Generalizing Perspective-based Inspection to handle Object-
Oriented Development Artifacts

Oliver Laitenberger and Colin Atkinson
Fraunhofer Institute for Experimental Software Engineering
Sauerwiesen 6
67661 Kaiserslautern, Germany
+49 (0)6301707200
{laiten, atkinson}@iese.fhg.de

ABSTRACT or “reading” as it is commonly called, that is considered the
The value of software inspection for uncovering defects earlkey part of an inspection [2] and which therefore needs to be
inthe development lifecycle has been well documented. Ofthsupported with adequate reading techniques. Moreover,
various types of inspection methods published to dateempirical evidence suggests that reading techniques rather
experiments have shown perspective-based inspection to Iblean inspection process variations have the biggest impact on
one of the most effective, because of its enhanced coverage mfspection effectiveness [22].

D e s o, 1, SS0E1S, 0 everl kinds o eaing techiques e been ceied n e
applied predominantly in the context of conventional iterature, the simplest of which is the ad-hoc reading

structured development methods, and then almost always %opr_oach [8.]' As its name implies, this technique prpyides no
textual artifacts, such as requirements documents or co plicit advice as to how to proceed, or what specifically to

modules. Object oriented-models, particularly of the ook for, during the reading activity, so inspectors must resort

graphical form, have so far not been adequately addressed & Lhetlra(r)lwr?sm‘telcj:ltt'lc?r? ?g.eﬁg%gi?qri t?oditriremltng g‘r)"t"h?agé’_
inspection methods. This paper tackles this problem by firsfoout an INSpection. A signiticant Improv ver (né a
discussing the difficulties involved in tailoring the oc approach is the so called checklist approach [11], in which

S : : ot inspector is at least given a list of questions to answer. The
gz\r/z:ﬁ)gs:%veen? ai?ec:jthl(?jsp e;t:}odn aspe[:():rg)r?é: " E)?/ O;)rjggér?{ifg te%ﬂecklist-based technique thus gives inspectors advice about

generalization of the approach which overcomes thes&vhatto look for in an inspection.
limitations. The new version of the approach is illustrated inThe next level of sophistication is offered by scenario-based
the context of UML-based object-oriented development. reading techniques [2]. The basic idea of a scenario-based
Ke reading technique is the use of so called scenarios that describe
ywords bout finding th ired informati I
Software Inspection, Reading Techniques, Perspective—basQ%Wt%go. about inding € required information, as well as
Inspection, Object-Orientation, Fusion, UML whatthat information should look like. In doing so, scenario-
based reading techniques assign clear responsibilities to
1 INTRODUCTION inspectors and require each of them to take an active role in an
Since Fagan’s seminal work in 1976 [8], software inspectiorinspection. In these two ways, they are similar to active design
has emerged as one of the most effective quality assuranceviews suggested by Parnas and Weiss [21] for the inspection
techniques in software engineering. Fagan, and others, hawd design artifacts. However, active design reviews provide
shown that software inspection can lead to the detection anlittle if any guidance to inspectors about how to perform the
correction of anywhere between 50 and 90 percent of theeading activity.
defects in a software artifact [9], [L1]. Moreover, since
inspections can uncover defects shortly after they ar
introduced, rework costs (i.e., the costs associated wit

correcting defects) are considerably reduced. On average, t
introduction of code inspection reduces rework costs by 3gnost effective. The basic idea behind this approach is to

percent and the introduction of design inspection reducek.nSpect an ”artl_fact from the perspectives o_f Its '”d'V'd“?"
rework costs by 44 percent [5]. customers”, with the assumption that collectively these will

increase the coverage of the defect space. In doing so, the PBR
A full inspection usually consists of numerous activities technique synthesizes ideas that have already appeared in
including planning, defect detection, defect collection, andprevious articles on software inspection, but have never been
defect correction. However, it is the defect detection activity,worked out in detail. For example, Fagan [8] reports that a
piece of code should be inspected by its real tester, while
Fowler [10] suggests that each inspection participant should

é)f the several families of scenario-based reading techniques
efined to date [3], [6], [23], experiments have shown the
eerspective—Based Reading (PBRhnique to be among the

1.In the context of this paper, we use the term “perspective-based in-
spection” to refer to inspection processes that adopt the PBR tech-
nique for defect detection.

take a particular point of view when examining the work concept, they were more concerned with the experimental
product. Graden et al. [12] state that inspectors must denotealidation of the underlying viewpoint premise than on
the perspective (customer, requirements, design, tesproviding a generally applicable definition of the technique.
maintenance) from which they have evaluated the deliverablélhey consequently adopted an interpretation of PBR which
Such viewpoint-oriented approaches follow the currentest suited the immediate needs of the application in hand,
thinking on quality: everybody, even someone internal to arrather than focused on the subtleties involved in applying the
analysis, design, or coding process, is considered to be @rinciple to a wide range of different development artifacts.
customer and also has customers [17]. Since customers afe
interested in different quality factors or see the same qualityov
factor quite differently [20], a software artifact needs to be
inspected from each customer’s viewpoint.

om these publications, it is possible to distil the following
orking definition of the technique. In essence, the basic goal
of PBR is:

"to read a software artifact from the perspectives of the
tifact's various customers for the purpose of identifying
efects.”

Unfortunately, software inspections in general, and
perspective-based inspections in particular, have been us
primarily in connection with textual artifacts resulting from
conventional structured development processes, such @g an abstract concept, this definition is simple and clear
requirements documents or code modules. Object-orienteghough. The limitations in the current formulation of PBR
artifacts, particularly of the graphical from, have so far notarise not from this definition per se, but rather from the way in
been adequately addressed by inspection methods. Thighich researchers and practitioners interpret the key terms
represents a problem for two reasons. First, over the pastiefect”, “customer”, “artifact”, and “to read”. Although the
decade object-oriented development methods have replacestisting interpretations of these terms work quite well in the
conventional structured methods as the embodiment of imurrent publications, they are too “loose” for PBR to be
software development, and are now the approach of choice iapplied effectively in an object-oriented context. To better
most new software development projects. Inspection methodsnderstand the difficulties, we elaborate upon the various
that are limited to conventional structured methods, thereforénterpretations in the following subsections before tackling
will become less and less relevant as these methods atRese issues by presenting more concise definitions.
superseded. Second, despite its many beneficial features, low . . ,

defect density is not one of the strong points of the object!Nterpretation of “Defect . .,

