Synthese, Charakterisierung und Reaktivität von Tetraphosphabicyclobutanmolekülen des Typs exo/exo-[{Cp^R(OC)₂Fe}₂(μ-η^{1:1}-P₄)]

Vom Fachbereich Chemie der Universität Kaiserslautern zur Verleihung des akademischen Grades "Doktor der Naturwissenschaften" genehmigte Dissertation (D 386)

> vorgelegt von Dipl.-Chem. Thomas Hilt aus Meddersheim

Betreuer der Arbeit: Prof. Dr. O. J. Scherer Tag der wissenschaftlichen Aussprache: 26.05.1999

Kaiserslautern 1999

Vom Fachbereich Chemie der Universität Kaiserslautern am 26. Mai 1999 als Dissertation angenommen.

Dekan: Prof. Dr.-Ing. S. Ernst

Prüfungskommision:

Vorsitzender:Prof. Dr. H.-G. Kuball1. Berichterstatter:Prof. Dr. O. J. Scherer2. Berichterstatter:Prof. Dr. H. Sitzmann

Die vorliegende Arbeit entstand in der Zeit von Januar 1997 bis Januar 1999 im Fachbereich Chemie der Universität Kaiserslautern

Herrn Prof. Dr. O. J. Scherer danke ich herzlich für den mir gewährten Freiraum bei der Gestaltung des Themas, für die Unterstützung, seine stete Diskussionsbereitschaft und Begeisterungsfähigkeit. Meinen Eltern gewidmet

Abkürzungsverzeichnis

Abb. Abbildung

- amu atomare Masseneinheit
- AT Austrittstemperatur
- ber. berechnet
- ^tBu *tert*-Butylrest

Centr. Centroid

- CI chemische Ionisation
- Cp η^5 -Cyclopentadienylligand
- Cp^* η^5 -Pentamethylcyclopentadienylligand
- $Cp^*' = \eta^5$ -Ethyltetramethylcyclopentadienylligand
- Cp' η^5 -Mono-*tert*-butylcyclopentadienylligand
- Cp" η^5 -1.3-Di-*tert*-butylcyclopentadienylligand
- Cp''' η^5 -1.2.4-Tri-*tert*-butylcyclopentadienylligand
- Cp^2 η^5 -Diisopropylcyclopentadienylligand
- Cp^3 η^5 -Triisopropylcyclopentadienylligand
- Cp^4 η^5 -1.2.3.4-Tetraisopropylcyclopentadienylligand
- Cp^5 η^5 -1.2.3.4.5-Pentaisopropylcyclopentadienylligand
- Cp^{R} zu spezifizierender η^{5} -Cyclopentadienylligand
- EI Elektronenstoß-Ionisation
- GE(P) Gerüstelektronen(paare)
- Int. Intensität
- IR Infrarot
- Me Methylrest
- NMR Magnetische Kernresonanz (Nuclear Magnetic Resonance)
- Ph Phenylrest
- QT Temperatur der Ionenquelle
- rel. relativ
- RT Raumtemperatur
- THF Tetrahydrofuran
- VE Valenzelektron(en)
- X Element der 16. Gruppe (S, Se, Te)

Verzeichnis der Verbindungen

1a	$[{Cp'''(OC)_2Fe}_2]$	
1b	$[{Cp}^{4}(OC)_{2}Fe \}_{2}]$	RSA
1c	$[{Cp^{5}(OC)_{2}Fe}]^{\bullet}]$	
2a	[Cp'''(OC) ₂ FeBr]	
2b	[Cp ⁴ (OC) ₂ FeBr]	
2c	$[Cp^{5}(OC)_{2}FeBr]$	
3a	$[\{Cp'''(OC)_2Fe\}_2(\mu-\eta^{1:1}-P_4)]$	RSA
3b	$[\{Cp^4(OC)_2Fe\}_2(\mu-\eta^{1:1}\text{-}P_4)]$	
3c	$[\{Cp^{5}(OC)_{2}Fe\}_{2}(\mu-\eta^{1:1}-P_{4})]$	
4a	$[Cp'''Fe(\eta^5-P_5)]$	RSA
4b	$[Cp^4Fe(\eta^5-P_5)]$	RSA
4c	$[Cp^5Fe(\eta^5-P_5)]$	
5a	$[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$	RSA
5b	$[{Cp^4Fe}_2(\mu-\eta^{4:4}-P_4)]$	
5c	$[{Cp^{5}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$	
6a	$[{Cp'''Fe}(\mu-\eta^{4:1}-P_4){Fe(CO)_2Cp''}$	'}]
7a	$[Cp'''Fe(\eta^{5}-\{P_{3}(CPh)_{2}\})]$	RSA
7c	$[Cp^{5}Fe(\eta^{5}-\{P_{3}(CPh)_{2}\})]$	
8a	$[Cp'''Fe(\eta^{5}-\{P_{4}(CPh)\})]$	
8c	$[Cp^5Fe(\eta^5-\{P_4(CPh)\})]$	
9	$[{Cp^{5}Fe}_{3}(CO)_{4}P_{11}]$	RSA
10	$[Cp^{4}Fe(\eta^{5}-\{P_{3}(CMe)_{2}\})]$	
11a	$[{Cp'''Fe}(\mu-\eta^{5:5}-P_5){FeCp}]^+$ (PF	$(_{6})^{-}$
11b	$[{Cp}^{4}Fe{(\mu-\eta^{5:5}-P_{5})}{FeCp}]^{+}(PF_{6})$	5)-

12 $[{Cp'''Fe}(\mu-\eta^{5:5}-{P_3(CPh)_2}){FeCp}]^+ (PF_6)^-$

Inhaltsverzeichnis

I.	Einleitung	1
1.	Bis-[(dicarbonyl)(cyclopentadienyl)-eisen(I)]-Komplexe	1
2.	Substituentenfreie P ₄ -Komplexes des Eisens	2
3.	Komplexe des Eisens mit einem cyclo-P5-Liganden	4
II.	Problemstellung	5
III.	Eigene Ergebnisse	6
1.	Bis-[(dicarbonyl)(cyclopentadienyl)-eisen(I)]-Komplexe	6
1.1.	Eigenschaften und IR-Spektroskopie	6
1.2.	Protonenresonanzspektroskopie	7
1.3.	Massenspektrometrie	9
1.4.	Strukturvorschlag	10
1.5.	Röntgenstrukturanalyse von $[{Cp^4(OC)_2Fe}_2]$ (1b)	11
2.	Kurzzeit-Cothermolyse von $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (1) und weißem Phosphor:	14
	Selektive Synthese von Komplexen mit Tetraphosphabicyclobutangerüst	
2.1.	Eigenschaften und IR-Spektroskopie	15
2.2.	NMR-Spektroskopie	16
2.3.	Massenspektrometrie	21
2.4.	Strukturvorschlag für [{ $Cp^{R}(OC)_{2}Fe$ } ₂ (μ - $\eta^{1:1}$ -P ₄)] (3)	22
2.5.	Röntgenstrukturanalyse von [{Cp''(OC) ₂ Fe} ₂ (μ - η ^{1:1} -P ₄)] (3)	23
3.	Langzeit-Cothermolyse von $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (1) und weißem Phosphor:	27
	Synthese von Cyclopentaphosphaferrocenen des Typs $[Cp^{R}Fe(\eta^{5}-P_{5})]$	
3.1.	Eigenschaften der Thermolyseprodukte	28
3.2.	NMR-Spektroskopie	28
3.3.	Massenspektrometrie	30
3.4.	Synthese und Charakterisierung der isopropylsubstituierten Derivate	31
3.5.	Strukturvorschläge für $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) und $[\{Cp^{R}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})]$ (5)	33
3.6.	Röntgenstrukturanalysen	34
3.6.1.	(Cyclopentadienyl)(cyclopentaphospha)-eisen(II)-Komplexe	34
3.6.2.	Röntgenstrukturanalyse von [{ $Cp'''Fe$ } ₂ (μ - $\eta^{4:4}$ - P_4)] (5a)	38

4.	Decarbonylierungsprodukte von [{ $Cp^{R}(OC)_{2}Fe$ } ₂ (μ - $\eta^{1:1}$ -P ₄)] (3)	42
4.1.	Thermolyse von [{Cp'''(OC) ₂ Fe} ₂ (μ - $\eta^{1:1}$ -P ₄)] (3a)	42
Exkurs	Genese von [Cp'''Fe(η^5 -P ₅)] (4a) aus [{Cp'''Fe} ₂ (μ - $\eta^{4:4}$ -P ₄)] (5a)	43
4.2.	Photolyse von [{Cp'''(OC) ₂ Fe} ₂ (μ - $\eta^{1:1}$ -P ₄)] (3a)	45
4.2.1.	Eigenschaften und IR-Spektroskopie	46
4.2.2.	NMR-Spektroskopie	46
4.2.3.	Strukturvorschlag für [{Cp'''Fe}(μ - η ^{4:1} -P ₄){Fe(CO) ₂ Cp'''}] (6a)	48
Exkurs	Decarbonylierung von [{Cp'''Fe}(μ - η ^{4:1} -P ₄){Fe(CO) ₂ Cp'''}] (6a)	49
5.	Orientierender Versuch zur Synthese von $[{Cp'*(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3d)	50
6.	Mechanistische Aspekte	51
7.	Reaktionen der P ₄ -Butterflymoleküle in Gegenwart von (Phospha)-Alkinen	53
7.1.	Umsetzung von [{ $Cp'''(OC)_2Fe$ } ₂ (μ - $\eta^{1:1}$ - P_4)] (3a) mit Diphenylacetylen	54
7.1.1.	Erste Säulenfraktion: Der Sandwichkomplex [Cp'''Fe $(\eta^5 - \{P_3(CPh)_2\})$] (7a)	56
7.1.1.1.	Eigenschaften und IR-Spektroskopie	56
7.1.1.2.	NMR-Spektroskopie	56
7.1.1.3.	Massenspektrometrie	57
7.1.1.4.	Strukturvorschlag für [Cp'''Fe(η^5 -{P ₃ (CPh) ₂ })] (7a)	58
7.1.1.5.	Röntgenstrukturanalyse von $[Cp'''Fe(\eta^5 - \{P_3(CPh)_2\})]$ (7a)	59
7.1.2.	Zweite Säulenfraktion: Der Sandwichkomplex [Cp'''Fe(η^5 -{P ₄ (CPh)})] (8a)	63
7.1.2.1.	Eigenschaften und IR-Spektroskopie	63
7.1.2.2.	NMR-Spektroskopie	63
7.1.2.3.	Massenspektrometrie	63
7.1.2.4.	Strukturvorschlag für [Cp'''Fe(η^5 -{P ₄ (CPh)})] (8a)	64
7.1.3.	Dritte Säulenfraktion	64
7.1.3.1.	Eigenschaften und Analytik	64
7.2.	Umsetzung von [{ $Cp^{5}(OC)_{2}Fe$ } ₂ (μ - $\eta^{1:1}$ - P_{4})] (3c) mit Diphenylacetylen	65
7.2.1.	Erste Säulenfraktion: Der Sandwichkomplex $[Cp^5Fe(\eta^5-\{P_3(CPh)_2\})]$ (7c)	66
7.2.1.1.	Eigenschaften und IR-Spektroskopie	66
7.2.1.2.	NMR-Spektroskopie	66
7.2.1.3.	Strukturvorschlag für [Cp ⁵ Fe(η^5 -{P ₃ (CPh) ₂ })] (7c)	66

7.2.2.	Zweite Säulenfraktion: Der Sandwichkomplex $[Cp^5Fe(\eta^5-\{P_4(CPh)\})]$ (8c)	67
7.2.2.1.	Eigenschaften und IR-Spektroskopie	67
7.2.2.2.	NMR-Spektroskopie	67
7.2.2.3.	Massenspektrometrie	68
7.2.2.4.	Strukturvorschlag für [$Cp^5Fe(\eta^5-\{P_4(CPh)\})$] (8c)	68
7.2.3.	Dritte Säulenfraktion: $[{Cp^5Fe}_3(CO)_4P_{11}]$ (9)	69
7.2.3.1.	Eigenschaften und IR-Spektroskopie	69
7.2.3.2.	NMR-Spektroskopie	69
7.2.3.3.	Massenspektrometrie	71
7.2.3.4.	Röntgenstrukturanalyse von $[{Cp}^{5}Fe_{3}(CO)_{4}P_{11}]$ (9)	72
7.3.	Orientierender Versuch zur Reaktivität von [$\{Cp^4(OC)_2Fe\}_2(\mu-\eta^{1:1}-P_4)$]	80
	(3b) gegenüber 2-Butin	
7.4.	Orientierender Versuch zur Reaktivität von [$\{Cp^4(OC)_2Fe\}_2(\mu-\eta^{1:1}-P_4)$]	82
	(3b) gegenüber tert-Butylphosphaalkin	
8.	Orientierender Versuch zur Synthese von kationischen Tripeldecker-	84
	komplexen mit fünfgliedrigem heteroaromatischem Mitteldeck	
9.	Versuche zur Oxidation der P ₄ -Butterflymoleküle mit S ₈ , Se oder Te	87
10.	Versuche zur Oxidation der Cyclopentaphosphaferrocene	88
IV.	Experimenteller Teil	90
4.1.	Analysemethoden und -geräte	90
4.2.	Ausgangsverbindungen	91
4.3.	Versuchsbeschreibungen	92
4.3.1.	Darstellung von Bis-[(dicarbonyl)(cyclopentadienyl)-eisen(I)]-Komplexen	93
4.3.2.	Synthese der Bis-[(dicarbonyl)(cyclopentadienyl)-eisen(II)]-[1.1.0]-	94
	tetraphosphabicyclobutan-Moleküle 3a - 3c	
4.3.3.	Langzeit-Thermolyse von $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (1) in Gegenwart von P ₄	96
4.3.4.	Thermolyse von [{ $Cp^{R}(OC)_{2}Fe$ } ₂ (μ - $\eta^{1:1}$ - P_{4})] (3)	98
4.3.5.	Synthese von $[Cp'''Fe(\eta^5-P_5)]$ (4a) aus $[\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_4)]$ (5a)	99
4.3.6.	Photolyse von [{Cp'''(OC) ₂ Fe} ₂ (μ - $\eta^{1:1}$ -P ₄)] (3a)	99
4.3.7.	Decarbonylierung von [{Cp'''Fe}(μ - η ^{4:1} -P ₄){Fe(CO) ₂ Cp'''}] (6a)	100
4.3.8.	Versuch zur Herstellung von [{ $Cp*'(OC)_2Fe$ } ₂ (μ - $\eta^{1:1}$ - P_4)] (3d)	101
4.3.9.	Umsetzung von [{Cp'''(OC) ₂ Fe} ₂ (μ - η ^{1:1} -P ₄)] (3a) mit Diphenylacetylen	102
4.3.10.	Umsetzung von [{ $Cp^{5}(OC)_{2}Fe$ } ₂ (μ - $\eta^{1:1}$ -P ₄)] (3c) mit Diphenylacetylen	103

	Dank, Lebenslauf	
VII.	Anhang	118
VI.	Literaturverzeichnis	114
V.	Zusammenfassung	109
4.3.15.	Umsetzung von $[Cp'''Fe(\eta^5-P_5)]$ (4a) mit Silber(I)-Salzen	108
	Gruppe	
4.3.14.	Umsetzung von [{ $Cp^{R}(OC)_{2}Fe$ } ₂ (μ - $\eta^{1:1}$ - P_{4})] (3) mit Elementen der 16.	107
	heteroaromatischem Mitteldeck	
4.3.13.	Synthese von kationischen Tripeldeckerkomplexen mit fünfgliedrigem	106
	Butylphosphaalkin	
4.3.12.	Umsetzung von [{ $Cp^4(OC)_2Fe$ } ₂ (μ - $\eta^{1:1}$ - P_4)] (3b) mit <i>tert</i> -	105
4.3.11.	Umsetzung von [{ $Cp^4(OC)_2Fe$ }_2(μ - $\eta^{1:1}$ - P_4)] (3b) mit 2-Butin	104

I. Einleitung

1. Bis-[(dicarbonyl)(cyclopentadienyl)-eisen(I)]-Komplexe

Zur Synthese eisenhaltiger Komplexe mit unsubstituierten Phosphorliganden dienen häufig zweikernige (Dicarbonyl)(cyclopentadienyl)eisen(I)-Verbindungen des Typs $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (**A**) als Edukte ^[1]. Seit der Synthese des permethylierten Komplexes $[{Cp^{*}(OC)_{2}Fe}_{2}]$ (**B**) durch *King et al.* im Jahre 1976 ^[2,3] via Cothermolyse von Fe(CO)₅ mit Cp*H konnten auf analogem Wege verschiedene alkylsubstituierte Derivate hergestellt werden.

$$2 \operatorname{Fe}(\operatorname{CO})_5 + 2 \operatorname{Cp}^* H \xrightarrow{\text{Trimethylhexan}} [\{\operatorname{Cp}^*(\operatorname{OC})_2 \operatorname{Fe}\}_2]$$

$$(B)$$

Diese Methode eignet sich allerdings nicht zur Darstellung der sterisch anspruchsvollen Tetra-und Pentaisopropyl- sowie des Tri-*tert*-butyl-Derivates, da die alkylierten Liganden unter den Cothermolysebedingungen zur Abspaltung von Alkenen (Propen bzw. Isobuten) neigen.

Erst in jüngster Zeit entwickelte *Dezember*^[4] einen neuartigen Syntheseweg, mit dessen Hilfe dieses Problem umgangen werden kann. Dabei erhält man $[{Cp^4(OC)_2Fe}_2]$ (C) über eine Einelektronenreduktion von Brom(dicarbonyl)(tetraisopropylcyclopentadienyl)-eisen(II) (D). Während die Reduktion von D mit Natriumamalgam oder Kalium zum "unsymmetrischen" Komplex E führt ^[4,5], läßt sich das gewünschte Produkt unter Verwendung von Cobaltocen als Reduktionsmittel unter schonenden Bedingungen selektiv herstellen.

2. Substituentenfreie P₄-Komplexe des Eisens

Ausgehend vom Tetrahedrangerüst des weißen Phosphors lassen sich bis zu drei der sechs Phosphor-Phosphor-Bindungen spalten, ohne daß die P₄-Einheit in kleinere Fragmente zerfällt.

Im Jahre 1995 konnte *Schwarz*^[6,7] bei der Cophotolyse von [{Cp"(OC)₂Fe}₂] (**F**) mit weißem Phosphor, P₄, die im nachfolgenden Schema dargestellte Serie von P₄-Eisenkomplexen der Zusammensetzung [Cp"₂Fe₂(CO)_{4-n}P₄] (n = 0-4) synthetisieren.

Durch sukzessive CO-Abspaltung erhält man aus $[{Cp''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (G), einem Komplex mit einem Tetraphosphabicyclobutangerüst, das durch zwei 17VE-Fragmente in exo/exo-Konfiguration stabilisiert ist, zunächst $[{Cp''(OC)Fe}_{(\mu-\eta^{2:1}-P_4)}{Fe(CO)_2Cp''}]$ (H) mit einem verbrückten Butterflygerüst. Die durch die CO-Eliminierung entstandene freie Koordinationsstelle am Eisen ist in H durch das lone-pair des Phosphorflügelspitzenatoms besetzt, an das zusätzlich ein "intaktes" {Cp''(OC)_2Fe}-Fragment gebunden ist.

Der photochemisch induzierte Verlust eines weiteren Carbonylliganden führt zu [{Cp"Fe}(μ - $\eta^{4:1}$ -P₄){Fe(CO)₂Cp"}] (**I**), einer Verbindung mit einem vierfach überkappten und einfach end-on koordinierten P₄-Ring, der formal einem isolobalen protonierten Cyclobutadien entspricht. Diese Verbindung konnte *Schwarz* mittels Röntgenstrukturanalyse eindeutig charakterisieren.

Die Abspaltung des dritten CO-Liganden führt zu [{Cp"Fe}(μ - $\eta^{4:2}$ -P₄){Fe(CO)Cp"}] (**J**) mit einer Tetraphosphaferroleinheit als zentralem Bauelement. Hieraus entsteht durch Verlust des letzten Carbonylliganden [{Cp"Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**K**), eine Verbindung mit einer P₄-Kette in cisoider Anordnung, die durch eine Röntgenstrukturanalyse charakterisiert werden konnte.

Mit der sukzessiven Ligandeliminierung geht ein schrittweiser Bruch von drei der insgesamt sechs P/P-Bindungen einher.

Komplexe der Zusammensetzung [{ $Cp^{R}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ - P_{4})] (**L**) wurden erstmals 1989 von *Brück* ^{[8] 31}P-NMR-spektroskopisch nachgewiesen. In der Folgezeit scheiterten jedoch auch in den Arbeitskreisen von *Weber* ^[9] und *Jutzi* ^[10] sämtliche Versuche, zur Röntgenstrukturanalyse geeignete Einkristalle von Komplexen mit Tetraphosphabicyclobutangerüst des Typs **L** zu erhalten.

Die Verbindung mit verbrückendem P_4 -Butterflygerüst **H** und das Tetraphosphaferrolderivat **J** konnten bislang ebenfalls noch nicht kristallstrukturanalytisch untersucht werden.

Neben den hier beschriebenen fünf Verbindungen (**G** - **K**) mit einem P₄-Baustein entstehen bei der Cophotolyse von [{Cp''(OC)₂Fe}₂] (**F**) mit weißem Phosphor das Ferrocenderivat [Cp''₂Fe] (**M**) sowie (Di-*tert*-butylcyclopentadienyl)(cyclopentaphospha)-eisen(II) [Cp''Fe(η^5 -P₅)] (**N**).

Abb. 1: Sukzessive CO-Eliminierung unter schrittweiser P-P-Bindungsspaltung: Genese der Serie $[Cp''_2Fe_2(CO)_{4-n}P_4]$ (n = 0-4); $Cp'' = C_5H_2^{t}Bu_3$ -1,3

3. Komplexe des Eisens mit einem cyclo-P₅-Liganden

Die im vorangegangenen Abschnitt zuletzt erwähnte Verbindungsklasse der Pentaphosphaferrocene $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (**O**) läßt sich durch Cothermolyse der Eisenzweikernkomplexe $[\{Cp^{R}(OC)_{2}Fe\}_{2}]$ (**A**) mit einem großen Überschuß an weißem Phosphor gezielt in guten Ausbeuten synthetisieren ^[8, 11-14].

Der Mechanismus der Entstehung der Pentaphosphaferrocene aus weißem Phosphor ist bislang nicht geklärt. Vermutungen, daß sämtliche zuvor beschriebenen Verbindungstypen mit P₄-Bausteinen ($\mathbf{G} - \mathbf{K}$) bei der Bildung des P₅-Rings nacheinander durchlaufen werden, konnten bislang weder bestätigt noch widerlegt werden.

Die Entdeckung dieses relativ bequemen Zugangsweges zu den Pentaphosphaferrocenen **O** im Jahre 1987 durch *Brück* - der vom Tetramethylethylderivat $[Cp^*/Fe(\eta^5-P_5)]$ (**P**) eine Röntgenstrukturanalyse anfertigen lassen konnte ^[8, 12] - erwies sich als außerordentlich wichtig für die Chemie substituentenfreier P_n-Liganden. Die Folgechemie der Verbindungen $[Cp^RFe(\eta^5-P_5)]$ (**O**) kann in drei Klassen unterteilt werden:

- Reaktionen unter Erhalt der *cyclo*-P₅-Einheit ^[8, 11, 12, 14, 15]
- Reaktionen unter Öffnung des P₅-Rings^[15c]
- Reaktionen unter Fragmentierung der P₅-Einheit^[13, 15c, 16]

Eine wichtige Reaktion unter Erhalt der *cyclo*-P₅-Einheit ist die Deckaufstockung nach der Methode von *Rubinskaya* ^[17], die erstmals von *Brück* auf Pentaphosphaferrocene des Typs $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (**O**) unter Bildung der kationischen Tripeldeckerkomplexe $[\{Cp^{R}Fe\}(\mu-\eta^{5:5}-P_{5})\{FeCp\}]^{+}(PF_{6})^{-}$ (**Q**) übertragen werden konnte ^[8, 18].

II. Problemstellung

Im Rahmen dieser Arbeit sollte zunächst das in der Reihe der bislang bekannten Bis-[(dicarbonyl)(cyclopentadienyl)-eisen(I)]-Komplexe fehlende Tri-*tert*-butylderivat als Edukt zur Umsetzung mit weißem Phosphor synthetisiert werden.

Ausgehend von sterisch anspruchsvoll alkylsubstituierten Eisendimeren des Typs $[{Cp^{R}(OC)_{2}Fe}_{2}]$ sollte versucht werden, eine der sechs Kanten des Tetrahedrangerüstes des weißen Phosphors selektiv zu öffnen.

Die Folgechemie der so gebildeten P₄-Komplexe mit Schmetterlingsgerüst sollte dann den Schwerpunkt der weiteren Forschung bilden.

III. Eigene Ergebnisse

1. Bis-[(dicarbonyl)(cyclopentadienyl)-eisen(I)]-Komplexe

In der Reihe bislang synthetisierter Bis-[(dicarbonyl)(cyclopentadienyl)-eisen(I)]-Komplexe fehlen die sterisch anspruchsvoll alkylsubstituierten Tri-*tert*-butyl- und Tetraisopropyl-Derivate, da die entsprechenden Liganden bei der Cothermolyse von Ligand $Cp^{R}H$ ($Cp^{R} = Cp^{"}$, Cp^{4}) und Eisenpentacarbonyl zur Abspaltung von Alkenen (Isobuten bzw. Propen) neigen und somit nicht selektiv das gewünschte Produkt gebildet wird ^[7].

Dagegen kann $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (1) $(Cp^{R} = Cp''', Cp^{4})$ analog einer bereits zur Synthese von $[{Cp^{5}Fe(CO)_{2}}^{\bullet}]$ (1c) bekannten Reaktion hergestellt werden ^[4].

Rührt man äquimolare Mengen an $[Cp^RFe(CO)_2Br]$ (2) und Cobaltocen in Toluol bei Raumtemperatur, so kann man bereits beim Zusammengeben beider Reaktionspartner einen Farbumschlag der Lösung von rotbraun nach rotviolett und das Ausflocken eines gelben Feststoffes beobachten. Nach zwölfstündigem Rühren erscheinen im IR-Spektrum der Reaktionslösung die Carbonylbanden des Edukts 2 nicht mehr. Daraufhin wird das ausgefallene Cobaltoceniumbromid abzentrifugiert und das Zentrifugat im Ölpumpenvakuum eingeengt. Es verbleibt ein schwach verunreinigter, rotvioletter Feststoff, der entweder durch Sublimation im Hochvakuum gereinigt oder säulenchromatographisch aufgearbeitet werden kann.

$$2 [Cp^{R}Fe(CO)_{2}Br] + 2 Cp_{2}Co \qquad -2 Cp_{2}CoBr \qquad [{Cp^{R}(OC)_{2}Fe}_{2}]$$

$$2 \qquad 1$$

$$Cp^{R} = Cp^{\prime\prime\prime}, Cp^{4}$$

1.1. Eigenschaften und IR-Spektroskopie

Die Verbindungen $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (1) $(Cp^{R} = Cp''', Cp^{4})$ fallen nach säulenchromatographischer Aufarbeitung und Entfernen des Lösungsmittels im Vakuum als rotviolette mikrokristalline Pulver an, die unter Schutzgas mehrere Monate ohne sichtbare Zeichen von Zersetzung gelagert und für kurze Zeit an Luft gehandhabt werden können. Sie lösen sich kaum in unpolaren Solventien wie n-Hexan oder n-Pentan, gut in Toluol und sehr gut in Dichlormethan. Im IR-Spektrum einer Toluollösung von **1** erkennt man je eine Bande für verbrückende und für terminal koordinierte Carbonylliganden, die gut mit den Werten anderer Verbindungen dieses Typs übereinstimmen (vgl. nachfolgende Tabelle).

Tab. 1.1: Vergleich der Absorptionsbanden im IR-Spektrum für die Carbonylliganden unterschiedlich alkylsubstituierter Eisenkomplexe vom Typ [$\{Cp^{R}(OC)_{2}Fe\}_{2}$] (A)

Verbindung	\overline{v} [cm ⁻¹]	Lösungsmittel	Literatur
$[{Cp*(OC)_2Fe}_2]$	1928 (s)	Cyclohexan	19
	1765 (s)		
$[{Cp'(OC)_2Fe}_2]$	1946 (s)	Dichlormethan	20
	1768 (s)		
$[{Cp''(OC)_2Fe}_2]$	1942 (s)	Dichlormethan	20
	1764 (s)		
[{Cp'''(OC) ₂ Fe} ₂] (1a)	1933.5 (s)	Toluol	
	1764.0 (s)		
[{Cp ⁴ (OC) ₂ Fe} ₂] (1b)	1930.2 (s)	Toluol	21
	1763.9 (s)		

1.2. Protonenresonanzspektroskopie

Das ¹H-NMR-Spektrum von [{Cp''(OC)₂Fe}₂] (**1a**) zeigt drei Singuletts bei $\delta = 4.84$, 1.41 und 1.40 ppm in einem Integralverhältnis von 2 : 9 : 18 und deutet somit auf zwei chemisch und magnetisch äquivalente Tri-*tert*-butylcyclopentadienylliganden hin.

Im ¹H-NMR-Spektrum von [{ $Cp^4(OC)_2Fe$ }] (1b) findet man ein Singulett bei $\delta = 4.64$ ppm, Ringprotonen zugewiesen werden das den beiden kann, zwei Septetts mit Signalschwerpunkten bei 2.84 und 2.66 ppm und vier Dubletts bei hohem Feld. Die vier Methinprotonen der paarweise magnetisch äquivalenten zum unsubstituierten Ringkohlenstoffatom β -ständigen Isopropylgruppen treten als Septett bei δ = 2.84 ppm auf und sind über eine ³J_{HH}-Kopplungskonstante von 7.1 Hz mit je zwölf magnetisch äquivalenten metallnahen und metallfernen Methylprotonen (2 Dubletts bei 1.41 und 1.34 ppm) verknüpft. Die ebenfalls magnetisch äquivalenten vier übrigen Methinprotonen (der Isopropylgruppen in γ -Stellung zum unsubstituierten Ringkohlenstoffatom) korrelieren über eine ³J_{HH}-Kopplung von 6.8 Hz ebenfalls mit zwölf distalen und zwölf proximalen Methylprotonen, die jeweils als Dublett bei 1.23 und 1.15 ppm auftreten.

Abb. 1.2: ¹H-NMR-Spektrum von [{Cp⁴(OC)₂Fe}₂] (**1b**) 400.14 MHz, CDCl₃, 293 K

In *Abbildung 1.2* ist der Peak des Lösungsmittel am intensivsten, d.h. es wurde eine sehr dünne Probe von $[{Cp^4(OC)_2Fe}_2]$ (**1b**) vermessen um Feinaufspaltungen optimal erkennen zu können. Das Lösungsmittelspektrum von CDCl₃ dieser Charge enthält die in *Abbildung 1.2* mit V gekennzeichneten Verunreinigungen im selben Verhältnis, mit dem sie auch im Spektrum von **1b** auftreten.

Die ¹H-NMR-spektroskopischen Daten der Bis-[(dicarbonyl)(cyclopentadienyl)-eisen(I)]-Komplexe **1a** und **1b** sind in der nachfolgenden *Tabelle 1.2* zusammengefaßt.

[{Cp'''(OC) ₂ Fe} ₂] (1a)	$[{Cp}^{4}(OC)_{2}Fe_{2}]$ (1b)
$\delta = 4.84 \text{ ppm} (s, 4H)$	$\delta = 4.64 \text{ ppm} (s, 2H)$
$\delta = 1.41 \text{ ppm} (s, 18 \text{H})$	$\delta = 2.84$ ppm (sept, 4H, ³ J _{HH} = 7.1 Hz)
$\delta = 1.40 \text{ ppm} (s, 36\text{H})$	$\delta = 2.66$ ppm (sept, 4H, ³ J _{HH} = 6.8 Hz)
	$\delta = 1.41$ ppm (d, 12H, ${}^{3}J_{HH} = 7.1$ Hz)
	$\delta = 1.34$ ppm (d, 12H, ${}^{3}J_{HH} = 7.1$ Hz)
	$\delta = 1.23$ ppm (d, 12H, ${}^{3}J_{HH} = 6.8$ Hz)
	$\delta = 1.15$ ppm (d, 12H, ³ J _{HH} = 6.8 Hz)

Tab. 1.2:	¹ H-NMR-Daten von [{C	['] p ^κ (O	$C)_2Fe_2$	(1); 400.1	4 MHz,	CDCl ₃ ,	293 K
-----------	----------------------------------	--------------------------------	------------	------------	--------	---------------------	-------

1.3. Massenspektrometrie

In den CI-Massenspektren von $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (1) detektiert man bei m/z = 690 amu die $[Cp^{R}_{2}Fe_{2}(CO)_{4}]^{+}$ -Molekülionen mit einer Intensität von 27.3 % (Cp^{'''}-Derivat) bzw. von 0.4% (Cp⁴-Derivat). Den Basispeak bildet in beiden Fällen ein Fragmention der Zusammensetzung $[Cp^{R}Fe(CO)_{2}]^{+}$, welches entweder durch das Bikation $[Cp^{R}_{2}Fe_{2}(CO)_{4}]^{2+}$ oder durch das symmetrisch gespaltene Molekül hervorgerufen wird.

Tab. 1.3:	Ausgewählte Fragmente aus den CI-Massenspektren von $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (1)				
	Trägergas = Isobutan	1a :	$120 \text{ eV}, \text{AT} = 180^{\circ}\text{C}, \text{QT} = 120^{\circ}\text{C}$		
		1b :	$120 \text{ eV}, \text{AT} = 20^{\circ}\text{C}, \text{QT} = 150^{\circ}\text{C}$		

Fragment	m/z [amu]	relative Intensität [%	
		$\mathbf{Cp}^{\mathbf{R}} = \mathbf{Cp}^{\prime\prime\prime}$	$\mathbf{Cp}^{\mathbf{R}} = \mathbf{Cp}^{4}$
$\left[\mathrm{Cp}^{\mathrm{R}}_{2}\mathrm{Fe}_{2}(\mathrm{CO})_{4}\right]^{+}$	690	27.3	0.4
$[Cp^{R}_{2}Fe_{2}(CO)_{2}]^{+}$	634	3.6	
$[Cp^{R}Fe(CO)_{2}]^{+}$ oder $[Cp^{R}_{2}Fe_{2}(CO)_{4}]^{2+}$	345	100	100
$[Cp^{R}Fe]^{+}$	289	2.7	11.9

1.4. Strukturvorschlag für $[{Cp^{R}(OC)_{2}Fe}_{2}](1)$

Aufgrund der diskutierten Parallelen der analytischen Daten von 1 zu bereits charakterisierten Komplexen des Typs [$\{Cp^{R}(OC)_{2}Fe\}_{2}$] (A) darf man auf vergleichbare Strukturen schließen. Demnach sollte es sich bei [$\{Cp^{R}(OC)_{2}Fe\}_{2}$] (1) ($Cp^{R} = Cp^{""}$, Cp^{4}) um symmetrische Moleküle mit je zwei terminalen und zwei verbrückenden CO-Liganden handeln, wobei die Cyclopentadienylliganden in 1 aufgrund der sterisch anspruchsvollen Alkylsubstituenten höchstwahrscheinlich eine *trans*-Konfiguration einnehmen. Um der 18 VE-Regel zu genügen, muß zwischen beiden Metallzentren eine Einfachbindung diskutiert werden.

Abb. 1.4: Strukturvorschlag für $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (1) $(Cp^{R} = Cp'', Cp^{4})$

Der in der *Abbildung 1.4* dargestellte, auf den analytischen Daten basierende Strukturvorschlag für Komplexe des Typs $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (1) konnte durch eine Röntgenstrukturanalyse von Bis-[(dicarbonyl)(tetraisopropylcyclopentadienyl)-eisen(I)] (1b) bestätigt werden.

1.5. Röntgenstrukturanalyse von $[{Cp^4(OC)_2Fe}_2] (1b)^{[21]}$

Für die Röntgenbeugung geeignete Einkristalle von **1b** konnten durch langsames Abkühlen einer gesättigten Toluollösung, aus der zuvor durch Zentrifugation Schwebepartikel abgetrennt wurden, erhalten werden.

Abbildung 1.5 zeigt die Molekülstruktur von **1b** im Kristall mit Numerierung der zentralen Baueinheit und der Carbonylliganden. Ausgewählte Bindungsabstände und -winkel sowie beste Ebenen und Winkel zwischen diesen Ebenen sind in *Tabelle 1.5* aufgelistet. Alle übrigen Strukturdaten, Atomkoordinaten und Strukturfaktoren sind dem Anhang zu entnehmen.

Abb. 1.5: Molekülstruktur von $[{Cp^4(OC)_2Fe}_2]$ (**1b**) im Kristall

Die Kristallstruktur von [{ $Cp^4(OC)_2Fe$ }_2] (**1b**) zeigt ein carbonylverbrücktes Dimer mit *trans*ständigen η^5 -koordinierten Tetraisopropylcyclopentadienylliganden, deren Ringebenen parallel zueinander stehen. Auch die beiden terminalen Carbonylliganden nehmen erwartungsgemäß eine *trans*-Anordnung mit identischen Fe-C-Bindungsabständen ein. Die beiden verbrückenden Carbonylgruppen bilden mit den beiden Eisenatomen eine Ebene, sind aber unsymmetrisch koordiniert.

Tab. 1.5:Ausgewählte Strukturdaten von $[{Cp^4(OC)_2Fe}_2]$ (1b)

Fe(1) - Fe(2)	2.562(2)	Fe(2) - C(3)	1.899(8)	C(1) - O(1)	1.182(9)
Fe(1) - C(1)	1.727(10)	Fe(2) - C(4)	1.888(9)	C(2) - O(2)	1.152(9)
Fe(1) - C(3)	1.879(8)	$Fe(1) - Cp^4_{centr}$	1.76	C(3) - O(3)	1.231(9)
Fe(1) - C(4)	1.922(8)	$Fe(2) - Cp^4_{centr}$	1.77	C(4) - O(4)	1.201(9)
Fe(2) - C(2)	1.729(10)				

• Ausgewählte Bindungslängen von $[{Cp^4(OC)_2Fe}_2]$ (1b) in Å:

• Ausgewählte Bindungswinkel von $[{Cp^4(OC)_2Fe}_2]$ (1b) in Grad:

Fe(1) - C(3) - Fe(2)	85.4(3)	C(2) - Fe(2) - Fe(1)	93.9(3)
Fe(1) - C(4) - Fe(2)	84.5(3)	C(3) - Fe(2) - Fe(1)	47.0(3)
C(1) - Fe(1) - Fe(2)	93.5(3)	C(4) - Fe(2) - Fe(1)	48.3(2)
C(3) - Fe(1) - Fe(2)	47.6(2)	C(2) - Fe(2) - C(4)	92.4(4)
C(4) - Fe(1) - Fe(2)	47.2(3)	C(2) - Fe(2) - C(3)	93.2(4)
C(1) - Fe(1) - C(3)	92.7(4)	C(4) - Fe(2) - C(3)	95.3(3)
C(1) - Fe(1) - C(4)	91.7(4)	$Fe(1) - Fe(2) - Cp^4$	142.5
C(3) - Fe(1) - C(4)	94.8(3)	$Fe(2) - Fe(1) - Cp^4$	142.6

• Ebenendefinitionen und maximale Abweichung aus den besten Ebenen

Ebene	Atome	Max. Abweichung [Å]
E1	C(5)-C(6)-C(7)-C(8)-C(9)	0.0139
E2	C(25)-C(26)-C(27)-C(28)-C(29)	0.0131
E3	Fe(1)-Fe(2)-C(3)	
E4	Fe(1)-Fe(2)-C(4)	

• Winkel zwischen den besten Ebenen:

Ebenen	E1 / E2	E1 / E3	E1 / E4	E2 / E3	E2 / E4	E3 / E4
Winkel [°]	0.5	56.0	56.0	55.5	55.5	0.5

Der Eisen-Eisen-Abstand in **1b** beträgt 2.56 Å und ist somit identisch mit dem Fe-Fe-Abstand, der im analogen permethylierten Dimer $[{Cp*(OC)_2Fe}_2]$ (**B**) vorliegt ^[22]. Für Fe₃(CO)₁₂ findet man ebenfalls einen Metall-Metall-Abstand von 2.56 Å ^[23], so daß in Verbindung **1b** formal eine Eisen-Eisen-Einfachbindung vorliegt, was im Einklang mit der 18-VE-Regel steht.

Allerdings ergeben sich aus Befunden von Photoelektronenspektren für $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (A) (mit $Cp^{R} = \eta^{5}-C_{5}H_{5}, \eta^{5}-C_{5}H_{4}Me, \eta^{5}-C_{5}Me_{5})$ in Verbindung mit semiempirischen MO-Rechnungen keinerlei Hinweise auf eine direkte Fe-Fe-Bindung ^[24]. Auch ein Neutronenbeugungsexperiment am $C_{5}H_{5}$ -Derivat deutet nicht auf eine direkte Bindung beider Metallzentren hin ^[25], da auf der Kernverbindungsachse keine Elektronendichte detektiert werden kann. Statt dessen kann die Bindung der Eisenatome über die verbrückenden Carbonylliganden erfolgen.

Die beiden Kohlenstoffatome der verbrückenden CO-Liganden bilden mit den Eisenatomen einen fast planaren Vierring mit einer Winkelsumme von 357.9° und einem Diederwinkel von 0.5° zwischen den beiden Dreiecksflächen, die über eine gemeinsame Fe-Fe-Kante den Vierring bilden. Senkrecht dazu nehmen die beiden terminal gebundenen Carbonylgruppen eine *trans*-Anordnung ein. Die Bindungsabstände zwischen Metall und terminalen CO-Liganden sind mit $\overline{d} = 1.728$ Å in **1b** jeweils kürzer als die Abstände zwischen Metall und verbrückenden Carbonylgruppen, die im Mittel 1.897 Å betragen.

Das Zentrum des am Fe(1)-Atom gebundenen Cp^4 -Ringes ist 1.76 Å vom Metall entfernt, während das Zentrum des zweiten Cp^4 -Restes in einem Abstand von 1.77 Å über dem Fe(2)-Atom positioniert ist.

Der Tetraisopropylcyclopentadienylligand am Fe(2)-Atom ordnet sich derart an, daß die terminal gebundene Carbonylgruppe am Fe(1)-Atom in einer Newman-Projektion entlang der Fe(1)-Fe(2)-Achse mit dem unsubstituierten Ringkohlenstoffatom zur Deckung kommt. Gleiches gilt für den zweiten Cp⁴-Ring, der sich ebenfalls so ausrichtet, daß die terminale Carbonylgruppe am Fe(2)-Atom die geringste sterische Hinderung erfährt.

Mit den letztgenannten Strukturparametern kann das unterschiedliche Dissoziationsverhalten der isopropylsubstituierten dimeren (Dicarbonyl)(cyclopentadienyl)eisen-Komplexe erklärt werden. Bei $[{Cp^5(OC)_2Fe}_2]$ können im Gegensatz zum Cp⁴-Derivat die terminal gebundenen CO-Liganden den sterisch aufwendigen Alkylresten nicht ausweichen, so daß es in Lösung aufgrund von Van-der-Waals-Abstoßungskräften rasch zur "Dissoziation" kommt [4, 5].

Kurzzeit-Cothermolyse von [{Cp^R(OC)₂Fe}₂] (1) und weißem Phosphor: Selektive Synthese von sterisch aufwendig substituierten Komplexen des Typs exo/exo-[{Cp^R(OC)₂Fe}₂(μ-η^{1:1}-P₄)] mit Tetraphosphabicyclobutangerüst ^[26]

Gibt man zur rotvioletten Lösung von [{Cp''(OC)₂Fe}₂] (**1a**) in Toluol äquimolare Mengen an frisch getrocknetem weißen Phosphor bei Raumtemperatur zu und erhitzt das Reaktionsgemisch, so erkennt man bereits zwei Minuten nach Erreichen des Siedepunkts einen Farbumschlag der Lösung nach gelborange. Im IR-Spektrum der Reaktionslösung findet man statt der beiden Eduktcarbonylbanden (s. Tab. 1.1) zwei neue Banden im für terminal koordinierte Carbonylgruppen charakteristischen Bereich bei $\overline{v} = 2000.0$ und 1950.0 cm⁻¹.

Im ³¹P-NMR-Spektrum der Rohlösung erkennt man neben einem Singulett bei $\delta = -520$ ppm, das von Spuren an nicht umgesetztem weißen Phosphor herrührt, zwei Tripletts bei $\delta = -324.5$ ppm und bei $\delta = -81.4$ ppm.

Die selektive Synthese von sterisch anspruchsvoll substituierten Komplexen mit Tetraphosphabicyclobutangerüst wurde hier exemplarisch für das Cp^{III}-Derivat **1a** beschrieben, funktioniert aber für das Tetraisopropylderivat **1b** analog. Lediglich die Synthese des Pentaisopropylderivates erfordert eine modifizierte Versuchsführung: Da das benötigte Edukt [{Cp⁵(OC)₂Fe}[•]] (**1c**) bereits bei Raumtemperatur in Lösung als Radikal vorliegt ^[4, 5] und somit reaktiver als die dimeren Spezies ist, erfolgt die Zugabe des weißen Phosphors bei 0°C. Auch muß das Reaktionsgemisch in diesem Fall nicht zum Rückfluß erhitzt werden; das Auftauen auf RT führt bereits nach zwei Minuten zur gewünschten Reaktion, die sowohl am Farbumschlag von grün (**1c**) nach gelborange, als auch IR- und NMR-spektroskopisch nachgewiesen werden kann.

$$[\{Cp^{R}(OC)_{2}Fe\}_{2}] + P_{4} \xrightarrow{Toluol, 110 \circ C} [\{Cp^{R}(OC)_{2}Fe\}_{2} (\mu - \eta^{1:1} - P_{4})]$$
1a, 1b 3a, 3b
$$2 [\{Cp^{5}(OC)_{2}Fe\}^{T}] + P_{4} \xrightarrow{Toluol} [\{Cp^{5}(OC)_{2}Fe\}_{2} (\mu - \eta^{1:1} - P_{4})]$$
1c 3c

Die Aufarbeitung der Reaktionsansätze erfolgt säulenchromatographisch an Kieselgel oder neutralem Aluminiumoxid bei tiefer Temperatur (- 20°C). Mit einem Petrolether / Toluol = 1:1-Gemisch erhält man die Komplexe [{Cp^R(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (**3**) als leuchtend-orange Lösungen, nachdem mit reinem Petrolether Spuren an nicht umgesetztem weißen Phosphor eluiert wurden.

2.1. Eigenschaften und IR-Spektroskopie

Die Verbindungen $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (3) fallen nach Entfernen der Lösungsmittel als orangebraune Feststoffe an, die sich in unpolaren Solventien mäßig und in polaren Lösungsmitteln wie Toluol oder Dichlormethan gut lösen. Die Komplexe 3 können unter Schutzgas mehrere Wochen ohne sichtbare Zeichen der Zersetzung gelagert und sogar kurzzeitig an Luft gehandhabt werden.

Die nachfolgend aufgelisteten IR-Daten von $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (3) - aufgenommen in Toluol - zeigen je zwei Banden im Bereich terminal koordinierter Carbonylliganden.

Tab. 2.1: IR-Absorptionsbanden von $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (3) in Toluol

	\overline{v} [cm ⁻¹]	
$[\{Cp'''(OC)_2Fe\}_2(\mu-\eta^{1:1}-P_4)] (3a)$	2000.0 (vs) 1950.0 (vs)	
$[\{Cp^{4}(OC)_{2}Fe\}_{2}(\mu-\eta^{1:1}-P_{4})] (\mathbf{3b})$	1996.0 (vs) 1946.2 (vs)	
$[\{Cp^{5}(OC)_{2}Fe\}_{2}(\mu-\eta^{1:1}-P_{4})] (\mathbf{3c})$	1992.5 (vs) 1942.9 (vs)	

2.2. NMR-Spektroskopie

Die Protonenresonanzspektren von $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (**3a**, **3b**) zeigen die für den jeweiligen Liganden typischen Signalsatz.

Für das Tri-*tert*-butylderivat **3a** findet man drei Singuletts bei $\delta = 4.69$ ppm, $\delta = 1.26$ ppm und $\delta = 1.25$ ppm in einem Integralverhältnis von 2 : 18 : 9.

Das Tetraisopropylderivat **3b** zeigt ein Singulett für die Ringprotonen, zwei Septetts für die Methinprotonen und vier Dubletts für die Methylprotonen.

Tab. 2.2.1: ¹H-NMR-Daten von $[{Cp^{R}(CO)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (3); 400.14 MHz, C₆D₆, 293 K

$[\{Cp'''(OC)_2Fe\}_2(\mu-\eta^{1:1}-P_4)] (3a)$	$[\{Cp^4(OC)_2Fe\}_2(\mu-\eta^{1:1}-P_4)] (3b)$
$\delta = 4.69 \text{ ppm} (s, 4H)$	$\delta = 4.53 \text{ ppm} (s, 2H)$
$\delta = 1.26 \text{ ppm} (s, 18 \text{H})$	$\delta = 2.80$ ppm (2 sept (überlagert), 8H)
$\delta = 1.25 \text{ ppm} (s, 36\text{H})$	$\delta = 1.52 \text{ ppm} (d, 12\text{H}, {}^{3}\text{J}_{\text{HH}} = 6.8 \text{ Hz})$
	$\delta = 1.41$ ppm (d, 12H, ${}^{3}J_{HH} = 6.8$ Hz)
	$\delta = 1.18 \text{ ppm} (d, 12\text{H}, {}^{3}\text{J}_{\text{HH}} = 6.0 \text{ Hz})$
	$\delta = 1.07 \text{ ppm} (d, 12\text{H}, {}^{3}\text{J}_{\text{HH}} = 6.0 \text{ Hz})$

Im ¹H-NMR-Spektrum von [{Cp⁵(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (**3c**) erkennt man statt eines für den Pentaisopropylcyclopentadienylliganden zu erwartenden Septetts für die fünf Methinprotonen und eines Dubletts für die 30 Methylprotonen lediglich zwei breite Signale bei $\delta = 2.9$ ppm und $\delta = 1.3$ ppm, was vermutlich auf einer bereits bei RT eingeschränkten Rotation der Isopropylgruppen beruht. Auch in temperaturvariabel aufgenommenen ¹H-NMR-Spektren von **3c** konnten keine scharfen Signale detektiert werden.

Zur Erklärung der Dynamik, die im ¹H-NMR-Spektrum zu erkennen ist, müssen zwei unterschiedliche Möglichkeiten in Betracht gezogen werden: Denkbar wären neben Rotameren, wie sie bei tiefer Temperatur für $[Cp^5(OC)_3Mo(CH_3)]$ nachgewiesen werden können ^[26], auch Stereoisomere (vgl. *Abb. 2.2.1*) ^[27].

Abb. 2.2.1: Zwei denkbare Stereoisomere von $[{Cp^5(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3c**) mit unterschiedlich orientierter Schaufelradkonformation der Cp⁵-Liganden

Das Auftreten von Rotameren ist auf Abweichungen von der typischen Schaufelradkonformation ^[27] der Cp⁵-Liganden, bei der die fünf Methinprotonen gleichsinnig in der Ringebene liegen und von fünf metallnahen Methylgruppen unter sowie fünf metallfernen Methylgruppen über der Ringebene flankiert werden, zurückzuführen ^[26] (vgl. *Abb. 2.2.2*).

Abb. 2.2.2: Konformationen des Cp^5 -Ringes in $[Cp^5(OC)_3Mo(CH_3)]$ bei T = 193 K^[26]

In seiner Moleküldynamik ähnelt [{ $Cp^{5}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ - P_{4})] (**3c**) Halbsandwichkomplexen wie [$Cp^{5}Fe(CO)_{2}Br$] (**2c**) oder [$Cp^{5}(OC)_{3}Mo(CH_{3})$]. Das Auftreten von Stereoisomeren, wie sie bei Decaisopropylstannocen $Cp^{5}_{2}Sn$ bei tiefer Temperatur nachgewiesen werden können ^[27], erscheint für **3c** unwahrscheinlich.

Die ³¹P-NMR-Spektren der Butterflykomplexe [{ $Cp^{R}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ -P₄)] (**3**) zeigen jeweils zwei Tripletts in einem Integralverhältnis von 1:1, die über eine ¹J_{PP}-Kopplungskonstante von etwa –180 Hz miteinander korrelieren. Das Signal bei tieferem Feld kann dabei jeweils den beiden metallkoordinierten Phosphoratomen an den Flügelspitzen zugewiesen werden, während das Triplett bei höherem Feld die P-Atome im Brückenkopf charakterisiert.

Für Verbindungen der Zusammensetzung [{ $Cp^{R}(OC)_{2}Fe$ } $_{2}(\mu-\eta^{1:1}-P_{4})$] (**3**) sind drei Isomere denkbar, die sich durch die Anordnung der { $Cp^{R}(OC)_{2}Fe$ }-Fragmente unterscheiden (vgl. *Abb. 2.2.3*). Bei einer endo/exo-Anordnung wären im ³¹P-NMR-Spektrum der P₄-Komplexe **3** drei Signalgruppen bei unterschiedlichen chemischen Verschiebungen zu erwarten, nämlich eine Signalgruppe für die Brückenkopfphosphoratome und je eine Signalgruppe für die beiden metallkoordinerten Phosphoratome. Da ³¹P-NMR-spektroskopisch lediglich zwei Tripletts gefunden werden, kann die endo/exo-Konfiguration für die P₄-Moleküle **3** ausgeschlossen werden.

Abb. 2.2.3: Mögliche Isomere von $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (3)

Sowohl für den endo/endo- als auch für den exo/exo-Fall würden jeweils zwei Tripletts detektiert werden. Durch den Vergleich der Kopplungskonstanten und chemischen Verschiebungen mit den Werten analoger Komplexe konnte *Brück*^[8] für die P₄-Butterflymoleküle **3** die exo/exo-Konfiguration vorschlagen.

