Contributions to Exact Algorithms
for Optimization in Warehousing
and Flexible Manufacturing

Vom Fachbereich Wirtschaftswissenschaften
der Rheinland-Pfilzischen Technischen Universitét
Kaiserslautern-Landau
zur Verleihung des akademischen Grades
Doctor rerum politicarum (Dr. rer. pol.)
genehmigte

Dissertation

vorgelegt von

Julia Wahlen, M. Sc.

Tag der miindlichen Priifung: 09. Mai 2025

Dekan: Prof. Dr. Florian Sahling
Vorsitzender: Prof. Dr. Michael Hassemer
Berichterstattende: Prof. Dr. Timo Gschwind

Prof. Dr. Sanne Wghlk

D 386
(2025)

Contents

List of Papers vi
List of Figures vii
List of Tables ix
1 Introduction 1
1.1 Exact Solution Methods 2
1.2 Considered Problems 3
1.3 Contributions and Outline 4
2 Branch-Price-and-Cut-Based Solution of Order Batching Prob-

lems

Julia Wahlen and Timo Gschwind 6
2.1 Introduction 7
2.1.1 Literature Review 9
2.1.2 Contributions 11
2.1.3 Organization of the Paper 13

2.2 Problem Description and Mathematical Formulation 14
2.3 Branch-Price-and-Cut 0oL 16
2.3.1 Pricing Problem 16
2.3.1.1 SPPRC Formulation of the Pricing Problem 17

2.3.1.2 Basic Labeling Algorithm 18

2.3.1.3 Bounding Procedure 19

2.3.1.4 Acceleration Strategies 22

232 Cutting 22
2.3.2.1 Capacity Cuts 23

2.3.2.2 Subset-Row Cuts 27

2.3.3 Branching 28
2.3.4 BPC-based Heuristics 31

2.4 Computational Results 31
2.4.1 Benchmark Instances 32
2.4.2 Evaluation of Algorithmic Components 32
2.4.3 Computational Analysis of BPC Algorithm 33

iii

Contents iv

2.4.4 Computational Analysis of BPC-based Heuristics 37
2.4.5 Comparison of Routing Strategies 40
2.5 Conclusions 41
Appendix 47
2.A Detailed Description of Routing Strategies 47
2.B Proof of Proposition 2.1 49
2.C Non-Monotonicity of Composite Routing Strategy 53
2.D Algorithm Design Choices 53
2.E Benchmark Instances 55
2.F Detailed Computational Results 56

3 Solving the Multi-Block Order Batching Problem with Branch-
Price-and-Cut

Julia Wahlen 107
3.1 Introduction 108
3.1.1 Contributions 109

3.1.2 Organization of the Paper 110

3.2 Literature Review oo oo 110
3.3 Problem Description and Solution Approach 113
3.3.1 Problem Definition and Mathematical Formulation 113
3.3.2 Branch-Price-and-Cut Method 114
3.32.1 Exact BPC, 114

3.3.2.2 BPC-based Heuristics 116

3.4 Multi-Block Routing Strategies 116
3.4.1 Warehouse Layout 116
3.4.2 Detailed Description of Routing Strategies 117
3.4.3 Monotonicity Property 123

3.5 Computational Results 126
3.5.1 Benchmark Instances 126
3.5.2 Comparison with State-of-the-Art 127
3.5.3 Computational Analysis of BPC Algorithm 128
3.5.4 Evaluation of Routing Strategies 131
3.5.5 Detailed Analysis 132
3.5.6 Computational Analysis of BPC-based Heuristics 134

3.6 Conclusions 138
Appendix 144
3.A Foodmart State Space 144

3.B Instance-by-Instance Comparison 145

3.C Detailed Computational Results 146

Contents A\
4 Branch-and-Price for the Set-Union Bin Packing Problem

Julia Wahlen and Timo Gschwind 158

4.1 Introduction L 159

4.1.1 Contributions 160

4.1.2 Organization of the Paper 161

4.2 Literature Review Lo oL 161

4.3 Problem Description and Mathematical Formulations 163

4.3.1 Problem Definition 163

4.3.2 Symmetric Formulation 164

4.3.3 Asymmetric Representatives Formulation 165

4.3.4 Set-Partitioning Formulation 166

4.4 Branch-and-Price Algorithm 166

4.4.1 Pricing Problem 167

4.41.1 IP Formulation 167

4.4.1.2 Ttem-based SPPRC 168

4.4.1.3 Element-based SPPRC 172

4.4.2 Branchingo 175

4.5 Computational Results 176

4.5.1 Benchmark Instances 177

4.5.2 Analysis of Pricing Problem Solution Methods 177

4.5.3 Comparison with State-of-the-Art 179

4.5.4 Computational Analysis of B&P Algorithm 181

4.5.5 Analysis of Lower Bounds 184

4.6 Conclusions 185

Appendix 190

4.A Acceleration Strategies for Pricing Problem Solution 190

4.B Algorithm Design Choices 192

4.C Modification of Item-based SPPRC Graph for Branching . . . 193

4.D Benchmark Instances00, 194

4.E Comparison of Completion Bounds 195

4.F Detailed CG Process for Selected Instances 198

4.G Influence of Instance Characteristics on B&P Algorithm . . . 200

4.H Influence of Additional UBs on B&P Algorithm 205

4.1 Instances Not Satisfying IRUP 207

5 Conclusion 211

Bibliography 213

List of Papers

o Julia Wahlen' and Timo Gschwind® (2023). Branch-Price-and-Cut-Based
Solution of Order Batching Problems. Transportation Science 57(3), 756-777.

o Julia Wahlen (2024). Solving the Multi-Block Order Batching Problem
with Branch-Price-and-Cut. Technical Report L-2024-03, Chair of Logistics,
School of Business and Economics, University of Kaiserslautern-Landau,
Kaiserslautern, Germany. Submitted to Furopean Journal of Operational
Research.

o Julia Wahlen and Timo Gschwind (Forthcoming). Branch-and-Price for the
Set-Union Bin Packing Problem. INFORMS Journal on Computing.

!Chair of Logistics, School of Business and Economics, University of Kaiserslautern-Landau,
Gottlieb-Daimler-Strafie, 67663 Kaiserslautern, Germany

vi

List of Figures

2.1

2.2

2.3

24

2.5

2.6
2.7

3.1
3.2

3.3

3.4

3.5
4.1

4.2

4.3

4.4

Rectangular parallel-aisles single-block warehouse layout of the stan-

dard OBP 15
SPPRC representation of the pricing problem: linear directed multi-
graph for the example in Figure 2.1 and dual prices 7, 18
Exemplary pricing procedure with labels and completion bounds for
OBP instance of Figure 2.1 21

SPPRC representation of the pricing problem for the example in-
stance of Figure 2.3 and Ryan-and-Foster branching decisions {1, 2}*,

2,3V and {4,5} . .. 30
Performance profiles of different variants of our BPC algorithm for
the H&W instances (left) and the M&0 instances (right) 34

Picker routes for batch b = {2,4,5} and different routing strategies 50
Picker routes for both interpretations of the composite strategy and
batches by = {6} (in blue) and by = {6, 7} (in red), ¢, = 48, ¢, = 46 54

Rectangular parallel-aisles three-block warehouse layout 118
Picking routes for batch b = {1,2,3,4,5} and different routing
strategieso Lo 121
Picking routes for the traditional definitions of traversal and com-
bined and batches by = {2} (blue) and by = {2,3} (red) 125
Picking routes for the largest gap strategy and batches by = {1}
(blue) and by = {1,4} (red) 125
Warehouse layout of Foodmart instances 144
Example solution of a unit-weight SUBP instance with four items

I ={iy,...,i4} requiring elements E;, = {eq,e5}, Ey, = {e1}, Eiy =

{ea,eq}, By ={es,eqt,and Q=3o 164
Linear directed multigraph G of the item-based SPPRC representa-
tion of the pricing problem 169
Example representation for the determination of bound By (L) for a
label L at vertex io 173
Linear directed multigraph G of the element-based SPPRC repre-
sentation of the pricing problem 174

vii

List of Figures viii

4.5

4.6

4.7

4.8

4.9

Computation time per pricing iteration with (gray) and without

(blue) greedy heuristic for an exemplary instance 180
Modified linear directed multigraph G with Ryan-and-Foster sepa-
rate branching decisions {1,142} and {ig, iz} L. 195

Computation time per pricing iteration with (gray) and without
(blue) heuristic for the second instance with @ = 15,m = 20,n = 70 198
Computation time per pricing iteration with (gray) and without
(blue) heuristic for the fifth instance with @ = 20, m = 35, n =50 . 198
Computation time per pricing iteration with (gray) and without
(blue) heuristic for the third instance with @ = 25, m = 50, n =50 199

4.10 Computation time per pricing iteration with (gray) and without

(blue) heuristic for the fifth instance with @) = 35, m =40, n =85 . 199

4.11 Computation time per pricing iteration with (gray) and without

(blue) heuristic for the fifth instance with @ = 50, m = 55, n = 60 . 200

List of Tables

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11
2.12
2.13
2.14
2.15
2.16
2.17

2.18

2.19

Overview of exact solution approaches to the OBP
Summary results for different variants of our BPC algorithm
Comparison of our BPC algorithm with the approach of Muter and
Oncan (2015) for routing strategies traversal, return and midpoint
on the M&0 instances
Summary results of our BPC algorithm for the M&0 and H&W in-
stances and all routing strategies
Detailed results of our BPC algorithm for the M&0 and H&W instances
and routing strategies traversal and optimal
Comparison of our BPC-based heuristics SC-2 and BPC-DF-2 with
the ALNS/TS of Zulj et al. (2018) for the largest gap strategy on a
subset of the H&W instances
Comparison of our BPC-based heuristics SC-2 and BPC-DF-2 with
the ALNS/TS of Zulj et al. (2018) for the traversal strategy on a
subset of the H&W instances
Comparison of our BPC-based heuristics SC-2 and BPC-DF-2 with
the ALNS/TS of Zulj et al. (2018) for the traversal strategy on the
large-scale ZKS instances L
Summary results of our BPC-based heuristics with different time
limits
Percentage increase in total traveled distances compared to the op-
timal routing strategyo
Summary results of our BPC algorithm for the M&0 instances
Summary results of our BPC algorithm for the H&W instances
Summary results of our BPC algorithm for the ZKS instances
Summary results of our BPC algorithm for the M&0-ext instances .
Summary results of our BPC algorithm for the W&G-g instances
Summary results of our BPC algorithm for the W&G-u instances
Detailed results of our BPC algorithm for the M&0 instances and the
traversal strategy L
Detailed results of our BPC algorithm for the M&0 instances and the
return strategyo oL
Detailed results of our BPC algorithm for the M&0 instances and the
midpoint strategyo

ix

33

35

36

37

38

39

39

39

41
o8
59
60
60
61
62

List of Tables X

2.20 Detailed results of our BPC algorithm for the M&0 instances and the
largest gap strategyo 66

2.21 Detailed results of our BPC algorithm for the M&0 instances and the
combined strategyo 67

2.22 Detailed results of our BPC algorithm for the M&0 instances and the
optimal strategyo 68

2.23 Detailed results of our BPC algorithm for the H&W instances and the
traversal strategyo 69

2.24 Detailed results of our BPC algorithm for the H&W instances and the
return strategy Lo 70

2.25 Detailed results of our BPC algorithm for the H&W instances and the
midpoint strategyo 71

2.26 Detailed results of our BPC algorithm for the H&W instances and the
largest gap strategyo 72

2.27 Detailed results of our BPC algorithm for the H&W instances and the
combined strategy Lo 73

2.28 Detailed results of our BPC algorithm for the H&W instances and the
optimal strategy 74

2.29 Detailed results of our BPC algorithm for the ZKS instances and the
traversal strategyo L 75

2.30 Detailed results of our BPC algorithm for the ZKS instances and the
return strategy Lo 75

2.31 Detailed results of our BPC algorithm for the ZKS instances and the
midpoint strategyo 75

2.32 Detailed results of our BPC algorithm for the ZKS instances and the
largest gap strategy 76

2.33 Detailed results of our BPC algorithm for the ZKS instances and the
combined strategyo 76

2.34 Detailed results of our BPC algorithm for the ZKS instances and the
optimal strategy 76

2.35 Detailed results of our BPC algorithm for the M&0-ext instances
and the traversal strategy 0L 7

2.36 Detailed results of our BPC algorithm for the M&0-ext instances
and the return strategy 78

2.37 Detailed results of our BPC algorithm for the M&0-ext instances
and the midpoint strategy 79

2.38 Detailed results of our BPC algorithm for the M&0-ext instances
and the largest gap strategy 0oL 80

2.39 Detailed results of our BPC algorithm for the M&0-ext instances
and the combined strategy 81

List of Tables xi

2.40 Detailed results of our BPC algorithm for the M&0-ext instances
and the optimal strategy00 82

2.41 Detailed results of our BPC algorithm for the W&G-g instances and
the traversal strategy oo 83

2.42 Detailed results of our BPC algorithm for the W&G-g instances and
the return strategy oL 84

2.43 Detailed results of our BPC algorithm for the W&G-g instances and
the midpoint strategyo 85

2.44 Detailed results of our BPC algorithm for the W&G-g instances and
the largest gap strategy L. 86

2.45 Detailed results of our BPC algorithm for the W&G-g instances and
the combined strategy 87

2.46 Detailed results of our BPC algorithm for the W&G-g instances and
the optimal strategy oo 88

2.47 Detailed results of our BPC algorithm for the W&G-u instances and
the traversal strategy oL 89

2.48 Detailed results of our BPC algorithm for the W&G-u instances and
the return strategyo 90

2.49 Detailed results of our BPC algorithm for the W&G-u instances and
the midpoint strategy oo 91

2.50 Detailed results of our BPC algorithm for the W&G-u instances and
the largest gap strategy L 92

2.51 Detailed results of our BPC algorithm for the W&G-u instances and
the combined strategy Lo 93

2.52 Detailed results of our BPC algorithm for the W&G-u instances and
the optimal strategy o 94
2.53 Comparison of the BPC-based heuristics on the M&0 instances 95
2.54 Comparison of the BPC-based heuristics on the H&W instances 96
2.55 Comparison of the BPC-based heuristics on the ZKS instances 97
2.56 Comparison of the BPC-based heuristics on the M&0-ext instances . 99
2.57 Comparison of the BPC-based heuristics on the W&G-g instances . . 100
2.58 Comparison of the BPC-based heuristics on the W&G-u instances . . 101

2.59 Percentage increase in total traveled distances compared to the op-
timal strategy for the M&0 instances 102

2.60 Percentage increase in total traveled distances compared to the op-
timal strategy for the H&W UDD instances 103

2.61 Percentage increase in total traveled distances compared to the op-
timal strategy for the H&W CBD instances 104

2.62 Percentage increase in total traveled distances compared to the op-
timal strategy for the ZKS instances 105

List of Tables xii

3.1 Overview of exact and heuristic solution approaches to the multi-
block OBP 111
3.2 Comparison of our BPC algorithm with the B&C approach of Valle
et al. (2017) for the optimal routing strategy on a subset of the
Foodmart instances 129
3.3 Comparison of our BPC algorithm with the B&C approach of Zhang
and Gao (2023) for the optimal routing strategy on a modified subset

of the Foodmart instances 129
3.4 Summary results of our BPC algorithm for the Foodmart instances

and the optimal routing strategy 130
3.5 Summary results of our BPC algorithm for the Scholz&Wascher

instances and the optimal routing strategy 131
3.6 Summary results of our BPC algorithm for the Foodmart and the

Scholz&Wascher instances and all routing strategies 133

3.7 Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wascher instances and the routing strategies optimal and
combinedo 134

3.8 Comparison of our heuristics BPC-DF and SC with the DAA of
Valle and Beasley (2020) and the CGH of Briant et al. (2020) for a
subset of the Foodmart instances and the optimal routing strategy . 135

3.9 Comparison of our heuristics BPC-DF and SC for the routing strate-
gies optimal and combined with the DAA of Valle and Beasley
(2020) on a subset of large Foodmart instances 136

3.10 Summary results of our heuristics BPC-DF and SC for a subset of
large Foodmart instances and combined routing with different time
limitso 137

3.11 Comparison of our heuristics BPC-DF and SC for the combined
routing strategy with the CGH of Briant et al. (2020) for very large
Foodmart instances oo 137

3.12 List of feasible states of the Foodmart instances 145

3.13 Comparison of our BPC algorithm with the B&C approach of Valle
et al. (2017) on a subset of the Foodmart instances for the optimal
routing strategy Lo 147

3.14 Comparison of our BPC algorithm with the approach of Zhang and
Gao (2023) on a subset of the modified Foodmart instances for the
optimal routing strategyo 148

3.15 Comparison of our heuristics BPC-DF and SC for the optimal rout-
ing strategy to the heuristic approaches of Valle and Beasley (2020)
and Briant et al. (2020) on a subset of the Foodmart instances . . . 149

List of Tables xiii

3.16 Comparison of our heuristics BPC-DF and SC for the routing strate-
gies optimal and combined to the heuristic approaches of Valle and

Beasley (2020) on a subset of large Foodmart instances 150
3.17 Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wascher instances and the routing strategy optimal 151
3.18 Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wascher instances and the routing strategy no-reversal . . 152
3.19 Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wascher instances and the routing strategy aisle-by-aisle . . 153
3.20 Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wascher instances and the routing strategy combined . . . 154
3.21 Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wascher instances and the routing strategy traversal 155
3.22 Summary results of our BPC-based heuristics for the Foodmart in-
stances and all routing strategies 156

4.1 Summary results for pricing variants of our B&P for pagination

instances e 178
4.2 Comparison of our B&P with the IPs ARF and SF-LEX-I of Jans

and Desrosiers (2013) 181
4.3 Detailed results of our B&P algorithm 183
4.4 B&P results for different amounts of memory allowed 184
4.5 Analysis of IRUP and MIRUP 185
4.6 Summary results for different completion bounds of our B&P for

paginationinstanceso 197
4.7 Summary results of our B&P aggregated by number of elements . . 202
4.8 Summary results of our B&P aggregated by capacity 203
4.9 Summary results of our B&P aggregated by average frequency . . . 203

4.10 Summary results of our B&P aggregated by average cardinality . . 204

4.11 Summary results of our B&P aggregated by average number of items
perbin 204

4.12 Summary results of our B&P incorporating different UBs 206

Chapter 1

Introduction

In the context of rapid industrial advancement and evolving market demands,
warehousing operations and flexible manufacturing systems have become essen-
tial components of modern supply chains (Gu et al. 2007, Ghiani et al. 2013).
These systems play a critical role in the production, storage, and distribution of
goods, thereby maintaining operational continuity and enhancing competitive ad-
vantage (de Koster et al. 2007). Addressing these challenges requires sophisticated
decision-making tools capable of optimizing multifaceted problems under practical
constraints.

Combinatorial optimization, a specialized branch of mathematical optimization,
provides a powerful framework for tackling such problems. It focuses on identifying
optimal solutions within finite, yet often exponentially large, sets of feasible candi-
dates. This field is integral to discrete decision-making tasks, such as minimizing
costs or maximizing profits, under predefined constraints (Korte and Vygen 2018).
Beyond warehousing and manufacturing, combinatorial optimization addresses di-
verse applications in logistics, including transportation and routing, location and
network design, assignment and scheduling, as well as cutting and packing. For-
mally, these problems are often modeled using integer linear programming (IP).
While combinatorial algorithms have proven effective for solving many such prob-
lems to optimality (e.g., Irnich et al. 2014, Delorme and lori 2020, Kellerer et al.
2004), the N P-hard nature of many problems makes exact solutions computa-
tionally challenging (Garey and Johnson 1979). Consequently, developing effective
exact methods remains an essential research area, not only for their theoretical
value but also as a foundation for heuristics that enable faster, reliable solving of
large-scale instances.

This thesis focuses on the exact solution of two combinatorial optimization prob-
lems that originate from warehouse operations and flexible manufacturing systems.
Section 1.1 provides an overview of the exact solution methods employed in this
research. The specific problems studied are detailed in Section 1.2. Section 1.3
summarizes the contributions and outlines the structure of the thesis.

Chapter 1. Introduction 2

1.1 Exact Solution Methods

Fundamental exact approaches to combinatorial optimization problems include
branch-and-bound (B&B) and branch-and-cut (B&C) methods. The idea of B&B is
to systematically explore the solution space, using bounds to prune large portions of
the space, and branching strategies to ensure integer feasible solutions (Dakin 1965,
Nemhauser and Wolsey 2014). Branching decisions in IP can be made not only
based on the values of individual variables but also on subsets of variables or specific
properties that those variables exhibit (e.g., Ryan and Foster 1981). However, the
branching rules employed must guarantee the exploration of the entire solution
space in such a way that integer solutions are always eventually found, provided
the problem is feasible. The B&C method dynamically integrates valid inequalities
(cuts) to the B&B approach (Padberg and Rinaldi 1988). These cuts are designed
to eliminate fractional solutions in the relaxed linear program, thereby improving
the quality of the relaxation. Notable examples of these include Chvatal-Gomory
cuts, which are general and applicable to all IP problems (Chvéatal 1973, Gomory
1963). In contrast, specialized cuts, such as capacity cuts, are tailored to specific
problem types (Lysgaard et al. 2004, Baldacci et al. 2008). Violated constraints
are identified through a separation procedure, which detects and incorporates the
necessary cuts.

A specialized technique applicable to large-scale combinatorial optimization prob-
lems involves column generation (CG). This method is particularly effective for
solving linear programming relaxations of problems formulated with a large num-
ber of variables, such as those modeled through set-partitioning (Desrosiers et al.
2024). Notably, large-scale models often emerge from the decomposition of a com-
pact formulation, as introduced by Dantzig and Wolfe (1960). The core idea of
CG is to decompose the problem into a master problem and a pricing problem
(Gilmore and Gomory 1961). The master problem is solved with a restricted set of
variables, whereas the pricing problem generates new, potentially valuable columns
(variables) to be added to the master problem. This iterative process continues
until no further improving columns exist. The characteristics and complexity of
the pricing problem are closely tied to the underlying combinatorial structure of
the problem. For example, in packing or cutting problems, the pricing problem
can commonly be formulated as a binary knapsack problem or a variant thereof
(Martello and Toth 1990, Kellerer et al. 2004), both of which are N'P -hard (Garey
and Johnson 1979). In routing problems, it often reduces to the shortest path prob-
lem with resource constraints (SPPRC, Irnich and Desaulniers 2005), which is also
N P-hard (Dror 1994). Effectively solving the pricing problem is crucial to the
overall performance of the CG approach. As highlighted by Irnich and Desaulniers
(2005), dynamic programming (DP)-based labeling algorithms (e.g., Dijkstra 1959,
Ahuja et al. 1995) serve as a primary method to address the SPPRC. To enhance

Chapter 1. Introduction 3

the computational efficiency of these algorithms, specialized label elimination tech-
niques, such as dominance rules and completion bounds, are commonly applied.
These techniques help reducing the search space by discarding labels that cannot
contribute to an optimal solution of the SPPRC pricing problem. Additionally, in-
corporating heuristic pricing methods offers a complementary strategy to further
accelerate the solution process.

The integration of CG into B&B frameworks has led to the development of
branch-and-price (B&P) algorithms, where CG is applied at each node of the B&B
tree. This combination significantly enhances the ability to solve large instances
exactly by maintaining a manageable number of active variables throughout the
optimization process (Desrosiers et al. 2024). Branch-price-and-cut (BPC) algo-
rithms build upon this concept by incorporating valid inequalities to tighten the
formulation, thereby further reducing the solution space. However, both cutting
and branching decisions can impact the structure of the pricing problem and must
be carefully accounted for in the CG method. Essentially, CG-based exact so-
lution approaches, such as B&P and BPC, are not plug-and-play solvers; their
effectiveness hinges on a thorough understanding of the specific problem structure.

1.2 Considered Problems

The first problem addressed in this thesis is the order batching problem (OBP) in
warehousing. It involves designing a set of picking batches given a set of customer
orders, each containing one or more individual items to be picked. The objective is
to minimize the total distance traveled by the pickers in the warehouse, ensuring
that each customer order is assigned to exactly one batch while all batches adhere
to the capacity restrictions of the pickers (Wéscher 2004). To collect the items
of a batch, a picker traverses the warehouse according to a predefined routing
strategy. If the optimal routing strategy is employed — entailing the determination
of the minimum distance tour for each batch — the OBP becomes equivalent to the
soft-clustered vehicle routing problem, a variant of the prominent wvehicle routing
problem, tailored to a warehouse environment (Aerts et al. 2021). Alternatively,
heuristic picker routing strategies can be used to simplify navigating, particularly
for human pickers (de Koster et al. 1999b).

Each item is assigned a unique storage location within a rectangular warehouse
with parallel aisles. A warehouse with two cross aisles, located at the front and back
of the picking aisles, is classified as a standard single-block warehouse. In contrast,
a multi-block warehouse includes three or more cross aisles, dividing the warehouse
into distinct blocks. Given the differing characteristics of these configurations and
the distinct routing strategies proposed for single-block and multi-block environ-
ments, this work addresses the single-block OBP and multi-block OBP separately.

Chapter 1. Introduction 4

The second optimization problem explored in this thesis is the set-union bin
packing problem (SUBP), which has numerous practical applications. One notable
example is the tool switching instants problem in flexible manufacturing systems
(e.g., Konak et al. 2008). In these systems, each job requires a specific set of tools
to be loaded into a machine, with each machine having its own tool magazine. The
capacity of these magazines is typically insufficient to store all the tools needed
for every job, resulting in machine stops to switch tools. The objective is to mini-
mize the number of these machine stops, thereby improving production efficiency.
Similarly, the job grouping problem involves the objective of assigning all jobs to
machines such that the number of identical machines required is minimized (e.g.,
Tang and Denardo 1988).

The SUBP extends the well-known bin packing problem (BP) to model the un-
derlying optimization problem associated with these applications. In the SUBP,
a set of items is given, each requiring a specific subset of weighted elements. The
objective is to allocate all items into the minimum number of bins such that the
total weight of all elements needed by the items in a bin does not exceed the
bin’s capacity. In contrast to the classical BP, the SUBP allows for reduced total
capacity usage in a bin whenever items share overlapping element requirements.

1.3 Contributions and Outline

The primary goal of this thesis is to contribute to the development and analysis
of new exact solution approaches for the OBP, both in single- and multi-block
warehouse configurations, and for the SUBP. Specifically, it introduces novel CG-
based algorithms designed to address combinatorial optimization problems with
complex cost structures, thereby advancing the understanding and applicability of
CG techniques in the context of non-linear objective functions. The work presented
in Chapters 24 consists of three articles, each of which has either been published
in or is currently under review at a scientific journal. In the following, we outline
the structure of the thesis and detail the contributions of each chapter.

Chapter 2 introduces the first BPC approach developed for the OBP with general
weights. It targets the single-block OBP, employing various routing strategies
including traversal, return, midpoint, largest gap, combined, and optimal. The
CG pricing problem is formulated as an SPPRC on a linear directed multigraph.
The proposed DP labeling algorithm incorporates strong completion bounds and
is designed to heuristically terminate early, thereby accelerating computation. The
BPC algorithm integrates subset-row cuts and capacity cuts, with three different
separation techniques developed for the latter. A two-stage branching scheme,
including Ryan-and-Foster branching, is implemented. The DP labeling approach
accounts for both non-robust cuts and branching decisions. In addition, leveraging

Chapter 1. Introduction)

the powerful CG component, two BPC-based heuristic methods are introduced
for the OBP. Computational experiments demonstrate that the proposed exact
BPC approach substantially outperforms existing state-of-the-art exact solution
methods. Moreover, the heuristics show significant improvements in gap quality
compared to current leading heuristic approaches for the single-block OBP.
Chapter 3 addresses the multi-block OBP by extending the BPC approach in-
troduced in Chapter 2, incorporating suitable picker routing strategies. This work
pioneers the application of a BPC method to the multi-block OBP and is the first
to provide an exact solution approach for heuristic routing strategies to this prob-
lem. A key contribution of this study is the comprehensive examination of the
monotonicity properties of the multi-block routing strategies optimal, no-reversal,
aisle-by-aisle, traversal, combined, and largest gap. This analysis is pivotal for the
application of the BPC algorithm. Computational experiments further confirm
the efficiency of the BPC-based approaches, showcasing their superior performance
over both exact and heuristic state-of-the-art methods for the multi-block OBP.
Chapter 4 presents the first B&P approach for the SUBP. The corresponding
CG pricing problem, which is a set-union knapsack problem, is formulated in three
alternative ways: an IP, an item-based SPPRC, and an element-based SPPRC.
Both SPPRC formulations are addressed using DP labeling algorithms that forgo
dominance rules but incorporate sophisticated completion bounds. Additionally,
a greedy pricing heuristic is developed, significantly reducing the overall compu-
tational effort. The most effective pricing strategy identified combines the initial
greedy heuristic with the item-based labeling algorithm, which is also compatible
with the Ryan-and-Foster branching technique. The proposed B&P approach by
far outperforms current state-of-the-art IP formulations and improves the best-
known solutions for more than half of the considered benchmark instances.
Chapter 5 provides a summary of the findings and concludes the thesis.

Chapter 2

Branch-Price-and-Cut-Based
Solution of Order Batching
Problems

Julia Wahlen and Timo Gschwind

Abstract

Given a set of customer orders each comprising one or more individual items to
be picked, the order batching problem (OBP) in warehousing consists of designing
a set of picking batches such that each customer order is assigned to exactly one
batch, all batches satisfy the capacity restriction of the pickers, and the total dis-
tance traveled by the pickers is minimal. In order to collect the items of a batch,
the pickers traverse the warehouse using a predefined routing strategy. We propose
a branch-price-and-cut (BPC) algorithm for the exact solution of the OBP inves-
tigating the routing strategies traversal, return, midpoint, largest gap, combined,
and optimal. The column generation pricing problem is modeled as a shortest
path problem with resource constraints (SPPRC) which can be adapted to handle
the implications from non-robust valid inequalities and branching decisions. The
SPPRC pricing problem is solved by means of an effective labeling algorithm that
relies on strong completion bounds. Capacity cuts and subset-row cuts are used
to strengthen the lower bounds. Furthermore, we derive two BPC-based heuristics
to identify high-quality solutions in short computation times. Extensive computa-
tional results demonstrate the effectiveness of the proposed methods. The BPC is
faster by two orders of magnitude compared to the state-of-the-art exact approach
and can solve to optimality hundreds of instances that were previously unsolved.
The BPC-based heuristics are able to significantly improve the gaps reported for
the state-of-the-art heuristic and provide hundreds of new best-known solutions.

Chapter 2. BPC-based Solution of the OBP 7

2.1 Introduction

Warehousing is an essential part of a supply chain and involves receiving, storing,
picking, packing and shipping operations. It makes up about 20-25% of overall
logistics costs (Establish Inc. 2013). With a growing trend of online shopping and
e-commerce, the importance of efficient warehousing processes is likely to further
increase. The performance of warehouse operations is impacted to a large extend by
decisions regarding warehouse layout and technology, zoning, storage assignment,
and order picking. For a more detailed overview, we refer to the extensive surveys
(de Koster et al. 2007, Gu et al. 2010, Boysen et al. 2019).

In many warehouses, order picking, i.e., the process of retrieving articles from
their storage locations according to customer orders, is still done manually because
unlike automated systems humans can adapt to changes in real time (Grosse et al.
2014). Michel (2016), e.g., report that automated parts-to-picker systems are
used in less than 10% of the warehouses. In Western Europe, so-called low-level
picker-to-parts warehouses are predominant and account for the vast majority of
all warehouses (de Koster et al. 2007, Marchet et al. 2015) while the number of
fully automated warehouses is estimated to be only about 40 (Azadeh et al. 2019).
Low-level picker-to-parts warehouses describe systems in which items are stored in
shelves less than two meters high, and the pickers walk or ride along the aisles to
collect the items specified on a picking list (Caron et al. 2000). In particular in these
types of warehouses, order picking is highly labor-intensive and constitutes one of
the most cost-intensive operations in warehousing, accounting for more than 50%
of the total operating costs (Frazelle 2001, Tompkins et al. 2010, Richards 2017).

Within the order-picking process, the traveling of the pickers is a crucial activity
being the main factor responsible for the overall picking time (accounting for up
to 50%). The other activities’ times are either considered constant, e.g., searching
and picking time, or negligible, e.g., setup time (de Koster et al. 1999a, Tompkins
et al. 2010). Assuming that the speed of the pickers is constant, minimizing the
travel time is equivalent to minimizing the length of all order picking routes.

On an operational level, the order picking process is significantly influenced
by picker route planning and order batching (de Koster et al. 2007). Given a
warehouse layout, storage locations of all items, and a list of items to pick, picker
route planning, or short picker routing, describes the problem of how a single picker
should move through the warehouse to collect all items on the picking list while
minimizing the distance traveled. In their seminal work, Ratliff and Rosenthal
(1983) proposed a dynamic programming (DP) algorithm that exactly solves the
picker routing problem in a single-block warehouse with parallel aisles and whose
complexity is linear in the sum of the number of aisles and the number of picking
positions (HeBler and Irnich 2022b). Besides an optimal picker routing, several
heuristic picker routing strategies have been proposed in the literature, including

Chapter 2. BPC-based Solution of the OBP 8

traversal (or s-shape) (Goetschalckx and Ratliff 1988), return, midpoint, largest
gap (Hall 1993), composite (Petersen 1995), combined (Roodbergen 2001), and
mixed (Bahgeci and Oncan 2022). Such simple, rule-based strategies are often
encountered in practice, because they are typically more intuitive for the pickers
and may exhibit less risk of in-aisle congestion than an optimal routing (de Koster
et al. 1999b). More recent works on picker routing have generalized these routing
strategies (we include optimal routing in this term) to different warehouse layouts
(e.g., Roodbergen and de Koster 2001b, Celik and Stral 2014, Pansart et al. 2018)
or other features like scattered storage and a decoupling of picker and cart (Goeke
and Schneider 2021).

Order batching is relevant whenever a batch picking strategy is pursued to fulfill
customer orders. Batch picking is one of the two basic order picking methods in
picker-to-parts warehouses, the other being single order picking (Petersen and Aase
2004). As opposed to single order picking where pickers collect one order at a time,
batch picking (or multi-order picking) allows pickers to fulfill multiple customer
orders that are combined into a picking batch in a single picking route. Typically,
customer orders should not be split and collected in different picking routes, as
splitting might lead to an unreasonable sorting effort. While single order picking
is the most common order picking method, batch picking has been shown to reduce
total picking times significantly (de Koster et al. 1999b) by decreasing the total
travel distance of pickers not only through reducing the number of trips but also
by shortening the length of each trip (Hong et al. 2012). The task of profitably
combining individual customer orders into picking batches is formalized by the
order batching problem (OBP). Given a warehouse layout, storage locations of all
items, and a set of customer orders each comprising one or more individual items,
the OBP consists of designing a set of picking batches such that each customer order
is assigned to exactly one batch, all batches satisfy the capacity restriction of the
pickers, and the total distance traveled by the pickers is minimal. In order to collect
the items of a batch, pickers traverse the warehouse using a predefined routing
strategy. For the optimal routing strategy, this gives rise to an integrated planning
problem coined the joint order batching and picker routing problem (JOBPRP,
Valle et al. 2016).

In this paper, we focus on the exact solution of the OBP in a rectangular single-
block parallel-aisles warehouse. We refer to this setup as the standard OBP. As
routing strategies, we consider traversal, return, midpoint, largest gap, combined,
and optimal. Computationally, the OBP is a challenging problem. On the the-
oretical side, it has been shown to be A P-hard when the number of orders per
batch is greater than two (Gademann and van de Velde 2005). On the practi-
cal side, a key difficulty for solution approaches to the OBP is the fact that the
travel distances of the batches are given by a function that is not separable in the

Chapter 2. BPC-based Solution of the OBP 9

comprised orders. This is true for all routing strategies that we investigate. Fea-
sibility of the batches, on the other hand, depends solely on a standard knapsack
constraint. The main contribution of this paper is the development of powerful
exact and heuristic solution procedures to the OBP. They are tested on several
sets of benchmark instances for all six considered routing strategies and are able
to significantly outperform the state-of-the-art exact and heuristic algorithms from
the literature.

2.1.1 Literature Review

For a general review of solution approaches to the OBP including construction
heuristics, metaheuristics, and exact algorithms, we refer to the extensive surveys
of de Koster et al. (2007) and Henn et al. (2012). An overview of more recent
heuristic approaches as well as related variants and extensions can be found in
(Zulj et al. 2018). In the following, we focus on the literature on exact solution
algorithms which is still limited, despite the high practical relevance of the OBP
and a growing interest in recent years.

Exact approaches to the OBP have been proposed by Gademann and van de
Velde (2005), Oncan (2015), Muter and Oncan (2015), Valle et al. (2016) and
Valle et al. (2017), and Bahgeci and Oncan (2022). Table 2.1 summarizes their
main characteristics, including our method.

Gademann and van de Velde (2005) consider a special case of the standard
OBP with optimal routing, in which all customer orders have unit weights. The
knapsack constraint of the batches, thus, reduces to a cardinality constraint (let
¢ be the maximum number of orders in a batch). They formulate the OBP as
a set-partitioning problem that is solved by means of a branch-and-price (B&P)
algorithm. The column generation (CG) pricing problem of their approach, which
consists of finding batches with negative reduced costs, is solved with a combinato-
rial branch-and-bound (B&B) algorithm. In each level of the B&B tree, they decide
on the inclusion of one additional order into a batch. Thus, the maximum level of
the B&B tree equals ¢. A simple lower bound estimating the maximum collectable
dual prices of the still undecided orders is used to prune unpromising B&B nodes.
The well-known Ryan-and-Foster branching rule is applied to guarantee integer
solutions. Problem instances with up to 32 orders and ¢ = 10 are solved to proven
optimality.

Oncan (2015) considers the standard OBP with routing strategies traversal,
midpoint and return. Besides an iterated local search metaheuristic, the author
derives three mized-integer programming (MIP) formulations each dedicated to
one of the three OBP variants specified by the respective routing strategy. The
MIPs are tested using a general-purpose MIP solver and three different classes of
instances including those from the benchmark by Henn and Wéscher (2012) which

Chapter 2. BPC-based Solution of the OBP 10

comprises instances with between 20 and 100 orders and a capacity between 30
and 75. Within a time limit of three hours, a small fraction of the smaller instances
of the benchmark are solved to optimality.

The standard OBP with the same three routing strategies traversal, midpoint
and return is also addressed by Muter and Oncan (2015). They propose a cut-
and-column generation approach with batch enumeration based on the same set-
partitioning formulation used by Gademann and van de Velde (2005). Their CG
pricing problem, however, involves a knapsack constraint instead of the simpler
cardinality constraint. For its solution, a DP labeling algorithm on a linear net-
work is proposed. Due to the non-separability of the travel-distance function, no
dominance relations between labels can be exploited. To eliminate unpromising
labels, they derive simple lower bounds generalizing the idea of Gademann and van
de Velde (2005) to the knapsack constraint: For each label, the LP relaxation of a
knapsack problem involving the yet undecided orders and their capacities and dual
prices is solved. To speed-up the CG process, a column pool comprising promis-
ing batches of previous pricing iterations is maintained and checked for negative
reduced-cost batches before calling the computationally expensive labeling algo-
rithm in each pricing iteration. Subset-row cuts are employed to strengthen the
set-partitioning formulation. To reach optimal integer solutions, Muter and Oncan
(2015) rely on a technique proposed by Baldacci et al. (2011) for vehicle routing
problems. Using upper bounds from the iterated local search of Oncan (2015),
they try to enumerate all batches with reduced costs smaller than the optimality
gap and solve the resulting reduced set-partitioning problem over all these batches
using a general-purpose MIP solver. They test their approach on a newly generated
testbed comprising instances with 20 to 100 orders and capacities 24, 36, and 48.
They are able to solve most of the smaller and some of the larger instances with
capacity 24, and very few of the smallest instances with capacity 36 and 48.

Valle et al. (2016) propose three MIP formulations for an OBP with optimal
routing in a rectangular parallel-aisles warehouse with multiple blocks divided by
cross aisles. They propose three MIP formulations, one with exponentially many
generalized subtour breaking constraints, the other two being compact formula-
tions based on network flows. The former is solved by a branch-and-cut (B&C)
algorithm, the latter two by a general-purpose MIP solver. In (Valle et al. 2017),
the same authors improve their B&C algorithm for the non-compact formulation
by introducing several families of valid inequalities based on a graph representation
of the warehouse. With their improved B&C algorithm, instances for a two-block
warehouse with up to 20 orders and a picking capacity of 40 can be solved opti-
mally.

The recent work of Bahceci and Oncan (2022) considers the standard OBP and
proposes dedicated MIP formulations for composite, largest gap, optimal, and

Chapter 2. BPC-based Solution of the OBP 11

the newly introduced mixed routing strategies. To evaluate the routing strategies
and different storage assignment policies, they generate a new set of very small
instances with eight and 12 orders and a picking capacity between five and 30. A
general-purpose MIP solver is used to solve the proposed MIPs and the MIPs of
Oncan (2015) for routing strategies traversal, return, and midpoint for the new
instances.

Aerts et al. (2021) show that the JOBPRP can be modeled as a soft-clustered
vehicle routing problem (SoftCluVRP), a variant of the well-known vehicle routing
problem in which customers are grouped into clusters. Any exact approach to
the SoftCluVRP (e.g., Hintsch and Irnich 2020, Hefler and Irnich 2021) can in
principle be used to solve the JOBPRP. On the downside, these approaches do not
account for the warehouse layout.

2.1.2 Contributions

The main contribution of this paper is the development of a powerful and flex-
ible exact solution approach to the OBP. Furthermore, we derive two effective
heuristics based on the exact algorithm. Extensive computational experiments
demonstrate the competitiveness of the proposed methods. We elaborate on the
main contributions in the following.

The proposed exact approach is, to the best of our knowledge, the first full-
fledged BPC algorithm for the OBP with general weights. While the focus of this
paper is on the standard OBP and routing strategies traversal, return, midpoint,
largest gap, combined, and optimal, the proposed BPC is much more generic.
Indeed, it can directly be applied to any warehouse layout and routing strategy,
or to other features like scattered storage or decoupling of picker and picking cart
as long as (i) a method for solving the corresponding picker routing problem for a
given batch is available and (ii) the travel distances of the picker routes are given
by a function that is monotone in the orders to be picked.

Our BPC algorithm is based on the same set-partitioning formulation that has
been used for tackling the OBP (Gademann and van de Velde 2005, Muter and
Oncan 2015) and related problems like vehicle routing or bin packing with CG-
based methods like BPC. However, BPC is not an out-of-the-box solver. Crucial for
its effectiveness are typically (i) the effective solution of the CG pricing problem
and (ii) good strategies to obtain integer solutions using cuts to strengthen the
formulation and suitable branching rules. All of these building blocks are highly
problem specific and constitute major developing issues in the design of a BPC
approach. The core components of the developed method are as follows.

o We model the CG pricing problem as a shortest path problem with resource
constraints (SPPRC), which provides the flexibility to also handle the impli-
cations from non-robust valid inequalities and branching decisions.

12

Chapter 2. BPC-based Solution of the OBP

¢T-9 :Apedes (009-00g :STOPIO WU ‘(QT0g) 1P 12 (M7 :S3Z

{22z Amoeded (0gg-6gT :siopio ‘wnu ‘1oded Sy} :HyM
'Sp-F¢ Ayoedes ‘(001-0] SI0pIo WU ‘(GT0g) Uedu() :Q

‘8- Lyoeded ‘OOT-0g :SI1OPI0 “WNU ‘(GTOF) WRIU() PUR IOMIN QBH
‘g2-0¢ :Kyeded ‘OOT-(g :sIOpIo WU ‘(g107) Hwﬂomm.\.(w pue uuoy :MBH

‘01-¢ Lyoeded ‘ge-GT :sIepIo "wmu ‘(100Z) JP 10 UURWODRN) HIH
‘0F :Ayoedeo ‘gg—g :s10pIo WNU ‘({)Qg) BIYL, ‘WPOOJ
(06— Ayoeded ‘g1-g SI0pI0 "WNU ‘(Zg(g) Weou() pue 1dyeq 03d

S9INYRSJ OTWYILIOI[Y

soanjeay Suryold pue 9snoypIRAA

SOTISLIMOY poseq-NJdg rewrydo
‘Suryoureiq uol)s ‘pourquIoo
SNZ ‘Suryouriq 1930 -pue-uUeAY ‘de8 1so3re[
‘DBM ‘SO moI-josqns ‘syno Ajoded “qurodprua
‘0%NH ‘Sumnid [erred SHSOM [RIOUSST ‘wImgol
‘MBH ‘Surpunoq yym J(J :[os ‘qoxd Sumorrd Ndg/mD ‘3[00[q-orsurts ‘TesioAeIy yoroxdde mQ
rewrydo
‘poxTux
SHYSTOM [RIOUSS ‘de3 3so31e[(z202)
0%d JOATOS JTIN ‘SDo[q-ordurts ‘oyrsodwiod wedu() pue 0dyey
INOAR[9SNOYPIRM UO POSe(SIND SHYSOM [RIOUDS
Wpooq ‘SIUTRIISUOD FUINRSI(Q INOJGNS POZI[RIdUT N3q Yoorq-omy rewrnydo (L10%) "I 79 o[[eA
IOAT0S JIIN PU® UOIIRISWINUS [o)eq qurodprua
‘syno mor-jesqus ‘[ood yojeq IOAT0S JTIN STS1om [eIoua3 ‘mmgel (¢102)
0BW ‘Surpunoq yym J(T :[os ‘qoid Sumord /s1mo /90 ‘3[00[q-ordurs ‘[eszoAeI} UROU() PUB IOININ
qurodprux
0 SIYSTOM [RIOUDS ‘wImgelx
‘MBH IOATOS JTIN ‘3[00[q-odurs ‘TesioAeIy (G10z) ueou()
Suryouel(q 19350 -pur-urAy SYSoMm run (2002) oPeA °p
HID ‘gaeg Terrojeurquiod :-jos ‘qoxd Sumtid dz9/90 ‘Yoo[q-orsuts [ewndo ueA puUeR UURWLPEL)
pueyg samjes] YY) yoevoxdde urey seInjeal YY) RIS SUMNOY A1y

Overview of exact solution approaches to the OBP

Table 2.1

Chapter 2. BPC-based Solution of the OBP 13

o We derive strong completion bounds that enable the effective solution of the
SPPRC with a labeling algorithm. These bounds are adapted to account
for the implications of cutting and branching decisions and to remain tight
deeper in the search tree of the BPC.

o We introduce a highly effective pricing heuristic based on the premature
termination of the labeling algorithm.

o We employ two families of non-robust valid inequalities: capacity cuts (CCs)
and subset-row cuts (SRCs). For the separation of CCs, which are particu-
larly effective in strengthening the lower bounds, two heuristics and a MIP
formulation are derived.

The proposed CG method is very effective in solving the LP relaxation of the
set-partitioning formulation of the OBP. Closing the gap and finding an optimal
integer solution is by far the most time consuming part of the BPC. We exploit
this fact and derive two very effective BPC-based heuristics for the OBP.

Finally, extensive computational experiments on three large sets of benchmark
instances from the literature and on newly created larger-sized instances are re-
ported:

o We provide an in-depth computational analysis of the BPC algorithm and
its components.

« Compared to the state-of-the-art exact solution approach of Muter and On-
can (2015), who only consider routing strategies traversal, return, and mid-
point, our approach is faster by about two orders of magnitude and provides
more than three times the number of proven optima. Our BPC is able to
solve 90% of the two benchmarks by Henn and Wéscher (2012) and Muter
and Oncan (2015). Only a small fraction of these instances has been solved
to proven optimality before.

o With both our heuristics, we are able to drastically improve on the gaps of the
state-of-the-art heuristic solution approach of Zulj et al. (2018), who consider
only routing strategies traversal and largest gap. We improve almost 2,000
out of the 2,720 best-known solutions (BKS) reported by Zulj et al. (2018),
and confirm all remaining BKS except for two instances.

o We provide managerial insights on the quality of the six considered routing
strategies when applying optimal order batching decisions.

2.1.3 Organization of the Paper

The remainder of the paper is structured as follows. Section 2.2 formally defines
the OBP, presents a set-partitioning formulation of the problem, and specifies the
warehouse layout and routing strategies that we consider. The details of our exact
BPC algorithm and the BPC-based heuristics are given in Section 2.3. Section 2.4
presents our computational results. Final conclusions are drawn in Section 2.5.

Chapter 2. BPC-based Solution of the OBP 14

2.2 Problem Description and Mathematical
Formulation

Problem Definition Let O = {1,...,n} be the set of customer orders. Each
order o € O comprises a set of individual items to be picked. A sufficiently large
number of pickers with an identical picking capacity @ is available to pick the
ordered items. The capacity consumption of an order o € O is q, > 0. The
capacity consumption of the individual items is not relevant, because splitting of
the orders is not allowed.

The OBP consists of grouping the customer orders into picking batches, i.e.,
subsets of the customer orders, such that each customer order is assigned to exactly
one batch, each batch satisfies the capacity of the pickers, and the total distance
traveled is minimal. Thereby, each batch is assigned to a single picker that walks
through the warehouse and collects all items of the orders assigned to that batch.
The distance traveled by the pickers depends on the warehouse layout, the storage
locations of the items as well as the routing strategy used to traverse the warehouse,
all of which are assumed to be fixed a priori.

Set-Partitioning Formulation To formulate the OBP as a set-partitioning
problem, let € be the set of all feasible batches. Binary parameters a,, indicate if
order o € O is contained in batch b € Q (a, = 1) or not (a, = 0). The distance
needed to pick all individual items of a batch b € €2 is given by ¢,. Note that the
distance function ¢, is not separable in the orders o € b (see Section 2.3.1). Finally,
let Ay be binary decision variables equal to one if batch b € € is selected and zero
otherwise. Then the OBP can be formulated as follows:

min Y e\ (2.1a)
beQ

s.t.Y aph =1 YoeO (2.1b)
beQ
X €40,1} VbeQ (2.1¢)

The Objective (2.1a) minimizes the total traveled distance while Constraints (2.1b)
ensure that all orders are picked exactly once.

Because the number of feasible batches || is generally too large, Formula-
tion (2.1) cannot be solved directly. Instead, we resort to a BPC algorithm whose
details are presented in Section 2.3.

Warehouse Layout, Storage Locations, and Routing Strategies The stan-
dard OBP considers a rectangular warehouse with parallel aisles of equal length
and width. A top view of the layout is illustrated in Figure 2.1. Cross aisles at the

Chapter 2. BPC-based Solution of the OBP 15

parallel picking aisles items to retrieve
s back cross aisle -~ 24—,
// : 3\ 3 \\
20 [[1s] |2 3] |l |3 1
I P R 51 Ll |,
5| |2 315] 5]
|| 4 2 x| » 4 |2 |
3 5h \ |
_ F\ /4 7 ‘o / //]
Depot v -7 front cross aisle N
racks storage locations

Figure 2.1: Rectangular parallel-aisles single-block warehouse layout of the stan-
dard OBP

front and at the back of the warehouse connect the parallel vertical picking aisles.
The picking aisles are two-sided, i.e., there are racks on the left and on the right
side of each aisle (from a top view). Each rack consists of several storage locations
depicted by the gray squares. Each storage location may contain several items,
but every item is assigned to a single storage location. The start and end of each
picker route is a common depot which is located in front of the leftmost vertical
aisle. The pickers can travel in both directions in all picking aisles and both cross
aisles. Turnarounds are allowed everywhere.

Figure 2.1 depicts an instance of the standard OBP with n = 5 orders each
comprising up to six individual items which are labeled with the number of the
corresponding order o € {1,...,5}. We assume that the pickers always travel in
the horizontal middle of the picking aisles and that the retrieval of the items is
performed from the vertical middle of a storage location without the need of a
horizontal movement. The length of the storage locations is ¢ = 1 so that the
length of the racks is L = 6. The horizontal distance between two picking aisles
is W = 3. To enter or leave any picking aisle from the front or back cross aisle, a
distance of a = 0.5 units has to be traveled.

The main routing strategies that have been considered for the parallel-aisles
single-block warehouse specified above are traversal, return, midpoint, largest gap,
composite, combined, and optimal. In Appendix 2.A, we provide a detailed descrip-
tion of each strategy to clarify our exact interpretation and to allow reproduction
of our results. A general trend for all routing strategies is that larger batches com-
prising more items to pick tend to cause longer picker routes. We formalize this
observation as a property of the routing strategy in the following definition.

Definition 2.1. A routing strategy is monotone, if the corresponding distance
function ¢, is monotone, i.e., if for any two feasible batches by C by it follows that

Chapter 2. BPC-based Solution of the OBP 16

Cb1 S Cb2.

While being monotone may also be a desirable property for a routing strategy
from a practical point of view, it certainly has important algorithmic implications.
If a monotone routing strategy is applied, partitioning constraints (2.1b) can be
replaced by the corresponding covering constraints in Formulation (2.1). This is
a common technique in CG-based approaches to (extended) set-partitioning prob-
lems, because the set-covering counterpart is typically easier to solve. Further-
more, monotonicity of the routing strategy is a requirement for the validity of our
bounding procedure to solve the CG pricing problem (see Section 2.3.1.3). The
following proposition shows that all mentioned routing strategies except composite
are monotone.

Proposition 2.1. The routing strategies return, midpoint, traversal, largest gap,
combined, mixed, and optimal are monotone.

The proof of Proposition 2.1 is provided in Appendix 2.B. A small counterex-
ample for the composite strategy is given in Appendix 2.C.

2.3 Branch-Price-and-Cut

A BPC algorithm is a B&B algorithm in which the lower bounds are computed by
CG and cuts are added dynamically to strengthen the linear relaxations. CG is
an iterative procedure that can tackle linear programs containing a huge number
of variables. The starting point of our BPC algorithm is the restricted master
problem (RMP) which is the linear relaxation of Formulation (2.1) defined over a
small subset €' C § of batches. The CG algorithm then alternates between the
reoptimization of the RMP and the solution of the pricing problem to dynamically
generate missing batches with negative reduced costs and add them to the RMP,
if any exist. If no negative reduced-cost batch exists, an optimal solution to the
current RMP is found. The corresponding lower bound can be strengthened by
adding valid inequalities. Branching is required to finally ensure integer solutions.
For details on CG and BPC, we refer to (Barnhart et al. 1998, Liibbecke and
Desrosiers 2005).

2.3.1 Pricing Problem

Let 7, be the dual price associated with Constraints (2.1b). The reduced cost of a
batch b is given by ¢, = ¢, — >, Mo The pricing problem consists of identifying
at least one feasible batch b € €2 with negative reduced cost or to guarantee that
no such batch exists.

Chapter 2. BPC-based Solution of the OBP 17

Recall that the distance function ¢, is a function that is not separable in the
orders of b, meaning that ¢, always depends on the entire set of orders in b and
cannot be calculated, e.g., as the sum or product of some individual values of the
comprised orders. Because ¢, is a non-separable function in the orders, the reduced
costs ¢, of the batches are also not separable in the orders, which constitutes a core
difficulty in designing effective solution approaches to the pricing problem. This is
particularly true for combinatorial algorithms that build batches in an incremental
fashion.

2.3.1.1 SPPRC Formulation of the Pricing Problem

The pricing problem is modeled as an SPPRC as follows. Let G = (V, A) be a linear
directed multigraph with n 4+ 1 vertices V' = {0,...,n} and 2n arcs A. Vertex 0
is an artificial source. Vertices 1,...,n correspond with the n customer orders
in any given sorting. For ease of notation, we assume throughout this section
that in the SPPRC graph the orders are sorted by their number, meaning that
vertex v € V' \ {0} corresponds with order o = v. For each vertex v € V' \ {0},
there are two parallel arcs a! and a? connecting vertices v — 1 and v and indicating
the inclusion or not, respectively, of order v. Each arc a® € A, k € {0,1} is
associated with a capacity consumption ¢¥, a dual price 7*, and a set of orders OF.
Accordingly, for arc a! we have ¢! = ¢,, 7} = 7, and O} = {v}, while for arc a°
we have ¢0 = 70 = 0 and OY = @. Associating sets of orders OF with the arcs
allows the simultaneous consideration of multiple orders which is needed for the
incorporation of branching decisions in the pricing (see Section 2.3.3).

Any wvg-v,-path (vo,afi,vl, o ,afﬁ,vp) in G defines a batch b = U, Off; It
is feasible, if Y°7_; ¢f" < Q. The reduced cost of batch b is ¢, — X5 mhi. The
solution of the pricing problem is equivalent to finding a capacity-feasible 0-n-
path in G with minimum reduced cost. Figure 2.2 illustrates the graph G for
the example OBP instance of Figure 2.1 and dual prices m,. There are two arcs
between each pair of consecutive vertices, indicating the inclusion (blue arc) or
not (gray arc) of the order associated with the respective head vertex. Consider
vertex v = 1. The ingoing blue arc (3,7, {1}) = a represents the inclusion of
the singleton order set O] = {1} into a batch and is associated with the order’s
capacity consumption of ¢; = 3 items and its dual price 7. The ingoing gray arc
(0,0,2) = a? corresponds with not including any order (0% = @) and therefore
@ =7"=0.

This SPPRC representation has also been used for pricing problems with a sim-
ilar knapsack-type structure (e.g., HeBler et al. 2018, Gschwind et al. 2019). The
main advantage of the SPPRC representation of the pricing problem is its flexibil-
ity: Slight modifications of the underlying graph G and/or the labeling algorithm

for its solution suffice to account for typical cutting and branching decisions of

Chapter 2. BPC-based Solution of the OBP 18

3 1, {1} 5 772,{2} 6 T3, {3} 2 , T4, {4} 6 775,{5}

(0,0, 2) (0,0,2) (0,0, 2) (0,0, 2) (0,0,2)

Figure 2.2: SPPRC representation of the pricing problem: linear directed multi-
graph for the example in Figure 2.1 and dual prices m,

BPC algorithms as detailed in Sections 2.3.2 and 2.3.3. Notice that the proposed
SPPRC is different from the pricing problem representation of Muter and Oncan
(2015).

2.3.1.2 Basic Labeling Algorithm

SPPRCs are typically solved with DP labeling algorithms (Irnich and Desaulniers
2005). In a labeling algorithm, partial paths are iteratively extended from a given
source to a given sink. The partial paths are implicitly represented by labels
storing the accumulated resource consumption along the paths. The propagation
of the labels along the network arcs is realized using so-called resource extension
functions (REFs). To avoid enumerating all feasible paths, dominance relations
between labels to eliminate provably non-optimal paths and bounding procedures
to discard unpromising paths that cannot reach a given objective value threshold
can be applied.

In the OBP, a partial path Pr = (0, a1, ... ,ak v) from the source 0 to some
vertex v is represented by a label E = (v(E),q(E),n(E),O(E),&(F)) storing its
last vertex v(E), its accumulated capacity consumption ¢(E) and dual price m(E),
the set of orders O(F) it comprises, and its reduced cost ¢(F). The initial label at
the artificial source 0 is given by (0,0,0,2,0). Because of the linear nature of G,
labels are processed vertex-by-vertex in our labeling algorithm. This means that
starting with the initial label at the artificial source, we always propagate all labels
at a given vertex v — 1 along the arcs a® and a} to vertex v, before all resulting
labels at vertex v are in turn propagated to vertex v+ 1, etc., until finally vertex n
is reached and 0-n-paths result.

The extension of a label E at vertex v — 1 to vertex v along arc aF is feasible, if
q(E) + ¢* < Q. If the extension is feasible, a new label E’ is created according to

Chapter 2. BPC-based Solution of the OBP 19

the following REFs:

v(E') = (2.2a)
q(E') = (E) + qv (2.2b)
m(E') = 7m(E) + (2.2¢)
O(E') = O(E) U 0’“ (2.2d)
HE) = — (B (2.2¢)

The non-separability of the reduced cost ¢(E’) in the orders imposes two major
drawbacks on the labeling algorithm. First, in every label propagation, a costly
evaluation of the distance function co(gy is necessary in REF (2.2e). Second, it
renders infeasible the standard less-or-equal dominance relation of the reduced cost
resource applied in many labeling algorithms for SPPRC variants.

2.3.1.3 Bounding Procedure

Because no dominance rule is applied in our labeling algorithm, a strong bounding
procedure to eliminate unpromising labels is crucial for its effectiveness. Let LB(E)
be a lower bound on the reduced cost of any capacity-feasible 0-n-path in G that
contains the 0-v(FE)-path Pg corresponding to label E. Obviously, any label E
with LB(E) > 0 can be discarded. In this section, we describe a method for
computing values LB(F) that is applicable for any monotone routing strategy and
that can be adapted to cope with the cutting and branching decisions of our BPC
algorithm.

For a label E, let R(E) be the set of v(E)-n-paths that can be appended to
the 0-v(E)-path Pg to form capacity-feasible 0-n-paths. A path r € R(F) is
called a completion of E. Denote by E" the label corresponding to path (Pg,r)
and let O(r) := O(E") \ O(F). For any monotone routing strategy, it holds that
¢(E") = cory — m(E") > comy — T(E") = &(E) — Xoco@) To- Thus, a valid lower
bound LB(E) on the reduced cost of any capacity-feasible 0-n-path containing
path Pg is given by

LB(FE F) — max T,. 2.3
() =®) - max 3 23

Intuitively speaking, the value max,ep(m) > oco(r) To TepPresents the maximum
dual prices that can be collected when extending label E to a 0-n-path. Because
set R(E) comprises all completions 7 such that ¢(E") = ¢(E)+Xcor) o < Q, this
value is equivalent to the optimal solution value of a binary knapsack problem (KP)
over orders {o € O : 0 > v(E)} with weights ¢,, profits m,, and capacity Q — ¢(E).
Note further that the sets R(F) are identical for all labels £ with the same capacity

Chapter 2. BPC-based Solution of the OBP 20

consumption ¢ := ¢(E) and last vertex v := v(FE). Therefore, we can define
associated completion bounds B, (q) := max,cr() > 0co(r) To that are identical for
all such labels £ and depend only on v and gq.

We compute the completion bounds B,(q) for all v € V and ¢ € {0,...,Q}
by solving a single binary KP over all orders O and capacity) using a labeling
algorithm that runs in pseudo-polynomial time O (nQ). The labeling algorithm is
applied on the SPPRC graph G of the pricing problem described in Section 2.3.1.1
in backward direction. In a backward labeling algorithm, backward paths are
gradually extended from the sink to the source.

A backward path (v,a, ... af" n) of the labeling algorithm for solving the

binary KP is represented by a label Ey, = (v(Ey,), ¢(Ekp), 7(Ekp)) storing its first
vertex v(Ey,) and its accumulated weight ¢(Ejy,) and profit 7(Ey,). The initial
label at vertex n is given by (n,0,0). The extension of a label Ej, starting at
vertex v against the orientation of arc a¥ to vertex v — 1 is feasible if ¢(Ey,) + ¢~ <
Q. If the extension is feasible, a new label £}, = (v(E},), ¢(E},), 7(E},)) with
v(Ep,) =v—1, ¢(Ep,) = q(Ew) + ¢, and 7(E},,) = 7(Ey,) + mh is created.

A label Ej, dominates another label £} starting at the same vertex if

(), (2.4a)
w(E},). (2.4D)

All dominated labels can be discarded as long as, for each of them, at least one
dominating label is kept.

By its termination, the labeling algorithm provides at each vertex v € V a
set &, of undominated labels corresponding with Pareto-optimal knapsack pack-
ings. More precisely, an undominated label Ey, € &, corresponds with the optimal
solution of a binary KP over orders {o € O : 0 > v(E},) = v} with weights g,,
profits m,, and capacity q(Ej,). The completion bounds can then be determined
as

B,(q) = max T(Egp)- (2.5)

Erp€&u:q(Erp)<Q—q

For each vertex v, the corresponding bounding function B,(q) is a non-increasing
step function with |&,| constant pieces.

Summing up, in each pricing iteration the solution approach proceeds as follows.
Before invoking the main labeling algorithm, we solve the single binary KP on
graph G in backward direction to set up the bounding functions B,(q). Then,
in the forward labeling process of the main algorithm, any label F with ¢(E) >
Byg)(q(E)) is immediately discarded.

An example of the pricing procedure for the OBP instance of Figure 2.1 is
illustrated in Figure 2.3. The picking capacity is assumed to be) = 8, the dual

Chapter 2. BPC-based Solution of the OBP 21

Bo(q) =

0 ¢>6

8 5<q<6| Bilg) = Ba(q) =
33 3<q<5| (0 g¢>6 0 ¢>6

41 1<q<3(|8 3<qg<6| |8 2<qg<6 Bs(q) =
42 0<qg<1| |34 1<q<3()27 0<qg<2 0 ¢g>6
67 ¢<0 42 ¢<1 35 ¢<0 8 ¢<6 Bu(q) =0 Bs(q) =0

(3 33,{1}) (5,34,{2}) (6,27,{3}) (2,8,{4}) (6,0,{5})

OGS CEls oS O

(0,0,92) (0,0,92) (0,0,92) (0,0,92) (0,0,92)

(0,0,0,2,0) (1,0, 0, @, 0) (2,0, 0, @, 0) (30 0, 2, 0)44%—9—@—97\(5742{24}72)
(1,3,33, {11,27) €23:33—(427) (35,34, {2}, 1) {4ebrib—{2h—4)
(25,34, {2}, 4) 43-6:27{3}45)
{2867 1521 (4,7,42, {2,4), ~2)

Figure 2.3: Exemplary pricing procedure with labels and completion bounds for
OBP instance of Figure 2.1

prices for the orders are m; = 33, my = 34, m3 = 27, w4y = 8, and 5 = 0. The
return routing strategy is applied and the travel distances of the arising batches
are cny = 60, C{2y = 38, C{1,2y = 78, C{3y = 72, C{4y = 14, C{24) = 40, and
cisy = 48. For each vertex v, the corresponding bounding functions B,(q) are
given above the vertex. For example, at vertex 3 the backward labeling for the
binary KP provides two non-dominated knapsack packings: packing only order 4
with a weight (=capacity consumption) of two and a profit (=dual price) of eight
and packing neither of the orders for zero weight and profit. Accordingly, the
completion bound at vertex 3 is eight for labels with a capacity consumption
up to six units (implying a residual capacity of at least 8 — 6 = 2) while it is
zero for labels with a capacity consumption larger than six. The labels of the
main labeling algorithm are given below the corresponding vertices. Labels that
are discarded due to the bounding procedure are crossed out, capacity-infeasible
labels are not created in the algorithm and therefore not shown in the figure.
Consider label F = (1,3,33,{1},27) at vertex 1. It represents the batch b = {1}
comprising only order 1 with capacity consumption three, a collected dual price
of 33, and reduced cost of 27. The maximum dual prices that can be collected when
extending F to vertex v is Bi(3) = 34 > 27, thus label E is kept. Extending E
along arc aj = (0,0,) results in label E' = (2,3,33,{1},27) representing the
same batch b = {1}. Because the corresponding completion bound at vertex 2
is By(3) = 8 < 27, label E’ is immediately discarded. In the example, the batch
comprising orders 2 and 4 is the optimal solution of the SPPRC and the only batch
with negative reduced cost.

Chapter 2. BPC-based Solution of the OBP 22

2.3.1.4 Acceleration Strategies

Heuristic Pricing In CG, it is not necessary to identify a batch with minimal
reduced cost in every iteration. Instead, any negative reduced cost batch is suffi-
cient to continue the CG process and pricing heuristics can be applied to quickly
identify such batches. The exact solution algorithm for the pricing problem only
has to be invoked if the heuristic pricers fail to identify additional batches.

In our BPC approach, we use a straightforward but highly effective pricing
heuristic based on the exact labeling algorithm for the pricing problem. Recall
that any feasible 0-v-path Pg in G represented by label E defines a feasible batch
b = O(E) with reduced cost ¢(F). Such a batch could immediately be returned
to the RMP without the need to complete the corresponding label to a 0-n-path.
Our pricing heuristic proceeds as follows. For each vertex, we count the number
of created labels with negative reduced costs (recall that labels are created and
extended vertex-by-vertex). As soon as this number reaches the threshold I =
0.35n for any vertex, the labeling algorithm terminates prematurely and all batches
with negative reduced costs are added to the RMP.

Storing Travel Distances The evaluation of the distance function ¢, is the
computationally most expensive part of the REFs (2.2) and the labeling algorithm.
During the course of the BPC, it can be expected that for many batches b €)
function ¢, needs to be evaluated multiple times. We, therefore, analyzed the
use of a hash table to allow a fast retrieval in amortized constant time of those
values ¢, that have already been computed. This requires storing in the hash table
the key-value pairs (b, ¢;) whenever function ¢, is evaluated for the first time for
batch b.

Overall, using the hash table was not beneficial. We suspect that beside the
effort to calculate the hash values and the general overhead for maintaining the
hash table, a less effective usage of the CPU cache constitutes a main reason for
this behavior. Note that the hash-table implementation performed relatively bet-
ter for the routing strategies with computationally more costly distance functions
(in particular largest gap and optimal) compared to those with less costly dis-
tance functions and was almost comparable with the variant without hash table.
For more complex warehouse layouts and routing strategies, using a hash table
implementation may become beneficial.

