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Abstract

In this paper, we consider combinatorial optimization problems with cardinality con-
straints. In k-cardinality combinatorial optimization problems, a cardinality constraint
requires feasible solutions to contain exactly k elements of a finite set £. We formally de-
fine the problem and give several examples. For the case of the minimax — or bottleneck —
objective function we give a necessary and sufficient condition, when the k-cardinality com-
binatorial optimization problem can be reduced to a feasibility problem. We also present
some new complexity results. The main part of the paper is a survey of the existing
literature on the topic.
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1 Introduction

A combinatorial optimization problem is given by a finite set E with cardinality |E| = m,
the set of feasible solutions X, i.e. a family X C 2F of subsets of E, and an objective
function f : X — IV assigning to each feasible solution z € X its non-negative integer
objective value f(z). The mathematical program

min f(z)

TEX

is the general form of a combinatorial optimization problem (COP).

If the context is clear, we often identify x with its incidence vector x € IR™ defined by

2e) = 1 ifeeFE,
- 0 otherwise

In this paper additional cardinality constraints are considered. If k£ is any natural
number with 1 < k£ < m we denote with

X ={zx € X :|z| =k}

the family of feasible solutions with cardinality £. Then, the k-cardinality combinatorial
optimization problem is given as

min f(z). (kCardCOP)

weXk

We focus on three types of problems. In the existence problem we want to decide whether
the feasible set X} is non-empty. In the sum problem and the max or bottleneck
problem we want to find minimizers of KCardCOP, where the objective function is defined
using a weight function w : E — IN as

fl@) =2 wle) =2 w(e)z(e)

or

f(z) = Iggcxw(e) = rg&xw(e)x(e).
In Section 2 we will discuss examples of kCardCOP, their interrelation and some easily
solvable cases of kCardCOP. In Section 3 it is shown that bottleneck problems are as
easy or difficult as existence problems. Section 4 contains a survey of existing literature
on k-cardinality combinatorial optimization problems, and some new results. The survey
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shows in particular that kCardCOP is INP-hard for a large class of problems although their
unconstrained versions are polynomially solvable.

2 Examples of Cardinality Constrained COP

As Table 1 shows, there is a large class of problems — some well known, some not — which
can be formulated as kCardCOP. A detailed discussion on relevant literature is given in
Section 4.

E X k Problem

set, of locations 2F P p-facility location

edge set of G = (V, E) simple cycles V| TSP

edge set of G = (V, E) matchings L%J min weight matching

edge set of G = (V, E) cuts k kCard cut

edge set of G = (V, E) acyclic k kCard acyclic
subgraphs subgraph

edge set of G = (V, E) connected k kCard connected
subgraphs subgraph

edge set of G = (V, E) trees k kCard tree

element set of matroid M bases rank of M min weight matroid base

element set of matroid M independent sets & kCard independent set

element set of 2 matroids matroid k kCard matroid
intersections intersection

assets 2F k k-portfolio problem

Table 1: Examples of k-Cardinality Combinatorial Optimization Problems

As far as the complexity of KCardCOP is concerned, we have to make a distinction between
problems with bottleneck objective (addressed in Section 3) and those with sum objective.
Few examples of polynomially solvable £KCardCOP with sum objective are known. One
such class are problems where the COP without cardinality constraints is solved by a
primal-dual algorithm (or augmenting structure algorithm). Corresponding kCardCOP
include the cardinality constrained versions of the following problems:

e assignment

non-bipartite matching

acyclic subgraph

matroid base



e independent set

e matroid intersection.

Conversely, every algorithm to solve kKCardCOP can obviously be used to solve COP with-
out cardinality constraints by

min f(z) = min {f(@):z € X}

Thus, k-cardinality COPs are always at least as hard as their counterparts without fixed
cardinality. However, we have to note that any k-cardinality combinatorial optimization
problem can be solved in polynomial time, if k is fixed, i.e. not part of the input. A simple
brute force enumeration of the at most O(n*) feasible sets with cardinality & will work.
In this sense, kCardCOP is a special case of fixed parameter optimization as discussed
in [Downey and Fellows, 1995a] and [Downey and Fellows, 1995b]. In the latter theory
problem parameters are fixed and the reulting impact on tractability and complexity is
studied.

