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Abstract

The article is concened with the modelling of ionospheric current systems from

induced magnetic elds measured by satellites in a multiscale framework. Scaling

functions and waveletsare used to realize a multi scaleanalysis of the functi on spaces
under consideration and to edablish a multiscale regularization procedure for the
inversion of the considered vedorial operator equation. Basel on the knowledge of
the singular system a regularization technique in terms of certain product kernels
and corresponding convolutions can be formed.

In order to reconstruct ionospheric current systems from satdlite magnetic eld

data, an inversion of the Biot-Savart's law in terms of multiscale regularization

is derived. The corregponding operator is formulated and the singular values are
calaulated. Themethod is tested on real magnetic eld data of the satellite CHAM P

and the proposed satellite misson SWARM.
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1 Introducti on

If looking for rst reaults concerninga mathemaical treatment of ionospheric current
systemsand the corresponding magnetic elds it is inevitable to have a look at the con-
siderations in [14]. In this book both, the ionospheric current systemsat the lower iono-
sphere(110km) and the induced magnetic eld on a sphereabove are dewelgped in a
Fourier seriesin terms of sphericalharmonics (called Gauss represemation, due to [12]).
The corregponding Fourier coe cien ts of both elds canbe connectedin an analytic way.
This way of modelling e ects of ionospheric currents and magnetic elds seemdo be not
the best way nowadays if thinking of the changed geanagneic data situation and the
improved knowledgeof the ionosphee. This article givesan improved tool for modelling
and reconstucting ionospheic current systemfrom corresponding magnetic e ld data on
di erent gpatial scales.

Reasonably modelling the geomagnetic eld on global or regional sales requires dense
and homogeneous vectoria data sets. As regards the subject of global and dense cover-
age, satellit es orbiting the Earth in low, nearpolar orbits provide rm basisfor acquiring
the necesary high resolution obsenations. The German CHAMP saellite missionwhich
started in summer2000 is, besidesother tasks,desgned for highly accurate geanagnetic

eld mapping.

But, it is not only essetial to have available adequate data sets, it is also necesary to
have at hand the appropriate mathematical tools allowing reason#le analysis of the eld
data. Kernd functionssud as scalingfunctionsand waveletsre ect the small scalespatial
variability of ionosphericcurrents and the induced magnetic eld. For a comprehensive
intr oduction of kernel functions the reader is referred to [7], [8], [10] or [16]. Sinceboth
the magnetic eld and the current systemare vector elds the natural way of modelling
these elds is by tensa kernd function and linear tensor convolutions (see[8], [18]). This
linear technique is circumvented in this article by an equivalert bilinear two step method
using vector keme functions two di erent convolutions. Similar approacheshave already
been proposedin [2], [9] or [16]

The outline of this article is asfollows. First of all we give the necesary notation. Addi-
tionally, two complete and closedorthonormal systemsin the spaceof squatre integrable
spherical vector elds are preserted. Thesesystemsof vectar spheical harmonics give
the foundation for the multiscale modelling of vector elds in the following sections.
Section3 givesa generad approadc to the theory of multiscale regularization techniques of
vectarial inverseproblems. We presen, how regularization vectar scaling functions and
wavelets are corstr ucted and dewelop the aforementioned bilinear two step method for
regularization.

In Sectim 4 the 'inverse source problem' is introduced, i.e. the reconstruction of iono-
spheric current systems corresponding to given magnetic eld data. An ansatz of how
this problem can be modelled involving satellit e geometies is preserted. The necessary
tools (such asthe singular system of the correspnding operator) are derived in order to
usethe multiscale technique preened in Section 3.

Section5 dealswith the application of our multiscae method of reconstructing current
system from magnetic eld data to data sets of two di erent saellite missions, i.e. to



CHAMP satellit e data and to simulated magnetic eld data of the proposed SWARM
mission.

2 Preliminar ies

In this section the readeris provided with the essetial tools usedin the course of this
article. We start with introducing some basic notation and the nomenclature which is
usedin our considerdions.

2.1 Notation

During the courseof this article we will permanertly be confronted with scaar which are
denotedby capital letters (F; G; etc) and vector elds which are symbolized by lower-case
letters (f ; g; etc).

A sphereof radius R certered around the origin is denotedby & = fx 2 R3jjxj = Rg.
In particular, = 1 isthe unit spheein R®. Weset &' for the 'inner space of g,
nt = fx 2 R3jjxj < Rgwhile &' = R3n Nt s the 'outer space'of . Clearly,
& = fx 2 R*jjxj > Rg. By (r,r,) We denotethe open spheical shell with inner
radius R; and outer radius R, givenby (r,:r,) = X 2 R} Ry < jXj < Ryg.

In what follows we need a number of die rential operators which we introduce next.
ry = (@@, @@, @:@13)T denotes the gradient in cartesan coordinatesin R and r
represets itstangertial part, calledsurface gradient The Laplae operator is symbolized
by =r r andthe corresponding tangertial operator, caled Beltrami operator, is given
by =r r . ThecurlgradientL, isgivenby L, = x*r , with tangertial counterpart
givenby L which is cdled surface curl gradient For more information concerningthese
operators the readeris referredto [8].

