Experiments in Learning Prototypical Situations
for Variants of the Pursuit Game

Jorg Denzinger
Center for Learning Systems and Applications
Fachbereich Informatik, Universitat Kaiserslautern
Postfach 3049, 67653 Kaiserslautern
Germany
E-mail: denzinge@informatik.uni-kl.de

Matthias Fuchs
Center for Learning Systems and Applications
Fachbereich Informatik, Universitat Kaiserslautern
Postfach 3049, 67653 Kaiserslautern
Germany
E-mail: fuchs@informatik.uni-k1l.de

Abstract

We present an approach to learning cooperative behavior of agents. Our ap-
proach is based on classifying situations with the help of the nearest-neighbor
rule. In this context, learning amounts to evolving a set of good prototypical sit-
uations. With each prototypical situation an action is associated that should be
executed in that situation. A set of prototypical situation/action pairs together
with the nearest-neighbor rule represent the behavior of an agent.

We demonstrate the utility of our approach in the light of variants of the
well-known pursuit game. To this end, we present a classification of variants
of the pursuit game, and we report on the results of our approach obtained for
variants regarding several aspects of the classification. A first implementation
of our approach that utilizes a genetic algorithm to conduct the search for a set
of suitable prototypical situation/action pairs was able to handle many different
variants.

1 Introduction

Designing a set of agents and an organization and interaction scheme for them in order
to solve a given problem cooperatively is not an easy task. Even if the designer does
not have to cope with additional restrictions like the use of already existing software,
interface restrictions, or also involved fellow designers, the task remains difficult and
its realization is often very expensive.

Especially in cases where the designer is not familiar with the given problem, it can
be expected that the first design (which is typically following well-known and quite
general principles) has to be evolved over several versions until a satisfactory version is
found. These versions reflect the learning and understanding process of the designer.
The more versions are needed, the more expensive the task becomes.

An idea that has become more and more interesting and therefore a research goal of
many computer scientists is to integrate learning and adaptation capabilities into the
first design of agents in order to let them evolve the intended behavior automatically
(and at much cheaper costs). The idea of providing an agent with learning capabilities,
and using it as a start design for a range of problems has a strong potential, although
some basic methods and representations concerning the problem domain should—not
only in our opinion—be provided by a designer or a specialist of the domain. This
concept is a basis for the growing field of genetic programming ([Ko91]), but also to
some degree applies to areas like software engineering in form of software generators,
or multi-agent systems as a means for the reuse of agents or multi-agent platforms.

In this paper we present an agent architecture based on the classification of situations
with the nearest-neighbor rule (NNR; [CH67]), and a learning mechanism based on the
generation of prototypical situations that demonstrate the utility of the idea to have
agents adapt automatically to problems in order to evolve cooperative behavior.

The agents in our approach ground their behavior on a set of pairs of a situation
and an action (sequence). When an agent is confronted with a situation it determines
the situation/action pair in its set of situation/action pairs whose situation is the
most similar to the given situation according to the NNR. Then it applies the action
(sequence) associated with the selected pair. Since the behavior of such an agent
can be easily changed by modifying, adding, or removing situation/action pairs, this
architecture provides a suitable basis for learning and adaptation.

Learning cooperative behavior in this context means searching for an appropriate set
of prototypical situation/action pairs. In order to realize this search, we have chosen a
genetic algorithm (GA; [Ho92], [Jo88]) that allows us to start from rather inappropriate
(unfit) sets, and without much knowledge besides an apt representation of situations
and a comparison procedure for sets of situation/action pairs in order to determine the
fitter set. This procedure is the basis for the fitness measure of the GA. We show the
utility of our approach by learning agents for several different variants of the so-called
pursuit game.

This paper is organized as follows: After this introduction we will describe in more
detail our basic agent architecture. In section 3 we will concentrate on learning (satis-
factorily) good cooperative behavior for agents. Then we will describe the pursuit game
and its variants. In section 5 we will present the representation of the pursuit game

and its variants in terms of situations and actions, and the results of our experiments
obtained with our approach for this game. Finally, we will conclude this paper with
some remarks on possible improvements or alterations of our approach.

2 The Basic Agent Architecture

An agent exposed to some (multi-agent) environment has to repeat the process of
taking some action A when being confronted with a certain situation S in order to
continuously modify its situation so as to (finally) achieve some goal (as efficiently as
possible). Commonly, a situation S is represented by a vector of n variables from the
set R of real numbers. Hence, R is the set of all situations respectively the situation
space. Each component z; of a situation S = (z1,...,2,) € R" essentially expresses
a certain feature of S. Given A as the set of all possible actions (respectively action
sequences) an agent may take, the behavior of an agent is reflected by its strategy
U : R" — A that allows the agent to select an action U(S) = A € A when being
confronted with situation S.

There are many ways to realize the behavior (strategy) of an agent, i.e., a mapping
from R" to A. We propose here to utilize a finite, non-empty set Z = {(5;, A;) €
R x A |1 < i < mg} of prototypical situation/action pairs as basis for an agent’s
behavior. Given a situation S € ", an agent takes the action A; which is associated
with the situation S;—i.e., (Sj, Aj) € I—that is closest (respectively the most similar)
to S among all situations in Z. More precisely, we employ a distance measure D :
" x " — R (typically the Euclidean distance measure that we also employed for
our experiments). Given the minimal distance 6,,;, = min({D(S5;,5) | 1 < i < mz})
between situations S; in Z and the given situation S, the action selected by strategy Wt
is U7(S) = Aj, where j = min({l < i < mgz | D(5;,5) = 6min}) is the smallest index
of situations in 7 that are closest to S. (The smallest index is chosen merely to resolve
ambiguities.)