All INP-completeness results mentioned in this paper assume k to be part of the input.

Another class of polynomially solvable £CardCOP consists of bottleneck problems, for
which the existence problem can be solved efficiently. Such problems are considered in the
next section.

3 Interrelation Between Bottleneck and Existence
Problems

A well-known method to solve (unconstrained) bottleneck COP is the threshold method,
introduced in [Garfinkel, 1971]. This method can also be applied to solve kCardCOP as
the following result shows.

Theorem 1 Given an instance of kCardCOP with finite set E and weight function w :
E — IN. Then the bottleneck problem is solvable in polynomial time if and only if the
existence problem Ex(E'")

{zeX:|z|=kandz CE'}#0
is polynomially solvable for any subset E' C E.

Proof:

If bottleneck kCardCOP is polynomially solvable we replace, for any given E' C E, the
original weight function by



w(e) = 0 ifeeF

- 1 otherwise.
The answer to the existence problem with respect to E’ is YES if and only if the optimal
objective value of the bottleneck problem is 0.

If on the other hand the Fz(E") existence kCardCOP can be solved in polynomial time,
the following algorithm will solve the bottleneck kCardCOP.

Threshold Algorithm

e Sort the set {w(e) : e € E} such that w(e;) < w(ez) < ... < w(ep)
e Fori=1,....,mdo

— If z* solves the existence problem Exz(E') with respect to E' := {e € E : w(e) <
w(e;)}, output z* as a solution of the bottleneck kCardCOP with optimal ob-
jective value w(e;), STOP. Otherwise iterate.

|

Obviously, an efficient implementation of the threshold algorithm would use binary search.
This is not included in the preceding presentation in order to focus on the essential idea
of the algorithm.

An example of a bottleneck £CardCOP which can be solved in polynomial time using
Theorem 1 is the kCard tree problem. The existence problem is the check for a subtree in
G' = (V, E') with cardinality k. This can obviously be done in polynomial time.

4 Survey of k-Cardinality Optimization Problems

In this section we present a review of the existing literature on fixed cardinality optimization
problems. We include only references, where an explicit or implicit (fixed) cardinality
constraint on the feasible solutions is given. We could not incorporate the huge amount
of literature, that deals with closely related problems, such as additional linear constraints
(e.g. the shortest path problem with a knapsack type constraint), or other types of fixed
cardinalities (e.g. solutions containing a fixed number of elements of a certain set). We
also left out COP where the cardinality is bounded by some k£ € IV (< kCardCOP). The
description below is organized chronologically according to the evolution of the results in
research reports. We cite, however, the correponding articles as published in journals for
ease of reference.



4.1 The k-Cardinality Tree Problem

The best understood problem with a fixed cardinality constraint is the k-cardinality tree
problem. All the relevant aspects have been subject of research, such as complexity, ap-
proximation algorithms, integer programming approaches, and heuristics. This fact may be
due to the wide variety of applications. We found references to such diverse fields as oil-field
leasing [Hamacher and Joernsten, 1993], facility layout [Foulds and Hamacher, 1992] and
[Foulds et al., 1998], open pit mining [Philpott and Wormald, 1997], quorum-cast routing
[Cheung and Kumar, 1994] and telecommunications [Garg and Hochbaum, 1997]. But it
also has been applied within combinatorial optimization itself, e.g. as a subproblem in
matrix decomposition, see [Borndorfer et al., 1998, Borndorfer et al., 1997].

Given a graph G = (V, E) with a weight function on the edges or the nodes, the objective
is to find a subtree of G containing exactly &k edges (or, equivalently, k£ + 1 nodes) such
that the sum of the weights is minimal. A majority of the existing articles have considered
the edge-weighted case. We will therefore assume this case below, and note specifically if
the node-weighted case has been considered.

