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Abstract

The Wannier-Bloch resonance states are metastable states of a quantum par-
ticle in a space-periodic potential plus a homogeneous field. Here we analyze
the states of quantum particle in space- and time-periodic potential. In this
case the dynamics of the classical counterpart of the quantum system is ei-
ther quasiregular or chaotic depending on the driving frequency. It is shown
that both the quasiregular and the chaotic motion can also support quantum
resonances. The relevance of the obtained result to the problem a of crystal
electron under simultaneous influence of d.c. and a.c. electric fields is briefly

discussed.
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Probing of a quantum system with an electric field is widely used in the experimental
physics. If the system has a number of discrete levels (which are associated with classically
bounded motion) followed by a continuous spectrum (associated with unbounded motion)
then after applying an electric field the discrete energy states become metastable. The
decay time of a metastable state is determined by the probability of tunneling through the
potential barrier separating the regions of the classically bounded and unbounded motion.
Examples are the states of a Rydberg atom or the vibrational state of a dipole molecule in
a strong electric field.

The situation is more complicated if a particle should tunnel through many barriers to
escape from the regions of bounded motion. A famous example of such a system are the
states of an electron in a crystal lattice in an external homogeneous field, which are known as
metastable Wannier-Bloch states and Wannier-Stark states [1]. Although the calculation of
the decay time for these states is a difficult problem [2], the physics behind the phenomenon
is the same — the resonances are supported by the regions of classically bounded motion.
The question we address in this letter is, if a quantum resonance states can be supported
by “something else” besides a bounded classical motion. To this end we introduce a model,

which will be the subject of our study [3]:
H=p2/2—|—cos(wt)cos;v+F;vEHO—l—F;U. (1)

In Eq. (1) the Hamiltonian Hy corresponds to the so-called extended double resonance model,
which can show a chaotic diffusion in x for some interval of the driving frequency w [4]. The
diffusive motion is neither bounded nor ballistic, so the answer to the question — if it can
support resonances — is far from obvious.

It should be noted that the Hamiltonian (1) has an explicit periodic dependence on time
and, therefore, the notion of energy states is substituted here by the notion of quasienergy
states. Below we discuss the metastable quasienergy states of the system for different values

of the driving frequency. The only (however important) restriction we impose on w is

that the period T, = 27/w should be rational to the Bloch period Tg = h/F [5]. This



condition allows us to employ the formalism of quasimomentum, which essentially simplifies
the problem. To calculate the metastable states we use the numerical method proposed in
Ref. [6]. Using this method one finds the Wannier-Bloch metastable states by diagonalizing

the truncated (in the momentum space) operator of the system’s evolution over the Bloch

period:
WO xiu(x) = exp[—iki(k)Ts /Al xi(x) , (2)
: i (Ts [(p+ hk — Ft)?
Uk — e”e’x\p{_i/ 7 l<p+ ) + V(;c,t)] dt} . (3)
h Jo 2

In Egs. (2) and (3) xi.(z) is the space-periodic part of the metastable Wannier-Bloch state
Yix(z) = exp(ikz)xix(z) (I is the band index, k is the quasimomentum, —1/2 < k < 1/2),
U®) is one of the possible representations of the k-specific system evolution operator over a

k) is the operator

Bloch period (the hat over the exponent sign denotes time ordering), W<
U®) truncated in momentum space, and V(z,t) = cosz cos(wt) for the case considered
here. We note that the infinite matrix Ur(fr)ﬂ = (n|U®|n’) (here |n) = (2m)~/?exp(inz) are
the basis functions) is unitary, but the truncated (n,n’ < N) matrix WTEQ, i1s not unitary

and, therefore, the eigenvalues A;(k) are complex. The key point of the method is that the

eigenvectors of the matrix w )

i converge to the metastable Wannier-Bloch states when the

dimension of the matrix increases.

We begin with the case of a large driving frequency w > w., when the dynamics of the
system Hy is quasiregular [see Fig. 1(a)]. (The critical value w, of the driving frequency
for a transition from quasiregular to chaotic dynamics can be estimated by using Chirikov’s
nonlinear resonance overlap criteria, what corresponds to w. ~ 1 [7].) The force F is
adjusted to satisfy the resonance condition 27/w = h/F = T and h = 0.5 is used through
the paper. For w > w,, the dynamics of the system (1) can be approximately described by

the effective Hamiltonian

n2 1
HHE-) — % + 5 cos(z Fwt) + Fa , (4)



where the plus and minus sign refers to the upper and lower half planes of phase space.
By substituting 2’ = z F wt the Hamiltonian (4) is transformed to the time-independent
Hamiltonian H' = p?/2 4 0.5cos 2’ + Fz' and the known results for Wannier states can be
used. Namely, let ¢ to be the spectrum of the Wannier-Bloch states (we remind the reader
that the energy bands of the Wannier-Bloch states are degenerate, i.e., (k) = ¢), then the

quasienergy spectrum of the system (4) has the form

Re[\ (k)] = % {(“’; + Re[q]) % ¥ 2wk}m0dz2r . Tm[\(k)] = Tmle] . (5)

The term 27k in Eq. (5) has a simple physical meaning. In fact, similar to the case of a
time-independent potential, we can construct from the extended Bloch-like functions ¢y 4 ()
a set of the localized states ¥;,,(z) = [dkexp(i2rmk)iyi(z). Then the presence of the
term 27k denotes that the localized state Uy ,,(z) moves one lattice period to the right or
left per period of the driving frequency.