Approaches based on the NNR fascinate with their simplicity. Nevertheless (or be-
cause of that) they have shown considerable success in connection with instance-based
learning ([AKA91]) and classification problems (e.g. [MST94]). To our knowledge, all
applications of the NNR involve a set Z which is (a subset of) a set of given train-
ing examples. (More recent work regarding classification problems, however, does not
make such an explicit use of training examples. See for instance [DK95].)

We intend here to evolve the set 7 with the help of a GA in order to optimize the
performance of an agent proceeding according to strategy Wz. Since evolution can be
equated with search, the GA is only one among many search methods that can be
utilized. We chose the GA, because it has practical and theoretical properties that suit
our approach (cp. section 3). Alternative search methods, in particular combinations
of the GA with other search methods (using the TEAMWORK method ([De95]), for
instance), can be investigated in future research (see also section 6).

Regardless of the search method employed, the basic architecture or design of a
strategy determines (a) how good a strategy we can expect to find and (b) how difficult
the search is going to be. Point (a) surely favors the use of neural nets, because a neural

net can realize (almost) any mapping provided that it is equipped with an apt topology
and the connection weights are chosen appropriately (cp. [Sp65]). But evolving weight
configurations and possibly also evolving net topology is a strenuous task even for the
GA (cp. [ZM93]). Considering the fact that neural nets are “over-sophisticated” for
many applications, simpler designs entailing more manageable search spaces are called
for. Similar considerations apply to genetic programming.

Classifier systems ([Ho86], [Ho92]) can—by design—profit from the GA much more
easily. Also, they are a very powerful methodology. But the rather complex architecture
of a classifier system and the sophisticated techniques involved (e.g. credit assignment,
bidding, etc.) still make it worthwhile thinking about simpler methods, in particular
in connection with problems that do not require the full power of a classifier system.

The use of condition/action rules is a very popular approach in this context (e.g.,
[Gr91]). Commonly, such a rule is of the form

ifa <z <bA...Na, <z, <b, then execute A€ A,

where each condition a; < z; < b; specifies the range of values for variable z; (with
respect to this rule). In a set of rules, the rules are (implicitly) or-connected. Hence,
such a set of rules can subdivide the situation space R™ into hyper-rectangles which
are aligned with dimension axes. These hyper-rectangles may be partially overlapping,
which calls for disambiguation techniques, and there may be gaps that necessitate some
kind of default rules.

The major limitation of these condition/action rules is the restricted way they can
subdivide the situation space. An approach based on a set of prototypical situa-
tion /action pairs and the NNR as described above allows for subdividing the situation
space without overlapping and gaps, where the possible sub-spaces include, but are
not limited to hyper-rectangles. As a matter of fact, such an approach can piecewise-
linearly approximate arbitrary sub-space boundaries.

In [SS95], both approaches are combined. But the GA is only applied to evolve
sets of condition/action rules, which then provide the NNR based component with
situation/action pairs. We couple here the GA and the NNR approach tightly, meaning
that the GA is immediately responsible for the set Z of situation/action pairs.

Before presenting the details of the GA designed for our approach, we would like
to emphasize the simplicity of our approach: Once the situation space is known, the
fundamental “data structure” is a situation respectively a point in the situation space
and an associated action. Hence, the basic architecture of a strategy—namely a set
of such situation/action pairs—is at least as easy to handle (by a GA) as a set of
condition/action rules, though more expressive. No further user-specified knowledge is
required as, for instance, non-terminals (functions) and terminals (constants, variables)
in genetic programming.

3 Learning with the Genetic Algorithm
The preceding sections repeatedly pointed out that we intend to evolve respectively
search for a strategy (behavior) Wz respectively a finite set 7 of situation/action pairs.

So, the search space we have to cope with is the set of all finite sets of situation/action

4

pairs. Even if we limit the number of situation/action pairs of each set Z to some
arbitrary but fixed 1 < M € IN,i.e., mz < M for all Z = {(S5;, A;) | 1 <i < mg}, the
search space in general remains enormous (and unstructured). The use of a GA appears
to be appropriate under these circumstances, because the GA has the potential to cope
with intricate search spaces in the absence of any knowledge about their structure.
Furthermore, a GA is less prone to getting trapped in a local optimum. Both properties
are highly valuable for our purpose (cp. [JSG93]). In the sequel, we describe the basics
of the GA in the light of our application.

Unlike other search methods, the GA maintains a set of (sub-optimal) solutions, i.e.,
several points in the search space. In this context, a solution is preferably called an
individual, and the whole set is referred to as a population or generation. Usually, the
size of the population is fixed. In order to explore the search space, the GA applies
so-called genetic operators to (a subset of the) individuals of its current population.
This way, new individuals can be created and hence new points in the search space can
be reached. In order to keep the population size fixed, it must be determined which
individuals are to be eliminated in order to make room for the new ones. For this
purpose a so-called fitness measure is employed which rates the fitness (i.e., the ability
to solve the problem at hand) of each individual of the current population. The genetic
operators are applied to the most fit individuals, this way producing offspring which
then replaces the least fit individuals (Darwinian principle of “survival of the fittest”).

So, the GA basically proceeds as follows: Starting with a randomly generated initial
population, the GA repeats the cycle comprising the rating of all individuals using the
fitness measure, applying the genetic operators to (a selection) of the best individuals,
and replacing the worst individuals with offspring of the best, until some termina-
tion condition is satisfied (e.g., an individual with a satisfactory fitness level has been
created).

In our case an individual Z corresponds to a strategy represented by a (finite) set of
situation/action pairs. (Our GA hence follows the ‘Pittsburgh approach’ in that each
individual encodes a complete “solution” of the problem.) The fitness of an individual
is assessed in terms of the problem solving expertise of its associated strategy 7.
The fitness measure is the only connection between the GA as an underlying search
method and the actual problem. Therefore, we cannot define a specific fitness measure
at this point, and we have to postpone details until a concrete problem is specified (see
section 5).

