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Abstract

The article is concerned with the modelling of ionospheric current systems from

induced magnetic fields measured by satellites in a multiscale framework. Scaling

functions and wavelets are used to realize a multiscale analysis of the function spaces

under consideration and to establish a multiscale regularization procedure for the

inversion of the considered vectorial operator equation. Based on the knowledge of

the singular system a regularization technique in terms of certain product kernels

and corresponding convolutions can be formed.

In order to reconstruct ionospheric current systems from satellite magnetic field

data, an inversion of the Biot-Savart’s law in terms of multiscale regularization

is derived. The corresponding operator is formulated and the singular values are

calculated. The method is tested on real magnetic field data of the satellite CHAMP

and the proposed satellite mission SWARM.
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1 Introduction

If looking for first results concerning a mathematical treatment of ionospheric current
systems and the corresponding magnetic fields it is inevitable to have a look at the con-
siderations in [14]. In this book both, the ionospheric current systems at the lower iono-
sphere (110 km) and the induced magnetic field on a sphere above are developed in a
Fourier series in terms of spherical harmonics (called Gauss representation, due to [12]).
The corresponding Fourier coefficients of both fields can be connected in an analytic way.
This way of modelling effects of ionospheric currents and magnetic fields seems to be not
the best way nowadays if thinking of the changed geomagnetic data situation and the
improved knowledge of the ionosphere. This article gives an improved tool for modelling
and reconstructing ionospheric current system from corresponding magnetic field data on
different spatial scales.

Reasonably modelling the geomagnetic field on global or regional scales requires dense
and homogeneous vectorial data sets. As regards the subject of global and dense cover-
age, satellites orbiting the Earth in low, near-polar orbits provide firm basis for acquiring
the necessary high resolution observations. The German CHAMP satellite mission which
started in summer 2000 is, besides other tasks, designed for highly accurate geomagnetic
field mapping.

But, it is not only essential to have available adequate data sets, it is also necessary to
have at hand the appropriate mathematical tools allowing reasonable analysis of the field
data. Kernel functions such as scaling functions and wavelets reflect the small scale spatial
variability of ionospheric currents and the induced magnetic field. For a comprehensive
introduction of kernel functions the reader is referred to [7], [8], [10] or [16]. Since both
the magnetic field and the current system are vector fields the natural way of modelling
these fields is by tensor kernel function and linear tensor convolutions (see [8], [18]). This
linear technique is circumvented in this article by an equivalent bilinear two step method
using vector kernel functions two different convolutions. Similar approaches have already
been proposed in [2], [9] or [16]

The outline of this article is as follows. First of all we give the necessary notation. Addi-
tionally, two complete and closed orthonormal systems in the space of square integrable
spherical vector fields are presented. These systems of vector spherical harmonics give
the foundation for the multiscale modelling of vector fields in the following sections.
Section 3 gives a general approach to the theory of multiscale regularization techniques of
vectorial inverse problems. We present, how regularization vector scaling functions and
wavelets are constructed and develop the aforementioned bilinear two step method for
regularization.
In Section 4 the ’inverse source problem’ is introduced, i.e. the reconstruction of iono-
spheric current systems corresponding to given magnetic field data. An ansatz of how
this problem can be modelled involving satellite geometries is presented. The necessary
tools (such as the singular system of the corresponding operator) are derived in order to
use the multiscale technique presented in Section 3.
Section 5 deals with the application of our multiscale method of reconstructing current
system from magnetic field data to data sets of two different satellite missions, i.e. to
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CHAMP satellite data and to simulated magnetic field data of the proposed SWARM
mission.

2 Preliminaries

In this section the reader is provided with the essential tools used in the course of this
article. We start with introducing some basic notation and the nomenclature which is
used in our considerations.

2.1 Notation

During the course of this article we will permanently be confronted with scalar which are
denoted by capital letters (F,G, etc) and vector fields which are symbolized by lower-case
letters (f, g, etc).

A sphere of radius R centered around the origin is denoted by ΩR = {x ∈ R
3 | |x| = R}.

In particular, Ω = Ω1 is the unit sphere in R
3. We set Ωint

R for the ’inner space’ of ΩR,

Ωint
R = {x ∈ R

3 | |x| < R} while Ωext
R = R

3 \ Ωint
R is the ’outer space’ of ΩR. Clearly,

Ωext
R = {x ∈ R

3 | |x| > R}. By Ω(R1,R1) we denote the open spherical shell with inner
radius R1 and outer radius R2 given by Ω(R1,R2) = {x ∈ R

3 |R1 < |x| < R2}.

In what follows we need a number of differential operators which we introduce next.
∇x = (∂/∂x1, ∂/∂x2, ∂/∂x3)

T denotes the gradient in cartesian coordinates in R
3 and ∇∗

represents its tangential part, called surface gradient. The Laplace operator is symbolized
by ∆ = ∇·∇ and the corresponding tangential operator, called Beltrami operator, is given
by ∆∗ = ∇∗ ·∇∗. The curl gradient Lx is given by Lx = x∧∇x with tangential counterpart
given by L∗ which is called surface curl gradient. For more information concerning these
operators the reader is referred to [8].
Let f be a tangential vector field with respect to the sphere ΩR, i.e. f ·ξ = 0 for all ξ ∈ Ω.
Furthermore, let f possess the component functions Fi, i.e. f(x) =

∑3
i=1 Fi(x)ε

i, x ∈ Ω.
Then the surface divergence ∇∗· and the surface curl divergence L∗· are defined by

∇∗ · f =
3
∑

i=1

(∇∗Fi) · ε
i , L∗ · f =

3
∑

i=1

(L∗Fi) · ε
i .