2.3.2 Cutting

In our BPC algorithm, two families of valid inequalities are implemented: CCs and
SRCs. Both families are non-robust, i.e., they change the structure of the pricing
problem.

Chapter 2. BPC-based Solution of the OBP 23

2.3.2.1 Capacity Cuts

We consider a variant of CCs defined over the variables of Formulation (2.1) intro-
duced by Baldacci et al. (2008) for the capacitated vehicle routing problem. Let
S C O be any subset of customer orders and denote by £(S) the minimum number
of batches needed to pick all orders in S. The associated CC is

> X = k(S), (2.6)

beQg

where Qg :={be€ Q:bNS # @} is the subset of batches comprising at least one
order from subset S.

Impact on Pricing Problem The addition of CCs to the RMP requires the
following adjustments to the pricing problem. Let the active CCs be given by the
sets S € § and denote by ps > 0 the corresponding strictly positive dual prices.
The reduced cost of a batch b is then given by ¢, = ¢, — > pep o — D sesbens PS
i.e., the dual price pg of S has to be subtracted if b comprises at least one of the
orders of S.

To account for the changes to the pricing problem in our solution approach,
we adapt graph G of the SPPRC representation and the labeling procedure as
follows. Each arc a® € A is associated with an additional component cc¥(S) for
each active CC S € 8, with ec*(S) = 1if k=1 A v € S, and cc®(S) = 0
otherwise. Accordingly, in the labeling algorithm a label E comprises additional
resources ccg(F), one for each S € S, counting the number of orders o € S
included on path Pg. The REFs for the new resources and the adapted REF for
the accumulated dual price when extending label E along arc a® € A to create the
new label E’ are

ccs(B') = ccg(E) +cecf(S) vSeS (2.7a)
(B = 7m(E) + ¥ + > ps (2.7b)

SeS8:ccs(E")>1Nces(E)=0

Due to the linear nature of G, the additional resource corresponding toa CC S € §
can be disregarded for all labels E with S N {v(F),...,n} = @.

Impact on Completion Bounds If there are active CCs in the RMP, LB(E)
as defined in (2.3) is no longer valid as it does not account for the strictly positive
dual prices pg, S € S. Consider a label E and a completion r € R(E). The
reduced cost of the corresponding label E" is

E(ET) = CO(E™) — W(ET> — Z pPs- (28)
SES:O(E")NS#D

Chapter 2. BPC-based Solution of the OBP 24

For monotone routing strategies it holds that

¢(E") > com) —m(E") — > ps (2.92)
SES:0(E)NS£D

—AB) -~ Y -) ps. (20)

0€0(r) S€S:0(r)NSABAO(E)NS=2

With respect to the dual prices of the CCs, expression (2.9b) provides the strongest
lower bound on the reduced cost ¢(E") exactly incorporating their impact on ¢(E").
Because the last term directly depends on O(F), any completion bound based
on (2.9b) requires an individual calculation for each label E.

To obtain completion bounds that are more practicable, consider the following
weaker lower bound on the reduced cost ¢(E") of E”

HE)>dE)- ¥ m— Y ps (2.10)

0€O(r) SeS:0(r)NS#2

A corresponding lower bound LB'(F) on the reduced cost of any capacity-feasible
0-n-path containing path Pg is

LB'(E):=¢FE)— max (> @+ > ps) (2.11)
re€R(E) o S€S8:0(r)NS#£2

with associated completion bounds

Bl(g) == max (Y m+ > ps) (2.12)
r€R(E) ,Eo0m SES:0(rNS£Z

that depend only on the vertex v = v(FE) and the capacity consumption ¢ = ¢(FE).
Similar to B,(q), the values B!(q) are equivalent to the optimal solution values
of extended binary KPs accounting for the additional aspects from the CCs, i.e.,
the dual prices ps have to be included whenever at least one of the orders of S is
packed.

The solution of these KP variants can again be realized by solving a single
extended binary KP with a backward labeling algorithm on the modified graph G.
To this end, the components of labels Ej, of Section 2.3.1.3 and the associated
REFs are modified as in the main labeling described above. Additionally, replacing
the dominance relation (2.4b) of the profit resource with

7(Eip) - > ps > 7(E},) (2.13)

S€S:ces(Erp)>1Aces (E,’Cp)z(]

avoids a point-wise comparison of the new resources ccs(Eyy) and ccs(Ey,) by
considering all S € S for which a common extension of Ey, and Ej, may result in

Chapter 2. BPC-based Solution of the OBP 25

increasing the profit of £}, without increasing that of Ej,. Again, the additional
complexity from the CCs can be reduced by disregarding the resources ccg(Ey,)
for all labels Ej, with SN{0,...,v(Ek,)} = @ exploiting the linear structure of G.

The completion bounds B} (q) can be retrieved from the undominated labels &,
as in the case without CCs and the main labeling algorithm for the pricing problem
can proceed as described at the end of Section 2.3.1.3 using the modified completion
bounds B! (q) instead of B,(q).

Pretests indicated that the lower bounds LB'(F) can be rather weak because
they include the dual prices ccg twice if both O(E) NS # @ and O(r)NS # @. A
stronger lower bound LB?(E) can be obtained using the following bound on the
reduced cost ¢(E") of E” from equation (2.8). Let o € O(FE). Then,

HEN =B - Y m— Y ps (2.14a)

1€0(r) SeS:O(r)NS#DNo¢S
=c¢(E)— (> m+ > ps— > ps). (2.14b)
1€0(r) SeS:0(r)NS+#2 SeS:0(r)NS#SNoES

The validity of (2.14) follows directly from (2.9b) and the strict positivity of pg.
Because (2.14) holds for all 0 € O(E), we have

LB*(E) :=¢&E) — max max (> m+ > ps — > Ps)-
0€O(E) reR(E) ;S50 SES:0(rNS£D SES:0(r)NS£BA0ES

(2.15)

LB?*(FE) corrects for some of the doubly-included duals pg of LB'(E).
The corresponding completion bounds

B, (q) == max (Y m+ > ps — > ps) (2.16)

r€R(E) o0 5€8:0(r)NS#o S€S:0(r)NSABA0ES

to be used in the labeling are now defined for each order o. They can be computed
using the information from the solution by backward labeling of the same extended
binary KP used for determining B!(q) described above. In fact, we have

B@)= _max _ (x(By)- Y ps) (217

Bip€Eva(Bip)<Q=0 SeSices(Erp)>1M0€S

Notice that the modified dominance relation (2.13) guarantees that no label Ej , ¢
&, with ¢(E},) < @ — g can provide a larger profit 7(Ej,) — ZSES:CCS(E]’W)EU\OES ps
than all labels Ey, € &,, even if 0 = ccs(E},) < ccs(Eyp) holds for some S € S
with o € S and a smaller amount is deducted from its profit when adjusting for
the dual prices of those CCs. Using functions B} ,(¢q) we have

LBY(E) = &(E) — max By, (alE)). (2.18)

Chapter 2. BPC-based Solution of the OBP 26

Separation Procedures In order to identify violated inequalities (2.6), we use
three different separation procedures: a greedy construction heuristic, a connected
component-based heuristic, and a MIP-based approach.

The exact determination of value x(.S) for a subset of orders S C O requires the
solution of a bin packing problem with items o € S, weights g, and capacity Q.
In our separation procedures, we use lower bounds of £(S) that can be computed
efficiently. The greedy heuristic and the connected component-based heuristic
consider the relaxation £*(S) = max{x'(S), k*(S)} with x!(S) := % Soes qow and

K3(S) = Ho €S:q,> %}’ + % ZoeS:qo:% qow. The MIP-based approach only

uses relaxation x!(S).

Denote by (S\b)beg/ the current fractional solution of the RMP and let 5\5 =
S peas A for any subset S C O of orders. Moreover, let Q := {b € Q: A, > 0} be
the set of batches with positive value in the current solution, let Qg := {be Q:
bN S # &} be the set of batches with positive value comprising at least one order
from S, and let Ng := Upcq . b\ S be the set of neighboring orders of subset S in
the current solution, i.e., orders o € O\ S comprised in any batch of set Qg. A
connected component of (S\b)begl is a subset S of orders with Ng = &.

The first separation procedure is a randomized greedy construction heuristic. It
is initialized with a set S comprising a single order only and each order is tried as
a starting point several times. Iteratively, the heuristic adds to the current set S
a single order 0 € Ng maximizing the expression

_ k3(SU{o}) — /{3(8)'

9o(:S) : = =
ASufo} — As

(2.19)

To randomize the heuristic, g,(S) is multiplied by a random number uniformly
drawn from the interval [0.7,1.3]. The heuristic stops either if a violated inequal-
ity (2.6) is detected or if Ag > x*(S) + 1 holds for the current set S. Overall,
the greedy construction heuristic tends to find violated CCs with sets S of small
cardinality.

The second separation procedure is inspired from a separation heuristic used by
Archetti et al. (2011) for the split delivery vehicle routing problem. The starting
point of the heuristic is the connected components of the RMP solution. For each
connected component S, the heuristic proceeds as follows. The batches b € Qg are
sorted by non-increasing value A, — x%(b). In each iteration, the heuristic selects
the next batch b in the sorting and removes from S all orders o € b. This choice of
orders to remove from S provides subsets with a high potential of violating inequal-
ity (2.6), because it decreases the left-hand side by a large value and the right-hand
side by a small value. Whenever the current set S violates inequality (2.6) the cor-
responding cut is generated. The heuristic stops the removal process, when the
total number of orders removed from the initial connected component exceeds 25

Chapter 2. BPC-based Solution of the OBP 27

or when the current set S is empty. The procedure is then restarted a second time
for the same connected component, skipping the very first batch b in the sorting.
The connected component heuristic seems to predominantly identify violated CCs
with large sets S.

A third separation procedure uses a MIP formulation to exactly separate CCs
using relaxation x'(S). The MIP (2.20) adapts to the OBP the formulation of
Martinelli et al. (2013) for exactly separating CCs for the capacitated arc routing
problem. It identifies a subset S and the corresponding right-hand side x'(S)
maximizing the violation £'(S) — Yyeq, Ay of inequality (2.6). The MIP uses the
following variables. Binary variables y, indicate if order o € O is in the searched
subset S or not. Binary variables z; indicate if batch b € Q comprises any order
of the searched subset S or not. Integer variable K represents the value k'(S)
while the continuous slack variable v € [0, 1) describes the fractional difference of
applying the ceiling function in the determination of x!(S). Our separation MIP
can then be stated as follows:

max K —) Ty (2.20a)

beQ

-~ GoYo
st. K=+ > (2.20b)
0O

<Y y, Vbe 0 (2.20c)

o€b
blzy > >y, VbeQ (2.20d)

ocb

z, € {0,1} VbeQ (2.20e)
Yo € {0,1} Yoe€ O (2.20f)
K eZ§ (2.20g)
v €10,1) (2.20h)

The Objective (2.20a) maximizes the violation of the CC. Equation (2.20b) ensures
the correct value of K. Linking constraints (2.20c) force the indicator variables
to zero if none of the orders o € b is selected, while linking constraints (2.20d) force

the indicator variables x; to one if at least one of the orders o € b is selected. The
variable domains are defined in (2.20e)-(2.20h).

2.3.2.2 Subset-Row Cuts

SRCs were first introduced by Jepsen et al. (2008) for the vehicle routing problem
with time windows. They are Chvatal-Gomory rank-1 cuts based on subsets of
the set-partitioning constraints (2.1b). As proposed by Jepsen et al. (2008) and
followed in the majority of works, we restrict ourselves to subsets of cardinality

Chapter 2. BPC-based Solution of the OBP 28

three. Let U C O be a set of three orders. The associated SRC is given by

> FEQUC“’J A < 1. (2.21)

beq2

Violated SRCs can be separated by straightforward enumeration.

Impact on Pricing Problem The addition of SRCs to the RMP changes the
pricing problem as follows. Let the active SRCs be given by the sets U € U. The
corresponding strictly negative dual prices are oy < 0. The reduced cost of a
batch b is now ¢, = ¢, — Yoep To — Zvew:jure|>2 OU, 1-€., the dual price o of U has
to be subtracted if b comprises at least two of the orders of U.

The altered pricing problem requires adjustments to graph G of the SPPRC
representation and the labeling algorithm for its solution similar to the CC case.
With each arc a® € A is associated an additional component sr®(U) for each
active SRC U € U, with sr¥(U) =1if k=1 A v € U, and sr¥(U) = 0 otherwise.
Likewise, for each U € U, an additional resource sry(F) is added to the labels E of
the labeling algorithm. It counts the number of orders o € U included on path Pg.
The propagation of label E along arc a® € A to obtain a new label E’ uses the
following new and modified REFs:

sry(E') = sry(E) + srf(U) YU €U, (2.22a)

(B = 7(E) + ¥ + > oy (2.22Db)
Uel:sry (E')>2Nsry (E)<1
As in the CC case, the linear structure of G' can be exploited to disregard all
SRCs U € U for labels E with U N{v(E),...,n} = 2.

Impact on Completion Bounds The completion bounds B,(q), Bl(g), and
B2(q) as defined in Section 2.3.1.3 and above remain valid also in the presence of
SRCs, because the dual prices oy are strictly negative for all U € U. Therefore,
no modifications to the bounding procedure are needed.

Incorporating the dual prices from the SRCs generally results in stronger comple-
tion bounds. Similar to the CC case, these refined bounds require solving extended
binary KPs accounting for the additional aspects from the SRCs. Pretests have
shown that the additional effort for computing the refined bounds incorporating
the SRCs outweighs their benefit of allowing more labels to be discarded in the
main labeling. Thus, in our BPC, we ignore the SRCs in the completion bounds.

2.3.3 Branching

We use a two-stage hierarchical branching scheme. On the first level, we branch on
the number of pickers }~,.q Ay, if fractional, and create the two branches Y ,cq Ay <

Chapter 2. BPC-based Solution of the OBP 29

{Zbeﬁ j\bJ and > peq Ay > ’VZbEQ /\bL. Both decisions are implemented by adding
the respective linear constraint to the RMP. No structural changes to the pricing
problem are involved.

On the second level, we apply the well-known Ryan-and-Foster branching rule.
Let fo00 := > pcar aolba%b;\b be the information if the orders o1, 0, € O are assigned
to the same batch or not. We branch on pairs (01, 02) of orders for which f,,,, is
fractional. Two branches are created, the separate branch, which ensures f,,,, =0
by forcing variables A\, with a,,, = @, = 1 to zero, and the together branch,
which ensures f,,,, = 1 by forcing variables A\, with a,,;, + @, = 1 to zero. Both
types of decisions can be straightforwardly implemented in the RMP by fixing
the corresponding variables to zero but impose structural changes to the pricing
problem.

Impact on Pricing Problem In the pricing problem, the generation of variables
that are incompatible with the Ryan-and-Foster branching decisions has to be
prevented. This can be realized by modifying the underlying graph G of the
SPPRC representation of the pricing problem. The basic idea is to group together
the orders that are affected by mutual branching decisions, representing them
by a single vertex in G and to decide on the inclusion of the orders of a group
simultaneously. On the modified graph, the same labeling algorithm presented in
the previous sections can be applied to solve the pricing problem in the presence
of branching decisions.

For ease of notation, we identify a Ryan-and-Foster branching decision by the
set I = {01, 00} comprising the two involved orders. The type of decision, separate
or together, can be ignored for the moment. Let Z = {I,...,I,} be the set of
active branching decisions at a given B&B node.

Let 7', ..., 7% be a partition of Z into subsets, i.e., groups of branching decisions,
such that the different subsets are non-overlapping with respect to the involved
orders, i.e., (Urezi 1) N (Urers I) = @ holds for all pairs i, 7 € {1,...,q},7 # j, while
each individual subset consists of overlapping branching decisions. The branching
decisions of a set Z' := {I},..., I} are overlapping if they can be ordered such
that ([U---UIL_)NI} # @ forall j € {1,...,7}. For each T',i € {1,...,¢},
denote by O(Z?) := Uez: I the set of involved orders. Furthermore, let Oy(Z*) =
&,01(Z%),...,04(Z" be all feasible combinations (=subsets) of the orders in O(Z")
such that the branching decisions and the picking capacity are respected.

In the modified graph G, each set O(Z') associated with a group of branch-
ing decisions Z° is represented by a single vertex, say vertex v. For each feasi-
ble combination of orders O (Z%),k € {0,...,s}, an arc a* from vertex v — 1 to
vertex v is created. The components associated with arc aF are determined as

q’; = Zonk(Ii) 4o, 7T1]f = Zonk(Ii) To, Ollf = Ok(Ii), ST{?(U) = |Ok(Il) N U| for

Chapter 2. BPC-based Solution of the OBP 30

(3,33, {1}, (1,0), (1))

(8,8, {4,5}, (1,2), (1))

(6,27,{3},(1,1), (1))
9,60,{1,3},(2,1),(2)

0,0, 2, (0,0), (0)

Y

Figure 2.4: SPPRC representation of the pricing problem for the example in-
stance of Figure 2.3 and Ryan-and-Foster branching decisions {1, 2}*,
{2,3}%, and {4,5}

all U € U, and cc®(S) = |OL(Z) N S| for all S € S. Each of the remaining or-
ders 0 € O \ Uez I not involved in any branching decision is associated with a
single vertex and two ingoing arcs in GG as described in Section 2.3.1.1.

An example of graph G after branching is illustrated in Figure 2.4. It contin-
ues the example pricing instance of Figure 2.3 except for the capacity which is
assumed to be not binding. Furthermore, we assume that Z comprises the three
active branching decisions {1,2}*, {2,3}*, and {4,5}", where the superscript s (¢)
refers to a separate (together) constraint, resulting in two groups Z' and Z? of
branching decisions with involved orders O(Z') = {1,2,3} and O(Z?) = {4,5}
and corresponding vertices 1 and 2 in G, respectively. Additionally, there are two
active CCs S; = {1,2,3,5} and Sy = {2,3,4,5} and one active SRC U = {1, 3,4}.
Figure 2.4 now depicts the modified graph G showing all arcs a® with their com-
ponents (g%, 7% OF (cc¥(S))ses, (s7¥(U))yey). Consider vertex 1 associated with
orders O(Z') = {1,2,3}. The five ingoing arcs represent all subsets of orders from
the set O(Z') that respect the mutual branching decisions {1,2}*, {2,3}%, i.e.,
that can be feasibly included in a batch. Now consider arc (9,60, {1, 3}, (2,1), (2))
corresponding with the inclusion of the orders 1 and 3. It is associated with a ca-
pacity consumption of 346 = 9, a dual price of 33427 = 60, the information that
orders 1 and 3 are both comprised in CC Sj, one of them (order 3) is comprised
in CC 95, and both are comprised in SRC U.

To contain the size of the B&B tree, we apply strong branching at the second
stage of the branching scheme as detailed in Appendix 2.D.

The node selection strategy is best-bound first, because the primary goal of our
BPC is to improve the dual bound.

Chapter 2. BPC-based Solution of the OBP 31

2.3.4 BPC-based Heuristics

In Section 2.4, it becomes apparent that the proposed CG method is very effective,
being able to quickly solve the LP relaxation of Formulation (2.1). Closing the gap
and finally proving optimality is the hard part where the BPC algorithm spends
almost all the computation time for most instances. We, therefore, propose two
straightforward BPC-based heuristics to provide high-quality solutions in limited
computation time.

The first heuristic (denoted SC') consists in solving a restricted version of For-
mulation (2.1) comprising only the columns generated up to the root node of the
BPC with a general-purpose MIP solver. Any cuts generated while solving the
root node are removed before invoking the solver. For this heuristic, no branching
at all needs to be implemented.

The second heuristic (denoted BPC-DF') changes the node selection strategy of
the BPC algorithm to a combination of best-bound-first and depth-first search in
order to quickly identify high-quality feasible solutions. The search strategy first
selects a node according to the best-bound-first rule. It then explores the subtree
rooted at this node in a depth-first fashion until the current node either provides
an integer solution or can be pruned. The next node to evaluate is again selected
according to the best-bound-first rule. Setting a hard time limit guarantees a quick
termination of the approach.

2.4 Computational Results

Our BPC algorithm and the BPC-based heuristics were implemented in C++ and
compiled into 64-bit single-thread code with MS Visual Studio 2019. CPLEX 20.10
with default parameters (except for the time limit and allowing only a single
thread) is used to reoptimize the RMPs and as MIP-solver for the MIP-based
separation of CCs and the SC heuristic. The computations were carried out on
the HPC cluster Elwetritsch of the University of Kaiserslautern-Landau consisting
of several Intel Xeon Gold 6126 processors running at 2.60 GHz. Notice that the
performance of a single thread of the cluster is comparable to that of a standard
desktop processor.

An overview of additional design choices and implementation details for our
BPC algorithm as well as the specific values used for different parameters of the
algorithm is given in Appendix 2.D. These values were obtained in pretests on a
small subset of the instances used in our main computational study. Notice that
the same computational setup was used for all routing strategies and instances.

More detailed results can be found in Tables 2.11-2.62 of Appendix 2.F. Further-
more, instance-by-instance results of our main BPC and the two BPC-based heuris-

Chapter 2. BPC-based Solution of the OBP 32

tics together with the BKS are provided at https://logistik.wiwi.uni-k1l.de/
obp-bpc-detailedresults.

2.4.1 Benchmark Instances

Benchmark instances for the standard OBP have been proposed by Henn and
Wischer (2012) (H&W), Muter and Oncan (2015) (M&0), Zulj et al. (2018) (ZKS),
and Bahgeci and Oncan (2022) (B&0). The main focus of our computational study
are the H&W and M&0 instances. We also report results for the large-scale ZKS
instances. To further test the limits of the proposed solution approaches and to
allow the comparison of new exact and heuristic algorithms with our approaches
in solving larger-sized instances, we additionally consider the M&0 instances with
enlarged capacities (M&0-ext) and have created two new sets of larger instances
with uniform (W&G-u) and general weights (W&G-g) following the work of Hwang and
Kim (2005). Results for the latter three sets are reported mainly in Appendix 2.F.
The very small-scale B&0 instances, of which the largest ones are smaller than the
smallest M&0 instances, are not included in our study. All considered instances
are available at https://logistik.wiwi.uni-k1l.de/obp-instances. They are
described in more detail in Appendix 2.E.

2.4.2 Evaluation of Algorithmic Components

We first investigate the impact of different components of our BPC algorithm on its
performance. To this end, we consider variants of the BPC with and without strong
branching (StrBr and noStrBr), with and without SRCs (SRC and noSR(C'), and
with and without CCs (CC and noCC). When using CCs, we further distinguish
variants according to the separation procedures that are used: only the connected
component heuristic (CC/cp), only the greedy heuristic (CC/gr), only the MIP-
based approach (CC/MIP), or all of them (CClall).

The results for benchmark sets M&0 and H&W and all six routing strategies are
summarized in Table 2.2 and Figure 2.5. Table 2.2 reports the percentage number
of instances solved to proven optimality within the time limit (%Opt) and the
average solution time in seconds (t[s]) where unsolved instances are included with
the time limit of 3,600 seconds. Rows All (eq.) report average numbers using an
equal weighting for the two benchmark sets. Figure 2.5 depicts the performance
profiles of the different algorithm variants. The performance profile of an algorithm
variant specifies the percentage of instances solved by this variant within 7 times
the time taken by the fastest variant in an instance-by-instance comparison.

The largest benefit is clearly achieved by the integration of CCs. All variants
without CCs perform substantially worse. This is especially true for the M&0 in-
stances where with CCs the computation times are more than halved and the num-

https://logistik.wiwi.uni-kl.de/obp-bpc-detailedresults
https://logistik.wiwi.uni-kl.de/obp-bpc-detailedresults
https://logistik.wiwi.uni-kl.de/obp-instances

Chapter 2. BPC-based Solution of the OBP 33

No capacity cuts With capacity cuts
noSRC SRC noSRC,CClall SRC,CC|cp SRC,CClgr SRC,CC|MIP SRC,CClall
Class %O0pt t[s] %Opt t[s] %Opt t[s] %Opt t[s] %Opt t[s] %Opt t[s] %Opt t[s]
Panel A: No strong branching

M&0 454 2,099 481 2,000 699 1266 754 1,064 47.8 2,007 728 1,138 759 1,039
H&W 745 1,018 76.8 937 87.0 596 88.8 513 76.7 939 88.0 551 89.3 503

All (eq.) 599 1,558 62.5 1,468 784 931 821 784 623 1473 804 844 826 771

Panel B: With strong branching
M&0 50.2 1,916 53.0 1,857 80.8 920 858 796 52.7 1,860 80.4 994 842 852
H&W 783 888 799 842 91.2 457 922 412 799 839 91.0 471 924 414
All (eq.) 64.2 1,402 664 1,349 86.0 689 89.0 604 66.3 1,350 85.7 733 88.3 633

Table 2.2: Summary results for different variants of our BPC algorithm

ber of solved instances is increased by around 60%. The positive impact of strong
branching and SRCs is also evident, but much smaller than for the CCs. Again, the
effect is more pronounced for the M&0 instances than for the H&W instances. Regard-
ing the separation procedures for the CCs, using only the connected component
heuristic is overall slightly superior to using all separation routines (the picture
is reversed for the H&W instances) which is in turn slightly superior to only using
the MIP-based separation. The greedy heuristic alone is not beneficial, performing
similar to the variants without CCs. Summing up, the best performing variant,
which is also used in the following sections, utilizes strong branching, both types of
cuts, and only the connected component heuristic. Note that the variant using all
separation procedures for the CCs was able to provide substantially more optima
for the H&W instances with traversal strategy as well as for the ZKS instances.

Notice that without the pricing heuristic, we run into memory issues already for
moderately sized instances, e.g., around @ = 36/n = 50-60 and) = 48/n = 50 for
the M&0 benchmark. This is why we did not include variants without the pricing
heuristic in our comparison. The same is true when using the weaker completion
bounds B} (g) in the solution of the pricing problem with CCs.

2.4.3 Computational Analysis of BPC Algorithm

We first compare our BPC with the state-of-the-art exact approach to the standard
OBP of Muter and Oncan (2015) who only consider routing strategies traversal,
return, and midpoint and the M&0 instances. Table 2.3 summarizes the comparison.
It provides the number of instances solved to optimality (Opt) and the average
solution times in seconds (#[s]). Note that the computation times reported in Muter
and Oncan (2015) and, therewith, in Table 2.3 comprise only the computation
times for the cut-and-column generation phase including the batch enumeration of
their approach but not the time for solving the reduced set-partitioning problem

Chapter 2. BPC-based Solution of the OBP 34

-1} - noStrBr,noSRC,noCC - <>- - noStrBr,SRC,noCC A+ 10StrBr,noSRC,CClall —5— noStrBr,SRC,CClcp
—&— noStrBr,SRC,CCl|gr ——noStrBr,SRC,CC|MIP —&— noStrBr,SRC,CCl|all

- 4 - StrBr,noSRC,noCC - @- - StrBr,SRC,noCC M+ StrBr,noSRC,CClall —¥— StrBr,SRC,CCl|cp
—@®— StrBr,SRC,CCl|gr —&— StrBr,SRC,CC|MIP —@— StrBr,SRC,CClall

100 100

o
(@]
0]
o

D
(@]
D
o

S
=)
S
o

20 |

DO
=)

Percentage of solved instances

Percentage of solved instances

| | | '
10 20 30 40 50 0
Time factor 7 Time factor 7

o

Figure 2.5: Performance profiles of different variants of our BPC algorithm for
the H&W instances (left) and the M&0 instances (right)

with CPLEX. Note further that they allow one hour of computation time for
each of the two phases of their algorithm. We still count unsolved instances with
3,600 seconds in the average solution times also for their approach. Note finally
that their computer is about 30% slower than ours according to the single-thread
performance reported on www.passmark.com.

Table 2.3 indicates that our BPC clearly outperforms the method of Muter
and Oncan (2015). While they solve 55, 71, and 75 out of the 270 instances for
strategies traversal, return, and midpoint, respectively, our BPC is able to solve
more than three times the number of instances, namely 208, 237, and 244. A
meaningful comparison of computation times is only possible for a small number
of instance groups. For the majority of groups, the averages for the method of
Muter and Oncan (2015) are dominated by the time limit (notice that no results
for individual instances are available).

Table 2.4 summarizes the results of our BPC for the benchmarks M&0 and H&W
and all considered routing strategies aggregated by capacity). As expected, in-
stances with larger capacities (and more orders) are harder to solve. Regarding the
routing strategies, traversal seems to be the most difficult for our BPC. Compared
to the other strategies, substantially less optima are provided and the average com-
putation times are much higher. Routing strategies return, largest gap, combined,
and optimal appear to be of very comparable difficulty, while midpoint seems to
be slightly easier. For all routing strategies except traversal, the M&0 instances

www.passmark.com

Chapter 2. BPC-based Solution of the OBP 35

Traversal Return Midpoint
M&Of Our method? M&OT Our method? M&Of Our method?
Q@ n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s
24 20 10 10 7.0 10 0.2 10 7.0 10 0.1 10 5.0 10 0.0
30 10 7 10954 10 0.7 9 3771 10 1.1 9 3735 10 0.4
40 10 8 807.2 10 8.6 7 1,105.2 10 1.9 10 35.0 10 1.6
50 10 4 2,205.6 10 14.8 6 1,491.6 10 13.0 6 1,472.4 10 3.0
60 10 6 1,516.8 10 11.5 6 1,519.2 10 3.0 7 1,210.2 10 5.2
70 10 2 2901.6 10 37.9 5 1,938.5 10 73.8 3 2,564.7 10 17.3
80 10 1 3,315.1 10 3924 2 2,944.2 10 128.3 4 23252 10 39.2
90 10 2 29280 8 1,097.6 3 2,621.1 10 570.1 3 2,625.3 10 269.3
100 10 2 29594 10 493.0 2 29360 10 2748 4 2,362.0 9 5826
Subtot. 90 42 1,970.7 88 228.5 50 1,660.0 90 118.5 56 1,441.5 89 102.1
36 20 10 6 1,450.8 10 2.1 9 3960 10 0.6 8 7448 10 0.3
30 10 4 2170.4 10 254 7 1,154.2 10 5.6 6 1,4784 10 2.5
40 10 0 3,600.0 10 43.5 1 32555 10 30.8 0 3,600.0 10 7.2
50 10 0 3,600.0 9 649.2 0 3,600.0 10 59.3 0 3,600.0 10 27.1
60 10 0 3,600.0 10 8058 0 3,600.0 10 1379 0 3,600.0 10 85.1
70 10 0 3,600.0 8 1,125.5 0 3,600.0 10 791.9 0 3,600.0 10 160.4
80 10 0 3,600.0 5 2,141.7 0 3,600.0 8 1,829.8 0 3,600.0 10 989.0
90 10 0 3,600.0 6 2,295.7 0 3,600.0 10 1,098.1 0 3,600.0 10 1,402.3
100 10 0 3,600.0 4 2.394.8 0 3,600.0 5 20971.8 0 3,600.0 8 2,107.6
Subtot. 90 10 3,2024 72 1,053.7 17 29340 8 769.5 14 3,047.0 88 531.3
48 20 10 3 2,535.0 10 3.6 4 2,193.6 10 1.2 5 1,866.5 10 0.5
30 10 0 3,600.0 10 146.5 0 3,600.0 10 21.8 0 3,600.0 10 46.4
40 10 0 3,600.0 9 612.7 0 3,600.0 10 32.0 0 3,600.0 10 57.3
50 10 0 3,600.0 6 2,285.0 0 3,600.0 10 613.0 0 3,600.0 10 187.0
60 10 0 3,600.0 6 1,677.9 0 3,600.0 10 363.6 0 3,600.0 10 268.6
70 10 0 3,600.0 32,9515 0 3,600.0 5 2,208.9 0 3,600.0 6 2,286.7
80 10 0 3,600.0 1 3,316.5 0 3,600.0 5 2,381.6 0 3,600.0 7 02,1972
90 10 0 3,600.0 1 3,276.8 0 3,600.0 1 3,387.3 0 3,600.0 3 3,160.0
100 10 0 3,600.0 2 3,039.8 0 3,600.0 3 3,140.0 0 3,600.0 1 3,387.8
Subtot. 90 3 3,481.7 48 11,9234 4 3,443.7 64 1,349.9 5 3,407.4 67 1,287.9
Total 270 55 2,884.9 208 1,068.5 71 2,679.2 237 746.0 75 2,632.0 244 6404

Table 2.3: Comparison of our BPC algorithm with the approach of Muter and
Oncan (2015) for routing strategies traversal, return and midpoint on
the M&0 instances

. Windows computer with an Intel Xeon X5460 processor, single thread score
(www.passmark.com): 1370

¥: Linux computer with an Intel Xeon Gold 6126 processor, single thread score
(www.passmark.com): 2019

Chapter 2. BPC-based Solution of the OBP 36

Traversal Return Midpoint Largest gap Combined Optimal
Q@ Inst Opt t[s] Opt tls] Opt t[s] Opt t[s] Opt tls] Opt t[s]
Panel A: M&0 instances
24 90 88 2285 90 118.5 89 102.1 89 87.8 90 108.2 88 131.3

36 90 72 1,053.7 83 769.5 88 531.3 80 714.2 81 861.7 79 802.0
48 90 48 11,9234 64 1,349.9 67 1,287.9 66 1,355.1 63 1,458.4 65 1,451.2

Total 270 208 1,068.5 237 746.0 244 6404 235 719.0 234 809.4 232 794.8

[

Panel B: H&W instances

30 1,440 1,420 55.6 1,440 0.1 1,440 0.1 1,440 0.1 1,438 5.2 1,440 1.6
45 1,440 1,352 307.8 1419 98.0 1438 207 1434 393 1,419 1041 1424 789
60 1,440 1,020 12034 1,356 380.8 1,384 2762 1,374 3482 1,355 4285 1,346 456.0
75 1,440 720 1,960.2 1,247 820.8 1,262 732.6 1228 8488 1,249 798.0 1,204 923.9

Total 5,760 4,512 881.8 5462 325.0 5,524 2574 5476 309.1 5,461 333.9 5,414 365.1

Table 2.4: Summary results of our BPC algorithm for the M&0 and H&W instances
and all routing strategies

are overall more difficult (less instances solved and larger computation times) than
the H&W instances. Following the trend for the largest M&0 and H&W instances, only
a limited number of the larger-sized instances from benchmarks M&0-ext, W&G-g,
and W&G-u can be solved to optimality (see Tables 2.14-2.16 in Appendix 2.F).
We can also observe, that the instances with uniform order weights seem slightly
easier for our BPC than those with general weights.

A detailed analysis averaged by capacity of our BPC is provided in Table 2.5 for
routing strategies traversal and optimal. The latter is representative also for the
remaining strategies return, midpoint, largest gap and combined. The additional
columns are the average time for solving the LP relaxation in seconds (#/F), the
average optimality gap with respect to the BKS of the LP relaxation (Gp), the
average optimality gap with respect to the BKS before the first node resulting from
a Ryan-and-Foster branching is solved (Gp”F'), the average number of B&B nodes
solved (Nds), and the average number of CCs (CC) and SRCs (SRC') added.

The most striking observation when comparing the two routing strategies is the
difference in the number of solved B&B nodes. On average, this number is twice
as large on the M&0 instances and seven times as large on the H&W instances for
traversal than for optimal. This is the main reason, why traversal is more difficult
to solve than the other strategies. The solution time for a single node, on the other
hand, is much smaller for traversal than for optimal and the other strategies as
indicated by the average time for solving the LP relaxation. This can be explained
by the fact that the distance function for traversal is computationally the least
expensive of all strategies.

Overall, Table 2.5 reveals that the times needed for solving the LP relaxations
are very short (note that the maximum for any of the instances is 84 seconds and
only six instances require more than 60 seconds) and the average optimality gaps

Chapter 2. BPC-based Solution of the OBP 37

Traversal Optimal

@ Inst Opt t[s] t*F Gp Gp®F Nds CC SRC Opt t[s] t** Gp Gp*' Nds CC SRC

Panel A: M&0 instances

24 90 88 2285 0.2 098 031 2346 21 42 88 1313 0.3 0.80 0.23 1,070 12 36
36 90 72 1,063.7 1.2 212 054 2,633 41 91 79 8020 2.7 1.74 040 1,716 38 69
48 90 48 1,923.4 53 298 0.68 1,750 55 113 65 1,451.2 16.6 2.74 0.66 558 67 99

Tot. 270 208 1,068.5 2.2 2.03 0.51 2243 39 82 232 7948 6.5 1.76 043 1,114 39 68

Panel B: H&W instances

30 1,440 1,420 55.6 0.0 0.30 0.03 533 8 1 1,440 1.6 0.0 0.22 0.01 45 2 1
45 1,440 1,352 3078 0.1 0.57 0.23 7,103 21 27 1424 789 0.2 040 0.16 1,396 10 21
60 1,440 1,020 1,203.4 0.4 0.96 0.34 20,562 21 54 1,346 456.0 0.7 0.77 0.29 3,147 22 40
75 1,440 720 1,960.2 1.0 1.29 0.36 21,534 28 80 1,204 9239 2.1 1.19 0.38 2,569 37 57

Tot. 5,760 4,512 881.8 0.4 0.78 0.24 12433 19 41 5414 3651 0.7 0.65 0.21 1,789 18 30

Table 2.5: Detailed results of our BPC algorithm for the M&0 and H&W instances
and routing strategies traversal and optimal

are rather small: less than 2% for the LP relaxation, and less than 0.5% after
adding cuts. This is also true when considering the individual instance groups
for all routing strategies and benchmark sets from the literature as shown by the
detailed results in Appendix 2.F. Comparing the two benchmark sets, we see that
LP times and gaps are larger for the M&0 instances than for the H&W instances,
which can be an explanation why the former are overall harder to solve.

The main insights taken from Table 2.5 are also valid for the larger-sized in-
stances M&0-ext, W&G-g, and W&G-u. Note that with increasing instance sizes, the
times for solving the LP relaxation also strongly increases. In fact, for the largest
instances of the W&G-g and W&G-u benchmarks, our BPC was consistently not able
to solve the LP relaxation within the time limit.

2.4.4 Computational Analysis of BPC-based Heuristics

We now analyze our BPC-based heuristics SC and BPC-DF and compare it to
the state-of-the-art heuristic approach of Zulj et al. (2018), who proposed a hybrid
of an adaptive large neighborhood search and a tabu search (ALNS/TS) for the
routing strategies traversal and largest gap. They report results only for subsets
of the H&W benchmark and for the large-scale ZKS instances.

Tables 2.6-2.8 summarize the comparison on these instances. The results for
both BPC-based heuristics are obtained using a hard time limit of two minutes
indicated by the suffix -2. The tables report the average gap with respect to
the best-known lower bound (Gp) and the average computation time in seconds
([s]). On all subsets of instances considered by Zulj et al. (2018), we are able to
drastically improve on their gaps with both types of heuristics. For example, for the
H&W instances with CBD and the largest gap strategy they obtain an average gap

Chapter 2. BPC-based Solution of the OBP 38

H&W CBD/largest gap instances H&W UDD/largest gap instances
SC-2¢ BPC-DF-2¢ ALNS/TS? SC-2¢ BPC-DF-2¢ ALNS/TS?
n Gp t[s] Gp t[s] Gp t[s] n Gp t[s] Gp t[s] Gp t[s]
40 0.10 0.8 0.00 22 024 112 40 0.12 27 0.01 86 0.20 109
60 0.09 5.0 0.02 21.2 063 34.6 60 0.11 13.9 0.06 36.1 0.53 32.1
80 0.19 223 0.07 489 085 753 80 0.38 36.4 0.20 57.0 084 720
100 0.35 44.8 0.17 664 1.00 141.9 100 0.56 53.6 0.34 69.7 0.92 133.5

Total 0.18 182 0.07 34.7 0.68 65.7 Total 0.29 26.7 0.15 428 0.62 62.1

Table 2.6: Comparison of our BPC-based heuristics SC-2 and BPC-DF-2 with
the ALNS/TS of Zulj et al. (2018) for the largest gap strategy on a
subset of the H&W instances

f: Linux computer with an Intel Xeon Gold 6126 processor, single thread score
(www.passmark.com): 2019

§: Windows computer with an Intel Core i7-3770 processor, single thread score
(www.passmark. com): 2071

of 0.68% while SC-2 and BPC-DF-2 achieve gaps of 0.18% and 0.07%, respectively.
For largest gap, these reductions even come with much shorter computation times
for both SC-2 and BPC-DF-2. For the large-scale ZKS instances, we are again able
to reduce the average gap from 2.56%, which represents the instance-wise best
out of three runs of the ALNS/TS, to 0.65% and 1.10% for SC-2 and BPC-DF-2,
respectively. Surprisingly, our BPC-based heuristics seem to scale much better
than the ALNS/TS of Zulj et al. (2018), because the latter gaps are obtained with
an average computation time of 48.8 seconds (SC-2) and 115.8 seconds (BPC-DF-
2) compared to 1,570.4 seconds (ALNS/TS).

Table 2.9 provides a very aggregated summary by benchmark set of the BPC-
based heuristics investigating the impact of the allowed computation time on SC
and BPC-DF. We report results for both heuristics and with hard time limits of
two, three, and five minutes indicated with a corresponding suffix. For both types
of heuristics, the average gaps strictly decrease with increasing time limit, i.e., there
is a direct trade-off between allowed computation time and solution quality. On all
benchmark sets, BPC-DF consumes on average more of the allowed computation
time than SC. However, BPC-DF also seems to benefit more from larger time limits
in the sense that it is able to generate larger improvements in solution quality than
SC with increasing computation time. Overall, BPC-DF performs better than SC
for the M&0 and H&W instances, while for the ZKS instances the picture is reversed.

With the computations carried out to obtain the results of Table 2.9, we are also
able to improve on hundreds of BKS. For the H&W benchmark, there are 2,720 in-
stances for which BKS have been reported by Zulj et al. (2018). We confirm
763 BKS and provide 1,955 new BKS. Only for two instances, we were not able

Chapter 2. BPC-based Solution of the OBP 39

H&W CBD/traversal instances H&W UDD /traversal instances

SC-2 BPC-DF-2 ALNS/TS SC-2 BPC-DF-2 ALNS/TS

n Gp t[s] Gp t[s] Gp t[s] n Gp t[s] Gp t[s] Gp t[g]
20 010 0.1 0.00 0.6 0.05 04

30 0.0 04 001 92 042 12 40 0.06 0.9 0.02 404 029 2.1

40 0.08 1.1 0.01 214 035 24 60 0.08 6.4 011 61.1 062 6.2

50 0.10 2.8 0.04 409 0.83 45 80 0.09 172 021 731 0.86 14.5

60 0.08 6.2 005 505 091 6.9 100 0.16 369 022 874 1.06 26.7

Total 0.09 2.1 0.02 245 051 3.1 Total 0.10 15.3 0.14 65.5 0.71 124

Table 2.7: Comparison of our BPC-based heuristics SC-2 and BPC-DF-2 with the
ALNS/TS of Zulj et al. (2018) for the traversal strategy on a subset
of the H&W instances

SC-2 BPC-DF-2 ALNS/TS
Q@ n Gp tls] Gp t[s] Gp t[s]

6 200 0.05 2.3 0.08 1081 0.99 221.2
300 0.03 8.0 0.11 1081 1.18 747.9
400 0.03 18.6 0.23 109.8 1.60 1,737.9
500 0.02 40.2 0.48 120.0 1.84 3,388.3
600 0.02 53.7 1.04 120.0 191 5,616.7

9 200 0.16 283 148 120.0 245 248.6

12 200 149 1196 1.73 120.0 4.49 289.1

15 200 3.41 1196 3.68 120.0 6.01 313.2

Total 0.6 488 1.10 115.8 2.56 1,570.4
Table 2.8: Comparison of our BPC-based heuristics SC-2 and BPC-DF-2 with

the ALNS/TS of Zulj et al. (2018) for the traversal strategy on the
large-scale ZKS instances

SC heuristic BPC-DF heuristic
SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5
Class Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s]

M&d 096 41.8 0.83 56.5 0.70 82.0 043 60.7 0.29 85.7 0.17 132.6
Hew 0.17 164 0.15 20.6 0.13 26.8 0.08 348 0.07 486 0.05 739
ZKS 048 521 041 689 0.36 98.6 0.84 1181 0.63 177.0 0.51 294.7

Table 2.9: Summary results of our BPC-based heuristics with different time limits

Chapter 2. BPC-based Solution of the OBP 40

to reach the previously reported BKS. For the ZKS benchmark, we improve the
BKS for all 80 instances that have been considered before, i.e., those for routing
strategy traversal.

For the larger instances of the benchmarks M&0-ext, W&G-g, and W&G-u, the
considered hard time limits of two, three, or five minutes are sufficient for the
straightforward BPC-based heuristics to consistently provide high-quality solu-
tions. Indeed, in many cases, the provided solution is simply the best one of those
provided by the randomized savings heuristic used for initializing the RMP (see
Appendix 2.D) with gaps around 20 to 25% with respect to the best-known lower
bound. More refined strategies like, e.g., premature termination of the CG process,
seem necessary to tackle those instances with BPC-based heuristic approaches.

2.4.5 Comparison of Routing Strategies

Systematic studies on the quality of different routing strategies have been carried
out, e.g., in (Petersen 1997, Roodbergen and de Koster 2001a, Hwang et al. 2004).
To the best of our knowledge, the only evaluation of routing strategies in combina-
tion with optimal order batching decisions has recently been performed by Bahceci
and Oncan (2022) on the small-scale B&0 instances. In Table 2.10, we analyze the
quality of the considered routing strategies on the larger M&0 and H&W instances.
The table reports for each strategy the percentage increase in traveled distance
compared to the optimal routing averaged by capacity. For the H&W instances, we
further differentiate the two storage assignment policies CBD and UDD. Notice
that the averages in Table 2.10 are taken over all instances using the BKS when-
ever an instance is not solved to proven optimality. Because of the very small gaps
of these BKS, the impact on the results is marginal.

Table 2.10 reveals that the picking capacity is a major influencing factor for
the quality of the routing heuristics relative to the optimal routing. Strategies
return, midpoint, and largest gap become worse with increasing capacity, while
strategies traversal and combined become better. The number of orders does not
seem to have an impact on the relative quality of the heuristics (see detailed results
in Appendix 2.F). Overall, the combined strategy provides the best results of
the routing heuristics with travel distances only 2-3% longer than with optimal
routing for large capacities. Furthermore, the largest gap strategy performs quite
well for small capacities, while traversal does so for large capacities. Strategies
return and midpoint perform rather poorly in general. Regarding the storage
assignment, strategies largest gap and midpoint perform relatively better for CBD,
while traversal, return, and combined perform relatively better for UDD.

Summing up, when applying a good routing heuristic, the loss compared to an
optimal routing is around 2% in the best case (for large capacities and uniformly
distributed demands) and around 5% on average. With a poor routing heuristic,

Chapter 2. BPC-based Solution of the OBP 41

Q Traversal Return Midpoint Largest gap Combined

Panel A: M&0 instances

24 10.4% 32.8% 9.9% 5.8% 3.7%
36 71% 34.9% 13.5% 8.2% 2.5%
48 53% 36.5% 17.1% 10.8% 1.8%
Total 7.6% 34.7% 13.4% 8.2% 2.7%
Panel B: H&W UDD instances
30 17.4% 52.7% 15.4% 8.9% 7.2%
45 10.0% 53.9% 20.5% 12.5% 4.2%
60 75% 55.4% 24.6% 15.9% 2.9%
75 6.3% 56.9% 28.1% 19.0% 2.2%
Total 10.2% 54.7% 22.1% 14.0% 4.1%
Panel C: H&W CBD instances
30 192% 52.2% 9.4% 5.4% 8.7%
45 12.0% 52.4% 12.4% 7.2% 5.7%
60 9.1% 53.2% 15.2% 9.3% 4.1%
75 7.5% 54.1% 18.0% 11.3% 3.2%
Total 11.8% 53.0% 13.7% 8.3% 5.4%

Table 2.10: Percentage increase in total traveled distances compared to the opti-
mal routing strategy

the loss can be around 10-20% in many cases, going up to over 50% for the return
strategy.

2.5 Conclusions

In this paper, we have proposed an exact branch-price-and-cut (BPC) algorithm
for the order batching problem (OBP). A main building block of the approach is
the representation of the column generation (CG) pricing problem as a shortest
path problem with resource constraints (SPPRC), which can be adapted to handle
the implications from non-robust valid inequalities and branching decisions. The
SPPRC pricing problems are solved by means of an effective dynamic programming
labeling algorithm that relies on strong completion bounds. To strengthen the
underlying set-partitioning formulation of the OBP, two families of non-robust
valid inequalities are used. Moreover, we have presented two heuristic approaches
to the OBP that are based on the proposed BPC.

The focus of this paper has been on the OBP in a rectangular single-block
parallel-aisles warehouse and routing strategies traversal, return, midpoint, largest
gap, combined, and optimal. The proposed BPC and the derived heuristics, how-

Chapter 2. BPC-based Solution of the OBP 42

ever, are much more generic. They can immediately be applied to variants of the
OBP with different warehouse layouts and routing strategies, or including addi-
tional aspects such as scattered storage or a decoupling of picker and picking cart,
whenever the corresponding picker routing problem for a given batch can be solved
and the travel distances of the batches are given by a monotone function in the
comprised orders. Even more, the proposed methods or slightly modified variants
might be viable approaches to other optimization problems featuring a knapsack
substructure with complex cost function such as the job grouping problem (Tang
and Denardo 1988) or bin packing problems with general costs (Anily et al. 1994,
Hu et al. 2018) that are relevant, e.g., in flexible manufacturing or courier logistics.

In an extensive computational campaign, we have highlighted the competitive-
ness of the proposed methods. Our BPC clearly outperforms the state-of-the-art
exact approach of Muter and Oncan (2015) for the routing strategies (traversal,
midpoint, return) and instances considered in their paper: it is faster by about
two orders of magnitude and provides more than three times the number of proven
optima (201 vs. 689 of 810 instances). Overall, our BPC is able to solve 90% of the
benchmarks of Henn and Wischer (2012) and Muter and Oncan (2015) and a small
number of the large-scale instances from the benchmark of Zulj et al. (2018). Only
a small fraction of these instances has been solved to optimality before. The two
BPC-based heuristics substantially improve on the gaps reported for the state-of-
the-art heuristic approach of Zulj et al. (2018) for the routing strategies (traversal,
largest gap) and instances considered in their paper. For the Henn and Wascher
(2012) instances, computation times are comparable. For the large-scale Zulj et al.
(2018) instances, our heuristics are faster by more than one order of magnitude on
average. Overall, our heuristics improve almost 2,000 out of the 2,720 best-known
solutions reported by Zulj et al. (2018), and confirm all remaining ones except for
two instances.

As indicated by the computational results, the proposed CG method is very
powerful and can solve the LP relaxation of the set-partitioning formulation very
quickly. The BPC spends most of its time in the search tree trying to find an
optimal integer solution and to prove its optimality. Viable avenues of future
research may thus focus on techniques to raise the dual bounds more effectively
and on more refined strategies to identify high-quality solutions within the BPC.

Another promising avenue of future research is to consider integrated optimiza-
tion problems with an order-batching and picker-routing component such as the
joint planning of order batching, picker routing, and sequencing (e.g., van Gils
et al. 2019, Cano et al. 2020). The proposed BPC can serve as a central building
block for exact and heuristic solution approaches to these problems.

Bibliography

Aerts, B., Cornelissens, T., and Sorensen, K. (2021). The joint order batching and
picker routing problem: Modelled and solved as a clustered vehicle routing problem.
Computers & Operations Research, 129, 105168.

Anily, S., Bramel, J., and Simchi-Levi, D. (1994). Worst-case analysis of heuristics for
the bin packing problem with general cost structures. Operations Research, 42(2),
287-298.

Archetti, C., Bouchard, M., and Desaulniers, G. (2011). Enhanced branch and price
and cut for vehicle routing with split deliveries and time windows. Transportation
Science, 45(3), 285-298.

Azadeh, K., de Koster, R., and Roy, D. (2019). Robotized and automated warehouse
systems: Review and recent developments. Transportation Science, 53(4), 917-945.

Bahceci, U. and Oncan, T. (2022). An evaluation of several combinations of routing and
storage location assignment policies for the order batching problem. International
Journal of Production Research, 60(19), 5892-5911.

Baldacci, R., Christofides, N., and Mingozzi, A. (2008). An exact algorithm for the
vehicle routing problem based on the set partitioning formulation with additional
cuts. Mathematical Programming, 115, 351-385.

Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing
strategies for the vehicle routing problem. Operations Research, 59(5), 1269-1283.

Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance, P. (1998).
Branch-and-price: Column generation for solving huge integer programs. Operations
Research, 46(3), 316-329.

Boysen, N., de Koster, R., and Weidinger, F. (2019). Warehousing in the e-commerce
era: A survey. European Journal of Operational Research, 277(2), 396-411.

Cano, J. A., Correa-Espinal, A. A., and Gémez-Montoya, R. A. (2020). Mathemati-
cal programming modeling for joint order batching, sequencing and picker routing
problems in manual order picking systems. Journal of King Saud University —
Engineering Sciences, 32(3), 219-228.

Caron, F., Marchet, G., and Perego, A. (2000). Optimal layout in low-level picker-to-part
systems. International Journal of Production Research, 38(1), 101-117.

Celik, M. and Siiral, H. (2014). Order picking under random and turnover-based storage
policies in fishbone aisle warehouses. IIE Transactions, 46(3), 283-300.

de Koster, R., van der Poort, E., and Wolters, M. (1999a). Efficient orderbatching meth-
ods in warehouses. International Journal of Production Research, 37(7), 1479-1504.

43

Chapter 2. BPC-based Solution of the OBP 44

de Koster, R., Roodbergen, K. J., and van Voorden, R. (1999b). Reduction of walking
time in the distribution center of De Bijenkorf. In M. Speranza and P. Stédhly,
editors, New Trends in Distribution Logistics, pages 215—234. Springer, Berlin.

de Koster, R., Le-Duc, T., and Roodbergen, K. J. (2007). Design and control of ware-
house order picking: A literature review. Furopean Journal of Operational Research,
182(2), 481-501.

Establish Inc. (2013). Establish Davis logistics costs and service 2013. Presentation.
CSCMPS Annual Global Conference, Denver.

Frazelle, E. (2001). World-Class Warehousing and Material Handling. McGraw-Hill
Book Company, New York.

Gademann, N. and van de Velde, S. (2005). Order batching to minimize total travel time
in a parallel-aisle warehouse. IIE Transactions, 37(1), 63-75.

Gademann, N., van den Berg, J., and van der Hoff, H. (2001). An order batching
algorithm for wave picking in a parallel-aisle warehouse. IIE Transactions, 33(5),
385-398.

Goeke, D. and Schneider, M. (2021). Modeling single-picker routing problems in classical
and modern warehouses. INFORMS Journal on Computing, 33(2), 436-451.
Goetschalckx, M. and Ratliff, H. (1988). Order picking in an aisle. IIE Transactions,

20(1), 53-62.

Grosse, E. H., Glock, C. H., and Ballester-Ripoll, R. (2014). A simulated annealing
approach for the joint order batching and order picker routing problem with weight
restrictions. International Journal of Operations and Quantitative Management,
20(2), 65-83.

Gschwind, T., Bianchessi, N., and Irnich, S. (2019). Stabilized branch-price-and-cut
for the commodity-constrained split delivery vehicle routing problem. Furopean
Journal of Operational Research, 278(1), 91-104.

Gu, J., Goetschalckx, M., and McGinnis, L. F. (2010). Research on warehouse design and
performance evaluation: A comprehensive review. European Journal of Operational
Research, 203(3), 539-549.

Hall, R. W. (1993). Distance approximations for routing manual pickers in a warehouse.
IIE Transactions, 25(4), 76-87.

Henn, S. and Wascher, G. (2012). Tabu search heuristics for the order batching problem
in manual order picking systems. Furopean Journal of Operational Research, 222(3),
484-494.

Henn, S., Koch, S., and Wéscher, G. (2012). Order batching in order picking warehouses:
A survey of solution approaches. In R. Manzini, editor, Warehousing in the Global
Supply Chain, pages 105-137. Springer, London.

Hefller, K. and Irnich, S. (2021). A branch-and-cut algorithm for the soft-clustered
vehicle-routing problem. Discrete Applied Mathematics, 288, 218-234.

Hefller, K. and Irnich, S. (2022). A note on the linearity of Ratliff and Rosenthal’s
algorithm for optimal picker routing. Operations Research Letters, 50(2), 155-159.

Chapter 2. BPC-based Solution of the OBP 45

Hefler, K., Gschwind, T., and Irnich, S. (2018). Stabilized branch-and-price algorithms
for vector packing problems. Furopean Journal of Operational Research, 271(2),
401-419.

Hintsch, T. and Irnich, S. (2020). Exact solution of the soft-clustered vehicle-routing
problem. European Journal of Operational Research, 280(1), 164-178.

Hong, S., Johnson, A. L., and Peters, B. A. (2012). Large-scale order batching in parallel-
aisle picking systems. IIE Transactions, 44(2), 88-106.

Hu, Q., Wei, L., and Lim, A. (2018). The two-dimensional vector packing problem with
general costs. Omega, 74, 59-69.

Hwang, H. and Kim, D. G. (2005). Order-batching heuristics based on cluster analysis in
a low-level picker-to-part warehousing system. International Journal of Production
Research, 43(17), 3657-3670.

Hwang, H., Oh, Y. H., and Lee, Y. K. (2004). An evaluation of routing policies for
order-picking operations in low-level picker-to-part system. International Journal
of Production Research, 42(18), 3873-3889.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints.
In G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors, Column Generation,
pages 33-65. Springer Science & Business Media, Boston.

Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008). Subset-row inequali-
ties applied to the vehicle-routing problem with time windows. Operations Research,
56(2), 497-511.

Liibbecke, M. and Desrosiers, J. (2005). Selected topics in column generation. Operations
Research, 53(6), 1007-1023.

Marchet, G., Melacini, M., and Perotti, S. (2015). Investigating order picking system
adoption: A case-study-based approach. International Journal of Logistics Research
and Applications, 18(1), 82-98.

Martinelli, R., Poggi, M., and Subramanian, A. (2013). Improved bounds for large

scale capacitated arc routing problem. Computers & Operations Research, 40(8),
2145-2160.

Michel, R. (2016). 2016 Warehouse/DC Operations Survey: Ready to confront com-
plexity. Supply Chain Management Review. https://www.scmr.com/article/
2016_warehouse_dc_operations_survey_ready_to_confront_complexity,
November 8.

Muter, 1. and Oncan, T. (2015). An exact solution approach for the order batching
problem. IIE Transactions, 47(7), 728-738.

Oncan, T. (2015). MILP formulations and an iterated local search algorithm with tabu
thresholding for the order batching problem. FEuropean Journal of Operational Re-
search, 243(1), 142-155.

Pansart, L., Catusse, N., and Cambazard, H. (2018). Exact algorithms for the order
picking problem. Computers & Operations Research, 100, 117-127.

https://www.scmr.com/article/2016_warehouse_dc_operations_survey_ready_to_confront_complexity
https://www.scmr.com/article/2016_warehouse_dc_operations_survey_ready_to_confront_complexity

Chapter 2. BPC-based Solution of the OBP 46

Petersen, C. G. (1995). Routeing and storage policy interaction in order picking opera-
tions. Decision Sciences Institute Proceedings, 3, 1614-1616.

Petersen, C. G. (1997). An evaluation of order picking routeing policies. International
Journal of Operations €& Production Management, 17(11), 1098-1111.

Petersen, C. G. and Aase, G. (2004). A comparison of picking, storage, and routing
policies in manual order picking. International Journal of Production Economics,
92(1), 11-19.

Ratliff, H. D. and Rosenthal, A. S. (1983). Order-picking in a rectangular warehouse:
A solvable case of the traveling salesman problem. Operations Research, 31(3),
507-521.

Richards, G. (2017). Warehouse Management: A Complete Guide to Improving Effi-
ciency and Minimizing Costs in the Modern Warehouse. Kogan Page, London, 3rd
edition.

Roodbergen, K. J. (2001). Layout and routing methods for warehouses. Ph.D. thesis,
Erasmus University Rotterdam, Rotterdam, the Netherlands.

Roodbergen, K. J. and de Koster, R. (2001a). Routing methods for warehouses with mul-
tiple cross aisles. International Journal of Production Research, 39(9), 1865-1883.

Roodbergen, K. J. and de Koster, R. (2001b). Routing order pickers in a warehouse with
a middle aisle. Furopean Journal of Operational Research, 133(1), 32-43.

Tang, C. S. and Denardo, E. V. (1988). Models arising from a flexible manufacturing
machine, part II: Minimization of the number of switching instants. Operations
Research, 36(5), 778-784.

Thia, F. (2008). MySQL Foodmart Database. Pentaho Wiki. http://pentaho.dlpage.
phi-integration.com/mondrian/mysql-foodmart-database, May 8.

Tompkins, J. A., White, J. A., Bozer, Y. A., and Tanchoco, J. M. A. (2010). Facilities
planning. John Wiley & Sons, Hoboken, NJ, 4th edition.

Valle, C. A., Beasley, J. E., and da Cunha, A. S. (2016). Modelling and solving the joint
order batching and picker routing problem in inventories. In R. Cerulli, S. Fujishige,
and A. R. Mahjoub, editors, Combinatorial Optimization, volume 9849 of Lecture
Notes in Computer Science, pages 81-97, Cham, Switzerland. Springer International
Publishing.

Valle, C. A., Beasley, J. E., and da Cunha, A. S. (2017). Optimally solving the joint order
batching and picker routing problem. Furopean Journal of Operational Research,
262(3), 817-834.

van Gils, T., Caris, A., Ramaekers, K., and Braekers, K. (2019). Formulating and solving
the integrated batching, routing, and picker scheduling problem in a real-life spare
parts warehouse. European Journal of Operational Research, 277(3), 814-830.

Zulj, 1., Kramer, S., and Schneider, M. (2018). A hybrid of adaptive large neighbor-
hood search and tabu search for the order-batching problem. FEuropean Journal of
Operational Research, 264(2), 653-664.

http://pentaho.dlpage.phi-integration.com/mondrian/mysql-foodmart-database
http://pentaho.dlpage.phi-integration.com/mondrian/mysql-foodmart-database

Chapter 2. BPC-based Solution of the OBP 47

Appendix

2.A Detailed Description of Routing Strategies

In the following, we thoroughly describe the routing strategies return, midpoint,
traversal, largest gap, composite, combined, and optimal for the rectangular paral-
lel aisles single-block warehouse specified in Section 2.2. The descriptions provide
all necessary details to clarify our exact interpretation of the strategies and to al-
low reproduction of our results. For completeness, we also provide a description of
the mixed strategy that has recently been proposed by Bahceci and Oncan (2022).
We use the terms required location and required aisle for those storage locations
and picking aisles, respectively, in which there is at least one item to pick, given
a set of orders. Figures 2.6a—2.6i depict exemplary picker routes for picking the
batch comprising orders 2, 4, and 5 and each routing strategy. The items and cor-
responding storage locations are highlighted in blue and the picker route following
each strategy is shown with a dashed line.

Return Starting at the depot, the picker moves along the front cross aisle to the
rightmost required aisle, i.e., the required aisle furthest from the depot. On the
way, the picker enters each required aisle from the front cross aisle, travels towards
the required location closest to the back cross aisle, makes a U-turn, and exits the
aisle again to the front cross aisle. After exiting the rightmost required aisle, the
picker returns to the depot on the front cross aisle.

Midpoint The warehouse is virtually divided into a front and a back part such
that all storage locations closer to the front (back) cross aisle are assigned to the
front (back) part. Storage locations that are exactly in the middle between front
and back cross aisle are assigned to the front part. Starting at the depot, the
picker moves along the front cross aisle to the leftmost required aisle, i.e., the
required aisle closest to the depot. This aisle is traversed completely by entering
from the front and exiting to the back cross aisle. The picker then moves along the
back cross aisle to the rightmost required aisle. Similar to the return strategy, the
picker enters from the back cross aisle all aisles that contain at least one required
location in the back part of the warehouse, travels towards the required location
closest to the middle, makes a U-turn, and exits the aisle again to the back cross
aisle. The rightmost required aisle is traversed completely and the picker returns
along the front cross aisle to the depot. All aisles between the left- and rightmost
that contain at least one required location in the front part of the warehouse are
visited from the front cross aisle in the analog fashion as those of the back part.
In the special case that there is only a single required aisle, the route is the same
as in the return strategy.

Chapter 2. BPC-based Solution of the OBP 48

Traversal Starting at the depot, the picker moves horizontally to the rightmost
required aisle. Fach required aisle is traversed completely so that the picker enters
from and exits to different cross aisles. After each traversal, the horizontal move-
ment to the rightmost required aisle is continued on the opposite cross aisle. If the
number of required aisles is even, the picker traverses the last one from the back
to the front cross aisle and travels back to the depot on the front cross aisle. If the
number of required aisles is odd, the picker visits the last one in a return fashion
entering from and exiting to the front cross aisle and travels back to the depot on
the front cross aisle.

Largest Gap This strategy is similar to the midpoint strategy. If there is only a
single required aisle, the route is the same as in the return strategy. Otherwise, the
picker travels horizontally on the front cross aisle from the depot to the leftmost
required aisle, traverses this aisle completely, continues horizontally on the back
cross aisle to the rightmost required aisle, traverses this aisle completely, and travels
back to the depot on the front cross aisle. The other required aisles are visited on
the way from/to the depot in a return fashion either from and to only one of the
cross aisles or from and to both cross aisles, depending on the largest gap in this
aisle. The largest gap in an aisle is the largest value of any of the following: (i) the
distance between the front cross aisle and its closest required location, (ii) the
distance between the back cross aisle and its closest required location, or (iii) the
distance between any pair of required locations for which no third required location
is closer to both locations. The aisle is then visited such that the largest gap in this
aisle is not traversed. In Figure 2.6d, the largest gaps are highlighted in orange.
If the largest gap is between the front (back) cross aisle and the required location
closest to it as in the second (fourth) aisle, then a return from and to the back
(front) cross aisle is performed. If the largest gap is between any two required
locations (third aisle), then returns from and to both cross aisles are performed.

Composite The composite strategy combines elements of the traversal and re-
turn strategies. Starting from the depot and on the front cross aisle, the picker
moves horizontally to the rightmost required aisle visiting all required aisles on
the way and returns on the front cross aisle to the depot. Each required aisle is
either traversed completely (changing from the front to the back cross aisle and
vice versa) or visited in a return fashion entering from and exiting to the same
cross aisle. The choice on how to visit an aisle is made individually for each aisle
in a pure greedy fashion. There are two interpretations in the literature. For a
given required aisle and the cross aisle on which the picker arrives at this aisle, Pe-
tersen (1995) chooses traversal or return based on which of the two gives a shorter
distance between the farthest required location from the current cross aisle in the

Chapter 2. BPC-based Solution of the OBP 49

current aisle and the farthest required location from the current cross aisle in the
next required aisle. Roodbergen (2001) and Scholz and Wascher (2017), on the
other hand, choose traversal whenever the distance between the farthest required
location and the current cross aisle is more than half of the distance of a full traver-
sal. Otherwise, they choose a return visit. In both interpretations, the rightmost
required aisle has to be visited such that the picker exits to the front cross aisle,
i.e., performing a traversal if the picker arrives at the rightmost require aisle on
the back cross aisle and performing a return visit otherwise.

Combined The combined strategy is an enhanced version of the composite strat-
egy. The only difference is that the choice whether an aisle is visited with a traversal
or a return is not made individually for each aisle in a greedy fashion. Instead,
these visits are performed such that the best possible route using only these in-
aisle visits results. To this end, a simple DP algorithm can be used. We refer to
Roodbergen (2001) for details.

Mixed The mixed routing strategy is similar to the midpoint and largest gap
strategies. It adds elements of the return strategy to the midpoint strategy. The
only difference from the midpoint strategy is that the required aisles between
the leftmost and rightmost required aisles can be visited according to either the
midpoint strategy, i.e., return visits to and from both cross aisles up to the middle
of the aisles, or the return strategy, i.e., a single return visit to and from the same
cross aisle. An alternative description is as follows. The mixed strategy differs
from the largest gap strategy by allowing visits from and to both cross aisles only
in the case that the gap that is not traversed is between two required locations
that are on different parts (front and back) of the warehouse. We refer to Bahgeci
and Oncan (2022) for details.

Optimal The optimal strategy follows a distance-minimal route of all possible
picker routes which can in principle be computed by solving a traveling salesman
problem (TSP) over the required locations. For a rectangular parallel-aisles single-
block warehouse, the problem can be solved in linear time (linear in the sum of
the number of aisles and the number of required locations) by means of a DP
approach. We refer to Ratliff and Rosenthal (1983) for a detailed description of
this DP algorithm. Note that the optimal strategy allows all possible in-aisle visits,
i.e., traversal, a single return visit from the front or back cross aisle, and a double
return visit from the front and back cross aisles as in the largest gap strategy, as
well as all possible traversals from one required aisle to the next.