The initial population of the GA is (as usual) generated completely at random.
That is, for each individual 7 of the initial population comprising n,., individuals,
both its size mz < M and the mz situation/action pairs are determined at random.

Two genetic operators are employed here, namely crossover and mutation. (‘Re-
production’ as given by [Ko91], for instance, is basically realized by the survival of the
r% fittest individuals.) Offspring is produced through crossover, while mutation can
modify this offspring.

The crossover operator randomly selects two distinct parents from the pool of
r% best (surviving) individuals. A subset of the situation/action pairs of each parent
individual is chosen at random, and the union of these two subsets yields the “child”
individual. (Note that the surviving individuals here simply all have an equal chance

to become reproductive.) Thus, this operator complies with the basic idea of crossover,
namely providing the ability to combine good partial solutions. Furthermore, the GA
is supported by the modularity of individuals: Subsets of individuals actually can often
be good partial solutions, e.g., for sub-problems occurring at early or final stages of
the problem solving process, because a subset of situation/action pairs that work well
for certain stages of the problem solving process will also function for these stages
when being isolated. (The lack of modularity is the major problem GAs encounter in
connection with Neural Networks. Interactions in a connectionist network are so close
and intertwined that the ability to solve a certain sub-problem can hardly be accredited
to a subset of the connection weights or parts of the whole network.)

The mutation operator modifies individuals stemming from crossover before they
are admitted to the next generation. An individual Z is subject to mutation with prob-
ability P,.:. If an individual Z actually is selected for mutation, each situation/action
pair of Z is—with probability P,,;—replaced by a randomly generated situation/action
pair. This operator introduces—controlled by the probabilities P,,,; and P,,;—random
influences which are an essential ingredient of the GA.

4 The Pursuit Game and Some Variants

In order to demonstrate the potential of our approach to learning cooperating agents
we need problems that require different degrees of cooperation and different behavior of
agents. But these problems also have to be easy to understand (which does not imply
that they can be solved easily as well), and should allow for comparisons regarding
several criteria, e.g., complexity, necessary cooperation or solubility. Therefore it would
be best to have one basic problem that allows for variants regarding several aspects.

Fortunately, there is such a basic problem, namely the so-called pursuit game (also
called “hunter and prey”) that was first presented in [BJD85]. Since then, a number
of quite different approaches to solving this basic problem (see, for example, [Si90],
[LR92]) and also some variants (see [GR+89], [SM89], [SM90]) have been proposed, so
that the pursuit game can be called the “blocks world” of the DAI community.

The basic problem can be described as follows: There are four hunter agents (also
called predators) and a prey agent on an infinite rectilinear grid. The game is played
in discrete time steps. At each time step, an agent can move one square in a horizontal
or vertical direction, or stay put. The prey selects its steps randomly. The hunters win
the game, if they can surround the prey. No two agents may occupy the same square.
The task is to develop a strategy for the hunters that enables them to win the game.

There are several aspects of this basic scenario that can be varied to obtain variants
of the game. Such aspects are, for example, the number of hunters, the boundaries of
the grid world, or the communication and observation capabilities of the agents. In the
following we will take a closer look at all the aspects and the possible forms of these
aspects. Then we will examine more closely some combinations of several aspects that
either have been investigated in literature or will be investigated in section 5.

1. The form of the grid

In the basic scenario the grid-world has no boundaries and there are no obstacles

in it. Consequently, variants of this aspect are a grid-world with boundaries, for
example a N x N grid, a world with no boundaries but some obstacles in it, or a
world with boundaries and obstacles. The obstacles may have a certain regular
shape or can have any shape.

2. The individual hunter
In the basic scenario a hunter agent does not have many features. Therefore one
can obtain variants with respect to the following sub-aspects:

a) Shape and size
A hunter may not only occupy one square of the grid, but several of them.
It may be quadratic, but it can also have other shapes.

b) Possible moves and actions
Besides moving only in the vertical or horizontal direction (or not moving
at all) variants can include diagonal moves or turns (rotations), if turns
actually have an effect. There can also be communication actions (see d)).

c) Speed
A hunter does not have to be as quick as the prey. It can be faster, for
example two or three moves per time step, but it can also move more slowly
than the prey, for example one move every two or three time steps.

d) Perception and communication capabilities

An aspect that greatly influences the strategy of a hunter (and therefore
each solution attempt for the game) are its perception and communication
capabilities. (Note that being able to see the other hunters is a kind of
visual communication.) The spectrum of this aspect ranges from hunters
that can neither communicate with nor see other hunters, over hunters that
cannot explicitly communicate with the others but at least know their po-
sitions (which means that they have to cooperate without communication,
see [RGG86]), and over hunters that cannot see each other, but can commu-
nicate, to hunters that both see their colleagues and are also able to send
and receive messages.

e) Memory capabilities
An aspect that can become important if the hunters are able to communicate
with each other is the memory of an agent. Memory allows an agent to
remember plans and intentions of other hunters. There may be no memory,
a restricted size for the memory, or an arbitrary amount of memory.

3. The hunting team
For most variants of the game more than one hunter (and cooperation between
the hunters) are required so that there is a chance to succeed. Therefore, the
composition of the team of hunters is also an aspect that can be varied.

a) The number of hunters
For each combination of the other aspects there is a minimal number of
hunters needed to win the game. Deploying more hunters may help to

win the game, but may also require different, possibly more sophisticated
strategies and more effort in developing these strategies.

b) The type of the hunters
Since there can be different types of hunters (according to aspect 2), quite
different strategies—depending on what kind of hunters form the team—are
needed to cooperate in order to win the game.

