Optimized Nearest-Neighbor Classifiers
Using Generated Instances

Matthias Fuchs
Center for Learning Systems and Applications
Computer Science Dept., University of Kaiserslautern
P.O. 3049, D-67653 Kaiserslautern, Germany

e-mail; fuchs@informatik.uni-k1.de

Andreas Abecker
German Research Center for Artificial Intelligence
DFKI GmbH, Kaiserslautern
P.O. 2080, D-67608 Kaiserslautern, Germany

e-mail: aabecker@dfki.uni-kl.de

Abstract

We present a novel approach to classification, based on a tight coupling of instance-
based learning and a genetic algorithm. In contrast to the usual instance-based learn-
ing setting, we do not rely on (parts of) the given training set as the basis of a nearest-
neighbor classifier, but we try to employ artificially generated instances as concept
prototypes. The extremely hard problem of finding an appropriate set of concept
prototypes is tackled by a genetic search procedure with the classification accuracy

on the given training set as evaluation criterion for the genetic fitness measure.

Experiments with artificial datasets show that—due to the ability to find concise
and accurate concept descriptions that contain few, but typical instances—this clas-
sification approach is considerably robust against noise, untypical training instances
and irrelevant attributes. These favorable (theoretical) properties are corroborated

using a number of hard real-world classification problems.

Keywords: Nearest-Neighbor Classification, Genetic Algorithm,
Instance-based Learning

1 Introduction

Memory-based approaches to classification have shown their usefulness in many applica-
tions. In domains with weak or intractable background theory [BPH90], when searching
for goal concepts consisting of many small disjuncts or when being faced with poor predic-
tive power of attributes or with imprecise and polymorphous concepts [BPH90, AKA91,
MST94], methods like nearest-neighbor algorithms (k-NN) or instance-based learning (IBL)
often produce good classification results. Regarding a number of real-world applications, k-
NN was reported by [MST94] to outperform all other classification approaches examined in
the StatLog project. These results are achieved by conceptually very easily understandable
and implementable algorithms:

In the learning phase, they simply record the given training examples (instances) together
with their classifications. These training instances are attribute-value representations de-
scribing points in the attribute space (or, instance space) that are example instances of
concepts. Concepts therefore can be understood as sets of points in this attribute space.
Subsequently presented unseen examples are classified by searching the £ most similar stored
instances and determining the most frequent class in this set of nearest neighbors. Thus, a
memory-based classifier consists of a set of stored training instances (the concept descrip-
tion) plus the k-NN classification rule ([CH67]) for some specific k. However, when storing
all presented examples, large storage requirements and high classification costs become a
serious problem.

Approaches like IB3 [AKA91] or TIBL [Zha92] tackle this problem by storing only a sub-
set of the presented instances that is expected to be sufficient for a good characterisation
of the goal concept. This is achieved in IB3 by considering the instances’ classification
performance on subsequently presented training examples in order to discriminate good
classifying instances from noisy ones. While IB3 hence evaluates the “usefulness” of in-
stances indirectly via their classification behavior, TIBL employs an explicit measurement
of “typicality” of instances based on inter-concept and intra-concept similarity. Despite
their different motivation and technical approach both algorithms obtain smaller concept
descriptions and better classification accuracy (especially in noisy domains) by concentrat-
ing on central points in clusters of instances with the same class.

However, both approaches still preserve the idea of using only presented instances for a
concept description. But, obviously in real-world domains these will usually contain a more
or less random selection of somehow biased and noisy examples that highlight only certain
aspects of the goal concept. So, we think that conventional instance-based algorithms
impose unnecessary limitations on themselves when considering these instances as a starting
point for constructing a concept description.

If we want to liberate us from the direct use of the training set, we have to face an extremely
hard search problem: The search space contains all possible concept descriptions, i.e. all
sets of arbitrary points in the attribute space and there is no heuristic knowledge for guiding
the search and no known structure of this search space. Furthermore, since the training set
is the only information available (provided that there is no background knowledge used), we

must nonetheless finally rely on this data. Thus we propose to use it to evaluate a (partial)
solution candidate by measuring its classification accuracy on this example set. So we have
an indirect use as in IB3, but we are free to construct arbitrary concept descriptions not
restricted by the example instances.

Recently, a number of publications demonstrated the power of Genetic Algorithms (GA)
under such conditions: huge, unstructured search spaces and the only available knowledge
given as an a posteriori evaluation of a solution candidate’s quality. This led us to the
idea of our algorithm GIGA: Generate Instances for concept descriptions using a Genetic
Algorithm. GIGA employs genetic search to find optimal concept descriptions (to be used
by a k-NN classifier). Since these concept descriptions are artificially generated and are
not restricted to the use of presented instances, they can contain arbitrary instances and
have thus the chance of finding “/deal” concept descriptions with better performance w.r.t.
both classification accuracy and storage requirements. Moreover, because our candidate
evaluation always regards all information available, it is not as exposed to the danger of
being trapped in local optima as incremental instance-based approaches are.

