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Abstract

Experimental evidence suggests that cells can perceive signals not only at their actual location

but also within a large neighborhood compared to the cell size. These biochemical and bio-

physical cues influence the migration, proliferation, and differentiation of cells. In this work,

we examine four nonlocal models describing the movement of cell populations. These models

are represented by reaction-diffusion(-advection) equations containing nonlocal spatial integral

terms that describe the influence of the surroundings on the development of the cell population.

Our focus is on the mathematical analysis of these models. Numerical simulations are performed

to illustrate the solution behavior.

First, we consider two models, in which the gradient in the advection term of the respective

local model is replaced by a nonlocal integral. For the first adhesion or nonlocal chemotaxis

model, we show convergence of the weak solution to the weak solution of the corresponding local

haptotaxis or chemotaxis model, respectively, as the sensing radius decreases. Then, we show

the existence of a very weak solution for the second cell-cell-adhesion model with degenerated

myopic diffusion.

Furthermore, we consider two models with a nonlocality in the reaction term. Specifically, for

a model for cancer invasion with myopic diffusion, repellent pH-taxis, and nonlocal intraspecific

interaction, we show the global existence of a bounded unique weak solution and visualize its

behavior with numerical simulations. Additionally, we perform a 1D pattern analysis. Finally, we

show the global existence of a bounded weak solution for a model with two nonlocal interaction

terms and perform numerical simulations.





Zusammenfassung

Experimente haben nachgewiesen, dass Zellen Signale nicht nur an ihrer Position empfangen

können, sondern innerhalb eines im Vergleich zur Zellgröße großen Wahrnehmungsradius. Diese

biochemischen und biophysischen Signale beeinflussen die Bewegung, Proliferation und Differen-

zierung von Zellen. In dieser Arbeit betrachten wir vier nichtlokale Modelle, die die Bewegung von

Zellpopulationen beschreiben. Die Nichtlokalität wird mittels eines nichtlokalen Raumintegrals

modelliert, das in verschiedenen Termen der betrachteten Reaktions-Diffusions-(Advektions-)

Gleichungen enthalten ist. Der Fokus liegt dabei auf der mathematischen Analyse dieser Mod-

elle. Auch numerische Simulationen werden durchgeführt, um das Verhalten der Lösung zu

veranschaulichen.

Wir betrachten zwei Modelle, in denen der Gradient im Advektionsterm durch ein nichtlokales

Integral ersetzt wird. Zuerst zeigen wir die Konvergenz der schwachen Lösung eines Mod-

ells, das Adhesion oder nichtlokale Chemotaxis beschreibt, gegen die schwache Lösung des

jeweils entsprechenden lokalen Haptoxis- oder Chemotaxismodells für einen verschwindenden

Wahrnehmungsradius. Anschließend zeigen wir die Existenz einer sehr schwachen Lösung eines

Modells für Zell-Zell-Adhesion mit degenerierter myopischer Diffusion.

Darüber hinaus betrachten wir zwei Modelle mit Nichtlokalität im Reaktionsterm. Wir zeigen

die globale Existenz einer eindeutigen beschränkten Lösung eines Modells für Krebsinvasion mit

myopischer Diffusion, abstoßender pH-Taxis und einem nichtlokalen innerartlichen Interaktion-

sterm und eines Modells mit zwei nichtlokalen Interaktionstermen. Das Verhalten der jeweiligen

Lösung wird mithilfe von numerischen Simulationen veranschaulicht. Darüber hinaus analysieren

wir für eines der Modelle das Auftreten von Mustern in 1D.





Contents

1 Introduction 1

2 Preliminaries 7

2.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Convolutions on bounded domains . . . . . . . . . . . . . . . . . . . . . . . . . . 13

I Nonlocal models with nonlocality in the advection term 15

3 Nonlocal and local models for taxis in cell migration: a rigorous limit pro-

cedure 17

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Operators Ar and ∇̊r and averages of ∇ . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Properties of the averaging operators Tr and Sr . . . . . . . . . . . . . . . 23

3.3 Well-posedness for a class of evolution equations involving Tr or Sr . . . . . . . . 28

3.4 Nonlocal models involving averaging operators Tr and Sr . . . . . . . . . . . . . 31

3.4.1 Problem setting and main result of the section . . . . . . . . . . . . . . . 32

3.4.2 Global existence of solutions to (3.4.1): the case of fc Lipschitz . . . . . . 35

3.4.3 Global existence of solutions to (3.4.1): the case of fc dissipative . . . . . 46

3.4.4 Limiting behaviour of the nonlocal model (3.4.1) as r Ñ 0 . . . . . . . . . 49

3.5 Numerical simulations in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Comparison of nonlocal operator representations . . . . . . . . . . . . . . 51

3.5.2 Comparison between nonlocal and local formulation . . . . . . . . . . . . 54

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Global existence of solutions to a nonlocal equation with degenerate anisotropic

diffusion 61

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 The adhesion operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 A lemma about sets of “sufficiently small” dimension . . . . . . . . . . . . 63

4.3 Problem setting and main result . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Approximate problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Construction of a regular matrix family pDεq . . . . . . . . . . . . . . . . 67

4.4.2 Existence of a global classical solution to the approximate problem . . . . 70

4.5 Existence of a very weak solution to the original problem . . . . . . . . . . . . . 74

4.6 Smooth very weak solutions are classical . . . . . . . . . . . . . . . . . . . . . . . 79



II Nonlocal models with nonlocality in the reaction term 83

5 On a mathematical model for cancer invasion with repellent pH-taxis and

nonlocal intraspecific interaction 85

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Mathematical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Local existence in an approximate problem . . . . . . . . . . . . . . . . . 93

5.3.2 Global existence and boundedness of u in the approximate problem . . . 99

5.3.3 Global existence and boundedness in the original problem . . . . . . . . . 104

5.4 Long time behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Pattern formation: a 1D study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.1 Stability in the local model without diffusion and taxis . . . . . . . . . . . 110

5.5.2 Stability in the local model with diffusion and taxis . . . . . . . . . . . . 111

5.5.3 Stability in the nonlocal model . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 On a PDE-ODE-PDE model for two interacting cell populations under the

influence of an acidic environment and with nonlocal intra- and interspecific

growth limitation 119

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Global existence of a classical solution to an approximate problem . . . . . . . . 122

6.4 Existence of a weak solution to the original problem . . . . . . . . . . . . . . . . 133

6.5 1D Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7 Summary and outlook 147

A Additional Theorems 153

Bibliography 168

Academic curriculum vitae 181

Akademischer Lebenslauf 181



List of Figures

3.1 Comparison between nonlocal formulations (3.1.1) and (3.4.1). . . . . . . . . . . 52

3.2 Comparison between nonlocal formulations (3.1.1) and (3.4.1) near boundaries

and between the two forms of nonlocal operator. . . . . . . . . . . . . . . . . . . 53

3.3 Convergence between nonlocal and local/classical formulations under negligible

cell-cell adhesion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Time restricted convergence under moderate cell-cell adhesion. . . . . . . . . . . 56

3.5 Convergence between nonlocal and local/classical formulations under a set of min-

imalistic linear functional forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Simulation results for (5.5.1) with β � µ � 1. . . . . . . . . . . . . . . . . . . . . 115

5.2 Simulation results for (5.5.1) with β � 20 and µ � 100. . . . . . . . . . . . . . . . 116

5.3 Simulation results for (5.5.1) with local source term µphquαp1� uβq replacing the

one in the equation for u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1 Initial conditions u0, w0, h0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Simulation results of model (6.2.1) with J1 and J2 logistic kernels . . . . . . . . . 140

6.3 Simulation results of model (6.2.1) with J1 and J2 uniform kernels . . . . . . . . 141

6.4 Simulations of models (6.2.1) and (6.5.3) with α � 2, µ1 � 1, β � 1 and γ � 1000

or γ � 1, β � 10, 100, 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5 Simulations of model (6.5.3) without w . . . . . . . . . . . . . . . . . . . . . . . . 143

6.6 Simulations of model (6.2.1) with h-dependent kernels J1 and J2 . . . . . . . . . 144





List of Tables

6.1 Minimal value α� for which the solution ceases to exist for β � γ � µ1 � 1

depending on the kernels J1 and J2. . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Minimal value α� for which the solution ceases to exist, depending on parameters

β, γ, µ1 for logistic kernels J1 and J2. . . . . . . . . . . . . . . . . . . . . . . . . . 141





CHAPTER 1

Introduction

In this dissertation, we investigate nonlocal models in cell migration. In recent decades these

models have attracted increasing interest, see the review [28]. They reflect the ability of cells to

receive environmental signals within a sensing region surrounding their current position. These

signals can impact multiple processes, including cell migration. The nonlocal approach is sug-

gested by experimental evidence and appears more realistic, as cells are surrounded by other

cells and tissue. In certain contexts, the reduced consideration of these effects by local models

could be oversimplifying and can lead to analytical and modeling problems. While there are

many studies of local models, nonlocal models have been considered far less often, especially

from an analytical point of view. However, the nonlocal models provide a biologically plausible

description of certain processes involved in cell migration and, as we discuss later, can avoid in

certain situations analytical problems of local models, such as finite-time blow-up of the solution.

The orientation of directional migration of cells is largely influenced by the extracellular environ-

ment and primarily determined by protrusions (e.g., filopodia, lamellipodia) which are outward

extensions of the cell membrane. Cells respond to external diffusible and non-diffusible signals

by extending protrusions in the direction of movement [86]. The main functions of protrusions

include sampling the cell’s environment and establishing initial dynamic adhesions to the ex-

tracellular matrix (ECM) or other cells within a sensing region that can be large compared to

the cell size [1, 71, 90, 130]. Furthermore, protrusions are involved in the communication of

cells over long distances, thereby transmitting signals [17, 57, 87]. The information obtained

via protrusions influences the subsequent behavior of the cell, e.g., the choice of the following

direction of migration [1, 122]. In areas with hard borders, such as bones, cartilage, or the walls

of a Petri dish, cells receive hardly any information from outside, as the ability of cells to stretch

their protrusions outwards is limited there [28].

After sampling their environment cells form cell-matrix or cell-cell adhesions to move [35, 86,

152]. The adhesion of cells to the ECM is facilitated by the attachment of specific cell receptors

(e.g., integrins) to tissue fibers [38, 152]. Besides, cells adhere to other cells by binding specific

cell adhesion molecules (cadherins) on the cell surface [96], which also enables the formation of

cell clusters. This process is essential in organizing cells into tissue, organs, and organisms [5, 66].

The strength and number of bindings depend on chemical signals [68]. Both adhesion structures

are often dynamic to allow cells to react to changes in environmental cues [34]. In addition to

their role in cell movement, they are essential for embryonic development, homeostasis, immune

responses, wound healing, and cell sorting [5, 34, 152]. Hence, nonlocal models align with many
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biological observations and empirically collected data [97].

Apart from this, nonlocal models can solve mathematical inconsistencies present in some lo-

cal models, such as a finite-time blow-up that is unrealistic from a biological point of view. For

example, in [79], the authors show that the considered nonlocal model has a bounded global solu-

tion, while a finite-time blow-up occurs in the corresponding local model. Thereby, the solutions

of the nonlocal models have increasingly larger peaks in numerical simulations for diminishing

sensing regions. It is assumed that the behavior of nonlocal models with a parameter whose

reduction leads to a vanishing sensing region can be approximated by the corresponding local

model [68, 79]. Related local and nonlocal models include chemotaxis, which refers to migration

in response to differences in the concentration of a soluble signal, and nonlocal chemotaxis, which

takes into account that migrating cells can detect this signal within a sensing region. Besides,

haptotaxis referring to the migration of cells in response to different concentrations of a bound

signal is the local counterpart to cell-matrix (and cell-cell) adhesion. Nonlocal and local models

can also exhibit different behavior in other contexts, e.g., in the occurrence of Turing patterns

[111]. Continuous local models are often incompatible with biological effects such as sorting,

while nonlocal models can replicate this effect [5].

Typically, nonlocal models include a spatial integral that increases the regularity of the equation;

however, nonlocalities can also be introduced with respect to other variables (e.g., time, speed).

Nevertheless, these models are mathematically challenging, as comparison principles to show the

biologically important boundedness of solutions do not hold for this type of equation. Further

challenges arise if the nonlocal equation is coupled with other differential equations, especially

if the involved equations have a different type. A numerical simulation of the integral terms is

numerically costly and requires efficient numerical methods to deal with them. Additionally, a

unifying analytical framework that could deal with different kinds of nonlocal terms could be

advantageous. Up to our knowledge, no such framework exists, as the analysis strongly depends

on the specific form of the nonlocality.

Moreover, spatially nonlocal (and local) models describing the migration of a cell population u

are usually of reaction-diffusion-advection (RDA) type, i.e., of the form

ut � ∇ � pD∇uqlooooomooooon
diffusion

�∇ � pvuqlooomooon
advection

� fpuqloomoon
reaction

,

possibly coupled with further dynamics. Here, D denotes the diffusion coefficient, v the advec-

tion velocity, and fpuq a reaction function. Most nonlocal models consider RDA-equations with

nonlocality in the advection term describing cell-cell or cell-matrix adhesion or nonlocal chemo-

taxis. Examples of such adhesion models can be found in [5, 21, 23, 68, 80, 156] and for nonlocal

chemotaxis in [21, 79]. The solvability of models with nonlocal advection term was studied in [45,

46, 56, 79, 80, 82, 128]. Moreover, there are few studies on the existence and long-time behavior

of solutions to local models including potentially degenerating myopic diffusion and taxis. Most

studies feature haptotaxis and consider only the one-dimensional case [77, 149–151].

Less studied models contain nonlocalities in the source term. This term impacts cell movement

indirectly since the evolving cell density leads to modified density-dependent coefficients. Possible

applications are competition for resources, differentiation, proliferation, and growth; see [28, 99]

and references therein. Examples of the modeling and analysis of this kind of problems can

be found in [12–14, 99, 103, 104, 113, 136] but even for comparatively easy settings there are
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no complete results involving existence, boundedness, pattern formation, numerical simulations,

etc. of solutions. We refer to [28, 51, 87] for more detailed reviews on these and other types of

nonlocal models.

In the present work, we examine four nonlocal models with no-flux boundary conditions in

bounded domains and describing the movement of cell populations. The nonlocality is modeled

via a density-dependent spatial integral included in the advection (Chapters 3 and 4) or reaction

term (Chapters 5 and 6) of a reaction-diffusion(-advection) equation. Our focus is on the mathe-

matical analysis of the models. Additionally we perform a 1D pattern analysis in Chapter 5 and

numerical simulations in Chapters 3, 5, and 6 to visualize the results.

The convergence of the nonlocal operators to the local gradient presented in Chapter 3 was

shown heuristically via Taylor expansion in [68, 81]. In [79], the question of convergence of

nonlocal models to its local counterpart was raised. However, up to our knowledge, a rigorous

proof of convergence has not been established before. Moreover, the combination of myopic

diffusion and adhesion has not been analyzed so far. Therefore, our existence proof for a solution

to the degenerated PDE in Chapter 4 significantly contributes to this new field. Notably, our

assumptions regarding the degeneracy set seem new in the context of degenerated diffusion.

Furthermore, the existence proof and the analysis of the long-time behavior and pattern formation

of solutions to the model in Chapter 5 contribute to the rarely studied field of models that feature

nonlocality in the source term and models involving myopic diffusion and advection. There, we

add to the existing literature the analysis of a PDE-PDE-system, one of the PDEs combining

myopic diffusion and advection with a nonlocality in the source term. Also, considering a PDE

with (two) nonlocalities in the source term coupled with an ODE from Chapter 6 is novel.

Outline

The first part of this thesis deals with nonlocal models with nonlocality in the advection term

describing cell-cell or cell-matrix adhesion or nonlocal chemotaxis. Thereby, we consider models

with adhesion velocity of the form

Arupxq � 1

r
-

»
Br

upx� ξq ξ|ξ|Frp|ξ|q dξ,

where u denotes some interaction function taking into account cell-cell and cell-matrix interac-

tions and depends on the cell and tissue density. The magnitude of the interaction force Fr

depends on the distance within the sensing region Br, where r is called sensing radius. In the

case of nonlocal chemotaxis, we consider a similar integral (over a sphere), where the interaction

function depends on the concentration of some dissolved chemical signal.

This part consists of two chapters:

� Chapter 3 considers a PDE-ODE-system describing adhesion and a PDE-PDE-system for

nonlocal chemotaxis including the aforementioned operators. The adhesion model is related

to its local counterpart characterizing haptotaxis by replacing the gradient of the cell-cell

and cell-matrix interaction function u by Aru. Similarly, we relate nonlocal chemotaxis

to chemotaxis. We show the existence of a global weak-strong solution to each of the

nonlocal models and link it via a limit procedure for a diminishing sensing radius to the
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weak solution of the corresponding local model. Our proof relies on a reformulation of the

involved nonlocal operator as an integral operator that is applied directly to the gradient

of the interaction function. Both types of models are treated in a unified framework.

Numerical simulations in 1D are cited for completeness reasons. This chapter is largely

based on [47].

� Chapter 4 shows the existence of a global very weak solution to a nonlocal reaction-diffusion-

advection equation including degenerated myopic diffusion, cell-cell adhesion, and a gen-

eralized logistic-type growth term in dimensions n ¥ 3. Thereby, the degeneracy set is

sufficiently low-dimensional (in terms of upper box fractal dimension) and has a positive

distance to the boundary of the domain. We deal with the nonlocal operator upon rewriting

it to a convolution with a bounded function. The corresponding equation without growth

term was derived in [156]. Besides its biological foundation, we included the growth term

to deal with analytical challenges arising especially from the degeneracy of the diffusion

tensor. This chapter is largely based on [50].

The second part of this dissertation deals with models involving nonlocality in the reaction term.

The nonlocal terms are of the form

uαp1� J1 � uβ � J2 � wγqpxq � uαpxq
�

1�
»
Ω

J1px� yquβpyq dy �
»
Ω

J2px� yqwγpyq dy



with J1 ¡ 0 and J2 ¥ 0, where u and w denote the density of two cell populations. Such

terms describe intra- and interspecific competition between cells for available resources in their

surrounding, e.g., to prevent overcrowding. The assumption of strict positivity of J1 and the

integration over the whole domain indicate that the sensing region of a cell corresponds to the

whole domain independent from its position.

This part consists of two chapters:

� Chapter 5 shows the existence of a unique global bounded weak solution to a PDE-PDE-

model for tumor cell migration with myopic diffusion, repellent pH-taxis, and a nonlocal

source term of the above form. Moreover, we analyze the asymptotic behavior of the solu-

tion. In 1D we perform a pattern analysis for constant diffusion and numerical simulations

to illustrate the behavior of the solution. The model deduction based on a mesoscopic

description of cell migration with a kinetic transport equation is included for complete-

ness. Our results extend [99], where a Fischer-KPP-equation with nonlocal intraspecific

competition (but in an unbounded domain) was examined. This chapter is largely based

on [49].

� In Chapter 6 we prove the existence of a global bounded weak solution to a PDE-ODE-

PDE-system describing the dynamics of active and inactive cells and a repellent signal. It

has two nonlocalities in an equation, one of them depending on another cell population.

Moreover, both nonlocalities depend on the signal produced by both cell populations. Also

numerical simulations are performed. This chapter is largely based on [48].

The dissertation is structured as follows. Chapter 2 contains the mathematical preliminaries of

this work and introduces the relevant function spaces, convolutions in bounded domains, and

notation. The notation may differ slightly from chapter to chapter, as this work consists of
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four independently considered models. Chapters 3–6 begin each with a motivation, in which the

biological context and the underlying literature of the concrete model are mentioned. Finally,

Chapter 7 provides a brief summary of this work along with some perspectives.
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CHAPTER 2

Preliminaries

In this chapter, we introduce the notation and recall mostly without proof some facts concerning

matrices, the relevant function spaces and convolutions in bounded domains. More details on

these topics can be found e.g., in [20, 58, 84, 94]. Relevant results on different types of differential

equations, fixed-point theorems, convergence theorems and functional analysis and the proofs of

some lemmas from this chapter can be found in Appendix A.

Notation:

� Throughout this work we consider a bounded domain Ω � Rn, n P N, with sufficiently

smooth boundary BΩ and outer unit normal ν.

� For r ¡ 0 we introduce the subdomain Ωr :� tx P Ω : distpx, BΩq ¡ ru of Ω.

� For a function u : Ω Ñ R we assume, by convention, that u � 0 on RnzΩ. This allows for

an obvious meaning to be given to the convolution u � v for any u P L1pΩq and v P L1pRnq.
This extends componentwise to any vector-/matrix-valued function u.

� We denote by ei, i P N, the ith canonical vector in Rn and by In P Rn�n the identity

matrix.

� By | � | and | � |8 we denote the Euclidean and infinity norms in Rn, respectively, and by

|A| the Lebesgue measure of a set A.

� For x P Rn, n ¥ 2 we denote x � px1, xnq, where x1 P Rn�1 and xn P R.

� For A,B � Rn, a P Rn, and s ¡ 0 we use the set notations

A�B :� tx� y : x P A, y P Bu,
a�B :� B � a :� tau �B,

OspAq :� tx P Rn : distpx,Aq   su.

� By Br and Sr, r ¡ 0, we denote the open r-ball and the r-sphere in Rn, both centred at

the origin, and define the mean values of a function u over Br and Sr, respectively, as

-

»
Br

upξq dξ :� 1

|Br|
»
Br

upξq dξ,

-

»
Sr

upξq dξ :� 1

|Sr|
»
Sr

upξq dσpξq,
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where σp�q denotes the surface measure corresponding to the Lebesgue measure on Rn.

� For all indices i P N, the quantities Ci,Ki, εi denote a positive constant or, alternatively, a

positive function of its arguments. The constants Ci and εi are numbered chapter by chap-

ter, while Ki denotes the constants from Appendix A. Dependencies upon such parameters

as the space dimension n, domain Ω, the norms of the initial data, norms and bounds for

the coefficient functions and parameters are mostly not indicated in an explicit way.

2.1 Matrices

In this section we summarize some definitions and properties of matrices.

Definition 2.1.1. Let P � ppijqi,j�1,...,n, Q � pqijqi,j�1,...,n P Rn�n. We define the following

norms and inner product:

� the spectral norm |P |2 :� |P | :� max|x|�1 |Px| �
a
λmaxpPTP q, where λmax denotes the

maximal eigenvalue of a matrix,

� |P |8 :� max|x|8�1 |Px|8 � maxi�1,...,n

°n
j�1 |pij |,

� the Frobenius inner product

P : Q �
ņ

i,j�1

pijqij .

If not states otherwise we will use the | � |2-norm for matrices.

These norms obviously satisfy the following lemma.

Lemma 2.1.2. (i) The norms | � |2 and | � |8 are equivalent on Rn�n.

(ii) Let P � ppijqi,j�1,...,n P Rn�n. Then, |pij | ¤ |P |2 for all i, j � 1, . . . , n.

Further, we recall some facts on orthogonal matrices.

Lemma 2.1.3. Consider an orthogonal matrix O P Rn�n, i.e., satisfying OOT � OTO � In.

Then, |Ox| � |x| for all x P Rn and |detpOq| � 1.

Moreover, we introduce the following two definitions on matrix functions (see Definition 2.2.1

for the definition of the involved spaces).

Definition 2.1.4. For a matrix function D � pdijqi,j�1,...,n P CpΩ;Rn�nq we write D ¡ c if

yTDpxqy ¡ c for all x P Ω and y P Rn (analogously for ¥,  , ¤). Further, for D ¥ 0 we define

the set

tD £ 0u :� tx P Ω : Dy P Rn s.t. yTDpxqy � 0u.

Definition 2.1.5. For a matrix function D � pdijqi,j�1,...,n P CpΩ;Rn�nq and a function u P
C2pΩq we define
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� the divergence

∇ � Dpxq �
ņ

i,j�1

pdijqxj pxqei

� and the myopic diffusion

∇∇ : pDpxquq � ∇ � pDpxq∇u�∇ � Dpxquq.

2.2 Function spaces

In this section we recall the definitions of certain spaces of continuous functions and Lebesgue

and Sobolev spaces in x and t and some of their properties.

First, we define several spaces of continuous and Hölder continuous functions.

Definition 2.2.1. Let k P N, j P N Y t8u, l,m P N0 Y t8u, T ¡ 0, S � Rk nonempty and

compact, I � R a nonempty interval and X a normed vector space with norm } � }X . We define

the spaces

� CpS;Xq of continuous functions u : S Ñ X,

� CjpS;Xq of j-times continuously differentiable functions u : S Ñ X,

� Cl,mpS � I;Xq of functions u : S � I Ñ X that are l-times continuously differentiable in

x P S and m-times continuously differentiable in t P I,

� Cj
c pSq of functions from CjpS;Rq with compact support,

� CbpSq of functions from CpS;Rq that are bounded,

� Cwpr0, T s;Xq of functions u : r0, T s Ñ X which are continuous w.r.t. the weak topology of

X.

If X � R we leave out the dependence on R in the notation of the space. If S is closed and

j   8, we define the norms

}u}CpS;Xq :� max
xPS

}upxq}X ,

}u}CjpS;Xq :�
¸
|α|¤j

}Dαu}X .

Definition 2.2.2. Let ϑ P p0, 1s, k P N0 and T ¡ 0. We define the seminorms

xuyϑΩ :� sup
x,yPΩ,x�y

|upxq � upyq|
|x� y|ϑ ,

xuyϑx,Ω�r0,T s :� sup
px,tq,py,tqPΩ�r0,T s,x�y

|upx, tq � upy, tq|
|x� y|ϑ ,

xuyϑt,Ω�r0,T s :� sup
px,tq,px,sqPΩ�r0,T s,t�s

|upx, tq � upx, sq|
|t� s|ϑ .

and the following Hölder spaces
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� Ck�ϑpΩq as the space of functions u P CkpΩq with finite norm

||u||Ck�ϑpΩq :�
¸
|α|¤k

||Dαu||CpΩq �
¸
|α|�k

xDαuyϑΩ ,

� Ck�ϑpΩq as the space

Ck�ϑpΩq :�  
u : Ω Ñ R : u

��
K
P Ck�ϑpKq @K � Ω compact

(
. (2.2.1)

� Cϑ,ϑ2
�
Ω� r0, T s� as the space of functions u P C �

Ω� r0, T s� that are ϑ-Hölder continuous

in x and ϑ
2 -Hölder continuous in t, i.e., with finite norm

||u||
Cϑ, ϑ

2 pΩ�r0,T sq :� ||u}CpΩ�r0,T sq � xuyϑx,Ω�r0,T s � xuyϑ
2

t,Ω�r0,T s ,

� C1�ϑ, 1�ϑ
2 pΩ� r0, T sq as the space of functions u P C1,0pΩ� r0, T sq with finite norm

||u||
C1�ϑ, 1�ϑ

2 pΩ�r0,T sq :� ||u}CpΩ�r0,T sq � xuy
1�ϑ
2

t,Ω�r0,T s

�
ņ

i�1

�
||uxi

}CpΩ�r0,T sq � xuxi
yϑx,Ω�r0,T s � xuxi

yϑ
2

t,Ω�r0,T s

	
,

� C2�ϑ,1�ϑ
2 pΩ� r0, T sq as the space of functions u P C2,1

�
Ω� r0, T s� with finite norm

||u||
C2�ϑ,1�ϑ

2 pΩ�r0,T sq

:�||u}CpΩ�r0,T sq � ||ut}CpΩ�r0,T sq � xutyϑx,Ω�r0,T s � xuty
ϑ
2

t,Ω�r0,T s

�
ņ

i�1

�
||uxi}CpΩ�r0,T sq � xuxi

y
1�ϑ
2

t,Ω�r0,T s

	
�

ņ

i,j�1

�
||uxixj }CpΩ�r0,T sq �

@
uxixj

Dϑ
x,Ω�r0,T s �

@
uxixj

Dϑ
2

t,Ω�r0,T s

	
.

� For k � 0, 1, 2 we define Ck�ϑ, k�ϑ
2 pΩ � p0, T qq and Ck�ϑ, k�ϑ

2 pΩ � p0, T qq analogously to

(2.2.1).

The lemmas below will be proved in the appendix.

Lemma 2.2.3. Let ϑ, κ P p0, 1q, u P CϑpΩq and v P CκpΩq. Then,

(i) uv P Cmintϑ,κupΩq,

(ii) if u ¥ 0 then ur P CϑrpΩq if r P p0, 1q,

(iii) if u ¥ 0 then ur P CϑpΩq if r ¡ 1,

(iv) 1
u P CϑpΩq if u � 0 in Ω.

Next, we define Lebesgue and Sobolev spaces and introduce dual pairings.

Definition 2.2.4. Let p P r1,8s. We define LppΩq as the space of functions u : Ω Ñ R with

finite norm

}u}LppΩq :�
$&%

�³
Ω
|u|p dx� 1

p , if p P r1,8q,
ess supxPΩ |u|, if p � 8.
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Further, we define pLppΩqqn and pLppΩqqn�n, respectively, as the space of vector-valued functions

f : Ω Ñ Rn or matrix-valued functions D : Ω Ñ Rn�n with finite norms

}f}pLppΩqqn :� }|f |}LppΩq,

}D}pLppΩqqn�n :� }|D|2}LppΩq,

and for T ¡ 0 and a Banach space X with norm } � }X we define the Bochner space Lpp0, T ;Xq
as the space of functions g : p0, T q Ñ X with finite norm

}g}Lpp0,T ;Xq :�
$&%

�³T
0
}gptq}pX dt

	 1
p

, if p P r1,8q,
ess suptPp0,T q }gptq}X , if p � 8.

Definition 2.2.5. Let X a Banach space with dual space X�. We denote the duality pairing of

x P X and x� P X� as

⟨x�, x⟩X�,X :� x�pxq P R.

A sequence pxkqkPN � X converges weakly to x P X in X if

⟨x�, xk⟩X�,X Ñ
kÑ8

⟨x�, x⟩X�,X

for all x� P X�. We denote this by xk á
kÑ8

x.

A sequence px�kqkPN � X� converges weakly-* to x� P X� in X� if

⟨x�k , x⟩X�,X Ñ
kÑ8

⟨x�, x⟩X�,X

for all x P X. We denote this by x�k
�á

kÑ8
x�.

Definition 2.2.6. Let k P N and p P r1,8s. The Sobolev space W k
p pΩq is given by

W k
p pΩq :� tu P LppΩq : the weak derivative Dαu exists for all α P Nn

0 s.t. |α| ¤ k

and Dαu P LppΩqu

with norm

||u||Wk
p pΩq :�

¸
|α|¤k

||Dαu||LppΩq.

Moreover, we set

�
W k

p pΩq :�
!
u PW k

p pΩq : Dpumqm � C8
c pΩq s.t. um Ñ

mÑ8 u in W k
p pΩq

)
with dual space

W�k
q pΩq :�

� �
W k

p pΩq

�

for q P r1,8s s.t. 1
p � 1

q � 1.

For p � 2 we set HkpΩq :�W k
2 pΩq, Hk

0 pΩq :�
�
W k

2 pΩq and H�1 :� pH1
0 pΩqq�.
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Further, we define the spaces

W 1,1
p pΩ� p0, T qq :� tu P LppΩ� p0, T qq : uxi

, ut P LppΩ� p0, T qq @i P t1, . . . , nuu
W 2,1

p pΩ� p0, T qq :� tu P LppΩ� p0, T qq : uxi
, uxixj

, ut P LppΩ� p0, T qq
@i, j P t1, . . . , nuu

with norm

||u||W 1,1
p pΩ�p0,T qq :�||u||LppΩ�p0,T qq � ||ut||LppΩ�p0,T qq �

ņ

i�1

||uxi ||LppΩ�p0,T qq,

||u||W 2,1
p pΩ�p0,T qq :�||u||LppΩ�p0,T qq � ||ut||LppΩ�p0,T qq �

ņ

i�1

||uxi ||LppΩ�p0,T qq

�
ņ

i,j�1

||uxixj
||LppΩ�p0,T qq.

We define continuous and compact embeddings and state some embeddings concerning Sobolev

spaces.

Definition 2.2.7. Let X,Y be Banach spaces s.t. X � Y . We say that X is continuously

embedded in Y (denoted by X ãÑ Y ) if there is a constant C1 ¡ 0 s.t. for all u P X the estimate

||u||Y ¤ C1||u||X holds. A continuous embedding is called compact (denoted by X ãÑãÑ Y ) if

each bounded sequence pumqmPN � X has a subsequence that converges in Y .

Lemma 2.2.8. (i) The space H1pΩq is continuously embedded in LppΩq, where p P r1,8s if
n � 1, p P r1,8q if n � 2 and p P r1, 2n

n�2 s if n ¡ 2. For such p there is a constant

KSppq ¡ 0 s.t. for all u P H1pΩq it holds that

}u}LppΩq ¤ KSppq}u}H1pΩq.

(ii) If p ¡ n then W 1
p pΩq is continuously embedded in CϑpΩq (up to the choice of a continuous

version) for ϑ �
Y
n
p

]
� 1� n

p .

(iii) If p ¡ n then W 2
p pΩq ãÑ C1pΩq and u � 0 and ∇u � 0 on BΩ for u P

�
W 2

p pΩq.

(iv) For p P p1,8q the compact embedding W 1
p pΩq ãÑãÑ LppΩq holds.

Proof. For (i) and (ii) see Theorem 6 in Section 5.6 in [58] and for (iv) see the remark at the

end of Section 5.7 in [58].

If p ¡ n by Theorem 6 in Section 5.6 in [58] the space
�
W 2

p pΩq is continuously embedded in

C1pΩq. By definition, for u P
�
W 2

p pΩq there is a sequence pumqm P C8
c pΩq that converges to u in

the W 2
p -norm. Due to the continuous embedding pumqm also converges in the C1-norm. Hence,

u � 0 and ∇u � 0 on BΩ.

Lemma 2.2.9. Let ϑ, κ P p0, 1q, T P p0, 1q and KIpϑq ¡ 0 denote the constant from the contin-

uous embedding of W 1
8pΩq into CϑpΩq from Lemma 2.2.8(ii).

(i) If u P C1�ϑ, 1�ϑ
2 pΩ� r0, T sq, then it holds that

}u� up�, 0q}
Cϑ, ϑ

2 pΩ�r0,T sq ¤ maxt1,KIpϑquT ϑ
2 }u}

C1�ϑ, 1�ϑ
2 pΩ�r0,T sq. (2.2.2)
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(ii) If u P C2�ϑ,1�ϑ
2 pΩ� r0, T sq, then it holds that

}u� up�, 0q}
C1�ϑ, 1�ϑ

2 pΩ�r0,T sq ¤ 2 maxt1,KIpϑquT 1
2 mintϑ,1�ϑu}u}

C2�ϑ,1�ϑ
2 pΩ�r0,T sq.

(2.2.3)

(iii) If u P C2�κ,1�κ
2 pΩ� r0, T sq, then it holds that

}u� up�, 0q}
Cϑ, ϑ

2 pΩ�r0,T sq ¤ 2 maxt1,KIpϑquT 1
2 mint2�ϑ,1�κu}u}

C2�κ,1�κ
2 pΩ�r0,T sq. (2.2.4)

2.3 Convolutions on bounded domains

In this section we will consider convolutions on bounded domains Ω. The definition is obtained

from the definition of a convolution over Rn using our convention that a function defined on a

domain Ω is zero outside.

Definition 2.3.1. Let p, q P r1,8s s.t. 1
p � 1

q � 1 and u P LqpΩq. Set S :� tx � y : x, y P Ωu
and consider J P LppSq. For x P Ω we define the convolution over the bounded domain Ω as

pJ � uq pxq �
»
Ω

Jpx� yqupyq dy.

For a function h P L8pΩq and an h-dependent kernel Jp�, hq that satisfies Jp�, 0q P LppSq and is

Lipschitz continuous in the second argument with Lipschitz constant L P LppSq the convolution

is defined as

pJp�, hq � uq pxq :�
»
Ω

Jpx� y, hpyqqupyq dy. (2.3.1)

for x P Ω. For vector- or matrix-valued kernels J or functions u the convolution is defined

componentwise.

The following lemma will be proved in the appendix.

Lemma 2.3.2. Let T ¡ 0, ϑ P p0, 1q, p P p1,8q, β ¥ 1, S :� tx� y : x, y P Ωu, Jpx, hq a kernel

that satisfies Jp�, 0q P LppSq and is Lipschitz continuous in the second argument with Lipschitz

constant L P LppSq.

(i) If u, h P L8pΩ� p0, T qq then, Jp�, hq � uβ P L8pΩ� p0, T qq and satisfies

}Jp�, hq � uβ}L8pΩ�p0,T qq ¤ }u}βL8pΩ�p0,T qq
�}L}L1pSq}h}L8pΩ�p0,T qq � }Jpx, 0q}L1pSq

�
.

(ii) If u, h P Cϑ,ϑ2 pΩ� r0, T sq and u ¥ 0 then, for κ :� mintϑ, p�1
p u it holds that Jp�, hq � uβ P

Cκ,κ2 pΩ� r0, T sq.

If J is independent from h this holds setting Jpx, hq :� Jpxq for x P S and h � 0 in the above

estimate.

Definition 2.3.3. We define the standard mollifier ς P C8pRnq as

ςpxq :�
$&%C2e

1
|x|2�1 if |x|   1,

0 if |x| ¥ 1,

where C2 ¡ 0 is chosen s.t.
³
Rn ς dx � 1. For ε ¡ 0 we set ςεpxq :� 1

εn ς
�
x
ε

�
with supppςεq � Bε

and
³
Bε
ςε dx � 1.
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Lemma 2.3.4. ([58, Appendix C, Theorem 6(i) + (iii)]) Let u P L1
locpΩq. Then, ςε�u P C8pΩεq.

If u P CpΩq, then ςε � uÑ u for εÑ 0 uniformly on compact subsets of Ω.



Part I

Nonlocal models with nonlocality

in the advection term





CHAPTER 3

Nonlocal and local models for taxis in cell migration: a

rigorous limit procedure

This chapter was first published in Volume 81 of Journal of Mathematical Biology in 2020.1 The

presentation has been adapted for use in this dissertation to clarify the details of the proofs and

guarantee consistency of the notation.

3.1 Motivation

Macroscopic equations and systems describing the evolution of populations in response to soluble

and insoluble environmental cues have been intensively studied and the palette of such reaction-

diffusion-taxis models is continuously expanding. Models of such form are motivated by problems

arising in various contexts, a large part related to cell migration and proliferation connected to

tumor invasion, embryonal development, wound healing, biofilm formation, insect behavior in

response to chemical cues, etc. We refer, e.g., to [9] for a recent review also containing some

deduction methods for taxis equations based on kinetic transport equations.

Apart from such purely local PDE systems with taxis, several spatially nonlocal models have

been introduced over the last two decades and are attracting ever increasing interest. They

involve integro-differential operators in one or several terms of the featured reaction-diffusion-

advection equations. Their aim is to characterize interactions between individuals or signal

perception happening not only at a specific location, but over a whole set (usually a ball) con-

taining (centered at) that location. In the context of cell populations, for instance, this seems

to be a more realistic modeling assumption, as cells are able to extend various protrusions (such

as lamellipodia, filopodia, cytonemes, etc.) into their surroundings, which can reach across long

distances compared against cell size, see [71, 130] and references therein. Moreover, the cells

are able to relay signals they perceive and thus transmit them to cells with which they are not

in direct contact, thereby influencing their motility, see e.g., [57, 65]. Cell-cell and cell-tissue

adhesion are essential for mutual communication, homeostasis, migration, proliferation, sorting,

and many other biological processes. A large variety of models for adhesive behavior at the

cellular level have been developed to account for the dynamics of focal contacts, e.g., [6, 7, 146]

and to assess their influence on cytoskeleton restructuring and cell migration, e.g., [40, 41, 93,

1[47] The paper is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
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143]. Continuous, spatially nonlocal models involving adhesion were introduced more recently

[5] and are attracting increasing interest from the modeling [16, 21, 23, 43, 68, 69, 109, 118],

analytical [26, 45, 46, 80, 132], and numerical [67] viewpoints. Yet more recent models [44, 56]

also take into account subcellular level dynamics, thus involving further nonlocalities (besides

adhesion), with respect to some structure variable referring to individual cell state. Thereby,

multiscale mathematical settings are obtained, which lead to challenging problems for analysis

and numerics. Another essential aspect of cell migration is the directional bias in response to

a diffusing signal, commonly termed chemotaxis. A model of cell migration with finite sensing

radius, thus featuring nonlocal chemotaxis has been introduced in [117] and readdressed in [79]

from the perspective of well-posedness, long time behaviour, and patterning. We also refer to

[105] for further spatially nonlocal models and their formal deduction.

For adhesion and nonlocal chemotaxis models, a gradient of some nondiffusing or diffusing signal

is replaced by a nonlocal integral term. Here we are only interested in this type of model, and refer

to [28, 51, 87] for reviews on settings involving other types of nonlocality. Specifically, following

[5, 68, 79, 117], we consider the subsequent systems, whose precise mathematical formulations

will be specified further below:

1. a prototypical nonlocal model for adhesion

Btcr � ∇ � pDcpcr, vrq∇cr � crχpcr, vrqArpgpcr, vrqqq � fcpcr, vrq, (3.1.1a)

Btvr � fvpcr, vrq, (3.1.1b)

where

Arupxq :� 1

r
-

»
Br

upx� ξq ξ|ξ|Frp|ξ|q dξ (3.1.2)

is referred to as the adhesion velocity, and the function Fr describes how the magnitude of

the interaction force depends on the interaction range |ξ| within the sensing radius r. We

require this function to satisfy

Assumptions 3.1.1. (Assumptions on Fr)

(a) pr, ρq ÞÑ Frpρq is continuous and positive in r0, r0s2 for some r0 ¡ 0;

(b) F0p0q � n� 1. 2

The quantity

Fpcr, vrq � crχpcr, vrqArpgpcr, vrqq
is often referred to as the total adhesion flux, possibly scaled by some constant involving

the typical cell size or the sensing radius, see e.g., [5, 21]. Here we also include a coefficient

χpcr, vrq that depends on cell and tissue (extracellular matrix, ECM) densities, which can be

seen as characterizing the sensitivity of cells towards their neighbours and the surrounding

tissue. It will, moreover, help provide in a rather general framework a unified presentation

of this and the subsequent local and nonlocal model classes for adhesion, haptotactic, and

chemotactic behavior of moving cells.

2In Section 3.2 we will see that this is, indeed, the ’right’ normalisation. If we assume, as in [5], that this

function is a constant involving some viscosity related proportionality, then this choice provides the value of that

constant.
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System (3.1.1) is a simplification of the integro-differential system (4) in [68]. The main

difference between the two settings is that in our case we ignore the so-called matrix-

degrading enzymes (MDEs). Instead, we assume cells directly degrade the tissue: this fairly

standard simplification (e.g., [118]) effectively assumes that proteolytic enzymes remain

localised to the cells, and helps simplify the analysis. On the other hand, (3.1.1) can also

be viewed as a nonlocal version of the haptotaxis model with nonlinear diffusion:

Btc � ∇ � pDcpc, vq∇c� cχpc, vq∇gpc, vqq � fcpc, vq, (3.1.3a)

Btv � fvpc, vq; (3.1.3b)

2. a prototypical nonlocal chemotaxis-growth model

Btcr �∇ �
�
Dcpcr, vrq∇cr � crχpcr, vrq∇̊rvr

	
� fcpcr, vrq, (3.1.4a)

Btvr �Dv∆vr � fvpcr, vrq (3.1.4b)

with the nonlocal gradient

∇̊rupxq :� n

r2
-

»
Sr

upx� ξqξ dσpξq � n

r
-

»
Sr

upx� ξq ξ|ξ| dσpξq. (3.1.5)

System (3.1.4) can be seen as a nonlocal version of the chemotaxis-growth model

Btc �∇ � pDcpc, vq∇c� cχpc, vq∇vq � fcpc, vq, (3.1.6a)

Btv �Dv∆v � fvpc, vq, (3.1.6b)

where χpc, vq is the chemotactic sensitivity function. As mentioned above, in order to have

a unified description of our systems (3.1.3) and (3.1.6) and of their respective nonlocal

counterparts (3.1.1) and (3.1.4), we later introduce a more general version of the nonlocal

chemotaxis flux, similar to the above adhesion velocity Ar.

The nonlocal systems (3.1.3) and (3.1.6) are stated for

t ¡ 0, x P Ω � Rn.

Unless the spatial domain Ω is the whole Rn, suitable boundary conditions are required. In the

latter case, usually periodicity is assumed, which is not biologically realistic in general. Still, this

offers the easiest way to properly define the output of the nonlocal operator in the boundary

layer where the sensing region is not fully contained in Ω. Very recently various other boundary

conditions have been derived and compared in the context of a single equation modeling cell-cell

adhesion in 1D [82].

Few previous works focus on solvability for models with nonlocality in a taxis term. Some of

them deal with single equations that only involve cell-cell adhesion [45, 46, 82], others study

nonlocal systems of the sort considered here for two [79] or more components [56]. The global

solvability and boundedness study in [80] is obtained for the case of a nonlocal operator with

integration over a set of sampling directions being an open, not necessarily strict subset of Rn.

The systems studied there include settings with a third equation for the dynamics of diffusing

MDEs. Conditions which secure uniform boundedness of solutions to such cell-cell and cell-tissue

adhesion models in 1D were elaborated in [132].
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Some heuristic analysis via local Taylor expansions was performed in [68] and [81] showing that

as r Ñ 0 the outputs Aru and ∇̊ru, respectively, converge pointwise to ∇u for a fixed and

sufficiently smooth u. In [79] it was observed that it would be interesting to study rigorously

the limiting behaviour of solutions of the nonlocal problems involving ∇̊ru. The authors ask

in which sense, if at all, do these solutions converge to solutions of the corresponding local

problem as r Ñ 0. Numerical results appeared to confirm that, in certain cases, the answer is

positive. Still, to the best of our knowledge, no rigorous analytical study of this issue has as

yet been performed. Clearly, any approach based on representations using Taylor polynomials

requires a rather high order regularity of solution components and a suitable control on the

approximation errors, and that uniformly in r. This is difficult or even impossible to obtain

in most cases, particularly when dealing with weak solutions. In this chapter we propose a

different approach based on the representation of the input u in terms of an integral of ∇u over

line segments. This leads to a new description of the nonlocal operators Ar and ∇̊r in terms

of nonlocal operators applied to gradients (see Section 3.2 below). Moreover, it turns out that

redefining their outputs inside the vanishing boundary layer in a suitable way allows one to

perform a rigorous proof of convergence: Under suitable assumptions on the system coefficients

and other parameters, appropriately defined sequences of solutions to nonlocal problems involving

the mentioned modified nonlocal operators converge for r Ñ 0 to those of the corresponding local

models (3.1.3) and (3.1.6), respectively. Our convergence proof is based on estimates on cr and

vr which are uniform in r and on a compactness argument. The two models (3.1.1) and (3.1.4)

are chosen as illustrations, however our idea can be further applied to other integro-differential

systems with similar properties.

The rest of the chapter is organised as follows. In Section 3.2 we introduce the aforementioned

adaptations of the nonlocal operators Ar and ∇̊r and study their limiting properties as r becomes

infinitesimally small. This turns out to be useful for our convergence proof later. We also establish

in Section 3.3 the well-posedness for a certain class of equations including such operators. In

the subsequent Section 3.4 we introduce a couple of nonlocal models that involve the previously

considered averaging operators, prove the global existence of solutions of the respective systems,

and investigate their limit behaviour as r Ñ 0. Section 3.5 provides some numerical simulations

comparing various nonlocal and local models considered in this work in the 1D case. Finally,

Section 3.6 contains a discussion of the results and a short outlook on open issues.

3.2 Operators Ar and ∇̊r and averages of ∇

In this section we study the applications of the nonlocal operators Ar and ∇̊r to fixed, i.e.,

independent of r, functions u. Our focus is on the limiting behaviour as r Ñ 0. Formal Taylor

expansions performed in [68, 79] anticipate that the limit is the gradient operator in both cases.

This we prove here rigorously under rather mild regularity assumptions on u. To be more

precise, we replace Ar and ∇̊r by certain integral operators Tr and Sr (see (3.2.2) and (3.2.7)

below) applied to ∇u and show that these operators are pointwise approximations of the identity

operator in the Lp spaces.

Recall that Ω � Rn is a bounded domain with smooth enough boundary. Unless explicitly stated,

the constants Ci in this chapter do not depend upon r.
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We start with the operator Ar. For r P p0, r0s, u P C1pΩq, and x P Ωr we compute using the

mean value and Fubini’s theorem that

Arupxq �1

r
-

»
Br

upx� ξq ξ|ξ|Frp|ξ|q dξ

�1

r
-

»
Br

pupx� ξq � upxqq ξ|ξ|Frp|ξ|q dξ

�1

r
-

»
Br

» 1

0

p∇upx� sξq � ξq ds
ξ

|ξ|Frp|ξ|qdξ

�1

r

» 1

0

-

»
Br

p∇upx� sξq � ξq ξ|ξ|Frp|ξ|q dξ ds

�
» 1

0

-

»
B1

p∇upx� rsyq � yq y|y|Frpr|y|qdy ds. (3.2.1)

Formula (3.2.1) extends to arbitrary u PW 1
1 pΩq by means of a density argument. Motivated by

(3.2.1) we introduce the averaging operator

Trwpxq :�
» 1

0

-

»
B1

pwpx� rsyq � yq y|y|Frpr|y|q dy ds. (3.2.2)

In Subsection 3.2.1 we check that Trwpxq is well-defined for all w P pL1pΩqqn and a.e. x P Ω. In

this notation, for all r P p0, r0s and u PW 1
1 pΩq identity (3.2.1) takes the form

Aru � Trp∇uq a.e. in Ωr.

In the limiting case r � 0 we have for x P Ω that

T0wpxq �
» 1

0

-

»
B1

pwpxq � yq y|y|F0p0q dy ds,

�F0p0q
ņ

i,j�1

wipxqej -

»
B1

yiyj
|y| dy

�F0p0q
ņ

i,j�1

wipxqejδij -

»
B1

y2i
|y| dy

�F0p0q
ņ

i�1

wipxqei -

»
B1

y2i
|y| dy

�F0p0q
ņ

i�1

wipxqei 1

n
-

»
B1

|y|2
|y| dy

�F0p0q 1

n
-

»
B1

|y|dy wpxq

�wpxq. (3.2.3)

In the final step we used Assumptions 3.1.1(b) which says that F0p0q � n� 1 (this explains our

choice) and the trivial identity

-

»
B1

|y|dy � n

n� 1
. (3.2.4)

Thus, we have just proved the following lemma:

Lemma 3.2.1. (Adhesion velocity vs. Tr) Let u PW 1
1 pΩq. Then for r P p0, r0s it holds that

Aru � Trp∇uq a.e. in Ωr. (3.2.5)
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Moreover, if F0p0q � n� 1, then

∇u � T0p∇uq a.e. in Ω. (3.2.6)

In a very similar manner one can establish a representation for ∇̊r. For this purpose we define

for r P p0, r0s the averaging operator

Srwpxq :�n
» 1

0

-

»
S1

pwpx� rsyq � yqy dσpyq ds. (3.2.7)

The corresponding result then reads:

Lemma 3.2.2. (Nonlocal gradient vs. Sr) Let u PW 1
1 pΩq. Then for r P p0, r0s it holds that

∇̊ru �Srp∇uq a.e. in Ωr, (3.2.8)

∇u �S0p∇uq a.e. in Ω. (3.2.9)

The proof of Lemma 3.2.2 is very similar to that of Lemma 3.2.1 and we omit it here.

Next, we observe that identity (3.2.5) was established for Ωr. In the boundary layer ΩzΩr the

definition (3.1.2) of the adhesion velocity allows various extensions. For example, one could keep

(3.1.2) by assuming (as done here and, e.g., in [56]) that u :� 0 in RnzΩ. An alternative would

be to average over the part of the r-ball that lies inside the domain. Let us have a closer look at

the first option (the second can be handled similarly). Consider the following example:

Example 3.2.3. (Ar vs. Trp∇�q in 1D) Let Ω � p�1, 1q, r0 � 1, Fr � 2, and u � 1. In this

case, u1 � 0, hence

Trpu1q � 0 � u1.

For Ar one readily computes by assuming u � 0 in Rzp�1, 1q that for x P p�1, 1q

Arupxq �2

r

1

2r

»
p�1�x,1�xqXp�r,rq

signpξq dξ

�

$'''&'''%
1
r2 p�1� r � xq in r�1,�1� rs,
0 in p�1� r, 1� rq � Ωr,

1
r2 p1� r � xq in r1� r, 1s,

so that

}Aru}L1p�1,1q �}Aru}L1pΩzΩrq

� 1

r2

» �1�r

�1

|�1� r � x| dx� 1

r2

» 1

1�r

|1� r � x| dx

�1,

although

|ΩzΩr| � 2r Ñ
rÑ0

0.

Thus,

Aru Ñ
rÑ0

0 � u1

in the measure but not in L1pΩq.
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Example 3.2.3 supports our idea to average ∇u instead of u itself. The same applies to ∇̊ru vs.

Srp∇uq.
Averaging w.r.t. y P B1 and then also w.r.t. s P p0, 1q might appear superfluous in the definition

of the operator Tr. The following example compares the effect of Tr with that of an operator

which averages w.r.t. to y only.

Example 3.2.4. Let Ω � Rn, n ¥ 2, and r ¡ 0, Fr � n� 1. In this case

Trwpxq :� pn� 1q
» 1

0

-

»
B1

pwpx� rsyq � yq y|y| dy ds.

Consider also the operator

rTrwpxq :� pn� 1q -

»
B1

pwpx� ryq � yq y|y| dy.

It is easy to see that both operators are well-defined, linear, continuous, and self-adjoint in the

space pL2pRnqqn (see Lemma 3.2.5 below). Moreover, they map the dense subspace CcpRn;Rnq
into itself. This suggests the following natural extension to pCcpRn;Rnqq�:

⟨Trµ, φ⟩pCcpRn;Rnqq�,CcpRn;Rnq :� ⟨µ, Trφ⟩pCcpRn;Rnqq�,CcpRn;Rnq ,〈rTrµ, φ〉pCcpRn;Rnqq�,CcpRn;Rnq
:�

〈
µ, rTrφ〉pCcpRn;Rnqq�,CcpRn;Rnq

.

Let, for instance,

w :� δ0e1,

where δ0 means the usual Dirac delta. One readily computes that

rTrpδ0e1qpxq � n� 1

|Br| χBr
pxqx1

r

x

|x| ,

whereas

Trpδ0e1qpxq �n� 1

|Br|
» 1

0

s�n�1χBrs
pxq ds

x1
r

x

|x|

�n� 1

n|Br|
��

r

|x|

n

� 1



�

x1
r

x

|x| .

For n ¥ 2, the operator Tr retains the singularity at the origin, however making it less concen-

trated, while rTr eliminates that singularity entirely and produces instead jump discontinuities

all over Sr.

3.2.1 Properties of the averaging operators Tr and Sr

In this section we collect some properties of the averaging operators Tr and Sr.

