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Abstract

Experimental evidence suggests that cells can perceive signals not only at their actual location
but also within a large neighborhood compared to the cell size. These biochemical and bio-
physical cues influence the migration, proliferation, and differentiation of cells. In this work,
we examine four nonlocal models describing the movement of cell populations. These models
are represented by reaction-diffusion(-advection) equations containing nonlocal spatial integral
terms that describe the influence of the surroundings on the development of the cell population.
Our focus is on the mathematical analysis of these models. Numerical simulations are performed

to illustrate the solution behavior.

First, we consider two models, in which the gradient in the advection term of the respective
local model is replaced by a nonlocal integral. For the first adhesion or nonlocal chemotaxis
model, we show convergence of the weak solution to the weak solution of the corresponding local
haptotaxis or chemotaxis model, respectively, as the sensing radius decreases. Then, we show
the existence of a very weak solution for the second cell-cell-adhesion model with degenerated

myopic diffusion.

Furthermore, we consider two models with a nonlocality in the reaction term. Specifically, for
a model for cancer invasion with myopic diffusion, repellent pH-taxis, and nonlocal intraspecific
interaction, we show the global existence of a bounded unique weak solution and visualize its
behavior with numerical simulations. Additionally, we perform a 1D pattern analysis. Finally, we
show the global existence of a bounded weak solution for a model with two nonlocal interaction

terms and perform numerical simulations.






Zusammenfassung

Experimente haben nachgewiesen, dass Zellen Signale nicht nur an ihrer Position empfangen
konnen, sondern innerhalb eines im Vergleich zur Zellgrofle grofen Wahrnehmungsradius. Diese
biochemischen und biophysischen Signale beeinflussen die Bewegung, Proliferation und Differen-
zierung von Zellen. In dieser Arbeit betrachten wir vier nichtlokale Modelle, die die Bewegung von
Zellpopulationen beschreiben. Die Nichtlokalitat wird mittels eines nichtlokalen Raumintegrals
modelliert, das in verschiedenen Termen der betrachteten Reaktions-Diffusions-(Advektions-)
Gleichungen enthalten ist. Der Fokus liegt dabei auf der mathematischen Analyse dieser Mod-
elle. Auch numerische Simulationen werden durchgefithrt, um das Verhalten der Loésung zu

veranschaulichen.

Wir betrachten zwei Modelle, in denen der Gradient im Advektionsterm durch ein nichtlokales
Integral ersetzt wird. Zuerst zeigen wir die Konvergenz der schwachen Losung eines Mod-
ells, das Adhesion oder nichtlokale Chemotaxis beschreibt, gegen die schwache Losung des
jeweils entsprechenden lokalen Haptoxis- oder Chemotaxismodells fiir einen verschwindenden
Wahrnehmungsradius. Anschlielend zeigen wir die Existenz einer sehr schwachen Lésung eines

Modells fiir Zell-Zell-Adhesion mit degenerierter myopischer Diffusion.

Dariiber hinaus betrachten wir zwei Modelle mit Nichtlokalitdt im Reaktionsterm. Wir zeigen
die globale Existenz einer eindeutigen beschrankten Losung eines Modells fiir Krebsinvasion mit
myopischer Diffusion, abstoender pH-Taxis und einem nichtlokalen innerartlichen Interaktion-
sterm und eines Modells mit zwei nichtlokalen Interaktionstermen. Das Verhalten der jeweiligen
Losung wird mithilfe von numerischen Simulationen veranschaulicht. Dariiber hinaus analysieren

wir fir eines der Modelle das Auftreten von Mustern in 1D.
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CHAPTER 1

Introduction

In this dissertation, we investigate nonlocal models in cell migration. In recent decades these
models have attracted increasing interest, see the review [28]. They reflect the ability of cells to
receive environmental signals within a sensing region surrounding their current position. These
signals can impact multiple processes, including cell migration. The nonlocal approach is sug-
gested by experimental evidence and appears more realistic, as cells are surrounded by other
cells and tissue. In certain contexts, the reduced consideration of these effects by local models
could be oversimplifying and can lead to analytical and modeling problems. While there are
many studies of local models, nonlocal models have been considered far less often, especially
from an analytical point of view. However, the nonlocal models provide a biologically plausible
description of certain processes involved in cell migration and, as we discuss later, can avoid in

certain situations analytical problems of local models, such as finite-time blow-up of the solution.

The orientation of directional migration of cells is largely influenced by the extracellular environ-
ment and primarily determined by protrusions (e.g., filopodia, lamellipodia) which are outward
extensions of the cell membrane. Cells respond to external diffusible and non-diffusible signals
by extending protrusions in the direction of movement [86]. The main functions of protrusions
include sampling the cell’s environment and establishing initial dynamic adhesions to the ex-
tracellular matrix (ECM) or other cells within a sensing region that can be large compared to
the cell size [1}, [71} |90 130]. Furthermore, protrusions are involved in the communication of
cells over long distances, thereby transmitting signals [17, [57, 87]. The information obtained
via protrusions influences the subsequent behavior of the cell, e.g., the choice of the following
direction of migration [1},[122]. In areas with hard borders, such as bones, cartilage, or the walls
of a Petri dish, cells receive hardly any information from outside, as the ability of cells to stretch

their protrusions outwards is limited there [28].

After sampling their environment cells form cell-matrix or cell-cell adhesions to move [35] 86,
152]. The adhesion of cells to the ECM is facilitated by the attachment of specific cell receptors
(e.g., integrins) to tissue fibers 38|, [152]. Besides, cells adhere to other cells by binding specific
cell adhesion molecules (cadherins) on the cell surface [96], which also enables the formation of
cell clusters. This process is essential in organizing cells into tissue, organs, and organisms |5} [66].
The strength and number of bindings depend on chemical signals [68]. Both adhesion structures
are often dynamic to allow cells to react to changes in environmental cues [34]. In addition to
their role in cell movement, they are essential for embryonic development, homeostasis, immune

responses, wound healing, and cell sorting |5} 34, [152]. Hence, nonlocal models align with many
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biological observations and empirically collected data [97].

Apart from this, nonlocal models can solve mathematical inconsistencies present in some lo-
cal models, such as a finite-time blow-up that is unrealistic from a biological point of view. For
example, in [79], the authors show that the considered nonlocal model has a bounded global solu-
tion, while a finite-time blow-up occurs in the corresponding local model. Thereby, the solutions
of the nonlocal models have increasingly larger peaks in numerical simulations for diminishing
sensing regions. It is assumed that the behavior of nonlocal models with a parameter whose
reduction leads to a vanishing sensing region can be approximated by the corresponding local
model |68} 79]. Related local and nonlocal models include chemotaxis, which refers to migration
in response to differences in the concentration of a soluble signal, and nonlocal chemotaxis, which
takes into account that migrating cells can detect this signal within a sensing region. Besides,
haptotaxis referring to the migration of cells in response to different concentrations of a bound
signal is the local counterpart to cell-matrix (and cell-cell) adhesion. Nonlocal and local models
can also exhibit different behavior in other contexts, e.g., in the occurrence of Turing patterns
[111]. Continuous local models are often incompatible with biological effects such as sorting,

while nonlocal models can replicate this effect [5].

Typically, nonlocal models include a spatial integral that increases the regularity of the equation;
however, nonlocalities can also be introduced with respect to other variables (e.g., time, speed).
Nevertheless, these models are mathematically challenging, as comparison principles to show the
biologically important boundedness of solutions do not hold for this type of equation. Further
challenges arise if the nonlocal equation is coupled with other differential equations, especially
if the involved equations have a different type. A numerical simulation of the integral terms is
numerically costly and requires efficient numerical methods to deal with them. Additionally, a
unifying analytical framework that could deal with different kinds of nonlocal terms could be
advantageous. Up to our knowledge, no such framework exists, as the analysis strongly depends

on the specific form of the nonlocality.

Moreover, spatially nonlocal (and local) models describing the migration of a cell population u
are usually of reaction-diffusion-advection (RDA) type, i.e., of the form
uy =V - (DVu)—=V - (vu)+ f(u),
—_—— —

diffusion advection  reaction

possibly coupled with further dynamics. Here, D denotes the diffusion coefficient, v the advec-
tion velocity, and f(u) a reaction function. Most nonlocal models consider RDA-equations with
nonlocality in the advection term describing cell-cell or cell-matrix adhesion or nonlocal chemo-
taxis. Examples of such adhesion models can be found in (5] [21} 23] 68}, (80l [156] and for nonlocal
chemotaxis in [21} |79]. The solvability of models with nonlocal advection term was studied in [45,
461, 56 (79, 180, 182, [128]. Moreover, there are few studies on the existence and long-time behavior
of solutions to local models including potentially degenerating myopic diffusion and taxis. Most

studies feature haptotaxis and consider only the one-dimensional case |77, [149H151].

Less studied models contain nonlocalities in the source term. This term impacts cell movement
indirectly since the evolving cell density leads to modified density-dependent coefficients. Possible
applications are competition for resources, differentiation, proliferation, and growth; see [28,99]
and references therein. Examples of the modeling and analysis of this kind of problems can

be found in [12H14} 99, [103} |104} [113] |136] but even for comparatively easy settings there are



no complete results involving existence, boundedness, pattern formation, numerical simulations,
etc. of solutions. We refer to |28, (51}, [87] for more detailed reviews on these and other types of

nonlocal models.

In the present work, we examine four nonlocal models with no-flux boundary conditions in
bounded domains and describing the movement of cell populations. The nonlocality is modeled
via a density-dependent spatial integral included in the advection (Chapters@ and |4)) or reaction
term (Chapters[fand[6) of a reaction-diffusion(-advection) equation. Our focus is on the mathe-
matical analysis of the models. Additionally we perform a 1D pattern analysis in Chapter[5 and

numerical simulations in Chapters[3, [3} and [f to visualize the results.

The convergence of the nonlocal operators to the local gradient presented in Chapter [3 was
shown heuristically via Taylor expansion in [68, [81]. In [79], the question of convergence of
nonlocal models to its local counterpart was raised. However, up to our knowledge, a rigorous
proof of convergence has not been established before. Moreover, the combination of myopic
diffusion and adhesion has not been analyzed so far. Therefore, our existence proof for a solution
to the degenerated PDE in Chapter [{ significantly contributes to this new field. Notably, our
assumptions regarding the degeneracy set seem new in the context of degenerated diffusion.
Furthermore, the existence proof and the analysis of the long-time behavior and pattern formation
of solutions to the model in Chapter[jcontribute to the rarely studied field of models that feature
nonlocality in the source term and models involving myopic diffusion and advection. There, we
add to the existing literature the analysis of a PDE-PDE-system, one of the PDEs combining
myopic diffusion and advection with a nonlocality in the source term. Also, considering a PDE

with (two) nonlocalities in the source term coupled with an ODE from Chapter@ is novel.

Outline

The first part of this thesis deals with nonlocal models with nonlocality in the advection term
describing cell-cell or cell-matrix adhesion or nonlocal chemotaxis. Thereby, we consider models

with adhesion velocity of the form

_! u(x £
Au(a) =+ fBT (& + )17 Fo(ll) de.

where u denotes some interaction function taking into account cell-cell and cell-matrix interac-
tions and depends on the cell and tissue density. The magnitude of the interaction force F,
depends on the distance within the sensing region B,, where r is called sensing radius. In the
case of nonlocal chemotaxis, we consider a similar integral (over a sphere), where the interaction

function depends on the concentration of some dissolved chemical signal.

This part consists of two chapters:

- Chapter[3 considers a PDE-ODE-system describing adhesion and a PDE-PDE-system for
nonlocal chemotaxis including the aforementioned operators. The adhesion model is related
to its local counterpart characterizing haptotaxis by replacing the gradient of the cell-cell
and cell-matrix interaction function u by A,u. Similarly, we relate nonlocal chemotaxis
to chemotaxis. We show the existence of a global weak-strong solution to each of the

nonlocal models and link it via a limit procedure for a diminishing sensing radius to the
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weak solution of the corresponding local model. Our proof relies on a reformulation of the
involved nonlocal operator as an integral operator that is applied directly to the gradient
of the interaction function. Both types of models are treated in a unified framework.
Numerical simulations in 1D are cited for completeness reasons. This chapter is largely
based on [47].

- Chapter[4]shows the existence of a global very weak solution to a nonlocal reaction-diffusion-
advection equation including degenerated myopic diffusion, cell-cell adhesion, and a gen-
eralized logistic-type growth term in dimensions n > 3. Thereby, the degeneracy set is
sufficiently low-dimensional (in terms of upper box fractal dimension) and has a positive
distance to the boundary of the domain. We deal with the nonlocal operator upon rewriting
it to a convolution with a bounded function. The corresponding equation without growth
term was derived in [156]. Besides its biological foundation, we included the growth term
to deal with analytical challenges arising especially from the degeneracy of the diffusion

tensor. This chapter is largely based on [50].

The second part of this dissertation deals with models involving nonlocality in the reaction term.

The nonlocal terms are of the form
Wt (1= Jy w0 = Jp s w?)(x) = u(2) (1 - | - | Be-pee dy)
Q Q

with J; > 0 and Jo = 0, where v and w denote the density of two cell populations. Such
terms describe intra- and interspecific competition between cells for available resources in their
surrounding, e.g., to prevent overcrowding. The assumption of strict positivity of J; and the
integration over the whole domain indicate that the sensing region of a cell corresponds to the

whole domain independent from its position.

This part consists of two chapters:

- Chapter [5 shows the existence of a unique global bounded weak solution to a PDE-PDE-
model for tumor cell migration with myopic diffusion, repellent pH-taxis, and a nonlocal
source term of the above form. Moreover, we analyze the asymptotic behavior of the solu-
tion. In 1D we perform a pattern analysis for constant diffusion and numerical simulations
to illustrate the behavior of the solution. The model deduction based on a mesoscopic
description of cell migration with a kinetic transport equation is included for complete-
ness. Our results extend [99], where a Fischer-KPP-equation with nonlocal intraspecific
competition (but in an unbounded domain) was examined. This chapter is largely based
on [49].

- In Chapter [6] we prove the existence of a global bounded weak solution to a PDE-ODE-
PDE-system describing the dynamics of active and inactive cells and a repellent signal. It
has two nonlocalities in an equation, one of them depending on another cell population.
Moreover, both nonlocalities depend on the signal produced by both cell populations. Also

numerical simulations are performed. This chapter is largely based on [48].

The dissertation is structured as follows. Chapter[] contains the mathematical preliminaries of
this work and introduces the relevant function spaces, convolutions in bounded domains, and

notation. The notation may differ slightly from chapter to chapter, as this work consists of



four independently considered models. Chapters[3{f begin each with a motivation, in which the
biological context and the underlying literature of the concrete model are mentioned. Finally,

Chapter[7 provides a brief summary of this work along with some perspectives.
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CHAPTER 2

Preliminaries

In this chapter, we introduce the notation and recall mostly without proof some facts concerning
matrices, the relevant function spaces and convolutions in bounded domains. More details on
these topics can be found e.g., in [20, |58, [84} 94]. Relevant results on different types of differential
equations, fixed-point theorems, convergence theorems and functional analysis and the proofs of

some lemmas from this chapter can be found in Appendix [4]

Notation:

- Throughout this work we consider a bounded domain 2 < R™, n € N, with sufficiently

smooth boundary 002 and outer unit normal .
- For r > 0 we introduce the subdomain Q, := {z € Q : dist(x, Q) > r} of Q.

- For a function u : 2 — R we assume, by convention, that u = 0 on R™\Q. This allows for
an obvious meaning to be given to the convolution u v for any v € L'(Q) and v € L' (R").

This extends componentwise to any vector-/matrix-valued function wu.

- We denote by e;, ¢ € N, the ith canonical vector in R™ and by I, € R™"*" the identity

matrix.

- By || and | - |, we denote the Euclidean and infinity norms in R", respectively, and by

|A| the Lebesgue measure of a set A.
- For x € R",n > 2 we denote x = (2/, x,,), where 2’ € R"~! and z,, € R.
- For A,BcR™ a€R"”, and s > 0 we use the set notations

A+B:={x+y: x€ A, ye B},
a+B:=B+a:={a} +B,
Os(A) :={r e R": dist(z, A) < s}.

- By B, and S,, r > 0, we denote the open r-ball and the r-sphere in R™, both centred at

the origin, and define the mean values of a function u over B, and S, respectively, as

| ey de = T JBT u(€) de,
1

| e = LT u(€) dor(€),

5|



8 CHAPTER 2. PRELIMINARIES

where o(-) denotes the surface measure corresponding to the Lebesgue measure on R™.

- For all indices ¢ € N, the quantities C;, K;, ¢; denote a positive constant or, alternatively, a
positive function of its arguments. The constants C; and &; are numbered chapter by chap-
ter, while K; denotes the constants from Appendix[4] Dependencies upon such parameters
as the space dimension n, domain €2, the norms of the initial data, norms and bounds for

the coefficient functions and parameters are mostly not indicated in an explicit way.

2.1 Matrices

In this section we summarize some definitions and properties of matrices.

Definition 2.1.1. Let P = (pij)ij=1,..n, @ = (¢ij)i,j=1,...n € R™*". We define the following

norms and inner product:

« the spectral norm |Ply := |P| := max|y|=1 |Pr| = \/Amax(PT P), where Anax denotes the

mazximal eigenvalue of a matriz,
- Pl = max|y, —1 [Pr|p = maxi=y, o 20y [Pl

- the Frobenius inner product

P:Q= Z Pij i -

ij=1
If not states otherwise we will use the | - |2-norm for matrices.

These norms obviously satisfy the following lemma.
Lemma 2.1.2. (i) The norms |- |2 and |- |, are equivalent on R™*™.

1) Let P = (pij)ii=1....n € R™*™. Then, |p;i;j| < |P|s foralli,j=1,...,n.
J 7] FREE) J

Further, we recall some facts on orthogonal matrices.

Lemma 2.1.3. Consider an orthogonal matriz O € R™*", i.e., satisfying OOT = OTO = I,,.
Then, |Ox| = |z| for all x € R™ and |det(O)| = 1.

Moreover, we introduce the following two definitions on matrix functions (see Definition [2.2.]]

for the definition of the involved spaces).

Definition 2.1.4. For a matriz function D = (di;)ij=1,..n € C(Q;R"*") we write D > c if
yID(x)y > ¢ for all x € Q and y € R™ (analogously for =, <, <). Further, for D > 0 we define
the set

D$0}:={zxeQ: IyeR" s.t. y"D(x)y = 0}.

Definition 2.1.5. For a matriz function D = (d;;)i j=1,..n» € C(Q;R™™™) and a function u €
C%(Q) we define
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- the divergence
V- ]D)(m) = 2 (dlj)ZEJ (3?)6z
ij=1

- and the myopic diffusion

VV:(D(z)u) =V - (D(z)Vu+ V - D(z)u).

2.2 Function spaces

In this section we recall the definitions of certain spaces of continuous functions and Lebesgue

and Sobolev spaces in z and ¢t and some of their properties.

First, we define several spaces of continuous and Hoélder continuous functions.

Definition 2.2.1. Let k € N, j e Nu {0}, I,m € Ny u {0}, T > 0, S c R* nonempty and
compact, I € R a nonempty interval and X a normed vector space with norm | - |x. We define

the spaces
- C(S; X) of continuous functions u: S — X,
- CI(8; X) of j-times continuously differentiable functions u:S — X,

- Cb™(S x I; X) of functions u : S x I — X that are I-times continuously differentiable in

x € S and m-times continuously differentiable in t e I,
- C1(8) of functions from C7(S;R) with compact support,
- Cp(S) of functions from C(S;R) that are bounded,

- Cw([0,T]; X) of functions u : [0,T] — X which are continuous w.r.t. the weak topology of
X.

If X = R we leave out the dependence on R in the notation of the space. If S is closed and

j < oo, we define the norms

Jules.x) = max u(@)]x.

lulesisix) = 3 IDullx.

ol <3
Definition 2.2.2. Let 9 € (0,1], k€ Ng and T > 0. We define the seminorms

9 u(z) — u(y)
{uyg = sup 7| 3 |
z,yeQ,z#y |z =y
9 Ju(x,t) — u(y,1)]
<u>;,§X[0’T] = sup |z — y[?
(), (y,)€0%[0,T] 2y r=Yy
9 |U($,t) —’LL(.TJ,S)|
<u>t,§x[0,T] = sup

(2,t),(2,5) €% [0,T] t s |t — s|?

)

)

and the following Hdlder spaces
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- C*+9(Q) as the space of functions u € C*(Q) with finite norm

lullcrro == 2, ID%ullo@ + Y, (D uyg,

la|<k |o| =k
- C*9(Q) as the space

CF(Q)i={u: Q> R: ul, € C*Y(K)VK < Q compact} . (2.2.1)

oL (Q x [0,T7) as the space of functions u € C (Q x [0,T]) that are 9-Hslder continuous

m x and g-Hé'lder continuous in t, i.e., with finite norm
[ull ;0.2 % @x[o.1]) = llullc@xpo,r + (uy, axpo,r) < >t ax[0,7]’
. C’”ﬂ’#(ﬁ x [0,T]) as the space of functions u € C10(Q x [0,T]) with finite norm

+9
2 (@x [OT]) =u ”C (@x[0,T]) +< >tQ>< [0,T]

+ Z ([

. C’2+1971+g(§ x [0,T]) as the space of functions u € C*' (Q x [0,T]) with finite norm

C1+19

c@x[0,T]) + (ug, >g; Qx[0,T] +u $7>t ax|o, T])

||U| |CQ+19,1+% (ﬁX[O,T])

9 A
=lule@xpo,ry T utlo@xior + e gxom + U g 0

n

+Z(quz

9 9
+ Z (Humm] ||C(§><[0,T]) + <umimj>ac,§><[0,T] + <u$ﬂj>t2,§x[0,T]) ’
i,j=1

c@xpo.r)) + Ui, QX[OT])

k+19

. For k = 0,1,2 we define CF+%"5(Q x (0,T)) and C*+?:
@21).

(2 x (0,7)) analogously to

The lemmas below will be proved in the appendix.

Lemma 2.2.3. Let 9,k € (0,1), ue C?(Q) and v e C*(Q). Then,
(i) uv e C™n{9r}((Y),
(ii) if u =0 then u” € CV"(Q) if r € (0,1),
(ii) if u = 0 then u™ € C?(Q) ifr > 1,
(iv) 2 eC’(Q) ifu+0inQ.
Next, we define Lebesgue and Sobolev spaces and introduce dual pairings.

Definition 2.2.4. Let p € [1,0]. We define LP(Q) as the space of functions u : Q@ — R with

finite norm

(SQ |ul? dx)% , ifpe[l,00),

lullzee) = .
essSUp,eq |u|, if p = o0.
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Further, we define (LP(2))™ and (LP())™*", respectively, as the space of vector-valued functions

f:Q > R™ or matriz-valued functions D : Q — R™ ™ with finite norms

£l ey = I1fllzr ),
IDll(Lr(@)ynxn = [IPl2]Lr (),
and for T > 0 and a Banach space X with norm | - | x we define the Bochner space LP(0,T; X)

as the space of functions g : (0,T) — X with finite norm

1

(5 ls®I% &))", ifpeltm),

esssupyeo, 1y 19()x, if p=o0.

Hg”LP(O,T;X) =

Definition 2.2.5. Let X a Banach space with dual space X*. We denote the duality pairing of
xe€ X and z* € X* as

(2%, 2) xu x == 2" (z) €R.

A sequence (xg)ken € X converges weakly to v € X in X if

<x*7xk>X*,X kjm <$*7x>X*,X

for all x* € X*. We denote this by xy, T
o0

A sequence (x})ren C X* converges weakly-* to x* € X* in X* if

(x:,x)x*yX = <x*,x>X*’X

k
for all x € X. We denote this by x} ki x*®.
— L

Definition 2.2.6. Let k€ N and p € [1,0]. The Sobolev space WZ’f(Q) is given by

W:(Q) = {ue LP(Q) : the weak derivative D*u exists for all a € N[ s.t. |a| < k
and D%u € LP(Q)}

with norm

||U||W;;(Q) = Z ||Dau||LT’(Q)~

|a|<k

Moreover, we set

W) = {1 e WEHQ) : 3um)m < CL(Q) st up = win WHO)

with dual space

forqe[l,00] s.t. =+

=

For p =2 we set H’“(Q) = WQIC(Q), H(’)“(Q) = WQI‘“(Q) and H™! = (H&(Q))*



12 CHAPTER 2. PRELIMINARIES

Further, we define the spaces
Wyt Q% (0,T)) := {ue LP(Q x (0,T)) : ug,,ur € LP(Q x (0,T)) Vi€ {1,...,n}}
W2HQ x (0,7)) = {ue LP(Q x (0,T)) : tg,, Ug,a,, ur € LP(Q x (0,T))
Vi,je{l,...,n}}

with norm
lellw s n 0.y =IullLr@xo.m)) + el Lo @xomy) + D) el lLr@x0.1));
=1
el x 0.0 =1ullLo@x 0.1y + el Lo @ o)) + D 1t Lo @x 0.1y)
=1

n
+ 2 [t || e (2 (0,7))-
4,j=1

We define continuous and compact embeddings and state some embeddings concerning Sobolev

spaces.

Definition 2.2.7. Let X,Y be Banach spaces s.t. X < Y. We say that X is continuously
embedded in'Y (denoted by X — Y ) if there is a constant C; > 0 s.t. for all u € X the estimate
[lully < Cillul|lx holds. A continuous embedding is called compact (denoted by X —— Y ) if

each bounded sequence (Um)men € X has a subsequence that converges in'Y .

Lemma 2.2.8. (i) The space HY(Q) is continuously embedded in LP(S)), where p € [1,0] if
n=1pe[l,0)ifn=2andpe[l,25] if n > 2. For such p there is a constant
Ks(p) > 0 s.t. for allue H'(Q) it holds that

lullzr ) < Ks(p)|u] m1(a)-

(i) If p > n then WZ} () is continuously embedded in C?(Q) (up to the choice of a continuous
version) for ¥ = [%J +1-3.

(iii) If p > n then W2(Q) — C*(Q) and u = 0 and Vu = 0 on 0Q for ue W2(€).

(iv) For p e (1,00) the compact embedding W) (Q) << LP(Q) holds.

Proof. For (i) and (ii) see Theorem 6 in Section 5.6 in [58] and for (iv) see the remark at the
end of Section 5.7 in [58].

If p > n by Theorem 6 in Section 5.6 in [58] the space W2(Q2) is continuously embedded in

C*(£2). By definition, for u € W2(€) there is a sequence (um)m € CF(€2) that converges to u in
the Wg—norm. Due to the continuous embedding (u,, ). also converges in the C'-norm. Hence,
u =0 and Vu =0 on 0f. O

Lemma 2.2.9. Let ¥,k € (0,1), T € (0,1) and K;(¥) > 0 denote the constant from the contin-
uous embedding of WL (Q) into C?(Q) from Lemma (u)

149 ,—

(i) If ue C**%72"(Q x [0,T]), then it holds that

Ju = u(:,0) < max{1, K0T ful .,y 150 (222)

”cﬂ%(ﬁx[o,T]) @x[0,1])’
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(i) If ue C2t9175(Q x [0,T]), then it holds that

1 min —
[ — (-, O)Hc”&#(ﬁx[o,ﬂ) < 2max{1, K (9)}T>2 {0,1 19}“““02""9*1"'%(ﬁx[O,T]).
(2.2.3)
(ii5) If u e C?+™1+3(Q) x [0,T)), then it holds that
1 min{2— K
Ju— u("o)”Cﬁ%(ﬁx[mT]) < 2max{1, K (9)}T2 min{2=7,1+ }Hu\\cz+ﬁ,1+g(ﬁx[0$]). (2.2.4)

2.3 Convolutions on bounded domains

In this section we will consider convolutions on bounded domains 2. The definition is obtained
from the definition of a convolution over R™ using our convention that a function defined on a
domain {2 is zero outside.

Definition 2.3.1. Let p,q € [1,00] s.t. % + % =1andue LIQ). Set S:={x—y:xyecQ}
and consider J € LP(S). For x € Q we define the convolution over the bounded domain 2 as

(J % u) () = f J(z - y)uly) dy.

Q
For a function h € L™(Q) and an h-dependent kernel J(-, h) that satisfies J(-,0) € LP(S) and is
Lipschitz continuous in the second argument with Lipschitz constant L € LP(S) the convolution
is defined as

(JC, ) wu) (2) = j J(& — y, h(y))uly) dy. (2.3.1)

for x € Q. For vector- or matriz-valued kernels J or functions u the convolution is defined

componentwise.

The following lemma will be proved in the appendix.

Lemma 2.3.2. Let T >0,9€(0,1), pe (1,0), 821, S:={zx—y:2z,yeQ}, J(x,h) a kernel
that satisfies J(-,0) € LP(S) and is Lipschitz continuous in the second argument with Lipschitz
constant L € LP(S).

(i) If u,h € L*(2 x (0,T)) then, J(-,h) = u® € L*(Q x (0,T)) and satisfies
[T, R) % 0P| o o,y < ||u||§ﬁ(Qx(07T)) (1L L1 sy IRl z2 (x 0,7y + 1T (2, 0) [ 21 (sy) -

(ii) If u,h e C?2(Q x [0,T]) and u =0 then, for k := min{d, ijl} it holds that J(-,h) = u” €
C™5(Q x [0,T7]).

If J is independent from h this holds setting J(x,h) := J(x) for x € S and h = 0 in the above
estimate.
Definition 2.3.3. We define the standard mollifier ¢ € C*(R™) as

C’gelmlé—1 if |z| < 1,

0 if x| > 1,

¢(z) :=

where Cy > 0 is chosen s.t. §g, ¢ dv = 1. Fore > 0 we set o.(x) 1= Z¢ (£) with supp(s:) € Be

en

and SBE . dr =1.
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Lemma 2.3.4. ([58, Appendiz C, Theorem 6(i) + (iii)]) Letu € L}, (Q). Then, s.+u € C* ().

loc

Ifue C(Q), then ¢ * u — u for e — 0 uniformly on compact subsets of .
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Nonlocal models with nonlocality

in the advection term






CHAPTER 3

Nonlocal and local models for taxis in cell migration: a

rigorous limit procedure

This chapter was first published in Volume 81 of Journal of Mathematical Biology in 2020E| The
presentation has been adapted for use in this dissertation to clarify the details of the proofs and

guarantee consistency of the notation.

3.1 Motivation

Macroscopic equations and systems describing the evolution of populations in response to soluble
and insoluble environmental cues have been intensively studied and the palette of such reaction-
diffusion-taxis models is continuously expanding. Models of such form are motivated by problems
arising in various contexts, a large part related to cell migration and proliferation connected to
tumor invasion, embryonal development, wound healing, biofilm formation, insect behavior in
response to chemical cues, etc. We refer, e.g., to |9] for a recent review also containing some

deduction methods for taxis equations based on kinetic transport equations.

Apart from such purely local PDE systems with taxis, several spatially nonlocal models have
been introduced over the last two decades and are attracting ever increasing interest. They
involve integro-differential operators in one or several terms of the featured reaction-diffusion-
advection equations. Their aim is to characterize interactions between individuals or signal
perception happening not only at a specific location, but over a whole set (usually a ball) con-
taining (centered at) that location. In the context of cell populations, for instance, this seems
to be a more realistic modeling assumption, as cells are able to extend various protrusions (such
as lamellipodia, filopodia, cytonemes, etc.) into their surroundings, which can reach across long
distances compared against cell size, see |71} [130] and references therein. Moreover, the cells
are able to relay signals they perceive and thus transmit them to cells with which they are not
in direct contact, thereby influencing their motility, see e.g., [57}, 65]. Cell-cell and cell-tissue
adhesion are essential for mutual communication, homeostasis, migration, proliferation, sorting,
and many other biological processes. A large variety of models for adhesive behavior at the
cellular level have been developed to account for the dynamics of focal contacts, e.g., |6, |7, [146]

and to assess their influence on cytoskeleton restructuring and cell migration, e.g., [40} |41} 93]

1[47] The paper is licensed under a Creative Commons Attribution 4.0 International License!
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143|. Continuous, spatially nonlocal models involving adhesion were introduced more recently
[5] and are attracting increasing interest from the modeling [16, [21} 23, 43| |68}, |69, 109} |118],
analytical [26], 45, |46l |80, [132], and numerical [67] viewpoints. Yet more recent models [44) |56]
also take into account subcellular level dynamics, thus involving further nonlocalities (besides
adhesion), with respect to some structure variable referring to individual cell state. Thereby,
multiscale mathematical settings are obtained, which lead to challenging problems for analysis
and numerics. Another essential aspect of cell migration is the directional bias in response to
a diffusing signal, commonly termed chemotaxis. A model of cell migration with finite sensing
radius, thus featuring nonlocal chemotaxis has been introduced in [117] and readdressed in [79]
from the perspective of well-posedness, long time behaviour, and patterning. We also refer to

[105] for further spatially nonlocal models and their formal deduction.

For adhesion and nonlocal chemotaxis models, a gradient of some nondiffusing or diffusing signal
is replaced by a nonlocal integral term. Here we are only interested in this type of model, and refer
to |28, 51, [87] for reviews on settings involving other types of nonlocality. Specifically, following
[5, 168, [79L [117], we consider the subsequent systems, whose precise mathematical formulations

will be specified further below:

1. a prototypical nonlocal model for adhesion

0rer =V - (De(cr,vr)Ver — erx(er, vr) Ar(gler, vr))) + feler, vr), (3.1.1a)
Opvy = fv(cr7vr)7 (3~1-1b)

where
Avulz) = HB u(z + g)%ﬂ(m) de (3.1.2)

is referred to as the adhesion velocity, and the function F,. describes how the magnitude of
the interaction force depends on the interaction range |£| within the sensing radius r. We

require this function to satisfy

Assumptions 3.1.1. (Assumptions on F,.)

(a) (r,p) — F,(p) is continuous and positive in [0,10]* for some ro > 0;

(b) Fo(0) =n+1.[

The quantity
IF(CT, vr) = CTX(CT» UT‘)AT(Q(CT‘a 'Ur))

is often referred to as the total adhesion flux, possibly scaled by some constant involving
the typical cell size or the sensing radius, see e.g., [5, 21]. Here we also include a coefficient
x(¢r, vy-) that depends on cell and tissue (extracellular matrix, ECM) densities, which can be
seen as characterizing the sensitivity of cells towards their neighbours and the surrounding
tissue. It will, moreover, help provide in a rather general framework a unified presentation
of this and the subsequent local and nonlocal model classes for adhesion, haptotactic, and

chemotactic behavior of moving cells.

2In Secti(m we will see that this is, indeed, the 'right’ normalisation. If we assume, as in [5], that this
function is a constant involving some viscosity related proportionality, then this choice provides the value of that

constant.
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System is a simplification of the integro-differential system (4) in [68]. The main
difference between the two settings is that in our case we ignore the so-called matrix-
degrading enzymes (MDEs). Instead, we assume cells directly degrade the tissue: this fairly
standard simplification (e.g., [118]) effectively assumes that proteolytic enzymes remain
localised to the cells, and helps simplify the analysis. On the other hand, can also

be viewed as a nonlocal version of the haptotaxis model with nonlinear diffusion:

0rc =V - (D¢(c,v)Ve — ex(c,v)Vyg(e,v)) + fe(c,v), (3.1.3a)
Orv = fyu(c,v); (3.1.3b)

2. a prototypical nonlocal chemotaxis-growth model

Orcr =V - (Dc(cr,vr)Vcr — crx(chvr)%wr) + feler,vp), (3.1.4a)
atvr :DDAUT + fv (Cm vr) (314b)

with the nonlocal gradient

° n n
V)= 5| u+9eao© =" ueroba@. @)
r=Js, rJs, €]
System can be seen as a nonlocal version of the chemotaxis-growth model
Orc =V - (De(c,v)Ve — ex(c,v) V) + fe(c,v), (3.1.6a)
0w =Dy, Av + fi(c,v), (3.1.6b)

where x(c, v) is the chemotactic sensitivity function. As mentioned above, in order to have
a unified description of our systems (3.1.3) and (3.1.6) and of their respective nonlocal

counterparts (3.1.1)) and (3.1.4), we later introduce a more general version of the nonlocal

chemotaxis flux, similar to the above adhesion velocity A,..

The nonlocal systems (3.1.3]) and (3.1.6|) are stated for

t>0, reQcR™

Unless the spatial domain €2 is the whole R™, suitable boundary conditions are required. In the
latter case, usually periodicity is assumed, which is not biologically realistic in general. Still, this
offers the easiest way to properly define the output of the nonlocal operator in the boundary
layer where the sensing region is not fully contained in 2. Very recently various other boundary
conditions have been derived and compared in the context of a single equation modeling cell-cell
adhesion in 1D [82].

Few previous works focus on solvability for models with nonlocality in a taxis term. Some of
them deal with single equations that only involve cell-cell adhesion [45, 46| 82], others study
nonlocal systems of the sort considered here for two [79] or more components [56]. The global
solvability and boundedness study in [80] is obtained for the case of a nonlocal operator with
integration over a set of sampling directions being an open, not necessarily strict subset of R™.
The systems studied there include settings with a third equation for the dynamics of diffusing
MDEs. Conditions which secure uniform boundedness of solutions to such cell-cell and cell-tissue

adhesion models in 1D were elaborated in [132].
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Some heuristic analysis via local Taylor expansions was performed in [68] and [81] showing that
as r — 0 the outputs A,u and %ru, respectively, converge pointwise to Vu for a fixed and
sufficiently smooth u. In [79] it was observed that it would be interesting to study rigorously
the limiting behaviour of solutions of the nonlocal problems involving ﬁru. The authors ask
in which sense, if at all, do these solutions converge to solutions of the corresponding local
problem as r — 0. Numerical results appeared to confirm that, in certain cases, the answer is
positive. Still, to the best of our knowledge, no rigorous analytical study of this issue has as
yet been performed. Clearly, any approach based on representations using Taylor polynomials
requires a rather high order regularity of solution components and a suitable control on the
approximation errors, and that uniformly in . This is difficult or even impossible to obtain
in most cases, particularly when dealing with weak solutions. In this chapter we propose a
different approach based on the representation of the input u in terms of an integral of Vu over
line segments. This leads to a new description of the nonlocal operators A, and V, in terms
of nonlocal operators applied to gradients (see Section below). Moreover, it turns out that
redefining their outputs inside the vanishing boundary layer in a suitable way allows one to
perform a rigorous proof of convergence: Under suitable assumptions on the system coefficients
and other parameters, appropriately defined sequences of solutions to nonlocal problems involving
the mentioned modified nonlocal operators converge for r — 0 to those of the corresponding local
models and , respectively. Our convergence proof is based on estimates on ¢, and

vy which are uniform in r and on a compactness argument. The two models (3.1.1) and (3.1.4)

are chosen as illustrations, however our idea can be further applied to other integro-differential

systems with similar properties.

The rest of the chapter is organised as follows. In Section[3.4 we introduce the aforementioned
adaptations of the nonlocal operators A, and 6T and study their limiting properties as r becomes
infinitesimally small. This turns out to be useful for our convergence proof later. We also establish
in Section [3.3 the well-posedness for a certain class of equations including such operators. In
the subsequent Section we introduce a couple of nonlocal models that involve the previously
considered averaging operators, prove the global existence of solutions of the respective systems,
and investigate their limit behaviour as r — 0. Section provides some numerical simulations
comparing various nonlocal and local models considered in this work in the 1D case. Finally,

Section contains a discussion of the results and a short outlook on open issues.

3.2 Operators A, and %r and averages of V

In this section we study the applications of the nonlocal operators A, and %T to fixed, i.e.,
independent of r, functions u. Our focus is on the limiting behaviour as » — 0. Formal Taylor
expansions performed in [68] 79| anticipate that the limit is the gradient operator in both cases.

This we prove here rigorously under rather mild regularity assumptions on w. To be more

precise, we replace A, and v, by certain integral operators 7, and S, (see d3.2.2|) and (]3.2.7[)

below) applied to Vu and show that these operators are pointwise approximations of the identity

operator in the LP spaces.

Recall that 2 ¢ R" is a bounded domain with smooth enough boundary. Unless explicitly stated,

the constants C; in this chapter do not depend upon 7.
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We start with the operator A,. For 7 € (0,7¢], u € C1(2), and x € (2, we compute using the

mean value and Fubini’s theorem that
1
() =1 | ue+€)5 e g
rJB, €]

zlf (u(a + &) — () = Fy(l€) dé

€l

j J’va+% (€)ds |ﬂ F,(l¢]) ¢
ZTLLJW“+%)NH(MMMS

= J ; (Vu(z + rsy) - y)iFr(r|y|) dy ds. (3.2.1)

|yl

Formula (3.2.1)) extends to arbitrary u € Wi (2) by means of a density argument. Motivated by
(3.2.1) we introduce the averaging operator

=J J (w(z + rsy) -y)iFr(r|y|)dyds. (3.2.2)
0 J B |yl

In Subsection we check that T,w(zx) is well-defined for all w € (L*(2))" and a.e. x € Q. In
this notation, for all r € (0,79] and u € W} (Q) identity (3.2.1]) takes the form

Aru = T (Vu) a.e. in Q..

In the limiting case r = 0 we have for x € 2 that

Tow(x f f Bl | Fy(0) dy ds,
—m()ifmm@f us g,

i

ZF()(O) Z wi(x)ejéij dy

B1||

R0 Y uiloe | 2oy

B |Z/|

=Fy(0) Z wl(m)ezlf Iyl dy

By |y|

—w(z). (3.2.3)

In the final step we used Assumptions[3.1.1](b) which says that Fy(0) = n + 1 (this explains our
choice) and the trivial identity

n
f lyldy = ——. (3.2.4)
B1

n+1

Thus, we have just proved the following lemma:

Lemma 3.2.1. (Adhesion velocity vs. T,.) Let u € Wi(2). Then for r € (0,7¢] it holds that

Ayu = T.(Vu) a.e. in Q. (3.2.5)
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Moreover, if Fy(0) =n+ 1, then

Vu = To(Vu) a.e. in Q. (3.2.6)

In a very similar manner one can establish a representation for V,.. For this purpose we define

for r € (0,7¢] the averaging operator

1
Srw(x) :=nf J’ (w(z +rsy) - y)ydo(y) ds. (3.2.7)
0Js
The corresponding result then reads:

Lemma 3.2.2. (Nonlocal gradient vs. S,) Let u € W(Q). Then for r € (0,70] it holds that

Vet =8,(Vu) a.e. in Sy, (3.2.8)
Vu =8y(Vu) a.e. in Q. (3.2.9)

The proof of Lemma[3.2.3is very similar to that of Lemma[3.2.1 and we omit it here.

Next, we observe that identity was established for €2,.. In the boundary layer Q\Q, the
definition of the adhesion velocity allows various extensions. For example, one could keep
by assuming (as done here and, e.g., in [56]) that w := 0 in R™\Q. An alternative would
be to average over the part of the r-ball that lies inside the domain. Let us have a closer look at

the first option (the second can be handled similarly). Consider the following example:

Example 3.2.3. (A, vs. 7.(V-) in 1D) Let Q = (—=1,1), ro = 1, F,, = 2, and v = 1. In this

case, u' = 0, hence

T (u)=0=1d"
For A, one readily computes by assuming u = 0 in R\(—1, 1) that for z € (—1,1)
21
Aru(z) =— = sign(§) d¢

o (—1—z,1—z)A(—7r,r)
H(=1+r—2z) in[-1,-1+7],

=30 in(-1+n1-r)=a,
L(1—r—x) in [1—r1],

so that
HArU”Ll(—Ll) :HAru”Ll(Q\QT)
1 —1+47r 1 1
=7QJ |—1+r—x|dx+—2j 1—r—2| da
™ Ja = J1—r
=1,
although
O\, | = 2r =, 0.
Thus,

A — 0=
r—0

in the measure but not in L*().
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ExampleM supports our idea to average Vu instead of u itself. The same applies to %ru VS.
S, (Vu).

Averaging w.r.t. y € By and then also w.r.t. s € (0,1) might appear superfluous in the definition
of the operator 7,.. The following example compares the effect of 7, with that of an operator

which averages w.r.t. to y only.

Example 3.2.4. Let Q =R", n> 2, and r > 0, F;- =n + 1. In this case

Trw(z) == (n + I)Jo JB (w(z + rsy) y)% dyds.

Consider also the operator

7~;w(a:) =(n+1) :[B (w(x + ry) - y)ﬁ dy.

It is easy to see that both operators are well-defined, linear, continuous, and self-adjoint in the
space (L?(R™))" (see Lemma below). Moreover, they map the dense subspace C.(R™;R")
into itself. This suggests the following natural extension to (C.(R™;R™))*:

(T8 0) (0o mmsmmyy %,y = (0 TrP) (0 (mn ) 0 (R
<7;u, <p> ) = <u, 72«s0>

Let, for instance,

(Ce(RrR™))* Ce (RR" (Ce(RMR™M)*,Ce(RMR™)

w = (50(’317

where dg means the usual Dirac delta. One readily computes that

~ n+1 Ty T
Tr(doe1)(z) = WXBT($)7H7
whereas
n+1 ! 1 T1 X
T:(d0e1)(z) _W o XBTS(x)dsjm

_n+1<<7“)" 1) v
n|By[ \\ |z| L7l

For n = 2, the operator 7, retains the singularity at the origin, however making it less concen-

trated, while 7, eliminates that singularity entirely and produces instead jump discontinuities
all over S,..

3.2.1 Properties of the averaging operators 7, and S,

In this section we collect some properties of the averaging operators 7,. and S,..

Lemma 3.2.5. (Properties of T;) Let F, satisfy Assumptions and let v € (0,7r9]. Then:

(i) T, is a well-defined continuous linear operator in (LP(Q))"™ for all p € [1,00]. The corre-

sponding operator norm satisfies

1T Lprioyymy < Cilr,p), (3.2.10)
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where

1 oE
(nSp”””*(Fr(Tp))p* dp) forpe (1,00], p* = £,
Cl(rap) = 0

max_pF,.(rp) forp=1.
pe[0,1]

(it) Let p,p* € [1,00] be such that p* = E5. For all wy € (LP(2)" and wy € (LP*(Q))n it
holds:

J (Trwi(x) - we(x)) doe = J (wi(z) - Trws(x)) dx. (3.2.11)
Q Q
(iii) Let p € [1,00). For all w e (LP(2))™ it holds that

Trw et Tow = w in (LP(2))". (3.2.12)

(iv) For p =2 it holds that
17 lczz@pmy =, T (3.2.13)

Remark 3.2.6. Due to the assumptions on F;. we have in the limit that

L*
(- )7t 1 * = P
G = Caty o= | D (i) T el gt

n+1 for p = 1.