4. The prey
The prey is an agent like the hunters. Therefore the same sub-aspects a) to e)
apply with the exception that communication is only necessary if there are several
prey agents (as was suggested in [MC93]). But there is an additional sub-aspect:

f) The strategy of the prey
The (escape) strategy of the prey is the main factor determining the difficulty
to win the game. Strategies range from simply moving in one direction
(which can be quite successful, see [HS+95]) over random moves to elaborate
strategies like maximizing the distance from the nearest or all hunters. Even
learning strategies to counter those of the hunters was suggested and tried
out (with perhaps too much success, see [HS+95], again).

5. The start situation
The start positions of both hunters and prey can also influence both the possibility
to win the game and the effort for learning a cooperative strategy for the hunters.
If the game is always started from the same positions and no random element is
introduced by other aspects, then a winning strategy will always win (and is easier
to learn). Otherwise, different start situations will lead to different outcomes.

6. The goal
Even for the definition of if and when the game is won there are two variants.
The main question is to “capture” or to “kill”. The prey is captured if it cannot
move to another square anymore (i.e., it is totally surrounded by boundaries,
obstacles and hunters). It is killed if the prey and a hunter occupy the same
square (at some point in time). The goal may also include resource limitations.

For describing an actual variant of the pursuit game it is necessary to choose one of
the possible instantiations for each aspect and sub-aspect. Obviously, the possibilities
to win are quite different for different variants. While a prey that moves always in
one direction on a grid-world without boundaries and obstacles will always escape the
hunters if the start situation places all hunters on the wrong side of the prey and all
agents have the same speed, there are also many variants for which successful strategies
for the hunters can be found, provided the hunters are granted a sufficient number of
moves (see section 5).

Most of the work regarding the pursuit game so far centered on strategies for par-
ticular variants that were developed by human beings, naturally with some emphasis
on the cooperation (using communication) of the hunters. In [SM89] and [SM90] the
authors concentrated on communication-intensive strategies for the hunters. Diagonal
moves were presented in [Ko92]. (See also [0s95].)

But variants of the pursuit game were also used as a testbed for approaches to learn-
ing cooperative agents. In [HS+95] a genetic programming approach was applied to
variants originating from variations of the escape strategy of the prey. FEven exper-
imental data concerning a co-evolution of hunters and prey was provided. Genetic
programming results in programs that are more expressive than our approach, but
more expertise on the parts of the designer is required, because not only a suitable
representation of situations must be found, but also the building blocks of programs
(functions and terminals) must be chosen properly.

Another work dealing with learning cooperative behavior and the pursuit game is
described in [MC93]. There, a genetic algorithm approach was chosen to learn strategies
for variants with n + 4 hunters and n prey agents (where n was varying). In contrast
to our approach, in [M(C93] a genetic algorithm is used to search good parameters for a
program that includes memory and planning functions. Therefore, this approach does
not provide such a high level of abstraction as our situation/action pairs.

5 Experiments

This section documents the experimental setting and the results we obtained with our
approach to learning successful and cooperative strategies for the hunters for several
variants of the pursuit game. In order to describe the setting we have to describe how
to represent situations, actions, and—for the learning part—we describe the fitness
measure U of the GA.

5.1 The Representation of Situations and Actions

The representation of situations is the main factor that determines whether suitable
agent strategies can be learned, how good they will be, and how difficult the learning
and adaptation process will become. Clearly, there are different representations even
for one variant of the pursuit game, and also clearly we have to expect that different
variants need quite different representations. In fact, the representation is the only
possibility for a designer to influence the evolving strategy (which was exactly our
goal).

In our experiments we have chosen to use representations for situations that differ
as little as possible from variant to variant (which kind of emulates an unexperienced
designer and puts quite a burden on our learning approach). Due to this reason (but
also due to the efficiency of our implementation that can only be seen as a first, very
crude version) we restricted our experiments to only a few of the aspects of section 4.
These aspects are the strategy of the prey, the start situation, the goal, the number of
hunters, the possible moves, and the perception capabilities of the hunters.

All other aspects were fixed: There is just one prey. All £ > 1 hunters are of the same
type, i.e., they occupy one square, have the same possible moves, move at the same
speed as the prey (one move per time unit), and have no memory capabilities. The prey
always knows the position of all hunters, and in most experiments we used a 30 x 30
grid. Furthermore, we decided to have all hunters use the same strategy Wz (which

is reasonable because the hunters are not distinguishable). Thus, learning amounts to
searching for one suitable set Z of prototypical situation/action pairs.

Our basic representation of a situation is based on the positions of the agents regard-
ing a distinguished reference square (0,0) employing the usual Cartesian coordinate
system. Hunter ¢ occupies square (z;,y;) € Z x Z, and the prey occupies square
(x,y) € Z x Z. (Z is the set of all integers.) We characterize the situation of hunter ¢
with the help of its relative positions regarding prey and fellow hunters. That is, the
situation S; of hunter 2 is a vector consisting of * — z;, y — y; and z; — x;, y; — y; for
1 <35 <k(i#7),the latter sorted according to j. If the hunters can see only the prey,
then S; merely is the tuple (z — z;,y — y;). Hence, the situation space is 7% or 7% if
the hunters see only the prey.

This representation can be enhanced with hunter types, hunter orientation (if it is not
quadratic), coordinates of obstacles, and memory fields (for more information about
other hunters or for history information). The possible moves for both hunters and
prey are either N, S, E;, W or stay put, or these moves plus the diagonal moves NE,
NW, SW, and SE. (If communication actions are possible, they also have to be added.)
Hunters and prey execute their moves simultaneously. If a move is not possible (e.g.,
because another agent will occupy the target square or a boundary is reached), then
the agent stays put.

As in the original pursuit game, no two hunters may occupy the same square. Con-
flicts are resolved by giving priority to hunter ¢ over hunter j if 2 < 7, unless of course
hunter j holds its position (i.e., stays put), in which case any hunter that wants to move
to that square is itself forced to stay put. If the objective of the hunters is to capture
the prey by surrounding it, then they are also not allowed to move onto the square
occupied by the prey. Conflict resolution involving the prey is realized by considering
the prey as hunter 0, and then proceeding as described above.

