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Summary

From finance and healthcare to criminal justice and transportation, various domains
that involve critical decisions, traditionally made by humans, are increasingly incor-
porating artificial intelligence (AI) systems into their decision making processes.
Modern AI systems excel at processing vast amounts of data and solving com-
plex problems at a speed and scale unimaginable for humans. However, complete
automation of high-stakes decisions is often undesirable due to legal, ethical, and
societal concerns. A promising approach, which has attracted significant attention
in the machine learning literature, lies in human-AI collaboration: decision making
pipelines that leverage the computational strengths of AI systems to enhance the
overall quality of decisions while maintaining a degree of human control. In this
context, I focus on AI-assisted decision making scenarios characterized by complex-
ity and uncertainty, specifically requiring strategic reasoning about others’ actions
and counterfactual reasoning about alternatives to past decisions.

First, I focus on strategic reasoning and introduce methods based on game-
theoretic modeling to support policy design in strategic environments. These meth-
ods enable a decision maker in a resource allocation scenario to design policies,
informed by a predictive model, that maximize their utility while accounting for
strategic responses from individuals who gain knowledge about the policy and aim
to receive a beneficial decision. I provide algorithms for two distinct scenarios with
varying levels of information available to individuals: a fully transparent scenario
where the policy is disclosed and a partially transparent scenario where the decision
maker provides actionable recommendations to individuals rejected by the policy.

Then, I shift focus to counterfactual reasoning and develop methods based on
causal modeling to enhance the counterfactual reasoning capabilities of a human
decision maker in a sequential decision making task. These methods aim to improve
the decision maker’s learning process from past experiences by identifying critical
time steps where different actions could have led to better outcomes. Specifically,
I consider settings where a decision maker observes the state of the environment
over time and takes a series of interdependent actions that result in an observed
outcome. For both discrete and continuous states, I formalize the problem of finding
alternative action sequences, close to the observed one, that would have achieved a
better counterfactual outcome, and I provide efficient algorithmic solutions.

Finally, I investigate how people perceive responsibility in human-AI teams. In
this context, I propose a computational model based on counterfactual simulations
to predict how an external observer attributes responsibility to a human and an AI
agent collaborating towards a common goal. To evaluate the model’s predictions,
I develop a simulation environment that generates stylized instances of sequential
human-AI collaboration and conduct a human-subject study in which participants
make responsibility judgments about the two agents.
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Chapter 1

Introduction

Irene sat at the head of the table. She could sense the anticipation in the room. Today
was the day the community bank would make its new loan approval criteria public—
a bold step based on recommendations from Adam, their AI policy tool. Adam had
analyzed years of data and predicted that the new criteria would create incentives
for applicants to reduce debts and increase savings, leading to a 5% rise in approvals
and a 10% drop in defaults. The team had spent weeks preparing for this moment.
Would applicants embrace the transparency and act in the way Adam predicted?
Irene stood up to address her colleagues. “This is a risky step forward.” she said,
her voice steady. “But it’s one worth taking—for the bank and for our community.”
With that, the new webpage went live, and the criteria were made public. Within
months, approval rates increased, defaults dropped, and the local economy began to
thrive. Irene felt a sense of pride and relief. The decision had paid off.

...
The hospital’s conference room was dimly lit, the sound of ventilators humming
in the background. Ben’s eyes were scanning the list of patients, hopelessly trying
to make sense of the situation. Despite his team’s best efforts, a troubling trend
persisted: certain patients weren’t responding to the current treatment protocols.
Ben couldn’t shake the feeling that there was something they were missing—some
small adjustments that could save lives. Desperate for a breakthrough, he decided to
consult Marie, the hospital’s AI assistant, for additional insights. Marie’s response
was immediate: “See Cases 17 and 42 from last month, earlier use of steroids may
have prevented deterioration. The hand written notes may contain more details.”
Ben pulled up the patients’ records. Marie was right—both patients had mentioned
a history of asthma. Ben felt a glimmer of hope as he made a note to administer
early steroids to asthma patients. Maybe, just maybe, this could turn things around.

...
The courtroom was still as the judge repeated the question that had loomed over the
entire trial: “So, who is responsible for the accident?” The case involved a semi-
autonomous car that had went off the road to avoid hitting a pedestrian, crashing into
a storefront in the process. The car’s AI had detected the pedestrian and, calculating
the risks, prompted the human driver to take control, suggesting that swerving was
the best option. Julia, the human behind the wheel, had followed the AI’s suggestion
mere milliseconds before the collision. The pedestrian was grateful to Julia for saving
their life, but the store owner was furious at the AI for the destruction of their
property. The jury sat in silence, struggling to answer the question: who deserved
the credit, or the blame, for the life that was saved and the damage that followed?
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1.1 Decisions, humans, and machines

The 21st century has seen rapid improvement in the capabilities of artificial intelli-
gence (AI) systems. Technical advances in statistical machine learning along with
a vast availability of computational resources have enabled the development of AI
systems that can perform tasks previously thought to be exclusive to humans. For
example, AI systems can now diagnose diseases [1, 2], drive cars [3, 4], and make
accurate financial predictions [5, 6]. Although their performance and their potential
to revolutionize our lives are improving with an unprecedented pace, their use is no
panacea. For example, AI systems run the risk of being overconfident in their predic-
tions [7], presenting bias against minorities [8] or performing poorly when deployed in
a different environment than the one in which they were trained [9]. These concerns
have led to growing discussions on the extent to which AI should be used to auto-
mate consequential decisions in critical domains such as healthcare [10], hiring [11]
and criminal justice [12]. Responding to these concerns, legislative initiatives, such
as the General Data Protection Regulation (GDPR) of the European Union, have
established safeguards against decisions that are completely automated [13].

One might wonder why the use of AI systems in decision making has gained
traction despite the associated risks. A seemingly natural response to the concerns
raised above would be to avoid the use of AI systems altogether in high-stakes
situations and, as is common practice in many application domains, rely entirely
on human judgment for critical decisions. Although, at first glance, this may seem
like a safer alternative, there is significant evidence suggesting that human decision
making is also far from perfect. For example, issues such as overconfidence in one’s
estimates and implicit bias against people of certain demographics have been well
documented in multiple domains, including the ones mentioned previously, where
decisions made by humans are the norm [14–18].

The nature of human decisions has been a central theme of economic research
for decades. At the core of classical economic theory lies the concept of homo eco-
nomicus [19, 20]—the assumption that humans evaluate their choices based on the
(expected) utility each option offers and consistently choose the one that maximizes
their utility. However, this assumption has been challenged by a large body of re-
search in psychology and behavioral economics [21–24]. Human decisions have often
been found to deviate from the principles of utility maximization, influenced by
various factors, such as emotions [25] and social interactions [26]. Moreover, sub-
stantial empirical evidence indicates that human decisions under uncertainty often
result in utility that differs from the normative benchmark—the maximum expected
value—due to cognitive biases in processing probabilities [27].

Recent work in cognitive science offers another, more computational, perspective
on why human decision making frequently deviates from optimality. The resource-
rational analysis approach suggests that imperfect decisions arise due to cognitive
processes confined by the biological constraints of the human brain [28–30], which
presents a trade-off between maximizing utility and reducing the cognitive costs
of computation. This perspective aligns closely with ideas in computational com-
plexity [31, 32], where problems of increased complexity are often addressed with
approximation algorithms due to the difficulty of finding exact solutions given lim-
ited computational resources (i.e., time and memory) [33].

In this context, it is sensible to argue that high-stakes decisions are precisely the

2



type of decision where AI systems may be most beneficial, if not essential. This is
because these decisions are typically characterized by the combination of two factors
that, as discussed earlier, limit human capability: uncertainty and complexity. On
the other hand, modern AI systems can efficiently leverage vast amounts of data to
make (probabilistic) predictions, often surpassing human experts in accuracy [34,
35]. Furthermore, years of research in mathematical optimization have produced a
rich toolbox of computational methods capable of solving even the most challenging
problems using sophisticated algorithms and modern hardware [36–40].

This state of affairs presents a clear trade-off between the computational advan-
tages of integrating AI into decision making processes and the associated risks and
ethical concerns when human oversight is absent. Consequently, there is a growing
interest in the potential of human-AI teams to improve decision making in domains
that are critical, uncertain, and highly complex. The main research objective in
the area of human-AI collaboration is to leverage the computational power of AI
systems in ways that enhance the overall quality of decisions while maintaining a
degree of human control throughout the process.

Before proceeding further, it is essential to clarify the scope of this thesis. AI
systems that collaborate with humans can take various forms and appear in numer-
ous application domains. For example, modern robotic systems increasingly rely
on data-driven learning algorithms rather than traditional control theory, leading
to a form of physical human-AI collaboration [41, 42]. In addition, AI systems
with natural language processing capabilities are widely used to assist humans with
tasks such as language learning [43–45] and collaborative writing [46]. Refraining
from an exhaustive discussion of all forms and application domains, I use the term
“human-AI collaboration” to refer to scenarios where a human is tasked with a de-
cision making problem and the AI serves the role of decision support. Moreover,
I use the term “AI” to refer to a technological entity that has the capacity to (i)
make predictions using machine learning, and (ii) find the right decisions to make or
recommend using optimization algorithms [47–50], while abstracting details related
to its physical form and mode of communication with the human.

Within the machine learning literature, one can identify two main paradigms for
decision support. First, a human decision maker can maintain complete control over
the decision making process, using the AI as a tool to inform their decisions [51–
56]. For example, a clinician may use an AI system that predicts a patient’s risk of
developing a disease and recommends a treatment plan. In turn, the clinician may
choose to follow the recommendation, modify it, or completely ignore it. Second, a
human can share the decision making process with the AI, deferring some decisions
to it, while making the rest themselves [57–63]. For example, a pilot may set a des-
tination and let an AI system navigate the aircraft based on the weather conditions
and air traffic but take control when the plane is about to land.

The AI-assisted decision making settings discussed in this thesis broadly align
with these two paradigms. However, these paradigms typically involve reasoning
under uncertainty about future outcomes, as in common machine learning tasks
such as classification and regression. This thesis focuses on decisions and judgments
that are inherently more complex, arising in scenarios that require strategic or coun-
terfactual (i.e., retrospective) reasoning. Such situations demand an understanding
not just of the (distribution of) outcomes but also of the underlying dynamics that
shape them. Next, I discuss these two types of reasoning in greater detail.

3



1.2 Strategic and counterfactual reasoning

In many real-world scenarios, human decisions and judgments are based on two
key reasoning processes: strategic (i.e., reasoning about others’ actions) and coun-
terfactual (i.e., reasoning about alternatives to past events). This thesis focuses
on (i) how AI can enhance those two types of reasoning to assist human decision
makers, and (ii) how counterfactual reasoning can serve as a computational tool for
understanding (human) responsibility judgments in human-AI collaboration.

Strategic reasoning is involved in the process of making (utility-maximizing) de-
cisions in the presence of others who also seek to maximize their own objectives.
In such settings, the uncertainty about the outcome of the decision making process
arises from a complex interplay between the inherent randomness of the environ-
ment and the actions of others, strategically responding to the decision maker’s ac-
tions. For example, consider a government that decides to increase the value added
tax (VAT) on certain goods with the aim of boosting tax revenue. The govern-
ment must anticipate that consumers may respond by reducing their consumption
of those goods, potentially leading to a decrease in tax revenue instead. From a
computational perspective, such strategic interactions are studied in (algorithmic)
game theory [64], where determining optimal strategies has often been found to be
intractable [65, 66]. This complexity casts doubt on the ability of humans, with their
limited cognitive resources, to act optimally in strategic environments, especially in
the presence of a large and diverse population of other humans. Consequently, it
highlights the potential of AI systems to support human decisions in such contexts.

Counterfactual reasoning plays a critical role in retrospectively analyzing past
decisions; it involves evaluating what the outcome of a decision making process
would have been had the decision maker acted differently in the past. Research
in psychology suggests that this type of reasoning plays an important role in the
process of generating explanations about events, learning from past experience, and
planning future actions [67–69]. However, reasoning counterfactually is particularly
challenging, as it requires the decision maker to maintain a (mental) model of the
world that captures its causal structure, and perform simulations of alternative sce-
narios to evaluate the impact of different decisions [70]. This complexity is amplified
in sequential decision making tasks, where the decision maker has to mentally undo
multiple combinations of past decisions to identify those that could have led to bet-
ter outcomes. Such challeges highlight the potential of AI systems, grounded in
the theory of causal inference [71], to support humans in evaluating counterfactual
actions and outcomes, providing a valuable learning signal for their future decisions.

Finally, to build trustworthy AI systems that assist humans in decision making,
an essential prerequisite is to understand how people assign responsibility in human-
AI collaboration scenarios. Counterfactual reasoning is a key component of this
process, as responsibility judgments in such contexts often involve counterfactual
questions, such as “What would have happened if the AI had not intervened?” The
connection between counterfactual reasoning and responsibility is well established
in the literature, however, in the context of collaborative decisions and outcomes,
it has focused primarily on how humans hold other humans responsible [72–74].
The increasing development of AI systems that assist and collaborate with humans,
rather than replacing them [57, 60–62, 75–78] presents a need to extend this line of
research to the human-AI collaboration domain [79].
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1.3 Contributions and outline

In the next chapters of the thesis, I make contributions that aim to address (some of)
the challenges discussed in the previous section. In the remainder of this chapter, I
provide an overview of prior related work and a list of the publications that form the
core of the thesis. In Chapter 2, I introduce the technical concepts and frameworks
that are used throughout the rest of the thesis. The subsequent chapters are then
organized as follows:

1. In Chapter 3, I introduce algorithmic methods to support policy design in
strategic environments. I consider settings where a decision maker (informed
by a predictive model) has to design a policy that allocates resources to a pop-
ulation of individuals under the assumption that each individual may strate-
gically respond to the policy to receive a beneficial decision. For example, if
a university discloses the criteria they use for graduate admissions, student
applicants may invest effort to improve their applications to be admitted. The
methods I propose compute policies that maximize the expected utility of the
decision maker (i.e., the university) in such strategic settings, while also incen-
tivizing individuals (i.e., students) to invest in forms of effort that help them
self-improve.

2. In Chapter 4, I develop algorithmic methods to enhance the counterfactual
reasoning capabilities of a human decision maker in sequential decision mak-
ing tasks. For example, consider a clinician who wants to identify past cases
of patients whose condition may have improved had they followed a different
treatment plan and closely analyze those cases to inform their future treat-
ment decisions. The methods I propose in this chapter address the problem
of searching for action sequences (i.e., sequences of treatments) that, in retro-
spect, would have led a given episode of the decision making process (i.e., a
patient) to a better outcome.

3. In Chapter 5, I explore how humans reason about responsibility in human-AI
teams. Specifically, I consider settings where a human and an AI agent work
together towards a common goal, and I propose a computational model that
relies on counterfactual simulations to predict and understand how an external
(human) observer assigns responsibility to each agent for the collaborative
outcome. To this end, I develop a simulation environment generating instances
of human-AI collaboration and use it to conduct a human-subject study to
evaluate the model’s performance.

I conclude the thesis with Chapter 6, which contains a general discussion high-
lighting key takeaways and promising directions for future research.

1.4 Related work

This section provides a brief overview of prior work along four directions relevant
to the main chapters of this thesis: (i) strategic machine learning, (ii) explainable
machine learning, (iii) causal and counterfactual reasoning in sequential decision
making, and (iv) responsibility attribution in teams.
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Strategic machine learning. Developing predictive models that remain robust
against adversarial distribution shifts has received significant attention in the ma-
chine learning literature [80]. In this context, the increasing use of predictive models
in high-stakes decision making has inspired a line of work on strategic classifica-
tion [81–91]. In strategic classification, individuals subject to the model’s predic-
tions can manipulate their features to receive favorable predictions, while maintain-
ing their original label. By taking into consideration the specific structure of the
individuals’ incentives, one can anticipate the form that the distribution shift takes,
and under certain technical conditions, design predictive models that remain resis-
tant to misclassification errors resulting from such strategic behavior. Research in
this area has also explored additional aspects of strategic classification, including
fairness concerns [92–94] and different assumptions about the level of information
available to individuals and the designer of the predictive model [95, 96].

An adjacent line of work that generalizes strategic classification is that on per-
formative prediction [97–100]. This field studies the stable points that arise when
a classifier is repeatedly retrained under distribution shifts caused by its own pre-
dictions. However, both strategic classification and performative prediction do not
explicitly distinguish between predictions and decisions—an essential distinction in
AI-assisted decision making pipelines—and focus solely on maximizing predictive
accuracy rather than a decision maker’s utility, which is the central focus of Chap-
ter 3. Moreover, their technical assumptions differ significantly from those made in
this chapter, making the technical contributions orthogonal.

A more closely related area is the one that focuses on incentive-aware evaluation
mechanisms [101–103]. These works aim to design scoring rules that incentivize
individuals to invest effort in specific actions (e.g., grading schemes that incentivize
studying against copying homework assignments). However, in the modeling frame-
works proposed in these works, the decision maker uses neither predictions about
the outcome of each individual nor the feature distribution of a population to design
their decision policy. Therefore, these approaches are less applicable to AI-assisted
decision making contexts involving predictions by a machine learning model.

Explainable machine learning. An important aspect of trustworthy machine
learning is the ability to understand the predictions of a model. Although one
may favor inherently interpretable models, such as linear models or decision trees,
there has been significant interest in developing post-hoc methods for explaining
predictions of complex machine learning models, such as neural networks. One such
approach is generating feature-based explanations [104–106]. Feature-based expla-
nations help individuals understand the importance of each feature in a particular
prediction. Typically, these approaches create an easily explainable local approxi-
mation of the model (e.g., linear) to assign weights to individual features.

While there is no consensus in the literature on what constitutes a good post-
hoc explanation, a second type that is gaining prominence is that of counterfactual
explanations [107–110]. This type of explanation is the focus of Section 3.2 in this
thesis. The goal of counterfactual explanations is to identify minimal changes in
feature values that would be sufficient for a predictive model to change its pre-
diction for a given sample. These explanations have gained traction because they
place no constraints on model complexity, do not require model disclosure, facilitate
actionable recourse, and seem to automate compliance with the law [111].

The technical challenges in the field of counterfactual explanations primarily in-
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volve satisfying several desiderata. For example, Mothilal et al. [110] emphasize
giving options to the explainee by providing sets of explanations that are diverse
in terms of features, Ustun et al. [108] focus on finding explanations that are based
on actionable feature changes, while Karimi et al. [112] prioritize explanations that
are faithful to the underlying causal structure of the world. In contrast, the work
presented in Section 3.2 focuses on how a decision maker, using predictions from
a predictive model, should provide counterfactual explanations to individuals who
received a negative decision from their decision policy. The goal is to maximize the
decision maker’s utility when individuals respond strategically to the explanations
by adapting their features. Since existing work on counterfactual explanations typi-
cally focuses solely on explaining predictions without distinguishing between model
predictions and decisions, they are not suited to AI-assisted decision making sce-
narios discussed in Chapter 3 and Section 3.2, in particular. For a comprehensive
discussion on counterfactual explanations of predictive models, refer to Karimi et al.
[113] and Verma et al. [114].

Causal and counterfactual reasoning in sequential decision making. The
field of causal inference has a rich and interdisciplinary history. Economists have
developed and extensively studied the potential outcomes framework [115], creating
a comprehensive toolkit for designing experimental setups and identifying quanti-
ties such as average and conditional treatment effects. Computer scientists have
focused on formally expressing causality through graph diagrams and structural
equations [71]. This has led to the development of the structural causal model
(SCM) framework, which, based on a calculus of interventions [116], allows to rea-
son formally about different types of probability distributions, such as observational,
interventional, and counterfactual distributions (see Section 2.3 for further details).
Moreover, it is increasingly being integrated into the development and analysis of
machine learning models (refer to Peters et al. [117] for an overview). The SCM
framework, with a particular emphasis on counterfactual distributions, is central to
Chapter 4.

In the context of sequential decision making, causal modeling has been a central
component of the broad area of causal reinforcement learning [118]. This term refers
to a line of work that aims to design policies for sequential decision making tasks, as
in traditional reinforcement learning [119], but it incorporates additional structural
assumptions about the environment. This approach serves multiple purposes, from
achieving robust performance guarantees across different environments [120–122]
and similar yet distinct decision making tasks [123, 124], to maintaining strong
performance in the presence of unobserved variables [125–129].

In Chapter 4, our main goal is to identify an action sequence for an observed
episode of a sequential decision making process that differs minimally from the
original sequence and would have led to a better outcome in retrospect. Therefore,
within the aforementioned line of work, the most closely related work is the one that
focuses on the development of machine learning methods that employ elements of
counterfactual reasoning to improve or retrospectively analyze decisions in sequential
settings [130–132]. These works primarily focus on expressing the decision making
task’s environment as a causal model and using that information to evaluate and
efficiently compute decision policies based on counterfactual realizations of logged
episodes. Moreover, the work in Chapter 4 has ties to prior work that uses counter-
factual reasoning to develop explainable reinforcement learning models [133, 134].
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However, none of the aforementioned works aim to find an action sequence, close
to the observed sequence of a particular episode, that is counterfactually optimal to
support the learning process of a human decision maker.

Responsibility attribution in teams. The study of responsibility attribution is
central in both AI and human psychology. Prior work has established strong con-
nections between human perceptions of responsibility and cognitive processes such
as causal and counterfactual reasoning [72, 74, 135–143]. Specifically, in team con-
texts, research has focused on identifying conditions under which one is or should be
held responsible for a collaborative outcome. For example, there has been empirical
evidence in psychology that responsibility judgments about a member in a team
are influenced by factors such as pivotality [73, 74] (i.e., the extent to which an
individual’s actions were critical for the outcome) and replaceability [143] (i.e., how
easily an individual could have been substituted). Moreover, in AI, prior work has
proposed normative frameworks, based on structural causal models, that provide
definitions of when an AI system (or agent, more generally) should be held responsi-
ble, based on whether it was an actual cause of the collaborative outcome [139, 144].

Although this line of work forms the basis for Chapter 5, it does not explic-
itly distinguish between human and AI team members, nor does it focus on the
differences in how each agent’s responsibility is perceived. That said, the work in
this chapter is closely related to recent work investigating responsibility and related
concepts in the context of AI-assisted decision making. For example, Awad et al.
[145] study a scenario of shared control between a human and an AI in a vehicle,
finding that the AI agent is consistently blamed less than humans when both make
mistakes. Lima et al. [146] explore a setting of AI-assisted bail decision making and
find that people hold human decision makers responsible in the sense of having an
obligation or authority to make a decision, whereas AI is perceived as responsible
in terms of being praised or blamed for specific decisions and outcomes. However,
none of these works focus on identifying the cognitive processes that underlie re-
sponsibility judgments for humans and AI agents in collaborative settings, which is
the objective of Chapter 5.

1.5 Publications

The work presented in Chapters 3, 4 and 5 has been peer-reviewed and published
in top-tier venues for machine learning, operations research, and cognitive science.
Details of the publication titles, venues, and co-authors are outlined below:

1. Stratis Tsirtsis, Behzad Tabibian, Moein Khajehnejad, Adish Singla, Bernhard
Schölkopf, and Manuel Gomez-Rodriguez. Optimal decision making under
strategic behavior. Published in Management Science, volume 70, issue 12,
pages 8506–8519, 2024.

2. Stratis Tsirtsis and Manuel Gomez-Rodriguez. Decisions, counterfactual ex-
planations and strategic behavior. Published in Advances in Neural Informa-
tion Processing Systems, volume 33, pages 16749–16760, 2020.

3. Stratis Tsirtsis, Abir De, and Manuel Gomez-Rodriguez. Counterfactual ex-
planations in sequential decision making under uncertainty. Published in Ad-
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vances in Neural Information Processing Systems, volume 34, pages 30127–30139,
2021.

4. Stratis Tsirtsis and Manuel Gomez-Rodriguez. Finding counterfactually op-
timal action sequences in continuous state spaces. Published in Advances in
Neural Information Processing Systems, volume 36, pages 3220–3247, 2023.

5. Stratis Tsirtsis, Manuel Gomez-Rodriguez, and Tobias Gerstenberg. Towards
a computational model of responsibility judgments in sequential human-AI
collaboration. Published in Proceedings of the Annual Meeting of the Cognitive
Science Society, volume 46, pages 1039-1046, 2024.

I can be considered the main contributor for all publications except (1), in which
I share equal contribution with Behzad Tabibian and Moein Khajehnejad. Behzad
and Moein contributed to the development of a preliminary version of the modeling
framework and the theoretical results in Section 3.1, specifically concerning Theo-
rem 3.1.1, Algorithm 2, and Proposition 3.1.4. The remaining theoretical analysis,
extensive experimental evaluation of the methods, and general refinement of the
work through multiple rounds of peer review leading to the journal publication are
my own contributions. However, it is important to note that all of the aforemen-
tioned publications are the result of collaborative effort and would not have been
possible without my co-authors. Therefore, in the presentation of Chapters 3 to 5,
I use first-person plural pronouns (e.g., “we” instead of “I”) to emphasize their
significance.
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Chapter 2

Technical concepts and
frameworks

This chapter provides a concise introduction to the core modeling frameworks on
which the subsequent chapters of the thesis are based. Here, I present the frame-
works at an abstract level, complemented by simple examples where appropriate.
Note that, each of the following chapters can be read independently, as their indi-
vidual formulations and results are self-contained. Hence, the goal of this chapter
is to serve as a “warm-up” rather than “preliminaries”, allowing the reader to gain
a basic familiarity with the general technical concepts before directly using them in
the specific contexts considered in the subsequent chapters.

I begin by introducing elements of game theory, a framework for modeling strate-
gic interactions between rational agents, which is central to Chapter 3. Then, I
present Markov decision processes (MDPs), a standard formulation for describing an
agent’s sequential decisions in an uncertain environment, alongside their extension
to the multi-agent setting. I conclude with the introduction of structural causal
models (SCMs), a framework for expressing causal relationships between random
variables. MDPs and SCMs form the basis for Chapter 4, while the multi-agent
extension of MDPs is used in Chapter 5. Note that, this chapter does not go into
details regarding established theoretical results or specific algorithms, deferring more
detailed discussions to the chapters where they are most relevant.

In terms of notation, I adopt standard conventions from the machine learning
literature. Calligraphic letters (e.g., A) denote sets, while capital letters (e.g., X)
denote random variables. When it is clear from the context, certain capital letters
(e.g., T in the context of MDPs) denote constants of the respective problem. Lower-
case letters represent functions (e.g., π(·)) or specific variable values and realizations
(e.g., x). Bold letters denote multi-dimensional variables, such as vectors or matrices
(e.g., x), and I use regular letters with subscripts to refer to the individual elements
of the respective vector or matrix (e.g., xi,j). Generally, the marginal probability
of a random variable X taking the value x is written as P (X = x) and conditional
probabilities as P (Y = y |X = x). When the context is clear, marginal probabilities
are written as P (x) and conditional probabilities as P (Y = y |x) or P (y |x). The
notation P (X) refers to the distribution of the random variable X. In addition, for
any set A, ∆(A) denotes the set of all possible distributions over A. Lastly, 1[·]
denotes the indicator function, [n] denotes the set of natural numbers ranging from
1 to n and [n]0 = {0} ∪ [n].
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2.1 Games and equilibria

Game theory is an established field in economics, mathematics and computer sci-
ence, studying the behavior of rational agents in strategic interactions [147]. It is
important to clarify certain terms to avoid ambiguity. In the context of economics,
the term “agent” refers to an entity (e.g., an individual or an organization) that
makes decisions based on its own preferences and goals, while “rational” typically
describes agents whose decisions maximize some measure of the agents’ utility [22].
For example, if a customer visits a store to buy cereal with the sole goal of saving
money, purchasing the box with the lowest price per kilogram is a rational action—
one that is optimal according to their utility. However, if the customer buys the one
with the mascot on the packaging that reminds them of their childhood, that is a
suboptimal (i.e., irrational) decision.

Game theory focuses on strategic interactions, that is, situations where two ratio-
nal agents (also called “players”) make decisions in each other’s presence, with each
agent’s utility influenced by the other’s decision. The simplest form of interaction
one can study is when both agents are aware of each other’s options and utilities,
they are both rational, and they also expect each other to behave rationally [148].
The goal of game theory is to predict the outcome of these interactions in terms of
the actions the agents will take and the individual utilities they will obtain. Next,
I formally introduce two-player games and use them to express a simple example of
a strategic interaction. Although the core ideas can be extended to games involving
more than two players, those are not relevant in the context of this thesis.

The possible outcomes of a two-player game correspond to the combinations of
the two players’ actions, represented as A = A1 × A2, where Ai is a finite set of
actions available to player i. Each player’s utility, depending on the outcome, is
described by a function ui : A → R. The decision player i makes is which strategy
σi to follow, where σi is a probability distribution over Ai, and the player samples
an action Ai ∼ σi. Such strategies are known as mixed strategies. In the special
case where a player selects an action Ai = a deterministically, σi is a point mass
distribution on a and is referred to as a pure strategy.

An important aspect of a game is the order in which the players take actions.
The most widely studied class of two-player games involves simultaneous actions,
where both players lack information about the exact action that the other will take.
In such games, players commit to strategies σ1, σ2, from which they sample their
actions. Consequently, the expected utility for player i is given by

EA1∼σ1,A2∼σ2 [ui(A1, A2)] =
∑
a1∈A1

∑
a2∈A2

ui(a1, a2)P (A1 = a1)P (A2 = a2).

Despite its simplicity, this formulation can characterize a wide range of strate-
gic interactions. A classic example we consider here is the “Bach or Stravinsky?”
dilemma. In this scenario, there are two players, Layla and Frank, who both want
to attend a musical concert. Layla has a preference for Bach, while Frank has a
preference for Stravinsky. However, neither wants to attend a concert alone. They
negotiate and each makes a decision about which concert to attend. The utility
functions of the two players can be represented by Table 2.1.

The anticipated behavior in this strategic interaction is that both players will
adopt strategies that form a Nash equilibrium [149]. That is, a combination of
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strategies such that no player can improve their utility by unilaterally changing
their strategy while keeping the other’s strategy fixed. Formally, the strategies σ1

and σ2 form a Nash equilibrium if:

EA1∼σ1,A2∼σ2 [u1(A1, A2)] ≥ EA1∼σ′
1,A2∼σ2

[u1(A1, A2)] ∀σ′
1 and

EA1∼σ1,A2∼σ2 [u2(A1, A2)] ≥ EA1∼σ1,A2∼σ′
2
[u2(A1, A2)] ∀σ′

2.

To understand the intuition, consider that, in the context of the “Bach or Stravin-
sky?” example, we restrict the two players’ behavior to pure (i.e., non-randomized)
strategies. In that case, there are two Nash equilibria, with pure strategies σ1 and
σ2 assigning point masses to either of two combinations of actions: (Bach, Bach)
or (Stravinsky, Stravinsky). In other words, game theory predicts that if Layla and
Frank are both rational, they will eventually attend the same concert. Otherwise,
any unilateral deviation would result in the player who deviates attending a concert
alone and receiving zero utility, an outcome that is non desirable.

The order in which the players take actions is crucial for the formation of equilib-
ria. For example, consider a slightly different scenario in which Layla first selects and
goes to a concert, then invites Frank after she arrives. The only natural outcome is
that they will both attend the Bach concert, Layla’s preferred composer. This inter-
action belongs to the class of Stackelberg games [150], where a leader (here, Layla)
acts first and a follower (here, Frank) best-responds to the action of the leader.
Formally, the leader commits to a strategy σ1 and the follower’s best-response is a
strategy

σ2 = BR(σ1) = argmax
σ∈∆(A2)

EA1∼σ1,A2∼σu2(A1, A2),

where ∆(A2) is the space of all possible distributions defined over A2. In that con-
text, the strategies of the two players form a Stackelberg equilibrium if the leader’s
strategy maximizes their own utility assuming that the follower will best-respond to
it. Formally, the equilibrium strategy σ1 satisfies

σ1 = argmax
σ′∈∆(A1)

EA1∼σ′,A2∼BR(σ′)u1(A1, A2).

In a Stackelberg game, it is easy to see that the leader can gain an advantage
by committing to a strategy that induces a favorable best-response from the fol-
lower, enhancing the leader’s utility as a result. Games of this type, along with the
computation of their equilibria, are the focus of Chapter 3.

Table 2.1: Utilities in the “Bach or Stravinsky?” game. Rows correspond
to the actions of Layla, and columns correspond to the actions of Frank. Each cell
contains a pair of numbers, indicating the utility of Layla on the left and the utility
of Frank on the right.

Layla \ Frank Bach Stravinsky
Bach (2,1) (0,0)

Stravinsky (0,0) (1,2)
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2.2 Models of sequential decision making

Decision making processes in daily life, from driving and navigation to clinical care,
are often sequential in nature. An agent—human or artificial—interacts with its
environment over a series of time steps and, at each step, they observe the current
state of the environment, take an action, and receive a reward signal indicating the
quality of their action. Consequently, the environment’s state evolves based on the
agent’s actions. Markov decision processes (MDPs) are the standard mathematical
framework used to model such decision making tasks [119, 151].

2.2.1 Markov decision processes

Here, we focus on the simplest form of sequential decision making, which is captured
by finite MDPs. In a finite MDP, the environment is characterized by a finite set
of states S, the agent has access to a finite set of actions A, and they have to make
decisions in a finite sequence of time steps. One of the key characteristics of MDPs
is that they typically describe environments that behave stochastically. Given the
state st ∈ S of the environment at time t and an action at ∈ A of the agent, there
is uncertainty about the future evolution of the state of the environment. Formally,
this is captured by a set of conditional transition distributions P (St+1 | St, At),
where P (s′ | s, a) denotes the probability that the environment transitions from
state s to s′ if the agent takes action a. Note that, these conditional probabilities
are sufficient to completely characterize the dynamics due to the Markov property,
a fundamental assumption in MDPs. Intuitively, the Markov property states that
the probability of transitioning to a specific next state depends only on the current
state and action, not on the history of previous states and actions. Formally, the
following conditional independence holds:

P (St+1 | St, At, St−1, At−1, . . . , S0, A0) = P (St+1 | St, At)

While interacting with such an environment, the agent receives a reward signal
every time they take an action, which is defined as a reward function r : S×A→ R.
A numerical value r(s, a) indicates the quality of the agent’s action a while the
environment is in state s. Given a finite horizon T ∈ N, the agent’s behavior is
described by a policy π : S × [T − 1]0 → ∆(A) that, for each state and time step,
yields a distribution over the set of actions A. In that context, starting from an
initial state s0, the agent’s goal is to act according to a policy π∗ that maximizes
their expected total reward over time, that is,

π∗ = argmax
π

E

[
T−1∑
t=0

r(St, At) | S0 = s0, π

]
.

Optimal policies in finite MDPs are easy to compute using dynamic program-
ming [152]. The first step is to define a value function V ∗ : S × [T ] → R such
that V ∗(s, i) represents the maximum expected total reward achievable given that
the environment is in state s and there are i time steps left until reaching the time
horizon T . Formally,

V ∗(s, i) = max
π

E

[
T−1∑

t=T−i

r(St, At) | ST−i = s, π

]
,
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with the boundary condition that V ∗(s, 0) = 0 for all s ∈ S. A key observation here
is that, based on the Markov property, the aforementioned quantity for i > 0 can
be expressed recursively as

V ∗(s, i) = max
a∈A

[
r(s, a) +

∑
s′∈S

P (s′ | s, a)V ∗(s′, i− 1)

]
.

This is known as the Bellman equation in the reinforcement learning literature
and implies that the problem of computing the function V ∗ presents an optimal
substructure. Hence, one can compute all its values in a bottom-up manner, working
backwards from i = 0. This approach, referred to as backward induction or value
iteration, also allows the computation of the optimal policy π∗. Each value π∗(s, T−
i) can be determined by selecting the actions a ∈ A that maximize the right-hand
side of the equation above.

Chapter 4 builds extensively on the framework of MDPs. In this chapter, we
define quantities similar to the value function mentioned above. We also develop
algorithmic techniques using dynamic programming and recursive computations, as
previously discussed.

2.2.2 Decentralized partially observable Markov decision pro-
cesses

Standard MDPs focus on a single agent that takes actions based on the state of the
environment. However, in many real-world scenarios, sequential decision making
processes are much more complex. This section introduces decentralized partially
observable MDPs (Dec-POMDPs) [153], which involve two key generalizations: (i)
the state of the environment is not directly observable, and (ii) there are multiple
agents operating independently in the same environment. Similarly to Section 2.1,
the formulation is presented with two agents, but the core ideas can be extended to
a larger number of agents.

Formally, a finite Dec-POMDP is characterized by a finite set of states S, and
each agent i has their own set of actions Ai. The state of the environment at a
time step t + 1 is determined by both its state st ∈ S at time t, as well as the
combination of actions at,1, at,2 ∈ A1,A2 taken by the two agents. The dynamics
of a Dec-POMDP are characterized by a set of conditional probabilities P (s′ | s, a)
that express the probability of the environment transitioning to a state s′ given that
it is in a state s and the two agents took a joint action a ∈ A = A1×A2. Similarly
to standard MDPs, the Markov property holds.

At each time step, the two agents receive a reward r(s, a) indicating the quality
of their joint action a. It is important to note that the reward function r : S ×
A → R is shared between the two agents. In other words, maximizing the total
reward each agent receives means that they should act collaboratively. However,
in a Dec-POMDP, neither the state of the environment nor each agent’s actions
are observable. Instead, for each agent i, there is a set of possible observations
Oi they can make. Depending on the state of the environment st and the joint
action at they take, the agents acquire observations ot,1, ot,2, sampled from a given
conditional distribution P (Ot,1, Ot,2 | St, At). Then, each agent maintains a belief
about the state of the environment and acts according to a time-dependent policy
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Figure 2.1: Causal graph representing the relationship between early wake-
up times and work productivity. Green boxes represent endogenous random
variables and pink boxes represent exogenous noise variables. The value of each
endogenous variable is given by a function of the values of its ancestors in the
causal graph. The value of each exogenous noise variable is sampled independently
from a given distribution. An intervention do[B = 1] breaks the dependence of the
variable B from its ancestors (highlighted by dashed lines) and sets its value to 1.
After observing an event E = 1, B = 0,W = 0, a counterfactual prediction can
be thought of as the result of an intervention do[B = 1] in a modified SCM where
the noise variables take values uE, uB, uW from posterior distributions with support
such that 1 = gE(uE), 0 = gB(1, uB) and 0 = gW (1, 0, uw).

πi,t : O0 × O1 × . . . × Ot−1 → ∆(Ai) that considers the entire set of observations
they have received until time t.

From a computational perspective, the goal in Dec-POMDPs is typically to find
a joint policy π = (π1, π2) that maximizes the expected total reward. The com-
putation of optimal policies for Dec-POMDPs is a much harder problem than in
standard MDPs [154] and goes beyond the scope of this thesis. In Chapter 5, we
use Dec-POMDPs solely as a modeling tool to describe the collaboration between a
human and an AI agent to introduce a model that helps in understanding people’s
perception of responsibility of the two agents for a joint outcome in a collaborative
task.

2.3 Structural causal models

Our understanding of the world is deeply rooted in causal relationships, such as
clouds causing rain or fire generating heat. While traditional probability theory can
describe associations between variables through conditional distributions, it does not
capture the semantic meaning of causation. For example, a conditional distribution
P (B | A) does not specify whether A is a noisy generator (i.e., a cause) of B or vice
versa—in that case, the distribution could represent a posterior belief about a cause
B given the observed evidence A. Structural causal models (SCMs) [71, 117] are
a mathematical framework that addresses this limitation by providing a principled
way to represent causal relationships.

The key concepts discussed here can best be illustrated using a simple example
throughout this section. Consider a scenario in which an office worker might wake
up early (E ∈ {0, 1}), possibly have breakfast (B ∈ {0, 1}), and then go to work.
Whether they are productive at work (W ∈ {0, 1}) may be caused by several factors
but, for simplicity, consider only the following: having breakfast to gain energy and
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getting up early to plan the day ahead. An SCM C describing these relationships
can be represented by the directed acyclic graph in Fig. 2.1.

The three variables mentioned above are the endogenous variables of the SCM,
which means that they are measurable variables of interest for the analysis. In the
causal graph, these variables are represented as nodes (illustrated in green), with
edges indicating causal relationships. In this example, the edge E → B indicates
that waking up early allows enough time for breakfast, the edge B → W indicates
that having breakfast provides energy that boosts worker productivity, and the edge
E → W indicates that waking up early allows enough time for planning. Moreover,
the graph includes a set of exogenous (noise) random variables U = (UE, UB, UW )
(illustrated in pink) that introduce stochasticity into the system.

To fully specify the relationships between the random variables in the causal
graph, an SCM includes additional components beyond the structure of the graph:
(i) a set of distributions {P C(UE), P

C(UB), P
C(UW )} for the exogenous variables and

(ii) a set of functions {gE, gB, gW}, known as structural equations or mechanisms.
Each of these functions gI : PAI×UI → {0, 1} specifies how an endogenous variable
I is determined by its endogenous parent variables PAI in the causal graph and
the corresponding exogenous variable UI—conceptually, these structural equations
resemble assignment statements similar to those found in imperative programming
languages. For example, the causal relationships between the three variables E, B
and W may be expressed as

E := gE(UE) = 1 [UE ≤ 0.9]

B := gB(E,UB) = 1 [E = 1 ∧ UB ≤ 0.9]

W := gW (E,B,UW ) = 1 [E = 1 ∧B = 1 ∧ UW ≤ 0.9] ,

where UE, UB, UW are mutually independent and follow uniform distributions in
[0, 1]. Then, the equations above suggest that (i) the worker wakes up early with
probability 0.9, (ii) they have breakfast with probability 0.9, provided that they
wake up early, and (iii) they are productive at work with probability 0.9, only if
they have breakfast and wake up early to plan the day ahead. In this example, the
noise variable UB could account for unknown factors such as their appetite and food
availability, while UW could account for unpredictable meetings and emergencies in
the office.

