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Inelastic light scattering in magnetic dots and wires
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An overview of the current status of the study of spin wave excitations in arrays of magnetic dots and wires
is given.  We describe both the status of theory and recent inelastic light scattering experiments addressing
the three most important issues: the modification of magnetic properties by patterning due to shape aniso-
tropies, anisotropic coupling between magnetic islands, and the quantization of spin waves due to the in-
plane confinement of spin waves in islands.

1. Introduction

Progress made during the last decade in lithographic tech-
niques and the analysis of matter enables the fabrication of
well-controlled, laterally defined magnetic structures from
micron to nanometer sizes.  These structures, which usually
consist of arrays of separate magnetic islands, are attracting
increasing interest due to both fundamental and technologi-
cal reasons.  From the point of view of  fundamental studies,
both the size and the arrangement of these magnetic islands
affect their magnetic properties to a large extend.  The re-
duction of  the dimensionality causes new physical phenom-
ena to appear concerning, for example, the magnetization
reversal in an island, compared to an infinite film [1].  The
high potential for applications of patterned magnetic struc-
tures in high-density, low-noise magnetic storage media,
magnetic sensors and in magnetic random access memory is
obvious [2].
Although static properties of patterned magnetic structures
have been studied to some extend [1, 3, 4, 5], high-
frequency dynamic properties have been rarely investigated.
As the fundamental excitations, we discuss spin waves in
the islands.  From spin wave measurements basic informa-
tions on the magnetic properties, such as magnetic anisot-
ropy contributions, the homogeneity of the internal field, as
well as coupling between magnetic islands can be extracted,
which are often hard to obtain with other methods.  In ad-
dition, dynamic excitations define the time scale of a mag-
netization reversal process, and, therefore, they are of fun-
damental importance to achieve an understanding of the
time structure of the reversal.  When the island size be-
comes comparable to the wavelength of a spin wave under
investigation, quantization (or confinement) effects appear,
which lead to dramatic changes of the spin wave spectrum
and the spin-wave density of states.

2. Preparation of patterned magnetic structures

Lateral magnetic structures are conveniently fabricated from
magnetic films using lithographic patterning procedures. In
the following, for simplicity, we will call structures with one
restricted lateral dimension "wires", and those with two
restricted dimensions "dots" following the usual conven-
tions, although, as will be one of the subjects of this contri-
bution, no real reduction of dimensionality is given since
both in "wires" and "dots" the magnetization is not constant

over each magnetic object along the directions of restricted
dimension.
Metallic Fe [6], FeNi [7, 8, 9] or Co [10, 11] films are
mostly used. For fundamental studies FeNi films are often
used due to the smallness of the coercive field and of the
intrinsic magnetocrystalline anisotropy. Using this material
the field needed to saturate the sample is small, and the
vanishing intrinsic anisotropy does not inhibit the observa-
tion of sometimes minute anisotropy effects caused by, e.g.,
the shape of the islands or by interactions between islands.
On the other hand, patterned structures made on the basis of
Co films allow to investigate the interesting case of perpen-
dicularly magnetized dots or wires [10].
The patterning process is most often performed by means of
electron beam lithography (EBL), X-ray lithography (XRL)
and by laser interference lithography (LIL), followed by ion
beam etching for pattern transfer.  Each method has its
characteristic advantage.  High quality samples can be fab-
ricated using all three processes.  EBL is very versatile but
due to its serial character it is time consuming, in particular
for large pattern areas.  XRL is a fast and convenient
method, but the need of a synchrotron source and a mask
fabrication step hinge its applicability. LIL is a fast and easy
process well suited for generating periodic arrays of wires or
ellipsoidally shaped islands on large areas with high coher-
ency.  Here the magnetic film coated with a photoresist is
exposed to the interference pattern produced by two laser
beams.  Double exposure with a rotation of the sample of
900 or 1200 generates patterns with fourfold or hexagonal
symmetry.

3. Spin wave in restricted geometries

The concept of spin waves and their quanta, the magnons,
as the lowest lying magnetic states above the ground state
was introduced by Bloch in 1930 [12].  Early experimental
evidence for their existence came from measurements of
thermodynamic properties, but the first direct observation
was made by ferromagnetic resonance (FMR) [13].  The
first observation of  spin waves by inelastic light scattering
(Brillouin- or Brillouin-Mandelstam light scattering, BLS)
was made by Fleury et al. in 1966 [14].  Since then FMR
and BLS have developed to major tools for the characteri-
zation of magnetic phenomena.
Spin waves with small wavevectors (q<106 cm-1), as acces-
sible in a BLS experiment, considered in relatively small
propagation distances (r<10 cm), are called magnetostatic
waves, because the effects of the exchange and retarding
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electro-magnetic fields can be neglected.  In restricted
geometries spin waves are modified due to the boundary
conditions imposed on the components of the magnetic field
and the magnetization over the entire surface of the mag-
netic object.  In case of confinement spin waves are no more
plain waves, and the assignment of a wavevector to the
modes must be made with care. The most simple case,
which can be solved analytically for the lowest lying mode,
is an ellipsoidally shaped island.  Here the demagnetizing
field is constant over the island, and a homogeneous distri-
bution of the static part of the magnetization may be as-
sumed.  For the lowest lying mode, the distribution of the
dynamic components of the magnetization is homogeneous
across the island, and the frequency ν is determined by the
Kittel formula [15]:
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γ
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with γ the gyromagnetic ratio and MS the saturation mag-
netization aligned along the z-direction. Hi  is the static
internal field defined by