A variety of function spaces will be needed in this article. Let C(U) be the set of all con-
tinuous, real functions defined on the set U ⊂ R

3, equipped with the standard supremum
norm. A function is said to be of class C(k)(U), 0 ≤ k ≤ ∞, if it is k−times continuously
differentiable on U . If U ⊂ R

3 is a measurable subset of R
3, the set of scalar functions

F : U → R which are measurable and for which

||F ||Lp(U) =

(
∫

U

|F (x)|p dx

)
1
p

<∞

is denoted by Lp(U), where dx denotes the volume element in U . Note that in the case
of U = ΩR with radius R > 0 we write dωR(x) instead of dx and dω(x) instead of dω1(x).
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In analogy to the scalar case we define function spaces of vector valued functions. These
spaces will normally be symbolized by lower-case letters. Let c(U) be the set of all vector
valued, continuous functions f : U → R

n defined on the set U ⊂ R
3, equipped with the

norm
||f ||c(U) = sup

x∈U
|f(x)|.

A vector field f is said to be of class c(k)(U), 0 ≤ k ≤ ∞, if every component function
f · εi, i = 1, . . . , n, of f is k−times continuously differentiable on U . The set of vector
fields f : U → R which are measurable and for which

||f ||lp(U) =

(
∫

U

|f(x)|p dx

)
1
p

<∞

is denoted by lp(U).

2.2 Two Sets of Vector Spherical Harmonics

In what follows scalar spherical harmonics are introduced. The approach presented here
is based on [8]. Scalar spherical harmonics are restrictions of homogeneous harmonic
polynomials in R

3 to the unit sphere. More explicitly, let Hn : R
3 → R be a homogeneous

harmonic polynomial of degree n, i.e.

1. Hn is polynomial of degree n in R
3,

2. Hn(λx) = λnHn(x) for all λ ∈ R and x ∈ R
3 (homogeneity),

3. ∆xHn(x) = 0 for all x ∈ R
3 (harmonicity),

then the restriction Yn = Hn|Ω is called a scalar spherical harmonic of degree n. An
essential result of the theory of scalar spherical harmonics is the fact that any spherical
harmonic Yn , n ∈ N0 , is an infinitely often differentiable eigenfunction of the Beltrami
operator ∆∗ corresponding to the eigenvalue −n(n+ 1) , n ∈ N0 , i.e.

∆∗
ξYn(ξ) = −n(n+ 1)Yn(ξ), ξ ∈ Ω, Yn ∈ Harmn(Ω), n ∈ N0

and vice versa. Throughout the remainder of this work, we denote by {Yn,k}k=1,...,2n+1 a
complete orthonormal system in the space Harmn(Ω) with respect to the inner product
(·, ·)L2(Ω).

The system of spherical harmonics is closed and complete in L2(Ω). For a general defi-
nition of closure and completeness and relations between the two terms in Hilbert spaces
the reader is referred e.g. to [4]. It is obvious that the system {Y R

n,k} = { 1
R
Yn,k(

·
R
)} forms

an closed and complete orthonormal system in L2(ΩR).

In order to construct a system of vector spherical harmonics in the space l2(Ω) out of the
system of scalar spherical harmonics we introduce the following operators.

Definition 2.1

For ξ ∈ Ω and F ∈ C(0i)(Ω) the operators o(i) : C(0i)(Ω) → c(Ω), i ∈ {1, 2, 3}, are defined
via

o
(1)
ξ F (ξ) = ξF (ξ), o

(2)
ξ F (ξ) = ∇∗

ξF (ξ), o
(3)
ξ F (ξ) = L∗

ξF (ξ).
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where we have used the abbreviation

0i =

{

0 if i = 1

1 if i = 2, 3 .

It is clear that o(1)F is a radial vector field, while o(2)F and o(3)F are purely tangential.
Furthermore, the operators o(i) can be extended in a canonical way to the space l2(Ω).

Motivated by the operators o(i) we will now introduce vector spherical harmonics.
If {Yn,k}n=0,1,...;k=1,...,2n+1 is an L2(Ω)−orthonormal set of scalar spherical harmonics it
easily follows by the properties of the o(i)−operators (see [8]) that

y
(i)
n,k = (µ(i)

n )−1/2o(i)Yn,k,

i ∈ {1, 2, 3}, n ≥ 0i; k = 1, . . . , 2n + 1, forms an l2(Ω)−orthonormal system of vector

spherical harmonics, where the normalization values µ
(i)
n are given by

µ(i)
n =

{

1 if i = 1

n(n+ 1) if i = 2, 3 .
(1)

It is known that the system {y
(i)
n,k} is a complete and closed orthonormal system in

l2(Ω).According to our construction we get

ξ ∧ y
(1)
n,k(ξ) = 0, ξ · y

(2)
n,k(ξ) = 0, ξ · y

(3)
n,k(ξ) = 0,

L∗
ξ · y

(2)
n,k(ξ) = 0, ∇∗

ξ · y
(3)
n,k(ξ) = 0.

To construct a second set of vector spherical harmonics we use the restriction of homoge-
neous harmonic vector polynomials to the sphere. This system is known from theoretical
physics and developed, for example, in [1] or [5]. The introduction of the system given in
this article follows mainly the course of [19]. According to our nomenclature a system of
vector spherical harmonics is adequately described by the following lemma.