It is easy to see that, within the framework of SCMs, typical conditional dis-
tributions are straightforward to compute. For example, if we are interested in the
probability that the worker is productive (W = 1) given that they had breakfast
(B = 1), this is given by

P C(W = 1 | B = 1) = P C(W = 1 | B = 1, E = 1)P C(E = 1 | B = 1)

+ P C(W = 1 | B = 1, E = 0)P C(E = 0 | B = 1)

= P C(W = 1 | B = 1, E = 1)

=

∫ 1

0

1 [uW ≤ 0.9] f(uW )duW

= 0.9,

where f(uW ) represents the probability density function of UW .
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A key characteristic of the probability written above is that it corresponds to
an observational distribution, that is, a distribution characterizing a natural prob-
abilistic relationship of the underlying physical system. An additional feature of
SCMs is their ability to represent interventional distributions, that is, distributions
reflecting what will happen in the system if some external actor performs an inter-
vention. Formally, this is achieved using the do [·] operator [116], which breaks the
causal dependency of a variable I from its parents PAI in the causal graph, mod-
ifies its original structural equation gI , and replaces it with an assignment I := i
to a constant value i.1 For example, consider that we are interested in computing
the probability that the worker is productive (W = 1) given that one day their
employer decides to offer free breakfast in the office (do [B = 1]). Given the SCM C,
this probability can be written as

P C ; do[B=1](W = 1) = P C(UW ≤ 0.9, E = 1)

=

∫ 1

0

∫ 1

0

1 [uW ≤ 0.9]1 [uE ≤ 0.9] f(uE)f(uW )duEduW

= 0.81.

It is important to note that the values of the observational conditional probability
P C(W = 1 | B = 1) and the interventional probability P C ; do[B=1](W = 1) differ in
this example. The key difference is that, in the observational setting, conditioning
on the event that the worker had breakfast (B = 1) implies that they woke up early
(E = 1), which allows them to plan their day ahead and increases their chances
of being productive. In contrast, in the interventional setting, the fact that the
employer provides breakfast in the office does not offer information about whether
the worker woke up early and planned their day, thus making a productive day less
certain overall. In general, observational and interventional distributions may (not)
differ depending on the structure of the causal graph (refer to Pearl [71] for details).

The expressive power of SCMs is highlighted by their ability to enable reasoning
formally about counterfactuals—retrospective “what if?” scenarios that differ from
the observed reality. Within an SCM, this type of reasoning is performed in three
main steps. First, given observations of the endogenous variables, we infer the poste-
rior distribution of the exogenous variables that led to these observations, a process
known as abduction. Next, we perform an intervention using the do[·] operator
corresponding to the counterfactual query of interest. Finally, we use the inferred
distributions and modified equations to compute the counterfactual distributions of
the endogenous variables.

For example, consider a scenario in which the office worker woke up early, did not
have breakfast at home (e.g., because they had ran out of food) and consequently
was not productive at work. Given that information, one can infer that the noise
variables UE, UB, UW must have been such that they allowed the observation E =
1, B = 0,W = 0, leading to posterior probability distributions

P C(UE | E = 1) = Uniform[0, 0.9],

P C(UB | E = 1, B = 0) = Uniform[0.9, 1], and

P C(UW | E = 1, B = 0,W = 0) = Uniform[0, 1],

1This is known as a hard intervention. In general, the do operator also allows for soft interven-
tions that assign a distribution over values instead of a single value.
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and let f ′
E, f

′
B, f

′
W be their probability density functions.

A counterfactual quantity of interest could be the probability that the worker
would have been productive this particular day, had their employer provided free
breakfast in the office (do[B = 1]). To answer the counterfactual question, one can
simply consider an alternative SCM C ′ that is identical to C except for the fact
that the distributions of the noise variables are characterized by the aforementioned
probability density functions f ′

E, f ′
B, f ′

W , rather than the ones in C. Then, the
counterfactual probability mentioned above can be formally expressed as

P C|E=1,B=0,W=0 ; do[B=1](W = 1)

= P C′ ; do[B=1](W = 1)

= P C′
(UW ≤ 0.9, E = 1)

=

∫ 1

0

∫ 1

0

1 [uW ≤ 0.9]1 [uE ≤ 0.9] f ′
E(uE)f

′
W (uW )duEduW

= 0.9.

This result has an intuitive interpretation. Since the worker managed to wake
up early, they had enough time to plan their day. Therefore, if the employer had
provided breakfast in the office, the productivity of the worker would have depended
solely on the exogenous factors UW . The fact that, in reality, the worker did not
have breakfast and was not productive does not offer any posterior information
about these exogenous factors for that particular day. Therefore, the counterfac-
tual probability that the worker would have been productive is simply equal to the
probability P C(UW ≤ 0.9) = P C′

(UW ≤ 0.9) = 0.9.
Counterfactual distributions in SCMs are at the center of Chapter 4. In this

chapter, we will build upon the technical tools presented here and in Section 2.2 to
work with a causal formulation of sequential decision making and reason about the
counterfactual effects of action sequences different from those observed in reality.
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Chapter 3

Supporting policy design in
strategic environments

Decisions across a wide variety of domains, from banking and hiring to insurances,
are increasingly informed by data-driven predictive models. In all these domains,
the decision maker aims to employ a decision policy that maximizes their utility
while the predictive model aims to provide an accurate prediction of the outcome
of the process from a set of observable features. For example, in loan decisions, a
bank may decide whether or not to offer a loan to an applicant on the basis of a
predictive model’s estimate of the probability that the individual would repay the
loan. The bank’s policy in such a setting could be a simple threshold rule, such as
granting the loan if the estimated probability exceeds 80%.

Due to the consequential nature of these decisions, there is an increasing pressure
on decision makers to be transparent about the decision policies, the predictive
models, and the features they use. However, even with access to a highly accurate
predictive model, transparency can introduce significant complexities in the decision
making process. This is because revealing the decision policy to the individuals who
are subject to it induces strategic behavior, as it shows them how they could alter
their features to receive a favorable decision. This creates a non-trivial feedback loop
between the policy and the feature distribution on which the decision maker’s utility
depends. Therefore, to maximize their utility in that setting, the decision maker may
have to consider policies beyond simple threshold rules and analyze the individuals’
anticipated responses. This task can be time-consuming or even intractable for a
human decision maker, as it involves reasoning about a large number of candidate
policies and individuals with diverse characteristics and potential responses.

In this chapter, we address this problem by introducing algorithmic methods that
combine predictions from a machine learning model with natural assumptions about
how individuals respond to a given policy to compute policies that maximize the
decision maker’s utility under transparency and strategic behavior. The resulting
policies are based on a discrete and relatively small set of feature values, making
them easier for a human decision maker to evaluate before implementation. It is
important to note that transparency can manifest in various forms. In the following
sections, we focus on two approaches towards transparency that have attracted
significant interest in the machine learning literature.

In Section 3.1, we look into a setting in which the decision maker publicly shares
their entire policy. For example, in loan decisions, this can involve a bank publishing
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a set of criteria (e.g., annual income greater than $70,000 and credit card debt
less than $10,000) that they deem necessary to grant a loan. This setting, which
we refer to as the complete transparency scenario, is closely related to strategic
classification [84, 85, 93, 155]. This line of work develops classifiers that can maintain
their accuracy when data points keep their original label fixed but strategically
modify their features to achieve a favorable classification.

In Section 3.2, we focus on an alternative approach to achieve transparency that
we call the partial transparency scenario; the decision maker opts not to reveal
their entire policy but instead provides counterfactual explanations to individuals.
In the context of explainable machine learning, a counterfactual explanation for
a negatively classified data point is another positively classified data point that
differs minimally in terms of feature values [107, 110, 114]. Similarly, throughout
the chapter, we use the term “counterfactual explanation” to describe a personalized
recommendation given by the decision maker to an individual. This recommendation
specifies which features need to be changed, and by how much, for an individual
to receive a positive decision. In the lending example, the bank could advise an
applicant to increase their income by $10,000 and/or repay half of their credit card
debt, while committing to grant the loan once the applicant performs these changes.1

In the following sections, we introduce game-theoretic modeling frameworks for
the aforementioned scenarios, formalize the relevant optimization problems, analyze
their complexity, introduce algorithms to solve them, and evaluate these algorithms
using synthetic and real data. The code used for all experiments in Chapter 3 is
available at https://github.com/Networks-Learning/strategic-decisions.

3.1 Decision making under complete transparency

As discussed previously, by being transparent about the decision policy they
use, the decision maker creates incentives for individuals to invest effort strategi-
cally to receive a beneficial decision. Depending on the policy and the features
used by the decision maker, individuals may direct their effort towards genuine self-
improvement—a win-win situation for both parties—or may attempt to superficially
change their feature values to “game” the decision maker’s policy [156]. The lat-
ter, more skeptical, view has been the key motivation in previous work on strategic
classification, which has focused on protecting predictive models against misclassifi-
cation errors resulting from malicious strategic behavior. Here, instead of focusing
on predictive accuracy, we assume that the decision maker knows the probabilistic
relationship between features and individual outcomes, and we introduce algorithms
to compute decision policies that maximize the utility of the decision maker in a
strategic setting.

1In the machine learning literature, counterfactual explanations are used to address two distinct
questions that are often mistakenly perceived as synonymous: (i) Why was a data point negatively
classified? and (ii) What feasible feature changes can lead to a positive classification? The former
question is retrospective, focusing on model interpretability [107], while the latter is prospective,
focusing on providing algorithmic recourse [108, 113]. Here, we use the term with its latter inter-
pretation. Therefore, counterfactual explanations, as presented in this chapter, although related,
present differences with the concept of counterfactual reasoning discussed in Chapters 4, 5, which
has a retrospective nature.
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Once we focus on the utility achieved by a decision policy, it is overly pessimistic
to always view an individual’s strategic effort as some form of gaming, and thus
undesirable—several studies in economics note that an individual’s effort in changing
their features may sometimes lead to self-improvement [157–159]. For example, in
hiring decisions, if a law firm uses the number of internships to decide whether to
offer a job to an applicant, the applicant may feel compelled to do more internships
during their studies to increase their chances of getting hired, and this will improve
their job performance. In such cases, the decision maker (i.e., the law firm) may like
to use a machine learning model to estimate an individual’s probability of success
(i.e., high job performance) based on their features and find a decision policy that
incentivizes individuals to invest in efforts that increase the decision maker’s utility
(i.e., overall workforce performance).

Incentivizing individuals to invest additional effort to increase the utility of the
decision maker may initially appear as an undesirable immediate cost for individu-
als. However, the resulting self-improvement could potentially prevent events with
a larger cost in the long term (e.g., preventing an employee from being fired due to
poor job performance). As a consequence, one can also argue that self-improvement
can increase social welfare in the long term (e.g., leading to a more skilled workforce).
In this context, it is also worth noting that strategy-aware policies that trade-off im-
mediate costs to individuals and beneficial long-term effects are commonly met in
public policy whenever governments impose higher taxes to incentivize desirable so-
cial behavior. Prominent examples are the taxation of high-emission vehicles [160],
unhealthy food [161, 162] and tobacco products [163]. For instance, in the case of
high-emission vehicles, the legislator may want to design a taxation system that
maximizes their utility—a function of total emissions, state revenue, and the cit-
izens’ well-being—while consulting a simulation model [164] that accounts for the
stakeholders’ strategic responses—for changes in the drivers’ buying patterns or the
manufacturers’ supply. Importantly, economic problems of this form are relevant
even when individuals cannot resort to any form of gaming, for example, when tax
authorities have introduced proper mechanisms to control tax evasion.

In this context, we cast the problem of utility maximization as a Stackelberg
game [150] in which the decision maker moves first by sharing their decision pol-
icy before individuals best-respond and invest effort to maximize their chances of
receiving a beneficial decision. Importantly, we assume that decisions are based on
low-dimensional feature vectors, so that the decision policies are relatively easy for a
human decision maker to review and evaluate before implementing them; as argued
elsewhere, in many real-world scenarios, the data is summarized by just a small
number of summary statistics (e.g., FICO scores) [165, 166]. Then, we characterize
how this strategic investment of effort leads to a change in the feature distribution at
a population level. More specifically, we derive an analytical expression for the fea-
ture distribution induced by any policy in terms of the original feature distribution
by solving an optimal transport problem [167]. Based on this analytical expression,
we make the following contributions:

1. We show that the problem of finding the optimal decision policy is NP-hard
by using a novel reduction of the Boolean satisfiability (SAT) problem [168].

2. We show that there are cases in which deterministic policies are suboptimal in
terms of utility, in contrast with the non-strategic setting, where deterministic
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threshold rules are optimal [48, 169].

3. Under a natural monotonicity assumption on the cost individuals pay to
change features [85, 92], we show that one can narrow down the search for
the optimal policy to a particular family of decision policies with a set of de-
sirable properties. Leveraging that observation, we introduce a polynomial
time heuristic search algorithm using dynamic programming to find close to
optimal decision policies.

4. Under no assumptions on the cost individuals pay to change features, we
introduce an iterative search algorithm that is guaranteed to converge to locally
optimal decision policies.

Finally, we experiment with synthetic and real credit card data to illustrate our
theoretical findings and show that the decision policies found by our algorithms
achieve higher utility than several competitive baselines. Moreover, we also show
that our decision policies maintain their competitive advantage even under imperfect
conditions, such as errors in utility estimates arising from inaccuracies in the predic-
tive model and potential investments of effort that do not lead to self-improvement.

3.1.1 Policies, utilities, and benefits

Given an individual with a feature vector x ∈ {1, . . . , n}d there is a (stochastic)
label Y ∈ {0, 1} and a decision D ∈ {0, 1}, which may also be stochastic, that
controls whether the label Y is realized.2 This setting fits a variety of real-world
scenarios, where continuous features are often discretized into (percentile) ranges.
As an example, in a loan decision, the decision specifies whether the individual
receives a loan (D = 1) or their application is rejected (D = 0); the label indicates
whether an individual repays the loan (Y = 1) or defaults (Y = 0) upon receiving it;
and the feature vector (x) may include an individual’s salary percentile, education,
or credit history. Moreover, we denote the number of feature values using m = nd,
assuming that the number of features d is small, as discussed earlier.

Individuals’ features follow a distribution P (X) and, for each individual with
features x, their decision D is sampled from a decision policy π(D |x) and their
label Y is sampled from P (Y |x). Throughout the section, for brevity, we will write
π(x) = π(D = 1 |x), and we will say that the decision policy satisfies outcome
monotonicity if the higher an individual’s outcome (i.e., their likelihood of Y = 1),
the higher their chances of receiving a positive decision, that is,

P (Y = 1 |xi) < P (Y = 1 |xj)⇔ π(xi) < π(xj). (3.1)

Moreover, we adopt a Stackelberg game-theoretic formulation [150] in which the
decision maker moves first by publishing their decision policy π before individuals
best-respond. As it will become clearer in the next section, individual best-responses
lead to a change in the feature distribution at a population level—we will say that
the new feature distribution P (X; π) is induced by the policy π. Then, we measure

2We assume features are discrete and, without loss of generality, each feature takes n discrete
values. In the real dataset we used in the evaluation of our algorithms in Section 3.1.6, discretiz-
ing continuous features causes a negligible difference in terms of predictive accuracy. Refer to
footnote 12 for more details.
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the (immediate) utility a decision maker obtains using a policy π as the average
overall profit they obtain [48, 169, 170], that is,

u(π, γ) = EX∼P (X;π), Y∼P (Y |X), D∼π(D |X)[Y ·D − γ ·D]

= EX∼P (X;π), D∼π(D |X)[P (Y = 1 |X) ·D − γ ·D], (3.2)

where γ ∈ (0, 1) is a given constant reflecting economic considerations of the decision
maker. For example, in a loan scenario, the term P (Y = 1 |X) ·D is proportional
to the expected number of individuals who receive and repay a loan, the term γ ·D
is proportional to the number of individuals who receive a loan, and γ measures the
cost of offering a loan in units of repaid loans. Alternatively, one can think of γ as a
lower bound on the probability P (Y = 1 |X) above which the loan provider would
consider it rational to offer a loan. Here, note that γ is bounded by the collateral
against the loan, which caps the maximum potential cost to the loan provider.
Finally, we define the (immediate) individual benefit an individual with features x
obtains from a policy π as

b(x) = ED∼π(D |x)[f(D)], (3.3)

where the function f(·) is problem dependent. Here, for ease of exposition, we will
assume that f(D) = D and thus b(x) = ED∼π(D |x)[D] = π(x), however, our results
can be extended to any function f(·) that is monotonically increasing in D.

Remarks on strategic classification. Due to Goodhart’s law, if the true causal
effect between the observed features X and the outcome variable Y is partially
described by unobserved features, then X can lose predictive power for Y after
individuals best-respond, that is, P (Y |X) may change [97]. This has been a key
insight by previous work on strategic classification [85, 92, 93], which aims to develop
accurate predictive models Pθ(Y |X) in a strategic setting. Even if there is no
unmeasured confounding, a predictive model Pθ(Y |X) trained using empirical risk
minimization, that is, θ∗ = argminθ EX∼P (X), Y∼P (Y |X)[ℓ(X, Y, θ)], where ℓ(·) is a
given loss function, may decrease its accuracy after best-response. This is because,
once individuals best-respond to a decision policy π, θ∗ may be suboptimal with
respect to the feature distribution induced by the policy, that is,

EX,Y∼P (X;π),P (Y |X)[ℓ(X, Y, θ∗)] ≥ min
θ

EX,Y∼P (X;π),P (Y |X)[ℓ(X, Y, θ)].

In this context, Miller et al. [156] have argued that, to distinguish between gaming
and improvement, it is necessary to have access to the full underlying causal graph
between the features and the outcome variable. In our theoretical and methodologi-
cal contributions, we assume that there are no unobserved confounders affecting the
outcome, that is, P (Y |X) does not change, and Pθ(Y |X) = P (Y |X). However,
we relax this assumption in our experimental evaluation in Section 3.1.6. In that
context, we consider the development of optimal policies that account for changes
on P (X), P (Y |X) and Pθ(Y |X) after individuals best-respond a very interesting
direction for future work [171, 172].

3.1.2 Problem formulation

Similarly as in most previous work in strategic classification [82–85, 92], we consider
a Stackelberg game in which the decision maker moves first before individuals best-
respond. Moreover, we assume every individual is rational and aims to maximize
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Figure 3.1: Optimal decision policies and induced feature distributions.
Panels (a) and (e) visualize P (Y = 1 |X) and P (X), respectively. Panels (b, c, d)
show different cases of an optimal decision policy π, while panels (f, g, h) show the
respective induced feature distribution P (X; π). Here, the cost of adapting from
a feature value xi to xj is set to their Manhattan distance, that is, c(xi,xj) =
τ [|xi0 − xj0| + |xi1 − xj1|], where τ is a scaling parameter. In all panels, each cell
corresponds to a different feature value xi and darker colors correspond to higher
values. As the cost of changing features for individuals decreases (i.e., τ decreases),
the optimal decision policy only provides positive decisions for a few x values with
high P (Y = 1 |x), encouraging individuals to move to those values.

their individual benefit. However, in contrast with previous work, we assume the
decision maker shares their decision policy rather than the predictive model. Then,
our goal is to find the (optimal) policy that maximizes utility, as defined in Eq. 3.2,
that is,

π∗ = argmax
π

u(π, γ), (3.4)

under the assumption that each individual best-responds. For each individual, their
best-response is to change from their initial set of features xi to a set of features

xj = argmax
k∈[m]

{b(xk)− c(xi,xk)} , (3.5)

where c(xi,xk) is the cost3 they pay for changing from xi to xk. Throughout the
section, we will assume that (i) it holds that c(xi,xj) > 0 for all i ̸= j such that
P (Y = 1 |xj) ≥ P (Y = 1 |xi) and (ii) if there are ties in Eq. 3.5, the individual
chooses to move to the set of features xj with the highest P (Y = 1 |xj). Moreover,
we will say that the cost satisfies outcome monotonicity [92, 93], if improving an

3The cost c(xi,xk) for each pair of feature values can be non symmetric and, in practice, may
be given by a parameterized function. We assume these costs are known to the decision maker,
similarly to previous work in the strategic machine learning literature [85, 92, 93, 95, 96, 103, 156].
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individual’s outcome requires increasing amount of effort, that is,

P (Y = 1 |xi) < P (Y = 1 |xj) < P (Y = 1 |xk)⇔
[c(xi,xj) < c(xi,xk)] ∧ [c(xj,xk) < c(xi,xk)] , (3.6)

and worsening an individual’s outcome requires no effort, that is, P (Y = 1 |xi) >
P (Y = 1 |xj)⇔ c(xi,xj) = 0.

At a population level, this best-response results into a transportation of mass
between the original distribution and the induced distribution, that is, from P (X)
to P (X; π), as exemplified by Fig. 3.1. In particular, we can readily derive an
analytical expression for the induced feature distribution in terms of the original
feature distribution:

P (xj; π) =
∑
i∈[m]

P (xi)1

[
xj = argmax

k∈[m]

{b(xk)− c(xi,xk)}
]
. (3.7)

Note that the transportation of mass between the original and the induced feature
distribution has a natural interpretation in terms of optimal transport theory [167].
More specifically, the probability values of the induced feature distribution are given
by P (xj; π) =

∑
i∈[m] fi,j, where fi,j denotes the flow between P (xi) and P (xj|π)

and it is the solution to the following optimal transport problem:

maximize
{fi,j}

∑
i,j∈[m]×[m]

fi,j[b(xj)− c(xi,xj)]

subject to fi,j ≥ 0 ∀i, j and
∑
j∈[m]

fi,j = P (xi).

Finally, we can combine Eqs. 3.2, 3.4, 3.5 and 3.7, and rewrite our goal as follows:

π∗ = argmax
π

{ ∑
i,j∈[m]×[m]

(P (Y = 1 |xj)− γ)π(xj)

·
(
P (xi)1

[
xj = argmax

k∈[m]

{b(xk)− c(xi,xk)}
])}

, (3.8)

where note that, by definition, 0 ≤ π(xj) ≤ 1 for all j, the optimal policy π∗ may not
be unique and, in practice, the distribution P (X) and the conditional distribution
P (Y |X) may be approximated using models trained on historical data (see remarks
on gaming in Section 3.1.1).

Unfortunately, the following Theorem tells us that, in general, we cannot expect
to find the optimal policy that maximizes utility in polynomial time using a novel
reduction of the Boolean satisfiability (SAT) problem [168]):4

Theorem 3.1.1. The problem of finding the optimal decision policy π∗ that maxi-
mizes utility in a strategic setting is NP-hard.

4All proofs for Section 3.1 can be found in Appendix A.1.
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The above result readily implies that, in contrast with the non strategic set-
ting, where there is no distribution shift, optimal decision policies are not always
deterministic threshold rules [48, 169], that is,

π∗(D = 1 |x) =
{
1 if P (Y = 1 |x) ≥ γ

0 otherwise.
(3.9)

In addition, in a strategic setting, there are many instances in which optimal deci-
sion policies are not deterministic [88], even under outcome monotonic costs. For
example, assume x ∈ {1, 2, 3} with γ = 0.1,

P (x) = 0.11[x = 1] + 0.41[x = 2] + 0.51[x = 3],

P (Y = 1 |x) = 1.01[x = 1] + 0.71[x = 2] + 0.41[x = 3], and

c(xi,xj) =

0.0 0.0 0.0
0.3 0.0 0.0
1.2 0.3 0.0

 .

In the non-strategic setting, the optimal policy is clearly π∗(D = 1 |X = 1) = 1,
π∗(D = 1 |X = 2) = 1 and π∗(D = 1 |X = 3) = 1. However, in the strategic
setting, a brute force search reveals that the optimal policy is stochastic, and it is
given by π∗(D = 1 |X = 1) = 1, π∗(D = 1 |X = 2) = 0.7 and π∗(D = 1 |X =
3) = 0, inducing a transportation of mass from P (X = 3) to P (X = 2;π) and from
P (X = 2) to P (X = 1; π). Moreover, note that the optimal policy in the strategic
setting achieves higher utility than its counterpart in the non-strategic setting.

3.1.3 Outcome monotonic costs

In this section, we show that, if the cost individuals pay to change features satisfies
outcome monotonicity, as defined in Eq. 3.6, we can narrow down the search for
the optimal policy to a particular family of decision policies with a set of desirable
properties. Here, without loss of generality, we will index the feature values in
decreasing order with respect to their corresponding outcome, that is, i < j ⇒
P (Y = 1 |xi) ≥ P (Y = 1 |xj).

Given any instance of the utility maximization problem, as defined in Eq. 3.4, it
is easy to show that the optimal policy will always decide positively about the fea-
ture value with the highest outcome5, that is, π∗(x1) = 1, and negatively about the
feature values with outcome lower than γ, that is, P (Y = 1 |xi) < γ ⇒ π∗(xi) = 0.
However, if the cost individuals pay to change features satisfies outcome mono-
tonicity, we can further characterize a particular family of decision policies that is
guaranteed to contain a policy that achieves the optimal utility. In particular, we
start by showing that there exists an optimal policy that is outcome monotonic.

Proposition 3.1.1. Let π∗ be an optimal policy that maximizes utility. If the cost
c(xi,xj) is outcome monotonic then there exists an outcome monotonic policy π
such that u(π, γ) = u(π∗, γ).

In the above, note that, given an individual with an initial set of features
xi, an outcome monotonic policy always induces a best-response xj such that

5As long as P (Y = 1 |x1) > γ.
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P (Y = 1 |xj) ≥ P (Y = 1 |xi). Otherwise, a contradiction would occur since, by
assumption, it would hold that π(xi) ≥ π(xj) and π(xj) ≥ π(xj)− c(xi,xj). Next,
we consider additive costs (i.e., c(xi,xj) + c(xj,xk) = c(xi,xk)), and afterwards
move on to subadditive costs (i.e., c(xi,xj) + c(xj,xk) ≥ c(xi,xk)).

Additive costs. If the cost is additive, we first show that we can narrow down the
search for the optimal policy to the policies π that satisfy that

π(xi) = π(xi−1) ∨ π(xi) = max(0, π(xi−1)− c(xi,xi−1)) (3.10)

for all i > 1 such that P (Y = 1 |xi) > γ. In the remainder, we refer to any policy
with this property as an outcome monotonic binary policy. More formally, we have
the following theorem.

Theorem 3.1.2. Let π∗ be an optimal policy that maximizes utility. If the cost
c(xi,xj) is additive and outcome monotonic then there exists an outcome monotonic
binary policy π such that u(π, γ) = u(π∗, γ).

Moreover, we can further characterize the best-responses of individuals under
outcome monotonic binary policies and additive costs.

Proposition 3.1.2. Let π be an outcome monotonic binary policy, c(xi,xj) be an
additive and outcome monotonic cost, xi be an individual’s initial set of features, and
define j = max {k : k ≤ i ∧ (π(xk) = 1 ∨ π(xk) = π(xk−1))}. If P (Y = 1 |xi) > γ,
the individual’s best-response is xj and, if P (Y = 1 |xi) ≤ γ, the individual’s best-
response is xj if π(xj) ≥ c(xi,xj) and xi otherwise.

This proposition readily implies that P (xi; π) = 0 for all xi such that π(xi) ̸=
π(xi−1) with π(xi) > 0. Therefore, it lets us think of the feature values xi with
π(xi) = π(xi−1) as blocking states and those with π(xi) ̸= π(xi−1) as non-blocking
states. Moreover, the above results facilitate the development of a highly effective
heuristic search algorithm based on dynamic programming to find close to optimal
(outcome monotonic binary) policies in polynomial time.

Algorithm 1 summarizes the dynamic programming algorithm and Fig. 3.2 helps
visualize the entire procedure. The main idea is to recursively create a set of decision
subpolicies {πi,j(xk)} where i, j = 1, . . . ,m with j < i, k = j, . . . ,m, which we later
use to build the entire decision policy π. At a high level, a subpolicy πi,j is defined
for all feature values xk “on the right” of xj, and it has the form of a “staircase”
(i.e., no blocking feature values) between xj and xi (refer to Figs. 3.2(b, c, d) for
visualized examples of subpolicies). Depending on the structure of the costs and
feature and label distributions, the algorithm may need to perform several rounds
and, in each round, create a new set of decision subpolicies, which are used to set
only some values of the decision policy.

In each round, we proceed in decreasing order of i and j (lines 5–6) until the
feature value index s, which is computed in the previous round (line 26) and marks
that the computation of policy values for indexes 1, . . . , s− 1 is finalized. For each
subpolicy πi,j: (i) we fix πi,j(xj) = π2,1(xs), πi,j(xk) = π(xk−1) − c(xk,xk−1) for
all j < k < i and πi,j(xk) = 0 for all k such that P (Y = 1 |xk) ≤ γ (line 4);
(ii) we decide whether to block or not to block the feature value xi, that is, set
πi,j(xi) to either πi,j(xi−1) or πi,j(xi−1)− c(xi,xi−1), based on previously computed
subpolicies within the round (line 12); and, (iii) after we decide whether to block the
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Algorithm 1: DynamicProgramming: It searches for the decision pol-
icy that maximizes utility under additive and outcome monotonic costs.

input : number of feature values m, constant γ, distributions P (X) and
P (Y |X), and cost function c(·, ·)

output : policy π and associated utility u(π, γ)
1 {πi,j} ← initialize subpolicies()
2 s← 1 // Initialize the round’s starting index

3 repeat
4 r, {πi,j}, F ← compute base subpolicies(c, P (X), P (Y |X), π2,1(xs))
5 for i← r − 1 to s+ 1 do
6 for j ← i− 1 to s do
7 if c(xi−1,xj) > π2,1(xs) then
8 continue // Skip this subpolicy as invalid

9 σ ← c(xi−1,xj)
10 G← (P (Y = 1 |xj)− γ)

∑
k : j≤k<i P (xk) // Utility gained by

the population with indices j, . . . , i− 1
11 π′, F ′, v′ ← lower(πi+1,i, F (i+ 1, i), σ)
12 if F (i+ 1, j) ≥ F ′ +G and c(xi,xj) ≤ π2,1(xs) then
13 πi,j(xi)← πi,j(xi−1)− c(xi,xi−1) // Set xi as a

non-blocking feature value

14 F (i, j)← F (i+ 1, j)
15 for l← i+ 1 to m do
16 πi,j(xl)← πi+1,j(xl) // Set subpolicy values based on

the previously computed subpolicy

17 V (i, j)← V (i+ 1, j)

18 else
19 πi,j(xi)← πi,j(xi−1) // Set xi as a blocking feature value

20 F (i, j)← F ′ +G
21 for l← i+ 1 to m do
22 πi,j(xl)← π′(xl) // Set subpolicy values based on the

lowered subpolicy

23 V (i, j)← v′

24 for l← s to V (s+ 1, s) do
25 π(xl)← πs+1,s(xl) // Set policy values that will not be

revisited

26 s← V (s+ 1, s) // Set next round’s starting index

27 until V (s+ 1, s) = m
28 return π, u(π, γ)

feature value xi or not, we set the remaining policy values (with indexes i+1, . . . ,m)
by appending the best of these previously computed subpolicies in terms of overall
utility (lines 16 and 22). Here, note that there is a set of base subpolicies, those with
i = r where r = max{k : P (Y = 1 |xk) > γ} and 1 − c(xi−1,xj) ≥ 0, which can
be computed directly, without recursion (line 4). Intuitively, these correspond to a
“staircase” form (see Fig. 3.2(b)), where we only need to decide whether to block
or not the “rightmost” feature value, depending on which option gives the greatest
utility. Moreover, if we decide to block xi in a subpolicy πi,j, we need to lower the
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(a) Optimal policy
π∗(x)

(b) Subpolicy
π5,3(x)

(c) Subpolicy
π4,2(x)

(d) Subpolicy
π2,1(x)

Figure 3.2: Optimal policy and subpolicies after Algorithm 1 performs
its first round. Panel (a) shows the optimal policy π∗(x), which contains blocking
states in x3 and x5. Panel (b) shows the subpolicy π5,3(x), which is a base subpolicy
that can be computed without recursion. Panel (c) shows the subpolicy π4,2(x),
which contains a blocking state in x4 and uses a lowered version of the subpolicy
π5,4(x) to set the feature value x5. Since π4,2(x4) − c(x5,x4) < 0, this value is set
equal to π4,2(x4). Panel (d) shows the subpolicy π2,1(x), which contains a blocking
state in x3 and uses a lowered version of the subpolicy π5,3(x) to set the feature
values x4 and x5. Since in π2,1(x), the feature value x5 became negative and was
set as blocking, the algorithm will perform a second round, starting from x3, which
is the last blocking state before ξ = 4.

values of the previously computed subpolicies down (line 11) by σ = c(xi−1,xj)
before appending them so that πi,j(xi) = π2,1(xs)−c(xi−1,xj) eventually. However,
some of these values may become negative and are thus decided to be blocking states,
i.e., π′(xk) = πi+1,i(xd)−σ ∀k : r ≥ k > ξ where ξ = max{l : πi+1,i(xl)−σ ≥ 0}. If
during this procedure the lowered policy makes some individual change their best-
response, the policy values starting from the last blocking state v′ before ξ will be
revisited in another round (line 23). Figs. 3.2(c, d) show examples of subpolicies πi,j

where the lowering procedure is performed.

Within the algorithm, the function initialize subpolicies() initializes the
subpolicies {πi,j}, compute base subpolicies(. . .) computes r = max{k : P (Y =
1 |xk) > γ}, the base subpolicies and their utilities, and lower(. . .) computes a
policy π′ with π′(xk) = πi+1,i(xk)− σ if that quantity is non-negative and π′(xk) =
πi+1,i(xξ)− σ otherwise, its corresponding utility F ′, and calculates the index v′ of
the last blocking state before ξ as described in the previous paragraph.

As mentioned above, the algorithm might need more than one round to termi-
nate. Since each round consists of one dynamic programming execution, an array
of utility values of all subpolicies needs to be computed, having a size of O(m2),
considering that each state variable i, j takes values from the set {1, 2, ..,m}. Given
an outcome monotonic binary policy π, according to Proposition 3.1.2, we can easily
characterize the best-response of each individual and it can be easily seen that the
overall utility u(π, γ) can be computed with a single pass over the feature values.
Therefore, computing each entry’s value in the aforementioned array takes O(m)
time, leading to a total round complexity of O(m3).

Now, consider the total number of rounds. It can be observed that a second
round is executed iff s ̸= m at the end of the first one, implying that at least one
feature value was blocked since the value of V (i, j) might get altered only when
choosing to block a feature value because of the lower(. . .) operation. Therefore,
we can deduce that during each round ending with s ̸= m, at least one feature
value gets blocked, leading to a O(m) bound on the total number of rounds. As a
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consequence, the overall complexity of the algorithm is O(m4).

Subadditive costs. If the cost is subadditive, we can show that we need to instead
narrow down the search for the optimal policy to the policies π that satisfy

π(xi) = π(xi−1) ∨
∨
j

π(xi) = max(0, π(xi−1)− c(xj,xi−1)) (3.11)

for all i > 1 such that P (Y = 1 |xi) > γ and j = i, . . . k with k = max{j : π(xi−1)−
c(xj,xi−1) > 0}. More formally, we have the following proposition, which can be
easily shown using a similar reasoning as the one used in the proof of Theorem 3.1.2:

Proposition 3.1.3. Let π∗ be an optimal policy that maximizes utility. If the cost
c(xi,xj) is subadditive and outcome monotonic then there exists an outcome mono-
tonic policy π satisfying Eq. 3.11 such that u(π, γ) = u(π∗, γ).

Similarly as in the case of additive costs, it is possible to characterize the best-
response of the individuals6 and adapt the above mentioned heuristic search algo-
rithm to find close to optimal (outcome monotonic binary) policies with subadditive
costs, however, the resulting algorithm is rather impractical due to its complexity
and therefore we omit the details.

Remarks on computational hardness. We conjecture that, even in the simplest
case of additive and outcome monotonic costs, the problem of finding an optimal
policy π∗ remains NP-hard. The reason is that one can view the problem as a
version of the 0-1 knapsack or the traveling salesman with profits [173] problems
where the profit of an item (node) is a function of the other items (nodes) present
in the knapsack (path). More specifically, one has to make a binary decision about
every feature value xi, that is, to set it either as blocking or non-blocking. However,
from Eq. 3.8 and Proposition 3.1.2, it follows that the portion of utility gained by
deciding to block a single feature value xi is a product that depends, not only on
π(xi) and P (Y = 1 |xi), but also on the policy values π(xj) of all feature values xj

with j ̸= i. Unfortunately, this additional structure makes any reduction from the
above classic NP-complete problems highly non-trivial. We leave this as an open
problem for future work.

3.1.4 General costs

In this section, we first show that, under no assumptions on the cost people pay
to change features, the optimal policy might not be outcome monotonic. Then, we
introduce an efficient iterative algorithm that it is guaranteed to terminate and find
locally optimal decision policies.7 Finally, we propose a variation of the algorithm
that can significantly reduce its running time when working with real data.

There may not exist an optimal policy that satisfies outcome monotonic-
ity under general costs. Our starting point is the toy example introduced at
the end of Section 3.1.2. Here, we just modify the cost individuals pay to change
features so that it violates outcome monotonicity of the costs. More specifically,

6In this case, each possible decision policy value blocks zero, one or more feature values.
7We refer to a policy π as locally optimal if there exists no π′ ̸= π, differing in exactly one

feature value xi, such that u(π′, γ) > u(π, γ).
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Algorithm 2: Iterative: It approximates the optimal decision policy
that maximizes utility under general costs.

input : number of feature values m, constant γ, distributions P (X) and
P (Y |X), and cost function c(·, ·)

output : policy π and associated utility u(π, γ)
1 π ← initialize policy()
2 repeat
3 πold ← π
4 for i← 1 to m do
5 π(xi)← solve(i, π, c, P (X), P (Y |X)) // Optimize the value of

π(xi), keeping π(xj) for j ̸= i fixed

6 until u(π, γ) = u(πold, γ)
7 return π, u(π, γ)

assume x ∈ {1, 2, 3} with γ = 0.1,

P (x) = 0.11[x = 1] + 0.41[x = 2] + 0.51[x = 3],

P (Y = 1 |x) = 1.01[x = 1] + 0.71[x = 2] + 0.41[x = 3], and

c(xi,xj) =

0.0 0.2 0.3
0.3 0.0 0.7
1.2 1.1 0.0


Now, in the strategic setting, it is easy to see that every policy given by π∗(D =

1 |X = 1) = 1, π∗(D = 1 |X = 2) ≤ 0.7 and π∗(D = 1 |X = 3) = 1 is optimal
and induces a transportation of mass from P (X = 2) to P (X = 1;π). Therefore,
optimal policies are not necessarily outcome monotonic under general costs.

An iterative algorithm for general costs. Next, we introduce an efficient it-
erative algorithm that is guaranteed to terminate and find locally optimal decision
policies. The iterative algorithm is based on the following key insight: fix the deci-
sion policy π(x) for all feature values x = xk except x = xi. Then, Eq. 3.8 reduces
to searching over O(m) values for π(xi).

Exploiting this insight, the iterative algorithm proceeds iteratively and, at each
each iteration, it optimizes the decision policy for each of the feature values while
fixing the decision policy for all other values. Algorithm 2 summarizes the over-
all procedure. Within the algorithm, initialize policy() initializes the decision
policy to π(x) = 0 for all x, solve(. . .) finds the best policy π(xi) for xi given
π(xk) for all xk ̸= xi, the cost function c, and the distributions P (X) and P (Y |X)
by searching over O(m) critical values, where the best-response of some xk might
change. In practice, we proceed over feature values in decreasing order with respect
to P (Y = 1 |xi) because we have observed it improves performance. However, our
theoretical results do not depend on such ordering. In the following, we refer to
lines 2-7 of Algorithm 2 as one iteration and line 5 as one step.

Theoretical guarantees of the iterative algorithm. We start our theoretical
analysis with the following Proposition, which shows that our algorithm is guaran-
teed to terminate after a finite number of steps:

Proposition 3.1.4. Algorithm 2 terminates after at most m1+ 1
ū − 1 steps, where

ū is the greatest common denominator of all elements in the set A = {c(xi,xj) −
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c(xi,xk) : xi,xj,xk ∈ [m]× [m]× [m]} ∪ 1.8

Note that, at each step, our iterative algorithm leads to a policy π which is better
or equivalent to the policy computed in the previous step π′, that is, u(π, γ) ≥
u(π′, γ). This holds because solve(. . .) either returns a strictly better policy or
returns the given policy unchanged. Also, following from line 6 of Algorithm 2, the
algorithm terminates only if it performs a full iteration where all of its m steps fail
to increase the policy’s utility, that is, there exists no π ̸= πold differing in exactly
one feature value xi such that u(π, γ) > u(πold, γ). As a direct consequence, we can
conclude that Algorithm 2converges to locally optimal decision policies.

Moreover, we can characterize the computational complexity of the algorithm as
follows. At each iteration, the algorithm calls solve m times and, within solve,
there are O(m) candidate values for π(xi) when π(xk) is fixed for all xk ̸= xi,
and they can all be evaluated in O(m2). Therefore, the iteration complexity of
Algorithm 2 is O(m3).

Speeding up the iterative algorithm in the presence of non-actionable
features. Here, we discuss a highly effective strategy to speed up the iterative
algorithm whenever some of the features are non-actionable, which is amenable to
parallelization. As an example, assume there is an Age Group feature which takes
values {< 30, 30 − 60, > 60}. Now, consider two individuals with initial feature
values xi,xj such that xi,AgeGroup = < 30 and xj,AgeGroup = > 60. Since individuals
cannot change their age, it holds that c(xi,xj) = c(xj,xi) = ∞. Let G be an
undirected graph where each node vi represents a feature value xi and there is an
edge ei,j between two nodes vi and vj iff c(xi,xj) ≤ 1∨ c(xj,xi) ≤ 1. Then, if there
are non-actionable features, it is easy to see that the graph G may be composed
of several independent connected components. Assume vi and vj belong to two
different connected components. Then, whatever value is picked for π(xi), the best-
response of individuals with initial features xj will never be xi since π(xi) ≤ 1 ⇒
π(xi) − c(xj,xi) ≤ 1 − c(xj,xi) < 0 ≤ π(xj) and therefore xj will always be a
better response. Similarly, the best-response of individuals with initial features xi

will never be xj independently of the value of π(xj). As a consequence, we can find
the values of the optimal policy by running the iterative algorithm independently
on each independent component.