H H N Mi z s= − ⋅ 4π (2)

and Nx, Ny and Nz are the demagnetization factors of the
ellipsoid.
For the case of an axially magnetized spheroid Walker [16]
found a quantization of the magnetostatic modes, which
show an inhomogeneous distribution of the dynamic com-
ponents of the magnetization.  These modes, called Walker
modes, are characterized by three quantum numbers.  For
the more general case, e.g., a tangentially magnetized sphe-
roid, no analytic solutions exist to our knowledge for the
higher order modes.
To discuss the excitation spectrum in a laterally restricted
geometry let us start with the situation of an infinite mag-
netic film.  Here so-called dipolar, magnetostatic surface
modes (Damon-Eshbach (DE) modes) exist, if the external
field and the magnetization are parallel to the film plane
[17].  This mode is a surface mode and it is characterized by
an in-plane wave vector 

r
q|| .  The mode energy is localized

near the film surface and the precession amplitude decays
perpendicular to the film with a decay length of the order of
2π/q||, which is in the range of 300 nm in a BLS-
experiment.  The mode travels parallel to the layers in an
angular range close to perpendicular to the applied field in a
defined sense of revolution about the film.  Neglecting the
exchange contribution, the mode frequency for propagation
perpendicular to the applied field is:
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with d the film thickness. The internal field Hi is defined
here as

H H H N Mi a s= + − ⋅β π4 (4)

with Ha the in-plane anisotropy field (Ha << 4πMS).  The
factor β depends on the orientation of the applied field rela-
tive to the in-plane easy axis: β = 1, if the field is applied
along the easy axis and  β = −1, if the field is applied along
the hard axis. Eqs. (1-4) assume a saturation of the mag-
netization of the sample.  The experimental geometry, in

which 
r r
q Hi||⊥ , and both vectors are in plane, is called the

Damon-Eshbach geometry. The first direct observation of a
DE-mode using BLS was made in 1977 by Grünberg and
Metawe [18].
For larger film thicknesses so-called (perpendicular) stand-
ing spin waves exist, which are of exchange type and which
consist of two counter propagating modes traveling almost
perpendicular to the films with a wavevector q= nπ/d, with
n a positive integer.
For a patterned film the translational symmetry is now bro-
ken, and one should expected a geometrical quantization of
the in-plane wave vector, 

r
q|| . In the case of wire arrays this

quantization should take place, when 
r
q||  is perpendicular to

the wire.  A calculation of the magnetostatic surface modes
in an axially magnetized elliptical cylinder, has been per-
formed by De Wames and Wolfram [19].  They showed,
that all modes can be characterized by a positive integer and
the wavevector component along the axis of the cylinder, qz.
The calculated surface mode frequencies are closely related
to the DE-modes of an infinite film. When qz = 0, these
modes correspond to DE-modes with quantized in-plane
wavevector. For qz ≠ 0 no simple quantization scheme can
be used, because a quantization parameter cannot be defined
independent of qz.
In the case of tangentially magnetized dots the problem of
spin wave quantization is much more complicated, because
even a circular dot cannot be considered as a limiting case
of the Walker-mode scenario.  In fact, a thin circular disc is
a limiting case of a spheroid, when its thickness approaches
zero. However, this situation corresponds to a normally, not
to a tangentially magnetized disc.  To our knowledge there
exists up to now no model, which covers this geometry.

4. Brillouin light scattering

Two basic techniques, ferromagnetic resonance (FMR) and
Brillouin light scattering (BLS), are mainly used for spin
wave studies.  In the field of patterned structures BLS has a
number of advantages over FMR.  These are: (i) the poten-
tial to investigate spin waves with different absolute values
and orientations of their wavevectors; (ii) detection of ther-
mally excited spin waves, i.e., no need to excite spin waves
with suitably high wavevectors; (iii) high spatial resolution
defined by the size of the laser beam focus, which 30-50 µm

q,ω

ω ω ω= ±
qqqqq =q ±qIS
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q ,ωI