Several authors have proved independently that the k-cardinality tree problem is INP-hard:
See [Hamacher et al., 1991], [Zelikovsky and Lozevanu, 1993], [Fischetti et al., 1994],
[Marathe et al., 1996]. In the latter paper it has been shown that the problem is still
INP-hard if c(e) € {1,2,3} for all edges e and G = K,,, but polynomially solvable if there
are only two distinct weights. For the node-weighted case, INP-completeness has been
shown independently in [Faigle and Kern, 1994] and [Ehrgott, 1992].

Several authors have considered special types of graphs. Note first that the node-weighted
problem is trivially solved when G = K,,. The problem is polynomially solvable if GG is a
tree, see [Faigle and Kern, 1994] for the node-weighted case and [Maffioli, 1991] for the edge
weighted case. It should also be noted that when G is a tree, both cases are equivalent
(see [Ehrgott et al., 1997]). Polynomial time algorithms for the node weighted problem
exist for interval graphs and co-graphs, [Woeginger, 1992]. Recently another polynomially
solvable special case has been discovered in [Blum, 1998] and [Blum and Ehrgott, 1999).
Using the node weights, the authors defined hurdles and troughs and showed that k-Card
tree is polynomially solvable, if G' contains a single trough, or no hurdles. On the other
hand INP-completeness results for the node-weighted case have been obtained for grid and
split graphs by [Woeginger, 1992].

The edge-weighted problem is INP-complete for planar graphs and for Euclidean graphs, i.e.
complete graphs, where the nodes are points in the plane and edge weights correspond to
Euclidean distances (see [Marathe et al., 1996]). In the same paper polynomial algorithms
for decomposable graphs and graphs with bounded tree-width have been given. The same
holds for the problem in the plane, when all points lie on the boundary of a convex region.
In [Dudas et al., 1998], the authors have focussed on graded distance matrices. They have
assumed that G = K, and have proved that k-Card tree is INP-complete on matrices
graded up its rows or columns, whereas it is solvable in polynomial time if the matrix is



graded down its rows (columns) or both graded up its rows and columns.

Concerning methodology, both exact and heuristic algorithms have been developed, with
a general focus on approximation algorithms. We first note that integer programming for-
mulations have been presented in [Fischetti et al., 1994] and later in [Garg, 1996]. Based
on detailed studies of the associated polyhedron in the former paper a Branch and Cut
algorithm has been developed and implemented in [Freitag, 1993]. The code and also
implementations of most of the heuristics in [Ehrgott et al., 1997] are documented in
[Ehrgott and Freitag, 1996], and are available as public domain software at
http://www.mathematik.uni-kl.de/ wwwwi/WWWWI/ORSEP /contents.html. A Branch
and Bound method is described in [Cheung and Kumar, 1994].

The heuristics mentioned are based on greedy and dual greedy strategies and also make use
of dynamic programming approaches. More recently, authors have successfully applied lo-
cal search methods to the k-cardinality tree problem: [Joernsten and Lokketangen, 1997]
have applied a tabu search strategy, [Catanas, 1997| has presented both a genetic algo-
rithm and a tabu search method. Other constructive heuristics have been presented in
[Cheung and Kumar, 1994]. A comparison of generic local search, genetic algorithms,
and tabu search for the node-weighted problem has been undertaken in [Blum, 1998].
The results reported are often better than those obtained by constructive heuristics of
[Ehrgott et al., 1997].

A large body of literature is available on approximation algorithms for the problem. The
papers published on this topic represent an ongoing improvement until finally a constant
approximation factor could be obtained. A first result appeared in [Woeginger, 1992].
He has proved that there is an O(\/E)—approximation algorithm for the node-weighted
problem on grid graphs. Later there were two streams of research articles: one focusing on
the problem on general graphs G, the other dealing with Euclidean graphs.

In the former, [Marathe et al., 1996] could obtain a 2v/k-approximation, which has been
improved in [Awerbuch et al., 1995]([Awerbuch et al., 1998]) to O(log? k). A first constant
factor approximation with factor 17 has been derived in [Blum et al., 1996]. The currently
best approximation guarantee is 3, proved in [Garg, 1996].