Let f beatangertial vector eld with resped to the sphere g, i.e. fP = QOforal 2 .

Furthermore, let f possesthe componert functions F;, i.e. f (x) = i3=1 F(x) ', x2 .
Then the surfae divergen@ r  and the surface curl divergene L  are de ned by
x3 _ x3 .
r f= (r F) '; L f= (LF) "
i=1 i=1

A variety of function spaceswill be neededin this article. Let C(U) be the set of all con-
tinuous, real functions de ned on the setU  R3, equipped with the standard supremum
norm. A function is said to be of classC*(U);0 k 1 ,ifit isk times cortinuously
di erentiable on U. If U  R3is a measurable subst of R3, the sa of salar functions
F :U! R which are measurableand for which

Z 1
p
jiFiiLequy = JF(jPdx <1
U

is denoted by LP(U), where dx denotesthe volume elemen in U. Note that in the case
of U= g with radius R > 0 we write d! g(x) instead of dx and d! (x) instead of d! ,(x).



In analogy to the scalar casewe dene function spaces of vector valued functions. These
spaceswill normally be symbolized by lower-case letters Let c(U) be the setof all vector
valued, continuous functionsf : U! R" dened ontheset U R3, equipped with the
norm

jiflieuy = supjf (x)j:
x2U

A vectar eld f is said to be of classc®(U);0 k 1, if every componert function

f 'yi=1:::;n off isk times corntinuously di erentiable on U. The set of vectar
elds f : U! R which are measurableand for which
z ;
jifliey = jExjPdx <1
U

is dended by IP(U).

2.2 Two Sets of Vector Spherical Harmonics

In what follows scadar spherical harmonics are introduced. The approach preserned here
is basedon [8]. Scala spherical harmonics are restrictions of homogeneos harmonic
polynomials in R3 to the unit sphere.More explicitly, let H, : R®! R be a homogeneous
harmonic polynomial of degeen, i.e.

1. H, is polynomial of degree n in R3,
2. Hy(x)= "H,(x) forall 2 R andx 2 R® (homogeneiy),
3. yHn(x) = 0for all x 2 R® (harmonicity),

then the redriction Y, = H,j is called a salar spheical harmonic of degree n. An
esertial result of the theory of scala sphericalharmonicsis the fact that any spherical
harmonic Y, ;n 2 Ng; is an in nitely often di erentiable eigenfunction of the Beltrami
operator corresponding to the eigervalue n(n+ 1);n 2 Ng; i.e.

Ya()= n(n+DYa(); 2 ; Ya2Harmy(); n2Ng

.....

completeorthonormal systemin the spaceHarm,() with respect to the inner product
(5 ez

The system of spherical harmonics is closedand complete in L?(). For a generalde -
nition of closure and completenessand relations betweenthe two terms in Hilbert spaces
the reader is referrede.g. to [4]. It is obviousthat the systemen'?kg = féYn;k(ﬁ)g forms
an closedand complete orthonormal systemin L2( g).

In order to construct a systemof vedor sphericd harmonicsin the spacel?() out of the
systemof scala sphericd harmonics we intr oduce the following operators.

De ni tion 2.1
For 2 andF 2 C%() theoperators o) : C%() | ¢() ;i 2 f1;2;3g; are dened
via

oF()= F() o?F()=r F(); d?F()=LF():
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wherewe have usedthe abbreviation

0 ifi=1
0 = .
1 ifi=23:
It is clearthat oF is a radial vectar eld, while 0?F and o®F are purely tangertial.
Furthermore, the operators o) can be extendedin a canonical way to the spacel?().

Motivated by the operators o) we will now intr oduce vector sphericd harmonics.
If fYnkOn=0:1:k=1:2n+1 IS @n L2() orthonormal set of scalar spherical harmonics it

.....

easily follows by the properties of the o) operators (see[8]) that
Yr(:;?( =( g)) 200 Yo

12 11;23gn 0O;k = 1;:::;2n + 1; forms an I2()_ orthonormal system of vector
sphericalharmonics, wherethe normalization values 4 are given by

(i)_(1 if i =1 "
"7 nin+1) ifi=23:

It is known that the system fy,(]i;f(g is a complete and closed orthonormal system in
12().Accor ding to our construction we get

fym()=00 YRO)=0 YR()=0
L ya2()=0 r y2()=o0
To construct a seond set of vector sphericalharmonics we usethe restriction of homage-
neousharmonic vectar polynomials to the sphere. This systemis known from theoretical
physicsand developed, for exanple, in [1] or [5]. The introduction of the system givenin
this article follows mainly the courseof [19]. According to our nomenclature a system of
vectar sphericd harmonicsis adequdely described by the following lemma.