3.1.5 Experiments on synthetic data

In this section, we evaluate both our dynamic programming algorithm (Algorithm 1)
and our iterative algorithm (Algorithm 2) on outcome monotonic and general costs.
We first compare the utility achieved by the decision policies found by our algo-
rithms and those found by several competitive baselines. Then, we compare their
computational complexity both in terms of running time and number of rounds (or
iterations) to termination.9

Performance evaluation. We compare the utility achieved by the decision policies
found by our algorithms and those found by several baselines. More specifically, we
consider

8The common denominator ū satisfies that a
ū ∈ Z ∀a ∈ A ∪ {1}. Such ū exists if and only if a

b
is rational ∀a, b ∈ A.

9All experiments for Section 3.1 ran on a machine equipped with 48 Intel(R) Xeon(R) 3.00GHz
CPU cores and 1.2TB memory.
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(a) Outcome monotonic additive costs
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Figure 3.3: Performance evaluation on synthetic data. Panels show the utility
obtained by several decision policies against the number of feature values m. Here,
note that the dynamic programming (DP) algorithm (Algorithm 1) only works with
outcome monotonic additive costs and thus only appears in Panel (a). In Panel (a),
we set κ = 0.1 and, in Panel (b), we set κ = 0.25. In both panels, we repeat each
experiment 100 times, and error bars indicate 95% confidence intervals.

(i) Non-Strategic: the optimal deterministic threshold rule in a non-strategic set-
ting (see Eq. 3.9),

(ii) Threshold : the optimal deterministic threshold rule in a strategic setting,
found via bruteforce search over all deterministic threshold rules,

(iii) Bruteforce: the optimal (stochastic) decision policy in a strategic setting,
found via brute force search,

(iv) DP : the (stochastic) decision policy found by our dynamic programming al-
gorithm (Algorithm 1), which we can only run for instances with outcome
monotonic additive, and

(v) Iterative: the (stochastic) decision policy found by our iterative algorithm
(Algorithm 2).

Here, we consider unidimensional features with m discrete values x ∈ [m] and
compute P (x = i) = pi/

∑
j pj, where pi is sampled from a Gaussian distribution

N(µ = 0.5, σ = 0.1) truncated from below at zero. Then, we sample the values
P (Y = 1 |x) from a Uniform[0, 1] and set γ = 0.3.

For instances with outcome monotonic additive costs, we initially set c(xi,xj) =
0 ∀xi,xj : P (Y = 1 |xj) ≤ P (Y = 1 |xi). Then, we take m − 1 samples from
U [0, 1/κ] and assign them to c(xm,xi) ∀i < m such that c(xm,xi) > c(xm,xj) ∀i <
j and κ ∈ (0, 1]. Finally, we set the remaining values c(xi,xj), in decreasing order
of i and j such that c(xi,xj) = c(xi−1,xj)− c(xi−1,xi). It is easy to observe that,
proceeding this way, individuals with feature values xi can move (on expectation)
to at most κm better states, that is, c(xi,xj) ≤ 1 for all xi,xj such that max(1, i−
κm) ≤ j < i. For instances with general costs, we sample the cost between feature
values c(xi,xj) from a Uniform[0, 1] for a fraction κ of all pairs and set c(xi,xj) =∞
for the remaining pairs.

Fig. 3.3 summarizes the results for both outcome monotonic and general costs. In
both cases, we observe that the optimal decision policy in a non-strategic setting has
an underwhelming performance. For outcome monotonic additive costs, we observe
that the policies found using our dynamic programming algorithm and brute force
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Figure 3.4: Running time analysis on synthetic data with outcome mono-
tonic and additive costs. Panel (a) shows the running time of the brute force
search, the threshold policy baseline, our iterative algorithm and our dynamic pro-
gramming algorithm. Panels (b) and (c) show the number of iterations and rounds
required by the iterative and dynamic programming algorithms until termination,
respectively, for different κ values. In Panel (a), we set κ = 0.1. In all panels, we
repeat each experiment 100 times, and error bars indicate 95% confidence intervals.

search closely match each other in terms of utility and they consistently outperform
the policies found by the iterative algorithm. For general costs, we find that our
iterative algorithm and the threshold policy baseline are the top performers. We
obtain qualitatively similar results under additional values of the parameter κ and
alternative cost functions (refer to Appendix C.1).

Running time and number of iterations/rounds. To compare the running
time of all the aforementioned algorithms, we consider the same configuration as in
the performance evaluation with outcome monotonic and additive costs. Fig. 3.4a
summarizes the results, which show several interesting insights. We find that brute
force search quickly becomes computationally intractable. Moreover, we observe
that the dynamic programming algorithm, is significantly faster than the iterative
algorithm, making it the most efficient of the proposed algorithms. Recall that the
complexity of one round in the dynamic programming algorithm and one iteration
in the iterative algorithm is O(m3). The results show that, although in theory, the
dynamic programming algorithm needs O(m) rounds to terminate, in practice, it
rarely needs more than two rounds. This is in contrast with the iterative algorithm
which might need a larger number of iterations to converge, especially for large values
of m. Overall, the above results let us conclude that, under outcome monotonic
additive costs, the dynamic programming algorithm is a highly effective and efficient
heuristic.

3.1.6 Experiments on real data

In this section, we evaluate our iterative algorithm using real credit card data.
Since in our experiments, the cost individuals pay to change features is not always
monotonic, we only experiment with our iterative algorithm.

Experimental setup. We use the publicly available credit dataset [174], which
contains information about a bank’s credit card payoffs.10 For each accepted credit
card holder, the respective dataset contains various demographic characteristics and

10We used a preprocessed version of the credit dataset by Ustun et al. [108].
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financial status indicators which serve as features X and the current credit payoff
status which serves as label Y . Among the features, we distinguish both numerical
and discrete-valued features as well as actionable (e.g., most recent bill amount) and
non-actionable (e.g., age group) features [108]. Refer to Appendix B.1.1 for more
details on the specific features we used.

To approximate the conditional distribution P (Y |X), we first cluster the credit
card holders into k groups based on the original numerical features using k-means
clustering11 and then, for each credit card holder, we replace their initial numerical
features with the respective identifier of the cluster they belong to, represented
using a one-hot encoding. After this preprocessing step, the discrete feature values
xi consist of all possible value combinations of discrete non-actionable features and
cluster identifiers. Then, we train four types of classifiers (multi-layer perceptron,
support vector machine, logistic regression, decision tree) using scikit-learn [176]
with default parameters. Finally, we choose the pair of classifier type and number
of clusters k that maximizes accuracy, estimated using 5-fold cross validation, to
approximate the values of P (Y |X).12

To set the cost function c(xi,xj) values, we use themaximum percentile shift [108].
More specifically, let L be the set of actionable (numerical) features and L̄ be the set
of non-actionable (discrete-valued) features. Then, for each pair of feature values,
we set the cost function c(xi,xj) to:

c(xi,xj) =

{
τ ·maxl∈L |ql(xj,l)− ql(xi,l)| if xi,l = xj,l ∀l ∈ L̄
∞ otherwise,

(3.12)

where xj,l is the value of the l-th feature for the feature value xj, ql(·) is the CDF
of the numerical feature l ∈ L and τ ≥ 1 is a scaling factor which controls the
difficulty of changing features. As an exception, we always set the cost c(xi,xj)
between two feature values to ∞ if ql(xj,l) < ql(xi,l) for l ∈ {Total overdue counts,
Total months overdue}, not allowing the history of overdue payments to be erased.

Finally, we set the parameter γ to the 50-th percentile of all the individuals’
P (Y = 1 |x), such that 50% of the population is accepted by the optimal thresh-
old policy in the non strategic setting, and we compare the performance of the
decision policies found by our iterative algorithm (Iterative) with two baselines: (i)
Non-Strategic, the optimal deterministic threshold rule in a non-strategic setting
(Eq. 3.9), and (ii) Threshold, the optimal deterministic threshold rule in a strategic
setting found via bruteforce search over all deterministic threshold rules. Refer to
Appendix B.1.2 for further details on the experimental setup.

Results. We first look into the transportation of mass induced by the decision
policy found by our iterative algorithm for different τ values in Fig. 3.5. We observe
that, as the cost of changing features increases, there is a higher transportation of
mass towards feature values with the highest outcomes P (Y = 1 |x). Moreover,

11One could use alternatives approaches to partition a feature space into a discrete set of regions
(e.g., such that a classifier is calibrated on each region [175]). However, our goal is not to advance
the state of the art in calibration or clustering algorithms and, therefore, we resort to k-means
clustering for simplicity.

12The best pair of classifier type and number of clusters k achieved an accuracy equal to 80.49%.
We trained the same four types of classifiers on the raw (non-discretized) features, achieving
a maximum accuracy equal to 80.59%, indicating that, in the given dataset, the discretization
procedure causes negligible losses in terms of predictive accuracy.
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Figure 3.5: Transportation of mass in the credit dataset as induced by the
policies found via the iterative algorithm (Algorithm 2). For each individual
in the population, we record their outcome P (Y = 1 |x) before the best-response
(Initial P (Y = 1 |x)) and after the best-response (Final P (Y = 1 |x)). Panel (a)
shows the transportation of mass in the non-strategic setting, while panels (b-d)
show the transportation of mass for several values of τ , which controls the difficulty
of changing features. In each panel, the color illustrates the percentage of individuals
with the corresponding initial and final P (Y = 1 |x) values. The overlayed boxes
indicate the percentage of the population that receives a positive decision, that is,
the sum

∑
x π(x

′)P (x), where x′ is the best-response of the individuals with an
initial feature value x.

whenever individuals can arbitrarily change actionable features (i.e., τ = 1), the
best-response of individuals is either feature values with the highest outcomes or
their initial features if their recourse may be limited due to non-actionable features
(e.g., history of overdue payments). Finally, we observe that the decision policies
found by our algorithm consistently lead to a higher number of individuals receiving
a positive decision in comparison to the non-strategic setting, accross all τ values.

Next, we compare the utility of the decision policy found by our iterative algo-
rithm and the policies found by the baselines. Here, we do not compare with the
optimal (stochastic) decision policy because brute force search does not scale to the
size of the dataset. Figs. 3.6a and 3.6b summarize the results for several values of
the cost scaling factor τ , which show that the decision policy found by the iterative
algorithm outperforms the baselines and, as the cost of changing features becomes
smaller (i.e., τ decreases), the utility value increases. Moreover, we observe that the
decision policy given by the iterative algorithm achieves a significant relative gain
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Figure 3.6: Effectiveness and efficiency of the proposed algorithms. Panel
(a) shows the utility achieved by three types of decision policies in the credit dataset,
against the value of the parameter τ , which controls how difficult it is for the indi-
viduals to change their features. Panel (b) shows the relative gain in utility achieved
by the policy found via our iterative algorithm (πI) in comparison with the policy
found via the threshold baseline (πT ), against the value of the parameter τ . Panel
(c) shows the running time of the threshold baseline algorithm and our iterative
algorithm, with and without the speed-up discussed in Section 3.1.4. Panel (d)
shows the number of connected components in the graph G. In all panels, we repeat
each experiment 100 times, and error bars indicate 95% confidence intervals. Note
that, whenever we implement the iterative algorithm with the speed-up, we solve
the subproblems corresponding to independent components sequentially, however,
the procedure is amenable to parallelization.

in utility compared to the one given by the threshold baseline, especially when the
individuals’ ability to change their features is limited (i.e., the cost scaling factor
τ is large). We obtain qualitatively similar results under additional values of the
parameter γ and one alternative cost function (refer to Appendix C.2).

Further, we compare the running time of the threshold baseline and the iterative
algorithm with and without the speed-up that exploits the presence of non-actionable
features, described in Section 3.1.4. Figs. 3.6c, 3.6d summarize the results. We
observe that, whenever the cost to change features is high, there exist many inde-
pendent connected components and the speed up provides a significant advantage.
In those cases, the iterative algorithm with the speed-up performs faster than the
threshold baseline while the running time of the two algorithms remains comparable,
even when the cost to change features is low.

To conclude, we investigate to what extent the utilities of the decision policies
found by our iterative algorithm and the threshold baseline are affected by (i) a
misspecification of the conditional probabilities P (Y = 1 |x) and the cost values
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Figure 3.7: Sensitivity of the proposed algorithms to misspecifications.
Panel (a) shows the utility achieved by three types of decision policies in the credit
dataset against the amount of noise in the estimation of the conditional probabilities
P (Y = 1 |x). Panel (b) shows the utility achieved by the same three types of decision
policies in the credit dataset against the amount of noise in the estimation of the cost
values c(xi,xj). In both panels, we set τ = 3.3 and the horizontal axis shows the
value of the parameter ϕ, which controls the level of noise (or misspecification). We
repeat each experiment 100 times, and error bars indicate 95% confidence intervals.

c(xi,xj), for example, due to imperfect estimations, and (ii) violations of our as-
sumption of no unobserved confounding.

Regarding the misspecification of P (Y = 1 |x), let σP and σc be the standard
deviations of the values {P (Y = 1 |xl)} for l ∈ {1, . . . ,m}} and {c(xi,xj)} for i, j ∈
[m] × [m] such that c(xi,xj) ̸= ∞, respectively. To model the case of misspecified
P (Y = 1 |x) values, for each feature value x, we provide as input to the two
algorithms a distorted value P̃ (Y = 1 |x) = P (Y = 1 |x) + ϵ, where ϵ is a random
noise sampled from a Gaussian distribution with mean 0 and standard deviation
ϕ · σP and ϕ ∈ (0, 1) controls the level of misspecification. Then, we truncate the
values P̃ (Y = 1 |x) at 0 and 1, to make sure they are valid probabilities. For the
case of misspecified cost values, we follow a similar approach where, we introduce
an additive noise term ϵ to each cost value c(xi,xj), sampled from a Gaussian
distribution with mean 0 and standard deviation ϕ · σc, truncating the distorted
values c̃(xi,xj) at 0. Fig. 3.7 summarizes the results for several values of the scaling
factor ϕ. We observe that, in both cases, the utility of the decision policy found
by our iterative algorithm drops as the values of P̃ (Y = 1 |x) and c̃(xi,xj) become
more distorted. However, unless the level of misspecification is exceptionally high,
our algorithm’s decision policy outperforms both the policy given by the threshold
baseline and the optimal policy in the non-strategic setting.

Regarding violations of the assumption of no unobserved confounding, we refrain
from making domain-specific causal modeling assumptions, and we focus on a general
model of confounding that allows us to control the balance between gaming and
improvement whenever individuals change their features from a value x to a value
x′. More specifically, whenever individuals change their features from x to x′, we
assume that their labels Y are sampled from a confounded conditional distribution
PV (Y |x→ x′) with

PV (Y = 1 |x→ x′) = Vx,x′ · P (Y = 1 |x′) + (1− Vx,x′) · P (Y = 1 |x),
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Figure 3.8: Sensitivity of the proposed algorithms to unobserved confound-
ing. Panel (a) shows the probability density function of the confounded conditional
probability PV (Y = 1 |x→ x′) for different levels of unobserved confounding where,
to facilitate visibility, we scale all probability density functions to have the same
maximum value. Panel (b) shows the utility achieved by three types of decision
policies in the credit dataset against the level of unobserved confounding, where we
set τ = 3.3 and repeat each experiment 100 times, with error bars indicating 95%
confidence intervals.

where Vx,x′ ∼ Beta(α(λ), β(λ)) and λ ∈ [0, 1] is a parameter controlling the level
of confounding. Fig. 3.8a shows the probability density of PV (Y = 1 |x → x′) for
different λ values. As λ→ 0, the distribution of PV (Y = 1 |x→ x′) is more concen-
trated towards P (Y = 1 |x′) and thus our assumption of no observed confounding
becomes (approximately) valid. As λ → 1, the distribution of PV (Y = 1 |x → x′)
is more concentrated towards P (Y = 1 |x) and feature changes do not modify an
individual’s outcome, matching the setting studied by early work on strategic clas-
sification [85, 92, 93]. Refer to Appendix B.1.3 for more details about the specific
functional form we used to define α(λ) and β(λ). Fig. 3.8b shows the utility of the
decision policy found by our iterative algorithm and the policies found by the base-
lines for different λ values. As one may have expected, we observed that, as the level
of unobserved confounding increases, the utility of the decision policy found by our
iterative algorithm drops. However, unless the observed feature changes correspond
almost always to gaming (i.e., λ ≈ 1), the decision policy given by the iterative
algorithm maintains its competitive advantage in comparison to the policy given by
the threshold baseline and the optimal policy in the non-strategic setting.

3.2 Decision making under partial transparency

Although the model described in the previous section is general enough to apply
to various real-life scenarios, decision makers may be reluctant to reveal their entire
policy to the public due to reasons such as trade secrets [111]. In practice, however,
decision makers who use predictive models to make decisions are not required to
publish their full policies. Instead, they have to provide explanations to individuals
regarding the decisions they receive—for instance, there already exists a legal re-
quirement in the European Union to grant individuals, subject to (semi)-automated
decision making, the right-to-explanation [177, 178]. Consider a bank that denies a
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loan to an applicant based on a predictive model’s estimate of the likelihood that
the applicant repays the loan. The bank can meet the requirement for providing
explanations by indicating which features the applicant needs to change and by how
much (e.g., increase their income by $5,000) to improve their financial situation and
become eligible for a loan.

In response to increasing calls for transparency in the use of machine learning
models in high-stakes decision making, there has been a surge in work on explainable
machine learning [104–109, 179, 180], with particular emphasis on counterfactual
explanations [107–109, 180]. Given a negatively classified data point, these expla-
nations explain that individual prediction by identifying an alternative data point
that, although classified positively, differs minimally in the feature space from the
negatively classified one. However, these works do not distinguish between decisions
and predictions. Consequently, they cannot be readily used to provide explanations
for decisions taken by a decision maker (informed by a predictive model), which is
ultimately what individuals who are subject to (semi)-automated decision making
typically care about.

Similarly to the previous section, we build upon a recent line of work that explic-
itly distinguishes between predictions and decisions [48–50, 169, 181] and introduce
methods to find counterfactual explanations for decisions made by a decision maker
informed by a data-driven predictive model. These explanations serve as actionable
recommendations that help individuals understand what they would have to change
to receive a beneficial decision, rather than a positive prediction. In this context, we
highlight that individuals may use the information gained through the explanations
they receive to invest effort strategically and maximize their chances of receiving a
beneficial decision, an aspect overlooked in previous work on explainable machine
learning. Then, similarly to the previous section, we use that as an opportunity to
find decision policies and counterfactual explanations that maximize the utility of
the decision maker while incentivizing individuals to self-improve.

We extend the model introduced in Section 3.1 and cast the above problem
as a Stackelberg game in which the decision maker moves first and shares their
counterfactual explanations before individuals best-respond to these explanations
and invest effort to receive a beneficial decision. Similarly as before, we assume that
the decision maker takes decisions based on low-dimensional feature vectors, so that
the decision policies are relatively easy to evaluate before implementation. Under
this problem formulation, we make the following contributions:

1. We show that, given a predefined policy, the problem of finding the optimal
set of counterfactual explanations is NP-hard by using a novel reduction of
the Set Cover problem [168].

2. We show that the corresponding objective function is monotone and submod-
ular, and, as a direct consequence, it readily follows that a standard greedy
algorithm offers approximation guarantees [182].

3. Given a predefined set of counterfactual explanations, we show that the opti-
mal policy is deterministic and can be computed in polynomial time. Building
on this result, we can reduce the problem of jointly finding both the optimal
policy and set of counterfactual explanations to maximizing a non-monotone
submodular function, a problem that can also be solved with approximation
guarantees [183].
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4. We demonstrate that, by incorporating a matroid constraint into the problem
formulation, we can increase the diversity of the optimal set of counterfac-
tual explanations and incentivize individuals across the whole spectrum of the
population to self-improve.

Experiments using real lending and credit card data illustrate our theoretical
findings and show that the counterfactual explanations and decision policies found
by the above algorithms achieve higher utility than several competitive baselines.

3.2.1 A game-theoretic model of counterfactual explana-
tions

Here, we introduce a model that extends the one introduced in Section 3.1 to cap-
ture the ability of a decision maker to provide counterfactual explanations instead
of publishing their entire policy. An individual with a feature vector x ∈ {1, . . . , n}d
has a (stochastic) label Y ∈ {0, 1} and a decision D ∈ {0, 1} controls whether the
corresponding label is realized. For example, in university admissions, the decision
specifies whether a student is admitted (D = 1) or rejected (D = 0), the label
indicates whether the student completes the program (Y = 1) or drops out (Y = 0)
upon acceptance, and the feature vector x may include their GRE scores, under-
graduate GPA percentile, or research experience. Going forward, we will denote the
set of feature values as X = {x1,x2, . . . ,xm}, where m = nd and assume that the
number of features d is small, as discussed previously.

Each decision is sampled from a decision policy D ∼ π(D |x), where, for brevity,
we will write π(x) = π(D = 1 |x). For each individual, the label Y is sampled from
a conditional probability distribution P (Y |X) and, without loss of generality, we
index the feature values in decreasing order with respect to their corresponding
outcome, that is, i < j ⇒ P (Y = 1 |xi) ≥ P (Y = 1 |xj).

Similarly as in Section 3.1, we adopt a Stackelberg game-theoretic formulation
in which each individual with initial feature value xi receives a counterfactual ex-
planation from the decision maker by means of a feature value e(xi) ∈ A before
they (best-)respond, where A ⊆ Pπ is a set of counterfactual explanations and
Pπ = {x ∈ X : π(x) = 1}.13 This formulation fits a variety of real-world ap-
plications. For example, insurance companies often provide online car insurance
simulators that, on the basis of a customer’s initial feature value xi, let the cus-
tomer know whether they are eligible for a particular deal. In case the customer
does not qualify, the simulator could provide a counterfactual explanation e(xi) un-
der which the individual is guaranteed to be eligible. In the remainder, for each
individual with initial feature value xi, we assume they do not know anything about
the other counterfactual explanations A\e(xi) other individuals may receive nor the
decision policy π(x).

Now, let c(x, e(xi)) be the cost an individual pays for changing from xi to e(xi)
and b(x) = ED∼π(D |x)[D] be the (immediate) benefit they obtain from a policy π,
which is equal to the probability that the individual receives a positive decision.
Then, each individual’s best-response is to change from their initial feature value xi

to e(xi) iff the gained benefit they would obtain outweighs the cost they would pay

13In practice, individuals with initial feature values xi such that π(x) = 1 may not receive any
explanation since they are guaranteed to receive a positive decision.
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for changing features, that is,

e(xi) ∈ R(xi) = {xj ∈ X : b(xj)− c(xi,xj) ≥ b(xi)},

and it is to keep their initial feature value xi otherwise. Here, we will refer to R(xi)
as the region of adaptation. Then, at a population level, the above best-response
results into a transportation of mass between the original feature distribution P (X)
and a new feature distribution P (X; π,A) induced by the policy π and the set of
counterfactual explanations A. More specifically, we can readily derive an analyt-
ical expression for the induced feature distribution in terms of the original feature
distribution, that is, for all xj ∈ X ,

P (xj; π,A) = P (xj)1 [R(xj) ∩ A = ∅] +
∑
i∈[m]

P (xi)1 [(e(xi) = xj ∧ xj ∈ R(xi)] .

Similarly as in Section 3.1, we assume that there are no unobserved confounders
(i.e., P (Y |X) does not change). Moreover, we assume that the decision maker
has access to (an estimation of) the original feature distribution P (X), and aims
to maximize the (immediate) utility u(π, γ,A), which is the expected overall profit
they obtain, that is,

u(π, γ,A) = Ex∼P (X;π,A),Y∼P (Y |X),D∼π(X) [Y ·D − γ ·D]

= EX∼P (X;π,A) [π(X)(P (Y = 1 |X)− γ)] ,
(3.13)

where γ ∈ (0, 1) is a given constant reflecting economic considerations of the decision
maker. For example, in university admissions, the term π(X)P (Y = 1 |X) is
proportional to the expected number of students who are admitted and complete
the program, the term π(X)γ is proportional to the number of students who are
admitted, and γ measures the cost of education in units of graduated students. As a
direct consequence, given a feature value xi and a set of counterfactual explanations
A, we can conclude that, if R(xi)∩A ̸= ∅, the decision maker will decide to provide
the counterfactual explanation e(xi) that provides the largest utility gain under the
assumption that individuals best-respond, that is,

e(xi) = argmax
x∈A∩R(xi)

P (Y = 1 |x) for all xi ∈ X \Pπ such that R(xi)∩A ≠ ∅, (3.14)

and, if R(xi) ∩ A = ∅, we arbitrarily assume that e(xi) = argminx∈A c(xi,x).
14

Given the above preliminaries, our goal is to help the decision maker to first find
the optimal set of counterfactual explanations A for a pre-defined policy in Sec-
tion 3.2.2 and then both the optimal policy π and set of counterfactual explanations
A in Section 3.2.3.

Remarks. Given an individual with initial feature value x, one may think that,
by providing the counterfactual explanation e(x) ∈ A∩R(x) that gives the largest
utility gain, the decision maker is not acting in the individual’s best interest but
rather selfishly. This is because there may exist another counterfactual explana-
tion em(x) ∈ A ∩ R(x) with lower cost for the individual, that is, c(x, em(x)) ≤
c(x, e(x)). In our work, we argue that the provided counterfactual explanations help

14Note that, if A∩R(xi) = ∅, the individual’s best-response is to keep their initial feature value
xi and thus any choice of counterfactual explanation e(xi) leads to the same utility.

44



the individual to achieve a greater self-improvement and this is likely to result in a
superior long-term well-being. For example, consider a bank issuing credit cards who
wants to maintain credit for trustworthy customers and incentivize the more risky
ones to improve their financial status. In this case, e(x) is the explanation that
maximally improves the financial status of the individual, making the repayment
more likely, but requires them to pay a larger (immediate) cost. In contrast, em(x)
is an alternate explanation that requires the individual to pay a smaller (immediate)
cost but, in comparison with e(x), would result in a higher risk of default. In this
context, note that the individual would be “willing” to pay the cost of following ei-
ther e(x) or em(x) since both explanations lie within the region of adaptation R(x).
Refer to Section 3.2.6 for an anecdotal real-world example of e(x) and em(x).

3.2.2 Finding the optimal counterfactual explanations for a
policy

In this section, our goal is to find the optimal set of counterfactual explanations A∗

for a pre-defined policy π, that is,

A∗ = argmax
A⊆Pπ : |A|≤k

u(π, γ,A), (3.15)

where the cardinality constraint on the set of counterfactual explanations balances
the decision maker’s obligation to be transparent with trade secrets [111]. More
specifically, note that, without this constraint, an adversary could reverse-engineer
the entire decision policy π(x) by impersonating individuals with different feature
values x [184]. As it will become clearer in the experimental evaluation in Sec-
tions 3.2.5 and 3.2.6, our results may persuade decision makers to be transparent
about their decision policies, something they are typically reluctant to be, despite
the increasing legal requirements, since we show that transparency increases the
utility of the policies.

Throughout this section, we assume that the aim of the decision maker who
picks the pre-defined policy is to maximize their utility and, therefore, π(x) = 0
for all x ∈ X such that P (Y = 1 |x) < γ. Moreover, we assume that the policy
is outcome monotonic (see Eq. 3.1). Outcome monotonicity just implies that the
higher an individual’s outcome P (Y = 1 |x), the higher their chances of receiving a
positive decision π(x).15

Unfortunately, using a novel reduction of the Set Cover problem [168], the follow-
ing theorem reveals that we cannot expect to find the optimal set of counterfactual
explanations in polynomial time:16

Theorem 3.2.1. The problem of finding the optimal set of counterfactual explana-
tions that maximizes utility under a cardinality constraint is NP-Hard.

Even though Theorem 3.2.1 is a negative result, we will now show that the
objective function in Eq. 3.15 satisfies a set of desirable properties, specifically,
non-negativity, monotonicity and submodularity, which allow a standard greedy
algorithm to enjoy approximation guarantees at solving the problem. To this end,

15If the policy π is deterministic, our results also hold for non outcome monotonic policies.
16All proofs for Section 3.2 can be found in Appendix A.2.
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Algorithm 3: Standard greedy algorithm [182]

input : ground set of counterfactual explanations Pπ, parameter k, and utility
function f

output : set of counterfactual explanations A
A ← ∅
while |A| ≤ k do

x∗ ← argmaxx∈Pπ\A {f(A ∪ {x})− f(A)}
A ← A ∪ {x∗} // Add the feature value x that maximizes the

marginal difference of f

return A

with a slight abuse of notation, we first express the objective function as a set
function f(A) = u(π, γ,A), which takes values over the ground set of counterfactual
explanations Pπ. Then, we have the following proposition:

Proposition 3.2.1. The function f is non-negative, submodular and monotone.
Formally, all three of the following conditions are satisfied:

1. f(A) ≥ 0 for all A ⊆ Pπ.

2. For all A,B ⊆ Pπ : A ⊆ B and x ∈ Pπ \B, it holds that f(A∪{x})− f(A) ≥
f(B ∪ {x})− f(B).

3. For all A ⊆ Pπ and x ∈ Pπ, it holds that f(A ∪ {x}) ≥ f(A).

The above result directly implies that the standard greedy algorithm [182] for
maximizing a non-negative, submodular and monotone function will find a solution
A to the problem such that f(A) ≥ (1− 1/e)f(A∗), where A∗ is the optimal set of
counterfactual explanations. The algorithm starts from a solution set A = ∅ and it
iteratively adds to A the counterfactual explanation x ∈ Pπ \ A that provides the
maximummarginal difference f(A∪{x})−f(A). Algorithm 3 provides a pseudocode
implementation of the algorithm.

Finally, note that the greedy algorithm computes the marginal difference of f for
at most m elements per iteration and, following from the proof of Proposition 3.2.1,
the marginal difference f(A ∪ {x}) − f(A) can be computed in O(m). Therefore,
it immediately follows that, in our problem, the greedy algorithm has an overall
complexity of O(km2).

3.2.3 Finding the optimal policy and counterfactual expla-
nations

In this section, our goal is to jointly find the optimal decision policy and set of
counterfactual explanations A∗, that is,

π∗,A∗ = argmax
(π,A):A⊆Pπ∧|A|≤k

u(π, γ,A), (3.16)

where, similarly as in the previous section, k is the maximum number of counter-
factual explanations the decision maker is willing to provide to the population to
balance the right to explanation with trade secrets. By jointly optimizing both the
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Non-strategic policy Strategic policy

Figure 3.9: Jointly optimizing the decision policy and the counterfactual
explanations can offer additional gains. The left panel shows the optimal
(deterministic) decision policy π in the non-strategic setting, as given by Eq. 3.18.
Here, there does not exist a set of counterfactual explanations A ∈ Pπ that increases
the utility of the policy. This happens because the area of adaption of x3 and x4

does not include any feature value that receives a positive decision. The right panel
shows the decision policy and counterfactual explanations that are (jointly) optimal
in terms of utility, as given by Eq. 3.16. Here, the individuals with feature values x1

and x2 receive e(x1) and e(x2), respectively, as counterfactual explanations. Since
these explanations are within their areas of adaptation R(x1) and R(x2), they
change their initial feature values in order to receive a positive decision.

decision policy and the counterfactual explanations, we may obtain an additional
gain in terms of utility in comparison with just optimizing the set of counterfactual
explanations given the optimal decision policy in a non-strategic setting. For a vi-
sual illustration to understand the intuition behind this, refer to Fig. 3.9. Moreover,
as we will show in the experimental evaluation in Section 3.2.6, this additional gain
will be significant.

Similarly as in Section 3.2.2, we cannot expect to find the optimal policy and set
of counterfactual explanations in polynomial time. More specifically, we have the
following negative result, which easily follows from Proposition 3.2.2 and slightly
extending the proof of Theorem 3.2.1:

Theorem 3.2.2. The problem of jointly finding both the optimal policy and the set
of counterfactual explanations that maximize utility under a cardinality constraint
is NP-hard.

However, while the problem of finding both the policy and the set of counterfac-
tual explanations appears significantly more challenging than the problem of finding
just the set of counterfactual explanations given a pre-defined policy (i.e., the prob-
lem given in Eq. 3.15), the following proposition shows that the problem is not
inherently harder. More specifically, for each possible set of counterfactual explana-
tions, it shows that the policy that maximizes the utility can be easily computed.

Proposition 3.2.2. Let Y = {x ∈ X : P (Y = 1 |x) ≥ γ}. Given a set of
counterfactual explanations A ⊆ Y17, the policy π∗

A = argmaxπ:A⊆Pπ
u(π, γ,A) is

17Note that, since the decision maker is rational, they will never provide an explanation that
contributes negatively to their utility.
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deterministic, can be found in polynomial time, and is given by

π∗
A(x) =


1 if

(
{x′ ∈ A : P (Y = 1 |x′) > P (Y = 1 |x) ∧ c(x,x′) ≤ 1}
= ∅ ∧ x ∈ Y

)
∨ x ∈ A

0 otherwise.

(3.17)

Intuitively, the optimal policy assigns π∗
A(x) = 1 if x is required to serve as a

counterfactual explanation (i.e., x ∈ A), or if all counterfactual explanations in A
are not within the region of adaptation of x or adapting to them would not improve
the individual’s outcome. Proposition 3.2.2 implies that, to set all the values of the
optimal decision policy, we only need to perform O(km) comparisons. Moreover, it
reveals that, in contrast with the non strategic setting, the optimal policy given a
set of counterfactual explanations is not a deterministic threshold rule with a single
threshold [48, 169], that is,

π(x) =

{
1 if P (Y = 1 |x) ≥ γ

0 otherwise,
(3.18)

but rather a more conservative deterministic decision policy that does not depend
only on the outcome P (Y = 1 |x) and γ but also on the cost individuals pay to
change features. Moreover, we can build upon the above result to prove that the
problem of finding the optimal decision policy and set of counterfactual explanations
can be reduced to maximizing a non-monotone submodular function. To this aim,
let π∗

A be the optimal policy induced by a given set of counterfactual explanations
A, as in Proposition 3.2.2, and define the set function h(A) = u(π∗

A, γ,A) over the
ground set Y . Then, we have the following proposition:

Proposition 3.2.3. The function h is non-negative, submodular and non-monotone.

Fortunately, there exist efficient algorithms with global approximation guaran-
tees for maximizing a non-monotone submodular function under cardinality con-
straints. In our work, we use the randomized polynomial time algorithm by Buch-
binder et al. [183], which can find a solution A such that h(A) ≥ (1/e)h(A∗), where
A∗ and π∗

A∗ are the optimal set of counterfactual explanations and decision policy,
respectively (i.e., the solutions to the problem given by Eq. 3.16). The algorithm
is just a randomized variation of the standard greedy algorithm. It starts from a
solution set A = ∅ and it iteratively adds one counterfactual explanation x ∈ Y\A.
However, instead of greedily choosing the element x that provides the maximum
marginal difference h(A ∪ {x}) − h(A), it sorts all the candidate elements with
respect to their marginal difference and picks one at random among the top k.
Algorithm 4 provides a pseudocode implementation of the algorithm.

To enjoy a 1/e approximation guarantee, Algorithm 4 requires that there are
2k < m candidate feature values whose marginal contribution to any set is zero.
In our problem, this can be trivially satisfied by adding 2k feature values x to X
such that P (Y = 1 |x) = γ, P (x) = 0 and c(x,xj) = c(xj,x) = 2 ∀xj ∈ X . If
the algorithm adds some of those counterfactual explanations to the set A, it is
easy to see that we can ignore them without causing any difference in utility or
best-responses.
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Algorithm 4: Randomized algorithm by Buchbinder et al. [183]

input : ground set of counterfactual explanations Y, parameter k, and utility
function h

output : set of counterfactual explanations A
A ← ∅
while |A| ≤ k do
B ← get top k(Y,A, h)
x∗ ∼ B
A ← A∪ {x∗} // Add a feature value x∗ sampled from the top-k in

terms of marginal increase of h

return A

Finally, note that, following from the proof of Proposition 3.2.3, the marginal
difference of h can be computed in O(m). Therefore, since the above randomized
algorithm has a complexity of O(km), it readily follows that, in our problem, the
algorithm has an overall complexity of O(km2).

3.2.4 Increasing the diversity of counterfactual explanations

In many cases, decision makers may like to ensure that individuals across the whole
spectrum of the population are incentivized to self-improve. For example, in a loan
scenario, the bank may use the age group as a feature to estimate the probability
that a customer repays the loan, however, it may like to deploy a decision policy
that incentivizes individuals across all age groups in order to improve the financial
situation of all. To this aim, the decision maker can increase the diversity of the
optimal set of counterfactual explanations by incorporating a matroid constraint
into the problem formulation, rather than a cardinality constraint.

Formally, consider disjoint sets X1,X2, . . . ,Xl such that
⋃

iXi = X and integers
d1, d2, . . . , dl such that k =

∑
i di. Then, a partition matroid is the collection of sets

{S ⊆ 2X : |S ∩ Xi| ≤ di ∀i ∈ [l]}. In the loan example, the decision maker could
search for a set of counterfactual explanations A within a partition matroid where
each one of the Xi’s corresponds to the feature values covered by each age group and
di = k/l ∀i ∈ [l]. This way, the set of counterfactual explanations A would include
explanations for every age group.

In this case, the decision maker could rely on a variety of polynomial time algo-
rithms with global guarantees for submodular function maximization under matroid
constraints, for example, the algorithm by Calinescu et al. [185].

3.2.5 Experiments on synthetic data

In this section, we evaluate Algorithms 3 and 4 using synthetic data and show
that the counterfactual explanations and decision policies found by our algorithms
achieve higher utility than several competitive baselines.18

Experimental setup. For simplicity, we consider feature values x ∈ {1, . . . ,m}
and P (x = i) = pi/

∑
j pj where pi is sampled from a Gaussian distribution

18All experiments for Section 3.2 ran on a machine equipped with 48 Intel(R) Xeon(R) 3.00GHz
CPU cores and 1.2TB memory.
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N(µ = 0.5, σ = 0.1) truncated from below at zero. We also sample P (Y = 1 |x) ∼
Uniform[0, 1], c(xi,xj) ∼ Uniform[0, 1] for 50% of all pairs and c(xi,xj) = 2 for the
rest. Finally, we set γ = 0.3.

In our experiments, we compare the utility of the following decision policies and
counterfactual explanations:
— Black box: decisions are taken by the optimal decision policy in the non-strategic
setting, given by Eq. 3.18, and individuals do not receive any counterfactual expla-
nations.
— Minimum cost: decisions are taken by the optimal decision policy in the non-
strategic setting, given by Eq. 3.18, and individuals receive counterfactual expla-
nations of minimum cost with respect to their initial feature values, similarly as
in previous work [108, 109, 186]. More specifically, we cast the problem of finding
the set of counterfactual explanations as the minimization of the weighted aver-
age cost individuals pay to change their feature values to the closest counterfactual
explanation, that is,

Amc = argmin
A⊆Pπ : |A|≤k

∑
xi∈X\Pπ

P (xi) min
xj∈A

c(xi,xj),

and realize that this problem is a version of the k-median problem, which we can
solve using a greedy heuristic [187].
— Diverse: decisions are taken by the optimal decision policy in the non-strategic
setting, given by Eq. 3.18, and individuals receive a set of diverse counterfactual
explanations of minimum cost with respect to their initial feature values, similarly
as in previous work [180, 188], that is,

Ad = argmax
A⊆Pπ : |A|≤k

∑
xi∈X\Pπ

P (xi)1 [R(xi) ∩ A ≠ ∅] .

To solve the above problem, we realize it can be reduced to the weighted version
of the maximum coverage problem, which can be solved using a well-known greedy
approximation algorithm [189].
— Algorithm 3: decisions are taken by the optimal decision policy in the non-
strategic setting, given by Eq. 3.18, and individuals receive counterfactual explana-
tions given by Eq. 3.14, where A is found using Algorithm 3.
— Algorithm 4: decisions are taken by the decision policy given by Eq. 3.17 and
individuals receive counterfactual explanations given by Eq. 3.14, where A is found
using Algorithm 4.

Results. Figs. 3.10a, 3.10b show the utility achieved by each of the decision poli-
cies and counterfactual explanations for several numbers of feature values m and
counterfactual explanations k. We find several interesting insights: (i) the counter-
factual explanations found by Algorithm 4 and the decision policies given by Eq. 3.17
beat all other alternatives by large margins across the whole spectrum, showing that
jointly optimizing the decision policy and the counterfactual explanations offers clear
additional gains; (ii) the counterfactual explanations found by Algorithms 3 and 4
provide higher utility gains as the number of feature values increases and thus the
search space of counterfactual explanations becomes larger; (iii) a small number of
counterfactual explanations is enough to provide significant gains in terms of utility
with respect to the optimal decision policy without counterfactual explanations.
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Figure 3.10: Results on synthetic data. Panels (a) and (b) show the utility
achieved by six types of decision policies and counterfactual explanations against
the total number of feature values m and the number of counterfactual explanations
k, respectively. Panel (c) shows the average cost individuals had to pay to change
from their initial features to the feature value of the counterfactual explanation they
receive under the same five types of decision policies and counterfactual explanations.
In Panel (a), we set k = 0.1m and, in Panels (b) and (c), we set m = 200. In all
panels, we repeat each experiment 20 times, and error bars indicate 95% confidence
intervals.

Fig. 3.10c shows the average cost individuals had to pay to change from their
initial features to the feature value of the counterfactual explanation they receive.
As one may have expected, the results show that, under the counterfactual expla-
nations of minimum cost (Minimum cost and Diverse), the individuals invest less
effort to change their initial features and the effort drops as the number of counter-
factual explanations increases. In contrast, our methods incentivize the individuals
to achieve the highest self-improvement, particularly when we jointly optimize the
decision policy and the counterfactual explanations.

3.2.6 Experiments on real data

In this section, we evaluate the utility achieved by Algorithms 3 and 4 using real loan
and credit card data, comparing them with the same baselines as before. Moreover,
we experiment with a modified version of Algorithm 3, designed to increase the
diversity of counterfactual explanations, as described in Section 3.2.4.