On a N x N grid, Z can be restricted to Zy = {—N+1,..., N—1}. Hence, in order
to produce random situations, random numbers from Zy are generated. But also on
an infinite grid this restriction makes sense not only for practical reasons: Prototypical
situations are more likely to appear (more frequently) near the crucial end of the hunt
where hunters and prey are close together, i.e., near situation (0,...,0). For this
very reason we refrained from generating random numbers that are distributed equally
in Zy, but instead produced random numbers that are biased towards 0. To this end,
we generated random numbers z € [0; 1], and created the bias by using z°, ¢ > 1
(e = 1.5 in our experiments). We then obtained random numbers z € Zy by using
either z = |2°- N| or z = —[2°- N|, where both alternatives are equally probable.

In our experiments, the possible instantiations for the varying aspects are: The
hunters either see each other and the prey, or only the prey. The start situation is
either fixed (prey in the center of the 30 x 30 grid, hunters lined up along the whole
western boundary with equal distance from each other; a single hunter starts from the
middle of the boundary), or chosen at random (prey in the center, each hunter at least
b squares away from it in both horizontal and vertical direction). These start positions
are also used in case of an infinite grid, but naturally the grid boundaries are ignored
after setting up the initial situation. The goal situations are killing or capturing the
prey. The number of hunters is the minimal number that is required to win the game

10

(theoretically). There will also be some remarks on the effect of additional hunters in
subsection 5.3.

Finally, there are five escape strategies ®¢,...,®5. Note that, to our knowledge,
¢, and ®; are novel, and that in particular ®; proved to be quite challenging (cp.
subsection 5.3). Besides precluding moves that violate some rules or restrictions, the
prey also does not consider moves that lead to a square currently occupied by a hunter,
although the hunter might move away from that square. The remaining moves are
referred to as eligible moves. Each escape strategy (except for ®,) centers on a different
vector of distance values (dy,...,d,,), m > 1, that reflects the current situation of the
prey from a certain point of view. Common to all these strategies is that the prey
tries out (simulates) all eligible moves and then picks the best move (tested first).
Distance vectors are compared using the usual lexicographic ordering >, (left-to-
right comparison with >), where “greater” means “better”. If diagonal moves are
allowed, then the basic distance measure is the Euclidean distance. The “Manhattan
distance” is employed otherwise. In the sequel, let d; be the basic distance between
prey and hunter .

®,: Maximize distance from nearest hunter: m =1, d; = min({czl, . ,czk}).

®,: Random movement: Among all eligible moves the prey chooses one move at
random. Staying put is not an eligible move here. Consequently, the prey does
not stay put unless trapped.

®3: Maximize sum of distances from all hunters: m =1, dy = a?l 4 czk

®,: Maximize vector of sorted distance values: m = k, (di,...,dy) is obtained by
sorting dy,...,dg so that d; < d;4q.

®5: FEscape strategy @5 is an extension of ®4. In addition to czl, ceey czk, the prey here
also takes into account its smallest distance from each of the four grid boundaries.
Consequently, m = k£ + 4. By also trying to maximize the distance from grid
boundaries, escape strategy ®; alleviates a “flaw” of escape strategy ®, which
(like ®; and ®3) essentially makes the prey run away to some grid boundary
where it can be captured or killed much more easily than it can be when trying
to stay in “open field” as long as possible. (Obviously, ®5 cannot be applied in
connection with an infinite grid-world.)

5.2 The Fitness Measure 9

The fitness measure ¥ is to rate the performance of an individual Z, i.e., a set of
situation/action pairs. The performance of 7 is given by the suitability of the associated
strategy W7 employed by each hunter. In case random effects can occur, it is clear
that the fitness cannot be determined reasonably based on merely one trial (hunt).
Consequently, several trials have to be executed, and the outcomes of these elementary
fitness values must be combined to obtain the overall fitness 9.

The elementary fitness measure 6 rates a single trial. 6 should therefore reflect if
the hunters were successful in that particular trial, and in that case, how fast they

11

succeeded. In case of failure, # should somehow express how close to success the

hunters came. Naturally, the hunters cannot be granted an arbitrary amount of time.

If they do not succeed within T' = 200 time steps, then their hunt is judged a failure.
The elementary fitness measure §(Z) € IN is defined as follows.

t success in t, < T' time steps

0(7) = { ST, Sk 8(i,1), in case of failure,

where 6(7,t) is the Manhattan distance that separates hunter ¢ from the prey at time
step t. Hence the elementary fitness 6(Z) is the smaller the fitter 7 is considered to be.

The overall fitness ¥(Z) of Z is computed in a straight forward way on the basis of
b > 1 trials which result in b elementary fitness values 61(Z), ..., 0,(Z):

I(T) =

0T,

=1

o~ =

If no random effects occur, we set b = 1, and b = 20 else. An individual 7 is consid-
ered as being successful only if all b trials were successful. If two individuals have the
same overall fitness measure, then the more concise individual containing less situa-
tion/action pairs is preferred.

For our experiments, the parameters of the GA were chosen as follows (cp. sec-
tion 3): r = 30%, Pnu = 50%, Prua = 10%, npep = 100. The maximal number M
of situation/action pairs of an individual Z was restricted to 30. (All these settings
were determined after a few preparatory experiments and are in no sense “optimal”.)
The maximal number of generations (cycles) of the GA was limited to 100. The GA
stopped before exceeding this limit as soon as a successful individual was found.

For each variant of the pursuit game the GA was run 5 times, and the performance
of the best individual that surfaced in (one of) these 5 runs is presented. This ‘best-of-
5" policy is reasonable, because (not only our) experiments corroborated that several
shorter runs are more promising than a single run (cp. [Ko91]).!