Proof of Lemma[3.2.5 (i) Since w is measurable and p — F,.(p), (z,s,y) — = +rsy, (v, z) —

(z- y)I%\ are continuous, we have that
Y
(z,y,8) = (w(z +rsy) -y)mFr(lel)

is well-defined a.e. in @ x By x (0,1) and is measurable. Let p € (1,00) and p* = . We

compute

« 1 1 B n—1 T ) B
f (Il ly))” dy = 75— f P (F ()P dp2n [ ] f sin(¢n_k)* ' ddn_s
B, 0 k=20

1
- f P (E(rp))P dp
0

using spherical coordinates and the properties of the Gamma function. With the help of
this equality, Holder’s inequality, Fubini’s theorem, and our convention that w vanishes
outside 2, we deduce for all w e (LP(€2))™ that

HTer}(ij(Q))n

(I ot rsy) - )L Byl dy ds
J;) J;) J‘Bl |yl N

<[ L], e ({ rny a) o

1
=CP(r,p) f J J |w(z + rsy)|P de dy ds,
0 JB Ja

p
dx
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1
<Cf(7"7p)f f f |w(2)|P dzdy ds
0 B JQ
=C{)(T,p)HwH€Lp(Q))n,

This implies that for all p € (1,00) the operator 7, is well-defined in (LP(2))™. It is also
clearly linear. Taken together we then have that 7, € L((L?(€2))™) and (3.2.10) holds. The

cases p = 1 and p = o can be treated similarly.

(i) Let wy; € (LP(Q))" and wy € (LP*(Q)) . We compute by using Fubini’s theorem, the

symmetry of Bj, and simple variable transformations that
| s wa(a) o
Q

jLﬂJ&WNHW%WMyRVMNMBW%ﬂM

|yl
=EJ&MEMW
L <w1(z+rsy) : |Z|> (wg(z) : |z|> dz dyds
=£f&mamw
. Lm(mym) (wl(x +rsy) - |z|) <w2(x) - |Z|> dz dy ds (3.2.15)
=£J&MEMW
=£J&MEmw

: J <w1 (2) - y) (wg(z +rsy) - y) dz dyds. (3.2.16)
(=rsy+Q2)nQ |y| |y|

Thereby we used our convention that each function defined in €2 is assumed to be prolonged

by zero outside 2. Comparing (3.2.15)) and ((3.2.16)) we obtain (3.2.11)).

(iii) We apply the Banach-Steinhaus theorem. Due to (i) and , {7} re0,r0] 18 a family
of uniformly bounded linear operators in the Banach space (LP(€2))™. Thus, as C.(2;R™)
is dense in (LP(Q2))" for p < oo, we only need to check for w e C.(2;R™). But for
such w we can directly pass to the limit under the integral and thus obtain using
and the dominated convergence theorem that

Trw - Tow = w for all z € Q and in (LP(Q))".

(iv) Here we make use of the Fourier transform, which we denote by the hat symbol. A straight-
forward calculation using Fubini’s theorem and a variable transformation shows that for
w € (LP(Q))™ and £ € R™ it holds that
— 1

Trw(§) = e Trw(z)e ™ dz
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i L[] @t el aydse S as
J

(w(2) - y) L F(rly]) dy ds e =70 € g
Y

=, f)ﬁ(g)a

where

f{ vy’ Y9 B (rly])eimsv¢ dy ds. (3.2.17)
B |yl

Combining (3.2.17)) with the Plancherel theorem and using our convention that w vanishes

outside €2, we can estimate as follows:

T2y = sup [ Trwlz2 @)y
wlcr2(an =
< sup ||7;w||(L2(Rn))n
”w"(L2(Q))":1
<[Pl @nyyn  sup @ r2@ny)yn
”w”(L2(Q))":
=@l @y supJwlze@n
\w\(ﬂ(sz))":
=@ [l (L @)y (3.2.18)

Further, consider an arbitrary orthogonal matrix O € R"*™ and £ € R". With a variable
transformation using the properties of orthogonal matrices from Lemma we observe
that

(08 = f J W TR lyl)e"syTOfdyds
B1

OT - T T
—OJ f F.(r|lOTy])ems(© )" € qy ds OT
Bl |0Ty| F.(r|O"yl) y
=09, ( (3.2.19)

Consequently, we construct an orthogonal matrix O out of an orthonormal basis containing

&7 in order for O¢ = [¢]e; to hold and obtain that
|©,(§)]2 = [@r([€ler)|2 for all e R™. (3.2.20)
Since
(I€ler) f JB vy Y F.(rly))emsI€ dy ds (3.2.21)
!

is a diagonal matrix, its spectral norm is given by the spectral radius (see Definition|2.1.1)).
Estimating the right-hand side of (3.2.21]) we then conclude that

2 1
@, (I€ler)]2 < f y—lﬂ(ﬂyndyﬁf WIF-(rlydy — 1 forall ¢eR" (3.2.22)
B -

By |yl
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due to Fy(0) = n+1 and (3.2.4). Combining (3.2.18), (3.2.20), and we arrive at
limsup |7 222 < 1 (3.2.23)

Finally, the pointwise convergence and the Banach-Steinhaus theorem imply that
lim inf |7l L2 )m) = 1,

concluding the proof.

A similar result holds for S,

Lemma 3.2.7. (Operator S,) Let r € (0,79]. Then:

(i) S, is a well-defined continuous linear operator in (LP(Q2))™ for all p € [1,00]. The corre-

sponding operator norm satisfies

ISrLeczr @)y < . (3.2.24)

(it) Let p,p* € [1,00] be such that p* = ;E5. For all wy € (LP(Q))" and wo € (LP*(Q))n it
holds:

L(Sruh(x) cwo(z)) do = J (wi(z) - Spwa(x)) de.

Q
(11i) Let p € |1,00). For all w e (LP(Q))™ it holds that
S,w =, Sow = w in (LP(2))™.
(iv) For p = 2 it holds that

ISrl Loy =, 1

—0

Proof. The proof almost repeats that of Lemma Therefore, we only check (3.2.24)) and
omit further details. Let p € [1,00) and p* = ;E5. Using Hélder’s inequality, Fubini’s theorem,

and our convention that w vanishes outside Q we deduce for all w € (LP(Q2))™ that

1 P
] L f {S (w(@ +rsy) - y)ydo(y)ds| dz
0 1
1
<npf J, f |w(z + rsy)|P do(y)dsdz
QJo J S

1
=n”f JS JQ |w(z + rsy)|P de do(y) ds,
0 1

<nP Ll Jsl jQ |w(z)[P dz do(y) ds

:anwaLp(Q))n )

which means that

ISrIz(Lr@))n) < - (3.2.25)
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The proof in the case p = o0 follows the same steps, or, alternatively, one passes to the limit as

p— o in (3.2.25).
O

Remark 3.2.8. The constants in (3.2.10) for any n > 1 and in (3.2.24]) for n > 2 are not

necessarily optimal. For p # 2 it remains open whether or not
o inf [ 72 o g)ymy = 1
lim inf ny = 1.
i ”ST“L((LP(Q)) )

The answer may depend upon {2 and p.

3.3 Well-posedness for a class of evolution equations in-
volving 7, or S,
In this section we establish the existence and uniqueness of solutions to a certain class of single

evolution equations involving 7. or S,.. This result is an important ingredient for our analysis of

nonlocal systems in Section[3.4] Thus, we consider the following initial boundary value problem:

oicr = V- (a1Ve, — asGe(Ryr(a3Ve))) + f in Q x (0,7), (3.3.1a)
(a1Ver — asGe(Rp(asVe)))-v =0 on Q2 x (0,T), (3.3.1b)
er(-0) = ¢ in (3.3.1¢)

for T' € (0, 00). Here
7Q”I‘ € {7;787“})

and for € > 0 we set
T

G.:R" - R" —_—
) I Qe

(3.3.2)
The following lemma shows that G. is globally Lipschitz.

Lemma 3.3.1. The function G. is globally Lipschitz continuous with Lipschitz constant 1 for
e=20.

Proof. Let i € {1,...,n}. For fixed z; € R, j € {1,...,n}\{i} we set f;(z;) :=

We can estimate the derivative

Gi(z).

Lq —
1+elz] —

2
|1+ elz| —erk 1
2] <1
A+elz)?2  ~ 14ez]
The one-dimensional mean value theorem implies that for fixed z,y € R™ it holds that

|Gi(x) = Giy)| = |fi(xi) = [ily)| <0 fil Loyl = il < |20 = wil-

Consequently,

|awlf1| =

G(z) = G(y)|* = Z \fi(w:) = filys)]? < Z |2 —yil* = |z —y[*.
i-1 i=1
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Remark 3.3.2. Observe that for € = 0 equation (3.3.1al) is linear, whereas for € > 0 the nonlocal

part of the flux is a priori bounded. The latter helps us to construct nonnegative solutions in

Section

We make the following assumptions:

ai,az,as € LI(Q X (O,T)), (333)

ay > 0and a;' € L¥(Q x (0,7T)), (3.3.4)
-3 -3

Hal “2| 2 (x (0,7)) ‘al U] Lo ax 0,1)) IRellzzz@ymy <1 (3:3.5)

f € L*(0,T; (H'(Q))%), (3.3.6)

co € L*(Q). (3.3.7)

To shorten the notation, we introduce a pair of constants

“ 2“3)L\D<QX<O,T>> ”RT”L((”(Q))”O ’

M, :=|ai]=@x 1)) + lazlL=@x ) lasl L= @x©0,1) IRellLr2(0))m) - (3.3.8)
Due to assumptions (3.3.3)—(3.3.5)) it is clear that

0 <oy, M. < oo.

L =1y—=1 -3
ar i=ar iz oxom) (1 SR

We introduce a family of operators

01 (- )V - Vipda — f 15, )G (R (a5 (-, ) V) - Vo da,

<M(tau)a(p>(H1(Q))*7Hl(Q) = f o

Q
T
(M(W), ) 20,1508 () %), L2 (0,751 () 1=J0 (Mt u),0(8)) (1), 11 () At
Lemma 3.3.3. Let (3.3.3)—(3.3.5)) be satisfied. Then:
(i) For a.e. t € [0,T] the operator
M(t,-) - H'(Q) — (H' (2))*
s well-defined, monotone, hemicontinuous, and satisfies the bounds
<M(tvu)v“>(H1(Q))*,H1(Q) = aT”VuH%LQ(Q))ﬂv (3.3.9)
(M, W)l @pyx < Ml [Vull 2 @)y (3.3.10)

for all w e HY(Q). Moreover, for all u € HY () the function M(-,u) : [0,T] — (H'(Q))*

1s measurable.
(ii) The operator
M L0, T; HY(Q)) — L*(0, T3 (H' (2)%)
s well-defined, monotone, hemicontinuous, and satisfies the bounds
(M(u), ) 20 i sy, 02 0,150 ) = @rlIVUlT2 0 1522 (62))my s
M)l 20,7508 (2))%) < M|Vl 220,73 (22(0)m)

for all u e L*(0,T; HY(Q)).
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Proof. The assumptions on the coefficients a; together with the Lipschitz continuity of G readily
imply that for a.e. ¢t € [0,T] the operator M(t, -) is well-defined and satisfies . Moreover,
due to (3.3.3) and G. Lipschitz, it is also clear that M(-,u) : [0,T] — (H*(Q2))* is measurable
on [0,T] for all w e H'(Q), whereas for a.e. t the mapping A — (M (t,u + AV), W) (g1 )yx ()
is continuous on R for all u,v,w € H(f2), the latter meaning that M(t,-) is hemicontinuous.
Using Holder’s inequality, the facts that G is Lipschitz with Lipschitz constant 1 and G.(0) = 0,

the assumptions on the a;’s, and the properties of R,, we compute that

(M(tu) — M(tm),u — v>(H1(Q))*,H1(Q)
= J’Q V(u—v)-a1(-,t)V(u —v)dx

— jﬂ (Ge(Rr(asz(-,t)Vu)) — Ge(Rr(az(-,t)Vv))) - as (-, t)V(u — v) dz

2
2|

a% V(u—wv) H(m(g))n

- JQ ‘RT (al_%ag(-, t) (a%V(u - v)))‘ ‘a;%ag(-,t) (a%V(u — v))‘ dz

> (1 B Ha;%@) Lo (Qx(0,T)) Ha?ag) ”RTHL((LQ(Q))")> Hal%v(u B U)H(L2(Q))n

Zar [V(u— U)H?LQ(Q))" =0 (3.3.11)

L2 (Qx(0,T))

for u,v € H(), which proves monotonicity. Further, taking v = 0 in (3.3.11) and using
M(t,0) = 0 yields (3.3.9). Part (3) is thus proved. A proof of () can be done similarly; we omit
further details.

O

Using the properties of the averaging operators proved in Subsection |3.2.1] we can define weak
solutions to ([3.3.1)) in a manner very similar to that for the classical, purely local case (i.e., when
as =0):

Definition 3.3.4. Let (3.3.3)-(3.3.7) hold. We call the function c, : Q x [0,T] — R a weak
solution of (3.3.1) if:

(i) ¢, € L2(0,T; HY(Q)) n C([0,T]; L?(Q2)), dic- € L?(0,T; (HY(Q))*);
(ii) ¢, satisfies - in the following sense: for all p € H'(Q) and a.e. t € (0,T)
(Ocer, @) (e, m() = — L a1Vep - Vo do
+ L a2Ge(Rr(azVer)) - Vo dr + (f, 0) o)y« ma) (3-3.12)
(iii) c-(-,0) = co in L?(€2).

Using standard theory one readily proves the following existence result:

Lemma 3.3.5. Let (3.3.3)-(3.3.7) hold. Then there exists a unique weak solution to (3.3.1) in

terms of Definition|3.3.4. The solution satisfies the following estimates:

lerlEto,m1:22(0)) + @rlVerlZzo,my 2 @yymy < Calawr, T) <||Co||:22(9) + ||f||2L2(07T;(H1(Q))*)) ;
(3.3.13)
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|0ccr |22 0,7 (r1 0y %) < Calvr, My, T) (HCOH%2(Q) + ||f||2L2(o,T;(H1(Q))*)) :
(3.3.14)

Proof. The existence of a unique weak solution to ([3.3.1)) is a direct consequence of Lemma( i)
and the standard theory of evolution equations with monotone operators, see Theorem
It remains to check the bounds (3.3.13) and (3.3.14). Taking ¢ := ¢, in the weak formulation

(3:3.12)) and using Lemma[A.3.8 (3.3.9), and the Young inequality, we obtain that

1d
3 gpllerliz i) < = arlVerlEz gy + lerlm | fll @

=— O‘T’HCTH%{l(Q) + Oér||CrH2L2(Q) + lerl ez £y
1

1 _
S - §a7'HCT‘H%{1(Q) +arlerTa o) + 5% A1 gy

which yields (3.3.13) due to Gronwall’s inequality. Finally, using (3.3.10[), we obtain from the
weak formulation (3.3.12)) that

|0ccr [ ()« < M| Verlzzq@yyn + 1f e )

and consequently,

[0cer T2 0, r ()y%) S2MEIV 20 7522 (0)m) + 20 [ F2 00,780 () %)-

Together with (3.3.13)) this implies (3.3.14]). 0

3.4 Nonlocal models involving averaging operators 7, and

S,

In this section we study the following model IBVP:

oicr =V - (De(er,v.)Ver — erx(er, vr) R (Va(er,vr))) + feler,ve) in Q x (0, 00), (3.4.1a)
Orvr = DyAv, + fu(cr,vr) in Q x (0,00),  (3.4.1b)
D.(cr,v.)0pcr — crx(cryvr) R (Vg(cr,v,)) - v = Dy, =0 on 002 x (0,00), (3.4.1¢c)
cr(+,0) = co, vr(+,0) = o in Q. (3.4.1d)

Here, as in the previous section, R, stands for any of the two averaging operators:
R, €{T., S}

We assume that the diffusion coefficient D, is either a positive number, or it is zero.

Equations (3.4.1a)-(3.4.1b) are closely related to (3.1.1)) and (3.1.4) in Section[3.]] the difference

being that the terms involving the adhesion velocity /nonlocal gradient are now replaced by those
including the averaging operators 7,./S, from Section Our motivation for introducing this
change is twofold. First of all, due to and it affects the points in the boundary
layer Q\Q2,., at the most. On the other hand, Frample indicates that including, e.g., A,

can lead to limits with unexpected blow-ups on the boundary of €.

System ([3.4.1]) is a nonlocal version of the hapto-/chemotaxis system



32 CHAPTER 3. A RIGOROUS LIMIT PROCEDURE

0rc =V - (De(c,v)Ve — ex(e,v)Vg(c,v)) + folc,v) in Q x (0, 0), (3.4.2a)
0w = DyAv + fy(c,v) in  x (0, 0), (3.4.2b)
D.(¢,v)0p¢cr —ex(c,v)0,9(c,v) = Dydyv =0 on 092 x (0, 00), (3.4.2¢)
c(+,0) = cp, v(-,0) = vy in Q. (3.4.2d)

In this case, the actual diffusion and haptotactic sensitivity coefficients are
De(e,v) = De(c,v) — ex(c, v)deg(c, v),
X(e,v) = x(¢,v)0ug(c,v),
so that in the classical formulation takes the form
Oic=V - <5C(0, v)Ve — C)Z(C,U)Vv) + fe(c,v) in Q x (0, ).

The main goal of this section is to establish, under suitable assumptions on the system coeffi-

cients which are introduced in Subsection|[3.4.1] a rigorous convergence as » — 0 of solutions of

the nonlocal model family (3.4.1)) to those of the local model (3.4.2)), see Theorem[3.4.8 This is
accomplished in the final Subsection Since we are dealing here with a new type of non-

local system, we establish for (3.4.1)) the existence of nonnegative solutions in Subsections

and P73

3.4.1 Problem setting and main result of the section
We begin with several general assumptions about the coefficients of system (3.4.1)).
Assumptions 3.4.1. Let D, € RS, D.,x € Co(RT x RY), and g, f., fo € CLRF x RY) satisfy

Cs<D.<Cs inRy xRY  for some Cs,Cs > 0,

v( 9, (e,v) fv (LHL(IR(J)r X Rar))27
fC(O’ ) = 07
fv('7 0) = 0.
Assume that the coefficients satisfy the following bounds:
C7 := sup c|x(c,v)| < o, (3.4.3)
c,v=0
Cs := sup [0.9(c,v)| < . (3.4.4)
c,vz0

Further, we assume that the initial values satisfy

0 < coe L*(N),
0 <wvoe HY(Q). (3.4.5)

Remark 3.4.2. If D, > 0, then assumption (3 can be replaced by a weaker one, such as
Vo € LQ(Q)

We keep (3.4.5) in order to simplify the exposition.
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In addition, we will later choose one of the following assumptions on f. and the nonlocal operator:

Assumptions 3.4.3. (Further assumptions on f.) One of the following conditions holds:

(a)
v(t:,v)fc € (LI(}R(J)r X IR(J)r))Q

(b) there exists s = 0 such that

|[fe(e,v)| < Co(1 + |c|*) in RE x RY for some Cy = 0, (3.4.6)
cfe(c,v) < Cro — O™t m R[J{ x RY for some C1g =0, Cy1 > 0. (3.4.7)

Assumptions 3.4.4 (Assumptions on R,.). One of the following holds:
(a) for a given fixed r € (0, 10]

. C7Cy
Cia(IRel) i= 1= =52 Rellp uaqanyey > 0

(b)

C;C
Chs = &8<L (3.4.8)
Example 3.4.5. Let
D, =0,
Fo(p) i= (n+ 1),
SCC SC’U
g(c,v) := DecCt SV for some constants S.., Se, > 0,
l+c+vw
1
D.(c,v) := i,
l+c+w
b
=—— b>0
X(ev) = e b0,
fele,v) = MCHLCQ(KC —c—mnev) for some constants K., 7, t.>0,
fole,v) := pyv(K, —v) — )\le j_c for some constants K,, A\, > 0, p, =0,
and assume that
0 < Vo < K’u
Then, it holds a priori that
0<v< K,

for any v which solves (3.4.1b)) due to the form of f,. Therefore it suffices to consider the

coefficient functions in R x [0, K,].

For D, it holds on R} x [0, K] that
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and

D.(c,v) <1 =:Cs.
Obviously, f.(0,-) = fu(+,0) = 0. Moreover, V(..),9, V(cv)fv € (LR x RY))?, due to
[Sce(l +v) — Sepv]

Cs = cilg)o 19cg(e, o)l = 0cvek, 20 (L+c+ )2
= max S SCC _ SCUKU
I+ K, (1+K,)2%|)’
Sev(l +¢) — Seec]
0 — | cv cc
sup, 19vge. )l = ey, e = e
= max [Seo(1 + €) — Seec] < 00,
cz0 (1 + C)2
a _ )\U’U . )\ K
sup 10ctole, o)l = max me 570 =Mk
and
C
sup |0 fo(ev)] = mae max |, (Ko = 20) = Ay -] < o

For Co:=p.(K. + 1+ n.K,), Cio:=p1c(K. + 1) and Cy1:=p1, we can estimate on Ry x R{ that

|fC(va)| < Cy,
2

c
cfele,v) = Helr ez (Ke —c—=nev) < Cio — Crie
Further,
be bc
C7 = sup ex(c,v) = sup ————— =su =b
! c,v£0 X( ) c,vEO]- +c+vo CZIgl +c
holds.

Thus, Assumptions|3.1.1}[3.4.1), 13.4.5(b) and [3.4.4)(b) are fulfilled if
SCC SC’UK’U }
<1

1+ K, (1+K,)?
This choice of coefficient functions can be used to describe a population of cancer cells which

(1+ K,)bmax {SCC,

interact among themselves and with the surrounding extracellular matrix (ECM) tissue. Both
interaction types are due to adhesion, whether to other cells (cell-cell adhesion) or to the matrix
(cell-matrix adhesion). The interaction force F).(p) is taken to diminish with increasing interac-
tion range p and/or of the sensing radius r: cells too far apart/out of reach hardly interact in
a direct way. Function g(c,v) characterises effective interactions. Here the coefficients S.. and
S¢y represent cell-cell and cell-matrix adhesion strengths, respectively. Our choice of g accounts
for some adhesiveness limitation imposed by high local cell and tissue densities. It is motivated
by the fact that overcrowding may preclude further adhesive bonds, e.g., due to saturation of
receptors. The diffusion coefficient D.(c, v) is chosen to be everywhere positive and increase with
a growing population density, thus enhancing diffusivity under population pressure, but, further,
limited by excessive cell-tissue interaction. The latter also applies to the choice of the sensitivity
function x. Indeed, there is evidence that tight packing of cells and ECM limits diffusivity and
the advective effects of haptotaxis [106]. Thereby the constant b > 0 is assumed to be rather

small. Finally, f. and f, describe growth of cells and tissue limited by concurrence for resources.
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Next, we introduce weak-strong solutions to our problem. The definition is as follows:
Definition 3.4.6. Let Assumptions hold. Let r € [0,79]. We call a pair of functions
(cryvr) : QA x RE > R x RY a global weak-strong solution of 1) if for oll T > 0:

(i) cr € L2(0,T; HY(Q)) n Cu([0,TT; L2()), drey € L0, T5 (W, (Q))*);

)

(ii) v, € W2YQx (0, T)nC([0,T]: H'()) if Dy > 0 and v, € L*(0,T; H(Q))nC([0, T]; L2(2)
with dyv, € L2(Q x (0,T)) if D, = 0;

(iii) foler o) € LNQ x (0,T)), fulerv,) € LA(Q x (0,T));

(iv) (cr,vy) satisfies (3.4.1)) in the following weak-strong sense: for all ¢ € C*(Q) and a.e.

te (0,7)
<6tcra (p>(W})(Q))*,W})(Q) = - J;Z (Dc(cry Ur)vcr - CTX(CT'7 UT)RT(VQ(CM v?"))) . VQO dx
+ f feler,vr)p da, (3.4.9a)
Q
e (,0)=cy  in L*(), (3.4.9b)
and

Orvr = Dy Av, + fo(cr,vp) a.e. in Q x (0,T), (3.4.9¢)
D,o,v, =0 a.e. on 0 x (0,T), (3.4.9d)
vr(+,0) = v in H(Q). (3.4.9¢)

Remark 3.4.7. Observe that for r = 0 we obtain a corresponding solution definition for the

local system ([3.4.2]).

Our main result now reads:

Theorem 3.4.8. Let Assumptions|3.1.1], |5.4.1} [3.4.9(b) and |3.4.4)(b) hold. Then, there exists
a sequence 1y, — 0 as m — o0 and solutions (c,, v, ) and (c,v) in terms of Deﬁnition

corresponding to r = r.,, and r = 0, respectively, s.t.

Cr, = € in L*(Q x (0,7)),

Uy, = U in L*(Q x (0,T)).

This Theorem is proved in Subsection|3.4.4)

3.4.2 Global existence of solutions to (3.4.1)): the case of f. Lipschitz

In this subsection we address the existence of solutions to the nonlocal model (3.4.1)) for the case
when f. satisfies Assumptions[3.4.5(a). The main result of the Subsection is as follows:

Theorem 3.4.9. Let Assumptions [3.1.1) |3.4.1, and |3.4.8(a) hold and let r satisfy Assump-
tions|3.4.4\(a). Then there exists a global weak-strong solution with d;c, € L*(0,T; (H(Q))*) to
(3.4.1) in terms of Deﬁnition for o € HY(Q).
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Since we aim at constructing nonnegative solutions, it turns out to be helpful to consider first

the following family of approximating problems:

OtCre = V- (Dc(cr57 UTa)vcre - CT‘EX(CTEa Urs) (GE (RT(acg(Crsa Ure)vcre))

+ GE(Rr(ﬁvg(cra,vrs)ers)))) + fe(Cre, vre) in Qx (0,00),  (3.4.10a)
Orvre = Dy Avpe + fo(cre, vre) in Qx (0,00),  (3.4.10b)
Delere vre)0ere = crex(eres v02) (Ge (R (@eg (e, v72)Vere)

+ GE(RT((?Ug(cm,UTE)VUTE))> v = Dydyvr. =0 on 09 x (0,00),  (3.4.10¢)
cre(+,0) = co, vre(+,0) = vo in Q, (3.4.10d)

where G, was defined in . In order to obtain existence for the original problem, i.e., for
e = 0, we first prove existence of nonnegative solutions for the cases when e, D, > 0. This
corresponds to a chemotaxis problem with a nonlocal flux-limited drift. Weak-strong solutions
to are understood as in Definition with the obvious modification of the weak

formulation, which now reads:
<6tC7«5, SO>(H1(Q))*’H1(Q) =— j Dc(crs; Urs)vcre . v‘P dx
Q
+ f CreX(Crsa rUrs)Gs(RT(acg(CT& UTE)VCTE)) : V@ dz
Q

+ J CT‘EX(CT‘€7 vrs)Ge(Rr(avg(crsv Ure)vvrs)) ’ VSQ + fc(crea vre)wdx'
Q
(3.4.11)

Lemma 3.4.10. Let the assumptions of Theorem[3.].9 be satisfied. Assume further that
e, D, > 0.
Then there exists a global weak-strong solution to with
drere € L2(0,T5 (H'(Q))*)

for all T > 0.

Proof. To begin with, we extend the coefficients: for ¢ < 0 we set

(DCﬂX)(C7 v) = (DC,X)(—C,’U), fC(va) = —fc(—C,U), (3~4~12)
g(c,v) :=2¢(0,v) — g(—c,v), [folc,v) :=2f,(0,v) — fu(—c,v). (3.4.13)

These coefficients still satisfy Assumptions [34-9(a), and Assumptions [3.4.4(a) if we con-

sider all suprema over ¢ € R instead of c € RJ.

Our approach to proving existence is based on a Schaefer fixed-point argument (see Theo-
rem[A.2.5). In order to apply this theorem we first 'freeze’ ¢,. in the system coefficients of
(3.4.10)), replacing it by ¢,.. Correspondingly, we obtain the following weak formulation in place
of (3.4.11): For all p € HY(Q2), T > 0 and a.e. t € (0,T)

<6tCTE, ¢>(H1(Q))*,H1(Q) = — JQ DC(ETE, ’UTE)VCTE - V(p dx



3.4. NONLOCAL MODELS INVOLVING AVERAGING OPERATORS T, AND S, 37

+ J E’I‘EX(ET‘Eﬂ U’I“E)GE (Rr(acg(éra Ure)vcra)) . VSO dx
Q

+ J ErsX(Ersa U’I“E)GS(RT‘(a’Ug(ETE7 Urs)vvrs)) ) VL,D + fC(ET’é‘? 'Ure)(p dil',
Q

(3.4.14a)
cre(0,)) =co  in L*(Q) (3.4.14b)
and
OtVre = Dy Avre + f4(Cre, Ure) a.e. in Q x (0;7), (3.4.14c¢)
0,V =0 a.e. on 09 x (0,7, (3.4.14d)
Ve (+,0) = v in H(Q). (3.4.14e)

Let T > 0 and let ¢,.. € L2(Q2 x (0,7T)).

Step 1 (Existence of v, satisfying (3.4.14c|)-(3.4.14¢])). First, we set f,(c,v) := —f,(c, —v) for
v < 0. We want to perform a Banach fixed-point argument in C([0, T']; L?(£2)). Therefore, we fix
Ve € C([0,T]; L?(2)). Then, Theorem and Lemma imply the existence of a unique
solution v,. € W3 (Q x (0,T)) n C([0,T]; H'(Q)) satisfying

O4re = DyAvpe + fo(Cre, Ure) a.e. in Q x (0;7),
OyUre =0 a.e. on 092 x (0,7,
vre(+,0) = vg in H'(Q).

Moreover, the map ¥ : C([0,T7]; L?(2)) — C([0,T]; L*(R)), Uye = v, satisfies

|9 (@1) = (@) c(o.ry2 @) < CralD)foll e @t xr) 01 = V2lle(o,ryiL2()

again due to Theorem[A.1.8 Lemma[A-3.8 and the Lipschitz continuity of f,. Hence, for small
enough T the map ¥ is a contraction and we conclude from Banach’s fixed-point theorem ( The-
orem that the semilinear parabolic initial boundary value problem (3.4.14c))-(3.4.14€)
possesses a unique strong solution 0 < v,e € W' (Q x (0,T)). The solution extends to a
global solution as the choice of T only depends on fixed parameters. Multiplying by
(vre)— := —min{v,¢, 0} and integrating over 2 implies together with the Lipschitz continuity of

fv and f,(-,0) =0 that

1d
5%“(%5)*“%2(9) < ”ava”[,w(]Rng)”(UT’E)fH%Z(Q)'

Due to vg = 0 and Gronwall’s inequality v,. = 0 follows. Analogously, we conclude that

|vrells 0,m;02(0)) < Ci5(T)[vollz2()-

Combining this with the Lipschitz continuity of f,, f,(-,0) =0, Theorem and Lemma
the estimate

HUT€||20([O,T];H1(Q)) + ||UreHiZ(o,T;H2(sz)) + ”ath6”2L2(Q><(O,T))
<Cus(T) (I00 2@y + 1o Fres vre) Bxxco.r )
<Ci6(T) (HUOH?LP(Q) + ||@va||2‘I(RXJR(T)||UrsH2Lz(Qx(o,T))) < Cur(T)vol3 (g (3.4.15)

follows. Here and further in the proof we omit the dependence of constants upon D,,.



38 CHAPTER 3. A RIGOROUS LIMIT PROCEDURE

Step 2 (Existence of ¢, satisfying (3.4.14a) and (3.4.14bf)). Set

ay = Dc(Ersvvrs)v ag = ETEX(E’I“EvUTE), ag = acg(Erea'Urs)v

<f7 90> (HI(Q))*’HI(Q) = J;z ErsX(Ersa UTE)GE(RT(avg(a"Ea UTE)VUTE)) . V(P + fc(éra vra)‘P d.’L’

Due to our assumptions about D, x, g, and f., these coefficients a; and f satisfy the requirements
of Lemma Consequently, there exists a unique global weak solution ¢;.. to problem ({3.3.1))

with these coefficients. We estimate for the corresponding constants «, and M, introduced in

—1

1
Op ==~
H De(Cres vre) L*(Qx(0,T))
CreX(Cre, Ure 0cg(Cre, Ure
(fpat] sl )
D (Cre,vpe)2 L*(Qx(0,T)) De(Cre, vre)? L*(Qx(0,T))
205012(7“) = CIS(T); (3416)

M :HDC(ET&UTs)”L‘I(Qx(O,T))
+ HET‘EX(ETE) 'Urs) HL“‘O(QX (0,77)) ”acg(érev Ura) ”L“f-‘(Qx (0,77)) HRT‘ HL((L2(Q))7L)

<06 + 0708 ||R”‘”L((L2(Q))”) =: C]g(/]")7 (3.4.17)

and, due to the Lipschitz continuity of G. and G.(0) = 0, the linearity of R,, the Lipschitz

continuity of g and f, and (3.4.15)),

| £ 220,30 (2y%)
<H6T6X(Ersv UT’E)GE(RT(a’Ug(ETf? ’Urg)V’Urg)) HL2(O,T;(L2(Q))") + ”fc(ETe» 'Urs) HLz(QX 0.7))
SC7 Rl Lz2(yym ||av9||L‘ﬁ(Rle3f)varfHLz(OvT;(LZ(Q))") + Hach”Lb(]Rng)”EWHLZ(QX(O’T))

<Ca0(r,T) (1 + [rellL2(2x(0,1))) - (3.4.18)

Combining (3.3.13)-(3.3.14]) and (3.4.16)-(3.4.18)), we obtain the following bounds for ¢,.:

lere 0.7z + el VerelFao zyzayry <o) (1+ IorelPaganory) s (8419)
|0scre 720,75 rr1 (2)y%) SCo2(rT) (1 + ||5ra||2L2(Qx(o,T))) : (3.4.20)
Step 3 (Fixed-point argument.). Now consider the mapping

D:Ce > Cre.

Thanks to (3.4.19) and (3.4.20), ® is well-defined in L*(Q x (0,7')) and

®: L2 x(0,T)) = {ue L*(0,T; H'(Q)) : drue L*(0,T; (H'(2))*)}
maps bounded sets on bounded sets. (3.4.21)

Due to the Lions-Aubin lemma (Lemma(A.3.9), (3.4.21) implies that
®:L%(Q x (0,T)) - L*(Q x (0,7)) maps bounded sets on precompact sets. (3.4.22)
Next, we verify that ® is closed in L?(€2 x (0,7)). Consider a sequence

(Crem)m < L2(Q x (0,7))
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s.t.
Crem = e in LA(Q x (0,T)), (3.4.23)
®(Crem) =iCrem = Cpe  in L*(Q x (0,7)). (3.4.24)
We need to check that
®(Cre) = cre.

Due to (3.4.23]) we have (by switching to a subsequence, if necessary) that

Crem —  Cre a.e. in 2 x (0,7). (3.4.25)

—0

Further, (3.4.21]) and (3.4.24)) together with the Banach-Alaoglu theorem and Lemmaimply
that

Crem = Cre in L?(0,T; H'(Q)), (3.4.26)
OrCrem — Oicre  in L0, T; (H (2))%) (3.4.27)

and ¢, € C([0,T]; L?>(Q2)). By the definition of ® we have that ¢,.,,, and ¢, satisfy: for all
o€ HY(Q) and a.e. t€ (0,7)

<atcrsm; S0>(H1(Q))*7H1(Q) = - JQ Dc(zrem, Urem)vcrsm -Vedz
+ J Ersz(Ersma Ursm)GE (Rr(acg(érsm; U’r‘sm)vcrem)) - VQO dx
Q

+ J Ersz(Eramv Ursm)Gs (Rr (6v9(6r€m7 'Urem)vvrem)) . VSO
Q

+ fc(Ersma ’Ursm)@ d.%', (3428&)
Crem(0,)) =co  in L*(Q) (3.4.28b)
and
atvrsm = DvAvrsm + fv(érsm,'vrsm) a.e. in Q X (O,T), (3428(3)
OvVrem =0 a.e. on 0Q x (0,7), (3.4.28d)
Vrem(+,0) = g in H(Q). (3.4.28¢)

From (3.4.15) and (3.4.23) we conclude that the sequence (vVyem)m is uniformly bounded in
L2(0,T; H*(Q)) and (04vrem )m in L2(22x (0,T)). Hence the Lions-Aubin lemma and the Banach-

Alaoglu theorem imply that there exists v s.t. (after switching to a subsequence, if necessary)

Upem  — vpe  in L*(0,T; H*(9)),

m—C

OtVrem — Opvpe in L*(Q x (0,7)),
m—L

Vpem — vpe  in L2(0,T; HY(Q)) and a.e. in Q x (0,T), (3.4.29)
m—C

and due to the Lipschitz continuity of f,, the fundamental lemma of calculus of variations and
the embedding H'(Q) — L?(0€) this v,. satisfies equation (3.4.14c) for ¢,. as well as the initial
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and boundary conditions in the required sense. Moreover, v, = 0 as pointwise limit of such

functions.

Further, we conclude from combining (3.4.26) and (3.4.27) with Lemmas[4.3./] and [A.3.§ that

Crem(t) — cpe(-t)  in L2(Q) (3.4.30)

m—>aL
for all ¢ € [0,T]. In particular,
Cram('y 0) = Co,

i.e., the initial condition is satisfied.

It remains now to pass to the limit in (3.4.28a)). For this purpose we use the Minty-Browder
method. To shorten the notation, we introduce for u € L(0,T; H(Q)) and m € N u {o0}

(M (w); 0) 20,7 (11 () %), L2(0,75H1(2)
N J ) J De(Crem, Vrem) Vi - Vip — Ge(Ri(0cg(Crem, Vrem) V) erem X (Crems Vrem) + Vi da dt,
(fm> ¢ L2 0,T;(H(Q))*),L2(0,T; H1(Q))
J J CremX (Crems Vrem)Ge (R (00 g(Crem, Vrem) Vrem)) - Vo + fo(@rems Urem ) dz dt,
where

Crex = Cre, Ureon ' = Upe.

Due to Lemma/|3.3.3(ii), (3.4.17) and (3.4.26) each operator M,, is monotone, hemicontinuous,

and satisfies
Mo (Crem)| 20,11 (2))%) < Cro(r)|[eremllz2(0,7;m1 () < Cas(r).
Consequently, due to weak compactness there is n € L2(0,T; (H*(2))*) s.t.

Mo (Crem) — 1 in L2(0, T (HY(Q))*). (3.4.31)

Next, from (3.4.25)) and ([3.4.29)), the boundedness and continuity of (¢, v) — cx(¢,v), Vg and V f.
over R x R}, the Lipschitz continuity of Ge, the fact that R, € L((L?(2))") and the dominated

convergence theorem we conclude that

fm = fr  in L0, T; (HY(2)*). (3.4.32)
A similar argument yields
M (u) = M (u), in L2(0,T; (H(Q))%) (3.4.33)

for all w € L?(0,T; H(Q)) so that due to (3.4.26)) and compensated compactness (LemmalA.3.9)

Mo ()s erem) 20,1y (m1@)#), 20,1 (2) |, 77, (Moo (W) €re) 200 7 a1 (0))%), 22 (0,731 (90)) -

Observe that the weak formulation (3.4.28a]) is equivalent to

atcrsm = _Mm(crsm) + fm in (Hl(Q))* (3434)
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for a.e. t € (0,T). Combining (3.4.27)), (3.4.31)), and (3.4.32) we can pass to the weak limit in
(13.4.34)) and obtain

OsCre = =N+ fr  in (H'(Q))* (3.4.35)

for a.e. t € (0,T). For u e L?(0,T; H'(2)) and m € N we have due to the monotonicity of M,,
that

X := (M (crem) = M (W), Crem — W) 120 (e ()#),22 0,117 () = 0- (3.4.36)

Moreover, setting ¢ = c,ep in (3.4.28), integrating over (0,7) and using Lemma after
inserting the obtained term into the definition of X,,, we conclude that

K = = (Mn(Crem) w120 1011 (@) #), 120,731 ()

= M), Crem = W 120 1011 (2))%), 20,7181 ()
1 1
+ 5”CO”%2(Q) - 5‘|C751’7’L(T)H%2(Q) + <fm7 CT'€m>L2(07T;(H1(Q))*),LQ(O,T;Hl(Q)) . (3437)
From (3.4.30)) for ¢ = T" we conclude |, (T)|z2(q) < liminf,, o [crem(T)|2(q). Combining this
with (3.4.26)), (3.4.31))—(3.4.33)), (3.4.36]), and (3.4.37)) and compensated compactness, we obtain

0 < Timsup X < = (11, 1) 120 711 (@)%), 20,37 ()

= (Mo (u)s ere = W) p2 o 1y a1 (2))%),12 (0,73 H1(2))
1 1
+ §||CO||2L2(Q) - §Hcra(T)||2L2(Q) + (fos Cre) L2 (0,13 (10 (2)) %), L2 (0,75 () -

As ¢, satisfies (3.4.35)), it follows again with Lemma from the last inequality that

0 < (n = Mow)sere =) 2(0,rigam @)).22 0,730 ()
holds for all u € L?(0,T; H'(Q)).

Since M., is monotone and hemicontinuous, Lemma[A.1.16implies that it is maximal monotone.

Consequently, n = My (cre)-

Altogether, we conclude that (¢,c,v,.c) satisfies (3.4.14)) for ¢, meaning that ®(¢,.) = ¢, holds,
i.e., ® is a closed operator. Together with (3.4.22)), this implies that

@ : L*(0,T; L*(Q)) — L*(0,T; L*(Q)) is a compact operator. (3.4.38)

Since we aim to apply the Schaefer’s fixed-point theorem (Theorem |A.2.5), it is necessary to
consider for A\ € (0,1) the system which corresponds to ¢, = A®(¢,.). The corresponding

weak-strong formulation reads:

(Orere, ©) (11 (a)yx 11 (@)

=— f Dc(cravre)vcrs . V(pde
Q
* AJ CreX(Cre, Urs)Gs(/\ier(acg(crsa Vre)Vere)) - Vpdr
Q

+ )\f CreX(Cre; Vre)Ge(Rr(0vg(Cre, vre)VUre)) - Voo + fe(Cre, vre ) du, (3.4.39a)
Q
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¢re(-0) = Ao in L*(Q) (3.4.39b)
and
Otvre = Dy Avpe + fo(Cre, Ure) a.e. in Q x (0,7), (3.4.39¢)
OyUre =0 a.e. on 092 x (0,7, (3.4.39d)
Vre(+,0) = vo in H'(Q). (3.4.39)

Taking ¢ := ¢ in (3.4.39) and estimating the right-hand side by using Assumptions
and [3.4.4|(a), the Hélder inequality, the fact that |G.(z)| < |z|, Lemmas [3.2.5(i), [3.2.7(i) and
[4.2.8 we obtain that

1d
2dt||cf’s||L2

— C5 [ Vere {2y + ACH|GeN Re(Peg(ere, vre) Vere)) 2@y | Vere 2@y

+ AC7 |G (R (0vg(cre, vre) VUre) | p2(a)ye I Verell (2 @yn

+ A cfell e (Rxmg)HCTEH%z(Q)

— Cs | Verel{ra gy + AC7IR A Liz2 @) 08 IVerellzz

+ Crl10ugl Lo mxry | R Li(L2)m) HVUTEH(L2(Q))" IVerellizz (o)

+ ”acfc”L‘f(RXRa')||CT5||%/2(Q)

— C5C12(IR ) HVCTEH?LZ(Q))

+ C7ll0ugll L x| Rr |z @pm IV orell 22 @y 1V erell 2y

+ [0 fell o0 (RXRS')”CTEH%?(Q) (3.4.40)
holds for a.e. t € (0,T). Hence, Young’s inequality and imply that

1d
llers(Oll720) < Caa(IRe [, T) (1 + [lere ()72 (3.4.41)
2.dt

for a.e. t € (0,7] and we conclude from Gronwall’s inequality that the set
{cre € L2 (2 x (0,T)) : ¢re = A®(cye) for A€ (0,1)}

is uniformly bounded. Consequently, for all € € (0,1) the Schaefer’s fixed-point theorem implies
that ® has a fixed point ¢, which together with the corresponding v,., satisfies (3.4.10) in the
weak-strong sense on the interval [0,7]. Since T' > 0 was arbitrary, this extends to a global

solution.

Step 4 (Nonnegativity of ¢,.). It remains to check that ¢, is nonnegative. Therefore, we take

¢ = —(¢re)— = min{c,, 0} in (3.4.11) and use f.(0,-) = 0, the boundedness of G, D, 0. f¢, X,
along with the Holder and Young inequalities, which yields

1d
**H(Crs)fH%Z D —(Cre)—,vre) [V(ere) - | dx
2dt

f G 7‘ cg Crea'l)rs)vcrs)) ° (C’I‘E)*X(_(CT‘E)77/UT’E)V(CTE)f dl’

f G 7‘ Ug CT67UT6)VUTE)) ° (Cr£)7X(_(Cr5)77UTE)V(Cra)fdx
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+ JQ fc(_(cra)77 v'rs)(cre)f d.’E

2
< - O5HV(CTE)—H%L2(Q))" + EHXHLD(RX]R;)H(Crs)—HH(Q)HV(CTE)—”(L?(Q))"
+ HachHL‘I(]RX]Rg)”(67“6)7”2L2(Q)

gC’25H(C7"s)—”2L2(Q)'
Since ¢,+(0,-) = ¢o = 0, the Gronwall inequality implies that (¢.c)— =0, i.e., that ¢, > 0.
O

Remark 3.4.11. Observe that ¢, cannot be replaced by —(¢,¢)— inside the nonlocal operator.

This is why we introduced the flux-limitation.

Now we are ready to prove Theorem[3.4.9

Proof of Theorem[3.4.9 Let T > 0.

Case D, > 0: We start with the case
D, > 0.

