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Abstract

The arti cle is concerned with the modelling of ionospheric current systems from
induced magnetic � elds measured by satelli tes in a multiscale framework. Scaling
functions and waveletsare used to realizea multi scaleanalysis of the functi on spaces
under consideration and to establish a multiscale regularization procedure for the
inversion of the considered vectorial operator equation. Based on the knowledgeof
the singular system a regularization technique in terms of certain product kernels
and corresponding convolutions can be formed.
In order to reconstruct ionospheric current systems from satellite magnet ic � eld
data, an inversion of the Biot-Savart's law in terms of mult iscale regularization
is derived. The corresponding operator is formulated and the singular values are
calculated. The method is tested on real magnetic � eld data of the satell ite CHAM P
and the proposed satell ite mission SWARM.
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1 In tr oducti on

If looking for �rst result s concerninga mathematical treatment of ionospheric current
systemsand the corresponding magnetic �elds it is inevitable to have a look at the con-
siderations in [14]. In this book both, the ionospheric current systemsat the lower iono-
sphere(110km) and the induced magnetic �eld on a sphereabove are developed in a
Fourier seriesin terms of sphericalharmonics (called Gauss representat ion, due to [12]).
The corresponding Fourier coe�cien ts of both �elds can be connectedin an analyt ic way.
This way of modelling e�ects of ionospheric currents and magnetic �elds seemsto be not
the best way nowadays if thinking of the changed geomagnetic data sit uation and the
improved knowledgeof the ionosphere. This article givesan improved tool for modelling
and reconstruct ing ionospheric current systemfrom corresponding magnetic �e ld data on
di�eren t spatial scales.

Reasonably modelling the geomagnetic �eld on global or regional scales requires dense
and homogeneous vectorial data sets. As regards the subject of global and densecover-
age, satellit es orbiting the Earth in low, near-polar orbits provide �rm basisfor acquiring
the necessary high resolution observations. The German CHAMP satellite missionwhich
started in summer2000 is, besidesother tasks,designed for highly accurate geomagnet ic
�eld mapping.

But, it is not only essential to have available adequatedata sets, it is also necessary to
have at hand the appropriate mathematical tools allowing reasonable analysis of the �e ld
data. Kernel funct ionssuch asscalingfunct ionsand waveletsre
ect thesmall scalespatial
variabilit y of ionosphericcurrents and the induced magnetic �eld. For a comprehensive
intr oduction of kernel functions the reader is referred to [7], [8], [10] or [16]. Sinceboth
the magnet ic �eld and the current systemare vector �elds the natural way of modelling
these�elds is by tensor kernel funct ion and linear tensor convolutions (see[8], [18]). This
linear technique is circumvented in this article by an equivalent bilinear two step method
using vector kernel functions two di�eren t convolutions. Similar approacheshave already
been proposedin [2], [9] or [16]

The outline of this article is as follows. First of all we give the necessary notation. Addi-
tionally, two completeand closedorthonormal systemsin the spaceof square integrable
spherical vector �elds are presented. Thesesystemsof vector spherical harmonics give
the foundation for the multiscale modelling of vector �e lds in the following sections.
Section3 givesa general approach to the theory of multiscale regularization techniques of
vectorial inverseproblems. We present, how regularization vector scaling funct ions and
wavelets are constr ucted and develop the aforementioned bilinear two step method for
regularization.
In Section 4 the 'inverse source problem' is introduced, i.e. the reconstruction of iono-
spheric current systems corresponding to given magnetic �eld data. An ansatz of how
this problem can be modelled involving satellit e geometries is presented. The necessary
tools (such as the singular system of the corresponding operator) are derived in order to
usethe multiscale technique presented in Section 3.
Section 5 dealswith the application of our mult iscale method of reconstructing current
system from magnetic �eld data to data sets of two di�eren t satellite missions, i.e. to
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CHAMP satellit e data and to simulated magnet ic �eld data of the proposedSWARM
mission.

2 Prel im inar ies

In this section the reader is provided with the essential tools used in the course of this
article. We start with introducing some basic notation and the nomenclature which is
usedin our considerations.

2.1 N ot ati on

During the courseof this article we will permanently be confronted with scalar which are
denotedby capital letters (F; G; etc) and vector �elds which are symbolized by lower-case
letters (f ; g; etc).

A sphereof radius R centered around the origin is denotedby 
 R = f x 2 R3 j jxj = Rg.
In particular, 
 = 
 1 is the unit sphere in R3. We set 
 in t

R for the 'inner space' of 
 R ,

 in t

R = f x 2 R3 j jxj < Rg while 
 ext
R = R3 n 
 in t

R is the 'outer space'of 
 R . Clearly,

 ext

R = f x 2 R3 j jxj > Rg. By 
 (R1 ;R1 ) we denote the open spherical shell with inner
radius R1 and outer radius R2 given by 
 (R1 ;R2 ) = f x 2 R3 j R1 < jxj < R2g.

In what follows we need a number of di�e rential operators which we introduce next.
r x = (@=@x1; @=@x2; @=@x3)T denotes the gradient in cartesian coordinates in R3 and r �

represents it s tangential part, calledsurface gradient. The Laplace operator is symbolized
by � = r � r and the corresponding tangent ial operator, called Beltrami operator, is given
by � � = r � � r � . The curl gradient L x is givenby L x = x^ r x with tangent ial counterpart
given by L � which is called surface curl gradient. For more information concerningthese
operators the reader is referredto [8].
Let f be a tangential vector �eld with respect to the sphere
 R , i.e. f � � = 0 for all � 2 
.
Furthermore, let f possess the component functions Fi , i.e. f (x) =

P 3
i =1 Fi (x)� i , x 2 
.