5.3 Results

Tables 1-4 present the core of our experimental results in connection with a 30 x 30 grid.
(We will also report on other experiments that do not fit into these tables.) Each
table and its caption specify the particular variant of the pursuit game. The column
labeled with ‘&’ shows the number of hunters. The columns labeled with 200, 1000,
10000 display the performance of the ‘best-of-5" individual when granted the respective
number 7' of time steps. (Note that 7' = 200 during learning.) The performance is
given as the number of steps necessary to succeed if no random effects can occur.
Otherwise, a success rate is given that was determined based on 100 trials.

Being granted more time steps 7' only pays off in connection with random escape
strategy ®5. There, the hunters essentially chase the prey, waiting for the prey to make
a certain sequence of moves that allows them to succeed. Naturally, the probability for

"'We picked the number ‘5’ more or less arbitrarily.

12

Table 1: Hunters see only the prey, and their objective is to “kill”.

Fixed Start Positions Random Start Positions
No Diagonal Moves Diagonal Moves No Diagonal Moves Diagonal Moves
¢ ||k]| 200 | 1000 |10000||k| 200 | 1000 [10000| k| 200 | 1000 |{10000|/k| 200 | 1000 {10000
®|12] 33 | 33 | 33 ||2| 28 | 28 28 |121100%|100%|100% ||2]100%|100% | 100%
®,|1{100%|100%|100%|1]100%|100%|100% ||1| 96% | 99% | 100% || 1| 99% |100% | 100%
$3|20 28 | 28 | 28 ||2| 28 | 28 28 [121100%|100%|100% ||2|100%|100% | 100%
Oy(|2] 44 | 44 | 44 ||2| 28 | 28 28 1121100%|100%|100% ||2]| 99% | 99% | 99%
®5(12] 54 | b4 | B4 ||2| 26 | 26 26 121 99% | 99% | 99% ||2]100%|100% | 100%
Table 2: Hunters see only the prey, and their objective is to “capture”.
Fixed Start Positions Random Start Positions
No Diagonal Moves|| Diagonal Moves || No Diagonal Moves Diagonal Moves
® ||£]|200| 1000 [10000|/£|200{1000|10000 | %| 200 | 1000 |10000|/%| 200 | 1000 |10000
®, 12| 56 | 56 56 [|3]28 | 28 | 28 ||2/100%[100%|100% (|3 | 96% | 96% | 96%
D5 (12(55%(100%|100% ||3|5% [22% | 72% ||2| 10% | 81% [100% ||3| 3% | 37% | 92%
®3|2| 56 | 56 56 (13128] 28 | 28 12| 0% | 0% | 0% |{|3]100% |100%|100%
d,402| 59 | 59 59 (131331 33| 33 ||12| 0% | 0% | 0% ||3|88% | 88% | 88%

this to happen increases with the number of time steps. However, by allowing diagonal
and hence more moves, this probability decreases, which is reflected by the sometimes
significant worse performance of the hunters when dealing with a prey using ®, and
diagonal moves compared to the case where no diagonal moves are allowed.

For all other strategies, failure is almost always caused by some kind of “deadlock”
(e.g., the hunters chase the prey around in circles), so that increasing 7' does not im-
prove the success rate. Diagonal moves here, however, are profitable for the hunters.
They allow the hunters to approach the prey faster and, if the prey is sitting in a
corner of the (finite) grid, they can approach it in a way so that the prey will not try
to escape, because none of its alternatives improves its situation (in terms of distance
from hunters). “Killing” can become very easy under these circumstances. In partic-
ular if the prey employs @3, a successful strategy (possibly consisting of merely one
situation/action pair) can often be found in the initial random population.

Tables 1 and 2 show that the theoretically minimal number of hunters? almost always
suffice to succeed respectively to achieve an acceptable success rate (if granted suffi-
cient time) even though the hunters only focus on the prey (emergent behavior). The
only significant failure (0% success rate) occurs when 2 hunters starting from random
positions attempt to capture the prey that tries to escape using either ®3 or &4, and
diagonal moves are not allowed (see table 2). If 3 hunters are deployed, the success
rate is close to 100% in both cases.

2Tf hunters focus on both prey and fellow hunters, we always deploy k& > 2 hunters.

13

Table 3: Hunters see both prey and fellow hunters, and their objective is to “kill”.

Fixed Start Positions Random Start Positions
No Diagonal Moves || Diagonal Moves | No Diagonal Moves Diagonal Moves
¢ ||k| 200 | 1000 [10000|/k| 200 | 1000 [10000||%k| 200 | 1000 |10000||%k| 200 | 1000 |10000
®12] 29 | 29 29 ||2] 28 | 28 28 |121100%|100% | 100% ||2]100%|100% | 100%
®5(2({100%[100% | 100% {|2|99%|100% | 100% || 2| 96% [100% | 100% ||2|100%|100% | 100%
d3(12| 28 | 28 28 ||2] 28 | 28 28 121 78% | 8% | 78% {|2]| 98% | 98% | 98%
Oy(|2| 42 | 42 42 ||2] 28 | 28 28 ||2| 82% | 82% | 82% ||2| 99% | 99% | 99%
$5|2| 182 | 182 | 182 ||2]| 26 | 26 26 |12 4% | 4% | 74% ||2]100%|100% | 100%

Table 4: Hunters see both prey and fellow hunters, and their objective is to “capture”.

Fixed Start Positions Random Start Positions
No Diagonal Moves|| Diagonal Moves | No Diagonal Moves || Diagonal Moves
& || £|200 | 1000 | 100004 |{200|1000|10000| k| 200 | 1000 |10000||%| 200 |1000| 10000
®q|[2| 56 | 56 56 (13|30 | 30 | 30 |2|83%]|83% | 83% ||3|74% | 74% | 74%
®412153%(100% [100% ||3|4% | 18% | 88% ||2|50%|100%|100% ||3| 1% | 3% | 21%
®3|(2| 5T | BT 57 13128 | 28 | 28 ||2|11%| 11% | 11% ||3|81%|81% | 81%
d,012| 61 | 61 61 (13|28 | 28 | 28 |2(99%]| 99% | 99% ||3|81% |81% | 81%

From a theoretical point of view it is clear that hunters that see both prey and fellow
hunters are at least as versatile as hunters that see only the prey. But taking into
account fellow hunters enlarges the situation space and thus complicates the search
space. This is the main reason why we sometimes obtained worse results in practice
although better results have to be expected in theory.