Lemma|3.4.1( gives the existence of solutions (¢, e, vre) to (3.4.10). Setting ¢ = ¢, in (3.4.11)),
using the fact that |G¢(z)| < |z|, we obtain similarly to (3.4.15)), (3.4.40), and (3.4.41) and using

Gronwall’s inequality that
lerel 0,522 () + 1Verellz 0,522 0))n) < C26(|Re||, T), (3.4.42)
and
lvrel o, (@) + [vrell2 0,1 52(0)) + [0tvre | L2 (@ (0,1)) < Cor(IR-], T) (3.4.43)

where all constants are especially independent from . Consequently, for a.e. ¢t € (0,7) and all
© € H(Q) we can estimate similarly to (3.4.40) and (3.4.41) that

(OtCre; ©) (11 (@))%, 11 (02)

Vel iz + CrlGe(Ry(Oeg(cre, vre) Vere)) lz2ay)n
+ C7|Ge(Rr(0vg(cre, vre) Vore)) | r2(a) [Vl (2 + [ fe(eres vre)llL2 @) lell L2 (o)

<Cas([Re . T) (1 [Verel aaye) Ielims o

<C6||Vere||(£2 (@) Vel Lz@n

Integrating over (0,7), we conclude from (3.4.42) that

T

T
|, el et < Casl(Ro1. ) (1+ | 19erelany dt) < Cool[Ro, 7). (34.44)

Combining (3.4.42)—(3.4.44) and applying the Lions-Aubin lemma (Lemmal[A.3.9), the Banach-

Alaoglu theorem and Lemma[A.3.8 we conclude the existence of a pair of nonnegative functions
cr € L2(0,T; HY(Q))nC([0, T]; L*(Q)) with d,c, € L2(0, T; (H'(Q))*) and v, € W5 (Q2x(0,T))n
C([0,T]; H'(Q)) such that for a sequence e,, — 0 it holds that

Cre,, — ¢y in L*(Q x (0,7)) and a.e. in Q x (0,7), (3.4.45)
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Cre, = ¢ in L*(0,T; H'(Q)), (3.4.46)

Orcre,, — Oper in L2(0, T3 (H'(Q))"), (3.4.47)

Urem 2 U in L*(0,7; H'(R2)) and a.e. in Q x (0,T), (3.4.48)

Ure,, = vy in L2(0, T3 H*(Q)), (3.4.49)

Orvre,, = Oy in L*(Q x (0,T)). (3.4.50)

Consider an arbitrary measurable set E < Q x (0,T). Using G.(z) —x = —6%, we can
estimate for every component i € {1,...,n}:

j (e (Ro(Beg(Crey Vre,, ) Vere,)) — Ro(0eg(Crens vre, ) Vere,,)); dedt
E

dx dt

T
stmf J |Rr(0cg(Cre,s Vre,, ) Vere,, 2
0 Q

<eml Rl (22 Cal Veren 20, (22@)ym)

where the last term tends to 0 due to (3.4.42) as €,, — 0. As the term inside the integral is
m—o0

moreover bounded in L?(Q2 x (0,T)) by a constant independent from &,,, we conclude by using

Lemma[A.3.9 that in L(0,T; (L*(Q))")
G., (R.(0c9(cre,,, Vre,, )Vere, ) — Rr(0cg(Cre,, s Ure,, )VCre,,) — O. (3.4.51)

m—o0
With the help of Lemma[3.2.5(ii) or [3.2.7](ii) we can rewrite that
T
J f R (0cg(Cre,,, Vre,, )Vere,.) - Cre, X(Cre,, s Ure,, )V da dt
0 Jo

T
= J J 0cg(Cre,s Vre, )Vere,  Re(Cre,, X(Cre,, s Vre,, ) Vi) dz dt. (3.4.52)
o Ja

The pointwise convergences from (3.4.45|) and (3.4.48)) together with the boundedness and con-

tinuity of (¢,v) — ¢x(c,v) and the dominated convergence theorem imply that

cTE'mX(CTEHH UTa'rn)v,L/) m:’I CTX(CT7 UT)V'Qb in L2(07 T; (LQ(Q))TL) (3'4'53)

Then, we conclude from Lemma|3.2.5(i) or |3.2.7(i), (3.4.45)), (3.4.48)), the boundedness of d.g

and the dominated convergence theorem that

acg(cre,,L7 Ure,, )Rr (Crem X(Crem y Ure,, )Vw) _’% acg(cra UT)R’I‘(CT‘X(C’I‘7 ’U’I‘)V’(/})
in L2(0,T; (L*(Q)™). (3.4.54)

Now, combining (3.4.46)) and (3.4.51))—(3.4.54) it follows due to compensated compactness (see
LemmalA.3.2) that

J J Gam r cg Crepm s Ure,, )Vcrsm )) ' CrEmX(CTEm y Urep, )vqp dz dt

- f | Ref@uster. 0090 - coxter.vn)Vudzat.

The convergence of the remaining terms in (3.4.9a) and the rest of (3.4.9) can be obtained from
m in a way either completely analogous or Very similar to the corresponding parts
of the proof of Lemmam Consequently, (¢, v;) solves in the required sense.
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Case D, = 0: In order to prove existence for the case
D,=0

consider a family of solutions (¢,p,,vrp,) corresponding to D, € (0,1). The existence of such
solutions was shown in the first part of this proof. Multiplying (3.4.9¢) for v,.p, by Av,p
integrating over Q and using partial integration, we can estimate for a.e. t € (0,T) with Young’s

v?

inequality due to the boundedness of V f, that

1d
2 dt

< f |va(c7’Du ’ UTDU)
Q

—[Vurp, I (2 + Do HAUTDWHL2

|Vu,p,|dx

SH@chHL‘D(Rg xR) JQ IVerp, || Vurp, | dz + ”ava”Lw (RF xR fg |Vuep, 2dx

<031 (HVCT‘DU ”%LQ(Q))TL + ”verv ”%LQ(Q))W,) . (3.4.55)

Estimating |c,p, ||2L2(Q) similarly to (3.4.40) and adding aﬁiZ%HVUTDU ||%L2(Q))n, we conlude
using (3.4.55) with Young’s inequality that for a.e. t € (0,T") it holds that

1d 2 C5C12(|R-])
T ( @ " oq, IV (@)
C5C12(|[R-) 2 C5C12(|R+r) 2
+ fHVcTDU H(LZ(Q))'IL + DUW”AUTDU HLZ(Q)

<[0efel et xriyllerp, 22 () + Co2(IR DIVOrD, Iz ()

Then, Gronwall’s inequality implies

lerp, L 0,1:2(0)) < Cs3(|Re[, T), (3.4.56)
IVerp, L2072 @))m) < Cas(|R |, T), (3.4.57)
VD, | Lo 0,122 )ym) < Ca3(|Re[, T), (3.4.58)

Dy |Avep, [L2x0.1)) < Cs3(|R-[l, T) (3.4.59)

for a constant Cs3(||R,[|,T) > 0 that is especially independent from D,,. Multiplying (3.4.9¢) by
vrp, we conclude with f,(-,0) = 0 and the Lipschitz continuity of f, using partial integration
the estimate

1d
92 dt —lvrp, HL2 ‘JQ folerp,,vrp, )orp, dz| < Hava”Lw(R;fog)HU?"Du||%2(Q)

for a.e. t € (0,7). Consequently, Gronwall’s inequality implies that

lvrp, |22 0,152 () < Caa(|R-[, T)- (3.4.60)

A uniform bound on (é;¢,p, ) p, in L*(0,T; (H(Q))*) follows combining 7 and es-
timating as above in ([3.4.44). Moreover, we conclude with ([3.4.59) and (3.4.60)) and the Lipschitz
continuity of f, from that (0,v,-p,)p, is uniformly bounded in L?(Q2 x (0,T)). Combin-
ing this with (| m - we conclude again from Lions-Aubin and Banach-Alaoglu (Lem-
mas[A.3.1) and [4.3.9) and Lemma § that there are c.q € L?(0,T; H'(Q)) n C([0,T]; L*(Q))
with 6tcr0 € L2(0,T; (H*(Q))*) and v,o € L*(0,T; HY(Q)) n C([0,T]; L*(Q)) with time deriva-
tive dyvn0 € L2(Q x (0,7)) s.t

Cr(D,) =2, Cro D L*(Q x (0,T)) and a.e. in Q x (0,T), (3.4.61)



46 CHAPTER 3. A RIGOROUS LIMIT PROCEDURE

Cr(Dy)m . Cro in L2(07T§ H' (Q2)),

OtCr(Dy)m o Orcro in L*(0,T; (H' (2))*),

Ur(Dy) | 2, UrO in C([0,T]; L*(2)) and a.e. in Q x (0,7), (3.4.62)
Vor(p,), = Vo in L7(0,T; (L2(Q))"), (3.4.63)
OtUr(Dy) 6th0 in L2(Q x (0,7)) (3.4.64)

m— L
for a subsequence (D,),,. Observe that this time the gradients of ¢ and v enter linearly into
our equation, so that no strong convergence and no application of Lemma are required.

From this we conclude with the dominated convergence theorem, compensated compactness

(Lemmal[A-3.9), Lemma[3.2.5(i) and (ii) or [3.2.7(i) and (ii) similarly to above that
T
f L R (V9(Cr(D,)s Vr(D2) ) * Cr(D2) o X(Cr (D) Vr(D,),, ) VY d i
0
T
=j J, Vg(Cr(Dy)ms Vr(Dy)m) " Re(Cr(Dy), X(Cr(Dy) > Ur(D,),, ) V) dz di
f [ Votern. v Re(crontras ) V) dact

= J J, RT(VQ(CT07 U’I‘O)) ' C’I‘OX(C’I‘07 UTO)Vw dz dt
0 Q

holds for 1 € L?(0,T; H*(2)). The convergence of the remaining terms in the equation of Cr(Dy)m

follow as in the proof of Lemma Finally, we multiply (3.4.9¢) by ¢ € L*(Q x (0,T)),
integrate over Q2 x (0,7) and use partial integration to obtain

T T
f J 6th(Dv)m1/)dxdt + (Dv)m J J va(Dv)m -V dzdt
0 JQ 0 JQ

T
:J J fv(c’r‘(Du)maUr(Du)m)w dxdt.
0 JQ

Then, we conclude from (3.4.58)), (3.4.61), (3.4.62), and (3.4.64)), the Lipschitz continuity of f,

and the dominated convergence theorem that

T T
| ] dwawdzde = || futeros vy doa.
0 Q 0 Q

Hence, the fundamental lemma of calculus of variations that (c.q,v.q) solves (3.4.1) for D, =

in the required sense.

3.4.3 Global existence of solutions to ((3.4.1)): the case of f. dissipative

In this subsection we provide an extension of the existence theorem Theorem[3./.9 from Subsec-
tion|5.4.4

Theorem 3.4.12. Let Assumptions |3.1.1}, |5.4.1, and|3.4.5(b) hold and let r satisfy Assump-
tions|(3.4.4)(a). Set

1
¢ = min {2, st } ¢ = L = max{2,s+1}. (3.4.65)
S

q—1

3As usual, here and below the expression % means infinity if s = 0.
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Then there exists a global weak-strong solution to (3.4.1) in terms of Deﬁm’tion with
Orcr € L0, T (qu* (Q)*) and p € qu* (Q) satisfying for all T > 0 the estimates

llerllz=0,;02(0)) < Css([ Rl Licr2(0))m): 1) (3.4.66)
IVer|lpzo, 72 @)ym) < Css([| Ry HL((Lz(Q ). 1), (3.4.67)
||atcr||Lq 0.T3(W 14 () < Css(|Rel Lz, 1), (3.4.68)
lorlle=0,;02(02)) < Ca5([IRrlL(z2(0))m): 1), (3.4.69)
[[VUrllLe 0,72 @)m) < Cas(|Relliz2(0))n), T)s (3.4.70)
10¢vr]| L2 (x (0.1)) < C35(|| R HL((L?(Q ny, T, (3.4.71)
[ fe(ers vr)|Lagax 0,1y < Cas(|Rel L2y, T)- (3.4.72)
va(cravT)HLQ (Q@x(0,T)) S Css5(| R HL((L?(Q aT) (3.4.73)

Proof. Let T > 0. For k € N set

fck(ca U) = fc(cv U)Uk(ca U)7
where 7y, is a cut-off function:

€ CX(BY) with m,=1 inBf, and 0<7 <1 (3.4.74)

Here, B} denotes the two-dimensional ball with radius k centered at the origin. The continuity
of Vf. and imply that f.; has bounded derivatives. Hence, it is Lipschitz continuous due
to the mean value theorem and Theorem implies the existence of a solution (c,x,vrk) in
terms of Deﬁnitz’on with d;c, € L2(0,T; (HY(2))*) and ¢ € H(Q), which corresponds to
fe = fer- Our next aim is to prove that (¢qx,v,r) satisfies the same bounds as in the statement
of the theorem with some constant Cs5(|R.||L((z2(q))»),T) which does not depend upon .

Set
Cs6(|Rr]) := Rr | L((z2())m)-

Taking ¢ := ¢, in (3.4.9a]) written for ¢, and using Assumptions|3.4.1} [3.4.3(b),|3.4-4|(a), the
fact that R, € L((L*(Q))") and the Holder and Young inequalities, we compute

5%“07%“%2(9) = l[ ( - (Dc(crka vrk)vcrk - CrkX(Crka vrk’)Rr(v.g(crkv Urk))) . vcrk
Q
+ Crkfck(crkv U?"k)) dz
— C5 [Verkll{ 2 gyn + C7 1V erkl 22 @y IR (Va(erns vrk)) 20
+ fﬂ(clo - C’Hcizs)nk(crk, vp) dz
— Cs [Verklrzayyn + CrCas(IRe ) [Verkl L2 (qyyn IV 9(Crks vrt) 12 ()
+C37 —C11 J;) err i (erk, vpr) dz
— Cs [Ver e o)
+ CrCag (IR ) 19l ey 106 vri) Vernl a(en)
+ CrCs6(IRr ) [Verkll L2(ayyn 10vg(cris vrk) Vork 2 (qyyn + Csr

—Cn J et (er, vrr) do
Q



48 CHAPTER 3. A RIGOROUS LIMIT PROCEDURE

— C5C12(|R) chrk”?m(fz))n
+ CrC36(IR: ) 10090 1o (2 sy 1V Ernl (12

Vg H (L2(Q))"

+ C37 — C1y f e (erg, vpr) do
Q

CsCa(|R,
— GG G2, 0y + Cos IR V01 e + Co

—Ch J cizsnk(cm, Vg ) d. (3.4.75)
Q

Next, we estimate v,t. If D, > 0, then Theorem[4.1.8 and Lemma[A.5.8yield as in the proof

of Lemma that

lork| 2 0,720 2)) + l0rkl Z2 0,702 (0) + 10c0nk T2 0.7y < Cao(Dlvolin oy (3:4.76)

Here and further in the proof we omit the dependence of constants upon D,,. If D, = 0, then we
get the ODE

atvrk :fv (Crk7 U7'k)~ (3477)

Hence, the assumptions on f, and the solution components together with the chain rule imply
that

Opvpp €L?(0,T; HY(Q)).

Computing the gradient on both sides of (3.4.77)), multiplying by Vv, throughout, integrating
over , and using Assumptions and the Young inequality, we obtain for a.e. t € (0,T) the
estimate

1d

2 dt ”V?}TkH (L2(Q))™ J (6va(6rkavrk)|vvrk|2 + acfv(crkavrk)vcrk : vvrk) dz
Q

<100 foll o et xiy IV 0k IFL2 (62

F 10 foll o g gy IV Erkll 2@ [V orkl 220y

<040vark”%y(g))n + Cy ||VCT’,€H?L2(Q))7L . (3.4.78)

Proceeding as for estimate (3.4.41)) if D, > 0 and as in the second case of the proof of Theo-
rem[3.4.9if D, = 0 and using the Gronwall inequality yields that ¢, and v, satisfy estimates

as (3.4.66), (3.4.67)), and (3.4.69)—(3.4.71]) for a constant independent from k as this is the case

for all constants involved in (3.4.75)), (3.4.76]), and (3.4.78]). Hence, the estimate

J J rk 77k Crk,vrk)dl'dt < C42(||Rr||7T) (3479)

follows after integrating (3.4.75)).
From (3.4.6) and (3.4.79), the embedding of Lebesgue spaces, and n, € [0,1] we conclude using

Holder’s inequality if necessary that

chk(crkvak)HLq Qx(0,T)) <Cy H( + Cf«k) nk(crkaTk)HLq (2% (0,T))

<C43( ) + C44||Crk77k(67'k7vT‘k)”Li(QX(O T))

s

s+1
<Cu3(T) + Cua (J J o e (Cres vrk) da dt) < Cus(|RA, T).
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so that (3.4.72) holds for f.r(crk,vrk). An estimate as (3.4.73) for f,(crk,vri) follows from the

Lipschitz continuity of f,, f,(-,0) = 0 and the uniform in & bound on (v,). Finally, combining
Assumptions with the fact that R, € L((L?(Q2))"), the uniform in k¥ bound on (Vv,), the
weak formulation for ¢ € qu* (Q), Holder’s and Young’s inequality and the embedding
of Lebesgue spaces yield

| (O¢Cri, @)(qu* (@)* Wl () |

< +

f (Do vrk)Verk — ernx(erns o) Ro(Vg(con vni))) - Vo da
Q

f fer(Cri, vri)p da
Q

<Cus(IR: 1) (IVerelz2gapn + [Vvrelzzyn) IVelzz@yn + 1 fek(eri, viw)l La@ @l Lo q)
SCur (R, T) (1 + | Vernlcrzyn + [ fer(Cors ver) | o) H<P||qu* Q)

Taking the supremum over H‘»O”qu* (@) < 1 and integrating the gth-potence over (0,7") we conclude
that holds for 0ic,r due to the uniform in k& bounds on (Verk), and (fer(Cri, vrk))-
Since (¢, vpg) satisfy — uniformly in k, the Lions-Aubin lemma, Banach-Alaoglu
theorem (Lemmas[A.3.1 and [A.5.9) and Lemma[A.3.8imply that there are ¢, € L(0,T; H'(2))
with dyc, € LI(0,T; (W (2)*) and v, € W5 (Q x (0,T)) n C([0,T]; H'(Q)) if D, > 0 or
v € L*(0,T; HY(Q))nC([0,T]; L3(R2)) with 0,v, € L2(Q2x(0,T)) if D,, = 0 s.t. for a subsequence

Crk,, — Cp in L2(Q x (0,7)) and a.e. in Q x (0,T), (3.4.80)
Crk, > Cr in L7(0,T; L*()), (3.4.81)

m—o0
Verk, = Ve in L2(0,T; (L*(Q)™), (3.4.82)
OtCrk,, S orcy in L9(0, T (qu* (Q)*), (3.4.83)
Vrk, — Ur in C([0,T]; L*(2)) and a.e. in Q x (0,T), (3.4.84)

m—0
Vo, — Vo, in L™(0,T; (L2(Q)"), (3.4.85)
Orvrk,, — Oy in L2(Q x (0,7)) (3.4.86)

and additionally

Uk, — vp in L2(0,T; H*(Q)). (3.4.87)

m—o0

if D, > 0. Then, due to (3.4.80) and (3.4.84)), the continuity of f. and f,, the definition of 7
and the uniform in k£ bound on (fex(crk, vrk)), the Lions lemma (LemmalA.3.4)) implies

fekm (Crkp > Vrk,,) m:‘y\: fe(er,vp) in LY(Q2 x (0,T7)),
folCrk,, s Urk,,) - folcr,vy) in L2(Q x (0,7)).
m—L

Consequently, ¢, and v, satisfy — as (weakﬂ? limits of functions satisfying these
inequalities and setting X = L?*(Q) and Y = (qu* (Q)) in Lemma |A.3.5 we conclude that
cr € Cy([0,TT; L2(Q)) with ¢,.(+,0) = ¢o in L%(Q). Finally, we conclude similarly to the proof of
Theorem [3.4.9 that (c;,v,) solve in the required sense.

O

3.4.4 Limiting behaviour of the nonlocal model (3.4.1)) as r — 0

In this subsection we finally prove our main result concerning convergence for r — 0.
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Proof of Theorem[3.7.8 Due to (3.4.8) and Lemma [3.2.5(iv) or [3.2.7(iv), respectively, there

exists a sequence 7, — 0 as m — o0 such that

1
R 3.4.88
Sup IR L2y < 7 Crs’ ( )

Since for each such r,, the Assumptions ( a) are satisfied, Theorem is applicable and
yields the existence of solutions (c;,,, vy, ) which satisfy (3.4.66)-(3.4.73). Replacing |R,| by
Ciz in Cs5(T, R L((z2(@))»)) makes the constant in — independent of m. Using
Lions-Aubin, Banach-Alaoglu (Lemmas |A.3.1] and [A.53.9) and Lemma we conclude (by
possibly switching to a subsequence) that there are ¢ € L2(0,T; H'(2)) n Cy([0,T]; L3(Q))
with d,c € L9(0,T; (W) (Q))*) and v € W3 (Q x (0,T)) n C([0,T]; H(R)) if D, > 0 or v €
L*(0,T; HY(Q)) nC([0,T]; L*(Q)) with ;v € L?(2x (0, 7)) if D, = 0 s.t. (¢,;) and (v,.) converge
to ¢ and v, respectively, in the sense of —, i.e., especially

Cr,, = C U, — U in L?(Q x (0,7)) and a.e. in Q x (0,7), (3.4.89)
Ve, — Ve, Vo, — Vv in L2(0,T; (L*(2)™). (3.4.90)

We conclude from (|3.4.89), the continuity of x and Vg and the dominated convergence theorem
that

cr x(er,vn,) —  ex(c,v) in L2(Q x (0,7)),  (3.4.91)

m—>oC

(R e 0cg(c,v), Ovglcr, ,vr,) e 0vg(c,v) in L2(Q x (0,7)). (3.4.92)

Observe that for any v € L*(0,T; WL (Q)) the following estimate holds:
T
J j [eg(er,, s vr, )Ry, (cr, x(Cr, ,Ur, V) — 6cg(c,v)cx(c,v)vw|2 dz dt
0 Ja
T
<9 ( | 1@eater, ) = duge DR, (er, X0, ) V0P
0o Ja
T
[ 10t R, (e xen,on,) = ex(e ) Vo) duds
0 Jo

T
+ f f 10e9(c,v) (R, (ex(c,v)V) — ex(e, v) V)| dxdt). (3.4.93)
0 Q

Now, using (3.4.88)), (3.4.91)), and (3.4.92)) together with Lemma[3.2.5(i) and (iii) or Lemmal[3.2.7(i)
and (74i), respectively, we conclude that the right-hand side of m ) tends to zero, hence

6Cg(crm,vrm)er(crmx(c,«m,vrm)Vd)) e acg(c v)ex (e, v)V in L2(O,T; (LQ(Q))”)
(3.4.94)

An analogous convergence holds for the corresponding term involving d,g. Finally, we obtain us-

ing Lemma ( it) or Lemma ( i1), respectively, compensated compactness (Lemma,
(3.4.90) and (3.4.94) that

T
[ enternson, )R, (Fter, c00,) - T doct
0 JQ

T
= J J VQ Cro» Urm er (CrmX(Crm , Urm)v¢) dzdt
0 Q
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m—xL

T
— J’ f Vy(c,v) - ex(e,v)Vip dzx dt.
0 Ja

The convergence of the remaining terms follows similarly to the proof of Theorem[3./.9 Hence,
(c,v) solves the local system (B.4.2)) in the sense of Definition[3.4.6 O

3.5 Numerical simulations in 1D

This section is the sole work of Kevin Painter and is included for the sake of completeness.

We perform numerical simulations to investigate on the one hand the effect of differences between
hitherto choices of nonlocal operators and our novel ones proposed in Section [3.4 and on the
other hand convergence between nonlocal and local formulations. For compactness, our current
study restricts to the prototypical nonlocal model for cellular adhesion , its reformulation
as , and the corresponding local model . Thus, for we take the operator form
R, =T, with 7. as in . These models can be interpreted in the context of a population
of cells invading an adhesion-laden ECM /tissue environment and, with this in mind, we initially
concentrate cells at the centre of a one-dimensional domain © = [0, L] and impose an initially
homogeneous ECM. Specifically, we set for the ECM

vo(x) =1, e (3.5.1)
and consider for the cell population a Gaussian-shaped aggregate
co(z) = exp (—a(z — z.)?), zeq, (3.5.2)

where we set . = L/2 or z. = 0.

The numerical scheme follows that described in [67], which we refer to for details. Briefly, a
Method of Lines approach is invoked whereby equations are first discretised in space (in con-
servative form, via a finite volume method) to yield a high-dimensional system of ODEs, which
are subsequently integrated in time. Discretisation of advective terms follows a third order up-
winding scheme, augmented by flux limiting to preserve positivity of solutions and the resulting
scheme is (approximately) second-order accurate in space. Time integration has been performed
with standard Matlab ODE solvers: our default is “ode45” with absolute and relative error tol-
erances set at 1079, but simulations have been compared for varying space discretisation step,
ODE solver, and error tolerances. To measure the difference between two distinct solutions over

time we define a distance function as follows:
d(ug(z,t), us(z, t))(t) = J lui(z, t) — ua(x,t)| d,
Q

where u; and us denote the two solutions that are being compared.

3.5.1 Comparison of nonlocal operator representations

We first explore the correspondence between forms of nonlocal operator representation: we choose
the prototypical nonlocal model for cell/matrix adhesion (3.1.1) and its reformulation (3.4.1),
therefore taking for the latter the operator form R, = 7, with 7, as in (3.2.2]). In what follows,
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Figure 3.1: Comparison between nonlocal formulations (3.1.1)) and (3.4.1]). (a-b) Cell and matrix
densities for the models and at t = 2.5 and t = 5. (c) Difference between the
solutions. For these simulations we take « = 10, r =1, D, = 0.01, x =1, F,. =2, f. = 0 and
fu(c,v) = —cv, along with (a-c) g(c,v) = 100, (d-f) g(c,v) = 2.5¢ + 10v.

solutions to are denoted ¢4 and v4 and those for denoted cr and vp. For simplicity
we restrict in this section to a minimalist formulation in which D, = constant, y = 1, f. = 0.
Cell-matrix interactions are defined by g(c,v) = Secc + Sepv and f,(¢,v) = —pcv, where S.. and
Sev respectively represent cell-to-cell and cell-to-matrix adhesion strengths and f, simplistically

describes (direct) proteolytic degradation of matrix by cells parametrised by degradation rate .

Figure[3.1shows the computed solutions under (a-c) negligible cell-cell adhesion (S = 0) and (d-
f) moderate cell-cell adhesion (Sc. = S¢,/4). The equivalence of the two formulations is revealed
through the negligible difference between solutions, with the distance magnitude attributable to
the subtly distinct numerical implementation. Both simulations describe an invasion/infiltration
process, in which matrix degradation by the cells generates an adhesive gradient that pulls cells
into the acellular surroundings. The impact of cell-cell adhesion is manifested in the compaction

of cells at the leading edge into a tight aggregate.

However, as pointed out in Section [3.3 differences in the nonlocal formulations can emerge in
the vicinity of boundaries. To highlight this we consider an equivalent formulation to Figure[3.1
(a-c), but with the cells initially placed at the left boundary (z. = 0 in (3.5.2)), e.g., suggesting a
tumor mass which is concentrated there and whose cells are expected to detach and migrate into
the considered 1D domain, travelling from left to right. As stated earlier we impose zero-flux
boundary conditions at * = 0 (and z = L), and further suppose ¢ = v = 0 and Ve = Vv in
the extradomain region (R\Q2). Representative simulations are shown in Figure[5.4 They are in
agreement with our observation in Fxample Indeed, for this scenario, in the prototypical
nonlocal model — there is a very large adhesion velocity modulus at = 0; the cells
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Figure 3.2: (a-c) Comparison between nonlocal formulations and near boundaries.
Model as in Figure (a-c), but with the cells initially concentrated at the boundary. (d-f)
Comparison of the two forms of nonlocal operator corresponding to the simulations represented
in (a-c). The operators are practically identical sufficiently far from the boundary, but can

diverge significantly for distances < r from the boundaries.

are crowded within the tumor mass and their mutual interactions are maintained during the in-
vasion process in a sufficiently strong manner to ensure a collective shift of the still concentrated
cell aggregate, with a correspondingly strong tissue degradation in its wake. In the reformulation
—, rather, the adhesion magnitude at x = 0 is for the same initial condition much
lower - suggesting a tumor whose cells are readier to detach and migrate individually. This
results in a more diffusive spread, with accordingly less degradation of tissue, and with cell mass
remaining available at the original site over a larger time span. The latter scenario is different
from the former one, but it seems nevertheless reasonable, as a tumor mass would very often not
move as a whole from its original location to another in a relatively short time; moreover, the
active cells in a sufficiently large tumor (releasing substantial amounts of acidity) are known to
preferentially adopt a migratory phenotype and perform EMT (epithelial-mesenchymal transi-
tion), see e.g., [125], which supports the idea of cells moving in a loose way rather than
in compact, highly aggregated assemblies ﬂ As such, our simulations suggest that, within this
particular function- and parameter setting, choosing the adhesion operator in the form
instead of might possibly overestimate the tumor invasion speed and associated healthy
tissue degradation, thereby predicting a spatially concentrated tumor and neglecting regions with

lower cell densities which can nevertheless trigger tumor recurrence if untreated.

4unless environmental influences dictate conversion to a collective type of motion
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3.5.2 Comparison between nonlocal and local formulation

Having compared together the original, , and the new, , nonlocal formulations,
we next consider the extent to which their dynamics can be captured by the classical local
formulation . Note that for nonlocal model simulations we will restrict to the original
formulation 7 so that we can avail ourselves of an already well-established efficient (in terms
of computational time) numerical scheme [67]. Here we use ¢y, and vy, to denote solutions to the
local formulation and c4, and v4, to denote solutions to the nonlocal model with sensing radius
r. We remark that a large number of related local and nonlocal models have been numerically
studied to describe the invasion-type process considered here (e.g., [3} |68 [118] [121]): here the
specific focus is to explore the convergence of nonlocal to local form as r — 0, which, as far as

we are aware, has not been systematically investigated.

As in the first test we use the initial values (3.5.1) and (3.5.2), choosing x. = L/2, o = 10
in the latter, and consider the coefficients and functions as proposed in Ezample Under
these choices the resultant nonlinear diffusion coefficient for the c-equation in the classical local
formulation (compare (3.4.2al)) becomes
. a?(1+¢)? (1 4+ c+v)2 —be(l + cv)(See + (See — Sew)v)
D.(c,v) = )
(I+cv)?)(1+c+v)?

(3.5.3)

Notably, this potentially becomes negative under an injudicious combination of adhesive strengths
Sce, Sev, and of a,b. Likewise, the actual haptotaxis sensitivity function takes the form

~(C U) _ ch + (ch - Scc)c
X6 = (1+cv)(1+c+v)?

(3.5.4)

Again, depending on the relationship between S.. and S.,, this can become negative, which
would lead to repellent haptotaxis: cells effectively moving away from regions with large ECM
gradients, a rather unexpected behaviour. This suggests that cell-tissue adhesions should dom-
inate over cell-cell adhesionsﬂ as 'usual’ haptotaxis, i.e., towards the increasing tissue gradient,
is known to be an essential component of cell migration, this applying to several types of cells
moving through the ECM (tumor cells, mesenchymal stem cells, fibroblasts, endothelial cells,

etc.) see e.g., (95, 123 [147] and references therein.

Simulations are plotted in Figure where we show cell densities for the local model (c¢r,) and

nonlocal model under three sensing radii:

CAr=0.1,CAr=0.3, CAr=1.0-

In this first set of simulations we assume negligible cell-cell adhesion (S.. = 0), which automat-
ically ensures positivity for the diffusion coefficient of the equivalent local model, Dc(c7 v). We
note that matrix renewal is absent (u, = 0) in the left-hand column and present (p, > 0) in the
central column. In the right-hand column we show the greater generality of the results under
vastly simplified kinetics, specifically setting f.(c,v) = 0 and f,(c,v) = —cv (with the other
functional forms as in Fzample . Simulations highlight the convergence between local and
nonlocal models as r — 0: for » = 0.1, the solution differences become negligible. However, dis-

tinctions emerge for large r, where we can expect significant discrepancy between the solutions.

5 An analogous behaviour was suggested by the two-scale structured population model with adhesion introduced
in [56].
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Figure 3.3: Convergence between nonlocal and local/classical formulations under negligible cell-
cell adhesion, S.. = 0, S, = 10. Functional forms as proposed in Ezample [5.].5, with modifi-
cations specified in the subfigures. (a) Solutions for r = 0.1,0.3,1.0 at (al) ¢t = 2, (a2) t = 4
and (a3) ¢ = 8; (a4) Distance between local/nonlocal solutions as a function of time. For these
simulations, we take a = 0.01, b =1, p. = 0.01, K. = 2, . = 1, u,, = 0, A\, = 1. (b) Solutions
for r =0.1,0.3,1.0 at (b1) t = 2, (b2) t = 4 and (b3) t = 8; (b4) Distance between local /nonlocal

solutions as a function of time. Parameters as in (a) except p, = 1, K, = 1. (c¢) Solutions for

fe=0and f,(c,v) = —cv, with the other parameters as in (a).
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Figure 3.4: Time restricted convergence under moderate cell-cell adhesion, S.. = 2.5, S, = 10.
Top row shows solutions across the full spatial region ([0,20]), the bottom row magnifies a
relevant portion for clarity. Solutions to local and nonlocal models under the functional forms
proposed in Ezample [3.4.5 for r = 0.01,0.1,0.3,1.0 at (a) ¢ = 3, (b) t = 3.5 and (c) t = 5. In
(a) solutions to the local model continue to exist and we observe convergence between local and
nonlocal formulations. In (b-c) the solutions to the local model are noncomputable. Nonlocal
models, however, can destabilise into a pattern of aggregates. Parameters: a = 0.01, b = 1,

pe =001, K. =2, n.=1, u, =0, A\, =1 and adhesion parameters as above.

This suggests that the local model fails to accurately predict the behaviour in cases where cells

sample over relatively large regions of their local environment.

Next, we extend to include a degree of cell-cell adhesion, setting functions and parameters as
in Figure except now S.. > 0. Notably this raises the possibility of a negative diffusion
coefficient in the classical formulation and subsequent illposedness. Solutions under a represen-
tative set of parameters are shown in Figure [3.4 For ¢ below some critical time we observe
convergence as before, with the nonlocal formulation converging to solutions of the local model
as r — 0. However, continued matrix degradation further depletes v, with the result that
can become negative. At this point (in this case t ~ 3.2...) the local model becomes illposed
and its solutions become incomputable (implying nonexistence of solutions). However, the non-
local formulation appears to preserve wellposedness, consistent with previous theoretical studies
where extending to a nonlocal formulation regularises a singular local model (e.g., [79]). Solu-
tions to the nonlocal model instead destabilise into a quasi-periodic pattern of cell aggregations,

maintained through the cell-cell adhesion, and with a wavelength shrinking as r — 0.

Finally, we remark that convergence of solutions extends beyond the specific functional forms and,
as a representative example, we consider a minimalist setting based on linear/constant forms.
Specifically, we set D, = a (constant), x = 1, f. = 0, g(c,v) = Seec + Sepv and fo,(c,v) = —pcev.
In this scenario, the diffusion and haptotaxis coefficients for the classical local formulation
reduce to

D.(c,v) =a— Seecc and  x(c,v) = Seyp. (3.5.5)

Positivity is only guaranteed under appropriate parameter selection. Such a case is illustrated
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Figure 3.5: Convergence between nonlocal and local/classical formulations under a set of min-

imalistic linear functional forms (D, = 0.01, x =1, f. =0, g(c,v) = Scecc + Sepv, fulc,v)
—pcv). Negligible cell-cell adhesion, S.. = 0, S., = 10: solutions shown at (left) ¢ = 2.5 and
(middle) ¢ = 5, with the distance between solutions to the nonlocal and local model shown in

the right panel.

in Figure where we assume negligible cell-cell adhesion (S.. = 0). Clearly, we observe
convergence between the nonlocal and local formulations as » — 0. Inappropriate parameter
selection, however, generates backward diffusion in the local model and solutions are consequently
incomputable. In all cases considered in this test the cells do not reach the boundary region where
the difference between the nonlocal formulations and can play a role. Thus, we
expect the same solution if reformulation is applied instead.

3.6 Discussion

In this chapter we provide a rigorous limit procedure which links nonlocal models involving ad-
hesion or a nonlocal form of chemotaxis gradient to their local counterparts featuring haptotaxis,
respectively chemotaxis in the usual sense. As such, it closes a gap in the existing literature.
Moreover, it offers a unified treatment of the two types of models and extends the previous
mathematical framework to settings allowing for more general, solution dependent, coefficient
functions (diffusion, tactic sensitivity, adhesion velocity, nonlocal taxis gradient, etc.). Finally,

we provide simulations illustrating some of our theoretical findings in 1D.

Our reformulations in terms of 7. and S, reveal the tight relationship between the nonlocal
operators A, and @T and the (local) gradient. This suggests that both nonlocal descriptions
(adhesion, chemotaxis) actually encompass the dependence on the signal gradients rather than on
the signal concentration/density itself, which is in line with the biological phenomenon. Indeed,
through their transmembrane elements (e.g., receptors, ion channels etc.) the cells are mainly
able to perceive and respond to differences in the signal at various locations or within more or less
confined areas rather than measure effective signal concentrations. Along with the mentioned
solution dependency of the nonlocal model coefficients, the influence of the gradient possibly
reflects into contributions of the adhesion/nonlocal chemotaxis to the (nonlinear) diffusion in

the local setting obtained through the limiting procedure.

The set €2, can be regarded as the ’domain of restricted sensing’, meaning that there cells a
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priori sense only what happens inside €2, the domain of interest. The measure of this subdomain
is a decreasing function of the sensing radius r. When r — 0 the set €2, tends to cover the
whole domain 2, whereas as r increases the cells can sense at increasingly larger distances;
correspondingly, €2, shrinks. For r > diam(2) the restricted sensing domain is empty: everywhere
in © the cells can perceive signals not only from any point within € but potentially also from
the outside. In this work, however, we look at models with no-flux boundary conditions. This
corresponds, e.g., to the impenetrability of the walls of a Petri dish or that of comparatively
hard barriers limiting the areas populated by migrating cells, e.g., bones or cartilage material.
As a result, the cells in the boundary layer Q\), have a much reduced ability to stretch their
protrusions outside {2 and thus gain little information from without. To simplify matters, we
assume in this work that there is no such information or it is insufficient to trigger any change
in their behaviour. In the definitions of 7, and S, this corresponds to the integrands being set
to zero in Q\Q,..

It is important to note that for points = € Q\Q, the influence of a signal p in a direction y € S;
is not taken into account by V, at all if z + ry ¢ Q. If S, is used instead, then its contribution

to the average is given by

1
gi=n <J X Vp(z +rsy)ds - y) v
0

Thus, thanks to integration w.r.t. s, the resulting vector 3 assembles the impact of those parts
of the segment connecting x and = + ry which are contained in Q. It is parallel to y, and it
may have the same or the opposite orientation. In particular this means that although for a
certain range of directions large parts of the sensing region of a cell are actually outside €2, this
may still strongly influence the speed and actual direction of the drift. The effect of integration
w.r.t. s in 7, is less obvious, since in this case the average w.r.t. y is computed over the ball
B;. This already achieves the covering of the whole sensing region by allowing a cell to gather
information about the signal not only in any direction y/|y|, but also at any distance less than r.
The additional integration over the path z + rsy, s € [0, 1], appears to mean that cells at = € Q,
are able to measure the average of the signal gradient all along such line segment rather than
its value directly at the ending point. Indeed, from a biological viewpoint this description seems
to make more sense, as cells do not jump from one position to another, nor do they send out
their protrusions in a discontinuous way bypassing certain space points along a chosen direction.
Averages over cell paths are then averaged w.r.t. y, which finally determines the direction of
population movement. Ezample[3.2.]) indicates that the effect of even an extremely concentrated
signal gradient is mollified by averaging. This agrees with our expectations from using nonlocality.
In higher dimensions n > 2, the two-stage averaging in 7, (w.r.t. s and y) produces a direction
field which is smooth away from the concentration point and also weakens but still keeps the
singularity there. In contrast, averaging only w.r.t. y leads instead to jump discontinuities at a
unit distance from the accumulation point. Moreover, we remark that without integrating w.r.t.

s in 7,(V-) one cannot regain A,.

The effect observed in Ezample[3.2.3 further supports the conjecture that the nonlocal operators
which act directly on the signal gradients might actually be a more appropriate modelling tool.
While inside the subdomain €, there is no difference (recall Lemmas and [3.2.9), inside
the boundary layer Q\(2,. the limiting behaviour as r — 0 is qualitatively distinct. Indeed, Ez-

ample [3.2.5 shows that using, e.g., A,, leads, for » — 0, to unnatural sharp singularities at the
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boundary of €2 even in the absence of signal gradients, whereas this does not happen if 7, is used
instead. Simulations in Subsection (see Figure confirm our theoretical findings and
show a substantial difference between the solutions obtained with the two nonlocal formulations
involving (3.1.2) and (3.2.2)), respectively. The choice is motivated above all from a math-

ematical viewpoint (as it enables a rigorous, well-justified passage to the limit for » — 0), but it

also seems to make sense biologically, as our above comments and the simulations performed for

the particular setting in Subsection |3.5. 1| suggest.

In this chapter we have only dealt with models that include a nonlocality in the chemotaxis
or cell-cell and/or cell-tissue adhesion terms and assumed the diffusion to be local. This is in
line with most of the previously developed nonlocal models for cell migration, albeit they usually
cover just linear diffusion. If cell-cell adhesion is present, this means that the cell flux contains
the local cell gradient, as well as some averaging of it. The latter is described in our case by a
suitably chosen operator 7,.. A possible model extension could involve a diffusion flux which is
also nonlocal and has a similar form. This would mean that the cell flux is completely devoid of
the local gradient. From the modelling point of view this could be seen as a population pressure
actingﬂ in a nonlocal manner: each cell is sensing the population mass not only at its current
position, but over a whole region (of radius r) around that location. This is actually true in
vivo, where cells sample their biological environment by extending protrusions as far as several
cell lengths. While cell-cell adhesions certainly play a role in this process and contribute to
self-diffusion (as in the example handled in Subsection , there might be yet other ways of
interaction by which the cells are able to perceive smaller or larger aggregates of their own kind.
In this context one could think about replacing the local gradient by a nonlocal operator, e.g.,
of the form 7,(V). However, the analysis of such a model would be considerably more involved
and it is to expect that existence of solutions can be established only under rather restrictive

assumptions.

Sunlike Fick’s classical law which typically connects the flux over the domain boundary with the diffusion

inside the domain
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CHAPTER 4

Global existence of solutions to a nonlocal equation with

degenerate anisotropic diffusion

This chapter was first published in Volume 543 of Journal of Mathematical Analysis and Appli-
cations in 2025E| The presentation has been adapted for use in this dissertation to clarify the

details of the proofs and guarantee consistency of the notation.

4.1 Motivation

In this chapter we study the initial boundary value problem (IBVP)

dic = VV : (De) — V - (cAc) + pe(l — 1) in Q x (0, ), (4.1.1a)
(V-(Dc) —cAc)- v =0 on 0§ x (0, 00), (4.1.1b)
c(+,0) = ¢ in Q, (4.1.1c)

where A is the standard adhesion operator [5], see Definition below, VV : (Dc) is the
myopic diffusion [83], see Definition[2.1.5 driven by a symmetric non-negative definite diffusion
tensor D = D(z), u > 0 and r > 2 are positive constants, and 2 is a smooth bounded domain
in R™, n € N. The nonlocal reaction-diffusion-advection equation is an extension of an
equation that was recently derived in |156] using a multiscale approach and corresponds to the
case i = 0. It can describe the evolution of density ¢ = ¢(¢, x) of a cell population that disperses
due to a potentially anisotropic diffusion and nonlocal adhesion, thus upgrading the original
model from [5] where the diffusion term is DAc¢ with D > 0 a constant. We refer to [156] for

further details regarding the modelling and derivation approaches.

While the combination of adhesion with a Fickian-type diffusion has received much attention,
see, e.g., [28] and references therein, the case of myopic diffusion has not been analysed so far.
The few papers |77}, [149-151] that have dealt with existence and long-time behaviour of solutions
to problems that include both myopic diffusion and advection are restricted to versions of the
model derived in [54]. It features haptotaxis, i.e., the directed movement along the local gradient
of an external immovable signal, rather than the spatially nonlocal intrapopulational adhesion as
in . Apart from that, as a result of somewhat different underlying derivation approaches

in [54] compared to [156], the advection velocity in the aforementioned haptotaxis model is

1[50] The paper is licensed under a /CC BY license.


https://creativecommons.org/licenses/by/4.0/

62 CHAPTER 4. A NONLOCAL EQUATION WITH DEGENERATE DIFFUSION

multiplied by the diffusion tensor, whereas in (4.1.1a)) this is not the case. Thus, here it is in no
way 'subordinate’ to the diffusion and, in particular, the adhesion term need not vanish in those
areas where diffusion is absent. Finally, we observe that apart from [77] where dimensions two

and three were treated, other works [149H151] only considered the one-dimensional case.

The goal of this chapter is to establish a result on global existence of solutions to equipped
with no-flux boundary and initial conditions. Our approach works for x4 > 0, i.e., in the presence
of the generalised logistic-type growth term. While it describes a biologically relevant effect
(e.g., cell growth/death), our main motivation for including the source term stems from the
analytical challenges that arise in the case of 4 = 0. In the latter scenario, since the diffusion
is non-Fickian and degenerate, only mass preservation is a priori guaranteed, indicating that
generally solutions need not be functions but could be measure-valued. Here we chose to avoid
this possibility by including the growth term. While our analysis allows for degenerate diffusion
tensors, we require the degeneracy set, i.e., the set of points where D is not positive definite, to
have a positive distance to the boundary of € and to be sufficiently low-dimensional, see condition
below. This condition seems to be new in the context of degenerate diffusion. It arises
from Lemma in Subsection and provides a certain balance between the degenerate

diffusion and the nonlinear growth term.

The remainder of the chapter is organised in the following way. After recalling the definition of
the adhesion operator A in Section[].3, we fully set-up our model and formulate our main result
on existence of very weak solutions, Theorem [{.34 in Section[.3 We then analyse suitably
constructed approximation problems in Section [[.7] The uniform estimates that we establish
there allow to apply the compactness method and prove Theorem[{.3.4in Section[{.5 Finally,
in Section [{.f we provide a justification of our solution concept proving that regular solutions of

this sort are classical.

4.2 Preliminaries

4.2.1 The adhesion operator

Recall that throughout this dissertation 2 € R™ is a domain with smooth enough boundary (C?
in this chapter). We recall the definition of the adhesion operator A between two functional
spaces from Chapter[J in the way that suits our needs, i.e., for a sensing radius equal to 1 in
(3.1.2). This is no restriction of generality since this value can be always achieved through a

suitable rescaling of the spatial variable.

Definition 4.2.1. Consider a continuous function F :[0,1] — [0,00). The adhesion operator is

given by

u(e +€) S F(le]) de. (4.2.1)

A LY(Q) = (LP(Q)", Au(z) "

|Bi| Jg,

By convention u(z +¢) = 0if z+& ¢ Q. The operator is well-defined and bounded, see Chapter@

but in contrast to Chapter[3 we will use here the reformulation

Au = —-VH = u,
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that was observed in [156|, where H is the interaction potential given by

1 1

H:R - [0,00], H(w):zm (o)
min{|z|,

F(z)dz,

so that its gradient is the L™ function

1 x s
VH(z) = | Eae el ifee B0,
0 it 2 € R"\B.

Consequently, the operator A satisfies the lemma below.

Lemma 4.2.2. Let k€ Ny and a € [0,1]. Then, A is a continuous operator on C*<(Q).

