
Decomposition of Integer Matrices and Multileaf Collimator

Sequencing

Davaatseren Baatar, Horst W. Hamacher1

Fachbereich Mathematik

Technische Universität Kaiserslautern

Postfach 3029

67653 Kaiserslautern, Germany

email {baatar,hamacher}@mathematik.uni-kl.de

Matthias Ehrgott

Department of Engineering Science

The University of Auckland

Private Bag 92019

Auckland, New Zealand

email m.ehrgott@auckland.ac.nz

Gerhard J. Woeginger

Department of Mathematics and Computer Science

Eindhoven University of Technology

P.O. Box 513

5600 MB Eindhoven, The Netherlands

email gwoegi@win.tue.nl

19th October 2004

1This research is partially supported by the New Zealand Ministry for Research, Science and Technology

through a Julius von Haast fellowship and the Deutsche Forschungsgemeinschaft DFG, Grant No. HA

1795/7.



Abstract

In this paper we consider the problem of decomposing an integer matrix into a weighted sum of

binary matrices that have the strict consecutive ones property. This problem is motivated by an

application in cancer radiotherapy planning, namely the sequencing of multileaf collimators to

realize a given intensity matrix. In addition we also mention another application in the design of

public transportation. We are interested in two versions of the problem, minimizing the sum of

the coefficients in the decomposition (decomposition time) and minimizing the number of matrices

used in the decomposition (decomposition cardinality). We present polynomial time algorithms

for unconstrained and constrained versions of the decomposition time problem and prove that

the (unconstrained) decomposition time problem is strongly NP -hard. For the decomposition

cardinality problem, some polynomially solvable special cases are considered and heuristics are

proposed for the general case.

Keywords: Decomposition of integer matrices, consecutive ones property, multileaf collimator

sequencing, radiotherapy.
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1 Introduction

Definition 1.1. A binary matrix is a (strict) consecutive ones matrix, or C1 matrix for

short, if the ones occur consecutively in a single block in each row.

Let K be an index set of all M × N consecutive ones matrices and K′ ⊂ K. We consider the

following problem. Given an M × N matrix A = (am,n) with non–negative integer entries, find

a “good” C1 decomposition, i.e. non–negative integers αk, k ∈ K′ and M × N C1 matrices

Y k, k ∈ K′ such that

A =
∑

k∈K′

αkY k. (1)

In the following, we often use M := {1, . . . , M}, N = {1, . . . , N + 1} For each of the C1 matrices

Y k there exist `k
m ∈ N , rk

m ∈ N such that Y k = (yk
mn) is given by

yk
mn = 1 ⇐⇒ `k

m ≤ n < rk
m ∀m ∈ M. (2)

Using [p, q) := {i ∈ N : p ≤ i < q} C1 matrices Y k can be written as

Y k = Y ([`k
m, rk

m))m∈M.

Example 1.2. For A =

(

2 5 3

3 5 2

)

A = 2

(

1 1 1

1 1 1

)

+ 1

(

0 1 1

1 1 0

)

+ 2

(

0 1 0

0 1 0

)

is a possible decomposition defined by

`1 =

(

1

1

)

, `2 =

(

2

1

)

, `3 =

(

2

2

)

;

r1 =

(

4

4

)

, r2 =

(

4

3

)

, r3 =

(

3

3

)

;

α1 = 2 α2 = 1 α3 = 2.

The representation of Y 2 in terms of intervals is Y 2 = Y

(

[2, 4)

[1, 3)

)

.

It should be noted that the definition of C1 matrices is usually more general than ours: Any

0-1 matrix which can be transformed by column permutations into a matrix where all ones occur

consecutively in the rows (see, e.g., Booth and Lucker (1976)). For this reason our definition

contains the word strict which we will, however, delete subsequently.

C1 decompositions can be used in various applications, two of which are introduced next.

Application 1.3 (Radiation Therapy Planning). In intensity modulated radiation therapy

(IMRT) planning, A is a matrix that describes the intensity distribution across a radiation beam.

These intensity matrices can be found, for instance, with the multicriteria approach to radiation

therapy planning of Hamacher and Küfer (2002). In Figure 1 some intensity matrices are shown as

greyscale coded grids. Black represents no radiation, the lighter the color the higher the radiation

intensity.

Radiation according to an intensity matrix is delivered by multileaf collimators (MLC). Radi-

ation is blocked out by pairs of metal leaves moved into the beam from left and right (black areas

in the three rightmost squares in Figure 2). It can, however, pass through the opening between
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Figure 1: IMRT with intensity matrices represented as checker-board schemes.

Figure 2: Realization of an intensity matrix by overlaying radiation fields with different MLC

configurations.

the leaves (white areas). By irradiating each of the MLC configurations for a certain amount of

time (= intensity) the intensity matrix is realized.

Obviously, possible left/right leaf configurations can be represented by C1 matrices Y k. If αk

is the duration of irradiation with a particular leaf configuration then (1) defines the realization

of the intensity matrix. More details can be found, for instance, in Baatar and Hamacher (2003),

Boland et al. (2003), Ahuja and Hamacher (2004), Engel (2003), Kalinowski (2003).

Application 1.4 (Stop design in public transportation Hamacher et al. (2001), Schöbel

et al. (2002), Ruf and Schöbel (2003)). Consider a set P of customers and a set S of potential

sites for installing a stop in a public transportation system. Assume it is required that each

customer has a stop not further away than a distance r. This can be written as dist(p, s) ≤ r for

all p ∈ P with respect to some s ∈ S.



1 INTRODUCTION 3

The stop design problem can be written as a set covering problem as follows.

min cx

s.t. Ax ≥ 1

x ∈ {0, 1}|S|,

where A = (aps)p∈P

s∈S
with aps =

{

1 if dist(p, s) ≤ r

0 otherwise
.

Obviously, the stops should be located along existing lines of the public transportation system.

Figure 3 shows that, depending on the topology, A may be C1 or not. The circles indicate all

points at distance r from customer p. Possible stop locations are indicated by crosses and are

defined by intersections of the circles with the lines.

1
2

3

4

5

Figure 3: Two instances of the stop design problem.

The coefficient matrix of the first instance (left part of Figure 3),

A =















1 1 1 1 0 0 0 0 0 0

0 1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 0

0 0 0 0 0 0 0 1 1 1















,

is obviously C1. Since C1 matrices are totally unimodular (Nemhauser and Wolsey, 1988), the set

covering problem is polynomially solvable. The coefficient matrix

A =





1 1 1 0 0 1 1

0 1 1 1 1 0 0

0 0 0 1 1 1 1





of the second instance (right part of Figure 3) on the other hand is not C1 (neither in the strict

sense used in this paper nor in the weak sense). It can, however, be written as a sum of C1 matrices

– a fact which is used in Ruf and Schöbel (2003) to solve large instances of the set covering problem

efficiently.

