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Introduction 

Since its conception, experimental psychology has been on a quest to unravel the 

cognitive processes involved in human behavior. Of major interest in this endeavor is 

not only the identification of said processes, but to also reveal their temporal dynamics. 

In other words, can we identify at which point in time which processes are at play, and 

how they correspond to human behavior? In order to accomplish such a daring task, 

researchers for almost 200 years now have developed paradigms and experimental 

procedures. They have brought forth numerous approaches to analyze the obtained 

data, made cases in favor of theirs and argued against others. Such is the nature of this 

work. 

Historically, the fundamental measures when researching the temporal dynamics 

of human behavior have been, and are to this day, reaction or response time (RT) and 

accuracy, respectively. In its most simple definition, RT refers to the time required to 

perform an action (Luce, 1986). More specifically, in experimental psychology, it is the 

time it takes to complete a task (Rouder & Speckman, 2004), most often the time 

between stimulus presentation and an associated response. Accuracy then evaluates 

the performance of this action, on a scale from “0 (incorrect)” to “1 (correct)”, 

depending on the task at hand. Despite the emergence of neuroimaging techniques 

such as electroencephalography (EEG), magnetoencephalography (MEG), and 

functional magnetic resonance imaging (fMRI), RT analyses remain a key tool in the 

field.  

The aim of this work is to give a brief overview of the historic developments 

associated with these measures (Chapter 1; based in parts on Article 1 & 2). Thus, I 
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discuss their properties and application, and the methods created to use these 

measures as a tool to better our understanding of human cognition and behavior. This 

reaches from Donders’ subtraction method (Donders, 1969) to Sternberg’s additive factor 

method (AFM; Sternberg, 1969, 1984, 2011, 2013). Following this, more recent 

developments are introduced, focusing on the distributional properties of RT and 

accuracy, such as quantile plots and Vincentizing (Ratcliff, 1979; Rouder & Speckman, 

2004; Vincent, 1912). Finally, I make my own case for the analyses of the full 

distribution of response occurrences (Chapter 2; based on Article 1). To do so, I employ 

discrete-time event history analysis (EHA; Allison, 1982, 2010; Panis & Hermens, 2014; 

Panis & Schmidt, 2016; Singer & Willett, 2003) to various experimental psychology 

tasks (introduced in Chapter 3; see Articles 1–4). I aim to highlight its advantages, the 

gains and insights it lends to the field, discuss its shortcomings, and suggest potential 

developments in the future (Discussion; Articles 1-4). 

1 A Brief History of the Analyses of Time-to-Event Data 

As mentioned in the previous section, one major goal in experimental psychology and 

its related fields is to understand the time course of human cognition and behavior. In 

order to achieve this, an appropriate measure is necessary, as well as the appropriate 

analyses of the measurements obtained with it. 

 The foundation for this measurement was laid in the middle of the 19th century 

by the groundbreaking work of Hermann von Helmholtz (Helmholtz, 1948, 2021; 

Meyer et al., 1988; Townsend & Ashby, 1983). With his discovery of the conduction 

velocity of the nervous system in frogs (Helmholtz, 1948), and later the introduction 

of the simple reaction time procedure (Helmholtz, 2021), Helmholtz can be considered 
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one of the fathers of modern cognitive psychophysiology (Meyer et al., 1988). His work 

directly influenced the work of Franciscus Cornelius Donders. Donders (1969) 

developed a technique called the subtraction method. This innovative technique 

employed three tasks, called Task A, Task B, and Task C. Task A was equivalent to 

Helmholtz’ (2021) simple reaction time procedure, in which a speeded response time 

to a single stimulus is recorded (Donders, 1969; Meyer et al., 1988; Sternberg, 2011; 

Townsend & Ashby, 1983). The underlying assumption is that this simple task is 

accomplished by some process A. Task B refers to a choice reaction time procedure, 

which now entails multiple stimuli, which have to be discriminated between, resulting 

in a selection before the response. The idea behind this was that this task would now 

involve the same process A as Task A before, in addition to the processes of 

discrimination and selection (both collectively referred to as process B now). If one 

subtracts the time for Task A from Task B, one would have an estimate for the duration 

of process B, a combination of discrimination and selection. Finally, Task C can be seen 

as an attempt to distinguish between the durations of the discrimination and selection 

processes. By employing a go/no-go reaction time procedure, Donders created a task 

in which multiple stimuli were deployed but only one response was required (i.e., 

subjects were tasked to respond to one stimulus, but withhold responses for all others). 

Therefore, discrimination was still thought to be required for completion of the task, 

but not selection. Subtracting the RT for Task C from Task B would thus give an 

estimate of the duration of response selection, while subtracting Task A from Task C 

would yield an estimate of the duration of discrimination. 

As we now know, this method relied upon a plethora of very strong assumptions, 

which did not all stand the test of time (Meyer et al., 1988). Perhaps the strongest 
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assumptions were those of strictly successive stages and pure insertion (i.e., the idea 

that by adding or removing a processing stage, other stages are not affected). 

Nonetheless, the influence and impact that this method had and still has is 

unquestionable. 

Sternberg (1969, 1984, 2011, 2013) expanded on the original work of Donders. 

Though he still aimed to identify different stages of processing, his AFM does not rely 

on the assumption of pure insertion. This technique was strongly influenced by the 

emergence of the serial information processing framework (i.e., assuming that 

information processing involves a series of successive stages). If a process can be seen 

as a series of distinct subprocesses (i.e., stages), then the RT related to this process 

should correspond to the sum of the different stage durations. By applying Analysis 

of Variance (ANOVA) to mean RTs, the AFM aims to identify these distinct stages and 

their relations to one another. Let’s assume there are two factors, A and B, and they 

both influence the mean RT in a given task. If we further assume that they do not 

influence a common stage, then their effects on mean RTs should be additive. If, 

however, A modulates the effect of B on mean RTs (i.e., they interact with each other), 

then the two factors must influence at least one common stage. Thus, if one finds at 

least two additive factors, Sternberg concludes that at least two distinct stages of 

processing take place. Likewise, if one finds at least two interacting factors, he 

concludes that they may have a stage of processing in common. By experimentally 

varying factors, which in turn may lead to different combinations of additive and 

interactive factors, the goal is to identify the number of distinct processing stages and 

their purposes (Meyer et al., 1988). Yet, the AFM still holds on to rather strong 
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assumptions, for instance the assumption that processing stages have no temporal 

overlap (Meyer et al., 1988). 

And while the AFM relies on mean RTs and ANOVAs, this might not always be 

the best approach. As Whelan (2008) shows, RT data is often not suited for ANOVAs. 

First, RT distributions are typically not normally distributed, which can result in 

reduced power when analyzing mean RTs using ANOVAs. In order to increase power, 

RT data then often requires substantial outlier correction (either through deletion or 

transformation of data; see Ratcliff, 1993). Second, analyzing the RT distributions 

instead of merely the means of conditions is often the better and more effective 

approach (Whelan, 2008). 

One such approach utilizes a method called Vincentizing (Ratcliff, 1979; Vincent, 

1912; Whelan, 2008). Vincentizing aims to generate an average RT distribution for a 

sample of subjects. First, the RT distribution is partitioned based on quantiles for each 

subject. Next, group means for each quantile are calculated by averaging across 

participants. From these a group RT distribution is created, that is assumed to retain 

the shape of the “average” participant’s distribution. In other words, RT distributions 

are normalized across participants.  Ratcliff (1979) provides a detailed description and 

discussion of the method. In order to test different experimental conditions against 

each other, one applies the method for each condition separately. One can obtain delta 

plots for RT by then calculating the difference in their mean RT for each quantile, and 

plotting this difference as a function of the average mean RT. 

These distributional approaches more readily allow to investigate the time course 

of cognitive processes. Through them, one can compare effects at different RTs, 

enabling a more fine-grained view into the temporal dynamics of the task at hand. 
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Moreover, RT distributions and their properties can discriminate between different 

models and even falsify models that otherwise predict mean RTs rather well (Ratcliff, 

1979).  

In light of this, the next chapter aims to present a relatively new approach in 

psychology, namely EHA. A case will be made for the use of one variant of this more 

advanced and well-established analysis method. Such a method can maximize the 

return from the data a researcher might have collected, which, considering the costs 

and time required to run an experiment, is of high relevance to researchers (Whelan, 

2008). 

2 Introducing Event History Analysis - Panis, Schmidt, et al., 2020 

As shown, the underlying assumptions that directly link differences in mean RT to 

differences between cognitive operations and processes are rather strong. If longer RTs 

implicate additional cognitive processes, this heavily relies on the idea that those 

processes follow the serial information processing framework. However, this 

hypothesis is not universally accepted. In fact, researchers have criticized the strong 

claims it makes since its inception (Cisek & Kalaska, 2010; Eriksen & Schultz, 1979; 

McClelland, 1979; Pieters, 1983; Schöner G., Spencer, J. P., & the DFT Research Group, 

2016). Yet, traditional methods derived from it remain dominant in the field, with 

ANOVAs as the most popular tool when dealing with RT and accuracy data. 

It is, however, viable to consider alternative approaches. If one is interested in the 

temporal dynamics of response activation (e.g., one investigates forced-choice 

paradigms, priming, etc.), one must not ignore the passage of time when analyzing 

RTs. van Gelder (1995) postulates that cognition is better described as the operation of 
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a dynamical system, rather than a series of information processing stages. Under this 

hypothesis, it is therefore required to continuously track the output of such a 

dynamical system, if one wants to gain a deeper understanding of human cognition 

and behavior (Schöner G., Spencer, J. P., & the DFT Research Group, 2016). In light of 

this, EHA is the most suitable choice (Panis, Schmidt, et al., 2020). EHA is the standard 

distributional or longitudinal technique for time-to-event data in many scientific fields 

(Allison, 2010; Panis, Schmidt, et al., 2020; Singer & Willett, 2003). In the research of 

human behavior and cognition, examples range from developmental psychology (Ha 

et al., 1997), social psychology (Willett & Singer, 1993), to cognitive psychology (Panis 

& Wagemans, 2009), and more (see Panis, Schmidt, et al., 2020 for a more extensive 

overview). 

The necessary first step is to define what constitutes an event. This can be any 

qualitative change in time, ranging from marital status, death, to more experimental 

variables like saccade onset, the crossing of a point in space, or something as simple as 

a button-press. Next, one needs to define time point zero, which, in experimental 

psychology, can be the start of a trial, time of the previous response, onset of fixation, 

or simply the onset of a stimulus. Finally, one needs to measure the passage of time 

between this time point and the event of interest (either with discrete or continuous 

time measures). To illustrate, in case of a standard response priming paradigm, in 

which subjects have to indicate via button-press the identity of a target stimulus while 

ignoring any preceding stimuli, the following applies: (1) the event of interest is the 

button-press, (2) time point zero is the onset of the target stimulus they ought to 

identify, and (3) RT is the measure between this time point zero and the event. 
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The following sections will first introduce the background and advantages of a 

continuous-time EHA. Next, discrete-time EHA will be described. Lastly, possible 

inferential analyses will be presented. 

2.1 Continuous-Time Event History Analysis 

When dealing with a continuous random variable T (in the present case: a participant’s 

RT in a specific experimental condition, e.g. in a response priming paradigm this is the 

time between the onset of a target stimulus and the response to it), there is a variety of 

mathematically equivalent functions to describe it (Luce, 1986): (1) the cumulative 

distribution function F(t) = P(T ≤ t), which yields the cumulative probability of RTs 

smaller or equal to time point t; (2) its derivative F’(t) = f(t), the probability density 

function, which gives the relative likelihood of a given RT; (3) the survivor function 

S(t) = 1 – F(t) = P(T > t), which provides the cumulative probability of RTs larger than 

time point t; (4) and lastly, the hazard rate function λ(t) = f(t) / [1 - F(t)] = f(t) / S(t), 

which calculates the instantaneous risk that a response will occur at time point t, given 

that it has not occurred yet. Similar to speed, which measures distance covered per 

unit of time, the hazard rate measures responses given per unit time. To give an 

example, let’s imagine the aforementioned response priming paradigm and RT was 

measured in milliseconds (ms). Let λ(200) = .1, in other words, the hazard rate at 

200 ms after stimulus presentation equals .1. This translates to an instantaneous rate of 

response occurrence of .1 events per millisecond after 200 ms of waiting time.  

Given these equivalent functions, one might argue that any of those functions 

would be sufficient to describe the data an experimenter may have collected. However, 

as Luce (1986, p. 17) put it: 
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“it matters a great deal”. 

 

EHA has been developed to describe, model, and analyze the hazard function. The 

following sections will give five reasons as to why the hazard function is the 

recommended function, if one wants to describe and analyze a finite sample of time-

to-event data. 

First, generally speaking, the hazard function better captures the concept of 

processing capacity (Wenger & Gibson, 2004). Processing capacity translates to the 

amount of effort a subject is able to exert within a specific period of time. While there 

are measures to assess this capacity (Kok, 2001; Rouder et al., 2011; Verbaten et al., 

1997), the hazard function reveals the instantaneous capacity of a subject for the 

completion of a task within the next time unit, if the task has not been completed yet. 

This enables the continuous tracking of processing capacity over time. 

Second, EHA enables the inclusion of other time-varying variables in modeling. 

These can be informative covariates like heart rate, EEG signal amplitude, gaze 

location, etc. (Allison, 2010; Singer & Willett, 2003). Such covariates are of great interest 

in cognitive psychophysiology, and enable a more holistic analysis of the underlying 

processes (Meyer et al., 1988). 

Third, EHA does not discard right-censored observations. As previously 

discussed, RT analyses have to deal with outliers, that is, RTs that are either shorter or 

longer than can be attributed to the process that is being investigated (Ratcliff, 1993; 

Whelan, 2008). Moreover, RT distributions are known to be positively skewed, which 

is in the nature of the measurement: if not prevented by the experimental design, RTs 

can always become slower, but never faster than set by the physical boundaries of the 
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human body. Therefore, one will often find a quick rise in the distribution of RTs, 

followed by a long tail. In classical analyses of RTs, such as ANOVAs, the power is 

diminished by outliers (Ratcliff, 1993). Thus, several methods have been proposed to 

deal with the issue, most of which include some form of censoring, namely defining 

cutoffs after which RTs are discarded (in the case of right-censoring) or before which 

RTs are discarded (in the case of left-censoring). This generally improves power in 

ANOVAs. However, if the effect of interest actually takes place in the right tail of the 

distribution, power can be diminished by right-censoring (see Ratcliff, 1993 for a 

review).  

Another common type of right-censoring is called singly Type I censoring. Instead 

of discarding RTs that are deemed “too slow” after data collection, the experiment may 

introduce a fixed response deadline for all trials, after which responses are no longer 

collected. "Type I" refers to the fact that the cutoff time is predetermined by the 

experimenter. “Singly" means that all observations have the same cutoff time (Allison, 

2010). Both types of right-censoring have the potential to introduce a sampling bias, 

which can lead to an underestimation of the true mean RTs. EHA, however, includes 

the information of trials in which responses were not collected or deemed “too slow”. 

This is crucial for experiments in which many such trials are to be expected, such as 

masking paradigms. Similarly, EHA does not require one to discard error trials. Since 

all forms of random censoring should always be uninformative if one wants to apply 

any standard statistical method, this is crucial: error responses are often informative. 

Response channels have been shown to compete with each other (Burle et al., 2004; 

Eriksen et al., 1985; Praamstra & Seiss, 2005). It is therefore very informative when an 
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error takes place. For this reason, hazard of response occurrence should not be split 

into correct or incorrect responses, nor should only one of these be analyzed. 

Fourth, RT distributions can differ from one another in multiple ways. For that 

reason, Townsend (1990b) proposed a hierarchy of statistical differences between 

distributions. Let A and B be two arbitrary distributions. If FA(t) > FB(t) for all t, then 

both cumulative distribution functions are said to show a complete ordering. When 

there is a complete ordering on the hazard functions – λA (t) > λB(t) for all t – there also 

follows a complete ordering on the cumulative distributions and the survivor 

Figure 1. Four views on four different waiting-time distributions in continuous time. (A) the hazard rate 
function λ(t), (B) the cumulative distribution function F(t), (C) the survivor function S(t), (D) the 
probability density function f(t). Shown are four theoretical probability distributions (different colors: 
exponential, Weibull, gamma, log-normal). While the hazard rate function for the exponential is flat, it 
keeps increasing for the Weibull, it increases to an asymptote for the gamma, and it reaches a peak and 
then gradually decreases to an asymptote for the log-normal (taken from Panis, Schmidt, et al., 2020). 
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functions, with FA(t) > FB(t) and SA(t) < SB(t). From this, one can infer also an ordering 

on the means, with the mean of distribution A being smaller than the mean of 

distribution B (Townsend, 1990b). However, the reverse is not true. From an ordering 

on two means does not necessarily follow an ordering on the respective cumulative 

distributions and survivor functions. Moreover, a complete ordering on these 

functions does not command a complete ordering on the hazard functions. For 

example, from mean A < mean B follows FA(t) > FB(t), and SA(t) < SB(t), whereas hazard 

functions can show a complete ordering, a partial ordering, they may cross, or even 

show no ordering at all. Therefore, the hazard functions enable stronger inferences 

than the other functions on their own. 

Finally, the hazard function of response occurrence is one of the most diagnostic 

functions when describing the distribution of a sample of time-to-event data for 

additional reasons (Allison, 2010; Luce, 1986; Panis, Schmidt, et al., 2020; Townsend, 

1990b). Figure 1 compares F(t), f(t), S(t), and λ(t) by plotting four theoretical 

distributions of RT (exponential, Weibull, gamma, log-normal).  While λ(t) shows clear 

differences between all four distributions (Fig. 1, panel A), F(t) and S(t) have 

considerable overlap (panels B and C). Moreover, f(t) is not able to capture differences 

in the right tail of the distribution at all (Luce, 1986). Thus, cases exist in which f(t) 

functions cannot be differentiated, but clear differences in hazard functions are found. 

Since no such case exists in which one finds differences in probability density functions 

and not in λ(t), Holden et al. (2009) come to the conclusion that hazard functions are 

the more diagnostic function. 
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2.2 Discrete-Time Event History Analysis 

One drawback of the continuous-time hazard rate function is the amount of data one 

needs to acquire for a good estimate. For example, if one wants to investigate a 

response priming paradigm, one would need to collect around 1,000 trials per subject 

per condition (Bloxom, 1984; Luce, 1986; van Zandt, 2000). In experimental 

psychology, depending on how many conditions one wants or needs to include in an 

experiment, this can quickly exceed practicality. Fortunately, discrete-time hazard 

analysis provides a viable alternative that enables the application of logistic regression 

(Allison, 1982, 2010; Singer & Willett, 1991, 2003; Willett & Singer, 1993, 1995).  

When utilizing discrete-time EHA, one has to begin with the creation of a life 

table per subject per condition. Let’s revisit the previous example of a response 

priming paradigm, in which subjects are tasked with correctly identifying a target 

stimulus (red or green), preceded by a prime stimulus either linked to the same 

(consistent) or different response (inconsistent), as fast and accurate as possible. 

Figure 2 shows idealized example mean RTs and accuracy. Mean RTs are 

shorter and responses more accurate in consistent trials than in inconsistent trials, 

Figure 2. Example mean RTs and Accuracy for an idealized priming paradigm. 
C = consistent, I = inconsistent. 
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indicating response conflict elicited by the inconsistent prime preceding the target 

stimulus, and response facilitation by the consistent prime (more on this in later 

sections). By merely looking at these mean plots, not much understanding of the 

underlying processes is gained. However, discrete-time EHA is able to provide more 

details. 

For EHA, the event of interest would be a button-press (indicating either a red 

or green target). Let there be 100 trials per subject and condition (consistent vs. 

inconsistent). First, one determines the censoring time. This is typically the response 

deadline used, or a time point after which you expect no useful responses anymore in 

any trial of any condition (see the earlier discussion of censoring). To illustrate, let this 

censoring time be 500 ms. Next, the interval between time point zero and this cutoff is 

divided up into a sequence of contiguous time bins. Let this be 50 ms bins, resulting in 

 

Table 1: Example life table for one subject in the consistent condition of an idealized 
response priming, with 100 trials administered. 

bin t responses P(t) F(t) S(t) risk set h(t) correct ca(t) 

1 = (0,50] 0 0.00 0.00 1.00 100 0.00     

2 = (50,100] 0 0.00 0.00 1.00 100 0.00     

3 = (100,150] 5 0.05 0.05 0.95 100 0.05 5 1.00 

4 = (150,200] 10 0.10 0.15 0.85 95 0.11 10 1.00 

5 = (200,250] 25 0.25 0.40 0.60 85 0.29 25 1.00 

6 = (250,300] 25 0.25 0.65 0.35 60 0.42 25 1.00 

7 = (300,350] 15 0.15 0.80 0.20 35 0.43 15 1.00 

8 = (350,400] 10 0.10 0.90 0.10 20 0.50 10 1.00 

9 = (400,450] 5 0.05 0.95 0.05 10 0.50 5 1.00 

10 = (450,500] 5 0.05 1.00 0.00 5 1.00 5 1.00 
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a total of 10 bins indexed t = 1 to 10 (see Tables 1 & 2, column 1). Beginning with the 

first condition, in this example consistent trials, one counts the number of responses 

within each bin (see Table 1, column 2).  If one divides this count by the total number 

of trials (100), one obtains the probability of response occurrence for each bin, with the 

corresponding probability mass function P(t) = P(T = t) (see Table 1, column 3). T is a 

discrete random variable denoting the rank of the time bin in which the event 

(response) occurs. From this follows directly the cumulative distribution function 

F(t) = P(T ≤ t), and its complement the survivor function, with 

S(t) = P(T > t) = 1 - F(t) = 1 - P(T ≤ t) (see Table 1, columns 4 and 5). Next, one can 

determine the risk set, the number of trials at the start of bin t without a response, which 

for t = 1 consists of the total number of trials (100, see Table 1, column 6). 

 

Table 2: Example life table for one subject in the inconsistent condition of an idealized 
response priming, with 100 trials administered. 

bin t responses P(t) F(t) S(t) risk set h(t) correct ca(t) 

1 = (0,50] 0.00 0.00 0.00 1.00 100 0.00     

2 = (50,100] 0.00 0.00 0.00 1.00 100 0.00     

3 = (100,150] 5.00 0.05 0.05 0.95 100 0.05 0 0.00 

4 = (150,200] 10.00 0.10 0.15 0.85 95 0.11 1 0.10 

5 = (200,250] 10.00 0.10 0.25 0.75 85 0.12 3 0.30 

6 = (250,300] 15.00 0.15 0.40 0.60 75 0.20 8 0.53 

7 = (300,350] 20.00 0.20 0.60 0.40 60 0.33 15 0.75 

8 = (350,400] 20.00 0.20 0.80 0.20 40 0.50 18 0.90 

9 = (400,450] 12.00 0.12 0.92 0.08 20 0.60 12 1.00 

10 = (450,500] 5.00 0.05 0.97 0.03 8 0.63 5 1.00 
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The risk set is then continuously updated: the risk set for bin 2 only consists of 

total number of trials – responses in bin 1, for bin 3 risk set bin 2 – responses in bin 2, and so 

on. If one then divides the number of observed responses in each bin by the 

corresponding risk set, one obtains h(t) = P(T = t|T ≥ t) (see Table 1, column 7). This 

discrete hazard function of event occurrence gives the conditional probability that the 

event of interest (here a response) occurs in bin t given that it has not yet occurred 

before. For example, h(3) = .05 in Table 1 corresponds to a conditional probability of 

5% that a response is given within time bin 3 for trials that have not been completed 

after 100 ms have passed. This procedure is then repeated for each subject in each 

condition. Note, that in the example in Table 2 (same subject, inconsistent trials) not 

all trials resulted in a response within 500 ms. In three trials the example subject did 

not give a response before 500 ms of waiting time in this condition. Crucially, these 

three trials remain in the risk set and are thus accounted for when calculating the 

discrete hazard of event occurrence (Table 1, row 11, column 7). This highlights how 

EHA is less affected by right-censoring. 

If one is investigating a paradigm that allows to evaluate the performance of an 

event or response on a scale from “0 (incorrect)” to “1 (correct)”, like the present 

example, one can expand the h(t) analysis of response occurrence with an analysis of 

conditional accuracy, i.e. the micro-level speed-accuracy tradeoff function (Allison, 

2010; Pachella, 1974; Wickelgren, 1977). The conditional accuracy function is the 

conditional probability that an observed response is correct, given that it occurs in bin 

t, with ca(t) = P(correct|T = t). One can obtain its estimate by counting correct 

responses in each bin t and dividing the results by the number of collected responses 

in the respective bin t (Table 1, columns 8 and 9). Combining h(t) functions with ca(t) 



—Introduction— 

17 

functions provides a probabilistic description of the latency and accuracy of any 

sample of (right-censored) event times. Crucially, those descriptions are unbiased, 

time-varying, and based on all trials. 

Figure 3 plots the estimated hazard h(t), the cumulative distribution function F(t), 

the survivor function S(t), and the probability mass function P(t) for one subject in both 

conditions of the example. In this idealized data set, one can see now that the hazard 

function starts rising after 100 ms of waiting time in both conditions (Fig. 3, panel A). 

Figure 3. (A) The hazard h(t), (B) the cumulative distribution function F(t), (C) the survivor function 
S(t), (D) the probability mass function P(t), plotted for one subject in both conditions, C = consistent 
(green), I = inconsistent (red), in an idealized priming paradigm. Time bins are indexed from 1 
(0 ms,50 ms] to 10 (450 ms,500 ms]. 



—Introduction— 

18 

Thus, this example subject started responding 100 ms after target presentation, 

irrespective of the condition. Hazards for both conditions overlap until 200 ms have 

passed. From this point on, an ordering of h(t) is present for the next 200 ms, with h(t) 

in the consistent condition continuing to accelerate, and slowing down in the 

inconsistent condition. This ordering is also present in S(t) and F(t), although it persists 

until the censoring time of 500 ms is reached (Fig. 3, panels B and C). These findings 

seem to indicate that first responses are void of any response conflict as hazards are 

synchronized. However, after 200 ms the conflict caused by an inconsistent prime 

decelerates h(t) in inconsistent trials, indicating the emergence of a response conflict 

caused by inconsistent prime and target information. After a total of 350 ms of waiting 

time, hazards synchronize again, indicating the overcoming of the response conflict. 

Note, that the hazard for the inconsistent condition never reaches 1, while there is a 

huge jump from .5 in bin 9 to 1 in bin 10. This is due to three responses not given before 

the censoring time in the inconsistent condition, while the remaining 5 trials are 

completed in the consistent condition. This highlights that h(t) can potentially, under 

such circumstances, become less diagnostic in the very right tail of the distribution, as 

fewer and fewer trials remain without a response. Similarly, S(t) never reaches 0 and 

F(t) never reaches 1. P(t) shows that most responses in the consistent condition occur 

between 200 and 300 ms after target presentation, while most responses in the 

inconsistent condition occur in the following two bins (Fig. 3, panel D). If one were to 

only look at the latter three functions, one might conclude that the effect of a prime 

simply results in slowing down response occurrence in the inconsistent condition (i.e., 

responses occur later than in the consistent condition). Similarly, in the current 



—Introduction— 

19 

example mean RTs are only able to show the existence of a response conflict caused by 

a preceding prime. However, discrete-time EHA is able to show the time-course of it: 

(1) responses first emerge 100 ms after target onset, irrespective of condition, (2) 

response conflict begins 200 ms after target onset, (3) this conflict lasts for 150 ms, and 

(4) this conflict is resolved 350 ms after target onset. 

Adding plots of the conditional accuracy function provides additional insight. 

Figure 4 shows that the earliest responses in the consistent condition are all correct, 

while earliest responses in the inconsistent condition are all incorrect. This indicates 

that these early responses are exclusively towards the identity of the prime stimulus, 

not the target. As time passes, responses in the consistent condition maintain their 

accuracy, while responses in the inconsistent condition become more accurate. 

Remember, hazards decelerated in the inconsistent condition after 200 ms of waiting 

time. This was interpreted as the onset of response conflict. Incidentally, around this 

time, responses also begin to become more accurate in the inconsistent condition. For 

example, after roughly 250 ms, this example subject reaches 50% accuracy in 

inconsistent trials. This further indicates that target information begins to influence the 

Figure 4. Conditional accuracy plot for one subject in both conditions, 
C = consistent (green), I = inconsistent (red), in an idealized priming 
paradigm. Time bins are indexed from 1 (0 ms,50 ms] to 10 (450 ms,500 ms]. 
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response after a waiting time of 200 ms. After 400 ms all responses are correct, showing 

that at this point target information solely drives the response. In the current example, 

mean accuracy plots are only able to show the existence of a response conflict. 

However, discrete-time EHA is able to show its time-course: (1) early responses are to 

the prime, (2) target information becomes available at around 200 ms, (3) after 400 ms 

responses are exclusively to the target. 

The next section gives a brief overview on how one can apply inferential 

statistics to confirm these descriptive findings. The focus will be on discrete-time 

hazard models. Examples on how to perform inferential statistics for continuous time 

can be found in Allison (2010) and Austin (2017). 

2.3 Inferential Statistics for discrete-time EHA 

The present work and the associated studies want to study how the discrete-time 

hazard depends on various predictors, such as consistency between prime and target 

stimuli (see previous example; Wolkersdorfer et al., 2020), set size in visual search (as 

in Panis, Moran, et al., 2020; Panis, Schmidt, et al., 2020), mask condition (as in Panis, 

Schmidt, et al., 2020), etc. For example, one can fit regression models to the data (Singer 

& Willett, 2003). Considering the previous priming example, let’s extend it by 

introducing a no prime or neutral prime condition. This enables one to compare the 

previous two conditions (consistent and inconsistent) to a baseline. A discrete-time 

hazard model could then contain the three predictors time (for example, TIME = {1, …, 

10}), consistent prime (C = {0,1}), and inconsistent prime (I = {0,1}). The main predictor 

variable TIME refers to the time bin index t (see Tables 1 and 2). Applying the 
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complementary log-log (clogclog) link function, an example function might look like 

the following: 

 

cloglog[h(t)] = ln(-ln[1 - h(t)]) = 

[α0ONE + α1(TIME – 1) + α2(TIME – 1)2 + α3(TIME – 1)3] + [β1C + β2I + β3I(TIME – 1)]. 

 

In this example TIME is centered on value 1. The complementary log-log link is 

the recommended link when dealing with RT data, where events can occur at any time 

point within a bin (Singer & Willett, 2003). Let’s take a look at the terms of the function. 

The first bracket represents the shape of the baseline cloglog-hazard function. The 

alpha parameters are multiplied by their polynomial specifications of time (here linear, 

quadratic, and cubic), centered on 1. This baseline gives the prediction when all other 

predictors take on a value of zero, i.e. C = 0 and I = 0. Such is the case when neither a 

consistent, nor an inconsistent prime is shown, thus the baseline corresponds to the no 

prime condition modeled across time. The second bracket represents the vertical shift 

in the baseline cloglog-hazard for a 1 unit increase in the respective predictor. For 

example, changing from the no prime condition (the baseline) to the consistent 

condition (C changes from 0 to 1) leads to a shift of the baseline cloglog-hazard 

function by β1 cloglog-hazard units. In other words, the cloglog-hazard increases by 

β1 in all time bins in the consistent condition compared to the no prime condition. In 

the current example, I interacts linearly with time, see β2I + β3I(TIME – 1). This predicts 

that, in bin 1, a change to the inconsistent condition (I changes from 0 to 1) results in a 

shift of the baseline cloglog-hazard function by β2 cloglog-hazard units. Note, this is 

because TIME – 1 = 0 in bin 1. In bin 2 this would result in a shift of the baseline 
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cloglog-hazard function by β2 + β3 cloglog-hazard units (TIME – 1 = 1 in bin 2), and so 

forth. In other words, the vertical change in cloglog-hazard when changing from the 

no prime to the inconsistent condition changes linearly with time. While predictors in 

this example are dichotomous, they can be otherwise discrete or continuous. 

Furthermore, predictors can be time-invariant (like predictor C), or time-variant (like 

predictor I). Importantly, due to the application of the cloglog link, anti-logging the 

parameter estimates results in a hazard ratio, which then allows to interpret the effects 

of the predictors. 

3 Application of discrete-time Event History Analysis 

In order to showcase the advantages of discrete-time EHA when one is interested in 

time-to-event data, the method was applied to various experimental paradigms. The 

following sections will give a brief overview of these paradigms and respective 

predictions, in order of inclusion: (1) visual search (investigated in Panis, Moran, et al., 

2020, and discussed in Panis, Schmidt, et al., 2020), (2) response priming (employed in 

Wolkersdorfer et al., 2020, and T. Schmidt et al., 2022), and (3) masked response 

priming (utilized in T. Schmidt et al., 2022, and discussed in Panis, Schmidt, et al., 

2020). 

3.1 Visual Search - Panis, Moran, et al., 2020; Panis, Schmidt, et al., 2020 

The visual search paradigm aims to enable researchers to investigate search behavior, 

i.e. how humans find relevant features or objects of interest in an environment full of 

distractions. It thus often closely resembles and simulates everyday tasks (see Eckstein, 

2011, & Humphreys, 2016 for a review of the paradigm). The field generally 
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differentiates between three most common search tasks, namely (1) feature search, (2) 

conjunction search, and (3) spatial configuration search, in ascending order of 

difficulty. 

In a typical feature search task, subjects are tasked to decide via button-press 

whether a target stimulus (e.g., a vertical red bar) is present in a display containing 

several distractor stimuli (e.g., vertical green bars). Importantly, distractors are 

identical to a potential target stimulus in all but one feature (here the color), hence the 

name (see Fig. 5, panel A, left for an example display). 

Conjunction search expands the task by including distractors that have some of 

multiple different features in common with a target. For example, subjects have to 

search for a vertical red bar in a display containing vertical green and horizontal red 

Figure 5. Taken from Figure 1 in Panis, Moran, et al. (2020). Benchmark visual search data set 
from Wolfe et al. (2010). (A) Example visual search displays for three search tasks (Fig. 1 in Wolfe 
et al., 2010). (B) Search functions for the three search tasks (Fig. 2 in Wolfe et al., 2010). Solid lines 
represent target-present, dashed lines target-absent trials. Lighter lines show individual subject 
data, darker lines mean data. 
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bars. Only the conjunction of orientation and color makes a stimulus a unique target 

(see Fig. 5, panel A, center for an example display). 

Spatial configuration, on the other hand, includes distractors that share all 

features but the name-giving spatial configuration with the target. For example, 

subjects may be tasked with finding a 2 in a display full of 5s (see Fig. 5, panel A, right 

for an example display). 

Commonly, the number of distractors is experimentally varied, as is the 

presence of a target. Visual search is then typically evaluated with the so-called search 

function, which makes the mean correct search RT a function of set size (number of 

items on screen). It has been found that these functions are close to linear in both target-

presence conditions, and their slopes vary depending on the difficulty of the search 

task (Cheal & Lyon, 1992; Liesefeld et al., 2016). Feature search is considered efficient. 

Typical slopes are close to 0 ms/item, indicating that the inclusion of additional 

distractors does not slow down the search process. On the other hand, conjunction 

search shows intermediate efficiency, with intermediate positive slopes. In other 

words, each additional distractor prolongs the search process. Finally, spatial 

configuration search is described as inefficient, as each additional distractor severely 

slows down the search, resulting in large positive slopes in the search functions (see 

Fig. 5, panel B).  

Two accounts regarding the processes of attention selection have been used to 

explain visual search behavior, namely serial and parallel accounts. Classical visual 

search theories assume a two-stage process: (1) a parallel stage in which all items or 

stimuli in the search display are processed simultaneously, and (2) a serial stage in 

which each item or stimulus is scanned one-by-one (Moran et al., 2016; Treisman & 
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Gelade, 1980; Wolfe, 2007; Wolfe et al., 1989; Wolfe et al., 2010). For example, feature 

integration theory (Treisman & Gelade, 1980) proposes that a limited set of features, 

such as color, can be processed in parallel, resulting in the quick identification of the 

only red vertical bar in a set filled with otherwise green vertical bars. This would 

explain the apparent independence of set size and RT in feature search. On the other 

hand, if two or more features are searched for, like in conjunction search, serial 

attention selection is required. Similarly in the guided search model (Wolfe, 1994, 2007; 

Wolfe et al., 1989), feature search leads to flat search slopes, because the target is so 

salient in an initial parallel stage that it is always scanned first in a second serial stage. 

Thus, search RT is independent of set size. In conjunction search, the initial parallel 

stage identifies stimuli that share relevant features (like color or orientation), and those 

priority stimuli are scanned in the second stage until the target is found or all items 

are identified as distractors. This search behavior is referred to as serial exhaustive 

search (Wolfe, 1994). Because these two-stage accounts rely on a serial component of 

attention allocation, they are typically referred to as serial models of visual search 

(Moran et al., 2016). 

In contrast, single-stage accounts assume that all items in the display are 

attended and identified in parallel, omitting a second serial stage, and are henceforth 

referred to as parallel models of visual search. These accounts are based on a wide 

range of underlying theories, from signal detection theory to more recent 

neurodynamical approaches (for an overview, see Panis, Moran, et al., 2020). Much 

like serial accounts, parallel accounts, through specific modifications, are able to model 

the differences in the search functions between different search tasks. However, this 

leads to the following problem: if both accounts are able to generate search functions 
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for efficient and inefficient searches, how does one decide between the two? It appears 

that mean RT and the slopes of the search functions are not sufficient tools to 

distinguish between serial and parallel accounts (Townsend, 1990a). In order to 

combat this issue, Wolfe et al. (2010) focused on RT distributions and their shapes 

instead. Balota and Yap (2011) present three approaches when investigating RT 

distributions: (1) plot the shape of the RT distribution under different variable 

conditions (i.e., investigate the influence of specific variables on the RT distribution), 

(2) fit a mathematical function to the RT distribution (i.e., study how experimental 

variations modulate the parameters of the function), and (3) apply a computationally 

explicit model to the RT distribution (i.e., test the model predictions). 

As discussed in Panis, Moran, et al. (2020), neither of these approaches has yet 

produced a final model of visual search. In an exploratory study, we applied discrete-

time EHA to the hallmark data set of Wolfe et al. (2010). We described how to apply 

discrete-time EHA to search data and highlighted its advantages. The goal was to 

reveal differences and similarities between the different searches in h(t) and ca(t) 

functions, to better the understanding of the processes involved. In particular, would 

we be able to identify separate stages of search and/or other features of time-dispersed 

search behavior, on both the overall and the individual subject level? In Panis, 

Schmidt, et al. (2020), we made further use of the findings obtained in Panis, Moran, 

et al. (2020). In doing so, we were able to create a guideline on how to apply discrete-

time EHA and made a case for its general applicability in the research of human 

cognition and behavior. 
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3.2 Response Priming - Wolkersdorfer et al., 2020, & T. Schmidt et al., 2022 

Priming is a popular tool in many fields of cognitive psychology. Generally, paradigms 

associated with the term priming aim to study how a preceding prime stimulus can 

influence responses to a successive target stimulus. Research has focused on processes 

at different levels of human cognition, ranging from perceptual (Wiggs & Martin, 

1998), to conceptual/semantic (e.g., Schacter & Buckner, 1998), lexical (e.g., Fernández-

López et al., 2019), phonological (e.g., Ferrand & Grainger, 1992), and/or motor 

response levels (e.g., Rosenbaum, 1983). 

Wolkersdorfer et al. (2020) focus on a variation of the response priming paradigm 

(Klotz & Neumann, 1999; Klotz & Wolff, 1995; Vorberg et al., 2003). Together with 

other conflict paradigms such as the Stroop, Simon, and Eriksen flanker paradigms, 

the response priming paradigm is widely employed to investigate the structure of 

cognition using chronometric measures. Briefly introduced in the previous chapters, 

in a typical response priming experiment, participants are tasked to respond as quickly 

and as accurately as possible to a target stimulus. The latter is preceded by a so-called 

prime stimulus, which can either be unmasked or masked (see Chapter 3.3). These two 

stimuli can either be mapped to the same response in consistent trials or to a different 

response in inconsistent trials. Typically, consistent trials result in accelerated and 

more accurate responses. In contrast, inconsistent trials show decelerated and less 

accurate responses. Calculating the mean RT and mean error rate (ER) differences 

between these two trial types defines the response priming effect. Vorberg et al. (2003) 

showed that this priming effect increases linearly with the stimulus-onset asynchrony 

(SOA) between prime and target stimuli, up to SOAs of around 100 ms. 
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Several theories have been proposed to explain the response priming effect. Direct 

parameter specification assumes an automatized connection between target stimulus and 

response that subjects learn during the typical practice blocks (Neumann, 1990). 