Lemm a 2.2
Let f Yo g neo1:; beanL?() orthonormal systemof scalar sphericalharmonics. Then

=1;:,2n+1

the vector elds

e = (1) 70+ Do 0oy

= ;nj:_llyﬁli anl_ 1y,(fl)(; n=0/1::5;k=21L::;2n+ 1;
o = () g o

= ZnL-Flyﬁ‘l'i-{- 211;4-11)/5‘2'1 n=12::5k=1::;2n+ 1
u$y = (@) 2OV =yE; n=1200k= 400+ g



form an 12() orthonormal set of vector spheical harmonics with the normalization
coe cie nts given by

8
2(n+ 1)(2n+ 1) fori = 1;,n 2 Np;
W= nE@n+1 fori=2n2N;
>
"n(n+ 1) fori=3;n2 N:
The proof of this lemma easily follows from computations involving the orthonormality

of the systemfy{\,g. The readershould note, that the systemf u}) g doesnot separae

betweenradial and tangertial elds. However, aswe will seelater, this systemhas other
advantageous properties in electro- and magnetostaic modelling. A direct consequence
of the closure and completenessf the systemfyr(]';f(g is the following result.

Corollary 2.3 _
Let the systemof vectar sphericalharmonicsf uf]'j(g Lo bede ned asin LemmaZ2.2

Oi;:::;k:12;:::;2n+
Then the following statemerts are valid:
1. The systemof vedor sphericalharmonicsis closed in ¢() with respect tojj jj¢ )
and jj jj|2( )-
2. The systemis completein 12() with repectto (; )iz( .

Note that the systemof vedor sphericalharmonics given by
i 1 g .
uﬂ;L’Rzﬁuﬂ;)k; 12f1,230,n=0;:::;k=1::5;2n+ 1 (2)

establishesa closedand completeorthonormal systemin the Hilbert spacel?( ).
In the senseof subspace®f the Hilbert spacel?( r) the above results may be written as
follows.

|2( R): |6;(1)( R) IS;(Z)( R) |6§(3)( R): (3)
with

| v _ iz g

120 ) = spanfu{}Rjk = 1;:::;2n + 1g ; (4)
n=0;

For both orthonormal systemsfy,(]i;f(g and fuﬂ;{(g certain vedorial addition theorems can

be formulated (see[8]). The intereded readeris referredto [19], where systemsof vector
sphericalharmonics are intr oducedin a very completemanner.



3 Mul ti scale Regul ari zati on of Vectorial Inverse Prob-
lems

In the following sectionwe will give the functional-analytic badkground and the construc-
tion of our multiscale technique for the regulaization of vectarial ill-p osed problems

Let (h;(; )n) and(k ( ; )x) betwo separdle Hilb ert spaces of both vector valued functions
(with valuesin R®) de ned onthedomain D, R™, respectively, D, R™ andlet g2 k
be given. Then we search the function f 2 h, which is related to g via

h! k=g 5)

wherethe operator is assumedo be bounded,linear and compact with singular system
f nihniKnG,0.1... The sequencef 7g form the non-zero eigenvalues of the selfadjoint

operator which are assumedo be numbered in descendingorder. fh,gis a conplete
orthonormal systemin R ( _')fj'”h such that h, = .k, while fk,g denotesa complete
orthonormal systemin R ( )JJJJk such that k, = ,h,.

As is well-known, the problem of solving this operator equdion is called wel-posel in the
sen® of Hadamard, if for ead g 2 k there exists oneand only onef 2 hwith f =g
(existenceand uniquenessof the inverse) and the solution f 2 h depends cortinuously on
the right hand side g 2 k (continuity of the inversg. If at least one of thesepropertiesis
violated, then the problem is said to be ill-posal (seee.qg. [6] or [15]).

The Picard condition tells us that the problem (5) has a sdution if and only if g 2 k
satis es

DGkl T L
n=

In practical applications we are generdly not concernedwith the ideal situation of a well-
posedproblem. First of all a solution of f = g existsonly if gisin R( ), the range
of . Errors dueto unprecie measuremers redult in noisy data which may cause that
g2 R( ). Theperturbedright hand sidewill be denotedby g with a known error level
given by

g dik (6)
In order to dene a solution evenin this casewe consideran approximate solution, which
occupiesthe least-squaesproperty, i.e. one seekshat elemert of h solvingming oy jj f
gjjk If isinjective, the solution of min¢onjj f g jjk is uniquely determined as the
orthogond projection of g onto m”“k, otherwisethere existin nitely many solutionsif
g 2 R( )?. Then weare interestedin the least-squaessolution which is of minimal norm
jif jin. Determining the desiredleast-squaes solution with minimal norm is equivalert to
the determination of the (unique) generalizedsolution f *. The generdized inverse for
the above problem can be givenin terms of the singular systemby

X
fr= *g= 2HGka)hn; 92 R( ) R( ) 7

n=0

However, the de<ribed concept of least-squaes sdution with minimal norm fails, if
g 2 R() R()? orthe generdized inverseoperator * is not continuous. Then,
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the lack of continuity needsto be replaced by a regulaiization of *. In other words, in
the situation that only a disturbedright hand sideis known instead of g, we are interested
in an approximation of the generdized solution f * which depends cortinuously on the
given data.