In this paper we consider two objective functions which can be used to evaluate a given C1

decompositions of type (1), the decomposition time
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DT (α) :=
∑

k∈K′

αk (3)

and the decomposition cardinality

DC(α) := |{αk : αk > 0}|. (4)

In the case where K′ = K (unconstrained decomposition) we will show in the next section

that the minimization of DT (α) can be achieved in linear time. Specific choices of K′ with

important applications and resulting polynomial algorithms to minimize DT (α) are discussed in

Section 3. That minimizing DC(α) defines an NP -hard problem is shown in Section 4. In that

section we also present some ideas on heuristics for minimizing DC(α).

2 Linear Algorithm for Unconstrained Decomposition Time

In this section we assume throughout that K′ = K, i.e., all C1 matrices are allowed in the de-

composition (1). Note that the number of C1 matrices is exponential in the number of rows of

A.

Given the integer matrix A = (amn)m=1,...,M
n=1,...,N

, we define the M × (N + 1) difference matrix

Ã = (ãmn)m∈M

n∈N

by

ãmn := amn − am,n−1. (5)

Here am0 = am,n+1 := 0 for all m ∈ M.

Definition 2.1. For m ∈ M let Pm := {` : ãm` > 0} and Qm := {r : ãmr < 0}. Then

Lm := {[`, r) : ` ∈ Pm, r ∈ Qm} is the list of crucial intervals in the C1 decomposition.

Lemma 2.2. For every m ∈ M

DTm :=
∑

l∈Pm

ãm` =
∑

r∈Qm

(−ãmr) (6)

is a lower bound for the decomposition time of the m-th row Am of A.

Proof. Whenever ãm` > 0 any C1 decomposition needs to use intervals with left boundary in ` at

least ãm` times. Adding over Pm yields the result. It is clear that
∑

n∈N ãmn = 0 for all m.

Since any C1 decomposition of A implies a C1 decomposition of its rows, we get the following

result.

Lemma 2.3.

DT := max
m∈M

DTm (7)

is a lower bound for the decomposition time of A.

Subsequently, we assume that every Lm is kept as a lexicographically sorted list and that Pm

and Qm are sorted in increasing order.

Next, we will show how crucial intervals can be extracted from Lm to get a minimum decom-

position time algorithm for each row Am of A.
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Algorithm 2.4 (Extraction Procedure for Row Matrices).

Input: Row Am of A

Lists Pm and Qm

Output: Decomposition Am =
∑Km

k=1
αk

mY k
m with minimal decomposition time,

Lm list of crucial intervals contributing to the decomposition

(1.) Initialize k := 1, Lm := ∅

(2.) Choose first entry ` in Pm and first entry r ∈ Qm

Lm := Lm ∪ {[`, r)}

(3.) Set Y k
m = [`, r), αk

m := min{ãm`,−ãmr}

Am = Am − αk
mY k

m

(4.) If Am = 0 output Km := k

Remove ` from Pm if αk
m = ãm`, and r from Qm, if αk

m = −ãmr.

Set k := k + 1 and goto (2.)

In each iteration at least one element is removed from Pm ∪Qm ⊂ N , such that the algorithm

performs O(N) iterations. Since each iteration is done in constant time, the extraction procedure

is a linear time algorithm. The resulting decomposition time is

DT (α) =

Km
∑

k=1

αk =
∑

`∈Pm

ãm` =
∑

r∈Qm

−ãmr

so that the lower bound of Lemma 2.2 is attained.

For each m ∈ M the output of Algorithm 2.4 includes a list Lm of intervals which define the

C1 row matrices used in the decomposition of row Am. The next algorithm puts these intervals

together to define a minimum decomposition time C1 decomposition of A. Since the decomposition

times DT (α) of rows are in general different this putting together requires the usage of degenerate

intervals Im = [`k
m, rk

m) with `k
m = rk

m.

Algorithm 2.5 (Unconstrained Minimum C1 Decomposition Time).

Input: Integer Matrix A

Output: Decomposition A =
∑KA

k=1
αkY k with minimal decomposition time

(1.) For m = 1, . . . , M

apply Algorithm 2.4 to obtain list Lm of crucial intervals

with αm(I) ∀I ∈ Lm

(2.) Set k = 0

(3.) While A 6= 0 do

k := k + 1

a) Choose Im ∈ Lm ∀m ∈ M

(where Im = ∅ and α(Im) = ∞ if Lm = ∅)

b) Set Y k := Y (I1, ..., IM )

αk := minm∈M α(Im)

A := A − αkY k

c) Set α(Im) := α(Im) − αk

Lm := Lm\{Im} if α(Im) = 0

(4.) Output KA := k and A =
∑KA

k=1
αkY k

If m∗ ∈ M is an index in which the lower bound DT of Lemma 2.3 is attained, Lm∗ 6= ∅ will

be maintained throughout the algorithm and thus
∑KA

k=1
αk = DTm∗ = DT . Hence the algorithm
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provides an optimal solution of the minimum decomposition time problem. Its complexity is

O(NM). It should be noted that a more efficient way to implement Algorithm 2.2 would include

an update of DT starting DT = maxm∈M DTm until DT = 0 thus avoiding the time consuming

update of A. An analogous observation holds for Algorithm 2.4.

Example 2.6. Consider A =

(

3 2 0 0 1

1 0 0 3 5

)

. Thus

Ã =

(

3 −1 −2 0 1 −1

1 −1 0 3 2 −5

)

with the lower bounds DT1 = 4, DT2 = DT = 6 from Lemmas 2.2 and 2.3. As output from

Algorithm 2.4 we obtain

L1 := {[1, 2), [1, 3), [5, 6)} with α1
1 = 1, α2

1 = 2, α3
1 = 1

and

L2 := {[1, 2), [4, 6), [5, 6)} with α1
2 = 1, α2

2 = 3, α3
2 = 2.

Algorithm 2.5 provides the C1 decomposition

Y 1 = Y

(

[1, 2)

[1, 2)

)

=

(

1 0 0 0 0

1 0 0 0 0

)

, α1 = 1

Y 2 = Y

(

[1, 3)

[4, 6)

)

=

(

1 1 0 0 0

0 0 0 1 1

)

, α2 = 2

Y 3 = Y

(

[5, 6)

[4, 6)

)

=

(

0 0 0 0 1

0 0 0 1 1

)

, α3 = 1

Y 4 = Y

(

∅

[5, 6)

)

=

(

0 0 0 0 0

0 0 0 0 1

)

, α4 = 2

with KA = 4 and
∑KA

k=1
αk = 6 = DT . Note that any degenerate interval [`k

m, rk
m) with `k

m = rk
m

can be used to present the empty set ∅.