For the problem in the plane, [Marathe et al., 1996] has given an O(k%)-approximation.
Improved algorithms, with ratio of O(logk) are due to [Garg and Hochbaum, 1997,
[Rajagopalan and Vazirani, 1995], and [Mata and Mitchell, 1995]. Further decrease to
O(Flg"lgo'g“—n) [Eppstein, 1997] and a first constant factor approximation ([Blum et al., 1995],
with the constant not specified) followed. Using guillotine subdivisions [Mitchell, 1996]
and [Mitchell et al., 1998] could develop a 2v/2-approximation for the I, metric, and a 2-
approximation for the /; metric. Finally, a polynomial time approximation scheme has
been given in [Arora, 1996]. The same author recently proposed nearly linear time approx-

imation schemes that also work in higher dimensions in an abstract (see [Arora, 1998]).

The following two sections are devoted to two problems which are closely related to the
k-cardinality tree problem, namely the k-cardinality subgraph and travelling salesman



problems.

4.2 The k-Cardinality TSP and Related Routing Problems

In this section we assume, as usual in TSP and routing, that the problems are defined on
complete graphs. Because a k-cardinality tree can be used to construct a circle containing
exactly the k£ nodes of the subtree analogous to the problem without cardinality constraints
(see e.g. [Lawler et al., 1985]), many of the references cited in Section 4.1 have treated both
k-Cardinality Tree as well as k-Cardinality TSP.

Many authors have observed that the problem is obviously INP-hard, because, for k = n it
is the TSP. We again distinguish between the planar and the general case.

For the problem where nodes are points in the plane, heuristics known from the TSP
(r-opt and savings heuristic) have been used for the k-cardinality TSP in a paper by
[Hamacher and Moll, 1996]. The paper also contains a geometric method based on clus-
tering and a Branch and Bound algorithm. The details are in the first author’s diploma
thesis [Hamacher, 1993]. Much of the research has been focussed on approximation al-
gorithms. [Mata and Mitchell, 1995] have presented a constant factor approximation and
[Arora, 1996] has given a polynomial time approximation scheme.

Concerning the problem on graphs, we mention [Garg, 1996], with a 3-approximation. This
has been used to obtain a 10.77-approximation for the minimum latency problem. The
ideas of the O(log® k)-approximation algorithm for k-Card Tree in [Awerbuch et al., 1995]
have been used to obtain similar results for related problems: O(log” min(R,n)) for the
quota-driven TSP and the price-collecting TSP, where R is the required node weight to be
visited. A similar bound for the orienteering problem has also been given.

4.3 The k-Cardinality Subgraph Problem

This problem is perhaps even closer to the kCard tree problem. The only change is, that the
requirement of acyclicity is dropped. Thus, the objective is to find a connected subgraph
of G containing exactly either k edges or £ nodes and having a minimal (maximal) total
edge or node weight.

That all four variants of the (minimization) problem are INP-hard has been proved in
a diploma thesis by [Ehrgott, 1992]. An integer programming formulation, discussion of
the polyhedral structure and a Branch and Cut algorithm for the problem can be found
in [Ehrgott, 1994]. The codes are available together with the above mentioned codes for
kCard tree, we refer to [Ehrgott and Freitag, 1996] again.

Most authors have considered k-cardinality subgraph in the maximization version. When
the cardinality constraint is put on the nodes, the subgraph is usually assumed to be in-
duced by the set of selected nodes. A greedy algorithm with detailed analysis (including
proofs of tight lower and upper bounds) of its worst case performance ratio has been pro-
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posed in [Asahiro et al., 1996]. [Ravi et al., 1991] and [Ravi et al., 1994] have considered
the case G = K, and two types of objectives, namely maximizing the minimal weight (bot-
tleneck objective) and maximizing the sum of the weights between the selected nodes. For
the bottleneck objective they have shown that if the weights do not satisfy the triangle in-
equality, there is no polynomial time fixed ratio approximation algorithm, unless IP = I\NP.
If they do, a 2-approximation algorithm has been presented, as well as a proof of INP-
hardness of obtaining a better performance ratio. For the sum problem, a 4-approximation
has been given, provided the triangle inequality is satisfied. A similar analysis has been
carried out in [Krumke et al., 1997] for a minimization of the largest weight (bottleneck),
the sum, and the variance of the weights. INP-completeness in general, non-existence of
fixed ratio approximation algorithms in the absence of the triangle inequality and INP-
completeness of approximation with a ratio less than 2 in its presence have been proved.
Moreover, for trees, a polynomial time algorithm has been developed.

