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Abstract

We work in the setting of time series of financial returns. Our starting point
are the GARCH models, which are very common in practice. We introduce the
possibility of having crashes in such GARCH models. A crash will be modeled by
drawing innovations from a distribution with much mass on extremely negative
events, while in ”normal” times the innovations will be drawn from a normal dis-
tribution. The probability of a crash is modeled to be time dependent, depending
on the past of the observed time series and/or exogenous variables. The aim is
a splitting of risk into ”normal” risk coming mainly from the GARCH dynamic
and extreme event risk coming from the modeled crashes.
We will present several incarnations of this modeling idea and give some basic
properties like the conditional first and second moments. For the special case
that we just have an ARCH dynamic we can establish geometric ergodicity and,
thus, stationarity and mixing conditions. Also in the ARCH case we formulate
(quasi) maximum likelihood estimators and can derive conditions for consistency
and asymptotic normality of the parameter estimates.
In a special case of genuine GARCH dynamic we are able to establish L1 -
approximability and hence laws of large numbers for the processes itself. We
can formulate a conditional maximum likelihood estimator in this case, but can-
not completely establish consistency for them.
On the practical side we look for the outcome of estimating models with genuine
GARCH dynamic and compare the result to classical GARCH models. We ap-
ply the models to Value at Risk estimation and see that in comparison to the
classical models many of ours seem to work better although we chose the crash
distributions quite heuristically.
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Introduction

Motivation and modeling idea

GARCH models, especially the GARCH(1,1) model, are widely used in practice
though some shortcomings are known. Let’s consider e.g. a GARCH(1,1) model
with normal distribution of the innovations.

Xt = σtεt with σ2
t = ω + αX2

t−1 + βσ2
t−1

with L(εt) = N(0, 1). When fitting such a model to financial return time series
frequently values for α around 0.2 and for β around 0.8 arise. The fact that
the whole dynamic is captured via modeling the volatility together with the
relatively high value of β means that the effects of shocks are quite persistent in
such a model. If we now have an isolated extreme event in a period of otherwise
relatively low volatility the modeled volatility will tend to go down too slowly
after this event. Now if we fix the Value at Risk as a risk measure to investigate,
it is in this model proportional to the volatility. This is one of the reason that
while using GARCH(1,1) e.g. the 5% Value at Risk seems to be a little bit
pessimistic. On the other hand financial returns seem to be more heavy tailed
than the normal innovations are able to mirror: the 1% Value at Risk is often
overly optimistic. The latter problem is handled by practitioners often by using
innovations following a t-distribution with few degrees of freedom. But in many
cases this makes the situation at 5% level even worse.
In order to improve GARCH models in a new way we had the idea of modeling:

Xt = σt[(1 − Bt)εt +BtDt] with σ2
t = ω + αX2

t−1 + βσ2
t−1

where εt shall be the innovations in normal times and Dt is drawn from a dis-
tribution suited to model innovations in case of extreme events like crashes and
defaults. The modeling of the occurrence of a crash is via the variables Bt with
L(Bt|Ft−1) = B(1, pt). Here pt is the crash probability at the time t. We will let
pt depend on the past in various ways. The aim is to split risk into ”normal risk”
arising more or less from higher or lower volatilities and an extreme risk coming
from really extreme events. This yields a more detailed description of risk. Fur-
ther, when going back to the Value at Risk, we can expect that the combination
of these two effects will expose nonlinearities by which we get a more balanced
modeling of the Value at Risk on different levels.
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Outline

In Chapter 1, we first give an overview of different models in the GARCH context.
We start with the classic ones and then give some examples for more sophisticated
concepts, e.g. GARCH with Markov switching in the parameters. We do so, that
firstly the framework we are working in is specified and secondly to make clear
what kind of theory is desirable for the models we will introduce.
Moreover in section 1.6 we give some features of models where we apply GARCH
equations to innovations which are neither centered or scaled. Some of the fea-
tures presented there are essentially present in [Nel90], others seem to be new.
In Chapter 2, we present a first GARCH like model class with crash probabilities
depending on the past. We give some basic properties, discuss the problem of
really modeling crashes, give an example and discuss slight modifications of the
model, e.g. dependence of the crash probabilities on exogenous variables.
In Chapter 3, we discuss models which while keeping the basic spirit deviate more
strongly from the model we first introduced. Again we explore basic properties.
The discussion also gives a different view of our first model.
In Chapter 4, we discuss asymptotic properties like stationarity and mixing. The
results only hold if we restrict ourselves to a pure ARCH dynamic. The discussion
is done for the model we first introduced and the new model which has the most
differences among the models from Chapter 2.
In Chapter 5, we give a short introduction to the methodology from the book of
Pötscher and Prucha (1997) with a view towards consistency theory, because we
will make heavy use of this methodology.
Again restricting ourselves to the models with pure ARCH dynamic we develop
in Chapter 6 consistency and asymptotic normality results for different Quasi
Maximum Likelihood estimators for the original and the alternative model.
Chapter 7 is dedicated to what happens asymptotically if we use genuine GARCH
dynamic. At least in the restricted case of slightly altered models we get laws of
large numbers for the processes.
In Chapter 8, we want to gain asymptotic properties for the Quasi Maximum
Likelihood Estimators of the processes from Chapter 7. We are able to do some
steps in that direction, but do not succeed completely. We get formal problems
with the estimators because we would have to define an appropriate metric on
the tuples of observations from the infinite past in order to verify continuity
conditions.
Chapters 9 to 11 are dedicated to the more practical sides of the problem.
In Chapter 9, we have a look on the outcome of estimating log-return time series
of several of our models, which only depend on their own past, in hindsight of
how the crash probability and the volatility in these models behave. We also
discuss the problem in how far reality is mirrored when we simulate from models
we estimated from real world data.
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This discussion is continued in Chapter 10 for models which additionally or ex-
clusively depend on exogenous variables.
In Chapter 11, we compare the models how they work as Value at Risk estimators.

3



Chapter 1

GARCH processes

1.1 Financial Data

We are interested in time-series of financial data. Rather than the observed prices
we investigate the so called returns.
Let St be the Price at time t.

Definition 1.1.1.

1. The Return at time t is defined as
Rt = St−St−1

St−1

2. The Log–Return at time t is defined as
rt = log( St

St−1
) = log(St) − log(St−1).

Now the observed returns of assets seem to have some properties in common: (So
called “stylized facts”):

1. Returns seem to be uncorrelated.

2. But they are not independent, because the squared returns seem to be
correlated.

3. There seem to be “quiet” and “nervous” periods.(Volatility clustering)

4. The distribution of returns have more mass around the mean and in the tails
than the Gaussian–distribution.(Leptokurtic distribution, “heavy tails”)

To capture these properties several time-series models were developed. We focus
here on ARCH and GARCH like models, in which we want to implement a kind
of possibility of a crash for reasons we will discuss later.

4



1.2 Models

First we introduce the most important models already in use. In the following,
we will state their theoretical properties.

Notation We consider a time series Xt the sigma algebras in the corresponding
filtration we denote as Ft. Later, when using models with additional exogenous
variables, Ft denotes the whole information up to time t.

1.2.1 ARCH–models

A time-series Xt is said to follow an ARCH(q) model if the following equations
hold.

E(εt|Ft−1) = 0 and V ar(εt|Ft−1) = 1

Xt = σtεt

σ2
t = ω +

q
∑

i=1

αiX
2
t−i

where the αi > 0 and ω > 0.

1.2.2 GARCH–models

A time-series Xt is said to follow a GARCH(p,q) model if the following equations
hold.

E(εt|Ft−1) = 0 and V ar(εt|Ft−1) = 1

Xt = σtεt

σ2
t = ω +

q
∑

i=1

αiX
2
t−i +

p
∑

i=1

βiσ
2
t−i

where the αi > 0,βi > 0 and ω > 0.
Very common in practice is the GARCH(1,1) model:

Xt = σtεt

with
σ2

t = ω + αX2
t−1 + βσ2

t−1

where the εt are iid with mean 0 and variance 1. The distribution of εt is often
chosen to be standard normal.
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1.2.3 ARMA–GARCH and GARCH in mean

GARCH models are designed to model conditional heteroskedasticy in the vari-
ance. But for economic modeling scientists as well as appliers of the models
in practice are also interested in the mean of the returns. So besides fitting a
GARCH model to the centered observations, models have been developed to com-
bine GARCH regimes in the variance with time series models for the mean. Two
of the most important types of these model classes are ARMA–GARCH models
and GARCH–M models.

ARMA–GARCH
The ARMA–GARCH model is an ARMA–model with GARCH errors. By that
we mean that an ARMA(n,m)–GARCH(p,q) model is defined by

Yt = ν +
n
∑

i=1

aiYt−i +
m
∑

j=1

biXt−j +Xt

where Xt is a GARCH(p,q) process.

GARCH–M
Yt is said to be be a GARCH in mean or GARCH–M process if

Yt = ν + λg(σ2
t ) +Xt

holds, where Xt is a GARCH process and g is a known parametric function. The
CAPM, e.g., corresponds to the choice g = id. The term λg(σ2

t ) is interpreted as
a risk premium.

1.2.4 T–GARCH and E–GARCH

The following two models allow for asymmetric dependence of volatility on past
returns. They start from the common ARCH- and GARCH-models, but use dif-
ferent specifications of σt.

Threshold ARCH Here the equation for σt is given by

σδ
t = ω +

q
∑

i=1

αi|Xt−i|δ +

q
∑

i=1

αi|Xδ
t−i|I(Xt−i < 0)

There are models which use δ = 1 and models with δ = 2.

Exponential GARCH Here the equation for σt is given by

log(σ2
t ) = ωt +

∞
∑

i=1

βkg(Zt−k)

6



and
g(Zt) = θZt + γ(|Zt| − E(|Zt|))

where Zt are iid random variables with mean zero and variance 1.

1.3 GARCH models with Markov–switching

Let εt be iid with zero mean and unit variance and ∆t be a Markov chain with
finite state space E = {1, 2, . . . , d} The model is given by:

Xt = σtεt

σ2
t = ω(∆t) +

q
∑

i=1

αi(∆t)X
2
t−i +

p
∑

i=1

βi(∆t)σ
2
t−i

where for all k ∈ E, αi(k) and βi(k) are nonnegative and ω(k) is positive.

1.4 Estimation and theoretical properties

We have to investigate the theoretical properties of the models. The question
of stationarity is here of utmost importance. The other important question is if
there are consistent and asymptotically normal estimators. Usually the model
parameters discussed here are estimated via conditional maximum likelihood es-
timators.

1.4.1 GARCH(p,q)

Stationarity, Representation

Theorem 1.4.1. Let Xt be a GARCH(p,q) process with E(X4
t ) = c <∞ then

1. ζt := σ2
t (ε

2
t − 1) = X2

t − σ2
t is white noise

2. X2
t is an ARMA(m,p) process with

X2
t = ω +

m
∑

i=1

γiXt−i −
p
∑

j=1

βjζt−j + ζt

where m = max(p, q), γi = αi + βi and αi = 0 if i > q, βi = 0 if i > p

The condition E(X4
t ) = c < ∞ is just needed for ζt having a finite variance.

The representation formula in Part 2 of the above theorem holds without this
condition.
To investigate stationarity we must either consider a starting distribution in an
equilibrium state, double infinite sequences or we can just talk about asymptotic
stationarity. Unfortunately the diverse theorems are best stated in various of
these contexts.
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Theorem 1.4.2.

1. A GARCH(p,q) process with nonnegative coefficients ω, αi, βj is asymptot-
ically second order stationary if

q
∑

i=1

αi +

p
∑

i=1

βi < 1

[Gou97]

2. On the other hand if a second order stationary process has an existing con-
stant variance σ2, then

q
∑

i=1

αi +

p
∑

i=1

βi < 1

holds and
σ2 =

ω

1 − (
∑q

i=1 αi +
∑p

i=1 βi)

[FHH01]

3. Consider a GARCH(1,1) process which is double infinite.Let the εt be iid.
If E(ln(β + αεt)) < 0 then Xt is strictly stationary.[Nel90]

4. [BP92b] Let An be defined as the (p+ q − 1) × (p+ q − 1) matrix









τn βp α αq

Ip−1 0 0 0
ζn 0 0 0
0 0 Iq−2 0









with
τn = (β1 + α1ε

2
n, β2, . . . , βp−1) ∈ Rp−1

ηn = (ε2n, 0, . . . , 0) ∈ Rp−1

α = (α2, . . . , αq−1) ∈ Rq−2

If ω > 0 the GARCH(p,q) equation has a strictly stationary solution if and
only if the top Lyapounov exponent γ = inf{E( 1

n
log ||AnAn−1 . . . A1||), n ∈

N} associated with the matrices {An, n ∈ Z} is strictly negative. Moreover
this strictly stationary solution is ergodic.For given εt’s it is unique.
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Consistency of the maximum likelihood estimator

Usually GARCH models are estimated via the maximum likelihood method. Be-
cause the initial distribution of the time series is unknown, usually the term be-
longing to it is skipped. The estimator arising in such a way is called conditional
maximum likelihood estimator. When using conditionally normal distributions
in the estimator while not requiring the data arising from such a distribution, the
estimator is called a quasi maximum likelihood estimator.

Theorem 1.4.3. [LH94] Consider a GARCH(1,1) model with true parameters
ω,α,β and rescaled variable εt. If

1. εt is strictly stationary and ergodic

2. ε2t is nondegenerate

3. for some δ > 0 there exists Sδ <∞ such that E(ε2+δ
t |Ft−1) ≤ Sδ a.s.

4. suptE(log(β + αε2t )|Ft−1) < 0

then the quasi maximum likelihood estimator of a GARCH(1,1) model restricted
to any compact parameter subspace is consistent. If moreover α+β < 1 the quasi
maximum likelihood estimator with no restricted parameter space is consistent.

Theorem 1.4.4. [LH94] Under the assumptions of the previous theorem and
additionally

1. E(ε4t |Ft−1) <∞

2. The true parameter θ0 is in the interior of the parameter space.

The QMLE estimator θ̂n is asymptotically normal i.e.

√
n(θ̂n − θ0) →D N(0, V0)

with V0 = B−1
0 A0B

−1
0 where A0 = E(∇lt(θ0)∇lt(θ0)′) and B0 = −E(∇2lt(θ0)).

Here lt denotes the logarithm of the quasi likelihood function.

In the case of an iid random source [BHK03] give us a theorem for the consistency
of the QMLE in the GARCH(p,q) case for general p,q.

Theorem 1.4.5. [BHK03] Consider a GARCH(p,q) model with iid random source
εt Let A(x) = α1x + α2x

2 + · · · + αpx
p and B(x) = 1 − β1x− β2x

2 − · · · − βqx
q.

Let θ0 = (ω, α1, . . . , αp, β1, . . . , βq) be the true parameter. Let us parameterize the
problem via u= (x, s1, . . . , sp, t1, . . . , tq). If

1. ε2t is nondegenerate
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2. E(ε2t ) = 1

3. E|ε2t |1+δ <∞ for some δ > 0

4. lims→0 s
−µP (ε2t ≤ s) = 0 for some µ > 0

5. The polynomials A(x) and B(x) are coprimes in the set of polynomials with
real coefficients.

6. θ0 is in the interior of

U = {u|t1 + t2 + · · ·+ tq ≤ ρ0 and u ≤ min(x, s1, s2, . . . , sp, t1, t2, . . . , tq)

≤ max(x, s1, s2, . . . , sp, t1, t2, . . . , tq) ≤ u}

with 0 < u < u, 0 < ρ0 < 1, qu < ρ0

Then the quasi maximum likelihood estimator converges almost surely towards the
true value θ0.

The following is a generalization of the asymptotic normality theorem of GARCH(1,1)
to GARCH(p,q) in the case of an iid random source.

Theorem 1.4.6. Define A0 = E(∇lt(θ0)∇lt(θ0)′) and B0 = −E(∇2lt(θ0)).
Assume the conditions of the theorem above are satisfied and additionally:
E(|ε2t |2+δ) <∞ for some δ > 0, then the following holds:

1. A0 and B0 are nonsingular

2.
√
n(θ̂n − θ0) →D N(0, B−1

0 A0B
−1
0 ) as n→ ∞.

1.4.2 The Markov switching model

Strong stationarity

We now describe some properties of the model introduced in 1.3. In [FRZ01]
conditions for existence of a stationary solution of the Markov switching model
are given. For this purpose they rewrite the model in matrix form.

σ2
t = ωt + Atσ

2
t−1

with

ωt = ωt(∆t) =

















ωt(∆t)
0
.

.

.

0
















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and

σ2
t =

















σ2
t

σ2
t−1

.

.

.

σ2
t−r

















and

At =















α1(∆t)ε
2
t−1 + β1(∆t) α2(∆t)ε

2
t−2 + β2(∆t) . . . αr(∆t)ε

2
t−r + βr(∆t)

1 0 . . . 0

0 1
. . .

...

. . .
. . .

. . . 0
0 . . . 1 0















where At is an r × r matrix and αi(∆t) and βj(∆t) are equal to zero for i > q

and j > 0 and where r = max(p, q).

Theorem 1.4.7. Whenever the top Lyapounov exponent

γ = inf{E(
1

n
log ||AnAn−1 . . . A1||), n ∈ N} < 0

there exists a unique strictly stationary solution of the above model which is given
by

σ2
t = ωt +

∞
∑

i=1

AtAt−1 . . . At−i+1ωt−i

In [FRZ01] a condition for second order stationarity is also given including a
formula for the unconditional variance:

Theorem 1.4.8. Let A(∆t) be the matrix obtained by replacing ε2t−i by 1 in At.
Let p(i, j), (i, j) ∈ {1, . . . , d}2 denote the probability of changing from state i into
state j. Define the following dr × dr matrix.

P =











p(1, 1)A(1) p(2, 1)A(1) . . . p(d, 1)A(1)
p(1, 2)A(2) p(2, 2)A(2) . . . p(d, 2)A(2)

...
p(1, d)A(d) p(2, d)A(d) . . . p(d, d)A(d)











If the spectral radius of P is strictly less than 1 then the Markov switching GARCH
model has a unique stationary solution, belonging to L2. The unconditional vari-
ance of this process is:

1

r

∞
∑

k=0

1′P kω

11



with 1′ being the 1 × dr unit vector and ω = (π(1)ω(1)′, . . . , π(d)ω(d)′)′ ∈ Rdr×1

Consistency in the pure ARCH case

To achieve consistency for the maximum likelihood estimator [FRZ01] focuses
on the pure ARCH case. That is due to the fact that they use Markov chain
methodology, namely a backward forward algorithm, which restricts them to this
case. They also use some identifiability condition.

1.5 Methods of the Theory

The proof technique used in [BP92a] and [BP92b] for stationarity surveys demand
the random source εt has to be iid. So this method cannot be used to investigate
the properties of the models introduced in the next chapter. Because there the
role of the εt is taken by a process far from being iid in order to model “normal”
and crash regimes. In certain cases the use of the right law of large numbers may
transfer the methods used here to our problem.

1.6 Non normalized GARCH

The results in this section are auxiliary results for the models we really want to
investigate. Although the results are pretty straightforward, they don’t seem to
be described in present literature. So we choose to present them here. In fact we
want to consider a process Xt = σtεt where σ2

t follows a GARCH–equation and
the εt are iid, but we don’t consider any restriction on the mean or variance of
the εt except them being finite.

Definition 1.6.1. A process Xt is called a non normalized–GARCH(p,q)–process
with respect to εt if

1. Xt = σtεt and σ2
t = ω +

∑q
i=1 αiX

2
t−i +

∑p
i=1 βiσ

2
t−i.

2. The {εt} are iid random variables with 0 < c = Eε2t <∞.

It is clear that for a non normalized GARCH process E(Xt|Ft−1) = σtE(εt) and
E(X2

t |Ft−1) = σ2
tE(ε2t ) holds. So V ar(Xt|Ft−1) = σ2

t (E(ε2t )−E(εt)
2) = σ2

t V ar(εt).

Theorem 1.6.2. An unconditional non normalized–GARCH(1,1)–process with
β > 0 is strictly stationary iff E(log(β + αεt)) < 0.

Proof. In fact {εt} is iid by definition, the assumptions on εt imply that ε2t is
nondegenerate and the probability of the absolute value of εt being ∞ is zero.
The condition β > 0 implies the existence of E(log(β + αεt)) by the remark of
[Nel90] following condition (5) of this paper. So we are in the context of [Nel90]

12



which drops the condition of εt being scaled and centered for just E(log(β+αεt))
existing. (Condition (5) of [Nel90]).

Theorem 1.6.3. Let Xt be a non normalized–GARCH(1,1)–process with c = Eεt.

1. If c ≥ 1 then Xt is second order stationary iff αc+ β < 1.

2. If c < 1 then Xt is second order stationary iff α
√
c + β < 1.

Proof. By Jensen’s inequality we have

E log(β + αεt) ≤ log(β + αEεt) ≤ log(β + α
√
c)

as |Eεt| ≤ E|εt| ≤
√

Eε2t =
√
c. In both cases 1 and 2, the condition on α, β,

c guarantees, therefore, that E log(β + αεt) < 0 and Xt is strictly stationary by
Theorem 1.6.2. So, second order stationarity follows if the second moment exists.
In that case, we have

EX2
t = Eσ2

tEε
2
t = c(ω + αEX2

t−1 + βEσ2
t−1)

= ωc+ (αc+ β)EX2
t−1

= ωc+ (αc+ β)EX2
t

by stationarity. We conclude

EX2
t =

ωc

1 − (αc+ β)

Therefore in case of strict stationarity a necessary and sufficient condition for
second order stationarity is αc+β < 1 which in case 2 follows from α

√
c+β < 1.

Remark 1.6.4. For c < 1, we can construct examples where αc + β < 1 but
E log(β + αεt) > 0. Consider, e.g., for some 0 < w < 1, 0 < z < 1 a two point
distribution with εt ∈ {−z, z}, pr(εt = z) = w. Then, Eε2t = c = z2 and

E log(β + αεt) = w log(β + αz) + (1 − w) log(β − αz)

provided αz < β. Now, choose α, β, z such that β + αz > 1 but β + αz2 =
β + αc < 1 and then choose w close enough to 1 such that E log(β + αεt) > 0.

We define s := E(σt).
It is of interest how non normalized GARCH and normalized GARCH processes
are related.

Lemma 1.6.5. Let Xt be a non normalized GARCH(1,1) process with respect
to εt with parameters ω, α, β . Then Yt := Xt − E(Xt|Ft−1) is a non normalized
GARCH(1,1) process with respect to εt −E(εt|Ft−1) = εt −E(εt) with parameters
ω, α, β + αe2, where e := E(εt).

13



Proof. We have on one hand Yt = σtεt−E(σtεt|Ft−1) = σtεt−σtE(εt) = σt(εt−e).
On the other hand we have:

σ2
t = ω + αXt−1 + βσ2

t−1 = ω + ασ2
t−1ε

2
t−1 + βσ2

t−1

= ω + ασ2
t−1(ε

2
t−1 − e2 + e2) + βσ2

t−1

= ω + ασ2
t−1(ε

2
t−1 − e2) + ασ2

t−1e
2 + βσ2

t−1

= ω + αY 2
t−1 + ασ2

t−1e
2 + βσ2

t−1

= ω + αY 2
t−1 + (β + αe2)σ2

t−1

So Yt is a non normalized GARCH(1,1) process with respect to εt − e with pa-
rameters ω, α, β + αe2.

Theorem 1.6.6. 1. Let E(Xt|Ft−1) = 0, i.e. E(εt) = 0 and define c := E(ε2t ),
then

(a) Xt is a non normalized GARCH(1,1) process with respect to εt.