Ein Vergleich mit den in der folgenden *Tabelle 2.2.2* aufgelisteten Literaturwerten anderer Komplexe dieser Zusammensetzung zeigt eine gute Übereinstimmung sowohl bezüglich der chemischen Verschiebungen, als auch für die Kopplungskonstanten.

Tab. 2.2.2:	³¹ P-NMR-Daten von [{ $Cp^{R}(OC)_{2}Fe$ } ₂ (μ - $\eta^{1:1}$ -P ₄)] (3)
	161.97 MHz, C ₆ D ₆ , 293 K

Ligand Cp ^R	δ [ppm]	1 J _{PP} [Hz]	Meßbedingungen	Literatur
C ₅ Me ₅	- 43.0 (t, 2P)	- 185	81.02 MHz, C ₆ D ₆ , 298 K	9, 10
	- 332.8 (t, 2P)			
C ₅ Bz ₅	- 50.8 (t, 2P)	- 185	81.02 MHz, C ₆ H ₆ , D ₆ -	8
	- 330.1 (t, 2P)		Aceton (ext.), 298 K	
$C_5H_3^{t}Bu_2-1,3$	- 84.2 (t, 2P)	- 186	81.02 MHz, C ₆ D ₆ , 298 K	6
	- 325.5 (t, 2P)			
$C_5H_2^{t}Bu_3-1,2,4$ (3a)	- 81.4 (t, 2P)	- 183.1	161.97 MHz, C ₆ D ₆ , 298 K	28
	- 324.5 (t, 2P)			
$C_5 H^i Pr_4$ (3b)	- 66.3 (t, 2P)	- 183.1	81.02 MHz, C ₆ D ₆ , 298 K	21
	- 327.2 (t, 2P)			
$C_5^{i}Pr_5$ (3c)	- 68.7 (t, 2P)	- 188	81.02 MHz, C ₆ D ₆ , 323 K	21
	- 316.6 (t, 2P)			

2.3. Massenspektrometrie

Weder in den EI- noch in den CI-Massenspektren von **3a** und **3b** kann ein $[Cp^{R}_{2}Fe_{2}(CO)_{4}P_{4}]^{+}$ -Molekülion nachgewiesen werden. Allerdings findet man für beide Verbindungen bei m/z = 788 amu Fragmente der Zusammensetzung $[Cp^{R}_{2}Fe_{2}(CO)_{3}P_{4}]^{+}$. Den Basispeak bildet jeweils das Kation des 17VE-Fragmentes $[Cp^{R}Fe(CO)_{2}]^{+}$.

Tab. 2.3.1:	Ausgewählte Fragmente aus den CI-Massenspektren von
	$[{Cp^{R}(CO)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})] (\mathbf{3a, 3b}); (Cp^{R} = Cp''', Cp^{4})$
	Trägergas = Isobutan, 120 eV, $AT = 140^{\circ}C$, $QT = 150^{\circ}C$

z [amu]	relative Intensität [%]	
	$Cp^{R} = Cp'''$	$Cp^{R} = Cp^{4}$
788	24.2	17.3
732		65.5
701	19.2	24.9
690	43.5	12.7
469		11.3
345	100	100
	788 732 701 690 469 345	z [amu] relative interaction $Cp^R = Cp'''$ 788 24.2 732 — 701 19.2 690 43.5 469 — 345 100

Im CI-Massenspektrum von $[{Cp^5(CO)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3c**) konnte mit einer Intensität von 13.9 % der Molekülionenpeak von 3c bei m/z = 901.0 amu gefunden werden. Den Basispeak bildet auch hier das Kation des 17VE-Fragmentes $[Cp^5(OC)_2Fe]^+$ bei m/z = 387.0 amu.

Tab. 2.3.2: Ausgewählte Fragmente aus dem CI-Massenspektrum von

 $[{Cp^{5}(CO)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (**3c**) Trägergas = Methan, 120 eV, AT = 250°C, QT = 150°C

Fragment	m/z [amu]	relative Intensität [%]
$[Cp^{5}_{2}Fe_{2}(CO)_{4}P_{4}]^{+}$	901.0	13.9
$[Cp^5FeP_4]^+$	457.9	36.0
$[Cp^5Fe(CO)_2]^+$	387.0	100
$[Cp^5Fe]^+$	331.0	27.9

2.4. Strukturvorschlag für [{ $Cp^{R}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ -P₄)] (3)

Die analytischen Daten der Komplexe [$\{Cp^{R}(OC)_{2}Fe\}_{2}(\mu-\eta^{1:1}-P_{4})$] (**3**) stehen mit den Werten literaturbekannter übergangsmetallkomplexchemisch stabilisierter Verbindungen mit einen Tetraphosphabicyclobutangerüst im Einklang.

So untermauern sowohl die beiden ³¹P-NMR-spektroskopisch detektierten Tripletts und die Größenordnung der ¹J_{PP}-Kopplungskonstanten als auch die IR- und die Massenspektren die Annahme, daß auch die Verbindungen **3** ein P₄-Butterflygerüst als zentrales Bauelement besitzen, das durch zwei 17VE-Übergangsmetallfragmente in exo/exo-Konfiguration stabilisiert ist.

Abb. 2.4: Strukturvorschlag für $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (3)

Der auf den analytischen Daten basierende und in *Abbildung 2.4* dargestellte Strukturvorschlag für die Komplexe **3** konnte durch korrekte Elementaranalysen belegt werden. Als endgültiger Strukturbeweis für die Substanzklasse der exo/exo-Tetraphosphabicyclobutanverbindungen **3** dient eine Röntgenstrukturanalyse, die für das Tri*tert*-butylderivat [{Cp'''(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (**3a**) angefertigt werden konnte.

Ersetzt man formal die beiden 17VE-Eisenfragmente durch die isolobalen Wasserstoffatome, so gehorcht die Anordnung der vier Phosphoratome als Tetraphosphabicyclobutaneinheit mit 62 VE den *Mingos*-Zählregeln ^[29] für Butterflycluster, die mit (14n + 6) Elektronen einem *arachno*-Oktaeder entsprechen.

Gleiches gilt für die Zählweise nach *Wade* ^[30]: Mit 14 Gerüstelektronen entsprechen die Verbindungen **3** mit (n +3) = 7 GEP dem für *arachno*-Oktaeder geforderten Wert.

2.5. Röntgenstrukturanalyse von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3a)

Für die Röntgenstrukturanalyse geeignete Einkristalle von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**) konnten durch langsames Abkühlen einer heißen, gesättigten Hexanlösung von **3a** von 60°C auf Raumtemperatur erhalten werden. Die nachfolgende Abbildung zeigt die Molekülstruktur von **3a** im Kristall mit der Numerierung der zentralen Baueinheit. Ausgewählte Bindungsabstände und -winkel sowie beste Ebenen und Winkel zwischen diesen Ebenen sind in der nachfolgenden *Tabelle 2.5.1* aufgelistet. Alle übrigen Strukturdaten, Atomkoordinaten und Strukturfaktoren sind dem Anhang zu entnehmen.

Abb. 2.5.1: Molekülstruktur von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**) im Kristall

Die Kristallstruktur von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**) zeigt als zentrales Bauelement ein Tetraphosphabicyclobutangerüst, das durch zwei 17VE-Fragmente in exo/exo-Konfiguration komplexchemisch fixiert ist und formal durch die selektive Öffnung einer der sechs Kanten des P₄-Tetrahedrans des weißen Phosphors entstanden ist.

Bislang konnten lediglich drei organylsubstituierte Komplexe $[(RP)_2P_2]$ (**Q**) des gleichen Strukturtyps röntgenographisch untersucht werden ^[31-33].

Tab. 2.5.1: Ausgewählte Strukturdaten von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**)

P(1) - P(2)	2.210(3)	Fe(1) - P(1)	2.3552(19)	C(16) - O(1)	1.151(6)
P(1) -P(3)	2.217(3)	Fe(2) - P(4)	2.348(2)	C(15) - O(2)	1.172(6)
P(2) -P(4)	2.198(3)	Fe(1) - C(15)	1.732(6)	C(17) - O(3)	1.166(7)
P(3) -P(4)	2.209(2)	Fe(1) - C(16)	1.753(6)	C(18) - O(4)	1.185(7)
P(1) ··· P(4)	2.96	Fe(2) - C(17)	1.727(7)	Fe(1)-Cp''' _{centr.}	1.745
P(2) - P(3)	2.152(2)	Fe(2) - C(18)	1.719(7)	Fe(1)-Cp ^{'''} centr.	1.746

• Ausgewählte Bindungslängen von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3a) in Å:

• Ausgewählte Bindungswinkel von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**) in Grad:

-			
P(2) - P(1) - P(3)	58.12(8)	P(1) - P(3) - P(4)	84.07(9)
P(2) - P(4) - P(3)	58.42(8)	P(2) - P(1) - Fe(1)	106.02(9)
P(1) - P(2) - P(3)	61.11(8)	P(3) - P(1) - Fe(1)	109.86(9)
P(3) - P(2) - P(4)	61.04(8)	P(2) - P(4) - Fe(2)	108.45(9)
P(1) - P(2) - P(4)	84.49(9)	P(3) - P(4) - Fe(2)	107.91(9)
P(2) - P(3) - P(4)	60.53(8)	C(15) - Fe(1) - C(16)	92.0(3)
P(1) - P(3) - P(2)	60.77(8)	C(17) - Fe(2) - C(18)	91.3(4)

• Ebenendefinitionen und maximale Abweichung aus den besten Ebenen:

Ebene	Atome	Maximale Abweichung [Å]
E1	P(1) - P(2) - P(3)	
E2	P(2) - P(3) - P(4)	
E3 (Cp''')	C(1) - C(2) - C(3) - C(4) - C(5)	0.0087
E4 (Cp''')	C(6) - C(7) - C(8) - C(9) - C(10)	0.0023

• Winkel zwischen den besten Ebenen:

Ebenen	E1 / E2	E3 / E4	
Winkel [°]	100.4 (Faltungswinkel)	142	

In den drei bislang kristallstrukturanalytisch untersuchten Komplexen $[(RP)_2P_2]$ (**Q**) mit P₄-Butterflygerüst nehmen die organischen Substituenten ebenso wie die {Cp''(OC)_2Fe}-Liganden in **3a** eine exo/exo-Konfiguration bezüglich des P₄-Gerüstes ein.

Tab. 2.5.2:	Vergleich der Strukturdaten der Komplexe $[(RP)_2P_2]$ (Q) mit den Werten von
	$[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3a)

$\mathbf{R} \stackrel{\mathbf{P}_{1}}{\overbrace{\mathbf{P}_{3}}} \stackrel{\mathbf{P}_{2}}{\underset{\mathbf{P}_{3}}{\overset{\mathbf{P}_{4}$						
R =	d (P2 – P3)	$\mathbf{d} \left(\mathbf{P}_{\mathbf{x}} - \mathbf{P}_{\mathbf{y}} \right)^*$	Faltungswinkel	Literatur		
N(SiMe ₃) ₂	2.129 Å	2.22425 Å	95.2°	31		
$C_6H_2^{t}Bu_3-2,4,6$	2.166 Å	2.2265 Å	95.5°	32		
$-C_{P(Ph)_{3}}^{R'}$ R' = C ₆ H ₃ Cl ₂ -2,6	2.207 Å	2.2235 Å	96.7°	33		
Fe(CO) ₂ Cp'''	2.152 Å	2.2085 Å	100.4 °			

Der Mittelwert der Bindungslängen der vier P-P-Bindungen zu den Flügelspitzenatomen in **3a** beträgt 2.21 Å und bleibt somit im Vergleich zum weißen Phosphor nahezu unverändert. Dagegen ist die Phosphor-Phosphor-Bindung zwischen den beiden Brückenkopfatomen P(2) und P(3) signifikant auf 2.152(2) Å verkürzt. Analoge Beobachtungen wurden auch für die drei übergangsmetallfreien Komplexe [(RP)₂P₂] (**Q**) gemacht. Dort sind die entsprechenden Bindungslängen zu den Flügelspitzenphosphoratomen im Vergleich zu den Bindungen im weißen Phosphor mit 2.224 Å bzw. 2.229 Å geringfügig elongiert, während die Bindungslängen zwischen den Brückenkopfatomen der Verbindungen Q zwischen 2.13 Å und 2.21 Å liegen.

Eine mit 2.46 Å sehr lange P-P-Bindung diskutieren *Ginsberg* et al. für die side-on koordinerte Kante im P₄-Tetrahedrankomplex [{ $(Ph_3P)_2ClRh$ } (η^2-P_4)] (**R**) ^[34]. Damit liegt der Abstand zwischen den beiden Flügelspitzenatomen P(1) und P(4) in **3a** mit 2.96 Å eindeutig im nichtbindenden Bereich.

^{*} Anm.: d (Px-Py) beschreibt den Mittelwert der vier P/P-Bindungen zu den Flügelspitzenatomen

Die kurze P(2)-P(3)-Bindung in $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3a) erlaubt formal eine Betrachtung als P2-Molekül mit einer P-P-Dreifachbindung, an das zwei zu einem Phosphiniden isolobale {Cp'''(OC)₂FeP}-Fragmente side-on koordiniert sind. Auch Ehses diskutierte für den P₂M₂-Butterflykomplex CO •CO $[{Cp^{*}(OC)_{2}Re}_{2}(\mu-\eta^{2:2}-P_{2})]$ **(S)** alternativ eine formale Beschreibung als Molekül mit einem zweifach side-on Ср koordinierten P₂-Liganden^[35,36]. S

Abb. 2.5.2: Formale Beschreibung von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**) als P₂-Molekül mit doppelter Phosphiniden-side-on-Koordination

Mit $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**) konnte erstmals ein Übergangsmetallkomplex mit Tetraphosphabicyclobutangerüst, dessen zwei 17VE-Eisenfragmente eine exo/exo-Konfiguration bezüglich des Grundgerüstes einnehmen, kristallstrukturanalytisch untersucht werden. Moleküle mit einem verbrückenden P₄-Butterflygerüst sind dagegen schon länger bekannt ^[37,38].

Abb. 2.5.3: P_4 -Butterflymoleküle als verbrückende P_4 -Einheit ^[37,38]

Bemerkenswert bei der Synthese der P₄-Butterflymoleküle [{ $Cp^{R}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ -P₄)] (**3**) ist neben der hohen Selektivität, mit der jeweils nur *eine* der sechs möglichen P-P-Bindungen im P₄-Tetraeder des weißen Phosphors gespalten wird, auch die sehr gute Ausbeute von jeweils über 75 %, in der die Produkte nach säulenchromatographischer Aufarbeitung erhalten werden können.

CO
3. Langzeit-Cothermolyse von [{Cp^R(OC)₂Fe}₂] (1) mit weißem Phosphor:
 "Klassische" Synthese von Pentaphosphaferrocenen des Typs [Cp^RFe(η⁵-P₅)] (O)

Gibt man zur rotvioletten Lösung von $[{Cp'''(OC)_2Fe}_2]$ (1a) in Toluol einen etwa sechsfachen Überschuß an frisch getrocknetem, weißen Phosphor und erhitzt das Reaktionsgemisch zum Rückfluß, so erkennt man kurz nach dem Erreichen des Siedepunktes im IR-Spektrum der Reaktionslösung neben den Peaks des Eduktes 1a auch die Carbonylbanden von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3a), die aber bereits nach 30-minütiger Thermolyse nicht mehr auftreten.

Im ³¹P-NMR-Spektrum erkennt man bei einsetzendem Rückfluß neben dem Signal des weißen Phosphors ($\delta = -520$ ppm, s) die beiden Tripletts, die Komplex **3a** charakterisieren. Nach wenigen Minuten sind die beiden Signale von [{Cp'''(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (**3a**) jedoch fast vollständig zugunsten eines Singuletts bei $\delta = 165.6$ ppm und eines breiten Signals bei δ = 91.0 ppm verschwunden. Nach etwa zehn Stunden sind diese beiden neuen Signale zu einem Intensitätsmaximum angewachsen, daneben kann nur noch das Signal des überschüssigen weißen Phosphors in geringer Intensität detektiert werden.

Das Reaktionsgemisch kann säulenchromatographisch an Kieselgel aufgearbeitet werden. Nach einem gelben Vorlauf an nicht umgesetztem weißen Phosphor eluiert man mit Petrolether eine grüne Lösung von [Cp'''Fe(η^5 -P₅)] (**4a**), die ³¹P-NMR-spektroskopisch durch das Singulett bei $\delta = 165.6$ ppm charakterisiert ist. Mit einem Petrolether/Toluol = 5:2-Gemisch erhält man eine rotviolette Lösung des Komplexes [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**), der im ³¹P-NMR-Spektrum als breites Signal bei $\delta = 91.0$ ppm in Resonanz tritt.

Da die hier beschriebene Reaktion bereits 1987 von *Brück* zur Synthese von Pentaphosphaferrocenen des Typs $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (**O**) entdeckt ^[8] und in der Folgezeit eingehend untersucht wurde ^[13], können die beiden gebildeten Produkte bereits anhand eines Vergleichs ihrer ³¹P-NMR-Daten mit den Werten literaturbekannter Verbindungen identifiziert werden. Verwendet man statt Toluol das höhersiedende Dekalin als Lösungsmittel, so kann die Dauer der Cothermolyse auf drei Stunden herabgesetzt werden.

	P ₄ , Dekalin	$[Cp'''F(\mu-\eta^{5}-P_{5})]$ (4a)	a)
$[{Cp'''(OC)_2Fe}_2]$	190 °C. 3h	+	
1 a	, , 	[{Cp ^{···} Fe} ₂ (μ–η ^{···} -P ₄)]	(5a

3.1. Eigenschaften der Thermolyseprodukte 4a und 5a

Nach dem Entfernen der Lösungsmittel fallen die Verbindungen $[Cp'''Fe(\eta^5-P_5)]$ (**4a**) bzw. $[\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_4)]$ (**5a**) in Form dunkelgrüner Nadeln bzw. als rotviolettes Pulver an. Beide Verbindungen lösen sich in unpolaren Solventien wie Pentan oder Hexan gut und in Toluol oder Dichlormethan sehr gut. Sowohl **4a** als auch **5a** sind luftstabil und unbegrenzt lange lagerfähig.

3.2. NMR-Spektroskopie

Die Protonenresonanzspektren von $[Cp'''Fe(\eta^5-P_5)]$ (**4a**) und $[\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_4)]$ (**5a**) zeigen den für Tri-*tert*-butylcyclopentadienylliganden charakteristischen Signalsatz. Man erkennt jeweils drei Singuletts in einem Integralverhältnis von 2:18:9.

Tab. 3.2.1: 1 H-NMR-Daten von [Cp"'Fe(η^{5} -P₅)] (**4a**) und [{Cp"'Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**);400.14 MHz, C₆D₆, 293 K.

$[Cp'''Fe(\eta^{5}-P_{5})]$ (4a)
$\delta = 3.99 \text{ ppm}$ (s, 2H, Ringprotonen)
$\delta = 1.25$ ppm (s, 18H, ^t Bu-1,2)
$\delta = 1.13 \text{ ppm} (s, 9H, ^{t}Bu-4)$

$[\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_4)] (5a)$
$\delta = 4.31$ ppm (s, 2H, Ringprotonen)
$\delta = 1.35$ ppm (s, 18H, ^t Bu-1,2)
$\delta = 1.28 \text{ ppm} (s, 9H, {}^{t}Bu-4)$

Die ³¹P-NMR-Spektren der Thermolyseprodukte **4a** und **5a** stimmen gut mit den Werten bereits literaturbekannter Verbindungen überein. So treten alle bislang untersuchten (Cyclopentadienyl)(cyclopentaphosphanyl)eisen(II)-Komplexe $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (**0**) als Singulett bei ca. 160 ppm in Resonanz.

Tab. 3.2.2.1: ³¹P-NMR-Daten von Pentaphosphaferrocenen des Typs $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (**O**)

Ligand Cp ^R	δ [ppm]	Meßverfahren	Literatur
C ₅ Me ₅	153.0 (s)	81.02 MHz, 298 K, C ₆ D ₆	8
C ₅ Bz ₅	161.9 (s)	81.02 MHz, 298 K, C ₆ D ₆	8
C ₅ Me ₄ Et	152.8 (s)	81.02 MHz, 298 K, C ₆ D ₆	8, 12
C ₅ H ₄ ^t Bu	168.6 (s)	81.02 MHz, 298 K, C ₆ D ₆	7
$C_5H_3^{t}Bu_2-1,3$	169.0 (s)	81.02 MHz, 301 K, C ₆ D ₆	8
$C_5H_2^{t}Bu_3$ -1,2,4	165.6 (s)	161.97 MHz, 293 K, C ₆ D ₆	

Der bereits von *Schwarz* untersuchte *pseudo*-Tripeldeckerkomplex [{Cp"Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**K**), der im ³¹P-NMR-Spektrum bei δ = 83.0 ppm in Resonanz tritt, zeigt bei Raumtemperatur ebenfalls die auch bei [{Cp"Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**) beobachtete Signalverbreiterung ^[6,7].

Die von *Schwarz* beobachtete Aufspaltung des breiten ³¹P-NMR-Signals in zwei intensitätsgleiche Dubletts bei tiefer Temperatur (T = 185 K) ^[6,7] konnte für das Tri-*tert*-butylderivat **5a** nicht erreicht werden.

Allerdings können bei erhöhter Meßtemperatur (T = 370 K) die Halbwertsbreiten der ³¹P-NMR-Signale von **5a** und **K** deutlich verringert werden.

Tab. 3.2.2.2: ³¹P-NMR-Daten von [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ -P₄)] (**5a**, **K**^[6,7]); δ in ppm

	$T = 298 K^{1}$	$T = 185 K^2$	$T = 370 K^{3}$
$[{Cp''Fe}_2(\mu-\eta^{4:4}-P_4)](\mathbf{K})$	83.0 (s, vbr, 4P)	302.5 (dd, 2P)	95.4 (s, br, 4P)
		-143.2 (dd, 2P)	
$[\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_4)] (5a)$	91.0 (s, vbr, 4P)	91.0 (s, vbr, 4P)	96.0 (s, br, 4P)

¹ d6-Benzol: **K**: 81.02 MHz; **5a**: 161.98 MHz

² Dichlormethan/d6-Benzol-Gemisch: K: 81.02 MHz; 5a: 161.98 MHz

³ d8-Toluol: 161.98 MHz

3.3. Massenspektrometrie

Im CI-Massenspektrum von $[Cp'''Fe(\eta^5-P_5)]$ (4a) bildet der Molekülionenpeak bei m/z = 444.8 amu den Basispeak. Weitere Fragmente von 4a sind in der folgenden Tabelle zusammengefaßt:

Tab. 3.3.1: Ausgewählte Fragmente aus dem CI-Massenspektrum von $[Cp'''Fe(\eta^5-P_5)]$ (4a)(CI: 120 eV, QT = 180°C, AT = 20°C, Trägergas = Isobutan)

Fragment	m/z [amu]	relative Intensität [%]
$[Cp'''FeP_5]^+$	444.8	100
$[Cp''FeP_2]^+$	299.2	73.3
[Cp"FeP] ⁺	265.2	60.4
$[Cp'''H]^+$	235.2	6.3

Im EI-Massenspektrum von [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**) tritt das Molekülion bei m/z = 702.2 amu mit einer Intensität von 43.4 % auf. Der Basispeak bei m/z = 57.6 amu stammt von einem *tert*-Butylkation, das vom Liganden abgespalten wurde. Weitere charakteristische Fragmentionen sind in der folgenden Tabelle aufgelistet.

Tab. 3.3.2: Ausgewählte Fragmente aus dem EI-Massenspektrum von $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (**5a**)(EI: 70 eV, QT = 180°C, AT = 135°C)

Fragment	m/z [amu]	relative Intensität [%]
$[Cp'''_2Fe_2P_4]^+$	702.2	43.4
$\left[Cp'''Cp''Fe_2P_4\right]^+$	645.9	7.0
$[Cp'''_2Fe_2P_4]^{2+}$ oder $[Cp'''FeP_2]^+$	351.1	6.5
$[\text{FeP}_4]^+$	179.0	14.3
[^t Bu] ⁺	57.6	100

3.4. Synthese und Charakterisierung der isopropylsubstituierten Derivate $[Cp^{R}Fe(\eta^{5}-P_{5})] (4b, 4c) \text{ und } [\{Cp^{R}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})] (5b, 5c); Cp^{R} = Cp^{4}, Cp^{5}$

Die zu Beginn dieses Kapitels für das Tri-*tert*-butylderivat $[{Cp'''(OC)_2Fe}_2]$ (1a) beschriebene Cothermolyse in Gegenwart von überschüssigem weißen Phosphor kann auch auf die beiden isopropylsubstituierten (Dicarbonyl)(cyclopentadienyl)-eisen(I)-Komplexe 1b und 1c übertragen werden. Führt man die Thermolyse unter gleichen Bedingungen durch, so reagieren die Verbindungen 1b und 1c völlig analog zu 1a.

Die analytischen Daten der Produkte sind im Folgenden tabellarisch zusammengefaßt.

Tab. 3.4.1:	¹ H-NMR-Daten von [Cp ⁴	Fe(η ⁵	[;] -P ₅)] (4b) und [{	$\{Cp^4Fe\}_2$	$(\mu - \eta^{4})$	$^{4}-P_{4})] (5$	b)
-------------	---	-------------------	--	----------------	--------------------	-------------------	------------

$[Cp^{4}Fe(\eta^{5}-P_{5})]$ (4b)	$[\{Cp^{4}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})] (5b)$
$\delta = 3.92 \text{ ppm (s, 1H)}$	$\delta = 4.48 \text{ ppm} (s, 2H)$
$\delta = 2.60 \text{ ppm} (2 \text{ sept (überlagert), 4H})$	$\delta = 3.24$ ppm (sept, 4H, ${}^{3}J_{HH} = 6.7$ Hz)
$\delta = 1.46$ ppm (d, 6H, ${}^{3}J_{HH} = 7.1$ Hz)	$\delta = 2.85$ ppm (sept, 4H, ${}^{3}J_{HH} = 7.1$ Hz)
$\delta = 1.32 \text{ ppm} (d, 6H, {}^{3}J_{HH} = 6.7 \text{ Hz})$	$\delta = 1.72 \text{ ppm} (d, 12H, {}^{3}J_{HH} = 7.1 \text{ Hz})$
$\delta = 1.24$ ppm (d, 6H, ${}^{3}J_{HH} = 7.1$ Hz)	$\delta = 1.46$ ppm (d, 12H, ${}^{3}J_{HH} = 7.1$ Hz)
$\delta = 0.94$ ppm (d, 6H, ${}^{3}J_{HH} = 6.7$ Hz)	$\delta = 1.28$ ppm (d, 12H, ³ J _{HH} = 6.7 Hz)
	$\delta = 1.12 \text{ ppm} (d, 12\text{H}, {}^{3}\text{J}_{\text{HH}} = 6.7 \text{ Hz})$

Für das Cyclopentaphosphaferrocen $[Cp^5Fe(\eta^5-P_5)]$ (4c) findet man wie beim P₄-Butterflymolekül 3c im Protonenresonanzspektrum bei Raumtemperatur ein breites Signal für die 30 Methylprotonen bei $\delta = 1.30$ ppm. Die fünf Methinprotonen von 4c treten aber bereits bei RT als gut konturiertes Septett bei $\delta = 2.67$ ppm hervor. Anders als bei **3a** kann man aber bei $[Cp^5Fe(\eta^5-P_5)]$ (**4c**) bei 0°C eine Aufspaltung des breiten Signals in zwei intensitätsgleiche Dubletts bei $\delta = 1.84$ ppm und $\delta = 0.76$ ppm erkennen, die über eine ³J_{HH}-Kopplung von 7.2 Hz mit dem Septett bei $\delta = 2.67$ ppm korrelieren. Erhitzt man die Probe auf 70°C, so fallen diese beiden Dubletts zu einem scharfen Singulett bei $\delta = 1.31$ ppm zusammen.

Bei tiefer Temperatur können also metallnahe und metallferne Methylprotonen unterschieden werden, hohe Temperaturen begünstigen hingegen eine freie Rotation dieser Gruppen und die daraus resultierende Ununterscheidbarkeit.

Vom *pseudo*-Tripeldeckerkomplex [{ Cp^5Fe }₂(μ - $\eta^{4:4}$ - P_4)] (**5c**) konnten hingegen sowohl bei hohen als auch bei tiefen Temperatur lediglich stark verbreiterte, nicht interpretationsfähige ¹H-NMR-Signale erhalten werden.

Tab. 3.4.2: ³¹P-NMR-Daten von $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) und $[\{Cp^{R}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})]$ (5)

$[Cp^{4}Fe(\eta^{5}-P_{5})]$ (4b)	$\delta = 161.2 \text{ ppm} (s)$
$[Cp^{5}Fe(\eta^{5}-P_{5})]$ (4c)	$\delta = 169.8 \text{ ppm} (s)$
$[\{Cp^{4}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})] (\mathbf{5b})$	$\delta = 101.5 \text{ ppm} (s, \text{ vbr})$
$[{Cp^{5}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (5c)	$\delta = 98.3 \text{ ppm} (s, \text{vbr})$

Tab. 3.4.3: EI-Massenspektren von $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) (EI: 70 eV, QT = 180°C, AT = 135°C)

Fragment	m/z [amu] (rel. Intensität [%])		
	$4b (Cp^{R} = Cp^{4})$	$4\mathbf{c} \ (\mathbf{Cp}^{\mathbf{R}} = \mathbf{Cp}^5)$	
$[Cp^{R}FeP_{5}]^{+}$	443.9 (100)	486.8 (100)	
$[Cp^{R}FeP_{3}]^{+}$	382.0 (20.4)	381.2 (66.4)	
$[Cp^R]^+$		275.2 (41.9)	
$[Cp^1]^+$		161.2 (58.8)	

Von beiden isopropylsubstituierten *pseudo*-Tripeldeckerkomplexen [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ - P_{4})] (**5b**, **5c**) konnten selbst unter Anwendung verschiedener Meßverfahren und -bedingungen keine aussagekräftigen Massenspektren erhalten werden.

3.5. Strukturvorschläge für $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) und $[\{Cp^{R}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})]$ (5)

Basierend auf den in den vorangegangenen Abschnitten diskutierten Parallelen der Eigenschaften und der analytischen Daten mit literaturbekannten Verbindungen können für die Komplexe $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) und $[\{Cp^{R}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})]$ (5) die folgenden Strukturvorschläge hergeleitet werden:

Die Verbindungen **4** gehören zur Substanzklasse der Pentaphosphaferrocene, sind also Sandwichverbindungen, deren zentrale Eisenatome von einem Cyclopentadienyl- und einem Pentaphospholyldeck eingeschlossen sind.

Die Moleküle **5** sollten die gleiche Struktur wie der bereits von *Schwarz* kristallstrukturanalytisch untersuchte *pseudo*-Tripeldeckerkomplex [{Cp"Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**K**) mit einer P₄-Kette in cisoider Anordnung als "Mitteldeck" besitzen.

Abb. 3.5: Strukturvorschläge für $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) und $[\{Cp^{R}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})]$ (5)

Diese Zusammensetzung konnte durch korrekte Elementaranalysen bestätigt werden. Für die Cyclopentaphosphaferrocene [Cp'''Fe(η^5 -P₅)] (**4a**) und [Cp⁴Fe(η^5 -P₅)] (**4b**) sowie für den *pseudo*-Tripeldeckerkomplex [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**) konnten Röntgenstrukturanalysen zum endgültigen Strukturbeweis angefertigt werden.

3.6. Röntgenstrukturanalysen von
$$[Cp^{R}Fe(\eta^{5}-P_{5})]$$
 (4) und $[\{Cp^{\prime\prime\prime}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})]$ (5a)

3.6.1. (Cyclopentadienyl)(pentaphospholyl)eisen(II)-Komplexe

Zur Röntgenstrukturanalyse geeignete Einkristalle von $[Cp'''Fe(\eta^5-P_5)]$ (**4a**) und $[Cp^4Fe(\eta^5-P_5)]$ (**4b**) konnten durch Abdiffusion des Lösungsmittels aus einer Hexanlösung von 4a bzw. durch Abkühlen einer gesättigten Pentanlösung von 4b von Raumtemperatur auf 0 °C erhalten werden. Die nachfolgenden Abbildungen zeigen die Molekülstrukturen von **4a** und **4b** im Kristall mit Numerierung der zentralen Baueinheiten. Ausgewählte Bindungsabstände und -winkel sowie beste Ebenen und Winkel zwischen diesen Ebenen sind einander in der nachfolgenden *Tabelle 3.6.1* vergleichend gegenüber gestellt.

Abb. 3.6.1: Molekülstrukturen von $[Cp''Fe(\eta^5-P_5)]$ (**4a**) (links) und $[Cp^4Fe(\eta^5-P_5)]$ (**4b**) (rechts) im Kristall

Die Kristallstrukturanalysen weisen [Cp^{'''}Fe(η^5 -P₅)] (**4a**) und [Cp⁴Fe(η^5 -P₅)] (**4b**) als Derivate des bereits von *Brück* charakterisierten Pentaphosphaferrocens [Cp*'Fe(η^5 -P₅)] (**4d**) ^[8,12] aus. In der Elementarzelle von [Cp^{'''}Fe(η^5 -P₅)] (**4a**) finden sich zwei Moleküle, von denen eines bezüglich der P₅-Einheit rotationsfehlgeordnet ist.

Tah 361.	Ausgewählte Strukturdaten der Komplexe [$Cn^{R}Fe(n^{5}-P_{\epsilon})$] (4)
1 a. J. J. J. I.	Ausgewanne Strukturdaten der Kompiexe [Cp 16(1 -15)] (4)

	$[Cp'''Fe(\eta^{5}-P_{5})]$ (4a)	$[Cp^{4}Fe(\eta^{5}-P_{5})]$ (4b)	$[Cp*'Fe(\eta^{5}-P_{5})]$ (4d)
P(1) - P(2)	2.069(6)	2.0905(11)	2.089(3)
P(2) – P(3)	2.082(6)	2.1110(11)	2.088(3)
P(3) - P(4)	2.076(8)	2.1140(12)	2.097(3)
P(4) – P(5)	2.094(10)	2.1116(12)	2.097(3)
P(5) - P(1)	2.075(9)	2.1071(11)	2.096(3)
Fe – P(1)	2.405(4)	2.4015(7)	2.350(2)
Fe – P(2)	2.410(4)	2.3769(6)	2.346(2)
Fe – P(3)	2.398(3)	2.3718(7)	2.347(2)
Fe - P(4)	2.388(4)	2.3657(6)	2.345(2)
Fe – P(5)	2.380(3)	2.3838(7)	2.344(2)
Fe – P _{5, centr.}	1.580	1.566	1.526
Fe - Cp ^R _{centr.}	1.716	1.724	1.707

•	Augaawählta	Dindungelängen	von [Cn ^R Ea(m	(5 D) (4)	in Å.
•	Ausgewahlte	Bindungslängen	von [Cp Fe(r	$[-P_5]$ (4)	ın A:

• Ausgewählte Bindungswinkel von $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) in Grad:

	$[Cp'''Fe(\eta^{5}-P_{5})]$ (4a)	$[Cp^{4}Fe(\eta^{5}-P_{5})]$ (4b)	$[Cp*'Fe(\eta^{5}-P_{5})]$ (4d)
P(1) - P(2) - P(3)	107.3(3)	108.26(4)	108.2(1)
P(2) - P(3) - P(4)	108.5(3)	107.58(4)	108.1(1)
P(3) - P(4) - P(5)	107.7(2)	108.06(4)	107.9(1)
P(4) - P(5) - P(1)	107.3(2)	107.62(4)	107.5(1)
P(5) - P(1) - P(2)	109.1(3)	108.47(4)	108.3(1)
$\Sigma \left(P_x - P_y - P_z \right)$	539.9	539.99	540.0
C(1) - C(2) - C(3)	105.8(3)	107.71(14)	108.6(5)
C(2) - C(3) - C(4)	111.0(3)	107.5(2)	107.1(5)
C(3) - C(4) - C(5)	105.5(3)	107.3(2)	108.6(5)
C(4) - C(5) - C(1)	111.8(3)	109.9(2)	107.5(5)
C(5) - C(1) - C(2)	105.8(3)	107.5(2)	108.1(5)
$\Sigma \left(C_x - C_y - C_z \right)$	539.9	539.91	539.9

Ebene	Atome	Maxima	ale Abweichu	ng [Å]
		4 a	4 b	4d ^{*)}
E1 (cyclo-P ₅)	P(1) - P(2) - P(3) - P(4) - P(5)	0.0091	0.0064	0.0040
$E2 (Cp^R)$	C(1) - C(2) - C(3) - C(4) - C(5)	0.0137	0.0071	0.0021

• Ebenendefinitionen und maximale Abweichung aus den besten Ebenen:

• Winkel zwischen den besten Ebenen:

E1 / E2	$[Cp'''Fe(\eta^{5}-P_{5})]$ (4a)	$[Cp^{4}Fe(\eta^{5}-P_{5})]$ (4b)	$[Cp*'Fe(\eta^{5}-P_{5})]$ (4d)
Winkel	2°	1.7°	0.3°

Wie im Tetramethylethylderivat **4d** sind jeweils die beiden Decks der Sandwichkomplexe **4a** und **4b** mit Winkelsummen von 539.9° (**4a**) und 539.99° (**4b**) in der *cyclo*-P₅-Einheit bzw. von 539.9° (**4a**) und 539.91° (**4b**) in der *cyclo*-C₅-Einheit planar.

Außerdem stehen in den Verbindungen **4a** und **4b** die *cyclo*-P₅- und die Cyclopentadienylliganden wie in **4d** parallel zueinander, was sich aus den Winkeln, in dem die beiden Fünfringcentroiden das zentrale Eisenatom einschließen, ergibt (178° in **4a**; 178.3° in **4b**). Die durchschnittlichen P-P-Bindungslängen von 2.08 Å (**4a**) bzw. von 2.11 Å (**4b**) stimmen gut mit dem von *Brück* für **4d** ermittelten Wert (2.09 Å) überein. Gleiches gilt für die gemittelten Eisen-Phosphor-Abstände (2.38 Å in **4a** und 4b; 2.35 Å in **4d**).

Vermutlich aufgrund des wachsenden sterischen Anspruchs der Cyclopentadienylliganden nimmt der Abstand des zentralen Eisenatoms zum Centroiden des *cyclo*-P₅-Liganden von $[Cp^*Fe(\eta^5-P_5)]$ (**4d**, 1.53 Å) über $[Cp^4Fe(\eta^5-P_5)]$ (**4b**, 1.57 Å) nach $[Cp''Fe(\eta^5-P_5)]$ (**4a**, 1.58 Å) zu.

Im Vergleich zu den organischen Cp^R-Ringen ist der Metall-Ligand-Abstand zur *cyclo*-P₅-Einheit bei den drei bislang röntgenographisch charakterisierten Pentaphosphaferrocenen **4** deutlich verkürzt. Diese Bindungskontraktion ist höchstwahrscheinlich auf die stärkere Wechselwirkung zwischen dem Zentralatom und den Phosphoratomen zurückzuführen.

Die Newman-Projektionen entlang der Achse, die jeweils die beiden Fünfringcentroiden verbindet (s. *Abb. 3.6.1.2*), zeigt, daß beide Cyclopentaphosphaferrocene mit gemittelten Torsionswinkeln von $\gamma = 8.7^{\circ}$ (**4b**) bzw. von $\gamma = 15.0^{\circ}$ (**4a**) weder eine exakt ekliptische, noch eine gestaffelte Anordnung einnehmen.

^{*)} nachträglich ermittelt

Abb. 3.6.1.2: Newman-Projektion der Liganden von [Cp^{''}Fe(η⁵-P₅)] (4a) und [Cp⁴Fe(η⁵-P₅)]
(4b) entlang der Verbindungsachse der beiden Fünfringcentroiden

Bislang ist es allerdings nicht gelungen, auch vom Pentaisopropylcyclopentadienylderivat $[Cp^5Fe(\eta^5-P_5)]$ (**4c**) zur Röntgenstrukturanalyse geeignete Einkristalle zu erhalten. Für diese Verbindung ist aber aufgrund der sterisch anspruchsvollen Alkylsubstitution nicht nur ein ungewöhnlich großer Deckabstand, sondern wegen der fünf Isopropylgruppen auch eine hohe Molekülsymmetrie zu erwarten. Vermutlich verhindert aber gerade diese Symmetrie eine gute Kristallisation. So konnte Brück vom permethylierten Derivat $[Cp^*Fe(\eta^5-P_5)]$ (**4e**) ebenfalls keine Einkristalle erhalten, erst eine Störung der Molekülsymmetrie durch Verwendung des Tetramethylethylcyclopentadienylliganden führte zum ersten Vertreter der Cyclopentaphosphaferrocene, der röntgenstrukturanalytisch untersucht werden konnte.

3.6.2. Der *pseudo*-Tripeldeckerkomplex [{Cp'''Fe}₂(μ - η ^{4:4}-P₄)] (5a)

Zur Röntgenstrukturanalyse geeignete Einkristalle von $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (**5a**) konnten durch Abdiffusion des Lösungsmittels aus einer Pentanlösung von **5a** erhalten werden. Die nachfolgende Abbildung zeigt die Molekülstruktur von **5a** im Kristall mit Numerierung der zentralen Baueinheit. Ausgewählte Bindungsabstände und -winkel sowie beste Ebenen und Winkel zwischen diesen Ebenen sind in der nachfolgenden *Tabelle 3.6.2* den Daten, die *Schwarz* für das Di-*tert*-butylderivat **K** ermittelt hat ^[6,7], gegenübergestellt.

Abb. 3.6.2: Molekülstruktur von $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (**5a**) im Kristall

Die Röntgenstrukturanalyse von $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (**5a**) zeigt einen symmetrischen *pseudo*-Tripeldeckerkomplex, dessen mittleres "Deck" von einer P₄-Kette in cisoider Anordnung gebildet wird, die ober- und unterhalb von je einem 13VE-{Cp'''Fe}-Fragment überkappt wird.

Tab. 3.6.2:

$[{Cp'''Fe}_2(\mu -$	$\eta^{+} P_4$] (5a)	$[{Cp''Fe}_2(\mu)]$	$-\eta^{++}-P_4)$] (K)
P(1) – P(2)	2.0877(13)	P(1) - P(2)	2.081(2)
P(1') – P(2')	2.0877(13)	P(3) – P(4)	2.094(2)
P(2) – (2')	2.368(2)	P(2) – (3)	2.385(2)
P(1) P(1')	3.552	P(1) P(4)	3.569
Fe(1) – Fe(2)	2.6430(8)	Fe(1) - Fe(2)	2.6159(7)
Fe(1) - P(1)	2.2649(8)	Fe(1) - P(1)	2.2614(9)
Fe(1) - P(1')	2.2649(8)	Fe(1) - P(2)	2.3490(11)
Fe(1) - P(2)	2.3337(9)	Fe(1) - P(3)	2.3173(12)
Fe(1) – P(2')	2.3337(9)	Fe(1) - P(4)	2.2700(12)
Fe(2) - P(1)	2.2678(8)	Fe(2) - P(1)	2.2765(12)
Fe(2) – P(1')	2.2678(8)	Fe(2) – P(2)	2.3263(13)
Fe(2) – P(2)	2.3346(9)	Fe(2) – P(3)	2.3341(10)
Fe(2) – P(2')	2.3346(9)	Fe(2) – P(4)	2.2508(9)
$Fe(1) - Cp'''_{centr.}$	1.741	$Fe(1) - Cp''_{centr.}$	1.732
Fe(2) – Cp''' _{centr.}	1.741	Fe(2) – Cp" _{centr.}	1.730
$Fe(1) - P_{4, centr.}$	1.417	$Fe(1) - P_{4, centr.}$	1.409
$Fe(2) - P_{4, centr.}$	1.420	$Fe(2) - P_{4, centr.}$	1.404

•	Ausgewählte Bindungslängen von $[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (5a, K) in Å:

Ausgewählte Strukturdaten der Komplexe [$\{Cp^{R}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})$] (**5a**, **K**)

• Ausgewählte Bindungswinkel von $[{Cp}^{R}Fe]_{2}(\mu-\eta^{4:4}-P_{4})]$ (5a, K) in Grad:

$[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (5a)		$[\{Cp''Fe\}_2(\mu-\eta^{4:4}-P_4)](\mathbf{K})$	
P(1) - P(2) - P(2')	106.48(3)	P(1) - P(2) - P(3)	106.37(5)
P(1') - P(2') - P(2)	106.48(3)	P(2) - P(3) - P(4)	106.54(5)
$Cp'''_{zentr.} - Fe(1) - Fe(2)$	167.9	$Cp''_{zentr.} - Fe(1) - Fe(2)$	166.9 ^{*)}
$Cp'''_{zentr.} - Fe(2) - Fe(1)$	167.1	$Cp''_{zentr.} - Fe(2) - Fe(1)$	166.9

^{*)} nachträglich ermittelt

Ebene	Atome	Maximale Abweichung [Å]
E1	P(1) - P(1') - P(2) - P(2')	
E2 (Cp''' an Fe(1))	C(1) - C(1') - C(2) - C(2') - C(3)	0.0059
E3 (Cp''' an Fe(2))	C(4) - C(4') - C(5) - C(5') - C(6)	0.0063

• Ebenendefinitionen und maximale Abweichung aus den besten Ebenen von **5a**:

• Winkel zwischen den besten Ebenen von **5a**:

Ebenen	E1 / E2	E1 / E3	E2/ E3
Winkel	12.3°	13.2°	25.5°

Gemäß den Zählregeln nach Wade sollte **5a** mit (n + 1) = 7 GEP ^[30] ein *closo*-Polyeder sein. Gegen ein oktaedrisches Grundgerüst spricht aber der Abstand der beiden Phosphoratome P(1) und P(1'), der mit 3.55 Å eindeutig im nichtbindenden Bereich liegt. Der Abstand zwischen P(1) und P(2) – bzw. zwischen P(1') und P(2') – ist mit 2.09 Å wesentlich kürzer als der Abstand zwischen P(2) und P(2'), der 2.37 Å beträgt. Beide sind jedoch noch deutlich kleiner als die 2.46 Å im Ginsberg-Komplex [{(Ph_3P_2ClRh }(η^2-P_4)] (**R**) ^[34] und damit eindeutig im bindenden Bereich. Den beiden kürzeren Bindungen kann dabei ein Doppelbindungscharakter zugeschrieben werden. Die P4-Einheit hat also eine trapezoide Form entspricht formal dem isolobalen cis-Butadiendiyl-Fragment. und Die Größenordnungen der P-P-Bindungslängen in $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (5a) stimmen gut mit den Daten, die Schwarz für den unsymmetrischen Komplex [{Cp''Fe}₂(μ - $\eta^{4:4}$ - P_4)] (**K**) ermittelt hat ^[6,7], überein (vgl. *Tabelle 3.6.2*).

Der Abstand von 2.64 Å zwischen den beiden Eisenatomen in **5a** liegt im bindenden Bereich und stimmt gut mit der Bindungslänge der beiden Metallzentren in K (d(Fe-Fe) = 2.62 Å) überein. Eine solche Eisen-Eisen-Einfachbindung ergibt sich bereits formal aus der 18 VE-Regel: Die beiden 13 VE-{Cp^RFe}-Fragmente koordinieren den P₄-Liganden jeweils η^4 -artig. Erst durch eine Einfachbindung zwischen beiden Metallatomen erreichen diese die günstige 18 VE-Konfiguration.

Der Abstand der Eisenatome zu den η^5 -koordinierten Fünfringcentroiden liegt in **5a** mit jeweils 1.741 Å im typischen Bereich. So findet *Schwarz* beim Di-*tert*-butylderivat **K** Cp"-Fe-Abstände von 1.732 bzw. 1.730 Å^[6,7].

Die beiden besten Ebenen der fünf Ringkohlenstoffatome der beiden Cp^{'''}-Liganden stehen in einem Winkel von 25.5°, der im gleichen Bereich wie beim Di-*tert*-butylcyclopentadienyl-derivat **K** (21.1°) liegt.

Ein Winkel von 137.4°, in dem die beiden Eisenatome das imaginäre Zentrum der P_4 -Kette einschließen, spricht ebenso gegen eine Betrachtung als klassischer Tripeldeckerkomplex, wie die Tatsache, daß das Mitteldeck nicht ringförmig ist, sondern als P_4 -Kette vorliegt.

Allerdings veranschaulicht die Bezeichnung "*pseudo*-Tripeldeckerkomplex" die räumlichen Gegebenheiten von [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**) sehr gut.

4. Decarbonylierungsprodukte von [{ $Cp^{R}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ - P_{4})] (3)

Der im folgenden Abschnitt beschriebene Versuch zur thermischen Decarbonylierung von 3 wird exemplarisch für [{Cp'''(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (**3a**) diskutiert.

Die beiden isopropylsubstituierten Derivate **3b** und **3c** führen bei analogen Reaktionsbedingungen zum gleichen Produktbild.

4.1. Thermolyse von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3a)

Erhitzt man eine orangerote Lösung von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**) in Toluol langsam zum Rückfluß und verfolgt den Verlauf der Reaktion IR-spektroskopisch, so beobachtet man eine stetige Abnahme der Carbonylbanden von 3a, ohne daß neue Banden detektiert werden können. Nach eintägiger Thermolyse ist die vollständige Decarbonylierung - erkennbar am Fehlen jeglicher CO-Banden im IR-Spektrum - erreicht.

Auch die ³¹P-NMR-spektroskopische Reaktionskontrolle bestätigt die Beobachtung, daß bei der Thermolyse von [{Cp'''(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (**3a**) keine weiteren carbonylgruppenhaltigen Verbindungen gebildet werden. Die beiden für **3a** charakteristischen Tripletts (vgl. *Tabelle 2.2.2*) verschwinden zugunsten des Singuletts bei $\delta = 165.6$ ppm, das von [Cp'''Fe(η^5 -P₅)] (**4a**) herrührt, und eines breiten Signals bei $\delta \approx 91.0$ ppm, das [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**) zugeordnet werden kann (vgl. vorangegangenes Kapitel).

Da bei der Thermolyse von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**) keine weiteren CO-haltigen Verbindungen entstehen, kann die vollständige Decarbonylierung von **3a** durch Verwendung von Dekalin als Lösungsmittel beschleunigt werden.

Die säulenchromatographische Aufarbeitung der beiden bei der Decarbonylierung von [{Cp'''(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (**3a**) entstehenden Thermolyseprodukte [Cp'''Fe(η^{5} -P₅)] (**4a**) und [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**) an Kieselgel sowie deren Analytik und Charakterisierung wurde bereits zuvor beschrieben.

Exkurs: Läßt sich $[Cp'''Fe(\eta^5-P_5)]$ (4a) aus $[\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_4)]$ (5a) generieren?

In dem *pseudo*-Tripeldeckerkomplex [{Cp"'Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**) sind die Bausteine, die zum formalen Aufbau von [Cp"'Fe(η^{5} -P₅)] (**4a**) benötigt werden – ein {Cp"'Fe}-Halbsandwichfragment und ein P_n-Ligand - bereits vorhanden. Lediglich der Phosphoranteil in 5a müßte erhöht werden, um formal zum Pentaphosphaferrocen **4a** zu gelangen.

Erhitzt man daher [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**) mit dem sechsfachen Überschuß an weißem Phosphor in Dekalin zum Rückfluß und verfolgt den Verlauf der Reaktion ³¹P-NMRspektroskopisch, so kann man bereits nach einstündiger Reaktion erkennen, daß neben dem breiten Signal von **5a** und dem Singulett des weißen Phosphors ($\delta = -520$ ppm) das für [Cp'''Fe(η^5 -P₅)] (**4a**) charakteristische Signal auftritt. Nach etwa zehnstündiger Reaktion am Rückfluß läuft die Reaktion nicht mehr weiter, obwohl NMR-spektroskopisch sowohl noch überschüssiger weißer Phosphor als auch noch Reste von [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**) nachgewiesen werden können.

Da sich das Reaktionsgemisch aber säulenchromatographisch trennen läßt, kann die auf diese Weise zurückgewonnene Verbindung **5a** wiederum einer Cothermolyse mit überschüssigem weißen Phosphor zugeführt werden. Wiederholt man diesen Vorgang mehrmals, läßt sich das Pentaphosphaferrocen [Cp'''Fe(η^5 -P₅)] (**4a**) in einer Ausbeute von ca. 60 % bezogen auf **5a** anreichern.

$$[\{Cp'''Fe\}_{2}(\mu-\eta^{4:4} - P_{4})] \xrightarrow{P_{4}} [Cp'''Fe(\eta^{5} - P_{5})]$$

5a
4a

Für die Bildung eines ebenfalls denkbaren 31VE-Tripeldeckers mit einem cyclo-P5-Liganden im Mitteldeck, der formal durch Insertion eines Phosphoratoms in die offene Kante der cisoiden P₄-Kette von 5a entstehen könnte (s. Abbildung), gab es keine Hinweise. Allerdings wäre ein solcher Komplex aufgrund seiner ungeraden Elektronenzahl paramagnetisch und könnte in den ¹H- und ³¹P-NMR-Spektren breite bzw. nicht detektierbare Signale verursachen. Es könnte also durchaus - intermediär oder als zweites Produkt neben $[Cp'''Fe(\eta^5-P_5)]$ (4a) - auch ein 31VE-Tripeldeckerkomplex $[{Cp'''Fe}(\mu-\eta^{5:5}-P_5){FeCp'''}]$ mit P₅-Mitteldeck entstanden sein, der spektroskopisch nicht nachgewiesen werden konnte.

Bei der säulenchromatographischen Aufarbeitung des Reaktionsansatzes konnten aber auch mit sehr polaren Lösungsmitteln (Diethylether oder THF) außer den beiden Edukten – dem weißen Phosphor sowie dem *pseudo*-Tripeldeckerkomplex 5a – und dem Produkt 4a keine weiteren Fraktionen eluiert werden.