oriented paradigm. On the contrary, some empirical studieg the current formulation of PBR the term “defect” has not
have shown that object-oriented artifacts are more error-pron2€€n Precisely defined. In most existing inspection methods,

than functional ones [13], [14]. At least one reason for thisSUch as [8], [21], a defectis usually interpreted solely as a fault

situation is that most of the leading object-oriented!n a software document that must be detected and repaired in
development methods [4], [7], [24] lack comprehensiveorder for the software artifact to be correct. Such an

reading techniques for inspection. Object-oriented methodit€rPretation, however, limits software inspection, and
would, therefore, benefit enormously from the availability of Pérspective-based inspection in particular, to correctness as
such techniques. We believe systematic, viewpoint-base e only quality factor. However, this focus on correctness (or

inspection approaches, such as the perspective-bas lack thereof) is unnecessarily restrictive. For example, the

inspection approach, offers one of the best ways ofnaintainer of an artifact is not only interested in its

accommodating the complexity of object-oriented systems. COIECtness, but also in the extent to which it embodies good
design practice and the ease with which it can be modified.

This papers aims to address the need for more maturrom such a perspective, an artifact might be correct, but may
inspection approaches in object-oriented development be considered defective because it is too poorly constructed
generalizing the perspective-based inspection approach for maintenance purposes.

handle a wider range of development artifacts. To this end,. , .. .
section 2 first identifies the limitations in the current Definition of Perspegtlves e .
formulation of the PBR approach that prevent it from being | € use of the term “customer” in the current formulation of
easily applicable in an object-oriented context. Section 3 theff BR causes two difficulties. First, a customer is usually a
presents a more general version of PBR which addresses t§@NSumer, or recipient, of an entity, so the use of this term to
identified shortcomings. Section 4 follows with an illustration d€fine perspectives implies that an artifact is to be read only
of how this can be applied in the context of a UML-basedrom the viewpoint of “recipients” of the artifact. However, the

object-oriented development project. Finally, Section screators or developers of an artifact usually have just as much

concludes. interest in its quality as the recipients or consumers.
2 LIMITATIONS OF THE CURRENT FORMULA- Second, the word “customer” also has an implication of
TION OF PERSPECTIVE-BASED READING immediacy in a relationship which does not always apply in

hthe context of software development. Often participants who

PBR technique. The original publication on PBR [3] describes’3OUId not reasona_bly be VieW.ed as customers "’.IISO ha}ye an
NASAs use of the technique for the inspection of interest in the quality of an artifact. For example, in Basili et

requirements specifications, while the second [19] details ho:?" [3] a “User” is presented as an example of a perspective
a car parts manufacturing company applied the PBR techniqu®M Which to inspectarequirements document. However, can
for the inspection of source code. While both of these® USer” really be regarded as a customer (i.e., immediate

publications provided a useful working description of the PBRCONSUMer or recipient) of a requirements document? Not

To date, there have been two published applications of t

really. Users often do not even see the requirements documeBspecially in the design phase of a project, however, there is
used to define a system. often a many-to-many relationship between the artifacts that
In fact, in the examples given to date, all the perspectives arform part.of a d|agram, and th?'r various desprlpthns. For
definea with respect to standard roles’in a software project, n xample, in SA/SD a given function canappearin various Qata
' "Yow diagrams or structure charts (i.e., can have various

gﬁﬁgifﬁ;'gnvﬁ?n retsrg)gscé t?art:eelcTi\r/r;e;jrlstdeefciﬁztciovr\r/]iter:Srec;f teh escriptions), and conversely each such diagram can contain
: ything, PErsp PeQtarious functions (i.e., various artifacts). Hence, this is a

tSO Eehceifﬁ:ug;[gfrgstrir?;gr:eex?riﬁﬁgliois awhole rather than to thﬁ1any—to—many relationship. Similarly in most object-oriented

P ' methods [4], [7], [24], a given abstraction, such as a class or
Artifacts versus Descriptions object, can be described in many class diagrams, and a class
The problem of how to define the perspectives from which tadiagram can contain many classes.

read an artifact is related to the deeper question of how thﬁ/loreover, modern development philosophies, such as object-

artifacts themselves are defined. Software is unique amongrientation, incorporate abstractions which have no concrete

engineering products in that strictly speaking it has nooqyi7ation in the final delivered software. With most object-

concrete material manifestation. Whereas a civil engineer, f°5riented languages, for example, even classes have no

example, can inspect the actual elements of a bridge thae&istence in the final system, and these are much more

results from his endeavours, or a mechanlcal engineer Cal, rete than other abstractions, such as abstract classes,
inspect the actual elements of an engine _that he builds, &hich play an important role in many object-oriented
software engineer cannot actually look at a piece of a softwar nguages

or :

system per se. He or she can only inspect representations,

descriptions of the software product, such as design models Artifact =
or source code. Description

Such a description of an artifact can be viewed as areificaton .
of the artifact which makes it tangible. Reificationis apartof| .

the software development process and encompasses the :
activities of describing artifacts, providing them in the form of Customer w
physical documents and packaging them.

It is not necessary to distinguish between software artifactg A perspective defindd
and their descriptions in contexts where the following two *___ with respect to
conditions both hold: Figure 1: Assumption of PBR
1. Thereis a one-to-one correspondence between an artifaReading as Part of the Development Process
and its description. The reading process, and the scenarios which describe it, are
2. An artifact has a fairly concrete manifestation in the final of course one of the key elements of the PBR approach. A
delivered software product. reading scenario tells an inspector how to go about reading an

rtifact from a particular perspective and what to look for. In

However, in circumstances where these are not true th . . A
the current formulation of PBR, thegading" scenarios place

distinction is extremely important, and in fact is critical to the

effective formulation of software inspection in general, and® Significant emphasis on thereation” of models as well as
perspective-based inspection in particular. Both of thes@" theiranalysis. For example, Basili et al. [3] state that "each

conditions were true in the two existing applications in which€2der produces some physical model which can be analysed
PBR has been used to date. In [3] there is a one-to-ontP answer questions based onthe perspective. For example, the
correspondence between a requirements document and ta™ member reading from the perspective of the tester would

system, and the latter obviously has a concrete manifestatio Fsign a set of tests for a potential test plan, the team member

in the delivered product - in fact, it “is” the delivered product. reading from the perspective of the developer would develop

Similarly, in [19] there is a one-to-one correspondencea high-level design, and the team member representing the

between source code modules and functions, and the latter c4f€" Would create a user manual”.

readily be identified in delivered executables. As aThere are two difficulties with this formulation of PBR. The
consequence, the current version of PBR was formulatelrst is that it stretches the word “reading” beyond its natural
under the assumption that these conditions are valid. Figure fheaning. “Reading” implies the systematic examination of an
illustrates this concept. It indicates that no distinction is madeartifact’s description to extract and gain certain information
between a software artifact and its description (because thefer a particular purpose (e.g., for detecting defects etc.).
is assumed to be only a single description for each artifactHowever, a construction activity which corresponds to a major
when defining the perspectives from which to perform thephase of a development process, such as the creation of a high-
Inspection. level design, would seem to go beyond simply “reading.”