Fig. 1: Scattering process of photons from spin wave excitations.
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in diameter. The latter circumstance allows to investigate
small pattern areas, which simplifies the patterning proce-
dure.
Brillouin light scattering is a spectroscopic method for in-
vestigating inelastic excitations with frequencies in the GHz
regime.  As illustrated in Fig.1 photons of energy hω I  and

momentum h
r
q I  interact with the elementary quanta of spin

waves ( h h
r

ω, q ), which are the magnons.  The scattered

photon gains an increase in energy and momentum:
h hω ω ωS I= +( )

h
r

h
r r

q q qS I= +( ) (5)

if a magnon is annihilated.  From Eq. 5 it is evident, that
the wavevector 

r r
q qS I− , transferred in the scattering proc-

ess, is equal to the wavevector 
r
q  of the spinwave.  A mag-

non can also be created by an energy and momentum trans-
fer from the photon, which in the scattered state has the
energy h( )ω ωI −  and momentum h

r r
( )q qI − .  For finite

temperatures ( T k KB>> ≈hω / 1 ) both processes have

about the same probability.  In a classical treatment the
scattering process can be understood as follows for many
materials:  Due to magneto-optical effects a phase grating is
created in the material, which propagates with the phase
velocity of the spin wave.  Light is Bragg-reflected from the
phase grating with its frequency Doppler-shifted by the spin
wave frequency.
The differential light scattering cross section

d d d S
2σ ω/ Ω , i.e., the number of photons scattered into

the solid angle dΩ in the frequency interval between ωS and
ωS+dωS  per unit incident flux density, can be written as
follows [20]:

d
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q q q q
S

I S I S I S

2σ
ω

δε δε ω ωΩ
∝ 〈 − − 〉 −

*( ) ( )
r r r r

(6)

with δε the dynamic (fluctuating) term of the permittivity,
which is caused by the spin waves due to magneto-optical
effects and which gives rise to the scattering, δε  is propor-
tional to the dynamic part of the magnetization m of the
spin wave.  The correlation function is given by:
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(7)
with <...> the statistical average. If light is scattered from  a
spin wave propagating in an infinite medium, the spatial
integration volume is the entire space.  In this case the cor-
relation function in Eq. (6) is nonzero only if the relations
ω ω ω= −S I  and 

r r r
q q qS I= −  are fulfilled.  In this way we

yield conservation laws of energy and momentum, described
by Eq. (5).  However, since for a spin wave mode propagat-
ing in a film the integration volume is bounded by the two
film surfaces, the conservation conditions are fulfilled only

Fig. 2: Schematic view of a Brillouin light scattering setup.
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for the two in-plane components of the wavevector, 
r
q|| .  In

backscattering geometry, when 
r r
q qS I= − , 

r
q||  is determined

by the angle of incidence of the light, θ : q qI|| sin= 2 θ .

The third component perpendicular to the film, qn, is not
well defined by the conservation law because the system
does not possess the symmetry of translational invariance
perpendicular to the film.  The uncertainty in qn is, appar-
ently, inversely proportional to t, the thickness of the film or
of the mode localization region.  It is negligible, if

( )r r
q q tS I n

− >> 2π .

If now the in-plane translational invariance of the magnetic
film is broken by patterning, the in-plane wavevector, 

r
q || , is

not anymore fully conserved in a the light scattering proc-
ess. In the case of a spin wave mode localized in a wire, for
example, the only conserved component is the component of
r
q||  along the wire axis.  It is clear from Eq. (7), that the

dependence of the differential light scattering cross section
on the component of 

r
q||  perpendicular to the wires is deter-

mined by the Fourier component of ( )m r
r
|| . We will discuss

this in more detail in Sect. 5.
A typical experimental setup for BLS studies is schemati-
cally shown in Fig. 2.  Light of a frequency stabilized laser
(∆ν = 20 MHz), which is typically an Argon+-ion laser (λ =
514.5 nm), is focused onto the sample with an objective
lens. The light scattered from the sample (elastic and ine-
lastic contributions) is collected  and sent through a spatial
filter for suppressing background noise before entering the
tandem interferometer.  The central part of the interfer-
ometer consists of two Fabry-Perot etalons FP1 and FP2.
The tandem arrangement avoids ambiguities in the assign-
ment of inelastic peaks to the corresponding transmission
order [21, 22].  In order to obtain the high contrast neces-
sary to detect the weak inelastic signals, the light is sent
through both etalons several times using a system of retro-
reflectors and mirrors.  The frequency selected light trans-
mitted by the interferometer is detected by a photomultiplier
or an avalanche photodiode after passing through a second

spatial filter for additional background suppression.  A
prism or an interference filter between the second spatial
filter and the detector serves for suppression of inelastic
light from common transmission orders outside the fre-
quency region of interest. Data collection is performed by a
personal computer or by a multichannel analyzer.