Then the surface divergence r � � and the surface curl divergence L � � are de�ned by

r � � f =
3X

i =1

(r � Fi ) � � i ; L � � f =
3X

i =1

(L � Fi ) � � i :

A variety of function spaceswill be neededin this article. Let C(U) be the set of all con-
tinuous, real functions de�ned on the set U � R3, equipped with the standard supremum
norm. A function is said to be of classC(k)(U); 0 � k � 1 , if it is k� times continuously
di�eren tiable on U. If U � R3 is a measurable subset of R3, the set of scalar functions
F : U ! R which are measurableand for which

jjF jj L p (U) =
� Z

U
jF (x)jp dx

� 1
p

< 1

is denotedby L p(U), where dx denotesthe volume element in U. Note that in the case
of U = 
 R with radius R > 0 we write d! R(x) insteadof dx and d! (x) insteadof d! 1(x).
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In analogy to the scalar casewe de�ne funct ion spaces of vector valued functions. These
spaceswill normally be symbolizedby lower-case lett ers. Let c(U) be the set of all vector
valued, continuous functions f : U ! Rn de�ned on the set U � R3, equipped with the
norm

jj f jj c(U) = sup
x2 U

jf (x)j:

A vector �eld f is said to be of classc(k)(U); 0 � k � 1 , if every component funct ion
f � � i , i = 1; : : : ; n, of f is k� times continuously di�eren tiable on U. The set of vector
�elds f : U ! R which are measurableand for which

jj f jj lp (U) =
� Z

U
jf (x)jp dx

� 1
p

< 1

is denoted by lp(U).

2.2 Tw o Sets of Vect or Spherica l Ha rmonics

In what follows scalar spherical harmonics are intr oduced. The approach presented here
is basedon [8]. Scalar spherical harmonics are restrictions of homogeneous harmonic
polynomials in R3 to the unit sphere.More explicitly, let Hn : R3 ! R be a homogeneous
harmonic polynomial of degreen, i.e.

1. Hn is polynomial of degree n in R3,

2. Hn (�x ) = � nHn (x) for all � 2 R and x 2 R3 (homogeneity),

3. � xHn (x) = 0 for all x 2 R3 (harmonicity),

then the restr iction Yn = Hn j 
 is called a scalar spherical harmonic of degree n. An
essent ial result of the theory of scalar sphericalharmonics is the fact that any spherical
harmonic Yn ; n 2 N0 ; is an in�nitely often di�eren tiable eigenfunction of the Belt rami
operator � � corresponding to the eigenvalue � n(n + 1) ; n 2 N0 ; i.e.

� �
� Yn (� ) = � n(n + 1)Yn (� ); � 2 
 ; Yn 2 H armn (
) ; n 2 N0

and vice versa. Throughout the remainder of this work, we denote by f Yn;k gk=1 ;:::;2n+1 a
completeorthonormal systemin the space H armn (
) with respect to the inner product
(�; �)L 2 (
 ) .

The systemof sphericalharmonics is closedand complete in L 2(
). For a generalde�-
nition of closureand completenessand relations betweenthe two terms in Hilbert spaces
the reader is referrede.g. to [4]. It is obvious that the systemf Y R

n;k g = f 1
R Yn;k ( �

R )g forms
an closedand complete orthonormal systemin L 2(
 R).

In order to construct a systemof vector spherical harmonics in the spacel2(
) out of the
systemof scalar spherical harmonics we intr oducethe following operators.

De�ni ti on 2.1
For � 2 
 and F 2 C(0 i )(
) the operators o(i ) : C(0 i )(
) ! c(
) ; i 2 f 1; 2; 3g; are de�ned
via

o(1)
� F (� ) = � F (� ); o(2)

� F (� ) = r �
� F (� ); o(3)

� F (� ) = L �
� F (� ):
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wherewe have usedthe abbreviation

0i =

(
0 if i = 1

1 if i = 2; 3:

It is clear that o(1)F is a radial vector �eld, while o(2) F and o(3) F are purely tangent ial.
Furthermore, the operators o(i ) can be extendedin a canonical way to the spacel2(
).

Motivated by the operators o(i ) we will now intr oducevector spherical harmonics.
If f Yn;k gn=0 ;1;:::;k=1 ;:::;2n+1 is an L 2(
) � orthonormal set of scalar spherical harmonics it
easily follows by the properties of the o(i ) � operators (see[8]) that

y(i )
n;k = (� (i )

n )� 1=2o(i )Yn;k ;

i 2 f 1; 2; 3g; n � 0i ; k = 1; : : : ; 2n + 1; forms an l2(
) � orthonormal system of vector
sphericalharmonics, wherethe normalization values � (i )

n are given by

� (i )
n =

(
1 if i = 1

n(n + 1) if i = 2; 3:
(1)

It is known that the system f y(i )
n;k g is a complete and closed orthonormal system in

l2(
).Accor ding to our construct ion we get

� ^ y(1)
n;k (� ) = 0; � � y(2)

n;k (� ) = 0; � � y(3)
n;k (� ) = 0;

L �
� � y(2)

n;k (� ) = 0; r �
� � y(3)

n;k (� ) = 0:

To construct a second set of vector sphericalharmonicswe usethe restriction of homoge-
neousharmonic vector polynomials to the sphere.This systemis known from theoretical
physicsand developed, for example, in [1] or [5]. The introduction of the system given in
this article follows mainly the courseof [19]. According to our nomenclature a systemof
vector spherical harmonics is adequately described by the following lemma.