(b) Xt is a GARCH process with residuals 1√
c
εt.

are equivalent. Moreover if Xt is a non normalized GARCH(1,1) process
with parameters ω, α, β then it is a GARCH(1,1) process with parameters
cω, cα, β, and if Xt is an GARCH process with residuals 1√

c
εt and parame-

ters ω, α, β it is a non normalized GARCH process with respect to εt with
parameters 1

c
ω, 1

c
α, β.

2. Let Xt be a non normalized GARCH(1,1) process with parameters ω, α, β,
then ζt := Xt−E(Xt|Ft−1) is a GARCH process with parameters cω, cα, β+
αe2 where c = V ar(εt) and e = Eεt. Moreover Xt is a special case of a
GARCH–M model, namely Xt = σtEεt + Yt for a GARCH(1,1) process Yt.

Proof. 1. a → b Let Xt = σtεt be an non normalized GARCH process with
E(Xt|Ft−1) = 0 let E(ε2t ) = c. Then V ar(Xt|Ft−1) = cσ2

t . Then

V ar(Xt|Ft−1) = cω + cαX2
t−1 + cβσ2

t−1

holds. But this equals

cω + cαX2
t−1 + β(cσ2

t−1) = cω + cαXt−1 + βV ar(Xt−1|Ft−2)

So Xt is a GARCH process with parameters cω, cα, β.

b → a holds when we set σ2
t := 1

c
V ar(Xt|Ft−1) and applying the same

argumentation as above the GARCH equation for V ar(Xt|Ft−1) taking the
role of the non normalized GARCH equation above with 1

c
taking the role

of c above.
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2. (a) If Xt is a non normalized GARCH(1,1) process the previous lemma
shows that Yt := Xt−E(Xt|Ft−1) is a non normalized GARCH(1,1)process
with E(Yt|Ft−1) = 0. Its parameters are ω, α, β+αe2. Part one of this
theorem yields that Yt is in fact a GARCH(1,1) process with parame-
ters cω, cα, β + αe2.

(b) This follows from the previous part realizing that E(Xt|Ft−1) = σtEεt.

The first part of the theorem shows that in the centered case non normalized
GARCH is up to scale nothing really new. The second part of the theorem shows
also that a non normalized GARCH process is in fact a special case of a GARCH–
M process, with the constant term for the conditional mean being zero and the
factor for σt being E(εt). But clearly the way from non normalized GARCH to
the GARCH regime of the centered variable cannot be reversed. An appropriate
generalization towards GARCH(p,q) is also true.

So speaking more formally the argument is that if we have V ar(εot ) = 1 and
εt = γεot with γ2 = c and further define σt = γσt where σt satisfies a GARCH
equation with parameters ω, α, β then Xt := σtεt = σtε

o
t and also σt

2 = cσt
2 =

cω +
∑

cαiXt−i +
∑

cβj
σt

2

c
.

Define εot = εt−e
γ

where e = E(εt) and γ is the square root of its variance. So here

we have εt = e + γεot with εot being a (0, 1) variable. If we define again σt = γσt

we get:

Xt = σtεt = eσt + γσtε
o
t =

e

γ
σt + σtε

o
t

Now we want to gain more generality:

Definition 1.6.7. A generalized GARCH process is a process Xt = σtεt and
σ2

t = ω +
∑q

i=1 αiX
2
t−i +

∑p

i=1 βiσ
2
t−i where the innovation process εt is strictly

stationary and ergodic with and V ar(εt) <∞ .

Clearly the theorems above hold also for GARCH–transformed processes, as the
εt are square integrable.
Now we want to switch to the models we want to discuss. In fact some of them
will turn out to be generalized GARCH allowing us to use the theorems stated
here.
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Chapter 2

A first model with probability of
a crash

We want to introduce a possibility of a crash into models of the GARCH world.
Why do we want to do this ? In spite of being very popular with practitioners,
there are some weak spots in standard GARCH, which usually arise from ex-
treme events. Firstly the residuals after fitting a GARCH model to time series of
real world financial returns are still heavy tailed. But the most popular assumed
distribution of these residuals is still the standard normal. So if interested in
extreme risk, meaning in the world of Value at Risk extreme quantiles, there will
be a systematic underestimation of the risk.

2.1 Definition of the model

Our first, rather naive idea is to model crashes with a “crash distribution” and
let the probability of a crash depend on the past history.

Xt =

{

σtεt with probability 1 − pt

σtDt with probability pt
(2.1)

where Dt is a random variable modeling the crash behavior. We further assume
that the {εt} are iid. and the {Dt} are iid. both independent from each other. pt

is the probability of a crash. We choose to model it as a function of the process
and the volatility of the preceeding time–step: pt = f(Xt−1, σt), e.g. as a logistic
function:

f(x, s) =
1

1 + exp(−(α0 + α1x + α3s))
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Later on we assume a GARCH(1,1) recursion

σ2
t = ω + αX2

t−1 + βσ2
t−1

but the first results hold in general. The model with GARCH recursion on σ2
t

we will call the CGARCH-S model where C stands for “crash” and S symbolizes
that we model σ2

t via the GARCH equation in order to distinguish it from some
models we will introduce in Chapter 2.
It might be convenient to write this model in a closed form:

Xt = σt((1 − Bt)εt +BtDt)

where the Bt are B(1, pt) distributed.
In the case that εt and Dt have zero mean and have up to scale the same distri-
bution, and pt is constant, this would fall into the framework of the model with
Markov switching GARCH coefficients. Namely in such a model with two states
where all parameters of the second state are multiples of the ones of the first
state and the probability to switch between the states are equal no matter which
state we are in. So while there is an nonempty intersection between these model
classes, we see that the concepts are rather different, such that only very special
cases of both classes belong to the intersection.
We remark that in model (2.1) and all subsequent crash models we have in con-
trast to the common GARCH methodology, two random variables representing
risk: σt corresponds to the usual notion of volatility though not necessarily co-
inciding with the conditional standard deviation (compare 2.2.2). It represents
the change between more or less volatile market phases and the market risk in
“normal” times. pt however represents the risk of extreme price changes, i.e.
market risk arising from extraordinary situations. This allows for a more de-
tailed description of risk, separating normal risk from extreme risk. In this sense,
our approach differs from the standard methods of capturing the extreme risk
behavior in the bounds of the GARCH world, which just replaces the normal
distribution of innovations εt by a heavy tailed one.

2.2 Expected Value, Variance, Covariances

2.2.1 Expected value

Propositition 2.2.1. 1.

E(Xt|Ft−1) = (1 − pt)σtE(εt) + ptσtE(Dt)

= σt[(1 − pt)Eεt + ptEDt] (2.2)

2.
EXt = (E(σt) − E(σtpt))Eεt + E(ptσt)EDt

17



Proof. 1.

E(Xt|Ft−1) = (1 − pt)σtE(εt|Ft−1) + ptσtE(Dt|Ft−1)

If εt and Dt are iid this is:

(1 − pt)σtEεt + ptσtE(Dt)

2.

EXt = E(E(Xt|Ft−1)) = E((1 − pt)σtEεt + ptσtEDt)

= E(σt − σtpt)Eεt + E(ptσt)EDt

= (E(σt) − E(σtpt))Eεt + E(ptσt)EDt

For sake of simplicity in this first introduction we assume in some cases εt to be
iid N(0, 1) distributed. If we follow the assumption that εt has mean zero the
conditional mean is:

E(Xt|Ft−1) = (1 − pt)0 + ptσtE(Dt|Ft−1) = ptσtEDt

So the following equation holds.

EXt = E(E(Xt|Ft−1)) = E(ptσtE(Dt|Ft−1)) = E(ptσt)EDt

This illustrates a first problem with this model: Due to the fact that we modeled
pt and σt in a dependent way, this formula doesn’t factorize. And even if it
would do so, we have to calculate Ept and Eσt, at least the first problem being
not analytically tractable. And we cannot see from this formula, if the expected
value is constant over time.
If we ask in the general context, when the expected value is zero, we can come
up with the following calculation. If both, Eεt and EDt, are zero then the mean
of Xt also will be. So we assume that at least one of these means is nonzero.

EXt = E(σt(1− pt)Eεt + σtptEDt) = E(σt)Eεt −E(σtpt)Eεt +E(σtpt)EDt =! 0

Clearly when εt has zero mean this can only be satisfied if E(Dt) = 0 or E(σtpt) =
0. Where the latter is not possible except in degenerate cases as σt > 0 a.s. and
pt > 0 with positive probability. So let us assume that Eεt 6= 0.

⇒ EDt

Eεt
=
E(σtpt) − E(σt)

E(σtpt)

So if the condition
EDt

Eεt
= 1 − E(σt)

E(σtpt)
(2.3)
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holds, E(Xt) is zero. So if we want to choose the Dt and εt to be iid, the left
side is constant. If the denominator of the right side factorizes, this boils down
to Ept being the right constant namely

E(pt) =
−1

E(Dt)
E(εt)

− 1
.

In general we won’t be able to check this condition analytically. We can only check
it by e.g. Monte Carlo methods. Anyhow, we would not expect factorization of
E(σtpt) in general, as pt is assumed to be a function of σt.

2.2.2 Variance

Propositition 2.2.2.

E(X2
t |Ft−1) = σ2

t [(1 − pt)Eε
2
t + ptED

2
t ]

Proof.

E(X2
t |Ft−1) = (1 − pt)σ

2
tE(ε2t |Ft−1) + ptσ

2
tE(D2

t |Ft−1)

= (1 − pt)σ
2
tEε

2
t + ptσ

2
tED

2
t

= σ2
t ((1 − pt)Eε

2
t + ptED

2
t )

Propositition 2.2.3. Assume that εt has zero mean and unit variance then the
following holds:

1.
V ar(Xt|Ft−1)) = σ2

t ((1 − pt) + pt(V ar(Dt) + (1 − pt)ED
2
t ))

2.
V ar(Xt) = Eσ2

t + E(ptσ
2
t )(ED

2
t − 1) − (E(ptσt))

2(EDt)
2

Proof. Now we consider the assumption that εt has zero mean and variance one,
so the following holds:

E(X2
t |Ft−1) = (1 − pt)σ

2
t + ptσ

2
tED

2
t

and
E(Xt|Ft−1) = ptσtEDt

To proof 1. we calculate:

V ar(Xt|Ft−1)) = E(X2
t |Ft−1) − (E(Xt|Ft−1))

2

= (1 − pt)σ
2
t + ptσ

2
tED

2
t − p2

tσ
2
t (EDt)

2

= σ2
t ((1 − pt) + ptED

2
t − p2

t (EDt)
2)

= σ2
t ((1 − pt) + pt(V ar(Dt) + (1 − pt)ED

2
t ))
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For point 2. we realize:

V ar(Xt) = EX2
t − (EXt)

2 = E(E(X2
t |Ft−1)) − (E(E(Xt||Ft−1)))

2

= E(σ2
t ) − E(ptσ

2
t ) + E(ptσ

2
t )ED

2
t − (E(ptσt)EDt)

2

= Eσ2
t + E(ptσ

2
t )(ED

2
t − 1) − (E(ptσt))

2(EDt)
2

In the more general case the formula for the conditional variance gets more com-
plicated:

Propositition 2.2.4.

V ar(Xt|Ft−1)

= σ2
t [(1 − pt)Eε

2
t + ptED

2
t

−(1 − pt)
2(Eεt)

2 − (1 − pt)ptEεtEDt − p2
t (EDt)

2]

Proof. Just using Propositions 2.2.1 and 2.2.2 we get this result simply calculat-
ing.

We can write this result alternatively:

Propositition 2.2.5.

V ar(Xt|Ft−1)

= σ2
t [(Eε

2
t + pt(ED

2
t − Eε2t )

−(Eεt + pt(EDt − Eεt))
2]

Proof. We just apply

(1 − pt)x + pty = x+ pt(y − x)

for x = Eεt and y = EDt in the statement of Proposition 2.2.1 and to x = Eε2t
and y = ED2

t in the statement of Proposition 2.2.2. Then we use

V ar(Xt|Ft−1) = E(X2
t |Ft−1) − E(Xt|Ft−1)

2

Remark 2.2.6. We consider the definition

ηt = (1 − Bt)εt +BtDt

Then in the sense of Chapter 1 Xt is a generalized GARCH with innovations ηt

provided Bt is stationary. In fact consider that

E(ηt|Ft−1) = (1 − pt)Eεt + ptEDt
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and
E(η2

t |Ft−1) = (1 − pt)Eε
2
t + ptE(D2

t )

hold. So

V ar(ηt|Ft−1) = [(Eε2t + pt(ED
2
t − Eε2t ) − (Eεt + pt(EDt − Eεt))

2]

holds. So
E(Xt|Ft−1) = σtE(ηt|Ft−1)

holds, which shows that we are formally in a GARCH–M setting. Further we see
that

V ar(Xt|Ft−1) = σ2
t V ar(ηt|Ft−1)

holds. So the variance of the process Xt is dependent on the GARCH dynamic
we impose and on the conditional variance of the crash–non-crash mixture inno-
vations.

Closely related to the question of the variance is, when does Eσ2
t exist and is

constant over time. We take a first look at this problem under the assumption
that the εt are iid N(0, 1) distributed and that

σ2
t = ω + αX2

t−1 + βσ2
t−1

⇒ E(σ2
t ) = ω + αE(X2

t−1) + βE(σ2
t−1)

= ω + αE(E(X2
t−1|Ft−2)) + βE(σ2

t−1)

= ω + αE(σ2
t−1((1 − pt−1) + pt−1E(D2

t−1))) + βE(σ2
t−1)

Assuming pt and σ2
t are uncorrelated this boils down to:

ω + αE(σ2
t−1)E((1 − pt−1) + ptE(D2

t−1)) + βE(σ2
t−1)

So if E(σ2
t ) = E(σ2

t−1):

E(σ2
t ) =

ω

1 − α(E(1 − pt−1 + pt−1ED
2
t−1)) − β

So for E(σ2
t ) to exist α(E(1 − pt−1 + pt−1ED

2
t−1)) + β has to be smaller than

1. To be constant over time moreover (E(1 − pt−1 + pt−1ED
2
t−1)) has to be also

constant over time. Switching back to the model with arbitrary distribution of
the εt we get by analogous reasoning the following proposition:

Propositition 2.2.7. Let σ2
t and pt be uncorrelated. If α(max(Eε2t , ED

2
t ))+β <

1 and (1−Ept)Eε
2
t +EptED

2
t is constant, E(σ2

t ) exists and is constant over time.
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The condition in this corollary is rather strong, and might lead to unnecessary
strong constraints. That is one of the reasons why we consider different ap-
proaches in later chapters.
At least we can get a relation between the parameters and EX2

t , Eσ2
t if we

assume that these moments are constant over time and some other reasonable
assumptions: If we assume EX2

t = EX2
t−1 and Eσ2

t = Eσ2
t−1 then we get via the

GARCH equation:
Eσ2

t = ω + αEX2
t−1 + βEσ2

t−1

⇒ EX2
t =

(1 − β)Eσ2
t−1 − ω

α
= (∗)

From Proposition 2.2.2 we get:

EX2
t = Eε2tEσ

2
t + E(ptσ

2
t )(ED

2
t − Eσ2

t )

If we combine that with (∗) we get:

(1 − β − αEε2t )Eσ
2
t = ω + αE(ptσ

2
t )(ED

2
t − Eσ2

t )

If we assume now Eε2t = 1, which is just scaling, and ED2
t ≥ Eε2t which makes

sense if we want to model crashes we get:

(1 − α− β))Eσ2
t ≥ ω (2.4)

and

EX2
t =

(1 − α− β)Eσ2
t−1 − ω + αEσ2

t−1

α
≥ Eσ2

t−1 (2.5)

2.2.3 Covariances

Even if we assume the εt to be iid N(0, 1) distributed and the to Dt be iid,
both sequences independent of each other, we have problems to calculate the
autocovariances.

Cov(Xt, Xt+k) = E(XtXt+k) − E(Xt)E(Xt+k)

= E(XtXt+k) − E(ptσt)E(pt+kσt+k)E(Dt)E(Dt+k)

= E(E(E(XtXt+k|Ft+k−1)|Ft−1)) − E(ptσt)E(pt+kσt+k)E(Dt)E(Dt+k)

= E(E(0 + 0 + (1 −Bt)σtεtpt+kσt+kE(Dt+k) +BtσtDtpt+kσt+kE(Dt+k)|Ft−1))

−E(ptσt)E(pt+kσt+k)E(Dt)E(Dt+k)

= 0 + E(E(Btpt+kσt+k|Ft−1)σt)E(Dt)E(Dt+k) − E(ptσt)E(pt+kσt+k)E(Dt)E(Dt+k)

= E(Dt)E(Dt+k)(E(Btpt+kσt+kσt) − E(ptσt)E(pt+kσt+k))

If E(Dt) 6= 0, then this expression doesn’t simplify without further assumptions,
because the correlation between the pts is unknown as well as the correlation
between them and the sigmas.
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2.3 The choice of the crash distribution and the

problem of defining a crash

By the choice of the crash distribution Dt we implicitly define the meaning of
crash in our model. So we have to know what we mean by a crash prior to
choose such a distribution. If we mean by crash that we get large losses, we
should use a distribution which lives only on the negative numbers. If we also
take mean reversion effects being part of the crash regime, we also can allow
for positive values of the crash distribution, but with overall negative skewness.
Even having chosen a parametric family of distribution, it is the question, which
distribution we choose. Adding the parameters concerning the distribution to be
estimated will bring a certain muddiness into the model: Properties like mean
and variance depend on the choice of these parameters and of the parameters ω,
α, β. Moreover the estimates of the parameters concerning pt clearly rely on the
choice what we mean by a crash. So there is little wonder that trying to do this
ended in complete failure.
As we have seen there are difficulties in the CGARCH-S model to calculate the
unconditional mean of the process. If we take, like we have done in the examples,
the non-crash distribution to have zero mean and the crash distribution to be
purely negative, it is however clear, that that means that the mean is overall
negative. If we interpret the process arising as asset returns, this means eventual
bankruptcy. So to have a more realistic model, or at least a model not implying
bankruptcy per se, we would have to choose the non-crash distribution to have
a positive mean. But to do this in a not purely erratic way, we don’t have
enough information, not knowing what unconditional mean a choice of pairs of
distributions leads to.

2.4 Higher Moments

For sake of simplicity we assume here E(εt|Ft−1) = 0. Further we assume εt and
Dt to be iid independent from each other.

2.4.1 Skewness

If we choose for εt or Dt distributions, which are non symmetric, Xt can be
skewed. This isn’t the case in the standard GARCH model. This even holds if
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L(εt|Ft−1) is symmetric around zero, as can be seen by the formula:

E(Xt − EXt)
3 = E(E[(Xt − EXt)

3|Ft−1])

= E((1 − pt)σ
3
tEε

3
t + ptσ

3
tED

3
t )

−3E[(ptσtEDt)((1 − pt)σ
2
tEε

2
t + ptσ

2
tED

2
t )]

+3E[(ptσtEDt)
2((1 − pt)σtEεt + ptσtEDt)]

+E(ptσtEDt)
3

2.4.2 Kurtosis

We give here a formula for the centered fourth moment:

E(Xt − EXt)
4 = E(E[(Xt − EXt)

4|Ft−1])

= E((1 − pt)σ
4
tEε

4
t + ptσ

4
tED

4
t )

−4E(ptσtEDt)((1 − pt)σ
3
tEε

3
t + ptσ

3
tED

3
t )

+2E[(ptσtEDt)
2((1 − pt)σ

2
tEε

2
t + ptσ

2
tED

2
t )]

−4E[(ptσtEDt)
3((1 − pt)σtEεt + ptσtEDt)]

+E(ptσtEDt)
4

Pitifully this formula doesn’t simplify. But we can see that the higher order
moment structure is quite complex even if L(εt|Ft−1) is symmetric around 0.

2.5 An example

We now give an example of a process following the dynamic described in the
model above. We chose a standard normal distribution for εt and a lognormal
distribution with parameters (0,1) as a crash-distribution. We modeled The
parameters are ω = 10−5, α = 0.01218, β = 0.9, further a = −10, b = −490
and c = 100. That means we modeled

pt =
1

1 − exp(−(−10 − 490Xt−1 + 100σ2
t ))

In 2.1 the process itself is shown. In Figures 2.3 and 2.4 we see that the volatility,
i.e. the conditional standard deviation, of a process following the model can be
extremely different from σt namely when as in this example pt has a big range.
Further the irregular nature of pt is shown in 2.2.
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Figure 2.1: An example of a process fol-
lowing the model
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Figure 2.2: The crash-probability of this
process
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Figure 2.3: The sigma of this process
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Figure 2.4: The volatility of the process

In Figure 2.5 we show the shape of the price process if 2.1 were returns of an asset.
The stars actually show, when a (pseudo–)crash occurred in the simulation, i.e.
Bt = 1. In my opinion an intuitive idea of what a crash is isn’t mirrored by the
model’s immanent (pseudo–)crashes. Only the cluster of such events near time
instant 1100 displays a price path one might expect from a crash.
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Figure 2.5: Pseudo-price and times of
crashes
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Figure 2.6: The volatility depending on
sigma

Figure 2.6 shows the dependence of the volatility on σt and implicitly on pt. In
times when pt is low and not very noisy the volatility depends almost linear on
σt. In an intermediate phase the crash-probability is dominant on the volatility,
shifting it up to a phase where another almost linear dependence on σt holds
when pt is near 1.

2.6 Discussion

The overall problem, whether discussing moments, stationarity, mixing or ergod-
icity question, is so to speak to get a fixed point to start from. Beside questions
of correlation between the sigmas and the ps, we get stuck in vicious circles like:
“The mean of Xt is constant, if that of pt is, which is the case, when the mean of
Xt is constant and some other assumptions are satisfied.” Therefore we modify
our first attempt on a crash model in the following chapters.

2.7 Transformations of the signum–function as

Crash–probabilities

One idea to establish stability properties in the model is to use a function of
Xt,which as such can be observed, for generating the crash–probabilities, but let
the function of such nature that it is also a function of ηt = (1 − Bt)εt + BtDt.
This avoids vicious circles in the argumentation. A generalization of this idea,
pt being just a function of ηt we will use later in a more general context. One
function with this property in our general model setup is the signum function.
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We stick to the general assumption that {εt} are iid and the {Dt} are iid both
independent from each other.

We assume that the distributions of εt and the Dt both are absolutely continuous
with respect to the Lebesgue measure. Because then pt will only attain two values
with positive probability we will call this model a CGARCH-SB model, where B
stands for binary. In this setting we can do the following calculation:
Let pt = f(sign(Xt)), where f is a transformation into the open interval (0, 1).
Let f(−1) = a, f(1) = b hold. Define pc := P (Dt ≥ 0) and pnc := P (εt ≥ 0)
Then

E(pt|Ft−1) = (pt−1pc + (1 − pt−1)pnc)b+ (pt−1(1 − pc) + (1 − pt−1)(1 − pnc))a

= (pt−1(pcb+ (1 − pc)a) + (1 − pt−1)(pncb + (1 − pnc))a)

We set c = (pcb + (1 − pc)a) and d = (pncb + (1 − pnc)a).

E(pt|Ft−1) = pt−1c+ (1 − pt−1)d = d+ pt−1(c− d)

Lemma 2.7.1. E(pt|Ft−n) = d(
∑n

i=1(c− d)i−1) + pt−n(c− d)n

Proof. The previous discussion proves the fact for n = 1.

n→ n + 1

E(pt|Ft−n+1) = E(E(pt|Ft−n)|Ft−(n+1))

= E(d(
n
∑

i=1

(c− d)i−1) + pt−n(c− d)n|Ft−(n+1))

= d(

n
∑

i=1

(c− d)i−1) + E(pt−n|Ft−(n+1))(c− d)n

= d(
n
∑

i=1

(c− d)i−1) + (pt−(n+1)c+ (1 − pt−(n+1))d)(c− d)n

= d(

n
∑

i=1

(c− d)i−1) + (d+ pt−(n+1)(c− d))(c− d)n

= d(

n
∑

i=1

(c− d)i−1) + d(c− d)n + pt−(n+1)(c− d)n+1

= d(
n+1
∑

i=1

(c− d)i−1) + pt−(n+1)(c− d)n+1
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Lemma 2.7.2. If we have a process which has an infinite past we have E(pt) =
d 1

1−c+d
independent from t.