Nonetheless, considering fellow hunters sometimes leads to significant improvements
(possibly because it is indispensable). This happened, for instance, in connection with
the case discussed above where 2 hunters focusing on the prey had a success rate of 0%;
2 hunters that also see each other performed significantly better (cp. tables 2 and 4).
We could make this observation again when tackling a variant related to the original
version of the pursuit game. Only 4 hunters hunting a prey using ®, on an infinite
grid that see each other achieved an acceptable success rate (55% when being granted
10000 time steps and starting from fixed positions).

Furthermore, a prey using the quite sophisticated escape strategy ®5 appears to be
very hard to capture. First of all, a prey using ®5 tries to stay away from boundaries
and corners. As a matter of fact, it cannot be forced to move into a corner or next
to a boundary in any way. Consequently, 4 hunters are required to capture the prey
if diagonal moves are not allowed (8 hunters else). In our experiments, 4 hunters only
succeeded when they knew about their fellow hunters. Additionally, we had to refine
the (elementary) fitness measure in order to penalize passivity, because very often
“almost successful” strategies evolved that made the hunters move very close to the
prey (without capturing it) and then stop there. Since the prey also stayed put, the

14

strategy received a fitness measure that was better than the one a more “aggressive”
strategy got. (Moving closer made the prey run away.) We avoided these local optima
by adding the number of time steps the hunters were passive to the elementary fitness
value. (Recall that a higher fitness value means worse fitness.) The GA then found
a successful strategy that allowed 4 hunters to capture the prey after 104 time steps
(fixed start situation).

We also examined the effects a surplus of hunters can have. On the one hand, it
is understandable that more hunters have a better chance to win the game. On the
other hand, due to the fitness measure, all hunters will chase the prey and hence
might hinder each other, in particular when they only focus on the prey. (In order to
favor more sophisticated pursuit strategies involving “driving” and “ambushing” the
fitness measure has to be adapted appropriately.) In our experiments, increasing the
number of hunters (up to 7) did not have any significant negative effects (except for
complicating the search space if fellow hunters were to be considered, of course).

The time spent by the GA to process an entire generation ranged between 0.5 and
1 second, if the number of trials b = 1 (10-20 seconds if & = 20). (Run times were
obtained on a SPARCstation 20.) These numbers refer to the case where the situation
space is Z*. If the situation space is Z**, k > 1, then the run times increase linearly
with k. (This increase is quite small. E.g., for k£ = 2, a generation can still be processed
in about 1 respectively 20 seconds.)

If the task of the hunters was rather easy, then a successful strategy W7 (respectively
a set 7 of situation/action pairs) was found within 15 generations. For harder tasks
(in particular capturing a prey that employs ®;), the maximal number of generations
(100) was sometimes exceeded. The number of situation/action pairs of a successful
individual Z covered the whole spectrum from 1 to 30 (mostly around 20). This number
seems to be quite arbitrary, which is understandable, because the GA stopped as
soon as the first successful Z was found. By having the GA continue, the number of
situation/action pairs can decrease significantly. (Recall that parsimony is a secondary
fitness criterion.)

Finally, we cannot discuss here the full variety and the peculiarities of the learned
hunter strategies. But one observation is worth mentioning: Given a random start
situation and a non-random escape strategy, in the majority of cases the hunters at
some point in time reached a situation from where they then always proceeded the
same way. Such a behavior makes sense, because the final phase of a hunt is much
more tricky than the initial approach phase. Therefore, it is sensible and much easier
to focus on a certain kind of final phase and to attempt to reach a situation from where
this final phase can start. This resembles the behavior of many human beings.

6 Discussion

We have presented an approach for learning cooperative behavior of reactive agents
that is based on the search for a set of prototypical situation/action pairs. An agent
employs the nearest-neighbor rule to select that pair whose prototypical situation is
closest (most similar) to the actual situation, and then performs the associated action.

15

In our current implementation, the search is conducted by a genetic algorithm.

Our goal was to demonstrate that this approach is considerably versatile in that it
allows a designer of multi-agent systems to specify requirements on a very high level
in terms of a representation of situations and possible actions (and a comparison of
strategies in our case), and then a satisfactory solution is evolved automatically. We
could show that this goal can be achieved in many cases: We presented aspects of
the well-known pursuit game that can be varied so as to obtain variants of the game,
and for many of these (non-trivial) variants the first implementation of our approach
succeeded in evolving apt strategies.

However, our experiments also suggested several improvements. Although it was
surprising how well our ad hoc implementation of the genetic algorithm performed,
for problems involving a more complex representation of situations improvements are
necessary. The use of additional knowledge (apart from the knowledge integrated with
the fitness measure), alternative search methods (possibly combined with the genetic
algorithm), and enhanced efficiency through distributed search seem to be profitable.
The TEAMWORK approach to distributed search ([De95]) is capable of achieving these
goals, nevertheless providing a high level of abstraction for the designer.

A comparison of our approach with other (learning) approaches in connection with
the pursuit game is at the time rather difficult, because other approaches mostly have
been examined with respect to a few particular variants of the game. Moreover, in
most cases the experimental setting cannot be reproduced, because full information
on all aspects of the game is not available. But this is essential in order to obtain a
reliable comparison, because (as our experiments have shown) tiny variations of the
setting can have significant effects.