Lemma 3.2.5. (Properties of Tr) Let Fr satisfy Assumptions 3.1.1 and let r P p0, r0s. Then:

(i) Tr is a well-defined continuous linear operator in pLppΩqqn for all p P r1,8s. The corre-

sponding operator norm satisfies

}Tr}LppLppΩqqnq ¤ C1pr, pq, (3.2.10)
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where

C1pr, pq :�

$''&''%
�
n

1³
0

ρn�1�p�pFrprρqqp� dρ


 1
p�

for p P p1,8s, p� � p
p�1 ,

max
ρPr0,1s

ρFrprρq for p � 1.

(ii) Let p, p� P r1,8s be such that p� � p
p�1 . For all w1 P pLppΩqqn and w2 P

�
Lp�pΩq

	n

it

holds: »
Ω

pTrw1pxq � w2pxqq dx �
»
Ω

pw1pxq � Trw2pxqq dx. (3.2.11)

(iii) Let p P r1,8q. For all w P pLppΩqqn it holds that

Trw Ñ
rÑ0

T0w � w in pLppΩqqn. (3.2.12)

(iv) For p � 2 it holds that

}Tr}LppL2pΩqqnq Ñ
rÑ0

1. (3.2.13)

Remark 3.2.6. Due to the assumptions on Fr we have in the limit that

C1pr, pq Ñ
rÑ0

C2ppq :�
$&% pn� 1q

�
n

n�p�

	 1
p�

for p P p1,8s, p� � p
p�1 ,

n� 1 for p � 1.
(3.2.14)

Proof of Lemma 3.2.5. (i) Since w is measurable and ρ ÞÑ Frpρq, px, s, yq ÞÑ x� rsy, py, zq ÞÑ
pz � yq y

|y| are continuous, we have that

px, y, sq ÞÑ pwpx� rsyq � yq y|y|Frpr|y|q

is well-defined a.e. in Ω�B1 � p0, 1q and is measurable. Let p P p1,8q and p� � p
p�1 . We

compute

-

»
B1

p|y|Frpr|y|qqp
�

dy � 1

|B1|
» 1

0

ρn�1�p�pFrprρqqp
�

dρ � 2π
n�1¹
k�2

» π

0

sinpϕn�kqk�1 dϕn�k

� n

1»
0

ρn�1�p�pFrprρqqp
�

dρ

using spherical coordinates and the properties of the Gamma function. With the help of

this equality, Hölder’s inequality, Fubini’s theorem, and our convention that w vanishes

outside Ω, we deduce for all w P pLppΩqqn that

}Trw}ppLppΩqqn

�
»
Ω

����» 1

0

-

»
B1

pwpx� rsyq � yq y|y|Frpr|y|qdy ds

����p dx

¤
»
Ω

» 1

0

-

»
B1

|wpx� rsyq|p dy

�
-

»
B1

p|y|Frpr|y|qqp
�

dy


 p

p�
dsdx

�Cp
1 pr, pq

» 1

0

-

»
B1

»
Ω

|wpx� rsyq|p dxdy ds,
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¤Cp
1 pr, pq

» 1

0

-

»
B1

»
Ω

|wpzq|p dz dy ds

�Cp
1 pr, pq}w}ppLppΩqqn .

This implies that for all p P p1,8q the operator Tr is well-defined in pLppΩqqn. It is also

clearly linear. Taken together we then have that Tr P LppLppΩqqnq and (3.2.10) holds. The

cases p � 1 and p � 8 can be treated similarly.

(ii) Let w1 P pLppΩqqn and w2 P
�
Lp�pΩq

	n

. We compute by using Fubini’s theorem, the

symmetry of B1, and simple variable transformations that»
Ω

pTrw1pxq � w2pxqq dx

�
»
Ω

» 1

0

-

»
B1

pw1px� rsyq � yq y|y|Frpr|y|q dy ds � w2pxq dx

�
» 1

0

-

»
B1

|y|Frpr|y|q

�
»
Ω

�
w1px� rsyq � y|y|


�
w2pxq � y|y|



dx dy ds

�
» 1

0

-

»
B1

|y|Frpr|y|q

�
»
ΩXp�rsy�Ωq

�
w1px� rsyq � y|y|


�
w2pxq � y|y|



dx dy ds (3.2.15)

�
» 1

0

-

»
B1

|y|Frpr|y|q

�
»
prsy�ΩqXΩ

�
w1pzq � y|y|


�
w2pz � rsyq � y|y|



dz dy ds

�
» 1

0

-

»
B1

|y|Frpr|y|q

�
»
p�rsy�ΩqXΩ

�
w1pzq � y|y|


�
w2pz � rsyq � y|y|



dz dy ds. (3.2.16)

Thereby we used our convention that each function defined in Ω is assumed to be prolonged

by zero outside Ω. Comparing (3.2.15) and (3.2.16) we obtain (3.2.11).

(iii) We apply the Banach-Steinhaus theorem. Due to (i) and (3.2.14), tTrurPp0,r0s is a family

of uniformly bounded linear operators in the Banach space pLppΩqqn. Thus, as CcpΩ;Rnq
is dense in pLppΩqqn for p   8, we only need to check (3.2.12) for w P CcpΩ;Rnq. But for

such w we can directly pass to the limit under the integral and thus obtain using (3.2.3)

and the dominated convergence theorem that

Trw Ñ
rÑ0

T0w � w for all x P Ω and in pLppΩqqn.

(iv) Here we make use of the Fourier transform, which we denote by the hat symbol. A straight-

forward calculation using Fubini’s theorem and a variable transformation shows that for

w P pLppΩqqn and ξ P Rn it holds that

yTrwpξq � 1

p2πqn
2

»
Rn

Trwpxqe�ix�ξ dx
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� 1

p2πqn
2

»
Rn

» 1

0

-

»
B1

pwpx� rsyq � yq y|y|Frpr|y|q dy ds e�ix�ξ dx

� 1

p2πqn
2

»
Rn

» 1

0

-

»
B1

pwpzq � yq y|y|Frpr|y|qdy ds e�ipz�rsyq�ξ dz

� 1

p2πqn
2

» 1

0

-

»
B1

�»
Rn

wpzqe�iz�ξ dz



� y y|y|Frpr|y|qeirsy�ξ dy ds

� Φrpξq pwpξq,
where

Φrpξq :�
» 1

0

-

»
B1

yyT

|y| Frpr|y|qeirsy�ξ dy ds. (3.2.17)

Combining (3.2.17) with the Plancherel theorem and using our convention that w vanishes

outside Ω, we can estimate as follows:

}Tr}LppL2pΩqqnq � sup
}w}pL2pΩqqn�1

}Trw}pL2pΩqqn

¤ sup
}w}pL2pΩqqn�1

}yTrw}pL2pRnqqn

¤}Φr}pL8pRnqqn sup
}w}pL2pΩqqn�1

} pw}pL2pRnqqn

�}Φr}pL8pRnqqn sup
}w}pL2pΩqqn�1

}w}pL2pΩqqn

�}Φr}pL8pRnqqn . (3.2.18)

Further, consider an arbitrary orthogonal matrix O P Rn�n and ξ P Rn. With a variable

transformation using the properties of orthogonal matrices from Lemma 2.1.3 we observe

that

ΦrpOξq �
» 1

0

-

»
B1

yyT

|y| Frpr|y|qeirsy
TOξ dy ds

� O

» 1

0

-

»
B1

OT ypOT yqT
|OT y| Frpr|OT y|qeirspOT yqT ξ dy dsOT

� OΦrpξqOT . (3.2.19)

Consequently, we construct an orthogonal matrix O out of an orthonormal basis containing
ξ
|ξ| in order for Oξ � |ξ|e1 to hold and obtain that

|Φrpξq|2 � |Φrp|ξ|e1q|2 for all ξ P Rn. (3.2.20)

Since

Φrp|ξ|e1q �
» 1

0

-

»
B1

yyT

|y| Frpr|y|qeirs|ξ|y1 dy ds (3.2.21)

is a diagonal matrix, its spectral norm is given by the spectral radius (see Definition 2.1.1).

Estimating the right-hand side of (3.2.21) we then conclude that

|Φrp|ξ|e1q|2 ¤ -

»
B1

y21
|y|Frpr|y|q dy � 1

n
-

»
B1

|y|Frpr|y|q dy Ñ
rÑ0

1 for all ξ P Rn (3.2.22)
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due to F0p0q � n� 1 and (3.2.4). Combining (3.2.18), (3.2.20), and (3.2.22) we arrive at

lim sup
rÑ0

}Tr}LppL2pΩqqnq ¤ 1. (3.2.23)

Finally, the pointwise convergence (3.2.12) and the Banach-Steinhaus theorem imply that

lim inf
rÑ0

}Tr}LppL2pΩqqnq ¥ 1,

concluding the proof.

A similar result holds for Sr:

Lemma 3.2.7. (Operator Sr) Let r P p0, r0s. Then:

(i) Sr is a well-defined continuous linear operator in pLppΩqqn for all p P r1,8s. The corre-

sponding operator norm satisfies

}Sr}LppLppΩqqnq ¤ n. (3.2.24)

(ii) Let p, p� P r1,8s be such that p� � p
p�1 . For all w1 P pLppΩqqn and w2 P

�
Lp�pΩq

	n

it

holds: »
Ω

pSrw1pxq � w2pxqq dx �
»
Ω

pw1pxq � Srw2pxqq dx.

(iii) Let p P r1,8q. For all w P pLppΩqqn it holds that

Srw Ñ
rÑ0

S0w � w in pLppΩqqn.

(iv) For p � 2 it holds that

}Sr}LppL2pΩqqnq Ñ
rÑ0

1.

Proof. The proof almost repeats that of Lemma 3.2.5. Therefore, we only check (3.2.24) and

omit further details. Let p P r1,8q and p� � p
p�1 . Using Hölder’s inequality, Fubini’s theorem,

and our convention that w vanishes outside Ω we deduce for all w P pLppΩqqn that

}Srw}ppLppΩqqn �np
»
Ω

����» 1

0

-

»
S1

pwpx� rsyq � yqy dσpyqds

����p dx

¤np
»
Ω

» 1

0

-

»
S1

|wpx� rsyq|p dσpyqdsdx

�np
» 1

0

-

»
S1

»
Ω

|wpx� rsyq|p dxdσpyqds,

¤np
» 1

0

-

»
S1

»
Ω

|wpzq|p dz dσpyq ds

�np}w}ppLppΩqqn ,

which means that

}Sr}LppLppΩqqnq ¤ n. (3.2.25)
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The proof in the case p � 8 follows the same steps, or, alternatively, one passes to the limit as

pÑ8 in (3.2.25).

Remark 3.2.8. The constants in (3.2.10) for any n ¥ 1 and in (3.2.24) for n ¥ 2 are not

necessarily optimal. For p � 2 it remains open whether or not

lim inf
rÑ0

}Tr}LppLppΩqqnq � 1,

lim inf
rÑ0

}Sr}LppLppΩqqnq � 1.

The answer may depend upon Ω and p.

3.3 Well-posedness for a class of evolution equations in-

volving Tr or Sr

In this section we establish the existence and uniqueness of solutions to a certain class of single

evolution equations involving Tr or Sr. This result is an important ingredient for our analysis of

nonlocal systems in Section 3.4. Thus, we consider the following initial boundary value problem:

Btcr � ∇ � pa1∇cr � a2GεpRrpa3∇crqqq � f in Ω� p0, T q, (3.3.1a)

pa1∇cr � a2GεpRrpa3∇crqqq � ν � 0 on BΩ� p0, T q, (3.3.1b)

crp�, 0q � c0 in Ω (3.3.1c)

for T P p0,8q. Here

Rr P tTr,Sru,
and for ε ¥ 0 we set

Gε : Rn Ñ Rn, x ÞÑ x

1� ε|x| . (3.3.2)

The following lemma shows that Gε is globally Lipschitz.

Lemma 3.3.1. The function Gε is globally Lipschitz continuous with Lipschitz constant 1 for

ε ¥ 0 .

Proof. Let i P t1, . . . , nu. For fixed xj P R, j P t1, . . . , nuztiu we set fipxiq :� xi

1�ε|x| � Gipxq.
We can estimate the derivative

|Bxi
fi| �

|1� ε|x| � ε
x2
i

|x| |
p1� ε|x|q2 ¤ 1

1� ε|x| ¤ 1.

The one-dimensional mean value theorem implies that for fixed x, y P Rn it holds that

|Gipxq �Gipyq| � |fipxiq � fipyiq| ¤ }Bxi
fi}L8pRq|xi � yi| ¤ |xi � yi|.

Consequently,

|Gpxq �Gpyq|2 �
ņ

i�1

|fipxiq � fipyiq|2 ¤
ņ

i�1

|xi � yi|2 � |x� y|2.
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Remark 3.3.2. Observe that for ε � 0 equation (3.3.1a) is linear, whereas for ε ¡ 0 the nonlocal

part of the flux is a priori bounded. The latter helps us to construct nonnegative solutions in

Section 3.4.

We make the following assumptions:

a1, a2, a3 P L8pΩ� p0, T qq, (3.3.3)

a1 ¡ 0 and a�1
1 P L8pΩ� p0, T qq, (3.3.4)���a� 1

2
1 a2

���
L8pΩ�p0,T qq

���a� 1
2

1 a3

���
L8pΩ�p0,T qq

}Rr}LppL2pΩqqnq   1, (3.3.5)

f P L2p0, T ; pH1pΩqq�q, (3.3.6)

c0 P L2pΩq. (3.3.7)

To shorten the notation, we introduce a pair of constants

αr :�}a�1
1 }�1

L8pΩ�p0,T qq

�
1�

���a� 1
2

1 a2

���
L8pΩ�p0,T qq

���a� 1
2

1 a3

���
L8pΩ�p0,T qq

}Rr}LppL2pΩqqnq



,

Mr :�}a1}L8pΩ�p0,T qq � }a2}L8pΩ�p0,T qq}a3}L8pΩ�p0,T qq }Rr}LppL2pΩqqnq . (3.3.8)

Due to assumptions (3.3.3)–(3.3.5) it is clear that

0  αr,Mr  8.

We introduce a family of operators

⟨Mpt, uq, φ⟩pH1pΩqq�,H1pΩq :�
»
Ω

a1p�, tq∇u �∇φdx�
»
Ω

a2p�, tqGεpRrpa3p�, tq∇uqq �∇φdx,

⟨Mpuq, φ⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq :�
» T

0

⟨Mpt, uq, φptq⟩pH1pΩqq�,H1pΩq dt.

Lemma 3.3.3. Let (3.3.3)–(3.3.5) be satisfied. Then:

(i) For a.e. t P r0, T s the operator

Mpt, �q : H1pΩq Ñ pH1pΩqq�

is well-defined, monotone, hemicontinuous, and satisfies the bounds

⟨Mpt, uq, u⟩pH1pΩqq�,H1pΩq ¥ αr||∇u||2pL2pΩqqn , (3.3.9)

||Mpt, uq||pH1pΩqq� ¤Mr||∇u||pL2pΩqqn (3.3.10)

for all u P H1pΩq. Moreover, for all u P H1pΩq the function Mp�, uq : r0, T s Ñ pH1pΩqq�
is measurable.

(ii) The operator

M : L2p0, T ;H1pΩqq Ñ L2p0, T ; pH1pΩqq�q

is well-defined, monotone, hemicontinuous, and satisfies the bounds

⟨Mpuq, u⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq ¥ αr||∇u||2L2p0,T ;pL2pΩqqnq,

||Mpuq||L2p0,T ;pH1pΩqq�q ¤Mr||∇u||L2p0,T ;pL2pΩqqnq

for all u P L2p0, T ;H1pΩqq.
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Proof. The assumptions on the coefficients ai together with the Lipschitz continuity of Gε readily

imply that for a.e. t P r0, T s the operator Mpt, �q is well-defined and satisfies (3.3.10). Moreover,

due to (3.3.3) and Gε Lipschitz, it is also clear that Mp�, uq : r0, T s Ñ pH1pΩqq� is measurable

on r0, T s for all u P H1pΩq, whereas for a.e. t the mapping λ ÞÑ ⟨Mpt, u� λvq, w⟩pH1pΩqq�,H1pΩq
is continuous on R for all u, v, w P H1pΩq, the latter meaning that Mpt, �q is hemicontinuous.

Using Hölder’s inequality, the facts that Gε is Lipschitz with Lipschitz constant 1 and Gεp0q � 0,

the assumptions on the ai’s, and the properties of Rr, we compute that

⟨Mpt, uq �Mpt, vq, u� v⟩pH1pΩqq�,H1pΩq

�
»
Ω

∇pu� vq � a1p�, tq∇pu� vqdx

�
»
Ω

pGεpRrpa3p�, tq∇uqq �GεpRrpa3p�, tq∇vqqq � a2p�, tq∇pu� vq dx

¥
���a 1

2
1 ∇pu� vq

���2
pL2pΩqqn

�
»
Ω

���Rr

�
a
� 1

2
1 a3p�, tq

�
a

1
2
1 ∇pu� vq

		��� ���a� 1
2

1 a2p�, tq
�
a

1
2
1 ∇pu� vq

	��� dx

¥
�

1�
���a� 1

2
1 a2

���
L8pΩ�p0,T qq

���a� 1
2

1 a3

���
L8pΩ�p0,T qq

}Rr}LppL2pΩqqnq


���a 1
2
1 ∇pu� vq

���2
pL2pΩqqn

¥αr }∇pu� vq}2pL2pΩqqn ¥ 0 (3.3.11)

for u, v P H1pΩq, which proves monotonicity. Further, taking v � 0 in (3.3.11) and using

Mpt, 0q � 0 yields (3.3.9). Part (i) is thus proved. A proof of (ii) can be done similarly; we omit

further details.

Using the properties of the averaging operators proved in Subsection 3.2.1 we can define weak

solutions to (3.3.1) in a manner very similar to that for the classical, purely local case (i.e., when

a2 � 0):

Definition 3.3.4. Let (3.3.3)-(3.3.7) hold. We call the function cr : Ω � r0, T s Ñ R a weak

solution of (3.3.1) if:

(i) cr P L2p0, T ;H1pΩqq X Cpr0, T s;L2pΩqq, Btcr P L2p0, T ; pH1pΩqq�q;

(ii) cr satisfies (3.3.1a)-(3.3.1b) in the following sense: for all φ P H1pΩq and a.e. t P p0, T q

⟨Btcr, φ⟩pH1pΩqq�,H1pΩq ��
»
Ω

a1∇cr �∇φ dx

�
»
Ω

a2GεpRrpa3∇crqq �∇φ dx� ⟨f, φ⟩pH1pΩqq�,H1pΩq ; (3.3.12)

(iii) crp�, 0q � c0 in L2pΩq.

Using standard theory one readily proves the following existence result:

Lemma 3.3.5. Let (3.3.3)-(3.3.7) hold. Then there exists a unique weak solution to (3.3.1) in

terms of Definition 3.3.4. The solution satisfies the following estimates:

}cr}2Cpr0,T s;L2pΩqq � αr}∇cr}2L2p0,T ;pL2pΩqqnq ¤ C3pαr, T q
�
}c0}2L2pΩq � }f}2L2p0,T ;pH1pΩqq�q

	
,

(3.3.13)



3.4. NONLOCAL MODELS INVOLVING AVERAGING OPERATORS Tr AND Sr 31

}Btcr}2L2p0,T ;pH1pΩqq�q ¤ C4pαr,Mr, T q
�
}c0}2L2pΩq � }f}2L2p0,T ;pH1pΩqq�q

	
.

(3.3.14)

Proof. The existence of a unique weak solution to (3.3.1) is a direct consequence of Lemma 3.3.3(i)

and the standard theory of evolution equations with monotone operators, see Theorem A.1.17.

It remains to check the bounds (3.3.13) and (3.3.14). Taking φ :� cr in the weak formulation

(3.3.12) and using Lemma A.3.8, (3.3.9), and the Young inequality, we obtain that

1

2

d

dt
}cr}2L2pΩq ¤� αr}∇cr}2pL2pΩqqn � }cr}H1pΩq}f}pH1pΩqq�

�� αr}cr}2H1pΩq � αr}cr}2L2pΩq � }cr}H1pΩq}f}pH1pΩqq�

¤� 1

2
αr}cr}2H1pΩq � αr}cr}2L2pΩq �

1

2
α�1
r }f}2pH1pΩqq� ,

which yields (3.3.13) due to Gronwall’s inequality. Finally, using (3.3.10), we obtain from the

weak formulation (3.3.12) that

}Btcr}pH1pΩqq� ¤Mr}∇cr}pL2pΩqqn � }f}pH1pΩqq�

and consequently,

}Btcr}2L2p0,T ;pH1pΩqq�q ¤2M2
r }∇cr}2L2p0,T ;pL2pΩqqnq � 2}f}2L2p0,T ;pH1pΩqq�q.

Together with (3.3.13) this implies (3.3.14).

3.4 Nonlocal models involving averaging operators Tr and

Sr

In this section we study the following model IBVP:

Btcr � ∇ � pDcpcr, vrq∇cr � crχpcr, vrqRrp∇gpcr, vrqqq � fcpcr, vrq in Ω� p0,8q, (3.4.1a)

Btvr � Dv∆vr � fvpcr, vrq in Ω� p0,8q, (3.4.1b)

Dcpcr, vrqBνcr � crχpcr, vrqRrp∇gpcr, vrqq � ν � DvBνvr � 0 on BΩ� p0,8q, (3.4.1c)

crp�, 0q � c0, vrp�, 0q � v0 in Ω. (3.4.1d)

Here, as in the previous section, Rr stands for any of the two averaging operators:

Rr P tTr,Sru.

We assume that the diffusion coefficient Dv is either a positive number, or it is zero.

Equations (3.4.1a)-(3.4.1b) are closely related to (3.1.1) and (3.1.4) in Section 3.1, the difference

being that the terms involving the adhesion velocity/nonlocal gradient are now replaced by those

including the averaging operators Tr/Sr from Section 3.2. Our motivation for introducing this

change is twofold. First of all, due to (3.2.5) and (3.2.8) it affects the points in the boundary

layer ΩzΩr, at the most. On the other hand, Example 3.2.3 indicates that including, e.g., Ar

can lead to limits with unexpected blow-ups on the boundary of Ω.

System (3.4.1) is a nonlocal version of the hapto-/chemotaxis system
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Btc � ∇ � pDcpc, vq∇c� cχpc, vq∇gpc, vqq � fcpc, vq in Ω� p0,8q, (3.4.2a)

Btv � Dv∆v � fvpc, vq in Ω� p0,8q, (3.4.2b)

Dcpc, vqBνcr � cχpc, vqBνgpc, vq � DvBνv � 0 on BΩ� p0,8q, (3.4.2c)

cp�, 0q � c0, vp�, 0q � v0 in Ω. (3.4.2d)

In this case, the actual diffusion and haptotactic sensitivity coefficients are

rDcpc, vq � Dcpc, vq � cχpc, vqBcgpc, vq,rχpc, vq � χpc, vqBvgpc, vq,

so that in the classical formulation (3.4.2a) takes the form

Btc � ∇ �
� rDcpc, vq∇c� crχpc, vq∇v	� fcpc, vq in Ω� p0,8q.

The main goal of this section is to establish, under suitable assumptions on the system coeffi-

cients which are introduced in Subsection 3.4.1, a rigorous convergence as r Ñ 0 of solutions of

the nonlocal model family (3.4.1) to those of the local model (3.4.2), see Theorem 3.4.8. This is

accomplished in the final Subsection 3.4.4. Since we are dealing here with a new type of non-

local system, we establish for (3.4.1) the existence of nonnegative solutions in Subsections 3.4.2

and 3.4.3.

3.4.1 Problem setting and main result of the section

We begin with several general assumptions about the coefficients of system (3.4.1).

Assumptions 3.4.1. Let Dv P R�
0 , Dc, χ P CbpR�

0 � R�
0 q, and g, fc, fv P C1pR�

0 � R�
0 q satisfy

C5 ¤ Dc ¤ C6 in R�
0 � R�

0 for some C5, C6 ¡ 0,

∇pc,vqg, ∇pc,vqfv P pL8pR�
0 � R�

0 qq2,
fcp0, �q � 0,

fvp�, 0q � 0.

Assume that the coefficients satisfy the following bounds:

C7 :� sup
c,v¥0

c|χpc, vq|   8, (3.4.3)

C8 :� sup
c,v¥0

|Bcgpc, vq|   8. (3.4.4)

Further, we assume that the initial values satisfy

0 ¤ c0 P L2pΩq,
0 ¤ v0 P H1pΩq. (3.4.5)

Remark 3.4.2. If Dv ¡ 0, then assumption (3.4.5) can be replaced by a weaker one, such as

v0 P L2pΩq.

We keep (3.4.5) in order to simplify the exposition.
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In addition, we will later choose one of the following assumptions on fc and the nonlocal operator:

Assumptions 3.4.3. (Further assumptions on fc) One of the following conditions holds:

(a)

∇pc,vqfc P
�
L8pR�

0 � R�
0 q
�2

(b) there exists s ¥ 0 such that

|fcpc, vq| ¤ C9p1� |c|sq in R�
0 � R�

0 for some C9 ¥ 0, (3.4.6)

cfcpc, vq ¤ C10 � C11c
s�1 in R�

0 � R�
0 for some C10 ¥ 0, C11 ¡ 0. (3.4.7)

Assumptions 3.4.4 (Assumptions on Rr). One of the following holds:

(a) for a given fixed r P p0, r0s

C12p}Rr}q :� 1� C7C8

C5
}Rr}LppL2pΩqqnq ¡ 0

(b)

C13 :� C7C8

C5
  1. (3.4.8)

Example 3.4.5. Let

Dv � 0,

Frpρq :� pn� 1qe�rρ,

gpc, vq :� Sccc� Scvv

1� c� v
for some constants Scc, Scv ¡ 0,

Dcpc, vq :� 1� c

1� c� v
,

χpc, vq :� b

1� c� v
, b ¡ 0,

fcpc, vq :� µc
c

1� c2
pKc � c� ηcvq for some constants Kc, ηc, µc¡0,

fvpc, vq :� µvvpKv � vq � λvv
c

1� c
for some constants Kv, λv ¡ 0, µv ¥ 0,

and assume that

0 ¤ v0 ¤ Kv.

Then, it holds a priori that

0 ¤ v ¤ Kv

for any v which solves (3.4.1b) due to the form of fv. Therefore it suffices to consider the

coefficient functions in R�
0 � r0,Kvs.

For Dc it holds on R�
0 � r0,Kvs that

Dcpc, vq ¥ 1� c

1� c�Kv
¥ 1

1�Kv
�: C5
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and

Dcpc, vq ¤ 1 �: C6.

Obviously, fcp0, �q � fvp�, 0q � 0. Moreover, ∇pc,vqg, ∇pc,vqfv P pL8pR�
0 � R�

0 qq2, due to

C8 � sup
c,v¥0

|Bcgpc, vq| � max
0¤v¤Kv

max
c¥0

|Sccp1� vq � Scvv|
p1� c� vq2

�max

"
Scc,

���� Scc

1�Kv
� ScvKv

p1�Kvq2
����* ,

sup
c,v¥0

|Bvgpc, vq| � max
0¤v¤Kv

max
c¥0

|Scvp1� cq � Sccc|
p1� c� vq2

�max
c¥0

|Scvp1� cq � Sccc|
p1� cq2   8,

sup
c,v¥0

|Bcfvpc, vq| � max
0¤v¤Kv

max
c¥0

λvv

p1� cq2 � λvKv

and

sup
c,v¥0

|Bvfvpc, vq| � max
0¤v¤Kv

max
c¥0

����µvpKv � 2vq � λv
c

1� c

����   8.

For C9:�µcpKc � 1� ηcKvq, C10:�µcpKc � 1q and C11:�µc we can estimate on R�
0 � R�

0 that

|fcpc, vq| ¤ C9,

cfcpc, vq � µc
c2

1� c2
pKc � c� ηcvq ¤ C10 � C11c.

Further,

C7 � sup
c,v¥0

cχpc, vq � sup
c,v¥0

bc

1� c� v
� sup

c¥0

bc

1� c
� b

holds.

Thus, Assumptions 3.1.1, 3.4.1, 3.4.3(b) and 3.4.4(b) are fulfilled if

p1�Kvqbmax

"
Scc,

���� Scc

1�Kv
� ScvKv

p1�Kvq2
����*   1.

This choice of coefficient functions can be used to describe a population of cancer cells which

interact among themselves and with the surrounding extracellular matrix (ECM) tissue. Both

interaction types are due to adhesion, whether to other cells (cell-cell adhesion) or to the matrix

(cell-matrix adhesion). The interaction force Frpρq is taken to diminish with increasing interac-

tion range ρ and/or of the sensing radius r: cells too far apart/out of reach hardly interact in

a direct way. Function gpc, vq characterises effective interactions. Here the coefficients Scc and

Scv represent cell-cell and cell-matrix adhesion strengths, respectively. Our choice of g accounts

for some adhesiveness limitation imposed by high local cell and tissue densities. It is motivated

by the fact that overcrowding may preclude further adhesive bonds, e.g., due to saturation of

receptors. The diffusion coefficient Dcpc, vq is chosen to be everywhere positive and increase with

a growing population density, thus enhancing diffusivity under population pressure, but, further,

limited by excessive cell-tissue interaction. The latter also applies to the choice of the sensitivity

function χ. Indeed, there is evidence that tight packing of cells and ECM limits diffusivity and

the advective effects of haptotaxis [106]. Thereby the constant b ¡ 0 is assumed to be rather

small. Finally, fc and fv describe growth of cells and tissue limited by concurrence for resources.
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Next, we introduce weak-strong solutions to our problem. The definition is as follows:

Definition 3.4.6. Let Assumptions 3.4.1 hold. Let r P r0, r0s. We call a pair of functions

pcr, vrq : Ω� R�
0 Ñ R�

0 � R�
0 a global weak-strong solution of (3.4.1) if for all T ¡ 0:

(i) cr P L2p0, T ;H1pΩqq X Cwpr0, T s;L2pΩqq, Btcr P L1p0, T ; pW 1
8pΩqq�q;

(ii) vr PW 2,1
2 pΩ�p0, T qqXCpr0, T s;H1pΩqq if Dv ¡ 0 and vr P L8p0, T ;H1pΩqqXCpr0, T s;L2pΩqq

with Btvr P L2pΩ� p0, T qq if Dv � 0;

(iii) fcpcr, vrq P L1pΩ� p0, T qq, fvpcr, vrq P L2pΩ� p0, T qq;

(iv) pcr, vrq satisfies (3.4.1) in the following weak-strong sense: for all φ P C1pΩq and a.e.

t P p0, T q

⟨Btcr, φ⟩pW 18pΩqq�,W 18pΩq ��
»
Ω

pDcpcr, vrq∇cr � crχpcr, vrqRrp∇gpcr, vrqqq �∇φ dx

�
»
Ω

fcpcr, vrqφ dx, (3.4.9a)

crp�, 0q � c0 in L2pΩq, (3.4.9b)

and

Btvr � Dv∆vr � fvpcr, vrq a.e. in Ω� p0, T q, (3.4.9c)

DvBνvr � 0 a.e. on BΩ� p0, T q, (3.4.9d)

vrp�, 0q � v0 in H1pΩq. (3.4.9e)

Remark 3.4.7. Observe that for r � 0 we obtain a corresponding solution definition for the

local system (3.4.2).

Our main result now reads:

Theorem 3.4.8. Let Assumptions 3.1.1, 3.4.1, 3.4.3(b) and 3.4.4(b) hold. Then, there exists

a sequence rm Ñ 0 as m Ñ 8 and solutions pcrm , vrmq and pc, vq in terms of Definition 3.4.6

corresponding to r � rm and r � 0, respectively, s.t.

crm Ñ
mÑ8 c in L2pΩ� p0, T qq,

vrm Ñ
mÑ8 v in L2pΩ� p0, T qq.

This Theorem is proved in Subsection 3.4.4.

3.4.2 Global existence of solutions to (3.4.1): the case of fc Lipschitz

In this subsection we address the existence of solutions to the nonlocal model (3.4.1) for the case

when fc satisfies Assumptions 3.4.3(a). The main result of the Subsection is as follows:

Theorem 3.4.9. Let Assumptions 3.1.1, 3.4.1, and 3.4.3(a) hold and let r satisfy Assump-

tions 3.4.4(a). Then there exists a global weak-strong solution with Btcr P L2p0, T ; pH1pΩqq�q to
(3.4.1) in terms of Definition 3.4.6 for φ P H1pΩq.
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Since we aim at constructing nonnegative solutions, it turns out to be helpful to consider first

the following family of approximating problems:

Btcrε � ∇ �
�
Dcpcrε, vrεq∇crε � crεχpcrε, vrεq

�
GεpRrpBcgpcrε, vrεq∇crεqq

�GεpRrpBvgpcrε, vrεq∇vrεqq
		

� fcpcrε, vrεq in Ω� p0,8q, (3.4.10a)

Btvrε � Dv∆vrε � fvpcrε, vrεq in Ω� p0,8q, (3.4.10b)

Dcpcrε, vrεqBνcrε � crεχpcrε, vrεq
�
GεpRrpBcgpcrε, vrεq∇crεqq

�GεpRrpBvgpcrε, vrεq∇vrεqq
	
� ν � DvBνvrε � 0 on BΩ� p0,8q, (3.4.10c)

crεp�, 0q � c0, vrεp�, 0q � v0 in Ω, (3.4.10d)

where Gε was defined in (3.3.2). In order to obtain existence for the original problem, i.e., for

ε � 0, we first prove existence of nonnegative solutions for the cases when ε,Dv ¡ 0. This

corresponds to a chemotaxis problem with a nonlocal flux-limited drift. Weak-strong solutions

to (3.4.10) are understood as in Definition 3.4.6, with the obvious modification of the weak

formulation, which now reads:

⟨Btcrε, φ⟩pH1pΩqq�,H1pΩq ��
»
Ω

Dcpcrε, vrεq∇crε �∇φdx

�
»
Ω

crεχpcrε, vrεqGεpRrpBcgpcrε, vrεq∇crεqq �∇φdx

�
»
Ω

crεχpcrε, vrεqGεpRrpBvgpcrε, vrεq∇vrεqq �∇φ� fcpcrε, vrεqφdx.

(3.4.11)

Lemma 3.4.10. Let the assumptions of Theorem 3.4.9 be satisfied. Assume further that

ε,Dv ¡ 0.

Then there exists a global weak-strong solution to (3.4.10) with

Btcrε P L2p0, T ; pH1pΩqq�q

for all T ¡ 0.

Proof. To begin with, we extend the coefficients: for c   0 we set

pDc, χqpc, vq :� pDc, χqp�c, vq, fcpc, vq :� �fcp�c, vq, (3.4.12)

gpc, vq :� 2gp0, vq � gp�c, vq, fvpc, vq :� 2fvp0, vq � fvp�c, vq. (3.4.13)

These coefficients still satisfy Assumptions 3.4.1, 3.4.3(a), and Assumptions 3.4.4(a) if we con-

sider all suprema over c P R instead of c P R�
0 .

Our approach to proving existence is based on a Schaefer fixed-point argument (see Theo-

rem A.2.3). In order to apply this theorem we first ’freeze’ crε in the system coefficients of

(3.4.10), replacing it by crε. Correspondingly, we obtain the following weak formulation in place

of (3.4.11): For all φ P H1pΩq, T ¡ 0 and a.e. t P p0, T q

⟨Btcrε, φ⟩pH1pΩqq�,H1pΩq ��
»
Ω

Dcpcrε, vrεq∇crε �∇φdx
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�
»
Ω

crεχpcrε, vrεqGεpRrpBcgpcrε, vrεq∇crεqq �∇φdx

�
»
Ω

crεχpcrε, vrεqGεpRrpBvgpcrε, vrεq∇vrεqq �∇φ� fcpcrε, vrεqφdx,

(3.4.14a)

crεp0, �q � c0 in L2pΩq (3.4.14b)

and

Btvrε � Dv∆vrε � fvpcrε, vrεq a.e. in Ω� p0;T q, (3.4.14c)

Bνvrε � 0 a.e. on BΩ� p0, T q, (3.4.14d)

vrεp�, 0q � v0 in H1pΩq. (3.4.14e)

Let T ¡ 0 and let crε P L2pΩ� p0, T qq.
Step 1 (Existence of vrε satisfying (3.4.14c)-(3.4.14e)). First, we set fvpc, vq :� �fvpc,�vq for

v   0. We want to perform a Banach fixed-point argument in Cpr0, T s;L2pΩqq. Therefore, we fix

vrε P Cpr0, T s;L2pΩqq. Then, Theorem A.1.8 and Lemma A.3.8 imply the existence of a unique

solution vrε PW 2,1
2 pΩ� p0, T qq X Cpr0, T s;H1pΩqq satisfying

Btvrε � Dv∆vrε � fvpcrε, vrεq a.e. in Ω� p0;T q,
Bνvrε � 0 a.e. on BΩ� p0, T q,
vrεp�, 0q � v0 in H1pΩq.

Moreover, the map Ψ : Cpr0, T s;L2pΩqq Ñ Cpr0, T s;L2pΩqq, vrε ÞÑ vrε satisfies

}Ψpv1q �Ψpv2q}Cpr0,T s;L2pΩqq ¤ C14pT q}fv}L8pR�0 �R�0 q}v1 � v2}Cpr0,T s;L2pΩqq

again due to Theorem A.1.8, Lemma A.3.8 and the Lipschitz continuity of fv. Hence, for small

enough T the map Ψ is a contraction and we conclude from Banach’s fixed-point theorem (The-

orem A.2.1) that the semilinear parabolic initial boundary value problem (3.4.14c)-(3.4.14e)

possesses a unique strong solution 0 ¤ vrε P W 2,1
2 pΩ � p0, T qq. The solution extends to a

global solution as the choice of T only depends on fixed parameters. Multiplying (3.4.14c) by

pvrεq� :� �mintvrε, 0u and integrating over Ω implies together with the Lipschitz continuity of

fv and fvp�, 0q � 0 that

1

2

d

dt
}pvrεq�}2L2pΩq ¤ }Bvfv}L8pR�R�0 q}pvrεq�}

2
L2pΩq.

Due to v0 ¥ 0 and Gronwall’s inequality vrε ¥ 0 follows. Analogously, we conclude that

}vrε}L8p0,T ;L2pΩqq ¤ C15pT q}v0}L2pΩq.

Combining this with the Lipschitz continuity of fv, fvp�, 0q � 0, Theorem A.1.8 and Lemma A.3.8

the estimate

}vrε}2Cpr0,T s;H1pΩqq � }vrε}2L2p0,T ;H2pΩqq � }Btvrε}2L2pΩ�p0,T qq

¤C16pT q
�
}v0}2H1pΩq � }fvpcrε, vrεq}2L2pΩ�p0,T qq

	
¤C16pT q

�
}v0}2H1pΩq � }Bvfv}2L8pR�R�0 q

}vrε}2L2pΩ�p0,T qq
	
¤ C17pT q}v0}2H1pΩq (3.4.15)

follows. Here and further in the proof we omit the dependence of constants upon Dv.
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Step 2 (Existence of crε satisfying (3.4.14a) and (3.4.14b)). Set

a1 :� Dcpcrε, vrεq, a2 :� crεχpcrε, vrεq, a3 :� Bcgpcrε, vrεq,

⟨f, φ⟩pH1pΩqq�,H1pΩq :�
»
Ω

crεχpcrε, vrεqGεpRrpBvgpcrε, vrεq∇vrεqq �∇φ� fcpcrε, vrεqφdx.

Due to our assumptions about Dc, χ, g, and fc, these coefficients ai and f satisfy the requirements

of Lemma 3.3.5. Consequently, there exists a unique global weak solution crϵ to problem (3.3.1)

with these coefficients. We estimate for the corresponding constants αr and Mr introduced in

(3.3.8):

αr �
���� 1

Dcpcrε, vrεq
�����1

L8pΩ�p0,T qq

�
�

1�
����crεχpcrε, vrεqDcpcrε, vrεq 1

2

����
L8pΩ�p0,T qq

���� Bcgpcrε, vrεqDcpcrε, vrεq 1
2

����
L8pΩ�p0,T qq

}Rr}LppL2pΩqqnq

�
¥C5C12prq �: C18prq, (3.4.16)

Mr �}Dcpcrε, vrεq}L8pΩ�p0,T qq
� }crεχpcrε, vrεq}L8pΩ�p0,T qq}Bcgpcrε, vrεq}L8pΩ�p0,T qq }Rr}LppL2pΩqqnq

¤C6 � C7C8 }Rr}LppL2pΩqqnq �: C19prq, (3.4.17)

and, due to the Lipschitz continuity of Gε and Gεp0q � 0, the linearity of Rr, the Lipschitz

continuity of g and fc and (3.4.15),

}f}L2p0,T ;pH1pΩqq�q

¤}crεχpcrε, vrεqGεpRrpBvgpcrε, vrεq∇vrεqq}L2p0,T ;pL2pΩqqnq � }fcpcrε, vrεq}L2pΩ�p0,T qq

¤C7 }Rr}LpL2pΩqqnq ||Bvg||L8pR�R�0 q}∇vrε}L2p0,T ;pL2pΩqqnq � }Bcfc}L8pR�R�0 q}crε}L2pΩ�p0,T qq

¤C20pr,T q
�
1� }crε}L2pΩ�p0,T qq

�
. (3.4.18)

Combining (3.3.13)-(3.3.14) and (3.4.16)-(3.4.18), we obtain the following bounds for crϵ:

}crε}2Cpr0,T s;L2pΩqq � αr}∇crε}2L2p0,T ;pL2pΩqqnq ¤C21pr,T q
�

1� }crε}2L2pΩ�p0,T qq
	
, (3.4.19)

}Btcrε}2L2p0,T ;pH1pΩqq�q ¤C22pr,T q
�

1� }crε}2L2pΩ�p0,T qq
	
. (3.4.20)

Step 3 (Fixed-point argument.). Now consider the mapping

Φ : crε ÞÑ crε.

Thanks to (3.4.19) and (3.4.20), Φ is well-defined in L2pΩ� p0, T qq and

Φ : L2pΩ� p0, T qq Ñ tu P L2p0, T ;H1pΩqq : Btu P L2p0, T ; pH1pΩqq�qu
maps bounded sets on bounded sets. (3.4.21)

Due to the Lions-Aubin lemma (Lemma A.3.9), (3.4.21) implies that

Φ : L2pΩ� p0, T qq Ñ L2pΩ� p0, T qq maps bounded sets on precompact sets. (3.4.22)

Next, we verify that Φ is closed in L2pΩ� p0, T qq. Consider a sequence

pcrεmqm � L2pΩ� p0, T qq
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s.t.

crεm Ñ
mÑ8 crε in L2pΩ� p0, T qq, (3.4.23)

Φpcrεmq �:crεm Ñ
mÑ8 crε in L2pΩ� p0, T qq. (3.4.24)

We need to check that

Φpcrεq � crε.

Due to (3.4.23) we have (by switching to a subsequence, if necessary) that

crεm Ñ
mÑ8 crε a.e. in Ω� p0, T q. (3.4.25)

Further, (3.4.21) and (3.4.24) together with the Banach-Alaoglu theorem and Lemma A.3.8 imply

that

crεm á
mÑ8 crε in L2p0, T ;H1pΩqq, (3.4.26)

Btcrεm á
mÑ8 Btcrε in L2p0, T ; pH1pΩqq�q (3.4.27)

and crε P Cpr0, T s;L2pΩqq. By the definition of Φ we have that crεm and crεm satisfy: for all

φ P H1pΩq and a.e. t P p0, T q

⟨Btcrεm, φ⟩pH1pΩqq�,H1pΩq ��
»
Ω

Dcpcrεm, vrεmq∇crεm �∇φdx

�
»
Ω

crεmχpcrεm, vrεmqGεpRrpBcgpcrεm, vrεmq∇crεmqq �∇φdx

�
»
Ω

crεmχpcrεm, vrεmqGεpRrpBvgpcrεm, vrεmq∇vrεmqq �∇φ

� fcpcrεm, vrεmqφdx, (3.4.28a)

crεmp0, �q � c0 in L2pΩq (3.4.28b)

and

Btvrεm � Dv∆vrεm � fvpcrεm, vrεmq a.e. in Ω� p0, T q, (3.4.28c)

Bνvrεm � 0 a.e. on BΩ� p0, T q, (3.4.28d)

vrεmp�, 0q � v0 in H1pΩq. (3.4.28e)

From (3.4.15) and (3.4.23) we conclude that the sequence pvrεmqm is uniformly bounded in

L2p0, T ;H2pΩqq and pBtvrεmqm in L2pΩ�p0, T qq. Hence the Lions-Aubin lemma and the Banach-

Alaoglu theorem imply that there exists vrε s.t. (after switching to a subsequence, if necessary)

vrεm á
mÑ8 vrε in L2p0, T ;H2pΩqq,

Btvrεm á
mÑ8 Btvrε in L2pΩ� p0, T qq,

vrεm Ñ
mÑ8 vrε in L2p0, T ;H1pΩqq and a.e. in Ω� p0, T q, (3.4.29)

and due to the Lipschitz continuity of fv, the fundamental lemma of calculus of variations and

the embedding H1pΩq ãÑ L2pBΩq this vrε satisfies equation (3.4.14c) for crε as well as the initial



40 CHAPTER 3. A RIGOROUS LIMIT PROCEDURE

and boundary conditions in the required sense. Moreover, vrε ¥ 0 as pointwise limit of such

functions.

Further, we conclude from combining (3.4.26) and (3.4.27) with Lemmas A.3.4 and A.3.8 that

crεmp�, tq á
mÑ8 crεp�, tq in L2pΩq (3.4.30)

for all t P r0, T s. In particular,

crεmp�, 0q � c0,

i.e., the initial condition is satisfied.

It remains now to pass to the limit in (3.4.28a). For this purpose we use the Minty-Browder

method. To shorten the notation, we introduce for u P L2p0, T ;H1pΩqq and m P NY t8u

⟨Mmpuq, φ⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq

:�
» T

0

»
Ω

Dcpcrεm, vrεmq∇u �∇φ�GεpRrpBcgpcrεm, vrεmq∇uqqcrεmχpcrεm, vrεmq �∇φdxdt,

⟨fm, φ⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq

:�
» T

0

»
Ω

crεmχpcrεm, vrεmqGεpRrpBvgpcrεm, vrεmq∇vrεmqq �∇φ� fcpcrεm, vrεmqφdxdt,

where

crε8 :� crε, vrε8 :� vrε.

Due to Lemma 3.3.3(ii), (3.4.17) and (3.4.26) each operator Mm is monotone, hemicontinuous,

and satisfies

||Mmpcrεmq||L2p0,T ;pH1pΩqq�q ¤ C19prq}crεm}L2p0,T ;H1pΩqq ¤ C23prq.

Consequently, due to weak compactness there is η P L2p0, T ; pH1pΩqq�q s.t.

Mmpcrεmq á η in L2p0, T ; pH1pΩqq�q. (3.4.31)

Next, from (3.4.25) and (3.4.29), the boundedness and continuity of pc, vq ÞÑ cχpc, vq, ∇g and ∇fc
over R�R�

0 , the Lipschitz continuity of Gε, the fact that Rr P LppL2pΩqqnq and the dominated

convergence theorem we conclude that

fm Ñ
mÑ8 f8 in L2p0, T ; pH1pΩqq�q. (3.4.32)

A similar argument yields

Mmpuq Ñ
mÑ8 M8puq, in L2p0, T ; pH1pΩqq�q (3.4.33)

for all u P L2p0, T ;H1pΩqq so that due to (3.4.26) and compensated compactness (Lemma A.3.2)

⟨Mmpuq, crεm⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq Ñ
mÑ8 ⟨M8puq, crε⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq .

Observe that the weak formulation (3.4.28a) is equivalent to

Btcrεm � �Mmpcrεmq � fm in pH1pΩqq� (3.4.34)
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for a.e. t P p0, T q. Combining (3.4.27), (3.4.31), and (3.4.32) we can pass to the weak limit in

(3.4.34) and obtain

Btcrε � �η � f8 in pH1pΩqq� (3.4.35)

for a.e. t P p0, T q. For u P L2p0, T ;H1pΩqq and m P N we have due to the monotonicity of Mm

that

Xm :� ⟨Mmpcrεmq �Mmpuq, crεm � u⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq ¥ 0. (3.4.36)

Moreover, setting φ � crεm in (3.4.28), integrating over p0, T q and using Lemma A.3.8 after

inserting the obtained term into the definition of Xm, we conclude that

Xm �� ⟨Mmpcrεmq, u⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq

� ⟨Mmpuq, crεm � u⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq

� 1

2
}c0}2L2pΩq �

1

2
}crεmpT q}2L2pΩq � ⟨fm, crεm⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq . (3.4.37)

From (3.4.30) for t � T we conclude }crεpT q}L2pΩq ¤ lim infmÑ8 }crεmpT q}L2pΩq. Combining this

with (3.4.26), (3.4.31)–(3.4.33), (3.4.36), and (3.4.37) and compensated compactness, we obtain

0 ¤ lim sup
mÑ8

Xm ¤� ⟨η, u⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq

� ⟨M8puq, crε � u⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq

� 1

2
}c0}2L2pΩq �

1

2
}crεpT q}2L2pΩq � ⟨f8, crε⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq .

As crε satisfies (3.4.35), it follows again with Lemma A.3.8 from the last inequality that

0 ¤ ⟨η �M8puq, crε � u⟩L2p0,T ;pH1pΩqq�q,L2p0,T ;H1pΩqq

holds for all u P L2p0, T ;H1pΩqq.
Since M8 is monotone and hemicontinuous, Lemma A.1.16 implies that it is maximal monotone.

Consequently, η �M8pcrεq.
Altogether, we conclude that pcrε, vrεq satisfies (3.4.14) for crε, meaning that Φpcrεq � crε holds,

i.e., Φ is a closed operator. Together with (3.4.22), this implies that

Φ : L2p0, T ;L2pΩqq Ñ L2p0, T ;L2pΩqq is a compact operator. (3.4.38)

Since we aim to apply the Schaefer’s fixed-point theorem (Theorem A.2.3), it is necessary to

consider for λ P p0, 1q the system which corresponds to crε � λΦpcrεq. The corresponding

weak-strong formulation reads:

⟨Btcrε, φ⟩pH1pΩqq�,H1pΩq

��
»
Ω

Dcpcrε, vrεq∇crε �∇φdx

� λ

»
Ω

crεχpcrε, vrεqGεpλ�1RrpBcgpcrε, vrεq∇crεqq �∇φdx

� λ

»
Ω

crεχpcrε, vrεqGεpRrpBvgpcrε, vrεq∇vrεqq �∇φ� fcpcrε, vrεqφ dx, (3.4.39a)
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crεp�, 0q � λc0 in L2pΩq (3.4.39b)

and

Btvrε � Dv∆vrε � fvpcrε, vrεq a.e. in Ω� p0, T q, (3.4.39c)

Bνvrε � 0 a.e. on BΩ� p0, T q, (3.4.39d)

vrεp�, 0q � v0 in H1pΩq. (3.4.39e)

Taking φ :� crε in (3.4.39) and estimating the right-hand side by using Assumptions 3.4.1

and 3.4.4(a), the Hölder inequality, the fact that |Gεpxq| ¤ |x|, Lemmas 3.2.5(i), 3.2.7(i) and

A.3.8 we obtain that

1

2

d

dt
||crε||2L2pΩq

¤� C5 }∇crε}2pL2pΩqqn � λC7}Gεpλ�1RrpBcgpcrε, vrεq∇crεqq}pL2pΩqqn}∇crε}pL2pΩqqn

� λC7 }GεpRrpBvgpcrε, vrεq∇vrεqq}pL2pΩqqn ||∇crε||pL2pΩqqn

� λ}Bcfc}L8pR�R�0 q||crε||
2
L2pΩq

¤� C5 }∇crε}2pL2pΩqqn � λC7}Rr}LppL2pΩqqnq
1

λ
C8 }∇crε}2pL2pΩqqn

� C7||Bvg||L8pR�R�0 q}Rr}LppL2pΩqqnq }∇vrε}pL2pΩqqn ||∇crε||pL2pΩqqn

� }Bcfc}L8pR�R�0 q||crε||
2
L2pΩq

¤� C5C12p}Rr}q }∇crε}2pL2pΩqqn

� C7||Bvg||L8pR�R�0 q}Rr}LppL2pΩqqnq||∇vrε||pL2pΩqqn }∇crε}pL2pΩqqn

� }Bcfc}L8pR�R�0 q||crε||
2
L2pΩq (3.4.40)

holds for a.e. t P p0, T q. Hence, Young’s inequality and (3.4.15) imply that

1

2

d

dt
||crεptq||2L2pΩq ¤ C24p}Rr}, T q

�
1� ||crεptq||2L2pΩq

	
(3.4.41)

for a.e. t P p0, T s and we conclude from Gronwall’s inequality that the set 
crε P L2pΩ� p0, T qq : crε � λΦpcrεq for λ P p0, 1q(

is uniformly bounded. Consequently, for all ε P p0, 1q the Schaefer’s fixed-point theorem implies

that Φ has a fixed point crε, which together with the corresponding vrε, satisfies (3.4.10) in the

weak-strong sense on the interval r0, T s. Since T ¡ 0 was arbitrary, this extends to a global

solution.

Step 4 (Nonnegativity of crε). It remains to check that crε is nonnegative. Therefore, we take

φ :� �pcrεq� � mintcrε, 0u in (3.4.11) and use fcp0, �q � 0, the boundedness of Gε, Dc, Bcfc, χ,

along with the Hölder and Young inequalities, which yields

1

2

d

dt
}pcrεq�}2L2pΩq ��

»
Ω

Dcp�pcrεq�, vrεq |∇pcrεq�|2 dx

�
»
Ω

GεpRrpBcgpcrε, vrεq∇crεqq � pcrεq�χp�pcrεq�, vrεq∇pcrεq� dx

�
»
Ω

GεpRrpBvgpcrε, vrεq∇vrεqq � pcrεq�χp�pcrεq�, vrεq∇pcrεq� dx
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�
»
Ω

fcp�pcrεq�, vrεqpcrεq� dx

¤� C5}∇pcrεq�}2pL2pΩqqn �
2

ε
}χ}L8pR�R�0 q}pcrεq�}L2pΩq}∇pcrεq�}pL2pΩqqn

� }Bcfc}L8pR�R�0 q}pcrεq�}
2
L2pΩq

¤C25}pcrεq�}2L2pΩq.

Since crεp0, �q � c0 ¥ 0, the Gronwall inequality implies that pcrεq� � 0, i.e., that crε ¥ 0.

Remark 3.4.11. Observe that crε cannot be replaced by �pcrεq� inside the nonlocal operator.

This is why we introduced the flux-limitation.

Now we are ready to prove Theorem 3.4.9.

Proof of Theorem 3.4.9. Let T ¡ 0.

Case Dv ¡ 0: We start with the case

Dv ¡ 0.