Proof. For k = 0 this follows from Lemma[2.3.9 Moreover, for k > 1 we conclude this combining
Theorems[A.3. 11 and [A.3.12 and Lemmal2.3.2 O

4.2.2 A lemma about sets of “sufficiently small” dimension

We recall one of the (alternative) ways of defining fractional dimension from (3.5) and the

subsequent discussion on p. 42 in [60].
Definition 4.2.3. (Upper box dimension) Let K < R™ be compact. For every § > 0 we denote

Z5(K) := {be OZ" : |x —blr < g

forsomexeK}.
The upper box dimension is the non-negative number
= . log, | Zs(K))|
d K) :=limsup—=——+—-.
TR =l

Lemma 4.2.4. Let

3<neN, (4.2.2)
n
4.2.3
r> o, (4.2.3)
and K c R™ be a compact set such that
— 2r
dimrz(K) <n— 1 (4.2.4)

Then, there exists a family (¢s)se(0,1) of functions such that for all 6 > 0

ps € CL(R™;[0,1]), (4.2.5a)
es=1  inO;m(K), (4.2.5b)
supp(ps) € Oss m(K), (4.2.5¢)
Vs (L= @y <6 Ch, (4.2.5d)
1D?@s]|(Lon (nyynxn < 6 2Ch, (4.2.5¢)
P = 0 a.e. in R™, (4.2.5f)
lim 6777 |supp(i25)| = 0. (4.2.58)
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Proof. Let n e CF([0,00);[0,1]) be such that

Set

2eeszn Oy (K 11 ( 3y/n )
Dcozn (‘;‘\_/;‘)

We need to check that s satisfies the required properties.

ps(x) := for z e R, 6 € (0,1). (4.2.6)

1. Since

B 57| =
max | By (2) N 62"| = max

Bg\/ﬁ(y) N Zn| =: CQ < 0

for some Cy > 0, and n = 0 in [2,00), the sums in (4.2.6) contain at most Cy non-zero

summands.

2. Since R™ = O4 5 (6Z") and n = 1 in [0, 1], the denominator in (4.2.6) is never zero, and

din ('3:5:/;') >1. (4.2.7)

ZEL™

3. By [ and [§ and the assumptions on 7, the function ¢s is well-defined and belongs to
CE(R™ [0,1]).

4. Since n = 0 in [2,0), the numerator and the denominator coincide for x € Os_ 5 (K) both

3 ()

26827 Oy i (T

having the value

hence s = 1 there.

5. Since n =0 in [2, 00),

supp(ps) COas /m (0Z" N Os5 /m(K))
CO56\/E(K)
COG(;\/E(Z(;(K)). (4.2.8)

Combining (4.2.4) and (4.2.8), we obtain

log, (677 [supp(is)|) <logy (5777 |Z5(K)|(65v/m)" | B )

<log, ((735”7% |Zé(K)|)

_1 (logy | Zs5(K)| 2r
1 2
=log, C3 + log, & < logy 6 1 n—

] (4.2.9)

so (4.2.5g) holds.



4.3. PROBLEM SETTING AND MAIN RESULT 65

6. We compute

1 Zzetsz”mo%ﬁ(K) sign(z — 2)1’ (‘(056\7727‘)

Ves(o) = 5\/n 2izeozn (‘?&fﬁl)
 Diesm004s 1) (‘fsbf/?) Leesn Sig:(x —2 (%) (4.2.10)
(ZzeéZ" n (|§:/%\>)

Combining ., @ and (4.2.10) and the assumptions on 7, we obtain (4.2.5d|). Differentiating
again and using the same argument yields (4.2.5€)).

7. The convergence (4.2.5f) is a direct consequence of (4.2.5b)) and (4.2.5¢) and dimz(K) < n.

O
4.3 Problem setting and main result
We make the following assumptions on the coefficients and other parameters.
Assumptions 4.3.1.
>3, — r =2, 4.3.1
n r> o ( )
F e o([0,1]; [0, o)),
p >0,
Co € LT(Q),
and
D:= (dij)i,j=1,...,n € C(ﬁ, Rnxn), (432&)
D(x) symmetric for x € Q, (4.3.2b)
V-De (LE.{D > 0})", (4.3.2¢)
D >0, (4.3.2d)
a:= dist (09, {D * 0}) > 0, (4.3.2¢)
. 2
dimz({D % 0}) <n - - _7'1. (4.3.2f)

Recall that for ID > 0 the above sets are defined as
D>0={zxeQ: y"D(x)y >0VyecR"}
and

D%0}:={xeQ: IyeR"s.t. y"D(x)y = 0}.

To illustrate condition (4.3.21), we consider two special cases where it is satisfied.
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Example 4.3.2. 1. For a finite set {D % 0} = {a1,...,ax} with K € N we can estimate

o
|Zs({D % 0})| = ‘{be 0Z" : |a; — bl < 3 for some ¢ = 1,...,K}‘ < 2K.
Then,
g . log, [Zs({D * O] _ .. log, (2K)
d D% 0}) =1 <1 —=—— =0.
(DA 0D = e g 51 50 logy6 1

2. Consider a sequence (ag)geny in Q with limg_,o,ar = a € Q, ie., for all 6 > 0 there is

K(8) e Nsit. Jay, —a| < § for all k > K(6). We assume that the sequence converges fast

enough to its limit in the sense that there is b <n — % s.t.

log, (K(4)) —b. (4.3.3)

If {D % 0} = {a, a1, as,...}, then

1Z5({D % 0})| < 2(K(5) + 1). (4.3.4)

Combining (4.3.3) and (4.3.4), we arrive at (4.3.21).

We define solutions to the IBVP (4.1.1)) as follows.

Definition 4.3.3. We call a function c € L}, (Q x [0,00)) a global very weak solution to 1'
if it satisfies

—ff con dx dt—f con(-,0) dx
0 Jo Q

= J J cD : D?*pdax dt + J J c(Ac) - Vn de dt + MJ J c(1 =" Yy dx dt (4.3.5)
0o Jo 0 Ja 0 Jo

for all

ne C>HQ x [0,00)) s.t. V- (Dv) =0 on 09 x (0,00).

The main result of this chapter concerns with the existence of such solutions.

Theorem 4.3.4. Let Assumptions[{.3.1] hold. Then, there is a very weak solution
c€ L7(0,00; L'(9)) 0 Li,e(Q x [0,00))

to ([1.1) in the sense of Definition [{.3.3

Remark 4.3.5. The very weak formulation is obtained by multiple partial integration
that shifts all spatial derivatives to the test function. This choice of formulation exploits the
structure of the myopic diffusion. At the same time, it avoids including terms such as V - (Dc)
or Ve, for which it is likely not possible to obtain a priori bounds in the whole domain ) due to

a combination of the degeneracy of the diffusion tensor D and the diffusion being myopic.

Furthermore, we show in Section [/.6 that sufficiently smooth very weak solutions are classical
solutions to (4.1.1). This justifies our solution concept.
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4.4 Approximate problems

4.4.1 Construction of a regular matrix family (D,)

We begin by constructing a family of regular matrices D, that approximate D in a suitable
fashion. For such diffusion matrices, existence of regular solutions can be directly concluded
from known results. Unlike [77], we impose uniform L* boundedness of the divergence for (D)
instead of convergence in an LP space for finite p and make no additional restrictions such as,

e.g., vanishing normal trace, because our analysis does not require this.

Lemma 4.4.1. Let Q be Lipschitz. For e1 > 0 small enough, there is a sequence of symmetric
matrices (Dz)eeo,e,) = (((dij)e)ij=1,....n)ee(0,e0) € CF(Q;R™™) s.1.

H]DEH(L@(Q))an <e+ ”D”(L‘x(g))an foree (0,e1), (4.4.1)
De > e foree€ (0,e1), (4.4.2)
IDe = Df@gaxny = 0 as e — 0. (4.4.3)

Further, for every relatively open
Bcc{D>0}
there exists some e2(B) € (0,e1] such that

IV - Dell(zo By < Ca(B) for e € (0,e2(B)). (4.4.4)
Proof. We take a standard approach, arguing in a manner similar to the proof of Theorem 3 in
Section 5.3.3 in [58].

Step 1. We need some preparation before we can proceed with a regularisation of D. It concerns

the domain Q. Let 29 € 0. Since Q has a Lipschitz boundary, there exist v € C%1(R"~1;R) and
p € (0,a) s.t. (after relabeling and reorientation of the axes if necessary)

QN By(wo) = {y € By(wo) 1 yn > 1y}, (4.4.5)

0 By(xo) = {y € By(wo) : yn =)} (4.4.6)

Due to p < a, the set Q n B,(zo) does not intersect {ID 3 0}. Let us check that

Qn Bs(zo) +e(L + 1)en + B(0) € 1 By(xo) (4.4.7)
for
p
<
c< 3oy (4.4.8)

where L is a Lipschitz constant for «y in
By M) == {2 e R" "+ |2/ —xf| < p}.
Let y € Q@ n Bs(wo) and z € B:(e(L + 1)e,) = £(L + 1)e, + B:(0). Due to (4.4.8), it holds that

ly + 2 — xo| K|y —xo| + |2 — (L + 1)ey| +e(L+1)
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<Ly (L +2)e

<p. (4.4.9)

As z € B.(e(L + 1)ey,) implies that |2'| < € and z, > (L + 1) —e = L, the Lipschitz continuity
of v and (4.4.5)) together imply

Wy +2) <(y') + LI
<yp +eL
<Yn + 2n —eL+ €L
=Yp + Zn. (4.4.10)

Combining (4.4.5)), (4.4.9), and (4.4.10)), we arrive at (4.4.7)).

Due to compactness of Q, we can find some constants p € (0,a), L > 0, and K € N and points
xp € 002 and z, € S1(0), k€ {1,..., K}, such that

Qn By (zx) + Be(e(L + 1)z1) © Q@ n By(wy) forke{l,... K}, ce (O, 2(;;2)> (4.4.11)

and

K
N U Bg(wk).
k=1

K

Let

This set is compact and satisfies pg := dist(Ag, 0€2) > 0. We set
€1 := min L, Po .
2(L+2)" 3
By Lemma|A.S3.10, there is a partition of unity {z/Jk}szo subordinate to the open covering

Oz (40), {By (@)}, (4.4.12)

of Q, i.e., a set of functions that satisfies

Yo € CL(Ora (Ao)), (4.4.13a)
Uy € CF (Bg (w1)) for ke {1,...,K}, (4.4.13D)

0<y <1 for k € {0,..., K}, (4.4.13¢)
D=1 inQ (4.4.13d)
k=0

Step 2. Now we can proceed with the construction of approximations for . For € € (0,¢1) and

x € ) we set

K
D.(z) :=¢I,, + to(x) (s * D)( Z (s #D)(z 4 e(L + 1)2) (4.4.14)
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=el,, + 1/J0(1’)1[

K
o POV W 2 ) f D + (L + 1)z — y)sc(y) dy.

B.(0)
We set D, =: ((dij)e)i,j=1,....n. Obviously, D, € C*(Q,R™*™)  is symmetric in Q, and D, > &.

We estimate for w € R™ and z € Q that

D ()] <elw] + womf o) PG = Dbl dy

€

K
Y un) [ DL+ Do - )lul () dy
k=1 B

-(0)
w| f se(y) dy
B.(0)

and taking the supremum over |w| = 1 and z €  obtain (4.4.1)).
Further, thanks to (4.4.11) we can exploit uniform continuity of D in §, yielding

K
<elul + 3 u(@) Dl L yyren
k=0

max __|(c * dij)(x + e(L + 1)zx) — dij(@)] (4.4.15)

zeQmBg(xk)

= max
:ceQmBg(xk)

j (dis (2 + (L + 1)z — ) — dis (2))s (y) dy
B.(0)

< max [(dij(x 4+ (L + 1)z, —y) — dij(x))| — 0 (4.4.16)
(z,y)eQmBg(wk) x B (0) e—0

for ke {l,...,K}and 4,5 € {1,...,n}. Since Oz (Ap) < £, due to Lemma we also have

2

Grdy o diy i C (O%O(AO)) . (4.4.17)

Combining (4.4.13)), (4.4.14), (4.4.16), and (4.4.17) and using the equivalence of the |- |3 and

| - |z matrix norms, we arrive at

D, —>O]D) in C(Q;R™*™).
E—>

Step 3. It remains to verify (4.4.4). Let B cc {D > 0} relatively open. We set

eo(B) = min{2(Lp+ 5 % 2(L1+ 2)dist(§, D+ 0})} <el.

Assume

Bc Bg(l‘k) (4418)

for some k€ {1,...,K}. Then,

B+ B(0) + (L + 1)z € Oc(p42)(B) n Q< {D > 0} n By(x) for € € (0,£2(B)).
(4.4.19a)

Let p € CF(B\0S2). By the definition of weak divergence we have

V(D) (x+e(L +1)z)pde = —f (6e #D)(z + (L + 1)2zk)Vip(x) da.

n

R

Now, using integration by substitution and the symmetry of ¢. we compute

J (oD Ve e = [ D el ) )l dye
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=] p@ | s)Vete—ell Dy ayaa
- | D@+ Vo) - oL+ D) do

:f D(x)V((se * p)(x —e(L + 1)z)) da.
Again by the definition of weak divergence and (4.4.19a]) we obtain

J ) D)V ((se * p)(x —e(L + 1)zg)) da = — » V -D(z)(se = p)(x —e(L + 1)z;) da

V-D(z)(se * p)(x —e(L + 1)z;) dx

foa(uz)(B)ﬁQ

so that

V(e #D)(z +e(L+1)z)pda

SIV D200, 1oy By~ [9lL1 ()

e

Rﬂ,
<[V D=0

Consequently, due to the density of C*(B\0Q) in L*(B\0Q) = L'(B) and as (L'(B))* = L*(B),
the estimate
IV - (e # D) + (L + Dai)l o myn < VIV -Dllirr 0, 5110 (B) 2" (4.4.21)

for € € (0,e2(B)) follows.

co(B)(L+2) (B)nQ))™

On the other hand, if B cc {D > 0} and B < Oz (Ao), then

B+ B.(0) € O.(B) c {D > 0} n Ospq (Ag) for € € (0,22(B)).
6
A similar argument as above with ¢ € C(B) works for ¢, * D, yielding
IV (e # D) (nmyyn S VPRIV Dl 0, () (4.4.22)
for € € (0,e2(B)).

Now, consider an arbitrary B cc {D > 0}. Then, B = Uszl (B N Bg (xk)) U (B N Ow (A0)>.
Combining (4.4.1)), (4.4.13)), (4.4.14), (4.4.21)), and (4.4.22)) and using the product rule we obtain

IV Dell(por(pyyn SVRIV - DH(LI‘(OEZ(B,,O‘LO(AO))(BmOpTO (Ao))))"

K
++/n Z (N DH(L‘”(OQ(B,,Bﬁ(zk))(L+2)(BmB%(mk))mQ))" + C5 =: C4(B)
k=1 2

for € € (0,e2(B)).

4.4.2 Existence of a global classical solution to the approximate prob-

lem

Let o € (0,3). Since CF(€2) is dense in L?(€2), there is a sequence (coz)ee(0,e;) < C*T*(Q) and

a constant Cy satisfying

(V- (Decoe) — coeAcpe) v =0 on 05,
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Cos = €0 in L?(Q), (4.4.23)
e—
leoellz2@) < Cs for all € € (0,e7).

With the help of the diffusion tensors constructed in Subsection we formulate for € € (0,¢1)

the approximate problems

Orce = VV : (Dece) = V- (ceAce) + pec(1 =271 in Q x [0,0), (4.4.24a)
(V- (Dece) —ccAce) v =0 on 09 x [0, ), (4.4.24b)
ce(+,0) = coe in Q. (4.4.24¢)

The subsequent Lemmas and [/.4.3 provide local and then global existence of classical
solutions to (4.4.24]).

Lemma 4.4.2. Fore € (0,e1) there is a mazimal existence time Ty e € (0,0] and a nonnega-
tive classical solution c. € C?T¥1F 2 (A% [0, Trnazc)) of (4.4.24)). It holds that either Trazc = 00

or Thpaz,e < 0 and

i e Olensn ) = o0 (4.4.25)

Proof. The proof is based on a standard fixed-point argument.

Let ¢ € (0,£1) and o € (0, 3), as above, T € (0, 1) small enough (to be determined later), and
M := |cocllcreegm +1-

We define the set

— 1= 1+a,232 6w . & =
S = {ce C z (A x[0,T]): =0, ||c||Cl+a‘H-Ta(ﬁx(O,T)) < M}

For ¢ € S we consider the linearised IBVP

0rce = VV : (Dece) = V- (ceAe) + pe(1—271)  in Q x [0, 0), (4.4.262)
(V- (Dece) —ceAC)-v =0 in 09 x [0, c0), (4.4.26b)
Ce = Coe in Q x {0}. (4.4.26¢)

Due to Lemmas|2.2.5 [4.2.2, and |4.4.1}, the coefficient functions and the initial data are smooth
enough and satisfy the compatibility condition, allowing us to conclude from Theorem[A.1.6with

aij := (dij)e,

a; = — Z ((dij)g + (dji)E)(lf]' + (-Aé)ia

ai== 3 ((dig)e)ase, + V- (A) = p(1 =Y,

1,0=1

b := Z( ji)eVij,

1

b:= z":
J

<.

dji)
((dij)e)a,vi — (AC) - v,

et

K2

~
Il
[es)
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for i,j = 1,...,n that (4.4.26) has a unique solution c. € C?***1*3(Q x [0, T]) satisfying
HCEHC2+Q,1+%(§X[O’T]) < C7(M) HCOE||CQ+Q(6) = Cg
for some constant C7(M) > 0 independent of the choice of ¢. From Theorem|A.1.11|we conclude
that c. > 01in Q x [0,T]. Lemma (m) implies the estimate
HCEHCHQ,HTQ@X[Ojb <ee - COE”C“‘*’HTu(ﬁx[o,T]) + HC()eHcHa(ﬁ)
<2 max{l, K[(OZ)}T% ||Cg||c2+a,1+% @x[0,7]) + ”COE Hcl+a(§)

<2max{l, K[(Q)}T%08 + ||coe Hcl+a(§)7

where K(a) denotes the embedding constant from W1 () into C%(Q2) from Lemma (zz)

Hence, taking

IS

I's (Qmax{l,i(j(a)}C%) 7

we ensure that c. € S. Consequently, the operator

F:5-85, [ (4.4.27)

1+

is well-defined and, due to C?**1+ % (Q x [0,T]) —— C** =" (Q x [0,T]), a compact self-map.
Moreover, the continuous dependence of c. from the coefficients (that follows with Lemmal[{.2.4
and Theorem implies that F' is a continuous and compact operator. Now, Schauder’s
fixed-point theorem (Theorem applies, providing a fixed-point ¢, € C**% 5 (2 x [0,7])
of F that is also in C2**1*+% () x [0,77]) and a classical solution to on Q x [0,T].

Extending the solution to its maximal existence time T}y, 44¢, it holds that either T}, 44, = 00 or

Tnaw,e <00 and (4.4.25)). O

Next, we verify global existence for (4.4.24)).

Lemma 4.4.3. Fore € (0,¢;) there is a nonnegative classical solution c. € C?>T1+% (1 x [0, 0))

of (ETZD).

Proof. We follow a standard approach which is based on excluding the possibility of (4.4.25)).
Let € € (0,e1) and assume Tyazc < 00, so that c. is a solution to (4.4.24) in Q x [0, Thuaz.e)-
Integrating the first equation in (4.4.24)) over 2 and using partial integration, we conclude from

Gronwall’s inequality that

HCEHL"’J(O,Tmaz,a;Ll(Q)) < ehTmar.e HCOEHLl(Q) = CQ(Tmax,s)~ (4428)

Consider an arbitrary p € (1,00). We multiply (4.4.24a)) by pcP~!, integrate over £ and use
partial integration to obtain

d
— | &fdx = —pf (D.Vee +V-Dec. —c.Ace) - Ve tda + upf Al —c Hda
dt Jo Q Q

=—p(p-— 1)J & 3(D.Ve.) - Vee + 21V -D, — Ac.) - Ve da
Q

+ ,upJ (1 —c 1) da.
Q
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Due to D. > ¢ and the boundedness of its divergence, the fact that chg = gcsg_chE, (4.4.28))
and Young’s inequality we conclude that

d 4(p—1 D
— | Ldx+ Maj |VeZ |? dz
p Q

dt Jo
<L2(p-1) J'Q [Ve2 |2 (IVH| =By el + IV - Dellizyn) dz + pp L ctdx

4(p—1 »
SME‘:J |ch;:2 |2 dz +p010(p7 Tmam,s)J‘ Clg) dl’,

p Q Q
where
p—1
Clo(p, Tmaac,E) = = (HVHH?L”(BQ)"C9(Tmaz7€)2 + ”v . DE”%L‘”(Q))") + p.

Hence, it follows again from Gronwall’s inequality that

S epCIO (p7T7nam,E)T7naz.e

Icell Lo (0, s 57 (2)) lcoe || e (2)-

The coefficients of (4.4.24]) are regular enough s.t. Theorems and and Remark[4.1.4
with

n

aij = (dij)e, ai = Y ((dij)e)s, — (Ace)i, a = p(cl ' = 1), f=0

Jj=1

for i,j = 1,...,n imply that
ce € L*(0, Trnaz.e; HH()) 0 C([0, Trnaz.e]; L2(2)) 0 L (2 x (0, Trnaz.c))

and uniquely solves (4.4.24) on Q x (0, Tjnaz,) in the weak sense from Remark Now,
Theorem [A.1.19 with

a(z,t,c,Ve) =D Ve+ V- Dec — cAce,
b(x,t,c) = pe(ct —1) (4.4.29)

applies and yields
. € CV3(Q % [0, Trnazc])

for some 7y € (0, ). Next, using the Holder continuity of the coefficients (which holds especially
due to Lemmas|2.2.5 |4.2.2, and |4.4. 1) again and the fact that the initial data are smooth enough
and satisfy the compatibility condition, Theorem[A.1.13with the coefficients from implies
that there are C11(e) > 0 and ¢ € (0,7) s.t.

”CE ||Cl+(5,%‘S (@X[0,Tmas.c]) <Cn (5)

Hence, as above Theorem[A.1.6 implies that

1+ —
2

Cc € 02+6’1+%(§ X [O,Tmax,e]) — ClJra’ (Q X [O,Tmax,s])'
Finally, applying Theorem[A.1.6 one more time we obtain
¢ € C2HO1H S (0 x [0, Thnan])

contradicting (4.4.25|). O
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4.5 Existence of a very weak solution to the original prob-

lem

In this section, we show the convergence of a suitably chosen sequence of the classical solutions

to ([.4.24) to a very weak solution to (4.1.1) in the sense of Definition[4.5.3 We start with some

basic uniform estimates of (c¢).

Lemma 4.5.1. For all € € (0,£1) it holds that

lecllzr 0,001 )y < Cha, (4.5.1)
LT(Qx(0,T)) S Cis + TuCha for T > 0. (4.5.2)

lle<

Proof. Consider a constant C14 > 0 and

Cy5 = max |pa” — (Cra + p)z| .

—1/C
xze[0, "7 #Jr%]

Then, Cy5 — Ciyx — (ux — px”) = 0 holds for x = 0. Integrating (4.4.24a)) over €2, by parts where
necessary, using the boundary condition, the assumption r > 2, and the boundedness of 2, we

obtain

4 ccdx =,uJ, ce —cLdz (4.5.3)

<Ci5|9| - C14J ce dz.
Q

Consequently, Lemma implies (4.5.1). Integrating (4.5.3) over (0,7) and using (4.5.1])
immediately yields (4.5.2)). O

Next, we establish some uniform estimates for derivatives of c.. For the spatial gradient, the

estimates hold away from the degeneracy set of D.

Lemma 4.5.2. For any T > 0 and relatively open B cc {D > 0} there is a constant C16(B,T)
s.t.

leellz2 0,1 () < Ci6(B,T), (4.5.4)
<

lesl r+1 (B x (0,7)) < C16(B,T) (4.5.5)

for all € € (0,e2(B)).

Furthermore, let g be a number that satisfies
n
e(l,—— ). 4.5.6
ve (1:2) (15.)
Then, for any T > 0 there exists some constant C17(T) > 0 s.t.

HatCsHLl(o,T;W;Z(Q)) < Cie(T) (4.5.7)

foree (0,e1).
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Proof. Let T € (0,00) and consider a relatively open set
B cc {D > 0}.
Then, there exists a sufficiently small number o > 0 such that
B:= 0,(B) cc R"\{D # 0}.
Due to the uniform continuity of D and our choice of B,

§:=inf min 2"D(z)z > 0. (4.5.8)
zeB 2€51(0)

In what follows we leave out the dependence on ¢ and B in the constants as they are determined
by B. Let ¢ € CF(R™\{D * 0}) be s.t.

=1 on B,
¢4 €[0,1] on B\B, (4.5.9)
=0 on R”\B

Let € € (0,e2(B)), where e5(B) is from Lemma We multiply (4.4.24al) by c.¢?, integrate
over () by parts where necessary, use the no-flux boundary condition, and obtain

1d 9 9

Sdt g copdx

=— J (DeVee + V- Dece — o Ace) - (<p2ch + 2ca<pV<p) dor + uf o*(1 — i hde
Q Q

<-— J (Ve )TD.? Ve, dz + 2
Q

J (¢Vee)" De (e V) da
Q

+ f (V-D. — Ac.) - (cegoQVcE + QCgchgp) dx
Q

+,uj cindx—uJ "2 dr. (4.5.10)
Q Q

The matrix D, is symmetric and positive-definite. Hence, it defines a scalar product on R", and
with the Cauchy-Schwartz and Young’s inequalities and (4.4.1) we obtain

<2\/f (,OVC6 chde\/f (c: V) ]D)CEVgad;L’

4 J (VCE) a‘PQVCa dz + 4HV@H(LD ]R"))"C18 JQ c; dz,
(4.5.11)

2 f (pVeo) D2 (c.V) da
Q

where Cyg := €1 + | D] (1 (q))nx» is some uniform upper bound on D (= q)mxn for € € (0,€1)
that exists due to (4.4.1). Moreover, combining (4.4.4), Lemma and Hoélder’s and Young’s

inequalities, we can estimate

J;z (V-D. — Ac) - (CEQO2VCE + 20?90Vg0) dx

(HV D, || LBy T INH | (Lo B,y el 0,001 ) J |c€<p V05| +2|c€<pVg0| dz

<ff |¢vc5|2dx+019(3)f ctdw. (4.5.12)
2 Jo Q

Combining (4.5.10)—(4.5.12)) and rearranging the terms leads due to (4.5.8]) and (4.5.9) to

1d
2dt

)
J co?de + ZJ | Ve |22 dx+,uJ T+ o% doe <Cq(B )J 2 dw. (4.5.13)
Q Q Q
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We integrate (4.5.13) over (0,7") and obtain due to r > 2, Lemma (4.5.9)), the uniform

boundedness of the initial values, and using Hélder’s inequality that

| 5 )
§||6690”2L‘7?(0,T;L2(Q)) + Z||SDVCEH%2(O,T;(L2(Q))") +pleslTE prory < Can(B,T),  (4.5.14)

which yields (4.5.4]) and (4.5.5)).

Let ¢ € W2, (2). Due to our choice of ¢ Lemma|2.2.8/(iii) implies that

weW%%l(Q)c{weCl(ﬁ): ¢ =0, V¢ =0 on 0Q}. (4.5.15)

Hence, multiplying (4.4.24a)) by ¢ and using partial integration once or twice where necessary

we arrive at

f Orceth da =J eD, : D2wdx+f cs(Acs)-de:v—i—uJ ce(1—cl M da.
Q Q Q Q

Using Lemmas|2.1.9and [2.2.§ and (4.3.1)), (4.4.1), (4.5.1]), (4.5.2), (4.5.6]), and (4.5.15)), Holder’s

inequality and the embedding of Lebesgue spaces we obtain the estimate

U Orcetp d
Q

n
<IDderiayrn D) [ Jelliie | o + IV H L wr e leclir | lecVolda

ij=1

+uL%+éWMM

n
<018 Z ”w&% ”

ij=1
+ 1(Crz + [lceLr @)l =)

<Ci (lecllirgay + leclir@) +1) w2, -
q—1

leelrage) + IVH | (12 (B1)» Cra | VO (£ ()
()

q
La—1

We conclude

loveel-2(y < oo (sl oy + leclimiay + 1) (4.5.16)
Integration over (0,T) together with (4.5.2) yield (4.5.7). O

With the obtained estimates at hand we can now proceed to establishing convergence.
Lemma 4.5.3. There exist c € L*(0,00; L'(Q)) and a sequence (1) < (0,21), ex — 0, s.t.

ce, — ¢ in L}, (Qx[0,0)), (4.5.17)

k—o0

a.e. in 2 x (0,00). (4.5.18)

Proof. Let T' > 0, q € (1, ") and consider a relatively open set B cc {D > 0}. Thanks to
estimates (4.5.4) and ([4.5.7), the dense embeddings

H'(B) == L*(B) — W;*(Q),

where the latter holds due to our choice of ¢, and the Lions-Aubin lemma (Lemmal|A4.5.9), every
subsequence (cc,)jen has a subsequence that converges in L?(B x (0,7)), and it can be chosen

such that it converges a.e. in B x (0,7).
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Observe that since {ID > 0} is relatively open in the compact set Q, there exists a sequence
(B;)ien with B; © B;+1 of relatively open sets such that B; cc {D > 0} and {D > 0} = Ule B;.

In view of this, we have
e
{D >0} x (0,00) = | Bi x (0,).
=1

Together with a diagonal argument this description in the form of a countable union allows

to conclude from the above that there exist some ¢ € leoc

({D > 0} x [0,00)) and a sequence

(ex) € (0,e1) that converges to zero and is such that
Cep, — C a.e. in {D > 0} x (0, 00). (4.5.19)
%L

Since by (4.3.2f) the degeneracy set {ID * 0} has the n-dimensional Lebesgue measure zero,
(4.5.19) is equivalent to

Cep — C a.e. in 2 x (0, ). (4.5.20)

k—w
Furthermore, due to (4.5.2)) and r > 2, the sequence (¢, )ken is uniformly integrable on © x (0,7")
for all T > 0 by the de la Vallée-Poussin theorem (Theorem [A.5.6). Now

ce, — cin LY(Q x (0,7)) forall T >0

k—x

and ce L}

loc

(Q x [0,00)) follow with (4.5.20) and Vitali’s lemma (Lemma|A.3.7). This implies
that for a.e. t € (0, 00) we have

e, — cin LY(Q).

k—o0
Hence, c € L*(0,00; L'(Q)) due to (4.5.1)). O
In preparation for the proof of existence of a very weak solution to (4.1.1]) we still need one more
lemma that allows us to handle the nonlinear part of the reaction term in (4.4.24J).

Lemma 4.5.4. Let (ej)gen be as in Lemmal[{.5.3 Then, for all T € (0,00) it holds that

¢ = " in LY x (0,T)) (4.5.21)

£
Ly T

r
and c€ Lj,.

(2 x [0,0)).

Proof. Let T € (0,00) and consider the sequence (c., )ren from Lemma Fatou’s lemma
together with estimate (4.5.2) from Lemma imply that

T T
J J ¢ dzdt <lim inff J cr, dzdt < Cas(T),
0 Q k—oo 0 [¢) )

and so ce L™(Q x (0,T)).

Due to Lemma and assumption (4.3.2f), there exists a family of functions (¢s)se0,1)
CF(R™; [0, 1]) satistying (4.2.5) for K = {D 3 0}. We adopt the splitting

o, =cr,(1—s) +cl o5 (4.5.22)

and next study the convergence of each of the terms separately.
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Step 1 (Convergence of the first term). For § € (0,1) we set
By := (D> 00O,y (1D ¥ 0)).

Obviously, B; is relatively open and satisfies Bs cc {D > 0}. Arguing similar to the proof

of Lemmal[{.5.3, we conclude with ([{.5.5) in Lemma [£.5.9 (£.5.18) in Lemma[{.5.3 the de la
Vallée-Poussin theorem and Vitali’s lemma ( Theorem[A.3.6 and Lemma[A.3.7) that

¢, ¢ in L'(Bs x (0,T)). (4.5.23)
— 0
Since 5 = 1 outside of Bs due to (4.2.5b)), (4.5.23)) yields
cl (1 —s) i (1 —s) in L'(Q x (0,7)) for all § € (0,1). (4.5.24)
—C

Furthermore, the integrability of ¢" together with (4.2.5f) and the uniform boundedness of (ps)

allow to conclude using the dominated convergence theorem that

c"(1—ps) — ¢ in L'Qx(0,T)). (4.5.25)

§—0

Step 2 (Convergence of the second term and conclusion). Due to (4.3.2€) and (4.2.5d), we have

supp(s) < Oss,m({D F 0}) cc Q

for 6 € (0,1) sufficiently small. For such ¢, we multiply (4.4.24a) by ¢s and integrate over (,
once/twice by parts where necessary, so as to shift all spatial derivatives to ¢s. Using Lem-
mas|2.1.2 14.2.4) and |4.5.1 and (4.4.1) and Hoelder’s inequality, we estimate as follows:

d r
EJ cakwadx+uf e, psde
t Ja Q

<uf Ce, s dx +j lce, Dz, : D*ps|dx +f lce, Ace, - Vips| dz
Q Q Q

QIUJJ‘ Cep, P65 dx + n2||ng H(L‘I)(Q))n)(n ||D2305||(Loo(9))n><n f Cey, dz
Q {D?p5#0}

+ e | 0,001 @) IVH [ (22 (1)) [V @5 | (£ (02)) f Ce, da
{Vps#0}

<p L Cep 05 Az + (| D?@s 1 (e + Vsl ()n) Caa J ce,, da

supp(es)
suf cerips da + 52 |supp(s) [~ Casleas | (-
Q

We conclude from Gronwall’s and Hélder’s inequalities and Lemma[{.5.1] that
T
f e, (- T)ps do + ,uf f L, psdrdt
Q 0 Ja
T
<e' (L Coe, 5 Ao + 5_2|Supp(¢5)|1_%025jo leeillzr o) dt)

<erT (L Coep s Az + 6 2|supp(ips) |1 F TV 7 Os lce, |LT(Q><(07T))>
<erT (J Coe, 05 A + 52|supp(<p5)|111~026(T)> for t € (0, 7). (4.5.26)
Q
Combining (4.4.23)) and (4.5.26]), we find that

T
lim supf f et psdrdt < p et T (J. cops dr + 52|supp(g05)|11026(T)> (4.5.27)
0 Jo Q

k—0
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for 6 € (0,1). Due to the integrability of ¢y, (4.2.51), the uniform boundedness of (p5), and the

dominated convergence theorem we have

lim f cops dxr = 0. (4.5.28)
§—0 Q
Together, [#.2.5g), [#.5.27), and ([&5.28) yield
s 2 = 0 in LY(Q x (0,7)). (4.5.29)

Finally, combining (4.5.22)), (4.5.24)), (4.5.25), and (4.5.29)), we arrive at (4.5.21)).

O

Remark 4.5.5. The assumptions n > 3 and r > =5 from (4.3.1) are only required in the proof
of Lemma Together with (4.3.2f]), they ensure the existence of the ¢ss due to Lemma

Finally, we can prove our main result on the existence of a very weak solution to the original

IBVP (EL1).

Proof of Theorem[[.3.] Consider the sequence (cc, )ren from Lemmas and and let
ne C?1(Q x [0,00)) with V- (D) =0 on 9Q x (0,00). Then, there is T € (0,00) s.t. n =0 for
t > T. We multiply by 1 and integrate over € x (0, 0), once or twice by parts where
necessary, using the boundary condition on 7 as well as , and for all k£ € N conclude that

o0
—f chkatnda:dt—f coey (-, 0) dz
0 Q Q

2L s}
= f f e, D., :D*ndxdt — f f e, Vn - (D, v) do(x)dt
0 Q 0 o0

+ J’J, e, (Ace,) - Vnda de +/J,J uj e, (1= L7 Hpdzdt. (4.5.30)
0 Jo 0o Jo

We first address convergence of (cc,) on 02 x (0,7'). Observe that since Oq/2(02) N Q is
open and precompact in {D > 0}, we can make use of the uniform boundedness of (¢, )ren

in L?(0,T; H'(04/2(02) n ©)) due to (4.5.4) and convergence (4.5.17) and the Banach-Alaoglu

theorem, yielding

Cep = ¢ in L*(0,T; H (O 2(09) N Q)). (4.5.31)
Using the continuity of the trace operator, we conclude with that
Cep = ¢ in L*(092 x (0,T)). (4.5.32)
Now convergences (4.4.3)), (4.4.23)), (4.5.17), (4.5.21)), and (4.5.32) and continuity of the operator
A LY(Q) — (L*(Q))" together with compensated compactness (Lemma allow to pass

to the limit in each term in (4.5.30)), yielding (4.3.5)). O

4.6 Smooth very weak solutions are classical

In this final section we provide a justification for the very weak formulation (4.3.5). We show
that as in the case of Neumann boundary conditions for elliptic equations (see e.g., Theorem
2.2.2.5 in |72]) it holds for smooth D that any sufficiently smooth very weak solution in terms of

Definition[{.3.3 s also a classical solution to ({.1.1).
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Theorem 4.6.1. In addition to Assumptions[{.3.1), let
D e C?(; R™ ™),
ce CHH(Q x (0,0)) n C(Q x [0,0)),
co € (). (4.6.1)

Then, if c is a solution to ([.1.1) in the sense of Definition [4.3.3, then it solves this IBVP in

the classical sense.

Proof. Let
neC* (A x[0,00)) st Vn-(Dv)=0on o x (0,0). (4.6.2)

Then, there is T' € (0,00) s.t. n = 0 for ¢t > T Integrating by parts on both sides of (4.3.5]), once

or twice where necessary, using the information about 1 on 092 x (0,00), yields
20
,[ f orendx dt + J (c(-,0) — co)n(0) dx

J, V- (cD) - Vndxdt—f V - (c(Ac))ndadt

Q
+,uj J (1—-c" ndxdt—i—f J c(Ac) -vndo(z)dt

=f f (VV i (D) = V- (c(Ac)) + pe(l — ")) pda dt

J J (De) — e(Ac)) - vy do(x) dt. (4.6.3)

For the subset of n € C21(2 x (0, 00)) it holds that n(0) = 0. Moreover, for such 1 the boundary
integral in (4.6.3)) vanishes. Thus, the fundamental lemma of calculus of variations applies and
yields that c satisfies

0rc = VV : (D(x)c) — V - (cAc) + pc(l — ™)

pointwise in Q x (0,00). Considering the subset of n € C21(Q x [0,00)) again the fundamental
lemma of calculus of variations that ¢ satisfies the initial condition (4.1.1c) in . Now we can
conclude from (4.6.3)) that for all 7 satisfying (4.6.2) it holds that

J f (De) — ¢(Ac)) -vndo(x)dt = 0. (4.6.4)

Finally, we consider 7 of the form n(x,t) = n1(x)n2(t), where n; € C?(Q) satisfies Vi - (Dv) = 0
on 02 and 1y € CL([0,00)). Applying the fundamental lemma of calculus of variations w.r.t. to
time integration in (4.6.4) yields
J (V- (De) —c(Ac)) - v do(z) =0 for all t € (0, 7). (4.6.5)
o0
The boundary condition (4.1.1b)) now follows with (4.6.5]), Lemma below and the embedding
HY(Q) — L2(09Q). O

Lemma 4.6.2. Let D e C?(Q;R™ ") symmetric, D = 0 with {D 3 0} n 02 = &. Then, the set
{ne C*(Q):Vn-(Dv) =0 on dQ}

is dense in H'(Q).
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Proof. Since D is continuous and positive definite on 02, it is positive definite in some open
neighbourhood of 9€2. Choose some symmetric B € C27(Q;R"*™), B > 0, and positive definite in
an open neighbourhood of {D % 0}. Then,

D:=D+B

satisfies
D=D

in some open neighbourhood of €2, is symmetric and there is some ¢ > 0 s.t.
yT]ﬁ)(:p)y > dly|? forall z € Q, ye R".

On H'(), consider the scalar product
{fyg) = )\J, fgdz + J’ (VH)IDVgda (4.6.6)
Q Q

for some A > 0. Since D is smooth and positive definite in 2, the norm induced by 1) is

equivalent to the standard norm on H'(). Set

E:={neC?*Q): Vn-(Dv)=0on o}

={neC?*Q): Vn-(Dv)=0on o0}

We thus need to verify that the orthogonal complement of E w.r.t. the above scalar product in

H'(Q) only contains the zero vector. Assume the contrary, i.e., that
E'={¢eH'(Q): {&n)=0forallneE} {0}

Let £ € E" and & # 0. Then, as 02 is sufficiently smooth, there is a sequence (£,)nen € C*(Q)
s.t.

& — &in HY(Q). (4.6.7)

n—w

Consider the sequence of elliptic BVPs

—V - (DVuy,) + Ay, =€, in Q, (4.6.8a)
Vu, - (Dv) =0 on 0€). (4.6.8b)

Lemma implies that for sufficiently large A > 0 there exists a unique solution u,, € C%()
to (4.6.8) for all n € N, and (u,,)nen is uniformly bounded in H?(f2). Consequently, due to the
continuity of the trace operator, the embeddings H?(Q) << H(Q), H*(Q) — H!(02) and the

Banach-Alaoglu theorem there exist a sequence (n;);ey and some u € H?(Q) s.t.

Up = uw  in H?*(9Q), (4.6.9)
— L

Un, > U in H(Q), (4.6.10)
—>L

Up, 7> uin H'(09). (4.6.11)

From (4.6.7) and (4.6.9)(4.6.11) and as (u,) < E it follows that v € E and is a strong L?

solution to the BVP
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~V . (DVu) + lu=¢  inQ (4.6.12a)
Vu-(Dr) =0  on Q. (4.6.12b)

Multiplying (4.6.12a]) by £ and integrating by parts using (4.6.12bf) and the symmetry of D then
yields

0=<{u,& = )\L ué da + L(W)Tlﬁwg de = L & du.

This shows that ¢ = 0, contradicting the above assumption. Therefore, E = H'(Q2), as required.
O



Part 11

Nonlocal models with nonlocality

in the reaction term






CHAPTER D

On a mathematical model for cancer invasion with

repellent pH-taxis and nonlocal intraspecific interaction

This chapter was first published in Volume 75 of Zeitschrift fiir Angewandte Mathematik und
Physik in 2024E] The presentation has been adapted for use in this dissertation to clarify the

details of the proofs and guarantee consistency of the notation.

5.1 Motivation

Migration, proliferation, and differentiation of cells are influenced by biochemical and biophysical
characteristics of their surroundings, which they perceive by way of transmembrane units like ion
channels, receptors, etc. Increasing experimental evidence suggests that cells are able to sense
such cues not only where they are, but also at larger distances, up to several cell diameters around
their current position |71} 90, [130]. This led to mathematical models accounting for various types
of nonlocalities, most of them addressing cell-cell and/or cell-matrix adhesions; we refer to the
review article [28] and references therein. The settings typically involve reaction, diffusion and
drift terms, whereby the latter contain an integral operator to characterize the so-called adhesion
velocity over the interaction range. In Chapter[q was performed a rigorous passage from a cell-
matrix adhesion model to a reaction-diffusion-haptotaxis equation when the sensing radius is
becoming infinitesimally small, thus recovering the local PDE formulation from that featuring
the mentioned nonlocality. The remote sensing of signals by cells affects, however, not only
motility, but also proliferation, growth, and phenotypic switch, either directly - by occupancy
of transmembrane units on cellular extensions like cytonemes and folopodia and subsequently
initiated signaling pathways, or in an indirect manner - as effects of altered migratory and
aggregation behavior. Models involving reaction-diffusion equations with nonlocal source terms
have been proposed in various contexts, including biological and ecological ones, see e.g., |87,
145] and references therein for rather generic settings, |13}, |15, [129] for chemotaxis systems, and
[113} {136} |137] for equations dedicated to tumor growth. We refer to [28, [87, |145] for some

reviews of model classes addressing this type of nonlocality.

As far as growth and migration of cell populations are concerned, the reaction-diffusion models
with nonlocal source terms
uy = V- (DVu) + F(u) (5.1.1)

1[49] The paper is licensed under a Creative Commons Attribution 4.0 International License!
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typically feature F(u) = pJ = u(1l —u) to describe nonlocal stimulation of growth (see e.g., [137]
145)), or F(u) = pu®(1 — J % u?), which characterizes competition between (bunches of) cells
for available resources in their surroundings, attempting, e.g., to prevent overcrowding. In the
context of (tumor) cell migration such models have been handled e.g., in [136], where intra- and
interspecific nonlocal interactions led to an ODE-PDE system for the interplay between cancer
cells peforming linear diffusion and haptotaxis with the extracellular matrix being (nonlocally)
degraded by the cells and remodeled with the mentioned growth limitation. We also refer to
[28, 199 for short reviews of models with source terms of this type and therewith associated

mathematical challenges.

In this chapter we propose and analyze a model for tumor cell migration involving myopic
diffusion, repellent pH-taxis, and a nonlocal source term of the competition type mentioned
above. The cross-diffusion system is obtained upon starting from the mesoscopic description of
cell migration via a kinetic transport equation for the space-time distribution function of cells
sharing some velocity regime. An appropriate upscaling relying on diffusion dominance then leads
to the effective macroscopic equation for the cancer cell density, with precisely specified diffusion
and drift coefficients. The remaining of this chapter is structured as follows: Section[5.3contains
the model deduction with the mentioned upscaling. Section is dedicated to the mathematical
analysis of the obtained nonlocal macroscopic system, in terms of global existence, uniqueness,
and boundedness of a solution to a simplified version of the problem. In Section we study
the asymptotic behavior. Section offers a 1D study of pattern formation for the equations
handled in Section but only involving constant motility coefficients. In Section we
provide numerical simulations to illustrate the qualitative behavior of solutions to the investigated

nonlocal problem. Section contains a discussion of the results.

5.2 Modeling

In this section we start from a mesoscopic description of cell migration and intrapopulation
interactions and deduce (in a non-rigorous way) effective equations on the macroscopic scale of
cell population dynamics. The deduction closely follows that in [99], however extends it, by
accounting here for the repellent effects of acidity eventually leading on the population scale to

chemorepellent pH-taxis.

Tumor migration and spread are typically assessed on the macroscopic scale of the cancer cell
population via biomedical imaging. The involved processes are, however, highly complex and
originate at the lower levels of cell aggregates sharing -beside time-space dynamics- one or several
further traits (e.g., velocity, phenotypic state or other so called ’activity variables’), down to
microscopic events on individual cells. This multiscale character of cell migration can be captured
(at least partially) by models within the kinetic theory of active particles (KTAP) framework
formulated by Bellomo et al. (see e.g., |8, [L1] and references therein). Starting from kinetic
transport equations (KTEs), a large variety of (spatially) local and nonlocal models have been
proposed and various kinds of upscaling and moment closure methods have been performed in
order to deduce their macroscopic limits which enable a mathematically more efficient handling,
see e.g., (25l [27) [20H33] |42} [53H55, 78] (91}, 92, 105, [155]. The obtained macroscopic equations

carry in the coefficients of their motility and source terms some of the traits from the mesoscale
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on which KTEs were formulated. Those coefficients are no longer 'guessed’ as in the case of
stating reaction-diffusion-taxis directly on the population level and the diffusion is often of the
‘myopic’ type, involving a drift correction. We will perform here a diffusion-dominated upscaling

of mesoscale dynamics.