At r st we haveto de ne more precisly what is understood by the above mentioned term
of regularization.

De ni tion 3.1

Let (h;(; )n) and (kK (; )x) be two sepaable Hilbert spacesand let : h! kbe linear
and bounded. Then the family of operators ; : k! h, J 2 Z, is called a regularization
of the generalizedinverse * if the following conditions are ful lled:

1. ; islinear and boundedon kfor all J 2 Z.

2. Foranyg2 R( ) R( )7, the limit relation

Jmiji b9 Tdin=0

holds.

The function f; = ;g is called J-level regularization of the problem f = g and the
parameterJ is cdled regularization parameter.

In what follows, the developmert of the multir esdution analysisfor regularization will be
basedon so-called vedor product kernelswhich are de ned next. For the de nitio n we
needanother sepaable Hilb ert spaceof salar valued functions de ned over the domain
Dy which will be givenby (H;(; )n) and which will be called'park Hilbert space'.

De ni tion 3.2

Let (h;(; )n) and(H; (; )u) bered separdle Hilb ert spaceof vector, regectively, salar
valued functions over the doman D, R™, respectively, Dy R™. Let, furthermore,
fh,gn2n @and fH,0h2n be comresponding countable, orthonormal and completesystemsin
h and H, regectively. Then, afunction (;):Dn, Dy ! R® ofthe form

A
(X y) = A(n)hn(X)Hn(y); X2 Dny2Duny;

n=0

is called (h;H) vector product kernel. The sequencé " (N)gn=o.1.::: iS the symlwl of the
vector product kernel The symbol is called (h;H) admissibleif

>4 A 2 X- A 2
( (Mha(x))"<1 x2Dy; ( " (MHA(y))"<1 y2Dsu:
n=0 n=0
By the admissbilit y of the symbol we can concludethat ' (x; ) 2 H for every xed

x2Dpandi=1;2;3;and (;y)2 hforewry xed y2 Dy.

Next, we have to introduce two corvolutions, i.e. a decomposition corvolution which
results in a scalarfunction and a recanstruction cornvolution which mapsthe scala eld
bad to a vector valued function.



De ni tion 3.3
Let :D, Dy ! RS2 bea vector product kernelwith (h;H) admissiblesymbol. The
h convolution of against a vectar valued function f 2 h is de ned by

( nf)y) = (Cy)sif)y: y2Dy;

while the ? corvolution of a product kernel against a salar valued function G 2 H is

de ned by
x
( ?2G)(x) = (% G s x2Dy

i=1

By the admissibility of the product kernel it is clearthat
( nf)2H; f2h ( ?G)2h; G2H:

Using the orthonormality of the systemf h,g in the Hilbert spaceh we easlly get

X N N
nf = (mf " (nH, (8)

n=0

for f 2 hin the senseof the H norm, whereff” (n)g are the Fourier coe cien ts of f
with regect to the system fh,g h. With the same argument we nd for G 2 H

b
?G= ()G (n)hn (9)

n=0
in the senseof the h norm where f G” (n)g are the Fourier coe cien ts of G with resped
to the systemfH,g H.

Basedon the de nit ion of a vectar kernel and the two corvolutions we are now able to
construct a regularization as a vector multiresolution analysis of the problem (5). We
de ne reqularization vecta scalingfunctions via their symbol as follows.

De ni tion 3.4

yoer

J2Z,be(h;H) and(kH) admissiblesdisfying the following properties:
Lo lim () (M)°= .5 n2 N
2.(C ) M) (s D)% J2Zin2N;
3. lim (( 5)"(N)?=0, n2N:

function. The family of kernelsf?® ;g; J 2 Z; given by

X
P06y = () (MKa(X)Hn(y); X2 Diy2 Dpy;

n=0



is called decomposition regularization vector saling function and the family of kernels
f'" ;50;J 2 Z; given by

X
“acy)= (9) (Mha(X)HA(Y); X2 Dgy 2 Dy;
n=0

is called reconstruction regularization vector saling function.
Di erent examplesof admissiblesymbols geneating regularization scalingfunctions can

be found in [8] or [17]. The symbol which is cortinuously usedthroughaut this article is
the cubic polynomial (CP) regulaiization symbol given by

(p

—1 2 N
C5) () = D1 n=N) (1+ 2n=N;) n=0;:::Ny;

0 else

wherefN;g;2z  Ng is a monotonically increasingsequencewhich might, for example,
by chosendyadic (i.e. N; = 27).

Following the de nitio n of reqularization vectar scalingfunctions we are led to the follow-
ing result.

Theorem 3.5

yaee

scalingfunctions @' ; and"' ;, repectively, asgivenin De nitio n 3.4. Then the seuence
of operators ;; J 2 Z; de nes a reguarization in the seng of De nition 3.1, i.e.