Lemma 3.4.10 gives the existence of solutions pcrε, vrεq to (3.4.10). Setting φ � crε in (3.4.11),

using the fact that |Gεpxq| ¤ |x|, we obtain similarly to (3.4.15), (3.4.40), and (3.4.41) and using

Gronwall’s inequality that

}crε}L8p0,T ;L2pΩqq � }∇crε}L2p0,T ;pL2pΩqqnq ¤ C26p}Rr}, T q, (3.4.42)

and

}vrε}Cpr0,T s;H1pΩqq � }vrε}L2p0,T ;H2pΩqq � }Btvrε}L2pΩ�p0,T qq ¤ C27p}Rr}, T q (3.4.43)

where all constants are especially independent from ε. Consequently, for a.e. t P p0, T q and all

φ P H1pΩq we can estimate similarly to (3.4.40) and (3.4.41) that

⟨Btcrε, φ⟩pH1pΩqq�,H1pΩq

¤C6}∇crε}pL2pΩqqn}∇φ}pL2pΩqqn � C7}GεpRrpBcgpcrε, vrεq∇crεqq}pL2pΩqqn}∇φ}pL2pΩqqn

� C7}GεpRrpBvgpcrε, vrεq∇vrεqq}pL2pΩqqn}∇φ}pL2pΩqqn � }fcpcrε, vrεq}L2pΩq}φ}L2pΩq

¤C28p}Rr}, T q
�
1� }∇crε}pL2pΩqqn

� }φ}H1pΩq.

Integrating over p0, T q, we conclude from (3.4.42) that» T

0

}Btcrε}2pH1pΩqq� dt ¤ C29p}Rr}, T q
�

1�
» T

0

}∇crε}2pL2pΩqqn dt

�
¤ C30p}Rr}, T q. (3.4.44)

Combining (3.4.42)–(3.4.44) and applying the Lions-Aubin lemma (Lemma A.3.9), the Banach-

Alaoglu theorem and Lemma A.3.8, we conclude the existence of a pair of nonnegative functions

cr P L2p0, T ;H1pΩqqXCpr0, T s;L2pΩqq with Btcr P L2p0, T ; pH1pΩqq�q and vr PW 2,1
2 pΩ�p0, T qqX

Cpr0, T s;H1pΩqq such that for a sequence εm Ñ
mÑ8 0 it holds that

crεm Ñ
mÑ8 cr in L2pΩ� p0, T qq and a.e. in Ω� p0, T q, (3.4.45)
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crεm á
mÑ8 cr in L2p0, T ;H1pΩqq, (3.4.46)

Btcrεm á
mÑ8 Btcr in L2p0, T ; pH1pΩqq�q, (3.4.47)

vrεm Ñ
mÑ8 vr in L2p0, T ;H1pΩqq and a.e. in Ω� p0, T q, (3.4.48)

vrεm á
mÑ8 vr in L2p0, T ;H2pΩqq, (3.4.49)

Btvrεm á
mÑ8 Btvr in L2pΩ� p0, T qq. (3.4.50)

Consider an arbitrary measurable set E � Ω � p0, T q. Using Gεpxq � x � �ε x|x|
1�ε|x| , we can

estimate for every component i P t1, . . . , nu:����»
E

pGεmpRrpBcgpcrεm , vrεmq∇crεmqq �RrpBcgpcrεm , vrεmq∇crεmqqi dxdt

����
¤εm

» T

0

»
Ω

|RrpBcgpcrεm , vrεmq∇crεm |2 dxdt

¤εm}Rr}2LppL2pΩqqnqC
2
8}∇crεm}2L2p0,T ;pL2pΩqqnq,

where the last term tends to 0 due to (3.4.42) as εm Ñ
mÑ8 0. As the term inside the integral is

moreover bounded in L2pΩ � p0, T qq by a constant independent from εm, we conclude by using

Lemma A.3.3 that in L2p0, T ; pL2pΩqqnq

GεmpRrpBcgpcrεm , vrεmq∇crεmqq �RrpBcgpcrεm , vrεmq∇crεmq á
mÑ8 0. (3.4.51)

With the help of Lemma 3.2.5(ii) or 3.2.7(ii) we can rewrite that» T

0

»
Ω

RrpBcgpcrεm , vrεmq∇crεmq � crεmχpcrεm , vrεmq∇ψ dxdt

�
» T

0

»
Ω

Bcgpcrεm , vrεmq∇crεm �Rrpcrεmχpcrεm , vrεmq∇ψq dxdt. (3.4.52)

The pointwise convergences from (3.4.45) and (3.4.48) together with the boundedness and con-

tinuity of pc, vq ÞÑ cχpc, vq and the dominated convergence theorem imply that

crεmχpcrεm , vrεmq∇ψ Ñ
mÑ8 crχpcr, vrq∇ψ in L2p0, T ; pL2pΩqqnq. (3.4.53)

Then, we conclude from Lemma 3.2.5(i) or 3.2.7(i), (3.4.45), (3.4.48), the boundedness of Bcg
and the dominated convergence theorem that

Bcgpcrεm , vrεmqRrpcrεmχpcrεm , vrεmq∇ψq Ñ
mÑ8 Bcgpcr, vrqRrpcrχpcr, vrq∇ψq

in L2p0, T ; pL2pΩqqnq. (3.4.54)

Now, combining (3.4.46) and (3.4.51)–(3.4.54) it follows due to compensated compactness (see

Lemma A.3.2) that» T

0

»
Ω

GεmpRrpBcgpcrεm , vrεmq∇crεmqq � crεmχpcrεm , vrεmq∇ψ dxdt

Ñ
mÑ8

» T

0

»
Ω

RrpBcgpcr, vrq∇crq � crχpcr, vrq∇ψ dxdt.

The convergence of the remaining terms in (3.4.9a) and the rest of (3.4.9) can be obtained from

(3.4.45)-(3.4.50) in a way either completely analogous or very similar to the corresponding parts

of the proof of Lemma 3.4.10. Consequently, pcr, vrq solves (3.4.1) in the required sense.
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Case Dv � 0: In order to prove existence for the case

Dv � 0

consider a family of solutions pcrDv , vrDv q corresponding to Dv P p0, 1q. The existence of such

solutions was shown in the first part of this proof. Multiplying (3.4.9c) for vrDv by ∆vrDv ,

integrating over Ω and using partial integration, we can estimate for a.e. t P p0, T q with Young’s

inequality due to the boundedness of ∇fv that

1

2

d

dt
}∇vrDv

}2pL2pΩqqn �Dv}∆vrDv
}2L2pΩq

¤
»
Ω

|∇fvpcrDv
, vrDv

q||∇vrDv
|dx

¤}Bcfv}L8pR�0 �R�0 q

»
Ω

|∇crDv
||∇vrDv

|dx� }Bvfv}L8pR�0 �R�0 q

»
Ω

|∇vrDv
|2 dx

¤C31

�
}∇crDv

}2pL2pΩqqn � }∇vrDv
}2pL2pΩqqn

	
. (3.4.55)

Estimating }crDv
}2L2pΩq similarly to (3.4.40) and adding C5C12

4C31

d
dt}∇vrDv

}2pL2pΩqqn , we conlude

using (3.4.55) with Young’s inequality that for a.e. t P p0, T q it holds that

1

2

d

dt

�
}crDv}2L2pΩq �

C5C12p}Rr}q
2C31

}∇vrDv}2pL2pΩqqn



� C5C12p}Rr}q
4

}∇crDv
}2pL2pΩqqn �Dv

C5C12p}Rr}q
2C31

}∆vrDv
}2L2pΩq

¤}Bcfc}L8pR�0 �R�0 q||crDv
||2L2pΩq � C32p}Rr}q}∇vrDv

}2pL2pΩqqn .

Then, Gronwall’s inequality implies

}crDv}L8p0,T ;L2pΩqq ¤ C33p}Rr}, T q, (3.4.56)

}∇crDv}L2p0,T ;pL2pΩqqnq ¤ C33p}Rr}, T q, (3.4.57)

}∇vrDv
}L8p0,T ;pL2pΩqqnq ¤ C33p}Rr}, T q, (3.4.58)

Dv}∆vrDv
}L2pΩ�p0,T qq ¤ C33p}Rr}, T q (3.4.59)

for a constant C33p}Rr}, T q ¡ 0 that is especially independent from Dv. Multiplying (3.4.9c) by

vrDv we conclude with fvp�, 0q � 0 and the Lipschitz continuity of fv using partial integration

the estimate

1

2

d

dt
}vrDv}2L2pΩq ¤

����»
Ω

fvpcrDv , vrDv qvrDv dx

���� ¤ }Bvfv}L8pR�0 �R�0 q||vrDv ||2L2pΩq

for a.e. t P p0, T q. Consequently, Gronwall’s inequality implies that

}vrDv
}L8p0,T ;L2pΩqq ¤ C34p}Rr}, T q. (3.4.60)

A uniform bound on pBtcrDv
qDv

in L2p0, T ; pH1pΩqq�q follows combining (3.4.56)–(3.4.58) and es-

timating as above in (3.4.44). Moreover, we conclude with (3.4.59) and (3.4.60) and the Lipschitz

continuity of fv from (3.4.9c) that pBtvrDv
qDv

is uniformly bounded in L2pΩ� p0, T qq. Combin-

ing this with (3.4.56) - (3.4.60) we conclude again from Lions-Aubin and Banach-Alaoglu (Lem-

mas A.3.1 and A.3.9) and Lemma A.3.8 that there are cr0 P L2p0, T ;H1pΩqq X Cpr0, T s;L2pΩqq
with Btcr0 P L2p0, T ; pH1pΩqq�q and vr0 P L8p0, T ;H1pΩqq X Cpr0, T s;L2pΩqq with time deriva-

tive Btvr0 P L2pΩ� p0, T qq s.t.

crpDvqm Ñ
mÑ8 cr0 in L2pΩ� p0, T qq and a.e. in Ω� p0, T q, (3.4.61)
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crpDvqm á
mÑ8 cr0 in L2p0, T ;H1pΩqq,

BtcrpDvqm á
mÑ8 Btcr0 in L2p0, T ; pH1pΩqq�q,

vrpDvqm Ñ
mÑ8 vr0 in Cpr0, T s;L2pΩqq and a.e. in Ω� p0, T q, (3.4.62)

∇vrpDvqm
�á

mÑ8 ∇vr0 in L8p0, T ; pL2pΩqqnq, (3.4.63)

BtvrpDvqm á
mÑ8 Btvr0 in L2pΩ� p0, T qq (3.4.64)

for a subsequence pDvqm. Observe that this time the gradients of c and v enter linearly into

our equation, so that no strong convergence and no application of Lemma A.3.3 are required.

From this we conclude with the dominated convergence theorem, compensated compactness

(Lemma A.3.2), Lemma 3.2.5(i) and (ii) or 3.2.7(i) and (ii) similarly to above that» T

0

»
Ω

Rrp∇gpcrpDvqm , vrpDvqmqq � crpDvqmχpcrpDvqm , vrpDvqmq∇ψ dxdt

�
» T

0

»
Ω

∇gpcrpDvqm , vrpDvqmq �RrpcrpDvqmχpcrpDvqm , vrpDvqmq∇ψq dxdt

Ñ
mÑ8

» T

0

»
Ω

∇gpcr0, vr0q �Rrpcr0χpcr0, vr0q∇ψq dxdt

�
» T

0

»
Ω

Rrp∇gpcr0, vr0qq � cr0χpcr0, vr0q∇ψ dxdt

holds for ψ P L2p0, T ;H1pΩqq. The convergence of the remaining terms in the equation of crpDvqm
follow as in the proof of Lemma 3.4.10. Finally, we multiply (3.4.9c) by ψ P L2pΩ � p0, T qq,
integrate over Ω� p0, T q and use partial integration to obtain» T

0

»
Ω

BtvrpDvqmψ dxdt� pDvqm
» T

0

»
Ω

∇vrpDvqm �∇ψ dxdt

�
» T

0

»
Ω

fvpcrpDvqm , vrpDvqmqψ dxdt.

Then, we conclude from (3.4.58), (3.4.61), (3.4.62), and (3.4.64), the Lipschitz continuity of fv

and the dominated convergence theorem that» T

0

»
Ω

Btvr0ψ dxdt �
» T

0

»
Ω

fvpcr0, vr0qψ dxdt.

Hence, the fundamental lemma of calculus of variations that pcr0, vr0q solves (3.4.1) for Dv � 0

in the required sense.

3.4.3 Global existence of solutions to (3.4.1): the case of fc dissipative

In this subsection we provide an extension of the existence theorem Theorem 3.4.9 from Subsec-

tion 3.4.2.

Theorem 3.4.12. Let Assumptions 3.1.1, 3.4.1, and 3.4.3(b) hold and let r satisfy Assump-

tions 3.4.4(a). Set

q :� min

"
2,
s� 1

s

*
3, q� :� q

q � 1
� maxt2, s� 1u. (3.4.65)

3As usual, here and below the expression s�1
s

means infinity if s � 0.
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Then there exists a global weak-strong solution to (3.4.1) in terms of Definition 3.4.6, with

Btcr P Lqp0, T ; pW 1
q�pΩqq�q and φ PW 1

q�pΩq satisfying for all T ¡ 0 the estimates

||cr||L8p0,T ;L2pΩqq ¤ C35p}Rr}LppL2pΩqqnq, T q, (3.4.66)

||∇cr||L2p0,T ;pL2pΩqqnq ¤ C35p}Rr}LppL2pΩqqnq, T q, (3.4.67)

||Btcr||Lqp0,T ;pW 1
q� pΩqq�q ¤ C35p}Rr}LppL2pΩqqnq, T q, (3.4.68)

||vr||L8p0,T ;L2pΩqq ¤ C35p}Rr}LppL2pΩqqnq, T q, (3.4.69)

||∇vr||L8p0,T ;pL2pΩqqnq ¤ C35p}Rr}LppL2pΩqqnq, T q, (3.4.70)

||Btvr||L2pΩ�p0,T qq ¤ C35p}Rr}LppL2pΩqqnq, T q, (3.4.71)

}fcpcr, vrq}LqpΩ�p0,T qq ¤ C35p}Rr}LppL2pΩqqnq, T q, (3.4.72)

}fvpcr, vrq}L2pΩ�p0,T qq ¤ C35p}Rr}LppL2pΩqqnq, T q. (3.4.73)

Proof. Let T ¡ 0. For k P N set

fckpc, vq :� fcpc, vqηkpc, vq,

where ηk is a cut-off function:

ηk P C8
c pB2

kq with ηk � 1 in B2
k�1 and 0 ¤ ηk ¤ 1. (3.4.74)

Here, B2
k denotes the two-dimensional ball with radius k centered at the origin. The continuity

of ∇fc and (3.4.6) imply that fck has bounded derivatives. Hence, it is Lipschitz continuous due

to the mean value theorem and Theorem 3.4.9 implies the existence of a solution pcrk, vrkq in

terms of Definition 3.4.6 with Btcrk P L2p0, T ; pH1pΩqq�q and φ P H1pΩq, which corresponds to

fc � fck. Our next aim is to prove that pcrk, vrkq satisfies the same bounds as in the statement

of the theorem with some constant C35p}Rr}LppL2pΩqqnq, T q which does not depend upon k.

Set

C36p}Rr}q :� }Rr}LppL2pΩqqnq.

Taking φ :� crk in (3.4.9a) written for crk and using Assumptions 3.4.1, 3.4.3(b), 3.4.4(a), the

fact that Rr P LppL2pΩqqnq and the Hölder and Young inequalities, we compute

1

2

d

dt
}crk}2L2pΩq �

»
Ω

�
� pDcpcrk, vrkq∇crk � crkχpcrk, vrkqRrp∇gpcrk, vrkqqq �∇crk

� crkfckpcrk, vrkq
	

dx

¤� C5 }∇crk}2pL2pΩqqn � C7 }∇crk}pL2pΩqqn }Rrp∇gpcrk, vrkqq}pL2pΩqqn

�
»
Ω

pC10 � C11c
1�s
rk qηkpcrk, vrkq dx

¤� C5 }∇crk}2pL2pΩqqn � C7C36p}Rr}q }∇crk}pL2pΩqqn }∇gpcrk, vrkq}pL2pΩqqn

� C37 � C11

»
Ω

c1�s
rk ηkpcrk, vrkq dx

¤� C5 }∇crk}2pL2pΩqqn

� C7C36p}Rr}q }∇crk}pL2pΩqqn }Bcgpcrk, vrkq∇crk}pL2pΩqqn

� C7C36p}Rr}q }∇crk}pL2pΩqqn }Bvgpcrk, vrkq∇vrk}pL2pΩqqn � C37

� C11

»
Ω

c1�s
rk ηkpcrk, vrkq dx
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¤� C5C12p}Rr}q }∇crk}2pL2pΩqqn

� C7C36p}Rr}q }Bvg}L8pR�0 �R�0 q }∇crk}pL2pΩqqn }∇vrk}pL2pΩqqn

� C37 � C11

»
Ω

c1�s
rk ηkpcrk, vrkq dx

¤� C5C12p}Rr}q
2

}∇crk}2pL2pΩqqn � C38p}Rr}q }∇vrk}2pL2pΩqqn � C37

� C11

»
Ω

c1�s
rk ηkpcrk, vrkq dx. (3.4.75)

Next, we estimate vrk. If Dv ¡ 0, then Theorem A.1.8 and Lemma A.3.8 yield as in the proof

of Lemma 3.4.10 that

}vrk}2L8p0,T ;H1pΩqq � }vrk}2L2p0,T ;H2pΩqq � }Btvrk}2L2pΩ�p0,T qq ¤ C39pT q}v0}2H1pΩq. (3.4.76)

Here and further in the proof we omit the dependence of constants upon Dv. If Dv � 0, then we

get the ODE

Btvrk �fvpcrk, vrkq. (3.4.77)

Hence, the assumptions on fv and the solution components together with the chain rule imply

that

Btvrk PL2p0, T ;H1pΩqq.

Computing the gradient on both sides of (3.4.77), multiplying by ∇vrk throughout, integrating

over Ω, and using Assumptions 3.4.1 and the Young inequality, we obtain for a.e. t P p0, T q the

estimate

1

2

d

dt
}∇vrk}2pL2pΩqqn �

»
Ω

�Bvfvpcrk, vrkq|∇vrk|2 � Bcfvpcrk, vrkq∇crk �∇vrk
�

dx

¤}Bvfv}L8pR�0 �R�0 q }∇vrk}
2
pL2pΩqqn

� }Bcfv}L8pR�0 �R�0 q }∇crk}pL2pΩqqn}∇vrk}pL2pΩqqn

¤C40}∇vrk}2pL2pΩqqn � C41 }∇crk}2pL2pΩqqn . (3.4.78)

Proceeding as for estimate (3.4.41) if Dv ¡ 0 and as in the second case of the proof of Theo-

rem 3.4.9 if Dv � 0 and using the Gronwall inequality yields that crk and vrk satisfy estimates

as (3.4.66), (3.4.67), and (3.4.69)–(3.4.71) for a constant independent from k as this is the case

for all constants involved in (3.4.75), (3.4.76), and (3.4.78). Hence, the estimate» T

0

»
Ω

c1�s
rk ηkpcrk, vrkq dx dt ¤ C42p}Rr}, T q. (3.4.79)

follows after integrating (3.4.75).

From (3.4.6) and (3.4.79), the embedding of Lebesgue spaces, and ηk P r0, 1s we conclude using

Hölder’s inequality if necessary that

}fckpcrk, vrkq}LqpΩ�p0,T qq ¤C9 }p1� csrkq ηkpcrk, vrkq}LqpΩ�p0,T qq

¤C43pT q � C44||csrkηkpcrk, vrkq||L s�1
s pΩ�p0,T qq

¤C43pT q � C44

�» T

0

»
Ω

c1�s
rk ηkpcrk, vrkq dxdt

� s
s�1

¤ C45p}Rr}, T q.
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so that (3.4.72) holds for fckpcrk, vrkq. An estimate as (3.4.73) for fvpcrk, vrkq follows from the

Lipschitz continuity of fv, fvp�, 0q � 0 and the uniform in k bound on pvrkq. Finally, combining

Assumptions 3.4.1 with the fact that Rr P LppL2pΩqqnq, the uniform in k bound on p∇vrkq, the

weak formulation (3.4.9a) for φ P W 1
q�pΩq, Hölder’s and Young’s inequality and the embedding

of Lebesgue spaces yield

| ⟨Btcrk, φ⟩pW 1
q� pΩqq�,W

1
q� pΩq

|

¤
����»

Ω

pDcpcrk, vrkq∇crk � crkχpcrk, vrkqRrp∇gpcrk, vrkqqq �∇φdx

����� ����»
Ω

fckpcrk, vrkqφdx

����
¤C46p}Rr}q

�}∇crk}pL2pΩqqn � }∇vrk}pL2pΩqqn
� }∇φ}pL2pΩqqn � }fckpcrk, vrkq}LqpΩq}φ}Lq� pΩq

¤C47p}Rr}, T q
�
1� }∇crk}pL2pΩqqn � }fckpcrk, vrkq}LqpΩq

� }φ}W 1
q� pΩq

Taking the supremum over }φ}W 1
q� pΩq ¤ 1 and integrating the qth-potence over p0, T q we conclude

that (3.4.68) holds for Btcrk due to the uniform in k bounds on p∇crkq, and pfckpcrk, vrkqq.
Since pcrk, vrkq satisfy (3.4.66)-(3.4.73) uniformly in k, the Lions-Aubin lemma, Banach-Alaoglu

theorem (Lemmas A.3.1 and A.3.9) and Lemma A.3.8 imply that there are cr P L2p0, T ;H1pΩqq
with Btcr P Lqp0, T ; pW 1

q�pΩqq�q and vr P W 2,1
2 pΩ � p0, T qq X Cpr0, T s;H1pΩqq if Dv ¡ 0 or

vr P L8p0, T ;H1pΩqqXCpr0, T s;L2pΩqq with Btvr P L2pΩ�p0, T qq if Dv � 0 s.t. for a subsequence

crkm Ñ
mÑ8 cr in L2pΩ� p0, T qq and a.e. in Ω� p0, T q, (3.4.80)

crkm

�á
mÑ8 cr in L8p0, T ;L2pΩqq, (3.4.81)

∇crkm
á

mÑ8 ∇cr in L2p0, T ; pL2pΩqqnq, (3.4.82)

Btcrkm á
mÑ8 Btcr in Lqp0, T ; pW 1

q�pΩqq�q, (3.4.83)

vrkm
Ñ

mÑ8 vr in Cpr0, T s;L2pΩqq and a.e. in Ω� p0, T q, (3.4.84)

∇vrkm

�á
mÑ8 ∇vr in L8p0, T ; pL2pΩqqnq, (3.4.85)

Btvrkm á
mÑ8 Btvr in L2pΩ� p0, T qq (3.4.86)

and additionally

vrkm
á

mÑ8 vr in L2p0, T ;H2pΩqq. (3.4.87)

if Dv ¡ 0. Then, due to (3.4.80) and (3.4.84), the continuity of fc and fv, the definition of ηk

and the uniform in k bound on pfckpcrk, vrkqq, the Lions lemma (Lemma A.3.4) implies

fckm
pcrkm

, vrkm
q á
mÑ8 fcpcr, vrq in LqpΩ� p0, T qq,

fvpcrkm
, vrkm

q á
mÑ8 fvpcr, vrq in L2pΩ� p0, T qq.

Consequently, cr and vr satisfy (3.4.66)-(3.4.73) as (weak) limits of functions satisfying these

inequalities and setting X � L2pΩq and Y �
�
W 1

q�pΩq
	�

in Lemma A.3.5 we conclude that

cr P Cwpr0, T s;L2pΩqq with crp�, 0q � c0 in L2pΩq. Finally, we conclude similarly to the proof of

Theorem 3.4.9 that pcr, vrq solve (3.4.1) in the required sense.

3.4.4 Limiting behaviour of the nonlocal model (3.4.1) as r Ñ 0

In this subsection we finally prove our main result concerning convergence for r Ñ 0.



50 CHAPTER 3. A RIGOROUS LIMIT PROCEDURE

Proof of Theorem 3.4.8. Due to (3.4.8) and Lemma 3.2.5(iv) or 3.2.7(iv), respectively, there

exists a sequence rm Ñ 0 as mÑ8 such that

sup
mPN

}Rrm}LppL2pΩqqnq  
1

C13
. (3.4.88)

Since for each such rm the Assumptions 3.4.4(a) are satisfied, Theorem 3.4.12 is applicable and

yields the existence of solutions pcrm , vrmq which satisfy (3.4.66)-(3.4.73). Replacing }Rr} by

C13 in C35pT, }Rr}LppL2pΩqqnqq makes the constant in (3.4.66)-(3.4.73) independent of m. Using

Lions-Aubin, Banach-Alaoglu (Lemmas A.3.1 and A.3.9) and Lemma A.3.5 we conclude (by

possibly switching to a subsequence) that there are c P L2p0, T ;H1pΩqq X Cwpr0, T s;L2pΩqq
with Btc P Lqp0, T ; pW 1

q�pΩqq�q and v P W 2,1
2 pΩ � p0, T qq X Cpr0, T s;H1pΩqq if Dv ¡ 0 or v P

L8p0, T ;H1pΩqqXCpr0, T s;L2pΩqq with Btv P L2pΩ�p0, T qq if Dv � 0 s.t. pcrq and pvrq converge

to c and v, respectively, in the sense of (3.4.80)-(3.4.87), i.e., especially

crm Ñ
mÑ8 c, vrm Ñ

mÑ8 v in L2pΩ� p0, T qq and a.e. in Ω� p0, T q, (3.4.89)

∇crm á
mÑ8 ∇c, ∇vrm á

mÑ8 ∇v in L2p0, T ; pL2pΩqqnq. (3.4.90)

We conclude from (3.4.89), the continuity of χ and ∇g and the dominated convergence theorem

that

crmχpcrm , vrmq Ñ
mÑ8 cχpc, vq in L2pΩ� p0, T qq, (3.4.91)

Bcgpcrm , vrmq Ñ
mÑ8 Bcgpc, vq, Bvgpcrm , vrmq Ñ

mÑ8 Bvgpc, vq in L2pΩ� p0, T qq. (3.4.92)

Observe that for any ψ P L8p0, T ;W 1
8pΩqq the following estimate holds:» T

0

»
Ω

|Bcgpcrm , vrmqRrmpcrmχpcrm , vrmq∇ψq � Bcgpc, vqcχpc, vq∇ψ|2 dx dt

¤9

�» T

0

»
Ω

|pBcgpcrm , vrmq � Bcgpc, vqqRrmpcrmχpcrm , vrmq∇ψq|2 dxdt

�
» T

0

»
Ω

|Bcgpc, vqRrm ppcrmχpcrm , vrmq � cχpc, vqq∇ψq|2 dx dt

�
» T

0

»
Ω

|Bcgpc, vq pRrmpcχpc, vq∇ψq � cχpc, vq∇ψq|2 dxdt

�
. (3.4.93)

Now, using (3.4.88), (3.4.91), and (3.4.92) together with Lemma 3.2.5(i) and (iii) or Lemma 3.2.7(i)

and (iii), respectively, we conclude that the right-hand side of (3.4.93) tends to zero, hence

Bcgpcrm , vrmqRrmpcrmχpcrm , vrmq∇ψq Ñ
mÑ8 Bcgpc, vqcχpc, vq∇ψ in L2p0, T ; pL2pΩqqnq.

(3.4.94)

An analogous convergence holds for the corresponding term involving Bvg. Finally, we obtain us-

ing Lemma 3.2.5(ii) or Lemma 3.2.7(ii), respectively, compensated compactness (Lemma A.3.2),

(3.4.90) and (3.4.94) that» T

0

»
Ω

crmχpcrm , vrmqRrmp∇gpcrm , vrmqq �∇ψ dxdt

�
» T

0

»
Ω

∇gpcrm , vrmq �Rrmpcrmχpcrm , vrmq∇ψq dxdt
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Ñ
mÑ8

» T

0

»
Ω

∇gpc, vq � cχpc, vq∇ψ dxdt.

The convergence of the remaining terms follows similarly to the proof of Theorem 3.4.9. Hence,

pc, vq solves the local system (3.4.2) in the sense of Definition 3.4.6.

3.5 Numerical simulations in 1D

This section is the sole work of Kevin Painter and is included for the sake of completeness.

We perform numerical simulations to investigate on the one hand the effect of differences between

hitherto choices of nonlocal operators and our novel ones proposed in Section 3.2, and on the

other hand convergence between nonlocal and local formulations. For compactness, our current

study restricts to the prototypical nonlocal model for cellular adhesion (3.1.1), its reformulation

as (3.4.1), and the corresponding local model (3.4.2). Thus, for (3.4.1) we take the operator form

Rr � Tr, with Tr as in (3.2.2). These models can be interpreted in the context of a population

of cells invading an adhesion-laden ECM/tissue environment and, with this in mind, we initially

concentrate cells at the centre of a one-dimensional domain Ω � r0, Ls and impose an initially

homogeneous ECM. Specifically, we set for the ECM

v0pxq � 1, x P Ω (3.5.1)

and consider for the cell population a Gaussian-shaped aggregate

c0pxq � exp
��αpx� xcq2

�
, x P Ω, (3.5.2)

where we set xc � L{2 or xc � 0.

The numerical scheme follows that described in [67], which we refer to for details. Briefly, a

Method of Lines approach is invoked whereby equations are first discretised in space (in con-

servative form, via a finite volume method) to yield a high-dimensional system of ODEs, which

are subsequently integrated in time. Discretisation of advective terms follows a third order up-

winding scheme, augmented by flux limiting to preserve positivity of solutions and the resulting

scheme is (approximately) second-order accurate in space. Time integration has been performed

with standard Matlab ODE solvers: our default is “ode45” with absolute and relative error tol-

erances set at 10�6, but simulations have been compared for varying space discretisation step,

ODE solver, and error tolerances. To measure the difference between two distinct solutions over

time we define a distance function as follows:

dpu1px, tq, u2px, tqqptq � -

»
Ω

|u1px, tq � u2px, tq| dx ,

where u1 and u2 denote the two solutions that are being compared.

3.5.1 Comparison of nonlocal operator representations

We first explore the correspondence between forms of nonlocal operator representation: we choose

the prototypical nonlocal model for cell/matrix adhesion (3.1.1) and its reformulation (3.4.1),

therefore taking for the latter the operator form Rr � Tr with Tr as in (3.2.2). In what follows,
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Figure 3.1: Comparison between nonlocal formulations (3.1.1) and (3.4.1). (a-b) Cell and matrix

densities for the models (3.1.1) and (3.4.1) at t � 2.5 and t � 5. (c) Difference between the

solutions. For these simulations we take α � 10, r � 1, Dc � 0.01, χ � 1, Fr � 2, fc � 0 and

fvpc, vq � �cv, along with (a-c) gpc, vq � 10v, (d-f) gpc, vq � 2.5c� 10v.

solutions to (3.1.1) are denoted cA and vA and those for (3.4.1) denoted cT and vT . For simplicity

we restrict in this section to a minimalist formulation in which Dc � constant, χ � 1, fc � 0.

Cell-matrix interactions are defined by gpc, vq � Sccc�Scvv and fvpc, vq � �µcv, where Scc and

Scv respectively represent cell-to-cell and cell-to-matrix adhesion strengths and fv simplistically

describes (direct) proteolytic degradation of matrix by cells parametrised by degradation rate µ.

Figure 3.1 shows the computed solutions under (a-c) negligible cell-cell adhesion (Scc � 0) and (d-

f) moderate cell-cell adhesion (Scc � Scv{4). The equivalence of the two formulations is revealed

through the negligible difference between solutions, with the distance magnitude attributable to

the subtly distinct numerical implementation. Both simulations describe an invasion/infiltration

process, in which matrix degradation by the cells generates an adhesive gradient that pulls cells

into the acellular surroundings. The impact of cell-cell adhesion is manifested in the compaction

of cells at the leading edge into a tight aggregate.

However, as pointed out in Section 3.2, differences in the nonlocal formulations can emerge in

the vicinity of boundaries. To highlight this we consider an equivalent formulation to Figure 3.1

(a-c), but with the cells initially placed at the left boundary (xc � 0 in (3.5.2)), e.g., suggesting a

tumor mass which is concentrated there and whose cells are expected to detach and migrate into

the considered 1D domain, travelling from left to right. As stated earlier we impose zero-flux

boundary conditions at x � 0 (and x � L), and further suppose c � v � 0 and ∇c � ∇v in

the extradomain region (RzΩ). Representative simulations are shown in Figure 3.2. They are in

agreement with our observation in Example 3.2.3. Indeed, for this scenario, in the prototypical

nonlocal model (3.1.1)-(3.1.2) there is a very large adhesion velocity modulus at x � 0; the cells
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Figure 3.2: (a-c) Comparison between nonlocal formulations (3.1.1) and (3.4.1) near boundaries.

Model as in Figure 3.1 (a-c), but with the cells initially concentrated at the boundary. (d-f)

Comparison of the two forms of nonlocal operator corresponding to the simulations represented

in (a-c). The operators are practically identical sufficiently far from the boundary, but can

diverge significantly for distances   r from the boundaries.

are crowded within the tumor mass and their mutual interactions are maintained during the in-

vasion process in a sufficiently strong manner to ensure a collective shift of the still concentrated

cell aggregate, with a correspondingly strong tissue degradation in its wake. In the reformulation

(3.4.1a)-(3.4.1b), rather, the adhesion magnitude at x � 0 is for the same initial condition much

lower - suggesting a tumor whose cells are readier to detach and migrate individually. This

results in a more diffusive spread, with accordingly less degradation of tissue, and with cell mass

remaining available at the original site over a larger time span. The latter scenario is different

from the former one, but it seems nevertheless reasonable, as a tumor mass would very often not

move as a whole from its original location to another in a relatively short time; moreover, the

active cells in a sufficiently large tumor (releasing substantial amounts of acidity) are known to

preferentially adopt a migratory phenotype and perform EMT (epithelial-mesenchymal transi-

tion), see e.g., [73, 120, 125], which supports the idea of cells moving in a loose way rather than

in compact, highly aggregated assemblies 4. As such, our simulations suggest that, within this

particular function- and parameter setting, choosing the adhesion operator in the form (3.1.2)

instead of (3.2.2) might possibly overestimate the tumor invasion speed and associated healthy

tissue degradation, thereby predicting a spatially concentrated tumor and neglecting regions with

lower cell densities which can nevertheless trigger tumor recurrence if untreated.

4unless environmental influences dictate conversion to a collective type of motion
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3.5.2 Comparison between nonlocal and local formulation

Having compared together the original, (3.1.1), and the new, (3.4.1), nonlocal formulations,

we next consider the extent to which their dynamics can be captured by the classical local

formulation (3.4.2). Note that for nonlocal model simulations we will restrict to the original

formulation (3.1.1), so that we can avail ourselves of an already well-established efficient (in terms

of computational time) numerical scheme [67]. Here we use cL and vL to denote solutions to the

local formulation and cAr and vAr to denote solutions to the nonlocal model with sensing radius

r. We remark that a large number of related local and nonlocal models have been numerically

studied to describe the invasion-type process considered here (e.g., [3, 68, 118, 121]): here the

specific focus is to explore the convergence of nonlocal to local form as r Ñ 0, which, as far as

we are aware, has not been systematically investigated.

As in the first test we use the initial values (3.5.1) and (3.5.2), choosing xc � L{2, α � 10

in the latter, and consider the coefficients and functions as proposed in Example 3.4.5. Under

these choices the resultant nonlinear diffusion coefficient for the c-equation in the classical local

formulation (compare (3.4.2a)) becomes

D̃cpc, vq � a2p1� cq2p1� c� vq2 � bcp1� cvqpScc � pScc � Scvqvq
p1� cvq2p1� c� vq2 . (3.5.3)

Notably, this potentially becomes negative under an injudicious combination of adhesive strengths

Scc, Scv, and of a, b. Likewise, the actual haptotaxis sensitivity function takes the form

χ̃pc, vq � b
Scv � pScv � Sccqc
p1� cvqp1� c� vq2 . (3.5.4)

Again, depending on the relationship between Scc and Scv, this can become negative, which

would lead to repellent haptotaxis: cells effectively moving away from regions with large ECM

gradients, a rather unexpected behaviour. This suggests that cell-tissue adhesions should dom-

inate over cell-cell adhesions,5 as ’usual’ haptotaxis, i.e., towards the increasing tissue gradient,

is known to be an essential component of cell migration, this applying to several types of cells

moving through the ECM (tumor cells, mesenchymal stem cells, fibroblasts, endothelial cells,

etc.) see e.g., [95, 123, 147] and references therein.

Simulations are plotted in Figure 3.3 where we show cell densities for the local model (cL) and

nonlocal model under three sensing radii:

cAr�0.1, cAr�0.3, cAr�1.0.

In this first set of simulations we assume negligible cell-cell adhesion (Scc � 0), which automat-

ically ensures positivity for the diffusion coefficient of the equivalent local model, D̃cpc, vq. We

note that matrix renewal is absent (µv � 0) in the left-hand column and present (µv ¡ 0) in the

central column. In the right-hand column we show the greater generality of the results under

vastly simplified kinetics, specifically setting fcpc, vq � 0 and fvpc, vq � �cv (with the other

functional forms as in Example 3.4.5). Simulations highlight the convergence between local and

nonlocal models as r Ñ 0: for r � 0.1, the solution differences become negligible. However, dis-

tinctions emerge for large r, where we can expect significant discrepancy between the solutions.

5An analogous behaviour was suggested by the two-scale structured population model with adhesion introduced

in [56].
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Figure 3.3: Convergence between nonlocal and local/classical formulations under negligible cell-

cell adhesion, Scc � 0, Scv � 10. Functional forms as proposed in Example 3.4.5, with modifi-

cations specified in the subfigures. (a) Solutions for r � 0.1, 0.3, 1.0 at (a1) t � 2, (a2) t � 4

and (a3) t � 8; (a4) Distance between local/nonlocal solutions as a function of time. For these

simulations, we take a � 0.01, b � 1, µc � 0.01, Kc � 2, ηc � 1, µv � 0, λv � 1. (b) Solutions

for r � 0.1, 0.3, 1.0 at (b1) t � 2, (b2) t � 4 and (b3) t � 8; (b4) Distance between local/nonlocal

solutions as a function of time. Parameters as in (a) except µv � 1, Kv � 1. (c) Solutions for

fc � 0 and fvpc, vq � �cv, with the other parameters as in (a).
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Figure 3.4: Time restricted convergence under moderate cell-cell adhesion, Scc � 2.5, Scv � 10.

Top row shows solutions across the full spatial region (r0, 20s), the bottom row magnifies a

relevant portion for clarity. Solutions to local and nonlocal models under the functional forms

proposed in Example 3.4.5 for r � 0.01, 0.1, 0.3, 1.0 at (a) t � 3, (b) t � 3.5 and (c) t � 5. In

(a) solutions to the local model continue to exist and we observe convergence between local and

nonlocal formulations. In (b-c) the solutions to the local model are noncomputable. Nonlocal

models, however, can destabilise into a pattern of aggregates. Parameters: a � 0.01, b � 1,

µc � 0.01, Kc � 2, ηc � 1, µv � 0, λv � 1 and adhesion parameters as above.

This suggests that the local model fails to accurately predict the behaviour in cases where cells

sample over relatively large regions of their local environment.

Next, we extend to include a degree of cell-cell adhesion, setting functions and parameters as

in Figure 3.3, except now Scc ¡ 0. Notably this raises the possibility of a negative diffusion

coefficient in the classical formulation and subsequent illposedness. Solutions under a represen-

tative set of parameters are shown in Figure 3.4. For t below some critical time we observe

convergence as before, with the nonlocal formulation converging to solutions of the local model

as r Ñ 0. However, continued matrix degradation further depletes v, with the result that (3.5.3)

can become negative. At this point (in this case t � 3.2 . . .) the local model becomes illposed

and its solutions become incomputable (implying nonexistence of solutions). However, the non-

local formulation appears to preserve wellposedness, consistent with previous theoretical studies

where extending to a nonlocal formulation regularises a singular local model (e.g., [79]). Solu-

tions to the nonlocal model instead destabilise into a quasi-periodic pattern of cell aggregations,

maintained through the cell-cell adhesion, and with a wavelength shrinking as r Ñ 0.

Finally, we remark that convergence of solutions extends beyond the specific functional forms and,

as a representative example, we consider a minimalist setting based on linear/constant forms.

Specifically, we set Dc � a (constant), χ � 1, fc � 0, gpc, vq � Sccc� Scvv and fvpc, vq � �µcv.

In this scenario, the diffusion and haptotaxis coefficients for the classical local formulation (3.4.2)

reduce to

D̃cpc, vq � a� Sccc and χ̃pc, vq � Scv. (3.5.5)

Positivity is only guaranteed under appropriate parameter selection. Such a case is illustrated
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Figure 3.5: Convergence between nonlocal and local/classical formulations under a set of min-

imalistic linear functional forms (Dc � 0.01, χ � 1, fc � 0, gpc, vq � Sccc � Scvv, fvpc, vq �
�µcv). Negligible cell-cell adhesion, Scc � 0, Scv � 10: solutions shown at (left) t � 2.5 and

(middle) t � 5, with the distance between solutions to the nonlocal and local model shown in

the right panel.

in Figure 3.5 where we assume negligible cell-cell adhesion (Scc � 0). Clearly, we observe

convergence between the nonlocal and local formulations as r Ñ 0. Inappropriate parameter

selection, however, generates backward diffusion in the local model and solutions are consequently

incomputable. In all cases considered in this test the cells do not reach the boundary region where

the difference between the nonlocal formulations (3.1.1) and (3.4.1) can play a role. Thus, we

expect the same solution if reformulation (3.4.1) is applied instead.

3.6 Discussion

In this chapter we provide a rigorous limit procedure which links nonlocal models involving ad-

hesion or a nonlocal form of chemotaxis gradient to their local counterparts featuring haptotaxis,

respectively chemotaxis in the usual sense. As such, it closes a gap in the existing literature.

Moreover, it offers a unified treatment of the two types of models and extends the previous

mathematical framework to settings allowing for more general, solution dependent, coefficient

functions (diffusion, tactic sensitivity, adhesion velocity, nonlocal taxis gradient, etc.). Finally,

we provide simulations illustrating some of our theoretical findings in 1D.

Our reformulations in terms of Tr and Sr reveal the tight relationship between the nonlocal

operators Ar and ∇̊r and the (local) gradient. This suggests that both nonlocal descriptions

(adhesion, chemotaxis) actually encompass the dependence on the signal gradients rather than on

the signal concentration/density itself, which is in line with the biological phenomenon. Indeed,

through their transmembrane elements (e.g., receptors, ion channels etc.) the cells are mainly

able to perceive and respond to differences in the signal at various locations or within more or less

confined areas rather than measure effective signal concentrations. Along with the mentioned

solution dependency of the nonlocal model coefficients, the influence of the gradient possibly

reflects into contributions of the adhesion/nonlocal chemotaxis to the (nonlinear) diffusion in

the local setting obtained through the limiting procedure.

The set Ωr can be regarded as the ’domain of restricted sensing’, meaning that there cells a
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priori sense only what happens inside Ω, the domain of interest. The measure of this subdomain

is a decreasing function of the sensing radius r. When r Ñ 0 the set Ωr tends to cover the

whole domain Ω, whereas as r increases the cells can sense at increasingly larger distances;

correspondingly, Ωr shrinks. For r ¡ diampΩq the restricted sensing domain is empty: everywhere

in Ω the cells can perceive signals not only from any point within Ω but potentially also from

the outside. In this work, however, we look at models with no-flux boundary conditions. This

corresponds, e.g., to the impenetrability of the walls of a Petri dish or that of comparatively

hard barriers limiting the areas populated by migrating cells, e.g., bones or cartilage material.

As a result, the cells in the boundary layer ΩzΩr have a much reduced ability to stretch their

protrusions outside Ω and thus gain little information from without. To simplify matters, we

assume in this work that there is no such information or it is insufficient to trigger any change

in their behaviour. In the definitions of Tr and Sr this corresponds to the integrands being set

to zero in ΩzΩr.

It is important to note that for points x P ΩzΩr the influence of a signal p in a direction y P S1

is not taken into account by ∇̊r at all if x� ry R Ω. If Sr is used instead, then its contribution

to the average is given by

ỹ :� n

�» 1

0

χΩ∇ppx� rsyq ds � y


y.

Thus, thanks to integration w.r.t. s, the resulting vector ỹ assembles the impact of those parts

of the segment connecting x and x � ry which are contained in Ω. It is parallel to y, and it

may have the same or the opposite orientation. In particular this means that although for a

certain range of directions large parts of the sensing region of a cell are actually outside Ω, this

may still strongly influence the speed and actual direction of the drift. The effect of integration

w.r.t. s in Tr is less obvious, since in this case the average w.r.t. y is computed over the ball

B1. This already achieves the covering of the whole sensing region by allowing a cell to gather

information about the signal not only in any direction y{|y|, but also at any distance less than r.

The additional integration over the path x� rsy, s P r0, 1s, appears to mean that cells at x P Ωr

are able to measure the average of the signal gradient all along such line segment rather than

its value directly at the ending point. Indeed, from a biological viewpoint this description seems

to make more sense, as cells do not jump from one position to another, nor do they send out

their protrusions in a discontinuous way bypassing certain space points along a chosen direction.

Averages over cell paths are then averaged w.r.t. y, which finally determines the direction of

population movement. Example 3.2.4 indicates that the effect of even an extremely concentrated

signal gradient is mollified by averaging. This agrees with our expectations from using nonlocality.

In higher dimensions n ¥ 2, the two-stage averaging in Tr (w.r.t. s and y) produces a direction

field which is smooth away from the concentration point and also weakens but still keeps the

singularity there. In contrast, averaging only w.r.t. y leads instead to jump discontinuities at a

unit distance from the accumulation point. Moreover, we remark that without integrating w.r.t.

s in Trp∇�q one cannot regain Ar.

The effect observed in Example 3.2.3 further supports the conjecture that the nonlocal operators

which act directly on the signal gradients might actually be a more appropriate modelling tool.

While inside the subdomain Ωr there is no difference (recall Lemmas 3.2.1 and 3.2.2), inside

the boundary layer ΩzΩr the limiting behaviour as r Ñ 0 is qualitatively distinct. Indeed, Ex-

ample 3.2.3 shows that using, e.g., Ar, leads, for r Ñ 0, to unnatural sharp singularities at the
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boundary of Ω even in the absence of signal gradients, whereas this does not happen if Tr is used

instead. Simulations in Subsection 3.5.1 (see Figure 3.2) confirm our theoretical findings and

show a substantial difference between the solutions obtained with the two nonlocal formulations

involving (3.1.2) and (3.2.2), respectively. The choice (3.2.2) is motivated above all from a math-

ematical viewpoint (as it enables a rigorous, well-justified passage to the limit for r Ñ 0), but it

also seems to make sense biologically, as our above comments and the simulations performed for

the particular setting in Subsection 3.5.1 suggest.

In this chapter we have only dealt with models that include a nonlocality in the chemotaxis

or cell-cell and/or cell-tissue adhesion terms and assumed the diffusion to be local. This is in

line with most of the previously developed nonlocal models for cell migration, albeit they usually

cover just linear diffusion. If cell-cell adhesion is present, this means that the cell flux contains

the local cell gradient, as well as some averaging of it. The latter is described in our case by a

suitably chosen operator Tr. A possible model extension could involve a diffusion flux which is

also nonlocal and has a similar form. This would mean that the cell flux is completely devoid of

the local gradient. From the modelling point of view this could be seen as a population pressure

acting6 in a nonlocal manner: each cell is sensing the population mass not only at its current

position, but over a whole region (of radius r) around that location. This is actually true in

vivo, where cells sample their biological environment by extending protrusions as far as several

cell lengths. While cell-cell adhesions certainly play a role in this process and contribute to

self-diffusion (as in the example handled in Subsection 3.5.2), there might be yet other ways of

interaction by which the cells are able to perceive smaller or larger aggregates of their own kind.

In this context one could think about replacing the local gradient by a nonlocal operator, e.g.,

of the form Trp∇q. However, the analysis of such a model would be considerably more involved

and it is to expect that existence of solutions can be established only under rather restrictive

assumptions.

6unlike Fick’s classical law which typically connects the flux over the domain boundary with the diffusion

inside the domain
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CHAPTER 4

Global existence of solutions to a nonlocal equation with

degenerate anisotropic diffusion

This chapter was first published in Volume 543 of Journal of Mathematical Analysis and Appli-

cations in 2025.1 The presentation has been adapted for use in this dissertation to clarify the

details of the proofs and guarantee consistency of the notation.

4.1 Motivation

In this chapter we study the initial boundary value problem (IBVP)

Btc � ∇∇ : pDcq �∇ � pcAcq � µcp1� cr�1q in Ω� p0,8q, (4.1.1a)

p∇ � pDcq � cAcq � ν � 0 on BΩ� p0,8q, (4.1.1b)

cp�, 0q � c0 in Ω, (4.1.1c)

where A is the standard adhesion operator [5], see Definition 4.2.1 below, ∇∇ : pDcq is the

myopic diffusion [83], see Definition 2.1.5, driven by a symmetric non-negative definite diffusion

tensor D � Dpxq, µ ¡ 0 and r ¥ 2 are positive constants, and Ω is a smooth bounded domain

in Rn, n P N. The nonlocal reaction-diffusion-advection equation (4.1.1a) is an extension of an

equation that was recently derived in [156] using a multiscale approach and corresponds to the

case µ � 0. It can describe the evolution of density c � cpt, xq of a cell population that disperses

due to a potentially anisotropic diffusion and nonlocal adhesion, thus upgrading the original

model from [5] where the diffusion term is D∆c with D ¡ 0 a constant. We refer to [156] for

further details regarding the modelling and derivation approaches.

While the combination of adhesion with a Fickian-type diffusion has received much attention,

see, e.g., [28] and references therein, the case of myopic diffusion has not been analysed so far.

The few papers [77, 149–151] that have dealt with existence and long-time behaviour of solutions

to problems that include both myopic diffusion and advection are restricted to versions of the

model derived in [54]. It features haptotaxis, i.e., the directed movement along the local gradient

of an external immovable signal, rather than the spatially nonlocal intrapopulational adhesion as

in (4.1.1a). Apart from that, as a result of somewhat different underlying derivation approaches

in [54] compared to [156], the advection velocity in the aforementioned haptotaxis model is

1[50] The paper is licensed under a CC BY license.

https://creativecommons.org/licenses/by/4.0/
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multiplied by the diffusion tensor, whereas in (4.1.1a) this is not the case. Thus, here it is in no

way ’subordinate’ to the diffusion and, in particular, the adhesion term need not vanish in those

areas where diffusion is absent. Finally, we observe that apart from [77] where dimensions two

and three were treated, other works [149–151] only considered the one-dimensional case.

The goal of this chapter is to establish a result on global existence of solutions to (4.1.1a) equipped

with no-flux boundary and initial conditions. Our approach works for µ ¡ 0, i.e., in the presence

of the generalised logistic-type growth term. While it describes a biologically relevant effect

(e.g., cell growth/death), our main motivation for including the source term stems from the

analytical challenges that arise in the case of µ � 0. In the latter scenario, since the diffusion

is non-Fickian and degenerate, only mass preservation is a priori guaranteed, indicating that

generally solutions need not be functions but could be measure-valued. Here we chose to avoid

this possibility by including the growth term. While our analysis allows for degenerate diffusion

tensors, we require the degeneracy set, i.e., the set of points where D is not positive definite, to

have a positive distance to the boundary of Ω and to be sufficiently low-dimensional, see condition

(4.3.2f) below. This condition seems to be new in the context of degenerate diffusion. It arises

from Lemma 4.2.4 in Subsection 4.2.2 and provides a certain balance between the degenerate

diffusion and the nonlinear growth term.

The remainder of the chapter is organised in the following way. After recalling the definition of

the adhesion operator A in Section 4.2, we fully set-up our model and formulate our main result

on existence of very weak solutions, Theorem 4.3.4, in Section 4.3. We then analyse suitably

constructed approximation problems in Section 4.4. The uniform estimates that we establish

there allow to apply the compactness method and prove Theorem 4.3.4 in Section 4.5. Finally,

in Section 4.6 we provide a justification of our solution concept proving that regular solutions of

this sort are classical.

4.2 Preliminaries

4.2.1 The adhesion operator

Recall that throughout this dissertation Ω � Rn is a domain with smooth enough boundary (C3

in this chapter). We recall the definition of the adhesion operator A between two functional

spaces from Chapter 3 in the way that suits our needs, i.e., for a sensing radius equal to 1 in

(3.1.2). This is no restriction of generality since this value can be always achieved through a

suitable rescaling of the spatial variable.

Definition 4.2.1. Consider a continuous function F : r0, 1s Ñ r0,8q. The adhesion operator is

given by

A : L1pΩq Ñ pL8pΩqqn, Aupxq :� 1

|B1|
»
B1

upx� ξq ξ|ξ|F p|ξ|q dξ. (4.2.1)

By convention upx�ξq � 0 if x�ξ R Ω. The operator is well-defined and bounded, see Chapter 3,

but in contrast to Chapter 3 we will use here the reformulation

Au � �∇H � u,
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that was observed in [156], where H is the interaction potential given by

H : RÑ r0,8s, Hpxq :� 1

|B1|
» 1

mint|x|,1u
F pzq dz,

so that its gradient is the L8 function

∇Hpxq :�
$&%� 1

|B1|
x
|x|F p|x|q if x P B1zt0u,

0 if x P RnzB1.

Consequently, the operator A satisfies the lemma below.

Lemma 4.2.2. Let k P N0 and α P r0, 1s. Then, A is a continuous operator on Ck,αpΩq.

Proof. For k � 0 this follows from Lemma 2.3.2. Moreover, for k ¥ 1 we conclude this combining

Theorems A.3.11 and A.3.12 and Lemma 2.3.2.

4.2.2 A lemma about sets of “sufficiently small” dimension

We recall one of the (alternative) ways of defining fractional dimension from (3.5) and the

subsequent discussion on p. 42 in [60].

Definition 4.2.3. (Upper box dimension) Let K � Rn be compact. For every δ ¡ 0 we denote

ZδpKq :�
"
b P δZn : |x� b|8 ¤ δ

2
for some x P K

*
.

The upper box dimension is the non-negative number

dimF pKq :� lim sup
δÑ0

log2 |ZδpKq|
log2 δ

�1
.

Lemma 4.2.4. Let

3 ¤ n P N, (4.2.2)

r ¡ n

n� 2
, (4.2.3)

and K � Rn be a compact set such that

dimF pKq   n� 2r

r � 1
. (4.2.4)

Then, there exists a family pφδqδPp0,1q of functions such that for all δ ¡ 0

φδ P C8
c pRn; r0, 1sq, (4.2.5a)

φδ � 1 in Oδ
?
npKq, (4.2.5b)

supppφδq � O5δ
?
npKq, (4.2.5c)

}∇φδ}pL8pRnqqn ¤ δ�1C1, (4.2.5d)

}D2φδ}pL8pRnqqn�n ¤ δ�2C1, (4.2.5e)

φδ Ñ
δÑ0

0 a.e. in Rn, (4.2.5f)

lim
δÑ0

δ�
2r

r�1 |supppφδq| � 0. (4.2.5g)
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Proof. Let η P C8
c pr0,8q; r0, 1sq be such that

η �
$&% 1 in r0, 1s,

0 in r2,8q.