We will use the following notations:

- p = p(t,z,v): distribution function of cells having at time ¢ and position x € R™ the velocity
veV;

- V = [s1, 2] x S*71: velocity space. Thereby, s1,s2 denote the minimum, respectively the

maximum speed of a cell, § € S”~! represents the cell direction;
- u(t,x) = §, p(t, z,v) dv: macroscopic cell density;

- h(t,z): concentration of protons. This is a macroscopic quantity throughout this note.

The kinetic transport equation (KTE)

pe +v - Vap = L[h]p + [iZ[p,p] (5.2.1)

characterizes the mesoscopic dynamics of the considered cell population. This is the frame-
work set in [116], which assumes that changes in p are due to velocity jumps accompanied by

reorientations dictated by a turning kernel contained in the operator L[h].

The first term on the right-hand side of represents the so-called turning operator. The
second term describes growth/decay of cells due to intraspecific proliferative/competitive inter-
actions, while & > 0 is the constant interaction rateEI With a small constant € > 0 relating to
the cell size and to the distance at which cells can sense signals in their proximity, we will assume
that i = e2u. This means that cells have a much higher preference to motility (in particular, to

changing direction) than to interaction and crowding.

We assume that the turning operator is of the form
L) = [ (T ple,0) = TN 0)ple . 0)) a0 (522)
\%

with the turning rate T[h](v,v") = 0 chosen such that the reorientation is a Poisson process with

rate
AR = L T[h](v, ') dv,

hence such that T[h]/A[h] is a kernel giving the probability density for a change of the velocity
regime of a cell from v’ to v. In particular, this means that L[h] is preserving mass. The
reorientation of cells depends on the acidity of their environment (expressed by the concentration

h of protons).

In the following we assume that the turning rate has an asymptotic expansion of the form

T[h] = To[h] + eTi[h] + O(e?), (5.2.3)

2We could actually consider /i to be a function of 2 and/or ¢ (but not of derivatives w.r.t. these variables) and
even of h. The latter would allow us to account e.g., for the unfavorable effect of acidity on the proliferation of
tumor cells. The deduction done here works then exactly in the same way. In fact, our analysis in Section@ is

performed in the case where such h-dependence is considered.
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thus the turning operator admits itself an expansion
L[h](p) := Lo[h](p) + eL1[R](p) + O(e?), (5.2.4)

where Lo[h] and Lq[h] are linear operators,
L;[h](p)(t, z,v) = j [T;[R] (v, v")p(t, x,v") — T;i[R] (v, v)p(t, z,v)] dv’, i=0,1. (5.2.5)
v

For Z we consider as in [99] the form

p(tz,v) 1
v Me(z,v)dv  §, Me+B(z,v) dv

p(t,z,v) J J(z, 2" )p?(t, 2’ v)da', (5.2.6)

I[p,p](t,x,v) = S 0

where: «, 8 > 0 are constants, J(x,z’) is a function weighting the interactions between (bunches
of) cells sharing the same velocity regime within a bounded domain Q c R™. We assume that
J depends on the distance between interacting (clusters of) cells and take J(x,z') = J(x — '),

also requiring J to satisfy

f J(z)dz =1, (5.2.7)
%

inf  J>=n forsomen > 0. (5.2.8)
Bdiam()(0)

We also assume that there exists a bounded velocity distribution M (x,v) > 0 such that:

1. SV M(xz,v)dv =1, i.e., M is a kernel w.r.t. v.

[\)

. §y oM (z,v)dv =0, i.e., the flow produced by the equilibrium distribution M (v) vanishes.
3. The rate Ty[h](v,v") satisfies the detailed balance equation

To[h](v,v" )M (v") = Ty[R](v", v) M (v).

4. The turning rate To[h](v,v’) is bounded and there exists o > 0 such that

To[h](v,v") = oM (x,v), for all (v,0") eV xV, zeR" t>0.

The following lemma summarizing the properties of the operator —Lg can be easily verified (see
e.g., 10} 25]).

Lemma 5.2.1. Let Lo[h] be the operator defined in (5.2.5). Then —Lo[h] has the following

properties:

(i) —Lo[h] is positive definite w.r.t. the scalar product and the associated norm in the weighted

space L2(V, %), and self-adjoint: for all p,( € L*(V, M(d;’v)) it holds that

w p(v)
| o)1 do = [ Lol w5 .

(ii) For ¢ € L*(V, %)7 the equation Lo[h](C) = ¢ has a unique solution ¢ € L*(V, 7M(d;v))

satisfyingﬁ ¢ =0 if and only if ¢ = 0.

3Here and in the remaining of this section we use the notation ¢ := SV ¢(v) dv for any V-integrable function ¢

(hence also u = p).
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(iii) Ker Lo[h] = span (M (v)).
(iv) The equation Lo[h]()) = vM(v) has a unique solution ¥(v) =: Lo[h] " (vM(v)) (this is

actually a pseudoinverse).

Example 5.2.2. Consider Ty[h](v,v") := Ao[R]M (v), with A[h] = Xo[h] > O for any h. This

obviously satisfies the properties 3. and 4. in our above assumption. With this choice,
Lo[h](p) = Ao[A](M (v)u — p) (5.2.9)

and it is straightforward to see that this operator satisfies the properties in Lemma and
the function ¢ in (iv) becomes ¥ (v) = —vM (v)/Ao[h] if ¢ € (span (M(v)))J-H

Equation (5.2.1)) is supplemented with the macroscopic PDE for proton concentration:
hy = DgAh + g(u, h), (5.2.10)

where Dy > 0 is the diffusion constant and g(u, h) represents production by tumor cells and
uptake (e.g., by blood capillaries - not explicitly modeled in this note) or decay. As such, g
will have to be bounded; moreover, when there is no or very less acid its production is turned
on and sustained, whereas a high proton concentration exceeding some upper threshold level
H is leading to a drop in h, by enhanced (more or less passive) uptake by surrounding tissues
and vasculature and/or by ceased expression, due to hypoxia-induced apoptosis of (too crowded)
tumor cells. More details on the concrete assumptions made about g(u, h) are provided at the
beginning of Sections[5.3and[5.5 A concrete choice of g is given at the beginning of Section[5.6}

We also consider initial conditions for p and h:

p(0,z,v) = po(x,v), h(0,2) = ho(xz), 2€eQCR" veV. (5.2.11)

Together with these, equations (5.2.1)) and (5.2.10) form a meso-macro system describing the

dynamics of the (mesoscopic) cell distribution in response to acidity in the extracellular space.

We perform a parabolic scaling to obtain the diffusion limit of the KTE ([5.2.1]). This means that
we rescale the time and space variables as follows:

t=¢*, &=ex.

bR

Subsequently we will drop the ’*” symbol and the e-dependency of the solution p® to the resulting
KTE, in order not to complicate the writing. Then, (5.2.1)) becomes

1
epe +v-Vgp = gﬁ[h]p + peZ(p, p)- (5.2.12)

Now consider the decomposition (Chapman-Enskog expansion)
p(t,x,v) = F(u)(t,z,v) + ept(t, z,v), (5.2.13)

with §, p*(t,z,v)dv = 0, thus p= € (span (M(v)))*, and F(u) € span (M(v)) such that
§, F(u)dv = u. A natural choice is F(u)(t,z,v) := M(z,v)u(t,z), which we will subsequently
adopt.

4This is actually the case even if Tp has a more general form (depending only on v and not on v’) without

having to satisfy condition 2.
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Then observe that
Ilp,p] = Z[M (v)u + ep*, M(v)u + ept] = Z[M (v)u, M (v)u] + O(e)
and becomes
0y (M (v)u) + edipt + év Ve(M(@)u) +v-Vept

:%Lo[h](pﬂ + %Ll[h](M(v)u) + Li[h](p") + pZ[M (v)u, M (v)u] + O(e). (5.2.14)

Let P: L2(V, %) — Ker Ly[h] be the projection operator. Then

dv

P(O) = M@)o, o LAV, s

).
It is easy to verify that the following lemma holds (see, e.g., |10]).
Lemma 5.2.3. The projection operator P has the following properties:

(i) (I = PYM()w) = P(p") = 0.

(i) (I — P)(v-V(M(v)u)) =v-Vy(M(v)u).

fiii) (I = P)(Lo[h](M(v)u)) = Lo[Al(M(v)u) and (I = P)(Ly[h}(M (v)u)) = Ly [h](M(v)u).
(i) (I = P)(L1[h](ph)) = La[](p™).
If we now apply I — P to we get

edipt + év Vo (Mu) + (I = P)(v-Vuph)
%Lo[h](pﬂ + %Ll[h](Mu) + Li[R](ph) 4+ pZ[Mu, Mu] + O(e). (5.2.15)

Integrating w.r.t. v gives (at leading order) the macroscopic PDEﬂ

Ut +J v-Veptdo = ,uj I[Mu, Mu] dv. (5.2.16)
% v

On the other hand, from ([5.2.15)) we obtain (again at leading order)

Lo[h](p1) = v - Vo(Mu) — Li[h](Mu). (5.2.17)

Since §, L1[h](Mu)dv = 0, we see that the integral w.r.t. v of the right-hand side in (5.2.17)

vanishes, so we can pseudo-invert Lg[h] to obtain

pt = Lo[n] ™ (v Vo (Mu) — Ll[h](Mu)). (5.2.18)

Plugging this into ([5.2.16|) gives

uy +J vV, (Lo[h]*l(v-vx(Mu)) —Lo[h]*l(Ll[h](Mu))) - “f I[Mu, Mu]dv. (5.2.19)
Vv |4

5involving nonlocalities w.r.t. velocity
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For the right-hand side in (5.2.19)) we have

,uj I[Mu, Mu]dv = pu®(1 — J * u?).
v

For the first transport term on the left-hand side we compute

J;/y -V (Lo[h]*l(v . VI(MU))) dv=V,- (%[h]vm . (fvv®vM(v)dv u))

-V, (ﬁmvw (D w),

where we applied the observations made at the end of Ezample and denoted by
D(z) := J v@uM(x,v)dv
v

the diffusion tensor of tumor cells.

For the second transport term on the left-hand side of we have
- f 0+ Va (Lolh] (L [BI(M(v)uw)) ) dv
=—-V, f vLo[R] (L1 [R](M (v)u)) dv
v
1 -1
-V, fv oM () 7 Lolh]™ (a1 () do

1 ~
=—V;- fv Lo [h](w(v))mLo[h] (L1 [A)(M (v)u)) dv

——v.(] YO )0 (w) dv o)

M (v)
-V, - (uI‘[h]),
where we used the fact that Lg is self-adjoint, ¥(v) = —vM (v) is its pseudo-inverse, and the
notation )
T'[h](x ::7J vLi[h](M(x,v))dv.
(1) = g J, om0

With the above calculations (5.2.19)) becomes

w = Vg - (Lvr (D u)) 4V, - (ur[h]) = (1 — J +uP). (5.2.20)

© \Xo[h] '

To specify T'[h] we considelﬁ Ty [h](v,v") := —a(h)v - Vh + b(h)v' - Vh with a,b > 0. Then we
compute
P b(h)

IS*11,Vh — —DVh,

fv L1 [A(M (z,v)) dv = —a(h) V]

recalling that V = [sq,s2] x S*L, thus |V| = ¥|S”*1|. With the notation

Sn+2 _ Sn+2
we obtain .
I[r](z) = —mT(l’)Vhy

6a similar choice has been proposed in [25]
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which leads to the macroscopic PDE

wp =V, - (ﬁ[h]vx : (D(a:)u)) 4V, (

)\O[h]’ﬂ‘(x)Vh) + (1 — J #uP). (5.2.21)

The particular choice Ag[h] := 1, a(h) := 0, b(h) := |V] leads to the first equation in (5.3.1)).
The first term on the right-hand side of (5.2.21)) represents (myopic) diffusion, the second one

characterizes repellent chemotaxis, away from increasing gradients of proton concentration[]
while the last is a source term accounting for tumor cell growth enhanced or limited by intraspe-
cific interactions. Thereby, the growth rate p can also depend on the proton concentration h, as
will actually be the case in the subsequent sections. The requirements it has to satisfy are bio-
logically motivated: cancer cells are able to survive and divide at far lower pH than normal cells
and tissue; this gives them an advantage in using resources, thus enabling and even enhancing
proliferation under mildly acidic conditions. However, when the proton concentration surpasses
a certain critical leveﬁ the environmental conditions for cell division are so unfavorable, that tu-
mor cells are arrested in their cycle and cease proliferation. As growth rates cannot be negative
we account for an enviromental-mediated decay by way of the (nonlocal) competition term, as

the crowded tumor environment is the main source of acidity.

The above deduction of a macroscopic reaction-diffusion-taxis is merely formal; the nonlinear
source term prevents applying the proof of the rigorous derivation from [25]. The following
section will be dedicated to proving global existence and boundedness of nonnegative solutions
to the coupled PDE system for v and h obtained on the macrolevel by considering the above
much simplified forms of the coefficient functions Ag, a,b. The previous calculations were made
for x € R™, however we can restrict to a bounded domain 2 € R™ upon proceeding as in [33, 42,

124] and assuming no-flux of cells or protons through the boundary.

5.3 Mathematical analysis

Let Q© < R™ be a bounded domain with smooth enough boundary and outer unit normal v. We

consider the model

u = VV: (D(z)u) + V- (D(x)uVh) + p(h)u*(1 — J +uf) in Q x (0, 0),

ht = DgAh + g(u, h) in  x (0, 0), (5.3.1)
(D(2)Vu + V - D(2)u + D(x)uVh) - v = Vh-v =0 on 89 x (0,0), -
U(,O) = Uo, h(,O) = hO in Qv

where u denotes the cell density and h the acid concentration. We assume that our diffusion
tensor D = (dij)i,jzl,‘..,n o
and boundedness condition, i.e., there are By, By > 0 such that for all £ € R™ and x € Q it holds
that

satisfies d;; € C1(Q). Moreover, D satisfies the uniform parabolicity

B¢l < D) dij(@)66 < B¢l (5.3.2)

ij=1

Tas in 31}, 133l [89] |91} [92] we call this a repellent pH-taxis
8denoted by H in the assumptions at the beginning of Section
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The exponents «, 8 > 1 satisfy (as in [99)])

1+8,  n=12
a< Y (5.3.3)
1+22, n>2

On the remaining functions and parameters we make the subsequent assumptions:
- up € O(Q) and ug = 0,
- hoge WL(Q2) and 0 < hg < H, hg # H, where H is a positive constant,
- is Lipschitz-continuous with constant L, satisfying 0 < p and 0 < < pu(h) for h < H,
- g€ CHRE xRY) with Vg e (L*(RF xRF))?, 0 < g(u,0) < G and g(u, H) <0 for u e Ry,
- J € LP(B) for B := Bgjam()(0) and some p € (1,00) and 0 <7 < J,

-DH>O.

5.3.1 Local existence in an approximate problem

The Stone-Weierstral theorem implies that there is a sequence (ug;)ren < C*1(2), ug; = 0 and

Uol > Uo in C(Q) (5.3.4)
-
and a sequence of diffusion tensors (I;)ey with D, = (dlij)ijzl o, stody; o€ C?*9(Q) for
Y€ (0,1) and
D — D in CHQ; R™™™). (5.3.5)
—>%

Moreover, I); satisfies the uniform parabolicity condition for all I € N, i.e., there are Dy € (0, By)
and D € (By, o) such that for all £ € R", 2 € Q and [ € N it holds that

D < D) digj(x);€ < Dol (5.3.6)

i,j=1
For [ € N we consider the approximate problem

drup = V'V (Dy()w) + V - (Dy(2)wy Vi) + p(hy)ul(1—J ul)  in Q x (0,0),

Othi = Dy Ahy + g(ug, hy) in Q x (0, 00), (5:3.7)
(Dy(z)Vuy + V- Dy(z)u + Dy(z)wVhy) v = Vhy v =0 on dQ x (0,00),
u(+,0) = uoi, h(-,0) = ho in Q.

Lemma 5.3.1. For alll € N there are Tpar > 0 and a weak solution (uy, h;) of with
u =0 s.t.up € C(Q x [0,T])) n L2(0,T; H()) and hy € L*(0,T; WL(Q)) n W' (Q x (0,T))
for all T € (0, Thhae) and (ug, hy) satisfies
T T
— Jo J’Q wny do dt + L J’Q (V- Dy + DV + Dy Vhy) - Vi de di

T
= f J u(h)uf (1 —J = ulﬁ)n dr dt + J uor(z)n(z,0) de, (5.3.8)
0o Jo Q
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forallneWMQx 0,7)) withn(T) =0 and
2

Oth; = DgAh, +g(ul, hl) a.e. in §) x (O,Tmam), (539&)
Vh -v=0 a.e. on 09 x (0, Trhaz), (5.3.9b)
hi(0) = ho in H' (). (5.3.9¢)

Moreover, it holds either Ty,ae = 00 or Tipae < 00 and

M (la G )20y + [ O lw o)) = o0 (5.3.10)

Proof. Fix [ € N. We set M := |ug| =) < o0. For h <0 and @ > 0 extend the coefficients by
g(u, h) :=2g(u,0) — g(u, —h) and p(h) := p(=h).

We show the existence of a solution (ug, k) of (5.3.7)) in the sense of ((5.3.8) and ([5.3.9a)-(5.3.9¢)

by showing the existence of a fixed-point of the operator F' introduced below similarly to [138].

Namely, we define for some small enough T € (0, 1) the set
S:={uel”™Qx(0,T) :0<u<M+1ae inQx(0,T)}
For w € S we consider the IBVPs

Oruy = VV i (Dy(x)w) + V - (Dy(2)w, Vi) + p(h)u® (1 — J « @)y, in Q x (0,7T),
(Dy(z)Vu; + V- Dy(z)u; + Dy(z)w Vi) v =0 on Q2 x (0,7),
w (-, 0) = uop in €2,

(5.3.11)

and

Oth; = DgAh; +g(ﬂ, hl) in  x (O,T),
Vh -v=0 on 09 x (0,7), (5.3.12)
hi(+,0) = ho in €.

Here, T can be chosen independent of w.

Let ¢ > max{2,n}. Consider the space
X = {Re L7 (0, T: W () : Bl < Cilhollwy(e) +1}

where C; depends on the Sobolev embedding constant from Lemma[2.2.§(ii), the constant from
Poincaré inequality and from the constants in Lemma|A.1.18(ii) and (). For h € X we set
¢

U(h)(t) := P2 hy + J e(=)PuA (7 ) ds.
0

Using estimates from Lemmal[A.1.18it follows that U defines a contraction on X for small enough
T. With a Banach fixed-point argument in X similar to [85] we conclude that there is a unique

h; € X that satisfies

t
hi(t) = U(hy)(t) = etPaB g + f et=)Pul (7 py) ds. (5.3.13)
0
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Moreover, h; is the unique weak solution of (5.3.12) in the sense of Theorem i.e., for all
1€ Wy (92 x (0,T)) with 5(T) = 0 it holds that

T T T
—J J hine dz dt + DHJ J Vh; - Vndxdt = J J g(a, hy)nde dt + J ho(z)n(z,0) dz.
0 JO 0 Jo 0 Jo Q
(5.3.14)
Estimating as in Lemmal[5.3.5 below it follows from Lemma[A.1.1§(ii) and (iii) that
HVhl”Lm(O’T;(Ln(Q))n) < O, (5.3.15)
Moreover, from Theorem[A.1.§applied to the equation in non-divergence form we conclude that
thHW;J(QX(QT)) < Cs (5.3.16)

and solves ([5.3.12)) in the sense of ((5.3.9a)) - (5.3.9¢). Moreover, the continuity of h; follows from
Remark[A LA and Theorem [A 119 with

a(Vhy) := DgVhy, b(x, t, hy) := —g(u, hy) (5.3.17)

due the embedding of W1 (Q) into some Hélder space on Q from Lemma (u) Now, Theo-
reMS and with

ai(@,t) := 2, ((diig)e; + diis(M)ay)
a(z,t) == —p(h)a® (1 — J +7°),
fi=0 (5.3.18)

(that are due to (5.3.5), (5.3.15), Lemma and the Lipschitz continuity of y all bounded

in L*(2 x (0,T)) by constants independent from %) imply that there is a unique weak solution
ug € C([0,T]; L2(2)) n L2(0,T; HY(Q)) of (5.3.11)) satisfying

T T
— J J wne dx dt + J J (V- Dy + DV, + Dy Vhy) - Vypde di
0 Ja 0 Jo

T
= f f p(h)@® Y (1 — J « @ )um da dt + f uor(z)n(z, 0) dz (5.3.19)
0o Jo Q

for all n € Wy (Q x (0,T)) with 7(T) = 0 and |uill»@x(0,ry) < Ca. Moreover, we conclude
from Remark[A. 1.2 and Theorem[A 112 with
a(z,t,u, Vu) := D;Vu + V - Dju + DiuVhy,
b(x,t,u) = —p(h)a® 11— J =@ )u (5.3.20)

requiring the conditions of the theorem especially due to (5.3.6) and the boundedness of the

coefficients that

luall oo 5 @i go.ry) < Cs (5.3.21)

for some k € (0,1) and C5 depending on [. Hence, we can estimate for x € Q and t € (0,7 that

K t) — &
wilest) = ug() + 13 1@ —00 @ L ps s g

t2
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holds for a small enough T'. We conclude as for (5.3.26) below with (u;)_ := max{0, —u;} that
for t € (0,T) it holds that

1 D t t
1)@y + 5 [ 19 Ry ds < Co | 1u)-[a(e)

Then, Gronwall’s inequality implies that u; > 0 and u; € S n C*%(Q x [0,T]). Note that Cy,
Cs, Cy and C5 and consequently also the choice of T" are independent from @ and k. Hence, the
operator

F:5—5 wu—u,

where u; solves for w in the sense of (5.3.19), is well-defined. Moreover, due to the
compact embedding C*%(Q x [0,T]) << C(Q x [0,T]) that is a consequence of the Arzela-
Ascoli theorem, F' maps bounded sets on precompact ones. To apply Schauder’s fixed-point
theorem (Theorem it remains to show that F' is closed and, consequently, a compact

operator. Consider a sequence (T, )men -t

Ty = @in LY@ x (0,7)), (5.3.22)
U = F(Tp) = w in L™ (Q x (0,7)). (5.3.23)

We want to show that F(u) = u;.

Let hy,, be the solution of ([5.3.12f) that corresponds to w,, for m € N. From the equation of form
(15.3.19) for ug, we conclude with Lemma that for a.e. t € (0,7") it holds that

1 t
fHulm(-,t)H%z ) + J J (V - Dyugyn + Dy Vug, + ]D)lulthlm) - Vuy, dr ds
f f (hip)T (1 = J #T2 )u?,, dzds + = HuOl”L2(Q) (5.3.24)

Using Holder’s and Young’s inequalities, (5.3.5) and (5.3.15)), we estimate

< CQH]D)[ H(Lm(ﬂ))an HulmHL2(Q) HvulmH(er(Q))n

f ID)lulthlm - Vulm dzx
Q

D,
< Crlluim 220y + 7“VulmH%L2(sz))n- (5.3.25)

Inserting this into (5.3.24]) and using (5.3.5)) and (5.3.6)), Lemma Young’s inequality, the
boundedness of h; and the Lipschitz-continuity of u, we conclude that for a.e. ¢ € (0,7 it holds

1 D t t
§Hulm(’t)”2L2(Q) + TlJ;) ||vulm||%L2(Q))n ds < Cgl[) ”ulm”%?(Q) + Cg. (5326)

From Gronwall’s inequality it follows that |Vun| 20, 1y22(0))m) < C1o(T) for all m € N. Com-
bining this with the fact that h;, € X, (5.3.15) and (|5.3.16|) we conclude from the Lions-
Aubin lemma (Lemma and the Banach-Alaoglu theorem (Lemma that there is
hi € L7(0,T; WL(Q)) n W3 (2 x (0,T)) s.t. for a subsequence

Vi, — Vurin L*(0, T3 (L*()"), (5.3.27)
him, — hiin L*(0,T; H*(2)), (5.3.28)

him, = i in L(0,T; H'(Q)) and a.e. in Q x (0,7T), (5.3.29)
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Othim, — 0Oihy in L*(Q x (0,7)). (5.3.30)

Therefore, due to (5.3.22) and (5.3.28)—(5.3.30), the Lipschitz-continuity of g, the dominated
convergence theorem and the fundamental lemma of calculus of variations it follows that h; is a
solution of in the sense of (5.3.94)-(5.3.9d). Moreover, (5.3.5), (5.3-22), (5-3:23), (5.3:27),
and (5.3.29), the Lipschitz-continuity of 1 and the dominated convergence theorem imply that
u; is a solution of in the sense of , and therefore, F(u) = u; and F is a compact
operator. Consequently, by Schauder’s fixed-point theorem we obtain the existence of a fixed-
point u; of F, that satisfies for all € W, ''(Q x (0,T)) with n(T) = 0 the weak formulation
539).

Finally, for such pair property (5.3.10) follows from a standard extensibility argument. O

Theorem 5.3.2. There is Tyar € (0,00] and a solution (u;,h;) of (5.3.7) with 0 < w; and
0< hy<H and

uy, hy € C(Q x [0, Tynaz)) 0 C*HQ x (0, Traz))- (5.3.31)

The solution is unique if p > nz—fQ forn =3 and pe (1,00) forn=1,2.

Proof. 1. Regularity: Let le N, 0 < T1 < Tyna. and consider the weak solution (uy, k) from

Lemma Again from Remark and Theorem with ¢ and b as in and
, respectively, it follows that u; € C*2 (Q x (0,71]) and h; € C»2 (Q x [0,T1]) for some
A € (0,1). Combining this with the Lipschitz continuity of g, Theorem[A.1.5 with a;; := Dy and
f:= —g(u, h) and all other coefficients equal to zero implies hy € C2A1+32(Q x (0,T})).

Let to € (0,71). We consider £ € C* (R, [0,1]) satisfying £ = 0 on (—o0, 2] and £ = 1 on [to, ).

Then, h(z,t) := hy(z,t)E(t) € W (2 x (0,T1)) is a strong solution of the IBVP

atil = DHA}NL + g(ul, hl)f + hlé’ in Q x (O,Tl),

d,h =0 on 00 x (0,T7),

h(-,0) =0 in Q.
Due to the Lipschitz continuity of g and the boundedness of u; on Q x [0,T}], Theorem
with

a(Vhlk) = DHVhlk,

b(x,t) := —g(w(z,t), hu(z, t))E(t) — hu(z, 1) (t)
especially implies that Vi € C(Q x [0,Ty],R™) and consequently, h; is a classical solution of
the nonhomogeneous heat equation in (5.3.7) on © x (0,71). Finally, using again the Lipschitz
continuity of g and the Holder continuity of u; and h;, Theorem implies that h is also in
C?%Y(Q x [0,Ty]) which leads to h; € C*1(Q x (0, Tynaz))- Analogously, u; € C%H(Q x (0, Thnaz))

follows.

The boundedness by H of h; follows applying Proposition|A.1.14jon Q x (0,T}) using the bound-
edness of h; on the closure of this set, the fact that h € W} (€ x (0,T})), our assumptions on g

and the estimate

Ot(hi — H) — DgA(hy — H) = g(wi, hy) = 0ng(¢) (i — H) + g(wi, H) < 0ng(C)(hy — H)
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that holds for all (z,¢t) € Qx (0, T}) for some ((z,t) € (hi(z,t), H) due to the mean value theorem.

Analogously, the nonnegativity of h follows.

2. Uniqueness: Let p = nz—fz forn = 3 or p e (1,00) for n = 1,2. With an ansatz similar
to [13] we want to show the uniqueness of the solution. Assume that there are two solutions

(u1, h1), (u2, he) of (5.3.7) for I € N with the regularity from (5.3.31)). The functions h; and ho
satisfy

Or(h1 — ha) = DaA(h1 — ha) + g(u1, h1) — g(uz, ho)

in Q x (0,77). We multiply this equation by h; — ho and integrate over Q. Then, using partial
integration, the Lipschitz continuity of g, and Young’s inequality we conclude from Gronwall’s
inequality that
lhy = hallL=(0,4:02(0))> V(A1 = h2)[r2(0,t522(0))7) < Cra(T1)[ur — uzfr2(ax04))  (5.3.32)
for t € (0,71). Moreover, we can rewrite
6t(u1 - UQ) =VV: (Dl(ul — UQ)) +V. (Dl(u1Vh1 — ’LLQVhQ))
T ) (1= T ) = plha)ug (1= J 5 )
=VV: (ID)l(ul — UQ)) + V- (Dl(ul — ’LLQ)V}h) + V- (DIUQV(hl — hg))
T () = ) (L= J v o) + o) (u§f — ug) (1 — J )
+ p(ho)ug J = (uf —uf). (5.3.33)

With the boundedness of us on Q x (0,T) by some C12(771,1) > 0, Holder’s inequality, the mean
value theorem and the Sobolev embedding from Lemma ( 1) we estimate

1+ (uf —uf)| <BCET (T, 1) fg 17z — )l () — us(w)] dy

$ﬁcf2_1(Tl’ l)HJHLp(B) Hul — UQHL% ) < 013(T1, l)||u1 — u2||H1(Q). (5.3.34)

(2

Again, we multiply by u; — ug and integrate over ) for ¢ € (0,71). Then, using partial
integration together with Young’s and Holder’s inequality, the mean value theorem, the Lipschitz
continuity of u, Lemma ( i), the boundedness of u; and us, the boundedness of Vh; by some
C14(T1,1) > 0 and and 7 it follows that

s = s gy + iV ) Ry
<- L V- Dyus — u2)V (w1 — uz) + (w1 — ua) (D V) - V(g — uz)
(DY (hy — hg)) - V(uy — up) da
+ L[(#(hl) — pu(ha))us (1 = J s uf) + p(ha) (uf — ug)(1 = J #uf)
+ p(ho)ug J = (W —u)](ug — up) da
<V - Duflczeyyn + Dull(zee (@)ynxn | VA1 (22 ())n) L lur — ua||V(u1 — u2)| dz
+ D rapyen Cra(Tind) | (900 = )|V (0 = )] da

+ L Ci(Tr, (1 + IIJHLl(B)CiBg(TM))J |h1 = ha|lur — ug| dz
Q
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il 0. 0CE D0+ 111 ChT3 ) | s = ol da
+ |l = 0,5 CTo (T, 1) Crs(Th, Dur — uz| mr(q) L lur — uz|dx

<Cs(T1, 1) (Jur = us ey + 11 = halFaga + V(1 = h2) [Bizga )
+ D1V (ur — u2)[Fr2 (-

Integrating over (0,t) for t € (0,71) and using (5.3.32) we conclude that for a.e. t € (0,7}) it
holds that

t
lur = ualF2(0) <Cio(T1,1) ( f Jur = uz G2y + IV (A1 = ha) 22y + Mo — h2||%2<n>)
t
<Cur(Ti) | o = sl oy .
0

Consequently, combining this with Gronwall’s inequality and (5.3.32)) implies that u; = us and
hi = hs a.e. on Q x (0,77). O

5.3.2 Global existence and boundedness of u in the approximate prob-

lem

Lemma 5.3.3. There is a positive constant C1g independent from [ s.t.

IV 20, Tas (2 @)y < Chs

holds for all l € N.

Proof. Let | € N. We have shown in Lemma that h; satisfies

t
hat) = U(h)(t) = eP#Bhg + j =P gy 1) ds
0

for t € (0, Tynaz). With Lemma|A.1.18(ii) and (i) and (5.3.13)) we estimate that

IV R ()| Loy <Kize PN hol (pa(ay)n
t

1
+K11|Q|‘1 J

1
1+ 1> e~ M D (t=s) g(ur, )| oo mt wmty A8
(G loCut, )l

holds for all ¢ € (1,00), where Ay is the first positive eigenvalue of —A on  with Neumann
boundary condition. Using the properties of g, the uniform boundedness of (h;) and Holder’s

inequality, we conclude that

VR woy <K lA7[Vholl 2 @)
t

1 1 _ s
+K11|Q|q(”ahg”Lr(R(TXR(T)H+G)JO (1+(l)(t8))1> e AMDp(t )dS
m(t— 2

1
EulQa(10n9] Lo vy ety B +G) (1 r
Dy '

<K12[Q[7 | Vho|l (1 )y + NN

Consequently,

||Vth(Lao(Q))n = qlLr{}o thl“(Lq(Q))n
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Kll(“athLao RF xRF H+G) 1 =
<Kz | Vholl oy + S ( \f) . Che

7+7
Dy A VA

O

We will show the global boundedness of u; as in the proof of Theorem 1.1 in [99]. For a more
detailed proof of the boundedness of the corresponding solution see Chapter[f, where the same

method will be used.

Lemma 5.3.4. For alll € N and g € [1,00) it holds that u; € L*(0, Tpaz; LY(Q)).

Proof. Let I € N and ¢ > max{l, 8+« —1}. Due to (5.3.31)) the terms in the estimates below are
well-defined for a.e. t € (0, Tjq.). Multiplying the first equation of qp by qu?fl, integrating

over {2 and using partial integration, we obtain
d _ _
%J uf da ij V- (D) Vu, + (V- Dy)w + Dy Vi) uf Ty plh)uf 1+O‘(1 —J % ulﬁ) dz
Q Q
=—q(qg—-1) f w! (D Vuy) - Vg +ul (VD) - Vg + ul (D, V) - Vi da
Q

+ qJ p(h)ud (1 = T uf) dz. (5.3.35)
Q

a

Using the uniform parabolicity of I; and Vu? = duz

B 4g—1) < g 4
q(q — ]_) JQ u? Q(Dqul) . Vul dr = % Z JQ dlij (UZQ)M (ul2>m dz

4,j=1 !

~1Vu, we estimate

4(qg—1 a
> Mle |Vulg|2 dz.
q Q

Further, due to Young’s inequality and Lemma|5.5.5 we obtain the estimate

q(q — 1) ‘f u?_l(v . Dl) -Vu + ulq_l(Dthl) - Vu; dx
Q

<2(¢ = 1) (IV - Dill =@y + D1l e @yymxn [Vl 22 (2))) L u [Vui | dz
2(g—1 a
MDl J |Vaug |? d
q Q

q(¢ —1)
+ LD (19 Dl pyeen + Il oo Cls) | d

YA\

Inserting these estimates into ((5.3.35)) and using our assumptions on y and J, the boundedness
of h;, and

f uf dz < J wlt T da 419, (5.3.36)
Q Q
it follows that

d 2(q—1 a
—J uf do + Mle |Vul"’|2dx+q77(5j u?71+ade u? da
dt Jo q Q Q Q

<qCio(g,1) < J W~ g 4 |Q|> , (5.3.37)
Q
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where
Cio(a ) = 122 (|9 - y? ;|2 2
19(q,1) == Dy IV - Duf[{pe () + DL (02)ynxn Cs ) + 1l o= 0,11y
Adding ¢C19(q,1)|w|%, on both sides of (5.3.37) and using (5.3.36)) one more time, we obtain

uf dz + qCho(g,1) J

-1 g _
u?dx+2q7D1J |Vul2|2da:+q677j uf 1+ade, uf da
Q q Q Q

<2¢C1o(q,1) q w7 da + |Q|> . (5.3.38)
Q

It follows from Lemma with K5 = % and Koy = 2?—;9 that

1 g
2qC19(q, Z)J ud e <1 "p, f |V |* do + qénf ud e de u? da
Q q Q Q Q

+2qC19(q, 1) Ka3(q,1),

where
B q7a+1+g72(q++—1+ﬂ)
qta—1— =
2K2,¢°C1o(q, 1) a—atr4p29Fa—1E8 —gta-1-6 pri—a—2D
Hasla D)= <2 ((2;_1)])(1) ' + Ka4(q) g wte=TFF
q—w
2C19(q, 1)\ pr1-a 22 _ara1a
o C K =T
( on 24(q)
with

Ko = 2K5(8)(1 + 2[(13)7
Kou(q) := 4K (s)|Q| 2~ 77a-157.

Here, K5(s) > 0 denotes the Sobolev embedding constant from H!(Q) into L*(2) from Lemma(i),

Kp > 0 the constant from the Poincaré inequality, and

= o0, n=1,
( Agtoolip) ) n=2, (5.3.39)
n—27 n > 2.

Hence, for ¢ € (0, Tynaz) We conclude that

d
Sl gy + 0Cr0 (@, Dl ) < 24Cr0(a, D(Kzs(a, 1) + |2) (5.3.40)

and obtain for t € (0, Tinas) from (5.3.40) and setting K14 = ¢C19 and K5 = 2(Kaz + |Q]) in
Lemma [A-1.20 the upper bound

[ 8) oy < §/2K2a(0,0) + 2192 + ol ) < q/ms(q,n 19 (2 + ol o o )
(5.3.41)
O

Remark 5.3.5. As in [99] we cannot directly conclude from Lemma that u; is bounded
on Q x (0, Trnaz) as

lim §/2K>53(q,1) + || (2 + Hu()l”%’?(ﬂ)) =®

q—>C
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due to
ata—1-p _4—0+1+f*—w .
¢*C19(q, 1) s—o+1+p—2 LEa—TFE p+1—a—28
q—1
%‘ q+a_1_2ﬁTa 142=1=B\ 5. L 28
>(lle0.ma)” = = ((nlesmo™ 7 )T 5 o,

Theorem 5.3.6. For all l € N there is a unique bounded and nonnegative solution (uy, h;) of

(5.3.7) consisting of nonnegative functions
uy, hy € C(Q x [0,00)) n C*H(Q x (0,00)).
Thereby, hy < H and there is some Ca(ug;) > 0 s.t. u; < Coo(ugr) and

C20(uor) 3, O (5.3.42)

Moreover, for K > 1 and some ’small’ enough choice of parameters of type (5.3.47)) and (5.3.48|)
below, it holds that

2
1-2 1-5

N\aTono 7 [ 2\
lwll o (@ x (0,00)) < K max {1, [uorl| () (4Ks(s)|Q| 2)(1 L)(pt1—a—28) <577>

(5.3.43)

If Q is convex, the constant Kg(s) is explicitely given in Remark in Chapter[6

Proof. Let | € N. We proceed with a Moser iteration as in Step 2 of the proof of Theorem 1.1.
in 99].

Set gy := 2* 4 a with a := w for k € N large enough s.t. gx > max{1, 8 + a — 1} holds.

As in Step 2 of Lemma[6.3.4 we obtain for ¢ € (0, T,,q.) the estimate

aHUlHqL’“qk @) + @Cro(ar, ) |wl o, o) < 206C1ro(ar, 1)C22(qr, ) max {L | 75 }, (5.3.44)

where

2K3, 43 Cro(qr, 1)
(Qk - 1)D1

Due to " there is Co3 > 0 s.t. HDlH(L”(Q))"Xnv HV . ]D)lH(LD(Q))n < Cog for all I € N. We can
further estimate using the definition of ¢ that

Conlqi, 1) : = 2 < ) 42 (max{4Ks(s), 1) max{1, |Q|_%})a+1 + 9.

qr — 1
Cro(qr,1) < I€D710223(1 +C) + Il 2 (0,21) (5.3.45)

1+a
< (1)10223(1 +Chg) + M||Lr(o,H)> 2k

and consequently,

S _
5—2

1+4+a

2K3, . 2 2 k
B, 2 (0 +a) ( 5=C%(1+Ci) + luleom) ) 2

Ca2(qr, 1) SQ( D

1

1 a+l
+2 (max{4KS(s), 1} max{1, |Q|‘§}) +19
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QkL
L2752y

for

s
s—2

2
K21

1+a
024 =2 (2 D

(L+a) (| —=—C35 (1 + C%) + il = (0,81

1 D,
1 a+1
+2 (max{4Ks(s), 1} max{1, |Q|‘5}) +19.
For k€ N and t € (0, T)nas) We set
s(®) = (s D%
Inserting this into (5.3.44]) we obtain
2
i (1) + q6Cho(qr, Dyr(t) < 2qxCho(qr, )22 52 Cyy max {1, (f u?k_l> } .
Q

Moreover, we estimate that

k
o] 5 0y < Tetonl ey 9 = Tuaon| 3oy et [y 121

Hence, from Lemma with ¢, = qxCio(qr,1), @ = 2C24 and D = 2% it follows that for
k = m =1 large enough (s.t. 20542252 > 1) and t € (0, Trnaz) it holds that

J u?k dz <(4024)2k—7n+12%(2(2k—m71)+m2k—7n+17k)
Q

-max { sup Ju?m_l
=0 \Jo

Consequently, for t € (0, Tynas) and m > 1 large enough it holds that

2k77n+1

k k—m
o2 () (o7 () 121)? 71} :

lwllz= () = klgr; || Lax ()

27m+1 2s(14+m) q .
<(4Cay) 2G=22""T max { sup ul™
Q

t=0

2—m+1

Mol e o) (ol f ) 12D 1}

22025(m,l). (5346)

Due to (5.3.41) and (5.3.45)) there is Cao(m, uo1) > 0 s.t. |ur]| Lo @x(0,Tman)) < C20(m, ugr) for all
1 € N. Together with (5.3.4]) this implies the existence of Ca1(m) s.t. Cag(m,ug;) — Ca1(m) for

| — 0.

Consequently, u; is bounded on Q x [0, Tjnaz). Combining this with the boundedness of hy,
Lemma[5.3.9 and (5.3.10) in Theorem[5.3.9 Tynax = o0 follows.

We proceed as in Step 3 of the proof of Theorem 1.1 in [99]. First, we fix some m and choose

our parameters sufficiently ’small’ s.t.

2K221 qm—1 2 2 2
D, ( D, (HV D[tz yyn + “Dl”(L"ﬁ(Q))”X"CIS) + |l 0,11 (5.3.47)
2K221 Am—1 ~2 2 1
< D, ( D, C33 (1+ Cfs) + il =0,y ) < 2.
and
=1
Cholgm 1) < T2 —c3, (14 CF) + il pos 0,1y < 1 (5.3.48)

D,
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are satisfied. This depends on our choice of D, u, g, hg, and Dg. Consequently, we conclude

again from ([5.3.41f) that
f u/™ ™ dx
Q
dm—1+a—1-5
<5 max 2 ( 1 ) a1t 1 2imo1TATIHE)
Gm-1—1

2(gm_1+ta—1+8)

s

Q1 — 14—
B+1—a—28

Am—1ta—1-5
i To—1%7
s

q
+Ko4(qm—1) 1

_26@m—1ta=1)

Im—1 dm_1+a—1-5

2 5+1*“*§T§ I 1 Fa— 118
' (577) Ko (Gm—1) 17 19 (2 + [uor

dm—1
Lo(Q)

=:H(m).

—m

m 2s5(14+m)
With (4Cs4)% "' 2G-227T 5 1 and (Humngr(ﬂﬂm) — 1 for m — o and

-2

e 9\ pri—aiZE
lim H(m) 2"11*1 = max (4Ks(8)|Q|_%) (17%)(5"'1*0‘*%) ( ) A+l s , HuOlHL'ﬁ(Q)a 1

m—x0 577

we conclude from ([5.3.46f) that

-2

1-2 - s __
A\ a Dosia B [ 2 \er1-a-2E
”ul”L‘”(QX(O,fL» <max{ 1, HuOIHLm(Q), <4KS(3)|Q| 2) -1+t = (517>

There are obviously no parameters satisfying (5.3.47) and (5.3.48)) for all m. But for any K > 1
we find ’small’ enough parameters (satisfying (5.3.47) and (5.3.48]) for some large enough m)

such that ([5.3.43)) holds. O

5.3.3 Global existence and boundedness in the original problem

Theorem 5.3.7. There is a bounded and nonnegative weak solution (u,h) of s.t. for
all T > 0 it holds that u € C([0,T]; L*(Q)) n L?(0,T; H(Q)) with dyu € L*(0,T; H 1(Q)) and
he C([0,T]; HY(Q) n W2 (2 x (0,T)) A L”(0,T; WL (Q)) and for alln e Wy (Q x (0,T)) with
n(T) = 0 the functions u and h satisfy

T T
—J fumdxdt—}-lf f(V-Du—i—]D)Vu—i—ID)th)-V?ydxdt
0o Ja 0o Ja

T
=J J p(h)u®(1 = J = u?)n de dt + J uo(x)n(x,0) dr, (5.3.49)
0o Jo Q
and
Oth = DgAh + g(u,h)  a.e. in Q x (0,7T) (5.3.50)
Vh-v=0 a.e. in 0Q x (0,T), (5.3.51)

h(0) = ho in H'(Q). (5.3.52)
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Moreover, uw < Co1, h < H in Q x (0,00). Fortg € (0,00) there are constants y(to) € (0,1) and
Ca6(to) >0 s.t. u,h e C’%%(ﬁ X [to,0)) and for all t € [ty, ) it holds that

Jul < Cas. (5.3.53)

C7 3 (@x[tt+1])’ ”h”m'%(ﬁx[t’tﬂ])

For the parameter choice from Theorem u satisfies ((5.3.43)).

nQJ:Q forn =3 and pe (1,00) forn =1,2.

The solution (u, h) is unique for p =
Proof. Let ¢ € HY(Q) and T > 0. Obviously, for each [ € N the function w; satisfies

f Oyuppda = —f (DyVuy + V- Dy + Dy Vhy) - Ve dz + J p(hp)ui(1 — J = uf) dz,
Q Q Q

(5.3.54)

for t € (0,00) as it is a classical solution. Due to Theorem h; satisfies

Ihe ijl(gx(oj)) < Cor(T), (5.3.55)

where Co7(T") > 0 is independent from [ due to the properties of g and the uniform boundedness
of (hl)l and (ul)l.

There is a constant Co3 independent from I s.t. ||z (q)ynxn, |V -Dill (0 () < Coz foralll € N

due to (5.3.5). Setting ¢ = u; in (5.3.54) and using li Holder’s inequality, the continuity of
1 and the uniform boundedness of (h;);, (w;); from Theorem [5.3.6, we can estimate that

1d

2 ||UIHL2 + D1 || V7 (2@ < Caslwllzze) (1 + Cis)|[ V| z2(0))n + Cas.