. The second, and more serious, problem arises when the
1.Various terms could have been used here, such as model, represern-. . . .

) - artifact that an inspector is required to create would normally
tation, or document, but we chose to use the word description e created anvway. even in the absence of inspections. It seems
since it best conveys the idea of something that can be graphicatﬂ yway, P :

reasonable that the inspector should be responsible for
or textual.

creating artifacts which are used solely for the purpose othe failure to meet particular coupling or cohesion
inspections, but when an artifact would be created anywayequirements in the design of an artifact might be a flaw of
(perhaps just at a different point in the process) it seemsterest to a maintainer.

guestionable to assign this responsibility to the inspectorD finiti ip i
However, all the examples of "physical" models given in the ehinition of merspectives

existing publications on PBR, such as those cited in theThe problems arising from the use of the word "customer"” to

previous section, involve entities which are generally regardegeme the perspectives can be easily solved by replacing it

as products of a software development project irrespective o/t _the word “stakeholder”. ' This word not only
whether PBR is being used. A high-level design, for example2ccommodates the creators of an artifact as valid perspectives
is something that would normally be generated by a designéfomeé\ggfh ;%Cﬁg db% ex&gln\/(\a/g} dbLitCl!ItSt%lrioerl:'em'IE)fYL?SS tr;e
as a part of a normal development process. If PBR requires d y 1mp y ' !

; : : - akeholder can be any party interested in the quality of an
p:nsane ?rgglg'g)c%gﬂe:ﬁgtse i‘fs?ﬁfsgaajn%agﬁ\t\}g ?r:ﬁ%dsl.ng proce artifact, whether it be a software engineer playing a traditional

processrole, or creators and customers of the artifact who have
1. either the inspector is duplicating activities performed bya much more immediate role in its production and
others. For example, the inspector creates a design for thmnsumption.
purpose of inspection which is later recreated by th

e, . o
designer for the purpose of implementation, or Artifacts versus Descriptions

]) i o) As mentioned in the previous section, the assumption that an
2. the inspector is performing activities which are normally 5rtifact and its description are identical (or at least in a one-to-
assigned to others. For example, the task of creating gne correspondence) is not generally valid. More often, there
high-level design is normal performed by a designeris 3 one-to-many or a many-to-many relationship between

rather than an inspector. artifacts and descriptions. Consider, for example, artifacts that
3 A GENERALIZED VERSION OF PERSPECTIVE- typically appear in an object-oriented system, such as classes
BASED READING or methods. During analysis and design these artifacts are each

In this section we discuss ways of overcoming the difficultiesdescribed through a collection of diagrams (e.g., use-case
identified in the previous section, and present a more generffagrams, class diagrams, statecharts diagrams _etc.).
version of PBR which we believe contains the optimal set ofoimilarly, agiveninstance of these types of diagrams typically
solutions to the identified issues. By addressing thes@escribes numerous classes .and/qr methods. Thus, there is
problems we aim to place the PBR technique on a more sourkfually a many-to-many relationships between the artifacts
footing, and make it scaleable to a larger range of developmer@nd the various descriptions of the artifacts.

artifacts and paradigms. The essence of this new version g the absence of a one-to-one relationship, it is no longer
PBR is captured by the following working definition. The possible to regard an artifact and its description as a single
basic goal of PBR is to: entity. Therefore, a major step in generalizing PBR is to

the perspectives of the artifact's various stakeholders for thé€-g.» Systems, subsystems, classes, functions, objects,
purpose of identifying flaws." attributes) and their descriptions (e.g., class diagrams, use case

. . .) ~ diagrams, code modules etc.) and to define the reading
In the following subsections we explain the rationale for this technique accordingly.

generalized definition of PBR by addressing, in turn, each of

the problems identified in the previous subsections. Separating artifacts from their descriptions, however, raises
. . i the difficult question of how the inspection perspectives
Interpretation of “Defect should be defined. In the previous formulation of PBR, this

To enable PBR to realize its full potential it is necessary towas not an issue because a software artifact and its description
remove the narrow focus on defects used in the current PBRere regarded as a Sing|e entity, so the stakeholders were
formulation. The most obvious way of achieving this is to obviously defined with respect to this entity. However, when
redefine the word “defect” to reflect the broadenedartifacts and descriptions are regarded as separated entities, it
interpretation. However, since this term has such a wells no longer clear what the inspection perspectives should be

established and accepted meaning [15], we prefer to introducgefined with respect to. Both alternatives are actually feasible.
a new term which subsumes the established concept. A “flaw” o))
is defined to be: As illustrated in Figure 2, the so called “artifact-oriented”

) o) . approach regards artifacts as the units of inspection, and the
“any property of an artifact or description which stops it from perspectives are defined with respect to the artifacts. What this
meeting its quality requirements.” means in practice is that an inspection is organized around, and
This definition recognizes the importance of all the quality?0CuSes upon, a software abstraction, such as a class, an object
factors which may be important for a software artifact [20], °7 @ method. In contrast, as illustrated in Figure 3, in the so
while still accommodating the traditional focus on defectsCalled “description-oriented ?‘Ppm?‘c“' itis the descrlptlons
[16]. A defect is simply viewed as a special form of flaw in that are regarded as the units of inspection from which to

which the quality criterion is correctness. By defining the goa|define the inspection perspectives. What this means in practice

of PBR in terms of flaws rather than just defects, other qualityS that an inspection is organized around, and focuses upon, a

shortcoming can be the focus of an inspection. For eXamphjgartlcular software description, such as a class diagram, a use-

case diagram or a source code element. approaches still work if the relationship is less well defined,
but the successful completion of an inspection becomes much
more difficult, since it is easy to miss information which can

. > - be critical for determining the quality of the artifact, or
Artifact Description alternatively, it may take excessive effort to locate all the

appropriate information (i.e., to find all the relevant
descriptions).