[Kortsarz and Peleg, 1993] have observed that the problem is INP-complete, even if w(e) =
1 for all edges e. They have proved an O(n%**®)-approximation for the problem, which
they have called the densest k-vertex subgraph problem. INP-completeness of this problem
when the maximum degree is 3 has been proved in [Feige and Seltser, 1997|. They have
also given an algorithm which finds a subgraph with at least ((1_25)]“) edges in nOl(1Flog £)/e)
time.

A problem with cardinality constraints on both node and edge set has been considered in
[Asahiro and Iwama, 1995]. The authors have given bounds on performance ratios for the
feasibility problem.

A more general setting has been discussed in [Nehme and Yu, 1997], where a subset of &
nodes of a hypergraph is to be found, maximizing the weight of the induced subhyper-
graph and subject to additional precedence constraints. For several cases polynomial time
algorithms, respectively INP-completeness results have been given.

In [Goldschmidt and Hochbaum, 1997] the cardinality constraint has been put on the edges
and the weights on the nodes. INP-completeness has been proved even for w(v) = 1 for
all nodes v or for node degrees not bigger than 3. For the problem of finding a maximal
weight subgraph with & edges an O(kn)-time 3-approximation algorithm has been given
as well as an O(n + m)-time 2-approximation for the unweighted case. Again, for the case
of G being a tree the problem can be solved in polynomial time. Note that this fact also
follows from results mentioned in Section 4.1.

4.4 The k-Cardinality Cut Problem

Another interesting problem in graphs, is to find a cut of given cardinality. As far as we
could determine, this problem has never been treated in the literature.

Let G = (V, E) be a graph and let w : E — IN be a positive integral weight function on
the edge set. The k cardinality cut problem (kCard cut) is to find a cut, i.e. a partition of



the node set V = V; UV, such that C := {[v;, v;] : v; € Vi, v; € V2} has cardinality k£ and
minimal weight > .- w(e) . The k cardinality s-t-cut problem (kCard s-t-cut) is defined
analogously, but with the additional specification of two nodes s and t such that s € V}

and ¢t € V5. Theorem 2 below shows that both the existence and the sum version of these
kCard COP are INP-complete.

Theorem 2 The following problems are INP-complete.

1. kCard cut, even if w(e) =1 for all e € E.

2. kCard s-t-cut, even if w(e) =1 for all e € E.

Proof:

1. Reduction from MAX-Cut. Solving kCard cut for £ = 1,...,n solves MAX-CuT,
which is INP-complete, see [Garey and Johnson, 1979, p. 210]. kCard cut is certainly
contained in INP.

2. Reduction from kCard cut. Solving kCard s-t-cut for all pairs of nodes s, provides
a solution for £Card cut. Or: Let G = (V, E) be a graph, define G' = (VU{s,t}, EU
{[s, v1], [v2, t]}), where v; and vy are arbitrary, different nodes in G. A kCard s-t-cut
in G’ is a kCard cut in G and vice versa.

|

Despite this result, there are some special cases for which the problem can be solved in
polynomial time. One is the unweighted problem, when G is a complete graph. Then there
exists a cut containing k edges if and only if & = i(n — 4) for some i € {1, o 5] } With
Theorem 1 this implies that the bottleneck kCard cut problem can be solved polynomially,
if G is complete. Another case is G being a tree. Since every edge is a cut edge one might
simply select the edges with the £ smallest weights and define a cut appropriately, to solve
even the sum £Card cut problem.