Proof. Because a and b are in (0, 1) and the pc and (1 − pc) add up to one
0 < min(a, b) ≤ c ≤ max(a, b) < 1 The same holds for d. So

E(pt) = lim
n→∞

E(pt|Ft−n)

= lim
n→∞

d(

n
∑

i=1

(c− d)i−1 + pt−n(c− d)n

= lim
n→∞

d(
n
∑

i=1

(c− d)i−1) + lim
n→∞

pt−n(c− d)n

Now pt−n is bound to be between 0 and 1 and so limn→∞ pt−n(c − d)n = 0. On
the other hand limn→∞ d(

∑n

i=1(c− d)i−1) = d 1
1−c+d

.

A completely analogous discussion yields :

E(p2
t ) = d′2

1

1 − c′ + d′

Where c′ := (pcb
2 + (1 − pc)a

2) and d′ := (pncb
2 + (1 − pnc))a

2) And so we can
calculate the variance:

V ar(pt) = d′2
1

1 − c′ + d′
− d2 1

(1 − c+ d)2

which is obviously a constant.

E(ptpt+τ ) = E(E(ptpt+τ |Ft))

= E(ptd(

τ
∑

i=1

(c− d)i−1) + p2
t (a− b)τ )

= E(ptd(
τ
∑

i=1

(c− d)i−1) + E(p2
t (a− b)τ )

= d(

τ
∑

i=1

(c− d))i−1)E(pt) + (a− b)τE(p2
t )

= d
(c− d)τ

1 − c+ d
+

(a− b)τ

1 − c2 + d2

This clearly just depends on τ only.
This discussion yields the following Theorem:

Theorem 2.7.3. If pt is a transformation of the signum function into the open
interval (0, 1), then pt is second order stationary.
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Corollary 2.7.4. Let εt and Dt be both square integrable. If αd′ 1
1−c′+b′

E(Dt)
2 +

β < 1, then Xt is second order stationary.

Proof. If αd′ 1
1−c′+b′

+ β < 1 then E(σ2
t ) exists and so does E(σt).

E(Xt) = E(σt)

((

1 − d
1

1 − c+ b

)

E(εt) + d
1

1 − c+ b
E(Dt)

)

holds not depending on t and

E(X2
t ) = E(σ2

t )

((

1 − d′
1

1 − c′ + d′

)

E(ε2t ) + d
1

1 − c′ + d′
E(D2

t )

)

<∞

The covariances are zero because of the independence of all components of the
“residuals”.

2.8 Models with crash probabilities depending

on external variables

pt may partially or completely depend on external variables additionally to or
instead of Xt and σt. These variables might be multivariate. They may be
derived from an index or other outside data influencing the asset. If the crash
probabilitiy is only a function of exogeneous variables then the discussion becomes
much simpler. We consider this case in this section.

2.8.1 Mean and Variance

We return to model (2.1) and assume that pt = f(Wt) with external variables Wt

chosen such that pt is stationary with mean p and not correlated with σt. We will
call this model CGARCH-SP model, where P symbolizes that pt is a stochastic
process in its own right. We get the following expected value.

E(Xt) = E[σt(E((1 − pt)Eεt) + (E(ptEDt)))] = E(σt)((1 − p)Eεt + pEDt)

A nice calculation concerning the variance can also be done:

V ar(Xt) = E(σ2
t ((1 − pt)Eε

2
t ) + ptED

2
t ) − (EXt)

2

= E(σ2
t )((1 − p)Eε2t ) + pED2

t )

−E(σt)
2(p2(EDt)

2 − (1 − p)2(Eεt)
2 − p(1 − p)EεtEDt)

= σ2(1 − p)Eε2t + pED2
t − (p2((EDt)

2 − (1 − p)2(Eεt)
2 − p(1 − p)EεtEDt)

= p(V ar(Dt) + (1 − p)(EDt)
2 + (1 − p)V ar(εt) + p(Eεt)

2 − V ar(Bt)EεtEDt)

If we have in the general model that E(pt) = p is constant the formulae above
also hold. Surprisingly V ar(Xt) doesn’t depend on V ar(pt).This is evidence how
restrictive the assumption of σt and pt being not correlated is.
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2.8.2 Stationarity

Assumption 2.8.1. Let Wt be a possibly vector valued time series of exogenous
variables. We assume that Wt is strictly stationary and ergodic. Let pt = f(Wt)
where f is a measurable function taking values between 0 and 1.

Because under stationarity α–mixing implies ergodicity this assumption is implied
by the following alternative assumption.

Assumption 2.8.2. Let Wt be a possibly vector valued time series of exogenous
variables. We assume that Wt is strictly stationary and α–mixing. Let pt = f(Wt)
where f is a measurable function taking values between 0 and 1.

Lemma 2.8.3. 1. Under Assumption 2.8.1 ηt = (1 − Bt)εt +BtDt is strictly
stationary and ergodic.

2. Under Assumption 2.8.2 ηt = (1 − Bt)εt + BtDt is strictly stationary and
α–mixing. If moreover εt and Dt are of finite mean and variance ηt is also
second order stationary.

Proof. If Wt is strictly stationary and mixing, so is pt([PP97]). Because pt is
between 0 and 1, all its moments must exist. Bt is just an B(1, pt) distributed
random variable. It’s only dependence on time is via pt so time related concepts
like mixing and stationarity carry over from pt. So if the εt are iid and the Dt are
iid, each sequence independent from the other, dependency in ηt can only derive
from pt, which shows mixing. The strong stationarity of Bt and the distributions
drawn from under its rule yields the strong stationarity of ηt. For the existence of
the moments we remark that we have seen that E(pt) exists, so we have: E(ηt) =
(1 − E(pt))Eεt + E(pt)EDt <∞ and E(η2

t ) = (1 − E(pt))Eε
2
t + E(pt)ED

2
t <∞

The mixed terms are zero because either Bt or 1 − Bt are zero.

In fact the Assumptions 2.8.1 and 2.8.2 are special cases of the following assump-
tions:

Assumption 2.8.4.

We assume that pt is strictly stationary and ergodic.

Assumption 2.8.5.

We assume that pt is strictly stationary and α–mixing.

Lemma 2.8.6. Suppose 2.8.4 holds. Suppose a GARCH(1,1) regime on ηt the
centered and normalized version of ηt,that means we consider:

ηt =
ηt − E(ηt|Ft−1)
√

V ar(ηt|Ft−1)

and
σ2

t = ω + αη2
t + βσ2

t−1.

This process is second order stationary iff α + β < 1
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Proof. The expected value of this process is clearly constant zero.
For the variance: In our situation the representation theorem for GARCH pro-
cesses holds, with ζt = σ2

t (η
2
t − 1) having zero mean, which is sufficent to use

Property 3.19 in [Gou97]. So Xt doesn’t have to have a finite fourth moment for
this discussion. So the argument of [Gou97] goes through.
For the covariances: Because the εt and Dt are iid E(εtεt+τ ) = E(Dtεt+τ ) =
E(εtDt+τ ) = E(DtDt+τ ) = 0 holds. Consequently the covariances of ηt are zero.
But ηt is just a centered and normalized version of ηt and hence is also uncor-
related. So Cov(ηt, ηt+τ ) = 0 for τ 6= 0 constantly neither depending on t or on
τ .

Corollary 2.8.7. Suppose 2.8.4 holds. If we get the double infinite process
Xt = σtηt by imposing a GARCH(1,1) regime on σt, this process is second order
stationary iff α((1 − p)Eε2t + pED2

t ) + β < 1 with p = Ept. In this case

σ2 := E(σ2
t ) =

ω

1 − α((1 − p)Eε2t + pED2
t ) − β

with p = Ept.

Proof. The discussion of the covariances in the preceeding proof holds here, too.
“⇒”
Suppose the variance of Xt is constant. By assumption p = E(pt), and the first
two moments of Dt and εt are not depending on t either. Therefore σ2 := E(σ2

t )
being the only other term in the formula for the variance of Xt has to be also
constant. If σ2 exists and is constant we have

σ2 = ω + αE(X2
t ) + βσ2 = ω + ασ2((1 − p)Eε2t + pED2

t ) + βσ2

⇒ σ2(1 − α((1 − p)Eεt + pEDt) − β) = ω

⇒ σ2 := E(σ2
t ) =

ω

1 − α((1 − p)Eε2t + pED2
t ) − β

“⇐”
For sake of notation we define c := (1 − p)Eε2t + pED2

t . Due to the GARCH
regime E(σ2

t ) = ω+αcE(σ2
t−1)+βE(σ2

t−1) holds. If the roots of the characteristic
polynomial 1 − (αc+ β)L, are strictly outside the unit circle, the sequence EX 2

t

converges. But then Xt is asymptotically second order stationary, because p =
E(pt) and the first two moments of Dt and εt are constant. The proof that roots
of 1− (αc+β)L are strictly outside the unit circle iff (αc+β) < 1 are completely
analogous to [Gou97] page 37, we will give it in the more general form in the next
proof.

Corollary 2.8.8. Suppose 2.8.4 holds. Suppose we get the double infinite process
Xt = σtηt by imposing a GARCH(p,q) regime on σt. If this process is second order
stationary then ((1 − p)Eε2t + pED2

t )
∑q

i=1 αi +
∑p

j=1 βj < 1 In this case

σ2 := E(σ2
t ) =

ω

1 − ((1 − p)Eε2t + pED2
t )
∑q

i=1 αi +
∑p

j=1 βj
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Proof. The same argumentation as above using the general GARCH(p,q) equa-

tions: If the roots of the characteristic polynomial 1 −∑max(p,q)
i=1 (cαi + βi)L

i are
strictly outside the unit circle, the process σ2

t is asymptotically second order sta-
tionary. This is the case iff cα(1) + β(1) < 1. If cα(1) + β(1) is bigger or equal
than 1 cα(1)+β(1) ≤ 0 and cα(0)+β(0) > 0 holds and the characteristic polyno-
mial would have a real root inside the unit circle. If we assume on the other hand
cα(1) + β(1) < 1 and the existence of z, a root of the characteristic polynomial
with modulus strictly smaller than 1 the following contradiction arises:

1 =

max(p,q)
∑

i=1

(cαi + βi)z
i = |

max(p,q)
∑

i=1

(cαi + βi)z
i|

≤
max(p,q)
∑

i=1

(cαi + βi)|zi| ≤ cα(1) + β(1) < 1

Because we are also interested in strong stationarity we want to transfer some
methods used in [Nel90] to our problem. The crucial point here is to use an
adequate Law of Large Numbers, namely a strong one.

Theorem 2.8.9. Let ω 6= 0 and let Assumption 2.8.4 hold.
Let E| log(β + αη2

t )| < ∞. Then the double infinite sequence σt is strictly sta-
tionary iff E(log(β + αη2

t )) < 0. The same holds for Xt.

Proof. Assumption 2.8.4 implies that ηt and so log(β + αη2
t ) are stationary and

ergodic. The condition E| log(β + αη2
t )| < ∞ allows us to a make use of the

strong law of large numbers arising from the ergodic theorem. But with a
strong law of large numbers the discussion of Nelson goes through: Then we have
1
n

∑n

i=1 log(β + αη2
i ) → E(log(β + αη2

1)). But that means ∀ε > 0 ∃M ∈ N such
that ∀n > M | 1

n

∑n

i=1 log(β+αη2
t−i)−E(log(β+αηi)

2)| < ε. This holds because of
the definition of almost sure convergence does not depend on indexing. If we take

ε =
|E(log(β+αη2

t ))|
2

we get as in Nelson: | 1
n

∑n

i=1 log(β+αη2
t−i)−E(log(β+αη2

i ))| <
|E(log(β+αη2

t ))|
2

for n big enough. The rest of Nelson’s proof clearly goes through:
From the previous equation we can derive the following equations holding almost
surely:

n
∑

i=1

log(β + αη2
i ) <

n

2
E log(β + αη2

i )

because of our assumption and we get:

n
∏

i=1

(β + αη2
i ) < exp

(n

2
E log(β + αη2

i )
)
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hence we have
∏n

i=1(β + αη2
t−i) = O(e−λn) with λ =

|E(log(β+αη2
t ))|

2
> 0.

Therefore,
∑∞

n=1

∏n
i=1(β+αη2

t−i) converges. The measurability argument of Nel-
son also holds here.

In this section we have seen that stationarity and ergodicity of ηt will carry over
to Xt provided some moment type conditions hold. That is not true for mixing
if Xt depends on the infinite past. The next section will discuss how far the
methods above can proceed in that context and why they ultimately fail.

2.8.3 Discussion of SLLN for mixing processes

Consider a sequence Xt with E(Xt) = E(Xt′) for all t, t′. We define X̃t :=
Xt −E(Xt). We want to find conditions for a strong law for Xt to hold. Clearly
if n−1

∑n
t=1 X̃t → 0 a.s. then n−1

∑n
t=1 Xt → E(Xt).

We now want to use the theorems of [McL75]. To this extend we assume

1. X̃t is strongly mixing with αn being of size −p

p−2
for some p ≥ 2.

2. There exits a r, p

2
< r ≤ p <∞ with

∞
∑

t=1

E
2

p
|X̃t|r
tr

<∞

According to Theorem 2.10 of [McL75] n−1
∑n

t=1 X̃t → 0 a.s holds under this
assumption.
If r = 2 holds then the second point in the assumption can be substituted by

∫ ∞

0

sup
t

P (X̃t > x)dx <∞

We now look at conditions from [Han91b]. Let 1 < q < r 1 ≤ p < r < 2p

1. ∞
∑

m=1

α
1

q
− 1

2p
m <∞

and ∞
∑

t=1

t
− r

p ||X̃t||
r
p
r <∞

2. ∞
∑

m=1

α
1− 1

2p
m <∞

and
sup

t

E(|X̃t|r) <∞
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3.

sup
i≥1

E

(

|X̃t

tα
|r
)

<∞

for an α > 0 and either

(a) 1 ≤ r ≤ 2,
∞
∑

m=1

α
1

2
m <∞

and α < r−1
r

or

(b) r ≥ 2,
∞
∑

m=1

α
1− 1

r
m <∞

and α < 1
2
− δ for some δ > 0.

According to page 217 of [Han91b] in either of the cases of above assumption also
n−1

∑n

t=1 X̃t → 0 a.s. holds.
So in any of these cases we have a strong law for Xt. It would be nice if we
could weaken the assumptions above by just assuming an mixing rate decreasing
fast enough on ηt and that the mean is constant over time and come up with a
mixing result for the whole process. Now if we assume that a strong law holds
for log(β + αηt) nearly all arguments of the discussion above go through. In
fact σt will be a measurable function. The stumbling stone is that a measurable
function of a whole mixing process does not have to be mixing. Therefore, to
gain anything at all we have to turn to approximation concepts like near epoch
dependence or Lp approximability.
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Chapter 3

Modifications of the model

3.1 Crash-models with GARCH-volatilities

For sake of simplicity we assume Eεt = 0. If we choose Dt non-symmetric or
with a mean differing from zero, in the model class above σt won’t be the condi-
tional volatility like in the GARCH–model. So we can alternatively develop the
following model.While keeping the equation

Xt =

{

σtεt with probability 1 − pt

σtDt with probability pt
(3.1)

we define the volatility
vt :=

√

V ar(Xt|Ft−1)

and we model further:

v2
t = V ar(Xt|Ft−1) = ω + α(Xt−1 − E(Xt−1|Ft−2))

2 + βv2
t−1 (3.2)

= ω + α(Xt−1 − σt−1pt−1E(Dt−1))
2 + βv2

t−1 (3.3)

Then we let pt depend on Xt−1 and vt.

pt = f(Xt−1, vt)

Finally we have to get the dynamic into the factor σt, using (3.1):

σ2
t =

v2
t

(1 − pt)Eε2t + ptED
2
t − p2

t (EDt)2

So we model the volatility rather than the multiplicator σt directly via the
GARCH–equation. For that reason we will call models of this type “volatility
models” or in concordance with the previous notation CGARCH-V models.We
remark that in analogy to the CGARCH-S models we also can alter this model
to a CGARCH-VP model, if we let pt depend exclusively on external variables or
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a CGARCH-VB model using a transformation of the signum function to model
pt.
Because the philosophy of variances is to deal with centered moments we put the
centered version (Xt−1 − E(Xt−1|Ft−2))

2 into the equation. This yields also a
practical result: Assuming that the unconditional variance v2 exists, taking ex-
pectation on both sides of the equation yields (by the definition of the conditional
variance) the same result as in the ordinary GARCH(1,1) model:

v2 =
ω

1 − α− β

and α+ β < 1.
The converse is also true due to the same argumentation as in the GARCH case.
So we have a simple condition for the variance not becoming explosive. But we
traded in a rather nasty formula for the conditional mean:

E(Xt|Ft−1) = ptE(Dt)

√

v2
t

(1 − pt)Eε2t + ptED
2
t − p2

t (EDt)2

=
vtptEDt

√

(1 − pt)Eε2t + ptED
2
t − p2

t (EDt)2

Moreover, the actual model of the process {Xt} is due to the complicated form
of σt too different from GARCH processes, that the methodology used to prove
more complicated properties of GARCH processes is not applicable to this model.

3.2 An Example

Here we give an example of a process following the volatility model. Due to the
fact that the modeling avoids explosivity in the mean by construction and that
we want to model immanent crashes displaying at least a bit of the economic
idea of a crash, we chose the crash-distribution to be lognormal with parameters
(1, 1). As the non-crash-distribution we chose N(0, 1) so the formula for getting
σ2

t out of the volatility and pt reduces to

σ2
t =

v2
t

(1 − pt) + pt(V ar(Dt) + (1 − pt)(E(Dt))2)

We chose

pt =
1

1 − exp(−(−10 − 490Xt−1 + 100v2
t ))

and ω = 10−5,α = 0.01218 and β = 0.9.
We see in 3.2 that the more extreme distribution yields a behavior of the price
looking more like a real crash. But this behavior could be too extreme
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Figure 3.1: An example of a process of
the volatility model
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Figure 3.2: Pseudo-prices arising from
the process and times of crashes

In Figure 3.3 we see the crash-probability, due to the fact that it gets very high
at one point and is quite low elsewhere 3.4 zooms in a bit. We see that pt is more
structured than in the CGARCH-S model.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.3: The crash-probability of the
process
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Figure 3.4: Detail of the crash-
probability

We nicely see in 3.8 in connection with 3.7 that σt grows almost linearly with the
volatility, until the volatility is so big that the steep part of the crash-probability-
function is reached, then being down scaled and showing a slight growth again
when the volatility is so big that pt is almost constant again. So we see in fact
a result which is rather counterintuitive: When the probability of a crash is big,
σt becomes relatively small. This means in this model: If the probability of a
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crash is big, the crash when it occurs is rather small (via down scaling). So this
seems to be a major practical disadvantage of this model. These thoughts will
be confirmed in the chapter concerning practical properties.
In 3.5 we see the multiplicator σt which is calculated via the modeled volatility
and crash-probability. Here also we see that σt becomes quite small when pt is
close to 1.
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Figure 3.5: The sigma of the process
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Figure 3.6: The volatility of the process
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Figure 3.7: The crash-probability in de-
pendence of the volatility
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3.3 An alternative view of the model

Let Xt = σt[(1 − Bt)εt + BtDt], where the Bt are B(1, pt) distributed and pt is
dependent on the past. We don’t assume that we have a special model for σt.
In the following we assume Eεt = 0, Eε2t = σ2

ε , EDt = µD, V arDt = σ2
D.

Then clearly:
E(Xt|Ft−1) = σtptµD =: µt (3.4)

And further:

v2
t := V ar(Xt|Ft−1) = E((Xt − µt)

2|Ft−1) = E(X2
t |Ft−1) − µ2

t

= σ2
t [(1 − pt)σ

2
ε + ptED

2
t − p2

tµ
2
D] (3.5)

= σ2
t [(1 − pt)σ

2
ε + ptσ

2
D + pt(1 − pt)µD]

Now having in mind the modeling of GARCH–like models with µt := E(Xt|Ft−1) 6=
0 like ARMA–GARCH or GARCH–M, usually being define via:

Xt − µt = σtηt (3.6)

σ2
t = ω + α(Xt−1 − µt−1)

2 + βσ2
t−1 (3.7)

where ηt are iid (0, 1) variables, we define

v2
t = ω + α(Xt−1 − µt−1)

2 + βv2
t−1 (3.8)

In our case the ηt := (1 − Bt)εt + BtDt − ptµD are not independent. We have
E(ηt|Ft−1) = 0 but

V ar(ηt|Ft−1) = E(η2
t |Ft−1)

= (1 − pt)Eε
2
t + ptED

2
t − 2p2

tµ
2
D + p2

tµ
2
D

= (1 − pt)σ
2
ε + ptED

2
t − p2

tµ
2
D

= (1 − pt)σ
2
ε + ptσ

2
D + (1 − pt)ptµ

2
D

which is not constant in t. So vt is not σt times a scaling factor.
Now we state a Lemma which motivates an alternative model in the next section
and also will be helpful in the discussion of the introduced models:

Lemma 3.3.1. Let Xt = µt + σtηt and further µt and σt be Ft−1 measurable. If
E(ηt|Ft−1) = 0 or µt = 0, then v2

t := V ar(Xt|Ft−1) = σ2
t V ar(ηt|Ft−1).

Proof.

V ar(Xt|Ft−1) = E(X2
t |Ft−1) − [E(Xt|Ft−1)]

2

= µ2
t + 2µtσtE(ηt|Ft−1) + σ2

tE(η2
t |Ft−1) − µ2

t − σ2
t [E(ηt|Ft−1)]

2

= σ2
t V ar(ηt|Ft−1)
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3.3.1 A different view of the introduced models

We now take a slightly different view on the CGARCH-S as well as the CGARCH-
V model with Eεt = 0 and EDt 6= 0. We define η∗t := (1 −Bt)εt + BtDt, µt := 0
and h2

t := V ar(η∗t |Ft−1), and further v2
t := V ar(Xt|Ft−1).

We have E(Xt|Ft−1) = σtptEDt and by Lemma 3.3.1 in the µt := 0 case σ2
t =

v2
t

h2
t
.

So

Xt = vt

η∗t
ht

(3.9)

but we emphazise that E(η∗t |Ft−1) 6= 0. We rather have

E(Xt|Ft−1) =
vt

ht

E(η∗t |Ft−1) =
vt

ht

ptEDt (3.10)

Therefore it makes sense to substitute σt by vt

ht
.

So in the CGARCH-V model we can use this substitution directly. In the
CGARCH-S model it gives us an interpretation, what the multiplicator σt means
in terms of the conditional volatilities of the processes {Xt} and {ηt}.

3.3.2 A generalization

It might be desirable that we have an additional constant in the conditional mean.
We assume EDt = δ 6= 0, Eεt = 0, and define again:

η∗t := (1 −Bt)εt +BtDt

and
h2

t := V ar(η∗t |Ft−1)

Xt = µ0 + vt

η∗t
ht

(3.11)

Then we get in analogy to Lemma 3.3.1

E(Xt|Ft−1) = µ0 + vt

E(η∗t |Ft−1)

ht

= µ0 + vt

ptδ

ht

and
V ar(Xt|Ft−1) = v2

t .