4.2. Photolyse von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3a)

Bestrahlt man eine orangerote Lösung von [{Cp'''(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (**3a**) in Toluol oder THF bis zur vollständigen Decarbonylierung, die am Fehlen jeglicher CO-Banden im IR-Spektrum erkannt werden kann und nach etwa zwei Stunden erreicht ist, so erhält man die beiden Produkte [Cp'''Fe(η^{5} -P₅)] (**4a**) und [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**), die auch bei der Thermolyse von **3a** entstehen.

Allerdings kann man bei der Photolyse von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**) - im Gegensatz zur Thermolyse - ein carbonylgruppenhaltiges Zwischenprodukt isolieren.

Die IR-spektroskopische Reaktionskontrolle zeigt, daß nach 20-minütiger Bestrahlung die beiden Carbonylbanden von **3a** zugunsten zweier neuer Banden im Bereich terminal koordinierter CO-Liganden bei $\overline{v} = 2016.0$ und 1974.0 cm⁻¹ verschwunden sind. Im ³¹P-NMR-Spektrum der Rohlösung erkennt man neben einem Signalsatz aus zwei dublettierten Tripletts bei $\delta = 115.6$ und -6.5 ppm und einem Doppeldublett bei $\delta = 83.1$ ppm das breite Signal von **5a** bei $\delta \approx 91$ ppm in geringer Intensität.

Zusätzlich kann anhand eines Singuletts bei $\delta = -520$ ppm weißer Phosphor nachgewiesen werden, der wahrscheinlich durch die photochemisch induzierte Abspaltung der beiden {Cp''(OC)₂Fe}-Fragmente aus **3a** zurückgebildet wird.

Das Reaktionsgemisch kann säulenchromatograpisch an Kieselgel aufgearbeitet werden. Mit einem Petrolether/Toluol = 5:2-Gemisch eluiert man nach einem gelben Vorlauf an weißem Phosphor geringe Mengen einer rotvioletten Fraktion von [{Cp'''Fe}₂(μ - η ^{4:4}-P₄)] (**5a**), die ³¹P-NMR-spektroskopisch eindeutig nachgewiesen werden kann. Mit einem 5:3-Gemisch der gleichen Lösungsmittel erhält man eine grau-grüne Lösung, die im ³¹P-NMR-Spektrum den Signalsatz aus zwei dublettierten Tripletts und einem Doppeldublett verursacht.

Die ³¹P-NMR- und die IR-Daten dieser neuen Verbindung **6a** stimmen gut mit den Werten überein, die *Schwarz* für [{Cp"Fe}(μ - η ^{4:1}-P₄){Fe(CO)₂Cp"}] (**I**) findet ^[6].

4.2.1 Eigenschaften und IR-Spektroskopie

 $[{Cp'''Fe}(\mu-\eta^{4:1}-P_4){Fe(CO)_2Cp'''}]$ (**6a**) fällt nach dem Entfernen des Lösungsmittels als dunkelgrünes mikrokristallines Pulver an, das sich in unpolaren Lösungsmitteln wie n-Hexan kaum und in polaren Lösungsmitteln wie Toluol gut löst. Verbindung **6a** kann kurzzeitig an Luft gehandhabt und unter Schutzgas mehrere Wochen ohne sichtbare Zeichen der Zersetzung gelagert werden.

Im IR-Spektrum einer Toluollösung von **6a** erkennt man zwei Banden im für terminal koordinierte Liganden charakteristischen Bereich bei $\overline{v} = 2016.0 \text{ cm}^{-1} \text{ und } \overline{v} = 1974.0 \text{ cm}^{-1}$.

Verbindung	\overline{v} [cm ⁻¹]	Lösungsmittel	Literatur
$[{Cp"Fe}(\mu-\eta^{4:1}-P_4){Fe(CO)_2Cp"}] (I)$	2022.0 (s)	Dichlormethan	6, 7
	1978.0 (s)		
$[{Cp'''Fe}(\mu-\eta^{4:1}-P_4){Fe(CO)_2Cp'''}] (6a)$	2016.0 (vs)	Toluol	
	1974.0 (vs)		

Tab. 4.2.1: IR-Daten von $[{Cp}^{R}Fe{(\mu-\eta^{4:1}-P_{4})}{Fe(CO)_{2}Cp}^{R}]$ (6a, I)

4.2.2 NMR-Spektroskopie

Im Protonenresonanzspektrum von **6a** erkennt man zwei typische Signalsätze für Tri-*tert*butylcyclopentadienylliganden aus jeweils drei Singuletts, die in einem Integralverhältnis von 2:18:9 zueinander stehen.

Im ³¹P-NMR-Spektrum von [{Cp''Fe}(μ - $\eta^{4:1}$ -P₄){Fe(CO)₂Cp'''}] (**6a**) detektiert man zwei dublettierte Tripletts bei δ = 115.6 ppm und δ = - 6.5 ppm sowie ein Doppeldublett bei δ = 81.3 ppm, deren Integrale im Verhältnis 1:1:2 zueinander stehen. Die Lage dieser Signale stimmt gut mit den Werten überein, die *Schwarz* für [{Cp''Fe}(μ - $\eta^{4:1}$ -P₄){Fe(CO)₂Cp''}] (**I**), einem Komplex mit einem vierfach überkappten und einfach end-on koordinierten P₄-Ring, dokumentiert ^[6,7].

Nachfolgend sind die analytischen Daten von $[{Cp'''Fe}(\mu-\eta^{4:1}-P_4){Fe(CO)_2Cp'''}]$ (6a) denen des Di-*tert*-butylderivates I vergleichend gegenübergestellt.

	$ \begin{array}{c} Cp''' \\ Fe \\ P_A \\ P_B \\ P_B \\ P_B \\ P_B \\ Fe(CO)_2Cp''' \\ 6a \end{array} $	$P \xrightarrow{Fe}_{P} P \xrightarrow{Fe(CO)_2Cp''}_{I}$
¹ H-NMR:	5.54 (s, 2 Ring-H)	5.36 (m, 2H)
C ₆ D ₆ ; 298 K; δ in ppm	5.05(s, 2 Ring-H)	5.33 (s, br, 1H)
(6a: 400.14 MHz; I: 200.14 MHz)	1.66 (s, 18H)	4.61 (m, 1H)
	1.52 (s, 9H)	4.21 (m, 2H)
	1.33 (s, 9H)	1.50 (s, 18H)
	1.17 (s, 18H)	1.00 (s, 18H)
³¹ P-NMR:	115.6 (dt, 1P, P _A)	128.3 (m, 1P)
C ₆ D ₆ ; 298 K; δ in ppm	81.3 (dd, 2P, P _B)	101.1 (m, 2P)
(6a: 161.97 MHz; I: 81.02 MHz)	- 6.5 (dt, 1P, P _M)	- 3.0 (m, 1P)

Tab. 4.2.2: NMR-spektroskopische Daten von [{ $Cp^{R}Fe$ }(μ - $\eta^{4:1}$ - P_{4}){ $Fe(CO)_{2}Cp^{R}$ }] (**6a**, **I**)

Die Signale des ³¹P-NMR-[AB₂M]-Spinsystems von **6a** lassen sich wie folgt zuordnen: Die beiden mit P_B bezeichneten Kerne sind magnetisch äquivalent und werden aufgrund einer ¹J_{PP}-Kopplung mit P_A und P_M zum Doppeldublett aufgespalten. Die beiden Kerne P_A und P_M sind jeweils über eine ¹J_{PP}-Kopplung mit den beiden Kerne P_B verknüpft und treten deshalb als Triplett hervor. Eine zusätzliche ²J_{PP}-Kopplung zwischen P_A und P_M verursacht die Feinaufspaltung zum dublettierten Triplett.

Die Tatsache, daß für $[{Cp'''Fe}(\mu-\eta^{4:1}-P_4){Fe(CO)_2Cp'''}]$ (**6a**) ein einfacheres Aufspaltungsmuster als für **I** gefunden wird, deutet entweder auf unterschiedliche Qualitäten der Auflösung der Spektren hin, oder kann auf eine höhere Symmetrie von **6a** zurückgeführt werden.

4.2.3. Strukturvorschlag für [{Cp'''Fe}(μ - $\eta^{4:1}$ -P₄){Fe(CO)₂Cp'''}] (6a)

Wegen der guten Übereinstimmung der analytischen Daten von **6a** mit den Werten, die *Schwarz* für das kristallographisch abgesicherte Di-*tert*-butylderivat $[{Cp''Fe}(\mu-\eta^{4:1}-P_4){Fe(CO)_2Cp''}]$ (I) beschreibt ^[6,7], darf für 6a die gleiche Struktur angenommen werden. Bei $[{Cp'''Fe}(\mu-\eta^{4:1}-P_4){Fe(CO)_2Cp'''}]$ (**6a**) handelt es sich also formal um ein komplexchemisch stabilisiertes Tetraphosphaanalogon eines protonierten Cyclobutadiens, wobei das Proton durch ein isolobales 17VE-{Cp'''(OC)_2Fe}-Fragment ersetzt ist.

Abb. 4.2.3: Strukturvorschlag für $[{Cp'''Fe}(\mu-\eta^{4:1}-P_4){Fe(CO)_2Cp'''}]$ (6a)

Zwar konnte für die Verbindung **6a** bisher kein aussagekräftiges Massenspektrum erhalten werden, aber eine korrekte Elementaranalyse bestätigt diese Zusammensetzung.

Bei Anwendung der *Wade*-Elektronenzählregeln ^[30] auf [{Cp'''Fe}(μ - $\eta^{4:1}$ -P₄){Fe(CO)₂Cp'''}] (**6a**) ist zu beachten, daß das 17VE-{Cp'''(OC)₂Fe}-Fragment formal durch ein isolobales Proton ersetzt werden muß. Die so erhaltene P-H-Bindung erhöht die Elektronenzahl des Clusters um 1, so daß man (n + 2) = 7 GEP erhält. Zentrales Bauelement von **6a** ist also ein [FeP₄]-*nido*-Oktaeder (= tetragonale Pyramide).

Alternativ ist eine ionische Betrachtungsweise möglich: Ist das Eisenatom des 13VE-{Cp'''Fe}-Fragmentes formal negativ und das Phosphoratom, an das das 17VE-{Cp'''(OC)₂Fe}-Fragment koordiniert ist, formal positiv geladen, so erfüllt das η^4 -verbrückende Eisenatom die 18VE-Regel.

Exkurs: Decarbonylierung von [{Cp'''Fe}(μ - $\eta^{4:1}$ -P₄){Fe(CO)₂Cp'''}] (6a)

Wie der vorangegangene Abschnitt gezeigt hat, ist $[{Cp'''Fe}(\mu-\eta^{4:1}-P_4){Fe(CO)_2Cp'''}]$ (**6a**) ein Zwischenprodukt bei der photochemisch induzierten vollständigen Decarbonylierung von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**), die zu $[Cp'''Fe(\eta^5-P_5)]$ (**4a**) und $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (**5a**) führt.

Analoge Beobachtungen kann man bei der Thermolyse von $[{Cp'''Fe}(\mu-\eta^{4:1}-P_4){Fe(CO)_2Cp'''}]$ (**6a**) machen. Erhitzt man eine grau-grüne Lösung von 6a in Toluol zum Rückfluß und verfolgt den Verlauf der Reaktion IR-spektroskopisch, so beobachtet man eine stetige Abnahme der beiden Carbonylbanden von **6a**, ohne daß neue Banden anwachsen. Die Thermolyse von **6a** führt also ausschließlich zu carbonylgruppenfreien Verbindungen.

Die Reaktionskontrolle mittels ³¹P-NMR-Spektroskopie bestätigt diesen Befund. Während die Signale von **6a** mit fortschreitender Reaktion immer weiter an Intensität verlieren, wachsen das für $[Cp'''Fe(\eta^5-P_5)]$ (**4a**) charakteristische Singulett und das breite Signal von **5a** kontinuierlich an.

	Toluol	$[Cp'''Fe(\eta^5 - P_5)]$ (4	a)
$[{Cp^{m}Fe}(\mu-\eta -P_4){Fe}(CO)_2Cp^{m}]$ 6a	110 °C oder h v	- + [{Cp'''Fe} ₂ (μ−η ^{4:4} -P ₄)]	(5a)

5. Orientierender Versuch zur Synthese von $[{Cp^{*'}(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3d)

Erhitzt man eine rotviolette Lösung von $[{Cp^{*'}(OC)_2Fe}_2]$ (1d) $(Cp^{*'} = C_5Me_4Et)$ mit äquimolaren Mengen an frisch getrocknetem weißen Phosphor zum Rückfluß und kontrolliert den Verlauf der Reaktion ständig mittels IR-Spektroskopie, so kann man auch nach zwölfstündiger Cothermolyse lediglich die Carbonylbanden des Eduktes 1d detektieren. Daraufhin wird die siedende Reaktionslösung solange bestrahlt, bis nach drei Stunden an deren Stelle zwei neue Banden im für terminal koordinierte Carbonylliganden charakteristischen Bereich auftreten.

Im ³¹P-NMR-Spektrum der Rohlösung erkennt man dann drei Produktsignale: Neben einem Singulett bei $\delta = 152.8$ ppm findet man ein breites Signal bei $\delta \approx 100$ ppm sowie zwei Tripletts mit geringer Intensität ($\delta = -44.9$ und -331 ppm), die in einem Integralverhältnis von 1:1 stehen und über eine ¹J_{PP}-Kopplungskonstante von -184.1 Hz miteinander korrelieren.

Das nach dem Entfernen des Lösungsmittels erhaltene dunkelbraune Rohprodukt kann bei tiefer Temperatur säulenchromatographisch an Kieselgel aufgearbeitet werden. Mit unpolaren Lösungsmittelgemischen erhält man eine braune Lösung von $[{Cp^*/Fe}_2(\mu-\eta^{4:4}-P_4)]$ (5d), nachdem eine grüne Fraktion von $[Cp^*/Fe(\eta^5-P_5)]$ (4d) abgetrennt wurde. Mit einem Petrolether-Toluol = 1:1-Gemisch eluiert man schließlich eine gelbe Lösung von $[{Cp^*/(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3d). Da alle drei Fraktionen nach dem Entfernen der Lösungsmittel nur geringe Produktmengen liefern, die teilweise noch leicht verunreinigt sind, können die Verbindungen lediglich durch Vergleich der ³¹P-NMR-Daten mit literaturbekannten Werten identifiziert werden (vgl. *Tabellen 2.2.2, 3.2.2 und 3.4.2*).

[{Cp*'(OC) ₂ Fe} ₂]	(1d)	Toluol	$[Cp*'Fe (\eta^{5}-P_{5})]$ (4d)+	
+			$[{Cp*'Fe}_2(\mu-\eta^{4:4}-P_4)]$ (5d)	+
P ₄		Δ, Πν	$[{Cp^{*'}(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$	(3d)

Im Gegensatz zur Cothermolyse sterisch aufwendig alkylsubstituierter Eisendimerer des Typs $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (**1a** – **1c**) in Gegenwart äquimolarer Mengen an weißem Phosphor führt die analoge Reaktion des sterisch weniger anspruchsvollen Tetramethylethylderivates **1d** also nicht selektiv zu Komplexen mit einem P₄-Butterflygerüst.

6. Mechanistische Aspekte

Eine selektive Synthese von Komplexen mit einem Tetraphosphabicyclobutangerüst, das durch zwei 17 VE-Fragmente in exo/exo-Konfiguration stabilisiert ist, gelingt nur mit sterisch aufwendig alkylsubstituierten Dicarbonylcyclopentadienyleisenverbindungen.

Das Pentaisopropylderivat $[{Cp^5(OC)_2Fe}^{\bullet}]$ (1c) liegt aufgrund des großen Raumbedarfs des Liganden in Lösung radikalisch vor und kann deshalb bereits bei Raumtemperatur mit weißem Phosphor reagieren. Beim Tetraisopropyl- bzw. beim Tri-*tert*-butylderivat 1a bzw. 1b ist wahrscheinlich die formale Eisen-Eisen-Bindung aufgrund einer sterischen Wechselwirkung der Liganden stark genug aufgeweitet, um durch kurzes Erhitzen in Toluol intermediär die zu 1c analogen Radikale zu generieren, die dann ihrerseits eine der sechs P-P-Bindungen des P₄-Tetraeders des weißen Phosphors homolytisch spalten, um schließlich zu den P₄-Butterflymolekülen 3 abzureagieren.

Abb. 6.1: Möglicher Bildungsmechanismus der Tetraphosphabicyclobutanmoleküle 3

Das sterisch weniger anspruchsvolle Tetramethylethyl-Eisendimer **1d** reagiert unter analogen Bedingungen nicht selektiv zum P₄-Butterflykomplex [{ $Cp*'(OC)_2Fe$ }_2(μ - $\eta^{1:1}$ -P₄)] (**3d**).

Da sowohl die thermisch als auch die photochemisch induzierte vollständige Decarbonylierung der P₄-Butterflymoleküle [{ $Cp^{R}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ -P₄)] (**3**) letztlich zu den Pentaphosphaferrocenen [$Cp^{R}Fe(\eta^{5}-P_{5})$] (**4**) führt, kann die bereits von *Schwarz* formulierte Annahme, daß die Tetraphosphabicyclobutane **3** als erste Zwischenstufe bei der Bildung der Cyclopentaphosphanliganden durchlaufen werden, bestätigt werden.

Auch das bei der Photolyse des P₄-Butterflymoleküls **3a** isolierte Zwischenprodukt $[{Cp'''Fe}(\mu-\eta^{4:1}-P_4){Fe(CO)_2Cp'''}]$ **(6a**) reagiert sowohl bei thermischer als auch bei photochemischer Decarbonylierung zum Pentaphosphaferrocen **4a**.

Da sich sogar die *pseudo*-Tripeldeckerkomplexe [{ $Cp^{R}Fe$ }₂($\mu-\eta^{4:4}$ -P₄)] (5), die zusammen mit den Pentaphosphaferrocenen **4** bei der Cothermolyse der Dimere **1** mit weißem Phosphor gebildet werden, unter drastischen Bedingungen und großen P₄-Überschüssen in die Pentaphosphaferrocene **4** überführen lassen, darf angenommen werden, daß auch diese P₄-Moleküle Zwischenstufen auf dem Weg der Bildung des Cyclopentaphosphanliganden sind.

Allerdings konnte auch in dieser Arbeit nicht geklärt werden, woher das zum Aufbau des Cyclopentaphosphanliganden benötigte fünfte Phosphoratom stammt.

Abb. 6.2: Eisenkomplexe mit P₄-Liganden als wahrscheinliche Vorstufen der Cyclopentaphosphaferrocene: Interkonversionsreaktionen am Beispiel der Cp^{'''}-Derivate

7. Reaktionen der P₄-Butterflymoleküle in Gegenwart von Alkinen oder Phosphaalkinen

Basierend auf dem 1982 von *Hoffmann* ^[39] ausführlich vorgestellten Konzept der Isolobal-Analogie läßt sich die große Ähnlichkeit von $(CH)_n$ - und P_n -Fragmenten erklären. Ein bedeutendes Beispiel hierfür findet sich in den 1987 von *Brück* synthetisierten Pentaphosphaferrocenen $[Cp^RFe(\eta^5-P_5)]$ (**O**), deren Cyclopentaphosphanylligand isolobal und isovalenzelektronisch zu den in der metallorganischen Chemie häufig verwendeten Cyclopentadienylliganden ist.

Abb. 7: Isolobale $(CH)_n$ - und P_n -Fragmente

Um die Bandbreite dieses Konzeptes zu verdeutlichen, sollen in diesem Kapitel die Umsetzungen der P₄-Butterflymoleküle [$\{Cp^{R}(OC)_{2}Fe\}_{2}(\mu-\eta^{1:1}-P_{4})$] (3) mit den zum P₂-Molekül isolobalen symmetrischen Alkinen Bisphenylacetylen und 2-Butin beschrieben werden, deren Ziel die Synthese von Clustern war, die sowohl P_n- als auch (CR)_n-Fragmente enthalten.

Anschließend wird in diesem Zusammenhang die Reaktion der Tetraphosphabicyclobutanmoleküle 3 gegenüber *Tert*-butylphosphaalkin ^tBuC≡P beschrieben.

7.1. Umsetzung von [{Cp'''(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (3a) mit Diphenylacetylen

Versetzt man eine orangerote Lösung von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**) in Toluol bei Raumtemperatur mit äquimolaren Mengen einer Toluollösung von Diphenylacetylen und erhitzt das Reaktionsgemisch zum Rückfluß, so können nach zweitägiger Cothermolyse die beiden für **3a** charakteristischen Carbonylbanden (s. *Tabelle 2.1*) im IR-Spektrum der Rohlösung nicht mehr detektiert werden. Statt dessen treten fünf neue Banden im für terminal koordinierte Carbonylliganden typischen Bereich auf.

Das in der nachfolgenden *Abbildung 7.1* dargestellte ³¹P-NMR-Spektrum dieser Rohlösung läßt auf die Bildung mehrerer phosphorhaltiger Verbindungen schließen, wobei das bei $\delta \approx$ 91.0 ppm auftretende breite Signal von geringen Mengen des *pseudo*-Tripeldeckerkomplexes [{Cp'''Fe}₂(µ–η^{4:4}-P₄)] (**5a**) herrührt (s. *Tabelle 3.2.2.2*). Die Bildung dieser Verbindung läßt vermuten, daß Spuren des Eduktes **3a** thermisch decarbonyliert werden, ohne mit (PhC)₂ abzureagieren.

Abb. 7.1: ³¹P-NMR-Spektrum der Rohlösung nach 48-stündiger Cothermolyse von [$\{Cp'''(OC)_2Fe\}_2(\mu-\eta^{1:1}-P_4)$] (3a) mit (PhC)₂ (C₆D₆; 298 K)

Das Reaktionsgemisch kann säulenchromatographisch an Kieselgel aufgearbeitet werden. Man erhält drei Fraktionen, die sich durch ihre ³¹P-NMR-Spektren unterscheiden: Nach einer grün-grauen Lösung, die man mit Petrolether eluiert, erhält man mit einem PE/Toluol = 5:1-Gemisch eine hellbraune Lösung. Mit einem 5:2-Gemisch der gleichen Lösungsmittel eluiert man schließlich eine orangerote Fraktion.

Nach der Säulenchromatographie kann die im Rohspektrum nachgewiesene "Verunreinigung" durch [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**) in keiner der drei Fraktionen nachgewiesen werden. Im Folgenden sollen die analytischen Daten der drei neuen Produkte nacheinander diskutiert und – soweit möglich – Strukturvorschläge erarbeitet werden.

7.1.1. Erste Säulenfraktion: Der Sandwichkomplex $[Cp'''Fe(\eta^5-\{P_3(CPh)_2\})]$ (7a)

7.1.1.1. Eigenschaften und IR-Spektroskopie

Nach Entfernen des Lösungsmittels verbleibt aus der ersten Säulenfraktion ein anthrazitfarbener Feststoff, der sich in unpolaren Lösungsmitteln wie n-Pentan gut und in Toluol sehr gut löst. Verbindung **7a** kann kurzzeitig an Luft gehandhabt und unter Schutzgas mehrere Wochen ohne erkennbare Zeichen der Zersetzung gelagert werden.

Im IR-Spektrum einer Toluollösung von 7a können keine Carbonylliganden nachgewiesen werden.

7.1.1.2. NMR-Spektroskopie

Im Protonenresonanzspektrum 7a findet den für Tri-tertvon man butylcyclopentadienylliganden in unsymmetrischer Umgebung typischen Signalsatz aus drei Singuletts im Alkylgruppenbereich, deren Integrale in einem Verhältnis von 9:9:9 stehen, und ein weiteres Singulett, das den beiden Ringprotonen zugeordnet werden kann (s. Tabelle 7.1.1.2). Im Aromatenbereich treten darüber hinaus zwei Multipletts auf, die von jeweils fünf Protonen stammen. Sowohl deren Aufspaltung als auch die Integrale sind typisch für einfach substituierte Benzolderivate und lassen auf den Einbau eines PhC=CPh-Bausteins ins Produkt schließen.

Im ³¹P-NMR-Spektrum von **7a** erkennt man neben einem Triplett bei δ = -18.5 ppm ein Dublett bei δ = 78.1 ppm. Beide Signale korrelieren über eine ¹J_{PP}-Kopplungskonstante von -412.0 Hz miteinander und stehen in einem Integralverhältnis von 1:2.

	δ [ppm]	Zuordnung
¹ H-NMR	1.18 (s, 9H)	$C(C\underline{H}_3)$, Cp''' -Ligand
(400.14 MHz)	1.28 (s, 9H)	$C(C\underline{H}_3)$, Cp''' -Ligand
	1.36 (s, 9H)	$C(C\underline{H}_3)$, Cp''' -Ligand
	4.26 (s, br, 2H)	Ringprotonen, Cp'"-Ligand
	7.00 (m, 5H)	Ringprotonen, Phenylrest
	7.55 (m, 5H)	Ringprotonen, Phenylrest
³¹ P-NMR	-18.5 (t, 1P, ${}^{1}J_{PP} = -412.0$ Hz)	
(167.97 MHz)	78.1 (d, 2P, ${}^{1}J_{PP} = -412.0 \text{ Hz}$)	

Tab. 7.1.1.2: NMR-spektroskopische Daten von $[Cp'''Fe(\eta^5 - \{P_3(CPh)_2\})]$ (**7a**) (C₆D₆, 293 K)

7.1.1.3. Massenspektrometrie

Mit einer Intensität von 79.3 % tritt bei m/z = 559.7 amu ein Molekülion der Zusammensetzung $[Cp''FeP_3C_2Ph_2]^+$ auf. Bei m/z = 149.1 amu erkennt man ein $[FeP_3]^+$ -Fragmention mit einer relativen Intensität von 40.7 %. Durch Abspaltung beider Phenylringe und eines *tert*-Butylrestes von **7a** erhält man ein Fragment der Zusammensetzung $[Cp''FeP_3C_2]^+$, das den Basispeak des EI-Massenspektrums bildet.

Tab. 7.1.1.3: AusgewählteFragmenteausdemEI-Massenspektrumvon $[Cp'''Fe(\eta^5 - {P_3(CPh)_2})]$ (**Ta**)(EI: 70 eV; QT = 220 °C, AT = 145 °C)

Fragment	m/z [amu]	Relative Intensität [%]
$\left[Cp'''FeP_3C_2Ph_2\right]^+$	559.7	79.3
$[Cp''FeP_3C_2Ph_2]^+$	500.6	15.3
$[Cp''FeP_3C_2]^+$	334.7	100
$[FeP_3]^+$	149.1	40.7
$[^{t}Bu]^{+}$	57.2	18.9

7.1.1.4. Strukturvorschlag für Verbindung 7a

Anhand der NMR-Daten und des Massenspektrums läßt sich ein Strukturvorschlag für Komplex **7a** erarbeiten: Im Produkt müssen ein intakter Cp^{'''}-Ligand, ein {Ph₂C₂}-Fragment und ein P₃-Baustein vorhanden sein. Das Dublett-Triplett-Aufspaltungsmuster des ³¹P-NMR-Spektrums paßt zu einer P₃-Kette, die mit den beiden Kohlenstoffatomen des PhC=CPh-Bausteins einen 1,2,3-Triphospholylliganden bilden kann, der ein {Cp^{'''}Fe}-Fragment zu einem Sandwichkomplex ergänzen könnte. Das im Massenspektrum bei m/z = 559.7 amu detektierte Fragmention entspräche dann dem Molekülion von **7a**. Somit ergibt sich der folgende Strukturvorschlag:

Abb. 7.1.1.4: Strukturvorschlag für $[Cp'''Fe(\eta^{5}-\{P_{3}(CPh)_{2}\})]$ (7a)

Eine korrekte Elementaranalyse kann diese Zusammensetzung zusätzlich bestätigen. Den endgültigen Strukturbeweis liefert schließlich die Röntgenstrukturanalyse, die für $[Cp'''Fe(\eta^5-\{P_3(CPh)_2\})]$ (7a) angefertigt werden konnte.

7.1.1.5. Röntgenstrukturanalyse von $[Cp'''Fe(\eta^5-\{P_3(CPh)_2\})]$ (7a)

Zur Röntgenstrukturanalyse geeignete Einkristalle von $[Cp'''Fe(\eta^5 - \{P_3(CPh)_2\})]$ (7a) konnten durch Abdiffusion des Lösungsmittels aus einer gesättigten Hexanlösung von 7a, die zuvor durch Zentrifugation von Schwebepartikeln befreit wurde, erhalten werden.

Die nachfolgende *Abbildung 7.1.1.5* zeigt die Molekülstruktur von **7a** im Kristall mit der Numerierung der zentralen Baueinheit. Ausgewählte Bindungsabstände und –winkel sowie beste Ebenen und Winkel zwischen diesen Ebenen sind in *Tabelle 7.1.1.5* zusammengestellt. Alle übrigen Strukturdaten, Atomkoordinaten und Strukturfaktoren können dem Anhang entnommen werden.

Abb. 7.1.1.5: Molekülstruktur von $[Cp'''Fe(\eta^5 - \{P_3(CPh)_2\})]$ (7a) im Kristall

Die Röntgenstrukturanalyse zeigt einen Sandwichkomplex, dessen zentrales Eisenatom von einem Tri-*tert*-butylcyclopentadienyl- und einem 1,2,3-Triphospholyl-Liganden, der bislang noch nicht kristallographisch untersucht werden konnte, "eingeschlossen" ist.

•

Tab. 7.1.1.5: Ausgewählte Strukturdaten von $[Cp'''Fe(\eta^5 - \{P_3(CPh)_2\})]$ (7a)

P(1) - P(2)	2.1287(14)	C(6) – C(7)	1.413(5)
P(2) – P(3)	2.1193(15)	C(1) – C(2)	1.459(5)
P(1) – C(7)	1.766(4)	C(2) – C(3)	1.432(5)
P(3) – C(6)	1.783(3)	C(3) – C(4)	1.417(4)
$Fe(1) - \{P_3C_2\}_{centr.}$	1.655	C(4) – C(5)	1.422(3)
$Fe(1) - Cp'''_{centr.}$	1.712	C(1) – C(5)	1.423(5)

Ausgewählte Bindungslängen von $[Cp'''Fe(\eta^5 - \{P_3(CPh)_2\})]$ (7a) in Å:

• Ausgewählte Bindungswinkel von $[Cp'''Fe(\eta^5 - \{P_3(CPh)_2\})]$ (7a) in Grad:

P(1) - P(2) - P(3)	99.04(5)	C(5) - C(1) - C(2)	105.5(3)
P(2) - P(1) - C(7)	99.48(12)	C(1) - C(2) - C(3)	106.7(3)
P(2) - P(3) - C(6)	99.74(13)	C(2) - C(3) - C(4)	110.9(3)
P(3) - C(6) - C(7)	120.1(3)	C(3) - C(4) - C(5)	104.9(3)
P(1) - C(7) - C(6)	121.4(3)	C(4) - C(5) - C(1)	111.9(3)

• Ebenendefinitionen und maximale Abweichungen aus diesen Ebenen:

Ebene	Atome	Maximale Abweichung [Å]
E1 (Cp''')	C(1) - C(2) - C(3) - C(4) - C(5)	0.0092
E2 (P ₃ C ₂)	P(1) - P(2) - P(3) - C(6) - C(7)	0.0185

Winkel zwischen den beiden besten Ebenen:

Ebenen	Winkel
E1 / E2	7.6°

In $[Cp'''Fe(\eta^5-{P_3(CPh)_2})]$ (7a) beträgt der Winkel zwischen den besten Ebenen der beiden Sandwichdecks 7.6° und weicht somit etwas von einer parallelen Anordnung ab. Ein Winkel von 173.5°, in dem die beiden Fünfringcentroiden das zentrale Eisenatom einschließen, stützt die Beschreibung von 7a als leicht gewinkelten Sandwichkomplex.

Da bislang weder für das von *Mathey* in einer aufwendigen mehrstufigen Reaktion synthetisierte Kaliumsalz des zu **7a** analogen Triphospholylliganden ^[40] noch für den von *Baudler* NMR-spektroskopisch nachgewiesenen Grundkörper $[P_3(CH)_2]^-$ ^[41] kristallographische Daten verfügbar sind, können die für **7a** bestimmten Bindungswinkel und -längen lediglich mit berechneten Daten verglichen werden. Aus einer Vielzahl theoretischer Arbeiten ^[42-46], die sich mit 1,2,3-Triphospholylliganden befassen, wurde zum Vergleich mit **7a** die aktuellste von *Schleyer* et al. ausgewählt ^[46].

Der Mittelwert beider P-P-Bindungslängen in **7a** beträgt 2.12 Å und ist geringfügig kürzer, als der von *Schleyer* ^[46] für das $[P_3(CH)_2]^-$ Anion berechnete Wert (2.14 Å) ^[46]. Die durchschnittliche P-P-Bindungslänge im Cyclopentaphosphaferrocen $[Cp'''Fe(\eta^5-P_5)]$ (**4a**) beträgt hingegen nur 2.08 Å (vgl. Kap. 3.6.1).

Die C(6)-C(7)-Bindung in **7a** ist 1.41 Å lang und kann mit C-C-Bindungen von aromatischen Kohlenwasserstoffen, die im Benzol 1.39 Å betragen ^[47], verglichen werden.

Klassische C-C-Einfachbindungen sind mit 1.54 Å deutlich länger, entsprechende Doppelbindungen mit 1.34 Å hingegen wesentlich kürzer ^[47]. Diese Tatsache deutet auf den aromatischen Charakter des 1,2,3-Triphospholyl-Liganden in **7a** hin, der sich bereits formal aus der Isolobalanalogie von P_n - und (CR)_n-Fragmenten ergibt.

Abb. 7.1.1.5.2:1,2,3-Triphospholylliganden als Brücke zwischen den isolobalenCyclopentadienyl- und Cyclopentaphosphanylliganden

Die beiden P-C-Bindungslängen in **7a** stimmen mit durchschnittlich 1.77 Å gut mit dem für das $[P_3(CH)_2]^-$ Anion berechneten Wert (1.76 Å) überein ^[46].

Die beiden C-C-P-Bindungswinkel des 1,2,3-Triphospholylliganden von **7a** entsprechen mit 120.1° bzw. 121.4° nahezu genau dem Idealwinkel für sp²-hybridisierte Kohlenstoffatome.

Der Mittelwert der drei Winkel, die jeweils ein Phosphoratom einschließen, beträgt 99.42° und harmoniert mit dem zu 99.25° berechneten Wert^[46].

Während der Abstand des zentralen Eisenatoms zum Zentrum des Tri-*tert*-butylcyclopentadienylliganden in **7a** mit 1.71 Å dem vergleichbaren Wert des Cyclopentaphosphaferrocens $[Cp'''Fe(\eta^5-P_5)]$ (**4a**) ähnelt (d(Fe-Cp'''_{centr.}) = 1.72 Å), ist der Abstand zwischen Fe(1) zum Zentrum des 1,2,3-Triphospholylliganden in **7a** mit 1.66 Å deutlich länger als der Fe-P_{5,centr.}-Abstand in **4a** (1.58 Å). Diese Aufweitung ist wahrscheinlich auf eine sterische Wechselwirkung der beiden Phenylreste des Heteroaromaten von **7a** mit den drei *tert*-Butylgruppen des Cp'''-Liganden zurückzuführen. Aus dem gleichen Grund können wahrscheinlich die beiden Fünfringdecks in **7a** keine parallele Anordnung einnehmen.

Bemerkenswert bei der Synthese von $[Cp'''Fe(\eta^5-{P_3(CPh)_2})]$ (**7a**) ist, daß hier die {P_3C_2}-Einheit offenbar durch gezielten Einbau von Diphenylacetylen in das P₄-Gerüst von **3a** unter Abspaltung eines Phosphoratoms aufgebaut wird, während die C₂-Einheit in der von *Baudler* beschriebenen Synthese des Anions $[P_3(CH)_2]^-$ auf mechanistisch nur schwer nachvollziehbarem Weg wahrscheinlich aus dem Lösungsmittel abstrahiert wird ^[41].

Darüber hinaus ermöglichen die Ausbeuten von etwa 35%, in der **7a** isoliert werden kann, noch eine Folgechemie.
7.1.2. Zweite Säulenfraktion: Der Sandwichkomplex $[Cp'''Fe(\eta^5-\{P_4(CPh)\})]$ (8a) ?

7.1.2.1. Eigenschaften und IR-Spektroskopie

Nach Entfernen des Lösungsmittels verbleibt aus der zweiten Säulenfraktion ein hellbrauner Feststoff, der sich bereits in unpolaren Lösungsmitteln wie n-Pentan oder n-Hexan gut löst. Verbindung **8a** kann kurzzeitig an Luft gehandhabt und unter Schutzgas einige Wochen ohne erkennbare Zeichen der Zersetzung gelagert werden.

Im IR-Spektrum einer Toluollösung von **8a** werden keine Banden im für Carbonylgruppen typischen Bereich nachgewiesen.

7.1.2.2. NMR-Spektroskopie

Im Protonenresonanzspektrum von **8a** erkennt man nur breite Signale, die keine exakte Integration erlauben.

Das ³¹P-NMR-Spektrum der zweiten Säulenfraktion läßt auf mindestens eine phosphorhaltige Verunreinigung schließen. Eine Trennung gelang bislang weder durch erneute Säulenchromatographie, noch durch fraktionierende Kristallisation.

7.1.2.3. Massenspektrometrie

Im CI-Massenspektrum von **8a** detektiert man ein einziges aussagekräftiges Fragmention, das der Zusammensetzung [Cp'''FeP₄CPh]⁺ entspricht und den Basispeak des Spektrums bildet.

7.1.2.4. Strukturvorschlag für Verbindung 8a

Das Ergebnis der Massenspektrometrie deutet auf die Bildung eines Eisensandwichkomplexes $[Cp'''Fe(\eta^5-\{P_4(CPh)\})]$ (8a) hin, dessen zentrales Eisenatom von einem Tri-*tert*-butylcyclopentadienyl- und einem Tetraphospholylliganden eingeschlossen wird.

Abb. 7.1.2.4: Strukturvorschlag für $[Cp'''Fe(\eta^5 - \{P_4(CPh)\})]$ (8a)

Bisher konnten allerdings weder eine korrekte Elementaranalyse, noch ein zur Röntgenstrukturanalyse geeigneter Einkristall **8a** erhalten werden, um den oben abgebildeten Strukturvorschlag zu bestätigen.

7.1.3. Dritte Säulenfraktion

7.1.3.1. Eigenschaften und Analytik

Nach Entfernen des Lösungsmittels verbleibt aus der dritten Säulenfraktion ein braunes, öliges Rohprodukt, das sich in unpolaren Solventien wie n-Pentan nicht, in aromatischen und in sehr polaren Solventien wie Toluol oder THF kaum löst.

Aufgrund der schlechten Löslichkeit konnten bislang weder IR- und NMR-Spektren aufgenommen, noch durch Umkristallisation zur Elementaranalyse oder zur Massenspektrometrie geeignetes Material erhalten werden.

Daher kann an dieser Stelle kein Strukturvorschlag erarbeitet werden.

7.2. Umsetzung von [{ $Cp^{5}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ - P_{4})] (3c) mit Diphenylacetylen

Erhitzt man eine orangerote Lösung von $[{Cp^{5}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (**3c**) in Toluol mit äquimolaren Mengen an Diphenylacetylen solange am Rückfluß, bis die für **3c** charakteristischen Carbonylbanden IR-spektroskopisch nicht mehr nachgewiesen werden können (Dauer: ca. 48h), so deutet das ³¹P-NMR-Spektrum der Rohlösung auf die Bildung mehrerer phosphorhaltiger Produkte hin. Das intensitätsschwache Singulett bei $\delta = 169.8$ ppm ist charakteristisch für das bereits diskutierte Pentaphosphaferrocen $[Cp^5Fe(\eta^5-P_5)]$ (**4c**) und läßt vermuten, daß geringe Mengen von $[{Cp^5(OC)_2Fe}_{2}(\mu-\eta^{1:1}-P_4)]$ (**3c**) thermisch decarbonyliert wurden, ohne eine Folgereaktion mit dem angebotenen Acetylen einzugehen.

Da die Isolierung der geringen Mengen an **4c** bei dieser Reaktion nicht von Interesse war, wurde die bekannte Neigung dieser Substanzklasse zur Zersetzung bei säulenchromatographischer Aufarbeitung an Aluminiumoxid ausgenutzt, um $[Cp^5Fe(\eta^5-P_5)]$ (**4c**) gezielt aus dem Produktgemisch zu entfernen.

Bei der säulenchromatographischen Reinigung können so noch drei phosphorhaltige Verbindungen isoliert werden. Mit Petrolether erhält man zunächst eine schmutzig grüne Fraktion von $[Cp^5Fe(\eta^5-\{P_3(CPh)_2\})]$ (7c). Mit einem PE/Toluol = 5:1-Gemisch eluiert man eine hellbraune Lösung des Sandwichmoleküls $[Cp^5Fe(\eta^5-\{P_4(CPh)\})]$ (8c). Diese beiden Verbindungen können bereits anhand eines Vergleichs ihrer ³¹P-NMR-Resonanzen mit den Werten von 7a und 8a identifiziert werden.

Mit einem 1:1-Gemisch aus PE und Toluol erhält man schließlich eine dunkelrote Fraktion, die den neuartigen Undecaphosphor-Komplex der Zusammensetzung [$\{Cp^5Fe\}_3(CO)_4P_{11}\}$ (9) enthält.

$$[\{Cp^{5}(OC)_{2}Fe\}_{2}(\mu-\eta^{1:1}-P_{4})] (3c) + [Cp^{5}Fe(\eta^{5}-P_{5})] (4c) + + \frac{Toluol, 110^{\circ}C}{ca. 48 h} [Cp^{5}Fe(\eta^{5}-\{P_{3}(CPh)_{2}\}] (7c) + [Cp^{5}Fe(\eta^{5}-\{P_{4}(CPh)\}] (8c) + [\{Cp^{5}Fe\}_{3}(CO)_{4}P_{11}] (9)]$$

Die Analytik dieser drei Verbindungen wird im Folgenden diskutiert.

7.2.1. Erste Säulenfraktion: Der Sandwichkomplex $[Cp^5Fe(\eta^5-\{P_3(CPh)_2\})]$ (7c)

7.2.1.1. Eigenschaften und IR-Spektroskopie

 $[Cp^5Fe(\eta^5-\{P_3(CPh)_2\})]$ (7c) fällt nach dem Entfernen des Lösungsmittels als grau-grüner Lack an, der sich bereits in unpolaren Solventien wie n-Hexan gut löst. Verbindung 7c kann kurze Zeit an Luft gehandhabt und unter Schutzgas mehrere Wochen ohne sichtbare Zeichen der Zersetzung gelagert werden. Im IR-Spektrum einer Toluollösung von 7c erkennt man keine Banden im für Carbonylliganden typischen Bereich.

7.2.1.2. NMR-Spektroskopie

Im Protonenresonanzspektrum von $[Cp^5Fe(\eta^5-\{P_3(CPh)_2\})]$ (7c) detektiert man selbst bei erhöhter Meßtemperatur lediglich stark verbreiterte Signale, die keine exakte Zuordnung ermöglichen. Dennoch lassen sich in den jeweiligen charakteristischen Bereichen die Signale der 30 Methylprotonen bei $\delta = 1.31$ ppm, der fünf Methinprotonen bei $\delta = 2.93$ ppm sowie zwei Multipletts im Aromatenbereich erkennen.

Im ³¹P-NMR-Hochtemperatur-Spektrum (T = 60° C) erkennt man ein Triplett bei δ = - 22.4 ppm und ein Dublett bei δ = 80.3 ppm, die über eine ¹J_{PP}-Kopplungskonstante von -412.0 Hz miteinander korrelieren.

7.2.1.3. Strukturvorschlag für Verbindung 7c

Bislang ist es nicht gelungen, von Verbindung **7c** durch Umkristallisation ein zur Massenspektrometrie oder zur Elementaranalyse geeignetes pulvriges Material zu erhalten. Der erarbeitete Strukturvorschlag basiert daher lediglich auf den NMR-Daten, die allerdings sowohl bezüglich des Bereiches der chemischen Verschiebungen der ³¹P-NMR-Resonanzen, als auch in Bezug auf die Größe der Kopplungskonstante sehr gut mit den im vorangegangenen Kapitel diskutierten Daten von $[Cp'''Fe(\eta^5-\{P_3(CPh)_2\})]$ (**7a**) übereinstimmen.

Daher kann auch für $[Cp^5Fe(\eta^5-\{P_3(CPh)_2\})]$ (7c) eine Sandwichstruktur postuliert werden, bei der das zentrale Eisenatom von einem Pentaisopropylcyclopentadienyl- und von einem 1,2,3-Triphospholyl-Liganden jeweils η^5 -artig koordiniert ist.

Abb. 7.2.1.3: Strukturvorschlag für $[Cp^5Fe(\eta^5 - \{P_3(CPh)_2\})]$ (7c)

7.2.2. Zweite Säulenfraktion: Der Sandwichkomplex $[Cp^5Fe(\eta^5-\{P_4(CPh)\})]$ (8c)

7.2.2.1. Eigenschaften und IR-Spektroskopie

Nach Entfernen der Lösungsmittel bleibt aus der zweiten Säulenfraktion ein hellbrauner Feststoff zurück, der sich bereits in unpolaren Solventien wie n-Pentan gut löst. Verbindung 8c kann kurze Zeit an Luft gehandhabt werden und unter Schutzgas einige Wochen ohne sichtbare Zeichen der Zersetzung gelagert werden.

Im IR-Spektrum einer Toluollösung von **8c** werden keine Banden im für Carbonylgruppen typischen Bereich detektiert.

7.2.2.2. NMR-Spektroskopie

Selbst bei erhöhter Meßtemperatur lassen sich im Protonenresonanzspektrum von **8c** lediglich verbreiterte Signale nachweisen, die keine exakte Integration erlauben. Eine Zuordnung der Peaks ist jedoch möglich:

Das Singulett im Alkylgruppenbereich kann den 30 Methylprotonen des ⁵Cp-Liganden zugeschrieben werden. Bei $\delta \approx 3.0$ ppm detektiert man ein breites Signal, das von den fünf Methinprotonen verursacht wird. Zusätzlich kann man in Aromatenbereich das Multiplett eines Phenylrestes nachweisen.

Das ³¹P-NMR-Spektrum von **8c** läßt auf mindestens eine phosphorhaltige Verunreinigung schließen, so daß an dieser Stelle keine Signale zugeordnet werden können.

7.2.2.3. Massenspektrometrie

Im CI-Massenspektrum von **8c** detektiert man lediglich ein aussagekräftiges Fragmention, das bei m/z = 544 amu den Basispeak bildet und der Zusammensetzung $[Cp^5FeP_4CPh]^+$ entspricht.

7.2.2.4. Strukturvorschlag für Verbindung 8c

Die bislang erhaltenen analytischen Daten von **8c** sprechen für ein Ferrocenderivat, dessen zentrales Eisenatom von einem Pentaisopropylcyclopentadienyl- und einem Tetraphospholyl-Liganden eingeschlossen ist.

Abb. 7.2.2.4: Strukturvorschlag für $[Cp^5Fe(\eta^5-\{P_4(CPh)\})]$ (8c)

7.2.3. Dritte Säulenfraktion: Das Undecaphosphor-Komplex [{Cp⁵Fe}₃(CO)₄P₁₁] (9)

7.2.3.1. Eigenschaften und IR-Spektroskopie

Nach Entfernen des Lösungsmittelgemisches aus der dritten Säulenfraktion verbleibt $[{Cp}^{5}Fe}_{3}(CO)_{4}P_{11}]$ (9) als rotbrauner, mikrokristalliner Feststoff. Dieser löst sich in unpolaren Lösungsmitteln schlecht und in aromatischen bzw. polaren Solventien wie Toluol bzw. Dichlormethan gut.

Im IR-Spektrum einer Toluollösung von **9** erkennt man vier Banden im für terminal koordinierte Carbonylliganden typischen Bereich zwischen $\overline{v} = 1995.8 \text{ cm}^{-1} \text{ und } \overline{v} = 1909.7 \text{ cm}^{-1}$.

Tab. 7.2.3.1: IR-Daten einer Toluollösung von $[{Cp}^{5}Fe]_{3}(CO)_{4}P_{11}]$ (9)

		\overline{v} [c	2m ⁻¹]	
$[{Cp^{5}Fe}_{3}(CO)_{4}P_{11}] (9)$	1995.8 (vs)	1953.3 (vs)	1938.0 (vs)	1909.7 (vs)

7.2.3.2. NMR-Spektroskopie

Im Protonenresonanzspektrum von [{Cp⁵Fe}₃(CO)₄P₁₁] (**9**) treten bei Raumtemperatur ausschließlich stark verbreiterte Signale auf, die keine Zuordnung erlauben. Im ¹H-NMR-Hochtemperatur-Spektrum (T = 60°C) erkennt man allerdings ein Dublett bei δ = 1.25 ppm, das von den insgesamt 90 Methylprotonen der drei Pentaisopropylcyclopentadienylliganden herrührt und über eine ³J_{HH}-Kopplungskonstante von 7.2 Hz mit einem Septett bei δ = 2.48 ppm korreliert. Dieses Septett stammt von den insgesamt 15 Methinprotonen der drei Cp⁵-Liganden, die wahrscheinlich aufgrund einer durch die hohe Meßtemperatur bedingten freien Rotation magnetisch äquivalent werden.

Sehr problematisch gestaltete sich die Aufnahme eines aussagekräftigen ³¹P-NMR-Spektrums von [{ $Cp^{5}Fe$ }₃(CO)₄P₁₁] (**9**), das aus elf Phosphoratomen besteht, die chemisch und magnetisch verschieden sein sollten (vgl. Struktur von **9**) und somit elf ³¹P-NMR-Signale liefern sollte. Im Raumtemperatur-NMR-Spektrum konnten aber in verschiedenen Experimenten auch unter Variation der unterschiedlichen Meßparameter selbst mit einer großen Anzahl von Scans (n = 60000) keine Signale detektiert werden. Die Vermutung, die Probe von $[{Cp}^{5}Fe]_{3}(CO)_{4}P_{11}]$ (9) könnte paramagnetisch (verunreinigt) sein, konnte anhand des Experimentes von *Evans* ^[48] ausgeschlossen werden.

Da allerdings auch die NMR-Proben des P₄-Butterflymoleküls [{Cp⁵(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (**3c**) erst bei hohen Meßtemperaturen zu aussagekräftigen ³¹P-NMR-Spektren führen, wurden für [{Cp⁵Fe}₃(CO)₄P₁₁] (**9**) ebenfalls temperaturvariable Messungen durchgeführt. Während die Tieftemperaturspektren wie die bei RT vermessenen Proben keine Signale aufweisen, kann man mit einer großen Anzahl von Scans (n = 60000) bei T = 60°C fünf Multipletts im Bereich zwischen δ = - 371 ppm und δ = 484 ppm detektieren, die sich allerdings nicht besonders gut aus dem Grundrauschen hervorheben. Es kann allerdings nicht entschieden werden, ob einige der elf Phosphoratome aufgrund der erhöhten Meßtemperatur chemisch äquivalent werden, oder ob unter den verwendeten Meßbedingungen nicht alle Phosphoratome nachgewiesen werden können.

Das in der Gruppe von *Baudler* NMR-spektroskopisch untersuchte organylsubstituierte Undecaphosphan $[({}^{i}Pr)_{3}P_{11}]$ tritt in Form zweier Isomere auf, die sich ${}^{31}P$ -NMRspektroskopisch unterscheiden lassen. Eines dieser Isomere verursacht fünf Signale, das andere acht, die allesamt im Bereich zwischen –150 und +100 ppm liegen ${}^{[49a]}$. Auch das in der Gruppe von *von Schnering* durch Festkörper-NMR-Spektren untersuchte symmetrische Molekül $[(NEtMe_3)_{3}P_{11}]$ ${}^{[49b]}$ zeigt vier Signale, die zwischen –210 und +175 ppm auftreten. Die fünf Signale, die man im ${}^{31}P$ -NMR-Spektrum von $[{Cp}^{5}Fe}_{3}(CO)_{4}P_{11}]$ (9) detektiert umfassen aber einem weiteren Bereich als die Spektren von $[({}^{i}Pr)_{3}P_{11}]$ und $[(NEtMe_3)_{3}P_{11}]$, was durch die unterschiedliche Koordination an Metallfragmente erklärt werden kann.

7.2.3.3. Massenspektrometrie

Weder im EI- noch im CI-Massenspektrum von **9** kann das Molekülion der Zusammensetzung $[Cp_{3}^{5}Fe_{3}(CO)_{4}P_{11}]^{+}$ nachgewiesen werden. Interessant ist aber das bei m/z = 817.2 amu auftretende Fragmention $[Cp_{2}^{5}FeP_{5}]^{+}$, das einem $[\{Cp_{5}^{5}Fe\}_{2}(\mu-\eta_{5}^{5:5}-P_{5})]^{+}$ - Tripeldeckerkation entspricht und den Basispeak des EI-Spektrums bildet. Der zum formalen Aufbau des P₁₁-Schweratomgerüstes noch fehlende P₆-Baustein tritt allerdings weder im EI- noch im CI-Massenspektrum auf. Diese Gerüstbausteine des Undecaphosphor-Komplexes **9** werden im folgenden Kapitel ausführlich diskutiert. Das EI-Massenspektrum von **9** liefert einen Hinweis auf eine denkbare, interessante Serie kationischer Tripeldeckerkomplexe der Zusammensetzung $[\{Cp_{5}^{5}Fe\}_{2}P_{n}]^{+}$ (n = 5, 4, 3).

Im CI-Massenspektrum tritt das Kation des Pentaphosphaferrocens $[Cp^5FeP_5]^+$ als Basispeak auf. Weitere aussagekräftige Fragmente von $[{Cp^5Fe}_3(CO)_4P_{11}]$ (9) sind in der folgenden Tabelle zusammengefaßt.