Lemm a 2.2
Let f Yn;k g n =0 ;1;: :: ;

k =1 ;: :: ;2n +1
bean L 2(
) � orthonormal systemof scalar sphericalharmonics. Then

the vector �elds

u(1)
n;k = (� (1)

n )� 1=2
�
(n + 1)o(1) Yn;k � o(2) Yn;k

�
;

=

r
n + 1
2n + 1

y(1)
n;k �

r
n

2n + 1
y(2)

n;k ; n = 0; 1; : : : ; k = 1; : : : ; 2n + 1;

u(2)
n;k = (� (2)

n )� 1=2
�
no(1) Yn;k + o(2) Yn;k

�
;

=
r

n
2n + 1

y(1)
n;k +

r
n + 1
2n + 1

y(2)
n;k ; n = 1; 2; : : : ; k = 1; : : : ; 2n + 1;

u(3)
n;k = (� (3)

n )� 1=2o(3) Yn;k = y(3)
n;k ; n = 1; 2; : : : ; k = 1; : : : ; 2n + 1;

4



form an l2(
) � orthonormal set of vector spherical harmonics with the normalization
coe�cie nts given by

� (i )
n =

8
><

>:

(n + 1)(2n + 1) for i = 1; n 2 N0;

n(2n + 1) for i = 2; n 2 N;

n(n + 1) for i = 3; n 2 N :

The proof of this lemma easily follows from computations involving the orthonormalit y
of the systemf y(i )

n;k g. The reader should note, that the systemf u(i )
n;k g doesnot separate

betweenradial and tangential �e lds. However, as we will seelater, this systemhasother
advantageous properties in electro- and magnetostatic modelling. A direct consequence
of the closure and completenessof the systemf y(i )

n;k g is the following result.

Coroll ary 2.3
Let the systemof vector sphericalharmonicsf u(i )

n;k g i =1 ;2;3
n =0 i ;: :: ;k =1 ;: :: ;2n +1

bede�ned asin Lemma2.2.

Then the following statements are valid:

1. The systemof vector sphericalharmonics is closed in c(
) with respect to jj � jj c(
 )

and jj � jj l2 (
 ) .

2. The systemis completein l2(
) with respect to (�; �) l2 (
 ) .

Note that the systemof vector sphericalharmonics given by

u(i );R
n;k =

1
R

u(i )
n;k ; i 2 f 1; 2; 3g; n = 0i ; : : : ; k = 1; : : : ; 2n + 1; (2)

establishesa closedand completeorthonormal systemin the Hilbert spacel2(
 R).
In the senseof subspacesof the Hilbert space l2(
 R) the above results may be written as
follows.

l2(
 R) = l2;(1)
U (
 R) � l2;(2)

U (
 R) � l2;(3)
U (
 R); (3)

with

l2;(i )
U (
 R) =

1M

n=0 i

spanf u(i );R
n;k jk = 1; : : : ; 2n + 1g

jj�j j l 2 (
 R )

: (4)

For both orthonormal systems f y(i )
n;k g and f u(i )

n;k g certain vectorial addition theoremscan
be formulated (see[8]). The interested readeris referredto [19], wheresystemsof vector
sphericalharmonics are intr oducedin a very completemanner.
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3 Mul ti scale Regul ari zati on of Vecto ri al In verse Prob-
lem s

In the following sectionwe will give the functional-analyt ic background and the construc-
tion of our multiscale technique for the regularization of vectorial ill-p osed problems.

Let (h; (�; �)h) and (k; (�; �)k) be two separable Hilbert spacesof both vector valued functions
(with valuesin R3) de�ned on the domain Dh � Rm , respectively, Dk � Rm and let g 2 k
be given. Then we search the function f 2 h, which is related to g via

� : h ! k; � f = g; (5)

wherethe operator � is assumedto be bounded,linear and compact with singular system
f � n ; hn ; kngn=0 ;1;::: . The sequencef � 2

ng form the non-zero eigenvalues of the selfadjoint
operator � � � which are assumedto be numbered in descendingorder. f hng is a complete

orthonormal systemin R(� � )
jj�j jh such that � hn = � nkn , while f kng denotesa complete

orthonormal systemin R(� )
jj�j jk such that � � kn = � nhn .

As is well-known, the problem of solving this operator equation is called well-posed in the
sense of Hadamard, if for each g 2 k there exists one and only one f 2 h with � f = g
(existenceand uniquenessof the inverse) and the solution f 2 h depends cont inuously on
the right hand side g 2 k (continuity of the inverse). If at least one of theseproperties is
violated, then the problem is said to be il l-posed (seee.g. [6] or [15]).

The Picard condition tells us that the problem (5) has a solution if and only if g 2 k
satis�es

1X

n=

�
� � 1

n (g; kn )k
� 2

< 1 :

In practical applications we are generally not concernedwith the ideal situation of a well-
posedproblem. First of all a solution of � f = g exists only if g is in R(� ), the range
of � . Errors due to unprecise measurements result in noisy data which may cause that
g =2 R(� ). The perturb ed right hand sidewill be denotedby g� with a known error level
given by

jjg� � gjj k � � : (6)

In order to de�ne a solution even in this casewe consideran approximate solution, which
occupiesthe least-squaresproperty, i.e. one seeksthat element of h solving minf 2 h jj � f �
g� jj k. If � is injective, the solution of minf 2 h jj � f � g� jj k is uniquely determined as the

orthogonal projection of g� onto R(� )
jj�j jk , otherwisethere exist in�nitely many solutionsif

g� 2 R(� )? . Then weare interestedin the least-squaressolution which is of minimal norm
jj f jj h. Determining the desiredleast-squares solution with minimal norm is equivalent to
the determination of the (unique) generalizedsolution f + . The generalized inversefor
the above problem can be given in terms of the singular systemby

f + = � + g =
1X

n=0

� � 1
n (g; kn )khn ; g 2 R(� ) � R(� )? : (7)

However, the described concept of least-squares solution with minimal norm fails, if
g =2 R(� ) � R(� )? or the generalized inverse operator � + is not continuous. Then,
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the lack of continuity needsto be replaced by a regularization of � + . In other words, in
the situation that only a disturbedright hand sideis known insteadof g, we are interested
in an approximation of the generalized solution f + which dependscont inuously on the
given data.