Further,
η∗

t

ht
is standardized in the sense of

V ar

(

η∗t
ht

|Ft−1

)

= 1

Adding the constant gives us more flexibility, but certainly we are still in a
GARCH–M framework.
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3.4 An alternative model

The result of Lemma 3.3.1 motivates the following model, which is more flexible,
because it doesn’t contain a GARCH–M effect in the sense of the previous models,
i.e. the conditional mean is not proportional to σt or vt. The model will have
the form Xt = µt + σtηt with Ft−1 measurable µt and σt. The Ft−1 measurability
assumption in Lemma 3.3.1 will cause the µt to rather depend on pt directly than
on Bt. To be concrete:
Let εt be iid andDt iid, independent of each other. We assume E(Dt) = E(εt) = 0
as the expected negative expectation in case of a crash is now dealt with directly
via µt. Further, we use the notation V ar(εt) = σ2

ε and V ar(Dt) = σ2
D. We define

the model:
Xt = (1 − pt)µ+ ptδ + σt[(1 − Bt)εt +BtDt] (3.12)

where σt and pt are Ft−1 measurable, pt lies between 0 and 1 and Bt is a B(1, pt)
distributed.
To emphazise the difference to the previously introduced models we will call
models of this kind ACGARCH, where A stands for alternative.

Remark 3.4.1. Modeling σt or vt via a GARCH equation on and defining
pt = f(Xt−1, σt) in the first, and pt = f(Xt−1, vt) in the latter case fits into
the framework. Further the GARCH equation may be centered or non centered
i.e.:

s2
t = ω + α(Xt−1 − µ− pt−1(δ − µ))2 + βs2

t−1

or
s2

t = ω + αX2
t−1 + βs2

t−1

where s may be σ or v.

Propositition 3.4.2. Assume (3.12) and define

1.
ηt := (1 − Bt)εt +BtDt

2.
h2

t = (1 − pt)σ
2
ε + ptσ

2
D

3.
µt = (1 − pt)µ+ ptδ

such that
Xt = µt + σtηt.

Then

1.
E(ηt|Ft−1) = 0
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2.
V ar(ηt|Ft−1) = h2

t

3.
E(Xt|Ft−1) = µt

4.
v2

t = V ar(Xt|Ft−1) = σ2
t h

2
t

Proof. µt and σt are Ft−1 measurable. Further E(Dt) = E(εt) = 0 implies

E(ηt|Ft−1) = (1 − pt)Eεt + ptEDt = 0

hence we can apply Lemma 3.3.1 which yields the result, together with the im-
mediate observation that E(η2

t |Ft−1) = h2
t .

Corollary 3.4.3. We can rewrite model (3.12) not using σt in the following way:

Xt = µt + vt

ηt

ht

(3.13)

In fact we will use (3.13) as an alternative definition.

Remark 3.4.4. Further, we can simplify by setting

µt = µ+ pt∆

with ∆ = δ − µ.

Now lets stick to the case where we model the conditional volatility vt via a
GARCH(1,1) equation, i.e. we assume

v2
t = ω + α(Xt−1 − µt−1)

2 + βv2
t−1. (3.14)

We will speak of the alternative volamodel or in the short notation we introduced
of the ACGARCH-V model. In fact we replaced σt, which in this model (and the
volamodel) has no proper interpretation, by ηt

ht
where both the numerator and the

denominator have a clear interpretation as the “residuals” and their conditional
standard deviation.
The main difference to the CGARCH-V model is that σt is not a factor in the
conditional mean anymore.

Propositition 3.4.5. 1. If E(Bt) = E(pt) = p for all t

EXt = (1 − p)µ+ pδ =: µ+ p∆ (3.15)

2.
V ar(Xt) = Ev2

t + V ar(µt) (3.16)
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3.
V ar(µt) = V ar(pt)∆

2 (3.17)

Proof. 1. Clear

2.

V ar(Xt) = E(Xt − µt + µt − EXt)
2

= E(Xt − µt)
2 − 2E(Xt − µt)(EXt − µt) + E(µt − EXt)

2 = (∗)

Now EXt = Eµt and EXtµt = E(µtE(Xt|Ft−1)) = Eµ2
t hold.

So E(Xt − µt)(EXt − µt) = 0, and

(∗) = E(V ar(Xt|Ft−1)) + V ar(E(Xt|Ft−1)) = E(v2
t ) + V ar(µt)

3.
V ar(µt) = V ar((1 − pt)µ+ pt∆) = V ar(µ+ pt∆) = V ar(pt)∆

2

Remark 3.4.6. V ar(Xt) = Ev2
t + V ar(µt) holds whenever µt is the conditional

mean of Xt and v2
t is the conditional variance.

Corollary 3.4.7. If E(Bt) = E(pt) = p, V ar(pt) = σ2
p and E(v2

t ) = c for all t,
then for the model given by (3.12) and (3.14):

1.
Ev2

t =
ω

1 − (α + β)

2.
V ar(Xt) =

ω

1 − (α + β)
+ σ2

p∆
2

Proof. Only point 1 remains to be shown by the standard argument using (3.14):

Ev2
t = ω + αE(Xt−1 − µt−1)

2 + βEv2
t−1 = ω + (α + β)Ev2

t−1
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Chapter 4

Asymptotics in the pure ARCH
case

4.1 Markov Methods

For its own sake and in order to investigate the asymptotic properties of max-
imum likelihood style estimator the question arises under which conditions the
introduced models are stationary and ergodic and satisfy certain mixing con-
ditions. The strategy we will use to do that will heavily use Markov chain
theory. To apply the methodology of Markov chains directly, we must restrict
ourselves to models of pure ARCH form. We have to do this, because in the
context with genuine GARCH dynamic, Xt is not a Markov chain. Consider the

GARCH(1,1) case.

(

Xt

σt

)

is a Markov chain, but the character of σt as an

one step prediction makes σt+1 predictable from

(

Xt

σt

)

. So the transition func-

tion p

((

Xt+1

σt+1

) ∣

∣

∣

∣

(

Xt

σt

))

is in the second coordinate the one point measure

δω+αX2
t−1

+βσ2
t−1

, while the first coordinate of it is given by a Lebesgue density. Be-
cause the σts are principally defined for the positive real line, we cannot restrict
the second coordinate to a countable set. Hence we cannot use the arguments we
will use in the following for the ARCH case, because regularity conditions on the
transition probabilities will not be satisfied.
Consider the ARCH(1) dynamic in the CGARCH-S setting: So let us restrict to
the model

Xt = σt[(1 − Bt)εt +BtDt], L(Bt|Ft−1) = B(1, pt)

with σ2
t = ω +αX2

t−1 and now pt = g(Xt−1), as in the pure ARCH case σt is just
a function of Xt−1, and therefore a specification of pt as f(Xt−1, σt) just boils
down to pt being a function of Xt−1 only. Then we can formally write down the
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transition function as:

pr(Xt ∈ [x; x + dx]|Xt−1)

= pr(σtεt ∈ [x; x + dx], Bt = 1|Xt−1) + pr(σtDt ∈ [x; x + dx], Bt = 0|Xt−1)

= pr

(

εt ∈
[

x

σt

;
x + dx

σt

]

, Bt = 1|Xt−1

)

+pr

(

Dt ∈
[

x

σt

;
x+ dx

σt

]

, Bt = 0|Xt−1

)

So the transition density of Xt given Xt−1 = z is

p(x|z) =
1

σ(z)
fε

(

x

σ(z)

)

g(z) +
1

σ(z)
fD

(

x

σ(z)

)

(1 − g(z))

where fε, fD denote the desities of εt and Dt and σ2(z) = ω + αz2. Using this
fact we then will be able to exploit Markov chain theory.

4.2 Some Markov Chain Theory

Let {Xt} be a Markov chain on (Rm,B).

Definition 4.2.1. Let φ be a nontrivial σ–finite measure. A Markov chain is
called φ–irreducible if for all A with φ(A) > 0, P (Xn ∈ A|X0 = x) =: P n(x,A)
satisfies

∞
∑

n=1

P n(x,A) > 0

It is called irreducible if it is φ–irreducible for some φ.

Propositition 4.2.2. [Ton90] If {Xt} is irreducible there exits a maximal irre-
ducibility measure ψ. With

1. {Xt} is ψ–irreducible.

2. If {Xt} is φ–irreducible, φ is absolutely continuous with respect to ψ.

3.

ψ(A) = 0 ⇒ ψ({x|
∞
∑

n−1

P n(x,A) > 0}) = 0

Definition 4.2.3. 1. A set C ∈ B is small if there exists a positive integer k,
a constant b > 0 and a nontrivial probability measure ϕ(.) such that

P k(x,A) ≥ bϕ(A), ∀x ∈ C,A ∈ B (4.1)
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2. A set C ∈ B is νa petite if there exists a probability measure a on N such
that ∞

∑

n=1

P n(x,A)a(n) > νa(A), ∀x ∈ C,A ∈ B (4.2)

for a nontrivial measure νa.

Definition 4.2.4. Assume there exists a small set for {Xt}.
1. If C is small, then I(C) := {k|P k(x,A) ≥ bϕ(A), x ∈ C,A ∈ B}.

2. We define d(C) to be the greatest common divisor of I(C). It can be shown
that d(C) doesn’t depend on C. So we write just d.

3. If d = 1, then {Xt} is called aperiodic.

Definition 4.2.5. Let {Xt} be a Markov chain with transition density p(x|y).
{Xt} has the Feller property if

E(h(Xt)|Xt−1 = y) =: Ph(y) =

∫

h(y)p(x|y)dx

is continuous and bounded for all continuous and bounded functions h.

Lemma 4.2.6. Let {Xt} be irreducible and aperiodic, ψ its maximal irreducibility
measure. If {Xt} has the Feller property and supp(ψ) has a non–empty interior,
then all compact sets are small.

Proof. If {Xt} has the Feller property , is ψ irreducible and supp(ψ) has a non–
empty interior then by [MT93] Proposition 6.2.8 every compact set is petite. If
{Xt} is also aperiodic then by [MT93] Theorem 5.5.7 every petite set is small.
So every compact set is small.

Definition 4.2.7. {Xt} is geometrically ergodic if there exists a probability mea-
sure π on (R,B), a positive constant ρ < 0 and a π-integrable non-negative
measurable function h such that

||P n(x, .) − π(.)||τ ≤ ρnh(x) (4.3)

where ||.||τ is the total variation norm.

Theorem 4.2.8. [Ton90] Let {Xt} be aperiodic and irreducible. Suppose that
there exists a small set C a non–negative measurable function h and constants
r > 1, γ > 0 and B > 0 such that

E(rh(Xt)|Xt−1 = y) < h(y) − γ, y 6∈ C (4.4)

and
E(h(Xt)|Xt−1 = y) < B, y ∈ C (4.5)

Then {Xt} is geometrically ergodic.
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4.3 Mixing

Definition 4.3.1. 1. Let (Ω,A, P ) be a probability space and B, C two sub σ
algebras.

α(B,C) = supB∈B,C∈C|P (B ∩ C) − P (B)P (C)|

2. For a process {Xt : t ∈ Z} and k we define:

α(k) = sup
t∈Z

α(σ(Xs, s ≤ t), σ(Xs : s ≥ t + k))

3. {Xt} is said to be α-mixing if

lim
k→∞

α(k) = 0

Theorem 4.3.2. [Dav73] Let {Xt} be a geometric ergodic Markov chain and X0

have the distribution π, where π denotes the stationary measure of {Xt}. Then
{Xt} is geometrically α-mixing. That means{Xt} is α-mixing and

∃0 < ρ < 1, c > 0 such that ∀n ∈ N : α(n) ≤ cρn (4.6)

Lemma 4.3.3. [TK05] Lemma 5.11 Let {Xt} be strictly stationary and α-mixing.
Let Yt = f(Xt−1, . . . , Xt−p) where f is a measurable function. Then {Yt} is
strictly stationary and α-mixing and its mixing coefficients decrease with the same
order than that of {Xt}.

4.4 Stationarity in the pure ARCH case of the

original model (the CARCH-S model)

We work in the CGARCH-S setting. Let’ s consider the special case, where we
have a pure ARCH(1) dynamic on σ2

t . That means σ2
t = ω + αX2

t−1. Then
certainly pt = f(Xt−1, σ

2
t ) = g(Xt−1). So the laws of Bt and σt are completely

determined by Xt−1. But that implies L(Xt|Ft−1) = L(Xt|Xt−1). So we get the
following proposition.

Propositition 4.4.1. A process Xt of our model class which has a pure ARCH(1)
dynamic on σ2

t is a Markov process.

For the rest of this section we keep the assumption of having a pure ARCH(1)
dynamic on σ2

t . Now if we denote the density of εt as fε and the density of Dt

as fD and further as above pt = g(Xt−1) we get the following formula of the
transition densities p(x|y) using the results of section 4.1.

p(x|y) =
1

(ω + αy2)
1

2

[

(1 − g(y))fε

(

x

(ω + αy2)
1

2

)

+ g(y)fD

(

x

(ω + αy2)
1

2

)]
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Lemma 4.4.2. If g, fε, fD are continuous then Xt has the Feller property.

Proof. Let h(x) be continuous and bounded. Then Ph(y) is continuous if g,fε

and fD are continuous. The transformation theorem for integrals yields:

1

(ω + αy2)
1

2

∫

h(x)f∗

(

x

(ω + αy2)
1

2

)

dx =

∫

h(z(ω + αy2)
1

2 )f∗(z)dz

But h(z(ω + αy2)
1

2 ) is bounded by choice of h. Let it be bounded e.g. by δ. So
∫

h(z(ω + αy2)
1

2 )f∗(z)dz ≤
∫

δf∗(z)dz = δ

∫

f∗(z)dz = δ

because f∗ is a probability density function. Now g is bounded because g maps
into [0, 1] and so Ph(y) is bounded.

Lemma 4.4.3. Suppose one of the following assumptions hold

1. The support of fε and the support of fD is R.

2. The support of fε is R and ∀t : pt ≤ 1 − δ < 1.

3. supp(fε) ∪ supp(fD) = R and ∀t : 0 < γ ≤ pt ≤ 1 − δ < 1.

Then Xt is irreducible and aperiodic.

Proof. Let A be a Borel set with λ(A) > 0 where λ denotes the Lesbegue measure.
Now

p(A|y) =

∫

A

(1−g(y)) 1

(ω + αy2)
1

2

fε

(

x− µ(y)

(ω + αy2)
1

2

)

+g(y)
1

(ω + αy2)
1

2

fD

(

x− µ(y)

(ω + αy2)
1

2

)

dx

= (1−g(y))
∫

A

1

(ω + αy2)
1

2

fε

(

x− µ(y)

(ω + αy2)
1

2

)

dx+g(y)

∫

A

1

(ω + αy2)
1

2

fD

(

x− µ(y)

(ω + αy2)
1

2

)

dx

If the support of fε and the support of fD is R this is clearly bigger than zero. If
the support of fε is R and ∀t : pt ≤ 1 − δ < 1 then

∫

A

1

(ω + αy2)
1

2

fε

(

x− µ(y)

(ω + αy2)
1

2

)

dx > 0

and 1 − g(y) ≥ δ > 0 So p(A|y) > 0. But
∑∞

n=1 P
n(x,A) ≥ P (x,A) holds.

If supp(fε) ∪ supp(fD) = R and ∀t : 0 < γ ≤ pt ≤ 1 − δ < 1:

∫

A

1

(ω + αy2)
1

2

fε

(

x− µ(y)

(ω + αy2)
1

2

)

dx > 0
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and 1 − g(y) ≥ δ > 0 or

∫

A

1

(ω + αy2)
1

2

fD

(

x− µ(y)

(ω + αy2)
1

2

)

dx > 0

and g(y) ≥ γ > 0. It follows p(A|y) > 0 in all three cases. But
∑∞

n=1 P
n(x,A) ≥

P (x,A) = p(A|x) > 0. In conclusion {Xt} is λ–irreducible.

Remark 4.4.4. Formally it might be more correct to state the boundedness
conditions on pt in the preceding lemma in terms of g(y) meaning we have to
claim

g(y) ≤ 1 − δ < 1

almost everywhere or
0 < γ ≤ g(y) ≤ 1 − δ < 1

almost everywhere. But in my opinion the form chosen seems to emphasize more
clearly the intentioned meaning of the conditions.

Lemma 4.4.5. Let the assumptions of Proposition 4.4.2 and one of the assump-
tions of Lemma 4.4.3 hold. Then for {Xt} any compact set is a small set.

Proof. {Xt} is irreducible and aperiodic. For the maximal irreducibility measure
ψ holds

∞
∑

n=1

P n(x,A) ≥ P (x,A) = p(A|x) > 0

so by 4.2.23 ψ(A) > 0 holds for the maximal irreducibility measure ψ. So supp(ψ)
is nonempty. By Lemma 4.2.6 follows the assumption.

Theorem 4.4.6. Let the assumptions of Proposition 4.4.2 and one of the as-
sumptions of Lemma 4.4.3 hold. If

ED2
t ≥ Eε2t and α(Eε2t + sup

y

g(y)(ED2
t − Eε2t )) < 1,

or
ED2

t ≤ Eε2t and α(Eε2t + inf
y
g(y)(ED2

t − Eε2t )) < 1

then Xt is geometric ergodic.

Proof. We will use the drift condition 4.2.8. Choose h(y) = 1+y2. Then h(Xt) =
1 + (1 −Bt)σ

2
t ε

2
t +Btσ

2
tD

2
t . If have ED2

t ≥ Eε2t we define g∞ := supy g(y). If we
assume ED2

t ≤ Eε2t we define g∞ := infy g(y).
Then the following holds:

E(h(Xt)|Xt−1 = y) − h(y)

h(y)
=

(ω + αy2)[(1 − g(y))Eε2t + g(y)ED2
t ] − y2

1 + y2
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≤ (ω + αy2)[(Eε2t + g∞(ED2
t − Eε2t )] − y2

1 + y2
= (∗)

We define
A := Eε2t + g∞(ED2

t − Eε2t )

Then the following holds:

(∗) =
(ω + αy2)A− y2

1 + y2
=
ωA− (1 − αA)y2

1 + y2
→y2→∞ −(1 − αA)

Therefore, for every M exists a ∆ > 0 such that

(∗) ≤ −(1 − αA) + ∆

for |y| > M .Now if αA < 1 then −(1 − αA) < 0.
If we choose M big enough ∆ will be such that −(1 − αA) + ∆ < 0. Define
C := {y||y| ≤M} for a such an M . Then

(∗) ≤ −(1 − αA) + ∆ =: −A∗ < 0 if y 6∈ C if αA < 1

For y ∈ C

∗ ≤ ωA

1 + y2
≤ ωA

holds.

⇒ E(h(Xt)|Xt−1 = y) ≤ (1 + ωA)h(y) ≤ (1 + ωA)(1 +M 2) =: B

For y 6∈ C:

E(h(Xt)|Xt−1 = y) ≤ (1−A∗)h(y) = (1−A
∗

2
)h(y)−A

∗

2
h(y) < (1−A

∗

2
)h(y)−A

∗

2
(1+M2)

We define r := (1 − A∗

2
) and γ = −A∗

2
(1 +M2).

We now gather all assumptions we used to gain the geometric ergodicity result:

Assumption 4.4.7. Assumptions assuring geometric ergodicity

1. g, fε, fD are continuous.

2. εt and Dt are square integrable.

3. One of the following conditions holds:

(a) The support of fε and the support of fD is R.

(b) The support of fε is R and ∀t : pt ≤ 1 − δ < 1.

(c) supp(fε) ∪ supp(fD) = R and ∀t : 0 < γ ≤ pt ≤ 1 − δ < 1.
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4. One of the following conditions holds:

(a) ED2
t ≥ Eε2t and α(Eε2t + supy g(y)(ED

2
t − Eε2t )) < 1.

(b) ED2
t ≤ Eε2t and α(Eε2t + infy g(y)(ED

2
t − Eε2t )) < 1.

Corollary 4.4.8. Assume Assumption 4.4.7 holds. If X0 is distributed as the
invariant measure π, {Xt} is strongly stationary and geometric α–mixing.

Proof. If X0 is distributed as the invariant measure π, {Xt} clearly is strongly
stationary. Due to Theorem 4.3.2 it is also geometric α–mixing.

Remark 4.4.9. Let us consider a process {Xt} of our model class with an
ARCH(q) dynamic on σt. Again we define g∞ := supy g(y), if we have ED2

t ≥ Eε2t
and if we assume ED2

t ≤ Eε2t we define g∞ := infy g(y).
Then Xt is geometrically ergodic if

q
∑

i=1

αi(Eε
2
t − g∞(ED2

t − Eε2t ) < 1

For that purpose, we realize that in that case (Xt, ...., Xt−q−1)
T is a Markov chain.

For irreducibility, aperiodicity and Feller property we can use the same arguments
as above. And the drift condition can be verified using

h(y1, . . . yq) =

q
∑

i=1

y2
i

Using

(Eε2t − g∞(ED2
t − Eε2t )

q
∑

i=1

αiy
2
i ≤ (Eε2t − g∞(ED2

t − Eε2t )

(

q
∑

i=1

αi

)(

q
∑

i=1

y2
i

)

and
(

(Eε2t − g∞(ED2
t − Eε2t )

q
∑

i=1

αi

)

− 1 < 0

we can reproduce the proof of 4.4.6.

4.5 Stationarity in the pure ARCH case of the

alternative volamodel (the ACARCH-V model)

We now consider the pure ARCH(1) case of the alternative model, in our short
notation this is the ACARCH-V model. That means we consider:

Xt = µt + vt

ηt

ht

(4.7)
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where

ηt = (1 −Bt)εt +BtDt, L(Bt|Ft−1) = B(1, pt), pt = g(Xt−1), Eεt = EDt = 0
(4.8)

further

µt = (1 − pt)µ+ ptδ = µ+ pt∆ with ∆ = δ − µ (4.9)

and

h2
t := E(η2

t |Ft−1) (4.10)

and the ARCH dynamic coming from

V ar(Xt|Ft−1) = v2
t = ω + αX2

t−1 (4.11)

Remark 4.5.1. If we consider

v2
t = ω + α(Xt−1 − µ− pt−1∆)2

instead, then everything works out in the same way as

pt−1 = g(Xt−2),

therefore v2
t satisfies a nonlinear ARCH(2) relation and (Xt, Xt−1)

T is a Markov
chain.

Remark 4.5.2. If, however, we consider

v2
t = ω + α(Xt−1 − µ− pt−1∆)2

and
pt = f(Xt−1, vt),

with explicit dependence on vt, then this does not reduce to the case pt = g(Xt−1).
Moreover as pt−1 depends on Xt−2 and vt−1, v

2
t satisfies a nonlinear GARCH(2,1)-

relation So we cannot apply the Markov chain technology due to the discussion
in section 4.2.

Remark 4.5.3. As the arguments for the corresponding results in Proposition
3.4.2 don’t depend on the particular modelling of v2

t we have:

1. E(ηt|Ft−1) = 0

2. h2
t = (1 − pt)σ

2
ε + ptσ

2
D
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Propositition 4.5.4. Xt is a Markov chain with conditional density of Xt given
Xt−1 = y

p(x|y) = (1 − g(y))
h(y)

v(y)
fε

(

x− µ(y)

v(y)
h(y)

)

+ g(y)
h(y)

v(y)
fD

(

x− µ(y)

v(y)
h(y)

)

(4.12)
where µ(y) = µ+ g(y)∆, v2(y) = ω + αy2 and h2(y) = (1 − g(y))σ2

ε + g(y)σ2
D.

Proof. The conditional density clearly is implied by the definition of the model
and the relations above. It only depends on y which shows the Markov property.

Propositition 4.5.5. If g, fε, fD are continuous, ω > 0 then {Xt} satisfies the
Feller property.

Proof. If g(y) is continuous so are µ(y) and h(y). v(y) is continuous anyway and
1

v(y)
is bounded if ω > 0.

Now let ψ(y) be a bounded continuous function with sup |ψ| ≤ c <∞.