5. Arrays of wires

The spin wave excitation spectrum of arrays of ferromag-
netic wires was recently investigated by several groups [5, 9,
11, 23, 24, 25].
An early investigation of BLS from spin waves in an array
of magnetic wires made of permalloy was performed by
Gurney et al. [23].  The wire thickness and width were 30
nm  and  0.55 µm, respectively.  As it is shown in Fig. 3, a
splitting of the spin wave spectrum into several discrete
modes was observed in Damon-Esbach mode geometry at a
few values of the in-plane wavevector q|| .  The authors were
not able to identify the nature of the modes.
Ercole et al. [9] investigated arrays of wires, fabricated from
60 nm thick, Au captured FeNi films grown on GaAs(001)
substrates. Wire arrays were produced with wire widths
between 0.4 and 10 µm, the individual wires were separated
by twice their width.  The surface Damon-Eshbach spin
wave modes and the lowest-lying volume modes were ob-
served. The spin wave frequencies were found to be sensi-
tive to the size of the wires.  The measured spin wave fre-
quencies as a function of the in-plane angle of the
wavevector of the spin waves demonstrate a clear twofold
symmetry, obviously introduced by the symmetry of the wire
orientation.  Both effects have a magneto-dipole origin and
are due to demagnetization fields caused by the wire edges.
The magnetic easy axis corresponds to the case when the
wires are parallel to the applied field.  No evidence of any
mode splitting was reported.  The authors have reproduced
numerically their experimental results by solving the Lan-
dau-Lifshitz torque equation with the dynamic magnetiza-
tion profiles assumed to be homogeneous in each wire.  As a
result, an expression for the spin wave frequency was ob-
tained, which is close to the Kittel-formula Eq. (1), de-
scribing the q = 0 resonance in finite samples.
Cherif et al. [11] studied spin waves in arrays of 40 nm
thick Co wires with widths and periodicities on the mi-
crometer scale.  Contrary to FeNi, Co films possess an es-
sential magnetic anisotropy with an effective field
Ha = 2.6 kOe.  Under a magnetic field parallel to the wire,
the frequency of the DE-mode is higher than in the unpat-
terned film. For a magnetic field perpendicular to the wire a
significant variation of the frequency is observed, which is
related to the size-dependent demagnetizing field.  An ad-
ditional, low frequency mode which is not seen in the infi-
nite film, was observed.  The authors connect this mode
with the uniform precession mode, which gives rise to a
measurable BLS intensity in patterned, highly anisotropic
structures.
Mathieu et al. [24] and Jorzick et al. [26] investigated spin
wave excitations by BLS in arrays of FeNi wires.  In addi-
tion to demagnetization effects a quantization of the spin

Fig. 3: a) BLS spectra of the NiFe wire array (2-5) compared to the spec-
trum of the unpatterned  film (1); b) shown is the region of interest from 10 to
20 GHz in detail; c) diagrams indicating the angle of incidence θi , the applied
field H, and the experimental geometry (from [23]).
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wave mode in several dispersionless modes was observed
and quantitatively described. This quantization is connected
to a confinement effect of the spin waves.  It was not seen in
the geometry when the wavevector of the detected mode was
parallel to the wires.  Since these experiments provide the
first account for a quantitative understanding of (q ≠ 0) spin
wave quantization effects in lateral structures, let us con-
sider these experiments in more detail.
The samples were made of a 20 nm and 40 nm thick
Ni81Fe19 film deposited in UHV onto a Si(111) substrate by
means of e-beam evaporation.  Patterning was performed
using X-ray lithography with a following lift-off process
with Al coating and ion milling [27].  The procedure is a
high quality patterning process, which provides a superb
quality of the wire boundaries.  Several types of periodic
arrays of wires with wire widths w = 1.7 µm and 1.8 µm and
distances between the centers of the wires, Λ, of 2.5 and
4 µm (i.e., wire separations of 0.7, 0.8, 2.2 and 2.3 µm)
were prepared.  The length L of the wires was 500 µm.  The
patterned area was 500×500µm2.  An investigation of the
magnetization reversal behavior of the structures, performed
by Kerr magnetometry, showed that the magnetic easy axis
of the array was along of the wire axis.
In a BLS experiment the in-plane wavevector
r r r
q q qS I|| ||( )= − , transferred in the light scattering process,

was oriented perpendicular to the wires and its value was
varied by changing the angle of light incidence, θ, measured
against the surface normal: q|| = (4π/λLaser)·sin θ.  The col-
lection angle of the scattered light was chosen small enough
to ensure a reasonable resolution in q|| of  ±0.8⋅104 cm-1.  It
is important to mentioned here once more, that, strictly
speaking, 

r
q||  cannot be considered as the wavevector of the

spin waves mode taking part in the scattering process and,
thus, tested in the experiment.
Let us at first consider the results of the experiments,.  Fig.
4 shows the anti-Stokes side of a typical BLS spectrum of a
wire array with a wire thickness d = 20 nm, width w = 1.8
µm, and separation between the wires δ =0.7 µm for