At �r st we have to de�ne more precisely what is understood by the above mentioned term
of regularization.

De�ni ti on 3.1
Let (h; (�; �)h) and (k; (�; �)k) be two separable Hilbert spacesand let � : h ! k be linear
and bounded. Then the family of operators � J : k ! h, J 2 Z, is called a regularization
of the generalizedinverse� + if the following conditions are ful�lled:

1. � J is linear and bounded on k for all J 2 Z.

2. For any g 2 R(� ) � R(� )? , the limit relation

lim
J !1

jj � J g � � + gjj h = 0

holds.

The funct ion f J = � J g is called J-level regularization of the problem � f = g and the
parameter J is called regularization parameter.

In what follows, the development of the multir esolution analysisfor regularization will be
basedon so-called vector product kernelswhich are de�ned next. For the de�nitio n we
needanother separable Hilbert spaceof scalar valued functions de�ned over the domain
DH which will be given by (H ; (�; �)H ) and which will be called 'park Hilbert space'.

De�ni ti on 3.2
Let (h; (�; �)h) and (H ; (�; �)H ) be real separable Hilbert spacesof vector, respectively, scalar
valued functions over the domain Dh � Rm , respectively, DH � Rm . Let , furthermore,
f hngn2 N and f Hngn2 N be corresponding countable, orthonormal and completesystems in
h and H, respectively. Then, a function 
 (�; �) : Dh � DH ! R3 of the form


 (x; y) =
1X

n=0


 ^ (n)hn (x)Hn (y); x 2 Dh; y 2 DH ;

is called (h; H)� vector product kernel . The sequencef 
 ^ (n)gn=0 ;1;::: is the symbol of the
vector product kernel. The symbol is called (h; H)� admissibleif

1X

n=0

(
 ^ (n)hn (x))2 < 1 x 2 Dh;
1X

n=0

(
 ^ (n)Hn (y))2 < 1 y 2 DH :

By the admissibilit y of the symbol we can concludethat � i � 
 (x; �) 2 H for every �xed
x 2 Dh and i = 1; 2; 3; and 
 (�; y) 2 h for every �xed y 2 DH .

Next, we have to introduce two convolutions, i.e. a decomposition convolution which
results in a scalar function and a reconstruction convolution which maps the scalar �e ld
back to a vector valued function.
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De�ni ti on 3.3
Let 
 : Dh � DH ! R3 be a vector product kernel with (h; H)� admissiblesymbol. The
h� convolution of 
 against a vector valued function f 2 h is de�ned by

(
 � h f )(y) = (
 (�; y); f )h ; y 2 DH ;

while the ?� convolution of a product kernel 
 against a scalar valued function G 2 H is
de�ned by

(
 ? G)(x) =
3X

i =1

�
� i � 
 (x; �); G

�
H

; x 2 Dh:

By the admissibility of the product kernel 
 it is clear that

(
 � h f ) 2 H ; f 2 h; (
 ? G) 2 h; G 2 H:

Using the orthonormalit y of the systemf hng in the Hilbert spaceh we easily get


 � h f =
1X

n=0


 ^ (n)f ^ (n)Hn (8)

for f 2 h in the senseof the H � norm, where f f ^ (n)g are the Fourier coe�cien ts of f
with respect to the system f hng � h. With the same argument we �nd for G 2 H


 ? G =
1X

n=0


 ^ (n)G^ (n)hn (9)

in the senseof the h� norm where f G^ (n)g are the Fourier coe�cien ts of G with respect
to the systemf Hng � H .

Basedon the de�nit ion of a vector kernel and the two convolutions we are now able to
construct a regularization as a vector mult iresolution analysis of the problem (5). We
de�ne regularization vector scalingfunctions via their symbol as follows.

De�ni ti on 3.4
Let the Hilbert spacesh, k and H be given asabove. Furthermore, let f (' J )^ (n)gn=0 ;1;::: ,
J 2 Z, be (h; H)� and (k; H )� admissiblesatisfying the following properties:

1. lim
J ! 1

(( ' J )^ (n))2 = � � 1
n ; n 2 N;

2. (( ' J )^ (n))2 � (( ' J � 1)^ (n))2 ; J 2 Z; n 2 N;

3. lim
J ! � 1

(( ' J )^ (n))2 = 0; n 2 N :

Then f (' J )^ (n)gn=0 ;1;::: is called the generating symbol of a regularization vector scaling
function. The family of kernelsf d' J g; J 2 Z; given by

d' J (x; y) =
1X

n=0

(' J )^ (n)kn (x)Hn (y); x 2 Dk; y 2 DH ;
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is called decomposition regularization vector scaling function and the family of kernels
f r ' J g; J 2 Z; given by

r ' J (x; y) =
1X

n=0

(' J )^ (n)hn (x)Hn (y); x 2 Dk; y 2 DH ;

is called reconstruction regularization vector scaling function.

Di�eren t examplesof admissiblesymbols generating regularization scaling functions can
be found in [8] or [17]. The symbol which is cont inuously usedthroughout this article is
the cubic polynomial (CP) regularization symbol given by

(' J )^ (n) =

( p
� � 1

n (1 � n=NJ )2 (1 + 2n=N j ) n = 0; : : : NJ ;

0 else;

where f NJ gJ 2 Z � N0 is a monotonically increasingsequencewhich might, for example,
by chosendyadic (i.e. NJ = 2J ).