Lemma 2.2

Let {Yn,k} n=0,1,...;
k=1,...,2n+1

be an L2(Ω)− orthonormal system of scalar spherical harmonics. Then

the vector fields

u
(1)
n,k = (ν(1)

n )−1/2
(

(n+ 1)o(1)Yn,k − o(2)Yn,k

)

,

=

√

n+ 1

2n+ 1
y

(1)
n,k −

√

n

2n+ 1
y

(2)
n,k, n = 0, 1, . . . ; k = 1, . . . , 2n+ 1,

u
(2)
n,k = (ν(2)

n )−1/2
(

no(1)Yn,k + o(2)Yn,k

)

,

=

√

n

2n+ 1
y

(1)
n,k +

√

n+ 1

2n+ 1
y

(2)
n,k, n = 1, 2, . . . ; k = 1, . . . , 2n+ 1,

u
(3)
n,k = (ν(3)

n )−1/2o(3)Yn,k = y
(3)
n,k, n = 1, 2, . . . ; k = 1, . . . , 2n+ 1,
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form an l2(Ω)−orthonormal set of vector spherical harmonics with the normalization

coefficients given by

ν(i)
n =











(n+ 1)(2n+ 1) for i = 1, n ∈ N0,

n(2n+ 1) for i = 2, n ∈ N,

n(n+ 1) for i = 3, n ∈ N .

The proof of this lemma easily follows from computations involving the orthonormality
of the system {y

(i)
n,k}. The reader should note, that the system {u

(i)
n,k} does not separate

between radial and tangential fields. However, as we will see later, this system has other
advantageous properties in electro- and magnetostatic modelling. A direct consequence
of the closure and completeness of the system {y

(i)
n,k} is the following result.

Corollary 2.3

Let the system of vector spherical harmonics {u
(i)
n,k} i=1,2,3

n=0i,...;k=1,...,2n+1
be defined as in Lemma 2.2.

Then the following statements are valid:

1. The system of vector spherical harmonics is closed in c(Ω) with respect to || · ||c(Ω)

and || · ||l2(Ω).

2. The system is complete in l2(Ω) with respect to (·, ·)l2(Ω).

Note that the system of vector spherical harmonics given by

u
(i),R
n,k =

1

R
u

(i)
n,k, i ∈ {1, 2, 3}; n = 0i, . . . ; k = 1, . . . , 2n+ 1, (2)

establishes a closed and complete orthonormal system in the Hilbert space l2(ΩR).
In the sense of subspaces of the Hilbert space l2(ΩR) the above results may be written as
follows.

l2(ΩR) = l
2,(1)
U (ΩR) ⊕ l

2,(2)
U (ΩR) ⊕ l

2,(3)
U (ΩR), (3)

with

l
2,(i)
U (ΩR) =

∞
⊕

n=0i

span{u
(i),R
n,k |k = 1, . . . , 2n+ 1}

||·||
l2(ΩR)

. (4)

For both orthonormal systems {y
(i)
n,k} and {u

(i)
n,k} certain vectorial addition theorems can

be formulated (see [8]). The interested reader is referred to [19], where systems of vector
spherical harmonics are introduced in a very complete manner.
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3 Multiscale Regularization of Vectorial Inverse Prob-

lems

In the following section we will give the functional-analytic background and the construc-
tion of our multiscale technique for the regularization of vectorial ill-posed problems.

Let (h, (·, ·)h) and (k, (·, ·)k) be two separable Hilbert spaces of both vector valued functions
(with values in R

3) defined on the domain Dh ⊂ R
m, respectively, Dk ⊂ R

m and let g ∈ k

be given. Then we search the function f ∈ h, which is related to g via

Λ : h → k, Λf = g, (5)

where the operator Λ is assumed to be bounded, linear and compact with singular system
{σn, hn, kn}n=0,1,.... The sequence {σ2

n} form the non-zero eigenvalues of the selfadjoint
operator Λ∗Λ which are assumed to be numbered in descending order. {hn} is a complete

orthonormal system in R(Λ∗)
||·||h

such that Λhn = σnkn, while {kn} denotes a complete

orthonormal system in R(Λ)
||·||k

such that Λ∗kn = σnhn.
As is well-known, the problem of solving this operator equation is called well-posed in the
sense of Hadamard, if for each g ∈ k there exists one and only one f ∈ h with Λf = g
(existence and uniqueness of the inverse) and the solution f ∈ h depends continuously on
the right hand side g ∈ k (continuity of the inverse). If at least one of these properties is
violated, then the problem is said to be ill-posed (see e.g. [6] or [15]).

The Picard condition tells us that the problem (5) has a solution if and only if g ∈ k

satisfies
∞
∑

n=

(

σ−1
n (g, kn)k

)2
<∞ .

In practical applications we are generally not concerned with the ideal situation of a well-
posed problem. First of all a solution of Λf = g exists only if g is in R(Λ), the range
of Λ. Errors due to unprecise measurements result in noisy data which may cause that
g /∈ R(Λ). The perturbed right hand side will be denoted by gδ with a known error level
given by

||gδ − g||k ≤ δ . (6)

In order to define a solution even in this case we consider an approximate solution, which
occupies the least-squares property, i.e. one seeks that element of h solving minf∈h ||Λf −
gδ||k. If Λ is injective, the solution of minf∈h ||Λf − gδ||k is uniquely determined as the

orthogonal projection of gδ onto R(Λ)
||·||k

, otherwise there exist infinitely many solutions if
gδ ∈ R(Λ)⊥. Then we are interested in the least-squares solution which is of minimal norm
||f ||h. Determining the desired least-squares solution with minimal norm is equivalent to
the determination of the (unique) generalized solution f+. The generalized inverse for
the above problem can be given in terms of the singular system by

f+ = Λ+g =
∞
∑

n=0

σ−1
n (g, kn)khn, g ∈ R(Λ) ⊕R(Λ)⊥. (7)

However, the described concept of least-squares solution with minimal norm fails, if
g /∈ R(Λ) ⊕ R(Λ)⊥ or the generalized inverse operator Λ+ is not continuous. Then,
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the lack of continuity needs to be replaced by a regularization of Λ+. In other words, in
the situation that only a disturbed right hand side is known instead of g, we are interested
in an approximation of the generalized solution f+ which depends continuously on the
given data.