q|| = 3·104 cm-1.  Near 7.1, 8.0, 8.8 and 9.6 GHz four distinct
modes of magnetic excitations are observed.  Fig. 5 shows
both sides of a BLS spectra for thicker wires with d = 40
nm, w = 1.7 µm and δ =0.8 µm for the same values of the
applied field and the transferred wavevector.  Besides a
splitting in the DE mode corresponding to in-plane quan-
tized spin wave modes an exchange dominated, perpen-
dicular standing spin wave (PSSW) mode is seen in Fig. 5
near 14 GHz.  It is not visible in Fig. 4, since its frequency

strongly depends on the film thickness ( ω ∝ −d 2 ). The
different mode character of the DE modes and the standing
spin wave is evidenced by the respective ratio of the anti-
Stokes and Stokes peak intensities.
By varying the magnitude of the wavevector, q||, the spin
wave dispersion was obtained for both thicknesses of the
wires, as displayed in Fig. 6.  Shown are the data for the
wires with Λ=4 µm (open symbols), and 2.5 µm (solid sym-
bols).  In the region of low wavevectors the spin wave
modes show a disintegration of the continuous dispersion of
the Damon-Eshbach mode of an infinite film into several
discrete, resonance-like modes with a frequency spacing
between the lowest lying modes of approximately 0.9 GHz
for d = 20 nm and 1.5 GHz for d = 40 nm.  There is no
significant difference between the data obtained from the
arrays with Λ = 2.5 µm and Λ = 4 µm, indicating that the
mode splitting is purely caused by the quantization of the
spin waves due to the finite wire width, and the magneto-
dipole interaction between wires is small for both studied
wire separations and thicknesses.
The main features observed in Figs. 6a and 6b are as  fol-
lows: (i) For low wavevector values (≅ 0 – 1.0·105 cm-1) the
discrete modes do not show any noticeable dispersion and
they behave like standing wave resonances.  (ii) The dis-
crete modes are each observed over a continuous range of
the transferred wavevector, q||.  (iii) The lowest mode ap-
pears near zero wavevector (|q||| ≤ 0.08⋅105 cm-1), whereas
all higher modes appear at higher wavevectors, and the
value of the respective lower “cut-off“ wavevector increases
with the mode number. (iv) There is a transition region
(q|| ≅ 1.0 – 1.3·105 cm-1) between the well resolved disper-
sionless modes, and the continuous film-like dispersion,

0 5 10 15 20

 x  5
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Frequency Shift (GHz)

Fig. 4: BLS spectrum of a wire array with a wire width of 1.8 µm, a wire
thickness of 20 nm and a wire separation of 0.7 µm, demonstrating the exis-
tence of several discrete spin wave modes (indicated by arrows) with a mode
splitting of about 0.9 GHz. The applied field is 500 Oe.  The transferred in-
plane wavevector q|| is 0.3·105 cm-1.  The intensity at zero frequency shift is
due to elastically scattered light.  In the region of interest the scan speed was
reduced by a factor of  five (from [24]).
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Fig. 5: BLS spectrum of the wire array with a wire width of 1.7 µm, a wire
thickness 40 nm and a wire separation of 0.8 µm. The applied field is 500 Oe.
The transferred in-plane wavevector q|| is 0.3·105 cm-1. In the regions of inter-
est (±(5-17) GHz) the scan speed was reduced by a factor of  three.
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where are discrete modes, but the mode separation is close
or slightly below the experimental frequency resolution in
the BLS experiment (≈ 0.1 GHz).  (v) For large values of
the wavevector (q|| > 1.3⋅105 cm-1) the dispersion of the
patterned film converges to the dispersion of a continuous
film.
Of fundamental interest is also the BLS cross section.  The
interesting problem is, how the BLS cross section depends
on q|| for each of the quantized modes.  In general, it is very
difficult to measure absolute values of the scattering cross
section or even to compare the intensities of modes between
different BLS spectra. However, as it is seen in Fig. 6b, the
exchange dominated, perpendicular standing spin wave
mode is observed in all the spectra with d = 40 nm for the
entire investigated range of q|| .  Therefore, it can be used as
a reference for relative measurements of the scattering cross
section. The intensity of each in-plane mode, normalized to
the intensity of the perpendicular standing mode is shown

by black squares in  Fig. 7.
In order to understand the above experimental results, the
main issues are (i) to calculate the mode frequencies and (ii)
to understand why each of the modes is observed over a
characteristic continuous range of wavevectors.  For the
discussion we assume a Cartesian coordinate system ori-
ented such that the normal of the pattern area points into
the x-direction, the wavevector 

r
q||  points into the y-

direction, and the wire axes, the applied magnetic field and
the magnetization are all aligned parallel to the z-axis.
In the case of small values of q|| it is natural to assume that
the observed discrete spin wave modes result from the
width-dependent quantization of the in-plane wavevector qn