50

LI [[=f [] L[Tl] ([T =TT | = L1 [=l []
........... —

it “ iy | o
i 0 i .) H 3) i % H) i
' ! V=) ! H Nej - '
" A Pl | B " 3
m s ; o B " I
: ' - m : > il % i : S
i w1 2| 0| 0 w1l o i 0| -

i o0 | @ ! 1 1 >
i] o | i = i e} i ' 5
: [l = Pl o I i H [t ' [etete) &
: ' m H = | H ~— I] +~
' i - ! “ o ! i i <
! ' 1] ! ! ' > ! ' —~
' ™ ™ ! - | ™ «~ H w ' ™ ™ H Wo ' ™ ™ ! %
ottt voooo g | md R B IS " -IIIo coozss = LT Pl [
: Q i 273 H B H ' m ||||||||||||||||||||||
" bl e 8 RN, " LA “
i i = i 80 ' 5 ' ' = | = !
1 [in i I TR 1 1 Pl I Tl B | " — 00| A 1 [Tl I Tl B | 1 H 1
“ =N 2 = “ “ _ “
ZIIIIIIIO iy SIS o ITTITITITITTIIIIN ! —_ | rmmmmmm e H 2] ' Loy ! 1
“ = | : oo | = “
i < o | < =R <+ o | < R < | | < ! Q. © | <o | < o~ i
) I AT g | ! : '

< :
i 8 : 3 : 2 2 o | B i
ST E & - =3 . & O & | . = m 2
[SIsT T T 15 (BT T T 1E [T T 18 & [[IsT T T 1E
N—

Chapter 2. BPC-based Solution of the OBP

(i) Optimal strategy, ¢, = 60

i R I Tttt T O - 3 i
1 () [1 ' N
0] 0 v Lol v Yo 0 iy ~ !
H HE: HE HEEmCGE
| © H I N L | ‘
I L B iRt
! o 1 ' '
m i I i e L % i : S| <t | | < !
H o 1 Q [0 ! H '
S N N Pl | ;
w| - w1l 0 ! H = o H 20 i -
% P il o o Lo I S———— 2
il O | frommmmmmmmemmmmet 1 + -5 m'uu.\ et =t a
= ! H © a ' b |
H < ' ' — ' ! B
N [! - s > i 173
i 2 H : N ~ ™ i o0 [
o o : H « i a o 1 — H ,m [a\] [a\} ! : =
B I I L T — N -~ [[= ———" -
I [— H 1 — H =
2 “ o |1 o= ! | B
" 2] 1 > | ! 0 ' ; g
1 1 1
0 10| o i [a's 0 10| ™ ol s ! 1010 | ' m i 0 10| o H o
................ i W“ [R i @)
................ \nna/ e m _ H o |
< o | - | <o | = ! o o | a© <o | < i a0
; ; L= g R N
! - Q i
||||||||||||||| _m | m |||||||||||||||_m - Cb |||||||||||||||“m
|||||||||||||||| 9] ittt I 5% e] L st)
~
~ | A ~ | A | =l B a0l @ A
~

Figure 2.6: Picker routes for batch b = {2,4,5} and different routing strategies

Chapter 2. BPC-based Solution of the OBP o1

2.B Proof of Proposition 2.1

Proposition 2.1. The routing strategies return, midpoint, traversal, largest gap,
combined, mized, and optimal are monotone.

Proof. Let by and by be two feasible batches with b; C by,. We need to show that
cp, < ¢p, holds for the routing strategies.

Let R denote the set of additional required locations of by compared to b;.
Without loss of generality, we assume in the following that R # @ (otherwise
e, < ¢p, obviously holds for all routing strategies). Note further that for any batch
and all strategies except optimal, the total horizontal distance traveled on the cross
aisles is exactly twice the distance from the depot to the rightmost required aisle.
Thus, this distance strictly increases if there is an additional required location in
R located in an aisle further from the depot than the rightmost required aisle
of b;. Otherwise it stays the same. For these strategies, it suffices to consider
the distances traveled within the required aisles (including the distances to enter
from/exit to the cross aisles) in the following.

Return Any additional required location in R that is located in a required aisle of
b1 but not closer to the back cross aisle than each required location of b; in
this aisle does not change the distance traveled within the respective aisle.
Any additional required location in R that is located either in a required
aisle of b; and closer to the back cross aisle than each required location of
by in this aisle or in an aisle that is not required in b, strictly increases the
distance traveled within the respective aisle. Thus, ¢;,, < ¢, obviously holds
for the return strategy.

Midpoint Consider first the special case of a single required aisle in b;. If all
additional required locations in R are also located in this aisle, then ¢, < ¢,
follows with the same arguments as for the return strategy. If there is at least
one additional required location in R located in a different aisle, then the left-
and rightmost required aisles are both traversed completely for by implying
a traveled distance of 2(L + 2a) within these aisles. The maximum possible
distance traveled within the single required aisle of by is 2(L — ¢2 + a) if a
required location is the one closest to the back cross aisle, so that ¢,, < ¢,
also holds in this case.

Consider now the general case with multiple required aisles in b;. If the left-
or rightmost required aisles are not identical for b; and b, then different
aisles are traversed completely in b; and by. The distances traveled, however,
do not change. Then, ¢,, < ¢, immediately follows with similar arguments
as in the return strategy.

Chapter 2.

BPC-based Solution of the OBP 52

Traversal We need to distinguish several cases:

(i)
(i)

(iii)

(iv)

If the number of required aisles is even for b; and b, then any aisle
traversed in b; is also traversed in by and ¢, < ¢, obviously holds.

If the number of required aisles is odd for b; and b, and the rightmost
required aisle is identical for b; and by, then any aisle traversed in b,
is also traversed in b, and, with the same arguments as for the return
strategy, the distance traveled in the rightmost required aisle for by
cannot be smaller than the distance for b; so that ¢,, < ¢;, has to hold.
If the number of required aisles is odd for b; and b, but the rightmost
required aisle is not identical for b; and by, then any aisle traversed in
by is also traversed in by and there are at least two additional required
aisles in by. At least one of these is also traversed completely in b,
(the other might be the rightmost required aisle of by which is not
traversed completely). In addition, the rightmost required aisle of b,
is also traversed completely in by instead of the return visit in b;. For
be, the total distance traveled within these two aisles is thus 2(L + 2a).
For by, the maximum possible distance traveled within its rightmost
required aisle is 2(L — ¢/2 4 a) if a required location is the one closest
to the back cross aisle, so that ¢,, < ¢, also holds in this case.

If the number of required aisles is odd for b; but even for by, then any
aisle traversed in b, is also traversed in by, there is at least one additional
required aisle in by, and the rightmost aisle is traversed completely for
by instead of the return visit for b;. This additional required aisle as
well as the rightmost required aisle of b; are traversed completely in
by resulting in a traveled distance of 2(L 4 2a) within these two aisles.
For by, the maximum possible distance traveled within its rightmost
required aisle is 2(L — ¥/2 + a) if a required location is the one closest
to the back cross aisle, so that ¢;, < ¢, also holds in this case.

If the number of required aisles is even for b; but odd for by, then any
aisle traversed in by is also traversed in b, except for the rightmost
required aisle of by, there is at least one additional required aisle in
by, and the rightmost aisle is visited in return fashion for b, instead of
the complete traversal for b;. The traversal of the additional required
aisle in by obviously implies the same distance as the complete traversal
of the rightmost required aisle in by, and it immediately follows that
Cby < Coy-

Largest Gap The special case of a single required aisle in b; follows with the exact
same arguments as for the midpoint strategy. For the general case of multiple
required aisles in by, recall that required aisles are visited such that the
largest gap between pairs of required locations or cross aisles and required

Chapter 2. BPC-based Solution of the OBP 53

locations is not traveled. Any additional required location in R can clearly
only decrease the largest gap in the corresponding aisle so that the distance
traveled within this aisle can only increase. The relation ¢, < ¢, then
follows with similar arguments as for the midpoint strategy.

Combined The combined strategy allows visiting aisles either in return fashion
or by complete traversal. It chooses the distance-minimal picker route using
only these two in-aisle visits. Now, any additional required location in R does
not impact the distance of a complete traversal and can only increase the
distance traveled in a return visit of the corresponding aisle. Thus, ¢;,, < ¢,
obviously holds for the combined strategy.

Mixed The mixed strategy allows visiting aisles either in return or in midpoint
fashion choosing for each aisle the shorter of the two possibilities. Any
additional required location within an aisle can only increase the distance
traveled for visiting this aisle in both return and midpoint fashion. Then,
cp, < cp, follows by the same arguments as for the midpoint and the largest
gap strategies.

Optimal Recall that the optimal strategy follows a distance-minimal route that
is equivalent to an optimal TSP tour over the required locations. Because
the distances between all storage locations satisfy the triangle inequality, any
additional required location in R can never decrease the length of an optimal
TSP tour and we immediately have ¢, < ¢,.

]

2.C Non-Monotonicity of Composite Routing Strategy

Figure 2.7 provides a small example showing that the composite strategy is not
monotone, for neither of the interpretations by Petersen (1995) and by Roodbergen
(2001) and Scholz and Wascher (2017).

For batch b; comprising only order 6, both variants of the composite strategy
result in a picker route of length ¢,, = 48 depicted with a blue dashed line. For
batch by = {6, 7}, the corresponding picker route of both variants is indicated with
a red dotted line and has a length of ¢;, = 46. Because b; C by but ¢, > c,, the
composite strategy is obviously not monotone.

2.D Algorithm Design Choices

In the following, we give some details on additional design choices made in our
BPC algorithm. We also present the specific values used for the parameters of

Chapter 2. BPC-based Solution of the OBP 54

Figure 2.7: Picker routes for both interpretations of the composite strategy and
batches by = {6} (in blue) and by = {6, 7} (in red), ¢;, = 48, ¢, = 46

the algorithm. These values were obtained in pretests on a small subset of the
instances used in our main computational study.

Initialization of RMP We initialize the RMP with a subset €)' of feasible
batches obtained from a variant of the well-known savings heuristic by Clarke
and Wright (1964). The heuristic first calculates for each pair of customer orders,
the savings in travel distance if the customer orders are picked in one picking route
instead of two individual routes. Starting with individual batches for each order,
the heuristic then iterates over the savings in non-decreasing order and combines
the current batches of the two corresponding customer orders to one larger batch,
if feasible. To randomize the heuristic, the savings are multiplied with a number
randomly drawn from the interval [0.85,1.15]. The heuristic is run several times
and all batches contained in any of the heuristic solutions are added to §2'.

We further initialize the RMP with a lower bound on the number of pickers
needed by adding the corresponding inequality (2.6) for S = O using #3(0). Notice
that in this case, no additional resource is needed in the labeling algorithm because
the dual price pp has to be subtracted once from all batches.

Pricing Problem Solution In principle, any sorting of the orders can be used
when constructing graph G for the SPPRC representation of the pricing problem.
The sorting, however, has a substantial impact on the solution time of the pricing
problem. In our BPC, the orders are sorted non-increasingly by relative profit 7,/q,
or, after branching, by a generalized version that takes the maximum relative profit
multiplied by the maximum capacity consumption of the feasible combinations of
an order group. With this sorting, negative reduced-cost batches can often be
identified early in the labeling allowing an early termination. Moreover, labels
with positive reduced costs tend to be discarded early because of the small-valued
completion bounds resulting from this sorting.

Chapter 2. BPC-based Solution of the OBP 55

Cutting and Branching Strategy In the BPC, branching on the number of
pickers, if fractional, is given priority over cutting. Furthermore, cuts are only
separated in the root node or in its two child nodes if they result from a branching
on the number of pickers.

The overall separation strategy is to first separate CCs with the greedy and
connected component heuristics. If they fail to identify any violated cuts, we
separate SRCs by enumeration. The computationally costly MIP-based separation
of CCs is only invoked when the other separation procedures fail. Moreover, we
set a hard time limit of five seconds for each call to the MIP.

To contain the size of the B&B tree, we apply strong branching at the sec-
ond stage of the branching scheme. The strong branching procedure considers a
candidate set of order pairs (01, 0y) with fractional f,,,,. For each pair, a rough
evaluation of both child nodes is performed solving only the RMP with the corre-
sponding branching constraint without any CG. The decision on which candidate
branching is performed is taken according to the product rule (Achterberg 2007).
At the root node, the maximum size of the candidate set is 25 and we decrease the
size by two for each level of the B&B tree. We select the pairs (01, 02) for which
for0, 18 closest to 0.5 to enter the candidate set.

2.E Benchmark Instances

In the following, we provide a description of the considered benchmark sets by
Henn and Wiéscher (2012) (H&W), Muter and Oncan (2015) (M&0 and M&O-ext),
and Zulj et al. (2018) (ZKS) as well as the newly introduced instances (W&G-g and
W&G-u). The same warehouse layouts are shared by the H&W and ZKS instances and
by the M&0, M&0-ext, W&G-g, and W&G-u instances, respectively.

The H&W and ZKS benchmarks consider a rectangular single-block warehouse
with 10 parallel picking aisles and 45 storage locations on both sides of each aisle.
Each storage location has a length of one unit. Picking an item takes place in
the vertical middle of the corresponding storage location and does not require any
horizontal distance to be traveled. When entering/leaving an aisle from/to one
of the cross aisles, the order picker moves one unit in vertical direction. Thus, a
complete traversal of a picking aisle amounts to 47 units. The depot is located on
the front cross aisle in front of the leftmost aisle. There is no additional distance
to enter/leave the depot to/from the front cross aisle. The distance between two
consecutive picking aisles is five units.

The M&0, M&0-ext, W&G-g, and W&G-u benchmark sets assume a single-block
layout with 10 parallel picking aisles, 10 storage locations of length one on both
sides of each aisle, and a single depot located on the front cross aisle in front of the
leftmost aisle. Picking is performed as in the H&W and ZKS instances. The horizontal
distance between two consecutive picking aisles is 2.4 units. Unfortunately, we were

Chapter 2. BPC-based Solution of the OBP 56

not able to get any information about the distances needed to enter/leave an aisle
from/to one of the cross aisles or to enter/leave the depot for the M&0 instances.
We interpreted these distances as specified for the H&W and ZKS instances also for
the benchmark sets M&0, M&0-ext, W&G-g, and W&G-u.

The H&W benchmark considers two different scenarios with respect to storage as-
signment: class-based demand (CBD) and uniformly distributed demand (UDD).
For CDB, items are assigned to storage locations according to their demand fre-
quencies: high-demand items in the leftmost aisle, medium-demand items in sub-
sequent aisles, and low-demand items in the right half of the warehouse. For UDD,
items are randomly assigned to storage locations. Henn and Wascher (2012) orig-
inally introduced separate instances for strategies traversal and largest gap re-
sulting in the four subclasses CBD/traversal, CBD/largest gap, UDD/traversal
and UDD/largest gap. Obviously, all instances can be used for all routing strate-
gies. For all subclasses, there are 40 instances for each combination of capacity
Q € {30,45,60,75} and number of orders n € {20,30,...,100}. The number of
items per order is uniformly distributed in {5,...,25}. The complete benchmark
comprises 5,760 instances.

The ZKS benchmark comprises groups of 10 instances for the (n, Q)-pairs (200, 6),
(200,9), (200, 12), (200, 15), (300, 6), (400,6), (500, 6), and (600, 6) and order sizes
uniformly distributed in {1, ...,5}.

The original M&0 benchmark consists of instance groups characterized by capacity
Q € {24,36,48} and number of orders n € {20,30,...,100}. The sizes of the
orders are randomly drawn from {2, ..., 10} and the individual items are randomly
distributed in the warehouse. Each group comprises 10 instances resulting in a total
of 270 instances. We additionally consider the M&0 instances with larger values for
the capacities, namely Q) € {60, 72}, referred to as benchmark set M&0-ext which
comprises another 180 instances.

The W&G-g benchmark comprises groups of 10 instances where each group is
characterized by a capacity Q) € {24, 36,48,60,72} and a number of orders n €
{125,150, ...,250}. The order sizes are randomly drawn from {2,...,10} and the
individual items are randomly distributed in the warehouse. The benchmark com-
prises a total of 300 instances.

The W&G-u benchmark comprises groups of 10 instances where each group is
characterized by a capacity Q) € {24, 36,48,60,72} and a number of orders n €
{100, 150, 200, 250}. The orders have a uniform size of six items and the individual
items are randomly distributed in the warehouse. The benchmark comprises a
total of 200 instances.

Chapter 2. BPC-based Solution of the OBP a7

2.F Detailed Computational Results

In this section, we report detailed computational results of our BPC algorithm and
the BPC-based heuristics for the six considered routing strategies traversal, return,
midpoint, largest gap, combined and optimal. We report results for the three
benchmark sets from the literature by Muter and Oncan (2015) (M&0), Henn and
Wischer (2012) (H&W), and Zulj et al. (2018) (ZKS). Furthermore, we report results
for the extended Muter and Oncan (2015) instances with enlarged capacities (M&0-
ext) and the newly created benchmark instances with general (W&G-g) and uniform
(W&G-u) order weights. Finally, we provide a comparison of the routing strategies in
terms of total traveled distances. Instance-by-instance results of our main BPC and
the two BPC-based heuristics together with the best-known solution are provided
at https://logistik.wiwi.uni-k1l.de/obp-bpc-detailedresults.

Summary Results of BPC Algorithm

Tables 2.11-2.16 provide summary results for the six benchmark sets and all routing
strategies aggregated by capacity () and number of orders n. They report the
number of instances solved to optimality within the time limit of one hour (Opt)
and the average solution time in seconds (#[s]).

Detailed Results of BPC Algorithm

Tables 2.17-2.52 provide detailed results for the six benchmark sets and all routing
strategies aggregated by capacity () and number of orders n. They report the
number of instances solved to optimality within the time limit of one hour (Opt),
the average solution time in seconds (t[s]), the average time for solving the LP
relaxation in seconds (#F), the average optimality gap with respect to the best
known solution of the LP relaxation (Gp), the average optimality gap with respect
to the best-known solution before the first node resulting from a Ryan-and-Foster
branching is solved (Gp™F'), the average number of B&B nodes solved (Nds), and
the average number of CCs (CC) and SRCs (SRC) added. In cases where no
average could be computed for a given group, e.g., because the LP relaxation
could not be solved for one of the comprised instances, the respective cell is left
blank.

https://logistik.wiwi.uni-kl.de/obp-bpc-detailedresults

Chapter 2. BPC-based Solution of the OBP 58
Traversal Return Midpoint Largest gap Combined Optimal

Q@ n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]
24 20 10 10 02 10 0.1 10 0.0 10 0.1 10 0.1 10 0.1
30 10 10 0.7 10 1.1 10 04 10 09 10 04 10 0.7

40 10 10 8.6 10 1.9 10 1.6 10 23 10 3.7 10 2.2

50 10 10 14.8 10 13.0 10 3.0 10 81 10 9.2 10 6.3

60 10 10 11,5 10 3.0 10 52 10 125 10 83 10 7.1

70 10 10 379 10 73.8 10 173 10 533 10 1185 10 59.3

80 10 10 3924 10 1283 10 39.2 10 69.5 10 51.0 10 40.5

90 10 8 1,0976 10 570.1 10 269.3 9 4574 10 406.2 9 5576

100 10 10 493.0 10 274.8 9 5826 10 1865 10 376.6 9 508.3
Subtot. 90 8 2285 90 1185 89 1021 &9 87.8 90 1082 8 131.3
36 20 10 10 2.1 10 06 10 0.3 10 02 10 04 10 04
30 10 10 254 10 56 10 25 10 32 10 28 10 6.5

40 10 10 43.5 10 308 10 72 10 14.7 10 26.1 10 29.7

50 10 9 6492 10 59.3 10 2r1 10 1162 10 1632 10 59.9

60 10 10 805.8 10 1379 10 85.1 10 71.5 10 2721 10 156.3

70 10 8 1,125,510 7919 10 1604 10 3732 10 7374 10 359.3

80 10 5 2,141.7 8§ 1,829.8 10 989.0 10 9294 8 1,977.1 8 1,755.7

90 10 6 2,295.7 10 1,098.1 10 1,402.3 7 1,941.4 9 14258 7 1,969.3

100 10 4 2,394.8 5 29718 8 2,107.6 3 29779 4 3,150.5 4 2,881.0
Subtot. 90 72 10537 8 769.5 88 531.3 8 7142 81 8617 79 802.0
48 20 10 10 3.6 10 1.2 10 0.5 10 1.0 10 14 10 0.9
30 10 10 1465 10 21.8 10 464 10 356 10 49.1 10 96.5

40 10 9 612.7 10 32.0 10 573 10 478 10 41.3 10 134.2

50 10 6 2,28.0 10 613.0 10 187.0 10 4029 9 1,202.6 9 1,030.0

60 10 6 1,6779 10 3636 10 2686 10 589.4 10 539.0 10 560.2

70 10 3 29515 5 2,208.9 6 2,286.7 5 2,254.9 7 1,746.4 7 1,887.1

80 10 1 3,316.5 5 2,381.6 7 2,197.2 5 3,031.7 7 23458 T 24717

90 10 1 3,276.8 1 3,387.3 3 3,160.0 3 2,828.2 0 3,600.0 1 3,574.5

100 10 2 3,039.8 3 3,140.0 1 3,387.8 3 3,004.0 0 3,600.0 1 3,305.2
Subtot. 90 48 19234 64 1,3499 67 12879 66 1,355.1 63 14584 65 1,451.2
Total 270 208 1,068.5 237 746.0 244 6404 235 719.0 234 8094 232 794.8

Table 2.11: Summary results of our BPC algorithm for the M&0 instances

Chapter 2. BPC-based Solution of the OBP 59
Traversal Return Midpoint Largest gap Combined Optimal
Q n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]
30 20 160 160 0.0 160 0.0 160 0.0 160 0.0 160 0.0 160 0.0
30 160 160 0.0 160 0.0 160 0.0 160 0.0 160 0.0 160 0.0
40 160 160 0.1 160 0.1 160 0.0 160 0.0 160 0.0 160 0.0
50 160 160 0.1 160 0.0 160 0.0 160 0.0 160 0.0 160 0.0
60 160 158 45.2 160 0.1 160 0.1 160 0.1 160 0.1 160 0.1
70 160 158 45.2 160 0.2 160 0.1 160 0.1 160 0.2 160 0.1
80 160 155 129.2 160 0.2 160 0.1 160 0.2 159 22.9 160 13.9
90 160 154 157.5 160 0.2 160 0.1 160 0.2 159 22.8 160 0.2
100 160 155 123.1 160 0.3 160 0.1 160 0.3 160 0.3 160 0.4
Subtot. 1,440 1,420 55.6 1,440 0.1 1,440 0.1 1,440 0.1 1,438 5.2 1,440 1.6
45 20 160 160 0.2 160 0.1 160 0.1 160 0.1 160 0.1 160 0.1
30 160 160 11.0 160 0.8 160 0.4 160 0.7 160 1.0 160 0.5
40 160 160 34.1 160 1.6 160 1.1 160 2.6 160 1.7 160 2.1
50 160 157 113.5 160 6.6 160 2.3 159 24.5 160 17.2 160 5.7
60 160 152 221.5 159 35.2 160 6.9 160 7.9 159 81.6 160 15.7
70 160 150 334.3 158 80.2 160 10.7 160 24.9 158 105.2 159 56.4
80 160 145 491.4 156 146.5 160 22.0 160 32.1 157 157.0 157 142.6
90 160 136 745.1 158 178.9 160 37.2 159 78.9 157 176.0 157 140.7
100 160 132 818.8 148 432.2 158 105.9 156 182.5 148 396.6 151 346.6
Subtot. 1,440 1,352 307.8 1419 98.0 1,438 20.7 1,434 39.3 1419 104.1 1,424 78.9
60 20 160 160 1.3 160 0.3 160 0.2 160 0.2 160 0.3 160 0.3
30 160 159 49.5 160 1.9 160 1.9 160 1.9 160 2.2 160 2.0
40 160 149 325.4 160 8.0 160 5.0 160 8.3 160 12.9 160 11.9
50 160 138 657.8 159 53.5 160 25.0 160 45.2 158 70.5 159 64.7
60 160 130 932.1 159 132.8 158 127.6 159 142.9 157 2124 159 130.8
70 160 102 1,503.0 155 333.3 153 283.7 154 323.7 153 4119 152 403.6
80 160 79 2,031.4 146 626.3 147 501.5 142 693.6 147 671.5 135 951.9
90 160 64 2,432.1 134 890.4 147 608.5 143 765.3 137 1,018.8 141 996.3
100 160 39 2,898.1 123 1,381.1 139 932.1 136 1,152.7 123 1,456.0 120 1,542.8
Subtot. 1,440 1,020 1,203.4 1,356 380.8 1,384 276.2 1,374 3482 1,355 4285 1,346 456.0
7 20 160 160 36.8 160 0.4 160 0.3 160 0.5 160 0.8 160 0.9
30 160 140 598.3 160 4.8 160 3.7 160 4.0 160 5.9 160 5.4
40 160 130 881.6 160 28.3 160 18.8 160 26.0 160 29.4 160 36.1
50 160 93 1,731.2 160 139.2 160 100.4 159 157.5 158 153.5 160 162.9
60 160 83 2,031.8 155 360.1 157 304.6 155 382.2 155 375.6 157 457.1
70 160 50 2,633.9 152 721.9 144 778.8 143 892.4 139 898.9 144 878.2
80 160 36 29668 122 14732 134 1,088.1 125 14268 129 13643 108 1,835.8
90 160 15 3,362.6 111 1,901.0 109 1,857.3 101 2,036.9 111 1,854.2 98 2,099.8
100 160 13 3,399.2 67 2,758.6 78 2,441.8 65 2,712.8 77 2,499.2 57 2,838.7
Subtot. 1,440 720 1,960.2 1,247 820.8 1,262 732.6 1,228 848.8 1,249 798.0 1204 923.9
Total 5,760 4,512 881.8 5,462 325.0 5,524 257.4 5,476 309.1 5,461 3339 5,414 365.1

Table 2.12: Summary results of our BPC algorithm for the H&W instances

Chapter 2. BPC-based Solution of the OBP 60
Traversal Return Midpoint Largest gap Combined Optimal

Q@ n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]

6 200 10 2 28848 6 16482 2 29785 4 2172.0 4 25132 3 25243

300 10 1 3,253.7 2 3,011.2 1 3,250.6 0 3,600.0 1 3,243.9 1 3,257.2

400 10 1 3,259.1 0 3,600.0 0 3,600.0 1 3,265.4 0 3,600.0 0 3,600.0

500 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 1 3,384.2 0 3,600.0

600 10 1 3,581.2 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

9 200 10 0 3,600.0 1 3,344.2 0 3,600.0 0 3,600.0 3 2,675.6 22,9915

12 200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

15 200 10 0 3,600.0 1 3,510.9 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

Total 80 5 34224 10 3,239.3 3 3,478.6 5 3,379.7 9 3,277.1 6 3,346.6
Table 2.13: Summary results of our BPC algorithm for the ZKS instances
Traversal Return Midpoint Largest gap Combined Optimal

Q@ n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]

60 20 10 10 13.3 10 1.2 10 2.3 10 1.7 10 4.5 10 7.7

30 10 10 330.1 10 99.2 10 38.6 10 60.6 10 215.0 10 444.3

40 10 6 1,590.0 10 139.1 10 81.7 10 169.9 10 294.5 9 745.6

50 10 7 1,791.3 9 535.5 10 850.1 10 557.8 8 1,387.5 8 1,112.2

60 10 4 2,596.3 5 2,358.5 6 1,760.1 6 2,339.4 5 2,380.4 6 2,403.0

70 10 2 3,090.8 7 1,685.2 3 28232 3 3,145.2 5 2,645.1 2 3,220.8

80 10 0 3,600.0 1 3,371.3 2 3,054.8 0 3,600.0 2 3,107.1 0 3,600.0

90 10 1 3,262.8 2 3,063.7 1 3,357.8 0 3,600.0 1 33174 1 3,402.8

100 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

Subtot. 90 40 2,208.3 54 1,650.4 52 1,729.8 49 1,897.2 51 1,884.5 46 2,059.6

7220 10 10 3.8 10 4.4 10 5.0 10 7.0 10 9.8 10 29.8

30 10 10 368.8 10 74.6 10 226.4 10 249.0 10 195.5 10 1,010.6

40 10 8 841.6 10 980.8 9 509.8 10 717.2 9 901.6 10 487.2

50 10 4 2,728.1 6 1,760.4 8 1,525.1 71,7984 6 1,692.2 8 1417.6

60 10 6 2,141.7 3 2,863.8 5 2,326.9 2 3,272.1 2 3,074.3 6 2,216.9

70 10 2 2903.7 23,2274 2 3,1874 0 3,600.0 3 2,825.8 0 3,600.0

80 10 0 3,600.0 1 3,462.0 1 3,529.1 0 3,600.0 0 3,600.0 0 3,600.0

90 10 1 3,356.4 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

100 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 1 3,316.4 0 3,600.0

Subtot. 90 41 2,171.6 42 2/174.8 45 2,056.6 39 22715 41 2/135.1 44 2,173.6

Total 180 81 2,189.9 96 1,912.6 97 1,893.2 88 2,084.4 92 2,009.8 90 2,116.6

Table 2.14: Summary results of our BPC algorithm for the M&0-ext instances

Chapter 2. BPC-based Solution of the OBP 61
Traversal Return Midpoint Largest gap Combined Optimal

Q@ n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]
24 125 10 5 2,259.2 8 1,423.7 6 1,694.5 7 1,557.1 71,9744 7 1,730.9
150 10 4 25645 7 1,845.8 7 2,458.0 7 2,043.3 5 2,624.6 5 24104

175 10 3 2,733.7 1 3,508.7 5 3,076.1 3 3,169.5 3 3,164.7 4 2671.1

200 10 0 3,600.0 0 3,600.0 1 3,484.8 0 3,600.0 0 3,600.0 0 3,600.0
225 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 1 3,576.3 0 3,600.0
Subtot. 60 12 3,059.6 16 2929.7 19 29856 17 29283 16 3,090.0 16 2,935.4
36 125 10 0 3,600.0 1 3,489.9 4 29858 1 3,367.5 1 3,518.5 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

175 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
225 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
Subtot. 60 0 3,600.0 1 3,581.6 4 3,497.6 1 3,561.3 1 3,586.4 0 3,600.0
48 125 10 1 34453 0 3,600.0 1 3,561.2 0 3,600.0 0 3,600.0 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

175 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
225 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
Subtot. 60 1 3,574.2 0 3,600.0 1 3,593.5 0 3,600.0 0 3,600.0 0 3,600.0
60 125 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

175 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
225 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
Subtot. 60 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
72 125 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

175 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
225 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
Subtot. 60 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
Total 300 13 3,486.8 17 3,462.3 24 34553 18 34579 17 3,4953 16 3,467.1

Table 2.15: Summary results of our BPC algorithm for the

W&G-g instances

Chapter 2. BPC-based Solution of the OBP 62
Traversal Return Midpoint Largest gap Combined Optimal

Q@ n Inst Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s] Opt t[s]
24 100 10 10 77.8 10 34.0 10 37.8 10 24.5 10 28.5 10 54.0
150 10 7 14471 10 7778 10 5774 9 679.2 8 1,5389 10 1,118.0

200 10 6 2,896.3 9 1,399.0 8 1,908.6 5 2,548.2 6 2,394.1 3 3,150.8
250 10 1 3,391.7 1 3,290.1 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
Subtot. 40 24 1,953.2 30 1,375.2 28 1,531.0 24 1,713.0 24 1,890.4 23 1,980.7
36 100 10 7 22353 6 2,793.7 8 1,7374 9 1,809.8 5 2,249.7 7T 21745
150 10 2 3,006.6 1 3,336.6 0 3,600.0 1 3,380.1 1 34154 0 3,600.0

200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
Subtot. 40 9 3,110.5 7 3,332.6 8 3,1344 10 3,097.5 6 3,216.3 7 3,243.6
48 100 10 2 3,320.0 3 32511 1 3,538.3 0 3,600.0 1 35774 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
Subtot. 40 2 3,530.0 3 3,5612.8 1 3,584.6 0 3,600.0 1 3,594.3 0 3,600.0
60 100 10 1 3,542.6 0 3,600.0 0 3,600.0 0 3,600.0 1 3,423.7 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
Subtot. 40 1 3,585.6 0 3,600.0 0 3,600.0 0 3,600.0 1 3,555.9 0 3,600.0
72 100 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
150 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0

200 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
250 10 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
Subtot. 40 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0 0 3,600.0
Total 200 36 3,155.9 40 3,084.1 37 3,090.0 34 31221 32 3,171.4 30 3,204.9

Table 2.16: Summary results of our BPC algorithm for the

W&G-u instances

Chapter 2. BPC-based Solution of the OBP

63

Q n Inst Opt tls] t“* Gp GpfFf Nds CC SRC
24 20 10 10 0.2 0.0 168 0.25 5 13 12
30 10 10 0.7 0.0 1.81 031 12 21 30

40 10 10 8.6 0.0 1.01 0.28 258 18 37

50 10 10 148 0.1 1.11 044 107 33 41

60 10 10 11,5 0.1 0.82 0.32 95 10 43

70 10 10 379 02 077 0.30 212 32 53

80 10 10 3924 0.2 0.62 031 5,047 17 93

90 10 8§ 1,0976 03 056 035 13,403 22 48

100 10 10 493.0 04 044 022 1977 27 59
Subtotal 90 88 22855 0.2 098 031 2346 21 42
36 20 10 10 2.1 0.0 4.57 0.26 6 29 48
30 10 10 254 0.1 213 0.60 47 41 70

40 10 10 43.5 03 217 049 54 44 86

50 10 9 649.2 0.6 2.18 0.73 1,129 58 98

60 10 10 805.8 0.9 216 0.65 2457 35 88

70 10 8§ 1,1255 1.3 154 054 2714 41 101

80 10 5 2,141.7 20 1.66 054 4834 50 104

90 10 6 22957 25 146 0.53 5,530 42 116

100 10 4 23948 3.1 120 056 6,922 29 110
Subtotal 90 72 1,03.7 1.2 212 054 2633 41 91
48 20 10 10 36 01 6.29 014 5 33 60
30 10 10 146.5 0.4 5.00 0.50 50 81 101

40 10 9 612.7 0.9 265 060 1,297 37 118

20 10 6 2,280 23 3.06 084 2539 72 112

60 10 6 16779 37 164 070 1,88 22 122

70 10 3 29515 52 228 089 2344 62 126

80 10 1 33165 7.7 202 090 4,711 41 123

90 10 1 32768 134 233 082 1,333 8 127

100 10 2 3,039.8 14.0 156 074 1,590 63 128
Subtotal 90 48 19234 53 298 0.68 1,750 55 113
Total 270 208 1,068.5 22 203 051 2243 39 82

Table 2.17: Detailed results of our BPC algorithm for the M&0 instances and the
traversal strategy

Chapter 2. BPC-based Solution of the OBP

64

Q n Inst Opt tls] t“¥ Gp Gp®™ Nds CC SRC
24 20 10 10 0.1 00 138 0.10 3 6 11
30 10 10 1.1 0.0 167 0.30 18 25 30

40 10 10 19 00 087 0.24 24 16 36

50 10 10 13.0 0.1 083 0.24 62 32 41

60 10 10 3.0 01 059 0.16 18 9 41

70 10 10 73.8 0.2 0.68 0.27 305 34 44

80 10 10 1283 0.3 054 0.28 932 14 47

90 10 10 570.1 0.3 052 029 7,851 10 44

100 10 10 274.8 04 046 025 1,209 27 45
Subtotal 90 90 1185 0.2 084 0.24 1,158 19 38
36 20 10 10 0.6 0.0 3.61 0.11 4 28 38
30 10 10 5.6 0.1 1.69 0.20 9 41 48

40 10 10 30.8 03 214 0.33 31 45 62

50 10 10 59.3 0.5 1.61 0.36 41 67 76

60 10 10 1379 09 1.8 042 166 42 80

70 10 10 7919 13 130 0.44 450 65 80

80 10 § 1,8298 2.0 153 0.50 3,322 67 86

90 10 10 1,098.1 2.6 1.22 040 2,111 46 76

100 10 5 29718 33 121 055 5,732 53 90
Subtotal 90 83 769.5 12 1.79 037 1,318 51 71
48 20 10 10 1.2 0.1 504 0.00 2 37 25
30 10 10 21.8 0.5 4.04 0.17 6 69 70

40 10 10 320 1.2 226 0.31 14 49 86

20 10 10 613.0 2.8 2.70 0.51 72 111 106

60 10 10 363.6 43 147 0.39 60 60 103

70 10 5 2,2089 6.7 202 0.65 354 101 105

80 10 5 2,381.6 114 193 087 1478 79 109

90 10 1 3,387.3 13.0 243 1.00 1,090 112 122

100 10 3 3,140.0 16.7 1.75 0.92 1,000 88 118
Subtotal 90 64 1,349.9 6.3 263 0.54 453 T8 94
Total 270 237 746.0 2.6 1.75 0.38 976 49 67

Table 2.18: Detailed results of our BPC algorithm for the M&0 instances and the

return strategy

Chapter 2. BPC-based Solution of the OBP

65

Q n Inst Opt tls] t“¥ Gp Gp™ Nds CC SRC
24 20 10 10 0.0 0.0 0.81 0.04 2 4 3
30 10 10 04 0.0 1.08 0.13 6 12 21

40 10 10 1.6 00 070 0.22 23 9 28

20 10 10 3.0 0.1 063 021 17 12 33

60 10 10 52 01 070 0.23 31 8 42

70 10 10 173 02 064 0.25 82 14 38

80 10 10 392 03 049 0.25 276 6 43

90 10 10 269.3 04 049 0.28 2429 16 42

100 10 9 582.6 04 047 031 5,873 8 42
Subtotal 90 89 102.1 0.2 0.67 0.21 971 10 32
36 20 10 10 0.3 0.0 258 0.10 3 15 26
30 10 10 25 02 1.09 0.13 4 21 41

40 10 10 72 03 162 0.26 16 25 56

50 10 10 271 0.8 1.36 0.31 30 34 68

60 10 10 8.1 1.2 1.50 043 140 22 68

70 10 10 1604 1.9 1.09 0.46 254 26 73

80 10 10 989.0 2.8 142 0.52 2,111 37 80

90 10 10 1,402.3 3.7 1.19 048 3,509 25 86

100 10 8 2,106 4.0 094 050 6,743 16 7
Subtotal 90 88 531.3 1.7 142 035 1,423 24 64
48 20 10 10 0.5 01 419 0.01 2 32 30
30 10 10 464 0.7 341 0.33 13 73 84

40 10 10 57.3 1.7 1.89 0.36 25 44 80

50 10 10 1870 4.6 244 0.51 73 71 100

60 10 10 268.6 69 146 0.62 272 21 100

70 10 6 2,286.7 12.8 2.00 091 1819 67 104

80 10 7 02,1972 189 1.64 078 1,602 38 109

90 10 3 3,160.0 256 213 1.01 1,385 65 112

100 10 1 3,387.8 319 211 1.53 2451 47 106
Subtotal 90 67 1,287.9 11.5 236 0.67 849 51 92
Total 270 244 6404 44 148 0.41 1,081 28 63

Table 2.19: Detailed results of our BPC algorithm for the M&0 instances and the
midpoint strategy

Chapter 2. BPC-based Solution of the OBP

66

Q n Inst Opt tls] t“¥ Gp Gp™ Nds CC SRC
24 20 10 10 0.1 0.0 116 0.02 2 7 9
30 10 10 09 00 122 0.19 12 14 27

40 10 10 23 0.1 077 0.19 34 12 28

50 10 10 81 0.1 074 0.29 51 13 38

60 10 10 125 0.2 0.67 0.25 94 6 41

70 10 10 53.3 0.2 0.63 0.26 261 16 42

80 10 10 69.5 03 049 027 487 6 46

90 10 9 4574 04 049 028 5,550 12 43

100 10 10 186.5 0.5 041 026 1,114 8 43
Subtotal 90 89 8§7.8 0.2 0.73 0.22 845 10 35
36 20 10 10 0.2 0.1 246 0.00 1 12 14
30 10 10 3.2 02 1.22 0.20 6 23 41

40 10 10 147 04 172 0.23 22 30 59

50 10 10 116.2 1.2 148 042 166 40 70

60 10 10 715 1.5 149 0.38 167 24 69

70 10 10 3732 25 116 0.51 444 27 73

80 10 10 9204 3.8 145 0.50 1,712 40 78

90 10 7 19414 44 121 051 6,519 22 73

100 10 3 29779 58 123 0.76 6,745 18 78
Subtotal 90 80 7142 22 149 039 1,754 26 62
48 20 10 10 1.0 02 416 0.04 2 24 26
30 10 10 3566 1.1 359 0.24 10 65 84

40 10 10 478 25 197 0.32 23 38 80

50 10 10 402.9 7.2 252 0.60 187 60 99

60 10 10 589.4 124 148 0.69 448 26 99

70 10 52,2549 189 199 088 1,162 62 100

80 10 5 3,031.7 312 1.60 0.79 2,119 32 101

90 10 3 28282 372 244 1.28 1,580 67 103

100 10 3 3,000 505 1.80 1.26 1,290 44 105
Subtotal 90 66 1,355.1 179 240 0.68 758 46 89
Total 270 235 719.0 6.8 154 043 1,119 28 62

Table 2.20: Detailed results of our BPC algorithm for the M&0 instances and the
largest gap strategy

Chapter 2. BPC-based Solution of the OBP

67

Q n Inst Opt tls] t“¥ Gp Gp™ Nds CC SRC
24 20 10 10 0.1 0.0 153 0.19) 8 14
30 10 10 04 0.0 150 0.11 6 16 18

40 10 10 3.7 0.0 093 0.32 38 18 34

50 10 10 9.2 0.1 092 0.33 o4 25 34

60 10 10 83 0.1 065 0.29 63) 38

70 10 10 1185 0.2 0.73 033 1,320 22 40

80 10 10 51.0 0.3 056 0.28 229 12 47

90 10 10 406.2 04 046 027 3,806 11 47

100 10 10 376.6 04 043 024 1,208 24 53
Subtotal 90 90 108.2 0.2 0.86 0.26 748 16 36
36 20 10 10 0.4 0.0 350 0.06 3 24 28
30 10 10 28 01 153 024 8 29 50

40 10 10 26.1 0.3 213 043 40 46 62

50 10 10 163.2 0.6 1.93 0.51 121 65 78

60 10 10 2721 09 195 0.52 510 49 82

70 10 10 7374 14 139 053 1,499 46 85

80 10 8§ 19771 23 166 0.61 4,992 47 87

90 10 9 14258 26 125 045 2,761 38 88

100 10 4 3,150.5 33 134 0.69 8,890 39 95
Subtotal 90 81 861.7 1.3 186 0.45 2,092 43 73
48 20 10 10 14 01 548 0.09 3 34 45
30 10 10 49.1 0.5 4.66 0.40 19 72 100

40 10 10 41.3 1.1 229 0.38 32 48 95

50 10 9 12026 29 314 0.72 315 98 109

60 10 10 539.0 4.1 1.59 0.57 311 48 112

70 10 7 1,746.4 6.7 2.03 0.64 518 82 115

80 10 7 23458 9.1 1.78 0.68 3,816 48 118

90 10 0 3,600.0 12.0 262 1.17 2247 91 120

100 10 0 3,600.0 152 1.96 1.21 2587 55 125
Subtotal 90 63 1,4584 58 284 0.65 1,094 64 104
Total 270 234 8094 24 185 045 1,311 41 71

Table 2.21: Detailed results of our BPC algorithm for the M&0 instances and the
combined strategy

Chapter 2. BPC-based Solution of the OBP

68

Q n Inst Opt tls] t“¥ Gp Gp™ Nds CC SRC
24 20 10 10 0.1 0.0 136 0.15 3 8 14
30 10 10 0.7 0.0 153 0.20 9 15 25

40 10 10 22 01 089 0.27 22 14 37

50 10 10 6.3 02 075 023 38 18 36

60 10 10 71 02 059 0.24 42 7 36

70 10 10 99.3 0.3 0.69 0.26 342 20 44

80 10 10 405 0.5 051 0.23 163 10 45

90 10 9 2576 0.6 049 0.29 6,205 7 46

100 10 9 508.3 0.7 041 0.23 2,803 13 41
Subtotal 90 88 131.3 0.3 0.80 0.23 1,070 12 36
36 20 10 10 0.4 0.1 330 0.05 2 24 22
30 10 10 6.5 0.3 1.48 0.20 8 38 50

40 10 10 29.7 0.7 204 037 30 47 64

50 10 10 59.9 14 1.61 042 74 38 69

60 10 10 156.3 19 1.76 0.44 199 38 76

70 10 10 359.3 29 135 047 443 43 82

80 10 8 1,755.7 48 156 0.51 4,018 46 76

90 10 7 1,969.3 53 131 049 4764 34 84

100 10 4 28810 68 1.26 0.65 5,905 30 94
Subtotal 90 79 802.0 2.7 174 040 1,716 38 69
48 20 10 10 09 02 489 0.01 2 M 22
30 10 10 965 14 431 031 11 83 87

40 10 10 134.2 34 245 045 38 55 95

20 10 9 1,030.0 7.2 3.07 0.73 228 96 110

60 10 10 560.2 10.3 1.50 0.55 283 43 100

70 10 7T 1887.1 17.7 216 0.79 466 83 114

80 10 T 24717 277 1.67 058 1,498 54 123

90 10 1 35745 383 2.51 1.18 1,091 84 118

100 10 1 3,305.2 435 207 135 1,401 67 121
Subtotal 90 65 1,451.2 16.6 2.74 0.66 558 67 99
Total 270 232 7948 6.5 1.76 043 1,114 39 68

Table 2.22: Detailed results of our BPC algorithm for the M&0 instances and the
optimal strategy

Chapter 2. BPC-based Solution of the OBP

69

Q n Inst Opt t[s] t“** Gp Gp®F Nds CC SRC
30 20 160 160 0.0 0.0 0.71 0.04 3 1 0
30 160 160 0.0 0.0 0.42 0.04 5 2 1
40 160 160 0.1 0.0 0.30 0.04 14 6 1
50 160 160 0.1 0.0 0.28 0.02 7 4 1
60 160 158 45.2 0.0 0.27 0.03 966 8 1
70 160 158 45.2 0.0 0.21 0.03 387 10 2
80 160 155 129.2 0.0 0.20 0.03 1,295 12 2
90 160 154 157.5 0.0 0.16 0.02 1,230 10 1
100 160 155 123.1 0.0 0.17 0.02 888 16 2
Subtotal 1,440 1,420 55.6 0.0 0.30 0.03 533 8 1
45 20 160 160 0.2 0.0 1.15 0.28 13 8 10
30 160 160 11.0 0.0 0.73 0.29 933 9 15
40 160 160 34.1 0.0 0.61 0.24 1,845 14 19
50 160 157 113.5 0.0 0.58 0.26 5,001 22 26
60 160 152 221.5 0.1 047 0.23 7458 21 29
70 160 150 334.3 0.1 0.43 0.21 10,293 25 31
80 160 145 491.4 0.2 0.41 0.20 10,162 27 36
90 160 136 745.1 0.2 0.38 0.19 13,483 33 38
100 160 132 818.8 0.3 0.36 0.19 14,740 30 41
Subtotal 1,440 1,352 307.8 0.1 0.57 0.23 7,103 21 27
60 20 160 160 1.3 0.0 2.03 0.35 71 15 25
30 160 159 49.5 0.0 1.33 0.36 2911 12 31
40 160 149 325.4 0.1 1.05 0.39 11,555 16 43
50 160 138 657.8 0.2 0.88 0.36 21,302 15 50
60 160 130 932.1 0.3 0.80 0.34 21,348 21 55
70 160 102 1,503.0 04 0.73 0.34 29,825 24 60
80 160 79 2,031.4 0.6 0.66 0.32 33,341 26 68
90 160 64 24321 09 0.61 0.31 33,915 25 75
100 160 39 2,898.1 1.2 0.59 0.29 30,792 32 81
Subtotal 1440 1,020 12034 04 096 034 20562 21 54
75 20 160 160 36.8 0.0 2.30 0.29 1,512 18 45
30 160 140 598.3 0.1 1.79 0.39 16,026 17 53
40 160 130 881.6 0.2 1.55 0.38 19,846 21 67
50 160 93 1,731.2 04 1.41 0.42 27,441 27 72
60 160 83 2,031.8 0.7 1.12 0.40 26,043 26 83
70 160 50 2,633.9 1.1 0.99 0.36 28,428 30 93
80 160 36 2,966.8 1.5 0.87 0.35 27,565 35 96
90 160 15 3,362.6 2.2 0.86 0.36 24390 39 105
100 160 13 3,399.2 2.8 0.75 0.33 22555 39 108
Subtotal 1,440 720 1,960.2 1.0 1.29 0.36 21,534 28 80
Total 5,760 4,512 881.8 0.4 0.78 0.24 12433 19 41

Table 2.23: Detailed results of our BPC algorithm for the H&W instances and the

traversal strategy

Chapter 2. BPC-based Solution of the OBP 70

Q n Inst Opt t[s] t“** Gp Gp®F Nds CC SRC
30 20 160 160 0.0 0.0 0.50 0.02 2 1 0
30 160 160 0.0 0.0 027 0.01 3 1 1

40 160 160 0.1 0.0 0.23 0.03 9 3 1

50 160 160 0.0 0.0 0.19 0.01 3 2 1

60 160 160 0.1 0.0 0.17 0.01 5 3 1

70 160 160 0.2 0.0 0.13 0.01 7 4 1

80 160 160 0.2 0.0 0.12 0.01 17 3 1

90 160 160 0.2 0.0 0.10 0.01 10 3 2

100 160 160 0.3 0.0 0.11 0.01 7 4 2
Subtotal 1,440 1,440 0.1 0.0 0.20 0.01 7 3 1
45 20 160 160 0.1 0.0 0.90 0.15 8 7 7
30 160 160 0.8 0.0 0.62 0.19 64 9 14

40 160 160 1.6 0.0 0.50 0.19 61 10 16

50 160 160 6.6 0.0 0.50 0.21 262 16 20

60 160 159 35.2 0.1 0.39 0.19 1,294 12 24

70 160 158 80.2 0.1 0.37 0.18 2,553 17 25

80 160 156 146.5 0.1 0.33 0.17 3,636 15 27

90 160 158 178.9 0.2 0.30 0.16 3,526 15 28

100 160 148 432.2 0.2 0.31 0.17 8,045 12 32
Subtotal 1,440 1,419 98.0 0.1 047 018 2,161 13 21
60 20 160 160 0.3 0.0 1.70 0.18 8§ 17 19
30 160 160 1.9 0.0 1.14 0.26 72 19 28

40 160 160 80 0.1 0.89 0.28 106 20 34

50 160 159 53.5 0.2 077 031 1,209 21 40

60 160 159 132.8 0.3 0.70 0.31 2,314 27 43

70 160 155 333.3 0.4 0.65 0.30 5415 26 45

80 160 146 626.3 0.6 0.61 031 7452 24 48

90 160 134 890.4 0.8 0.54 0.30 8,265 23 53

100 160 123 1,381.1 1.0 0.56 0.33 10,414 27 54
Subtotal 1,440 1,356 380.8 0.4 0.84 0.29 3917 23 40
75 20 160 160 04 0.0 2.11 0.09 4 21 24
30 160 160 4.8 0.1 1.68 0.26 22 27 45

40 160 160 28.3 0.3 1.45 0.34 102 33 53

50 160 160 139.2 0.5 1.31 0.37 992 38 56

60 160 155 360.1 0.8 1.07 0.38 2,263 39 59

70 160 152 7219 1.3 0.95 0.38 3,866 37 65

80 160 122 11,4732 19 0.94 0.43 5,625 44 70

90 160 111 1,901.0 2.7 091 0.46 6,157 42 71

100 160 67 2,758.6 3.3 0.99 0.59 9,209 42 77
Subtotal 1,440 1,247 820.8 1.2 1.26 0.37 3,138 36 58

Total 5,760 5,462 325.0 04 069 021 2306 18 30

Table 2.24: Detailed results of our BPC algorithm for the H&W instances and the
return strategy

Chapter 2. BPC-based Solution of the OBP 71

Q n Inst Opt t[s] t** Gp GpR*F Nds CC SRC
30 20 160 160 0.0 0.0 0.48 0.03 3 1 0
30 160 160 0.0 0.0 026 0.01 2 1 0

40 160 160 0.0 0.0 0.20 0.01 2 1 1

50 160 160 0.0 0.0 0.16 0.01 2 1 0

60 160 160 0.1 0.0 0.16 0.01 3 2 1

70 160 160 0.1 0.0 0.12 0.01 3 2 1

80 160 160 0.1 0.0 0.11 0.01 5 3 1

90 160 160 0.1 0.0 0.09 0.00 3 2 1

100 160 160 0.1 0.0 0.08 0.00 3 3 1
Subtotal 1,440 1,440 0.1 0.0 0.18 0.01 3 2 1
45 20 160 160 0.1 0.0 0.69 0.12 5 5 6
30 160 160 04 0.0 0.49 0.15 17 6 11

40 160 160 1.1 0.0 0.40 0.15 45 6 16

50 160 160 2.3 0.0 0.40 0.15 72 8 19

60 160 160 6.9 0.1 033 0.16 227 6 21

70 160 160 10.7 0.1 0.32 0.16 218 5 23

80 160 160 22.0 0.2 0.30 0.15 332 7 27

90 160 160 372 0.2 0.30 0.15 529 6 27

100 160 158 1059 0.3 0.29 0.16 1,683 5 30
Subtotal 1,440 1,438 20.7 0.1 039 0.15 347 6 20
60 20 160 160 0.2 0.0 1.08 0.11 4 13 15
30 160 160 1.9 0.0 0.88 0.25 43 12 26

40 160 160 50 0.1 0.72 0.30 57 13 31

50 160 160 25.0 0.2 0.63 0.30 586 12 36

60 160 158 1276 0.3 0.63 0.34 2,784 16 40

70 160 153 283.7 0.5 0.58 0.33 5,145 13 40

80 160 147 501.5 0.6 0.54 032 648 12 42

90 160 147 608.5 0.9 0.50 0.31 5916 14 46

100 160 139 932.1 1.2 0.49 0.32 7,246 11 48
Subtotal 1,440 1,384 276.2 04 0.67 0.29 3,141 13 36
75 20 160 160 0.3 0.0 1.48 0.08 3 18 21
30 160 160 3.7 0.1 1.32 0.24 23 20 39

40 160 160 188 0.3 1.17 0.34 128 26 47

50 160 160 100.4 0.6 1.09 0.43 684 30 50

60 160 157 304.6 09 094 044 2179 27 56

70 160 144 7788 1.5 0.86 0.47 5,038 24 57

80 160 134 1,088.1 2.2 0.78 0.45 4,933 29 59

90 160 109 1,857.3 3.1 0.84 0.52 7,098 28 62

100 160 78 2,441.8 4.0 0.90 0.61 8481 27 66
Subtotal 1,440 1,262 732.6 1.4 1.04 0.40 3,174 25 51

Total 5,760 5,524 2574 0.5 057 021 1,666 11 27

Table 2.25: Detailed results of our BPC algorithm for the H&W instances and the
midpoint strategy

Chapter 2. BPC-based Solution of the OBP 72

Q n Inst Opt t[s] t** Gp GpR*F Nds CC SRC
30 20 160 160 0.0 0.0 0.49 0.01 2 1 0
30 160 160 0.0 0.0 0.26 0.00 2 1 0

40 160 160 0.0 0.0 0.22 0.01 2 1 1

50 160 160 0.0 0.0 0.19 0.01 3 2 0

60 160 160 0.1 0.0 0.18 0.01 4 2 1

70 160 160 0.1 0.0 0.12 0.01 3 2 1

80 160 160 0.2 0.0 0.12 0.01 28 2 1

90 160 160 0.2 0.0 0.11 0.01 6 3 1

100 160 160 0.3 0.0 0.11 0.01 12 3 1
Subtotal 1,440 1,440 0.1 0.0 0.20 0.01 7 2 1
45 20 160 160 0.1 0.0 0.71 0.12 6 6 7
30 160 160 0.7 0.0 0.50 0.17 55 6 12

40 160 160 2.6 0.0 040 0.14 214 8 16

50 160 159 245 0.1 037 015 1,097 8 19

60 160 160 79 0.1 031 0.14 220 7 21

70 160 160 249 0.1 0.29 0.15 779 8 24

80 160 160 32.1 0.2 0.28 0.15 635 7 26

90 160 159 789 0.2 0.28 0.14 1,488 7 27

100 160 156 1825 0.3 027 015 3,177 6 30
Subtotal 1,440 1,434 39.3 0.1 0.38 0.15 852 7 20
60 20 160 160 0.2 0.0 1.15 0.13 5 13 16
30 160 160 1.9 0.1 0.90 0.29 43 12 25

40 160 160 83 0.1 0.75 0.30 132 14 32

50 160 160 452 0.2 0.63 0.30 1,021 12 35

60 160 159 1429 0.4 0.60 0.32 2,380 15 39

70 160 154 323.7 0.6 0.55 0.31 4,587 13 40

80 160 142 693.6 0.9 0.53 032 7,339 15 41

90 160 143 765.3 1.2 0.48 0.30 6,327 13 47

100 160 136 1,152.7 1.5 0.48 0.32 7,115 12 47
Subtotal 1,440 1,374 348.2 0.6 0.67 0.29 3,217 13 36
75 20 160 160 0.5 0.0 1.56 0.11 4 18 23
30 160 160 40 0.2 131 0.26 22 19 40

40 160 160 26.0 04 1.19 0.37 165 25 46

50 160 159 1575 0.8 1.10 0.42 1,008 28 49

60 160 155 382.2 1.4 0.91 0.42 2,170 26 53

70 160 143 892.4 2.4 0.86 0.46 4,194 27 56

80 160 125 1,426.8 3.0 0.79 0.47 5,623 29 57

90 160 101 2,036.9 4.7 087 0.55 5,710 27 60

100 160 65 2,712.8 6.1 0.88 0.60 6,904 30 64
Subtotal 1,440 1,228 848.8 2.1 1.05 0.41 2867 25 50

Total 5,760 5476 309.1 0.7 058 021 1,736 12 27

Table 2.26: Detailed results of our BPC algorithm for the H&W instances and the
largest gap strategy

Chapter 2. BPC-based Solution of the OBP

73

Q n Inst Opt t[s] t“** Gp Gp®F Nds CC SRC
30 20 160 160 0.0 0.0 0.57 0.02 2 0 0
30 160 160 0.0 0.0 034 0.02 2 2 0

40 160 160 0.0 0.0 024 0.02 5 2 1

50 160 160 0.0 0.0 0.23 0.01 2 3 1

60 160 160 0.1 0.0 0.21 0.01 10 4 1

70 160 160 0.2 0.0 0.17 0.01 24 4 1

80 160 159 229 0.0 016 0.01 123 5 1

90 160 159 228 0.0 0.14 0.01 35 5 1

100 160 160 0.3 0.0 0.14 0.01 14 5 1
Subtotal 1,440 1,438 52 0.0 0.24 0.02 24 3 1
45 20 160 160 0.1 0.0 0.93 0.20 18 7 8
30 160 160 1.0 0.0 0.60 0.22 7 7 12

40 160 160 1.7 0.0 0.52 0.19 58 10 18

50 160 160 17.2 0.1 0.49 0.23 933 12 21

60 160 159 81.6 0.1 040 020 3,769 13 24

70 160 158 105.2 0.1 0.35 0.19 3,345 14 24

80 160 157 157.0 0.2 0.35 0.19 3,995 13 29

90 160 157 176.0 0.2 0.31 0.17 3,176 17 29

100 160 148 396.6 0.3 0.30 0.17 7,161 10 31
Subtotal 1,440 1,419 104.1 0.1 047 020 2,504 12 22
60 20 160 160 0.3 0.0 1.76 0.17 7 16 20
30 160 160 22 0.1 1.22 0.30 68 17 29

40 160 160 129 0.1 0.98 0.32 200 22 36

50 160 158 70.5 0.2 0.76 0.29 1,958 20 40

60 160 157 212.4 04 0.73 032 4234 24 44

70 160 153 4119 0.5 0.66 0.30 6,443 28 48

80 160 147 671.5 0.7 0.61 0.29 6,860 27 51

90 160 137 1,018.8 1.0 0.56 0.31 9,098 23 57

100 160 123 1,456.0 1.3 0.53 0.30 10,721 27 58
Subtotal 1,440 1,355 428.5 0.5 0.87 0.29 4,399 23 43
75 20 160 160 0.8 0.0 2.23 0.15 8 21 31
30 160 160 59 0.2 1.73 0.29 34 23 47

40 160 160 29.4 0.3 1.43 0.34 99 30 55

50 160 158 153.5 0.6 1.34 0.35 980 35 61

60 160 155 375.6 1.0 1.09 0.37 2474 38 65

70 160 139 898.9 1.7 0.96 0.37 5,198 36 74

80 160 129 1,364.3 2.4 0.88 0.35 5,179 45 79

90 160 111 1,854.2 3.0 0.83 0.36 6,282 44 82

100 160 77 2,499.2 4.3 0.85 043 7,245 42 89
Subtotal 1,440 1,249 798.0 1.5 1.26 0.34 3,065 35 65
Total 5,760 5,461 333.9 0.5 0.71 021 2495 18 32

Table 2.27: Detailed results of our BPC algorithm for the H&W instances and the
combined strategy

Chapter 2. BPC-based Solution of the OBP

74

Q n Inst Opt tls] t** Gp GpR*' Nds CC SRC
30 20 160 160 0.0 0.0 0.55 0.02 2 1 0
30 160 160 0.0 0.0 0.28 0.00 2 1 0

40 160 160 0.0 0.0 0.22 0.01 4 2 1

50 160 160 0.0 0.0 0.20 0.00 2 1 0

60 160 160 0.1 0.0 0.19 0.01 3 3 1

70 160 160 0.1 0.0 0.14 0.01 9 2 1

80 160 160 139 0.0 0.14 0.01 360 3 1

90 160 160 0.2 0.0 0.13 0.01 5 3 1

100 160 160 0.4 0.0 0.12 0.01 17 3 1
Subtotal 1,440 1,440 1.6 0.0 0.22 0.01 45 2 1
45 20 160 160 0.1 0.0 0.79 0.16 9 7 7
30 160 160 0.5 0.0 0.51 0.17 25 8 13

40 160 160 21 0.0 043 0.15 82 10 17

50 160 160 5.7 0.1 0.41 0.18 204 13 20

60 160 160 157 0.1 034 0.18 393 10 23

70 160 159 56.4 0.2 0.31 0.16 1487 11 24

80 160 157 142.6 0.2 029 0.16 3,175 10 26

90 160 157 140.7 0.3 0.28 0.15 2,121 12 27

100 160 151 346.6 04 0.27 0.16 5,071 9 31
Subtotal 1,440 1,424 789 0.2 040 0.16 1,396 10 21
60 20 160 160 03 0.0 148 0.15 6 17 20
30 160 160 20 0.1 1.03 0.26 36 17 28

40 160 160 11.9 0.2 084 0.31 174 22 34

50 160 159 64.7 0.3 0.69 0.30 1,164 19 38

60 160 159 130.8 0.5 066 031 1,272 23 44

70 160 152 403.6 0.7 0.60 0.31 4,359 26 44

80 160 135 9519 1.0 0.58 0.32 8,010 23 48

90 160 141 996.3 1.4 0.51 0.31 5,375 22 51

100 160 120 1,542.8 1.8 0.51 0.31 7,930 24 55
Subtotal 1440 1346 456.0 0.7 0.77 0.29 3,147 22 40
75 20 160 160 09 0.1 198 0.12 5 25 26
30 160 160 54 0.2 1.56 0.25 21 28 41

40 160 160 36.1 0.5 1.35 0.35 100 36 53

50 160 160 1629 0.9 1.22 0.38 798 36 54

60 160 157 457.1 1.5 1.03 039 1,759 40 60

70 160 144 878.2 2.3 0.91 0.40 3,246 38 64

80 160 108 1,835.8 3.2 0.88 0.43 5,349 47 69

90 160 98 2,099.8 4.5 0.88 048 5,230 43 71

100 160 57 2,838.7 5.7 095 0.59 6,614 44 77
Subtotal 1,440 1,204 9239 2.1 1.19 0.38 2,569 37 57
Total 5,760 5,414 365.1 0.7 0.65 0.21 1,789 18 30

Table 2.28: Detailed results of our BPC algorithm for the H&W instances and the
optimal strategy

Chapter 2.

BPC-based Solution of the OBP

75

Q@ n Inst Opt t[s] t“* Gp GpfFf Nds CC SRC
6 200 10 2 28848 0.1 0.18 0.06 19,134 128 76
300 10 1 32537 03 013 0.03 9,538 147 7
400 10 1 32591 06 015 0.03 6,987 140 101
500 10 0 3,6000 1.3 0.16 0.03 3,615 152 123
600 10 1 35812 19 015 0.02 1,088 151 128
9 200 10 0 3,6000 06 038 018 3,905 140 121
12200 10 0 3,600,0 39 0.80 055 8,663 39 128
15 200 10 0 3,600.0 11.9 1.54 1.09 3,531 61 128
Total 80 5 34224 26 044 025 7,058 120 110

Table 2.29: Detailed results of our BPC algorithm for the ZKS instances and the
traversal strategy

Q n Inst Opt t[s] t* Gp GptF Nds CC SRC
6 200 10 6 1,648.2 0.1 0.24 0.07 10,474 92 63
300 10 2 3,011.2 0.3 0.15 0.04 11,391 133 82
400 10 0 3,600.0 0.7 0.15 0.05 4,407 155 120
500 10 0 3,600.0 1.2 0.13 0.05 2,706 150 128
600 10 0 3,600.0 1.9 0.13 0.04 1,080 138 128
9 200 10 1 3,3442 0.5 041 0.15 4,235 92 123
12 200 10 0 3,600.0 1.6 0.60 0.34 3,552 35 128
15 200 10 1 35109 58 082 049 1,862 20 128
Total 80 10 3,239.3 1.5 033 0.15 4,963 102 112

Table 2.30: Detailed results of our BPC algorithm for the ZKS instances and the
return strategy

@ n Inst Opt t[s] t“* Gp GptFf Nds CC SRC
6 200 10 2 29785 0.1 0.18 0.06 29,924 111 71
300 10 1 3,250.6 04 0.16 0.03 19,045 147 76
400 10 0 3,600.0 0.8 0.16 0.04 10,661 147 112
500 10 0 3,6000 16 0.16 0.04 3,335 160 127
600 10 0 3,6000 25 0.16 0.04 1,597 160 128
9 200 10 0 3,6000 09 038 020 5,817 128 128
12 200 10 0 3,6000 38 055 031 6,797 41 128
15 200 10 0 3,600.0 13.2 146 1.05 2,573 64 128
Total 80 3 34786 29 040 0.22 9969 120 112

Table 2.31: Detailed results of our BPC algorithm for the ZKS instances and the
midpoint strategy

Chapter 2.