S k' hold —» s reified by Although this discussion might seem somewhat
takeholder perspective defineyi Philosophical, itis fundamental not only for perspective-based
with respect to inspection but for inspection techniques in general. However,

we have found little discussion on this issue in the literature
(e.g., [8], [18], [21]). Most existing inspection methods seem
to make no distinction between an artifact and its descriptions.

—— | Description Reading as Part of the Development Process
The perspective-based approach to inspection requires the
inspector to gather and understand significant amounts of
Stakeholder >

information about the artifact under consideration. However,
Figure 3: Description-oriented Approach

Figure 2: Artifact-oriented Approach

itis notimportantvhocreates the descriptions from which this
information is obtained. Of greater significancenienthe
required descriptions are created.

—» s reified by

perspective defined
with respect to

The problems in the current formulation of PBR with respect
to the development process can therefore be largely addressed
At first sight the description-oriented approach might appeaby returning the responsibility for creating the majority of

to be the more natural, because it is the descriptions which a@escriptions back to development engineers, and focusing the
inspected. It seems strange to organize an inspection aroufigading activity on the extraction and examination of
artifacts which, by definition, can not actually be directly information rather than on the creation of descriptions. This is
inspected. However, there are three reasons why we believiot a black/white solution because the extraction of
that the apparently counterintuitive artifact-oriented approachinformation itself can be interpreted as creating new
is actually the most effective. descriptions (i.e., collections or presentations of information).

. . . . However, by applying the principle that inspectors, as part of
First, the ultimate goal of any quality assurance activity, SUChe reading technique, should only create new descriptions if

as perspective-based inspection, is to ensure the quality of t'?ﬁey would not normally be created, a reasonable and
final artifact, that is, the quality of the final software system 4 ¢ticable separation of concerns is achieved. The creation of

and its components. In this respect, the descriptions of thesgsscriptions or artifacts that would normally be created even
artifacts are only of secondary importance, and only provid§, the ahsence of inspections should be left to the usual

ameans to an end. Second, although the relationship betweggelopment engineer (e.g., designer, tester etc.). In small
artifacts and descriptions is in general many-to-many, amygiects this may actually turn out to be the same person as the
artifact usually has far fewer descriptions than a descriptio Inspector (i.e., one person playing two roles), but this does not
has artifacts. For example, in an object-oriented developmenfiminish the value of conceptually separating concemns. If, to

project, an artifact, such as a class or an operation, typically,,nort inspections, a description or artifact needs to be
has between five and ten different descriptions. Howevergeated earlier than it normally would be (e.g., a test case) this
certain kinds of descriptions, such as class diagrams, Mgy, pe reflected in the corresponding scenario by requiring the
describe dozens of artifacts (e.g., classes). This asymmetry |Rgpector to “arrange for” the description to be created, or

the relationship cardinalities makes it a much more daunting,me equivalent language. This ensures that the description is
task to organize inspections around descriptions rather thaf}eatednhenit is needed for the inspection, but still enables

artifacts. Finally, defining perspectives with respect toihe actual work of creation to be performed by someone other
descriptions can be unnatural for certain roles. For examplgp5n, the inspector.

how can you inspect a class diagram from the perspective of

a tester, when a class diagram cannot be tested? This implid® support this approach, a more general form of scenario
that the perspectives (i.e., stakeholders) should not be defing@ructure is required. As depicted in Figure 4, we suggest that
with respect to descriptions. this new form of scenario should consist of three major

. . . , .. sections: introduction, instructions and questions. This
This reasoning assumes that the relationship between artifacts ,cture is similar to the one described in the current

and descriptions is well defined. In other words, given anxs myation of PBR, the difference being in the content,
artifact, the development method makes it clear which
descriptions contain information about that artifact. Both

particularly of the instructions and questions sections. developer can follow the process explained below:

PBR - Scenario . - .
} Introduction explaining the 1

stakeholder’s interest in the
..... artifact

,,,,, Instructions on extracting
the information relevant for
""" examination

Questions answered while
2.2 following the instructions 2.

Figure 4: Content and Structure of a PBR Scenario

The introduction describes the stakeholder’s interest in the
artifact and explains the quality factors most relevant for this
perspective.

The instructions describe what kind of descriptions an
inspector is to use, how to read the descriptions, and how to
extract the appropriate information from them. While
identifying, reading, and extracting information, inspectors
may already be able to detect some flaws. However, the
primary goal of the instructions are three-fold: First,
instructions help an inspector gain a focused understanding &
the artifact. Understanding involves the assignment of
meaning to a particular description and is a necessary
prerequisite for detecting more subtle and more difficult flaws,
which are often the expensive ones to remove if detected in
later development phases. Second, the instructions require an
inspector to actively work with the descriptions. Finally, the
attention of an inspector is focused on the most relevand.
information, which avoids the swamping of inspectors with
unnecessary details.

Once an inspector has achieved an understanding of the
artifact, he or she can examine and judge whether the artifact
as described fulfils the required quality factors. For making
this judgement an inspector is supported by a set of questions
which are answered while following the instructions. Hence,
instructions and questions are framed together in a procedural
manner. Defining the content of a scenario in this mannerisin
line with a more natural definition of “reading”, which is the
systematic examination of an artifact's descriptions to gather
certain information for a particular purpose. 5.

The success of the PBR technique relies on the ability of
software engineers not only to follow existing PBR scenarios
but to create new scenarios. This might be because of the need
to accommodate new stakeholders or new artifact types. Inthe
process of scenario creation, the first thing that needs to be
determined is what type of artifact is to form the unit of
inspection. This largely depends on the nature of the
underlying development method. In function-oriented
development methods, typical artifact types may be systems,
subsystems, components, modules, or functions. In objec
oriented development approaches typical artifact types ar
classes, objects, and operations (i.e., methods) as well
systems, subsystems and modules.

The first process step is to identify the types of descrip-
tions that contain pertinent information about a particular
artifact. This may be textual descriptions, such as textual
design documents, or graphical models. It may be possi-
ble to identify them with the help of a product or process
model since those define the descriptions that must be
created for each artifact as part of the development
method.

The second step is to specify the various stakeholders
that have a vested interest in the artifact under inspection.
As a starting point, the scenario developer may look at
stakeholders that have a particular role in the software
development process. These roles may be the producer of
a preceding description of the artifact (if existing), the
producer of a subsequent description of the artifact (if
existing), the tester, and the maintainer. The user of the
artifact as well as domain experts may be helpful as well.
Each of these represents a different (technical) perspec-
tive on the inspected artifact. If a description is not of
interest to any stakeholder, its value to the overall soft-
ware development process is questionable.