Experimental setup. We experiment with two publicly available datasets: (i) the
lending dataset [190], which contains information about all accepted loan applica-
tions in LendingClub during the 2007-2018 period and (ii) the credit dataset [174],
which contains information about a bank’s credit card payoffs (i.e., the same dataset
as in Section 3.1.6). For each accepted loan applicant (or credit card holder), we use
various demographic information and financial status indicators as features X and
the current loan status (or credit payoff status) as label Y . Appendix B.2 contains
more details on the specific features we used to experiment with the lending dataset.

The procedures we followed to (i) approximate P (Y | X), and (ii) determine
the values of the cost function c(xi,xj) based on the maximum percentile shift are
identical to the ones used in Section 3.1.6. Recall that, we distinguish between ac-
tionable and non-actionable features. In the credit dataset, non-actionable features
contain Marital Status, Age Group and Education Level, Total Overdue Counts, To-
tal Months Overdue, while all other features are actionable. In the lending dataset,
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all features are considered actionable. Additionally, a scaling factor α controls the
difficulty of changing features, with greater difficulty for higher α values.

Results. We start by focusing on the credit dataset, and we examine an anecdotal
example that illustrates the intuitive differences between the counterfactual expla-
nations em(x) and e(x) provided by the minimum cost baseline and Algorithm 3,
respectively. To this end, for fixed α and k, we first track down the individuals whose
best-response under both methods is to change their initial features to the provided
counterfactual explanation. Then, for each of these individuals, we compare the
counterfactual explanations provided by each of both methods. Table 3.1 shows the
initial features x together with the counterfactual explanations em(x) and e(x) for
one of the above individuals picked at random. In this example, the individual is
a university student, unmarried and under the age of 25 who is advised to follow
the counterfactual explanations to maintain their credit. Since the marital status,
age group and level of education are all non-actionable features, both counterfactual
explanations maintain the initial values for those features. Under the minimum cost
baseline, the bank would advise the individual to reduce their monthly credit card
bill by ∼$150 and limit high spending to 2 months per semester so that their risk
of default would decrease from 16% to 13%. However, under Algorithm 3, the bank
would advise to reduce their monthly credit card bill by ∼$400, limit high spending
to 1 month per semester and increase their monthly credit card payoff slightly, so
that their risk of default would decrease to 11%. Since by construction, both em(x)
and e(x) are within the region of adaptation of x, the individual is guaranteed to
follow the advice in both cases, however, under Algorithm 3, the individual would
be less likely to default and more likely to achieve a superior long-term well being.

Next, we compare the utility achieved by the decision policies and counterfac-
tual explanations found by all algorithms considered in the previous section across
both datasets, for various values of the parameter α, which controls the individuals’

Table 3.1: Examples of counterfactual explanations in the credit dataset.
The columns em(x) and e(x) correspond to counterfactual explanations provided
by the minimum cost baseline and Algorithm 3, respectively, to an individual with
initial feature value x. Initially, the individual’s outcome is P (Y = 1 |x) = 0.84
and, after they best-respond, their outcome is P (Y = 1 | em(x)) = 0.87 and P (Y =
1 | e(x)) = 0.89, respectively. In both methods, we set α = 2 and k = 160.

Feature x em(x) e(x)
Married No No No
Age group Under 25 Under 25 Under 25
Education Student Student Student
Maximum Bill Amount Over Last 6 Months $2246 $2084 $1929
Maximum Payment Amount Over Last 6 Months $191 $188 $221
Months With Zero Balance Over Last 6 Months 0 0 0
Months With Low Spending Over Last 6 Months 0 0 0
Months With High Spending Over Last 6 Months 4 2 1
Most Recent Bill Amount $2145 $2003 $1750
Most Recent Payment Amount $123 $124 $100
Total Overdue Counts 0 0 0
Total Months Overdue 0 0 0
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Figure 3.11: Utility of different policies against α in the lending and credit
datasets. In panel (a), the number of feature values is m = 400 and, in panel (b),
it is m = 3200. In both panels, we set k = 0.05m, we repeat each experiment 20
times, and error bars indicate 95% confidence intervals.

difficulty in changing features. Fig. 3.11 summarizes the results, which show that
Algorithm 3 and Algorithm 4 consistently outperform all baselines and, as the cost
of adapting to feature values with higher outcome values decreases (smaller α), the
competitive advantage by jointly optimizing the decision policy and the counterfac-
tual explanations (Algorithm 4) grows significantly. This competitive advantage is
more apparent in the credit dataset because it contains non-actionable features (e.g.,
credit overdue counts) and, under the optimal decision policy in the non-strategic
setting, it is difficult to incentivize individuals who receive a negative decision to
improve only by optimizing the set of counterfactual explanations they receive.

To understand the differences in utility caused by the two proposed algorithms,
we measure the transportation of mass induced by the policies and counterfactual
explanations used in Algorithm 3 and 4 in both datasets, as follows. For each
individual in the population whose best-response is to change their feature value,
we record their outcome P (Y = 1 |x) before and after the best-response. Then, we
discretize the outcome values using percentiles. Fig. 3.12 summarizes the results,
which show several interesting insights. In the lending dataset, we observe that
a large portion of individuals do improve their outcome even if we only optimize
the counterfactual explanations (Panel (a)). In contrast, in the credit dataset, we
observe that, if we only optimize the counterfactual explanations (Panel (c)), most
individuals do not improve their outcome. That being said, if we jointly optimize
the decision policy and counterfactual explanations (Panels (b) and (d)), we are able
to incentivize a large portion of individuals to self improve in both datasets.

Further, we focus on the lending dataset and evaluate the sensitivity of our algo-
rithms. First, we measure the influence that the number of counterfactual explana-
tions has on the utility achieved by each of the decision policies and counterfactual
explanations. As shown in Fig. 3.13a, our algorithms require only a small number
of counterfactual explanations to provide significant gains in terms of utility with
respect to all baselines. Second, we challenge the assumption that individuals do
not share the counterfactual explanations they receive with other individuals with
different feature values. To this end, we assume that, given the set of counterfac-
tual explanations A found by Algorithm 4, individuals with initial feature value x
receive the counterfactual explanation e(x) ∈ A given by Eq. 3.14 and, with proba-
bility pl, they also receive an additional explanation e′(x) chosen at random from A
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Figure 3.12: Transportation of mass in the lending and credit datasets.
We compare the transportation of mass induced by the policies and counterfactual
explanations found by Algorithm 3 and 4. For each individual in the population,
whose best-response is to change their feature value, we record their outcome P (Y =
1 |x) before the best-response (Initial P (Y = 1 |x)) and after the best-response
(Final P (Y = 1 |x)). In each panel, α = 2, and the color is proportional to the
percentage of individuals who move from initial P (Y = 1 |x) to final P (Y = 1 |x).

and follow the counterfactual explanation that benefits them the most. Fig. 3.13b
summarizes the results for several values of pl and number of counterfactual expla-
nations, which show that the policies and explanations provided by Algorithm 4
present a significant utility advantage even when the leakage probability pl is large.

Finally, we focus on the credit dataset and consider a scenario in which a bank
aims not only to continue providing credit to the customers that are more likely
to repay but also provide explanations that incentivize individuals across all age
groups to maintain their credit. To this end, we incorporate a partition matroid con-
straint that ensures the counterfactual explanations are diverse across age groups,
as described in Section 3.2.4, and use a slightly modified version of Algorithm 3
to solve the constrained problem [182], which enjoys a 1/2 approximation guar-
antee. Fig. 3.14 summarizes the results, which show that: (i) optimizing under
a cardinality constraint leads to an unbalanced set of explanations, favoring the
more populated age groups (25 to 59) while completely ignoring the recourse po-
tential of individuals older than 60; (ii) the relative group improvement, defined as∑

xi∈Xz\Pπ
P (xi)[P (Y = 1 |xi

j) − P (Y = 1 |xi)]/
∑

xi∈Xz\Pπ
P (xi), where Xz is the

set of feature values corresponding to age group z and xi
j is the best-response of

individuals with initial feature value xi ∈ Xz, is more balanced across age groups,
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Figure 3.13: Sensitivity to the number of counterfactual explanations and
information leakage. Panel (a) shows the utility achieved by five types of decision
policies and counterfactual explanations against the number of counterfactual expla-
nations k. Panel (b) shows the utility achieved by Algorithm 4 against the number
of counterfactual explanations k for several values of the leakage probability pl. In
both panels, we use the lending dataset, the number of feature values is m = 400,
we set α = 2, and we repeat each experiment involving randomization 20 times,
where error bars indicate 95% confidence intervals.
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Figure 3.14: Increasing the diversity of the provided counterfactual expla-
nations. Panel (a) shows the population per age group, rejected by the optimal
threshold policy in the non strategic setting. Panel (b) shows a comparison of the
age distribution of counterfactual explanations in A produced by the greedy algo-
rithm under a cardinality and a matroid constraint. Panel (c) shows the relative
improvement of each age group. In all panels, we use the credit dataset and we set
k = 32 and α = 2.

showing that the matroid constraint can be used to generate counterfactual expla-
nations that help the entire spectrum of the population to self-improve.

3.3 Chapter conclusions

In this chapter, we have studied problems of utility maximization in decision making
under strategic behavior. We have introduced game-theoretic models in which a
decision maker, informed by a predictive model, designs a decision policy and shares
information about it with the individuals who are subject to it. Through theoretical
analysis and experiments on real data, we have demonstrated that transparency
has the potential to increase a decision maker’s utility if the policy is designed to
incentivize forms of effort that lead individuals to self-improvement. We hope that
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our positive results serve as motivation for decision makers to be more transparent
about their decision policies in practice.

We have focused on two specific forms of achieving transparency: (i) complete
transparency, where individuals have full access to the decision maker’s policy, and
(ii) partial transparency, where individuals only have access to counterfactual ex-
planations. As future work, it would be interesting to explore alternative forms of
transparency. For example, we have assumed that individuals do not share infor-
mation about the policy with each other. Relaxing this assumption and developing
game-theoretic models in which individuals form a social network and share infor-
mation with their peers could lead to additional insights into decision making under
strategic behavior, reflecting more realistic settings.

Additionally, the models we have introduced assume that there is no unobserved
confounding that might enable individuals to “game” the decision maker’s policy.
Selecting the right set of features to make this assumption a reality is a challenging
problem in itself [156]. It would be interesting to investigate the use of causally
aware feature selection methods [191] in strategic settings and develop algorithms
that find optimal decision policies under different types of unobserved confounding.

Finally, although we have evaluated our methods through a series of experiments
using real data, an interesting direction for future work involves implementing these
methods within a real-world decision making pipeline. This would include conduct-
ing an empirical analysis of all the steps involved, such as feature selection and the
iterative process of automated policy design and refinement of the problem parame-
ters (e.g., the cost function) with the aid of a human decision maker. Additionally,
the collection of a dataset on how individuals best-respond to a transparent policy
would be of great value to the strategic machine learning community, which has
remained largely theoretical.
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Chapter 4

Enhancing counterfactual
reasoning in sequential decision
making

Counterfactual reasoning refers to the ability that humans have to mentally simulate
alternative worlds where events from the past play out differently than they did in
reality [192]. Counterfactuals—thoughts about “what might have been”—arise in
a variety of decision making scenarios ranging from simple everyday decisions (e.g.,
what would have been the outcome of the game had the chess player made a different
move?) to more critical ones (e.g., would the patient’s condition have improved had
the physician administered a different drug?). Research in psychology suggests that
these thoughts are closely related to our understanding of causality [74, 193], while
also playing an important role in the process in which we generate explanations
about events, learn from past experience, and plan future actions [67–69].

In many real-world decision making settings, decisions are sequential—the deci-
sion maker takes a sequence of actions over multiple time steps. However, for each
sequence of actions taken, there is an exponential number of sequences of actions
not taken that would have led the decision making process to a different counter-
factual outcome. Contemplating all possible alternatives can be overwhelming for a
decision maker and, in practice, people tend to focus on a limited number of time
steps and actions depending on their recency [194–196]. As a result, a decision
maker who uses counterfactual reasoning as a learning signal may overlook useful
past situations, potentially hindering their learning process.

For example, consider a clinician reflecting on the efficacy of a series of treat-
ment decisions made for a patient. To think about potential improvements to their
treatment policy, they may attempt to identify critical time steps in the patient’s
care where different decisions could have improved the patient’s health. This task
is intractable for a human, as there are multiple treatments they could have ad-
ministered at various stages of a patient’s hospital stay. Counterfactual reasoning
becomes even more challenging if the clinician aims to analyze multiple patients
they have treated over a longer time window.

In this chapter, we address this issue by introducing methods to aid in the ret-
rospective analysis of past decisions in sequential decision making tasks. For each
observed episode—a sequence of observed states (e.g., patient vitals) and taken
actions (e.g., treatments)—our methods find action sequences that, under the cir-
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cumstances of that particular episode, could have led to a better counterfactual
outcome. Importantly, we focus on action sequences that are “close” to the one
taken in reality, thereby making them more informative for human decision mak-
ers by highlighting only the most critical time steps and actions in each episode.
Throughout the chapter, we refer to these (constrained) action sequences as coun-
terfactually optimal.

Recall the clinical example above and consider a clinician analyzing data of a
patient whose vitals have not improved after a certain period of time. A counter-
factually optimal action sequence could highlight to the clinician a small set of time
steps in the treatment process where, had they administered different drug dosages,
the patient’s severity would have been lower. Moreover, identifying such action
sequences for a large cohort of patients could pinpoint “interesting cases” for the
clinician to revisit, where manual inspection of these cases and the corresponding
time steps could provide insights to the clinician on possible ways to improve their
treatment policy.

In Section 4.1, we formalize sequential decision making using Markov decision
processes [119] combined with structural causal models [71]. Based on this formula-
tion, we introduce and present a solution for the optimization problem involved in
computing counterfactually optimal action sequences within environments having
discrete states and actions. In Section 4.2, we extend this formulation to environ-
ments with continuous states. We introduce a variation of the original problem,
analyze its computational complexity, and propose an algorithmic solution. Our
theoretical findings are supported by experiments using synthetic and real (medi-
cal) data.

4.1 Sequential decisions in discrete state spaces

In this section, our goal is to find counterfactually optimal action sequences for
decision making processes in which multiple, dependent actions are taken sequen-
tially over time. To operationalize the notion of “closeness” mentioned earlier, we
focus on sequences of actions that differ from the observed sequence in at most k
actions and could have led the process realization to a better outcome. Because
the final outcome depends on the entire sequence of actions and there is (typically)
uncertainty in the counterfactual dynamics of the environment, different action se-
quences may be (counterfactually) optimal under different possible realizations of
these dynamics. Consequently, our goal here is not to find a single counterfactually
optimal action sequence, but rather a counterfactual policy that leads to action se-
quences that differ in at most k actions from the observed one for every realization
of the counterfactual transition dynamics.

The standard framework for modeling sequential decision making are Markov
decision processes (MDPs) [119]. As mentioned in Chapter 2, an MDP is defined by a
set of environment states (e.g., vital signs of a patient), a set of actions (e.g., dosages
of a drug), and a set of probability distributions that characterize the transitions
between states at each time step, conditioned on the action taken. Moreover, each
pair of state and action is associated with a numerical reward (e.g., satisfaction
inversely proportional to the patient’s severity). Typically, the decision maker’s
goal is to find an action sequence that maximizes their total reward over time.
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Although the transition probabilities of an MDP carry sufficient information to
answer questions about the future, such as identifying the reward that an action
sequence would give in expectation, they do not allow us to answer counterfactual
questions. To infer how a particular episode would have evolved under a different
action sequence than the one taken in reality, one needs to represent the stochastic
state transitions of the environment using a structural causal model (SCM) [71, 197].
This has also been a key aspect of a nascent line of work at the intersection of
counterfactual reasoning and reinforcement learning (RL), which has focused on
evaluating and improving RL policies using offline data [130–132].

We start by formally characterizing a sequence of discrete actions and discrete
states using finite horizon MDPs, and we model the transition probabilities be-
tween a pair of states, given an action, using the Gumbel-Max structural causal
model [131]. This model has been shown to have a desirable counterfactual stability
property and, given a sequence of actions and states, it allows us to reliably estimate
the counterfactual outcome under an alternative sequence of actions. Building upon
this causal representation of MDPs, we make the following contributions:

1. We formally state the problem of finding counterfactually optimal action se-
quences for an observed episode in the presence of uncertainty in the counter-
factual transition dynamics. Specifically, we cast the problem as a constrained
optimization problem over the set of policies that would have resulted in action
sequences that differ in at most k actions from the observed sequence.

2. We present a polynomial-time algorithm based on dynamic programming that
finds the optimal solution to the aforementioned problem.

Finally, we validate our algorithm using both synthetic and real data from
cognitive behavioral therapy and show that counterfactually optimal action se-
quences can provide valuable insights to enhance sequential decision making un-
der uncertainty. The code used for all experiments in Section 4.1 is available at
https://github.com/Networks-Learning/counterfactual-explanations-mdp.

4.1.1 A causal model of sequential decision making

Our starting point is the following stylized setting that resembles a variety of real-
world sequential decision making processes. At each time step t ∈ [T − 1]0, where
T is a time horizon, the decision making process is characterized by a state st ∈ S,
where S is a space of n states, an action at ∈ A, where A is a space of m actions,
and a reward r(st, at) ∈ R. Moreover, given a realization of a decision making
process τ = {(st, at)}T−1

t=0 , we define the outcome of the decision making process
o(τ) =

∑
t r(st, at) as the sum of the rewards.

Given the above setting, we characterize the relationship between actions, states
and outcomes using finite horizon Markov decision processes (MDPs). More specifi-
cally, we consider an MDPM = (S,A, P, r, T ), where S is the state space, A is the
set of actions, P denotes the transition probability P (St+1 = st+1 |St = st, At = at),
r denotes the immediate reward r(st, at), and T is the time horizon. While this
characterization is helpful to make predictions about future states and design action
policies [119], it is not sufficient to make counterfactual predictions. For example,
given a realization of a decision making process τ = {(st, at)}T−1

t=0 , we cannot know
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Figure 4.1: Causal graph of an SCM C representing a Markov decision
process. Green boxes represent endogenous random variables and pink boxes rep-
resent exogenous noise variables. The value of each endogenous variable is given
by a function of the values of its ancestors in the causal graph. The value of each
exogenous noise variable is sampled independently from a given distribution. An
intervention do[At = a′] breaks the dependence of the variable At from its ances-
tors (highlighted by dotted lines) and sets its value to a′. After observing an event
St+1 = st+1, St = st, At = at, a counterfactual prediction can be thought of as the
result of an intervention do[At = a′] in a modified SCM where Ut takes values ut

from a posterior distribution with support such that st+1 = gS(st, at,ut).

what would have happened if, instead of taking action at at time t, we had taken ac-
tion a′ ̸= at. To be able to overcome this limitation, we will now augment the above
characterization using a particular class of structural causal model (SCM) [71, 117]
with desirable properties.

Let C be a structural causal model defined by the assignments

St+1 := gS(St, At,Ut) and At := gA(St,Zt), (4.1)

where St, At, St+1 are endogenous categorical variables, and Ut and Zt are n-
and m-dimensional independent exogenous (noise) variables, respectively. Here, gS
and gA are two given functions, and we refer to the function gS as the transition
mechanism. Let P C denote the distributions and probabilities entailed by C. Note
that, we assume there is no unobserved confounding, meaning all noise variables Ut

and Zt are mutually independent. Then, as argued by Buesing et al. [130], we can
always find a distribution for the noise variables and a transition mechanism gS,
such that the transition probability of the MDP of interest is given by the following
interventional distribution over the SCM C:

P (St+1 = st+1 |St = st, At = at) = P C ; do[At=at](St+1 = st+1 |St = st), (4.2)

where, recall that, do[At = at] denotes a (hard) intervention in which the second
assignment in Eq. 4.1 is replaced by the value at.

Under this view, given an observed realization of a decision making process τ =
{(st, at)}T−1

t=0 , we can compute the posterior distribution P C |St=st,St+1=st+1,At=at(Ut)
of each noise variable Ut and, building on the conditional density function of this
posterior distribution, which we denote as f

C |St=st,St+1=st+1,At=at
Ut

(u), we can define
a (non-stationary) counterfactual transition probability

Pτ,t(St+1 = s′ |St = s, At = a)

= P C |St=st,St+1=st+1,At=at ; do[At=a](St+1 = s′ |St = s)
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=

∫
Rn

P C |St=st,St+1=st+1,At=at ; do[At=a](St+1 = s′ |St = s,Ut = u)

· fC |St=st,St+1=st+1,At=at ; do[At=a]
Ut

(u)du

(a)
=

∫
Rn

1[s′ = gS(s, a,u)] · fC |St=st,St+1=st+1,At=at
Ut

(u)du

= EUt |St=st,St+1=st+1,At=at [1[s
′ = gS(s, a,Ut)]],

(4.3)

where, in (a), we drop the do[·] because Ut and At are independent in the modified
SCM. Importantly, the above counterfactual transition probability allows us to make
counterfactual predictions. For example, given that, at time t the state was st and,
at time t+ 1, the process transitioned to state st+1 after taking action at, it allows
us to specify the probability of transitioning to state s′ after taking action a ̸= at
if the state had been s at time t. For a visual representation of the causal graph
associated with the SCM C and to better understand the concept of counterfactual
predictions, refer to Fig. 4.1.

However, for state variables taking discrete values, the posterior distribution of
the noise may be non-identifiable without further assumptions, as argued by Oberst
and Sontag [131]. This is because there may be several noise distributions and
transition mechanisms gS which give interventional distributions consistent with
the MDP’s transition probabilities but result in different counterfactual transition
distributions. To avoid these non-identifiability issues, we follow Oberst and Sontag
and restrict our attention to the class of Gumbel-Max SCMs, that is,

St+1 := gS(St, At,Ut) = argmax
s∈S

{logP (St+1 = s |St, At) + Ut,s}, (4.4)

where Ut,s ∼ Gumbel(0, 1) and P (St+1 |St, At) is the transition distribution of the
MDP. More specifically, this class of SCMs has been shown to satisfy a desirable
counterfactual stability property, which goes intuitively as follows. Assume that, at
time t, the process transitioned from state st to state st+1 after taking action at.
Then, in a counterfactual scenario, it is unlikely that, at time t, the process would
transition from a state s to a state s′ ̸= st+1 after taking action a if

P (St+1 = s′ |St = s, At = a) ≤ P (St+1 = s′ |St = st, At = at), and

P (St+1 = st+1 |St = s, At = a) > P (St+1 = st+1 |St = st, At = at).

In words, transitioning to a state other than st+1—the factual one—is unlikely unless
choosing an action that decreases the relative chances of st+1 compared to the other
states. More formally, given τ = {(st, at)}T−1

t=0 , then for all s, s′ with s′ ̸= st+1, the
condition

P (St+1 = st+1 |St = s, At = a)

P (St+1 = st+1 |St = st, At = at)
≥ P (St+1 = s′ |St = s, At = a)

P (St+1 = s′ |St = st, At = at)

implies that Pτ,t(St+1 = s′ |St = s, At = a) = 0. In practice, in addition to
solving the non-identifiability issues, the use of Gumbel-Max SCMs allows for an
efficient procedure to sample from the corresponding noise posterior distribution
P C |St=st,St+1=st+1,At=at(Ut), described elsewhere [131, 198], and given a set of d sam-
ples from the noise posterior distribution, we can compute an unbiased finite sample
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Monte-Carlo estimator for the counterfactual transition probability, as defined in
Eq. 4.3, as follows:

Pτ,t(St+1 = s′ |St = s, At = a) ≈ 1

d

∑
j∈[d]

1[s′ = gS(s, a,uj)] (4.5)

On the assumption of no unobserved confounding. The assumption that
there are no hidden confounders is a frequent assumption made by work at the
intersection of counterfactual reasoning and reinforcement learning [130–132] and,
more broadly, in the causal inference literature [199–203]. That said, there is growing
interest in developing off-policy methods for partially observable MPDs (POMDPs)
that are robust to certain types of confounding [125–127], and in learning dynamic
treatment regimes in sequential settings with non-Markovian structure [128, 129].
Moreover, there is a line of work focusing on the identification of counterfactual
quantities in non-sequential confounded environments [204–206]. In that context,
we consider the computation of (approximately) optimal counterfactual action se-
quences under confounding as a very interesting direction for future work.

4.1.2 Problem statement

Inspired by previous work on counterfactual explanations in supervised learning [107,
108], we focus on counterfactual outcomes that could have occurred if the alternative
action sequence was “close” to the observed one. However, since in our setting, there
is uncertainty on the counterfactual dynamics of the environment, we will look for
a non-stationary counterfactual policy π that, under every possible realization of
the counterfactual transition probability defined in Eq. 4.3, is guaranteed to provide
the optimal alternative sequence of actions differing in at most k actions from the
observed one.

More specifically, let τ = {(st, at)}T−1
t=0 be an observed realization of a deci-

sion making process characterized by a Markov decision process (MDP) M =
(S,A, P, r, T ) with a transition probability defined via a Gumbel-Max structural
causal model (SCM), as described in Section 4.1.1. Then, to characterize the ef-
fect that any alternative action sequence would have had on the outcome of the
above process realization, we start by building a non-stationary counterfactual MDP
Mτ = (S+,A, P+

τ , r+, T ). Here, S+ = S × [T − 1]0 is an enhanced state space such
that each s+ ∈ S+ corresponds to a pair (s, l) indicating that the original decision
making process would have been at state s ∈ S had already taken l actions differ-
ently from the observed sequence. Following this definition, r+ denotes the reward
function which we define as r+((s, l), a) = r(s, a) for any (s, l) ∈ S+ and a ∈ A, that
is, the counterfactual rewards remain independent of the number of modifications
in the action sequence. Lastly, let Pτ be the counterfactual transition probability,
as defined by Eq. 4.3. Then, the transition probability P+

τ for the enhanced state
space is defined as:

P+
τ,t

(
S+
t+1 = (s′, l′) |S+

t = (s, l) , At = a
)
=


Pτ,t (s

′ | s, a)
if (a = at ∧ l′ = l)

∨(a ̸= at ∧ l′ = l + 1)

0 otherwise,

(4.6)
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Algorithm 5: It samples a counterfactual action sequence from the coun-
terfactual policy π
input : counterfactual policy π, horizon T , counterfactual transition probability

Pτ , reward function r, initial state s0
output : counterfactual trajectory τ ′, counterfactual outcome o(τ ′)
s′0 ← s0
l0 ← 0
reward← 0
for t← 0 to T − 1 do

a′t ← π((s′t, lt), t) // Get an action from the counterfactual policy

reward← reward + r(s′t, a
′
t)

if t ̸= T − 1 then
s′t+1 ∼ Pτ,t(St+1 |St = s′t, At = a′t) // Sample the next state

if a′t ̸= at then
lt+1 ← lt + 1 // Update the counter of action changes

else
lt+1 ← lt

τ ′ ← {((s′t, lt), a′t)}T−1
t=0

o(τ ′)← reward
return τ ′, o(τ ′)

where note that the dynamics of the original states s are equivalent under P+
τ,t and

Pτ,t, however, under P
+
τ,t, we also keep track of the number of actions differing from

the observed actions. Now, let π : S+ × [T − 1]0 → A be a policy that determin-
istically decides about the counterfactual action a′t that should have been taken if
the process’s enhanced state had been s+t = (s′t, lt), that is, the counterfactual state
at time t was s′t after performing lt action changes. Then, under a counterfactual
policy π, the corresponding average counterfactual outcome is given by

ōπ(τ) = Eτ ′∼P+
τ | s+0 =(s0,0)

[
T−1∑
t=0

r+((s′t, lt), a
′
t)

]
(4.7)

where τ ′ = {((s′t, lt), a′t)}T−1
t=0 is a realization of the non-stationary counterfactual

MDPMτ with a′t = π((s′t, lt), t) and the expectation is taken over all the realizations
induced by the transition probability P+

τ and the policy π. Here, note that, if
π((st, 0), t) = at for all t ∈ [T − 1]0, then ōπ(τ) = o(τ) matches the outcome of the
observed realization.

Then, our goal is to find the optimal counterfactual policy π∗
τ that maximizes

the counterfactual outcome subject to a constraint on the number of counterfactual
actions that can differ from the observed ones, that is,

maximize
π

ōπ(τ) subject to
T−1∑
t=0

1[at ̸= a′t] ≤ k ∀τ ′ ∼ P+
τ (4.8)

where a′0, . . . , a
′
T−1 is one realization of counterfactual actions and a0, . . . , aT−1 are

the observed actions. The constraint guarantees that any counterfactual action
sequence induced by the counterfactual transition probability P+

τ and the counter-
factual policy π can differ in at most k actions from the observed sequence. Finally,
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once we have found the optimal policy π∗
τ , we can sample a counterfactual realization

of the process and the counterfactually optimal action sequence using Algorithm 5.

4.1.3 A polynomial-time dynamic programming algorithm

To solve the problem defined by Eq. 4.8, we break the problem into several smaller
sub-problems. Here, the key idea is to compute the counterfactual policy values that
lead to the optimal counterfactual outcome recursively by expanding the expectation
and switching the order of the sums in Eq. 4.7.

We start by computing the highest average cumulative reward h(s, q, c) that one
could have achieved in the last q steps of the decision making process, starting from
state ST−q = s, if at most c actions had been different to the observed ones in those
last steps. For c > 0, we have the recursion

h(s, q, c) = max

(
r(s, aT−q) +

∑
s′∈S

Pτ,T−q(s
′ | s, aT−q)h(s

′, q − 1, c),

max
a∈A : a̸=aT−q

[
r(s, a) +

∑
s′∈S

Pτ,T−q(s
′ | s, a)h(s′, q − 1, c− 1)

])
, (4.9)

and, for c = 0, we trivially have that

h(s, q, 0) = r(s, aT−q) +
∑
s′∈S

Pτ,T−q(s
′ | s, aT−q)h(s

′, q − 1, 0), (4.10)

with s ∈ S, q ∈ [T ], c ∈ [k], and h(s, 0, c) = 0 for all s and c. In Eq. 4.9, the first
parameter of the outer maximization corresponds to the case where, at time T − q,
the observed action aT−q is taken and the second parameter corresponds to the case
where, instead of the observed action, the best alternative action is taken.

By definition, we can easily conclude that h(s0, T, k) is the average counterfactual
outcome of the optimal counterfactual policy π∗

τ , that is, the objective value of the
solution to the optimization problem defined by Eq. 4.8, and we can recover the opti-
mal counterfactual policy π∗

τ by keeping track of the action chosen at each recursive
step in Eq. 4.9 and 4.10. The overall procedure, summarized by Algorithm 6, uses
dynamic programming. It initially computes the values h(s, 1, c) for all s and c and
proceeds with the remaining computations in a bottom-up fashion. The algorithm
has complexity O(n2mTk) and is characterized by the following proposition:1

Proposition 4.1.1. The counterfactual policy π∗
τ returned by Algorithm 6 is the

solution to the optimization problem defined by Eq. 4.8.

4.1.4 Experiments on synthetic data

In this section, we evaluate Algorithm 6 on realizations of a synthetic decision mak-
ing process. To this end, we first look into the average outcome improvement that
could have been achieved if at most k actions had been different to the observed
ones in every realization, as dictated by the optimal counterfactual policy. Then, we

1The proof can be found in Appendix A.3.
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Algorithm 6: It returns the optimal counterfactual policy and its average
counterfactual outcome
input : states S, actions A, realization τ , horizon T , counterfactual transition

probability Pτ , reward function r, constraint k
output : counterfactual policy π∗

τ and average counterfactual outcome h(s0, T, k)
h(s, q, c)← 0 for s ∈ S, q ∈ {0, . . . , T}, c ∈ {0, . . . , k}
for q ← 1 to T do

for s ∈ S do
/* Boundary condition: no action changes left */

h(s, q, 0)← r(s, aT−q)
for s′ ∈ S do

h(s, q, 0)← h(s, q, 0) + Pτ,T−q(s
′ | s, aT−q)h(s

′, q − 1, 0)

π∗
τ ((s, k), T − q)← aT−q // Selected the observed action

for q ← 1 to T do
for c← 1 to k do

for s ∈ S do
/* Recursion: compute h(s, q, c) using Eq. 4.9 */

reward← r(s, aT−q)
for s′ ∈ S do

reward← reward + Pτ,T−q(s
′ | s, aT−q)h(s

′, q − 1, c)

best reward← reward
best action← aT−q

for a ∈ A \ {aT−q} do
reward alt← r(s, a)
for s′ ∈ S do

reward alt← reward alt + Pτ,T−q(s
′ | s, a)h(s′, q − 1, c− 1)

if reward alt > best reward then
best reward← reward alt
best action← a

h(s, q, c)← best reward
π∗
τ ((s, k − c), T − q)← best action

return π∗
τ , h(s0, T, k)

investigate to what extent the level of uncertainty of the decision making process in-
fluences the average counterfactual outcome achieved by the optimal counterfactual
policy as well as the number of distinct counterfactual action sequences it provides.2

Experimental setup. We characterize the synthetic decision making process using
an MDP with states S = [n−1]0 and actionsA = [m−1]0, where n = 20 andm = 10,
and time horizon T = 20. For each state s and action a, we set the immediate reward
equal to r(s, a) = s, that is, the higher the state, the higher the reward. To set the
values of the transition distribution P (St+1 |St, At), we proceed as follows. First we
pick one s⋆ ∈ S uniformly at random and we set a weight ws⋆ = 1. Then, for the
remaining states s ∈ S \ s⋆, we sample weights ws ∼ Uniform[0, α], where α ≤ 1.
Next, for all s ∈ S, we set P (s | st, at) = ws/

∑
s′∈S ws′ . It is easy to see that, for

2 All experiments for Section 4.1 ran on a machine equipped with 48 Intel(R) Xeon(R) 3.00GHz
CPU cores and 1.5TB memory.
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(c) k = 10

Figure 4.2: Comparison of factual and counterfactual outcomes. Each panel
shows the empirical distribution of the relative difference between the average coun-
terfactual outcome ōπ∗

τ
(τ) achieved by the optimal counterfactual policy π∗

τ and the
observed outcome o(τ) in a synthetic decision making process for various values of
k. In all panels, we set n = 20, m = 10, α = 0.4, d = 1,000 and estimate the dis-
tributions using 500 realizations from 10 different instances of the decision making
process (50 realizations per instance), each with different ws.

each state-action pair (st, at) at time t, st+1 = s⋆ is most likely to be observed in
the next timestep t+ 1. Here, the parameter α controls the level of uncertainty.

Then, we compute the optimal policy that maximizes the average outcome of the
decision making process by solving Bellman’s equation using dynamic programming
(see Section 2.2.1) and use this policy to sample the (observed) realizations as follows.
For each realization, we start from a random initial state s0 ∈ S and, at each time
step t, we pick the action indicated by the optimal policy with probability 0.95 and
a different action uniformly at random with probability 0.05. This leads to action
sequences that are slightly suboptimal in terms of average outcome. Finally, to
compute the counterfactual transition probabilities Pτ,t for each observed realization
τ , we follow the procedure described in Section 4.1.1 with d = 1,000 samples for
each noise posterior distribution.

Results. We first measure to what extent the counterfactual action sequences pro-
vided by the optimal counterfactual policy π∗

τ would have improved the outcome of
the decision making process. To this end, for each observed realization τ , we com-
pute the relative difference between the average optimal counterfactual outcome and
the observed outcome, that is, (ōπ∗

τ
(τ)− o(τ))/o(τ). Fig. 4.2 summarizes the results

for different values of k. We find that the relative difference between the average
counterfactual outcome and the observed outcome is always positive, that is, the
sequence of actions specified by the counterfactual policy would have led the pro-
cess realization to a better outcome in expectation. However, this may not come
as a surprise given that the counterfactual policy π∗

τ is optimal, as shown in Propo-
sition 4.1.1; Moreover, as the sequences of actions specified by the counterfactual
policy differ more from the observed actions (i.e., k increases), the improvement in
terms of expected outcome increases.

Next, we investigate how the level of uncertainty (controlled by the parameter
α) of the decision making process influences the average counterfactual outcome
achieved by the optimal counterfactual policy π∗

τ as well as the number of distinct
counterfactual action sequences π∗

τ provides. Fig. 4.3 summarizes the results, which
reveal several interesting insights. As the level of uncertainty α increases, the average
counterfactual outcome decreases, as shown in panel (a), however, the relative dif-
ference with respect to the observed outcome increases, as shown in panel (b). This
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Figure 4.3: Effects of the level of uncertainty in the decision making pro-
cess. Panel (a) shows the average counterfactual outcome ōπ∗

τ
(τ) achieved by the

optimal counterfactual policy π∗
τ . Panel (b) shows the relative difference between

the average counterfactual outcome ōπ∗
τ
(τ) and the observed outcome o(τ). Panel

(c) shows the number of distinct counterfactual action sequences π∗
τ provides. In

all panels, we set n = 20, m = 10 and d = 1,000 and, in each experiment, use 500
realizations from 10 different instances of the decision making process (50 realiza-
tions per instance), each with different ws. In panel (c), for each realization, we
sample 100 counterfactual realizations and compute the average number of unique
counterfactual action sequences across realizations. Shaded regions correspond to
95% confidence intervals.

suggest that, under high level of uncertainty, the counterfactual action sequences
may be more valuable to a decision maker who aims to improve their actions over
time. However, in this context, we also find that, under high levels of uncertainty,
the number of distinct counterfactual action sequences increases rapidly with k. As
a result, it may be preferable to use relatively low values of k to be able to effectively
show the counterfactual action sequences to a decision maker in practice.

4.1.5 Experiments on real data

In this section, we evaluate Algorithm 6 using real patient data from a series of
cognitive behavioral therapy sessions. To this end, similarly as in Section 4.1.4, we
first measure the average outcome improvement that could have been achieved if
at most k actions had been different to the observed ones in every therapy session,
as dictated by the optimal counterfactual policy. Then, we look into individual
therapy sessions and showcase how Algorithm 6, together with Algorithm 5, can
be used to highlight specific patients and actions of interest for closer inspection.3

Appendix C.4 contains additional experiments benchmarking the optimal counter-
factual policy against several baselines.

Experimental setup. We use anonymized data from a clinical trial comparing
the efficacy of hypnotherapy and cognitive behavioral therapy [207] for the treat-
ment of patients with mild to moderate symptoms of major depression.4 In our
experiments, we use data from the 77 patients who received manualized cognitive
behavioral therapy, which is one of the gold standards in depression treatment.
Among these patients, we discard four of them because they attended less than

3Our results should be interpreted in the context of our modeling assumptions and they do not
suggest the existence of medical malpractice.

4All participants gave written informed consent and the study protocol was peer-reviewed [208].
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Figure 4.4: Performance achieved by the optimal counterfactual policy
π∗
τ in a series of manualized cognitive behavioral therapy sessions T .

Panel (a) shows the distribution of the relative difference between the average
counterfactual outcome ōπ∗

τ
(τ) achieved by π∗

τ and the observed outcome o(τ), i.e.,
(ōπ∗

τ
(τ)− o(τ))/o(τ), for k = 3. Panels (b) and (c) show the average counterfactual

outcome ōπ∗
τ
(τ) achieved by π∗

τ and the average number of unique counterfactual
action sequences provided by each π∗

τ , averaged across patients, against the number
of actions k differing from the observed ones. In panel (c), for each realization, the
average number of unique counterfactual action sequences provided by π∗

τ is esti-
mated using 1,000 counterfactual realizations. In all panels, we set d = 1,000 and
use data from 73 patients. Shaded regions correspond to 95% confidence intervals.

10 sessions. Each patient attended up to 20 weekly therapy sessions and, for each
session, the dataset contains the topic of discussion, chosen by the therapist from
a pre-defined set of topics (e.g., psychoeducation, behavioural activation, cognitive
restructuring techniques). Additionally, a severity score is included, based on a stan-
dardized questionnaire [209], filled by the patient at each session, which assesses the
severity of depressive symptoms. For more details about the severity score and the
pre-defined set of discussion topics, refer to Appendix B.3.

To derive the counterfactual transition probability for each patient, we start by
creating an MDP with n = 5 states and m = 9 actions. Each state s ∈ S =
{0, . . . , 4} corresponds to a severity score, where small numbers represent lower
severity, and each action a ∈ A corresponds to a topic from the pre-defined list
of topics that the therapists discussed during the sessions. Moreover, each realiza-
tion of the MDP corresponds to the therapy sessions of a single patient ordered in
chronological order and time horizon T ∈ {10, . . . , 20} is the number of therapy
sessions per patient. Here, we denote the set of realizations for all patients as T .

In addition, to estimate the values of the transition probabilities, we proceed
as follows. For every state-action pair (si, a), we assume a n-dimensional prior
Dirichlet(αi1, . . . , αi1) on the probabilities pj | i,a = P (sj | si, a), where αi,j = 1 if
j ∈ {i − 1, i, i + 1} and αi,j = 0.01 otherwise. Then, if we observe cj transitions
from state si to each state sj after action a in the patients’ therapy sessions T , we
have that the posterior of the probabilities pj | i,a is a Dirichlet(αi1+c1, . . . , αin+cn).
Finally, to estimate the value of the transition probability P (sj | si, a), we take the
average of 100,000 samples from the posterior value pj | i,a. This procedure sets
the value of the transition probabilities proportionally to the number of times they
appeared in the data, however, it ensures that all transition probability values are
non zero and transitions between adjacent severity levels are much more likely to
happen. Moreover, we set the immediate reward for a pair of state and action (s, a)

68



40 45 50

Counterfactual outcome

0.0

0.1

0.2

0.3

P
ro

b
ab

il
it

y

Observed outcome

Avg. counterfactual

(a) Distribution of
counterfactual outcomes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Frequency of action changes per time step

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Observed severity level per time step

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Best counterfactual severity level per time step

(b) Action changes and
severity vs. t

(c) Unique counterfactual
action sequences

Figure 4.5: Insights provided by the optimal counterfactual policy π∗
τ for

one real patient who received cognitive behavioral therapy. Panel (a) shows
the distribution of the counterfactual outcomes o(τ ′) for the counterfactual realiza-
tions τ ′ induced by π∗

τ and Pτ . Panel (b) shows, for each time step, how frequently a
counterfactual action sequence changes the observed action as well as the observed
severity level and the severity level in the counterfactual realization with the highest
counterfactual outcome. Here, darker colors correspond to higher frequencies and
higher severities. Panel (c) shows the action changes in the unique counterfactual
action sequences (green) provided by π∗

τ along with the mean of counterfactual out-
comes (r) that each one achieves and how frequently (f) they appear across the
counterfactual realizations. Here, the bottom row shows the observed actions that
were changed by at least one of the counterfactual action sequences. Refer to Ap-
pendix B.3 for a definition of the actions (i.e., topics). In all panels, we set d = 1,000
and the results are estimated using 1,000 counterfactual realizations.

equal to r(s, a) = 5 − s ∈ {1, . . . , 5}, that is, the lower the patient’s severity level,
the higher the reward. Here, if some state-action pair (s, a) is never observed in the
data, we set its immediate reward to r(s, a) = −∞. This ensures that those state-
action pairs never appear in a realization induced by the optimal counterfactual
policy. Finally, to compute the counterfactual transition probability Pτ,t for each
realization τ ∈ T , we follow the procedure described in Section 4.1.1 with d = 1,000
samples for each noise posterior distribution.