BPC-based Solution of the OBP

76

Q@ n Inst Opt t[s] t“* Gp GpfFf Nds CC SRC
6 200 10 4 21720 0.2 019 0.06 20,578 110 80
300 10 0 3,6000 03 0.17 0.04 21,082 160 7
400 10 1 32654 09 016 0.04 5,841 147 113
500 10 0 3,6000 1.6 0.17 0.04 3,282 160 128
600 10 0 3,6000 25 0.15 0.04 1,402 160 128
9 200 10 0 3,6000 08 035 018 7,359 128 128
12200 10 0 3,600.0 4.2 055 030 8,070 37 128
15 200 10 0 3,600.0 14.2 147 106 2,533 76 128
Total 80 5 3,379.7 3.1 040 022 8768 122 114

Table 2.32: Detailed results of our BPC algorithm for the ZKS instances and the
largest gap strategy

Q n Inst Opt t[s] t* Gp GptF Nds CC SRC
6 200 10 4 2,513.2 0.2 0.16 0.07 15,785 116 57
300 10 13,2439 04 0.15 0.04 17,634 120 71
400 10 0 3,600.0 0.8 0.13 0.03 8213 146 112
500 10 1 33842 14 0.12 0.03 3,880 158 120
600 10 0 3,600.0 2.3 0.12 0.04 1,155 159 128
9 200 10 3 2,675.6 0.8 0.40 0.16 8,015 75 117
12 200 10 0 3,600.0 3.0 050 0.29 6,920 37 128
15 200 10 0 3,600.0 99 1.15 0.83 3,238 33 128
Total 80 9 3277.1 24 034 0.19 8,105 106 108

Table 2.33: Detailed results of our BPC algorithm for the ZKS instances and the
combined strategy

@ n Inst Opt t[s] t“* Gp GptFf Nds CC SRC
6 200 10 3 25243 0.2 020 008 17,991 105 58
300 10 1 32572 0.5 016 0.05 20,512 129 80
400 10 0 3,600.0 09 013 0.04 11,327 146 118
500 10 0 3,600.0 1.8 0.10 0.04 3,772 147 120
600 10 0 3,600.0 27 0.12 0.04 1,568 155 128
9 200 10 2 29915 1.1 034 012 4,529 108 116
12 200 10 0 3,6000 49 052 033 5249 37 128
15 200 10 0 3,600.0 185 1.19 089 2203 39 128
Total 80 6 3,346.6 3.8 035 0.20 8,394 108 109

Table 2.34: Detailed results of our BPC algorithm for the ZKS instances and the
optimal strategy

Chapter 2. BPC-based Solution of the OBP 7

Q n Inst Opt t[s] ttP Gp Gp®*F Nds CC SRC

60 20 10 10 13.3 0.1 6.16 0.06 4 41 48
30 10 10 330.1 09 335 0.34 144 60 85
40 10 6 1,590.0 20 320 041 298 75 126

50 10 7 1,791.3 4.8 440 084 827 64 128

60 10 4 2,596.3 96 398 094 999 71 124
70 10 23,0908 157 215 0.75 1,266 72 128
80 10 0 3,600.0 262 239 097 1,203 56 128
90 10 1 3,262.8 36.7 235 0.68 1,126 44 128
100 10 0 3,600.0 480 224 088 683 73 128

Subtotal 90 40 2,208.3 16.0 3.36 0.65 728 62 114

72 20 10 10 3.8 0.2 755 0.02 3 60 23
30 10 10 368.8 1.3 897 048 25 108 126
40 10 § 841.6 3.8 6.59 048 47 86 116

50 10 4 27281 13.6 5.92 224 100 93

60 10 6 2,141.7 249 458 0.63 234 83 128

70 10 2 29037 428 3.00 275 89 120

80 10 0 3,600.0 60.1 361 091 38 91 128

90 10 1 3,356.4 844 3.03 0.84 226 114 128

100 10 0 3,600.0 1044 199 0.51 344 69 128
Subtotal 90 41 2,171.6 373 5.03 196 89 110
Total 180 81 2,189.9 26.6 4.19 462 75 112

Table 2.35: Detailed results of our BPC algorithm for the M&0-ext instances and
the traversal strategy

Chapter 2. BPC-based Solution of the OBP

78

Q n Inst Opt t[s] t* Gp Gp*f Nds CC SRC
60 20 10 10 1.2 0.2 434 0.00 2 29)
30 10 10 99.2 1.5 3.15 0.06 4 83 86

40 10 10 139.1 4.6 267 024 13 66 102

50 10 9 5355 11.2 333 036 29 &3 121

60 10 5 2,358.5 232 385 0.66 121 130 124

70 10 7 1,685.2 325 193 057 133 102 124

80 10 1 33713 620 264 125 457 114 127

90 10 2 30637 766 233 082 730 73 127

100 10 0 3,600.0 952 258 1.25 428 114 128
Subtotal 90 54 1,650.4 34.1 298 058 213 88 105
72 20 10 10 4.4 0.4 7.30 0.00 2 81 14
30 10 10 74.6 4.2 7.75 0.06 3 121 72

40 10 10 980.8 17.2 6.01 0.31 32 117 97

50 10 6 1,760.4 62.7 445 0.56 60 133 128

60 10 3 2,863.8 131.0 4.86 135 127 128

70 10 23,2274 169.6 3.20 1.14 142 130 128

80 10 1 3,462.0 321.3 4.21 1.56 166 131 128

90 10 0 3,600.0 496.7 4.50 229 89 146 128

100 10 0 3,600.0 5459 4.63 2.87 115 132 128
Subtotal 90 42 2,174.8 194.3 5.21 83 124 106
Total 180 96 1,912.6 114.2 4.10 148 106 105

Table 2.36: Detailed results of our BPC algorithm for the M&0-ext instances and
the return strategy

Chapter 2. BPC-based Solution of the OBP

79

Q n Inst Opt t[s] ti" Gp Gp*f Nds CC SRC
60 20 10 10 2.3 0.3 3.96 0.00 2 35 24
30 10 10 38.6 25 202 007 5 62 60

40 10 10 81.7 8.8 236 030 18 52 102

50 10 10 850.1 26.8 332 058 65 T2 114

60 10 6 1,760.1 49.7 347 084 207 91 119

70 10 3 2,823.2 87.0 215 090 472 8 117

80 10 2 3,054.8 146.5 242 1.27 472 68 123

90 10 1 3,357.8 196.5 253 1.15 658 58 120

100 10 0 3,600.0 2276 2.69 1.63 405 101 123
Subtotal 90 52 1,729.8 82.8 2.77 075 256 69 100
72 20 10 10 5.0 0.6 6.02 0.00 2 63 15
30 10 10 226.4 8.5 6.34 0.16 7 110 87

40 10 9 509.8 34.0 4.67 0.25 23 93 104

50 10 8§ 1,525.1 169.4 4.00 0.50 42 123 127

60 10 5 2,326.9 3327 4.67 1.39 90 120 124

70 10 2 3,1874 539.2 3.39 84 115 117

80 10 1 3,529.1 1,050.3 4.95 2.53 87 114 128

90 10 0 3,600.0 1,395.7 4.73 274 47 143 128

100 10 0 3,600.0 1,656.8 71 114 114
Subtotal 90 45 2,056.6 576.4 50 110 105
Total 180 97 1,893.2 329.6 153 90 103

Table 2.37: Detailed results of our BPC algorithm for the M&0-ext instances and

the midpoint strategy

Chapter 2. BPC-based Solution of the OBP

80

Q n Inst Opt t[s] ti" Gp Gp*f Nds CC SRC
60 20 10 10 1.7 0.4 4.08 0.00 2 23 23
30 10 10 60.6 44 215 0.12 4 49 73

40 10 10 169.9 16.1 255 037 19 50 113

50 10 10 5957.8 49.8 343 066 98 62 110

60 10 6 2,339.4 874 3.62 094 360 98 112

70 10 3 3,145.2 148.0 2.35 457 88 110

80 10 0 3,600.0 319.2 257 138 368 64 117

90 10 0 3,600.0 3149 275 142 694 54 112

100 10 0 3,600.0 3923 257 148 361 95 120
Subtotal 90 49 1,897.2 148.0 2.90 263 65 99
72 20 10 10 7.0 0.8 6.04 0.00 2 69 11
30 10 10 249.0 18.7 648 0.11 9 100 66

40 10 10 717.2 60.4 4.59 0.27 16 90 91

50 10 71,7984 300.1 4.38 63 113 116

60 10 2 3,272.1 723.2 4.79 148 105 111

70 10 0 3,600.0 1,109.0 3.92 103 106 103

80 10 0 3,600.0 2,192.1 44 95 93

90 10 0 3,600.0 2,614.2 8 118 69

100 10 0 3,600.0 2,880.7 18 74 62
Subtotal 90 39 2,271.5 1,099.9 46 97 80
Total 180 88 2,084.4 624.0 154 81 90

Table 2.38: Detailed results of our BPC algorithm for the M&0-ext instances and
the largest gap strategy

Chapter 2. BPC-based Solution of the OBP 81

Q n Inst Opt t[s] ttP Gp Gp®F Nds CC SRC

60 20 10 10 4.5 0.2 577 0.02 2 43 33
30 10 10 215.0 1.6 3.58 0.27 9 75 122
40 10 10 294.5 3.9 3.09 0.33 25 72 122

50 10 8 1,387.5 9.7 4.00 0.63 152 82 122

60 10 5 2,3894 173 399 060 360 112 125
70 10 5 26451 273 233 075 560 109 128
80 10 2 31071 423 233 082 623 98 126
90 10 1 33174 523 251 095 1205 60 125
100 10 0 3,600.0 66.7 233 095 563 110 128

Subtotal 90 51 1,884.5 246 3.33 059 389 84 114

72 20 10 10 9.8 0.4 7.60 0.00 2 71 34
30 10 10 195.5 4.2 845 0.18 7 109 71
40 10 9 901.6 109 6.52 0.39 48 123 104

50 10 6 1,692.2 39.7 451 0.56 144 106 128
60 10 2 307143 783 480 0.78 220 116 128
70 10 3 28258 1180 3.14 092 116 119 128
80 10 0 3,600.0 190.8 395 0.92 221 119 128
90 10 0 3,600.0 2349 460 222 120 146 128
100 10 1 3,316.4 280.2 3.08 1.37 149 114 128

Subtotal 90 41 2,135.1 106.4 5.18 0.82 114 114 109
Total 180 92 2,009.8 65.5 425 070 252 99 112

Table 2.39: Detailed results of our BPC algorithm for the M&0-ext instances and
the combined strategy

Chapter 2. BPC-based Solution of the OBP

82

Q n Inst Opt t[s] ti" Gp Gp*f Nds CC SRC
60 20 10 10 7.7 0.5 544 0.00 2 44 24
30 10 10 4443 40 335 029 10 78 116

40 10 9 745.6 121 3.14 057 80 68 110

50 10 8 1,112.2 32.3 3.67 053 68 82 108

60 10 6 2,403.0 61.0 3.85 0.67 244 110 121

70 10 23,2208 79.6 2.44 522 103 123

80 10 0 3,600.0 1555 258 1.15 464 95 124

90 10 1 3,402.8 1541 244 098 721 66 127

100 10 0 3,600.0 2157 244 1.09 311 120 128
Subtotal 90 46 2,059.6 79.4 3.26 269 8 109
72 20 10 10 29.8 1.1 790 0.00 2 9 42
30 10 10 1,010.6 13.8 816 0.34 42 127 84

40 10 10 487.2 38.7 5.81 0.26 15 116 127

50 10 8§ 1,417.6 15649 431 0.50 54 112 126

60 10 6 2,216.9 306.0 4.59 60 117 115

70 10 0 3,600.0 377.1 3.67 148 122 94

80 10 0 3,600.0 734.3 4.50 124 125 116

90 10 0 3,600.0 883.5 5.06 59 146 112

100 10 0 3,600.0 1,070.4 5.25 91 112 115
Subtotal 90 44 2,173.6 397.7 5.47 66 119 104
Total 180 90 2,116.6 238.6 4.37 168 102 106

Table 2.40: Detailed results of our BPC algorithm for the M&0-ext instances and
the optimal strategy

Chapter 2. BPC-based Solution of the OBP

83

Q n Inst Opt t[s] t?? Gp GpRF Nds CC SRC
24 125 10 5 2,259.2 0.7 057 030 19,047 20 71
150 10 4 2,564.5 1.1 044 026 14,542 23 81
175 10 3 2,733.7 20 036 0.24 12)180 18 83
200 10 0 3,600.0 25 044 030 6,009 38 92
225 10 0 3,600.0 5.6 045 0.32 5,569 36 113
250 10 0 3,600.0 5.0 048 0.36 2,742 60 123
Subtotal 60 12 3,059.6 2.8 046 0.30 10,015 32 94
36 125 10 0 3,600.0 59 1.12 057 6,002 51 119
150 10 0 3,600.0 96 095 051 5,023 28 126
175 10 0 3,600.0 15.0 1.29 098 3,349 27 128
200 10 0 3,600.0 21.1 121 0.89 1936 51 128
225 10 0 3,600.0 35.0 1.07 083 1,303 38 128
250 10 0 3,600.0 43.2 1.22 094 994 41 128
Subtotal 60 0 3,600.0 21.6 115 0.79 3,101 39 126
48 125 10 1 3,445.3 329 1.72 082 1,579 69 128
150 10 0 3,600.0 475 148 1.03 1,625 50 128
175 10 0 3,600.0 744 125 098 1873 39 128
200 10 0 3,600.0 106.0 1.44 1.03 510 84 128
225 10 0 3,600.0 178.6 1.84 1.43 550 44 128
250 10 0 3,600.0 2229 150 1.29 627 25 128
Subtotal 60 1 3,574.2 1104 154 1.10 1,127 52 128
60 125 10 0 3,600.0 99.2 204 0.88 483 87 128
150 10 0 3,600.0 168.2 223 1.21 462 70 128
175 10 0 3,600.0 263.6 2.59 220 86 111
200 10 0 3,600.0 385.6 3.13 281 84 102
225 10 0 3,600.0 971.7 105 97 115
250 10 0 3,600.0 808.0 3.48 287 9 87 128
Subtotal 60 0 3,600.0 449.4 275 8 119
72 125 10 0 3,600.0 2904 290 1.53 194 85 128
150 10 0 3,600.0 816.3 134 76 102
175 10 0 3,600.0 2,194.3 7 25 64
200 10 0 3,600.0 2,100.3 68 39 64
225 10 0 3,600.0 3,130.3 8 38 38
250 10 0 3,600.0 2,840.8 33 22 o4
Subtotal 60 0 3,600.0 1,895.4 85 48 7
Total 300 13 3,486.8 495.9 2,921 51 109

Table 2.41: Detailed results of our BPC algorithm for the W&G-g instances and

the traversal strategy

Chapter 2. BPC-based Solution of the OBP

84

Q n Inst Opt t[s] t? Gp GpR*f Nds CC SRC
24 125 10 8 1,423.7 0.7 048 0.27 5,781 23 61
150 10 7 1,845.8 1.1 039 025 5,286 16 62
175 10 1 3,508.7 1.5 043 029 9,694 40 68
200 10 0 3,600.0 21 044 0.32 5,064 48 76
225 10 0 3,600.0 4.2 046 0.34 3,945 38 84
250 10 0 3,600.0 4.9 048 0.38 3,494 35 83
Subtotal 60 16 2,929.7 24 045 0.31 5542 33 72
36 125 10 1 3,489.9 5.8 1.14 056 2,254 81 111
150 10 0 3,600.0 95 134 084 2239 61 112
175 10 0 3,600.0 149 1.27v 092 2074 56 115
200 10 0 3,600.0 21.2 148 1.12 884 71 123
225 10 0 3,600.0 33.3 143 1.17 765 52 127
250 10 0 3,600.0 39.8 149 1.26 660 56 128
Subtotal 60 1 3,581.6 20.7 136 098 1479 63 119
48 125 10 0 3,600.0 399 1.74 094 1,015 98 124
150 10 0 3,600.0 589 146 1.00 1,114 69 124
175 10 0 3,600.0 103.1 1.82 1.48 096 74 126
200 10 0 3,600.0 130.7 1.99 158 284 117 128
225 10 0 3,600.0 2226 291 244 236 93 128
250 10 0 3,600.0 2609 194 1.66 168 96 128
Subtotal 60 0 3,600.0 136.0 1.98 1.52 569 91 126
60 125 10 0 3,600.0 242.5 3.07 2.00 275 131 128
150 10 0 3,600.0 4612 282 194 367 83 128
175 10 0 3,600.0 1,203.4 106 103 102
200 10 0 3,600.0 1,405.8 136 70 102
225 10 0 3,600.0 2,814.4 14 43 38
250 10 0 3,600.0 3,046.7 10 35 38
Subtotal 60 0 3,600.0 1,529.0 151 77 90
72 125 10 0 3,600.0 1,938.5 68 92 90
150 10 0 3,600.0 2,974.9 18 56 38
175 10 0 3,600.0 3,408.6 10 10 26
200 10 0 3,600.0 3,600.0 0 0 0
225 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0
Subtotal 60 0 3,600.0 3,187.0 16 26 26
Total 300 17 3,462.3 975.0 1,552 58 87

Table 2.42: Detailed results of our BPC algorithm for the W&G-g instances and
the return strategy

Chapter 2. BPC-based Solution of the OBP

85

Q n Inst Opt t[s] t!P Gp GpRF Nds CC SRC
24 125 10 6 1,694.5 0.8 050 032 9695 16 54
150 10 7 2,458.0 1.2 037 023 11,454 22 59
175 10 5 3,076.1 20 034 024 7997 25 66
200 10 1 3,484.8 26 036 027 7,08 23 71
225 10 0 3,600.0 53 043 034 6,644 11 80
250 10 0 3,600.0 5.6 042 033 347 21 95
Subtotal 60 19 2,985.6 29 040 029 7,725 19 71
36 125 10 4 29858 84 092 052 3840 29 96
150 10 0 3,600.0 129 112 070 3,319 29 101
175 10 0 3,600.0 197 125 094 2,121 33 110
200 10 0 3,600.0 28.8 110 081 1444 23 117
225 10 0 3,600.0 470 123 1.02 1,284 20 124
250 10 0 3,600.0 52.7 141 1.18 826 26 123
Subtotal 60 4 3,497.6 28.3 117 0.86 2,139 27 112
48 125 10 1 3,561.2 67.0 147 086 1,670 36 113
150 10 0 3,600.0 95.2 198 154 1,115 39 122
175 10 0 3,600.0 1509 2.03 1.79 825 36 125
200 10 0 3,600.0 2381 197 1.61 360 68 128
225 10 0 3,600.0 3488 246 2.12 390 31 128
250 10 0 3,600.0 4252 218 191 248 54 128
Subtotal 60 1 3,593.5 2209 2.01 1.64 768 44 124
60 125 10 0 3,600.0 093.4 242 1.5 287 97 126
150 10 0 3,600.0 941.7 3.10 237 280 50 125
175 10 0 3,600.0 1,993.7 76 83 102
200 10 0 3,600.0 20269 7.16 6.69 7730 127
225 10 0 3,600.0 3,393.6 5 12 20
250 10 0 3,600.0 3,452.8 2 16 26
Subtotal 60 0 3,600.0 2,067.0 121 55 88
72 125 10 0 3,600.0 3,055.6 32 38 49
150 10 0 3,600.0 3,591.8 0 2 13
175 10 0 3,600.0 3,600.0 0 0 0
200 10 0 3,600.0 3,600.0 0 0 0
225 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0
Subtotal 60 0 3,600.0 3,507.9 5 7 10
Total 300 24 34553 1,165.4 2152 30 81

Table 2.43: Detailed results of our BPC algorithm for the W&G-g instances and

the midpoint strategy

Chapter 2. BPC-based Solution of the OBP

86

Q n Inst Opt t[s] t! Gp GpRf Nds CC SRC
24 125 10 7 1,557.1 0.9 045 025 7,845 15 49
150 10 7 2,043.3 1.3 042 027 7625 14 62
175 10 3 3,169.5 21 042 032 7,396 22 66
200 10 0 3,600.0 29 036 0.27 8,043 17 73
225 10 0 3,600.0 48 044 033 4892 14 86
250 10 0 3,600.0 6.6 043 0.37 4,093 10 87
Subtotal 60 17 2,928.3 3.1 042 030 6,649 16 70
36 125 10 1 3,367.5 10.3 1.01 0.60 4,941 26 88
150 10 0 3,600.0 153 1.15 0.76 3,505 19 94
175 10 0 3,600.0 249 138 108 1,838 26 109
200 10 0 3,600.0 33.1 126 099 1,360 24 118
225 10 0 3,600.0 51.2 1.32 1.13 1,139 24 121
250 10 0 3,600.0 61.8 141 1.20 729 20 125
Subtotal 60 1 3,561.3 32.8 126 096 2252 23 109
48 125 10 0 3,600.0 96.6 2.05 142 1,181 48 113
150 10 0 3,600.0 1428 193 148 964 34 122
175 10 0 3,600.0 219.2 1.78 1.52 542 37 127
200 10 0 3,600.0 3182 191 1.55 327 58 128
225 10 0 3,600.0 662.2 2.52 217 314 30 126
250 10 0 3,600.0 578.8 231 2.06 191 53 128
Subtotal 60 0 3,600.0 336.3 2.08 1.70 587 43 124
60 125 10 0 3,600.0 985.3 3.15 2.33 227 79 122
150 10 0 3,600.0 1,520.5 348 2.74 166 52 128
175 10 0 3,600.0 2,421.3 57 91 103
200 10 0 3,600.0 3,035.0 16 65 70
225 10 0 3,600.0 3,555.9 0 7 13
250 10 0 3,600.0 3,600.0 0 0 0
Subtotal 60 0 3,600.0 2,519.7 78 49 72
72 125 10 0 3,600.0 3,542.2 3 4 26
150 10 0 3,600.0 3,600.0 0 0 0
175 10 0 3,600.0 3,600.0 0 0 0
200 10 0 3,600.0 3,600.0 0 0 0
225 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0
Subtotal 60 0 3,600.0 3,590.4 0 1 4
Total 300 18 3,457.9 1,296.4 1,913 26 76

Table 2.44: Detailed results of our BPC algorithm for the W&G-g instances and
the largest gap strategy

Chapter 2. BPC-based Solution of the OBP

87

Q n Inst Opt t[s] t? Gp GpRf Nds CC SRC
24 125 10 7 19744 0.8 056 030 8877 32 57
150 10 5 2,624.6 1.2 041 025 9,788 26 76
175 10 3 3,164.7 1.8 037 025 7,062 26 7
200 10 0 3,600.0 2.8 041 029 5,734 34 85
225 10 0 3,600.0 5.1 046 0.34 4,413 29 93
250 10 1 3,576.3 6.0 046 0.36 2,895 53 112
Subtotal 60 16 3,090.0 29 045 0.30 6,462 33 84
36 125 10 1 35185 6.9 1.15 059 3,545 55 117
150 10 0 3,600.0 104 120 0.67 2953 48 117
175 10 0 3,600.0 156 138 1.01 2443 28 128
200 10 0 3,600.0 222 139 101 962 57 126
225 10 0 3,600.0 35.6 1.11 087 1,012 33 128
250 10 0 3,600.0 42.0 1.31 1.07 784 36 128
Subtotal 60 1 3,586.4 22.1 126 087 1950 43 124
48 125 10 0 3,600.0 303 1.72 093 1,351 71 128
150 10 0 3,600.0 504 1.36 092 1,278 52 126
175 10 0 3,600.0 76.1 1.83 148 771 46 128
200 10 0 3,600.0 1127 1.73 1.34 38 80 128
225 10 0 3,600.0 181.2 255 207 326 75 128
250 10 0 3,600.0 205.2 218 191 303 60 128
Subtotal 60 0 3,600.0 109.3 190 144 736 64 128
60 125 10 0 3,600.0 142.0 241 1.33 446 108 128
150 10 0 3,600.0 543.7 442 46 115
175 10 0 3,600.0 992.0 185 77 102
200 10 0 3,600.0 1,137.3 151 57 102
225 10 0 3,600.0 1,332.3 56 98 102
250 10 0 3,600.0 1,913.5 46 56 7
Subtotal 60 0 3,600.0 1,010.1 221 74 105
72 125 10 0 3,600.0 849.0 125 113 113
150 10 0 3,600.0 1,495.6 60 110 90
175 10 0 3,600.0 2,158.2 49 55 7
200 10 0 3,600.0 2,425.2 27 66 7
225 10 0 3,600.0 3,514.7 0 2 13
250 10 0 3,600.0 3,299.9 4 18 51
Subtotal 60 0 3,600.0 2,290.4 44 61 70
Total 300 17 3,495.3 687.0 1,882 55 102

Table 2.45: Detailed results of our BPC algorithm for the W&G-g instances and

the combined strategy

Chapter 2. BPC-based Solution of the OBP

88

Q n Inst Opt t[s] t! Gp GpRf Nds CC SRC
24 125 10 7 1,730.9 1.2 048 024 8323 19 59
150 10 5 24104 2.0 038 024 8,146 13 69
175 10 4 2671.1 29 043 030 5,237 25 66
200 10 0 3,600.0 3.9 046 034 5483 26 84
225 10 0 3,600.0 7.0 044 032 4,440 20 89
250 10 0 3,600.0 8.1 0.52 044 3,172 23 98
Subtotal 60 16 2,935.4 42 045 031 5800 21 78
36 125 10 0 3,600.0 125 1.21 0.65 2,387 65 112
150 10 0 3,600.0 19.2 1.22 0.72 2,138 44 113
175 10 0 3,600.0 28.2 141 1.03 1,552 31 123
200 10 0 3,600.0 39.3 140 1.05 861 45 124
225 10 0 3,600.0 59.7 126 1.03 871 27 128
250 10 0 3,600.0 70.2 159 1.36 647 32 128
Subtotal 60 0 3,600.0 382 135 097 1409 41 122
48 125 10 0 3,600.0 79.8 1.8 1.13 915 68 127
150 10 0 3,600.0 110.1 155 1.12 818 54 128
175 10 0 3,600.0 184.6 212 1.77 528 50 128
200 10 0 3,600.0 263.8 2.07 1.65 266 81 128
225 10 0 3,600.0 385.8 3.15 2.69 268 60 128
250 10 0 3,600.0 473.1 2.19 1.92 175 70 128
Subtotal 60 0 3,600.0 249.5 2.16 1.71 495 64 128
60 125 10 0 3,600.0 1,051.2 210 90 102
150 10 0 3,600.0 729.0 2.69 1.78 248 62 128
175 10 0 3,600.0 1,806.6 84 68 90
200 10 0 3,600.0 2,131.9 59 64 90
225 10 0 3,600.0 2,829.9 10 66 60
250 10 0 3,600.0 3,209.1 2 49 31
Subtotal 60 0 3,600.0 1,959.6 102 66 83
72 125 10 0 3,600.0 2,676.0 37 52 39
150 10 0 3,600.0 3,094.1 19 34 38
175 10 0 3,600.0 3,530.3 2 8 26
200 10 0 3,600.0 3,600.0 0 0 0
225 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0
Subtotal 60 0 3,600.0 3,350.1 10 16 17
Total 300 16 3,467.1 1,120.3 1,563 42 86

Table 2.46: Detailed results of our BPC algorithm for the W&G-g instances and
the optimal strategy

Chapter 2. BPC-based Solution of the OBP

89

Q n Inst Opt t[s] t'P Gp GpfF Nds CC SRC
24 100 10 10 77.8 0.3 0.36 0.21 688 0 61
150 10 7 1,447.1 1.0 037 018 4,133 28 74
200 10 6 2,896.3 3.1 0.21 0.12 10,114 2 102
250 10 1 3,391.7 5.4 0.20 0.10 2,067 84 122
Subtotal 40 24 1,953.2 2.5 0.28 0.15 4,248 28 90
36 100 10 7 2,235.3 23 1.12 0.57 4,202 31 118
150 10 2 3,006.6 7.0 062 047 6,439 0 128
200 10 0 3,600.0 170 0.87 0.55 3,571 19 128
250 10 0 3,600.0 35.5 0.72 0.59 2,368 10 128
Subtotal 40 9 3,110.5 154 0.83 0.54 4,145 15 125
48 100 10 2 3320.0 9.7 1.59 0.70 1478 33 128
150 10 0 3,600.0 30.7 141 0.89 607 65 128
200 10 0 3,600.0 84.6 1.05 0.90 957 0 128
250 10 0 3,600.0 172.2 1.56 1.21 487 13 128
Subtotal 40 2 3,530.0 74.3 140 0.93 882 28 128
60 100 10 1 3,542.6 279 094 0.62 1,000 1 128
150 10 0 3,600.0 1175 1.07 0.83 297 0 128
200 10 0 3,600.0 278.4 1.65 1.44 365 0 128
250 10 0 3,600.0 599.2 4.97 4.84 241 0 128
Subtotal 40 1 3,585.6 255.7 2.16 1.93 551 0 128
72 100 10 0 3,600.0 58.4 225 0.90 317 38 128
150 10 0 3,600.0 253.6 2.94 2.07 160 44 128
200 10 0 3,600.0 670.7 437 3.71 56 78 128
250 10 0 3,600.0 1438.7 6.65 6.29 21 109 128
Subtotal 40 0 3,600.0 605.3 4.05 3.24 139 67 128
Total 200 36 3,155.9 190.7 1.75 1.36 1,993 28 120

Table 2.47: Detailed results of our BPC algorithm for the W&G-u instances and

the traversal strategy

Chapter 2. BPC-based Solution of the OBP

90

Q n Inst Opt t[s] t'? Gp GpfF Nds CC SRC
24 100 10 10 34.0 0.3 0.30 0.19 118 0 42
150 10 10 T777.8 0.8 042 0.18 856 43 57
200 10 9 1,399.0 2.2 024 0.15 3,727 1 71
250 10 1 3,290.1 3.5 038 024 1,186 50 88
Subtotal 40 30 1,375.2 1.7 0.33 0.19 1472 24 65
36 100 10 6 2,793.7 23 1.06 0.52 2544 61 97
150 10 1 3,336.6 7.6 063 050 4,493 0 98
200 10 0 3,600.0 159 1.09 071 1478 18 120
250 10 0 3,600.0 309 1.11 0.88 513 54 126
Subtotal 40 7 3,332.6 14.2 0.97 0.65 2,257 33 110
48 100 10 3 3,251.1 11.9 1.79 0.77 786 85 124
150 10 0 3,600.0 39.1 1.72 1.29 429 92 126
200 10 0 3,600.0 94.9 1.42 1.26 626 0 126
250 10 0 3,600.0 168.6 1.95 1.65 339 14 128
Subtotal 40 3 3,512.8 786 1.72 1.24 545 48 126
60 100 10 0 3,600.0 60.1 147 1.16 297 0 125
150 10 0 3,600.0 193.2 1.66 1.47 368 0 126
200 10 0 3,600.0 494.8 2.20 2.02 212 0 128
250 10 0 3,600.0 873.5 2.40 2.26 127 0 128
Subtotal 40 0 3,600.0 4054 1.93 1.73 326 0 127
72 100 10 0 3,600.0 287.2 3.53 1.71 123 101 128
150 10 0 3,600.0 984.1 5.73 4.66 55 144 128
200 10 0 3,600.0 2,408.6 9.80 3 151 103
250 10 0 3,600.0 3,600.0 0 0 0
Subtotal 40 0 3,600.0 1,820.0 45 99 90
Total 200 40 3,084.1 464.0 929 41 104

Table 2.48: Detailed results of our BPC algorithm for the W&G-u instances and
the return strategy

Chapter 2. BPC-based Solution of the OBP 91

Q n Inst Opt t[s] t? Gp Gp*f Nds CC SRC
24 100 10 10 37.8 0.4 034 0.19 176 0 42
150 10 10 577.4 1.0 044 018 1,381 14 58
200 10 8 1,908.6 3.0 027 0.17 5,843 0 68
250 10 0 3,600.0 4.6 038 025 2,710 22 90
Subtotal 40 28 1,531.0 23 036 020 2,528 9 65
36 100 10 8 1,7374 3.4 096 050 2,719 38 88
150 10 0 3,600.0 11.1 090 0.76 4,311 0 92
200 10 0 3,600.0 239 130 099 1,713 9 105
250 10 0 3,600.0 443 131 1.11 7819 123
Subtotal 40 8 3,1344 20.7 112 0.84 2,380 17 102

48 100 10 1 3,538.3 234 1.7 094 1,370 50 120
150 10 0 3,600.0 794 2.06 1.60 618 54 122
200 10 0 3,600.0 1722 195 1.80 424 0 122
250 10 0 3,600.0 353.7 253 227 247 13 128

Subtotal 40 1 3,584.6 1572 2.07 1.65 665 29 123

60 100 10 0 3,600.0 152.7 1.79 1.50 315 0 114
150 10 0 3,600.0 5788 245 2.26 146 0 121
200 10 0 3,600.0 1,348.5 3.17 3.01 86 0 125
250 10 0 3,600.0 2,522.8 798 7.83 28 0 128

Subtotal 40 0 3,600.0 1,150.7 3.85 3.65 144 0 122

72 100 10 0 3,600.0 9945 4,57 3.14 83 72 126
150 10 0 3,600.0 3,600.0 0 0 0
200 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0

Subtotal 40 0 3,600.0 2,948.6 21 18 32

Total 200 37 3,090.0 855.9 1,148 15 89

Table 2.49: Detailed results of our BPC algorithm for the W&G-u instances and
the midpoint strategy

Chapter 2. BPC-based Solution of the OBP

92

Q n Inst Opt t[s] thP Gp Gp®*f Nds CC SRC
24 100 10 10 24.5 0.4 028 0.14 7 0 48
150 10 9 679.2 1.2 036 014 1,834 20 60
200 10 5 2,548.2 3.3 030 021 6,710 0 74
250 10 0 3,600.0 5.9 035 022 2674 24 91
Subtotal 40 24 1,713.0 27 032 018 2824 11 68
36 100 10 9 1,809.8 4.7 093 048 2,302 35 80
150 10 1 3,380.1 147 0.77 0.63 2,994 0 99
200 10 0 3,600.0 31.9 132 098 1,357 12 111
250 10 0 3,600.0 57.9 128 1.09 643 24 123
Subtotal 40 10 3,097.5 273 1.08 0.80 1,824 18 103
48 100 10 0 3,600.0 406 2.02 1.21 1,070 56 118
150 10 0 3,600.0 132.3 2.07 1.61 465 52 126
200 10 0 3,600.0 2829 2.00 1.85 323 0 123
250 10 0 3,600.0 014.8 2.66 2.43 183 9 126
Subtotal 40 0 3,600.0 242.7 219 1.78 510 29 123
60 100 10 0 3,000 321.2 213 1.89 182 0 105
150 10 0 3,600.0 1,181.9 293 2.77 99 0 112
200 10 0 3,600.0 2,612.8 19.71 19.59 18 0 122
250 10 0 3,600.0 3,600.0 0 0 0
Subtotal 40 0 3,600.0 1,929.0 75 0 85
72 100 10 0 3,600.0 2,386.0 17.64 7 65 82
150 10 0 3,600.0 3,600.0 0 0 0
200 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0
Subtotal 40 0 3,600.0 3,296.5 2 16 21
Total 200 34 3,122.1 1,099.6 1,047 15 80

Table 2.50: Detailed results of our BPC algorithm for the W&G-u instances and
the largest gap strategy

Chapter 2. BPC-based Solution of the OBP

93

Q n Inst Opt t[s] t'? Gp GpfF Nds CC SRC
24 100 10 10 28.5 0.4 0.27 0.15 119 0 45
150 10 8 1,5638.9 1.0 046 0.20 5,158 26 56
200 10 6 2,394.1 3.0 026 0.17 7,607 0 75
250 10 0 3,600.0 5.0 039 0.25 3,206 25 100
Subtotal 40 24 1,890.4 23 035 019 4,022 13 69
36 100 10 5 2,249.7 2.6 1.05 0.52 2,736 40 112
150 10 1 34154 8.0 0.67 0.53 4,927 0 110
200 10 0 3,600.0 180 1.14 0.76 1,532 13 124
250 10 0 3,600.0 35.1 1.21 0.98 592 37 128
Subtotal 40 6 3,216.3 159 1.02 0.70 2447 23 119
48 100 10 1 35774 10.2 2.01 0.98 1,581 60 127
150 10 0 3,600.0 34.1 1.67 1.14 538 78 128
200 10 0 3,600.0 75.5 1.18 1.04 850 0 128
250 10 0 3,600.0 141.2 1.62 1.28 384 17 128
Subtotal 40 1 3,594.3 65.3 1.62 1.11 838 38 128
60 100 10 1 3,423.7 39.9 1.39 1.10 776 0 126
150 10 0 3,600.0 128.2 1.72 1.49 472 0 128
200 10 0 3,600.0 290.3 1.72 1.55 297 0 128
250 10 0 3,600.0 555.7 2.08 1.95 175 0 128
Subtotal 40 1 3,555.9 253.5 1.73 1.52 430 0 127
72 100 10 0 3,600.0 1234 344 1.64 153 70 128
150 10 0 3,600.0 452.7 3.94 2.67 66 128 128
200 10 0 3,600.0 1,132.2 5.50 4.78 34 144 128
250 10 0 3,600.0 2,168.1 6.48 6.15 16 142 128
Subtotal 40 0 3,600.0 969.1 4.84 3.81 67 121 128
Total 200 32 3,171.4 261.2 1.91 147 1561 39 114

Table 2.51: Detailed results of our BPC algorithm for the W&G-u instances and

the combined strategy

Chapter 2. BPC-based Solution of the OBP

94

Q n Inst Opt t[s] P Gp GpfF Nds CC SRC
24 100 10 10 54.0 0.7 0.29 0.17 183 0 54
150 10 10 1,118.0 1.9 041 0.17 2,564 28 54
200 10 3 3,150.8 4.7 0.28 0.19 7,668 0 73
250 10 0 3,600.0 8.0 043 029 2241 34 85
Subtotal 40 23 1,980.7 3.8 035 020 3,164 16 66
36 100 10 7 2,174.5 5.8 1.02 049 1,810 50 102
150 10 0 3,600.0 19.2 0.83 0.67 2,292 0 112
200 10 0 3,600.0 372 1.14 079 1,008 17 127
250 10 0 3,600.0 67.9 1.24 1.04 505 36 128
Subtotal 40 7 3,243.6 32.5 1.06 0.75 1,404 26 117
48 100 10 0 3,600.0 32.4 1.83 0.84 820 76 124
150 10 0 3,600.0 108.5 1.84 1.36 373 8 128
200 10 0 3,600.0 2239 1.55 1.40 343 0 128
250 10 0 3,600.0 406.4 2.35 2.06 202 14 128
Subtotal 40 0 3,600.0 192.8 1.89 1.42 434 44 127
60 100 10 0 3,600.0 161.4 1.57 1.28 261 0 121
150 10 0 3,600.0 5324 2.04 1.85 153 0 128
200 10 0 3,600.0 1,126.5 2.08 1.92 91 0 128
250 10 0 3,600.0 2,035.2 4.32 4.18 43 0 128
Subtotal 40 0 3,600.0 963.9 250 2.31 137 0 126
72 100 10 0 3,600.0 648.4 3.72 1.88 67 92 128
150 10 0 3,600.0 2,437.4 15.16 10 136 115
200 10 0 3,600.0 3,600.0 0 0 0
250 10 0 3,600.0 3,600.0 0 0 0
Subtotal 40 0 3,600.0 2,571.5 19 57 61
Total 200 30 3,204.9 752.9 1,032 29 100

Table 2.52: Detailed results of our BPC algorithm for the W&G-u instances and

the optimal strategy

Chapter 2. BPC-based Solution of the OBP

95

Detailed Results of BPC-based Heuristics

Tables 2.53-2.58 provide aggregated results per capacity () for the proposed BPC-
based heuristics on the six benchmark sets and all considered routing strategies.
They compare variants of the set-covering heuristic (SC') and the depth-first heuris-
tic (BPC-DF) with hard time limits of two, three, and five minutes (-2, -3, -5).
The average gap with respect to the best-known solution (Gp) and the average
computation time in seconds (#[s]) are reported. In cases where no average could
be computed for a given group, e.g., because no lower bound was available for one
of the comprised instances, the corresponding cell is left blank.

SC heuristic

BPC-DF heuristic

SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Routing Q Gp tls§ Gp t[s] Gp t[s] Gp tls] Gp t[s] Gp t[s]
Traversal 24 0.09 5.6 0.09 5.6 0.09 5.6 0.02 404 0.02 54.8 0.01 78.1
36 050 52.6 040 682 033 929 0.22 804 0.17 1156 0.11 181.3

48 1.63 64.5 1.58 87.8 1.07 129.7 0.67 89.5 0.40 131.8 0.29 214.7

Subtotal 0.74 409 0.69 539 050 76.1 030 70.1 0.20 100.8 0.14 158.1
Return 24 0.08 6.1 0.08 6.7 0.08 7.0 0.04 30.3 0.03 388 0.01 55.0
36 044 499 033 658 031 8.0 0.20 642 0.16 914 0.08 141.9

48 2.02 64.7 1.50 89.7 141 136.1 1.19 752 0.70 1085 0.36 168.6

Subtotal 0.85 40.2 0.64 54.1 0.60 77.0 048 56.6 030 79.6 0.15 121.8
Midpoint 24 0.06 4.7 0.06 4.7 0.06 4.7 0.01 241 0.01 31.7 0.01 46.5
36 0.61 456 0.56 624 042 87.1 0.17 60.0 0.15 833 0.09 127.5

48 230 704 1.89 100.9 1.61 1520 1.02 77.8 0.62 1124 0.32 1764

Subtotal 0.99 40.2 0.84 56.0 070 81.3 040 540 026 758 0.14 116.8

L. gap 24 0.06 4.1 0.06 4.1 0.06 4.1 0.02 306 0.01 388 0.01 51.1
36 062 499 054 658 044 96.1 0.16 658 0.14 93.8 0.09 146.6

48 247 724 2.01 100.5 1.75 153.7 1.19 82.0 0.75 1176 045 187.5

Subtotal 1.05 42.1 0.87 56.8 0.75 84.6 045 594 030 834 0.18 1284
Combined 24 0.10 7.4 0.10 7.5 0.10 7.5 0.02 30.7 0.02 394 0.01 56.8
36 0.68 539 059 714 050 994 0.20 709 0.14 100.3 0.11 155.1

48 2.52 68.7 227 976 191 1506 0.66 79.7 0.47 1155 0.28 186.2

Subtotal 1.10 43.4 099 588 0.84 858 0.29 605 021 851 0.13 132.7
Optimal 24 0.09 49 0.09 4.9 0.09 49 0.02 315 0.02 42.0 0.01 56.9
36 0.75 53.7 0.61 727 052 1044 0.27 70.3 021 99.1 0.16 1524

48 231 73.0 217 101.3 1.82 1515 1.73 88.3 1.12 1279 0.67 204.8

Subtotal 1.05 43.9 096 59.6 081 869 0.67 634 045 89.7 0.28 138.0

Total 0.96 418 0.83 56.5 0.70 82.0 043 60.7 029 8.7 0.17 132.6

Table 2.53: Comparison of the BPC-based heuristics on the M&0 instances

Chapter 2. BPC-based Solution of the OBP 96
SC heuristic BPC-DF heuristic

SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Routing Q Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s]
Traversal 30 0.00 0.1 0.00 0.1 0.00 0.1 0.00 4.3 0.00 6.0 0.00 9.4
45 0.06 1.7 006 1.7 006 1.7 002 380 0.02 523 0.02 780

60 0.10 14,5 0.10 158 0.10 169 0.11 728 0.09 1049 0.08 166.0

75 023 33.1 0.20 40.2 0.18 49.3 0.25 90.7 0.21 1334 0.18 216.2

Subtotal 0.10 12.3 0.09 14.4 0.08 17.0 0.10 51.5 0.08 742 0.07 1174
Return 30 0.00 0.1 0.00 01 0.00 01 0.00 0.1 0.00 0.1 0.00 0.1
45 006 14 006 14 006 1.4 0.01 143 0.01 185 0.00 258

60 0.15 21.0 0.14 24.0 0.13 276 0.08 458 0.06 61.7 0.05 894

75 0.51 48.0 0.44 64.1 036 904 0.21 64.1 0.16 90.7 0.12 139.5

Subtotal 0.18 17.6 0.16 224 0.14 299 0.07 31.1 0.06 42.7 0.05 63.7
Midpoint 30 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
45 0.04 10 004 10 004 1.0 0.00 79 0.00 9.5 0.00 11.8

60 0.15 15.6 0.14 176 0.13 20.0 0.05 41.2 0.04 555 0.03 799

75 052 445 046 585 039 813 0.18 633 0.14 89.6 0.11 136.7

Subtotal 0.18 153 0.16 19.3 0.14 25.6 0.06 28.1 0.05 38.6 0.04 57.1

L. gap 30 0.00 0.1 0.00 0.1 0.00 01 0.00 0.2 0.00 0.3 0.00 0.5
45 004 1.1 004 1.1 0.04 1.1 000 9.6 0.00 11.5 0.00 14.6

60 0.14 185 0.13 21.0 0.12 23.1 0.06 44.6 0.05 61.4 0.04 90.7

75 057 471 0.50 6277 043 885 0.25 67.0 0.20 95.1 0.15 147.0

Subtotal 0.19 16.7 0.17 21.2 0.15 28.2 0.08 30.4 0.06 42.1 0.05 63.2
Combined 30 0.00 0.1 0.00 0.1 0.00 0.1 0.00 0.6 0.00 0.8 0.00 1.2
45 0.06 16 005 16 005 1.7 001 175 0.01 223 0.01 299

60 0.14 22.8 0.13 26.1 0.12 294 0.10 506 0.08 69.6 0.06 103.8

75 042 43.6 035 56.8 0.28 77.0 0.22 658 0.18 93.7 0.13 145.6

Subtotal 0.15 17.0 0.13 21.2 0.11 27.0 0.08 33.6 0.07 46.6 0.05 70.1
Optimal 30 0.00 0.1 0.00 0.1 0.00 0.1 000 0.2 0.00 0.2 0.00 0.3
45 0.05 15 0.05 1.5 0.05 1.5 0.01 151 0.01 182 0.01 24.1

60 0.17 254 0.15 30.1 0.13 352 0.09 523 0.07 722 0.06 107.9

75 058 51.3 0.50 684 042 958 029 70.0 0.23 99.6 0.16 1545

Subtotal 0.20 19.6 0.17 25.0 0.15 33.1 0.10 344 0.08 476 0.06 71.7
Total 0.17 164 0.15 20.6 0.13 26.8 0.08 34.8 0.07 486 0.05 739

Table 2.54: Comparison of the BPC-based heuristics on the H&W instances

Chapter 2. BPC-based Solution of the OBP 97
SC heuristic BPC-DF heuristic
SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5
Routing @ n Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s§] Gp t[g]
Traversal 6 200 0.05 2.3 0.05 2.3 0.05 2.3 0.08 108.1 0.07 162.1 0.07 270.1
6 300 0.03 8.0 0.03 8.0 0.03 8.0 0.11 108.1 0.06 162.1 0.05 270.1
6 400 0.03 186 0.03 188 0.03 189 0.23 109.8 0.17 163.8 0.15 271.7
6 500 0.02 40.2 0.02 41.8 0.02 41.8 048 1200 0.44 180.0 0.38 300.0
6 600 0.02 53.7 002 59.5 0.02 600 1.04 120.0 0.62 180.1 0.38 300.0
9 200 0.16 283 0.16 282 0.16 283 1.48 120.0 1.25 180.0 1.06 300.0
12 200 1.49 1196 1.14 1794 1.07 293.8 1.73 120.0 1.46 180.0 1.09 300.0
15 200 3.41 119.6 298 1794 2.69 2989 3.68 120.0 2.20 180.0 1.67 300.0
Subtotal 0.65 488 0.55 64.7 0.51 94.0 1.10 1158 0.78 173.5 0.61 289.0
Return 6 200 0.02 2.2 0.02 2.2 0.02 2.2 016 1084 0.15 1624 0.09 270.4
6 300 0.02 4.6 0.02 4.6 0.02 4.6 0.16 120.0 0.15 180.0 0.13 300.0
6 400 0.04 379 003 398 0.03 396 0.25 120.0 0.21 180.0 0.19 300.0
6 500 0.04 525 003 596 0.03 716 0.50 120.0 0.34 180.0 0.29 300.0
6 600 0.04 71.0 0.03 90.3 0.03 120.8 0.51 120.0 0.49 180.0 0.37 300.0
9 200 0.12 303 0.12 303 0.12 30.2 0.67 120.0 0.51 180.0 0.50 300.0
12 200 0.70 116.8 0.40 170.5 0.35 255.7 1.19 120.0 1.16 180.0 0.81 300.0
15 200 1.52 119.6 136 1793 1.04 298.8 1.60 120.0 1.21 180.0 1.07 300.0
Subtotal 0.31 54.4 0.25 72.1 0.21 1029 0.63 1186 0.53 177.8 0.43 296.3
Midpoint 6 200 0.06 2.5 0.06 2.5 0.06 2.5 0.08 120.0 0.08 180.0 0.07 300.0
6 300 0.03 8.0 0.03 7.9 0.03 8.0 0.14 1085 0.12 162.5 0.10 270.5
6 400 0.03 175 0.03 176 0.03 172 0.40 120.0 0.24 180.0 0.21 300.0
6 500 0.04 528 004 647 0.04 792 042 120.0 0.33 180.0 0.29 300.0
6 600 0.05 79.2 003 96.2 0.03 120.0 0.65 120.0 0.55 180.0 0.47 300.0
9 200 0.18 332 0.18 331 0.18 33.1 0.89 120.0 0.79 180.0 0.55 300.0
12 200 1.18 119.6 080 174.7 041 270.3 1.16 120.0 0.85 180.0 0.63 300.0
15 200 2.88 119.7 256 179.5 228 299.1 3.11 120.0 2.09 180.0 1.70 300.0
Subtotal 0.56 54.1 0.47 72.0 0.38 103.7 0.86 118.6 0.63 177.8 0.50 296.3
L. gap 6 200 0.05 2.8 0.05 2.8 0.05 2.8 0.10 108.6 0.09 162.6 0.08 270.6
6 300 0.04 7.3 0.04 7.3 0.04 7.3 0.17 120.0 0.13 180.0 0.10 300.0
6 400 0.03 189 0.03 19.0 0.03 188 0.25 1200 0.24 180.0 0.22 300.0
6 500 0.03 419 0.03 428 0.03 428 0.56 120.0 0.48 180.0 0.36 300.0
6 600 0.03 674 003 800 0.03 101.6 1.44 120.0 0.58 180.0 0.52 300.0
9 200 0.15 471 0.15 533 0.15 651 1.03 120.0 0.81 180.0 0.64 300.0
12 200 0.85 1129 049 166.7 0.51 251.5 1.14 120.0 1.07 180.0 0.85 300.0
15 200 2.54 119.6 230 1793 1.86 298.8 271 120.0 242 180.0 1.69 300.0
Subtotal 0.47 522 0.39 689 0.34 98.6 093 1186 0.73 177.8 0.56 296.3

Continued on the next page.

Table 2.55: Comparison of the BPC-based heuristics on the ZKS instances

Chapter 2. BPC-based Solution of the OBP 98
SC heuristic BPC-DF heuristic

SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Routing Q n Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[ls] Gp t[s]
Combined 6 200 0.04 2.7 0.04 2.7 0.04 2.7 0.13 106.0 0.12 1539 0.11 250.7
6 300 0.03 7.3 0.03 7.2 0.03 7.2 0.28 120.0 0.20 180.0 0.19 300.0

6 400 0.03 16.7 0.03 16.7 0.03 16.7 0.23 120.0 0.22 180.0 0.13 300.0

6 500 0.03 36.6 0.03 412 0.03 409 0.36 120.0 0.28 180.0 0.22 300.0

6 600 0.03 820 0.03 94.0 0.03 109.6 0.64 120.0 0.53 180.0 0.36 300.0

9 200 0.13 36.2 0.13 40.6 0.13 40.5 0.65 120.0 0.55 180.0 0.50 300.0

12 200 0.58 112.0 0.32 156.6 0.24 240.3 1.04 120.0 0.84 180.0 0.72 300.0

15 200 223 119.7 220 1794 210 299.0 2.55 120.0 2.01 180.0 1.59 300.0

Subtotal 0.39 51.7 0.35 673 0.33 94.6 0.73 1183 0.59 176.7 0.48 293.9

Optimal 6 200 0.05 2.8 0.05 2.8 0.05 2.8 0.13 111.3 0.13 165.1 0.10 273.1
6 300 0.05 121 0.05 12.0 0.05 122 0.16 120.0 0.15 180.0 0.12 300.0

6 400 0.03 170 0.03 17.0 0.03 16.9 0.27 120.0 0.21 180.0 0.15 300.0

6 500 0.03 313 0.03 312 0.03 31.2 032 120.0 0.29 180.0 0.24 300.0

6 600 0.03 780 0.03 959 0.03 111.3 1.20 120.0 0.47 180.0 0.33 300.0

9 200 0.09 33.0 008 332 0.08 332 0.87 120.0 0.61 180.0 0.59 300.0

12 200 0.88 1193 0.63 177.0 0.41 273.5 1.24 120.0 1.03 180.0 1.02 300.0

15 200 2.71 119.6 2.51 1794 2.27 299.0 2.13 120.0 1.37 180.0 1.18 300.0

Subtotal 0.48 51.6 0.43 686 037 97.5 0.79 1189 0.53 1782 0.46 296.6

Total 048 521 041 689 0.36 98.6 0.84 1181 0.63 177.0 0.51 294.7

Table 2.55: Comparison of the BPC-based heuristics on the ZKS instances (cont.)

Chapter 2. BPC-based Solution of the OBP 99
SC heuristic BPC-DF heuristic

SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Routing Q Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s]
Traversal 60 4.52 84.6 3.99 120.3 3.55 185.3 1.71 94.5 0.98 139.8 0.50 226.4
72 7.51 87.1 6.18 1229 5.18 190.8 6.56 100.6 4.05 147.1 1.57 234.8

Subtotal 6.02 85.8 508 121.6 4.36 188.1 4.14 97.5 251 1434 1.04 230.6
Retun 60 593 794 477 1088 388 1614 461 817 284 1173 1.06 1816
72 10.23 89.8 9.61 128.8 887 201.6 10.63 96.7 9.68 140.7 7.57 226.7

Subtotal 8.08 84.6 7.19 1188 6.38 181.5 7.62 89.2 6.26 129.0 4.31 204.2
Midpoint 60 843 81.3 6.97 1158 4.75 174.6 836 86.2 5.56 123.9 295 198.5
72 95.4 135.5 211.1 98.8 142.0 227.0

Subtotal 88.3 125.7 192.8 92.5 132.9 212.8

L. gap 60 10.20 89.3 948 126.4 7.14 1977 951 919 873 133.8 6.33 212.9
72 99.0 143.5 229.3 102.1 148.7 238.8

Subtotal 94.2 135.0 213.5 97.0 141.2 225.9
Combined 60 6.51 87.2 556 1229 440 186.7 296 88.3 1.93 127.3 0.88 202.9
72 8.79 86.7 8.64 121.4 8.00 190.4 8.55 97.8 741 141.6 4.92 2279

Subtotal 7.65 86.9 7.10 122.1 6.20 188.6 5.75 93.1 4.67 134.4 290 2154
Optimal 60 9.04 89.6 774 129.3 5.36 201.1 7.62 94.3 6.24 137.2 3.41 2199
72 10.74 1129 10.18 154.1 9.29 229.8 10.62 106.1 10.05 154.8 R&.68 247.5

Subtotal 9.89 101.3 8.96 141.7 7.33 2154 9.12 100.2 8.15 146.0 6.04 233.7
Total 90.2 127.5 196.7 94.9 137.8 220.4
Table 2.56: Comparison of the BPC-based heuristics on the M&0-ext instances

Chapter 2. BPC-based Solution of the OBP 100
SC heuristic BPC-DF heuristic

SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Routing Q Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s]
Traversal 24 1.08 111.0 0.81 158.8 0.56 240.3 2.10 120.0 0.96 1794 047 297.0
36 3.69 1198 3.10 179.5 294 299.1 7.75 120.0 4.44 180.0 1.88 300.0

48 15.73 1199 13.63 179.9 7.75 299.6 16.66 120.0 14.36 180.0 9.33 300.1

60 120.0 180.0 299.9 120.0 180.0 300.0

72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 118.1 175.6 287.8 120.0 179.9 299.4
Return 24 090 104.2 0.71 1489 0.52 229.0 0.67 120.0 0.42 179.0 0.34 297.0
36 476 1198 3.22 1797 293 299.3 7.33 120.1 525 180.0 2.38 300.0

48 15.68 120.0 13.78 179.9 10.90 299.7 16.81 120.0 14.99 180.0 11.09 300.1

60 120.0 180.0 300.0 120.0 180.0 300.0

72 120.0 180.0 300.0 120.0 180.0 300.1

Subtotal 116.8 173.7 285.6 120.0 179.8 299.5
Midpoint 24 0.94 107.5 0.80 151.1 0.67 226.4 0.52 1187 0.38 1774 0.33 293.3
36 541 1198 3.18 179.6 3.08 299.2 733 120.1 4.35 180.0 1.82 300.0

48 18.96 120.0 1590 179.9 12.85 299.7 20.38 120.0 17.61 180.0 12.83 300.1

60 120.0 180.0 300.0 120.0 180.0 300.0

72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 117.5 174.1 285.1 119.8 179.5 298.7

L. gap 24 1.02 1042 093 1486 0.70 2285 0.59 119.2 048 1782 0.31 2944
36 593 1198 332 179.2 3.20 296.8 7.69 120.0 5.85 180.0 2.30 300.0

48 18.53 120.0 17.36 180.0 13.38 299.8 19.23 120.0 17.90 180.0 14.79 300.0

60 120.0 180.0 300.0 120.0 180.0 300.0

72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 116.8 173.6 285.0 119.9 179.7 298.9
Combined 24 1.08 112.8 0.89 163.1 0.67 255.0 1.21 120.0 0.73 1794 046 297.5
36 4.01 1198 345 1795 3.17 299.1 8.09 120.0 4.05 180.0 2.19 300.0

48 15.03 119.9 1241 179.8 9.49 299.6 16.58 120.0 14.19 180.1 10.53 300.1

60 120.0 180.0 299.9 120.0 180.0 300.0

72 120.0 180.0 300.0 120.0 180.1 300.0

Subtotal 118.5 176.5 290.7 120.0 179.9 299.5
Optimal 24 098 1114 090 1578 0.75 2442 1.00 120.0 0.58 180.0 0.39 299.5
36 6.84 1199 3.68 179.7 3.26 299.3 9.76 120.2 6.72 180.0 2.50 300.0

48 18.01 120.0 16.48 180.0 13.06 299.8 18.01 120.0 17.33 180.0 14.53 300.1

60 120.0 180.0 300.0 120.0 180.0 300.0

72 120.0 180.0 300.0 120.0 180.0 300.4

Subtotal 118.2 175.5 288.7 120.1 180.0 300.0
Total 117.7 174.8 287.1 120.0 179.8 299.3

Table 2.57: Comparison of the BPC-based heuristics on the W&G-g instances

Chapter 2. BPC-based Solution of the OBP 101
SC heuristic BPC-DF heuristic
SC-2 SC-3 SC-5 BPC-DF-2 BPC-DF-3 BPC-DF-5

Routing Q@ Gp t[¢ Gp t[¢] Gp t[s] Gp t[s] Gp t[s] Gp t[¢]
Traversal 24 0.15 61.7 0.09 757 0.06 900 1.04 103.5 0.62 151.9 0.13 247.0
36 3.63 116.7 3.35 1724 3.05 278.7 6.00 120.0 1.22 180.0 0.90 299.1

48 12,79 1199 11.84 179.7 7.47 299.4 13.26 120.0 854 180.1 5.59 300.0

60 21.50 1199 19.53 179.8 18.34 299.6 20.10 120.0 16.44 180.0 14.64 300.0

72 23.12 120.0 2299 179.9 21.46 299.8 24.17 120.0 22.00 180.0 20.51 300.0

Subtotal 12.24 107.6 11.56 157.5 10.08 253.5 12.91 116.7 9.76 1744 8.35 289.2
Return 24 0.31 76.0 0.27 102.8 0.14 1414 0.23 94.6 0.18 138.0 0.12 221.5
36 4.18 1196 296 179.3 260 2974 532 120.0 4.16 180.0 1.51 300.0

48 12,79 1199 10.01 179.8 6.47 299.4 13.31 120.0 10.75 180.2 6.65 300.0

60 20.09 120.0 19.84 179.9 17.12 299.8 18.03 120.0 17.84 180.0 14.28 300.0

72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 111.1 164.4 267.6 114.9 171.6 284.3
Midpoint 24 0.38 785 0.32 105.7 0.20 1572 0.21 977 0.17 140.0 0.12 217.8
36 7.26 1172 3.71 169.8 3.59 2728 596 1202 4.36 180.0 1.06 298.3

48 19.30 120.0 17.18 179.9 11.55 299.7 19.09 120.0 17.18 180.0 13.59 300.0

60 26.44 120.0 25.48 180.0 23.20 299.9 26.44 120.0 26.44 180.0 21.16 300.0

72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 111.1 163.1 265.9 115.6 172.0 283.2

L. gap 24 0.39 74.0 0.32 103.8 0.22 158.7 0.22 89.2 0.17 131.1 0.14 208.2
36 7.28 1198 3.66 1784 3.49 292.0 6.73 120.2 538 180.0 0.99 300.1

48 19.34 120.0 1852 179.9 15.60 299.8 19.71 120.0 18.33 180.0 14.73 300.0

60 120.0 180.0 300.0 120.0 180.0 300.0

72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 110.8 164.4 270.1 113.9 170.2 281.7
Combined 24 055 80.5 042 114.7 0.26 170.5 0.34 939 0.18 136.1 0.12 219.9
36 3.72 1198 3.51 1789 3.17 2942 6.07 120.0 4.50 180.0 1.51 2994

48 11.54 119.9 11.25 179.7 7.57 299.4 14.04 120.0 8.01 180.2 5.47 300.0

60 22.41 1199 19.55 179.9 18.67 299.7 20.06 120.0 17.12 180.0 14.28 300.0

72 2559 120.0 24.53 180.0 23.39 299.9 25.59 120.0 25.59 180.0 23.87 300.0

Subtotal 12.76 112.0 11.85 166.6 10.61 272.7 13.22 114.8 11.08 171.3 9.05 283.9
Optimal 24 0.61 79.2 040 1135 0.29 1723 0.90 101.8 0.24 1439 0.14 225.6
36 6.94 119.0 444 1759 329 285.6 840 120.1 5.55 180.0 3.09 300.0

48 17.79 120.0 17.17 179.9 1248 299.8 18.97 120.0 17.39 180.0 13.30 300.0

60 22.10 120.0 21.51 180.0 20.17 299.9 22.10 120.0 22.10 180.0 17.78 300.0

72 120.0 180.0 300.0 120.0 180.0 300.0

Subtotal 111.6 165.9 271.5 116.4 172.8 285.1
Total 110.7 163.6 266.9 115.4 172.1 284.6

Table 2.58: Comparison of the BPC-based heuristics on the W&G-u instances

Chapter 2. BPC-based Solution of the OBP 102

Comparison of Routing Strategies

Tables 2.59-2.62 provide a comparison of the different routing strategies with re-
spect to the total traveled distances for the benchmark sets M&0, H&W, and ZKS
aggregated by capacity () and number of orders n. The columns report the per-
centage increase in the total traveled distances for the respective routing strategy
compared to the optimal strategy. For the comparison, we use the BKS for each
instance and routing strategy.

Q n Traversal Return Midpoint Largest gap Combined

24 20 11.8% 33.3% 9.5% 5.6% 4.3%
30 10.3% 32.3% 9.9% 5.4% 3.3%
40 11.0% 31.8% 10.3% 6.0% 4.2%
50 10.8% 34.0% 10.1% 6.3% 4.0%
60 9.3% 32.2% 10.0% 5.8% 3.3%
70 10.3% 32.9% 9.3% 5.4% 3.9%
80 10.1% 32.9% 9.8% 5.9% 3.6%
90 10.0% 32.7% 9.7% 5.6% 3.3%
100 9.8% 33.1% 10.1% 5.8% 3.2%

Subtotal 10.4% 32.8% 9.9% 5.8% 3.7%

36 20 8.7% 35.7% 14.1% 7.7% 3.0%
30 71% 35.2% 14.2% 8.4% 2.3%
40 7.6% 34.2% 13.7% 8.4% 2.9%
50 7.6% 35.7% 13.7% 8.6% 2.8%
60 6.6% 34.2% 13.6% 8.2% 2.2%
70 7.0% 34.8% 13.0% 7.9% 2.6%
80 6.6% 34.9% 13.2% 8.3% 2.5%
90 6.6% 34.4% 13.0% 8.0% 2.1%
100 6.3% 34.7% 13.1% 8.1% 2.2%

Subtotal 71% 34.9% 13.5% 8.2% 2.5%

48 20 7.0% 37.0% 18.2% 10.8% 2.6%
30 5.4% 36.3% 18.0% 11.1% 1.9%
40 5.6% 35.5% 17.3% 10.9% 1.8%
50 5.2% 37.2% 16.8% 10.8% 1.9%
60 4.9% 36.3% 17.8% 11.3% 1.4%
70 5.2% 36.8% 16.5% 10.5% 1.8%
80 5.4% 37.2% 16.8% 10.8% 2.0%
90 4.4% 36.1% 15.9% 10.5% 1.6%
100 41% 36.3% 16.7% 10.4% 1.6%

Subtotal 5.3% 36.5% 17.1% 10.8% 1.8%

Total 7.6% 34.7% 13.4% 8.2% 2.7%

Table 2.59: Percentage increase in total traveled distances compared to the opti-
mal strategy for the M&0 instances

Chapter 2. BPC-based Solution of the OBP 103

Q n Traversal Return Midpoint Largest gap Combined

30 20 18.8% 52.9% 15.0% 8.5% 7.6%
30 17.7% 53.1% 15.2% 8.8% 7.6%
40 17.1% 52.0% 15.7% 9.1% 7.2%
50 17.6% 52.6% 15.4% 8.8% 71%
60 17.3% 52.5% 15.5% 8.9% 7.1%
70 17.4% 52.8% 15.3% 8.9% 71%
80 16.9% 52.5% 15.6% 9.0% 7.0%
90 17.0% 52.9% 15.5% 8.9% 71%
100 17.2% 52.9% 15.5% 9.0% 7.0%

Subtotal 17.4% 52.7% 15.4% 8.9% 7.2%

45 20 10.4% 53.6% 20.7% 12.5% 4.5%
30 10.3% 54.1% 20.8% 12.8% 4.3%
40 10.2% 54.1% 20.7% 12.5% 4.3%
50 10.0% 54.0% 20.5% 12.7% 4.2%
60 9.9% 54.2% 20.6% 12.6% 4.2%
70 10.0% 54.0% 20.5% 12.5% 4.3%
80 9.8% 53.7% 20.3% 12.4% 4.1%
90 9.5% 53.6% 20.5% 12.5% 4.0%
100 9.7% 53.5% 20.1% 12.4% 4.1%

Subtotal 10.0% 53.9% 20.5% 12.5% 4.2%

60 20 7.8% 56.0% 24.7% 15.9% 3.3%
30 8.0% 56.1% 25.2% 16.1% 3.1%
40 77% 55.4% 25.1% 16.2% 2.8%
50 7.6% 55.8% 24.6% 16.0% 3.0%
60 7.5% 55.2% 24.4% 15.7% 3.0%
70 7.5% 55.2% 24.5% 15.8% 2.9%
80 7.3% 54.9% 24.6% 15.8% 2.8%
90 71% 55.2% 24.2% 15.7% 2.8%
100 7.2% 55.2% 24.2% 15.6% 2.8%

Subtotal 7.5% 55.4% 24.6% 15.9% 2.9%

75 20 6.2% 56.8% 28.9% 19.1% 2.6%
30 6.9% 57.4% 28.8% 19.3% 2.5%
40 6.6% 57.2% 28.7% 19.2% 2.3%
50 6.6% 57.0% 27.9% 18.9% 2.3%
60 6.4% 57.0% 28.1% 19.0% 2.2%
70 6.3% 57.1% 27.9% 19.0% 2.2%
80 6.1% 56.8% 27.8% 18.9% 2.0%
90 5.8% 56.5% 27.6% 18.8% 1.9%
100 5.7% 56.7% 27.5% 18.7% 1.9%

Subtotal 6.3% 56.9% 28.1% 19.0% 2.2%

Total 10.2% 54.7% 22.1% 14.0% 4.1%

Table 2.60: Percentage increase in total traveled distances compared to the opti-
mal strategy for the H&W UDD instances

Chapter 2. BPC-based Solution of the OBP 104

Q n Traversal Return Midpoint Largest gap Combined

30 20 19.4% 51.9% 9.6% 5.4% 8.9%
30 19.7% 52.7% 9.2% 5.3% 8.9%
40 18.7% 52.4% 9.2% 5.3% 8.6%
50 19.3% 52.1% 9.3% 5.3% 8.7%
60 19.6% 52.1% 9.4% 5.4% 8.9%
70 19.1% 52.2% 9.6% 5.4% 8.6%
80 19.0% 52.4% 9.5% 5.4% 8.7%
90 18.7% 51.7% 9.5% 5.4% 8.4%
100 18.9% 52.2% 9.4% 5.3% 8.4%

Subtotal 19.2% 52.2% 9.4% 5.4% 8.7%

45 20 12.7% 52.3% 12.7% 7.4% 5.8%
30 12.8% 53.2% 12.9% 7.4% 6.1%
40 11.9% 52.2% 12.3% 7.2% 5.8%
50 121% 52.4% 12.5% 7.3% 5.7%
60 12.0% 52.6% 12.7% 7.3% 5.7%
70 11.7% 52.2% 12.5% 7.2% 5.4%
80 11.8% 52.3% 12.2% 7.0% 5.6%
90 11.6% 52.1% 12.0% 7.0% 5.3%
100 11.8% 52.3% 11.9% 7.1% 5.5%

Subtotal 12.0% 52.4% 12.4% 7.2% 5.7%

60 20 9.8% 52.7% 15.7% 9.3% 4.3%
30 9.7% 53.6% 15.5% 9.4% 4.3%
40 9.2% 53.9% 15.5% 9.4% 4.1%
50 9.0% 53.2% 15.3% 9.3% 4.2%
60 8.9% 52.8% 15.1% 9.1% 4.2%
70 8.7% 53.3% 15.1% 9.3% 4.1%
80 8.6% 52.9% 15.1% 9.2% 4.0%
90 8.7% 53.1% 15.2% 9.3% 4.0%
100 8.8% 53.2% 14.8% 9.1% 4.0%

Subtotal 9.1% 53.2% 15.2% 9.3% 4.1%

75 20 8.6% 54.6% 19.0% 11.6% 3.7%
30 8.0% 53.7% 18.7% 11.7% 3.3%
40 77% 54.4% 17.9% 11.4% 3.1%
50 7.5% 54.2% 18.2% 11.4% 3.2%
60 6.9% 53.8% 17.9% 11.4% 2.9%
70 71% 54.3% 17.8% 11.3% 3.0%
80 7.1% 54.2% 17.7% 11.2% 3.1%
90 7.2% 54.0% 17.4% 11.1% 3.1%
100 7.1% 53.7% 17.0% 11.0% 3.1%

Subtotal 7.5% 54.1% 18.0% 11.3% 3.2%

Total 11.8% 53.0% 13.7% 8.3% 5.4%

Table 2.61: Percentage increase in total traveled distances compared to the opti-
mal strategy for the H&W CBD instances

Chapter 2. BPC-based Solution of the OBP 105

Q n Traversal Return Midpoint Largest gap Combined

6 200 21.1% 30.7% 6.5% 6.2% 5.5%
300 21.0% 29.2% 6.8% 6.5% 5.3%

400 20.8% 28.9% 6.6% 6.3% 5.3%

500 21.2% 28.5% 6.6% 6.3% 5.3%

600 20.9% 28.0% 6.6% 6.2% 5.3%

9 200 17.4% 34.1% 6.1% 5.4% 5.2%
12200 15.3% 38.8% 5.6% 4.5% 4.9%
15 200 14.2% 40.4% 6.1% 4.6% 4.5%
Total 19.0% 32.2% 6.4% 5.7% 5.2%

Table 2.62: Percentage increase in total traveled distances compared to the opti-
mal strategy for the ZKS instances

Bibliography

Achterberg, T. (2007). Constraint Integer Programming. Ph.D. thesis, Fakultat IT —
Mathematik und Naturwissenschaften, Technische Universitiat Berlin, Berlin, Ger-
many.

