7 6 6 553.7 133.3 6.6 17.0 16.7 167.8
95 648 478 73.8 6 13 632.1 185.8 6.8 16.8 16.4 119.7

100 648 445 68.7 7 21 723.2 232.8 7.1 16.8 16.5 182.3
Total 10,986 10,123 92.1 54 40 204.8 46.0 6.1 17.3 16.9 55.4

Panel B: general instances
{85, 100} 30 21 70.0 5 1 614.9 186.5 4.7 13.5 13.2 73.4

{185, 200} 30 18 60.0 2 5 817.3 531.4 1.5 4.7 4.7 588.8
{285, 300} 30 23 76.7 1 5 538.7 462.3 0.5 5.5 5.5 8.8
{385, 400} 30 24 80.0 3 3 540.3 388.9 0.2 – – 1.6
{485, 500} 30 27 90.0 3 0 395.0 307.7 0.1 – – 0.9
Total 150 113 75.3 14 14 581.2 375.4 1.4 7.9 7.8 134.7

Table 4.3: Detailed results of our B&P algorithm
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Memory ∆OOM ∆LP ∆Opt
Panel A: pagination instances

2 GB 93 −1 −16
4 GB 29 0 −5
6 GB 0 0 0
8 GB −1 1 0

10 GB −2 2 0
12 GB −27 27 2
Panel B: general instances
2 GB 6 0 0
4 GB 1 1 0
6 GB 0 0 0
8 GB −2 2 2

10 GB −4 4 3
12 GB −4 4 3

Table 4.4: B&P results for different amounts of memory allowed

the pagination instances, the number of optimally solved instances, however, in-
creases only marginally. For the general instances, three out of the 14 instances
can be solved to integer optimality when allowing at least 10 GB of memory.

In Appendix 4.G, we perform detailed analyses to investigate which character-
istics influence the complexity of an instance for our B&P.

4.5.5 Analysis of Lower Bounds
For the BP, it is known that the LP relaxation of the SPF provides very tight
lower bounds. In fact, almost all instances satisfy the IRUP, i.e., rounding up the
optimal LP relaxation value to the closest integer results in the optimal integer
solution value. Whether or not the MIRUP, i.e., the optimal integer solution value
is not greater than the corresponding optimal LP relaxation value rounded up plus
one, holds for any BP instance is – as far as we know – still an open question. We
refer to (Delorme et al. 2016) and references therein for details on the IRUP and
MIRUP in the context of BP.

To the best of our knowledge, no evaluation of the IRUP or MIRUP has yet
been performed for the SUBP. We numerically investigate both properties on all
optimally solved pagination and general instances in Table 4.5. We can observe
that the MIRUP holds for all optimally solved SUBP instances. In over 92.5% of
cases, the IRUP applies. This implies that for the vast majority of instances, the
key task of the B&P beyond the solution of the root node is to find an optimal
primal solution. To analyze the potential of improved strategies like, e.g., better
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Class Inst Opt MIRUP IRUP
pagination 10,986 10,123 10,123 9,359
general 150 113 113 111
All 11,136 10,236 10,236 9,470

Table 4.5: Analysis of IRUP and MIRUP

primal heuristics or diving heuristics, we examine in Appendix 4.H the effect of
using different initial upper bounds on our B&P.

Compared to the BP, SUBP instances appear to violate the IRUP much more
frequently. In Appendix 4.I, we present details on two of the smallest instances
that we could find that do not satisfy the IRUP.

4.6 Conclusions
In this paper, we study the set-union bin packing problem (SUBP) which gener-
alizes the well-known bin packing problem (BP) and has important applications
in various fields. We propose an exact branch-and-price (B&P) algorithm that
is applicable for solving instances with general element weights. The correspond-
ing column generation pricing problem is a set-union knapsack problem (SUKP).
We present and explore different exact solution approaches to the pricing prob-
lem that are based on three alternative formulations of the SUKP: an integer
programming (IP) formulation, an item-based shortest path problem with resource
constraints (SPPRC), and an element-based SPPRC. The overall best B&P vari-
ant combines an upfront greedy pricing heuristic with a labeling algorithm for
the item-based SPPRC that does not apply any dominance but relies on strong
completion bounds.

We highlight the competitiveness of our proposed B&P in an extensive com-
putational campaign on the large unit-weight SUBP benchmark of Grange et al.
(2018) comprising 10,986 instances and on new large-scale general-weight instances
based on the SUKP benchmark of He et al. (2018). Our B&P by far outperforms
the state-of-the-art IP approaches of Jans and Desrosiers (2013) on both instance
classes. Overall, we are able to solve to optimality 92% of the considered instances,
with an average computation time of around 200 seconds. Only a small fraction of
the considered instances has been solved to proven optimality before. We provide
5,839 new best-known solutions (BKS) for the benchmark by Grange et al. (2018)
and confirm all remaining BKS except for 131 instances. Furthermore, we analyze
which characteristics influence the difficulty of an instance for our B&P. Finally,
we investigate the lower bounds provided by the set-partitioning formulation of the
SUBP and observe that 92.5% of the optimally solved instances satisfy the integer
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round up property (IRUP) while all of them satisfy the modified IRUP (MIRUP).
We conclude by mentioning three possible avenues for future research. First,

there exist numerous practically relevant extensions of the SUBP including global
constraints on element availabilities, cardinality constraints on the number of items
per bin, heterogeneous bin sizes and costs, alternative objective functions, or multi-
level integrated optimization problems in which the SUBP appears as a subprob-
lem. While modified variants of our B&P seem promising for solving the former
types of extensions, integrated solution approaches to the latter multi-level prob-
lems may also benefit from the proposed solution techniques. Second, to exploit
the usually very tight lower bounds, new strategies to obtain high quality primal
solutions fast should be explored. Third, theoretical and/or additional computa-
tional analyses regarding the MIRUP of the SUBP could provide valuable insights
and might even be helpful to further explore the MIRUP for the BP.
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Appendix

4.A Acceleration Strategies for Pricing Problem Solution
In this section, we discuss acceleration techniques to speed-up the solution of the
pricing problem.