In view of the above, the spectrum of the system (1) for large w should be a symmetric
net of parallel lines with positive and negative slopes. The numerical result confirms this
prediction (see Fig. 2). We also note that that the spectrum, independent of the value
of the driving frequency, possesses the approximate symmetries (A (—k)) = (N(k)) and
(M(k+1/2)) = (M(k) + hw/2) (here angle brackets stand for a set of eigenvalues for given
k). These symmetries are a consequence of the exact symmetries of the evolution operator
(3) under the transformations * — —x,t — —t and * — x4+, t — t + T'/2. The numerical
results depicted in Fig. 2 shows that for w > w,, the Hamiltonian (1) supports metastable
states. This is actually not surprising, because in the frame moving with the velocity £w the
classical trajectory undergoes a bounded oscillation. The main deviation from the case of
the “running wave” Hamiltonian (4) is that now the bands ¢ in Eq. (5) gain a finite width,
which is well seen in the large scale figure of imaginary part of the quasienergy.

We proceed with the case w < w, [see Fig. 1(b)]. In this case the phase space of the
classical counterpart of the system (1) for F = 0 consists of two components — a chaotic

component in the form of a strip along z-axis, and regular component surrounding the
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chaotic region [8]. Since the chaotic and regular components are separated by an invariant
curve, a trajectory with an initial condition belonging to the chaotic component stays there
forever. For F # 0 the invariant curve does not exist and a particle always escapes from the
chaotic strip to the region of the unbounded regular motion. However, the escape time can
be very large. The numerical simulation of the classical dynamics of the system (1) gives an
exponential distribution for the escape time P(t) ~ exp(—t/7y), where 7, tends to infinity
as F tends to zero. This result gives us a hint that in the quantum case the Hamiltonian
(1) could also support metastable states.

As an example, Fig. 3 shows the real and imaginary part of A;(k) for four quasienergy
bands. It is seen that the imaginary part is small, thus, the Hamiltonian (1) does support
metastable states. Moreover, we have found that the decay time 7, = h/Im[X/(k)] of
quantum metastable state to be surprisingly large in comparison with the classical decay
time 7. Figure 4 shows the integrated distribution function I(ry,) for the decay times 7,
of the quantum states ¢ x(z) irrespectively to band index and quasimomentum in semi-
logarithmic scale. It is seen that 7, can exceed 74 by several orders of magnitude. Thus
we encounter a quantum stabilization phenomenon. We also would like to stress the strong
resonance-like dependence of the decay rate on quasimomentumn k. This particular problem
requires a further study.

In conclusion, the main result of the paper is the demonstration of the fact that the
chaotic unbounded motion is able to support long lived resonances in the quantum case.
This result was obtain for the model system (1), which we chose because of its relative

simplicity. A more common system corresponds to the Hamiltonian
H:p2/2+cosx+Fx+€xcos(wt) (6)

(a model of a crystal electron subject to d.c. and a.c. electric field). Using the canonical
(Krammers-Hennerberger) transformation p’ = p 4 (¢/w) sin(wt), ' = = — (e/w?) cos(wt) it

is easy to show that the system (6) is equivalent to a Hamiltonian

2

H:p——l—cos x—l—icos(wt) + Fz , (7)
2 w?



which has a similar structure as the Hamiltonian (1) and also generates chaotic dynamics
(see, [9], for example). Thus the obtained result is also valid for the system (6). The detailed
discussion of the metastable state of the latter system will be a subject of a forthcoming
paper.
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FIG. 1. Phase space portrait of the system (1) for w & 2.13 > we, ~ 1 (a) and w = 0.3 < W,

(b). Ten different trajectories p(t,), = (tn)mod:2r; tn = nT + T'/4 are plotted in each case.
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FIG. 2. Real and imaginary parts of the quasienergies corresponding to first four metastable
Wannier-Bloch states of the system (1). The value of the driving frequency is w & 2.13, (scaled

Planck constant & = 0.5, F = hw /27 = 0.2).
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FIG. 3. Same as Fig. 2 but for w = 0.3 < wer, F = hw/27 = 0.02. (The imaginary part is
shown only for two upper bands. For lower bands the curves should be shifted by one half of the

Brillouin zone.)
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FIG. 4. Integrated distribution function for the decay times 75, = i/Im[X;(k)] of the quantum
metastable states for the parameters of Fig. 3. The vertical line shows the value of the classical

decay time 74 = 15.2T.
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