Further, after being prepared to give a motor response, a critical stimulus feature is all 

that is required to drive the response, even without a conscious percept. It is assumed 

that a prime stimulus’ features can be sufficient to evoke such a fast and automatized 

response, resulting in the priming effect. 

The action trigger account further assumes that so-called action triggers (again 

induced in the practice blocks and the instructions) are maintained in working 

memory  (Kunde et al., 2003). These triggers define release conditions for a motor 

response. Once a stimulus satisfies these, a response is automatically evoked. Thus, 

when primes meet the trigger conditions, they can trigger a response, resulting in the 

priming effect. 

Building up on these accounts, T. Schmidt et al. (2006) proposed their chase theory 

of response priming. Their theory is largely based on more recent neurological and 

behavioral findings, which suggest that sequential visual stimuli evoke sequential 

feedforward sweeps (Bullier, 2001; Lamme & Roelfsema, 2000; VanRullen & Koch, 

2003). This feedforward and sequential activation has since been shown in studies 

examining neuronal activity in conflict tasks, for example by analyzing lateralized 

readiness potentials (Eimer & Schlaghecken, 1998; Vath & Schmidt, 2007). Behavioral 

studies further corroborated these findings. Sequential activation was tracked 

throughout the time course of pointing movements (F. Schmidt & Schmidt, 2010; T. 

Schmidt, 2002; T. Schmidt & Schmidt, 2009), and in RT distributions (Panis & Schmidt, 

2016). Crucially, these studies showed that initial responses are exclusively triggered 
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by prime signals, whereas later responses are influenced by target information. These 

findings led to the following chase criteria formulated by T. Schmidt et al. (2006): (1) 

Prime rather than target signals determine the onset and initial direction of the 

response; (2) target signals influence the response before it is completed; (3) movement 

kinematics initially depend on prime characteristics only and are independent of all 

target characteristics. T. Schmidt (2014) gives a precise definition of the criteria and 

predictions of this rapid-chase theory. 

The goal of Wolkersdorfer et al. (2020) was to put these criteria to the test by 

employing a newly developed variation of the classical response priming paradigm, 

and by applying discrete-time EHA to the data. Instead of using only one prime 

stimulus, they extended the design with a second prime stimulus (see Fig. 6). This 

created a stimulus sequence of a first prime, a second prime, and ultimately a target 

stimulus. SOAs and consistencies between these stimuli were manipulated in two 

experiments. If the predictions made by the rapid-chase theory are indeed accurate, 

the following findings were to be expected: (1) Initial responses would be exclusively 

Figure 6. Stimulus displays and design of Experiment 1 in Wolkersdorfer et al. 
(2020). After fixating the center of the white lollipop frame, a sequence of two primes 
and a target is presented, with SOA1-SOA2 combinations of 27/80, 53/53, or 80/27. 
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triggered by signals of the first prime; (2) intermediate responses would reflect the 

competition between first and second prime; (3) late responses would be dominated 

by target information. This would manifest itself in an ordering of hazard rates, both 

between consistency and SOA conditions, and time-locked effects of consistency in 

conditional accuracy functions. 

3.3 Masked (Response) Priming and the Negative Compatibility Effect - T. 

Schmidt et al., 2022, & Panis, Schmidt, et al., 2020 

Visual masking is a procedure in which the visibility of a target stimulus is reduced or 

eliminated by a mask stimulus (Breitmeyer & Öğmen, 2007). Although masking is 

possible even when the mask precedes the target (forward masking), most research 

focuses on the effects of so-called backwards masking (mask presented after the 

target). Although there are other types of masking (e.g., masking by light, paracontrast 

masking, etc.), we distinguish between the following two types of masking 

(Breitmeyer & Ganz, 1976): (1) pattern masking, in which the contours of the mask 

overlap with the target contours (for examples, see Fig. 7), (2) metacontrast masking, 

in which the contours of the mask do not overlap with the target (for examples, see 

Fig. 8). Pattern masking can be further distinguished into noise masking (i.e., random 

pattern masking without a structural relation between mask and target), and structure 

masking (i.e., pattern masking in which mask and target share a structural relation). 

Through manipulation of the SOA between target and mask, two common types of 

masking functions can be identified, namely Type-A and Type-B masking (Breitmeyer 

& Ganz, 1976; Kahneman, 1968; Kolers, 1962). In Type-A masking, the masking effect 

is strongest at short SOAs (i.e., identification of the masked target stimulus is close to 
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chance level; the target is rendered “invisible”), and diminishes as SOA increases. In 

Type-B masking, target visibility is intact at short SOAs, the masking effect is strongest 

at SOAs between 50 – 100 ms, and diminishes again at longer SOAs, resulting in a U-

shaped function of target visibility as a function of SOA. 

Visual masked priming aims then to investigate the influence of a task-irrelevant 

and “unconscious” stimulus (i.e., a masked prime stimulus) on the response to a 

succeeding relevant target stimulus (Ansorge et al., 2014; Marcel, 1983). In the specific 

case of masked response priming, the masked primes are mapped to the same 

responses as the target stimuli (Klotz & Neumann, 1999; Vorberg et al., 2003). 

Remember, a trial is considered consistent when prime and target are mapped to the 

same response, and inconsistent when not. As discussed in Chapter 3.2, the so-called 

priming effect increases with the SOA between prime and target, up to an SOA of 

100 ms. If one constructs the target stimulus in a way that allows it to simultaneously 

serve as the mask, and one considers the aforementioned masking functions, this 

allows for a dissociation between the visibility of a prime stimulus and its effect on the 

response to a target stimulus (Biafora & Schmidt, 2020; T. Schmidt & Vorberg, 2006; 

Vorberg et al., 2003). For example, if the priming effect shows a strictly monotonic 

increase with SOA, but Type-B masking of the prime is found, there exists a 

dissociation between the prime’s visibility and its influence on response activation. 

The priming effect, in which inconsistent trials produce longer RTs and more errors 

than consistent trials, and which increases up to an SOA of 100 ms, is also referred to 

as the positive compatibility effect (PCE). In contrast, when SOAs longer than 100 ms are 

employed, and especially when the prime is masked, a reversal of this effect has been 

found. Under such experimental variations, inconsistent trials can produce shorter RTs 
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and fewer errors than consistent trials, a phenomenon called the negative compatibility 

effect (NCE; Eimer & Schlaghecken, 1998; Lingnau & Vorberg, 2005). Eimer and 

Schlaghecken (1998) employed such a masked response priming paradigm and 

analyzed lateralized readiness potentials to trace neuronal preparation of motor 

activity, a left or right button press response. They found an initial response activation 

in line with the prime’s identity, followed by a temporary activation of the opposite 

response (antiprime) – considered to be responsible for the emergence of the NCE – 

and, ultimately, an activation of the response related to the target’s identity. Panis and 

Schmidt (2016) found the same time course of response activation when they analyzed 

the hazard functions of response occurrence. 

The theory of self-inhibition proposes that a prime automatically triggers its own 

inhibition, either when a mask removes “perceptual evidence” for such a prime, or 

when the SOA between the prime and target is long enough (Eimer & Schlaghecken, 

1998, 2003). Inhibition of the primed response in turn results in the transient activation 

of the opposite response: the disinhibition of the antiprime response. Ultimately, the 

NCE emerges. 

Figure 7. Experimental design taken from Panis and Schmidt (2016) as cited in Panis, Schmidt, et 
al. (2020). Three different types of masking: REL, structure masking with response-relevant 
features; IRREL structure masking with response-irrelevant features; LIN, random noise masking. 
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In contrast, the theory of object-updating argues that the NCE reported in Eimer and 

Schlaghecken (1998) is the result of the stimulus features they used (Lleras & Enns, 

2004). The mask was a superposition of the two stimuli that could serve as prime 

and/or target (<< and >>). Thus, when this mask followed, for example, a “<<” prime, 

it effectively was merely the addition of “>>” (i.e., arrows pointing in the antiprime 

direction, compare condition REL in Fig. 7). Therefore, Lleras and Enns (2004) 

conclude that the original finding of the NCE was simply the result of the positive 

priming of the antiprime response. 

A third account is that of mask-triggered inhibition (Jaśkowski & Przekoracka-

Krawczyk, 2005). Instead of the prime triggering its own inhibition, a sufficiently 

Figure 8. Figure 2 from T. Schmidt et al. (2022). a) Time course of a trial. 
Note that both mask and target remain on screen until the response is 
completed. b) The four masking conditions. For better legibility, the prime 
is drawn above the mask and target. In the experiment, it appeared in the 
central mask cutout so that their contours were adjacent. 
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strong mask actively inhibits the prime response (Jaśkowski, 2007, 2008, 2009; 

Jaśkowski et al., 2008; Jaśkowski & Przekoracka-Krawczyk, 2005). A mask would not 

need to actually be “good” at masking, its signal would just need to be strong enough 

to trigger this “emergency break”. 

Panis and Schmidt (2016) showed that inhibition, and thus the NCE, is in fact time-

locked to the mask and not the prime, supporting the claims of the mask-triggered 

inhibition over the self-inhibition account. Moreover, they found late inhibition of the 

primed response strong enough to reverse the strong response priming effect. In Panis, 

Schmidt, et al. (2020), we used their data set to show the application of and guide 

through the process of discrete-time EHA. 

The goal of T. Schmidt et al. (2022) was to further investigate the NCE by utilizing 

four different masking conditions (see Fig. 8). Contrasting these conditions allowed 

testing of the following hypotheses: (1) A neutral mask is sufficient to generate the 

NCE, (2) the NCE occurs also in the absence of visual features that could elicit an 

antiprime response, and (3) the NCE occurs even if the mask does not remove 

perceptual evidence for the prime. By analyzing conditional accuracy functions, we 

were further able to track the time-course of selective mask-triggered inhibition. 

Specifically, we revealed that the NCE is even larger than the response priming effect 

and is directed against the primed response, and showed that response-specific 

inhibition does not require any positive priming features.  
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Abstract

In this Methods article, we discuss and illustrate a unifying, principled way to analyze response

time data from psychological experiments—and all other types of time-to-event data. We advo-

cate the general application of discrete-time event history analysis (EHA) which is a well-

established, intuitive longitudinal approach to statistically describe and model the shape of

time-to-event distributions. After discussing the theoretical background behind the so-called

hazard function of event occurrence in both continuous and discrete time units, we illustrate

how to calculate and interpret the descriptive statistics provided by discrete-time EHA using two

example data sets (masked priming, visual search). In case of discrimination data, the hazard

analysis of response occurrence can be extended with a microlevel speed-accuracy trade-off
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analysis. We then discuss different approaches for obtaining inferential statistics. We consider the

advantages and disadvantages of a principled use of discrete-time EHA for time-to-event data

compared to (a) comparing means with analysis of variance, (b) other distributional methods

available in the literature such as delta plots and continuous-time EHA methods, and (c) only

fitting parametric distributions or computational models to empirical data. We conclude that

statistically controlling for the passage of time during data analysis is equally important as exper-

imental control during the design of an experiment, to understand human behavior in our exper-

imental paradigms.

Keywords

response times, event history analysis, hazard function, conditional accuracy function, speed-

accuracy trade-off, survival analysis, transition analysis

Date received: 31 December 2019; accepted: 16 November 2020

Since the publication of the subtraction method (Donders, 1969) and the additive factors

method (Sternberg, 1969), analysis of variance (ANOVA) has become the standard data

analysis method in psychology and cognitive (neuro)science for the analysis of response

times (RTs). Following these approaches, many researchers interpret differences in RTs

between experimental conditions on a difference scale that is assumed to directly capture

the time requirements of additional cognitive operations. However, differences in mean RT

can only be interpreted that way when assuming that the nature of cognitive processing is

captured by the serial information processing framework. Even though the serial informa-

tion processing framework has been criticized repeatedly in the literature (Cisek & Kalaska,

2010; Eriksen & Schultz, 1979; McClelland, 1979; Pieters, 1983; Sch€oner et al., 2016),

ANOVA continues to be the most popular method to analyze RTs to this day.
As discussed by Van Gelder (1995), there is a viable alternative view on the nature of

cognitive processing: Cognition is the behavior of a dynamical system. To understand the

behavior of a dynamical system, it is crucial to track its output over time (Sch€oner et al.,

2016). We therefore promote and illustrate the use of a well-established longitudinal or

distributional technique known as event history analysis (EHA) for analyzing time-to-

event data such as RTs. EHA (also known as survival, hazard, duration, transition, and

failure-time analysis) is the name of the standard set of statistical methods for studying the

occurrence and timing of events in many scientific disciplines (Allison, 2010; Singer & Willett,

2003). While EHA is already applied in many areas of the human sciences, including devel-

opmental psychology (Ha et al., 1997), clinical psychology (Corning & Malofeeva, 2004;

Greenhouse et al., 1989; Willett & Singer, 1993), social psychology (Griffin, 1993; Keiley &

Martin, 2005; N�u~nez-Ant�on & Orbe, 2005; Steele et al., 1996, 2004; Stoolmiller & Snyder,

2006), organizational psychology (Morita et al., 1989), and even cognitive psychology

(Chechile, 2006; Pannasch et al., 2001; Panis & Wagemans, 2009; Torfs et al., 2010;

Wenger & Gibson, 2004; Yang & McConkie, 2001), an introduction to EHA that focuses

on its relevance for cognitive (neuro)scientists is still warranted as its use is currently still

rather rare. As we will see later, the use of a more advanced and well-established analysis

method can maximize the return from the collected data, which is important in view of the

costs and time required to run an experiment (Whelan, 2008).

2 i-Perception 11(6)



To apply EHA, we must be able to define the event of interest (any qualitative change that
can be situated in time), to define time point zero, and to measure the passage of time
between time zero and event occurrence in discrete or continuous time units. While sociol-
ogists are interested in the occurrence and timing of events such as marriage and divorce—
note that some people never marry—and biostatisticians in death, experimental psycholo-
gists are interested in events such as button presses (RT analysis), saccade onsets (saccade
latency analysis), fixation offsets (fixation duration analysis), and so forth. Typically, time
point zero is defined as target display onset time in RT and saccade latency studies. However,
sometimes the time of the last response can be defined as time zero for the next response, for
example, when studying perceptual dominance durations in studies using ambiguous figures.
The onset of fixation is time zero for fixation duration analysis.

The structure of this Methods article is as follows. First, we introduce and explain the
concept of hazard, in continuous and discrete time units. Next, we illustrate how to calculate
the descriptive statistics in discrete time using a life table, and we discuss two example data
sets. We then describe different approaches for obtaining inferential statistics. We end with a
discussion of the (dis)advantages of discrete-time EHA, compared with other existing dis-
tributional methods.

The Continuous-Time Hazard Rate Function of Event Occurrence

Luce (1986) mentions that there are several different, but mathematically equivalent, ways to
present the information about a continuous random variable T denoting a particular per-
son’s RT in a particular experimental condition, including (a) the cumulative distribution
function F(t)¼P(T � t), (b) its derivative F’(t) known as the probability density function f(t),
(c) the survivor function S(t)¼ 1 – F(t)¼P(T> t), and (d) the hazard rate function k(t)¼ f(t)/
[1 – F(t)]¼ f(t)/S(t).

In principle, we may present the data as estimates of any of these functions and it should not

matter which we use. In practice, it matters a great deal, although that fact does not seem to have

been as widely recognized by psychologists as it might be. (Luce, 1986, p. 17)

EHA has been developed to describe and model the hazard function of event occurrence (for
RT data, the event is a button-press response). For continuous RT data, hazard quantifies
the instantaneous risk that a response will occur at time point t, given that it has not occurred
before time t. In other words, it quantifies the likelihood that a response we are still waiting
for at time t will occur within the next instant. Just as speed is defined as a rate—the distance
covered per unit time—so too is the continuous-time hazard k(t). For example, if time is
measured in seconds and k(3.0)¼ 2, then the instantaneous rate of event occurrence equals
two events per second after 3 seconds of waiting time. There are at least five reasons why
statisticians and mathematical psychologists recommend focusing on the hazard function in
practice, when dealing with a finite sample of time-to-event data.

First, the hazard function of response occurrence is one of the most diagnostic functions
when describing the distribution of a sample of time-to-event data (Allison, 2010; Luce, 1986;
Townsend, 1990). For example, “the hazard function itself is one of the most revealing plots
because it displays what is going on locally without favoring either short or long times, and it
can be strikingly different for f’s that seem little different” (Luce, 1986, p. 19). To illustrate
this, Figure 1 shows the F(t), f(t), S(t), and k(t) for four theoretical waiting-time distribu-
tions. In contrast to k(t), all F(t) and S(t) distributions look vaguely alike, and we cannot
easily describe salient features other than the mean and standard deviation. Also, the density
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function f(t) conceals what is happening in the right tail of the distribution (Luce, 1986). As

discussed by Holden et al. (2009), “probability density functions can appear nearly identical,

both statistically and to the naked eye, and yet are clearly different on the basis of their

hazard functions (but not vice versa). Hazard functions are thus more diagnostic than den-

sity functions” (p. 331).
Second, because RT distributions may differ from one another in multiple ways,

Townsend (1990) developed a dominance hierarchy of statistical differences between two

arbitrary distributions A and B. For example, if FA(t)>FB(t) for all t, then both cumulative

distribution functions are said to show a complete ordering. Townsend (1990) showed that a

complete ordering on the hazard functions—kA(t)> kB(t) for all t—implies a complete order-

ing on both the cumulative distribution and survivor functions—FA(t)>FB(t) and SA(t)<
SB(t)—which in turn implies an ordering on the mean latencies—mean A<mean B. In

contrast, an ordering on two means does not imply a complete ordering on the corresponding

F(t) and S(t) functions, and a complete ordering on these latter functions does not imply a

complete ordering on the corresponding hazard functions. This means that stronger con-

clusions can be drawn from data when comparing the RT hazard functions using EHA. For

example, when mean A<mean B, the hazard functions might show a complete ordering (i.e.,

for all t), a partial ordering (e.g., only for t> 300 ms, or only for t< 500 ms), or they may

cross each other one or more times.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

6
7

time point t

λ(
t)

A

Distributions:
exponential
weibull
gamma
log−normal

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time point t

F(
t)

B

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time point t

S(
t)

C

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

time point t

f(t
)

D

Figure 1. Four views on four different waiting-time distributions in continuous time. The hazard rate
function k(t) (A), the cumulative distribution function F(t) (B), the survivor function S(t) (C), and the
probability density function f(t) (D) are shown for each of four theoretical probability distributions (different
colors: exponential, Weibull, gamma, log-normal). While the hazard rate function for the exponential is flat, it
keeps increasing for the Weibull, it increases to an asymptote for the gamma, and it reaches a peak and then
gradually decreases to an asymptote for the log-normal.
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Third, EHA does not discard right-censored observations when estimating hazard func-

tions, that is, trials for which we do not observe a response during the data collection period

so that we only know that the RT must be larger than some value. This is important because

although a few right-censored observations are inevitable in most RT tasks, a lot of right-

censored observations are expected in experiments on masking, the attentional blink, and so

forth, for example.
There are other types of censoring. Left censoring occurs when all that is known about an

observation on a variable T is that it is less than some value. Interval censoring combines

right and left censoring so that all you know about T is that a<T<b, for some values of a

and b (Allison, 2010). Random censoring occurs when observations are terminated for

reasons that are not under the control of the experimenter.
Importantly, all standard statistical methods for time-to-event data require that random

censoring be noninformative: For example, a trial that is censored at time c should be

representative of all those trials with the same values of the explanatory variables that sur-

vive to c (Allison, 2010). For example, the occurrence of an equipment error during a trial

will introduce random censoring that is uninformative. However, when estimating the hazard

of correct response occurrence, error responses introduce random censoring (and vice versa)

that is very likely informative, because response channels are known to compete with one

another (Burle et al., 2004; Eriksen et al., 1985; Praamstra & Seiss, 2005). We therefore never

recommend to describe or model the hazard of correct response occurrence independently

from the hazard of error response occurrence but to extend the hazard of response occur-

rence with conditional accuracy functions (see later).
The most common type of right-censoring is “singly Type I censoring” that applies when

the experiment uses a fixed response deadline for all trials. “Type I” means that the censoring

time is fixed and is under the control of the experimenter, and “singly” refers to the fact that

all observations have the same censoring time (Allison, 2010). Discarding such trials—or

trials with very long RTs in case the experimenter waits for a response on each trial—may

introduce a sampling bias that results in underestimation of the mean. In contrast, EHA can

include the data information from all trials when estimating the descriptive statistics.
Fourth, hazard modeling allows incorporating time-varying explanatory covariates such as

heart rate, electroencephalogram (EEG) signal amplitude, gaze location, and so forth

(Allison, 2010) which is useful for cognitive psychophysiology (Meyer et al., 1988). For

more information, see Singer andWillett (2003, pp. 426–442) and Allison (2010, pp. 243–246).
Finally, hazard is more suited as a measure of the concept of processing capacity, that is,

the amount of work the observer is capable of performing within some unit of time (Wenger

& Gibson, 2004). The hazard function can capture the notion of the instantaneous capacity

of the observer for completing the task in the next instant, given that the observer has not yet

completed the task.

The Discrete-Time Hazard Probability Function of Event Occurrence

Unfortunately, estimating the shape of the continuous-time hazard rate function for one

observer in one experimental condition is not straightforward because one needs at least

1,000 trials for example (Bloxom, 1984; Luce, 1986; Van Zandt, 2000). However, by shifting

to discrete time, we can trade-off some temporal resolution for increased applicability of

EHA in RT studies that typically collect less than 1,000 trials per condition per participant.

In this Methods article, we therefore focus on the application of discrete-time hazard analysis

to RT data, which is straightforward, easy, and intuitive and allows for flexible statistical
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modeling by logistic regression which is highly familiar to psychologists (Allison, 1982, 2010;

Singer & Willett, 1991, 2003; Willett & Singer, 1993, 1995).
In Figure 2A, four hypothetical discrete-time population hazard functions are plotted

with time divided in 10 discrete bins (1–10). Each function was constructed by selecting a

series of 10 real numbers from the interval [0,1] with replacement, with the only restriction

that once “1.0” is selected then the following numbers are set to “missing data”—the reader

can construct her or his own example functions. Each hazard function completely describes

the shape of a distribution of discrete waiting times. For example, the four theoretical

functions in Figure 2A could reflect the true RT distributions of a single participant in

four experimental conditions (studied with a small-N design; in which a large number of

observations are made on a relatively small number of experimental participants, Smith &

Little, 2018); in this example, time might have been measured in discrete time bins of 50 ms

each, with a censoring time of 500 ms. Or they might reflect the true distributions of the time

it takes to earn a first doctoral degree measured in years for four groups of 100 participants

with certain personality characteristics (large-N design), with a censoring time of 10 years. In

each case, h(t) gives the conditional probability that the event of interest occurs in bin t given

that it has not yet occurred before, or h(t)¼P(T¼ t|T � t), where T is a discrete random

variable denoting the rank of the time bin in which the event occurs. The discrete-time

hazard function of event occurrence thus tells us the probability that the event we are still

waiting for (at the start of bin t) will actually occur in bin t.
Figure 2C displays the corresponding discrete-time survivor functions, or S(t)¼P

(T> t)¼ [1 – h(t)] * [1 – h(t–1)] * . . . * [1 – h(1)], which gives for each bin the probability
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Figure 2. Four views on four different waiting-time distributions in discrete time. The hazard probability
function h(t) (A), the cumulative distribution function F(t) (B), the survivor function S(t) (C), and the (sub)
probability mass function P(t) (D) are shown for each of four hypothetical conditions (different colors).
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that the response does not occur before the end of bin t. The survivor function is the com-
plement of the cumulative distribution function (Figure 2B), or S(t)¼ 1 – F(t)¼ 1 – P(T � t).
Figure 2D shows the corresponding probability mass functions, or P(t)¼P(T¼ t)¼ h(t) * S
(t�1).

We constructed the hazard functions in Figure 2A in such a way that they show some
symmetry. For example, Condition 1 (black line) might represent a neutral priming condition
and Conditions 2 and 3 a congruent and incongruent priming condition, respectively. Let us
assume for simplicity that each bin is 1 second wide and that the censoring time equals 10
seconds so that we have the following sequence of bins: (0,1], (1,2], . . . , (9,10]. For example,
the discrete-time hazard for bin 2 in the neutral condition equals .20 (for bins 1–3, the hazard
functions for the first three conditions lie on top of each other). In other words, given that
time has passed until 1 second after target onset without response occurrence, then there is a
conditional probability of .2 that the response occurs sometime during the next second, that
is, in the second bin or time segment (1,2]. In short, h(2)¼ .2. When the waiting time has
increased to 2 seconds, h(3)¼ .4, and so forth.

If we now compare Conditions 2 and 3 (green and red lines), we see a large positive
priming effect in hazard for time segment (3,6] followed by a smaller negative (i.e., inverted)
priming effect for time segment (7,8]. Note that while the hazard functions for Conditions 2
and 3 cross two times, the S(t) and F(t) functions do not cross, because they cumulate the
(complement of the) current and previous hazard values. This implies that also quantile plots
and delta plots—and other types of visualization based on plotting and comparing quantiles
from F(t)—would not be able to reveal the crossing that is visible in hazard.

Similarly, note that the symmetry present in the hazard functions for the first three
conditions is also absent in the P(t) functions. As a matter of fact, if we would only study
P(t), we might conclude incorrectly that the late negative priming effect lasts longer than the
early positive priming effect. However, the P(t) values do not give any information on the
time course of event occurrence because they denote the probability that the event occurs in
bin t given that it can occur in any (previous, current, or future) bin. In other words, they
simply tell you how many percent of all trials will experience the event in bin t. Note that the
P(t) values in Figure 2D do not sum to 1 for Conditions 1 and 3, which is why these are
called subprobability mass functions (Chechile, 2003); also, the corresponding h(t) and F(t)
functions do not reach 1, and the S(t) functions do not reach zero.

Obtaining Descriptive Statistics for Discrete Time Units: The

Life Table

To calculate the descriptive statistics—functions of discrete time—for a finite time-to-event
data set, one has to set up a life table. In the context of a small-N design, the life table
summarizes the history of event occurrences for a combination of participant and experi-
mental condition. To set up a life table, you need to determine the censoring time and divide
it up into a sequence of contiguous time bins. The fixed censoring time point is typically the
response deadline used, or a time point after which you expect no useful responses anymore
in any trial of any condition. In this section, we shortly discuss real data from two published
experiments using a small-N design, one on masked priming, and one on visual search.

Masked Priming

Panis and Schmidt (2016) asked participants to perform speeded keypress responses to the
direction of a 94 ms double arrow target (left/right), within 600 ms (Figure 3A). The central
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target could be preceded by a central 13 ms double arrow prime that was followed by a 94-ms

pattern mask. The factors prime type and mask type were manipulated factorially. The prime

could point in the same direction as the target (CONgruent), in the opposite direction

(INCONgruent), or no prime was presented (NP). The mask stimulus could be response-

relevant (REL), response-irrelevant (IRREL), a set of random lines (LIN), or no mask was

presented (NM). Consistent with the literature, the mean correct RT (Figure 3B) and mean

error rates (Figure 3C) show a positive priming or congruency effect (PCE) of about 100 ms

and 20 percentage points when no mask was presented, but the reversed effect in the presence

of relevant or irrelevant masks: a negative congruency effect (NCE) of about –40 ms and –10

percentage points.
Table 1 presents the life table for the data of a single participant in condition NP-NM (no

prime, no mask). The first 600 ms after target onset are divided into 15 bins of 40 ms indexed

by t¼ 1 to 15. After counting the number of responses in each bin, one can then directly

estimate the discrete-time hazard probability function of response occurrence: h(t)¼P(T¼ t |

T � t), where T � t denotes the event that the response does not occur before the start of bin

1

+
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94

-67

-161
-174

-187
-589

-1125

536
402

13 13
94

67
94

TIME since
target onset

REL  IRREL  LIN
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Figure 3. Masked priming example. (A) Trial and mask designs used in Experiment 1 of Panis and Schmidt
(2016). A trial with a congruent prime and a relevant mask is shown. Insets show three mask types. Time on
the x axis is measured in milliseconds relative to target onset. (B) Mean correct RT. (C) Mean error rate.
Error bars represent� 1 SEM corrected for between-subject variation.
NP¼ no prime; CON¼ congruent prime; INCON¼ incongruent prime; NM¼ no mask; REL¼ relevant
mask; IRREL¼ irrelevant mask; LIN¼ random lines mask.
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t. For each bin t, the sample-based estimate of h(t) is obtained by dividing the number of
observed responses in bin t by the risk set of bin t, which is the number of trials that are still
response-free at the start of bin t. Note that the four right-censored observations—trials
without response occurrence for which we only know that RT must be larger than 600 ms—
do contribute to the risk set of each bin (ignoring such trials creates a sampling bias). Also
note how the standard error of h(t) tends to increase as the waiting time increases, because
the risk set is becoming rather small for later time bins.

Because we are dealing with two-button discrimination data, the h(t) analysis of response
occurrence is extended with an analysis of conditional accuracy, that is, the microlevel speed-
accuracy trade-off function (Allison, 2010; Pachella, 1974; Wickelgren, 1977). The condi-
tional accuracy function, or ca(t)¼P(correct|T¼ t), is the conditional probability that an
observed response is correct given that it occurs in bin t and is estimated by dividing the
number of correct responses in bin t by the number of observed responses in bin t (Table 1).
By using h(t) functions in combination with ca(t) functions, one can provide an unbiased,
time-varying, and probabilistic description of the latency and accuracy of any sample of
(right-censored) event times.

Sample-based estimates of h(t), S(t), P(t), and ca(t) are shown for one participant in
Figure 4, for two mask conditions (none and relevant) and three prime types (No Prime,
CONgruent, INCONgruent). We refer to each bin using its endpoint, for example, the
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Figure 4. Sample-based estimates for Participant 6 in Experiment 1 of Panis and Schmidt (2016). For each
combination of mask type (no mask and relevant mask) and prime type (congruent, no prime, incongruent),
the estimated discrete-time hazard function h(t) is plotted (A), together with the survivor function S(t) (B),
the (sub)probability mass function P(t) (C), and the conditional accuracy function ca(t) (D). Time axes are
relative to target onset. Error bars represent� 1 standard error of the respective proportion.
CON¼ congruent prime; NP¼ no prime; INCON¼ incongruent prime.
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hazard estimate for bin (240,280] is h(280). Figure 4 offers a fascinating view into the micro-

genesis of primed responses. In the no mask conditions (left panels), response onset is much

earlier when primes are present, and the upswing in response hazards is at first identical for

consistent and inconsistent primes. If such an early response is emitted, it is always correct

for congruent primes and always incorrect for incongruent primes, as shown by the ca(t)

functions. This clearly indicates that these initial responses are triggered exclusively by the

prime without any contribution from the target (the crucial prediction of the rapid-chase

theory of response priming; Schmidt et al., 2006, 2011, 2015).
Once the waiting time has reached 280 ms after target onset without response occurrence,

response hazards continue to increase temporarily for congruent primes but start to decline

for incongruent primes and eventually even reach zero: in bin (360,400] after target onset, no

responses are emitted when the prime is incongruent. In our view, this temporary decline in

hazard reflects—at least initially—response competition from the target, which is becoming

overtly available in bin 280 and activates the opposite (correct) response as the prime. In

other words, this is the phase where the target starts taking over response control from the

prime. After bin 400, h(t) starts to increase again in the incongruent condition, and if such a

late response is emitted, it is always correct. Thus, the response conflict has been resolved in

favor of the target, and these late responses are controlled entirely by the target’s identity.
But something else is going on in the relevant mask condition (right panels). The first

overt responses only appear around 320 ms after target onset. Overall, response hazards

increase faster in incongruent than in congruent trials (with the no-prime condition in

between), demonstrating a reversed priming or NCE in response occurrence. Moreover,

the earliest emitted responses are typically correct in incongruent trials and typically incor-

rect in congruent trials: a complete reversal of the pattern in the no mask condition. When

the target information becomes available, it now delays responses in the congruent condition

around 360 ms after target onset. Following this temporary dip, h(t) sharply increases, and

all responses emitted after 480 ms are correct.
The hazard functions for congruent and incongruent trials thus show a partial ordering

(i.e., only for t> 280 ms in the no mask condition, and for t> 320 ms in the relevant mask

condition). In other words, the hazard functions reveal the onset time, duration, and shape of

the behavioral effect. The differences in means also typically underestimate the duration of

the effect in terms of hazard. For example, the within-trial duration of the PCE when the

mask is absent is at least 200 ms (5 bins) and that of the NCE when the mask is relevant is at

least 160 ms (4 bins). Also, plotting hazard and conditional accuracy functions can reveal

important interindividual differences and the time-locking of effects to stimuli or other

events. For example, Panis and Schmidt (2016) compared the dynamics of the priming

effect in the ca(t) functions for the six different participants and found a high similarity

(Figure 5A): Every participant showed a temporary PCE in the no mask condition and a

temporary NCE in the various masking conditions. Figure 5B shows the result of a second

experiment where the prime-mask and mask-target stimulus-onset-asynchronies (SOAs) were

varied independently. The plot shows that three distinct states can be identified when the

prime-mask SOA is long (conditions “long–short” and “long–long”): a PCE state time-

locked to prime-onset, an NCE state time-locked to mask onset, and an “all correct” state

time-locked to target onset. Note that the same three states have been observed in the

Lateralized Readiness Potential by Ja�skowski et al. (2008) and Eimer and Schlaghecken

(1998). Crucially, the NCE appears �360 ms after mask onset in every condition, an estimate

very similar to the 350 ms estimate obtained by looking at pointing movement trajectories

(Schmidt et al., 2015).
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Panis and Schmidt (2016) concluded that the NCE is neither caused by automatic self-
inhibition of the primed response due to backward masking nor by updating
response-relevant features of the mask, but by active, selective mask-triggered inhibition.
The mask thus acts as a stop-signal within the current task context that initiates selective
inhibition of the premature prime-triggered response, which temporarily disinhibits the
opposite response (thrust reversal; Schmidt et al., 2015). Importantly, these distributional
results are compatible with a computational model of the basal ganglia, a subcortical col-
lection of nuclei that are involved in response gating and (selective and global) response
inhibition (Wiecki & Frank, 2013).

Figure 5. Sample-based ca(t)-state transition plots. For each participant, bin, and mask type (A, Experiment
1) or SOA combination (B, Experiment 2), we first coded the type of difference in observed performance in
ca(t) between congruent (CON) and incongruent (INCON) prime conditions and then applied a color code
(green¼ evidence for PCE; pink¼ evidence for NCE; cyan¼ no evidence for either). Specifically, for bins
where responses are observed for both CON and INCON: “P”: ca(t)¼ 1 for CON and ca(t)¼ 0 for
INCON; “p”: CON minus INCON � .2; “N”: ca(t)¼ 0 for CON and ca(t)¼ 1 for INCON; “n”: CON minus
INCON � –.2; “all”: ca(t)> .8 for both CON and INCON. For bins where responses exclusively occur in
either CON or INCON: “cc”: ca(t)¼ 1 for CON and no responses for INCON; “ii”: no responses for CON
and ca(t)¼ 0 for INCON; “ic”: ca(t)¼ 0 for CON and no responses for INCON; “ci”: no responses for
CON and ca(t)¼ 1 for INCON. Remaining bins: “x”: no responses observed in CON and INCON; “?”: other
cases. The reader can compare the codes for Participant 6 in Figure 5A (relevant and no mask) with
Figure 4D.
NM¼ no mask.
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Visual Search

Panis et al. (2020) reanalyzed the benchmark visual search data sets collected by Wolfe et al.
(2010). For example, in the color-orientation conjunction search task, 10 participants
searched a single display for a red vertical rectangle among green vertical and red horizontal
rectangles. Four different set sizes (target plus distractors; 3, 6, 12, or 18) were randomly
intermixed. Participants pressed one key if the target was present (50% of trials) and another
if the target was absent. They were instructed to respond as quickly and correctly as possible
and received feedback after each trial. Accuracy and RT in ms were recorded. Each partic-
ipant provided approximately 10 blocks of 400 trials, leading to about 500 trials per partic-
ipant and search condition. Figure 6 shows the data for one representative participant in the
color-orientation conjunction search task with a set size of 18 objects, using bins of 40 ms
and a censoring time of 2,400 ms.

First, there is only a partial ordering of the hazard functions with respect to the effect of
target presence (only for t< 600 ms), and the hazard functions are relatively flat for the right
tail of the RT distributions. Second, false alarms occur mostly early in time, while misses
occur mostly for medium-latency responses. The miss rate peaks around 600 ms after search
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Figure 6. Visual search example. The data for one representative participant in each of the target-present
and target-absent conditions of the color-orientation conjunction search task with set size 18 of Wolfe et al.
(2010) are plotted as (A) hazard function h(t), (B) survivor function S(t), (C) (sub)probability mass function P
(t), and (D) conditional accuracy function ca(t). Both insets in Figure 6B show example displays. The target is
a vertical red object. The passage of time is measured discretely using bins of 40 ms starting at search display
onset. The vertical lines in Figure 6B show the estimated median response times for the target-present and
target-absent conditions. The gray surface areas are used for interpretation (see main text). Error bars
represent� 1 standard error of the respective proportion.
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display onset. As far as we know, none of these features of visual search behavior are
predicted by current cognitive models of visual search (Panis et al., 2020).

One tentative interpretation of these data is based on the idea that behavior at any point
in time is determined not only by the outcome of the ongoing search process but also by
response biases and reactive cognitive control processes (Panis et al., 2020). For example,
we can distinguish five phases in the time-dispersed behavior of this observer (the gray
surface areas in Figure 6 mark phases two and four). First, if the waiting time has increased
until 360 ms after search display onset, then h(400) is higher for target-present than target-
absent trials, and all emitted responses are correct for target-present, but incorrect for target-
absent trials. The earliest responses thus show a strong yes-bias, regardless of target presence.
Kiss et al. (2012) concluded that the attentional selection of targets that are defined by a
combination of features—here: “red” and “vertical”—is a two-stage process: Attention is
initially captured by all target-matching features but is then rapidly withdrawn from dis-
tractor objects that share some but not all features with the current target. This suggests that
at the end of the initial feedforward sweep of processing right after display onset, all elements
in the search display will have captured attention to some extent, each signaling the presence
of target features such as red and/or vertical in the conjunction search task. This explains the
presence of the early yes-response bias. We also assume that the target is indeed found on a
few of the target-present trials (e.g., those where the target is very salient due to spatial
grouping processes), which explains the higher hazard for target-present trials. If no early
response occurs, however, time passes on, and the search continues.

Second, in the time range 400–480 ms, hazard further increases for both conditions, while
ca(t) quickly increases above chance level for target-absent trials and starts to slightly
decrease for target-present trials. Thus, while the search process might finish on a subset
of trials in this time range, Panis et al. (2020) suggested that online error-monitoring pro-
cesses can detect the task-interfering yes-response bias in the earliest response tendencies and
that reactive cognitive control processes such as active and selective response suppression
kick in (Panis & Schmidt, 2016). The active and selective suppression of the premature yes-
response tendency can result in a temporary disinhibition of the competing no-response,
which would lead to an overt no-response if a momentary threshold is crossed on some
trials. Thus, in those trials where the search process has not yet finished, this suppression can
lead to overt misses in target-present trials, and it can explain the sharp increase in ca(t) for
target-absent trials, which is presumably too early to reflect pure correct rejection decisions.

Third, in the time range 480–560 ms, performance is optimal in the sense that (a) hazard is
at its highest level so far, and (b) conditional accuracy is high for both target presence
conditions. Around this point in time after display onset, behavior is thus determined
mostly by the outcome of the search process. However, for a subset of trials, no overt
decision is made and time passes on.

Fourth, in the time range 560–640 ms, the difference in hazard disappears, and a no-bias
develops as the miss rate reaches a maximum, and there are no false alarms. In other words,
if the waiting time has increased until 560 ms, then hTP(600) equals hTA(600), and
caTP(600)¼ .8 while caTA(600)¼ 1. Thus, for the more difficult search trials, the suppression
effects accumulate—causing hazard to decrease and the miss rate to peak in the target-
present condition, while more and more correct rejection decisions occur when the target
is absent.