Consequently, Young’s inequality and integration over (0,7 lead

IVuill 20,522 ())m) < Cao(T)

for all [ € N. Similarly (from (5.3.54) for ¢ € H}(Q)) it follows that

|0ewill 20,7 m-1(2)) < C30(T)

for all I € N. Putting this together with the uniform boundedness of (h;);, (w);, (5.3.55),

Lemma [5.5.9, the Lions-Aubin lemma (respectively, with H(Q) << L2(Q) — H~!(Q) and

H?(Q) —>— HI(Q) — L%(Q)), the Banach-Alaoglu theorem, Lemma and Lemma

with L= (0, T; (L*(Q))") = (L1(0,T; (L*(2))"))* we conclude that there are u € C ([0, T']; L*(Q))n
L2(0,T; HY(Q)) with du € L*(0,T; H'(Q)) and h € C([0,T]; H'(Q)) n W3 (Q x (0,T)) n

L*(0,T; WL(Q)) s.t. (after switching to a subsequence if necessary)

w = u in L2(Q x (0,7)) and pointwise a.e., (5.3.56)
w = u in L*(0,T; HY(Q)),

Oriy T dyu in L*(0,T; H~1(Q)),
hy 2 h in L*(0,T; H*(Q)) and pointwise a.e., (5.3.57)
hy ot h in L*(0,T; H*(Q)),

0thy — 0:hin L2(Q x (0, 7)),

>
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Vh li Vh in L*(0,T; (L% (2))"). (5.3.58)
—wD
The uniform boundedness of (u;); from (5.3.42)) together with (5.3.56|) and the dominated con-
vergence theorem imply
J*u;8 ) Jxu” ae. in Qx (0,7).
—UL
From this using the above convergences, the dominated convergence theorem, the uniform bound-
edness of (u;);, (h); and (Vhy); from Lemma and Theorem [5.3.6, the Lipschitz-continuity
of u and g, compensated compactness (Lemma|A.3.4) and (5.3.5) and the fundamental lemma
of variational calculus, it follows as in Theorem that (u,h) solves (5.3.1) in the required
sense. Moreover, u € C([0,T]; L?(£2)) holds due to Theorem

The a.e. boundedness and nonnegativity of u and h follow from the pointwise convergence and

the uniform boundedness and nonnegativity of (u;); and (h;);. Uniqueness follows similarly to

Theorem [5.5.3 using Lemma[A1.3

Finally, the global boundedness of u, h, (5.3.5), Lemmas and and the Lipschitz con-
tinuity of y and g, Theorem[A.1.14 and Remark[A.1.4 with a and b, respectively, chosen similar

to Lemma imply (5.3.53)). O

5.4 Long time behavior

We consider the long time behavior of our solution under the additional assumptions that we
make from now on:
- the domain 2 is convex,
- there are h* € [0, H] and constants Cy > 0 and Cy > 0 s.t.
g(u, h)(h — h*) < =Cg(h — h*)? + Cpu® (uf — U)? (5.4.1)

forO0<h<Hand0<u< U%, where U7 is some upper bound on u; for all [ € N (that
exists and is independent from [, due to Theorem|5.3.6),

- we extend J by 0 to R"\B and assume J = %j for a kernel J € L'(R™) with norm
Iy =1,

- the parameters

1

Co = - Juleoun) (diam()B) U (5.42)
1D
CuCL 32U
= JUTPTY g 4.
Ca = 45 Da D, Cp, (54.3)

where | D]z (qyynxn < Cog for all I € N (due to (5.3.5)), satisfy C3 > 4Cp, Ca < 0,

Cp e (0,1) and
2
Cp < —% +4/ % — CB, (5.4.4)

cug #0, up < UP and §o, In(ug) do < oo.
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Moreover, let
M := {]D)e (02“9(5_2))”)(”: (V-D)-v=00n0Q,V-(V-D)=0on Q}

We assume that D is in the closure of M in the C*(Q, R"*"™)-norm and that the sequence (ID;);en
from Section[5.3is the sequence in M that approaches D.

Remark 5.4.1. The inequality l) implies that such h* is unique and g(U%,h*) = 0 holds.

We proceed by combining the methods from [91}, |99].

Lemma 5.4.2. It holds that

o0 el
j f u* - U)? de dt, J J |h — h*|? do dt < 0. (5.4.5)
0o Jo 0o Jo

Proof. Let | € N and consider the global classical solution to (5.3.7) from Theorem We
conclude from Proposition|A.1.1(0land the assumption ug # 0 that w; > 0 holds in Q x (0, 00).

As in [99] we define a(s) := § — Cn(s) + %(ln(U) — 1) with a(s) = 0 for s € (0,00). By
multiplying the equation for wu; in l} by uf — qul, integrating over {2 and using partial

integration, we obtain

d
%J. a(uf) dz :f 6tul(ulﬂ71 —Uu; ') dz
Q Q

=J V- (D;Vu, + V- Dyuy + Dyuy Vi) (Ulﬁfl - Uuz_l) dz
Q

+ f u(h)uf (1 — J = uf)(ufﬁ1 —Uu; ") dw
Q

=~ || @+ Dt DT (6 - D]+ 1) -

1
—f (h)u U J*uJ(uf—U)dx.

Due to D; € M using partial integration again leads to

f VD8 - Dl +U) - Y4 dy
Q uj

=f V-Dy((8—Du) ™" + Uty - Vg dz
Q

:L(V-]D)l)-v (55 Luf +U1n(ul)> dz

—Lv-(v-ml) <5glulﬂ+Uln(ul)> dx+LQ (ﬂﬁl ﬂ+U1n(ul)> (V-Dy) - vdo(z) = 0.

Hence, we can estimate using the positivity of u; and (5.3.6) that

% a(ulﬁ)dx+UJ <Vul> ]D)l@ dz
Q Q

U
<L ((5 — 1l + U) (Vi) Dl@

dx+—f (h)u U J*uJ(uf—U)dm.
(5.4.6)
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Then, we proceed similarly to the proof of Proposition 3.1 in [99] and obtain using u; < U 5 and

Young’s inequality that
L p(h(@)up ™ (@)U = T # ) (2)) (u) () = U) da
- [ ey (v [ wan- j =)l )dy) (uf (@) = U)

f pu(hy(z (J J(x—y) (U =l (y ))dy) ( ﬂ(x)—U) da

f (@) () j J(@ - y)(uf () - U)* dyda

Q Q

n j n(h(@))us () j J(@ — ) (@) — uf (1) (f (2) - U) dy da
Q

—(1- f f (hi(2))ud = (2)J (& — y)(u] (z) — U)? dy da
inuu et [ [ T =@ - @) ayas (5.4.7)
de L*(0,H) 0lJo 1 l -k

2 2
€€ (max{—iA—MZA—CB;CB},min{—C;A+MC:1A—C’B;1}) c (Cg,1),

where the interval on the right-hand side is nonempty due to our assumptions on C4 and Cjp.

for

Moreover, due to the convexity of  and using the uniform boundedness of (u;); by U?P we
conclude from Lemma[A.].5 the estimate

f f J(@ — y) (@ (z) — uf () dy dz < diam(Q)? f IV ()P da
QJQ Q

< (diam(Q)8U)? L |V;”|2
l

Now, inserting this in (5.4.7]), using our assumptions on J and u, and the uniform boundedness

of (u);, we conclude

5 | @)= @) = T @) o 2) = V) o

1 2
<-DUCp J Vel 4
€ Q

Inserting this into (5.4.6) and using (5.3.6) and Young’s inequality, it follows that

_ 2

4 a(uf)da:+D1U8 Cs |Vu;| dx+(1—s)5n|ﬂ|f ulo‘fl(uf—U)de

dt Jo € o Y Q

\Y

<J ((5—1)uf+U)‘(Vhl) Dlﬂ da

Q

e—Cp [ |[Vul? 502352 f 2
<D d hy|* dx. 5.4.8
v £ L uj x+4D1(5_CB) QW " dz (5:48)

Multiplying the equation for h; by h; — h*, integrating over 2 and using (5.4.1)), we obtain

1d
E%J (hy —h*)zdx—i—DHf |Vh)? de < —CHJ (h—h*)de—kCUJ ut " (uf —U)? da.
Q Q Q Q



5.4. LONG TIME BEHAVIOR 109

Further, we multiply this by C3; := 037U 3 and add it to (5.4.8) to obtain

4D1 DH (E—CB

d 1
— <f a(ulﬁ) dz + 7031J~ (hy — h*)? dx) (5.4.9)
+CgCs1 J (hl - h*)2 dz + ((1 - 6)577|Q| — CUO&I)J u;l_l(ulﬁ - U)2 dz < 0. (5410)
Q Q

Due to our assumptions on Cy, Cp and our choice of ¢ it holds that (1 — €)on|Q2| — CyCs1 > 0.
Consequently, for 7" € (0,0) it holds that

T
fa(uf(:r))dx+3031f (hl(T)—h*)QdHchglf f(hl—h*fdzdt
Q 2 Q 0o Jo
T
+ ((1 —€)on|Q| _CUCSI)J J u;"_l(ulﬁ —U)*dxdt
0 Q

1
SJ a(ud) + 5031J (ho — h*)? da,
Q Q

where the right-hand side is finite due to our additional assumption on uy. Hence, using the uni-

form boundedness of (u;); and (h;);, their pointwise a.e. convergences from ([5.3.56)) and (5.3.57))
and the dominated convergence theorem we conclude

T T
CHCglj f (h—h*)2dadt + ((1 —€)dn|Q| — Cchl)f f u* Y —U) de dt
0 Jo 0 Jo
SJ a(ug) + %Cglj (h() - h*)2 dx
Q Q
and (5.4.5]) follows. O

Now we can conclude uniform convergence as in Lemma 3.10 in [139):

Theorem 5.4.3. It holds that
Jim u(-,8) = el L) = lim A, 8) = ¥ L) =0, (5.4.11)
where ¢ € {O,U/%} ifa>1andc= Us ifa=1.

Proof. Due to (5.3.53) in Theorem u and h are uniformly continuous in Q x (1, 00) and we
can conclude from Lemmas|2.2.3 [5.4.2 and [4.4.0 that

1

tim fu(, ) (u () = U)oy = Jim [A(,0) = B*|Lrey = 0. (5.412)

t—o0
Uh N (o
€ := min 01— =
8 (8) 8

Due to the uniform continuity of u we can consider w.l.o.g. a sequence (tx)ken < (1,00) with

Consider o > 1 and set

limy,_, t, = oo satisfying for all z € Q and k € N the estimate
[u(z, thi1) — ulz, tr)] < e. (5.4.13)
Moreover, (5.4.12) implies that there is K (¢) € N s.t.

a—1

||u('7tk) 2 (uﬁ('vtk) - U)”L”(Q) <e¢
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and consequently, due to our choice of € above u(z,t;) € [0, %U%) v (%U%, U%] for k > K(e).
Hence, either u(x,ty) € [0, U%) forall x € Q and k > K(¢) or u(z,ty) € (%U% U%] for all z € Q

and k = K(e) due to (5.4.13). If u(x,tx) € [0, %U%) for all z € Q and & (e) then (5.4.12)

implies that

[ul, ) "7 (WP, tr) = U)oy

U(l—(é)ﬁ) koo

Analogously, the other convergence in the case u(z,ty,) € (2U 5U %] follows. O

Ju(s te)ll e ) <

5.5 Pattern formation: a 1D study

We want to investigate pattern formation in our model in 1D (see [110]). For this aim we adapt

some of the assumptions on our functions and parameters:

- J e L'(R), J(z) = J(—=x) for # € R and {, J(z)dz = 1, whereas we drop the condition
that 0 < n < J;

- d € R constant;

- there is exactly one h* > 0 with g(1,h*) = 0, moreover, pu(h*) > 0, dyg(1,h*) = 0 and
Org(1,h*) < 0 for this h*. This means that when the cancer cells are at their carrying
capacity (corresponding to an acidity level h*), the production of protons is increasing with
the cell mass and decreasing with enhancing proton concentration. Indeed, crowded tumor
cells are highly hypoxic, and a too acidic environment leads to quiescence or necrosis, thus
reducing proton expression. Moreover, we assume that p/(h*) < 0, thus the growth rate is

decreasing with the proton concentration in the neighborhood of the critical value h*.

- w.l.o.g. we consider Q2 = (—a,a) for a € R.

We define the convolution over R as J @ u(x) := {; J(z — y)u(y) dy. Hence, we consider the

model

U = gy + d(uhy)z + p(h)u®(1 — J®u?)  in Q x (0,0),

h =D h =+ 7/’), 1 Q X O’w ,

t wHhew + g(u, h) in ( ) (5.5.1)
Uy = hy =0 on 09 x (0,00),
U(,O) = Uo, h(70) = hO in Q.

5.5.1 Stability in the local model without diffusion and taxis

We start by establishing the equilibria of the non-spatial local model that corresponds to (5.5.1)),
ie.,
dru = p(h)u®(1 —u?),
oth = g(u, h).

(5.5.2)
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The biologically more interesting one is given by (u*,h*) = (1,h*), where h* is the unique
solution of g(1,h) = 0. The corresponding characteristic equation of the Jacobian in (1,h*) is

given by
A+ (Bp(h™) = ong (1, h*)A = Bu(h*)ong(1, h*) = 0.
The corresponding eigenvalues are
A = —Bu(h*) and Ao = dng(1,h*)

and both have negative real parts due to the assumption d,g(1,h*) < 0. Hence, the steady state

(1,h*) is stable in this case.

5.5.2 Stability in the local model with diffusion and taxis

We continue by adding again the diffusion and taxis terms to the local model (5.5.2), i.e.,

O = dugy + d(uhy)y + p(h)u®(1 —ub),
ath = DHhacw +g(u7h‘)

Adapting the ansatz from [119] we consider perturbations of (1, h*) of the form v = 1 + (k)
and h = h* + eh(k), where (k) = ae** cos(kz) and h(k) = he*®)tcos(kz) for @,h € R,
wavenumber k € N and |¢|] << 1. Here, A(k) denotes some eigenvalue of the corresponding

+e—ik:c

characteristic equation. As in [115] we use the fact that et 5 = cos(kx) to ensure that our

perturbations are real for real \.

Inserting these u and A into our model and linearizing about the steady state (1, h*), we obtain

Ak)a = —dk?a — dk2h — Bu(h*)a,

) ) ) (5.5.3)
AR)h = —Dyk?h + 8,9(1, h*)ii + dng(1, h* ).

The corresponding eigenvalues are given by
tr(‘]mh(k')) t \/tr(Ju,h(k))2 - 4det(Ju,h(k))
)\172(k) = 2 )
where we denote by J, » the Jacobian of the right-hand side of system (5.5.3)) at (1,2*) and its

determinant and trace are, respectively, given by

tr(Ju,n(k)) = — (d + D )k* — Bu(h*) + dng(1,h*) <0,
det(Jy n(k)) =dDgk* + (d(ug(1,h*) — Ong(1, h*)) + Bu(h*) Dy )k* — Bu(h*)dng(1, h*) > 0.

Hence, the equilibrium (1,h2*) is stable. The local model does not lead to any Turing type

patterns.

5.5.3 Stability in the nonlocal model

We consider u and h as in the previous section and linearize the convolution term about (1, h*)
similarly to [119]. Hence, inserting v in the convolution term and using the symmetry of J, we
compute that

J®u’(z) ~ J J(z —y)(1 + Beae* Pt cos(ky)) dy
R
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=1+ Bsae“’“”% f J(2)e™m=2) 4 J(—2)e M) 4
R

=1+ Beae* ™ cos(kx) f J(z)e"**dz
R

=1+ £Bu(27)2 J (k).
Here, J denotes the Fourier transform of J. Hence, linearizing system qp we obtain
Ak)a = —dk?a — dk2h — Bu(h*)(2n)2 J (k)a,

. i (5.5.4)
—Dygk*h + 0ug(1, h*)t + dng(1, h*)h.

=
&

A
=
Il

The corresponding eigenvalues are as above given by
tr(Jun (k) £ A/tr(Jun (k)2 — 4det(J, 4 (k)
2 )
where we denote by J, 5 the Jacobian of the right-hand side in (5.5.4) at (1,2*) and its trace

and determinant are given by

Ai2(k) =

tr(Jun) (k) = — (d + Di)k? — Bu(h*)(2m)2 J (k) + Ong(1, h®),
det(Jyn)(k) =dDgk* + (d(0.g(1, h*) — dng(1, h*)) + ,Bu(h*)(zw)%j(k;)DH)k;2
— Bu(h*)(2m)2 J (k) Ong(1, h*).

The sign of the real part of the eigenvalues is ambiguous here and depends especially on the sign
of j(k‘), which depends on k. As above, we have stability here if

trdy (k) <0 and det J, p(k) >0 (5.5.5)

for all k = 7z, where 2z € Z. We make this restriction due to our boundary condition u, = h, = 0.

Now, we are looking for a critical k. (that is not necessarily of the form 7z) depending on our
choice of parameters, where we distinguish as in |115] the occurrence of Turing instabilities in
the case Im(A(k.)) = 0 for some arbitrary critical k., Hopf instabilities in the case Im(A(0)) # 0,
and wave instabilities in the case Im(A(k.)) # 0 for some critical k. # 0. If .J is symmetric it

suffices to consider only positive k..

A Turing bifurcation can occur if we find k. such that
det(Jyp)(ke) = 0 and tr(J, 1) (k) < 0.

Now, rewriting these conditions we conclude that the equality

co k2 dug(1, h*)
J%*‘%mm@mwO+DmawmeJ (5.5.6)

and the inequality

ong(1,h*) — (d+1DH)’f5 < J(ke) (5.5.7)
Bu(h*)(2m)z

have to hold for one or several critical k. in a set K., whereas (5.5.5) holds for all k& ¢ K. that

are of the form Zz. Such k. exist depending on the choice of parameters, on the functions x4 and

g, and especially on the sign of the Fourier transform of J. Moreover, due to our assumptions
the terms on the right-hand side of (5.5.6) and on the left-hand side of (5.5.7) are negative and
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tend to —oo for k — +00. On the other hand, a Hopf or a wave instability can occur if we find
k. such that

tr(Jy,n)(ke) = 0 and det J,, p(kc) > 0,

whereas holds for all k£ that do not satisfy this and are of the form 7z. Hence, a Hopf
instability occurs if
ong(1, h*)
p(h*)B(27)
whereas holds for all k£ # 0. On the other hand, a wave instability occurs if

= J(0) and J(0) > 0, (5.5.8)

Lsany T (5.5.9)
and
gk dug(1,h*) .
B ) ( Dyk? —6hg(1,h*)> < J(ke) (5.5.10)

holds for one or several k. # 0, whereas (5.5.5)) holds for all other & that are of the form Tz and
do not satisfy the above equality and inequality.

From the above considerations we conclude that the occurrence of a Turing, Hopf or wave insta-
bility depends on the concrete choice of J, as we need to find suitable & of the form 7z. If the
Fourier transform J is nonnegative, no Turing patterns occur due to . More precisely, the
determined patterns are only of Turing-like type as they are induced by the nonlocality and not
the diffusion.

Example 5.5.1. We explore the occurrence of Turing-like patterns in the nonlocal model (5.5.1)
for the uniform kernel Jy(z) = 3x[—11](¢) and the logistic kernel Jp(z) = in the

with a

1
TrerteT
domain 2 = (—5,5) for the parameters and functions g(u,h) = u(1 — h), u(h) = &5,
constant i > 0 and d = Dy = 1. The steady state is given by (u*, h*) = (1,1) with d,¢(1,1) =0,
Ong(1,1) = =1 < 0 and (1) = §.
The Fourier transform of the uniform kernel Jy; is given by

. sin(k)

Ju(k) =

vlk) =75
for k € R. Its sign is ambiguous. Inserting this into ([5.5.6)) and ([5.5.7) we conclude that

(5.5.11)

2k%  sin(k,)
— = 5.5.12
B ke ( )

and
2 +4k?  sin(k.)
— <
B ke
have to be satisfied for some k. for the occurrence of Turing-like patterns, where the second
condition is a direct consequence of the first. Equation (5.5.12)) has a solution if Su are larger
than approximately 168,4. Hence, for such Su Turing-like patterns occur.

Moreover, the Fourier transform of the logistic kernel .Jy, is given by

Y.
Jo(k) = NPT 0 (5.5.13)
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for k € R. Consequently, no Turing-like patterns occur for this kernel

In Section[5.6 we will perform numerical simulations for this choice of functions and kernels.

Remark 5.5.2. If there is a steady state of the form (0, 2**) for some A** > 0 and d,g(0, h**) <
0, then this equilibrium is stable in the case with diffusion, taxis and nonlocal term. If, on the
other hand, 0,g(0, h**) > 0, this steady state is unstable already in the case without diffusion
and taxis. This case is, however, unrealistic for the biological problem investigated here. Indeed,
the proton expression by hypoxic cells is much reduced and there must be at least some very

weak acid buffering, lest all cells (and surrounding tissue) become apoptotic.

Likewise, the steady state (1, h*) is unstable already in the case without diffusion and taxis if
Org(1,h*) > 0. This situation may occur at least in a transient manner, e.g., when the cells can
still extrude protons while their environment is quite acidic and if the cells are at their carrying
capacity and the proton buffering is relatively low. That can lead, e.g., to a choice of the form
g(u, h) = u + uh — vh? with v < 4/5.

5.6 Numerical simulations

In this section we perform numerical simulations of system (5.5.1)), in order to illustrate the
solution behavior. The equations are discretized by using the algorithm in [111] similarly to
Section the motility terms were discretized with finite differences (centered for the diffusion,

upwind for the drift). The initial conditions are as in [99]:

, with x; = =5, x, = 5.

e*(w’“ﬂ forz; <z <0
uo(z) =

2
e "i(l=25), for0<z<ua,

Unless otherwise stated we take g(u,h) = u(1 — h), u(h) = 45, with u > 0 a constant and
d=Dyg=1.

In a first test we took 3 = = 1, along with the logistic kernel Jz(z) = 5= (see, e.g., [98])
and the uniform kernel Jy (z; p) = %X[_pw]. The first two columns of Figure show simulation
results for o = 2, which is the ’limit value’ in (5.3.3). The solution ceased (in finite time) to
exist for sufficiently large « in each of these situations (o ~ 6.25 and « ~ 8.2, respectively), u
exhibiting strong aggregation near the initial bulk of cells, cf. last two columns in Figure [5.1
This behavior was also observed for increasing values of p, with the difference of singularities

already occuring for smaller o values.

Increasing the values of p and (8 leads to patterns, the shape of which depends decisively on the
interaction kernel J and also on the values of « and d. Figure[5.9shows 1D space-time patterns
of the cell density u for § = 20, p = 100, and several combinations of a and J. The results
for the proton concentration h are not shown, as there are only small quantitative differences
between the respective cases. Fz'gure suggests that, irrespective of the chosen kerne]ﬂ higher
cooperative intraspecific interactions (larger a values) or slower diffusion delay the invasion of

cells in the whole region, leading instead to enhanced proliferation. On the long run the cells

9We performed simulations with several other kernels, including the so-called "Mexican hat’ (also known as

Ricker wavelet, see e.g., [52} [153| for its use in related, but different contexts), cosine, and Epanechnikov.
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Figure 5.1: Simulation results for (5.5.1)) with 5 = p = 1. First two columns: « = 2, 3rd column:

o = 6.2, last column: « = 8.15. Uniform kernel used with p = 1.

tend to fill the whole space and remain at their carrying capacity. This behavior endorses the
results in Section and is particularly well visible for the logistic kernel, which satisfies all
conditions in the proofs of the theoretical results of Sections[5.3 and the process is much
slower when a uniform kernel is used, however it has eventually the same outcome. The last row
in Figure[5.9 exhibits the situation of a cell diffusion which is much slower than that of protons.
The effect is a delayed filling of the space with cells (and produced protons) and a later formation
of the patterns observed in the upper rows. The asymptotic behavior is similar, only it takes

longer for the solution to reach the respective states.

To assess the effect of nonlocality we performed simulations with the source term in the u-
equation of replaced by p(h)u®(1 —u?). The results are shown in Figure The first
two columns illustrate the case with the same source term for proton concentration as above,
namely g(u, h) = u(1 — h), for which no patterns seem to develop (we tried several combinations
of parameters, including those used for the patterns in F’L’gure. In fact, decreasing the value
of p in the uniform kernel Jy (z; p) eventually leads to the local version of the system. The plots
in the leftmost column were produced with d = Dp, while those in the middle column used
d « Dg. The behavior of w and h is the same, with the difference of the second case inferring a
slower spread of cells and protons. The last column in Figure[5.4 already shows the tendency of
disappearing patterns when approaching the local case. The last column of Figure[5.3shows the
case where the source term in the h-equation is replaced by g(u,h) = u + uh — yh?, as proposed

in Remark[5.5. 4

No patterns for u were observed for the local model, which, together with the simulations per-
formed for intermediary values of p, suggests that the patterns are driven by the nonlocality of
cell-cell interactions, more precisely by intraspecific competition. The simulations also confirm

the long time behavior of the system, even in the local case.

10We tried several other source terms satisfying the conditions in Remark e.g., g(u, h) = uh/(1 4+ uh +h),

all resulting in the same qualitative behavior.
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Figure 5.2: Simulation results for with 8 = 20 and p = 100. Upper row: a = 2, lower
row: a = 10. First column J logistic, other columns J uniform: 2nd column: p = 1, 3rd column:

p = 0.6, 4th column: p = 0.05. Upper rows: d = Dy = 1, last row: d « Dp.
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Figure 5.3: Simulation results for (5.5.1)) with local source term ju(h)u®(1—u?) replacing the one
in the equation for w. Left and middle column: g(u,h) = u(l — h) with d = Dy and d « Dy,

s

respectively. Right column: g(u,h) = u + uh — vh?, d = Dy.
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5.7 Discussion

In this chapter we investigated a model describing pH-tactic behavior of cells with nonlocal source
terms. As such, it extends the one in [99], which studied the Fisher-KPP equation with nonlocal
intraspecific competition with various powers of the solution. In contrast to [99] we handled here
a problem in a bounded domain, and the population dynamics was coupled to that of the proton
concentration, which also led to a taxis term. The proof of our results concerning global well-
posedness and long time behavior relied, however, to a substantial extent on the methods in [99].
We also dealt here with space-dependent tensor coefficients in the motility terms, which involve
myopic rather than Fickian diffusion. The dissipative effect of the repellent pH-taxis contributed
to reducing some of the difficulties in the analysis - as long as the required conditions on the

functions involved in the system are satisfied.

Among the relatively few existing models with nonlocal source terms, the one in [136] is closely
related, however it features several differences: the cells perform attractive haptotaxis towards
gradients of extracellular matrix (ECM), the nonlocal source terms are contained in both equa-
tions, do not involve any powers, and the Fickian diffusion of cells has a constant coefficient.
Our model requires less regularity for the interaction kernel and the motility coefficients involve a
tensor and are more general. On the other hand, the nonexploding solution behavior is favorized
in our case by repellent chemotaxis. We also provided an informal model deduction and an
assessment of the long time solution behavior. The analysis done in [113] for a model with stan-
dard motility and with nonlocal source terms as in [136], but with one or two species performing
chemotaxis towards the same attractant imposes certain requirements on the forcing term of the
latter, mainly in order to obtain the asymptotic behavior of the cell-related solution components.
Our condition imposed for similar purposes on the source term of the tactic signal looks
rather differently. The attraction-repulsion chemotaxis models considered in [129] have closer
similarities with our setting, as far as the nonlocal intraspecific interactions are concerned. Ma-
jor differences occur through our system only featuring two equations, in the source terms of
the chemical cues, and in the motility terms: the latter involve in our case the space-dependent
tensor D(z) and myopic diffusion, while the nonlocal reaction term in the proton dynamics is
more general. We also prove an explicit long time behavior of both solution components and

provide a short analysis of space-time patterns (in 1D), along with numerical simulations.

Our preliminary analysis in Section [5.5 and the simulation results in Section [5.6 suggest that
patterns occur only in the nonlocal model, are not of Turing type, and seem to be driven by the
nonlocal source terms and influenced by the chosen kernel and the combination of parameters in
the nonlocal term. This is in line with the pattern behavior observed in [99] and with other works
concerning reaction-diffusion problems with nonlocal intra- and/or interspecific competition, cf.
e.g., 64} 74,119,131} 142, [153]. Those works involved more or less similar source terms and no
taxis, however the repellent pH-taxis contained in our model does not seem to have a relevant

influence on the patterns.

Open problems relate to a thorough study of patterns depending on the interplay between the
parameters «, 3, 4 and the influence of the kernel J. Moreover, the well-posedness, asymptotic
and blow-up behavior, along with patterning are largely unknown in the case of a degenerating

motility tensor - the less so in combination with myopic diffusion and/or other types of taxis.
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Indeed, these can lead in the local case to very complex issues even in 1D, as shown e.g., in [149]
151].



CHAPTER O

On a PDE-ODE-PDE model for two interacting cell
populations under the influence of an acidic environment

and with nonlocal intra- and interspecific growth limitation

This chapter is based on the article ,,On a PDE-ODE-PDE model for two interacting cell pop-
ulations under the influence of an acidic environment and with nonlocal intra- and interspecific
growth limitation“E] The presentation has been adapted for use in this dissertation to clarify

the details of the proofs and guarantee consistency of the notation.

6.1 Motivation

Tumor heterogeneity is a well established fact [75]. The neoplastic tissue is -among others-
composed of several cell phenotypes, all of which are related to the stage within the cell cycle.
To simply, of this vast variety we only consider here two phenotypes: active and quiescent cells.
The former are supposed to be motile and proliferate, while the latter just infer transitions
toward or from activity. While competing with their active counterparts, quiescent cells can
also be degraded. Furthermore, the advancement through the cell cycle and the corresponding
phenotypic switch is influenced, inter alia, by biochemical factors in the peritumoral space, see
[75] and references therein. In particular, pH regulation is a key feature in tumor cell cycle

progression, which it can delay or even inhibit 18] |61} |62} [126].

The interactions of cells with their environment occur not only locally, but cells can perceive their
surroundings in a far more extensive manner, by way of protrusions like cytonemes/filopodia/
invadopodia, tunneling nanotubes etc. [24, 112, (130} |144]. This motivated the introduction of
mathematical models for cell migration, proliferation, and spread. Most of them are of the
reaction-diffusion-transport type, with spatial nonlocalities occuring in the advection terms,
mainly to model cell-cell and/or cell-tissue adhesions, or nonlocal taxis see e.g., Chapters @
and [/ and [5} [23] 43, |81}, [L117} [156], or in the source terms, to describe intraspecific interactions
over a whole sensing range as in Chapter[Jand [99]. We refer to e.g., [4,[114} [135] for settings also
involving nonlocal interspecific competition in different, but related contexts, where the focus is
on global stability and pattern issues. The work [136] also considered spatially nonlocal inter-

specific interactions, but of cancer cells with extracellular matrix and both species featured such

1|48] The article is available online under https://doi.org/10.48550/arXiv.2409.12657,
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terms. For a recent review on nonlocal models for cell migration see [28]; for more comprehensive

reviews of nonlocal models in a broader context refer to [51} |87].

Nonlocal models can be obtained, thus far still in a non-rigorous manner, from space- or velocity-
jump descriptions on the mesoscopic level (also including the kinetic theory of active particles
framework [11]), possibly also accounting for microscale dynamics like binding of transmembrane
units to soluble or unsoluble ligands. We refer to Chapter@ and [21} [44] 99| [156] for such

deductions.

The remainder of this chapter is structured as follows: in Section we present the model
consisting of a PDE-ODE-PDE system, along with requirements for the involved parameters
and functions. Sections and are dedicated to proving global existence of a nonnegative
weak solution to the system, in the sense specified therein. In Section[6.5 we perform numerical
simulations in 1D within various scenarios, to get some insight into boundedness and patterning
behavior under the influence of different choices of relevant parameters, interaction kernels, and
phenotypic switch triggered by acidity. Finally, Section [6.6 provides some concluding remarks

and an outlook.

6.2 Model

In the following v and w represent the densities of active and of quiescent cells, respectively,
whereas h is the concentration of protons in the extracellular space. By ’active’ we mean here
cells which are migrating and proliferating. On the other hand, ’quiescent’ means cells which
only interact with their active counterparts and with the environment, without moving nor being
able to proliferate. We consider the IBVP in a bounded domain 2 < R™ having a sufficiently

regular boundary 02 with no-flux boundary conditions

(0 = V- (0w, ))Va) + pu® (1= Jy (2, B) % 0P — Jo(z, h) » w?)
+ fig(h)F(w) in  x (0, 00),
< drw = po(h)(1 — w)u — pg(h)F(w) in  x (0, 0), (6.2.1)
O0th = DgAh + g(u,w) — Ah in  x (0, 0),
oyu=0,h=0 on 092 x (0, c0),
| u(-,0) = wup, w(-,0) = wp, h(-,0) = hg in €.

The first term on the right-hand side of the first PDE in describes nonlinear diffusion of
active cells. The diffusion coefficient ¥ can thereby depend on w and h: a large amount of w-cells
can increase the population pressure, thus leading to faster diffusion; too many quiescent cells
would, however, impede migration (e.g., due to lack of space). Large h-values are also supposed
to enhance motility, as the active cells tend to leave such areas faster than more favorable places.
The next term describes proliferation of active cells, which is limited by spatially nonlocal intra-
and interspecific interactions. As in Chapter@ and [99] we consider the exponents «, 3,7 in the
weak Allee effect and the competition/crowding terms with the interaction kernels J; and Js.
The latter can be seen as weighting the influence of either interactions on the dynamics of u and

over a whole region. This description enables a more flexible characterization of the interaction
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strengths and is related to the size of u- and w-cell clusters exchanging information with (bunches
of) active cells. Eventually, the last term describes phenotypic switch from quiescent to active
cells; this transition is happening with a certain saturation and its rate ji3 depends on the
concentration h of protons. Indeed, less acidic environments favor exit from the quiescent phase

and advancement towards activity |22} 140].

The second equation in is an ODE describing the dynamics of quiescent cells. These
are supposed to be non-motile, to be produced by active cells with a rate ps which depends on
the acidity in the peritumoral space, and to infer a transition to activity, again with an acidity-
dependent rate us, which might differ from fi3. We also include a kind of acidity-triggered
competition between active and quiescent cells; it might have an own rate, but to keep the

number of model coefficients as low as possible we take it to be ua(h), too.

The third equation in system is again a reaction-diffusion PDE and models the dynamics
of proton concentration h. Protons are very small in comparison with cells and accordingly
able to diffuse quite fastly. They are produced by both tumor cell phenotypes (primarily by
active cells and to a lesser amount by quiescent ones) and infer natural decay (e.g., by proton

buffering). Concrete choices of motility, transition, and proliferation coefficients will be provided
in Section

This setting extends our macroscopic model from Chapter[5 in the sense that we consider here
two interacting populations, the dynamics of both being influenced by that of the acidity in
their surroundings. Instead of the tumor diffusion tensor depending only on space we have
here a dependency on two of the solution components, however we do not include any repellent
pH-taxis, but focus instead on the nonlocal interactions and on the phenotypic switch. It also
extends the model in [136], where the two interacting species are not influenced by a third one,
the diffusion of cells is of the linear type, and there are no transitions from one species to the

other, although all interactions therein are nonlocal in space.

The model can be obtained in a way similar to the meso-to-macro deduction performed in
Chapter@ if the dynamics of w and h is given as in the second and third equations of 7
respectively. Although it is not clear how to obtain nonlinear diffusion in general, this can
be achieved if the diffusion coefficient is only depending on macroscopic quantities other than
u. If only linear diffusion is considered, then the method provides a space-dependent (myopic)
diffusion tensor of u-cells, which by an adequate choice of the cell velocity distribution leads to

classical Fickian diffusion.

Moreover, we make the following assumptions on involved parameters and functions:

-, B,y = 1 satisfy

148, n=12,
o< b (6.2.2)
1+28 n>2,

© M, DH7 A> 07
- e CHR} x RyY) with derivatives d,¢), 0p1) that are Lipschitz continuous on [0, 1]? and

Y(w,h) =6 >0 for h,w € [0,1], (6.2.3)
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< po, 3 € CHRYE) with 0y 0, dnps € L*(RY), fig Lipschitz with Lipschitz constant Ly, =20,
H2, 13, ,[LS = 0’

- F(w) = wor F(w) = —% and set F(w) = 1 if F(w) = w and F(w) = — if F(w) =

1+w 1+w 1+w?

- g is Lipschitz continuous on Rj x Ry with constant L, > 0 and satisfies
0<g(u,w) <G (6.2.4)
for G € (0,00) s.t. € <1,
- for i = 1,2 and B := Bgjam(q)(0) it holds that
Ji(w,-) is Lipschitz continuous on Ry for z € B with constant L, (x) = 0, (6.2.5a)
Ly, Ji(-,0) € LPi(B) for some p; € (1,00), (6.2.5b)
Jo=0,J1 =2n>0for0<h<1, (6.2.5¢)

- Up € C(ﬁ), U}O,ho € Hl(Q) and 0 < Ug, ho,wo < 1.

These assumptions are primarily made out of technical reasons, in order to support the analysis
in Sections[6.3 and [6-], however most of them are reasonable from the application viewpoint: all
parameters should be nonnegative and the interactions should involve at least one cell on either
side; the diffusion of active and motile cells should be nondegenerate; there should be an effective,
but uniformly limited production of protons, which should not dominate the natural decay in
a too substantial manner; the interaction kernels should be nonnegative and there should be
genuine intraspecific interactions, while the proton concentration remains reasonably bounded,

and the initial conditions should be nonnegative and uniformly bounded.

6.3 Global existence of a classical solution to an approxi-

mate problem

Let ¥ € (0,1). There are sequences of initial values (uoe).c(o,1): (Woe)ee(o,1ys (h0e)ec(o,1) IR

C2+9(Q) s.t.

0< UQe y Woe hOE < ]-7 (631&)
alIUOE = a]ijE = 61/]7/05 =0 on 697

uge = up in C(Q), (6.3.1D)
Woe _)0 wo, hog _)0 ho in Hl(Q) (631C)

Throughout this chapter we consider for € € (0,1) the approximate IBVP

-

Qrue =V - (Y(we, he) Vue) + paug (1= Ji(w, he) « uf — Jo(a, he) # wy)
+ fiz3(he) F(we) in Q x (0, 0),
Orwe = eAwe + pa(he)(1 — we)ue — ps(he) F(we) in €2 x (0, 00),
< Othe = Dy Ahe + g(ue, we) — Ahe in Q x (0, 0),
Ovte = Oywe = dyhe =0 on 99 x (0, 0),
ue(+,0) = uge, we(-,0) = woe, he(-,0) = hoe in Q.




6.3. GLOBAL CLASSICAL SOLUTION TO AN APPROXIMATE PROBLEM 123

We show local existence of a solution with a fixed-point argument.

Lemma 6.3.1. For all € € (0,1) there is Tinaze € (0,00] and a solution (ue, we, he) of (6.3.2)

_ 3
in ((72“9’”%(9 x [O,Tmam’g))) with 0 < ue and 0 < we,he < 1 s.t. either Thape = 00 or

Tmaz,e < 00 and

A (e )l gavo @ + e esvogmy + IRl Dlloreo @) = - (6.3.3)

Proof. Let € € (0,1) and T € (0, 1) small enough. For h < 0 we set
pa(h) = pa(=h), ps(h) := ps(=h), ps(h) := fis(=h).

We will perform a fixed-point argument in

9 — 2
S = {(u,w) € (Cﬁ’g(ﬁ X [O,T])) 2w, w =0, |ul D + ||| <M+ 1}

[V — [V —
c? 2 (Qx[0,T c? 2 (x[0,T])

for M := |uoc| ooy + [woe| ooy + 1. For (u,w) € S, we consider the three decoupled IBVPs

Opue = V- (Y(we, he)Vue) — pa® ! (Jl(x, he) # @’ + Ja(z, he) # wz) Uge

+ paT® + fig(he) F(W)w, in © x (0, ),
Oyue =0 on 09 x (0,00)0,
ue(+,0) = uoe in Q,
(6.3.4)

Oywe = eAwg + pig(he)(1 — w. )T — ps(he)F(@)w.  in Q x (0,0),
dywe =0 on 99 x (0, 0), (6.3.5)
ws('a O) = Woe in Q,
and
Othe = Dy Ah. + g(@,@w) — Ah.  in Q x (0, 00),
dvhe =0 on 09 x (0, 0), (6.3.6)
hs('ao) = hOs in €.

We start with (6.3.6)). Due to the Holder continuity of @ and w and the Lipschitz continuity of
g we can apply Theorem[A.1.6 with coefficients

aii =Dy, a;:=0,a:= X b :=v;,b:=0, f:=g(u,w)
for i € {1,...,n} to (6.3.6) and obtain a unique solution h, € C2+%:1+%(Q x [0, T]) satisfying

<& (lg(@ )| + [hocllgaray ) < Co (M, Ihocloava ) -

”hE”C“‘g'H%(ﬁx[O,T]) % @x[0,T])

Moreover, due to the Lipschitz continuity of uo, p3, the Holder continuity of @, w and Lemmal|2.2.
we conclude again from Theorem[A.1.6 with the coefficients

ai; =€, a; :=0, a:= #Q(hs)ﬂ_i_ﬂl%(hs)p(w)a b :=v;, b:=0, f:= NQ(hs)ﬂ
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for i € {1,...,n} that there is a unique solution w. € C**?1+%(Q x [0,T]) to 5)) satisfying

c” % (@x[0,T]) + HU’OEHC?W@))

<Gy (Ma ”wOEHCZ+19(ﬁ)a ||h05H02+,9(§)) . (6-3-7)

”wa“ o2+ 1+19(Q><[OT]) 03 (”,u2( ) ‘

Then, we can estimate
0 < pa(he)i = (we)y — eAwe + (pa(he)T + ps(he) F(w) ) w.
and
0 < g(u,w) = (he)r — DgAhe + Mhe <G < A

due to (6.2.4). Hence, from a parabolic comparison principle ( Theorem|A.1.9) and due to (6.3.1a)

it follows that 0 < w, and 0 < h. < 1. Further, we set v, := 1 — w, and estimate
0< NB(hs)F(E)we = (ve)t — eAve + pa(he)uv:

and combining this with (6.3.1a]) we conclude that v. > 0 and consequently, w. < 1. Now, we

set

aii = P(we, he),
a; = —0w(We, he)(We )z, — Optp(we, he ) (he )y,
a:= pu® "t (Jl(:v,hs) w0 + Jy(x, he) wz) ,
b; :==v;, b:=0,
f = @ + fis(he) F(w)w.
for i € {1,...,n} to apply again Theorem to the equation corresponding to in
nondivergence form. From this theorem due to the Lipschitz continuity of 0y and 0,1 together

with the bounds and the Holder continuity of w. and h. and its gradients, the Lipschitz continuity
of fiz and Lemmasandlt follows that for k := min{1, «—1}¥ there is a unique solution

e O2+m1+5 (Q % [ , ]) to that satisfies

||u€|‘cz+ﬂx1+%(ﬁx[0’T] 05 <||a”||c'“~ 2 (%[0, T])7”CLZHCN 2 (QOx[0,T >Ha”Ch 2 (Q
(I em5 oy + loclosenm)

<Cs (M, lluoe | covo oy It oo @y [oc |cavo ) ) (6.3.8)
due to the embedding of Holder spaces. Further, we estimate
(ué)t - w(w@ hE)AUE - (ahw(wsz he)Vhe + aww(ws; hs)vwe) - Vue
+ et (Jl(a:, he) P + Jo(x, he) * wg) Ug
= u” + /13(}16)15(@)106 20

and conclude from the comparison principle in Theorem [A.1.9 that u. > 0. Now, we estimate
with (6.3.7) and (6.3.8) and Lemma[2.2.9(iii):

Jue

+ e

¢’ % @x[o,1]) C” % @x[0.17)

SHUE - U’OEH T + ”ws - wOchﬁ,g

%% @x[0.7]) + uocll o @y + llwoell oo @

@x[o0,T])
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<2max{l, Ky ()12 ™00 | g (©x[0,1])

1 min{2—
+ 2max{l, K;(9)}Tz 2 19’1%9}”ws||c2+19,1+%(QX[O,T]) + HUJOs”Cﬂ(ﬁ) + ”hOEHCﬁ(ﬁ)

<2max{1, K;(9)}T>(Cg + Ci) + luoell oo @y + lwoelgo@y < M +1

for
1

2
T's <2max{l,K1(19)}(C'6 +04)) :

where K;(9) > 0 denotes the constant from the continuous embedding of W1 (Q) into C?(Q)
from Lemmal[2.2.§(ii). Hence, (u.,w.) € S and the operator

K:S—- 85 (u,w)— (ue,we)

is well-defined. Due to the continuous dependence of the solution on the coefficients in The-

orem the operator K is continuous. Moreover, (6.3.7) and (6.3.8) imply that K maps
bounded subsets of (C?+2 (Q x [0,77))? on bounded subsets of (C2+%:1%5(Q x [0,77]))2. Hence,

from the compact embedding C2+%:1+% (Q x [0,T]) —— C?(Q x [0,T]) we conclude that K
is a compact operator. Schauder’s fixed-point theorem (Theorem implies that K has a
fixed-point (uz,w.) in (C*%(Q x [0,7]))2, where additionally u. € C2+%1+5(Q x [0,T]) and
w, € 02+19,1+g(§ x [0,T]) as was shown above. Applying Theorem to ue again but with

a:=0, f:=pmus (1 — Ji(x, he) = ug(m,t) — Jo(z, he) * wz) + fiz(he) F(we)

we conclude that also u. € C2+71+% (€ x [0,T]). Finally, (6.3.3) follows extending the solution

to its maximal existence time T}y, q4c- O

We show the global boundedness of our solution by adapting the estimates from Step 1 and 2 of
the proof of Theorem 1.1 in [99] similar to Chapter[5

Lemma 6.3.2. There is C7 > 0 s.t. |uc|| L= (x(0,1ma...)) < C7 for all e € (0,1).

Proof.