Mn iifs gjn=20
holdsforallg2 R( ) R( )? with f = g, where ;g= f;; givenby
fa= 59=",32(", «O); (10)

is sad to be the J-level approximation of *g.

For a proof of this theorem in the sclar casethe reader is referredto [10] and in the
vectar case to [17].

From now on the whole theory of multiresolution by sphericalwavelets (see[8]) can be
transferred to the case of regularization of vectorial inverseproblems by vector scaling
functions and wavelets. We can de ne demmposition and reconstruction regulatzation
vectar wavelets and give a wavelet regularization theorem. We will just give some im-
portant facts of regularizing vectar wavelet theory and regularizing vector multiresolution
andysis at this point.

De ni tion 3.6

tion. Then the generating symbol ( J)A (N) | —.....0J 2 Z, of the assaciated regularniza-
tion wavelet is de ned via the renement equaion

2 1=2,

()" (M= () (M2 (3) (M7 n2Ng (11)



The family ¢ ; ,J 2 Z, of kernelsgiven by

R
Ty = (9) (MKa(X)Hn(Y); X2 Dy y 2 Dy;
n=0

is caled decomposition regularization vector wavelet whereasthe family " ;g, J 2 Z, of
kernelsgiven by

R
“ocy) = (3) (M (X)HA(Y); X2 Dpy 2 Dy;
n=0

is called reconstruction regularization vector wavelet

Next, we will give the analogueto Theorem 3.5 for regularization of the problem (5) in
terms of wavelets.

Theorem 3.7

ciated regularization vector wavelet. Furthermore, let g be of classR( ) R( )? with
f = g. Then
§( 1
fs="02"0ox®*+ "2 «O
j=0

is the J-level approximation of * g satisfying
Jim ity diin = O:

The proof of this theorem immediately follows from De nition 3.6 of a regularization
waveletand Theorem 3.5. At last, we give the important fact of a vectarial multiresolution
for the regularization case.

Theorem 3.8
The scale spacesy; dened by v; = ; R( ) R( )’ satisfythefollowing properties:

1. vy vy h J<J¢
[1 Jiiin
2 Vj = h:

J=1

The assertions follow immediately by De nition 3.4 and Theaem 3.5.
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4 Reconstr ucti on of lono spheri ¢ Cur rents from Satel-
lite Data

In the following section we discussthe essertial application of this article, the recon-
struction of source terms (ionospheic currents ) correponding to given resulting eld
measuremets (magnetic eld data measuredby saellites). The systemof partial di er-
ertial equaions which describesthe connectio of the source eld, g, and the realting
eld, f, are the pre-Maxwell equations given by

r "f=g r f=0;

in a certain doman D R3. For a deduction of this system from the full system of
Maxwell's equations the reader is refered to [1]. We assumethe doman D to be a
sphericalshell, i.e. D = (4 and g ought to be vanishingoutside (). The systemof
partial di erential equdions is an elliptic problem which is sohable if the inhomogeneity
g is known in (5 and boundary valuesfor f are known on , and . For modelling
ionospheaic current systemsand the caresponding magnetic eld from given satellit e
data this assumptian, howewer, is unredistic becauseneither the sourcesystemg is given
anywhere nor the boundary valuesfor f are given on both boundaries.

We are in the situation that magnetic eld data are provided on a sphere . (a:b) With
c2 (a;h), i.e. lying completelyin the ionosphere.

4.1 The Biot-Savart Operator

In the following paragraph we introduce an approach of how the pre-Maxwell problem
in spherical geonetries can be modelled and modi ed to be uniquely solvable. We will
presen the generalBiot-Savart operator which is basedon Biot-Savart's law of eectro-
dynamics (seee.g. [13]). In order to apply the operaor when saellite measuremerns
are concerned we will restrict it to sphericalgeometries. But at rst we give the general
de nition .

De ni tion 4.1
Let g : R®! RS2 be a divergence free, di erertiable vector eld. Then the Biot-Savart
operator in R3, T : cM(R%® | @ (R?), is de ned by

Z
F00= (TOX) = 3= a T ydys X2 RY (12
A simple calculation shows that Tg(x) can be written asfollows.
To(x) = o gy) " ——2idy; x2 R (13)
4 g x e
Equation (13) is equivalert to
f(x)=r ~a(x); x2R% (14)
wnere _ 1 9y) 4 3.
a(x) = 7 Xy dy; x2R*: (15)

11



The vector eld ais called vector potential of g in R3. Applying the curl to Eqg. (14) yields
r ~f = g+r (r a). But the last term vanishesin R® becauseofr a= 0 which follows
directly from (15) by partial integration and by g to be of zero divergenae. Thus, we get
that g is the source eld of f, provided that f is given by (12).

As we have explained already, this operator is not suitable to cope with the presen
data situation. We nether know the reaulting eld nor the source distribution in the
whole ionosphere, thus we are not able to solve the direct or the inversesource problem.
To overcome this problem let us rede ne the Biot-Savart operator in a slightly di erent
manner.