Finally, after 640 ms, hazard functions are flat and most emitted responses are correct. In
other words, the system quits the search and finally transitions to a state with flat hazard
functions without a systematic effect of target presence. Horizontally shaped hazard func-
tions point to exponentially distributed RTs. Based on the findings of Shenoy et al. (2013),
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we assume that these flat right tails reflect RT outliers during decision making. Shenoy et al.
(2013) described neuronal motor activity in macaque monkeys from a dynamical systems
perspective by studying single-trial neural trajectories in a state space. They found that the
neural state wanders before falling back on track in RT outlier trials so that the monkey
hesitated for an abnormally long time before movement onset. Interestingly, Thompson et al.
(1996) found that much of the RT variance in search tasks is due to postperceptual motor
processing, perhaps to provide the adaptive advantage of allowing for subsequent visual
processing and cognitive factors to alter the response choice before an irrevocable commit-
ment is made. For example, one might keep inspecting a few more items even though the no-
response is already selected in the target-absent condition. Similarly, one might explicitly
compare the presumed target with a few surrounding distractors to confirm target presence,
even though the yes-response is already selected in the target-present condition.

Both these and other discrete-time EHA studies of simultaneous masking (Panis &
Hermens, 2014), object recognition (Panis et al., 2017; Panis & Wagemans, 2009; Torfs
et al., 2010), spatial cueing (Panis, 2020; Panis & Schmidt, 2020), and priming
(Wolkersdorfer et al., 2020) teach us three things: (a) Mean performance measures conceal
crucial information about behavioral dynamics such as premature response activation, time-
locking, response suppression, and how performance changes as time passes by within and
across trials, (b) RT and accuracy data reflect different aspects of the time-dispersed decision
process (Mulder & van Maanen, 2013), and (c) sometimes one can identify subsets of par-
ticipants that display qualitatively different behavior (Miller & Schwarz, 2018; Panis, 2020;
Panis et al., 2020).

Note that when you measure time in continuous units, the survivor function S(t) can be
estimated nonparametrically using the Kaplan–Meier method (Kaplan & Meier, 1958).
Estimates of the hazard rate function can be obtained based on Kaplan–Meier but are
typically smoothed to some extent because they tend to be very choppy when not based
on sufficient data (Allison, 2010).

Obtaining Inferential Statistics

There are several approaches for obtaining inferential statistics (Allison, 2010; Austin, 2017).
When you simply want to compare survival functions between two groups in continuous
time (large-N design), the log-rank and the Wilcoxon tests are available (the latter puts more
weight on earlier points in time).

When you want to study how hazard depends on various predictors, you can fit regression
models to the data (Singer & Willett, 2003). An example discrete-time hazard model with
three predictors (TIME, X1, X2) and the complementary log-log (cloglog) link function can
be written as follows:

cloglog h tð Þ½ � ¼ ln �ln 1� h tð Þ½ �ð Þ ¼ ½a0ONEþ a1ðTIME� 1Þ
þ a2ðTIME� 1Þ2 þ a3ðTIME� 1Þ3� þ ½b1X1 þ b2X2 þ b3X2ðTIME� 1Þ�:

The main predictor variable TIME is the time bin index t (see Table 1) that is centered on
value 1 in this example. The complementary log-log link is preferred over the logit link when
events can occur in principle at any time point within a bin, which is the case for RT data
(Singer & Willett, 2003). The first set of terms within brackets, the alpha parameters mul-
tiplied by their polynomial specifications of (centered) time, represents the shape of the
baseline cloglog-hazard function (i.e., when all predictors Xi take on a value of zero). The
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second set of terms (the beta parameters) represents the vertical shift in the baseline cloglog-
hazard for a 1 unit increase in the respective predictor. Predictors can be discrete, continu-
ous, and time-varying or time-invariant. For example, the effect of a 1 unit increase in X1 is
to vertically shift the whole baseline cloglog-hazard function by b1 cloglog-hazard units.
However, if the predictor interacts linearly with time (see X2 in the example), then the
effect of a 1 unit increase in X2 is to vertically shift the predicted cloglog-hazard in bin 1
by b2 cloglog-hazard units (when TIME–1¼ 0), in bin 2 by b2þ b3 cloglog-hazard units
(when TIME–1¼ 1), and so forth. To interpret the effects of the predictors, the parameter
estimates are exponentiated, resulting in a hazard ratio (due to the use of the cloglog link).

In the case of a large-N design without repeated measurements, the parameters of a
discrete-time hazard model can be estimated using standard logistic regression software
(after expanding the typical person-trial-oriented data set into a person-trial-bin-oriented
data set; Allison, 2010). When there is clustering in the data, as in the case of a small-N
design with repeated measurements, the parameters of a discrete-time hazard model can be
estimated using population-averaged methods (e.g., Generalized Estimating Equations),
Bayesian methods, or generalized linear mixed models (Allison, 2010). Examples of the
latter can be found in Panis (2020), Panis et al. (2020), Panis and Schmidt (2016, 2020),
and Wolkersdorfer et al. (2020). Finding the best random effects structure to generalize
beyond the sample is an active area of research (Barr et al., 2013; Cunnings, 2012;
Matuschek et al., 2017; Zuur & Ieno, 2016). Note that in case of a small-N design, EHA
allows one to test if and how individual performance changes on multiple time scales (e.g.,
within-trial, across-trial, across-block).

When you treat time continuously, you can fit parametric models (e.g., a lognormal
hazard model, an exponential hazard model, and so forth; Figure 1), semiparametric
models such as the Cox regression model that ignores the shape of the hazard function
and only tests the beta parameters, or piecewise exponential models (Allison, 2010). A piece-
wise exponential model is useful when (a) event times are measured precisely, (b) you want to
estimate the shape of the hazard function, and (c) you do not want to impose a parametric
model: Time is divided into intervals, and the hazard rate is assumed to be constant within
each interval (i.e., exponentially distributed RTs within each interval).

The use of rather complex regression models to analyze hazard and conditional accuracy
functions, and the employment of stepwise techniques to find the best model, harbor the
danger of over- or underfitting the data, especially when the model is tested with the same
data to which it was fitted. P values from such models have to be treated with the appro-
priate caution. Therefore, a third approach to obtain inferential statistics is to define differ-
ent parameters of the descriptive functions (e.g., onset thresholds, divergence and
convergence points, inflection points, and so forth) and to use robust techniques such as
bootstrapping and jackknifing to compare and test their distributions (Ulrich &Miller, 2001;
Wilcox, 2011).

We can shortly illustrate a very simple and immensely useful jackknifing procedure sug-
gested by Ulrich and Miller (2001). Consider the data in Figure 4A (left panel), where we
found that the hazard function for incongruent trials experiences a temporary drop in per-
formance (Panis & Schmidt, 2016). If we know from previous experiments that such effects
can take place in a certain time window, we can use that window as a region of interest
(ROI). The jackknifing procedure now consists of extracting subsamples of the data, each of
which contains the average curve for the incongruent trials within the ROI except for one
participant. Each subsample excludes a different participant so that we have as many sub-
samples as participants (N). The advantage is that each subsample contains a relatively
smooth curve that is based on N – 1 participants. It is therefore much easier to extract
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parameters of interest from each subsample curve than trying the same for the noisy data of
single participants. For example, we can easily find the bottom of the dip in hazard in
incongruent trials and extract its time (or amplitude, or both) for each subsample. Those
N values can now be put into a table and used for standard ANOVA. Of course, the mean of
the subsample curves will be identical to the mean of the individual participants’ curves, but
the variance will be too small because each participant is included N – 1 times. Therefore, all
F values have to be corrected by dividing them by a factor of (N – 1)2, and the p values have
to be recalculated accordingly (for proofs, see Ulrich & Miller, 2001).

Discussion

The Theoretical and Statistical Advantages of EHA

Many experimental psychologists are still reluctant to embrace EHA and to stop using
ANOVA when dealing with time-to-event data. In part, this is due to historical reasons.
The computer metaphor of cognition—serial information processing via consecutive
stages—was developed by Donders (1969) and became very popular from 1960 onward
(Sternberg, 1969, 1984, 2013). During the past decades, however, various distributional
methods have been advertised to move beyond the mean (Balota & Yap, 2011;
Ridderinkhof, 2002; van Maanen et al., 2019; VanRullen, 2011).

Nevertheless, while many still assume that RTs reflect the cumulative duration of all time-
consuming cognitive operations involved in a task (e.g., Liesefeld, 2018; Song & Nakayama,
2009), the results from various discrete-time event history and conditional accuracy analyses
show that fast, medium, and slow RTs can actually index different sets of cognitive oper-
ations (Figures 4 and 6; cf. van Zoest et al., 2010). Statistically controlling for the passage of
time on multiple time scales during data analysis is therefore equally important as experi-
mental control during the design of an experiment, to understand human behavior in our
experimental paradigms (Panis, 2020; Panis & Schmidt, 2016, 2020).

The distributional data in Figures 4 to 6 are consistent with a dynamic systems approach
to cognition according to which cognition involves sequential transitions between stable
sensory, motor, and central states (Sch€oner et al., 2016). To understand the behavioral
output of the brain, we must therefore measure quantities—h(t) and ca(t)—that track the
motor states over time to study how long they last, how they are replaced by new states, and
whether and when different manipulations affect them, to try to infer the spatial-temporal
interplay between different cognitive component processes. Averaging these processes over
time to look at mean RTs only sometimes preserves the crucial information in the time
course of motor activity. More often than not, mean performance measures paint a picture
that distorts, conceals, or even reverses the actual dynamical events. One example is the
analysis in Figure 5B, which reveals a sequence of positive priming followed by a negative
compatibility effect (Panis & Schmidt, 2016). An analysis in terms of mean error rate would
necessarily miss at least one of these phases because the effect in mean error rate can only be
positive or negative, but not both. It may even miss both phases if integration over time leads
to an average that is too small to be significant.

Statistical reasons in favor of EHA include the ability to deal with right-censored obser-
vations and time-varying covariates and the fact that hazard provides exactly the kind of
information we want to extract from RT data: the instantaneous likelihood of event occur-
rence given no previous events. We thus recommend to always first plot the h(t) and ca(t)
functions of each individual (small-N design) or group of experimental units (large-N design)
before making any further data-analytic or computational modeling decision. This practice
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would also inform the field about the various shapes the hazard function can take on in

different contexts—a big unknown—and this will help in choosing which (combination of)

parametric functions we might want to fit to the data, and in knowing how complex our

computational models have to be to capture the behavioral dynamics observed empirically

(Holden et al., 2009; Townsend & Ashby, 1983; Wickens, 1982).
Issues about bin size optimality play a secondary role at this moment in time in our view,

because by working in discrete time—or using interval-censored data—we can make an

informed trade-off between the availability of temporal information (smaller bins increase

temporal resolution) with the feasibility to perform expensive data collection efforts (small

bins can only be used with a large number of repeated measurements in case of a small-N

design). In other words, the number and sizes of the time bins used for the analyses can be

optimally adapted to each situation, depending on the duration of the data collection period,

the rarity of event occurrence, the shape of the empirically observed hazard function, and

whether one is using a large- or small-N design (Smith & Little, 2018).
As a standard method, EHA offers a unifying and principled approach to the analysis of

time-to-event data that can be flexibly combined with other tools used by cognitive (neuro)

scientists. For example, by transforming a sample of time-to-event data into time-series

data—h(t) and ca(t) functions—one puts the analysis of behavior on the same footing

with respect to time as physiological data such as EEG. Incorporating time-varying cova-

riates (e.g., occipital EEG power in the alpha band) in hazard models of behavioral (or

neural) event occurrence extends the set of current approaches to perform cognitive psycho-

physiology (Meyer et al., 1988). Also, combining EHA with transcranial magnetic stimula-

tion (TMS) allows to read out the time-dispersed effect of a timed TMS pulse in the h(t) and

ca(t) functions to answer the question: “When is area x necessary for task y?”
Finally, as explained by Kelso et al. (2013), it is crucial to first have a precise description of

the macroscopic behavior of a system (here: h(t) and ca(t) functions) in order to know what to

derive on the microscopic level. For example, fitting parametric functions or computational

models to data without studying the shape of the h(t) and ca(t) functions can miss important

features in the data (Panis et al., 2020; Panis & Schmidt, 2020). Due to the advantages of EHA,

we recommend that it is used more often in future empirical and simulated RT studies. R code

to calculate the descriptive statistics and the inferential statistics used by discrete-time EHA for

a factorial within-subject design can be downloaded here: https://www.researchgate.net/publi

cation/304069212_What_Is_Shaping_RT_and_Accuracy_Distributions_Active_and_Selective_

Response_Inhibition_Causes_the_Negative_Compatibility_Effect.

Discrete-Time EHA Versus Other Distributional Methods

Continuous-Time EHA. Discrete-time methods treat time-to-event data as interval-censored

data while continuous-time methods use the exact event times. While learning the discrete-

time methods first will ease the learning of the more complex continuous-time methods, they

also have a lower temporal resolution. Thus, although statistical modeling of continuous

time-to-event data requires specialized software to either fit parametric hazard models that

are rather restrictive in the shapes they allow (e.g., a Weibull hazard model), or semipara-

metric hazard models that completely ignore the shape of the hazard function, their use

might be warranted in particular circumstances. Allison (2010) provides a useful list of

considerations when choosing between discrete- and continuous-time methods to perform

an EHA. An overview of R functions for a continuous-time EHA can be found here: https://

cran.r-project.org/web/views/Survival.html.

18 i-Perception 11(6)

https://www.researchgate.net/publication/304069212_What_Is_Shaping_RT_and_Accuracy_Distributions_Active_and_Selective_Response_Inhibition_Causes_the_Negative_Compatibility_Effect
https://www.researchgate.net/publication/304069212_What_Is_Shaping_RT_and_Accuracy_Distributions_Active_and_Selective_Response_Inhibition_Causes_the_Negative_Compatibility_Effect
https://www.researchgate.net/publication/304069212_What_Is_Shaping_RT_and_Accuracy_Distributions_Active_and_Selective_Response_Inhibition_Causes_the_Negative_Compatibility_Effect
https://cran.r-project.org/web/views/Survival.html
https://cran.r-project.org/web/views/Survival.html


Quantile Plots and Classic Delta Plots. A quantile plot visualizes a set of quantiles (e.g., the nine

deciles) as a function of quantile order. A classic delta plot for RT compares two conditions

by subtracting corresponding quantiles and plots each of these (e.g., nine) differences (y axis)

as a function of the average of both quantiles in question (x axis). This way we can easily

examine in which range of RTs the effect in F(t) is large or small, positive or negative.

However, if participants vary strongly in the identity of the time bin in which their fastest

emitted responses occur, then quantiles will be very variable among participants, and aver-

aging them will result in a blurring of effects that might otherwise be time-locked to the onset

of a stimulus, for example—and effect sizes can also be attenuated. Therefore, we recom-

mend simply plotting the difference in hazards or conditional accuracies for each bin (as in

Panis, 2020, Panis & Schmidt, 2020).
Procedures such as Vincentizing (construction of average RT distributions from the aver-

age of their quantiles) that are assumed to normalize the RT distributions across participants

(Ratcliff, 1979) have not been evaluated positively (Rouder & Speckman, 2004). Instead, we

believe that if, for example, the range of RTs and the time course in hazard of an effect are

different across participants, then this is theoretically interesting and requires a substantial

explanation. Even if it is possible to somehow average those distributions, that does not

mean that the underlying processes should be lumped together. Note that individual differ-

ences (e.g., in working memory capacity, the time required to stop a response, and so forth)

can be taken into account by adding relevant predictors to the participant level of a multi-

level hazard model, thus allowing for participant effects and cross-level interactions.

Possible Disadvantages of Discrete-Time EHA. There are also possible disadvantages of discrete-

time EHA.
First, the person-trial-bin-oriented data set can become very large.
Second, one needs to explore a few bin sizes to find the optimal size for a particular data

set. The optimal bin size will depend on the censoring time, the overall rarity of event

occurrence, and the number of repeated measures or trials (small-N design) or the number

of participants (large-N design). Note that the time bins do not have to be all of equal size

(Panis, 2020).
Third, in hierarchical data from a small-N design, there are two sources of noise: within

and between participants. For a distributional analysis, it is important to have enough

repeated measures per participant and condition (preferably at least 100) to minimize the

influence of within-participant noise. Between-participant variation is a different matter: It

can be due to noise but also due to characteristic differences between individuals (e.g., in

speed, capacity, or strategy). Again, high measurement precision in single participants and

the incorporation of covariates at the participant level in a multilevel model is the only way

to deal with this. Power contours can be used to estimate how many repeated measures are

required to reach 80% power for a given sample size N, and vice versa (Baker et al., 2020; see

their paper for a useful online tool).
In general, analyzing single participants should be regarded as a safeguard against inter-

preting spurious effects in the pooled data that are actually only generated by a minority of

participants while at the same time refraining from overinterpreting the individual data

patterns. Note that systematic effects will be visible for a majority of participants, while

occurrences due to noise will not.
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Recommendations for Experimental Design of RT and Other Time-to-Event Data Studies

Two general recommendations can be made from the viewpoint of EHA when designing RT
studies. First, always use the same fixed response deadline in each trial, for example, 500 ms
for single-button detection and 800 ms for an easy two-button discrimination task. Because
hazard analysis deals with right-censored observations, there is no need to wait for very slow
responses that are considered meaningless and would be trimmed anyway. Also, using rather
short and fixed response deadlines will lead to individual distributions that overlap in time,
which is important for h(t) and ca(t) modeling (Panis & Schmidt, 2016). Furthermore, if you
wait for a response in each trial and let the overt response end the trial, then you allow
participants to have control over the trial (and experiment) duration, which can be avoided
(or systematically controlled).

Second, try to design as many trials as possible per condition because then you can use
small bins and still obtain stable h(t) and ca(t) estimates (i.e., use a small-N design; Smith &
Little, 2018). Also, designing 100 trials per condition, for example, will not result in a large
increase in experiment duration as the response deadline and thus trial duration can be kept
short (see Panis & Schmidt, 2016). Note that many more trials are needed if you want to
characterize the detailed shape of the right tail of a RT hazard distribution, especially in
continuous time.

Conclusions

RT and accuracy distributions are a rich source of information on the time course of cog-
nitive processing. The changing effects of our experimental manipulations with increases in
waiting time become strikingly clear when looking at response hazards and microlevel speed-
accuracy trade-off functions. Indeed, working with hazard and conditional accuracy func-
tions, you will discover a whole new layer of the data, and presumably the one where the
processes live that actually interest you. An EHA of time-to-event data can strongly con-
strain the choice between cognitive models of the same psychological phenomenon. Due to
the theoretical and statistical advantages of EHA, the fundamental simplicity of the method,
and the availability of free software, there is currently no reason anymore to not start using
EHA for time-to-event data.
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Abstract
Thanks to the work of Anne Treisman and many others, the visual search paradigm has become one of the most popular
paradigms in the study of visual attention. However, statistics like mean correct response time (RT) and percent error do not
usually suffice to decide between the different search models that have been developed. Recently, to move beyond mean
performance measures in visual search, RT histograms have been plotted, theoretical waiting time distributions have been fitted,
and whole RTand error distributions have been simulated. Here we promote and illustrate the general application of discrete-time
hazard analysis to response times, and of micro-level speed–accuracy tradeoff analysis to timed response accuracies. An explor-
atory analysis of published benchmark search data from feature, conjunction, and spatial configuration search tasks reveals new
features of visual search behavior, such as a relatively flat hazard function in the right tail of the RT distributions for all tasks, a
clear effect of set size on the shape of the RT distribution for the feature search task, and individual differences in the presence of a
systematic pattern of early errors. Our findings suggest that the temporal dynamics of visual search behavior results from a
decision process that is temporally modulated by concurrently active recurrent object recognition, learning, and cognitive control
processes, next to attentional selection processes.

Keywords Visual search . Response times . Discrete-time hazard analysis . Individual differences . Speed–accuracy tradeoff .

Event history analysis

Introduction

The visual search paradigm is one of the most popular
paradigms in the study of visual attention as it mimics
real search tasks we perform every day (for reviews, see
Eckstein, 2011; Humphreys, 2016). In each trial of a stan-
dard visual search task, a display is presented that contains
a spatially arranged set of objects, and participants are

asked to press one of two buttons to indicate whether
the target (e.g., a red vertical bar) is present or not. The
so-called search functions relating the number of items in
the display (set size) to the mean correct search response
time (RT) are close to linear for both sets of target-present
(TP) and target-absent (TA) trials, and their slopes seem to
vary on a continuum depending on the difficulty of the
search task (Cheal & Lyon, 1992; Liesefeld, Moran,
Usher, Müller, & Zehetleitner, 2016). For example, search
for a red vertical target among green vertical distractors
(feature search; Fig. 1a, left) is efficient, and results in
search functions with slopes close to 0 ms/item (Fig. 1b,
left). In contrast, searching for a 2 among 5´s (spatial
configuration search; Fig. 1a, right) is inefficient, and re-
sults in search functions with large positive slopes (Fig.
1b, right). Finally, searching for a red vertical target
among green vertical and red horizontal distractors
(conjunction search; Fig. 1a, middle) is of intermediate
efficiency, and results in search functions with intermediate
slopes (Fig. 1b, middle).
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To explain visual search behavior, researchers have mainly
focused on devising different accounts of the attentional se-
lection process. According to serial search accounts a high-
speed attentional spotlight is scanning each object one by one
in order to bind its surface features and to recognize it as a
target or distractor (Treisman and Gelade, 1980; Wolfe, Cave,
& Franzel, 1989). When the target is so salient that it is always
scanned first – for example when the target and distractors are
very dissimilar in a single surface dimension such as color –
flat search slopes will result. Scanning continues until the
target is found or all items are identified as distractors – a serial

exhaustive search model (Wolfe, 1994). More recent develop-
ments have added grouping processes and feature inhibition
processes (Treisman & Sato, 1990; Wolfe, 2007).

According to parallel search accounts, all items in the dis-
play are attended and identified in parallel. While some paral-
lel search models are based on signal detection theory
(Palmer, 1995), others are based on biased competition
(Heinke & Backhaus, 2011; Heinke & Humphreys, 2003),
similarity, grouping, and recursive rejection (Humphreys &
Müller, 1993; Müller, Humphreys, & Donnelly, 1994), neural
synchronization (Kazanovich & Borisyuk, 2017), or

Fig. 1 Benchmark visual search data set from Wolfe, Palmer, and
Horowitz (2010). a Example visual search displays for three search
tasks (copy of Fig. 1 in Wolfe et al., 2010). Participants search for the
red vertical bar in the feature (left) and conjunction (middle) search tasks,
and for a digital 2 among digital 5´s in the spatial configuration search
task (right). bMean correct RT for target-present (solid lines) and target-
absent trials (dashed lines). Lighter lines show data for individual ob-
servers and darker lines show mean data (copy of Fig. 2 in Wolfe et al.,

2010). c Empirical RT distributions for one observer in the spatial con-
figuration search task. Set size is coded by lightness from the lightest
lines, set size 3, through set sizes 6 and 12 to the darkest, set size 18
(copy of the lower panel in Fig. 4 in Wolfe et al., 2010). d Simulated RT
distributions from a serial, self-terminating search model for target-
present (solid) and target-absent (dashed) trials. Lighter lines represent
smaller set sizes (copy of Fig. 7 in Wolfe et al., 2010).
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neurodynamical approaches (Deco & Zihl, 2006; Fix,
Rougier, & Alexandre, 2011; Grieben, Tekülve, Zibner,
Schneegans, & Schöner, 2018). However, mean correct RT
and slopes are not sufficient to distinguish between serial ver-
sus parallel processing because both search mechanisms are
able to generate efficient and inefficient searches (Townsend,
1990a).

Because mean performance measures such as overall error
rate and mean correct RT can be accounted for by different
computational models – the problem of model mimicry –
Wolfe, Palmer, and Horowitz (2010) focused on the shape of
the RT distributions. They collected very large data sets for
three search tasks to set a benchmark: a feature search for a
color, a spatial configuration search for a digit 2 among digit
5s, and a color-by-orientation conjunction search (see Fig. 1a).
Target presence (present or TP/absent or TA) and set size (3, 6,
12, 18) were manipulated for each task to give eight within-
subject trial types (TP3, TA3, TP6, …, TA18). About 500
trials were administered to each participant for each trial type.
In each trial, the search display remained visible until the
observer pressed one of two keys to indicate target present
or target absent.

Balota andYap (2011) distinguish three general approaches
for understanding the influences of variables on RT distribu-
tions. The first approach is to plot the shape of the RT distri-
bution to determine how a manipulation changes the different
regions of the distribution (e.g., histograms, quantile plots,
delta plots, hazard plots). For example, Wolfe et al. (2010)
plotted histograms by tabulating the RTs in 50 ms-wide bins
(see Fig. 1c). They found that all distributions were positively
skewed, and that variance tracks mean RT (i.e., all distribu-
tions broaden as they shift rightward). Furthermore, for the
conjunction and spatial configuration tasks, target-absent dis-
tributions are generally to the right of target-present distribu-
tions, and the variance of the target-absent trials is greater than
that of the target-present trials. They concluded that these
distributional shapes reject classic, serial self-terminating
search models including the Guided Search 2.0 model
(Wolfe, 1994) as shown in Fig. 1d.

The second approach is to fit a mathematical function to an
RT distribution to assess how different parameters of the func-
tion are modulated by experimental manipulations (Balota &
Yap, 2011). For example, Palmer, Horowitz, Torralba, and
Wolfe (2011) fitted four psychologically motivated functions
to these benchmark data sets (ex-Gaussian, ex-Wald, Gamma,
and Weibull). They found that the three functions with an
exponential component were all more successful at modeling
the RT distributions than the Weibull. They proposed that
these exponential components either reflect residual (non-
decision) processes in the generation of response times, or that
these residual components are actually encoding something
important about the search process itself. However, they were
unable to distinguish among these two options.

The third and ultimately the preferred approach discussed
by Balota and Yap (2011) is to use a computationally explicit
process model that makes specific predictions about the char-
acteristics of RT distributions. For example, Moran,
Zehetleitner, Müller, and Usher (2013) developed the
Competitive Guided Search (CGS) model as an extension of
the Guided Search 2.0 model (Wolfe, 1994). The main addi-
tion was a mechanism to quit searches prematurely in order to
explain the large overlap between the empirical distributions
in the target-absent conditions (see Figure 1c). Based on sev-
eral model comparisons using the benchmark data sets from
Wolfe et al. (2010), Moran et al. (2013) concluded that the
CGSmodel meets the challenge of accounting for the shape of
the RT distributions in the three benchmark search data sets.
Furthermore, Moran, Zehetleitner, Liesefeld, Müller, and
Usher (2016) found that CGS indeed fits the benchmark data
sets better than a flexible, competitive parallel race model.

However, based on another benchmark search data set,
Narbutas, Lin, Kristan, and Heinke (2017) concluded that
the CGS model suffers from a failure to generalize across all
display sizes, as did a parallel search model developed by
Heinke and Humphreys (2003). Indeed, Cheal and Lyon
(1992) already concluded that none of the standard theories
of visual search are completely adequate (see also Dutilh et al.,
2018).

The structure of this paper is as follows. First we will dis-
cuss event history analysis, the standard longitudinal tech-
nique to analyze time-to-event data in many scientific disci-
plines. Event history analysis allows one to study how the
effect of an experimental manipulation (here: set size and tar-
get presence) on performance changes with the passage of
time on one or more time scales. We end the Introduction
section by listing our objectives. In the Methods section, we
explain how we applied the descriptive and inferential statis-
tics from event history analysis to the benchmark data sets of
Wolfe et al. (2010). In the Results section, we show descrip-
tive plots of the empirical distributions and compare different
individuals. Because Balota and Yap (2011) do not discuss the
statistical analysis of RT distributions, we also illustrate how
to fit a statistical model to RT distributions and what this
reveals about behavioral dynamics. We discuss several new
findings in light of existing visual search theories in the
Discussion section.

Event history analysis

Event history analysis, a.k.a. survival, hazard, duration, tran-
sition, and failure-time analysis, is the standard set of statisti-
cal methods for studying the occurrence and timing of events
inmany scientific disciplines (Allison, 2010; Singer &Willett,
2003). Examples of time-to-event data include RT data, sac-
cade latencies, fixation durations, time-to-force-threshold
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data, perceptual dominance durations, neural inter-spike dura-
tions, etc. To apply event history analysis, one must be able to
define the event-of-interest (any qualitative change that can be
situated in time; here: a button-press response), to define time
point zero (here: search display onset), and to measure the
passage of time between time zero and event occurrence.

Continuous-time hazard rate function

Luce (1986) mentions that there are several different, but
mathematically equivalent, ways to present the information
about a continuous random variable T denoting a particular
person´s response time in a particular experiment: the cumu-
lative distribution function F(t) = P(T≤t), its derivative F´(t)
known as the probability density function f(t), the survivor
function S(t) = 1-F(t) = P(T>t), and the hazard rate function
λ(t) = f(t) / [1-F(t)] = f(t) / S(t). “In principle, we may present
the data as estimates of any of these functions and it should not
matter which we use. In practice, it matters a great deal, al-
though that fact does not seem to have been as widely recog-
nized by psychologists as it might be” (Luce, 1986, p. 17).

Event history analysis (EHA) has been developed to de-
scribe and model the hazard function of response occurrence.
Hazard quantifies the instantaneous risk that a response will
occur at time t, conditional on its nonoccurrence until time t. In
other words, it quantifies the likelihood that a response we are
still waiting for at time t will occur within the next instant.
There are at least five reasons why statisticians and mathemat-
ical psychologists recommend focusing on the hazard func-
tion in practice, when dealing with a finite sample.

First, “the hazard function itself is one of themost revealing
plots because it displays what is going on locally without
favoring either short or long times, and it can be strikingly
different for f´s that seem little different.” (Luce, 1986, p.
19). To illustrate this, Fig. 2 shows the F(t), f(t), S(t), and
λ(t) for four theoretical waiting-time distributions. In contrast
to λ(t), all F(t) and S(t) distributions look vaguely alike and
one cannot describe easily salient features other than the mean
and standard deviation. The problem with the density function
f(t) is that it conceals what is happening in the right tail of the
distribution (Luce, 1986). As discussed by Holden, Van
Orden, and Turvey (2009) "Probability density functions can
appear nearly identical, both statistically and to the naked eye,
and yet are clearly different on the basis of their hazard func-
tions (but not vice versa). Hazard functions are thus more
diagnostic than density functions" (p. 331).

Second, because RT distributions may differ from one an-
other in multiple ways, Townsend (1990b) developed a dom-
inance hierarchy of statistical differences between two arbi-
trary distributions A and B. For example, if FA(t) > FB(t) for
all t, then both cumulative distribution functions are said to
show a complete ordering. Townsend (1990b) showed that a
complete ordering on the hazard functions – λ A(t) > λ B(t) for

all t – implies a complete ordering on both the cumulative
distribution and survivor functions – F A(t) > F B(t) and S
A(t) < S B(t) – which in turn implies an ordering on the mean
latencies – mean A < mean B. In contrast, an ordering on two
means does not imply a complete ordering on the correspond-
ing F(t) and S(t) functions, and a complete ordering on these
latter functions does not imply a complete ordering on the
corresponding hazard functions. This means that stronger con-
clusions can be drawn from data when comparing the RT
hazard functions using event history analysis. For example,
when mean A < mean B, the hazard functions might show a
complete ordering (i.e., for all t) or only a partial ordering
(e.g., only for t < 600 ms).

Third, EHA does not discard right-censored observations
(trials for which we do not observe a response during the data
collection period so that we only know that the RT must be
larger than some value)1. Discarding such trials and/or trials
with very long RTs will introduce a sampling bias that results
in underestimation of the mean. In fact, EHA includes the data
from all trials when estimating the descriptive statistics. For
inferential statistics, one might exclude some early bins with
rarely occurring fast responses (see Methods).

Fourth, hazardmodeling allows incorporating time-varying
explanatory covariates such as heart rate, EEG signal ampli-
tude, gaze location, etc. (Allison, 2010) which is useful for
cognitive psychophysiology (Meyer, Osman, Irwin, & Yantis,
1988)2.

Fifth, hazard is more suited as a measure of the concept of
processing capacity, i.e., the amount of work the observer is
capable of performing within some unit of time (Wenger &
Gibson, 2004). In the context of research on attention, the
hazard function can capture the notion of the instantaneous
capacity of the observer for completing the task in the next
instant, given that the observer has not yet completed the task.

1 Left censoring occurs when all you know about an observation on a variable
T is that it is less than some value. Interval censoring combines right and left
censoring: An observation on a variable T is interval censored if all you know
about T is that a<T<b, for some values of a and b (Allison, 2010). The most
common type of right-censoring is “singly Type I censoring” which applies
when the experiment uses a fixed response deadline for all trials. Type I means
that the censoring time is fixed and under the control of the experimenter, and
singly refers to the fact that all observations have the same censoring time
(Allison, 2010).
2 As explained in the section Methods, fitting discrete-time hazard models
requires an expansion of the standard person-trial oriented data set into a
person-trial-bin oriented data set where each bin (of each trial of each partic-
ipant) that is at risk of event occurrence contributes a single row. Predictors like
set size do not vary over time within a trial and therefore will have the same
value for each of the rows (i.e., bins) that belong to the same trial. Time-
varying predictors like heart rate and EEG time-series data will have different
values for each of the rows (e.g., the average of all physiological measure-
ments obtained during a RT bin, possibly lagged to take into account a trans-
mission delay). For more information see Singer and Willett (2003), pp. 426-
442, and Allison (2010), pp. 243-246.
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Discrete-time hazard probability function

Unfortunately, estimating the shape of the continuous-time haz-
ard rate function for one observer in one experimental condition
is not straightforward because one needs at least 1000 trials for
example (Bloxom, 1984; Luce, 1986; Van Zandt, 2000).
Furthermore, statistical modeling of continuous time-to-event
data requires specialized software to either fit parametric hazard
models that are rather restrictive in the shapes they allow (e.g., a
Weibull hazard model), or semi-parametric hazard models that
completely ignore the shape of the hazard function (e.g., Cox
regression). Therefore, we promote the general application of
discrete-time hazard analysis to RT data, which is straightfor-
ward, easy and intuitive, and allows for flexible statistical

modeling by logistic regression which is highly familiar to psy-
chologists (Allison, 1982, 2010; Singer & Willett, 1991, 2003;
Willett & Singer, 1993, 1995).

To calculate the descriptive statistics – functions of discrete
time – one has to set up a life table. A life table summarizes the
history of event occurrences for a combination of subject and
experimental condition. For illustrative purposes, we present in
Table 1 a life table for the 530 trials of one participant in the feature
search task for the trial type TP3 (target present and set size 3).

First, the first second after search display onset is divided
into ten contiguous bins of 100 ms (column 1). Then, after
counting the number of observed responses in each bin (col-
umn 4) the risk set must be determined for each bin (column
5). The risk set is equal to the number of trials that have not yet

Fig. 2 Four views on waiting-time distributions. The cumulative distri-
bution function (top left), the density function (top right), the survivor
function (bottom left) and the hazard rate function (bottom right) are
shown for each of four theoretical probability distributions (exponential,

Weibull, gamma, log-normal). While the hazard function for the expo-
nential is flat, it keeps increasing for the Weibull, it increases to an as-
ymptote for the gamma, and it reaches a peak and then gradually de-
creases to an asymptote for the log-normal
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experienced a response at the start of the bin in question. The
sample-based hazard estimate in bin t, or h(t) (column 6), is
then simply obtained by dividing the number of observed
responses in bin t (column 4) by the risk set of bin t (column
5). In discrete time, hazard is defined as the conditional prob-
ability of a response occurring in time bin t given it has not yet
occurred before, h(t) = P(T=t|T≥t). The discrete-time hazard
function thus tells us the probability that a response we are still
waiting for will actually occur in bin t.

Next to the hazard function, EHA also focuses on the sur-
vivor function S(t) = P(T>t) = 1 - F(t), because S(t) provides a
context for h(t+1) as it shows the proportion of trials not hav-
ing experienced the response by the end of bin t. For com-
pleteness, Table 1 also tabulates the corresponding probability
mass function P(t) = P(T=t).3

For choice RT data such as the benchmark search data, we
want to distinguish different types of events: correct versus
incorrect responses. One approach is to assume that each
event type has its own hazard function that describes the oc-
currence and timing of events of that type. One would thus
model the h(t) of correct response occurrence separately from
the h(t) of error response occurrence. Another approach is to
first study the timing of events without distinguishing among
event types, and then to study which type of event occurs
while restricting the analysis to those cases that experienced
an event. A major attraction of this latter approach is that there
is no need to assume that the different kinds of events are
uninformative for one another (Allison, 2010).4

We therefore take the latter, so-called conditional-processes
approach (Allison, 2010, pp. 227-229) by extending the h(t)
analysis of response occurrence with an analysis of the con-
ditional accuracy function ca(t) = P(correct|RT = t). The ca(t)
is estimated by dividing the number of correct responses in bin
t by the total number of observed responses in bin t (Table 1)5.

Note that P(t) provides a context for ca(t) as P(t) shows on
which percentage of trials the ca(t) estimate is based.

Thus, by using h(t) functions of response occurrence in com-
binationwith ca(t) functions one can provide an unbiased, time-
varying, and probabilistic description of the latency and accu-
racy of responses based on all trials of any RT data set.
Statistical models for h(t) and ca(t) can each be implemented
as generalized linear mixed regression models predicting event
occurrence (1/0) and response accuracy (1/0) in each bin of a
selected time range, respectively (Panis & Schmidt, 2016).

There are also possible disadvantages of discrete-time event
history analysis. First, the person-trial-bin oriented data set (see
section Methods) can become very large. Second, one needs to
explore a few bin sizes. The optimal bin size will depend on the
censoring time, the rarity of event occurrence, and the number
of repeated measures or trials. Note that the time bins do not
have to be of equal size. Third, remember that in hierarchical
data like ours, there are two sources of noise: within and be-
tween participants. For a distributional analysis it is important to
have enough repeated measures per participant and condition
(preferably at least 100) to minimize the influence of within-
subject noise. Between-subjects variation is a different matter: it
can be due to noise, but also due to characteristic differences
between individuals (e.g., in speed, capacity, or strategy).
Again, high measurement precision in single participants is
the only way to deal with this. The analysis of single partici-
pants should be regarded as a safeguard against interpreting
spurious effects in the pooled data that are actually only gener-
ated by a small minority of participants, while at the same time
refraining from overinterpreting the individual data patterns.
Note that systematic effects will be visible for a majority of
participants, while occurrences due to noise will not.

Objectives

The current study is motivated by three goals. First, using a
freely available data set, we want to illustrate the descriptive
and inferential statistics used by discrete-time EHA, and what
we can learn from this. As discussed by Whelan (2008) the use
of a more advanced analysis method can maximize the return
from the obtained data, which is important in view of the time
and costs required to run an experiment. Second, using an ex-
ploratory approach, we want to see if the shapes of the diag-
nostic h(t) and ca(t) functions for the three benchmark data sets
will reveal certain, as yet unknown, features of the time-
dispersed behavior of searchers. Third, to collect the benchmark
data set, Wolfe et al. (2010) used a small-N design in which a
large number of observations are made on a relatively small
number of experimental participants. Smith and Little (2018)
argue that, “if psychology is to be a mature quantitative science,
then its primary theoretical aim should be to investigate system-
atic functional relationships as they are manifested at the

3 S(t) = [1-h(t)]*[1-h(t-1)]*...*[1-h(1)], and P(t) = h(t) * S(t-1). At time point
zero, S(0) = 1, P(0) = 0, and h(0) is undefined.
4 Random censoring occurs when observations are terminated for reasons that
are not under the control of the experimenter. Standard methods require that
random censoring be noninformative: for example, a trial that is censored at
time rc should be representative of all those trials with the same values of the
explanatory variables that survive to rc (Allison, 2010). For example, an equip-
ment error during a trial will introduce random censoring that is uninformative.
However, when estimating the hazard of correct response occurrence, error
responses introduce random censoring (and vice versa) that is very likely
informative, because response channels are known to compete with one an-
other (Burle, Vidal, Tandonnet, & Hasbroucq, 2004; Eriksen, Coles, Morris, &
O’Hara, 1985; Praamstra & Seiss, 2005). In other words, a trial with an error
response at time rc is not representative of all trials with the same values of the
explanatory variables that survive to rc as the probability of correct response
occurrence will be lower for the former than the latter around time rc (and the
probability of correct response occurrence can be larger right after an error
response due to error detection and error correction). Informative censoring
can lead to severe biases (Allison, 2010).
5 The ca(t) function is identical to the micro-level speed–accuracy tradeoff
(SAT) function based on partitioning RT in bins, as discussed by Wickelgren
(1977) and Pachella (1974) in the psychological literature.
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individual participant level” (p. 2083). Therefore, we will pay
attention to individual differences in the time-dispersed search
behavior. As discussed below, our results reveal new features of
visual search behavior, many – if not all – of which are not
considered by current cognitive models of visual search, but
can be helpful to inform future models.