Pψ(y) =

∫

ψ(x)p(x|y)dx

= (1−g(y))h(y)
v(y)

∫

ψ(x)fε

(

x− µ(y)

v(y)
h(y)

)

dx+g(y)
h(y)

v(y)

∫

ψ(x)fD

(

x− µ(y)

v(y)
h(y)

)

dx

Obviously under the assumptions of the theorem Pψ(y) is continuous. Now

0 ≤ g ≤ 1 also implies that µ(y) and h(y) are bounded and so also h(y)
v(y)

is
bounded. So

∣

∣

∣

∣

h(y)

v(y)

∫

ψ(x)fε

(

x− µ(y)

v(y)
h(y)

)

dx

∣

∣

∣

∣

≤ sup |ψ|
∫

fε(u)du = c1 = c <∞

and
∣

∣

∣

∣

h(y)

v(y)

∫

ψ(x)fD

(

x− µ(y)

v(y)
h(y)

)

dx

∣

∣

∣

∣

≤ sup |ψ|
∫

fD(u)du = c1 = c <∞

From this the boundedness of g implies the boundedness of Pψ(y). So {Xt}
satisfies the Feller property.

Lemma 4.5.6. Suppose one of the following holds:

1. The support of fε and the support of fD is R.

2. The support of fε is R and ∀t : pt ≤ 1 − δ < 1.

3. supp(fε) ∪ supp(fD) = R and ∀t : 0 < γ ≤ pt ≤ 1 − δ < 1.
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then Xt is irreducible and aperiodic.

Proof. Let A be a Borel set with λ(A) > 0 where λ denotes the Lebesgue measure.

p(A|y) =

∫

A

(1 − g(y))
h(y)

v(y)
fε

(

x− µ(y)

v(y)
h(y)

)

+ g(y)
h(y)

v(y)
fD

(

x− µ(y)

v(y)
h(y)

)

dx

= (1 − g(y))

∫

A

h(y)

v(y)
fε

(

x− µ(y)

v(y)
h(y)

)

dx+ g(y)

∫

A

h(y)

v(y)
fD

(

x− µ(y)

v(y)
h(y)

)

dx

If the support of fε and the support of fD is R this is clearly bigger than zero. If
the support of fε is R and ∀t : pt ≤ 1 − δ < 1 then

∫

A

h(y)

v(y)
fε

(

x− µ(y)

v(y)
h(y)

)

dx > 0

and 1 − g(y) ≥ δ > 0 So p(A|y) > 0. If supp(fε) ∪ supp(fD) = R and ∀t : 0 <
γ ≤ pt ≤ 1 − δ < 1.

∫

A

h(y)

v(y)
fε

(

x− µ(y)

v(y)
h(y)

)

dx > 0

and 1 − g(y) ≥ δ > 0 or

∫

A

h(y)

v(y)
fD

(

x− µ(y)

v(y)
h(y)

)

dx > 0

and g(y) ≥ γ > 0 It follows p(A|y) > 0 in all three cases. Hence {Xt} is
irreducible and aperiodic.

Lemma 4.5.7. Let the assumptions of Proposition 4.5.5 and one of the assump-
tions of Lemma 4.5.6 hold, then for {Xt} any compact set is a small set.

Proof. Completely analogous to the proof of Lemma 4.4.5.

Now we use theorem A1.5 of [Ton90] again.

Theorem 4.5.8. Let the assumptions of Proposition 4.5.5 hold. If α < 1 and
one assumption of Lemma 4.5.6 is satisfied, then {Xt} is geometric ergodic.

Proof. Again we use the Theorem 4.2.8. Choose γ(y) = 1 + y2. Then

γ(Xt) = 1 + (µt +
vt

ht

[(1 −Bt)εt +BtDt])
2

Because Bt ∈ {0, 1} this is:

1 + µ2
t + 2

µtvt

ht

[(1 − Bt)εt +BtDt] + (1 −Bt)
v2

t

h2
t

ε2t +Bt

v2
t

h2
t

D2
t
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Taking (conditional) expectation the mixed term vanishes, because Eεt = EDt =
0. So

E(γ(Xt)|Xt−1 = y) − h(y)

γ(y)
=

1 + µ(y)2 + v(y)2

h(y)2
[(1 − g(y))σ2

ε + g(y)σ2
D] − (1 + y2)

1 + y2
= (∗∗)

(4.13)
Because of the equation for h2

t in Remark 4.5.3:

(∗∗) =
1 + µ(y)2 + v2(y) − (1 + y2)

1 + y2
=

(µ+ ∆g(y))2 + ω + αy2 − y2

1 + y2
= (∗)

Because 0 ≤ g ≤ 1, there exists an ω̃ ≥ (µ + ∆g(y))2 + ω for all y. For such an
ω̃ the following holds:

(∗) ≤ ω̃ + (α− 1)y2

1 + y2
→|y|→∞ −(1 − α)

If α < 1then −(1−α) < 0 So we can find an M and a corresponding ∆ such that
(∗) < −(1 − α) + ∆ := A∗ > 0 for all y with |y| > M . Define C := {y||y| ≤ M}
for a such an M . The rest of the proof is completely the same as the proof of
4.4.6.

Again we gather the conditions needed for the geometric ergodicity:

Assumption 4.5.9. Assumptions assuring geometric ergodicity

1. g, fε, fD are continuous.

2. εt and Dt are square integrable.

3. One of the following conditions holds:

(a) The support of fε and the support of fD is R.

(b) The support of fε is R and ∀t : pt ≤ 1 − δ < 1.

(c) supp(fε) ∪ supp(fD) = R and ∀t : 0 < γ ≤ pt ≤ 1 − δ < 1.

4. α < 1.

Again we can conclude:

Corollary 4.5.10. Assume Assumption 4.5.9 holds. If X0 is distributed as the
invariant measure π, {Xt} is strongly stationary and geometric α–mixing.

Proof. If X0 is distributed as the invariant measure π, {Xt} clearly is strongly
stationary. Due to Theorem 4.3.2 it is also geometric α–mixing.

55



Remark 4.5.11. Again the geometric ergodicity can be achieved for

v2
t = ω +

q
∑

i=1

αiX
2
t−i

if
q
∑

i=1

αi < 1

the argument being the one of Remark 4.4.9.
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Chapter 5

Estimation

5.1 The general model

We try to estimate the parameters of our model with a conditional maximum
likelihood estimator. We maximize the conditional likelihood function which is
given by:

n
∏

t=1

f(Xt|Xt−1)

i.e. we neglect the marginal density of f(X0) in the likelihood function:

f(X0)

n
∏

i=1

f(Xt|Xt−1)

That is done by working with the logarithm of the conditional likelihood function
neglecting the starting value. If we choose the εt to be iid N(0, 1) distributed
and the Dt to be iid the negative of lognormal distributed random variables with
parameters (m, s2) the conditional log-likelihood-function is:

n
∑

i=1

log

(

(1 − pt)
1

√

2πσ2
t

exp

(

−X2
t

2σ2
t

)

)

+pt

1
√

2πs2X2
t

exp

(

−(log(−Xt) − (m + log(σt)))
2

2s2

)

I{Xt<0})

where m and s2 are the parameters of the chosen lognormal distribution. To apply
the general theory for consistency as in [PP97] and [GW88] we have to establish
first a local law of large numbers. Therefore we must show that the processes are
either L0 approximable by some α mixing process, or are near epoch dependent.

In the special case of the exogenous crash model the process ηt = (1−Bt)εt+BtDt,
which takes the role of the random source εt in the conventional GARCH(1,1)
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model, is under the corresponding condition on the exogenous variablesWt strongly
stationary and mixing, and hence ergodic, we are in the situation to apply the
theorem of [LH94]. This means we can get consistent estimates of the GARCH–
parameters using QMLE for GARCH(1,1). But we do not get an estimator for
the complete vector of parameters. We can use (and in fact I did use) QMLE for
GARCH(1,1) to get initial estimate of the GARCH–sub vector. The assumptions
in 1.4.3 are fulfilled so this estimate will be consistent. If additionally the assump-
tions in 1.4.4 hold it will also be asymptotically normal. We also get a hint, if a
method estimating the whole vector works. The estimated sub vector shouldn’t
be to far away from the estimated values arising from QMLE for GARCH(1,1)

5.2 The methodology of Pötscher and Prucha

(1997)

We now want to introduce and use the asymptotic theory for M–estimators for
dependent and heterogenous processes developed in [PP97] and [GW88].
To do so we first have to do some definitions.

Definition 5.2.1. 1. Let r ≥ 1: A process Xt is said to be Lr approximable
by some basis process et if there exist measurable functions hm

t such that
limn→∞ sup n−1

∑n

t=1 ||Xt − hm
t (et+m, . . . , et−m)||r → 0 as m→ ∞.

2. A process Xt is said to be L0 approximable by some basis process et if
there exist measurable functions hm

t such that limn→∞ supn−1
∑n

t=1 P (|Xt−
hm

t (et+m, . . . , et−m)| > δ) → 0 as m→ ∞ for all δ > 0.

Clearly Lr near epoch dependence on et implies Lr aproximability by it. Usually
hm

t is chosen to be E(.|et+m, . . . , et−m).

Definition 5.2.2. For a given sequence of functions fn : T × B → R, a metric
ρ on B and a given sequence τn ∈ T the sequence of minimizers θn of fn(τn, θ) is
called identifiable unique, if for every ε > 0

lim inf
n→∞

( inf
{θ∈B:ρ(θ,θn)≥ε}

(fn(τn, θ) − fn(τn, θn)) > 0

Definition 5.2.3. Let X = (X1, . . . , Xn). Let Q(X, θ) =
∑n

t=1 q(Xt, θ) be the
conditional log-likelihood function, η > 0.

1. q∗(x, θ, η) := infρ(θ,θ′)<η q(x, θ
′)

2. q∗(x, θ, η) := supρ(θ,θ′)<η q(x, θ
′)

3. d(x) := supθ∈Θ|q(x, θ)|
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4. Let HX
t denote the law of Xt. Then we define H

X

n := L(n−1
∑n

t=1Xt).

We now want to see when the conditional maximum likelihood estimator is con-
sistent. For this purpose we will use the methodology used in [PP97]. We must
establish:

• A local weak law of large numbers for the bracketing functions q∗ and q∗.

• Strengthen this law to a uniform law of large numbers for q.

• Assure the identifiable uniqueness of the maximizing parameter θ0.

To get the uniform law of large numbers the following assumption has to be
satisfied:

Assumption 5.2.4. 1. Θ is compact.

2. For each θ ∈ Θ exists an η(θ) such that for each 0 < η ≤ η(θ) q∗(x, θ, η) and
q∗(x, θ, η) are real valued and measurable and q∗(Xt, θ, η) and q∗(Xt, θ, η)
satisfy a local law of large numbers.

Further we need one of the following assumptions:

Assumption 5.2.5. For each θ ∈ Θ there exists an η > 0 such that ρ(θ, θ ′) ≤ η

implies
|q(Xt, θ

′) − q(Xt, θ)| ≤ bt(Xt)h(ρ(θ, θ
′))

for all t ∈ N, with bt : Z → [0,∞) being measurable and satisfying the condition
supn n

−1
∑n

t=1Ebt(Xt) <∞ and h : [0,∞) → [0,∞) satisfies h(y) ↓ 0 as y ↓ 0.

Assumption 5.2.6. 1. The sequence H
X

n is tight on Ω.

2. q(x, θ) =
∑K

k=1 rk(x)sk(x, θ) where the rk are measurable real functions
for all t ∈ N and 0 < k ≤ K. And the family {sk(x, θ)|t ∈ N} are
equicontinuous on Ω × Θ for all 0 < k ≤ K and real valued.

3. There exists a γ > 0 such that supn n
−1
∑n

t=1E(d(Xt)
1+γ) <∞.

4. supn n
−1
∑n

t=1E(|rk(Xt)|) <∞ for all 0 < k ≤ K

To use Theorem 5.1 or 5.2 of [PP97] which establish uniform laws of large num-
bers for the estimator we have to verify 5.2.4 and either 5.2.5 or 5.2.6. To get
consistency via this machinery we have also to establish identifiable uniqueness.

Assumption 5.2.7. The maximizer θ∗ of the conditional log likelihood function
is identifiably unique.
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According to a remark in [PP97] this boils down to θ∗ being unique in the case
the function is lower semi-continuous and the parameter space is compact.
To follow this agenda we want first to establish a local law of large numbers to
satisfy 5.2.4. First we will use the fact that under 7.3.3 Xt is near epoch depen-
dent. If certain additional conditions are satisfied q∗(Xt, θ, η) and q∗(Xt, θ, η) will
be also near epoch dependent(NED) on or at least L0 approximable by an α–
mixing process. This will yield a local law of large numbers. The compactness of
Θ has to be assumed, it cannot be proven. So by argumentation and assumption
we could fulfill 5.2.4. Then we have to check how we can fulfill 5.2.5 or 5.2.6.
In order to check these conditions we have to specify the likelihood function. So
we have to choose the distributions of εt andDt and the crash-probability-function
f .
Generally it can be said that if we want to use 5.2.6 we can and have to assume
that rk is a constant function, because the term log(. . .) doesn’t factorize in a
manner that we get a term without parameters.

5.2.1 Local law

We have seen that if 7.3.3 is satisfied, Xt is near epoch dependent on the α–
mixing process Yt. Now we want to assure that q∗ and q∗ are also NED or at
least L0 approximable by Yt. To do that we use some preservation theorems of
[PP97]. The weakest condition given there is Theorem 6.13 To get a weak LLN
we need

1. The compactness of Θ.

2. The equicontinuity of {q(x, θ)} on Ω × θ.

3. The tightness of {HZ

n |n ∈ N} on Z where Zt denotes the vector of all
endogenous and exogenous variables.

4. The existence of a γ > 0 for which

sup
n

n−1
n
∑

t=1

E(d(Xt)
1+γ) <∞

Alternatively we need:

1. The existence of measurable functions Bt : Ω × Ω → [0,∞) with

lim sup
m→∞

lim sup
n→∞

n−1

n
∑

t=1

E(Bt(Xt, h
m
t (Xt))

ε) <∞

for some ε > 0 and with

|q(x, θ) − q(x′, θ)| ≤ Bt(x, x
′)|x− x′|
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2. The equicontinuity of {q(x, θ)} on Ω × θ.

3. The existence of a γ > 0 for which

sup
n

n−1
n
∑

t=1

E(d(Xt)
1+γ) <∞

4. The measurability of d.

In the case where we have exogenous variables Wt we have to assume that the
above assumptions hold for Zt := (Xt,Wt) instead of solely Xt. Unfortunately
we cannot use the simplifications for such cases given in chapter 14 of [PP97],
because the theorems there assume a normal QMLE estimator. That isn’t our
setup. Because we will need compactness of Θ for the uniform laws of large
numbers, we don’t have to worry about it here. If we want to use 5.2.6 other
conditions also are the same than the ones for uniform laws.
In order to check above conditions, we need to specify the likelihood function.

5.3 Application to our context

If we want to know if estimators in our context are consistent we have to consider
two different cases. First the case we want to estimate a model really belonging
to the model class and in the second case the estimation of real financial time-
series. In the second case we can be quite sure that the observed time-series
doesn’t follow our model so we are in the case of misspecification. The theorems
of [PP97] are formulated to work also in the latter case. To simplify matters in
Theorem 7.1 of [PP97] the conditions for the different steps of the consistency
proof are gathered and simplified modulo redundancy. But via σt the model in
case of β 6= 0 depends on the infinite past. To make the theorems fit for this case
we have to use the discussion on the end of chapter 6 of [PP97].
Because in the original form the presence of nuisance parameters is possible, but
we don’t need them here we can use the following simplified form. Because there
are two alternative assumptions which can be used together with assumptions we
need in any case, we state them first.

Assumption 5.3.1. 1. {q}is equicontinuous on Z ×B. which in our context
just means q is continous on Z × B.

2. {HZ

n} is is tight on Z

Remark 5.3.2. The second point is satisfied if Z is closed and

sup
n

n−1
n
∑

t=1

E|Zt|γ
′

<∞

for some γ′ > 0.
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Assumption 5.3.3. 1. For each θ ∈ θ there exists an η > 0 such that ρ(θ, θ ′) ≤
η implies

|q(Xt, θ
′) − q(Xt, θ)| ≤ bt(Xt)h(ρ(θ, θ

′))

for all t ∈ N , with bt : Z → [0,∞) being measurable and satisfying the
condition supn n

−1
∑n

t=1 E(bt(Xt)) < ∞ and h : [0,∞) → [0,∞) satisfies
h(y) ↓ 0 as y ↓ 0.

2. The existence of measurable functions Bt : Ω × Ω → [0,∞) with

lim sup
m→∞

lim sup
n→∞

n−1

n
∑

t=1

E(Bt(Xt, h
m
t (Xt))

ε) <∞

for some ε > 0 and with

|q(x, θ) − q(x′, θ)| ≤ Bt(x, x
′)|x− x′|

3. The equicontinuity of {q(x, θ)} on Ω × θ.

4. The functions q∗(x, θ, η) and q∗(x, θ, η) are finite and Borel–measurable for
any θ ∈ Θ and η > 0 small enough.

5. The functions supθ |n−1
∑n

t=1 q(Zt, θ) − n−1
∑n

t=1Eq(Zt, θ)| and
supθ |νn(n−1

∑n
t=1 q(Zt, θ)) − νn(n−1

∑n
t=1Eq(Zt, θ)| are A –measurable

Definition 5.3.4. We define for ω = (Z1, . . . , ZN)

Rn(ω, θ) :=
1

n

n
∑

t=1

q(ω, θ)

and its non stochastic equivalent

Rn(θ) =
1

n

n
∑

t=1

Eq(ω, θ)

Theorem 5.3.5. a) Let Z be the value space of Zt := (Xt, Xt−1,Wt), Θ the
parameter space. Z is a Borel subset of R

dim(Z) and Θ is a compact metric
space.

b) {νn|n ∈ N} is equicontinuous on R
dim(q) × Θ

c)

sup
n

n−1

n
∑

t=1

E(d(z)1+γ) <∞

for some γ > 0
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d) The process Zt is L0–approximable by an α–mixing process

e) Either 5.3.1 or 5.3.3 holds.
Then supΘ |Rn(ω, θ) − Rn(θ)| → 0 in probability as n → ∞ and {Rn|n ∈ N}
is equicontinuous on Θ. If additionally an identifiably unique minimizers of Rn

exists, any minimizing sequence is consistent.

We use this form of Theorem 7.1 of [PP97]

Remark 5.3.6. In [PP97] the theorems are formulated such that time dependet
summands qt are allowed. In the the case where our models have just an ARCH-
dynamic on σt or vt respectively, qt will be just q for all t. We made the notation
easier for this purpose. Furthermore the equicontinuity conditions will then be
just a continuity condition on q. q will also be constant over time if consider a
genuine GARCH dynamic and work with the infinite past. But if we work with
a start condition we will have use different qts for dimensional reasons.
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Chapter 6

Asymptotic properties of
different Quasi Maximum
Likelihood Estimators in the
pure ARCH case

6.1 Consistency of a Quasi–Maximum Likelihood

Estimator in the CARCH-S model

Definition 6.1.1. 1. For a random variable J we define µJ := EJ .

2. For a random variable J we define σ2
J := V ar(J)

We consider the model discussed in section 2.1 with ARCH(1) specification of σ2
t ,

i.e.:
Xt = σtηt

with
ηt = (1 −Bt)εt +BtDt and σ2

t = ω + αX2
t−1

where L(Bt|Ft−1) = B(1, pt) and

pt = f(a+ bXt−1 + cσ2
t ) = f(Xt−1, σt) = g(Xt−1)

As in section 3.3.1 we use the notation h2
t := V ar(ηt|Ft−1). The specific parametri-

sation of f does not play a role in the proofs of this section and actually the
results don’t depend on it. We will use it later for the purpose of writing down
the derivatives of lt explicitly.
Pretending that the innovations ηt are normally distributed conditional on Ft−1

we maximize the conditional likelihood function and get the quasi maximum like-
lihood estimate. This estimator will usually be misspecified even if the data is gen-
erated by the right crash model, as we usually would not have that L(ηt|Ft−1) =
N(E(ηt|Ft−1), h

2
t )). Let
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Ln =
n
∑

t=1

lt

with

lt : = lt(Xt, Xt−1, θ)

=
1

2
log(

√
2π) +

1

2
(log(ω + αX2

t−1) + log((1 − pt)µε2 + ptµD2 − [(1 − pt)
2µ2

ε + p2
tµ

2
D]))

+
(x−

√

(ω + αX2
t−1)(µε + pt(µD − µε)))

2

(ω + αX2
t−1)((1 − pt)µε2 + ptµD2 − [(1 − pt)µε + ptµD]2)

The lt can be written in the short form:

lt =
1

2
log(

√
2π) +

1

2
(log(σ2

t ) + log(h2
t )) +

(x− σt(µε + pt(µD − µε)))
2

σ2
t h

2
t

where h2
t = (1 − pt)µε2 + ptµD2 − [(1 − pt)µε + ptµD]2 = V ar(ηt|Ft−1).

We have to keep in mind that generally this estimator will use a misspecified
model. So in fact we just minimize a functional. And even if the minimizer is
consistent, that doesn’t mean that the limit has any reasonable interpretation.
Let θ ∈ Θ be the parameter vector of our model.
We assume in the following:

Assumption 6.1.2. The parameter space Θ is compact.

Lemma 6.1.3. For any γ > 0: If E|Xt|2+2γ <∞ then E supΘ | log(σ2
t (θ))|1+γ <

∞.

Proof. 1. We see: log(σ2
t ) ≤ σ2

t = ω+αX2
t−1 The compactness of the parameter

space yields the existence of ω̄,ᾱ such that

log(σ2
t (θ)) ≤ ω̄ + ᾱX2

t−1

for all θ ∈ Θ.

2. For all θ ∈ Θ and all Xt−1 σ2
t (Xt−1, θ) ≥ ω(θ) holds. But ω > 0 to-

gether with the compactness of Θ implies the existence of an ω̃ such that
σ2

t (Xt−1, θ) ≥ ω̃ for all θ ∈ Θ and all Xt−1. So log(σ2
t (Xt−1, θ)) ≥ log(ω̃)

for all θ ∈ Θ and all Xt−1

3.
log(ω̃) ≤ log(σ2

t (θ)) ≤ log(ω̄ + ᾱ|Xt−1|2) ≤ ω̄ + ᾱ|Xt−1|2
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Therefore,
| log(σ2

t (θ))| ≤ | log(ω̃)| + ω̄ + ᾱ|Xt−1|2

Hence, we have a constant k such that

| log(σ2
t (θ))| ≤ k + ᾱ|Xt−1|2

This implies for any δ ≥ 1:

| log(σ2
t (θ))|δ ≤ 2δ(kδ + ᾱδ|Xt−1|2δ) := d1 + d2|Xt−1|2δ

for positive constants d1, d2.

This finally yields:

E sup
Θ

| log(σ2
t (θ))|δ ≤ d1 + d2E|Xt−1|2δ (6.1)

So if |Xt−1|2δ < ∞ we have E supΘ | log(σ2
t (θ))|δ < ∞ Taking δ = 1 + γ

yields the statement.