Tab. 7.2.3.3: Ausgewählte Fragmente aus den EI- und CI-Massenspektren von $[{Cp}^{5}Fe}_{3}(CO)_{4}P_{11}]$ (9) (EI: 70 eV, QT = 180°C, AT = 135°C) (CI: 120 eV, QT = 180°C, AT = 20°C, Trägergas = Isobutan)

Fragment	m/z [amu]	Relative Int	tensität [%]
		EI	СІ
$[Cp^{5}{}_{2}Fe_{2}P_{5}]^{+}$	817.2	100	43.6
$[Cp_{2}^{5}Fe_{2}P_{4}]^{+}$	786.2	18.9	
$[Cp_{2}^{5}Fe_{2}P_{3}]^{+}$	755.2	23.7	11.2
$[Cp^5FeP_5]^+$	486.0	56.8	100
$[Cp^5FeP_3]^+$	424.0	24.5	21.6
[Cp ⁵ Fe] ⁺	331.2	20.5	23.4
$[FeP_5]^+$	210.7	10.7	
$[Cp^{5}]^{+}$	276.2		32.7
$[Cp^{4}]^{+}$	233.1		38.1
$[Cp^{3}]^{+}$	191.1		13.3
$[^{i}Pr]^{+}$	43.0	54.1	

7.2.3.4. Röntgenstrukturanalyse von $[{Cp}^{5}Fe]_{3}(CO)_{4}P_{11}]$ (9)

Zur Röntgenstrukturanalyse geeignete Einkristalle von $[{Cp^5Fe}_3(CO)_4P_{11}]$ (9) konnten durch langsames Abkühlen einer heißen gesättigten Hexanlösung von 9, die zuvor durch Zentrifugation von Schwebepartikeln befreit wurde, von 60 °C auf Raumtemperatur erhalten werden.

Die nachfolgende *Abbildung 7.2.3.4* zeigt die Molekülstruktur von **9** im Kristall mit der Numerierung der zentralen Baueinheit. Ausgewählte Bindungslängen und –winkel sowie beste Ebenen und Winkel zwischen diesen Ebenen sind in *Tabelle 7.2.3.4* zusammengestellt. Alle übrigen Strukturdaten, Atomkoordinaten und Strukturfaktoren können dem Anhang entnommen werden.

Abb. 7.2.3.4: Molekülstruktur von $[{Cp}^{5}Fe]_{3}(CO)_{4}P_{11}]$ (9) im Kristall

•

Tab. 7.2.3.4: Ausgewählte Strukturdaten von $[{Cp}^{5}Fe]_{3}(CO)_{4}P_{11}]$ (9)

Ausgewählte Bindungslängen von $[{Cp^5Fe}_3(CO)_4P_{11}]$ (9) in Å:

P(1) - P(2)	2.224(3)	P(9) – P(11)	2.227(3)
P(2) – P(3)	2.233(3)	P(10) – P(11)	2.246(3)
P(3) – P(4)	2.224(3)	P(5) – P(6)	2.268(3)
P(4) – P(5)	2.232(3)	P(2) – P(7)	2.199(3)
P(1) – P(5)	2.198(3)	P(3) – P(8)	2.181(3)
P(6) – P(7)	2.192(3)	P(1) - Fe(1)	2.322(2)
P(6) – P(8)	2.226(3)	P(4) – Fe(2)	2.335(2)
P(7) – P(10)	2.218(3)	P(8) – Fe(2)	2.247(3)
P(8) – P(9)	2.213(3)	P(6) – Fe(3)	2.228(2)
P(9) – P(10)	2.230(3)	P(11) - Fe(3)	2.290(3)
			1

a) bindende P-P- und Fe-P-Abstände in $[{Cp^5Fe}_3(CO)_4P_{11}]$ (9) in Å:

b) nichtbindende P-P-Abstände in $[{Cp^5Fe}_3(CO)_4P_{11}]$ (9) in Å:

P(1) ··· P(3)	3.525	P(1) P(8)	4.374
P(1) P(4)	3.425	P(2) P(6)	3.369
P(2) P(4)	3.572	P(2) P(8)	3.528
P(2) P(5)	3.366	P(3) P(6)	3.392
P(3) P(5)	3.344	P(3) P(7)	3.441
P(6) P(11)	3.065	P(4) P(6)	3.445
P(7) P(8)	3.303	P(4) P(8)	2.771
P(1) P(6)	3.346	P(5) P(7)	3.467
P(1) P(7)	3.004	P(5) P(8)	3.260

c) Metall-Cyclopentadienylcentroid-Abstände von $[{Cp^5Fe}_3(CO)_4P_{11}]$ (9) in Å:

$Fe(1) - Cp^{5}_{centr.}$	1.765
$Fe(2) - Cp_{centr.}^5$	1.762
$Fe(3) - Cp^{5}_{centr.}$	1.762

•

P(1) - P(2) - P(3)	104.56(12)	P(8) - P(9) - P(11)	101.27(11)
P(2) - P(3) - P(4)	106.54(11)	P(9) - P(11) - P(10)	59.80(10)
P(3) - P(4) - P(5)	97.26(12)	P(1) - P(5) - P(6)	97.03(11)
P(4) - P(5) - P(1)	101.26(10)	P(7) - P(10) - P(9)	108.78(14)
P(5) - P(1) - P(2)	99.14(10)	P(5) - P(6) - P(7)	102.03(10)
P(7) - P(6) - P(8)	96.78(11)	P(5) - P(6) - P(8)	93.03(11)
P(6) - P(7) - P(10)	96.67(10)	P(2) - P(7) - P(6)	100.21(13)
P(8) - P(9) - P(10)	98.90(11)	P(3) - P(2) - P(7)	101.87(10)
P(7) - P(10) - P(11)	98.67(12)	P(2) - P(3) - P(8)	106.12(13)
P(6) - P(8) - P(9)	98.49(12)	P(3) - P(8) - P(6)	100.64(10)

Ausgewählte Bindungswinkel von $[{Cp}^{5}Fe}_{3}(CO)_{4}P_{11}]$ (9) in Grad:

• Ebenendefinitionen und maximale Abweichungen aus den besten Ebenen:

Ebene	Atome	Maximale Abweichung [Å]
E1	P(1) - P(2) - P(3) - P(4) - P(5)	0.3161
E2	P(1) - P(2) - P(3) - P(4)	0.0073
E3	P(7) – P(8) –P(9) – P(10)	0.0638
E4	P(2) - P(3) - P(7) - P(8)	0.0546
E5	P(4) - P(5) - P(6) - P(8)	0.0126
E6	P(1) - P(5) - P(6) - P(7)	0.0530

• Winkel zwischen den besten Ebenen:

	E1	E2	E3	E4	E5	E6
E1		14.3°	44.8°	71.1°	111.8°	68.4°
E2	14.3°		30.6°	85.4°	122.0°	58.8°
E3	44.8°	30.6°		115.9°	135.6°	40.7°
E4	71.1°	85.4°	115.9°		59.9°	122.2°
E5	111.8°	122.0°	135.6°	59.9°		100.4°
E6	68.4°	58.8°	40.7°	122.2°	100.4°	

Abb. 7.2.3.5: Schweratomgerüst von $[{Cp}^{5}Fe}_{3}(CO)_{4}P_{11}]$ (9) mit Cp^{5} - und CO-Liganden

Das Schweratomgerüst von $[{Cp^{5}Fe}_{3}(CO)_{4}P_{11}]$ (9) kann man sich formal aus einem substituierten P₅-Ring in *envelope*-Konformation, an den neben zwei Eisenfragmenten $({Fe(1)(CO)_{2}Cp^{5}})$ und ${Fe(2)(CO)Cp^{5}})$ über drei Ecken ein zweifach kantengeöffnetes P₆-Prisman (aus den Atomen P(6) bis P(11)) gebunden ist. Der Basispeak des EI-Massenspektrums von 9, der dem $[{Cp^{5}Fe}_{2}(\mu-\eta^{5:5}-P_{5})]^{+}$ -Tripeldeckerkation zugeschrieben werden kann, stützt diese Betrachtungsweise.

Alternativ ist auch eine Beschreibung als zweifach kantengeöffnetes P₈-Cunean aus den Atomen P(1) bis P(8), an das ein P₃-Dreieck kondensiert ist, möglich. Auch hierfür lassen sich in den Massenspektren Hinweise finden: Zwar kann kein $[Cp_{2}^{5}Fe_{2}P_{8}]$ -Fragment nachgewiesen werden, aber sowohl im EI- als auch im CI-Massenspektrum von $[{Cp}^{5}Fe_{3}(CO)_{4}P_{11}]$ (9) wird ein $[Cp_{3}^{5}Fe_{3}]^{+}$ -Kation detektiert, das einem "Sandwichmolekül" aus den Atomen P(9) bis P(11) und der $\{Cp_{5}^{5}Fe_{3}\}$ -Einheit an Fe(3) zugeschrieben werden kann.

Das Undecaphosphor-Komplex [$\{Cp^5Fe\}_3(CO)_4P_{11}$] (**9**) besitzt nach *Mingos* ^[29] 102 VE, allerdings können hieraus keine Rückschlüsse auf den Aufbau des Clusters gezogen werden, da solche Prognosen anhand der *Wade-Mingos*-Zählregeln nur für Dreieckspolyeder zulässig sind.

Die 15 bindenden P-P-Abstände von 9 liegen zwischen 2.181 Å und 2.268 Å.

Die Bindungsabstände zwischen den fünf Phosphoratomen der P₅-Ring-Untereinheit liegen zwischen 2.198 Å und 2.232 Å und betragen im Mittel 2.22 Å.

Innerhalb der zweifach kantengeöffneten P₆-Prisman-Teilstruktur, die von den Atomen P(6) bis P(11) aufgebaut wird, liegen die sieben bindenden P-P-Abstände zwischen 2.192 Å und 2.246 Å, der Mittelwert beträgt auch hier 2.22 Å. Mit 3.065 Å liegt der Abstand zwischen P(6) und P(11) eindeutig im nichtbindenden Bereich. Diese offene Kante des P₆-Prismans wird durch das {Cp⁵(OC)Fe}-Fragment des Eisenatoms Fe(3) überbrückt, das ein Elektron aus der kovalenten (2e2c)-Bindung zu P(11) und zwei weitere Elektronen durch eine Zweielektronen-Donorbindung des lone-pairs von P(6) erhält und somit die günstige 18VE-Konfiguration erreicht. Die beiden Phosphoratome an der zweiten offenen Kante des P₆-Prismans zwischen P(7) und P(8) (d = 3.303 Å) bilden zusammen mit P(6) die Verbindung zum P₅-Ring der Substruktur aus den Atomen P(1) bis P(5).

Interessanterweise befindet sich in dieser "Brücke" zwischen der P₅-Ring- und der P₆-Prisman-Untereinheit einerseits der mit 2.268 Å längste bindende P-P-Abstand des P₁₁-Clusters (zwischen P(5) und P(6)), andererseits findet man zwischen P(3) und P(8) die mit 2.181 Å kürzeste bindende P-P-Wechselwirkung im Undecaphosphor-Komplex **9**. Das 15VE-{Cp⁵(OC)Fe}-Fragment am Eisenatom Fe(2) wird durch ein Elektron aus der kovalenten (2e2c)-Bindung zum Phosphoratom P(4) sowie durch zwei weitere Elektronen aus der 2e-Donorbindung an das lone-pair des Phosphoratoms P(8) zu 18VE ergänzt und trägt somit ebenfalls zur Verknüpfung der P₅- und der P₆-Substruktur bei.

Der kürzeste aller nichtbindenden P[…]P-Abstände zwischen den Atomen P(4) und P(8) beträgt 2.771 Å.

Die Abstände der drei Eisenatome Fe(1) bis Fe(3) zu den Centroiden der jeweils η^5 koordinierten Pentaisopropylcyclopentadienylliganden liegen mit 1.765 Å bzw. 1.762 Å im gleichen Bereich wie beispielsweise im P₄-Butterflymolekül [{Cp'''(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (**3a**), in dem die entsprechenden Abstände 1.75 Å betragen.

Abb. 7.2.3.6: Aufsicht auf das Fe_3P_{11} -Gerüst von [{ Cp^5Fe }_3(CO)_4P_{11}] (9) auf die durch

- a) die Phosphoratome P(1) bis P(5) aufgespannte Fünfringebene (links)
- b) die Phosphoratome P(7) bis P(10) aufgespannte Prismanbasisfläche (rechts)

In *Abbildung 7.2.3.6* wird nochmals die Verknüpfung des von den Phosphoratomen P(1) bis P(5) gebildeten Mitteldecks des P₅-Ringbausteins mit der P₆-Prisman-Substruktur in $[{Cp}^{5}Fe]_{3}(CO)_{4}P_{11}]$ (9) deutlich.

Undecaphosphane der allgemeinen Zusammensetzung $[R_3P_{11}]$ konnten zuerst in den Arbeitsgruppen *Baudler*^[49] und *von Schnering*^[50] nachgewiesen werden. Während der Strukturvorschlag für $[R_3P_{11}]$ ($R = {}^{i}Pr$)^[49] zunächst auf der Analyse der ${}^{31}P$ -NMR-spektroskopischen Daten beruhte und erst später von *Tebbe*^[51] röntgenographisch belegt wurde, konnten *von Schnering* et al. die hochsymmetrischee Moleküle $(Na^+)_3[P_{11}]^{3-}$ und $[(NEtMe_3)_3P_{11}]$ röntgenstrukturanalytisch charakterisieren ^[49b,50,52].

Diese "Ufosane" lassen sich formal von einem P_8 -Würfel $\odot |\overline{\bigcirc}|$ ableiten, indem man drei Kanten (in drei verschiedenen Ebenen) öffnet und diese jeweils durch ein zusätzliches Phosphoratom überbrückt, das dann die Konnektivität 2 besitzt und eine negative Ladung trägt (s. Abb. rechts).

In diesen Molekülen lassen sich darüber hinaus drei Norbornan-Untereinheiten erkennen, in denen jeweils die formal zum Würfel hinzugefügten Phosphoratome die Brückenposition einnehmen.

In [{Cp⁵Fe}₃(CO)₄P₁₁] (**9**) erkennt man aus der Festkörperchemie bekannte Bauprinzipien: Die zehn Phosphoratome P(1) bis P(10) des Undecaphosphorkomplexes **9** bilden eine Untereinheit, die in gleicher Form auch im Hittorfschen Phosphor vorkommt. Wie die folgende Abbildung verdeutlicht, findet man sowohl in [{Cp⁵Fe}₃(CO)₄P₁₁] (**9**), als auch im violetten Phosphor, $\frac{2}{\infty}$ [P₈P₂P₉], neben einem P₈-Cunean- auch einen P₂-Baustein.

Abb. 7.2.3.6: Vergleichbare (P_8+P_2) -Substrukturen (fett hervorgehoben) im Undecaphosphan [{ Cp^5Fe }_3(CO)_4P_{11}] (9) und im Hittorfschen Phosphor (Ausschnitt)

Zwar hat $H\ddot{a}ser$ ^[52d] bei der Diskussion von P₁₁-Isomeren die in diesem Kapitel beschriebene Anordnung von elf Phosphoratomen als "P₈-Cunean + P₃-Dreieck" theoretisch vorhergesagt, aber der experimentelle Beweis fehlte bislang. Mit der Isolierung des Undecaphosphor-Komplexes [{Cp⁵Fe}₃(CO)₄P₁₁] (**9**) konnte somit erstmals ein solches P₁₁-Gerüst komplexchemisch stabilisiert und röntgenographisch nachgewiesen werden.

Fazit:

Die Umsetzungen der P₄-Butterflymoleküle [{ $Cp^{R}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ -P₄)] (**3a**, **3c**) mit äquimolaren Mengen an Diphenylacetylen ermöglicht die Synthese neuartiger Eisenkomplexe mit substituentenfreien P_n-Bausteinen. So lassen sich Sandwichverbindungen isolieren, deren zentrale Eisenatome jeweils von einem Cyclopentadienylliganden und einem anionischen fünfgliedrigen Heteroaromaten η^{5} -artig koordiniert werden. Diese Verbindungen mit einem 1,2,3-Triphospholyl- oder einem Tetraphospholylliganden sind über die Isolobalanalogie eng mit klassischen Ferrocenen oder mit den Pentaphospholyl-Derivaten [$Cp^{R}Fe(\eta^{5}-P_{5})$] (**4**) verwandt.

Zusätzlich kann bei der Reaktion des Pentaisopropylcyclopentadienylderivates 3c ein Undecaphosphor-Komplex isoliert werden, dessen Grundgerüst zwar theoretisch vorhergesagt, aber bislang nicht experimentell bestätigt werden konnte.

Dabei kann PhC=CPh auf unterschiedliche Weise reagieren: Bei der Genese der Verbindungen $[Cp^{R}Fe(\eta^{5}-\{P_{3}(CPh)_{2}\})]$ (7a, 7c) insertiert die $\{PhC\}_{2}$ -Einheit formal in einen P₃-Baustein der Butterflymoleküle und bildet so den 1,2,3-Triphospholylliganden.

Zum Aufbau der Tetraphospholyliganden in $[Cp^{R}Fe(\eta^{5}-\{P_{4}(CPh)\})]$ (**8a**, **8c**) muß hingegen zunächst formal die C=C-Dreifachbindung des Acetylens gespalten werden, um dann in das P₄-Fragment des Butterflymoleküls eingebaut zu werden.

Diphenylacetylen scheint darüber hinaus auch eine katalytische Funktion übernehmen zu können, da einerseits das $\{PhC\}_2$ -Tolanfragment im Undecaphosphan [$\{Cp^5Fe\}_3(CO)_4P_{11}$] (9) nicht vorkommt, andererseits die Bildung eines solchen P₁₁-Clusters bei der thermischen Reaktion der P₄-Butterflymoleküle ohne Diphenylacetylen-Zusatz nicht beobachtet wird.

Das vielfältige Produktbild, das aus der Umsetzung der P₄-Butterflymoleküle **3** mit Diphenylacetylen resultiert, gibt Anlaß zu orientierenden Versuchen, in denen das Edukt **3a** mit 2-Butin und dem *tert*-Butylphosphaalkin ($P=C^{t}Bu$) umgesetzt wird (s. folgende Abschnitte).

Die Ausbeuten von ca. 35 %, in der die (Cyclopentadienyl)(1,2,3-triphospholyl)-eisen(II)-Sandwichkomplexe 7 erhalten werden können, ermöglichen darüber hinaus orientierende Versuche zu deren Folgechemie.

7.3. Orientierender Versuch zur Reaktivität von $[{Cp^4(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3b) gegenüber 2-Butin

Erhitzt man eine orangerote Lösung von $[{Cp^4(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3b**) in Toluol mit äquimolaren Mengen an 2-Butin solange am Rückfluß, bis die Carbonylbanden von **3b** IRspektroskopisch nicht mehr nachgewiesen werden können (Dauer: ca. 40h), so deutet das ³¹P-NMR-Spekrum der Rohlösung auf die Bildung mehrerer Produkte hin.

Ein bei $\delta \approx 100$ ppm auftretendes breites Signal kann dem bereits diskutierten *pseudo*-Tripeldeckerkomplex [{Cp⁴Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5b**) zugeschrieben werden und läßt die thermische Decarbonylierung geringer Mengen des P₄-Butterflykomplexes **3b** ohne Folgereaktion mit dem angebotenen Alkin vermuten.

Das Reaktionsgemisch kann säulenchromatographisch an Aluminiumoxid aufgearbeitet werden. Mit Petrolether erhält man eine dunkelbraune Fraktion, deren ³¹P-NMR-Spekrum neben dem breiten Signal von **5b** bei $\delta \approx 100$ ppm noch ein Dublett bei $\delta = 66.2$ ppm und ein Triplett bei $\delta = -9.6$ ppm, die über eine ¹J_{PP}-Kopplungskonstante von -412 Hz miteinander korrelieren, aufweist. Mit einem PE/Toluol = 5:2-Gemisch eluiert man eine rotviolette Lösung von [{Cp⁴Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5b**). Ein 1:1-Gemisch der gleichen Lösungsmittel liefert schließlich eine dunkelbraune Lösung, deren ³¹P-NMR-Spekrum eine Vielzahl von Multipletts zeigt, die sich allerdings nur schwach aus dem Grundrauschen hervorheben.

$[{{Cp}^{4}(OC)}_{2}Fe{}_{2}(\mu-\eta^{1:1}-P_{4})]$	(3b)	Tabual 110°C	$[{Cp}^{4}Fe]_{2}(\mu-\eta^{4:4} -P_{4})]$	(5b) +
+			$[Cp^{4}Fe(\eta^{5}-\{P_{3}(CMe)_{2}\})]$	(10) +
Me−C≡C-Me		4011	?	

Die geringen Mengen des Rückstandes, der nach dem Entfernen der Lösungsmittel aus der dritten Fraktion verbleibt, erlauben keine sinnvolle Analytik. Anhand des komplizierten Phosphorresonanzspektrums läßt sich nicht einmal mit Bestimmtheit sagen, ob es sich um eine einzige Verbindung oder um ein Produktgemisch handelt.

Da in der ersten Säulenfraktion neben der neuen Verbindung **10** NMR-spektroskopisch noch Spuren an **5b** nachgewiesen werden (s. *Abbildung 7.3.1*), die sich weder durch erneute Säulenchromatograpie, noch durch fraktionierende Kristallisation abtrennen lassen, kann auch hier ein Strukturvorschlag nur anhand der ³¹P-NMR-Daten erarbeitet werden.

Abb. 7.3.1: ${}^{31}P$ -NMR-Spektrum eines Gemisches aus $[{Cp}^{4}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (5b) und $[Cp^{4}Fe(\eta^{5}-{P_{3}(CMe)_{2}})]$ (10)

Sowohl die Lage als auch die Aufspaltung der ³¹P-NMR-Resonanzen zeigen aber eine gute Übereinstimmung mit den in den vorangegangenen Kapiteln diskutierten (Cyclopentadienyl)(1,2,3-triphospholyl)-eisen(II)-Sandwichkomplexen **7**.

Bei der neuen Verbindung **10**, die man bei der Cothermolyse von $[{Cp^4(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3b**) in Gegenwart von 2-Butin erhält, sollte es sich demnach ebenfalls um einen Eisensandwichkomplex handeln, dessen zentrales Metallatom sowohl an einen Tetraisopropylcyclopentadienyl- als auch an einen 1,2,3-Triphospholylliganden koordiniert ist.

Abb. 7.3.2: Strukturvorschlag für $[Cp^4Fe(\eta^5-\{P_3(CMe)_2\})]$ (10)

7.4. Orientierender Versuch zur Reaktivität von $[{Cp^4(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3b) gegenüber *tert*-Butylphosphaalkin, ^tBuC=P

Erhitzt man äquimolare Mengen $[{Cp^4(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3b**) und *tert*-Butylphosphaalkin, ^tBuC=P, in Toluol in einem Druckschlenkrohr bei 120°C, so kann man nach zwölf Stunden ³¹P-NMR-spektroskopisch noch beträchtliche Mengen des Edukts **3b** nachweisen, während der Reaktionspartner bereits vollständig verbraucht ist. Daher wird die Reaktionslösung erneut mit ^tBuC=P versetzt und wiederum auf 120°C erhitzt. Nach insgesamt zweitägiger Cothermolyse sind beide Edukte vollständig umgesetzt.

Da das ³¹P-NMR-Spektrum der Rohlösung eine Vielzahl von Signalen zeigt, wird der Reaktionsansatz säulenchromatographisch an Kieselgel aufgearbeitet. Mit Petrolether eluiert man eine dunkelbraune Fraktion, deren nachfolgend abgebildetes Phosphorresonanzspektrum neben einigen intensitätsschwachen Signalen ein Dublett bei $\delta = 109.4$ ppm, ein Singulett bei $\delta = 46.3$ ppm und ein Triplett bei $\delta = -31.5$ ppm enthält, deren Integrale in einem Verhältnis von 2:14:1 zueinander stehen. Selbst mit sehr polaren Lösungsmitteln wie Dichlormethan oder THF lassen sich keine weiteren Fraktionen eluieren.

Um festzustellen, ob das intensitätsstarke Singulett $\delta = 46.3$ ppm zur gleichen Verbindung gehört, wie das Dublett bei $\delta = 109.4$ ppm und das bei $\delta = -31.5$ ppm detektierte Triplett, die über eine ¹J_{PP}-Kopplungskonstante von -396.7 Hz miteinander wechselwirken, und um die Verunreinigungen abzutrennen, sollte der aus der Säulenfraktion verbliebene dunkelbraune Rückstand aus Pentan fraktionierend kristallisiert werden.

Abb.7.4: ³¹P-NMR-Spektrum der ersten Säulenfraktion der Umsetzung von [{Cp⁴(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (**3b**) mit ^tBuC=P

Allerdings konnten weder in der so erhaltenen Lösung noch im Kristallisat die zuvor detektierten Signale nachgewiesen werden. Statt dessen findet man in den ³¹P-NMR-Spektren jeweils viele Multipletts. Dies läßt auf eine rasche Zersetzung des Produktes bzw. des Produktgemisches in Lösung selbst bei tiefen Temperaturen schließen.

Da nicht festgestellt werden konnte, ob die im ³¹P-NMR-Spektrum der Säulenfraktion auftretenden Signale zu einer einzigen Verbindung gehören, oder von einem Produktgemisch verursacht werden, und da bislang keine weitere Analytik möglich war, muß an dieser Stelle auf Strukturvorschläge verzichtet werden.

Unklar bleibt bei dieser Reaktion auch, warum im Gegensatz zur Reaktion der P₄-Butterflymoleküle mit Alkinen äquimolare Mengen an Phosphaalkin nicht genügen, um das Edukt **3b** vollständig umzusetzen.

8. Orientierender Versuch zur Synthese von kationischen Tripeldeckerkomplexen mit fünfgliedrigem heteroaromatischem Mitteldeck

Bereits 1989 konnte *Brück* eine von *Rubinskaya* zur Aufstockung von Decamethylferrocen entwickelte Reaktion ^[17] erfolgreich auf Cyclopentaphosphaferrocene übertragen und so kationische Tripeldeckermoleküle mit einem *cyclo*-P₅-Mitteldeck herstellen ^[8,18].

Diese Reaktion läßt sich auch auf das Tri-*tert*-butylderivat [Cp'''Fe(η^5 -P₅)] (**4a**) anwenden. Bestrahlt man eine dunkelgrüne Lösung von **4a** mit äquimolaren Mengen des Ferroceniumsalzes [CpFe(η^6 -C₆H₆)]⁺(PF₆)⁻ mit einem 500W-Halogenstrahler, so schlägt die Farbe der Reaktionslösung im Verlauf von zwölf Stunden nach blauschwarz um. Im ³¹P-NMR-Spektrum der Reaktionslösung erkennt man nach dieser Zeit statt des charakteristischen Singuletts von **4a** einen Signalsatz aus einem Singulett bei $\delta = 0.8$ ppm und einem Septett bei $\delta = -141.6$ ppm mit einer ¹J_{PF}-Kopplungskonstante von 710 Hz. Die Integrale dieser beiden Signale stehen in einem Verhältnis von 5:1.

Das Tetraisopropylcyclopentadienylderivat $[Cp^4Fe(\eta^5-P_5)]$ (**4b**) reagiert völlig analog. Sowohl die Lage als auch das Aufspaltungsmuster der jeweiligen Produktsignale ähneln den Daten, die *Brück* für $[\{Cp^RFe\}(\mu-\eta^{5:5}-P_5)\{FeCp\}]^+(PF_6)^-$ angibt ^[8,18].

Tab. 8.1: Vergleich der ³¹P-NMR-Daten unterschiedlich alkylsubstituierter Komplexe des Typs [{ $Cp^{R}Fe$ }($\mu-\eta^{5:5}-P_{5}$){FeCp}]⁺(PF₆)⁻, δ in ppm.

$Cp^{R} = Cp^{*}$	$Cp^{R} = Cp^{*}$	$Cp^{R} = Cp^{\prime\prime\prime} (11a)$	$\mathbf{Cp}^{\mathbf{R}} = \mathbf{Cp}^{4} (\mathbf{11b})$
-15.5 (s, 5P)	-15.8 (s, 5P)	0.8 (s, 5P)	1.2 (s, 5P)
-144.0 (sept, 1P)	-144.0 (sept, 1P)	-141.6 (sept, 1P)	-140.4 (sept, 1P)
$^{1}J_{PF}=710\ Hz$	$^1J_{PF} = 710 \text{ Hz}$	$^{1}J_{PF}=710\ Hz$	$^{1}J_{PF}=710\ Hz$

Allerdings konnte aus dem Rohprodukt $[{Cp^{R}Fe}(\mu-\eta^{5:5}-P_{5}){FeCp}]^{+}(PF_{6})^{-}$ (**11a**, **b**) weder säulenchromatographisch, noch durch fraktionierende Kristallisation geeignetes Material zur massenspektrometrischen oder elementaranalytischen Untersuchung erhalten werden. Ein Strukturvorschlag für **10** basiert daher lediglich auf den NMR-Daten, die allerdings eine sehr gute Übereinstimmung mit den Werten analoger Derivate zeigen.

Abb. 8.1: Strukturvorschlag für $[{Cp^{R}Fe}(\mu-\eta^{5:5}-P_{5}){FeCp}]^{+}(PF_{6})^{-}$ (11)

Da sich mit $[CpFe(\eta^6-C_6H_6)]^+(PF_6)^-$ sowohl kationische Tripeldeckerkomplexe mit cyclo-C₅-Mitteldeck als auch deren P₅-Analoga herstellen lassen, bieten sich entsprechende Versuche zur Aufstockung des Triphospholylsandwichkomplexes **7a** an.

Bestrahlt man daher äquimolare Mengen des Sandwichkomplexes $[Cp'''Fe(\eta^{5}-{P_3(CPh)_2})]$ (7a) und des Ferroceniumsalzes $[CpFe(\eta^{6}-C_6H_6)]^+(PF_6)^-$ in Dichlormethan mit einem 500W-Halogenstrahler, so ändert sich die Farbe des Reaktionsgemisches im Verlauf von zwölf Stunden von grau-grün nach blauschwarz. Im ³¹P-NMR-Spektrum der Rohlösung erkennt man nach dieser Zeit neben den beiden Signalen des Edukts 7a (Dublett bei $\delta = 78.1$ ppm, Triplett bei $\delta = -18.5$ ppm) und dem Septett des Anions des Ferrocenium-Edukts drei neue Signale: Neben einem Septett mit einer ¹J_{PF}-Kopplungskonstante von 710 Hz treten ein Dublett bei $\delta = 210.4$ ppm und ein Triplett bei $\delta = 131.7$ ppm auf, die über eine ¹J_{PP}-Kopplungskonstante von 421.0 Hz miteinander korrelieren.

Obwohl ³¹P-NMR-spektroskopisch noch beträchtliche Anteile beider Edukte nachgewiesen werden (Verhältnis Edukte : Produkt \approx 1:1), beobachtet man auch bei längerer Reaktion keine weitere Umsetzung der beiden Edukte.

Eine Aufarbeitung des Gemischs aus den Edukten und dem Produkt gelang bisher weder säulenchromatographisch noch durch fraktionierende Kristallisation. Daher sind außer den ³¹P-NMR-Resonanzen keine weiteren analytischen Daten des Produktes zugänglich.

Postuliert man allerdings einen ähnlichen Reaktionsverlauf wie bei der zuvor beschriebenen Aufstockung des zu **7a** isolobalen Cyclopentaphosphaferrocens **4a**, so kann man bereits anhand des ³¹P-NMR-Spektrums einen Strukturvorschlag erarbeiten:

Der Signalsatz des Produkts **12** aus einem Dublett und einem Triplett ähnelt dem des Edukts **7a**. Dies deutet auf den Erhalt der 1,2,3-Triphospholyleinheit hin.

Die Verschiebung dieser beiden Produktsignale um etwa 150 ppm im Vergleich zum Edukt ähnelt der Differenz, die bei der Aufstockung von $[Cp'''Fe(\eta^5-P_5)]$ (4a) zwischen Edukt- und Produktsignal gefunden wird ($\Delta\delta \approx 160$ ppm).

So kann auch in diesem Fall die Bildung eines kationischen 30VE-Tripeldeckerkomplexes angenommen werden, der jetzt ein 1,2,3-Triphosphol als heteroaromatisches Mitteldeck besitzt.

Abb. 8.2: Strukturvorschlag für $[{Cp'''Fe}(\mu-\eta^{5:5}-{P_3(CPh)_2}){FeCp}]^+(PF_6)^-$ (12)

9. Versuche zur Oxidation der P₄-Butterflymoleküle [{Cp^R(OC)₂Fe}₂(μ-η^{1:1}-P₄)] (3) mit gelbem Schwefel, grauem Selen oder grauem Tellur

In jüngster Zeit konnten in unserem Arbeitskreis neue interessante Übergangsmetallkomplexe mit P=X-Liganden (X = S, Se, Te), für die sich das Tetraphosphatetracobaltacuban [{ $Cp^{R}Co$ }₄(P)₄] ($Cp^{R} = Cp'$, Cp'') und der trigonal-bipyramidale Cobaltcluster [{Cp''Co}₃(μ_{3} -P)₂] als Edukte besonders gut eigneten ^[53,54], synthetisiert werden. Je nach Versuchsführung und Aufarbeitung erhält man hierbei sowohl einfach- als auch mehrfach oxidierte Produkte.

Aufbauend auf diesen Ergebnissen stellt sich die Frage, ob sich auch die P₄-Butterflymoleküle $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (3) mit Elementen der 16. Gruppe oxidieren lassen.

In orientierenden Versuchen wird daher $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**) zunächst bei Raumtemperatur mit äquimolaren Mengen an gelbem Schwefel, grauem Selen oder grauem Tellur in Dichlormethan umgesetzt. Die zur Reaktionskontrolle gemessenen ³¹P-NMR-Spektren zeigen dabei jeweils eine Vielzahl an Signalen. Sämtliche Versuche einer säulenchromatographischen Aufarbeitung dieser Reaktionsansätze scheitern, statt einer Auftrennung der Produktgemische können in den ohnehin schon unübersichtlichen ³¹P-NMR-Spektren sogar noch zusätzliche Peaks nachgewiesen werden.

Weder die Umsetzungen der Edukte bei tiefen Temperaturen (Versuche bei -30 °C und -60 °C), noch eine Variation der Liganden oder der stöchiometrischen Verhältnisse der Ausgangsverbindungen führen zu einem einfacheren Produktbild. Die Reaktionsgemische lassen sich auch durch fraktionierende Kristallisation nicht trennen.

Zusätzlich erschwert wird die Charakterisierung möglicher Oxidationsprodukte von $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (3) durch die schlechte Reproduzierbarkeit der Experimente.

So wurden bei drei unter gleichen Reaktionsbedingungen nacheinander durchgeführten Selenierungsexperimenten mit dem Tri-*tert*-butylderivat **3a** drei unterschiedliche – aber jeweils hochkomplizierte – 31 P-NMR-Rohspektren erhalten.

Die Versuche zur Oxidation der P₄-Butterflymoleküle [{ $Cp^{R}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ -P₄)] (**3**) mit Elementen der 16. Gruppe führen also allesamt zu unspezifischer Zersetzung oder Folgereaktion der P₄-Edukte.

$$[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1} - P_{4})] + X \xrightarrow{CH_{2}Cl_{2}} ?$$

$$3 \qquad X = S_{8}, Se_{(grau)}, Te_{(met)}$$

10. Versuche zur Oxidation der Cyclopentaphosphaferrocene

Bereits 1989 beschrieb *Brück* erste Versuche zur Oxidation der Sandwichmoleküle $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) mit TCNQ oder TCNE, die sich zur Synthese von Phosphaferroceniumkationen eignen sollten. Auch die Reaktionen der Verbindungen 4 mit Iod oder FeCl₃ verliefen nicht im gewünschten Sinne ^[8].

Rührt man hingegen äquimolare Mengen von $[Cp'''Fe(\eta^5-P_5)]$ (**4a**) und AgX (X = BF₄, SbF₆) bei Raumtemperatur in Dichlormethan, so beobachtet man bereits nach fünf Minuten einen Farbumschlag der ursprünglich intensiv grünen Lösung nach dunkelbraun. Gleichzeitig kann die Abscheidung von Silber beobachtet werden. Im ³¹P-NMR-Spektrum der Rohlösung, die man nach Abfiltern des Silbers über Celite erhält, detektiert man allerdings keine Signale. Weder durch säulenchromatographische Aufarbeitung, noch durch fraktionierende Kristallisation konnte zur Massenspektrometrie oder zur Elementaranalyse geeignetes Material erhalten werden.

Allerdings erlaubt eine Folgereaktion des Rohproduktes den Rückschluß, daß dieses eine intakte Pentaphospholeinheit enthalten muß: Versetzt man nämlich die hellbraune Dichlormethanlösung des gefilterten Rohproduktes mit Cobaltocen und erhitzt das Reaktionsgemisch zum Rückfluß, so beobachtet man nach vier Stunden das Ausflocken eines gelben Feststoffes und einen Farbumschlag der Lösung nach intensiv grün. Zentrifugiert man das ausgefallene Cobaltoceniumsalz ab, so kann man im ³¹P-NMR-Spektrum des Zentrifugats ausschließlich das charakteristische Singulett des Eduktes [Cp'''Fe(η^5 -P₅)] (**4a**) detektieren.

$$[Cp'''Fe(\eta^{5}-P_{5})] + AgX \xrightarrow{CH_{2}Cl_{2}} - Ag \xrightarrow{CH_{2}Cl_{2}} ? \xrightarrow{CH_{2}Co, \Delta} [Cp'''Fe(\eta^{5}-P_{5})]$$
4a
$$X = BF_{4}, SbF_{6}$$

Die hier beschriebene Reduktion des nicht identifizierbaren Zwischenprodukts mit Cobaltocen, die zur Ausgangsverbindung 4a zurückführt, deutet auf die Bildung eines Komplexes der Zusammensetzung $[{Cp'''FeP_5}_n^{n+}(X)_n]$ hin, in dem die ${Cp'''FeP_5}$ -Einheit enthalten ist.

Experimente von *Winter*, der die Cyclopentaphosphaferrocene $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) im Arbeitskreis von *Geiger* eingehend cyclovoltametrisch untersucht hat, favorisieren dabei dimere Bikationen der Zusammensetzung $[\{Cp^{R}FeP_{5}\}_{2}^{2+}(X^{-})_{2}]$ als Oxidationsprodukte ^[55]. Hierbei sind zwei P₅-Ringe in envelope-Konformation über die Spitzen der "Briefumschläge" miteinander verknüpft und die verbleibenden vier Phosphoratome jeweils η^{4} -artig durch ein 13VE-{Cp^RFe}-Fragment überkappt.

Abb. 10.1: Strukturvorschlag für die Oxidationsprodukte von $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4)

Letztlich kann allerdings nur eine Röntgenstrukturanalyse genaueren Aufschluß über die Zusammensetzung der Oxidationsprodukte der Cyclopentaphosphaferrocene $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) geben.

IV. Experimenteller Teil

4.1. Analysemethoden und –geräte

Die Elementaranalysen wurden von Frau M. Alester, Frau T. Schaible und Frau B. Dusch mit Hilfe der C,H,N-Analyzer 240 bzw. 400 des Herstellers Perkin-Elmer nach den im Fachbereich Chemie der Universität Kaiserslautern üblichen Standards durchgeführt.

Die Aufnahme der Infrarot-Spektren erfolgte an einem Perkin-Elmer 16 PC FT-IR-Spektrometer. Die Substanzen wurden im jeweils angegebenen Lösungsmittel gelöst und in Calciumfluorid-Küvetten der Schichtdicke 0.2 mm bei Raumtemperatur vermessen.

Die Kernresonanzspektren wurden an den FT-NMR-Geräten AC 200 bzw. AMX 400 der Firma Bruker unter Verwendung von unter Schutzgas abgefüllten Lösungen der zu vermessenden Substanzen in den jeweils angegebenen Lösungsmitteln bei 298 K aufgenommen, sofern nicht anders angegeben.

Die Angabe der chemischen Verschiebungen erfolgt nach der δ -Skala in ppm, die Kopplungskonstanten sind in Hertz angegeben. Die folgenden Standards und Meßfrequenzen wurden verwendet:

- ³¹P: 81.02 MHz bzw. 161.97 MHz, 85 %-ige H₃PO₄ (extern)
- ¹H: 200.13 MHz bzw. 400.14 MHz, als interner Standard wurden die Signale der in den deuterierten Lösungsmitteln vorhandenen, nicht vollständig deuterierten Moleküle verwendet; dabei wurde folgende Zuordnung getroffen:

 $\delta(C_6HD_5) = 7.20 \text{ ppm}$ $\delta(CHCl_3) = 7.25 \text{ ppm}$

 $\delta(C_7HD_7) = 2.3 \text{ ppm (Methylgruppe)}$

Die Signalaufspaltungen werden durch folgende Abkürzungen beschrieben:

s = Singulett, d = Dublett, t = Triplett, sept = Septett, m = Multiplett.

Die Massenspektren wurden von Frau Dr. G. Hornung oder Herrn Dr. R. Graf (Universität des Saarlandes, Saarbrücken) jeweils an einem MAT 90-Gerät des Herstellers Finnigan angefertigt.

Die Röntgenstrukturanalysen wurden von Herrn Dr. G. Wolmershäuser an den Geräten Stoe IPDS und Siemens P4 durchgeführt. Zur Lösung der Datensätze wurden die Programme SIR92 (Giacovazzo et al., 1993) und SHELXL-97 (Sheldrick, 1990) verwendet.

4.2. Ausgangsverbindungen

Die folgenden Ausgangsverbindungen wurden nach den angegebenen Literaturstellen hergestellt:

Tri-tert-butylcyclopentadien	56
Natriumtetraisopropylcyclopentadienyl; NaCp ⁴	4
Lithiumpentaisopropylcyclopentadienyl; $LiCp^5 \cdot Et_2O$	4
(Bromo)(dicarbonyl)(cyclopentadienyl)eisen(II); Cp ^R Fe(CO) ₂ Br (2)	4, 5
Cobaltocen	57
Silyliertes Kieselgel	58

Das zur Umsetzung mit dem P₄-Butterflymolekül [{ $Cp^4(OC)_2Fe$ }_2(μ - $\eta^{1:1}$ -P₄)] (**3b**) benötigte *tert*-Butylphosphaalkin wurde mir von Herrn Dipl.-Chem. *D. Ullrich*, Arbeitsgruppe Prof. Dr. *M. Regitz*, zur Verfügung gestellt. Dafür sei ihm an dieser Stelle nochmals herzlich gedankt. Alle übrigen Verbindungen konnten käuflich erworben werden oder waren im Labor vorrätig.

4.3. Versuchsbeschreibungen

Sämtliche nachfolgend beschriebenen Versuche wurden unter Inertgasatmosphäre (Argon, 99.998 % der Firma Messer, Griesheim) in ausgeheizten, mehrfach evakuierten und mit Argon gespülten Reaktionsgefäßen durchgeführt. Die verwendeten Lösungsmittel wurden vor Gebrauch absolutiert (Toluol : Na-Metall; THF : K-Metall; n-Hexan, n-Pentan, Petrolether: Na/K-Legierung; Dichlormethan, CDCl₃: P_4O_{10} ; C_6D_6 , C_7D_8 : LiAlH₄).

Das zur Säulenchromatographie verwendete Aluminiumoxid (Hersteller: ICN Biochemicals GmbH) wurde jeweils ca. 15 h bei 180 - 200 °C im Ölpumpenvakuum ausgeheizt, nach dem Abkühlen mit vier Prozent destilliertem Wasser desaktiviert (Aktivitätsstufe II) und unter Argon aufbewahrt. Das als Säulenmaterial verwendete Kieselgel (0.06-0.02 mm, Firma Merck) wurde zwölf Stunden bei 200 °C im Ölpumpenvakuum ausgeheizt und nach dem Abkühlen mit zwei Prozent destilliertem und entgastem Wasser desaktiviert (Aktivitätsstufe II) und unter Inertgas aufbewahrt.

Die Entfernung der Lösungsmittel erfolgte im Ölpumpenvakuum bei ca. 10⁻³ mbar. Weißer Phosphor wurde vor Gebrauch ca. 20 min im Vakuum getrocknet.

Alle photochemischen Reaktionen - außer den Aufstockungsreaktionen zu den Tripeldeckermolekülen - wurden in kühlbaren Duranglasgefäßen unter ständiger Durchmischung mit einem Inertgasstrom durchgeführt. Zur Bestrahlung wurde hierbei eine 150 W - Quecksilberhochdrucklampe (TQ 150, Fa. Heraeus Quarzlampen GmbH, Hanau) verwendet. Die Kühlung der Bestrahlungsapparatur erfolgte mit fließendem Wasser.

Zur Synthese der Tripeldeckerkomplexe wurde ein 500 W-Halogenstrahler verwendet, der in einem Abstand von etwa 10 cm zum Reaktionsgefäß aufgebaut war. Wegen der starken Wärmestrahlung der Lampe wurde die Reaktionslösung mit einem Kryostaten auf 5°C gekühlt.

4.3.1. Darstellung von Bis-[(dicarbonyl)(cyclopentadienyl)-eisen(I)]-Derivaten

Zu einer rotbraunen Lösung von 400 mg (0.94 mmol) [Cp'''Fe(CO)₂Br] (**2a**) in 50 ml Toluol tropft man bei Raumtemperatur eine schwarzbraune Lösung von 180 mg (0.95 mmol) Cobaltocen in 40 ml Toluol. Bereits zu Beginn des Zutropfens kann das Ausflocken eines gelben Feststoffes (Cp₂CoBr) beobachtet werden. Nach zwölfstündigem Rühren bei Raumtemperatur wird die Reaktion beendet und das ausgefallene Cobaltoceniumbromid abzentrifugiert. Da im schwarzbraunen Zentrifugat IR-spektroskopisch noch Spuren des Eduktes **2a** nachgewiesen werden können ($\overline{v} = 2029.1$ und 1984.4 cm⁻¹), wird der Reaktionsansatz säulenchromatographisch aufgearbeitet. Hierzu entfernt man das Lösungsmittel im Ölpumpenvakuum, nimmt den dunkelbraunen Rückstand in ca. 10 ml Dichlormethan auf, versetzt mit ca. 2g silyliertem Kieselgel und trocknet am Ölpumpenvakuum zur Rieselfähigkeit.

Das so erhaltene Gemisch wird auf eine mit Petrolether und Kieselgel (Aktivitätsstufe II) gefüllte Säule (2 x 20 cm) gegeben. Mit einem PE/Toluol = 5:1-Gemisch eluiert man eine rotviolette Fraktion, die IR-spektroskopisch als $[{Cp'''(OC)_2Fe}_2]$ (1a) identifiziert werden kann. Mit reinem Toluol lassen sich Spuren an nicht umgesetztem $[Cp'''Fe(CO)_2Br]$ (2a) als rotbraune Lösung eluieren bzw. regenerieren.

Die Synthese des Tetraisopropylderivates $[{Cp^4(OC)_2Fe}_2]$ (1b) verläuft analog.

[{Cp'''(OC)₂Fe}₂] (1a):

Ansatz:	400 mg (0.94 mmol) [Cp"'Fe	$e(CO)_2Br]$ (2a)	
	180 mg (0.95 mmol) Cobalt	ocen Cp ₂ Co	
Ausbeute:	140 mg (0.20 mmol) [{Cp'''($(OC)_2Fe_2]$ (1a)	= 21.3 % bezogen auf 2a
$C_{38}H_{58}Fe_2O_4$	(M = 690.572 g/mol): ber.:	66.09 % C	8.47 % H
	gef.:	66.33 % C	8.28 % H

$[{Cp^4(OC)_2Fe}_2] (1b):$

Ansatz:	182.4 mg (0.43 mmol) $[Cp^4Fe(CO)_2Br]$ (2b)				
	91.4 mg (0.43 mmol) Cobal	tocen Cp ₂ Co			
Ausbeute:	220.0 mg (0.32 mmol) [{Cp	$^{4}(OC)_{2}Fe_{2}](1)$	b)		
	\equiv 74.4 % bezogen auf 2 Äqu	uvalente [Cp ⁴ H	$Fe(CO)_2Br]$ (2b)		
$C_{38}H_{58}Fe_2O_4$	(M = 690.572 g/mol): ber.:	66.09 % C	8.47 % H		
	gef.:	65.03 % C	8.58 % H		

4.3.2. Synthese der Bis-[(dicarbonyl)(cyclopentadienyl)eisen(II)]-[1.1.0]-tetraphosphabicyclobutan-Moleküle 3a – 3c

In einem 250 ml-Zweihalskolben mit Hahn und Rückflußkühler versetzt man eine rotviolette Lösung von 240 mg (0.348 mmol) [$\{Cp'''(OC)_2Fe\}_2$] (**1a**) in 50 ml Toluol bei Raumtemperatur unter Rühren mit 50 mg (0.404 mmol) frisch getrocknetem weißen Phosphor. Anschließend erhitzt man das Reaktionsgemisch langsam zum Rückfluß. Bereits nach zwei Minuten ist die Farbe der Lösung nach gelb-orange umgeschlagen. Im IR-Spektrum der Rohlösung können die beiden Carbonylgruppen von **1a** nicht mehr detektiert werden, statt dessen findet man zwei neue Banden im für terminal koordinierte Carbonylliganden typischen Bereich. Um geringe Mengen an nicht umgesetztem weißen Phosphor vom Produkt abzutrennen, arbeitet man das hellbraune Rohprodukt, das nach Entfernen des Lösungsmittels aus der Rohlösung anfällt, säulenchromatographisch an Kieselgel auf. Hierzu wird der Rückstand in ca. 10 ml Dichlormethan gelöst, mit ca. 2 g silyliertem Kieselgel versetzt und im Ölpumpenvakuum bis zur Rieselfähigkeit getrocknet. Das so erhaltene braune Pulver wird auf eine mit Petrolether und Kieselgel gepackte Säule (20 x 1 cm, -20°C (Kryostat)) aufgetragen.

Mit Petrolether eluiert man zunächst eine gelbe Fraktion des überschüssigen weißen Phosphors. Mit einem Petrolether/Toluol = 5:1-Gemisch lassen sich Spuren einer rotvioletten Lösung von **1a** regenerieren. Mit einem 1:1-Gemisch der gleichen Solventien eluiert man schließlich eine leuchtend-orange Fraktion, aus der nach Entfernen der Lösungsmittel ein hellbraunes Pulver von [{Cp'''(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (**3a**) verbleibt.

Analog der hier für das Tri-*tert*-butylcyclopentadienylderivat **3a** beschriebenen Synthese kann auch das Tetraisopropylcyclopentadienylderivat **3b** hergestellt und aufgearbeitet werden.

Die Synthese des Pentaisopropylcyclopentadienylderivates **3c** erfordert allerdings eine etwas andere Versuchsführung. Die hierzu benötigte Ausgangsverbindung [{ $Cp^5(OC)_2Fe$ }^] (**1c**) liegt bereits bei RT in Lösung als Radikal vor. Daher kühlt man eine grüne Lösung von 390 mg (0.99 mmol) **1c** im Eisbad auf 0°C und versetzt mit 70 mg (0.56 mmol) frisch getrocknetem weißen Phosphor. Danach entfernt man das Eisbad und rührt zwei Minuten bei RT. In dieser Zeit schlägt die Farbe der Reaktionslösung nach gelb-orange um und die beiden für **1c** charakteristischen Carbonylbanden sind im IR-Spektrum der Reaktionslösung zugunsten zweier neuer Banden verschwunden. Die Aufarbeitung des P₄-Butterflymoleküls [{ $Cp^5(OC)_2Fe$ }_2(μ - $\eta^{1:1}$ -P₄)] (**3c**) erfolgt analog der oben für **3a** beschriebenen Methode.

$[\{Cp^{\prime\prime\prime}(OC)_2Fe\}_2(\mu\text{-}\eta^{1:1}\text{-}P_4)]\ (3a):$

Ansatz:	240 n	240 mg (0.35 mmol) [{Cp'''(OC) ₂ Fe} ₂] (1a)				
	50 m	g (0.40 mmol) P ₄				
Ausbeute:	220 n	ng (0.27 mmol) [{Cp'''(OC)2	${}_{2}Fe\}_{2}(\mu-r)$	$[1^{1:1}-P_4)]$ (3a)		
	≡77.	6 % bezogen auf 1a				
$C_{38}H_{58}Fe_2O_4P_4$		(M = 814.468 g/mol):	ber.:	56.04 % C	7.18 % H	
			gef.:	55.87 % C	7.11 % H	

$[\{Cp^4(OC)_2Fe\}_2(\mu\text{-}\eta^{1:1}\text{-}P_4)]~(3b)$:

Ansatz:	400 r	ng (0.58 mmol) [{ $Cp^4(OC)_2$	Fe_{2} (1b))	
	80 m	g (0.65 mmol) P ₄			
Ausbeute:	350 mg (0.43 mmol) [{ $Cp^{4}(OC)_{2}Fe$ } ₂ (μ - $\eta^{1:1}$ -P ₄)] (3b)				
	≡ 74.	1 % bezogen auf 1b			
$C_{38}H_{58}Fe_2O_4P_4$		(M = 814.468 g/mol):	ber.:	56.04 % C	7.18 % H
			gef.:	54.37 % C	7.16 % H

[{ $Cp^{5}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ - P_{4})] (3c):

Ansatz:	620 n	$100 \text{ mmol} = \{ Cp^5(OC) \}$	${}_{2}Fe^{i} (1c)$		
	130 n	ng (1.05 mmol) P ₄			
Ausbeute:	570 mg (0.63 mmol) [{Cp ⁵ (OC) ₂ Fe} ₂ (μ - $\eta^{1:1}$ -P ₄)] (3c)				
	≡ 78.8	8 % bezogen auf 1c			
C44H70Fe2O4	P_4	(M = 898.630 g/mol):	ber.:	58.81 % C	7.85 % H
			gef.:	57.14 % C	7.41 % H

4.3.3. Langzeit-Thermolyse von [{Cp^R(OC)₂Fe}₂] (1) in Gegenwart von überschüssigem weißen Phosphor

In einem 250 ml-Zweihalskolben mit Hahn und Rückflußkühler gibt man bei Raumtemperatur zu einer rotvioletten Lösung von 350 mg (0.51 mmol) [{Cp'''(OC)₂Fe}₂] (**1a**) in 120 ml Dekalin unter Rühren 350 mg (2.83 mmol) frisch getrockneten weißen Phosphor. Das Reaktionsgemisch wird langsam zum Rückfluß erhitzt. Nach drei Stunden können die Carbonylbanden des Eduktes 1a im IR-Spektrum der grau-grünen Reaktionslösung nicht mehr detektiert werden. Nach Abkühlen des Reaktionsgemisches auf Raumtemperatur wird das Lösungsmittel im Vakuum abdestilliert. Der schwarz-grüne ölige Rückstand wird in ca. 10 ml Dichlormethan aufgenommen, mit ca. 2 g Kieselgel (II) versetzt und am Ölpumpenvakuum zur Rieselfähigkeit getrocknet. Das so erhaltene Pulver wird auf eine chromatographische Säule (20 x 2 cm, Petrolether, SiO₂ (II)) aufgetragen. Mit Petrolether eluiert man zunächst nicht abreagierten weißen Phosphor in einer gelben Fraktion. Anschließend erhält man mit dem gleichen Eluens $[Cp'''Fe(\eta^5-P_5)]$ (4a) in einer intensiv grünen Fraktion, aus der nach Entfernen des Lösungsmittels 190 mg (0.43 mmol) grüne Nadeln von 4a zurückbleiben. Ein Petrolether/ Toluol = 5:2-Gemisch eluiert schließlich eine rotviolette Fraktion, aus der nach Entfernen der Solventien 30 mg (0.04 mmol) $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (5a) als rotviolettes Pulver zurückbleiben. Die isopropylsubstituierten Derivate 1b und 1c reagieren analog.