At first we have to define more precisely what is understood by the above mentioned term
of regularization.

Definition 3.1

Let (h, (·, ·)h) and (k, (·, ·)k) be two separable Hilbert spaces and let Λ : h → k be linear
and bounded. Then the family of operators ΛJ : k → h, J ∈ Z, is called a regularization
of the generalized inverse Λ+ if the following conditions are fulfilled:

1. ΛJ is linear and bounded on k for all J ∈ Z.

2. For any g ∈ R(Λ) ⊕R(Λ)⊥, the limit relation

lim
J→∞

||ΛJg − Λ+g||h = 0

holds.

The function fJ = ΛJg is called J-level regularization of the problem Λf = g and the
parameter J is called regularization parameter.

In what follows, the development of the multiresolution analysis for regularization will be
based on so-called vector product kernels which are defined next. For the definition we
need another separable Hilbert space of scalar valued functions defined over the domain
DH which will be given by (H, (·, ·)H) and which will be called ’park Hilbert space’.

Definition 3.2

Let (h, (·, ·)h) and (H, (·, ·)H) be real separable Hilbert spaces of vector, respectively, scalar
valued functions over the domain Dh ⊂ R

m, respectively, DH ⊂ R
m. Let, furthermore,

{hn}n∈N and {Hn}n∈N be corresponding countable, orthonormal and complete systems in
h and H, respectively. Then, a function γ (·, ·) : Dh ×DH → R

3 of the form

γ (x, y) =
∞
∑

n=0

γ∧(n)hn(x)Hn(y), x ∈ Dh, y ∈ DH ,

is called (h,H)−vector product kernel . The sequence {γ∧(n)}n=0,1,... is the symbol of the
vector product kernel. The symbol is called (h,H)−admissible if

∞
∑

n=0

(γ∧(n)hn(x))
2
<∞ x ∈ Dh,

∞
∑

n=0

(γ∧(n)Hn(y))
2
<∞ y ∈ DH.

By the admissibility of the symbol we can conclude that εi · γ (x, ·) ∈ H for every fixed
x ∈ Dh and i = 1, 2, 3, and γ (·, y) ∈ h for every fixed y ∈ DH.

Next, we have to introduce two convolutions, i.e. a decomposition convolution which
results in a scalar function and a reconstruction convolution which maps the scalar field
back to a vector valued function.
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Definition 3.3

Let γ : Dh ×DH → R
3 be a vector product kernel with (h,H)−admissible symbol. The

h−convolution of γ against a vector valued function f ∈ h is defined by

(γ ∗h f)(y) = (γ(·, y), f)h , y ∈ DH,

while the ?−convolution of a product kernel γ against a scalar valued function G ∈ H is
defined by

(γ ? G)(x) =
3
∑

i=1

(

εi · γ(x, ·), G
)

H
, x ∈ Dh.

By the admissibility of the product kernel γ it is clear that

(γ ∗h f) ∈ H, f ∈ h; (γ ? G) ∈ h, G ∈ H.

Using the orthonormality of the system {hn} in the Hilbert space h we easily get

γ ∗h f =
∞
∑

n=0

γ∧(n)f∧(n)Hn (8)

for f ∈ h in the sense of the H−norm, where {f∧(n)} are the Fourier coefficients of f
with respect to the system {hn} ⊂ h. With the same argument we find for G ∈ H

γ ? G =
∞
∑

n=0

γ∧(n)G∧(n)hn (9)

in the sense of the h−norm where {G∧(n)} are the Fourier coefficients of G with respect
to the system {Hn} ⊂ H.

Based on the definition of a vector kernel and the two convolutions we are now able to
construct a regularization as a vector multiresolution analysis of the problem (5). We
define regularization vector scaling functions via their symbol as follows.

Definition 3.4

Let the Hilbert spaces h, k and H be given as above. Furthermore, let {(ϕJ)∧(n)}n=0,1,...,
J ∈ Z, be (h,H)− and (k,H)−admissible satisfying the following properties:

1. lim
J→∞

((ϕJ)∧(n))2 = σ−1
n , n ∈ N,

2. ((ϕJ)∧(n))2 ≥ ((ϕJ−1)
∧(n))2 , J ∈ Z, n ∈ N,

3. lim
J→−∞

((ϕJ)∧(n))2 = 0, n ∈ N .

Then {(ϕJ)∧(n)}n=0,1,... is called the generating symbol of a regularization vector scaling

function. The family of kernels {dϕJ}, J ∈ Z, given by

dϕJ(x, y) =
∞
∑

n=0

(ϕJ)∧(n)kn(x)Hn(y), x ∈ Dk, y ∈ DH,

8



is called decomposition regularization vector scaling function and the family of kernels
{rϕJ}, J ∈ Z, given by

rϕJ(x, y) =
∞
∑

n=0

(ϕJ)∧(n)hn(x)Hn(y), x ∈ Dk, y ∈ DH,

is called reconstruction regularization vector scaling function.