Corollary 6.1.4. There exist constants k1 and k2 such that for all θ ∈ Θ

σ2
t ≤ k1 + k2X

2
t−1 (6.2)

Lemma 6.1.5. 1. For all θ ∈ Θ and all Xt−1:

(1− pt)µε2 + ptµD2 − [(1− pt)µε + ptµD]2 ≥ (1− pt)σ
2
ε + ptσ

2
D ≥ min(σ2

ε , σ
2
D)

2. For all θ ∈ Θ and all Xt−1.

max(log(σ2
ε ), log(σ2

D)) ≥ log((1 − pt)σ
2
ε + ptσ

2
D) ≥ min(log(σ2

ε ), log(σ2
D))

3. For all θ ∈ Θ and all Xt−1.

(1 − pt)µε2 + ptµD2 − [(1 − pt)µε + ptµD]2 ≤ µε2 + µD2

Proof. 1. Because of the convexity of x→ x2 we have:

[(1 − pt)µε + ptµD]2 ≤ (1 − pt)µ
2
ε + ptµ

2
D

Therefore

(1 − pt)σ
2
ε + ptσ

2
D

= (1 − pt)µε2 + ptµD2 − [(1 − pt)µ
2
ε + ptµ

2
D]

≤ (1 − pt)µε2 + ptµD2 − [(1 − pt)µε + ptµD]2

holds. The last inequality is clear.
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2. Let without loss of generality σD ≥ σε > 0 Because pt is between 0 and 1,
σ2

ε ≤ (1−pt)σ
2
ε +ptσ

2
D ≤ σ2

D. So log(σε2) ≤ log((1−pt)σ
2
ε +ptσ

2
D) ≤ log(σ2

D).
In fact

log((1 − pt)σ
2
ε + ptσ

2
D) ≥ min(log(σ2

ε ), log(σ2
D))

holds. This clearly does not depend on parameters concerning pt(θ). Hence,
this holds for all θ ∈ Θ and all Xt−1.

3. Clear because pt is between 0 and 1 and µε2,µD2 and [(1 − pt)µε + ptµD]2

are positive. .

Corollary 6.1.6. Whenever εt and Dt are square integrable then there exist con-
stants c0, c1, c2, c3 such that for all θ ∈ Θ and all Xt−1:

1.
∞ > c0 ≥ (1 − pt)µε2 + ptµD2 − [(1 − pt)µε + ptµD]2 ≥ c1 > 0

2.

∞ > c2 ≥ log((1 − pt)µε2 + ptµD2 − [(1 − pt)µε + ptµD]2) ≥ c3 > 0

Proof. When εt andDt are square integrable all right hand sides of the inequalities
in the previous lemma are constants greater than 0 and smaller than ∞. And so
is the left hand side of point 2 in the previous lemma.

Corollary 6.1.7.
E sup

θ

| log(h2
t )|1+γ <∞

Proof. By the previous lemma there exist constants c2, c3 such that

sup
θ

| log(h2
t )|1+γ ≤ (c2 + c3)

1+γ

so
E sup

θ

| log(h2
t )|1+γ ≤ (c2 + c3)

1+γ

Remark 6.1.8. If we want to treat the moments of εt and Dt as nuisance pa-
rameters we get the inequalities by assuming compactness on their parameter
spaces and σε > 0 and σD > 0. In practice we will have to choose them a priori
anyway, because when trying to estimate them we firstly won’t model crashes
because these estimates lead to non extreme distributions and secondly, because
of that fact we will run into flat areas of the parameter space. Nonetheless here
and in the section concerning the alternative model we mention and treat them
as estimable parameters when talking of moment conditions, because they don’t
make any problems in this sense. The only problem with regularity conditions is
when we want to treat the means of εt and Dt as nuisance parameters, because
they won’t satisfy condition 11.3 b in [PP97]
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Lemma 6.1.9. Let γ > 0. Suppose that E|Xt|2+2γ <∞ then:

E sup
θ

( |Xt − σt(µε + pt(µD − µε))|
σtht

)2+2γ

<∞

Proof. 1. If we assume µε and µD to be fixed or coming from a compact
nuisance parameter space we get in either case a constant M such that

|µε + pt(µD − µε)| ≤ M

the argument being that pt is uniformly bounded to be between 0 and 1 no
matter what its parameters are.

2. By corollary 6.1.4 we get have positive constants k1 and k2 such that for all
θ ∈ Θ σ2

t ≤ k1 + k2|Xt|2. So σt ≤
√

(k1) +
√
k2|Xt| because the constants

are positive. Taking 1. into account we get positive constants M1, M2 such
that:

σt|µε + pt(µD − µε)| < M1 +M2|Xt−1|
Therefore, we get

|Xt − σt(µε + pt(µD − µε))| ≤ |Xt| +M1 +M2|Xt−1|.

Now we get for any δ > 1:

|Xt − σt(µε + pt(µD − µε))|δ ≤ 2δ|Xt|δ + 22δM δ
1 + 22δM δ

2 |Xt−1|δ

Which yields:

E sup
θ

|Xt−σt(µε+pt(µD−µε))|δ ≤ 2δE|Xt|δ +22δM δ
1 +22δM δ

2E|Xt−1|δ <∞

3. We have seen that there exist constants e2 and c2 that bound σ2
t and h2

t

uniformly from 0. So:

E

(

sup
θ

|Xt − σt(µε + pt(µD − µε))|
σtht

)δ

≤ 2δ+1E|Xt|δ + 22δ+1M1 + 22δ+1M2E|Xt−1|δ
eδcδ

<∞

taking δ = 2 + 2γ yields the result.

Corollary 6.1.10. Let γ > 0. Suppose that E|Xt|2+2γ <∞ then:

1.

sup
n

1

n

n
∑

t=1

E sup
θ

( |Xt − σt(µε + pt(µD − µε))|
σtht

)2+2γ

<∞
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2.

sup
n

1

n

n
∑

t=1

E sup
Θ

| log(σ2
t (θ))|1+γ = E sup

Θ
| log(σ2

t (θ))|1+γ <∞

3.

sup
n

1

n

n
∑

t=1

E sup
Θ

| log(h2
t (θ))|1+γ = E sup

Θ
| log(h2

t (θ))|1+γ <∞

Proof. For (1) we use Lemma 6.1.9 and the following argumentation: Due to the
stationarity of Xt,

E sup
θ

( |Xt − σt(µε + pt(µD − µε))|
σtht

)2+2γ

does not depend on t and is finite say a constant H. But

sup
n

1

n

n
∑

t=1

H = H <∞

The two other points are obtained analogously from Lemmas 6.1.3 and 6.1.7.

Assumption 6.1.11. 1. E|Xt|2+2γ <∞ for a γ > 0.

2. g, fε and fD are continuous.

3. ω > 0

4. The parameter space Θ is compact and doesn’t contain 0 in the direction of
the ω-coordinate.

5. One of the following conditions holds:

(a) The support of fε and the support of fD is R.

(b) The support of fε is R and ∀t : pt ≤ 1 − δ < 1.

(c) supp(fε) ∪ supp(fD) = R and ∀t : 0 < γ ≤ pt ≤ 1 − δ < 1.

6. One of the following conditions holds:

(a) ED2
t ≥ Eε2t and α(Eε2t + supy g(y)(ED

2
t − Eε2t )) < 1.

(b) ED2
t ≤ Eε2t and α(Eε2t + infy g(y)(ED

2
t − Eε2t )) < 1.

7. There is an identifiably unique sequence of minimizer θ̄n of 1
n

∑n

t=1Elt(θ).
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Theorem 6.1.12. If the Assumptions of 6.1.11 number 1–6 are satisfied then

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n
Ln(θ) − 1

n

n
∑

t=1

Elt(θ)

∣

∣

∣

∣

∣

→p 0

as n → ∞. And { 1
n

∑n
t=1Elt(θ)} is equicontinuous on Θ. If additionally As-

sumption 6.1.11 number 7 is satisfied then for any sequence θ̂n of minimizers of
1
n
Ln(θ)

|θ̂n − θ̄n| →p 0

for n→ ∞. That means the estimator is consistent for θ̄n .

Proof. We use Theorem 14.1 of [PP97].
Therefore, we write:

Xt − E(Xt|Ft−1)
√

V ar(Xt|Ft−1)
=
ηt − E(ηt|Ft−1)

ht

=: F (Xt, Xt−1)

with

Ft(x, y, θ) = F (x, y, θ)

=
x−

√

ω + αy2(µε + g(y)(µD − µε))
√

(ω + αy2)((1 − g(y))µε2 + g(y)µD2 − [(1 − g(y))µε + g(y)µD]2)]

Then

∂F

∂x
(x, y, θ) =

1
√

((1 − g(y))µε2 + g(y)µD2 − [(1 − g(y))µε + g(y)µD]2)(ω + αy2)

and we can write

lt(Xt, Xt−1, θ) = log(2π) − log

(

∂F

∂x
(Xt, Xt−1, θ)

)

+
1

2
F 2(Xt, Xt−1, θ)

= log(2π) − log

(∣

∣

∣

∣

det
∂F

∂x
(Xt, Xt−1, θ)

∣

∣

∣

∣

)

+
1

2
F 2(Xt, Xt−1, θ) (6.3)

Now Lemmas 6.1.3 and 6.1.7 imply ∞ > 1
2
(E supθ | log(σ2

t )|1+γ+E supθ | log(h2
t )|1+γ) =

E supθ | log(| det ∂F
∂x

(Xt, Xt−1, θ)|)|. Which by Corollary 6.1.10 (2) and (3)implies
the same statements for the supn

1
n

∑n

t=1 E supθ | log(| det ∂F
∂x

(Xt, Xt−1, θ)|)| <∞.
And Corollary 6.1.10 (1) explicitly states the moment condition on Ft(Xt, Xt−1, θ).
So we verified Assumption 14.1. (c) of [PP97].
Surely ∂F

∂x
(x, y, θ) is continuous. Also Ft(x, y, θ) = F (x, y, θ) is continuous and not

depending on time. So the families {∂F
∂x

(x, y, θ) : t ∈ N} and {F (x, y, θ) : t ∈ N}
are equicontinuous verifying Assumption 14.1 (f) of [PP97]. By assumption Θ
is compact. By construction we have only one s ∈ S so it is compact too. This
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yields Assumption 14.1. (a) and (b) of [PP97]. We don’t have to verify (e),
because we use no external variables. Assumption 14.1 (d) boils down to

E|Xt|δ <∞

for a δ > 0 because we are working in a stationary context. But this is surely
true because we just assumed that for δ = 2 + γ.
Finally, in our case supt |Ft(x, y, θ)| = F (x, y, θ) < ∞ for every tuple (x, y, θ) ∈
Im(Xt, Xt−1) × Θ because Ft is time invariant. This yields 14.1(g) of [PP97].
Assumption 14.2 of [PP97] holds because we established {Xt} to be mixing under
our assumptions because they imply Assumption 4.4.7.
We assumed identifiable uniqueness and so we can apply Theorem 14.1 of [PP97].

6.2 Consistency results for the Conditional Max-

imum Likelihood estimator of the CARCH-

S model

In the previous section we examined an estimator which will be just a quasi
maximum likelihood estimator.
It seems to be reasonable to establish conditions when we will get consistent es-
timates using the real conditional likelihood under the assumption that the data
are really generated by a mechanism belonging to our model class. The condi-
tions we will get are hard to interpret, but will immediately lead to conditions
comparable to the previous section, if we assume that both the crash and the non
crash distributions are normal distributions.
We maximize the conditional likelihood function which is given by:

n
∏

t=1

p(Xt|Xt−1)

We do this via maximizing the log-likelihood function

n
∑

t=1

log(p(Xt|Xt−1))

which is in our case:

71



n
∑

t=1

log (p (Xt|Xt−1)) (6.4)

=
n
∑

t=1

log





1
(

ω + αX2
t−1

)
1

2



(1 − g (Xt−1)) fε





Xt

(

ω + αX2
t−1

)
1

2





+ g (Xt−1) fD





Xt

(

ω + αX2
t−1

)
1

2













=

n
∑

t=1



log





1
(

ω + αX2
t−1

)
1

2





+ log



(1 − g (Xt−1)) fε





Xt

(

ω + αX2
t−1

)
1

2



+ g (Xt−1) fD





Xt

(

ω + αX2
t−1

)
1

2













To improve readability, we do not include the parameters of the crash probability
function g explicitly in our notation. However, we have to recall that g depends
also on parameters which constitute a part of the total parameter vector θ and
which have to be estimated. We define:

qt := log





1
(

ω + αX2
t−1

)
1

2



 (6.5)

+ log



(1 − g (Xt−1)) fε





Xt

(

ω + αX2
t−1

)
1

2



 + g (Xt−1) fD





Xt

(

ω + αX2
t−1

)
1

2









That means in short form:

qt =
−1

2
log
(

σ2
t

)

+ log

(

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

))

(6.6)

To get the desired objective function we set:

Qn =
n
∑

i=1

qt (6.7)

We first want to find a set of general conditions to get consistency of the maximum
likelihood estimator.

Assumption 6.2.1. 1. The assumptions of 4.4.7 hold and {Xt} is a station-
ary version of the process.
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2. The parameter space Θ is compact.

3. g,fε and fD are continuous.

4.
E(sup

θ

|qt(Xt, Xt−1, θ)|)1+γ := H <∞

5. There exists θ̄n, an identifiable unique minimizer of 1
n

∑n
t=1 Eqt(θ).

Remark 6.2.2. Point 3 of the preceeding assumption is redundant if we assume
point 1, but we stated it, because if we could get a mixing version of Xt for other
reasons than point 1, we would have assume 2 independently.

Remark 6.2.3. In our setting where qt does not depend on t and so 1
n

∑n
t=1 Eqt(θ) =

Eqt(θ) does not depend on t or n either and is furthermore continuous, the exis-
tence of an identifiable unique minimizer θ̄n of 1

n

∑n

t=1Eqt(θ) is equivalent to the
existence of a unique minimizer θ0 of Eqt(θ).

Theorem 6.2.4. Assume Assumptions 6.2.1 1 to 4 hold, then

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n
Qn(θ) − 1

n

n
∑

t=1

Eqt(θ)

∣

∣

∣

∣

∣

→p 0

as n→ ∞, and { 1
n

∑n
t=1 Eqt(θ)} is equicontinuous on θ. If additionally Assump-

tion 6.2.1 5 is satisfied then for any sequence θ̂n of minimizers of 1
n
Qn(θ)

|θ̂n − θ̄n| →p 0

for n→ ∞, that means the estimator is consistent for θ̄n .

Proof. Assuming compactness of Θ Assumption 7.1.(a) of [PP97] is clear.
If

E(sup
θ

|qt(Xt, Xt−1, θ)|)1+γ := H <∞

Then for all n ∈ N:

1

n

n
∑

t=1

E(sup
θ

|qt(Xt, Xt−1, θ)|)1+γ = H <∞

So

sup
n

1

n

n
∑

t=1

E(sup
θ

|qt(Xt, Xt−1, θ)|)1+γ = H <∞

verifying Assumption 7.1.(c) of [PP97]. (d) is verified because (Xt, Xt−1) is mixing
and hence L0 approximable by itself (b) is naught in our context, because we
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just work without transformation. (e) likewise as long as we work with fixed
distributions of εt and Dt.
Now if g, fε and fD are continuous qt is continuous. Because qt = l for all t this
means the family {qt} is equicontinuous. On the other hand E|Xt| < ∞ and all
Xt have the same mean. So

sup
n

1

n

n
∑

t=1

E|Xt| <∞

Taking into account that the distributional assumptions assuring the geometric
ergodicity of Xt imply that Im(Xt) = R, we see that Im((Xt, Xt−1)) = R

2 which
is closed in R

2. So using Lemma C1 of [PP97] {Hn
t } is tight satisfying Assumption

7.2 of [PP97]. Therefore, we can apply Theorem 7.1 of [PP97] yielding the result
via the assumed identifiable uniqueness.
This shows the Consistency.

The following proposition reduces moment conditions on the weighted sum of the
crash– and non–crash–distributions to conditions concerning these distributions
itself.

Propositition 6.2.5. Let γ > 0. If

1.
0 < M1 ≤ g(y) ≤M2 < 1

2.
E|Xt|2+γ <∞

3.

E

(

sup
(ω,α)

∣

∣

∣

∣

log

(

fε

(

Xt

σt

))∣

∣

∣

∣

)1+γ

<∞ (6.8)

4.

E

(

sup
(ω,α)

∣

∣

∣

∣

log

(

fD

(

Xt

σt

))∣

∣

∣

∣

)1+γ

<∞ (6.9)

Then
E(sup

θ

|qt(Xt, Xt−1, θ)|)1+γ <∞

Proof. First we remark that if the claimed expectations exist they don’t depend
on t. This is due to the stationarity of Xt which implies the stationarity of
qt(Xt, Xt−1, θ).

74



|qt(Xt, Xt−1, θ)| =
−1

2
log(σ2

t ) + log

(

(1 − pt)fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

))

First:
| log(σ2

t )| ≤ c1 + c2X
2
t−1

which is shown completely analogously to the proof of Lemma 6.1.3. And this
holds for all θ ∈ θ. So

sup
θ

| log(σ2
t )| ≤ c1 + c2X

2
t−1

for positive constants c1, c2. which yields

(sup
θ

| log(σ2
t )|)1+γ ≤ c4 + c5X

2+2γ
t−1

for positive constants c4, c5. Now we can conclude if E|Xt|2+2γ < ∞ then
E(supθ | log(σ2

t )|)1+γ <∞. So we have just to deal with

log

(

(1 − pt)fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

))

Now because fε and fD are continuous density functions there exist constants Mε

and MD. such that fε(x) ≤Mε and fD(x) ≤MD for all x ∈ R and so we get:

log

(

(1 − pt)fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

))

(6.10)

≤ (1 − pt)fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

)

≤ (1 −M1)fε

(

Xt

σt

)

+M2fD

(

Xt

σt

)

≤ (1 −M1)Mε +M2MD =: K.

On the other hand:

log

(

(1 − pt)fε

(

Xt

σt

)

+ pt(fD

(

Xt

σt

)

)

)

(6.11)

≥ (1 − pt) log

(

fε

(

Xt

σt

))

+ pt log

(

fD

(

Xt

σt

))

≥ (1 −M2) log

(

fε

(

Xt

σt

))

+M1 log

(

fD

(

Xt

σt

))

so we get:
∣

∣

∣

∣

log

(

(1 − pt)fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

))∣

∣

∣

∣

(6.12)

≤ |K| + (1 −M2)

∣

∣

∣

∣

log

(

fε

(

Xt

σt

))∣

∣

∣

∣

+M1

∣

∣

∣

∣

log

(

fD

(

Xt

σt

))∣

∣

∣

∣
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Because this holds for all θ ∈ Θ and the constants don’t depend on a particular
θ we get:

sup
θ

∣

∣

∣

∣

log

(

(1 − pt)fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

))∣

∣

∣

∣

(6.13)

≤ |K| + (1 −M2)|
[

sup
θ

∣

∣

∣

∣

log

(

fε

(

Xt

σt

))∣

∣

∣

∣

]

+M1

[

sup
θ

∣

∣

∣

∣

log

(

fD

(

Xt

σt

))∣

∣

∣

∣

]

and hence exist constants K1, K2, K3, such that:

[

sup
θ

∣

∣

∣

∣

log

(

(1 − pt)fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

))∣

∣

∣

∣

]1+γ

(6.14)

≤ K1 +K2

[

sup
θ

∣

∣

∣

∣

log

(

fε

(

Xt

σt

))∣

∣

∣

∣

]1+γ

+K3 sup
θ

[

sup
θ

∣

∣

∣

∣

log

(

fD

(

Xt

σt

))∣

∣

∣

∣

]1+γ

Therefore, if E
(

supθ

∣

∣

∣
log(fD

(

Xt

σt

)∣

∣

∣

)1+γ

< ∞ and E
(

sup(θ)

∣

∣

∣
log(fε

(

Xt

σt

)∣

∣

∣

)1+γ

<

∞ then

E

(

sup
θ

∣

∣

∣

∣

log

(

(1 − pt)fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

))∣

∣

∣

∣

)1+γ

<∞

Obviously, for ∗ = ε, D,

sup
θ

∣

∣

∣

∣

log

(

f∗

(

Xt

σt

))∣

∣

∣

∣

= sup
(ω,α)

∣

∣

∣

∣

log

(

f∗

(

Xt

σt

))∣

∣

∣

∣

because the parameters concerning pt are not part of the term.
Using σ2

t ≥ ω ≥ ω̃ > 0 for all θ ∈ Θ we get together with the first statement of
the proof constants C1 and C2 such that:

E(sup
θ

|qt(Xt, Xt−1, θ)|)1+γ (6.15)

≤ C1E(sup
θ

| log(σ2
t )|)1+γ

+C2E

(

sup
θ

∣

∣

∣

∣

log

(

(1 − pt)fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

))∣

∣

∣

∣

)1+γ

=: H <∞

Corollary 6.2.6. If Assumptions 6.2.1 number 1 to 3 and 5 hold and additionally
the assumptions of Proposition 6.2.5, then the conditional maximum likelihood
estimator is consistent.
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Remark 6.2.7. The inequality in 6.11 actually permits only densities which are
not vanishing on the whole real line. But we can get control of these densities in
other cases, too. To illustrate this we consider fε to be greater than zero on the
whole real line and fD to be greater than zero on the negative real line and zero
elsewhere. Then we can calculate:

log

(

(1 − pt)fε

(

Xt

σt

)

+ pt(fD

(

Xt

σt

)

)

)

= I{x≥0}(Xt) log

(

(1 − pt)fε

(

Xt

σt

))

I{x<0}(Xt) log

(

(1 − pt)fε

(−|Xt|
σt

)

+ pt(fD

(

Xt

σt

)

)

)

≥ (1 − pt) log

(

fε

(

Xt

σt

))

+ I{x<0}pt log

(

fD

(−|Xt|
σt

))

= (1 − pt) log

(

fε

(

Xt

σt

))

+ I{x<0}pt log

(

fD

(−|Xt|
σt

))

= (∗)

Except for the null set {0} then

(∗)

≥ (1 −M2) log

(

fε

(

Xt

σt

))

+ I{x<0}(Xt)M1 log

(

fD

(−|Xt|
σt

))

So the rest of the proof of Proposition 6.2.5 will go through if we replace

E

(

sup
(ω,α)

∣

∣

∣

∣

log

(

fD

(

Xt

σt

))∣

∣

∣

∣

)1+γ

<∞ (6.16)

by

E

(

sup
(ω,α)

∣

∣

∣

∣

log

(

fD

(−|Xt|
σt

))∣

∣

∣

∣

)1+γ

<∞ (6.17)

While sticking to the rest of the original conditions we get the result of Proposition
6.2.5 and finally consistency.

Corollary 6.2.8. If εt and Dt are both normally distributed, pt bounded away
from 0 and 1 and E|Xt|2+2γ <∞ for a γ > 0. then

E(sup
θ

|qt(Xt, Xt−1, θ)|)1+γ <∞
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Proof. To show that E sup(ω,α) | log(f∗(
Xt

σt
)|1+γ < ∞ for ∗ = D, ε we can use

similar argumentation as in the proof of Lemma 6.1.9:

∣

∣

∣

∣

−1

2
log(2πσ2

ε ) − (Xt − µεσt)
2

2σ2
εσ

2
t

∣

∣

∣

∣

≤ c1 + c2|Xt|2
2σ2

ε ω̃

This again holds for all θ ∈ Θ and so

sup
θ

∣

∣

∣

∣

fε

(

Xt

σt

)∣

∣

∣

∣

≤ c1 + c2|Xt|2
2σ2

ε ω̃

⇒
(

sup
θ

∣

∣

∣

∣

fε

(

Xt

σt

)∣

∣

∣

∣

)1+γ

≤ c3 + c4|Xt|2+2γ

for positive constants c1, c2, c3 c4. So if E|Xt|2+2γ is finite so is E(supθ |fε(
Xt

σt
)|)1+γ.

The same argument holds for fD too. Therefore Proposition 6.2.5 yields the
result.

So we get using Theorem 6.2.4 the following result, which we want to state as a
theorem.

Theorem 6.2.9. If

1. the parameter space Θ is compact and the assumptions of 4.4.7 hold,

2. εt and Dt are normally distributed,

3. 0 < M1 ≤ g(y) ≤ M2 < 1,

4. E|Xt|2+γ <∞,

5. the true parameter θ0 is identifiable unique,

then the conditional maximum likelihood estimator is consistent.