This paper is organized as follows: In section 2, we give a more detailed description of the
GIGA algorithm which is followed by a discussion of interesting properties of our approach
(section 3). Some artificial datasets demonstrate GIGA’s ability to find concise concept
descriptions (containing few, but typical instances) and to handle untypical training data,
and its robustness against noisy examples and irrelevant attributes. In section 4, we report
first promising experimental results on well-known real-world datasets taken from publicly
accessible repositories. In the last section 5, we discuss some related work, summarize the
approach, its strengths and limitations, and conclude with possible future improvements.

2 GIGA: The Basic Algorithm

Section 1 outlined the motivation for generating instances in order to obtain a concept
description instead of using (a subset of) given training instances. Generating a concept
description essentially amounts to a search problem. The resulting search space is the set of
all concept descriptions, i.e., the set of all sets of instances. In practice, it stands to reason
to limit the number of instances of a concept description to some fixed n; € IN. Besides a
(significant) reduction of the search space, such a limitation offers further benefits we shall
address in section 3. Despite the reduction, the search space in general remains enormous
and hence intractable with simple search methods such as hill-climbing or random search.
Therefore, the use of a Genetic Algorithm (GA, [Hol92], [Jon88]) appears to be appropriate,
because the GA has the potential to cope with intricate search spaces in the absence of any
knowledge about their structure. Furthermore, a GA is less prone to getting trapped in a
local optimum. Both properties are highly valuable for our purpose (cp. [JSG93]). In the
sequel, we describe the basics of the GA in the light of our application, implemented by an
experimental program called ‘GIGA’.

Unlike other search methods, the GA maintains a set of (sub-optimal) solutions, i.e., several

points in the search space. In this context, a solution is preferably called an individual, and
the whole set is referred to as a population or generation. Usually, the size of the population
is fixed. In order to explore the search space, the GA applies so-called genetic operators
to (a subset of the) individuals of its current population. This way, new individuals can
be created and hence new points in the search space can be reached. In order to keep
the population size fixed, it must be determined which individuals are to be eliminated
in order to make room for the new ones. For this purpose a so-called fitness measure is
employed which rates the fitness (i.e., the ability to solve the problem at hand) of each
individual of the current population. The genetic operators are applied to the most fit
individuals producing “offspring” which then replaces the least fit individuals (“survival of
the fittest”).

So, the GA basically proceeds as follows: Starting with a randomly generated initial pop-
ulation, the GA repeats the cycle comprising the rating of all individuals using the fitness
measure, applying the genetic operators to (a selection) of the best individuals, and re-
placing the worst individuals with offspring of the best, until some termination condition
is satisfied (e.g., an individual with a satisfactory fitness level has been created).

In our case an individual Z corresponds to a concept description, i.e., a (finite) set of
instances. The fitness of an individual is measured in terms of its classification accuracy
regarding a given set T of training instances. To this end we apply the k-NN rule with £ = 1.
That is, for each instance I € T the nearest neighbor I’ € 7 is computed according to the
Euclidean distance measure. A correct classification is registered if the classes associated
with I and I’ agree. The classification accuracy of Z is the percentage of correctly classified
instances of T'. If two individuals have the same classification accuracy, we prefer the one
which uses fewer instances as concept description.

The genetic operators are subdivided into reproducing and mutating operators. Repro-
ducing operators produce offspring, while mutating operators alter this offspring. GIGA
employs two reproduction operators, namely crossover and cloning. The crossover opera-
tor randomly selects two distinct parents from the pool of 1% best (surviving) individuals.
A subset of the instances of each parent individual is chosen at random, and the union of
these two subsets yields the “child” individual. Thus, this operator complies with the basic
idea of crossover, namely providing the ability to combine good partial solutions.

The cloning operator simply copies a randomly selected parent individual. Cloning only
makes sense in connection with mutation operators to be described shortly. It is reasonable
in particular if the top ranking individuals are very close to an optimum, and slight varia-
tions (mutations) of them have a higher chance to actually yield an optimal individual than
(mutations preceded by) crossover. Whenever offspring is to be generated, either crossover
or cloning are chosen at random according to a given probability distribution.

The mutation operators modify individuals stemming from crossover or cloning. An
individual 7 is subject to mutation with probability P,.;. If an individual is selected for
mutation, the following mutation operators are applied in the given order. (1) Deletion:

1Offspring generated by the reproduction operators hence replaces the 100 — % least fit individuals.