Different examples of admissible symbols generating regularization scaling functions can
be found in [8] or [17]. The symbol which is continuously used throughout this article is
the cubic polynomial (CP) regularization symbol given by

(ϕJ)∧(n) =

{

√

σ−1
n (1 − n/NJ)2 (1 + 2n/Nj) n = 0, . . . NJ ,

0 else,

where {NJ}J∈Z ⊂ N0 is a monotonically increasing sequence which might, for example,
by chosen dyadic (i.e. NJ = 2J).

Following the definition of regularization vector scaling functions we are led to the follow-
ing result.

Theorem 3.5

Let {(ϕJ)∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of the regularization vector

scaling functions dϕJ and rϕJ , respectively, as given in Definition 3.4. Then the sequence

of operators ΛJ , J ∈ Z, defines a regularization in the sense of Definition 3.1, i.e.

lim
J→∞

||fJ − Λ+g||h = 0

holds for all g ∈ R(Λ) ⊕R(Λ)⊥ with Λf = g, where ΛJg = fJ , given by

fJ = ΛJg = rϕJ ? (dϕJ ∗k g), (10)

is said to be the J-level approximation of Λ+g.

For a proof of this theorem in the scalar case the reader is referred to [10] and in the
vector case to [17].

From now on the whole theory of multiresolution by spherical wavelets (see [8]) can be
transferred to the case of regularization of vectorial inverse problems by vector scaling
functions and wavelets. We can define decomposition and reconstruction regularization
vector wavelets and give a wavelet regularization theorem. We will just give some im-
portant facts of regularizing vector wavelet theory and regularizing vector multiresolution
analysis at this point.

Definition 3.6

Let
{

(ϕJ)∧ (n)
}

n=0,1,...
, J ∈ Z, be the generating symbol of a regularization scaling func-

tion. Then the generating symbol
{

(ψJ)∧ (n)
}

n=0,1,...
, J ∈ Z, of the associated regulariza-

tion wavelet is defined via the refinement equation

(ψJ)∧ (n) =
(

(ϕJ+1)
∧ (n)2 − (ϕJ)∧ (n)2

)1/2
, n ∈ N0. (11)
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The family
{

dψJ

}

, J ∈ Z, of kernels given by

dψJ (x, y) =
∞
∑

n=0

(ψJ)∧ (n)kn(x)Hn(y), x ∈ Dk, y ∈ DH,

is called decomposition regularization vector wavelet, whereas the family {rψJ}, J ∈ Z, of
kernels given by

rψJ (x, y) =
∞
∑

n=0

(ψJ)∧ (n)hn(x)Hn(y), x ∈ Dh, y ∈ DH,

is called reconstruction regularization vector wavelet.

Next, we will give the analogue to Theorem 3.5 for regularization of the problem (5) in
terms of wavelets.

Theorem 3.7

Let {(ϕJ)∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of a regularization vector scaling

function. Suppose that {(ψJ)∧(n)}n=0,1,..., J ∈ Z, is the generating symbol of the asso-

ciated regularization vector wavelet. Furthermore, let g be of class R(Λ) ⊕ R(Λ)⊥ with

Λf = g. Then

fJ = rϕ0 ? (dϕ0 ∗k g) +
J−1
∑

j=0

rψj ? (dψj ∗k g)

is the J-level approximation of Λ+g satisfying

lim
J→∞

||fJ − Λ+g||h = 0.

The proof of this theorem immediately follows from Definition 3.6 of a regularization
wavelet and Theorem 3.5. At last, we give the important fact of a vectorial multiresolution
for the regularization case.

Theorem 3.8

The scale spaces vJ defined by vJ = ΛJ

(

R(Λ) ⊕R(Λ)⊥
)

satisfy the following properties:

1. vJ ⊂ vJ ′ ⊂ h, J < J ′,

2.
∞
⋃

J=−∞

vJ

||·||h

= h .

The assertions follow immediately by Definition 3.4 and Theorem 3.5.
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4 Reconstruction of Ionospheric Currents from Satel-

lite Data

In the following section we discuss the essential application of this article, the recon-
struction of source terms (ionospheric currents ) corresponding to given resulting field
measurements (magnetic field data measured by satellites). The system of partial differ-
ential equations which describes the connection of the source field, g, and the resulting
field, f , are the pre-Maxwell equations given by

∇∧ f = g ∇ · f = 0 ,

in a certain domain D ⊂ R
3. For a deduction of this system from the full system of

Maxwell’s equations the reader is referred to [1]. We assume the domain D to be a
spherical shell, i.e. D = Ω(a,b) and g ought to be vanishing outside Ω(a,b). The system of
partial differential equations is an elliptic problem which is solvable if the inhomogeneity
g is known in Ω(a,b) and boundary values for f are known on Ωa and Ωb. For modelling
ionospheric current systems and the corresponding magnetic field from given satellite
data this assumption, however, is unrealistic because neither the source system g is given
anywhere nor the boundary values for f are given on both boundaries.
We are in the situation that magnetic field data are provided on a sphere Ωc ⊂ Ω(a,b) with
c ∈ (a, b), i.e. lying completely in the ionosphere.

4.1 The Biot-Savart Operator

In the following paragraph we introduce an approach of how the pre-Maxwell problem
in spherical geometries can be modelled and modified to be uniquely solvable. We will
present the general Biot-Savart operator which is based on Biot-Savart’s law of electro-
dynamics (see e.g. [13]). In order to apply the operator when satellite measurements
are concerned we will restrict it to spherical geometries. But at first we give the general
definition.