Set

φδpxq :�
°

zPδZnXO3δ
?

npKq η
�
|x�z|
δ
?
n

	
°

zPδZn η
�
|x�z|
δ
?
n

	 for x P Rn, δ P p0, 1q. (4.2.6)

We need to check that φδ satisfies the required properties.

1. Since

max
xPRn

��B3δ
?
npxq X δZn

�� � max
yPRn

��B3
?
npyq X Zn

�� �: C2   8

for some C2 ¡ 0, and η � 0 in r2,8q, the sums in (4.2.6) contain at most C2 non-zero

summands.

2. Since Rn � Oδ
?
npδZnq and η � 1 in r0, 1s, the denominator in (4.2.6) is never zero, and

¸
zPδZn

η

� |x� z|
δ
?
n



¥ 1. (4.2.7)

3. By 1. and 2. and the assumptions on η, the function φδ is well-defined and belongs to

C8
c pRn; r0, 1sq.

4. Since η � 0 in r2,8q, the numerator and the denominator coincide for x P Oδ
?
npKq both

having the value ¸
zPδZnXO2δ

?
npxq

η

� |x� z|
δ
?
n



,

hence φδ � 1 there.

5. Since η � 0 in r2,8q,

supppφδq �O2δ
?
n

�
δZn XO3δ

?
npKq

�
�O5δ

?
npKq

�O6δ
?
npZδpKqq. (4.2.8)

Combining (4.2.4) and (4.2.8), we obtain

log2

�
δ�

2r
r�1 |supppφδq|

	
¤ log2

�
δ�

2r
r�1 |ZδpKq|p6δ

?
nqn|B1|

	
¤ log2

�
C3δ

n� 2r
r�1 |ZδpKq|

	
� log2 C3 � log2 δ

�1

�
log2 |ZδpKq|

log2 δ
�1

�
�
n� 2r

r � 1




Ñ
δÑ0

�8, (4.2.9)

so (4.2.5g) holds.
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6. We compute

∇φδpxq � 1

δ
?
n

��°
zPδZnXO3δ

?
npKq signpx� zqη1

�
|x�z|
δ
?
n

	
°

zPδZn η
�
|x�z|
δ
?
n

	
�

°
zPδZnXO3δ

?
npKq η

�
|x�z|
δ
?
n

	°
zPδZn signpx� zqη1

�
|x�z|
δ
?
n

	
�°

zPδZn η
�
|x�z|
δ
?
n

		2

��. (4.2.10)

Combining 1., 2. and (4.2.10) and the assumptions on η, we obtain (4.2.5d). Differentiating

again and using the same argument yields (4.2.5e).

7. The convergence (4.2.5f) is a direct consequence of (4.2.5b) and (4.2.5c) and dimF pKq   n.

4.3 Problem setting and main result

We make the following assumptions on the coefficients and other parameters.

Assumptions 4.3.1.

n ¥ 3, r ¡ n

n� 2
, r ¥ 2, (4.3.1)

F P Cpr0, 1s; r0,8qq,
µ ¡ 0,

c0 P LrpΩq,

and

D :� pdijqi,j�1,...,n P CpΩ;Rn�nq, (4.3.2a)

Dpxq symmetric for x P Ω, (4.3.2b)

∇ � D P pL8locptD ¡ 0uqqn , (4.3.2c)

D ¥ 0, (4.3.2d)

a :� dist pBΩ, tD £ 0uq ¡ 0, (4.3.2e)

dimF ptD £ 0uq   n� 2r

r � 1
. (4.3.2f)

Recall that for D ¥ 0 the above sets are defined as

tD ¡ 0u � tx P Ω : yTDpxqy ¡ 0@y P Rnu

and

tD £ 0u :� tx P Ω : Dy P Rn s.t. yTDpxqy � 0u.

To illustrate condition (4.3.2f), we consider two special cases where it is satisfied.
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Example 4.3.2. 1. For a finite set tD £ 0u � ta1, . . . , aKu with K P N we can estimate

|ZδptD £ 0uq| �
����"b P δZn : |ai � b|8 ¤ δ

2
for some i � 1, . . . ,K

*���� ¤ 2K.

Then,

dimF ptD £ 0uq � lim sup
δÑ0

log2 |ZδptD £ 0uq|
log2 δ

�1
¤ lim sup

δÑ0

log2p2Kq
log2 δ

�1
� 0.

2. Consider a sequence pakqkPN in Ω with limkÑ8 ak � ã P Ω, i.e., for all δ ¡ 0 there is

Kpδq P N s.t. |ak � ã|   δ
2 for all k ¥ Kpδq. We assume that the sequence converges fast

enough to its limit in the sense that there is b   n� 2r
r�1 s.t.

lim sup
δÑ0

log2pKpδqq
log2 δ

�1
� b. (4.3.3)

If tD £ 0u � tã, a1, a2, . . . u, then

|ZδptD £ 0uq| ¤ 2pKpδq � 1q. (4.3.4)

Combining (4.3.3) and (4.3.4), we arrive at (4.3.2f).

We define solutions to the IBVP (4.1.1) as follows.

Definition 4.3.3. We call a function c P Lr
locpΩ� r0,8qq a global very weak solution to (4.1.1)

if it satisfies

�
» 8

0

»
Ω

cBtη dx dt�
»
Ω

c0ηp�, 0q dx

�
» 8

0

»
Ω

cD : D2η dx dt�
» 8

0

»
Ω

cpAcq �∇η dx dt� µ

» 8

0

»
Ω

cp1� cr�1qη dx dt (4.3.5)

for all

η P C2,1
c pΩ� r0,8qq s.t. ∇η � pDνq � 0 on BΩ� p0,8q.

The main result of this chapter concerns with the existence of such solutions.

Theorem 4.3.4. Let Assumptions 4.3.1 hold. Then, there is a very weak solution

c P L8p0,8;L1pΩqq X Lr
locpΩ� r0,8qq

to (4.1.1) in the sense of Definition 4.3.3.

Remark 4.3.5. The very weak formulation (4.3.5) is obtained by multiple partial integration

that shifts all spatial derivatives to the test function. This choice of formulation exploits the

structure of the myopic diffusion. At the same time, it avoids including terms such as ∇ � pDcq
or ∇c, for which it is likely not possible to obtain a priori bounds in the whole domain Ω due to

a combination of the degeneracy of the diffusion tensor D and the diffusion being myopic.

Furthermore, we show in Section 4.6 that sufficiently smooth very weak solutions are classical

solutions to (4.1.1). This justifies our solution concept.
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4.4 Approximate problems

4.4.1 Construction of a regular matrix family pDεq

We begin by constructing a family of regular matrices Dε that approximate D in a suitable

fashion. For such diffusion matrices, existence of regular solutions can be directly concluded

from known results. Unlike [77], we impose uniform L8 boundedness of the divergence for pDεq
instead of convergence in an Lp space for finite p and make no additional restrictions such as,

e.g., vanishing normal trace, because our analysis does not require this.

Lemma 4.4.1. Let Ω be Lipschitz. For ε1 ¡ 0 small enough, there is a sequence of symmetric

matrices pDεqεPp0,ε1q � pppdijqεqi,j�1,...,nqεPp0,ε1q � C8pΩ;Rn�nq s.t.

}Dε}pL8pΩqqn�n ¤ ε� }D}pL8pΩqqn�n for ε P p0, ε1q, (4.4.1)

Dε ¥ ε for ε P p0, ε1q, (4.4.2)

}Dε � D}CpΩ;Rn�nq Ñ 0 as εÑ 0. (4.4.3)

Further, for every relatively open

B �� tD ¡ 0u

there exists some ε2pBq P p0, ε1s such that

}∇ � Dε}pL8pBqqn ¤ C4pBq for ε P p0, ε2pBqq. (4.4.4)

Proof. We take a standard approach, arguing in a manner similar to the proof of Theorem 3 in

Section 5.3.3 in [58].

Step 1. We need some preparation before we can proceed with a regularisation of D. It concerns

the domain Ω. Let x0 P BΩ. Since Ω has a Lipschitz boundary, there exist γ P C0,1pRn�1;Rq and

ρ P p0, aq s.t. (after relabeling and reorientation of the axes if necessary)

ΩXBρpx0q �
 
y P Bρpx0q : yn ¡ γpy1q( , (4.4.5)

BΩXBρpx0q �
 
y P Bρpx0q : yn � γpy1q( . (4.4.6)

Due to ρ   a, the set ΩXBρpx0q does not intersect tD £ 0u. Let us check that

ΩXB ρ
2
px0q � εpL� 1qen �Bεp0q � ΩXBρpx0q (4.4.7)

for

ε ¤ ρ

2pL� 2q , (4.4.8)

where L is a Lipschitz constant for γ in

Bn�1
ρ px10q :�  

z1 P Rn�1 : |z1 � x10|   ρ
(
.

Let y P ΩXB ρ
2
px0q and z P BεpεpL� 1qenq � εpL� 1qen �Bεp0q. Due to (4.4.8), it holds that

|y � z � x0| ¤|y � x0| � |z � εpL� 1qen| � εpL� 1q
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 ρ
2
� pL� 2qε

¤ρ. (4.4.9)

As z P BεpεpL� 1qenq implies that |z1|   ε and zn ¡ εpL� 1q � ε � εL, the Lipschitz continuity

of γ and (4.4.5) together imply

γpy1 � z1q ¤γpy1q � L|z1|
 yn � εL

 yn � zn � εL� εL

�yn � zn. (4.4.10)

Combining (4.4.5), (4.4.9), and (4.4.10), we arrive at (4.4.7).

Due to compactness of Ω, we can find some constants ρ P p0, aq, L ¡ 0, and K P N and points

xk P BΩ and zk P S1p0q, k P t1, . . . ,Ku, such that

ΩXB ρ
2
pxkq �BεpεpL� 1qzkq � ΩXBρpxkq for k P t1, . . . ,Ku, ε P

�
0,

ρ

2pL� 2q



(4.4.11)

and

BΩ �
K¤

k�1

B ρ
2 pxkq.

Let

A0 :� Ωz
�

K¤
n�1

B ρ
2 pxkq

�
.

This set is compact and satisfies ρ0 :� distpA0, BΩq ¡ 0. We set

ε1 :� min

"
ρ

2pL� 2q ,
ρ0
3

*
.

By Lemma A.3.10, there is a partition of unity tψkuKk�0 subordinate to the open covering

O ρ0
2
pA0q, tB ρ

2
pxkquKk�1 (4.4.12)

of Ω, i.e., a set of functions that satisfies

ψ0 P C8
c pO ρ0

2
pA0qq, (4.4.13a)

ψk P C8
c pB ρ

2
pxkqq for k P t1, . . . ,Ku, (4.4.13b)

0 ¤ ψk ¤ 1 for k P t0, . . . ,Ku, (4.4.13c)

Ķ

k�0

ψk � 1 in Ω. (4.4.13d)

Step 2. Now we can proceed with the construction of approximations for D. For ε P p0, ε1q and

x P Ω we set

Dεpxq :�εIn � ψ0pxqpςε � Dqpxq �
Ķ

k�1

ψkpxqpςε � Dqpx� εpL� 1qzkq (4.4.14)
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�εIn � ψ0pxq
»
Bεp0q

Dpx� yqςεpyq dy �
Ķ

k�1

ψkpxq
»
Bεp0q

Dpx� εpL� 1qzk � yqςεpyq dy.

We set Dε �: ppdijqεqi,j�1,...,n. Obviously, Dε P C8pΩ,Rn�nq, is symmetric in Ω, and Dε ¥ ε.

We estimate for w P Rn and x P Ω that

|Dεpxqw| ¤ε|w| � ψ0pxq
»
Bεp0q

|Dpx� yq|2|w|ςεpyqdy

�
Ķ

k�1

ψkpxq
»
Bεp0q

|Dpx� εpL� 1qzk � yq|2|w|ςεpyq dy

¤ε|w| �
Ķ

k�0

ψkpxq}D}pL8pΩqqn�n |w|
»
Bεp0q

ςεpyq dy

and taking the supremum over |w| � 1 and x P Ω obtain (4.4.1).

Further, thanks to (4.4.11) we can exploit uniform continuity of D in Ω, yielding

max
xPΩXB ρ

2
pxkq

|pςε � dijqpx� εpL� 1qzkq � dijpxq| (4.4.15)

� max
xPΩXB ρ

2
pxkq

�����
»
Bεp0q

pdijpx� εpL� 1qzk � yq � dijpxqqςεpyq dy
�����

¤ max
px,yqPΩXB ρ

2
pxkq�Bεp0q

|pdijpx� εpL� 1qzk � yq � dijpxqq| Ñ
εÑ0

0 (4.4.16)

for k P t1, . . . ,Ku and i, j P t1, . . . , nu. Since O ρ0
2
pA0q � Ω, due to Lemma 2.3.4 we also have

ςε � dij Ñ
εÑ0

dij in C
�
O ρ0

2
pA0q

	
. (4.4.17)

Combining (4.4.13), (4.4.14), (4.4.16), and (4.4.17) and using the equivalence of the | � |2 and

| � |8 matrix norms, we arrive at

Dε Ñ
εÑ0

D in CpΩ;Rn�nq.

Step 3. It remains to verify (4.4.4). Let B �� tD ¡ 0u relatively open. We set

ε2pBq :� min

"
ρ

2pL� 3q ,
ρ0
4
,

1

2pL� 2qdistpB, tD £ 0uq
*
  ε1.

Assume

B � B ρ
2
pxkq (4.4.18)

for some k P t1, . . . ,Ku. Then,

B �Bεp0q � εpL� 1qzk � OεpL�2qpBq X Ω � tD ¡ 0u XBρpxkq for ε P p0, ε2pBqq.
(4.4.19a)

Let φ P C8
c pBzBΩq. By the definition of weak divergence we have»
Rn

∇ � pςε � Dqpx� εpL� 1qzkqφdx � �
»
Rn

pςε � Dqpx� εpL� 1qzkq∇φpxq dx.

Now, using integration by substitution and the symmetry of ςε we compute»
Rn

pςε � Dqpx� εpL� 1qzkq∇φpxq dx �
»
Rn

»
Bεp0q

Dpx� εpL� 1qzk � yqςεpyq∇φpxq dy dx
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�
»
Rn

Dpxq
»
Bεp0q

ςεpyq∇φpx� εpL� 1qzk � yq dy dx

�
»
Rn

Dpxqpςε �∇φqpx� εpL� 1qzkq dx

�
»
Rn

Dpxq∇ppςε � φqpx� εpL� 1qzkqq dx.

Again by the definition of weak divergence and (4.4.19a) we obtain»
Rn

Dpxq∇ppςε � φqpx� εpL� 1qzkqq dx ��
»
Rn

∇ � Dpxqpςε � φqpx� εpL� 1qzkq dx

��
»
OεpL�2qpBqXΩ

∇ � Dpxqpςε � φqpx� εpL� 1qzkq dx

so that����»
Rn

∇ � pςε � Dqpx� εpL� 1qzkqφdx

����
8
¤}∇ � D}pL8pOεpL�2qpBqXΩqqn }φ}L1pBq

¤}∇ � D}pL8pOε2pBqpL�2qpBqXΩqqn }φ}L1pBq. (4.4.20)

Consequently, due to the density of C8
c pBzBΩq in L1pBzBΩq � L1pBq and as pL1pBqq� � L8pBq,

the estimate

}∇ � pςε � Dqp� � εpL� 1qzkqq}pL8pBqqn ¤
?
n }∇ � D}pL8pOε2pBqpL�2qpBqXΩqqn (4.4.21)

for ε P p0, ε2pBqq follows.

On the other hand, if B �� tD ¡ 0u and B � O ρ0
2
pA0q, then

B �Bεp0q � OεpBq � tD ¡ 0u XO 5ρ0
6
pA0q for ε P p0, ε2pBqq.

A similar argument as above with φ P C8
c pBq works for ςε � D, yielding

}∇ � pςε � Dq}pL8pBqqn ¤
?
n }∇ � D}pL8pOε2pBqpBqqqn (4.4.22)

for ε P p0, ε2pBqq.
Now, consider an arbitrary B �� tD ¡ 0u. Then, B � �K

k�1

�
B XB ρ

2
pxkq

	��
B XO ρ0

2
pA0q

	
.

Combining (4.4.1), (4.4.13), (4.4.14), (4.4.21), and (4.4.22) and using the product rule we obtain

}∇ � Dε}pL8pBqqn ¤
?
n}∇ �D}pL8pOε2pBXOρ0

2
pA0qqpBXO ρ0

2
pA0qqqqn

�?
n

Ķ

k�1

}∇ � D}pL8pOε2pBXBρ
2
pxkqqpL�2qpBXB ρ

2
pxkqqXΩqqn � C5 �: C4pBq

for ε P p0, ε2pBqq.

4.4.2 Existence of a global classical solution to the approximate prob-

lem

Let α P p0, 12 q. Since C8
c pΩq is dense in L2pΩq, there is a sequence pc0εqεPp0,ε1q � C2�αpΩq and

a constant C6 satisfying

p∇ � pDεc0εq � c0εAc0εq � ν � 0 on BΩ,
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c0ε Ñ
εÑ0

c0 in L2pΩq, (4.4.23)

}c0ε}L2pΩq ¤ C6 for all ε P p0, ε1q.

With the help of the diffusion tensors constructed in Subsection 4.4.1 we formulate for ε P p0, ε1q
the approximate problems

Btcε � ∇∇ : pDεcεq �∇ � pcεAcεq � µcεp1� cr�1
ε q in Ω� r0,8q, (4.4.24a)

p∇ � pDεcεq � cεAcεq � ν � 0 on BΩ� r0,8q, (4.4.24b)

cεp�, 0q � c0ε in Ω. (4.4.24c)

The subsequent Lemmas 4.4.2 and 4.4.3 provide local and then global existence of classical

solutions to (4.4.24).

Lemma 4.4.2. For ε P p0, ε1q there is a maximal existence time Tmax,ε P p0,8s and a nonnega-

tive classical solution cε P C2�α,1�α
2 pΩ�r0, Tmax,εqq of (4.4.24). It holds that either Tmax,ε � 8

or Tmax,ε   8 and

lim
tÕTmax,ε

}cεp�, tq}C2�αpΩq � 8. (4.4.25)

Proof. The proof is based on a standard fixed-point argument.

Let ε P p0, ε1q and α P p0, 12 q, as above, T P p0, 1q small enough (to be determined later), and

M :� }c0ε}C1�αpΩq � 1.

We define the set

S :�
"
c P C1�α, 1�α

2 pΩ� r0, T sq : c ¥ 0, }c}
C1�α, 1�α

2 pΩ�p0,T qq ¤M

*
.

For c P S we consider the linearised IBVP

Btcε � ∇∇ : pDεcεq �∇ � pcεAcq � µcεp1� cr�1q in Ω� r0,8q, (4.4.26a)

p∇ � pDεcεq � cεAcq � ν � 0 in BΩ� r0,8q, (4.4.26b)

cε � c0ε in Ω� t0u. (4.4.26c)

Due to Lemmas 2.2.3, 4.2.2, and 4.4.1, the coefficient functions and the initial data are smooth

enough and satisfy the compatibility condition, allowing us to conclude from Theorem A.1.6 with

aij :� pdijqε,

ai :� �
ņ

j�1

ppdijqε � pdjiqεqxj � pAcqi,

a :� �
ņ

i,j�1

ppdijqεqxjxi �∇ � pAcq � µp1� cr�1q,

bi :�
ņ

j�1

pdjiqενj ,

b :�
ņ

i,j�1

ppdijqεqxj
νi � pAcq � ν,

f :� 0



72 CHAPTER 4. A NONLOCAL EQUATION WITH DEGENERATE DIFFUSION

for i, j � 1, ..., n that (4.4.26) has a unique solution cε P C2�α,1�α
2 pΩ� r0, T sq satisfying

}cε}C2�α,1�α
2 pΩ�r0,T sq ¤ C7pMq}c0ε}C2�αpΩq �: C8

for some constant C7pMq ¡ 0 independent of the choice of c. From Theorem A.1.11 we conclude

that cε ¥ 0 in Ω� r0, T s. Lemma 2.2.9(ii) implies the estimate

}cε}
C1�α, 1�α

2 pΩ�r0,T sq ¤}cε � c0ε}
C1�α, 1�α

2 pΩ�r0,T sq � }c0ε}C1�αpΩq

¤2 maxt1,KIpαquT α
2 }cε}C2�α,1�α

2 pΩ�r0,T sq � }c0ε}C1�αpΩq

¤2 maxt1,KIpαquT α
2 C8 � }c0ε}C1�αpΩq,

where KIpαq denotes the embedding constant from W 1
8pΩq into CαpΩq from Lemma 2.2.8(ii).

Hence, taking

T ¤
�

1

2 maxt1,KIpαquC8


 2
α

we ensure that cε P S. Consequently, the operator

F : S Ñ S, c ÞÑ cε (4.4.27)

is well-defined and, due to C2�α,1�α
2 pΩ�r0, T sq ãÑãÑ C1�α, 1�α

2 pΩ�r0, T sq, a compact self-map.

Moreover, the continuous dependence of cε from the coefficients (that follows with Lemma 4.2.2

and Theorem A.1.6) implies that F is a continuous and compact operator. Now, Schauder’s

fixed-point theorem (Theorem A.2.2) applies, providing a fixed-point cε P C1�α, 1�α
2 pΩ � r0, T sq

of F that is also in C2�α,1�α
2 pΩ� r0, T sq and a classical solution to (4.4.24) on Ω� r0, T s.

Extending the solution to its maximal existence time Tmax,ε, it holds that either Tmax,ε � 8 or

Tmax,ε   8 and (4.4.25).

Next, we verify global existence for (4.4.24).

Lemma 4.4.3. For ε P p0, ε1q there is a nonnegative classical solution cε P C2�α,1�α
2 pΩ�r0,8qq

of (4.4.24).

Proof. We follow a standard approach which is based on excluding the possibility of (4.4.25).

Let ε P p0, ε1q and assume Tmax,ε   8, so that cε is a solution to (4.4.24) in Ω � r0, Tmax,εq.
Integrating the first equation in (4.4.24) over Ω and using partial integration, we conclude from

Gronwall’s inequality that

}cε}L8p0,Tmax,ε;L1pΩqq ¤ eµTmax,ε}c0ε}L1pΩq �: C9pTmax,εq. (4.4.28)

Consider an arbitrary p P p1,8q. We multiply (4.4.24a) by pcp�1
ε , integrate over Ω and use

partial integration to obtain

d

dt

»
Ω

cpε dx �� p

»
Ω

pDε∇cε �∇ � Dεcε � cεAcεq �∇cp�1
ε dx� µp

»
Ω

cpεp1� cr�1
ε q dx

�� ppp� 1q
»
Ω

cp�2
ε pDε∇cεq �∇cε � cp�1

ε p∇ � Dε �Acεq �∇cε dx

� µp

»
Ω

cpεp1� cr�1
ε q dx.
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Due to Dε ¥ ε and the boundedness of its divergence, the fact that ∇c
p
2
ε � p

2c
p
2�1
ε ∇cε, (4.4.28)

and Young’s inequality we conclude that

d

dt

»
Ω

cpε dx� 4pp� 1q
p

ε

»
Ω

|∇c
p
2
ε |2 dx

¤2pp� 1q
»
Ω

|∇c
p
2
ε |c

p
2
ε

�}∇H}pL8pB1qqn}cε}L1pΩq � }∇ � Dε}pL8pΩqqn
�

dx� µp

»
Ω

cpε dx

¤4pp� 1q
p

ε

»
Ω

|∇c
p
2
ε |2 dx� pC10pp, Tmax,εq

»
Ω

cpε dx,

where

C10pp, Tmax,εq :� p� 1

ε

�
}∇H}2pL8pB1qqnC9pTmax,εq2 � }∇ � Dε}2pL8pΩqqn

	
� µ.

Hence, it follows again from Gronwall’s inequality that

}cε}L8p0,Tmax,ε;LppΩqq ¤ epC10pp,Tmax,εqTmax,ε}c0ε}LppΩq.

The coefficients of (4.4.24) are regular enough s.t. Theorems A.1.1 and A.1.4 and Remark A.1.2

with

aij � pdijqε, ai �
ņ

j�1

ppdijqεqxj � pAcεqi, a � µpcr�1
ε � 1q, f � 0

for i, j � 1, ..., n imply that

cε P L2p0, Tmax,ε;H
1pΩqq X Cpr0, Tmax,εs;L2pΩqq X L8pΩ� p0, Tmax,εqq

and uniquely solves (4.4.24) on Ω � p0, Tmax,εq in the weak sense from Remark A.1.2. Now,

Theorem A.1.12 with

apx, t, c,∇cq � Dε∇c�∇ � Dεc� cAcε,

bpx, t, cq � µcpcr�1 � 1q (4.4.29)

applies and yields

cε P Cγ, γ2 pΩ� r0, Tmax,εsq
for some γ P p0, αq. Next, using the Hölder continuity of the coefficients (which holds especially

due to Lemmas 2.2.3, 4.2.2, and 4.4.1) again and the fact that the initial data are smooth enough

and satisfy the compatibility condition, Theorem A.1.13 with the coefficients from (4.4.29) implies

that there are C11pεq ¡ 0 and δ P p0, γq s.t.

}cε}
C1�δ, 1�δ

2 pΩ�r0,Tmax,εsq
¤ C11pεq.

Hence, as above Theorem A.1.6 implies that

cε P C2�δ,1� δ
2 pΩ� r0, Tmax,εsq ãÑ C1�α, 1�α

2 pΩ� r0, Tmax,εsq.

Finally, applying Theorem A.1.6 one more time we obtain

cε P C2�α,1�α
2 pΩ� r0, Tmax,εsq

contradicting (4.4.25).
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4.5 Existence of a very weak solution to the original prob-

lem

In this section, we show the convergence of a suitably chosen sequence of the classical solutions

to (4.4.24) to a very weak solution to (4.1.1) in the sense of Definition 4.3.3. We start with some

basic uniform estimates of pcεq.

Lemma 4.5.1. For all ε P p0, ε1q it holds that

}cε}L8p0,8;L1pΩqq ¤ C12, (4.5.1)

}cε}LrpΩ�p0,T qq ¤ C13 � TµC12 for T ¡ 0. (4.5.2)

Proof. Consider a constant C14 ¡ 0 and

C15 :� max
xPr0, r�1

b
C14
rµ � 1

r s
|µxr � pC14 � µqx| .

Then, C15�C14x�pµx�µxrq ¥ 0 holds for x ¥ 0. Integrating (4.4.24a) over Ω, by parts where

necessary, using the boundary condition, the assumption r ¥ 2, and the boundedness of Ω, we

obtain

d

dt

»
Ω

cε dx �µ
»
Ω

cε � crε dx (4.5.3)

¤C15|Ω| � C14

»
Ω

cε dx.

Consequently, Lemma A.1.20 implies (4.5.1). Integrating (4.5.3) over p0, T q and using (4.5.1)

immediately yields (4.5.2).

Next, we establish some uniform estimates for derivatives of cε. For the spatial gradient, the

estimates hold away from the degeneracy set of D.

Lemma 4.5.2. For any T ¡ 0 and relatively open B �� tD ¡ 0u there is a constant C16pB, T q
s.t.

}cε}L2p0,T ;H1pBqq ¤ C16pB, T q, (4.5.4)

}cε}Lr�1pB�p0,T qq ¤ C16pB, T q (4.5.5)

for all ε P p0, ε2pBqq.
Furthermore, let q be a number that satisfies

q P
�

1,
n

n� 1



. (4.5.6)

Then, for any T ¡ 0 there exists some constant C17pT q ¡ 0 s.t.

}Btcε}L1p0,T ;W�2
q pΩqq ¤ C17pT q (4.5.7)

for ε P p0, ε1q.
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Proof. Let T P p0,8q and consider a relatively open set

B �� tD ¡ 0u.

Then, there exists a sufficiently small number α ¡ 0 such that

B̂ :� OαpBq �� RnztD £ 0u.

Due to the uniform continuity of D and our choice of B,

δ :� inf
xPB̂

min
zPS1p0q

zTDpxqz ¡ 0. (4.5.8)

In what follows we leave out the dependence on δ and B̂ in the constants as they are determined

by B. Let φ P C8
c pRnztD £ 0uq be s.t.

φ

$'''&'''%
� 1 on B,

P r0, 1s on B̂zB,
� 0 on RnzB̂.

(4.5.9)

Let ε P p0, ε2pBqq, where ε2pBq is from Lemma 4.4.1. We multiply (4.4.24a) by cεφ
2, integrate

over Ω by parts where necessary, use the no-flux boundary condition, and obtain

1

2

d

dt

»
Ω

c2εφ
2 dx

��
»
Ω

pDε∇cε �∇ � Dεcε � cεAcεq �
�
φ2∇cε � 2cεφ∇φ

�
dx� µ

»
Ω

c2εφ
2p1� cr�1

ε q dx

¤�
»
Ω

p∇cεqTDεφ
2∇cε dx� 2

����»
Ω

pφ∇cεqT Dε pcε∇φq dx

����
�
����»

Ω

p∇ � Dε �Acεq �
�
cεφ

2∇cε � 2c2εφ∇φ
�

dx

����� µ

»
Ω

c2εφ
2 dx� µ

»
Ω

cr�1
ε φ2 dx. (4.5.10)

The matrix Dε is symmetric and positive-definite. Hence, it defines a scalar product on Rn, and

with the Cauchy-Schwartz and Young’s inequalities and (4.4.1) we obtain

2

����»
Ω

pφ∇cεqT Dε pcε∇φq dx

���� ¤2

d»
Ω

pφ∇cεqT Dεφ∇cε dx

d»
Ω

pcε∇φqT Dεcε∇φdx

¤1

4

»
Ω

p∇cεqT Dεφ
2∇cε dx� 4}∇φ}2pL8pRnqqnC18

»
Ω

c2ε dx,

(4.5.11)

where C18 :� ε1 � }D}pL8pΩqqn�n is some uniform upper bound on }Dε}pL8pΩqqn�n for ε P p0, ε1q
that exists due to (4.4.1). Moreover, combining (4.4.4), Lemma 4.5.1, and Hölder’s and Young’s

inequalities, we can estimate����»
Ω

p∇ � Dε �Acεq �
�
cεφ

2∇cε � 2c2εφ∇φ
�

dx

����
¤
�
}∇ � Dε}pL8pB̂qqn � }∇H}pL8pB1qqn}cε}L8p0,8;L1pΩqq

	 »
Ω

��cεφ2∇cε
��� 2

��c2εφ∇φ�� dx

¤δ
2

»
Ω

|φ∇cε|2 dx� C19pBq
»
Ω

c2ε dx. (4.5.12)

Combining (4.5.10)–(4.5.12) and rearranging the terms leads due to (4.5.8) and (4.5.9) to

1

2

d

dt

»
Ω

c2εφ
2 dx� δ

4

»
Ω

|∇cε|2φ2 dx� µ

»
Ω

cr�1
ε φ2 dx ¤C20pBq

»
Ω

c2ε dx. (4.5.13)



76 CHAPTER 4. A NONLOCAL EQUATION WITH DEGENERATE DIFFUSION

We integrate (4.5.13) over p0, T q and obtain due to r ¥ 2, Lemma 4.5.1, (4.5.9), the uniform

boundedness of the initial values, and using Hölder’s inequality that

1

2
}cεφ}2L8p0,T ;L2pΩqq �

δ

4
}φ∇cε}2L2p0,T ;pL2pΩqqnq � µ}cε}r�1

Lr�1pB�p0,T qq ¤ C21pB, T q, (4.5.14)

which yields (4.5.4) and (4.5.5).

Let ψ P
�

W 2
q

q�1
pΩq. Due to our choice of q Lemma 2.2.8(iii) implies that

ψ P
�

W 2
q

q�1
pΩq �  

ψ P C1pΩq : ψ � 0, ∇ψ � 0 on BΩ
(
. (4.5.15)

Hence, multiplying (4.4.24a) by ψ and using partial integration once or twice where necessary

we arrive at»
Ω

Btcεψ dx �
»
Ω

cεDε : D2ψ dx�
»
Ω

cεpAcεq �∇ψ dx� µ

»
Ω

cεp1� cr�1
ε qψ dx.

Using Lemmas 2.1.2 and 2.2.8 and (4.3.1), (4.4.1), (4.5.1), (4.5.2), (4.5.6), and (4.5.15), Hölder’s

inequality and the embedding of Lebesgue spaces we obtain the estimate����»
Ω

Btcεψ dx

���� ¤}Dε}pL8pΩqqn�n

ņ

i,j�1

»
Ω

|cε||ψxixj |dx� }∇H}pL8pB1qqn}cε}L1pΩq

»
Ω

|cε∇ψ|dx

� µ

»
Ω

pcε � crεq||ψ|dx

¤C18

ņ

i,j�1

}ψxixj
}
L

q
q�1 pΩq}cε}LqpΩq � }∇H}pL8pB1qqnC

2
12}∇ψ}pL8pΩqqn

� µpC12 � }cε}rLrpΩqq}ψ}L8pΩq
¤C22

�
}cε}rLrpΩq � }cε}LrpΩq � 1

	
}ψ}W 2

q
q�1

pΩq.

We conclude

}Btcε}W�2
q pΩq ¤ C22

�
}cε}rLrpΩq � }cε}LrpΩq � 1

	
(4.5.16)

Integration over p0, T q together with (4.5.2) yield (4.5.7).

With the obtained estimates at hand we can now proceed to establishing convergence.

Lemma 4.5.3. There exist c P L8p0,8;L1pΩqq and a sequence pεkq � p0, ε1q, εk Ñ 0, s.t.

cεk Ñ
kÑ8

c in L1
locpΩ� r0,8qq, (4.5.17)

a.e. in Ω� p0,8q. (4.5.18)

Proof. Let T ¡ 0, q P p1, n
n�1 q and consider a relatively open set B �� tD ¡ 0u. Thanks to

estimates (4.5.4) and (4.5.7), the dense embeddings

H1pBq ãÑãÑ L2pBq ãÑW�2
q pΩq,

where the latter holds due to our choice of q, and the Lions-Aubin lemma (Lemma A.3.9), every

subsequence pcεj qjPN has a subsequence that converges in L2pB � p0, T qq, and it can be chosen

such that it converges a.e. in B � p0, T q.
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Observe that since tD ¡ 0u is relatively open in the compact set Ω, there exists a sequence

pBiqiPN with Bi � Bi�1 of relatively open sets such that Bi �� tD ¡ 0u and tD ¡ 0u � �8
i�1Bi.

In view of this, we have

tD ¡ 0u � p0,8q �
8¤
i�1

Bi � p0, iq.

Together with a diagonal argument this description in the form of a countable union allows

to conclude from the above that there exist some c P L2
locptD ¡ 0u � r0,8qq and a sequence

pεkq � p0, ε1q that converges to zero and is such that

cεk Ñ
kÑ8

c a.e. in tD ¡ 0u � p0,8q. (4.5.19)

Since by (4.3.2f) the degeneracy set tD £ 0u has the n-dimensional Lebesgue measure zero,

(4.5.19) is equivalent to

cεk Ñ
kÑ8

c a.e. in Ω� p0,8q. (4.5.20)

Furthermore, due to (4.5.2) and r ¥ 2, the sequence pcεkqkPN is uniformly integrable on Ω�p0, T q
for all T ¡ 0 by the de la Vallée-Poussin theorem (Theorem A.3.6). Now

cεk Ñ
kÑ8

c in L1pΩ� p0, T qq for all T ¡ 0

and c P L1
locpΩ � r0,8qq follow with (4.5.20) and Vitali’s lemma (Lemma A.3.7). This implies

that for a.e. t P p0,8q we have

cεk Ñ
kÑ8

c in L1pΩq.

Hence, c P L8p0,8;L1pΩqq due to (4.5.1).

In preparation for the proof of existence of a very weak solution to (4.1.1) we still need one more

lemma that allows us to handle the nonlinear part of the reaction term in (4.4.24).

Lemma 4.5.4. Let pεkqkPN be as in Lemma 4.5.3. Then, for all T P p0,8q it holds that

crεk Ñ
kÑ8

cr in L1pΩ� p0, T qq (4.5.21)

and c P Lr
locpΩ� r0,8qq.

Proof. Let T P p0,8q and consider the sequence pcεkqkPN from Lemma 4.5.3. Fatou’s lemma

together with estimate (4.5.2) from Lemma 4.5.1 imply that» T

0

»
Ω

cr dx dt ¤ lim inf
kÑ8

» T

0

»
Ω

crεk dx dt ¤ C23pT q,

and so c P LrpΩ� p0, T qq.
Due to Lemma 4.2.4 and assumption (4.3.2f), there exists a family of functions pφδqδPp0,1q �
C8

c pRn; r0, 1sq satisfying (4.2.5) for K � tD £ 0u. We adopt the splitting

crεk � crεkp1� φδq � crεkφδ (4.5.22)

and next study the convergence of each of the terms separately.
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Step 1 (Convergence of the first term). For δ P p0, 1q we set

Bδ :� tD ¡ 0uzOδ
?
nptD £ 0uq.

Obviously, Bδ is relatively open and satisfies Bδ �� tD ¡ 0u. Arguing similar to the proof

of Lemma 4.5.3, we conclude with (4.5.5) in Lemma 4.5.2, (4.5.18) in Lemma 4.5.3, the de la

Vallée-Poussin theorem and Vitali’s lemma (Theorem A.3.6 and Lemma A.3.7) that

crεk Ñ
kÑ8

cr in L1pBδ � p0, T qq. (4.5.23)

Since φδ � 1 outside of Bδ due to (4.2.5b), (4.5.23) yields

crεkp1� φδq Ñ
kÑ8

crp1� φδq in L1pΩ� p0, T qq for all δ P p0, 1q. (4.5.24)

Furthermore, the integrability of cr together with (4.2.5f) and the uniform boundedness of pφδq
allow to conclude using the dominated convergence theorem that

crp1� φδq Ñ
δÑ0

cr in L1pΩ� p0, T qq. (4.5.25)

Step 2 (Convergence of the second term and conclusion). Due to (4.3.2e) and (4.2.5c), we have

supppφδq � O5δ
?
nptD £ 0uq �� Ω

for δ P p0, 1q sufficiently small. For such δ, we multiply (4.4.24a) by φδ and integrate over Ω,

once/twice by parts where necessary, so as to shift all spatial derivatives to φδ. Using Lem-

mas 2.1.2, 4.2.4, and 4.5.1 and (4.4.1) and Hoelder’s inequality, we estimate as follows:

d

dt

»
Ω

cεkφδ dx� µ

»
Ω

crεkφδ dx

¤µ
»
Ω

cεkφδ dx�
»
Ω

|cεkDεk : D2φδ|dx�
»
Ω

|cεkAcεk �∇φδ|dx

¤µ
»
Ω

cεkφδ dx� n2}Dεk}pL8pΩqqn�n}D2φδ}pL8pΩqqn�n

»
tD2φδ�0u

cεk dx

� }cεk}L8p0,8;L1pΩqq}∇H}pL8pB1qqn}∇φδ}pL8pΩqqn
»
t∇φδ�0u

cεk dx

¤µ
»
Ω

cεkφδ dx� �}D2φδ}pL8pΩqqn�n � }∇φδ}pL8pΩqqn
�
C24

»
supppφδq

cεk dx

¤µ
»
Ω

cεkφδ dx� δ�2|supppφδq|1� 1
rC25}cεk}LrpΩq.

We conclude from Gronwall’s and Hölder’s inequalities and Lemma 4.5.1 that»
Ω

cεkp�, T qφδ dx� µ

» T

0

»
Ω

crεkφδ dxdt

¤eµT
�»

Ω

c0εkφδ dx� δ�2|supppφδq|1� 1
rC25

» T

0

}cεk}LrpΩq dt

�

¤eµT
�»

Ω

c0εkφδ dx� δ�2|supppφδq|1� 1
r T 1� 1

rC25}cεk}LrpΩ�p0,T qq



¤eµT

�»
Ω

c0εkφδ dx� δ�2|supppφδq|1� 1
rC26pT q



for t P p0, T q. (4.5.26)

Combining (4.4.23) and (4.5.26), we find that

lim sup
kÑ8

» T

0

»
Ω

crεkφδ dxdt ¤ µ�1eµT
�»

Ω

c0φδ dx� δ�2|supppφδq|1� 1
rC26pT q



(4.5.27)
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for δ P p0, 1q. Due to the integrability of c0, (4.2.5f), the uniform boundedness of pφδq, and the

dominated convergence theorem we have

lim
δÑ0

»
Ω

c0φδ dx � 0. (4.5.28)

Together, (4.2.5g), (4.5.27), and (4.5.28) yield

crεkφδ Ñ
kÑ8

Ñ
δÑ0

0 in L1pΩ� p0, T qq. (4.5.29)

Finally, combining (4.5.22), (4.5.24), (4.5.25), and (4.5.29), we arrive at (4.5.21).

Remark 4.5.5. The assumptions n ¥ 3 and r ¡ n
n�2 from (4.3.1) are only required in the proof

of Lemma 4.5.4. Together with (4.3.2f), they ensure the existence of the φδs due to Lemma 4.2.4.

Finally, we can prove our main result on the existence of a very weak solution to the original

IBVP (4.1.1).

Proof of Theorem 4.3.4. Consider the sequence pcεkqkPN from Lemmas 4.5.3 and 4.5.4 and let

η P C2,1
c pΩ� r0,8qq with ∇η � pDνq � 0 on BΩ� p0,8q. Then, there is T P p0,8q s.t. η � 0 for

t ¥ T . We multiply (4.4.24a) by η and integrate over Ω � p0,8q, once or twice by parts where

necessary, using the boundary condition on η as well as (4.4.24b), and for all k P N conclude that

�
» 8

0

»
Ω

cεkBtη dx dt�
»
Ω

c0εkηp�, 0q dx

�
» 8

0

»
Ω

cεkDεk :D2η dxdt�
» 8

0

»
BΩ
cεk∇η � pDεkνq dσpxq dt

�
» 8

0

»
Ω

cεkpAcεkq �∇η dx dt� µ

» 8

0

»
Ω

cεkp1� cr�1
εk

qη dx dt. (4.5.30)

We first address convergence of pcεkq on BΩ � p0, T q. Observe that since Oa{2pBΩq X Ω is

open and precompact in tD ¡ 0u, we can make use of the uniform boundedness of pcεkqkPN
in L2p0, T ;H1pOa{2pBΩq X Ωqq due to (4.5.4) and convergence (4.5.17) and the Banach-Alaoglu

theorem, yielding

cεk á
kÑ8

c in L2p0, T ;H1pOa{2pBΩq X Ωqq. (4.5.31)

Using the continuity of the trace operator, we conclude with (4.5.31) that

cεk á
kÑ8

c in L2pBΩ� p0, T qq. (4.5.32)

Now convergences (4.4.3), (4.4.23), (4.5.17), (4.5.21), and (4.5.32) and continuity of the operator

A : L1pΩq Ñ pL8pΩqqn together with compensated compactness (Lemma A.3.2) allow to pass

to the limit in each term in (4.5.30), yielding (4.3.5).

4.6 Smooth very weak solutions are classical

In this final section we provide a justification for the very weak formulation (4.3.5). We show

that as in the case of Neumann boundary conditions for elliptic equations (see e.g., Theorem

2.2.2.5 in [72]) it holds for smooth D that any sufficiently smooth very weak solution in terms of

Definition 4.3.3 is also a classical solution to (4.1.1).
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Theorem 4.6.1. In addition to Assumptions 4.3.1, let

D P C2pΩ;Rn�nq,
c P C2,1pΩ� p0,8qq X CpΩ� r0,8qq,
c0 P CpΩq. (4.6.1)

Then, if c is a solution to (4.1.1) in the sense of Definition 4.3.3, then it solves this IBVP in

the classical sense.

Proof. Let

η P C2,1
c pΩ� r0,8qq s.t. ∇η � pDνq � 0 on BΩ� p0,8q. (4.6.2)

Then, there is T P p0,8q s.t. η � 0 for t ¥ T . Integrating by parts on both sides of (4.3.5), once

or twice where necessary, using the information about η on BΩ� p0,8q, yields» 8

0

»
Ω

Btcη dxdt�
»
Ω

pcp�, 0q � c0qηp0q dx

��
» 8

0

»
Ω

∇ � pcDq �∇η dxdt�
» 8

0

»
Ω

∇ � pcpAcqqη dxdt

� µ

» 8

0

»
Ω

cp1� cr�1qη dxdt�
» 8

0

»
BΩ
cpAcq � νη dσpxq dt

�
» 8

0

»
Ω

�
∇∇ : pcDq �∇ � pcpAcqq � µcp1� cr�1q� η dxdt

�
» 8

0

»
BΩ
p∇ � pDcq � cpAcqq � νη dσpxq dt. (4.6.3)

For the subset of η P C2,1
c pΩ� p0,8qq it holds that ηp0q � 0. Moreover, for such η the boundary

integral in (4.6.3) vanishes. Thus, the fundamental lemma of calculus of variations applies and

yields that c satisfies

Btc � ∇∇ : pDpxqcq �∇ � pcAcq � µcp1� cr�1q

pointwise in Ω � p0,8q. Considering the subset of η P C2,1
c pΩ � r0,8qq again the fundamental

lemma of calculus of variations that c satisfies the initial condition (4.1.1c) in Ω. Now we can

conclude from (4.6.3) that for all η satisfying (4.6.2) it holds that» 8

0

»
BΩ
p∇ � pDcq � cpAcqq � νη dσpxqdt � 0. (4.6.4)

Finally, we consider η of the form ηpx, tq � η1pxqη2ptq, where η1 P C2pΩq satisfies ∇η1 � pDνq � 0

on BΩ and η2 P C1
c pr0,8qq. Applying the fundamental lemma of calculus of variations w.r.t. to

time integration in (4.6.4) yields»
BΩ
p∇ � pDcq � cpAcqq � νη1 dσpxq � 0 for all t P p0, T q. (4.6.5)

The boundary condition (4.1.1b) now follows with (4.6.5), Lemma 4.6.2 below and the embedding

H1pΩq ãÑ L2pBΩq.

Lemma 4.6.2. Let D P C2pΩ;Rn�nq symmetric, D ¥ 0 with tD £ 0u X BΩ � H. Then, the set

tη P C2pΩq : ∇η � pDνq � 0 on BΩu

is dense in H1pΩq.
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Proof. Since D is continuous and positive definite on BΩ, it is positive definite in some open

neighbourhood of BΩ. Choose some symmetric B P C8
c pΩ;Rn�nq, B ¥ 0, and positive definite in

an open neighbourhood of tD £ 0u. Then,

D̃ :� D� B

satisfies

D � D̃

in some open neighbourhood of BΩ, is symmetric and there is some δ ¡ 0 s.t.

yT D̃pxqy ¥ δ|y|2 for all x P Ω, y P Rn.

On H1pΩq, consider the scalar product

xf, gy :� λ

»
Ω

fg dx�
»
Ω

p∇fqT D̃∇g dx (4.6.6)

for some λ ¡ 0. Since D̃ is smooth and positive definite in Ω, the norm induced by (4.6.6) is

equivalent to the standard norm on H1pΩq. Set

E :�tη P C2pΩq : ∇η � pDνq � 0 on BΩu
�tη P C2pΩq : ∇η � pD̃νq � 0 on BΩu.

We thus need to verify that the orthogonal complement of E w.r.t. the above scalar product in

H1pΩq only contains the zero vector. Assume the contrary, i.e., that

E
K � tξ P H1pΩq : xξ, ηy � 0 for all η P Eu � t0u.

Let ξ P EK
and ξ � 0. Then, as BΩ is sufficiently smooth, there is a sequence pξnqnPN � C8pΩq

s.t.

ξn Ñ
nÑ8 ξ in H1pΩq. (4.6.7)

Consider the sequence of elliptic BVPs

�∇ � pD̃∇unq � λun �ξn in Ω, (4.6.8a)

∇un � pD̃νq �0 on BΩ. (4.6.8b)

Lemma A.1.19 implies that for sufficiently large λ ¡ 0 there exists a unique solution un P C2pΩq
to (4.6.8) for all n P N, and punqnPN is uniformly bounded in H2pΩq. Consequently, due to the

continuity of the trace operator, the embeddings H2pΩq ãÑãÑ H1pΩq, H2pΩq ãÑ H1pBΩq and the

Banach-Alaoglu theorem there exist a sequence pnlqlPN and some u P H2pΩq s.t.

unl
á

lÑ8
u in H2pΩq, (4.6.9)

unl
Ñ

lÑ8
u in H1pΩq, (4.6.10)

unl
á

lÑ8
u in H1pBΩq. (4.6.11)

From (4.6.7) and (4.6.9)–(4.6.11) and as punq � E it follows that u P E and is a strong L2

solution to the BVP
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�∇ � pD̃∇uq � λu �ξ in Ω (4.6.12a)

∇u � pD̃νq �0 on BΩ. (4.6.12b)

Multiplying (4.6.12a) by ξ and integrating by parts using (4.6.12b) and the symmetry of D̃ then

yields

0 � xu, ξy � λ

»
Ω

uξ dx�
»
Ω

p∇uqT D̃∇ξ dx �
»
Ω

ξ2 dx.

This shows that ξ � 0, contradicting the above assumption. Therefore, E � H1pΩq, as required.



Part II

Nonlocal models with nonlocality

in the reaction term





CHAPTER 5

On a mathematical model for cancer invasion with

repellent pH-taxis and nonlocal intraspecific interaction

This chapter was first published in Volume 75 of Zeitschrift für Angewandte Mathematik und

Physik in 2024.1 The presentation has been adapted for use in this dissertation to clarify the

details of the proofs and guarantee consistency of the notation.

5.1 Motivation

Migration, proliferation, and differentiation of cells are influenced by biochemical and biophysical

characteristics of their surroundings, which they perceive by way of transmembrane units like ion

channels, receptors, etc. Increasing experimental evidence suggests that cells are able to sense

such cues not only where they are, but also at larger distances, up to several cell diameters around

their current position [71, 90, 130]. This led to mathematical models accounting for various types

of nonlocalities, most of them addressing cell-cell and/or cell-matrix adhesions; we refer to the

review article [28] and references therein. The settings typically involve reaction, diffusion and

drift terms, whereby the latter contain an integral operator to characterize the so-called adhesion

velocity over the interaction range. In Chapter 3 was performed a rigorous passage from a cell-

matrix adhesion model to a reaction-diffusion-haptotaxis equation when the sensing radius is

becoming infinitesimally small, thus recovering the local PDE formulation from that featuring

the mentioned nonlocality. The remote sensing of signals by cells affects, however, not only

motility, but also proliferation, growth, and phenotypic switch, either directly - by occupancy

of transmembrane units on cellular extensions like cytonemes and folopodia and subsequently

initiated signaling pathways, or in an indirect manner - as effects of altered migratory and

aggregation behavior. Models involving reaction-diffusion equations with nonlocal source terms

have been proposed in various contexts, including biological and ecological ones, see e.g., [87,

145] and references therein for rather generic settings, [13, 15, 129] for chemotaxis systems, and

[113, 136, 137] for equations dedicated to tumor growth. We refer to [28, 87, 145] for some

reviews of model classes addressing this type of nonlocality.

As far as growth and migration of cell populations are concerned, the reaction-diffusion models

with nonlocal source terms

ut � ∇ � pD∇uq � F puq (5.1.1)

1[49] The paper is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
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typically feature F puq � µJ � up1� uq to describe nonlocal stimulation of growth (see e.g., [137,

145]), or F puq � µuαp1 � J � uβq, which characterizes competition between (bunches of) cells

for available resources in their surroundings, attempting, e.g., to prevent overcrowding. In the

context of (tumor) cell migration such models have been handled e.g., in [136], where intra- and

interspecific nonlocal interactions led to an ODE-PDE system for the interplay between cancer

cells peforming linear diffusion and haptotaxis with the extracellular matrix being (nonlocally)

degraded by the cells and remodeled with the mentioned growth limitation. We also refer to

[28, 99] for short reviews of models with source terms of this type and therewith associated

mathematical challenges.

In this chapter we propose and analyze a model for tumor cell migration involving myopic

diffusion, repellent pH-taxis, and a nonlocal source term of the competition type mentioned

above. The cross-diffusion system is obtained upon starting from the mesoscopic description of

cell migration via a kinetic transport equation for the space-time distribution function of cells

sharing some velocity regime. An appropriate upscaling relying on diffusion dominance then leads

to the effective macroscopic equation for the cancer cell density, with precisely specified diffusion

and drift coefficients. The remaining of this chapter is structured as follows: Section 5.2 contains

the model deduction with the mentioned upscaling. Section 5.3 is dedicated to the mathematical

analysis of the obtained nonlocal macroscopic system, in terms of global existence, uniqueness,

and boundedness of a solution to a simplified version of the problem. In Section 5.4 we study

the asymptotic behavior. Section 5.5 offers a 1D study of pattern formation for the equations

handled in Section 5.3, but only involving constant motility coefficients. In Section 5.6 we

provide numerical simulations to illustrate the qualitative behavior of solutions to the investigated

nonlocal problem. Section 5.7 contains a discussion of the results.

5.2 Modeling

In this section we start from a mesoscopic description of cell migration and intrapopulation

interactions and deduce (in a non-rigorous way) effective equations on the macroscopic scale of

cell population dynamics. The deduction closely follows that in [99], however extends it, by

accounting here for the repellent effects of acidity eventually leading on the population scale to

chemorepellent pH-taxis.

Tumor migration and spread are typically assessed on the macroscopic scale of the cancer cell

population via biomedical imaging. The involved processes are, however, highly complex and

originate at the lower levels of cell aggregates sharing -beside time-space dynamics- one or several

further traits (e.g., velocity, phenotypic state or other so called ’activity variables’), down to

microscopic events on individual cells. This multiscale character of cell migration can be captured

(at least partially) by models within the kinetic theory of active particles (KTAP) framework

formulated by Bellomo et al. (see e.g., [8, 11] and references therein). Starting from kinetic

transport equations (KTEs), a large variety of (spatially) local and nonlocal models have been

proposed and various kinds of upscaling and moment closure methods have been performed in

order to deduce their macroscopic limits which enable a mathematically more efficient handling,

see e.g., [25, 27, 29–33, 42, 53–55, 78, 91, 92, 105, 155]. The obtained macroscopic equations

carry in the coefficients of their motility and source terms some of the traits from the mesoscale
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on which KTEs were formulated. Those coefficients are no longer ’guessed’ as in the case of

stating reaction-diffusion-taxis directly on the population level and the diffusion is often of the

’myopic’ type, involving a drift correction. We will perform here a diffusion-dominated upscaling

of mesoscale dynamics.

We will use the following notations:

� p � ppt, x, vq: distribution function of cells having at time t and position x P Rn the velocity

v P V ;

� V � rs1, s2s � Sn�1: velocity space. Thereby, s1, s2 denote the minimum, respectively the

maximum speed of a cell, θ P Sn�1 represents the cell direction;

� upt, xq � ³
V
ppt, x, vq dv: macroscopic cell density;

� hpt, xq: concentration of protons. This is a macroscopic quantity throughout this note.