in the DE-dispersion equation, described by Eq. (3) with a
static demagnetizing field Hd = 0.  This approach is valid
since the magnetic field is applied along the wires and the
aspect ratio in this case is very high.  The quantized values
of q||,n (or, correspondingly, the quantized wavelength  λn) in
a thin (d << w) magnetic wire can be obtained by imposing
boundary conditions on the variable magnetization m at the

side walls of the wire ∂ ∂m y y w=± =2 0 , corresponding to

zero surface anisotropy:

w n n=
λ
2

;             q||,n ≡ =
2π
λ

π

n w
n ,  (8)

with n the mode index, n = 0,1,2….  The mode frequencies
are obtained by inserting the discrete values q||,n into the
Damon-Eshbach dispersion, Eq. (3).  The profiles of the
dynamic component of the magnetization m(y) across the
wire describing the in-plane standing waves are:

( )m y a q y w w y wn n n( ) cos ( / ) , / / .||,= + − < <2 2 2 (9)

with an the corresponding mode amplitudes.  This approach
should yield reasonable estimates for the frequencies of the
quantized modes since the film thickness is much smaller
than the width of the wires.  For the calculation we use the
independently measured values of the material parameters
4πMS = 10.2 kG, γ/2π = 2.95 GHz/kOe.  The results of the
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Fig. 6: Obtained spin wave dispersion curves for an array of wires of a
periodicity Λ=2.5 µm (open squares) and 4 µm (solid squares)..  The external
field applied along the wire axes is 500 Oe.  The solid horizontal lines indicate
the results of a calculation using Eqs. (3,8), the dotted horizontal line indicates
the result of calculations for the modes with n = 0 using Eqs.(1,2). a) the
thickness of the wires is d = 20 nm, the dashed line is the calculated Damon-
Eshbach dispersion of an infinite film using Eq. (3) plotted for reference;  b) d
= 40 nm, the dashed line indicates the result of the calculated hybridized
dispersion of a DE-mode and the first perpendicular standing spin-wave mode
in an infinite film for reference.
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calculation are shown in Fig. 6 by solid horizontal lines
together with the experimental data.  Without any fit pa-
rameters the calculation reproduces all mode frequencies
with n > 0 very well, and for the n = 0 mode a reasonable
agreement is achieved.  Since the group velocity

qV ∂∂ω=g  of the dipolar surface spin wave (cf. Eq. (3))

decreases with increasing wavevector,  the frequency split-
ting of neighboring, width-dependent discrete spin wave
modes, which are equally separated in q-space (q||,n = nπ/w),
becomes smaller with increasing wavevector q||,n , until the
mode separation is smaller than the frequency resolution in
the BLS experiment and/or the natural line width, and the
splitting is not anymore observable.  Fig. 8 demonstrates the
evolution of the mode frequencies with an increasing ap-
plied field, showing that the splitting decreases with in-
creasing applied field.
Two aspects were not considered in the above discussion: (i)
a possible pinning of the spins at the side walls of the wires
was not taken into account.  This assumption is justified
since anisotropies in permalloy are small.  In contrary,
when pinning is active, a boundary condition analogous to
the Rado-Weertman boundary condition of an infinite film
must be imposed at the side walls, which results in a phase
shift of the spin waves upon reflection of the side walls [25];
(ii) the dynamic dipole fields in a wire with a non-zero,
even though small, ratio d/w differ from those of an infinite
film.  Both effects slightly change the frequencies of the
modes, but with increasing mode number they become more
and more negligible. The former effect should not be im-
portant in NiFe due to its small anisotropy.  The latter effect
changes the frequency of the uniform (n = 0) precession
mode and can be easily calculated by means of the Kittel
formula, Eq. (1), using demagnetization factors of the wires,
measured independently.  The obtained value is shown in
Fig.6 by a dotted line. The agreement with the experiment is
excellent.
As it was pointed out above, the light scattering cross sec-
tion at a given transferred wavevector is determined by the
corresponding Fourier component of the spin wave mode

profile ( )m r
r
|| .  For a spin wave mode existing in the wire of

width w, m is zero outside the wire, and therefore not a
periodic function in space.  Then the Fourier component
m(q||) is a continuous function of q|| given by:

m q m y iq y dy
w

w

( ) ( )exp( )|| ||
/

/

=
−
∫

2

2

 . (10)

Using Eqs. (8-10), the Fourier components |mn(q||)| for the
discrete modes are calculated.  The resulting cross section
profiles I ∝ |mn(q||)|

2 of the lowest five modes for the arrays
with the wire thickness  d = 40 nm are shown in Fig. 7.
There is a good agreement between the results of this cal-
culation and the experiment.