Greedy SUKP Heuristic

To quickly generate bins with negative reduced costs, we apply a greedy heuristic
following (Arulselvan 2014) to solve the SUKP pricing problem. It can be called
before performing any of the described exact solution approaches.

The heuristic proceeds as follows. Starting with a bin comprising a single item
only, additional items are added iteratively. Arulselvan (2014) suggests to choose
in each iteration an item i ∈ I with the largest profit in relation to the sum of its
required elements weights divided by their frequency, i.e., πi∑

e∈Ei

we
fe(I)

. In pretests,
we found that taking into account only the weights of those elements that have
not yet been included is more expedient and makes the integration of frequencies
dispensable. Therefore, we augment each bin b with an item i∗ ∈ I\b that holds the
maximum relative profit taking into consideration only the weights of the required
elements that are not yet in the bin:

i∗ = arg max
i∈I\b

πi∑
e∈Ei\E(b) we

. (4.13)

After each inclusion, this ratio is recalculated for all remaining items and the
procedure is repeated until no more capacity-feasible addition to b is possible.

In each pricing iteration, the greedy heuristic is run several times, once for each
item constituting the initial bin. Note that we store all considered bins to prevent
construction of identical bins and to speed up the procedure. All identified bins
with negative reduced costs are added to the RMP.

Premature Termination of Exact Pricers

We can easily modify all exact pricing algorithms to identify and return bins with
negative reduced costs in a heuristic fashion. There is no need to run the full
algorithm in each execution. To balance the computational effort and the number
of negative reduced-cost bins created in each pricing iteration, we proceed as fol-
lows. For the MIP-solver based approach, we prematurely terminate the solution
process as soon as a predefined number of 15 bins with negative reduced costs is
found. For the labeling approaches, note that any feasible 0-v-path PL in G (or
0-v̂-path in Ĝ) represented by label L defines a feasible bin, which can directly be
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returned to the RMP without completion to a 0-n-path (0-m-path). For each ver-
tex, we count the number of created labels with negative reduced costs (recall that
labels are created and extended vertex-by-vertex). As soon as this number reaches
a threshold K, the labeling algorithm terminates prematurely and all bins with
negative reduced costs are added to the RMP. We set K = 0.35n in item-based
labeling and K = 0.35m in element-based labeling.

Storing Elements-of-Items Relations

The frequent evaluation of the capacity consumption and the examination of real-
izable items, e.g., within the REFs (4.6) or (4.11), is a computationally expensive
part of our algorithms. During the B&P procedure, it can be expected that for
many bins b ∈ Ω this needs to be evaluated multiple times. We use a hash table
implementation to allow a fast retrieval in amortized constant time of the relation
between a given set of items and the corresponding required set of elements. This
requires storing in the hash table the key-value pairs (I(b), E(b)) whenever E(b) is
evaluated for the first time for a bin b defined by I(b).

Furthermore, we exploit that for unit weight instances the capacity consumption
is equal to the number |E(b)| of elements in a bin b, which can be retrieved more
effectively than computing the summed weights we of the elements e ∈ E(b).

Sorting of Vertices in Labeling

When constructing the linear graphs for the SPPRC representations of the pricing
problem, any sorting of the items and elements can be employed. However, the
sorting has a significant impact on the solution time of the pricing problem. In the
item-based graph G, we sort the items i ∈ I non-increasingly by their profit πi. In
the element-based graph Ĝ, we sort the elements e ∈ E non-increasingly by the
sum of normalized profits of their comprising items relative to their frequency, i.e.,∑

i∈I:e∈Ei

πi∑
e∈Ei

we

fe(I) . (4.14)

With these sortings, negative reduced-cost bins can often be identified early
in the labeling process, allowing for early termination. In addition, labels with
positive reduced costs tend to be discarded early due to the stronger completion
bounds resulting from these sortings.
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4.B Algorithm Design Choices
In this section, we give some details on additional design choices made in our B&P
algorithm.

RMP Initialization and Upper Bounds

Before the actual CG procedure starts, we run a SUBP heuristic following the
MIMU approach by Tang and Denardo (1988) to hand over an initial set of feasible
bins Ω′ ⊂ Ω and a first upper bound (UB) to the RMP. The idea of this heuristic
is to fill bins one at a time by iteratively selecting items i ∈ R that maximize the
intersection of the item’s required elements and elements that are already required
in the bin (maximum intersection part). In case of a tie, the authors choose the
item that minimizes the number of additionally required elements (minimum union
part). The selected item is added to the current bin and discarded from R. If no
more remaining item i ∈ R can be feasibly included in the current bin, another
bin is opened and the procedure is repeated until R is empty. Bins are initialized
with an item requiring the most elements among all remaining items i ∈ R, where
initially R = I.

We apply a randomized version of the MIMU heuristic. The intersection values
are multiplied by a factor randomly drawn from the interval [0.85, 1.15], which
makes practically redundant the minimum-union part. Note that we cover the
general-weight case by considering the element-specific weights we instead of simply
counting the elements as proposed by Tang and Denardo (1988). The heuristic is
run four times and all bins contained in any of the heuristic solutions are added
to Ω′. The minimum number of bins needed in any of the solutions is set as initial
UB.

To further improve the UB during the B&P process, we employ at each node
a standard restricted master heuristic solving Formulation (4.4) over the current
set of bins Ω′ ⊂ Ω to integer optimality with a MIP solver. A time limit of ten
seconds is given to the solver for each run.