Step 1. Let € € (0,1) and ¢ > max{1, 8 +a —1}. Consider t € (0, Tinaz,c). We multiply the first
equation of (6.3.2)) by qué~! and integrate over Q2 to obtain

d
G| urae === | wwen) V0 w2 as
Q Q

+ qulf ud (1= Jy(z, he) = ul — Jy(z, he) w)) dz
Q

+ qf ,ag(hs)F(wE)ug*1 dz
Q

using partial integration. Hence, we conclude from (/6.2.3]) and (6.2.5c)), the continuity of fi3, the
boundedness of h., the fact that Fl(w.) <1 for w. < 1 and Young’s inequality that

ifu?dx#—m(;f [vu
dt Jo q Q

2
dz + qumf uf d:rl[ ud™ " dy
Q Q

Sq,ul J ungafl dr + qu[L3HL‘T~‘(O,1) J ’LL271 dz.
Q Q
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Setting Cg := p1 + ||jiz]| L= (0,1) and adding qCSHUEHLQ o) on both sides of the above equation and

using Young’s inequality we arrive at

_ .12
ij ugdxﬁ-M(;lf ‘VuE
dt Jo q Q

<2¢Cs (J ult~tdz + |Q|> . (6.3.9)
Q

dz + qumlf uf dxf ult o dy + qC’gf ul dz
Q Q Q

From Lemma it follows for K5 = % and Koy = % that

2
J’Q ungozfl de < ( 208 6J |VU52 |2 dz + /%77 ?dx LZ unga*l dr + Ko3 (q) s (6310)
where
= 00, n=1,
g+a—1+p8) _
(qa+1+/3a )7 n =2,
72’ n> 2,
q—a+14p—2ata=1+h)
qta—1—p -
K3,¢Cy | amavira—a THeTTED —lee S L pri—a—ZB
Ka3(q) := (2 ((;1_1)5 a + Kaa(q) - aFa=T+B
g—2gta—1)
2C5\ s —ato—p—1
. (8> B+1 T 1 Kaalq) q_w’
Hin
and

Koy :=2Ks (1+2Kp),
Kaulg) = 4Ks|Q|? ~ 7178

Here, K5 denotes the embedding constant from H'(Q) into L*(Q) from Lemma (z) and
Kp denotes the constant from the Poincaré inequality. We will leave out the dependence of the

constants on s. Hence, inserting (6.3.10)) into (6.3.9) we obtain

d
— ugdx-l-qcsf ul dr < 2qCs (K23 (q) + |2)
dt [e) Q

and conclude from Lemma with K14 = ¢Cs and K5 = 2(K23 (q) + |€|) that

g

(6.3.11)

o) < §/2(Kas (g) +190) + ol o) < q/zf@g (a) + 120 (24 Juoelf o)) =,

due to

1
. tat1rp 2ata—148) \ g

9 1-8 . 5
q q—at+1+p—29Fa=1+8 RS —
q—1

l.ﬁailfﬁ o 1 az1-8 [ — 28
qu BHl—a—=2 _ <q1+ );a+1foﬁT - o0.
q—o L

Due to (|6.3.1a]) we can also find an upper bound independent from e, namely

H'LLEHLQ(Q) < V/2Ko53 (q) + 3|Q| (6.3.12)
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Step 2. We proceed with a Moser iteration. Set a := w and gy := 2’C +a for k € N large

enough s.t. g > max{l B+a—1}. Then, using Lemma Ijwith K13 = =2 and r = ry : 2q;k‘1
we conclude from ) that

d 4(qr — 1 .
— | ul*dz+ (qz)df ‘Vuezk
k Q

2
dz + qwmj u? de,

ulk Tt dy + ¢, Oy J ulk dz

Q Q
<2q;,Cs (f uZe o dy + |Q|>
Q

4

<(qk75f |Vu8 |2 da
Q(qk+a 1)_%
+20:Cs | (2Co (k) + Cro(k)) Jus® Hm“k) BTN o k) + 1) ], (6.3.13)
where

2qp_1—2(qp+a—1)

K2 2C0%\ 2ax_1(Z-1)+2(a—1)
Co(k) = (202 )7 :
(e —1)0
2qp_—1—2(qp+a—1)
291

—ay

Olo(k) = Kgo(k) s 5
dk—1—9k

Kao(k) := 4K s(s)|Q 71 .

We know from Lemma[A.4.3 that

2(qu;a71) - q

2qk—1 (2 —1) +2(a—1)

=1

and consequently,

2(qk+a 1) —ay,

—————k 2
ot i O < ([ L)

Inserting this into (6.3.13) we conclude that

d
— | ul*dx + ¢,Cs f udt do

<2q;Cs (209(]41) + 2010(]{}) + |Q|) max {1, (Jﬂ ug’“—l dx) } . (6314)

Moreover, Lemma[A.Z.4 implies that

2qrp—1 — 2(qx + a — 1) _ 5 .4 2qr—1 — 2(qx + . — 1)
2q5-1 (2 -1) +2(a—1) s-2 EITES R,

S

-1 - 1
Q=1 — dk (_’0>'
2qk—1 2

<a+1.

Further, we can compute that

Hence, we can estimate

2qp_1—2(qpta—1)

K2 20 %2 dp—1—9%k 2951
2Cy(k) +2C1o(k) + |2 =2 <m> +2<4KS|Q| Zap—1 ) T + 19|
. —
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2 = . 1

<2 <K21082’€(1 + a)) +2 (4max{1,KS}max{1, |Q|*f}) +10

a_ s
< —925—2
< 22 ;
where
2 22 L 1
a:=2 (2 (KZ(ISCS (1+a)) +2(4maX{1,KS}maX{17|Q|7§}) +|Q|> .

Inserting this into (6.3.14]) we obtain
2
ulr do < qug&zﬁk max {1,sup <J udr=1 dx) } ]
t=0 \Ja

d
— | uwidx + qugJ,
dt Jo ° Q
" 2] due to 1] Hence,

For k > 1 we can estimate that {,ul’dz < ||u05HquD(Q)|Q| <
5~ implies that for £ > m > 1 large enough, i.e., s.t.

Lemma@ with ¢, = xCs and D = 25
a25=2™ > 1, it holds that
i Sh—mHl_; 325 (Q(Zk_m—1)+nL2k_m+1—k)
<J ulk da:) <(2a) w2 %
Q
Sk—m+1
T gk—m
- max < sup J ulm=1 dx NIV KT
t20 \Jo
For k — o0 we obtain
N s(m+1) =T yom
e | L (@) <(2a)27 T 2G=22""T max { sup J udm=t dx QP 1 (6.3.15)
t=0 \Ja

in (0, Tmaz,.c). We already know from Step 1 that the right-hand side is bounded above by a
constant indepent from e. Consequently, u. € L™ (2% (0, Tynqez.e)) is bounded above by a constant

independent from e¢.
O

We can also perform a quasi-maximum principle as in Step 3 of the proof of Theorem 1.1 in [99).

-2

Corollary 6.3.3. We find K > 1 and ’small’ enough parameters s.t.
23

2 <1 . ﬁsm«(o,m)) rE R

[uelz(@x(0T0s ) < K max 4 1, ((4KSIQI%) =12
N 251
(6.3.16)

Proof. We want to consider the limit m — oo in (6.3.15)) for ’small’ enough parameters. We

already know from (6.3.12)) in the proof of Lemma that for ¢t € (0, Tynas,e) it holds that

J ul =t dz <2Ka3 (qm-1) + 3[92.
Q

)

We fix some m and assume that our parameters are ’small’ enough s.t.
Cs = p1 + || its] L= 0,1) < (6.3.17)
- K345,
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holds. Then, we can estimate

J udm=t dx
Q

<7max 2 (

App—1ta—1-03
Am—1+ta—1+8
1 ) qm,—l_a+1+ﬁ_2%

o2m=1 4L q -1

2(gm—1+ta—1+8
qm,—l_a+1+ﬁ_M

:
dm_1ta—B-1 -1}
m1+a1+ﬂ> Frlmans
s

q.
+K24(Gm—1) ™17

2(qgm— 1+a 1)

Im—1—"
" 251

Am—1ta—p—1
+0t 1+8
Kos(qm—1) m-1" st |Q|} H(m).

Finally, we conclude with

1-2

T 2 fi3]) .= o
lim (H(m))7 T = max{ 1, ((4KSIQI;)12 z <1+“3L <0,1>>>‘”1 T
n

s(m+1)
lim (2a)2m T2G-22m~t =]
m—oo

|2*(m+1)

and |Q 1 from (6.3.15)) that

m—a0

1—2

Lol Nl \\
[telr @ (0 T ) < maX {1, ((4KSIQI5) el (1 + Vsl o (0’1)>>ﬁ+1 :
1 H1

Obviously, we do not find parameters satisfying (6.3.17)) for m tending to infinity. Nevertheless,
for any K > 1 we find an m* depending only on K s.t. if (6.3.17]) is satisfied for m* then, (6.3.16))
holds. O

In the following remark we give an exact formula for the Sobolev constant K g from Lemmal[2.2.§(i)
that only depends on the domain €2 and the dimension n to get an impression of the upper bound

of u..

Remark 6.3.4. If Q is convex the upper bound from Corollary[6.3.3 can be given in terms of
K and our parameters as due to Lemma[A4.4.4] the Sobolev embedding constant Kg(s) is given
by

1
diam(Q)|V] 2 —
max {1, o } n=1,

14542 s;-g (s

1 iam EED q2—32 F% _2
Ks(s) = xfmax{lﬂl dami@) FEW;} 2(5 )1 ()™ n=2 (6318

n—1 =y

1 diam(@)"m 2 I(3 r(22) (v \"

\/imax {|Q| ) ("\)Q\ F(SZ?)} F 7L-2I-2 ( ( ) > n =3,

where V := Uzeﬂ Qp and Q, :={y—xz:yeQ} for x € Q, and T denotes the Gamma function
given by I'(x S t*~le=tdt for x > 0.
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Global existence of our solution follows from the last lemma.
Theorem 6.3.5. For ¢ € (0,1) there is a bounded global solution (ue,we,he) of (6.3.2) in

o 3
(Czw,u% (@ x [0, oo))) satisfying 0 < ue < C7 and 0 < we, he < 1.

Proof. Let € € (0,1). Lemmas and imply that u.,we, he € L™(Q % (0, Thnaz,e))-
Assume Tyaq,. < 0. Then, g(ue, w:) € L7 (Q x (0, Tjnay)) follows from the Lipschitz continuity
of g. Putting together Theorem[A.1.1] the boundedness of h., Theorem[A.1.19 with

a(Vhe) := DgVhe, b(z,t,he) := Mhe — g(ue, we)
we conclude that there is k1 € (0,1) s.t.
HhEHCNL% (ﬁx[oanLaz,s]) < Cll~ (6319)
Analogously, setting

a(Vw.) := eVw,, b(z,t,w.) := uz(h:)F(we) + pa(he)(we — 1)ue

in Theorem[A.1.19we conclude using the boundedness of our solution and the Lipschitz continuity
of po and pg on [0,1] that there is ko € (0,1) s.t.

lwell oo %2 @ oz ) S Cr2- (6.3.20)

Moreover, due to the boundedness of our solution, the continuity of ¢, (6.2.3)) and (6.2.5b|) and

setting

a(z,t, Vue) := ¥(we, he)Vue,
b(x,t,ue) = pul (—1 + Ji(x, he) = uf + Jo(x, he) * wg) — fiz(he ) F(we)

in Theorem it follows analogously that there is k3 € (0,1) s.t.

< O (6.3.21)

Hutf”CNSvnTg (ﬁx [O,Tmaz,s]) =

Finally, it follows as in Lemmam (applying Theoremtwice to every function if necessary)
that ue, we, h, € C’QJ““*%(Q x [0, Thnaz.e]). This contradicts 1) Hence, T4z, = 00 follows.
O

We show the uniqueness of this solution as in Chapter [5, where we need to restrict pi,ps in

(6.2.5b) if n = 3.

Lemma 6.3.6. Assume that p1,ps from (6.2.5b)) satisfy p1,pe = f—fQ ifn =3 and p1,p2 € (1,0)
as before if n = 1,2 then the classical solution from Theorem [6.5.5 is unique.

Proof. Let € € (0,1) and T € (0,00). Assume that there are two solutions (u1,wr,h1) and

_ 3
(u2,ws, he) in (02“9’”% (Q X [O,oo))) to (6.3.2). Then, we obtain after subtracting the equa-

tions for hy and hs from another that

(hl — hg)t = DHA(h,l — hQ) + g(ul,wl) — g(uz, w2) — )\(hl — hg)
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holds in © x (0,7"). Now, we multiply the above equation with h; — ho, integrate over 2 and
obtain for ¢ € (0,T) using partial integration, the Lipschitz continuity of g and Young’s inequality
that

thj |h1 h2|2dl‘+)\J |h1 h2|2d$+DHJ |V hl h2)|2d$

_ f (9(ur,w1) — gluz, w2)) (y — h) da
Q

$2LgJ’ |u1 —’LLQth — h2|d$+2Lgf |U)1 —w2||h1 —h2|d$
Q Q

<Cuy (J |uy — up|? da +J |wy — w2|2dx> + )\J |hy — ho|? da. (6.3.22)
Q Q Q

Subtracting the equations for w; and ws from another we obtain the equation

(w1 — wa)y =eA(wy — wa) + po(hy)(1 —wi)uy — pe(he)(1 — wa)usg
+ p3(he) F(wz) — ps(ha) F(we)
=cA(w; —wa) + po(h1)(1 —wi)(ur — us) + pa(h1)(we — wr)us
+ (p2(h1) = pa(ha)) (1 — wa)us + pa(ha)(wa — wi) F(w:) F(ws)
+ (u3(h2) — ps(h1)) F(w1)

that holds in £ x (0,T") and conclude analogously to above using the Lipschitz continuity of s
and p3 and the boundedness of the solutions that for ¢ € (0,7) it holds that

thj |wy — wy|? dz +EJ |V (wy —ws) > da
<lpalz o |11 = vallor = wal e + (2l oo Cr + o) [ fun = wal? do
+ (im0 + lihlenion) |11 = hallur = waldo
<Cis (I |y — ug|? dx + f lwy — ws|* dz + j |h1 — hol? dx> ) (6.3.23)
Q Q Q
Further, we obtain by subtracting the equations for u; and us from another that
(u1 — u2)y =V - (Y(wi, h1)Vuy — P(ws, ha)Vus) + 1 (u‘f‘ —ug +u§ Jy(x, ha) * u’g

—u§ Ty (2, hy) # uf 4 uS o, ho) W) — uf Ja(w, hy) * w1>
fiz(h1)F(wy) — fiz(he) F(w2)
=V - (Y(w1, h1)V(ur —ug) + (P(wr, h1) — Y(w2, h2))Vug) + pa (uf — ug)
i (51 (2, ho) # wf = wS (@, ) s o] + S o, ha)  wd — uf o, h) = w])
+ (fiz(h1) — fiz(h2)) F(w1) + fiz(ho) (w1 — wa) F(w1) F(ws) (6.3.24)

holds in © x (0,T). Using (6.2.5a)), (6.2.5b)), the boundedness of uy,us, the mean value theorem
and Holder’s inequality and the Sobolev embedding from Lemma [2.2.8(i) we can estimate on
Q x (0,7T) that

Ji(z, hg)*u2 Ji(x, hy) *ul‘
<|(J1(x, ho) = Ji(@, b)) # ul | + [ Ja (@, hy) * (uf — b))
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e f Ly (2 - )| () — ha(y)|dy + BCE! j Ty =, ha () () — ()| dy

<CY Ly os ()1l = hal| gony BCT ML o sy + 171 0) o () Jun — 2] o

(@) LmtT (©)

<Cis (1h1 = halmr @) + [ur — vzl (q)) -

From this we obtain using (6.2.54] , m the boundedness of u1, us, the mean value theorem,
Lemma[2.5.2 m{ i) and Holder’s and Young’s inequality that

JQ ‘ung(x, hs) * ug —ufJi(z, hy) # u’f‘ |ug — us|da
<aCe | J1( ha) *ub | Lo ax 0,1y 1 — 2]32q)
+ C16C5 (lha = hal ey + lur — ual o)) lur — uallLr (o)
<Ci7 (Dy'67") <||h1 — ha||72q) + lur - U2||2L2(Q)) + %HVUH — h2)t2 gy
+ 21V — ) e (6325)
Analogously, we obtain
J;z [ug Ja (@, ha) * wy — ufJa(x, hy) * w]| |ug — ug|dz
<Cis (D', (lur = ws ey + Ihn = halfaqq) + o — wolfa(q )
+ LIV~ ho) Ry + €IV w1 = w2y (6.3.26)

Multiplying (6.3.24]) by u; —us, integrating over €2, using partial integration, (6.2.3)), the Lipschitz
continuity of ¢ and fs, the boundedness of the solutions and of Vus on © x (0,7"), the mean
value theorem, ((6.3.25)), (6.3.26)) and Young’s inequality we conclude that

2dtJ |uy — ug|? dx—i—éJ |V (uy — ug)|? da

<[ Vuz| Lo,y 0))m) J (10wt L2 ((0,1y2) lwi = wa| + |00 L2 ((0,1y2) [ha = hel) [V (ur — uz)| da
+ maC’?il J;z luy — u2|2 dx + pq L) |ug Ji(x, ha) * ug —uf'Ji(x, hy) * u?”ul — ug|dz
+ 1 fQ [ug Ja(x, ho) = wy — ufJo(z, hy) = wi|juy — ug| da
+ L, fQ |1 — ha|lur — uz|dz + [|fa3] L (0,1 L} |wy — wel|lu; — ug| da

<Cio(T) (s = wallfaay + b = halfia oy + s — walffa )

+ 819 (s =) Pyagayyo + DV 0y = )l + €IV (w1 = 02) Bpaapyn- (6:3.27)

Adding up (6.3.22)), (6.3.23]) and (6.3.27) we conclude that for ¢ € (0,7T) it holds that

1d
2.dt

<(Cua + Ci5 + Cho) (||u1 —usf2(qy + [h1 = ha|Z2q) + w1 — w2||2L2(Q)>

(hr = w2l + I = ol 3@y + wn = w2z )

Finally, we obtain u; = ug, hy = hy and w; = wy on Q x [0,7] from Gronwall’s inequality. As
this holds for all T" € (0, 00) uniqueness of the classical solution to (6.3.2)) follows. O
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6.4 Existence of a weak solution to the original problem

Definition 6.4.1. By a weak solution to we mean a tuple (u,w,h) of nonnegative
bounded functions s.t. for all T € (0,00) it holds that u € L?(0,T; H*(Q)) n C([0,T7]; L*(2)),
w e L7(0,T; HY(Q)) n C([0,T]; L*(Q)) with dyw € L2 x (0,T)) and h € W' (Q x (0,T)) n
C([0,T]; HYX()) and they satisfy

J f w0y do dt — f uon(+,0) dx
f J-wthu Vndxdt-i—ulf f l—Jla:h)*u — Jo(@, h) #w") ndw dt
f f fs(h)F(w)n dx dt, (6.4.1)

for all n e Wy (2 x (0,T)) with n(T) =0 and

wy = pa(h)(1 —w)u — pz(h)F(w) a.e. in Q x (0,T), (6.4.2)
hi = DgAh + g(u, w) — Ah a.e. in Qx(0,7T), (6.4.3)
Oyh =0 a.e. on 02 x (0,T),

w(+,0) = wo, h(-,0) = hg a.e. in €.

Lemma 6.4.2. There are u,w, h with bounds 0 < u < C7 and 0 < w,h < 1 on Q x [0,0) s.t.
for all T € (0,T) it holds that uw € L?(0,T; HY(Q)), we L*(0,T; H*(2)) n C([0,T]; L*()) and
he W3 (2 x (0,T)) and for a subsequence

Uy = U in L*(0,T; H'(2)), (6.4.4a)
Uy = U in L*(Q x (0,T)) and a.e. in Q x (0,T), (6.4.4b)
We, =2 W in C([0,T]; L*(Q)) and a.e. in Q x (0,T),, (6.4.4c)
Ve, kj*;m Vuw in L*(0,T; (L*(Q)"), (6.4.4d)
Oy, ot Orw in L*(Q x (0,T)), (6.4.4e)
he, = h in L*(0,T; H*()), (6.4.4f)
he, i h in L*(0,T; H(Q)) and a.e. in Q x (0,T), (6.4.4g)
Othe, o oth in L*(Q x (0,T)), (6.4.4h)

Proof. Let T > 0. First, Theorem [A.1.8 implies that

HhEHWQZ’l(QX(()’T)) < Oy (||g(usaws)HL2(Q><(0,T)) + ”hOsHHl(Q)) . (6.4.5)

Due to the Lipschitz continuity of g, the uniform boundedness of (u.) and (w.) and the con-
vergence in (6.3.1¢) the right-hand side of (6.4.5) is uniformly bounded for € € (0,1). Hence,
Lions-Aubin (with H?(Q) —— H(Q) — L?*(Q)) and Banach-Alaoglu imply the existence of

h e WP x (0,T)) and a subsequence s.t. (6.4.4f) - (6.4.4h) hold and from Lemma it
follows for a.e. (x,t) € Q x (0,T) that 0 < h(x,t) = klim he,(z,t) < 1.
—AL
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Next, we want to obtain a uniform estimate on the norm of Vu.. Therefore, we multiply the

equation for u. in (6.3.2]) by u., integrate over {2 and use partial integration to obtain

1d

—-— ug dz = — J Y(we, hE)|Vu5|2 dx + pq J u?“ (1 — Ji(z, he) = uf — Jo(z, he) * wg) dz

+ j i3 (he) F (we )ue dx.
Q
Then, we can estimate using (6.2.3)), Lemma [2.3.4(i), the uniform boundedness of (u.), (w),
(he), a = 1, the continuity of fig that
1d
24t |,

< (1 + C?(HLJlHLl(B) + 1715 0) 21 (B)) + 1 Er |21y + ||J2('vo)||L1(B)) J.Q u? dz

u? dx + 5_[9 |Vu|? dz

+ [ A3l L 0,1)Cr1
Hence, we conclude from Gronwall’s inequality that for all € € (0, 1) it holds that
||VUEHL2(07T;(L2(Q))1L) < Oy (T) (646)

Further, we multiply the equation for u. in (6.3.2) by ¢ € H}(£) and obtain obtain using partial
integration, the Holder inequality, the continuity of v, the uniform boundedness of (u.), (w;)
and (he), Lemma[2.3.9(i) and the Lipschitz continuity of i3 that

U Orucpda
Q

< f 6w, h) V. - Vol da + j u® (1= Ty, he) » uf — To(e, he) + w?) o] da
Q Q

+ L s (he) F (w2 da

<[l 0,02y Vel 22 @)= 1 Vell (22 (@)

+ (G (14 I ) + 150 11 8) + [l + 120, 0) 1))

+lasll e 0,1)) el
<Co2([Vue| z2()y» + Dlela ()

Hence,
|Oruc| -1y < Co2(|Vue| L2y +1)
and we conclude from ([6.4.6]) that

I0cucllL2(0, ;-1 () < Cas(T). (6.4.7)

Combining (6.4.6)) and (6.4.7) with the uniform boundedness of (u.) we conclude from Lions-
Aubin (Lemma with HY(Q) —— L*(Q)) — H'(Q) and Banach-Alaoglu that there is
u € L?(0,T; H'(Q)) and a subsequence s.t. and ((6.4.4b)) hold. Moreover, due to the
pointwise convergence it holds a.e. in  x (0,7) that 0 < u(x,t) < kll)n}v ue,, (x,t) < Cy.

To obtain a uniform estimate on the norm of Vw. we multiply the equation for w. by Aw,. and

obtain after integration over {2 and partial integration due to our boundary condition on w, that

1
,ij |Vw,5|2 dz = J (Vwe)y - Vwe dz = —J (we )t Aw, dx
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=— EJ |Aw5|2 dz — f pa(he)(1 — we)uAw, dz + J us(he) F(we)Aw, dx
Q Q Q
=— EJ |Aw, | dz + f (1 (he) (1 = we)Vheue — po(he)Vweue + pia(he)(1 — we)Vue) - Vw, dz
Q Q
- J (Mé(hE)VhEF(wE) + MS(hE)(F(wE))2vw6> : V’LUE dx.
Q

Hence, using the uniform boundedness of (u.), (he), (we), continuity of uh, n4 and Young’s in-

equality we obtain

1d
2dt

<U 01 Cr + sl no.1) fﬂ Vel [Vwe] dz + |2l e o) fQ Ve[ Veoe | da

f |Vwe|[* dz + 5f |Aw,|* dz
Q Q

+ (lu2ll L= 0,)C7 + sl (0,1)) L Ve |* dz

<Coy (J |Vu€|2dx+f |Vw5|2d:1:+f |th|2dx>
Q Q Q

Hence, Gronwall’s inequality, the fact that (Vwg.) is uniformly bounded in (L?(2))" due to the
convergence in (6.3.1c)), (6.4.5) and (6.4.6) and imply that

T
f |Vw€(t)|2dx+sf J |Aw,|* de dt
Q 0o Jo
T T
<Cos(1) (v%@zm»w [ [ vraras [ |Vhe|2dxdt> < (1)
0o Ja 0o Ja

for t € (0,T) and € € (0,1). Consequently, for all € € (0,1) it holds that

IVwe| L 0,122 (2))m) < Ca6(T), (6.4.8)

<
< Cr(T) (6.4.9)

e|Awe| L2(x(0,1))

To obtain a uniform estimate on some norm of the time derivative of w., we multiply the equation
for w. from (6.3.2) by ¢ € L?(f2), integrate over 2, use the Lipschitz continuity of s and ps,

the uniform boundedness of (u.), (we) and (h.) and Holder’s inequality to conclude that

f Orwep dx
Q

<e f | Auwe ] da + f 2(he)(1 — w2)usp| da + f la(he) F(ws) o] da

Q Q Q
< (elawelrz) + (2l 0.0 Cr + sl e 0,1)191F) 19l 2
Consequently, we conclude from (6.4.9)) as (L%(2))* = L%(Q) that for all ¢ € (0,1) it holds that

[0swell L2 (@x (0,1)) < C2s(T). (6.4.10)

Combining the uniform boundedness of (w.) with (6.4.8) and (6.4.10)) we conclude from Lions-
Aubin (Lemma with HY(Q) —— L%(Q) — L%*Q) and Lemma in the space
L*(0,7T; (L2()™) = (LY(0,T; (L3(2))™))* that there is w € C([0,T]; L*(Q)) n L*(0,T; H(£2))
and a subsequence s.t. - hold. From the pointwise a.e. convergence we conclude
that 0 < w(x,t) = ]}LH} We, (z,1) < 1 holds a.e. in O x (0,T). O

Due to the pointwise convergence shown in the proof of the last lemma the following corollary
is a direct consequence of Corollary[6.5.3
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Corollary 6.4.3. For K > 1 and ’small’ enough parameters it holds that

1-2

9 i3 Fri—acZE
P (e R (R )
1

Theorem 6.4.4. There is a bounded nonnegative weak solution (u,w,h) to (6.2.1)) in the sense
of Definition satisfying u < C7 and w,h < 1 a.e. in Q x (0, 00).

Proof. Let T > 0 and 5 € W' (Q x (0,T)) with n(T) = 0. We consider the subsequence (e)
from Lemma[6.4.9 Multiplying the equations from (6.3.2)) by 7, integrating over Q x (0,7") and

using partial integration we obtain the weak formulation

T
- f f Us;ﬁt?? dz dt — f anﬁl(‘, 0) dx
0 JQ Q

T
—J J Y(we,,, he,, )Vue, - Vndzdt

+u1J. f (1= Ji(z, hey) = 6 — Ja(z, he,) xw] ) ndedt

¥ j | BatheoPwa st
0o Ja
T T
J f Orwe, ndaxdt = — Ekf J Vwe, - Vndz dt
0 Ja 0o Jao

T
" -[0 J;Z (NQ(hEk)(l o wsk)uEk - NS(hEk)F(wak)) ndxdt

and
T 75 T
J J Othe,ndxdt = DHJ J Ahg, ndzdt + J’ J (9(ug, , we, ) — Ahe, )nda dt.
0 Ja 0 Jo 0 Jo

From the continuity of ¢ and fi3, (6.4.4d)), (6.4.4g) and the dominated convergence theorem we

conclude that
W(wey, he )V = w(w, W)V in L2(0,T; (L*(Q)"),

fis(he, ) F(we,) 2 fis(h)F(w) in L?(Q x (0,T)). (6.4.11)
—0
Hence,
T
f lfd)(wak,hgk)Vugk Vr]dxdt — J, wa h)Vu-Vndzdt (6.4.12)
0o Jo

follows from (6.4.4a) and compensated compactness (Lemma[A.3.9). Further, due to (6.2.5a)

and the uniform boundedness of (uc, ) we estimate for (z,t) €  x (0,T) that
|1 (% hsk)*u (t) — Ji(z, h) = uP(t )|

f W2( — g hey (5.8)) — (@ — 1, by, D). (5.8) dy

T j Ty = by, D)l (4,6) — P (y,6)| dy
Q
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e L L, (2= 9)lhew (4,8) — By, 1) dy
+ JQ<LJ1 (& = (1) + (e — . O, (90.8) ~ v (D) dy > 0

due to the dominated convergence theorem combined with (6.4.4b)), (6.4.4g)), and (6.2.5b)) and

the uniform boundedness of (u,) and (h., ). Consequently,

Ji(yhey) # ufk — Ji(-,h) # u? pointwise a.e. in Q x (0,7T) (6.4.13)

k—w0

and analogously,

JQ('vhek) * w;/

k

— Jo(-, h) * w” pointwise a.e. in Q x (0,7) (6.4.14)

k—x0

follows. Hence, we conclude combining ((6.4.4b)), (6.4.13)), and (6.4.14)) that
u?k (]- - Jl('vhsk) * Ufk - J2('7h€;€) * ,w’syk) k:)’f, u® (1 - Jl('7 h) * uﬁ - J2(7h‘) * w’\/)

pointwise a.e. in Q x (0,7)

and from the uniform boundedness of (uc, ), (we,) and (he,) and Lemma [2.5.9(i) that for all
k € N it holds that

ug, (1= Ji(@, he,) #ul, (1) = Ja(, he, ) # w], (1)) | < Cao.
Consequently, the dominated convergence theorem implies that
ug (1= Ji(- he,) ufk — Ja( hey) #w])) T u® (1= Ji(-,h) = uP — Jy(-, h) # w?)

—30

in L2(Q x (0,7)).

Combining this with (6.3.1b]), (6.4.4b)), (6.4.11)) and (6.4.12)) we conclude that u satisfies (6.4.1)),
i.e., solves the corresponding equations of (6.2.1) in the sense of Theorem Hence, also
ue C([0,T]; L?(R2)) holds due to Theorem

With the help of Holder’s inequality and (6.4.8)) we obtain

T
j J, Ve, - Vndadt
o Ja

x <ex[Vwe, | L2 0,522 @) V0 L2 0,75 22 (2))m)

1
<e,CoT2 ||V77||L2(0,T;(L2(Q))”) kjf/ 0. (6415)

Further, we conclude from the continuity of ps and us, the pointwise convergences in ((6.4.4b)),
(6.4.4¢) and (6.4.4g), the uniform boundedness of (u., ), (we,) and (h.,) and the dominated

convergence theorem that

(e (1= we Jue, = pua(h)(1—whu in I3(Q x (0,T)), (6.4.16)

us(he, ) F(we,) el ps(h)F(w) in L*(Q x (0,T)). (6.4.17)

Combining (6.3.1c|) and (6.4.4c) with (6.4.15)) - (6.4.17) we conclude that

T T
f f Orwndzdt = f (u2(R)(1 —w)u — pg(h)F(w)) ndxdt.
0o Jo 0
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Due to CZ(Q2x (0,T)) € Wy' (2% (0,T)) the fundamental lemma of calculus of variations implies

that w satisfies (6.4.2]). Moreover, using partial integration we conclude due to (6.3.1d|), (6.4.4c)),
and (6.4.4¢) that (especially also for n € C* (€ x [0,T)) ¢ W5 (Q x (0,T)) with n(T) = 0) it
holds that

T T
—f f wmdzdt—f w(-,0)n(-,0) dx dt =J f rwn dx dt
0 Ja Q 0 Ja
T
= limf J Orwe, nda dt
k—x Jo Jo

T
lim —f J We, N d dt — f woe, ()1 (-, 0) dz dt
k= 0 Ja Q

‘LT | wnedeat = | a0y dear

Hence, we conclude again from the fundamental lemma of calculus of variations that indeed

w(-,0) = wp a.e. in Q.

Furthermore, we estimate with the help of Holder’s inequality and the Lipschitz continuity of g
that

T
| totwe e = gt )l o
o Ja
<2Lg ([lue,, — ullL2(@x(0,1)) + llwe, — wlL2@x(0,m))) IMllL2@x (0,1)) 2,0
due to (6.4.4b)) and (6.4.4c)). Hence, it follows from (6.4.4f]) - (6.4.4h)) that
T T T
f f Othndzdt = DHJ J Ahndzdt +f f (9(u, w) — Ah)ndxdt
0o Ja 0o Ja 0o Ja

for all n € Wy ' (Q x (0,T)) with n(T) = 0. We conclude again from the fundamental lemma
of calculus of variations that h satisfies (6.4.3) a.e. in  x (0,7T'). Finally, h(-,0) = hg a.e. in

follows as for w. We conclude similary that

T
f f Vh-vndo(xz)dt =0
0 Joo

which due to H'(Q) — L?(8Q) gives us Vh-v = 0 a.e. on 6Q x (0, 7). O

6.5 1D Simulations

In this section we simulate the behavior of solutions to in one dimension. Thereby,
we decompose the domain 2 = [—5,5] into an equidistant mesh zs,...,xxy_1 with step size
dx = 0.05 and the time interval [0, 50] with step size dt = 0.0001. For a simulation of the no-flux
boundary condition we add points z1 < x2 and xy > zx_1 outside of 2 and assume equality
of the solutions on the neighboring points. As in Chapter@ we use the method from [111] to
discretize the nonlocal integral terms via a composite trapezoidal rule. Moreover, as in [156], we
recompute the convolution matrices only every 40 time steps to improve the runtime. Thereby,
we assume that changes in the values of the convolution matrices phi-mat, and phi-mats (due
to changes of h) are negligible within this time interval. Namely, for i,5 € {2,..., N — 1} the

corresponding entry of the kth-convolution matrix is

(phi,matl)fj = Ji(w; — xj, h?Ok)
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and with the help of this we compute the n + 1st convolution term at x;, i € {2,..., N — 1} as:
N-2
(convy) ! =dx Z (phi,matl)zL?/%J (u?)ﬁ
j=3

dﬂ: . n n . n n
Ty <(phzfmat1)£2/4m (u3)” + (phl—matl)zL(]G{JJl)(u(Nfl))B) '

Analogously we compute phi_mats and conve. For the discretization of the diffusion term we use
finite differences and an upwind scheme. The initial conditions are depicted in Figure and

are given by

0.3e=3@+5* 2 ¢ [-5,0],

up () =
03¢ (1—%), =x€(0,5],
0.7¢=(@+5)° z € [-5,0],
wo(7) = :
0.7e7% (1 - %), z€(0,5]
1 -5 _ =5 _
ho(x) = £(0.3e 0.05)x +0.3e7°, =z € [-5,0],
0.3¢7° (1 - %), z € (0,5].
0.5
, .

Figure 6.1: Initial conditions wug, wog, ho.

We choose the functions ¢ (h,w) = 0.5 (for simplicity), p2(h) = h (meaning that the net ’deac-

tivation’ of u-cells is directly proportional to the amount of protons available in the microtumor

space), us(h) = fis(h) = 1+Lh (there is no loss of w-cells when becoming u-cells, the transition -

primarily to motility- is favored by acidity, but in a limited manner, quickly reaching saturation),
F(w) = %%, g(u, w) = 2222 (both phenotypes are producing acid, also in a limited way), and

the constants Dy = 0.1 and A = 1.

First, we took = v = p; = 1 and explored the influence of the kernels on the minimal value a*

of « for which the solution ceases to exist globally in time (with accuracy to one decimal place).

1

57er =, the uniform kernel

Thereby, we considered as in C’hapter@ the logistic kernel Jr(x) =

Ju(x) = x[-1,1)(z) and, moreover, the h-dependent kernels

T h) = ——ew (L (6.5.1)
W= or e 1+h " 10)° e
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h2

Jo(w, h) = TNk

(6.5.2)
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Figure 6.2: Simulation results of model (6.2.1)) with J; = Jy = Jp, i.e., logistic kernels, 8 = v =

p =1, a=2,56.1,6.2 (columns from left to right, respectively). Component u of the solution

starts to become unbounded near o = 6.2. In the rightmost column a blow-up occurs in the next

time step.

the first of which is a h-dependent shift of a Gaussian, while the latter is a Holling III-type
function of h suggesting a slower increase towards saturation, with a certain ’learning effect’ as
far as the response to more acidity is concerned: as .Jo stands for the interaction of the two
cell phenotypes, it accounts for both of them extruding protons, along with the corresponding

adaptation of u-cells to interspecific cues.

The first columns of Figures[6.9 and [6.5 show the solution for the critical o from (6.2.2)), when
Ji and Jo are both logistic or uniform, respectively. The solution u aggregates at the position
of the initial accumulation of the active cells at the left boundary. In the case of two logistic
kernels a stronger aggregation for increasing « values can be observed leading to a blow-up at
the left boundary near a®* = 6.2. On the other hand, in the case of two uniform kernels u
invades the whole domain and aggregates at the right boundary, leading to a blow-up there for
approximately a* = 14.7. This invasive behavior can also be observed for all combinations of
kernels and parameters «, 3,7, 1t as long as no blow-up at the left boundary occurs. An overview
of the minimal values a* depending on the kernels can be found in Table[6.1]

In further tests we investigated for logistic kernels the influence of 8,y and the growth rate
on the blow-up behavior. Higher values of 8 lead to an increase of the minimal value a* where
blow-up occurs. In the case § = 10 and v = p; = 1 we observed that for « = 26.9,27.1,27.3
the solution ceases to exist, whereas it exists globally in time for a = 27,27.2,27.4. Hence, in
contrast to Chapter@ and we cannot determine a value a* s.t. for a < a* the solution is

global, whereas it blows-up for @ > a*. It seems that for a > a** = 27.5 blow-up occurs but
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Figure 6.3: Simulation results of model (6.2.1) with J; = Jo = Jy, i.e., uniform kernels, 8 =
y=p =1, a=26.2,14.6,14.7 (columns from left to right, respectively). Component u of the
solution starts to become unbounded near o = 14.7. In the rightmost column a blow-up occurs

in the next time step.

a*

Ji, Jo logistic | 6.2 Figure@
Ji logistic, Jo uniform | 7.4

Figure

J1 uniform, J5 logistic | 10.3
Ji, Jo uniform | 14.7 | Figure m

Ji, Jo from , 4.1 | Figure m

Table 6.1: Minimal value a* for which the solution ceases to exist for § = v = u; = 1 depending

on the kernels J; and Js.

we cannot assure this. In contrast, higher values of 4 and/or p lead to a blow-up for lower a’s,
see Table for an overview of the concrete values of a* along with the respective parameter

combinations.

Parameters | o*

B=10,vy=p =11 269
B=~v=10,pu =11 22.1
B=10,vy=01,u; =1 | 334
B=1,v=10, upp =1 | 4.6
6=1,v=01,pu =11 253
B=~v=1,u1 =101 3.6

Table 6.2: Minimal value a* for which the solution ceases to exist, depending on parameters

58,7, p1- Both convolution kernels are logistic: J; = Jo = Jp.
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Figure 6.4: Simulations of models (6.2.1)) and (6.5.3)) with o = 2, 41 = 1, and (from left to right)
B =1,10,100, 1000 and v = 1000 in column 1, v = 1 in columns 2-4. First row: J; = Jy = Jy;
2nd row: model without w, with J = Jy; 3rd row: J; = Jy = Jr; 4th row: model without w,
with J = Jp,

Moreover, as in Chapter[5, increasing values of 8 and uy in Figure[6.]lead to patterns depending
on the kernels J; and Jo. A high value of v does not seem to lead by itself to patterns, but further
experiments suggest that v influences the height of the peaks, thus leading to less pronounced
u-patterns. This is due to the stronger dampening of proliferation, which hinders stronger
aggregates. To illustrate the effect of v we plot in Figure [6.f] two situations with very different

values (y = 1000 in the first column and v = 1 in the remaining columns).

The performed simulations are very similar to those of the reduced model

Opu =V - (Y(h)Vu) + pu® (1= J(z,h) xu®)  in Q x (0,00),

(6.5.3)
Oth = DgAh + g(u) — Ah in Q x (0,0)

without inactive cells w (compare rows 1 and 2 and rows 3 and 4 in Figure respectively,
for uniform or logistic kernels). System is a simplification of the model considered in
Chapter [J] without myopic diffusion and taxis, where Turing-like patterns for large values of
Bp1 were induced by the nonlocal term. This also seems to be the case here in model .
However, the calculation of a strictly positive steady-state (u*, w*, h*) already leads to analytical
problems, since this requires even in the corresponding local model without diffusion and for

12, 43, i3 independent from A a solution to the nonlinear system
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0=m @) (1= @)’ = (@) + i Fw),

0= p2(l —w*)u* — usF(w*). (6.5.4)

Comparing the height of the peaks in columns 3 and 4 of Figure for uniform kernels (i.e.,
first two rows therein) clearly shows the dampening effect of interspecific interactions. Moreover,
the solution of reaches its maximum accumulation at the left boundary faster than the
solution of , which is again due to the supplementary interspecific dampening in the latter
model. Figure shows that in model a blow-up already occurs for relatively smaller

values of «.
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Figure 6.5: Simulations of model (6.5.3)) without w with § = 3 = 1. Columns 1 and 2: J logistic
and a = 4.4,4.5. Columns 3 and 4: J uniform and a = 5.7,5.8. In the 2nd and 4th column a

blow-up occurs in the next time step..

For the h-dependent kernels J; and .J from (6.5.1) and (6.5.2)) the solution u in Figure
rapidly accumulates at the left boundary and then invades the whole domain aggregating much
less at the boundaries than in Figures[6.4and[6.3} As mentioned in Table[6.1]the blow-up already

occurs for a* = 4.1. The 4th column in Figure[6.6 shows one example of pattern formation for

a certain choice of parameters.
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Figure 6.6: Simulations of model (6.2.1)) with h-dependent kernels J; and J; from (6.5.1]) and
6.5.2) for B =~ =1 =1, a = 2,4,4.1. In the 3rd column a blow-up occurs in the next time
step. The 4th column shows patterns for a = 2, § = 200, v = 10, pu; = 100.

6.6 Discussion

As mentioned in Section the model introduced here extends previous settings and, in a
certain sense, Chapter[5and [136]. As in Chapter[§and [99], the main mathematical challenge
comes from the interaction strengths «, 8 > 1 present in the nonlocal terms; interspecific inter-
actions did not add further difficulties as far as global existence and boundedness are concerned.
In contrast to Chapter[j we do not have here any myopic diffusion, nor taxis terms, which saves
us the efforts otherwise needed to estimate first derivatives of the tactic signal. The model with
interspecific interactions from involves haptotaxis, but there « = f = v = 1 and the lack
of transitions from one population to another, along with the assumptions made on initial data,

convolution kernels, and coefficient functions render the analysis therein more accessible.

The missing diffusion of w-cells required the construction of the approximate problem in Sec-
tion [6.3 Introducing the term —wu in the dynamics of w-cells helped ensure in that problem
the boundedness of w., with the aid of a comparison principle. Such term does have a biologi-
cal motivation as well: it describes competition between active and inactive cells, which in our
model is also triggered by the acidity profile, as both tumor cell phenotypes extrude protons in

the interstitial space (the active ones more than their quiescent counterparts).

Asin Chapter@ and , the condition is not sharp: the numerical simulations suggest that
the solution also exists globally for certain pairs («, ) which do not satisfy that requirement.
Interestingly, the critical value o for which a solution ceases to exist does not seem to be
an absolute a-minimum, but can jump to higher or lower values, depending on the particular
combination of the other parameters 3,7, y; (even for the same choice of kernels), as seen in

Table Indeed, there seems to be an a** > «* such that the solution blows up in finite
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time for a = o**, but stays global for certain values o € (a*,a**). A thorough mathematical
investigation thereof remains, however, open. As Table shows, a* also depends on the choice
of convolution kernels (for fixed parameter values); this greatly complicates the analysis of blow-
up behavior, due to the unlimited degrees of freedom one has for such choices, notwithstanding
conditions (6.2.5|).

A rigorous mathematical stability and pattern analysis for this kind of PDE-ODE-PDE models
seems to be out of reach with the established approaches (see, e.g., |4 (107} (114} [135]), mainly
due to the nonlinearities featuring weak Allee and overcrowding/competition effects with the
respective interaction strengths «, 3,, which preclude from identifying nontrivial steady-states
even in the absence of diffusion; the phenotypic switch terms only add difficulty to such attempts.
The numerical simulations performed in Section [6.] give some insight into the long term and
patterning behavior of solutions, suggesting that the solution seems to be able to approach in the
long term some stable state and to exhibit patterns, depending (as in C’hapter@ on the choice
of kernels and the parameter combination. The model extension with w-cells and interspecific
interactions does not change substantially the type and shape of obtained oscillatory patterns,
but does have an influence on the peaks of u-cell aggregates. The noticed dampening effect also
contributes to detering solution blow-up or at least ensuring global boundedness for substantially
larger o values which, again, depend on the choice of the convolution kernels and of the interaction

strength .

Our analysis explicitly required the diffusion coefficient ¥ (w, h) to be nondegenerate. Alleviating
this assumption leads to further mathematical challenges, when trying to obtain (as usually in
such proofs) a bound on Vu from the ODE for w. Indeed, the problem thereby relies on u being
involved in the growth, instead of the decay term. On the other hand, considering such nonlinear
diffusion is motivated from a biological viewpoint, in order to account e.g., for chemokinesis 63|
76}, 1122].
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CHAPTER 1

Summary and outlook

To conclude this work, we summarize what was considered, which methods were used, and
name possible continuations of this work. We looked at four models involving reaction-diffusion-
advection equations with spatial nonlocality, three of them also involving couplings with an ODE
and/or a PDE. The considered models describe migration of cells in different biological contexts,
in bounded domains. Thereby, we showed the global existence of a weak or very weak solution for
each of the considered models. Moreover, we proved the boundedness of the solutions obtained in
Chapters[jand[6 In Chapters[3,[5, and [ numerical simulations were performed. Chapter[jalso
contains an analysis of the long-time behavior of the solution and pattern formation to explain
the oscillations in the simulations. Chapters[3 [3 and [ were already discussed in Sections
and respectively. Therefore, we will only deal with them briefly here and refer to the just
mentioned sections for a more detailed discussion of our considerations and related literature.

The corresponding assessment of related literature for the model in Chapter[{] can be found in

Section [{.1}

In Chapter@ we analyzed the PDE-PDE-/PDE-ODE-system from consisting of a reaction-
diffusion-advection equation with nonlinear diffusion and nonlocal advection term modeling the
development of the cell density and a PDE or an ODE for a diffusible or nondiffusible signal,
respectively. Thereby, we combined a prototypical cell-cell and cell-matrix adhesion model with
adhesion operator A, and a general form of the nonlocal chemotaxis model with nonlocal gradient
V. in the unified framework . This nonlocal model was related to the local unified hapto-/
chemotaxis model in the sense that our adhesion model was the nonlocal version of the
haptotaxis model with nonlinear diffusion and our nonlocal chemotaxis-growth model was the
nonlocal version of the local chemotaxis-growth model. We established the connection of these
frameworks by demonstrating that the weak solution of the nonlocal model converges in L? to

the weak solution of the corresponding local model.

