Dimensions of Component-based Development

Colin Atkinson, Thomas Kiihne" and Christian Bunse*

"Universitit Kaiserslautern
{atkinson, kuehne @informatik.uni-kl.de }

*Fraunhofer Institute for Experimental Software Engineering
{atkinson, bunse@iese.fhg.de}

ABSTRACT

As the properties of components have gradually become
clearer, attention has started to turn to the architectural
issues which govern their interaction and composition. In
this paper we identify some of the major architectural
questions affecting component-based software develop-
ment and describe the predominant architectural
dimensions. Of these, the most interesting is the
“architecture hierarchy” which we believe is needed to
address the “interface vicissitude” problem that arises
whenever interaction refinement is explicitly documented
within a component-based system. We present a solution
to this problem based on the concept of stratified
architectures and object metamorphosis Finally, we
describe how these concepts may assist in increasing the
tailorability of component-based frameworks.

1 INTRODUCTION

Much of the recent debate on component-oriented
software development has naturally revolved around the
question: “what is a component?” Less attention has been
given to the architectural issues related to the structure of
component-based systems, and the nature of the key
relationships which drive component-based development
- in essence, to the question “where is a component”?
Addressing this question we believe will not only help
establish a cleaner and more general theory of
components, but will also shed light on the “what”
question by helping to clarify important characteristics of
components.

We believe four fundamental hierarchies naturally
dominate the structure of component-oriented software
systems.

1. Containment hierarchy
2. Type hierarchy
3. Meta-hierarchy
4. Architecture hierarchy

The term hierarchy is used in a general sense here to
represent a set of entities related by some transitive,
partially ordered relationship.

The first three hierarchies may be termed “intrinsic”,
since they contain the actual components themselves. In
other words, every component must be assigned a place
in each of these hierarchies. This place is unique for each

component and serves to define its properties and
characteristics.

The fourth hierarchy, in contrast, can be thought of as
“extrinsic” since it is not actually a hierarchy of
components per se, but rather a hierarchy of
“architectures” or “‘architectural strata.” In other words,
it is not the components themselves which are partially
ordered, but the architectural strata in which they appear.
This hierarchy therefore has more to do with describing
how a component is used than on defining the nature of
the component itself'.

In the following sections we discuss each of these
dimensions in more detail: section 2 describes the role of
the component hierarchy, section 3 briefly talks about the
type hierarchy, section 4 discusses the ramifications of
the meta-level hierarchy, and finally section 5 introduces
the concept of the architecture hierarchy and describes its
potential benefits. Section 6 provides a summary of the
key points, and an analysis of their implications.

2 CONTAINMENT HIERARCHY

The containment relationship is probably the most
fundamental of those influencing the structure of
component-based systems. It also has the largest number
of different names, including “aggregation”, “part-of”,
“includes”, “embeds™ and of course “composition”. All
these terms are used to convey the same underlying idea
of “big” objects containing “small” objects. In fact, the
very name component is intended to reflect the idea of
containment.

Although simple in concept, containment is notoriously
difficult to apply in practice. The problem is that 100%
“pure” containment rarely occurs in the real word.
Contained objects almost always have relationships to
objects other than their container or fellow contained
objects (i.e., they are shared by multiple containers or
temporary clients), and often these can also represent
some form of containment. Most object-oriented systems
typically contain a tangled web of inter-object links,
making the identification of a clear containment tree a
non-trivial problem. In particular, it is often difficult to

! The containment hierarchy can actually can be thought of as
playing a dual role in this sense, because as well as determining
the nature of a component’s interface it also plays a role in
describing how it is deployed.

disentangle “containment” relationships from “uses” or
“peer” relationships where no containment is intended.

Why not therefore simply de-emphasize (or ignore) the
idea of containment in the structuring of object-oriented
and component-based systems? To a certain degree this is
the strategy adopted in the UML which views
aggregation as a special case of association, and advises
developers to use the latter whenever they are in any
doubt as to the applicability of the former. While it may
be possible to deemphasize containment between
individual components, however, the idea of the eventual
“system” containing the components from which it is
created seems inescapable. This idea is as fundamental as
the word component itself.

This brings us to a critical question -

should the assembly of a system be viewed as a
different activity (i.e. use different concepts and
techniques) from the assembly of a component?

In other words, should the application (or use) of a
component be viewed as involving different concepts and
techniques than the creation of a component? Most
approaches to component-based development do not
explicitly address this question, but their terminology
implies that they view the two as different activities. In
other words, most approaches view a system as being a
different kind of entity from a component.

We believe this to be fundamentally at odds with the
philosophy of component-based development. There
seems to be no good reason why an assembly of
components developed to meet the requirements for a
“system” should not at a later stage also be viewable as
an individual component, should their collective services
be useful in the creation of a larger system (i.e. as a
component). However, if one accepts the metaphor:

“a system = a component”

one is compelled to provide a uniform component model
which treats all components in the same way regardless
of their location in the composition hierarchy or whether
they are used as a system or as a part of a system. The
only factor which should determine the activities and
concepts applied to a component should be relevant the
requirements (functional or non-functional).

