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Abstract. Structured domains are characterized by the fact that there
is an intrinsic dependency between certain key elements in the domain.
Considering these dependencies leads to better performance of the plan-
ning systems, and it is an important factor for determining the relevance
of the cases stored in a case-base. However, testing for cases that meet
these dependencies, decreases the performance of case-based planning, as
other criterions need also to be consider for determining this relevance.
We present a domain-independent architecture that explicitly represents
these dependencies so that retrieving relevant cases is ensured without
negatively affecting the performance of the case-based planning process.

1 Introduction

Reusing previous problem solving experience has proven to speed-up planning
systems. Problem solving experience can be stored in generalized (Minton, 1988)
or abstracted (Bergmann & Wilke, 1995) form, or it can be stored as cases
(Veloso, 1994; Thrig & Kambhampati, 1994; Yang & Lu, 1994). One of the meth-
ods better studied and used for adapting cases is derivational analogy (Carbonell,
1983; Veloso & Carbonell, 1993; Cunningham & Slattery, 1994) that basically
consists of replaying the planning-decisions taken in selected cases, while solving
a new problem. As other adaptation approaches (Smyth & Keane, 1994), the
effectivity of derivational analogy depends on the adaptability of the cases se-
lected. As a result, the derivational analogy replay method has been integrated
with retrieval procedures in general problem solving systems (Veloso, 1994).
CAPLAN/CBC (Munoz-Avila, Paulokat, & Wess, 1994) is a case-based plan-
ning system that is build on top of a partial-order nonlinear planner (Paulokat
& Wess, 1994) and uses derivational analogy for replaying past solutions. To
overcome the problem of retrieving adaptable cases, the first version of CA-
Pran/CBC used classifications manually defined by domain experts as an in-
dex for the case-library. However, such classifications are not avaliable in every
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domain. Further, domain-dependent classifications may be made, based on tech-
nological issues different than adaptability of the solutions. As a result, 1t was
necessary to perform additional tests during the retrieval phase to ensure the
relevancy of the cases retrieved, increasing thereby the average execution time.

There are domain where structural dependencies between certain key ele-
ments in the domain are defined. These dependencies are based on intrinsic
processing restrictions and they form part of the problem descriptions. They
also reduce the range of possible solutions for a problem as they establish rela-
tions between elements that must be meet by any solution. Thus, they must be
taken into account when retrieving cases during a case-based solving process.

In this paper we define the notion of dependencies between elements of struc-
tured domains. Based on this notion a domain-independent architecture for the
case-base is presented that extends the one developed in PRODIGY/ANALOGY
(Veloso, 1994). By comparing it against the one in PRODIGY/ANALOGY, we
show that this architecture ensures the retrieval of relevant cases for structured
domains in better time ranges.

Subsequent sections present an example of a structured domain. Then, we
state the requirements for a retrieval procedure and give a survey the architec-
ture of the case-base in PRODIGY/ANALOGY. After that, section 4 defines the
concept of dependencies. Then, we present the architecture of the case-base in
CAPLAN/CBC (section 5) and introduce the retrieval procedure based on this
architecture (section 6). In section 7, the results of an experiment comparing
the retrieval times by using both architectures is discussed. Finally, a conclusion
about our work i1s made.

2 Domain of process planning

An example of a domain with structural dependencies between goals is the do-
main of process planning for manufacturing mechanical workpieces (Paulokat &
Wess, 1994; Yang & Lu, 1994). A planning problem in this domain is to find a
sequence of processing operations in order to machine a workpiece, by consid-
ering the available resources (i.e. tools, machines) and technological constraints
relative to the use of these resources. The process begins by clamping a piece
of raw material on a lathe machine that rotates it at a very high speed. Then
different tools are used to remove layers of raw material. Depending on the struc-
ture of the workpiece, several clamping operations may be needed to process the
workpiece completely.

