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Abstract

A new method for calculating Stark resonances is presented and applied
for illustration to the simple case of a one-particle, one-dimensional model
Hamiltonian. The method is applicable for weak and strong dc fields. The
only need, also for the case of many particles in multi-dimensional space, are
either the short time evolution matrix elements or the eigenvalues and Fourier

components of the eigenfunctions of the field-free Hamiltonian.
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Recently there is an increasing experimental and theoretical effort in studying the lifetime
of Stark resonances in highly excited Rydberg states [1-4]. In this case even a weak dc
field must be considered as a strong perturbation. This is easy to see since the natural
perturbation strength parameter is the product of the field strength and the localization
length of the electron, divided by the very small first excitation energy of the electron in a
highly excited Rydberg state. However, the increasing interest in Stark resonances is not
limited to atomic and molecular physics. It arises also in other fields such as in micro-
electronics due to the important role of resonant tunneling in diodes, transistors and other
coherent phenomena in semiconductors and mesoscopic systems [5].

Stark resonances can be obtained by different methods. All non-perturbative methods
which have been developed so far solve the Schrodinger equation where the Hamiltonian
consists of the field-free Hamiltonian together with the dc field term, F'z. The method we
present calculates the resonances from the time evolution of the field-free Hamiltonian Hj.
As we will show below this method is closely related to a recent method developed by Gliick,
Kolovsky and Korsch [6].

Before we continue let us first introduce our approach for calculating Stark resonances.
For the sake of simplicity, let us consider a one-dimensional system, represented by the

field-free Hamiltonian, Hy, which is exposed to an external static field, Fx:

1. Calculate the field-free time-evolution operator

Uy(7) = exp (—iHy7/h) (1)

using plane waves < x|n >= L~'/2 exp(2rinz/L) as basis, up to time 7 = 27h/(FL).

The matrix elements of Uy(7) are denoted by (Up)p, -

2. Construct a new matrix U by shifting the row index by one. That is,
Ut = (Uo) 41 o - (2)

Of course, if Ug and U have a finite size, —N < n,n’ < N, the elements Uy, are
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equal to zero. One can avoid this row of zeros by taking the dimension of U smaller

than the dimension of Ug,i.e. =N <n,n' < N — 1.

3. Calculate the complex eigenvalues A\ = exp (—iFE,es7/h) of the non-unitary matrix U.
The real parts of the different values of E,e are the resonance positions (modulo F'L).

The imaginary parts are associated with the widths.

Our strategy is as follows: First we will prove the above equations. Second, we will
explain why complex values are obtained for E., i.e. from the eigenvalues of the matrix U.

Finally, we will give an illustrative numerical example.

DC SPECTRA FROM FIELD-FREE PROPAGATION

Here we prove that the spectra of the system in a dc field can be evaluated from the
field-free time-evolution operator Hy:
The time-evolution operator of the full Hamiltonian (with the dc field) can be approxi-

mately described by the split operator technique [7],

U(T) — e—i(Ho—I—Fm) T/h ~ e—inT/he—iHoT/h (3)

(as we will show below, in the present case and with the 7 which we will define below, Eq.(3) is
equivalent to the symmetric split operator approach, i.e., U(7) ~s e 1F'#7/2hgiHor/he=ilar/2h),
As 1 gets smaller this approximation becomes more accurate. Therefore Eq. (3) is applicable

only for short propagation time 7.

Let us take plane waves

1 .
(x|n) = 7I exp (2winz /L), (4)

where L is the box size, as a basis set for the z-coordinate. If the dimension of the system
is bigger than one, for the other coordinates any orthogonal basis set can be used (for the
sake of simplicity, we will skip the other coordinates and write down explicitly only the row

and column indices associated with the z-coordinate).
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Given F' and L, the propagation time 7 is taken as

21h

Thus, a large box size L and therefore many Fourier basis functions are required for weak
fields and a smaller box L and a smaller number of basis functions are needed for stronger
fields in order to get 7 sufficiently small to yield converged results.
Within the Fourier basis, the time-evolution matrix is described as
+00 ) )
Un,n, = Z <7’L‘€_ZFIT/h|k> <k|e—ZHOT/h|nl>. (6)
k=—00
Recalling the definition of 7, i.e. F7/h = 27 /L, one immediately obtains
+oo
Un,n’ = Z 6n+1,k (UO)Ic,n’ = (UO)n+1,n’- (7)
k=—o00
The eigenvalues of the matrix U are A\ = exp (—iE,s7/h), where E. are the eigenvalues of

the full Hamiltonian Hy + F'z, as one can see from Eq. (3).