Propositition 6.2.10. If εt is normally distributed and Dt lognormally dis-
tributed with parameters (0,1), pt bounded away from away 0 and 1 and

1. E|Xt|2+2γ <∞ for a γ > 0.

2. E| log(|Xt|)|2+2γ <∞ for a γ > 0.

then
E(sup

θ

|qt(Xt, Xt−1, θ)|)1+γ <∞

and so under these conditions and assuming

1. the parameter space Θ is compact and the assumptions of 4.4.7 hold,

2. 0 < M1 ≤ g(y) ≤ M2 < 1,
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3. the true parameter θ0 is identifiable unique,

we have consistency of the maximum likelihood estimator.

Proof. Having done the calculations for the normal distribution we have to check,
using Remark 6.2.7 that

E

(

sup

∣

∣

∣

∣

− log

(√
2π

∣

∣

∣

∣

Xt

σt

∣

∣

∣

∣

)

− 1

2
(log(|Xt|) − log(σt))

2

∣

∣

∣

∣

)1+γ

<∞

Now

− log(
√

2π) − (log(|Xt|) − log(σt)) −
1

2
(log(|Xt|) − log(σt))

2

≤ const.+ | log(|Xt|)| + | log(σt)| + const.[log(|Xt|)2 + log(σt)
2]

Now log(σt) = 1
2
log(σ2

t ), log(σ2
t ) ≥ ω and

log(σ2
t ) = log(ω + αX2

t−1) = log(ω) + log
(

1 +
α

ω
X2

t−1

)

≤ log(ω) +
α

ω
X2

t−1

Using the compactness of Θ and, in particular, ω ≥ ω̃ > 0 we get:

sup
(ω,α)

∣

∣

∣

∣

− log

(√
2π

∣

∣

∣

∣

Xt

σt

∣

∣

∣

∣

)

− 1

2
(log(|Xt|) − log(σt))

2

∣

∣

∣

∣

≤ const.+ const. log(|Xt|) + log(X2
t ) + const.X2

t−1

But the expectation of the (1 + γ)th moment of the right hand side is finite by
our assumptions.

6.3 Consistency of a Quasi–Maximum Likelihood

Estimator in the ACARCH-V model

Now we consider the following model:

Xt = (1 − pt)µ+ ptδ + σt[(1 − Bt)εt +BtDt] (6.18)

with where L(Bt|Ft−1) = B(1, pt),

pt = f(Xt−1, vt) = g(Xt−1)

and εt and Dt both have mean 0. We use like in section 3.4 the notation µt =
(1 − pt)µ + ptδ = µ + pt∆, ηt = (1 − Bt)εt + BtDt vt = V ar(Xt|Ft−1) and
h2

t = V ar(ηt|Ft−1).
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Further we assume that vt follows an ARCH(1)–dynamic:

ω + αX2
t−1

The specific parametrisation of f does not play a role in the proofs of this section
and actually the results don’t depend on it. We will use it later for the purpose
of writing down the derivatives of lt explicitly. To avoid black box conditions we
may choose an appropriate quasi likelihood function. We do so by modeling {ηt}
to be conditionally normal i.e . L( ηt

ht
|Ft−1) = N(0, 1) . i.e. conditional on the

past:
L(ηt|Ft−1) = N(0, h2

t ) = N(0, (1 − pt)σ
2
ε + ptσ

2
D) (6.19)

Then the objective function to be minimized is

Ln =

n
∑

t=1

lt

with

lt =
1

2
log(

√
2π) +

1

2
log(v2

t ) +
(Xt − µ− pt∆)2

2v2
t

=
1

2
log(

√
2π) +

1

2
log(ω + αX2

t−1) +
(Xt − µ− g(Xt−1)∆)2

2(ω + αX2
t−1)

(6.20)

Lemma 6.3.1. For any γ > 0, if E|Xt|2+2γ < ∞ then E supΘ | log(v2
t (θ))|1+γ <

∞.

Proof. Completely like the proof of Lemma 6.1.3.

Corollary 6.3.2. If ω > 0 and {Xt} is square integrable, then E| log(v2
t )| <∞

Lemma 6.3.3. For any γ > 0, if E|Xt|2+2γ <∞ then

E sup
Θ

∣

∣

∣

∣

(Xt − µ+ pt∆)

vt

∣

∣

∣

∣

2+2γ

<∞

Proof. 1. For all θ ∈ Θ and all Xt−1 v
2
t (Xt−1, θ) ≥ ω(θ) holds. But ω > 0

together with the compactness of Θ implies the existence of an ω0 such that
v2

t (Xt−1, θ) ≥ ω0 for all θ ∈ Θ and all Xt−1. We define ε2 := ω0, then for
any δ > 0

(v2
t )

−δ ≥ ε−2δ

holds.
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2. Because pt is between 0 and 1 ‖µ+ pt∆| ≤ |µ| + |δ| and since we assumed
the parameter space to be compact, there exists a constant c ≥ 0 such that.
|µ|+ |δ| ≤ c. Hence |Xt − µ+ pt∆| ≤ |Xt|+ |µ+ pt∆| ≤ |Xt|+ c. It follows
for any δ ≥ 1 |Xt − µ+ pt∆|δ ≤ (|Xt| + c)δ = (c1 + c2|Xt|δ).
for constants c1 and c2 which we get like in the proof of Lemma 6.3.1.

E(sup
Θ

(Xt − µ+ pt∆)2

vt

)δ ≤ 1

εδ
(c1 + c2E(|Xt|δ)) <∞ (6.21)

We use this argument for δ = 2 + 2γ and get the desired result.

Corollary 6.3.4. Let γ > 0. Suppose that E|Xt|2+2γ <∞, then:

1.

sup
n

1

n

n
∑

t=1

E sup
Θ

∣

∣

∣

∣

Xt − µ+ pt∆

vt

∣

∣

∣

∣

2+2γ

2.

sup
n

1

n

n
∑

t=1

E sup
Θ

| log(v2
t (θ))|1+γ <∞

Proof. Due to the stationarity of Xt the weighted sum reproduces

E sup
Θ

∣

∣

∣

∣

(Xt − µ+ pt∆)2

2v2
t

∣

∣

∣

∣

1+γ

.

Sinnce the supremum of a constant is a constant, Lemma 6.3.3 yields the desired
result. Analogously we get the second point by using Lemma 6.3.1.

If we assume to have a stationary and ergodic version of {Xt} which exists by the
geometric ergodicity we can apply a local law of large numbers assuming {Xt}
is square integrable. This is the case if α < 1 and {εt} and {Dt} are square
integrable.

Assumption 6.3.5. 1. E|Xt|2+2γ <∞ for a γ > 0.

2. g,fε and fD are continuous.

3. α < 1, ω > 0.

4. The parameter space Θ is compact and doesn’t contain 0 in the ω-coordinate
direction.

5. One of the following conditions holds:

(a) The support of fε and the support of fD is R.

(b) The support of fε is R and ∀t : pt ≤ 1 − δ < 1.
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(c) supp(fε) ∪ supp(fD) = R and ∀t : 0 < γ ≤ pt ≤ 1 − δ < 1.

6. There is an identifiably unique sequence of minimizer θ̄n of 1
n

∑n
t=1Elt(θ).

Theorem 6.3.6. If the Assumptions of 6.3.5 1–5 are satisfied then

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n
Ln(θ) − 1

n

n
∑

t=1

Elt(θ)

∣

∣

∣

∣

∣

→p 0

as n→ ∞. Furthermore, { 1
n

∑n

t=1Elt(θ)} is equicontinuous on θ. If additionally

Assumption 6.3.5 6 is satisfied then for any sequence θ̂n of minimizers of 1
n
Ln(θ)

|θ̂n − θ̄n| →p 0

for n→ ∞. That means the estimator is consistent for θ̄n .

Proof. We use Theorem 14.1 of [PP97].
Therefore we write ηt

ht
again as F (Xt, Xt−1, θ) with

F (x, y, θ) =
x− µ− g(y)∆
√

ω + αy2

Then
∂F

∂x
(x, y, θ) =

1
√

ω + αy2

and we can write

lt(Xt, Xt−1, θ) = log(2π) − log

(

∂F

∂x
(Xt, Xt−1, θ)

)

+
1

2
F 2(Xt, Xt−1, θ)

= log(2π) − | log

(∣

∣

∣

∣

det
∂

F
∂x(Xt, Xt−1, θ)

)∣

∣

∣

∣

+
1

2
F 2(Xt, Xt−1, θ) (6.22)

Now Corollary 6.3.4 (2) implies ∞ > 1
2
supn

1
n

∑n

t=1E supθ | log(v2
t )|1+γ

= E supθ | log(| det ∂F
∂x

(Xt, Xt−1, θ)|.
And Corollary 6.3.4 (1) explicitly states the moment condition on F (Xt, Xt−1, θ).
So we verified Assumption 14.1. (c) of [PP97].
Obviously ∂F

∂x
(x, y, θ) is continuous and does not depend on t. Also F (x, y, θ) is

continuous and not depending on time. So the families { ∂F
∂x

(x, y, θ) : t ∈ N} and
{F (x, y, θ) : t ∈ N} are equicontinuous verifying Assumption 14.1 (f) of [PP97].
By assumption Θ is compact and by construction we have S = {s}, so it is
compact too. This yields Assumption 14.1. (a) and (b) of [PP97]. We don’t have
to verify (e), because we use no external variables. Assumption 14.1 (d) is boils
down to

E|Xt|δ <∞
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for a δ > 0 because we are working in a stationary context. But this is surely
true because we just assumed that for δ = 2 + γ.
Finally, in our case supt |Ft(x, y, θ)| = F (x, y, θ) < ∞ for every tuple (x, y, θ) ∈
Im(Xt, Xt−1)×Θ because F is time invariant. This yields 14.1(g) of [PP97]. Our
assumptions imply Assumption 4.5.9. So we can assume that {Xt} is a mixing
version of our process. This yields Assumption 14.2 of [PP97]. We assumed
identifiable uniqueness and so we can apply Theorem 14.1 of [PP97].

6.4 Consistency results for the Conditional Max-

imum Likelihood estimator of the ACARCH-

V model

We consider the same model as in section 6.3 and we want to explore the likelihood
function given by

Qn :=
n
∑

t=1

log(qt(Xt|Xt−1))

with

qt(Xt|Xt−1) (6.23)

= (1 − g(Xt−1))
h(Xt−1)

v(Xt−1)
fε

(

Xt − µ(Xt−1)

v(Xt−1)
h(Xt−1)

)

+g(Xt−1)
h(Xt−1)

v(Xt−1)
fD

(

Xt − µ(Xt−1)

v(Xt−1)
h(Xt−1)

)

.

We remark that qt(x, y) does not depend on t.
In analogy to section 6.2 we get a first set of conditions for consistency of the
estimator, defined as the minimizer of Qn.

Assumption 6.4.1. 1. The assumptions of 4.4.7 hold and {Xt} is a station-
ary version of the process.

2. The parameter space Θ is compact.

3. g,fε and fD are continuous.

4.
E(sup

θ

|qt(Xt, Xt−1, θ)|)1+γ := H <∞

5. The true parameter θ0 is identifiable unique.

83



Remark 6.4.2. Assuming point 1 point 3 is redundant. Again we stated 3 to
make clear what kind of conditions arise even if we had mixing or L0–approximability
established via a different way.

Theorem 6.4.3. Assume Assumptions 6.4.1 number 1 to 4 hold, then

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n
Qn(θ) − 1

n

n
∑

t=1

Eqt(θ)

∣

∣

∣

∣

∣

→p 0

as n → ∞, and { 1
n

∑n

t=1Eqt(θ)} is equicontinuous on θ. If additionally As-

sumption 6.4.1 number 5 is satisfied then for any sequence θ̂n of minimizers of
1
n
Qn(θ)

|θ̂n − θ̄n| →p 0

for n→ ∞. that means the estimator is consistent for θ̄n .

Proof. Due to the general nature of the statement the proof is actually word by
word the same as that of Theorem 6.2.4.

Again we state a Proposition, which gets rid of the sum in the logarithm in order
to eventually get more explicit assumptions.

Propositition 6.4.4. Let γ > 0. If

1.
0 < M1 ≤ g(y) ≤M2 < 1

2.
E|Xt|2+γ <∞

3.

E

(

sup
θ

∣

∣

∣

∣

log

(

fε

(

(Xt − µt)ht

vt

))∣

∣

∣

∣

)1+γ

<∞ (6.24)

4.

E

(

sup
θ

∣

∣

∣

∣

log

(

fD

(

(Xt − µt)ht

vt

))∣

∣

∣

∣

)1+γ

<∞ (6.25)

Then
E(sup

θ

| log(qt(Xt, Xt−1, θ))|)1+γ <∞

Proof. We can use the analogous argumentation of the proof of Proposition 6.2.5
and have to show additionally E(supθ |(log(ht))|)1+γ <∞.
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Now

(1 −M2) log(σ2
ε ) +M1 log(σ2

D)

≤ (1 − pt) log(σ2
ε ) + pt log(σ2

D)

≤ log(h2
t ) ≤ (1 − pt)σ

2
ε + ptσ

2
D

≤ (1 −M1)σ
2
ε +M2σ

2
D

Hence,

| log(ht)| =
1

2
| log(h2

t )| ≤ C

for a constant C. Therefore,

sup
θ

| log(ht)|1+γ ≤ C1+γ

E(supθ |(log(ht))|)1+γ <∞ follows because this constant does not depend on θ.

Remark 6.4.5. The stationarity of Xt implies that if

E(sup
θ

| log(qt(Xt, Xt−1, θ))|)1+γ <∞

then also

sup
n

1

n

n
∑

t=1

E(sup
θ

| log(qt(Xt, Xt−1, θ))|)1+γ <∞

Choosing appropriate distributions for εt and Dt we get an explicit moment con-
dition to get consistency.

Corollary 6.4.6. Assume Assumption 6.4.1 1–3 and 5 hold. If εt and Dt are
both normally distributed and E|Xt|2+2γ < ∞ for a γ > 0, then the maximum-
likelihood estimator is consistent.

Proof. Because pt is between 0 and 1, |µ+ pt∆| ≤ |µ|+ |δ|. Because we assumed
the parameter space to be compact, there exists a constant c ≥ 0 such that
|µ|+ |δ| ≤ c. Therefore |Xt −µ+ pt∆| ≤ |Xt|+ |µ+ pt∆| ≤ |Xt|+ c holds and we
can conclude |Xt − µ+ pt∆|2 ≤ (|Xt|+ c)2 = (c1 + c2|Xt|2) for positive constants
c1, c2. On the other hand |h2

t | ≤ max(σ2
ε , σ

2
D). So |h2

t | ≤ c3 for a positive constant
c3. It follows

|(Xt − µ+ pt∆)2h2
t | ≤ c1c3 + c2c3|Xt|2.

With the notation used before we have |v2
t | ≥ ω̃ > 0 for all θ ∈ Θ.

So

∣

∣

∣

∣

−1

2
log(2πσ2

ε ) −
(Xt − µ+ pt∆)2h2

t

2σ2
εv

2
t

∣

∣

∣

∣

≤ c4
c1c3 + c2c3|Xt|2

2σ2
ε ω̃
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for a positive constant c4. Argumentation like e.g. that in the proof of Corollary
6.2.8 yields

E

(

sup
(θ)

∣

∣

∣

∣

log

(

fε

(

(Xt − µt)ht

vt

))∣

∣

∣

∣

)1+γ

<∞.

We use the same argumentation to show

E

(

sup
(θ)

∣

∣

∣

∣

log(fD(
(Xt − µt)ht

vt

)

∣

∣

∣

∣

)1+γ

<∞

and we can then use Proposition 6.4.4 to conclude with Theorem 6.4.3.

6.5 Some generic results concerning Asymptotic

Normality

We want to state a generic result when

1√
n

∂Ln

∂θ
|θ0

→D N(0, B)

for a positive definite matrix B. The following Lemma is formulated for the
first introduced quasi maximum likelihood estimators. For the estimators given
by functions still including fε and fD a corresponding result holds assuming the
continuous differentiability of these functions.

Lemma 6.5.1. If

1. g is two times continuously differentiable.

2.

E

∣

∣

∣

∣

∂Ln

∂θi

|θ0

∣

∣

∣

∣

2+δ

<∞

for a δ > 0 and all parameters θi.

Then
1√
n

∂Ln

∂θ
|θ0

→D N(0, B)

for a positive definite matrix B.

Proof. 1. The first condition is just needed to ensure the very existence of the
partial derivatives.

2. The moment condition implies the existence of E| ∂Ln

∂θi
|θ0
| So we can apply

the ergodic theorem for stationary processes and have

E
∂Ln

∂θi

|θ0
=

∂

∂θi

E(Ln)|θ0
= 0

86



3. We have shown that under the assumptions {Xt} is strongly mixing with
geometric coefficients. ∂Ln

∂θ
|θ0

is a function of Xn and Xn−1. So is for every
λ ∈ Rlength(θ):

λ′
∂Ln

∂θ
|θ0

=
∑

λi

∂Ln

∂θi

So it is also mixing with geometric coefficients, i.e. we have a > 0, ρ < 1
such that

α(n) ≤ cρn ⇒ α(n)
2+δ

δ ≤ c
2+δ

δ (ρ
2+δ

δ )n ≤ c1n
− 2+δ

δ
+b

for any positive constants c1, b if n is large enough.

4. Define Yt(λ) =
∑

λi
∂Ln

∂θi
.

Since
∣

∣

∣

∣

∑

λi

∂Ln

∂θi

∣

∣

∣

∣

2

≤
∣

∣

∣

∑

λ2
i

∣

∣

∣

(

∑

∣

∣

∣

∣

∂Ln

∂θi

∣

∣

∣

∣

2
)

E|Yt(λ)2+δ| < ∞ holds. Because we have exponentially decreasing mixing
coefficients

∑

k≥1

α(k)1− 2

2+γ

holds. We can apply Theorem 1.5 of [Bos96]. So Cov(Y0(λ), Yt(λ)) is abso-
lutely summable and

∑

k∈Z

Cov(Y0(λ), Yt(λ)) > 0

5. First we assume Yt(λ) to have zero mean. Now we can apply a central
limit theorem for mixing processes to be precise Theorem 1.7 in [Bos96].
So 1√

n
λ′ ∂Ln

∂θ
|θ0

→D N(0, s2
λ) for every λ 6= 0. The general result holds if we

apply this theorem to the translated process. Finally, by the Cramer Wold
theorem this implies the statement of the lemma.

Theorem 6.5.2. Let some assumptions hold ensuring that θ̂n is a consistent
estimator for θ0. Assume additionally:

1. g is two times continuously differentiable.

2.
1

n

∂2Ln

∂θ∂θ′
|θ∗ →p A(θ0) for θ∗ →p θ0

for an invertible matrix A(θ0).
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Then √
N(θ̂n − θ0) →D N(0, A−1BA−1) (6.26)

where A = A(θ0) and B is the matrix from Lemma 6.5.1.

Proof. We make use of the Taylor expansion of ∂Ln

∂θ
|θ̂n

∂Ln

∂θ
|θ̂n

=
∂Ln

∂θ
|θ0

+
∂2Ln

∂θ∂θ′
|θ∗(θ̂n − θ0) (6.27)

∂Ln

∂θ
|θ̂n

= 0 because it is a minimum of Lt in the interior of the parameter space
and is identifiable unique.

⇒
√
N(θ̂n − θ0) = (

1

n

∂2Ln

∂θ∂θ′
|θ∗)−1 1√

n

∂Ln

∂θ
|θ0

(6.28)

→D A−1G(θ0) with G =D N(0, B) (6.29)

Where G =D N(0, B) is implied by Lemma 6.5.1. Then

Cov(A−1G,A−1G) = E(A−1GG′A−1) = A−1E(GG′)A−1 = A−1BA−1

So A−1G has the desired distribution.

6.6 Asymptotic Normality and alternative Con-

sistency for the Quasi–Maximum Likelihood

Estimator in the ACARCH-V model

We now switch back to the quasi maximum likelihood estimator in the model
described at the beginning of section 6.3.
We do some calculations on the derivatives of lt in order to establish asymptotic
normality. On the way we get also some alternative approach to consistency.
This consistency result is a bit nicer than the one established before, because
the moment condition is weaker and implied by the stationarity condition of the
model before choosing the possibly misspecified likelihood function.
We assume that g(y) has the following parametric form

g(y) = f(a+ by + c(ω + αy2)) (6.30)

where f is continuously differentiable. In order to do proper calculation on the
derivatives of lt we postulate:

Assumption 6.6.1. f is continuously differentiable.
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Further we assume that α > 0 for all (ω, α, a, b, c) ∈ Θ. Then we define α̃ as the
infimum of all α with (ω, α, a, b, c) ∈ Θ. Due to compactness we have α̃ > 0.
We calculate the first derivatives:

(

∂lt

∂ω
,
∂lt

∂α

)

(6.31)

=
1

2v2
t

(

(Xt − µ− pt∆)2

v2
t

− 1 + 2(Xt − µ− pt∆)f ′(a+ bXt−1 + cv2
t )∆c

)

(1, X2
t−1)

(

∂lt

∂a
,
∂lt

∂b
,
∂lt

∂c

)

= −1
(Xt − µ− pt∆)f ′(a+ bXt−1 + cv2

t )∆

v2
t

(1, Xt−1, v
2
t ) (6.32)

∂lt

∂µ
= −1

(Xt − µ− pt∆)µ

v2
t

(6.33)

Propositition 6.6.2. If Θ is compact and α > 0 for all (ω, α, a, b, c) ∈ Θ, then
E|Xt|2δ <∞ for δ ≥ 1 implies

E sup
θ

∣

∣

∣

∣

∂lt

∂θi

∣

∣

∣

∣

δ

<∞

Proof. Now f is bounded, defined on R and continuously differentiable. So f ′ is
bounded. We have already seen that

∣

∣

∣

∣

(Xt − µ− pt∆)2

v2
t

∣

∣

∣

∣

≤ 1

ω̃2
(MX2

t + k)

for constants ω̃,M and k. Further

∣

∣

∣

∣

1

v2
t

∣

∣

∣

∣

≤ 1

ω̃

and
∣

∣

∣

∣

X2
t−1

v2
t

∣

∣

∣

∣

≤ 1

α
∣

∣

∣

∣

1

vt

∣

∣

∣

∣

≤ 1√
ω̃

and
Xn

t−1

vn
t

≤ 1

α̃
n
2

Here α̃ denotes the infimum of α such that (ω, α, a, b, c) ∈ Θ for some ω, a, b, c.
By the compactness of Θ and our assumption that α > 0 for all tuples in Θ
α̃ > 0 holds. This yields for the two most extreme cases:
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∣

∣

∣

∣

∂lt

∂α

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

2ω̃

k + k1X
2
t

α̃

∣

∣

∣

∣

+

∣

∣

∣

∣

1

α̃

∣

∣

∣

∣

+

∣

∣

∣

∣

(2Xt + k2)k3

α̃

∣

∣

∣

∣

for constants k, k1, k2,k3. and

∣

∣

∣

∣

∂lt

∂c

∣

∣

∣

∣

≤ (2Xt + k2)k4

for an additional constant k4.

Corollary 6.6.3. If E|Xt|2 <∞, then E supθ | ∂lt
∂θi

| <∞.

This gives us a slightly different version of the consistency result:

Theorem 6.6.4. If we replace Assumption 6.3.5 numbers 1 and 2 with

1’. EX2
t <∞,

2’. f is continuously differentiable, fD and fε are continuous

then the quasi maximum likelihood estimator is consistent.