Results. We first measure to what extent the counterfactual action sequences pro-
vided by the optimal counterfactual policy π∗

τ would have improved each patient’s
severity of depressive symptoms over time. To this end, for each observed realiza-
tion τ ∈ T corresponding to each patient, we compute the same quality metrics as
in experiments on synthetic data in Section 4.1.4. Fig. 4.4 summarizes the results.
Panel (a) reveals that, for most patients, the improvement in terms of relative differ-
ence between the average optimal counterfactual outcome ōπ∗

τ
(τ) and the observed

outcome o(τ) is rather modest. Moreover, panel (b) also shows that the absolute
average optimal counterfactual outcome ōπ∗

τ
(τ), averaged across patients, does not

increase significantly even if one allows for more changes k in the sequence of ob-
served actions. These findings suggest that, in retrospect, the choice of topics by
most therapists in the sessions was almost optimal. That being said, for 20% of the
patients, the average counterfactual outcome improves a ≥3 % over the observed
outcome and, as we will later discuss, there exist individual counterfactual realiza-
tions in which the counterfactual outcome improves much more than 3%. In that
context, it is also important to note that, as shown in panel (c), the growth in the
number of unique counterfactual action sequences with respect to k is weaker than
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the growth found in the experiments with synthetic data and, for k ≤ 4, the number
of unique counterfactual action sequences is smaller than 10. This latter finding
suggests that, in practice, it may be possible to effectively show, or summarize, the
optimal counterfactual action sequences, a possibility that we investigate next.

We focus on a patient for whom the average counterfactual outcome ōπ∗
τ
(τ)

achieved by the optimal policy π∗
τ with k = 3 improves 9.5% over the observed

outcome o(τ). Then, using the policy π∗
τ , also with k = 3, and the counterfactual

transition probability Pτ , we sample multiple counterfactual realizations τ ′ using
Algorithm 5 and look at each counterfactual outcome o(τ ′). Fig. 4.5a summarizes
the results, which show that, in most of these counterfactual realizations, the coun-
terfactual outcome is greater than the observed outcome—if at most k actions had
been different to the observed ones, as dictated by the optimal policy, there is a
high probability that the outcome would have improved. Next, we investigate to
what extent there are specific time steps within the counterfactual realizations τ ′

where π∗
τ is more likely to suggest an action change. Fig. 4.5b shows that, for the

patient under study, there are indeed time steps that are overrepresented in the opti-
mal counterfactual action sequences, namely t ∈ {10, 13, 16}. Moreover, the first of
these time steps (t = 10) is when the patient had started worsening their depression
after an earlier period in which they showed signs of recovery. Remarkably, we find
that, in the counterfactual realization τ ′ with the best counterfactual outcome, the
worsening is mostly avoided. Finally, we look closer into the actual action changes
suggested by the optimal counterfactual policy π∗

τ . Fig. 4.5c summarizes the re-
sults, which reveal that π∗

τ recommends replacing some of the sessions on cognitive
restructuring techniques (CRT) by behavioral activation (BHA) consistently across
counterfactual realizations τ ′, particularly at the start of the worsening period. We
discussed this recommendation with one of the researchers on clinical psychology
who co-authored [207] and told us that, from a clinical perspective, such recom-
mendation is sensible since, whenever the severity of depressive symptoms is high,
it is very challenging to apply CRT and instead it is quite common to use BHA.
Appendix C.3 contains additional insights about other patients in the dataset.

4.2 Sequential decisions in continuous state spaces

In the previous section, we have introduced a model of sequential decision making
in state spaces that are discrete and finite. However, in many real-life applications,
the state of the environment is inherently continuous in nature. For example, in
critical care, a clinician typically cares about variables affecting the health status
of a patient, such as blood pressure, body temperature, and respiratory rate [210].
Thus, in such cases, the state of the environment may be better described by a set
of multidimensional vectors than by a finite set of discrete states.

Here, we introduce an extension of the SCM presented in the previous section,
adapted to MDPs with continuous states. Specifically, we restrict our attention to
the class of bijective SCMs [211], which includes multiple models introduced in the
causal discovery literature [212–217]. In a bijective SCM, given an observed episode,
one can infer the exact values of the exogenous noise variables that led to this
particular realization of the transition dynamics (i.e., the posterior distribution is
concentrated on a single value). As a result, the counterfactual transition dynamics
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are deterministic. Hence, given an observed episode of a decision making process and
in contrast to the previous section, our goal here is to find a single action sequence
close to the observed one that maximizes the counterfactual outcome that would
have been achieved in retrospect.

Building on the characterization of sequential decision making described above,
we make the following contributions:

1. We formalize the problem of finding a counterfactually optimal action sequence
for a particular episode in environments with continuous states under the
constraint that it differs from the observed action sequence in at most k actions.

2. We show that the above problem is NP-hard using a novel reduction from
the classic partition problem [168]. This is in contrast to the polynomial time
complexity of the variant of the problem in environments with discrete states
that we have studied in the previous section.

3. We develop a search method based on the A∗ algorithm that, under a natural
form of Lipschitz continuity of the environment’s dynamics, is guaranteed to
return the optimal solution to the problem upon termination.

Finally, we evaluate the performance and qualitative insights of our method
by performing a series of experiments using real patient data from critical care.
The findings indicate that, despite the increased computational complexity of the
problem, the proposed method is very efficient in practice and has the poten-
tial to provide valuable insights for sequential decision making tasks. The code
used for all experiments in Section 4.2 is available at https://github.com/Networks-
Learning/counterfactual-continuous-mdp.

4.2.1 Modeling sequential decisions with bijective SCMs

At each time step t ∈ [T − 1]0, where T is a time horizon, the decision making
process is characterized by a d-dimensional vector state st ∈ S = Rd, an action
at ∈ A, where A is a finite set of m actions, and a reward r(st, at) ∈ R associated
with each pair of states and actions. Moreover, given an episode of the decision
making process, τ = {(st, at)}T−1

t=0 , the process’s outcome o(τ) =
∑

t r(st, at) is
given by the sum of the rewards. In the remainder, we will denote the elements of
a vector st as st,1, . . . , st,d.

Further, we characterize the dynamics of the decision making process using the
framework of structural causal models (SCMs) [71]. Similarly as in Section 4.1, the
endogenous variables of the SCM C are the random variables representing the states
S0, . . . ,ST−1 and the actions A0, . . . , AT−1. The action At at time step t is chosen
based on the observed state St and is given by a structural (policy) equation

At := gA(St,Zt), (4.11)

where Zt ∈ Z is a vector-valued noise variable, to allow some level of stochasticity
in the choice of the action, and its prior distribution P C(Zt) is characterized by a
density function fC

Zt
. Similarly, the state St+1 in the next time step is given by a

structural (transition) equation

St+1 := gS(St, At,Ut), (4.12)
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where Ut ∈ U is a vector-valued noise variable with its prior distribution P C(Ut)
having a density function fC

Ut
, and gS is the transition mechanism. Note that, in

Eq. 4.12, the noise variables {Ut}T−1
t=0 are mutually independent and, keeping the

sequence of actions fixed, they are the only source of stochasticity in the dynamics
of the environment. In other words, a sampled sequence of noise values {ut}T−1

t=0

and a fixed sequence of actions {at}T−1
t=0 result into a single (deterministic) sequence

of states {st}T−1
t=0 . This implicitly assumes that the state transitions are stationary

and there are no unobserved confounders. The causal graph G corresponding to the
SCM C is the same as the one presented in Fig. 4.1 in Section 4.1.

The above representation of sequential decision making using an SCM C is a
more general reformulation of a Markov decision process, where a (stochastic) policy
π(a | s) is entailed by Eq. 4.11, and the transition distribution (i.e., the conditional
distribution P (St+1 |St, At)) is entailed by Eq. 4.12. Specifically, the conditional
density function of St+1 |St, At is given by

pC(St+1 = s |St = st, At = at) = pC ; do[At=at](St+1 = s |St = st)

=

∫
u∈U

1[s = gS(st, at,u)] · fC
Ut
(u)du, (4.13)

where do[At = at] denotes a (hard) intervention on the variable At, whose value is
set to at. Here, the first equality holds because St+1 and At are d-separated by St

in the sub-graph obtained from G after removing all outgoing edges of At
5 and the

second equality follows from Eq. 4.12.
Moreover, as argued in Section 4.1, by using an SCM to represent sequential de-

cision making, instead of a standard MDP, we can answer counterfactual questions.
More specifically, assume that, at time step t, we observed the state St = st, we
took action At = at and the next state was St+1 = st+1. Retrospectively, we would
like to know the probability that the state St+1 would have been s′ if, at time step
t, we had been in a state s, and we had taken an action a, (generally) different from
st, at. Using the SCM C, we can characterize this by a counterfactual transition
density function

pC |St+1=st+1,St=st,At=at ; do[At=a](St+1 = s′ |St = s) =∫
u∈U

1[s′ = gS(s, a,u)] · fC |St+1=st+1,St=st,At=at
Ut

(u)du, (4.14)

where f
C |St+1=st+1,St=st,At=at
Ut

is the posterior distribution of the noise variable Ut

with support such that st+1 = gS(st, at,u).
In what follows, we will assume that the transition mechanism gS is continuous

with respect to its last argument and the SCM C satisfies the following form of
Lipschitz-continuity:

Definition 4.2.1. An SCM C is Lipschitz-continuous iff the transition mechanism
gS and the reward r are Lipschitz-continuous with respect to their first argument,
i.e., for each a ∈ A, u ∈ U , there exists a Lipschitz constant Ka,u ∈ R+ such
that, for any s, s′ ∈ S, ∥gS(s, a,u)− gS(s

′, a,u)∥ ≤ Ka,u ∥s− s′∥, and, for each
a ∈ A, there exists a Lipschitz constant Ca ∈ R+ such that, for any s, s′ ∈ S,
|r(s, a)− r(s′, a)| ≤ Ca ∥s− s′∥. In both cases, ∥·∥ denotes the Euclidean distance.

5This follows directly from the rules of do-calculus. For further details, refer to Chapter 3
of Pearl [71].
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Note that, although they are not phrased in causal terms, similar Lipschitz
continuity assumptions for the environment dynamics are common in prior work
analyzing the theoretical guarantees of reinforcement learning algorithms [218–226].
Moreover, for practical applications (e.g., in healthcare), this is a relatively mild
assumption to make. Consider two patients whose vitals s and s′ are similar at
a certain point in time, they receive the same treatment a, and every unobserved
factor u that may affect their health is also the same. Intuitively, Definition 4.2.1
implies that their vitals will also evolve similarly in the immediate future, that is,
the values gS(s, a,u) and gS(s

′, a,u) will not differ dramatically. In this context,
it is worth mentioning that, when the transition mechanism gS is modeled by a
neural network, it is possible to control its Lipschitz constant during training, and
penalizing high values can be seen as a regularization method [227, 228].

Further, we will focus on bijective SCMs [211], a fairly broad class of SCMs,
which subsumes multiple models studied in the causal discovery literature, such as
additive noise models [212], post-nonlinear causal models [213], location-scale noise
models [214] and more complex models with neural network components [215–217].

Definition 4.2.2. An SCM C is bijective iff the transition mechanism gS is bijective
with respect to its last argument, i.e., there is a well-defined inverse function g−1

S :
S × A × S → U such that, for every combination of st+1, st, at,ut with st+1 =
gS(st, at,ut), it holds that ut = g−1

S (st, at, st+1).

Importantly, bijective SCMs allow for a more concise characterization of the
counterfactual transition density given in Eq. 4.14. More specifically, after observing
an event St+1 = st+1,St = st, At = at, the value ut of the noise variable Ut can
only be such that ut = g−1

S (st, at, st+1), that is, the posterior distribution of Ut is a
point mass and its density is given by

f
C |St+1=st+1,St=st,At=at
Ut

(u) = 1[u = g−1
S (st, at, st+1)]. (4.15)

Then, for a given episode τ of the decision making process, we have that the (non-
stationary) counterfactual transition density is given by

pτ,t(St+1 = s′ |St = s, At = a) := pC |St+1=st+1,St=st,At=at ; do[At=a](St+1 = s′ |St = s)

=

∫
u∈U

1[s′ = gS(s, a,u)] · 1[u = g−1
S (st, at, st+1)]du

= 1
[
s′ = gS

(
s, a, g−1

S (st, at, st+1)
)]

. (4.16)

Since this density is also a point mass, the resulting counterfactual dynamics are
purely deterministic. That means, under a bijective SCM , the answer to the ques-
tion “What would have been the state at time t + 1, had we been at state s and
taken action a at time t, given that, in reality, we were at st, we took at and the
environment transitioned to st+1?” is just given by s′ = gS

(
s, a, g−1

S (st, at, st+1)
)
.

On the counterfactual identifiability of bijective SCMs. Very recently, Nasr-
Esfahany and Kiciman [229] have shown that bijective SCMs are in general not
counterfactually identifiable when the exogenous variable Ut is multi-dimensional.
In other words, even with access to an infinite amount of triplets (st, at, st+1) sam-
pled from the true SCM C, it is always possible to find an SCM C ′ ̸= C with
transition mechanism hS and distributions P C′

(Ut) that entails the same transition
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distributions as C (i.e., it fits the observational data perfectly), but leads to dif-
ferent counterfactual predictions. Although our subsequent algorithmic results do
not require the SCM C to be counterfactually identifiable, the subclass of bijective
SCMs we will use in our experiments in Section 4.2.4 is counterfactually identifiable.
The defining attribute of this subclass, which we refer to as element-wise bijective
SCMs, is that the transition mechanism gS can be decoupled into d independent
mechanisms gS,i such that St+1,i = gS,i(St, At, Ut,i) for i ∈ {1, . . . , d}. Formally:

Definition 4.2.3. An SCM C is element-wise bijective iff it is bijective and there
exist functions gS,i : R×A×R→ R with i ∈ {1, . . . , d} such that, for every combina-
tion of st+1, st, at,ut with st+1 = gS(st, at,ut), it holds that st+1,i = gS,i(st, at, ut,i)
for i ∈ {1, . . . , d}.

Note that, in an element-wise bijective SCM, it holds that St+1,i ⊥⊥ Ut,j |Ut,i,St, At

for j ̸= i, however, Ut,i, Ut,j do not need to be independent. Moreover, under our
assumption that the transition mechanism gS is continuous with respect to its third
argument, it is easy to see that, for any element-wise bijective SCM, the functions
gS,i are always strictly monotonic functions of the respective ut,i. Based on this
observation, we have the following theorem of counterfactual identifiability whose
proof follows a similar reasoning to proofs found in related work [132, 211]:6

Theorem 4.2.1. Let C and C ′ be two element-wise bijective SCMs with transition
mechanisms gS and hS, respectively, and, for any observed transition (st, at, st+1),
let ut = g−1

S (st, at, st+1) and ũt = h−1
S (st, at, st+1). Moreover, given any s ∈ S, a ∈

A, let s′ = gS(s, a,ut) and s′′ = hS(s, a, ũt). If P C(St+1 |St = s, At = a) =
P C′

(St+1 |St = s, At = a) for all s ∈ S, a ∈ A, it must hold that s′ = s′′.

4.2.2 Problem statement

Let τ be an observed episode of a decision making process whose dynamics are char-
acterized by a Lipschitz-continuous bijective SCM. To characterize the counterfac-
tual outcome that any alternative action sequence would have achieved under the cir-
cumstances of the particular episode, we build upon the formulation of Section 4.2.2,
and we define a non-stationary counterfactual MDPM+ = (S+,A, F+

τ,t, r
+, T ) with

deterministic transitions. Here, S+ = S × [T − 1]0 is an enhanced state space such
that each s+ ∈ S+ is a pair (s, l) indicating that the counterfactual episode would
have been at state s ∈ S with l action changes already performed. Accordingly, r+

is a reward function which takes the form r+((s, l), a) = r(s, a) for all (s, l) ∈ S+,
a ∈ A, that is, it does not change depending on the number of action changes already
performed. Finally, the time-dependent transition function F+

τ,t : S+ × A → S+ is
defined as

F+
τ,t ((s, l) , a) =

{(
gS
(
s, a, g−1

S (st, at, st+1)
)
, l + 1

)
if (a ̸= at)(

gS
(
s, at, g

−1
S (st, at, st+1)

)
, l
)

otherwise.
(4.17)

Intuitively, here we set the transition function according to the point mass of the
counterfactual transition density given in Eq. 4.16, and we use the second coordinate
to keep track of the changes that have been performed in comparison to the observed
action sequence up to the time step t.

6All proofs for Section 4.2 can be found in Appendix A.4.
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Now, given the initial state s0 of the episode τ and any counterfactual action
sequence {a′t}T−1

t=0 , we can compute the corresponding counterfactual episode τ ′ =
{(s′t, lt), a′t}T−1

t=0 . Its sequence of states is given recursively by

(s′1, l1) = F+
τ,0 ((s0, 0) , a

′
0) and(

s′t+1, lt+1

)
= F+

τ,0 ((s
′
t, lt) , a

′
t) for t ∈ [T − 1],

(4.18)

and o+(τ ′) =
∑

t r
+ ((s′t, lt) , a

′
t) =

∑
t r (s

′
t, a

′
t) is its counterfactual outcome.

Then, our ultimate goal is to find the counterfactual action sequence {a′t}T−1
t=0

that, starting from the observed initial state s0, maximizes the counterfactual out-
come subject to a constraint on the number of counterfactual actions that can differ
from the observed ones, that is,

maximize
a′0,...,a

′
T−1

o+(τ ′) subject to s′0 = s0 and
T−1∑
t=0

1[at ̸= a′t] ≤ k, (4.19)

where a0, . . . , aT−1 are the observed actions. Unfortunately, using a reduction from
the classic partition problem [168], the following theorem shows that we cannot hope
to find the optimal action sequence in polynomial time:

Theorem 4.2.2. The problem defined by Eq. 4.19. is NP-Hard.

The proof of the theorem relies on a reduction from the partition problem [168],
which is known to be NP-complete, to our problem, defined in Eq. 4.19. At a high-
level, we map any instance of the partition problem to an instance of our problem,
taking special care to construct a reward function and an observed action sequence,
such that the optimal counterfactual outcome o+(τ ∗) takes a specific value if and
only if there exists a valid partition for the original instance. The hardness result
of Theorem 4.2.2 motivates our subsequent focus on the design of a method that
always finds the optimal solution to our problem at the expense of a potentially
higher runtime for some problem instances.

4.2.3 An efficient method based on A* search

To deal with the increased computational complexity of the problem, we develop
an optimal search method based on the classic A∗ algorithm [230], which we have
found to be very efficient in practice. Our starting point is the observation that, the
problem of Eq. 4.19 presents an optimal substructure, that is, its optimal solution
can be constructed by combining optimal solutions to smaller sub-problems. For an
observed episode τ , let Vτ (s, l, t) be the maximum counterfactual reward that could
have been achieved in a counterfactual episode where, at time t, the process is at a
(counterfactual) state s, and there are so far l actions that have been different in
comparison with the observed action sequence. Formally,

Vτ (s, l, t) = max
a′t,...,a

′
T−1

T−1∑
t′=t

r(s′t′ , a
′
t′)

subject to s′t = s and
T−1∑
t′=t

1[at′ ̸= a′t′ ] ≤ k − l.
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(a) Search graph (b) Heuristic function
computation

Figure 4.6: Main components of our search method based on the A∗ al-
gorithm. Panel (a) shows the search graph for a problem instance with |A| = 2.
Here, each box represents a node v = (s, l, t) of the graph, and each edge represents
a counterfactual transition. Next to each edge, we include the action a ∈ A causing
the transition and the associated reward. Panel (b) shows the heuristic function
computation, where the two axes represent a (continuous) state space S = R2 and
the two levels on the z-axis correspond to differences in the (integer) values (l, t)
and (la, t + 1). Here, the blue squares correspond to the finite states in the anchor
set S† and (sa, la) = F+

τ,t ((s, l) , a).

Then, it is easy to see that the quantity Vτ (s, l, t), for all s ∈ S, l < k and t < T −1,
can be given by the recursive function

Vτ (s, l, t) = max
a∈A
{r(s, a) + Vτ (sa, la, t+ 1)} , (4.20)

where (sa, la) = F+
τ,t ((s, l) , a). In the base case of l = k (i.e., all allowed action

changes are already performed), we have Vτ (s, k, t) = r(s, at)+Vτ (sat , lat , t+ 1) for
all s ∈ S and t < T − 1, and Vτ (s, k, T − 1) = r(s, aT−1) for t = T − 1. Lastly, when
t = T − 1 and l < k, we have Vτ (s, l, T − 1) = maxa∈A r(s, a) for all s ∈ S.

Given the optimal substructure of the problem, one may be tempted to employ
a typical dynamic programming approach to compute the values Vτ (s, l, t) in a
bottom-up fashion. However, the complexity of the problem lies in the fact that,
the states s are real-valued vectors whose exact values depend on the entire action
sequence that led to them. Hence, to enumerate all the possible values that s might
take, one has to enumerate all possible action sequences in the search space, which
is equivalent to solving our problem with a brute force search. In what follows, we
present our proposed method to find optimal solutions using the A∗ algorithm, with
the caveat that its runtime varies depending on the problem instance, and it can be
equal to that of a brute force search in the worst case.

Casting the problem as graph search. We represent the solution space of our
problem as a graph, where each node v corresponds to a tuple (s, l, t) with s ∈ S,
l ∈ [k] and t ∈ [T ]0. Every node v = (s, l, t) with l < k and t < T − 1 has |A|
outgoing edges, each one associated with an action a ∈ A, carrying a reward r(s, a),
and leading to a node va = (sa, la, t + 1) such that (sa, la) = F+

τ,t ((s, l) , a). In the
case of l = k, the node v has exactly one edge corresponding to the observed action
at at time t. Lastly, when t = T −1, the outgoing edge(s) lead(s) to a common node
vT = (s∅, k, T ) which we call the goal node, and it has zero outgoing edges itself.
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Note that, the exact value of s∅ is irrelevant, and we only include it for notational
completeness.

Let s0 be the initial state of the observed episode. Then, it is easy to notice
that, starting from the root node v0 = (s0, 0, 0), the first elements of each node
vi on a path v0, . . . , vi, . . . , vT form a sequence of counterfactual states, and the
edges that connect those nodes are such that the corresponding counterfactual ac-
tion sequence differs from the observed one in at most k actions. That said, the
counterfactual outcome o+(τ) =

∑T−1
t=0 r(s′t, a

′
t) is expressed as the sum of the re-

wards associated with each edge in the path, and the problem defined by Eq. 4.19 is
equivalent to finding the path of maximum total reward that starts from v0 and ends
in vT . Fig. 4.6a illustrates the search graph for a simple instance of our problem.7

Unfortunately, since the states s are vectors of real values, even enumerating all the
graph’s nodes requires time exponential in the number of actions |A|, which makes
classic algorithms that search over the entire graph non-practical.

To address this challenge, we resort to the A∗ algorithm, which performs a more
efficient search over the graph by preferentially exploring only parts of it where we
have prior information that they are more likely to lead to paths of higher total
reward. Concretely, the algorithm proceeds iteratively and maintains a queue of
nodes to visit, initialized to contain only the root node v0. Then, at each step, it
selects one node from the queue, and it retrieves all its children nodes in the graph
which are subsequently added to the queue. It terminates when the node being
visited is the goal node vT . Algorithm 7 summarizes the procedure. Therein, we
represent each node v by an object with 4 attributes: (i) the “tuple” (s, l, t) of the
node, (ii) the total reward “rwd” of the path that has led the search from the root
node v0 to the node v, (iii) the parent node “par” from which the search arrived to
v, and (iv) the action “act” associated with the edge connecting the node v with
its parent. In addition to the queue of nodes to visit, the algorithm maintains a
set of explored nodes and adds a new node to the queue only if it has not been
previously explored. The algorithm terminates when the goal node is chosen to be
visited, that is, the “tuple” attribute of v has the format (∗, ∗, T ), where ∗ denotes
arbitrary values. Once the goal node vT has been visited, the algorithm reconstructs
and returns the action sequence that led from the root node v0 to the goal node.

The key element of the A∗ algorithm is the criterion based on which it selects
which node from the queue to visit next. Let vi = (si, li, t) be a candidate node in the
queue and rvi be the total reward of the path that the algorithm has followed so far
to reach from v0 to vi. Then, the A

∗ algorithm visits next the node vi that maximizes
the sum rvi + V̂τ (si, li, t), where V̂τ is a heuristic function that aims to estimate the
maximum reward that can be achieved via any path starting from vi = (si, li, t) and
ending in the goal node vT , that is, it gives an estimate for the quantity Vτ (si, li, t).
Intuitively, the heuristic function can be thought of as an “eye into the future” of
the graph search, that guides the algorithm towards nodes that are more likely to
lead to the optimal solution and the algorithm’s performance depends on the quality
of the approximation of Vτ (si, li, t) by V̂τ (si, li, t). Next, we will look for a heuristic
function that satisfies consistency. Formally, a heuristic function V̂τ is consistent iff,
for nodes v = (s, l, t), va = (sa, la, t + 1) connected with an edge associated with
action a, it satisfies V̂τ (s, l, t) ≥ r(s, a) + V̂τ (sa, la, t + 1) [231]. Given a consistent

7We would like to give credit to creators Freepik and vectorsmarket15 from flaticon.com whose
icons we have used to design Fig. 4.6a.
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Algorithm 7: Graph search via A∗

input : states S, actions A, observed action sequence {at}t=T−1
t=0 , horizon T ,

transition function F+
τ,t, reward function r, constraint k, initial state s0,

heuristic function V̂τ .
output : optimal counterfactual action sequence {a∗t }T−1

t=0

node v0 ← {tuple : (s0, 0, 0), rwd : 0, par : Null, act : Null}
stack action sequence← [ ]
queue Q← {root}
set explored← ∅
while True do

v ← argmaxv′∈Q{v′.rwd+ V̂τ (v
′.tuple)} // Next node to visit

Q← Q \ v
if v.tuple = (∗, ∗, T ) then

while v.par ̸= Null do
action sequence.push(v.act) // Retrieve final action sequence

v ← v.par

return action sequence

explored← explored ∪ {v} // Set node v as explored

if l = k then
availabe actions← {at}

else
availabe actions← A

for a ∈ available actions do
(s, l, t)← v.tuple
(sa, la)← F+

τ,t ((s, l) , a) // Identify v’s children nodes

va ← {tuple : (sa, la, t+ 1) , rwd : v.rwd+ r(s, a), par : v, act : a}
if va ̸∈ Q and va ̸∈ explored then

Q← Q ∪ {va} // Add them to the queue if unexplored

heuristic function, the A∗ algorithm as described above is guaranteed to return the
optimal solution upon termination [230].

Computing a consistent heuristic function. We first propose an algorithm
that computes the function’s values V̂τ (s, l, t) for a finite set of points such that
l ∈ [k], t ∈ [T − 1]0, s ∈ S† ⊂ S, where S† is a pre-defined finite set of states—an
anchor set—whose construction we discuss later. Then, based on the Lipschitz-
continuity of the SCM C, we show that these computed values of V̂τ are valid upper
bounds of the corresponding values Vτ (s, l, t) and we expand the definition of the
heuristic function V̂τ over all s ∈ S by expressing it in terms of those upper bounds.
Finally, we prove that the function resulting from the aforementioned procedure is
consistent.

To compute the upper bounds V̂τ , we exploit the observation that the values
Vτ (s, l, t) satisfy a form of Lipschitz-continuity, as stated in the following lemma:

Lemma 4.2.1. Let ut = g−1
S (st, at, st+1), Kut = maxa∈AKa,ut, C = maxa∈ACa

and the sequence L0, . . . , LT−1 ∈ R+ be such that LT−1 = C and Lt = C + Lt+1Kut

for t ∈ [T − 2]. Then, it holds that |Vτ (s, l, t) − Vτ (s
′, l, t)| ≤ Lt ∥s− s′∥, for all

t ∈ [T − 1]0, l ∈ [k] and s, s′ ∈ S.
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Algorithm 8: It computes upper bounds V̂τ (s, l, t) for the values Vτ (s, l, t)

input : states S, actions A, observed action sequence {at}t=T−1
t=0 , horizon T ,

transition function F+
τ,t, reward function r, constraint k, anchor set S†

output : upper bounds V̂τ

V̂τ (s, l, T − 1)← maxa∈A r(s, a) for s ∈ S†, l ∈ {0, . . . , k − 1}
V̂τ (s, k, T − 1)← r(s, at) for s ∈ S†
for t← T − 2 to 0 do

for l← k to 0 do
available actions← at if l = k else A
for s ∈ S† do

bounds← ∅
for a ∈ available actions do

/* Get the min bound for Vτ (sa, la, t+ 1) based on S† */

sa, la ← F+
τ,t ((s, l) , a)

Va ← mins†∈S†{V̂τ (s†, la, t+ 1) + Lt+1 ∥s† − sa∥}
bounds← bounds ∪ {r(s, a) + Va}

V̂τ (s, l, t)← max(bounds) // Get the max bound over the

actions

return V̂τ (s, l, t) for s ∈ S†, l ∈ [k], t ∈ [T − 1]0

Based on this observation, our algorithm proceeds in a bottom-up fashion and
computes valid upper bounds of the values Vτ (s, l, t) for all l ∈ [k], t ∈ [T − 1]0 and
s in the anchor set S†. To get the intuition, assume that, for a given t, the values

V̂τ (s, l, t+ 1) are already computed for all s ∈ S†, l ∈ [k], and they are indeed valid
upper bounds of the corresponding Vτ (s, l, t+ 1). Then, let (sa, la) = F+

τ,t ((s, l) , a)
for some s ∈ S† and l ∈ [k]. Since sa itself may not belong to the finite anchor

set S†, the algorithm uses the values V̂τ (s†, la, t + 1) of all anchors s† ∈ S† in

combination with their distance to sa, and it sets the value of V̂τ (s, l, t) in way that
it is also guaranteed to be a (maximally tight) upper bound of Vτ (s, l, t). Fig. 4.6b
illustrates the above operation. Algorithm 8 summarizes the overall procedure,
which is guaranteed to return upper bounds, as shown by the following proposition:

Proposition 4.2.1. For all s ∈ S†, l ∈ [k], t ∈ [T − 1]0, it holds that V̂τ (s, l, t) ≥
Vτ (s, l, t), where V̂τ (s, l, t) are the values of the heuristic function computed by Al-
gorithm 8.

Next, we use the values V̂τ (s, l, t) computed by Algorithm 8 to expand the
definition of V̂τ over the entire domain as follows. For some s ∈ S, a ∈ A, let
(sa, la) = F+

τ,t ((s, l) , a), then, we have that

V̂τ (s, l, t) =


0 t = T

max
a∈A′

r(s, a) t = T − 1

max
a∈A′

{
r(s, a) + min

s†∈S†

{
V̂τ (s†, la, t+ 1) + Lt+1 ∥s† − sa∥

}}
otherwise,

(4.21)

where A′ = {at} for l = k and A′ = A for l < k. Finally, the following theorem
shows that the resulting heuristic function V̂τ is consistent:
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Theorem 4.2.3. For any nodes v = (s, l, t), va = (sa, la, t + 1) with t < T − 1
connected with an edge associated with action a, it holds that V̂τ (s, l, t) ≥ r(s, a) +
V̂τ (sa, la, t + 1). Moreover, for any node v = (s, l, T − 1) and edge connecting it to
the goal node vT = (s∅, k, T ), it holds that V̂τ (s, l, T − 1) ≥ r(s, a) + V̂τ (s∅, k, T ).

Kick-starting the heuristic function computation with Monte Carlo an-
chor sets. For any s ̸∈ S†, whenever we compute V̂τ (s, l, t) using Eq. 4.21, the

resulting value is set based on the value V̂τ (s†, la, t+1) of some anchor s†, increased
by a penalty term Lt+1 ∥s† − sa∥. Intuitively, this allows us to think of the heuristic

function V̂τ as an upper bound of the function Vτ whose looseness depends on the
magnitude of the penalty terms encountered during the execution of Algorithm 8
and each subsequent evaluation of Eq. 4.21. To speed up the A∗ algorithm, note
that, ideally, one would want all penalty terms to be zero, i.e., an anchor set that in-
cludes all the states s of the nodes v = (s, l, t) that are going to appear in the search
graph. However, as discussed in the beginning of Section 4.2.3, an enumeration of
those states requires a runtime exponential in the number of actions.

To address this issue, we introduce a Monte Carlo simulation technique that
adds to the anchor set the observed states {s0, . . . , sT−1} and all unique states
{s′0, . . . , s′T−1} resulting by M randomly sampled counterfactual action sequences
a′0, . . . , a

′
T−1. Specifically, for each action sequence, we first sample a number k′

of actions to be changed and what those actions are going to be, both uniformly
at random from [k] and Ak′ , respectively. Then, we sample from [T − 1]0 the k′

time steps where the changes take place, with each time step t having a probability
Lt/

∑
t′ Lt′ to be selected. This biases the sampling towards earlier time steps, where

the penalty terms are larger due to the higher Lipschitz constants. As we will see
in the next section, this approach works well in practice, and it allows us to control
the runtime of the A∗ algorithm by appropriately adjusting the number of samples
M . We experiment with additional anchor set selection strategies in Appendix C.5.

4.2.4 Experiments on real data

Here, we evaluate our method using real patient data from MIMIC-III [232], a
freely accessible critical care dataset commonly used in reinforcement learning for
healthcare [233–236].8

Experimental setup. We follow the preprocessing steps of Komorowski et al. [234]
to identify a cohort of 20,926 patients treated for sepsis [237]. Each patient record
contains vital signs and administered treatment information in time steps of 4-hour
intervals. As an additional preprocessing step, we discard patient records whose
associated time horizon T is shorter than 10, resulting in a final dataset of 15,992
patients with horizons between 10 and 20.

To form our state space S = Rd, we use d = 13 features. Four of these features
are demographic or contextual and thus we always set their counterfactual values to
the observed ones. The remaining d̃ = 9 features are time-varying and include the
SOFA score [238]—a standardized score of organ failure rate—along with eight vital
signs that are required for its calculation. Since SOFA scores positively correlate
with patient mortality [239], we assume that each s ∈ S gives a reward r(s) equal

8All experiments for Section 4.2 ran on an internal cluster of machines equipped with 16 Intel(R)
Xeon(R) 3.20GHz CPU cores, 512GBs of memory and 2 NVIDIA A40 48GB GPUs.
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Figure 4.7: Computational efficiency of our method. Panels (a-c) show the
effective branching factor (pink-left axis) and the runtime of the A∗ algorithm (green-
right axis) against the Lipschitz constant Lh, the number of Monte Carlo samples
M and the number of action changes k, respectively. In Panel (a), we set M = 2000
and k = 3. In Panel (b), we set Lh = 1.0 and k = 3. In Panel (c), we set
Lh = 1.0 and M = 2000. In all panels, we set Lϕ = 0.1 and error bars indicate 95%
confidence intervals over 200 executions of the A∗ algorithm for 200 patients with
horizon T = 12.

to the negation of its SOFA value. Here, it is easy to see that this reward function is
just a projection of s, therefore, it is Lipschitz continuous with constant Ca = 1 for
all a ∈ A. Following related work [233, 234, 236], we consider an action space A that
consists of 25 actions, which correspond to 5× 5 levels of administered vasopressors
and intravenous fluids. Refer to Appendix B.4.1 for additional details on the features
and actions.

To model the transition dynamics of the time-varying features, we consider an
SCM C whose transition mechanism takes a location-scale form gS(St, At,Ut) =

h(St, At) + ϕ(St, At) ⊙ Ut, where h, ϕ : S × A → Rd̃, and ⊙ denotes the element-
wise multiplication [214, 216]. Notably, this model is element-wise bijective and
hence it is counterfactually identifiable, as shown in Section 4.2.1. Moreover, we
use neural networks to model the location and scale functions h and ϕ and enforce
their Lipschitz constants to be Lh and Lϕ, respectively. This results in a Lipschitz
continuous SCM C with Ka,u = Lh+Lϕmaxi |ui|. Further, we assume that the noise
variable Ut follows a multivariate Gaussian distribution with zero mean and allow
its covariance matrix to be a (trainable) parameter.

We jointly train the weights of the networks h and ϕ and the covariance matrix of
the noise prior on the observed patient transitions using stochastic gradient descent
with the negative log-likelihood of each transition as a loss. In our experiments, if not
specified otherwise, we use an SCM with Lipschitz constants Lh = 1.0, Lϕ = 0.1 that
achieves a log-likelihood only 6% lower to that of the best model trained without any
Lipschitz constraint. Refer to Appendix B.4.2 for additional details on the network
architectures, the training procedure and the way we enforce Lipschitz continuity.

Results. We start by evaluating the computational efficiency of our method against
(i) the Lipschitz constant of the location network Lh, (ii) the number of Monte Carlo
samples M used to generate the anchor set S†, and (iii) the number of actions k that
can differ from the observed ones. We measure efficiency using running time and the
effective branching factor (EBF) [230]. The EBF is defined as a real number b ≥ 1
such that the number of nodes expanded by A∗ is equal to 1+b+b2+ · · ·+bT , where
T is the horizon, and values close to 1 indicate that the heuristic function is the most
efficient in guiding the search. Fig. 4.7 summarizes the results, which show that our
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Figure 4.8: Retrospective analysis of patients’ episodes. Panel (a) shows the
average counterfactual improvement as a function of k for a set of 200 patients with
horizon T = 12, where error bars indicate 95% confidence intervals. Panel (b) shows
the distribution of counterfactual improvement across all patients for k = 3, where
the dashed vertical line indicates the median. Panel (c) shows the observed (solid)
and counterfactual (dashed) SOFA score across time for a patient who presents
a 19.9% counterfactual improvement when k = 3. Upward (downward) arrows
indicate action changes that suggest a higher (lower) dosage of vasopressors (V) and
fluids (F). In all panels, we set M = 2000.

method maintains overall a fairly low running time that decreases with the number
of Monte Carlo samples M used for the generation of the anchor set and increases
with the Lipschitz constant Lh and the number of action changes k. That may
not come as a surprise since, as Lh increases, the heuristic function becomes more
loose, and as k increases, the size of the search space increases exponentially. To
put things in perspective, for a problem instance with Lh = 1.0, k = 3 and horizon
T = 12, the A∗ search led by our heuristic function is effectively equivalent to an
exhaustive search over a full tree with 2.112 ≈ 7,355 leaves while the corresponding
search space of our problem consists of more than 3 million action sequences—more
than 3 million paths to reach from the root node to the goal node.

Next, we investigate to what extent the counterfactual action sequences gen-
erated by our method would have led the patients in our dataset to better out-
comes. For each patient, we measure their counterfactual improvement—the rela-
tive decrease in cumulative SOFA score between the counterfactual and the observed
episode. Figs. 4.8a and 4.8b summarize the results, which show that: (i) the av-
erage counterfactual improvement shows a diminishing increase as k increases; (ii)
the median counterfactual improvement is only 5%, indicating that, the treatment
choices made by the clinicians for most of the patients were close to optimal, even
with the benefit of hindsight; and (iii) there are 176 patients for whom our method
suggests that a different sequence of actions would have led to an outcome that is
at least 15% better. That said, we view patients at the tail of the distribution as
“interesting cases” that should be deferred to domain experts for closer inspection,
and we present one such example in Fig. 4.8c. In this example, our method suggests
that, had the patient received an early higher dosage of intravenous fluids while
some of the later administered fluids where replaced by vasopressors, their SOFA
score would have been lower across time. Although we present this case as purely
anecdotal, the counterfactual episode is plausible, since there are indications of de-
creased mortality when intravenous fluids are administered at the early stages of a
septic shock [240].
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4.3 Chapter conclusions

In this chapter, we have explored the problem of counterfactually analyzing observed
episodes of sequential decision making processes. To this end, we have built upon the
frameworks of Markov decision processes and structural causal models, and we have
introduced efficient algorithms to find counterfactually optimal action sequences in
environments described by discrete and continuous state spaces. Through experi-
ments with synthetic and real datasets, we have demonstrated that these methods
offer valuable insights for decision making processes under uncertainty and can serve
as a useful tool for domain experts in identifying key time steps and actions within
an episode for further (manual) inspection.

Our work opens several avenues for future work. First, our modeling approach
assumes no unobserved confounding in the decision making processes and that the
Markov property holds. Developing methods to find approximately optimal coun-
terfactual action sequences in SCMs representing partially observable MDPs [125]
and general SCMs with unobserved confounding [129] would be a direction worth
exploring.

Additionally, while we have learned SCMs from data for our experiments, SCMs
are not (counterfactually) identifiable in general [197, 229]. A potential solution
to this problem would be to design SCMs that incorporate knowledge from obser-
vational interventional data, along with domain knowledge from human experts,
in the form of predictions about counterfactual outcomes from alternative action
sequences for observed episodes. This approach would align (learned) SCMs with
domain experts’ intuition, thereby enhancing their reliability for making counter-
factual predictions. Developing the modeling and methodological toolkit to enable
this approach would be an exciting direction for future work.