The kinetic transport equation (KTE)

pt � v �∇xp � Lrhsp� µ̃Irp, ps (5.2.1)

characterizes the mesoscopic dynamics of the considered cell population. This is the frame-

work set in [116], which assumes that changes in p are due to velocity jumps accompanied by

reorientations dictated by a turning kernel contained in the operator Lrhs.
The first term on the right-hand side of (5.2.1) represents the so-called turning operator. The

second term describes growth/decay of cells due to intraspecific proliferative/competitive inter-

actions, while µ̃ ¡ 0 is the constant interaction rate.2 With a small constant ε ¡ 0 relating to

the cell size and to the distance at which cells can sense signals in their proximity, we will assume

that µ̃ � ε2µ. This means that cells have a much higher preference to motility (in particular, to

changing direction) than to interaction and crowding.

We assume that the turning operator is of the form

Lrhsppq �
»
V

�
T rhspv, v1qppt, x, v1q � T rhspv1, vqppt, x, vq

	
dv1, (5.2.2)

with the turning rate T rhspv, v1q ¥ 0 chosen such that the reorientation is a Poisson process with

rate

λrhs �
»
V

T rhspv, v1q dv,

hence such that T rhs{λrhs is a kernel giving the probability density for a change of the velocity

regime of a cell from v1 to v. In particular, this means that Lrhs is preserving mass. The

reorientation of cells depends on the acidity of their environment (expressed by the concentration

h of protons).

In the following we assume that the turning rate has an asymptotic expansion of the form

T rhs � T0rhs � εT1rhs �Opε2q, (5.2.3)

2We could actually consider µ̃ to be a function of x and/or t (but not of derivatives w.r.t. these variables) and

even of h. The latter would allow us to account e.g., for the unfavorable effect of acidity on the proliferation of

tumor cells. The deduction done here works then exactly in the same way. In fact, our analysis in Section 5.3 is

performed in the case where such h-dependence is considered.
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thus the turning operator admits itself an expansion

Lrhsppq :� L0rhsppq � εL1rhsppq �Opε2q, (5.2.4)

where L0rhs and L1rhs are linear operators,

Lirhsppqpt, x, vq �
»
V

rTirhspv, v1qppt, x, v1q � Tirhspv1, vqppt, x, vqs dv1, i � 0, 1. (5.2.5)

For I we consider as in [99] the form

Irp, pspt, x, vq � pαpt, x, vq³
V
Mαpx, vq dv

� 1³
V
Mα�βpx, vq dv

pαpt, x, vq
»
Ω

Jpx, x1qpβpt, x1, vq dx1, (5.2.6)

where: α, β ¡ 0 are constants, Jpx, x1q is a function weighting the interactions between (bunches

of) cells sharing the same velocity regime within a bounded domain Ω � Rn. We assume that

J depends on the distance between interacting (clusters of) cells and take Jpx, x1q � Jpx� x1q,
also requiring J to satisfy »

V

Jpxq dx � 1, (5.2.7)

inf
BdiampΩqp0q

J ¥ η for some η ¡ 0. (5.2.8)

We also assume that there exists a bounded velocity distribution Mpx, vq ¡ 0 such that:

1.
³
V
Mpx, vq dv � 1, i.e., M is a kernel w.r.t. v.

2.
³
V
vMpx, vq dv � 0, i.e., the flow produced by the equilibrium distribution Mpvq vanishes.

3. The rate T0rhspv, v1q satisfies the detailed balance equation

T0rhspv, v1qMpv1q � T0rhspv1, vqMpvq.

4. The turning rate T0rhspv, v1q is bounded and there exists σ ¡ 0 such that

T0rhspv, v1q ¥ σMpx, vq, for all pv, v1q P V � V, x P Rn, t ¡ 0.

The following lemma summarizing the properties of the operator �L0 can be easily verified (see

e.g., [10, 25]).

Lemma 5.2.1. Let L0rhs be the operator defined in (5.2.5). Then �L0rhs has the following

properties:

(i) �L0rhs is positive definite w.r.t. the scalar product and the associated norm in the weighted

space L2pV, dv
Mpx,vq q, and self-adjoint: for all p, ζ P L2pV, dv

Mpx,vq q it holds that»
V

L0rhsppqpvq ζpvq
Mpvq dv �

»
V

L0rhspζqpvq ppvq
Mpvq dv.

(ii) For ϕ P L2pV, dv
Mpx,vq q, the equation L0rhspζq � ϕ has a unique solution ζ P L2pV, dv

Mpx,vq q
satisfying3 ζ̄ � 0 if and only if ϕ̄ � 0.

3Here and in the remaining of this section we use the notation ζ̄ :�
³
V ζpvq dv for any V -integrable function ζ

(hence also u � p̄).
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(iii) Ker L0rhs � span pMpvqq.

(iv) The equation L0rhspψq � vMpvq has a unique solution ψpvq �: L0rhs�1pvMpvqq (this is

actually a pseudoinverse).

Example 5.2.2. Consider T0rhspv, v1q :� λ0rhsMpvq, with λrhs ¥ λ0rhs ¡ 0 for any h. This

obviously satisfies the properties 3. and 4. in our above assumption. With this choice,

L0rhsppq � λ0rhspMpvqu� pq (5.2.9)

and it is straightforward to see that this operator satisfies the properties in Lemma 5.2.1 and

the function ψ in (iv) becomes ψpvq � �vMpvq{λ0rhs if ψ P pspan pMpvqqqK.4

Equation (5.2.1) is supplemented with the macroscopic PDE for proton concentration:

ht � DH∆h� gpu, hq, (5.2.10)

where DH ¡ 0 is the diffusion constant and gpu, hq represents production by tumor cells and

uptake (e.g., by blood capillaries - not explicitly modeled in this note) or decay. As such, g

will have to be bounded; moreover, when there is no or very less acid its production is turned

on and sustained, whereas a high proton concentration exceeding some upper threshold level

H is leading to a drop in h, by enhanced (more or less passive) uptake by surrounding tissues

and vasculature and/or by ceased expression, due to hypoxia-induced apoptosis of (too crowded)

tumor cells. More details on the concrete assumptions made about gpu, hq are provided at the

beginning of Sections 5.3 and 5.5. A concrete choice of g is given at the beginning of Section 5.6.

We also consider initial conditions for p and h:

pp0, x, vq � p0px, vq, hp0, xq � h0pxq, x P Ω � Rn, v P V. (5.2.11)

Together with these, equations (5.2.1) and (5.2.10) form a meso-macro system describing the

dynamics of the (mesoscopic) cell distribution in response to acidity in the extracellular space.

We perform a parabolic scaling to obtain the diffusion limit of the KTE (5.2.1). This means that

we rescale the time and space variables as follows:

t̂ � ε2t, x̂ � εx.

Subsequently we will drop the ’ˆ’ symbol and the ε-dependency of the solution pε to the resulting

KTE, in order not to complicate the writing. Then, (5.2.1) becomes

εpt � v �∇xp � 1

ε
Lrhsp� µεIrp, ps. (5.2.12)

Now consider the decomposition (Chapman-Enskog expansion)

ppt, x, vq � F puqpt, x, vq � εpKpt, x, vq, (5.2.13)

with
³
V
pKpt, x, vq dv � 0, thus pK P pspan pMpvqqqK, and F puq P span pMpvqq such that³

V
F puq dv � u. A natural choice is F puqpt, x, vq :� Mpx, vqupt, xq, which we will subsequently

adopt.

4This is actually the case even if T0 has a more general form (depending only on v and not on v1) without

having to satisfy condition 2.
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Then observe that

Irp, ps � IrMpvqu� εpK,Mpvqu� εpKs � IrMpvqu,Mpvqus �Opεq

and (5.2.12) becomes

BtpMpvquq � εBtpK � 1

ε
v �∇xpMpvquq � v �∇xp

K

�1

ε
L0rhsppKq � 1

ε
L1rhspMpvquq � L1rhsppKq � µIrMpvqu,Mpvqus �Opεq. (5.2.14)

Let P : L2pV, dv
Mpvq q Ñ Ker L0rhs be the projection operator. Then

P pϕq �Mpvqϕ̄, ϕ P L2pV, dv

Mpvq q.

It is easy to verify that the following lemma holds (see, e.g., [10]).

Lemma 5.2.3. The projection operator P has the following properties:

(i) pI � P qpMpvquq � P ppKq � 0.

(ii) pI � P qpv �∇xpMpvquqq � v �∇xpMpvquq.

(iii) pI � P qpL0rhspMpvquqq � L0rhspMpvquq and pI � P qpL1rhspMpvquqq � L1rhspMpvquq.

(iv) pI � P qpL1rhsppKqq � L1rhsppKq.

If we now apply I � P to (5.2.14) we get

εBtpK � 1

ε
v �∇xpMuq � pI � P qpv �∇xp

Kq

�1

ε
L0rhsppKq � 1

ε
L1rhspMuq � L1rhsppKq � µIrMu,Mus �Opεq. (5.2.15)

Integrating (5.2.14) w.r.t. v gives (at leading order) the macroscopic PDE5

ut �
»
V

v �∇xp
K dv � µ

»
V

IrMu,Musdv. (5.2.16)

On the other hand, from (5.2.15) we obtain (again at leading order)

L0rhsppKq � v �∇xpMuq � L1rhspMuq. (5.2.17)

Since
³
V
L1rhspMuq dv � 0, we see that the integral w.r.t. v of the right-hand side in (5.2.17)

vanishes, so we can pseudo-invert L0rhs to obtain

pK � L0rhs�1
�
v �∇xpMuq � L1rhspMuq

	
. (5.2.18)

Plugging this into (5.2.16) gives

ut �
»
V

v �∇x

�
L0rhs�1pv �∇xpMuqq � L0rhs�1pL1rhspMuqq

	
� µ

»
V

IrMu,Mus dv. (5.2.19)

5involving nonlocalities w.r.t. velocity
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For the right-hand side in (5.2.19) we have

µ

»
V

IrMu,Musdv � µuαp1� J � uβq.

For the first transport term on the left-hand side we compute»
V

v �∇x

�
L0rhs�1pv �∇xpMuqq

	
dv � ∇x �

� 1

λ0rhs∇x �
� »

V

v b vMpvqdv u
		

� �∇x �
� 1

λ0rhs∇x � pD uq
	
,

where we applied the observations made at the end of Example 5.2.2 and denoted by

Dpxq :�
»
V

v b vMpx, vq dv

the diffusion tensor of tumor cells.

For the second transport term on the left-hand side of (5.2.19) we have

�
»
V

v �∇x

�
L0rhs�1pL1rhspMpvquqq

	
dv

��∇x �
»
V

vL0rhs�1pL1rhspMpvquqq dv

��∇x �
»
V

vMpvq 1

MpvqL0rhs�1pL1rhspMpvquqq dv

��∇x �
»
V

L0rhspψpvqq 1

MpvqL0rhs�1pL1rhspMpvquqq dv

��∇x �
� »

V

ψpvq
MpvqL1rhspMpvqq dv u

	
�∇x �

�
uΓrhs

	
,

where we used the fact that L0 is self-adjoint, ψpvq � �vMpvq is its pseudo-inverse, and the

notation

Γrhspxq :� 1

λ0rhs
»
V

vL1rhspMpx, vqq dv.

With the above calculations (5.2.19) becomes

ut �∇x �
� 1

λ0rhs∇x � pD uq
	
�∇x �

�
uΓrhs

	
� µuαp1� J � uβq. (5.2.20)

To specify Γrhs we consider6 T1rhspv, v1q :� �aphqv � ∇h � bphqv1 � ∇h with a, b ¥ 0. Then we

compute »
V

vL1rhspMpx, vqq dv � �aphqs
n�2
2 � sn�2

1

npn� 2q |Sn�1|In∇h� bphq
|V | D∇h,

recalling that V � rs1, s2s � Sn�1, thus |V | � sn2�sn1
n |Sn�1|. With the notation

Tpxq :� aphqs
n�2
2 � sn�2

1

npn� 2q |Sn�1| In � bphq
|V | D

we obtain

Γrhspxq � � 1

λ0rhsTpxq∇h,

6a similar choice has been proposed in [25]
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which leads to the macroscopic PDE

ut � ∇x �
� 1

λ0rhs∇x � pDpxquq
	
�∇x �

� u

λ0rhsTpxq∇h
	
� µuαp1� J � uβq. (5.2.21)

The particular choice λ0rhs :� 1, aphq :� 0, bphq :� |V | leads to the first equation in (5.3.1).

The first term on the right-hand side of (5.2.21) represents (myopic) diffusion, the second one

characterizes repellent chemotaxis, away from increasing gradients of proton concentration,7

while the last is a source term accounting for tumor cell growth enhanced or limited by intraspe-

cific interactions. Thereby, the growth rate µ can also depend on the proton concentration h, as

will actually be the case in the subsequent sections. The requirements it has to satisfy are bio-

logically motivated: cancer cells are able to survive and divide at far lower pH than normal cells

and tissue; this gives them an advantage in using resources, thus enabling and even enhancing

proliferation under mildly acidic conditions. However, when the proton concentration surpasses

a certain critical level8 the environmental conditions for cell division are so unfavorable, that tu-

mor cells are arrested in their cycle and cease proliferation. As growth rates cannot be negative

we account for an enviromental-mediated decay by way of the (nonlocal) competition term, as

the crowded tumor environment is the main source of acidity.

The above deduction of a macroscopic reaction-diffusion-taxis is merely formal; the nonlinear

source term prevents applying the proof of the rigorous derivation from [25]. The following

section will be dedicated to proving global existence and boundedness of nonnegative solutions

to the coupled PDE system for u and h obtained on the macrolevel by considering the above

much simplified forms of the coefficient functions λ0, a, b. The previous calculations were made

for x P Rn, however we can restrict to a bounded domain Ω � Rn upon proceeding as in [33, 42,

124] and assuming no-flux of cells or protons through the boundary.

5.3 Mathematical analysis

Let Ω � Rn be a bounded domain with smooth enough boundary and outer unit normal ν. We

consider the model$''''''&''''''%

ut � ∇∇ : pDpxquq �∇ � pDpxqu∇hq � µphquαp1� J � uβq in Ω� p0,8q,
ht � DH∆h� gpu, hq in Ω� p0,8q,
pDpxq∇u�∇ � Dpxqu� Dpxqu∇hq � ν � ∇h � ν � 0 on BΩ� p0,8q,
up�, 0q � u0, hp�, 0q � h0 in Ω,

(5.3.1)

where u denotes the cell density and h the acid concentration. We assume that our diffusion

tensor D � pdijqi,j�1,...,n satisfies dij P C1pΩq. Moreover, D satisfies the uniform parabolicity

and boundedness condition, i.e., there are B1, B2 ¡ 0 such that for all ξ P Rn and x P Ω it holds

that

B1|ξ|2 ¤
ņ

i,j�1

dijpxqξjξi ¤ B2|ξ|2. (5.3.2)

7as in [31, 33, 89, 91, 92] we call this a repellent pH-taxis
8denoted by H in the assumptions at the beginning of Section 5.3
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The exponents α, β ¥ 1 satisfy (as in [99])

α  
$&% 1� β, n � 1, 2,

1� 2β
n , n ¡ 2.

(5.3.3)

On the remaining functions and parameters we make the subsequent assumptions:

� u0 P CpΩq and u0 ¥ 0,

� h0 PW 1
8pΩq and 0 ¤ h0 ¤ H, h0 � H, where H is a positive constant,

� µ is Lipschitz-continuous with constant Lµ, satisfying 0 ¤ µ and 0   δ ¤ µphq for h ¤ H,

� g P C1pR�
0 �R�

0 q with ∇g P pL8pR�
0 �R�

0 qq2, 0 ¤ gpu, 0q ¤ G and gpu,Hq ¤ 0 for u P R�
0 ,

� J P LppBq for B :� BdiampΩqp0q and some p P p1,8q and 0   η ¤ J ,

� DH ¡ 0.

5.3.1 Local existence in an approximate problem

The Stone-Weierstraß theorem implies that there is a sequence pu0lqkPN � C0,1pΩq, u0l ¥ 0 and

u0l Ñ
lÑ8

u0 in CpΩq (5.3.4)

and a sequence of diffusion tensors pDlqlPN with Dl � pdlijqi,j�1,...,n s.t. dlij P C2�ϑpΩq for

ϑ P p0, 1q and

Dl Ñ
lÑ8

D in C1pΩ;Rn�nq. (5.3.5)

Moreover, Dl satisfies the uniform parabolicity condition for all l P N, i.e., there are D1 P p0, B1q
and D2 P pB2,8q such that for all ξ P Rn, x P Ω and l P N it holds that

D1|ξ|2 ¤
ņ

i,j�1

dlijpxqξjξi ¤ D2|ξ|2. (5.3.6)

For l P N we consider the approximate problem$''''''&''''''%

Btul � ∇∇ : pDlpxqulq �∇ � pDlpxqul∇hlq � µphlquαl p1� J � uβl q in Ω� p0,8q,
Bthl � DH∆hl � gpul, hlq in Ω� p0,8q,
pDlpxq∇ul �∇ � Dlpxqul � Dlpxqul∇hlq � ν � ∇hl � ν � 0 on BΩ� p0,8q,
ulp�, 0q � u0l, hp�, 0q � h0 in Ω.

(5.3.7)

Lemma 5.3.1. For all l P N there are Tmax ¡ 0 and a weak solution pul, hlq of (5.3.7) with

ul ¥ 0 s.t. ul P CpΩ � r0, T sqq X L2p0, T ;H1pΩqq and hl P L8p0, T ;W 1
8pΩqq XW 2,1

2 pΩ � p0, T qq
for all T P p0, Tmaxq and pul, hlq satisfies

�
» T

0

»
Ω

ulηt dx dt�
» T

0

»
Ω

p∇ � Dlul � Dl∇ul � Dlul∇hlq �∇η dx dt

�
» T

0

»
Ω

µphlquαl p1� J � uβl qη dx dt�
»
Ω

u0lpxqηpx, 0q dx, (5.3.8)
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for all η PW 1,1
2 pΩ� p0, T qq with ηpT q � 0 and

Bthl � DH∆hl � gpul, hlq a.e. in Ω� p0, Tmaxq, (5.3.9a)

∇hl � ν � 0 a.e. on BΩ� p0, Tmaxq, (5.3.9b)

hlp0q � h0 in H1pΩq. (5.3.9c)

Moreover, it holds either Tmax � 8 or Tmax   8 and

lim
tÕTmax

�}ulp�, tq}L8pΩq � }hlp�, tq}W 18pΩq
� � 8. (5.3.10)

Proof. Fix l P N. We set M :� }u0l}L8pΩq   8. For h   0 and u ¥ 0 extend the coefficients by

gpu, hq :� 2gpu, 0q � gpu,�hq and µphq :� µp�hq.

We show the existence of a solution pul, hlq of (5.3.7) in the sense of (5.3.8) and (5.3.9a)-(5.3.9c)

by showing the existence of a fixed-point of the operator F introduced below similarly to [138].

Namely, we define for some small enough T P p0, 1q the set

S :� tu P L8pΩ� p0, T qq : 0 ¤ u ¤M � 1 a.e. in Ω� p0, T qu.

For u P S we consider the IBVPs$'''&'''%
Btul � ∇∇ : pDlpxqulq �∇ � pDlpxqul∇hlq � µphlquα�1p1� J � uβqul in Ω� p0, T q,
pDlpxq∇ul �∇ � Dlpxqul � Dlpxqul∇hlq � ν � 0 on BΩ� p0, T q,
ulp�, 0q � u0l in Ω,

(5.3.11)

and $'''&'''%
Bthl � DH∆hl � gpu, hlq in Ω� p0, T q,
∇hl � ν � 0 on BΩ� p0, T q,
hlp�, 0q � h0 in Ω.

(5.3.12)

Here, T can be chosen independent of u.

Let q ¡ maxt2, nu. Consider the space

X :�
!
h P L8p0, T ;W 1

q pΩqq : |h| ¤ C1}h0}W 1
q pΩq � 1

)
,

where C1 depends on the Sobolev embedding constant from Lemma 2.2.8(ii), the constant from

Poincaré inequality and from the constants in Lemma A.1.18(ii) and (iii). For h P X we set

Ψphqptq :� etDH∆h0 �
» t

0

ept�sqDH∆gpu, hq ds.

Using estimates from Lemma A.1.18 it follows that Ψ defines a contraction on X for small enough

T . With a Banach fixed-point argument in X similar to [85] we conclude that there is a unique

hl P X that satisfies

hlptq � Ψphlqptq � etDH∆h0 �
» t

0

ept�sqDH∆gpu, hlq ds. (5.3.13)
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Moreover, hl is the unique weak solution of (5.3.12) in the sense of Theorem A.1.1, i.e., for all

η PW 1,1
2 pΩ� p0, T qq with ηpT q � 0 it holds that

�
» T

0

»
Ω

hlηt dxdt�DH

» T

0

»
Ω

∇hl �∇η dxdt �
» T

0

»
Ω

gpū, hlqη dxdt�
»
Ω

h0pxqηpx, 0q dx.

(5.3.14)

Estimating as in Lemma 5.3.3 below it follows from Lemma A.1.18(ii) and (iii) that

}∇hl}L8p0,T ;pL8pΩqqnq ¤ C2. (5.3.15)

Moreover, from Theorem A.1.8 applied to the equation in non-divergence form we conclude that

}hl}W 2,1
2 pΩ�p0,T qq ¤ C3 (5.3.16)

and solves (5.3.12) in the sense of (5.3.9a) - (5.3.9c). Moreover, the continuity of hl follows from

Remark A.1.2 and Theorem A.1.12 with

ap∇hlq :� DH∇hl, bpx, t, hlq :� �gpu, hlq (5.3.17)

due the embedding of W 1
8pΩq into some Hölder space on Ω from Lemma 2.2.8(ii). Now, Theo-

rems A.1.1 and A.1.4 with

aijpxq :� dlijpxq,

aipx, tq :�
ņ

j�1

�pdlijqxj � dlijphlqxj

�
,

apx, tq :� �µphlquα�1p1� J � uβq,
f :� 0 (5.3.18)

(that are due to (5.3.5), (5.3.15), Lemma 2.3.2 and the Lipschitz continuity of µ all bounded

in L8pΩ� p0, T qq by constants independent from u) imply that there is a unique weak solution

ul P Cpr0, T s;L2pΩqq X L2p0, T ;H1pΩqq of (5.3.11) satisfying

�
» T

0

»
Ω

ulηt dxdt�
» T

0

»
Ω

p∇ � Dlul � Dl∇ul � Dlul∇hlq �∇η dxdt

�
» T

0

»
Ω

µphlquα�1p1� J � uβqulη dxdt�
»
Ω

u0lpxqηpx, 0q dx (5.3.19)

for all η P W 1,1
2 pΩ � p0, T qq with ηpT q � 0 and }ul}L8pΩ�p0,T qq ¤ C4. Moreover, we conclude

from Remark A.1.2 and Theorem A.1.12 with

apx, t, u,∇uq :� Dl∇u�∇ � Dlu� Dlu∇hl,

bpx, t, uq :� �µphlquα�1p1� J � uβqu (5.3.20)

requiring the conditions of the theorem especially due to (5.3.6) and the boundedness of the

coefficients that

}ul}Cκ, κ
2 pΩ�r0,T sq ¤ C5 (5.3.21)

for some κ P p0, 1q and C5 depending on l. Hence, we can estimate for x P Ω and t P p0, T q that

ulpx, tq � u0lpxq � t
κ
2
ulpx, tq � u0lpxq

t
κ
2

¤M � T
κ
2C5 ¤M � 1
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holds for a small enough T . We conclude as for (5.3.26) below with pulq� :� maxt0,�ulu that

for t P p0, T q it holds that

1

2
}pulq�ptq}2L2pΩq �

D1

2

» t

0

}∇pulq�}2pL2pΩqqn ds ¤ C6

» t

0

}pulq�}2L2pΩq ds.

Then, Gronwall’s inequality implies that ul ¥ 0 and ul P S X Cκ,κ2 pΩ � r0, T sq. Note that C2,

C3, C4 and C5 and consequently also the choice of T are independent from u and k. Hence, the

operator

F : S ÞÑ S, u ÞÑ ul,

where ul solves (5.3.11) for u in the sense of (5.3.19), is well-defined. Moreover, due to the

compact embedding Cκ,κ2 pΩ � r0, T sq ãÑãÑ CpΩ � r0, T sq that is a consequence of the Arzelà-

Ascoli theorem, F maps bounded sets on precompact ones. To apply Schauder’s fixed-point

theorem (Theorem A.2.2) it remains to show that F is closed and, consequently, a compact

operator. Consider a sequence pumqmPN s.t.

um Ñ
mÑ8 u in L8pΩ� p0, T qq, (5.3.22)

ulm :� F pumq Ñ
mÑ8 ul in L8pΩ� p0, T qq. (5.3.23)

We want to show that F puq � ul.

Let hlm be the solution of (5.3.12) that corresponds to um for m P N. From the equation of form

(5.3.19) for ulm we conclude with Lemma A.1.3 that for a.e. t P p0, T q it holds that

1

2
}ulmp�, tq}2L2pΩq �

» t

0

»
Ω

p∇ � Dlulm � Dl∇ulm � Dlulm∇hlmq �∇ulm dxds

�
» t

0

»
Ω

µphlmquα�1
m p1� J � uβmqu2lm dxds� 1

2
}u0l}2L2pΩq. (5.3.24)

Using Hölder’s and Young’s inequalities, (5.3.5) and (5.3.15), we estimate����»
Ω

Dlulm∇hlm �∇ulm dx

���� ¤ C2}Dl}pL8pΩqqn�n}ulm}L2pΩq}∇ulm}pL2pΩqqn

¤ C7}ulm}2L2pΩq �
D1

2
}∇ulm}2pL2pΩqqn . (5.3.25)

Inserting this into (5.3.24) and using (5.3.5) and (5.3.6), Lemma 2.3.2, Young’s inequality, the

boundedness of hl and the Lipschitz-continuity of µ, we conclude that for a.e. t P p0, T q it holds

1

2
}ulmp�, tq}2L2pΩq �

D1

4

» t

0

}∇ulm}2pL2pΩqqn ds ¤ C8

» t

0

}ulm}2L2pΩq � C9. (5.3.26)

From Gronwall’s inequality it follows that }∇ulm}L2p0,T ;pL2pΩqqnq ¤ C10pT q for all m P N. Com-

bining this with the fact that hlm P X, (5.3.15) and (5.3.16) we conclude from the Lions-

Aubin lemma (Lemma A.3.9) and the Banach-Alaoglu theorem (Lemma A.3.1) that there is

hl P L8p0, T ;W 1
8pΩqq XW 2,1

2 pΩ� p0, T qq s.t. for a subsequence

∇ulmo
á

oÑ8 ∇ul in L2p0, T ; pL2pΩqqnq, (5.3.27)

hlmo á
oÑ8 hl in L2p0, T ;H2pΩqq, (5.3.28)

hlmo
Ñ

oÑ8 hl in L2p0, T ;H1pΩqq and a.e. in Ω� p0, T q, (5.3.29)
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Bthlmo
á

oÑ8 Bthl in L2pΩ� p0, T qq. (5.3.30)

Therefore, due to (5.3.22) and (5.3.28)–(5.3.30), the Lipschitz-continuity of g, the dominated

convergence theorem and the fundamental lemma of calculus of variations it follows that hl is a

solution of (5.3.12) in the sense of (5.3.9a)-(5.3.9c). Moreover, (5.3.5), (5.3.22), (5.3.23), (5.3.27),

and (5.3.29), the Lipschitz-continuity of µ and the dominated convergence theorem imply that

ul is a solution of (5.3.11) in the sense of (5.3.8), and therefore, F puq � ul and F is a compact

operator. Consequently, by Schauder’s fixed-point theorem we obtain the existence of a fixed-

point ul of F , that satisfies for all η P W 1,1
2 pΩ � p0, T qq with ηpT q � 0 the weak formulation

(5.3.8).

Finally, for such pair property (5.3.10) follows from a standard extensibility argument.

Theorem 5.3.2. There is Tmax P p0,8s and a solution pul, hlq of (5.3.7) with 0 ¤ ul and

0 ¤ hl H and

ul, hl P CpΩ� r0, Tmaxqq X C2,1pΩ� p0, Tmaxqq. (5.3.31)

The solution is unique if p ¥ 2n
n�2 for n ¥ 3 and p P p1,8q for n � 1, 2.

Proof. 1. Regularity: Let l P N, 0   T1   Tmax and consider the weak solution pul, hlq from

Lemma 5.3.1. Again from Remark A.1.2 and Theorem A.1.12 with a and b as in (5.3.17) and

(5.3.20), respectively, it follows that ul P Cλ,λ2 pΩ � p0, T1sq and hl P Cλ,λ2 pΩ � r0, T1sq for some

λ P p0, 1q. Combining this with the Lipschitz continuity of g, Theorem A.1.5 with aii :� DH and

f :� �gpu, hq and all other coefficients equal to zero implies hl P C2�λ,1�λ
2 pΩ� p0, T1qq.

Let t0 P p0, T!q. We consider ξ P C8pR, r0, 1sq satisfying ξ � 0 on p�8, t02 s and ξ � 1 on rt0,8q.
Then, h̃px, tq :� hlpx, tqξptq PW 2,1

2 pΩ� p0, T1qq is a strong solution of the IBVP$'''&'''%
Bth̃ � DH∆h̃� gpul, hlqξ � hlξ

1 in Ω� p0, T1q,
Bν h̃ � 0 on BΩ� p0, T1q,
h̃p�, 0q � 0 in Ω.

Due to the Lipschitz continuity of g and the boundedness of ul on Ω � r0, T1s, Theorem A.1.13

with

ap∇hlkq :� DH∇hlk,

bpx, tq :� �gpulpx, tq, hlpx, tqqξptq � hlpx, tqξ1ptq

especially implies that ∇h̃ P CpΩ � r0, T1s,Rnq and consequently, hl is a classical solution of

the nonhomogeneous heat equation in (5.3.7) on Ω � p0, T1q. Finally, using again the Lipschitz

continuity of g and the Hölder continuity of ul and hl, Theorem A.1.7 implies that h̃ is also in

C2,1pΩ� r0, T1sq which leads to hl P C2,1pΩ� p0, Tmaxqq. Analogously, ul P C2,1pΩ� p0, Tmaxqq
follows.

The boundedness by H of hl follows applying Proposition A.1.14 on Ω�p0, T1q using the bound-

edness of hl on the closure of this set, the fact that h PW 2,1
2 pΩ� p0, T1qq, our assumptions on g

and the estimate

Btphl �Hq �DH∆phl �Hq � gpul, hlq � Bhgpζqphl �Hq � gpul, Hq ¤ Bhgpζqphl �Hq
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that holds for all px, tq P Ω�p0, T1q for some ζpx, tq P phlpx, tq, Hq due to the mean value theorem.

Analogously, the nonnegativity of h follows.

2. Uniqueness: Let p ¥ 2n
n�2 for n ¥ 3 or p P p1,8q for n � 1, 2. With an ansatz similar

to [13] we want to show the uniqueness of the solution. Assume that there are two solutions

pu1, h1q, pu2, h2q of (5.3.7) for l P N with the regularity from (5.3.31). The functions h1 and h2

satisfy

Btph1 � h2q � DH∆ph1 � h2q � gpu1, h1q � gpu2, h2q

in Ω � p0, T1q. We multiply this equation by h1 � h2 and integrate over Ω. Then, using partial

integration, the Lipschitz continuity of g, and Young’s inequality we conclude from Gronwall’s

inequality that

}h1 � h2}L8p0,t;L2pΩqq, }∇ph1 � h2q}L2p0,t;pL2pΩqqnq ¤ C11pT1q}u1 � u2}L2pΩ�p0,tqq (5.3.32)

for t P p0, T1q. Moreover, we can rewrite

Btpu1 � u2q �∇∇ : pDlpu1 � u2qq �∇ � pDlpu1∇h1 � u2∇h2qq
� µph1quα1 p1� J � uβ1 q � µph2quα2 p1� J � uβ2 q

�∇∇ : pDlpu1 � u2qq �∇ � pDlpu1 � u2q∇h1q �∇ � pDlu2∇ph1 � h2qq
� pµph1q � µph2qquα1 p1� J � uβ1 q � µph2qpuα1 � uα2 qp1� J � uβ1 q
� µph2quα2 J � puβ2 � uβ1 q. (5.3.33)

With the boundedness of u2 on Ω�p0, T1q by some C12pT1, lq ¡ 0, Hölder’s inequality, the mean

value theorem and the Sobolev embedding from Lemma 2.2.8(i) we estimate

|J � puβ2 � uβ1 q| ¤βCβ�1
12 pT1, lq

»
Ω

|Jpx� yq||u1pyq � u2pyq| dy

¤βCβ�1
12 pT1, lq}J}LppBq}u1 � u2}

L
p

p�1 pΩq ¤ C13pT1, lq}u1 � u2}H1pΩq. (5.3.34)

Again, we multiply (5.3.33) by u1 � u2 and integrate over Ω for t P p0, T1q. Then, using partial

integration together with Young’s and Hölder’s inequality, the mean value theorem, the Lipschitz

continuity of µ, Lemma 2.3.2(i), the boundedness of u1 and u2, the boundedness of ∇h1 by some

C14pT1, lq ¡ 0 and (5.3.6) and (5.3.34), it follows that

1

2

d

dt
}u1 � u2}2L2pΩq �D1}∇pu1 � u2q}2pL2pΩqqn

¤�
»
Ω

∇ � Dlpu1 � u2q∇pu1 � u2q � pu1 � u2qpDl∇h1q �∇pu1 � u2q

� u2pDl∇ph1 � h2qq �∇pu1 � u2q dx

�
»
Ω

rpµph1q � µph2qquα1 p1� J � uβ1 q � µph2qpuα1 � uα2 qp1� J � uβ1 q

� µph2quα2 J � puβ2 � uβ1 qspu1 � u2q dx

¤p}∇ � Dl}pL8pΩqqn � }Dl}pL8pΩqqn�n}∇h1}pL8pΩqqnq
»
Ω

|u1 � u2||∇pu1 � u2q|dx

� }Dl}pL8pΩqqn�nC12pT1, lq
»
Ω

|∇ph1 � h2q||∇pu1 � u2q|dx

� LµC
α
12pT1, lqp1� }J}L1pBqC

β
12pT1, lqq

»
Ω

|h1 � h2||u1 � u2|dx
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� }µ}L8p0,HqαC
α�1
12 pT1, lqp1� }J}L1pBqC

β
12pT1, lqq

»
Ω

|u1 � u2|2 dx

� }µ}L8p0,HqCα
12pT1, lqC13pT1, lq}u1 � u2}H1pΩq

»
Ω

|u1 � u2|dx

¤C15pT1, lq
�
}u1 � u2}2L2pΩq � }h1 � h2}2L2pΩq � }∇ph1 � h2q}2pL2pΩqqn

	
�D1}∇pu1 � u2q}2pL2pΩqqn .

Integrating over p0, tq for t P p0, T1q and using (5.3.32) we conclude that for a.e. t P p0, T1q it

holds that

}u1 � u2}2L2pΩq ¤C16pT1, lq
�» t

0

}u1 � u2}2L2pΩq � }∇ph1 � h2q}2pL2pΩqqn � }h1 � h2}2L2pΩq



¤C17pT1, lq

» t

0

}u1 � u2}2L2pΩq dt.

Consequently, combining this with Gronwall’s inequality and (5.3.32) implies that u1 � u2 and

h1 � h2 a.e. on Ω� p0, T1q.

5.3.2 Global existence and boundedness of u in the approximate prob-

lem

Lemma 5.3.3. There is a positive constant C18 independent from l s.t.

}∇hl}L8p0,Tmax;pL8pΩqqnq ¤ C18

holds for all l P N.

Proof. Let l P N. We have shown in Lemma 5.3.1 that hl satisfies

hlptq � Ψphlqptq � etDH∆h0 �
» t

0

ept�sqDH∆gpul, hlq ds

for t P p0, Tmaxq. With Lemma A.1.18(ii) and (iii) and (5.3.13) we estimate that

}∇hlptq}pLqpΩqqn ¤K12e
�λ1DHt}∇h0}pLqpΩqqn

�K11|Ω|
1
q

» t

0

�
1� 1

pDHpt� sqq 1
2



e�λ1DHpt�sq}gpul, hlq}L8pR�0 �R�0 q ds

holds for all q P p1,8q, where λ1 is the first positive eigenvalue of �∆ on Ω with Neumann

boundary condition. Using the properties of g, the uniform boundedness of phlq and Hölder’s

inequality, we conclude that

}∇hlptq}pLqpΩqqn ¤K12|Ω|
1
q }∇h0}pL8pΩqqn

�K11|Ω|
1
q p}Bhg}L8pR�0 �R�0 qH �Gq

» t

0

�
1� 1

pDHpt� sqq 1
2



e�λ1DHpt�sq ds

¤K12|Ω|
1
q }∇h0}pL8pΩqqn �

K11|Ω|
1
q p}Bhg}L8pR�0 �R�0 qH �Gq

DH

�
1

λ1
�

?
π?
λ1



.

Consequently,

}∇hl}pL8pΩqqn � lim
qÑ8 }∇hl}pLqpΩqqn
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¤K12}∇h0}pL8pΩqqn �
K11p}Bhg}L8pR�0 �R�0 qH �Gq

DH

�
1

λ1
�

?
π?
λ1



�: C18

We will show the global boundedness of ul as in the proof of Theorem 1.1 in [99]. For a more

detailed proof of the boundedness of the corresponding solution see Chapter 6, where the same

method will be used.

Lemma 5.3.4. For all l P N and q P r1,8q it holds that ul P L8p0, Tmax;LqpΩqq.

Proof. Let l P N and q ¡ maxt1, β�α�1u. Due to (5.3.31) the terms in the estimates below are

well-defined for a.e. t P p0, Tmaxq. Multiplying the first equation of (5.3.7) by quq�1
l , integrating

over Ω and using partial integration, we obtain

d

dt

»
Ω

uql dx �q
»
Ω

∇ � pDl∇ul � p∇ � Dlqul � Dlul∇hlquq�1
l � µphlquq�1�α

l p1� J � uβl q dx

�� qpq � 1q
»
Ω

uq�2
l pDl∇ulq �∇ul � uq�1

l p∇ � Dlq �∇ul � uq�1
l pDl∇hlq �∇ul dx

� q

»
Ω

µphlquq�1�α
l p1� J � uβl qdx. (5.3.35)

Using the uniform parabolicity of Dl and ∇u
q
2 � q

2u
q
2�1∇u, we estimate

qpq � 1q
»
Ω

uq�2
l pDl∇ulq �∇ul dx � 4pq � 1q

q

ņ

i,j�1

»
Ω

dlij

�
u

q
2

l

	
xi

�
u

q
2

l

	
xj

dx

¥ 4pq � 1q
q

D1

»
Ω

|∇u
q
2

l |2 dx.

Further, due to Young’s inequality and Lemma 5.3.3 we obtain the estimate

qpq � 1q
����»

Ω

uq�1
l p∇ � Dlq �∇ul � uq�1

l pDl∇hlq �∇ul dx

����
¤2pq � 1q �}∇ � Dl}pL8pΩqqn � }Dl}pL8pΩqqn�n}∇hl}pL8pΩqqn

� »
Ω

u
q
2

l |∇u
q
2

l |dx

¤2pq � 1q
q

D1

»
Ω

|∇u
q
2

l |2 dx

� qpq � 1q
D1

�
}∇ � Dl}2pL8pΩqqn�n � }Dl}2pL8pΩqqn�nC2

18

	 »
Ω

uql dx.

Inserting these estimates into (5.3.35) and using our assumptions on µ and J , the boundedness

of hl, and »
Ω

uql dx ¤
»
Ω

uq�α�1
l dx� |Ω|, (5.3.36)

it follows that

d

dt

»
Ω

uql dx� 2pq � 1q
q

D1

»
Ω

|∇u
q
2

l |2 dx� qηδ

»
Ω

uq�1�α
l dx

»
Ω

uβl dx

¤qC19pq, lq
�»

Ω

uq�1�α
l dx� |Ω|



, (5.3.37)
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where

C19pq, lq :� q � 1

D1

�
}∇ � Dl}2pL8pΩqqn � }Dl}2pL8pΩqqn�nC2

18

	
� }µ}L8p0,Hq.

Adding qC19pq, lq}ul}qLq on both sides of (5.3.37) and using (5.3.36) one more time, we obtain

d

dt

»
Ω

uql dx� qC19pq, lq
»
Ω

uql dx� 2
q � 1

q
D1

»
Ω

|∇u
q
2

l |2 dx� qδη

»
Ω

uq�1�α
l dx

»
Ω

uβl dx

¤2qC19pq, lq
�»

Ω

uq�1�α
l dx� |Ω|



. (5.3.38)

It follows from Lemma A.4.1 with K18 � 2C19

D1
and K22 � 2C19

δη that

2qC19pq, lq
»
Ω

uq�1�α
l ¤2

q � 1

q
D1

»
Ω

|∇u
q
2

l |2 dx� qδη

»
Ω

uq�1�α
l dx

»
Ω

uβl dx

� 2qC19pq, lqK23pq, lq,

where

K23pq, lq :�
�

2

�
2K2

21q
2C19pq, lq

pq � 1qD1


 q�α�1�β

q�α�1�β�2
q�α�1�β

s �K24pqq
q�α�1�β

q� q�α�1�β
s

� q�α�1�β� 2pq�α�1�βq
s

β�1�α� 2β
s

�
�

2C19pq, lq
δη


 q� 2pq�α�1q
s

β�1�α� 2β
s K24pqq

q�α�1�β

q� q�α�1�β
s

with

K21 :� 2KSpsqp1� 2KP q,
K24pqq :� 4KSpsq|Ω|

1
2� q

q�α�1�β .

Here, KSpsq ¡ 0 denotes the Sobolev embedding constant fromH1pΩq into LspΩq from Lemma 2.2.8(i),

KP ¡ 0 the constant from the Poincaré inequality, and

s

$'''&'''%
� 8, n � 1,

P
�

2pq�α�1�βq
q�α�1�β ,8

	
, n � 2,

� 2n
n�2 , n ¡ 2.

(5.3.39)

Hence, for t P p0, Tmaxq we conclude that

d

dt
}ul}qLqpΩq � qC19pq, lq}ul}qLqpΩq ¤ 2qC19pq, lqpK23pq, lq � |Ω|q (5.3.40)

and obtain for t P p0, Tmaxq from (5.3.40) and setting K14 � qC19 and K15 � 2pK23 � |Ω|q in

Lemma A.1.20 the upper bound

}ulp�, tq}LqpΩq ¤ q

b
2K23pq, lq � 2|Ω| � }u0l|qLqpΩq ¤ q

c
2K23pq, lq � |Ω|

�
2� }u0l}qL8pΩq

	
.

(5.3.41)

Remark 5.3.5. As in [99] we cannot directly conclude from Lemma 5.3.4 that ul is bounded

on Ω� p0, Tmaxq as

lim
qÑ8

q

c
2K23pq, lq � |Ω|

�
2� }u0l}qL8pΩq

	
� 8
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due to ����
q2C19pq, lq
q � 1


 q�α�1�β

q�α�1�β�2
q�α�1�β

s

� q�α�1�β� 2pq�α�1�βq
s

β�1�α� 2β
s

��
1
q

¥p}µ}L8p0,Hqqq
1
q � q�α�1�β

β�1�α� 2β
s �

�
p}µ}L8p0,Hqqq1�

α�1�β
q

	 1

β�1�α� 2β
s Ñ

qÑ8 8.

Theorem 5.3.6. For all l P N there is a unique bounded and nonnegative solution pul, hlq of

(5.3.7) consisting of nonnegative functions

ul, hl P CpΩ� r0,8qq X C2,1pΩ� p0,8qq.

Thereby, hl   H and there is some C20pu0lq ¡ 0 s.t. ul ¤ C20pu0lq and

C20pu0lq Ñ
lÑ8

C21. (5.3.42)

Moreover, for K ¡ 1 and some ’small’ enough choice of parameters of type (5.3.47) and (5.3.48)

below, it holds that

}ul}L8pΩ�p0,8qq ¤ K max

$&%1, }u0l}L8pΩq,
�

4KSpsq|Ω|� 1
2

	 1� 2
s

p1� 1
s
qpβ�1�α� 2β

s
q
�

2

δη


 1� 2
s

β�1�α� 2β
s

,.- .

(5.3.43)

If Ω is convex, the constant KSpsq is explicitely given in Remark 6.3.4 in Chapter 6.

Proof. Let l P N. We proceed with a Moser iteration as in Step 2 of the proof of Theorem 1.1.

in [99].

Set qk :� 2k � a with a :� 2ps�1qpα�1q
s�2 for k P N large enough s.t. qk ¡ maxt1, β � α� 1u holds.

As in Step 2 of Lemma 6.3.2 we obtain for t P p0, Tmaxq the estimate

d

dt
}ul}qkLqk pΩq � qkC19pqk, lq}ul}qkLqk pΩq ¤ 2qkC19pqk, lqC22pqk, lqmax

!
1, }ul}2qk�1

Lqk�1

)
, (5.3.44)

where

C22pqk, lq : � 2

�
2K2

21q
2
kC19pqk, lq

pqk � 1qD1


 s
s�2

� 2
�

maxt4KSpsq, 1umaxt1, |Ω|� 1
2 u
	α�1

� |Ω|.

Due to (5.3.5), there is C23 ¡ 0 s.t. }Dl}pL8pΩqqn�n , }∇ � Dl}pL8pΩqqn ¤ C23 for all l P N. We can

further estimate using the definition of qk that

C19pqk, lq ¤ qk � 1

D1
C2

23p1� C2
18q � }µ}L8p0,Hq, (5.3.45)

¤
�

1� a

D1
C2

23p1� C2
18q � }µ}L8p0,Hq



2k

and consequently,

C22pqk, lq ¤2

�
2K2

21

D1
2kp1� aq

�
1� a

D1
C2

23p1� C2
18q � }µ}L8p0,Hq



2k

 s

s�2

� 2
�

maxt4KSpsq, 1umaxt1, |Ω|� 1
2 u
	α�1

� |Ω|
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¤22k
s

s�2C24

for

C24 :�2

�
2
K2

21

D1
p1� aq

�
1� a

D1
C2

23

�
1� C2

18

�� }µ}L8p0,Hq



 s
s�2

� 2
�

maxt4KSpsq, 1umaxt1, |Ω|� 1
2 u
	α�1

� |Ω|.

For k P N and t P p0, Tmaxq we set

ykptq :� }ulp�, tq}qkLqk pΩq.

Inserting this into (5.3.44) we obtain

y1kptq � qkC19pqk, lqykptq ¤ 2qkC19pqk, lq22k s
s�2C24 max

#
1,

�»
Ω

u
qk�1

l


2
+
.

Moreover, we estimate that

}u0l}qkLqk pΩq ¤ }u0l}qkL8pΩq|Ω| � }u0l}2
k

L8pΩq}u0l}aL8pΩq|Ω|.

Hence, from Lemma A.4.3 with ck � qkC19pqk, lq, ā � 2C24 and D � 2 s
s�2 it follows that for

k ¥ m ¥ 1 large enough (s.t. 2C2422
s

s�2m ¥ 1) and t P p0, Tmaxq it holds that»
Ω

uqkl dx ¤p4C24q2
k�m�1

2
2s

s�2 p2p2k�m�1q�m2k�m�1�kq

�max

#
sup
t¥0

�»
Ω

u
qm�1

l


2k�m�1

, }u0l}2
k

L8pΩqp}u0l}aL8pΩq|Ω|q2
k�m

, 1

+
.

Consequently, for t P p0, Tmaxq and m ¥ 1 large enough it holds that

}ul}L8pΩq � lim
kÑ8

}ul}Lqk pΩq

¤p4C24q2
�m�1

2
2sp1�mq

ps�2q2m�1 max

#
sup
t¥0

�»
Ω

u
qm�1

l


2�m�1

, }u0l}L8pΩqp}u0l}aL8pΩq|Ω|q2
�m

, 1

+
�:C25pm, lq. (5.3.46)

Due to (5.3.41) and (5.3.45) there is C20pm,u0lq ¡ 0 s.t. }ul}L8pΩ�p0,Tmaxqq ¤ C20pm,u0lq for all

l P N. Together with (5.3.4) this implies the existence of C21pmq s.t. C20pm,u0lq Ñ C21pmq for

lÑ8.

Consequently, ul is bounded on Ω � r0, Tmaxq. Combining this with the boundedness of hl,

Lemma 5.3.3 and (5.3.10) in Theorem 5.3.2, Tmax � 8 follows.

We proceed as in Step 3 of the proof of Theorem 1.1 in [99]. First, we fix some m and choose

our parameters sufficiently ’small’ s.t.

2K2
21

D1

�
qm�1

D1

�
}∇ � Dl}2pL8pΩqqn � }Dl}2pL8pΩqqn�nC2

18

	
� }µ}L8p0,Hq



(5.3.47)

¤2K2
21

D1

�
qm�1

D1
C2

23

�
1� C2

18

�� }µ}L8p0,Hq



  1

q2m�1

and

C19pqm�1q ¤ qm�1 � 1

D1
C2

23

�
1� C2

18

�� }µ}L8p0,Hq ¤ 1 (5.3.48)
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are satisfied. This depends on our choice of D, µ, g, h0, and DH . Consequently, we conclude

again from (5.3.41) that»
Ω

u
qm�1

l dx

¤5 max

$&%
��2

�
1

qm�1 � 1


 qm�1�α�1�β

qm�1�α�β�1� 2pqm�1�α�1�βq
s

�K24pqm�1q
qm�1�α�1�β

qm�1�
qm�1�α�1�β

s

� qm�1�α�1�β� 2pqm�1�α�1�βq
s

β�1�α� 2β
s

�
�

2

δη


 qm�1�
2pqm�1�α�1q

s

β�1�α� 2β
s ,K24pqm�1q

qm�1�α�1�β

qm�1�
qm�1�α�1�β

s , |Ω|
�

2� }u0l}qm�1

L8pΩq
	,/./-

�:Hpmq.

With p4C24q2�m�1

2
2sp1�mq

ps�2q2m�1 Ñ 1 and
�
}u0l}aL8pΩq|Ω|

	2�m

Ñ 1 for mÑ8 and

lim
mÑ8Hpmq

1

2m�1 � max

$&%�
4KSpsq|Ω|� 1

2

	 1� 2
s

p1� 1
s
qpβ�1�α� 2β

s
q
�

2

δη


 1� 2
s

β�1�α� 2β
s , }u0l}L8pΩq, 1

,.-
we conclude from (5.3.46) that

}ul}L8pΩ�p0,8qq ¤ max

$&%1, }u0l}L8pΩq,
�

4KSpsq|Ω|� 1
2

	 1� 2
s

p1� 1
s
qpβ�1�α� 2β

s
q
�

2

δη


 1� 2
s

β�1�α� 2β
s

,.- .

There are obviously no parameters satisfying (5.3.47) and (5.3.48) for all m. But for any K ¡ 1

we find ’small’ enough parameters (satisfying (5.3.47) and (5.3.48) for some large enough m)

such that (5.3.43) holds.

5.3.3 Global existence and boundedness in the original problem

Theorem 5.3.7. There is a bounded and nonnegative weak solution pu, hq of (5.3.1) s.t. for

all T ¡ 0 it holds that u P Cpr0, T s;L2pΩqq X L2p0, T ;H1pΩqq with Btu P L2p0, T ;H�1pΩqq and
h P Cpr0, T s;H1pΩqqXW 2,1

2 pΩ�p0, T qqXL8p0, T ;W 1
8pΩqq and for all η PW 1,1

2 pΩ�p0, T qq with
ηpT q � 0 the functions u and h satisfy

�
» T

0

»
Ω

uηt dx dt�
» T

0

»
Ω

p∇ � Du� D∇u� Du∇hq �∇η dx dt

�
» T

0

»
Ω

µphquαp1� J � uβqη dx dt�
»
Ω

u0pxqηpx, 0q dx, (5.3.49)

and

Bth � DH∆h� gpu, hq a.e. in Ω� p0, T q (5.3.50)

∇h � ν � 0 a.e. in BΩ� p0, T q, (5.3.51)

hp0q � h0 in H1pΩq. (5.3.52)
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Moreover, u ¤ C21, h ¤ H in Ω � p0,8q. For t0 P p0,8q there are constants γpt0q P p0, 1q and
C26pt0q ¡ 0 s.t. u, h P Cγ, γ2 pΩ� rt0,8qq and for all t P rt0,8q it holds that

}u}
Cγ,

γ
2 pΩ�rt,t�1sq, }h}Cγ,

γ
2 pΩ�rt,t�1sq ¤ C26. (5.3.53)

For the parameter choice from Theorem 5.3.6 u satisfies (5.3.43).

The solution pu, hq is unique for p ¥ 2n
n�2 for n ¥ 3 and p P p1,8q for n � 1, 2.

Proof. Let φ P H1pΩq and T ¡ 0. Obviously, for each l P N the function ul satisfies»
Ω

Btulφdx � �
»
Ω

pDl∇ul �∇ � Dlul � Dlul∇hlq �∇φdx�
»
Ω

µphlquαl p1� J � uβl q dx,

(5.3.54)

for t P p0,8q as it is a classical solution. Due to Theorem A.1.8, hl satisfies

}hl}W 2,1
2 pΩ�p0,T qq ¤ C27pT q, (5.3.55)

where C27pT q ¡ 0 is independent from l due to the properties of g and the uniform boundedness

of phlql and pulql.
There is a constant C23 independent from l s.t. }Dl}pL8pΩqqn�n , }∇�Dl}pL8pΩqqn ¤ C23 for all l P N
due to (5.3.5). Setting φ � ul in (5.3.54) and using (5.3.6), Hölder’s inequality, the continuity of

µ and the uniform boundedness of phlql, pulql from Theorem 5.3.6, we can estimate that

1

2

d

dt
}ul}2L2pΩq �D1}∇ul}2pL2pΩqqn ¤ C23}ul}L2pΩqp1� C18q}∇ul}pL2pΩqqn � C28.