Methods

Data sets

We reanalyzed the benchmark data sets provided by Wolfe
et al . (2010; ht tp: / /search.bwh.harvard.edu/new/
data_set_files.html). This group collected data in three
tasks. In the feature search task (nine participants), partic-
ipants searched for a red vertical rectangle among green
vertical rectangles. In the conjunction search tasks (ten
participants), they searched for a red vertical rectangle
among green vertical and red horizontal rectangles.
Finally, in the spatial configuration task (nine partici-
pants), they searched for a numerical digit 2 among 5s
(see Fig. 1). Four different set sizes (SS; distractors plus
target, either 3, 6, 12, or 18) were randomly intermixed.
Participants were young adults with corrected or normal
acuity; their color vision was ascertained by Ishihara tests.
They pressed one key if the target was present (which was
the case in 50 % of trials) and another if the target was
absent. They were instructed to respond as quickly and
correctly as possible and received feedback after each trial.
Accuracy and RT in ms were recorded. Each participant
provided approximately ten blocks of 400 trials, leading
to about 500 trials per participant and search condition.
For further information, see the website.

For the descriptive statistics we downloaded the raw data
from the website via the section named “Fitting Functions”.
The raw feature, conjunction, and spatial configuration search
data sets contained 35,941, 39,958, and 35,862 rows, respec-
tively. For hazard model fitting, we actually used the down-
loadable text files (via the section below the one named
“Fitting Functions”) because these also contain information
about trial and block numbers.

Mean correct RT and percent error

We used the same outlier criteria asWolfe et al. (2010) in order
to calculate the sample mean RT, mean correct RT, and error
percentage for each combination of subject, target presence,
and set size. Specifically, we excluded all trials (N = 80) with
RT < 200 ms or > 4,000 ms for the feature and conjunction
search tasks, and with RT < 200 ms or > 8000ms in the spatial
configuration search task.

Event history analysis: descriptive statistics

Starting from the raw data sets without removing outliers, life
tables were constructed using software package R (R Core
Team, 2014) for each combination of subject, target presence,
and set size (see Table 1). We used a bin size of 40 ms for the
feature and conjunction search tasks, and a bin size of 80 ms
for the spatial configuration search task, to provide high tem-
poral resolution when visually studying the shape of the em-
pirical distributions (and to still have an acceptable level of
stability in the estimates). We used a censoring time of 1600,
2400, and 3600 ms for the feature, conjunction, and spatial
configuration search data sets, respectively, since most events
had occurred by this time in all search conditions. Standard
errors for h(t), P(t), and ca(t) can be estimated using the

Table 1 A life table for the 530 trials of subject 1 for condition TP3 in the feature task. The censoring time and bin size equal 1000 ms and 100 ms,
respectively

bin ID bin rank t #cens #events Risk set h(t) S(t) P(t) #corr ca(t)

(0,100] 1 0 0 530 0 1 0 NA NA

(100,200] 2 0 0 530 0 1 0 NA NA

(200,300] 3 0 3 530 0.006 0.994 0.006 3 1

(300,400] 4 0 147 527 0.279 0.717 0.277 137 0.93

(400,500] 5 0 255 380 0.671 0.236 0.481 248 0.97

(500,600] 6 0 84 125 0.672 0.077 0.158 84 1

(600,700] 7 0 18 41 0.439 0.043 0.034 17 0.94

(700,800] 8 0 9 23 0.391 0.026 0.017 8 0.89

(800,900] 9 0 4 14 0.286 0.019 0.008 3 0.75

(900,1000] 10 8 2 10 0.200 0.015 0.004 2 1

#cens = number of observations right-censored at the end of bin t. #events = number of observed responses in bin t. #corr = number of observed correct
responses in bin t. NA = undefined. Note that h(t) = P(t) only until the first bin with observed responses. Because 8 trials were right-censored at 1000 ms,
h(t) does not reach 1, S(t) does not reach 0, and P(t) does not sum to 1 (Chechile, 2003)
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formula for a proportion p – the square root of {p(1-p) / N} –
where N equals the risk set for bin t, the total number of trials,
and the number of observed responses in bin t, respectively.
The standard errors for S(t) were estimated using the recurrent
formula on page 350 of Singer and Willett (2003).

Event history analysis: Inferential statistics

To test whether and when the main and interaction ef-
fects including target presence and set size are signifi-
cant across participants, we fitted discrete-time hazard
models to aggregated data by implementing generalized
linear mixed-effects regression models in R (R Core
Team, 2014; function glmmPQL of package MASS)
using the complementary log-log (cloglog) link function
(Allison, 2010).6 An example discrete-time hazard mod-
el with three predictors can be written as follows:
cloglog[h(t)] =ln(-ln[1-h(t)]) = [α0ONE+ α1(TIME – 1)
+ α2(TIME – 1)2 + α3(TIME – 1)3] + [β1X1 + β2X2 +
β3X2(TIME – 1)]. The main predictor variable TIME is
the time bin index t (see Table 1), which is centered on
value 1 in this example. The first set of terms within
brackets, the alpha parameters multiplied by their poly-
nomial specifications of (centered) time, represents the
shape of the baseline cloglog-hazard function (i.e., when
all predictors Xi take on a value of zero). The second
set of terms (the beta parameters) represents the vertical
shift in the baseline cloglog-hazard for a 1 unit increase
in the respective predictor. For example, the effect of a
1 unit increase in X1 is to vertically shift the whole
baseline cloglog-hazard function with β1 cloglog-
hazard units. However, if the predictor interacts linearly
with time (see X2 in the example) then the effect of a 1
unit increase in X2 is to vertically shift the predicted
cloglog-hazard in bin 1 with β2 cloglog-hazard units
(when TIME-1 = 0), in bin 2 with β2+ β3 cloglog-
hazard units (when TIME-1 = 1), etc. To interpret the
effects of the predictors, the parameter estimates are
anti-logged, resulting in a hazard ratio.

We proceeded as follows. First, for each search task we
aggregated the raw data across all subjects, except for the
conjunction search task where one observer was ignored
(see section Results).

Second, for each task we selected a time range where
all subjects provide enough data in each condition, and
created between 10 and 20 bins for modeling purposes.
For the feature search data, we therefore used a censoring
time of 800 ms and a bin size of 40 ms. After ignoring the

first 240 ms (i.e., the first six 40-ms bins) in which no (or
only few) responses occurred, we end up with 14 bins to
model. For the conjunction search data, we used a censor-
ing time of 1000 ms and a bin size of 50 ms. After ignor-
ing the first 350 ms (i.e., the first seven 50-ms bins) in
which no (or only few) responses occurred, we end up
with 13 bins to model. For the spatial configuration data,
we used a censoring time of 2000 ms and a bin size of 80
ms. After ignoring the first 400 ms (i.e., the first five 80-
ms bins) in which no (or only few) responses occurred,
we end up with 20 bins to model.

Third, trial type TP3 was chosen as the baseline condition
in each search task. The main predictor variable TIME was
centered on value 10 or bin (360,400], 10 or bin (450,500],
and 8 or bin (560,640] for the feature, conjunction, and spatial
configuration search task, respectively. For each task, the in-
tercept and the linear effect of TIME were treated as random
effects to deal with the correlated data resulting from the re-
peated measures on the same subjects. Next to dummy-coding
the levels of our experimental factors (target presence and set
size), we also included TRIAL and BLOCK number as con-
tinuous predictors to model across-trial and across-block
learning effects in the speed of responses. TRIAL was cen-
tered on value 350 (and rescaled by dividing by 10) and
BLOCK on value 8 for each task. Thus, for the feature search
task for example, with all effects set to zero, the h(t) model´s
intercept refers to the estimated cloglog[h(t)] for bin (360,400]
in trial 350 of block 8 when the target is present and set size
equals three (see Table 2, column 5, effect nr. 1).

Fourth, to estimate the parameters of the h(t) model, we
must create a dataset where each row corresponds to a time
bin of a trial of a participant (a person-trial-bin oriented data
set). Specifically, each time bin that was at risk for event
occurrence in a trial was scored on the dependent variable
EVENT (0 = no response occurred; 1 = response occurred),
the centered covariates TIME, TRIAL, and BLOCK, the var-
iable SUBJECT, and the dummy-coded dichotomous experi-
mental predictor variables (TA, SS6, SS12, SS18). Thus, for
the feature search task for example, all trials with observed
RTs > 800 ms were treated as right-censored observations;
they provide the information that the response did not occur
during the first 800 ms or 20 bins after search display onset
(i.e., each of these trials contributes 20 rows, and each row has
a value 0 for EVENT).

Just before running glmmPQL, we deleted the rows corre-
sponding to the first 6, 7, and 5 bins for the feature, conjunc-
tion and spatial configuration search task, respectively, as
mentioned above under step 2. The resulting person-trial-bin
oriented data set contained 168,996, 219,762, and 355,261
rows for the feature, conjunction and spatial configuration
search task, respectively.

Fifth, for each task, we started with a full multi-level EHA
model (46 parameters; with bins at level 1 nested within

6 The complementary log-log link is preferred over the logit link for a discrete-
time hazard model when the events can in principle occur at any time during
each time bin (Allison, 2010), which is the case for RT data: cloglog[h(t)] =
ln{-ln[1-h(t)]}. Inverse of the link: h(t) = 1 - exp{-exp{cloglog[h(t)]}}.
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observers at level 2) encompassing the following effects at
level 1: (a) a 7th-order polynomial for the shape of the baseline
cloglog-hazard function (eight parameters), (b) the effects of
target absence (TA), SS6, SS12 and SS18 were allowed to
interact with time in a quartic fashion (20 parameters), (c)
the interaction effects between TA and each of the three set
sizes could vary over time in a cubic fashion (12 parameters),
and (d) the linear effects of trial and block were allowed to
interact with time in a quadratic fashion (six parameters). For
each task, we used an automatic backward selection procedure
to select a final model. Specifically, during each iteration, the

effect with the largest p value that was not part of any higher-
order effect was deleted, and the model refitted. This contin-
ued until each of the remaining effects that was not part of any
higher-order effect had a p < .05 (see highlighted p values in
Tables 2, 3, and 4).

Finally, after model selection, we refitted the final
model a number of times with TIME centered each time
on another bin, to see explicitly what values the param-
eter estimates take on according to the final model in
these other bins, and whether they represent a signifi-
cant effect or not (see Tables 2, 3, and 4).

Table 2 Parameter estimates and test statistics for the selected hazard model in the feature search task. The selected model was refitted three times with
TIME centered on bin 280, bin 520, and bin 640, respectively

(240,280] (360,400] (480,520] (600,640]

Nr. effect PE p PE std. err. t p PE p PE p

1 (Intercept) -3.3239 0.0000 -0.6147 0.2147 -2.862 0.0042 -0.7098 0.0000 -1.7293 0.0000

2 TIME 0.2405 0.0734 3.276 0.0011

3 TIME2 -0.1333 0.0033 39.880 0.0000

4 TIME3 0.0204 0.0010 20.338 0.0000

5 TIME4 -0.0024 0.0002 10.776 0.0000

6 TIME5 0.0001 0.0000 8.902 0.0000

7 TA -1.6956 0.0000 -0.2483 0.0240 10.323 0.0000 -0.2060 0.0000 0.0895 0.1734

8 TIME:TA 0.0934 0.0138 6.764 0.0000

9 TIME2:TA -0.0676 0.0037 18.164 0.0000

10 TIME3:TA 0.0171 0.0012 13.854 0.0000

11 TIME4:TA -0.0011 0.0001 11.254 0.0000

12 SS6 -0.1641 0.0000 -0.1095 0.0215 -5.083 0.0000 -0.0549 0.0996 -0.0002 0.9959

13 TIME:SS6 0.0182 0.0093 1.954 0.0506

14 SS12 -0.2735 0.0000 -0.1373 0.0249 -5.514 0.0000 0.0266 0.4717 0.0583 0.3911

15 TIME:SS12 0.0589 0.0118 4.971 0.0000

16 TIME2:SS12 0.0015 0.0037 0.413 0.6794

17 TIME3:SS12 -0.0009 0.0004 -2.383 0.0171

18 SS18 -0.4380 0.0000 -0.1950 0.0230 -8.450 0.0000 -0.0153 0.6557 0.1012 0.0935

19 TIME:SS18 0.0704 0.0118 5.965 0.0000

20 TIME2:SS18 -0.0035 0.0021 -1.657 0.0975

21 TA:SS6 0.2926 0.0000 0.1703 0.0306 5.548 0.0000 0.0479 0.2763 -0.0744 0.3334

22 TIME:TA:SS6 -0.0407 0.0128 -3.167 0.0015

23 TA:SS12 0.5966 0.0000 0.2069 0.0326 6.340 0.0000 0.0142 0.7658 0.0186 0.8260

24 TIME:TA:SS12 -0.0970 0.0176 -5.506 0.0000

25 TIME2:TA:SS12 0.0109 0.0031 3.444 0.0006

26 TA:SS18 0.7403 0.0000 0.2631 0.0324 8.112 0.0000 -0.0171 0.7168 -0.1005 0.2102

27 TIME:TA:SS18 -0.1262 0.0174 -7.218 0.0000

28 TIME2:TA:SS18 0.0109 0.0030 3.621 0.0003

29 Trial -0.0050 0.0000 -0.0023 0.0004 -4.902 0.0000 0.0004 0.4731 0.0032 0.0054

30 TIME:Trial 0.0009 0.0001 4.713 0.0000

31 Block 0.0449 0.0000 0.0275 0.0018 14.693 0.0000 0.0102 0.0001 -0.0071 0.1300

32 TIME:Block -0.0057 0.0007 -7.322 0.0000

Note. TIME2 = TIME*TIME; TIME3 = TIME*TIME*TIME; etc. Highlighted p-values indicate effects that had to be significant to stay in the model.
PE = parameter estimate.
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Results

Feature search: Descriptive statistics

In Fig. 3, we present the data from one participant in the
feature search task. In each experimental condition, the hazard
function (top row) rises to a peak and then declines before
hitting the value 1. We denote time bins by the endpoint of

the interval they span, so that “bin 280” refers to bin
(240,280]. For example, in condition SS3 the estimated
h(280) equals 0.42 for TP and 0.014 for TA for this partici-
pant. In other words, if the waiting time has increased until
240 ms after display onset without response occurrence, then
the (conditional) probability that the (first) response will occur
somewhere in bin (240,280] equals 0.42 for TP but only 0.014
for TA; similarly, if the waiting time has increased until

Table 3 Parameter estimates and test statistics for the selected hazard model in the conjunction search task. The selected model was refitted three times
with TIME centered on bin 650, bin 800, and bin 950, respectively. Same conventions as in Table 2.

(450,500] (600,650] (750,800] (900,950]

Nr. effect PE std. err. t p PE p PE p PE p

1 (Intercept) -0.83067 0.1529 -5.429 0.0000 -0.79880 0.0000 -1.26129 0.0000 -1.73059 .0000

2 TIME 0.31784 0.0335 9.460 0.0000

3 TIME2 -0.16165 0.0062 25.758 0.0000

4 TIME3 0.02151 0.0028 7.619 0.0000

5 TIME4 -0.00003 0.0010 -0.034 0.9724

6 TIME5 -0.00022 0.0001 -1.635 0.1020

7 TIME6 0.00001 0.0000 2.262 0.0236

8 TA -0.44065 0.0277 15.898 0.0000 0.11170 0.0008 0.18047 0.0032 0.01110 .9168

9 TIME:TA 0.38436 0.0188 20.403 0.0000

10 TIME2:TA -0.09695 0.0097 -9.899 0.0000

11 TIME3:TA 0.01177 0.0020 5.795 0.0000

12 TIME4:TA -0.00057 0.0001 -4.468 0.0000

13 SS6 -0.25043 0.0264 -9.467 0.0000 0.02804 0.4185 0.26464 0.0000 0.08835 .5171

14 TIME:SS6 0.05858 0.0161 3.621 0.0003

15 TIME2:SS6 0.01828 0.0067 2.697 0.0070

16 TIME3:SS6 -0.00229 0.0006 -3.329 0.0009

17 SS12 -0.73870 0.0272 27.115 0.0000 -0.25413 0.0000 0.13561 0.0177 0.27681 .0122

18 TIME:SS12 0.16024 0.0183 8.730 0.0000

19 TIME2:SS12 0.00327 0.0067 0.484 0.6279

20 TIME3:SS12 -0.00094 0.0006 -1.535 0.1246

21 SS18 -1.12963 0.0280 40.245 0.0000 -0.55897 0.0000 -0.11059 0.0200 0.21551 .0262

22 TIME:SS18 0.21059 0.0159 13.206 0.0000

23 TIME2:SS18 -0.00679 0.0021 -3.108 0.0019

24 TA:SS6 -0.41021 0.0406 10.087 0.0000 -0.31111 0.0000 -0.23745 0.0038 0.22465 .1574

25 TIME:TA:SS6 0.08325 0.0312 2.663 0.0077

26 TIME2:TA:SS6 -0.02440 0.0110 -2.209 0.0271

27 TIME3:TA:SS6 0.00255 0.0009 2.608 0.0091

28 TA:SS12 -1.03899 0.0530 19.572 0.0000 -0.71853 0.0000 -0.61508 0.0000 -0.26466 .0397

29 TIME:TA:SS12 0.19453 0.0428 4.536 0.0000

30 TIME2:TA:SS12 -0.03783 0.0125 -3.021 0.0025

31 TIME3:TA:SS12 0.00286 0.0009 2.937 0.0033

32 TA:SS18 -1.17587 0.0555 21.154 0.0000 -0.99663 0.0000 -0.81739 0.0000 -0.63816 .0000

33 TIME:TA:SS18 0.05974 0.0153 3.892 0.0001

34 Trial 0.00210 0.0005 3.537 0.0004 0.00210 0.0004 0.00210 0.0004 0.00210 .0004

35 Block 0.04790 0.0019 25.204 0.0000 0.04160 0.0000 0.03529 0.0000 0.02899 .0000

36 TIME:Block -0.00210 0.0005 -4.007 0.0001
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320 ms after display onset then the estimated h(360) equals
.76 for TP and .74 for TA. The effect of target presence on h(t)
is clearly visible for each set size in the left tail of the

distribution (i.e., when hazard is rising), and this effect is
decreasing somewhat with increases in set size. The ca(t)
functions show that the fastest responses in the target-absent

Table 4 Parameter estimates and test statistics for the selected hazard model in the spatial configuration search task. The selected model was refitted
three times with TIME centered on bin 960, bin 1280, and bin 1600, respectively. Same conventions as in Table 2

(560,640] (880,960] (1200,1280] (1520,1600]

Nr. effect PE std. err. t p PE p PE p PE p

1 (Intercept) -1.07600 0.2361 -4.556 0.0000 -0.43265 0.0302 -0.69074 0.0001 -1.79917 0.0000

2 TIME 0.32380 0.0158 20.425 0.0000

3 TIME2 -0.06204 0.0046 13.255 0.0000

4 TIME3 0.00842 0.0015 5.598 0.0000

5 TIME4 -0.00095 0.0002 -4.049 0.0001

6 TIME5 0.00004 0.0000 3.100 0.0019

7 TIME6 -0.00000 0.0000 -2.191 0.0284

8 TA -0.54943 0.0261 21.022 0.0000 -0.32379 0.0000 -0.11251 0.0553 0.57951 0.0000

9 TIME:TA 0.15184 0.0144 10.480 0.0000

10 TIME2:TA -0.03992 0.0048 -8.264 0.0000

11 TIME3:TA 0.00456 0.0005 7.811 0.0000

12 TIME4:TA -0.00013 0.0000 -6.801 0.0000

13 SS6 -0.75653 0.0281 26.903 0.0000 -0.75585 0.0000 -0.20832 0.0004 0.76806 0.0000

14 TIME:SS6 -0.04975 0.0141 -3.510 0.0004

15 TIME2:SS6 0.00782 0.0058 1.336 0.1812

16 TIME3:SS6 0.00145 0.0008 1.785 0.0742

17 TIME4:SS6 -0.00007 0.0000 -2.332 0.0197

18 SS12 -1.51813 0.0326 46.565 0.0000 -1.68899 0.0000 -1.12858 0.0000 0.19046 0.1336

19 TIME:SS12 -0.07066 0.0175 -4.015 0.0001

20 TIME2:SS12 -0.00604 0.0068 -0.877 0.3801

21 TIME3:SS12 0.00389 0.0008 4.377 0.0000

22 TIME4:SS12 -0.00015 0.0000 -4.823 0.0000

23 SS18 -2.05118 0.0377 54.352 0.0000 -2.15339 0.0000 -1.52742 0.0000 -0.19681 0.1253

24 TIME:SS18 -0.06195 0.0211 -2.933 0.0034

25 TIME2:SS18 -0.00244 0.0077 -0.315 0.7525

26 TIME3:SS18 0.00347 0.0009 3.528 0.0004

27 TIME4:SS18 -0.00014 0.0000 -4.020 0.0001

28 TA:SS6 -0.83385 0.0458 18.193 0.0000 -0.50727 0.0000 -0.47555 0.0000 -0.73869 0.0000

29 TIME:TA:SS6 0.11850 0.0209 5.655 0.0000

30 TIME2:TA:SS6 -0.00921 0.0020 -4.465 0.0000

31 TA:SS12 -2.05803 0.0869 23.670 0.0000 -1.29614 0.0000 -0.99413 0.0000 -1.15197 0.0000

32 TIME:TA:SS12 0.24795 0.0294 8.410 0.0000

33 TIME2:TA:SS12 -0.01437 0.0023 -6.046 0.0000

34 TA:SS18 -1.98806 0.1155 17.204 0.0000 -1.40328 0.0000 -1.39360 0.0000 -1.67945 0.0000

35 TIME:TA:SS18 0.24138 0.0551 4.379 0.0000

36 TIME2:TA:SS18 -0.02670 0.0076 -3.488 0.0005

37 TIME3:TA:SS18 0.00072 0.0003 2.406 0.0161

38 Trial 0.00001 0.0008 0.020 0.9835 0.00115 0.0496 0.00228 0.0004 0.00342 0.0003

39 TIME:Trial 0.00028 0.0001 2.603 0.0092

40 Block 0.05400 0.0019 27.109 0.0000 0.04819 0.0000 0.04238 0.0000 0.03656 0.0000

41 TIME:Block -0.00145 0.0002 -5.342 0.0000
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conditions tend to be errors (false alarms) while the slowest
responses are error free. In contrast, in the target-present con-
ditions most emitted responses tend to be correct, except for a
small dip in the ca(t) functions that reveals a temporarily in-
creased miss rate around the time when the ca(t) functions in
the target-absent conditions reach 1. This particular partici-
pant, however, was the only one in the sample who emitted
a response before 800 ms in each trial of each condition.

In Fig. 4, we compare the h(t) and ca(t) estimates between this
and three other participants. Comparing individuals reveals that
there are two subgroups of observers that show qualitatively
different ca(t) behavior. Three observers (2, 3, and 7; see Fig.
4, top eight panels) show early false alarms when responses are
emitted around 240 ms after search display onset. We define
early false alarms as “ca(t) ≤ .50 for the earliest emitted re-
sponses, for at least two set sizes when the target is absent”. At
the same time, they show “small dips” in early ca(t) for target
present, i.e., small temporary increases in the miss rate (early
misses) at the time when ca(t) for target-absent trials reaches 1.
The remaining observers show no systematic errors (see Fig. 4,
bottom 8 panels). Note that the latter observers emit their fastest
responses a bit later compared to those individuals who do show

early errors. Interestingly, eight out of nine subjects showed a
small but systematic effect of set size (i.e., SS3 > SS6 > SS12 >
SS18) on h(t) for target-present trials in one or more bins before
or around the time when hazard reaches its peak (see Fig. 4, left
h(t) panels). Finally, for those subjects who were not as fast as
subject number 3 the hazard functions peaked and then declined
toward, and stayed hoovering for some time around a non-zero
value. Note that as time passes on the standard errors for the h(t)
estimates automatically increase because the risk set becomes
smaller and smaller.

Feature search: Inferential statistics

Table 2 shows the selected hazard model for the feature task
(columns 5 to 8). Figure 5 presents the predicted (i.e., model-
based) hazard functions (first column), cloglog-hazard func-
tions (second column), and the corresponding survivor (third
column) and probability mass functions (fourth column), for
each set size in target-present (top row) and -absent trials
(bottom row) for trial 350 in block 8.

Because TRIAL and BLOCK are centered, the first six
parameter estimates (PE) in Table 2 model the shape of the

Fig. 3 Descriptive statistics for subject number 3 in the feature search
task. Top to bottom: h(t), S(t), P(t), and ca(t) for each set size (columns)
and target presence (green = target present, red = Target Absent). Vertical

lines in the h(t), S(t), and P(t) plots represent the sample mean RT, the
estimated median RT or S(t).50, and the sample mean correct RT,
respectively. Horizontal lines in the ca(t) plots represent overall accuracy
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cloglog[h(t)] function for TP3 (the chosen baseline condition)
in trial 350 of block 8 using a 5th order polynomial function of
TIME (Figure 5, first row, second column, green line).
Because TIME is centered on bin 400, the intercept of our
regression model refers to the predicted cloglog[h(400)] value
for TP3 in trial 350 of block 8. Converting back from cloglogs
to hazards, h(400) = .42 (= 1 - exp[-exp(-0.61)]) as shown in
Figure 5 (top left). Parameters 2-6 show a significant linear,
quadratic, cubic, quartic, and quintic effect of TIME on this
intercept estimate, such that the predicted response hazard first
quickly increases with increasing waiting time until around
440 ms after display onset, and then decreases toward a non-
zero value: h(280) = 0.04, h(400) = 0.42, h(520) = 0.39, and
h(640) = 0.16. This shows that the hazard of response occur-
rence changes in a particular fashion on the across-bin/within-
trial time scale.

With respect to the manipulations of interest, we see that in
bin 400 and relative to the reference condition TP3, there is a
main effect of removing the target (parameter 7, column 5, PE
= -0.2483, p < .0001). A measure of effect size for a discrete-
time cloglog-hazard model can be obtained by exponentiating
the parameter estimates which gives us hazard ratios (HR;
Al l i son, 2010, p . 242) . Thus , compared to the

cloglog[h(400)] estimate in the reference condition, removing
the target decreases the estimated cloglog[h(t)] by 0.2483
units, which corresponds to a decrease in response hazard
by a factor of 0.78 (HR(400) = exp[-0.2483] = 0.78). There
are also main effects in bin 400 of changing the set size to 6
(parameter 12, PE = – 0.11, HR = 0.90, p < .0001), to 12
(parameter 14, PE = – 0.14, HR = 0.87, p < .0001), and to 18
(parameter 18, PE = – 0.2, HR = 0.83, p < .0001). The fact
that all these effects are negative indicates that response oc-
currence slows down.

All these main effects change significantly with TIME (pa-
rameters 7 to 20). For example, the effect of target absent
changes in quartic fashion (parameters 7 to 11) so that it equals
– 1.70 in bin 280 (HR = 0.18, p < .0001), – 0.25 in bin 400
(HR = 0.78, p < .0001), – 0.21 in bin 520 (HR = 0.81, p <
.0001), and only 0.09 in bin 640 (HR = 1.09, p = .173). The
effect of SS6 changes in a linear fashion that is marginally
significant (parameter 13, p = .0506). The effect of SS12
changes in a linear and cubic fashion (parameters 15 to 17).
The effect of SS18 changes in a linear fashion (parameters 19
to 20). Increasing the set size leads to a systematic decrease in
the estimated h(t) in bins < 500 ms when the target is present
(see Fig. 5, top left panel). Bins after 500 ms show no

Fig. 4 Inter-individual differences in feature search. Estimates of h(t) and
ca(t) for four participants in the feature search task, for target-present (left
column) and target-absent (right column) trials and each set size (green =

SS3, red = SS6, black = SS12, blue = SS18).Vertical lines in the h(t) plots
represent the sample mean RT. a Subject 2. b Subject 3. c Subject 4. d
Subject 8
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significant effects of set size anymore in the target-present
conditions. Thus, the h(t) functions show a partial ordering
with respect to the systematic effects of target presence (i.e.,
only for t < 600ms) and set size when the target is present (i.e.,
only for t < 500 ms). In other words, once the waiting time has
increased until 600 ms after display onset, then set-size and
target presence have no influence anymore on the hazard of
response occurrence.

As expected, there are also interaction effects in bin 400
between target absent and each of the three set sizes, which
change over TIME (parameters 21–28). These positive inter-
action effects counteract the negative main effects of set size
when the target is present. Note that for each set size (SS6,
SS12, and SS18) the interaction effect with target absent is
larger in absolute value than the main effect of each set size
(i.e., parameter 21 versus 12, 23 versus 14, and 26 versus 18),
both in bin 280 and in bin 400. Thus, increasing the set
size up to 12 leads to a systematic increase in the esti-
mated h(t) in bins < 500 ms when the target is absent;
This can be seen most clearly for bin 280 of the
cloglog-hazard functions in Figure 5 (second row and
column). Bins after 500 ms show no significant interac-
tion effects involving set size anymore.

One advantage of a discrete-time hazard model is that you
can incorporate multiple time scales. Parameters 29 to 32
show that hazard also varies on the across-trial/within-block
time scale, and on the across-block/within-experiment time
scale. First, in bin 400, each additional series of 10 trials will
increase the estimated cloglog[h(t)] value with -0.0023 units
(parameter 29, column 5, p < .0001), and this effect increases
linearly with TIME (parameter 30, PE = .0009, p < .0001).
Thus, while the effect of Trial is negative for the left tail of the
distribution (see Table 2, row 29) it is positive for the right tail
(e.g., in bin 640). Second, each additional block will increase
the estimated cloglog[h(t)] value with 0.0275 units in bin 400
(parameter 31, column 5, p < .0001), and this effect decreases
linearly with TIME (parameter 32, PE = – .0057, p < .0001).
Figure 6a shows how learning effects operating on the block-
wide and experiment-wide time scales affect the shape of the
hazard function in the baseline condition TP3.

Conjunction search: Descriptive statistics

In Fig. 7, we present the data from one participant in the
conjunction search task. In each condition the hazard function
rises to a peak, then declines, and finally keeps hoovering

Fig. 5 Hazard model predictions for feature search. Predicted h(t)
functions for trial 350 in block 8 (first column) and the corresponding
cloglog-hazard functions (second column), S(t) (third column) and P(t)

(right column) functions, for target-present (top row) and target-absent
(bottom row) trials. Vertical lines in the S(t) plots represent the estimated
median RT or S(t).50
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around a non-zero value temporarily. The effect of target pres-
ence on h(t) is clearly present in the left-tail of the distributions
(i.e., when hazard is rising), and this effect is now clearly
increasing with increases in set size. The ca(t) functions show
that responses emitted before 400 ms in the target-absent con-
dition tend to be false alarms. At the same time, they show
“small dips” in early ca(t) for target-present trials, i.e., small
temporary increases in the miss rate (early misses) at the time
when ca(t) for target-absent trials reaches 1.

Inspection of the descriptive functions h(t) and ca(t)
showed that individuals can differ in at least three as-
pects (see Figure 8). First, three observers show a lot of
early false alarms (subjects 4, 5, 6), while the remaining
observers show few-to-no early false alarms. Those sub-
jects who show early false alarms also show an early,
temporary increase in the miss rate (early misses; i.e., a
small dip in ca(t) for TP) at the time when ca(t) for
target-absent trials reaches 1. Second, three observers
(subjects 3, 6, 10) show a very large effect of target
presence on h(t) and S(t) for set sizes 12 and 18, while
the remaining observers show a smaller effect (compare
subjects 10, 2, 4, and 5 in Fig. 8). Third, those subjects
that show few-to-no early errors tend to emit the earliest
responses a bit later compared to those who do show

early false alarms. Note that subject 4 was very fast
overall. Regardless of these individual differences, for
each participant target-present responses were faster on
average than target-absent responses and this difference
increased with set size. Also, for many subjects misses
started to emerge in the later bins for the larger set
sizes, while there were few-to-no late false alarms.
Finally, the effect of set size on h(t) was visible only
in the left tail of the distribution, and not in the flat
right tail. Note that the location of the sample means
is not systematically related to any feature of the shape
of the RT distributions.

Conjunction search: Inferential statistics

Table 3 (columns 3 to 6) shows the selected hazard model for
the conjunction task based on the aggregated data of nine
subjects (subject number 4 was ignored because of a lot of
missing data in the later bins which led to model fitting fail-
ures). Figure 9 presents the predicted (i.e., model-based) haz-
ard functions (top row), cloglog-hazard functions (second
row), and the corresponding survivor (third row) and proba-
bility mass functions (bottom row), for each set size in target-
present and -absent trials for trial 350 in block 8. The first

Fig. 6 Effect of practice on event occurrence. The model-based effects of Trial (T) and Block (B) are shown for the baseline condition (TP3) for the
feature (A), conjunction (B) and spatial configuration (C) search tasks
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seven parameter estimates in Table 3 model the shape of the
cloglog[h(t)] function for TP3 (the reference condition) in trial
350 of block 8 (Fig. 9, top left, green line) using a 6th-order
polynomial function of TIME. Parameters 2–7 show a signif-
icant linear, quadratic, cubic, quartic, quantic, and sextic effect
of TIME on this intercept estimate, such that the predicted
response hazard first increases with increasing waiting time,
and then decreases towards a non-zero asymptote (Fig. 9).

With respect to the manipulations of interest, we see that in
bin 500 and relative to the reference condition TP3, there is a
main effect of removing the target (parameter 8, PE = – 0.44,
HR = 0.64, p < .0001), and main effects of changing the set
size to 6 (parameter 13, PE = – 0.25, HR = 0.78, p < .0001), to
12 (parameter 17, PE = – 0.74, HR = 0.48, p < .0001), and to
18 (parameter 21, PE = – 1.13, HR = 0.32, p < .0001). All
these main effects change significantly with TIME (parame-
ters 8 to 23). For example, the effect of target absent changes
in quartic fashion (parameters 9–12) so that it equals – 0.44 in
bin 500 (HR = 0.64, p < .0001), 0.11 in bin 650 (HR = 1.12, p
< .001), 0.18 in bin 800 (HR = 1.20, p < .005), and only 0.01
in bin 950 (HR = 1.01, p = .92). The effect of SS6 changes in a
cubic fashion (parameter 14 to 16), the effect of SS12 changes
in a cubic fashion (parameters 18–20), and the effect of SS18
changes in a quadratic fashion (parameters 22–23).

There are also interaction effects between Target Absent
and each of the three set sizes, which change over TIME
(parameters 24–33). In contrast to the feature search data,
these interaction effects are now negative, and their absolute
size in each bin increases with increasing set size.
Furthermore, both these interaction effects and the three main
effects of set size are (a) negative in bin 500, (b) decrease in
absolute size over time, (c) are larger for larger set sizes, and
(d) remain significant for a longer time after display onset for
larger set sizes. In other words, the h(t) functions show a
partial ordering with respect to the systematic effects of set
size and target presence (i.e., in general only for t < 1000 ms).

Finally, hazard also varies on the across-trial/within-block
time scale, and on the across-block/within-experiment time
scale. First, each additional series of ten trials will increase
the estimated cloglog[h(t)] value with 0.0021 units (parameter
34, column 3, p < .0001) in each bin. Second, each additional
block will increase the estimated cloglog[h(t)] value with
0.048 units in bin 500 (parameter 35, column 3, p < .0001),
and this effect decreases linearly with TIME (parameter 36,
PE = – .0021, p < .0001). Figure 6B shows how the effect of
trial affects the shape of the hazard function in the baseline
condition within Blocks 1 and 8 when changing from trial 10
to trial 350.

Fig. 7 Descriptive statistics for subject number 5 in the conjunction search task. Same conventions as in Figure 3
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Spatial configuration search: Descriptive statistics

In Fig. 10, we present the data from one participant in the
spatial configuration search task. Instead of only peaked haz-
ard functions, we now see also monotonically increasing haz-
ard functions for the larger set sizes. The effect of target pres-
ence on h(t) is clearly present in the left tail of the distributions
and the difference between the target-present and -absent haz-
ard functions is lasting longer for larger set sizes. The ca(t)
functions show that many responses emitted before 1000 ms
in the target-absent condition tend to be false alarms. At the
same time, they show “small dips” in early ca(t) for target-
present trials. Furthermore, for the larger set sizes 12 and 18
the miss rate starts to increase over time around 1500 ms after
display onset.

Comparing individuals (Fig. 11) shows that four individ-
uals show many early false alarms coupled with early misses
(subjects 1, 7, 8, and 9). The remaining subjects show few-to-
no false alarms and their fastest responses appear somewhat
later compared to the other subjects. Also, subjects 3 and 7
showed very slow behavior when the target is absent for set
sizes 12 and 18 (i.e., hazard functions that start to rise late and
at a very low rate). Regardless of these individual differences,
for each subject target-present responses were on average

faster than target-absent responses and this difference in-
creased with set size. Finally, all subjects show late misses
for the larger set sizes, appearing around 1500ms after display
onset.

Spatial configuration search: Inferential statistics

Table 4 (columns 3–6) shows the selected hazard model for
the spatial configuration task. Figure 12 presents the predicted
(i.e., model-based) hazard functions (top row), cloglog-hazard
functions (second row), and the corresponding survivor (third
row) and probability mass functions (bottom row), for each set
size in target-present and -absent trials for trial 350 in block 8.
In the baseline condition (TP3) the predicted response hazard
first increases with increasing waiting time, and then de-
creases to a non-zero value (Fig. 12).

With respect to the manipulations of interest, we see that in
bin 640 and relative to the reference condition TP3, there is a
main effect of removing the target (parameter 8, PE = – 0.55,
HR = 0.58), and main effects of changing the set size to 6
(parameter 13, PE = – 0.76, HR = 0.47), to 12 (parameter
18, PE = – 1.52, HR = 0.22), and to 18 (parameter 23, PE =
– 2.05, HR = 0.13) and interaction effects between target
absent and set size 6 (parameter 28, PE = – 0.83, HR =

Fig. 8 Inter-individual differences in conjunction search. Estimates of h(t) and ca(t) for four participants in the conjunction search task. a Subject 4. b
Subject 5. c Subject 2. d Subject 10. Same conventions as in Fig. 4
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0.43), set size 12 (parameter 31, PE = – 2.06, HR = 0.13), and
set size 18 (parameter 34, PE = – 1.99, HR = 0.14), with all p <
.0001.

Furthermore, all these effects interact with TIME in a
significantly linear, quadratic, cubic and/or quartic fashion
(see Table 4). As a result, the effect of target presence and
the systematic effect of set size on h(t) in the target-
present condition (i.e., SS3 > SS6 > SS12 > SS18) are
gone around 1500 ms after search display onset
(parameter rows 8, 13, 18, and 23 in Table 4). In contrast
to the conjunction search task, the interaction effects be-
tween target absent and each set size (parameter rows 28,
31, and 34) do not quickly decrease in absolute size over
time (before 1600 ms). In sum, the h(t) functions show a
partial ordering with respect to the systematic effects of
set size and target presence.

Finally, as shown in Fig. 6c, each additional series of ten
trials increases the estimated cloglog[h(t)] value in bin 640
with only 0.00001 units (parameter 38, column 3, p = .98)
but this effect increases linearly with TIME (parameter 39,
PE = .00028, p < .01), so that each additional series of ten
trials increases the estimated cloglog[h(t)] in bin 1600 with
0.00342 units (parameter 38, column 11, p < .001). Second,

each additional block will increase the estimated cloglog[h(t)]
value with 0.054 units in bin 640 (parameter 40, column 3, p <
.0001), and this effect decreases linearly with TIME (param-
eter 41, PE = – .00145, p < .0001).

Discussion

To study the temporal dynamics of visual search behavior, we
applied descriptive and inferential discrete-time event history
analyses to published benchmark RT data from three search
tasks. To study whether correct or error responses occur we
also plotted the ca(t) or micro-level speed–accuracy tradeoff
functions, next to the discrete-time h(t) or hazard functions of
response occurrence.