3 TYPE HIERARCHY

Another hierarchy that plays a fundamental role in
component-based development is the type hierarchy. As
in object-oriented approaches, the basic idea of a type is
to control the linking together and interaction of
components based on some form of explicitly specified
set of expectations (i.e. a contract). Like containment, the
idea of a type also goes by various names, the chief
among them being “role”, “class”, and “interface”. These
concepts all essentially serve to define a set of
expectations that govern interactions and relationships
between objects. They also can placed into hierarchies
which organize such “expectation specifications” in
terms of their commonalties and differences. These

hierarchies also go by various different names, including
type hierarchy, role hierarchy and interface hierarchy.

In most existing component technologies a component
type (i.e. interface) is embodied by the set of operations
that the component exports, and the information which
these operations receive and return (i.e. parameters).
Exception definitions are also sometimes included. While
this provides a rudimentary way of defining expectations,
it leaves a lot of information missing. For example, the
typical interface specification says nothing about the
expected effects of operations, or the expected
interleaving of operations. Guaranteed substitutability of
components, which is the underlying motivation for
typing, requires that the client and supplier of a service
be in complete agreement about the full nature of the
expectations to be satisfied.

The “system = component” metaphor mentioned in the
previous section, suggests one way of approaching this
problem; namely, to model a component interface by a
suite of UML diagrams as if the component were a
system. Various analysis/design methods present ways of
using UML (or equivalent) diagrams to described the
requirements satisfied by a system, so it would seem
reasonable that these might also be useful for modeling
interfaces. At the Fraunhofer Institute for Experimental
Software Engineering we are investigating an approach
based on the diagram suite defined in the Fusion method
[1] as adapted for the UML by FuML [2].

4 META HIERARCHY

Metamodeling has become fashionable. However, many
of the approaches which claim to be based on meta
modeling fail to follow through with the full
implications. The best example is the UML [3], which
ostensibly assumes the four level modeling framework
illustrated in Figure 1. Each layer, except the bottom
layer, represents a model (i.e. a class diagram)
instantiated from the elements described in the layer
above. The exceptions to this rule are the bottom layer,
which contains the actual objects embodying the data of
the user, and the top layer which is regarded as an
instance of itself. Normal user class diagrams reside at
the second level, immediately above the bottom “data”

layer.
Meta-meta-model

(MOF)

instance_of ﬁ

" m

Meta-model
. ﬁ (UML Meta-Model)
instance_of

Model
instance_of ﬁ
Data

Figure 1. UML Model Framework

The main consequence of this approach for components
is that elements in all but the bottom layer generally have
the properties of both an object and a class (i.e. they are
clabjects [4]). This is because they represent a template
for instantiating instances at the level below, and at the
same time they are themselves instances of templates
from the level above. This dual faceted view of
components is depicted in figure 2.

Type (class) view Instance (object) view

Figure 2. Class/Object View of a Component

Most approaches that adopt such a multi-layered model
hierarchy, such as UML and OPEN, ignore this fact
because it leads to some awkward consequences.
Ironically, however, this dual object/class facet could
actually help address a problem that has been central to
the component debate for some time; namely “is a
component an object or a template (from which objects
can be created)”? Some authors, such as Orfali et. al.
view a component as an object with certain additional
properties [5], but others such as Szyperski, believe that a
component is not an object, but can only be used to
instantiate objects [6]. If one accepts the class/object
duality implied by a rigorous multi-level modeling
framework, the most general answer would be that a
component is both.

The phrase “most general” is here because not all
components will necessarily have both facets all of the
time. However, the class/object duality occurs more often
than might be expected. For example, components which
are primarily intended to provide a template for
instantiating objects typically tend to have some “static”
information, such as a serial number, which essential
corresponds to attribute values in the object facet. In the
UML, such attributes are called “tagged values”, while in
programming languages they are called ‘“static data
members”. The only difference from normal attributes is
that that they are not usually changed at run-time.

Similarly, components which are primarily intended to
serve as objects (e.g. CORBA objects), often have an
associated reflection API which can be used to provide
access to certain kinds of static” information. Also,
environments such as CORBA usually store “meta
information” about running objects, typically in interface
repositories. These both essentially correspond to the
template facet of the components.

Even with existing component technologies, therefore,
explicit class/object duality may provide a natural and
clean unifying model for handling the various char-
acteristics of components and the different, often

separated, pieces of information that are maintained
about them. However, the possibility also remains that a
pure and fully object-oriented component model of the
kind characterized by Smalltalk, in which every class has
an explicit run-time presence, may offer one of the best
long term strategies for promoting component-based
software development.