It should be noted that the minimal C1 decomposition time would also be obtained by the

network flow algorithm of Ahuja and Hamacher (2004). The latter algorithm and Algorithm 2.5

justify the “Sweep Algorithm” by Bortfeld et al. (1994) which is widely used in the sequencing of

multileaf collimators for the realization of intensity matrices in radiation therapy (see Application

1.3) and which – to the best of our knowledge – was not proved to be optimal before 2003.

Note that Ã can be written as difference Ã = L̃− R̃ of non–negative integer matrices L̃ and R̃

defined as follows: L̃ := (α̃`
mn)m∈M

n∈N

, R̃ := (α̃r
mn)m∈M

n∈N

with

α̃`
mn = max{0, amn − am,n−1},

α̃r
mn = max{0, am,n−1 − amn}

(8)

Using this notation we can rewrite (6) as

DTm =
∑

n∈N

α̃`
mn =

∑

n∈N

α̃r
mn (9)

and the minimal decomposition time in the unconstrained case is

max
m∈M

∑

n∈N

α̃`
mn = max

m∈M

∑

n∈N

α̃r
mn. (10)

In the next section we show that this representation of Ã is essential to solve constrained

decomposition time problems.
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3 Constrained Decomposition Problem

In some applications, C1 matrices have to satisfy certain constraints, i.e., K′ ( K. For example,

in the radiotherapy application mentioned in Section 1, the mechanics of the multileaf collimator

require that left and right leaves in adjacent rows must not overlap.

Definition 3.1. C1 matrix Y = Y ([`m, rm))m∈M is called a shape matrix if

`m−1 ≤ rm and rm−1 ≥ `m

holds for all m = 2, ..., M .

In this section we consider decomposition of A into shape matrices to minimize decomposition

time. We shall see that crucial intervals (Definition 2.1) and degenerate intervals are not sufficient

to solve this problem. We may have to consider split crucial intervals, too. Let K′ be an index set

of all shape matrices.

There might not exist a decomposition of A into shape matrices, obtained by using crucial

intervals, which is an optimal solution of min{DT (α) : A =
∑

k∈K′ αkY k}.

For example

A =









1 0 0 0 0 0 1

1 1 1 1 1 1 1

0 0 1 0 0 0 0

0 0 1 0 1 0 0









can be decomposed in the following way:

A =









1 0 0 0 0 0 0

1 1 1 1 0 0 0

0 0 1 0 0 0 0

0 0 1 0 0 0 0









+









0 0 0 0 0 0 1

0 0 0 0 1 1 1

0 0 0 0 0 0 0

0 0 0 0 1 0 0









=









[1, 2)

[1, 5)

[3, 4)

[3, 4)









+









[7, 8)

[5, 8)

[6, 6)

[5, 6)









with DT (α) = 2. Note that crucial interval [1, 8) of the second row is split into two intervals and

a degenerate interval is used in row three.
We have Ã = L̃ − R̃:









1 0 0 0 0 0 1 −1

1 0 0 0 0 0 0 −1

0 0 1 −1 0 0 0 0

0 0 1 −1 1 −1 0 0









=









1 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0









−









0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0









.

Therefore, crucial intervals can be alternatively defined as [`m, rm), where `m and rm corre-

spond to the column indices of non–zero entries in row m of L̃ and R̃, respectively.

A shape matrix decomposition of A using crucial (and degenerate) intervals yields a decom-

position time of at least 3. However, if we change the entries in the fifth column, second row and

sixth column, third row of L̃ and R̃ simultaneously from 0 to 1 and use the alternative definition

of crucial interval, we obtain the intervals [1, 5) and [5, 8) for the second row and the degenerate

interval [6, 6) in the third row, which are used in the above shape matrix decomposition of A with

decomposition time 2 (which is the maximal row sum in both the modified L̃ and R̃). Note also

that the degenerate interval in row three of Y 2 cannot be chosen arbitrarily. Because of [5, 8) in

row two and [5, 6) in row four, only [5, 5) and [6, 6) are possible.

We proceed to show that this can always be done.
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Theorem 3.2. A has a decomposition with decomposition time DT (α) if and only if there exist

M × (N + 1) matrices L = (α`
mn) and R = (αr

mn) with non–negative elements such that

L − R = Ã (11)
n

∑

k=1

α`
m−1,k ≥

n
∑

k=1

αr
mk ∀m ∈ M \ {1}, ∀n ∈ N (12)

n
∑

k=1

α`
mk ≥

n
∑

k=1

αr
m−1,k ∀m ∈ M \ {1}, ∀n ∈ N (13)

DT (α) =
∑

k∈K′

αk =
∑

n∈N

α`
pn =

∑

n∈N

αr
mn ∀p, m ∈ M (14)

Proof. “⇒” Let a decomposition

A =
∑

k∈K′

αkY k

be given. We consider the matrices L = (α`
mn) and R = (αr

mn) obtained by

α`
mn =

∑

`k
m=n

αk,

αr
mn =

∑

rk
m=n

αk.

It is clear that (14) holds. From the elementwise presentation of the decomposition

amn =
∑

`k
m<n<rk

m

αk +
∑

`k
m=n

rk
m>n

αk,

am,n−1 =
∑

`k
m<n<rk

m

αk +
∑

`k
m<n

rk
m=n

αk

we get

amn − am,n−1 =
∑

`k
m=n

rk
m>n

αk −
∑

`k
m<n

rk
m=n

αk

=









∑

`k
m=n

rk
m>n

αk +
∑

`k
m=n

rk
m=n

αk









−









∑

`k
m<n

rk
m=n

αk +
∑

`k
m=n

rk
m=n

αk









=
∑

`k
m=n

αk −
∑

rk
m=n

αk = α`
mn − αr

mn.

Thus L and R satisfy (11).

For any m ∈ M and n ∈ N , with m ≥ 2, consider the set of shape matrices used in a

decomposition with intervals [`k
m, rk

m) where rk
m ≤ n. By definition of shape matrices each

interval [`k
m, rk

m) in a shape matrix Y k has a corresponding [`k
m−1, r

k
m−1) in row m − 1 such

that

`k
m−1 ≤ rk

m.
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Hence {Y k : rk
m ≤ n} ⊆ {Y k : `k

m−1 ≤ n} and we conclude

∑

rk
m≤n

αk ≤
∑

`k
m−1

≤n

αk

Consequently, we get

n
∑

k=1

α`
m−1,k ≥

n
∑

k=1

αr
mk

i.e., conditions (12) holds. Using a similar observation with `k
m ≤ rk

m−1 we can derive (13).

“⇐” Let L and R be matrices L and R such that (11) – (14) hold. Let α`
m`m

and αr
mrm

, m ∈ M

be the first non–zero elements in the rows of matrices L and R, respectively, i.e.,

1 ≤ n < `m ⇒ α`
mn = 0 and α`

m`m
> 0,

1 ≤ n < rm ⇒ αr
mn = 0 and αr

mrm
> 0.