De ni tion 4.2

Let R;;R,> O;R; 6 Ry, begivenandletg: r,! R3beavedor eld of class1?( g,).
Then the spherial Biot Savat operator from g, to  r,, Tryr, 1 12( r,) ! 12( Rr,), iS
de ned by

Z
1 X
F00= (rm0() = 5= 00"

d g, (Y); X2 g,: (16)

Note that in cortrast to De nitio n 4.1 of the Biot-Savart operator T in R® we do not
require g to be divergencefree or surface divergencefree here. For the spherical Biot-
Savart operator we canimmediately state the following lemma.

Lemm a 4.3
For the sphericalBiot-Savart operator as de ned in De nitio n 4.2 the following properties
are valid.

1. The adjoint operator Tg g, : 1?( r,) ! [1%( g,) of Tg,r, With regect to the
12 inner product is given by
TRl;Rz = TRz;Rl:

2. For R; 6 R, the operator Tg,.r, IS linear, bounded and compact.

3. The operator can, for g 2 1?( g,), be rewritten as
I

d! g, (Y) : 17)

R2

Z
1 9(y)
— A
TRl:Rzg(X) I xo 4 . jXO Yj

For a proof of this lemma the reader is referred to [17].

The spherical Biot-Savart operator seemsto be adequde for modelling the given data
situation. It re ects the fact that we have only data on a single spherefrom which we
want to get as much information as possible The sphericd Biot-Savart operator solves
the sphericd 'direct source problem' from g, to g,, i.e. the operator caculates the
vectarial e ectson the sphee g, of a given spherical source distribution on ;. Its
inverse operator TRll;Rz, disregading any existene, uniquenessor cortinuity statemerts,
solves the sphericd ‘inversesaurce problem’, i.e. it calculaes the vectarial sourcesystem
on g, corresponding to a given resulting eld on g,.
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By virtue of the compactnessof Tg, g, We know that the operator hasa countable singular
system. In order to constitute a multir eolution analysis for the regularzation of the
inverse problem in the senseof Section 3 we have to calculae the singular systemdenoted
by f no; hno; knog of the operator T, g, :h=12( r,)! k= I12( g,) explicitly.

Theorem 4.4
Let the systemof vector sphericalharmonicsbe givenasin Lemma 2.2.
Then we have for R, < R;

@ n R: "™ @
1R _ 3);R2.
TRy Rz Ui b= n+1 Ry Un;k ; (18)
Trur UG = 0 (19)
@)R1  _ n+1 Ry " R,
TRl;Rzun;k to= on+ 1 R_l un;k 21 (20)
while for R, > Ry
Tror Uy = O;r (21)
2)Ry  _ n+1 Ry " @R,
TRliRZUI(’\;Ii ' - 2n + 1 R_2 ul(‘l;)k 2’ (22)
r n+1l
@R: _ n Ry DR,
TRl;Rzun;k b= 2n+ 1 R_2 Unik ; (23)

For a proof of this theorem the reader is referredto [17]. The proof is mainly basel onthe
decomsition of the system fu([), g in terms of the systemfy\) g and the represetation
of the Biot-Savart operator as the curl of a vectoria double-layer potertial givenin (17).
To be more speci ¢, the expansion of the fundamertal solution of the Laplace operator,
15x yj, in terms of Legendrepolynomials and a vedorial Funk-Hede formula are used,
which both can be found in [8].

Physically interpreted Corollary 4.4 connectsthe componerts of a sphericalcurrent sys-
tem to the coregponding magnetic eld at adi erent height. In other wordsthe cordlary
states that current systemsof class IS;(Z)( r,) Induce no magnetic eld inside the sphere,
wherethey are presen and current systemsof classlfj(l)( r,) produceno magnetic eld

outside the sphere g,. This is a generalized mathematical form of a result pressnted
in [11] which statesthat sphericalpoloidal currents produce no magnetic eld inside the
spherewherethey are present.

Observingthat Ty .z, = Tr,;r, and combining the results of the previous theorem yields

Corollary 4.5
Let the systemof vector sphericalharmonicsbe givenasin Lemma2.2.

13



Then we have for R, < Ry

1) n R2 2n+2 O
DR = 1);R1.
TriR, TRuR2 Unik b= 2n+ 1 R_l Un.k 5 (24)
2)R1  _ .
TRl;RzTRl;Rzua;& = 0 (25)
2n
@rR. - N*1 Re ™ er
Tryr, TRiR: Unik b= 2n+ 1 R_l Un:k 5 (26)
and for R; > R,
1Ry _ )
TRl;RzTRliRzug;)k =0 27)
2n
@R, _ h+1l Ry )Ry
Trir, TR1R2Unik b= 2n+ 1 R_2 Un:k 5 (28)
. n R 2n+2 '
TRl;RzTRﬂRZUS)k’Rl — 1 u(3),Rl. (29)

n+1 R, ko

Sincewe deal with the situation that resulting eld measuremets are given on a sphae
which is above the source eld, we are mainly intereged in the last three equdions of
Cordllary 4.5 and in Eq. (21 - 23) of Theorem 4.4.