Fig. 1 shows an example of a workpiece. The grid area corresponds to the
portion of raw material that need to be removed. Based on the geometry of
the workpiece the grid area is decomposed in several processing areas, some
of which are indicated explicitely in Fig. 1, such as hor (a horizontal outline)
and ucutl (an undercut). The initial state of the planning problem is a collec-
tion of propositions regarding the resources available and propositions describing
the relations between the processing areas. rotary—cutting—tool(rct2) is an ex-
ample of the first type of propositions, whereas lies—below(ucutl,ascl) and
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Fig. 1. Half display of a rotational symteric workpiece.

neighbour(hor, ascl) are examples of the second type. The goals of a planning
problem are the processing areas encapsulated by the predicate machined (i.e.
machined(hor), machined(ucut1)). Fig. 2 shows a part of a plan? for machining
the workpiece shown in Fig. 1. There are two possible reasons for a plan-step s;
to be ordered before another plan-step ss: first, if applying s; makes impossible
to apply s1. For example Clamp(hor) is ordered after machine—outline(hor),
because when the workpiece is clamped on hor, then it is impossible to machine
hor as this area becomes unaccessible for the cutting tools. Second, when s
needs the effects of s; in order to be applied. For example, for machining the
outline hor, the workpiece needs to be clamped on the outline ascl.

Notice that in Fig. 2 the processing areas are machined before the processing
areas lain below them. For example, the undercut ucutl lies below the ascending
area ascl. Then in order to achieve the goal machined(ucutl) it is necessary
to achieve the goal machined(ascl) first. This kind of dependencies between
certain goals can be determined independent from any consideration of the tools
or clamping operations needed to achieve them. So they are established before
the planning process begins. Thus they can be used as an order-constraint for
achieving the goals during the planning process or as an additional constraint
that must be meet by cases in order to be retrieved during a case-base planning
process. This observation is one of the motivations for the architecture of the
case-base presented in this paper.

2 In this plan other processing areas and the steps for mounting cutting-tools are
omitted.
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Fig. 2. Plan for machining a workpiece.

3 Domain Independent Case Retrieval

There are two basic restrictions that any retrieval procedure must meet: first, the
cases retrieved must be relevant with respect to the planning problem (Veloso,
1994; Cunningham & Slattery, 1994). Second, the time to do this must be short
enough, that the overall time for the case-based planner to solve a problem is
shorter than the time that it takes to plan from scratch. We will refer to this
restriction as the time restriction. In PRODIGY/ANALOGY an organization of
the case-base has been proposed which enables the retrieval procedure to meet
both restrictions. The basic idea is that after finding a solution plan that solves
a problem, the problem description and the solution plan are stored together as
a new case 1n the case-base. For indexing the case, an analysis of the problem
description with respect to its solution plan is made. Based on this analysis a
relation between goals is stated, which is defined as follows.

Definition1 Interacting goals (Veloso, 1994). Given a solution plan that
solves a problem and two goals ¢; and g, that appear in the problem. The goals
gl and g2 interact with respect to the solution plan, if g1 and g2 are achieved
in the same connected component of the solution plan.

Consider the solution plan shown in Fig. 2. All the goals achieved in this
plan interact with each other, as there is only one connected component in it
with respect to the step-order. This is characteristic for the domain of process



planning, although in other domains such as the logistic transportation domain
and blocks world, plans may contain more than one connected component.
Giving a goal achieved in the plan, it is possible to perform goal regression
(Veloso, 1994; Mitchell, Keller, & Kedar-Cabelli, 1986; Janetzko, Wess, & Melis,
1993) through the plan-steps in order to identify which propositions in the initial
state had been used to achieved that goal, as stated by the following definition:

Definition 2 Foot-print of goals (Veloso, 1994). Given a solution plan
that solves a problem. Then the foot-print of a goal g is constituted by the
propositions in the initial state of the problem that contributed to achieve g.
The foot-print of a set of goals i1s the union of the foot-prints for each individual
goal in the set.

3.1 Organization of the Case-base

The case-base in PRODIGY/ANALOGY is organized as a three-level structure
(Fig. 3). In the first level there are three access tables (not shown in Fig. 3). The
second level is constituted by an initial-state discrimination network. Finally,
the third level is constituted by the library of cases.