From (11) we get for all n ∈ N

n
∑

k=1

α`
mk −

n
∑

k=1

αr
mk = amn (15)

and amn ≥ 0. Therefore,

n
∑

k=1

α`
mk ≥

n
∑

k=1

αr
mk ∀n ∈ N (16)

yields that

`m ≤ rm, ∀m ∈ M.

Moreover, from (12) and (13) it follows that

`m−1 ≤ rm,

`m ≤ rm−1

for all m ∈ M \ {1}.

Therefore,

Y 1 = Y











[`1, r1)

[`2, r2)
...

[`m, rM )











is a shape matrix. We choose

α1 = min
{

α`
1`1

, . . . , α`
M`M

, αr
1r1

, . . . , αr
MrM

}

.

Replacing α`
m`m

and αr
mrm

, m = 1, . . . , M , by α`
m`m

− α1 and αr
mrm

− α1 in L and R,

respectively, we get matrices L′ and R′ which satisfy again (12), (13) and (16).

Thus by repeating the above procedure until the matrices L and R simultaneously become

zero matrices, due to (14), we obtain a set of shape matrices Y 1, . . . , Y k with corresponding

α1, . . . , αk.



3 CONSTRAINED DECOMPOSITION PROBLEM 10

As a final step, we show that this decomposition yields the matrix A. By our construction,

left and right boundary of the intervals are defined according to non–zero elements of matrices

L and R respectively. Therefore

n
∑

k=1

α`
mk =

∑

`k
m≤n

αk,

n
∑

k=1

αr
mk =

∑

rk
m≤n

αk.

On the other hand,

∑

`k
m≤n<rk

m

αk =
∑

`k
m≤n

αk −
∑

rk
m≤n

αk =

n
∑

k=1

α`
mk −

n
∑

k=1

αr
mk.

Thus due to (15)
∑

`k
m≤n<rk

m

αk = amn,

i.e.
∑

k∈K

αkY k = A.

According to Theorem 3.2 solving the decomposition time problem is equivalent to finding one

of the pairs of non–negative integer matrices L and R which corresponds to an optimal solution.

The following observation helps us to reduce the complexity of the problem. Using the denotation

of (8), introduced at the end of Section 2,

α̃`
mn = max{0; amn − am,n−1}

α̃r
mn = max{0; am,n−1 − amn}

we get for matrices L and R, which satisfy (11) – (13),

α̃`
mn − α̃r

mn = amn − am,n−1 = α`
mn − αr

mn.

and

α`
mn ≥ α̃`

mn

αr
mn ≥ α̃r

mn

for all m ∈ M, n ∈ N .

Thus we can represent α`
mn and αr

mn in terms of α̃`
mn and α̃r

mn by using a single variable wmn

α`
mn = α̃`

mn + wmn

αr
mn = α̃r

mn + wmn

(17)

where wmn ≥ 0 and integer.

According to (14) the total decomposition time is, in terms of L and R,

N+1
∑

k=1

α`
mk =

N+1
∑

k=1

α̃`
mk +

N+1
∑

k=1

wmk = DTm +

N+1
∑

k=1

wmk
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where m is the index of any row of A. Therefore, we can use theorem 3.2 to formulate the

decomposition time problem as the following integer linear programming problem (DT–IP)

min DT (α)

s.t. DTm +

N+1
∑

k=1

wmk = DT (α) ∀m ∈ M (18)

n
∑

k=1

α̃`
m−1,k +

n
∑

k=1

wm−1,k ≥
n

∑

k=1

α̃r
mk +

n
∑

k=1

wmk ∀n ∈ N , ∀m ∈ M \ {1} (19)

n
∑

k=1

α̃`
mk +

n
∑

k=1

wmk ≥
n

∑

k=1

α̃r
m−1,k +

n
∑

k=1

wm−1,k ∀n ∈ N , ∀m ∈ M \ {1} (20)

wmn ≥ 0 integer ∀m ∈ M, ∀n ∈ N

Note that the formulation of (DT–IP) is redundant since (18) follows from (19) and (20) with

n = N + 1 and can be dropped. The minimization of DT (α) is then equivalent to minimizing
∑N+1

k=1
wmk for any choice of m ∈ M, i.e. (DT–IP) is equivalent to, e.g.,

{

min

N+1
∑

k=1

wmk : (19), (20), wmn ≥ 0, integer

}

.

In the following we show that these integer programming problems can be solved by a combinatorial

algorithm in polynomial time.

The feasible solutions of (DT–IP) have the following property which will be essential in the

development of an efficient algorithm.

Lemma 3.3. Let W = (wmn) be a feasible solution of (DT–IP). If for any column p, wp =

(w1p, w2p, . . . , wMp)
T , there exists w̄ = (w̄1, . . . , w̄M )T ≥ 0 such that wp ≥ w̄ and

p
∑

k=1

α̃`
m−1,k +

p−1
∑

k=1

wm−1,k + w̄m−1 ≥

p
∑

k=1

α̃r
mk +

p−1
∑

k=1

wmk + w̄m,

p
∑

k=1

α̃`
mk +

p−1
∑

k=1

wmk + w̄m ≥

p
∑

k=1

α̃r
m−1,k +

p−1
∑

k=1

wm−1,k + w̄m−1

for all m = 2, . . . , M then replacing columns wp and wp+1 of W by w̄ and wp+1 + wp − w̄,

respectively, we get a feasible solution of (DT–IP) with the same objective value as W .

Proof. The sum of the columns (vectors) w̄ and wp+1 + wp − w̄ is the same as it was before,

wp+1 + wp. Therefore, this replacement does not change the objective function value and it may

only affect the constraints of (DT–IP) corresponding to n = p. By the given condition on w̄ these

are satisfied.

Based on Lemma 3.3 , we solve (DT–IP) recursively by solving a sequence of multiobjective

integer programs (SPn), n = 1, . . . , N + 1, in which the input data is defined by the output of

(SPk), k < n. (SPn) is as follows.
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min











w1n

w2n

...

wMn











s.t. DTLn
m−1 + wm−1,n ≥ DTRn

m + wmn ∀m ∈ M \ {1} (21)

DTLn
m + wmn ≥ DTRn

m−1 + wm−1,n ∀ m ∈ M \ {1} (22)

wmn ≥ 0 integer ∀m ∈ M, ∀n ∈ N

Here

DTLn
m =

n
∑

k=1

α̃`
mk +

n−1
∑

k=1

w∗
mk,

DTRn
m =

n
∑

k=1

α̃r
mk +

n−1
∑

k=1

w∗
mk

where (w∗
1k , w∗

2k, . . . , w∗
mk)T is the optimal solution of (SPk), k < n.

Due to (16) and (17) we get

DTLn
m ≥ DTRn

m ∀m ∈ M (23)

a property which we will use later on.