Following the same line of discussion, the symmetric split operator yields

(Usym)n,n’ = (UO)n+1/2,n’—1/27 (8)

i.e., to get the matrix elements of Ugyy, one first has to calculate Ug within the Bloch index
shifted basis set < x|n—1/2 >= L™Y/2 exp(27i (n—1/2) x/L), and later on, as before, shift
the row index by one. Thus, the symmetric split operator within the basis < z|n > yields
the same matrix as the non-symmetric split operator within the basis < z|n—1/2 >, and,
therefore, both approaches are equivalent.

When the eigenfunctions w§0) and the corresponding eigenvalues EJ(-O) of the field-free

Hamiltonian Hy are known, we can use 1ﬁ§-0) to represent the time evolution operator. The

time-evolution matrix in this new basis set is given by
U =C'ucC (9)

with C,, ; = (n|¢](-0)). Therefore, the matrix elements of I are given by
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s (0)
Uy =e T TS0 Cur g (10)
n

Again the eigenvalues of the full Hamiltonian which includes the dc field are Ei = if/7 In A.

COMPLEX EIGENVALUES BY TRUNCATING U

In this section, we show how complex eigenvalues of the full Hamiltonian, £ = E, — il['/2,
can be obtained by truncating the infinite time evolution matrix U.

While the infinite matrix U is unitary, it becomes non-unitary, if we represent it within
a finite basis —N < n,n’ < N. Since the finite basis representation of the field-free time
evolution matrix Uy is unitary, from Eqgs. (6) and (7) one can see that the non-unitarity

arises from the multiplication (from the left) of Uy by a finite matrix B,
By = (n]exp(—2miz/L)|n'), (11)

with matrix elements B, =1 and all others equal to zero. The truncated matrix B is ill

defined since

exp(—iFz7/h)|n) = exp (—27iz/L) |n) = |n — 1) (12)

is not in the domain of B when n = —N . Therefore, B is non-unitary, i.e.
B B=1-P_y, (13)
where I is the unit matrix and P_y is the matrix of the projection operator P_y = |-N)(—N|

on the state |—N). Consequently, the finite matrix representation of U, which is the product
of a unitary finite matrix Ug and a non-unitary finite matrix B, is a non-unitary matrix.
The matrix B does not have a complete spectrum, i.e. the number of linearly independent
eigenvectors is smaller than the dimension of the matrix (2N + 1 in our case) [8]. In our
special case, B has only one (linearly independent) eigenvector (1,0, 0,...,0) for any

N. The corresponding eigenvalue is zero. On the basis of the discussion in Ref. [9] it
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is clear that by adding a small number € to all matrix elements of B, 2N + 1 linearly
independent eigenvectors will be obtained, associated with non-degenerate eigenvalues which
are proportional to €/2N*1  As ¢ is reduced to zero all eigenvalues will approach the value
zero, accompanied by the coalescence of the 2/V + 1 eigenvectors of the distorted matrix B.

One can carry out a transformation of B, for example by using the eigenfunctions of the

field-free Hamiltonian as a basis set. The new transformed matrix B is given by
B=C'BC. (14)
Although B does have a complete spectrum, unlike B, it is still a non-unitary matrix, since
B'B=CH(I-P_N)C=1-C/P_\C. (15)

Therefore the matrix U = BZ/{éd), where L{éd) is the diagonal field-free time evolution
matrix, is non-unitary either. Consequently, the eigenvalues of U/, which are denoted as
A = exp (—iE.s7/h) , are associated with complex values of F.s, whereas the eigenvalues of
the infinite time-evolution matrix U (7) (see Eq. (6)) are real!

Since B is given by the matrix elements of the operator B = exp(—2riz/L), it is natural
to ask for the connection to the Hermitian operator X, the matrix of which is given by

KXo = (n|zn') = % for n' # n and X,,, = 0. It is easy to see that

B # exp(—27iX/L), (16)

since the matrix on the right side is clearly unitary and B is non-unitary. Furthermore, it is
not possible to construct a matrix, the exponential of which is B, since the logarithm of B
is not defined. Nevertheless, one can take the matrix D which consists of the eigenvectors of
X, express B using this basis and calculate the eigenvalues of B = D'BD. In this case one
gets a set of eigenvalues \; = exp(—2miz;/L), where the z; are approximately embedded on
a horizontal line in the lower complex plane.