One instance of 7 is chosen at random and discarded. This deletion operator is applied
with probability Py. It is useful to get rid of instances which do not improve classification
accuracy and hence unnecessarily hinder finding concise concept descriptions. (2) Mutate
Instances: Each instance I of Z is subject to random mutation with probability P.,4. That
is, if I € T is chosen for random mutation, then, with probability P.,,,,, each component a
of I (i.e. a is an attribute-value pair) including the class associated with I may be replaced
by a random value taken from the respective range. This kind of mutation realizes “pure”
random influences and is hence helpful in introducing the necessary diversity at early stages
of the genetic search. (3) Addition: A random number of n > 1 instances generated at
random are added to Z (without exceeding n; of course). The addition operator is applied
with probability P,4q4.

In summary, GIGA attempts to obtain a concept description which is both concise and
accurate w.r.t. the given training set. Accuracy and conciseness are respectively the first
and second objective GIGA pursues by virtue of the employed fitness measure. Note that
the fitness measure is the only (indirect) connection between a concept description found
by GIGA and the training set. The merely implict dependence on the training set gives
rise to some interesting properties of our approach which the following section will explain
and demonstrate.

3 Properties of Our Approach

Section 1 already mentioned properties of our approach which we shall now examine more
closely. Please note that the experiments of this section in connection with artificial domains
mainly are to illustrate the point that is being made. They are not supposed to exhibit
experimental evidence for the capabilities of our approach or its (general) superiority to
other approaches. Some experimental results regarding real-world database applications
are given in section 4.

3.1 Generating Typical Instances

Classification using the nearest neighbor rule entails—in its standard form—storing all
training instances as concept description. Apart from possibly considerable storage re-
quirements, storing all training instances also slows down the classification of an unknown
test instance, since it must be compared with each and every training instance in order
to determine its k£ nearest neighbors. Therefore, one attempts to store only a “sufficient”
subset of all training instances which allows for classifying these training instances with an
“acceptable” accuracy rate.

Most efforts aiming at a reduction of storage requirements essentially center on discarding
all those training instances that are correctly classified even when removed from the training
set (e.g. [Gat72]). Refinements of this approach are based on selecting instances from the
training set that satisfy certain criteria such as being typical or near-boundary instances (cp.

Table 1: Experimental results concerning the 5-of-10 concept

GIGA TIBL
Training || avg. avg. avg. avg. avg. avg.
Set Size || acc. | #inst. | #cycles | run time || acc. | #inst.
100 100% 2 83.5 13.68 sec || 85.6% | 19.6
200 100% 2 56.4 21.91 sec || 94.0% | 15.1
300 100% 2 78.6 41.23 sec || 98.8% | 15.2
400 100% 2 59.8 40.14 sec | 99.5% | 10.8

[Zha92]). Roughly speaking, typical instances are similar to instances of the same class,
but different from instances of other classes. (Difference resp. similarity are commonly
expressed with the help of the distance measure at hand.) Near-boundary instances are the
opposite of typical instances. Using a geometric interpretation, near-boundary instances
are located at the borders of a cluster of instances belonging to a certain concept, whereas
typical instances are located at the center? of such a cluster.

Reviewing our approach as implemented by GIGA, it becomes clear that GIGA is search-
ing for exactly these typical instances without having an explicit notion of typicality. Due
to the fitness measure, concept descriptions are sought which (a) contain as few instances
as possible while (b) representing the concept as accurately as possible. The centers of
clusters of instances belonging to the same class are perfect candidates for such concept
descriptions, because they allow for subdividing the instance space with the desired parsi-
mony and accuracy in connection with the 1-NN rule. The striking advantage of generating
instances is that we do not depend on the occurrence of typical instances in the training
set. Even in the “worst case” when the training set contains only near-boundary instances,
GIGA can still search for typical instances where other approaches solely relying on the
training data face serious problems.

We shall illustrate this claim with an example taken from the n-of-m concept domain (see
also [Zha92]). In this domain there are m attributes with binary values from {0, 1} and two
classes C'0 and C'l. If n or more attribute values of an instance are 1, then this instance
belongs to C'l. Otherwise it belongs to C0.