Eg. (18- 20) and Eq. (21 - 23) now establishthe starting point to apply the multiscale
regularization techniquesfor vectarial inverse problemswhich hasbeen developed in Sec-
tion 3. The singular system of the Biot-Savart operator Tg,r, : h! k for R, < Ry, Is
givenin Table 1 and, for R; < Ry, in Table 2.

h k fhnhg fkng n
2:(1 2.3 1)R 3R, | P n+l
5P R) [ 159C Ry) U™ | @R |V A Re
2:(3 2:(2 3):R 2):R n
|U( )( Rl) |U( )( Rz) ufn)k ' Ufm)( ? 2nn++ll E_i

Table 1: Singular systemof the sphericalBiot-Savart operator Tg,r, : h! kfor the case
R, < Rj.

h k fhng fkng n
2:(2 2:(3 2):R 3):R n
5 ) [ 159C R) [UGT | @R | 2L R
23 2:(1 3):R )R, | P —— n+l
lu( )( Rl) lu( )( Rz) u§1;)k ' uEul)< ’ 2n+1 R_;

Table 2: Singular systemof the sphericalBiot-Savart operator Tg,r, : h! kfor the case
R, > R;.

It is obvious that the singular values of the Biot-Savart operator givenin Table 1 and
Table 2 constitute an exponertially ill posed problem. In order to force convergencewe
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have to replacethe genegalized inverseby a Itered verson of this expanson. This has
been done in Sec¢ion 3 in a generd multiscale framework for regularization of vectorial
inverse problems(seee.g. [6] or [15]).

5 An Appl ication to CHAMP Mag netic Field Data

The morphology of the geomagnetic variations produced by ionospheic currents canonly
weakly be represrted in a coordinate systemwhich is Earth xed. This is becausethe
magnetic eld induced by currents is not linked to geographical longitude and latit ude
as, for example,is the lithospheric eld. It is rather x ed to the position of the Sun and
the distanceof the obsener (in this casethe satellite) to the geomanetic equata. Thus,
in order to desribe these phenanena we have to changethe referen@ systemfrom an
Earth xed frameto a Sun x ed frame. A coordinate systemwhich is commonly used in
ge@hysicsin this context is the Magnetic Local Time (MLT) and Quasi Dipole Latit ude
(QDlat). The magnetic local time thereby denotes the relative position of the obsener
with respect to the magnetic eld and the Sun and the quasi dipole latitude represns
the relative position of the obsever with respect to the geomanetic equator. For more
information concerning the description of geomagnetic coordinate systemthe reader is
referredto [20] and the referene therein.

5.1 An Appl ication to CHAMP M agnetic Field Data

To shaw that our method is able to handle data in this coordinate systemwe take just
three days of CHAMP (a German geosieti ¢ reseach satellite operated by the GFZ
Potsdam) magnetic eld data (10., 20. and 21 Setember 2001) which where avail-
able at the internet page http:// wwv.dsri. dk/ milti masatelli tes /ty pes/e quato-
ri al _el ectro jet.h tml. In thesedays CHAMP was at 1230 and 00.30 local time. The
data are averaged to an equiangular integration grid (in the coordinate system (MLT,
QDlat)) usingan algorithm presented in [17]. The referencesystem(MLT, QDlat), with
valuesQDlat 2 [ 90,90] and MLT 2 [0; 24 is thereby just seenas another coordinate
system parameterizing the unit sphere where the magnetic local time is seeé as a linear
transformation of the longitude with M LT = 12represeting the zeromeridian.

We apply the method presented in the previous se¢ion to the CHAMP data setin orderto
reconstructthe toroidal part cortainedin Iﬁ;(?’)( r,) Of the equivalert ionospheric currert
systemfrom the poloidal part of the magnetic eld measuremets. Since we are in the
caseof R, > Ry, Eq. (21) of Corollary 4.4 plays the essatial role in our regularization
step. The functional-andytic framework is given as follows. We have to regulaize the
inversion of Tg,r, : h'! Kk whereTg,r, is the sphericd Biot-Savart operator given in
De nitio n 4.2 and

n=1;:,; ’
k=1 ;:;2n+1

h= |6;(3)( R,); fhpog=f uf;)k;ng

k= 159( g,); fknog= fuﬁl;llszg

r——
n Rl n+1l

= — ; n°2 N:
n° n+1 R, !

n=1;:; f
k=1 ;:;2n+1
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The result of our reconstruction with a regularization vector cubic polynomial scaling
function at scaleJ = 3 canbe see in Figure 5.1 The maximal strength of the detected
equivalert ionospheic current systemis appraximately 10mA=m. According to [3] the
amplitude of the sdar quiet mid latitude ionosphericcurrent systemsis 10 36mA=m.
This shaws that the detectedcurrent system is in the lower band width of the real iono-
sphericcurrent systems. Sincethe scaleof reconstruction is very low it can be assume
that the red strengh of the current systemis higher than the reconstructedamplitude.
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Figure 1. Equivalent horizontal current distribution in the Sun xed coordinate system
(QDlat, MLT) at a height of 110km calculaed using a regulaization vector cubic poly-
nomia scalingfunction expansion at scaleJ = 3.