 $[Cp'''Fe(\eta^5-P_5)]$ (4a) und $[\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_4)]$ (5a):

<u>Ansatz:</u>	350 mg (0.51 mmol) $[{Cp'''(OC)_2Fe}_2]$ (1a)
	350 mg (2.83 mmol) weißer Phosphor, P_4
Ausbeuten:	190 mg (0.43 mmol) [Cp'''Fe(η^5 -P ₅)] (4a) = 84.3 % bezogen auf 1a
	30 mg (0.04 mmol) [{Cp'''Fe} ₂ (μ - $\eta^{4:4}$ -P ₄)] (5a) = 7.8 % bezogen auf 1a

4 a:	$C_{17}H_{29}FeP_5$	(M = 444.136 g/mol):	ber.:	48.08 % C	6.60 % H
			gef.:	47.66 % C	6.77 % H
5a:	$C_{34}H_{58}Fe_2P_4$	(M = 702.428 g/mol):	ber.:	58.14 % C	8.32 % H
			gef.:	56.77 % C	8.19 % H

$[Cp^{4}Fe(\eta^{5}-P_{5})]$ (4b) und $[\{Cp^{4}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})]$ (5b):

Ansatz:	550 mg (0.80 mmol) [{ $Cp^4(OC)_2Fe$ }] (1b)
	560 mg (4.52 mmol) weißer Phosphor, P_4
Ausbeuten:	240 mg (0.54 mmol) $[Cp^4Fe(\eta^5-P_5)]$ (4b) = 52.9 % bezogen auf 1b
	40 mg (0.06 mmol) [{ Cp^4Fe } ₂ (μ - $\eta^{4:4}$ - P_4)] (5b) = 7.5 % bezogen auf 1b

4 b:	$C_{17}H_{29}FeP_5$	(M = 444.136 g/mol):	ber.:	48.08 % C	6.60 % H
			gef.:	48.04 % C	6.63 % H
5b:	$C_{34}H_{58}Fe_2P_4$	(M = 702.428 g/mol):	ber.:	58.14 % C	8.32 % H

Von [{ Cp^4Fe }₂(μ - $\eta^{4:4}$ - P_4)] (**5b**) konnte bislang keine Elementaranalyse erhalten werden.

$[Cp^5Fe(\eta^5\text{-}P_5)]~(4c)~und~[\{Cp^5Fe\}_2(\mu\text{-}\eta^{4:4}\text{-}P_4)]~(5c)$:

Ansatz:	230 mg (0.60 mmol) [{ $Cp^{5}(OC)_{2}Fe$ }] (1c)
	210 mg (1.70 mmol) weißer Phosphor, P_4
Ausbeuten:	90 mg (0.19 mmol) [$Cp^5Fe(\eta^5-P_5)$] (4c)
	$\equiv 61.7$ % bezogen auf 1c
	30 mg (0.04 mmol) [{ $Cp^{5}Fe$ } ₂ (μ - $\eta^{4:4}$ - P_{4})] (5c)
	$\equiv 13.3$ % bezogen auf 1c

4c :	$C_{20}H_{35}FeP_5$	(M = 486.217 g/mol):	ber.:	49.41 % C	7.26 % H
			gef.:	49.66 % C	7.32 % H
5c:	$C_{40}H_{70}Fe_2P_4$	(M = 786.590 g/mol):	ber.:	61.08 % C	8.97 % H

Von [{ $Cp^{5}Fe$ }₂(μ - $\eta^{4:4}$ - P_{4})] (**5**c) konnte bislang keine Elementaranalyse erhalten werden.

4.3.4. Thermolyse von $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (3)

In einem 250 ml-Zweihalskolben mit Hahn und Rückflußkühler erhitzt man eine orangerote Lösung von 720 mg (0.88 mmol) [{Cp'''(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (**3a**) in 100 ml Dekalin langsam zum Rückfluß. Nach drei Stunden können im IR-Spektrum der Rohlösung keine Carbonylliganden mehr nachgewiesen werden. Im ³¹P-NMR-Spektrum erkennt man ausschließlich die charakteristischen Signale von [Cp'''Fe(η^5 -P₅)] (**4a**) und [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**). Die beiden Produkte lassen sich - wie bereits im vorangegangenen Kapitel beschrieben - säulenchromatographisch trennen.

Die beiden isopropylsubstituierten P₄-Butterflymoleküle **3b** und **3c** reagieren völlig analog.

Ansatzgrößen und Ausbeuten (bezogen auf 3):

a) 720 mg (0.88 mmol) [{Cp'''(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (**3a**)

100 mg (0.25 mmol) [Cp'''Fe(η^5 -P₅)] (**4a**) = 26 % 160 mg (0.23 mmol) [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**) = 26 %

b) 820 mg (1.01 mmol) [{Cp⁴(OC)₂Fe}₂(
$$\mu$$
- η ^{1:1}-P₄)] (**3b**)

110 mg (0.25 mmol) [Cp⁴Fe(η^{5} -P₅)] (**4b**) \equiv 24.8 % 160 mg (0.23 mmol) [{Cp⁴Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5b**) \equiv 22.8 %

c) 420 mg (0.47 mmol) [{Cp⁴(OC)₂Fe}₂(
$$\mu$$
- η ^{1:1}-P₄)] (**3b**)

50 mg (0.10 mmol) [Cp⁴Fe(η^{5} -P₅)] (**4b**) = 21.3 % 70 mg (0.09 mmol) [{Cp⁴Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5b**) = 19.1 %
4.3.5. Synthese von $[Cp'''Fe(\eta^5-P_5)]$ (4a) aus $[\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_4)]$ (5a)

Zu einer rotvioletten Dekalinlösung von 700 mg (1.00 mmol) [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**) gibt man bei RT unter Rühren 750 mg (6.05 mmol) frisch getrockneten weißen Phosphor und erhitzt das Reaktionsgemisch zum Rückfluß. Der Verlauf der Reaktion wird ständig ³¹P-NMR-spektroskopisch verfolgt. Nach etwa zehn Stunden kann zwar das charakteristische Singulett von **4a** detektiert werden, daneben treten aber noch die Signale von **5a** und des weißen Phosphors auf. Allerdings läuft die Reaktion auch trotz längerer Thermolysedauer nicht mehr weiter. Das Reaktionsgemisch kann aber säulenchromatographisch aufgetrennt werden (s. vorangegangene Kapitel). Der so regenerierte *pseudo*-Tripeldeckerkomplex **5a** kann dann erneut zusammen mit überschüssigem weißen Phosphor in Dekalin thermolysiert werden. Wiederholt man diesen Vorgang dreimal, so lassen sich insgesamt 260 mg (0.59 mmol) [Cp'''Fe(η^5 -P₅)] (**4a**) isolieren.

<u>Ausbeute:</u> 260 mg (0.59 mmol) [Cp'''Fe(η^5 -P₅)] (**4a**) = 59.0 % bezogen auf **5a**

4.3.6. Photolyse von [{Cp'''(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (3a)

Bestrahlt man eine orangerote Lösung von 700 mg (0.86 mmol) [{Cp'''(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (**3a**) in 100 ml Toluol oder THF, so können nach 20 Minuten die Carbonylbanden des Edukts **3a** IR-spektroskopisch nicht mehr nachgewiesen werden. Statt dessen findet man zwei neue Banden im für terminal koordinierte Carbonylbanden typischen Bereich. Im ³¹P-NMR-Spektrum der braunen Reaktionslösung detektiert man neben dem Signal von **5a** einen Signalsatz aus zwei dublettierten Tripletts und einem Doppeldublett.

Nach Entfernen des Lösungsmittels nimmt man den dunkelbraunen Rückstand in wenig Dichlormethan auf, versetzt mit ca. 1g silyliertem Kieselgel, trocknet am Ölpumpenvakuum zur Rieselfähigkeit und trägt das braune Pulver auf eine mit Petrolether und Aluminiumoxid gefüllte Säule (20 x 1 cm, Al_2O_3 (II)) auf. Mit Petrolether eluiert man zunächst geringe Mengen an weißem Phosphor in einer gelben Fraktion. Anschließend erhält man mit einem PE/Toluol = 5:2-Gemisch eine rotviolette Fraktion, aus der nach Entfernen der Lösungsmittel 40 mg (0.06 mmol) **5a** als rotviolettes Pulver zurückbleiben. Mit einem 5:3-Gemisch der gleichen Eluentien erhält man schließlich eine grau-grüne Fraktion, aus der nach Entfernen der Solventien 180 mg (0.24 mmol) [{Cp'''Fe}(μ - $\eta^{4:1}$ -P₄){Fe(CO)₂Cp'''}] (**6a**) als dunkelgrünes Pulver verbleiben.

Ausbeuten: 40 mg (0.06 mmol) [{Cp'''Fe}₂(
$$\mu$$
- $\eta^{4:4}$ -P₄)] (**5a**) = 7.0 % bezogen auf **3a**
180 mg (0.24 mmol) [{Cp'''Fe}(μ - $\eta^{4:1}$ -P₄){Fe(CO)₂Cp'''}] (**6a**)
= 27.9 % bezogen auf **3a**
6a: C₃₆H₅₈Fe₂P₄O₂ (M = 758.448 g/mol): ber.: 57.01 % C 7.71 % H
gef.: 56.80 % C 7.95 % H

4.3.7. Decarbonylierung von [{Cp'''Fe}(μ - $\eta^{4:1}$ -P₄){Fe(CO)₂Cp'''}] (6a)

Eine dunkelgrüne Lösung von [{Cp'''Fe}(μ - $\eta^{4:1}$ -P₄){Fe(CO)₂Cp'''}] (**6a**) in Toluol wird solange am Rückfluß erhitzt, bis im IR-Spektrum der Rohlösung keine Carbonylliganden mehr nachgewiesen werden können (Dauer: ca. 3h). Alternativ kann die Decarbonylierung auch durch dreistündiges Bestrahlen der Lösungen von **6a** erreicht werden. In beiden Fällen erkennt man in den ³¹P-NMR-Spektren der Rohlösungen ausschließlich die Signale von [Cp'''Fe(η^5 -P₅)] (**4a**) und [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**). Da beide Decarbonylierungsprodukte von **6a** bereits auf anderem Weg hergestellt und charakterisiert werden konnten, wurde an dieser Stelle auf eine säulenchromatographische Aufarbeitung des Rohproduktes verzichtet.

4.3.8. Orientierender Versuch zur Herstellung von $[{Cp^{*'}(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3d)

In einem 250 ml-Zweihalskolben mit Hahn und Rückflußkühler gibt man zu einer rotvioletten Lösung von 720 mg (1.38 mmol) [{Cp*'(OC)₂Fe}₂] (**1d**) in 100 ml Toluol bei RT unter Rühren 220 g (1.78 mmol) frisch getrockneten weißen Phosphor zu. Das Reaktionsgemisch wird langsam zum Rückfluß erhitzt und ständig IR-spektroskopisch kontrolliert. Da allerdings auch nach zwölfstündiger Cothermolyse lediglich die Carbonylliganden des Eduktes nachgewiesen werden können, wird die siedende Reaktionslösung zusätzlich bestrahlt^{*}). Nach dreistündiger Photothermolyse sind im IR-Spektrum die Eduktcarbonylbanden von **1d** zugunsten zweier neuer Banden im Bereich terminal koordinierter CO-Liganden verschwunden. Anhand des ³¹P-NMR-Spektrums kann man auf die Bildung von drei verschiedenen Produkten schließen.

Daher wird das dunkelbraune Rohprodukt nach Entfernen des Lösungsmittels säulenchromatographisch an Kieselgel aufgearbeitet. Hierzu wird der Rückstand in ca. 10 ml Dichlormethan gelöst, mit ca. 2 g silyliertem Kieselgel versetzt und im Ölpumpenvakuum bis zur Rieselfähigkeit getrocknet. Das so erhaltene dunkelbraune Pulver wird auf eine mit Petrolether und Kieselgel(II) gepackte Säule (20 x 1 cm, -20°C (Kryostat)) aufgetragen.

Mit Petrolether eluiert man zunächst eine intensiv grüne Lösung von $[Cp^*Fe(\eta^5-P_5)]$ (4d). Ein PE/Toluol = 5:2-Gemisch eluiert eine rotviolette Lösung von $[\{Cp^*Fe\}_2(\mu-\eta^{4:4}-P_4)]$ (5d). Mit einem 1:1-Gemisch der gleichen Solventien erhält man schließlich eine leuchtendorange Fraktion, aus der nach Entfernen der Lösungsmittel ein hellbraunes Pulver von $[\{Cp^*(OC)_2Fe\}_2(\mu-\eta^{1:1}-P_4)]$ (3d) verbleibt. Allerdings lassen sich die drei Produkte nicht sauber trennen, so daß alle drei Fraktionen noch leicht verunreinigt sind. Daher können keine Ausbeuten und Elementaranalysen angegeben werden.

^{*)} Anm.: Hierzu wird eine wassergekühlte Tauchlampenapparatur verwendet, die in einem Abstand von ca. 10 cm zum Reaktionskolben aufgebaut wird

4.3.9. Umsetzung von [{Cp'''(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (3a) mit Diphenylacetylen

Im einem 250 ml-Zweihalskolben mit Hahn und Rückflußkühler gibt man bei RT zu einer orangeroten Lösung von 320 mg (0.39 mmol) [{Cp'''(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (**3a**) in 100 ml Toluol unter Rühren 70 mg (0.39 mmol) Diphenylacetylen (PhC=CPh) und erhitzt das Reaktionsgemisch langsam zum Rückfluß. Nach 48 Stunden bei einer Reaktionstemperatur von 110 °C können die beiden IR-Banden des Edukts **3a** nicht mehr detektiert werden. Im ³¹P-NMR-Spektrum der Rohlösung (s. S. 54) erkennt man neben dem breiten Signal von **5a** die Peaks von drei neuen Verbindungen.

Nach Entfernen des Lösungsmittels kann der Reaktionsansatz säulenchromatographisch an Kieselgel aufgearbeitet werden. Hierzu löst man zunächst den dunkelbraunen Rückstand in ca. 10 ml Dichlormethan, versetzt mit 2 g silyliertem Kieselgel und trocknet am Ölpumpenvakuum zur Rieselfähigkeit. Das so erhaltene dunkelbraune Pulver wird auf eine mit Petrolether und Kieselgel(II) gepackte Säule (20 x 1 cm) aufgetragen.

Mit Petrolether eluiert man eine grau-grüne Fraktion, aus der man nach Entfernen des Lösungsmittels 90 mg (0.16 mmol) [Cp'''Fe(η^5 -{P₃(CPh)₂})] (**7a**) als anthrazitfarbenes Pulver erhält. Mit einem PE/Toluol = 5:1-Gemisch erhält man eine hellbraune Lösung, aus der nach Entfernen der Solventien 20 mg (0.04 mmol) eines hellbraunen Pulvers von [Cp'''Fe(η^5 -{P₄(CPh)})] (**8a**) isoliert werden können. Mit einem 5:2-Gemisch der gleichen Lösungsmittel eluiert man schließlich eine orangerote Fraktion, die bislang nicht charakterisiert werden konnte. Die im ³¹P-NMR-Rohspektrum detektierte "Verunreinigung" durch [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**5a**) konnte nach der säulenchromatographischen Aufarbeitung in keiner der drei Fraktionen nachgewiesen werden.

Ausbeuten:90 mg (0.16 mmol) [Cp'''Fe(
$$\eta^5$$
-{P₃(CPh)₂})] (7a) = 41.0 % bezogen auf 3a7a:C₃₁H₃₉FeP₃ (M = 560.422 g/mol): ber.:66.44 % C7.01 % Hgef.:66.45 % C6.90 % H

20 mg (0.04 mmol) [Cp'''Fe(
$$\eta^5$$
-{P₄(CPh)})] (8a) = 10.3 % bezogen auf 3a
8a: C₂₄H₃₄FeP₄ (M = 502.279 g/mol): ber.: 57.39 % C 6.82 % H

Von $[Cp'''Fe(\eta^5 - \{P_4(CPh)\})]$ (8a) konnte bislang keine Elementaranalyse erhalten werden.

4.3.10. Umsetzung von [{ $Cp^{5}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ - P_{4})] (3c) mit Diphenylacetylen

In einem 250 ml-Zweihalskolben mit Hahn und Rückflußkühler gibt man bei RT zu einer orangeroten Toluollösung von 860 mg (0.96 mmol) [{ $Cp^{5}(OC)_{2}Fe$ }_2(μ - $\eta^{1:1}$ -P₄)] (**3c**) unter Rühren 170 mg (0.96 mmol) Diphenylacetylen (PhC=CPh) und erhitzt das Reaktionsgemisch langsam zum Rückfluß. Nach 48 Stunden bei einer Reaktionstemperatur von 110 °C können die beiden IR-Banden des Edukts **3a** nicht mehr detektiert werden. Im ³¹P-NMR-Spektrum der Rohlösung (s. S. 54) erkennt man neben dem charakteristischen Signal von [$Cp^{5}Fe(\eta^{5}-P_{5})$] (**4c**) die Resonanzen dreier neuer Verbindungen.

Nach Entfernen des Lösungsmittels kann der Reaktionsansatz säulenchromatographisch an Aluminiumoxid aufgearbeitet werden. Hierzu löst man zunächst den dunkelbraunen Rückstand in ca. 10 ml Dichlormethan, versetzt mit 2 g silyliertem Kieselgel und trocknet am Ölpumpenvakuum zur Rieselfähigkeit. Das so erhaltene dunkelbraune Pulver wird auf eine mit Petrolether und Aluminiumoxid(II) gepackte Säule (20 x 1 cm) aufgetragen.

Mit Petrolether eluiert man eine grau-grüne Fraktion, aus der man nach Entfernen des Lösungsmittels 210 mg (0.35 mmol) $[Cp^5Fe(\eta^5-\{P_3(CPh)_2\})]$ (**7c**) als anthrazitfarbenes Pulver erhält. Mit einem PE/Toluol = 5:1-Gemisch erhält man eine hellbraune Lösung, aus der nach Entfernen der Solventien 50 mg (0.09 mmol) eines hellbraunen Pulvers von $[Cp^5Fe(\eta^5-\{P_4(CPh)\})]$ (**8c**) isoliert werden können. Mit einem 1:1-Gemisch der gleichen Lösungsmittel eluiert man schließlich eine dunkelrote Fraktion, die den Undecaphosphor-Komplex $[\{Cp^5Fe\}_3(CO)_4P_{11}]$ (**9**) enthält.

 $[Cp^5Fe(\eta^5-P_5)]$ (4c) zersetzt sich bei säulenchromatographischer Aufarbeitung an Al₂O₃ und kann daher bei dieser Art der Aufarbeitung nicht isoliert werden.

<u>Ausbeuten:</u> 210 mg (0.35 mmol) $[Cp^{5}Fe(\eta^{5}-\{P_{3}(CPh)_{2}\})]$ (7c) \equiv 36.5 % bezogen auf 3c 50 mg (0.09 mmol) $[Cp^{5}Fe(\eta^{5}-\{P_{4}(CPh)\})]$ (8c) \equiv 9.4 % bezogen auf 3c 90 mg (0,06 mmol) $[\{Cp^{5}Fe\}_{3}(CO)_{4}P_{11}]$ (9) \equiv 6.5 % bezogen auf 3c

Von allen drei Produkten konnten bislang keine Elementaranalysen erhalten werden.

4.3.11. Umsetzung von [{Cp⁴(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (3b) mit 2-Butin

In einem 250-ml-Dreihalskolben mit Hahn und Rückflußkühler tropft man bei 0 °C einer orangeroten von 590 (Eisbadkühlung) zu Lösung mg (0.72)mmol) $[{Cp^4(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3b) in 100 ml Toluol unter Rühren eine gekühlte, farblose Lösung von 40 mg (58 ml, 0.74 mmol) 2-Butin langsam zu. Nach beendeter Zugabe entfernt man das Eisbad und erhitzt das Reaktionsgemisch langsam zum Rückfluß. Nach zweitägiger Cothermolyse können im IR-Spektrum der Reaktionslösung die Carbonylbanden von 3b nicht mehr nachgewiesen werden. Das ³¹P-NMR-Spektrum deutet auf die Bildung mehrerer Produkte hin. Das Lösungsmittel wird im Ölpumpenvakuum entfernt und der dunkelbraune Rückstand in ca. 10 ml Dichlormethan aufgenommen. Danach versetzt man mit ca. 2 g silvliertem Kieselgel, trocknet am Ölpumpenvakuum bis zur Rieselfähigkeit und trägt das so erhaltene dunkelbraune Pulver auf eine mit Petrolether und Aluminiumoxid gepackte chromatographische Säule (20 x 1 cm) auf.

Mit Petrolether eluiert man eine dunkelbraune Fraktion, die neben geringen Mengen an $[{Cp^4Fe}_2(\mu-\eta^{4:4}-P_4)]$ (**5b**) das neuartige Sandwichmolekül $[Cp^4Fe(\eta^5-{P_3(CMe)_2})]$ (**10**) enthält ^{*)}. Mit einem PE/Toluol = 5:2-Gemisch erhält man $[{Cp^4Fe}_2(\mu-\eta^{4:4}-P_4)]$ (**5b**) in einer rotvioletten Fraktion. Ein 1:1-Gemisch der gleichen Lösungsmittel eluiert schließlich eine dunkelbraune Fraktion, die allerdings bislang nicht charakterisiert werden konnte.

 $[Cp^4Fe(\eta^5-\{P_3(CMe)_2\})]$ (10) konnte bislang nicht in reiner Form isoliert werden.

^{*)} Eine Trennung dieser beiden in der ersten Fraktion enthaltenen Verbindungen läßt sich auch nicht durch erneute Säulenchromatographie (PE; Al₂O₃; 20 x 2 cm) erreichen.

4.3.12. Umsetzung von [{ $Cp^4(OC)_2Fe$ }₂(μ - $\eta^{1:1}$ - P_4)] (3b) mit *tert*-Butylphosphaalkin

In einem Druckschlenkrohr gibt man zu einer dunkelroten Lösung von 600 mg (0.74 mmol) $[{Cp^4(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (3b) in 15 ml Toluol unter Rühren bei Raumtemperatur 82.3 mg (108.3 µl, 0.74 mmol) tert-Butylphosphaalkin (^tBuC=P) zu und erhitzt im geschlossenen System auf 120 °C (Ölbadtemperatur). Da in einem zur Reaktionskontrolle angefertigten ³¹P-NMR-Spektrum nach zwölfstündiger Thermolyse kein ^tBuC=P mehr, aber noch beträchtliche Mengen an 3b nachgewiesen werden können, wird das erkaltete Reaktionsgemisch mit weiteren 100 µl (0.68 mmol) ^tBuC=P versetzt und erneut auf 120 °C erhitzt. Nach insgesamt 48 Stunden sind beide Edukte vollständig abreagiert. Im ³¹P-NMR-Spektrum der Reaktionslösung erkennt man eine Vielzahl von Signalen. Das Lösungsmittel wird im Ölpumpenvakuum entfernt, der dunkelbraune Rückstand in 5 ml Dichlormethan aufgenommen, mit ca. 1 g silvliertem Kieselgel versetzt und zur Rieselfähigkeit getrocknet. Anschließend trägt man auf eine mit Petrolether und Kieselgel(II) gepackte Säule (20 x 1 cm) auf. Mit Petrolether eluiert man eine dunkelbraune Fraktion, die aus mindestens einer phosphorhaltigen Verbindung besteht, aber bislang nicht charakterisiert werden konnte. Bei sukzessiver Erhöhung der Polarität der Eluentien bis hin zu reinem THF können keine weiteren Fraktionen erhalten werden.

Der nach Entfernen des Lösungsmittels aus der einzigen Fraktion verbleibende dunkelbraune Rückstand wird zur weiteren Reinigung in wenig n-Pentan gelöst und bei -80 °C kristallisiert. Da aber weder in der Lösung, noch im Kristallisat die zuvor detektierten ³¹P-NMR-Signale gefunden wurden, statt dessen sogar eine Vielzahl nicht interpretationsfähiger Multipletts auftraten, wurden keine weiteren Versuche zur Aufarbeitung des Reaktionsansatzes unternommen.

4.3.13. Synthese von kationischen Tripeldeckerkomplexen mit fünfgliedrigem heteroaromatischem Mitteldeck.

In einem Schlenkrohr gibt man zur intensiv grünen Dichlormethanlösung von 292.3 mg (0.66 mmol) [Cp'''Fe(η^5 -P₅)] (**4a**) unter Rühren 226.4 mg (0.66 mmol) [CpFe(η^6 -C₆H₆)]⁺(PF₆⁻) zu und bestrahlt das Gemisch mit einem 500 W-Halogenstrahler zwölf Stunden lang. Dabei wird die Lösung mit einem Kühlfinger auf 5 °C gekühlt. Im ³¹P-NMR-Spektrum der blauschwarzen Reaktionslösung kann das Singulett von **4a** nicht mehr nachgewiesen werden. Statt dessen findet man den Signalsatz von [{Cp'''Fe}(μ - $\eta^{5:5}$ -P₅){FeCp}]⁺(PF₆⁻) (**11a**), der aus einem Singulett und einem Septett besteht. Allerdings ist es bislang nicht gelungen, aus dem öligen schwarzen Rohprodukt, das man nach Entfernen des Lösungsmittels erhält, durch Umkristallisation aus Hexan/Dichlormethan-Gemischen pulvriges Material zu erhalten, das sich zur Elementaranalyse eignet. Auch Versuche zur säulenchromatographischen Reinigung an verschiedenen stationären Phasen (Kieselgel, Aluminiumoxid oder silyliertes Kieselgel) schlugen fehl.

Das Tetraisopropylderivat $[Cp^4Fe(\eta^5-P_5)]$ (**4b**) reagiert völlig analog und verursacht die gleichen Probleme bei der Aufarbeitung.

Auch das 1,2,3-Triphospholyl-Sandwichmolekül $[Cp'''Fe(\eta^5 - \{P_3(CPh)_2\})]$ (**7a**) läßt sich unter photochemischen Bedingungen mit $[CpFe(\eta^6 - C_6H_6)]^+(PF_6^-)$ analog umsetzen.

Bestrahlt man eine grau-grüne Lösung von 100 mg (0.18 mmol) $[Cp'''Fe(\eta^5-{P_3(CPh)_2})]$ (7a) in 15 ml Dichlormethan zusammen mit 60 mg (0.17 mmol) $[CpFe(\eta^6-C_6H_6)]^+(PF_6^-)$ mit einem 500 W-Halogenstrahler und kühlt dabei die Reaktionslösung mit einem Kühlfinger auf 5 °C, so erkennt man nach zwölf Stunden einen Farbumschlag nach dunkelbraun. In einem zur Reaktionskontrolle angefertigten ³¹P-NMR-Spektrum tritt neben den Eduktsignalen ein Signalsatz aus einem Triplett, einem Dublett und einem Septett auf. Auch eine längere Bestrahlung (insgesamt 24 h) führt nicht zu einer weiteren Umsetzung des Edukts. Das Edukt/Produkt-Gemisch kann weder durch fraktionierende Kristallisation, noch durch Säulenchromatographie (verwendete Trägermaterialien: Kieselgel, Aluminiumoxid oder silyliertes Kieselgel) getrennt werden.

4.3.14. Umsetzung von [{ $Cp^{R}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ - P_{4})] (3) mit Elementen der 16. Gruppe

Die Umsetzungen der P₄-Butterflymoleküle **3** mit Elementen der 16. Gruppe (S₈, Se_(grau), $Te_{(met.)}$) wird nachfolgend exemplarisch für die Selenierung beschrieben:

In einem 100 ml-Kolben mit Hahn gibt man zu einer orangeroten Lösung von 250 mg (0.31 mmol) [{Cp'''(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (**3a**) in 50 ml Dichlormethan bei RT unter Rühren 100 mg (1.27 mmol) graues Selen zu. Bereits nach wenigen Minuten erkennt man in den zur Reaktionskontrolle angefertigten ³¹P-NMR-Spektren eine Vielzahl von Signalen. Weder eine Variation der Reaktionsparameter Temperatur und Zeit, noch eine Variation der Eduktstöchiometrie oder der Einsatz der isopropylsubstituierten Derivate **3b** und **3c** führt zu übersichtlicheren Produktbildern.

Erfolglos verliefen auch sämtliche Versuche zur säulenchromatographischen Aufarbeitung (selbst unter Variation der Trägermaterialien oder der Arbeitstemperatur) oder zur fraktionierenden Kristallisation.

Die Sulfurierungs- und Tellurierungsexperimente verliefen ebenso unübersichtlich.

4.3.15. Umsetzung von [Cp^{'''}Fe(η⁵-P₅)] (4a) mit Silber(I)-Salzen

In einem durch Alufolie vor Lichteintritt geschützten 50 ml-Einhalskolben mit Hahn gibt man zur dunkelgrünen Lösung von 146.4 mg (0.33 mmol) [Cp'''Fe(η^5 -P₅)] (4a) in 15 ml Dichlormethan bei RT unter Rühren 63.4 mg (0.33 mmol) AgBF₄ als Feststoff. Bereits nach ca. fünf Minuten erkennt man eine Farbumschlag nach dunkelbraun und die Abscheidung von Silber, das über Cellite abgefiltert wird. Im anschließend aufgenommenen ³¹P-NMR-Spektrum erkennt man allerdings keine Signale. Sämtliche Versuche der säulenchromatographischen Aufarbeitung oder der Umkristallisation des Rohprodukts scheiterten.

Analoge Beobachtungen macht man bei der Reaktion äquimolarer Mengen an $[Cp'''Fe(\eta^5-P_5)]$ (4a) und AgSbF₆.

Obwohl das Oxidationsprodukt des Cyclopentaphosphaferrocens $[Cp'''Fe(\eta^5-P_5)]$ (**4a**) nicht in reiner Form isoliert werden konnte, kann die Dichlormethan-Rohlösung des oben beschriebenen Ansatzes mit 180 mg (0.95 mmol) Cobaltocen versetzt werden. Erhitzt man dieses Reaktionsgemisch zum Rückfluß, so kann nach vier Stunden das Ausflocken eines gelben Feststoffes und ein Farbumschlag des zuvor dunkelbraunen Reaktionsgemisches nach dunkelgrün beobachtet werden. Das ausgefallene Cobaltoceniumtetrafluoroborat wird abzentrifugiert. Im grünen Zentrifugat kann $[Cp'''Fe(\eta^5-P_5)]$ (**4a**) NMR-spektroskopisch nachgewiesen werden.

Aufgrund geringer Substanzmengen, die nach Entfernen des Lösungsmittels aus dem Zentrifugat zurückblieben, mußte eine säulenchromatographische Aufarbeitung zur Abtrennung des überschüssigen Cobaltocens unterbleiben, so daß an dieser Stelle die Ausbeute des zurückgewonnenen Cyclopentaphosphaferrocens **4a** nicht bestimmt werden konnte.

V. Zusammenfassung

Zur Synthese von sterisch aufwendig alkylsubstituierten Eisenkomplexen mit "nackten" Phosphorliganden mußten zunächst geeignete Bis-[(dicarbonyl)(cyclopentadienyl)-eisen(I)]-Verbindungen 1 als Edukte hergestellt werden. Dies gelingt durch die schonende Einelektronenreduktion der (Bromo)(dicarbonyl)(cyclopentadienyl)-eisen(II)-Komplexe 2 mit Cobaltocen.

$$2 [Cp^{R}Fe(CO)_{2}Br] + 2 Cp_{2}Co \qquad -2 Cp_{2}CoBr \qquad [{Cp^{R}(OC)_{2}Fe}_{2}]$$

$$2 \qquad 1$$

$$Cp^{R} = Cp''', Cp^{4}$$

Die Eisendimere $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (1) reagieren mit weißem Phosphor unter milden Bedingungen selektiv und in sehr guten Ausbeuten zu den Tetraphosphabicyclobutanderivaten 3, deren P₄-Butterflygerüst durch zwei 17VE-{Cp^R(OC)_{2}Fe}-Fragmente in exo/exo-Konfiguration stabilisiert ist. Mit der Röntgenstrukturanalyse des Tri-*tert*-butylderivates $[{Cp'''(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (3a) konnte erstmals ein Molekül mit einem solchen P₄-Butterfly-Baustein vollständig charakterisiert werden.

Sowohl die thermische als auch die photochemische Decarbonylierung von $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (3) führt zu den Cyclopentaphosphaferrocenderivaten $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) und den *pseudo*-Tripeldeckerkomplexen $[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (5), die sich auch durch die Langzeit-Cothermolyse der Eisendimere $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (1) mit überschüssigem weißen Phosphor herstellen lassen. Die beiden Tri-*tert*-butylderivate **4a** und **5a** konnten röntgenstrukturanalytisch untersucht werden.

Bei der Photolyse von **3a** konnte zusätzlich [{Cp'''Fe}(μ - $\eta^{4:1}$ -P₄){Fe(CO)₂Cp'''}] (**6a**), ein carbonylgruppenhaltiges Zwischenprodukt, isoliert werden.

Die Möglichkeit, den *pseudo*-Tripeldeckerkomplex **5a** durch Umsetzung mit weißem Phosphor in das Cyclopentaphosphaferrocen **4a** umzuwandeln, liefert einen Hinweis auf den Bildungsmechanismus dieser Substanzklasse.

Die thermische Umsetzung äquimolarer Mengen der P₄-Butterflymoleküle **3** mit Diphenylacetylen (PhC=CPh) führt zu sehr interessanten neuartigen Produkten:

So konnte bei der Reaktion von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (**3a**) mit PhC=CPh ein ferrocenanaloges Sandwichmolekül **7a**, dessen zentrales Eisenatom sowohl an einen Tri-*tert*-butylcyclopentadienyl- als auch an einen 1,2,3-Triphospholylliganden η^5 -artig koordiniert ist, isoliert und ein solcher heteroaromatischer Ligand erstmals kristallstrukturanalytisch charakterisiert werden. Darüber hinaus konnte bei dieser Reaktion massenspektrometrisch ein weiteres Sandwichmolekül – (Tri-*tert*-butylcyclopentadienyl)(tetraphospholyl)eisen(II) (**8a**) – nachgewiesen werden.

Zusätzlich konnte bei der Umsetzung des Pentaisopropylderivates **3c** mit PhC=CPh ein theoretisch vorhergesagtes P₁₁-Isomeres erstmals experimentell bestätigt und der Undecaphosphor-Komplex **9** kristallstrukturanalytisch charakterisiert werden. Das P₁₁-Gerüst von [{Cp⁵Fe}₃(CO)₄P₁₁] (**9**) kann man sich entweder aus einem P₅-Ring, an den ein zweifach kantengeöffnetes P₆-Prisman über drei Ecken "kondensiert" ist, oder aus einem zweifach kantengeöffneten P₈-Cunean, an das über zwei Ecken ein P₃-Dreieck "kondensiert" ist (vgl. dazu den Hittorf´schen Phosphor), zusammengesetzt denken.

Auch bei dieser Reaktion konnten die beiden bereits bei der Reaktion von **3a** beschriebenen Eisensandwichverbindungen mit einem 1,2,3-Triphospholyl- bzw. einem Tetraphospholylliganden spektroskopisch nachgewiesen werden.

Ein bereits bekanntes Verfahren zur Synthese von Tripeldeckerkomplexen mit einem *cyclo*-P₅-Mitteldeck konnte erfolgreich auf (Tri-*tert*-butylcyclopentadienyl)(1,2,3-triphospholyl)eisen(II) (**7a**) übertragen werden. Der dabei gebildete kationische 30VE-Tripeldeckerkomplex $[{Cp'''Fe}(\mu-\eta^{5:5}-{P_3(CPh)_2}){FeCp}]^+(PF_6)^-$ (**11a**) konnte bislang allerdings nicht rein isoliert werden.

Versuche zur Oxidation der P₄-Butterflymoleküle $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (3) mit Elementen der 16. Gruppe führten ausnahmslos zu unspezifischer Zersetzung der Edukte 3 oder zu komplexen Folgereaktionen.

$$[\{Cp^{R}(OC)_{2}Fe\}_{2}(\mu-\eta^{1:1} - P_{4})] + X \xrightarrow{CH_{2}Cl_{2}} ?$$

$$3 \qquad X = S_{8}, Se_{(grau)}, Te_{(met)}$$

Die Isolierung des Oxidationsproduktes des Cyclopentaphosphaferrocens [Cp'''Fe(η^5 -P₅)] (**4a**) mit AgX ist bislang ebenfalls nicht gelungen. Allerdings liefert eine Folgereaktion des Rohproduktes, die Reduktion mit Cobaltocen, bei der das Edukt **4a** zurückgebildet wird, einen wichtigen Hinweis auf dessen Existenz (Dimeres?).

$$[Cp'''Fe(\eta^{5}-P_{5})] + AgX \xrightarrow{CH_{2}Cl_{2}} ? \xrightarrow{CH_{2}Cl_{2}} [Cp'''Fe(\eta^{5}-P_{5})]$$
4a
4a
4a

VI. Literaturverzeichnis

- 1.) Übersichtsartikel:
 - a) O. J. Scherer in: *Multiple Bonds and Low Coordination in Phosphorus Chemistry* (Hrsg.: M. Regitz, O. J. Scherer), 1.Aufl., Georg Thieme Verlag, Stuttgart, **1990**.
 - b) O. J. Scherer, Angew. Chem. 1990, 102, 1137-1155; Angew. Chem. Int. Ed. Engl. 1990, 29, 1104.

c) M. Scheer, E. Herrmann, Z. Chem. 1990, 30, 41-55.

- 2.) J. J. Eisch, R. B. King, *Organomet. Synthesis*, New-York-London: Academic Press **1965**, 114-115.
- 3.) R. B. King, M. B. Bisnette, J. Organomet. Chem. 1967, 8, 287-297.
- 4.) T. Dezember, **Dissertation**, Universität Kaiserslautern **1996**.
- 5.) H. Sitzmann, T. Dezember, W. Kaim, F. Baumann, D. Stalke, J. Kärcher, E. Dormann,
 H. Winter, C. Wachter, M. Kelemen, *Angew. Chem.* 1996, 108, 3013-3016; *Angew. Chem. Int. Ed.Engl.* 1996, 35, 2872.
- 6.) O. J. Scherer, G. Schwarz, G. Wolmershäuser, Z. Anorg. Allg. Chem. **1996**, 622, 951-957.
- 7.) G. Schwarz, **Dissertation**, Universität Kaiserslautern **1995**.
- 8.) T. Brück, **Dissertation**, Universität Kaiserslautern **1989**.
- 9.) L. Weber, U. Sonnenberg, *Chem. Ber.* **1991**, *124*, 725-728.
- 10.) P. Jutzi, S. Opiela, J. Organomet. Chem. 1992, 431, C 29-C 32.
- 11.) O. J. Scherer, T. Brück, Angew. Chem. 1987, 99, 59; Angew. Chem. Int. Ed. Engl. 1987, 26, 59.
- 12.) O. J. Scherer, T. Brück, G. Wolmershäuser, Chem. Ber. 1988, 121, 935-938.
- 13.) B. Rink, **Dissertation**, Universität Kaiserslautern **1994**.
- 14.) M. Detzel, G. Friedrich, O. J. Scherer, G. Wolmershäuser, *Angew. Chem.*1995, 107, 1454-1456; *Angew. Chem. Int. Ed.Engl.* 1995, 34, 1321.
- 15.) a) B. Rink, O. J. Scherer, G. Heckmann, G. Wolmershäuser, *Chem. Ber.* **1992**, *125*, 1011-1016.

b) O. J. Scherer, C. Blath, G. Wolmershäuser, J. Organomet. Chem. 1990, 387, C21-C24.

- c) M. Detzel, T. Mohr, O. J. Scherer, G. Wolmershäuser, Angew. Chem. 1994, 106, 1142-1144; Angew. Chem. Int. Ed.Engl. 1994, 33, 1110.
- d) M. Ehses, Diplomarbeit, Universität Kaiserslautern 1995.

- e) M. Schmidt, Dissertation, Universität Kaiserslautern 1996.
- a) G. Friedrich, *Dissertation*, Universität Kaiserslautern 1995.
 b) G. Friedrich, O. J. Scherer, G. Wolmershäuser, *Z. Anorg. Allg. Chem.* 1996, 622, 1478-1486.
 - c) M. Detzel, Dissertation, Universität Kaiserslautern 1995.
 - d) E. Hauck, *Dissertation*, Universität Kaiserslautern 1995.
 - e) C. Hofmann, Diplomarbeit, Universität Kaiserslautern 1995.
 - f) C. Hofmann, Dissertation, Universität Kaiserslautern 1997.
 - g) C. Hofmann, O. J. Scherer, G. Wolmershäuser, J. Organomet. Chem. 1998, 559, 219-222.
- A. R. Kudinov, M. I. Rybinskaya, Y. T. Struchkov, A. I. Yanovskii, P. V. Petrovskii, J. Organomet. Chem. 1987, 336, 187-197.
- 18.) O.J. Scherer, T. Brück, G. Wolmershäuser, Chem. Ber. 1989, 122, 2049-2054.
- 19.) D. Catheline, D. Astruc, Organometallics 1984, 3, 1094-1100.
- 20.) M. Scheer, K. Schuster, K. Schenzel, E. Herrmann, P. G. Jones, Z. Anorg. Allg. Chem. 1991, 600, 109-119.
- 21.) T. Hilt, *Diplomarbeit*, Universität Kaiserslautern **1996**.
- 22.) R. G. Teller, J. M. Williams, *Inorg. Chem.* 1980, 19, 2770-2773.
- 23.) C. H. Wei, L. F. Dahl, J. Am. Chem. Soc. 1969, 91, 1351-1361.
- M. V. Andreocci, M. Bossa, C. Cauletti, R. Paolesse, G. Ortaggi, T. Vondrak, M. N. Piancastelli, M. Casarin, M. Dal Colle, G. Granozzi, *J. Organomet. Chem.* 1989, 366, 343-355.
- 25.) A. Mitschler, B. Rees, M. S. Lehmann, J. Am. Chem. Soc. 1978, 100, 3390-3397.
- 26.) H. Sitzmann, Chem. Ber. 1990, 123, 2311-2315.
- 27.) H. Sitzmann, R. Boese, P. Stellberg, Z. Anorg. Allg. Chem. 1996, 662, 751-755.
- 28.) O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112.
- a) D. M. P. Mingos, Acc. Chem. Res. 1984, 17, 311-319.
 b) R. L. Johnston, D. M. P. Mingos, J. Chem. Soc. Dalton Trans. 1987, 647-656.
- 30.) K. Wade, Adv. Inorg. Radiochem. 1976, 18, 1-66.
- 31.) E. Niecke, R. Rüger, B. Krebs, Angew. Chem. 1982, 94, 553-554;
 Angew. Chem. Int. Ed.Engl. 1982, 21, 544.
- R. Riedel, H.-D. Hausen, E. Fluck, Angew. Chem. 1985, 97, 1050; Angew. Chem. Int. Ed.Engl. 1985, 24, 1056.

- 33.) H.-P. Schrödel, H. Nöth, M. Schmidt-Amelunxen, W. W. Schoeller, A. Schmidpeter, *Chem. Ber./Recueil* **1997**, *130*, 1801-1805.
- 34.) A. P. Ginsberg, W. E. Lindsell, K. J. McCullough, C. R. Sprinkle, A. J. Welch, *J. Am. Chem. Soc.* **1986**, *108*, 403-416.

Anm.: Inzwischen ist auch eine bindende P-P-Wechselwirkung bekannt, die 2.634 Å beträgt. Die Autoren diskutieren in diesem Fall allerdings eine (2c1e)-Bindung.
Y. Canac, D. Bourissou, A. Baceiredo, H. Gornitzka, W. W. Schoeller, G. Bertrand, *Science* 1998, 279, 2080-2082.

- 35.) O. J. Scherer, M. Ehses, G. Wolmershäuser, J. Organomet. Chem. 1997, 531, 217-221.
- 36.) M. Ehses, *Dissertation*, Universität Kaiserslautern **1998**.
- a) O. J. Scherer, M. Swarowsky, H. Swarowsky, G. Wolmershäuser, *Angew. Chem.* 1988, 100, 738-739; *Angew. Chem. Int. Ed. Engl.* 1988, 27, 694.
 b) O. J. Scherer, M. Swarowsky, G. Wolmershäuser, *Organometallics* 1989, 8, 841-842.
- 38.) a) M. Scheer, C. Troitzsch, L. Hilfert, M. Dargatz, E. Kleinpeter, P. G. Jones, J. Sieler, *Chem. Ber.* 1995, *128*, 251-257.
 b) M. Scheer, U. Becker, E. Matern, *Chem. Ber.* 1996, *129*, 721-724.
- 39.) R. Hoffmann (Nobelvortrag), Angew. Chem. 1982, 94, 725-739;
 Angew. Chem. Int. Ed.Engl. 1982, 21, 711.
- 40.) N. Maigrot, M. Sierra, C. Charrier, F. Mathey, *Bull. Soc. Chim. Fr.* **1994**, *131*, 397 399.
- 41.) M. Baudler, J.Hahn, Z. Naturforsch. 1990, 45b, 1139 1142.
- 42.) L. Nyulaszi, J. Phys. Chem. 1996, 100, 6194 6198.
- 43.) U. Fleischer, W. Kutzelnigg, *Phosphorous, Sulfur and Silicon* **1993**, 77, 105 108.
- 44.) E. J. Padma Malar, J. Org. Chem. 1992, 57, 3694 3698.
- 45.) E. D. Jemmis, A. Chandrasekhar Reddy, Organometallics 1988, 7, 1561 1564.
- 46.) A. Dransfeld, L. Nyulaszi, P.v. Ragué Schleyer, *Inorg. Chem.* 1998, 37, 4413 4420.
- 47.) H. P. Latscha, G. Schilling, H. A. Klein, *Chemie-Datensammlung*, 1. Aufl., Springer-Verlag, Heidelberg **1990**.
- 48.) a) D. F. Evans, J. Chem. Soc. 1959, 2003-2005.
 b) T. H. Crawford, J. Swanson, J. Chem. Educ. 1971, 48, 382-386.
 c) J. G. Hughes, P. J. Lawson, J. Chem. Educ. 1987, 64, 973-974.

- 49.) a) M. Baudler, H. Jachow, J. Germeshausen, Z. Anorg. Allg. Chem. 1987, 553, 15-23.
 b) N. Korber, J. Daniels, H. G. von Schnering, Angew. Chem. 1996, 108, 1188-1190; Angew. Chem. Int. Ed.Engl. 1996, 35,1107.
- 50.) W. Wichelhaus, H. G. von Schnering, *Naturwissenschaften* 1973, 60, 104.
- 51.) K. F. Tebbe, Z. Anorg. Allg. Chem. 1989, 572, 115-125.
- 52.) Übersichtsartikel:
 a) H. G. von Schnering, Angew. Chem. 1981, 93, 44-63; Angew. Chem. Int. Ed. Engl. 1981, 20, 33.
 b) H. G. von Schnering, W. Hönle, Chem. Rev. 1988, 88, 243-273.
 c) M. Baudler, K. Glinka, Chem. Rev. 1993, 93, 1623-1667.
 d) S. Böcker, M. Häser, Z. Anorg. Allg. Chem. 1995, 621, 258-286.
 53.) O. J. Scherer, S. Weigel, G. Wolmershäuser, Z. Anorg. Allg. Chem. 1998, 624, 559-
- 55.) O. J. Scherer, S. Weigel, G. Wolmershauser, Z. Anorg. Alig. Chem. **1998**, 624, 559 560.
- 54.) O. J. Scherer, S. Weigel, G. Wolmershäuser, Chem. Eur. J. 1998, 4, 1910-1916.
- 55.) R. F. Winter, W. E. Geiger, Organometallics 1999, 18, 1827-1833.
- 56.) K. Mast, *Diplomarbeit*, Universität Kaiserslautern 1996.
- 57.) J. F. Cordes, Chem. Ber. **1962**, *95*, 3084-3085.
- 58.) W. Towae, Dissertation, Universität Kaiserslautern 1979.

VII. Anhang

Angaben zu den Kristallstrukturanalysen

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung werden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

$$wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}}$$

$$GooF = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)\right]}{(n-p)}} \qquad n = \text{Zahl der Reflex}$$

$$R_1 = \frac{\sum \left\| F_o \right| - \left| F_c \right|}{\sum \left| F_o \right|}$$

n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Summenformel:	$\mathrm{C}_{38}\mathrm{H}_{58}\mathrm{Fe}_{2}\mathrm{O}_{4}$	
Molmasse [g/mol]:	690.54	
Temperatur [K]:	293 (2)	
Strahlung:	Mo- K_{α}	
Wellenlänge [Å]:	0.71073	
Scanmodus:	♦–oscillation	
Kristallsystem:	monoklin	
Raumgruppe:	$P2_1/c$	
Zelldimensionen:		
(<i>a</i> , <i>b</i> , <i>c</i> [Å]; α, β, γ [°])	a = 12.993(3)	$\alpha = 90$
	<i>b</i> = 16234(3)	$\beta = 90.24(3)$
	c = 17.770(4)	$\gamma = 90$
Zellvolumen [Å ³]:	3748.0(13)	
Formeleinheiten pro Zelle Z:	4	
Berechnete Dichte [mg/m ³]:	1.224	
Absorptionskoeffizient [mm ⁻¹]:	0.809	
Kristallgröße [mm]:	0.30 * 0.24 * 0.08	
Gemessener θ -Bereich [°]:	2.31 bis 25.00	
Anzahl der gemessenen Reflexe:	27842	
Unabhängige Reflexe:	6252 (Rint = 0.1627)	
Absorptionskorrektur:	empirisch (DIFABS V09	.0)
Max. und min. Transmission:	0.85 und 0.18	
Diffraktometer:	Stoe IPDS	
Strukturlösung:	direkte Methoden	
Strukturlösungsprogramm:	SIR92 (Giacovazzo et al.	., 1993)
Strukturverfeinerung:	Vollmatrix Least-Square	s gegen F ²
Strukturverfeinerungsprogramm:	Siemens SHELXTL	
Daten / Restraints / Parameter:	6184 / 0 / 414	
Endgültige R-Werte [I $> 2\sigma(I)$]:	R1 = 0.0734, wR2 = 0.17	797
R-Werte (sämtliche Daten):	R1 = 0.1713, wR2 = 0.25	507
Extinktionskoeffizient:	0.0084(14)	
Wichtungsschema:	$w = 1/[\sigma^2(Fo^2)+(0.1158P)]$	P) ² +0.0000P] mit P = $(Fo^2+2Fc^2)/3$
GooF (alle Daten):	1.027	
Größtes Maximum und Minimum	: 0.447 und -0.575 [e Å ⁻³]	

A1: Kristalldaten und Parameter der Kristallstrukturanalyse von [{Cp⁴(OC)₂Fe}₂] (1b):

	X	У	Z	U (eq)
Fe(1)	2130(1)	5235(1)	2499(1)	71(1)
Fe(2)	231(1)	5660(1)	2501(1)	73(1)
O(1)	1691(5)	3479(4)	2502(4)	102(2)
O(2)	654(5)	7402(4)	2495(5)	118(2)
O(3)	1174(4)	5442(4)	3973(3)	94(2)
O(4)	1176(4)	5446(4)	1031(4)	94(2)
C(1)	1852(6)	4195(6)	2486(5)	82(2)
C(2)	503(7)	6703(6)	2494(6)	91(2)
C(3)	1196(6)	5441(5)	3281(5)	75(2)
C(4)	1156(6)	5450(5)	1707(5)	76(2)
C(5)	3082(5)	6338(5)	2497(4)	71(2)
C(6)	3310(6)	5856(5)	1843(4)	73(2)
C(7)	3624(6)	5062(5)	2074(5)	74(2)
C(8)	3623(6)	5066(5)	2913(4)	71(2)
C(9)	3315(5)	5863(5)	3160(5)	77(2)
C(10)	3333(6)	6240(5)	3942(4)	77(2)
C(11)	4000(6)	4329(5)	3385(5)	82(2)
C(12)	4004(6)	4321(5)	1622(5)	85(2)
C(13)	3319(6)	6234(5)	1056(4)	79(2)
C(14)	2667(7)	7016(6)	4005(5)	97(3)
C(15)	4436(7)	6438(7)	4147(5)	124(4)
C(16)	3426(7)	4183(6)	4125(5)	103(3)
C(17)	5166(7)	4343(7)	3528(7)	139(4)
C(18)	3428(7)	4184(6)	881(5)	99(3)
C(19)	5160(7)	4339(7)	1466(7)	123(4)
C(20)	2657(8)	7008(6)	984(5)	104(3)
C(21)	4448(7)	6455(8)	836(6)	122(4)
C(25)	-720(6)	4559(5)	2501(5)	80(2)
C(26)	-948(6)	5037(6)	3145(5)	82(2)
C(27)	-1267(6)	5832(5)	2900(5)	81(2)
C(28)	-1276(6)	5814(5)	2081(4)	82(2)
C(29)	-954(6)	5024(5)	1847(5)	80(2)
C(30)	-961(6)	4630(6)	1075(5)	92(3)
C(31)	-1647(6)	6555(6)	1616(6)	106(3)
C(32)	-1638(7)	6547(6)	3408(6)	107(3)
C(33)	-984(7)	4639(6)	3924(5)	95(3)
C(34)	-304(8)	3864(6)	997(5)	108(3)
C(35)	-2097(8)	4399(8)	900(7)	150(5)
C(36)	-1048(8)	6726(8)	899(6)	132(4)
C(37)	-2823(8)	6510(8)	1458(8)	159(5)
C(38)	-1059(8)	6733(8)	4101(5)	128(4)
C(39)	-2819(8)	6515(8)	3548(8)	157(5)
C(40)	-300(8)	3875(7)	4007(5)	116(3)
C(41)	-2080(8)	4405(8)	4135(6)	137(5)

A2: Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å² x 10^3] für [Cp⁴Fe(CO)₂]₂ (**1b**).