The next result shows that (SPn) is, indeed, well posed and that (SPn), n ∈ N , yields an

optimal solution of (DT–IP).

Proposition 3.4. (SPn) has a unique Pareto optimal solution.

Proof. We show the result by contradiction. Assume that there exist two different Pareto optimal

solutions w̄ = (w̄1n, . . . , w̄Mn) and ŵ = (ŵ1n, . . . , ŵMn) to (SPn). Consider w = (w1n, w2n, . . . ,

wMn) defined by

wmn := min{w̄mn, ŵmn},

i.e., w � w̄ and w � ŵ.

Consider the constraints of (SPn) corresponding to an arbitrary m

DTLn
m−1 + wm−1,n ≥ DTRn

m + wmn,

DTLn
m + wmn ≥ DTRn

m−1 + wm−1,n.

If

wm−1,n = w̄m−1,n,

wmn = w̄mn

or

wm−1,n = ŵm−1,n,

wmn = ŵmn

then the inequalities hold since w̄ and ŵ are feasible solutions.
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If wm−1,n = w̄m−1,n and wmn = ŵmn, then from

w̄m−1,n ≤ ŵm−1,n,

w̄mn ≥ ŵmn

it follows that

DTLn
m−1 + w̄m−1,n ≥ DTRn

m + w̄mn ≥ DTRn
m + ŵmn,

DTLn
m + ŵmn ≥ DTRn

m−1 + ŵm−1,n ≥ DTRn
m−1 + w̄m−1,n,

i.e., w is a feasible solution of (SPn) and because w � w̄, w � ŵ that contradicts that w̄, ŵ are

Pareto optimal solutions.

Algorithm 3.5 (Minimum C1 Decomposition Time into Shape Matrices).

Input: Matrix A

Output: Decomposition of A into shape matrices with min DT (α)

(1.) Compute α̃`
mn, α̃r

mn, ∀ m, n.

(2.) For n = 1 to N + 1

Solve (SPn) ( with Algorithm 3.6)

(3.) Compute matrices L and R; and DT (α)

(4.) Set k := 0

(5.) While DT (α) 6= 0 do

Consider leftmost non-zero elements

α`
m`m

and αr
mrm

, m = 1, . . . , M , in each row of L and R

k := k + 1

Extract shape matrix

Y k = Y ([`m, rm))m∈M with

αk = min{α`
1`1

, . . . , α`
M`M

, αr
1r1

, . . . , αr
MrM

}

Set DT (α) := DT (α) − αk

Update L and R.

end while

It remains to show how to solve (SPn), n ∈ N . This can be done by the following combinatorial

algorithm.

Algorithm 3.6 (Solving (SPn)).

Input: DTLn
m, DTRn

m, ∀m = 1, . . . , M.

Output: w∗
mn, ∀m = 1, . . . , M

(1.) wmn := 0, ∀m = 1, . . . , M

(2.) For m = 2 to M do

if DTLn
m + wmn ≤ DTRn

m−1 + wm−1,n

then wmn := DTRn
m−1 − DTLn

m + wm−1,n

else A(m)

end for
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Function A(p)

if DTLn
p−1 + wp−1,n < DTRn

p + wp,n

then wp−1,n := DTRn
p − DTLn

p−1 + wpn

if p ≥ 3

then p := p − 1

A(p)

end if

end if

end Function

Theorem 3.7. Algorithm 3.6 finds the optimal solution of (SPn) in O(M2) time. Algorithm 3.5

solves (DT–IP) in O(NM 2) time.

Proof. Obviously, the time complexity of Algorithm 3.6 is O(M 2). If we can prove that Algorithm

3.6 solves (SPn) to optimality, the time complexity of Algorithm 3.5 is O(NM 2). Hence the

validity of Algorithm 3.6 remains to be shown. We do it by induction.

m = 1 : We do not have any constraints, except w1n ≥ 0. Therefore, the initialization w1n = 0

is the optimal solution.

m = 2 : In this case we have just two constraints

DTLn
1 + w1n ≥ DTRn

2 + w2n, (24)

DTLn
2 + w2n ≥ DTRn

1 + w1n (25)

and by initialization w1n = w2n = 0 is the lower bound on the values of w1n and w2n. We

will tighten these lower bounds next to obtain a feasible solution for (SPn) which is thus

optimal.

• Case 1: DTLn
2 ≤ DTRn

1 . Then w2n = DTRn
1 − DTLn

2 from step (2.) is a lower

bound by (24) and (25); and satisfies DTRn
2 + w2n = DTRn

2 + DTRn
1 − DTLn

2 ≤

DTRn
2 + DTRn

1 − DTRn
2 = DTRn

1 ≤ DTLn
1 , due to (23). Hence (w1n = 0, w2n) is

feasible.

• Case 2: DTLn
2 > DTRn

1 . Then w2n = 0 is the lower bound due to (24) and (25). The

lower bound for w2n is tightened using Function A(2)

– If DTLn
1 < DTRn

2 then using (23) w1n = DTRn
2 −DTLn

1 satisfies DTRn
1 + w1n =

DTRn
1 + DTRn

2 −DTLn
1 ≤ DTRn

1 + DTRn
2 −DTRn

1 = DTRn
2 ≤ DTLn

2 such that

(w1n, w2n = 0) is feasible.

– If DTLn
1 ≥ DTRn

2 then (w1n = 0, w2n = 0) is feasible.

m < M : Assume that Algorithm 3.6 yields the optimal solution of (SPn) for all m < M .

m = M : Running the algorithm until m = M − 1, in the loop (2.), we get by the induction

hypothesis the optimal solution to (SPn) defined for rows 1, . . . , M − 1. This solution can

serve as a lower bound for wmn, m = 1, . . . , M − 1 of problem (SPn) defined for rows

1, . . . , M . Now we tighten this bound with respect to constraints

DTLn
M−1 + wM−1,n ≥ DTRn

M + wMn, (26)

DTLn
M + wMn ≥ DTRn

M−1 + wM−1,n (27)

which contain variable wMn.
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• Case 1: If DTLn
M ≤ DTRn

M−1 + wM−1,n then the lower bound for wMn is wMn =

DTRn
M−1+wM−1−DTLn

M , which satisfies both inequalities since DTRn
M +DTRn

M−1+

wM−1,n −DTLn
M ≤ DTRn

M + DTRn
M−1 + wM−1,n −DTRn

M = DTRn
M−1 + wM−1,n ≤

DTLn
M−1 + wM−1,n due to (23).

• Case 2: If DTLn
M > DTRn

M−1 + wM−1,n then wMn = 0

– If the (26) is satisfied then the algorithm terminates

– Otherwise, i.e., if

DTLn
M−1 + wM−1,n < DTRn

M

then we increase(tighten) the lower bound for wM−1,n found in the previous step:

wM−1,n := DTRn
M − DTLn

M−1.