Initial Lower Bounds

We initialize the RMP with a lower bound (LB) on the number of bins by adding
the corresponding inequality ∑

b∈Ω λb ≥ LB. The value LB is obtained by a
combination of relaxations. First, a straightforward bound arises from ceiling the
total element weights divided by the bin capacity, that is LB1 =

⌈∑
e∈E

we

Q

⌉
. The

second bound results from the sweeping procedure of Tang and Denardo (1988). A
pair of items is said to be compatible if the combined weight does not exceed the
capacity. In each sweeping iteration, a seed item is defined as the item i ∈ R that
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is compatible with fewest other items in R, where initially R = I. The seed item
and all its compatible items define a (not necessarily feasible) bin and are removed
from R. This procedure is repeated until R is empty. The number of bins obtained
is denoted LB2. Third, the modified sweeping procedure (Crama and Oerlemans
1994) is executed. After each sweeping iteration, the trivial size bound considering
the elements e ∈ Ei of all remaining items i ∈ R is added to the number of already
created bins from the sweeping procedure. We obtain multiple lower bounds (one
for each sweeping iteration) with this procedure and set the maximum value as
LB3. The overall LB is given by LB = max{LB1, LB2, LB3}.

Strengthening of Lower Bounds

To strengthen the lower bounds, we experimented with adding valid inequalities
in the form of subset-row cuts (SRCs, Jepsen et al. 2008) and capacity cuts (CCs,
Baldacci et al. 2008), which have proven beneficial in improving the performance
of B&P-based approaches to related problems (e.g., Wei et al. 2020, Wahlen and
Gschwind 2023). In pretests, we found that violated SRCs could be separated reg-
ularly and their addition did increase the lower bound. On the other hand, only
very few violated CCs could be separated at all, despite a considerable computa-
tional effort. Overall, neither the integration of SRCs nor of CCs showed a positive
effect on our approach so that we do not include any valid inequalities in our B&P.

Branching Strategy

The computational analysis of our B&P revealed that improving the primal bound
seems to be the primary task within the B&B tree (see Sections 4.5.4 and 4.5.5);
strengthening the dual bound seems of secondary importance for most instances.
Therefore, we use a depth-first node-selection strategy. Still, in pretests we found
that the application of strong branching as detailed in the following proved to be
beneficial.

In each B&B node, a candidate set of item pairs (i, j) whose fij-values are
closest to 0.6 is identified. For each pair, a rough evaluation of the two child nodes
is performed by solving the RMP with the corresponding branching constraint but
without any CG. The decision on the branching variables to be finally selected
is made according to the product rule (Achterberg 2007). At the root node, the
maximum size of the candidate set is 25, and for each level of the B&B tree, the
size is reduced by two. We also experimented with incorporating the item weights
into the selection of the branching candidates as proposed by Heßler and Irnich
(2022a). However, pretests have not revealed any significant benefit of this idea.
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4.C Modification of Item-based SPPRC Graph for
Branching
We identify a Ryan-and-Foster branching decision by the set I = {i, j} of two
items. The type of decision, separate or together, is irrelevant for now. Denote
by I = {I1, . . . , Ip} the set of active branching decisions at a given B&B node.
Let I1, . . . , Iq be a partition of I into subsets, i.e., groups of branching decisions,
such that the different subsets do not overlap with respect to the items involved,
i.e, (⋃

I∈Ig I) ∩ (⋃
I∈Ih I) = ∅ applies to all pairs g, h ∈ {1, ..., q}, g 6= h, while

each individual subset consists of overlapping branching decisions. The branching
decisions of a set Ig = {Ig

1 , . . . , Ig
r } overlap if they can be arranged such that

(Ig
1 ∪ · · · ∪ Ig

h−1) ∩ I1
h 6= ∅ for all h ∈ {1, ..., r}. For each Ig, g ∈ {1, . . . , q},

denote by I(Ig) = ⋃
I∈Ig I the set of items involved. Furthermore, let I0(Ig) =

∅, I1(Ig), . . . , Is(Ig) be all feasible combinations (i.e., subsets) of the items in
I(Ig) such that the branching decisions and the bin capacity are respected. In the
resulting graph G, each set I(Ig) of items corresponding to a group of branching
decisions Ig is represented by a single vertex v. For each feasible combination of
items Ik(Ig), k ∈ {0, . . . , s}, an arc ak

v from vertex v − 1 to vertex v is created.
The components associated with each arc ak

v are Ik
v = Ik(Ig), Ek

v = ⋃
i∈Ik(Ig) Ei,

and πk
v = ∑

i∈Ik(Ig) πi. Each of the items i ∈ I \ ⋃
I∈I I that is not involved in any

branching decision is still associated with a single vertex and two ingoing arcs in G
(see Section 4.4.1.2). Note that after branching, the vertices in graph G are sorted
non-increasingly by a generalized profit value that is based on the maximum profit
of all ingoing arcs.

Example 4.5 (continued). Consider again the example SUBP instance and dual
prices πi1 = 0.3, πi2 = 0.5, πi3 = 0.4, and πi4 = 0.2. We assume that I comprises
the two active separate branching decisions {i1, i2} and {i2, i3}, resulting in one
group I1 of branching decisions with involved items I(I1) = {i1, i2, i3}. Item i4 is
not involved in any branching decision and is therefore represented by an individual
vertex. Figure 4.6 depicts the modified graph G showing all arcs ak

v with their com-
ponents (Ik

v , Ek
v , πk

v ). Consider vertex I1 associated with items I(I1) = {i1, i2, i3}.
The five ingoing arcs represent all subsets of items from the set I(I1) that respect
the mutual branching decisions and the bin capacity Q = 3, i.e., that can be feasibly
included in a bin. Now consider arc ({i1, i3}, {e2, e4, e5}, 0.7) corresponding with the
inclusion of the items i1 and i3. It is associated with the set of elements {e2, e4, e5}
and a dual price of 0.3 + 0.4 = 0.7. Bin b1 comprising items i1 and i4 from Fig-
ure 4.1 (which is still feasible despite the branching decisions) is represented by the
path having bold arcs.