Following the de�nitio n of regularization vector scalingfunctions we are led to the follow-
ing result.

The orem 3.5
Let f (' J )^ (n)gn=0 ;1;::: , J 2 Z, be the generating symbol of the regularization vector
scalingfunctions d' J and r ' J , respectively, asgiven in De�nitio n 3.4. Then the sequence
of operators � J ; J 2 Z; de�nes a regularization in the sense of De�nition 3.1, i.e.

lim
J !1

jj f J � � + gjj h = 0

holds for all g 2 R(� ) � R(� )? with � f = g, where � J g = f J ; given by

f J = � J g = r ' J ? (d' J � k g); (10)

is said to be the J -level approximation of � + g.

For a proof of this theorem in the scalar casethe reader is referred to [10] and in the
vector case to [17].

From now on the whole theory of mult iresolution by sphericalwavelets (see[8]) can be
transferred to the case of regularization of vectorial inverseproblems by vector scaling
functions and wavelets. We can de�ne decomposition and reconstruction regularization
vector wavelets and give a wavelet regularization theorem. We will just give some im-
portant facts of regularizing vector wavelet theory and regularizing vector mult iresolution
analysis at this point.

De�ni ti on 3.6
Let

�
(' J )^ (n)

	
n=0 ;1;:::

, J 2 Z, be the generating symbol of a regularization scalingfunc-

tion. Then the generating symbol
�

( J )^ (n)
	

n=0 ;1;:::
, J 2 Z, of the associated regulariza-

tion wavelet is de�ned via the re�nement equation

( J )^ (n) =
�
(' J +1 )^ (n)2 � (' J )^ (n)2

� 1=2
; n 2 N0: (11)
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The family
�

d J
	

, J 2 Z, of kernelsgiven by

d J (x; y) =
1X

n=0

( J )^ (n)kn (x)Hn (y); x 2 Dk; y 2 DH ;

is called decomposition regularization vector wavelet, whereasthe family f r  J g, J 2 Z, of
kernelsgiven by

r  J (x; y) =
1X

n=0

( J )^ (n)hn (x)Hn (y); x 2 Dh; y 2 DH ;

is called reconstruction regularization vector wavelet.

Next, we will give the analogue to Theorem 3.5 for regularization of the problem (5) in
terms of wavelets.

The orem 3.7
Let f (' J )^ (n)gn=0 ;1;::: , J 2 Z, be the generating symbol of a regularization vector scaling
function. Suppose that f ( J )^ (n)gn=0 ;1;::: , J 2 Z, is the generating symbol of the asso-
ciated regularization vector wavelet. Furthermore, let g be of classR(� ) � R(� )? with
� f = g. Then

f J = r ' 0 ? (d' 0 � k g) +
J � 1X

j =0

r  j ? (d j � k g)

is the J -level approximation of � + g satisfying

lim
J ! 1

jj f J � � + gjj h = 0:

The proof of this theorem immediately follows from De�nition 3.6 of a regularization
wavelet and Theorem 3.5. At last, wegive the important fact of a vectorial mult iresolution
for the regularization case.

The orem 3.8
The scale spacesvJ de�ned by vJ = � J

�
R (� ) � R(� )?

�
satisfy the following properties:

1: vJ � vJ 0 � h; J < J 0;

2:
1[

J = �1

vJ

jj�j jh

= h :

The assertions follow immediately by De�nition 3.4 and Theorem 3.5.
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4 Reconstr ucti on of Iono spheri c Cur ren ts fro m Satel-
li te Data

In the following section we discussthe essential application of this article, the recon-
struction of source terms (ionospheric currents ) corresponding to given resulting �e ld
measurements (magnet ic �eld data measuredby satellites). The systemof partial di�er-
ential equations which describes the connection of the source �eld, g, and the result ing
�eld, f , are the pre-Maxwell equations given by

r ^ f = g r � f = 0;

in a certain domain D � R3. For a deduction of this system from the full system of
Maxwell's equations the reader is referred to [1]. We assume the domain D to be a
sphericalshell, i.e. D = 
 (a;b) and g ought to be vanishing outside 
 (a;b) . The systemof
partial di�eren tial equations is an elliptic problem which is solvable if the inhomogeneity
g is known in 
 (a;b) and boundary valuesfor f are known on 
 a and 
 b. For modelling
ionospheric current systemsand the corresponding magnetic �eld from given satellit e
data this assumption, however, is unrealist ic becauseneither the sourcesystemg is given
anywhere nor the boundary values for f are given on both boundaries.
We are in the situation that magnetic �eld data are provided on a sphere
 c � 
 (a;b) with
c 2 (a;b), i.e. lying completely in the ionosphere.

4.1 The Bio t-Savar t Op erato r

In the following paragraph we introduce an approach of how the pre-Maxwell problem
in spherical geometries can be modelled and modi�ed to be uniquely solvable. We will
present the generalBiot-Savart operator which is basedon Biot -Savart's law of electro-
dynamics (seee.g. [13]). In order to apply the operator when satellite measurements
are concerned we will restrict it to sphericalgeometries. But at �rst we give the general
de�nition .

De�ni ti on 4.1
Let g : R3 ! R3 be a divergence free, di� erent iable vector �eld. Then the Biot-Savart
operator in R3, T : c(1) (R3) ! c(2) (R3), is de�ned by

f (x) = (Tg)(x) =
1

4�

Z

R3
g(y) ^ r y

1
jx � yj

dy; x 2 R3: (12)

A simple calculation shows that Tg(x) can be written as follows.