In [Zha92] the special case ‘5-of-10" was utilized to demonstrate the significant improvements
the approach which selects typical instances from the training set (TIBL) can achieve
compared to other instance-based approaches, w.r.t. both classification accuracy and the
reduction of storage requirements. The results produced by this approach are shown in the
last two columns of table 1. For this special case, the most typical instances Icg and Iy
of the classes C'0 and C'1 are the instances with ten 0s and ten 1s as attribute values,

2The center of a cluster of instances is viewed as that point in the instance space which minimizes the
distance between itself and all points corresponding to the (other) instances of this cluster. This view
essentially conforms to the definition of typicality given in [Zha92].

respectively. As a matter of fact, a concept description C = {I¢1, [} consisting of these
two most typical instances (in that order)? together with the 1-NN rule allows for correctly
classifying all 2'% instances. C is optimal in the sense that there is certainly no more accurate
and more concise concept description.

The experimental environment set up in [Zha92] was replicated for our experiments with
GIGA.* Four different sizes of training sets shown in the first column of table 1 were
used. Training sets were generated at random. Each row displays the results obtained in
connection with the respective training set size averaged over ten trials. All 1024 instances
of the 5-of-10 concept were used as test data. For both GIGA (columns two through five)
and TIBL the columns labeled ‘avg. acc.” and ‘avg. #inst.” display the average accuracy
(w.r.t. the test data) and the average number of instances stored in the resulting concept
description, respectively.

Columns two and three of table 1 reveal that GIGA was always able to find the optimal
concept description C regardless of (the size of) the training set. Columns four and five list
the average number of cycles and the average run time (CPU time)—obtained on a SPARC-
station 10—GIGA required to accomplish this.> As for TIBL, the results in columns six
and seven clearly exhibit the dependence on the size of the training set: Performance im-
proves (higher accuracy, less stored instances) as the size of the training set increases, since
larger training sets have a higher probability to contain I¢g or I¢q.

3.2 Near-Boundary Instances and Irrelevant Attributes

IBL approaches employing similarity measures based on spatial distance have serious dif-
ficulties when exposed to concepts involving irrelevant attributes. Irrelevant attributes do
not convey any information concerning class membership. But in particular in connection
with the £-NN rule, the spatial proximity of instances w.r.t. irrelevant attributes can have
a distorting influence. As a consequence, classification accuracy can degrade significantly.
A similar problem arises when a training set mainly consists of near-boundary instances, i.e.,
instances which are (very) close to concept boundaries. Near-boundary instances located
at opposite sides of the boundary of two distinct concepts can nevertheless be very close to
each other. As a matter of fact, they might be closer to each other than to other instances
of the respective concept. Consequently, they may be classified incorrectly.

Near-boundary instances and irrelevant attributes are two major causes for poor perfor-
mance of common IBL approaches based on the k-NN rule. Extensions of the nearest

31t is assumed that C associates the instances with five 1s with the class C'1, because I¢q occurs before Icg
in C. This mechanism for resolving ambiguities concerning the distance measure is applied by GIGA’s
fitness measure. Therefore, C would receive a “perfect” fitness rating.

4Parameter setting for GIGA: population size: 100; survival rate: r = 30%; maximal number of
instances of an individual: n;y = 20; 75% of the offspring was created by cloning, the remaining 25% via
crossover; all offspring was subject to mutation, i.e., Ppy: = 100%; Furthermore, Py = 80%, Prna = 25%,
P.omp = 25%, Pagq = 0%.

>Note that the computations performed by the fitness measure need the more time the larger the training
set is. The number of cycles, however, is mainly influenced by random effects.

Table 2: Near-boundary instances and irrelevant attributes

1I-NN GIGA
Training || avg. acc. || avg. acc. | avg. acc. | avg. avg. avg.
Set Size test test training | #inst. | #cycles | run time
40 58.74% 97.12% | 99.75% 2.5 144 7.37 sec
60 60.75% 98.93% 100% 2.6 209.5 | 15.05 sec
80 63.53% 100% 100% 2 80.6 7.76 sec
100 68.02% 100% 100% 2 93.5 10.27 sec

neighbor algorithm in general cannot alleviate this drawback satistactorily. The main rea-
son is the fixation on (a subset of) the training set which might not provide the instances
necessary for an appropriate concept description. When generating instances, however, we
have the chance to find apt concept descriptions involving instances that do not exist in
the training set. The following simple example illustrates these aspects.

There are two classes C; and (5, and three attributes z, y and z whose values range from 1
to 20. An instance belongs to class € if its attribute value for attribute x is in {1,...,10}.
Otherwise it belongs to C3. Training and test instances are randomly generated along the
boundary—a plane—separating C'; and C5. This means that the attribute value for x is 10
w.r.t. instances of C; and 11 w.r.t. instances of (5. Values for y and z are randomly chosen
from {1,...,20}. The attributes y and z are irrelevant since class membership can be
decided with the help of x alone. This example hence combines near-boundary instances
and irrelevant attributes.