Finally, an important next step is to evaluate our proposed methods through
interventional experiments with human experts. Conducting empirical studies to
assess the utility of counterfactually optimal action sequences as a learning signal in
domains such as cognitive behavioral therapy and critical care would provide valu-
able insights into their effectiveness. Such studies could also explore how learning
from counterfactual predictions impacts broader decision making pipelines, shed-
ding light on the potential for collaboration between algorithmic tools and domain
expertise.
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Chapter 5

Understanding responsibility
judgments in human-AI teams

AI systems are increasingly being used to help humans make better decisions in
a variety of application areas such as healthcare, finance, and transportation. In
healthcare, AI recommendations influence physician treatment decisions [241]; in
finance, AI algorithms provide market predictions that inform critical business deci-
sions [5]; in transportation, AI systems have an increasing effect on driver behavior
through their route recommendations and semi-autonomous driving capabilities [3].
However, as this mixture of human and machine decisions becomes more common,
it also becomes unclear who is responsible for the outcomes of those decisions. If
a driver decides to handle control of their car to an AI system before a challenging
intersection and the car is involved in an accident, who is responsible?

Questions about responsibility are ubiquitous in our daily lives, and humans
make intuitive judgments about responsibility even in complex situations like the
one described above. Cognitive scientists have developed and tested different theo-
ries about the cognitive process that underpins responsibility judgments [72, 73, 242,
243]. However, the increasing development of AI systems that assist and collaborate
with humans, rather than replacing them [57, 60–62, 75–78], calls for more empir-
ical and theoretical research to shed light on the way humans make responsibility
judgments in situations involving human-AI teams [79]. Recent work in that area
has identified several factors that influence responsibility judgments [145, 146, 244].
However, these works have not attempted to characterize the underlying cognitive
process that supports such judgments. In this chapter, we take a step towards
filling this gap by introducing a computational model to predict and understand
responsibility judgments for human-AI teams in environments where the two agents
collaborate, act sequentially, and influence each other’s decisions.

Existing theories on the cognitive process of responsibility attribution have es-
tablished strong ties to causality [71] and counterfactual reasoning [70, 192, 245].
Humans tend to consider an object, event, action, or agent as (causally) responsible
for an outcome if they can mentally simulate an alternative reality where that out-
come would have been different if the candidate cause had not existed or occurred
in the first place [72, 74, 135–143]. In this chapter, we build upon recent work
on the counterfactual simulation model (CSM) [193, 246], a computational model
that accurately predicts the extent to which people perceive an object (e.g., a mov-
ing billiard ball) as a cause of an observed outcome (e.g., potting another ball).
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Specifically, using a physics engine to approximate people’s intuitive understanding
of physics [247, 248], the model performs (stochastic) simulations of counterfactual
situations where the candidate cause (e.g., the moving billiard ball) is removed from
the scene or slightly perturbed. Then, it predicts participants’ causal judgments
based on the estimated probability that the outcome would have been different had
the respective intervention on the candidate cause taken place.

More recently, Wu et al. [140, 249] have explored extensions of the CSM in social
settings using Markov decision processes (MDPs) [119] as generative models of agent
behavior. Reminiscent of the results in the physical domain, they have shown that
the CSM predicts people’s judgments about the extent that a decision of an agent
caused an outcome based on counterfactual simulations where that agent has made
a different decision [249]. However, in the context of responsibility attribution, the
shift of focus from physical objects to agents introduces additional complexity, since
an agent’s actions are conditioned on their epistemic state (i.e., the knowledge and
information they have) [137, 142, 250, 251]. To explore this further, Wu et al.
[140] have experimented with a gridworld environment where an agent is trying to
achieve an outcome in the presence of a second (potentially adversarial) agent. They
have proposed an extension of the CSM that additionally models the first agent’s
belief about the second agent’s intention and explains responsibility judgments by
combining counterfactual simulations with intention inferences [252].

Here, we further extend the CSM by developing and experimenting with a styl-
ized but rich semi-autonomous driving environment, where a (simulated) human and
an AI agent collaborate towards a common objective. A distinctive feature of the
setting we focus on is that the two agents share the same goal but have partial and
differing knowledge about elements of the physical environment they operate in. As
a result, they hold different beliefs about the state of the world, which they update
either via direct observations or via inferences from each other’s actions [253]. More-
over, the two agents take a series of interdependent actions, and their relationship
is asymmetric, with the human having (some) control over the actions of the AI
which, in turn, plays an assistive role. We start by formalizing this environment
using decentralized partially observable Markov decision processes. Based on this
formulation, we make the following contributions:

1. We propose a model of responsibility for the human and the AI that relies on
counterfactual simulations to estimate how unexpected an agent’s action was
and what would have happened had each agent acted differently.

2. We conduct an (online) human-subject study to assess how well our proposed
model predicts participants’ responsibility judgments concerning the human
and AI agents in various simulation scenarios from our driving environment.

Our analysis indicates that participants’ responsibility judgments about the hu-
man are influenced by counterfactuals and are well-captured by our model. On
the other hand, a simpler model, based solely on the actual contribution to the
outcome, effectively captures responsibility judgments about the AI. The code for
the simulation environment, the interface of the online study, and all data collected
during the study described in Chapter 5 are available at https://github.com/cicl-
stanford/responsibility sequential.
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5.1 Computational model

We develop a 2D gridworld environment that simulates and illustrates stylized cases
of commute. Below, we start by providing a high-level description of our environ-
ment. Then, we formalize its main elements, and we introduce a generative model
of agent behavior. Building upon that, we propose a model to predict responsibility
judgments about the human and the AI agent in individual commutes.

5.1.1 Environment description

Consider the illustration in Fig. 5.1: The two agents (human & AI) are in a car,
which is initially placed at the bottom left corner of an 8× 8 grid consisted of black
and white (road) tiles.1 The grid is known to both agents a priori and they both
share a common goal – to reach the human’s workplace at the top right corner within
a given time limit. The simulation proceeds in time steps and, at each time step,
the car is controlled either by the AI or the human. The agent who is in control can
move the car horizontally or vertically by one tile per time step. Moving to a tile is
possible only if it is white (i.e., a road) and it is not blocked by a road closure or an
accident. The grid may also contain traffic spots that are either congested or not
congested for the entire commute, with congested ones causing the car to remain
idle for 10 time steps.

Each agent has only partial knowledge of potential obstacles in the environment.
The human knows about road closures and the locations of the traffic spots but not
about their congestion status. The AI knows everything about traffic spots but it
is unaware of road closures. Lastly, accidents may appear randomly on any tile,
and they are unknown to both of them. Each agent discovers a previously unknown
obstacle only once it enters their field of view surrounding the car.

The two agents collaborate with each other by switching control of the car.
One of them starts driving and, at a randomly chosen time step, the AI asks the
human whether they want to switch control for the remainder of the commute. If
the AI is driving, it requests confirmation to continue; if the human is driving, the
AI asks whether it should take control of the car. The human decides based on
the information they have about the environment at the time, and we refer to this
decision as the switching decision. The agent who is in control after that point drives
until they reach the workplace (success) or until time runs out (failure).

5.1.2 Formal framework

Our environment can be described using the framework of decentralized partially
observable MDPs [139, 153, 154]. Therein, an episode unfolds over T time steps
(here, the time limit to reach the workplace) and includes more than one agent (here,
the human and the AI) who act independently. At each time step t, the process
is characterized by a state st ∈ S and, in our case, contains information about
the world such as the location of the car and the identity of the current driver.
The two agents take actions aH,t ∈ AH , aAI,t ∈ AAI , that correspond to doing
nothing (null), moving on the grid (e.g., left), offering or accepting/rejecting

1We would like to give credit to creators Freepik, Creartive, Smashicons, surang and juicy fish
from flaticon.com whose icons we have used to design our experiment.
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(a) The AI starts driving, unaware
of the road closure

(b) The AI asks for confirmation to
go right and Jane rejects

(c) Jane takes control of the car but
encounters an accident

(d) Time runs out and they fail to
reach the workplace

Figure 5.1: Illustration of a commute in our semi-autonomous driving envi-
ronment. The human agent (Jane) and the AI are both in the same car and their
goal is to reach the workplace within the time limit shown above the grid. The sign

indicates that the AI is in control. The grid contains three traffic spots, one con-
gested ( ) and two non congested ( ), whose status is initially known only to the AI.
It also contains a road closure ( ) which is known to the human but unknown to the
AI. Obstacles that are unknown to the agent in control but known to the other agent
appear faded. The arrow signs marked on the car (e.g., ) indicate the direction that
the driver in control is planning to follow. The 3×3 rectangle around the car repre-
sents the agents’ field of view via which they discover obstacles that are previously
unknown to them. Here, the accident ( ) present at the top row of the grid becomes
visible only after the car goes next to it and it enters the agent’s field of view.
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to switch control and combinations thereof. For example, whenever the AI is in
control, it can choose to move left & ask (for confirmation). The human either
approves (¬switch) or takes over (switch) and drives themselves. A function
fS : S ×AH ×AAI → S controls the (deterministic) transitions between states and,
at each time step, the agents receive a numerical reward – a positive value if the car
has reached the workplace and −1 otherwise. Their goal is to maximize their total
reward. Moreover, each agent is characterized by a belief Pagent about the state of
the world and takes actions a sampled from a (stochastic) policy πagent(a |Pagent).
We dive deeper into agents’ beliefs and policies next.

Beliefs & observations. Here, we focus on the agents’ beliefs and their (partial)
observability model, which form the basis for our generative model of agent behavior
and the responsibility model we present next. The two agents start with their own
prior beliefs, formalized as two distributions PH , PAI over all states in S, where
the uncertainty originates from their partial knowledge about obstacles (i.e., traffic
spots, road closures, accidents) that may be present on the grid.

Since the human is aware of road closures, their prior belief has zero probability
on states s whose road closures do not match with the true state s0. Moreover, since
accidents are unexpected, we set the prior probability of any state that contains an
accident to a negligible amount close to zero.2 To model the human’s ignorance
about the congestion status of K usual traffic spots in the grid, we set their prior
uniformly over states corresponding to the 2K different combinations of congestion
status. The AI’s prior is defined in a similar way, ensuring that the AI knows the true
congestion status of traffic spots but ignores potential road closures and accidents.

At each time step, the two agents receive an observation ot = fov(st) that
includes all the obstacles within their field of view. Based on this observation, both
agents update their beliefs about the state of the world by eliminating any state
that would contradict their field of view, that is,

Pagent(s |ot) ∝ 1 [ot = fov(s)] · Pagent(s) ∀s ∈ S,
where 1[·] denotes the indicator function. Moreover, whenever the AI is in control of
the car, the human receives an enhanced observation ot = (fov(st), aAI,t) that also
includes the AI’s action. Motivated by prior work that models action understanding
as Bayesian inverse planning [253, 254], we assume that they update their belief
about the congestion status of the traffic spots based on the direction that the AI
intends to move. Let aAI,t = d denote a movement in direction d (e.g., d = left)
and πH be the human’s policy. The human performs a Bayesian update on their
belief by considering the likelihood that they would have chosen direction d if they
had the same belief as the AI. Formally, let P̃AI be a function that takes as input
a state s and returns a belief (i.e., a distribution over states) oblivious to any road
closures in s that have not yet entered the agents’ field of view. The human’s
Bayesian update, as described above, takes the form

PH(s | aAI,t = d) ∝ πH

(
d | P̃AI (s)

)
· PH(s) ∀s ∈ S.

Generative model of agent behavior. Similar to prior work, we consider the
human and the AI to behave as approximate planners [140, 249], who tend to take

2This assumption implies that the human is aware that, in principle, an accident can exist in
some part of the grid, but the possibility is so unlikely that it can be effectively ignored during
planning.
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the shortest path to the workplace whenever they are in control of the car. We
assume that they choose a direction with a probability inversely proportional to
eta(d |Pagent), that is, the time they expect they will need to reach the workplace if
their next movement is in direction d. To compute eta(d |Pagent), we run Dijkstra’s
algorithm [255] on a graph whose nodes correspond to tiles of the grid and edge
weights represent the time required to move from one tile to the other averaged over
states following from the agent’s belief Pagent. Then, an agent’s policy is given by
the softmax

πagent(d |Pagent) ∝ e−τ ·eta(d |Pagent). (5.1)

Whenever the AI is in control, it selects a movement direction (e.g., left)
and, with a probability pswitch, it may also ask the human for confirmation (e.g.,
left & ask). If the human is in control, the AI decides between asking the human
to switch or doing nothing, again with probability pswitch.

When the human encounters a prompt by the AI, they have to make a switch-
ing decision, that is, to decide whether they or the AI will drive the second half of
the commute. We assume they behave rationally and they choose between the
two options proportionally to their probability of a successful outcome S. Let
P (S |PH , switch), P (S |PH ,¬switch) be the success probability estimates of the
human for each option. We assume that the human estimates these via Monte Carlo
simulations. For the option that corresponds to them driving the second half, they
perform L simulations of their driving behavior using Eq. 5.1 and compute the to-
tal success rate. For the option involving the AI, they sample L possible states
s ∼ PH and, for each sample, they simulate the AI’s driving using Eq. 5.1 and the
belief P̃AI(s) introduced earlier. Based on the estimated probabilities of success, the
human makes a (stochastic) decision asw ∈ {switch,¬switch} using the softmax

πH(asw |PH) ∝ eθ·P (S |PH ,asw). (5.2)

We consider a switching decision asw to be right when it is the one maximizing
the probability of success from the point of view of the human, that is, asw =
argmaxa∈{switch,¬switch}P (S |PH , a) and wrong otherwise.

5.1.3 Responsibility model

Given a commute instance generated by our environment, we predict responsibility
judgments as a function of probabilities estimated by performing counterfactual
simulations that use the aforementioned generative model. In our experiment, we
focus on failure instances and thus, the counterfactual probabilities we consider here
focus on counterfactual successes.

Human responsibility. We predict that participants hold the human responsi-
ble for an observed failure relative to the extent that they would have succeeded
had they made a different switching decision. Let asw denote the observed switch-
ing decision of the human and PH be their belief at the moment the AI asked
them to switch control. Then, we write the counterfactual probability of success as
P (S | asw, do[¬asw]), where do[·] denotes a counterfactual intervention [71]. Due to
the multiplicity of counterfactual interventions in sequential decision-making and
the varying sensitivity of responsibility to each intervention’s expectancy [136, 256],
our model also considers the extent to which the alternative switching decision was
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expected. We will refer to this quantity as counterfactual expectancy, and we assume
it is given by πH(¬asw |PH) and is proportional to the likelihood of success associ-
ated with the alternative decision (see Eq. 5.2). Our responsibility model considers
the effects of the two factors both individually and jointly:

rH = α1 + α2πH(¬asw |PH) + α3P (S | asw, do[¬asw])
+ α4πH(¬asw |PH) · P (S | asw, do[¬asw]) (5.3)

AI responsibility. Our proposed model for the AI predicts that participants hold
the AI responsible for an observed failure relative to the extent that the two agents
would have succeeded if the AI had not assisted at all, and we write that coun-
terfactual probability as P (S |AI, do[¬AI]). Moreover, since the AI plays a more
supportive role, we assume the participants’ primary responsibility judgment is for
the human, and the AI responsibility is complementary to the former. Let 1[AI]
denote the event that the AI drove for at least one tile. Then, our responsibility
model takes the form

rAI = β1 + β21[AI]P (S |AI, do[¬AI]) + β3(rmax − rH). (5.4)

5.2 Human-subject study

Our experiment asks participants to assign responsibility in a human-AI collabora-
tion task (see Figure 5.1). We compare participants’ responsibility judgments to the
predictions of our responsibility model as well as a set of alternative models.

5.2.1 Methods

Participants. The experiment was preregistered3 and conducted online via Pro-
lific.4 We recruited 50 participants (age: M = 37, SD = 12; gender : 31 female,
18 male, and 1 undisclosed; race: 5 Asian, 2 African American, 4 Multiracial, 38
White, and 1 undisclosed) who received $12/hour.
Procedure. Participants were introduced to the semi-autonomous driving environ-
ment and the behavior of the two agents within it. They were asked 6 comprehension
questions that they had to answer correctly before proceeding to the main exper-
iment. The experiment consisted of 16 trials where the agents failed to reach the
target destination on time.

On each trial, participants first watched an interactive step-by-step illustration
of the respective commute, and then, they were asked to provide responsibility
judgments while watching a video replay of the commute. The two questions (“to
what extent is the [human / AI] responsible for not reaching on time?”) were
presented separately, and participants provided their responses with two continuous
sliders ranging from 0 (“Not at all”) to 100 (“Very much”). The average completion
time of the experiment was 21 minutes (SD = 10).

Design. The 16 trials of our experiment consist of 8 twin trials : pairs of trials
where the observed commutes are exactly the same, but a small difference between

3The preregistration can be found at https://osf.io/5ajzd.
4https://www.prolific.com
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Figure 5.2: Examples of twin trials and human responsibility judgments.
Each illustration shows a joint summary of two trials whose observed paths, out-
comes, and decisions made by the agents are exactly the same. The grids of the two
trials differ only in the congestion status of traffic spots illustrated as half colored
( ). In the trial where the traffic spot is not congested, had the human made a
different switching decision, the agent who would have driven the second half would
have reached the workplace on time following the dashed line. In the trial where
the traffic spot is congested, the counterfactual outcome would have been a failure,
same as the observed outcome. The figure below each illustration shows participants’
judgments about the human’s responsibility in the two twin trials. Colored points
show means, and error bars show bootstrapped 95% confidence intervals. Each pair
of gray points connected with a line shows the judgments of a single participant
across the two twin trials.
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the two grids alters the counterfactual outcome that would have occurred had the
human made a different switching decision (see Fig. 5.2 for examples). To ensure
participants do not recognize twin trials, we mirrored the twin gridworlds on the
diagonal. The 8 twin trials manipulate 3 main factors: (i) whether the AI or the
human is the initial driver, (ii) whether they switch control, and (iii) whether the
decision of the human (not) to switch control was right or wrong at the moment
that it was made. We will refer to that last factor as the human’s decision quality,
and we consider a decision to be right if the human believes that it leads to a higher
probability of success (see Eq. 5.2). Across all trials, the path that each agent follows
was sampled from our generative model given by Eq. 5.1. To manipulate factors (ii)
and (iii), we generated switching decisions manually.

5.2.2 Results and discussion

Do counterfactual outcomes influence human responsibility judgments?
We investigate to what extent the way participants assign responsibility to the hu-
man differs depending on whether they would have reached the workplace on time
had they made a different switching decision. To this end, we focus on pairs of
twin trials and perform the following analysis. Let rH(p, tw[S]) and rH(p, tw[F ])
denote the responsibility that a participant p assigns to the human in two twin
trials with a counterfactual success (S) and failure (F), respectively. We denote as
∆H(p, tw) = rH(p, tw[S]) − rH(p, tw[F ]) their difference. To quantify the effect of
counterfactual outcomes on responsibility judgments, we fit a Bayesian linear mixed
effects model with a fixed global intercept and random coefficients for each partici-
pant and pair of trials (i.e., ∆H ∼ 1+ (1 | p)+ (1 | tw)).5 We observe that the global
intercept’s posterior mean is positive and equal to 6.48 (95% CI: [−0.75, 13.78]),
which indicates that counterfactuals have a moderate effect on participants’ judg-
ments. To better understand this effect consider the examples in Fig. 5.2. Many
(but not all) participants hold the human more responsible for failing to reach on
time whenever a different switching decision would have made a difference in the
outcome. However, participants’ judgments vary considerably, with some of them
assigning equal or slightly less responsibility to the human.

Does the human’s decision quality make a difference to responsibility
judgments? We first look at the average responsibility assigned to the human
and the AI across trials where the human’s switching decision is right and wrong,
respectively. Fig. 5.3a shows that the AI’s average responsibility remains the same
independently of the human’s decision quality, while the human’s responsibility
increases when their decision was wrong. Moreover, we observe that, across all
trials, participants hold the human more responsible than the AI for not reaching
the workplace on time.

Additionally, we explore whether the effect of counterfactual outcomes on human
responsibility judgments ∆H varies depending on the quality of the switching deci-
sion. To test this, we use a dummy variable called decision, and set its value to 0 if
the human’s switching decision was right and 1 if it was wrong. We fit a Bayesian
linear mixed effects model that includes an additional coefficient measuring the effect
of the new variable (i.e., ∆H ∼ 1+decision+(1+decision | p)+(1 | tr)). We observe

5We use the R formula notation to express mixed effects models concisely. For further details,
refer to [257, 258].
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Figure 5.3: Effects of decision quality. In panel (a), error bars indicate boot-
strapped 95% confidence intervals. In panel (b), dashed lines show the means of the
two distributions, and shaded areas illustrate 95% confidence intervals.
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Figure 5.4: Responsibility judgments and model predictions per trial. Each
point corresponds to one of our 16 trials, with the x-value showing the respective
model prediction and the y-value showing the participants’ average responsibility
judgment. Different panels show results for the human and the AI under three
models: (i) a simple model based on each agent’s actual contribution to the outcome,
(ii) an extension of the first model that also considers each trial’s difficulty, and (iii)
our proposed models given by Eqs. 5.3, 5.4. Across all panels, error bars indicate
bootstrapped 95% confidence intervals.

that the mean for the posterior of the fixed coefficient of decision is positive and
equal to 7.27 (95% CI: [−5.67, 22.94]). While its positive value indicates that partic-
ipants may focus more on counterfactual outcomes whenever the observed switching
decision was wrong, the effect is weak (the credible interval does not exclude 0).
This can also be seen by looking directly at the distributions of ∆H across pairs of
twin trials with right and wrong decisions respectively (see Figure 5.3b). The two
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distributions are concentrated around zero but, in the case of wrong decisions, the
distribution has a relatively larger mass on the positive side.

How well do the responsibility models capture participants’ judgments?
We start by estimating the required probabilities πH(¬asw |PH), P (S | asw, do[¬asw])
and P (S |AI, do[¬AI]) that are associated with each trial. We fix the hyperparam-
eters τ and θ to the values 2 and 8 respectively and perform 300 Monte Carlo
simulations in each grid. Then, we use the estimated probabilities along with par-
ticipants’ responsibility judgments to fit two Bayesian linear mixed effects models
that take the form of Eqs. 5.3, 5.4 while also including random intercepts for individ-
ual participants. Additionally, we fit two baseline models that use simple heuristics.
The first one assigns responsibility proportional to the respective agent’s actual con-
tribution to the outcome, measured as the number of time steps that the agent was
in control of the car. For the human, we fit a model of the form rH ∼ 1+TH+(1 | p),
where TH denotes the number of time steps that the human was in control and p
denotes an individual participant. Similarly, for the AI, we fit a model of the form
rAI ∼ 1 + TAI + (1 | p), where TAI is the number of time steps that the AI was in
control. The second baseline model is an extension of the first that includes the
difficulty of the respective grid as an additional term, measured as the total number
of obstacles (i.e., road closures, traffic spots, and accidents).

To evaluate the different models, we first compare their average predictions per
trial. Fig. 5.4 shows the averaged model predictions per trial against participants’
judgments. Our human responsibility model has the lowest RMSE and the highest
correlation coefficient compared to the two baselines. In contrast, we observe that
participants’ judgments about the AI are best captured by the actual contribution
model, although they didn’t vary much across trials.

Because the models differ in their number of free parameters, we also compare
them via approximate leave-one-out cross-validation [259] along with lesioned models
that only contain individual components of our human responsibility model (i.e.,
each additive term in Eq. 5.3). In total, we compare six models: (i) counterfactual
expectancy, (ii) counterfactual probability of success, (iii) additive effect of (i, ii),
(iv) multiplicative effect of (i, ii), (v) actual contribution, and (vi) our full model
given by Eq. 5.3. Table 5.1 summarizes the results, which show that our model
performs best overall. However, we observe that, when running cross-validations on
individual participant responses, the actual contribution model best captures the
most participants, followed by the model based on counterfactual expectancy.

Table 5.1: Model comparison. ∆elpd shows the difference in expected log point-
wise predictive density between each global model and the best performing model,
with the values in parentheses indicating standard error. Lower values indicate worse
performance. N -best shows the number of participants best captured by each model.

Model ∆elpd (se) N -best
our model 0 (0) 3
additive effect −2.4 (2.6) 7
counterfactual expectancy −5.0 (3.6) 11
multiplicative effect −27.5 (8.0) 5
actual contribution −46.3 (11.1) 21
counterfactual prob. of success −54.8 (10.5) 3
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5.3 Chapter conclusions

In this chapter, we have studied responsibility judgments in sequential human-AI
collaboration, using semi-autonomous driving as an example. We developed an
environment that simulates commutes to work via a generative model of human-AI
behavior and collaboration. Additionally, we introduced a model of responsibility
based on counterfactual simulations sampled from this generative model. Through
a human-subject study, we found that responsibility judgments are influenced by
counterfactual considerations and unexpected actions. Our proposed model best
captures how participants assign responsibility to the human agent, while a simple
heuristic model better explains how they assign responsibility to the AI agent.

Our work opens up many interesting avenues for future research. Although our
responsibility model performed best overall, there were large individual differences
(see Table 5.1). Those may arise from varying conceptions of how responsibility
should be determined for human-AI collaborations and from participants’ varying
levels of motivation to carefully reason through the different scenarios [30].

Moreover, since the actual contribution model best captured the participants’
judgments about the AI, it would be interesting to explore the relative importance
of actual and counterfactual contribution, as well as how this mixture differs when
making judgments about humans and AI agents [141]. Additionally, while our ex-
periments focused on settings where AI and human agents differ primarily in their
knowledge, future work could investigate scenarios where the agents also differ in
other aspects, such as their abilities.

To fit our responsibility model, we set fixed values for the hyperparameters that
control the uncertainty of the model. In future work, it would be useful to conduct
additional experiments to fit those hyperparameters by directly asking participants
about counterfactual outcomes and the expectancy of the two agents’ actions. Fur-
thermore, while we focused on collaborations that feature a single control switch
between the human and the AI agent, exploring settings with more frequent in-
teractions between the two agents could offer additional insights into responsibility
judgments in dynamic human-AI collaborations.
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Chapter 6

General discussion

In this thesis, I have studied scenarios of AI-assisted decision making that involve
strategic and counterfactual reasoning, ranging from decision making under trans-
parency and counterfactual actions in sequential decision making to responsibility
attribution. While working on these problems, I had the opportunity to engage
with a rich body of work across various disciplines and research communities. Here,
I highlight promising and broader directions for future work that go beyond the
narrower directions discussed in the conclusions of Chapters 3, 4, 5.

Most of the current work on human-AI collaboration in machine learning focuses
on assisting humans in relatively simple prediction tasks, such as classification and
regression [51–61], with some works also studying more complex decision making set-
tings such as screening [260, 261]. However, there is a variety of real-world decision
making tasks that may involve a combination of machine learning predictions with
decisions that require optimization over a combinatorial set of alternatives, similar
to the problems discussed in Chapters 3 and 4. For example, scheduling operating
rooms in a hospital must account for patient risk predictions and surgeon availabil-
ity. Such tasks may be unethical to automate, but also too complex for a human to
perform entirely on their own. Combining methods from operations research with
machine learning approaches to effectively support such decision making pipelines
is an interesting direction for future work.

In this context, it is also worth exploring the connection between cognitive science
and computational complexity [32]. As also mentioned in Chapter 1, the approach
of resource-rational analysis [29, 30] suggests that human decisions that fail to max-
imize a decision maker’s utility often arise from the human mind’s limited cognitive
resources. A compelling direction for future work would be to examine how the scale
of a decision problem affects human performance, and to relate these findings to a
theoretical categorization of its complexity (e.g., in terms of lower bounds on its
runtime). This approach could yield a more comprehensive characterization of the
problems that humans can (and cannot) solve effectively and efficiently, while also
helping guide the design of AI systems that compensate for these human limitations.

With regards to strategic reasoning, it is worth noting that research on strategic
machine learning has largely focused on strategic classification and variants of it.
However, there are numerous application domains in which machine learning is
used in the presence of (human) strategic behavior [262], opening many avenues for
future work to develop alternative strategic machine learning frameworks. One such
example is the ranking setting [263], which has received relatively limited attention.
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A promising direction in this context is the development of strategic rankings on
online platforms, where machine learning models are used to learn representations
of online content, yet face strategic behavior from content creators who modify their
content to increase their exposure [264, 265] and from users who attempt to steer
recommendation algorithms toward specific types of content [266, 267].

As mentioned earlier in this thesis, there is evidence that counterfactual reasoning
plays an important role in learning from past experience and using that knowledge
to guide future actions [67–69]. This is a form of “learning by thinking” [268]
that does not rely on acquiring new knowledge through additional observations of
the world. Consequently, the computational steps by which an agent equipped
with counterfactual reasoning can improve or accelerate its learning are not yet
understood. In this context, a promising direction is to study foundational learning
paradigms such as bandit learning [269], enriched with causal assumptions that
allow the learning agent to make (approximately correct) counterfactual predictions.
Developing learning algorithms for such settings and analyzing their regret compared
to the regret of an agent without the capacity for counterfactual reasoning could shed
light on the mechanisms by which this reasoning process enhances decision making.

Both strategic and counterfactual reasoning are central characteristics of human
cognition. With the rapid emergence of large language models (LLMs) as general-
purpose AI assistants, it is worth investigating to what extent they can emulate these
processes. Recent evidence suggests that LLMs may exhibit certain reasoning capa-
bilities [270], however, questions remain about how well they can handle strategic
interactions or reason about causes and counterfactuals [271, 272]. A promising di-
rection is to develop technical methodologies that explicitly equip such systems with
the ability to perform these reasoning processes by design [273], thereby ensuring
that their behavior is better aligned with that of the humans they assist.

Finally, an interesting direction for future research at the intersection of psy-
chology and AI safety would be to look more closely into how humans reason about
concepts such as responsibility, benefit, harm, and blame [72, 274] in the context of
human-AI interaction. Addressing these questions requires both empirical studies
and theory formation, as exemplified by the approach presented in Chapter 5. The
ultimate goal would be to develop a formal understanding of these notions, which
would allow AI systems to penalize or reward decisions based on the extent to which
they contribute to their perception as responsible or harmful [274]. In this context,
an especially promising direction involves modeling the incentives and objectives
of AI systems through frameworks that combine elements of both game theory and
causality [275, 276], ensuring that their behavior remains aligned with human values
and ethical standards.
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Merel Keijsers, and Selma Šabanović. Human-robot interaction: An intro-
duction. Cambridge University Press, 2020.

[43] Burr Settles and Brendan Meeder. A trainable spaced repetition model for
language learning. In Proceedings of the 54th annual meeting of the association
for computational linguistics (volume 1: long papers), pages 1848–1858, 2016.

[44] Behzad Tabibian, Utkarsh Upadhyay, Abir De, Ali Zarezade, Bernhard
Schölkopf, and Manuel Gomez-Rodriguez. Enhancing human learning via
spaced repetition optimization. Proceedings of the National Academy of Sci-
ences, 116(10):3988–3993, 2019.

[45] Jaeho Jeon and Seongyong Lee. Large language models in education: A fo-
cus on the complementary relationship between human teachers and chatgpt.
Education and Information Technologies, 28(12):15873–15892, 2023.

[46] Mina Lee, Percy Liang, and Qian Yang. Coauthor: Designing a human-ai
collaborative writing dataset for exploring language model capabilities. In
Proceedings of the 2022 CHI conference on human factors in computing sys-
tems, pages 1–19, 2022.

[47] Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Ziad Obermeyer. Pre-
diction policy problems. American Economic Review, 105(5):491–495, 2015.

[48] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq.
Algorithmic decision making and the cost of fairness. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 797–806, 2017.

[49] Jon Kleinberg, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Send-
hil Mullainathan. Human decisions and machine predictions. The quarterly
journal of economics, 133(1):237–293, 2018.

[50] Niki Kilbertus, Manuel Gomez-Rodriguez, Bernhard Schölkopf, Krikamol
Muandet, and Isabel Valera. Fair decisions despite imperfect predictions. In
AISTATS, 2019.

[51] Eleni Straitouri, Lequn Wang, Nastaran Okati, and Manuel Gomez Rodriguez.
Improving expert predictions with conformal prediction. In International Con-
ference on Machine Learning, pages 32633–32653. PMLR, 2023.

[52] Gagan Bansal, Besmira Nushi, Ece Kamar, Walter S Lasecki, Daniel S Weld,
and Eric Horvitz. Beyond accuracy: The role of mental models in human-ai

102



team performance. In Proceedings of the AAAI conference on human compu-
tation and crowdsourcing, volume 7, pages 2–11, 2019.

[53] Shengjia Zhao, Michael Kim, Roshni Sahoo, Tengyu Ma, and Stefano Ermon.
Calibrating predictions to decisions: A novel approach to multi-class calibra-
tion. Advances in Neural Information Processing Systems, 34:22313–22324,
2021.

[54] Kailas Vodrahalli, Tobias Gerstenberg, and James Y Zou. Uncalibrated models
can improve human-ai collaboration. Advances in Neural Information Process-
ing Systems, 35:4004–4016, 2022.

[55] Nina Corvelo Benz and Manuel Rodriguez. Human-aligned calibration for ai-
assisted decision making. Advances in Neural Information Processing Systems,
36, 2024.

[56] Vivian Lai, Chacha Chen, Alison Smith-Renner, Q Vera Liao, and Chenhao
Tan. Towards a science of human-ai decision making: An overview of design
space in empirical human-subject studies. In Proceedings of the 2023 ACM
Conference on Fairness, Accountability, and Transparency, pages 1369–1385,
2023.

[57] Nastaran Okati, Abir De, and Manuel Rodriguez. Differentiable learning under
triage. Advances in Neural Information Processing Systems, 34:9140–9151,
2021.

[58] Hussein Mozannar and David Sontag. Consistent estimators for learning to
defer to an expert. In International Conference on Machine Learning, pages
7076–7087. PMLR, 2020.

[59] Bryan Wilder, Eric Horvitz, and Ece Kamar. Learning to complement hu-
mans. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI’20, 2021. ISBN 9780999241165.

[60] Abir De, Paramita Koley, Niloy Ganguly, and Manuel Gomez-Rodriguez. Re-
gression under human assistance. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 2611–2620, 2020.

[61] Abir De, Nastaran Okati, Ali Zarezade, and Manuel Gomez Rodriguez. Clas-
sification under human assistance. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 5905–5913, 2021.

[62] Eleni Straitouri, Adish Singla, Vahid Balazadeh Meresht, and Manuel Gomez-
Rodriguez. Reinforcement learning under algorithmic triage. arXiv preprint
arXiv:2109.11328, 2021.

[63] Vahid Balazadeh Meresht, Abir De, Adish Singla, and Manuel Gomez-
Rodriguez. Learning to switch between machines and humans. arXiv preprint
arXiv:2002.04258, 2020.

[64] Tim Roughgarden. Algorithmic game theory. Communications of the ACM,
53(7):78–86, 2010.

103



[65] Tim Roughgarden. Stackelberg scheduling strategies. In Proceedings of the
thirty-third annual ACM symposium on Theory of computing, pages 104–113,
2001.

[66] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou.
The complexity of computing a nash equilibrium. Communications of the
ACM, 52(2):89–97, 2009.

[67] Aron K Barbey, Frank Krueger, and Jordan Grafman. Structured event com-
plexes in the medial prefrontal cortex support counterfactual representations
for future planning. Philosophical Transactions of the Royal Society B: Bio-
logical Sciences, 364(1521):1291–1300, 2009.

[68] Sara Aronowitz and Tania Lombrozo. Experiential explanation. Topics in
Cognitive Science, 12(4):1321–1336, 2020.

[69] Kai Epstude and Neal J Roese. The functional theory of counterfactual think-
ing. Personality and social psychology review, 12(2):168–192, 2008.

[70] Daniel Kahneman, Paul Slovic, and Amos Tversky. Judgment under uncer-
tainty: Heuristics and biases. Cambridge university press, 1982.

[71] Judea Pearl. Causality. Cambridge university press, 2009.

[72] Hana Chockler and Joseph Y Halpern. Responsibility and blame: A structural-
model approach. Journal of Artificial Intelligence Research, 22:93–115, 2004.

[73] Tobias Gerstenberg and David A Lagnado. Spreading the blame: The allo-
cation of responsibility amongst multiple agents. Cognition, 115(1):166–171,
2010.

[74] David A Lagnado, Tobias Gerstenberg, and Ro’i Zultan. Causal responsibility
and counterfactuals. Cognitive science, 37(6):1036–1073, 2013.

[75] Maithra Raghu, Katy Blumer, Greg Corrado, Jon Kleinberg, Ziad Obermeyer,
and Sendhil Mullainathan. The algorithmic automation problem: Prediction,
triage, and human effort. arXiv preprint arXiv:1903.12220, 2019.

[76] Bryan Wilder, Eric Horvitz, and Ece Kamar. Learning to complement hu-
mans. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI’20, 2021. ISBN 9780999241165.

[77] Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. Reading
between the lines: Modeling user behavior and costs in ai-assisted program-
ming. arXiv preprint arXiv:2210.14306, 2022.

[78] Vahid Balazadeh Meresht, Abir De, Adish Singla, and Manuel Gomez-
Rodriguez. Learning to switch among agents in a team. Transactions on
Machine Learning Research, 2022(7):1–30, 2022.
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Appendix A

Omitted proofs

A.1 Proofs for Section 3.1

Theorem 3.1.1. The problem of finding the optimal decision policy π∗ that maxi-
mizes utility in a strategic setting is NP-hard.

Proof. We will reduce any given instance of the SAT problem [168], which is known
to be NP-complete, to a particular instance of our problem. In a SAT problem,
the goal is finding the value of a set of boolean variables {v1, v2, . . . , vl}, and their
logical complements {v̄1, v̄2, . . . , v̄l}, that satisfy s number of OR clauses, which we
label as {k1, k2, . . . , ks}.

First, we start by representing our problem, as defined in Eq. 3.8, using a directed
weighted bipartite graph, whose nodes can be divided into two disjoint sets U and V .
In each of these sets, there are m nodes with labels {x1, . . . , xm}. We characterize
each node xi in U with P (xi) and each node xj in V with π(xj) and u(xj) = P (Y =
1 |xj)−γ. Then, we connect each node xi in U to each node xj in V and characterize
each edge with a weight w(xi, xj) = b(xj)− c(xi, xj) = π(xj)− c(xi, xj) and a utility

u(xi, xj) = π(xj)u(xj)P (xi)1[xj = argmax
xk

w(xi, xk)],

which, for each node xi in U , is only nonzero for the edge with maximum weight
(solving ties at random). Under this representation, the problem reduces to finding
the values of π(xj) such that the sum of the utilities of all edges in the graph is
maximized.

Next, given an instance of the SAT problem with variables {v1, v2, . . . , vl} and
clauses {k1, k2, . . . , ks}, we use the above representation to build an instance of our
problem. More specifically, consider U and V have m = 7l+s nodes each with labels

{y1, . . . , yl, ȳ1, . . . , ȳl, a1, . . . , al, b1, . . . , bl,
z11, . . . , z1l, z21, . . . , z2l, z31, . . . , z3l, k1, k2, . . . , ks}

For the set U , characterize each node u with P (u), where

P (z1i) =
3(s+ 1)

3l + 3(s+ 1)l
, P (z2i) = P (z3i) =

1

3l + 3(s+ 1)l
,

P (kj) =
1

3l + 3(s+ 1)l
, and P (yi) = P (ȳi) = P (ai) = P (bi) = 0,
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for all i = 1, . . . , l and j = 1, . . . , s. For the set V , characterize each node v with
π(v) and u(v), where

u(yi) = u(ȳ1) =
1

2l + 4(s+ 1)l
, u(ai) = u(bi) =

2(s+ 1)

2l + 4(s+ 1)l
, and

u(z1i) = u(z2i) = u(z3i) = u(kj) = 0,

for all i = 1, . . . , l and j = 1, . . . , s. Then, connect each node u in U to each node v
in V and set each edge weights to w(u, v) = π(v)− c(u, v), where:

(i) c(z1i, yj) = c(z1i, ȳj) = 0 and c(z2i, yj) = c(z3i, yj) = c(kq, yj) = c(z2i, ȳj) =
c(z3i, ȳj) = c(kq, ȳj) = 2 for each i, j = 1, . . . , l and q = 1, . . . , s.

(ii) c(z2i, yj) = 0, c(z2i, aj) = 1 − ϵ and c(z1i, yj) = c(z3i, yj) = c(kq, yj) =
c(z1i, aj) = c(z3i, aj) = c(kq, aj) = 2 for each i, j = 1, . . . , l and q = 1, . . . , s.

(iii) c(z3i, ȳj) = 0, c(z3i, bj) = 1 − ϵ and c(z1i, ȳj) = c(z2i, ȳj) = c(kq, ȳj) =
c(z1i, bj) = c(z2i, bj) = c(kq, bj) = 2 for each i, j = 1, . . . , l and q = 1, . . . , s.

(iv) c(ki, yj) = 0 if the clause ki contains yj, c(ki, ȳj) = 0 if the clause ki contains
ȳj, and c(ki, aj) = c(ki, bj) = 2 for all i = 1, . . . , s and j = 1, . . . , l.

(v) For all remaining edge weights, set c(·, ·) =∞.

Note that, in this particular instance, finding the optimal values of π(v) such that
the sum of the utilities of all edges in the graph is maximized reduces to first solving
l independent problems, one per pair yj and ȳj, since whenever c(u, v) = 2, the edge
will never be active, and each optimal π value will be always either zero or one.
Moreover, the maximum utility due to the nodes kz will be always smaller than the
utility due to yj and ȳj and we can exclude them by the moment. In the following,
we fix j and compute the sum of utilities for all possible values of yj and ȳj:

• For π(yj) = π(ȳj) = 0, the maximum sum of utilities is 4(s+1)
(3l+3(s+1)l)·(2l+4(s+1)l)

whenever π(aj) = π(bj) = 1.

• For π(yj) = π(ȳj) = 1, the sum of utilities is 3(s+1)+2
(3l+3(s+1)l)·(2l+4(s+1)l)

for any value

of π(aj) and π(bj).

• For π(yj) = 1− π(ȳj), the maximum sum of utilities is 5(s+1)
(3l+3(s+1)l)·(2l+4(s+1)l)

.