Based on the results, we draw four conclusions. First, event
history analysis is a useful statistical technique to analyze RT
data as it can detect differences that remain hidden when com-
paring mean RTs, such as the systematic but temporary effect
of set size on h(t) in the feature search task. It is now clear that
many – if not all – experimental manipulations lead to effects
that change over time, whether in the context of masked re-
sponse priming (Panis & Schmidt, 2016), simultaneous

Fig. 9 Hazard model predictions for conjunction search. Predicted h(t)
functions for trial 350 in block 8 (top row) and the corresponding cloglog-
hazard functions (second row), S(t) (third row) and P(t) (bottom row)

functions, for target-present (left column) and target-absent (right column)
trials. Vertical lines in the S(t) plots represent the estimated median RT or
S(t).50
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masking (Panis & Hermens, 2014), or object recognition
(Panis, Torfs, Gillebert, Wagemans, & Humphreys, 2017;
Panis & Wagemans, 2009; Torfs, Panis, & Wagemans,
2010). While many assume that RTs reflect the cumulative
duration of all time-consuming cognitive operations involved
in a task (e.g., Liesefeld, 2018; Song & Nakayama, 2009), our
results show that fast, medium, and slow RTs can actually
index different sets of cognitive operations. Due to the advan-
tages of this method (illustrated in the current work) we rec-
ommend that it is used more often in future empirical and
simulated RT studies7. Second, there are clear individual dif-
ferences in the presence of a systematic pattern of early false
alarms and early misses. Third, the hazard modeling results
suggest differences between the underlying processes in the
three search tasks, and provide strong constraints for future
cognitive modeling efforts. Fourth, there is only a partial or-
dering of the hazard functions with respect to the effects of set
size and target presence, and the hazard functions are relative-
ly flat for the right tail of the RT distributions in all three
search tasks.

No pop-out in h(t) for the feature search task

Why is there a systematic but temporary effect of set size
(i.e., SS3 > SS6 > SS12 > SS18) on early h(t) for feature
search when the target is present (Fig. 5) although there is
no effect of set size on mean correct RT (Fig. 1)? At least
three factors related to object recognition that were not
controlled by Wolfe et al. (2010) might be at play. First,
the eccentricity of the target varies from trial to trial, and it
is known that peripheral targets take a longer time to be
recognized than foveal ones. Second, differences in set size
are confounded with differences in density. This means
that the receptive field of a single high-level visual neuron
might only contain 1 or 2 objects for set size 3, but much
more objects for set size 18. As color sensitivity is lower in
the periphery, it is likely that visual crowding of the eccen-
tric target occurred with large set sizes in many target-
present trials. Third, because the search display was pre-
sented until response, more eye-movements could have
been made with larger set sizes. If this is the case then
the distance between the target location and the eye gaze
location will have varied across the within-trial time (i.e.,
gaze-to-target distance is a time-varying covariate).

A small trend for the reversed effect of set size (i.e., SS3 <
SS6 < SS12 = SS18) on early h(t) for feature search was found

7 R code to calculate the descriptive statistics and the inferential statistics used
by event history analysis can be downloaded here (see Supplementary re-
sources): https://www.researchgate.net/publication/304069212_What_Is_
Shaping_RT_and_Accuracy_Distributions_Active_and_Selective_
Response_Inhibition_Causes_the_Negative_Compatibility_Effect

Fig. 10 Descriptive statistics for subject number 8 in the spatial configuration search task. Same conventions as in Fig. 3
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when the target is absent. This finding is consistent with the
proposal that distractor-distractor feature similarity, next to
target-distractor feature similarity, plays a role in visual search
(Duncan & Humphreys, 1989). Because homogeneous
distractors tend to group perceptually based on their high fea-
ture similarity they can be rejected together and this can ex-
plain why target-absent mean RTs sometimes decrease with
increasing set size (Cheal & Lyon, 1992; Duncan &
Humphreys, 1989; Humphreys & Müller, 1993).

Attentional capture and cognitive control processes
in visual search

We noted that a subset of the observers in each task – those
who tended to respond very early on some trials – showed
early false alarms coupled with early misses. More specifi-
cally, we can distinguish at least three states in the ca(t)
behavior of these fast-onset responders, as can be seen clear-
ly in the lower panels of Figures 3, 7, and 10. First, the very
fast responses show false alarms (ca(t) ≤ .50) when the
target is absent coupled with perfect performance (ca(t) =
1) when the target is present. In other words, these very fast
responses display a strong yes-bias, independent from target

presence. Second, after this initial ca(t) state the slower – but
still relatively fast – responses show perfect accuracy when
the target is absent, and a small but temporary increase in
the miss-rate when the target is present. Third, after this
second ca(t) state responses with intermediate latencies
show high accuracy for both target-present and target-
absent trials. In the conjunction and spatial configuration
search tasks the slower responses in a fourth ca(t) state dis-
play a developing “no”-response bias especially for the larg-
er set sizes. In other words, when the search task is difficult,
the slower responses show virtually no false alarms and a
gradual increase over time of the miss rate.

The results of Kiss, Grubert, and Eimer (2012) provide a
likely explanation for the initial yes-bias in the first ca(t) state
(see also Lee, Leonard, Luck, &Geng, 2018). They concluded
that the attentional selection of targets that are defined by a
combination of features – here: “red” and “vertical” in the
feature and conjunction search tasks – is a two-stage process:
Attention is initially captured by all target-matching features,
but is then rapidly withdrawn from distractor objects that share
some but not all features with the current target. This means
that at the end of the feedforward sweep of the initial neural
responses along the ventral and dorsal pathways right after

Fig. 11 Inter-individual differences in spatial configuration search. Estimates of h(t) and ca(t) for four participants in the spatial configuration search task.
a Subject 1. b Subject 8. c Subject 3. d Subject 4. Same conventions as in Fig. 4
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display onset, all elements in the search display will have
captured attention to some extent, each signaling the presence
of target feature(s) such as red and vertical in the feature and
conjunction search tasks, or combinations of left and right
curvature in the spatial configuration task. This explains the
presence of the early “yes”-response bias in the first ca(t) state
of the fast-onset responders.

But why are these early false alarms followed by early
temporary misses in the second ca(t) state? If we assume that
online error-monitoring processes can detect the task-
interfering “yes”-response bias in the earliest response tenden-
cies, then reactive cognitive control processes can kick in
(Braver, 2012)8. Panis and Schmidt (2016) used EHA to show
that RT and accuracy distributions are shaped by active and
selective response inhibition of premature response tenden-
cies. Thus, it seems that for those participants that display

early overt false alarms, this premature “yes”-response ten-
dency is actively (i.e., top-down) and selectively inhibited –
resulting in a temporary disinhibition of the competing “no”-
response which would lead to an overt no-response if a mo-
mentary threshold is crossed –, which explains the observed
small, early and temporary increase in the miss rate in target-
present trials, and the concurrent almost complete absence of
false alarms in the target-absent trials during the second ca(t)
state. Crucially, the early difference in h(t) between target-
present and -absent conditions might then be caused partially
by a response competition process because both responses
will be activated in target-absent trials, and not completely
by the fact that target absence is confirmed slower on average
than target presence as assumed in serial exhaustive search
models.

In other words, at any point in time the hazard of response
occurrence and conditional accuracy are not only determined
by information from the search process but also by cognitive
control processes (see Panis & Schmidt, 2016). As time passes
on without response occurrence then the chance that target
presence is correctly confirmed or rejected increases and this
search information is additionally influencing the ongoing de-
cision process (Cisek & Kalaska, 2010). Responses during the
third ca(t) state are therefore dominated by information from

8 Braver (2012) discusses a dual-mechanisms framework for cognitive con-
trol. On the one hand, proactive control is about the anticipation and preven-
tion of interference before it occurs. This happens on a long (across-trial) time
scale as goal-relevant information is actively maintained in a sustained manner
in the prefrontal cortex in order to bias attention, perception and action. On the
other hand, reactive control is about the detection and resolution of interference
after stimulus onset. This occurs on a shorter (within-trial) time scale in a
transient manner, for example when response and/or stimulus conflict is de-
tected early in time in the anterior cingulate cortex.

Fig. 12 Hazard model predictions for spatial configuration search. Same conventions as in Fig. 9
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the search process (i.e., selective response inhibition signals
are overridden by response activation signals from the search
outcome) and they thus show high accuracy in both target-
present and target-absent trials. Finally, as time passes on
response-free and target presence is not yet confirmed or
rejected, then search is aborted and a no-bias is developing
for the slower responses during a fourth ca(t) state in the
conjunction and spatial configuration tasks.

Those observers who show no early errors probably have
better proactive control in terms of global (or aselective) re-
sponse inhibition (Panis & Schmidt, 2016)8. In other words,
these observers are proactively and globally inhibiting both
the correct and incorrect response channels until reliable infor-
mation about the search outcome is available. This hypothesis
is consistent with the observation that the earliest responses of
these observers are emitted somewhat later in time compared to
the earliest responses of the observers who show early errors.

Serial versus parallel selection

While there is a general consensus that the current color fea-
ture task relies on parallel selection, and that the current spatial
configuration task relies on serial selection, this is not the case
for the color-orientation conjunction task. According to fea-
ture integration theory (Treisman & Gelade, 1980) attentional
selection is serial because of the need to bind both surface
features for recognition. However, there are many studies that
suggest that certain feature conjunctions can actually be de-
tected in parallel (Eckstein, 1998; McElree & Carrasco, 1999;
Mordkoff, Yantis, & Egeth, 1990; Pashler, 1987; Sung, 2008).
Although our hazard modeling results provide no answer to
this issue, they do show task differences. First, the effect of
trial number on hazard was similar for the conjunction and
spatial configuration task, and different for the feature search
task. Second, the interactions involving set size and time be-
came more complex with task difficulty. These observations
argue against the proposal that differences between search
tasks might be due to purely quantitative differences in target
discriminability (Haslam, Porter, & Rothschild, 2001;
Liesefeld et al., 2016; Wolfe, 1998).

Perhaps the question whether search is parallel or serial is
ill-posed. It is possible that search actually involves parallel
selection early in time as reflected in fast responses < ~500
ms, and serial selection later in time as reflected in slower
responses > ~500 ms. Indeed, Li, Kadohisa, Kusunoki,
Duncan, Bundesen, and Ditlevsen (2018) found that neurons
show parallel processing early after search display onset (re-
lated to the initial feedforward sweep of neural activity after
display onset), whereas they show serial processing later on
(related to attentional effects in recurrent feedback
connections where all processing capacities are focused on
the attended object; see also Gabroi and Lisman, 2003). It is
also possible that sequences of discrete attentional shifts

emerge automatically from a parallel neural dynamic architec-
ture that operates in continuous time (Grieben et al., 2018).

Effects of set size due to recurrent object recognition
and cognitive control processes

According to Reverse Hierarchy Theory (Hochstein & Ahissar,
2002) feature search "pop-out" is attributed to high-level areas
where large receptive fields underlie spread attention detecting
categorical differences. Search for conjunctions or fine discrim-
inations depends on reentry to low-level specific receptive
fields using focused attention. Similarly, Nakayama and
Martini (2011) proposed that visual search relies on object rec-
ognition processes, with high level processing occurring very
rapidly and often unconsciously. They consider object recogni-
tion as a problem of linear classification where high-level areas
have to disentangle the representations of different object clas-
ses by extracting diagnostic feature dimensions. They propose
that search tasks vary on a continuum depending on the com-
putational tradeoff between detail of description (number of
feature dimensions) and scope (number of objects). Feature
search can be performed in a single glance for many objects
(a large attentional window) as only one feature dimension is
relevant. Configuration search takes time because many feature
dimensions have to be extracted for each display element sep-
arately and the small attentional window thus moves serially
from element to element. For example, to solve the current
spatial configuration task spatial attention has to be focused
on each stimulus to extract object-centered spatial reference
frame information to distinguish a digit 2 from a digit 5. For
conjunction search a few feature dimensions are relevant and
therefore an intermediate-sized attentional window is used. For
example, to solve the current conjunction task a time-
consuming attention-based coupling between two neuronal
populations might be necessary (one sensitive to color-
position and the other to orientation-position) while only one
population is necessary for the feature task (color-position;
Grieben et al., 2018). Next to theories based on a strategically
modifiable attentional window (Humphreys & Müller, 1993;
Theeuwes, 1994; Treisman & Souther, 1985) others have pro-
posed that the size of the attentional window is determined by
inherent limitations of the system (Engel, 1977; Geisler &
Chou, 1995; Hulleman & Olivers, 2017).

Palmer (1995) distinguished between four causes of a set
size effect: (a) preselection factors such as target eccentricity
and display density, (b) selection factors such as whether only
one object or a group of objects can be selected, (c)
postselection factors, and (d) decision processes (see also
Liesefeld andMüller, 2019).We can add a fifth cause: increases
in set size might result in stronger automatic response activation
of the yes-response and a stronger selective response inhibition
response due to reactive cognitive control. Similarly, if target
recognition during search performance depends on reentry to
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lower-level populations then set size will affect performance
due to the link between the complexity of the feature that dis-
tinguishes the target from distractors and the receptive field size
of the neurons coding for that feature (VanRullen, Reddy, &
Koch, 2004). Future studies can use event history analysis to
study when and how these different factors affect the shape of
the hazard function of response occurrence. Temporally
distinguishing the contributions from these factors to h(t) can
be done by adding relevant predictors like target eccentricity,
density, gaze-to-target distance, target-distractor similarity, fea-
ture complexity, working memory capacity, etc. to a hazard
model. In other words, by adding the necessary predictors to a
hazard model one can control for variation due to variables
irrelevant to the research question.

Search is aborted rather early

The systematic effect of set size (i.e., SS3 > SS6 > SS12 >
SS18) on response hazards lasted longer for more difficult
search tasks. However, the systematic effects of both target
presence and set size on hazard are rather limited in time.
That is, we observed a partial ordering on the hazard functions
(i.e., set size and target presence affected only the left tail of
the distributions). For example, for the feature, conjunction,
and spatial configuration search tasks the systematic effects of
set size and target presence are gone around 500 ms, 1 s, and
2s after search display onset, respectively.

Thereafter, the system transitions to a state with flat hazard
functions without systematic effects of set size and target pres-
ence (see Figs. 4, 8, and 11). Horizontally shaped hazard func-
tions point to exponentially distributed RTs (see Fig. 2).
Because this is observed for every search task including fea-
ture search, it suggests that the constant hazards in the right tail
of the RT distributions are not related to the visual search
process per se, but to a decision-making process in general
(Palmer et al., 2011). Hazard functions that show a peak and a
flat right tail have been observed before (Holden et al., 2009).
Based on the findings of Shenoy, Sahani, and Churchland
(2013) we assume that these flat right tails reflect RT outliers
during decision making. Shenoy et al. (2013) described neu-
ronal motor activity from a dynamical systems perspective by
studying single-trial neural trajectories in a state-space. They
found that the neural state wanders before falling back on
track in RT outlier trials so that the monkey hesitated for an
abnormally long time before movement onset. Interestingly,
Thompson, Hanes, Bichot, and Schall (1996) found that much
of the RT variance in search tasks is due to postperceptual
motor processing, perhaps to provide the adaptive advantage
of allowing for subsequent visual processing and cognitive
factors to alter the response choice (e.g., explicitly comparing
the presumed target with a few surrounding distractors to con-
firm target presence) before an irrevocable commitment is
made.

Recommendations for experimental design of RT
and other time-to-event data studies

Two general recommendations can be made from the view-
point of event history analysis when designing RT studies.
First, always use the same fixed response deadline in each
trial, for example 500 ms for single-button detection, and
800 ms for an easy two-button discrimination task. Because
hazard analysis deals with right-censored observations, there
is no need to wait for very slow responses that are considered
meaningless and would be trimmed anyway. As a conse-
quence, event history analysis also allows analyzing RT data
in masking paradigms, attentional blink paradigm, etc., that is,
in paradigms for which RT is typically not measured, let alone
analyzed and reported (because typically no differences in
mean RT are found for example). Also, using rather short
and fixed response deadlines will lead to individual distribu-
tions that overlap in time, which is important for h(t) and ca(t)
modeling (Panis & Schmidt, 2016). Furthermore, if you wait
for a response in each trial and let the overt response end the
trial, then you allow subjects to have control over the trial (and
experiment) duration, which should be avoided unless this is
part of the research question. Second, try to design as many
trials as possible per condition because then you can use small
bins and still obtain stable h(t) and ca(t) estimates (i.e., use a
small-N design; Smith & Little, 2018). Also, designing 100
trials per condition, for example, will not result in a large
increase in experiment duration since the response deadline
and thus trial duration can be kept short (see Panis & Schmidt,
2016).

Conclusions

RTand accuracy distributions are a rich source of information on
the time course of cognitive processing. The changing effects of
our experimental manipulations with increases in waiting time
become strikingly clear when looking at response hazards and
micro-level speed–accuracy tradeoff functions. An event history
analysis of time-to-event data can strongly constrain the
choice between cognitive models of the same phenom-
enon. We suggest that future inclusion of recurrent ob-
ject recognition, learning, and cognitive control process-
es in computational models of visual search will im-
prove the ability of such models to account for RT
distributions and to explain the differences in the time-
dispersed behavior of individual searchers.
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Temporal dynamics of sequential motor activation
in a dual-prime paradigm: Insights from conditional accuracy
and hazard functions
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Abstract
In response priming experiments, a participant has to respond as quickly and as accurately as possible to a target stimulus
preceded by a prime. The prime and the target can either be mapped to the same response (consistent trial) or to different
responses (inconsistent trial). Here, we investigate the effects of two sequential primes (each one either consistent or inconsistent)
followed by one target in a response priming experiment. We employ discrete-time hazard functions of response occurrence and
conditional accuracy functions to explore the temporal dynamics of sequential motor activation. In two experiments (small-N
design, 12 participants, 100 trials per cell and subject), we find that (1) the earliest responses are controlled exclusively by the first
prime if primes are presented in quick succession, (2) intermediate responses reflect competition between primes, with the second
prime increasingly dominating the response as its time of onset is moved forward, and (3) only the slowest responses are clearly
controlled by the target. The current study provides evidence that sequential primes meet strict criteria for sequential response
activation.Moreover, it suggests that primes can influence responses out of a memory buffer when they are presented so early that
participants are forced to delay their responses.

Keywords Feedforward sweep . Response priming . Event history analysis . Reaction- time analysis . Visuomotor

Priming paradigms are very popular in many fields of cogni-
tive psychology to study how exposure to a prime stimulus
influences the response to a subsequently presented target
stimulus. In general, the representations that mediate priming
can be located at perceptual (Wiggs & Martin, 1998),
conceptual/semantic (e.g., Schacter & Buckner, 1998), lexical
(e.g., Fernández-López, Marcet, & Perea, 2019), phonological
(e.g., Ferrand&Grainger, 1992), and/or motor response levels
(e.g., Rosenbaum, 1983). In this paper we focus on the so-
called response priming paradigm (Klotz & Neumann, 1999;
Klotz &Wolff, 1995; Vorberg, Mattler, Heinecke, Schmidt, &

Schwarzbach, 2003). In a typical response priming experi-
ment, a participant has to respond as quickly and as accurately
as possible to a target stimulus preceded by a (masked or
unmasked) prime stimulus. The prime and the target can either
be mapped to the same response (consistent trial) or to differ-
ent responses (inconsistent trial). While consistent trials typi-
cally show accelerated and more accurate responses, inconsis-
tent trials show decelerated and less accurate responses, re-
spectively. The differences between consistent and in-
consistent trials in both mean reaction times (RTs) and
overall error rates (ERs) define the response priming
effect. Characteristically, this priming effect increases
linearly with stimulus-onset asynchrony (SOA) for
SOAs of up to about 100 ms (Vorberg et al., 2003).
Response priming effects are believed to be mostly me-
d ia ted by motor response conf l ic t s (Schmidt ,
Haberkamp, & Schmidt, 2011; Schmidt, 2002). However,
how a rapid sequence of visual stimuli is processed and con-
verted into motor action is still under debate. In order to gain
insights into the covert temporal dynamics of our visual sys-
tem and the online transfer of visual signals into overt behav-
ior, we employ event history analysis, a longitudinal technique
to perform a distributional analysis.
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Multiple-prime paradigm

What if instead of only one prime, a sequence of primes is
preceding a target stimulus? A number of previous studies
have touched upon this question. Jaśkowski, Skalska, and
Verleger (2003) presented five pairs of squares sequentially,
with an SOA of 35 ms, so that each stimulus masked the
previous one via metacontrast. The last and largest pair was
the target, and observers had to decide whether the left or right
square contained a gap. The first four pairs could serve as
masked primes that contained a gap in the same (consistent)
or opposite (inconsistent) square as the target. They found that
the priming effect in mean correct RT increases with the num-
ber of primes presented in a sequence of successively masked
stimuli. Because all of the primes within a single trial were
either consistent or inconsistent to the target, this result would
be expected from the accumulation of prime information
(Miller, 1982). Jaśkowski et al. (2003) concluded that “motor
activation evoked by a series of primes does accumulate, fa-
cilitating or inhibiting motor responses to the target” (p. 913).

Similarly, Breitmeyer and Hanif (2008) showed that when
two successively presented prime stimuli are both consistent
to a target in terms of shape (square versus diamond), mean
RTs are faster than when only one of the two primes is con-
sistent. Furthermore, they found that the priming effects from
the second prime dominate over those of the first prime. That
is, if the first prime was consistent and the second inconsistent
to the target (condition “CI”), mean RT increased much more
than when the first prime was inconsistent and the second
consistent (condition “IC”). This contradicts the idea that
due to the longer Prime1-target SOA, the first prime should
cause a larger priming effect than the succeeding second
prime. They argue that the second prime instead updates and
overrides the effects of the first prime.

Grainger, Scharnowski, Schmidt, and Herzog (2013)
employed two 20-ms Vernier stimuli as primes. In a series of
experiments, they found that (1) two primes presented in im-
mediate succession at the same location integrate before acti-
vating a motor response, and do not cause sequential activa-
tion; (2) two identical primes yield larger priming effects than
single primes; (3) one consistent and one inconsistent prime
presented simultaneously at different locations cancel each
other’s effects. More importantly, in the varying-primes con-
dition of their Experiment 3, they presented two lateralized
Vernier primes and a central Vernier target, kept the Prime
1–target SOA constant at 200 ms, and varied the interprime
interval (and thus also Prime 2–target ISI). For interprime
intervals of 30 and 80 ms Prime 2 clearly dominated, but for
an interprime interval of 150 ms (and a corresponding Prime
2–target ISI of 30ms) Prime 1 dominated slightly. The authors
propose that all visual stimuli enter a time-selective buffer
stage, integrate, and only then initiate a motor response.
Instead of activating their associated responses in strict

sequence, their joint impact is determined by their relative
dominance in the motor buffer.

However, it has been suggested that—in the context of
response-conflict paradigms such as response priming and
flanker effects—sequential visual stimuli elicit sequential
feedforward sweeps (Bullier, 2001; Lamme & Roelfsema,
2000; VanRullen & Koch, 2003). These fast and bottom-up
processes can activate motor responses in a strictly sequential
manner (T. Schmidt et al., 2011). Moreover, since both prime
and target in a response priming paradigm activate their re-
spective motor responses, response conflict arises if prime and
target are inconsistent, thus leading to an increase in RT
(Schmidt, 2014). Several studies have demonstrated the exis-
tence of this feedforward and sequential activation, in both
neuronal activity, such as lateralized readiness potentials
(Eimer & Schlaghecken, 1998; Vath & Schmidt, 2007), and
overt behavior, such as the time course of pointingmovements
(Schmidt & Schmidt, 2010; Schmidt, 2002; Schmidt &
Schmidt, 2009) and response-time distributions (Panis &
Schmidt, 2016). In particular, these studies demonstrated that
the first responses are exclusively triggered by prime proper-
ties, independent of the target, whereas only later responses
are influenced by target properties.

Schmidt, Niehaus, and Nagel (2006) hence proposed a
chase theory of response priming in which they formulated
the chase criteria of such a feedforward system: (1) Prime
rather than target signals determine the onset and initial direc-
tion of the response; (2) target signals influence the response
before it is completed; (3) movement kinematics initially de-
pend on prime characteristics only and are independent of all
target characteristics (see Schmidt, 2014, for precise
definitions of criteria and predictions). Such a simple
feedforward-sweep model seems to account very well for re-
sponse priming effects at short SOAs (up to 100 ms), but
would predict unrealistically high error rates for longer
SOAs (because in inconsistent trials, the prime would always
have enough time to drive the wrong response to completion).
Therefore, priming effects at longer SOAs are more plausibly
carried by the content of a response buffer that carries infor-
mation from both primes, but is dominated by the second one
(Grainger et al., 2013). This buffer would allow participants to
delay their responses, waiting out the target.

Event history analysis

The aims of the current study were to trace sequential priming
effects over the time course of a trial to see (a) whether se-
quential primes actually initiate sequential response activa-
tion, (b) whether that sequence conforms to the chase criteria
at short SOAs, and (c) how the influence of the first prime
changes when the interprime interval is prolonged. In order to
investigate the temporal dynamics of response activation, one
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must take the passage of time into account when analyzing
behavioral output. Here, we make use of a relatively new
approach to analyze reaction time data: Event history analysis
(EHA: Allison, 1982, 2010; Luce, 1986; Panis & Schmidt,
2016; Singer & Willett, 2003). In EHA, it is assumed that
for each time point since target onset in each trial of an exper-
iment, there is a risk for the response to occur. The time after
target onset is subdivided into a series of nonoverlapping and
contiguous time bins indexed by t, t ∈ {1…n}, and for each
time bin, the discrete-time hazard probability of response oc-
currence is estimated. The hazard probability h(t) is defined as
the conditional probability that a response occurs sometime
within bin t given that no response has been emitted in previ-
ous bins: h(t) = P(T = t | T ≥ t) (Allison, 1982, 2010; Luce,
1986; Panis, Torfs, Gillebert, Wagemans, & Humphreys,
2017; Panis & Wagemans, 2009). The survival function S(t)
= P(T > t) estimates the probability that no response has been
emitted by the time Bin t is completed. In addition, P(t) = P(T
= t) gives the unconditional probability that a response (no
matter whether correct or incorrect) occurs within Bin t.1

Since correct and incorrect response occurrences are not inde-
pendent (Burle, Vidal, Tandonnet, & Hasbroucq, 2004;
Praamstra & Seiss, 2005), we calculate the conditional accu-
racy ca(t) = P(correct response | T = t), the probability that a
response emitted in time Bin t is correct. Together, h(t) and
ca(t) give an unbiased description of the time course of the
latency and accuracy of responses (Panis & Hermens, 2014;
Panis & Schmidt, 2016).

Current study

Here, we investigate the effects of two sequential primes
followed by one target on response occurrence and accuracy
in a response priming experiment. Our goal was to investigate
(a) whether sequential primes actually initiate sequential re-
sponse activation, or integrate in a buffer before a response is
emitted, (b) whether that response activation sequence con-
forms to the rapid-chase criteria at short SOAs, and (c) how
the influence of the first prime changes when the SOAs are all
prolonged.

We designed a stimulus layout where two primes can be
presented in sequence without mutual interference and with-
out masking. Further, we varied the timing of the stimuli by
keeping the Prime 1 target (P1-T or SOA1) SOA fixed and
moving the onset of Prime 2, resulting in different combina-
tions of Prime 1–Prime 2 (P1–P2) and Prime 2–target (P2–T
or SOA2) SOAs. Each prime could either be consistent or
inconsistent to the target. In a first experiment we investigated
quick successions of primes and target, a second experiment
used prolonged stimulus-onset asynchronies. We reasoned
from the idea that when the P1–T SOA is short (Experiment
1), participants can rely on feedforward response activation

and give speeded responses without using the response buffer.
In contrast, when the P1–T SOA is long (Experiment 2), par-
ticipants are forced to withhold responses in order to avoid
errors triggered by inconsistent primes, and in that situation
the response buffer can influence the response.

Experiment 1

Method

We constructed a stimulus arrangement dubbed the ‘lollipop’
that allows us to present a sequence of primes and targets
without any spatial overlap or masking (see Fig. 1). The lolli-
pop consisted of a large circle subdivided into eight segments
that would contain the primes. A circle in the center of the
lollipop contained the target and served as fixation point.
Participants were instructed to give speeded responses to the
color of the target—red or green—with two successive primes
appearing prior to its onset. For the first prime, every other
lollipop segment briefly changed color simultaneously (all
either red or green). For the second prime, the previously
unoccupied segments all briefly turned red or green simulta-
neously, independent of the color of the first prime.

Participants

Twelve participants (seven female, ages 22–36 years, M =
28.2 years) were recruited out of the pool of students of the
University of Kaiserslautern. They participated in one 60-
minute session for each experiment and were rewarded with
course credits. All of them had normal or corrected-to-normal
vision (17% with correction). Each participant gave informed
consent and was treated in accordance with the ethical stan-
dards of the American Psychological Association.

Apparatus and stimuli

Participants sat comfortably on a chair in front of a 17-inch
VGA cathode-ray monitor (refresh rate of 75 Hz, resolution of
1,280 × 1,024) in a dimly lit room, such that their faces were at
a distance of roughly 80 cm from the screen. Responses were
collected with a USTC Response Time Box (Li, Liang,
Kleiner, & Lu, 2010). Microsoft Windows XP served as the
operating system and the experiments were written in
MATLAB, using the Psychophysics Toolbox extensions
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

Prime and target stimuli appeared inside the lollipop frame,
which was present throughout the trial (see Fig. 1). The frame
was shown in white (54.3 cd/m2, line width 2 pixels) against a
black background (0.03 cd/m2) and consisted of a central cir-
cle (Ø 0.8 cm, 0.57°) for the target and a larger circle (Ø 2.4
cm, 1.72°) for the primes. The large circle was subdivided into
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eight 45° segments by horizontal, vertical and diagonal lines.
The first prime (P1) was presented by filling-in four non-
contiguous segments with the same color (either red, 11.0
cd/m2, x = .45, y = .30, or green, 11.0 cd/m2, x = .24, y =
.40). The second prime (P2)was then presented in the remaining
segments. The two sets of segments were randomly assigned to
colors and primes. As a target stimulus (T), the inner small circle
of the frame was filled with either red or green color.

Procedure

Experiment 1 lasted 60 minutes. The experiment started with
one practice and two experimental blocks with 50 trials each
in which no prime [N] was displayed. This had the purpose to
accustom the participants to the procedure. After completion
of this task, prime conditions were administered to the partic-
ipants. Each prime could either be consistent (same color) or
inconsistent (different color) with the target. There were two
single-prime conditions, consistent [C] and inconsistent [I],
and four double-prime conditions, consistent–consistent
[CC], consistent–inconsistent [CI], inconsistent–consistent
[IC], and inconsistent–inconsistent [II]. (Throughout this pa-
per, we always code consistency relative to the target.) Again,
participants had to complete one practice block, this time
followed by 25 experimental blocks, with 56 trials each.
Each block contained eight single-prime trials and 48
double-prime trials. Altogether, this led to participants com-
pleting 100 trials each for the no-prime, two one-prime and
twelve double-prime (three SOA × four prime combinations)
conditions.2

Each trial began with the onset of the lollipop frame (see
Fig. 1). After 493 ms of fixation, P1 was presented in either

red or green for 13 ms, except for the no-prime trials during
which all segments remained black (such that the SOA struc-
ture was maintained even when one or both primes were ab-
sent). After a P1–P2 SOA of 27, 53, or 80 ms, either a red or
green P2 was presented for another 13 ms, except for the no-
prime and single-prime trials during which all segments
stayed black. Finally, after a P2–T SOA of 80, 53, or 27 ms,
a red or green target followed. As a result, the SOA between
P1 and Twas always 107 ms. The target stayed on-screen for
107 ms. Participants were instructed to fixate the target circle
at the center of the frame (see Fig. 1) and to respond to the
target color as quickly and accurately by pressing one of two
response buttons with their left or right index finger, while all
other stimuli were irrelevant. After detection of the manual
response, a feedback display was shown for 500 ms, followed
by a blank screen for 360 ms before the next trial started.
Participants received a “too slow” feedback message if their
RT was slower than 999 ms. During practice trials they re-
ceived an additional “wrong” feedback message if their re-
sponse was incorrect and “correct” if their response was cor-
rect. Additionally, after each block participants received feed-
back on their performance (percentage correct, number of er-
rors, mean reaction time) and could take a short rest if desired.
Color-to-button mapping was fixed for each participant and
counterbalanced across participants. All stimulus conditions,
except for the blocked no-prime condition, occurred randomly
and equiprobably over the course of a session.

Analysis of mean error rate and mean correct RT

In a first step, mean reaction times (RT) and error rates (ER)
were inspected.We performed two sets of analyses. First, one-

Fig. 1 Stimulus displays and design. After fixating the center of the white lollipop frame, a sequence of two primes and a target is presented, with SOA1–
SOA2 combinations of 27/80, 53/53, or 80/27
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way repeated-measures ANOVAs, with the factor consistency
(consistent, inconsistent, no prime), were performed for

single-prime and no-prime conditions, one for each of the
two dependent variables, RT and ER. A total of 3,600 trials

Table 1 Selected hazard model for Experiment 1

(175,200] (250,275] (300,325] (375,400]

Effect PE p PE SE t p PE p PE p

1 Intercept −4.650 0.0000*** −2.361 0.260 −9.084 0.0000*** −1.318 0.0000*** −0.620 0.0000***

2 TIME 0.637 0.039 16.504 0.0000***

3 TIME2 −0.054 0.004 −14.811 0.0000***

4 TIME3 −0.003 0.001 −3.114 0.0018**

5 TIME4 0.000 0.000 3.366 0.0008***

6 TRIAL −0.003 0.5553 0.005 0.003 1.919 0.0549 0.011 0.0000*** 0.019 0.0000***

7 TIME:TRIAL 0.003 0.001 3.418 0.0006***

8 C 0.179 0.1651 0.729 0.055 13.260 0.0000*** 0.549 0.0000*** −0.029 0.6932

9 TIME:C −0.006 0.025 −0.252 0.8007

10 TIME2:C −0.050 0.009 −5.615 0.0000***

11 TIME3:C 0.004 0.002 2.820 0.0048**

12 I 0.113 0.3951 −0.506 0.070 −7.242 0.0000*** −0.688 0.0000*** −0.308 0.0000***

13 TIME:I −0.196 0.041 −4.785 0.0000***

14 TIME2:I 0.042 0.010 4.291 0.0000***

15 TIME3:I 0.008 0.003 2.915 0.0036**

16 TIME4:I −0.001 0.000 −3.736 0.0002***

17 N 0.666 0.0000*** 0.476 0.061 7.775 0.0000*** 0.050 0.3661 −0.355 0.0000***

18 TIME:N −0.187 0.024 −7.732 0.0000***

19 TIME2:N −0.024 0.007 −3.373 0.0007***

20 TIME3:N 0.006 0.001 4.673 0.0000***

21 II 0.285 0.0012** −0.403 0.054 −7.423 0.0000*** −0.623 0.0000*** −0.396 0.0000***

22 TIME:II −0.193 0.025 −7.688 0.0000***

23 TIME2:II 0.035 0.006 5.714 0.0000***

24 TIME3:II 0.005 0.002 3.146 0.0017**

25 TIME4:II −0.001 0.000 −3.747 0.0002***

26 CC 0.389 0.0000*** 0.627 0.049 12.860 0.0000*** 0.407 0.0000*** −0.084 0.1254

27 TIME:CC −0.054 0.016 −3.404 0.0007***

28 TIME2:CC −0.034 0.005 −6.597 0.0000***

29 TIME3:CC 0.003 0.001 3.835 0.0001***

30 CI −0.256 0.0000*** −0.256 0.032 −8.003 0.0000*** −0.256 0.0000*** −0.256 0.0000***

31 SOA_53_53 −0.191 0.0000*** −0.191 0.032 −5.985 0.0000*** −0.191 0.0000*** −0.191 0.0000***

32 SOA_80_27 −0.223 0.0027** −0.327 0.046 −7.053 0.0000*** −0.336 0.0000*** −0.261 0.0000***

33 TIME:SOA_80_27 −0.017 0.012 −1.359 0.1742

34 TIME2:SOA_80_27 0.006 0.002 2.585 0.0097**

35 II:SOA_53_53 0.124 0.0267* 0.124 0.056 2.216 0.0267* 0.124 0.0267* 0.124 0.0267*

36 II:SOA_80_27 0.245 0.0001*** 0.245 0.062 3.928 0.0001*** 0.245 0.0001*** 0.245 0.0001***

37 CC:SOA_53_53 0.167 0.0021** 0.167 0.054 3.078 0.0021** 0.167 0.0021** 0.167 0.0021**

38 CC:SOA_80_27 0.287 0.0000*** 0.287 0.061 4.693 0.0000*** 0.287 0.0000*** 0.287 0.0000***

39 CI:SOA_80_27 0.212 0.0001*** 0.212 0.055 3.845 0.0001*** 0.212 0.0001*** 0.212 0.0001***

SD Intercept 1.122 .892 .679 .431

SD TIME .124 .124 .124 .123

Correlation −.937 −.899 −.818 −.427

Note. Parameter estimates (PE) and test statistics. During model selection, TIME was centered on bin 275. The selected model was refitted three times
with TIME centered on bin 200, 325, and 400, respectively. SD = standard deviation
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Table 2 Selected ca(t) model for Experiment 1. Parameter estimates (PE) and test statistics

(150,175] (200,225] (250,275] (375,400]

Effect PE p PE p PE SE t p PE p

1 Intercept −2.379 0.0000*** −0.076 0.7026 1.918 0.157 12.187 0.0000*** 3.229 0.0000***

2 TIME 0.797 0.062 12.806 0.0000***

3 TIME2 −0.118 0.015 −7.696 0.0000***

4 TIME3 −0.006 0.003 −1.993 0.0463*

5 TIME4 0.002 0.000 4.087 0.0000***

6 C 5.213 0.0000*** 2.906 0.0000*** 1.339 0.232 5.764 0.0000*** 0.659 0.1446

7 TIME:C −0.599 0.109 −5.516 0.0000***

8 TIME2:C 0.093 0.027 3.369 0.0008***

9 I 0.407 0.5240 −2.040 0.0000*** −2.405 0.188 −12.783 0.0000*** −0.126 0.6165

10 TIME:I 0.188 0.088 2.139 0.0324*

11 TIME2:I 0.148 0.025 5.903 0.0000***

12 TIME3:I −0.019 0.004 −4.559 0.0000***

13 N 3.456 0.0000*** 1.421 0.0000*** 0.112 0.178 0.629 0.5292 0.013 0.9667

14 TIME:N −0.473 0.072 −6.584 0.0000***

15 TIME2:N 0.091 0.018 5.130 0.0000***

16 II −0.900 0.1208 −2.376 0.0000*** −2.438 0.146 −16.694 0.0000*** −0.139 0.4832

17 TIME:II 0.227 0.073 3.108 0.0019**

18 TIME2:II 0.106 0.021 4.951 0.0000***

19 TIME3:II −0.012 0.003 −3.655 0.0003***

20 CC 5.349 0.0000*** 3.189 0.0000*** 1.624 0.175 9.269 0.0000*** 0.309 0.2298

21 TIME:CC −0.634 0.074 −8.596 0.0000***

22 TIME2:CC 0.074 0.016 4.659 0.0000***

23 CI 4.742 0.0000*** 0.487 0.0502 −1.440 0.164 −8.805 0.0000*** −0.471 0.0513

24 TIME:CI −0.494 0.070 −7.041 0.0000***

25 TIME2:CI 0.207 0.024 8.478 0.0000***

26 TIME3:CI −0.014 0.004 −3.927 0.0001***

27 SOA_53_53 −0.461 0.0553 −0.391 0.0226* −0.320 0.115 −2.780 0.0054** −0.144 0.3858

28 TIME:SOA_53_53 0.035 0.039 0.893 0.3717

29 SOA_80_27 −1.177 0.0179* −1.246 0.0000*** −1.137 0.168 −6.750 0.0000*** −0.091 0.7183

30 TIME:SOA_80_27 0.099 0.075 1.322 0.1862

31 TIME2:SOA_80_27 0.022 0.013 1.736 0.0826

32 II:SOA_80_27 −0.367 0.6955 0.626 0.1782 1.074 0.234 4.595 0.0000*** −0.190 0.5370

33 TIME:II:SOA_80_27 0.088 0.133 0.661 0.5085

34 TIME2:II:SOA_80_27 −0.068 0.023 −2.928 0.0034**

35 CC:SOA_80_27 2.505 0.0002*** 1.928 0.0001*** 1.351 0.322 4.199 0.0000*** −0.092 0.8261

36 TIME:CC:SOA_80_
27

−0.289 0.105 −2.750 0.0060**

37 CI:SOA_53_53 1.327 0.0015** 0.957 0.0013** 0.587 0.195 3.012 0.0026** −0.339 0.2108

38 TIME:CI:SOA_53_53 −0.185 0.068 −2.733 0.0063**

39 CI:SOA_80_27 4.495 0.0000*** 3.388 0.0000*** 2.281 0.256 8.911 0.0000*** −0.486 0.1392

40 TIME:CI:SOA_80_27 −0.553 0.085 −6.521 0.0000***

SD Intercept .373 .324 .353 .353

SD TIME .081 .081 .081 .081

Correlation −.496 −.068 .398 .406

Note.During model selection TIMEwas centered on bin 275. The selected model was refitted three times with TIME centered on bin 175, 225, and 400,
respectively
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were initially available for analysis. Trials with reaction times
faster than 100 ms or slower than 999 ms (0.5%) were exclud-
ed from the analysis. Further, error trials (10.92%) were ex-
cluded from RT analysis.