Any concept description consisting of two instances [; and [, satisfying the following con-
ditions is optimal both w.r.t. classification accuracy and parsimony: The attribute values
for x are 10 —a and 114+ a (a € {0,...,9}), respectively. For both [; and I, the attribute
values for y and z are b and ¢ (b, ¢ € {1,...,20}). Even under these simple conditions it is
very unlikely that two such I; and I, are in a training set of reasonable size, let alone the
difficulty to extract exactly these two from the training set should they be there. GIGA,
however, essentially searches for a concept description consisting of two such individuals
since it represents a global optimum.

Our experiments regarding this two-class concept are summarized by table 2. We employed
training sets of four different sizes (cf. first column of table 2). Half of the instances of such
a training set belonged to Cy, and the other half to ;. The results presented by each row
of table 2 are the average of ten trials during each of which a random training set of the
respective size was presented to GIGA and the k-NN algorithm, and tested with respect
to ten also randomly generated test sets. Fach test set had 50 instances of each class.
The second column of table 2 shows that the £-NN algorithm performs rather poorly. (We
only list the results obtained with & = 1, but choosing k£ > 1 does not improve performance
significantly, mostly even causing it to deteriorate.) Classification accuracy naturally in-

creases with the size of the training set. Under the present conditions, the performance
of the k-NN algorithm can be improved by varying the Euclidean distance metric through
the use of weighted attribute value differences. In case concept boundaries are not aligned
with the attribute axes, rotations are necessary to fully profit from a weighted Fuclidean
distance measure. But determining rotation angles and weights also amounts to a search
problem (cp. [KD91]). Note that our approach is independent of the orientation of concept
boundaries w.r.t. attribute axes. To put it another way, the search problem remains the
same whether concept regions are aligned with attribute axes or not. (The instances of an
optimal concept description are rotated the same way as the whole concept.)

Columns three through seven list the results obtained with GIGA,® namely the average
accuracy on the test and training sets, number of instances constituting the found concept
description, number of cycles and CPU time. The classification accuracies attained by
GIGA demonstrate that GIGA can cope with the present situation very well. In connec-
tion with training sets of the sizes 40 and 60, however, GIGA did not succeed in finding
an optimal concept description in one of the ten trials.” This may be a coincidence, but
it is also possible that smaller training sets entail search spaces with more deceptive local
optima. (We want to emphasize at this point that GIGA is a “first generation” experi-
mental program which certainly does not represent the state of the art of genetic search
procedures. There is much room for improvements on that score. Therefore, limitations
encountered when using GIGA should not be taken as evidence for a general limitation of
our approach on account of intractable search spaces.)

3.3 Dealing with Noise

Noise tolerance is a property of classification systems which is particularly important in
real-world applications which almost never are free of noise. Although our approach does
not provide an explicit mechanism for dealing with noise (in contrast to, e.g., [AK89]), it
nevertheless has a certain ability to tolerate noise. It derives this implicit ability from the
fact that the concept descriptions which are searched for can be limited w.r.t. their size
(i.e., ny) resp. complexity.

If data is noisy, then there typically are subspaces of the instance space whose elements
are all supposed to belong to a certain class, but they are pervaded to a degree by in-
stances associated with alien classes which represent noise. In order to single out these
noisy instances—which entails “cutting up” the instance space more strongly—concept de-
scriptions have to be more complex. So, if the complexity (size) of concept descriptions is
limited appropriately, then GIGA will search for coarser concept descriptions which kind
of “ignore” noisy instances: Due to the restricted ability to cut up the instance space,

SParameter setting: population size: 100; » = 30% survival rate; ny = 10; offspring was produced via
crossover only; Prut = 50%; Pger = 0%; Paga = 0%; Prna = 25%; Peomp = 50%.

“Besides finding an optimal concept description, having been trapped in a local optimum for more than
500 cycles is a further termination criterion. The average number of cycles and the run time naturally
increase if termination was triggered by the latter criterion.

100 100 100 ¢

90 90 90

80 80 80

70 70 1 70

.| N 60 | 60

50 + 50 + - 50 +
0 1I0 QIO 3I0 4I0 5I0 0 1I0 QIO 3I0 4I0 5I0 0 1I0 QIO 3I0 4I0 5I0
(a) GIGA: n; =10 (b) GIGA: n; =5 (c) 3-NN

Figure 1: Experiments with noisy data: The x axis displays the percentage of noise, and
the y axis the (average) classification accuracy w.r.t. test data (straight lines) and training
data (dotted lines).