4.5 Other Fixed Cardinality Problems on Graphs

We could only find a few references to other graph theoretical optimization problems.
Interestingly, to the authors’ knowledge, the problem of finding a shortest path with a
fixed number of nodes has not been treated, despite a general interest in the shortest path
problem with an additional linear constraint, documented by quite many papers on this
topic.

10



For other problems, we mention [Minoux, 1976], with the historically first appearance of
a fixed cardinality combinatorial optimization problem, namely the weighted matching
problem. A necessary and sufficient condition for a k-cardinality matching to be optimal
has been given.

The problem of finding a minimal weight k-cardinality clique in a complete graph has been
considered in [Spath, 1985]. Simple exchange heuristics have been presented and numerical
results reported.

Finally, in [Halldérsson et al., 1995] the following rather general problem has been dis-
cussed. Find a subset of £ nodes such that the weight of the minimal spanning tree
(minimal Hamiltonian cycle, Steiner tree) on this set is maximized. For complete graphs
these problems are INP-hard. The spanning tree and TSP version cannot be approximated
within a factor of ns unless IP = INP. A k — 1-approximation algorithm is given for both.
On metric graphs there are a 4-approximation for tree, a 3-approximation for TSP and
Steiner tree, which are tight. Approximation is INP-hard for a factor less than 2 (tree and
TSP), respectively % (Steiner tree). In the plane, approximation factors 2.25 (tree), 2.16
(Steiner tree) have been obtained.

4.6 Location Problems

A classical field in which cardinality constraints are imposed is location theory: Choose
among a given set of points (nodes of a graph) a subset of a given cardinality, such that
some measure related to the distance of the given points is maximized or minimized. In
fact, several of the papers listed in Sections 4.3 and 4.5 also belong to this category.

In [Spéath, 1984] 4 heuristics have been compared empirically for the problem of selecting
k out of n points, such that their total distance to their optimal location is minimized.
In [Aggarwal et al., 1991] the selection of such points under some objectives related only
to the distance of the selected points has been investigated. For several types of such
objectives polynomial time algorithms have been presented. For the same problem, but
with the minimal distance between any two of the k£ points to be maximized it has been
shown that a heuristic achieves an approximation factor of 3 in general and of 2 for certain
k. A similar problem is dicussed in [White, 1991].

In our context of combinatorial optimization we have to mention the k-median and k-center
problem on networks, and the k-facility location problem as a discrete location problem.
Because excellent surveys on both the network and discrete multifacility location problem
exist, we refer the interested reader to these, see [Labbé et al., 1995, Sections 3.5, 4.2.3],
[Labbé, 1998, pp. 232-234], and [Labbé, 1997, Section 3| and references therein.

[Yamaguchi et al., 1998] and [Hamacher and Schébel, 1998] consider the problem to locate
a cycle with given cardinality k£ in a network such that the distance between cycle and
nodes is minimized. For general graphs the problem is INP-hard, while it can be solved in
polynomial time if G is a grid graph.
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4.7 Other Combinatorial Optimization Problems with
Cardinality Constraints

[Babel et al., 1998] consider the k-partitioning problem. A set of n = km items, each
having a nonnegative weight is to be partitioned into m subsets of exactly k items, such that
the largest weight of all subsets is minimal. The problem is INP-complete. Approximation
algorithms, the best having a performance bound of %, have been reported.

For the INP-complete k-cardinality bin-packing problem, an O(nlogn)-time % worst case
ratio algorithm has been presented in [Kellerer and Pferschy, 1997]. The online version of
the same problem has been investigated in [Babel and Kellerer, 1998]. This paper contains

an approximation algorithm, the performance ratio of which tends to 2, as k increases.

The authors of the former paper have also been involved in a study of the k-cardinality
knapsack problem. [Caprara et al., 1998] have reported a linear storage, polynomial time
approximation scheme and a dynamic programming based fully polynomial time approxi-
mation scheme for this problem.

We also found one reference for a fixed cardinality problem outside the general combina-
torial optimization problems: [Beasley et al., 1998] has listed heuristics based on genetic
algorithms, tabu search and simulated annealing for a portfolio optimization problem,
where the number of assets to be contained in the portfolio is specified. Numerical tests
have been provided, too.
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