The increase of value wM−1,n can affect only two constraints for m = M and

m = M − 1 where wM−1,n is on the right hand side. The first of these inequalities,

namely (27), holds by the choice of wM−1,n and (23). The second one is

DTLn
M−2 + wM−2,n ≥ DTRn

M−1 + wM−1,n.

If this holds an optimal solution is obtained. Otherwise, the algorithm updates the

lower bound for wM−2,n and checks the inequalities where wM−2,n is on the right

hand side.

The algorithm iterates the above procedure until all updated lower bounds are feasible for

(SPn). Thus we have the optimal solution.

Example 3.8.

A =





5 10 6

4 1 1

7 0 0



 .

The corresponding matrices

L̃ =





5 5 0 0

4 0 0 0

7 0 0 0



 , R̃ =





0 0 4 6

0 3 0 1

0 7 0 0





of A are defined according to (8). Solving iteratively subproblems (SPn) we get the optimal

solution to (DT–IP). In the table below we show the input data and solutions of subproblems

(SPn)

n = 1 : Input: DTL1
1 = 5, DTL1

2 = 4, DTL1
3 = 7,

DTR1
1 = 0, DTR1

2 = 0, DTR1
3 = 0

Output: w∗
m1 = 0, m = 1, 2, 3

n = 2 : Input: DTL2
1 = 10, DTL2

2 = 4, DTL2
3 = 7,

DTR2
1 = 0, DTR2

2 = 3, DTR2
3 = 7

Output: w∗
12 = 0, w∗

32 = 0, w∗
22 = 3

n = 3 : Input: DTL3
1 = 10, DTL3

2 = 7, DTL3
3 = 7,

DTR3
1 = 4, DTR3

2 = 6, DTR3
3 = 7

Output: w∗
m3 = 0, m = 1, 2, 3

n = 4 : Input: DTL4
1 = 10, DTL4

2 = 7, DTL4
3 = 7,

DTR4
1 = 10, DTR4

2 = 7, DTR4
3 = 7

Output: w∗
14 = 0, w∗

24 = 3, w∗
34 = 3
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For n = 2 we have DTL2
2 = 4 and DTR2

3 = 7, therefore w∗
22 is set to 3. No further changes

to w are necessary. For n = 4 DTL4
2 = 7 > DTR4

1 = 10 thus w24 ≥ 3. This results in

DTR4
2 + w24 = 10 > DTL4

3 = 7 and w∗
34 = 3. Since all inequalities are satisfied, w∗

24 = 3, too.

Using the solution of (DT–IP)

W =





0 0 0 0

0 3 0 3

0 0 0 3



 .

we compute the matrices

L =





5 5 0 0

4 3 0 3

7 0 0 3



 , R =





0 0 4 6

0 6 0 4

0 7 0 3





which correspond to an optimal solution of the decomposition time problem with DT (α) = 10.

Extracting shape matrices, with respect to the most left non-zero elements of L and R, we get the

following decomposition

Y 1 = Y





[1, 3)

[1, 2)

[1, 2)



 =





1 1 0

1 0 0

1 0 0



 , α1 = 4

Y 2 = Y





[1, 4)

[2, 2)

[1, 2)



 =





1 1 1

0 0 0

1 0 0



 , α2 = 1

Y 3 = Y





[2, 4)

[2, 2)

[1, 2)



 =





0 1 1

0 0 0

1 0 0



 , α3 = 1

Y 4 = Y





[2, 4)

[2, 4)

[1, 2)



 =





0 1 1

0 1 1

1 0 0



 , α4 = 1

Y 5 = Y





[2, 4)

[4, 4)

[4, 4)



 =





0 1 1

0 0 0

0 0 0



 , α5 = 3

with KA = 5 and
∑KA

k=1
αk = 10 = DT .

In the next section we need the following proposition to find some easily solvable instances of

the decomposition cardinality problem.

Proposition 3.9. If A is a positive integer multiple of an integer matrix B, i.e. A = pB,

p ≥ 0 and integer, then for the decomposition time problem the integer multiple of an optimal

decomposition of B is also an optimal decomposition for the matrix A.

Proof. Obviously, the integer multiple of any decomposition of B is a decomposition of A and

Ã = pB̃. Therefore, for the unconstrained case, the statement follows immediately from Lemmas

2.2 and 2.3 and Algorithm 2.5. For the constrained case, observe that if we neglect the integrality

of the coefficients αk, k ∈ K′, then the statement follows from the (DT–IP) formulation with

respect to A and B. On the other hand, Algorithms 3.5 and 3.6 yield an integer solution only due

to integrality of the input matrix. This completes the proof.
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4 Decomposition Cardinality is NP-hard

While the decomposition time problem is solvable in linear time, the (unconstrained) decompo-

sition cardinality problem min{DC(α) : A =
∑

k∈K αkyk} turns out to be NP -hard. This was

proved by Burkard (2002) for matrices with at least two rows using a reduction from subset sum.

In the following we will strengthen his result.

Theorem 4.1. The C1 decomposition cardinality problem is strongly NP-hard, even for matrices

with a single row.

Proof. The decision version of the C1 decomposition cardinality problem is as follows:

C1 Decomposition-Cardinality (DC)

Input: Matrix A = (a1, . . . , aN ), K ∈ N

Output: Does there exist a decomposition of A into at most K C1 (row) matrices?

We reduce (DC) to the following well-known strongly NP-complete problem (see Garey and

Johnson (1979) ).

Three Partitioning (3-PART)

Input: B, Q ∈ N; b1, . . . , b3Q ∈ N with
∑3Q

j=1
bj = QB and B

4
< bj < B

2

Output: Does there exist a partitioning of {b1, . . . , b3Q} into triples T1, . . . , TQ

such that
∑

b∈Tq
b = B for all q = 1, ..., Q?

We define

• N := 4Q,

• an :=

{

∑n
j=1

bj , if n ≤ 3Q

(4Q − n + 1)B, if n > 3Q,

• K := 3Q.

Claim: DC has YES output ⇐⇒ 3-PART has YES output.

“⇐” For j = 1, . . . , 3Q let q ∈ {1, . . . , Q} be such that bj ∈ Tq. A feasible output for DC is given

by intervals [j, 3Q + q + 1), j = 1, . . . 3Q and αj = bj (see Figure 4).

“⇒” By the definition of an it cannot have a decomposition with cardinality smaller than 3Q

since bj > 0,j = 1, . . . , 3Q. Consider a solution of DC given by intervals Iq = [lq, rq) and

coefficients αq , q = 1, ..., 3Q, such that the sum of the interval lengths is maximized. We

derive the following properties.

1. For all p, q ∈ {1, . . . , 3Q} `q 6= rp. Otherwise we can replace Ip and Iq by I ′p := Ip ∪ Iq

with α′
p := min{αp, αq} and I ′q := Iq with α′

q := αq − α′
p to get a C1 decomposition

with larger interval lengths.