Bahgeci, U. and Oncan, T. (2022). An evaluation of several combinations of routing and
storage location assignment policies for the order batching problem. International
Journal of Production Research, 60(19), 5892-5911.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12(4), 568-581.

Henn, S. and Wiascher, G. (2012). Tabu search heuristics for the order batching problem
in manual order picking systems. Furopean Journal of Operational Research, 222(3),
484-494.

Muter, I. and Oncan, T. (2015). An exact solution approach for the order batching
problem. IIE Transactions, 47(7), 728-738.

Petersen, C. G. (1995). Routeing and storage policy interaction in order picking opera-
tions. Decision Sciences Institute Proceedings, 3, 1614—1616.

Ratliff, H. D. and Rosenthal, A. S. (1983). Order-picking in a rectangular warehouse:
A solvable case of the traveling salesman problem. Operations Research, 31(3),
507-521.

Roodbergen, K. J. (2001). Layout and routing methods for warehouses. Ph.D. thesis,
Erasmus University Rotterdam, Rotterdam, the Netherlands.

Scholz, A. and Wascher, G. (2017). Order batching and picker routing in manual order
picking systems: The benefits of integrated routing. Central Furopean Journal of
Operations Research, 25(2), 491-520.

Zulj, 1., Kramer, S., and Schneider, M. (2018). A hybrid of adaptive large neighbor-
hood search and tabu search for the order-batching problem. Furopean Journal of
Operational Research, 264(2), 653-664.

106

Chapter 3

Solving the Multi-Block Order
Batching Problem with
Branch-Price-and-Cut

Julia Wahlen

Abstract

In the realm of warehouse optimization, the order batching problem (OBP) involves
partitioning customer orders into capacity-constrained batches, such that the total
distance traveled in the warehouse for picking all batches is minimized. This paper
addresses the OBP in rectangular warehouses consisting of two or more blocks with
parallel aisles, expanding upon a branch-price-and-cut (BPC) approach previously
applied to the OBP in single-block warehouses, as discussed in recent literature.
The generic BPC framework can, under certain conditions, handle the complex-
ities of multi-block warehouse layouts and support both optimal and heuristic
picker routing strategies. A key contribution of this work is the analysis of the
monotonicity properties of routing strategies in multi-block configurations, which
are crucial for the application of the BPC method. The extended approach is
thoroughly evaluated on publicly available benchmark instances. Computational
results demonstrate that both the exact BPC and BPC-based heuristics offer sig-
nificant improvements for solving the multi-block OBP compared to the current
state-of-the-art methods. Specifically, instances with up to 80 orders are solved to
proven optimality for five different routing strategies.

107

Chapter 3. Solving the Multi-Block OBP with BPC 108

3.1 Introduction

The efficiency of order picking operations is a critical determinant of overall ware-
house performance, particularly in large-scale distribution centers where order pick-
ing can account for a significant portion of operational costs (de Koster et al. 2007,
Tompkins et al. 2010, Richards 2017). Order consolidation is central to optimizing
these operations (Gademann and van de Velde 2005). It allows the order pickers
to fulfill multiple customer orders in a single picking tour through the warehouse,
which reduces both the number of picking tours and the total length of the tours
(Hong et al. 2012). Consequently, it significantly reduces the overall picking effort
compared to single order picking, where each order is fulfilled through a separate,
individual tour (de Koster et al. 1999b, Petersen and Aase 2004). The arising or-
der batching problem (OBP) consists of combining a given set of customer orders,
each consisting of one or more individual items, into batches such that each order
is assigned to exactly one batch, all batches satisfy the capacity restriction, and
the total distance traveled by the pickers in the warehouse to fulfill the batches
is minimized. The batch capacity is given by a maximal number of items that fit
into a batch. Each batch is handled by an order picker who navigates the ware-
house to collect the individual items required for all orders in the batch, following
a predefined routing strategy. The problem of determining the shortest route for
picking a set of items based on a predefined routing strategy has been coined the
single picker routing problem (SPRP) and constitutes a special case of the travel-
ing salesman problem (TSP, Burkard et al. 1998). The OBP for optimal routing,
which involves finding the minimum distance tour for each batch, is commonly
referred to in the literature as the joint order batching and picker routing prob-
lem (JOBPRP, e.g., Won and Olafsson 2005, Kulak et al. 2012, Valle et al. 2016,
Briant et al. 2020). This terminology emphasizes the simultaneous decisions of
assigning orders to batches and determining the shortest TSP tour for each batch.
Besides the optimal routing strategy, heuristic routing strategies can be employed
to solve the OBP. Those are often preferred in practice, as the resulting routes
tend to be more intuitive for the (usually human) pickers to follow (de Koster
et al. 1999b, Grosse et al. 2014). The OBP constitutes an NP -hard optimization
problem (Gademann and van de Velde 2005). We refer to Pardo et al. (2024) for
a comprehensive overview on variants of the OBP and their taxonomy.
Warehouses usually exhibit parallel picking aisles that can be accessed by the
pickers from both sides. Traditionally, research on the OBP has focused on a
rectangular single-block warehouse layout, where all aisles are connected by two
horizontal cross aisles (e.g., Gademann et al. 2001, Hong and Kim 2017, Menén-
dez et al. 2017, Boysen et al. 2017, Zulj et al. 2018). This layout allows to solve
the SPRP for relatively straightforward routing strategies. The picking tour for
optimal routing can be determined by a dynamic programming (DP) algorithm

Chapter 3. Solving the Multi-Block OBP with BPC 109

proposed by Ratliff and Rosenthal (1983) which exploits the structure of the rect-
angular single-block warehouse and solves the SPRP in linear time (Hefler and
Irnich 2022b). Heuristic routing strategies for the single-block warehouse are, for
example, traversal (Goetschalckx and Ratliff 1988), return, midpoint, largest gap
(Hall 1993), composite (Petersen 1995), combined (Roodbergen and de Koster
2001a), and mixed (Bahgeci and Oncan 2022).

However, many modern warehouses are equipped with multiple horizontal cross
aisles that partition the space into distinct blocks to improve picking efficiency and
flexibility (Roodbergen and de Koster 2001a, Schiffer et al. 2022). Studies indicate
that incorporating an additional cross aisle can significantly reduce the total travel
distance (e.g., Vaughan 1999, Valle and Beasley 2020). Nevertheless, a multi-block
configuration introduces more complex routing scenarios. In warehouses with two
blocks, an SPRP solution for the optimal routing strategy can be determined by
the DP method of Roodbergen and de Koster (2001b). Cambazard and Catusse
(2018) show that the DP approach can be scaled to any rectilinear Steiner tree
problem in the plane in polynomial time, allowing the SPRP to be solved for the
optimal routing strategy in any rectangular multi-block warehouse. Although its
complexity is exponential in the number of cross aisles, SPRP instances with a
reasonable number of blocks can be solved efficiently with the DP (Pansart et al.
2018). Several heuristic multi-block routing strategies have been proposed in the
literature, including aisle-by-aisle (Vaughan 1999), no-reversal (Valle et al. 2017),
traversal, combined, and largest gap (Roodbergen and de Koster 2001a). Notably,
the latter three are extensions of their respective single-block counterparts.

In a recent work, Wahlen and Gschwind (2023) present a branch-price-and-cut
(BPC) approach to solve the OBP in single-block warehouses for six routing strate-
gies. The BPC method offers a powerful tool for warehouse optimization as it can
be applied to any warehouse layout and routing strategy, provided that the cho-
sen routing strategy is monotone. A monotone routing strategy is characterized
by a distance function that is monotonously increasing as additional items are
picked. However, the introduction of a multi-block warehouse layout presents new
challenges in identifying such monotone routing strategies. Building on previous
research to solve the SPRP, this work focuses on exploring the monotonicity prop-
erty of six routing strategies in multi-block layouts. Our approach is to extend the
state-of-the-art BPC algorithm, along with two BPC-based heuristics, to address
the multi-block OBP for suitable routing strategies.

3.1.1 Contributions

This work contributes to the ongoing development of advanced order batching
methods, offering new insights for tackling the challenges of multi-block rectangular
warehouse environments. Building on the BPC approach of Wahlen and Gschwind

Chapter 3. Solving the Multi-Block OBP with BPC 110

(2023) which excels at solving the OBP in single-block warehouses, our research
extends this method to address the multi-block OBP. The key contributions of this
paper can be summarized as follows:

o We thoroughly investigate the monotonicity of six routing strategies in multi-
block warehouses, a crucial factor for the effective application of the BPC
method.

o We analyze the computational effects of five monotone routing strategies on
the BPC’s performance, providing insights into their impact on multi-block
order batching efficiency.

e The exact BPC approach and two derived BPC-based heuristics serve as a
new standard for future research as they outperform the current state-of-the-
art methods on publicly available two-block benchmark instances.

3.1.2 Organization of the Paper

The remainder of the paper is structured as follows. In Section 3.2, we review the
related literature. Section 3.3 formally defines the OBP, presents a set-partitioning
formulation of the problem, and briefly summarizes the BPC algorithm. The
considered multi-block warehouse layout and routing strategies are specified in
Section 3.4, where special attention is paid to the monotonicity property of the
multi-block routing strategies. Section 3.5 presents our computational results.
Final conclusions are drawn in Section 3.6.

3.2 Literature Review

In the following, we present the current state of research considering both exact
and heuristic solution approaches to solve the OBP in rectangular warehouses
consisting of two or more blocks. A summary of the approaches including our
methods is provided in Table 3.1.

To the best of our knowledge, there are three exact methods in the literature to
date, all of which use branch-and-cut (B&C) methods that can be applied to solve
the JOBPRP in warehouses with an arbitrary number of blocks.

Valle et al. (2016) introduce three integer linear programming (IP) formulations,
two of which are compact network flow formulations that can be solved with a
general-purpose mized integer linear programming (MIP) solver. For the third
formulation, which contains exponentially many connectivity constraints, a B&C
method is presented. The approaches are evaluated on a benchmark generated
by Valle et al. (2016), which is based on publicly available data from the super-
market chain Foodmart (Thia 2008), referred to as Foodmart. Foodmart instances
with up to 15 orders can be solved by at least one of the three methods within

111

Chapter 3. Solving the Multi-Block OBP with BPC

ISYOSBMRZTOYDS
‘qI1eWpoo
(6102) 12 12 ong
‘aIeWpoo g

1Iewpoo g

IOYDSBMBZTOUDS

(2102) 10 12 e[yl

peauIquod
SOIISLINLY ‘[RSIOARI) ‘O[STR-AQ-O[STR
peseq-0Jd4d ‘Tesionor-ou ‘Tewnyd() Areniqry
Surquupd-[Iy
O1ISLINSY 5 rewndp Areniqry
uoryewrxoxdde
Q0UR)SI(] [esionroI-ou ‘Tewinyd() AreIijiqry
O1)SLINSY Paseq-J (]
‘L POUIqUIOD ‘PIULQUIOD
oIeos ‘de3 9so31e[‘TesiorvI)
[e00] pejeIo)] ‘o[sre-Ag-orsie ‘Tewryd() omT,

oIeas nqe)
paseq-193sny) reundo Arenqry

oroxdde mQ
(0zog) v 92 yuweng

(0z0z) Aorseog pue ofrep

(LT0G) TOYdSBA\ PUR Z[OTDS

(2102) ‘10 72 eyl

sotpreoidde S1SLINOY g [PUR]

pouIquIod
IoYOSeMBZTOYDOS ‘TesioAeI) ‘o[sre-Aq-orsie

‘QIeWpPoo g ndd ‘Tesroadr-ou ‘Tewyd() ATeIyqry oroxdde mQ

1IRWPOO 0Rg [es1oAoI-0u ‘TRWnd() Arerjiqry (£20g) oex) pue Suery

1Iempooq g [esioroI-ou ‘Tewinid() Areiyiqry (L10%) “Ip 12 olrRA

1IewWpoo 0g rewndp Areniqry (9T0%) "I 12 oIrRA

seyprordde 10exy 1y [pURg
srewpuag potpewr urey A8orenys Sunnoy sYOo[g # QOUDIOJOY

Overview of exact and heuristic solution approaches to the multi-block

OBP

Table 3.1

Chapter 3. Solving the Multi-Block OBP with BPC 112

six hours of computation time. For small instances, the compact formulations
perform better overall, whereas the formulation with an exponential number of
constraints dominates with an increasing number of orders because of stronger
lower bounds obtained. Valle et al. (2017) add highly effective valid inequalities
to the non-compact formulation of Valle et al. (2016) exploring the warehouse lay-
out. The resulting extended B&C optimally solves Foodmart instances comprising
up to 20 orders for optimal and no-reversal routing within six hours. The pro-
posed method can also be used to solve the SPRP for the optimal routing strategy
with respect to a given set of orders. The authors exploit this by heuristically
determining batches for OBP instances with up to 5,000 orders and solving the
corresponding SPRP with the above-mentioned approach. Further improvements
of the IP formulation are suggested by Zhang and Gao (2023) by reconstructing
the connectivity constraints. Their B&C solves modified Foodmart instances with
up to 23 orders within 40 minutes of computation time for the routing strategies
optimal and no-reversal.

In most heuristic approaches, the decisions on batching and routing are made
separately. Kulak et al. (2012) present a cluster-based tabu search method in order
to obtain feasible batches of orders. The corresponding picking tours for optimal
routing are determined in a second step by applying a combination of nearest
neighbor and or-opt heuristics, or a combination of savings and 2-opt heuristics.
The approach demonstrates superior performance compared to a genetic algorithm
for the traversal routing strategy in terms of solution quality. An iterated local
search method for two-block warehouse layouts is proposed by Scholz and Wascher
(2017). They apply the local search operators swap, shift, and perturbation to
solve the OBP for the routing strategies optimal, traversal, largest gap, aisle-by-
aisle, combined, combined™, and a heuristic based on the optimal strategy. The
approach is assessed by comparing the resulting distances across the different rout-
ing strategies, using self-generated instances referred to as Scholz&Wascher. The
authors observe that the total distance resulting from their iterated local search
approach for the heuristic routing strategies is on average up to 25% longer than
that achieved for the optimal routing strategy. Valle and Beasley (2020) suggest
an edge-based distance approximation MIP to determine the assignment of orders
to batches without directly addressing the SPRP. The use of sub-tour elimination
constraints, which are usually very computationally extensive, becomes obsolete
with their formulation. Once the batches have been created on the basis of approx-
imated distances, their associated picking tours are determined for the strategies
optimal and no-reversal applying the SPRP approach of Valle et al. (2017). Com-
putational studies on the Foodmart benchmark with up to 75 orders show that
the distance approximation approach provides qualitatively similar results to the
B&C method of Valle et al. (2017) with significantly less computation time. Bri-

Chapter 3. Solving the Multi-Block OBP with BPC 113

ant et al. (2020) propose a column generation (CG) heuristic which is based on a
set-covering formulation of the OBP. The iterative CG process consists of solving
a relaxed pricing MIP, which underestimates the actual distance of the picking
tour and therefore the reduced cost of the batch. Only for batches with negative
estimated reduced costs, the corresponding SPRP for the optimal or no-reversal
routing strategy is solved with the approach of Cambazard and Catusse (2018).
After the CG procedure, the final OBP solution is determined by solving a set-
covering MIP based on the identified batches and their actual distances by a MIP
solver. The approach is complemented by a post-optimization process in the form
of a hill-climbing procedure initiated from the best feasible solution found. The CG
heuristic improves several best-known solutions (BKS) from (Valle et al. 2017) for
the Foodmart benchmark including very large-scale instances consisting of up to
5,000 orders. It also provides precise upper bounds for the more general industrial
instances introduced by Bué et al. (2019).

3.3 Problem Description and Solution Approach

In this section, we formally define the OBP and present a mathematical formulation
of it. We also provide an overview of the exact BPC and the BPC-based heuristics.

3.3.1 Problem Definition and Mathematical Formulation

Given a set of customer orders O = {1,...,n}, each consisting of a set of items
to be picked in the warehouse, and a sufficient number of pickers with capacity Q.
The capacity consumption of each order o € O is given by g, > 0. A feasible
batch represents an order subset b C O satisfying > ,cp ¢ < . We assume @)
to be sufficiently large to encompass any order, i.e. ¢, < @Q for all 0 € O, as
splitting of the orders is not allowed. According to a predefined routing strategy,
an order picker navigates through the warehouse to retrieve the items required
to fulfill all orders within a batch. The OBP consists of grouping all orders into
capacity-feasible batches such that each order is assigned to exactly one batch, and
the total distance traveled to pick the batches is minimized.

Let € denote the set of all feasible batches. The distance traveled to pick
batch b € Q according to the routing strategy in use is given by a function c.
Binary parameters r,;, indicate if order o € O is contained in batch b € Q) or not.
Binary decision variables A\, are equal to one if batch b € € is selected in the solu-
tion and zero otherwise. The set-partitioning formulation of the OBP is given as

Chapter 3. Solving the Multi-Block OBP with BPC 114

follows:
min Y e\ (3.1a)
beQ)
s.t. Z ro =1 VYoe O (31b)
beQ
X € {0,1} YbeQ (3.1¢)

The Objective (3.1a) minimizes the total distance traveled, and Constraints (3.1b)
ensure that each order is assigned to exactly one batch. Observe that the under-
lying warehouse layout and the given routing strategy are only taken into account
by the function ¢, which generally allows application of Formulation (3.1) to any
warehouse scenario. However, ¢, is generally not separable in o € b, i.e., the total
distance traveled for a batch cannot be separated into the individual orders the
batch comprises.

3.3.2 Branch-Price-and-Cut Method

Even with small instance sizes, enumerating all feasible batches leads to a large
set 2, which makes it hardly possible to solve Formulation (3.1) directly. Therefore,
BPC-based approaches have been introduced for its solution. These are branch-
and-bound (B&B) methods where a CG technique is employed in each node of the
B&B tree to compute the lower bounds. The CG alternates between solving a re-
stricted master problem (RMP), which is the linear relaxation of Formulation (3.1)
considering only a subset Q C Q of the batches, and solving a pricing problem
in order to augment Q with promising batches. To initialize the BPC process, a
start heuristic can be applied to generate an initial set of feasible batches Q. The
pricing problem consists of identifying batches with negative reduced costs. Cuts
can be added to strengthen the linear relaxations.

For general information on CG and branch-and-price, we refer to (Desrosiers
et al. 2024). In the following, we briefly describe the main components of the
exact BPC and the two BPC-based heuristics employed, and refer to (Wahlen and
Gschwind 2023) for further details on the algorithms and the computational setup.

3.3.2.1 Exact BPC

Pricing Problem The reduced cost of a batch b € Q is defined as & = ¢, —
> och Tos Where 7, denotes the dual prices associated with Constraints (3.1b). The
CG pricing problem involves either identifying at least one feasible batch b €
with a negative reduced cost or proving that no such batch exists. If no batch
with a negative reduced cost exists, the current solution is optimal for the relaxed

Chapter 3. Solving the Multi-Block OBP with BPC 115

Formulation (3.1), and thus, the CG algorithm terminates. Otherwise, at least one
batch with negative reduced cost is added to the RMP.

The pricing problem can be formulated as a shortest path problem with resource
constraints (SPPRC) on a linear directed multigraph G = (V, A) with n+1 vertices
V ={0,...,n} and 2n arcs A. Vertex 0 serves as an artificial source, whereas
vertices 1,...,n correspond to the n orders. For each v € V'\ {0}, there is a pair of
parallel arcs connecting vertices v — 1 and v, representing the inclusion or exclusion
of order v, respectively. Each arc is associated with the dual price and the capacity
consumption that result from the inclusion (exclusion) of order v, specifically ,
and ¢, (0 and 0). Solving the pricing problem for the OBP is equivalent to finding a
capacity-feasible 0-n-path in G with minimum reduced cost. SPPRCs are typically
addressed using DP labeling algorithms (Irnich and Desaulniers 2005). In our
BPC, each label represents a partial path containing information such as the last
vertex, the set of included orders, the accumulated capacity consumption, and the
reduced cost. Those labels are iteratively extended from a given source (0) to a
given sink (n) along the network arcs via dedicated resource extension functions.

The non-separability of the distance function presents two main challenges for
the labeling algorithm. First, each label propagation requires a computationally
extensive evaluation of the distance function to determine the label’s reduced cost.
Second, the commonly established dominance relation between labels in order to
reduce the number of generated labels cannot be applied. To mitigate these issues,
the particular labeling algorithm relies on a strong bounding procedure to avoid
the enumeration of all feasible paths. It consists of calculating a lower bound for
the reduced cost of each capacity-feasible 0-n-path in G that contains the 0-v-path
corresponding to a given label at vertex v. The completion bounds can be cal-
culated by solving a single binary knapsack problem. Any labels that cannot be
extended to yield a negative reduced cost through any capacity-feasible extension
(i.e., those for which the sum of their reduced cost and the corresponding com-
pletion bound is greater than or equal to zero) can be discarded. However, the
validity of this bounding procedure requires monotonicity of the routing strategy.

Cutting Valid inequalities in the form of capacity cuts (CCs) and subset-row
cuts (SRCs) are added dynamically to strengthen the RMP. CCs ensure that for
a subset of orders, the number of batches covering these orders is not smaller
than a minimum number of batches needed to accommodate all orders comprised
in the subset. Three different methods are used for their separation: a greedy
construction procedure, a connected component-based heuristic, and a MIP-based
approach. SRCs guarantee that the number of batches containing two or more
orders from any subset of three orders is not greater than one. They are separated
by simple enumeration. Both types of cuts are non-robust. The CCs additionally

Chapter 3. Solving the Multi-Block OBP with BPC 116

influence the computation of the completion bounds.

Branching Branching is first performed on the number of batches, if fractional,
by adding a linear constraint to the RMP. On the second level, a branching pro-
cedure based on (Ryan and Foster 1981) is applied. If in the current solution of
the RMP, two orders 7,7 € O are assigned to the same batch b that has a frac-
tional value),, we can branch on that order pair. One branch ensures that i
and j are assigned to separate batches by forcing variables A\, with ry = rj =1
to zero, whereas the other branch ensures that ¢ and j are together in a batch
by forcing variables A, with 7, 4 7, = 1 to zero. Both types of decisions can be
realized in the RMP by excluding the corresponding batch columns that must also
be prevented from being regenerated in the CG. As the node selection strategy,
the best-bound-first search is used.

3.3.2.2 BPC-based Heuristics

Building on the powerful CG component of the BPC, two heuristics are derived
to solve the OBP. The first one, known as the set-covering heuristic (SC) employs
a MIP solver to address Formulation (3.1) over all batch columns generated up
to the root node, without utilizing branching techniques. The second heuristic,
referred to as depth-first (BPC-DF), integrates best-bound-first and depth-first
search strategies as the node selection method within the BPC algorithm. These
approaches are specifically designed to quickly generate strong upper bounds, pri-
oritizing speed over achieving proven optimality.

3.4 Multi-Block Routing Strategies

In this section, we describe the considered multi-block warehouse layout and pro-
vide a detailed description of the routing strategies that can be used to solve the
SPRP in a multi-block layout. Furthermore, we formally define the monotonic-
ity property of a routing strategy and investigate it for each of the introduced
strategies.

3.4.1 Warehouse Layout

We consider a rectangular warehouse layout with parallel vertical aisles of equal
length and width. The standard single-block warehouse features two perpendicular
cross aisles that end the front and back of each aisle. In this paper, we focus on a
generalized layout with one or more additional horizontal cross aisles at interme-
diate positions of the aisles, dividing the warehouse into two or more blocks and

Chapter 3. Solving the Multi-Block OBP with BPC 117

each aisle into just as many sub-aisles. We refer to this kind of warehouse layout
as a multi-block layout, consisting of H > 2 blocks {1,2,...,H} and H + 1 cross
aisles {0, 1,..., H}, both indexed according to decreasing distance from the depot.
Each sub-aisle of a block h € {1,2,..., H} can be entered from both its back
cross aisle h — 1 and front cross aisle h. Racks are positioned on both the left and
right side of each sub-aisle. Each rack contains several storage locations and each
storage location can hold multiple items. We assume, however, that each item is
assigned to a single, predetermined storage location. Pickers always travel in the
horizontal center of the aisles and cross aisles. The retrieval of items is performed
from the vertical center of a storage location, eliminating the need for horizontal
movement. The starting and ending point of each picking tour is a common depot
located in cross aisle H in front of the leftmost vertical aisle.

Figure 3.1 presents a top-down view of an exemplary instance of the OBP con-
sisting of n = 5 orders in a warehouse with H = 3 blocks and S = 6 aisles. Each
sub-aisle exhibits five storage locations on both sides. The individual storage lo-
cations of the required items are labeled with the order number o € {1,...,5} to
which they belong. In the following examples, we assume a vertical length of / = 1
per storage location so that each rack has a length of L = 5. Let the horizontal
distance between two adjacent aisles be W = 3, and the distance to enter or leave
a sub-aisle from a cross aisle be a = 1.

3.4.2 Detailed Description of Routing Strategies

In general, heuristic routing strategies offer an initial advantage over optimal rout-
ing due to their intuitive design, making them easier for pickers to apply in prac-
tice. However, as the number of blocks in a warehouse increases, the complexity of
heuristic picking routes also potentially grows, diminishing this advantage. On the
other hand, as demonstrated by our computational study in Section 3.5, the trade-
off between total distance traveled and computation time suggests that addressing
the multi-block OBP for heuristic routing strategies may still be a justified choice.

All multi-block routing strategies examined in this paper — optimal, no-reversal,
aisle-by-aisle, traversal, combined, and largest gap — are detailed below. We desig-
nate a block, aisle or sub-aisle as required if it contains at least one storage location
with an item that needs to be picked and has not yet been accessed. The resulting
picking routes are depicted in Figure 3.2 for batch b = {1,2,3,4,5}, illustrating
the respective routing strategies employed.

Optimal Inan SPRP tour for the optimal routing strategy, all required sub-aisles
are visited either by a single traversal, a double traversal, a return trip (U-turn)
from the front or back cross aisle, or a double return visit omitting the largest gap

Chapter 3. Solving the Multi-Block OBP with BPC 118

(sub—/)haisles items to retrieve

| // E \\ cross-aisle 0 L \\<—L a_ |

, ! N 5 Y]

L | ¥ i i 5| y \ .
% L block 1

N 5 5 |

L Ig .

N cross-aisle 1 o

- - |

L " - -
EE 4 | > block 2

L ; .

L - .

N cross-aisle 2 o

2] 2| [5]
B (1] > block 3

| 2 x| A | _—

) 2y
_Dem k\\ //,:1/; cross-aisle 3 \\\‘1\ ,ﬁl’//]
racks storage locations

Figure 3.1: Rectangular parallel-aisles three-block warehouse layout

between two required storage locations of the sub-aisle. Each cross aisle section
between two adjacent aisles is passed through a maximum of two times. The
minimum distance of all feasible picking tours that start and end at the depot can
be determined by solving a DP based on the aforementioned sub-aisle and cross
aisle transitions. We refer to (Cambazard and Catusse 2018, Ratliff and Rosenthal
1983) for a description of the general DP algorithm and to (Pansart et al. 2018)
for details on its application to the SPRP in multi-block warehouses.

No-Reversal The no-reversal strategy proposed by Valle et al. (2017) seeks a
minimum distance tour that completely traverses all required sub-aisles. It does
not allow return movements within a sub-aisle but only in the cross aisles, which
can help to avoid congestion within the aisles. A no-reversal picking tour can
be determined by applying the distance-minimizing DP for the optimal routing
strategy, omitting all return moves in the sub-aisles. In other words, it is an
“optimal” tour under the constraint that return movements are prohibited.

Chapter 3. Solving the Multi-Block OBP with BPC 119

Aisle-by-Aisle The aisle-by-aisle strategy was specifically designed by Vaughan
(1999) for use in multi-block warehouses. The core concept is to enter each aisle
no more than once, visiting all required sub-aisles of an aisle consecutively. A
DP algorithm is used to determine the cross aisles that minimize the total travel
distance when transitioning between consecutive aisles, moving from left to right
through the warehouse. Note that the original approach terminates after visiting
the rightmost required aisle. We extend this by incorporating the order picker’s
return to the depot using its closest cross aisle, following the method proposed by
Roodbergen and de Koster (2001a).

Traversal The multi-block traversal (also known as the S-shape) strategy pre-
sented by Roodbergen and de Koster (2001a) operates sequentially, advancing from
block to block based on increasing index. In this approach, all items within a block
are picked consecutively before moving on to the next block. Starting from the
depot, the picker enters the leftmost required aisle and traverses it entirely up to
the front cross aisle of the farthest required block, which is traversed horizontally
to access the block’s leftmost required sub-aisle. Each required sub-aisle in that
block is fully traversed from left to right. If the number of required sub-aisles in
the block is odd, the rightmost required sub-aisle is visited by a return move in
order to exit into the block’s front cross aisle. Roodbergen and de Koster (2001a)
define that the picker then moves to the closest of either the leftmost or rightmost
required sub-aisles in the next block that is closer to the depot. In this block, the
process of traversing all required sub-aisles is repeated, and this continues for each
subsequent block until the depot is reached. In case of an even number of required
sub-aisles, a return move is performed in the respective last approached sub-aisle.
If a block between the farthest required block and the depot is not required, it is
just traversed. The picker returns to the depot using the foremost cross aisle.

To ensure monotonicity of the traversal strategy — which is not guaranteed by the
above definition provided by Roodbergen and de Koster (2001a), as demonstrated
in Section 3.4.3 — we establish the horizontal travel direction for each block as
follows: All odd-indexed blocks are traversed from left to right, whereas all even-
indexed blocks are traversed from right to left. This definition does not alter
the fact that the leftmost required aisle is always traversed to reach the farthest
required block first. As previously stated, each required sub-aisle is traversed,
and the picker exits each block into its corresponding front cross aisle, which may
necessitate a return in the last visited sub-aisle. If there is only one required sub-
aisle in the farthest required block, it is visited by a return move. Otherwise, the
leftmost required sub-aisle is traversed. If the block has an odd index, the picker
collects all remaining items in this block moving toward the rightmost required
sub-aisle, according to the previously described policy. In contrast, if the block

Chapter 3. Solving the Multi-Block OBP with BPC 120

has an even index, the picker moves horizontally along the block’s back cross aisle
to reach the rightmost required sub-aisle. Starting from there, the picker visits
all required storage locations (that have not yet been accessed) within the block,
moving toward the left. Subsequently, when approaching the next required block, if
it is even (odd), the picker moves horizontally to the rightmost (leftmost) required
sub-aisle of that block and visits all required sub-aisles, proceeding toward the
leftmost (rightmost) required sub-aisle of the block.

Our revised definition of the traversal strategy, ensures consistency of the picking
tours, which not only enhances intuitiveness for the pickers but also preserves
monotonicity of the routing strategy within a multi-block warehouse layout (see
Section 3.4.3). In a two-block setting, our definition offers significant potential for
reducing the total travel distance compared to the conventional definition, as the
resulting horizontal distance is consistently either smaller or equal, whereas the
number of traversal and return moves remains unchanged. Note that Roodbergen
and de Koster (2001a) suggest a similar improvement. However, in warehouses
with more than two blocks, this strategy may be less advantageous in terms of
total distance traveled.

Combined According to the combined routing strategy given by Roodbergen
and de Koster (2001a), either a traversal or a return move is performed in each re-
quired sub-aisle. By solving a DP for each individual block, the minimum distance
intra-block picking routes are determined which consist only of these two sub-aisle
transitions. First, the leftmost required aisle is traversed to the front cross aisle
of the farthest required block. After picking all items in that block from left to
right according to the DP solution and leaving the block in its front cross aisle, the
picker approaches the closest out of the leftmost required and rightmost required
sub-aisles of the next block. The procedure is repeated block by block and the
picker uses the foremost cross-aisle to return to the depot.

We propose a revised version of the combined approach by specifying horizontal
travel directions for each block to guarantee monotonicity, a property not assured
by the traditional definition given by Roodbergen and de Koster (2001a). Specif-
ically, blocks with an odd index are visited from left to right, and blocks with an
even index from right to left, if required. This approach adopts the sequence of
required sub-aisle visits proposed for the traversal strategy. Excluding the leftmost
required aisle, which is traversed first towards the farthest required block, the DP
process for each block begins at the corresponding back cross aisle and terminates
at the front cross aisle. An exception occurs when the farthest required block has
an odd index or only one required sub-aisle, where the DP process is both initiated
and concluded at the front cross aisle. In contrast, if the farthest required block
has an even index, a traversal is performed within the leftmost required sub-aisle,

Chapter 3. Solving the Multi-Block OBP with BPC 121

] 1 NN DL H
B 4 InEenE 4 1|
1 4 N BHE 4 N
N 1 N i1]
B 3] HEnE 3]]
B O EiEiE B0 2] | D
N i & InmHn
; 2 HEnE 2]
I 2 D HEnE D D]
Delpot ---------------- Depot]---- T
(a) Optimal strategy (b) No-reversal strategy
H 1 | O O o | C
B 4 ; s [4 1N
1 4 ; iR 4 -
H 1 5 Hi 1 H
N 3 5 HE 3 L
8 NiE 0 [affcmlim
N HmmH O jnmHn
SE HEnE 2]
BE 2 2 HEnE 2 2]
T s
(c) Aisle-by-aisle strategy (d) Traversal strategy

Figure 3.2: Picking routes for batch b = {1,2, 3, 4,5} and different routing strate-
gies

Chapter 3. Solving the Multi-Block OBP with BPC 122

g i slis i aHmaln
L 5 I 5 : |
HREE 5[[LB B [
N Al . 1 H
B I I enE 4]|
BHE 4 HENERE 4 N
g e I 1 |
g Ay N 3 L
BE HE 2] AHEEHE
HE 5 B 1]
HHEE] HENEREP H
g z P2 el 2 2]
Delpot I De;)ot ___
(e) Combined strategy (f) Largest gap strategy

Figure 3.2: Picking routes for batch b = {1, 2,3, 4,5} and different routing strate-
gies (cont.)

allowing the DP process to begin at the back of the rightmost required sub-aisle.
It is evident that in a two-block layout, our revised combined strategy results in
a total horizontal distance that is either smaller than or equal to that of the tra-
ditional definition, similar to the improvement suggested by Roodbergen and de
Koster (2001a). However, this advantage does not necessarily extend to the general
multi-block scenario.

Largest Gap The multi-block largest gap routing strategy proposed by Rood-
bergen and de Koster (2001a) proceeds by visiting the blocks in increasing order
of their index. The concept is to enter each required sub-aisle from both enclos-
ing cross aisles in a manner that leaves out the maximum distance between two
adjacent required storage locations within the sub-aisle, or between an enclosing
cross aisle and its nearest required storage locations in the sub-aisle. The set of
items in a block located above the gap is picked from the block’s back cross aisle,
the others from the respective front cross aisle. Starting at the depot, the leftmost
required aisle is traversed to the front of the farthest required block. If there is only
one sub-aisle required in this block, it is visited by a return move. Otherwise, the
leftmost required sub-aisle of the block is traversed and the picker moves towards
the rightmost required sub-aisle collecting all items that have to be picked from
the back cross aisle. The last required sub-aisle of the block is traversed completely

Chapter 3. Solving the Multi-Block OBP with BPC 123

and the picker collects the remaining items of that block from the front cross aisle
in opposite horizontal direction. The picker then navigates to the farthest required
sub-aisle among the next block’s leftmost and rightmost required sub-aisles, visit-
ing all required storage locations from the block’s back cross aisle by following the
shortest path. The farthest required sub-aisle is traversed and the picker picks the
remaining items of the block from its front cross aisle. This procedure is repeated
block by block towards the depot.

3.4.3 Monotonicity Property

The monotonicity of a routing strategy allows both modeling the OBP as a set-
covering problem by replacing Constraints (3.1b) with covering restrictions, and
using a dedicated bounding procedure to solve the CG pricing problem, consti-
tuting a key feature of the BPC approach (see Section 3.3). The monotonicity
property can be formally defined as follows.

Definition 3.1. A routing strategy is monotone if its distance function c, is mono-
tone, i.e., if for any two feasible batches by C by follows ¢y, < ¢y, .

All routing strategies discussed, with the exception of the largest gap strategy,
exhibit monotonicity in a warehouse with H > 1 blocks, as demonstrated by the
following proposition.

Proposition 3.1. The routing strategies optimal, no-reversal, aisle-by-aisle, traver-
sal, and combined are monotone in a multi-block warehouse layout.

Proof. Let R denote the set of storage locations required by orders in by \ by. With-
out loss of generality, we assume in the following that R is non-empty (otherwise
¢y, < ¢p, obviously holds).

Optimal The optimal routing strategy follows a distance-minimizing TSP tour
over all required storage locations allowing all sub-aisle and cross aisle tran-
sitions. Since the distances between all storage locations satisfy the triangle
inequality, an additional location in R can never reduce the length of an
optimal TSP tour and we immediately have ¢, < ¢y,.

No-Reversal The no-reversal routing strategy selects the minimum distance pick-
ing tour over all required storage locations allowing all cross aisle transitions
but restricting movement within sub-aisles to traversal only. Because an ad-
ditional location in R does not impact traversal length and cannot decrease
the number of sub-aisles to be traversed, c¢;,, < ¢, obviously holds for the
no-reversal strategy.

Chapter 3. Solving the Multi-Block OBP with BPC 124

Aisle-by-Aisle The aisle-by-aisle routing strategy chooses the distance-minimizing
picking route, entering each required aisle exactly once. By definition, the to-
tal horizontal distance traveled for a batch is exactly twice the distance from
the depot to the rightmost required aisle. This distance increases strictly if
an additional storage location in R is located in an aisle that is further to
the right than the rightmost required aisle of b;. Otherwise it remains the
same. Because the addition of a location in R does not affect the sub-aisle
traversal length but may increase the distance of a return move, the total
vertical traveled cannot decrease. Therefore, the inequality ¢, < ¢, holds
for the aisle-by-aisle strategy.

Traversal Due to the predefined sequence of sub-aisles to be visited according to
our definition of the traversal strategy, the total horizontal distance traveled
cannot be reduced by an additional required storage location in R. Con-
versely, any location in R that is positioned further to the right than the
rightmost required sub-aisle or further to the left than the leftmost required
sub-aisle of b; in any block may only result in additional horizontal distance.
With regard to the vertical distances, any location in R does not affect the
distance of a traversal but may only increase the distance for a return in the
corresponding sub-aisle. Further, each additional required sub-aisle results in
additional vertical distance (i.e., two traversals instead of a single return, or
an additional return move) which has been shown by Wahlen and Gschwind
(2023). Thus, the traversal strategy satisfies ¢, < cp,.

Combined Within each block, our definition of the combined strategy chooses the
distance-minimizing picking route using only the sub-aisle moves traversal
and return, given the sequence of the sub-aisles to be visited. Any locations
in R do not influence the distance of a traversal move, but can only increase
the distance for returns in the corresponding sub-aisles. Accordingly, any
additional required sub-aisle will result in an increase in the vertical distance
traveled. Furthermore, any location in R that is located further to the right
than the rightmost required sub-aisle or further to the left than the leftmost
required sub-aisle of b; in any block can only increase the total horizontal
distance traveled. Consequently, ¢;, < ¢, holds for the combined strategy.

O

The traditional definitions of the multi-block routing strategies traversal and
combined, as proposed by Roodbergen and de Koster (2001a), do not adhere
to the monotonicity property. Because the horizontal travel directions are not
fixed a priori, the vertical distance traveled within a block may decrease if the

Chapter 3. Solving the Multi-Block OBP with BPC 125

picking sequence of sub-aisles in the block is reversed due to an additional re-
quired storage location. Figure 3.3 shows the resulting picking tours for the tradi-
tional definition of the two strategies in a two-block layout. The picking route of
batch by = {2} is illustrated with a dashed blue line. The red dotted route is ob-
tained for batch by = b;U{3}. The corresponding distances are ¢, = 49 > ¢, = 46.
In contrast, according to our revised definitions of traversal and combined, the tour
for by follows the red dotted path without entering block 1, resulting in a total dis-
tance of 43.

L1 [T I+

Figure 3.3: Picking routes for the traditional definitions of traversal and com-

bined and batches by = {2} (blue) and by = {2,3} (red)

—_

Figure 3.4: Picking routes for the largest gap strategy and batches by = {1}
(blue) and by = {1,4} (red)

The largest gap strategy exhibits non-monotone behavior in warehouses with
H > 2 blocks, as illustrated by the example in Figure 3.4 within a two-block
layout. The picking route corresponding to batch by = {1} comprising only order 1
is shown in blue dashed lines. Note that the largest gap in the second sub-aisle

Chapter 3. Solving the Multi-Block OBP with BPC 126

of block 1 is between the two required storage locations in that sub-aisle, hence
the sub-aisle needs to be visited twice by return moves from both enclosing cross
aisles 0 and 1. Comparing the tour for batch by = b; U {4}, shown as a red dotted
line, the largest gap in the mentioned sub-aisle is now between the front cross
aisle 1 and the nearest item. Accordingly, a single return move from cross aisle 0
is executed in this sub-aisle and there is no re-entering from cross aisle 1, making
redundant any horizontal movement in that cross aisle. The resulting distances
are ¢y, = 90 > ¢, = 67, which contradicts the monotonicity property.

3.5 Computational Results

Our BPC-based approaches were implemented in C++ and compiled into a 64-bit
single-thread executable with MS Visual Studio 2022. CPLEX 20.10 with de-
fault parameters (except for the time limit and allowing only one thread) was
used as a MIP solver. The computations were carried out on the HPC cluster
Elwetritsch of the University of Kaiserslautern-Landau consisting of several Intel
Xeon Gold 6126 processors running at 2.60 GHz. The computational setup uti-
lized in this study aligns with that described in (Wahlen and Gschwind 2023) for
all routing strategies and instances, with one notable exception: the travel dis-
tances of batches are stored in a hash table upon their initial computation. This
method, previously discussed and tested by Wahlen and Gschwind (2023), was
found to be ineffective for the single-block OBP. However, pretests demonstrated
significant speedups for the multi-block OBP, thereby justifying its implementa-
tion in the current study. We set the time limit for each instance to 3,600 seconds.
Unsolved instances are considered with the time limit of 3,600 seconds in our anal-
ysis. Instance-by-instance results are provided at https://wiwi.rptu.de/fgs/
logistik/obp-multiblock-detailedresults.

3.5.1 Benchmark Instances

We focus our computational study on the benchmark prepared by Valle et al.
(2016, 2017), which is derived from an industrial database (Foodmart), and on
the instances generated by Scholz and Wéscher (2017) (Scholz&Wéascher). Only
a small fraction of the considered instances have been solved to proven optimality
before.

The Foodmart instances are based on anonymized online grocery purchases made
at the supermarket chain Foodmart over a period of two years. All purchases made
by a customer within a given number of days have been merged into a single order.
Each instance consists of the n orders with the highest number of different items
requested during the first A days, such that order size is positively correlated with

https://wiwi.rptu.de/fgs/logistik/obp-multiblock-detailedresults
https://wiwi.rptu.de/fgs/logistik/obp-multiblock-detailedresults

Chapter 3. Solving the Multi-Block OBP with BPC 127

the number of days. The Foodmart benchmark is characterized by the number
of orders n € {5,6,...,49,50,75}, the number of days A € {5,10,20}, and the
warehouse configuration including a number of aisles S € {8,16}. The benchmark
comprises 282 instances. Additionally, six large-scale instances consisting of up
to 5,000 orders are considered for the heuristic approaches. The capacity of each
picker is assumed to be () = 8 boxes, each of which can accommodate up to
40 items belonging to the same order. The capacity consumption of each individual
order o € {1,...,n} consisting of |o| items therefore corresponds to g, = [%W boxes
(with g, < 2 for the given instances). For more details on the instance generation,
we refer to (Valle et al. 2017). The considered warehouse layout has H = 2 blocks
either consisting of S = 8 aisles with rack lengths of L' = 16 in block 1 and L? = 17
in block 2, or S = 16 aisles with L' = 8 and L? = 9. The length of a single storage
location is £ = 1. Entering a sub-aisle corresponds to a travel distance of a = 1.5.
The distance between two adjacent aisles is W = 5. The depot is located one
unit distant from its nearest cross aisle in front of the leftmost aisle. The distance
between the depot and the cross aisle is measured Euclidean, i.e, at the level of
aisle s € {1,...,S} it is \/(1 +a)?+ ((s = 1)W)2.

Note that for the routing strategies optimal and no-reversal, the remote de-
pot location in this setup is technically equivalent to introducing an additional
block H + 1. It results in over 100 feasible states in the DP approach for solving
the SPRP, compared to only 25 feasible states when the depot is located directly
at cross aisle H of the warehouse (Roodbergen and de Koster 2001b). A detailed
explanation of the state generation process, along with a comprehensive list of
feasible states for the Foodmart instances, is provided in Appendix 3.A.

The Scholz&Wascher instances are each specified by the number of orders n €
{20,40, 60,80}, the capacity @ € {30,45,60,75}, and the number of aisles S €
{10, 30} in the warehouse. The number of items per order o € {1,...,n} is uni-
formly distributed over [5,25] and defines its capacity consumption g,. In the
considered warehouse with H = 2 blocks, the length of each rack is L = 25, and
the length of a single location is £ = 1. The horizontal distance between two adja-
cent aisles is W = 5. To enter a sub-aisle, a distance of a = 1 must be traveled.
There are 50 instances per (n, @, S)-combination and thus, the Scholz&Wéascher
benchmark comprises a total of 1,600 instances.

3.5.2 Comparison with State-of-the-Art

We first compare our BPC with the state-of-the-art B&C approaches of Valle et al.
(2017) and Zhang and Gao (2023) for the optimal routing strategy. Valle et al.
(2017) consider all Foodmart instances with n € {5,6,...,14,15,20, 25,30} orders
and S = 8 aisles, and set a time limit of 21,600 seconds (six hours), whereas the

Chapter 3. Solving the Multi-Block OBP with BPC 128

study of Zhang and Gao (2023) is based on the subset of Foodmart instances with
n € {5,10,15,16,17,...,24,25 30} and S = 8 with a time limit of 2,400 seconds
(40 minutes). Tables 3.2 and 3.3 show the comparison aggregated on the number of
orders n, respectively. The tables contain information on the number of instances
(Inst), the number of optimal solutions (Opt) and the average solution time in
seconds (f[s]) of each approach. Note that the data presented for (Valle et al.
2017) in Table 3.2 is sourced from (Valle and Beasley 2020), who rerun the B&C
calculations. Note further that Zhang and Gao (2023) simplistically assume a depot
position within cross aisle 2, neglecting the Euclidean distances to the depot. In
order to nevertheless allow a fair comparison with their algorithm we make the
same assumption, causing our computation times stated in Table 3.3 to differ from
those in the other tables. Instance-specific results are provided in Tables 3.13
and 3.14 in Appendix 3.B.

Tables 3.2 and 3.3 demonstrate that the BPC clearly outperforms both B&C
methods. Whereas Valle et al. (2017) and Zhang and Gao (2023) optimally solve
35 and 27 of 42 considered instances, respectively, we solve all of these instances to
proven optimality. Furthermore, our BPC method is on average more than three
orders of magnitude faster than each of the B&C approaches for the considered
instances. A striking conclusion from comparing the two tables is that the average
computation time of the BPC reduces to a fraction when adopting the assumption
of Zhang and Gao (2023) with respect to the depot location (e.g., 24.9 seconds vs.
4.6 seconds on average for n = 30). This demonstrates the exponential increase in
the complexity of the DP algorithm used to solve the SPRP for optimal routing as
a function of the number of blocks H in the warehouse (Cambazard and Catusse
2018).

3.5.3 Computational Analysis of BPC Algorithm

We consult both the Foodmart and the Scholz&Wascher instances to examine
which input parameters influence the performance of the BPC for the optimal
routing strategy. The results are presented in Tables 3.4 and 3.5 where the addi-
tional columns each indicate the percentage of optimally solved instances (% Opt).

Table 3.4 shows the analysis of the Foodmart instances aggregated by the number
of aisles S, the number of days A, and intervals of the number of orders n. The
difficulty of the instances most significantly depends on n. All instances with
n < 20 are solved in few seconds, but the computation time steadily increases
with each interval of n. Only one out of six instances with n = 75 can be solved
within one hour. Doubling S results in slightly fewer solvable instances (97.2%
vs. 98.6%) and more than doubles the average computation time (410.3 seconds
vs. 164.6 seconds), although the effective warehouse size in terms of of available
storage locations remains almost identical. Interestingly, the average number of

Chapter 3. Solving the Multi-Block OBP with BPC 129

VBC (2017) Our method
n Inst Opt t[s] Opt t[s]

5 3 3 31 3 00
6 3 3 76 3 00
7 3 3 75 3 00
8 3 3 135 3 0.0
9 3 3 595 3 00
10 3 3 837 3 01
11 3 3 3257 3 02
12 3 3 3110 3 02
13 3 3 4551 3 04
14 3 3 1488 3 04
15 3 3 10036 3 0.3
20 3 2 11,8529 3 3.1
25 3 0 21,6000 3 7.1
30 3 0 21,6000 3 249
Total 42 35 42003 42 2.6

Table 3.2: Comparison of our BPC algorithm with the B&C approach of Valle
et al. (2017) for the optimal routing strategy on a subset of the
Foodmart instances

Z&G (2023) Our method
n Inst Opt t[s] Opt t[s]

) 3 3 0.4 3 0.0
10 3 3 10.9 3 0.0
15 3 3 41.6 3 0.1
16 3 3 2823 3 0.1
17 3 3 7373 3 0.2
18 3 3 451.0 3 0.3
19 3 2 900.3 3 0.6
20 3 2 8983 3 0.6
21 3 2 893.0 3 2.1
22 3 2 917.0 3 0.9
23 3 1 1,696.7 3 0.4
24 3 0 2,400.0 3 1.1
25 3 0 2,400.0 3 2.6
30 3 0 2,400.0 3 4.6

Total 42 27 1,002.1 42 1.0

Table 3.3: Comparison of our BPC algorithm with the B&C approach of Zhang
and Gao (2023) for the optimal routing strategy on a modified subset
of the Foodmart instances

Chapter 3. Solving the Multi-Block OBP with BPC 130

S =38 S =16

A n Inst %Opt t[s] Inst %Opt t[s]
5 (0, 10 6 100.0 0.0 6 100.0 0.0
(10, 20] 10 100.0 1.1 10 100.0 3.5
(20, 30] 10 100.0 22.7 10 100.0 58.8
(30, 40] 10 100.0 201.9 10 100.0 424.5
(40, 50] 10 100.0 391.1 10 90.0 1,829.7
(50, 75] 1 0.0 3,600.0 1 0.0 3,600.0
Subtotal 47 979 207.8 47 95.7 969.5
10 (0, 10] 6 100.0 0.0 6 100.0 0.0
(10, 20] 10 100.0 1.8 10 100.0 7.7
(20, 30] 10 100.0 16.0 10 100.0 51.6
(30, 40] 10 100.0 155.2 10 100.0 288.5
(40, 50] 10 100.0 373.1 10 100.0 1,084.4
(50, 75] 1 0.0 3,600.0 1 0.0 3,600.0
Subtotal 47 97.9 192.8 47 97.9 381.3
20 (0, 10] 6 100.0 0.0 6 100.0 0.0
(10, 20] 10 100.0 0.3 10 100.0 0.7
(20,30] 10 1000 43 10 1000 115
(30,400 10 100.0 436 10 100.0 124.4
(40, 50] 10 100.0 221.9 10 100.0 820.5
(50, 75] 1 100.0 1,679.5 1 0.0 3,600.0
Subtotal 47 100.0 93.2 47 97.9 280.2
Total 141 98.6 164.6 141 97.2 410.3

Table 3.4: Summary results of our BPC algorithm for the Foodmart instances
and the optimal routing strategy

different items per order seems to have an opposing effect, as instances with larger
parameter A are more likely to be solved optimally. For example, 96.8% of the
instances with A = 5 are solved, compared to 99.0% with A = 20.

In the Scholz&Wascher benchmark, the number of aisles .S, the capacity @), and
the number of orders n are varied. The aggregated results of our BPC for these
instances are presented in Table 3.5. Although the Scholz&Wascher instances are
significantly larger in terms of both warehouse size and number of orders, our BPC
method performs almost equally well in solving them for optimal routing. This
result can likely be attributed to the differing depot locations assumed in the two
instance classes. In line with the findings from the Foodmart instances, we observe
that the instance difficulty increases with higher values of n. However, the impact
of S on performance appears less consistent compared to the Foodmart instances.
Although Scholz&Wascher instances with more aisles tend to be more challenging

Chapter 3. Solving the Multi-Block OBP with BPC 131

S =10 S =30
Q n Inst %Opt t[s] Inst %Opt t[s]

30 20 50 100.0 0.0 50 100.0 0.0

40 50 100.0 0.0 50 100.0 0.0

60 50 100.0 0.1 50 100.0 0.1

80 50 100.0 0.1 50 100.0 0.1

Subtotal 200 100.0 0.0 200 100.0 0.1
45 20 50 100.0 0.1 50 100.0 0.1

40 50 100.0 1.0 50 100.0 0.6

60 50 100.0 10.1 50 100.0 2.9

80 50 100.0 22.6 50 100.0 11.8

Subtotal 200 100.0 8.5 200 100.0 3.8
60 20 50 100.0 0.3 50 100.0 0.3

40 50 100.0 8.1 50 100.0 7.3

60 50 980 207.0 50 96.0 262.7
80 50 8.0 7784 50 92.0 666.8

Subtotal 200 96.0 248.5 200 97.0 2343

7 20 50 100.0 0.8 50 100.0 1.2

40 50 100.0 25.7 50 100.0 35.1

60 50 940 636.1 50 98.0 640.9

80 50 66.0 19181 50 42.0 2,584.0

Subtotal 200 90.0 6452 200 8.0 815.3

Total 800 96.5 2255 800 955 263.4

Table 3.5: Summary results of our BPC algorithm for the Scholz&Wascher in-
stances and the optimal routing strategy

for our BPC on average, we generally observe a performance improvement for
instances with () < 60 as the number of aisles S increases from 10 to 30. The
impact of @) is comparable to that of n. All instances with a small capacity
(Q < 45) are solved optimally within an average of approximately three seconds.
In contrast, only 87.5% of the instances with Q = 75 are solved, requiring an
average computation time of more than 730 seconds.

Overall, the difficulty of the considered instances increases with an increasing
number of orders n, an increasing number of aisles S, an increasing capacity @
(Scholz&Wascher), or with a decreasing number of days A (Foodmart).

3.5.4 Evaluation of Routing Strategies

Table 3.6 summarizes the results for all instances per routing strategy, aggregated
on the number of orders n (Scholz&Wascher) or intervals of n (Foodmart). The

Chapter 3. Solving the Multi-Block OBP with BPC 132

additional columns show the percentage deviation in the total travel distances for
the respective routing strategy compared to the optimal strategy (dev). Overall,
the choice of the routing strategy significantly influences both the solution quality
and the computational performance of the BPC. Recall that the warehouse layout
and especially the location of the depot in the Foodmart instances significantly in-
creases the complexity of the SPRP solution for the routing strategies optimal and
no-reversal (see Appendix 3.A), whereas it barely affects the other heuristic rout-
ing strategies. As anticipated, the optimal and no-reversal routing strategies pose
greater computational challenges for the BPC method on the Foodmart instances
compared to aisle-by-aisle, combined, and traversal. With each of the latter three
strategies, 98.6% of the Foodmart instances are solved in an average runtime of
approximately two minutes. In contrast, the average computation time for optimal
and no-reversal is significantly higher, often by several multiples, and less optima
are provided (97.9% and 94.0%). For the Scholz&Wéascher instances, computa-
tional performance across all strategies is more consistent, with the proportion of
optimally solved instances ranging from 94.2% (no-reversal) to 96.6% (aisle-by-
aisle) and average computation times between 212.1 seconds (aisle-by-aisle) and
330.3 seconds (no-reversal).

For all routing strategies considered, the difficulty increases as n increases.
Table 3.6 reflects a significantly smaller percentage deviation in results for the
Foodmart instances compared to the Scholz&Wascher instances. This disparity
can be attributed to the considerably larger warehouse dimensions (number and
length of aisles) in the Scholz&Wascher instance set. In both classes of instances,
the no-reversal strategy yields the largest average travel distances, followed by the
traversal strategy. Among the heuristic strategies, the combined strategy consis-
tently achieves the shortest average travel distances. Notably, for the Foodmart
instances, the BPC method for combined routing yields shorter total travel dis-
tances than the optimal routing strategy for n = 75, on average. This is because
the BPC for optimal routing fails to solve the majority of these instances to opti-
mality within the imposed time limit.

3.5.5 Detailed Analysis

A detailed analysis of our BPC is provided in Table 3.7 for the Foodmart and
the Scholz&Wascher instances and the routing strategies optimal and combined,
aggregated on n. The two strategies are representative of a group of routing strate-
gies each in terms of computation time and number of optimally solved instances
(see Table 3.6). More detailed results for all routing strategies are provided in
Appendix 3.C. The additional columns provide the average time to solve the LP
relaxation in seconds (/) the average optimality gap of the LP relaxation with re-
spect to the BKS for the respective routing strategy (Gp™’), the average optimality

Chapter 3. Solving the Multi-Block OBP with BPC 133

Optimal No-reversal Aisle-by-aisle Traversal Combined
n Inst %Opt t[s] %Opt t[s] dev %Opt t[s] dev %Opt t[s] dev %Opt t[s] dev
Panel A: Foodmart instances
(0,10 36 100.0 0.0 100.0 0.0 9.5 100.0 0.0 5.3 100.0 0.0 7.3 100.0 0.0 2.0
10, 20] 60 100.0 2.5 100.0 3.5 8.2 100.0 1.0 5.2 100.0 0.3 6.5 100.0 04 2.1

(

(20, 30] 60 100.0 275 983 183.7 7.9 100.0 7.6 5.3 100.0 16.9 6.5 100.0 77 18
(30, 40] 60 100.0 2064 96.7 381.1 7.6 1000 41.8 5.1 100.0 70.2 6.3 100.0 543 1.5
(
(

40, 50] 60 98.3 786.8 86.7 1,011.7 7.8 100.0 141.5 5.0 100.0 249.5 6.3 100.0 206.7 1.6
50, 75] 6 16.7 3,279.9 0.0 3,600.0 11.9 33.3 3,078.6 3.6 33.3 2,876.9 54 33.3 3,0345 —0.5

Total 282 979 2875 94.0 4128 82 986 1063 5.1 986 1329 6.5 986 121.8 1.7

Panel B: Scholz&Wascher instances

20 400 100.0 0.3 100.0 0.5 20.9 100.0 0.3 10.1 100.0 0.3 18.7 100.0 02 55
40 400 100.0 9.7 100.0 31.0 20.0 100.0 12.0 9.8 100.0 10.2 18.0 100.0 9.1 5.3
60 400 982 220.0 950 3v6.7 19.7 985 151.1 9.6 97.0 2295 17.8 975 2129 5.2
80 400 85.8 T47.7 818 9132199 88.0 6851 95 86.2 7187 17.6 86.8 736.8 5.1

Total 1,600 96.0 2445 942 330.3 20.1 96.6 2121 9.7 958 239.7 180 96.1 2398 5.3

Table 3.6: Summary results of our BPC algorithm for the Foodmart and the
Scholz&Wascher instances and all routing strategies

gap with respect to the BKS before the first Ryan-and-Foster branching is applied
(Gp™), the average number of B&B nodes solved (Nds), and the average number
of CCs (CC) and SRCs (SRC') added. Note that three of the largest Foodmart
instances (n = 75) have been excluded from the gaps reported for optimal routing,
as the algorithm provided no root node solution in the given time.

The LP gap and the gap after incorporating cuts are consistently small across all
routing strategies and instances, with the exception of cases where n = 75. On av-
erage, Scholz&Wascher instances exhibit significantly smaller gaps than Foodmart
instances, and gaps are generally smaller for optimal routing compared to combined
routing. For combined routing, solving the LP relaxation is highly effective, with
average computation times of 2.7 seconds for Foodmart instances and 1.5 seconds
for Scholz&Wascher instances. In contrast, the corresponding times for optimal
routing are significantly longer, at 104.8 seconds and 13.2 seconds, respectively. As
a result, the total computation times for the BPC method are shorter for combined
routing than for optimal routing, even though the average number of nodes in the
B&B tree is considerably larger for combined routing.

When comparing instance classes, Scholz&Wascher instances have an average
B&B tree size more than ten times that of Foodmart instances. Nevertheless, for
optimal routing, the average computation time is smaller for Scholz&Wascher in-
stances due to much shorter computation times per node, which can be attributed
to differences in the underlying warehouse layouts. Conversely, for combined rout-
ing, the computation time for Scholz&Wascher instances is approximately double
that for Foodmart instances on average. This discrepancy arises because, despite

Chapter 3. Solving the Multi-Block OBP with BPC 134

Optimal Combined
n Inst Opt t[s] ttP Gp™” Gp®*F Nds CC SRC Opt t[s] t"P Gp™ GpRF Nds CC SRC

Panel A: Foodmart instances

] 36 36 0.0 0.0 155 1.55 1 4 1 36 0.0 0.0 167 1.67 1

(10, 20] 60 60 25 1.2 240 228 2 29 10 60 04 0.0 236 2.13 2 26 12
(20, 30 60 60 275 171 1.39 0.75 4 32 36 60 7.7 03 153 0.78 6 31 42
(30,40] 60 60 2064 91.8 140 042 34 32 68 60 543 1.8 137 0.50 38 30 65
(40, 50]
(50, 75]

(0,10 41

40,50 60 59 786.8 344.5 140 043 102 40 79 60 206.7 56 153 052 146 37 77
50,75 6 13,279.9 380.1 10.78 10.16 332 29 44 2 3,034.5 49.3 9.78 9.01 1,140 38 &6

Total 282 276 2875 1048 1.83 124 37 29 42 278 121.8 2.7 1.87 124 65 28 44

Panel B: Scholz&Wascher instances

20 400 400 03 01 076 0.42 6 10 10 400 02 0.0 081 041 5 9 11
40 400 400 97 1.7 052 022 43 14 24 400 91 03 055 026 67 13 24
60 400 393 220.0 11.6 0.55 0.34 1,007 14 29 390 2129 14 0.69 047 1,068 13 29
80 400 343 7477 394 149 136 1,699 14 30 347 7368 44 1.60 1452072 13 31

Total 1,600 1,536 244.5 13.2 083 058 689 13 23 1,537 239.8 1.5 091 065 803 12 24

Table 3.7: Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wascher instances and the routing strategies optimal and
combined

similar average computation times for the root node across instance classes, the
larger B&B tree size in Scholz&Wascher instances drives up the total computation
time. The number of CCs and SRCs generated is comparable across all routing
strategies within each instance class. However, Foodmart instances require gener-
ating approximately twice as many cuts as Scholz&Wascher instances.

3.5.6 Computational Analysis of BPC-based Heuristics

As exposed in Table 3.7, the majority of computation time in the BPC process is
spent on closing the optimality gap, with comparatively little time dedicated to
solving the root node. This insight is leveraged by the BPC-based heuristics SC
and BPC-DF. Table 3.22 in Appendix 3.C provides a comprehensive summary of
our heuristic results across all Foodmart instances and routing strategies.

Our initial objective is to evaluate the two heuristics for the optimal routing
strategy in comparison to the distance approzimation approach (DAA) proposed
by Valle and Beasley (2020) and the column generation heuristic (CGH) intro-
duced by Briant et al. (2020). Following the methodology outlined by the au-
thors, we focus on a subset of Foodmart instances characterized by S = 8 and
n € {5,6,...,14,15,20,25,30}. Recall that all instances considered were solved to
proven optimality using our BPC approach for optimal routing, with an average
runtime of 2.6 seconds per instance (see Table 3.2). Valle and Beasley (2020) im-
pose a time limit of six hours (21,600 seconds) and Briant et al. (2020) allow two

Chapter 3. Solving the Multi-Block OBP with BPC 135

25 90.5 3.40 4,404.2 0.80 6.4 0.00 4.7 0.72
30 3,7244 355 7,293.7 237 21.0 0.00 18.5 0.05

Total 42 275.3 2.51 951.5 038 2.3 000 19 0.23

Table 3.8: Comparison of our heuristics BPC-DF and SC with the DAA of Valle
and Beasley (2020) and the CGH of Briant et al. (2020) for a subset
of the Foodmart instances and the optimal routing strategy

DAA CGH BPC-DF SC

n Inst t[s] Gp t[s] Gp t[s] Gp t[s] Gp
5 3 1.2 0.00 0.9 0.00 0.0 0.00 0.0 0.00
6 3 1.0 0.61 1.2 0.00 0.0 0.00 0.0 0.00
7 3 1.6 2.40 3.9 000 0.0 0.00 0.0 0.00
8 3 1.7 3.85 5.1 0.00 0.0 0.00 0.0 0.00
9 3 3.0 2.74 175 0.08 0.0 0.00 0.0 0.00
10 3 2.7 3.46 21.7 0.14 0.1 0.00 0.1 0.00
11 3 2.5 2.00 60.1 029 0.2 0.00 0.1 0.88
12 3 2.7 1.78 90.1 0.00 0.2 0.00 0.2 0.33
13 3 3.1 1.60 942 032 04 0.00 0.3 0.86
14 3 4.8 341 123.1 0.18 04 0.00 04 0.00
15 3 3.9 349 1479 0.07 03 0.00 0.3 0.00
20 3 11.7 291 10574 1.08 3.0 0.00 21 042

3

3

hours plus an additional 12 minutes for post-optimization (7,920 seconds in total).
The gap columns (Gp) reported in Table 3.8 represent the percentage deviation
from the optimal solution aggregated on n. An instance-by-instance comparison
is available in Table 3.15 in Appendix 3.B.

Among the two methods from the literature, Valle and Beasley (2020) achieve
a shorter average computation time of less than five minutes, with an average
optimality gap of 2.51%. Briant et al. (2020) reduce the gap to an average of 0.38%
at the cost of more than tripling the average computation time. In comparison,
BPC-DF solves all considered instances to optimality with an average computation
time of 2.3 seconds, whereas SC achieves even faster results, requiring 1.9 seconds
of computation time and exhibiting a gap of 0.23% from the optimal solution on
average. The results presented in Table 3.8 clearly demonstrate that both BPC-
DF and SC outperform the DAA (Valle and Beasley 2020) and the CGH (Briant
et al. 2020) for the instances under consideration, offering superior performance in
terms of both computation time and solution quality.