In the greedy pricing heuristic, the branching decisions are taken into account
by considering the sets I1(Ig), . . . , Is(Ig) instead of the single items.
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0 I1 i4

({i1}, {e4, e5}, 0.3)

({i2}, {e1}, 0.5)

({i3}, {e2, e4}, 0.4)

({i1, i3}, {e2, e4, e5}, 0.7)

(∅,∅, 0)

({i4}, {e3, e4}, 0.2)

(∅,∅, 0)

Figure 4.6: Modified linear directed multigraph G with Ryan-and-Foster separate
branching decisions {i1, i2} and {i2, i3}

4.D Benchmark Instances
The benchmark by Grange et al. (2018) comprises six unit-weight instances for each
combination of capacity Q ∈ {15, 20, . . . , 50}, number of elements m ∈ {Q + 5,
Q + 10, . . . , 100}, and number of items n ∈ {20, 25, . . . , 100}. For details on their
generation, we refer to (Grange et al. 2018). Note that five (Q, m, n)-combinations
do not exist, in particular, (15, 85, 20), (15, 90, 20), (15, 95, 20), (15, 100, 20), and
(15, 100, 25), resulting in a total of 10,986 instances.

In order to assess the performance of our B&P on instances with general weights,
we use the SUKP instances by He et al. (2018) and interpret them as SUBP in-
stances by reducing the capacity and omitting profits. The original instances are
defined by the characteristics number of items n, number of elements m, den-
sity α =

∑
i∈I

|Ei|
nm

, and capacity ratio β = Q∑
e∈E

we
. The benchmark consists of

three classes describing the relationship between n and m, namely n > m, n = m,
and n < m. The larger of the two values n and m (in case of equality this ap-
plies to both) is in {100, 200, . . . , 500}, and the smaller one is chosen to be 15 less.
Each of the resulting (n, m)-pairs is combined with the two (α, β)-pairs (0.1, 0.75)
and (0.15, 0.85), leading to a total of 30 instances. The weights we of the individual
elements e ∈ E are within the interval [11, 331], resulting in bin capacities Q reach-
ing from 11,000 to more than 70,000. To obtain reasonable SUBP instances, we
redefine for each instance the capacity value depending on the item with the largest
total weight and the largest individual element of the instance. More precisely, we
set Q = maxi∈I

∑
e∈Ei

we + γ maxe∈E we for γ ∈ {0, 5, 10, 15, 20}. Combining the
given values for (n, m) and α with the considered values of γ, we obtain a set of
150 general-weight SUBP instances.
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4.E Comparison of Completion Bounds
Table 4.6 analyzes the impact of different completion bounds on our item-based
labeling algorithm without dominance. Note that similar trends can be observed
also for the other labeling variants (with dominance, element-based labeling).
When applying the upfront greedy heuristic and looking at individual bounds,
Table 4.6 reveals that B1 and B2 are clearly superior to the others, with B4 being
not competitive. While B2 provides slightly faster average computation times, it
starts to struggle for larger instances where B1 is able to solve more LP relax-
ations. Given these insights, we further investigated two promising combinations
of bounds, namely using the KP-based bound B1 with the upfront application
of the computationally cheaper bounds B2 or B3. The results indicate that the
combined variants do not increase the percentage of solved instances beyond the
level achieved by using only B1. However, applying B2 prior to B1 leverages the
strengths of both bounds, producing the most favorable overall outcomes. Conse-
quently, we implement the combination of B2 and B1 in our B&P.

Table 4.6 further reveals that when the greedy heuristic is employed, which
means that only a few exact labeling-based pricings are necessary and the most
costly exact pricings are replaced by the heuristic (see Figure 4.5 and Appendix 4.F),
the item-based labeling algorithm is rather robust with respect to reasonable com-
pletion bounds. Without the greedy heuristic, we see that the strong completion
bounds B1 are crucial for the performance of the labeling algorithm and the B&P;
as indicated also for the largest instances when applying the greedy heuristic.
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B1 B2 B3 B4 B2 and B1 B3 and B1

n %SolLP tLP %SolLP tLP %SolLP tLP %SolLP tLP %SolLP tLP %SolLP tLP

Panel A: No greedy heuristic
20 100.0 0.0 50.0 900.0 50.0 900.0 50.0 902.4 100.0 0.0 100.0 0.0
25 100.0 0.2 50.0 900.0 50.0 900.0 50.0 918.0 100.0 0.2 100.0 0.2
30 100.0 0.8 50.0 900.1 50.0 900.1 49.2 961.4 100.0 0.8 100.0 0.8
35 100.0 4.5 50.0 900.5 50.0 900.5 46.4 1,019.5 100.0 4.6 100.0 4.8
40 99.9 21.4 50.0 902.3 50.0 902.5 42.2 1,118.1 99.9 21.8 99.9 22.3
45 99.2 61.0 50.0 908.5 49.9 909.5 36.1 1,221.7 99.2 61.6 99.2 63.2
50 96.9 118.0 49.6 922.0 49.3 921.9 33.0 1,267.4 96.9 118.8 96.6 120.0
55 93.5 199.3 49.0 940.2 48.2 941.9 30.0 1,313.4 93.5 199.8 93.4 202.5
60 91.7 262.9 48.1 958.5 47.2 961.3 28.5 1,327.0 91.8 263.8 91.5 267.1
65 89.2 332.6 47.7 975.8 46.3 978.7 28.0 1,343.0 89.0 334.6 88.7 338.0
70 84.6 425.6 46.7 1,003.9 44.6 1,009.2 27.2 1,364.3 84.3 427.1 84.1 430.5
75 81.3 497.2 45.8 1,029.9 43.0 1,038.2 26.9 1,379.6 80.9 497.8 80.4 502.5
80 76.4 589.5 44.2 1,055.5 40.9 1,073.8 26.4 1,405.6 75.9 591.4 75.3 595.3
85 72.7 635.5 43.6 1,074.4 39.7 1,094.9 25.8 1,427.2 72.4 636.2 71.5 640.6
90 68.4 701.6 41.3 1,108.8 38.0 1,123.9 25.0 1,445.4 67.9 702.5 67.4 706.3
95 66.2 742.3 39.4 1,136.7 37.0 1,141.7 24.1 1,470.6 65.4 743.8 64.8 747.7

100 62.7 788.3 38.5 1,160.7 36.0 1,159.0 23.7 1,495.9 61.1 788.8 61.0 791.9
Tot. 87.2 317.4 46.8 984.6 45.7 984.1 33.6 1,258.6 86.9 318.1 86.7 320.5