GIGA can recognize larger coherent areas of the instance space which are associated with
a certain class although they are “polluted” and pervaded by noise. Naturally, if the per-
centage of noisy instances exceeds a certain degree, then they cause distortions that cannot
be compensated for anymore. The subsequent example is to illustrate this property.
There are three classes Cy, Cy, C3, and two attributes z and y whose values range from 1
to 18. An instance belongs to class C; (Cy, C3) if the value of its attribute z is in {1,...,6}
({7,...,12}, {13,...,18}). The value of the (irrelevant) attribute y is chosen at random.
Training and test data are generated at random, containing 150 instances (50 instances of
each class). The test data is free of noise, whereas noise is introduced into the training
data. To this end, for a certain percentage of randomly chosen instances of each class, the
correct class label is replaced with an incorrect one (also chosen at random).

Figure 1 summarizes our experiments conducted in this domain. The accuracy results are
averaged over ten trials (ten test sets per trial). We employed GIGA with two (max-
imal) sizes of concept descriptions, namely n; = 10 and n; = 5 (cp. figure la and 1b,
respectively).® The remaining parameters were set as in the preceding subsection. Fig-
ure lc displays the performance of the k-NN algorithm using k& = 3.

Figure 1 shows that classification accuracy on the (noise-free) test data (straight lines) is
significantly higher compared to 3-NN when using GIGA and forcing it to search for coarse
concept descriptions. As a matter of fact, accuracy remains on a high level with as much
as 30% noise in the training data. The accuracy of 3-NN drops more or less linearly right
from the start. Note that the “coarser” setting involving n; = 5 yields a slightly better

8Note that—similar to the example of subsection 3.2—there are concept descriptions consisting of three
instances which achieve perfect classification accuracy (for noise-free data).

10

performance than the less coarse one (n; = 10). The threshold for the amount of noise
GIGA can satisfactorily cope with seems to lie somewhere between 30% and 40% for this
experimental data. Exceeding this threshold causes the accuracy rate to drop sharply. Note
that the accuracy on the training data (dotted lines) decreases in almost perfect correlation
with the percentage of noise, which suggests that GIGA is able to in a way “sort out”
(most of) the noisy instances as long as there is not too much noise. This effect can of
course not be observed in connection with the 3-NN classifier.

4 Experimental Results

While in section 3 artificial datasets were used to demonstrate specific properties of our
algorithm, we now examine some real-world datasets in order to evaluate the algorithm
under hard conditions. For the sake of comparable and reproducable results we chose
only publicly available datasets from the Machine Learning Repository at the University
of California at Irvine [MA94]. We took datasets with well-documented results and used
the StatLog Evaluation Assistant—a set of UNIX shell scripts and C routines for the test
of classification algorithms and the production of standardized performance measures. We
also used the same test method (leave-one-out, k-fold cross-validation, etc.) as reported in
the literature for the respective examples. The following datasets were examined:
Diabetes (Pima Indians): diabetes diagnosis on the basis of physiological measurements
and medical tests [SED*88]; the best results are reported in [MST94]; 768 instances, 8 real-
valued attributes, 2 classes.

Breast Cancer (Wisconsin): cancer diagnosis from cytological information; the best
result is reported in [WM90, Zha92]; 699 instances, 10 integer-valued attributes, 2 classes.
Promoter sequences: prediction of biological promoter activity for a sequence of nu-
cleotides; past usage by [HR87, TSN90]; 106 instances, 59 nominal attributes®, 2 classes.
Heart Disease (Cleveland): diagnosis of coronary artery disease; best result described
by [GLF89]; 303 instances, 14 integer-valued attributes, 2 classes.

Congressional voting: determine party affiliation from congressional voting; introduced
by [Sch87]; 435 instances, 16 boolean attributes, 2 classes.

Results: Table 3 summarizes the classification accuracies obtained in this first experimen-
tal evaluation of GIGA. Using a standard parameter set-up for the GA'® and a maximum
number n; of 25 instances allowed in an individual, GIGA was able to exceed the best
reported results in the diabetes and the breast cancer domain. On the other hand, it took
several adjustments of the n; parameter!! until we obtained comparable results in the pro-
moter sequence, in the heart disease, and in the voting domain. Nevertheless, only for
heart disease diagnosis, we were finally not able to produce an accuracy competitive with

9Nominal attribute values were replaced by integers according to their alphabetic order.
0Population size 400; 30% survival rate; Prye = 50%; Paer = 10%; Pada = 20%; Prna = 10%; Peomp =
100%; 60 cycles.

1 This parameter specifies the minimal level of generalization GIGA is forced to achieve.

11

Table 3: Experimental results using real-world datasets

Dataset test best reported | best reported | GIGA
method algorithm acc. acc.
Diabetes 12-fold cv Logdisc 77.7% 80.5%
Breast Cancer | 10-fold cv Hyperplanes 95.9% 97.3%
Promoter leave-one-out || KBANN 96.2% 98.1%
Heart Disease | 10-fold cv CLASSIT 78.9% 72.3%
Voting train & test || STAGGER 90-95% 93.9%

the best published results.