{machined(hor), machined(asc1), machined(ucutl), machined(ucut2), machined(drill 1),machined(drill2)} -~
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Fig. 3. Architecture of the case-base in PRODIGY/ANALOGY

The three access tables define entry points in the initial-state discrimination
network, and their construction is based on the sets of interacting goals of each
case stored in the case-base. Basically, these tables define a hash function that
identifies for each set of goals, S, a tree in the initial-state discrimination network.

The 1nitial-state discrimination network is constituded by a collection of trees.
These trees serve to discriminate cases that have the same set of interacting goals.



The nodes of these trees contain sets of propositions and their leaves contain
pointers to cases in the case-library. They are constructed in a way that by
following any path from a leave to the root and collecting the set of propositions
at each node, results in the foot-print for the set of interacting goals of the case
pointed by the leave.?

3.2 Domain Independent Retrieval

The purpose of the retrieval phase 1s to find a collection of cases, so that their
sets of interacting goals cover the new problem description. That is:

— For each goal in the new problem, there is one corresponding goal in one of
the sets of interacting goals that matches it.

— The foot-print of each set of interacting goals matches the initial state of
the new problem with a predefined accuracy. The accuracy indicates which
percentage of the set of predicates need to be matched.

The strategy followed by PRODIGY/ANALOGY is to try to cover the new
problem with as few cases as possible. So, at the first step, a case will be searched
for that covers the whole problem description and more precisely that covers
all the goals of the new problem. If this fails, PRODIGY/ANALOGY will try to
find two cases: one that covers all the goals but one, and the other that covers
the remaining goal. If this does not work, then the decomposition process will
continue. At last PRODIGY /ANALOGY will try to cover each goal independ from
the others.

Retrieving relevant cases and meeting the time restriction may be difficult.
The matching process between sets of goals is one of the more expensive steps
and 1t takes place each time the retrieval procedure is pursuing to cover a set
of goals. The reason for this is the combinatorial factor involved when binding
variables. However PRODIGY/ANALOGY has been tested massively in domains
such as the logistical transportation domain, with good performances on the
average. We argue that this performance may be threaten, when considering
other classes of domains, where structural dependencies between goals need to
be considered, and that by explicitely considering this dependencies between
goals, the threat is reduced.

4 Dependencies between Interacting Goals

In some domains, it is necessary to consider the dependencies between goals
that are included in the problem description. An example is the domain of pro-
cess planning for mechanical workpieces, where the dependencies represent an
order between steps for achieving certain processing areas. Thus, they establish

3 Actually, they are not trees but graphs. The change was made for the sake of sim-
plicity. There are other properties that characterize these trees (graphs), but they
are not relevant for our discussion.



a partial order between the goals. So a problem description can be defined as
follows:

Definition 3 Extended problem description. A problem description is con-
stituted by an initial state, a set of goals to be achieved, and a partial order
between the goals.

Comparing such a problem description against sets of interacting goals and
their foot-prints will result in the selection of unadaptable cases, provided that a
higher accuracy is not predefined. The reason for this is that these dependencies
are hidden in the initial state of the problem and of the cases, so only high
accurate matches between the initial states will ensure the consideration of all
dependencies. But performing matches with high accuracy usually violates the
time restriction of the retrieval procedure.

Before continuing, it is necesary to establish some conventions: a partial
ordered plan P may be viewed as a pair (S,—), where § represent the set of
plan-steps of P, and — the partial order of achievement between the plan-steps.
For example, Clamp(hor) — machine—outline(ascl) is a plan-step order in the
plan shown in Fig. 2. Given a goal g and a plan-step s,, it is said that s, achieves
g if g is an effect of s;. In the same way g is achieved by P if g is achieved by
a plan-step in P. So for example, the goal machined(ucut2) is achieved by the
plan-step machine—ucut(ucut2). Given two plan-steps s; and sa, the notation
§1 —* s, denotes: (1) s1 — s2, or (2) there is a plan-step s, such that s; — s
and s —=* sy holds. For example Clamp(hor) —* machine—ucut(ucutl). The
notion of dependency between goals can be defined as follows.