Panel B: With greedy heuristic
20 100.0 0.0 100.0 0.0 100.0 0.0 50.0 900.1 100.0 0.0 100.0 0.0
25 100.0 0.0 100.0 0.0 100.0 0.0 50.0 900.3 100.0 0.0 100.0 0.0
30 100.0 0.0 100.0 0.0 100.0 0.0 50.0 900.7 100.0 0.0 100.0 0.0
35 100.0 0.1 100.0 0.1 100.0 0.1 50.0 901.4 100.0 0.1 100.0 0.1
40 100.0 0.3 100.0 0.2 100.0 0.3 50.0 903.2 100.0 0.3 100.0 0.3
45 100.0 0.8 100.0 0.6 100.0 0.8 50.0 906.9 100.0 0.8 100.0 0.8
50 100.0 2.1 100.0 1.7 100.0 2.3 50.0 915.0 100.0 2.1 100.0 2.2
55 100.0 4.5 100.0 3.5 100.0 5.1 50.0 929.3 100.0 4.5 100.0 4.6
60 100.0 8.2 100.0 7.0 99.5 17.9 49.9 950.3 100.0 8.2 100.0 8.5
65 100.0 13.8 100.0 11.9 98.8 35.5 49.9 976.5 100.0 13.7 100.0 14.4
70 100.0 23.3 100.0 21.1 97.2 71.5 49.4 1,017.4 100.0 23.4 100.0 24.5
75 100.0 34.8 100.0 31.6 94.6 121.9 48.2 1,052.3 100.0 34.4 100.0 36.5
80 100.0 60.4 99.9 68.7 91.5 183.9 45.8 1,106.3 100.0 59.8 100.0 63.7
85 100.0 82.1 98.8 92.9 89.2 232.1 44.1 1,146.0 100.0 80.5 100.0 86.5
90 99.1 136.1 98.0 131.0 84.0 331.6 42.5 1,181.0 99.1 133.3 98.8 141.6
95 98.2 191.0 95.4 182.8 78.7 424.6 40.3 1,218.3 97.8 185.8 97.8 196.2

100 96.6 240.9 94.4 211.1 73.0 520.3 37.9 1,258.4 96.9 232.8 96.6 245.8
Tot. 99.6 47.1 99.2 45.1 94.5 114.9 47.5 1,009.9 99.6 46.0 99.6 48.7

Table 4.6: Summary results for different completion bounds of our B&P for
pagination instances
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4.F Detailed CG Process for Selected Instances
In Figures 4.7–4.11, we provide the computation times per pricing instance using
the IP and item-based labeling both with and without the greedy heuristic as
examined in Section 4.5.2 for five additional pagination instances.
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(b) Item-based labeling without dominance.
Figure 4.7: Computation time per pricing iteration with (gray) and without

(blue) heuristic for the second instance with Q = 15, m = 20, n = 70
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(b) Item-based labeling without dominance.
Figure 4.8: Computation time per pricing iteration with (gray) and without

(blue) heuristic for the fifth instance with Q = 20, m = 35, n = 50
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(b) Item-based labeling without dominance.
Figure 4.9: Computation time per pricing iteration with (gray) and without

(blue) heuristic for the third instance with Q = 25, m = 50, n = 50
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(b) Item-based labeling without dominance.
Figure 4.10: Computation time per pricing iteration with (gray) and without

(blue) heuristic for the fifth instance with Q = 35, m = 40, n = 85
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(b) Item-based labeling without dominance.
Figure 4.11: Computation time per pricing iteration with (gray) and without

(blue) heuristic for the fifth instance with Q = 50, m = 55, n = 60

4.G Influence of Instance Characteristics on B&P
Algorithm
In the following, we explore which characteristics influence the complexity of an
instance for our B&P. Table 4.2 and Tables 4.7–4.11 display the results of our B&P
for the benchmarks pagination and general averaged by number of items n, num-
ber of elements m, capacity Q, average element frequency, average item cardinality,
and average number of items per bin in the optimal solution, respectively.

Table 4.2 reveals that the number of items n is a major influencing factor on the
performance of our B&P. As expected according to the results from Section 4.5.2 for
solving the LP relaxation, pagination instances with more items are significantly
harder to solve. While all instances with n ≤ 50 are solved optimally in a very short
time, only two thirds of the instances can be solved in the most difficult class n =
100. The picture is reversed for the general instances: For the largest instances
with up to 500 items, more instances are solved to optimality in significantly less
computation time compared to the instances with the fewest items.

With an increasing number of elements m, both pagination and general in-
stances seem to become easier as the percentages of optimally solved instances tend
to increase while the average computation times tend to decrease (see Table 4.7).
For the pagination benchmark, however, the effect is not as strong as with the
number of items n, so that the influence of n appears to be more significant than
that of m. The results for the general set are the same as for n, because n and m
are within the same size by definition of the instances.

Table 4.8 shows the results aggregated by capacity Q. It appears that instances
tend to become more difficult with increasing Q for pagination, but the effect is
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limited. It should be noted that Q is related to the number of elements m due to
the construction of the instances (m > Q). With general instances, there seems
to be no clear trend. Note that here, the capacity is specified in intervals as there
are no predefined capacity classes.

The results grouped by average frequency are shown in Table 4.9. More than
half of the pagination instances have a very small average frequency of up to ten
items per element. The frequency does not appear to have a significant influence on
the difficulty of a pagination instance, while a higher frequency corresponds with
easier general instances. Interestingly, the specific characteristic of the SUBP,
namely the set-union property which is represented by the frequency of an element,
therefore, appears to have less influence on the difficulty than, e.g., the size n of
the problem or the bin capacity Q.

Table 4.10 summarizes the results by average cardinality of the items, where the
cardinality of an item i ∈ I is defined as the number of elements it requires, i.e.,
|Ei|. We can observe that a larger average cardinality seems to strongly correlate
with the difficulty of an instance. This holds for both pagination and general
instances.