The proof relied on the functionwise convergence of the integral operators 7. and S, to the
identity operator for diminishing sensing radius r (which did not hold for the original nonlocal
operators) and their self-adjoint-like property shown in Lemmas and These operators
were applied to the functions’ gradient, and were reformulations of the adhesion and nonlocal
gradient operators (on the subdomain 2, with distance r to the boundary), respectively. Fur-
thermore, numerical simulations depicted in Figure|3.1|indicated that in a minimalist model, the
difference between the solutions of the models involving A, and 7. is negligible when the cells

start at the center of the domain. However, the solutions differed when the cells started near the
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boundary, as seen in Figure .

We showed the existence of a weak-strong solution to the approximate problems in the
case of a diffusible signal involving the functions G, to assure the nonnegativity of the solution
with a Leray-Schauder fixed-point argument and monotone operator theory and concluded the
existence of a weak-strong solution to the nonlocal problem in the sense of Deﬁnitz’on
for a diffusing and nondiffusing signal with the help of several approximations. Further, we
established uniform in r estimates on these solutions and proved their convergence to the solution
of the local model in the sense of Definition[3.].6for r = 0 using the properties of the reformulated
operators indicated above. This convergence could also be seen in Figures and for an
appropriate choice of parameters that guaranteed well-posedness. Finite-time blow-up occurred
in the local model (cf. Figure , whereas the nonlocal model exhibited pattern for large ¢.

A possible extension of our model would be to include a similar nonlocality in the diffusion term
of the adhesion model (see Section|5.6).

In C’hapter we considered the reaction-diffusion-advection equation from that combined
degenerate myopic diffusion with self-adhesion and a generalized logistic-type growth term. This
extended the model derived in [156] by the term pc(1 — ¢" 1) which allowed us to establish the
uniform bound in L” from Lemma[{.5.1 We showed the existence of a global very weak solution
in the sense of Deﬁm'tion The very weak formulation was obtained from through two
partial integrations that shifted all spatial derivatives to the test functions. There, the boundary
integral from the first partial integration vanished due to our no-flux boundary condition, but
to eliminate the other boundary integral we imposed on our test functions that their derivative
in direction Dv is zero on the boundary. The density of such functions in H' was shown in
Lemmal[4.6.2, which led to Theorem[{.6.1, where we checked that our very weak formulation is
appropriate by showing that a C%!-function satisfying the very weak formulation is a classical
solution to . To show the existence of an ’only’ weak solution we lack a uniform bound
on Vc on the whole domain 2, whose proof seems unlikely, due to the combination of myopic

diffusion and degeneracy.

Our equation included the standard adhesion operator also considered in Chapter[3 from Def-
inition [{.2-1] into the advection term. In contrast to the approach there, we did not use its
reformulation from Lemma|3.2. 1] shifting the application of the nonlocal operator from the func-
tion itself to its gradient. Instead, we have rewritten the adhesion operator as in [156] to a
convolution with the bounded gradient of an interaction potential, which (thanks to our as-
sumptions on F) illustrated that our operator maps functions from L' to bounded functions, a
fact that was not used in Chapter[3 For this reason, it was sufficient that the approximating
sequence of classical solutions (c.) only converged in L' in order to conclude the convergence of
the nonlocal term c.Ac.. Moreover, the adhesion operator preserved Holder-continuity, which

was necessary for the existence proof of a classical solution.

The assumptions of a positive distance to the boundary of the domain and some sufficiently low
dimension of the degeneracy set of D and the boundedness of its divergence from were
necessary for the construction of an approximating sequence of smooth and non-degenerating
diffusion tensors D, in Subsection[{.4.1] with the standard approach from Theorem 3 in Section
5.3.3 from [58]. Using this method, the diffusion tensors were uniformly bounded on Q. Moreover,

also their divergences were uniformly bounded on sets compactly contained in {ID > 0}, which
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together with the already mentioned uniform boundedness in L” was used to show the uniform
bounds established in Lemma In contrast to |77] we did not require the convergence of its

divergence or additional restrictions on Dk.

The existence of global classical solutions c. to the approximate problems involving the diffusion
tensors D, was shown with a standard fixed-point argument. Thereby, the difficulty in proving
their convergence to the desired weak solution lay in the convergence of the term ¢l shown in
Lemma This was necessary as we could not apply the de la Vallée-Poussin theorem on
the whole domain to obtain L!-convergence, but only on the already mentioned sets compactly
contained in the complement of the degeneracy set. Therefore, we introduced the upper box
dimension to quantify the required sufficiently low dimensionality of the degeneracy set of D and
constructed a sequence (¢s) of smooth functions with diminishing support satisfying properties
— and equal one in neighborhoods of {D % 0} that diminish in §. Using them,
we showed the required convergence after splitting ¢l in a function with support in a set with a
positive distance to the degeneracy set and a function whose support contained the degeneracy
set. Only there the assumptions on r from and n > 3 were required to ensure the positivity
of the term on the right-hand side of condition .

The next step could be an analysis of the original model from [156]. Our solution approach does
not work there, because without the growth term we lack the uniform bound on the approximate
solutions in L". Moreover, the solution there could be measure-valued rather than a function,
as we can only guarantee mass preservation. In |128] local well-posedness was established for an
equation of this form coupled with a nonlinear integral equation, where the myopic diffusion was
replaced by a quasilinear degenerated diffusion. The model there was also derived in [156] by
additionally taking into account the cadherin binding dynamics of a pair of cells. In addition,
the numerical simulations are still missing. Thereby, the difficulty lies in the degeneracy of the

diffusion.

Chapter [J dealt with the PDE-PDE-system coupling an reaction-diffusion-advection equation
with myopic diffusion, repellent pH-taxis, and a nonlocal intraspecific interaction for the tumor
cell density with a reaction-diffusion equation for the acid concentration from (5.3.1). There,
the nonlocality was of form J % u”. Our model extended [99] by replacing the Fickian diffusion
with myopic and additionally considers the effects of a soluble signal via repellent pH-taxis.
The formal modeling started from a meso-macro-system describing the mesoscopic tumor cell
dynamics in response to acidity in the extracellular space. It consisted of a kinetic transport
equation in the framework from [116] for the mesoscopic description of cell migration and in-
traspecific interaction and a macroscopic PDE describing the proton concentration. We deduced
the macroscopic equation for the cell population dynamics by a diffusion-dominated
upscaling of the mesoscopic description. Due to the nonlinear source term, we could not apply
the method from [25| for a rigorous derivation here. For « and j satisfying 7 the global
existence of a bounded solution was followed with a fixed-point argument and estimates from
[99]. Under additional assumptions on the norm of the kernel and the parameters that required
especially some ’smallness’ of 32| ul|r» as in [99], the tumor cell density approached on a long-
term basis either some upper bound or zero, whereas the acid concentration approached some
value depending on the concrete form of g from estimate (5.4.1). Thereby, the proof relied on
the handling of the myopic diffusion as in [91] and the treatment of nonlocality from [99]. A

1D pattern analysis suggested that the occurrence of Turing-like, Hopf, or wave instabilities is
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due to the nonlocality and not due to the diffusion and depends on the concrete choice of pa-
rameters, especially on the product Su, and the Fourier transform of the kernel. This matched
the observations in other non-local models |64} |74} |99} (119} [131] 142, 153] and was confirmed by
numerical simulations depicted in Figures[5.3 and

Further numerical simulations (see Figure indicated that the solution exists globally for
combinations of larger o compared to 5 not satisfying . Since the estimates from [99] were
restricted to this case, a new approach is required to handle the nonlocal term for such a and
B in the proof of global existence. Moreover, the simulations in Figure suggested that, as in
[99], the maximum value of such « also depends on the kernel. In this context, a further step in
the analysis of this model would be the determination of the o about which a blow-up occurs

depending on 8 and the kernel.

The existence proof of a weak solution for a degenerating diffusion tensor D would require uniform
estimates of appropriate norms of the global classical solutions from Theorem (and its
gradients) that are independent from the lower bounds of the approximating diffusion tensors.
This can get very difficult even in 1D (e.g., [149, [151]). Our estimates from the proof of
no longer work here as we lack a uniform lower bound of the diffusion tensors in contrast to
Theorem and, consequently, the uniform upper bound of the approximate solutions from
Lemma |5.5.4, which was used in particular for large a for the uniform estimate of the source
term, is lost. Similarly, we would need bounds independent from the divergence of the proton
concentration, in order to show the existence of a weak solution in the model with haptotaxis
instead of chemotaxis. Our estimates cannot be used for this case either, because the uniform
bound on the gradients of the acid concentrations from Lemma depends on DI_{l.

In contrast to this, in the model presented in Chapter[6} we were able to use such estimates
to obtain weak solutions in the PDE-ODE-PDE-system describing the interactions of
an active and a quiescent cell population in an acidic environment from classical solutions of
the approximating PDE-PDE-PDE-system . Compared to Chapter@ the model took
into account a second inactive cell population w whose development was described by an ODE.
Moreover, the reaction-diffusion equation for the active cells u did not contain a taxis term or
myopic diffusion. Instead, we added a second nonlocality describing interspecific interactions
between v and w to the nonlocal reaction term in the equation of u from the last chapter and a
growth term of the form fig(h)F(w) that depended on w and the acid concentration h. As the
model did not contain a taxis term, we did not require a uniform bound on Vw. independent
of the diffusion coefficient ¢ there to conclude the existence of a global uniform bound of the

approximate solutions ..

We included the term 1 —w into the u-dependent growth term in the equation for the quiescent
cells w in order to ensure its boundedness with the help of a comparison principle in the approx-
imate problem. Otherwise, this boundedness could not even be shown for bounded functions
u. Further, the boundedness and consequent global existence of the approximate solutions wu.
followed similarly to Chapter@ using the estimates from [99] to handle the nonlocal intraspecific
term. As in Chapter[J] the solution was also global for pairs of « and § that did not fulfill
condition . In our method, the nonlocal interspecific term did not contribute to the proof

of global existence for further pairs of o and 8. However, a comparison of the simulations of this
model from Figures and With those of model (6.5.3)) without w from Figure suggested
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that this term damped the blow-up behavior of the solution u. Also, the choice of the kernels,
the exponents 5 and + and the growth rate pu; influenced the minimum value of a* for which
a blow-up occurred (see Tables and . Additionally, for certain combinations of parame-
ters, the solution also existed globally for some o > a*. In these cases there seemed to be an

a®* > a*, s.t. the solution blew-up in finite time for o > o**

, while there were « in (a*, a**),
where the solution was global. A thorough mathematical investigation of this remains an open

problem.

In Figure[6.7] increasing values of 3 led to oscillations in the case of uniform kernels, which was
not the case for increasing «y. Also, for large enough parameters, oscillations occurred for the
h-dependent kernels from (6.5.1)) and (6.5.2)) as seen in Figure[6.6 Hence, we assume that as in
Chapter[5 the formation of Turing-like patterns depends on the kernel and the product Su;. We

lack a pattern analysis here, as the computation of a positive steady state of the corresponding
local model without diffusion led to the system of equations (6.5.4), which can only be solved

numerically.

One extension of our analysis would be, again, to consider a degenerate diffusion coefficient
¥(h,w). Thereby, the problem is that it is not possible to obtain a bound on Vu from the
equation of w, as is usually the case, since u is contained in the growth and not in the decay

term.
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Appendix A Additional Theorems

We summarize some results on different types of differential equations, fixed-point and conver-
gence theorems and further results from functional analysis used in this work in Appendices[4.7}-
In Appendix we state some results, especially from [99], used in Part I and slightly
adopted to our needs. Finally, we prove some results on Holder continuous functions and con-
volutions from Chapter[din Appendix [A.5 If not stated otherwise Q@ ¢ R™, n € N, denotes a
bounded domain with smooth enough boundary throughout this chapter.

A.1 Differential Equations

A.1.1 Linear PDEs

Theorem A.1.1. (94, Theorem III.5.1]) Let T > 0 and consider the IBVP

Uy — Mu=—f in Qx (0,7),
>y (Z?zl @jjUy, + am) v, =0 ondQx(0,T), (A.1.1)
u(x,0) = ug(x) in Q,

where the operator

n
Mu = Z (al-jurj + aiu)m — au.

ij=1
satisfies the uniform ellipticity and boundedness condition, i.e., there are u1,us > 0 s.t. for all
£eR", xeQ andte (0,T) it holds that

n

€ < Z aij(z, 6)&&; < pol¢f? (A.1.2)
ig=1

and a;,a, f € L*(Q x (0,T)) fori=1,...,n.

Then, for any ug € L*(Q) there is a unique weak solution u € C([0,T]; L?(Q)) n L?(0,T; H*(Q))
in the sense that for all n.e Wy (2 x (0,T)) with n(T) = 0 it holds that

T T n n
_J J’ uny do dt + J, f Z Z iUy, + a;u | Mg, +aun + fndedt = f uo(x)n(z,0) de.
0 Q 0 Q i=1 i=1 Q
(A.1.3)
Moreover, any weak solution uw € L*(0,T; L*(2)) n L2(0,T; HY(2)) is also in C([0,T]; L3(£2)).
Proof. This follows similarly to the proof of Theorem II1.5.1 in [94] by adapting it to our boundary

condition and is a special case for bounded coefficient functions. Then, the coefficients are in the

required spaces for any suitable combination of q,r, g1, 7. O
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Remark A.1.2. The weak formulation (A.1.3]) is equivalent to

t t n n
J u(x, t)yn(z, t)de — ,[ J uny dzds + ,[ f Z Z AijUy; + aiu | N, +aun+ fndzds
Q 0Ja 0Jo; 5 \UT
= J uo(x)n(x,0) dx. (A.14)
Q

for a.e. t € (0,T) and all n e W' (2 x (0,T)).

Lemma A.1.3. Under the assumptions of Theorem|A.1.1| any weak solution u € C([0,T]; L?(2))n
L2(0,T; HY(Q)) of (A.1.1) in the sense of (A.1.3) satisfies

s Jro [ (2 2 2 ),
— | w(t) dr + iUy, +aiu | Uy, +au” + fudrdt = - | ugde
2 Ja () 0 Q; Z ! 2J)g "

Jj=1

for a.e. t€ (0,T),

Proof. This follows similarly to (2.13) in Chapter III in [94] from the corresponding weak for-

mulation (A.1.3) of a solution. O

Theorem A.1.4. For ug € L*(Q) under the assumptions of Theorem there is a constant

K1 > 0 depending on p1, |ai|| L= @x(0,1))s lallz=@x 0.1, I fllz=@x©0.1)) 5t [w|ze@xo,r) < K1
holds for any weak solution u € C([0,T]; L*(Q2)) n L2(0,T; H*(Q)) of (A.1.1) in the sense of
(A13).

Proof. This follows similarly to the proof of Theorem IIL.7.1 in [94] by adapting it to our boundary
condition and is a special case for bounded coefficients. Then, the coefficients are in the required

spaces for any suitable combination of ¢, r. O
Theorem A.1.5. ([94, Theorem III.12.1]) Let v € (0,1) and T > 0. Ifa;j, (aij)z,, @i, (€4)z,, @, f €
C*2(Q x (0,T)) fori,j=1,...,n, then u € C>**1+3(Q x (0,T)) holds for any weak solution
we C([0,T); 12(9)) ~ L2(0,T; HN(@)) of (A1) in the sense of (A13)

Theorem A.1.6. Let a € (0,1), T > 0 and consider the IBVP

u + Lu = f in Q x (0,7,
Bu =0 on 002 x (0,T), (A.1.5)
u(z,0) = up(x) in Q,

where
n n
Lu = — Z iUz, + Z QiUg, + au
ij=1 i=1

satisfies (A.1.2)) and

Bu = i biug, + bu

i=1
satisfies

n

Z bil/i

i=1

=d>0o0n 00 x(0,T).
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If aij a0 € C4%(Q x [0,T]) and bi,b € CH"5(0Q x [0,T]) for i,j = 1,....n, then for
any f € C%%(Q x [0,T]) and ug € C***(Q) satisfying the compatibility condition Bug = 0 on
00 x {0} there is a unique solution u € C***'1*3(Q x [0,T]) of (A.1.5) and a constant Ko > 0

depending contmuously on the norms of a;j,a;,a in C*%(Q x [0,T]) and the norms of b;,b in
14+«

1+ 52 (90 % [0,T)) s.

||u||02+a,1+%(ﬁx[0’r1—v]) KQ (HfHCOt QX[O T]) + Hu0||c'2+a )) . (A16)

The solution u depends continuously on the coefficients and functions.

Proof. Set ® = 0 in Theorem IV.5.3 in [94]. The continuous dependence of K5 on the coefficients

and of u on the coefficients and functions follows from the proof of this theorem. O

Theorem A.1.7. Let T > 0 and consider the IBVP (| m Suppose that fori,j =1,...,n,
aij,ai,a € C4%(Qx[0,T7]), b;,be CH 5% (00 % [0, T) and satisfy e i (2, )66 = u1|§|2
for p1 > 0 and Y biv; =6 > 0. Then, for any f € C*%(Q x [0,T]) and ug € C(Q) there
is a unique solution u € C*Y(Q x (0,T)) n C(Q x [0,T]) n CHO(Q2 x (0,T)) of . If
additionally ug € C?T(Q) and satisfies the compatibility condition Buy = 0 on 0 x {0}, then
ue C*el+3(Q x [0,7]).

Proof. This is a special case of Theorem 5.18 in [100]. O

Theorem A.1.8. Let T > 0 and consider for a constant D > 0 the nonhomogeneous heat

equation with Neumann boundary condition

=DAu+f inQx(0,7),
oyu=0 on 002 x (0,T), (A.1.7)
u(z,0) =up(z) in Q.

Then, for any f € L*(Q x (0,T)) and ug € H'(Q) there is a unique solution u € Wy (2 x (0,T))
satisfying

Iz ok 0,7y < B3(T) (1 L2@x o)) + luollzr o)) -

Proof. This is a special case of Theorem IV.9.1 (together with the remark at the end of the

chapter for Neumann boundary conditions) in [94] for a nonhomogeneous heat equation with

®=0,¢qg=2. O
Theorem A.1.9. ([100, Theorem 2.9]) Let T > 0 and u,v € C**(Q x (0,T)) n C(Q x [0,T]).
Suppose that L satisfies (A.1.2), ¥ | ay,a;,a € L*(Q x (0,T)) for i = 1,...,n, a > 0,
—(by,...,by)T is a vector that points strongly inside Q x (0,T) on Q x (0,T) and b = 0 on

o0 % (0,7). If

u+Lu<v+ Ly  inQx(0,T),
Bu < Bv on 0Q x (0,7,

u < v in €,

then u < v holds in 2 x [0,T].
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Proposition A.1.10. (36, Proposition 13.1]) Let T > 0, u € W2 (2 x (0,T)) for p = n+1 and
consider an operator L that satisfies (A.1.2) with coefficients that are continuous on Q x [0,TT].
Suppose

up + Lu =0,

holds a.e. in Q x (0,T). If u attains its minimum m < 0 at (zo,t0) € Q x (0,T], then u=m in
ﬁ X [O,to]

Theorem A.1.11. (36, Theorem 13.5 with the remark at the end of the chapter]) Let T > 0,
aij,ai,a € C(Q x [0,T]), b; € CH(0Q) and b € C'(0Q x [0,T]). If u € W2 x (0,T)) for
p > n+ 2 satisfies

w+Lu=0 inQx(0,T),

Bu =0 on 002 x (0,T), (A.1.8)

u(z,0) =0 in Q,

then u = 0 holds in Q x [0,T7].

A.1.2 Nonlinear parabolic PDEs

Theorem A.1.12. LetT >0, p = 2 and a : R>"*2 - R” and b : R>"*2? — R be measurable and

satisfy the estimates

a(x,t,u, Vu) - Vu = K4|Vul? — o(z, ), (A.1.9)
la(z, t,u, Vu)| < K5|VulP™ + 1y (2,t), (A.1.10)
[b(z, t,u, Vu)| < Kg|Vul|? + a(z,t), (A.1.11)

where Ky, K5, K¢ are positive constants and 1; € L*(Q x (0,T)), 7 = 0,1,2, are non-negative.
Besides, let u e C([0,T]; L*(Q)) n LP(0,T; W) (Q)) n L* (2 x (0,T)) be a weak solution of

Oru — V- a(z,t,u, Vu) + bz, t,u, Vu) =0 in Q x (0,T),
a(z,t,u, Vu) - v(z) =0 on 8 x (0,7T), (A.1.12)
U(l’,O) = UQ(ZL’) mn Q

in the sense that
to
,[ up dx|2 + J f —upy + a(z, t,u, Vu) - Vo + b(z, t,u, Vu)p de dt =0
Q t1 JQ

holds for all 0 < t1 < ty < T and for all p € LP((0,T), W, () with derivative @, € L*(Qx(0,T)).
Then, u is Hélder continuous on Q x [e,T] for any ¢ > 0, i.e., there are constants K7 > 0 and

a € (0,1) depending only on the constants appearing in (A.1.9) - (A.1.11), the norms of the ¢;

and |[u]| L= (ax(0,1)) and € s.t. the estimate

a(e)
fu(w1, 1) = @z, t2)] < Kr(2) (o1 = 2] + 12 — 1] ) (A.1.13)

is satisfied for any pair (v1,t1), (v, t2) € Q x [¢,T].
If additionally ug € C*(Q) for o/ € (0,1), then u satisfies (A.1.13) in Q x [0,T] for constants

K7 and « that can be chosen independent from e. In this case « also depends on .
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Proof. This is a special case of Theorem 4 in [39] for ¢ = 0 and bounded v; that are in the

required spaces for any suitable combination of ¢, r. O

Theorem A.1.13. Let T > 0 and u € C([0,T]; L3(2)) n L?(0,T; H*(Q)) n L*(2 x (0,7)) a
weak solution to , Suppose that there are « € (0,1) and X\, A, p1, p2, u3 > 0 s.t. for all
(7,t,2,p) € 2 x (0,T) x R x R™ with 2] < M := |u|r»@x(0,1)) and all (y,w) € Q x [-M, M] it
holds that

|a(a:,t,z,0)| < pa,
|a(z,t,z,p) - a(yvtaw7p)| < IU‘Q(l + |p|) (|‘T - y|oc + |Z - ,w|oc)’
|b(z, ¢, 2,p)| < p3(1 + |p]?)

and that for all (x,t,z,p) € 0Q x (0,T) x R x R™ and all (s,w) € (0,T) x R with |z|,|w| < M
the estimate
(., 2,p) — alz, s,w,p)| < p2(1 + [p])lt — 5| %

ca .
holds. Moreover, suppose that a;; == f;,;’_ satisfies
)

n

Z ai(x,t, 2, p)Eié; = NP,

|a'7lj('ra t7 Zap)| < A

for all (x,t,2,p) € 2 x (0,T) x R x R™ with |z| < M and £ € R™ and that ug € C1T(Q) satisfies

the compatibility condition
a(z,0,up, Vug) - v = 0 for x € 0.

Then, there are 6(A, A, ) € (0,1) and Kg(A, A, M, p1, p2, i, [uo| crva (g, T) > 0 s.t.

HUH ol+s < Ks

2 @x[0.1])

Proof. This is a special case of Theorem 1.1 in [101] for ¢ = 0. O
Proposition A.1.14. Let T > 0 and consider a function f(z,t,s) : Q x [0,T] x R - R
that is continuous in x and t and continuously differentiable in s. Further, let p > n + 2 and

u,w € W2H2x(0,T))nC([0,T]; L*(Q2)) nL* (2% (0,T)) s.t. u(:,0) < w(:,0) and u(-,0) # w(-,0)
hold on Q. If the estimates

Oru— Au— f(x,t,u) < Ow — Aw — f(z,t,w) (A.1.14)
in Q% (0,T) and
ou _ ow
i i
5 S, (A.1.15)

on 02 x (0,T) are satisfied, then
u < w

holds in Q x (0,T).

Proof. This is a special case of Proposition 52.7 in [127] with b = 0 and f independent from
3 O
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A.1.3 Monotone Operators

Definition A.1.15. Let V be a reflevive Banach space and A : V. — V*. The operator A is
called

- monotone if (Au — Av,u — U>V*,V =0 for all u,veV,

- mazimal monotone if A is monotone and Au = f if and only if (f — Av,u — U>V*,v =0

forallueV,
- hemicontinuous if t — (A(u + tv), w)v*,v s continuous for all u,v,we V.

Lemma A.1.16. (Minty’s lemma [133, Lemma 2.1 in Chapter II]) Let V a reflexive Banach

space and consider an operator A :V — V*. If A is monotone and hemicontinuous, then it is

mazimal monotone.

Theorem A.1.17. Let T > 0, p € (1,0), p* s.t. 1% + p% = 1, V a separable and reflexive
Banach space and H a Hilbert space s.t. V. — H is dense. Consider a family of operators

At,): V- V* te[0,T] s.t
(i) A(,v) : [0,T] > V* is measurable for allveV,
(i) A(t,-) : V. — V* is monotone, hemicontinuous and bounded by
[AG ) lve < Kollolf!
for allveV and a.e. t € [0,T],
(iii) there are a seminorm [-] on V and A\, > 0 s.t.

[o] + v = afvlv,

<'A(t7 ’U)a U>v*’v = a[v]p
for a.e. t€[0,T] andveV.

Then, for every f € Lp*(O,T;V*) and ug € H there is a unique solution u € LP(0,T;V) n
C([0,T]; H) with u; € Lr (0, T;V*) to the Cauchy Problem

w(t) + At ut)) = f(t)  in LP*(0,T;V*),
u(0) = ug in H

(A.1.16)

in the sense that for all o € V and a.e. t € (0,T)
(U, @)y y + (A u(t), ) ya vy = (fr @) vs v

and u(0) = ug in H.

Proof. This follows from Propositions 2.1 and 4.1 in Chapter III in [133]. O



A.1. DIFFERENTIAL EQUATIONS 159

A.1.4 Evolution equations

Lemma A.1.18. (/85, p.56 (iii)] and [148, Lemma 1.3 (ii) and (¥ii)]) Consider the Neumann
heat semigroup (e*™);=o in Q. Let A\; > 0 the first nonzero eigenvalue of —A under Neumann

boundary conditions in ). Then, there are constants K¢, K11, K12 > 0 depending only on € s.t.

(i) if 1 < g <p< oo then
el ooy < Kot~ 2(G7)

for allue LI(Q) and t € (0,1),
(1) if 1 < q<p< oo then
[Ve 2 ul ooy < K (1427273673 e M ul ooy
for allue LI(Q) and t > 0,

(iti) if 2 < p < oo then

[Ve 2 ull Loy < Kioe™ [Vl oq)

for all we W) (2) and t > 0.

A.1.5 Elliptic PDEs

Lemma A.1.19. Let A > 0 and a;;,b; € C?(Q). i,j = 1,...,n s.t. a;; = aj;. Assume that for
some o > 0 it holds that Zz’j:l aij&& = al€)® on Q for all € € R™ and Y | biv; > 0 on 0.
Then, for all f € WL(Q) the elliptic problem

=X e (@ita, o, + Au=f i Q,

B (A.1.17)
Diqbiug, =0 on 02

has a unique solution u € C?(Q2). Moreover, there are Ao and a constant Ki3 > 0 s.t. for all
A > A the estimate
lull ) < Kis| flz2o) (A.1.18)

holds

Proof. We conclude from Theorems 2.4.2.7 and 2.5.1.1 in [72] that has a unique solution
u €y Wp(Q) € C*(Q). The estimate follows from Theorem 2.3.3.6 in [72]. O
A.1.6 ODEs
Lemma A.1.20. Let T > 0. If f € C([0,T|;RE) n C1((0,T);RY) satisfies the inequality

f'(#) + K14 f(t) < KuaKis,
on (0,T) for constants K14, K15 > 0, then for t € (0,T) it holds that

f(®) < Ki5 + f(0).
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Proof. Let t € (0,T). We differentiate
(FO1) = (£(1) + Kraf(£) e < KyaKase™ e,

Integrating over [0, ] we obtain

t

f(t)eK14t < K14K15J €K14S ds +f(0) — K15 (€K14t _ 1) +f(0)
0

Consequently,

F(t) < Kus (1= e 590) + f(0)e™ 14" < K5 + £(0).

A.2 Fixed-point theorems

Theorem A.2.1. (Banachs’s fized-point theorem, [58, Section 9.2.1, Theorem 1]) Let X a

Banach space and consider a contraction T : X — X. Then, T has a unique fixed-point.

Theorem A.2.2. (Schauder’s fixed-point theorem, [154), Section 2.6, Theorem 2.A]) Let X a
Banach space and M < X nonempty, closed, bounded and conver. Then, a compact operator
T:M — M has a fixed-point.

Theorem A.2.3. (Schaefer’s fixed-point theorem, [58, Section 9.2.2, Theorem 4]) Let X a Ba-

nach space and consider a compact operator T : X — X. If the set
{ue X : u=ATu for some X € [0,1]}

1s bounded, then T has a fized-point.

A.3 Results from functional analysis

In this section we summarize some results from functional analysis.

Lemma A.3.1. ([20, Corollary 3.30]) Let X a separable Banach space. Then, every bounded

sequence in its dual space X* has a weakly-*-convergent subsequence.

Lemma A.3.2. (Compensated compactness, [20, Propositions 3.5 (i) and 3.13 (w)]) Let X a
Banach space, x, € X and fr, € X* for ke N. Ifxp, = x in X and f, — f in X* orxp — x in
X and fr = f in X* for k — o0, then

frzeyxs x — {fx)xx x-
k—oo

Lemma A.3.3. (4 result from (59, p. 6]) Let p € (1,00) and consider a bounded sequence
(fr)ken € LP(Q). If

JE frdx e JE fdx

for each bounded, measurable set E c ), then

fx v f in LP(Q).
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Lemma A.3.4. ([102, Lemma 1.3]) Let p € (1,00) and fi, f € LP(Q), k € N. If there is a
constant K16 > 0 s.t. | fx|zr) < K16 and fr, — f for k — 0 a.e. in Q, then

fe — [ in LP(Q).
k—ao
Lemma A.3.5. (141, Lemma 1.4 in Chapter III]) Let X,Y Banach spaces s.t. X — Y. If
feL*(0,T;X)n Cyu([0,T];Y), then f e Cyu([0,T]; X).
Theorem A.3.6. (De la Vallée-Poussin theorem, [19, Theorem 4.5.9]) Let O c R™ open

and bounded and {fi}ren © L*(O). Then, the following are equivalent:

(i) {fr}r is uniformly integrable,

(ii) there is an increasing function G : [0,00) — [0,00) satisfying lim; o, @ = and

supf Gllful) dz < .
keN JO

Lemma A.3.7. (Vitali’s lemma, [37, Theorem 21]) Let O < R™ open and bounded and
consider functions fr € L'(0), k€N, s.t. fp — f for k — o0 a.e. in O. Then, the following are
equivalent:

(i) fe LY(O) and fr — f in L*(O) for k — oo,

(i1) {fx}r is uniformly integrable.

Lemma A.3.8. ([133, Chapter III Proposition 1.2]) Let T > 0, p,q € (0,1) s.t. % + % =1,V
a Banach space and H a Hilbert spaces s.t. V. — H — V* are dense. If f € LP(0,T;V) and
Orf € LY(0,T;V*), then f e C([0,T]; H) with

I fleo,rymy < Kz (1fllzeo,vy + 10 fllLeo,rive))

and

d
£||f||§{ =200cf, Hv=v.
Lemma A.3.9. (Lions-Aubin lemma, [134, Corollary 4]) Let X,B,Y Banach spaces s.t.
X 5> B—=Y and pe[l,0), re(l,0).
(i) If { fx}ren is bounded in LP(0,T; X) and {0; fx}ren is bounded in L*(0,T;Y), then {fi}ren

is relatively compact in LP(0,T; B).

(1) If { fx}ren is bounded in L*(0,T; X) and {0; fr}ren is bounded in L"(0,T;Y"), then {fi}ren
is relatively compact in C([0,T]; B).

Lemma A.3.10. (Partition of unity, [2, Theorem 3.15]) Let K < Q compact and consider an
open covering {Ox}x=1,...n of K. Then, there is a partition of unity {{g}k=1,.. N s.t. 0 < <1,
Y € CF(Og) fork=1,...,N andzgzlzbk =1 on K.

Theorem A.3.11. ([88, Chapter 6, Theorems 6.27]) Let S < R™ open and bounded, zq € Q2 and
f:8%xQ—>R amap s.t.

- for any x € Q the map y — f(y,x) is in L'(9),
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- for a.e. y € S, the map x — f(y,x) is conlinuous at x,

- there is h e LY(S), h =2 0 s.t. |f(-,2)| < h a.e. in S for all x € Q.

Then, the map F : Q > R, z — SS fly,x) dy is continuous in xg.

Theorem A.3.12. ((88, Chapter 6, Theorems 6.28]) Let S  R™ open and bounded, I c R a

nontrivial open interval and f :S x I — R a map with the following properties:

- for any x € I the map y — f(y,x) is in L*(I),
- for a.e. y € S, the map x — f(y,x) is differentiable with derivative f’,

- there is h e L'(S), h 2 0 s.t. |[f'(-,x)] < h a.e. in S for all x € Q.

Then, for any x € I it holds that f'(-,x) € L'(S) and F(x) := g f(y,x) dy is differentiable with
derwative F'(z) = §¢ f'(y, x) dy.

A.4 Results used in part II

Lemma A.4.1. Let u € C1(Q) and consider o, B > 1 satisfying

1+8, n=1.2,
a < p (A.4.1)
1+22 n>2

Moreover, let ¢ > max{l, 8 + o — 1},

o {HO=D 202D ) ko=

)

q q q
and
= 00, n =1,
$y € (%NO) ;, n=2 (A.4.2)
n2f2, n>2
Then, for any Kig > 0 it holds that
) 2(g+a—1) —q
o 2(q—1) 4 PR e sy weTp—yy ar=ffpracl)
L R B P Py L IVl 2 do + Kio(Kis, q,7)|u? Lr(g(f ) + Koo(r) 57 |
(A.4.3)

where

ar—2(a+a—1)
K12 K18\ v(Z-D+200—1) sl
—_ + Kyo(r) =7
qg—1

Koo(r) 1= 4Ks(s)|Q| 7,
Koy := 2K5(5) (1 + 2Kp) .

)

Ki9(Kig,q,7) =2 <

Here, Ks(s) denotes the Sobolev embedding constant from H'(Q) into L*(Q) from Lemma

and Kp > 0 denotes the constant from the Poincaré inequality.
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Moreover, for any Kig, Koo > 0 (after setting r = W) the estimate

2(g—1 1
J witelgp < (g ) |Vu% |2 de + — | «° dacJ, uwlT7 do + Kos (Kig, Ko, q)
Q Q

PKigs Jo 22 Jo
(A.4.4)
holds, where
q—a+14p-2ata1th)
qta—1-—p3 283
K2 q2K18 q—a+1+ﬁ—2M % fHime—s
&W%“””:G(ﬁ_l T g
q,2(q+a71)
/3+1—03—ﬁ %
' K22 s+ K24(Q) - s )
and
Kou(q) := 4K g(s)|Q|? ~a¥a175 .
Proof. Let
__q _ 1
_ 2(gt+a—1) T
A= 1 .
s r

Then, A € [0,1) and W € [0,1) hold due to our choice of parameters. We state inequality
(2.11) from the proof of Theorem 1.1 in [99] (with B(x,d) replaced by )

22 (g+a—1) . 2(1=A\)(q+a—1) 2(gta—1)
qa9vw—— q

J ulH_a_l dl‘ § 2 (K21||Vu% ||(L2(Q))n) ¢ Hu2 ”LT(Q) 4 + (Kgo(’l“)A”U% HLT(SZ)) 5
Q
where

Koo(r) := 4K g(s)|Q| =, Koy := 2Ks(s) (1 + 2Kp).

We proceed as in the proof of (2.14) in [99]. Applying Young’s inequality twice and regrouping
the terms we conclude that for K5 > 0 it holds that

_ 2(¢ —1) g
wite e <=2 2 ||vyz|? n
JQ N I Itz20))

9
Aagta—1) \ g—A(g+a—1)

2A(gt+a—1) 2(1-M\)(g+a—1) 2K q
q q 18
+2| Ky ¢ w2 ] oy
21 L (Q) q _ 1

2X(a+a—1) g 2 Matasl)
+ Koo(r) 9 <||U2L3(s;§q+ U+l

2(qg—1 q g 20 Mlatarl) 2A(g+a=1)
<2Vt Py + Ko Kassa ) Iy 0+ Kaoln) 5,
(A.4.5)
where
K2 2K Alaasll,
a=X(g+a— 2A(g+a—1)
Ki9(K1g,q,7) =2 (2(11(1_118> + Kao(r) @ .
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Inserting the definition of A we obtain inequality (A.4.3]). Moreover, we state inequality (2.17)
from the proof of Theorem 1.1 in [99], i.e.,

a— 2(g+a—1)

g 2Ntarn) g 28 g Aotesl) amarip- K TE0)

> — a— 4 g

HU2HL2+afl+a“D < Huzngég“DHuanzmia—n v (A-4.6)
q q q

where due to our choice of «, 8 and s in (A.4.1) and (A.4.2)) it holds that

q— 2(g+a—1)

= <1
g—a+1+p5—

2(g+a—=14p)
S

Now, we estimate the term from l} for r = @ using 1D as in (2.19) from [99).

Young’s inequality leads for any Kas > 0 to the estimate

4 2(1*;\)(q+0411)
K19(K187Qar)||u§“ Z:—a(z-l'—-ﬁﬁ_ )
L q

2(ata—1+p) g 2atal)
S

1 g—at+1+8— —r
<— | Wf dwj ut™ ot da + Ki9(Kis, q,7) priza=iP Ky Tt
22 Ja Q
Inserting this estimate and our choice of r into (A.4.5) we arrive at (A.4.4). O

Lemma A.4.2. Consider s as in Lemma . Set q, := 2% + h for h := %, k € Np.
Then, for all k it holds that

2(gx+a—1)

— 4k
= =1, A4.7
2qr—1 (2 —1) +2(a— 1) ( )
2qk—1 — 2(qx + o — 1) _ s (A.48)

2qp-1 (2 1) +2(a—-1) s—2
and

2qr—1 — 2(qx + a — 1)
2qk—1
S gk

<o+l (A.4.9)

Proof. See part 2 of the proof of Theorem 1.1 in [99], where they show (in their notation)
that ?—: = 2 in (2.28). Comparing this to the term in l} we obtain the desired equality.
Moreover, they show (in their notation) in (2.32) that %}‘f)\Z’Eqim = -*5 where the left-hand
2qr—1—2(qr+a—1)

20r 1 (E=1)+2(a=])” This gives us (A.4.8). We obtain (A.4.9) from (2.33) in [99],

2qK—1—2(qr+a—1) 22k (qr+a—1)
2qp
7%5 1 —qk ak

side equals

where < o+ 1 was shown O

Lemma A.4.3. Let y; € C([0,0)) n C1(0,00) nonnegative for k € Ng and satisfying
V() + cryr(t) < cp Ag max {1,51110) yzl(t)} ,
t>

where A, = a2P% > 1 and ¢, a, D > 0. We assume that yk(0) < bK2" holds for some constants
b=1 and K > 0. Then, for all m > 1 it holds that

yn(t) < (2a)2 7" 1P (2R D) Em2t T k) o {sup g2 @), 02 TR 1} .

t=0

Proof. See Lemma 2.1 in [99] and adapt the proof for y(0) < bK?" instead of yr(0) < K2, O
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Lemma A.4.4. Let Q c R™ a bounded conver domain. Let p =00 ifn =1, pe (2,00) if n =2
and 2 < p < T” if n > 2. Then, it holds that

lull Lo (@) < Ks(p)[ullar @)

where

s {1, eyt | =1,

Ks(p) = p+2  pt2 p=2
- l diam () 1+ 2p "pdp " F(pT;zn) r %) '(n) o >

Vamax{jofi=t, sl g | () T e
Here, V := UIEQ Oy, where Qp :={x —y:y e Q} forx € Q, and T denotes the Gamma function
given by I'(x _So et dt forx>0
Proof. See Theorems 2.1, 3.2 and 3.4 in [108]. O

Lemma A.4.5. Let Q ¢ R" a bounded convexr domain. Consider J € L'(Bgiam(q)(0)) with
|0l s (0)) =1 and ue C*(Q). Then,

(Bdiam()
j j J(@ — y)(ulz) — u(y))? dy de < | diam(Q)? f Vu(z)? de
QJ0 Q

Proof. This follows due to the convexity of Q as in the proof of (3.6) in the proof of Proposition
3.1in [99] with B(x,d) replaced by . O

Lemma A.4.6. Letty =0, U >0 and u : Q x (tp,00) — [0,U], ¢ : [0,U] — [0,00) uniformly

continuous satisfying
J J 2 dx dt < 0.
to

Then, also
()@ = 0.
Proof. See proof of Lemma 3.10 in [139] for ¢ as above. O

A.5 Proofs of some lemmas from C’hapter@

Proof of Lemma[2.2.5 (i) See (4.7) in [70].

(ii) For r € (0,1) and v, w € R the estimate |v + w|" < |v|” + |w|" holds. Hence, we estimate

for 2,y € Q with v := u(z) — u(y) and w := u(y) or v := u(y) — u(z) and w := u(x) that

u(2)” = u(y)"] < |u(z) = u(y)|” < Kosle —y|"".
(iii) We estimate for z,y € Q with the mean value theorem that

[u" (@) = u" ()] < rlul ;2o @) = u(y)] < Kaslz —y|”.



166 APPENDIX A. ADDITIONAL THEOREMS

(iv) The function u is continuous. Hence, there is m := min g [u(z)| > 0 and we can estimate
for z,y € Q that

< Korlz —yl”.

1 1 ‘: uly) —w(@)] _ July) = u(z)]
lu(y)u(@)] ~ m

O

1+19

Proof of Lemma[2.2.9. (i) Let u e C'*% =5 (Q x [0,T]). We estimate the norm of u — u(-,0)
term by term. Let t,¢#' € [0,T], t # ¢ and x € Q. First, we estimate

|u(z, t) — u(z,0) — (u(z,t’) — u(z,0))] _ lu(z, t) — u(z, t')|
=t ITE
1 |u(z,t z,t 1
L S W

(A5.1)

Moreover, we use the continuous embedding of WL (Q) into C?(Q) with constant K7 ()
from Lemmal[2.2.§(ii) to estimate that

|lu —u(-, 0)||c@x[o,T]) +<u—u(-,0) Z,ﬁx[o,T]

<K(9) (”U —uf, O)Hc(ﬁx[o,T]) + Z e, — v, (-, O)C(QX[O,T])>
i=1

n

1+19 9 9
<K;(9) ( <“>mx oz T Z<u“>t2,ﬂ><[0,T]> (A5.2)
i=1
Putting this together with the supremum of (A.5.1)) we obtain (2.2.2) due to T < 1.
(ii) Let u € CQJ”?*Hg(ﬁ x [0,T]), t,t' € [0,T], t # ' and = € Q. First, we conclude from the
mean value theorem that

+9

lu(z,t) — u(z, 0)||C(§x[0,T]) + u — u(z, O)>t axp,r] S <(T+ T )Hut”c Q@x[0,1])"
Moreover, (i) implies for i = 1,...,n that

< max{1, K1(19)}Tg |z, |

Hu% - ul’i("o)”c“%(ﬁx[o,T]) Cl+19 (QX[O T])

Together with the above estimates we obtain ([2.2.3]).

(iii) We estimate as before with the help of the mean value theoren and the Sobolev embedding

that

9 2-9
=G 0D g oy ST 7 Tutlo@xpo, ),

Ju = u(, 0l oo,y + = u( 00?5017

14k
<K r(0) | Tluell o @i OT)+T Z@w Laxqo.r] | -
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Proof of Lemma[2.3.3. (i) Let u,h € L* (2 x (0,T)), z € Q and t € [0,T]. Using our assump-

tions on J we can estimate

(. h) P (5)] < fﬂ I — g, by, )’ (5. 1) dy‘

< Wil ooy | [ 2 = DI + 176 = 10y
<l oy (IZzics) IRl o @xomy + 172, 0)11(s))
Taking the supremum on the left-hand side, we conclude that J(-, k) *u® € L*(Q x (0,T)).

(i) Let u,he C2(Qx [0,T]), u= 0, z € Q and ty,ty € [0,T), t1 # t5. Then, we can estimate
using our assumptions on J, the Holder continuity of u and h and the mean value theorem

that
| T (, h) # a (tr) = J (2, h) = uP(t2)]

= 00 0) = TG =2 B 020 ) dy\

< UQ (J(@ =y, hy, t1)) = J(z =y, h(y, t2))u” (y, t1)) dy‘

. J(x =y, h(y,t2)) (W’ (y, 1) = uP (y,12)) dy‘

<l oy | EAa = wlA ) = B )] dy
+ Bl oy [ (E = 0t + 1 = .00 ol ) = utas )] dy
<Eos ([l B, 112, 17C, O e, YT (g oy + @igrom) - (A53)
Now, let 21,29 € Q, 11 # 29 and t € [0,7]. Then, we can estimate
[T (1, h) P () = J (22, h) 5 0 (2)]

[ 71 = )07 0030 0) = Iz = 5B 5 Ox )

. J(Za h(‘rl 2 t))uﬂ(xl -z, t)XQ(xl - Z)

— J(z, h(zy — z,t))u’ (zo — 2, t)xa(x2 — 2) dz

< f (J(z, h(z1 — 2z, 8))u’ (21 — 2,1)
—J(z, h(zz — 2, 0))u (23 — 2,1)) xa (21 — 2)xa(2s — 2)dz (A.5.4)
+ f ) [T (2, h(z1 — 2, t))uP (21 — 2, t)xa(z1 — 2)(1 — xalz2 — 2))| dy (A.5.5)
+ J ) [T (2, Mz — 2, t))u’ (22 — 2, 1) (1 — xa(z1 — 2))xa (22 — 2)| d2. (A.5.6)

We can estimate (A.5.4) analogously to (A.5.3). To estimate (A.5.5) we define for z;, x5 € Q

the sets

Seias 1= {zeR":xl—zeﬁ,mg—zgéﬁ},
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Goyoy ={2€R" 12y — 2 € Q, dist (z1 — 2,00Q) < |21 — 22} .

Let z € Sy z,- Then, a := 71—z € Qand 19—z = wy—x1+a ¢ Q. Assume dist (v1 — z,0Q) >
|x1 —x2]. Consequently, m c Qand a+z5—x; € Q which leads to a contradiction.
Hence, Syy 2, € Guyzy and |Sy, 0| < |Gayas| < Kag(2)|21 — 22| holds for sufficiently smooth
09). Then, we can estimate

|(A55)| = U J(z, h(z1 — 2, )P (21 — 2,t) dz

r1E2

<l oeoy | L@ =2 0]+ 17 0] dz

L D)
1

< [l o,y AL IR0 o 0.y} (I (8) + 1T ¢ 0) o)) |G| 7

p=1
< Kaolzr —x2| 7.

We can estimate (A.5.6|) analogously. Putting this together with the estimates of the other
terms, we conclude J(-, h) * u? € C*%(Q x [0,T]) for k := min{, pTTl}.

O
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