For each of the perspectives, a scenario developer identi-
fies what type of description and what kind of informa-
tion in the descriptions is most important for a particular
stakeholder (e.g., to perform his or her role in the soft-
ware development process), how to identify, and how to
extract this kind of information. For this, the scenario
developer may interview the different stakeholders.

Once this has been performed, the scenario developer
sets up the introduction part of the scenario by describing
the interests of a stakeholder. Then, he or she develops
instructions about how to identify and extract the
required information. The granularity should have
enough detail for an inspector to follow the given instruc-
tions step by step. Furthermore, it is important to some-
how make inspectors document the extracted information
(e.g., marking them with a coloured pen or writing parts
of the information down). This captures what informa-
tion an inspector has checked, for possible repetition at a
later stage.

The fifth and final step in defining a scenario is to set up
the questions an inspector is to answer based on the
extracted information and the understanding of the arti-
fact he or she has achieved. Characteristics of typical
problems in a particular environment, illustrated by flaw
distributions, are useful information for developing the
questions since they are often typical representatives of
problems in an environment. However, only those ques-
tions are to be included in a scenario that an inspector can
answer with the understanding he or she can achieve
based on the extracted information.

This process describes in a generic manner how to identify
erspectives and how to create an initial set of scenarios. The
Tafted scenarios are generic in the sense that they can be

reused for the inspections of the same kind of artifact within

Once the inspected artifact has been determined, the next stepeven across projects. In practice, scenarios are rarely if ever
is to define the required scenarios. To do this the scenaridefined completely from scratch, but are typically adapted

from previous scenarios based on the experience gained froatass diagram (or object model as it is called in Fusion), and
applying them. an interface model. In this example, the class diagram
describes the different classes of relevance toctiexk out
control pointand how they are related to each other. The
terface model is actually composed of two distinct
ubmodels: the life-cycle model and the operation model, both
of which are textual in nature. The life-cycle model identifies
4 PERSPECTIVE-BASED READING IN OBJECT- the operations which the subsystem exports (and thus has to
ORIENTED DEVELOPMENT implement) and describes acceptable execution sequences for
As mentioned in the previous section, in developmenthem. The operation model provides a detailed declarative
methods which allow an artifact to have multiple descriptionsdescription of each of these operations in terms of
and vice versa, PBR is much more effective when the mappingreconditions and postconditions. Each individual operation
between the artifacts and descriptions is well defined. In othedlescription is termed an “operation schema” in Fusion. Figure
words, for every artifact that might be the subject of an5 shows the operation schema for the operation
inspection, it should be clear which descriptions (e.g., modelsvalidation_result” which is responsible for dealing with the
documents) contain information about that artifact. Of theinformation provided by a credit card validation database in
leading object-oriented methods in widespread use, the orf@sponse to a prior request for a card check. As shown in
which comes closest to meeting this goal is the Fusion metholligure 5, a Fusion operation schema has seven so called
[7]. Fusion is very precise about what specific models shouldclauses”. Apart from the name of the operation, which
be created as part of an object-oriented development projecppears in the first clause, called “Operation”, the two most
and what information these models should contain. Inmportant clauses are the “Assumes” clause and the “Result”
contrast, most other leading object-oriented methods arelause. The first of these is a Boolean condition which states
vague about what models to produce and the extent of theivhat must be true for the operation to be guaranteed to execute
information content. As a consequence, when inspecting agorrectly, and the second is a Boolean condition which
artifact it is not easy to ensure that all the information (i.e.,describes what becomes true as a result of the operation
models) describing properties of the artifact have been founéxecuting correctly. Both the preconditions (Assumes clause)
and checked. Fusion also has the advantage that it uses a n@ird the post condition (Result clause) are written in terms of
of textual and graphical models, and therefore reinforces théhe entities modelled in the class diagram for the subsystem
idea that the descriptions used and identified for perspectivédeing analysed. The relevant part of the class diagramis shown
based inspection can be of any kind. For these reasons, we uigeFigure 6.

Armed with this enhanced version of PBR, including a
prescriptive process for setting up as well as executing th
reading process, we are now in a position toillustrate how PB
can be applied to object-oriented development artifacts.

Fusion as the basis of the example. However, in view of thg [———————

ubiquity and importance of the recently standardized Unified Drossrtptis it o e by it s

Modelling Language (UML) [25] we use the UML notation

instead of Fusion’s own notation by adopting the substitution - T

strategy defined in [1]. This does not affect the ideas conveyed —

in the example. On the contrary, it should make them T el e R
accessible to a wider audience. = ==

Point of Sale System R T R ——

e mrwgr e bas berw wew Bl

The example is part of @oint of salesystem which is
responsible for keeping track of the merchandise sold in a ol
store, and handling the purchase of this merchandise. Th . :
main components of the system are tlemtral control point Figure 5: Operation Schema

from which managers observe and enter mer_chandisslahe rpose of the “Reads”, “Changes”, and “Sends” clauses
information, thedatabasewhich stores the merchandise and purp , ges’, u

sales information, and theheck-out control pointseach of is to define the scope of the operation by summarizing certain

which handles the sales from a particular check-out point. Thﬁé”da: eiecles of inflt_)f:maﬁign Lro”m }he “As_zumi_s” anﬁ
system also interacts with external objects, such esedit esults” clauses. The "Reads” clause Identilies the

card validation databaseo determine whether a credit card INformation which the operation needs in order to do its job,
is valid. In the example, we focus on part of the functionality PUt do€s not change. Parameters preceded with the keyword

of a check-out controller componentspecifically, the . SuPplied” are passed from the environment as input. The
operation which deals with the credit card validation Changes” clause, on the other hand, identifies those items

information obtained from eredit card database which the operation may changes as it does its job. These are
the entities in the subsystem which record the effects of the
The Fusion method draws a strict boundary between theperation. The “Sends” clause lists the messages which the
analysis and design phases of a development project. In thibsystem sends to other entities in its environment when it is
analysis phase, a system (or major subsystem, such as a chgekforming the operation. The final clause, “Description”,
out control point) is described in terms of two main models: asimply gives an informal description of the operation’s effects

T L e e L

o misentn mvel ol e b s 1 gl b

and assumptions. according to the values of the input parameters or the state of

the system. However, because this algorithmic information is
—— only partial, Fusion recommends that it be supplemented with
a regular pseudocode description of the form illustrated in
T i Figure 8.
LBz B i £ [T
ir & Fr":""' e - :ll.tll\' . _:'
L] |l 1 ks weat
; . Ll TErE e
bl]l i i (L ;