Table 4.11 displays the results aggregated by the average number of items per
bin in the BKS, i.e., n

BKS
, which can be considerably larger for pagination than

for general instances. With both instance sets, there is a strong tendency that
the complexity of an instance increases the more items are grouped into the bins.
This observation is in line with similar findings for the related BP.
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m Inst %Opt t[s]
Panel A: pagination instances

20 102 86.3 322.8
25 204 80.9 408.7
30 306 87.3 295.9
35 408 86.5 300.9
40 510 85.7 307.4
45 612 86.1 316.8
50 714 87.8 296.5
55 816 87.7 289.4
60 816 90.3 237.3
65 816 91.9 222.2
70 816 93.3 181.2
75 816 94.4 178.3
80 816 96.3 143.5
85 810 95.9 125.6
90 810 96.8 112.2
95 810 97.8 100.5

100 804 97.8 77.7
Total 10,986 92.1 204.8

Panel B: general instances
{85, 100} 30 70.0 614.9

{185, 200} 30 60.0 817.3
{285, 300} 30 76.7 538.7
{385, 400} 30 80.0 540.3
{485, 500} 30 90.0 395.0
Total 150 75.3 581.2

Table 4.7: Summary results of our B&P aggregated by number of elements
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Q Inst %Opt t[s]
Panel A: pagination instances

15 1,704 92.6 192.5
20 1,632 95.2 133.2
25 1,530 95.5 136.9
30 1,428 91.5 219.8
35 1,326 90.7 233.4
40 1,224 92.0 215.3
45 1,122 89.3 284.4
50 1,020 87.6 283.6

Total 10,986 92.1 204.8
Panel B: general instances
(0, 5,000] 9 100.0 7.2

(5,000, 10,000] 40 80.0 464.8
(10,000, 15,000] 54 64.8 723.0
(15,000, 20,000] 32 77.1 641.5
(20,000, 25,000] 12 83.3 585.9
Total 150 75.3 581.2

Table 4.8: Summary results of our B&P aggregated by capacity

Frequency Inst %Opt t[s]
Panel A: pagination instances

(0, 10] 6,200 96.4 121.9
(10, 20] 3,222 84.7 363.8
(20, 30] 980 94.7 134.8
(30, 40] 347 78.4 452.2
(40, 50] 140 87.9 229.1
(50, 60] 76 100.0 10.0
(60, 70] 21 100.0 13.7

Total 10,986 92.1 204.8
Panel B: general instances
(0, 10] 15 73.3 563.6

(10, 20] 25 64.0 751.0
(20, 30] 20 65.0 774.0
(30, 40] 20 60.0 782.3
(40, 50] 40 87.5 426.3
(50, 60] 10 90.0 348.7
(60, 70] 5 80.0 535.8
(70, 80] 15 86.7 374.0

Total 150 75.3 581.2

Table 4.9: Summary results of our B&P aggregated by average frequency
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Cardinality Inst %Opt t[s]
Panel A: pagination instances

(0, 10] 4,947 89.7 276.4
(10, 20] 4,388 92.8 181.9
(20, 30] 1,397 97.4 60.4
(30, 40] 254 100.0 0.9

Total 10,986 92.1 204.8
Panel B: general instances
(0, 10] 15 73.3 563.6

(10, 20] 25 64.0 751.0
(20, 30] 25 64.0 765.8
(30, 40] 20 65.0 752.4
(40, 50] 30 86.7 420.4
(50, 60] 20 90.0 376.9
(60, 70] 0 – –
(70, 80] 15 86.7 374.0

Total 150 75.3 581.2

Table 4.10: Summary results of our B&P aggregated by average cardinality

n/BKS Inst %Opt t[s]
Panel A: pagination instances
(0, 3] 3,868 100.0 0.1
(3, 6] 3,245 99.3 24.4
(6, 9] 2,386 87.7 371.8

(9, 12] 940 68.7 787.1
(12, 15] 312 57.8 946.2
(15, 18] 84 42.0 1,167.5
(18, 21] 68 55.7 927.2
(21, 24] 55 46.4 1,082.7
(24, 27] 19 37.5 1,198.5
(27, 30] 4 100.0 618.2
(30, 33] 3 66.7 1,170.6
(33, 36] 2 0.0 1,800.0
Total 10,986 92.1 204.8

Panel B: general instances
(0, 3] 104 86.5 380.8
(3, 6] 30 53.3 989.0
(6, 9] 6 83.3 458.0

(9, 12] 6 16.7 1,586.7
(12, 15] 2 50.0 1,021.7
Total 150 75.3 581.2

Table 4.11: Summary results of our B&P aggregated by average number of items
per bin
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4.H Influence of Additional UBs on B&P Algorithm
In Table 4.12, we compare the results of our B&P algorithm (Our B&P) with the
results obtained by initializing our B&P with additional UBs. More precisely, we
tested the best UB reported by Grange et al. (2018) for the pagination instances
(B&P + Gr-UB) as well as the overall BKS (B&P + BKS). For the pagination
benchmark, the effect is limited: only 19 additional instances can be solved and the
improvement in average computation time is marginal. Thus, for the majority of
instances, additional effort to provide high-quality primal solutions, seems to not
pay off for our B&P. Recall, however, that there exist some unsolved instances for
which we assume the BKS to be suboptimal. For these hard instances, improved
UBs may be crucial for their solution. For the general benchmark, on the other
hand, a significant improvement is observed when utilizing the BKS as an initial
UB. Our B&P is able to solve 21 additional instances in only 60% of the average
computation time. Here, improved primal heuristics may be worthwhile.
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Our B&P B&P + Gr-UB B&P + BKS
n Inst Opt t[s] Opt t[s] Opt t[s]

Panel A: pagination instances
20 624 624 0.0 624 0.0 624 0.0
25 642 642 0.0 642 0.0 642 0.0
30 648 648 0.1 648 0.1 648 0.1
35 648 648 0.2 648 0.2 648 0.2
40 648 648 0.6 648 0.5 648 0.5
45 648 648 2.1 648 2.0 648 2.0
50 648 648 10.4 647 10.1 647 10.2
55 648 643 43.0 643 42.5 643 42.7
60 648 636 65.1 635 63.8 635 64.6
65 648 622 126.6 623 116.2 624 117.4
70 648 602 208.9 604 201.3 603 202.2
75 648 582 279.0 583 269.8 585 272.0
80 648 565 375.9 565 372.7 567 375.3
85 648 534 451.4 537 444.4 538 444.5
90 648 510 553.7 515 542.3 515 544.5
95 648 478 632.1 479 628.7 480 629.6