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

Fe (1) - C (1)	1.727 (10)	C (8) - C (11)	1.540 (10)
Fe(1) - C(3)	1.879 (8)	C(9) - C(10)	1.518 (10)
Fe(1) - C(4) Fe(1) - C(8)	1.922 (8)	C(10) - C(15) C(10) - C(14)	1.512(10)
Fe(1) - C(3) Fe(1) - C(7)	2.090 (7)	C(10) - C(14) C(11) - C(16)	1.555 (11)
Fe(1) - C(6)	2.177 (8)	C(11) - C(10)	1.536 (11)
Fe (1) - C (9)	2.185 (7)	C (12) - C (19)	1.528 (11)
Fe (1) - C (5)	2.176 (7)	C (12) - C (18)	1.528 (11)
Fe(1) - Fe(2)	2.562 (2)	C(13) - C(20)	1.527 (11)
Fe(2) - C(2) Fe(2) - C(4)	1.729(10) 1.888(9)	C(13) - C(21) C(25) - C(29)	1.501(11) 1.418(11)
Fe(2) - C(4) Fe(2) - C(3)	1.809 (8)	C(25) - C(29) C(25) - C(26)	1.416(11)
Fe (2) - C (27)	2.093 (8)	C(26) - C(27)	1.423 (11)
Fe (2) - C (28)	2.108 (7)	C (26) - C (33)	1.528 (11)
Fe (2) - C (26)	2.167 (8)	C (27) - C (28)	1.456 (11)
Fe(2) - C(29) Fe(2) - C(25)	2.185 (7)	C(27) - C(32)	1.548 (12)
O(1) - C(23)	2.173(8) 1 182 (9)	C(28) - C(29)	1.412(11) 1 535(11)
O(2) - C(2)	1.152 (9)	C(29) - C(31) C(29) - C(30)	1.514 (11)
O(3) - C(3)	1.231 (9)	C (30) - C (34)	1.515 (13)
O (4) - C (4)	1.201 (9)	C (30) - C (35)	1.553 (12)
C(5) - C(9)	1.439 (10)	C(31) - C(36)	1.521 (13)
C(5) - C(6) C(6) - C(7)	1.434(10) 1 412(10)	C(31) - C(37) C(32) - C(38)	1.554 (12)
C(6) - C(13)	1.528 (10)	C(32) - C(30) C(32) - C(39)	1.556 (12)
C(7) - C(8)	1.491(10)	C (33) - C (41)	1.522 (12)
C (7) - C (12)	1.531 (11)	C (33) - C (40)	1.533 (13)
C(8)-C(9)	1.424 (10)		
C(8) - C(9)	1.424 (10)		
C (8) - C (9) C(1)-Fe(1)-C(3)	1.424 (10) 92.7(4)	C(8)-Fe(1)-C(9)	38.8(3)
C (8) - C (9) C(1)-Fe(1)-C(3) C(1)-Fe(1)-C(4)	1.424 (10) 92.7(4) 91.7(4)	C(8)-Fe(1)-C(9) C(7)-Fe(1)-C(9)	38.8(3) 66.8(3)
C (8) - C (9) C(1)-Fe(1)-C(3) C(1)-Fe(1)-C(4) C(3)-Fe(1)-C(4)	1.424 (10) 92.7(4) 91.7(4) 94.8(3)	C(8)-Fe(1)-C(9) C(7)-Fe(1)-C(9) C(6)-Fe(1)-C(9)	38.8(3) 66.8(3) 64.9(3)
C (8) - C (9) C(1)-Fe(1)-C(3) C(1)-Fe(1)-C(4) C(3)-Fe(1)-C(4) C(1)-Fe(1)-C(8)	1.424 (10) 92.7(4) 91.7(4) 94.8(3) 94.1(3)	C(8)-Fe(1)-C(9) C(7)-Fe(1)-C(9) C(6)-Fe(1)-C(9) C(1)-Fe(1)-C(5)	38.8(3) 66.8(3) 64.9(3) 157.5(3)
C (8) - C (9) C(1)-Fe(1)-C(3) C(1)-Fe(1)-C(4) C(3)-Fe(1)-C(4) C(1)-Fe(1)-C(8) C(3)-Fe(1)-C(8)	1.424 (10) 92.7(4) 91.7(4) 94.8(3) 94.1(3) 111.4(3)	C(8)-Fe(1)-C(9) C(7)-Fe(1)-C(9) C(6)-Fe(1)-C(9) C(1)-Fe(1)-C(5) C(3)-Fe(1)-C(5)	38.8(3) 66.8(3) 64.9(3) 157.5(3) 103.0(3)
C (8) - C (9) C(1)-Fe(1)-C(3) C(1)-Fe(1)-C(4) C(3)-Fe(1)-C(4) C(1)-Fe(1)-C(8) C(3)-Fe(1)-C(8) C(4)-Fe(1)-C(8)	1.424 (10) 92.7(4) 91.7(4) 94.8(3) 94.1(3) 111.4(3) 152.8(3)	C(8)-Fe(1)-C(9) C(7)-Fe(1)-C(9) C(6)-Fe(1)-C(9) C(1)-Fe(1)-C(5) C(3)-Fe(1)-C(5) C(4)-Fe(1)-C(5)	38.8(3) 66.8(3) 64.9(3) 157.5(3) 103.0(3) 102.8(3)
C (8) - C (9) C(1)-Fe(1)-C(3) C(1)-Fe(1)-C(4) C(3)-Fe(1)-C(4) C(1)-Fe(1)-C(8) C(3)-Fe(1)-C(8) C(4)-Fe(1)-C(8) C(1)-Fe(1)-C(7)	1.424(10) 92.7(4) 91.7(4) 94.8(3) 94.1(3) 111.4(3) 152.8(3) 93.4(3)	C(8)-Fe(1)-C(9) C(7)-Fe(1)-C(9) C(6)-Fe(1)-C(9) C(1)-Fe(1)-C(5) C(3)-Fe(1)-C(5) C(4)-Fe(1)-C(5) C(8)-Fe(1)-C(5)	38.8(3) 66.8(3) 64.9(3) 157.5(3) 103.0(3) 102.8(3) 65.3(3)
C(8)-C(9) C(1)-Fe(1)-C(3) C(1)-Fe(1)-C(4) C(3)-Fe(1)-C(4) C(1)-Fe(1)-C(8) C(3)-Fe(1)-C(8) C(4)-Fe(1)-C(8) C(1)-Fe(1)-C(7) C(3)-Fe(1)-C(7)	$\begin{array}{c} 1.424 (10) \\ \\ 92.7(4) \\ 91.7(4) \\ 94.8(3) \\ 94.1(3) \\ 111.4(3) \\ 152.8(3) \\ 93.4(3) \\ 152.7(3) \end{array}$	C(8)-Fe(1)-C(9) C(7)-Fe(1)-C(9) C(6)-Fe(1)-C(9) C(1)-Fe(1)-C(5) C(3)-Fe(1)-C(5) C(4)-Fe(1)-C(5) C(8)-Fe(1)-C(5) C(7)-Fe(1)-C(5)	38.8(3) $66.8(3)$ $64.9(3)$ $157.5(3)$ $103.0(3)$ $102.8(3)$ $65.3(3)$ $65.4(3)$
C(1)-Fe(1)-C(3) $C(1)-Fe(1)-C(4)$ $C(3)-Fe(1)-C(4)$ $C(1)-Fe(1)-C(8)$ $C(3)-Fe(1)-C(8)$ $C(4)-Fe(1)-C(8)$ $C(1)-Fe(1)-C(7)$ $C(3)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$	$\begin{array}{c} 1.424 \ (10 \) \\ \\ 92.7(4) \\ 91.7(4) \\ 94.8(3) \\ 94.1(3) \\ 111.4(3) \\ 152.8(3) \\ 93.4(3) \\ 152.7(3) \\ 111.5(3) \end{array}$	C(8)-Fe(1)-C(9) $C(7)-Fe(1)-C(9)$ $C(6)-Fe(1)-C(9)$ $C(1)-Fe(1)-C(5)$ $C(3)-Fe(1)-C(5)$ $C(4)-Fe(1)-C(5)$ $C(8)-Fe(1)-C(5)$ $C(7)-Fe(1)-C(5)$ $C(6)-Fe(1)-C(5)$	38.8(3) $66.8(3)$ $64.9(3)$ $157.5(3)$ $103.0(3)$ $102.8(3)$ $65.3(3)$ $65.4(3)$ $38.5(3)$
C(1)-Fe(1)-C(3) $C(1)-Fe(1)-C(4)$ $C(3)-Fe(1)-C(4)$ $C(3)-Fe(1)-C(8)$ $C(3)-Fe(1)-C(8)$ $C(4)-Fe(1)-C(8)$ $C(1)-Fe(1)-C(7)$ $C(3)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(8)-Fe(1)-C(7)$	$\begin{array}{c} 1.424 \ (10 \) \\ \\ 92.7(4) \\ 91.7(4) \\ 94.8(3) \\ 94.1(3) \\ 111.4(3) \\ 152.8(3) \\ 93.4(3) \\ 152.7(3) \\ 111.5(3) \\ 41.6(3) \end{array}$	C(8)-Fe(1)-C(9) $C(7)-Fe(1)-C(9)$ $C(6)-Fe(1)-C(9)$ $C(1)-Fe(1)-C(5)$ $C(3)-Fe(1)-C(5)$ $C(4)-Fe(1)-C(5)$ $C(8)-Fe(1)-C(5)$ $C(7)-Fe(1)-C(5)$ $C(6)-Fe(1)-C(5)$ $C(9)-Fe(1)-C(5)$	38.8(3) $66.8(3)$ $64.9(3)$ $157.5(3)$ $103.0(3)$ $102.8(3)$ $65.3(3)$ $65.4(3)$ $38.5(3)$ $38.5(3)$
C(8) - C(9) $C(1)-Fe(1)-C(3)$ $C(1)-Fe(1)-C(4)$ $C(3)-Fe(1)-C(4)$ $C(3)-Fe(1)-C(8)$ $C(3)-Fe(1)-C(8)$ $C(4)-Fe(1)-C(7)$ $C(3)-Fe(1)-C(7)$ $C(3)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(8)-Fe(1)-C(7)$ $C(1)-Fe(1)-C(7)$ $C(1)-Fe(1)-C(6)$	$\begin{array}{c} 1.424(10)\\ \\ 92.7(4)\\ 91.7(4)\\ 94.8(3)\\ 94.1(3)\\ 111.4(3)\\ 152.8(3)\\ 93.4(3)\\ 152.7(3)\\ 111.5(3)\\ 41.6(3)\\ 126.4(4)\\ \end{array}$	C(8)-Fe(1)-C(9) $C(7)-Fe(1)-C(9)$ $C(6)-Fe(1)-C(9)$ $C(1)-Fe(1)-C(5)$ $C(3)-Fe(1)-C(5)$ $C(4)-Fe(1)-C(5)$ $C(7)-Fe(1)-C(5)$ $C(6)-Fe(1)-C(5)$ $C(9)-Fe(1)-C(5)$ $C(1)-Fe(1)-Fe(2)$	38.8(3) $66.8(3)$ $64.9(3)$ $157.5(3)$ $103.0(3)$ $102.8(3)$ $65.3(3)$ $65.4(3)$ $38.5(3)$ $93.5(3)$
C(8) - C(9) $C(1)-Fe(1)-C(3)$ $C(1)-Fe(1)-C(4)$ $C(3)-Fe(1)-C(4)$ $C(1)-Fe(1)-C(8)$ $C(3)-Fe(1)-C(8)$ $C(4)-Fe(1)-C(7)$ $C(3)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(1)-Fe(1)-C(7)$ $C(1)-Fe(1)-C(7)$ $C(1)-Fe(1)-C(6)$ $C(3)-Fe(1)-C(6)$	$\begin{array}{c} 1.424(10)\\ \\ 92.7(4)\\ 91.7(4)\\ 94.8(3)\\ 94.1(3)\\ 111.4(3)\\ 152.8(3)\\ 93.4(3)\\ 152.7(3)\\ 111.5(3)\\ 41.6(3)\\ 126.4(4)\\ 140.6(3)\\ \end{array}$	C(8)-Fe(1)-C(9) $C(7)-Fe(1)-C(9)$ $C(6)-Fe(1)-C(9)$ $C(1)-Fe(1)-C(5)$ $C(3)-Fe(1)-C(5)$ $C(4)-Fe(1)-C(5)$ $C(7)-Fe(1)-C(5)$ $C(6)-Fe(1)-C(5)$ $C(6)-Fe(1)-C(5)$ $C(9)-Fe(1)-C(5)$ $C(1)-Fe(1)-Fe(2)$ $C(3)-Fe(1)-Fe(2)$	38.8(3) $66.8(3)$ $64.9(3)$ $157.5(3)$ $103.0(3)$ $102.8(3)$ $65.3(3)$ $65.4(3)$ $38.5(3)$ $93.5(3)$ $93.5(3)$ $47.6(2)$
C(8) - C(9) $C(1)-Fe(1)-C(3)$ $C(1)-Fe(1)-C(4)$ $C(3)-Fe(1)-C(4)$ $C(1)-Fe(1)-C(8)$ $C(4)-Fe(1)-C(8)$ $C(1)-Fe(1)-C(7)$ $C(3)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(3)-Fe(1)-C(7)$ $C(3)-Fe(1)-C(6)$ $C(3)-Fe(1)-C(6)$ $C(4)-Fe(1)-C(6)$	$\begin{array}{c} 1.424(10) \\ \\ 92.7(4) \\ 91.7(4) \\ 94.8(3) \\ 94.1(3) \\ 111.4(3) \\ 152.8(3) \\ 93.4(3) \\ 152.7(3) \\ 111.5(3) \\ 41.6(3) \\ 126.4(4) \\ 140.6(3) \\ 89.2(3) \end{array}$	C(8)-Fe(1)-C(9) $C(7)-Fe(1)-C(9)$ $C(6)-Fe(1)-C(9)$ $C(1)-Fe(1)-C(5)$ $C(3)-Fe(1)-C(5)$ $C(4)-Fe(1)-C(5)$ $C(7)-Fe(1)-C(5)$ $C(6)-Fe(1)-C(5)$ $C(6)-Fe(1)-C(5)$ $C(9)-Fe(1)-C(5)$ $C(1)-Fe(1)-Fe(2)$ $C(3)-Fe(1)-Fe(2)$ $C(4)-Fe(1)-Fe(2)$	$\begin{array}{c} 38.8(3) \\ 66.8(3) \\ 64.9(3) \\ 157.5(3) \\ 103.0(3) \\ 102.8(3) \\ 65.3(3) \\ 65.4(3) \\ 38.5(3) \\ 38.5(3) \\ 93.5(3) \\ 47.6(2) \\ 47.2(3) \end{array}$
C(8) - C(9) $C(1)-Fe(1)-C(3)$ $C(1)-Fe(1)-C(4)$ $C(3)-Fe(1)-C(4)$ $C(1)-Fe(1)-C(8)$ $C(3)-Fe(1)-C(8)$ $C(4)-Fe(1)-C(7)$ $C(3)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(1)-Fe(1)-C(7)$ $C(1)-Fe(1)-C(6)$ $C(3)-Fe(1)-C(6)$ $C(4)-Fe(1)-C(6)$ $C(8)-Fe(1)-C(6)$	$\begin{array}{c} 1.424(10)\\ \\ 92.7(4)\\ 91.7(4)\\ 94.8(3)\\ 94.1(3)\\ 111.4(3)\\ 152.8(3)\\ 93.4(3)\\ 152.7(3)\\ 111.5(3)\\ 41.6(3)\\ 126.4(4)\\ 140.6(3)\\ 89.2(3)\\ 66.1(3)\\ \end{array}$	C(8)-Fe(1)-C(9) $C(7)-Fe(1)-C(9)$ $C(6)-Fe(1)-C(9)$ $C(1)-Fe(1)-C(5)$ $C(3)-Fe(1)-C(5)$ $C(4)-Fe(1)-C(5)$ $C(7)-Fe(1)-C(5)$ $C(6)-Fe(1)-C(5)$ $C(9)-Fe(1)-C(5)$ $C(1)-Fe(1)-Fe(2)$ $C(3)-Fe(1)-Fe(2)$ $C(4)-Fe(1)-Fe(2)$ $C(8)-Fe(1)-Fe(2)$	$\begin{array}{c} 38.8(3) \\ 66.8(3) \\ 64.9(3) \\ 157.5(3) \\ 103.0(3) \\ 102.8(3) \\ 65.3(3) \\ 65.4(3) \\ 38.5(3) \\ 38.5(3) \\ 93.5(3) \\ 47.6(2) \\ 47.2(3) \\ 158.0(2) \end{array}$
C(8) - C(9) $C(1)-Fe(1)-C(3)$ $C(1)-Fe(1)-C(4)$ $C(3)-Fe(1)-C(4)$ $C(1)-Fe(1)-C(8)$ $C(3)-Fe(1)-C(8)$ $C(4)-Fe(1)-C(7)$ $C(3)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(1)-Fe(1)-C(7)$ $C(1)-Fe(1)-C(6)$ $C(3)-Fe(1)-C(6)$ $C(4)-Fe(1)-C(6)$ $C(8)-Fe(1)-C(6)$ $C(7)-Fe(1)-C(6)$	$\begin{array}{c} 1.424(10)\\ \\ 92.7(4)\\ 91.7(4)\\ 94.8(3)\\ 94.1(3)\\ 111.4(3)\\ 152.8(3)\\ 93.4(3)\\ 152.7(3)\\ 111.5(3)\\ 41.6(3)\\ 126.4(4)\\ 140.6(3)\\ 89.2(3)\\ 66.1(3)\\ 38.5(3)\\ \end{array}$	C(8)-Fe(1)-C(9) $C(7)-Fe(1)-C(9)$ $C(6)-Fe(1)-C(9)$ $C(1)-Fe(1)-C(5)$ $C(3)-Fe(1)-C(5)$ $C(4)-Fe(1)-C(5)$ $C(7)-Fe(1)-C(5)$ $C(6)-Fe(1)-C(5)$ $C(6)-Fe(1)-C(5)$ $C(1)-Fe(1)-Fe(2)$ $C(3)-Fe(1)-Fe(2)$ $C(4)-Fe(1)-Fe(2)$ $C(8)-Fe(1)-Fe(2)$ $C(7)-Fe(1)-Fe(2)$ $C(7)-Fe(1)-Fe(2)$ $C(7)-Fe(1)-Fe(2)$	$\begin{array}{c} 38.8(3) \\ 66.8(3) \\ 64.9(3) \\ 157.5(3) \\ 103.0(3) \\ 102.8(3) \\ 65.3(3) \\ 65.4(3) \\ 38.5(3) \\ 38.5(3) \\ 93.5(3) \\ 47.6(2) \\ 47.2(3) \\ 158.0(2) \\ 157.8(2) \end{array}$
C(8) - C(9) $C(1)-Fe(1)-C(3)$ $C(1)-Fe(1)-C(4)$ $C(3)-Fe(1)-C(4)$ $C(1)-Fe(1)-C(8)$ $C(3)-Fe(1)-C(8)$ $C(4)-Fe(1)-C(7)$ $C(3)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(1)-Fe(1)-C(7)$ $C(3)-Fe(1)-C(6)$ $C(3)-Fe(1)-C(6)$ $C(4)-Fe(1)-C(6)$ $C(7)-Fe(1)-C(6)$ $C(7)-Fe(1)-C(6)$ $C(7)-Fe(1)-C(6)$ $C(1)-Fe(1)-C(6)$ $C(1)-Fe(1)-C(6$	$\begin{array}{c} 1.424(10) \\ \\ 92.7(4) \\ 91.7(4) \\ 94.8(3) \\ 94.1(3) \\ 111.4(3) \\ 152.8(3) \\ 93.4(3) \\ 152.7(3) \\ 111.5(3) \\ 41.6(3) \\ 126.4(4) \\ 140.6(3) \\ 89.2(3) \\ 66.1(3) \\ 38.5(3) \\ 127.6(3) \end{array}$	C(8)-Fe(1)-C(9) $C(7)-Fe(1)-C(9)$ $C(6)-Fe(1)-C(9)$ $C(1)-Fe(1)-C(5)$ $C(3)-Fe(1)-C(5)$ $C(4)-Fe(1)-C(5)$ $C(7)-Fe(1)-C(5)$ $C(6)-Fe(1)-C(5)$ $C(9)-Fe(1)-C(5)$ $C(1)-Fe(1)-Fe(2)$ $C(3)-Fe(1)-Fe(2)$ $C(4)-Fe(1)-Fe(2)$ $C(4)-Fe(1)-Fe(2)$ $C(7)-Fe(1)-Fe(2)$ $C(7)-Fe(1)-Fe(2)$ $C(6)-Fe(1)-Fe(2)$ $C(6)-Fe(1)-Fe(2)$	$\begin{array}{c} 38.8(3) \\ 66.8(3) \\ 64.9(3) \\ 157.5(3) \\ 103.0(3) \\ 102.8(3) \\ 65.3(3) \\ 65.3(3) \\ 65.4(3) \\ 38.5(3) \\ 38.5(3) \\ 93.5(3) \\ 47.6(2) \\ 47.2(3) \\ 158.0(2) \\ 157.8(2) \\ 123.8(2) \end{array}$
C(8) - C(9) $C(1)-Fe(1)-C(3)$ $C(1)-Fe(1)-C(4)$ $C(3)-Fe(1)-C(4)$ $C(1)-Fe(1)-C(8)$ $C(3)-Fe(1)-C(8)$ $C(4)-Fe(1)-C(7)$ $C(3)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(4)-Fe(1)-C(7)$ $C(1)-Fe(1)-C(7)$ $C(1)-Fe(1)-C(6)$ $C(3)-Fe(1)-C(6)$ $C(4)-Fe(1)-C(6)$ $C(4)-Fe(1)-C(6)$ $C(7)-Fe(1)-C(6)$ $C(7)-Fe(1)-C(6)$ $C(1)-Fe(1)-C(6)$ $C(1)-Fe(1)-C(6)$ $C(1)-Fe(1)-C(6)$ $C(1)-Fe(1)-C(6)$ $C(1)-Fe(1)-C(6)$ $C(1)-Fe(1)-C(6)$ $C(1)-Fe(1)-C(6)$ $C(1)-Fe(1)-C(6)$ $C(3)-Fe(1)-C(6)$ $C(3)-Fe(1)-C(6$	$\begin{array}{c} 1.424(10) \\ \\ 92.7(4) \\ 91.7(4) \\ 94.8(3) \\ 94.1(3) \\ 111.4(3) \\ 152.8(3) \\ 93.4(3) \\ 152.7(3) \\ 111.5(3) \\ 41.6(3) \\ 126.4(4) \\ 140.6(3) \\ 89.2(3) \\ 66.1(3) \\ 38.5(3) \\ 127.6(3) \\ 88.6(3) \end{array}$	C(8)-Fe(1)-C(9) $C(7)-Fe(1)-C(9)$ $C(6)-Fe(1)-C(9)$ $C(1)-Fe(1)-C(5)$ $C(3)-Fe(1)-C(5)$ $C(4)-Fe(1)-C(5)$ $C(6)-Fe(1)-C(5)$ $C(6)-Fe(1)-C(5)$ $C(1)-Fe(1)-Fe(2)$ $C(3)-Fe(1)-Fe(2)$ $C(4)-Fe(1)-Fe(2)$ $C(7)-Fe(1)-Fe(2)$ $C(7)-Fe(1)-Fe(2)$ $C(6)-Fe(1)-Fe(2)$ $C(6)-Fe(1)-Fe(2)$ $C(6)-Fe(1)-Fe(2)$ $C(6)-Fe(1)-Fe(2)$ $C(6)-Fe(1)-Fe(2)$ $C(6)-Fe(1)-Fe(2)$ $C(6)-Fe(1)-Fe(2)$ $C(9)-Fe(1)-Fe(2)$	$\begin{array}{c} 38.8(3) \\ 66.8(3) \\ 64.9(3) \\ 157.5(3) \\ 103.0(3) \\ 102.8(3) \\ 65.3(3) \\ 65.3(3) \\ 65.4(3) \\ 38.5(3) \\ 38.5(3) \\ 93.5(3) \\ 47.6(2) \\ 47.2(3) \\ 158.0(2) \\ 157.8(2) \\ 123.8(2) \\ 123.4(2) \end{array}$

A3: Bindungslängen [Å] und –winkel [°] für $[Cp^4Fe(CO)_2]_2$ (1b)

C(2)-Fe(2)-C(4)	92.4(4)	O(4)-C(4)-Fe(2)	139.9(7)
C(2)-Fe(2)-C(3)	93.2(4)	O(4)-C(4)-Fe(1)	135.6(7)
C(4)-Fe(2)-C(3)	95.3(3)	Fe(2)-C(4)-Fe(1)	84.5(3)
C(2)-Fe(2)-C(27)	93.5(4)	C(9)-C(5)-C(6)	109.1(7)
C(4)-Fe(2)-C(27)	150.8(3)	C(9)-C(5)-Fe(1)	71.1(4)
C(3)-Fe(2)-C(27)	112.9(3)	C(6)-C(5)-Fe(1)	70.8(4)
C(2)-Fe(2)-C(28)	94.0(4)	C(7)-C(6)-C(5)	108.9(7)
C(4)-Fe(2)-C(28)	110.5(3)	C(7)-C(6)-C(13)	129.1(7)
C(3)-Fe(2)-C(28)	152.9(4)	C(5)-C(6)-C(13)	121.6(7)
C(27)-Fe(2)-C(28)	40.5(3)	C(7)-C(6)-Fe(1)	68.0(4)
C(2)-Fe(2)-C(26)	127.3(4)	C(5)-C(6)-Fe(1)	70.7(4)
C(4)-Fe(2)-C(26)	139.8(3)	C(13)-C(6)-Fe(1)	133.2(5)
C(3)-Fe(2)-C(26)	89.6(3)	C(6)-C(7)-C(8)	106.6(7)
C(27)-Fe(2)-C(26)	39.0(3)	C(6)-C(7)-C(12)	131.2(8)
C(28)-Fe(2)-C(26)	65.4(3)	C(8)-C(7)-C(12)	122.0(7)
C(2)-Fe(2)-C(29)	127.0(4)	C(6)-C(7)-Fe(1)	73.5(5)
C(4)-Fe(2)-C(29)	88.1(3)	C(8)-C(7)-Fe(1)	68.6(4)
C(3)-Fe(2)-C(29)	139.6(3)	C(12)-C(7)-Fe(1)	126.4(5)
C(27)-Fe(2)-C(29)	65.7(3)	C(9)-C(8)-C(7)	108.3(6)
C(28)-Fe(2)-C(29)	38.3(3)	C(9)-C(8)-C(11)	128.9(7)
C(26)-Fe(2)-C(29)	64.0(3)	C(7)-C(8)-C(11)	122.6(7)
C(2)-Fe(2)-C(25)	157.1(4)	C(9)-C(8)-Fe(1)	74.2(4)
C(4)-Fe(2)-C(25)	102.4(3)	C(7)-C(8)-Fe(1)	69.7(4)
C(3)-Fe(2)-C(25)	102.6(3)	C(11)-C(8)-Fe(1)	125.8(5)
C(27)-Fe(2)-C(25)	65.2(3)	C(8)-C(9)-C(5)	107.1(7)
C(28)-Fe(2)-C(25)	64.5(3)	C(8)-C(9)-C(10)	130.1(7)
C(26)-Fe(2)-C(25)	38.1(3)	C(5)-C(9)-C(10)	122.4(7)
C(29)-Fe(2)-C(25)	38.0(3)	C(8)-C(9)-Fe(1)	67.0(4)
C(2)-Fe(2)-Fe(1)	93.9(3)	C(5)-C(9)-Fe(1)	70.4(4)
C(4)-Fe(2)-Fe(1)	48.3(2)	C(10)-C(9)-Fe(1)	133.5(5)
C(3)-Fe(2)-Fe(1)	47.0(3)	C(9)-C(10)-C(15)	108.5(7)
C(27)-Fe(2)-Fe(1)	158.9(2)	C(9)-C(10)-C(14)	113.1(6)
C(28)-Fe(2)-Fe(1)	157.7(2)	C(15)-C(10)-C(14)	110.0(7)
C(26)-Fe(2)-Fe(1)	123.9(2)	C(8)-C(11)-C(16)	115.6(7)
C(29)-Fe(2)-Fe(1)	123.3(2)	C(8)-C(11)-C(17)	112.9(7)
C(25)-Fe(2)-Fe(1)	109.0(2)	C(16)-C(11)-C(17)	110.1(8)
O(1)-C(1)-Fe(1)	177.2(7)	C(7)-C(12)-C(19)	113.5(7)
O(2)-C(2)-Fe(2)	178.0(8)	C(7)-C(12)-C(18)	114.1(7)
O(3)-C(3)-Fe(1)	139.3(6)	C(19)-C(12)-C(18)	108.9(8)
O(3)-C(3)-Fe(2)	135.3(7)	C(6)-C(13)-C(20)	113.6(7)
Fe(1)-C(3)-Fe(2)	85.4(3)	C(6)-C(13)-C(21)	109.4(6)

C(20)-C(13)-C(21)	108.7(7)	C(27)-C(28)-Fe(2)	69.2(4)
C(29)-C(25)-C(26)	109.0(8)	C(31)-C(28)-Fe(2)	124.9(6)
C(29)-C(25)-Fe(2)	71.4(5)	C(25)-C(29)-C(28)	107.8(7)
C(26)-C(25)-Fe(2)	70.7(5)	C(25)-C(29)-C(30)	121.2(8)
C(25)-C(26)-C(27)	108.2(8)	C(28)-C(29)-C(30)	130.6(8)
C(25)-C(26)-C(33)	120.5(8)	C(25)-C(29)-Fe(2)	70.6(4)
C(27)-C(26)-C(33)	130.6(8)	C(28)-C(29)-Fe(2)	67.9(4)
C(25)-C(26)-Fe(2)	71.2(5)	C(30)-C(29)-Fe(2)	133.1(6)
C(27)-C(26)-Fe(2)	67.7(5)	C(29)-C(30)-C(34)	115.4(7)
C(33)-C(26)-Fe(2)	134.5(6)	C(29)-C(30)-C(35)	106.6(7)
C(28)-C(27)-C(26)	106.8(7)	C(34)-C(30)-C(35)	108.6(8)
C(28)-C(27)-C(32)	126.6(8)	C(28)-C(31)-C(36)	115.7(8)
C(26)-C(27)-C(32)	126.3(8)	C(28)-C(31)-C(37)	111.5(8)
C(28)-C(27)-Fe(2)	70.3(5)	C(36)-C(31)-C(37)	111.3(9)
C(26)-C(27)-Fe(2)	73.3(5)	C(38)-C(32)-C(27)	118.8(8)
C(32)-C(27)-Fe(2)	126.2(6)	C(38)-C(32)-C(39)	112.0(9)
C(29)-C(28)-C(27)	108.1(7)	C(27)-C(32)-C(39)	112.2(8)
C(29)-C(28)-C(31)	130.2(8)	C(26)-C(33)-C(41)	111.2(7)
C(27)-C(28)-C(31)	121.6(8)	C(26)-C(33)-C(40)	114.2(8)
C(29)-C(28)-Fe(2)	73.8(4)	C(41)-C(33)-C(40)	108.5(9)

Summenformel Molmasse Temperatur Strahlung Wellenlänge	C ₃₈ H ₅₈ Fe ₂ O ₄ P ₄ 814.42 293(2) Κ MoKα 0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/n$	
Zelldimensionen	a = 16.1344(9) Å	$\alpha = 90^{\circ}$
	b = 15.7131(13) Å	$\beta = 111.271(6)^{\circ}$
	c = 18.1964(11) Å	$\gamma = 90^{\circ}$
Zellvolumen	$4298.9(5) Å^{3}$	1
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.258 Mg/m^3	
Absorptionskoeffizient	0.858 mm ⁻¹	
Kristallgröße	0.30 x 0.20 x 0.05 mm	
Gemessener θ -Bereich	2.59 bis 24.71°	
Anzahl der gemessenen Reflexe	35578	
Unabhängige Reflexe	7282 (Rint = 0.1918)	
Absorptionskorrektur	Empirical (DIFABS V09.0)	
Max. und min. Transmission	0.712 und 0.258	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR92 (Giacovazzo et al., 1993)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	7282 / 0 / 451	
Endgültige R-Werte $[I>2\sigma(I)]$	R1 = 0.0451, $wR2 = 0.0684$	
R-Werte (alle Daten)	R1 = 0.1527, wR2 = 0.0920	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0000P)^{2}+0.0000P)$	P] mit P= $(Fo^{2}+2Fc^{2})/3$
GooF (alle Daten)	0.657	
Größtes Maximum und Minimum	0.307 und -0.274 eÅ ⁻³	

B1: Kristalldaten und Strukturverfeinerung für [{Cp'''(OC)₂Fe}₂(μ-η^{1:1}P₄)] (3a):

Tabelle B2:Atomkoordinaten [$x \ 10^4$] und äquivalente isotrope Auslenkungsparameter[Ų $x \ 10^3$] für 3a:

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)	
Fe(1)	3209(1)	3899(1)	2675(1)	43(1)	
Fe(2)	5205(1) 6521(1)	6441(1)	2075(1) 2086(1)	47(1)	
P(1)	3629(1)	5119(1)	2143(1)	58(1)	
P(2)	4863(1)	4774(1)	1950(1)	62(1)	
P(3)	4955(1)	5563(1)	2942(1)	62(1)	
P(4)	5022(1)	6155(1)	1864(1)	59(1)	
0(1)	5032(3)	3595(3)	3717(3)	71(1)	
0(2)	3524 (4)	2903 (3)	1460(3)	93 (2)	
0(3)	6577(5)	7476(4)	3417(3)	115(2)	
O(4)	7133(4)	4958(4)	3089(3)	113(2)	
C(1)	2679(4)	3428(3)	3514(3)	42(1)	
C(2)	2610(4)	4350(4)	3479(3)	43(2)	
C(3)	2075(4)	4551(4)	2680(3)	45(2)	
C(4)	1786(4)	3826(4)	2230(3)	45(1)	
C(5)	2177(4)	3141(4)	2744(4)	50(2)	
C(6)	7053(4)	6003(4)	1234(3)	46(2)	
C(7)	7661(4)	6635(4)	1764(4)	51(2)	
C(8)	7141(4)	7380(4)	1651(4)	55(2)	
C(9)	6273(5)	7287(4)	1104(4)	50(2)	
C(10)	6230(4)	6429(4)	857(3)	52(2)	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccc} C(12) & 2263 (5) & 2516 (5) & 4428 (4) & 87 (3) \\ C(13) & 3827 (5) & 3082 (5) & 4916 (4) & 80 (2) \\ C(14) & 3378 (5) & 1975 (4) & 3884 (4) & 78 (2) \\ C(15) & 3369 (4) & 3315 (4) & 1931 (4) & 59 (2) \\ C(16) & 4312 (4) & 3739 (4) & 3310 (3) & 49 (2) \\ C(17) & 6549 (5) & 7058 (4) & 2879 (4) & 74 (2) \\ C(18) & 6868 (5) & 5561 (5) & 2679 (4) & 74 (2) \\ C(21) & 2881 (5) & 5056 (4) & 4122 (4) & 56 (2) \\ C(22) & 2419 (5) & 4873 (5) & 4714 (4) & 90 (3) \\ C(23) & 3879 (5) & 5164 (5) & 4537 (4) & 77 (2) \\ C(24) & 2500 (5) & 5925 (4) & 3745 (4) & 87 (2) \\ C(41) & 1082 (4) & 3788 (4) & 1401 (3) & 54 (2) \\ C(42) & 190 (5) & 3749 (6) & 1514 (4) & 104 (3) \\ C(43) & 1081 (6) & 4589 (6) & 929 (4) & 121 (4) \\ C(44) & 1165 (6) & 3002 (6) & 944 (5) & 118 (4) \\ C(61) & 7191 (5) & 5120 (4) & 952 (4) & 62 (2) \\ C(62) & 7524 (7) & 5246 (6) & 276 (5) & 130 (4) \\ C(63) & 7841 (9) & 4550 (6) & 1518 (6) & 186 (6) \\ C(64) & 6315 (6) & 4634 (5) & 607 (5) & 108 (3) \\ C(72) & 9184 (5) & 6593 (6) & 1725 (5) & 117 (3) \\ C(73) & 8929 (6) & 7497 (6) & 2704 (5) & 112 (3) \\ C(74) & 8970 (6) & 5977 (6) & 2924 (5) & 126 (4) \\ C(91) & 5587 (5) & 7983 (4) & 739 (4) & 57 (2) \\ C(92) & 6026 (5) & 8596 (5) & 328 (5) & 112 (3) \\ C(94) & 4749 (5) & 7635 (5) & 145 (4) & 77 (2) \\ \end{array}$	C(11)	3043(4)	2766(4)	4170(4)	55(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	2263 (5)	2516(5)	4428(4)	87(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	3827(5)	3082(5)	4916(4)	80(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	3378(5)	1975(4)	3884(4)	78(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	3369(4)	3315(4)	1931(4)	59(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	4312(4)	3739(4)	3310(3)	49(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	6549(5)	7058(4)	2879(4)	74(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	6868(5)	5561(5)	2679(4)	74(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	2881(5)	5056(4)	4122(4)	56(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	2419(5)	4873(5)	4714(4)	90(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	3879(5)	5164(5)	4537(4)	77(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	2500(5)	5925(4)	3745(4)	87(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(41)	1082(4)	3788(4)	1401(3)	54(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(42)	190(5)	3749(6)	1514(4)	104(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(43)	1081(6)	4589(6)	929(4)	121(4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(44)	1165(6)	3002(6)	944(5)	118(4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(61)	7191(5)	5120(4)	952(4)	62(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(62)	7524(7)	5246(6)	276(5)	130(4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(63)	7841(9)	4550(6)	1518(6)	186(6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(64)	6315(6)	4634(5)	607(5)	108(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(71)	8654(5)	6629(4)	2262(4)	63(2)	
C(73)8929(6)7497(6)2704(5)112(3)C(74)8970(6)5977(6)2924(5)126(4)C(91)5587(5)7983(4)739(4)57(2)C(92)6026(5)8596(5)328(5)112(3)C(93)5364(5)8465(5)1383(4)98(3)C(94)4749(5)7635(5)145(4)77(2)	C(72)	9184(5)	6593(6)	1725(5)	117(3)	
C (74)8970 (6)5977 (6)2924 (5)126 (4)C (91)5587 (5)7983 (4)739 (4)57 (2)C (92)6026 (5)8596 (5)328 (5)112 (3)C (93)5364 (5)8465 (5)1383 (4)98 (3)C (94)4749 (5)7635 (5)145 (4)77 (2)	C(73)	8929(6)	7497(6)	2704(5)	112(3)	
C (91)5587 (5)7983 (4)739 (4)57 (2)C (92)6026 (5)8596 (5)328 (5)112 (3)C (93)5364 (5)8465 (5)1383 (4)98 (3)C (94)4749 (5)7635 (5)145 (4)77 (2)	C(74)	8970(6)	5977(6)	2924(5)	126(4)	
C (92)6026 (5)8596 (5)328 (5)112 (3)C (93)5364 (5)8465 (5)1383 (4)98 (3)C (94)4749 (5)7635 (5)145 (4)77 (2)	C(91)	5587(5)	7983(4)	739(4)	57(2)	
C (93)5364 (5)8465 (5)1383 (4)98 (3)C (94)4749 (5)7635 (5)145 (4)77 (2)	C(92)	6026(5)	8596(5)	328(5)	112(3)	
C(94) 4749(5) 7635(5) 145(4) 77(2)	C(93)	5364 (5)	8465(5)	1383(4)	98(3)	
	C(94)	4749(5)	7635(5)	145(4)	77(2)	

 Tabelle B3: Bindungslängen [Å] und -winkel [°] für 3a:

Fe(1)-C(15)	1.732(6)	C(4)-C(41)	1.525(8)
Fe(1)-C(16)	1.753(6)	C(6)-C(10)	1.420(8)
Fe(1)-C(5)	2.087(6)	C(6)-C(7)	1.481(8)
Fe(1)-C(3)	2.098(6)	C(6)-C(61)	1.524(8)
Fe(1)-C(1)	2.134(5)	C(7)-C(8)	1.411(8)
Fe(1)-C(4)	2.143(6)	C(7)-C(71)	1.529(9)
Fe(1)-C(2)	2.144(5)	C(8)-C(9)	1.401(8)
Fe(1)-P(1)	2.3552(19)	C(9)-C(10)	1.415(8)
Fe(2)-C(18)	1.719(7)	C(9)-C(91)	1.526(9)
Fe(2)-C(17)	1.727(7)	C(11)-C(14)	1.521(8)
Fe(2)-C(8)	2.091(6)	C(11)-C(12)	1.544(8)
Fe(2)-C(10)	2.110(5)	C(11)-C(13)	1.563(9)
Fe(2)-C(6)	2.139(5)	C(21)-C(23)	1.521(9)
Fe(2)-C(7)	2.143(6)	C(21)-C(22)	1.543(8)
Fe(2)-C(9)	2.143(6)	C(21)-C(24)	1.552(8)
Fe(2)-P(4)	2.348(2)	C(41)-C(44)	1.521(8)
P(1)-P(2)	2.210(3)	C(41)-C(43)	1.523(9)
P(1)-P(3)	2.217(3)	C(41)-C(42)	1.528(8)
P(2)-P(3)	2.151(2)	C(61)-C(63)	1.475(10)
P(2)-P(4)	2.198(3)		
P(3)-P(4)	2.209(2)	C(61) - C(62)	1.525(9)
O(1)-C(16)	1.151(6)	C(61) - C(64)	1.526(9)
O(2)-C(15)	1.172(6)	C(71) - C(72)	1.514(8)
O(3)-C(17)	1.166(7)	C(71) - C(74)	1.522(9)
O(4)-C(18)	1.185(7)	C(71) - C(73)	1.563 (9)
C(1) - C(5)	1.414(8)	C(91) - C(94)	1.495(9)
C(1) - C(2)	1.454(7)	C(91) - C(92)	1.542(8)
C(1) - C(11)	1.531(8)	C(91) -C(93)	1.543(8)
C(2)-C(3)	1.431(7)		
C(2)-C(21)	1.555(8)		
C(3)-C(4)	1.382(7)		
C(4)-C(5)	1.414(8)		

C(15)-Fe(1)-C(16)	92.0(3)	
C(15) - Fe(1) - C(5)	95 3 (3)	
C(15) = C(1) = C(5)	101 2 (2)	
C(16) - Fe(1) - C(5)	121.3(3)	
C(15) - Fe(1) - C(3)	129.7(3)	
C(16)-Fe(1)-C(3)	138.2(2)	
C(5) - Fe(1) - C(3)	64.1(2)	
C(15) - Fe(1) - C(1)	126 0(3)	
C(16) = C(1) = C(1)	02 1 (2)	
	95.1(Z)	
C(5) - Fe(1) - C(1)	39.1(2)	
C(3) - Fe(1) - C(1)	65.9(2)	
C(15)-Fe(1)-C(4)	96.8(3)	
C(16) - Fe(1) - C(4)	159.0(2)	
$C(5) = F_{\Theta}(1) = C(4)$	39 0(2)	
C(3) = Fe(1) = C(4)	39.0(2)	
C(3) - Fe(1) - C(4)	38.0(2)	
C(1) - Fe(1) - C(4)	66.4(2)	
C(15)-Fe(1)-C(2)	160.1(3)	
C(16)-Fe(1)-C(2)	101.5(2)	
C(5) - Fe(1) - C(2)	65.3(2)	
$C(3) = E_{0}(1) = C(2)$	39 4 (2)	
C(3) = Fe(1) = C(2)	20.72(10)	
C(1) - Fe(1) - C(2)	39.73(19)	
C(4) - Fe(1) - C(2)	65.8(2)	
C(15)-Fe(1)-P(1)	87.9(2)	
C(16)-Fe(1)-P(1)	90.7(2)	
C(5)-Fe(1)-P(1)	147.54(19)	
C(3) = Fe(1) = D(1)	89 20(17)	
C(1) = C(1) = D(1)	145 70(17)	
C(1) - Fe(1) - P(1)		
C(4) - Fe(1) - P(1)	108.50(17)	
C(2) - Fe(1) - P(1)	106.23(17)	
C(18)-Fe(2)-C(17)	91.3(4)	
C(18)-Fe(2)-C(8)	135.6(3)	
C(17)-Fe(2)-C(8)	92.8(3)	
C(18) - Fe(2) - C(10)	123.7(3)	
C(17) - Fe(2) - C(10)	145 0(3)	
C(1) = C(2) = C(10)	(3, 0, 0)	
C(8) - Fe(2) - C(10)	63.9(2)	
C(18) - Fe(2) - C(6)	94.1(3)	
C(17) - Fe(2) - C(6)	153.1(3)	
C(8) - Fe(2) - C(6)	65.3(2)	
C(10)-Fe(2)-C(6)	39.0(2)	
C(18) - Fe(2) - C(7)	99.8(3)	
C(17) - Fe(2) - C(7)	112 6 (3)	
$C(2)$ $F_{C}(2)$ $C(7)$	28 0(2)	
C(0) - FE(2) - C(7)	56.9(2)	
C(10) = Fe(2) = C(7)	66.2(2)	
C(6) - Fe(2) - C(7)	40.5(2)	
C(18)-Fe(2)-C(9)	160.4(3)	
C(17)-Fe(2)-C(9)	106.8(3)	
C(8)-Fe(2)-C(9)	38.6(2)	
C(10) - Fe(2) - C(9)	38,9(2)	
C(6) - Fe(2) - C(9)	66 4 (2)	
C(0) = C(2) = C(0)	66 7 (2)	
C(1) = Fe(2) = C(3)	00.7(2)	
C(18) - Fe(2) - P(4)	91.9(3)	
C(17) - Fe(2) - P(4)	87.9(3)	
C(8) - Fe(2) - P(4)	132.4(2)	
C(10) - Fe(2) - P(4)	89.82(18)	
C(6) - Fe(2) - P(4)	118.22(18)	
C(7) - Fe(2) - P(4)	155,91(18)	
C(9) - Fe(2) - D(4)	96 07(19)	
D(2) D(1) D(2)	50.07(1)	
r(2) - r(1) - r(3)		
F(Z) - F(T) - Fe(T)	106.02(9)	
P(3)-P(1)-Fe(1)	109.86(9)	
P(3)-P(2)-P(4)	61.04(8)	
P(3)-P(2)-P(1)	61.11(8)	
P(4) - P(2) - P(1)	84.49(9)	
P(2) - P(3) - P(4)	60.53(8)	
P(2) - P(3) - P(1)	60 77 (8)	
D(A) = D(3) = D(1)	Q1 07 (Q)	
$r (\pi) - r (2) - r (1)$	$O_{\pm} \cup I (2)$	
r(2) - r(4) - r(3)	58.42(8)	
P(2) - P(4) - Fe(2)	108.45(9)	

P(3) - P(4) - Fe(2)	107.91(9)
C(5) - C(1) - C(2)	105 5 (5)
C(5) - C(1) - C(2)	
C(5) - C(1) - C(11)	118.5(5)
C(2) - C(1) - C(11)	135.5(6)
C(5) - C(1) - Fe(1)	68 7 (3)
C(2) = C(1) C(2) = C(1) $E_{2}(1)$	
C(2) - C(1) - Fe(1)	/0.5(3)
C(11)-C(1)-Fe(1)	130.9(4)
C(3) - C(2) - C(1)	105.8(5)
C(2) = C(2) = C(21)	
C(3) - C(2) - C(21)	
C(1) - C(2) - C(21)	133.0(5)
C(3) - C(2) - Fe(1)	68.6(3)
$C(1) = C(2) = E_{O}(1)$	69.8(3)
C(1) - C(2) - I - E(1)	
C(21) - C(2) - Fe(1)	132.5(4)
C(4) - C(3) - C(2)	111.7(5)
C(4) - C(3) - Fe(1)	72 7 (4)
G(1) = G(2) = G(1)	
C(2) - C(3) - Fe(1)	72:0(3)
C(3) - C(4) - C(5)	105.1(5)
C(3) - C(4) - C(41)	126.0(6)
C(5) = C(4) = C(41)	129 2 (6)
C(3) - C(4) - C(41)	
C(3) - C(4) - Fe(1)	69.2(4)
C(5)-C(4)-Fe(1)	68.4(4)
C(41) - C(4) - Fe(1)	133.5(4)
C(1) - C(5) - C(4)	111 8(5)
C(1) - C(5) - Fe(1)	12.2(3)
C(4)-C(5)-Fe(1)	72.6(4)
C(10) - C(6) - C(7)	106 3 (5)
C(10) C(0) C(1)	
C(10) - C(6) - C(61)	119.4(6)
C(7) - C(6) - C(61)	133.4 (6)
C(10)-C(6)-Fe(2)	69.4(3)
C(7) - C(6) - Fe(2)	69 9(3)
G(1) = G(2)	
C(61) - C(6) - Fe(2)	133.1(4)
C(8) - C(7) - C(6)	104.1(6)
C(8) - C(7) - C(71)	122.1(6)
C(6) - C(7) - C(71)	133 4 (6)
C(0) - C(7) - C(71)	
C(8) - C(7) - Fe(2)	68.5(3)
C(6) - C(7) - Fe(2)	69.6(3)
C(71) - C(7) - Fe(2)	131.0(4)
C(0) $C(0)$ $C(7)$	
C(9) - C(0) - C(7)	113.9(0)
C(9) - C(8) - Fe(2)	72.7(4)
C(7) - C(8) - Fe(2)	72.6(4)
C(8) - C(9) - C(10)	104 2 (6)
C(0) = C(0) = C(10)	
C(8) - C(9) - C(91)	127.9(6)
C(10) - C(9) - C(91)	127.0(6)
C(8)-C(9)-Fe(2)	68.7(4)
C(10) - C(9) - Fe(2)	69.3(3)
$C(01) C(0) E_{0}(0)$	122 0 (4)
C(31) - C(3) - Fe(2)	100.9(4)
C(9)-C(10)-C(6)	111.5(6)
C(9)-C(10)-Fe(2)	71.8(3)
C(6) - C(10) - Fe(2)	71 5 (3)
C(0) C(10) IC(2)	
C(14) - C(11) - C(1)	
C(14) - C(11) - C(12)	109.0(6)
C(1) - C(11) - C(12)	106.6(5)
C(14) - C(11) - C(13)	106 3 (6)
C(1) = C(11) = C(12)	11E_0/E)
C(T) - C(TT) - C(T3)	(כ) 0.CTT
C(12) - C(11) - C(13)	108.0(6)
O(2)-C(15)-Fe(1)	176.0(6)
$O(1) - C(16) - E_{O}(1)$	176 8(6)
O(1) = O(10) = Fe(1)	
O(3) - C(17) - Fe(2)	1/9.3(8)
O(4)-C(18)-Fe(2)	178.0(7)
C(23) - C(21) - C(22)	111.5(6)
C(22) $C(21)$ $C(24)$	107.4(c)
C(23) = C(21) = C(24)	
C(22) - C(21) - C(24)	105.0(5)
C(23) - C(21) - C(2)	114.3(5)
C(22) - C(21) - C(2)	108 5 (5)
C(24) C(21) C(2)	100 7/E)
C(24) = C(21) = C(2)	
C(44) - C(41) - C(43)	110.2(6)
C(44) - C(41) - C(4)	113.0(6)

C(43)-C(41)-C(4)	112.0(6)	
C(44) - C(41) - C(42)	108.3(6)	
C(43)-C(41)-C(42)	107.5(6)	
C(4) - C(41) - C(42)	105.6(5)	
C(63)-C(61)-C(6)	118.1(6)	
C(63)-C(61)-C(62)	105.8(8)	
C(6)-C(61)-C(62)	106.9(6)	
C(63)-C(61)-C(64)	107.5(8)	
C(6) - C(61) - C(64)	111.6(6)	
C(62)-C(61)-C(64)	106.1(6)	
C(72)-C(71)-C(74)	112.3(7)	
C(72)-C(71)-C(7)	109.5(6)	
C(74) - C(71) - C(7)	116.8(6)	
C(72)-C(71)-C(73)	104.1(6)	
C(74)-C(71)-C(73)	103.3(7)	
C(7) - C(71) - C(73)	109.9(6)	
C(94) - C(91) - C(9)	112.0(6)	
C(94)-C(91)-C(92)	109.4(6)	
C(9)-C(91)-C(92)	105.7(6)	
C(94)-C(91)-C(93)	109.3(6)	
C(9)-C(91)-C(93)	110.7(5)	
C(92)-C(91)-C(93)	109.7(6)	

Summenformel	$C_{17}H_{29}FeP_5$	
Molmasse	444.10	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71069 Å	
Scanmodus	Phi- Rotation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/c$	
Zelldimensionen	a = 16.6082(13) Å	$\alpha = 90^{\circ}$
	b = 16.4341(15) Å	$\beta = 90.227(8)^{\circ}$
	c = 16.3015(11) Å	$\gamma = 90^{\circ}$
Zellvolumen	4449.3(6) Å ³	
Formeleinheiten pro Zelle Z	8	
Berechnete Dichte	1.326 Mg/m^3	
Absorptionskoeffizient	1.035 mm^{-1}	
Kristallgröße	0.48 x 0.18 x 0.16 mm	
Gemessener θ -Bereich	2.75 bis 24.71°	
Anzahl der gemessenen Reflexe	55780	
Unabhängige Reflexe	7479 (Rint = 0.0770)	
Absorptionskorrektur	Numerisch	
Max. und min. Transmission	0.743 und 0.304	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR92 (Giacovazzo et al., 1993)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen H	\mathbb{R}^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1990)	
Daten / Restraints / Parameter	7479 / 0 / 479	
Endgültige R-Werte $[I>2\sigma(I)]$	R1 = 0.0411, $wR2 = 0.0994$	
R-Werte (alle Daten)	R1 = 0.0723, wR2 = 0.1096	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0643P)^{2}+0.0000$	P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.872	
Größtes Maximum und Minimum	0.466 und -0.395 eÅ ⁻³	

C1: Kristalldaten und Strukturverfeinerung für $[Cp'''Fe(\eta^5-P_5)]$ (4a).