Definition 4.1

Let g : R
3 → R

3 be a divergence free, differentiable vector field. Then the Biot-Savart

operator in R
3, T : c(1)(R3) → c(2)(R3), is defined by

f(x) = (Tg)(x) =
1

4π

∫

R3

g(y) ∧∇y
1

|x− y|
dy, x ∈ R

3. (12)

A simple calculation shows that Tg(x) can be written as follows.

Tg(x) =
µ0

4π

∫

R3

g(y) ∧
x− y

|x− y|3
dy, x ∈ R

3. (13)

Equation (13) is equivalent to

f(x) = ∇∧ a(x), x ∈ R
3, (14)

where

a(x) =
1

4π

∫

R3

g(y)

|x− y|
dy, x ∈ R

3. (15)
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The vector field a is called vector potential of g in R
3. Applying the curl to Eq. (14) yields

∇∧ f = g+∇(∇· a). But the last term vanishes in R
3 because of ∇· a = 0 which follows

directly from (15) by partial integration and by g to be of zero divergence. Thus, we get
that g is the source field of f , provided that f is given by (12).

As we have explained already, this operator is not suitable to cope with the present
data situation. We neither know the resulting field nor the source distribution in the
whole ionosphere, thus we are not able to solve the direct or the inverse source problem.
To overcome this problem let us redefine the Biot-Savart operator in a slightly different
manner.

Definition 4.2

Let R1, R2 > 0, R1 6= R2, be given and let g : ΩR1 → R
3 be a vector field of class l2(ΩR1).

Then the spherical Biot Savart operator from ΩR1 to ΩR2 , TR1,R2 : l2(ΩR1) → l2(ΩR2), is
defined by

f(x) = (TR1,R2g)(x) =
1

4π

∫

ΩR1

g(y) ∧
x− y

|x− y|3
dωR1(y), x ∈ ΩR2 . (16)

Note that in contrast to Definition 4.1 of the Biot-Savart operator T in R
3 we do not

require g to be divergence free or surface divergence free here. For the spherical Biot-
Savart operator we can immediately state the following lemma.

Lemma 4.3

For the spherical Biot-Savart operator as defined in Definition 4.2 the following properties

are valid.

1. The adjoint operator T ∗
R1,R2

: l2(ΩR2) → l2(ΩR1) of TR1,R2 with respect to the

l2−inner product is given by

T ∗
R1,R2

= TR2,R1 .

2. For R1 6= R2 the operator TR1,R2 is linear, bounded and compact.

3. The operator can, for g ∈ l2(ΩR1), be rewritten as

TR1,R2g(x) =

(

∇x′ ∧

(

1

4π

∫

ΩR1

g(y)

|x′ − y|
dωR1(y)

))∣

∣

∣

∣

∣

ΩR2

. (17)

For a proof of this lemma the reader is referred to [17].

The spherical Biot-Savart operator seems to be adequate for modelling the given data
situation. It reflects the fact that we have only data on a single sphere from which we
want to get as much information as possible. The spherical Biot-Savart operator solves
the spherical ’direct source problem’ from ΩR1 to ΩR2 , i.e. the operator calculates the
vectorial effects on the sphere ΩR2 of a given spherical source distribution on ΩR1 . Its
inverse operator T−1

R1,R2
, disregarding any existence, uniqueness or continuity statements,

solves the spherical ’inverse source problem’, i.e. it calculates the vectorial source system
on ΩR1 corresponding to a given resulting field on ΩR2 .

12



By virtue of the compactness of TR1,R2 we know that the operator has a countable singular
system. In order to constitute a multiresolution analysis for the regularization of the
inverse problem in the sense of Section 3 we have to calculate the singular system denoted
by {σn′ , hn′ , kn′} of the operator TR1,R2 : h = l2(ΩR1) → k = l2(ΩR2) explicitly.

Theorem 4.4

Let the system of vector spherical harmonics be given as in Lemma 2.2.

Then we have for R2 < R1

TR1,R2u
(1),R1

n,k = −

√

n

2n+ 1

(

R2

R1

)n+1

u
(3),R2

n,k , (18)

TR1,R2u
(2),R1

n,k = 0, (19)

TR1,R2u
(3),R1

n,k = −

√

n+ 1

2n+ 1

(

R2

R1

)n

u
(2),R2

n,k , (20)

while for R2 > R1

TR1,R2u
(1),R1

n,k = 0, (21)

TR1,R2u
(2),R1

n,k = −

√

n+ 1

2n+ 1

(

R1

R2

)n

u
(3),R2

n,k , (22)

TR1,R2u
(3),R1

n,k = −

√

n

2n+ 1

(

R1

R2

)n+1

u
(1),R2

n,k , (23)

For a proof of this theorem the reader is referred to [17]. The proof is mainly based on the

decomposition of the system {u
(i)
n,k} in terms of the system {y

(i)
n,k} and the representation

of the Biot-Savart operator as the curl of a vectorial double-layer potential given in (17).
To be more specific, the expansion of the fundamental solution of the Laplace operator,
1/|x− y|, in terms of Legendre polynomials and a vectorial Funk-Hecke formula are used,
which both can be found in [8].

Physically interpreted Corollary 4.4 connects the components of a spherical current sys-
tem to the corresponding magnetic field at a different height. In other words the corollary
states that current systems of class l

2,(2)
U (ΩR1) induce no magnetic field inside the sphere,

where they are present and current systems of class l
2,(1)
U (ΩR1) produce no magnetic field

outside the sphere ΩR1 . This is a generalized mathematical form of a result presented
in [11] which states that spherical poloidal currents produce no magnetic field inside the
sphere where they are present.