100 648 445 723.2 447 722.0 447 722.3
Total 10,986 10,123 204.8 10,136 201.5 10,142 202.2

Panel B: general instances
{85, 100} 30 21 614.9 28 198.2

{185, 200} 30 18 817.3 24 514.0
{285, 300} 30 23 538.7 25 443.9
{385, 400} 30 24 540.3 27 359.0
{485, 500} 30 27 395.0 30 299.3
Total 150 113 581.2 134 362.9

Table 4.12: Summary results of our B&P incorporating different UBs
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4.I Instances Not Satisfying IRUP
In this section, we present details on two of the smallest instances that we could
find that do not satisfy the IRUP. For both instances, we state the optimal solu-
tion together with the optimal solution of the LP relaxation of Formulation (4.4)
provided by our B&P.

Example Instance 1

This instance is based on the second pagination instance with Q = 30, m = 35,
n = 20. The instance could be reduced to n = 17 items, while still not satisfying
the IRUP.
Instance data: Ei for all i ∈ I:
{7,8,15,18,20,23,28,29,32}
{3,5,8,17,19,29}
{1,6,8,12,15,24,26,34}
{3,5,12,14,17,21,22,23,24,25,28,34}
{0,15,16,17,20,24,29}
{1,14,18,21,25,26,30}
{1,5,6,11,13,18,26,29,30,32,33}
{1,2,3,4,9,11,13,14,16,19,25}
{1,2,4,5,7,8,12,13,14,15,20,33}
{0,4,8,11,13,17,19,20,21,23,25,33,34}
{2,6,31}
{5,6,8,15,16,18,20,22,28}
{5,10,13,16,19,29}
{6,9,10,11,18,20,25,28,31}
{0,10,24,26,27,29,34}
{2,4,7,8,14,16,17,18,19,20,24,30,32}
{5,8,10,11,12,15,17,20,21,23,28,32,33,34}
Optimal solution (3 bins):
Bin [3 7 8 9 15 16], elements {0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 28 30 32 33 34} = 1
Bin [0 2 4 5 6 11 13], elements {0 1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22
23 24 25 26 28 29 30 31 32 33 34} = 1
Bin [1 10 12 14], elements {0 2 3 5 6 8 10 13 16 17 19 24 26 27 29 31 34} = 1
LP relaxation (obj val = 2.0):
Bin [1 5 6 7 8 10 12 13 15], elements {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 24 25 26 28 29 30 31 32 33} = 0.25
Bin [2 3 4 10 11 13 14 16], elements {0 1 2 3 5 6 8 9 10 11 12 14 15 16 17 18 20 21



Chapter 4. B&P for the SUBP 208

22 23 24 25 26 27 28 29 31 32 33 34} = 0.25
Bin [0 1 2 3 4 5 11 14 15], elements {0 1 2 3 4 5 6 7 8 10 12 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 32 34} = 0.25
Bin [0 2 5 6 8 9 14 16], elements {0 1 2 4 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21
23 24 25 26 27 28 29 30 32 33 34} = 0.25
Bin [3 7 9 10 11 13 16], elements {0 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 28 31 32 33 34} = 0.25
Bin [0 1 6 7 10 11 12 13 15], elements {1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18
19 20 22 23 24 25 26 28 29 30 31 32 33} = 0.25
Bin [0 1 3 4 7 8 9 12 16], elements {0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 28 29 32 33 34} = 0.25
Bin [2 4 5 6 8 9 12 14 15], elements {0 1 2 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19
20 21 23 24 25 26 27 29 30 32 33 34} = 0.25