Finally, our approach has been successtully employed for obtaining optimized nearest-
neighbor classifiers based on generated instances ([FA96]). Unlike common approaches
based on the nearest-neighbor rule, the given set of training instances is only used
to measure the fitness of a classifier that employs a set of instances evolved by our
approach. (Situations correspond to the attribute vectors describing the objects to be
classified, and actions correspond to classes.)

16

References

[AKA91]

[BJDS85]

[CH6T]

[De95]

[DK95)

[FA96)

[GR+89]

[Gro1]

[HoS6]

[Ho92]

[HS+95]

[Jo88]

[7SG93]

Aha, D.W.; Kibler, D.; Albert, M.K.: Instance-Based Learning Algo-
rithms, Machine Learning 6, 1991

Benda, M.; Jagannathan, V.; Dodhiawalla, R.: An Optimal Coop-
eration of Knowledge Sources, Technical Report BCS-G2010-28, Boeing Al
Center, 1985

Cover, T.M.; Hart, P.E.: Nearest Neighbor Pattern Classification, IEEE
Transactions on Information Theory, Vol. IT-13, Jan. 1967, pp. 21-27

Denzinger, J.: Knowledge-Based Distributed Search Using Teamwork, Proc.
15* ICMAS, San Francisco, CA, USA, 1995, pp. 81-88

Datta, P.; Kibler, D.: Learning Prototypical Concept Descriptions,
Proc. 12" International Conference on Machine Learning, 1995, Tahoe City,

CA, USA, pp. 158-166

Fuchs, M.; Abecker, A.: Optimized Nearest-Neighbor Classifiers Using
Generated Instances, Technical Report LSA-96-02E, University of Kaisers-
lautern, 1996 [http://www.uni-k1.de/AG-AvenhausMadlener/fuchs.html]

Gasser, L. ; Rouquette, N. ; Hill, R.W. ; Lieb, J.: Representing and
using organizational knowledge in DAI systems, in Distributed Al, vol 2 of
Research Notes in AL, Pitman, 1989, pp. 55-78

Grefenstette, J.J.: Lamarckian Learning in Multi-agent FEnvironments,
Proc. 4" International Conference on Genetic Algorithms, 1991, San Diego,

CA, USA, pp. 303-310

Holland, J.H.: FEscaping brittleness: The possibility of general-purpose
learning algorithms applied to parallel rule-based systems, in R.S. Michal-
ski, J.G. Carbonell, T.M. Mitchell (eds.), Machine Learning: An Artificial
Intelligence Approach (Vol. 2), Los Altos, CA, Morgan Kaufmann, 1986

Holland, J.H.: Adaptation in natural and artificial systems, Ann Arbor:
Univ. of Michigan Press, 2" edition, 1992

Haynes, T. ; Sen, S. ; Schoenefeld, D. ; Wainwright, R.: FEvolving
Multiagent Coordination Strategies with Genetic Programming, submitted to
Artificial Intelligence [http://euler.mcs.utulsa.edu/ haynes/jp.ps|

De Jong, K.: Learning with Genelic Algorithms: An Overview, Machine
Learning 3:121-138, 1988

De Jong, K.A.; Spears, W.M.; Gordon, D.F.: Using Genetic Algo-
rithms for Concept Learning, Machine Learning, 13:161-188, 1993

17

[Ko91]

[K092]

[LR92]

[MC93]

[MST94]

[0s95]

[RGGS6]

[Si90]

[SMS9]

[SM90]

[Sp65]

[$595]

[ZM93]

Koza, J.R.: Genetic Programming: On the Programming of Computers by
Means of Natural Selection, MIT Press, Cambridge, MA, 1991

Korf, R.E.: A simple solution to pursuit games, Working Papers of the 11"

Intern. WS on DAI, 1992, pp. 195-213

Levy, R. ; Rosenschein, J.S.: A Game Theoretic Approach to Distributed
Artificial Intelligence and the Pursuit Problem, in Decentralized Al III, El-
sevier, 1992, pp. 129-146

Manela, M. ; Campbell, J.A.: Designing good pursuit problems as
testbeds for distributed Al: a novel application of genetic algorithms, Proc.
5" MAAMAW, Neuchatel, 1993, pp. 231-252

Michie, D.; Spiegelhalter, D.J.; Taylor, C.C.: Machine Learning, Neu-
ral and Statistical Classification, Fllis Horwood, 1994

Osawa, E.-1.: A Metalevel Coordination Strategy for Reactive Cooperative
Planning, 1% International Conference on Multi-Agent Systems, 1995, San
Francisco, CA, USA, pp. 297-303

Rosenschein, J.S. ; Ginsburg, M. ; Genesereth, M.R.: Cooperation
Without Communication, Proc. AAAI-86, AAAI-Press, 1986, pp. 51-57

Singh, M.P.: The effect of agent control strateqy on the performance of a
DAI pursuit problem, Working Papers of the 10"* Intern. WS on DAI, 1990

Stephens, L.M. ; Merx, M.B.: Agent organization as an effector of DAI
system performance, Working Papers of the 9" Intern. WS on DAI, 1989

Stephens, L.M. ; Merx, M.B.: The effect of agent control strateqy on the
performance of a DAI pursuil problem, Proc. 1990 Distributed AT Workshop,
1990

Sprecher, D.A.: On the Structure of Continuous Functions of Several Vari-
ables, Trans. Amer. Math. Soc., 115:340-355, March 1965

Sheppard, J.W.; Salzberg, S.L.: Combining the Genetic Algorithm with
Memory-Based Reasoning, Proc. 6'" International Conference on Genetic Al-

gorithms, 1995, Pittsburgh, PA, USA

Zhang, B.-T.; Miuhlenbein, H.: Genetic Programming of Minimal Neural
Nets Using Occam’s Razor, Proc. 5" International Conference on Genetic

Algorithms, 1993, pp. 342-349

18