We extend our analysis to larger Foodmart instances with n € {25,30,50,75}
orders and S € {8,16} aisles, as suggested by Valle and Beasley (2020). Given
the rapid root node computation times and the relatively small deviations from
the BPC solution for optimal routing (see Tables 3.6 and 3.7), exploring the BPC-

Chapter 3. Solving the Multi-Block OBP with BPC 136

BPC-DF SC
DAA Optimal Combined Optimal Combined
n Inst t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp
25 6 14,6858 3.13 14.9 0.00 1.0 1.60 12.7 0.61 0.7 1.78
30 6 12,7075 3.50 41.9 0.00 6.4 1.94 404 0.02 23 213

50 6 21,652.1 6.50 1,766.4 0.00 971.7 1.55 5454 0.61 44.1 2.85
75 6 21,655.7 7.71 35174 543 3,600.0 0.68 2,324.5 580 1,035.0 1.78

Total 24 15,1753 521 13352 1.36 1,144.7 1.44 730.7 1.76 270.5 2.13

Table 3.9: Comparison of our heuristics BPC-DF and SC for the routing strate-
gies optimal and combined with the DAA of Valle and Beasley (2020)
on a subset of large Foodmart instances

based heuristics for combined routing in addition to the optimal routing strategy
appears promising. An evaluation of the methods aggregated on n is provided
in Table 3.9, with an instance-by-instance comparison detailed in Table 3.16 in
Appendix 3.B. Valle and Beasley (2020) set a time limit of 21,600 seconds for their
DAA, in addition to the time required for computing the optimal SPRP solution.
The overall BKS per instance across all routing strategies constitutes the basis
for the reported gaps. All BPC-based heuristic variants demonstrate a significant
reduction in the gaps, with computation times less than one-tenth of those reported
by Valle and Beasley (2020). The highest-quality solutions, characterized by an
average gap of approximately 1.4% relative to the BKS, are obtained using BPC-
DF for either optimal or combined routing, with an average solution time of around
20 minutes. Notably, SC exhibits even shorter computation times than BPC-DF,
with averages of 270.5 seconds for combined routing and 730.7 seconds for optimal
routing, while maintaining relatively small gaps of 2.13% and 1.76%, respectively.

Table 3.10 confirms that the BPC-based heuristics yield favorable results, even
with significantly reduced computation times. The table presents aggregated re-
sults for combined routing respecting time limits (TL[s]) of 100, 600, 1,800, and
3,600 seconds for the previously considered subset of large Foodmart instances. For
both heuristics, the average gaps consistently decrease as the time limit increases,
indicating a clear trade-off between computational time allowance and solution
quality. SC utilizes a smaller proportion of the available computation time on
average, whereas BPC-DF consistently provides gaps that are approximately one-
third smaller across all time limits.

Finally, we evaluate our BPC-based heuristics on the basis of six very large-scale
Foodmart instances with S = 8, A = 10, and n € {100, 200, 500, 1000, 2000, 5000}.
For this analysis, we set a time limit of 7,200 seconds and employ the combined
routing strategy. Briant et al. (2020) extend this time limit by an additional

Chapter 3. Solving the Multi-Block OBP with BPC 137

BPC-DF SC
TL[s] t[s] Gp t[s] Gp

100 46.0 2.63 351 3.75
600 233.2 1.56 1354 2.36
1,800 622.3 147 251.7 218
3,600 1,144.7 1.40 270.5 2.10

Table 3.10: Summary results of our heuristics BPC-DF and SC for a subset of
large Foodmart instances and combined routing with different time
limits

CGH BPC-DF SC
n tls] UB®“ UB t[s] UB t[s] UB
100 TL 3,080.9 2,882.5 6,438.7 2,782.6 3,585.6 2,819.3
200 TL 6,716.3 5,608.8 OOM 5,088.4 71,1774 5,345.6
500 TL 159720 13,237.0 OOM 12,0185 7,170.4 13,1811
1,000 TL 30,719.3 25,5042 OOM 29,2184 OOM 29,670.5

2,000 TL 57,763.5 48,173.0 TL 56,6432 OOM 56,643.2
5,000 TL 137,1654 128,811.7 TL 133,207.0 TL 135,884.0

Table 3.11: Comparison of our heuristics BPC-DF and SC for the combined rout-
ing strategy with the CGH of Briant et al. (2020) for very large
Foodmart instances

720 seconds to conduct a post-optimization process following the execution of
their CGH. Table 3.11 presents the best upper bound (UB) achieved by each ap-
proach, as well as the UB prior to the post-optimization phase in (Briant et al.
2020) (UB®Y). Both BPC-DF and SC exhibit superior performance compared to
the pure CGH without post-optimization, yielding smaller UBs and shorter com-
putation times. This advantage persists even for instances where the root node
could not be solved due to memory limitations (exceeding 18 GB, indicated as
OOM) or time constraints (indicated as T'L). In many such cases, our UB aligns
with the value obtained from our initialization heuristic for the RMP, highlighting
the competitiveness of this approach, even for the largest instances. For instance
sizes of up to 500 orders, the two BPC-based heuristics consistently outperform the
CGH, even when post-optimization is applied. However, for very large instances
involving 1,000 orders or more, the performance of our BPC-based methods de-
clines. In these cases, Briant et al. (2020) achieve stronger UBs, primarily due to
their dedicated post-optimization process, which offers a notable advantage over
our approaches for the largest instances.

Chapter 3. Solving the Multi-Block OBP with BPC 138

3.6 Conclusions

In this study, we exploited a branch-price-and-cut (BPC) approach to address the
order batching problem (OBP) in warehouses with multiple blocks, a complex logis-
tical challenge crucial for enhancing operational efficiency in large-scale facilities.
To the best of our knowledge, no BPC method has previously been applied to solve
the OBP in multi-block warehouse environments. Moreover, no exact solution ap-
proach has yet been proposed to tackle the multi-block OBP for various heuristic
routing strategies.

Our approach extends the BPC framework developed by Wahlen and Gschwind
(2023) for the single-block OBP, demonstrating its adaptability to accommodate
various warehouse layouts and routing strategies, given a monotone distance func-
tion. Specifically, we evaluated the monotonicity of six established routing strate-
gies: optimal, no-reversal, aisle-by-aisle, traversal (or s-shape), combined, and
largest gap, two of which were modified for this evaluation. We proved that all
these strategies, except for largest gap, are monotone in a rectangular warehouse
with parallel aisles and an arbitrary number of blocks. Through extensive compu-
tational experiments using publicly available datasets, the BPC approach outper-
formed existing state-of-the-art methods, achieving a higher number of optimally
solved instances and significantly reducing computation times. Notably, we suc-
cessfully solved instances with up to 80 orders to proven optimality for all five
monotone routing strategies. Our experimental results indicate that, among the
heuristic routing strategies, the combined routing strategy offers an effective bal-
ance between computation time and solution quality for the BPC approach. Fur-
thermore, BPC-based heuristics demonstrated superior performance over existing
specialized methods for instances involving up to 500 orders, improving many of the
best-known solutions while maintaining short computation times. Performance de-
clines were observed only for instances involving 1,000 orders or more, where more
refined strategies, such as the post-optimization method by Briant et al. (2020),
proved advantageous. Overall, these findings highlight the potential of the BPC —
both in its exact form and heuristic variants — to significantly enhance warehouse
operations by optimizing order batching in multi-block environments.

Future research could benefit from expanding the BPC approach to a wider va-
riety of warehouse configurations. This exploration may include warehouses that
diverge from the traditional rectangular grid with parallel aisles and cross aisles
(e.g., Celik and Stural 2014), implement scattered storage policies (e.g., Hefler and
Irnich 2024, Liike et al. 2024), feature high-level racks that require picker elevation
to access storage locations (e.g., van Gils et al. 2019), or facilitate the decoupling
of pickers and trolleys (e.g., Goeke and Schneider 2021). Investigating these ar-
eas could help generalize our findings and yield deeper insights into the practical
application of the BPC method across various warehouse operations. Moreover,

Chapter 3. Solving the Multi-Block OBP with BPC 139

the monotonicity analysis and proofs presented in this paper can be leveraged
in other OBP solution techniques that either rely on or benefit from monotone
routing strategies. This includes, for example, methods based on (extended) set-
partitioning formulations, or cutting techniques that account for the distances
required to fulfill subsets of orders.

Bibliography

Bahgeci, U. and Oncan, T. (2022). An evaluation of several combinations of routing and
storage location assignment policies for the order batching problem. International
Journal of Production Research, 60(19), 5892-5911.

Boysen, N., Briskorn, D., and Emde, S. (2017). Sequencing of picking orders in mobile
rack warehouses. European Journal of Operational Research, 259(1), 293-307.

Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A.-L., and Ogier, M.
(2020). An efficient and general approach for the joint order batching and picker
routing problem. European Journal of Operational Research, 285(2), 497-512.

Bué, M., Cattaruzza, D., Ogier, M., and Semet, F. (2019). A two-phase approach
for an integrated order batching and picker routing problem. In M. Dell’Amico,
M. Gaudioso, and G. Stecca, editors, A View of Operations Research Applications
in Italy, 2018, volume 2, pages 3-18. Springer International Publishing, Cham,
Switzerland.

Burkard, R. E., Deineko, V. G., van Dal, R., van der Veen, J. A., and Woeginger, G. J.
(1998). Well-solvable special cases of the traveling salesman problem: A survey.
SIAM Review, 40(3), 496-546.

Cambazard, H. and Catusse, N. (2018). Fixed-parameter algorithms for rectilinear
Steiner tree and rectilinear traveling salesman problem in the plane. Furopean
Journal of Operational Research, 270(2), 419-429.

Celik, M. and Siiral, H. (2014). Order picking under random and turnover-based storage
policies in fishbone aisle warehouses. IIE Transactions, 46(3), 283-300.

de Koster, R., Roodbergen, K. J., and van Voorden, R. (1999). Reduction of walking
time in the distribution center of De Bijenkorf. In M. Speranza and P. Stéhly,
editors, New Trends in Distribution Logistics, pages 215-234. Springer Berlin.

de Koster, R., Le-Duc, T., and Roodbergen, K. J. (2007). Design and control of ware-
house order picking: A literature review. Furopean Journal of Operational Research,
182(2), 481-501.

Desrosiers, J., Liibbecke, M., Desaulniers, G., and Gauthier, J. B. (2024). Branch-and-
Price. Les Cahiers du GERAD, Montréal, Canada.

Gademann, N. and van de Velde, S. (2005). Order batching to minimize total travel time
in a parallel-aisle warehouse. IIE Transactions, 37(1), 63-75.

Gademann, N., van den Berg, J., and van der Hoff, H. (2001). An order batching
algorithm for wave picking in a parallel-aisle warehouse. IIE Transactions, 33(5),
385-398.

140

Chapter 3. Solving the Multi-Block OBP with BPC 141

Goeke, D. and Schneider, M. (2021). Modeling single-picker routing problems in classical
and modern warehouses. INFORMS Journal on Computing, 33(2), 436-451.
Goetschalckx, M. and Ratliff, H. (1988). Order picking in an aisle. IIE Transactions,

20(1), 53-62.

Grosse, E. H., Glock, C. H., Ballester-Ripoll, R., et al. (2014). A simulated annealing
approach for the joint order batching and order picker routing problem with weight
restrictions. International Journal of Operations and Quantitative Management,
20(2), 65-83.

Hall, R. W. (1993). Distance approximations for routing manual pickers in a warehouse.
IIE Transactions, 25(4), 76-87.

Henn, S., Koch, S., and Wéscher, G. (2012). Order batching in order picking warehouses:
A survey of solution approaches. In R. Manzini, editor, Warehousing in the Global
Supply Chain, pages 105-137. Springer, London.

Hefller, K. and Irnich, S. (2022). A note on the linearity of Ratliff and Rosenthal’s
algorithm for optimal picker routing. Operations Research Letters, 50(2), 155-159.

Hefler, K. and Irnich, S. (2024). Exact solution of the single-picker routing problem with
scattered storage. INFORMS Journal on Computing. Advance online publication.

Hong, S. and Kim, Y. (2017). A route-selecting order batching model with the s-shape
routes in a parallel-aisle order picking system. FEuropean Journal of Operational
Research, 257(1), 185-196.

Hong, S., Johnson, A. L., and Peters, B. A. (2012). Large-scale order batching in parallel-
aisle picking systems. IIE Transactions, 44(2), 88-106.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints.
In G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors, Column Generation,
pages 33-65. Springer Science & Business Media, Boston.

Kulak, O., Sahin, Y., and Taner, M. E. (2012). Joint order batching and picker rout-
ing in single and multiple-cross-aisle warehouses using cluster-based tabu search
algorithms. Flexible Services and Manufacturing Journal, 24, 52-80.

Liike, L., HeBler, K., and Irnich, S. (2024). The single picker routing problem with
scattered storage: modeling and evaluation of routing and storage policies. OR
Spectrum, 46, 909-951.

Menéndez, B., Bustillo, M., Pardo, E. G., and Duarte, A. (2017). General variable
neighborhood search for the order batching and sequencing problem. Furopean
Journal of Operational Research, 263(1), 82-93.

Pansart, L., Catusse, N., and Cambazard, H. (2018). Exact algorithms for the order
picking problem. Computers & Operations Research, 100, 117-127.

Pardo, E. G., Gil-Borras, S., Alonso-Ayuso, A., and Duarte, A. (2024). Order batch-
ing problems: Taxonomy and literature review. Furopean Journal of Operational
Research, 313(1), 1-24.

Petersen, C. G. (1995). Routeing and storage policy interaction in order picking opera-
tions. Decision Sciences Institute Proceedings, 3, 1614-1616.

Chapter 3. Solving the Multi-Block OBP with BPC 142

Petersen, C. G. and Aase, G. (2004). A comparison of picking, storage, and routing
policies in manual order picking. International Journal of Production Economics,
92(1), 11-19.

Ratliff, H. D. and Rosenthal, A. S. (1983). Order-picking in a rectangular warehouse:
A solvable case of the traveling salesman problem. Operations Research, 31(3),
507-521.

Richards, G. (2017). Warehouse Management: A Complete Guide to Improving Effi-
ciency and Minimizing Costs in the Modern Warehouse. Kogan Page, London, 3rd
edition.

Roodbergen, K. J. and de Koster, R. (2001a). Routing methods for warehouses with mul-
tiple cross aisles. International Journal of Production Research, 39(9), 1865—1883.

Roodbergen, K. J. and de Koster, R. (2001b). Routing order pickers in a warehouse with
a middle aisle. European Journal of Operational Research, 133(1), 32—43.

Ryan, D. M. and Foster, B. A. (1981). An integer programming approach to scheduling.
In A. Wren, editor, Computer Scheduling of Public Transport, pages 269-280. North-
Holland Publishing Company, Amsterdam.

Schiffer, M., Boysen, N., Klein, P. S., Laporte, G., and Pavone, M. (2022). Optimal pick-
ing policies in e-commerce warehouses. Management Science, 68(10), 7497-7517.

Scholz, A. and Wascher, G. (2017). Order batching and picker routing in manual order
picking systems: The benefits of integrated routing. Central Furopean Journal of
Operations Research, 25(2), 491-520.

Thia, F. (2008). MySQL Foodmart Database. Pentaho Wiki. http://pentaho.dlpage.
phi-integration.com/mondrian/mysql-foodmart-database, May 8.

Tompkins, J. A., White, J. A., Bozer, Y. A., and Tanchoco, J. M. A. (2010). Facilities
planning. John Wiley & Sons, Hoboken, NJ, 4th edition.

Valle, C. A. and Beasley, J. E. (2020). Order batching using an approximation for the
distance travelled by pickers. Furopean Journal of Operational Research, 284(2),
460-484.

Valle, C. A., Beasley, J. E., and da Cunha, A. S. (2016). Modelling and solving the joint
order batching and picker routing problem in inventories. In R. Cerulli, S. Fujishige,
and A. R. Mahjoub, editors, Combinatorial Optimization, volume 9849 of Lecture
Notes in Computer Science, pages 81-97, Cham, Switzerland. Springer International
Publishing.

Valle, C. A., Beasley, J. E., and da Cunha, A. S. (2017). Optimally solving the joint order
batching and picker routing problem. Furopean Journal of Operational Research,
262(3), 817-834.

van Gils, T., Caris, A., Ramaekers, K., and Braekers, K. (2019). Formulating and solving
the integrated batching, routing, and picker scheduling problem in a real-life spare
parts warehouse. European Journal of Operational Research, 277(3), 814-830.

Vaughan, T. (1999). The effect of warehouse cross aisles on order picking efficiency.
International Journal of Production Research, 37(4), 881-897.

http://pentaho.dlpage.phi-integration.com/mondrian/mysql-foodmart-database
http://pentaho.dlpage.phi-integration.com/mondrian/mysql-foodmart-database

Chapter 3. Solving the Multi-Block OBP with BPC 143

Wahlen, J. and Gschwind, T. (2023). Branch-price-and-cut-based solution of order batch-
ing problems. Transportation Science, 57(3), 756-777.
Won, J. and Olafsson, S. (2005). Joint order batching and order picking in warehouse
operations. International Journal of Production Research, 43(7), 1427-1442.
Zhang, K. and Gao, C. (2023). Improved formulations of the joint order batching and
picker routing problem. International Journal of Production Research, 61(21),
7386—74009.

Zulj, 1., Kramer, S., and Schneider, M. (2018). A hybrid of adaptive large neighbor-
hood search and tabu search for the order-batching problem. European Journal of
Operational Research, 264(2), 653-664.

Chapter 3. Solving the Multi-Block OBP with BPC 144

Appendix

3.A Foodmart State Space

In this paper, the SPRP for optimal routing is solved following the DP method out-
lined by Pansart et al. (2018) for rectangular warehouses. In the case of Euclidean
distances between the depot and its nearest cross aisle, as given in the Foodmart
instances and illustrated in Figure 3.5a for batch b = {1,2} in a warehouse with
H = 2 blocks, this approach cannot be seamlessly applied. To address this chal-
lenge, we adapt the original warehouse structure by incorporating an additional
artificial block, referred to as block 3 (i.e., H + 1). In block 3, feasible sub-aisle
transitions are limited to single traversal, double traversal, and void moves. Each
traversal within this block is assigned the initial Euclidean distance from the cor-
responding aisle to the depot. Notably, the horizontal distances along the artificial
cross aisle 3 at the level of the depot are assumed to be zero. However, the intro-
duction of an additional block, as depicted in Figure 3.5b, considerably increases
the computational complexity of the SPRP compared to the conventional layout,
where the depot is positioned directly in the foremost cross aisle (Cambazard and
Catusse 2018).

®; @
1 1
1 1

[Depot [—0 S
(a) Original structure (b) Transformed graph

Figure 3.5: Warehouse layout of Foodmart instances

The equivalent classes or states of partial tour subgraphs emerging in the DP
can be characterized by features of the four cross aisle vertices in a specific aisle.
A comprehensive list of feasible states for the Foodmart instances is presented
in Table 3.12, with the assumption that at least one storage location must be
visited. Each state is defined by the associated degree parities of the four cross
aisle vertices, their connectivity and, if crucial, the composition of the connected

Chapter 3. Solving the Multi-Block OBP with BPC

145

0000,1 EOUU,1
000E,1 UEUO,1
00E0,1 UUOE,1
0E00,1 UUE0,1
£000,1 EUOU,1
00EE,l EUUO,1
OEOE,1 EEUU,1
EOOE,1 UEEU,1
OEE0,1 UEUE,1
EOE0,l UUEE,1
EE00,1 EUEU,1

00UU,1 EUUE,1
0UOU,1 UUUU,1
U00U,1 00EE,2
0UU0,1 O0EOE,2
U0U0,1 E00E,2
UU00,1 OEED,2
OEEE,l EOE0,2
EOEE,l EE00,2
EEOE,l OEEE,2,12-3
EEE0,l OEEE,2,1-23
EEEE,l OEEE,2,13-2
OUUE,1 EOEE,2,02-3
OUEU,1 EOEE,2,0-23
0OEUU,1 EOEE,2,03-2
UOEU,1 EEOE,2,01-3
UOUE,1 EEOE,2,0-13
UEOU,1 EEOE,2,03-1

EEE0,2,01-2
EEE0,2,0-12
EEE0,2,02-1
EEEE,2,012-3
EEEE,2,01-23
EEEE,2,0-123
EEEE,2,013-2
EEEE,2,023-1
EEEE,2,03-12
0EUU,2,1-23
0UEU,2,13-2
0UUE,2,12-3
UOEU,2,03-2
UOUE,2,02-3
UE0U,2,03-1
E0UU,2,0-23
UEU0,2,02-1
UUOE,2,01-3
UUED,2,01-2
EU0U,2,0-13
EUU0,2,0-12
UEEU,2,013-2
UEEU,2,023-1
UEEU,2,03-12
UEUE,2,012-3
UEUE,2,023-1
EUEU,2,0-123
EUEU,2,013-2

EUUE,2,012-3
EUUE,2,0-123
EUUE,2,03-12
EEUU,2,01-23
EEUU,2,0-123
EEUU,2,023-1
UUEE,2,012-3
UUEE,2,01-23
UUEE,2,013-2
UUUU,2,01-23
UUUU,2,03-12
0EEE,3

EOEE,3

EEOE,3

EEE0,3

EEEE,3,01-2-3
EEEE,3,0-12-3
EEEE,3,0-1-23
EEEE,3,0-13-2
EEEE,3,02-1-3
EEEE,3,03-1-2
UEEU,3,03-1-2
UEUE,3,02-1-3
UUEE,3,01-2-3
EEUU,3,0-1-23
EUEU,3,0-13-2
EUUE,3,0-12-3
EEEE, 4

Table 3.12: List of feasible states of the Foodmart instances

components. The degree parities are each classified as either even (£), odd (U), or
zero (0) for cross aisle 0 to 3. The connectivity is represented by the total number
of components, which can range up to four. If the connectivity is not uniquely
defined by the preceding information, the assignment of the cross aisles to the
components is specified explicitly. The set of final states consists of all states that
feature a single connected component and exhibit only even or zero degree parities.

For instance, the state designation FEFFE,2,012-3 denotes that all four cross aisle
vertices have an even number of incident edges (EEFEE), and there are two con-
nected components (2). In this configuration, the upper three cross aisle vertices
are connected, whereas the depot’s cross aisle vertex forms a separate component
and is not connected with the others (012-3).

Chapter 3. Solving the Multi-Block OBP with BPC 146

3.B Instance-by-Instance Comparison

In this section, we present the instance-by-instance results of our multi-block BPC
approach, which are discussed in aggregate in Section 3.5.

Tables 3.13 and 3.14 provide a detailed comparison of our approach with the
B&C methods proposed by Valle et al. (2017) and Zhang and Gao (2023), respec-
tively. The tables provide the computation time in seconds (#[s]), the best integer
solution (UB), and the percentage deviation from the optimal solution (Gp) for
each of the approaches.

Table 3.15 depicts the comparison of our BPC-based heuristics for optimal rout-
ing with the heuristic approaches DAA (Valle and Beasley 2020) and CGH (Briant
et al. 2020). It presents the best-known (in this case, optimal) solution value
(BKS) for each instance, along with the computation time in seconds ({[s]) and
the optimality gap (Gp) for each approach.

Larger Foodmart instances (more orders and an enlarged warehouse) are con-
sidered in Table 3.16 to compare the performance of our heuristics for both the
optimal and the combined strategy against the DAA proposed by Valle and Beasley
(2020). The provided gaps are based on the overall BKS for each instance.

3.C Detailed Computational Results

In this section, we report detailed computational results of our BPC algorithm and
BPC-based heuristics for the five monotone routing strategies optimal, no-reversal,
aisle-by-aisle, combined, and traversal.

Tables 3.17-3.21 provide detailed results for the exact BPC and the two bench-
mark sets Foodmart and Scholz&Wascher, aggregated by number of days A and
number of orders n (Foodmart) or capacity () and n (Scholz&Wascher). The ta-
bles report the number of instances solved to optimality within the time limit of
one hour (Opt), the average solution time in seconds (#[s]), the average time for
solving the LP relaxation in seconds (£), the average optimality gap with respect
to the BKS of the LP relaxation (Gp), the average optimality gap with respect
to the BKS before the first node resulting from a Ryan-and-Foster branching is
solved (GpfF), the average number of B&B nodes solved (Nds), and the average
number of CCs (CC') and SRCs (SRC) added.

Table 3.22 presents a comparison of our BPC-based heuristics for the Foodmart
instances, aggregated by the number of orders n. It provides the average com-
putation time in seconds (#[s]) and the average gap with respect to the BKS per
instance across all routing strategies (Gp).

Chapter 3. Solving the Multi-Block OBP with BPC

147

VBC (2017) Our method
A n t[s] UB Gp ts] UB Gp
5 5 1.3 348.6 0.00 0.0 348.6 0.00
6 0.6 364.8 0.00 0.0 364.8 0.00
7 1.7 374.8 0.00 0.0 374.8 0.00
8 7.2 503.8 0.00 0.0 503.8 0.00
9 8.0 5396 0.00 0.0 539.6 0.00
10 8.1 581.4 0.00 0.1 581.4 0.00
11 13.0 613.5 0.00 0.2 613.5 0.00
12 22.5 621.4 0.00 0.3 621.4 0.00
13 14.8 623.4 0.00 0.3 623.4 0.00
14 46.9 639.3 0.00 0.6 639.3 0.00
15 373 6534 0.00 04 6534 0.00
20 3,035.2 870.4 0.00 3.3 870.4 0.00
25 21,600.0 1,123.5 252 9.8 1,095.9 0.00
30 21,600.0 1,263.5 7.63 46.0 1,173.9 0.00
Subtotal 3,314.0 651.5 0.73 4.4 643.2 0.00
10 5 0.4 371.1 0.00 0.0 371.1 0.00
6 1.5 3771 0.00 0.0 377.1 0.00
7 6.7 549.8 0.00 0.0 549.8 0.00
8 7.1 584.2 0.00 0.0 584.2 0.00
9 55.0 6374 0.00 0.0 637.4 0.00
10 639 661.8 0.00 0.1 661.8 0.00
11 655.0 699.8 0.00 0.3 699.8 0.00
12 39.5 707.7 0.00 0.3 707.7 0.00
13 4979 7257 0.00 0.8 725.7 0.00
14 3,889.3 727.8 0.00 0.5 727.8 0.00
15 664.6 8826 0.00 04 882.6 0.00
20 10,9234 9924 0.00 53 9924 0.00
25 21,600.0 1,266.1 6.42 3.9 1,189.7 0.00
30 21,600.0 1,345.6 5.79 21.9 1,272.0 0.00
Subtotal 4,286.0 752.1 0.87 24 741.4 0.00
20 5 7.7 573.8 0.00 0.0 573.8 0.00
6 20.6 656.2 0.00 0.0 656.2 0.00
7 14.0 689.8 0.00 0.0 689.8 0.00
8 26.1 6978 0.00 0.0 697.8 0.00
9 115.6 7277 0.00 0.0 727.7 0.00
10 179.1 920.5 0.00 0.0 920.5 0.00
11 309.0 980.5 0.00 0.1 980.5 0.00
12 871.0 1,004.3 0.00 0.1 1,004.3 0.00
13 852.7 1,009.1 0.00 0.2 1,009.1 0.00
14 506.1 1,011.1 0.00 0.1 1,011.1 0.00
15 2,308.9 1,028.7 0.00 0.2 1,028.7 0.00
20 21,600.0 1,373.5 298 0.6 1,333.7 0.00
25 21,6000 1,692.3 4.47 7.5 1,619.9 0.00
30 21,600.0 1,944.7 481 6.8 1,855.5 0.00
Subtotal 5,000.8 1,022.1 0.88 1.1 1,007.8 0.00
Total 4,200.3 808.6 0.82 2.6 797.4 0.00

Table 3.13: Comparison of our BPC algorithm with the B&C approach of Valle
et al. (2017) on a subset of the Foodmart instances for the optimal

routing strategy

Chapter 3. Solving the Multi-Block OBP with BPC

148

7Z&G (2023) Our method
A n t[s] UB Gp t[s] UB Gp
5 5 0.2 346.0 0.00 0.0 346.0 0.00
10 1.5 578.0 0.00 0.0 578.0 0.00
15 7.8 650.0 0.00 0.1 650.0 0.00
16 37.0 766.0 0.00 0.1 766.0 0.00
17 30.0 802.0 0.00 0.1 802.0 0.00
18 81.0 840.0 0.00 0.2 840.0 0.00
19 135.0 856.0 0.00 0.4 856.0 0.00
20 86.0 864.0 0.00 0.5 864.0 0.00
21 136.0 892.0 0.00 3.3 892.0 0.00
22 171.0 892.0 0.00 1.2 892.0 0.00
23 290.0 908.0 0.00 0.6 908.0 0.00
24 2,400.0 1,059.0 0.47 24 1,054.0 0.00
25 2,400.0 1,102.0 147 29 1,086.0 0.00
30 2,400.0 1,206.0 3.79 8.9 1,162.0 0.00
Subtotal 584.0 840.1 041 1.5 835.4 0.00
10 5 0.1 368.0 0.00 0.0 368.0 0.00
10 6.3 656.0 0.00 0.0 656.0 0.00
15 59.0 874.0 0.00 0.1 874.0 0.00
16 65.0 926.0 0.00 0.1 926.0 0.00
17 123.0 960.0 0.00 0.6 960.0 0.00
18 106.0 970.0 0.00 0.6 970.0 0.00
19 166.0 978.0 0.00 14 978.0 0.00
20 209.0 984.0 0.00 14 984.0 0.00
21 143.0 990.0 0.00 1.6 990.0 0.00
22 180.0 1,000.0 0.00 0.5 1,000.0 0.00
23 2,400.0 1,140.0 1.06 0.4 1,128.0 0.00
24 2,400.0 1,162.0 0.00 0.6 1,162.0 0.00
25 2,400.0 1,220.0 3.57 0.6 1,178.0 0.00
30 2,400.0 1,320.0 4.76 3.7 1,260.0 0.00
Subtotal 761.2 967.7 0.67 0.8 959.6 0.00
20 5 1.0 570.0 0.00 0.0 570.0 0.00
10 25.0 912.0 0.00 0.0 912.0 0.00
15 58.0 1,022.0 0.00 0.0 1,022.0 0.00
16 745.0 1,200.0 0.00 0.0 1,200.0 0.00
17 2,059.0 1,250.0 0.00 0.1 1,250.0 0.00
18 1,166.0 1,288.0 0.00 0.1 1,288.0 0.00
19 2,400.0 1,326.0 1.69 0.1 1,304.0 0.00
20 2,400.0 1,340.0 1.36 0.1 1,322.0 0.00
21 2,400.0 1,542.0 3.07 14 1.496.0 0.00
922 24000 1,578.0 437 1.0 1,512.0 0.00
23 2,400.0 1,624.0 4.37 0.2 1,556.0 0.00
24 2,400.0 1,640.0 3.93 0.3 1,578.0 0.00
25 2,400.0 1,648.0 262 4.3 1,606.0 0.00
30 2,400.0 1,900.0 3.37 1.2 1,838.0 0.00
Subtotal 1,661.0 1,345.7 1.77 0.6 1,318.1 0.00
Total 1,002.1 1,051.2 0.95 1.0 1,037.7 0.00

Table 3.14: Comparison of our BPC algorithm with the approach of Zhang and
Gao (2023) on a subset of the modified Foodmart instances for the
optimal routing strategy

Chapter 3. Solving the Multi-Block OBP with BPC

149

DAA CGH BPC-DF SC
A n BKS t[s] Gp t[s] Gp t[s] Gp t[s] Gp
)) 348.59 1.0 0.00 1.2 0.00 00 0.00 0.0 0.00
6 364.81 0.6 0.00 1.1 000 0.0 0.00 0.0 0.00
T 37481 1.4 0.00 1.8 0.00 0.0 0.00 0.0 0.00
8 503.75 1.1 0.00 3.2 0.00 0.0 0.00 0.0 0.00
9 539.61 1.5 6.30 43 0.00 0.0 000 0.0 0.00
10 581.42 1.7 244 109 0.00 0.1 0.00 0.1 0.00
11 613.51 1.0 0.70 53.7 0.00 0.2 000 0.1 0.65
12 621.35 1.1 0.06 453 0.00 0.3 0.00 0.3 0.00
13 623.39 1.6 295 759 0.00 0.3 0.00 0.3 0.00
14 639.31 3.4 1.64 116.2 0.01 0.6 0.00 0.5 0.01
15 653.42 1.2 366 166.5 0.00 04 0.00 04 0.00
20 870.37 29 322 1,596.8 1.79 3.3 0.00 34 0.00
25 1,095.89 322 3.26 7,246.5 1.14 98 0.00 85 0.71
30 1,173.86 386.4 3.92 7,304.0 567 41.2 0.00 34.7 0.00
Subtotal 31.2 201 1,187.7 0.62 4.0 0.00 3.5 0.10
10) 371.09 0.5 0.00 0.9 0.00 00 0.00 0.0 0.00
6 377.09 1.4 0.00 1.2 0.00 00 0.00 0.0 0.00
7 549.80 1.8 287 1.8 000 0.0 0.00 0.0 0.00
8 584.18 1.6 5.82 1.4 0.00 00 0.00 0.0 0.00
9 637.37 3.9 0.00 72 0.00 0.0 0.00 0.0 0.00
10 661.80 3.6 5.12 16.2 0.00 0.1 0.00 0.1 0.00
11 699.80 2.8 2.84 1148 0.86 04 0.00 0.2 1.98
12 707.71 2.8 227 183.0 0.00 0.3 0.00 0.3 0.00
13 72571 3.8 028 1241 084 08 000 03 028
14 727.80 6.8 2.95 182.6 0.54 04 0.00 04 0.00
15 882.61 56 293 189.2 022 04 0.00 04 0.00
20 992.40 39 150 9558 1.26 50 0.00 23 1.26
25 1,189.70 142 370 26776 118 44 0.00 4.0 0.00
30 1,271.98 1424 331 17,3058 0.16 16.2 0.00 154 0.14
Subtotal 13.9 240 840.1 036 2.0 0.00 1.7 0.26
20 5 573.77 2.1 0.00 0.7 0.00 0.0 0.00 0.0 0.00
6 656.18 1.1 1.83 1.2 0.00 0.0 0.00 0.0 0.00
7 689.80 1.5 4.33 80 0.00 0.0 0.00 0.0 0.00
8 697.80 2.3 5.72 10.5 0.00 0.0 0.00 0.0 0.00
9 727.71 3.5 1.92 412 023 0.0 0.00 0.0 0.00
10 920.52 29 282 379 042 0.0 0.00 0.0 0.00
11 980.51 3.7 245 11.7 0.00 0.1 0.00 0.1 0.00
12 1,004.32 4.2 3.00 419 000 0.1 0.00 0.1 0.99
13 1,009.08 3.9 1.8 8.7 0.11 02 000 02 229
14 1,011.08 41 5.65 70.6 0.00 0.2 0.00 0.1 0.00
15 1,028.70 5.0 3.87 87.8 0.00 0.2 0.00 0.2 0.00
20 1,333.70 28.2 4.02 6196 0.18 0.6 0.00 0.6 0.00
25 1,619.88 2252 3.24 3,285 0.08 50 0.00 15 1.44
30 1,855.50 10,6445 3.43 72714 128 54 0.00 55 0.00
Subtotal 780.9 3.13 826.7 0.16 0.8 0.00 0.6 0.34
Total 275.3 2.51 951.5 038 23 0.00 1.9 0.23

Table 3.15: Comparison of our heuristics BPC-DF and SC for the optimal routing
strategy to the heuristic approaches of Valle and Beasley (2020) and

Briant et al. (2020) on a subset of the Foodmart instances

Chapter 3. Solving the Multi-Block OBP with BPC 150

BPC-DF SC
V&B (2020) Optimal Combined Optimal Combined
A n S BKS t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp
5 25 8 1,095.89 32.2 3.26 9.8 0.00 0.3 0.89 85 0.71 0.4 0.89
16 1,325.51 1,664.2 2.25 33.0 0.00 2.5 2.59 32.8 0.00 1.7 2.59
30 8 1,173.86 386.4 3.92 41.2 0.00 16.2 2.06 34.7 0.00 1.3 240
16 1,413.70 21,637.5 5.35 100.2 0.00 17.1 242 101.1 0.00 8.2 242
50 8 1,878.19 21,6024 6.38 684.2 0.00 89.0 1.77 3079 0.56 8.9 2.62

16 2,254.19 21,6474 6.65 3,600.0 0.00 3,5012.7 1.62 1,177.6 0.86 142.9 3.75
7 8 2,590.67 21,6039 9.94 3,600.0 0.00 3,600.0 1.44 1,226.5 0.77 3994 2.75
16 3,127.36 21,665.7 9.14 3,600.0 11.70 3,600.0 0.00 3,600.0 11.70 1,489.1 1.15

Subtotal 13,780.0 5.86 1,458.6 1.46 1,354.7 1.60 811.1 1.83 256.5 2.32
10 25 8 1,189.70 14.2 3.70 44 0.00 0.2 1.04 4.0 0.00 0.3 1.04
16 1,441.98 4,505.4 2.50 274 0.00 1.0 1.55 225 0.83 0.9 1.69

30 8 1,271.98 1424 3.31 16.2 0.00 0.5 0.97 154 0.14 04 097

16 1,524.36 21,698.1 1.55 60.8 0.00 2.7 2.36 62.5 0.00 2.6 287

=

50 8 2,008.71 21,607.5 5.61 2,261.9 0.00 1,508.7 1.33 1875 1.02 252 2.82

16 2,414.87 21,731.8 6.21 2,616.9 0.00 6344 2.01 959.4 048 70.0 4.41
75 8 2,789.75 21,6069 833 3,600.0 0.00 3,600.0 1.09 14524 1.08 707.6 2.74
16 3,415.57 21,679.9 5.21 3,600.0 11.02 3,600.0 0.00 3,600.0 11.02 1,212.3 1.57

Subtotal 14,123.3 4.55 1,523.5 138 1,1684 1.29 788.0 1.82 252.4 2.26
20 25 8 1,619.88 2252 3.24 5.0 0.00 1.0 1.56 1.5 144 0.2 2.32
16 1,894.13 21,673.6 3.81 10.0 0.00 0.8 1.93 6.9 0.71 0.5 215

30 8 1,855.50 10,644.5 3.43 54 0.00 04 243 5.5 0.00 04 243

16 2,199.59 21,736.3 3.46 27,5 0.00 1.2 1.38 23.1 0.00 1.1 1.65

50 8 2,539.59 21,608.3 7.47 163.1 0.00 5.5 1.05 106.4 0.55 3.3 1.52
16 3,027.78 21,7152 6.68 1,272.5 0.00 79.6 1.53 5334 0.20 14.2 1.99
75 8 3,520.49 21,6105 7.55 3,1044 0.00 3,600.0 1.57 4682 0.35 234.1 2.15
16 4,258.04 21,767.5 6.09 3,600.0 9.88 3,600.0 0.00 3,600.0 9.88 2,167.8 0.32

Subtotal 17,622.6 5.21 1,023.5 124 911.1 1.43 593.1 1.64 302.7 1.82
Total 15,175.3 521 13352 136 1,144.7 144 730.7 1.76 270.5 2.13

Table 3.16: Comparison of our heuristics BPC-DF and SC for the routing strate-
gies optimal and combined to the heuristic approaches of Valle and
Beasley (2020) on a subset of large Foodmart instances

Chapter 3. Solving the Multi-Block OBP with BPC 151

Panel A: Foodmart instances

A n Inst Opt t[s] t?® Gp Gpff Nds CC SRC

5 (0,10 12 12 0.0 00 134 134 1 2 0

(10, 20] 20 20 2.3 1.9 273 273 2 27 4

(20, 30] 20 20 40.8 282 1.62 0.93 3 34 38

(30,40] 20 20 313.2 135.7 159 0.60 45 28 71

(40, 50] 20 19 1,110.4 5179 1.94 0.50 7T 41 87

(50, 75] 2 0 3,600.0 535.5 259 1.18 274 48 48

Subtotal 94 91 388.7 156.9 1.90 1.21 33 29 44

10 (0,10] 12 12 0.0 00 193 193 1 5 0

(10, 20] 20 20 4.8 1.5 3.27 2.92 3 48 21

(20, 30] 20 20 33.8 175 164 0.81 4 42 42

(30,40] 20 20 221.9 103.6 1.50 0.41 28 30 76

(40, 50] 20 20 728.8 355.9 1.32 043 93 39 86

(50, 75] 2 0 3,600.0 399.5 1.42 0.86 399 35 53

Subtotal 94 92 287.1 110.3 192 1.24 36 35 49

20 (0,10] 12 12 0.0 0.0 137 137 1 6 2

(10, 20] 20 20 0.5 0.3 1.19 1.19 1 11 6

(20, 30] 20 20 7.9 57 091 050 5 19 29

(30,40] 20 20 84.0 36.1 1.11 0.25 27 38 57

(40, 50] 20 20 521.2 159.6 0.93 0.36 134 39 65

(50, 75] 2 1 2,639.8 2053 0.59 0.43 324 5 33

Subtotal 94 93 186.7 473 1.07 0.67 43 24 34

Total 282 276 287.5 104.8 1.63 1.04 37.1 29.3 423
Panel B: Scholz&Wascher instances

Q n Inst Opt t[s] t?? Gp Gpff Nds CC SRC

30 20 100 100 0.0 00 026 0.23 2 0 0

40 100 100 0.0 0.0 025 0.22 2 1 0

60 100 100 0.1 00 015 0.12 2 1 0

80 100 100 0.1 0.1 0.10 0.09 2 1 0

Subtotal 400 400 0.0 0.0 019 0.17 2 1 0

45 20 100 100 0.1 0.0 051 0.29 7 4 5

40 100 100 0.8 0.1 035 0.16 17 6 14

60 100 100 6.5 06 027 0.12 123 6 20

80 100 100 17.2 1.5 020 0.11 148 8 20

Subtotal 400 400 6.2 0.6 033 0.17 74 6 15

60 20 100 100 0.3 0.1 081 044 6 11 13

40 100 100 7.7 1.1 059 0.22 86 14 31

60 100 97 2349 58 0.62 040 2377 15 36

80 100 89 722.6 17.0 124 1.07 4,088 16 40

Subtotal 400 386 241.4 6.0 0.82 0.53 1,639 14 30

75 20 100 100 1.0 02 146 0.71 8 23 22

40 100 100 30.4 55 0.89 027 66 35 51

60 100 96 6385 399 1.16 0.72 1527 35 59

80 100 54 2,251.1 139.2 4.42 4.16 2,557 31 61

Subtotal 400 350 730.2 46.2 198 1.47 1,040 31 48

Total 1,600 1,536 2445 132 0.83 0.59 689 13 23

Table 3.17: Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wascher instances and the routing strategy optimal

Chapter 3. Solving the Multi-Block OBP with BPC

152

Panel A: Foodmart instances

A n Inst Opt t[s] tP Gpf GpRF Nds CC SRC

5 (0,10 12 12 0.0 0.0 1.65 1.65 1 2 0

(107 20} 20 20 4.5 1.2 3.31 2.73 6 17 24

(20, 30 20 20 79.5 11.0 236 1.08 41 37 59

(30,40] 20 20 2445 499 2.01 0.84 192 24 78

(40, 50] 20 17 1,351.0 143.7 337 194 1,131 38 7

(50, 75] 2 0 3,600.0 816.4 20.74 19.38 1,656 52 98

Subtotal 94 89 4339 61.2 3.00 2.03 327 26 53

10 (0, 10} 12 12 0.0 0.0 2.44 2.44 1 7 5

(10, 20] 20 20 4.1 0.8 3.69 293 5 38 22

(20, 30] 20 19 466.4 8.1 267 0098 460 41 80

(30,40] 20 20 384.8 351 234 0.85 539 30 84

(40, 50] 20 20 467.8 106.1 1.80 0.66 248 38 97

(50, 75] 2 0 3,600.0 857.8 19.28 18.62 1,368 51 86

Subtotal 94 91 358.1 50.2 296 1.86 296 33 63

20 (0, 10} 12 12 0.0 0.0 2.17 2.17 1 4 0

(10, 20] 20 20 1.9 0.2 170 1.06 43 13 22

(20, 30] 20 20 5.3 22 131 044 15 13 40

(30,40] 20 18 513.8 119 1.84 0.62 3,481 45 66

(40, 50] 20 15 1,216.4 37.1 1.41 0.67 4877 34 71

(50, 75] 2 0 3,600.0 330.3 7.33 7.09 4,006 9 76

Subtotal 94 85 446.3 18.0 1.76 1.02 1,876 23 44

Total 282 265 412.8 43.1 257 1.64 833 27 53
Panel B: Scholz&Wascher instances

Q n Inst Opt t[s] t*F Gp*f GpRF Nds CC SRC

30 20 100 100 0.0 0.0 030 0.28 2 0 0

40 100 100 0.0 0.0 0.19 0.16 2 2 0

60 100 100 0.1 0.0 0.12 0.09 3 1 1

80 100 100 0.1 0.0 0.10 0.08 2 1 1

Subtotal 400 800 0.0 0.0 0.18 0.15 2 1 0

45 20 100 100 0.1 0.0 0.66 0.38 6 4 7

40 100 100 1.6 0.1 051 024 80 5 16

60 100 100 16.6 0.3 042 0.21 581 5 20

80 100 99 52.7 0.7 031 017 859 5 24

Subtotal 400 798 17.7 0.3 048 0.25 381 5 17

60 20 100 100 0.4 0.0 122 057 11 10 19

40 100 100 15.6 0.5 081 042 377 12 33

60 100 96 312.5 24 082 054 5926 12 43

80 100 86 931.1 6.2 1.57 137 9,513 14 47

Subtotal 400 764 314.9 2.3 1.11 073 3,957 12 35

75 20 100 100 1.3 0.1 190 0.67 13 18 30

40 100 100 107.0 2.3 128 059 1,165 30 54

60 100 84 1,177.8 128 2.02 1.2 7,290 30 67

80 100 42 2,668.7 378 6.56 6.24 9,265 32 71

Subtotal 400 652 988.7 13.2 294 226 4,433 27 56

Total 1600 3014 330.3 40 1.18 085 2,193 11 27

Table 3.18: Detailed results of our BPC algorithm for the Foodmart and the

Scholz&Wascher instances and the routing strategy no-reversal

Chapter 3. Solving the Multi-Block OBP with BPC

153

Panel A: Foodmart instances

A n Inst Opt t[s] tlP Gp'f GpRF Nds CC SRC

5 (0,10] 12 12 0.0 0.0 0.96 0.96 1 2 0

(10, 20] 20 20 0.7 0.2 248 233 2 27 10

(20, 30] 20 20 7.2 2.0 155 1.02 3 40 40

(30,40] 20 20 45.1 11.1 119 0.51 19 26 62

(40, 50] 20 20 2133 349 192 0.63 100 31 84

(50, 75] 2 1 29022 2742 10.99 9.53 1,109 52 94

Subtotal 94 93 118.4 16.1 1.88 1.28 50 28 44

10 (0,10] 12 12 0.0 0.0 295 295 1 8 1

(10, 20] 20 20 2.0 0.1 3.69 329 3 47 14

(20, 30] 20 20 13.7 1.6 177 0.84 5 37 46

(30,40] 20 20 53.0 71 149 0.58 33 27 80

(40, 50] 20 20 110.2 223 124 042 52 31 90

(50, 75] 2 1 2,733.6 2355 796 7.38 875 58 94

Subtotal 94 93 96.2 11.6 229 1.63 39 32 51

20 (0, 10] 12 12 0.0 0.0 1.16 1.16 1 3 1

(10, 20] 20 20 0.2 0.0 142 132 2 17 14

(20, 30] 20 20 2.0 0.4 1.04 049 8 18 35

(30,40] 20 20 27.4 24 136 027 25 49 65

(40, 50] 20 20 101.1 9.9 095 0.29 68 39 62

(50, 75] 2 0 3,600.0 126.5 11.74 11.60 3,288 14 50

Subtotal 94 92 104.4 54 141 0.90 92 27 39

Total 282 278 106.3 11.0 1.86 1.27 60 29 44
Panel B: Scholz&Wascher instances

Q n Inst Opt t[s] t*F Gp*f GpRF Nds CC SRC

30 20 100 100 0.0 0.0 026 022 2 1 0

40 100 100 0.0 0.0 0.18 0.16 2 1 0

60 100 100 0.1 0.0 0.13 0.10 2 1 0

80 100 100 0.1 0.0 0.09 0.08 2 1 0

Subtotal 400 800 0.0 0.0 016 0.14 2 1 0

45 20 100 100 0.2 0.0 0.62 0.26 16 4 7

40 100 100 0.8 0.1 043 0.18 16 5 14

60 100 100 6.8 0.6 038 0.17 106 6 21

80 100 100 15.4 1.5 026 0.13 116 3 21

Subtotal 400 800 5.8 0.6 042 0.19 63 4 16

60 20 100 100 0.3 0.1 086 0.36 5 10 16

40 100 100 9.5 1.0 066 0.29 149 12 32

60 100 99 124.9 51 0.64 0.39 1,450 12 40

80 100 92 602.3 146 1.15 0.95 4,232 13 46

Subtotal 400 782 184.2 52 0.83 050 1,459 12 33

75 20 100 100 0.8 0.2 149 0.72 6 18 25

40 100 100 37.8 4.7 1.00 0.37 163 26 51

60 100 95 472.7 29.7 1.18 0.73 1,485 29 61

80 100 60 2,1224 974 505 4.76 3,783 28 64

Subtotal 400 710 6584 33.0 218 1.65 1,359 25 50

Total 1,600 3,092 212.1 9.7 090 0.62 721 11 25

Table 3.19: Detailed results of our BPC algorithm for the Foodmart and the
Scholz&Wascher instances and the routing strategy aisle-by-aisle

Chapter 3. Solving the Multi-Block OBP with BPC

154

Panel A: Foodmart instances

A n Inst Opt t[s] tMF Gpf GpRF Nds CC SRC

5 (0,10] 12 12 0.0 00 130 1.30 1 2 0

(10, 20] 20 20 0.2 00 253 233 2 20 5

(20, 30] 20 20 8.6 05 1.8 0.75 6 36 48

(30,40] 20 20 76.9 2.9 147 0.70 44 26 65

(40, 50] 20 20 2804 82 207 0.66 159 37 81

(50, 75] 2 0 3,600.0 63.2 16.21 14.88 1,090 55 85

Subtotal 94 92 1545 3.8 219 1.43 68 27 44

10 (0,10] 12 12 0.0 0.0 265 2.65 1 7 1

(10, 20] 20 20 09 00 335 312 2 45 20

(20, 30] 20 20 131 03 172 1.32 4 40 42

(30,40] 20 20 73.1 1.9 155 0.1 50 33 74

(40, 50] 20 20 233.8 6.1 145 0.50 146 40 88

(50, 75] 2 1 28188 564 6.59 5.82 916 52 108

Subtotal 94 93 128.3 3.0 220 1.62 63 36 50

20 (0, 10} 12 12 0.0 0.0 1.04 1.04 1 3 2

(10, 20] 20 20 0.1 00 1.21 0.93 2 14 11

(20, 30] 20 20 14 01 106 0.26 9 15 36

(30,40] 20 20 129 06 1.09 0.29 21 31 55

(40, 50] 20 20 106.0 2.5 1.06 0.38 133 33 61

(50, 75] 2 1 2,684.8 284 6.55 6.33 1413 9 65

Subtotal 94 93 82.7 1.3 121 0.66 65 20 36

Total 282 278 121.8 2.7 1.87 1.24 65 28 44
Panel B: Scholz&Wascher instances

Q n Inst Opt tls] t* Gp** GpRF Nds CC SRC

30 20 100 100 0.0 00 029 0.26 2 0 0

40 100 100 0.0 00 024 0.23 2 0 0

60 100 100 0.0 00 013 0.11 2 1 0

80 100 100 0.1 0.0 012 0.09 3 1 0

Subtotal 400 800 0.0 0.0 019 0.17 2 1 0

45 20 100 100 0.1 00 054 0.28 8 5 5

40 100 100 1.0 00 037 0.19 38 6 13

60 100 100 3.6 01 031 0.13 50 7 19

80 100 100 9.8 0.3 022 0.11 73 5 21

Subtotal 400 800 3.6 01 036 0.18 42 6 15

60 20 100 100 0.2 00 092 044 6 11 14

40 100 100 6.1 02 060 0.27 82 12 30

60 100 100 1416 08 0.51 029 1,650 13 37

80 100 93 5946 2.2 1.10 0.92 4324 14 41

Subtotal 400 786 185.6 0.8 0.78 048 1,516 12 31

75 20 100 100 0.6 01 1.49 0.65 6 21 24

40 100 100 293 09 099 0.36 145 32 51

60 100 90 706.4 4.8 1.79 134 2568 34 60

80 100 54 2342.8 15.1 496 4.68 3,887 30 62

Subtotal 400 688 769.8 52 231 1.76 1651 29 49

Total 1,600 3,074 239.8 1.5 091 0.65 803 12 24

Table 3.20: Detailed results of our BPC algorithm for the Foodmart and the

Scholz&Wascher instances and the routing strategy combined

Chapter 3. Solving the Multi-Block OBP with BPC

155

Panel A: Foodmart instances

A n Inst Opt t[s] tMF Gpf GpRF Nds CC SRC

5 (0,10] 12 12 0.0 0.0 2.01 201 1 3 1

(10,200 20 20 04 00 290 271 2 24 14

(20, 30] 20 20 16.0 03 228 0.66 10 42 66

(30,40] 20 20 84.4 1.2 193 0.74 99 28 73

(40, 50] 20 20 306.2 3.4 231 091 232 39 81

(50, 75] 2 0 3,600.0 23.3 17.87 16.54 2,480 54 86

Subtotal 94 92 163.2 1.5 2.64 1.68 126 30 52

10 (07 10] 12 12 0.0 0.0 2.44 2.44 1 6 1

(10, 20] 20 20 0.5 0.0 391 3091 2 47 22

(20, 30] 20 20 333 02 226 0.68 14 41 75

(30,40] 20 20 96.6 0.8 1.74 0.55 114 31 84

(40, 50] 20 20 257.1 25 1.62 0.62 210 41 91

(50, 75] 2 1 22159 21.0 9.00 835 745 T4 81

Subtotal 94 93 129.6 1.2 253 1.71 88 36 60

20 (0,10 12 12 0.0 0.0 165 1.65 1 4 2

(10, 20] 20 20 02 00 174 131 3 14 13

(20, 30] 20 20 1.3 0.1 1.13 0.25 7 19 38

(30,40] 20 20 29.7 0.3 151 0.39 52 43 61

(40, 50] 20 20 185.3 1.0 1.25 0.53 332 34 65

(50, 75] 2 1 28149 106 6.53 6.37 3,568 8 64

Subtotal 94 93 106.0 0.5 1.55 0.87 160 24 39

Total 282 278 132.9 1.1 2.24 1.42 125 30 50
Panel B: Scholz&Wascher instances

Q n Inst Opt tls] t* Gp** GpRF Nds CC SRC

30 20 100 100 0.0 00 027 0.23 2 0 0

40 100 100 0.0 0.0 020 0.18 2 1 0

60 100 100 0.0 0.0 0.11 0.10 2 1 1

80 100 100 0.0 0.0 0.09 0.08 2 1 0

Subtotal 400 800 0.0 0.0 0.17 0.15 2 1 0

45 20 100 100 0.1 00 063 035 7 5 7

40 100 100 0.6 0.0 046 0.19 15 7 15

60 100 100 6.3 0.1 038 0.17 141 6 21

80 100 100 209 0.2 029 0.15 374 5 23

Subtotal 400 800 70 01 044 0.22 134 6 16

60 20 100 100 04 0.0 115 0.56 14 12 16

40 100 100 91 01 072 033 195 12 33

60 100 97 1959 05 0.73 046 3,189 18 41

80 100 90 666.7 1.3 133 1.12 5731 19 45

Subtotal 400 e 2180 0.5 098 0.62 2282 15 34

75 20 100 100 0.6 00 1.80 0.95 6 21 24

40 100 100 3.1 05 112 044 148 30 54

60 100 91 716.0 24 173 120 2967 37 67

80 100 55 2,187 6.9 500 4.66 5323 36 71

Subtotal 400 692 733.7 2.4 241 182 2111 31 54

Total 1,600 3,066 239.7 0.8 1.00 0.70 1,132 13 26

Table 3.21: Detailed results of our BPC algorithm for the Foodmart and the

Scholz&Wascher instances and the routing strategy traversal

156

Chapter 3. Solving the Multi-Block OBP with BPC
Optimal No-reversal ~ Aisle-by-aisle =~ Combined Traversal
A n Inst t[s] Gp t[s] Gp t[s] Gp t[s] Gp t[s] Gp
Panel A: BPC-DF heuristic

5 (0,10] 12 0.0 0.00 0.0 10.70 0.0 6.80 0.0 2.50 0.0 9.40
(10,201 20 2.2 0.00 29 890 0.5 6.00 0.1 2.90 0.2 8.20
(20,30 20 41.5 0.00 474 8.20 5.4 5.60 5.1 1.90 6.0 7.30
(30,40] 20 338.2 0.00 2748 7.80 379 4.90 56.7 1.50 65.8 6.80
(40,50] 20 1,408.3 0.00 1,708.4 810 335.6 4.90 502.0 1.70 340.3 6.80

(50, 75] 2 3,600.0 5.90 3,600.0 7.40 3,600.0 3.30 3,600.0 0.70 3,600.0 5.70
Subtotal 94 4575 0.13 509.3 854 1573 549 196.6 2.04 1643 7.51
10 (0,100 12 0.0 0.00 0.0 8.60 0.0 3.90 0.0 1.70 0.0 6.20
(10,20 20 4.0 0.00 26 6.50 0.9 3.80 0.7 1.40 0.5 4.80
(20,30 20 304 0.00 443.7 7.60 5.9 4.90 4.3 1.50 6.4 5.90
(30,40] 20 2454 0.00 4174 7.20 40.9 5.00 39.2 1.50 93.7 5.60
(40,50] 20 980.2 0.00 684.2 6.90 105.2 5.10 260.5 1.50 356.7 5.80

(50, 75] 2 3,600.0 5.50 3,600.0 5.60 3,600.0 4.10 3,600.0 0.50 3,407.4 4.10
Subtotal 94 344.7 0.12 405.9 7.22 109.1 4.59 1414 1.48 169.8 5.58
20 (0,10] 12 0.0 0.00 0.0 9.30 0.0 5.10 0.0 1.80 0.0 6.40
(10,20] 20 0.5 0.00 0.9 9.30 0.1 5.80 0.0 1.90 0.1 6.50
(20,30 20 7.3 0.00 4.6 8.00 1.0 5.30 0.5 1.80 0.4 6.20
(30,40] 20 829 0.00 6131 7.80 142 5.30 7.0 1.50 249 6.50
(40,50] 20 588.5 0.00 1,466.8 7.40 132.7 4.90 88.9 1.50 289.4 6.30

(50, 75] 2 3,352.2 4.90 3,600.0 6.10 3,600.0 4.70 3,600.0 0.80 3,600.0 5.30
Subtotal 94 2158 0.10 5203 823 1081 5.28 971 1.67 143.6 6.36
Total 282 3393 0.12 4785 800 1248 512 1450 1.73 159.2 6.48

Panel B: SC heuristic

5 (0,100 12 0.0 0.00 0.0 10.70 0.0 6.90 0.0 2.50 0.0 9.40
(10,20] 20 22 0.20 1.5 9.20 0.3 6.20 0.1 3.00 0.1 8.60
(20,30] 20 32.1 040 12.8 9.00 3.1 6.20 1.9 2.40 0.7 8.10
(30,40] 20 159.5 0.70 56.2 9.20 14.9 5.60 8.3 2.30 5.9 8.40
(40,50 20 550.4 1.00 180.6 10.10 58.1 6.10 41.3 3.10 28.1 8.90

(50, 75] 2 24132 6.20 1,619.0 8.60 156.1 550 9442 1.90 704.7 7.30
Subtotal 94 209.7 0.62 879 9.53 19.6 6.13 31.1 2.66 224 859
10 (0,100 12 0.0 0.00 0.0 8.60 0.0 3.90 0.0 1.90 0.0 6.20
(10,20 20 1.8 0.80 1.1 7.30 0.2 4.80 0.1 220 0.1 6.20
(20,30] 20 18.6 0.60 9.1 7.90 2.0 540 0.9 2.00 0.8 7.00
(30,40 20 1154 1.00 41.0 8.20 12.1 6.00 6.7 2.60 5.6 6.60
(40,50 20 386.4 0.80 127.1 8.30 41.3 6.20 22.0 2.60 15.0 6.80

(50, 75] 2 25262 6.00 12293 6.70 2728 6.30 959.9 220 1,117.1 5.70
Subtotal 94 1649 0.81 64.1 7.99 176 5.40 26.7 2.29 28.3 6.57
20 (0,10] 12 0.0 0.00 0.0 9.30 0.0 5.10 0.0 1.80 0.0 6.40
(10,20 20 0.5 0.20 0.3 940 0.1 6.00 0.0 2.00 0.0 6.60
(20,30] 20 6.1 0.20 2.6 820 0.6 5.40 0.3 2.00 0.2 6.40
(30,40] 20 38.8 0.40 14.1 8.50 3.0 5.90 2.1 1.80 1.1 7.30
(40,50 20 171.0 0.60 50.0 8.00 15.7 5.50 8.4 210 72 710

(50, 75] 2 20341 510 38.5 7.10 1,080.2 6.10 1,2009 1.20 236.6 5.80
Subtotal 94 89.3 041 225 859 27.1 5.63 278 194 6.8 6.77
Total 282 154.6 0.61 58.1 8.70 214 5.72 28.6 2.29 19.2 731

Table 3.22: Summary results of our BPC-based heuristics for the Foodmart in-

stances and all routing strategies

Bibliography

Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A.-L., and Ogier, M.
(2020). An efficient and general approach for the joint order batching and picker
routing problem. European Journal of Operational Research, 285(2), 497-512.

Cambazard, H. and Catusse, N. (2018). Fixed-parameter algorithms for rectilinear
Steiner tree and rectilinear traveling salesman problem in the plane. Furopean
Journal of Operational Research, 270(2), 419-429.

Pansart, L., Catusse, N., and Cambazard, H. (2018). Exact algorithms for the order
picking problem. Computers & Operations Research, 100, 117-127.

Valle, C. A. and Beasley, J. E. (2020). Order batching using an approximation for the
distance travelled by pickers. Furopean Journal of Operational Research, 284(2),
460-484.

Valle, C. A., Beasley, J. E., and da Cunha, A. S. (2017). Optimally solving the joint order
batching and picker routing problem. Furopean Journal of Operational Research,
262(3), 817-834.

Zhang, K. and Gao, C. (2023). Improved formulations of the joint order batching and
picker routing problem. International Journal of Production Research, 61(21),
7386-7409.

157

Chapter 4

Branch-and-Price for the
Set-Union Bin Packing Problem
Julia Wahlen and Timo Gschwind

Abstract

Given a set of items, each requiring a set of elements, the set-union bin packing
problem (SUBP) consists of grouping all items into a minimum number of bins
such that each item is assigned to exactly one bin and the total weight of all
distinct elements required in a bin does not exceed its capacity. The SUBP is
a generalization of the well-known bin packing problem, where items can share
one or more elements in a non-additive fashion. In the literature, it has been ad-
dressed by various names such as pagination problem, job grouping problem, tool
switching problem, or bin packing problem with overlapping items. We propose a
branch-and-price (B&P) algorithm for solving the SUBP. For the column genera-
tion pricing problem, which is a set-union knapsack problem (SUKP), we present
and explore alternative solution methods, namely the direct solution of an integer
program with a general-purpose MIP solver and two labeling algorithms on ad hoc
defined graphs. The overall best B&P variant combines an upfront greedy pric-
ing heuristic and an item-based labeling approach without the application of any
dominance. The latter is based on the representation of the pricing problem as a
shortest path problem with resource constraints and relies on strong completion
bounds as acceleration technique. Ryan-and-Foster branching is applied to ensure
integer solutions. Extensive computational results demonstrate the effectiveness
of the proposed method. Our B&P significantly outperforms the state-of-the-art
IP formulations. It solves to optimality more than 10,000 instances from the lit-
erature that have only been solved heuristically before, improving the best-known
solutions for more than half of the benchmark.

158

Chapter 4. B&P for the SUBP 159

4.1 Introduction

The set-union bin packing problem (SUBP) is an extension of the well-known bin
packing problem (BP). Given a set of items, each requiring a set of weighted ele-
ments, the SUBP consists of grouping all items into a minimum number of bins
such that the total weight of all distinct elements required by the items in a bin
does not exceed the bin capacity. Unlike in the classical BP, packing together
two or more items into the same bin may occupy less capacity than the sum of
their individual capacity consumptions. As a generalization of the BP, the SUBP
is N'P-hard (Tang and Denardo 1988). It appears in numerous industries (see,
e.g., Shirazi and Frizelle 2001, Crama et al. 2007) and related problems have been
considered in different fields. We briefly discuss selected areas of application.

The tool switching instants problem or machine stop minimization problem is a
classical and extensively studied problem in flexible manufacturing systems (Konak
and Kulturel-Konak 2007, Konak et al. 2008, Marvizadeh and Choobineh 2013,
Adjiashvili et al. 2015, Burger et al. 2015, Gokgur and Ozpeynirci 2022). Within
automated manufacturing systems, every operation or task requires a specific set of
tools to be loaded into a machine and each machine is equipped with its individual
tool magazine. In general, the capacity of these magazines is insufficient to accom-
modate the complete range of tool slots needed for all operations so that machine
stops are necessary to switch tools. The objective is to minimize the number of
such machine stops.

In a job grouping or part grouping problem scheduling application, several jobs
have to be assigned to machines, with the aim of minimizing the number of identical
machines used. Each job requires a set of specific tools, which have to be installed
in the machine on which the job is to be processed. Each machine can only hold a
limited number of different tools (Hirabayashi et al. 1984, Tang and Denardo 1988,
Crama and Oerlemans 1994, Denizel 2003, Jans and Desrosiers 2013, Desrosiers
et al. 2013).

In the field of virtual machines (VMs), virtualization technology enables multi-
ple VMs to run simultaneously on a single physical server. VMs residing on the
same server can share identical content storage pages, resulting in a reduction of
cumulative storage requirements on server resources. The aim here is to minimize
the number of servers required in order to minimize costs. This problem has been
coined the wirtual machine packing problem (Sindelar et al. 2011).

The equivalent pagination problem arises from the field of linguistics (Grange
et al. 2018, 2023). It asks for the distribution of a given collection of tiles into the
fewest number of pages. A tile is defined as a finite set of symbols from a given
alphabet and each pair of sets can share zero, one or more symbols. Once some
data from two tiles are packed into the same page, they do not need to be repeated
twice.

Chapter 4. B&P for the SUBP 160

In graph theory, the k-clique covering problem is defined on a hypergraph whose
vertices can be interpreted as elements connected by hyperedges that visualize the
affiliation to the items. The aim is to use the least number of cliques of size k (or
subsets of maximum k vertices) such that each edge is contained in at least one
such clique (Goldschmidt et al. 1996).

The SUBP describes the underlying optimization problem for all these applica-
tions. We study the exact solution of the SUBP using branch-and-price (B&P).
For the related BP, column generation (CG) and B&P based approaches have been
successfully applied (e.g., Gschwind and Irnich 2016, Wei et al. 2020, Baldacci
et al. 2024). There, the CG pricing problem is a binary knapsack problem (KP).
Analogously, solving the SUBP with B&P results in a set-union knapsack problem
(SUKP) as pricing problem. On the theoretical side, both SUBP and SUKP are
N P-hard (Tang and Denardo 1988, Crama and Oerlemans 1994). On the practi-
cal side, a key difficulty for solution approaches to both problems is the fact that
the capacity consumption of a bin is given by a function that is not separable in
the comprised items. A similar challenge occurs, e.g., for order batching problems
(OBP) in warehousing. Given a set of customer orders each comprising individual
items to be picked, the OBP consists of designing a set of picking batches such
that each customer order is assigned to exactly one batch, all batches satisfy the
capacity restriction of the pickers, and the total distance traveled by the pickers is
minimal. The travel distances of the picking batches are given by a function that
is not separable in the combined orders. The recent work of Wahlen and Gschwind
(2023) successfully applies B&P to solve the OBP. For the solution of the pricing
problem, they propose a labeling algorithm which does not apply any dominance
rules between labels (due to the non-separability of the cost function) but relies
on strong completion bounds to limit the number of generated labels.

4.1.1 Contributions

The main contributions of this paper are as follows:

o We propose, to the best of our knowledge, the first B&P algorithm for the
SUBP. The B&P is based on the set-partitioning formulation (SPF) of the
SUBP and is applicable for solving instances with general element weights.

o We propose and explore different exact solution approaches to the SUKP
pricing problem that are based on three alternative formulations: an inte-
ger programming (IP) formulation, an item-based shortest path problem with
resource constraints (SPPRC), and an element-based SPPRC. Furthermore,
we derive a greedy pricing heuristic following ideas of Arulselvan (2014) that
is able to quickly generate a large number of negative reduced cost-columns

Chapter 4. B&P for the SUBP 161

and typically leaves only few iterations to the exact pricer. The overall best
performing variant combines the upfront greedy pricing heuristic with an
item-based labeling algorithm that does not apply any dominance but re-
lies on strong completions bounds. While the general idea of the labeling
algorithm is generic and has also been applied by Wahlen and Gschwind
(2023) for the OBP, the bounding procedure, which is crucial for its effec-
tiveness, is strongly problem specific. We derive completion bounds that can
be effectively computed for each label by solving a binary KP.

o We show the competitiveness of the proposed algorithm on the large unit-
weight benchmark of Grange et al. (2018) and on new large-scale general-
weight instances based on He et al. (2018). Our B&P by far outperforms
the state-of-the-art IP formulations of Jans and Desrosiers (2013) and is able
to optimally solve 92% of the 10,986 instances by Grange et al. (2018). We
improve more than 5,800 best-known solutions (BKS) reported by Grange
et al. (2018) and confirm all remaining BKS except for 131.

o Thanks to the large number of proven optima, we can perform a first analysis
of the (modified) integer round up property ((M)IRUP) for the SUBP. We ob-
serve that for all instances the optimal objective value equals the rounded-up
value of the corresponding optimal LP relaxation plus one, i.e., the MIRUP
is satisfied.