Definition4 Dependencies between goals. Let P be a plan and f and g
two goals achieved by P. Then f depends on g with respect to P if there are
two plan-steps s¢, s, in P, such that s; achieves f, s, achieves g and s; —* s;.

For the plan presented in Fig. 1, the two machining-steps of the two undercuts
ucutl and ucut2 depend on the machining-step of the ascending outline ascl. It
is easy to see that the dependency relation is strictly contained in the interaction
relation: machined(ucutl) and machined(ucut2) interact, as they both are in
the same connected component (Fig. 2). However, none of them depend on the
other one. We used this refinement to construct an intermediate level between
the access tables and the initial state network in order to represent explicitely
dependencies between goals.

5 Indexing and retrieving cases in CAPLAN/CBC

Our approach consists of using the dependencies between goals in order to fur-
ther structure the case-base. In this way irrelevant cases are rapidly discarded,
enabling the retrieval procedure of CAPLAN/CBC to concentrate on a small
portion of the case-base.



5.1 Architecture of the Case-Library

The case-base in CAPLAN/CBC is a four-level structure (fig. 4). There are
three major differences with respect to the one presented in PRODIGY/ANALOGY
(section 3.1): first, rather than explicitely representing the set of interacting goals
in the access tables, chains of goals are used to conform a goal discrimination
network. Usually an arc between two nodes in the chains of goals represents the
dependency order, as for example the arc labeled with A in fig. 4. However, some
arcs may represent an order that extends the dependency order, as for example
the arc labeled B in fig. 4. The reason for this is that some information is lost
due to the representation of the dependency order (which is a partial order) on
chains of goals that are totally ordered. Even with this loss of information, the
case-base is further structured, which results in better retrieval times as will be
shown in section 6. Thus, the accuracy of the match can be improved, resulting
in the retrieval of relevant cases.

A {machined(OUTLN), machined(OUTLN), machined(U-CUT), machined(U-CUT), machined(DRILL), machined(DRILL)}- -- -~

Tables

{ machined(OUTLN), machined(OUTLN), machined(U-CUT)}
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Fig. 4. Case-library in CAPLAN/CBC



The second difference is that the access tables contain only the class
representation? of sets of interacting goals. The third difference is that the initial
state discrimination network has been partially ordered through chains of threes.
These chains serve to discriminate between cases that have the same representa-
tion in the chain of goals. Each node in the goal discrimination network points
to a tree in the partially ordered discrimination network (not shown in figure
4). This initial-state tree contains the foot-print of the set of predicates included
in the node. Only the leaves of the last initial-state tree in each chain point to
cases in the case-library. Every link of each initial-state tree is labeled with one
or more names of cases (not shown also in figure 4). These cases correspond to
the ones pointed by the nodes in the last tree of the chain. Collecting the sets
at each node that is pointed by a link labeled with the name of a case, results
in the foot-print for the interacting goals of the case.

This organization is not well suited for domains without structural depen-
dencies between their goals. For example, in the logistic transportation domain
(Veloso, 1994), it is easy to state problems, so that for any combination of the
goals, it is possible to obtain a plan that achieves the goals in the order stated
through the combination. Thus the goal discrimination network tends to be very
large for the same set of interacting goals. Further, no dependencies between
goals can be predefined (we are not considering efficiency issues here), so there
is no advantage of having the dependencies explicit in the case-base.

5.2 Retrieval of relevant cases in CAPLAN/CBC

CAPrLAN/CBC follows the same strategy as PRODIGY/ANALOGY in order to
retrieve relevant cases for the new problem: cover the goals with as few cases as
possible and match the initial state with a given accuracy.