Consequently, Young’s inequality and integration over p0, T q lead

}∇ul}L2p0,T ;pL2pΩqqnq ¤ C29pT q

for all l P N. Similarly (from (5.3.54) for φ P H1
0 pΩq) it follows that

}Btul}L2p0,T ;H�1pΩqq ¤ C30pT q

for all l P N. Putting this together with the uniform boundedness of phlql, pulql, (5.3.55),

Lemma 5.3.3, the Lions-Aubin lemma (respectively, with H1pΩq ãÑãÑ L2pΩq ãÑ H�1pΩq and

H2pΩq ãÑãÑ H1pΩq ãÑ L2pΩq), the Banach-Alaoglu theorem, Lemma A.3.8 and Lemma A.3.1

with L8p0, T ; pL8pΩqqnq � pL1p0, T ; pL1pΩqqnqq� we conclude that there are u P Cpr0, T s;L2pΩqqX
L2p0, T ;H1pΩqq with Btu P L2p0, T ;H�1pΩqq and h P Cpr0, T s;H1pΩqq X W 2,1

2 pΩ � p0, T qq X
L8p0, T ;W 1

8pΩqq s.t. (after switching to a subsequence if necessary)

ul Ñ
lÑ8

u in L2pΩ� p0, T qq and pointwise a.e., (5.3.56)

ul á
lÑ8

u in L2p0, T ;H1pΩqq,

Btul á
lÑ8

Btu in L2p0, T ;H�1pΩqq,

hl Ñ
lÑ8

h in L2p0, T ;H1pΩqq and pointwise a.e., (5.3.57)

hl á
lÑ8

h in L2p0, T ;H2pΩqq,

Bthl á
lÑ8

Bth in L2pΩ� p0, T qq,
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∇hl
�á

lÑ8
∇h in L8p0, T ; pL8pΩqqnq. (5.3.58)

The uniform boundedness of pulql from (5.3.42) together with (5.3.56) and the dominated con-

vergence theorem imply

J � uβl Ñ
lÑ8

J � uβ a.e. in Ω� p0, T q.

From this using the above convergences, the dominated convergence theorem, the uniform bound-

edness of pulql, phlql and p∇hlql from Lemma 5.3.3 and Theorem 5.3.6, the Lipschitz-continuity

of µ and g, compensated compactness (Lemma A.3.2) and (5.3.5) and the fundamental lemma

of variational calculus, it follows as in Theorem 6.4.4 that pu, hq solves (5.3.1) in the required

sense. Moreover, u P Cpr0, T s;L2pΩqq holds due to Theorem A.1.1.

The a.e. boundedness and nonnegativity of u and h follow from the pointwise convergence and

the uniform boundedness and nonnegativity of pulql and phlql. Uniqueness follows similarly to

Theorem 5.3.2 using Lemma A.1.3.

Finally, the global boundedness of u, h, (5.3.5), Lemmas 2.3.2 and 5.3.3 and the Lipschitz con-

tinuity of µ and g, Theorem A.1.12 and Remark A.1.2 with a and b, respectively, chosen similar

to Lemma 5.3.1 imply (5.3.53).

5.4 Long time behavior

We consider the long time behavior of our solution under the additional assumptions that we

make from now on:

� the domain Ω is convex,

� there are h� P r0, Hs and constants CH ¡ 0 and CU ¥ 0 s.t.

gpu, hqph� h�q ¤ �CHph� h�q2 � CUu
α�1puβ � Uq2 (5.4.1)

for 0 ¤ h ¤ H and 0 ¤ u ¤ U
1
β , where U

1
β is some upper bound on ul for all l P N (that

exists and is independent from l, due to Theorem 5.3.6),

� we extend J by 0 to RnzB and assume J � 1
U J̃ for a kernel J̃ P L1pRnq with norm

}J̃}L1pRnq � 1,

� the parameters

CB :� 1

4D1
}µ}L8p0,Hq pdiampΩqβq2 U α�1

β , (5.4.2)

CA :� CUC
2
23β

2U

4δη|Ω|DHD1
� 1� CB , (5.4.3)

where }Dl}pL8pΩqqn�n ¤ C23 for all l P N (due to (5.3.5)), satisfy C2
A ¡ 4CB , CA   0,

CB P p0, 1q and

CB   �CA

2
�
c
C2

A

4
� CB , (5.4.4)

� u0 � 0, u0 ¤ U
1
β and

³
Ω

lnpu0q dx   8.
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Moreover, let

M :�
!
D P �C2�ϑpΩ̄q�n�n

: p∇ � Dq � ν � 0 on BΩ, ∇ � p∇ � Dq � 0 on Ω
)
.

We assume that D is in the closure of M in the C1pΩ̄,Rn�nq-norm and that the sequence pDlqlPN
from Section 5.3 is the sequence in M that approaches D.

Remark 5.4.1. The inequality (5.4.1) implies that such h� is unique and gpU 1
β , h�q � 0 holds.

We proceed by combining the methods from [91, 99].

Lemma 5.4.2. It holds that» 8

0

»
Ω

uα�1puβ � Uq2 dx dt,
» 8

0

»
Ω

|h� h�|2 dx dt   8. (5.4.5)

Proof. Let l P N and consider the global classical solution to (5.3.7) from Theorem 5.3.6. We

conclude from Proposition A.1.10 and the assumption u0 � 0 that ul ¡ 0 holds in Ω� p0,8q.
As in [99] we define apsq :� s

β � U
β lnpsq � U

β plnpUq � 1q with apsq ¥ 0 for s P p0,8q. By

multiplying the equation for ul in (5.3.7) by uβ�1
l � Uu�1

l , integrating over Ω and using partial

integration, we obtain

d

dt

»
Ω

apuβl qdx �
»
Ω

Btulpuβ�1
l � Uu�1

l q dx

�
»
Ω

∇ � pDl∇ul �∇ � Dlul � Dlul∇hlq
�
uβ�1
l � Uu�1

l

	
dx

�
»
Ω

µphlquαl p1� J � uβl qpuβ�1
l � Uu�1

l q dx

��
»
Ω

pDl∇ul �∇ � Dlul � Dlul∇hlq
�
pβ � 1quβl � U

	
� ∇ul
u2l

dx

� 1

U

»
Ω

µphlquα�1
l

�
U � J̃ � uβl

	�
uβl � U

	
dx.

Due to Dl PM using partial integration again leads to»
Ω

∇ � Dlulppβ � 1quβl � Uq � ∇ul
u2l

dx

�
»
Ω

∇ � Dlppβ � 1quβ�1
l � Uu�1

l q �∇ul dx

�
»
Ω

p∇ � Dlq �∇
�
β � 1

β
uβl � U lnpulq



dx

��
»
Ω

∇ � p∇ � Dlq
�
β � 1

β
uβl � U lnpulq



dx�

»
BΩ

�
β � 1

β
uβl � U lnpulq



p∇ � Dlq � ν dσpxq � 0.

Hence, we can estimate using the positivity of ul and (5.3.6) that

d

dt

»
Ω

apuβl q dx� U

»
Ω

�
∇ul
ul


T

Dl
∇ul
ul

dx

¤
»
Ω

�
pβ � 1quβl � U

	 ����p∇hlqT Dl
∇ul
ul

���� dx� 1

U

»
Ω

µphlquα�1
l

�
U � J̃ � uβl

	�
uβl � U

	
dx.

(5.4.6)
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Then, we proceed similarly to the proof of Proposition 3.1 in [99] and obtain using ul ¤ U
1
β and

Young’s inequality that»
Ω

µphlpxqquα�1
l pxqpU � J̃ � uβl pxqqpuβl pxq � Uq dx

�
»
Ω

µphlpxqquα�1
l pxq

�
U

»
Rn

J̃pyq dy �
»
Ω

J̃px� yquβl pyq dy


�
uβl pxq � U

	
dx

¤
»
Ω

µphlpxqquα�1
l pxq

�»
Ω

J̃px� yqpU � uβl pyqq dy


�
uβl pxq � U

	
dx

¤�
»
Ω

µphlpxqquα�1
l pxq

»
Ω

J̃px� yqpuβl pxq � Uq2 dy dx

�
»
Ω

µphlpxqquα�1
l pxq

»
Ω

J̃px� yqpuβl pxq � uβl pyqqpuβl pxq � Uqdy dx

¤� p1� εq
»
Ω

»
Ω

µphlpxqquα�1
l pxqJ̃px� yqpuβl pxq � Uq2 dy dx

� 1

4ε
}µ}L8p0,HqU

α�1
β

»
Ω

»
Ω

J̃px� yqpuβl pxq � uβl pyqq2 dy dx (5.4.7)

for

ε P
�

max

#
�CA

2
�
c
C2

A

4
� CB ;CB

+
,min

#
�CA

2
�
c
C2

A

4
� CB ; 1

+�
� pCB , 1q,

where the interval on the right-hand side is nonempty due to our assumptions on CA and CB .

Moreover, due to the convexity of Ω and using the uniform boundedness of pulql by U
1
β we

conclude from Lemma A.4.5 the estimate»
Ω

»
Ω

J̃px� yqpuβl pxq � uβl pyqq2 dy dx ¤ diampΩq2
»
Ω

|∇puβl q|2 dx

¤ pdiampΩqβUq2
»
Ω

|∇ul|2
u2l

dx.

Now, inserting this in (5.4.7), using our assumptions on J and µ, and the uniform boundedness

of pulql, we conclude

1

U

»
Ω

µphlpxqquα�1
l pxqpU � J̃ � uβl pxqqpuβl pxq � Uq dx

¤1

ε
D1UCB

»
Ω

|∇ul|2
u2l

dx� p1� εqδη|Ω|
»
Ω

uα�1
l puβl � Uq2 dx

Inserting this into (5.4.6) and using (5.3.6) and Young’s inequality, it follows that

d

dt

»
Ω

apuβl q dx�D1U
ε� CB

ε

»
Ω

|∇ul|2
u2l

dx� p1� εqδη|Ω|
»
Ω

uα�1
l puβl � Uq2 dx

¤
»
Ω

�
pβ � 1quβl � U

	 ����p∇hlqT Dl
∇ul
ul

���� dx

¤D1U
ε� CB

ε

»
Ω

|∇ul|2
u2l

dx� εC2
23β

2U

4D1 pε� CBq
»
Ω

|∇hl|2 dx. (5.4.8)

Multiplying the equation for hl by hl � h�, integrating over Ω and using (5.4.1), we obtain

1

2

d

dt

»
Ω

phl � h�q2 dx�DH

»
Ω

|∇hl|2 dx ¤ �CH

»
Ω

ph� h�q2 dx� CU

»
Ω

uα�1
l puβl � Uq2 dx.
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Further, we multiply this by C31 :� εC2
23β

2U
4D1DHpε�CBq and add it to (5.4.8) to obtain

d

dt

�»
Ω

apuβl qdx� 1

2
C31

»
Ω

phl � h�q2 dx



(5.4.9)

�CHC31

»
Ω

phl � h�q2 dx� pp1� εqδη|Ω| � CUC31q
»
Ω

uα�1
l puβl � Uq2 dx ¤ 0. (5.4.10)

Due to our assumptions on CA, CB and our choice of ε it holds that p1� εqδη|Ω| � CUC31 ¡ 0.

Consequently, for T P p0,8q it holds that»
Ω

apuβl pT qq dx� 1

2
C31

»
Ω

phlpT q � h�q2 dx� CHC31

» T

0

»
Ω

phl � h�q2 dxdt

� pp1� εqδη|Ω| � CUC31q
» T

0

»
Ω

uα�1
l puβl � Uq2 dxdt

¤
»
Ω

apuβ0 q �
1

2
C31

»
Ω

ph0 � h�q2 dx,

where the right-hand side is finite due to our additional assumption on u0. Hence, using the uni-

form boundedness of pulql and phlql, their pointwise a.e. convergences from (5.3.56) and (5.3.57)

and the dominated convergence theorem we conclude

CHC31

» T

0

»
Ω

ph� h�q2 dx dt� pp1� εqδη|Ω| � CUC31q
» T

0

»
Ω

uα�1puβ � Uq2 dxdt

¤
»
Ω

apuβ0 q �
1

2
C31

»
Ω

ph0 � h�q2 dx

and (5.4.5) follows.

Now we can conclude uniform convergence as in Lemma 3.10 in [139]:

Theorem 5.4.3. It holds that

lim
tÑ8 }up�, tq � c}L8pΩq � lim

tÑ8 }hp�, tq � h�}L8pΩq � 0, (5.4.11)

where c P t0, U 1
β u if α ¡ 1 and c � U

1
β if α � 1.

Proof. Due to (5.3.53) in Theorem 5.3.7, u and h are uniformly continuous in Ω�p1,8q and we

can conclude from Lemmas 2.2.3, 5.4.2, and A.4.6 that

lim
tÑ8 }up�, tq

α�1
2 puβp�, tq � Uq}L8pΩq � lim

tÑ8 }hp�, tq � h�}L8pΩq � 0. (5.4.12)

Consider α ¡ 1 and set

ε :� min

$&%U
1
β

8
,

�
1�

�
7

8


β
��

U
1
β

8

�β�α�1
2

,.- .

Due to the uniform continuity of u we can consider w.l.o.g. a sequence ptkqkPN � p1,8q with

limkÑ8 tk � 8 satisfying for all x P Ω and k P N the estimate

|upx, tk�1q � upx, tkq|   ε. (5.4.13)

Moreover, (5.4.12) implies that there is Kpεq P N s.t.

}up�, tkq
α�1
2 puβp�, tkq � Uq}L8pΩq   ε
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and consequently, due to our choice of ε above upx, tkq P r0, 18U
1
β q Y p 78U

1
β , U

1
β s for k ¥ Kpεq.

Hence, either upx, tkq P r0, 18U
1
β q for all x P Ω and k ¥ Kpεq or upx, tkq P p 78U

1
β , U

1
β s for all x P Ω

and k ¥ Kpεq due to (5.4.13). If upx, tkq P r0, 18U
1
β q for all x P Ω and k ¥ Kpεq then (5.4.12)

implies that

}up�, tkq}L8pΩq ¤
��}up�, tkqα�1

2 puβp�, tkq � Uq}L8pΩq
U
�

1� �
1
8

�β	
� 2

α�1

Ñ
kÑ8

0.

Analogously, the other convergence in the case upx, tkq P p 78U
1
β , U

1
β s follows.

5.5 Pattern formation: a 1D study

We want to investigate pattern formation in our model in 1D (see [110]). For this aim we adapt

some of the assumptions on our functions and parameters:

� J P L1pRq, Jpxq � Jp�xq for x P R and
³
R Jpxq dx � 1, whereas we drop the condition

that 0   η ¤ J ;

� d P R constant;

� there is exactly one h� ¡ 0 with gp1, h�q � 0, moreover, µph�q ¡ 0, Bugp1, h�q ¥ 0 and

Bhgp1, h�q   0 for this h�. This means that when the cancer cells are at their carrying

capacity (corresponding to an acidity level h�), the production of protons is increasing with

the cell mass and decreasing with enhancing proton concentration. Indeed, crowded tumor

cells are highly hypoxic, and a too acidic environment leads to quiescence or necrosis, thus

reducing proton expression. Moreover, we assume that µ1ph�q   0, thus the growth rate is

decreasing with the proton concentration in the neighborhood of the critical value h�.

� w.l.o.g. we consider Ω � p�a, aq for a P R.

We define the convolution over R as J f upxq :� ³
R Jpx � yqupyq dy. Hence, we consider the

model $''''''&''''''%

ut � duxx � dpuhxqx � µphquαp1� J f uβq in Ω� p0,8q,
ht � DHhxx � gpu, hq in Ω� p0,8q,
ux � hx � 0 on BΩ� p0,8q,
up�, 0q � u0, hp�, 0q � h0 in Ω.

(5.5.1)

5.5.1 Stability in the local model without diffusion and taxis

We start by establishing the equilibria of the non-spatial local model that corresponds to (5.5.1),

i.e., $&% Btu � µphquαp1� uβq,
Bth � gpu, hq.

(5.5.2)
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The biologically more interesting one is given by pu�, h�q � p1, h�q, where h� is the unique

solution of gp1, hq � 0. The corresponding characteristic equation of the Jacobian in p1, h�q is

given by

λ2 � pβµph�q � Bhgp1, h�qqλ� βµph�qBhgp1, h�q � 0.

The corresponding eigenvalues are

λ1 � �βµph�q and λ2 � Bhgp1, h�q

and both have negative real parts due to the assumption Bhgp1, h�q   0. Hence, the steady state

p1, h�q is stable in this case.

5.5.2 Stability in the local model with diffusion and taxis

We continue by adding again the diffusion and taxis terms to the local model (5.5.2), i.e.,$&% Btu � duxx � dpuhxqx � µphquαp1� uβq,
Bth � DHhxx � gpu, hq.

Adapting the ansatz from [119] we consider perturbations of p1, h�q of the form u � 1 � εūpkq
and h � h� � εh̄pkq, where ūpkq � ũeλpkqt cospkxq and h̄pkq � h̃eλpkqt cospkxq for ũ, h̃ P R,

wavenumber k P N and |ε|    1. Here, λpkq denotes some eigenvalue of the corresponding

characteristic equation. As in [115] we use the fact that eikx�e�ikx

2 � cospkxq to ensure that our

perturbations are real for real λ.

Inserting these u and h into our model and linearizing about the steady state p1, h�q, we obtain$&% λpkqū � �dk2ū� dk2h̄� βµph�qū,
λpkqh̄ � �DHk

2h̄� Bugp1, h�qū� Bhgp1, h�qh̄.
(5.5.3)

The corresponding eigenvalues are given by

λ1,2pkq �
trpJu,hpkqq �

a
trpJu,hpkqq2 � 4 detpJu,hpkqq

2
,

where we denote by Ju,h the Jacobian of the right-hand side of system (5.5.3) at p1, h�q and its

determinant and trace are, respectively, given by

trpJu,hpkqq � � pd�DHqk2 � βµph�q � Bhgp1, h�q   0,

detpJu,hpkqq �dDHk
4 � pdpBugp1, h�q � Bhgp1, h�qq � βµph�qDHqk2 � βµph�qBhgp1, h�q ¡ 0.

Hence, the equilibrium p1, h�q is stable. The local model does not lead to any Turing type

patterns.

5.5.3 Stability in the nonlocal model

We consider u and h as in the previous section and linearize the convolution term about p1, h�q
similarly to [119]. Hence, inserting u in the convolution term and using the symmetry of J , we

compute that

J f uβpxq �
»
R
Jpx� yqp1� βεũeλpkqt cospkyqq dy
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� 1� βεũeλpkqt
1

2

»
R
Jpzqeikpx�zq � Jp�zqe�ikpx�zq dz

� 1� βεũeλpkqt cospkxq
»
R
Jpzqe�ikz dz

� 1� εβūp2πq 1
2 Ĵpkq.

Here, Ĵ denotes the Fourier transform of J . Hence, linearizing system (5.5.1), we obtain$&% λpkqū � �dk2ū� dk2h̄� βµph�qp2πq 1
2 Ĵpkqū,

λpkqh̄ � �DHk
2h̄� Bugp1, h�qū� Bhgp1, h�qh̄.

(5.5.4)

The corresponding eigenvalues are as above given by

λ1,2pkq �
trpJu,hpkqq �

a
trpJu,hpkqq2 � 4 detpJu,hpkqq

2
,

where we denote by Ju,h the Jacobian of the right-hand side in (5.5.4) at p1, h�q and its trace

and determinant are given by

trpJu,hqpkq � � pd�DHqk2 � βµph�qp2πq 1
2 Ĵpkq � Bhgp1, h�q,

detpJu,hqpkq �dDHk
4 � pdpBugp1, h�q � Bhgp1, h�qq � βµph�qp2πq 1

2 ĴpkqDHqk2

� βµph�qp2πq 1
2 ĴpkqBhgp1, h�q.

The sign of the real part of the eigenvalues is ambiguous here and depends especially on the sign

of Ĵpkq, which depends on k. As above, we have stability here if

trJu,hpkq   0 and det Ju,hpkq ¡ 0 (5.5.5)

for all k � π
a z, where z P Z. We make this restriction due to our boundary condition ux � hx � 0.

Now, we are looking for a critical kc (that is not necessarily of the form π
a z) depending on our

choice of parameters, where we distinguish as in [115] the occurrence of Turing instabilities in

the case Impλpkcqq � 0 for some arbitrary critical kc, Hopf instabilities in the case Impλp0qq � 0,

and wave instabilities in the case Impλpkcqq � 0 for some critical kc � 0. If Ĵ is symmetric it

suffices to consider only positive kc.

A Turing bifurcation can occur if we find kc such that

detpJu,hqpkcq � 0 and trpJu,hqpkcq   0.

Now, rewriting these conditions we conclude that the equality

Ĵpkcq � �d k2c

βp2πq 1
2µph�q

�
1� Bugp1, h�q

DHk2c � Bhgp1, h�q



(5.5.6)

and the inequality

Bhgp1, h�q � pd�DHqk2c
βµph�qp2πq 1

2

  Ĵpkcq (5.5.7)

have to hold for one or several critical kc in a set Kc, whereas (5.5.5) holds for all k R Kc that

are of the form π
a z. Such kc exist depending on the choice of parameters, on the functions µ and

g, and especially on the sign of the Fourier transform of J . Moreover, due to our assumptions

the terms on the right-hand side of (5.5.6) and on the left-hand side of (5.5.7) are negative and
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tend to �8 for k Ñ �8. On the other hand, a Hopf or a wave instability can occur if we find

kc such that

trpJu,hqpkcq � 0 and det Ju,hpkcq ¡ 0,

whereas (5.5.5) holds for all k that do not satisfy this and are of the form π
a z. Hence, a Hopf

instability occurs if

Bhgp1, h�q
µph�qβp2πq 1

2

� Ĵp0q and Ĵp0q ¡ 0, (5.5.8)

whereas (5.5.5) holds for all k � 0. On the other hand, a wave instability occurs if

Bhgp1, h�q � pd�DHqk2c
µph�qβp2πq 1

2

� Ĵpkcq (5.5.9)

and

�d k2c

βp2πq 1
2µph�q

�
1� Bugp1, h�q

DHk2c � Bhgp1, h�q


  Ĵpkcq (5.5.10)

holds for one or several kc � 0, whereas (5.5.5) holds for all other k that are of the form π
a z and

do not satisfy the above equality and inequality.

From the above considerations we conclude that the occurrence of a Turing, Hopf or wave insta-

bility depends on the concrete choice of J , as we need to find suitable k of the form π
a z. If the

Fourier transform Ĵ is nonnegative, no Turing patterns occur due to (5.5.6). More precisely, the

determined patterns are only of Turing-like type as they are induced by the nonlocality and not

the diffusion.

Example 5.5.1. We explore the occurrence of Turing-like patterns in the nonlocal model (5.5.1)

for the uniform kernel JU pxq � 1
2χr�1,1spxq and the logistic kernel JLpxq � 1

2�ex�e�x in the

domain Ω � p�5, 5q for the parameters and functions gpu, hq � up1 � hq, µphq � µ
1�h , with a

constant µ ¡ 0 and d � DH � 1. The steady state is given by pu�, h�q � p1, 1q with Bugp1, 1q � 0,

Bhgp1, 1q � �1   0 and µp1q � µ
2 .

The Fourier transform of the uniform kernel JU is given by

ĴU pkq � sinpkq?
2πk

(5.5.11)

for k P R. Its sign is ambiguous. Inserting this into (5.5.6) and (5.5.7) we conclude that

�2k2c
βµ

� sinpkcq
kc

(5.5.12)

and

�2� 4k2c
βµ

  sinpkcq
kc

have to be satisfied for some kc for the occurrence of Turing-like patterns, where the second

condition is a direct consequence of the first. Equation (5.5.12) has a solution if βµ are larger

than approximately 168,4. Hence, for such βµ Turing-like patterns occur.

Moreover, the Fourier transform of the logistic kernel JL is given by

ĴLpkq �
?
πk?

2 sinhpkπq ¡ 0 (5.5.13)
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for k P R. Consequently, no Turing-like patterns occur for this kernel

In Section 5.6 we will perform numerical simulations for this choice of functions and kernels.

Remark 5.5.2. If there is a steady state of the form p0, h��q for some h�� ¡ 0 and Bhgp0, h��q ¤
0, then this equilibrium is stable in the case with diffusion, taxis and nonlocal term. If, on the

other hand, Bhgp0, h��q ¡ 0, this steady state is unstable already in the case without diffusion

and taxis. This case is, however, unrealistic for the biological problem investigated here. Indeed,

the proton expression by hypoxic cells is much reduced and there must be at least some very

weak acid buffering, lest all cells (and surrounding tissue) become apoptotic.

Likewise, the steady state p1, h�q is unstable already in the case without diffusion and taxis if

Bhgp1, h�q ¡ 0. This situation may occur at least in a transient manner, e.g., when the cells can

still extrude protons while their environment is quite acidic and if the cells are at their carrying

capacity and the proton buffering is relatively low. That can lead, e.g., to a choice of the form

gpu, hq � u� uh� γh2 with γ ¤ 4{5.

5.6 Numerical simulations

In this section we perform numerical simulations of system (5.5.1), in order to illustrate the

solution behavior. The equations are discretized by using the algorithm in [111] similarly to

Section 6.5; the motility terms were discretized with finite differences (centered for the diffusion,

upwind for the drift). The initial conditions are as in [99]:

u0pxq �
#

e�px�xlq2 , for xl   x ¤ 0

e�x2
l p1� x

xr
q, for 0   x ¤ xr

, with xl � �5, xr � 5.

Unless otherwise stated we take gpu, hq � up1 � hq, µphq � µ
1�h , with µ ¡ 0 a constant and

d � DH � 1.

In a first test we took β � µ � 1, along with the logistic kernel JLpxq � 1
2�ex�e�x (see, e.g., [98])

and the uniform kernel JU px; ρq � 1
2ρχr�ρ,ρs. The first two columns of Figure 5.1 show simulation

results for α � 2, which is the ’limit value’ in (5.3.3). The solution ceased (in finite time) to

exist for sufficiently large α in each of these situations (α � 6.25 and α � 8.2, respectively), u

exhibiting strong aggregation near the initial bulk of cells, cf. last two columns in Figure 5.1.

This behavior was also observed for increasing values of µ, with the difference of singularities

already occuring for smaller α values.

Increasing the values of µ and β leads to patterns, the shape of which depends decisively on the

interaction kernel J and also on the values of α and d. Figure 5.2 shows 1D space-time patterns

of the cell density u for β � 20, µ � 100, and several combinations of α and J . The results

for the proton concentration h are not shown, as there are only small quantitative differences

between the respective cases. Figure 5.2 suggests that, irrespective of the chosen kernel9, higher

cooperative intraspecific interactions (larger α values) or slower diffusion delay the invasion of

cells in the whole region, leading instead to enhanced proliferation. On the long run the cells

9We performed simulations with several other kernels, including the so-called ’Mexican hat’ (also known as

Ricker wavelet, see e.g., [52, 153] for its use in related, but different contexts), cosine, and Epanechnikov.
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Figure 5.1: Simulation results for (5.5.1) with β � µ � 1. First two columns: α � 2, 3rd column:

α � 6.2, last column: α � 8.15. Uniform kernel used with ρ � 1.

tend to fill the whole space and remain at their carrying capacity. This behavior endorses the

results in Section 5.4 and is particularly well visible for the logistic kernel, which satisfies all

conditions in the proofs of the theoretical results of Sections 5.3 and 5.4; the process is much

slower when a uniform kernel is used, however it has eventually the same outcome. The last row

in Figure 5.2 exhibits the situation of a cell diffusion which is much slower than that of protons.

The effect is a delayed filling of the space with cells (and produced protons) and a later formation

of the patterns observed in the upper rows. The asymptotic behavior is similar, only it takes

longer for the solution to reach the respective states.

To assess the effect of nonlocality we performed simulations with the source term in the u-

equation of (5.5.1) replaced by µphquαp1 � uβq. The results are shown in Figure 5.3. The first

two columns illustrate the case with the same source term for proton concentration as above,

namely gpu, hq � up1�hq, for which no patterns seem to develop (we tried several combinations

of parameters, including those used for the patterns in Figure 5.2). In fact, decreasing the value

of ρ in the uniform kernel JU px; ρq eventually leads to the local version of the system. The plots

in the leftmost column were produced with d � DH , while those in the middle column used

d ! DH . The behavior of u and h is the same, with the difference of the second case inferring a

slower spread of cells and protons. The last column in Figure 5.2 already shows the tendency of

disappearing patterns when approaching the local case. The last column of Figure 5.3 shows the

case where the source term in the h-equation is replaced by gpu, hq � u� uh� γh2, as proposed

in Remark 5.5.2.10

No patterns for u were observed for the local model, which, together with the simulations per-

formed for intermediary values of ρ, suggests that the patterns are driven by the nonlocality of

cell-cell interactions, more precisely by intraspecific competition. The simulations also confirm

the long time behavior of the system, even in the local case.

10We tried several other source terms satisfying the conditions in Remark 5.5.2, e.g., gpu, hq � uh{p1�uh�hq,

all resulting in the same qualitative behavior.
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Figure 5.2: Simulation results for (5.5.1) with β � 20 and µ � 100. Upper row: α � 2, lower

row: α � 10. First column J logistic, other columns J uniform: 2nd column: ρ � 1, 3rd column:

ρ � 0.6, 4th column: ρ � 0.05. Upper rows: d � DH � 1, last row: d ! DH .

Figure 5.3: Simulation results for (5.5.1) with local source term µphquαp1�uβq replacing the one

in the equation for u. Left and middle column: gpu, hq � up1 � hq with d � DH and d ! DH ,

respectively. Right column: gpu, hq � u� uh� γh2, d � DH .
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5.7 Discussion

In this chapter we investigated a model describing pH-tactic behavior of cells with nonlocal source

terms. As such, it extends the one in [99], which studied the Fisher-KPP equation with nonlocal

intraspecific competition with various powers of the solution. In contrast to [99] we handled here

a problem in a bounded domain, and the population dynamics was coupled to that of the proton

concentration, which also led to a taxis term. The proof of our results concerning global well-

posedness and long time behavior relied, however, to a substantial extent on the methods in [99].

We also dealt here with space-dependent tensor coefficients in the motility terms, which involve

myopic rather than Fickian diffusion. The dissipative effect of the repellent pH-taxis contributed

to reducing some of the difficulties in the analysis - as long as the required conditions on the

functions involved in the system are satisfied.

Among the relatively few existing models with nonlocal source terms, the one in [136] is closely

related, however it features several differences: the cells perform attractive haptotaxis towards

gradients of extracellular matrix (ECM), the nonlocal source terms are contained in both equa-

tions, do not involve any powers, and the Fickian diffusion of cells has a constant coefficient.

Our model requires less regularity for the interaction kernel and the motility coefficients involve a

tensor and are more general. On the other hand, the nonexploding solution behavior is favorized

in our case by repellent chemotaxis. We also provided an informal model deduction and an

assessment of the long time solution behavior. The analysis done in [113] for a model with stan-

dard motility and with nonlocal source terms as in [136], but with one or two species performing

chemotaxis towards the same attractant imposes certain requirements on the forcing term of the

latter, mainly in order to obtain the asymptotic behavior of the cell-related solution components.

Our condition (5.4.1) imposed for similar purposes on the source term of the tactic signal looks

rather differently. The attraction-repulsion chemotaxis models considered in [129] have closer

similarities with our setting, as far as the nonlocal intraspecific interactions are concerned. Ma-

jor differences occur through our system only featuring two equations, in the source terms of

the chemical cues, and in the motility terms: the latter involve in our case the space-dependent

tensor Dpxq and myopic diffusion, while the nonlocal reaction term in the proton dynamics is

more general. We also prove an explicit long time behavior of both solution components and

provide a short analysis of space-time patterns (in 1D), along with numerical simulations.

Our preliminary analysis in Section 5.5 and the simulation results in Section 5.6 suggest that

patterns occur only in the nonlocal model, are not of Turing type, and seem to be driven by the

nonlocal source terms and influenced by the chosen kernel and the combination of parameters in

the nonlocal term. This is in line with the pattern behavior observed in [99] and with other works

concerning reaction-diffusion problems with nonlocal intra- and/or interspecific competition, cf.

e.g., [64, 74, 119, 131, 142, 153]. Those works involved more or less similar source terms and no

taxis, however the repellent pH-taxis contained in our model does not seem to have a relevant

influence on the patterns.

Open problems relate to a thorough study of patterns depending on the interplay between the

parameters α, β, µ and the influence of the kernel J . Moreover, the well-posedness, asymptotic

and blow-up behavior, along with patterning are largely unknown in the case of a degenerating

motility tensor - the less so in combination with myopic diffusion and/or other types of taxis.
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Indeed, these can lead in the local case to very complex issues even in 1D, as shown e.g., in [149,

151].



CHAPTER 6

On a PDE-ODE-PDE model for two interacting cell

populations under the influence of an acidic environment

and with nonlocal intra- and interspecific growth limitation

This chapter is based on the article
”
On a PDE-ODE-PDE model for two interacting cell pop-

ulations under the influence of an acidic environment and with nonlocal intra- and interspecific

growth limitation“.1 The presentation has been adapted for use in this dissertation to clarify

the details of the proofs and guarantee consistency of the notation.

6.1 Motivation

Tumor heterogeneity is a well established fact [75]. The neoplastic tissue is -among others-

composed of several cell phenotypes, all of which are related to the stage within the cell cycle.

To simply, of this vast variety we only consider here two phenotypes: active and quiescent cells.

The former are supposed to be motile and proliferate, while the latter just infer transitions

toward or from activity. While competing with their active counterparts, quiescent cells can

also be degraded. Furthermore, the advancement through the cell cycle and the corresponding

phenotypic switch is influenced, inter alia, by biochemical factors in the peritumoral space, see

[75] and references therein. In particular, pH regulation is a key feature in tumor cell cycle

progression, which it can delay or even inhibit [18, 61, 62, 126].

The interactions of cells with their environment occur not only locally, but cells can perceive their

surroundings in a far more extensive manner, by way of protrusions like cytonemes/filopodia/

invadopodia, tunneling nanotubes etc. [24, 112, 130, 144]. This motivated the introduction of

mathematical models for cell migration, proliferation, and spread. Most of them are of the

reaction-diffusion-transport type, with spatial nonlocalities occuring in the advection terms,

mainly to model cell-cell and/or cell-tissue adhesions, or nonlocal taxis see e.g., Chapters 3

and 4 and [5, 23, 43, 81, 117, 156], or in the source terms, to describe intraspecific interactions

over a whole sensing range as in Chapter 5 and [99]. We refer to e.g., [4, 114, 135] for settings also

involving nonlocal interspecific competition in different, but related contexts, where the focus is

on global stability and pattern issues. The work [136] also considered spatially nonlocal inter-

specific interactions, but of cancer cells with extracellular matrix and both species featured such

1[48] The article is available online under https://doi.org/10.48550/arXiv.2409.12657.

https://doi.org/10.48550/arXiv.2409.12657
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terms. For a recent review on nonlocal models for cell migration see [28]; for more comprehensive

reviews of nonlocal models in a broader context refer to [51, 87].

Nonlocal models can be obtained, thus far still in a non-rigorous manner, from space- or velocity-

jump descriptions on the mesoscopic level (also including the kinetic theory of active particles

framework [11]), possibly also accounting for microscale dynamics like binding of transmembrane

units to soluble or unsoluble ligands. We refer to Chapter 5 and [21, 44, 99, 156] for such

deductions.

The remainder of this chapter is structured as follows: in Section 6.2 we present the model

consisting of a PDE-ODE-PDE system, along with requirements for the involved parameters

and functions. Sections 6.3 and 6.4 are dedicated to proving global existence of a nonnegative

weak solution to the system, in the sense specified therein. In Section 6.5 we perform numerical

simulations in 1D within various scenarios, to get some insight into boundedness and patterning

behavior under the influence of different choices of relevant parameters, interaction kernels, and

phenotypic switch triggered by acidity. Finally, Section 6.6 provides some concluding remarks

and an outlook.

6.2 Model

In the following u and w represent the densities of active and of quiescent cells, respectively,

whereas h is the concentration of protons in the extracellular space. By ’active’ we mean here

cells which are migrating and proliferating. On the other hand, ’quiescent’ means cells which

only interact with their active counterparts and with the environment, without moving nor being

able to proliferate. We consider the IBVP in a bounded domain Ω � Rn having a sufficiently

regular boundary BΩ with no-flux boundary conditions

$''''''''''''&''''''''''''%

Btu � ∇ � pψpw, hq∇uq � µ1u
α
�
1� J1px, hq � uβ � J2px, hq � wγ

�
� µ̃3phqF pwq in Ω� p0,8q,

Btw � µ2phqp1� wqu� µ3phqF pwq in Ω� p0,8q,
Bth � DH∆h� gpu,wq � λh in Ω� p0,8q,
Bνu � Bνh � 0 on BΩ� p0,8q,
up�, 0q � u0, wp�, 0q � w0, hp�, 0q � h0 in Ω.

(6.2.1)

The first term on the right-hand side of the first PDE in (6.2.1) describes nonlinear diffusion of

active cells. The diffusion coefficient ψ can thereby depend on w and h: a large amount of w-cells

can increase the population pressure, thus leading to faster diffusion; too many quiescent cells

would, however, impede migration (e.g., due to lack of space). Large h-values are also supposed

to enhance motility, as the active cells tend to leave such areas faster than more favorable places.

The next term describes proliferation of active cells, which is limited by spatially nonlocal intra-

and interspecific interactions. As in Chapter 5 and [99] we consider the exponents α, β, γ in the

weak Allee effect and the competition/crowding terms with the interaction kernels J1 and J2.

The latter can be seen as weighting the influence of either interactions on the dynamics of u and

over a whole region. This description enables a more flexible characterization of the interaction
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strengths and is related to the size of u- and w-cell clusters exchanging information with (bunches

of) active cells. Eventually, the last term describes phenotypic switch from quiescent to active

cells; this transition is happening with a certain saturation and its rate µ̃3 depends on the

concentration h of protons. Indeed, less acidic environments favor exit from the quiescent phase

and advancement towards activity [22, 140].

The second equation in (6.2.1) is an ODE describing the dynamics of quiescent cells. These

are supposed to be non-motile, to be produced by active cells with a rate µ2 which depends on

the acidity in the peritumoral space, and to infer a transition to activity, again with an acidity-

dependent rate µ3, which might differ from µ̃3. We also include a kind of acidity-triggered

competition between active and quiescent cells; it might have an own rate, but to keep the

number of model coefficients as low as possible we take it to be µ2phq, too.

The third equation in system (6.2.1) is again a reaction-diffusion PDE and models the dynamics

of proton concentration h. Protons are very small in comparison with cells and accordingly

able to diffuse quite fastly. They are produced by both tumor cell phenotypes (primarily by

active cells and to a lesser amount by quiescent ones) and infer natural decay (e.g., by proton

buffering). Concrete choices of motility, transition, and proliferation coefficients will be provided

in Section 6.5.

This setting extends our macroscopic model from Chapter 5 in the sense that we consider here

two interacting populations, the dynamics of both being influenced by that of the acidity in

their surroundings. Instead of the tumor diffusion tensor depending only on space we have

here a dependency on two of the solution components, however we do not include any repellent

pH-taxis, but focus instead on the nonlocal interactions and on the phenotypic switch. It also

extends the model in [136], where the two interacting species are not influenced by a third one,

the diffusion of cells is of the linear type, and there are no transitions from one species to the

other, although all interactions therein are nonlocal in space.

The model can be obtained in a way similar to the meso-to-macro deduction performed in

Chapter 5, if the dynamics of w and h is given as in the second and third equations of (6.2.1),

respectively. Although it is not clear how to obtain nonlinear diffusion in general, this can

be achieved if the diffusion coefficient is only depending on macroscopic quantities other than

u. If only linear diffusion is considered, then the method provides a space-dependent (myopic)

diffusion tensor of u-cells, which by an adequate choice of the cell velocity distribution leads to

classical Fickian diffusion.

Moreover, we make the following assumptions on involved parameters and functions:

� α, β, γ ¥ 1 satisfy

α  
$&% 1� β, n � 1, 2,

1� 2β
n , n ¡ 2,

(6.2.2)

� µ1, DH , λ ¡ 0,

� ψ P C1pR�
0 � R�

0 q with derivatives Bwψ, Bhψ that are Lipschitz continuous on r0, 1s2 and

ψpw, hq ¥ δ ¡ 0 for h,w P r0, 1s, (6.2.3)



122 CHAPTER 6. A NONLOCAL PDE-ODE-PDE MODEL

� µ2, µ3 P C1pR�
0 q with Bhµ2, Bhµ3 P L8pR�

0 q, µ̃3 Lipschitz with Lipschitz constant Lµ̃3
¥ 0,

µ2, µ3, µ̃3 ¥ 0,

� F pwq � w or F pwq � w
1�w and set F̃ pwq � 1 if F pwq � w and F̃ pwq � 1

1�w if F pwq � w
1�w ,

� g is Lipschitz continuous on R�
0 � R�

0 with constant Lg ¡ 0 and satisfies

0 ¤ gpu,wq ¤ G (6.2.4)

for G P p0,8q s.t. G
λ ¤ 1,

� for i � 1, 2 and B :� BdiampΩqp0q it holds that

Jipx, �q is Lipschitz continuous on R�
0 for x P B with constant LJi

pxq ¥ 0, (6.2.5a)

LJi , Jip�, 0q P LpipBq for some pi P p1,8q, (6.2.5b)

J2 ¥ 0, J1 ¥ η ¡ 0 for 0 ¤ h ¤ 1, (6.2.5c)

� u0 P CpΩq, w0, h0 P H1pΩq and 0 ¤ u0, h0, w0 ¤ 1.

These assumptions are primarily made out of technical reasons, in order to support the analysis

in Sections 6.3 and 6.4, however most of them are reasonable from the application viewpoint: all

parameters should be nonnegative and the interactions should involve at least one cell on either

side; the diffusion of active and motile cells should be nondegenerate; there should be an effective,

but uniformly limited production of protons, which should not dominate the natural decay in

a too substantial manner; the interaction kernels should be nonnegative and there should be

genuine intraspecific interactions, while the proton concentration remains reasonably bounded,

and the initial conditions should be nonnegative and uniformly bounded.

6.3 Global existence of a classical solution to an approxi-

mate problem

Let ϑ P p0, 1q. There are sequences of initial values pu0εqεPp0,1q, pw0εqεPp0,1q, ph0εqεPp0,1q in

C2�ϑpΩq s.t.

0 ¤ u0ε, w0ε, h0ε ¤ 1, (6.3.1a)

Bνu0ε � Bνw0ε � Bνh0ε � 0 on BΩ,

u0ε Ñ
εÑ0

u0 in CpΩq, (6.3.1b)

w0ε Ñ
εÑ0

w0, h0ε Ñ
εÑ0

h0 in H1pΩq. (6.3.1c)

Throughout this chapter we consider for ε P p0, 1q the approximate IBVP$''''''''''''&''''''''''''%

Btuε � ∇ � pψpwε, hεq∇uεq � µ1u
α
ε

�
1� J1px, hεq � uβε � J2px, hεq � wγ

ε

�
� µ̃3phεqF pwεq in Ω� p0,8q,

Btwε � ε∆wε � µ2phεqp1� wεquε � µ3phεqF pwεq in Ω� p0,8q,
Bthε � DH∆hε � gpuε, wεq � λhε in Ω� p0,8q,
Bνuε � Bνwε � Bνhε � 0 on BΩ� p0,8q,
uεp�, 0q � u0ε, wεp�, 0q � w0ε, hεp�, 0q � h0ε in Ω.

(6.3.2)
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We show local existence of a solution with a fixed-point argument.

Lemma 6.3.1. For all ε P p0, 1q there is Tmax,ε P p0,8s and a solution puε, wε, hεq of (6.3.2)

in
�
C2�ϑ,1�ϑ

2 pΩ� r0, Tmax,εqq
	3

with 0 ¤ uε and 0 ¤ wε, hε ¤ 1 s.t. either Tmax,ε � 8 or

Tmax,ε   8 and

lim
tÕTmax,ε

�
}uεp�, tq}C2�ϑpΩq � }wεp�, tq}C2�ϑpΩq � }hεp�, tq}C2�ϑpΩq

	
� 8. (6.3.3)

Proof. Let ε P p0, 1q and T P p0, 1q small enough. For h   0 we set

µ2phq :� µ2p�hq, µ3phq :� µ3p�hq, µ̃3phq :� µ̃3p�hq.

We will perform a fixed-point argument in

S :�
"
pu,wq P

�
Cϑ,ϑ2 pΩ� r0, T sq

	2

: u,w ¥ 0, }u}
Cϑ, ϑ

2 pΩ�r0,T sq � }w}
Cϑ, ϑ

2 pΩ�r0,T sq ¤M � 1

*
for M :� }u0ε}CϑpΩq � }w0ε}CϑpΩq � 1. For pu,wq P S, we consider the three decoupled IBVPs$''''''&''''''%

Btuε � ∇ � pψpwε, hεq∇uεq � µ1u
α�1

�
J1px, hεq � uβ � J2px, hεq � wγ

ε

�
uε

� µ1u
α � µ̃3phεqF̃ pwqwε in Ω� p0,8q,

Bνuε � 0 on BΩ� p0,8q0,
uεp�, 0q � u0ε in Ω,

(6.3.4)

$'''&'''%
Btwε � ε∆wε � µ2phεqp1� wεqu� µ3phεqF̃ pwqwε in Ω� p0,8q,
Bνwε � 0 on BΩ� p0,8q,
wεp�, 0q � w0ε in Ω,

(6.3.5)

and $'''&'''%
Bthε � DH∆hε � gpu,wq � λhε in Ω� p0,8q,
Bνhε � 0 on BΩ� p0,8q,
hεp�, 0q � h0ε in Ω.

(6.3.6)

We start with (6.3.6). Due to the Hölder continuity of u and w and the Lipschitz continuity of

g we can apply Theorem A.1.6 with coefficients

aii :� DH , ai :� 0, a :� λ, bi :� νi, b :� 0, f :� gpu,wq

for i P t1, . . . , nu to (6.3.6) and obtain a unique solution hε P C2�ϑ,1�ϑ
2 pΩ� r0, T sq satisfying

}hε}
C2�ϑ,1�ϑ

2 pΩ�r0,T sq ¤ C1

�
}gpu,wq}

Cϑ, ϑ
2 pΩ�r0,T sq � }h0ε}C2�ϑpΩq

	
¤ C2

�
M, }h0ε}C2�ϑpΩq

	
.

Moreover, due to the Lipschitz continuity of µ2, µ3, the Hölder continuity of u,w and Lemma 2.2.3

we conclude again from Theorem A.1.6 with the coefficients

aii :� ε, ai :� 0, a :� µ2phεqu� µ3phεqF̃ pwq, bi :� νi, b :� 0, f :� µ2phεqu
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for i P t1, . . . , nu that there is a unique solution wε P C2�ϑ,1�ϑ
2 pΩ� r0, T sq to (6.3.5) satisfying

}wε}
C2�ϑ,1�ϑ

2 pΩ�r0,T sq ¤ C3

�
}µ2phεqu}

Cϑ, ϑ
2 pΩ�r0,T sq � }w0ε}C2�ϑpΩq

	
¤ C4

�
M, }w0ε}C2�ϑpΩq, }h0ε}C2�ϑpΩq

	
. (6.3.7)

Then, we can estimate

0 ¤ µ2phεqū � pwεqt � ε∆wε �
�
µ2phεqu� µ3phεqF̃ pwq

	
wε

and

0 ¤ gpū, w̄q � phεqt �DH∆hε � λhε ¤ G ¤ λ

due to (6.2.4). Hence, from a parabolic comparison principle (Theorem A.1.9) and due to (6.3.1a)

it follows that 0 ¤ wε and 0 ¤ hε ¤ 1. Further, we set vε :� 1� wε and estimate

0 ¤ µ3phεqF̃ pwqwε � pvεqt � ε∆vε � µ2phεquvε

and combining this with (6.3.1a) we conclude that vε ¥ 0 and consequently, wε ¤ 1. Now, we

set

aii :� ψpwε, hεq,
ai :� �Bwψpwε, hεqpwεqxi

� Bhψpwε, hεqphεqxi
,

a :� µ1u
α�1

�
J1px, hεq � uβ � J2px, hεq � wγ

ε

�
,

bi :� νi, b :� 0,

f :� µ1u
α � µ̃3phεqF̃ pwqwε

for i P t1, . . . , nu to apply again Theorem A.1.6 to the equation corresponding to (6.3.4) in

nondivergence form. From this theorem due to the Lipschitz continuity of Bhψ and Bwψ together

with the bounds and the Hölder continuity of wε and hε and its gradients, the Lipschitz continuity

of µ̃3 and Lemmas 2.2.3 and 2.3.2 it follows that for κ :� mint1, α�1uϑ there is a unique solution

uε P C2�κ,1�κ
2 pΩ� r0, T sq to (6.3.4) that satisfies

}uε}C2�κ,1�κ
2 pΩ�r0,T sq ¤C5

�
}aii}Cκ, κ

2 pΩ�r0,T sq, }ai}Cκ, κ
2 pΩ�r0,T sq, }a}Cκ, κ

2 pΩ�r0,T sq, }bi}C1�κ, 1�κ
2

	
�
�
}f}

Cκ, κ
2 pΩ�r0,T sq � }u0ε}C2�κpΩq

	
¤C6

�
M, }u0ε}C2�ϑpΩq, }w0ε}C2�ϑpΩq, }h0ε}C2�ϑpΩq

	
(6.3.8)

due to the embedding of Hölder spaces. Further, we estimate

puεqt � ψpwε, hεq∆uε � pBhψpwε, hεq∇hε � Bwψpwε, hεq∇wεq �∇uε
� µ1u

α�1
�
J1px, hεq � uβ � J2px, hεq � wγ

ε

�
uε

�µ1u
α � µ̃3phεqF̃ pwqwε ¥ 0

and conclude from the comparison principle in Theorem A.1.9 that uε ¥ 0. Now, we estimate

with (6.3.7) and (6.3.8) and Lemma 2.2.9(iii):

}uε}
Cϑ, ϑ

2 pΩ�r0,T sq � }wε}
Cϑ, ϑ

2 pΩ�r0,T sq

¤}uε � u0ε}
Cϑ, ϑ

2 pΩ�r0,T sq � }wε � w0ε}
Cϑ, ϑ

2 pΩ�r0,T sq � }u0ε}CϑpΩq � }w0ε}CϑpΩq
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¤2 maxt1,KIpϑquT 1
2 mint2�ϑ,1�κu}uε}C2�κ,1�κ

2 pΩ�r0,T sq

� 2 maxt1,KIpϑquT 1
2 mint2�ϑ,1�ϑu}wε}

C2�ϑ,1�ϑ
2 pΩ�r0,T sq � }u0ε}CϑpΩq � }h0ε}CϑpΩq

¤2 maxt1,KIpϑquT 1
2 pC6 � C4q � }u0ε}CϑpΩq � }w0ε}CϑpΩq ¤M � 1

for

T ¤
�

1

2 maxt1,KIpϑqupC6 � C4q

2

,

where KIpϑq ¡ 0 denotes the constant from the continuous embedding of W 1
8pΩq into CϑpΩq

from Lemma 2.2.8(ii). Hence, puε, wεq P S and the operator

K : S Ñ S, pu,wq ÞÑ puε, wεq

is well-defined. Due to the continuous dependence of the solution on the coefficients in The-

orem A.1.6 the operator K is continuous. Moreover, (6.3.7) and (6.3.8) imply that K maps

bounded subsets of pCϑ,ϑ2 pΩ� r0, T sqq2 on bounded subsets of pC2�κ,1�κ
2 pΩ� r0, T sqq2. Hence,

from the compact embedding C2�κ,1�κ
2 pΩ � r0, T sq ãÑãÑ Cϑ,ϑ2 pΩ � r0, T sq we conclude that K

is a compact operator. Schauder’s fixed-point theorem (Theorem A.2.2) implies that K has a

fixed-point puε, wεq in pCϑ,ϑ2 pΩ � r0, T sqq2, where additionally uε P C2�κ,1�κ
2 pΩ � r0, T sq and

wε P C2�ϑ,1�ϑ
2 pΩ� r0, T sq as was shown above. Applying Theorem A.1.6 to uε again but with

a :� 0, f :� µ1u
α
ε

�
1� J1px, hεq � uβε px, tq � J2px, hεq � wγ

ε

�� µ̃3phεqF pwεq

we conclude that also uε P C2�ϑ,1�ϑ
2 pΩ� r0, T sq. Finally, (6.3.3) follows extending the solution

to its maximal existence time Tmax,ε.

We show the global boundedness of our solution by adapting the estimates from Step 1 and 2 of

the proof of Theorem 1.1 in [99] similar to Chapter 5.

Lemma 6.3.2. There is C7 ¡ 0 s.t. }uε}L8pΩ�p0,Tmax,εqq ¤ C7 for all ε P p0, 1q.

Proof.

Step 1. Let ε P p0, 1q and q ¡ maxt1, β�α� 1u. Consider t P p0, Tmax,εq. We multiply the first

equation of (6.3.2) by quq�1
ε and integrate over Ω to obtain

d

dt

»
Ω

uqε dx �� qpq � 1q
»
Ω

ψpwε, hεq |∇uε|2 uq�2
ε dx

� qµ1

»
Ω

uq�α�1
ε

�
1� J1px, hεq � uβε � J2px, hεq � wγ

ε

�
dx

� q

»
Ω

µ̃3phεqF pwεquq�1
ε dx

using partial integration. Hence, we conclude from (6.2.3) and (6.2.5c), the continuity of µ̃3, the

boundedness of hε, the fact that F pwεq ¤ 1 for wε ¤ 1 and Young’s inequality that

d

dt

»
Ω

uqε dx� 4pq � 1q
q

δ

»
Ω

���∇u q
2
ε

���2 dx� qµ1η

»
Ω

uβε dx

»
Ω

uq�α�1
ε dx

¤qµ1

»
Ω

uq�α�1
ε dx� q}µ̃3}L8p0,1q

»
Ω

uq�1
ε dx.
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Setting C8 :� µ1�}µ̃3}L8p0,1q and adding qC8}uε}qLqpΩq on both sides of the above equation and

using Young’s inequality we arrive at

d

dt

»
Ω

uqε dx� 4pq � 1q
q

δ

»
Ω

���∇u q
2

���2 dx� qµ1η

»
Ω

uβε dx

»
Ω

uq�α�1
ε dx� qC8

»
Ω

uqε dx

¤2qC8

�»
Ω

uq�α�1
ε dx� |Ω|



. (6.3.9)

From Lemma A.4.1 it follows for K18 � C8

δ and K22 � 2C8

µ1η
that»

Ω

uq�α�1
ε dx ¤ 2pq � 1q

q2C8
δ

»
Ω

|∇u
q
2
ε |2 dx� µ1η

2C8

»
Ω

uβε dx

»
Ω

uq�α�1
ε dx�K23 pqq , (6.3.10)

where

s

$'''&'''%
� 8, n � 1,

P
�

2pq�α�1�βq
q�α�1�β ,8

	
, n � 2,

� 2n
n�2 , n ¡ 2,

K23pqq :�
�

2

�
K2

21q
2C8

pq � 1qδ

 q�α�1�β

q�α�1�β�2
q�α�1�β

s �K24pqq
q�α�β�1

q� q�α�1�β
s

� q�α�1�β� 2pq�α�1�βq
s

β�1�α� 2β
s

�
�

2C8

µ1η


 q� 2pq�α�1q
s

β�1�α� 2β
s �K24pqq

q�α�β�1

q� q�α�1�β
s ,

and

K21 :� 2KS p1� 2KP q ,
K24pqq :� 4KS |Ω|

1
2� q

q�α�1�β .