Figure 6: Class Diagram

. . L Figure 8: Operation Pseudocode
The operation schema in Figure 5 indicates that the purpose of

thevalidation_resulpperation is to complete a payment by a Another important description in the Fusion method is the data
credit card. The Reads clause indicates that the operatiadictionary. This is not shown here, but it is essentially a table
requires three pieces of information to function, one calledcontaining textual descriptions of each artifact modelled in the
valid of typeBoolean one callectreditof typelntegefandthe system.

third is thetotal attribute of the objedBill. The fact that these

parameters are both preceded by the keyword “supplie
indicates that they are provided by the environment. Th
Changes clause indicates that this operation has no effect
the state of the system, while the sends clause indicates that t

operation causes the system to send four messiagalid and “artifact” in our example is thévalidation_result” operation.

insufficient_Credito the objectlisplay opento the objectill, Of course, this is only one of the many operations of the point

and completed_salet_o th_e object database An empty of sale system, each of which should be inspected individually.
Assumes clause, as in this case, actually corresponds to the

valueTrue This means that the operation has no preconditiorOnce the type of the artifact has been determined, the process
and is therefore guaranteed to succeed under allescribed in the previous section can be used to define the
circumstances. Finally, the Result clause indicates theeading scenarios. According to this process, the first stepis to
conditions under which the operation sends the variousdentify the relevant description types of the artifact. In our
messages depending on the values of the items in the readase, these are the operation’s schema, the class diagram, the
clause. operation’s collaboration diagram, the operation’s
gfseudocode description, and the data dictionary.

dlnspecting the Operation “Validation_Result”

The first task in setting up an inspection is to define precisely
Swhich type of software artifact will be the subject of the
rqspection. In this example, it is thévalidation_result”
ﬁeration ofthe check out point subsystem. In other words, the

The Fusion design phase requires a completely distinct set
descriptions (i.e., models) to be created. Several of these halighe next step is to define the stakeholders that have an interest
been superseded with the advent of the UML, but the mosin the quality of the artifact, and thus represent a perspective
important type of design diagram in Fusion, the objectfrom which to inspectit. Any person, or role, which is in some
interaction diagram, has merely been renamed in the UML tavay affected by the artifact’s quality, however remote, can
collaboration diagram. Fusion requires a separatserve as the basis of aninspection perspective. In this example
collaboration diagram to be created for each operatiorwe will consider the typical stakeholders used in perspective-
identified in the analysis phase. The purpose of this diagram isased inspection, which are defined in terms of the roles in the
to describe how the effects of the operation are achievedevelopment process. Hence, the stakeholders we consider are
through the interaction of a group of objects. Figure 7 showsequirements engineer, designer, and tester. This list is not
a collaboration diagram for thealidation_resultoperation exhaustive, but serves to illustrate how the PBR approach
specified in Figure 5. would function in an object-oriented project.

The next step is to identify which of the description types are
" of relevance to the different perspectives. This information is
3 best captures in a table, as illustrated in Table 1.

. RequirementsDesignell Testef Maintaingr
Engineer
Operation Schema u] O
. i . . Class Diagram O
Figure 7: Collaboration Diagram Collaborafion Diagram = =
In a sense, a collaboration diagram of the form illustrated ip_Operation Pseudocodg U U U
Figure 7 gives a partial, graphical description of the algorithm___Data Dictionary J

used by the operation to fulfil its responsibilities. The notation Taple 1: Assignment of Perspectives to Descriptions
provided by the UML allows conditions and branches to be

described which determine the execution of the operatior] € final step is to define the actual scenarios, one for each
perspective. Obviously due to space limitations it is not

possible to show complete scenarios in their full generalitycollaboration diagram that needs to be corrected.

since these typically run into several pages. Instead we aim {
illustrate the essence of what a scenario would look like.

Reading from the Perspective of a Requirements Engineer
The concern of the requirements engineer is to ensure that th
specification of the operation at the end of the analysis phas
is complete and error free. In particular this means that ther
must be no inconsistencies between the various analys
models that carry information relevant to the operation. The
requirements engineer's scenario, therefore, describes tk
activities that need to be performed, and the precise constrain
that must be checked, in order to be confident that ng
inconsistencies exist. Figure 9 depicts the requirement
engineer scenario.

of a a
eet its
y is

ndthe

ssume you are inspecting a system operation from the perspective
designer. The main task of a designer is to describe how the operation n
responsibilities in terms of interactions between objects. High quali
determined by correctness of the design with respect to the specification, 3
satisfaction of performance goals.
Eocate the collaboration diagram, the pseudocode description and the s
(g)rthe operation. For each possible outcome of the postcondition, ensure {

ppropriate messages are dispatched between the appropriate objects to
the desired goal. Mark the outcome as well as the message with a colourg

heck that the outcomes and the messages described in the pseudocode

ollaboration diagram are consistent.
While following these instructions answer the following questions:

€
s

chema
hatthe
achieve
d pen.
and the

For every message that is defined in the operation schema, is there|a cor-
responding message sent in the collaboration diagram

For every attribute that is changed in the operation schema, is an ap
ate message sent to the corresponding object in the collaboration d
gram?

Are there any discrepancies between the algorithms defined in the
oration diagram and the pseudocode description?

ropri-
a.

g.o"”

ollab-

Assume you are inspecting an operation from the perspective of a requirgiments
engineer. The main concern of a requirements engineer is to ensufe the
consistency of the various descriptions of the operation in the analysis mpdels.

High quality therefore corresponds to few inconsistencies. The develogment

products which are of relevance are the operation’s schema, the class dlagram
and the data dictionary. Follow the instructions below and answer the queptions
carefully.

Locate the analysis class diagram, the data dictionary and the schema

operation under inspection. Identify the clauses and highlight them with g
Carefully examine the clauses in the operation schema to ensure that the
only to concepts that appear in the class diagram or the data dictionary|
examine the clauses to ensure that the functionality of the operation is]
defined and that there are no inconsistencies.

While following these instructions answer the following questions:

1. s every class, attribute or association named in the operation schen
defined in the class diagram?
Is every type named in the operation schema defined in the data dig
ary?

Are the initial conditions for starting up a function clear and correct?
Are the effects of a function specified under all possible circumstang

or the
pen.
y refer
Then
fully

na

tion-

es?

2
3.
4.