C2: Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å² x 10^3] für 4a:

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	У	Z	U(eq)
Fe(1)	3933(1)	3423(1)	1070(1)	53(1)
P(1)	4550(5)	4726(4)	1312(3)	110(3)
P(2)	3616(2)	4725(3)	468(4)	92(2)
P(3)	3832(5)	3780(4)	-353(2)	106(3)
P(4)	4882(6)	3188(3)	-1(6)	130(4)
P(5)	5324(2)	3769(6)	1052(7)	131(4)
P(1A)	4034(8)	4842(3)	1058(7)	134(6)
P(2A)	3619(3)	4281(8)	-28(7)	123(6)
P(3A)	4384(7)	3320(5)	-286(4)	105(3)
P(4A)	5267(4)	3307(5)	604(7)	108(3)
P(5A)	5069(7)	4214(7)	1436(4)	127(4)
C(1)	3221(2)	3302(2)	2149(2)	61(1)
C(2)	2749(2)	3064(2)	1423(2)	55(1)
C(3)	3182(2)	2409(2)	1053(2)	53(1)
C(4)	3874(2)	2206(2)	1519(2)	54(1)
C(5)	3900(2)	2775(2)	2163(2)	63(1)
C(11)	3057(4)	3845(3)	2902 (3)	91(2)
C(12)	3843 (5)	4055(4)	3345(4)	139(3)
C(13)	2606(7)	4642(4)	2734(4)	197(5)
C(14)	2571(4)	3321(5)	3503(4)	140(3)

C(21)	1889(2)	3264(2)	1110(3)	72(1)	
C(22)	1761(3)	2914(4)	255(4)	123(2)	
C(23)	1301(3)	2811(4)	1669(4)	119(2)	
C(24)	1668(4)	4161(3)	1044(6)	150(3)	
C(41)	4374(2)	1430(2)	1441(3)	68(1)	
C(42)	5227(3)	1545(3)	1765(5)	130(3)	
C(43)	3938(3)	809(2)	1992(3)	94(2)	
C(44)	4369(4)	1097(3)	579(3)	106(2)	
Fe(2)	1274(1)	8986(1)	1352(1)	51(1)	
P(6)	631(1)	8567(1)	120(1)	119(1)	
P(7)	1636(1)	9294(1)	-34(1)	114(1)	
P(8)	1579(1)	10273(1)	764(1)	112(1)	
P(9)	482(1)	10191(1)	1399(1)	123(1)	
P(10)	-106(1)	9124(1)	1004(1)	130(1)	
C(6)	1468(2)	7808(2)	1855(2)	53(1)	
C(7)	2234(2)	8178(2)	1634(2)	53(1)	
C(8)	2293(2)	8913(2)	2086(2)	54(1)	
C(9)	1617(2)	9022(2)	2603(2)	51(1)	
C(10)	1113(2)	8351(2)	2436(2)	53(1)	
C(61)	1077(3)	6960(2)	1754(3)	75(1)	
C(62)	1357(4)	6470(3)	2515(4)	128(2)	
C(63)	154(3)	7009(3)	1782(4)	108(2)	
C(64)	1291(4)	6492(3)	973(4)	125(2)	
C(71)	2970(2)	7858(2)	1148(3)	71(1)	
C(72)	3610(3)	8523(4)	1081(4)	119(2)	
C(73)	2800(3)	7546(3)	289(3)	99(2)	
C(74)	3329(3)	7163(4)	1676(4)	129(2)	
C(91)	1550(2)	9607(2)	3319(2)	62(1)	
C(92)	681(3)	9664(3)	3634(3)	86(1)	
C(93)	2081(3)	9219(3)	3998(3)	102(2)	
C(94)	1868(3)	10459(3)	3129(3)	100(2)	

C3: Bindungslängen [Å] und -winkel [°] für 4a:

Fe(1)-C(5)	2.077(4)	C(11)-C(12)	1.528(8)
Fe(1)-C(3)	2.082(3)	C(11)-C(13)	1.534(7)
Fe(1)-C(1)	2.133(4)	C(11)-C(14)	1.536(8)
Fe(1)-C(2)	2.135(3)	C(21)-C(24)	1.524(6)
Fe(1)-C(4)	2.132(3)	C(21)-C(22)	1.522(7)
Fe(1)-P(2A)	2.336(4)	C(21)-C(23)	1.530(6)
Fe(1)-P(1A)	2.338(4)	C(41)-C(44)	1.508(7)
Fe(1)-P(3A)	2.343 (5)	C(41)-C(42)	1.522(6)
Fe(1)-P(4A)	2.353 (5)	C(41)-C(43)	1.542(6)
Fe(1)-P(5A)	2.366(5)	Fe(2)-C(10)	2.071(3)
Fe(1)-P(5)	2.380(3)	Fe(2)-C(8)	2.073(3)
Fe(1)-P(4)	2.388(4)	Fe(2)-C(9)	2.117(3)
P(1) - P(2)	2.069(6)	Fe(2)-C(7)	2.123(3)
P(1)-P(5)	2.075(9)	Fe(2)-C(6)	2.126(3)
P(2)-P(3)	2.082(6)	Fe(2)-P(10)	2.3698(14)
P(3)-P(4)	2.076(8)	Fe(2)-P(6)	2.3721(15)
P(4)-P(5)	2.094(10)	Fe(2)-P(8)	2.3778(14)
P(1A)-P(2A)	2.109(12)	Fe(2)-P(9)	2.3793(13)
P(1A)-P(5A)	2.096(11)	Fe(2)-P(7)	2.3933(16)
P(2A)-P(3A)	2.071(10)	P(6)-P(7)	2.068(3)
P(3A)-P(4A)	2.059(9)	P(6)-P(10)	2.103(3)
P(4A)-P(5A)	2.042(9)	P(7)-P(8)	2.072(3)
C(1) - C(5)	1.423 (5)	P(8)-P(9)	2.102(3)
C(1) - C(2)	1.469(5)	P(9)-P(10)	2.107(3)
C(1) - C(11)	1.544(6)	C(6)-C(10)	1.430(5)
C(2) - C(3)	1.431(5)	C(6) - C(7)	1.456(5)
C(2)-C(21)	1.550(5)	C(6)-C(61)	1.547(5)
C(3)-C(4)	1.416(5)	C(7)-C(8)	1.417(5)
C(4) - C(5)	1.406(5)	C(7) - C(71)	1.552(5)
C(4)-C(41)	1.527(5)	C(8)-C(9)	1.419(5)

		1			
C(9)-C(10)	1.410(5)		C(71) - C(72)	1.528(6)	
C(9)-C(91)	1.515(5)		C(71)-C(74)	1.548(7)	
C(61)-C(64)	1.530(6)		C(91)-C(94)	1.529(6)	
C(61)-C(63)	1.535(6)		C(91)-C(92)	1.537(5)	
C(61)-C(62)	1.550(7)		C(91)-C(93)	1.550(6)	
C(71)-C(73)	1.517(6)				
$C(5) = E_{P}(1) = C(3)$	65 39(15)	1	$D(2\Lambda) = F_{D}(1) = D(\Lambda)$		71 6(2)
$C(5) - F_{2}(1) - C(1)$	39.48(14)		P(1A) - Fe(1) - P(4)		96.16(17)
$C(3) = F_{2}(1) = C(1)$	66 56 (14)		P(3A) - Fe(1) - P(4)		23.71(18)
C(3) - Fe(1) - C(1) C(5) = Fo(1) - C(2)	66.30(14)		$D(4\Delta) - Fe(1) - D(4)$		29.0(2)
C(3) = Fe(1) = C(2)	30.40(14)		$D(5\Lambda) = F_{0}(1) = D(\Lambda)$		25.0(2)
C(3) - Fe(1) - C(2)	39.65(13)		P(5) = Fo(1) = P(4)		5.2(3)
C(1) - Fe(1) - C(2)	40.27(15)		F(3) - FC(1) - F(4) D(3) D(1) D(5)		32.1(2)
C(5) - Fe(1) - C(4)	39.00(14)		F(2) - F(1) - F(3) D(2) D(1) = C(1)		109.1(3)
C(3) - Fe(1) - C(4)	39.26(13)		P(2) - P(1) - P(1)		64.00(14)
C(1) - Fe(1) - C(4)	66.61(13)		P(3) - P(1) - Fe(1)		
C(2) - Fe(1) - C(4)	66.74(12)		P(1) - P(2) - P(3) D(1) - D(2) - D(3)		107.3(3)
C(5) - Fe(1) - P(2A)	163.9(2)		P(1) - P(2) - Fe(1) P(2) - P(2) - Fe(1)		64.43(19)
C(3) - Fe(1) - P(2A)	110.0(3)		P(3) - P(2) - Fe(1)		64.02(16)
C(1) - Fe(1) - P(2A)	124.4(2)		P(2) - P(3) - P(4)		108.5(3)
C(2) - Fe(1) - P(2A)	99.84(14)		P(2) - P(3) - Fe(1)		64.65(15)
C(4) - Fe(1) - P(2A)	145.0(4)		P(4) - P(3) - Fe(1)		64.06(19)
C(5) - Fe(1) - P(1A)	121.4(3)		P(5) - P(4) - P(3)		107.7(2)
C(3)-Fe(1)-P(1A)	147.3(4)		P(5) - P(4) - Fe(1)		63.73(18)
C(1)-Fe(1)-P(1A)	98.06(17)		P(3) - P(4) - Fe(1)		64.53(15)
C(2)-Fe(1)-P(1A)	110.1(3)		P(1) - P(5) - P(4)		107.3(2)
C(4)-Fe(1)-P(1A)	160.3(3)		P(1)-P(5)-Fe(1)		64.94(15)
P(2A)-Fe(1)-P(1A	53.6(3)		P(4)-P(5)-Fe(1)		64.16(17)
C(5)-Fe(1)-P(3A)	141.4(3)		P(2A)-P(1A)-P(5A	L)	107.2(3)
C(3)-Fe(1)-P(3A)	97.07(17)		P(2A)-P(1A)-Fe(1	.)	63.1(2)
C(1)-Fe(1)-P(3A)	162.1(2)		P(5A)-P(1A)-Fe(1	.)	64.22(19)
C(2)-Fe(1)-P(3A)	122.2(2)		P(3A)-P(2A)-P(1A	7)	107.8(3)
C(4) - Fe(1) - P(3A)	105.8(2)		P(3A)-P(2A)-Fe(1	.)	63.90(18)
P(2A)-Fe(1)-P(3A	52.5(3)		P(1A)-P(2A)-Fe(1	.)	63.2(2)
P(1A) - Fe(1) - P(3A)	92.3(2)		P(4A)-P(3A)-P(2A	.)	107.5(4)
C(5) - Fe(1) - P(4A)	105.3(2)		P(4A)-P(3A)-Fe(1	.)	64.25(19)
C(3) - Fe(1) - P(4A)	119.7(2)		P(2A)-P(3A)-Fe(1	.)	63.6(2)
C(1) - Fe(1) - P(4A)	141.7(3)		P(5A)-P(4A)-P(3A	2)	110.2(4)
C(2) - Fe(1) - P(4A)	159 2(2)		P(5A)-P(4A)-Fe(1	.)	64.7(2)
C(4) - Fe(1) - P(4A)	94 54 (19)		P(3A)-P(4A)-Fe(1)	63.7(2)
$P(2\Delta) - Fe(1) - P(4\Delta)$	90.5(2)		P(4A) - P(5A) - P(1A)))	107.3(4)
$P(1\Delta) - Fe(1) - P(4\Delta)$	90.6(3)		P(4A)-P(5A)-Fe(1)	64.0(2)
$P(3\Delta) - Fe(1) - P(4\Delta)$	52.0(2)		P(1A)-P(5A)-Fe(1)	62.9(2)
C(5) - Fe(1) - P(5A)	95 1 (2)		C(5) - C(1) - C(2)	,	105.8(3)
$C(3) - F_{P}(1) - P(5\Delta)$	157 0(3)		C(5) - C(1) - C(11)		118.7(4)
C(1) - Fe(1) - P(5A)	106.7(2)		C(2) - C(1) - C(11)		134.4(4)
$C(2) - Fe(1) - P(5\Delta)$	144 9(3)		C(5) - C(1) - Fe(1)		68.1(2)
C(4) - Fe(1) - P(5A)	117 8(3)		C(2) - C(1) - Fe(1)		69.93(19)
$P(2\Delta) - Fe(1) - P(5\Delta)$	92 1 (3)		C(11)-C(1)-Fe(1)		134.6(3)
$P(1\Delta) - Fe(1) - P(5\Delta)$	52.1(3)		C(3) - C(2) - C(1)		105.8(3)
$P(3\Delta) - Fe(1) - P(5\Delta)$	91 2(2)		C(3) - C(2) - C(21)		118.9(3)
$P(4\Delta) - Fe(1) - P(5\Delta)$	51.2(2)		C(1) - C(2) - C(21)		134.2(3)
$C(5) - E_{P}(1) - P(5)$	99 28 (18)		C(3)-C(2)-Fe(1)		68.18(18)
$C(3) - E_{P}(1) - P(5)$	140 6 (3)		C(1) - C(2) - Fe(1)		69.8(2)
$C(1) = F_{\Box}(1) = D(5)$	125 0(3)		C(21) - C(2) - Fe(1)		134.5(2)
$C(2) = E_{P}(1) = P(5)$	164 8(2)		C(4) - C(3) - C(2)		111.0(3)
$C(4) = F_{P}(1) = D(5)$	105 88(17)		C(4) - C(3) - Fe(1)		72.31(19)
$P(2\Delta) = Fa(1) = P(5)$	92 AA (12)		C(2) - C(3) - Fe(1)		72.18(19)
$D(1\Delta) = Fe(1) = P(5)$	70 0(2)		C(5) - C(4) - C(3)		105.5(3)
$D(3D) = E_{C}(1) = D(C)$	72.0(3)		C(5) - C(4) - C(41)		127.1(3)
$D(\Lambda) = F_{C}(1) = P(C)$	72.1(2) 25 02/10)		C(3) - C(4) - C(41)		126.3(3)
$D(5\lambda) = FC(1) = P(5)$	25.02(10) 25 61(10)		C(5) - C(4) - Fe(1)		68.37(19)
P(SA) = P(1) = P(5) P(5) = P(1) = P(4)	20.01(2) 10/ 2/2)		$C(3) - C(4) - F_{P}(1)$		68,43(18)
C(3) = Fe(1) = P(4) C(3) = Fo(1) = D(4)	124.3(3)		$C(41) - C(4) - F_{-}(1)$		136 8(3)
C(3) - FE(1) - F(4) C(1) - FO(1) - F(4)			C(4) - C(5) - C(1)		111 8(3)
C(1) - FE(1) - F(4) C(2) - FO(1) - F(4)	120 0(2)		$C(4) - C(5) - E_{-}(1)$		72 6(2)
C(2) = FE(1) = F(4) C(4) = FO(1) = F(4)	133.3(3)		$C(1) - C(5) - F_{-}(1)$		72.4(2)
$ \cup (+)^{-r} \cup (+)^{-r} \cup (+)$	2/.DU(LD)	1			· • • • \ • /

C(12)-C(11)-C(13)	107.9(6)	P(6)-P(7)-Fe(2)	63.75(6)
C(12) - C(11) - C(1)	110.8(4)	P(8)-P(7)-Fe(2)	63.87(6)
C(13) - C(11) - C(1)	116.0(4)	P(7)-P(8)-P(9)	107.49(10)
C(12) - C(11) - C(14)	106.0(5)	P(7) - P(8) - Fe(2)	64.65(6)
C(13) - C(11) - C(14)	109.5(6)	P(9)-P(8)-Fe(2)	63.81(6)
C(1) - C(11) - C(14)	106.1(4)	P(8)-P(9)-P(10)	107.75(10)
C(24) - C(21) - C(22)	105.6(5)	P(8) - P(9) - Fe(2)	63.74(5)
C(24) - C(21) - C(23)	111.0(5)	P(10)-P(9)-Fe(2)	63.43(6)
C(22)-C(21)-C(23)	106.0(5)	P(6)-P(10)-P(9)	107.52(10)
C(24) - C(21) - C(2)	116.6(4)	P(6)-P(10)-Fe(2)	63.73(6)
C(22) - C(21) - C(2)	110.3(3)	P(9)-P(10)-Fe(2)	63.89(6)
C(23)-C(21)-C(2)	106.9(4)	C(10) - C(6) - C(7)	105.4(3)
C(44) - C(41) - C(42)	111.7(4)	C(10) - C(6) - C(61)	117.3(3)
C(44) - C(41) - C(4)	112.3(3)	C(7) - C(6) - C(61)	135.8(3)
C(42) - C(41) - C(4)	111.9(3)	C(10)-C(6)-Fe(2)	68.04(18)
C(44) - C(41) - C(43)	107.6(4)	C(7)-C(6)-Fe(2)	69.84(18)
C(42) - C(41) - C(43)	108.6(4)	C(61)-C(6)-Fe(2)	135.8(3)
C(4) - C(41) - C(43)	104.3(3)	C(8) - C(7) - C(6)	106.6(3)
C(10) - Fe(2) - C(8)	65.54(13)	C(8) - C(7) - C(71)	120.0(3)
C(10) - Fe(2) - C(9)	39.34(13)	C(6) - C(7) - C(71)	132.5(3)
C(8) - Fe(2) - C(9)	39,59(13)	C(8) - C(7) - Fe(2)	68.36(18)
C(10) - Fe(2) - C(7)	66.39(13)	C(6) - C(7) - Fe(2)	70.07(18)
C(8) - Fe(2) - C(7)	39.46(13)	C(71) - C(7) - Fe(2)	134.0(3)
C(9) - Fe(2) - C(7)	67.04(13)	C(7) - C(8) - C(9)	111.3(3)
C(10) - Fe(2) - C(6)	39,80(13)	C(7) - C(8) - Fe(2)	72.18(19)
C(8) - Fe(2) - C(6)	66 57(13)	C(9) - C(8) - Fe(2)	71 89(19)
C(9) - Fe(2) - C(6)	67 29(13)	C(10) - C(9) - C(8)	104 9(3)
C(7) - Fe(2) - C(6)	40 10(13)	C(10) - C(9) - C(91)	126 8 (3)
C(10) - Fe(2) - P(10)	97 13 (10)	C(8) - C(9) - C(91)	126.8(3)
C(8) - Fe(2) - P(10)	158 51 (11)	C(10) - C(9) - Fe(2)	68 6 (2)
C(9) - Fe(2) - P(10)	118 93 (10)	C(8) - C(9) - Fe(2)	68 5 (2)
$C(7) = F_{2}(2) = D(10)$	146.75(11)	$C(91) = C(9) = F_{P}(2)$	137 7 (2)
$C(6) - E_{P}(2) - P(10)$	108 91 (10)	C(9) - C(10) - C(6)	111 7(3)
C(10) = Fe(2) = F(10) C(10) = Fe(2) = P(6)	121 12(11)	C(9) = C(10) = C(0)	72 1 (2)
C(2) = C(2) = D(6)	14672(11)	$C(5) = C(10) = F_{P}(2)$	$72 \cdot 1 (2)$
$C(9) - E_2(2) - P(6)$	160.42(11)	C(64) - C(61) - C(63)	106 6(4)
$C(7) - E_{P}(2) - P(6)$	109.73(11)	C(64) - C(61) - C(6)	116 3 (4)
$C(6) - E_{2}(2) - P(6)$	97 45 (11)	C(63) - C(61) - C(6)	111 6(3)
$P(10) - F_{P}(2) - P(6)$	52 66 (8)	C(64) - C(61) - C(62)	109.6(4)
$C(10) = E_{0}(2) = D(8)$	145 12(11)	C(61) = C(61) = C(62)	107.5(4)
C(10) = Fe(2) = F(0) C(3) = Fe(2) = D(3)	96 28 (11)	C(6) - C(61) - C(62)	107.0(4)
C(0) = Fe(2) = F(0) C(0) = Fe(2) = D(0)	107.82(10)	C(0) = C(01) = C(02) C(73) = C(71) = C(72)	107.6(4)
C(7) = Fe(2) = F(0) C(7) = Fe(2) = P(8)	118 87(10)	C(73) = C(71) = C(72)	116 2 (3)
$C(6) - E_{2}(2) - P(8)$	158 97(10)	C(72) - C(71) - C(7)	110 1 (3)
$P(10) - F_{P}(2) - P(8)$	91 47(6)	C(72) - C(71) - C(74)	1095(4)
$P(6) = F_{2}(2) = P(8)$	90.77(6)	C(72) - C(71) - C(74)	107.5(4)
$C(10) = E_{0}(2) = P(0)$	108 58 (10)	C(72) = C(71) = C(74)	105.6(4)
C(10) = Fe(2) = F(9) C(9) = Fe(2) = D(9)	110.50(10)	C(9) - C(91) - C(94)	112 5(2)
$C(0) = F_{C}(2) = F(0)$	95 27(9)	C(9) - C(91) - C(92)	$111 \in (2)$
C(7) = Fe(2) = F(9) C(7) = Fe(2) = P(9)	158 13(11)	C(91) - C(91) - C(92)	109.7(4)
$C(6) = F_{\Theta}(2) = D(9)$	145 01 (11)	C(9) = C(91) = C(92) C(9) = C(91) = C(92)	102.7(4) 104 2(2)
D(10) = F = (2) = P(3) D(10) = F = (2) = D(0)	50 60(0)	C(9) = C(91) = C(93)	109 Q(1)
P(6) = Fe(2) = P(0)	91 02 (0)	C(2T) = C(2T) = C(2S) C(2S) = C(2T) = C(2S)	100.5(4)
F(0) = FC(2) = F(3) D(0) = FC(2) = D(0)	51.23(7)	C(32) - C(31) - C(33)	100.0(4)
F(0) = FC(2) = F(3) C(10) = FC(2) = D(7)	32.43(7)		
C(10) = FC(2) = F(1) C(2) = FC(2) = D(7)	110 /0(10)		
C(0) = FE(2) = F(7) C(0) = FO(2) = F(7)	146 72 (10)		
C(2) = rC(2) = r(1) C(2) = rC(2) = r(2)	THO./2(TO)		
$C(1) = F_{C}(2) = F(1)$ $C(6) = F_{C}(2) = D(7)$	20.40(10) 101 06(11)		
D(10) = F = (2) = P(7)	90 00(7)		
r (10) -re(2) -r(1)	20.00(7)	1	

51.45(7)

51.48(7)

89.71(6)

107.69(10)

64.80(6)

63.62(6)

109.49(10)

P(6)-Fe(2)-P(7) P(8)-Fe(2)-P(7)

P(9)-Fe(2)-P(7)

P(7) - P(6) - P(10)

P(7) - P(6) - Fe(2)

P(6) - P(7) - P(8)

P(10)-P(6)-Fe(2)

Summenformel	$C_{17}H_{29}FeP_5$	
Molmasse	444.10	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi- Rotation	
Kristallsystem	Triklin	
Raumgruppe	P⁻1	
Zelldimensionen	a = 8.5790(6) Å	$\alpha = 88.225(8)^{\circ}$
	b = 8.8029(7) Å	$\beta = 86.477(8)^{\circ}$
	c = 16.0723(12) Å	$\gamma = 61.312(7)^{\circ}$
Zellvolumen	1062.77(14)Å ³	
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.388 Mg/m^3	
Absorptionskoeffizient	1.083 mm^{-1}	
Kristallgröße	0.68 x 0.60 x 0.16 mm	
Gemessener θ-Bereich	2.93 bis 25.85°	
Anzahl der gemessenen Reflexe	14493	
Unabhängige Reflexe	3803 (Rint = 0.0434)	
Absorptionskorrektur	Empirisch mit DIFABS (V09.0)	
Max. und min. Transmission	0.60 und 0.39	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	Siemens SHELXTL	
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	2
Strukturverfeinerungsprogramm	Siemens SHELXTL	
Daten / Restraints / Parameter	3803 / 0 / 217	
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0307, $wR2 = 0.0765$	
R-Werte (alle Daten)	R1 = 0.0349, wR2 = 0.0788	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0436P)^{2}+0.3558)$	P1 mit P= $(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.051	
Größtes Maximum und Minimum	0.403 und -0.361 eÅ ⁻³	

D1: Kristalldaten und Strukturverfeinerung für $[Cp^4Fe(\eta^5-P_5)]$ (4b):

D 2: Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å² x 10^3] für 4b:

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

x	У	Z	U(eq)	
 Fe(1)	4956(1)	9872(1)	2523(1)	25(1)
P(1)	5664(1)	7368(1)	2323(1)	56(1)
P(2)	2971(1)	9192(1)	33/3(1)	55(1)
P(2)	2371(1) 2380(1)	9192(1) 9811(1)	2084(1)	53(1)
P(3)	2300(1)		$200 \pm (1)$	50(1)
P(4) D(E)	4759(1)	6429(1)	1340 (1) 2155 (1)	60(1) E0(1)
P(5)	(0) = (1)	110(4(2))	2155(1)	20(1)
C(1)	6027(2)	12269(2)	3263(1)	26(1) 25(1)
C(2)	4204(2)	12269(2)	3102(1)	25(1)
C(3)	4083(2)	12504(2)	2206(1)	27(1)
C(4)	5841(2)	11425(2)	1826(1)	28(1)
C(5)	6987(2)	10544(2)	2480(1)	27(1)
C(10)	6908(3)	10649(3)	4091(1)	34(1)
C(11)	7638(4)	11918(4)	4202(2)	60(1)
C(12)	8447(3)	8818(3)	4161(1)	49(1)
C(20)	2821(3)	13142(2)	3819(1)	34(1)
C(21)	2992(3)	14633(3)	4194(2)	55(1)
C(22)	866(3)	13770(3)	3662(2)	48(1)
C(30)	2411(3)	13814(2)	1788(1)	37(1)
C(31)	2171(4)	15646(3)	1897(2)	56(1)
C(32)	2246(4)	13514(3)	871(2)	56(1)

C(40)	6518(3)	11340(3)	923(1)	39(1)	
C(41)	6799(4)	12915(4)	736(2)	65(1)	
C(42)	8244(3)	9687(3)	714(1)	49(1)	

D3: Bindungslängen [Å] und -winkel [°] für 4b

Fe(1)-C(5)	2.089(2)	C(1)-C(2)	1.441(2)
Fe(1)-C(2)	2.116(2)	C(1)-C(10)	1.518(2)
Fe(1)-C(1)	2.121(2)	C(2)-C(3)	1.453(2)
Fe(1)-C(3)	2.121(2)	C(2)-C(20)	1.529(2)
Fe(1)-C(4)	2.120(2)	C(3)-C(4)	1.448(3)
Fe(1)-P(4)	2.3657(6)	C(3)-C(30)	1.524(2)
Fe(1)-P(3)	2.3718(7)	C(4)-C(5)	1.420(3)
Fe(1)-P(2)	2.3769(6)	C(4)-C(40)	1.521(2)
Fe(1)-P(5)	2.3838(7)	C(10)-C(12)	1.522(3)
Fe(1)-P(1)	2.4015(7)	C(10)-C(11)	1.540(3)
P(1) - P(2)	2.0905(11)	C(20)-C(22)	1.528(3)
P(1)-P(5)	2.1071(11)	C(20)-C(21)	1.533(3)
P(2)-P(3)	2.1110(11)	C(30)-C(31)	1.539(3)
P(3)-P(4)	2.1140(12)	C(30)-C(32)	1.532(3)
P(4)-P(5)	2.1116(12)	C(40)-C(41)	1.535(3)
C(1)-C(5)	1.421(2)	C(40)-C(42)	1.524(3)
C(5) - Fe(1) - C(2)	66.58(7)		
---	------------------	--	
$C(5) - F_{O}(1) - C(1)$	20 16 (6)		
C(3) = Fe(1) = C(1)			
C(2) - Fe(1) - C(1)	39.77(7)		
C(5) - Fe(1) - C(3)	66.57(7)		
C(2) - Fe(1) - C(3)	40,10(6)		
C(1) = C(1) = C(2)	C = 0 C (7)		
C(1) - Fe(1) - C(3)	66.86(7)		
C(5) - Fe(1) - C(4)	39.42(7)		
C(2) - Fe(1) - C(4)	67.02(7)		
C(1) - Fe(1) - C(4)	66 53 (7)		
$G(2)$ $T_{2}(1)$ $G(4)$			
C(3) - Fe(1) - C(4)	39.92(7)		
C(5) - Fe(1) - P(4)	117.19(5)		
C(2) - Fe(1) - P(4)	147.07(5)		
C(1) - Fe(1) - P(4)	156,62(5)		
$C(2) = E_{O}(1) = D(4)$	109.70(F)		
C(3) = Fe(1) = F(4)			
C(4) - Fe(1) - P(4)	94.99(5)		
C(5) - Fe(1) - P(3)	156.47(5)		
C(2) - Fe(1) - P(3)	109.29(5)		
C(1) - Fe(1) - P(3)	147.52(5)		
C(2) = C(1) = C(2)			
C(3) - Fe(1) - P(3)	95.00(5)		
C(4) - Fe(1) - P(3)	117.07(6)		
P(4)-Fe(1)-P(3)	53.00(3)		
C(5)-Fe(1)-P(2)	148.28(5)		
C(2) - Fe(1) - P(2)	96 35 (5)		
$C(1) = E_{0}(1) = D(0)$			
C(1) - FC(1) - F(2)	TTO . 0T (2)		
C(3) - Fe(1) - P(2)	117.97(5)		
C(4)-Fe(1)-P(2)	157.82(5)		
P(4) - Fe(1) - P(2)	91,91(3)		
$P(3) = F_{\Theta}(1) = P(2)$	52 79(3)		
F(3) = Fe(1) = F(2)	52.75(5)		
C(5) - Fe(1) - P(5)	96.46(5)		
C(2) - Fe(1) - P(5)	157.78(5)		
C(1) - Fe(1) - P(5)	118.07(5)		
C(3) - Fe(1) - P(5)	147,41(5)		
$C(4) = F_{\Theta}(1) = P(5)$	10957(5)		
C(4) - FE(1) - F(3)	109.37(3)		
P(4) - Fe(1) - P(5)	52.79(3)		
P(3)-Fe(1)-P(5)	91.96(3)		
P(2) - Fe(1) - P(5)	91.36(3)		
C(5) - Fe(1) - P(1)	111 50(5)		
C(2) = C(1) = D(1)	110 02 (E)		
C(2) - Fe(1) - P(1)	110.03(5)		
C(1) - Fe(1) - P(1)	97.79(5)		
C(3) - Fe(1) - P(1)	158.76(5)		
C(4) - Fe(1) - P(1)	148,63(6)		
$D(1) = E_0(1) = D(1)$	91 16(3)		
$F(\frac{1}{2}) = FC(\frac{1}{2}) = F(\frac{1}{2})$	D1.10(3)		
P(3) - Fe(1) - P(1)	91.01(3)		
P(2) - Fe(1) - P(1)	51.89(3)		
P(5) - Fe(1) - P(1)	52.25(3)		
P(2) - P(1) - P(5)	108.47(4)		
$D(2) = D(1) = F_{D}(1)$	63 15(2)		
$ \begin{array}{c} \Gamma(\Sigma) = \Gamma(\Sigma) = \Gamma(\Sigma) \\ \Gamma(\Sigma) = \Gamma(\Sigma) = \Gamma(\Sigma) \\ \Gamma(\Sigma) = \Gamma(\Sigma) = \Gamma(\Sigma) \\ \Gamma$			
P(5) - P(1) - Fe(1)	63.44(3)		
P(1)-P(2)-P(3)	108.26(4)		
P(1) - P(2) - Fe(1)	64.66(3)		
P(3)-P(2)-Fe(1)	63.48(3)		
P(4) - P(3) - P(2)	10758(4)		
$E(\frac{1}{2}) - E(\frac{1}{2}) - E(\frac{1}{2})$			
P(4) - P(3) - Fe(1)	63.35(3)		
P(2) - P(3) - Fe(1)	63.73(3)		
P(3) - P(4) - P(5)	108.06(4)		
$P(3) - P(4) - F_{P}(1)$	63 65 (3)		
D(E) D(A) EO(1)	63.03(3)		
r(3) - r(4) - re(1)	04.04(3)		
P(4) - P(5) - P(1)	107.62(4)		
P(4)-P(5)-Fe(1)	63.16(3)		
P(1)-P(5)-Fe(1)	64.31(3)		
C(5) - C(1) - C(2)	107 5 (2)		
C(E) C(1) C(2)	100 - C(0)		
C(5) - C(1) - C(10)	123.6(2)		
C(2) - C(1) - C(10)	128.0(2)		
C(5)-C(1)-Fe(1)	69.03(10)		
C(2) - C(1) - Fe(1)	69.93(10)		
$C(10) = C(1) = E_{C}(1)$	12/ 02/12)		
C(TO) = C(T) = FC(T)			
TC(I)-C(Z)-C(3)	$\pm 0.7.71(14)$		

C(1) - C(2) - C(20)	120.9(2)
C(3) - C(2) - C(20)	131.2(2)
C(1)-C(2)-Fe(1)	70.30(9)
C(3)-C(2)-Fe(1)	70.11(9)
C(20)-C(2)-Fe(1)	128.28(13)
C(4) - C(3) - C(2)	107.5(2)
C(4) - C(3) - C(30)	128.4(2)
C(2)-C(3)-C(30)	123.8(2)
C(4) - C(3) - Fe(1)	70.02(10)
C(2)-C(3)-Fe(1)	69.80(9)
C(30)-C(3)-Fe(1)	130.28(13)
C(5) - C(4) - C(3)	107.3(2)
C(5) - C(4) - C(40)	122.7(2)
C(3) - C(4) - C(40)	129.6(2)
C(5) - C(4) - Fe(1)	69.09(10)
C(3) - C(4) - Fe(1)	70.06(10)
C(40) - C(4) - Fe(1)	131.88(13)
C(4) - C(5) - C(1)	109.9(2)
C(4) - C(5) - Fe(1)	71.49(11)
C(1) - C(5) - Fe(1)	71.51(10)
C(12) - C(10) - C(1)	114.7(2)
C(12) - C(10) - C(11)	107.8(2)
C(1) - C(10) - C(11)	107.5(2)
C(2)-C(20)-C(22)	118.2(2)
C(2) - C(20) - C(21)	111.6(2)
C(22)-C(20)-C(21)	108.8(2)
C(3)-C(30)-C(31)	109.4(2)
C(3)-C(30)-C(32)	117.6(2)
C(31)-C(30)-C(32)	109.8(2)
C(4) - C(40) - C(41)	108.9(2)
C(4) - C(40) - C(42)	113.4(2)
C(41) - C(40) - C(42)	109.4(2)
•	

Summenformel	$C_{34}H_{58}Fe_2P_4$	
Molmasse	702.38	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 A	
Scanmodus	Ω -scans	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/m$	
Zelldimensionen	a = 10.4933(11) Å	$\alpha = 90^{\circ}$
	b = 14.0126(12) Å	$\beta = 103.621(7)^{\circ}$
	c = 12.9439(11) Å	$\gamma = 90^{\circ}$
Zellvolumen	$1849.7(3) Å^{3}$,
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.261 Mg/m^3	
Absorptionskoeffizient	0.978 mm ⁻¹	
Kristallgröße	0.40 x 0.32 x 0.21 mm	
Gemessener θ-Bereich	2.18 bis 27.50°	
Anzahl der gemessenen Reflexe	5360	
Unabhängige Reflexe	4245 (Rint = 0.0162)	
Absorptionskorrektur	Empirical	
Max. und min. Transmission	0.89382 und 0.64135	
Diffraktometer	Siemens P4	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR92 (Giacovazzo et al., 1993)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	4245 / 0 / 204	
Endgültige R-Werte $[I>2\sigma(I)]$	R1 = 0.0404, wR2 = 0.0971	
R-Werte (alle Daten)	R1 = 0.0611, wR2 = 0.1076	
Extinktionskoeffizient	0.0027(8)	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0472P)^{2}+0.96192$	P] mit P= $(Fo^2 + 2Fc^2)/3$
GooF (alle Daten)	1.024	
Größtes Maximum und Minimum	0.425 und -0.328 eÅ ⁻³	

E 1: Kristalldaten und Strukturverfeinerung für $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (5a):

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [$\mathring{A}^2 x 10^3$] für 5a: U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors. E 2:

	x	У	Z	U(eq)
Fe(1)	6317(1)	7500	2585(1)	32(1)
Fe(2)	6992(1)	7500	4685(1)	32(1)
P(1)	6195(1)	6232(1)	3643(1)	52(1)
P(2)	8090(1)	6655(1)	3603(1)	60(1)
C(1)	6406(2)	6984(2)	1048(2)	37(1)
C(2)	5206(2)	6698(2)	1318(2)	37(1)
C(3)	4453(3)	7500	1467(3)	36(1)
C(4)	8039(2)	6985(2)	6206(2)	38(1)
C(5)	6683(2)	6701(2)	5974(2)	39(1)
C(6)	5852(3)	7500	5850(3)	39(1)
C(11)	7232(3)	6219(2)	650(2)	48(1)
C(12)	8717(4)	6358(3)	943(5)	104(2)
C(13)	6736(5)	6174(3)	-560(3)	103(2)
C(14)	6999(4)	5230(2)	1074(3)	67(1)
C(31)	3009(4)	7500	1504(3)	45(1)
C(32)	2670(3)	6608(3)	2044(4)	82(1)
C(33)	2216 (5)	7500	344(4)	73 (2)
C(41)	9116(3)	6217(2)	6569(2)	49(1)
C(42)	9468(7)	6221(6)	7772(3)	170(4)

C(43)	8595(4)	5226(3)	6191(4)	101(2)	
			(1 (2) (4))		
C(44)	IU350(3)	6333(3)	6162(4)	85(I)	
C(61)	1295 (1)	7500	5022 (2)	F1 (1)	
C(01)	4303(4)	/300	5625(5)	JI(I)	
C(62)	3716(3)	6619(4)	5251(5)	108(2)	
C(02)	5710(5)	0010(4)	5251(5)	100(2)	
C(63)	4260(6)	7500	6955(5)	145(5)	
0(05)	4200(0)	7500	0,00,00	140(0)	

E 3. Bindungslängen [Å] und -winkel [°] für 5a:

$\Pi_{-}(1) = O(0)$ 0.100(0)		Q(1) = Q(11) = 1 = F(0)(4)	
Fe(1) - C(2) = 2.100(2)		C(1) - C(11) 1.542(4)	
Fe(1) - C(2) # 1 2.100(2)		C(2) - C(3) = 1.413(3)	
Fe(1)-C(1)#1 2.140(3)		C(3) - C(2) # 1 1.413(3)	
Fe(1)-C(1) 2.140(3)		C(3)-C(31) 1.527(5)	
Fe(1)-C(3) 2.141(3)		C(4)-C(5) 1.440(3)	
$F_{P}(1) - P(1) = 122648(8)$		C(4) - C(4) # 1 1.444(5)	
$E_{0}(1) D(1) = 2.2010(0)$		C(4) - C(41) 1 550(4)	
Fe(1) - P(1) 2.2049(0)		C(5) = C(6) 1.405(2)	
Fe(1) - P(2) #1 2.3336(9)		C(3) = C(0) 1.405(3)	
Fe(1)-P(2) 2.3337(9)		C(6) - C(5) # 1 1.405(3)	
Fe(1)-Fe(2) 2.6430(8)		C(6) - C(61) 1.531(5)	
Fe(2)-C(5) 2.097(3)		C(11) - C(12) 1.527(4)	
$F_{e}(2) - C'(5) \# 1 = 2.097(3)$		C(11)-C(13) 1.531(5)	
$F_{\Theta}(2) = C(6)$ 2 135(4)		C(11) - C(14) = 1.531(4)	
$E_{2}(2) = C(0) = 2.133(4)$		C(31) - C(32) # 1 = 1 - 514(4)	
Fe(2) - C(4) # 1 = 2.141(2)		C(31) C(32) = 1.314(4)	
Fe(2) - C(4) = 2.141(2)		C(31) - C(32) = 1.515(4)	
Fe(2)-P(1)#1 2.2678(8)		C(31) - C(33) = 1.536(6)	
Fe(2)-P(1) 2.2678(8)		C(41) - C(42) 1.514(5)	
Fe(2)-P(2)#1 2.3346(9		C(41)-C(44) 1.518(4)	
Fe(2) - P(2) = 2.3346(9)		C(41)-C(43) 1.530(5)	
P(1) - P(2) 2 0877 (1	3)	C(61) - C(63) 1.502(7)	
P(1) = P(2) 2.0077(1.	<i>)</i>	C(61) - C(62) # 1 1 523 (5)	
P(2) - P(2) = 1 2.368(2)		C(01) = C(02) # 1 = 1.525(5)	
C(1) - C(2) = 1.441(3)		C(61) - C(62) = 1.523(5)	
C(1) - C(1) # 1 1.445(5)			
		_	
$C(2)$ $E_{2}(1)$ $C(2)$ #1	61, 69(11)	D(1) # 1 = (1) D(2)	101 09 (4)
C(2) = Fe(1) = C(2) # 1	64.08 (14)	P(1) = P(1) = P(2)	$52 \ 97(4)$
C(2) - Fe(1) - C(1) + 1	65.93(10)	P(1) = P(1) = P(2)	55.7(4)
C(2) #1-Fe(1)-C(1) #1	39.74(9)	P(2) = Fe(1) - P(2)	60.97(5)
C(2) - Fe(1) - C(1)	39.74(9)	C(2) - Fe(1) - Fe(2)	140.21(7)
C(2)#1-Fe(1)-C(1)	65.93(10)	C(2)#1-Fe(1)-Fe(2)	140.21(7)
C(1)#1-Fe(1)-C(1)	39.46(14)	C(1)#1-Fe(1)-Fe(2)	153.72(7)
C(2) - Fe(1) - C(3)	38 90 (8)	C(1)-Fe(1)-Fe(2)	153.72(7)
$C(2) \#1 - F_{\Theta}(1) - C(3)$	38 90 (8)	C(3) - Fe(1) - Fe(2)	132 53 (10)
C(2) #1 = PC(1) = C(3)	56.50(8)	$D(1) \# 1 - E_0(1) - E_0(2)$	E4 29 (2)
C(1) = Fe(1) - C(3)	66.73(11)	P(1) = P(1) = P(2)	54.30(2)
C(1) - Fe(1) - C(3)	66.73(11)	P(1) - Fe(1) - Fe(2)	54.38(2)
C(2)-Fe(1)-P(1)#1	142.35(7)	P(2) #I - Fe(1) - Fe(2)	55.53(2)
C(2)#1-Fe(1)-P(1)#1	87.29(8)	P(2) - Fe(1) - Fe(2)	55.53(2)
C(1)#1-Fe(1)-P(1)#1	108.59(7)	C(5)-Fe(2)-C(5)#1	64.56(15)
C(1)-Fe(1)-P(1)#1	148.03(7)	C(5)-Fe(2)-C(6)	38.78(9)
$C(3) - Fe(1) - P(1) \pm 1$	103 64 (6)	C(5) #1-Fe(2) - C(6)	38.78(9)
C(2) = C(1) + D(1)	202.01(0)	$C(5) - Fe(2) - C(4) \pm 1$	65 84 (10)
C(2) = FC(1) = F(1) $C(2) = H_1 = F(1) = F(1)$	07.29(0) 140.25(7)	C(5) #1 - Fe(2) - C(4) #1	39,70(9)
$\bigcup_{\alpha(1)} \prod_{\alpha(2)} \prod_{\alpha(1)} \prod_{\alpha(2)} \prod$	$\pm 42.35(7)$	C(5) = C(2) = C(4) = 1 C(6) = C(2) = C(4) = 1	55.70(5)
C(1) #1-Fe(1) - P(1)	148.02(7)	$C(6) - Fe(2) - C(4) \pi I$	66.55(II)
C(1)-Fe(1)-P(1)	108.59(7)	C(5) - Fe(2) - C(4)	39.70(9)
C(3)-Fe(1)-P(1)	103.64(6)	C(5)#1-Fe(2)-C(4)	65.85(10)
P(1)#1-Fe(1)-P(1)	103.29(5)	C(6) - Fe(2) - C(4)	66.56(11)
C(2) - Fe(1) - P(2) #1	159 15 (8)	C(4) #1-Fe(2) - C(4)	39.42(14)
$C(2) \pm 1 - F_{\Theta}(1) - D(2) \pm 1$		C(5) - Fe(2) - P(1) #1	141.88(8)
C(2) =			
C(1) + T = C(1) - C(2) + 1	113.06(7)	$C(5) \# 1 - F_{P}(2) - P(1) \# 1$	87 14 (8)
$ (- H\Theta() - P(2) \pm $	98.63 (7)	C(5) #1-Fe(2) -P(1) #1 C(6) -Fe(2) -D(1) #1	87.14(8)
	98.63 (7) 119.51 (7)	C(5) #1-Fe(2) -P(1) #1 C(6) -Fe(2) -P(1) #1 C(6) = Fe(2) -P(1) #1	87.14(8) 103.31(7)
C(3) -Fe(1) -P(2) #1	98.63(7) 119.51(7) 149.48(3)	C(5)#1-Fe(2)-P(1)#1 C(6)-Fe(2)-P(1)#1 C(4)#1-Fe(2)-P(1)#1	87.14(8) 103.31(7) 108.68(7)
C(3) -Fe(1) -P(2)#1 P(1)#1-Fe(1) -P(2)#1	98.63(7) 119.51(7) 149.48(3) 53.97(4)	C(5)#1-Fe(2)-P(1)#1 C(6)-Fe(2)-P(1)#1 C(4)#1-Fe(2)-P(1)#1 C(4)-Fe(2)-P(1)#1	87.14(8) 103.31(7) 108.68(7) 148.06(8)
C(3) -Fe(1) -P(2) #1 P(1) #1-Fe(1) -P(2) #1 P(1) -Fe(1) -P(2) #1	113.06(7) 98.63(7) 119.51(7) 149.48(3) 53.97(4) 101.97(4)	C(5) #1-Fe(2) -P(1) #1 C(6) -Fe(2) -P(1) #1 C(4) #1-Fe(2) -P(1) #1 C(4) -Fe(2) -P(1) #1 C(5) -Fe(2) -P(1)	87.14 (8) 103.31(7) 108.68(7) 148.06(8) 87.15(8)
C(3) -Fe(1) -P(2) #1 P(1) #1 -Fe(1) -P(2) #1 P(1) -Fe(1) -P(2) #1 C(2) -Fe(1) -P(2) #1	113.06(7) 98.63(7) 119.51(7) 149.48(3) 53.97(4) 101.97(4) 113.06(7)	C(5) #1-Fe(2) -P(1) #1 C(6) -Fe(2) -P(1) #1 C(4) #1-Fe(2) -P(1) #1 C(4) -Fe(2) -P(1) #1 C(5) -Fe(2) -P(1) #1 C(5) #1-Fe(2) -P(1)	87.14(8) 103.31(7) 108.68(7) 148.06(8) 87.15(8) 141.88(8)
C(3) -Fe(1) -P(2) #1 P(1) #1 -Fe(1) -P(2) #1 P(1) -Fe(1) -P(2) #1 C(2) -Fe(1) -P(2) C(2) #1 -Fe(1) -P(2)	113.06(7) 98.63(7) 119.51(7) 149.48(3) 53.97(4) 101.97(4) 113.06(7) 159.15(8)	C(5) #1-Fe(2) -P(1) #1 C(6) -Fe(2) -P(1) #1 C(4) #1-Fe(2) -P(1) #1 C(4) -Fe(2) -P(1) #1 C(5) -Fe(2) -P(1) #1 C(5) #1-Fe(2) -P(1) C(6) -Fe(2) -P(1)	87.14 (8) 103.31 (7) 108.68 (7) 148.06 (8) 87.15 (8) 141.88 (8) 103.31 (7)
C(3) -Fe(1) -P(2) #1P(1) #1-Fe(1) -P(2) #1P(1) -Fe(1) -P(2) #1C(2) -Fe(1) -P(2) #1C(2) #1-Fe(1) -P(2)C(2) #1-Fe(1) -P(2)C(1) #1 -Fe(1) -P(2)	113.06(7) 98.63(7) 119.51(7) 149.48(3) 53.97(4) 101.97(4) 113.06(7) 159.15(8) 119.51(7)	C(5) $\#1-Fe(2) - P(1) \#1$ C(6) $-Fe(2) - P(1) \#1$ C(4) $\#1-Fe(2) - P(1) \#1$ C(4) $-Fe(2) - P(1) \#1$ C(5) $-Fe(2) - P(1)$ C(5) $\#1-Fe(2) - P(1)$ C(6) $-Fe(2) - P(1)$ C(4) $\#1-Fe(2) - P(1)$	87.14 (8) 103.31 (7) 108.68 (7) 148.06 (8) 87.15 (8) 141.88 (8) 103.31 (7) 148.05 (8)
C(3) -Fe(1) - P(2) #1P(1) #1-Fe(1) - P(2) #1P(1) -Fe(1) - P(2) #1C(2) -Fe(1) - P(2)C(2) #1-Fe(1) - P(2)C(2) #1-Fe(1) - P(2)C(1) #1-Fe(1) - P(2)C(2) = P(1) - P(2)C(2) = P(1) - P(2)	113.06(7) 98.63(7) 119.51(7) 149.48(3) 53.97(4) 101.97(4) 113.06(7) 159.15(8) 119.51(7) 20.62(7)	C(5) #1-Fe(2) -P(1) #1 C(6) -Fe(2) -P(1) #1 C(4) #1-Fe(2) -P(1) #1 C(4) -Fe(2) -P(1) #1 C(5) -Fe(2) -P(1) C(5) #1-Fe(2) -P(1) C(6) -Fe(2) -P(1) C(4) #1-Fe(2) -P(1) C(4) =Fe(2) -P(1) C(5) =Fe(2) -P(1) C(4) =Fe(2) -Fe(2) -Fe(2) =F(2) C(4) =Fe(2) -Fe(2) -Fe(2) =F(2) =F(2) C(4) =Fe(2) -Fe(2) -Fe(2) =F(2) =F	87.14 (8) 103.31 (7) 108.68 (7) 148.06 (8) 87.15 (8) 141.88 (8) 103.31 (7) 148.05 (8) 108.68 (7)
C(3) -Fe(1) -P(2) #1P(1) #1-Fe(1) -P(2) #1P(1) -Fe(1) -P(2) #1C(2) -Fe(1) -P(2) #1C(2) -Fe(1) -P(2)C(2) #1-Fe(1) -P(2)C(1) #1-Fe(1) -P(2)C(1) -Fe(1) -P(2)C(1) -Fe(1) -P(2)	113.06(7) 98.63(7) 119.51(7) 149.48(3) 53.97(4) 101.97(4) 113.06(7) 159.15(8) 119.51(7) 98.63(7)	C(5) #1-Fe(2) -P(1) #1 C(6) -Fe(2) -P(1) #1 C(4) #1-Fe(2) -P(1) #1 C(4) -Fe(2) -P(1) #1 C(5) -Fe(2) -P(1) C(5) #1-Fe(2) -P(1) C(6) -Fe(2) -P(1) C(4) #1-Fe(2) -P(1) C(4) -Fe(2)	87.14 (8) 103.31 (7) 108.68 (7) 148.06 (8) 87.15 (8) 141.88 (8) 103.31 (7) 148.05 (8) 108.68 (7) 109.10 (4)