2. Without loss of generality `q = q for all q = 1, ..., 3Q. This follows since a1 < a2 < ... <

a3Q and some interval has to start in q.

3. rq > 3Q for all q = 1, ..., 3Q. Otherwise, we have a contradiction to 1 and 2 with lp = rq

for some p = 1, . . . , 3Q.

4. rq 6= 3Q + 1. Otherwise some `q = 3Q + 1 would be needed since a3Q = a3Q+1. This

would contradict 2.
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Hence all intervals end in rq ∈ {3Q + 2, ..., 4Q + 1}. Define triples T1, . . . , TQ by

bj ∈ Tq ⇔ rj = 3Q + j + 1.

By definition of a3Q+j , the sum of the bj ∈ Tq equals B. This is obviously true for j = Q,

since a3Q+Q = a4Q = B. For j = Q − 1, . . . , 1 this follows by an inductive argument.

b= 6 5 6 9 10 8 5 7 5 8 5 6

T1 T2 T3 T3 T4 T2 T3 T2 T4 T1 T4 T1

A= 6 11 17 26 36 44 49 56 61 69 74 80 80 60 40 20

a

6

8

6

5

8

7

6

9

5

10

5

5

Figure 4: 3-PART ∝ DC with B = 20, Q = 4.

Corollary 4.2. Even if L and R are matrices known to correspond to an optimal solution of the

DC problem, the problem of finding that optimal decomposition (with respect to the DC objective)

is strongly NP-hard.

Proof. Follows from the proof of Theorem 4.1 where intervals of maximal lengths are used. There-

fore, no intervals [`1, r1) and [`2, r2) with r1 = `2 exist implying that W = 0 and thus L = L̃ and

R = R̃.

In some cases DC, however, can be solved in polynomial time.

Proposition 4.3. If A is a positive integer multiple of a binary matrix then the C1 decomposition

cardinality problem can be solved in polynomial time for the constrained and unconstrained case.

Proof. Observe that for binary matrices, DT (α) = DC(α) since αk is binary for all k ∈ K′.

Hence, if matrix A is a binary matrix then we can use Algorithm 3.5 (for the unconstrained case

Algorithm 2.5) to solve the decomposition cardinality problem.

Let A be an integer multiple of a binary matrix B, i.e., A = pB. Then from any decomposition

of B, multiplying by p, we get a decomposition of A with the same cardinality. Therefore, if B
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yields an optimal solution of the DC problem for A then using Algorithm 3.5 (for the unconstrained

case Algorithm 2.5) we can find in polynomial time a decomposition of B and consequently a

decomposition of A. We complete the proof by showing that for any decomposition of A there

exists a decomposition of B with the same or a smaller cardinality. Consider any decomposition

of A. Without loss of generality we can assume that

A =

k0
∑

k=1

αkY k + p

K
∑

k=k0+1

Y k

where αk < p for all k = 1, . . . , k0. Let A′ and B′ be matrices defined as

A′ := A − p

K
∑

k=k0+1

Y k =

k0
∑

k=1

αkY k

B′ := B −
K

∑

k=k0+1

Y k.

Then A′ = pB′ since B is binary and A = pB. Consider any optimal DT decomposition of B ′

B′ :=

k1
∑

k=1

Ȳ k.

Note that for B′, DT = DC = k1. Then from Proposition 3.9 follows that pk1 ≤
∑k0

k=1
αk,

which implies that k1 < k0 since by our assumption αk < p for all k = 1, . . . , k0. Therefore, the

decomposition of B

B =

K
∑

k=k0+1

Y k +

k1
∑

k=1

Ȳ k.

has smaller cardinality than the decomposition of A.

Next we develop heuristics for the DC problem. As we have seen in the proof of Theorem 3.2

each non-zero element of matrices L and R needs a corresponding matrix used in a decomposition

of A. Therefore, the number of non-zero elements in each row of matrices L and R is as a lower

bound of the decomposition cardinality problem. Consequently, the maximum of these lower

bounds is the best one obtainable in this way for given matrices L and R. If we use L̃ and R̃, (17)

yields the following lower bound for the decomposition cardinality problem

DC(α) ≥
{

min k0 : k0 ≥| {αδ
mn : αδ

mn 6= 0, n ∈ N} for all m ∈ M and δ ∈ {`, r}
}

.

We propose the following “greedy” algorithm based on the intuitive idea that “if decomposition

time DT (α) is small and coefficients of the decomposition are in average high then decomposition

cardinality is small”. Based on this, first we solve (DT–IP) to find matrices L and R, which yield

the minimum DT (α), then each time we extract a shape matrix with maximum possible coefficient

such that the residual of matrices L and R again present a decomposition. Recall that in the proof

of Theorem 3.2 and consequently in the Algorithm 3.5 we used leftmost non-zero elements in the

rows of L and R, which preserve conditions (12), (13) and (16). If for any extraction of a shape

matrix these conditions are maintained then the residual matrices represent a decomposition.

Let us introduce (M − 1) × N matrices Ā and Â defined as follows

āmn =
n

∑

k=1

α`
mk −

n
∑

k=1

αr
m+1,k (28)

âmn =

n
∑

k=1

α`
m+1,k −

n
∑

k=1

αr
mk (29)
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for all m ∈ M \ {M} and n ∈ N \ {N + 1}.

Then conditions (12), (13) and (16) for residual matrices of L, R and A can be written in

terms of Ā and Â, respectively, as

āmn ≥ α ∀n : `m ≤ n < rm+1, ∀m ∈ M \ {M} (30)

âmn ≥ α ∀n : `m+1 ≤ n < rm, ∀m ∈ M \ {M} (31)

amn ≥ α ∀n : `m ≤ n < rm, ∀m ∈ M, (32)

where α is the coefficient corresponding to the extracted shape matrix Y ([`m, rm))m∈M. Therefore,

to extract a shape matrix in a greedy way, we need to solve the following problem (max−α).

max α

s.t. (30), (31), (32)

`m ≤ rm+1 ∀m ∈ M \ {M} (33)

`m+1 ≤ rm ∀m ∈ M \ {M} (34)

`m ≤ rm ∀m ∈ M (35)

α`
m`m

≥ α ∀m ∈ M (36)

αr
mrm

≥ α ∀m ∈ M (37)

`m, rm ∈ N ∀m ∈ M

In Baatar and Hamacher (2003) CPLEX 7.0 was used to solve mixed integer formulation of

(max−α). Since the computation time were prohibitively large we propose in the following a

combinatorial approach, which produces objective values superior to these of Alfredo and Siochi

(1999), Xia and Verhey (1999) and Bortfeld et al. (1994).

Algorithm 4.4 (Greedy Approach to the Constrained Decomposition Cardinality

Problem).