Second, two 3 (SOA) × 4 (consistency) repeated-measures
ANOVAs were performed for all double-prime conditions,
one each for RT and ER. A total of 14,400 trials were initially
available for analysis. Trials with reaction times faster than
100 ms or slower than 999 ms (0.53%) were excluded from
the analysis. In addition, error trials (13.53%) were excluded
from RT analysis. To follow up significant interaction effects,
one-way repeated-measures ANOVAs, with the four-level fac-
tor consistency (CC, CI, IC, II) were performed separately for
each SOA condition. Greenhouse–Geisser-corrected p values
were used. To satisfy ANOVA requirements error rates were
arcsine transformed. Additional within-subjects contrasts
were calculated to further investigate significant main effects.

Event history analysis

Sample-based descriptive estimates of hazard function h(t),
survival function S(t), probability function P(t), and
conditional-accuracy function ca(t) were calculated for each
combination of condition. For the purpose of visually
inspecting the descriptive functions data was pooled across
participants to reduce noise, after checking that each partici-
pant showed similarly timed effects. A censoring time
of 600 ms was used because only a limited amount of
responses occurred afterwards. To provide a high tem-
poral resolution and still obtain stable estimates a bin
size of 25 ms was used. In other words, the first 600 ms
after target onset were divided into 24 time bins of 25 ms
indexed by t = 1 to 24. Trials with RTs longer than 600 ms
were treated as right-censored observations. Time bins are
denoted by the endpoint of the interval they span, such that
Bin 11 = Bin 275 = (250,275].

Next, discrete-time hazard models and conditional accura-
cy models were estimated by computing linear mixed-effects
regression models in R (R Core Team, 2014; function
glmmPQL3 of package MASS; see also Panis & Schmidt,
2016). For the hazard models we used the complementary
log-log (cloglog) link.4 An example discrete-time hazard
model with three predictors can be written as follows:
cloglog[h(t)] = ln(−ln[1 − h(t)]) = [α0ONE + α1(TIME − 1)
+ α2(TIME −1)2 + α3(TIME − 1)3] + [β1X1 + β2X2 +
β3X2(TIME − 1)]. The main predictor variable TIME is the
time bin index t which is centered on value 1 in this example.
The first set of terms within brackets, the alpha parameters
multiplied by their polynomial specifications of (centered)
time, represents the shape of the baseline cloglog-hazard func-
tion (i.e., when all predictors Xi take on a value of zero). The
second set of terms (the beta parameters) represents the verti-
cal shift in the baseline cloglog-hazard for a 1 unit increase in
the respective predictor. For example, the effect of a 1 unit
increase in X1 is to vertically shift the whole baseline cloglog-
hazard function with β1 cloglog-hazard units. However, if the
predictor interacts linearly with time (see X2 in the example),
then the effect of a 1 unit increase in X2 is to vertically shift the
predicted cloglog-hazard in Bin 1 with β2 cloglog-hazard
units (when TIME − 1 = 0), in Bin 2 with β2 + β3 cloglog-
hazard units (when TIME − 1 = 1), and so forth. To interpret
the effects of the predictors, the parameter estimates are
antilogged, resulting in a hazard ratio.

For our data we centered TIME on Bin 275 during model
selection. TRIAL number was included as a predictor (cen-
tered on Trial 1,000, rescaled by dividing by 100), in order to
account for across-trial learning effects in h(t). The intercept
and the linear effect of TIMEwere treated as random effects to
deal with the correlated data resulting from the repeated mea-
sures on the same subjects.5 The IC-27/80 condition (P1: in-
consistent, P2: consistent, SOA1: 27 ms, SOA2: 80 ms) was

Fig. 2 Mean correct RT results for Experiment 1. No and single-prime
conditions: Left panel, error bars resemble the standard error of the mean,
consistency conditions on the x-axes. Double-prime conditions: Right
panel, error bars resemble the standard error of the mean, separate lines
for consistency conditions, SOA conditions on the x-axes

Fig. 3 Mean ER results for Experiment 1. No and single-prime condi-
tions: Left panel, error bars resemble the standard error of the mean,
consistency conditions on the x-axes. Double-prime conditions: Right
panel, error bars resemble the standard error of the mean, separate lines
for consistency conditions, SOA conditions on the x-axes
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chosen as a baseline condition. Because TIME and TRIAL are
centered, the intercept of the hazard regression model refers to
Bin 275 in Trial 1,000 of the IC-27/80 condition.

To estimate the parameters of an h(t) model, wemust create
a dataset where each row corresponds to a time bin of a trial of
a participant (a subject-trial-bin oriented data set).
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Specifically, each time bin that was at risk for event occur-
rence in a trial was scored on the dependent variable EVENT
(0 = no response occurred; 1 = response occurred), the cen-
tered covariates TIME, TRIAL, the variable SUBJECT, and
the dummy-coded dichotomous experimental predictor vari-
ables (C, I, N, II, CC, CI, SOA_53_53, SOA_80_27). Only
the time range between 125 and 450mswas modeled, because
most responses occurred in this range. Trials with RTs longer
than 450 ms were treated as right-censored observations, and
trials with RT smaller or equal to 125 ms were discarded. The
expanded (subject-trial-bin oriented) data set contained
157,656 rows.

For ca(t) modeling, the original dataset was used where
each row corresponds to one trial of one participant (1,500 ×
12 = 18,000 trials). We used the same model but applied the
logit link6, and included only those trials with an observed
response between 125 and 450 ms in the data set. In other
words, trials with RT shorter than 125 ms and longer than
450 ms were discarded (11.63 % of the 18,000 trials).

For bothmodels, we started with a full model containing all
fixed effects of interest (main and interaction effects of the
dichotomous predictors), and their interactions with TIME
(linear, quadratic, cubic, and quartic). In a step-by-step back-
ward selection procedure, this full model was reduced to the
final, selected model. More precisely, in each iteration, the
effect with the largest p > .05 that was not part of any higher
order effect left the model before the next fit. Finally,
after model selection, we refitted the selected model a
number of times with TIME centered each time on an-
other bin, to see explicitly what values the parameter
estimates take on according to the final model in these
other bins, and whether they represent a significant effect (see
Tables 1 and 2). This way, it becomes more explicit what the
interaction effects including TIME imply, because we are able
to study the effect of the various predictor variables at different
time points.

Predictions

We expected primes to have sequential effects that are trace-
able over time in the conditional accuracy functions. Because

P1–T SOAs in Experiment 1 are short, the sequence of re-
sponse activations should conform to the chase criteria, so that
the earliest responses are controlled exclusively by the first
prime, while later responses are consecutively controlled by
the second prime, and the slowest responses by the target. The
earliest responses should therefore be correct whenever P1 is
consistent with the target and incorrect whenever it is incon-
sistent. In contrast, the slowest responses should be controlled
mainly by the target and thus all be correct. Intermediate re-
sponses should be influenced by the second prime.
From previous data, we expected that the second prime
would dominate the response at the shortest P1–P2 SOA
(i.e., the longest P2–T SOA), and this dominance of the
second prime should decrease with increasing P1–P2
SOA because the first prime has progressively more time to
activate a response before the second prime occurs, while the
second prime has progressively less time before the target
occurs (Grainger et al., 2013).

Results

Analysis of mean error rate and mean correct RT

An analysis of the single prime conditions showed that re-
sponses were faster and more accurate when primes were
consistent rather than inconsistent, with the no-prime condi-
tion in between (see Figs. 2 and 3, left panel). One-way re-
peated-measures ANOVAs showed significant differences in
RT, F(1.45, 15.90) = 33.39, p < .001, as well as error rates,
F(1.84, 20.25) = 35.56, p < .001. In RTs as well as error rates,
all means were significantly different from each other, all p ≤
.001, except for the RT difference between consistent and no-
prime conditions (p = .061).

In a next step, double-prime conditions were analyzed.
RTs and error rates showed a similar overall pattern:
Responses were fastest and most accurate for two consis-
tent primes, slowest and least accurate for two inconsistent
primes, and in between when primes were mixed (condi-
tions CI and IC). In RTs, a two-way repeated-measures
ANOVA showed a significant main effect of consistency
(with levels CC, CI, IC, II), F(2.09, 22.98) = 64.94, p <
.001, a significant main effect of SOA F(1.85, 20.35) =
10.43, p = .001, and a significant interaction, F(4.00,
44.04) = 7.86, p < .001 (see Fig. 2, right panel). This pattern
was broken down into two separate ANOVAs, one for iden-
tical (CC, II) and one for different primes (CI, IC). The first
one (CC versus II) only showed a significant main effect of
consistency, F(1.00, 11.00) = 113.30, p < .001. This effect
was constant across SOA, with no main effect of SOA or an
interaction. The second test (CI versus IC) showed that RT
increased with SOA, F(1.78, 19.32) = 27.76, p < .001.
There was no main effect of consistency, but a significant
interaction, F(1.46, 16.10) = 12.69, p = .001. IC was faster

Fig. 4 Sample-based estimates of h(t), S(t), P(t), and ca(t) aggregated
across all participants in Experiment 1, for the first 24 bins (or 600 ms)
after target onset. Bin width equals 25 ms. First column: Black lines
represent the no-prime condition, green lines the consistent single-prime
condition, and red lines the inconsistent single-prime condition. Second
to last column: Each column represents a different SOA condition. Green
lines represent consistent–consistent conditions, cyan lines inconsistent–
consistent conditions, orange lines consistent–inconsistent conditions, red
lines inconsistent–inconsistent conditions. Black vertical lines highlight
bins at ~250–275ms after onset of P1, grey vertical lines after onset of P2.
Note that we only plotted a ca(t) estimate if the corresponding hazard for
that bin was larger than .005. For better visibility only every second error
bar is depicted

R
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than CI when the first SOA was short, but slower when
it was long.

This pattern was even clearer (and almost perfectly sym-
metrical) in the error rates. An ANOVA of all double-prime

Fig. 5 Model predictions. Predicted hazard (first row), cloglog[h(t)] (second row), logit[ca(t)] (third row), and conditional accuracy functions (fourth
row) for trial 1,000 of Experiment 1. Again, black vertical lines highlight bins at ~250–275 ms after onset of P1, grey vertical lines after onset of P2
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conditions showed no main effect of SOA, but a significant
main effect of consistency, F(1.73, 19.07) = 37.84, p < .001,
and a significant interaction F(3.38, 37.18) = 5.61, p = .002.
The follow-up analysis of CC versus II conditions only
showed a main effect of consistency, F(1.00, 11.00) = 59.40,
p < .001, but no SOA or interaction effects. The follow-up
analysis of CI versus IC conditions only showed an interac-
tion, F(1.98, 21.74) = 13.87, p < .001, but no main effects: IC
was more accurate than CI when the first SOAwas short, but
less accurate when it was long.

Event history analysis: Descriptive statistics

In the single-prime conditions (see the first column in Fig. 4),
the fastest responses occurred around 150 ms after target on-
set. Thereafter, we saw a steady increase in response hazards,
which was delayed for inconsistent compared with consistent
primes. This led to a marked priming effect in h(t) of about
150 ms duration, and also in median RT (i.e., when the survi-
vor function crosses .5) and mean RT. When most responses
had occurred and the survival probability was low, response
hazard was still at a high constant level. Strikingly, early re-
sponses were virtually always correct whenever the prime was
consistent, but incorrect whenever it was inconsistent, show-
ing that responses were exclusively determined by the prime,
not the target. In inconsistent trials, conditional accuracy then
quickly increased from almost zero to almost one, showing
how the target took control over the response.7

Let us now take a look at the double-prime conditions
where the P1–P2 SOAwas short and the P2–T SOAwas long
(27/80’ see the second column in Fig. 4), so that the impact of
the second prime should be high relative to the first prime.
Again, the fastest responses occurred around the same time in
all priming conditions, around 150 ms after target onset or
about 250 ms after P1 onset. However, initial response haz-
ards in CI and IC conditions were lower than in CC and II
conditions around 150–200 ms. This likely reflected early
response competition due to conflicting prime information,
as both primes activated opposite responses. After about
250 ms without response occurrence, the hazard functions
began to differentiate and followed the order observed in
mean RTs: CC was fastest, followed by IC, CI, II. This was
evident in the hazard, survivor, and probability mass func-
tions. The most diagnostic information, however, was in the
conditional accuracy functions. Not surprisingly, the earliest
responses were virtually all correct when both primes were
consistent and all incorrect when both primes were inconsis-
tent, which again showed that the first prime determined the
earliest responses. In the II condition, conditional accuracy
then quickly increased as the target took control over the re-
sponse. This also occurred in the IC condition, demonstrating
that the first prime alone controlled the earliest responses; but
the following increase in accuracy occurred earlier than in the

II condition, demonstrating that the consistent second prime
influenced the response as well. Exactly the reverse process
occurred in the CI condition. Here, response accuracy was
nearly perfect at first because of the consistent first prime, then
decreased as the inconsistent second prime became effective,
and then increased again as the target finally took control over
the response.

What happened when the SOAs shifted first to 53/53 and
then to 80/27? The overall pattern in ca(t) remained the same:
CC was always fastest with near-perfect accuracy, II was al-
ways slowest with conditional accuracy rising from very low
to very high values, IC always showed an earlier increase in
conditional accuracy, time-locked to the second prime’s
appearance. The most important change occurred in the
CI condition. As the P1–P2 SOA became larger and the
P2–T SOA became correspondingly shorter, the influ-
ence of the inconsistent second prime diminished, and
the temporary drop in conditional accuracy became
smaller. As with the effects observed in IC, this nadir in con-
ditional accuracy was time locked to the second prime’s
presentation.

Event history analysis: Inferential statistics

To see whether these observed differences are significant we
fitted hazard and conditional accuracy models to the aggregat-
ed data. Table 1 shows the selected hazard model, and Table 2
the selected ca(t) model. Figure 5 shows predicted (i.e., mod-
el-based) hazard cloglog[h(t)], logit[ca(t)], and conditional ac-
curacy functions for Trial 1,000 (note that choosing another
trial number would not change the priming effects because we
did not include interaction effects including TRIAL). The first
five parameters in Table 1 model the shape of the cloglog[h(t)]
function in the baseline condition, IC-27/80 in Trial 1,000 (see
Fig. 5, row 2, column 2, blue line). The intercept of −2.361
cloglog-hazard units corresponds to an estimated hazard of .09
in Bin 275. This intercept increases over time in a linear,
quadratic, cubic and quartic fashion (see the Parameters 2 to
5 in Table 1), so that the intercept changes from −4.65 in Bin
200 to −.62 in Bin 400 (see row 1 in Table 1).

Most importantly, compared with condition IC, changing
to CC increases the estimated cloglog-hazard in Bin 275 by
.627 units (Parameter 26), changing to CI decreases it by
.256 units (Parameter 30), and changing to II decreases it by
.403 units (Parameter 21; all p < .0001). While the main
effects of CC and II in Bin 275 change in magnitude over
time (parameter estimates in rows 27–29, 22–25), the effect
of CI is time invariant. For example, note that in Bin 200
conditions, II and CC have positive parameter estimates that
significantly differ from condition IC (see the parameter
estimates in rows 21 and 26 in Table 1, column 3). This
means that the hazard of response occurrence is lower in
Bin 200 in mixed prime conditions.
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The effect of changing the SOA combination from 27/80 to
53/53 is to decrease the estimated cloglog-hazard by.191 units
in all bins (Parameter 31). The estimated cloglog-hazard de-
creases even further when SOA combination is changed to 80/
27 (Parameters 32–34). In other words, response occurrence
slows down with decreasing P2–T SOA for condition IC.
However, this effect is much smaller or absent for CC and II
due to interactions with 53/53 (Parameters 35 and 37) and 80/
27 (Parameters 36 and 38). Furthermore, with SOA combina-
tion 80/27 the difference between CI and IC is gone (due to
Parameter 39 neutralizing the effect of Parameter 30).
Finally, the hazard model also shows a significant effect
of TRIAL on the estimated cloglog-hazard in bins after
275 ms after target onset.

The first five parameters in Table 2 model the shape
of the logit[ca(t)] function in the baseline condition, IC-
27/80 in Trial 1,000 (see Fig. 5, row 3, column 2, blue
line). The intercept of 1.918 corresponds to an estimated
ca(t) of .87 in Bin 275. This intercept increases over
time in a linear, quadratic, cubic and quartic fashion
(Parameters 2–5).

Most importantly, compared with condition IC, changing
to CC increases the estimated logit-ca(t) in Bin 275 by 1.624
units (Parameter 20), changing to CI decreases it by 1.44 units
(Parameter 23), and changing to II decreases it by 2.438 units
(Parameter 16; all ps < .0001). Themain effects of CC, CI, and
II in Bin 275 change over time (Parameters 16–26), so that
relative to IC, the positive effect of CC decreases over time,
the negative effect of II first increases and then decreases, and
the effect of CI shifts from positive to negative to zero. For
example, note that in Bin 175 conditions CC and CI have
positive parameter estimates that significantly differ from

condition IC while II is not significantly different (compare
rows 20 and 23 with row 16 in Table 2, column 3). This means
that the conditional accuracy of these early responses is almost
zero for II and IC, and almost one for CI and CC, thus
reflecting first prime identity (see Fig. 5, row 4).

Increasing the P1–P2 SOA leads to a decrease in the esti-
mated logit-ca(t) in each bin (Parameters 27–31). Confirming
the change in the temporary drop in conditional accura-
cy for condition CI in Fig. 4 are the (early and positive)
interactions between CI, SOA combination, and TIME
(Parameters 37–40).

Summary

As expected, mean RT and mean ER analyses of the single-
prime and no-prime conditions revealed that the stimulus-set
used was sufficient to produce the common finding in re-
sponse priming experiments: faster and more accurate re-
sponses in consistent trials and slower and less accurate re-
sponses in inconsistent trials. Similarly, when two primes
were presented, responses were fastest and most accurate for
two consistent primes, slowest and least accurate for two in-
consistent primes, and in between when primes were mixed.
The event history analysis showed that sequential primes in
fact initiate sequential response activation: (1) earliest
responses were controlled exclusively by the first prime, (2)
intermediate responses reflected competition between the
primes where the identity of the second prime increasingly
dominated the response as P2–T SOA increased, (3) this latter
effect was tracking the onset of the second prime, both in
magnitude and timing, and (4) only the slowest responses
were clearly controlled by the target.

Fig. 6 Stimulus displays and design. After fixating the center of the white lollipop frame a sequence of two primes and a target is presented, with SOA1–
SOA2 combinations of 80/187, 133/133, or 187/80
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Experiment 2

Method

Participants

All participants from the first experiment also took part in the
second experiment (see Participants section for Experiment
1). Experiment order was counterbalanced.

Apparatus and stimuli

The same apparatus and stimuli were employed (see
Apparatus and Stimuli section in Experiment 1).

Procedure

Again, each trial began with the onset of the lollipop frame
(see Fig. 6). This time, after 333 ms of fixation, P1 was

Table 3 Selected hazard model for Experiment 2

(150,175] (250,275] (300,325] (375,400]

effect PE p PE SE t p PE p PE p

1 Intercept −5.941 0.0000*** −2.162 0.259 −8.355 0.0000*** −1.190 0.0000*** −0.843 0.0000***

2 TIME 0.666 0.037 18.245 0.0000***

3 TIME2 −0.089 0.004 −23.066 0.0000***

4 TIME3 −0.002 0.001 −2.467 0.0136*

5 TIME4 0.001 0.000 6.131 0.0000***

6 TRIAL 0.008 0.0000*** 0.008 0.002 4.099 0.0000*** 0.008 0.0000*** 0.008 0.0000***

7 C 0.128 0.4836 0.315 0.050 6.343 0.0000*** 0.268 0.0000*** 0.022 0.7489
8 TIME:C 0.000 0.026 −0.001 0.9995
9 TIME2:C −0.012 0.005 −2.337 0.0194*

10 I −0.279 0.1733 −0.442 0.056 −7.876 0.0000*** −0.383 0.0000*** −0.118 0.0377*

11 TIME:I 0.006 0.029 0.217 0.8282
12 TIME2:I 0.012 0.005 2.409 0.0160*

13 N 1.282 0.0000*** 0.337 0.053 6.368 0.0000*** 0.034 0.5100 −0.208 0.0024**

14 TIME:N −0.180 0.022 −8.171 0.0000***

15 TIME2:N 0.014 0.004 3.248 0.0012**

16 II 1.188 0.0000*** −0.569 0.059 −9.696 0.0000*** −0.790 0.0000*** −0.394 0.0000***

17 TIME:II −0.236 0.028 −8.398 0.0000***

18 TIME2:II 0.063 0.006 10.072 0.0000***

19 TIME3:II 0.001 0.001 0.662 0.5082
20 TIME4:II −0.001 0.000 −2.521 0.0117*

21 CC 0.754 0.0000*** 0.335 0.038 8.733 0.0000*** 0.194 0.0000*** 0.069 0.1961
22 TIME:CC −0.082 0.019 −4.397 0.0000***

23 TIME2:CC 0.006 0.004 1.522 0.1281
24 CI −0.100 0.5469 −0.529 0.047 −11.279 0.0000*** −0.599 0.0000*** −0.358 0.0000***

25 TIME:CI −0.095 0.027 −3.494 0.0005***

26 TIME2:CI 0.026 0.006 4.155 0.0000***

27 TIME3:CI 0.003 0.002 1.769 0.0769
28 TIME4:CI −0.001 0.000 −2.630 0.0085**

29 SOA_80_187 0.780 0.0000*** 0.350 0.049 7.174 0.0000*** 0.200 0.0000*** 0.056 0.3904
30 TIME:SOA_80_187 −0.086 0.020 −4.252 0.0000***

31 TIME2:SOA_80_187 0.005 0.003 1.621 0.1050
32 SOA_133_133 0.275 0.0000*** 0.160 0.032 5.045 0.0000*** 0.103 0.0000*** 0.018 0.6524
33 TIME:SOA_133_133 −0.029 0.010 −2.884 0.0039**

34 II:SOA_80_187 −0.933 0.0000*** −0.080 0.078 −1.025 0.3055 0.137 0.0550 0.202 0.0222*

35 TIME:II:SOA_80_187 0.143 0.030 4.809 0.0000***

36 TIME2:II:SOA_80_187 −0.017 0.005 −3.336 0.0008***

37 II:SOA_133_133 −0.381 0.0028** −0.169 0.068 −2.496 0.0126* −0.063 0.2253 0.096 0.1665
38 TIME:II:SOA_133_133 0.053 0.018 2.925 0.0034**

39 CC:SOA_80_187 −0.818 0.0000*** −0.127 0.064 −1.982 0.0474* −0.007 0.9181 −0.107 0.2798
40 TIME:CC:SOA_80_187 0.098 0.029 3.364 0.0008***

41 TIME2:CC:SOA_80_187 −0.019 0.006 −3.154 0.0016**

42 CI:SOA_80_187 −0.268 0.0534 −0.093 0.069 −1.337 0.1811 −0.005 0.9291 0.127 0.1213
43 TIME:CI:SOA_80_187 0.044 0.021 2.082 0.0374*

SD Intercept 1.301 .888 .696 .460
SD TIME .111 .111 .111 .111
Correlation −.954 −.898 −.828 −.528

Note. Parameter estimates (PE) and test statistics. During model selection TIME was centered on bin 275. The selected model was refitted three times
with TIME centered on bin 175, 325, and 400, respectively
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presented in either red or green for 27 ms, except for the no-
prime trials, during which all segments remained black. After

a P1–P2 SOA of 80, 133, or 187 ms, either a red or green P2
was presented for 27 ms, except for the no-prime and single-

Table 4 Selected ca(t) model for Experiment 2

(175,200] (250,275] (300,325] (375,400]

Effect PE p PE SE t p PE p PE p

1 Intercept 1.861 0.0000*** 2.827 0.176 16.059 0.0000*** 3.139 0.0000*** 3.603 0.0000***

2 TIME 0.188 0.054 3.499 0.0005***

3 TIME2 −0.025 0.013 −1.968 0.0491**

4 TIME3 0.005 0.003 1.877 0.0605

5 TIME4 0.000 0.000 −0.784 0.4328

6 C 0.700 0.0378* 0.223 0.207 1.079 0.2807 −0.095 0.5991 −0.573 0.0359*

7 TIME:C −0.159 0.061 −2.599 0.0094**

8 I −3.641 0.0000*** −1.287 0.193 −6.660 0.0000*** −0.322 0.1310 0.218 0.4510

9 TIME:I 0.603 0.095 6.345 0.0000***

10 TIME2:I −0.060 0.020 −2.998 0.0027**

11 N −0.723 0.0000*** −0.723 0.158 −4.584 0.0000*** −0.723 0.0000*** −0.723 0.0000***

12 II −6.031 0.0000*** −2.997 0.173 −17.332 0.0000*** −1.590 0.0000*** −0.402 0.0576

13 TIME:II 0.827 0.064 12.927 0.0000***

14 TIME2:II −0.062 0.013 −4.679 0.0000***

15 CC 0.961 0.0011** 0.111 0.151 0.731 0.4645 0.229 0.1297 0.313 0.1589

16 TIME:CC −0.022 0.073 −0.298 0.7660

17 TIME2:CC 0.059 0.019 3.039 0.0024**

18 TIME3:CC −0.009 0.004 −2.637 0.0084**

19 CI −3.660 0.0000*** −3.678 0.188 −19.545 0.0000*** −2.233 0.0000*** −1.129 0.0000***

20 TIME:CI 0.721 0.103 7.017 0.0000***

21 TIME2:CI 0.072 0.025 2.823 0.0048**

22 TIME3:CI −0.044 0.006 −6.856 0.0000***

23 TIME4:CI 0.004 0.001 4.837 0.0000***

24 SOA_80_187 0.972 0.0034** −0.013 0.170 −0.076 0.9396 −0.386 0.0178* −0.574 0.0081**

25 TIME:SOA_80_187 −0.240 0.065 −3.706 0.0002***

26 TIME2:SOA_80_187 0.028 0.022 1.291 0.1967

27 TIME3:SOA_80_187 0.000 0.004 −0.128 0.8984

28 SOA_133_133 −0.097 0.7321 0.051 0.162 0.317 0.7513 0.034 0.8416 −0.166 0.4399

29 TIME:SOA_133_133 0.015 0.056 0.260 0.7949

30 TIME2:SOA_133_133 −0.012 0.012 −0.978 0.3280

31 II:SOA_80_187 1.084 0.0000*** 1.084 0.207 5.239 0.0000*** 1.084 0.0000*** 1.084 0.0000***

32 II:SOA_133_133 0.724 0.0008*** 0.724 0.215 3.365 0.0008*** 0.724 0.0008*** 0.724 0.0008***

33 CI:SOA_80_187 −1.783 0.0058** 1.598 0.254 6.289 0.0000*** 1.640 0.0000*** 0.281 0.3841

34 TIME:CI:SOA_80_187 0.369 0.119 3.089 0.0020**

35 TIME2:CI:SOA_80_187 −0.205 0.040 −5.113 0.0000***

36 TIME3:CI:SOA_80_187 0.016 0.006 2.538 0.0112*

37 CI:SOA_133_133 −0.146 0.7966 0.672 0.230 2.922 0.0035** 0.769 0.0010** 0.242 0.4493

38 TIME:CI:SOA_133_133 0.138 0.111 1.242 0.2142

39 TIME2:CI:SOA_133_133 −0.045 0.023 −1.987 0.0470*

SD Intercept .231 .390 .496 .655

SD TIME .053 .053 .053 .053

Correlation .988 .996 .998 .999

Note. Parameter estimates (PE) and test statistics. During model selection TIME was centered on bin 275. The selected model was refitted three times
with TIME centered on bin 200, 325, and 400, respectively
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prime trials, during which all segments remained black. After
a P2–T SOA of 187, 133, or 80ms, respectively, a red or green
target was presented. In this experiment, P1–P2 and P2–T
SOAs always added up to a P1–T SOA of 267 ms. The target
stayed on-screen for 107 ms.

Analysis of mean error rate and mean correct RT

In a first step, two sets of analyses were performed.
First, one-way repeated-measures ANOVAs, with the
factor consistency (consistent, inconsistent, no prime),
were performed for single-prime and no-prime condi-
tions, one for each of the two dependent variables, RT
and ER. A total of 3,600 trials were initially available
for analysis. Trials with reaction times faster than
100 ms or slower than 999 ms (0.58%) were excluded from
the analysis. Further, error trials (then 8.16%) were excluded
from RT analysis.

Second, two 3 (SOA) × 4 (consistency) repeated-
measures ANOVAs were performed for all double-
prime conditions, one each for RT and ER. Initially, a
total of 14,400 trials were available for analysis. Trials
with reaction times faster than 100 ms or slower than
999 ms (0.93%) were excluded from the analysis.
Further, error trials (then 12.88%) were excluded from
RT analysis. To follow up on significant interaction ef-
fects, one-way repeated-measures ANOVAs, with the
four-level factor consistency, were performed separately
for each SOA condition.

Greenhouse–Geisser-corrected p values were used.
To satisfy ANOVA requirements, error rates were arc-
sine transformed. Additional within-subjects contrasts
were calculated to further investigate significant main
effects.

Event history analysis

First, descriptive statistics were calculated as in Experiment 1
(see Event History Analysis section in Experiment 1). Next,
for hazard modeling purposes, we censored the trials at
450 ms after target onset, and discarded the first five bins,
since the most informative events occurred within 125 to
450 ms. The final data set for fitting h(t) models contained
153,286 rows.

Finally, for ca(t) modeling, the original data set was used
where each row corresponds to one trial of one participant
(1,500 × 12 = 18,000 trials). Trials with a response latency
below 125 ms or above 450 ms were deleted (12.36% of the
data), in order to avoid problems of linear separability during
model fitting. The final data set for the ca(t) model contained
15,775 rows.

The estimation procedures were the same for both
models as in Experiment 1, except that now the IC-
187/80 condition (P1: inconsistent, P2: consistent, P1–
P2 SOA: 187 ms, P2–T SOA: 80 ms) was chosen as a
baseline condition. In summary, with all effects set to
zero, the h(t) model’s intercept refers to the estimated
cloglog[h(t)], and the ca(t) model’s intercept to the es-
timated logit[ca(t)], for bin 275 in Trial 1,000 of the IC-
187/80 condition. Again, we refitted the selected model
a number of times, with TIME centered each time on
another bin (see Tables 3 and 4).

Predictions

Because P1–T SOAs in Experiment 2 are long, responses are
no longer expected to conform to the chase criteria because
participants have to wait out the target in order to safeguard
against errors provoked by the primes, so that early primes can
influence responses only out of the memory buffer that carries
information from both primes but is dominated by the second

Fig. 8 Mean ER results for Experiment 2. No and single-prime condi-
tions: Left panel, error bars resemble the standard error of the mean,
consistency conditions on the x-axes. Double-prime conditions: Right
panel, error bars resemble the standard error of the mean, separate lines
for consistency conditions, SOA conditions on the x-axes

Fig. 7 Mean correct RT results for Experiment 2. No and single-prime
conditions: Left panel, error bars resemble the standard error of the mean,
consistency conditions on the x-axes. Double-prime conditions: Right
panel, error bars resemble the standard error of the mean, separate lines
for consistency conditions, SOA conditions on the x-axes
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one (Grainger et al., 2013). Therefore, we expected that early
responses would no longer be controlled exclusively by the
first prime, but jointly by both primes, with the second prime

becoming more dominant as the P2–T SOA increased. The
latest responses should be controlled mainly by the target and
thus all be correct.
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Results

Analysis of mean error rate and mean correct RT

Analysis of the single prime conditions showed that responses
were faster and more accurate when primes were consistent
rather than inconsistent. The no-prime condition was interme-
diate in response times, but higher than the other two in error
rate (see Figs. 7 and 8, left panel). One-way repeated-mea-
sures ANOVAs showed significant differences in RT,
F(1.34, 14.75) = 12.60, p = .002, as well as error rates,
F(1.82, 20.02) = 3.95, p = .039. In RTs, the differences be-
tween all means were significant, all ps ≤ .002, except
the one between consistent and no primes. In ER, only
the difference between consistent and no primes was
significant, p = .035.

In a next step, double-prime conditions were analyzed (see
Figs. 7 and 8, right panel). Responses were fastest and most
accurate for two consistent primes and slowest and less accu-
rate for two inconsistent primes. The CI condition was virtu-
ally identical to the II condition in response times, but slightly
higher in error rate. The IC condition was similar to the CC
condition in error rates, but slower in terms of response times.
In RTs, a two-way repeated-measures ANOVA showed a sig-
nificant main effect of consistency (with levels CC, CI, IC, II),
F(1.55, 17.00) = 59.88, p < .001, a significant main effect of
SOA, F(1.62, 17.83) = 87.63, p < .001, and a significant
interaction, F(3.35, 36.88) = 3.66, p = .018, that seems to be
based on the less steep increase in RT with SOA in the CC
condition. We broke down this pattern post hoc into two sep-
arate ANOVAs, one for inconsistent and one for consistent
second primes. The first one (II versus CI) only showed that
response time increased with SOA, F(1.73, 19.01) = 87.91, p
< .001. The second test (CC versus IC) showed that responses
were faster for CC than for IC, F(1.00, 11.00) = 15.44, p =
.002, that RT increased with SOA, F(1.66, 18.30) = 15.66, p <
.001, and that the increase was steeper for IC than for CC,
F(1.68, 18.46) = 6.11, p = .012.

The same strategy was used for the error rates. An ANOVA
of all dual-prime conditions showed no main effect of SOA,
but a significant main effect of consistency, F(1.83, 20.08) =
45.15, p < .001, and an interaction effect, F(4.26, 46.82) =

2.55, p = .048. The analysis of CC versus IC conditions gave
no significant effects, and neither did the analysis of II versus
CI conditions.

Event history analysis: Descriptive statistics

In the single-prime conditions (first column in Fig. 9), the first
responses occur after about 200 ms, which is a bit later
than in Experiment 1 and in line with the prediction
that participants have to safeguard against errors. After
that, there is an increase in response hazards that is
steeper for consistent than for inconsistent primes, lead-
ing to an advantage in mean and median RT. Again,
around 400 ms after target onset, this priming effect is
gone. As in Experiment 1, early responses are mostly correct
when the single prime is consistent, but incorrect when it is
inconsistent, showing that early responses are still determined
by the prime, not the target.8

Let us now look at the double-prime conditions where the
P1–P2 SOA is short and the P2–T SOA is long (80/187,
second column in Fig. 9), so that the impact of the second
prime should be high relative to the first prime. Again, al-
though the very earliest responses occur around the same time
in all priming conditions, initial response hazards in CI and IC
conditions are lower than in CC and II conditions, reflecting
early response competition between both prime-triggered re-
sponses (see also the survivor functions). After about 250 ms,
both groups begin to differentiate and now follow the order
observed in mean RTs: CC, IC, and then CI and II. Again, the
most diagnostic information is in the conditional accuracy
functions, which show a markedly different pattern than in
Experiment 1. The earliest responses are still predominantly
correct when both primes are consistent and predominantly
incorrect when both primes are inconsistent, showing that
the earliest responses are not determined by the target,
but by information in the primes. However, conditional
accuracy functions for CC and IC are virtually identical,
as are those of II and CI. In other words, the earliest
systematic responses reflect only the second prime and
not the first, probably because the P1–T SOA is too
long. However, if observers would respond faster, we believe
that the very first responses would reflect the first prime, just
as in Experiment 1.

Although these early effects seem to be driven largely by
the second prime, comparison with the 133/133 and 187/80
SOA conditions shows that the effects on hazard cannot be
attributed to the second prime alone. While the CC, CI, and II
condition show highly similar time courses in every condition,
this is not true for the IC condition: The longer the first SOA
and the shorter the second one, the more delay appears in
condition IC compared with CC (the same effect that is evi-
dent in average RT). This effect shows that the first prime has
an influence on the timing of the response. Moreover, it

Fig. 9 Sample-based estimates of h(t), S(t), P(t), and ca(t) aggregated
across all participants in Experiment 2, for the first 24 bins (or 600 ms)
after target onset. Bin width equals 25 ms. (First column) Black lines
represent the no-prime condition, green lines the consistent single-prime
condition, and red lines the inconsistent single-prime condition. (Second
to last column) Each column represents a different SOA condition. Green
lines represent consistent-consistent conditions, cyan lines inconsistent-
consistent conditions, orange lines consistent-inconsistent conditions, red
lines inconsistent–inconsistent conditions. Black vertical lines highlight
bins at ~275–300 ms after onset of P2. Note that we only plotted a ca(t)
estimate if the corresponding hazard for that bin was larger than .003. For
better visibility only every second error bar is depicted

R
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appears that with shorter P2–T SOA, effects of the second
prime become visible in the conditional accuracy functions.

Earliest responses are increasingly more incorrect in the IC
condition and increasingly more accurate in the CI condition.

Fig. 10 Model predictions. Predicted hazard (first row), cloglog[h(t)] (second row), logit[ca(t)] (third row), and conditional accuracy functions (fourth
row) for trial 1,000 of Experiment 2. Black vertical lines highlight bins at ~275–300 ms after onset of P2
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Event history analysis: Inferential statistics

Table 3 shows the selected hazard model, and Table 4 the
selected ca(t) model. Figure 10 shows predicted (i.e., model-
based hazard) cloglog[h(t)], logit[ca(t)] and conditional accu-
racy functions for Trial 1,000. The first five parameters in
Table 3 model the shape of the cloglog[h(t)] function in the
baseline condition, IC-187/80 in Trial 1,000 (see Fig. 10, row
2, column 4, blue line). Most importantly, compared with
condition IC, changing to CC increases the estimated
cloglog-hazard in Bin 275 by .335 units (Parameter 21),
changing to CI decreases it by .529 units (Parameter 24),
and changing to II decreases it by .569 units (Parameter 16;
all ps < .0001). While the main effect of CC in Bin 275 de-
creases over time, the main effects of II and CI increase over
time initially (Parameters 17–20, 25–28). Similar to Bin 200
in Experiment 1, in Bin 175 the estimated cloglog-hazard is
higher for CC and II than the mixed conditions IC and CI.

The effect of changing the SOA combination from 187/80
to 133/133 is to increase the estimated cloglog-hazard in the
early bins (Parameters 32–33). The estimated cloglog-hazard
in these bins increases even further when SOA combination is
changed to 80/187 (Parameters 29–31). In other words, re-
sponse occurrence speeds up with increasing P2–T SOA.
The remaining interactions between dual-prime (II, CC, CI),
SOA, and TIME (Parameters 34–43) mainly reflect a lower
cloglog-hazard in Bin 175, especially for SOA combination
80/187.

The first five parameters in Table 4 model the shape of the
logit-ca(t) function in the baseline condition, IC-187/80 in
Trial 1,000 (see Fig. 10, row 3, column 4, blue line). Most
importantly, compared with condition IC, changing to CC
increases the estimated logit-ca(t) in Bin 275 by .111 units
(Parameter 15; p = .4645), changing to CI decreases it by
3.678 units (Parameter 19; p < .0001), and changing to II
decreases it by 2.997 units (Parameter 12; p < .0001). These
main effects of CC, CI, and II in Bin 275 decrease in magni-
tude over time (Parameters 12–23).

There is no significant main effect of decreasing the P1–P2
SOA from 187 to 133 (Parameters 28–30), but decreasing it to
80 ms increases the estimated logit-ca(t) in Bin 200 and de-
creases the estimated logit-ca(t) for bins >300 ms (Parameters
24–27). Finally, there are time-invariant interactions between
II and SOA combinations (Parameters 31–32), and time-
varying interactions between CI and SOA combinations
(Parameters 33–39), which all increase the estimated logit-
ca(t) in at least some of the bins.

Summary

Overall, even with a long P1–T SOA, single-prime conditions
produced the common finding in response priming experi-
ments: faster and more accurate responses in consistent trials

and slower and less accurate responses in inconsistent trials.
Again, when two primes were presented, responses were
fastest and most accurate for two consistent primes, and
slowest and least accurate for two inconsistent primes.
However, under the SOA conditions of Experiment 2, when
primes were mixed, we found a clear dominance of the second
prime. In particular, CI was almost identical to II, in both
response times and error rates. Similarly, IC was almost iden-
tical to CC in error rate, but slightly slower. In other words, in
both RT and ER the second prime seemed to dominate the
response, yet an inconsistent first prime could still slow down
response times. This might reflect early response competition
due to conflicting prime information in mixed prime
conditions.