5 ARCHITECTURE HIERARCHY

The three “dimensions” described in the previous
sections are fairly conventional, and in one form or
another appear in most existing component technologies.
However, the fourth “dimension” described in this
section is much less conventional, and as far we are
aware does not exist explicitly in any of the current or
proposed component-based development technologies. It
also differs from the previous three hierarchies in that it
is not a hierarchy of components per se. In order to
explain precisely what it is rather than what it is not, we
first need to elaborate upon the problem that it is aimed at
solving.

5.1 The Problem

To illustrate the problem we will consider the classic
scenario of communication between remote entities in a
distributed system. The example will be based on a
simple client/server scenario in which a file manger
(server) supports requests to read and write strings to and
from files. We will consider both function-oriented and
object-oriented version of the system, in both localized
and distributed forms.

5.1.1 Localized File Management System

As might be expected, the localized, function-oriented
version of the system is the simplest. Figure 3 illustrates
a client function, Writer, issuing a call to a server function,
write.

Void Writer {
write (fn, d)

}

client

server

void write {File f, String data}

Figure 3. Localized Function-Oriented Form

The write function takes two parameters: a reference of
type File serving to identify the target file and a String
representing the data to be written to the file. The read
server function is similar, but obviously the String
parameter would have to be passed by reference in order
to return the value. In this example, the actual file
reference is fn and the actual string to be written is d.

In an object-oriented system all functions have to belong
to objects. The basic difference in the object-oriented
version of the system, therefore, is that the write and writer
functions have to be defined as part of a class definition,

as illustrated in figure 4 (write becomes do_write). The
basic interaction is the same, however.

public class Writer {
File Manager fm;

public void do_write {

fm.write (fn, d)

client
server

public class File_Manager {

public void write (File £, String data);

public void read (File £, &String data);
{

Figure 4. Localized Object-Oriented Form

The Writer and File_Manager classes in the object-oriented
version of the system can also be depicted graphically.
Figure 5 is an equivalent UML collaboration diagram
which indicates that an instance of Writer, called w, sends a
message write() to an instance of File_Manager called fm.

write (fn, d)
E—
w : Writer

fm : File Manager

Figure 5 Localized UML Collaboration Diagram

5.1.2 Distributed File Management System

Whether written in a function-oriented or object-oriented
style, if the client and server are on the same machine the
compiler can simply link all the appropriate components
into a single program, and the interaction between them

will be implemented directly as a normal, local function
(or method) call.

However, if the file manager and writer need to execute
on different machines, things get a little more
complicated. It is now necessary to arrange for the
communication to be implemented via the network.

void writer { |memsmammsssssssmses i....‘ } void write (File f, String data)
| write (f, d)j Logical interaction server
client
dispatcher
stub void request_dispatcher {
Loop {
void write { ...
write {fn, d);
make_call (“write”, fn, d); .
i
} }
Node A Node B

Figure 6. Distributed Function-Oriented Form

A well-known and widely used strategy for
implementing remote communication is to use a “stub, as
depicted in figure 6. Instead of calling the server function
directly, as in the localized system, the client instead
calls the special “stub” which arranges for the interaction
to be implemented in terms of the communication
services supported by the network. Notice that the name
of the function to be called now has to be passed as a
parameter to the remote dispatcher to enable it to decide
which of its local functions to call. In some
circumstances such stubs can be generated automatically,

but in others it may have to be coded by hand. In either
case, the stub is linked into the client’s program instead
of the original implementation of the server function.

On the server’s side, some form of request dispatcher
(a.k.a. entry port) is needed to receive incoming
messages and call the original server function on the
remote client’s behalf. This is the request_dispatcher
illustrated in figure 6. The job of this entity is to respond
to incoming service request by decoding the message and
invoking the appropriate function.

This same idea can of course be applied in the object-
oriented version of the system. In fact, this is the basis of
the ubiquitous “request broker” technology underlying
CORBA and other distributed object environments.

public class Writer’ { | —ooofooooo bl public class File Manager {
ORB o; id Write(File, String);
id read (File, &String);

public void re:
orb.request (™

te”
¥
) server
client
Dispatcher (ORB)

ORB void request_dispatcher {
public class ORB { locp {
public request (String name -

File, &String);

y }
) }

Node A

Node B

Figure 7. Distributed Object-Oriented Form

As illustrated in figure 7, the job that previously fell to
the stub” in the function-oriented version of the system
now falls to a method of the ORB. In this example the
method is called request(). The body of this method is
essentially equivalent to the stub, and sends the
appropriate information over the network in order to
implement the required interaction.