Observing that T ∗
R1,R2

= TR2,R1 and combining the results of the previous theorem yields

Corollary 4.5

Let the system of vector spherical harmonics be given as in Lemma 2.2.
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Then we have for R2 < R1

T ∗
R1,R2

TR1,R2u
(1),R1

n,k =
n

2n+ 1

(

R2

R1

)2n+2

u
(1),R1

n,k , (24)

T ∗
R1,R2

TR1,R2u
(2),R1

n,k = 0, (25)

T ∗
R1,R2

TR1,R2u
(3),R1

n,k =
n+ 1

2n+ 1

(

R2

R1

)2n

u
(3),R1

n,k , (26)

and for R2 > R1

T ∗
R1,R2

TR1,R2u
(1),R1

n,k = 0, (27)

T ∗
R1,R2

TR1,R2u
(2),R1

n,k =
n+ 1

2n+ 1

(

R1

R2

)2n

u
(2),R1

n,k , (28)

T ∗
R1,R2

TR1,R2u
(3),R1

n,k =
n

2n+ 1

(

R1

R2

)2n+2

u
(3),R1

n,k , (29)

Since we deal with the situation that resulting field measurements are given on a sphere
which is above the source field, we are mainly interested in the last three equations of
Corollary 4.5 and in Eq. (21 - 23) of Theorem 4.4.

Eq. (18 - 20) and Eq. (21 - 23) now establish the starting point to apply the multiscale
regularization techniques for vectorial inverse problems which has been developed in Sec-
tion 3. The singular system of the Biot-Savart operator TR1,R2 : h → k, for R2 < R1, is
given in Table 1 and, for R1 < R2, in Table 2.

h k {hn} {kn} σn

l
2,(1)
U (ΩR1) l

2,(3)
U (ΩR2) u

(1),R1

n,k −u
(3),R2

n,k

√

n
2n+1

(

R2

R1

)n+1

l
2,(3)
U (ΩR1) l

2,(2)
U (ΩR2) u

(3),R1

n,k −u
(2),R2

n,k

√

n+1
2n+1

(

R2

R1

)n

Table 1: Singular system of the spherical Biot-Savart operator TR1,R2 : h → k for the case
R2 < R1.

h k {hn} {kn} σn

l
2,(2)
U (ΩR1) l

2,(3)
U (ΩR2) u

(2),R1

n,k −u
(3),R2

n,k

√

n+1
2n+1

(

R1

R2

)n

l
2,(3)
U (ΩR1) l

2,(1)
U (ΩR2) u

(3),R1

n,k −u
(1),R2

n,k

√

n
2n+1

(

R1

R2

)n+1

Table 2: Singular system of the spherical Biot-Savart operator TR1,R2 : h → k for the case
R2 > R1.

It is obvious that the singular values of the Biot-Savart operator given in Table 1 and
Table 2 constitute an exponentially ill posed problem. In order to force convergence we
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have to replace the generalized inverse by a filtered version of this expansion. This has
been done in Section 3 in a general multiscale framework for regularization of vectorial
inverse problems (see e.g. [6] or [15]).

5 An Application to CHAMP Magnetic Field Data

The morphology of the geomagnetic variations produced by ionospheric currents can only
weakly be represented in a coordinate system which is Earth fixed. This is because the
magnetic field induced by currents is not linked to geographical longitude and latitude
as, for example, is the lithospheric field. It is rather fixed to the position of the Sun and
the distance of the observer (in this case the satellite) to the geomagnetic equator. Thus,
in order to describe these phenomena we have to change the reference system from an
Earth fixed frame to a Sun fixed frame. A coordinate system which is commonly used in
geophysics in this context is the Magnetic Local Time (MLT) and Quasi Dipole Latitude
(QDlat). The magnetic local time thereby denotes the relative position of the observer
with respect to the magnetic field and the Sun and the quasi dipole latitude represents
the relative position of the observer with respect to the geomagnetic equator. For more
information concerning the description of geomagnetic coordinate system the reader is
referred to [20] and the reference therein.

5.1 An Application to CHAMP Magnetic Field Data

To show that our method is able to handle data in this coordinate system we take just
three days of CHAMP (a German geosientific research satellite operated by the GFZ
Potsdam) magnetic field data (10., 20. and 21. September 2001) which where avail-
able at the internet page http://www.dsri.dk/multimagsatellites /types/equato-

rial electrojet.html. In these days CHAMP was at 12.30 and 00.30 local time. The
data are averaged to an equiangular integration grid (in the coordinate system (MLT,
QDlat)) using an algorithm presented in [17]. The reference system (MLT, QDlat), with
values QDlat ∈ [−90, 90] and MLT ∈ [0, 24] is thereby just seen as another coordinate
system parameterizing the unit sphere where the magnetic local time is seen as a linear
transformation of the longitude with MLT = 12 representing the zero meridian.