C(5)-Fe(2)-P(2)#1	159.86(7)	C(13) - C(11) - C(1)	106.7(3)
C(5) #1 - Fe(2) - P(2) #1	113.40(8)	C(14) - C(11) - C(1)	111.1(2)
$C(6) = E_{0}(2) = D(2) + 1$	1/9 52(2)	C(22) #1 - C(21) - C(22)	111 2(4)
C(0) = IC(2) = I(2) #I		C(32) # 1 - C(31) - C(32)	110.0(0)
C(4) #1 - Fe(2) - P(2) #1	99.32(7)	C(32) # I - C(31) - C(3)	110.9(2)
C(4)-Fe(2)-P(2)#1	120.26(7)	C(32)-C(31)-C(3)	110.9(2)
P(1) #1-Fe(2) -P(2) #1	53.93(4)	C(32) # 1 - C(31) - C(33)	108.6(3)
$P(1) - Fe(2) - P(2) \pm 1$	101 86(4)	C(32) - C(31) - C(33)	108.6(3)
$G(\Gamma) = G(2) = G(2)$	112 40(0)	C(32) = C(31) = C(33)	100.0(3)
C(5) = P(2) = P(2)	113.40(8)	C(3) - C(31) - C(33)	100.4(4)
C(5) #1 - Fe(2) - P(2)	159.86(7)	C(42) - C(41) - C(44)	109.6(4)
C(6) - Fe(2) - P(2)	149.52(3)	C(42)-C(41)-C(43)	108.3(4)
C(4)#1-Fe(2)-P(2)	120.26(7)	C(44) - C(41) - C(43)	104.8(3)
C(4) - Fe(2) - P(2)	99 32 (7)	C(42) - C(41) - C(4)	107 0(3)
D(1) = D(2) = D(2)	101.0C(4)	C(12) C(11) C(1)	11(-2)(2)
P(1) # 1 - Fe(2) - P(2)	101.86(4)	C(44) - C(41) - C(4)	110.2(3)
P(1) - Fe(2) - P(2)	53.93(4)	C(43) - C(41) - C(4)	110.7(2)
P(2)#1-Fe(2)-P(2)	60.94(5)	C(63)-C(61)-C(62)#1	109.8(3)
C(5)-Fe(2)-Fe(1)	139.81(7)	C(63)-C(61)-C(62)	109.8(3)
C(5) #1 - Fe(2) - Fe(1)	139 81 (7)	C(62) # 1 - C(61) - C(62)	1083(5)
C(C) = C(C) = C(C)	121.00(10)	$C(02) \oplus C(01) = C(02)$	107.0(4)
C(6) - Fe(2) - Fe(1)	131.86(10)	C(63) - C(61) - C(6)	107.2(4)
C(4) #1 - Fe(2) - Fe(1)	154.28(7)	C(62) #I - C(61) - C(6)	110.9(2)
C(4) - Fe(2) - Fe(1)	154.28(7)	C(62)-C(61)-C(6)	110.9(2)
P(1) #1-Fe(2) -Fe(1)	54.28(2)	L	
P(1) - Fe(2) - Fe(1)	54 28(2)		
P(2) = P(2) = P(1)	51.20(2)		
P(2) #1-Fe(2) -Fe(1)	55.50(2)		
P(2) - Fe(2) - Fe(1)	55.50(2)		
P(2)-P(1)-Fe(1)	64.70(4)		
P(2) - P(1) - Fe(2)	64.67(3)		
$F_{P}(1) - P(1) - F_{P}(2)$	71 34 (3)		
$D(1)$ $D(2)$ $E_{0}(1)$	(1, 22, (2))		
P(1) - P(2) - Fe(1)	61.33(3)		
P(1) - P(2) - Fe(2)	61.40(3)		
Fe(1)-P(2)-Fe(2)	68.96(3)		
P(1) - P(2) - P(2) # 1	106.48(3)		
Fe(1) - P(2) - P(2) #1	59,51(3)		
$F_{\Theta}(2) = P(2) = P(2) \#1$	59,52(3)		
$\Gamma(C(2)) = \Gamma(2) = \Gamma(2) + \Gamma(2) + \Gamma(2)$	39.35(3)		
C(2) - C(1) - C(1) = T	106.16(14)		
C(2) - C(1) - C(11)	118.7(2)		
C(1) #1-C(1) -C(11)	134.09(15)		
C(2) - C(1) - Fe(1)	68.65(14)		
C(1) # 1 - C(1) - F = (1)	70, 27(7)		
C(11) $C(1)$ Eq.(1)	124 17(10)		
C(II) - C(I) - Fe(I)	134.1/(10)		
C(3) - C(2) - C(1)	111.2(2)		
C(3) - C(2) - Fe(1)	72.12(17)		
C(1) - C(2) - Fe(1)	71.61(14)		
C(2) #1 - C(3) - C(2)	105.4(3)		
C(2) # 1 - C(3) - C(31)	126 53(15)		
C(2) = C(3) = C(31)			
C(2) = C(3) = C(31)	126.53(15)		
C(2) #1-C(3) -Fe(1)	68.98(16)		
C(2) - C(3) - Fe(1)	68.98(16)		
C(31)-C(3)-Fe(1)	137.2(3)		
C(5) - C(4) - C(4) = 1	106.04(15)		
C(5) = C(A) = C(A1)	110 1 (2)		
C(3) - C(4) - C(41)	122.00(1c)		
C(4) # I - C(4) - C(41)	133.92(16)		
C(5) - C(4) - Fe(2)	68.49(14)		
C(4) #1-C(4) -Fe(2)	70.29(7)		
C(41) - C(4) - Fe(2)	133,78(18)		
C(6) - C(5) - C(4)	111 1 (2)		
C(0) = C(0) = C(1)	111.1(2)		
C(6) - C(5) - Fe(2)	72.06(18)		
C(4) - C(5) - Fe(2)	71.81(14)		
C(5)#1-C(6)-C(5)	105.7(3)		
C(5) #1-C(6) -C(61)	126.60(16)		
C(5) - C(6) - C(61)	126 60(16)		
$C(5) \# 1 - C(6) - E_{C}(2)$	60 16 (17)		
$C(3) # x^{-} C(0) - r C(2)$			
C(5) - C(6) - Fe(2)	69.16(17)		
C(61)-C(6)-Fe(2)	135.3(3)		
C(12) - C(11) - C(13)	109.9(3)		
C(12) - C(11) - C(14)	105.5(3)		
C(13) = C(11) = C(14)	106.6(3)		
C(12) = C(11) = C(14)			
C(12) - C(11) - C(1)	LT0.0(3)		

Summenformel	$C_{31}H_{39}FeP_3$	
Molmasse	560.38	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Ω -scans	
Kristallsystem	Orthorhombisch	
Raumgruppe	Pna2 ₁	
Zelldimensionen	a = 14.326(2) Å	$\alpha = 90^{\circ}$
	b = 14.422(1) Å	$\beta = 90^{\circ}$
	c = 13.826(2) Å	$\gamma = 90^{\circ}$
Zellvolumen	2856.6(6) Å ³	
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.303 Mg/m^3	
Absorptionskoeffizient	0.714 mm^{-1}	
Kristallgröße	0.55 x 0.50 x 0.40 mm	
Gemessener θ-Bereich	2.04 bis 27.50°	
Anzahl der gemessenen Reflexe	4263	
Unabhängige Reflexe	3685 (Rint = 0.0223)	
Absorptionskorrektur	Semiempirisch (ψ -scan	s)
Max. und min. Transmission	0.41017 und 0.34482	
Diffraktometer	Siemens P4	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick,	1990)
Strukturverfeinerung	Vollmatrix Least-Square	s gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick,	1997)
Daten / Restraints / Parameter	3685 / 1 / 326	
Endgültige R-Werte $[I>2\sigma(I)]$	R1 = 0.0342, wR2 = 0.06	592
R-Werte (alle Daten)	R1 = 0.0491, wR2 = 0.07	744
Absolutstrukturparameter	-0.001(18)	
Extinktionskoeffizient	0.0121(7)	
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0380P)]$	$^{2}+0.0744P$] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	1.041	
Größtes Maximum und Minimum	0.274 und -0.222 eÅ ⁻³	

F1: Kristalldaten und Strukturverfeinerung für $[Cp'''Fe(\eta^5-P_3(CPh)_2)]$ (7a):

F2:Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter
[Å² x 10³] für [Cp'''Fe(η^5 -P₃(CPh)₂)] (7a).U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)	
Fe(1)	8084(1)	-26(1)	2385(1)	27(1)	
P(1)	9615(1)	487(1)	2622(1)	44(1)	
P(2)	9430(1)	-978(1)	2596(1)	47(1)	
P(3)	8681(1)	-1095(1)	1280(1)	40(1)	
C(1)	7469(2)	25(2)	3776(2)	32(1)	
C(2)	7120(2)	788(2)	3186(3)	31(1)	
C(3)	6692(2)	380(2)	2353(3)	28(1)	
C(4)	6724(2)	-601(2)	2403(3)	31(1)	
C(5)	7222(2)	-798(2)	3269(2)	33(1)	
C(6)	8612(2)	98(2)	952(3)	33(1)	
C(7)	9068(2)	776(2)	1518(2)	33(1)	
C(11)	7880(3)	-34(3)	4818(3)	43(1)	
C(12)	7162(3)	363(3)	5524(3)	57(1)	
C(13)	8022(3)	-1060(3)	5086(3)	57(1)	
C(14)	8834(3)	445(3)	4953(3)	58(1)	
C(21)	6946(3)	1823(2)	3388(3)	38(1)	
C(22)	6861(2)	2366(2)	2440(3)	43(1)	
C(23)	5993(3)	1903(3)	3908(3)	54(1)	

C(24)	7695(3)	2303(3)	4009(3)	53(1)	
C(41)	6160(2)	-1275(2)	1790(3)	36(1)	
C(42)	6198(3)	-1039(3)	716(3)	48(1)	
C(43)	5145(2)	-1179(3)	2140(3)	48(1)	
C(44)	6480(3)	-2284(2)	1943(4)	55(1)	
C(61)	8106(2)	332(2)	42(3)	31(1)	
C(62)	8290(3)	-163(3)	-800(3)	43(1)	
C(63)	7863(3)	80(3)	-1657(3)	51(1)	
C(64)	7235(3)	802(3)	-1703(3)	52(1)	
C(65)	7053(3)	1294(3)	-873(3)	45(1)	
C(66)	7470(2)	1064(3)	-7(3)	38(1)	
C(71)	9230(2)	1746(2)	1159(3)	37(1)	
C(72)	9499(2)	1884(3)	203(3)	45(1)	
C(73)	9745(3)	2745(3)	-127(4)	61(1)	
C(74)	9713(3)	3499(3)	469(5)	69(2)	
C(75)	9450(3)	3382(3)	1411(4)	63(1)	
C(76)	9212(3)	2504(3)	1766(4)	50(1)	

F3: Bindungslängen [Å] und -winkel [°] für $[Cp'''Fe(\eta^5-P_3(CPh)_2)]$ (7a):

		_			
Fe(1)-C(5)	2.063(3)		C(6)-C(61)	1.491(5)	
Fe(1)-C(3)	2.079(3)		C(7) - C(71)	1.502(5)	
Fe(1) - C(1)	2.117(3)		C(11) - C(12)	1.530(6)	
$F_{P}(1) - C(4)$	2 117(3)		C(11)-C(13)	1.540(5)	
$F_{P}(1) = C(2)$	2.124(3)		C(11) - C(14)	1,543(5)	
$F_{O}(1) - C(6)$	2.129(4)		C(21) - C(22)	1 531(5)	
Fe(1) = C(0) Fe(1) = C(7)	2.122(4)		C(21) - C(24)	1539(5)	
Fe(1) = C(7)	2.103(3)		C(21) = C(23)	1,500(5)	
Fe(1) - P(3)	2.3331(11)		C(21) = C(23) C(41) = C(42)	1,524(5)	
Fe(1) - P(1)	2.3380(10)		C(41) - C(42)	1,524(5)	
Fe(1) - P(2)	2.3847(10)		C(41) - C(43)	1.550(5)	
P(1) - C(7)	1.766(4)		C(41) - C(44)	1.541(5)	
P(1)-P(2)	2.1287(14)		C(61) - C(62)	1.390(5)	
P(2)-P(3)	2.1193(15)		C(61) - C(66)	1.397(5)	
P(3)-C(6)	1.783(3)		C(62)-C(63)	1.379(6)	
C(1) - C(5)	1.423(5)		C(63)-C(64)	1.377(5)	
C(1) - C(2)	1.459(5)		C(64)-C(65)	1.374(6)	
C(1) - C(11)	1.558(5)		C(65)-C(66)	1.379(5)	
C(2)-C(3)	1.432(5)		C(71)-C(76)	1.379(5)	
C(2)-C(21)	1.539(4)		C(71)-C(72)	1.392(5)	
C(3)-C(4)	1.417(4)		C(72)-C(73)	1.370(6)	
C(4)-C(5)	1.422(5)		C(73)-C(74)	1.365(7)	
C(4) - C(41)	1.522(5)		C(74)-C(75)	1.367(7)	
C(6) - C(7)	1.413(5)		C(75)-C(76)	1.400(6)	
$C(5) - F_{P}(1) - C(3)$	65 84 (13)	1	$C(5) - F_{P}(1) - P(3)$		104 51 (10)
C(5) = Fe(1) = C(5) C(5) = Fe(1) = C(1)	39 80 (13)		C(3) - Fe(1) - P(3)		121.59(10)
$C(3) = F_{P}(1) = C(1)$	67 09(14)		C(1) - Fe(1) - P(3)		140.40(10)
$C(5) = F_{P}(1) = C(4)$	39 74 (14)		C(4) - Fe(1) - P(3)		94 96 (10)
$C(3) = F_{0}(1) = C(4)$	29.75(11)		C(2) - Fe(1) - P(3)		160, 92(10)
C(3) = Fe(1) = C(4) C(1) = Fo(1) = C(4)	57.43(11)		C(6) - Fe(1) - P(3)		46.83(9)
C(I) = Fe(I) = C(I) C(E) = Fo(I) = C(2)	67.07(14)		C(7) - Fe(1) - P(3)		75,75(9)
C(3) = Fe(1) = C(2)			$C(5) - F_{P}(1) - P(1)$		130 48(10)
C(3) - Fe(1) - C(2)	39.81(13)		$C(3) - F_{P}(1) - P(1)$		$144 \ 47(8)$
C(1) - Fe(1) - C(2)	40.24(13)		$C(1) = F_{P}(1) = P(1)$		104.58(10)
C(4) - Fe(1) - C(2)	67.17(12)		C(1) - Fe(1) - F(1) C(1) - Fe(1) - D(1)		104.30(10) 170.21(11)
C(5) - Fe(1) - C(6)	144.05(14)		C(4) - Fe(1) - F(1) C(2) = Fo(1) - D(1)		1/0.21(11) 111.22(0)
C(3) - Fe(1) - C(6)	107.29(14)		C(2) - Fe(1) - P(1) C(2) = Fe(1) - P(1)		111.22(9)
C(1) - Fe(1) - C(6)	172.24(13)		C(6) - Fe(1) - P(1) C(7) = Fe(1) - P(1)		76.72(10) 4E.02(0)
C(4) - Fe(1) - C(6)	111.79(15)		C(7) - Fe(1) - P(1)		45.83(9)
C(2) - Fe(1) - C(6)	132.04(13)		P(3) - Fe(1) - P(1)		8/.53(4)
C(5)-Fe(1)-C(7)	176.29(13)		C(5) - Fe(1) - P(2)		95.80(10)
C(3)-Fe(1)-C(7)	117.29(12)		C(3) - Fe(1) - P(2)		160.13(9)
C(1) = C(1) = C(7)			I(1(1) - Fe(1)) - P(2)		
C(I) - Fe(I) - C(I)	138.53(13)				104.19(10)
C(1) - Fe(1) - C(7) C(4) - Fe(1) - C(7)	138.53(13) 143.95(14)		C(4) - Fe(1) - P(2)		121.16(9)
C(1) - Fe(1) - C(7) C(4) - Fe(1) - C(7) C(2) - Fe(1) - C(7)	138.53(13) 143.95(14) 114.40(12)		C(4) -Fe(1) -P(2) C(2) -Fe(1) -P(2) C(2) -Fe(1) -P(2)		104.19(10) 121.16(9) 141.27(10)

C(7)-Fe(1)-P(2)	81.36(9)
P(3) - Fe(1) - P(2)	53.37(4)
P(1) - Fe(1) - P(2)	53.57(4)
C(7) - P(1) - F(2) C(7) - P(1) - Fe(1)	59.40(12) 62 45(11)
P(2) - P(1) - Fe(1)	64.34(4)
P(3) - P(2) - P(1)	99.04(5)
P(3)-P(2)-Fe(1)	62.07(4)
P(1)-P(2)-Fe(1)	62.09(4)
C(6) - P(3) - P(2)	99.74(13)
C(6) - P(3) - Fe(1)	60.55(12)
P(2) - P(3) - Fe(1) C(5) - C(1) - C(2)	64.56(4) 105 5(3)
C(5) - C(1) - C(11)	120.3(3)
C(2) - C(1) - C(11)	133.5(3)
C(5)-C(1)-Fe(1)	68.07(18)
C(2) - C(1) - Fe(1)	70.15(19)
C(11) - C(1) - Fe(1)	132.9(3)
C(3) - C(2) - C(1) C(3) - C(2) - C(21)	106.7(3)
C(3) - C(2) - C(21) C(1) - C(2) - C(21)	133,3(3)
C(3) - C(2) - Fe(1)	68.39(17)
C(1)-C(2)-Fe(1)	69.60(18)
C(21)-C(2)-Fe(1)	137.4(2)
C(4) - C(3) - C(2)	110.9(3)
C(4) - C(3) - Fe(1)	71.74(17)
C(2) - C(3) - Fe(1) C(3) - C(4) - C(5)	/L./9(L/) 104 9(3)
C(3) - C(4) - C(41)	126.4(3)
C(5) - C(4) - C(41)	127.4(3)
C(3)-C(4)-Fe(1)	68.81(17)
C(5) - C(4) - Fe(1)	68.07(17)
C(41) - C(4) - Fe(1)	137.0(3)
C(4) - C(5) - C(1) C(4) - C(5) - Fe(1)	111.9(3) 72.19(18)
C(4) - C(5) - Fe(1) C(1) - C(5) - Fe(1)	72.13(19)
C(7) - C(6) - C(61)	122.4(3)
C(7)-C(6)-P(3)	120.1(3)
C(61)-C(6)-P(3)	117.4(3)
C(7) - C(6) - Fe(1)	73.0(2)
C(61) - C(6) - Fe(1)	129.2(2)
P(3) = C(6) = Fe(1) C(6) = C(7) = C(71)	122.62(12)
C(6) - C(7) - P(1)	121.4(3)
C(71) - C(7) - P(1)	115.9(2)
C(6) - C(7) - Fe(1)	68.82(19)
C(71) - C(7) - Fe(1)	140.8(2)
P(I) - C(7) - Fe(I) C(12) - C(11) - C(13)	/L./3(LZ) 107 1(3)
C(12) - C(11) - C(13) C(12) - C(11) - C(14)	110.5(4)
C(13) - C(11) - C(14)	106.5(3)
C(12)-C(11)-C(1)	108.4(3)
C(13) - C(11) - C(1)	109.0(3)
C(14) - C(11) - C(1)	115.0(3)
C(22) - C(21) - C(24) C(22) - C(21) - C(24)	107.6(3)
C(22) - C(21) - C(2) C(24) - C(21) - C(2)	115,1(3)
C(22) - C(21) - C(23)	106.9(3)
C(24)-C(21)-C(23)	108.8(3)
C(2) - C(21) - C(23)	107.4(3)
C(4) - C(41) - C(42)	112.4(3)
C(4) = C(41) = C(43) C(42) = C(41) = C(43)	108 7(3)
C(4) - C(41) - C(44)	111.7(3)
C(42) -C(41) -C(44)	109.5(3)
C(43)-C(41)-C(44)	108.8(3)
C(62)-C(61)-C(66)	118.2(4)

C(62)-C(61)-C	2(6)	119.9(3)
C(66)-C(61)-C	2(6)	121.9(3)
C(63)-C(62)-C	2(61)	120.3(3)
C(64)-C(63)-C	2(62)	121.4(4)
C(65)-C(64)-C	2(63)	118.4(4)
C(64)-C(65)-C	2(66)	121.3(4)
C(65)-C(66)-C	2(61)	120.4(4)
C(76)-C(71)-C	2(72)	118.1(4)
C(76)-C(71)-C	2(7)	122.3(4)
C(72)-C(71)-C	2(7)	119.3(3)
C(73)-C(72)-C	2(71)	121.1(4)
C(74)-C(73)-C	2(72)	120.9(5)
C(75)-C(74)-C	2(73)	119.1(4)
C(74)-C(75)-C	2(76)	120.9(4)
C(71)-C(76)-C	2(75)	120.0(4)

Summenformel	$C_{67.50}H_{114}Fe_{3}O_{4}P_{11}$	
Molmasse	1497.81	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Triklin	
Raumgruppe	P1	
Zelldimensionen	a = 15.1159(16) Å	$\alpha = 94.642(10)^{\circ}$
	b = 16.7864(15) Å	$\beta = 105.711(11)^{\circ}$
	c = 17.9137(16) Å	$\gamma = 106.723(12)^{\circ}$
Zellvolumen	$4127.9(7) Å^3$	1
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.205 Mg/m^3	
Absorptionskoeffizient	0.773 mm^{-1}	
Kristallgröße	0.28 x 0.16 x 0.08 mm	
Gemessener θ -Bereich	2.91 bis 23.82°	
Anzahl der gemessenen Reflexe	41494	
Unabhängige Reflexe	11976 (Rint = 0.1517)	
Absorptionskorrektur	Empirisch (MULABS/PLATON 9	98)
Max. und min. Transmission	0.94 und 0.79	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR92 (Giacovazzo et al., 1993)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	11976 / 7 / 791	
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0529, wR2 = 0.1089	
R-Werte (alle Daten)	R1 = 0.1553, $wR2 = 0.1293$	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0400P)^{2}+0.0000$	P] mit P= $(Fo^2 + 2Fc^2)/3$
GooF (alle Daten)	0.741	
Größtes Maximum und Minimum	0.529 und -0.389 eÅ ⁻³	

G 1: Kristalldaten und Strukturverfeinerung für $[{Cp}^{5}Fe]_{3}(CO)_{4}P_{11}]$ (9):

G 2: Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 9 U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

				/
	Х	У	Z	U(eq)
Fe(1)	-776(1)	9720(1)	2021(1)	53(1)
Fe(2)	-2666(1)	12813(1)	1531(1)	49(1)
Fe(3)	792(1)	14499(1)	3023(1)	48(1)
P(1)	-198(2)	11124(1)	2630(1)	54(1)
P(2)	-895(2)	11377(1)	3529(1)	66(1)
P(3)	-2183(2)	11706(1)	2864(2)	61(1)
P(4)	-2193(2)	11607(1)	1615(1)	51(1)
P(5)	-588(2)	11998(1)	1850(1)	46(1)
P(6)	-116(2)	13146(1)	2801(1)	47(1)
P(7)	248(2)	12615(1)	3878(1)	61(1)
P(8)	-1636(2)	13029(1)	2753(1)	50(1)
P(9)	-1323(2)	13885(1)	3865(1)	61(1)
P(10)	-158(2)	13478(1)	4627(2)	72(1)
P(11)	227(2)	14632(1)	4075(1)	59(1)
0(1)	-2709(5)	9569(3)	2090(5)	104(3)
0(2)	-1298(5)	10237(4)	491(4)	97(2)
0(3)	-1158(4)	13454(3)	817(3)	66(2)
0(4)	-749(4)	15075(3)	2166(3)	67(2)
C(1)	-1926(7)	9651(4)	2063(6)	69(3)
C(2)	-1056(7)	10054(5)	1117(6)	69(3)

C(3)	-1745(5)	13211(4)	1126(5)	47(2)	
C(4)	-153 (5)	14810(4)	2498 (5)	47(2)	
G (11)	200(0)		2220(0)	= (2)	
C(II)	292(8)	9422(6)	2931(6)	70(3)	
C(12)	574(7)	9482(5)	2252(7)	71(3)	
C(12)	1 5 9 (0)	0007(6)	1621(6)	70(2)	
C(15)	-130(9)	0027(0)	T03T(0)	19(3)	
C(14)	-883(7)	8439(5)	1977(7)	70(3)	
C(15)	-609(8)	8809(6)	2759(6)	65(3)	
C(10)		10444(6)			
C(21)	-3857(6)	12444(6)	524(6)	74(3)	
C(22)	-3563(6)	13321(6)	752(7)	72(3)	
C(23)	-3663(6)	13504 (5)	1468 (7)	71 (3)	
	- 3003(0)	13301 (3)	1400(7)	71(5)	
C(24)	-4052(6)	12717(6)	1716(6)	72(3)	
C(25)	-4190(5)	12068(5)	1108(6)	63 (3)	
C(20)		1 = 4 0 0 (=)		55(5)	
C(3L)	1/44(5)	15422(5)	2604(6)	59(2)	
C(32)	1909(6)	15668(4)	3443(6)	63(2)	
C(33)	2230(6)	15054(5)	3830(5)	59(2)	
C(33)	2250(0)	10004(5)	5050(5)	55(2)	
C(34)	2244(6)	14412(5)	3262(5)	59(2)	
C(35)	1957(5)	14651(4)	2515(5)	54(2)	
(111)	1020(0)	0047(7)	2740(0)	$1 \wedge C (C)$	
C(III)	1030(9)	9847(7)	3/48(8)	146(6)	
C(112)	1344(10)	10651(7)	4144(7)	157(6)	
C(113)	1683 (8)	9319(6)	4032(7)	144 (5)	
O(1 0 1)				104/0	
C(IZI)	1534(8)	T0031(8)	∠105(11)	184(8)	
C(122)	2303(7)	9619(7)	2226(8)	147(5)	
C(122)	1567(7)	10726(6)	1747(7)	112(4)	
	T) / / / /	10/20(0)	1/1////		
C(131)	-36(11)	8532(8)	855(8)	157(6)	
C(132)	-614(9)	8602(6)	99(6)	112(4)	
C(1))		7000 (C)		120(5)	
C(133)	370(8)	/822(6)	888(7)	129(5)	
C(141)	-1763(9)	7646(5)	1536(10)	184(8)	
C(142)	-1642(8)	6841 (5)	1772 (7)	128(4)	
C(112)		0011()) TCOO(C)	1155(0)	100(5)	
C(143)	-2691(7)	7689(6)	1155(8)	128(5)	
C(151)	-1162(10)	8476(8)	3317(8)	144(6)	
C(152)	-1572(10)	8965(7)	3689(7)	147(5)	
a(1 - 2)		$\overline{7}$			
C(153)	-833(8)	7809(6)	3/32(7)	135(5)	
C(211)	-3953(9)	11974(12)	-260(8)	199(8)	
C(212)	-4784 (8)	11958(6)	-948(6)	124(4)	
C(212)	1/01(0)	11700(5)			
C(2I3)	-3141(7)	11/98(5)	-444(6)	87(3)	
C(221)	-3373(7)	13923(9)	188(9)	201(9)	
C(222)	-4272(7)	14106(6)	-268(7)	118(4)	
C(222)	22,2(7)	14600(5)	200(7)		
C(223)	-2488(7)	14609(5)	318(5)	81(3)	
C(231)	-3561(8)	14355(7)	1920(11)	207(10)	
C(232)	-4508(7)	14555(6)	1730(7)	132(5)	
a(222)		14055(0)	2700(7)		
C(233)	-2780(8)	14855(6)	2564(6)	96(3)	
C(241)	-4488(9)	12605(12)	2401(9)	187(8)	
C(242)	-5543(7)	12496(7)	2197(8)	143(5)	
C(242)	4007(0)	10407(7)	2100(0)	124(E)	
C(243)		1240/(/)	3100(0)		
C(251)	-4793(7)	11127(6)	976(9)	161(7)	
C(252)	-5844(6)	10964(6)	491 (8)	129(5)	
C(2E2)		10522 (0)	1220(0)	157(6)	
C(253)	-400(8)	10332(0)	T222(Q)		
C(311)	1580(7)	15986(5)	1987(7)	79(3)	
C(312)	2543(7)	16482(6)	1882(7)	126(4)	
C(212)	705 (0)	15599(c)	1100(7)	100(4)	
	/05(0)	(0) COCCT			
C(321)	1874(7)	16487(5)	3866(6)	86(3)	
C(322)	931(7)	16693(5)	3589(6)	92(3)	
C(222)	2726(9)	17260(6)	2022(0)	164 (6)	
	2/20(0)	1/200(0)			
C(331)	2604(7)	15199(6)	4/34(7)	93(3)	
C(332)	3628(8)	15809(7)	5048(7)	155(5)	
C(222)	2567(0)	14436(7)	5155(6)	116(4)	
C(333)	2007(0)			±±0(±)	
C(341)	2676(6)	13717(5)	3498(5)	69(3)	
C(342)	2267(6)	12870(5)	2918(6)	88(3)	
C (242)	3802(6)	14050(6)	3712 (6)	107(4)	
C(351)	∠043(6)	14318(5)	Т/ТА(0)	/5(3)	
C(352)	1279(7)	13538(6)	1208(6)	94(3)	
C(353)	3056(6)	14374 (6)	1726(6)	101(3)	
	4350(2)	3120(10)	/∠84(⊥3)	34/(1/)	
C(6)	4240(2)	3289(12)	6442(13)	293(13)	
C(7)	4230(2)	2526(15)	5935(12)	314(15)	
$C(\mathbf{R})$	3600(10)	2/22/17/	5070(12)	3/3(17)	
(0)	2000(12)	∠433(⊥/)	50/0(13)	545(1/)	
C(9)	3982(19)	1839(15)	4566(12)	295(14)	

G 3. Bindungslängen [Å] und -winkel [⁰] für 9:

Fe(1) - C(2)	1,741(10)	C(21) - C(25)	1.398(11)	
$F_{P}(1) - C(1)$	1 730 (9)	C(21) - C(211)	1.504(15)	
$E_{C}(1) = C(14)$	2,102(7)	C(22) - C(23)	1 353(12)	
Fe(1) - C(14)	2.103(7)	C(22) C(23)	1,555(12)	
Fe(1) - C(12)	2.129(8)	C(22) - C(221)	1.510(12)	
Fe(1)-C(15)	2.125(8)	C(23)-C(24)	1.441(10)	
Fe(1)-C(13)	2.145(8)	C(23)-C(231)	1.529(13)	
$F_{P}(1) - C(11)$	2 164 (9)	C(24) - C(25)	1.405(11)	
$E_{C}(1) D(1)$	2.201(3)	C(24) - C(241)	1 543(14)	
Fe(1) - P(1)	2.322(2)	C(24) = C(241)	1 = 1 = 1 = 1 = 1	
Fe(2) - C(3)	1.732(8)	C(25) - C(251)	1.541(11)	
Fe(2)-C(22)	2.085(9)	C(31) - C(35)	1.427(9)	
Fe(2)-C(21)	2.073(10)	C(31)-C(32)	1.459(11)	
Fe(2) - C(25)	2 165 (8)	C(31)-C(311)	1.528(11)	
$F_{C}(2) = C(22)$	2.100(0)	C(32) - C(33)	1 413(10)	
Fe(2) = C(23)	2.137(7)	C(22) = C(22)	1 = 27(10)	
Fe(2) - C(24)	2.172(8)	C(32) - C(321)	1.337(10)	
Fe(2)-P(8)	2.247(3)	C(33) - C(34)	1.431(10)	
Fe(2)-P(4)	2.335(2)	C(33)-C(331)	1.537(12)	
Fe(3) - C(4)	1,726(8)	C(34)-C(35)	1.419(10)	
$F_{2}(3) = C(32)$	2,106(8)	C(34) - C(341)	1,528(9)	
Fe(3) = C(32)	2.100(0)	C(35) - C(351)	1 5/1(11)	
Fe(3) - C(31)	2.128(8)	C(33) = C(331)	1.041(11)	
Fe(3)-C(35)	2.155(8)	C(111) - C(112)	1.358(12)	
Fe(3)-C(33)	2.145(8)	C(111) -C(113)	1.524(11)	
Fe(3)-C(34)	2.170(8)	C(121)-C(123)	1.424(12)	
$F_{P}(3) - P(6)$	2,228(2)	C(121) - C(122)	1.507(12)	
$E_{C}(3) = D(11)$	2.220(2)	C(131) - C(132)	1 433(13)	
Fe(3) - P(11)	2.290(3)	C(121) C(122)	1,400(11)	
P(1) - P(5)	2.198(3)	C(131) - C(133)	1.489(11)	
P(1)-P(2)	2.224(3)	C(141) - C(143)	1.410(12)	
P(2)-P(7)	2.199(3)	C(141)-C(142)	1.493(11)	
P(2) - P(3)	2,233(3)	C(151)-C(152)	1.390(12)	
(2) = (0)	2,101(2)	C(151) - C(153)	1519(10)	
F(3) - F(0)	2.101(3)	C(211) $C(212)$	1 4 EE (14)	
P(3) - P(4)	2.224(3)	C(211) - C(213)	1.455(14)	
P(4)-P(5)	2.232(3)	C(211) - C(212)	1.494(13)	
P(5)-P(6)	2.268(3)	C(221)-C(223)	1.438(11)	
P(6) - P(7)	2,192(3)	C(221)-C(222)	1.512(11)	
P(6) - P(8)	2,226(3)	C(231) - C(233)	1.402(13)	
P(0) = P(10)	2.220(3)	C(231) = C(232)	1 520(12)	
P(7) - P(10)	2.218(3)	C(231) C(232)	1,320(12)	
P(8)-P(9)	2.213(3)	C(241) - C(243)	1.41/(14)	
P(9)-P(10)	2.230(3)	C(241)-C(242)	1.488(13)	
P(9)-P(11)	2.227(3)	C(251)-C(253)	1.311(11)	
P(10) - P(11)	2 246(3)	C(251) - C(252)	1.523(12)	
O(1) C(1)	1 166(9)	C(311) - C(313)	1 534(12)	
O(1) = C(1)	1,100(0)	C(211) $C(212)$	1 = 24(11)	
O(2) - C(2)	1.177(9)	C(311) - C(312)	1.524(11)	
O(3)-C(3)	1.163(7)	C(321) - C(322)	1.526(11)	
O(4) - C(4)	1.160(7)	C(321)-C(323)	1.562(11)	
C(11) - C(12)	1 396(12)	C(331)-C(333)	1.534(11)	
C(11) = C(15)	1,200(11)	C(331) - C(332)	1510(12)	
C(11) - C(13)	1.500(11)	C(241) - C(242)	1 = 545(10)	
C(II) - C(III)	1.344 (13)	C(3+1) = C(3+2)	1 = EE (10)	
C(12) - C(13)	1.451(12)	C(341) - C(343)	T.222 (TO)	
C(12)-C(121)	1.539(12)	C(351)-C(352)	1.501(11)	
C(13)-C(14)	1.426(12)	C(351)-C(353)	1.504(10)	
C(13) - C(131)	1,513(13)	C(5)-C(6)	1.518(10)	
C(14) = C(15)	1 385(11)	C(6) - C(7)	1,505(10)	
C(14) = C(13)	1 550 (10)	C(7) = C(8)	1 508(10)	
C(14) - C(141)	1.552(12)	C(1) = C(0)	1 = 42 (10)	
C(15)-C(151)	1.512(12)	C(8) - C(9)	1.543(10)	
C(21)-C(22)	1.400(11)			
	/		`	
C(2)-Fe(1)-C(1)	89.2(4)	C(14)-Fe(1)-C(15)	38.2(3)
C(2)-Fe(1)-C(14)	115.9(4)	C(12)-Fe(1)-C(15)	64.7(3)
C(1) - Fe(1) - C(14)	99.1(4)	C(2)-Fe(1)-C(13)		94.1(4)
$C(2) = F_{\Delta}(1) = C(12)$	109 9(1)	C(1) - Fe(1) - C(13)		133.7(4)
C(2) = C(1) = C(12)		$C(14) = F_{-}(1) = C(12)$)	39 2 (2)
C(1) - re(1) - C(12)		C(12) = C(1) = C(12))	20.2(3)
C(14) - Fe(1) - C(12)	65.3(3)	C(12) - re(1) - C(13)	/	39.7(3)
C(2)-Fe(1)-C(15)	154.1(4)	C(15)-Fe(1)-C(13))	65.2(3)
C(1)-Fe(1)-C(15)	94.4(4)	C(2)-Fe(1)-C(11)		147.3(4)

C(1) - Fe(1) - C(11)	123 5(4)	P(6) - Fe(3) - P(11)	85 43 (8)
$C(14) = E_0(1) = C(11)$	62 2 (2)	D(5) = D(1) = D(2)	99.14(10)
C(14) = Ie(1) = C(11)	05.5(5)	F(J) = F(L) = F(Z)	
C(12) - Fe(1) - C(11)	37.9(3)	P(5) - P(1) - Fe(1)	114.19(11)
C(15)-Fe(1)-C(11)	37.7(3)	P(2)-P(1)-Fe(1)	113.14(11)
C(13) - Fe(1) - C(11)	64.4(4)	P(7) - P(2) - P(3)	101.87(10)
C(2) = Fe(1) = D(1)	88 6 (3)	P(7) = P(2) = P(1)	85 57(12)
C(2) = PC(1) = F(1)	00.0(3)	F(7) = F(2) = F(1)	
$C(T) - F_{G}(T) - D(T)$	90.2(3)	P(3) - P(2) - P(1)	104.56(12)
C(14) - Fe(1) - P(1)	153.7(3)	P(8) - P(3) - P(4)	77.97(10)
C(12)-Fe(1)-P(1)	98.6(3)	P(8) - P(3) - P(2)	106.12(13)
C(15) - Fe(1) - P(1)	116 9(3)	P(4) - P(3) - P(2)	106 54 (11)
C(12) = (1) = (1)	126.0(4)	$\Gamma(1) \Gamma(3) \Gamma(2)$	
C(13) - Fe(1) - P(1)	136.0(4)	P(5) - P(4) - P(3)	97.26(12)
C(11) - Fe(1) - P(1)	91.0(3)	P(5) - P(4) - Fe(2)	108.21(9)
C(3)-Fe(2)-C(22)	90.0(3)	P(3)-P(4)-Fe(2)	89.13(9)
C(3) - Fe(2) - C(21)	100 1 (4)	P(1) - P(5) - P(4)	101 26(10)
C(22) = C(2) - C(21)	20.4(2)	D(1) $D(5)$ $D(6)$	07 02(11)
C(22) = FE(2) = C(21)	39.4 (3) 10E 1 (4)	P(1) - P(3) - P(0)	97.03(11)
C(3) - Fe(2) - C(25)	137.1(4)	P(4) - P(5) - P(6)	99.94(10)
C(22)-Fe(2)-C(25)	64.4(3)	P(7)-P(6)-P(8)	96.78(11)
C(21) - Fe(2) - C(25)	38.4(3)	P(7) - P(6) - Fe(3)	109.25(12)
$C(3) - E_{P}(2) - C(23)$	115 5 (3)	$P(8) - P(6) - F_{P}(3)$	110 72 (9)
C(3) = C(2) = C(23)		1(0) 1(0) 10(0)	100.02(10)
C(22) - Fe(2) - C(23)	37.4(3)	P(7) - P(6) - P(5)	102.03(10)
C(21) - Fe(2) - C(23)	64.5(4)	P(8)-P(6)-P(5)	93.03(11)
C(25)-Fe(2)-C(23)	64.2(3)	Fe(3)-P(6)-P(5)	137.41(11)
C(3) - Fe(2) - C(24)	153,3(3)	P(6) - P(7) - P(2)	100.21(13)
$C(22) = E_{2}(2) = C(24)$	64 1 (2)	D(6) - D(7) - D(10)	96 67(10)
C(22) = FE(2) = C(24)	04.1(3)	P(0) - P(1) - P(10)	90.07(10)
C(21) - Fe(2) - C(24)	64.3(4)	P(2) - P(7) - P(10)	109.34(13)
C(25) - Fe(2) - C(24)	37.8(3)	P(3)-P(8)-P(9)	111.76(12)
C(23)-Fe(2)-C(24)	39.1(3)	P(3)-P(8)-P(6)	100.64(10)
C(3) - Fe(2) - P(8)	93 5 (3)	P(9) - P(8) - P(6)	98 49 (12)
C(2) = C(2) = C(2)	144 = (2)	$\Gamma(2) = \Gamma(0) = \Gamma(0)$	90.19(12)
C(22) - Fe(2) - P(8)	144.5(3)	P(3) - P(8) - Fe(2)	92.56(11)
C(21) - Fe(2) - P(8)	166.0(3)	P(9) - P(8) - Fe(2)	134.62(10)
C(25)-Fe(2)-P(8)	127.6(3)	P(6)-P(8)-Fe(2)	114.50(11)
C(23)-Fe(2)-P(8)	112.0(3)	P(8) - P(9) - P(10)	98,90(11)
C(24) - Fe(2) - P(8)	104 0(3)	P(8) - P(9) - P(11)	$101 \ 27(11)$
C(24) = C(2) = C(0)		$\Gamma(0) \Gamma(0) \Gamma(11)$	
C(3) - Fe(2) - P(4)	87.7(2)	P(10) - P(9) - P(11)	60.52(10)
C(22) - Fe(2) - P(4)	141.0(3)	P(7) - P(10) - P(9)	108.78(14)
C(21)-Fe(2)-P(4)	103.1(3)	P(7)-P(10)-P(11)	98.67(12)
C(25) - Fe(2) - P(4)	92.0(2)	P(9) - P(10) - P(11)	59.68(10)
C(23) - Fe(2) - P(4)	154 6(2)	P(9) - P(11) - P(10)	59.80(10)
C(23) = C(2) = C(1)	110(2)	$P(0) P(11) E_0(2)$	115 00(10)
C(24) = Fe(2) = P(4)	110.1(2)	P(9) - P(11) - Fe(3)	115.06(12)
P(8) - Fe(2) - P(4)	74.39(8)	P(10)-P(11)-Fe(3)	116.48(10)
C(4) - Fe(3) - C(32)	101.2(3)	O(1)-C(1)-Fe(1)	177.3(7)
C(4) - Fe(3) - C(31)	88.3(3)	O(2) - C(2) - Fe(1)	175.8(9)
$C(32) = E_{0}(3) = C(31)$	10 3 (3)	$O(3) - C(3) - F_{O}(2)$	176 5 (8)
C(32) = C(3) = C(31)	114 2 (2)	O(3) = O(3) + O(2)	175.5(6)
C(4) = FE(3) = C(35)	114.3(3)	O(4) - C(4) - Fe(3)	1/5.5(6)
C(32) - Fe(3) - C(35)	65.8(3)	C(12) - C(11) - C(15)	109.7(9)
C(31)-Fe(3)-C(35)	38.9(2)	C(12) - C(11) - C(111)	120.6(11)
C(4)-Fe(3)-C(33)	139.1(3)	C(15) - C(11) - C(111)	128.1(11)
C(32) - Fe(3) - C(33)	38 8 (3)	C(12) - C(11) - Fe(1)	69 7 (5)
C(21) = C(2) - C(22)	CE (2)	$C(1E) C(11) E_{C}(1)$	c_{0} $c_{(E)}$
C(31) - FE(3) - C(33)	(3, 0, 0, 0)	C(13) - C(11) - Fe(1)	122.0(5)
C(35) - Fe(3) - C(33)	64.3(3)	C(111) - C(11) - Fe(1)	138.2(6)
C(4) - Fe(3) - C(34)	152.0(3)	C(11) - C(12) - C(13)	107.4(8)
C(32)-Fe(3)-C(34)	65.8(3)	C(11) - C(12) - C(121)	128.4(12)
C(31) - Fe(3) - C(34)	65.5(3)	C(13) - C(12) - C(121)	123.7(12)
C(2E) = C(2) - C(24)	20.2(3)	$C(11) C(12) E_{C}(1)$	72.4(E)
C(35) - Fe(3) - C(34)	38.3(3)	C(11) - C(12) - Fe(1)	72.4(5)
C(33) - Fe(3) - C(34)	38.7(3)	C(13) - C(12) - Fe(1)	70.7(5)
C(4) - Fe(3) - P(6)	93.6(2)	C(121)-C(12)-Fe(1)	128.3(6)
C(32)-Fe(3)-P(6)	165.0(3)	C(14) - C(13) - C(12)	105.0(9)
C(31) - Fe(3) - P(6)	144 4(3)	C(14) - C(13) - C(131)	128 9(12)
$C(25) = E_{2}(2) - D(2)$	110 7(2)	C(12) C(12) C(121)	100.0(10)
C(35) - FE(3) - F(6)	100.7(2)	$C(\underline{12}) - C(\underline{13}) - C(\underline{131})$	
C(33) - Fe(3) - P(6)	126.2(2)	C(14) - C(13) - Fe(1)	68.8(5)
C(34)-Fe(3)-P(6)	102.0(2)	C(12)-C(13)-Fe(1)	69.6(5)
C(4)-Fe(3)-P(11)	86.6(3)	C(131)-C(13)-Fe(1)	134.9(6)
C(32) - Fe(3) - D(11)	92 5 (3)	C(15) - C(14) - C(13)	110 0 (9)
C(32) = C(3) = C(11)		C(15) = C(14) = C(13)	
C(3I) - Fe(3) - P(II)	$\pm 30.\pm (3)$	C(15) - C(14) - C(141)	
C(35)-Fe(3)-P(11)	151.7(2)	C(13)-C(14)-C(141)	122.3(12)
C(33)-Fe(3)-P(11)	87.4(2)	C(15)-C(14)-Fe(1)	71.7(5)
C(34)-Fe(3)-P(11)	117.4(3)	C(13)-C(14)-Fe(1)	72.0(5)

C(141) - C(14) - Fe(1)	128,9(6)	C(35) - C(34) - Fe(3)	70.3(4)
C(14) - C(15) - C(11)	107.8(9)	C(33) - C(34) - Fe(3)	69.7(4)
C(14) - C(15) - C(151)	123.1(11)	C(341) - C(34) - Fe(3)	133.2(6)
C(11) - C(15) - C(151)	128.5(12)	C(34) - C(35) - C(31)	109.7(8)
C(14) - C(15) - Fe(1)	70.0(5)	C(34) - C(35) - C(351)	130 0(7)
C(11) - C(15) - Fe(1)	72 6 (5)	C(31) - C(35) - C(351)	1190(8)
$C(15) = C(15) = E_0(1)$	129.9(6)	$C(34) = C(35) = E_{0}(3)$	71.4(5)
C(131) - C(13) - Fe(1)	129.0(0)	C(34) - C(35) - Fe(3) C(31) - C(35) - Fe(3)	(1.4(3))
C(22) = C(21) = C(23)	100.1(9)	C(31) - C(33) - FE(3)	(9.5(4))
C(22) - C(21) - C(211)	126.7(12)	C(351) - C(35) - FE(3)	135.2(6)
C(25) - C(21) - C(211)	124.6(11)	C(112) - C(111) - C(113)	115.4(10)
C(22) - C(21) - Fe(2)	70.8(6)	C(112) - C(111) - C(11)	131.8(9)
C(25) - C(21) - Fe(2)	74.4(6)	C(113) - C(111) - C(11)	110.6(8)
C(211) - C(21) - Fe(2)	127.7(6)	C(123) -C(121) -C(122)	118.8(10)
C(23)-C(22)-C(21)	109.5(8)	C(123) -C(121) -C(12)	121.3(9)
C(23)-C(22)-C(221)	127.1(11)	C(122)-C(121)-C(12)	115.1(9)
C(21) - C(22) - C(221)	122.3(12)	C(132)-C(131)-C(13)	124.6(9)
C(23)-C(22)-Fe(2)	73.4(5)	C(132)-C(131)-C(133)	117.0(11)
C(21)-C(22)-Fe(2)	69.9(5)	C(13)-C(131)-C(133)	112.6(9)
C(221)-C(22)-Fe(2)	132.6(6)	C(143)-C(141)-C(142)	120.7(10)
C(22)-C(23)-C(24)	107.8(8)	C(143)-C(141)-C(14)	122.7(7)
C(22)-C(23)-C(231)	129.5(11)	C(142)-C(141)-C(14)	113.5(9)
C(24)-C(23)-C(231)	122.1(12)	C(152)-C(151)-C(153)	118.5(10)
C(22)-C(23)-Fe(2)	69.2(5)	C(152) -C(151) -C(15)	121.7(9)
C(24) - C(23) - Fe(2)	71.8(4)	C(153) - C(151) - C(15)	113.7(8)
C(231) - C(23) - Fe(2)	131.7(7)	C(213) - C(211) - C(212)	116.2(12)
C(25) - C(24) - C(23)	106 9(8)	C(213) - C(211) - C(21)	$122 \ 8(10)$
C(25) - C(24) - C(241)	125, 1, (11)	C(212) - C(211) - C(21)	1175(11)
C(23) = C(24) = C(241)	126.2(11)	C(212) = C(211) = C(221)	113.6(8)
C(25) = C(24) = C(241)	70 8 (5)	C(223) = C(221) = C(222)	125.0(0)
C(23) - C(24) - Fe(2)	(0.8(3))	C(223) - C(221) - C(22)	112 2(9)
C(23) - C(24) - Fe(2)	09.2(4)	C(222) - C(221) - C(22)	127.2(0)
C(241) - C(24) - Fe(2)	137.0(7)	C(233) - C(231) - C(23)	127.3(9)
C(24) - C(25) - C(21)	107.6(8)	C(233) - C(231) - C(232)	118.7(9)
C(24) - C(25) - C(251)	128.4(10)	C(23) - C(231) - C(232)	112.8(9)
C(21) - C(25) - C(251)		C(243) - C(241) - C(242)	118.3(11)
C(24) - C(25) - Fe(2)	71.4(5)	C(243) - C(241) - C(24)	125.5(10)
C(21) - C(25) - Fe(2)	67.2(5)	C(242) - C(241) - C(24)	115.6(11)
C(251) - C(25) - Fe(2)	136.6(6)	C(253) - C(251) - C(252)	118.8(9)
C(35) - C(31) - C(32)	106.6(7)	C(253) - C(251) - C(25)	128.3(10)
C(35) - C(31) - C(311)	127.4 (9)	C(252) -C(251) -C(25)	111.5(8)
C(32) - C(31) - C(311)	124.9(7)	C(31) -C(311) -C(313)	118.1(7)
C(35) - C(31) - Fe(3)	71.6(4)	C(31)-C(311)-C(312)	110.4(8)
C(32) - C(31) - Fe(3)	69.0(4)	C(313) -C(311) -C(312)	112.4(9)
C(311)-C(31)-Fe(3)	133.4(6)	C(32)-C(321)-C(322)	117.0(8)
C(33)-C(32)-C(31)	107.3(7)	C(32)-C(321)-C(323)	110.5(8)
C(33)-C(32)-C(321)	124.4(9)	C(322)-C(321)-C(323)	108.3(8)
C(31)-C(32)-C(321)	127.9(8)	C(33)-C(331)-C(333)	119.3(8)
C(33)-C(32)-Fe(3)	72.1(4)	C(33)-C(331)-C(332)	111.5(9)
C(31)-C(32)-Fe(3)	70.6(4)	C(333)-C(331)-C(332)	107.5(9)
C(321)-C(32)-Fe(3)	128.2(6)	C(34)-C(341)-C(342)	117.2(7)
C(32)-C(33)-C(34)	109.6(8)	C(34)-C(341)-C(343)	110.8(7)
C(32)-C(33)-C(331)	119.9(8)	C(342)-C(341)-C(343)	109.9(7)
C(34)-C(33)-C(331)	130.1(8)	C(352)-C(351)-C(353)	113.6(7)
C(32)-C(33)-Fe(3)	69.1(5)	C(352)-C(351)-C(35)	119.7(7)
C(34)-C(33)-Fe(3)	71.6(5)	C(353)-C(351)-C(35)	114.9(8)
C(331)-C(33)-Fe(3)	131.1(6)	C(5) - C(6) - C(7)	111.3(10)
C(35)-C(34)-C(33)	106.8(7)	C(8) - C(7) - C(6)	113.7(10)
C(35)-C(34)-C(341)	130.0(7)	C(7) - C(8) - C(9)	110.3(10)
C(33) - C(34) - C(341)	122.3(8)		
	122.3 (0)		

Dank

Mein Dank gilt all denen, die zum Gelingen dieser Arbeit beigetragen haben. Besonders bedanken möchte ich mich bei:

- Herrn Dr. G. Wolmershäuser für die Anfertigung der Röntgenstrukturanalysen und seine stete Diskussions- und Hilfsbereitschaft
- Herrn Dr. R. Graf (Universität Saarbrücken) und Frau Dr. G. Hornung für die Aufnahme der Massenspektren
- Frau H. Ruzek, Frau Dr. C. Hofmann, Frau Dr. K. Mast, Frau B. Koch, Herrn Dr. M. Ehses, Herrn Dr. T. Völmecke, Herrn Dr. S. Weigel, Herrn J. Meiers und Herrn G. Schmitt für die Aufnahme einiger NMR-Spektren
- Herrn Dr. T. Dezember und Herrn O. Schmidt für die Unterstützung bei der Synthese des Pentaisopropylcyclopentadienylliganden
- Frau Dr. K. Mast, Herrn Dr. S. Weigel und Dipl.-Chem. D. Saurenz für das gewissenhafte Korrekturlesen dieser Arbeit
- Frau C. Eichhorn, Herrn A. Noll und Herrn U. Gumsheimer für die engagierte Mitarbeit im Rahmen des AC II (Teil II)-Praktikums
- Sascha Weigel für die gute Zusammenarbeit im Labor
- den Mitarbeitern der Arbeitskreise Prof. Dr. O. J. Scherer und Prof. Dr. H. Sitzmann für das sehr angenehme Arbeitsklima
- Christoph Peters, Dietmar Ullrich, Michael Steiner, Oliver Schmidt, Dirk Saurenz, Sascha Weigel, Guido Schmitt, Jörg Meiers, Stefan Essl, Mario Strasser und Thorsten Sögding für die vielen schönen Stunden
- meinen Eltern und meiner Oma
- und bei Katja

LEBENSLAUF

1. Persönliche Daten

Name, Vorname:	Hilt, Thomas
Geburtsdatum:	29.01.1971
Geburtsort:	Sobernheim
Nationalität:	deutsch
Familienstand:	ledig
Eltern:	Burkhard Hilt und Luise Hilt, geb. Mensch
Anschrift:	Römerstraße 3
	55566 Meddersheim

2. Schulischer Werdegang

01.08.1977 bis 31.07.1981:	Grundschule Monzingen
01.08.1981 bis 31.05.1990:	Gymnasium Sobernheim, Allgemeine Hochschulreife

3. Wehrdienst

01.07.1990 bis 30.06.1991:	Ableistung des Grundwehrdienstes als Sanitätssoldat
	in Idar-Oberstein

4. Hochschulausbildung

01.10.1991 bis 30.09.1993:	Grundstudium mit Vordiplom an der Universität Kaiserslautern
01.10.1993 bis 28.11.1996:	Hauptstudium mit Diplom an der Universität Kaiserslautern
02.01.1997 bis 26.05.1999:	Promotionsarbeit im Arbeitskreis von Prof. Dr. O. J. Scherer