For finding a case that covers a partially ordered set of goals (Gprob, —prob).
CAPLAN/CBC uses the access tables to identify a class representation of a set
of interacting goals that is equal to Gprop. If none is found then there is no
case that covers (Gprob, —prop) and the procedure terminates. Otherwise, a tree,
goal—tree, in the goal discrimination network is accessed that corresponds to
the class representation of Gprop. As we saw, goal—tree is a tree representation
of goal chains, where arcs between nodes represent the dependency order or an
extension of it. So, a search on goal—tree is made, looking for a chain that is
consistent with the dependencies of the new problem, —,,05. If no such chain is
found, the procedure returns with a failure. Otherwise, a path from the root to a
leave in goal—tree has been identified that matches Gprop and that is consistent
with —pr05. Each node in the path contains a pointer to a tree in the partially-
ordered initial state network. For the initial-state tree pointed by the root of
goal—tree the procedure identified the set of cases, Cases, that matches the

* The class representation (Veloso, 1994) of a set of predicates is obtained by re-
placing the arguments of each predicate with their types. For example, the class
representation of {machined(ucutl)} is {machined(U — CUT)}. Comparing class
representations is not expensive, as the arguments of the predicates are constants.



initial state with the given accuracy. This is possible because all arcs in the
initial-states trees are labeled with names of cases. This process is repeated
recursively for all nodes of goal—tree in the path, excluding cases in C'ases that
do not meet the accuracy predefined. If at some point Cases is empty, then
CAPLAN/CBC backtracks and continues the search in the goal tree. Otherwise,
the leave of the path will be reached and one of the cases contained in Cases is
returned.

6 Empirical Results

We implemented the architectures of the case-base presented in
PRODIGY /ANALOGY (Veloso, 1994) and the one proposed here, integrating them
in our case-based planning system CAPLAN/CBC, which is implemented in
SMALLTALK-80. As a result, the basic operations such as matching between
propositions, and the implementations of the basic data types such as set of
propositions are the same for both architectures, so none of them takes ad-
vantage of the other based on implementation details. In both case-bases the
same cases from the workpieces domain where added. In the experiment 60 new
problem descriptions corresponding to complete descriptions of workpieces were
given. We meassured the time that it took in each architecture to retrieve a
case with an accuracy of 75%. The reason for retrieving just one case is that
plans in this domain contain only one connected component, so no decompo-
sition of the problem description based on interacting goals is possible. The
results are shown in figure 5. The first 10 problems contained 7 goals, the next
10 problems contained 8 goals, and continuing with the same proportion, the
last 10 problems contained 12 goals. Notice that for the last 20 problems, the
increase in running time by using the architecture of PRODIGY/ANALOGY is
higher than the one by using the architecture of CAPLAN/CBC. Thus, as the
number of goals increases the architecture of CAPLAN/CBC leads to better
retrieval times. There are two reasons for this: first, in PRODIGY/ANALOGY a
matching between the sets of goals takes place, whereras in CAPLAN/CBC the
match is between partially ordered collections of goals. Second, the initial state
network in CAPLAN/CBC is constructed in a way, that the sets of predicates
in the nodes tend to be smaller than in PrRoODIGY/ANALOGY. More precisely,
the initial-state trees in CAPLAN/CBC store only foot-prints of small subsets of
interacting goals, whereas in PRODIGY/ANALOGY these trees store foot-prints
of all the interacting goals. As a result, matches in CAPLAN/CBC involve small
sets of propositions only.

7 Conclusion

We have shown that the architecture of the case-library implemented in CA-
PrLan/CBC ensures the adaptability of the cases retrieved for structured do-
mains. In this class of domains it 1s necessary to consider structural dependencies
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Fig.5. Cumulative running times of the retrieval procedure by using the archi-
tectures of CAPLAN/CBC and of PRODIGY/ANALOGY

in the problem description in order to retrieve relevant cases during a case-base
planning process. The architecture presented here is an extension of the one
proposed in PRODIGY/ANALOGY, in that the concept of interacting goals has
been refined to consider the dependencies between interacting goals. Based on
this refinement the foot-print has also been partitionated. This partition is ex-
plicitely represented in the case-base and leads to an increased performance of
the retrieval process.
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