Again, in order to investigate the temporal dynamics of
sequential motor activation, we performed an event history
analysis. Altogether, the findings suggest that with prolonged
SOAs: (1) The earliest systematic responses were predomi-
nantly controlled by the second prime, (2) the slowest re-
sponses were controlled by the target, (3) overt responses to
the first prime were extremely rare; however, (4) the first
prime was able to slow down initial response hazards in mixed
prime conditions compared with conditions with identical
primes.

General discussion

The goal of the current study was to investigate (a) whether
sequential primes initiate immediate sequential response acti-
vation or integrate in a buffer before a response is emitted, (b)
whether sequential response activation at short SOAs con-
forms to the rapid-chase criteria, and (c) how the influence
of the first prime changes when the SOAs are prolonged so
that participants have to safeguard against early errors from
inconsistent primes.

Event history analysis provides substantial evidence that
sequential primes initiate strictly sequential response activa-
tion at short SOAs (Experiment 1). First, we found that earliest
responses were exclusively controlled by the first prime irre-
spective of the identity or onset time of the second prime, that
intermediate responses were influenced by the second prime
(with the magnitude and timing of this effect depending on the
second prime’s onset time), and that only late responses were
controlled by the actual target. This strongly supports the no-
tion of feedforward and sequential activation, and is in line
with previous findings that first responses are exclusively trig-
gered by prime properties, independent of the target, and only
later responses are influenced by target properties (Eimer &
Schlaghecken, 1998; Grainger et al., 2013; Schmidt &
Schmidt, 2010; Schmidt, 2002; Schmidt & Schmidt, 2009;
Vath & Schmidt, 2007). Thus, the data adhere to the chase
criteria proposed by T. Schmidt (2014): (1) The first prime
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rather than the target or subsequent prime signals determine
the onset and initial direction of the response; (2) target and
second prime influence the response before it is completed;
(3) movement kinematics initially depend on characteristics of
the first prime only and are independent of all characteristics
of target and subsequent prime signals.

Second, as mentioned before (see Multiple-Prime
Paradigm section), a simple feedforward-sweep model seems
to account very well for response priming effects at short
SOAs (up to 100 ms). However, priming effects at longer
SOAs are more plausibly carried by the content of a response
buffer that carries information from both primes but is domi-
nated by the second one (Grainger et al., 2013). This notion is
supported by our findings. When SOAs were long
(Experiment 2), we found that early systematic responses
were predominantly triggered by the second prime’s identity
and that later responses were triggered by the target’s identity.
In contrast to the first experiment, we found that overt re-
sponses to the first prime were extremely rare, but we identi-
fied an indirect, covert influence of the first prime’s identity on
motor response activation, as there were signs of response
competition due to conflicting prime information in mixed
prime conditions. This strongly suggests that information of
a first prime was indeed maintained in a memory buffer and
could influence the response that is otherwise dominated by
the second prime. Future computational models of decision-
making (cf. Mattler & Palmer, 2012; Schmidt & Schmidt,
2018; Schubert, Palazova, & Hutt, 2013; Ulrich, Schröter,
Leuthold, & Birngruber, 2015; Vorberg et al., 2003) should
test whether the observed hazard and conditional accuracy
functions can be simulated with or without a memory buffer.

It is important to point to the different insights that can be
gained from an ANOVA on mean correct RT, versus an event
history analysis. First, in accordance with the conclusions from
previous findings (Breitmeyer & Hanif, 2008; Grainger et al.,
2013), a second prime dominates the priming effect in mean
correct RTs and ER, at least for short interprime intervals.
However, the event history analysis showed that the first prime
dominated themotor response in the earliest bins (Experiment 1).
Thus, in contrast to Breitmeyer and Hanif (2008), this suggests
that the second prime does not update and override the effects of
the first prime, but that both prime-triggered motor responses are
competing in mixed conditions, and under the right SOA setup,
even the first prime is able to dominate the motor response.

Second, when SOAs were long (Experiment 2), we found
an even clearer dominance of the second prime since partici-
pants seemed to safeguard against early errors provoked by
the first prime by waiting out the target. Although response
accuracy was entirely dominated by the second prime, RT
analysis revealed that an inconsistent first prime in IC condi-
tions could still slow down responses compared with
consistent-only conditions. The event history analysis con-
firmed that early hazards were lower in mixed prime

conditions compared with identical prime conditions. We pro-
pose that this is due to response competition created by con-
flicting prime information. Further, this effect increased with
prolonged SOAs between primes, again reflecting a reduced
dominance of the second prime due to an increase of the first
prime’s effect. Thus, the first prime can still influence the
motor response with long SOAs. Note that these systematic
differences between SOA ranges imply that long and short
SOAs should not be mixed within the same experiment, since
the presence of long SOAswould enforce a strategy of waiting
out the target even in trials where the SOA is short (Schmidt,
Haberkamp, & Schmidt, 2011).

When we compare SOA combination 187/80 of
Experiment 2 with SOA combination 27/80 of Experiment
1, we see that P2 dominated behavior more in the former than
in the latter condition. Therefore, in line with Grainger et al.
(2013), we propose that the first prime can influence the re-
sponse only out of a memory buffer in Experiment 2, since
prime information seemed to be kept active for a prolonged
period of time without activating a response on its own.

Importantly, we designed our lollipop stimulus in such a way
as to minimize masking effects (no spatial overlap) and Simon/
flanker effects (prime information is presented at both sides of the
target). However, it is unclear if active response inhibition was
playing a role in the generation of the behavior in Experiment 2.
Panis and Schmidt (2016) and Schmidt, Hauch, and Schmidt
(2015) showed that a second stimulus can trigger active and
selective inhibition of the response triggered by a first stimulus,
within about 360 ms. For example, for SOA combinations 133/
133 and 187/80 we see that CI has a lower conditional accuracy
than II for bins after 225 ms. This might be caused by active
inhibition of the first compatible response, creating an even stron-
ger activation of the incompatible response channel in condition
CI than in II. Future modeling studies should investigate this
issue further.

More generally, the information obtained from an event his-
tory analysis can provide strong constraints for computational
models of the underlying sensory integration, decision, and cog-
nitive control processes (Panis, Moran, Wolkersdorfer, &
Schmidt, 2020). For example, existing models differ in (a)
whether sensory integration is perfect (e.g., the drift-diffusion
model; Ratcliff & Rouder, 1998) or leaky (e.g., the leaky
competing accumulator model of Usher & McClelland, 2001),
(b) whether the response criterion is fixed (e.g., Poisson
accumulator models; Schmidt & Schmidt, 2018; Schubert
et al., 2013; Vorberg et al., 2003) or variable (the urgency gating
model of Cisek, Puskas, & El-Murr, 2009), and (c) whether clas-
sic computational principles (e.g., the Bayesian reader model of
Norris, 2006) or dynamic principles (e.g., the dynamic field
theory of Schöner, Spencer,, & The DFT Research Group,
2016) are used (e.g., see Carland, Thura, & Cisek, 2019, for a
discussion of these issues). Comparing empirical and simulated
data from such models using event history analysis will allow
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future studies to better select between and validate the different
computational models available in the literature.

While behavioral experiments are informative, they allow
only indirect inferences about the underlying neural correlates.
Ultimately, one wants to complement the behavioral data with
physiological data such as EEG, fMRI, single-cell data, and so
forth. Note that hazard modeling allows incorporating time-
varying explanatory covariates such as heart rate, EEG signal
amplitude, and gaze location (Allison, 2010), which is useful
for cognitive psychophysiology (Meyer, Osman, Irwin, &
Yantis, 1988).

In summary, the current study provides substantial evi-
dence that sequential primes actually initiate sequential re-
sponse activation, and that this sequence conforms to the
chase criteria at short SOAs. However, when SOAs are
prolonged participants have to delay their responses, the first
prime seems to influence responses out of a memory buffer.
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Abstract: The Negative Compatibility Effect (NCE) is a reversal in priming effects that can occur when a masked 
arrow prime is followed by an arrow target at a long stimulus-onset asynchrony (SOA). To test the explanation that 
the NCE is actually a positive priming effect elicited by mask features associated with the prime-opposed response, 
we devise masks that always point in the same direction as the prime, eliminating all antiprime features. We find large 
positive priming effects for arrow primes without masks and for arrow masks without primes. When a neutral mask 
is introduced, priming effects turn negative at long SOAs. In the critical case where the mask is an arrow in the same 
direction as the prime, the prime does not add to the positive priming effect from the mask shape, but instead strongly 
diminishes it and induces response errors even though all stimuli point in the same direction. No such feature-free 
inhibition is seen when arrows are replaced by color stimuli. We conclude that even though response activation by 
stimulus features plays a role in the NCE, there is a strong inhibitory component (though perhaps not in all feature 
domains) that is not based on visual features.

Keywords: Negative Compatibility Effect Response Inhibition Response Priming.

1  Introduction
The time course of activation and inhibition of choice responses can be studied in two closely related paradigms using 
the same stimuli with slightly different timing. Response priming (Klotz & Neumann, 1999; Klotz & Wolff, 1995; Vorberg, 
Mattler, Heinecke, T. Schmidt, & Schwarzbach, 2003) uses a prime and a subsequent target separated by a stimulus 
onset asynchrony (SOA) of up to 100 ms. The prime either triggers the same response as the target (consistent prime) 
or the opposite response (inconsistent prime). Consistent primes speed up responses to the target while inconsistent 
primes slow down responses and induce fast errors, and this response priming effect increases with SOA (Vorberg et al., 
2003). Converging evidence from lateralized readiness potentials (Eimer & Schlaghecken, 1998; Leuthold & Kopp, 1998; 
Vath & T. Schmidt, 2007; Verleger, Jaśkowski, Aydemir, van der Lubbe, & Groen, 2004), response hazards and response 
time distributions (Panis & T. Schmidt, 2016; F. Schmidt & T. Schmidt, 2014; Wolkersdorfer, Panis, & T. Schmidt, 2020; 
Panis & T. Schmidt, 2022), pointing trajectories (Brenner & Smeets, 2004;  T. Schmidt, 2002; T. Schmidt & F. Schmidt, 
2009), and force profiles (F. Schmidt, Weber, & T. Schmidt, 2014) indicates that response priming is based on strictly 
sequential response activation, first only by the prime, then additionally by the target, probably by pure feedforward 
processing (T. Schmidt, Niehaus, & Nagel, 2006). Visual masking may be employed to dissociate the prime’s visibility 
from its ability to activate a response (Vorberg et al., 2003; T. Schmidt & Vorberg, 2006; also see Biafora & T. Schmidt, 
2020), but the prime can also be employed unmasked or as a flanker to the target, so that response priming is very 
closely related to the Eriksen flanker paradigm (Eriksen & Eriksen, 1974; F. Schmidt, Haberkamp, & T. Schmidt, 2011; 
Schwarz & Mecklinger, 1995). 
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When SOAs longer than 100 ms are employed (and especially when a mask intervenes between prime and target), 
the response priming effect can reverse so that consistent trials become slower and more error-prone than inconsistent 
trials (Negative Compatibility Effect, NCE; Eimer & Schlaghecken, 1998; see Lingnau & Vorberg, 2005, for the full time-
course of response priming and NCE). Eimer and Schlaghecken (1998) used lateralized readiness potentials to discover 
a sequence of three response activations: an initial activation of the prime-related response at a fixed time after prime 
onset, followed by a transient activation of the opposite (antiprime) response that is responsible for the reversal of the 
priming effect, and finally another activation of the target-related response. The same sequence can be observed in the 
time course of response hazards in response time distributions (Panis & T. Schmidt, 2016). 

Several theories try to explain the emergence of antiprime activation (for a review, see Sumner, 2007). Eimer and 
Schlaghecken (1998, 2003) proposed that the prime automatically triggers its own inhibition that becomes noticeable as 
soon as the mask removes “perceptual evidence” for the prime. Consequently, the antiprime response is disinhibited, 
and the priming effect is reversed. In contrast, Jaśkowski and Przekoracka-Krawczyk (2005) proposed that it is not 
the prime that triggers its own inhibition; instead, the mask actively inhibits the premature prime-triggered response 
(Jaśkowski & Przekoracka-Krawczyk, 2005; Jaśkowski, 2007, 2008, 2009; Jaśkowski, Białuńska, Tomanek, & Verleger, 
2008). In contrast to Eimer and Schlaghecken’s proposal, this “emergency break” would not require strong subjective 
masking of the prime, only a sufficiently strong mask signal. This theory correctly predicts that inhibition is time-locked 
to the mask, not to the prime (Panis & T. Schmidt, 2016). Finally, T. Schmidt, Hauch, and F. Schmidt (2015) used pointing 
responses to measure the NCE for finger movements towards the target in one of ten directions. They showed that even 
when prime and target are consistent and indicate the same response direction, slow-starting movements (i.e., from the 
slowest quartile) tend to start in the opposite direction, indicating massive response activation in the vectorial direction 
opposite to the primed responses.

However, not all theories of the NCE acknowledge a role for response inhibition. Lleras and Enns (2004) argue 
that the prime and target stimuli employed in Eimer and Schlaghecken’s (1998) original paper were double arrows 
(>>, <<) while the mask was a superposition of both these stimuli. When the prime was followed by the mask, this was 
tantamount to the addition of an arrow pointing in the antiprime direction. According to their object-updating account, 
the NCE thus simply reflects positive priming of the antiprime response by the corresponding features in the mask, 
instead of selective response inhibition (Lleras & Enns, 2004). Similarly, Verleger et al. (2004) proposed the “active 
mask hypothesis” that states that the mask will prime a response of its own if it carries task-relevant features. Figure 1 
illustrates this logic for the more complex arrow stimuli employed in our experiment. The left-pointing arrow prime is 
followed by a metacontrast mask that consists of both arrow primes superimposed, giving it a symmetrical inner contour 
formed like a razorblade (in this example, the outer contour is neutral). According to Lleras and Enns’s hypothesis, this 
could be construed as adding features of a right-pointing arrow to the left-pointing prime (Fig. 1a), perhaps by processes 
of amodal completion (Fig. 1b), or else because the small parts of the cutout that are left uncovered by the prime suggest 
a pointing direction by themselves. 

The goal of this paper is to show that the NCE can occur in the absence of any visual features eliciting an antiprime 
response. We essentially replicated an experiment by Dirk Vorberg hitherto published only as a conference presentation 
(Vorberg, 2005). In our experiment, we presented a prime followed by a metacontrast mask at a fixed interval and 
finally by a target, while the mask-target SOA was varied (Fig. 2a). We compared the time-course of priming over the 
SOA in four conditions (Fig. 2b). In the arrow prime, no mask condition, no mask was presented, and prime and target 
were left- or right-pointing arrows that either pointed in the same direction (consistent trials) or in opposite directions 
(inconsistent trials).1 The arrow prime, neutral mask condition had the same stimuli, but a neutral mask was presented 
between prime and target. These first two conditions can be compared to examine whether addition of a neutral mask 
turns positive response priming into an NCE. In the neutral prime, arrow mask condition, the prime was always neutral, 
but the cutout in the mask could either point in the same direction as the target (consistent trials) or in the opposite 
direction (inconsistent trials). Finally, in the crucial arrow prime = arrow mask condition, prime and target were both 
arrows pointing in consistent or inconsistent directions, and the cutout in the mask was also an arrow always pointing 
in the same direction as the prime. These last two conditions can be compared to test the object-updating hypothesis. 
Because the arrow prime = arrow mask condition contains no visual features at all that could elicit an antiprime 
response, object updating predicts that only positive response priming can occur that should lead to positive priming 

1 This condition was missing from Vorberg’s (2005) experiment.
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effects at least as large as the one in the neutral prime, arrow mask condition. If a reduction of priming is observed 
instead, we can conclude that an NCE can occur in the absence of features eliciting an antiprime response. We can also 
conclude that an NCE can occur even if the mask does not remove any perceptual evidence for the prime (as proposed 
by Eimer and Schlaghecken’s self-inhibition account).

2  Methods
Participants. Eight students from Technische Universität Kaiserslautern (four men, three left-handed, age 18-29 years, 
average age 23.5 years) participated in four 1-h sessions. Their vision was normal or corrected to normal. All participants 
were naïve to the purpose of the study and received either course credit or a payment of 7 € per hour. Participants gave 
informed consent and were treated according to the ethical guidelines of the American Psychological Association. After 
the final session, they were debriefed and received an explanation of the experiment. 

Apparatus and Stimuli. The participants were seated in a dimly lit room in front of a color cathode-ray monitor (640 
x 480 pixels, retrace rate of 60 Hz) at a viewing distance of approximately 80 cm.

Stimuli. Stimuli were presented in gray (28.4 cd/m²) against a black background (0.03 cd/m²; Fig. 2). Primes were 
small left- or right-pointing arrows (1.6° x 0.7°) presented at screen center; when the prime was neutral, it was shaped 
like a left- and a right-pointing prime superimposed. Masks were rectangles (3.3 x 1.4°) with a central cutout shaped like 

Figure 1: The object-updating argument applied to our 
stimuli. a) If a left-pointing arrow prime is followed by a 
mask with a neutral cutout in the center, this could be 
construed as adding a right-pointing arrow contour to 
the prime. b) Because the neutral mask contour is the 
superposition of the two arrow primes (upper panel), 
presentation of a left-pointing prime might lead the visu-
omotor system to decompose the neutral mask contour 
into left- and right-pointing arrow shapes (e.g., by amodal 
completion), so that the mask would trigger the response 
opposite to the primed response (lower panel).

Figure 2: a) Time course of a trial. Note that both mask and target remain 
on screen until the response is completed. b) The four masking conditions. 
For better legibility, the prime is drawn above the mask and target. In the 
experiment, it appeared in the central mask cutout so that their contours 
were adjacent.
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a neutral prime at the same position as the prime so that the contours were adjacent. When the mask was not neutral, 
the cutout was shaped like a left- or right-pointing prime. Targets were larger outline arrows (6.6 x 2.6°, line width 0.2°) 
pointing left or right that shared no contours with the prime or mask.

Procedure. Each trial started with a fixation point (diameter 0.2°) in the center of the screen (Fig. 2a). After a time 
depending on the mask-target SOA, the prime was presented for 17 ms (one monitor frame). After a prime-mask SOA of 
67 ms, either a mask or no mask was presented (depending on condition; see Fig. 2b), followed by the target after a mask-
target SOA of either 33, 67, 100, or 133 ms. The time interval between fixation onset and target onset was fixed at 750 ms. 
Participants were instructed to respond to the direction of the target arrow by pressing a spatially corresponding key 
on the computer keyboard (“F” or “J”) as quickly and accurately as possible. If the response was incorrect, the message 
“wrong!” appeared on the screen. If it was slower than 999 ms, the message “too slow” appeared. 

Each participant performed four sessions with 21 blocks of 32 trials. The first block of each session was a practice 
block. All 64 combinations of consistency (depending on condition, between prime and target or mask and target), 
SOA, masking condition, and target direction occurred randomly and equiprobably over the course of a session.

Data treatment and statistical methods. Practice blocks were not analyzed. Two single sessions were lost due to 
equipment malfunction. 

Dependent variables were response time and error rate, which can both be analyzed for response priming effects. 
We also looked at conditional accuracy functions, which plot response accuracy as a function of physical time (Panis 
& Hermens, 2014; Panis, Moran, Wolkersdorfer, & T. Schmidt, 2020).2 For response times, repeated-measures analysis 
of variance (ANOVA) was performed on the trimmed means after error trials (6.96 %) and outliers (responses faster 
than 100 or slower than 999 ms; 0.17 %) had been removed. Error rates were arcsine-transformed to meet ANOVA 
requirements. ANOVAs were performed with factors of consistency (C), SOA (S), and sometimes masking condition (M). 
For clarity, all tests are reported with Huynh-Feldt-corrected p values and the original degrees of freedom, and effects 
are specified by subscripts to the F values (e.g., FCxS for an interaction of consistency and SOA). Throughout the paper, 
we report all ANOVA effects significant at p ≤ .05, with the understanding that p values between .01 and .05 should be 
regarded with caution. We may mention p values between .05 and .10 if important to the argument.

In multifactor repeated-measures designs, statistical power is difficult to predict because too many terms are 
unknown. Instead, we control measurement precision at the level of individual participants in single sessions. We 
calculate precision as s/√r (Eisenhart, 1969), where s is a single participant’s standard deviation in a given cell of the 
design, and r is the number of repeated measures per cell and subject. With r = 80 in the current experiment, we expect 
a precision of about 6.7 ms in response times (assuming individual SDs around 60 ms) and at most 2.8 percentage 
points in error rates (assuming the theoretical binomial maximum SD of .50). Precision thus exceeds our previous 
recommendations for response priming studies (r = 60; F. Schmidt, Haberkamp, & T. Schmidt, 2011). 

In addition, we used two benchmark datasets that measure response priming effects in the color domain (red 
vs. green) and the shape domain (circle vs. square). These datasets independently vary prime and target strength (in 
terms of color or luminance contrast), prime-target SOA, and prime-target consistency. This results in sixteen priming 
functions per domain, one for each combination of prime and target strength; they are based on eight observers and 60 
repetitions per observer and condition, which implies a precision of 7.7 ms in response times. For the shape domain, all 
sixteen SOA x Consistency interactions have 11.3 ≤ F(3, 21) ≤ 78.8, .614 ≤ ηp² ≤. 916, and noncentrality parameters between 
33.8 and 236.4. All have p < .001 and an observed power ≥ .997 (the critical noncentrality parameter to achieve a power 
of .95 at α = .05 is about 21).

3  Results 
Two-factorial analyses (with factors SOA and Consistency) for each masking condition are reported in the order in which 
they appear in Fig. 3 (left to right). These analyses confirm that there are large priming effects in all masking conditions 
that either increase with mask-target SOA (neutral prime, arrow mask) or slightly decrease with prime-target SOA (arrow-

2 Average response times can conceal vital information about the time-course of an effect. Therefore, we used Event History Analysis to 
calculated response hazards, which lead to the same conclusions as the average response times presented here.



Response inhibition in the Negative Compatibility Effect in the absence of inhibitory stimulus features    223

prime, no mask; arrow prime = arrow mask). The crucial exception is the arrow prime, neutral mask condition, which 
starts with a large priming effect at the shortest SOA that reverses with increasing SOA. In all analyses, remember that 
Figure 3 plots the data as functions of mask-target SOA and that in some conditions a constant 67 ms must be added to 
yield the effective prime-target SOA.

In each masking condition, responses were faster in consistent than in inconsistent trials, except for the arrow 
prime, neutral mask condition where the crossed interaction eliminated the main effect; FC(1, 7) = 47.10, 0.81, 44.98, 
and 16.95; p < .001, = .399, < .001, = .004. In each pattern, there was a significant interaction of Consistency and SOA, 
FCxS(3, 21) = 4.93, 22.51, 13.10, and 3.80; p = .010, < .001, = .002, = .039. This indicates that the arrow prime, neutral mask 
condition is not simply devoid of priming but that the SOA functions for consistent and inconsistent trials are shifted 
past each other to reverse the effect. The main effect of SOA was nonsignificant in all patterns, FS(3, 21) = 1.43, 2.44, 
0.80, and 1.16; p = .265, .133, .506, .359. The error rates give a similar picture. In each pattern, more errors occurred in 
inconsistent than in consistent trials, except for the arrow prime, neutral mask condition where the crossed interaction 

Figure 3: Response times (upper panels) and error rates (lower panels) in the four masking conditions. Because the SOA axis specifies the 
mask-target SOA, a constant 67 ms must be added in some conditions to yield the effective prime-target SOA. Error bars are corrected for 
intersubject variance (Bakeman & McArthur, 1996).
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eliminated the main effect just as it did in the response times; FC(1, 7) = 22.89, 0.03, 21.01, and 15.04; p < .001, = .869, = 
.003, = .006. The interaction of Consistency and SOA was significant in the arrow prime, neutral mask and the neutral 
prime, arrow mask conditions only, FCxS(3, 21) = 2.72, 7.29, 9.41, and 3.28; p = .117, = .002, < .001, = .053. The main effect of 
SOA was significant in all conditions except arrow prime, no mask, FS(3, 21) = 0.70, 3.71, 16.03, and 8.23; p = .517, = .028, < 
.001, = .001. Note that both response times and error rates show comparable effects. In the following, we contrast pairs 
of masking conditions to capture the full magnitude of the NCE and to answer the question whether response inhibition 
can occur without inhibitory stimulus features.

How large is the NCE? To answer this question, we compare the arrow prime, no mask condition with the arrow 
prime, neutral mask condition, which only differ in whether a neutral mask is present (Fig. 3, black bars in Fig. 4). The 
arrow prime, no mask condition shows the picture expected for response priming with long prime-target SOAs (100-200 
ms): The priming effect is already at a maximum at the shortest mask-target SOA and gently tapers off at longer SOAs. 
The addition of a neutral mask changes this pattern drastically: the priming effect at the shortest SOA is still comparable 
to the one in the arrow prime, no mask condition, but then it reverses with SOA until consistent responses are actually 
slower and more error-prone than inconsistent ones. This comparison shows that the NCE is actually much larger than 
the manifest 30-ms reversal: It is as large as the reversal plus the large positive effect it eliminated, and thus larger than 
the positive response priming effect itself. A repeated-measures ANOVA with factors of Masking Condition (contrasting 
the two conditions), Consistency, and SOA indicated that on average, responses were slower in inconsistent than in 
consistent trials, FC(1, 7) = 19.20, p = .003, and that this priming effect increased with SOA, FCxS(3, 21) = 13.94, p < .001. 
Masking Condition interacted with Consistency, FMxC(1, 7) = 37.79, p < .001, and with SOA, FMxS(3, 21) = 3.11, p = .048, and 
generated a triple interaction, FMxCxS(3, 21) = 27.81, p < .001, all reflecting the dramatic changes in priming effects in the 
presence of the neutral mask. All other effects were nonsignificant. The error rates yielded a similar picture. On average, 
more errors occurred in inconsistent than in consistent trials, FC(1, 7) = 14.57, p = .007, but this priming effect decreased 
from positive to slightly negative values because of the reversal in the arrow prime, neutral mask condition, FCxS(3,21) = 
7.19, p = .002, where error rates were also higher overall, FM(1, 7) = 13.25, p = .008, and tended to increase a bit faster with 
SOA, FMxS = 2.94, p = .058. Importantly, there was a marked interaction of Consistency and Masking Condition, FMxC(1, 

Figure 4: Differences in priming effects at the different mask-target SOAs. Black bars: contrast between arrow prime, neutral mask and arrow 
prime, no mask conditions. Light grey bars: contrast between arrow prime = arrow mask and neutral prime, arrow mask conditions. Dark 
grey bars: priming effects in the arrow prime, neutral mask condition are shown for comparison.
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7) = 14.29, p = .007, and also a triple interaction, FMxCxS(3, 21) = 4.36, p = .039, reflecting the reversal of the priming effect 
when a neutral mask was present.

We also looked at the conditional-accuracy functions, which plot response accuracy in consistent and inconsistent 
trials as a function of response time bins (Fig. 5; Panis & Hermens, 2014). As shown previously, positive response 
priming in the arrow prime, no mask condition was characterized by the fact that early responses go in the direction 
of the prime: almost all of them are correct in consistent trials but incorrect in inconsistent trials. As response times 
get longer, consistent trials maintain their high level of accuracy while accuracy in inconsistent trials increases until 
it reaches the same level as in consistent trials (Panis & T. Schmidt, 2016). This pattern of early errors in inconsistent 
trials only illustrates the strictly sequential response control by primes and targets (T. Schmidt et al., 2006). The arrow 
prime, neutral mask condition, on the other hand, is surprisingly characterized by late errors in consistent trials. The 
consistent trials start at almost perfect accuracy in the fastest responses and then experience a dip in accuracy for 
RTs around 300 ms that becomes progressively larger with SOA (Panis & T. Schmidt, 2016). This process continues 
until at the longest SOAs, consistent and inconsistent trials have completely changed their accustomed roles: while 
accuracy in inconsistent trials is uniformly high across the entire RT distribution, consistent trials start from only 40 
% accuracy in the fastest responses and then gradually reach almost perfect accuracy as responses get slower. This 
pattern is indicative of strong response inhibition directed against the primed response (Panis & T. Schmidt, 2016; T. 
Schmidt, Hauch, & F. Schmidt, 2015).

Is there an NCE in the absence of inhibitory stimulus features? To answer this question, we compare response times 
in the neutral prime, arrow mask condition with the arrow prime = arrow mask condition, which only differ in whether 
the prime is neutral or has the same direction as the mask (Fig. 3). It is noteworthy that contrasting the priming effects 
between these two conditions is very similar to the time course of priming in the arrow prime, neutral mask condition 
(Fig. 4, grey bars). The neutral prime, arrow mask condition shows the picture expected for response priming if the mask 
played the role of the prime and the neutral prime itself did not activate a response. Consistent with this expectation, 
the priming effect is small at the shortest mask-target SOA and increases with SOA to finally reach the full size seen 
in the arrow prime, no mask condition at a prime-target SOA of 133 ms. To evaluate the arrow mask = arrow prime 
condition, assume for a moment that no NCE can occur because there are no stimulus features directed against the 
primed response. Because we already know that both the arrow prime and the arrow mask can generate a positive 
priming effect by themselves, we would predict that adding an arrow mask in the same direction as the arrow prime 
could only make the priming effect more positive. Instead, the arrow mask diminishes the priming effect at longer SOAs 
and provokes errors in consistent trials. A repeated-measures ANOVA with factors of Masking Condition (contrasting 
the two conditions), Consistency, and SOA indicated that on average, responses were slower in inconsistent than in 
consistent trials, FC(1, 7) = 29.34, p = .001. However, there was a triple interaction of Consistency with SOA and Masking 
Condition, FMxCxS(3, 21) = 24.04, p < .001, indicating the marked difference in time-courses of the priming effects. Even 
though we saw above that both patterns had significant Consistency x SOA interactions when analyzed on their own, 
these two interactions virtually cancelled each other in the three-factorial analysis, FCxS(3, 21) = 1.33, p = .297. All other 
effects were nonsignificant. Error rates gave a similar picture. On average, more errors occurred in inconsistent than in 
consistent trials, FC(1, 7) = 27.15, p = .001, and error rates increased with SOA, FS(3, 21) = 20.59, p < .001. However, there 
was a marked triple interaction, FMxCxS(3, 21) = 21.56, p < .001, showing that priming effects increased in the neutral 
prime, arrow mask condition but decreased in the arrow prime = arrow mask condition. Conditional accuracy functions 
(Fig. 5) showed that errors were restricted to fast responses in inconsistent trials, where they increased strongly with 
SOA (Panis & T. Schmidt, 2016).

Overall, the arrow prime = arrow mask condition was similar to the arrow prime, no mask  condition. The two 
conditions can be contrasted as well because they only differ by the presence of the arrow mask. On average, responses 
were faster in consistent than in consistent trials, FC(1, 7) = 28.50, p = .001, and this priming effect decreased with 
SOA, FCxS(3, 21) = 7.26, p = .005, but there were no significant effects involving the factor Mask Condition (contrasting 
the two conditions). However, the error rates gave a slightly different picture. On average, more errors occurred in 
inconsistent than in consistent trials, FC(1, 7) = 21.60, p = .002, and at longer SOAs, FS(3, 21) = 4.86, p = .010, and the 
priming effect slightly decreased with SOA, FCxS(3, 21) = 8.58, p = .004. But more errors occurred in the arrow prime 
= arrow mask condition, FM(1, 7) = 15.61, p = .006, and the increase in error rates with SOA was steeper, FMxS(3, 21) = 
5.83, p = .005. Interestingly, those errors also occurred in consistent trials, indicating activation opposite to the primed 
response. This was confirmed by the conditional accuracy functions (Fig. 5): at long SOAs, consistent trials experienced 
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the characteristic dip in accuracy for response time around 300 ms that seems to be a hallmark of the NCE (Panis & T. 
Schmidt, 2016). In these responses, participants produced error rates of up to 20 % even though all stimulus features 
pointed in the same consistent direction.

4  Discussion
In our discussion, we focus on three important theoretical issues. First, the response inhibition processes underlying 
the NCE are much larger than suggested by the moderate reversal in priming effects in mean response times. Second, 
the inhibition occurs even if the mask retains all perceptual information about the orientation of the prime. Third, 
inhibition can occur in the absence of antiprime features, i.e., without any stimulus information that could activate the 
response opposite to the prime.

The NCE is large -- very large. The first important lesson is that in order to understand the true magnitude of the NCE, 
it is strongly misleading to only focus on the manifest reversal observable in the arrow prime, neutral mask condition. 
If we define the NCE only in terms of negative-signed priming effects in that one condition, we forget that without a 
mask we could expect a large positive priming effect. The full magnitude of response inhibition is only revealed when 
the arrow prime, neutral mask condition is contrasted with the arrow prime, no mask condition. Then it becomes clear 
that the response inhibition following the mask is even stronger than the response activation following the prime, 
because the inhibition is not only able to abolish the large response priming effect, but to reverse it.3 From this view, it 
is obviously not a reversal per se that we are looking for, but any reduction in response priming brought on by the mask, 

3 In this analysis, we assume that the mask does not diminish the positive response priming effect. This possibility is discussed in F. Schmidt 
et al. (2011) and awaits systematic evaluation.

Figure 5: Conditional accuracy functions (accuracy plotted as a function of response time). Blue colors denote consistent conditions, red 
colors inconsistent conditions. SOA increases from light to dark color shading. Only the RT range from 200 to 600 ms was considered; bin size 
is 33 ms, and data points are plotted whenever based on a total of at least 15 responses (RTs longer than 500 ms fall short of this criterion).
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even if it fails to lead to a sign reversal (Jaśkowski & Przekoracka-Krawczyk, 2005; Jaśkowski, 2007a, b, 2009; Jaśkowski 
et al., 2008). Given that response priming can yield large response-time effects (sometimes more than 100 ms), the NCE 
is probably one of the largest effects known in reaction times of speeded choice responses.

Response inhibition occurs if the mask retains all perceptual evidence of the prime. In the arrow prime = arrow mask 
condition, the mask leads to metacontrast masking of the prime but at the same time retains all the relevant shape 
information. We can therefore reject Eimer and Schlaghecken’s (1998) original proposal that inhibition occurs because 
the mask suppresses perceptual information about prime shape. Our findings are in line with those by Jaśkowski and 
Przekoracka-Krawczyk (2005), who compared different types of pattern masks and found that efficient masking of the 
prime is not a prerequisite of the NCE. In their mask-triggered inhibition account, they propose that the mask serves to 
interrupt processing of the prime and to trigger the inhibition of the primed responses. This inhibition is supposed to be 
stronger when the mask carries response-relevant features. 

In arrow stimuli, antiprime features are not necessary for response inhibition. We have seen that the arrow prime, 
no mask condition generates a positive priming effect that becomes a little weaker with increasing SOA. From this 
condition, the critical arrow prime = arrow mask condition differs only in the presence of the arrow mask. However, 
the arrow mask itself generates a large, strongly increasing priming effect as seen in the neutral prime, arrow mask 
condition, just as expected if the arrow features in the mask prime a response while the neutral prime does not. The 
increase of response priming with SOA is also expected because with a neutralized prime, the effective SOA takes 
place between the mask and the target and is in the range where positive response priming is expected (here, 33-133 
ms). Therefore, we would expect that an arrow prime and arrow mask combined should guarantee strong, increasing 
response priming effects in the arrow prime = arrow mask condition.

But instead, we see a pattern very similar to the arrow prime, no mask condition, with large priming effects at the 
shortest SOA and a gradual decline in priming at later SOAs. In other words, the strong response activation previously 
seen from the arrow mask seems to be missing. From average response times alone, we might conclude that the mask 
stimulus could be ineffective, ignored, or somehow blocked from response control, but this is clearly not the case: 
Conditional accuracy functions reveal a marked reduction in response accuracy in consistent (but not in inconsistent) 
trials for response times around 300 ms, similar to what is seen in the arrow prime, neutral mask condition. We interpret 
this temporary dip in accuracy as a sign of active, selective inhibition of the primed response, which results in a 
disinhibition of the antiprime response and thus induces a response conflict in consistent trials that leads to increased 
response times and error rates (Panis & T. Schmidt, 2016). That this inhibition is in fact response-specific was shown 
by T. Schmidt, Hauch, and F. Schmidt (2015) in a study of pointing movements. Participants pointed to a shape target 
in one of ten possible directions that was preceded by primes and masks in either the same or the vectorially opposite 
directions (the actual experiment was more complex; see our paper for full description). Even though arrival times 
at the target showed only subtle evidence for an NCE, the trajectories showed strong effects of response inhibition. 
Specifically, we looked at consistent trials where prime and target always specified the same pointing direction. 
Strikingly, we found that while the faster responses always started out in the vectorial direction of the prime and 
target, slower responses started out in a direction vectorially opposite to both prime and target. This shows not only 
that the NCE occurs relatively late in the trial (as previously shown by Atas & Cleeremans, 2015, Ocampo & Finkbeiner, 
2013, and Verleger et al., 2004) but that it is an actual counteractivation of a response vectorially opposite to the 
primed one. We dubbed this mechanism underlying the NCE “thrust reversal” (T. Schmidt et al., 2015), in analogy to 
the common braking mechanism in jetplanes. Thrust reversal may be viewed as an extension of the mask-triggered 
inhibition hypothesis: Inhibition is not only specific for the primed response (Jaśkowski & Przekoracka-Krawczyk, 
2005) but is actually an activation of a vectorially opposite response, a counterthrust opposite in sign but matched in 
force.

Our findings indicate that the presence of stimulus features mapped to the antiprime response is no necessary 
condition for response inhibition to occur, as shown in Vorberg’s (2005) original conference paper. We can thus reject 
Lleras and Enns’s (2004) hypothesis that reversal of priming effects in arrow stimuli is due to priming by mask features. 
This is in line with our view that the inhibition is not merely a response to stimulus features, but involves an active, 
selective response activation specifically directed against the primed response (Panis & T. Schmidt, 2016; T. Schmidt et 
al., 2015). However, there seem to be limits to this conclusion. In two additional experiments following exactly the same 
design as the present one, we replaced the arrows by color stimuli (T. Schmidt, 2000), such that the prime (if present) 
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was a red or green circle, the mask (if present) was an annulus fitting around the circle, and the target was an even larger 
red or green ring. Neutral stimuli were gray. The two experiments only varied in the color saturations used, and both 
gave almost identical results.4 As with the arrow stimuli, the color prime, no mask condition yielded a priming effect that 
decreased with SOA, while the color prime, neutral mask condition abolished and partly reversed this effect, indicating 
a large NCE. Also, the neutral prime, color mask condition showed very large, increasing priming effects, demonstrating 
that a colored mask alone could activate the response. However, the color mask = color prime condition showed no sign 
of inhibition relative to the neutral prime, color mask condition, neither in average response times, nor error rates, nor 
conditional accuracy functions. If anything, priming effects were even a bit larger, as expected from positive response 
priming by both prime and mask. Our conclusion is that even though we were able to demonstrate active, selective 
response inhibition in the absence of inhibitory stimulus features in arrow stimuli, this mechanism may not be in place 
for all stimulus domains (cf. Verleger et al., 2004). This could either indicate that major principles of response inhibition 
do not translate well from geometric space to color space, or that in some stimulus domains inhibitory stimulus features 
are still necessary to reverse response priming. But even with this caveat in mind, the present data provide a proof of 
concept that negative compatibility effects can occur in the absence of inhibitory stimulus features.

Both the editor and a reviewer asked us to comment on the rather small number of participants we employ here. 
First, remember that statistical power not only depends on the number of participants, but also on the reliability of 
the dependent measure, and that this reliability is critically determined by the number of repeated measures per 
participant and condition (Baker, Vilidaite, Lygo, Smith, Flack, Gouws, & Andrews, 2021; Brysbaert & Stevens, 2018). 
Therefore, a small-N design (Smith & Little, 2018), which is characterized by combining a small number of observers 
with massively repeated measures, can gain high levels of statistical power (Baker et al., 2021). Indeed, by using 
noncentrality parameters for the basic Consistency x SOA interactions from previous benchmark data we can predict a 
power of .95 at an alpha risk of .05 by employing only eight participants with an adequate number of repetitions per cell 
and subject (here, r = 80). We can thus be confident that our previous benchmarks for precision in response priming 
effects (r = 60, F. Schmidt et al., 2011) guarantee excellent statistical power for the effects normally expected for such a 
study. The great advantage of small-N designs is the ability for assessing the homogeneity of effects across participants 
because each observer’s data pattern can be measured with high fidelity. In the present dataset, it turns out that effects 
are quite uniform across participants and that most participants’ data show the overall data pattern.
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Discussion 

The following chapters aim to highlight the advantages of applying advanced 

distributional analyses. Specifically, which of the findings in the reported articles were 

possible due to the application of discrete-time EHA, and would have been concealed 

by traditional methods? In which ways does such a distributional approach advance 

the field of experimental psychology, in particular regarding the research of visual 

search behavior, response priming, and visual masking? First, I will highlight the 

findings presented in the published articles. Next, I will evaluate the method and 

provide recommendations for the future application in the field. Lastly, I will end with 

a discussion of ways to further validate the method, and give a preview into potential 

future enhancements of it. 