Therefore, the maximum sum of utilities 5(s+1)
(3+3(s+1))·(2l+4(s+1)l)

occurs whenever π(yj) =

1− π(ȳj) for all j = 1, . . . , l and the solution that maximizes the overall utility, in-
cluding the utility due to the nodes kz, gives us the solution of the SAT problem.

Proposition 3.1.1. Let π∗ be an optimal policy that maximizes utility. If the cost
c(xi,xj) is outcome monotonic then there exists an outcome monotonic policy π
such that u(π, γ) = u(π∗, γ).

Proof. This proposition can be easily proven by contradiction. More specifically, as-
sume that all outcome monotonic policies π are suboptimal, i.e., u(π, γ) < u(π∗, γ),
where π∗ is an optimal policy that maximizes utility, and sort the values of the
optimal policy in decreasing order, i.e., 1 = π∗(xl1) ≥ π∗(xl2) ≥ ... ≥ π∗(xln). Here,
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note that there is a state xk such that lk ̸= k, otherwise, the policy π∗ would be
outcome monotonic. Now, define the index r = argmink lk ̸= k and build a policy
π′ such that π′(xl) = π∗(xlr) for all r − 1 < l < lr and π′(xl) = π∗(xl) otherwise.
Then, it is easy to see that the policy π′ has greater or equal utility than π∗ and it
holds that π′(xl) ≥ π′(xt) ⇔ P (Y = 1 |xl) ≥ P (Y = 1 |xt) for all xl,xt such that
l, t ≤ lr. If the policy π′ satisfies outcome monotonicity, we are done. Otherwise,
we repeat the procedure starting from π′ and continue building increasingly better
policies until we eventually build one that satisfies outcome monotonicity. By con-
struction, this last policy will achieve equal or greater utility than the policy π∗,
leading to a contradiction.

Theorem 3.1.2. Let π∗ be an optimal policy that maximizes utility. If the cost
c(xi,xj) is additive and outcome monotonic then there exists an outcome monotonic
binary policy π such that u(π, γ) = u(π∗, γ).

Proof. We prove this theorem by contradiction. More specifically, assume that all
outcome monotonic binary policies π are suboptimal, i.e., u(π, γ) < u(π∗, γ), where
π∗ is an optimal policy. According to Proposition 3.1.1, under outcome monotonic
costs, there is always an optimal outcome monotonic policy. Now, assume there is
an optimal outcome monotonic policy π∗ such that π∗(xi−1) > π∗(xi) > π∗(xi−1)−
c(xi,xi−1) ∨ π∗(xi) < π∗(xi−1) − c(xi,xi−1) for some i > 1. Moreover, if there are
more than one i, consider the one with the highest outcome P (Y = 1 |xi). Then,
we analyze each case separately.

If π∗(xi−1) > π∗(xi) > π∗(xi−1) − c(xi,xi−1), we can show that the policy π′

with π′(xj) = π∗(xj) ∀j ̸= i and π′(xi) = π∗(xi−1) has greater or equal utility than
π∗. More specifically, consider an individual with initial feature values xk. Then,
it is easy to see that, if k < i, the best-response under π∗ and π′ will be the same
and, if k ≥ i, the best-response will be either the same or change to xi under π′.
In the latter case, it also holds that P (Y = 1 |xi) > P (Y = 1 |xj), where xj is the
best-response under π∗, otherwise, we would have a contradiction. Therefore, we
can conclude that π′ provides higher utility than π∗.

If π∗(xi) < π∗(xi−1)− c(xi,xi−1), we can show that the policy π′ with π′(xj) =
π∗(xj) ∀j ̸= i and π′(xi) = π∗(xi−1)−c(xi,xi−1) has greater or equal utility than π∗.
More specifically, consider an individual with initial feature values xk and denote the
individual’s best-response under π∗ as xj. Then, it is easy to see that the individual’s
best-response is the same under π∗ and π′, however, if xj = xi, the term in the utility
corresponding to the individual does increase under π′. Therefore, we can conclude
that π′ provides higher utility than π∗.

In both cases, if the policy π′ is an outcome monotonic binary policy, we are
done, otherwise, we repeat the procedure starting from the corresponding π′ and
continue building increasingly better policies until we eventually build one that is
an outcome monotonic binary policy. By construction, this last policy will achieve
equal or greater utility than the policy π∗, leading to a contradiction.

Proposition 3.1.2. Let π be an outcome monotonic binary policy, c(xi,xj) be an
additive and outcome monotonic cost, xi be an individual’s initial set of features,
and define j = max{k | k ≤ i, π(xk) = 1 ∨ π(xk) = π(xk−1)}. If P (Y = 1 |xi) > γ,
the individual’s best-response is xj and, if P (Y = 1 |xi) ≤ γ, the individual’s best-
response is xj if π(xj) ≥ c(xi,xj) and xi otherwise.
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Proof. Consider an individual with initial features xi such that P (Y = 1 |xi) > γ.
As argued just after Proposition 3.1.1, given an individual with a set of features xi,
any outcome monotonic policy always induces a best-response xl such that P (Y =
1 |xl) ≥ P (Y = 1 |xi), that means, l < i. Then, we just need to prove that the
best-response xl cannot satisfy that P (Y = 1 |xl) > P (Y = 1 |xj) nor satisfy that
P (Y = 1 |xj) > P (Y = 1 |xl) ≥ P (Y = 1 |xi), where j = max{k | k ≤ i, π(xk) =
1 ∨ π(xk) = π(xk−1)}. Without loss of generality, we assume that j < i, however,
in case j = i the main idea of the proof is the same.

First, assume that P (Y = 1 |xl) > P (Y = 1 |xj). Then, using the additivity
and outcome monotonicity of the cost and the fact that the policy is an outcome
monotonic binary policy, it should hold that π(xj)−c(xi,xj) = π(xj−1)−c(xi,xj) >
π(xj−1) − c(xi,xj−1) ≥ π(xj−2) − c(xi,xj−2) ≥ · · · ≥ π(xl) − c(xi,xl). This
implies that xj is a strictly better response for the individual than xl, which is a
contradiction. Now, assume that P (Y = 1 |xj) > P (Y = 1 |xl) ≥ P (Y = 1 |xi).
Then, using the additivity of the cost, the definition of xj and the fact that xl

is the best-response, it should hold that π(xj) − c(xi,xj) < π(xl) − c(xi,xl) =
π(xj) − c(xl,xj) − c(xi,xl) = π(xj) − c(xi,xj), which is clearly a contradiction.
Therefore, xj is a best-response.

Now, consider an individual with initial features xi such that P (Y = 1 |xi) ≤ γ
and π(xj) ≥ c(xi,xj). The argument for proving that P (Y = 1 |xl) > P (Y =
1 |xj) is a contradiction remains as is. Assume that P (Y = 1 |xj) > P (Y =
1 |xl) ≥ P (Y = 1 |xi). Then π(xl) = π(xj)− c(xl,xj) or π(xl) = 0, meaning that
π(xj)−c(xl,xj) > π(xl) since π(xj)−c(xl,xj) > π(xj)−c(xi,xj) ≥ 0. Therefore, it
should hold that π(xj)−c(xi,xj) < π(xl)−c(xi,xl) ≤ π(xj)−c(xl,xj)−c(xi,xl) =
π(xj)− c(xi,xj), which is clearly a contradiction. As a result, xj is a best-response.

Now, consider an individual with initial features xi such that P (Y = 1 |xi) ≤ γ
and π(xj) < c(xi,xj). The argument for proving that P (Y = 1 |xl) > P (Y = 1 |xj)
is a contradiction remains as is. For all xl such that P (Y = 1 |xj) ≥ P (Y = 1 |xl) >
P (Y = 1 |xi) we have π(xl) = π(xj) − c(xl,xj) meaning that π(xl) − c(xi,xl) =
π(xj)−c(xi,xj) < 0 or π(xl) = 0 meaning that π(xl)−c(xi,xl) < 0. In both cases,
because π(xi) = 0, we get that xi is a best-response.

Proposition 3.1.4. Algorithm 2 terminates after at most m1+ 1
ū − 1 steps, where

ū is the greatest common denominator of all elements in the set A = {c(xi,xj) −
c(xi,xk) |xi,xj,xk ∈ {1, . . . ,m}} ∪ 1.1

Proof. We prove that ū is a denominator of π(xj) ∀xj ∈ {1, . . . ,m} after each step
in the iterative algorithm. We prove this claim by induction. The induction basis
is obvious as we initialize the values of π(xj) = 0 for all xj. For the induction step,
suppose that we are going to update π(xj) in our iterative algorithm. According

to the induction hypothesis we know that π(xk)
ū
∈ Z ∀xk ∈ {1, . . . ,m}. Then, it

can be shown that the new value of π(xj) will be chosen among the elements of the
following set (these are the thresholds that might change the transfer of masses):

πnew(xj) ∈ {0} ∪ {1} ∪ {maxk(π(xk)− c(xi,xk)) + c(xi,xj) |xi ∈ {0, . . . ,m}}
In the above, it is clear that all these possible values are divisible by ū, so the
new value of π(xj) will be divisible by ū too. Then, since 0 ≤ π(xj) ≤ 1 and

1The common denominator ū satisfies that a
ū ∈ Z ∀a ∈ A ∪ {1}. Such ū exists if and only if a

b
is rational ∀a, b ∈ A.
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π(xj)

ū
∈ Z for all xj ∈ {1, . . . ,m}, there are 1 + 1

ū
possible values for each π(xj),

i.e., 0, ū, 2ū, . . . , 1. As a result, there are m1+ 1
ū different decision policies π. Finally,

since the total utility increases after each step, the decision policy π at each step
must be different. As a result, the algorithm will terminate after at most m1+ 1

ū − 1
steps.
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0
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0
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Figure A.1: Reduction for Theorem 3.2.1. Consider that U = {u1, u2} and
S = {S1,S2} with S1 = {u1, u2}, S2 = {u2}. The pink feature values have initial
population P (x) = 1/2, π(x) = 0 and P (Y = 1 |x) = γ, while for the green feature
values it is P (x) = 0, π(x) = 1 and P (Y = 1 |x) = 1. The edges represent the cost
between feature values corresponding to sets and their respective elements while all
the non-visible pairwise costs are equal to 2.

A.2 Proofs for Section 3.2

Theorem 3.2.1. The problem of finding the optimal set of counterfactual explana-
tions that maximizes utility under a cardinality constraint is NP-Hard.

Proof. Consider an instance of the Set Cover problem with a set of elements U =
{u1, . . . , un} and a collection S = {S1, . . . ,Sm} ⊆ 2U such that

⋃
i∈[m] Si = U . In the

decision version of the problem, given a constant k, we need to answer the question
whether there are at most k sets from the collection S such that their union is
equal to U or not. With the following procedure, we show that any instance of that
problem can be transformed to an instance of the problem of finding the optimal
set of counterfactual explanations, defined in Eq. 3.15, in polynomial time.

Consider n+m feature values corresponding to the n elements of U and them sets
of S. Moreover, denote the first n feature values as xu1 , . . . ,xun and the remainingm
as xS1 , . . . ,xSm . We set the decision maker’s parameter γ to some positive constant
less than 1. Then, we set the outcome probabilities P (Y = 1|xui

) = γ ∀i ∈ [n]
and P (Y = 1|xSi

) = 1 ∀i ∈ [m] and the policy values π(xui
) = 0 ∀i ∈ [n] and

π(xSi
) = 1 ∀i ∈ [m]. This way, the portion of utility the decision-maker obtains

from the first n feature values is zero, while the portion of utility they obtain from
the remaining m is proportional to 1 − γ. Regarding the cost function, we set
c(xui

,xSj
) = 0 ∀(xui

,xSj
) : ui ∈ Sj, c(xui

,xui
) = 0 ∀i ∈ [n], and all the remaining

values of the cost function to 2. Finally, we set the initial feature value distribution to
P (xui

) = 1
n
∀i ∈ [n] and P (xSi

) = 0 ∀i ∈ [m]. A toy example of this transformation
is presented in Fig. A.1.

In this setting, it easy to observe that an individual with initial feature value
xui

is always rejected at first and has the ability to move to a new feature value xSj

recommended to them iff c(xui
,xSj

) ≤ 1 ⇔ ui ∈ Sj. Also, we can easily see that
the transformation of instances can be done in O((m+ n)2) time.

Now, assume there exists an algorithm that optimally solves the problem of
finding the optimal set of counterfactual explanations in polynomial time. Given the
aforementioned instance and a maximum number of counterfactual explanations k,
the utility u(π,A) achieved by the set of counterfactual explanationsA the algorithm
returns can fall into one of the following two cases:

1. u(π,A) = 1 − γ. This can happen only if all individuals, according to the
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induced distribution P (x; π,A), have moved to some of the feature values
xSj

, i.e., for all xui
with i ∈ [n], there exists xSj

with j ∈ [m] such that
xSj
∈ A ∧ c(xui

,xSj
) ≤ 1 with |A| ≤ k. As a consequence, if we define

S ′ = {Sj : xSj
∈ A}, it holds that for all ui with i ∈ [n], there exists Sj

with j ∈ [m] such that Sj ∈ S ′ ∧ ui ∈ Sj and therefore S ′ is a set cover with
|S ′| = |A| ≤ k.

2. u(π,A) < 1−γ. This can happen only if every possible set of k counterfactual
explanations leaves the individuals of at least one feature value xui

with a
best-response of not following the counterfactual explanation they were given,
i.e., for all A ⊆ Pπ such that |A| ≤ k, there exists xui

with i ∈ [n] such that,
for all xSj

∈ A, it holds that c(xui
,xSj

) > 1. Equivalently, it holds that for
all S ′ ⊆ S such that |S ′| ≤ k, there exists ui with i ∈ [n] such that for all
Sj ∈ S ′, it holds that ui ̸∈ Sj and therefore there does not exist a set cover of
size less or equal than k.

The above directly implies that we can have a decision about any instance of the
Set Cover problem in polynomial time, which is a contradiction unless P = NP .
This concludes the reduction and proves that the problem of finding the optimal set
of counterfactual explanations for a given policy is NP-Hard.

Proposition 3.2.1. The function f is non-negative, submodular and monotone.
Formally, all three of the following conditions are satisfied:

1. f(A) ≥ 0 for all A ⊆ Pπ.

2. For all A,B ⊆ Pπ : A ⊆ B and x ∈ Pπ \B, it holds that f(A∪{x})− f(A) ≥
f(B ∪ {x})− f(B).

3. For all A ⊆ Pπ and x ∈ Pπ, it holds that f(A ∪ {x}) ≥ f(A).

Proof. It readily follows that the function f is non-negative from the fact that, if
the decision maker is rational, it holds that π(x) = 0 for all x ∈ X such that
P (Y = 1 |x) < γ.

Now, consider two sets A,B ⊆ Pπ : A ⊆ B and a feature value x ∈ Pπ \B. Also,
let eS(xi) be the counterfactual explanation given to the individuals with initial
feature value xi under a set of counterfactual explanations S. It is easy to see that
the marginal difference f(S ∪ {x})− f(S) can only be affected by individuals with
initial features xi such that xi ̸∈ Pπ, x ∈ R(xi) and x = eS∪{x}(xi). Moreover, we
can divide all of these individuals into two cases:

1. R(xi) ∩ A = ∅: in this case, the addition of x to A causes a change in their
best-response from xi to x contributing to the marginal difference of f by a
factor P (xi)[P (Y = 1 |x)−γ−π(xi)(P (Y = 1 |xi)−γ)]. However, considering
the marginal difference of f under the set of counterfactual explanations B,
three subcases are possible:

(a) eB(xi) ∈ R(xi) ∧ P (Y = 1 | eB(xi)) > P (Y = 1 |x): the contribution to
the marginal difference of f is zero.
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(b) eB(xi) ∈ R(xi) ∧ P (Y = 1 | eB(xi)) ≤ P (Y = 1 |x): the contribution to
the marginal difference of f is P (xi)[P (Y = 1 |x) − P (Y = 1 | eB(xi))].
Since π is outcome monotonic, eB(xi) ∈ Pπ and xi ̸∈ Pπ, it holds that

P (Y = 1 | eB(xi)) ≥ P (Y = 1 |xi)⇒
P (Y = 1 | eB(xi))− γ ≥ P (Y = 1 |xi)− γ > π(xi)[P (Y = 1 |xi)− γ].

Therefore, it readily follows that

P (xi)[P (Y = 1 |x)− P (Y = 1 | eB(xi))] <

P (xi)[P (Y = 1 |x)− γ − π(xi)(P (Y = 1 |xi)− γ)].

(c) R(xi) ∩ B = ∅: the contribution to the marginal difference of f is
P (xi)[P (Y = 1 |x)− γ − π(xi)(P (Y = 1 |xi)− γ)].

2. R(xi) ∩ A ̸= ∅ ∧ P (Y = 1 |x) > P (Y = 1 | eA(xi)): In this case, the addition
of x to A causes a change in their best-response from eA(xi) to x contribut-
ing to the marginal difference of f by a factor P (xi)[P (Y = 1 |x) − P (Y =
1 | eA(xi))]. Considering the marginal difference of f under the set of counter-
factual explanations B, two subcases are possible:

(a) eB(xi) ∈ R(xi) ∧ P (Y = 1 | eB(xi)) > P (Y = 1 |x): the contribution to
the marginal difference of f is zero.

(b) eB(xi) ∈ R(xi) ∧ P (Y = 1 | eB(xi)) ≤ P (Y = 1 |x). Then, the contribu-
tion of those individuals to the marginal difference of f is P (xi)[P (Y =
1 |x) − P (Y = 1 | eB(xi))]. Since A ⊆ B and R(xi) ∩ A ̸= ∅, it readily
follows that

P (Y = 1 | eB(xi)) ≥ P (Y = 1 | eA(xi))⇒
P (xi)[P (Y = 1 |x)− P (Y = 1 | eA(xi))] ≥

P (xi)[P (Y = 1 |x)− P (Y = 1 | eB(xi))].

Finally, because A ⊆ B, we can conclude that f(B ∪ {x})− f(B) ̸= 0⇒ f(A ∪
{x})−f(A) ̸= 0 and therefore the aforementioned cases are sufficient. Combining all
cases, we can see that the contribution of each individual to the marginal difference
of f is always greater or equal under the set of counterfactual explanations A than
under the set of counterfactual explanations B. As a direct consequence, it follows
that f is submodular. Additionally, we can easily see that this contribution is always
greater or equal than zero, leading to the conclusion that f is also monotone.

Proposition 3.2.2. Let Y = {x ∈ X : P (Y = 1 |x) ≥ γ}. Given a set of
counterfactual explanations A ⊆ Y, the policy π∗

A = argmaxπ:A⊆Pπ
u(π, γ,A) is

deterministic, can be found in polynomial time, and is given by

π∗
A(x) =


1 if

(
{x′ ∈ A : P (Y = 1 |x′) > P (Y = 1 |x) ∧ c(x,x′) ≤ 1}
= ∅ ∧ x ∈ Y

)
∨ x ∈ A

0 otherwise.
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Proof. By definition, since A ⊆ Pπ∗
A
, it readily follows that π∗

A(x) = 1 for all x ∈ A.
To find the remaining values of the decision policy, we first observe that, for each
x /∈ A, the value of the decision policy π∗

A(x) does not affect the best-responses of
the individuals with initial feature values x′ ̸= x. As a result, we can just set π∗

A(x)
for all x /∈ A independently for each feature value x such that the best-response
of the respective individuals is the one that contributes maximally to the overall
utility.

First, it is easy to see that, for all x /∈ A such that P (Y = 1 |x) < γ, we should
set π∗

A(x) = 0. Next, consider the feature values x /∈ A such that P (Y = 1 |x) ≥
γ. Here, we distinguish two cases. If there exists x′ ∈ A such that c(x,x′) ≤
1 ∧ P (Y = 1 |x′) > P (Y = 1 |x), then, if the individuals move to that x′, the
corresponding contribution to the utility will be higher. Moreover, the value of the
decision policy that maximizes their region of adaption (and thus increases their
chances of moving to x′) is clearly π∗

A(x) = 0. If there does not exist x′ ∈ A
such that c(x,x′) ≤ 1 ∧ P (Y = 1 |x′) > P (Y = 1 |x), then, the contribution of
the corresponding individuals to the utility will be higher if they keep their initial
feature values. Moreover, the value of the decision policy that will maximize this
contribution will be clearly π∗

A(x) = 1.

Proposition 3.2.3. The function h is non-negative, submodular and non-monotone.

Proof. It readily follows that the function h is non-negative from the fact that, if
the decision maker is rational, π(x) = 0 for all x ∈ X such that P (Y = 1 |x) < γ.

Next, consider two sets A,B ⊆ Y such that A ⊆ B and a feature value x ∈ Y\B.
Also, let eS(xi) be the counterfactual explanation given to the individuals with initial
feature value xi under a set of counterfactual explanations S. Then, it is clear that
the marginal difference h(S ∪ {x})− h(S) only depends on individuals with initial
features xi such that either 1−c(xi,x) ≥ 0 and x = eS∪{x}(xi) or xi = x. Moreover,
if 1 − c(xi,x) ≥ 0 and x = eS∪{x}(xi), the contribution to the marginal difference
is positive and, if xi = x, the contribution to the marginal difference is negative.

Consider first the individuals with initial features xi such that 1− c(xi,x) ≥ 0
and x = eA∪{x}(xi). We can divide all of these individuals into three cases:

1. πB(xi) = 0: in this case, xi ̸∈ B and the individuals change their best-response
from eB(xi) to x. Moreover, under the set of counterfactual explanations A,
their best-response is either xi or eA(xi) and it changes to x. Then, using a
similar argument as in the proof of proposition 3.2.1, we can conclude that the
contribution of the individuals to the marginal difference is greater or equal
under the set of counterfactual explanations A than under B.

2. πB(xi) = 1 ∧ πA(xi) = 0: in this case, xi ̸∈ A and xi ∈ B. Therefore,
under the set of counterfactual explanations A, the individuals’ best-response
changes from eA(xi) to x and there is a positive contribution to the marginal
difference while, under B, the individuals’ best-response does not change and
the contribution to the marginal difference is zero.

3. πB(xi) = 1 ∧ πA(xi) = 1: in this case, xi ̸∈ B. Therefore, the best-response
changes from xi to x under both sets of counterfactual explanations and there
is an equal positive contribution to the marginal difference.
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Now, consider the individuals with initial features xi such that xi = x. We can
divide all of these individuals also into three cases:

1. πA(x) = πB(x) = 0: in this case, under both sets of counterfactual explana-
tions, the counterfactual explanation x changes the value of the decision policy
to πA∪{x}(x) = πB∪{x}(x) = 1. Moreover, the contribution to the marginal
difference is less negative under the set of counterfactual explanations A than
under B since P (Y = 1 | eA(x)) ≤ P (Y = 1 | eB(x)) and thus P (x)[P (Y =
1 |x)− P (Y = 1 | eA(x))] ≥ P (x)[P (Y = 1 |x)− P (Y = 1 | eB(x))].

2. πA(x) = 1 ∧ πB(x) = 0: in this case, under the set of counterfactual ex-
planations A, the individuals’ best-response does not change and thus the
contribution to the marginal difference is zero and, under the set of counter-
factual explanations B, their best-response changes from eB(x) to x and thus
there is a negative contribution to the marginal difference i.e., P (x)[P (Y =
1 |x)− P (Y = 1 | eB(x))] < 0.

3. πA(x) = πB(x) = 1: in this case, under both sets of counterfactual explana-
tions, the individuals’ best-response does not change and thus the contribution
to the marginal difference is zero.

As a direct consequence of the above observations, it readily follows that h(A∪
{x})− h(A) ≥ h(B ∪ {x})− h(B) and therefore the function h is submodular.

However, in contrast with Section 3.2.2, the function h is non-monotone since it
can happen that the negative marginal contribution exceeds the positive one. For
example, consider the following instance of the problem, where x ∈ {1, 2, 3} with
γ = 0.1:

P (x) = 0.11[x = 1] + 0.81x = 2] + 0.11[x = 3],

P (Y = 1 |x) = 1.01[x = 1] + 0.51[x = 2] + 0.41[x = 3],

and

c(xi,xj) =

0.0 0.2 0.3
0.3 0.0 0.7
0.4 0.5 0.0

 .

Assume there is a set of counterfactual explanations A = {1}. Then, the optimal
policy is given by π∗

A(1) = 1, π∗
A(2) = 0, π∗

A(3) = 0 inducing a movement from feature
values 2, 3 to feature value 1, giving a utility equal to 0.9. Now, add x = 2 to the
set of counterfactual explanations i.e., A = {1, 2}. Then, the optimal policy is given
by π∗

A(1) = 1, π∗
A(2) = 1, π∗

A(3) = 0 inducing a movement from feature value 3 to
feature value 1, giving a lower utility, equal to 0.5. Therefore, the function h is
non-monotone.
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A.3 Proofs for Section 4.1

Proposition 4.1.1. The counterfactual policy π∗
τ returned by Algorithm 6 is the

solution to the optimization problem defined by Eq. 4.8.

Proof. Using induction, we will prove that the policy value πτ ((s, l), t
′) set by Algo-

rithm 6 is optimal for every s ∈ S, l ∈ {0, . . . , k}, t′ ∈ {0, . . . , T − 1} in the sense
that following this policy maximizes the average cumulative reward h(s, q, c) that
one could have achieved in the last q = T − t′ steps of the decision making process,
starting from state ST−q = s, if at most c = k − l actions had been different to the
observed ones in those last steps. Formally:

h(s, q, c) = max
π

E{((s′t,lt),a′t)}
T−1
t=t′ ∼P+

τ |S+
t′=(s,l)

[
T−1∑
t=t′

r+ ((s′t, lt) , a
′
t)

]
(A.1)

subject to
T−1∑
t=t′

1[at ̸= a′t] ≤ c ∀{((s′t, lt), a′t)}T−1
t=t′ ∼ P+

τ (A.2)

Recall that, a1, . . . , aT−1 are the observed actions and the counterfactual realiza-
tions a′1, . . . , a

′
T−1 are induced by the counterfactual transition probability P+

τ and
the policy π.

We start by proving the induction basis. Assume that a realization has reached
a state s+T−1 = (s, l) at time T − 1, one time step before the end of the process.
If c = 0 (i.e., l = k), following Eq. 4.10, the algorithm will choose the observed
action πτ ((s, l), t

′) = aT−1 and return an average cumulative reward h(s, 1, 0) =
r(s, aT−1) +

∑
s′∈S Pτ,T−1(s

′ | s, aT−1)h(s
′, 0, 0) = r(s, aT−1), where h(s

′, 0, 0) = 0 for
all s′ ∈ S. Since no more action changes can be performed at this stage, this is the
only feasible solution and therefore it is optimal.

If c > 0, since h(s′, 0, c) = h(s′, 0, c− 1) = 0 for all s′ ∈ S it is easy to verify that
Eq. 4.9 reduces to h(s, 1, c) = maxa∈A r(s, a) and πτ ((s, l), t

′) = argmaxa∈A r(s, a) is
obviously the optimal choice for the last time step.

Now, we will prove that, for a counterfactual realization being at state s+t′ = (s, l)
at a time step t′ < T − 1 (i.e., r = T − t′, c = k − l), the maximum average
cumulative reward h(s, q, c) given by Algorithm 6 is optimal, under the inductive
hypothesis that the values of h(s′, q′, c′) already computed for q′ < q, c′ < c and
all s′ ∈ S are optimal. Assume that the algorithm returns an average cumulative
reward h(s, q, c) by choosing action πτ ((s, l), t

′) = a while the optimal solution gives
an average cumulative reward OPTs,q,c > h(s, q, c) by choosing an action a∗ ̸= a.
Here, by τ ′t′ = {((s′t, lt) , a′t)}T−1

t=t′ we will denote realizations starting from time t′

with a′t = πτ ((s
′
t, lt) , t) where πτ is the policy given by Algorithm 6 and we will use

τ ∗t′ if the policy is optimal. Also, we will denote a possible next state at time t′ + 1,
after performing action a, as (s′, l′) where l′ = l + 1 if a ̸= at, l

′ = l otherwise and,
c′ = k− l′. Similarly, after performing action a∗, we will denote a possible next state
as (s′, l∗) where l∗ = l+1 if a∗ ̸= at, l

∗ = l otherwise and, c∗ = k− l∗. Then, we get:

h(s, q, c) < OPTs,q,c

=⇒ Eτ ′
t′∼P+

τ |S+
t′=(s,l)

[
T−1∑
t=t′

r+ ((st, lt) , at)

]
< Eτ∗

t′∼P+
τ |S+

t′=(s,l)

[
T−1∑
t=t′

r+ ((st, lt) , at)

]
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(a)
=⇒

∑
s′

Pτ,T−q(s
′ | s, a)Eτ ′

t′+1
∼P+

τ |S+
t′+1

=(s′,l′)

[
T−1∑
t=t′

r+ ((st, lt) , at)

]

<
∑
s′

Pτ,T−q(s
′ | s, a∗)Eτ∗

t′+1
∼P+

τ |S+
t′+1

=(s′,l∗)

[
T−1∑
t=t′

r+ ((st, lt) , at)

]

=⇒
∑
s′

Pτ,T−q(s
′ | s, a)

[
r+ ((s, l) , a) + Eτ ′

t′+1
∼P+

τ |S+
t′+1

=(s′,l′)

[
T−1∑

t=t′+1

r+ ((st, lt) , at)

]]

<
∑
s′

Pτ,T−q(s
′ | s, a∗)

[
r+ ((s, l) , a∗)

+ Eτ∗
t′+1

∼P+
τ |S+

t′+1
=(s′,l∗)

[
T−1∑

t=t′+1

r+ ((st, lt) , at)

]]
(b)
=⇒

∑
s′

Pτ,T−r(s
′ | s, a)r(s, a) +

∑
s′

Pτ,T−q(s
′ | s, a)h(s′, q − 1, c′)

<
∑
s′

Pτ,T−q(s
′ | s, a∗)r(s, a∗) +

∑
s′

Pτ,T−q(s
′ | s, a∗)OPTs′,q−1,c∗

(c)
=⇒ r(s, a) +

∑
s′

Pτ,T−q(s
′ | s, a)h(s′, q − 1, c′)

< r(s, a∗) +
∑
s′

Pτ,T−q(s
′ | s, a∗)h(s′, q − 1, c∗),

where, in (a), we expand the expectation for one time step, in (b), we replace the
average cumulative reward starting from time step t′ + 1 with h(s′, q − 1, c′) and
OPTs′,q−1,c∗ for the policy of Algorithm 6 and the optimal one respectively and, in
(c), we replace OPTs′,q−1,c∗ with h(s′, q − 1, c∗) due to the inductive hypothesis.

It is easy to see that, it can either be a∗ = at with c∗ = c or a∗ ∈ A \ at with
c∗ = c−1. If c = 0, following Eq. 4.10, the algorithm will choose the observed action
(i.e., a = at). This is the only feasible solution, since a∗ ̸= at would give c∗ = −1
and l∗ = k − c∗ = k + 1, which is not a valid state. Therefore, we get a = a∗ = at,
which is a a contradiction. If c > 0, because of the max operator in Eq. 4.9, for the
action a chosen by Algorithm 6, it necessarily holds that:

r(s, a)+
∑
s′

Pτ,T−q(s
′ | s, a)h(s′, q−1, c′) ≥ r(s, a∗)+

∑
s′

Pτ,T−q(s
′ | s, a∗)h(s′, q−1, c∗),

which is clearly a contradiction.
Therefore, the average cumulative reward h(s, q, c) computed by Algorithm 6 and

its associated policy value πτ ((s, l), t
′) are optimal for every s ∈ S, l ∈ {0, . . . , k},

t′ ∈ {0, . . . , T−1} and h(s0, T, k) is the solution to the optimization problem defined
by Eq. 4.8.
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A.4 Proofs for Section 4.2

Theorem 4.2.1. Let C and C ′ be two element-wise bijective SCMs with transition
mechanisms gS and hS, respectively, and, for any observed transition (st, at, st+1),
let ut = g−1

S (st, at, st+1) and ũt = h−1
S (st, at, st+1). Moreover, given any s ∈ S, a ∈

A, let s′ = gS(s, a,ut) and s′′ = hS(s, a, ũt). If P C(St+1 |St = s, At = a) =
P C′

(St+1 |St = s, At = a) for all s ∈ S, a ∈ A, it must hold that s′ = s′′.

Proof. We prove the theorem by induction, starting by establishing the base case
s′1 = s′′1. Without loss of generality, assume that both gS,1 and hS,1 are strictly
increasing with respect to their third argument. Since the two SCMs entail the
same transition distributions, we have that

P C (St+1,1 ≤ st+1,1 |St = st, At = at) = P C′
(St+1,1 ≤ st+1,1 |St = st, At = at)

(∗)⇒

P C (gS,1 (st, at, Ut,1) ≤ gS,1 (st, at, ut,1)) = P C′
(hS,1 (st, at, Ut,1) ≤ hS,1 (st, at, ũt,1))

(∗∗)⇒
P C (Ut,1 ≤ ut,1) = P C′

(Ut,1 ≤ ũt,1) ,

where (∗) holds because both SCMs are element-wise bijective, and (∗∗) holds be-
cause gS,1 and hS,1 are increasing with respect to their third argument. Similarly,
we have that

P C (St+1,1 ≤ s′1 |St = s, At = a) = P C (gS,1 (s, a, Ut,1) ≤ gS,1 (s, a, ut,1))

(⋆)
= P C (Ut,1 ≤ ut,1)

(⋆⋆)
= P C′

(Ut,1 ≤ ũt,1)

(†)
= P C′

(hS,1 (s, a, Ut,1) ≤ hS,1 (s, a, ũt,1))

= P C′
(St+1,1 ≤ s′′1 |St = s, At = a)

= P C (St+1,1 ≤ s′′1 |St = s, At = a) ,

where in (⋆), (†) we have used the monotonicity of gS and hS, and (⋆⋆) follows from
the previous result. The last equality implies that s′1 and s′′1 correspond to the
same quantile of the distribution for St+1,1 |St = s, At = a. Therefore, it is easy to
see that s′1 = s′′1 since the opposite would be in contradiction to gS,1 being bijective.
Note that, we can reach that conclusion irrespective of the direction of monotonicity
of gS,1 and hS,1, since any change in the direction of the inequalities happening at
step (∗∗) is reverted at steps (⋆) and (†).

Now, starting from the inductive hypothesis that s′i = s′′i for all i ∈ {1, . . . , n}
with n < d, we show the inductive step, i.e., s′n+1 = s′′n+1. Again, without loss
of generality, assume that both gS,n+1 and hS,n+1 are strictly increasing with re-
spect to their last argument. Note that, the two SCMs entail the same transi-
tion distributions, i.e., the same joint distributions for St+1 |St, At. Following from
the law of total probability, they also entail the same conditional distributions for
St+1,n+1 |St+1,≤n,St, At, where we use the notation x≤n to refer to a vector that
contains the first n elements of a d-dimensional vector x. Therefore, we have that

P C (St+1,n+1 ≤ st+1,n+1 |St+1,≤n = st+1,≤n,St = st, At = at) =

P C′
(St+1,n+1 ≤ st+1,n+1 |St+1,≤n = st+1,≤n,St = st, At = at)

(∗)⇒
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P C (gS,n+1 (st, at, Ut,n+1) ≤ gS,n+1 (st, at, ut,n+1) |Ut,≤n = ut,≤n)

= P C′
(hS,n+1 (st, at, Ut,n+1) ≤ hS,n+1 (st, at, ũt,n+1) |Ut,≤n = ũt,≤n)

(∗∗)⇒
P C (Ut,n+1 ≤ ut,n+1 |Ut,≤n = ut,≤n) = P C′

(Ut,n+1 ≤ ũt,n+1 |Ut,≤n = ũt,≤n) ,

where for the first equality we have used the inductive hypothesis, (∗) holds
because both SCMs are element-wise bijective, and (∗∗) holds because gS,n+1 and
hS,n+1 are increasing with respect to their third argument. Similarly, we get that

P C (St+1,n+1 ≤ s′n+1 |St+1,≤n = st+1,≤n,St = s, At = a
)

= P C
(
gS,n+1 (s, a, Ut,n+1) ≤ gS,n+1 (s, a, ut,n+1)

| gS,≤n (s, a,Ut,≤n) = gs,≤n (s, a,ut,≤n)
)

(⋆)
= P C (Ut,n+1 ≤ ut,n+1 |Ut,≤n = ut,≤n)

(⋆⋆)
= P C′

(Ut,n+1 ≤ ũt,n+1 |Ut,≤n = ũt,≤n)

(†)
= P C′

(
hS,n+1 (s, a, Ut,1) ≤ hS,n+1 (s, a, ũt,1)

|hS,≤n (s, a,Ut,≤n) = hs,≤n (s, a, ũt,≤n)
)

= P C′ (
St+1,n+1 ≤ s′′n+1 |St+1,≤n = St+1,≤n,St = s, At = a

)
= P C (St+1,n+1 ≤ s′′n+1 |St+1,≤n = st+1,≤n,St = s, At = a

)
,

where in (⋆), (†) we have used the invertibility and monotonicity of gS and hS, and
(⋆⋆) follows from the previous result. With the same argument as in the base case,
the last equality implies that s′n+1 = s′′n+1. That concludes the proof.

Theorem 4.2.2. The problem defined by Eq. 4.19. is NP-Hard.

Proof. We prove the hardness of our problem as defined in Eq. 4.19 by performing a
reduction from the partition problem [168], which is known to be NP-Complete. In
the partition problem, we are given a multiset of B positive integers V = {v1, . . . , vB}
and the goal is to decide whether there is a partition of V into two subsets V1,V2
with V1 ∩ V2 = ∅ and V1 ∪ V2 = V , such that their sums are equal, i.e.,

∑
vi∈V1

vi =∑
vj∈V2

vj.

Consider an instance of our problem where S = U = R2, A contains 2 actions
adiff, anull and the horizon is T = B + 1. Let C be an element-wise bijective SCM
with arbitrary prior distributions P C(Ut) such that their support is on R2 and a
transition mechanism gS such that

gS(St, adiff,Ut) =

[
St,1 − St,2

0

]
+Ut and gS(St, anull,Ut) =

[
St,1

0

]
+Ut. (A.3)

Moreover, assume that the reward function is given by

r(St, adiff) = r(St, anull) = −max

(
0, St,1 −

sum(V)
2

− St,2
sum(V)

2

)
−max

(
0,

sum(V)
2

− St,1 − St,2
sum(V)

2

)
,

(A.4)

where sum(V) is the sum of all elements
∑B

i=1 vi. Note that, the SCM C defined
above is Lipschitz-continuous as suggested by the following lemma.
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Lemma A.4.1. The SCM C defined by Eqs. A.3, A.4 is Lipschitz-continuous ac-
cording to Definition 4.2.1.

Proof. It is easy to see that, for all u ∈ U and for all s, s′ ∈ S, the function
gS(St, anull,u) satisfies ∥gS(s, anull,u)− gS(s

′, anull,u)∥ ≤ ∥s− s′∥, and therefore
Kanull,u = 1 satisfies Definition 4.2.1. For the case of At = adiff, we have that

∥gS(s, adiff,u)− gS(s
′, adiff,u)∥

=

∥∥∥∥[s1 − s2
0

]
−
[
s′1 − s′2

0

]∥∥∥∥
=

∥∥∥∥[(s1 − s′1) + (s′2 − s2)
0

]∥∥∥∥
= |(s1 − s′1) + (s′2 − s2)| ≤ |s1 − s′1|+ |s2 − s′2|,

and therefore ∥gS(s, adiff,u)− gS(s
′, adiff,u)∥2 ≤ (s1 − s′1)

2 + (s2 − s′2)
2 + 2|s1 −

s′1||s2 − s′2|. We also have that

√
2 ∥s− s′∥ =

√
2
√

(s1 − s′1)
2 + (s2 − s′2)

2 ⇒ 2 ∥s− s′∥2 = 2(s1−s′1)
2+2(s2−s′2)

2.

By combining these, we get

2 ∥s− s′∥2 − ∥gS(s, adiff,u)− gS(s
′, adiff,u)∥2

≥ (s1 − s′1)
2 + (s2 − s′2)

2 − 2|s1 − s′1||s2 − s′2| ⇒
2 ∥s− s′∥2 − ∥gS(s, adiff,u)− gS(s

′, adiff,u)∥2

≥ (|s1 − s′1| − |s2 − s′2|)2 ≥ 0.

Hence, we can easily see that Kadiff,u =
√
2 satisfies Definition 4.2.1.

Next, we need to show that, for all a ∈ A there exists a Ca ∈ R+ such that,
for all s, s′ ∈ S, it holds |r(s, a) − r(s′, a)| ≤ Ca ∥s− s′∥. Note that, to show that
a function of the form max(0, f(s)) with f : R2 → R is Lipschitz continuous, it
suffices to show that f(s) is Lipschitz continuous, since the function max(0, x) with
x ∈ R has a Lipschitz constant equal to 1.

We start by showing that the function f(s) = s1−α−s2·α is Lipschitz continuous,
where α = sum(V)/2 is a positive constant. For an arbitrary pair s, s′ ∈ S, we have
that

|f(s)− f(s′)| = |s1 − s′1 − α(s2 − s′2)| ≤ |s1 − s′1|+ α|s2 − s′2| ⇒
|f(s)− f(s′)|2 ≤ (s1 − s′1)

2 + (s2 − s′2)
2 + 2α|s1 − s′1||s2 − s′2|.

We also have that
√
1 + α ∥s− s′∥ =

√
1 + α

√
(s1 − s′1)

2 + (s2 − s′2)
2 ⇒

(1 + α) ∥s− s′∥2 = (1 + α)(s1 − s′1)
2 + (1 + α)(s2 − s′2)

2

By combining these, we get

(1 + α) ∥s− s′∥2 − |f(s)− f(s′)|2
≥ α(s1 − s′1)

2 + α(s2 − s′2)
2 − 2α|s1 − s′1||s2 − s′2| ⇒

(1 + α) ∥s− s′∥2 − |f(s)− f(s′)|2 ≥ α (|s1 − s′1| − |s2 − s′2|)2 ≥ 0.
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Hence, we arrive to |f(s)−f(s′)| ≤
√
1 + α ∥s− s′∥, and the function f is Lipschitz

continuous. It is easy to see that the function ϕ(s) = α− s1− s2 ·α is also Lipschitz
continuous with the proof being almost identical. As a direct consequence, the
reward function given in Eq. A.4 satisfies Definition 4.2.1 with Canull = Cadiff =

2
√

1 + sum(V)
2

. This concludes the proof of the lemma.