Tg(x) =
� 0

4�

Z

R3
g(y) ^

x � y
jx � yj3

dy; x 2 R3: (13)

Equation (13) is equivalent to

f (x) = r ^ a(x); x 2 R3; (14)

where

a(x) =
1

4�

Z

R3

g(y)
jx � yj

dy; x 2 R3: (15)
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The vector �e ld a is calledvector potential of g in R3. Applying the curl to Eq. (14) yields
r ^ f = g+ r (r � a). But the last term vanishesin R3 becauseof r � a = 0 which follows
directly from (15) by partial integration and by g to be of zero divergence. Thus, we get
that g is the source�eld of f , provided that f is given by (12).

As we have explained already, this operator is not suit able to cope with the present
data situation. We neit her know the result ing �eld nor the source distributio n in the
whole ionosphere, thus we are not able to solve the direct or the inversesource problem.
To overcome this problem let us rede�ne the Biot-Savart operator in a slightly di�eren t
manner.

De�ni ti on 4.2
Let R1; R2 > 0; R1 6= R2, be given and let g : 
 R1 ! R3 be a vector �eld of class l2(
 R1 ).
Then the spherical Biot Savart operator from 
 R1 to 
 R2 , TR1 ;R2 : l2(
 R1 ) ! l2(
 R2 ), is
de�ned by

f (x) = (TR1 ;R2 g)(x) =
1

4�

Z


 R 1

g(y) ^
x � y

jx � yj3
d! R1 (y); x 2 
 R2 : (16)

Note that in contr ast to De�nitio n 4.1 of the Biot-Savart operator T in R3 we do not
require g to be divergencefree or surface divergencefree here. For the spherical Biot-
Savart operator we can immediately state the following lemma.

Lemm a 4.3
For the sphericalBiot-Savart operator as de�ned in De�nitio n 4.2 the following properties
are valid.

1. The adjoint operator T �
R1 ;R2

: l2(
 R2 ) ! l2(
 R1 ) of TR1 ;R2 with respect to the
l2� inner product is given by

T �
R1 ;R2

= TR2 ;R1 :

2. For R1 6= R2 the operator TR1 ;R2 is linear, bounded and compact.

3. The operator can, for g 2 l2(
 R1 ), be rewritten as

TR1 ;R2 g(x) =

 

r x0 ^

 
1

4�

Z


 R 1

g(y)
jx0 � yj

d! R1 (y)

!! �
�
�
�
�

 R 2

: (17)

For a proof of this lemma the reader is referred to [17].

The spherical Biot-Savart operator seemsto be adequate for modelling the given data
situation. It re
ects the fact that we have only data on a single spherefrom which we
want to get as much information as possible. The spherical Biot-Savart operator solves
the spherical 'direct source problem' from 
 R1 to 
 R2 , i.e. the operator calculates the
vectorial e� ects on the sphere 
 R2 of a given spherical source distributio n on 
 R1 . Its
inverse operator T � 1

R1 ;R2
, disregarding any existence, uniquenessor continuity statements,

solves the spherical 'inversesource problem', i.e. it calculates the vectorial sourcesystem
on 
 R1 corresponding to a given resulting �eld on 
 R2 .
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By virtue of the compactnessof TR1 ;R2 weknow that the operator hasa countable singular
system. In order to constitute a multir esolution analysis for the regularization of the
inverse problem in the senseof Section 3 we have to calculate the singular systemdenoted
by f � n0; hn0; kn0g of the operator TR1 ;R2 : h = l2(
 R1 ) ! k = l2(
 R2 ) explicitly.

The orem 4.4
Let the systemof vector sphericalharmonicsbe given as in Lemma 2.2.
Then we have for R2 < R1

TR1 ;R2 u(1) ;R1
n;k = �

r
n

2n + 1

�
R2

R1

� n+1

u(3);R2
n;k ; (18)

TR1 ;R2 u(2) ;R1
n;k = 0; (19)

TR1 ;R2 u(3) ;R1
n;k = �

r
n + 1
2n + 1

�
R2

R1

� n

u(2) ;R2
n;k ; (20)

while for R2 > R1

TR1 ;R2 u(1);R1
n;k = 0; (21)

TR1 ;R2 u(2);R1
n;k = �

r
n + 1
2n + 1

�
R1

R2

� n

u(3) ;R2
n;k ; (22)

TR1 ;R2 u(3);R1
n;k = �

r
n

2n + 1

�
R1

R2

� n+1

u(1) ;R2
n;k ; (23)

For a proof of this theorem the reader is referredto [17]. The proof is mainly based on the
decomposition of the system f u(i )

n;k g in terms of the systemf y(i )
n;k g and the representation

of the Biot -Savart operator as the curl of a vectorial double-layer potential given in (17).
To be more speci�c, the expansion of the fundamental solution of the Laplace operator,
1=jx � yj, in terms of Legendrepolynomials and a vectorial Funk-Hecke formula are used,
which both can be found in [8].

Physically interpreted Corollary 4.4 connectsthe components of a sphericalcurrent sys-
tem to the corresponding magnetic �e ld at a di�eren t height . In other words the corollary
states that current systemsof class l2;(2)

U (
 R1 ) induce no magnetic �eld inside the sphere,
wherethey are present and current systemsof classl2;(1)

U (
 R1 ) produceno magnet ic �eld
outside the sphere
 R1 . This is a generalized mathematical form of a result presented
in [11] which states that sphericalpoloidal currents produceno magnetic �e ld inside the
spherewherethey are present.

Observingthat T �
R1 ;R2

= TR2 ;R1 and combining the results of the previous theorem yields

Coroll ary 4.5
Let the systemof vector sphericalharmonicsbe given as in Lemma 2.2.