These experiments show that GIGA is able to find optimized concept descriptions also in
noisy domains with imprecise concepts and thus can contribute to better solutions for prac-
tically relevant classification tasks. Optimal parameter adjustment seems to be the crucial
point in some domains. Mostly, the value of n; turns out to be the main problem. But this
is less serious, since this value can iteratively be incremented until an optimal “complexity
fit” ([WKO91]) of the concept description is reached. Because most papers concentrate on
test-set accuracy, we report only this result which is also likely to be the strongest point of
GIGA. Nevertheless, comparisons of run-time behavior, storage requirements'? and robust-
ness in noisy and dynamic situations provide interesting work for the near future. Another
point for further investigations is the thorough examination of the instances generated by
GIGA, especially in comparison with TIBL or prototype-learners.

5 Discussion

In this paper we presented GIGA, a novel approach to classification that employs a genetic
search algorithm in order to approximate ideal concept descriptions to be used by a nearest-
neighbor classifier.

Our algorithm follows the Pittsburgh approach to machine-learning oriented GAs [Smi83,
Koz91, JSG93, Jan93] in that each individual of the population encodes a complete solution
of the classification problem. But in contrast to other systems that learn explicit abstrac-
tions from examples (e.g. decision trees), our instance-based concept description permits
a scalable output-representation language with arbitrary granularity.!® Experiments with
ML benchmark datasets (cf. section 4) show that the system is able to find an appropriately
fine-grained level to describe hard real-world classification problems. This ability may be

12For these examples, depending on the size of the training set and the number of attributes, the run
time needed to perform the 60 cycles ranged between 4 and 40 minutes on a SPARCstation 10. The size
of the generated concept descriptions was comparable to the ones reported in [Zha92].

BInstance-based classifiers can piecewise-linearly approximate arbitrary concept boundaries.

12

seen as another form of dynamically adjusting system bias (cp. [JSG93]). But note that in
our approach this adjustment is done implicitly, embedded in a rather elegant and easy to
implement evolution cycle, whereas others need very sophisticated techniques.

Within the instance-based learning community, our approach consequently continues the
idea of searching optimized concept descriptions as introduced by IB3 [AKA91] and TIBL
[Zha92]. However, the search for “ideal” instances seems to be unique in this community.
The experiments with artificial datasets in section 3 illustrate that there exist situations in
which our approach of not relying on the given instances to construe a concept description
becomes a striking advantage. The use of few, typical instances essentially amounts to an
implicit generalization from examples that makes it easier to tolerate a remarkable level
of noise as well as many near-boundary instances or irrelevant attributes in the training
set. [KD91] propose an approach that does not construct new instances but transforms the
given instances by rotations and attribute scalings which are optimized by a GA in order
to support the k-NN-classifier. This idea is somehow complementary to our approach. But
it is not evaluated using real-world datasets, and it does finally not tackle the problem of
bad input data (only the problem of bad input representation).

Mainly motivated by psychological studies [SM81, MS88], prototype learners (see e.g.
[Maz91, DK95]) pursue a similar goal as we do in that they compute a concept proto-
type from attribute values and frequencies occurring in the training set. However, these
systems are slightly more restricted to the given training instances as we are, since we can
enforce an arbitrary level of generalization via the maximal number n; of instances consti-
tuting a concept description. Furthermore, except for [DK95], prototype learners usually
construct a single prototype instance per concept which is not always sufficient for an ade-
quate concept representation. Of course, our flexibility is paid for by a high computational
effort due to the genetic search. However, this search can still be improved through more
sophisticated GA techniques and finally be performed in a highly-parallel way by multi-
processor machines. Simple incremental improvements of classifiers in order to take into
account new information, and the advantages of an any-time algorithm are further benefits.
Some limitations are naturally inherited from instance-based learning, for example poor
explanation capability, the problem of finding appropriate distance metrics and the use
of symbolic background knowledge. On the other hand, there are still promising future
research directions, e.g. the co-evolution of the distance metric or the incorporation of
individuals computed with Zhang’s method or de la Maza’s method into the first generation
of the genetic algorithm.

To conclude we can say that GIGA represents an interesting complement for other learning
approaches. In situations where instance-based learning seems appropriate, but is hindered
by poor data quality, GIGA has the chance of considerably improving classification ac-
curacy by spending large-scale computational power. This is the case in a number of
practically relevant problems (see e.g. the breast cancer domain in section 4) where few
reliable data and background knowledge is available, but classification improvements are

highly valuable.