4.1.2 Organization of the Paper

The remainder of the paper is structured as follows. In Section 4.2, we review
the related literature. Section 4.3 formally defines the SUBP and presents three
different IP formulations of the problem. The details of our exact B&P algorithm
are given in Section 4.4. Section 4.5 presents our computational results. Final
conclusions are drawn in Section 4.6.

4.2 Literature Review

The SUBP was first introduced as the parts-grouping problem in a manufacturing
context by Hirabayashi et al. (1984), who propose a set-covering formulation. The
term set-union bin packing was established by Goldschmidt et al. (1994) to de-
scribe the problem in analogy to the related SUKP. The literature contains several
studies dealing with the SUBP addressed by various names such as job grouping
problem (Tang and Denardo 1988, Crama and Oerlemans 1994, Jans and Desrosiers
2013, Desrosiers et al. 2013), tool switching instants problem (Konak et al. 2008,
Konak and Kulturel-Konak 2007, Marvizadeh and Choobineh 2013, Gokgur and

Chapter 4. B&P for the SUBP 162

Ozpeynirci 2022), virtual machine packing problem (Sindelar et al. 2011), machine
stop minimization problem (Adjiashvili et al. 2015), pagination problem (Grange
et al. 2018, 2023), bin packing problem with color constraint (Kochetov and Kon-
dakov 2017), subset bin packing problem (Dror and Haouari 2000, Izumi et al.
1998), or bin packing problem with overlapping items (Grange et al. 2018).

In the following, we focus on the current state of research on exact solution
approaches to the SUBP. For simplicity, we uniformly use the terminology item,
element and bin to describe the approaches, even if the authors use other terms
depending on the application. A discussion of SUBP variants and extensions can
be found, e.g., in (Calmels 2019, Locatelli 2023). We refer to (Wei 2021) for a broad
overview on approaches to the SUKP, which constitutes the CG pricing problem
of the SUBP.

The literature on exact solution approaches is still very limited, despite the high
practical relevance of the SUBP. Tang and Denardo (1988) present a SPF of the
SUBP and show that the SUBP is a generalization of the well-known BP. Further-
more, the authors propose an exact branch-and-bound (B&B) approach to solve
the SUBP. For bounding, a lower bound and an upper bound are determined in
each B&B node by a sweeping procedure and a maximum intersection minimum
union (MIMU) heuristic, respectively. In the B&B tree, each node corresponds
to a maximum class which is defined as a set of items whose union of required
elements respects the bin capacity and adding another item to this set violates
the bin capacity. Branching is realized by sequential maximum partition where
at each node of the tree, all maximum classes that contain an arbitrarily selected
item that was not part of a previously formed class are generated. To reduce the
computational cost and the number of B&B nodes, the item with the smallest
number of elements that still needs to be grouped is chosen. The B&B approach
is considered ’efficient’ for unit-weight instances with up to 30 items where a ca-
pacity of up to ten is assumed and the maximum number of elements is 20. The
study is of theoretical nature and does not show computational results in terms of
computation times.

Denizel (2003) utilizes an IP formulation of the SUBP presented by Crama and
Oerlemans (1994) to propose a Langrangean decomposition-based lower bounding
procedure. This lower bound, strengthened by adding valid inequalities to the de-
composed model, is then used in an exact B&B algorithm. In each node, an upper
bound is derived from the lower bound solution. For branching, the sequential
maximum partition idea of Tang and Denardo (1988) is refined. Instead of choos-
ing the least compatible item, the author selects the item that has not yet been
grouped and that requires the largest weight of additional elements. The algo-
rithm is able to optimally solve instances limited to a maximum of 30 unit-weight
elements, 20 items and a capacity of 19 within a time limit of 5,400 seconds. The

Chapter 4. B&P for the SUBP 163

procedure is also valid for the general-weight case.

Jans and Desrosiers (2013) analyze several IP formulations of the problem. They
consider variants of the symmetric IP formulation (SF) of Crama and Oerlemans
(1994) by adding symmetry breaking constraints such as, e.g., variable reduction
and lexicographic ordering restrictions. They also present a new formulation of
the SUBP based on the asymmetric representatives formulation (ARF) idea that
was first proposed for vertex coloring (Junglas 2007, Campélo et al. 2008) and was
generalized for binary clustering problems by Jans and Desrosiers (2010). All IPs
are solved with CPLEX and outperform the existing solution approaches from the
literature. On the small instances of Denizel (2003), the new ARF is 40 times faster
compared to the pure SF and outperforms the B&B algorithm of Denizel (2003)
by factor seven. The other IPs with symmetry breaking also outperform the B&B
algorithm, providing a speedup of factor six (SF with variable reduction) to eleven
(SF with lexicographic ordering) compared to pure SF. On newly generated, larger
instances with up to 60 items, 30 elements and a maximum capacity of 27, the SF
with limited lexicographic ordering constraints performs best with a speedup of
factor five compared to the pure SF model.

4.3 Problem Description and Mathematical
Formulations

In this section, we formally define the SUBP and present three mathematical for-
mulations of it.

4.3.1 Problem Definition

We are given a set of items I = {1,...,n}, a set of weighted elements F =
{1,...,m} with weights w, > 0 for all e € E, and an unlimited number of bins
with capacity). Each item ¢ € I requires a specific subset of elements E; C E.
The bin capacity @ specifies the maximum total weight of distinct elements per
bin and we assume () to be sufficiently large to encompass any item. The SUBP
consists of grouping the items I into the minimum number of bins such that each
item is assigned to exactly one bin and each bin satisfies the capacity restriction.
In contrast to the standard BP, items can share one or more elements in a non-
additive fashion, i.e., each element is considered only once in determining the total
weight of a given set of items, regardless of whether the element is required by
multiple of these items.

Example 4.1. Consider an instance of the SUBP with four items I = {iy,... 14}
and five unit-weight elements E = {ey,...,es}. The sets of required elements are

Chapter 4. B&P for the SUBP 164

(- @

21 (2 L2 3
b1 b2

Figure 4.1: Example solution of a unit-weight SUBP instance with four items

I ={iy,...,i4} requiring elements E;, = {ey,e5}, By, = {e1}, Ei, =

{es,ea}, Eiy = {e3, €4}, and Q@ =3

E;, ={ey, 65}, Ei, = {e1}, By, = {ea,e4}, and E;;, = {es,es}. The bin capacity is
Q = 3. Two bins are necessary to hold all items. Figure 4.1 depicts an optimal
solution where items i; and i4 requiring elements {es, eq, €5} are assigned to bin by
while items iy and i3 requiring elements {e1, ea, €4} are assigned to bin by. Note
that element ey s shared by items i1 and i4 in by so that the total weight in each
bin is three.

It is convenient to introduce some additional notation. For a subset £’ C E of
elements, denote by w(E') = ¥ .cp we the total weight of the elements E’. For
a subset I' C [of items, denote by E(I') = U;epr Fs the set of distinct elements
required by the items I and by w(I') = w(E(I')) = X cp(r) we the total weight of
these elements. Furthermore, we define the frequency f.(I') = |{i € I' | e € E;}|
of an element e € F as the number of items in set I’ C I that require element e.
Note that if there is no common element between any pair of items, i.e., fo(I) <1
for all e € F, the SUBP reduces to the BP (Tang and Denardo 1988).

4.3.2 Symmetric Formulation

To formulate the SUBP as a generalization of the BP, let B be a sufficiently large
set of available bins, e.g., B = {1,...,n}. A more evolved estimate on the size
of B is described in Section 4.B of the appendix. The SF uses three types of
binary indicator variables. Variables x; equal to one if item i € I is assigned to
bin b € B, and zero otherwise. Variables y., equal to one if element ¢ € F is
required in bin b € B, and zero otherwise. Variables z, equal to one if bin b € B
is used, and zero otherwise.

Chapter 4. B&P for the SUBP 165

The SF of Crama and Oerlemans (1994) reads as follows:

beB
st.Y ap=1 Viel (4.1b)
beB
Z WelYer < Qz, VD EB (4.1c)
ecE
Ty <yYp VbEB,i€l,eck, (4.1d)
zyp € {0,1} Vbe B,iel (4.1e)
Yo € {0,1} Vbe Bec E (4.1f)
2 €{0,1} VbeB (4.1g)

The Objective (4.1a) minimizes the total number of bins used. Constraints (4.1b)
ensure that all items are packed exactly once. Constraints (4.1c) guarantee compli-
ance with the capacity of each bin regarding its allocated elements. The coupling
of items and their required set of elements is enforced by Constraints (4.1d).

In order to avoid symmetric solutions, Jans and Desrosiers (2013) propose (among
others) the following symmetry breaking constraints, which can be added to For-
mulation (4.1):

Z 2n_i$ib Z Z 2n_iIi,b+1 \V/b - B \ {|B|} (42)

i€l el

Constraints (4.2) establish a lexicographic ordering of the bins according to the low-
est indexed item assigned to each bin. Formulation (4.1) together with Constraints
(4.2) was among the best formulations tested by Jans and Desrosiers (2013), in
particular for larger instances. It is referred to as SF-LEX-I in the following.

4.3.3 Asymmetric Representatives Formulation

The ARF proposed by Jans and Desrosiers (2013) identifies bins by the lowest-
indexed items packed into them. This makes redundant the use of bin setup
variables. More specifically, binary variables v;, are equal to one if and only if
item i € [is assigned to the bin identified by item h € I, h < i. Binary variables y.
are now defined to equal one if and only if element e € F is assigned to the bin
identified by item h € I.

Chapter 4. B&P for the SUBP 166

The ARF reads as follows:

min Y vpp (4.3a)
hel
st. > vp=1 Viel (4.3b)
hel h<i
Z Weler, < Qupp, Yh €1 (4.3¢)
ecE
Vin, < Upp VZ,h € [,Z >h (43d)
Vih < Yerb Vi,h €1,0> h,e € F; (4.3e)
vin € {0,1} VYi,hel,i>h (4.3f)
yen € {0,1} Vhel,ee E (4.3g)
The Objective (4.3a) minimizes the total number of bins used. Constraints (4.3b)

ensure that all items are assigned to exactly one bin. Constraints (4.3c) guarantee
compliance with the capacity of each bin with respect to its allocated elements. The
coupling of items and their bin identifier is enforced by Constraints (4.3d), while
Constraints (4.3e) ensure coupling of each item and its required set of elements.

4.3.4 Set-Partitioning Formulation

The SPF of the SUBP has been first proposed by Tang and Denardo (1988). An
item subset I’ C [is said to be feasible if it satisfies w(I’) < Q. Let € be the set
of all feasible item subsets I’. We refer to such (feasible) item subsets as (feasible)
bins in the following. Binary parameters r; indicate if item ¢ € I is contained in
bin b € Q (ry = 1) or not (ry = 0). Binary decision variables \, equal to one if
bin b € is selected and zero otherwise. Then, the SUBP can be formulated as
follows:

min »_ A (4.4a)
bef2

s.t. Z ray, =1 VYiel (44b)
beQ
X € {0,1} Ve (4.4¢)

The Objective (4.4a) minimizes the total number of bins used, while Constraints (4.4b)
ensure that all items are packed exactly once.

4.4 Branch-and-Price Algorithm

Formulation (4.4) contains an exponential number of variables, i.e., feasible bins, so
that it typically cannot be solved directly. We, therefore, employ a B&P algorithm

Chapter 4. B&P for the SUBP 167

for its solution. A B&P algorithm is a B&B algorithm that uses CG to compute the
lower bounds. CG alternates between solving a restricted master problem (RMP),
in our case the linear relaxation of (4.4) comprising only a subset of the variables,
and solving a pricing problem that generates variables with negative reduced cost.
For details on CG and B&P, we refer to (Barnhart et al. 1998, Liibbecke and
Desrosiers 2005).

In Sections 4.4.1 and 4.4.2, we present the details of our B&P with respect to
pricing problem solution and branching, respectively. An overview of additional
design choices and implementation details can be found in Appendix 4.B.

4.4.1 Pricing Problem

Let m; be the dual prices associated with Constraints (4.4b). The reduced cost of
a bin b is given by ¢, = 1 — > ;¢ ™. The pricing problem consists of identifying
at least one feasible bin b €) with negative reduced cost or to guarantee that
no such bin exists. Note that minimizing ¢, over b € () is equivalent to finding a
feasible bin b that maximizes Y, m;. The latter corresponds to solving a SUKP
over items ¢ € I with required elements FE; and profits m;, and bin capacity Q.
Whenever the resulting objective function value is greater than one, a feasible bin
with negative reduced cost is found. As shown by Goldschmidt et al. (1994), the
SUKP is AP -hard even for very restrictive cases.

In the following, we present different exact solution approaches to the pricing
problem that are based on three alternative formulations of it: an SUKP IP formu-
lation, an item-based SPPRC, and an element-based SPPRC. The former is solved
directly with a general-purpose MIP solver. The latter two are solved by ad hoc
defined labeling algorithms, both of them with and without dominance. Details
on a greedy pricing heuristic and further acceleration strategies to speed-up the
solution of the pricing problem are provided in Appendix 4.A.

4.4.1.1 IP Formulation

The SUKP pricing problem can be modeled using the IP formulation of Hirabayashi
et al. (1984). Let z; (y.) be binary variables indicating the inclusion or not of
item ¢ € I (element e € E) into the bin.

Chapter 4. B&P for the SUBP 168

The formulation reads as follows:

max » ;7 (4.5a)
il

s.t. Z Yoo < Q (4.5b)
eck

<y, Viele€kE; (4.5¢)

r;€{0,1} Viel (4.5d)

v € {0,1} Vee E (4.5e)

The Objective (4.5a) maximizes the total profit of included items. Constraints (4.5b)
ensure that the total weight of all required elements does not exceed the bin capac-
ity, while Constraints (4.5¢) guarantee the coupling of each item with its required
elements. The solution of Formulation (4.5) with a general-purpose MIP solver
represents a first option for solving the pricing problem.

4.4.1.2 Item-based SPPRC

The pricing problem can also be modeled as an SPPRC on an ad hoc defined graph.
SPPRCs are typically solved with dynamic programming (DP) labeling algorithms
(Irnich and Desaulniers 2005). In a labeling algorithm, labels representing par-
tial paths are extended from a given source to a given sink along the network
arcs using resource extension functions (REFs). To avoid enumerating all feasible
paths, dominance relations between labels to eliminate provably non-optimal paths
and bounding procedures to discard unpromising paths that cannot reach a given
objective value threshold can be applied.

We describe two different types of SPPRC representations of the pricing problem
denoted item-based and element-based SPPRC and their solution by DP labeling
algorithms. All presented labeling algorithms heavily rely on a strong bounding
procedure to discard unpromising labels. SPPRC representations similar to the
item-based SPPRC have also been used for other pricing problems with a knapsack-
type substructure (e.g., HeBler et al. 2018, Gschwind et al. 2019).

Item-based Representation Let G = (V, A) be a linear directed multigraph
with n + 1 vertices V' = {0,...,n} and 2n arcs A. Vertex 0 is an artificial source.
Vertices 1,...,n correspond with the n items in a given sorting. For ease of
notation, we assume throughout this section that in the SPPRC graph the items
are sorted by their index, meaning that vertex v € V \ {0} corresponds with
item ¢ = v. For each v € V' \ {0}, there are two parallel arcs a! and a? connecting
vertices v — 1 and v indicating the inclusion or not, respectively, of item v. Each
arc a® € A,v € V' \ {0},k € {0,1} is associated with a set of items I*, a set of

v

Chapter 4. B&P for the SUBP 169

({in}, {ea,est,m) ({ia}, {en}, m2) ({73}, {e2, ea}, m3)({ia}, {es, ea}, ma)

(2,9,0) (@,2,0) (2,9,0) (2,2,0)

Figure 4.2: Linear directed multigraph G of the item-based SPPRC representa-
tion of the pricing problem

elements E¥. and a dual price 7%, Accordingly, for arc a we have I'!=1, E! = E,
and 7! = 7,, while for arc a2 we have I = E? = & and 70 = 0. Assomatlng sets
of items I* with the arcs allows the simultaneous consideration of multiple items
which is needed for the incorporation of branching decisions (see Section 4.4.2).
Note that the information E¥ on the elements is redundant (it can be determined

from the items I¥), but simplifies the presentation and the labeling algorithm.

Any O-n-path (v, af,vy,. .., akr ,vn) in G defines a bin b with items I(b) =
iy Il requiring elements E(b) = UL, Efi. Tt is feasible if w(E(b)) < Q. Recall

that the capacity consumption w(E(b)), or w(b) for short, is a function that is not
separable in the items 7(b) of a bin b, but always depends on the union of elements
required by the items in b. The reduced cost of bin bis & = 1 — X1, mhi. The
solution of the pricing problem is equivalent to finding a capacity-feasible 0-n-path
in G with minimum reduced cost.

Example 4.2 (continued). Figure 4.2 illustrates graph G for the example SUBP
instance and dual prices w;. There are two arcs between each pair of consecutive
vertices, indicating the inclusion (blue arc) or not (gray arc) of the item associated
with the respective head vertex. Consider vertex v = i;. The ingoing blue arc
({i1}, {es, e5},m,) = ai represents the inclusion of the singleton item iy, i.e., its
required set of elements E; = {e4,e5}, into a bin and is associated with the dual
price ;. The ingoing gray arc (&, 0) = a corresponds with not including any
item (I) = EY = &) and therefore 70 = 0. The path corresponding to bin b
comprising items i1 and iy (as shown in Figure 4.1) is visualized by bold arcs.

Item-based Labeling Algorithm A partial path P, = (0,a5,1,...,a* v)
from the source 0 to some vertex v is represented by a label

L= (v(L), BE(L), I(L),&(L), w(L), I°(L))

storing its last vertex v(L), the set of required elements E(L), the set of items (L),
the reduced cost ¢(L), the capacity consumption w(L), and the set of compati-
ble items I°(L). An item is considered compatible if it can be added with any

Chapter 4. B&P for the SUBP 170

capacity-feasible extension of label L to the sink vertex n. The initial label at
the artificial source 0 is given by (0,2, &,1,0,1). In the linear graph, labels are
processed vertex-by-vertex in our labeling algorithm. This means that starting
with the initial label at the artificial source, we always propagate all labels at a
given vertex v — 1 along the arcs a® and a! to vertex v, before all resulting labels
at vertex v are in turn propagated to vertex v+ 1, etc., until finally the sink vertex
is reached.

The extension of a label L at vertex v — 1 to vertex v along arc a” is feasible, if
w(E(L)UEF) < Q. If the extension is feasible, a new label L’ is created according
to the following REFs:

v(L)=wv (4.6a)
E(L')= E(L)UE" (4.6b)
I(L)y=I(L)uI* (4.6¢)
&L =¢éL) — " (4.6d)
w(L') = E(ZL): . We (4.6¢)
Iy =19\ {i € I°(L) | q(BE(L)YUE*UE;) > QViec I} (4.6f)

REFs (4.6a)—(4.6d) update the current vertex, the set of elements, the set of
items, and the reduced cost in a straightforward manner according to the respective
component of arc a®. The total weight of all distinct elements is determined by
REF (4.6e). REF (4.6f) is used to identify the new set of compatible items by
reducing the former set of compatible items by the items whose inclusion would
cause the capacity to be exceeded and by the item(s) associated with arc aF.

The non-separability of the capacity consumption w(L') in the items imposes
two major drawbacks on the algorithm when labeling on items. First, in every
label propagation, a more costly evaluation of the capacity consumption w(L’) is
necessary in REF (4.6e). Second, it renders infeasible the standard less-or-equal
dominance relation of the capacity resource as applied in many labeling algorithms
for SPPRC variants. Instead, the specific sets of packed elements have to be taken
into account:

Definition 4.1. Let Ly and Ly be two different labels associated with the same last
vertex v(Ly) = v(Ls). Label Ly is said to be dominated by label Ly if

¢(L1) < é(L2) N E(Ly) € E(Ls). (4.7)

If L; dominates Lo, then Ly can be discarded. In case of mutual dominance, one
label has to be kept. Due to the rather strict condition F(L;) C E(Ls), we can
expect this dominance rule to be weak in general. It is not clear whether or not

Chapter 4. B&P for the SUBP 171

the additional effort to test a set of labels for dominance relations pays off. We,
therefore, compare two variants of the proposed labeling algorithm in Section 4.5.2:
one that applies dominance and one that does not.

Bounding Procedure Let LB(L) be a lower bound on the reduced cost of any
capacity-feasible 0-n-path in G that contains the 0-v(L)-path Pj, corresponding to
label L. Obviously, any label L with LB(L) > 0 can be discarded. In the following,
we describe a method for computing values LB(L) that can also be adapted to
cope with the branching decisions of our B&P algorithm (see Section 4.4.2).

For a label L, let R(L) be the set of v(L)-n-paths that can be appended to the
0-v(L)-path Py, to form capacity-feasible 0-n-paths. A path r € R(L) is called a
completion of L. Denote by L" the label corresponding to path (Pr,r) and let
I(r) = I(L")\ I(L) C I°(L). It holds that & L") = &(L) — >icr(ry M- Thus, a
valid lower bound LB(L) on the reduced cost of any capacity-feasible 0-n-path
containing path Pj, is given by

LB(L)=¢&L) — max » ;. (4.8)

Intuitively speaking, the value max,cr) > icr(r) T represents the maximum dual
prices that can be collected when extending label L to a capacity-feasible 0-n-path.
Because set R(L) comprises all completions r such that w(L") < @, this value
is equivalent to the optimal solution value of a SUKP regarding the compatible
items i € I°(L) each requiring the subset of elements E;/ = E; \ E(L), with
profits 7;, and capacity Q" = @) — w(L). Note that the sets R(L) depend not only
on the capacity consumption w(L) and last vertex v(L), but on the specific sets
of compatible items I¢(L) and elements E(L). Therefore, individual completion
bounds B(L) = max,er(r) 2icr(r) T have to be defined for each label L.

The exact solution of an SUKP for each label L is not practicable. Instead, we
solve a relaxation in order to obtain valid completion bounds. More specifically, we
solve a standard binary KP over items i € I9(L) with ad hoc defined weights @;(L),
profits m;, and capacity Q)" using a DP algorithm that runs in pseudo-polynomial
time O (nQ) (Kellerer et al. 2004). The resulting optimal KP value constitutes
completion bound B;(L) > B(L). For each item i € I°(L), weight w;(L) is
constructed based on the relative (to their frequency in I¢(L)) weights w.(L) =
% of its required relevant elements e € E;’. For example, an element that
occurs in five compatible items (but not in any packed item) contributes one fifth
of its original weight to the weight of each of its comprising items. Elements that
are required by items already in the bin can be omitted. Reducing the weight of
each single required element to this fraction allows elements to be included multiple
times in the KP without exceeding their original weight that would accumulate in

Chapter 4. B&P for the SUBP 172

the SUKP. To foster an efficient table-based implementation of the DP algorithm,
integer item weights can be obtained by flooring. The resulting item weights yield
a valid but potentially weaker bound. Instead, we propose multiplying the sum of
relative element weights by a factor d € N* before rounding down. Formally, item
weights are computed as

a(D) = |4 X a(r)]. (4.9
ecE;’

Accordingly, however, the residual capacity and thus the dimension of the DP table

also increase by factor d. In pretests, we found that a value of d = 10 provides

a good tradeoff between strength of the bound and computational effort for its

determination.

Example 4.3 (continued). Consider the example in Figure 4.53. Let label L =
(19, {e1}, {ia}, 0.5, 1, {is,is}) be a label at vertex iy and assume dual prices m;; = 0.4
and m;, = 0.2. We have fo,({is,i4}) = fes({is,i4}) = 1 and f,({is,is}) = 2,
thus We, = We, = 1 and w,, = 0.5. With d = 1, the resulting KP item weights
are Wi, (L) = w;, (L) = [1-1.5] = 1 and the KP capacity is Q" = 2. In the
corresponding optimal KP solution, both items i3 and 14 are added to the knapsack
and the completion bound value is B¢~'(L) = 0.6. Because B¢=1(L) > &(L), label L
cannot be discarded but needs to be further extended. Figure 4.3 reveals that with
d = 2, we have w;,(L) = w;,(L) = 3 and Q' = 4. With these values, we obtain
B{=*(L) = 0.4 < &(L) and label L can be discarded.

As an additional, computationally cheaper completion bound, we consider

By(L)= > m. (4.10)
i€IC (L)
It allows to quickly eliminate unpromising labels L with ¢(L) > By(L). Only for
labels L satisfying ¢(L) < By(L), we compute the bound B;(L) by solving the
corresponding binary KP and discard L if ¢(L) > By (L).

We also experimented with other bounds, such as the sum of the dual prices 7;
of all items i € I,7 > v denoted Bs(v), which applies to all labels L with v(L) = v
and needs to be set up only once prior to the actual labeling process, or the solution
of the linear relaxation of Formulation (4.5) with respect to all i € (L) denoted
By(L). However, pretests showed that the combination of By and B was the most
promising (see Appendix 4.E).

4.4.1.3 Element-based SPPRC

We now present an alternative element-based SPPRC representation and solution
approach of the pricing problem. For conciseness, we focus on the differences com-
pared to our item-based SPPRC. Note that the element-based SPPRC approach is

Chapter 4. B&P for the SUBP 173

({i}, {e1}, m2)

(2,2,0) L = (ig, {ex}, {i2},0.5,1, {i3,i4})

Data for Bi(L) with d =1 Data for Bi(L) with d = 2
g/ ITJeQ 11233 11164 11~1L3 11~1i4 Tig Ty g 117@2 ’lf)e3 ’u~}e4 U~JL3 U~]i4 Tig Ty
2 1 1 05 1 1 04 02 4 1 1 05 3 3 04 02
DP table for By(L) with d =1 DP table for By (L) with d =2

Q iz s Q iz i

2 04 06 4 04 04

1 04 04 3 04 04

0 0.0 00 2 00 00

1 00 00

0 0.0 00

Figure 4.3: Example representation for the determination of bound B;(L) for a
label L at vertex is

similar to the element-based DP algorithm described by Goldschmidt et al. (1994)
to solve SUKPs.

Element-based Representation Let G = (V,fl) be a linear directed multi-
graph with m + 1 vertices V = {0,...,m} and 2m arcs A. Vertex 0 is an artificial
source and vertices 1, ..., m are associated with the m elements. Again, we assume
that the elements are sorted by their index so that vertex © € V' \ {0} corresponds
with element e = 0. Each arc af € A,0 € V \ {0},k € {0,1}, then indicates
the inclusion or not, respectively, of element 0, and is associated with a set of
elements E¥ and a weight w%. In contrast to the item-based SPPRC, the capacity
consumption of each inclusion is now evident from the corresponding arc. However,
the set of feasible items and the dual prices are not directly provided.

Any 0-m-path (7o, &’;;,@1, o ,&gz, Opn) in G defines a bin b which is feasible if
w(b) = ¥ whe < Q. The set of feasible items in b can be derived from the set of
comprised elements E(b) = U, E5 and is defined as I(b) = {i € I | E; C E(b)}.
Thus, the reduced cost of b is & = 1 — 3 ;¢4 ™. The solution of the pricing
problem is equivalent to finding a capacity-feasible O-m-path in G with minimum
reduced cost.

Example 4.4 (continued). Figure 4.4 illustrates graph G for the example SUBP

Chapter 4. B&P for the SUBP 174

({e1},1) ({e2},1) ({es}, 1) ({ea}, 1) ({es), 1)

Figure 4.4: Linear directed multigraph G of the element-based SPPRC represen-
tation of the pricing problem

instance with m =5 elements e € {ey,...,es} and their unit weights w.. The two
arcs between each pair of consecutive vertices indicate the inclusion (blue arc) or
not (gray arc) of the element associated with the respective head vertex. Consider
verter © = e;. The ingoing blue arc ({e1},1) = al represents the inclusion of
the singleton element ey into a bin and is associated with its weight wy = 1. The
ingoing gray arc (&,0) = &) corresponds with not including any element (EY = &)
and therefore wy = 0. Bin by comprising items 11 and 14 from Figure 4.1 is shown
by the path consisting of the bold arcs.

Element-based Labeling Algorithm FEach partial path P, = (0, amol,. ..,
ak») from the source 0 to a vertex o is represented by a label L with the same label
components as defined in Section 4.4.1.2 for the item-based case. The extension
of a label L at vertex o — 1 to vertex 9 along arc af is feasible, if w(L) + wk < Q.

The REFs of the element-based labeling approach are:

v(l) =0 (4.11a)
E(L')=E(L)UE¥ (4.11Db)
(L) =I(L)yu{ieI(L)| B; € BE(L)U Eg} (4.11c¢)
&L =¢(L) — > e (4.11d)

i€lC(L):E;CE(L)UEY
w(L') = w(L) + wk (4.11e)
1°(L) = 19(L) \ {i € I°(L) | ¢(E(L) U ES U E}) > QV E; C E(L) U E}

- (4.11f)
V Une{o,l}E@ N FE; g Eg}

The REFs (4.11a), (4.11b), and (4.11e) update the current vertex, the set of
elements, and the capacity consumption in a straightforward manner according
to the respective components of arc a%. The set of feasible items is augmented
by those compatible items that can be completely realized by the current set of
elements in REF (4.11c). REF (4.11d) updates the reduced cost by subtracting the

dual prices of all newly realized items. In REF (4.11f), the new set of compatible

Chapter 4. B&P for the SUBP 175

items is identified by reducing the former set by the items of three categories: (i)
items whose inclusion would cause the capacity to be exceeded, (ii) items that can
be realized by the current extension along arc a¥, and (iii) items requiring elements
that are excluded by the current extension along arc af (with the union U,e(o.13E5
representing all elements associated with vertex 7).

Because the additional capacity consumption is directly associated with the arcs,
the determination of w(L') in REF (4.11e) is less expensive compared to (4.6e).
However, the set of feasible items I(L') must be identified for each inclusion of an
element in order to be able to determine the reduced cost ¢(L') of L'. Consequently,
REF (4.11c) is more costly than (4.6¢). Again, the standard less-or-equal relations
of the reduced costs and the capacity consumptions are not sufficient to guarantee
dominance between labels. Instead, it has to be incorporated, which additional
items may potentially be included, i.e., which dual prices may be collected, by the
addition of elements that have not yet been considered:

Definition 4.2. Let Ly and Lo be two different labels associated with the same last
vertex v(Ly) = v(Ls). Label Ly is said to be dominated by label Ly if

&(L1) < &(Ly) AN w(Ly) <w(Ly) A I9(Ly) D I(Ly). (4.12)

Similar to the item-labeling case, the dominance relation is expected to be weak
due to the rather strict condition I¢(L;) 2 I9(Ly) and we examine two variants
(with and without dominance) of the labeling algorithm in Section 4.5.2. Note
further, that the element-based labeling with dominance (but without bounding)
is essentially equivalent to the DP algorithm by Goldschmidt et al. (1994). In
their DP, the stages correspond with the elements (in a given sorting) and at
each stage the DP decides for each state whether or not to include the current
element. The states are characterized by their stage, the residual capacity, and
the set of those packed elements that are needed to include any item that can be
realized when adding elements of subsequent stages. The latter is equivalent to
directly considering the items that can be realized regarding packed elements and
subsequent elements, i.e., the compatible items I¢(L).

Bounding Procedure The technique described in Section 4.4.1.2 for item-based
labeling can be transferred directly to the element-based approach. The label-
specific bounds By and By and their determination are identical.

4.4.2 Branching

We apply the well-known Ryan-and-Foster branching scheme (Ryan and Foster
1981) to ensure integrality. Denote by (Ap)peqr the current fractional solution of

Chapter 4. B&P for the SUBP 176

the RMP. Let fi; = > peqr ribrjb;\b indicate if the two items 7,7 € I are assigned
to the same bin. If f;; is fractional, we can branch on pair (¢, j) by creating two
child nodes. The separate branch ensures f;; = 0 by forcing variables A\, with
rip = 755 = 1 to zero. The together branch ensures f;; = 1 by forcing variables A,
with 7, 4+ 755 = 1 to zero. Both types of decisions can be easily realized in the
RMP by forbidding the corresponding bin columns.

Bins that are incompatible with the Ryan-and-Foster branching decisions must
also be prevented from being (re-)generated. This imposes structural changes
on the pricing problem requiring the adaptation of the corresponding solution ap-
proaches. A generally valid approach is to embed the original pricing algorithm into
a B&B algorithm that enforces consistency with the additional separate/together
constraints (see Gschwind et al. (2021) for details). For the element-based pricing,
this (or a similar technique) seems to be the only viable way, as it is not able
to explicitly decide on items. For the MIP-solver and item-based methods, more
effective approaches are possible. In the former, the IP Formulation (4.5) must
simply respect an additional linear constraint for each branching decision on an
item pair (Z,7). In the separate branch, we add x; + z; < 1 to Formulation (4.5)
while in the together branch, we add z; = z;. With item-based labeling, we alter
the graph G of the SPPRC representation of the pricing problem. The overall idea
is to group together the items affected by mutual branching decisions, represent
them by a single vertex in GG, and decide on the inclusion of all items in a group
simultaneously. On the modified graph, the same labeling algorithm presented
in Section 4.4.1.2 can be applied to solve the pricing problem in the presence of
branching decisions. The details of the graph modification are described in Ap-
pendix 4.C.

4.5 Computational Results

Our B&P algorithm was implemented in C++ and compiled into 64-bit single-thread
code with MS Visual Studio 2019. CPLEX 20.10 with default parameters (except
for the time limit and allowing only a single thread) is used to reoptimize the
RMPs and as MIP-solver. The computations were carried out on the HPC cluster
Elwetritsch of RPTU Kaiserslautern-Landau consisting of several Intel Xeon Gold
6126 processors running at 2.60 GHz. Memory was limited to 6 GB per thread.
Notice that the performance of a single thread of the cluster is comparable to that
of a standard desktop processor. The same computational setup was used for all
instances and the time limit for each instance was set to 1,800 seconds. Unsolved
instances are considered with the time limit of 1,800 seconds in our analysis. All
used benchmark instances together with instance-by-instance results of our best
performing B&P variant are provided at https://wiwi.rptu.de/fgs/logistik/

https://wiwi.rptu.de/fgs/logistik/subp-detailedresults
https://wiwi.rptu.de/fgs/logistik/subp-detailedresults

Chapter 4. B&P for the SUBP 177

subp-detailedresults.

4.5.1 Benchmark Instances

We focus our computational study on the extensive unit-weight benchmark of
Grange et al. (2018) (denoted pagination) and on large-scale, general-weight in-
stances that are derived from the SUKP benchmark of He et al. (2018) (denoted
general). A description of both benchmark sets is provided in Appendix 4.D.
All considered instances have never been solved to proven optimality before (apart
from 43 of the smallest instances from (Grange et al. 2018) that have been solved
with CPLEX by the authors).

4.5.2 Analysis of Pricing Problem Solution Methods

We first investigate different pricing variants of our B&P algorithm on its perfor-
mance. To this end, we compare the different exact solution approaches proposed
in Section 4.4.1, namely solving Formulation (4.5) with CPLEX, item-based la-
beling with and without dominance, and element-based labeling with and with-
out dominance. Furthermore, we test all solvers with and without the upstream
greedy pricing heuristic (see Section 4.A of the appendix). Table 4.1 summarizes
the results for solving the root node of all pagination instances. It reports the
percentage number of instances with optimally solved LP relaxation (%Sol“") and
the average time for solving the LP relaxation in seconds (£).

Consider first the results without using the greedy heuristic. The performance
of all approaches decreases as n increases. Overall, IP and item-based labeling
clearly outperform the element-based labeling in terms of both the number of solved
instances and solution time. Although more instances can be solved using the IP,
item-based labeling (without dominance) shows on average shorter computation
times, in particular for large instances with n > 75. For both labeling methods, the
application of dominance is not advantageous. A slight reduction in computation
time can be achieved only for instances with the smallest number of elements
(m = 20). A main reason for the poor performance of element-based labeling is the
extremely large number of generated labels. Apparently, the bounding procedure is
much less effective for element-based labeling compared to item-based labeling. As
a result, more than two thirds of instances exceed the memory limit if dominance
is not applied. If dominance is applied, memory issues are much less frequent but
the large number of labels requires a huge number of dominance tests (quadratic
in the number of labels).

All variants greatly benefit from integrating the greedy heuristic. Overall, the IP
and item-based labeling are still able to solve twice as many instances in a fraction
of the time compared to element-based labeling. Unlike without the heuristic,

https://wiwi.rptu.de/fgs/logistik/subp-detailedresults
https://wiwi.rptu.de/fgs/logistik/subp-detailedresults
https://wiwi.rptu.de/fgs/logistik/subp-detailedresults

Chapter 4. B&P for the SUBP

178

Item-based labeling

Element-based labeling

1P No dominance With dominance No dominance = With dominance

n %Solf P %Soll* L %Sol™” P %SolP P %SolP P

Panel A: No greedy heuristic
20 100.0 0.8 100.0 0.0 100.0 0.0 49.2 931.6 49.8 918.9
25 100.0 1.8 100.0 0.2 100.0 0.3 46.7 1,001.8 44.6 1,047.8
30 100.0 3.7 100.0 0.8 100.0 1.8 41.5 1,156.0 36.1 1,219.4
35 100.0 7.1 100.0 4.6 99.7 22.1 34.4 1,309.4 30.3 1,374.5
40 100.0 15.4 99.9 21.8 97.1 98.2 26.7 1,428.9 21.8 1,527.5
45 100.0 32.3 99.2 61.6 90.6 251.2 23.5 1,461.7 17.1 1,643.1
50 100.0 67.8 96.9 118.8 85.7 346.4 19.1 1,508.0 11.1 1,683.4
55 100.0 125.3 93.5 199.8 75.6 529.3 17.6 1,540.8 7.3 1,709.4
60 100.0 199.8 91.8 263.8 70.8 610.6 17.3 1,540.0 6.5 1,716.7
65 99.4 287.6 89.0 334.6 67.0 652.8 16.1 1,548.8 6.3 1,712.2
70 96.3 413.8 84.3 427.1 64.0 704.1 15.3 1,561.9 5.3 1,718.6
75 91.5 531.8 80.9 497.8 61.0 758.6 14.7 1,575.4 5.3 1,722.0
80 86.9 662.7 75.9 591.4 57.3 799.8 14.2 1,584.9 5.0 1,723.2
85 78.1 798.3 72.4 636.2 58.2 803.2 13.7 1,590.9 5.2 1,722.3
90 72.4 896.9 67.9 702.5 55.1 828.5 13.4 1,592.3 5.4 1,723.4
95 67.6 1,018.0 65.4 743.8 53.9 846.6 12.8 1,596.9 5.5 1,715.8
100 60.5 1,126.3 61.1 T788.8 53.4 853.9 13.0 1,604.7 5.1 1,721.6
Total 91.3 365.1 86.9 318.1 75.8 478.2 22.8 1,444.5 15.8 1,563.7
Panel B: With greedy heuristic

20 100.0 0.2 100.0 0.0 100.0 0.0 96.5 137.8 50.0 900.2
25 100.0 0.4 100.0 0.0 100.0 0.0 90.7 295.8 50.0 907.7
30 100.0 0.9 100.0 0.0 100.0 0.0 82.7 464.2 48.7 1,003.4
35 100.0 1.8 100.0 0.1 100.0 0.1 77.2 626.9 43.0 1,149.1
40 100.0 4.5 100.0 0.3 100.0 0.3 66.7 817.3 32.8 1,336.0
45 100.0 10.0 100.0 0.8 100.0 1.0 61.1 934.7 26.3 1,443.5
50 100.0 22.2 100.0 2.1 100.0 3.0 53.9 1,061.5 20.8 1,545.2
55 100.0 41.0 100.0 4.5 100.0 8.6 48.6 1,148.5 17.1 1,610.3
60 100.0 66.6 100.0 8.2 99.9 25.6 47.2 1,195.6 13.9 1,641.2
65 100.0 96.8 100.0 13.7 99.9 51.1 43.5 1,235.0 11.0 1,655.4
70 99.7 149.1 100.0 23.4 97.7 119.6 42.0 1,268.8 10.0 1,667.9
75 99.1 208.3 100.0 344 96.5 175.1 38.3 1,294.8 9.1 1,673.2
80 95.8 304.0 100.0 59.8 91.7 294.9 36.7 1,307.4 8.7 1,678.1
85 93.8 392.6 100.0 80.5 88.0 371.5 34.1 1,336.0 8.4 1,678.3
90 89.7 469.9 99.1 133.3 83.2 453.2 33.3 1,350.8 8.6 1,677.1
95 84.1 569.8 97.8 185.8 77.5 532.7 31.8 1,371.3 8.3 1,676.1
100 79.8 660.4 96.9 232.8 73.6 611.2 32.1 1,380.1 8.7 1,672.6
Total 96.6 176.9 99.6 46.0 94.6 156.2 53.8 1,015.6 22.2 1,463.9

Table 4.1: Summary results for pricing variants of our B&P for pagination in-
stances

Chapter 4. B&P for the SUBP 179

item-based labeling without dominance now dominates the IP-based pricing for
all instance classes: it can solve significantly more instances in a fraction of the
average computation time.

In order to understand the different behavior of the B&P regarding the IP
and item-based labeling without dominance when using or not the greedy pricing
heuristic, we analyzed the CG process in more detail for those variants. Figure 4.5
depicts, for the fifth pagination instance with (@, m,n) = (45,85,50), the com-
putation time in seconds for each individual pricing instance for solving the LP
relaxation when using the IP (4.5a) and the item-based labeling (4.5b) with (gray
plots) and without (blue plots) the upfront heuristic. Note that the behavior shown
in Figure 4.5 is representative for the complete benchmark. Additional examples
are shown in Appendix 4.F.

Recall that both the IP and item-based labeling are used in a partial-pricing
fashion and apply multiple-column pricing (see Appendix 4.A) so that they typi-
cally generate different columns. Consequently, we can expect the corresponding
B&P variants to follow different trajectories beyond the first iteration. Figure 4.5
reveals that without the heuristic, much fewer iterations are required when using
IP compared to item-based labeling, while the latter shows significantly shorter
computation times per pricing instance. Moreover, for IP, the computation times
per pricing instance show an increasing trend in the iteration number with the
longest computation times arising for the final pricing iterations. In contrast, for
item-based labeling, we observe kind of a bell curve with the final iterations being
computationally rather inexpensive. With the heuristic, two main observations
emerge. First, the number of iterations can be reduced for both approaches, how-
ever, substantially more iterations are saved with item-based labeling than with
IP. Second, for both approaches the computation times of the (relatively few) it-
erations of the exact pricer are of similar magnitude as those of the final iterations
without the heuristic. Consequently, while for item-based labeling the most time-
consuming iterations are replaced by the heuristic, the most time-consuming final
iterations still have to be performed for IP.

Summing up, the best performing pricing strategy for our B&P is to select the
item-based labeling without dominance but with upfront greedy heuristic. All
further calculations are carried out on the basis of this setting.

4.5.3 Comparison with State-of-the-Art

We now compare our B&P to the best-performing IPs ARF and SF-LEX-I of
Jans and Desrosiers (2013). Both formulations have been shown to significantly
outperform SF, amongst others, which is in line with small pretests that we con-
ducted. Table 4.2 summarizes the comparison on both benchmark sets pagination
and general. It provides for each approach the percentage of instances solved to

Chapter 4. B&P for the SUBP 180

10.0 2.0
8.0 8
151 N
6.0 2
= = 10 y
4.0 5
0.5 2
2.0 N l\A
A 1 L
0‘00 10 20 30 40 50 60 0'00 50 100 150 200
Iteration Iteration
(a) IP. (b) Item-based labeling without dominance.

Figure 4.5: Computation time per pricing iteration with (gray) and without
(blue) greedy heuristic for an exemplary instance

integer optimality (% Opt) and the average computation time in seconds (#[s]). Ad-
ditionally, we report for our B&P the number of new (New BKS), confirmed (Same
BKS), and not found (Missed BKS) BKS. For pagination, these columns refer
to the (previous) BKS reported by Grange et al. (2018) and quantify the number
of instances for which we have found a better, the same, or a worse solution, re-
spectively. Because the general instances have not been considered before and
the best solutions of our experiments are trivially new BKS, the corresponding
columns are left blank for them. We note that for general, 11 BKS are found by
both ARF and B&P, three only by ARF, and 136 only by B&P. Note further that
in the following the gaps of pagination instances are determined using the new
BKS, i.e., the minimum value of our best solution and the best solution reported
by Grange et al. (2018).

Table 4.2 indicates that our B&P clearly outperforms the IP formulations: It
solves more than five times more instances in a fraction of the average computation
times compared to the IPs. All methods tend to solve fewer instances as the number
of items n increases in the pagination benchmark. The effect, however, is much
more drastic with the IPs. ARF and SF-LEX-I show similar overall performance
in terms of the number of solved instances and computation times. While SF-
LEX-I performs better than ARF for larger unit-weight instances (n > 45), a few
of the largest general instances can be solved with ARF but not with SF-LEX-I.
However, for the majority of groups, the average computation times for the I1Ps
are dominated by the time limit. Instances with more than 300 items or elements
all run out of memory with SF-LEX-I.

With the computations carried out, we are able to improve on thousands of
BKS reported by Grange et al. (2018) for the pagination benchmark. Overall,

Chapter 4. B&P for the SUBP 181

ARF SF-LEX-I Our method

n Inst %Opt t[s] %Opt t[s] %Opt t[s] New BKS Same BKS Missed BKS
Panel A: pagination instances

20 624 100.0 185 97.0 137.8 100.0 0.0 7 617 0

25 642 875 430.0 614 907.0 100.0 0.0 29 613 0

30 648 39.8 1,190.8 264 14145 100.0 0.1 59 589 0

35 648 224 14438 134 1,581.1 100.0 0.2 108 540 0

40 648 11.1 1,617.2 9.7 1,641.8 100.0 0.6 140 508 0

45 648 6.8 1,680.1 7.7 1,668.6 100.0 2.1 193 455 0

50 648 5.6 1,697.3 71 1,683.0 100.0 10.4 275 373 0

55 648 42 1,734.8 6.6 1,693.6 99.2 43.0 338 309 1

60 648 2.6 1,756.9 9.1 1,663.0 98.2 65.1 415 230 3

65 648 2.2 1,760.0 114 16452 96.0 126.6 471 172 b)

70 648 1.1 1,7740 150 1,620.5 92.9 208.9 495 146 7

75 648 05 11,7794 106 1,6744 89.8 279.0 536 104 8

80 648 0.5 1,779.6 6.0 1,729.7 87.2 375.9 559 79 10

85 648 0.3 1,781.8 49 1,750.3 82.4 451.4 567 73 8

90 648 0.6 1,777.2 42 17555 78.7 553.7 556 69 23

95 648 0.3 1,783.6 29 1,765.5 73.8 632.1 550 72 26

100 648 0.3 1,782.2 3.1 1,769.2 68.7 723.2 541 67 40

Total 10,986 16.6 1,520.8 172 1,538.7 92.1 204.8 5,839 5,016 131

Panel B: general instances

{85,100} 30 0.0 1,800.0 0.0 1,800.0 70.0 614.9
{185,200} 30 0.0 1,800.0 0.0 1,800.0 60.0 817.3
{285,300} 30 6.7 1,681.4 0.0 1,800.0 76.7 538.7
{385,400} 30 3.3 1,740.8 0.0 1,800.0 80.0 540.3
{485,500} 30 3.3 1,743.6 0.0 1,800.0 90.0 395.0
Total 150 2.7 1,749.9 0.0 1,800.0 75.3 581.2

Table 4.2: Comparison of our B&P with the IPs ARF and SF-LEX-I of Jans and
Desrosiers (2013)

we confirm 5,016 BKS and provide 5,839 new BKS. Only for 131 instances, we are
not able to reach the previously reported BKS, which is to some extent caused by
memory limits (54 instances, see also Table 4.3). We can also observe that the
heuristics used by Grange et al. (2018) often find an optimal solution for small
instances, but commonly fail to do so for larger n.

4.5.4 Computational Analysis of B&P Algorithm

A more detailed analysis of our B&P is provided in Table 4.3. The additional
columns are the number of instances that could not be solved due to memory
limitations (OOM), the number of instances without memory issues whose root
node could not be solved (No LP), the average percentage optimality gap of the
LP relaxation (Gp™?), the average percentage optimality gap of the LP relaxation
excluding optimally solved instances (Gpﬁp), the average percentage optimality

gap when reaching the time limit excluding optimally solved instances (Gp'),

Chapter 4. B&P for the SUBP 182

and the average number of B&B nodes solved (Nds). All unsolved instances are
considered with the time limit of 1,800 seconds in the average computation times.
We exclude instances with missing LP value in columns Gp**', Gp-¥') and Gp!r*

Table 4.3 reveals that the times needed for solving the LP relaxations are short
for most pagination instances with an average of 46.0 seconds and only 10% of
instances for which this time is longer than 60 seconds. Only for very few instances,
our B&P fails to solve the LP relaxation. For the general benchmark, the com-
putation times for solving the LP relaxation are much longer (375.4 seconds on
average) and our B&P cannot solve the LP relaxation in 14 out of 150 instances.
Overall, the general instances appear to be more difficult than the pagination
instances for our B&P, with less optimal integer solutions obtained (75.3% vs.
92.1%) and longer average computations times (581.2 seconds vs. 204.8 seconds).
Compared to the pagination benchmark, the proportion of total computational
time allocated to solving the LP relaxation is substantially higher in the general
benchmark. Memory issues seem to consistently occur within the general bench-
mark and for a few of the larger pagination instances (n > 55).

Table 4.3 further reveals that the percentage LP gaps for the pagination bench-
mark are rather large (6.1% on average) and much larger than those of the general
benchmark (average of 1.4%). However, this may be a bit misleading due to small
objective function values. Absolute gaps are generally small for both benchmark
sets (see following section). Table 4.3 also shows that the percentage LP gaps of
the unsolved instances are huge. Again, this may partly be attributed to the small
objective function values. In fact, of the 769 unsolved pagination instances (nine
instances for general) for which an LP value is available, 11 (zero) instances have
an absolute gap of strictly less than one, i.e., the BKS is proven to be optimal by
the lower bound of our B&P, 668 (six) an absolute gap within [1,2), 90 (one) an
absolute gap within [2,3), and zero (two) an absolute gap of three or more. We
believe that at least for the latter two groups, the BKS are not optimal. We can
further observe that gaps improve only marginally in the search tree. This can
partly be attributed to the depth-first node selection and partly to the nature of
the SUBP itself, which often allows for many symmetric solutions with identical
objective function values.

From Table 4.3, we have seen that memory limitations can be an issue for
our B&P with 54 pagination and 14 general instances running out of mem-
ory. We, therefore, perform a sensitivity analysis regarding the allowed memory in
Table 4.4. Specifically, it reports the change in the number of instances for which
the B&P runs out of memory (AOOM), the number of instances with solved root
nodes (ALP), and the number of optimally solved instances (AOpt) for different
memory limits relative to the baseline of six GB. As expected, the number of in-
stances that exhaust available memory decreases as more memory is allowed. For

Chapter 4. B&P for the SUBP 183
n Inst Opt %Opt OOM NoLP t[s] t“* Gp*™ Gpt¥ Gp”™ Nds
Panel A: pagination instances
20 624 624 100.0 0 0 0.0 0.0 5.5 1.0
25 642 642 100.0 0 0 0.0 0.0 5.4 - - 1.1
30 648 648 100.0 0 0 0.1 0.0 5.9 - - 1.2
35 648 648 100.0 0 0 0.2 0.1 5.5 - - 1.4
40 648 648 100.0 0 0 0.6 0.3 5.8 - - 1.7
45 648 648 100.0 0 0 2.1 0.8 6.1 - - 4.1
50 648 648 100.0 0 0 104 2.1 6.1 - - 9.7
55 648 643 99.2 1 0 43.0 4.5 6.5 21.3 20.5 222
60 648 636 98.1 3 0 65.1 8.2 6.0 222 21.3 26.5
65 648 622 96.0 4 0 126.6 13.7 6.0 20.0 194 44.6
70 648 602 929 7 0 2089 234 6.2 179 174 50.1
75 648 582 89.8 7 0 279.0 344 6.2 19.0 184 114.3
80 648 565 87.2 9 0 3759 59.8 6.3 174 16.8 974
85 648 534 824 4 0 4514 80.5 65 171 16.7 98.4
90 648 510 78.7 6 6 553.7 133.3 6.6 17.0 16.7 167.8
95 648 478 73.8 6 13 632.1 185.8 6.8 16.8 16.4 119.7
100 648 445 68.7 7 21 723.2 232.8 71 168 16.5 182.3
Total 10,986 10,123 92.1 54 40 204.8 46.0 6.1 17.3 16.9 554
Panel B: general instances
{85,100} 30 21 70.0) 1 6149 186.5 4.7 135 13.2 734
{185,200} 30 18 60.0 2 5 817.3 5314 1.5 4.7 4.7 588.8
{285,300} 30 23 76.7 1 5 538.7 462.3 0.5 5.5 5.5 8.8
{385,400} 30 24 80.0 3 3 540.3 388.9 0.2 - - 1.6
{485, 500} 30 27 90.0 3 0 395.0 307.7 0.1 - - 0.9
Total 150 113 75.3 14 14 581.2 3754 1.4 7.9 7.8 134.7

Table 4.3: Detailed results of our B&P algorithm

Chapter 4. B&P for the SUBP 184

Memory AOOM ALP AOpt

Panel A: pagination instances

2 GB 93 -1 —16
4 GB 29 0 -5
6 GB 0 0 0
8 GB -1 1 0
10 GB -2 2 0
12 GB —27 27 2
Panel B: general instances

2 GB 6 0 0
4 GB 1 1 0
6 GB 0 0 0
8 GB -2 2 2
10 GB —4 4 3
12 GB —4 4 3

Table 4.4: B&P results for different amounts of memory allowed

the pagination instances, the number of optimally solved instances, however, in-
creases only marginally. For the general instances, three out of the 14 instances
can be solved to integer optimality when allowing at least 10 GB of memory.

In Appendix 4.G, we perform detailed analyses to investigate which character-
istics influence the complexity of an instance for our B&P.

4.5.5 Analysis of Lower Bounds

For the BP, it is known that the LP relaxation of the SPF provides very tight
lower bounds. In fact, almost all instances satisfy the IRUP, i.e., rounding up the
optimal LP relaxation value to the closest integer results in the optimal integer
solution value. Whether or not the MIRUP, i.e., the optimal integer solution value
is not greater than the corresponding optimal LP relaxation value rounded up plus
one, holds for any BP instance is — as far as we know — still an open question. We
refer to (Delorme et al. 2016) and references therein for details on the IRUP and
MIRUP in the context of BP.

To the best of our knowledge, no evaluation of the IRUP or MIRUP has yet
been performed for the SUBP. We numerically investigate both properties on all
optimally solved pagination and general instances in Table 4.5. We can observe
that the MIRUP holds for all optimally solved SUBP instances. In over 92.5% of
cases, the IRUP applies. This implies that for the vast majority of instances, the
key task of the B&P beyond the solution of the root node is to find an optimal
primal solution. To analyze the potential of improved strategies like, e.g., better

Chapter 4. B&P for the SUBP 185

Class Inst Opt MIRUP IRUP
pagination 10,986 10,123 10,123 9,359
general 150 113 113 111
All 11,136 10,236 10,236 9,470

Table 4.5: Analysis of IRUP and MIRUP

primal heuristics or diving heuristics, we examine in Appendix 4.H the effect of
using different initial upper bounds on our B&P.

Compared to the BP, SUBP instances appear to violate the IRUP much more
frequently. In Appendix 4.1, we present details on two of the smallest instances
that we could find that do not satisfy the IRUP.

4.6 Conclusions

In this paper, we study the set-union bin packing problem (SUBP) which gener-
alizes the well-known bin packing problem (BP) and has important applications
in various fields. We propose an exact branch-and-price (B&P) algorithm that
is applicable for solving instances with general element weights. The correspond-
ing column generation pricing problem is a set-union knapsack problem (SUKP).
We present and explore different exact solution approaches to the pricing prob-
lem that are based on three alternative formulations of the SUKP: an integer
programming (IP) formulation, an item-based shortest path problem with resource
constraints (SPPRC), and an element-based SPPRC. The overall best B&P vari-
ant combines an upfront greedy pricing heuristic with a labeling algorithm for
the item-based SPPRC that does not apply any dominance but relies on strong
completion bounds.

We highlight the competitiveness of our proposed B&P in an extensive com-
putational campaign on the large unit-weight SUBP benchmark of Grange et al.
(2018) comprising 10,986 instances and on new large-scale general-weight instances
based on the SUKP benchmark of He et al. (2018). Our B&P by far outperforms
the state-of-the-art IP approaches of Jans and Desrosiers (2013) on both instance
classes. Overall, we are able to solve to optimality 92% of the considered instances,
with an average computation time of around 200 seconds. Only a small fraction of
the considered instances has been solved to proven optimality before. We provide
5,839 new best-known solutions (BKS) for the benchmark by Grange et al. (2018)
and confirm all remaining BKS except for 131 instances. Furthermore, we analyze
which characteristics influence the difficulty of an instance for our B&P. Finally,
we investigate the lower bounds provided by the set-partitioning formulation of the
SUBP and observe that 92.5% of the optimally solved instances satisfy the integer

Chapter 4. B&P for the SUBP 186

round up property (IRUP) while all of them satisfy the modified IRUP (MIRUP).

We conclude by mentioning three possible avenues for future research. First,
there exist numerous practically relevant extensions of the SUBP including global
constraints on element availabilities, cardinality constraints on the number of items
per bin, heterogeneous bin sizes and costs, alternative objective functions, or multi-
level integrated optimization problems in which the SUBP appears as a subprob-
lem. While modified variants of our B&P seem promising for solving the former
types of extensions, integrated solution approaches to the latter multi-level prob-
lems may also benefit from the proposed solution techniques. Second, to exploit
the usually very tight lower bounds, new strategies to obtain high quality primal
solutions fast should be explored. Third, theoretical and/or additional computa-
tional analyses regarding the MIRUP of the SUBP could provide valuable insights
and might even be helpful to further explore the MIRUP for the BP.

Bibliography

Adjiashvili, D., Bosio, S., and Zemmer, K. (2015). Minimizing the number of switch
instances on a flexible machine in polynomial time. Operations Research Letters,
43(3), 317-322.

Arulselvan, A. (2014). A note on the set union knapsack problem. Discrete Applied
Mathematics, 169, 214-218.

Baldacci, R., Coniglio, S., Cordeau, J.-F., and Furini, F. (2024). A numerically exact
algorithm for the bin-packing problem. INFORMS Journal on Computing, 36(1),
141-162.

Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance, P. (1998).
Branch-and-price: Column generation for solving huge integer programs. Operations
Research, 46(3), 316-329.

Burger, A. P., Jacobs, C., van Vuuren, J. H., and Visagie, S. E. (2015). Scheduling multi-
colour print jobs with sequence-dependent setup times. Journal of Scheduling, 18,
131-145.

Calmels, D. (2019). The job sequencing and tool switching problem: State-of-the-art
literature review, classification, and trends. International Journal of Production
Research, 57(15-16), 5005-5025.

Campélo, M., Campos, V. A., and Corréa, R. C. (2008). On the asymmetric represen-
tatives formulation for the vertex coloring problem. Discrete Applied Mathematics,
156(7), 1097-1111.

Crama, Y. and Oerlemans, A. G. (1994). A column generation approach to job group-
ing for flexible manufacturing systems. Furopean Journal of Operational Research,
78(1), 58-80.

Crama, Y., Moonen, L. S., Spieksma, F. C., and Talloen, E. (2007). The tool switching
problem revisited. European Journal of Operational Research, 182(2), 952-957.

Delorme, M., Tori, M., and Martello, S. (2016). Bin packing and cutting stock problems:
Mathematical models and exact algorithms. Furopean Journal of Operational Re-
search, 255(1), 1-20.

Denizel, M. (2003). Minimization of the number of tool magazine setups on automated
machines: A Lagrangean decomposition approach. Operations Research, 51(2),
309-320.

Desrosiers, J., Jans, R., and Adulyasak, Y. (2013). Improved column generation algo-
rithms for the job grouping problem. Les Cahiers du GERAD. G-2013-26.

187

Chapter 4. B&P for the SUBP 188

Dror, M. and Haouari, M. (2000). Generalized Steiner problems and other variants.
Journal of Combinatorial Optimization, 4, 415-436.

Gokgur, B. and Ozpeynirci, S. (2022). Minimization of number of tool switching instants
in automated manufacturing systems. Journal of Science, 35(1), 113-130.

Goldschmidt, O., Nehme, D., and Yu, G. (1994). Note: On the set-union knapsack
problem. Naval Research Logistics, 41(6), 833-842.

Goldschmidt, O., Hochbaum, D. S., Hurkens, C., and Yu, G. (1996). Approximation
algorithms for the k-clique covering problem. SIAM Journal on Discrete Mathe-
matics, 9(3), 492-509.

Grange, A., Kacem, I., and Martin, S. (2018). Algorithms for the bin packing problem
with overlapping items. Computers & Industrial Engineering, 115, 331-341.
Grange, A., Kacem, 1., Martin, S., and Minich, S. (2023). Fully polynomial time ap-
proximation scheme for the pagination problem with hierarchical structure of tiles.

RAIRO - Operations Research, 57(1), 1-16.

Gschwind, T. and Irnich, S. (2016). Dual inequalities for stabilized column generation
revisited. INFORMS Journal on Computing, 28(1), 175-194.

Gschwind, T., Bianchessi, N., and Irnich, S. (2019). Stabilized branch-price-and-cut
for the commodity-constrained split delivery vehicle routing problem. Furopean
Journal of Operational Research, 278(1), 91-104.

Gschwind, T., Irnich, S., Furini, F., and Calvo, R. W. (2021). A branch-and-price
framework for decomposing graphs into relaxed cliques. INFORMS Journal on
Computing, 33(3), 1070-1090.

He, Y., Xie, H., Wong, T.-L., and Wang, X. (2018). A novel binary artificial bee colony
algorithm for the set-union knapsack problem. Future Generation Computer Sys-
tems, 78, 7T7-86.

Hefller, K., Gschwind, T., and Irnich, S. (2018). Stabilized branch-and-price algorithms
for vector packing problems. Furopean Journal of Operational Research, 271(2),
401-419.

Hirabayashi, R., Suzuki, H., and Tsuchiya, N. (1984). Optimal tool module design
problem for NC machine tools. Journal of the Operations Research Society of Japan,
27(3), 205-229.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints.
In G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors, Column Generation,
pages 33-65. Springer Science & Business Media, Boston.

Izumi, T., Yokomaru, T., Takahashi, A., and Kajitani, Y. (1998). Computational com-
plexity analysis of set-bin-packing problem. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, 81(5), 842-849.

Jans, R. and Desrosiers, J. (2010). Binary clustering problems: Symmetric, asymmetric
and decomposition formulations. Les Cahiers du GERAD. G-2010-44.

Jans, R. and Desrosiers, J. (2013). Efficient symmetry breaking formulations for the job
grouping problem. Computers & Operations Research, 40(4), 1132-1142.

Chapter 4. B&P for the SUBP 189

Junglas, D. (2007). Optimised grid-partitioning for block structured grids in parallel com-
puting. Ph.D. thesis, Fachbereich Mathematik, Technische Universitdt Darmstadt,
Darmstadt, Germany.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Knapsack Problems. Springer, Berlin,
Heidelberg.

Kochetov, Y. and Kondakov, A. (2017). VNS matheuristic for a bin packing problem
with a color constraint. FElectronic Notes in Discrete Mathematics, 58, 39—46.

Konak, A. and Kulturel-Konak, S. (2007). An ant colony optimization approach to
the minimum tool switching instant problem in flexible manufacturing system. In
2007 IEEE Symposium on Computational Intelligence in Scheduling, pages 43-48,
Honolulu, HI. IEEE.

Konak, A., Kulturel-Konak, S., and Azizoglu, M. (2008). Minimizing the number of
tool switching instants in flexible manufacturing systems. International Journal of
Production Economics, 116(2), 298-307.

Liibbecke, M. and Desrosiers, J. (2005). Selected topics in column generation. Operations
Research, 53(6), 1007-1023.

Locatelli, A. (2023). Optimization methods for knapsack and tool switching problems.
JOR, 21(4), T15-716.

Marvizadeh, S. Z. and Choobineh, F. (2013). Reducing the number of setups for CNC
punch presses. Omega, 41(2), 226-235.

Ryan, D. M. and Foster, B. A. (1981). An integer programming approach to scheduling.
In A. Wren, editor, Computer Scheduling of Public Transport, pages 269-280. North-
Holland Publishing Company, Amsterdam.

Shirazi, R. and Frizelle, G. (2001). Minimizing the number of tool switches on a flexible
machine: An empirical study. International Journal of Production Research, 39(15),
3547-3560.

Sindelar, M., Sitaraman, R. K., and Shenoy, P. (2011). Sharing-aware algorithms for
virtual machine colocation. In Proceedings of the twenty-third annual ACM Sym-
posium on Parallelism in Algorithms and Architectures, pages 367-378, San Jose,
CA. Association for Computing Machinery.

Tang, C. S. and Denardo, E. V. (1988). Models arising from a flexible manufacturing
machine, part II: Minimization of the number of switching instants. Operations
Research, 36(5), 7T78-784.

Wahlen, J. and Gschwind, T. (2023). Branch-price-and-cut-based solution of order batch-
ing problems. Transportation Science, 57(3), 756-777.

Wei, L., Luo, Z., Baldacci, R., and Lim, A. (2020). A new branch-and-price-and-cut
algorithm for one-dimensional bin-packing problems. INFORMS Journal on Com-
puting, 32(2), 428-443.

Wei, Z. (2021). Optimization algorithms for two knapsack problems. Ph.D. thesis, Opti-
mization and Control [math.OC], Université d’Angers, Angers, France.

Chapter 4. B&P for the SUBP 190

Appendix

4.A Acceleration Strategies for Pricing Problem Solution

In this section, we discuss acceleration techniques to speed-up the solution of the
pricing problem.

Greedy SUKP Heuristic

To quickly generate bins with negative reduced costs, we apply a greedy heuristic
following (Arulselvan 2014) to solve the SUKP pricing problem. It can be called
before performing any of the described exact solution approaches.

The heuristic proceeds as follows. Starting with a bin comprising a single item
only, additional items are added iteratively. Arulselvan (2014) suggests to choose
in each iteration an item ¢ € I with the largest profit in relation to the sum of its

required elements weights divided by their frequency, i.e., T Ti_—. In pretests,
ecE; fe(I)
we found that taking into account only the weights of those elements that have

not yet been included is more expedient and makes the integration of frequencies
dispensable. Therefore, we augment each bin b with an item ¢* € I'\b that holds the
maximum relative profit taking into consideration only the weights of the required
elements that are not yet in the bin:

Uy

i* = argmax (4.13)

€Nb Yeep\B(b) We

After each inclusion, this ratio is recalculated for all remaining items and the
procedure is repeated until no more capacity-feasible addition to b is possible.

In each pricing iteration, the greedy heuristic is run several times, once for each
item constituting the initial bin. Note that we store all considered bins to prevent
construction of identical bins and to speed up the procedure. All identified bins
with negative reduced costs are added to the RMP.

Premature Termination of Exact Pricers

We can easily modify all exact pricing algorithms to identify and return bins with
negative reduced costs in a heuristic fashion. There is no need to run the full
algorithm in each execution. To balance the computational effort and the number
of negative reduced-cost bins created in each pricing iteration, we proceed as fol-
lows. For the MIP-solver based approach, we prematurely terminate the solution
process as soon as a predefined number of 15 bins with negative reduced costs is
found. For the labeling approaches, note that any feasible 0-v-path P, in G (or
0-v-path in é) represented by label L defines a feasible bin, which can directly be

Chapter 4. B&P for the SUBP 191

returned to the RMP without completion to a 0-n-path (0-m-path). For each ver-
tex, we count the number of created labels with negative reduced costs (recall that
labels are created and extended vertex-by-vertex). As soon as this number reaches
a threshold /C, the labeling algorithm terminates prematurely and all bins with
negative reduced costs are added to the RMP. We set K = 0.35n in item-based
labeling and I = 0.35m in element-based labeling.

Storing Elements-of-Items Relations

The frequent evaluation of the capacity consumption and the examination of real-
izable items, e.g., within the REFs (4.6) or (4.11), is a computationally expensive
part of our algorithms. During the B&P procedure, it can be expected that for
many bins b €) this needs to be evaluated multiple times. We use a hash table
implementation to allow a fast retrieval in amortized constant time of the relation
between a given set of items and the corresponding required set of elements. This
requires storing in the hash table the key-value pairs (1(b), E£(b)) whenever E(b) is
evaluated for the first time for a bin b defined by I(b).