Example Instance 2

This instance is based on the first pagination instance with Q = 15, m = 20,
n = 30. The instance could be reduced to n = 24 items, while still not satisfying
the IRUP.
Instance data: Ei for all i ∈ I:
{0,1,2,3,4,7,9,11,16}
{3,4,5,6,7,9,10,14,17,19}
{5,8,11,12,16,19}
{5,8,16,18,19}
{2,5,3,7,8,10,16,17,19}
{1,4,6,9,12,16}
{5,6,7,11,14,16}
{1,3,5,7,10,15}
{0,1,6,8,12,13}
{2,6,8,12,15,17,19}
{2,4,6,7,11,13,17,19}
{2,3,6,9,12,14,16,17}
{2,3,5,7,11,17}
{3,7,9,11,14,17,18}
{1,5,10,12,13,15,16}
{6,7,9,10,12,16,19}
{3,8,12,15,19}
{3,7,8,9,10,12,16}
{0,4,6,8,11,14,19}
{1,4,7,10,11,12,16}
{1,4,5,9,11,13,14}
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{6,7,8,10,11,12,15,18}
{0,1,3,4,6,9,10,13,19}
{0,2,5,10,12,13,19}
Optimal solution (5 bins):
Bin [4 8 9 23], elements {0 1 2 3 5 6 7 8 10 12 13 15 16 17 19} = 1
Bin [0 5 11 13 19], elements {0 1 2 3 4 6 7 9 10 11 12 14 16 17 18} = 1
Bin [1 10 12 20 22], elements {0 1 2 3 4 5 6 7 9 10 11 13 14 17 19} = 1
Bin [2 3 6 7 15 16 17 21], elements {1 3 5 6 7 8 9 10 11 12 14 15 16 18 19} = 1
Bin [14 18], elements {0 1 4 5 6 8 10 11 12 13 14 15 16 19} = 1
LP relaxation (obj val = 3.9512198):
Bin [0 5 11 18], elements {0 1 2 3 4 6 7 8 9 11 12 14 16 17 19} = 0.0609756
Bin [1 18 20 22], elements {0 1 3 4 5 6 7 8 9 10 11 13 14 17 19} = 0.0365854
Bin [0 5 10 15 19 22], elements {0 1 2 3 4 6 7 9 10 11 12 13 16 17 19} = 0.536585
Bin [2 3 4 6 11 12 13 15 17], elements {2 3 5 6 7 8 9 10 11 12 14 16 17 18 19} =
0.170732
Bin [8 18 20 22 23], elements {0 1 2 3 4 5 6 8 9 10 11 12 13 14 19} = 0.304878
Bin [4 7 8 9 14 16 23], elements {0 1 2 3 5 6 7 8 10 12 13 15 16 17 19} = 0.426829
Bin [1 2 4 6 11 12 15 17], elements {2 3 4 5 6 7 8 9 10 11 12 14 16 17 19} =
0.317073
Bin [2 3 4 7 9 12 16 21], elements {1 2 3 5 6 7 8 10 11 12 15 16 17 18 19} =
0.0853659
Bin [5 7 14 17 19 21], elements {1 3 4 5 6 7 8 9 10 11 12 13 15 16 18} = 0.0487805
Bin [2 3 5 7 15 16 17 19 21], elements {1 3 4 5 6 7 8 9 10 11 12 15 16 18 19} =
0.158537
Bin [9 11 13 16 17 21], elements {2 3 6 7 8 9 10 11 12 14 15 16 17 18 19} = 0.304878
Bin [2 3 8 14 21 23], elements {0 1 2 5 6 7 8 10 11 12 13 15 16 18 19} = 0.195122
Bin [0 7 14 19 20], elements {0 1 2 3 4 5 7 9 10 11 12 13 14 15 16} = 0.182927
Bin [2 3 7 8 14 16 21], elements {0 1 3 5 6 7 8 10 11 12 13 15 16 18 19} = 0.0243902
Bin [0 5 6 11 12 20], elements {0 1 2 3 4 5 6 7 9 11 12 13 14 16 17} = 0.146341
Bin [1 3 6 13 18], elements {0 3 4 5 6 7 8 9 10 11 14 16 17 18 19} = 0.365854
Bin [9 10 18 21], elements {0 2 4 6 7 8 10 11 12 13 14 15 17 18 19} = 0.182927
Bin [0 7 14 19 23], elements {0 1 2 3 4 5 7 9 10 11 12 13 15 16 19} = 0.0731707
Bin [1 10 12 13 20], elements {1 2 3 4 5 6 7 9 10 11 13 14 17 18 19} = 0.158537
Bin [1 10 12 20 22], elements {0 1 2 3 4 5 6 7 9 10 11 13 14 17 19} = 0.121951
Bin [2 5 8 14 18 20], elements {0 1 4 5 6 8 9 10 11 12 13 14 15 16 19} = 0.0487805
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Chapter 5

Conclusion
The main goal of this thesis was to advance the development of exact solution
methods for the order batching problem (OBP) in warehousing and the set-union
bin packing problem (SUBP), which arises in various applications such as flexible
manufacturing. This chapter provides a summary of the key results and offers
concluding remarks on the findings.

In Chapter 2, we introduced a full-fledged branch-price-and-cut (BPC) approach
to solve the single-block OBP for the routing strategies traversal, return, mid-
point, largest gap, combined, and optimal. The foundation of this approach is a
column generation (CG) framework, wherein the pricing problem is formulated as
a shortest path problem with resource constraints (SPPRC) on a linear directed
multigraph. A central innovation of our method is the development of a spe-
cialized dynamic programming (DP) labeling algorithm for solving the SPPRC,
which incorporates strong completion bounds. These bounds are essential, as the
non-separability of the distance function prevents the application of traditional
dominance relations. Our DP algorithm is further enhanced to handle the effects
of non-robust valid inequalities, such as subset-row cuts and capacity cuts, as well
as Ryan-and-Foster branching decisions. The powerful CG component enabled the
development of two additional heuristic approaches for the OBP that are based on
the exact BPC. In an extensive computational campaign, our exact BPC approach
exhibited superior performance for benchmark instances, reducing average compu-
tation times to one percent of those required by the state-of-the-art exact method
and identifying over three times as many proven optima. Furthermore, the BPC-
based heuristics improved the majority of the best-known solutions (BKS) across
large-scale benchmark datasets.

Chapter 3 broadened the scope of this work by addressing the multi-block OBP,
building upon the BPC method introduced in Chapter 2. To this end, we in-
vestigated the necessary monotonicity properties of six established or modified
multi-block picker routing strategies: optimal, no-reversal, aisle-by-aisle, traver-
sal, combined, and largest gap. Notably, all strategies, with the exception of
largest gap, were proven to exhibit monotonicity in a rectangular parallel-aisle
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multi-block warehouse environment. Computational experiments on real-world in-
stances demonstrated that the BPC method is more than three orders of magnitude
faster than state-of-the-art exact approaches, solving the majority of all considered
instances to proven optimality. Furthermore, the BPC-based heuristics delivered
significant improvements in solution quality within a short time for the multi-block
OBP, outperforming previous methods.

In Chapter 4, we presented a novel branch-and-price (B&P) approach for the set-
union bin packing problem (SUBP). Various strategies for solving the CG pricing
problem, which is a set-union knapsack problem, were analyzed. We identified the
best-performing strategy as a combination of an upfront greedy heuristic and solv-
ing an item-based SPPRC with a DP labeling algorithm. This labeling algorithm
does not employ dominance relations but instead relies on dedicated completion
bounds. Extensive computational experiments were conducted on both unit-weight
and general-weight benchmark sets. Our B&P approach identified optimal solu-
tions for 92% of over 11,000 instances that were previously addressed solely with
heuristic methods, improving the BKS for more than half of the benchmark set.
Additionally, we observed that the vast majority of optimally solved instances sat-
isfy the integer round-up property (IRUP), while all solved instances adhere to the
modified IRUP.

Altogether, the versatility and remarkable computational performance of the
CG-based methods developed in this thesis – demonstrated across different problem
types featuring non-linear objective functions and knapsack-type substructures –
underscore their potential to effectively address a wide range of combinatorial
optimization problems with similar characteristics in future research.
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