4 Highlighted Findings 

Discrete-time EHA allowed us to study the effects of experimental manipulations in 

the visual search, the response priming, and the masked response priming paradigm. 

Collectively, the applications of this method gave new insights into the temporal 

dynamics and individual differences in performance in these tasks. Crucially, it 

enabled us to track changes with the passage of time. 

4.1 Discrete-time EHA reveals effects that mean performance measures can 

conceal 

First, discrete-time EHA revealed previously concealed features of visual search. As 

seen in Figure 5, when analyzing mean correct RT, the inclusion of additional 



—Discussion— 

130 

distractors seemingly does not slow down the search process in feature search. This 

finding led to the classification of this type of search as efficient (Cheal & Lyon, 1992; 

Liesefeld et al., 2016; Wolfe et al., 2010). However, in Panis, Moran, et al. (2020) we 

found a systematic temporary effect of set size on early h(t). Specifically, if the target 

is present, hazards were higher at smaller set sizes compared to larger set sizes. In 

other words, at least temporarily, the probability of response occurrence in the target 

present condition decreased with set size. This indicates that a target does not “pop-

out” out of a set of distractors. Panis, Moran, et al. (2020) attribute this finding to three 

factors. First, peripheral targets prolong the search process, as they are more difficult 

to recognize, due to lower color sensitivity. Wolfe et al. (2010) did not control for the 

eccentricity on a trial-by-trial basis. Thus, larger set sizes potentially increased the 

amount of trials with such targets. Next, larger set sizes also confound with stimulus 

density. This causes more objects to be contained in the receptive field of a single visual 

neuron. In turn, this might have increased the likelihood of visual crowding in the 

periphery, further hindering target recognition. Finally, since display presentation 

lasted until response, it is conceivable that more eye-movements were made in trials 

with larger set sizes. This would have resulted in varying distances between target 

location and eye gaze location on a within-trial time basis. If this were the case, gaze-

to-target distance should then be seen as a time-varying covariate. 

Second, discrete-time EHA gave a more detailed insight into the dynamics of 

response behavior in a response priming paradigm. In Wolkersdorfer et al. (2020) we 

employed a dual-prime paradigm, in which a target stimulus was preceded by a 

prime, which in turn was preceded by a first prime. Previous findings showed that the 

priming effect in such a sequence of stimuli would be dominated by the second prime 
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(Breitmeyer & Hanif, 2008; Grainger et al., 2013). Indeed, ANOVA analyses of mean 

correct RT seemed to corroborate this. However, discrete-time EHA revealed that 

initial fast responses were in fact driven by the identity of the first prime. Thus, 

Wolkersdorfer et al. (2020) concluded that a second prime does not override a first 

prime, as previously assumed (Breitmeyer & Hanif, 2008). Instead, the prime-triggered 

motor responses compete with each other, with the possibility of the first prime 

triggering a response by itself. 

  Third, in T. Schmidt et al. (2022) we investigated response inhibition in the 

NCE. ANOVAs performed on mean RT and ER, and the contrasting of different 

masking conditions with them, revealed the true magnitude of the NCE caused by a 

mask. Moreover, we found response inhibition even with a mask that retains 

perceptual evidence of the prime, enabling us to reject Eimer and Schlaghecken’s 

(1998) hypothesis that inhibition is the result of the mask suppressing perceptual 

information about the prime. Crucially, only analyzing conditional accuracy functions 

revealed that, at least with arrow stimuli, antiprime features are not required to cause 

response inhibition. If one were to only inspect mean RTs, one might have concluded 

that an arrow mask could be ineffective. This is because, with respect to mean RTs, the 

condition arrow prime = arrow mask behaved very similar to the condition arrow prime, 

no mask, seemingly void of the additional priming effect the mask could trigger by 

itself, as seen in the neutral prime, arrow mask condition. Inspection of the conditional 

accuracy functions showed, however, a marked reduction in response accuracy in 

consistent trials (at around 300 ms). This pattern was very similar to the one found in 

the conditional accuracy function of the arrow prime, neutral mask condition. We 

interpreted this as a sign of active, selective inhibition of the primed response. In line 
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with Panis and Schmidt (2016), such inhibition would result in the disinhibition of the 

antiprime response. The resulting response conflict would then cause the observed 

reduction in accuracy and slow down responses. Moreover, only the application of 

discrete-time EHA revealed that the NCE is even larger than the response priming 

effect. Specifically, it is directed against the primed response, with response-specific 

inhibition not requiring any positive priming features. Previously, the NCE was 

believed to be only 20 ms large and caused by features of the mask.  

 To conclude, these examples show the benefits of employing discrete-time EHA 

in addition to more traditional approaches. While ANOVAs and mean RT and ER 

analyses are able to reveal certain aspects of the involved processes, they also run the 

risk of missing and, in the worst case, concealing effects that a discrete-time EHA is 

able to uncover. 

4.2 Discrete-time EHA reveals the temporal dynamics of response behavior 

As shown in the previous section, we found a systematic but temporary effect of set 

size on early h(t) in feature search (Panis, Moran, et al., 2020). Moreover, this effect was 

present across all three visual search tasks. In addition, we also found a systematic 

effect of target presence, with hazards rising earlier when a target is present versus 

when no target is displayed. Importantly, discrete-time EHA revealed that these effects 

were limited in time, with the ordering of hazards only being present in the left tail of 

the distribution. Both the effect of set size and target presence persisted longer as task 

difficulty increased, with effects in feature search lasting until about 500 ms, in 

conjunction search about 1000 ms, and spatial configuration search about 2000 ms after 

display onset. From these time points onward, hazard functions were flat without any 
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systematic effects of set size and target presence. In Panis, Moran, et al. (2020) we 

argued that these flat hazard functions reflected RT outliers during decision-making 

and were not related to the respective search processes. Overall, this indicated that 

search processes are aborted rather early, depending on task difficulty. 

Discrete-time EHA further revealed two subsets of subjects that showed 

differences in their response behavior. One group generally responded slower and 

showed high accuracy throughout. We argued that these subjects displayed proactive 

control. Global response inhibition held back responses until enough information 

about the search was available. Thus, responses occurred later but at high accuracy, 

compared to the second group. For this second group (fast responders), we identified 

at least three temporal stages in their respective conditional accuracy functions: (1) 

Earliest responses showed false alarms (defined as ca(t) ≤ .5) in the target absent 

condition, combined with near perfect accuracy in the target present condition, (2) 

followed by a second stage with near perfect accuracy in the target absent condition, 

combined with lower accuracy in the target present condition (i.e., an increase in 

misses), and (3) followed by a third stage, in which high accuracy was achieved in both 

target presence conditions. The more difficult search tasks, conjunction and spatial 

configuration, showed an additional fourth stage in slow responses, in which no false 

alarms were detected, but the miss rate increased with the passage of time. We 

interpreted these findings as indicative of an early bias towards “target present”, 

followed by selective inhibition of this bias, due to error-monitoring, resulting in the 

disinhibition of the “target absent” response. This would lead to a temporary increase 

in misses, as observed in the second stage. The third stage was seen as the result of 

information from the actual search process becoming available, resulting in highly 
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accurate responses. However, as the search process continued without a response in 

the more difficult tasks, the search was aborted and a tendency to respond “target 

absent” developed, as seen in the fourth stage. Overall, discrete-time EHA thus 

enabled us to identify these different stages of the respective search processes, as well 

as individual differences between fast and slow responding subjects. To our 

knowledge, these features of visual search were previously unknown and are, as of 

now, not predicted by cognitive models of visual search. 

As shown, discrete-time EHA also revealed temporal dynamics of inhibition in the 

NCE. In T. Schmidt et al. (2022) we showed a marked reduction in response accuracy 

in consistent trials after around 300 ms in the arrow prime = arrow mask condition, as 

well as in the arrow prime, neutral mask condition. This was in line with the findings of 

Panis and Schmidt (2016), and appear to be characteristic of the NCE. We also found 

that, in the condition without a mask but with an arrow prime, early responses were 

driven by the identity of the prime, while later responses were driven by target 

information. Through the application of discrete-time EHA Panis and Schmidt (2016) 

previously revealed the following temporal characteristics of masked priming: (1) an 

initial PCE for 120 ms, which starts around 320 ms after prime onset and lasts for about 

120 ms, (2) followed by an NCE, which is time-locked to the mask at around 360 ms 

after mask onset, and (3) a final target stage, in which responses are driven by target 

identity. 

  Similarly, in Wolkersdorfer et al. (2020) we explored the temporal dynamics of 

response activation in a dual-prime paradigm. When investigating short SOAs 

(Experiment 1), we found that conditional accuracy functions were at near-perfect 

accuracy when the first prime was consistent with the target, and incorrect when the 
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first prime was inconsistent. Thus, initial responses were exclusively triggered by 

signals of the first prime. If a first consistent prime was followed by a second consistent 

prime, responses maintained near perfect accuracy. However, conditional accuracy 

functions revealed a marked reduction in response accuracy if the second prime was 

inconsistent. Likewise, if the first prime was inconsistent and followed by an 

inconsistent second prime, accuracy remained low. If the second prime, however, was 

consistent, accuracy quickly rose. These findings indicate that intermediate responses 

reflected conflict between the first and second prime, with responses being triggered 

by the latter’s identity. As expected, later responses had high accuracy, signaling the 

onset of target information dominating the response. An ordering of hazard rates was 

present, with hazards decreasing from two consistent, to inconsistent-consistent, 

consistent-inconsistent, and finally two inconsistent primes. Thus, discrete-time EHA 

enabled us to support the chase theory of response priming by T. Schmidt et al. (2006): 

(1) Prime rather than target signals determine the onset and initial direction of the 

response; (2) target signals influence the response before it is completed; (3) movement 

kinematics initially depend on prime characteristics only and are independent of all 

target characteristics; (4) a second prime can influence the response before it is 

completed, creating conflict if the two prime identities are opposites. These findings 

reveal that under the right temporal conditions, sequential stimuli result in a strictly 

sequential response activation. Without the application of discrete-time EHA the only 

finding would have been that two non-identical primes can lead to intermediary 

effects, concealing this sequential nature of response activation. While previous 

studies relied on lateralized readiness potentials (Eimer & Schlaghecken, 1998; Vath & 

Schmidt, 2007) or the analysis of pointing movements (F. Schmidt & Schmidt, 2010



—Discussion— 

136 

Schmidt, 2002; T. Schmidt & Schmidt, 2009; Vath & Schmidt, 2007), discrete-time EHA 

required only the collection of simple behavioral data (RT and accuracy) to achieve 

this. 

4.3 Discrete-time EHA allows to track performance changes on multiple time 

scales 

In Panis, Moran, et al. (2020), we were able to track performance changes on multiple 

time scales. Within-trial changes have been presented in the previous section. As the 

name suggests, this time scale tracks performance within trials, that is, how 

performance changes with the passage of time (e.g., early vs. late responses). With the 

inclusion of trial number in the hazard model, we were able to identify how hazard 

varies on the across-trial (but within-block) time scale. For example, in feature search 

we found that, with each additional series of ten trials within a block, hazard decreases 

in the left tail of the distribution and increases in the right tail of the distribution. In 

other words, responses occur later as trial number increases. A possible explanation 

would be that in a relatively easy task, such as feature search, fatigue begins to set in 

towards the end of the block and subjects slow down. Strikingly, the inclusion of block 

number in the hazard model (enabling tracking on the across-block time scale), 

revealed that hazard increases in the left tail and decreases in the right tail. In other 

words, as block number increases, responses occur earlier. This is indicative of a 

practice effect across blocks. In contrast, the inclusion of trial and block number 

revealed practice effects in conjunction and spatial configuration search, on both the 

across-trial and across-block time scales (see Fig. 6 in Panis, Moran, et al., 2020, p. 703). 
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5 Evaluation of discrete-time EHA 

The previous section provided findings that were due to the application of 

discrete-time EHA. Studies of priming (Wolkersdorfer et al., 2020), visual search 

(Panis, Moran, et al., 2020; Panis, Schmidt, et al., 2020), and primed masking and the 

NCE (Panis, Schmidt, et al., 2020; T. Schmidt et al., 2022) make a strong case for the use 

of discrete-time EHA in the field of cognitive and experimental psychology. First, 

while traditional analyses focusing on mean performance measures have been shown 

to conceal effects, discrete-time EHA provides insights into response activation, 

ranging from the time-locking of effects and response inhibition to changes of effects 

over time, within and across trials. In other words, the temporal dynamics of response 

behavior are more accurately captured by this method. Second, the inclusion of 

conditional accuracy functions allows a deeper look into the decision processes 

involved. RT and accuracy data are measures of different aspects of the decision 

process (Mulder & van Maanen, 2013). For example, while hazard functions give the 

conditional probability of response occurrence, conditional accuracy functions 

evaluate the performance of these responses. Thus, together they give a more detailed 

insight into the decision-making process. Third, discrete-time EHA can identify 

subsets of participants. For example, in Panis, Moran, et al. (2020) we found two 

distinct groups that showed remarkably different response behavior (fast vs. slow 

responders). 

5.1 Theoretical advantages of discrete-time EHA 

To this day, when dealing with time-to-event data, such as RT and accuracy, the 

dominant method in the field of experimental psychology remains ANOVA. As 
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detailed in the introduction, this is due to the historically strong influence of serial 

information processing accounts. The concept of mental operations being separable 

into distinct consecutive processing stages dates all the way back to Donders (1969) 

and became even more popular with Sternberg’s AFM (1969, 1984, 2011, 2013), 

continuing on ever since. More recently, distributional methods have become more 

common in the field, arguing in favor of more advanced or detailed analyses beyond 

merely investigating means (Balota & Yap, 2011; Ridderinkhof, 2002; van Maanen et 

al., 2019; VanRullen, 2011). The assumption that cognitive processes or operations can 

be divided into smaller sub-processes, and that the duration of such a process is 

reflected in RTs as the cumulative duration of all its sub-processes nonetheless remains 

popular (e.g., Liesefeld, 2018; Song & Nakayama, 2009). However, the present work 

and the showcased studies applying discrete-time EHA with conditional accuracy 

analyses paint a different picture. For example, in Wolkersdorfer et al. (2020) we 

showed that (1) fast responses were triggered by the first prime’s identity, void of any 

subsequent stimuli’s information, (2) intermediate responses showed response conflict 

between the two primes’ information, and (3) late responses reflected the target 

stimulus’ identity. Likewise, different stages of the visual search process were 

identified in Panis, Moran, et al. (2020): (1) an early bias for target-present, (2) 

suppression of the target-present response and disinhibition of the target-absent 

response, resulting in some misses, (3) optimal performance, and (4) an evolving bias 

towards target-absent responses. Thus, fast, medium, and slow RTs instead relate to 

different cognitive operations involved in the underlying task, and are not just the 

cumulative duration of all the sub-processes involved in the task at hand. 
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Consequently, if one’s goal is to understand human behavior, one has to take the 

passage of time into consideration when analyzing data obtained in such experiments. 

This is in line with a dynamical systems account (van Gelder, 1995). Dynamic field theory 

(DFT; Schöner G., Spencer, J. P., & the DFT Research Group, 2016) describes cognition 

as sequential transitions between several states. These states include sensory, motor, 

and central states. Hazard and conditional accuracy functions enable us to measure 

the motor output of such a dynamical system. As seen in the presented work, they 

allow us to investigate how long different motor states last, when transitions to other 

states occur, and how, if, and when experimental manipulations affect these different 

states. Through them, we can make inferences about the underlying cognitive 

processes and better capture the dynamic nature of human behavior. As shown, by 

simply averaging the motor output over time and analyzing mean RTs and accuracies, 

we run the risk of missing and concealing effects that the analyses of h(t) and ca(t) 

reveal. For example, we would have falsely concluded that (1) additional distractors do 

not slow down the search process in feature search (Panis, Moran, et al., 2020), (2) with 

two sequential primes the priming effect is dominated by the second prime 

(Wolkersdorfer et al., 2020), and (3) antiprime features are required to cause response 

inhibition (T. Schmidt et al., 2022). While Donders’ pure insertion and Sternberg’s 

AFM rely on unrealistic assumptions (see Introduction, Chapter 1) discrete-time EHA 

allows to directly measure the time of the onset and the duration of effects, and to track 

changes across multiple time-scales. In other words, in discrete-time EHA time is 

treated just as time, resulting in a descriptive approach that operates on actual 

observed physical time. 
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5.2 Statistical & methodological advantages of EHA 

Compared to the analyses of mean data, EHA also comes with statistical and 

methodological advantages. As already discussed in the Chapter 2.1, EHA can deal 

well with right-censored observations, since such observations are not simply 

discarded when preparing data for this analysis. While the preparation for ANOVAs 

typically involves some form of censoring in order to mitigate the problem of 

diminished power due to outliers and the typically right-skewed distribution of RT 

data, this can often be ill-advised. For example, if the effect of interest occurs in the 

right-tail of the RT distribution, discarding such trials risks to reduce power, even 

though preventing this was the original goal of the censoring procedure (Ratcliff, 

1993). Generally speaking, EHA retains valuable information that other methods lose 

due to right-censoring. 

In addition, EHA allows the inclusion of a variety of time-varying covariates that 

could be of interest. When preparing data for EHA, time-to-event data is transformed 

into time-series data (see Chapter 2.2 for an introduction to this procedure for discrete-

time EHA). h(t) gives then the instantaneous likelihood of event occurrence given no 

previous events, while ca(t) provides the complementary performance measure. In 

other words, together those measures reveal what happens when. Physiological 

measures, such as EEG, can also trace changes over time. When modeling EHA, one 

can include several of such time-varying covariates (EEG signal amplitude, gaze 

location, heart rate, galvanic skin response, etc.). This has the potential to generate 

hazard models of not just behavioral but neural and other physiological event 

occurrence that go beyond currently existing models of cognitive psychophysiology 
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(Meyer et al., 1988). Moreover, as shown in Chapter 4, EHA allows to include multiple 

time scales during modeling. This enables to test how, when, and if (individual) 

performance changes, for example, within trials, across trials, across blocks, and more. 

Finally, the ultimate goal of research in experimental psychology and adjacent 

fields is to arrive at a precise description of the microscopic dynamics of the 

neurobehavioral system. For example, we want to connect the behavioral, cognitive, 

and neural dynamics, that is, the subject’s behavior in a given experimental paradigm, 

the involved cognitive processes, and the underlying neural correlates (ordered from 

macro to micro). According to Kelso et al. (2013, p. 122) “it is crucial to first have a precise 

description of the macroscopic behavior of a system in order to know what to derive” on the 

microscopic level. As shown, EHA gives a much more precise description of the 

macroscopic behavior than traditional measures such as mean RTs. Therefore, one 

should first study h(t) and ca(t) functions before attempting to fit parametric functions 

to the data or to generate computational models of human behavior. Chapter 4 

highlights how important features of human behavior might otherwise be missed. 

5.3 Potential disadvantages of discrete-time EHA and how to address them 

Deciding on the optimal bin size is not always a straightforward process. If the chosen 

bin size is too small, one runs the risk of overinterpreting spurious effects that are 

based on too few observations. If the chosen bin size is too large, the low temporal 

resolution can result in missing important features of the distribution of event 

occurrence. In order to find the best fitting bin size for the data set at hand, one has to 

explore a few alternatives. However, this crucial decision in the application of discrete-

time EHA is not arbitrary. Bin size optimality is dependent on multiple variables. First, 
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censoring time will influence bin size. It will either be set by the experimental design 

through the inclusion of an event deadline (i.e., a time after which events such as a 

button-press response are not recorded and the trial ends), or during analysis (i.e., a 

time until which all informative events are expected to have occurred); generally, with 

later censoring time, bin size should increase as well. Second, bin size will also depend 

on the rarity of event occurrence; more events recorded allows for smaller bin sizes. 

Third, the number of measurements (either in the number of repeated measures or the 

number of participants) will affect the optimal bin size; again, more events recorded 

allows for smaller bin sizes. Forth, the decision may be informed by the experimental 

design and the hypotheses that are to be tested. For example, if one wants to 

investigate the effect of different SOAs on an effect of interest (see response priming), 

intuitively one might want to choose a bin size that reflects the differences in employed 

SOAs (i.e., if SOAs change in 50 ms steps, choose a bin size of a maximum of 50 ms 

steps, or other dividers of 50). If effects are time-locked, these bins are more likely to 

reflect this. Overall, the issue of bin size optimality might not even be a disadvantage. 

The available information guiding the decision on bin size allows to make an informed 

tradeoff between temporal resolution and economic data collection. In addition, the 

process can be adapted to data and research question.  

Furthermore, depending on the decision made regarding bin size and the amount 

of data collected, the person-trial-bin oriented data set might end up very large. This 

can potentially affect time required for modeling and cause performance issues when 

working with the data. However, this is a common issue in many areas and with many 

methods (e.g., EEG, eye-tracking, and other types of data), and not at all unique to 

discrete-time EHA. Note that time bins do not have to be all of equal size, which can 
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help with data set size and the issue of response/event availability discussed above 

(Panis, 2020). 

In addition, when applying discrete-time EHA, especially in a small-N design, 

there are potential sources of noise in the data. Regarding noise within participants, it 

is crucial to have enough repeated measures, both on the participant level and per 

condition. This ensures high measurement precision and reduces noise within 

participants. Noise between participants can have two sources: low measurement 

precision on the participant level, or differences between participants. The former can 

again be reduced by sufficient measurements per participant and condition. The latter 

can actually be informative and reflect systematic differences between participants, as 

seen in Panis, Moran, et al. (2020). Here, characteristic differences between participants 

were found in their speed, potentially due to their employment of different response 

strategies. Assuring high measurement precision and the inclusion of covariates at the 

participant level when modeling are the recommended strategies to deal with this type 

of “noise”. Importantly, one should therefore always analyze participants on the 

individual level first. This allows one to identify such systematic differences between 

participants and safeguards against the interpretation of spurious effects. If one were 

to only look at pooled or averaged data instead, effects might otherwise be missed or 

effects be interpreted that are absent for most individual participants. However, a 

balance between analyzing individual data patterns and pooled data is crucial. 

Systematic effects will be present for subsets (e.g., fast and slow responders) or the 

majority of participants, while patterns due to noise will not. In other words, effects 

found in pooled data should be present in the majority of individual subjects as well.  
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Further, if one is not experienced in modeling, inferential statistics for discrete-

time EHA can be challenging at first. If data was collected with a large-N design (and 

without repeated measures), a standard logistic regression on the person-trial-bin 

oriented data set is sufficient for estimating the parameters of a discrete-time hazard 

model (see Allison, 2010 for a detailed description). However, if data was collected 

with a small-N design (and with repeated measures), possible options range from 

population-averaged methods (such as generalized estimating equations [GEE]), 

Bayesian methods, to generalized linear mixed models (GLMM; for an overview see 

Allison, 2010; for a comprehensive tutorial on Bayesian and frequentist approaches, 

see Panis & Ramsey, 2024). GLMMs were applied in Panis, Moran, et al. (2020) and 

Wolkersdorfer et al. (2020). In these studies, we employed stepwise techniques to find 

the best model, both for hazard and conditional accuracy functions. Doing this with 

complex models, while testing the models on the same data used to estimate them, 

risks to over- or underfit the data. Thus, the p-values from these models should be 

treated with caution, especially during model selection. For these reasons, 

generalizability of analyses and procedures of modeling and model selection are still 

being discussed and developed (Barr et al., 2013; Cunnings, 2012; Matuschek et al., 

2017; Zuur & Ieno, 2016). Moreover, models as presented in Wolkersdorfer et al. (2020) 

can appear rather complex for researchers unfamiliar with the technique. Other 

potential issues include failures of models to converge, departures from the original 

analysis plans, ad hoc changes during modeling, and the researcher degrees of 

freedom in model selection. In order to address this, and to offer an approach that 

researchers with a different background in data analysis will be more comfortable 

with, another technique will be discussed in the following. 
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If one’s aim is not to fully describe the shape of the hazard function, but is merely 

interested in certain properties or parameters of the descriptive function, robust 

techniques such as bootstrapping or jackknifing become available for inferential 

analyses (Ulrich & Miller, 2001; Wilcox R., 2011). For example, one might want to 

investigate divergence and convergence points of h(t), i.e. at which point do hazard 

estimates of different conditions differ and for how long. Originally developed as a 

jackknife-based method to investigate differences between two conditions in their 

respective onset latency of lateralized readiness potentials (LRP; Miller et al., 1998), 

Ulrich and Miller (2001) generalized it to factorial experiments investigating onset 

latencies as well. 

The main advantage of this method is that it drastically improves the signal-to-

noise ratio in relatively noisy EEG data. But let’s first revisit the example of a simple 

response priming experiment introduced in Chapter 2. In Figure 3, we found that 

hazards for consistent and inconsistent trials diverge after 200 ms have passed, that is, 

from this time bin on, hazard for consistent trials increases faster than for inconsistent 

trials. If we know from previous experiments that this is a regular observation that 

takes place in a certain time window (see, for example, Wolkersdorfer et al., 2020), we 

can treat such a time window as a region of interest (ROI). We can now apply the same 

simple, yet efficient, jackknifing procedure proposed by Ulrich and Miller (2001) for 

such and similar cases. First, one participant is omitted and the average curves for 

consistent and inconsistent trials in the ROI is computed on the remaining subsample 

of N-1 participants. Second, this computation is repeated until each participant was 

omitted once, resulting in relatively smooth curves for the N subsamples. Note, each 

subsample is now treated like a participant. Third, parameters of interest can be 
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extracted from each subsample. Compared to the noisy data of individual participants, 

this is now much easier. Forth, these N parameters enter a table and a standard 

ANOVA can be computed. For example, we can identify the moment of time at which 

hazards for consistent and inconsistent trials exceed a fixed criterion (e.g., h(t)=.3) for 

each subsample, similar to the onset latency of LRPs in the original work by Ulrich and 

Miller (2001). These time points are then stored in a table. Crucially, while the mean of 

the subsample curves and the mean of the individual participants are equal, error 

variances are artificially reduced by this procedure. Since each participant is included 

N-1 times, error variance is reduced by a factor of 1/(N-1)² (see Ulrich & Miller, 2001 

for proofs). For this reason, all F values have to be corrected by this same factor, 

resulting in Fc = F/(N-1)². P values are then calculated for this new Fc. Finally, with 

respect to our example data, this procedure enables us to identify the delay in h(t) 

between consistent and inconsistent trials. With respect to power, this approach has 

been shown to perform better than the analysis of individual curves, and deals 

sufficiently with Type I error (Ulrich & Miller, 2001). This is due to the improved 

signal-to-noise ratio of subsample scores based on the average of N-1 participants 

compared to scores based on individual participant curves. 

Let’s consider a slightly different approach to the data analysis by generalizing the 

procedure to different research goals. For example, one might not be interested in the 

delay of h(t) increases between conditions, but instead wants to investigate whether 

hazards significantly differ at a given time bin or in a given time window. Instead of 

extracting the average time points at which hazards exceed a fixed criterion for each 

subsample, one can also extract the average hazard at specified time bins or averaged 

over a time window of interest. This allows to test whether and when hazards are 
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significantly different between the conditions of interest. Instead of N subsamples of 

average time, averages for h(t) enter a table for each condition and time bin or window. 

For our example, a repeated-measures ANOVA computed on this table could answer 

whether h(t) differ significantly between consistent and inconsistent trials after 200 ms, 

300 ms, and 400 ms, respectively. Corrections of F values need to be applied as 

discussed earlier. Note, if violations of the sphericity assumption occur, common 

correction methods such as Greenhouse-Geisser and Huynh-Feldt can still be 

employed (Ulrich & Miller, 2001). 

To summarize, questions concerned with bin size optimality are a matter of 

experimental design and ultimately result in an informed tradeoff between temporal 

resolution and economic data collection. Large data sets are not unique to the method 

presented here. Moreover, ensuring high measurement precision is the best strategy 

to deal with sources of noise, and in case of a small-N design is achieved by sufficient 

repeated measures. Finally, depending on the research question, there is a wide range 

of inferential statistics applicable for discrete-time EHA. Rather complex models allow 

to model the shape of h(t) and ca(t), but model selection can harbor some dangers and 

difficulties. The jackknifing procedure is a viable alternative. If the goal is not a 

complete modeling of h(t) and ca(t), but one is rather interested in specific parameters 

at specific time bins, this method provides a robust test of certain hypotheses, ensuring 

accessibility to EHA for a wide range of researchers. Jackknifing also allows for the 

testing of clear a priori hypotheses, can be applied to more than one diagnostic 

function (h(t), ca(t), S(t), etc.), and allows one to flexibly test for delays and durations 

of effects. Overall, it is therefore my opinion that the presented advantages of discrete-

time EHA outweigh the disadvantages discussed here. 
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5.4 Comparison with other common distributional methods 

How does discrete-time EHA fare in a comparison with other common distributional 

methods? The first obvious method to compare discrete-time EHA to is continuous-

time EHA. At first glance, when treating time as a continuous measure, the high 

temporal resolution achieved seems sufficient to choose it over discrete-time. 

However, the latter has some subtle advantages. As mentioned in Chapter 2.2, the 

continuous-time hazard rate function requires a large amount of data for a good 

estimate (i.e., ~1,000 trials per subject per condition; see Bloxom, 1984; Luce, 1986; van 

Zandt, 2000). Depending on the research question, this can be unattainable, for 

instance due to the increased risk of practice effects or the time required for data 

acquisition. Discrete-time EHA is a more efficient, yet viable, alternative. 

Crucially, statistical modeling of continuous-time EHA requires specialized 

software, while standard logistic regression software or, in the case of the presented 

jackknifing procedure, any statistical software capable of simple ANOVAs is sufficient 

for discrete-time hazard model estimation. Further, modeling is more complex than 

for discrete-time EHA (which, as the previous sections showed, already is rather 

complex). Thus, discrete-time EHA can be regarded as a more suitable entry point into 

these advanced distributional analyses. And while parametric hazard models are 

available for continuous-time EHA, they can be rather restrictive in the shapes they 

allow (e.g., Fig. 1 shows an exponential, a Weibull, a gamma, and a lognormal hazard 

model). A semi-parametric alternative for continuous-time hazard models, the Cox 

regression, even completely ignores the shape of the hazard function. Another 

alternative is a piece-wise exponential model. However, this becomes available only if 
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event times are measured very precisely. During this procedure, time is again divided 

into intervals, in which the hazard rates are considered to be constant. In other words, 

it is assumed that RTs are exponentially distributed within these intervals (see Allison, 

2010 for an overview of these methods). The application of continuous-time EHA can 

certainly be desirable under particular circumstances. In my view, however, the 

complicated and sometimes restrictive nature of its modeling procedures, as well as 

the large amount of data required for it, make discrete-time EHA the preferred 

distributional analysis of time-to-event data. The advantages of the latter, from data 

collection to the acquisition of inferential statistics, more than make up for its lower 

temporal resolution. 

Another common way to investigate distributions of time-to-event data is the 

creation of quantile and delta plots. RT distributions are partitioned into bins based on 

quantiles. These quantiles are then plotted against the quantile order. Delta plots can 

then be created to compare two conditions. Corresponding quantiles are subtracted 

and the differences of each quantile are then plotted against the average of the two 

respective quantiles. This enables one to easily identify the ranges of RT in which 

effects in the cumulative distribution take place, and of which size and direction they 

are. A big disadvantage of this method is present when participants vary strongly. For 

example, very fast participants will have small RT quantiles, since many of their 

responses occur early (i.e., possibly small ranges between quantiles and earlier RT 

cutoff points), while slow participants will have large quantiles (i.e., possibly large 

ranges between quantiles and later RT cutoff points). Averaging them will inevitably 

blur the effect. Let’s say effects are indeed time-locked to stimulus onset. Averaging 

slow and fast participants in this way risks to miss or conceal such an effect and it is 
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not possible to identify precisely when the effect takes place. In comparison, plotting 

hazards and conditional accuracy will accurately reveal such time-locked effects (see, 

for example, Wolkersdorfer et al., 2020).  

In Chapter 1, a similar procedure known as Vincentizing was introduced. During 

this procedure, average RT distributions are generated from the average of their 

quantiles. It is assumed that this normalizes the RT distributions across participants 

(Ratcliff, 1979). However, this approach has not been evaluated positively (Rouder & 

Speckman, 2004). While there are select circumstances for which Vincentizing has been 

recommended, this is only the case when few observations per participant were made. 

Moreover, Rouder and Speckman (2004) showed that estimates made with this method 

are often inconsistent with respect to averaged parameters. Further, error responses 

are regularly censored before the creation of group RT distributions. Yet, errors can 

occur outside of the control of the researcher. As discussed in Chapter 2.1, error trials 

are likely informative and discarding such trials may introduce a sampling bias. 

In addition, the hazard is the most diagnostic function. While two hazard functions 

might cross one or two times, the corresponding cumulative distribution functions 

might not. Thus, averaging quantiles runs the risk of missing effects and patterns, 

while the hazard is able to discover them. Finally, the same averaging comes with 

another drawback. For example, as shown in Panis, Moran, et al. (2020), differences 

across participants are of high theoretical value. Averaging across them might be 

possible, however, the subgroups of fast and slow participants would have been 

missed, and the potential underlying processes involved never further investigated. 

When applying discrete-time EHA, individual participant inspection is highly 
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encouraged, and including relevant predictors at the participant level during 

modeling allows to identify such individual differences. 

5.5 Recommendations for the application of discrete-time EHA 

If the present work achieved its goal to highlight the advantages of the method of 

discrete-time EHA and motivates to apply the method, I would like to make some 

general recommendations regarding the experimental design of RT and other time-to-

event data studies. It was shown that discrete-time EHA is a powerful tool, providing 

us with exactly what we need when investigating time-to-event data: (1) The hazard 

gives the instantaneous likelihood of event occurrence given no previous events, (2) it 

is the most diagnostic function describing RT distributions, and (3) the conditional 

accuracy function allows us to track performance changes over time. Therefore, h(t) 

and ca(t) functions should become a standard of descriptive statistics. Thorough 

investigation of them should precede any further analyses, a practice that would reveal 

the different shapes and qualities of those functions across many different time-to-

event data paradigms. 

When designing an experiment with the goal of applying discrete-time EHA, the 

following should be considered. First, a fixed response deadline in each trial is advised. 

As presented, EHA deals well with right-censored observations. Thus, collecting data 

beyond a time point after which responses are so slow that other analyses deem them 

uninformative or meaningless (i.e., they would be trimmed either way), is 

unnecessary. Response deadlines have the additional advantage that individual 

distributions will inevitably overlap. This is especially desirable for modeling 

purposes (Panis & Schmidt, 2016; Wolkersdorfer et al., 2020). For example, a 
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reasonable response deadline for a simple response priming paradigm (two-button 

forced-choice) could be 800 ms, since most responses will have occurred way before 

this, with expected mean RTs between 300-400 ms. Additionally, stimulus 

presentation should not be determined by RTs. In each trial of a particular condition, 

present stimuli for exactly the same amount of time and set the trial duration to a fixed 

time (i.e., the next trial only begins after the response deadline has been reached). This 

allows for maximal comparability between trials and ensures that averaged trials are 

in fact a true average. Moreover, this keeps control over the experiment duration in 

the hands of the researcher. 

Second, include as many trials as possible per condition. As discussed, high 

measurement precision is of utmost importance. More trials allow smaller bin sizes, 

while still ensuring stable hazard and conditional accuracy estimates. Thus, I generally 

recommend small-N over large-N designs (see Smith & Little, 2018 for a discussion). 

In general, more than 100 trials per condition and participant should be achieved. 

Again, higher measurement precision on the participant level allows modeling from 

the participant level up. Worries about experiment duration can be neglected at this 

point. Through response deadlines and fixed trial duration, single sessions can remain 

short and overall duration stays in the control of the researcher. Alternatively, when 

feasible, multiple sessions can be planned. Keep in mind, if higher temporal resolution 

is desired, more trials will necessarily have to be recorded. 

Third, if one is interested in time-locking or, in general, the influence of a variable 

on the shapes of the hazard and conditional accuracy, one should employ sufficient 

parametric variation of the variable of interest. For example, if one wants to show the 

time-locked effect in response priming, variation of the SOA is essential. As a general 
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rule, having at least three parametric variations is advisable, preferably five, a 

recommendation generalizable to many other experimental designs and statistical 

methods, since it provides a research design with high internal validity. 

6 Outlook 

In this present work, I made my case in favor of the analysis of distributional data, in 

particular through the use of discrete-time EHA. I presented my arguments for a shift 

from classical methods concerned with mean analysis, described how EHA is 

performed, showcased its application in three paradigms, discussed its advantages 

and disadvantages, provided solutions to known issues with the method, compared it 

with other popular distributional analyses, and ended with recommendations for 

researchers planning to apply it in the future. It is clear now that RT and accuracy 

distributions are highly informative. Through EHA, we are able to gain insights into 

the temporal dynamics of cognitive processes. But where do we go from here? 

First, the method as it is right now, can be further developed. For example, in 

Jubran et al. (2025), we introduce a novel approach in analyzing time-to-event data 

that utilizes the advantages of discrete-time EHA and generalizes it to trajectory data. 

Here, we give a concrete example on how to improve measurement precision and how 

to make the most out of the available data. While discrete-time EHA, as presented in 

this work, offers insights into the response behavior of subjects, the ongoing process 

of decision-making is only captured at its final stage, here with a button-press. Jubran 

et al. (2025) measured hand-movement trajectories in a VR variation of the N-Back 

task. In our newly developed Spatiotemporal Survival Analysis (StSA) we include not 

just the passage of time but also the movement through space. Thus, this method 
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makes use of the richness of trajectory data and, as we argue, improves measurement 

precision at the participant level, capturing the decision-making process from the 

initiation of movement to its completion. This new method needs further evaluation 

(e.g., comparing it to other trajectory analyses methods or discrete-time EHA) and 

application. 

Second, more evidence regarding the validity of the method should be collected. 

For example, earlier I made the recommendation of employing response deadlines. A 

common concern that researchers have with such a procedure is that it might produce 

a bias in the data. More specifically, the question arises whether the to-be-expected 

speed-accuracy tradeoff is troublesome. Indeed, preliminary data suggests that, with 

shorter deadlines, effects in h(t) decrease in magnitude, while effects in ca(t) increase. 

However, while such a procedure can lead to a complete erasure of effects in mean RT, 

hazards remain diagnostic. Instead the observed shift in magnitudes between the two 

measures (hazard and conditional accuracy) is highly relevant. When no deadline is 

employed, effects are at a minimum in ca(t), and when the deadline is too short effects 

are at a minimum in h(t). Thus, depending on the cognitive demand of a given task, 

we have to identify the sweet spot at which effects are present in both measures. Only 

then will we get a full picture of the ongoing processes. We should move away from 

the idea of a tradeoff, which implies that one measure loses and one measure gains. 

Instead, through the complementary nature of h(t) and ca(t), the analysis of both 

measures always is advantageous. 

In order to further validate the method, it simply has to be applied to more 

experimental data. By exploring the different shapes of hazard and conditional 

accuracy depending on different experimental paradigms, the field will grow and 
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learn. Only once we know the possible shapes can we decide on which parametric 

functions might be suitable to fit to the data and how complex our models need to be 

(Holden et al., 2009; Townsend & Ashby, 1983; Wickens, 1982). 

Finally, applying discrete-time EHA to different paradigms will allow to find more 

examples of effects concealed by mean RT and accuracy analyses. Effects that are 

present in mean RT and accuracy will always be present in hazard and conditional 

accuracy functions as well. However, cases in which effects are only present in h(t) or 

ca(t), or both, are of high interest to the field. Classical approaches have led to 

numerous models and theories of human behavior. It is essential to bring them to the 

test, as some of them are potentially based on false assumptions due to the nature of 

the performed analyses. In the present work, I have presented just three paradigms, in 

which classical methods concealed important features of the response behavior of 

participants (Panis, Moran, et al., 2020; T. Schmidt et al., 2022; Wolkersdorfer et al., 

2020). Undoubtedly, there is more to discover out there.
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