6. Arrays of dots

The investigation of arrays of magnetic dots is even more
challenging then the study of arrays of magnetic wires.
Wires always have a shape anisotropy caused by demagneti-
zation fields.  It means that spin waves in wires are not
degenerated, and possible effects of a weak interaction be-
tween the wires cannot easily be seen in a BLS experiment.
As additional degrees of freedom one can vary the shape of
the dots (circle, ellipse, square,...) as well as their arrange-
ment (rectangular, square, hexagonal lattice). Last but not
least, arrays of isolated magnetic dots are a good model
system to study fundamental physical aspects of the next
generation magnetic random access memory.
Up to now there exist very few studies of magnetic dot ar-
rays by BLS [6, 7, 8, 28].  This is definitely connected to the
fact that, on one hand, it is much more difficult to prepare
dots with a well defined shape; and on the other hand, that
the BLS cross section from dots is lower than that from
wires simply due to the lower coverage of the surface by the
magnetic material.
Grimsditch et al. [6] investigated sub-micron Fe magnetic
dot arrays by BLS with dots of ellipsoidal shape.  They
showed that the shape anisotropy of individual dots is a
dominant source of anisotropy, measured both by static
magnetometry and BLS.  The measured spin wave frequen-
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nm and a wire separation of  0.8 µm as a function of the applied field.  The
lines are calculated using either the DE-equation with quantized wavevectors
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cies are in good agreement with values calculated on the
basis of isolated ellipsoids using the Kittel formula, Eq. (1).
No inter-dot coupling was observed.
Hillebrands et al. [7, 28] investigated spin wave properties
of square lattices of micron-sized dots of permalloy with
varying dot separations.  Eight different samples comprising
circular dots arranged in a 1x1 mm2 square lattice with a
diameter/periodicity of 1/1.1, 1/2, 2/2.2 and 2/4 µm, re-
spectively, patterned into 500 and 1000 Å thick films were
prepared.  Special care was taken to avoid a touching of
neighboring dots even for the smallest separation.  This was
confirmed by depth profile measurements.  The measured
spin wave frequencies of the different dot arrays as a func-
tion of the applied field are shown in Fig. 9.  For each dot
array the spin wave frequencies decrease with decreasing
field, and they disappear below certain critical applied
fields.  The strong reduction of the spin wave frequencies
with decreasing aspect ratio is also seen in Fig. 9.  This is
caused by size depending demagnetizing fields (cf. Eq.(4)),
i.e., the demagnetizing factor Nz of each magnetic dot de-
creases with the aspect ratio. The solid lines in Fig. 9 are
calculated on the basis of Eqs. (3,4) using demagnetizing
factors of spheroids with axial ratios taken from the aspect
ratios of the magnetic dots.  Although spheroids are a crude
approximation to the real three-dimensional shape of the
dots, the calculation is in reasonably good agreement with
the experimental data for H > Nz⋅4πMs .
To investigate the problem of an in-plane inter-dot cou-
pling, the spin wave frequencies were measured as a func-
tion of the angle of the in-plane applied field, ΦH, with
respect to a reference [10]-direction of the lattice arrange-
ment.  For the smallest dot separations of 0.1 µm a fourfold
anisotropic behavior was found, which was seen neither for
larger dot separations nor for the unpatterned reference
film.  This is displayed in Fig. 10 for the 1/1.1 µm and, for
comparison, for the 1/2 µm lattices of the sample of 100 nm
thickness at an applied field of 1 kOe.  Note here that the

easy axes (maximum frequencies) of the observed anisot-
ropy are along the [11]-directions of the lattice.  To deter-
mine quantitatively the anisotropy constant the free energy
expression

F K= ⋅( ) sin cos4 2 2Φ Φ  (11)
with Φ the angle between the direction of magnetization
with respect to the [10]-direction, and K(4) the constant of a
fourfold in-plane anisotropy.  A model fit using Eq. (11)
and a numerical procedure to calculate the spin wave fre-
quencies [29] is displayed in Fig. 10 as a solid line for the
1/1.1 µm lattice.  For both 1/1.1 µm samples with thick-
nesses of 50 nm and 100 nm the anisotropy contribution K(4)

was determined for several values of the applied magnetic
field.  The obtained values of K(4) decrease with increasing
field and saturate within the investigated field range at K(4)

= -0.6·105 erg/cm3, which corresponds to an effective ani-
sotropy field Hani = 150 Oe, at the same reduced field value
of about H/Hd = 5 with Hd the demagnetizing field.  As  a
function of the reduced field, H/Hd, the data of both dot
thicknesses fall onto one common curve within the error
margins indicating that the coupling strength scales with
the demagnetizing field.  The observed fourfold anisotropy
can be understood as being caused by a magneto-dipole
interaction between residual unsaturated parts of the dots.
Because of the large distance of 0.1 µm between the dots a
direct exchange mechanism via conduction electrons or via
electron tunneling can be excluded.   A dipolar interaction
of completely magnetized dots also cannot account for the
observed anisotropy, because the corresponding dipolar
energy can be expressed as a bilinear form of the compo-
nents of the magnetization vector.  Such an expression can
only yield an uniaxial, but not a fourfold anisotropy contri-
bution, since in a bilinear form the direction cosines appear
quadratic in highest order and add to a constant if a fourfold
symmetry is given.  But, if the dots are not completely satu-
rated, the magneto-dipole interaction energy cannot be
expressed in the above bilinear form, and the fourfold ani-
sotropy is not anymore forbidden.  The large observed de-
crease of the coupling anisotropy constant with increasing