13



Then we have for R2 < R1

T �
R1 ;R2

TR1 ;R2 u(1);R1
n;k =

n
2n + 1

�
R2

R1

� 2n+2

u(1);R1
n;k ; (24)

T �
R1 ;R2

TR1 ;R2 u(2);R1
n;k = 0; (25)

T �
R1 ;R2

TR1 ;R2 u(3);R1
n;k =

n + 1
2n + 1

�
R2

R1

� 2n

u(3) ;R1
n;k ; (26)

and for R2 > R1

T �
R1 ;R2

TR1 ;R2 u(1) ;R1
n;k = 0; (27)

T �
R1 ;R2

TR1 ;R2 u(2) ;R1
n;k =

n + 1
2n + 1

�
R1

R2

� 2n

u(2) ;R1
n;k ; (28)

T �
R1 ;R2

TR1 ;R2 u(3) ;R1
n;k =

n
2n + 1

�
R1

R2

� 2n+2

u(3) ;R1
n;k ; (29)

Sincewe deal with the situation that resulting �eld measurements are given on a sphere
which is above the source�eld, we are mainly interested in the last three equations of
Corollary 4.5 and in Eq. (21 - 23) of Theorem 4.4.

Eq. (18 - 20) and Eq. (21 - 23) now establish the starting point to apply the mult iscale
regularization techniquesfor vectorial inverse problemswhich hasbeen developed in Sec-
tion 3. The singular system of the Biot-Savart operator TR1 ;R2 : h ! k, for R2 < R1, is
given in Table 1 and, for R1 < R2, in Table 2.

h k f hng f kng � n

l2;(1)
U (
 R1 ) l2;(3)

U (
 R2 ) u(1) ;R1
n;k � u(3) ;R2

n;k

p n
2n+1

�
R2
R1

� n+1

l2;(3)
U (
 R1 ) l2;(2)

U (
 R2 ) u(3) ;R1
n;k � u(2) ;R2

n;k

q
n+1
2n+1

�
R2
R1

� n

Table 1: Singular systemof the sphericalBiot-Savart operator TR1 ;R2 : h ! k for the case
R2 < R1.

h k f hng f kng � n

l2;(2)
U (
 R1 ) l2;(3)

U (
 R2 ) u(2) ;R1
n;k � u(3) ;R2

n;k

q
n+1
2n+1

�
R1
R2

� n

l2;(3)
U (
 R1 ) l2;(1)

U (
 R2 ) u(3) ;R1
n;k � u(1) ;R2

n;k

p n
2n+1

�
R1
R2

� n+1

Table 2: Singular systemof the sphericalBiot-Savart operator TR1 ;R2 : h ! k for the case
R2 > R1.

It is obvious that the singular values of the Biot-Savart operator given in Table 1 and
Table 2 constitute an exponentially ill posed problem. In order to force convergencewe
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have to replacethe generalized inverseby a �ltered version of this expansion. This has
been done in Sect ion 3 in a general multiscale framework for regularization of vectorial
inverse problems(seee.g. [6] or [15]).

5 A n Appl icat ion to CH AMP Mag net ic Fi eld Data

The morphology of the geomagnetic variations produced by ionospheric currents canonly
weakly be represented in a coordinate systemwhich is Earth �xed. This is becausethe
magnetic �eld induced by currents is not linked to geographical longitude and latit ude
as, for example,is the lithospheric �eld. It is rather �x ed to the position of the Sun and
the distanceof the observer (in this casethe satellite) to the geomagnetic equator. Thus,
in order to describe thesephenomena we have to change the reference system from an
Earth �xed frame to a Sun �x ed frame. A coordinate systemwhich is commonly used in
geophysicsin this context is the Magnetic Local Time (MLT) and Quasi Dipole Latit ude
(QDlat) . The magnetic local time thereby denotes the relative position of the observer
with respect to the magnetic �eld and the Sun and the quasi dipole latitude represents
the relative position of the observer wit h respect to the geomagnetic equator. For more
information concerning the description of geomagnetic coordinate system the reader is
referredto [20] and the reference therein.

5.1 A n Appl icat ion to CH AMP M agneti c Field Data

To show that our method is able to handle data in this coordinate systemwe take just
three days of CHAMP (a German geosienti�c research satellite operated by the GFZ
Potsdam) magnetic �eld data (10., 20. and 21. September 2001) which where avail-
able at the internet page ht tp :// www.dsr i. dk/ multi magsate lli te s /ty pes/e quato -
ri al el ectro je t.h tml . In thesedays CHAMP was at 12.30 and 00.30 local time. The
data are averaged to an equiangular integration grid (in the coordinate system (MLT,
QDlat)) using an algorithm presented in [17]. The referencesystem(MLT, QDlat), with
valuesQDlat 2 [� 90; 90] and M LT 2 [0; 24] is thereby just seenas another coordinate
systemparameterizing the unit spherewhere the magnetic local time is seen as a linear
transformation of the longitude with M LT = 12 representing the zeromeridian.

Weapply themethod presented in the previoussect ion to the CHAMP data set in order to
reconstruct the toroidal part contained in l2;(3)

U (
 R1 ) of the equivalent ionospheric current
systemfrom the poloidal part of the magnetic �eld measurements. Since we are in the
caseof R2 > R1, Eq. (21) of Corollary 4.4 plays the essential role in our regularization
step. The functional-analytic framework is given as follows. We have to regularize the
inversion of TR1 ;R2 : h ! k; where TR1 ;R2 is the spherical Biot-Savart operator given in
De�nitio n 4.2 and

h = l2;(3)
U (
 R1 ); f hn0g = f� u(3) ;R1

n;k g n =1 ;: :: ;
k =1 ;: :: ;2n +1

;

k = l2;(1)
U (
 R2 ); f kn0g = f u(1);R2

n;k g n =1 ;: :: ;
k =1 ;: :: ;2n +1

;

� n0 =
r

n
2n + 1

�
R1

R2

� n+1

; n0 2 N :
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The result of our reconstruction wit h a regularization vector cubic polynomial scaling
function at scaleJ = 3 can be seen in Figure 5.1. The maximal strength of the detected
equivalent ionospheric current system is approximately 10mA=m. According to [3] the
amplitude of the solar quiet mid latitude ionosphericcurrent systemsis 10� 36mA=m.
This shows that the detectedcurrent system is in the lower band width of the real iono-
sphericcurrent systems. Sincethe scaleof reconstruction is very low it can be assumed
that the real strength of the current systemis higher than the reconstructedamplitude.