Here, KS denotes the embedding constant from H1pΩq into LspΩq from Lemma 2.2.8(i) and

KP denotes the constant from the Poincaré inequality. We will leave out the dependence of the

constants on s. Hence, inserting (6.3.10) into (6.3.9) we obtain

d

dt

»
Ω

uqε dx� qC8

»
Ω

uqε dx ¤ 2qC8 pK23 pqq � |Ω|q

and conclude from Lemma A.1.20 with K14 � qC8 and K15 � 2pK23 pqq � |Ω|q that

}uε}LqpΩq ¤ q

b
2pK23 pqq � |Ω|q � }u0ε}qLqpΩq ¤ q

c
2K23 pqq � |Ω|

�
2� }u0ε}qL8pΩq

	
Ñ

qÑ8 8
(6.3.11)

due to ����
q2

q � 1


 q�α�1�β

q�α�1�β�2
q�α�1�β

s

� q�α�1�β� 2pq�α�1�βq
s

β�1�α� 2β
s

��
1
q

¥q
1
q � q�α�1�β

β�1�α� 2β
s �

�
q1�

α�1�β
q

	 1

β�1�α� 2β
s Ñ

qÑ8 8.

Due to (6.3.1a) we can also find an upper bound independent from ε, namely

}uε}LqpΩq ¤ q
a

2K23 pqq � 3|Ω|. (6.3.12)
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Step 2. We proceed with a Moser iteration. Set a :� 2ps�1qpα�1q
s�2 and qk :� 2k�a for k P N large

enough s.t. qk ¡ maxt1, β�α�1u. Then, using Lemma A.4.1 with K18 � C8

δ and r � rk :� 2qk�1

qk

we conclude from (6.3.9) that

d

dt

»
Ω

uqkε dx� 4pqk � 1q
qk

δ

»
Ω

���∇u qk
2
ε

���2 dx� qkµ1η

»
Ω

uβε dx

»
Ω

uqk�α�1
ε dx� qkC8

»
Ω

uqkε dx

¤2qkC8

�»
Ω

uqk�α�1
ε dx� |Ω|



¤4pqk � 1q

q2k
δ

»
Ω

|∇u
qk
2
ε |2 dx

� 2qkC8

��p2C9pkq � C10pkqq }u
qk
2
ε }

2rk

2pqk�α�1q
s

�qk

2qk�1p 2
s
�1q�2pα�1q

Lrk pΩq � C10pkq � |Ω|
�, (6.3.13)

where

C9pkq :�
�
K2

21q
2
kC8

pqk � 1qδ

 2qk�1�2pqk�α�1q

2qk�1p 2
s
�1q�2pα�1q

,

C10pkq :� K20pkq
2qk�1�2pqk�α�1q

2qk�1
s

�qk ,

K20pkq :� 4KSpsq|Ω|
qk�1�qk
2qk�1 .

We know from Lemma A.4.2 that

2pqk�α�1q
s � qk

2qk�1

�
2
s � 1

�� 2pα� 1q � 1

and consequently,

}u
qk
2
ε }

2rk

2pqk�α�1q
s

�qk

2qk�1p 2
s
�1q�2pα�1q

Lrk pΩq �
�»

Ω

uqk�1
ε dx


2

.

Inserting this into (6.3.13) we conclude that

d

dt

»
Ω

uqkε dx� qkC8

»
Ω

uqkε dx

¤2qkC8 p2C9pkq � 2C10pkq � |Ω|qmax

#
1,

�»
Ω

uqk�1
ε dx


2
+
. (6.3.14)

Moreover, Lemma A.4.2 implies that

2qk�1 � 2pqk � α� 1q
2qk�1

�
2
s � 1

�� 2pα� 1q �
s

s� 2
and

2qk�1 � 2pqk � α� 1q
2qk�1

s � qk
¤ α� 1.

Further, we can compute that

qk�1 � qk
2qk�1

P
�
�1

2
, 0



.

Hence, we can estimate

2C9pkq � 2C10pkq � |Ω| � 2

�
K2

21q
2
kC8

pqk � 1qδ

 s

s�2

� 2

�
4KS |Ω|

qk�1�qk
2qk�1


 2qk�1�2pqk�α�1q
2qk�1

s
�qk � |Ω|
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¤ 2

�
K2

21C8

δ
2kp1� aq


 s
s�2

� 2
�

4 max t1,KSumax
!

1, |Ω|� 1
2

)	α�1

� |Ω|

¤ ā

2
2

s
s�2k,

where

ā :� 2

�
2

�
K2

21C8

δ
p1� aq


 s
s�2

� 2
�

4 max t1,KSumax
!

1, |Ω|� 1
2

)	α�1

� |Ω|
�
.

Inserting this into (6.3.14) we obtain

d

dt

»
Ω

uqkε dx� qkC8

»
Ω

uqkε dx ¤ qkC8ā2
s

s�2k max

#
1, sup

t¥0

�»
Ω

uqk�1
ε dx


2
+
.

For k ¥ 1 we can estimate that
³
Ω
uqk0ε dx ¤ }u0ε}qkL8pΩq|Ω| ¤ |Ω| due to (6.3.1a). Hence,

Lemma A.4.3 with ck � qkC8 and D � s
s�2 implies that for k ¥ m ¥ 1 large enough, i.e., s.t.

ā2
s

s�2m ¥ 1, it holds that�»
Ω

uqkε dx


 1
qk ¤p2āq 2k�m�1�1

qk 2

s
s�2 p2p2k�m�1q�m2k�m�1�kq

qk

�max

$&%sup
t¥0

�»
Ω

uqm�1
ε dx


 2k�m�1

qk

, |Ω| 2
k�m

qk , 1

,.- .

For k Ñ8 we obtain

}uε}L8pΩq ¤p2āq
1

2m�1 2
spm�1q

ps�2q2m�1 max

#
sup
t¥0

�»
Ω

uqm�1
ε dx


 1

2m�1

, |Ω|2�m

, 1

+
(6.3.15)

in p0, Tmax,εq. We already know from Step 1 that the right-hand side is bounded above by a

constant indepent from ε. Consequently, uε P L8pΩ�p0, Tmax,εqq is bounded above by a constant

independent from ε.

We can also perform a quasi-maximum principle as in Step 3 of the proof of Theorem 1.1 in [99].

Corollary 6.3.3. We find K ¡ 1 and ’small’ enough parameters s.t.

}uε}L8pΩ�p0,Tmax,εqq ¤ K max

$'&'%1,

��
4KS |Ω|� 1

2

	 1

1� 1
s

2

η

�
1� }µ̃3}L8p0,1q

µ1



 1� 2
s

β�1�α� 2β
s

,/./- .

(6.3.16)

Proof. We want to consider the limit m Ñ 8 in (6.3.15) for ’small’ enough parameters. We

already know from (6.3.12) in the proof of Lemma 6.3.2 that for t P p0, Tmax,εq it holds that»
Ω

uqm�1
ε dx ¤2K23 pqm�1q � 3|Ω|.

We fix some m and assume that our parameters are ’small’ enough s.t.

C8 � µ1 � }µ̃3}L8p0,1q ¤
δ

K2
21q

2
m�1

(6.3.17)
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holds. Then, we can estimate»
Ω

uqm�1
ε dx

¤7 max

$&%
��2

�
1

2m�1 � a� 1


 qm�1�α�1�β

qm�1�α�1�β�2
qm�1�α�1�β

s

�K24pqm�1q
qm�1�α�β�1

qm�1�
qm�1�α�1�β

s

� qm�1�α�1�β� 2pqm�1�α�1�βq
s

β�1�α� 2β
s

�
�

2

η

�
1� }µ̃3}L8p0,1q

µ1



 qm�1�
2pqm�1�α�1q

s

β�1�α� 2β
s

,

K24pqm�1q
qm�1�α�β�1

qm�1�
qm�1�α�1�β

s , |Ω|
+
�: Hpmq.

Finally, we conclude with

lim
mÑ8 pHpmqq

1

2m�1 � max

$'&'%1,

��
4KS |Ω|� 1

2

	 1

1� 1
s

2

η

�
1� }µ̃3}L8p0,1q

µ1



 1� 2
s

β�1�α� 2β
s

,/./- ,

lim
mÑ8p2āq

1

2m�1 2
spm�1q

ps�2q2m�1 � 1

and |Ω|2�pm�1q Ñ
mÑ8 1 from (6.3.15) that

}uε}L8pΩ�p0,Tmax,εqq ¤ max

$'&'%1,

��
4KS |Ω|� 1

2

	 1

1� 1
s

2

η

�
1� }µ̃3}L8p0,1q

µ1



 1� 2
s

β�1�α� 2β
s

,/./- .

Obviously, we do not find parameters satisfying (6.3.17) for m tending to infinity. Nevertheless,

for any K ¡ 1 we find an m� depending only on K s.t. if (6.3.17) is satisfied for m� then, (6.3.16)

holds.

In the following remark we give an exact formula for the Sobolev constantKS from Lemma 2.2.8(i)

that only depends on the domain Ω and the dimension n to get an impression of the upper bound

of uε.

Remark 6.3.4. If Ω is convex the upper bound from Corollary 6.3.3 can be given in terms of

K and our parameters as due to Lemma A.4.4 the Sobolev embedding constant KSpsq is given

by

KSpsq �

$''''''&''''''%

max

"
1, diampΩq|V ||Ω|

1
2

*
n � 1,

?
2 max

"
|Ω| 1s� 1

2 , diampΩq
1� s�2

s π
s�2
2s

2|Ω|
Γp s�2

2s q
Γp s�2

2s q
*c

Γp 2
s q

Γp2 s�1
s q

�
Γp2q
Γp1q

	 s�2
2s

n � 2,

?
2 max

"
|Ω|� 1

n , diampΩq
nπ

n�1
2

n|Ω|
Γp 1

2 q
Γpn�1

2 q
*c

Γpn�2
2 q

Γpn�2
2 q

�
Γpnq
Γpn

2 q

 1

n

n ¥ 3,

(6.3.18)

where V :� �
xPΩ Ωx and Ωx :� ty � x : y P Ωu for x P Ω, and Γ denotes the Gamma function

given by Γpxq � ³8
0
tx�1e�t dt for x ¡ 0.
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Global existence of our solution follows from the last lemma.

Theorem 6.3.5. For ε P p0, 1q there is a bounded global solution puε, wε, hεq of (6.3.2) in�
C2�ϑ,1�ϑ

2

�
Ω� r0,8q�	3

satisfying 0 ¤ uε ¤ C7 and 0 ¤ wε, hε ¤ 1.

Proof. Let ε P p0, 1q. Lemmas 6.3.1 and 6.3.2 imply that uε, wε, hε P L8pΩ � p0, Tmax,εqq.
Assume Tmax,ε   8. Then, gpuε, wεq P L8pΩ� p0, Tmaxqq follows from the Lipschitz continuity

of g. Putting together Theorem A.1.1, the boundedness of hε, Theorem A.1.12 with

ap∇hεq :� DH∇hε, bpx, t, hεq :� λhε � gpuε, wεq

we conclude that there is κ1 P p0, 1q s.t.

}hε}
Cκ1,

κ1
2 pΩ�r0,Tmax,εsq

¤ C11. (6.3.19)

Analogously, setting

ap∇wεq :� ε∇wε, bpx, t, wεq :� µ3phεqF pwεq � µ2phεqpwε � 1quε

in Theorem A.1.12 we conclude using the boundedness of our solution and the Lipschitz continuity

of µ2 and µ3 on r0, 1s that there is κ2 P p0, 1q s.t.

}wε}
Cκ2,

κ2
2 pΩ�r0,Tmax,εsq

¤ C12. (6.3.20)

Moreover, due to the boundedness of our solution, the continuity of ψ, (6.2.3) and (6.2.5b) and

setting

apx, t,∇uεq :� ψpwε, hεq∇uε,
bpx, t, uεq :� µ1u

α
ε

��1� J1px, hεq � uβε � J2px, hεq � wγ
ε

�� µ̃3phεqF pwεq

in Theorem A.1.12 it follows analogously that there is κ3 P p0, 1q s.t.

}uε}
Cκ3,

κ3
2 pΩ�r0,Tmax,εsq

¤ C13. (6.3.21)

Finally, it follows as in Lemma 6.3.1 (applying Theorem A.1.6 twice to every function if necessary)

that uε, wε, hε P C2�ϑ,1�ϑ
2 pΩ�r0, Tmax,εsq. This contradicts (6.3.3). Hence, Tmax,ε � 8 follows.

We show the uniqueness of this solution as in Chapter 5, where we need to restrict p1, p2 in

(6.2.5b) if n ¥ 3.

Lemma 6.3.6. Assume that p1, p2 from (6.2.5b) satisfy p1, p2 ¥ 2n
n�2 if n ¥ 3 and p1, p2 P p1,8q

as before if n � 1, 2 then the classical solution from Theorem 6.3.5 is unique.

Proof. Let ε P p0, 1q and T P p0,8q. Assume that there are two solutions pu1, w1, h1q and

pu2, w2, h2q in
�
C2�ϑ,1�ϑ

2

�
Ω� r0,8q�	3

to (6.3.2). Then, we obtain after subtracting the equa-

tions for h1 and h2 from another that

ph1 � h2qt � DH∆ph1 � h2q � gpu1, w1q � gpu2, w2q � λph1 � h2q
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holds in Ω � p0, T q. Now, we multiply the above equation with h1 � h2, integrate over Ω and

obtain for t P p0, T q using partial integration, the Lipschitz continuity of g and Young’s inequality

that

1

2

d

dt

»
Ω

|h1 � h2|2 dx� λ

»
Ω

|h1 � h2|2 dx�DH

»
Ω

|∇ph1 � h2q|2 dx

�
»
Ω

pgpu1, w1q � gpu2, w2qqph1 � h2q dx

¤2Lg

»
Ω

|u1 � u2||h1 � h2|dx� 2Lg

»
Ω

|w1 � w2||h1 � h2|dx

¤C14

�»
Ω

|u1 � u2|2 dx�
»
Ω

|w1 � w2|2 dx



� λ

»
Ω

|h1 � h2|2 dx. (6.3.22)

Subtracting the equations for w1 and w2 from another we obtain the equation

pw1 � w2qt �ε∆pw1 � w2q � µ2ph1qp1� w1qu1 � µ2ph2qp1� w2qu2
� µ3ph2qF pw2q � µ3ph1qF pw1q

�ε∆pw1 � w2q � µ2ph1qp1� w1qpu1 � u2q � µ2ph1qpw2 � w1qu2
� pµ2ph1q � µ2ph2qqp1� w2qu2 � µ3ph2qpw2 � w1qF̃ pw1qF̃ pw2q
� pµ3ph2q � µ3ph1qqF pw1q

that holds in Ω� p0, T q and conclude analogously to above using the Lipschitz continuity of µ2

and µ3 and the boundedness of the solutions that for t P p0, T q it holds that

1

2

d

dt

»
Ω

|w1 � w2|2 dx� ε

»
Ω

|∇pw1 � w2q|2 dx

¤}µ2}L8p0,1q
»
Ω

|u1 � u2||w1 � w2|dx� p}µ2}L8p0,1qC7 � }µ3}L8p0,1qq
»
Ω

|w1 � w2|2 dx

� p}µ12}L8p0,1qC7 � }µ13}L8p0,1qq
»
Ω

|h1 � h2||w1 � w2|dx

¤C15

�»
Ω

|u1 � u2|2 dx�
»
Ω

|w1 � w2|2 dx�
»
Ω

|h1 � h2|2 dx



. (6.3.23)

Further, we obtain by subtracting the equations for u1 and u2 from another that

pu1 � u2qt �∇ � pψpw1, h1q∇u1 � ψpw2, h2q∇u2q � µ1

�
uα1 � uα2 � uα2 J1px, h2q � uβ2

�uα1 J1px, h1q � uβ1 � uα2 J2px, h2q � wγ
2 � uα1 J2px, h1q � wγ

1

	
� µ̃3ph1qF pw1q � µ̃3ph2qF pw2q

�∇ � pψpw1, h1q∇pu1 � u2q � pψpw1, h1q � ψpw2, h2qq∇u2q � µ1puα1 � uα2 q
� µ1

�
uα2 J1px, h2q � uβ2 � uα1 J1px, h1q � uβ1 � uα2 J2px, h2q � wγ

2 � uα1 J2px, h1q � wγ
1

	
� pµ̃3ph1q � µ̃3ph2qqF pw1q � µ̃3ph2qpw1 � w2qF̃ pw1qF̃ pw2q (6.3.24)

holds in Ω� p0, T q. Using (6.2.5a), (6.2.5b), the boundedness of u1, u2, the mean value theorem

and Hölder’s inequality and the Sobolev embedding from Lemma 2.2.8(i) we can estimate on

Ω� p0, T q that���J1px, h2q � uβ2 � J1px, h1q � uβ1
���

¤|pJ1px, h2q � J1px, h1qq � uβ2 | � |J1px, h1q � puβ1 � uβ2 q|
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¤Cβ
7

»
Ω

LJ1
px� yq|h1pyq � h2pyq| dy � βCβ�1

7

»
Ω

J1px� y, h1pyqq|u1pyq � u2pyq|dy

¤Cβ
7 }LJ1

}Lp1 pBq}h1 � h2}
L

p1
p1�1 pΩq

� βCβ�1
7 p}LJ1}Lp1 pBq � }J1p�, 0q}Lp1 pBqq}u1 � u2}

L
p1

p1�1 pΩq

¤C16

�}h1 � h2}H1pΩq � }u1 � u2}H1pΩq
�
.

From this we obtain using (6.2.5a), (6.2.5b), the boundedness of u1, u2, the mean value theorem,

Lemma 2.3.2(i) and Hölder’s and Young’s inequality that»
Ω

���uα2 J1px, h2q � uβ2 � uα1 J1px, h1q � uβ1
��� |u1 � u2|dx

¤αCα�1
7 }J1p�, h2q � uβ2 }L8pΩ�p0,T qq}u1 � u2}2L2pΩq

� C16C
α
7

�}h1 � h2}H1pΩq � }u1 � u2}H1pΩq
� }u1 � u2}L1pΩq

¤C17

�
D�1

H , δ�1
� �}h1 � h2}2L2pΩq � }u1 � u2}2L2pΩq

	
� DH

2
}∇ph1 � h2q}2pL2pΩqqn

� δ

2
}∇pu1 � u2q}2pL2pΩqqn . (6.3.25)

Analogously, we obtain»
Ω

|uα2 J2px, h2q � wγ
2 � uα1 J2px, h1q � wγ

1 | |u1 � u2|dx

¤C18

�
D�1

H , ε�1
� �}u1 � u2}2L2pΩq � }h1 � h2}2L2pΩq � }w1 � w2}2L2pΩq

	
� DH

2
}∇ph1 � h2q}2pL2pΩqqn � ε}∇pw1 � w2q}2pL2pΩqqn . (6.3.26)

Multiplying (6.3.24) by u1�u2, integrating over Ω, using partial integration, (6.2.3), the Lipschitz

continuity of ψ and µ̃3, the boundedness of the solutions and of ∇u2 on Ω � p0, T q, the mean

value theorem, (6.3.25), (6.3.26) and Young’s inequality we conclude that

1

2

d

dt

»
Ω

|u1 � u2|2 dx� δ

»
Ω

|∇pu1 � u2q|2 dx

¤}∇u2}L8p0,T ;pL8pΩqqnq

»
Ω

�}Bwψ}L8pp0,1q2q|w1 � w2| � }Bhψ}L8pp0,1q2q|h1 � h2|
� |∇pu1 � u2q|dx

� µ1αC
α�1
7

»
Ω

|u1 � u2|2 dx� µ1

»
Ω

|uα2 J1px, h2q � uβ2 � uα1 J1px, h1q � uβ1 ||u1 � u2|dx

� µ1

»
Ω

|uα2 J2px, h2q � wγ
2 � uα1 J2px, h1q � wγ

1 ||u1 � u2| dx

� Lµ̃3

»
Ω

|h1 � h2||u1 � u2|dx� }µ̃3}L8p0,1q
»
Ω

|w1 � w2||u1 � u2|dx

¤C19pT q
�
}u1 � u2}2L2pΩq � }h1 � h2}2L2pΩq � }w1 � w2}2L2pΩq

	
� δ}∇pu1 � u2q}2pL2pΩqqn �DH}∇ph1 � h2q}2L2pΩq � ε}∇pw1 � w2q}2pL2pΩqqn . (6.3.27)

Adding up (6.3.22), (6.3.23) and (6.3.27) we conclude that for t P p0, T q it holds that

1

2

d

dt

�
}u1 � u2}2L2pΩq � }h1 � h2}2L2pΩq � }w1 � w2}2L2pΩq

	
¤pC14 � C15 � C19q

�
}u1 � u2}2L2pΩq � }h1 � h2}2L2pΩq � }w1 � w2}2L2pΩq

	
Finally, we obtain u1 � u2, h1 � h2 and w1 � w2 on Ω � r0, T s from Gronwall’s inequality. As

this holds for all T P p0,8q uniqueness of the classical solution to (6.3.2) follows.
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6.4 Existence of a weak solution to the original problem

Definition 6.4.1. By a weak solution to (6.2.1) we mean a tuple pu,w, hq of nonnegative

bounded functions s.t. for all T P p0,8q it holds that u P L2p0, T ;H1pΩqq X Cpr0, T s;L2pΩqq,
w P L8p0, T ;H1pΩqq X Cpr0, T s;L2pΩqq with Btw P L2pΩ � p0, T qq and h P W 2,1

2 pΩ � p0, T qq X
Cpr0, T s;H1pΩqq and they satisfy

�
» T

0

»
Ω

uBtη dx dt�
»
Ω

u0ηp�, 0q dx

��
» T

0

»
Ω

ψpw, hq∇u �∇η dx dt� µ1

» T

0

»
Ω

uα
�
1� J1px, hq � uβ � J2px, hq � wγ

�
η dx dt

�
» T

0

»
Ω

µ̃3phqF pwqη dx dt, (6.4.1)

for all η PW 1,1
2 pΩ� p0, T qq with ηpT q � 0 and

wt � µ2phqp1� wqu� µ3phqF pwq a.e. in Ω� p0, T q, (6.4.2)

ht � DH∆h� gpu,wq � λh a.e. in Ω� p0, T q, (6.4.3)

Bνh � 0 a.e. on BΩ� p0, T q,
wp�, 0q � w0, hp�, 0q � h0 a.e. in Ω.

Lemma 6.4.2. There are u,w, h with bounds 0 ¤ u ¤ C7 and 0 ¤ w, h ¤ 1 on Ω � r0,8q s.t.
for all T P p0, T q it holds that u P L2p0, T ;H1pΩqq, w P L8p0, T ;H1pΩqq X Cpr0, T s;L2pΩqq and
h PW 2,1

2 pΩ� p0, T qq and for a subsequence

uεk á
kÑ8

u in L2p0, T ;H1pΩqq, (6.4.4a)

uεk Ñ
kÑ8

u in L2pΩ� p0, T qq and a.e. in Ω� p0, T q, (6.4.4b)

wεk Ñ
kÑ8

w in Cpr0, T s;L2pΩqq and a.e. in Ω� p0, T q, , (6.4.4c)

∇wεk
�á

kÑ8
∇w in L8p0, T ; pL2pΩqqnq, (6.4.4d)

Btwεk á
kÑ8

Btw in L2pΩ� p0, T qq, (6.4.4e)

hεk á
kÑ8

h in L2p0, T ;H2pΩqq, (6.4.4f)

hεk Ñ
kÑ8

h in L2p0, T ;H1pΩqq and a.e. in Ω� p0, T q, (6.4.4g)

Bthεk á
kÑ8

Bth in L2pΩ� p0, T qq, (6.4.4h)

Proof. Let T ¡ 0. First, Theorem A.1.8 implies that

}hε}W 2,1
2 pΩ�p0,T qq ¤ C20

�}gpuε, wεq}L2pΩ�p0,T qq � }h0ε}H1pΩq
�
. (6.4.5)

Due to the Lipschitz continuity of g, the uniform boundedness of puεq and pwεq and the con-

vergence in (6.3.1c) the right-hand side of (6.4.5) is uniformly bounded for ε P p0, 1q. Hence,

Lions-Aubin (with H2pΩq ãÑãÑ H1pΩq ãÑ L2pΩq) and Banach-Alaoglu imply the existence of

h P W 2,1
2 pΩ � p0, T qq and a subsequence s.t. (6.4.4f) - (6.4.4h) hold and from Lemma 6.3.1 it

follows for a.e. px, tq P Ω� p0, T q that 0 ¤ hpx, tq � lim
kÑ8

hεkpx, tq ¤ 1.
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Next, we want to obtain a uniform estimate on the norm of ∇uε. Therefore, we multiply the

equation for uε in (6.3.2) by uε, integrate over Ω and use partial integration to obtain

1

2

d

dt

»
Ω

u2ε dx ��
»
Ω

ψpwε, hεq|∇uε|2 dx� µ1

»
Ω

uα�1
ε

�
1� J1px, hεq � uβε � J2px, hεq � wγ

ε

�
dx

�
»
Ω

µ̃3phεqF pwεquε dx.

Then, we can estimate using (6.2.3), Lemma 2.3.2(i), the uniform boundedness of puεq, pwεq,
phεq, α ¥ 1, the continuity of µ̃3 that

1

2

d

dt

»
Ω

u2ε dx� δ

»
Ω

|∇uε|2 dx

¤µ1C
α�1
7

�
1� Cβ

7 p}LJ1}L1pBq � }J1p�, 0q}L1pBqq � } LJ2}L1pBq � }J2p�, 0q}L1pBq
	 »

Ω

u2ε dx

� }µ̃3}L8p0,1qC7|Ω|

Hence, we conclude from Gronwall’s inequality that for all ε P p0, 1q it holds that

}∇uε}L2p0,T ;pL2pΩqqnq ¤ C21pT q. (6.4.6)

Further, we multiply the equation for uε in (6.3.2) by φ P H1
0 pΩq and obtain obtain using partial

integration, the Hölder inequality, the continuity of ψ, the uniform boundedness of puεq, pwεq
and phεq, Lemma 2.3.2(i) and the Lipschitz continuity of µ̃3 that����»

Ω

Btuεφdx

���� ¤ »
Ω

|ψpwε, hεq∇uε �∇φ|dx� µ1

»
Ω

|uαε
�
1� J1px, hεq � uβε � J2px, hεq � wγ

ε

�
φ|dx

�
»
Ω

|µ̃3phεqF pwεqφ|dx

¤}ψ}L8pp0,1q2q}∇uε}pL2pΩqqn}∇φ}pL2pΩqqn

�
�
µ1C

α
7

�
1� Cβ

7 p}LJ1
}L1pBq � }J1p�, 0q}L1pBqq � } LJ2

}L1pBq � }J2p�, 0q}L1pBq
	

�}µ̃3}L8p0,1q
� }φ}L1pΩq

¤C22p}∇uε}pL2pΩqqn � 1q}φ}H1pΩq.

Hence,

}Btuε}H�1pΩq ¤ C22p}∇uε}pL2pΩqqn � 1q

and we conclude from (6.4.6) that

}Btuε}L2p0,T ;H�1pΩqq ¤ C23pT q. (6.4.7)

Combining (6.4.6) and (6.4.7) with the uniform boundedness of puεq we conclude from Lions-

Aubin (Lemma A.3.9) with H1pΩq ãÑãÑ L2pΩq ãÑ H�1pΩq and Banach-Alaoglu that there is

u P L2p0, T ;H1pΩqq and a subsequence s.t. (6.4.4a) and (6.4.4b) hold. Moreover, due to the

pointwise convergence it holds a.e. in Ω� p0, T q that 0 ¤ upx, tq ¤ lim
kÑ8

uεkpx, tq ¤ C7.

To obtain a uniform estimate on the norm of ∇wε we multiply the equation for wε by ∆wε and

obtain after integration over Ω and partial integration due to our boundary condition on wε that

1

2

d

dt

»
Ω

|∇wε|2 dx �
»
Ω

p∇wεqt �∇wε dx � �
»
Ω

pwεqt∆wε dx
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�� ε

»
Ω

|∆wε|2 dx�
»
Ω

µ2phεqp1� wεquε∆wε dx�
»
Ω

µ3phεqF pwεq∆wε dx

�� ε

»
Ω

|∆wε|2 dx�
»
Ω

�
µ12phεqp1� wεq∇hεuε � µ2phεq∇wεuε � µ2phεqp1� wεq∇uε

� �∇wε dx

�
»
Ω

�
µ13phεq∇hεF pwεq � µ3phεqpF̃ pwεqq2∇wε

	
�∇wε dx.

Hence, using the uniform boundedness of puεq, phεq, pwεq, continuity of µ12, µ
1
3 and Young’s in-

equality we obtain

1

2

d

dt

»
Ω

|∇wε|2 dx� ε

»
Ω

|∆wε|2 dx

¤p}µ12}L8p0,1qC7 � }µ13}L8p0,1qq
»
Ω

|∇hε||∇wε|dx� }µ2}L8p0,1q
»
Ω

|∇uε||∇wε|dx

� �}µ2}L8p0,1qC7 � }µ3}L8p0,1q
� »

Ω

|∇wε|2 dx

¤C24

�»
Ω

|∇uε|2 dx�
»
Ω

|∇wε|2 dx�
»
Ω

|∇hε|2 dx



Hence, Gronwall’s inequality, the fact that p∇w0εq is uniformly bounded in pL2pΩqqn due to the

convergence in (6.3.1c), (6.4.5) and (6.4.6) and imply that»
Ω

|∇wεptq|2 dx� ε

» T

0

»
Ω

|∆wε|2 dxdt

¤C25pT q
�
}∇w0ε}pL2pΩqqn �

» T

0

»
Ω

|∇uε|2 dxdt�
» T

0

»
Ω

|∇hε|2 dxdt

�
¤ C26pT q

for t P p0, T q and ε P p0, 1q. Consequently, for all ε P p0, 1q it holds that

}∇wε}L8p0,T ;pL2pΩqqnq ¤ C26pT q, (6.4.8)

ε}∆wε}L2pΩ�p0,T qq ¤ C27pT q. (6.4.9)

To obtain a uniform estimate on some norm of the time derivative of wε, we multiply the equation

for wε from (6.3.2) by φ P L2pΩq, integrate over Ω, use the Lipschitz continuity of µ2 and µ3,

the uniform boundedness of puεq, pwεq and phεq and Hölder’s inequality to conclude that����»
Ω

Btwεφdx

���� ¤ ε

»
Ω

|∆wε||φ|dx�
»
Ω

|µ2phεqp1� wεquεφ|dx�
»
Ω

|µ3phεqF pwεqφ|dx

¤
�
ε}∆wε}L2pΩq � p}µ2}L8p0,1qC7 � }µ3}L8p0,1qq|Ω|

1
2

	
}φ}L2pΩq.

Consequently, we conclude from (6.4.9) as pL2pΩqq� � L2pΩq that for all ε P p0, 1q it holds that

}Btwε}L2pΩ�p0,T qq ¤ C28pT q. (6.4.10)

Combining the uniform boundedness of pwεq with (6.4.8) and (6.4.10) we conclude from Lions-

Aubin (Lemma A.3.9) with H1pΩq ãÑãÑ L2pΩq ãÑ L2pΩq and Lemma A.3.1 in the space

L8p0, T ; pL2pΩqqnq � pL1p0, T ; pL2pΩqqnqq� that there is w P Cpr0, T s;L2pΩqqXL8p0, T ;H1pΩqq
and a subsequence s.t. (6.4.4c) - (6.4.4e) hold. From the pointwise a.e. convergence we conclude

that 0 ¤ wpx, tq � lim
kÑ8

wεkpx, tq ¤ 1 holds a.e. in Ω� p0, T q.

Due to the pointwise convergence shown in the proof of the last lemma the following corollary

is a direct consequence of Corollary 6.3.3.
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Corollary 6.4.3. For K ¡ 1 and ’small’ enough parameters it holds that

}u}L8pΩ�p0,8qq ¤K max

$'&'%1,

��
4KS |Ω|� 1

2

	 1

1� 1
s

2

η

�
1� }µ̃3}L8p0,1q

µ1



 1� 2
s

β�1�α� 2β
s

,/./- .

Theorem 6.4.4. There is a bounded nonnegative weak solution pu,w, hq to (6.2.1) in the sense

of Definition 6.4.1 satisfying u ¤ C7 and w, h ¤ 1 a.e. in Ω� p0,8q.

Proof. Let T ¡ 0 and η P W 1,1
2 pΩ � p0, T qq with ηpT q � 0. We consider the subsequence pεkq

from Lemma 6.4.2. Multiplying the equations from (6.3.2) by η, integrating over Ω� p0, T q and

using partial integration we obtain the weak formulation

�
» T

0

»
Ω

uεkBtη dxdt�
»
Ω

u0εkηp�, 0q dx

��
» T

0

»
Ω

ψpwεk , hεkq∇uεk �∇η dxdt

� µ1

» T

0

»
Ω

uαεk
�
1� J1px, hεkq � uβεk � J2px, hεkq � wγ

εk

�
η dxdt

�
» T

0

»
Ω

µ̃3phεkqF pwεkqη dxdt,

» T

0

»
Ω

Btwεkη dx dt �� εk

» T

0

»
Ω

∇wεk �∇η dxdt

�
» T

0

»
Ω

pµ2phεkqp1� wεkquεk � µ3phεkqF pwεkqq η dx dt

and » T

0

»
Ω

Bthεkη dx dt � DH

» T

0

»
Ω

∆hεkη dxdt�
» T

0

»
Ω

pgpuεk , wεkq � λhεkqη dx dt.

From the continuity of ψ and µ̃3, (6.4.4c), (6.4.4g) and the dominated convergence theorem we

conclude that

ψpwεk , hεkq∇η Ñ
kÑ8

ψpw, hq∇η in L2p0, T ; pL2pΩqqnq,

µ̃3phεkqF pwεkq Ñ
kÑ8

µ̃3phqF pwq in L2pΩ� p0, T qq. (6.4.11)

Hence, » T

0

»
Ω

ψpwεk , hεkq∇uεk �∇η dxdt Ñ
kÑ8

» T

0

»
Ω

ψpw, hq∇u �∇η dx dt (6.4.12)

follows from (6.4.4a) and compensated compactness (Lemma A.3.2). Further, due to (6.2.5a)

and the uniform boundedness of puεkq we estimate for px, tq P Ω� p0, T q that��J1px, hεkq � uβεkptq � J1px, hq � uβptq
��

¤
»
Ω

|J1px� y, hεkpy, tqq � J1px� y, hpy, tqq|uβεkpy, tqdy

�
»
Ω

J1px� y, hpy, tqq|uβεkpy, tq � uβpy, tq|dy
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¤Cβ
7

»
Ω

LJ1
px� yq|hεkpy, tq � hpy, tq| dy

�
»
Ω

pLJ1px� yqhpy, tq � J1px� y, 0qq|uβεkpy, tq � uβpy, tq|dy Ñ
kÑ8

0

due to the dominated convergence theorem combined with (6.4.4b), (6.4.4g), and (6.2.5b) and

the uniform boundedness of puεkq and phεkq. Consequently,

J1p�, hεkq � uβεk Ñ
kÑ8

J1p�, hq � uβ pointwise a.e. in Ω� p0, T q (6.4.13)

and analogously,

J2p�, hεkq � wγ
εk

Ñ
kÑ8

J2p�, hq � wγ pointwise a.e. in Ω� p0, T q (6.4.14)

follows. Hence, we conclude combining (6.4.4b), (6.4.13), and (6.4.14) that

uαεk
�
1� J1p�, hεkq � uβεk � J2p�, hεkq � wγ

εk

� Ñ
kÑ8

uα
�
1� J1p�, hq � uβ � J2p�, hq � wγ

�
pointwise a.e. in Ω� p0, T q

and from the uniform boundedness of puεkq, pwεkq and phεkq and Lemma 2.3.2(i) that for all

k P N it holds that

|uαεk
�
1� J1px, hεkq � uβεkptq � J2px, hεkq � wγ

εk
ptq� | ¤ C29.

Consequently, the dominated convergence theorem implies that

uαεk
�
1� J1p�, hεkq � uβεk � J2p�, hεkq � wγ

εk

� Ñ
kÑ8

uα
�
1� J1p�, hq � uβ � J2p�, hq � wγ

�
in L2pΩ� p0, T qq.

Combining this with (6.3.1b), (6.4.4b), (6.4.11) and (6.4.12) we conclude that u satisfies (6.4.1),

i.e., solves the corresponding equations of (6.2.1) in the sense of Theorem A.1.1. Hence, also

u P Cpr0, T s;L2pΩqq holds due to Theorem A.1.1.

With the help of Hölder’s inequality and (6.4.8) we obtain

εk

�����
» T

0

»
Ω

∇wεk �∇η dx dt

����� ¤εk}∇wεk}L2p0,T ;pL2pΩqqnq}∇η}L2p0,T ;pL2pΩqqnq

¤εkC26T
1
2 }∇η}L2p0,T ;pL2pΩqqnq Ñ

kÑ8
0. (6.4.15)

Further, we conclude from the continuity of µ2 and µ3, the pointwise convergences in (6.4.4b),

(6.4.4c) and (6.4.4g), the uniform boundedness of puεkq, pwεkq and phεkq and the dominated

convergence theorem that

µ2phεkqp1� wεkquεk Ñ
kÑ8

µ2phqp1� wqu in L2pΩ� p0, T qq, (6.4.16)

µ3phεkqF pwεkq Ñ
kÑ8

µ3phqF pwq in L2pΩ� p0, T qq. (6.4.17)

Combining (6.3.1c) and (6.4.4c) with (6.4.15) - (6.4.17) we conclude that» T

0

»
Ω

Btwη dxdt �
» T

0

pµ2phqp1� wqu� µ3phqF pwqq η dx dt.
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Due to C8
c pΩ�p0, T qq �W 1,1

2 pΩ�p0, T qq the fundamental lemma of calculus of variations implies

that w satisfies (6.4.2). Moreover, using partial integration we conclude due to (6.3.1c), (6.4.4c),

and (6.4.4e) that (especially also for η P C8
c pΩ � r0, T qq � W 1,1

2 pΩ � p0, T qq with ηpT q � 0) it

holds that

�
» T

0

»
Ω

wηt dx dt�
»
Ω

wp�, 0qηp�, 0q dxdt �
» T

0

»
Ω

Btwη dx dt

� lim
kÑ8

» T

0

»
Ω

Btwεkη dxdt

� lim
kÑ8

�
�
» T

0

»
Ω

wεkηt dx dt�
»
Ω

w0εkp�qηp�, 0q dxdt

�

� �
» T

0

»
Ω

wηt dxdt�
»
Ω

w0p�qηp�, 0q dxdt

Hence, we conclude again from the fundamental lemma of calculus of variations that indeed

wp�, 0q � w0 a.e. in Ω.

Furthermore, we estimate with the help of Hölder’s inequality and the Lipschitz continuity of g

that » T

0

»
Ω

|gpuεk , wεkq � gpu,wq||η| dx dt

¤2Lg

�}uεk � u}L2pΩ�p0,T qq � }wεk � w}L2pΩ�p0,T qq
� }η}L2pΩ�p0,T qq Ñ

kÑ8
0

due to (6.4.4b) and (6.4.4c). Hence, it follows from (6.4.4f) - (6.4.4h) that» T

0

»
Ω

Bthη dxdt � DH

» T

0

»
Ω

∆hη dxdt�
» T

0

»
Ω

pgpu,wq � λhqη dx dt

for all η P W 1,1
2 pΩ � p0, T qq with ηpT q � 0. We conclude again from the fundamental lemma

of calculus of variations that h satisfies (6.4.3) a.e. in Ω � p0, T q. Finally, hp�, 0q � h0 a.e. in Ω

follows as for w. We conclude similary that» T

0

»
BΩ

∇h � νη dσpxq dt � 0

which due to H1pΩq ãÑ L2pBΩq gives us ∇h � ν � 0 a.e. on BΩ� p0, T q.

6.5 1D Simulations

In this section we simulate the behavior of solutions to (6.2.1) in one dimension. Thereby,

we decompose the domain Ω � r�5, 5s into an equidistant mesh x2, . . . , xN�1 with step size

dx � 0.05 and the time interval r0, 50s with step size dt � 0.0001. For a simulation of the no-flux

boundary condition we add points x1   x2 and xN ¡ xN�1 outside of Ω and assume equality

of the solutions on the neighboring points. As in Chapter 5, we use the method from [111] to

discretize the nonlocal integral terms via a composite trapezoidal rule. Moreover, as in [156], we

recompute the convolution matrices only every 40 time steps to improve the runtime. Thereby,

we assume that changes in the values of the convolution matrices phi mat1 and phi mat2 (due

to changes of h) are negligible within this time interval. Namely, for i, j P t2, . . . , N � 1u the

corresponding entry of the kth-convolution matrix is

pphi mat1qkij � J1pxi � xj , h
40k
j q
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and with the help of this we compute the n� 1st convolution term at xi, i P t2, . . . , N � 1u as:

pconv1qn�1
i �dx

N�2̧

j�3

pphi mat1qtn{40uij punj qβ

� dx

2

�
pphi mat1qtn{40ui2 pun2 qβ � pphi mat1qtn{40uipN�1qpunpN�1qqβ

	
.

Analogously we compute phi mat2 and conv2. For the discretization of the diffusion term we use

finite differences and an upwind scheme. The initial conditions are depicted in Figure 6.1 and

are given by

u0pxq �
$&% 0.3e�

1
5 px�5q2 , x P r�5, 0s,

0.3e�5
�
1� x

5

�
, x P p0, 5s,

w0pxq �
$&% 0.7e�px�5q2 , x P r�5, 0s,

0.7e�25
�
1� x

5

�
, x P p0, 5s

,

h0pxq �
$&% 1

5 p0.3e�5 � 0.05qx� 0.3e�5, x P r�5, 0s,
0.3e�5

�
1� x

5

�
, x P p0, 5s.

Figure 6.1: Initial conditions u0, w0, h0.

We choose the functions ψph,wq � 0.5 (for simplicity), µ2phq � h (meaning that the net ’deac-

tivation’ of u-cells is directly proportional to the amount of protons available in the microtumor

space), µ3phq � µ̃3phq � h
1�h (there is no loss of w-cells when becoming u-cells, the transition -

primarily to motility- is favored by acidity, but in a limited manner, quickly reaching saturation),

F pwq � w
1�w , gpu,wq � u�w

1�u�w (both phenotypes are producing acid, also in a limited way), and

the constants DH � 0.1 and λ � 1.

First, we took β � γ � µ1 � 1 and explored the influence of the kernels on the minimal value α�

of α for which the solution ceases to exist globally in time (with accuracy to one decimal place).

Thereby, we considered as in Chapter 5 the logistic kernel JLpxq � 1
2�ex�e�x , the uniform kernel

JU pxq � χr�1,1spxq and, moreover, the h-dependent kernels

J1px, hq � 1?
2π
e�

x2

2

�
h

1� h
� 1

10



, (6.5.1)
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J2px, hq � h2

2p1� h2q , (6.5.2)

Figure 6.2: Simulation results of model (6.2.1) with J1 � J2 � JL, i.e., logistic kernels, β � γ �
µ1 � 1, α � 2, 5, 6.1, 6.2 (columns from left to right, respectively). Component u of the solution

starts to become unbounded near α � 6.2. In the rightmost column a blow-up occurs in the next

time step.

the first of which is a h-dependent shift of a Gaussian, while the latter is a Holling III-type

function of h suggesting a slower increase towards saturation, with a certain ’learning effect’ as

far as the response to more acidity is concerned: as J2 stands for the interaction of the two

cell phenotypes, it accounts for both of them extruding protons, along with the corresponding

adaptation of u-cells to interspecific cues.

The first columns of Figures 6.2 and 6.3 show the solution for the critical α from (6.2.2), when

J1 and J2 are both logistic or uniform, respectively. The solution u aggregates at the position

of the initial accumulation of the active cells at the left boundary. In the case of two logistic

kernels a stronger aggregation for increasing α values can be observed leading to a blow-up at

the left boundary near α� � 6.2. On the other hand, in the case of two uniform kernels u

invades the whole domain and aggregates at the right boundary, leading to a blow-up there for

approximately α� � 14.7. This invasive behavior can also be observed for all combinations of

kernels and parameters α, β, γ, µ as long as no blow-up at the left boundary occurs. An overview

of the minimal values α� depending on the kernels can be found in Table 6.1.

In further tests we investigated for logistic kernels the influence of β,γ and the growth rate µ1

on the blow-up behavior. Higher values of β lead to an increase of the minimal value α� where

blow-up occurs. In the case β � 10 and γ � µ1 � 1 we observed that for α � 26.9, 27.1, 27.3

the solution ceases to exist, whereas it exists globally in time for α � 27, 27.2, 27.4. Hence, in

contrast to Chapter 5 and [99] we cannot determine a value α� s.t. for α   α� the solution is

global, whereas it blows-up for α ¥ α�. It seems that for α ¥ α�� � 27.5 blow-up occurs but
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Figure 6.3: Simulation results of model (6.2.1) with J1 � J2 � JU , i.e., uniform kernels, β �
γ � µ1 � 1, α � 2, 6.2, 14.6, 14.7 (columns from left to right, respectively). Component u of the

solution starts to become unbounded near α � 14.7. In the rightmost column a blow-up occurs

in the next time step.

α� Figure

J1, J2 logistic 6.2 Figure 6.2

J1 logistic, J2 uniform 7.4

J1 uniform, J2 logistic 10.3

J1, J2 uniform 14.7 Figure 6.3

J1, J2 from (6.5.1),(6.5.2) 4.1 Figure 6.6

Table 6.1: Minimal value α� for which the solution ceases to exist for β � γ � µ1 � 1 depending

on the kernels J1 and J2.

we cannot assure this. In contrast, higher values of γ and/or µ1 lead to a blow-up for lower α’s,

see Table 6.2 for an overview of the concrete values of α� along with the respective parameter

combinations.

Parameters α�

β � 10, γ � µ1 � 1 26.9

β � γ � 10, µ1 � 1 22.1

β � 10, γ � 0.1, µ1 � 1 33.4

β � 1, γ � 10, µ1 � 1 4.6

β � 1, γ � 0.1, µ1 � 1 25.3

β � γ � 1, µ1 � 10 3.6

Table 6.2: Minimal value α� for which the solution ceases to exist, depending on parameters

β, γ, µ1. Both convolution kernels are logistic: J1 � J2 � JL.
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Figure 6.4: Simulations of models (6.2.1) and (6.5.3) with α � 2, µ1 � 1, and (from left to right)

β � 1, 10, 100, 1000 and γ � 1000 in column 1, γ � 1 in columns 2-4. First row: J1 � J2 � JU ;

2nd row: model without w, with J � JU ; 3rd row: J1 � J2 � JL; 4th row: model without w,

with J � JL

Moreover, as in Chapter 5, increasing values of β and µ1 in Figure 6.4 lead to patterns depending

on the kernels J1 and J2. A high value of γ does not seem to lead by itself to patterns, but further

experiments suggest that γ influences the height of the peaks, thus leading to less pronounced

u-patterns. This is due to the stronger dampening of proliferation, which hinders stronger

aggregates. To illustrate the effect of γ we plot in Figure 6.4 two situations with very different

values (γ � 1000 in the first column and γ � 1 in the remaining columns).

The performed simulations are very similar to those of the reduced model$&% Btu � ∇ � pψphq∇uq � µ1u
α
�
1� Jpx, hq � uβ� in Ω� p0,8q,

Bth � DH∆h� gpuq � λh in Ω� p0,8q
(6.5.3)

without inactive cells w (compare rows 1 and 2 and rows 3 and 4 in Figure 6.4, respectively,

for uniform or logistic kernels). System (6.5.3) is a simplification of the model considered in

Chapter 5 without myopic diffusion and taxis, where Turing-like patterns for large values of

βµ1 were induced by the nonlocal term. This also seems to be the case here in model (6.2.1).

However, the calculation of a strictly positive steady-state pu�, w�, h�q already leads to analytical

problems, since this requires even in the corresponding local model without diffusion and for

µ2, µ3, µ̃3 independent from h a solution to the nonlinear system
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0 � µ1 pu�qα
�

1� pu�qβ � pw�qγ
	
� µ̃3F pw�q,

0 � µ2p1� w�qu� � µ3F pw�q. (6.5.4)

Comparing the height of the peaks in columns 3 and 4 of Figure 6.4 for uniform kernels (i.e.,

first two rows therein) clearly shows the dampening effect of interspecific interactions. Moreover,

the solution of (6.5.3) reaches its maximum accumulation at the left boundary faster than the

solution of (6.2.1), which is again due to the supplementary interspecific dampening in the latter

model. Figure 6.5 shows that in model (6.5.3) a blow-up already occurs for relatively smaller

values of α.

Figure 6.5: Simulations of model (6.5.3) without w with β � µ1 � 1. Columns 1 and 2: J logistic

and α � 4.4, 4.5. Columns 3 and 4: J uniform and α � 5.7, 5.8. In the 2nd and 4th column a

blow-up occurs in the next time step..

For the h-dependent kernels J1 and J2 from (6.5.1) and (6.5.2) the solution u in Figure 6.6

rapidly accumulates at the left boundary and then invades the whole domain aggregating much

less at the boundaries than in Figures 6.2 and 6.3. As mentioned in Table 6.1 the blow-up already

occurs for α� � 4.1. The 4th column in Figure 6.6 shows one example of pattern formation for

a certain choice of parameters.
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Figure 6.6: Simulations of model (6.2.1) with h-dependent kernels J1 and J2 from (6.5.1) and

(6.5.2) for β � γ � µ1 � 1, α � 2, 4, 4.1. In the 3rd column a blow-up occurs in the next time

step. The 4th column shows patterns for α � 2, β � 200, γ � 10, µ1 � 100.

6.6 Discussion

As mentioned in Section 6.2, the model introduced here extends previous settings [99] and, in a

certain sense, Chapter 5 and [136]. As in Chapter 5 and [99], the main mathematical challenge

comes from the interaction strengths α, β ¥ 1 present in the nonlocal terms; interspecific inter-

actions did not add further difficulties as far as global existence and boundedness are concerned.

In contrast to Chapter 5 we do not have here any myopic diffusion, nor taxis terms, which saves

us the efforts otherwise needed to estimate first derivatives of the tactic signal. The model with

interspecific interactions from [136] involves haptotaxis, but there α � β � γ � 1 and the lack

of transitions from one population to another, along with the assumptions made on initial data,

convolution kernels, and coefficient functions render the analysis therein more accessible.

The missing diffusion of w-cells required the construction of the approximate problem in Sec-

tion 6.3. Introducing the term �wu in the dynamics of w-cells helped ensure in that problem

the boundedness of wε, with the aid of a comparison principle. Such term does have a biologi-

cal motivation as well: it describes competition between active and inactive cells, which in our

model is also triggered by the acidity profile, as both tumor cell phenotypes extrude protons in

the interstitial space (the active ones more than their quiescent counterparts).

As in Chapter 5 and [99], the condition (6.2.2) is not sharp: the numerical simulations suggest that

the solution also exists globally for certain pairs pα, βq which do not satisfy that requirement.

Interestingly, the critical value α� for which a solution ceases to exist does not seem to be

an absolute α-minimum, but can jump to higher or lower values, depending on the particular

combination of the other parameters β, γ, µ1 (even for the same choice of kernels), as seen in

Table 6.2. Indeed, there seems to be an α�� ¡ α� such that the solution blows up in finite
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time for α ¥ α��, but stays global for certain values α P pα�, α��q. A thorough mathematical

investigation thereof remains, however, open. As Table 6.1 shows, α� also depends on the choice

of convolution kernels (for fixed parameter values); this greatly complicates the analysis of blow-

up behavior, due to the unlimited degrees of freedom one has for such choices, notwithstanding

conditions (6.2.5).

A rigorous mathematical stability and pattern analysis for this kind of PDE-ODE-PDE models

seems to be out of reach with the established approaches (see, e.g., [4, 107, 114, 135]), mainly

due to the nonlinearities featuring weak Allee and overcrowding/competition effects with the

respective interaction strengths α, β, γ, which preclude from identifying nontrivial steady-states

even in the absence of diffusion; the phenotypic switch terms only add difficulty to such attempts.

The numerical simulations performed in Section 6.5 give some insight into the long term and

patterning behavior of solutions, suggesting that the solution seems to be able to approach in the

long term some stable state and to exhibit patterns, depending (as in Chapter 5) on the choice

of kernels and the parameter combination. The model extension with w-cells and interspecific

interactions does not change substantially the type and shape of obtained oscillatory patterns,

but does have an influence on the peaks of u-cell aggregates. The noticed dampening effect also

contributes to detering solution blow-up or at least ensuring global boundedness for substantially

larger α values which, again, depend on the choice of the convolution kernels and of the interaction

strength γ.

Our analysis explicitly required the diffusion coefficient ψpw, hq to be nondegenerate. Alleviating

this assumption leads to further mathematical challenges, when trying to obtain (as usually in

such proofs) a bound on ∇u from the ODE for w. Indeed, the problem thereby relies on u being

involved in the growth, instead of the decay term. On the other hand, considering such nonlinear

diffusion is motivated from a biological viewpoint, in order to account e.g., for chemokinesis [63,

76, 122].
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CHAPTER 7

Summary and outlook

To conclude this work, we summarize what was considered, which methods were used, and

name possible continuations of this work. We looked at four models involving reaction-diffusion-

advection equations with spatial nonlocality, three of them also involving couplings with an ODE

and/or a PDE. The considered models describe migration of cells in different biological contexts,

in bounded domains. Thereby, we showed the global existence of a weak or very weak solution for

each of the considered models. Moreover, we proved the boundedness of the solutions obtained in

Chapters 5 and 6. In Chapters 3, 5, and 6 numerical simulations were performed. Chapter 5 also

contains an analysis of the long-time behavior of the solution and pattern formation to explain

the oscillations in the simulations. Chapters 3, 5, and 6 were already discussed in Sections 3.6,

5.7, and 6.6, respectively. Therefore, we will only deal with them briefly here and refer to the just

mentioned sections for a more detailed discussion of our considerations and related literature.

The corresponding assessment of related literature for the model in Chapter 4 can be found in

Section 4.1.

In Chapter 3 we analyzed the PDE-PDE-/PDE-ODE-system from (3.4.1) consisting of a reaction-

diffusion-advection equation with nonlinear diffusion and nonlocal advection term modeling the

development of the cell density and a PDE or an ODE for a diffusible or nondiffusible signal,

respectively. Thereby, we combined a prototypical cell-cell and cell-matrix adhesion model with

adhesion operator Ar and a general form of the nonlocal chemotaxis model with nonlocal gradient

∇̊r in the unified framework (3.4.1). This nonlocal model was related to the local unified hapto-/

chemotaxis model (3.4.2) in the sense that our adhesion model was the nonlocal version of the

haptotaxis model with nonlinear diffusion and our nonlocal chemotaxis-growth model was the

nonlocal version of the local chemotaxis-growth model. We established the connection of these

frameworks by demonstrating that the weak solution of the nonlocal model converges in L2 to

the weak solution of the corresponding local model.

The proof relied on the functionwise convergence of the integral operators Tr and Sr to the

identity operator for diminishing sensing radius r (which did not hold for the original nonlocal

operators) and their self-adjoint-like property shown in Lemmas 3.2.5 and 3.2.7. These operators

were applied to the functions’ gradient, and were reformulations of the adhesion and nonlocal

gradient operators (on the subdomain Ωr with distance r to the boundary), respectively. Fur-

thermore, numerical simulations depicted in Figure 3.1 indicated that in a minimalist model, the

difference between the solutions of the models involving Ar and Tr is negligible when the cells

start at the center of the domain. However, the solutions differed when the cells started near the
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boundary, as seen in Figure 3.2 .