Fig. 10: Dependence of the spin wave frequencies on the in-plane direction
of the applied field for the 1/1.1 µm (full squares) and, for comparison, for the
1/2 µm (open squares) dot arrays of 100 nm thickness.  The solid line is a fit
for the data.  Magnetization curves of the 1/1.1 µm dot lattice are shown as
insets with the applied field as indicated.  Note that maximum values of the
spin-wave frequencies indicate an easy axis (from [28]).

Fig. 11: Dependence of the spin wave frequencies of the arrays of square
dots with an edge  length of 2 µm as a function of the angle of light incidence.
The solid line is calculated on the basis of Eq. (3). The arrows indicate the
step-like misfits due to possible spin wave quantization (from [8]).
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field, forcing the alignment of the magnetization with the
field, corroborates this assumption.
Cherif et al. [8] studied magnetic properties in periodic
arrays of square permalloy dots.  The spin wave frequencies
were found to be sensitive to the size of the dots and, for the
smallest structures, to the in-plane direction of the applied
field.  While the size dependence can be reasonably ex-
plained to originate from the demagnetizing field effect, the
in-plane anisotropy should be discussed in more detail.  The
authors observed a fourfold anisotropy in the spin wave
frequencies as a function of the in-plane angle of the exter-
nal field.  The spin wave frequencies show maxima for the
magnetic field applied along the edges of the squares, indi-
cating easy axes of anisotropy along the edges.  Contrary to
the results of Hillebrands et al [7, 28], the authors did not
demonstrate that the observed anisotropy is caused by inter-
dot interaction, instead they argue that it may be a single-
dot effect.  In fact, dots of square shape possess a lower
symmetry compared to circular shaped dots.  Therefore,
shape affects (corner effects for the magnetization, confine-
ment of the spin wave mode etc.) can cause this anisotropy.
An indication of one of these effects, obtained by Cherif et
al., is shown in Fig. 11.  the figure shows the measured spin
wave frequencies versus the angle of incidence of the light,
which, as it was discussed in Sec. 4, is connected with the
transferred in-plane wavevector q||. As it is seen in Fig. 11,
the obtained dependence deviates from a smooth variation
corresponding to Eq. (3).  At least two step-like misfits are
seen. However, as it was discussed in Sec. 5, confinement of
the spin waves and corresponding quantization of the
wavevector should cause a splitting in several modes.  This
was not observed.
Jorzick et al. [26] investigated square lattices of circular
permalloy micron dots, similar to those used by Hillebrands
et al. [7, 28].  The only difference was the smaller thickness
of the dots of d = 40 nm.  Fig. 12 shows the anti-Stokes side
of a typical BLS spectrum for q|| = 0.42·105 cm-1 of an array

with a dot diameter of 1 µm and a dot spacing of 1.1 µm at
H = 600 Oe.  Similar to the results obtained from the studies
of magnetic wires, several peaks, corresponding to in-plane
quantized spin wave modes, as well as an exchange domi-
nated, perpendicular standing spin wave mode is seen in
Fig. 12.  By varying the magnitude of the wavevector, q||,
the spin wave dispersion were obtained, as displayed in Fig.
13.  Similar to the wire arrays discussed above, each in-
plane quantized mode is observed within a certain distinct
interval of q||, the center of the interval being moved to
larger q|| with increasing quantization number of the mode
compared to the case of wires.
Although the experimental data for the dots look fairly
similar to those for the wires, the theoretical analysis of the
quantization conditions is presently out of reach, since, as it
was mentioned in Sec. 3,  a theory of the spin wave quanti-
zation in tangentially magnetized dots is not available.

7. Conclusions

In the preceding chapters we have seen that BLS is a pow-
erful tool for the investigation of dynamic properties in
micron size magnetic islands.  Recent BLS experiments
have revealed  many interesting phenomena such as dy-
namic size effects, anisotropic magnetic inter-dot coupling,
and quantization of spin waves due to in-plane confinement
in the islands.  Due to a break in lateral translational sym-
metry the spin wave modes as well as the selection rules in
the light scattering process are modified.   Despite these
successes, some deficiencies, especially in the theoretical
description of the spin wave modes in restricted geometries
are evident. A consistent further treatment of the problem,
where experiment and theory progress together is of great
importance.
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