Figure 1: Equivalent horizontal current distributio n in the Sun �xed coordinate system
(QDlat, MLT) at a height of 110km calculated using a regularization vector cubic poly-
nomial scalingfunction expansion at scaleJ = 3.

With respect to the given amount of data (3 days of CHAMP magnetic �eld measure-
ments) the reconstructedcurrent systemshown in Figure 5.1 is a remarkable result. It
demonstrates that the used trial funct ions, i.e. regularization vector scaling functions and
wavelets,are an adequate choicefor handling the problem. As already ment ioned in [14]
the main disadvantageof sphericalharmonics is that the reconstructedcurrent system on
the day-sideof the Earth will appear on the night-side aswell becauseof symmetry argu-
ments. This problem doesnot appear if scaling functions and wavelets are used. These
kernel functions do not ful�ll an exact frequency localization property which is not needed
for the reconstruction of the current system anyway, but they provide the possibility of
spacelocalizing reconstruction and this property is much more important for the recon-
struction of a ionosphericcurrent distribution from given magnetic �e ld measurements.

In order to demonstrate the regional applicabilit y of the presented multiscale techniques
for reconstructing ionospheric current systemsfrom CHAMP magnetic �eld data we cal-
culate the toroidal part of theequivalent ionosphericcurrent systemat a height of 110km
from CHAMP magnetic �eld measurements. The local reconstruction is performed in a
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region given by QDlat 2 [� 30; 30] and M LT 2 [08:00; 16:00], i.e. in an area,wherestrong
ionospheric current systemslike the equatorial electrojet are present. For this reconstruc-
tion we took data of several months between September 2001 and June 2002 in order
to get an appropriate coverage of measurements in the region of interest. For further
information concerningdata selection and preprocessing stepssee[17].

The reconstruction of the equivalent ionospheric current system with a regularization
vector cubic polynomial scaling funct ion at scaleJ = 5 can be seen in Figure 2. The
maximal reconstructed strength of the current systemis approximately 25 mA=m which
is a more realistic value than the amplitude of the reconstruction in Figure 5.1.

Figure 2: Local reconstruction (QDlat 2 [� 30; 30], M LT 2 [08:00; 16:00]) of the equiva-
lent ionosphericcurrent distributio n at a height of 110km calculated usinga regularization
vector cubic polynomial scaling funct ion expansionat scaleJ = 5.

5.2 A n Appl icat ion to SWARM Magnet ic Fiel d D at a

In the following section we give an example how the multiscale method of reconstructing
current systemsfrom magnetic �eld data can be used in connection with the proposed
satellite mission SWARM.
SWARM is a satellite mission proposedby a consortium of 27 instit utes and universities
under the leadership of the Danish Space Research Institute (DSRI Kopenhagen). It is
designedto study the dynamicsof the Earth's magnetic �eld and it s interactions with the
system Earth. The concept consistsof a constellation of four satellites of the CHAMP
type in two di� erent polar orbits between 400km and 550km alt itude. To simulate the
SWARM missionand the emphasizeits advantagesa simulator (based on the comprehen-
sive model of the near-Earth magnetic �eld described in [21]) has been implemented at
the GFZ Potsdam and the data has beenmade available at the DSRI Kopenhagen.
To test our method wit h a big amount of satellite data we took 60 days of data between
January 2000 and April 2000 of one of the low 
ying SWARM satellit e's. The period of
4 months is necessary to get data within all magnetic local times. As before the data
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is transformed to the (MLT, QDlat) coordinate systemand averaged to an equiangular
integration grid (in the coordinate system(MLT, QDlat)).

The ionosphericcurrent systemwhich has beenusedto simulate SWARM magnetic �e ld
data is a purely toroidal, horizontal current systemat a height of 110km (see[21]). Thus,
in order to apply our method to reconstruct the current system corresponding to the
simulated magnetic �eld data we are in the samefunctional-analyt ic situation as in the
previous subsection.

A reconstructedequivalent ionospheric current systemat a height of 110km obtainedwit h
a regularization cubic polynomial vector scaling funct ion at scaleJ = 5 can be found
in Figure 3. The main contours of the ionospheric current system are reconstructed.
In order to reconstruct �ner details of the current system a higher resolution of the
simulated satellite tracks (at the moment 1 sample/min ' 440km sampledistance) would
be necessary. The corresponding current function of the current system presented in
Figure 3 which can easily be reconstructedin the multiscale framework presented in this
article (see[17] for more details) can be found in Figure 4.

Figure 3: Equivalent horizontal current distributio n in the Sun �xed coordinate system
(QDlat, MLT) at a height of 110km calculated using a regularization vector cubic poly-
nomial scalingfunction expansion at scaleJ = 5.
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Figure 4: Equipotential lines of the current function of the equivalent horizontal current
distributio n in the Sun �xed coordinate system (QDlat, MLT) calculated using a reg-
ularization scalar cubic polynomial scaling function at scaleJ = 5. Red indicates the
maximum str ength of the current function while blue indicates the minimum.
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