Now, assume that the counterfactual action sequence can differ in an arbitrary
number of actions from the action sequence in the observed episode τ , i.e., k = T
and, let the observed action sequence be such that at = anull for t ∈ {0, . . . , T − 1}.
Lastly, let the initial observed state be s0 = [0, v1], the observed states {st}T−2

t=1 be
such that st =

[∑t
i=1 vi, vt+1

]
for t ∈ {1, . . . , T − 2} and the last observed state be

sT−1 = [sum(V), 0]. Then, it is easy to see that the noise variables Ut have posterior
distributions with a point mass on the respective values

ut =

[
vt+1

vt+2

]
for t ∈ {0, . . . , T − 3} and uT−2 =

[
vT−1

0

]
.

Note that, for all t ∈ {1, . . . , T − 2}, we have 0 ≤ st,1 < sum(V) and st,2 ≥ 1,
hence the immediate reward according to Eq. A.4 is equal to 0. Consequently, the
outcome of the observed episode τ is o+(τ) = r(sT−1, anull) = −max(0, sum(V)

2
) −

max(0,− sum(V)
2

) = − sum(V)
2

.
Next, we will characterize the counterfactual outcome o(τ ′) of a counterfactual

episode τ ′ with a sequence of states {s′t}T−1
t=0 resulting from an alternative sequence

of actions {a′t}T−1
t=0 . Let D′

t, N ′
t denote the set of time steps until time t, where the

actions taken in a counterfactual episode τ ′ are adiff and anull respectively. Formally,
D′

t = {t′ ∈ {0, . . . , t} : a′t′ = adiff}, N ′
t = {t′ ∈ {0, . . . , t} : a′t′ = anull}. Then, as an

intermediate result, we get the following lemma.

Lemma A.4.2. It holds that s′t,1 =
∑

t′∈N ′
t−1

vt′+1 for all t ∈ {1, . . . T − 1}.

Proof. We will prove the lemma by induction. For the base case of t = 1, we
distinguish between the cases a′0 = adiff and a′0 = anull. In the first case, we have
s′1,1 = u0,1 + s0,1 − s0,2 = v1 + 0− v1 = 0 and N ′

0 = ∅ and, therefore, the statement
holds. In the second case, we have s′1,1 = u0,1 + s0,1 = v1 + 0 = v1, N ′

0 = {0} and∑
t′∈N ′

0
vt′+1 = v1. Therefore, the statement also holds.

For the inductive step (t > 1), we assume that s′t−1,1 =
∑

t′∈N ′
t−2

vt′+1 and we will

show that s′t,1 =
∑

t′∈N ′
t−1

vt′+1. Again, we distinguish between the cases a′t−1 = adiff
and a′t−1 = anull. However, note that, in both cases, s′t−1,2 = ut−2,2 + 0 = vt.
Therefore, in the case of a′t−1 = adiff, we get

s′t,1 = ut−1,1 + s′t−1,1 − s′t−1,2 = vt +
∑

t′∈N ′
t−2

vt′+1 − vt =
∑

t′∈N ′
t−2

vt′+1 =
∑

t′∈N ′
t−1

vt′+1,

where the last equation holds because a′t−1 = adiff and, therefore, N ′
t−1 = N ′

t−2. In
the case of a′t−1 = anull, we get

s′t,1 = ut−1,1 + s′t−1,1 = vt +
∑

t′∈N ′
t−2

vt′+1 =
∑

t′∈N ′
t−1

vt′+1,

where the last equation holds because a′t−1 = anull and, therefore, N ′
t−1 = N ′

t−2 ∪
{t− 1}.
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Following from that, we get that 0 ≤ s′t,1 ≤ sum(V) for all t ∈ {1, . . . , T − 1}.
Moreover, we can observe that the transition mechanism given in Eq. A.3 is such
that gS,2(St, At, Ut,2) = Ut,2 for all t ∈ {0, . . . , T − 2}, independently of ST and
At. Therefore, it holds that s′t,2 = ut−1,2 ≥ 1 for t ∈ {1, . . . , T − 2}, and s′0,2 =
s0,2 = v1 ≥ 1. As a direct consequence, it is easy to see that r(s′t, a

′
t) = 0 for all

t ∈ {0, . . . , T − 2}, and the counterfactual outcome is given by

o+(τ ′) = r(s′T−1, a
′
T−1), (A.5)

In addition to that, we have that uT−2,2 = 0, hence

s′T−1 =

[∑
t∈N ′

T−2
vt+1

0

]
(A.6)

Now, we will show that, if we can find the action sequence {a∗t}T−1
t=0 that gives

the optimal counterfactual outcome o+(τ ∗) for the aforementioned instance in poly-
nomial time, then we can make a decision about the corresponding instance of the
partition problem, also in polynomial time. To this end, let {s∗t}T−1

t=0 be the se-
quence of states in the optimal counterfactual realization and, let D∗

T−2 = {t ∈
{0, . . . , T − 2} : a∗t = adiff}, N ∗

T−2 = {t′ ∈ {0, . . . , T − 2} : a∗t′ = anull}.
From Eq. A.5, we get that the optimal counterfactual outcome is o+(τ ∗) =

r(s∗T−1, a
∗
T−1), and it is easy to see that the reward function given in Eq. A.4 is

always less or equal than zero. If o(τ ∗) = 0, it has to hold that

max

(
0, s∗T−1,1 −

sum(V)
2

− s∗T−1,2

sum(V)
2

)
=

max

(
0,

sum(V)
2

− s∗T−1,1 − s∗T−1,2

sum(V)
2

)
= 0

(∗)⇒ ∑
t∈N ∗

T−2

vt+1

− sum(V)
2

≤ 0 and
sum(V)

2
−

 ∑
t∈N ∗

T−2

vt+1

 ≤ 0⇒

∑
t∈N ∗

T−2

vt+1 =
sum(V)

2
,

where (∗) follows from Eq. A.6. As a consequence, the subsets V1 = {vi : i − 1 ∈
N ∗

T−2} and V2 = {vi : i− 1 ∈ D∗
T−2} partition V and their sums are equal.

On the other hand, if o+(τ ∗) < 0, as we will show, there is no partition of V
into two sets with equal sums. For the sake of contradiction, assume there are
two sets V1,V2 that partition V , with sum(V1) = sum(V2) = sum(V)/2, and let
N ′

T−2 = {t ∈ {0, . . . , T−2} : vt+1 ∈ V1} and D′
T−2 = {t ∈ {0, . . . , T−2} : vt+1 ∈ V2}.

Then, consider the counterfactual episode τ ′ with an action sequence {a′t}T−1
t=0 such

that its elements take values anull and adiff based on the sets N ′
T−2,D′

T−2 respectively,
with a′T−1 taking an arbitrary value. It is easy to see that

o+(τ ′) = r(s′T−1, a
′
T−1) = r

([∑
t∈N ′

T−2
vt+1

0

]
, a′T−1

)
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= −max

0,
∑

t∈N ′
T−2

vt+1 −
sum(V)

2

−max

0,
sum(V)

2
−
∑

t∈N ′
T−2

vt+1


= −max

(
0,

sum(V)
2

− sum(V)
2

)
−max

(
0,

sum(V)
2

− sum(V)
2

)
= 0 > o+(τ ∗),

which is a contradiction. This step concludes the reduction and, therefore, the
problem given in Eq. 4.19 cannot be solved in polynomial time, unless P = NP .

Lemma 4.2.1. Let ut = g−1
S (st, at, st+1), Kut = maxa∈AKa,ut, C = maxa∈A Ca

and the sequence L0, . . . , LT−1 ∈ R+ be such that LT−1 = C and Lt = C + Lt+1Kut

for t ∈ [T − 2]. Then, it holds that |Vτ (s, l, t) − Vτ (s
′, l, t)| ≤ Lt ∥s− s′∥, for all

t ∈ [T − 1]0, l ∈ [k] and s, s′ ∈ S.

Proof. We will prove the proposition by induction, starting from the base case, where
t = T − 1. First, Let t = T − 1 and l = k. It is easy to see that, if the process is at
a state s ∈ S in the last time step with no action changes left, the best reward that
can be achieved is r(s, aT−1), as already discussed after Eq. 4.20. Therefore, it holds
that |Vτ (s, k, T −1)−Vτ (s

′, k, T −1)| = |r(s, aT−1)−r(s′, aT−1)| ≤ CaT−1
∥s− s′∥ ≤

C ∥s− s′∥, where the last step holds because C = maxa∈A Ca. Now, consider the
case of t = T − 1 with l taking an arbitrary value in {0, . . . , k− 1}. Let s, s′ be two
states in S and a∗ be the action that gives the maximum immediate reward at state
s, that is, a∗ = argmaxa∈A{r(s, a)}. Then, we get

|Vτ (s, l, T − 1)− Vτ (s
′, l, T − 1)| = |max

a∈A
{r(s, a)} −max

a∈A
{r(s′, a)}|

(∗)
≤ |r(s, a∗)− r(s′, a∗)| ≤ Ca∗ ∥s− s′∥ ≤ C ∥s− s′∥ ,

where (∗) follows from the fact that r(s′, a∗) ≤ maxa∈A{r(s′, a)}. Therefore, for
any l ∈ {0, . . . , k} and s, s′ ∈ S, it holds that |Vτ (s, l, T − 1) − Vτ (s

′, l, T − 1)| ≤
LT−1 ∥s− s′∥, where LT−1 = C.

Now, we will proceed to the induction step. Let t < T − 1, l < k and, as an
inductive hypothesis, assume that Lt+1 ∈ R+ as defined in Lemma 4.2.1 is such
that, for all l ∈ {0, . . . , k} and s, s′ ∈ S, it holds that |Vτ (s, l, t + 1) − Vτ (s

′, l, t +
1)| ≤ Lt+1 ∥s− s′∥. Additionally, let (sa, la), (s

′
a, la) denote the enhanced states

that follow from (s, l), (s′, l) after taking an action a, i.e., (sa, la) = F+
τ,t ((s, l) , a)

and (s′a, la) = F+
τ,t ((s

′, l) , a). Lastly, let a∗ be the action that maximizes the future
total reward starting from state s, i.e., a∗ = argmaxa∈A{r(s, a) + Vτ (sa, la, t+ 1)}.
Then, we have that

|Vτ (s, l, t)− Vτ (s
′, l, t)|

= |max
a∈A
{r(s, a) + Vτ (sa, la, t+ 1)} −max

a∈A
{r(s′, a) + Vτ (s

′
a, la, t+ 1)}|

(∗)
≤ |r(s, a∗) + Vτ (sa∗ , la∗ , t+ 1)− r(s′, a∗)− Vτ (s

′
a∗ , la∗ , t+ 1) |

≤ |r(s, a∗)− r(s′, a∗)|+ |Vτ (sa∗ , la∗ , t+ 1)− Vτ (s
′
a∗ , la∗ , t+ 1) |
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(∗∗)
≤ Ca∗ ∥s− s′∥+ Lt+1 ∥sa∗ − s′a∗∥
≤ Ca∗ ∥s− s′∥+ Lt+1Ka∗,ut ∥s− s′∥
(∗∗∗)
≤ C ∥s− s′∥+ Lt+1Kut ∥s− s′∥
= (C + Lt+1Kut) ∥s− s′∥ = Lt ∥s− s′∥ .

In the above, (∗) holds due to r(s′, a∗) + Vτ (s
′
a∗ , la∗ , t+ 1) ≤ maxa∈A{r(s′, a) +

Vτ (s
′
a, la, t+ 1)}, (∗∗) follows from the inductive hypothesis, and (∗∗∗) holds because

C = maxa∈ACa and Kut = maxa∈A Ka,ut . It is easy to see that, similar arguments
hold for the simple case of l = k, therefore, we omit the details. This concludes the
inductive step and the proof of Lemma 4.2.1.

Proposition 4.2.1. For all s ∈ S†, l ∈ [k], t ∈ [T − 1]0, it holds that V̂τ (s, l, t) ≥
Vτ (s, l, t), where V̂τ (s, l, t) are the values of the heuristic function computed by Al-
gorithm 8.

Proof. We will prove the proposition by induction, starting from the base case, where
t = T − 1. If t = T − 1, the algorithm initializes V̂τ (s, l, T − 1) to maxa∈A r(s, a) for
all s ∈ S†, l ∈ {0, . . . , k − 1} and V̂τ (s, k, T − 1) to r(s, aT−1). It is easy to see that
those values are optimal, as already discussed after Eq. 4.20. Therefore, the base
case V̂τ (s, l, T − 1) ≥ Vτ (s, l, T − 1) follows trivially.

Now, we will proceed to the induction step. Let t < T − 1 and, as an inductive
hypothesis, assume that V̂τ (s, l, t+ 1) ≥ Vτ (s, l, t+ 1) for all s ∈ S†, l ∈ {0, . . . , k}.
Our goal is to show that V̂τ (s, l, t) ≥ Vτ (s, l, t) for all s ∈ S†, l ∈ {0, . . . , k}. First,
let l < k. For a given point s ∈ S†, Algorithm 8 finds the next state sa that would
have occurred by taking each action a, i.e., (sa, la) = F+

τ,t ((s, l) , a), and it computes

the associated value Va = mins†∈S†{V̂τ (s†, la, t+1)+Lt+1 ∥s† − sa∥}. Then, it simply

sets V̂τ (s, l, t) equal to maxa∈A {r(s, a) + Va}. We have that

Va = min
s†∈S†
{V̂τ (s†, la, t+ 1) + Lt+1 ∥s† − sa∥}

(∗)
≥ min

s†∈S†
{Vτ (s†, la, t+ 1) + Lt+1 ∥s† − sa∥}

(∗∗)
≥ min

s†∈S†
{Vτ (sa, la, t+ 1)}

= Vτ (sa, la, t+ 1),

where (∗) follows from the inductive hypothesis, and (∗∗) is a consequence of
Lemma 4.2.1. Then, we get

V̂τ (s, l, t) = max
a∈A
{r(s, a) + Va} ≥ max

a∈A
{r(s, a) + Vτ (sa, la, t+ 1)} = Vτ (s, l, t).

Additionally, when l = k, we have V̂τ (s, k, t) = r(s, at) + mins†∈S†{V̂τ (s†, k, t +
1)+Lt+1 ∥s† − sat∥} and Vτ (s, k, t) = r(s, at)+Vτ (sat , k, t+1). Therefore, the proof

for V̂τ (s, k, t) ≥ Vτ (s, k, t) is almost identical.

Theorem 4.2.3. For any nodes v = (s, l, t), va = (sa, la, t + 1) with t < T − 1
connected with an edge associated with action a, it holds that V̂τ (s, l, t) ≥ r(s, a) +
V̂τ (sa, la, t + 1). Moreover, for any node v = (s, l, T − 1) and edge connecting it to
the goal node vT = (s∅, k, T ), it holds that V̂τ (s, l, T − 1) ≥ r(s, a) + V̂τ (s∅, k, T ).
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Proof. We start from the case where t = T − 1. Let v = (s, l, T − 1) and, consider
an edge associated with action a∗ connecting v to the goal node vT = (s∅, k, T ) that
carries a reward r(s, a∗). Then, we have

V̂τ (s, l, T − 1) = max
a∈A′

r(s, a) ≥ r(s, a∗) + 0 = r(s, a∗) + V̂τ (s∅, k, T ),

and the base case holds.
For the more general case, where t < T − 1, we first establish the following

intermediate result:

Lemma A.4.3. For every s, s′ ∈ S, l ∈ {0, . . . , k}, t ∈ {0, . . . , T − 1}, it holds that
|V̂τ (s, l, t)− V̂τ (s

′, l, t)| ≤ Lt ∥s− s′∥, where Lt is as defined in Lemma 4.2.1.

Proof. Without loss of generality, we will assume that l < k, since the proof for the
case of l = k is similar and more straightforward. We start from the case where
t = T − 1 and, for two states s, s′ ∈ S we have

|V̂τ (s, l, T − 1)− V̂τ (s
′, l, T − 1)| =

∣∣∣∣max
a∈A

r(s, a)−max
a∈A

r(s′, a)

∣∣∣∣
= |Vτ (s, l, T − 1)− Vτ (s

′, l, T − 1)| ≤ C ∥s− s′∥ = LT−1 ∥s− s′∥ ,

where the last inequality follows from Lemma 4.2.1.
Now, consider the case t < T − 1, and let (sa, la) denote the enhanced state that

follows from (s, l) after taking an action a at time t, i.e., (sa, la) = F+
τ,t ((s, l) , a).

Then, we have

|V̂τ (s, l, t)− V̂τ (s
′, l, t)|

=

∣∣∣∣∣max
a∈A

{
r(s, a) + min

s†∈S†

{
V̂τ (s†, la, t+ 1) + Lt+1 ∥s† − sa∥

}}

−max
a∈A

{
r(s′, a) + min

s†∈S†

{
V̂τ (s†, la, t+ 1) + Lt+1 ∥s† − s′a∥

}} ∣∣∣∣∣. (A.7)

Let a∗ be the action a ∈ A that maximizes the first part of the above subtraction,
i.e.,

a∗ = argmax
a∈A

{
r(s, a) + min

s†∈S†

{
V̂τ (s†, la, t+ 1) + Lt+1 ∥s† − sa∥

}}
Then, Eq. A.7 implies that

|V̂τ (s, l, t)− V̂τ (s
′, l, t)| ≤

∣∣∣∣r(s, a∗) + min
s†∈S†

{
V̂τ (s†, la∗ , t+ 1) + Lt+1 ∥s† − sa∗∥

}
− r(s′, a∗)− min

s†∈S†

{
V̂τ (s†, la∗ , t+ 1) + Lt+1 ∥s† − s′a∗∥

} ∣∣∣∣
≤ |r(s, a∗)− r(s′, a∗)|

+

∣∣∣∣ min
s†∈S†

{
V̂τ (s†, la∗ , t+ 1) + Lt+1 ∥s† − sa∗∥

}
− min

s†∈S†

{
V̂τ (s†, la∗ , t+ 1) + Lt+1 ∥s† − s′a∗∥

} ∣∣∣∣
(A.8)
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Now, let s̃ be the s† ∈ S† that minimizes the second part of the above subtraction,
i.e.,

s̃ = argmin
s†∈S†

{
V̂τ (s†, la∗ , t+ 1) + Lt+1 ∥s† − s′a∗∥

}
.

As a consequence and in combination with Eq. A.8, we get

|V̂τ (s, l, t)− V̂τ (s
′, l, t)| ≤ |r(s, a∗)− r(s′, a∗)|

+

∣∣∣∣V̂τ (s̃, la∗ , t+ 1) + Lt+1 ∥s̃− sa∗∥

− V̂τ (s̃, la∗ , t+ 1) + Lt+1 ∥s̃− s′a∗∥
∣∣∣∣

= |r(s, a∗)− r(s′, a∗)|+ Lt+1 |∥s̃− sa∗∥ − ∥s̃− s′a∗∥|
(∗)
≤ Ca∗ ∥s− s′∥+ Lt+1 ∥sa∗ − s′a∗∥

(∗∗)
≤ C ∥s− s′∥+ Lt+1Kut ∥s− s′∥ = Lt ∥s− s′∥ ,

where in (∗) we use the triangle inequality and the fact that the SCM C is Lipschitz-
continuous, and (∗∗) follows from Lemma 4.2.1.

That said, consider an edge associated with an action a∗ connecting node v =
(s, l, t) to node va∗ = (sa∗ , la∗ , t+ 1). Then, we have

V̂τ (s, l, t) = max
a∈A′

{
r(s, a) + min

s†∈S†

{
V̂τ (s†, la, t+ 1) + Lt+1 ∥s† − sa∥

}}
≥ r(s, a∗) + min

s†∈S†

{
V̂τ (s†, la∗ , t+ 1) + Lt+1 ∥s† − sa∗∥

}
≥ r(s, a∗) + min

s†∈S†

{
V̂τ (sa∗ , la∗ , t+ 1)

}
= r(s, a∗) + V̂τ (sa∗ , la∗ , t+ 1).

That concludes the proof and, therefore, the heuristic function V̂τ is consistent.
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Appendix B

Omitted details of the
experimental setups

B.1 Additional details for Section 3.1

B.1.1 Raw features in the credit dataset

Each credit card holder has a label which indicates whether they will default during
the next month (Y = 0) or not (y = 1) and the features x are:

• Marital status: whether the person is married or single.

• Age group: group depending on the person’s age (< 25, 25−39, 40−59, > 60).

• Education level: the level of education the individual has acquired (1-4).

• Maximum bill amount over last 6 months

• Maximum payment amount over last 6 Months

• Months with zero balance over last 6 Months

• Months with low spending over last 6 Months

• Months with high spending over last 6 Months

• Most recent bill amount

• Most recent payment amount

• Total overdue counts

• Total months overdue

We consider all features except marital status, age group and education level to be
actionable and, among the actionable features, we assume that total overdue counts
and total months overdue can only increase.
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B.1.2 Information about the processed data and the trained
classifier

Table B.1 summarizes the experimental setup for the credit card dataset, that is,
the number of samples, the pair of classifier - number of clusters k picked through
cross-validation, the accuracy achieved by the corresponding classifier, the resulting
number of feature values m and the parameter γ.

B.1.3 Details regarding modeling unobserved confounding

We set the parameters α(λ) and β(λ) as follows:

α(λ) =

{
1.5 if λ ∈ (0, 0.5]

0.1 · (2λ− 1) + 1.5 · (2− 2λ) if λ ∈ (0.5, 1)

β(λ) =

{
0.1 · (1− 2λ) + 1.5 · 2λ if λ ∈ (0, 0.5]

1.5 if λ ∈ (0.5, 1)

Table B.1: Credit: dataset and classifier details

Dataset # of samples Classifier k Accuracy m γ
credit 30000 Logistic Regression 100 80.49% 3200 0.85
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B.2 Additional details for Section 3.2

For each applicant in the lending dataset, the label Y indicates whether an applicant
fully pays a loan (Y = 1) or ends up to a default/charge-off (Y = 0) and the features
X are:

• Loan Amount: The amount that the applicant initially requested.

• Employment Length: How long the applicant has been employed.

• Debt to Income Ratio: The ratio between the applicant’s financial debts and
their average income.

• FICO Score: The applicant’s FICO score, which is a credit score based on
consumer credit files. The FICO scores are in the range of 300-850 and the
average of the high and low range for the FICO score of each applicant has
been used for this study.

• Annual Income: The declared annual income of the applicant.

Here, we assume that all of the aforementioned features are actionable, meaning
that an individual denied a loan can change their values in order to get a positive
decision. Note that the actionable features are numerical, however, our methodology
only allows for discrete valued features. Therefore, to discretize the features X,
estimate the conditional distribution P (Y |X), we follow the same procedure as in
Section 3.1. Finally, we set γ equal to the 50-th percentile of all the individuals’
P (Y = 1 |x) values causing a 50% acceptance rate by the optimal threshold policy
in the non strategic setting. Table B.2 summarizes the experimental setup for the
lending dataset, that is, the number of samples, the pair of classifier - number of
clusters picked through cross-validation, the accuracy achieved by the corresponding
classifier, the resulting number of feature values m and the parameter γ.

Table B.2: Lending: dataset and classifier details

Dataset # of samples Classifier k Accuracy m γ
lending 1266817 Logistic Regression 400 89.9% 400 0.97
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B.3 Additional details for Section 4.1

Each patient’s severity of depression is measured using the standardized question-
naire PHQ-9 [209], which consists of 9 questions regarding the frequency of depres-
sive symptoms (e.g., “Feeling tired or having little energy?”) manifested over a
period of two weeks. The patient has to answer each question by placing them-
selves on a scale ranging from 0 (“Not at all”) to 3 (“Nearly every day”). The sum
of those answers, ranging from 0 to 27, reflects the overall depression severity and
it is usually discretized into five categories, corresponding to no depression (0− 4),
mild depression (5−9), moderate depression (10−14), moderately severe depression
(15−19), severe depression (20−27)1. In our experiments, the states S = {0, . . . , 4}
correspond to these five categories.

Each session of cognitive behavioral therapy contains information about the topic
of discussion between the patient and the therapist, among 24 pre-defined top-
ics [207], with some of the topics having similar content. For example, there were
4 topics about “cognitive restructuring techniques” which, we observed that, some
therapists merged and covered in 2 sessions. Here, we grouped the above topics into
the following eleven broader themes:

• STR – First session: Introduction, discussing expectations, getting to know
each other, discussing the current symptoms / problems, current life situation.

• BIO – Biography: A look at biography, family and social frame of reference,
school and professional development, emotional development, partnerships, im-
portant turning points or crises.

• PSE – Psychoeducation: Discuss symptoms of depression, recognize and under-
stand connections between feelings, thoughts and behavior (depression triangle)
based on a situation analysis from the current / last episode, causes of depres-
sion, develop a disease model, explain the treatment approach in relation to the
model.

• BHA – Behavioural activation: Focus on behaviour, discuss the vicious circle
(depression spiral), discuss list of pleasant activities, attention to life balance,
if necessary improve the daily structure, recognizing and eliminating obstacles
and problems.

• REV – Review: Review of the last sessions, collection of strategies learned so
far, find suitable strategies for typical situations, draft a personal strategy plan,
plan further steps.

• CRT – Cognitive restructuring techniques: Discuss influence of thoughts on
feelings and actions, identify thought patterns, discuss influence of automatic
thoughts / basic assumptions, check the validity of automatic thoughts.

• INR – Interactional competence: Self-assessment of your own self-confidence,
discuss current interpersonal issues and derive goals, carry out role plays, trans-
fer into everyday life.

1The full version of the questionnaire can be found at https://patient.info/doctor/patient-health-
questionnaire-phq-9.
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• THP – Re-evaluation of thought patterns: Review, evaluate and rename basic
assumptions, schemes and general plans.

• RLP – Relapse prevention: Explain the risk of relapse, discuss early warning
symptoms, recognize risk situations, develop suitable strategies.

• END – Closing session: Finding a good end to the therapy, looking back on the
last 5-6 months, parting ritual.

• EXT – Extra material: Sleep disorders, problem-solving skills, brooding module
”When thinking doesn’t help”, discuss the influence of rumination on mood and
impairments in everyday life, progressive muscle relaxation.

In our experiments, the actions A correspond to these broader themes. However,
since the themes STR and END appeared only in the first (t = 0) and last (t = T−1)
time steps of each realization, we kept them fixed and we did not allow these themes
to be used as action changes during the time steps t = {1, . . . , T − 2}.
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B.4 Additional details for Section 4.2

B.4.1 Features and actions in the sepsis management dataset

As mentioned in Section 4.2.4, our state space is S = Rd, where d = 13 is the
number of features. We distinguish between three types of features: (i) demographic
features, whose values remain constant across time, (ii) contextual features, for
which we maintain their observed (and potentially varying) values throughout all
counterfactual episodes and, (iii) time-varying features, whose counterfactual values
are given by the SCM C. The list of features is as follows:

• Gender (demographic)

• Re-admission (demographic)

• Age (demographic)

• Mechanical ventilation (contextual)

• FiO2 (time-varying)

• PaO2 (time-varying)

• Platelet count (time-varying)

• Bilirubin (time-varying)

• Glasgow Coma Scale (time-varying)

• Mean arterial blood pressure (time-varying)

• Creatinine (time-varying)

• Urine output (time-varying)

• SOFA score (time-varying)

To define our set of actions A we follow related work [233, 234, 236], and we
consider 25 actions corresponding to 5 × 5 levels of administered vasopressors and
intravenous fluids. Specifically, for both vasopressors and fluids, we find all non-
zero values appearing in the data, and we divide them into 4 intervals based on the

Table B.3: Levels of vasopressors and intravenous fluids corresponding to the 25
actions in A

Vasopressors (mcg/kg/min) Intravenous fluids (mL/4 hours)
0.00 0
0.04 30
0.113 80
0.225 279
0.788 850
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Figure B.1: Goodness of fit of the Lipschitz-continuous SCM C. The heatmap
shows the percentage decrease in log likelihood of the data in comparison with an
SCM trained without Lipschitz-continuity constraints. The x and y axes correspond
to different enforced values for the Lipschitz constants Lh, Lϕ of the location and
scale networks h and ϕ, respectively. Darker values indicate that the learned SCM
achieves a significantly lower log likelihood than the unconstrained SCM.

quartiles of the observed values. Then, we set the 5 levels to be the median values
of the 4 intervals and 0. Table B.3 shows the resulting values of vasopressors and
fluids.

B.4.2 Additional details on the network architecture & train-
ing

We represent the location and scale functions h and ϕ of the SCM C using neural
networks with 1 hidden layer, 200 hidden units and tanh activation functions. The
mapping from a state s and an action a to the hidden vector z takes the form
z = tanh(Wss + Waa), where a is a 2-D vector representation of the respective
action. The mapping from the hidden vector z to the network’s output is done via
a fully connected layer with weights Wz. To enforce a network to have a Lipschitz
constant L with respect to the state input, we apply spectral normalization to the
weight matrices Ws and Wz, so that their spectral norms are ∥Ws∥2 = ∥Wz∥2 =
1. Additionally, we add 2 intermediate layers between the input and the hidden
layer and between the hidden layer and the output layer, each one multiplying
its respective input by a constant

√
L. Since it is known that the tanh activation

function has a Lipschitz constant of 1, it is easy to see that, by function composition,
the resulting network is guaranteed to be Lipschitz continuous with respect to its
state input with constant L. Note that, since the matrix Wa is not normalized, the
network’s Lipschitz constant with respect to the action input can be arbitrary.

To train the SCM C, for each sample, we compute the negative log-likelihood
of the observed transition under the SCM’s current parameter values (i.e., network
weight matrices & covariance matrix of the multivariate Gaussian prior), and we
use that as a loss. Subsequently, we optimize those parameters using the Adam
optimizer with a learning rate of 0.001, a batch size of 256, and we train the model
for 100 epochs.

We train the model under multiple values of the Lipschitz constants Lh, Lϕ of
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the location and scale networks, and we evaluate the log-likelihood of the data under
each model using 5-fold cross-validation. Specifically, for each configuration of Lh

and Lϕ, we randomly split the dataset into a training and a validation set (with a
size ratio 4-to-1), we train the corresponding SCM using the training set, and we
evaluate the log-likelihood of the validation set based on the trained SCM. This
results in the log-likelihood always being measured on a different set of data points
than the one used for training. For each configuration of Lh and Lϕ, we repeat the
aforementioned procedure 5 times and we report the average log-likelihood achieved
on the validation set. In addition, we train an unconstrained model without spectral
normalization, which can have an arbitrary Lipschitz constant.

Fig. B.1 shows the decrease in log-likelihood of the respective constrained model
as a percentage of the log-likelihood achieved by the unconstrained model, under
various values of the Lipschitz constants Lh, Lϕ. We observe that, the model’s
performance is predominantly affected by the Lipschitz constant of the location
network Lh, and its effect is more pronounced when Lh takes values smaller than
1. Additionally, we can see that the scale network’s Lipschitz constant Lϕ has a
milder effect on performance, especially when Lh is greater or equal than 1. Since
we are interested in constraining the overall Lipschitz constant of the SCM C, in
our experiments in Section 4.2.4, we set Lh = 1 and Lϕ = 0.1, which achieves a
log-likelihood only 6% lower to that of the best model trained without any Lipschitz
constraint.
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Appendix C

Additional experimental results

C.1 Section 3.1: Additional results on synthetic

data

Figs. C.1-C.4 present experimental results similar to the ones presented in Fig. 3.3
under additional cost functions and values of the parameter κ.

We consider the following additional cost functions. For instances with outcome
monotonic additive costs, we initially set c(xi,xj) = 0 ∀xi,xj : P (Y = 1 |xj) ≤
P (Y = 1 |xi). Then, we assign to the costs {c(xm,xi) for i ∈ {1, . . . ,m − 1}}
m − 1 samples from an exponential distribution Exp(λ = 1), sorted in increasing
order, and we scale them such that individuals with feature values xm can move
to at most κm better states, that is, c(xm,xi) ≤ 1 ∀xi : i ≥ m − κm. Finally,
we set the remaining values c(xi,xj), in decreasing order of i and j such that
c(xi,xj) = c(xi−1,xj) − c(xi−1,xi). For instances with general costs, we sample
the cost between feature values c(xi,xj) ∼ Exp(λ = 1) for a fraction κ of all pairs,
we scale them such that the maximum cost is equal to 1 and, we set c(xi,xj) =∞
for the remaining pairs.
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Figure C.1: Performance evaluation on synthetic data with additive outcome mono-
tonic costs using the cost function defined in Section 3.1.5.
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Figure C.2: Performance evaluation on synthetic data with additive outcome mono-
tonic costs using the additional cost function defined in Appendix C.1.
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Figure C.3: Performance evaluation on synthetic data with general costs using the
cost function defined in Section 3.1.5.
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Figure C.4: Performance evaluation on synthetic data with general costs using the
additional cost function defined in Appendix C.1.
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Figure C.5: Performance evaluation on credit card data using the cost function
proportional to the maximum percentile shift defined in Section 3.1.6.
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Figure C.6: Performance evaluation on credit card data using the cost function
proportional to the euclidean distance defined in Appendix C.2.

C.2 Section 3.1: Additional results on real data

Figs. C.5-C.6 present experimental results similar to the ones presented in Fig. 3.6
under additional values of the parameter γ and one additional cost function. Here,
the additional cost function c(xi,xj) we consider is proportional to the euclidean
distance between the feature values xi,xj. More specifically, let L be the set of
actionable (numerical) features and L̄ be the set of non-actionable (discrete-valued)
features. Then, for each pair of feature values, we define an intermediate cost
function

c′(xi,xj) =

{
∥xi − xj∥ if xi,l = xj,l ∀l ∈ L̄
∞ otherwise,

(C.1)

where xj,l is the value of the l-th feature for the feature value xj, and ∥·∥ denotes the
Euclidean distance. As an exception, we always set the cost c′(xi,xj) between two
feature values to∞ if xj,l < xi,l for l ∈ {Total overdue counts, Total months overdue},
not allowing the history of overdue payments to be erased. For consistency with the
cost function defined in Section 3.1.6, we scale the values c′(xi,xj) such that the
maximum of all non-infinite values is equal to 1 and, we set the final cost function
c(xi,xj) equal to τ · c′(xi,xj), where τ ≥ 1 is a scaling factor which controls the
difficulty of changing features.

Finally, as additional values for the parameter γ, we consider the 40-th and 60-
th percentile of all the individuals’ P (Y = 1 |x), such that 40% and 60% of the
population is accepted by the optimal threshold policy in the non strategic setting,
respectively.
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C.3 Section 4.1: Insights about individual patients

In this section, we provide insights about additional patients in the dataset. For
each of these additional patients, we follow the same procedure in Section 4.1.5,
that is, we use Algorithm 5 with the policy π∗

τ , with k = 3, to sample multiple coun-
terfactual explanations τ ′ and look at the corresponding counterfactual outcomes
o(τ ′). Fig. C.7 summarizes the results, where each row corresponds to a different
patient. The results reveal several interesting insights. For most of the patients, all
of the counterfactual realizations lead to counterfactual outcomes greater or equal
than the observed outcome (left column), however, the difference between the aver-
age counterfactual outcome and the observed outcome is relatively small. Notable
exceptions are a few patients for whom there is a small probability that the coun-
terfactual outcome is worse than the observed one (top row) as well as patients for
whom the difference between the average counterfactual outcome and the observed
outcome is high (bottom row). Additionally, we also find that the actual action
changes suggested by the optimal counterfactual policies π∗

τ are typically concen-
trated in a few time steps across counterfactual realizations (right column), usually
at the beginning or the end of the realizations.
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Figure C.7: Insights provided by the optimal counterfactual policy π∗
τ for

five real patient who received cognitive behavioral therapy. Each row cor-
responds to a different patient with an observed realization τ . The panels in the
left column show the distribution of the counterfactual outcomes o(τ ′) for the coun-
terfactual realizations τ ′ induced by π∗

τ and Pτ . The panels in the right column
show, for each time step, how frequently a counterfactual explanation changes the
observed action as well as the observed severity level and the severity level in the
counterfactual realization with the highest counterfactual outcome. Here, darker
colors correspond to higher frequencies and higher severities. In all panels, we set
d = 1,000, k = 3, and the results are estimated using 1,000 counterfactual realiza-
tions.
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Figure C.8: Performance achieved by the optimal counterfactual policy π∗
τ

given by Algorithm 6 and the baseline policies. The plot shows the aver-
age counterfactual outcome 1

T
∑

τ∈T ōπτ (τ) achieved by π∗
τ and the baseline policies,

averaged over the set of observed realizations T , against the number of actions k
differing from the observed ones. For each observed realization, the average coun-
terfactual outcome is estimated using 1,000 counterfactual realizations. Here, we
set d = 1,000 and use data from |T | = 73 patients. Shaded regions correspond to
95% confidence intervals.

C.4 Section 4.1: Performance comparison with

baseline policies

Experimental setup. In this section, we compare the average counterfactual out-
come achieved by the optimal counterfactual policy, given by Algorithm 6, with
that achieved by several baseline policies. To this end, we use the same experimen-
tal setup as in Section 4.1.5, however, instead of setting r(s, a) = −∞ for every
unobserved pair (s, a), we set r(s, a) = 5 − s ∈ {1, . . . , 5}, similarly as for the
observed pairs. This is because, otherwise, we observed that there were always real-
izations under the baselines policies for which the counterfactual outcome was −∞.
In our experiments, we consider with the following baselines policies:

• Random: At each time step t, the policy chooses the next action a∗ uniformly
at random if lt < k and it chooses a∗ = at otherwise.

• Greedy: At each time step t, being at state (s′t, lt), the policy chooses the next
action a∗ greedily, i.e., if lt < k, then

a∗ = argmax
a∈A

r(s, a) +
∑
s′∈S

Pτ,t(St+1 = s′ |St = s′t, At = a)r(s′, a′), (C.2)

and, if lt = k, a∗ = at.

• Noisy greedy: At each time step t, being at state (s′t, lt), it chooses the next
action a∗ as follows. If lt < k, a∗ is given by Eq. C.2 with probability 0.5 and
a∗ = at otherwise. If lt = k, a∗ = at.

Results. Fig. C.8 shows the average counterfactual outcomes achieved by the opti-
mal policy, as given by Algorithm 6, and the above baselines for different k values.
The results show that, as expected, the optimal policy outperforms all the base-
lines across the entire range of k values and, moreover, the competitive advantage
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is greater for smaller k values. In addition, we also find that the performance of the
random baseline policy drops significantly as k increases, since, as discussed in Sec-
tion 4.1.5, the observed trajectories are close to optimal in retrospect and, differing
from them causes the random policy to worsen the counterfactual outcome.
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Figure C.9: Computational efficiency of our methodunder three different
anchor set selection strategies. Panels (a-c) show the Effective Branching Factor
(EBF), under three different anchor set selection strategies against the size of the
anchor set S†. In all panels, we set Lh = 1.0, Lϕ = 0.1 and k = 3. Error bars
indicate 95% confidence intervals over 200 executions of the A∗ algorithm for 200
patients with horizon T = 12.

C.5 Section 4.2: Experimental evaluation of an-

chor set selection strategies

In this section, we benchmark the anchor set selection strategy presented in Sec-
tion 4.2.3 against two alternative competitive strategies using the sepsis management
dataset and the same experimental setup as in Section 4.2.4. More specifically, we
consider the following anchor set selection strategies:

(i) MC-Lipschitz : This is the strategy described in depth in Section 4.2.3, based
on Monte Carlo simulations of counterfactual episodes under randomly sam-
pled counterfactual action sequences. Notably, the time steps where each
counterfactual action sequence differs from the observed one are sampled pro-
portionally to the respective Lipschitz constant Lt of the SCM’s transition
mechanism. To ensure a fair comparison with other strategies, instead of con-
trolling the number of sampled action sequences M , we fix the desired size of
the anchor set S†, and we repeatedly sample counterfactual action sequences
until the specified size is met.

(ii) MC-Uniform: This strategy is a variant of the previous strategy where we sam-
ple the time steps where each counterfactual action sequence differs from the
observed one uniformly at random, rather than biasing the sampling towards
time steps with higher Lipschitz constants Lt.

(iii) Facility-Location: Under this strategy, the anchor set is the solution to a
minimax facility location problem defined using the observed available data.
Let So be the union of all state vectors observed in all episodes τ in a given
dataset. Then, we choose an anchor set S† ⊂ So of fixed size |S†| = b, such
that the maximum distance of any point in So to its closest point in S† is
minimized. Here, the rationale is that counterfactual states resulting from
counterfactual action sequences for one observed episode are likely to be close
to the observed states of some other episode in the data. Formally,

S† = argmin
S′⊂So:|S′|=b

{
max
s∈So

min
s′∈S′
{||s− s′||}

}
. (C.3)
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Although the above problem is known to be NP-Complete, we find a solu-
tion using the farthest-point clustering algorithm, which is known to have
an approximation factor equal to 2 and runs in polynomial time. The al-
gorithm starts by adding one point from So to S† at random. Then, it
proceeds iteratively and, at each iteration, it adds to S† the point from So
that is the furthest from all points already in S†, i.e., S† = S† ∪ s, where
s = maxs′∈So

{
mins†∈S† ||s′ − s†||

}
. The algorithm terminates after b itera-

tions.

Results. We compare the computational efficiency of our method under each of the
above anchor set selection strategies for various values of the size of the anchor set
|S†|. Fig. C.9 summarizes the results. We observe that the Facility-Location selec-
tion strategy performs rather poorly compared to the other two strategies, achieving
an effective branching factor (EBF) higher than 3. In contrast, the MC-Lipschitz
and MC-Uniform strategies achieve an EBF close to 2, which decreases rapidly as
the size of the anchor set increases. Among these two strategies, the MC-Lipschitz
strategy, which we use in our experiments in Section 4.2.4, achieves the lowest EBF.
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