Input: Matrix A

Output: Decomposition of A into shape matrices

(1.) Compute DT (α) and matrices L and R using Algorithm 3.6

(2.) Compute Ā, Â according to (28) and (29)

(3.) Initialize α := min{maxn∈N {αδ
mn : αδ

mn < α} : m ∈ M, δ ∈ {`, r}}

Set k := 0

(4.) While DT (α) 6= 0 do

(4.1.) If α 6= 1

then For m = 1 to M do

Im := {[p, q) : (32), (35) − (37)}

If Im = {∅} then GO TO (4.9.)

end For

(4.2.) m := 1

(4.3.) While m 6= M do

If m ≤ 1 then

m := 1

[`1, r1) := lexmin{[p, q) : [p, q) ∈ I1}

end If

Remove all intervals [p, q), from Im+1, with q < `m
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If Im+1 = {∅} then GO TO (4.9.)

Find lexmin{[p, q) : [p, q) ∈ Im+1} such that

• `m ≤ q, p ≤ rm

• āmn ≥ α for all n : `m ≤ n < q

• âmn ≥ α for all n : p ≤ n < rm

If such an interval [p, q) exists

then m := m + 1

[`m+1, rm+1) := [p, q)

else

Im := Im \ {[`m, rm)}

If Im = {∅} then GO TO (4.9.)

else m := m − 1

end If

end while (4.3.)

(4.4.) Set k := k + 1

(4.5.) Extract shape matrix Y k = Y ([`m, rm))m∈M

with coefficient αk := α

(4.6.) Update A, L, R, Ā, Â

(4.7.) Set DT (α) := DT (α) − αk

(4.8.) For m = 1 to M do

Remove intervals which do not satisfy

(32),(36) and (37) from Im

end for

If Im 6= {∅} for all m ∈ M then GO TO (4.2.)

else extract shape matrices until DT (α) = 0

(use most–left–non–zero elements of L and R)

end If

(4.9.) α := α − 1

(4.10.) end while (4.)

End.

Algorithm 4.4 considers iteratively all possible values of α in the while loop (4.). Whenever

α = 1, i.e., the maximal possible coefficient is one for any extraction the number of shape matrices

is equal to the decomposition time. Therefore, the algorithm uses the leftmost non-zero elements

of matrices L and R to extract shape matrices. If α 6= 1 then in each iteration for each row m it

constructs the set of intervals Im defined by conditions (32), (35)–(37). In the while loop (4.3.)

these sets are iteratively reduced with respect to conditions (30), (31), (33) and (34) such that the

first elements of these sets form a shape matrix or some of the sets become empty.

If there exists a shape matrix the algorithm extracts it end repeats the procedure again to find

the next shape matrix with the same coefficient. When there is no possibility to extract a shape

matrix with coefficient α, α is updated in (4.9.) and the above procedure is repeated for the new

value of α.

Example 4.5. Consider the matrix A given in Example 3.8. Using the matrices

L =





5 5 0 0

4 3 0 3

7 0 0 3



 , R =





0 0 4 6

0 6 0 4

0 7 0 3




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found in this example, we can compute

Ā =

(

5 4 4

4 0 0

)

, Â =

(

4 7 3

7 1 1

)

According to (3.),(4.1.)–(4.2.) the minimum of the maximal elements in rows of matrices L and

R is α = 4 and we get

I1 = {[1, 3), [1, 4), [2, 3), [2, 4)}

I2 = {[1, 2)}

I3 = {[1, 2)}

The first elements of these sets satisfy conditions (30), (31), (33) and (34), i.e., we can extract a

shape matrix

Y 1 = Y





[1, 3)

[1, 2)

[1, 2)



 =





1 1 0

1 0 0

1 0 0



 , α1 = 4.

Updating interval sets, using conditions (32), (36) and (37), with respect to residual matrices

A =





1 6 6

0 1 1

3 0 0



 , L =





1 5 0 0

0 3 0 3

3 0 0 3



 , R =





0 0 0 6

0 2 0 4

0 3 0 3





we get I2 = I3 = {∅}. Considering the next possible value of α = 3 we get the following sets

I1 = {[2, 4)}

I2 = {[4, 4)}

I3 = {[1, 2), [4, 4)}.

We can exclude [1, 2) from I3, since it does not satisfy conditions (33) and (34) with [4, 4) ∈ I2.

The remaining intervals form the shape matrix

Y 2 = Y





[2, 4)

[4, 4)

[4, 4)



 =





0 1 1

0 0 0

0 0 0



 , α2 = 3

which satisfy (30) and (31). Repeating the above procedure we get

Y 3 = Y





[2, 4)

[2, 2)

[1, 2)



 =





0 1 1

0 0 0

1 0 0



 , α3 = 2

Y 4 = Y





[1, 4)

[2, 4)

[1, 2)



 =





1 1 1

0 1 1

1 0 0



 , α4 = 1

So we have a alternative decomposition of A with smaller number of shape matrices compared

with the decomposition in Example 3.8.

We can use our greedy approach for unconstrained DC problems since we can compute the

matrices L and R as follows:

L = L̃ + W R = R̃ + W
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where W is any matrix with positive integer entries such that

∑

n∈N

wmn = DT − DTm

for all m ∈ M. For instance, we can choose W such that each row m of W has not more than

one non-zero element which corresponds to the maximum element among the elements of the

corresponding rows of L̃ and R̃ and has a value equal to DT − DTm.

Problem (max−α) now becomes

max α

s.t. (32), (35), (36), (37)

`m, rm ∈ N ∀m ∈ M

Thus, the greedy algorithm for the the unconstrained decomposition cardinality problem is as

follows.

Algorithm 4.6 (Greedy Approach to Unconstrained Decomposition Cardinality Prob-

lem).

Input: Matrix A

Output: Decomposition of A into C1 matrices

(1.) Compute DT , DTm, m ∈ M

(1.) Compute matrices L and R

(2.) Initialize α := min{maxn∈N {αδ
mn : αδ

mn < α} : ∀m ∈ M, δ ∈ {`, r}}

(3.) Set k := 0

(4.) While DT 6= 0 do

For m = 1 to M do

Im := {[p, q) : (32), (35) − (37)}

If Im = {∅} then GO TO (4.7.)

end For

(4.1.) If α 6= 1

then

(4.2.) Set k := k + 1

(4.3.) Extract C1 matrix Y k = Y ([`m, rm))m∈M

with coefficient αk := α

where [`m, rm) is the first element of Im

(4.4.) Update A, L, R

(4.5.) Set DT := DT − αk

(4.6.) For m = 1 to M do

Remove intervals which do not satisfy

(32),(36) and (37) from Im

end for

If Im 6= {∅} ∀m ∈ M then GO TO (4.2.)

else extract C1 matrices until DT = 0

(use first elements of Im, m ∈ M)

(4.7.) α := α − 1

(4.8.) end while (4.)

End.
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