Figure 9: Scenario for Req. Engineer’s Perspective

Figure 10: Scenario for Designer’s Perspective

Reading from the Perspective of a Tester

The concern of the tester is to ensure that the operation is
defined in a way that is testable. The basic idea, therefore, is
for the inspector to work through various test cases, and to
ensure that the descriptions of the operation are correct with
respectto these test cases. Traditional testing concepts are thus
highly applicable here, such as black box/white box testing,
equivalence class partitioning, etc. Figure 11 depicts the
tester’s scenario.

The careful application of the tester scenario would reveal the
following defect in the pseudo code description of the
operation. Analysis of the branch conditions in the inner “if”
statement indicates that certain allowed values of the input

The careful application of this scenario would reveal thevalue credit are not catered for in the branching structure,
following inconsistency between the operation schema anfamely, the situation whengeditis less than thiotal attribute

the class diagram. The operation schema uses an attribute
Bill called total to determine when to send particular

@ bill. While this is unfortunate for the customer concerned,
it is nevertheless a valid situation which must be catered for.

messages, but in the class diagram, no such attribute exist&ne algorithm must, therefore, be corrected.

Instead there is an attribute calledm This inconsistency
would be revealed by the first question in the scenario, an

obviously would need to be corrected in one or other of the|

descriptions.

Reading from the Perspective of a Designer

The task of the designer is to define how the required
behaviour specified in the operation schema is to be achieve|
in terms of interactions between objects in the system. Whel

inspecting from the perspective of the designer, therefore, the)

goal is to ensure that the various descriptions of this
interaction are consistent with one another. Figure 10 depict
the designer’s scenario.

The careful application of the designer scenario would revea
the following inconsistency between the operation schema
and the collaboration diagram foralidation_result The

Assume you are inspecting an operation from the perspective of a testgr. The
jnain goal of atester is to ensure the soundness of an operation. High quality thus
corresponds to correctness and robustness. You will need to analyse test cpses for
the operation, so if they are not available arrange for them to be created. |A test
case consists of a set of input values plus a set of output values and/of state
changes expected for each combination of values. Follow the instructions pelow
and answer the questions carefully.

Locate the operation schema and the pseudo code description for the op|
under inspection. In the operation schema, identify the parameters whi

q

eration
h are

receded by the “supplied” keyword. Identify the equivalence classes for
ﬁarameters, and also the attributes named in the “reads” clause and do
them. Using these equivalence classes, identify the minimal set of test
eeded to fully exercise the functional interface of the operation. In
pseudocode description of the operation identify every conditional bran|
loop which represents an execution branch. Identify an additional set of tes
lwhich ensure that each branch would be executed.
RWhile following the instructions answer the following questions

1. Do the branches in the pseudocode description match the condition
comes in the operation schema?

Are all possible sets of input values properly addressed by the oper;
schema and the pseudocode description?

Are operations preconditions indicated?

wWTN

these
ument
cases
the
ch or
cases

out-

Ation

schema indicates that under certain circumstances th
messag@penshould be sent to the objetil . However, no

Figure 11: Scenario for Tester's Perspective

such message appears in the collaboration diagram. Inifiact, Reading from the Perspective of a Maintainer

has no incoming message atall. Instead a message oped The task of a maintainer is to ensure the maintainabilit

y

of the

is sentto the objedill atthe exactpointin the algorithm when system. In practice this means that the complexity of the
it should be sent tdill. This is obviously a mistake in the operation’s design needs to kept to a minimum, and that it
should adhere to well established design principles formulated
to maximize maintainability. Figure 12 depicts

the

maintainer’s scenario. [2] V.R. Basili. Evolving and Packaging Reading Technologies.

. - - - — Journal of Systems and Softwad&(1), July 1997.
Assume you are inspecting an operation from the perspective of a mainfainer. . . .
The main goal of a maintainer is to ensure that the collaboration diagram is [3] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull,
written in a way that can be easily changed and maintained. High gyality, S. Sorumgard, and M.V. Zelkowitz. The Empirical Investigation

therefore, means the conformance to specified design guidelines (low coupling, of Perspective-based Readin@urna| of Empirical Software
high cohesion) and the minimization of complexity. Engineering 2(1):133-164, 1996

Locate the collaboration diagram and the pseudocode description fgr the 7]
operation. Examine the diagram and the descriptions to identify points of [4] G. Booch. Object Oriented Analysis and Design with
converge from good design practice. Applications Benjamin/Cummings, Redwood City, California,
While following the instructions answer the following questions: 2nd edition, 1994.

1. Are there any ways in which the number of objects, or the number of mes- [5] L. Briand, K. EI-Emam, T. F@broich, and O. Laitenberger.

sages could be reduced? Using Simulation to Build Inspection Efficiency Benchmarks

2. Are there any cycles of messages in the collaboration diagram? . . .
3. Isthere any way in which the control structure of the operation could be for Development Projects. IfProceedings of the Twentieth

simplified? International Conference on Software Engineeripgges 340—
4. Do the messages entering an object indicate the possibility of low cphe- 349. IEEE Computer Society Press, 1998.
sion (are the messages totally unrelated)? [6] B. Cheng and R. Jeffrey. Comparing Inspection Strategies for

5. Isthere a particularly high number of messages between a pair of objects? Software Requirements Specifications. Proceedings of the
1996 Australian Software Engineering Conferengages 203—

Figure 12: Scenario for Maintainer’s Perspective 211, 1996.
[7] D. Coleman, P.Arnold, S.Bodoff, C. Dollin, H. Gilchrist,
5 CONCLUSION F. Hayes, and P. Jerema&bject-Oriented Development: The

Inspections have become an indispensable tool in the quest for Fusion MethodPrentice Hall, 1993.

higher quality software systems. However, even the moré8] M. E. Fagan. Design and Code Inspections to Reduce Errors in
advanced inspection techniques, such as perspective-based ir)%%ram DevelopmentBM Systems Journall5(3):182-211,
inspection, have failed to fully make the transition from ' .)

S 9] M. E. Fagan. Advances in Software InspectionlEEE
traditional structured development_metho_ds to more moderh Transactions on Software Engineering2(7):744—751, July
software approaches, such as object-oriented development. 1936.

These development methods consequently have a majero] P. Fowler. In-process Inspections of Workproducts at AT&T.
weakness in the area of systematic inspection. AT&T Technical Journal65(2):102-112, mar 1986.