We showed the existence of a weak-strong solution to the approximate problems (3.4.10) in the

case of a diffusible signal involving the functions Gε to assure the nonnegativity of the solution

with a Leray-Schauder fixed-point argument and monotone operator theory and concluded the

existence of a weak-strong solution to the nonlocal problem (3.4.1) in the sense of Definition 3.4.6

for a diffusing and nondiffusing signal with the help of several approximations. Further, we

established uniform in r estimates on these solutions and proved their convergence to the solution

of the local model in the sense of Definition 3.4.6 for r � 0 using the properties of the reformulated

operators indicated above. This convergence could also be seen in Figures 3.3 and 3.5 for an

appropriate choice of parameters that guaranteed well-posedness. Finite-time blow-up occurred

in the local model (cf. Figure 3.4), whereas the nonlocal model exhibited pattern for large t.

A possible extension of our model would be to include a similar nonlocality in the diffusion term

of the adhesion model (see Section 3.6).

In Chapter 4 we considered the reaction-diffusion-advection equation from (4.1.1) that combined

degenerate myopic diffusion with self-adhesion and a generalized logistic-type growth term. This

extended the model derived in [156] by the term µcp1� cr�1q which allowed us to establish the

uniform bound in Lr from Lemma 4.5.1. We showed the existence of a global very weak solution

in the sense of Definition 4.3.3. The very weak formulation was obtained from (4.1.1) through two

partial integrations that shifted all spatial derivatives to the test functions. There, the boundary

integral from the first partial integration vanished due to our no-flux boundary condition, but

to eliminate the other boundary integral we imposed on our test functions that their derivative

in direction Dν is zero on the boundary. The density of such functions in H1 was shown in

Lemma 4.6.2, which led to Theorem 4.6.1, where we checked that our very weak formulation is

appropriate by showing that a C2,1-function satisfying the very weak formulation is a classical

solution to (4.1.1). To show the existence of an ’only’ weak solution we lack a uniform bound

on ∇c on the whole domain Ω, whose proof seems unlikely, due to the combination of myopic

diffusion and degeneracy.

Our equation included the standard adhesion operator also considered in Chapter 3 from Def-

inition 4.2.1 into the advection term. In contrast to the approach there, we did not use its

reformulation from Lemma 3.2.1 shifting the application of the nonlocal operator from the func-

tion itself to its gradient. Instead, we have rewritten the adhesion operator as in [156] to a

convolution with the bounded gradient of an interaction potential, which (thanks to our as-

sumptions on F ) illustrated that our operator maps functions from L1 to bounded functions, a

fact that was not used in Chapter 3. For this reason, it was sufficient that the approximating

sequence of classical solutions pcεq only converged in L1 in order to conclude the convergence of

the nonlocal term cεAcε. Moreover, the adhesion operator preserved Hölder-continuity, which

was necessary for the existence proof of a classical solution.

The assumptions of a positive distance to the boundary of the domain and some sufficiently low

dimension of the degeneracy set of D and the boundedness of its divergence from (4.3.2c) were

necessary for the construction of an approximating sequence of smooth and non-degenerating

diffusion tensors Dε in Subsection 4.4.1 with the standard approach from Theorem 3 in Section

5.3.3 from [58]. Using this method, the diffusion tensors were uniformly bounded on Ω. Moreover,

also their divergences were uniformly bounded on sets compactly contained in tD ¡ 0u, which
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together with the already mentioned uniform boundedness in Lr was used to show the uniform

bounds established in Lemma 4.5.2. In contrast to [77] we did not require the convergence of its

divergence or additional restrictions on Dε.

The existence of global classical solutions cε to the approximate problems involving the diffusion

tensors Dε was shown with a standard fixed-point argument. Thereby, the difficulty in proving

their convergence to the desired weak solution lay in the convergence of the term crε shown in

Lemma 4.5.4. This was necessary as we could not apply the de la Vallée-Poussin theorem on

the whole domain to obtain L1-convergence, but only on the already mentioned sets compactly

contained in the complement of the degeneracy set. Therefore, we introduced the upper box

dimension to quantify the required sufficiently low dimensionality of the degeneracy set of D and

constructed a sequence pφδq of smooth functions with diminishing support satisfying properties

(4.2.5a)-(4.2.5g) and equal one in neighborhoods of tD £ 0u that diminish in δ. Using them,

we showed the required convergence after splitting crε in a function with support in a set with a

positive distance to the degeneracy set and a function whose support contained the degeneracy

set. Only there the assumptions on r from (4.3.1) and n ¥ 3 were required to ensure the positivity

of the term on the right-hand side of condition (4.2.4).

The next step could be an analysis of the original model from [156]. Our solution approach does

not work there, because without the growth term we lack the uniform bound on the approximate

solutions in Lr. Moreover, the solution there could be measure-valued rather than a function,

as we can only guarantee mass preservation. In [128] local well-posedness was established for an

equation of this form coupled with a nonlinear integral equation, where the myopic diffusion was

replaced by a quasilinear degenerated diffusion. The model there was also derived in [156] by

additionally taking into account the cadherin binding dynamics of a pair of cells. In addition,

the numerical simulations are still missing. Thereby, the difficulty lies in the degeneracy of the

diffusion.

Chapter 5 dealt with the PDE-PDE-system coupling an reaction-diffusion-advection equation

with myopic diffusion, repellent pH-taxis, and a nonlocal intraspecific interaction for the tumor

cell density with a reaction-diffusion equation for the acid concentration from (5.3.1). There,

the nonlocality was of form J � uβ . Our model extended [99] by replacing the Fickian diffusion

with myopic and additionally considers the effects of a soluble signal via repellent pH-taxis.

The formal modeling started from a meso-macro-system describing the mesoscopic tumor cell

dynamics in response to acidity in the extracellular space. It consisted of a kinetic transport

equation in the framework from [116] for the mesoscopic description of cell migration and in-

traspecific interaction and a macroscopic PDE describing the proton concentration. We deduced

the macroscopic equation for the cell population dynamics (5.2.21) by a diffusion-dominated

upscaling of the mesoscopic description. Due to the nonlinear source term, we could not apply

the method from [25] for a rigorous derivation here. For α and β satisfying (5.3.3), the global

existence of a bounded solution was followed with a fixed-point argument and estimates from

[99]. Under additional assumptions on the norm of the kernel and the parameters that required

especially some ’smallness’ of β2}µ}L8 as in [99], the tumor cell density approached on a long-

term basis either some upper bound or zero, whereas the acid concentration approached some

value depending on the concrete form of g from estimate (5.4.1). Thereby, the proof relied on

the handling of the myopic diffusion as in [91] and the treatment of nonlocality from [99]. A

1D pattern analysis suggested that the occurrence of Turing-like, Hopf, or wave instabilities is
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due to the nonlocality and not due to the diffusion and depends on the concrete choice of pa-

rameters, especially on the product βµ, and the Fourier transform of the kernel. This matched

the observations in other non-local models [64, 74, 99, 119, 131, 142, 153] and was confirmed by

numerical simulations depicted in Figures 5.2 and 5.3.

Further numerical simulations (see Figure 5.1) indicated that the solution exists globally for

combinations of larger α compared to β not satisfying (5.3.3). Since the estimates from [99] were

restricted to this case, a new approach is required to handle the nonlocal term for such α and

β in the proof of global existence. Moreover, the simulations in Figure 5.1 suggested that, as in

[99], the maximum value of such α also depends on the kernel. In this context, a further step in

the analysis of this model would be the determination of the α about which a blow-up occurs

depending on β and the kernel.

The existence proof of a weak solution for a degenerating diffusion tensor D would require uniform

estimates of appropriate norms of the global classical solutions from Theorem 5.3.6 (and its

gradients) that are independent from the lower bounds of the approximating diffusion tensors.

This can get very difficult even in 1D (e.g., [149, 151]). Our estimates from the proof of (5.3.4)

no longer work here as we lack a uniform lower bound of the diffusion tensors in contrast to

Theorem 5.3.6 and, consequently, the uniform upper bound of the approximate solutions from

Lemma 5.3.4, which was used in particular for large α for the uniform estimate of the source

term, is lost. Similarly, we would need bounds independent from the divergence of the proton

concentration, in order to show the existence of a weak solution in the model with haptotaxis

instead of chemotaxis. Our estimates cannot be used for this case either, because the uniform

bound on the gradients of the acid concentrations from Lemma 5.3.3 depends on D�1
H .

In contrast to this, in the model presented in Chapter 6, we were able to use such estimates

to obtain weak solutions in the PDE-ODE-PDE-system (6.2.1) describing the interactions of

an active and a quiescent cell population in an acidic environment from classical solutions of

the approximating PDE-PDE-PDE-system (6.3.2). Compared to Chapter 5, the model took

into account a second inactive cell population w whose development was described by an ODE.

Moreover, the reaction-diffusion equation for the active cells u did not contain a taxis term or

myopic diffusion. Instead, we added a second nonlocality describing interspecific interactions

between u and w to the nonlocal reaction term in the equation of u from the last chapter and a

growth term of the form µ̃3phqF pwq that depended on w and the acid concentration h. As the

model did not contain a taxis term, we did not require a uniform bound on ∇wε independent

of the diffusion coefficient ε there to conclude the existence of a global uniform bound of the

approximate solutions uε.

We included the term 1�w into the u-dependent growth term in the equation for the quiescent

cells w in order to ensure its boundedness with the help of a comparison principle in the approx-

imate problem. Otherwise, this boundedness could not even be shown for bounded functions

u. Further, the boundedness and consequent global existence of the approximate solutions uε

followed similarly to Chapter 5 using the estimates from [99] to handle the nonlocal intraspecific

term. As in Chapter 5, the solution was also global for pairs of α and β that did not fulfill

condition (6.2.2). In our method, the nonlocal interspecific term did not contribute to the proof

of global existence for further pairs of α and β. However, a comparison of the simulations of this

model from Figures 6.2 and 6.3 with those of model (6.5.3) without w from Figure 6.5 suggested
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that this term damped the blow-up behavior of the solution u. Also, the choice of the kernels,

the exponents β and γ and the growth rate µ1 influenced the minimum value of α� for which

a blow-up occurred (see Tables 6.1 and 6.2). Additionally, for certain combinations of parame-

ters, the solution also existed globally for some α ¡ α�. In these cases there seemed to be an

α�� ¡ α�, s.t. the solution blew-up in finite time for α ¥ α��, while there were α in pα�, α��q,
where the solution was global. A thorough mathematical investigation of this remains an open

problem.

In Figure 6.4 increasing values of β led to oscillations in the case of uniform kernels, which was

not the case for increasing γ. Also, for large enough parameters, oscillations occurred for the

h-dependent kernels from (6.5.1) and (6.5.2) as seen in Figure 6.6. Hence, we assume that as in

Chapter 5, the formation of Turing-like patterns depends on the kernel and the product βµ1. We

lack a pattern analysis here, as the computation of a positive steady state of the corresponding

local model without diffusion led to the system of equations (6.5.4), which can only be solved

numerically.

One extension of our analysis would be, again, to consider a degenerate diffusion coefficient

ψph,wq. Thereby, the problem is that it is not possible to obtain a bound on ∇u from the

equation of w, as is usually the case, since u is contained in the growth and not in the decay

term.
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Appendix A Additional Theorems

We summarize some results on different types of differential equations, fixed-point and conver-

gence theorems and further results from functional analysis used in this work in Appendices A.1–

A.3. In Appendix A.4 we state some results, especially from [99], used in Part II and slightly

adopted to our needs. Finally, we prove some results on Hölder continuous functions and con-

volutions from Chapter 2 in Appendix A.5. If not stated otherwise Ω � Rn, n P N, denotes a

bounded domain with smooth enough boundary throughout this chapter.

A.1 Differential Equations

A.1.1 Linear PDEs

Theorem A.1.1. ([94, Theorem III.5.1]) Let T ¡ 0 and consider the IBVP$'''&'''%
ut �Mu � �f in Ω� p0, T q,°n

i�1

�°n
j�1 aijuxj

� aiu
	
νi � 0 on BΩ� p0, T q,

upx, 0q � u0pxq in Ω,

(A.1.1)

where the operator

Mu :�
ņ

i,j�1

�
aijuxj � aiu

�
xi
� au.

satisfies the uniform ellipticity and boundedness condition, i.e., there are µ1, µ2 ¡ 0 s.t. for all

ξ P Rn, x P Ω and t P p0, T q it holds that

µ1|ξ|2 ¤
ņ

i,j�1

aijpx, tqξiξj ¤ µ2|ξ|2 (A.1.2)

and ai, a, f P L8pΩ� p0, T qq for i � 1, . . . , n.

Then, for any u0 P L2pΩq there is a unique weak solution u P Cpr0, T s;L2pΩqq XL2p0, T ;H1pΩqq
in the sense that for all η PW 1,1

2 pΩ� p0, T qq with ηpT q � 0 it holds that

�
» T

0

»
Ω

uηt dx dt�
» T

0

»
Ω

ņ

i�1

�
ņ

j�1

aijuxj
� aiu

�
ηxi

� auη � fη dx dt �
»
Ω

u0pxqηpx, 0q dx.

(A.1.3)

Moreover, any weak solution u P L8p0, T ;L2pΩqq X L2p0, T ;H1pΩqq is also in Cpr0, T s;L2pΩqq.

Proof. This follows similarly to the proof of Theorem III.5.1 in [94] by adapting it to our boundary

condition and is a special case for bounded coefficient functions. Then, the coefficients are in the

required spaces for any suitable combination of q, r, q1, r1.
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Remark A.1.2. The weak formulation (A.1.3) is equivalent to»
Ω

upx, tqηpx, tq dx�
» t

0

»
Ω

uηt dx ds�
» t

0

»
Ω

ņ

i�1

�
ņ

j�1

aijuxj
� aiu

�
ηxi

� auη � fη dx ds

�
»
Ω

u0pxqηpx, 0q dx. (A.1.4)

for a.e. t P p0, T q and all η PW 1,1
2 pΩ� p0, T qq.

Lemma A.1.3. Under the assumptions of Theorem A.1.1 any weak solution u P Cpr0, T s;L2pΩqqX
L2p0, T ;H1pΩqq of (A.1.1) in the sense of (A.1.3) satisfies

1

2

»
Ω

u2ptq dx�
» t

0

»
Ω

ņ

i�1

�
ņ

j�1

aijuxj � aiu

�
uxi � au2 � fu dx dt � 1

2

»
Ω

u20 dx

for a.e. t P p0, T q,

Proof. This follows similarly to (2.13) in Chapter III in [94] from the corresponding weak for-

mulation (A.1.3) of a solution.

Theorem A.1.4. For u0 P L8pΩq under the assumptions of Theorem A.1.1 there is a constant

K1 ¡ 0 depending on µ1, }ai}L8pΩ�p0,T qq, }a}L8pΩ�p0,T qq, }f}L8pΩ�p0,T qq s.t. }u}L8pΩ�p0,T qq ¤ K1

holds for any weak solution u P Cpr0, T s;L2pΩqq X L2p0, T ;H1pΩqq of (A.1.1) in the sense of

(A.1.3).

Proof. This follows similarly to the proof of Theorem III.7.1 in [94] by adapting it to our boundary

condition and is a special case for bounded coefficients. Then, the coefficients are in the required

spaces for any suitable combination of q, r.

Theorem A.1.5. ([94, Theorem III.12.1]) Let α P p0, 1q and T ¡ 0. If aij , paijqxi
, ai, paiqxi

, a, f P
Cα,α2 pΩ� p0, T qq for i, j � 1, . . . , n, then u P C2�α,1�α

2 pΩ� p0, T qq holds for any weak solution

u P Cpr0, T s;L2pΩqq X L2p0, T ;H1pΩqq of (A.1.1) in the sense of (A.1.3)

Theorem A.1.6. Let α P p0, 1q, T ¡ 0 and consider the IBVP$'''&'''%
ut � Lu � f in Ω� p0, T q,
Bu � 0 on BΩ� p0, T q,
upx, 0q � u0pxq in Ω,

(A.1.5)

where

Lu :� �
ņ

i,j�1

aijuxjxi
�

ņ

i�1

aiuxi
� au

satisfies (A.1.2) and

Bu �
ņ

i�1

biuxi
� bu

satisfies ����� ņ

i�1

biνi

����� ¥ δ ¡ 0 on BΩ� p0, T q.
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If aij , ai, a P Cα,α2 pΩ � r0, T sq and bi, b P C1�α, 1�α
2 pBΩ � r0, T sq for i, j � 1, . . . , n, then for

any f P Cα,α2 pΩ � r0, T sq and u0 P C2�αpΩq satisfying the compatibility condition Bu0 � 0 on

BΩ� t0u there is a unique solution u P C2�α,1�α
2 pΩ� r0, T sq of (A.1.5) and a constant K2 ¡ 0

depending continuously on the norms of aij , ai, a in Cα,α2 pΩ � r0, T sq and the norms of bi, b in

C1�α, 1�α
2 pBΩ� r0, T sq s.t.

}u}
C2�α,1�α

2 pΩ�r0,T sq ¤ K2

�
}f}

Cα, α
2 pΩ�r0,T sq � }u0}C2�αpΩq

	
. (A.1.6)

The solution u depends continuously on the coefficients and functions.

Proof. Set Φ � 0 in Theorem IV.5.3 in [94]. The continuous dependence of K2 on the coefficients

and of u on the coefficients and functions follows from the proof of this theorem.

Theorem A.1.7. Let T ¡ 0 and consider the IBVP (A.1.5). Suppose that for i, j � 1, . . . , n,

aij , ai, a P Cα,α2 pΩ�r0, T sq, bi, b P C1�α, 1�α
2 pBΩ�r0, T sq and satisfy

°n
i,j�1 aijpx, tqξjξi ¥ µ1|ξ|2

for µ1 ¡ 0 and
°n

i�1 biνi ¥ δ ¡ 0. Then, for any f P Cα,α2 pΩ � r0, T sq and u0 P CpΩq there

is a unique solution u P C2,1pΩ � p0, T qq X CpΩ � r0, T sq X C1,0pΩ � p0, T qq of (A.1.5). If

additionally u0 P C2�αpΩq and satisfies the compatibility condition Bu0 � 0 on BΩ � t0u, then
u P C2�α,1�α

2 pΩ� r0, T sq.

Proof. This is a special case of Theorem 5.18 in [100].

Theorem A.1.8. Let T ¡ 0 and consider for a constant D ¡ 0 the nonhomogeneous heat

equation with Neumann boundary condition$'''&'''%
ut � D∆u� f in Ω� p0, T q,
Bνu � 0 on BΩ� p0, T q,
upx, 0q � u0pxq in Ω.

(A.1.7)

Then, for any f P L2pΩ�p0, T qq and u0 P H1pΩq there is a unique solution u PW 2,1
2 pΩ�p0, T qq

satisfying

}u}W 2,1
2 pΩ�p0,T qq ¤ K3pT q

�}f}L2pΩ�p0,T qq � }u0}H1pΩq
�
.

Proof. This is a special case of Theorem IV.9.1 (together with the remark at the end of the

chapter for Neumann boundary conditions) in [94] for a nonhomogeneous heat equation with

Φ � 0, q � 2.

Theorem A.1.9. ([100, Theorem 2.9]) Let T ¡ 0 and u, v P C2,1pΩ � p0, T qq X CpΩ � r0, T sq.
Suppose that L satisfies (A.1.2),

°n
i�1 aii, ai, a P L8pΩ � p0, T qq for i � 1, . . . , n, a ¥ 0,

�pb1, . . . , bnqT is a vector that points strongly inside Ω � p0, T q on BΩ � p0, T q and b ¥ 0 on

BΩ� p0, T q. If $'''&'''%
ut � Lu ¤ vt � Lv in Ω� p0, T q,
Bu ¤ Bv on BΩ� p0, T q,
u ¤ v in Ω,

then u ¤ v holds in Ω� r0, T s.
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Proposition A.1.10. ([36, Proposition 13.1]) Let T ¡ 0, u PW 2,1
p pΩ�p0, T qq for p ¥ n�1 and

consider an operator L that satisfies (A.1.2) with coefficients that are continuous on Ω� r0, T s.
Suppose

ut � Lu ¥ 0,

holds a.e. in Ω� p0, T q. If u attains its minimum m ¤ 0 at px0, t0q P Ω� p0, T s, then u � m in

Ω� r0, t0s.
Theorem A.1.11. ([36, Theorem 13.5 with the remark at the end of the chapter]) Let T ¡ 0,

aij , ai, a P CpΩ � r0, T sq, bi P C1pBΩq and b P C1pBΩ � r0, T sq. If u P W 2,1
p pΩ � p0, T qq for

p ¡ n� 2 satisfies $'''&'''%
ut � Lu ¥ 0 in Ω� p0, T q,
Bu ¥ 0 on BΩ� p0, T q,
upx, 0q ¥ 0 in Ω,

(A.1.8)

then u ¥ 0 holds in Ω� r0, T s.

A.1.2 Nonlinear parabolic PDEs

Theorem A.1.12. Let T ¡ 0, p ¥ 2 and a : R2n�2 Ñ Rn and b : R2n�2 Ñ R be measurable and

satisfy the estimates

apx, t, u,∇uq �∇u ¥ K4|∇u|p � ψ0px, tq, (A.1.9)

|apx, t, u,∇uq| ¤ K5|∇u|p�1 � ψ1px, tq, (A.1.10)

|bpx, t, u,∇uq| ¤ K6|∇u|p � ψ2px, tq, (A.1.11)

where K4,K5,K6 are positive constants and ψj P L8pΩ � p0, T qq, j � 0, 1, 2, are non-negative.

Besides, let u P Cpr0, T s;L2pΩqq X Lpp0, T ;W 1
p pΩqq X L8pΩ� p0, T qq be a weak solution of$'''&'''%

Btu�∇ � apx, t, u,∇uq � bpx, t, u,∇uq � 0 in Ω� p0, T q,
apx, t, u,∇uq � νpxq � 0 on BΩ� p0, T q,
upx, 0q � u0pxq in Ω

(A.1.12)

in the sense that»
Ω

uφ dx
��t2
t1
�
» t2

t1

»
Ω

�uφt � apx, t, u,∇uq �∇φ� bpx, t, u,∇uqφ dx dt � 0

holds for all 0 ¤ t1   t2 ¤ T and for all φ P Lppp0, T q,W 1
p pΩqq with derivative φt P L2pΩ�p0, T qq.

Then, u is Hölder continuous on Ω � rε, T s for any ε ¡ 0, i.e., there are constants K7 ¡ 0 and

α P p0, 1q depending only on the constants appearing in (A.1.9) - (A.1.11), the norms of the ψj

and ||u}L8pΩ�p0,T qq and ε s.t. the estimate

|upx1, t1q � upx2, t2q| ¤ K7pεq
�
|x1 � x2|αpεq � |t1 � t2|

αpεq
p

	
(A.1.13)

is satisfied for any pair px1, t1q, px2, t2q P Ω� rε, T s.
If additionally u0 P Cα1pΩq for α1 P p0, 1q, then u satisfies (A.1.13) in Ω � r0, T s for constants

K7 and α that can be chosen independent from ε. In this case α also depends on α1.
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Proof. This is a special case of Theorem 4 in [39] for g � 0 and bounded ψi that are in the

required spaces for any suitable combination of q, r.

Theorem A.1.13. Let T ¡ 0 and u P Cpr0, T s;L2pΩqq X L2p0, T ;H1pΩqq X L8pΩ � p0, T qq a

weak solution to (A.1.12). Suppose that there are α P p0, 1q and λ,Λ, µ1, µ2, µ3 ¡ 0 s.t. for all

px, t, z, pq P Ω� p0, T q �R�Rn with |z| ¤M :� }u}L8pΩ�p0,T qq and all py, wq P Ω� r�M,M s it
holds that

|apx, t, z, 0q| ¤ µ1,

|apx, t, z, pq � apy, t, w, pq| ¤ µ2p1� |p|q p|x� y|α � |z � w|αq ,
|bpx, t, z, pq| ¤ µ3p1� |p|2q

and that for all px, t, z, pq P BΩ � p0, T q � R � Rn and all ps, wq P p0, T q � R with |z|, |w| ¤ M

the estimate

|apx, t, z, pq � apx, s, w, pq| ¤ µ2p1� |p|q|t� s|α2

holds. Moreover, suppose that aij :� Bai

Bpj
satisfies

ņ

i,j�1

aijpx, t, z, pqξiξj ¥ λ|ξ|2,

|aijpx, t, z, pq| ¤ Λ

for all px, t, z, pq P Ω� p0, T q �R�Rn with |z| ¤M and ξ P Rn and that u0 P C1�αpΩq satisfies
the compatibility condition

apx, 0, u0,∇u0q � ν � 0 for x P BΩ.

Then, there are δpλ,Λ, αq P p0, 1q and K8pλ,Λ,M, µ1, µ2, µ3, }u0}C1�αpΩq, T q ¡ 0 s.t.

}u}
C1�δ, 1�δ

2 pΩ�r0,T sq ¤ K8

Proof. This is a special case of Theorem 1.1 in [101] for ψ � 0.

Proposition A.1.14. Let T ¡ 0 and consider a function fpx, t, sq : Ω � r0, T s � R Ñ R
that is continuous in x and t and continuously differentiable in s. Further, let p ¡ n � 2 and

u,w PW 2,1
p pΩ�p0, T qqXCpr0, T s;L2pΩqqXL8pΩ�p0, T qq s.t. up�, 0q ¤ wp�, 0q and up�, 0q � wp�, 0q

hold on Ω. If the estimates

Btu�∆u� fpx, t, uq ¤ Btw �∆w � fpx, t, wq (A.1.14)

in Ω� p0, T q and
Bu
Bν ¤

Bw
Bν (A.1.15)

on BΩ� p0, T q are satisfied, then

u   w

holds in Ω� p0, T q.

Proof. This is a special case of Proposition 52.7 in [127] with b � 0 and f independent from

ξ.
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A.1.3 Monotone Operators

Definition A.1.15. Let V be a reflexive Banach space and A : V Ñ V �. The operator A is

called

� monotone if ⟨Au�Av, u� v⟩V �,V ¥ 0 for all u, v P V ,

� maximal monotone if A is monotone and Au � f if and only if ⟨f �Av, u� v⟩V �,V ¥ 0

for all u P V ,

� hemicontinuous if t ÞÑ ⟨Apu� tvq, w⟩V �,V is continuous for all u, v, w P V .

Lemma A.1.16. (Minty’s lemma [133, Lemma 2.1 in Chapter II]) Let V a reflexive Banach

space and consider an operator A : V Ñ V �. If A is monotone and hemicontinuous, then it is

maximal monotone.

Theorem A.1.17. Let T ¡ 0, p P p1,8q, p� s.t. 1
p � 1

p� � 1, V a separable and reflexive

Banach space and H a Hilbert space s.t. V ãÑ H is dense. Consider a family of operators

Apt, �q : V Ñ V �, t P r0, T s s.t.

(i) Ap�, vq : r0, T s Ñ V � is measurable for all v P V ,

(ii) Apt, �q : V Ñ V � is monotone, hemicontinuous and bounded by

}Apt, vq}V � ¤ K9}v}p�1
V

for all v P V and a.e. t P r0, T s,

(iii) there are a seminorm r�s on V and λ, α ¡ 0 s.t.

rvs � }v}H ¥ α}v}V ,
⟨Apt, vq, v⟩V �,V ¥ αrvsp

for a.e. t P r0, T s and v P V .

Then, for every f P Lp�p0, T ;V �q and u0 P H there is a unique solution u P Lpp0, T ;V q X
Cpr0, T s;Hq with ut P Lp�p0, T ;V �q to the Cauchy Problem$&% utptq �Apt, uptqq � fptq in Lp�p0, T ;V �q,

up0q � u0 in H
(A.1.16)

in the sense that for all φ P V and a.e. t P p0, T q

⟨ut, φ⟩V �,V � ⟨Apt, uptqq, φ⟩V �,V � ⟨f, φ⟩V �,V

and up0q � u0 in H.

Proof. This follows from Propositions 2.1 and 4.1 in Chapter III in [133].
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A.1.4 Evolution equations

Lemma A.1.18. ([85, p.56 (iii)] and [148, Lemma 1.3 (ii) and (iii)]) Consider the Neumann

heat semigroup pet∆qt¥0 in Ω. Let λ1 ¡ 0 the first nonzero eigenvalue of �∆ under Neumann

boundary conditions in Ω. Then, there are constants K10,K11,K12 ¡ 0 depending only on Ω s.t.

(i) if 1 ¤ q   p   8 then

}et∆u}LppΩq ¤ K10t
�n

2 p 1
q� 1

p q}u}LqpΩq

for all u P LqpΩq and t P p0, 1q,

(ii) if 1 ¤ q ¤ p ¤ 8 then

}∇et∆u}LppΩq ¤ K11

�
1� t�

1
2�n

2 p 1
q� 1

p q
	
e�λ1t}u}LqpΩq

for all u P LqpΩq and t ¡ 0,

(iii) if 2 ¤ p   8 then

}∇et∆u}LppΩq ¤ K12e
�λ1t}∇u}LppΩq

for all u PW 1
p pΩq and t ¡ 0.

A.1.5 Elliptic PDEs

Lemma A.1.19. Let λ ¡ 0 and aij , bi P C2pΩq. i, j � 1, . . . , n s.t. aij � aji. Assume that for

some α ¡ 0 it holds that
°n

i,j�1 aijξiξj ¥ α|ξ|2 on Ω for all ξ P Rn and
°n

i�1 biνi ¡ 0 on BΩ.

Then, for all f PW 1
8pΩq the elliptic problem$&%�°n

i,j�1paijuxj
qxi

� λu � f in Ω,°n
i�1 biuxi

� 0 on BΩ
(A.1.17)

has a unique solution u P C2pΩq. Moreover, there are λ0 and a constant K13 ¡ 0 s.t. for all

λ ¡ λ0 the estimate

}u}H2pΩq ¤ K13}f}L2pΩq (A.1.18)

holds

Proof. We conclude from Theorems 2.4.2.7 and 2.5.1.1 in [72] that (A.1.17) has a unique solution

u P �p¡1W
3
p pΩq � C2pΩq. The estimate (A.1.18) follows from Theorem 2.3.3.6 in [72].

A.1.6 ODEs

Lemma A.1.20. Let T ¡ 0. If f P Cpr0, T s;R�
0 q X C1pp0, T q;R�

0 q satisfies the inequality

f 1ptq �K14fptq ¤ K14K15,

on p0, T q for constants K14,K15 ¡ 0, then for t P p0, T q it holds that

fptq ¤ K15 � fp0q.
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Proof. Let t P p0, T q. We differentiate�
fptqeK14t

�1 � pf 1ptq �K14fptqqeK14t ¤ K14K15e
K14t.

Integrating over r0, ts we obtain

fptqeK14t ¤ K14K15

» t

0

eK14s ds� fp0q � K15

�
eK14t � 1

�� fp0q.

Consequently,

fptq ¤ K15

�
1� e�K14t

�� fp0qe�K14t ¤ K15 � fp0q.

A.2 Fixed-point theorems

Theorem A.2.1. (Banachs’s fixed-point theorem, [58, Section 9.2.1, Theorem 1]) Let X a

Banach space and consider a contraction T : X Ñ X. Then, T has a unique fixed-point.

Theorem A.2.2. (Schauder’s fixed-point theorem, [154, Section 2.6, Theorem 2.A]) Let X a

Banach space and M � X nonempty, closed, bounded and convex. Then, a compact operator

T : M ÑM has a fixed-point.

Theorem A.2.3. (Schaefer’s fixed-point theorem, [58, Section 9.2.2, Theorem 4]) Let X a Ba-

nach space and consider a compact operator T : X Ñ X. If the set

tu P X : u � λTu for some λ P r0, 1su

is bounded, then T has a fixed-point.

A.3 Results from functional analysis

In this section we summarize some results from functional analysis.

Lemma A.3.1. ([20, Corollary 3.30]) Let X a separable Banach space. Then, every bounded

sequence in its dual space X� has a weakly-*-convergent subsequence.

Lemma A.3.2. (Compensated compactness, [20, Propositions 3.5 (iv) and 3.13 (iv)]) Let X a

Banach space, xk P X and fk P X� for k P N. If xk á x in X and fk Ñ f in X� or xk Ñ x in

X and fk
�á f in X� for k Ñ8, then

xfk, xkyX�,X Ñ
kÑ8

xf, xyX�,X .

Lemma A.3.3. (A result from [59, p. 6]) Let p P p1,8q and consider a bounded sequence

pfkqkPN � LppΩq. If »
E

fk dx Ñ
kÑ8

»
E

f dx

for each bounded, measurable set E � Ω, then

fk á
kÑ8

f in LppΩq.
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Lemma A.3.4. ([102, Lemma 1.3]) Let p P p1,8q and fk, f P LppΩq, k P N. If there is a

constant K16 ¡ 0 s.t. }fk}LppΩq ¤ K16 and fk Ñ f for k Ñ8 a.e. in Ω, then

fk á
kÑ8

f in LppΩq.

Lemma A.3.5. ([141, Lemma 1.4 in Chapter III]) Let X,Y Banach spaces s.t. X ãÑ Y . If

f P L8p0, T ;Xq X Cwpr0, T s;Y q, then f P Cwpr0, T s;Xq.

Theorem A.3.6. (De la Vallée-Poussin theorem, [19, Theorem 4.5.9]) Let O � Rn open

and bounded and tfkukPN � L1pOq. Then, the following are equivalent:

(i) tfkuk is uniformly integrable,

(ii) there is an increasing function G : r0,8q Ñ r0,8q satisfying limtÑ8
Gptq
t � 8 and

sup
kPN

»
O

Gp|fk|q dx   8.

Lemma A.3.7. (Vitali’s lemma, [37, Theorem 21]) Let O � Rn open and bounded and

consider functions fk P L1pOq, k P N, s.t. fk Ñ f for k Ñ8 a.e. in O. Then, the following are

equivalent:

(i) f P L1pOq and fk Ñ f in L1pOq for k Ñ8,

(ii) tfkuk is uniformly integrable.

Lemma A.3.8. ([133, Chapter III Proposition 1.2]) Let T ¡ 0, p, q P p0, 1q s.t. 1
p � 1

q � 1, V

a Banach space and H a Hilbert spaces s.t. V ãÑ H ãÑ V � are dense. If f P Lpp0, T ;V q and

Btf P Lqp0, T ;V �q, then f P Cpr0, T s;Hq with

}f}Cpr0,T s;Hq ¤ K17

�}f}Lpp0,T ;V q � }Btf}Lqp0,T ;V �q
�

and

d

dt
}f}2H � 2xBtf, fyV �,V .

Lemma A.3.9. (Lions-Aubin lemma, [134, Corollary 4]) Let X,B, Y Banach spaces s.t.

X ãÑãÑ B ãÑ Y and p P r1,8q, r P p1,8q.

(i) If tfkukPN is bounded in Lpp0, T ;Xq and tBtfkukPN is bounded in L1p0, T ;Y q, then tfkukPN
is relatively compact in Lpp0, T ;Bq.

(ii) If tfkukPN is bounded in L8p0, T ;Xq and tBtfkukPN is bounded in Lrp0, T ;Y q, then tfkukPN
is relatively compact in Cpr0, T s;Bq.

Lemma A.3.10. (Partition of unity, [2, Theorem 3.15]) Let K � Ω compact and consider an

open covering tOkuk�1,...,N of K. Then, there is a partition of unity tψkuk�1,...,N s.t. 0 ¤ ψk ¤ 1,

ψk P C8
c pOkq for k � 1, . . . , N and

°N
k�1 ψk � 1 on K.

Theorem A.3.11. ([88, Chapter 6, Theorems 6.27]) Let S � Rn open and bounded, x0 P Ω and

f : S � Ω Ñ R a map s.t.

� for any x P Ω the map y ÞÑ fpy, xq is in L1pSq,
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� for a.e. y P S, the map x ÞÑ fpy, xq is continuous at x0,

� there is h P L1pSq, h ¥ 0 s.t. |fp�, xq| ¤ h a.e. in S for all x P Ω.

Then, the map F : Ω Ñ R, x ÞÑ ³
S
fpy, xq dy is continuous in x0.

Theorem A.3.12. ([88, Chapter 6, Theorems 6.28]) Let S � Rn open and bounded, I � R a

nontrivial open interval and f : S � I Ñ R a map with the following properties:

� for any x P I the map y ÞÑ fpy, xq is in L1pIq,

� for a.e. y P S, the map x ÞÑ fpy, xq is differentiable with derivative f 1,

� there is h P L1pSq, h ¥ 0 s.t. |f 1p�, xq| ¤ h a.e. in S for all x P Ω.

Then, for any x P I it holds that f 1p�, xq P L1pSq and F pxq :� ³
S
fpy, xq dy is differentiable with

derivative F 1pxq � ³
S
f 1py, xq dy.

A.4 Results used in part II

Lemma A.4.1. Let u P C1pΩq and consider α, β ¥ 1 satisfying

α  
$&% 1� β, n � 1, 2,

1� 2β
n , n ¡ 2.

(A.4.1)

Moreover, let q ¡ maxt1, β � α� 1u,

max

"
npα� 1q

q
,

2pα� 1q
q

, 1

*
  r ¤ 2pq � α� 1q

q

and

s

$'''&'''%
� 8, n � 1,

P
�

2qr
qr�2pα�1q ,8

	
, n � 2,

� 2n
n�2 , n ¡ 2.

(A.4.2)

Then, for any K18 ¡ 0 it holds that

»
Ω

uq�α�1 dx ¤ 2pq � 1q
q2K18

»
Ω

|∇u q
2 |2 dx�K19pK18, q, rq}u

q
2 }

2r
2pq�α�1q

s
�q

qrp 2
s
�1q�2pα�1q

LrpΩq �K20prq
qr�2pq�α�1q

qr
s
�q ,

(A.4.3)

where

K19pK18, q, rq :� 2

�
K21

2q2K18

q � 1


 qr�2pq�α�1q
qrp 2

s
�1q�2pα�1q �K20prq

qr�2pq�α�1q
qr
s
�q ,

K20prq :� 4KSpsq|Ω|
r�2
2r ,

K21 :� 2KSpsq p1� 2KP q .

Here, KSpsq denotes the Sobolev embedding constant from H1pΩq into LspΩq from Lemma 2.2.8

and KP ¡ 0 denotes the constant from the Poincaré inequality.
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Moreover, for any K18,K22 ¡ 0 (after setting r � q�α�1�β
q ) the estimate»

Ω

uq�α�1 dx ¤ 2pq � 1q
q2K18

»
Ω

|∇u q
2 |2 dx� 1

K22

»
Ω

uβ dx

»
Ω

uq�α�1 dx�K23 pK18,K22, qq
(A.4.4)

holds, where

K23 pK18,K22, qq :�
�

2

�
K2

21q
2K18

q � 1


 q�α�1�β

q�α�1�β�2
q�α�1�β

s �K24pqq
q�α�β�1

q� q�α�1�β
s

� q�α�1�β� 2pq�α�1�βq
s

β�1�α� 2β
s

�K
q� 2pq�α�1q

s

β�1�α� 2β
s

22 �K24pqq
q�α�β�1

q� q�α�1�β
s ,

and

K24pqq :� 4KSpsq|Ω|
1
2� q

q�α�1�β .

Proof. Let

λ �
q

2pq�α�1q � 1
r

1
s � 1

r

.

Then, λ P r0, 1q and λpq�α�1q
q P r0, 1q hold due to our choice of parameters. We state inequality

(2.11) from the proof of Theorem 1.1 in [99] (with Bpx, δq replaced by Ω)»
Ω

uq�α�1 dx ¤ 2
�
K21}∇u

q
2 }pL2pΩqqn

	 2λpq�α�1q
q }u q

2 }
2p1�λqpq�α�1q

q

LrpΩq �
�
K20prqλ}u

q
2 }LrpΩq

	 2pq�α�1q
q

,

where

K20prq :� 4KSpsq|Ω|
r�2
2r , K21 :� 2KSpsq p1� 2KP q .

We proceed as in the proof of (2.14) in [99]. Applying Young’s inequality twice and regrouping

the terms we conclude that for K18 ¡ 0 it holds that»
Ω

uq�α�1 dx ¤2pq � 1q
q2K18

}∇u q
2 }2pL2pΩqqn

� 2

��K 2λpq�α�1q
q

21 }u q
2 }

2p1�λqpq�α�1q
q

LrpΩq

�
q2K18

q � 1


λpq�α�1q
q

�
q

q�λpq�α�1q

�K20prq
2λpq�α�1q

q

�
}u q

2 }
2p1�λqpq�α�1q
q�λpq�α�1q

LrpΩq � 1



¤2pq � 1q

q2K18
}∇u q

2 }2pL2pΩqqn �K19pK18, q, rq}u
q
2 }

2p1�λqpq�α�1q
q�λpq�α�1q

LrpΩq �K20prq
2λpq�α�1q

q ,

(A.4.5)

where

K19pK18, q, rq :� 2

�
K2

21q
2K18

q � 1


 λpq�α�1q
q�λpq�α�1q

�K20prq
2λpq�α�1q

q .
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Inserting the definition of λ we obtain inequality (A.4.3). Moreover, we state inequality (2.17)

from the proof of Theorem 1.1 in [99], i.e.,

}u q
2 }

2p1�λqpq�α�1q
q�λpq�α�1q

L
q�α�1�β

q pΩq
¤

�
}u q

2 }
2β
q

L
2β
q pΩq

}u q
2 }

2pq�α�1q
q

L
2pq�α�1q

q pΩq

� q� 2pq�α�1q
s

q�α�1�β� 2pq�α�1�βq
s

, (A.4.6)

where due to our choice of α, β and s in (A.4.1) and (A.4.2) it holds that

q � 2pq�α�1q
s

q � α� 1� β � 2pq�α�1�βq
s

  1.

Now, we estimate the term from (A.4.5) for r � q�α�1�β
q using (A.4.6) as in (2.19) from [99].

Young’s inequality leads for any K22 ¡ 0 to the estimate

K19pK18, q, rq}u
q
2 }

2p1�λqpq�α�1q
q�λpq�α�1q

L
q�α�1�β

q pΩq

¤ 1

K22

»
Ω

uβ dx

»
Ω

uq�α�1 dx�K19pK18, q, rq
q�α�1�β� 2pq�α�1�βq

s

β�1�α� 2β
s K

q� 2pq�α�1q
s

β�1�α� 2β
s

22 .

Inserting this estimate and our choice of r into (A.4.5) we arrive at (A.4.4).

Lemma A.4.2. Consider s as in Lemma A.4.1. Set qk :� 2k � h for h :� 2ps�1qpα�1q
s�2 , k P N0.

Then, for all k it holds that

2pqk�α�1q
s � qk

2qk�1

�
2
s � 1

�� 2pα� 1q � 1, (A.4.7)

2qk�1 � 2pqk � α� 1q
2qk�1

�
2
s � 1

�� 2pα� 1q �
s

s� 2
(A.4.8)

and

2qk�1 � 2pqk � α� 1q
2qk�1

s � qk
¤ α� 1. (A.4.9)

Proof. See part 2 of the proof of Theorem 1.1 in [99], where they show (in their notation)

that Qk

rk
� 2 in (2.28). Comparing this to the term in (A.4.7) we obtain the desired equality.

Moreover, they show (in their notation) in (2.32) that λkpqk�α�1q
qk�λkpqk�α�1q � s

s�2 where the left-hand

side equals
2qk�1�2pqk�α�1q

2qk�1p 2
s�1q�2pα�1q . This gives us (A.4.8). We obtain (A.4.9) from (2.33) in [99],

where
2qk�1�2pqk�α�1q

2qk�1
s �qk

� 2λkpqk�α�1q
qk

¤ α� 1 was shown

Lemma A.4.3. Let yk P Cpr0,8qq X C1p0,8q nonnegative for k P N0 and satisfying

y1kptq � ckykptq ¤ ckAk max

"
1, sup

t¥0
y2k�1ptq

*
,

where Ak � ā2Dk ¥ 1 and ck, ā, D ¡ 0. We assume that ykp0q ¤ bK2k holds for some constants

b ¥ 1 and K ¡ 0. Then, for all m ¥ 1 it holds that

ykptq ¤ p2āq2k�m�1�12Dp2p2k�m�1q�m2k�m�1�kqmax

"
sup
t¥0

y2
k�m�1

m�1 ptq, b2k�m

K2k , 1

*
.

Proof. See Lemma 2.1 in [99] and adapt the proof for ykp0q ¤ bK2k instead of ykp0q ¤ K2k .
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Lemma A.4.4. Let Ω � Rn a bounded convex domain. Let p � 8 if n � 1, p P p2,8q if n � 2

and 2   p ¤ 2n
n�2 if n ¡ 2. Then, it holds that

}u}LppΩq ¤ KSppq}u}H1pΩq,

where

KSppq �

$''&''%
max

"
1, diampΩq|V |

1
2

|Ω|

*
n � 1,

?
2 max

"
|Ω| 1p� 1

2 , diampΩq
1� p�2

2p
n
π

p�2
4p

n

n|Ω|
Γp p�2

4p nq
Γp p�2

4p nq
*c

Γpn
p q

Γp p�1
p nq

�
Γpnq
Γpn

2 q

 p�2

2p

n ¥ 2.

Here, V :� �
xPΩ Ωx, where Ωx :� tx� y : y P Ωu for x P Ω, and Γ denotes the Gamma function

given by Γpxq � ³8
0
tx�1e�t dt for x ¡ 0.

Proof. See Theorems 2.1, 3.2 and 3.4 in [108].

Lemma A.4.5. Let Ω � Rn a bounded convex domain. Consider J P L1pBdiampΩqp0qq with

}J}L1pBdiampΩqp0qq � 1 and u P C1pΩq. Then,»
Ω

»
Ω

Jpx� yqpupxq � upyqq2 dy dx ¤ |diampΩq|2
»
Ω

|∇upxq|2 dx.

Proof. This follows due to the convexity of Ω as in the proof of (3.6) in the proof of Proposition

3.1 in [99] with Bpx, δq replaced by Ω.

Lemma A.4.6. Let t0 ¥ 0, U ¡ 0 and u : Ω � pt0,8q Ñ r0, U s, φ : r0, U s Ñ r0,8q uniformly

continuous satisfying » 8

t0

»
Ω

pφpupx, tqqq2 dx dt   8.

Then, also

}φpuptqq}L8pΩq Ñ
tÑ8 0.

Proof. See proof of Lemma 3.10 in [139] for φ as above.

A.5 Proofs of some lemmas from Chapter 2

Proof of Lemma 2.2.3. (i) See (4.7) in [70].

(ii) For r P p0, 1q and v, w P R the estimate |v � w|r ¤ |v|r � |w|r holds. Hence, we estimate

for x, y P Ω with v :� upxq � upyq and w :� upyq or v :� upyq � upxq and w :� upxq that

|upxqr � upyqr| ¤ |upxq � upyq|r ¤ K25|x� y|ϑr.

(iii) We estimate for x, y P Ω with the mean value theorem that

|urpxq � urpyq| ¤ r}u}r�1
L8pΩq|upxq � upyq| ¤ K26|x� y|ϑ.
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(iv) The function u is continuous. Hence, there is m :� minxPΩ |upxq| ¡ 0 and we can estimate

for x, y P Ω that���� 1

upxq �
1

upyq
���� � |upyq � upxq|

|upyqupxq| ¤ |upyq � upxq|
m2

¤ K27|x� y|ϑ.

Proof of Lemma 2.2.9. (i) Let u P C1�ϑ, 1�ϑ
2 pΩ� r0, T sq. We estimate the norm of u� up�, 0q

term by term. Let t, t1 P r0, T s, t � t1 and x P Ω. First, we estimate

|upx, tq � upx, 0q � pupx, t1q � upx, 0qq|
|t� t1|ϑ2 � |upx, tq � upx, t1q|

|t� t1|ϑ2

� |t� t1| 12 |upx, tq � upx, t1q|
|t� t1| 1�ϑ

2

¤ T
1
2 xuy

1�ϑ
2

t,Ω�r0,T s.

(A.5.1)

Moreover, we use the continuous embedding of W 1
8pΩq into CϑpΩq with constant KIpϑq

from Lemma 2.2.8(ii) to estimate that

}u� up�, 0q}CpΩ�r0,T sq � xu� up�, 0qyϑ
x,Ω�r0,T s

¤KIpϑq
�
}u� up�, 0q}CpΩ�r0,T sq �

ņ

i�1

}uxi
� uxi

p�, 0q}CpΩ�r0,T sq
�

¤KIpϑq
�
T

1�ϑ
2 xuy

1�ϑ
2

t,Ω�r0,T s � T
ϑ
2

ņ

i�1

xuxi
yϑ

2

t,Ω�r0,T s

�
(A.5.2)

Putting this together with the supremum of (A.5.1) we obtain (2.2.2) due to T   1.

(ii) Let u P C2�ϑ,1�ϑ
2 pΩ � r0, T sq, t, t1 P r0, T s, t � t1 and x P Ω. First, we conclude from the

mean value theorem that

}upx, tq � upx, 0q}CpΩ�r0,T sq � xu� upx, 0qy
1�ϑ
2

t,Ω�r0,T s ¤ pT � T
1�ϑ
2 q}ut}CpΩ�r0,T sq.

Moreover, (i) implies for i � 1, . . . , n that

}uxi � uxip�, 0q}Cϑ, ϑ
2 pΩ�r0,T sq ¤ maxt1,KIpϑquT ϑ

2 }uxi}C1�ϑ, 1�ϑ
2 pΩ�r0,T sq.

Together with the above estimates we obtain (2.2.3).

(iii) We estimate as before with the help of the mean value theoren and the Sobolev embedding

that

xu� up�, 0qyϑ
2

t,Ω�r0,T s ¤ T
2�ϑ
2 }ut}CpΩ�r0,T sq,

}u� up�, 0q}CpΩ�r0,T sq � xu� up�, 0qyϑ
x,Ω�r0,T s

¤KIpϑq
�
T }ut}CpΩ�r0,T sq � T

1�κ
2

ņ

i�1

xuxiy
1�κ
2

t,Ω�r0,T s

�
.
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Proof of Lemma 2.3.2. (i) Let u, h P L8pΩ� p0, T qq, x P Ω and t P r0, T s. Using our assump-

tions on J we can estimate��Jpx, hq � uβptq�� ¤ ����»
Ω

Jpx� y, hpy, tqquβpy, tqdy

����
¤ }u}βL8pΩ�p0,T qq

����»
Ω

Lpx� yq|hpy, tq| � |Jpx� y, 0q| dy
����

¤ }u}βL8pΩ�p0,T qq
�}L}L1pSq}h}L8pΩ�p0,T qq � }Jpx, 0q}L1pSq

�
.

Taking the supremum on the left-hand side, we conclude that Jp�, hq �uβ P L8pΩ�p0, T qq.

(ii) Let u, h P Cϑ,ϑ2 pΩ� r0, T sq, u ¥ 0, x P Ω and t1, t2 P r0, T s, t1 � t2. Then, we can estimate

using our assumptions on J , the Hölder continuity of u and h and the mean value theorem

that

|Jpx, hq � uβpt1q � Jpx, hq � uβpt2q|

�
����»

Ω

Jpx� y, hpy, t1qquβpy, t1q � Jpx� y, hpy, t2qquβpy, t2q dy

����
¤
����»

Ω

�
Jpx� y, hpy, t1qq � Jpx� y, hpy, t2qquβpy, t1q

�
dy

����
�
����»

Ω

Jpx� y, hpy, t2qq
�
uβpy, t1q � uβpy, t2q

�
dy

����
¤}u}βL8pΩ�p0,T qq

»
Ω

Lpx� yq|hpy, t1q � hpy, t2q| dy

� β}u}β�1
L8pΩ�p0,T qq

»
Ω

pLpx� yq|hpy, t2q| � |Jpx� y, 0q|q |upy, t1q � upy, t2q| dy

¤K28 p}u}L8 , }h}L8 , }L}L1 , }Jp�, 0q}L1 , βqT ϑ
2

�
xhyϑ

2

t,Ω�r0,T s � xuyϑ
2

t,Ω�r0,T s

	
. (A.5.3)

Now, let x1, x2 P Ω, x1 � x2 and t P r0, T s. Then, we can estimate

|Jpx1, hq � uβptq � Jpx2, hq � uβptq|

�
����»

Rn

Jpx1 � y, hpy, tqquβpy, tqχΩpyq � Jpx2 � y, hpy, tqquβpy, tqχΩpyq dy

����
�
����»

Rn

Jpz, hpx1 � z, tqquβpx1 � z, tqχΩpx1 � zq

� Jpz, hpx2 � z, tqquβpx2 � z, tqχΩpx2 � zq dz

����
¤
����»

Rn

�
Jpz, hpx1 � z, tqquβpx1 � z, tq

�Jpz, hpx2 � z, tqquβpx2 � z, tq�χΩpx1 � zqχΩpx2 � zq dz

���� (A.5.4)

�
»
Rn

��Jpz, hpx1 � z, tqquβpx1 � z, tqχΩpx1 � zqp1� χΩpx2 � zqq�� dy (A.5.5)

�
»
Rn

��Jpz, hpx2 � z, tqquβpx2 � z, tqp1� χΩpx1 � zqqχΩpx2 � zq�� dz. (A.5.6)

We can estimate (A.5.4) analogously to (A.5.3). To estimate (A.5.5) we define for x1, x2 P Ω

the sets

Sx1x2
:�  

z P Rn : x1 � z P Ω, x2 � z R Ω
(
,
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Gx1x2
:�  

z P Rn : x1 � z P Ω, dist px1 � z, BΩq ¤ |x1 � x2|
(
.

Let z P Sx1x2
. Then, a :� x1�z P Ω and x2�z � x2�x1�a R Ω. Assume dist px1 � z, BΩq ¡

|x1�x2|. Consequently, B|x1�x2|paq � Ω and a�x2�x1 P Ω which leads to a contradiction.

Hence, Sx1x2 � Gx1x2 and |Sx1x2 | ¤ |Gx1x2 | ¤ K29pΩq|x1�x2| holds for sufficiently smooth

BΩ. Then, we can estimate

|(A.5.5)| �
�����
»
Sx1x2

Jpz, hpx1 � z, tqquβpx1 � z, tq dz

�����
¤ }u}βL8pΩ�p0,T qq

»
Gx1x2

Lpzq|hpx1 � z, tq| � |Jpz, 0q|dz

¤ }u}βL8pΩ�p0,T qq maxt1, }h}βL8pΩ�p0,T qqu
�}L}LppSq � }Jp�, 0q}LppSq

� |Gx1x2
| p�1

p

¤ K30|x1 � x2|
p�1
p .

We can estimate (A.5.6) analogously. Putting this together with the estimates of the other

terms, we conclude Jp�, hq � uβ P Cκ,κ2 pΩ� r0, T sq for κ :� mintϑ, p�1
p u.
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