We apply the method presented in the previous section to the CHAMP data set in order to
reconstruct the toroidal part contained in l

2,(3)
U (ΩR1) of the equivalent ionospheric current

system from the poloidal part of the magnetic field measurements. Since we are in the
case of R2 > R1, Eq. (21) of Corollary 4.4 plays the essential role in our regularization
step. The functional-analytic framework is given as follows. We have to regularize the
inversion of TR1,R2 : h → k, where TR1,R2 is the spherical Biot-Savart operator given in
Definition 4.2 and

h = l
2,(3)
U (ΩR1), {hn′} = {−u

(3),R1

n,k } n=1,...;
k=1,...,2n+1

,

k = l
2,(1)
U (ΩR2), {kn′} = {u

(1),R2

n,k } n=1,...;
k=1,...,2n+1

,

σn′ =

√

n

2n+ 1

(

R1

R2

)n+1

, n′ ∈ N .
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The result of our reconstruction with a regularization vector cubic polynomial scaling
function at scale J = 3 can be seen in Figure 5.1. The maximal strength of the detected
equivalent ionospheric current system is approximately 10mA/m. According to [3] the
amplitude of the solar quiet mid latitude ionospheric current systems is 10 − 36mA/m.
This shows that the detected current system is in the lower band width of the real iono-
spheric current systems. Since the scale of reconstruction is very low it can be assumed
that the real strength of the current system is higher than the reconstructed amplitude.

Figure 1: Equivalent horizontal current distribution in the Sun fixed coordinate system
(QDlat, MLT) at a height of 110 km calculated using a regularization vector cubic poly-
nomial scaling function expansion at scale J = 3.

With respect to the given amount of data (3 days of CHAMP magnetic field measure-
ments) the reconstructed current system shown in Figure 5.1 is a remarkable result. It
demonstrates that the used trial functions, i.e. regularization vector scaling functions and
wavelets, are an adequate choice for handling the problem. As already mentioned in [14]
the main disadvantage of spherical harmonics is that the reconstructed current system on
the day-side of the Earth will appear on the night-side as well because of symmetry argu-
ments. This problem does not appear if scaling functions and wavelets are used. These
kernel functions do not fulfill an exact frequency localization property which is not needed
for the reconstruction of the current system anyway, but they provide the possibility of
space localizing reconstruction and this property is much more important for the recon-
struction of a ionospheric current distribution from given magnetic field measurements.

In order to demonstrate the regional applicability of the presented multiscale techniques
for reconstructing ionospheric current systems from CHAMP magnetic field data we cal-
culate the toroidal part of the equivalent ionospheric current system at a height of 110 km
from CHAMP magnetic field measurements. The local reconstruction is performed in a
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region given by QDlat ∈ [−30, 30] and MLT ∈ [08.00, 16.00], i.e. in an area, where strong
ionospheric current systems like the equatorial electrojet are present. For this reconstruc-
tion we took data of several months between September 2001 and June 2002 in order
to get an appropriate coverage of measurements in the region of interest. For further
information concerning data selection and preprocessing steps see [17].

The reconstruction of the equivalent ionospheric current system with a regularization
vector cubic polynomial scaling function at scale J = 5 can be seen in Figure 2. The
maximal reconstructed strength of the current system is approximately 25 mA/m which
is a more realistic value than the amplitude of the reconstruction in Figure 5.1.

Figure 2: Local reconstruction (QDlat ∈ [−30, 30], MLT ∈ [08.00, 16.00]) of the equiva-
lent ionospheric current distribution at a height of 110 km calculated using a regularization
vector cubic polynomial scaling function expansion at scale J = 5.

5.2 An Application to SWARM Magnetic Field Data

In the following section we give an example how the multiscale method of reconstructing
current systems from magnetic field data can be used in connection with the proposed
satellite mission SWARM.
SWARM is a satellite mission proposed by a consortium of 27 institutes and universities
under the leadership of the Danish Space Research Institute (DSRI Kopenhagen). It is
designed to study the dynamics of the Earth’s magnetic field and its interactions with the
system Earth. The concept consists of a constellation of four satellites of the CHAMP
type in two different polar orbits between 400 km and 550 km altitude. To simulate the
SWARM mission and the emphasize its advantages a simulator (based on the comprehen-
sive model of the near-Earth magnetic field described in [21]) has been implemented at
the GFZ Potsdam and the data has been made available at the DSRI Kopenhagen.
To test our method with a big amount of satellite data we took 60 days of data between
January 2000 and April 2000 of one of the low flying SWARM satellite’s. The period of
4 months is necessary to get data within all magnetic local times. As before the data
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is transformed to the (MLT, QDlat) coordinate system and averaged to an equiangular
integration grid (in the coordinate system (MLT, QDlat)).

The ionospheric current system which has been used to simulate SWARM magnetic field
data is a purely toroidal, horizontal current system at a height of 110 km (see [21]). Thus,
in order to apply our method to reconstruct the current system corresponding to the
simulated magnetic field data we are in the same functional-analytic situation as in the
previous subsection.

A reconstructed equivalent ionospheric current system at a height of 110 km obtained with
a regularization cubic polynomial vector scaling function at scale J = 5 can be found
in Figure 3. The main contours of the ionospheric current system are reconstructed.
In order to reconstruct finer details of the current system a higher resolution of the
simulated satellite tracks (at the moment 1 sample/min ' 440 km sample distance) would
be necessary. The corresponding current function of the current system presented in
Figure 3 which can easily be reconstructed in the multiscale framework presented in this
article (see [17] for more details) can be found in Figure 4.

Figure 3: Equivalent horizontal current distribution in the Sun fixed coordinate system
(QDlat, MLT) at a height of 110 km calculated using a regularization vector cubic poly-
nomial scaling function expansion at scale J = 5.
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Figure 4: Equipotential lines of the current function of the equivalent horizontal current
distribution in the Sun fixed coordinate system (QDlat, MLT) calculated using a reg-
ularization scalar cubic polynomial scaling function at scale J = 5. Red indicates the
maximum strength of the current function while blue indicates the minimum.
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