Therefore, we may take the following conclusion: The time evolution matrix U is the

exponent of the full finite Hamiltonian matrix (times —ir/h). This exponent is a unitary
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operator, but the truncation described above leads to a non-hermitian matriz representation
of the full Hamiltonian [10]. The eigenvalues of the non-unitary matrix U or U denoted by
exp(—iET/h) provide complex values for E which are the eigenvalues of the non-hermitian
full Hamiltonian. Our numerical studies (see next section) show very clearly and with no
doubt that the real and imaginary parts of these complex values of E are associated with

the energy and width of the Stark resonances, respectively.

ILLUSTRATIVE EXAMPLE

As an example, let us take the one-dimensional model Hamiltonian

P
H, = 5 4.5 exp(—a?), (17)

which is exposed to the external field Fx with a field strength FF =1 (h = 1). This model
has been used by Reinhardt and his coworkers as a test case for the use of complex scaling
and complex translation for calculating Stark resonances [11].

From FF =1 and & = 1 we get 7 = 27/L (note that the definition of 7 = 27h/(FL) is
the only part where the field strength enters. Therefore, by modifying 7, the algorithm can
be easily adjusted to yield the resonances for a different field strength F'). The calculation
scheme is as follows: For every box size L we take a sufficiently large number of Fourier
basis states, solve the time-independent eigenvalue problem Hyy; = E;i; and calculate
U according to equation (10). The eigenvalues A of U yield the resonance energies via
E =ih/7log()).

Table I shows results for the Stark resonance associated with the ground state, i.e. the
eigenvalue with the smallest imaginary part. The resonance position and width converge
to the exact values when the box size L is increased. From the definition of 7 given above
one can see that increasing the box size L implies reducing the propagation time 7 of the
field-free Hamiltonian.

Let us conclude: We presented a new method to calculate Stark resonances from short



time propagation of the field-free Hamiltonian. The numerical realization of the method is
extremely simple. The method can be easily extended to higher dimensions.

The question is why the matrix truncation as described above provides not only complex
eigenvalues, but the Stark resonances. A possible conjecture is that the truncation of the
matrix B, as described above, has the same effect as the translation of the coordinate x
into the complex plane, which is known [12], to make the complex divergent Stark resonance
wavefunctions to be square integrable and decay to zero as the coordinate = is taken to
infinity (in the limit L — o).

This conjecture is based on the fact, that the operator exp(—iFz7/h) is a shift operator
in momentum space, i.e. exp(—iFz7/h)|n) = exp(—2rmiz/L)|n) = |n — 1). It is clear that
by a truncation of the matrix to a finite dimension, —N < n < N, we do not let the shift
operator transfer the particle to a momentum which is smaller than —27N%/L. The only
way one can get converged results (within these ”constraints”) is when the quantum particle
is localized in the momentum space and it is not "kicked” by the force of the dc field to get
momenta exceeding this value. This happens if and only if the quantum particle is trapped
in a metastable resonance state (note that the Husimi distribution functions of the complex
scaled resonance states show localization in the classical phase space). This rational is in
principle very similar to the one which stands behind our previous explanation [13] (see also
the related method proposed very recently for calculating Wannier-Bloch resonance states
6]).

The application of this method to the calculation of the 3D Stark resonances of hydrogen

atoms excited to high Rydberg states is currently investigated.
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TABLES

TABLE I. Stark resonances E, —il'/2 associated with the ground state of the 1D model Hamil-
tonian Hy (Eq. 17) in the external field Fz with F = 1 and & = 1. The box size L is varied and
for any value of L the resonance is calculated as described in the text. Also given is the complex
scaling result which is considered as exact. Note that increasing L is equivalent to the reduction

of the propagation time 7 (see Eq. (5)) of the field-free Hamiltonian.

L/27 —E(a.u.) 10*T(a.u.)
20 3.29744 9.495
40 3.29773 8.992
60 3.29778 8.931
80 3.29780 8.926

100 3.29781 8.939

exact 3.29783 8.934
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