With respect to the given amourt of data (3 days of CHAMP magnetic eld measure-
merns) the reconstructedcurrent systemshown in Figure 5.1 is a remarkable result. It

demonstrdesthat the usedtrial functions,i.e. regularization vector saling functions and
wavelets, are an adequde choicefor handling the problem. As already merntionedin [14]
the main disadvantage of sphericalharmonics is that the reconstructedcurrent system on
the day-side of the Earth will appear on the night-side aswell becauseof symmetry argu-
mens. This problem doesnot appea if saling functions and wavelets are used. These
kernelfunctions do not ful Il an exact frequency locdization property which is not neede
for the recanstruction of the current system anyway, but they provide the possibility of
spacelocalizing reconstruction and this property is much more important for the recon-
struction of a ionosphericcurrent distribution from given magnetic e ld measuremets.

In order to demonstiate the regional applicability of the presened multiscale techniques
for reconstructing ionospheric current systemsfrom CHAMP magnetic eld data we cal-
culate the toroidal part of the equivalent ionosphericcurrent systemat a height of 110km
from CHAMP magnetic eld measuremets. The loca reconstruction is performedin a
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region given by QDlat 2 [ 30;30|and M LT 2 [0800; 16.:0Q], i.e. in an area,wherestrong
ionospheic current systemslike the equatorial electrget are present. For this reconstruc-
tion we took data of several months between September 2001 and June 20@ in order
to get an appropriate coverage of measuremets in the region of interest. For further
information concerningdata seletion and preprocesing stepssee[17].

The reconstuction of the equivalert ionospheric current system with a regularization
vectar cubic polynomial scaling function at scaleJ = 5 can be seenin Figure 2. The
maximal reconstiucted strength of the current systemis approximately 25 mA=m which
Is a more realistic value than the amplitude of the reconstruction in Figure 5.1.
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Figure 2: Local reconstruction (QDlat 2 [ 30;30], MLT 2 [0800; 16:00]) of the equiva-
lent ionosphericcurrent distributio n at a height of 110km calculated usinga regularization

vectar cubic polynomial scaling function expansionat scaleJ = 5.

5.2 An Appl ication to SWARM Magnet ic Field Data

In the following section we give an example how the multiscale method of reconstructing
current systemsfrom magnetic eld data can be usal in connection with the proposel
satellite misson SWARM.

SWARM is a saellite mission proposedby a consotium of 27 instit utes and universities
under the leadership of the Danish Space Resach Institute (DSRI Kopenhagen). It is
designedo study the dynamicsof the Earth's magnetic eld and itsinteractions with the
system Earth. The concept consistsof a constellgion of four saellites of the CHAMP
typein two di erert polar orbits between 400km and 550km altitude. To simulate the
SWARM missionand the emphasizdts advantagesa simulator (based on the comprehen
sive model of the near-Earth magnetic eld descriked in [21]) has beenimplemented at
the GFZ Potsdam and the data has beenmade available at the DSRI Kopenhagen.

To ted our method with a big amount of saellite data we took 60 days of data between
January 2000 and April 2000 of one of the low ying SWARM satdllit €s. The period of
4 months is necessaly to get data within all magnetic loca times. As before the data
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is transformed to the (MLT, QDlat) coordinate systemand averagedto an equiangilar
integration grid (in the coordinate system(MLT, QDlat)).

The ionosphericcurrent systemwhich has beenusedto smulate SWARM magnetic eld
datais a purely toroidal, horizortal current systemat a height of 110km (see[21]). Thus,
in order to apply our method to reconstruct the current system comregponding to the
simulated magnetic eld data we are in the samefunctional-analytic situation as in the
previous subsetion.

A reconstructedequivalent ionospheic current systemat a height of 110km obtainedwit h
a regularization cubic polynomial vector scaling function at scaleJ = 5 can be found
in Figure 3. The main conours of the ionospheric current system are reconstiucted.
In order to reconstiuct ner details of the current system a higher resolution of the
simulated satellite tracks (at the momen 1 sample/min* 440km sampledistance) would
be necessay. The corresponding current function of the current system preserted in
Figure 3 which can easily be reconstructedin the multiscale framework presened in this
article (see[17] for more details) can be found in Figure 4.

Figure 3: Equivalent horizontal current distribution in the Sun xed coordinate system
(QDlat, MLT) at a height of 110km calculaed using a regularization vector cubic poly-
nomial scalingfunction expansion at scaleJ = 5.
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Figure 4. Equipotential lines of the current function of the equivalent horizontal current
distribution in the Sun xed coordinate system (QDlat, MLT) calculated using a reg-
ularization scaar cubic polynomial scaling function at scaleJ = 5. Red indicates the
maximum strength of the current function while blue indicates the minimum.
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