. . . 11] T. Gilb and D. GrahamSoftware InspectianAddison-Wesle
In this paper, we have tackled this problem by first clearly[]pubnshing Company, 1993. P y

identifying and elaborating the reasons why existing[12] M. E. Graden, P. S. Horsley, and T. C. Pingel. The Effects of
inspection methods, such as perspective-based inspection, are Software Inspections on a major Telecommunications-project.
currently not formulated in a way that enables them to be AT&T Technical Journal65(3):32-40, May/June 1986.
scaled-up to meet the inspections needs of a wider range ¢¥3] L. Hatton. Does OO Sync with How We Think2EE Software
artifacts and methods, and then by defining a generalizsf 15(3):46-54, May 1998. . .
version of the PBR approach which addresses these proble y]A\{\éde.orl:\l;vn;ggeyig\%D|SC|plme for Software Engineering
MO.St of the ideas embodied in this new appr.oaCh are no[t15] Institute of Electrical and Electronics EngineelStandard
I|m|ted to PBR, but Should be of Value to a W|de range of G|ossary of Software Engineering TerminoLowgsl

inspection techniques. The main motivation for this work,[16] Institute of Electrical and Electronics EngineertEEE
however, was the support of more mature inspection Standards Collection - Software Engineering - 1994 Edition
techniques in object-oriented development. To demonstrate 1994.

that the generalized PBR approach meets this goal, ald7]S.H.Kan, V.R. Basili, and L.N. Shapiro. Software quality: An
example was presented which illustrates how the approach overview from the perspective of total quality management.

. . ! IBM Systems JournaB3(1):4-19, 1997.
would be used in the context of a UML-based object—onenteqls]] C yKnight ali]dﬁi (A) Myers. An Improved Inspection

development project. TechniqueCommunications of the AGN6(11):51—-61, 1993.

i : ; :119] O. Laitenberger and J.-M. DeBaud. Perspective-based Reading
Researchers and practitioners may benefit from this work it of Code Documents at Robert Bosch GmbRformation and

two ways. First, by providing a prac_tical and concrete gofrware Technolog@9:781—791, March 1997.

definition of PBR, researchers have a solid base upon which 9] 5. A, McCall. Quality Factors. In John J. Marciniak, editor,
perform quantitative investigations of the benefits of “Encyclopedia of Software Engineeringolume 2, pages 958—
perspective-based inspection in future. Second, practitioners 969. John Wiley and Sons, 1994.

are provided with concrete advice on how to instantiate thé21] D. Parnas. Active Design Reviews: Principles and Practice.
generalized version of PBR for the inspection of object- _ Journal of Systems and Software259-265, 1987.

; ; ; ; 22] A. A. Porter, H. Siy, A. Mockus, and L. G. Votta. Understanding
oriented artifacts, especially in the early phases off the Sources of Variation in Software InSpectionsCM

development. Considering the lack of quality assurance Tiansactions on Software Engineering and Methodalogy
techniques for object-oriented analysis and design 7(1):41-79, January 1998.

descriptions, we believe this paper makes a step in filling thi$23] A. A. Porter, L. G. Votta, and V. R. Basili. Comparing Detection

gap. Furthermore, practitioners can leverage their existing Methods for Software Requirements Inspections: A Replicated
inspection approaches with a systematic reading technique Experiment. IEEE Transactions on Software Engineering

. . . 21(6):563-575, June 1995.
even for artifacts developed according to conventiona .
structured development methods. k24]J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.

LorensenObject-Oriented Modeling and DesigRrentice Hall,

REFERENCES 1991.

; : : [25] Rational Software Cooperation. Unified Modeling Language
(1 %b,?\éléltnl\s}lc;rgaéﬁ%qtég%the Fusion Process to support the UML. Documentation Set, Version 1.1, September 1997.

	ABSTRACT
	Keywords

	1 INTRODUCTION
	2 LIMITATIONS OF THE CURRENT FORMULATION OF PERSPECTIVE-BASED READING
	Interpretation of “Defect”
	Definition of Perspectives
	Artifacts versus Descriptions
	1. There is a one-to-one correspondence between an artifact and its description.
	2. An artifact has a fairly concrete manifestation in the final delivered software product.
	Figure 1: Assumption of PBR

	Reading as Part of the Development Process
	1. either the inspector is duplicating activities performed by others. For example, the inspector...
	2. the inspector is performing activities which are normally assigned to others. For example, the...

	3 A GENERALIZED VERSION OF PERSPECTIVE- BASED READING
	In the following subsections we explain the rationale for this generalized definition of PBR by a...
	Interpretation of “Defect”
	Definition of Perspectives
	Artifacts versus Descriptions
	Figure 2: Artifact-oriented Approach
	Figure 3: Description-oriented Approach
	Reading as Part of the Development Process
	Figure 4: Content and Structure of a PBR Scenario
	1. The first process step is to identify the types of descriptions that contain pertinent informa...
	2. The second step is to specify the various stakeholders that have a vested interest in the arti...
	3. For each of the perspectives, a scenario developer identifies what type of description and wha...
	4. Once this has been performed, the scenario developer sets up the introduction part of the scen...
	5. The fifth and final step in defining a scenario is to set up the questions an inspector is to ...

	4 PERSPECTIVE-BASED READING IN OBJECT- ORIENTED DEVELOPMENT
	Point of Sale System
	Figure 5: Operation Schema
	Figure 6: Class Diagram
	Figure 7: Collaboration Diagram
	Figure 8: Operation Pseudocode

	Inspecting the Operation “Validation_Result”

	Requirements Engineer
	Designer
	Tester
	Maintainer
	Operation Schema
	4
	4
	4
	Class Diagram
	4
	Collaboration Diagram
	4
	4
	Operation Pseudocode
	4
	4
	4
	Data Dictionary
	4
	Reading from the Perspective of a Requirements Engineer
	Figure 9: Scenario for Req. Engineer’s Perspective

	Reading from the Perspective of a Designer
	Figure 10: Scenario for Designer’s Perspective

	Reading from the Perspective of a Tester
	1. Do the branches in the pseudocode description match the condition outcomes in the operation sc...
	2. Are all possible sets of input values properly addressed by the operation schema and the pseud...
	3. Are operations preconditions indicated?

	Reading from the Perspective of a Maintainer
	Figure 12: Scenario for Maintainer’s Perspective

	5 CONCLUSION
	REFERENCES

	Generalizing Perspective-based Inspection to handle Object- Oriented Development Artifacts
	Oliver Laitenberger and Colin Atkinson
	Fraunhofer Institute for Experimental Software Engineering
	Sauerwiesen 6 67661 Kaiserslautern, Germany +49 (0)6301707200 {laiten,�atkinson}@iese.fhg.de