13

References

[AKSY]

[AKA91]

[BPH90]

[CH67]

[DK95]

[GatT2]

[GLF89]

[Hol92]

[HRS7]

[Jan93]

[Jonss]

[7SG93]

[KDY1]

[Koz91]

D.W. Aha and D. Kibler. Noise-tolerant instance-based learning algorithms. In
Proc. 11" IJCAI, Detroit, MI, USA, pages 794-799, 1989.

D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms.
Machine Learning, 6:37-66, 1991.

R. Bareiss, B. Porter, and R. Holte. Concept learning and heuristic classification
in weak-theory domains. Artificial Intelligence, 45(1-2), 1990.

T.M. Cover and P.E. Hart. Nearest neighbor pattern classification. IEEFE Trans-
actions on Information Theory, 13:21-27, 1967.

P. Datta and D. Kibler. Learning prototypical concept descriptions. In A. Priedi-
tis and S. Russell, editors, Machine Learning: Proceedings of the 12! Interna-
tional Conference ICML-95. Morgan Kaufmann, San Francisco, CA, USA, 1995.

G.W. Gates. The reduced nearest neighbor rule. IEEE Transactions on Infor-
mation Theory, pages 431-433, May 1972.

J.H. Gennari, P. Langley, and D. Fisher. Models of incremental concept forma-

tion. Artificial Intelligence, 40:11-61, 1989.

J.H. Holland. Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence. Ann
Arbor: Univ. of Michigan Press, 2"¢ edition, 1992.

C. Harley and R. Reynolds. Analysis of e. coli promoter sequences. Nucleic Acids
Research, 15:2343-2361, 1987.

C.Z. Janikow. A knowledge intensive genetic algorithm for supervised learning.

Machine Learning, 13:198-228, 1993.

K. De Jong. Learning with genetic algorithms: An overview. Machine Learning,

3:121-138, 1988.

K.A. De Jong, W.M. Spears, and D.F. Gordon. Using genetic algorithms for
concept learning. Machine Learning, 13:161-188, 1993.

J.D. Kelly and L. Davis. Hybridizing the genetic algorithm and the k nearest
neighbors classification algorithm. In Proc. 4% ICGA, San Diego, CA, USA,
1991.

J.R. Koza. Genetic Programming. On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, 1991.

14

[MA94]

[Maz91]

[MS88]

[MST94]

[Sch87]

[SED88]

[SM81]

[Smi83]

[TSNYO]

[WK91]

[WM90]

[Zha92]

P.M. Murphy and D.W. Aha. UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html], Irvine, CA, University
of California, Department of Information and Computer Science, 1994.

M. De La Maza. A prototype based symbolic concept learning system. In Proc. of
the Eighth International Workshop on Machine Learning, pages 41-45. Morgan
Kaufmann, 1991.

D.L. Medin and E.E. Smith. Concepts and concept formation. Annual Review
of Psychology, (35):121-138, 1988.

D. Michie, D.J. Spiegelhalter, and C.C. Taylor. Machine Learning, Neural and
Statistical Classification. Fllis Horwood, 1994.

J.C. Schlimmer. Concept acquisition through representational adjustment. PhD
thesis, Department of Information and Computer Science, University of Califor-

nia, Irvine, CA, 1987.

J.W. Smith, J.E. Everhart, W.C. Dickson, W.C. Knowler, and R.S Johannes.
Using the ADAP learning algorithm to forecast the onset of diabetes mellitus.
In Proceedings of the Symposium on Computer Applications and Medical Care.
IEEE Computer Society Press, 1988.

E.E. Smith and D.L. Medin. Categories and Concepts. Harvard University Press,
1981.

S. Smith. Flexible learning of problem solving heuristics through adaptive search.

In Proc. 8% IJCAI, Karlsruhe, Germany, 1983.

G. Towell, J. Shavlik, and M. Noordewier. Refinement of approximate domain
theories by knowledge-based artificial neural networks. In Proceedings of the 8"

National Conference on Artificial Intelligence (AAAI-90), 1990.

Sh.M. Weiss and C.A. Kulikowski. Computer Systems That Learn — Classification
and Prediction Methods from Statistics, Neural Nets, Machine Learning, and
Ezxpert Systems. Morgan Kaufmann, 1991.

W.H. Wolberg and O.L. Mangasarin. Multisurface method of pattern separation
for medical diagnosis applied to breast cytology. In Proceedings of the National
Academy of Sciences, USA, volume 87, pages 9193-9196, December 1990.

J. Zhang. Selecting typical instances in instance-based learning. In Proc. 9%

ICML, Aberdeen, Scotland, pages 470-479, 1992.

15