The job of the request dispatcher at the other end is also
played by an orb. ORBs therefore play the general role of
mediators between remote objects which wish to interact.
The example is a little artificial since the ORB methods
have parameters which are specific for this application,
whereas in general of course they would be more
generic. Figure 8 provides a UML interaction diagram
for the implementation illustrated in figure 7.

w 2: Writer2 fm : File_Manager

l request (“write”, fn, d) Twrite (fn, d)

make_call (“write”, fn, d)
oc: ORB —> os: ORB

Figure 8. Distributed UML Collaboration Diagram

* Different distributed object technologies use words such as
“stub” and “proxy” in non-standard ways. In this discussion we
use the word in a general sense, not in the technical sense of
any particular distributed object standard (e.g. COBRA, Java
RMI etc.).

5.1.3 Interface Vicissitude’

So what is the problem? The basic issue is that in the
object-oriented (and hence component-oriented) version
of the system, the interface between objects can change
depending on the level of abstraction at which the
interaction or relationship between them is described.
This can be seen by comparing figures 4 and 7, or their
graphical UML equivalents, 5 and 8. In figures 4 and 5,
the client, Writer, has an interface with File_Manager in
which it invokes the operation write(). In a distributed
implementation, this interaction might be referred to as
the logical interaction. However, in figures 5 and 8, by
contrast, the client, Writer, has no interface with
File_Manager at all, but instead has an interface with ORB,
in which it invokes the request() operation.

The phenomenon is not confined to the implementation
of distributed communication, or to just two architecture
levels. On the contrary, it occurs whenever an abstract
interaction is refined into a more detailed description
involving lower level components and less abstract
interactions. Examples include transactions, security,
persistence etc. - in fact, almost any service provided by
component-based environments such a CORBA. The
idea can also obviously be generalized to multiple levels.
In fact, the interaction described in this example can
easily be generalized to a third level by viewing the type,
File, as a “persistent” class type rather than as a simple
reference type and treating the write() operation as a
method of this class rather than File_Manager. This would
give the following view of the interaction illustrated
textually in figure 9 and graphically in figure 10.

public class Writer {
File fn;

public void do_write {

fn.write(d);

client
server

public class File {
public void write (String data);

public void read (&String data);
{

Figure 9. “Persistent Class” Object-Oriented Form

write (d)
—

w : Writer fn : File

Figure 10. “Persistent Class” UML Collaboration Diagram

If we think of the structure and interactions described by
the preceding figures as representing the architecture of
the system (which in essence is what is meant by
“architecture”), this means that the system can be
considered to have different architectures at different

? Vicissitude; n: regular change or succession of one thing to
another, alternation; mutual succession, interchange (Webster’s
Unabridged Dictionary).

levels of abstraction. Figures 4 and 5 represent
descriptions of the architecture of the system (the first
textual, the second graphical) which are equally as valid
as figures 5 and 8 (and figures 9 and 10), the only
difference is the level of abstraction at which the
interaction to write information to a file is described.
This would perhaps not be such an issue if the properties
of the component involved in each view remained
constant, but this is not the case — the interface* of the
user component Writer is completely different in each
case. In other words, the interface of Writer changes
depending on which architectural perspective it is viewed
from. This is what we refer to as “interface vicissitude”.

Why is this a problem? In this small example we have
shown three equally valid views of the architecture of the
system, each with different interfaces for the Writer
component. This begs the question as to which of the
architectures is the correct (or best) one, or alternatively
which of the interfaces of Writer is the correct (or best)
one? If only one is to be considered the architecture,
which one is it and how is it chosen?

Of course, it is always possible to place a wrapper around
an ORB in the style of the Adapter pattern to make it
have the appearance of the final server. In this example,
this would mean placing a “proxy” on the client side to
present the File_Manager interface to Writer instead of the
ORB interface. But this essentially represents an attempt
to simulate one architecture in terms of another, and
implies that for some reason one architecture (or
interface) has been chosen as preferable to another.
However, unless superior tools are available at the higher
abstraction level, or the translation to the lower level is
fully automated, inserting such proxies only serve to
complicate the lower-level architecture and decrease its
efficiency. The issue is one of architecture modeling, or
conceptualization, rather than interface adaptation.

It is interesting to consider why this problem does not
arise in function-oriented software architecture. The
reason goes right to the heart of what differentiates
function-oriented approaches from object oriented
approaches; object identity. In the function-oriented
versions of the system (figures 3 and 6) the interface
between the writer and the File_Manager is not at all affected
by the identity of the communicating partners. As a
consequence, the real write() method can be replaced by a
stub (to handle remote communication) without in any
way affecting the original communicating parties. This
facilitates the creation of layered architectures of the kind
characterized by the ISO Open Systems Interconnection
model illustrated in figure 11. Because interactions at a
given level can be refined without affecting the original
communicating parties, clean layers can be established in
which each module occupies one and only one layer.

* The interface involved is often called the “required” or
“imported” interface since it defines facilities used by the
component rather than services provided for use by others.