Furthermore, we exploit that for unit weight instances the capacity consumption
is equal to the number |E(b)| of elements in a bin b, which can be retrieved more
effectively than computing the summed weights w, of the elements e € E(b).

Sorting of Vertices in Labeling

When constructing the linear graphs for the SPPRC representations of the pricing
problem, any sorting of the items and elements can be employed. However, the
sorting has a significant impact on the solution time of the pricing problem. In the
item-based graph GG, we sort the items ¢ € I non-increasingly by their profit 7;. In
the element-based graph G, we sort the elements e € E non-increasingly by the
sum of normalized profits of their comprising items relative to their frequency, i.e.,

Zie[:eEEi ﬁ
€h ° 4.14
7.0 (4.14)

With these sortings, negative reduced-cost bins can often be identified early
in the labeling process, allowing for early termination. In addition, labels with
positive reduced costs tend to be discarded early due to the stronger completion
bounds resulting from these sortings.

Chapter 4. B&P for the SUBP 192

4.B Algorithm Design Choices

In this section, we give some details on additional design choices made in our B&P
algorithm.

RMP Initialization and Upper Bounds

Before the actual CG procedure starts, we run a SUBP heuristic following the
MIMU approach by Tang and Denardo (1988) to hand over an initial set of feasible
bins ' C Q and a first upper bound (UB) to the RMP. The idea of this heuristic
is to fill bins one at a time by iteratively selecting items ¢ € R that maximize the
intersection of the item’s required elements and elements that are already required
in the bin (mazimum intersection part). In case of a tie, the authors choose the
item that minimizes the number of additionally required elements (minimum union
part). The selected item is added to the current bin and discarded from R. If no
more remaining item i € R can be feasibly included in the current bin, another
bin is opened and the procedure is repeated until R is empty. Bins are initialized
with an item requiring the most elements among all remaining items ¢ € R, where
initially R = 1.

We apply a randomized version of the MIMU heuristic. The intersection values
are multiplied by a factor randomly drawn from the interval [0.85,1.15], which
makes practically redundant the minimum-union part. Note that we cover the
general-weight case by considering the element-specific weights w, instead of simply
counting the elements as proposed by Tang and Denardo (1988). The heuristic is
run four times and all bins contained in any of the heuristic solutions are added
to €. The minimum number of bins needed in any of the solutions is set as initial
UB.

To further improve the UB during the B&P process, we employ at each node
a standard restricted master heuristic solving Formulation (4.4) over the current
set of bins ' C € to integer optimality with a MIP solver. A time limit of ten
seconds is given to the solver for each run.

Initial Lower Bounds

We initialize the RMP with a lower bound (LB) on the number of bins by adding
the corresponding inequality > ycq Ay > LB. The value LB is obtained by a
combination of relaxations. First, a straightforward bound arises from ceiling the

total element weights divided by the bin capacity, that is LB, = [Z‘EETEIUW The

second bound results from the sweeping procedure of Tang and Denardo (1988). A
pair of items is said to be compatible if the combined weight does not exceed the
capacity. In each sweeping iteration, a seed item is defined as the item ¢ € R that

Chapter 4. B&P for the SUBP 193

is compatible with fewest other items in R, where initially R = I. The seed item
and all its compatible items define a (not necessarily feasible) bin and are removed
from R. This procedure is repeated until R is empty. The number of bins obtained
is denoted LBy. Third, the modified sweeping procedure (Crama and Oerlemans
1994) is executed. After each sweeping iteration, the trivial size bound considering
the elements e € E; of all remaining items ¢ € R is added to the number of already
created bins from the sweeping procedure. We obtain multiple lower bounds (one
for each sweeping iteration) with this procedure and set the maximum value as
LBs. The overall LB is given by LB = max{LB;, LBy, LB3}.

Strengthening of Lower Bounds

To strengthen the lower bounds, we experimented with adding valid inequalities
in the form of subset-row cuts (SRCs, Jepsen et al. 2008) and capacity cuts (CCs,
Baldacci et al. 2008), which have proven beneficial in improving the performance
of B&P-based approaches to related problems (e.g., Wei et al. 2020, Wahlen and
Gschwind 2023). In pretests, we found that violated SRCs could be separated reg-
ularly and their addition did increase the lower bound. On the other hand, only
very few violated CCs could be separated at all, despite a considerable computa-
tional effort. Overall, neither the integration of SRCs nor of CCs showed a positive
effect on our approach so that we do not include any valid inequalities in our B&P.

Branching Strategy

The computational analysis of our B&P revealed that improving the primal bound
seems to be the primary task within the B&B tree (see Sections 4.5.4 and 4.5.5);
strengthening the dual bound seems of secondary importance for most instances.
Therefore, we use a depth-first node-selection strategy. Still, in pretests we found
that the application of strong branching as detailed in the following proved to be
beneficial.

In each B&B node, a candidate set of item pairs (7,7) whose f;;-values are
closest to 0.6 is identified. For each pair, a rough evaluation of the two child nodes
is performed by solving the RMP with the corresponding branching constraint but
without any CG. The decision on the branching variables to be finally selected
is made according to the product rule (Achterberg 2007). At the root node, the
maximum size of the candidate set is 25, and for each level of the B&B tree, the
size is reduced by two. We also experimented with incorporating the item weights
into the selection of the branching candidates as proposed by Hefler and Irnich
(2022a). However, pretests have not revealed any significant benefit of this idea.

Chapter 4. B&P for the SUBP 194

4.C Modification of Item-based SPPRC Graph for
Branching

We identify a Ryan-and-Foster branching decision by the set I = {i,j} of two
items. The type of decision, separate or together, is irrelevant for now. Denote
by Z = {I,,...,I,} the set of active branching decisions at a given B&B node.
Let Z*,...,79 be a partition of Z into subsets, i.e., groups of branching decisions,
such that the different subsets do not overlap with respect to the items involved,
ie, (Urezs I) N (Uzezn I) = @ applies to all pairs g,h € {1,...,q},g # h, while
each individual subset consists of overlapping branching decisions. The branching
decisions of a set Z9 = {I{,..., 19} overlap if they can be arranged such that
(Bu---Ull)NnIl # @ for all h € {1,....r}. For each 79 g € {1,...,q},
denote by I(Z9) = Ujegs I the set of items involved. Furthermore, let Zy(Z9) =
S, T1(29),...,Zs(Z9) be all feasible combinations (i.e., subsets) of the items in
1(Z9) such that the branching decisions and the bin capacity are respected. In the
resulting graph G, each set I(Z9) of items corresponding to a group of branching
decisions 79 is represented by a single vertex v. For each feasible combination of
items Z;,(Z9),k € {0,...,s}, an arc a* from vertex v — 1 to vertex v is created.
The components associated with each arc af are I} = T,(Z9), E} = Uiz, (z0) Ei,
and 7% = Y ez, (z9y Ti- Bach of the items i € I'\ Ujez [that is not involved in any
branching decision is still associated with a single vertex and two ingoing arcs in G
(see Section 4.4.1.2). Note that after branching, the vertices in graph G are sorted
non-increasingly by a generalized profit value that is based on the maximum profit
of all ingoing arcs.

Example 4.5 (continued). Consider again the example SUBP instance and dual
prices m;, = 0.3, m;, = 0.5, m, = 0.4, and m;, = 0.2. We assume that I comprises
the two active separate branching decisions {i1,i2} and {ia, i3}, resulting in one
group I of branching decisions with involved items I(Z') = {iy,is,13}. Item iy is
not involved in any branching decision and is therefore represented by an individual
vertex. Figure 4.6 depicts the modified graph G showing all arcs a¥ with their com-
ponents (IF, E* wF). Consider vertex T' associated with items I(Z') = {iy,i2,13}.
The five ingoing arcs represent all subsets of items from the set I1(Z') that respect
the mutual branching decisions and the bin capacity QQ = 3, i.e., that can be feasibly
included in a bin. Now consider arc ({i1,13}, {ez, e4, €5}, 0.7) corresponding with the
inclusion of the items iy and is. It is associated with the set of elements {es, ey, €5}
and a dual price of 0.3+ 0.4 = 0.7. Bin by comprising items 1, and iy from Fig-
ure 4.1 (which is still feasible despite the branching decisions) is represented by the
path having bold arcs.

In the greedy pricing heuristic, the branching decisions are taken into account
by considering the sets Z;(Z9), ..., Zs(Z9) instead of the single items.

Chapter 4. B&P for the SUBP 195

({i1},{es,e5},0.3)

({14}, {es, €4},0.2)

({iz}, {e2,€4},0.4)

i1,13},{€e2,e4,€5},0.7

Figure 4.6: Modified linear directed multigraph G with Ryan-and-Foster separate
branching decisions {i1, 2} and {is, i3}

4.D Benchmark Instances

The benchmark by Grange et al. (2018) comprises six unit-weight instances for each
combination of capacity @ € {15,20,...,50}, number of elements m € {Q + 5,
Q + 10,...,100}, and number of items n € {20,25,...,100}. For details on their
generation, we refer to (Grange et al. 2018). Note that five (@), m, n)-combinations
do not exist, in particular, (15,85,20), (15,90,20), (15,95,20), (15,100, 20), and
(15,100, 25), resulting in a total of 10,986 instances.

In order to assess the performance of our B&P on instances with general weights,
we use the SUKP instances by He et al. (2018) and interpret them as SUBP in-
stances by reducing the capacity and omitting profits. The original instances are

defined by the characteristics number of items n, number of elements m, den-

%, and capacity ratio g = Q _ The benchmark consists of
Z:eeE We

three classes describing the relationship between n and m, namely n > m, n = m,
and n < m. The larger of the two values n and m (in case of equality this ap-
plies to both) is in {100, 200, ...,500}, and the smaller one is chosen to be 15 less.
Each of the resulting (n, m)-pairs is combined with the two («, 5)-pairs (0.1,0.75)
and (0.15,0.85), leading to a total of 30 instances. The weights w, of the individual
elements e € F are within the interval [11, 331], resulting in bin capacities @) reach-
ing from 11,000 to more than 70,000. To obtain reasonable SUBP instances, we
redefine for each instance the capacity value depending on the item with the largest
total weight and the largest individual element of the instance. More precisely, we
set Q = MaX;er Y eep, We + ¥ MaxXeep we for v € {0,5,10,15,20}. Combining the
given values for (n,m) and a with the considered values of v, we obtain a set of
150 general-weight SUBP instances.

sity a =

Chapter 4. B&P for the SUBP 196

4.E Comparison of Completion Bounds

Table 4.6 analyzes the impact of different completion bounds on our item-based
labeling algorithm without dominance. Note that similar trends can be observed
also for the other labeling variants (with dominance, element-based labeling).
When applying the upfront greedy heuristic and looking at individual bounds,
Table 4.6 reveals that By and B, are clearly superior to the others, with B, being
not competitive. While B, provides slightly faster average computation times, it
starts to struggle for larger instances where B; is able to solve more LP relax-
ations. Given these insights, we further investigated two promising combinations
of bounds, namely using the KP-based bound B; with the upfront application
of the computationally cheaper bounds By or Bz. The results indicate that the
combined variants do not increase the percentage of solved instances beyond the
level achieved by using only B;. However, applying By prior to By leverages the
strengths of both bounds, producing the most favorable overall outcomes. Conse-
quently, we implement the combination of By and B in our B&P.

Table 4.6 further reveals that when the greedy heuristic is employed, which
means that only a few exact labeling-based pricings are necessary and the most
costly exact pricings are replaced by the heuristic (see Figure 4.5 and Appendix 4.F),
the item-based labeling algorithm is rather robust with respect to reasonable com-
pletion bounds. Without the greedy heuristic, we see that the strong completion
bounds Bj are crucial for the performance of the labeling algorithm and the B&P;
as indicated also for the largest instances when applying the greedy heuristic.

Chapter 4. B&P for the SUBP 197
Bl BQ Bg B4 B2 and Bl Bd and Bl
n %Sol™ tLP %Sol'P tMP %SolMP tMP %Sol'P tMP %Sol'P tMP %SoltP tLP
Panel A: No greedy heuristic
20 100.0 0.0 50.0 900.0 50.0 900.0 50.0 902.4 100.0 0.0 100.0 0.0
25 100.0 0.2 50.0 900.0 50.0 900.0 50.0 9180 100.0 0.2 100.0 0.2
30 100.0 0.8 50.0 900.1 50.0 900.1 49.2 9614 100.0 0.8 100.0 0.8
35 100.0 4.5 50.0 900.5 50.0 900.5 46.4 1,019.5 100.0 4.6 100.0 4.8
40 99.9 214 50.0 902.3 50.0 902.5 42.2 1,118.1 99.9 21.8 99.9 223
45 99.2 61.0 50.0 908.5 49.9 909.5 36.1 1,221.7 99.2 61.6 99.2 63.2
50 96.9 118.0 49.6 922.0 49.3 9219 33.0 1,267.4 96.9 118.8 96.6 120.0
55 93.5 199.3 49.0 940.2 48.2 9419 30.0 1,313.4 93.5 199.8 93.4 202.5
60 91.7 262.9 48.1 958.5 472 961.3 28.5 1,327.0 91.8 263.8 91.5 267.1
65 89.2 332.6 47.7 975.8 46.3 978.7 28.0 1,343.0 89.0 334.6 88.7 338.0
70 84.6 425.6 46.7 1,003.9 44.6 1,009.2 27.2 1,364.3 84.3 427.1 84.1 430.5
75 81.3 497.2 45.8 1,029.9 43.0 1,038.2 26.9 1,379.6 80.9 497.8 80.4 502.5
80 76.4 589.5 44.2 1,055.5 40.9 1,073.8 26.4 1,405.6 75.9 591.4 75.3 595.3
85 72.7 635.5 43.6 1,074.4 39.7 1,094.9 25.8 1,427.2 72.4 636.2 71.5 640.6
90 68.4 701.6 41.3 1,108.8 38.0 1,123.9 25.0 1,445.4 67.9 702.5 67.4 706.3
95 66.2 742.3 39.4 1,136.7 37.0 1,141.7 24.1 1,470.6 65.4 743.8 64.8 747.7
100 62.7 788.3 38.5 1,160.7 36.0 1,159.0 23.7 1,495.9 61.1 788.8 61.0 791.9
Tot. 87.2 317.4 46.8 984.6 45.7 984.1 33.6 1,258.6 86.9 318.1 86.7 320.5
Panel B: With greedy heuristic

20 100.0 0.0 100.0 0.0 100.0 0.0 50.0 900.1 100.0 0.0 100.0 0.0
25 100.0 0.0 100.0 0.0 100.0 0.0 50.0 900.3 100.0 0.0 100.0 0.0
30 100.0 0.0 100.0 0.0 100.0 0.0 50.0 900.7 100.0 0.0 100.0 0.0
35 100.0 0.1 100.0 0.1 100.0 0.1 50.0 9014 100.0 0.1 100.0 0.1
40 100.0 0.3 100.0 0.2 100.0 0.3 50.0 903.2 100.0 0.3 100.0 0.3
45 100.0 0.8 100.0 0.6 100.0 0.8 50.0 906.9 100.0 0.8 100.0 0.8
50 100.0 2.1 100.0 1.7 100.0 2.3 50.0 915.0 100.0 2.1 100.0 22
55 100.0 4.5 100.0 3.5 100.0 5.1 50.0 929.3 100.0 4.5 100.0 4.6
60 100.0 8.2 100.0 7.0 99.5 17.9 499 950.3 100.0 8.2 100.0 8.5
65 100.0 13.8 100.0 11.9 98.8 35.5 499 976.5 100.0 13.7 100.0 14.4
70 100.0 23.3 100.0 21.1 97.2 71.5 494 1,017.4 100.0 234 100.0 24.5
75 100.0 34.8 100.0 31.6 94.6 1219 48.2 1,052.3 100.0 34.4 100.0 36.5
80 100.0 604 99.9 68.7 91.5 183.9 45.8 1,106.3 100.0 59.8 100.0 63.7
85 100.0 82.1 98.8 92.9 89.2 232.1 44.1 1,146.0 100.0 80.5 100.0 86.5
90 99.1 136.1 98.0 131.0 84.0 331.6 42.5 1,181.0 99.1 133.3 98.8 141.6
95 98.2 191.0 95.4 182.8 78.7 424.6 40.3 1,218.3 97.8 185.8 97.8 196.2
100 96.6 240.9 94.4 211.1 73.0 520.3 379 1,258.4 96.9 232.8 96.6 245.8
Tot. 99.6 47.1 99.2 45.1 94.5 114.9 47.5 1,009.9 99.6 46.0 99.6 48.7

Table 4.6: Summary results for different completion bounds
pagination instances

of our B&P for

Chapter 4. B&P for the SUBP 198

4.F Detailed CG Process for Selected Instances

In Figures 4.7-4.11, we provide the computation times per pricing instance using
the IP and item-based labeling both with and without the greedy heuristic as
examined in Section 4.5.2 for five additional pagination instances.

1.0 0.5
0.8 - * 0.4 =
0.6 * 0.3 *
0.4 = 0.2 =
0.2 = 0.1} =
0‘0 + | | | | | 0.0 | | | | |

0 10 20 30 40 50 60 70 0 50 100 150 200 250 300 350

Iteration Iteration
(a) IP. (b) Item-based labeling without dominance.

Figure 4.7: Computation time per pricing iteration with (gray) and without
(blue) heuristic for the second instance with @ = 15, m = 20,n = 70

2.0 1.2

1.0

0.8 |-

t[s]
t[s]

0.4

0.2 -
. 0.0 e :
0 10 20 30 40 50 60 0 50 100 150 200

Iteration Iteration

1
250 300

(a) IP. (b) Item-based labeling without dominance.

Figure 4.8: Computation time per pricing iteration with (gray) and without
(blue) heuristic for the fifth instance with @ = 20, m = 35, n = 50

Chapter 4. B&P for the SUBP 199

2.0 1.2

1.0 | 5

0.8 |- 5

= 06 5

0.4 *

0.2 - |

00 00 M\ puy 1 1 1
0 10 20 30 40 50 60 0 50 100 150 200 250 300

Iteration Iteration
(a) IP. (b) Item-based labeling without dominance.

Figure 4.9: Computation time per pricing iteration with (gray) and without
(blue) heuristic for the third instance with @ = 25, m = 50, n = 50

12.0 2.0
10.0
15} N
8.0
Z 60 = 10f 2
4.0
0.5 - 2
2.0
0.0 0.0 JMV s ‘ ‘
0 50 100 150 200 250
Iteration Iteration
(a) IP. (b) Item-based labeling without dominance.

Figure 4.10: Computation time per pricing iteration with (gray) and without
(blue) heuristic for the fifth instance with @ = 35, m =40, n = 85

Chapter 4. B&P for the SUBP 200

10.0 0.8
8.0
0.6 |- 2
6.0
= = 04 .
4.0
0.2 - i
2.0 Nv
0.0 0.0 bewellle L L L |
0 10 20 30 40 50 60 0 50 100 150 200 250 300
Iteration Iteration
(a) IP. (b) Item-based labeling without dominance.

Figure 4.11: Computation time per pricing iteration with (gray) and without
(blue) heuristic for the fifth instance with @ = 50, m = 55, n = 60

4.G Influence of Instance Characteristics on B&P
Algorithm

In the following, we explore which characteristics influence the complexity of an
instance for our B&P. Table 4.2 and Tables 4.7—4.11 display the results of our B&P
for the benchmarks pagination and general averaged by number of items n, num-
ber of elements m, capacity (), average element frequency, average item cardinality,
and average number of items per bin in the optimal solution, respectively.

Table 4.2 reveals that the number of items n is a major influencing factor on the
performance of our B&P. As expected according to the results from Section 4.5.2 for
solving the LP relaxation, pagination instances with more items are significantly
harder to solve. While all instances with n < 50 are solved optimally in a very short
time, only two thirds of the instances can be solved in the most difficult class n =
100. The picture is reversed for the general instances: For the largest instances
with up to 500 items, more instances are solved to optimality in significantly less
computation time compared to the instances with the fewest items.

With an increasing number of elements m, both pagination and general in-
stances seem to become easier as the percentages of optimally solved instances tend
to increase while the average computation times tend to decrease (see Table 4.7).
For the pagination benchmark, however, the effect is not as strong as with the
number of items n, so that the influence of n appears to be more significant than
that of m. The results for the general set are the same as for n, because n and m
are within the same size by definition of the instances.

Table 4.8 shows the results aggregated by capacity). It appears that instances
tend to become more difficult with increasing @) for pagination, but the effect is

Chapter 4. B&P for the SUBP 201

limited. It should be noted that @ is related to the number of elements m due to
the construction of the instances (m > @). With general instances, there seems
to be no clear trend. Note that here, the capacity is specified in intervals as there
are no predefined capacity classes.

The results grouped by average frequency are shown in Table 4.9. More than
half of the pagination instances have a very small average frequency of up to ten
items per element. The frequency does not appear to have a significant influence on
the difficulty of a pagination instance, while a higher frequency corresponds with
easier general instances. Interestingly, the specific characteristic of the SUBP,
namely the set-union property which is represented by the frequency of an element,
therefore, appears to have less influence on the difficulty than, e.g., the size n of
the problem or the bin capacity Q.

Table 4.10 summarizes the results by average cardinality of the items, where the
cardinality of an item ¢ € I is defined as the number of elements it requires, i.e.,
|E;|. We can observe that a larger average cardinality seems to strongly correlate
with the difficulty of an instance. This holds for both pagination and general
instances.

Table 4.11 displays the results aggregated by the average number of items per
bin in the BKS, i.e., 5, which can be considerably larger for pagination than
for general instances. With both instance sets, there is a strong tendency that
the complexity of an instance increases the more items are grouped into the bins.
This observation is in line with similar findings for the related BP.

Chapter 4. B&P for the SUBP

202

m Inst %Opt t[s]
Panel A: pagination instances
20 102 86.3 3228
25 204 80.9 408.7
30 306 87.3 2959
35 408 86.5 300.9
40 510 85.7 3074
45 612 86.1 316.8
50 714 87.8 296.5
55 816 87.7 2894
60 816 90.3 237.3
65 816 91.9 2222
70 816 93.3 181.2
75 816 944 1783
80 816 96.3 143.5
85 810 959 1256
90 810 96.8 112.2
95 810 97.8 100.5
100 804 978 777
Total 10,986 92.1 204.8
Panel B: general instances
{85,100} 30 70.0 614.9
{185,200} 30 60.0 817.3
{285,300} 30 76.7 538.7
{385,400} 30 80.0 540.3
{485,500} 30 90.0 395.0
Total 150 753 581.2

Table 4.7: Summary results of our B&P aggregated by number of elements

Chapter 4. B&P for the SUBP

203

Q Inst %Opt t[s]
Panel A: pagination instances
15 1,704 92.6 192.5
20 1,632 952 133.2
25 1,530 955 136.9
30 1,428 915 2198
35 1,326 90.7 2334
40 1,224 92.0 215.3
45 1,122 89.3 284.4
50 1,020 87.6 283.6
Total 10,986 92.1 204.8
Panel B: general instances

(0, 5,000] 9 100.0 7.2
(5,000, 10,000] 40 80.0 464.8
(10,000, 15,000] 54 64.8 723.0
(15,000, 20,000] 32 771 6415
(20,000, 25,000] 12 83.3 585.9
Total 150 75.3 581.2

Table 4.8: Summary results of our B&P aggregated by capacity

Frequency Inst %Opt t[s]
Panel A: pagination instances
(0,10) 6,200 96.4 121.9
(10,20] 3,222 84.7 363.8
(20, 30] 980 94.7 134.8
(30, 40] 347 784 4522
(40, 50] 140 879 229.1
(50, 60] 76 100.0 10.0
(60, 70] 21 100.0 13.7
Total 10,986 92.1 204.8
Panel B: general instances
(0, 10] 15 73.3 563.6
(10, 20] 25 64.0 751.0
(20, 30] 20 65.0 774.0
(30, 40] 20 60.0 7823
(40, 50] 40 875 426.3
(50, 60] 10 90.0 348.7
(60, 70] 5 80.0 535.8
(70, 80] 15 86.7 374.0
Total 150 75.3 581.2

Table 4.9: Summary results of our B&P aggregated by average frequency

Chapter 4. B&P for the SUBP 204

Cardinality — Inst %Opt t[s]

Panel A: pagination instances

(0,10] 4,947 89.7 276.4
(10,20] 4,388 92.8 181.9
(20,30] 1,397 974 60.4
(30,40] 254 1000 0.9
Total 10,986 92.1 204.8

Panel B: general instances

(0, 10] 15 733 563.6
(10, 20] 25 64.0 751.0
(20, 30] 25 64.0 765.8
(30, 40] 20 65.0 7524
(40, 50] 30 86.7 4204
(50, 60] 20 90.0 376.9
(60, 70] 0 - -
(70, 80] 15 86.7 374.0
Total 150 75.3 581.2

Table 4.10: Summary results of our B&P aggregated by average cardinality

n/BKS Inst %Opt t[s]

Panel A: pagination instances

(0,3 3,868 100.0 0.1
(3,6] 3245 99.3 244
(6,9] 2,38 87.7 3718
(9, 12 940 68.7 787.1
12, 15 312 578 946.2

|
]
]
|
15, 18] 84 420 1,167.5
]
|
]
|
|
]

(

(

(18, 21 68 557 927.2
(21, 24 55 46.4 1,082.7
(24, 27 19 375 1,198.5
(27, 30 4 1000 6182
(30, 33 3 66.7 1,170.6
(33, 36 2 0.0 1,800.0

Total 10,986 92.1 204.8

Panel B: general instances

] 104 865 3808

] 30 533 989.0
(6, 9] 6 833 4580

]

]

(0, 3
(3,6

(9, 12 6 16.7 1,586.7
(12, 15 2 50.0 1,021.7
Total 150 753 581.2

Table 4.11: Summary results of our B&P aggregated by average number of items
per bin

Chapter 4. B&P for the SUBP 205

4.H Influence of Additional UBs on B&P Algorithm

In Table 4.12, we compare the results of our B&P algorithm (Our BéP) with the
results obtained by initializing our B&P with additional UBs. More precisely, we
tested the best UB reported by Grange et al. (2018) for the pagination instances
(BEP + Gr-UB) as well as the overall BKS (B&P + BKS). For the pagination
benchmark, the effect is limited: only 19 additional instances can be solved and the
improvement in average computation time is marginal. Thus, for the majority of
instances, additional effort to provide high-quality primal solutions, seems to not
pay off for our B&P. Recall, however, that there exist some unsolved instances for
which we assume the BKS to be suboptimal. For these hard instances, improved
UBs may be crucial for their solution. For the general benchmark, on the other
hand, a significant improvement is observed when utilizing the BKS as an initial
UB. Our B&P is able to solve 21 additional instances in only 60% of the average
computation time. Here, improved primal heuristics may be worthwhile.

Chapter 4. B&P for the SUBP

206

Our B&P B&P + Gr-UB B&P + BKS
n Inst Opt t[s] Opt t[s] Opt t[s]
Panel A: pagination instances
20 624 624 0.0 624 0.0 624 0.0
25 642 642 0.0 642 0.0 642 0.0
30 648 648 0.1 648 0.1 648 0.1
35 648 648 0.2 648 0.2 648 0.2
40 648 648 0.6 648 0.5 648 0.5
45 648 648 2.1 648 2.0 648 2.0
50 648 648 104 647 10.1 647 10.2
%) 648 643 43.0 643 42.5 643 42.7
60 648 636 65.1 635 63.8 635 64.6
65 648 622 126.6 623 116.2 624 117.4
70 648 602 208.9 604 201.3 603 202.2
(6] 648 582 279.0 583 269.8 585 272.0
80 648 565 375.9 565 372.7 567 375.3
85 648 0934 451.4 037 444 .4 538 444.5
90 648 5910 553.7 515 542.3 515 544.5
95 648 478 632.1 479 628.7 480 629.6
100 648 445 723.2 447 722.0 447 722.3
Total 10,986 10,123 204.8 10,136 201.5 10,142 202.2
Panel B: general instances
{85,100} 30 21 6149 28 198.2
{185,200} 30 18 817.3 24 514.0
{285,300} 30 23 538.7 25 443.9
{385,400} 30 24 540.3 27 359.0
{485,500} 30 27 395.0 30 299.3
Total 150 113 581.2 134 362.9

Table 4.12: Summary results of our B&P incorporating different UBs

Chapter 4. B&P for the SUBP 207

4.1 Instances Not Satisfying IRUP

In this section, we present details on two of the smallest instances that we could
find that do not satisfy the IRUP. For both instances, we state the optimal solu-
tion together with the optimal solution of the LP relaxation of Formulation (4.4)
provided by our B&P.

Example Instance 1

This instance is based on the second pagination instance with () = 30, m = 35,
n = 20. The instance could be reduced to n = 17 items, while still not satisfying
the IRUP.

Instance data: F; for all 7 € I:
{7,8,15,18,20,23,28,29,32}
{3,5,8,17,19,29}
{1,6,8,12,15,24,26,34}
{3,5,12,14,17,21,22,23,24,25,28 34}
{0,15,16,17,20,24,29}
{1,14,18,21,25,26,30}
{1,5,6,11,13,18,26,29,30,32,33}
{1,2,3,4,9,11,13,14,16,19,25}
{1,2,4,5,7,8,12,13,14,15,20,33}
{0,4,8,11,13,17,19,20,21,23,25,33,34}
{2,6,31}

{5,6,8,15,16,18,20,22,28}
{5,10,13,16,19,29}
{6,9,10,11,18,20,25,28,31}
{0,10,24,26,27,29,34}
{2,4,7,8,14,16,17,18,19,20,24,30,32}
{5,8,10,11,12,15,17,20,21,23,28,32,33 .34}

Optimal solution (3 bins):

Bin [3 789 15 16], elements {0 12345789 10 11 12 13 14 15 16 17 18 19 20
21222324252830323334} =1

Bin[02456 11 13|, elements {0156 789 10 11 12 13 14 15 16 17 18 20 21 22
23 24 25 26 28 29 30 31 3233 34} =1

Bin [1 10 12 14], elements {023 56 8 10 13 16 17 19 24 26 27 29 31 34} =1

LP relaxation (obj val = 2.0):

Bin [1 567810 12 13 15|, elements {123456 78910 11 1213 14 1516 17 18
19 20 21 24 25 26 28 29 30 31 32 33} = 0.25

Bin [2 34 10 11 13 14 16], elements {0 12356 8 9 10 11 12 14 15 16 17 18 20 21

Chapter 4. B&P for the SUBP 208

22 23 24 25 26 27 28 29 31 32 33 34} = 0.25

Bin 01234511 14 15], elements {0 12345678 10 12 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 32 34} = 0.25

Bin [0256 89 14 16], elements {0 12456 78 10 11 12 13 14 15 17 18 19 20 21
23 24 25 26 27 28 29 30 32 33 34} = 0.25

Bin [3 79 10 11 13 16], elements {0 1234568 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 28 31 32 33 34} = 0.25

Bin [0 167 10 11 12 13 15], elements {1234 56 78 9 10 11 13 14 15 16 17 18
19 20 22 23 24 25 26 28 29 30 31 32 33} = 0.25

Bin [0 13478912 16|, elements {0 123457891011 12 13 14 15 16 17 18
19 20 21 22 23 24 25 28 29 32 33 34} = 0.25

Bin 24568912 14 15|, elements {0 12456 78 10 11 12 13 14 15 16 17 18 19
20 21 23 24 25 26 27 29 30 32 33 34} = 0.25

Example Instance 2

This instance is based on the first pagination instance with Q@ = 15, m = 20,
n = 30. The instance could be reduced to n = 24 items, while still not satisfying
the IRUP.

Instance data: F; for all 7 € I:
{0,1,2,3,4,7,9,11,16}
{3,4,5,6,7,9,10,14,17,19}
{5,8,11,12,16,19}
{5,8,16,18,19}
{2,5,3,7,8,10,16,17,19}
{1,4,6,9,12,16}
{5,6,7,11,14,16}
{1,3,5,7,10,15}
{0,1,6,8,12,13}
{2,6,8,12,15,17,19}
{2,4,6,7,11,13,17,19}
{2,3,6,9,12,14,16,17}
{2,3,5,7,11,17}
{3,7,9,11,14,17,18}
{1,5,10,12,13,15,16}
{6,7,9,10,12,16,19}
{3,8,12,15,19}
{3,7,8,9,10,12,16}
{0,4,6,8,11,14,19}
{1,4,7,10,11,12,16}
{1,4,5,9,11,13,14}

Chapter 4. B&P for the SUBP 209

{6,7,8,10,11,12,15,18}
{0,1,3,4,6,9,10,13,19}
{0,2,5,10,12,13,19}

Optimal solution (5 bins):

Bin [4 8 9 23], elements {0 12356 78 10 12 13 15 16 17 19} = 1

Bin [05 11 13 19], elements {0 1234679 10 11 12 14 16 17 18} = 1

Bin [1 10 12 20 22], elements {0 1234567910 11 1314 1719} =1

Bin [236 71516 17 21], elements {1356 789 10 11 12 14 1516 18 19} =1
Bin [14 18], elements {0 1456 8 10 11 12 13 14 15 16 19} =1

LP relaxation (obj val = 3.9512198):

Bin [0 5 11 18], elements {0 12346 78 9 11 12 14 16 17 19} = 0.0609756

Bin [1 18 20 22], elements {01345 6 78 9 10 11 13 14 17 19} = 0.0365854

Bin [0 5 10 15 19 22], elements {0 12346 79 10 11 12 13 16 17 19} = 0.536585
Bin 2346 11 12 13 15 17|, elements {2356 78 9 10 11 12 14 16 17 18 19} =
0.170732

Bin [8 18 20 22 23], elements {01234 56 8 9 10 11 12 13 14 19} = 0.304878
Bin [4 789 14 16 23], elements {0 12356 78 10 12 13 15 16 17 19} = 0.426829
Bin [1 246 11 12 15 17], elements {23456 78 9 10 11 12 14 16 17 19} =
0.317073

Bin [234 79 12 16 21|, elements {1 2356 7 8 10 11 12 15 16 17 18 19} =
0.0853659

Bin [5 7 14 17 19 21], elements {13456 789 10 11 12 13 15 16 18} = 0.0487805
Bin [23 57 15 16 17 19 21], elements {1 3456 78 9 10 11 12 15 16 18 19} =
0.158537

Bin [9 11 13 16 17 21], elements {236 789 10 11 12 14 15 16 17 18 19} = 0.304878
Bin [2 3 8 14 21 23], elements {0 1256 78 10 11 12 13 15 16 18 19} = 0.195122
Bin [0 7 14 19 20], elements {0 123457910 11 12 13 14 15 16} = 0.182927
Bin [23 78 14 16 21], elements {0 1356 78 10 11 12 13 15 16 18 19} = 0.0243902
Bin [0 56 11 12 20], elements {0 12345679 11 12 13 14 16 17} = 0.146341
Bin [1 3 6 13 18], elements {03456 789 10 11 14 16 17 18 19} = 0.365854
Bin [9 10 18 21], elements {024 6 78 10 11 12 13 14 15 17 18 19} = 0.182927
Bin [0 7 14 19 23], elements {0 123457910 11 12 13 15 16 19} = 0.0731707
Bin [1 10 12 13 20], elements {1 23456 79 10 11 13 14 17 18 19} = 0.158537
Bin [1 10 12 20 22], elements {0 12345679 10 11 13 14 17 19} = 0.121951
Bin [2 5 8 14 18 20], elements {0 1456 89 10 11 12 13 14 15 16 19} = 0.0487805

— e T —— —

Bibliography

Achterberg, T. (2007). Constraint Integer Programming. Ph.D. thesis, Fakultat IT —
Mathematik und Naturwissenschaften, Technische Universitiat Berlin, Berlin, Ger-
many.

Arulselvan, A. (2014). A note on the set union knapsack problem. Discrete Applied
Mathematics, 169, 214-218.

Baldacci, R., Christofides, N., and Mingozzi, A. (2008). An exact algorithm for the
vehicle routing problem based on the set partitioning formulation with additional
cuts. Mathematical Programming, 115, 351-385.

Crama, Y. and Oerlemans, A. G. (1994). A column generation approach to job group-
ing for flexible manufacturing systems. European Journal of Operational Research,
78(1), 58-80.

Grange, A., Kacem, I., and Martin, S. (2018). Algorithms for the bin packing problem
with overlapping items. Computers & Industrial Engineering, 115, 331-341.

He, Y., Xie, H., Wong, T.-L., and Wang, X. (2018). A novel binary artificial bee colony
algorithm for the set-union knapsack problem. Future Generation Computer Sys-
tems, 78, 7T7-86.

Hefler, K. and Irnich, S. (2022). Modeling and exact solution of picker routing and order
batching problems. Technical Report LM-2022-03, Chair of Logistics Management,
Gutenberg School of Management and Economics, Johannes Gutenberg University
Mainz, Mainz, Germany.

Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008). Subset-row inequali-
ties applied to the vehicle-routing problem with time windows. Operations Research,
56(2), 497-511.

Tang, C. S. and Denardo, E. V. (1988). Models arising from a flexible manufacturing
machine, part II: Minimization of the number of switching instants. Operations
Research, 36(5), 778-784.

Wahlen, J. and Gschwind, T. (2023). Branch-price-and-cut-based solution of order batch-
ing problems. Transportation Science, 57(3), 756-777.

Wei, L., Luo, Z., Baldacci, R., and Lim, A. (2020). A new branch-and-price-and-cut
algorithm for one-dimensional bin-packing problems. INFORMS Journal on Com-
puting, 32(2), 428-443.

210

Chapter 5

Conclusion

The main goal of this thesis was to advance the development of exact solution
methods for the order batching problem (OBP) in warehousing and the set-union
bin packing problem (SUBP), which arises in various applications such as flexible
manufacturing. This chapter provides a summary of the key results and offers
concluding remarks on the findings.

In Chapter 2, we introduced a full-fledged branch-price-and-cut (BPC) approach
to solve the single-block OBP for the routing strategies traversal, return, mid-
point, largest gap, combined, and optimal. The foundation of this approach is a
column generation (CG) framework, wherein the pricing problem is formulated as
a shortest path problem with resource constraints (SPPRC) on a linear directed
multigraph. A central innovation of our method is the development of a spe-
cialized dynamic programming (DP) labeling algorithm for solving the SPPRC,
which incorporates strong completion bounds. These bounds are essential, as the
non-separability of the distance function prevents the application of traditional
dominance relations. Our DP algorithm is further enhanced to handle the effects
of non-robust valid inequalities, such as subset-row cuts and capacity cuts, as well
as Ryan-and-Foster branching decisions. The powerful CG component enabled the
development of two additional heuristic approaches for the OBP that are based on
the exact BPC. In an extensive computational campaign, our exact BPC approach
exhibited superior performance for benchmark instances, reducing average compu-
tation times to one percent of those required by the state-of-the-art exact method
and identifying over three times as many proven optima. Furthermore, the BPC-
based heuristics improved the majority of the best-known solutions (BKS) across
large-scale benchmark datasets.

Chapter 3 broadened the scope of this work by addressing the multi-block OBP,
building upon the BPC method introduced in Chapter 2. To this end, we in-
vestigated the necessary monotonicity properties of six established or modified
multi-block picker routing strategies: optimal, no-reversal, aisle-by-aisle, traver-
sal, combined, and largest gap. Notably, all strategies, with the exception of
largest gap, were proven to exhibit monotonicity in a rectangular parallel-aisle

211

Chapter 5. Summary and Conclusion 212

multi-block warehouse environment. Computational experiments on real-world in-
stances demonstrated that the BPC method is more than three orders of magnitude
faster than state-of-the-art exact approaches, solving the majority of all considered
instances to proven optimality. Furthermore, the BPC-based heuristics delivered
significant improvements in solution quality within a short time for the multi-block
OBP, outperforming previous methods.

In Chapter 4, we presented a novel branch-and-price (B&P) approach for the set-
union bin packing problem (SUBP). Various strategies for solving the CG pricing
problem, which is a set-union knapsack problem, were analyzed. We identified the
best-performing strategy as a combination of an upfront greedy heuristic and solv-
ing an item-based SPPRC with a DP labeling algorithm. This labeling algorithm
does not employ dominance relations but instead relies on dedicated completion
bounds. Extensive computational experiments were conducted on both unit-weight
and general-weight benchmark sets. Our B&P approach identified optimal solu-
tions for 92% of over 11,000 instances that were previously addressed solely with
heuristic methods, improving the BKS for more than half of the benchmark set.
Additionally, we observed that the vast majority of optimally solved instances sat-
isfy the integer round-up property (IRUP), while all solved instances adhere to the
modified IRUP.

Altogether, the versatility and remarkable computational performance of the
CG-based methods developed in this thesis — demonstrated across different problem
types featuring non-linear objective functions and knapsack-type substructures —
underscore their potential to effectively address a wide range of combinatorial
optimization problems with similar characteristics in future research.

Bibliography

Achterberg, T. (2007). Constraint Integer Programming. Ph.D. thesis, Fakultat IT —
Mathematik und Naturwissenschaften, Technische Universitiat Berlin, Berlin, Ger-
many.

Adjiashvili, D., Bosio, S., and Zemmer, K. (2015). Minimizing the number of switch
instances on a flexible machine in polynomial time. Operations Research Letters,
43(3), 317-322.

Aerts, B., Cornelissens, T., and Sorensen, K. (2021). The joint order batching and
picker routing problem: Modelled and solved as a clustered vehicle routing problem.
Computers & Operations Research, 129, 105168.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1995). Network flows: Theory, algo-
rithms, and applications. Prentice Hall, Hoboken, NJ.

Anily, S., Bramel, J., and Simchi-Levi, D. (1994). Worst-case analysis of heuristics for
the bin packing problem with general cost structures. Operations Research, 42(2),
287-298.

Archetti, C., Bouchard, M., and Desaulniers, G. (2011). Enhanced branch and price
and cut for vehicle routing with split deliveries and time windows. Transportation
Science, 45(3), 285-298.

Arulselvan, A. (2014). A note on the set union knapsack problem. Discrete Applied
Mathematics, 169, 214-218.

Azadeh, K., de Koster, R., and Roy, D. (2019). Robotized and automated warehouse
systems: Review and recent developments. Transportation Science, 53(4), 917-945.

Bahceci, U. and Oncan, T. (2022). An evaluation of several combinations of routing and
storage location assignment policies for the order batching problem. International
Journal of Production Research, 60(19), 5892-5911.

Baldacci, R., Christofides, N., and Mingozzi, A. (2008). An exact algorithm for the
vehicle routing problem based on the set partitioning formulation with additional
cuts. Mathematical Programming, 115, 351-385.

Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing
strategies for the vehicle routing problem. Operations Research, 59(5), 1269-1283.

Baldacci, R., Coniglio, S., Cordeau, J.-F., and Furini, F. (2024). A numerically exact
algorithm for the bin-packing problem. INFORMS Journal on Computing, 36(1),
141-162.

Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance, P. (1998).

213

Bibliography 214

Branch-and-price: Column generation for solving huge integer programs. Operations
Research, 46(3), 316-329.

Boysen, N., Briskorn, D., and Emde, S. (2017). Sequencing of picking orders in mobile
rack warehouses. European Journal of Operational Research, 259(1), 293-307.

Boysen, N., de Koster, R., and Weidinger, F. (2019). Warehousing in the e-commerce
era: A survey. European Journal of Operational Research, 277(2), 396-411.

Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A.-L., and Ogier, M.
(2020). An efficient and general approach for the joint order batching and picker
routing problem. FEuropean Journal of Operational Research, 285(2), 497-512.

Bué, M., Cattaruzza, D., Ogier, M., and Semet, F. (2019). A two-phase approach
for an integrated order batching and picker routing problem. In M. Dell’Amico,
M. Gaudioso, and G. Stecca, editors, A View of Operations Research Applications
in Italy, 2018, volume 2, pages 3—18. Springer International Publishing, Cham,
Switzerland.

Burger, A. P., Jacobs, C., van Vuuren, J. H., and Visagie, S. E. (2015). Scheduling multi-
colour print jobs with sequence-dependent setup times. Journal of Scheduling, 18,
131-145.

Burkard, R. E., Deineko, V. G., van Dal, R., van der Veen, J. A., and Woeginger, G. J.
(1998). Well-solvable special cases of the traveling salesman problem: A survey.
SIAM Review, 40(3), 496-546.

Calmels, D. (2019). The job sequencing and tool switching problem: State-of-the-art
literature review, classification, and trends. International Journal of Production
Research, 57(15-16), 5005-5025.

Cambazard, H. and Catusse, N. (2018). Fixed-parameter algorithms for rectilinear
Steiner tree and rectilinear traveling salesman problem in the plane. Furopean
Journal of Operational Research, 270(2), 419-429.

Campélo, M., Campos, V. A., and Corréa, R. C. (2008). On the asymmetric represen-
tatives formulation for the vertex coloring problem. Discrete Applied Mathematics,
156(7), 1097-1111.

Cano, J. A., Correa-Espinal, A. A., and Gémez-Montoya, R. A. (2020). Mathemati-
cal programming modeling for joint order batching, sequencing and picker routing
problems in manual order picking systems. Journal of King Saud University —
Engineering Sciences, 32(3), 219-228.

Caron, F., Marchet, G., and Perego, A. (2000). Optimal layout in low-level picker-to-part
systems. International Journal of Production Research, 38(1), 101-117.

Celik, M. and Siiral, H. (2014). Order picking under random and turnover-based storage
policies in fishbone aisle warehouses. IIE Transactions, 46(3), 283-300.

Chvatal, V. (1973). Edmonds polytopes and a hierarchy of combinatorial problems.
Discrete Mathematics, 4(4), 305-337.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12(4), 568-581.

Bibliography 215

Crama, Y. and Oerlemans, A. G. (1994). A column generation approach to job group-
ing for flexible manufacturing systems. FEuropean Journal of Operational Research,
78(1), 58-80.

Crama, Y., Moonen, L. S.; Spieksma, F. C., and Talloen, E. (2007). The tool switching
problem revisited. European Journal of Operational Research, 182(2), 952-957.

Dakin, R. J. (1965). A tree-search algorithm for mixed integer programming problems.
The Computer Journal, 8(3), 250-255.

Dantzig, G. B. and Wolfe, P. (1960). Decomposition principle for linear programs. Op-
erations Research, 8(1), 101-111.

de Koster, R., van der Poort, E., and Wolters, M. (1999a). Efficient orderbatching meth-
ods in warehouses. International Journal of Production Research, 37(7), 1479-1504.

de Koster, R., Roodbergen, K. J., and van Voorden, R. (1999b). Reduction of walking
time in the distribution center of De Bijenkorf. In M. Speranza and P. Stahly,
editors, New Trends in Distribution Logistics, pages 215-234. Springer, Berlin.

de Koster, R., Le-Duc, T., and Roodbergen, K. J. (2007). Design and control of ware-
house order picking: A literature review. Furopean Journal of Operational Research,
182(2), 481-501.

Delorme, M. and lori, M. (2020). Enhanced pseudo-polynomial formulations for bin
packing and cutting stock problems. INFORMS Journal on Computing, 32(1),
101-119.

Delorme, M., Tori, M., and Martello, S. (2016). Bin packing and cutting stock problems:
Mathematical models and exact algorithms. Furopean Journal of Operational Re-
search, 255(1), 1-20.

Denizel, M. (2003). Minimization of the number of tool magazine setups on automated
machines: A Lagrangean decomposition approach. Operations Research, 51(2),
309-320.

Desrosiers, J., Jans, R., and Adulyasak, Y. (2013). Improved column generation algo-
rithms for the job grouping problem. Les Cahiers du GERAD. G-2013-26.

Desrosiers, J., Liibbecke, M., Desaulniers, G., and Gauthier, J. B. (2024). Branch-and-
Price. Les Cahiers du GERAD, Montréal, Canada.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1, 269-271.

Dror, M. (1994). Note on the complexity of the shortest path models for column gener-
ation in VRPTW. Operations Research, 42(5), 977-978.

Dror, M. and Haouari, M. (2000). Generalized Steiner problems and other variants.
Journal of Combinatorial Optimization, 4, 415-436.

Establish Inc. (2013). Establish Davis logistics costs and service 2013. Presentation.
CSCMPS Annual Global Conference, Denver.

Frazelle, E. (2001). World-Class Warehousing and Material Handling. McGraw-Hill
Book Company, New York.

Bibliography 216

Gademann, N. and van de Velde, S. (2005). Order batching to minimize total travel time
in a parallel-aisle warehouse. IIE Transactions, 37(1), 63-75.

Gademann, N., van den Berg, J., and van der Hoff, H. (2001). An order batching
algorithm for wave picking in a parallel-aisle warehouse. IIE Transactions, 33(5),
385—-398.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to
the Theory of NP-Completeness, volume 174. W. H. Freeman and Company, San
Francisco.

Ghiani, G., Laporte, G., and Musmanno, R. (2013). Introduction to logistics systems
management. In L. V. Snyder, Y. Yuan, and J. Cochran, editors, Wiley Series in
Operations Research and Management Science. John Wiley & Sons, 2nd edition.

Gilmore, P. C. and Gomory, R. E. (1961). A linear programming approach to the
cutting-stock problem. Operations Research, 9(6), 849-8509.

Goeke, D. and Schneider, M. (2021). Modeling single-picker routing problems in classical
and modern warehouses. INFORMS Journal on Computing, 33(2), 436-451.

Goetschalckx, M. and Ratliff, H. (1988). Order picking in an aisle. IIE Transactions,
20(1), 53-62.

Gokgur, B. and Ozpeynirci, S. (2022). Minimization of number of tool switching instants
in automated manufacturing systems. Journal of Science, 35(1), 113-130.

Goldschmidt, O., Nehme, D., and Yu, G. (1994). Note: On the set-union knapsack
problem. Naval Research Logistics, 41(6), 833-842.

Goldschmidt, O., Hochbaum, D. S., Hurkens, C., and Yu, G. (1996). Approximation
algorithms for the k-clique covering problem. SIAM Journal on Discrete Mathe-
matics, 9(3), 492-509.

Gomory, R. (1963). An algorithm for integer solutions to linear programs. In R. Graves

and P. Wolfe, editors, Recent Advances in Mathematical Programming, pages
269-302. McGraw-Hill Book Company.

Grange, A., Kacem, I., and Martin, S. (2018). Algorithms for the bin packing problem
with overlapping items. Computers € Industrial Engineering, 115, 331-341.
Grange, A., Kacem, 1., Martin, S., and Minich, S. (2023). Fully polynomial time ap-
proximation scheme for the pagination problem with hierarchical structure of tiles.

RAIRO - Operations Research, 57(1), 1-16.

Grosse, E. H., Glock, C. H., and Ballester-Ripoll, R. (2014). A simulated annealing
approach for the joint order batching and order picker routing problem with weight
restrictions. International Journal of Operations and Quantitative Management,
20(2), 65-83.

Gschwind, T. and Irnich, S. (2016). Dual inequalities for stabilized column generation
revisited. INFORMS Journal on Computing, 28(1), 175-194.

Gschwind, T., Bianchessi, N., and Irnich, S. (2019). Stabilized branch-price-and-cut
for the commodity-constrained split delivery vehicle routing problem. Furopean
Journal of Operational Research, 278(1), 91-104.

Bibliography 217

Gschwind, T., Irnich, S., Furini, F., and Calvo, R. W. (2021). A branch-and-price
framework for decomposing graphs into relaxed cliques. INFORMS Journal on
Computing, 33(3), 1070-1090.

Gu, J., Goetschalckx, M., and McGinnis, L. F. (2007). Research on warehouse operation:
A comprehensive review. FEuropean Journal of Operational Research, 177(1), 1-21.

Gu, J., Goetschalckx, M., and McGinnis, L. F. (2010). Research on warehouse design and
performance evaluation: A comprehensive review. European Journal of Operational
Research, 203(3), 539-549.

Hall, R. W. (1993). Distance approximations for routing manual pickers in a warehouse.
IIE Transactions, 25(4), 76-87.

He, Y., Xie, H., Wong, T.-L., and Wang, X. (2018). A novel binary artificial bee colony
algorithm for the set-union knapsack problem. Future Generation Computer Sys-
tems, 78, 77-86.

Henn, S. and Wiéscher, G. (2012). Tabu search heuristics for the order batching problem
in manual order picking systems. Furopean Journal of Operational Research, 222(3),
484-494.

Henn, S., Koch, S., and Wéscher, G. (2012). Order batching in order picking warehouses:
A survey of solution approaches. In R. Manzini, editor, Warehousing in the Global
Supply Chain, pages 105-137. Springer, London.

Hefller, K. and Irnich, S. (2021). A branch-and-cut algorithm for the soft-clustered
vehicle-routing problem. Discrete Applied Mathematics, 288, 218-234.

Hefler, K. and Irnich, S. (2022a). Modeling and exact solution of picker routing and order
batching problems. Technical Report LM-2022-03, Chair of Logistics Management,
Gutenberg School of Management and Economics, Johannes Gutenberg University
Mainz, Mainz, Germany.

HeBler, K. and Irnich, S. (2022b). A note on the linearity of Ratliff and Rosenthal’s
algorithm for optimal picker routing. Operations Research Letters, 50(2), 155-159.

Hefler, K. and Irnich, S. (2024). Exact solution of the single-picker routing problem with
scattered storage. INFORMS Journal on Computing. Advance online publication.

HeBler, K., Gschwind, T., and Irnich, S. (2018). Stabilized branch-and-price algorithms
for vector packing problems. Furopean Journal of Operational Research, 271(2),
401-419.

Hintsch, T. and Irnich, S. (2020). Exact solution of the soft-clustered vehicle-routing
problem. European Journal of Operational Research, 280(1), 164-178.

Hirabayashi, R., Suzuki, H., and Tsuchiya, N. (1984). Optimal tool module design
problem for NC machine tools. Journal of the Operations Research Society of Japan,
27(3), 205-229.

Hong, S. and Kim, Y. (2017). A route-selecting order batching model with the s-shape

routes in a parallel-aisle order picking system. FEuropean Journal of Operational
Research, 257(1), 185-196.

Bibliography 218

Hong, S., Johnson, A. L., and Peters, B. A. (2012). Large-scale order batching in parallel-
aisle picking systems. IIE Transactions, 44(2), 88-106.

Hu, Q., Wei, L., and Lim, A. (2018). The two-dimensional vector packing problem with
general costs. Omega, 74, 59-69.

Hwang, H. and Kim, D. G. (2005). Order-batching heuristics based on cluster analysis in
a low-level picker-to-part warehousing system. International Journal of Production
Research, 43(17), 3657-3670.

Hwang, H., Oh, Y. H., and Lee, Y. K. (2004). An evaluation of routing policies for
order-picking operations in low-level picker-to-part system. International Journal
of Production Research, 42(18), 3873-3889.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints.
In G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors, Column Generation,
pages 33-65. Springer Science & Business Media, Boston.

Irnich, S., Toth, P., and Vigo, D. (2014). The family of vehicle routing problems. In
P. Toth and D. Vigo, editors, Vehicle Routing: Problems, Methods, and Applica-
tions, pages 1-33. Society for Industrial and Applied Mathematics, Philadelphia,
2nd edition.

Izumi, T., Yokomaru, T., Takahashi, A., and Kajitani, Y. (1998). Computational com-
plexity analysis of set-bin-packing problem. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, 81(5), 842-849.

Jans, R. and Desrosiers, J. (2010). Binary clustering problems: Symmetric, asymmetric
and decomposition formulations. Les Cahiers du GERAD. G-2010-44.

Jans, R. and Desrosiers, J. (2013). Efficient symmetry breaking formulations for the job
grouping problem. Computers & Operations Research, 40(4), 1132-1142.

Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008). Subset-row inequali-
ties applied to the vehicle-routing problem with time windows. Operations Research,
56(2), 497-511.

Junglas, D. (2007). Optimised grid-partitioning for block structured grids in parallel com-
puting. Ph.D. thesis, Fachbereich Mathematik, Technische Universitidt Darmstadt,
Darmstadt, Germany.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Knapsack Problems. Springer, Berlin,
Heidelberg.

Kochetov, Y. and Kondakov, A. (2017). VNS matheuristic for a bin packing problem
with a color constraint. FElectronic Notes in Discrete Mathematics, 58, 39—46.
Konak, A. and Kulturel-Konak, S. (2007). An ant colony optimization approach to
the minimum tool switching instant problem in flexible manufacturing system. In
2007 IEEE Symposium on Computational Intelligence in Scheduling, pages 43-48,
Honolulu, HI. IEEE.

Konak, A., Kulturel-Konak, S., and Azizoglu, M. (2008). Minimizing the number of

tool switching instants in flexible manufacturing systems. International Journal of
Production Economics, 116(2), 298-307.

Bibliography 219

Korte, B. and Vygen, J. (2018). Combinatorial Optimization: Theory and Algorithms.
Springer, Berlin, Heidelberg, 6th edition.

Kulak, O., Sahin, Y., and Taner, M. E. (2012). Joint order batching and picker rout-
ing in single and multiple-cross-aisle warehouses using cluster-based tabu search
algorithms. Flexible Services and Manufacturing Journal, 24, 52—80.

Liibbecke, M. and Desrosiers, J. (2005). Selected topics in column generation. Operations
Research, 53(6), 1007-1023.

Locatelli, A. (2023). Optimization methods for knapsack and tool switching problems.
4OR, 21(4), 715-716.
Liike, L., HeBler, K., and Irnich, S. (2024). The single picker routing problem with

scattered storage: modeling and evaluation of routing and storage policies. OR
Spectrum, 46, 909-951.

Lysgaard, J., Letchford, A. N., and Eglese, R. W. (2004). A new branch-and-cut al-
gorithm for the capacitated vehicle routing problem. Mathematical programming,
100, 423-445.

Marchet, G., Melacini, M., and Perotti, S. (2015). Investigating order picking system
adoption: A case-study-based approach. International Journal of Logistics Research
and Applications, 18(1), 82-98.

Martello, S. and Toth, P. (1990). Lower bounds and reduction procedures for the bin
packing problem. Discrete Applied Mathematics, 28(1), 59-70.

Martinelli, R., Poggi, M., and Subramanian, A. (2013). Improved bounds for large
scale capacitated arc routing problem. Computers & Operations Research, 40(8),
2145-2160.

Marvizadeh, S. Z. and Choobineh, F. (2013). Reducing the number of setups for CNC
punch presses. Omega, 41(2), 226-235.

Menéndez, B., Bustillo, M., Pardo, E. G., and Duarte, A. (2017). General variable
neighborhood search for the order batching and sequencing problem. Furopean
Journal of Operational Research, 263(1), 82-93.

Michel, R. (2016). 2016 Warehouse/DC Operations Survey: Ready to confront com-
plexity. Supply Chain Management Review. https://www.scmr.com/article/
2016_warehouse_dc_operations_survey_ready_to_confront_complexity,
November 8.

Muter, I. and Oncan, T. (2015). An exact solution approach for the order batching
problem. IIE Transactions, 47(7), 728-738.

Nemhauser, G. L. and Wolsey, L. A. (2014). Integer and Combinatorial Optimization.
John Wiley & Sons, Hoboken, NJ.

Oncan, T. (2015). MILP formulations and an iterated local search algorithm with tabu
thresholding for the order batching problem. FEuropean Journal of Operational Re-
search, 243(1), 142-155.

Padberg, M. and Rinaldi, G. (1988). Branch-and-cut approach to a variant of the

https://www.scmr.com/article/2016_warehouse_dc_operations_survey_ready_to_confront_complexity
https://www.scmr.com/article/2016_warehouse_dc_operations_survey_ready_to_confront_complexity

Bibliography 220

traveling salesman problem. Journal of Guidance, Control, and Dynamics, 11(5),
436-440.

Pansart, L., Catusse, N., and Cambazard, H. (2018). Exact algorithms for the order
picking problem. Computers & Operations Research, 100, 117-127.

Pardo, E. G., Gil-Borras, S., Alonso-Ayuso, A., and Duarte, A. (2024). Order batch-
ing problems: Taxonomy and literature review. Furopean Journal of Operational
Research, 313(1), 1-24.

Petersen, C. G. (1995). Routeing and storage policy interaction in order picking opera-
tions. Decision Sciences Institute Proceedings, 3, 1614-1616.

Petersen, C. G. (1997). An evaluation of order picking routeing policies. International
Journal of Operations €& Production Management, 17(11), 1098-1111.

Petersen, C. G. and Aase, G. (2004). A comparison of picking, storage, and routing
policies in manual order picking. International Journal of Production Economics,
92(1), 11-19.

Ratliff, H. D. and Rosenthal, A. S. (1983). Order-picking in a rectangular warehouse:
A solvable case of the traveling salesman problem. Operations Research, 31(3),
507-521.

Richards, G. (2017). Warehouse Management: A Complete Guide to Improving Effi-
ciency and Minimizing Costs in the Modern Warehouse. Kogan Page, London, 3rd
edition.

Roodbergen, K. J. (2001). Layout and routing methods for warehouses. Ph.D. thesis,
FErasmus University Rotterdam, Rotterdam, the Netherlands.

Roodbergen, K. J. and de Koster, R. (2001a). Routing methods for warehouses with mul-
tiple cross aisles. International Journal of Production Research, 39(9), 1865—1883.

Roodbergen, K. J. and de Koster, R. (2001b). Routing order pickers in a warehouse with
a middle aisle. Furopean Journal of Operational Research, 133(1), 32—43.

Ryan, D. M. and Foster, B. A. (1981). An integer programming approach to scheduling.
In A. Wren, editor, Computer Scheduling of Public Transport, pages 269—280. North-
Holland Publishing Company, Amsterdam.

Schiffer, M., Boysen, N., Klein, P. S., Laporte, G., and Pavone, M. (2022). Optimal pick-
ing policies in e-commerce warehouses. Management Science, 68(10), 7497-7517.

Scholz, A. and Wascher, G. (2017). Order batching and picker routing in manual order
picking systems: The benefits of integrated routing. Central Furopean Journal of
Operations Research, 25(2), 491-520.

Shirazi, R. and Frizelle, G. (2001). Minimizing the number of tool switches on a flexible
machine: An empirical study. International Journal of Production Research, 39(15),
3547-3560.

Sindelar, M., Sitaraman, R. K., and Shenoy, P. (2011). Sharing-aware algorithms for
virtual machine colocation. In Proceedings of the twenty-third annual ACM Sym-
posium on Parallelism in Algorithms and Architectures, pages 367-378, San Jose,
CA. Association for Computing Machinery.

Bibliography 221

Tang, C. S. and Denardo, E. V. (1988). Models arising from a flexible manufacturing
machine, part II: Minimization of the number of switching instants. Operations
Research, 36(5), 778-784.

Thia, F. (2008). MySQL Foodmart Database. Pentaho Wiki. http://pentaho.dlpage.
phi-integration.com/mondrian/mysql-foodmart-database, May 8.

Tompkins, J. A., White, J. A., Bozer, Y. A., and Tanchoco, J. M. A. (2010). Facilities
planning. John Wiley & Sons, Hoboken, NJ, 4th edition.

Valle, C. A. and Beasley, J. E. (2020). Order batching using an approximation for the
distance travelled by pickers. Furopean Journal of Operational Research, 284(2),
460-484.

Valle, C. A., Beasley, J. E., and da Cunha, A. S. (2016). Modelling and solving the joint
order batching and picker routing problem in inventories. In R. Cerulli, S. Fujishige,
and A. R. Mahjoub, editors, Combinatorial Optimization, volume 9849 of Lecture
Notes in Computer Science, pages 81-97, Cham, Switzerland. Springer International
Publishing.

Valle, C. A., Beasley, J. E., and da Cunha, A. S. (2017). Optimally solving the joint order
batching and picker routing problem. Furopean Journal of Operational Research,
262(3), 817-834.

van Gils, T., Caris, A., Ramaekers, K., and Braekers, K. (2019). Formulating and solving
the integrated batching, routing, and picker scheduling problem in a real-life spare
parts warehouse. European Journal of Operational Research, 277(3), 814-830.

Vaughan, T. (1999). The effect of warehouse cross aisles on order picking efficiency.
International Journal of Production Research, 37(4), 881-897.

Wahlen, J. and Gschwind, T. (2023). Branch-price-and-cut-based solution of order batch-
ing problems. Transportation Science, 57(3), 756-777.

Wiéscher, G. (2004). Order picking: A survey of planning problems and methods. In
H. Dyckhoff, R. Lackes, and J. Reese, editors, Supply Chain Management and Re-
verse Logistics, pages 323-347. Springer, Berlin, Heidelberg.

Wei, L., Luo, Z., Baldacci, R., and Lim, A. (2020). A new branch-and-price-and-cut
algorithm for one-dimensional bin-packing problems. INFORMS Journal on Com-
puting, 32(2), 428-443.

Wei, Z. (2021). Optimization algorithms for two knapsack problems. Ph.D. thesis, Opti-
mization and Control [math.OC], Université d’Angers, Angers, France.

Won, J. and Olafsson, S. (2005). Joint order batching and order picking in warehouse
operations. International Journal of Production Research, 43(7), 1427-1442.
Zhang, K. and Gao, C. (2023). Improved formulations of the joint order batching and
picker routing problem. International Journal of Production Research, 61(21),

7386-7409.

Zulj, 1., Kramer, S., and Schneider, M. (2018). A hybrid of adaptive large neighbor-
hood search and tabu search for the order-batching problem. FEuropean Journal of
Operational Research, 264(2), 653-664.

http://pentaho.dlpage.phi-integration.com/mondrian/mysql-foodmart-database
http://pentaho.dlpage.phi-integration.com/mondrian/mysql-foodmart-database

Academic Curriculum Vitae

Julia Wahlen

2021 — 2025
2017 — 2019
2013 - 2016

Research Associate and PhD Student
Chair of Logistics, Prof. Dr. Timo Gschwind
School of Business and Economics
University of Kaiserslautern-Landau

Master of Science

Management, specialized in Information and Logistics
Johannes Gutenberg University Mainz

Semester abroad at SGH Warsaw School of Economics

Bachelor of Science
Mathematics in Business and Economics
University of Mannheim

222

	List of Papers
	List of Figures
	List of Tables
	Introduction
	Exact Solution Methods
	Considered Problems
	Contributions and Outline

	Branch-Price-and-Cut-Based Solution of Order Batching Problems Julia Wahlen and Timo Gschwind
	Introduction
	Literature Review
	Contributions
	Organization of the Paper

	Problem Description and Mathematical Formulation
	Branch-Price-and-Cut
	Pricing Problem
	SPPRC Formulation of the Pricing Problem
	Basic Labeling Algorithm
	Bounding Procedure
	Acceleration Strategies

	Cutting
	Capacity Cuts
	Subset-Row Cuts

	Branching
	BPC-based Heuristics

	Computational Results
	Benchmark Instances
	Evaluation of Algorithmic Components
	Computational Analysis of BPC Algorithm
	Computational Analysis of BPC-based Heuristics
	Comparison of Routing Strategies

	Conclusions
	Appendix
	2.A Detailed Description of Routing Strategies
	2.B Proof of Proposition 2.1
	2.C Non-Monotonicity of Composite Routing Strategy
	2.D Algorithm Design Choices
	2.E Benchmark Instances
	2.F Detailed Computational Results

	Solving the Multi-Block Order Batching Problem with Branch-Price-and-Cut Julia Wahlen
	Introduction
	Contributions
	Organization of the Paper

	Literature Review
	Problem Description and Solution Approach
	Problem Definition and Mathematical Formulation
	Branch-Price-and-Cut Method
	Exact BPC
	BPC-based Heuristics

	Multi-Block Routing Strategies
	Warehouse Layout
	Detailed Description of Routing Strategies
	Monotonicity Property

	Computational Results
	Benchmark Instances
	Comparison with State-of-the-Art
	Computational Analysis of BPC Algorithm
	Evaluation of Routing Strategies
	Detailed Analysis
	Computational Analysis of BPC-based Heuristics

	Conclusions
	Appendix
	3.A Foodmart State Space
	3.B Instance-by-Instance Comparison
	3.C Detailed Computational Results

	Branch-and-Price for the Set-Union Bin Packing Problem Julia Wahlen and Timo Gschwind
	Introduction
	Contributions
	Organization of the Paper

	Literature Review
	Problem Description and Mathematical Formulations
	Problem Definition
	Symmetric Formulation
	Asymmetric Representatives Formulation
	Set-Partitioning Formulation

	Branch-and-Price Algorithm
	Pricing Problem
	IP Formulation
	Item-based SPPRC
	Element-based SPPRC

	Branching

	Computational Results
	Benchmark Instances
	Analysis of Pricing Problem Solution Methods
	Comparison with State-of-the-Art
	Computational Analysis of B&P Algorithm
	Analysis of Lower Bounds

	Conclusions
	Appendix
	4.A Acceleration Strategies for Pricing Problem Solution
	4.B Algorithm Design Choices
	4.C Modification of Item-based SPPRC Graph for Branching
	4.D Benchmark Instances
	4.E Comparison of Completion Bounds
	4.F Detailed CG Process for Selected Instances
	4.G Influence of Instance Characteristics on B&P Algorithm
	4.H Influence of Additional UBs on B&P Algorithm
	4.I Instances Not Satisfying IRUP

	Conclusion
	Bibliography