Proof. First by the argument of the proofs in section 6.3 we can bound |lt(θ)|
uniformly for all θ ∈ Θ by

| log(ω̃)| + ω̄ + ᾱ|Xt−1|2) +
1

ω̃
(c1 + c2E(|Xt|2))

where c1, c2 are positive constants, ω̃, ω̄, ᾱ are constants defined analogously to
the proof of Lemma 6.1.3.
So EX2

t <∞ implies E|lt| <∞. Because the result holds uniformly for all θ ∈ Θ
we also have E|l∗t | < ∞ and E|lt∗| < ∞ where we use the notation of Definition
5.2.3. Now we work with a strongly stationary and ergodic version of {Xt}. As
functions of finitely many Xt lt, l

∗
t and lt∗ are stationary and ergodic. Therefore,

we can get a local law of large numbers via the ergodic theorem for stationary
processes. Secondly EX2

t < ∞ implies E supθ | ∂lt
∂θi

| < ∞ which provides us with
a Lipschitz condition: Taylor expansion yields

lt(θ1) − lt(θ2) =
∂lt

∂θ
|θ∗(θ1 − θ2)

This yields

|lt(θ1) − lt(θ2)| ≤
∣

∣

∣

∣

∣

∣

∣

∣

∂lt

∂θ
|θ∗
∣

∣

∣

∣

∣

∣

∣

∣

||(θ1 − θ2)||

This implies
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|lt(θ1) − lt(θ2)| ≤ sup
θ

∣

∣

∣

∣

∣

∣

∣

∣

∂lt

∂θ

∣

∣

∣

∣

∣

∣

∣

∣

||(θ1 − θ2)|| (6.34)

where ||(x1, . . . xn)|| =
∑n

i=1 |xi|.
And we have because of the integrability of the derivatives (and stationarity):

sup
n

1

n

n
∑

t=1

E sup
θ

||∂lt
∂θ

|| <∞

We set bt(y) = supθ

∣

∣

∣

∣

∂lt
∂θ
|
∣

∣

∣

∣,d(θ1, θ2) = ||(θ1 − θ2)|| and h(z) = z. Because we
are fulfilling conditions A, 5.1 and 5.2 of that theorem, we can conclude with
Theorem 5.1 of [PP97] that

sup
θ∈Θ

∣

∣

∣

∣

∣

n−1

n
∑

t=1

[lt(Xt, Xt−1, θ) − Elt(Xt, Xt−1, θ)]

∣

∣

∣

∣

∣

→p 0

as n→ ∞ and

{n−1

n
∑

t=1

Elt(Xt, Xt−1, θ) : n ∈ N}

is equicontinuous on Θ.
The assumed uniqueness of θ0 yields the consistency.

This version seems to be nicer than the one established in Theorem 6.1.12 , be-
cause the moment condition in the case that the model before assuming normality
was not misspecified is implied by the stationarity condition. On the other hand
f has to be differentiable, we have to use the compactness of Θ in the dimension
corresponding to c and we have to claim that α > 0 for all (. . . , α, . . .) ∈ Θ.

Corollary 6.6.5. If E|Xt|4+γ′

< ∞ for a γ′ > 0, then the moment condition in
Theorem 6.5.1 is fulfilled.

Now switching to the second derivatives we first make an assumption:

Assumption 6.6.6. f is two times continuously differentiable

We calculate:
(

∂2lt

∂2ω2
,
∂2lt

∂ω∂α
,
∂2lt

∂2α2

)

(6.35)

=

[

1

2v4
t

(

(Xt − µ− pt∆)2

v2
t

− 1 + 2(Xt − µ− pt∆)f ′(a + bXt−1 + cv2
t )∆c

)

+
1

2v2
t

(Xt − µ− pt∆)2

v4
t

+
1

v2
t

((−(f ′(a + bXt−1 + cv2
t ))

2)c2∆2 + (Xt − µ− pt∆)f ′′(a + bXt−1 + cv2
t )c∆)

]

(1, X2
t−1, X

4
t−1)
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(

∂2lt

∂2a2
,
∂2lt

∂a∂b
,
∂2lt

∂a∂c
,
∂2lt

∂2b2
,
∂2lt

∂b∂c
,
∂2lt

∂2c2

)

(6.36)

= −1
(−(f ′(a + bXt−1 + cv2

t ))
2)∆2 + (Xt − µ− pt∆)f ′′(a+ bXt−1 + cv2

t )∆

v2
t

(1, Xt−1, v
2
t , X

2
t−1, Xt−1v

2
t , v

4
t )

∂2lt

∂α∂c
(6.37)

=

(

−1
(−(f ′(a+ bXt−1 + cv2

t ))
2)c∆2 + (Xt − µ− pt∆)f ′′(a+ bXt−1 + cv2

t )c∆

v2
t

+
(Xt − µ− pt∆)f ′(a + bXt−1 + cv2

t )∆

v4
t

)

v2
tX

2
t−1

Now here even after canceling (modulo constants) powers of σt or Xt−1 against
such of σ−1

t , there remain powers of Xt−1. We use a corollary of Hölder’s theorem
to deal with that.

Propositition 6.6.7. Let i, j > 0

1.
E|X iY j| ≤ (E|X|i+j)

i
i+j (E|Y |i+j)

j
i+j

2. Let {Xt} be strongly stationary. If E|Xt|i+j = K < ∞ then E|X i
tX

j
t−1| <

∞.

Proof. 1. Hölders theorem with p = i+j

i
and q = i+j

j
yields

[E|X iY j| ≤ (E|X|i i+j
i )

i
i+j (E|Y |j

i+j
j )

j
i+j

2. Because of the stationarity and that E|Xt−1|i+j = K also holds, point (1)
of this Lemma yields the result.

So this Lemma gives us a method how to establish moment conditions on ex-
pressions h which are polynomials in R[Xt, Xt−1]. We just have to map Xt−1 to
Xt. This gives a polynomial p in R[Xt]. If Xm

t where m denotes the degree of p
satisfies the moment condition so will h.

Propositition 6.6.8. If E|Xt|3δ <∞ for a δ ≥ 1 then

E

∣

∣

∣

∣

∂2lt

∂2θiθ
2
j

∣

∣

∣

∣

δ

<∞
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Proof. We survey two of the most extreme cases:

∣

∣

∣

∣

∂2lt

∂2c2

∣

∣

∣

∣

≤ c1 + c2|Xt−1|2 + c3|Xt||Xt−1|2

for constants c1, c2, c3. And for appropriate constantsc4 to c8:

∣

∣

∣

∣

∂2lt

∂2α2

∣

∣

∣

∣

≤ c4 + c5|Xt| + c6|Xt|2 + c7|Xt−1|2 + c8|Xt||Xt−1|2

Now Proposition 6.6.7 yields the finiteness of E
∣

∣

∣

∂2lt
∂2θiθ

2
j

∣

∣

∣

δ

if E|Xt|3δ <∞

Theorem 6.6.9. If E|Xt|3+γ <∞ for a γ > 0 then

1

n

∂2Ln

∂θ∂θ′
|θ∗ →p A(θ0) for θ∗ →p θ0

Proof. According to Theorem 4.1.5 in [Ame85] in order to show that

1

n

∂2Ln

∂θ∂θ′
|θ∗ →p A(θ0) for θ∗ →p θ0

it suffices to show that an uniform law of large numbers applies to the second
partial derivatives

∂2lt

∂θ∂θ′

We do that via Theorem 5.2 in [PP97] and we use the notation of Chapter 5.
Proposition 6.6.8 shows that to be sure that the δst moments of all second partials
exist we must claim the existence of the 3δst moments of |Xt|.
All second partials are continuous and the set of second partials is finite. So this
set is equicontinuous. The tightness of Hn is assured by the moment condition
too. If E|Xt|3+3γ <∞ then for all θfixed ∈ Θ then

∣

∣

∣

∣

∂2lt

∂θi∂θj

||θfixed

∣

∣

∣

∣

1+γ

< +p(Xt, Xt−1) (6.38)

where p(Xt, Xt−1) is a polynomial in Xt, Xt−1 with monomials of maximal grade
3 + 3γ. This implies

E sup
θ

| ∂2lt

∂θi∂θj

| <∞ (6.39)

With the stationarity and mixing conditions of Xt we get these properties for

∂2lt

∂θ∂θ′

93



We need the first to conclude

sup
n

1

n

n
∑

t=1

E sup
θ

| ∂2lt

∂θi∂θj

| <∞

The second imply L0 approximability of ∂2lt
∂θ∂θ′

.
We conclude with Theorem 6.13 of [PP97] that local laws of large numbers hold.
Setting K = 1, rkt = 1, skt = ∂2lt

∂θi∂θj
we can conclude with Theorem 5.2 of [PP97]

that

sup
θ∈Θ

1

n

n
∑

t=1

| ∂2lt

∂θi∂θj

− E
∂2lt

∂θi∂θj

| →p 0

because then conditions B, C and D are already verified and compactness of the
parameter space was assumed. Now taking an open neighborhood Θ′ ⊂ Θ we can
use Theorem 4.1.5 in Amemiya [Ame85] which gives us the desired result.

Assumption 6.6.10. 1. The Assumptions of 6.3.5 3–6

2. Either Assumption 6.3.5 point 1 or the assumption 1’ of Theorem 6.6.4

3. fD and fε are continuous

4. f is two times continuously differentiable

5. α0 > 0

6. θ0 is in the interior of Θ.

7. E|Xt|4+γ <∞ for a γ > 0.

Theorem 6.6.11. If 6.6.10 holds then

√
N(θ̂n − θ0) →D N(0, A−1BA−1) (6.40)

where A and B are the matrices arising from Lemma 6.5.1 and Theorem 6.5.2.

Proof. Under the assumptions given here we first match the assumptions of
Lemma 6.5.1. Secondly Theorem 6.6.9 established

1

n

∂2Ln

∂θ∂θ′
|θ∗ →p A(θ0) for θ∗ →p θ0

If θ0 is identifiable unique then A(θ0) being the hessian of a local extremum is
invertible. So we match the assumptions of Theorem 6.5.2 to conclude.

Similarly to have third partials with δst moments we must have the 5δst moments
of |Xt|.
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6.7 Asymptotic Normality and alternative Con-

sistency for the Quasi–Maximum Likelihood

Estimator in the CARCH-S model

We want to see if the results of the previous section carry over to the CARCH-S
model which we have described at the beginning of section 6.1. Again we assume
that g(y) has the following parametric form

g(y) = f(a+ by + c(ω + αy2)) (6.41)

In order to do calculations on the derivatives state:

Assumption 6.7.1. f is continuously differentiable

Theorem 6.7.2. For every δ ≥ 1, if E|Xt|2δ <∞ then

E sup
θ

∣

∣

∣

∣

∂lt

∂θi

∣

∣

∣

∣

δ

<∞

Proof. Switching back to the CARCH-S model we also calculate the most extreme
derivatives of the Quasi–Maximum Likelihood Estimator:

(

∂lt

∂ω
,
∂lt

∂α

)

(6.42)

=

(

1

2σ2
t

+
1

2h2
t

Tf ′(a+ bXt−1 + cσ2
t−1)c)

+
1

2h2
t

(

(Xt − σt(µε + pt∆))2

σ4
t

+2(X − σt(µε + pt∆))

(

(µε + pt∆)

σ3
t

+
f ′(a+ bXt−1 + cσ2

t−1)c∆

σt

))

+
1

2h4
t

Tf ′(a+ bXt−1 + cσ2
t−1)c

(Xt − σt(µε + pt∆)2)

σ2
t

)

(1, X2
t−1)

Here T is an abbreviation of the term:

µD2 − µε2 + 2[µε + f(a+ bXt−1 + cσ2
t−1)(µD − µε)](µD − µε)
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(

∂lt

∂a
,
∂lt

∂b
,
∂lt

∂c

)

(6.43)

=

(

1

2h2
t

(Tf ′(a + bXt−1 + cσ2
t−1))

+
1

h2
tσ

2
t

((Xt − σt(µε + pt∆))(σtf
′(a+ bXt−1 + cσ2

t−1)∆)

+
1

2h4
t

Tf ′(a+ bXt−1 + cσ2
t−1)

(Xt − σt(µε + pt∆))2

σ2
t

)

(1, Xt−1, σ
2
t )

We prove that we can bound the derivatives uniformly in θ by expressions just
depending on constants and monomials in Xi i ∈ {t, t−1} of grade 2. In analogy
to the previous section we get for positive constants C1, . . . , C7:

∣

∣

∣

∣

∂lt

∂α

∣

∣

∣

∣

≤ 1

2ω̃
+
C2

C1
+

1

C1

(

C3 + C4X
2
t

ω̃
+
C5 + C6|Xt|√

ω̃
+ C7|Xt||Xt−1|

)

and
∣

∣

∣

∣

∂lt

∂c

∣

∣

∣

∣

≤ K1 +K2|Xt| +K3X
2
t

for positive constants K1 to K3.

Corollary 6.7.3. If we replace Assumption 6.1.12 1 and 2 with

1’. EX2
t <∞

2’. f is continuously differentiable, fD and fε are continuous

Then the quasi maximum likelihood estimator is consistent.

Proof. Using Theorem 6.7.2 we can copy the proof of Theorem 6.6.4.

Propositition 6.7.4. If E|Xt|4δ <∞ for a δ ≥ 1 then

E

∣

∣

∣

∣

∂2lt

∂2θiθ
2
j

∣

∣

∣

∣

δ

<∞

Proof. In order to gain also asymptotic normality we have to calculate the second
derivatives. Again we fix as a general assumption:

Assumption 6.7.5. f is two times continuously differentiable
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We give here only ∂2lt
∂2c2

because ∂2lt
∂2α2 while not adding complexity to the intrinsic

mathematical problem is a formula of even more extreme length. So the argu-
mentation would be blurred by pseudo exactness. Nothing to the complexity is
added, because the additional effect of working in a GARCH–M context being
present in the α derivatives is dominated by the effects of differentiation with
respect to ht in the product rule.

∂2lt

∂2c2
(6.44)

=

(

1

2h4
t

(Tf ′(a+ bXt−1 + cσ2
t−1))

2

− 1

2h2
t

[Tf ′′(a+ bXt−1 + cσ2
t−1) +

∂T

∂c
f ′(a + bXt−1 + cσ2

t−1)]

+

(

1

2h4
t

(−σtf
′(a+ bXt−1 + cσ2

t−1)∆)
2(Xt − σt(µε + pt∆))

σ2
t

)

− 1

2h2
t

((−σtf
′′(a + bXt−1 + cσ2

t−1)∆)
2(Xt − σt(µε + pt∆))(σtf

′)2

σ2
t

)

+
1

2h8
t

(Tf ′(a + bXt−1 + cσ2
t−1))

2 (Xt − σt(µε + pt∆))2

σ2
t

− 1

2h4
t

(

[Tf ′′(a+ bXt−1 + cσ2
t−1) +

∂T

∂c
f ′(a + bXt−1 + cσ2

t−1)]
(Xt − σt(µε + pt∆))2

σ2
t

)

− 1

2h4
t

(

(Tf ′(a + bXt−1 + cσ2
t−1))

2 2(Xt − σt(µε + pt∆))

σ2
t

)

))

σ4
t

The dominant term here is (Xt−σt(µε+pt∆))2

σ2
t

σ4
t which equals

X2
t σ

2
t − const.Xtσ

3
t + σ4

t

This is a monomial of order 4 in Xt and Xt−1. So using Lemma 6.6.7. we get

E

∣

∣

∣

∣

∂2lt

∂2θiθ
2
j

∣

∣

∣

∣

δ

<∞

if E|X4δ
t <∞.

Theorem 6.7.6. Assume

1. The Assumptions of 6.1.11 3–7

2. Either Assumption 6.1.11 point 1 and α0 > 0 or the assumption 1’ of
Corollary 6.7.3

3. fD and fε are continuous
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4. f is two times continuously differentiable

5. α0 > 0

6. θ0 is in the interior of Θ.

7. E|Xt|4+γ <∞ for a γ > 0.

Then √
N(θ̂n − θ0) →D N(0, A−1BA−1) (6.45)

where A and B are the matrices arising from Lemma 6.5.1 and Theorem 6.5.2.

Proof. We can actually use the same proof like in Theorem 6.6.11. The slightly
stronger moment condition we have here in Proposition 6.7.4 in comparison to
the alternative model does not matter because the moment conditions arising
from the first order conditions for asymptotic normality require the existence of
slightly more than 4th moments anyway in both cases.

6.8 Asymptotic Normality Results for the Max-

imum Likelihood Estimator in the CARCH-

S Model

We consider the same model as in section 6.7. Rather than the arguments above
we will use again the methodology of [PP97] to establish asymptotic normality
results for the estimators containing the density functions of εt and Dt. So we
work in the setting of section 6.2 and use the notation from this section. We
further will use the following notation.

Definition 6.8.1. 1. Sn := 1
n

∑n
t=1 qt

2. Cn = E∇2Sn

3. Dn = (nE(∇S ′
n∇Sn))

1

2

Where ∇ is the gradient and ∇2 is the Hessian with respect to θ.

Theorem 6.8.2. Let Assumptions 6.2.1 number 1 to 3, 5 and the assumptions
of Proposition 6.2.5 hold. If additionally

1. fε, fD and f are two times continously differentiable,

2. |uf ′
∗(u)| ≤ const.u2f∗(u) for |u| → ∞ for ∗ ∈ {ε,D},

3. |u2f ′′
∗ (u)| ≤ const.u4f∗(u) for |u| → ∞ for ∗ ∈ {ε,D},

4. E|Xt|4+4γ <∞ for a γ > 0,
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then θ̂n is asymptotically normal i.e.:

√
n(θ̂n − θ̄0) = C−1

n Dnζn + op(1) (6.46)

with ζn →D N(0, I), I denoting the identity, and

√
nD−1

n Cn(θ̂n − θ̄0) →D N(0, I) (6.47)

Furthermore the norms of Cn,Dn and their inverses are O(1).

So θ̂n is n
1

2 consistent for θ̄n

Beside statements marked as remarks the rest of this section is the proof of the
above theorem.
In order to establish asymptotic normality of the maximum likelihood estimator
we first establish a condition to fulfill assumption 11.5 of [PP97].
This is done by the following Proposition.

Propositition 6.8.3. For r ≥ 2 let

1. |uf ′
ε(u)| ≤ const.u2fε(u) for |u| → ∞

2. |uf ′
D(u)| ≤ const.u2fD(u) for |u| → ∞

3. E|Xt|2r <∞

then

E

∣

∣

∣

∣

∂qt

∂θi

∣

∣

∣

∣

r

<∞

Proof.

∂qt

∂α
(6.48)

= −1

2

1

σ2
t

X2
t−1

+
1

2

(1 − pt) f
′
ε

(

Xt

σt

)

XtX
2
t−1

σ3
t

+ ptf
′
D

(

Xt

σt

)

XtX
2
t−1

σ3
t

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

)

+

∂pt

∂α

(

−fε

(

Xt

σt

)

+ fD

(

Xt

σt

))

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

)

E|Xt|2r < ∞ implies the statement if we can somehow use the terms in the
numerator to neutralize the asymptotical tendency of the nominator towards zero
such that the whole fraction asymptotically does not grow faster than |Xt|2r.
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Because for δ > 1
(

n
∑

t=1

Ti

)δ

≤ 2δ(n−1)

n
∑

t=0

(

n
∑

t=0

T δ
i

)

we can treat each summand separately.
The last summand can be treated by:

∣

∣

∣

∣

∣

∣

∂pt

∂α

(

−fε

(

Xt

σt

)

+ fD

(

Xt

σt

))

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

)

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∂pt

∂α

1 − pt

+
∂pt

∂α

pt

∣

∣

∣

∣

∣

Because pt is bounded away from zero and one the denominator does not play
any role. Again using the parametric form pt = f(a+ bXt−1 + cσ2

t ).

∂pt

∂α
= f ′(a+ bXt−1 + cσt)cX

2
t−1

The outer derivatives is bound by constants, due to the continuous differentiabil-
ity of f . The inner derivative cX2

t−1 allows rth moments if X2
t does.

In fact this argumentation hold also holds for pt = f(a+ bXt−1 + cl(σt)) where l
is a continuous concave function which is positive on the positive real line.
Now we want to handle

(1 − pt) f
′
ε

(

Xt

σt

)

XtX
2
t−1

σ3
t

+ ptf
′
D

(

Xt

σt

)

XtX
2
t−1

σ3
t

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

)

Firstly, as
X2

t−1

σ2
t

=
X2

t−1

ω + αX2
t−1

≤ 1

α

and due to our assumptions on Θ

∣

∣

∣

∣

∣

∣

(1 − pt) f
′
ε

(

Xt

σt

)

XtX
2
t−1

σ3
t

+ ptf
′
D

(

Xt

σt

)

XtX
2
t−1

σ3
t

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

)

∣

∣

∣

∣

∣

∣

≤ c

∣

∣

∣
(1 − pt) f

′
ε

(

Xt

σt

)

Xt

σt
+ ptf

′
D

(

Xt

σt

)

Xt

σt

∣

∣

∣

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

)

for a positive constant c.
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Secondly,

∣

∣

∣
(1 − pt) f

′
ε

(

Xt

σt

)

Xt

σt
+ ptf

′
D

(

Xt

σt

)

Xt

σt

∣

∣

∣

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

) (6.49)

≤

∣

∣

∣
(1 − pt) f

′
ε

(

Xt

σt

)

Xt

σt

∣

∣

∣

(1 − pt) fε

(

Xt

σt

) +

∣

∣

∣
ptf

′
D

(

Xt

σt

)

Xt

σt

∣

∣

∣

ptfD

(

Xt

σt

)

=

∣

∣

∣
f ′

ε

(

Xt

σt

)

Xt

σt

∣

∣

∣

fε

(

Xt

σt

) +

∣

∣

∣
f ′

D

(

Xt

σt

)

Xt

σt

∣

∣

∣

fD

(

Xt

σt

) .

So it suffices to investigate

f ′
ε

(

Xt

σt

)

Xt

σt

fε

(

Xt

σt

)

and
f ′

D

(

Xt

σt

)

Xt

σt

fD

(

Xt

σt

) .

If the support of both densities is the entire space R we just have to investigate
the behavior for |Xt

σt
| → ∞.

We set as usual ηt := Xt

σt
.

If the conditions 1 and 2 are fulfilled we have for ∗ being D or ε.

|f ′
∗ (ηt) ηt|
f∗ (ηt)

≤ const.|ηt|2

for |ηt| ≥ c we get
|f ′

∗ (ηt) ηt|r
f∗ (ηt)

≤ const.|ηt|2r

Because of the definition of ηt and the fact that 1
σ2

t
is bounded by ω̃−1 the finiteness

of E|Xt|2r implies the finiteness of E|ηt|2r. This implies

E|f ′
∗ (ηt) ηt|2r <∞.

This implies using 6.49

E

∣

∣

∣
(1 − pt) f

′
ε

(

Xt

σt

)

Xt

σt
+ ptf

′
D

(

Xt

σt

)

Xt

σt

∣

∣

∣

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

)

2r

<∞
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which with the argumentation before yields the result for θi = α. To handle

∂qt

∂ω

we see that

∂qt

∂ω
(6.50)

= −1

2

1

σ2
t

+
(1 − pt) f

′
ε

(

Xt

σt

)

Xt

σ3
t

+ ptf
′
D

(

Xt

σt

)

Xt

σ3
t

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

)

+
p′t

(

−fε

(

Xt

σt

)

+ fD

(

Xt

σt

))

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

)

Now 1
σ2

t
is bounded by ω̃−1. This handles the first summand. But having the

calculation in equation 6.49 in mind and the fact that

Xt

σ3
t

=
Xt

σt

1

σ2
t

this argument also handles the second summand. The third one again can be
treated like in the case of the quasi maximum likelihood. Derivatives in direction
of the parametrisation of pt also can be done using the last argument, because
we don’t have to deal with derivatives of the densities in this case.

Corollary 6.8.4. Under the assumptions of the preceeding Proposition Assump-
tion 11 of [PP97] is fulfilled.

Proof. Because qt does not depend on t

sup
t

E

∣

∣

∣

∣

∂qt

∂θi

∣

∣

∣

∣

r

= E

∣

∣

∣

∣

∂qt

∂θi

∣

∣

∣

∣

r

Because of this argument and the continuity of qt the concept of identifiable
uniqueness collapses to the existence of a unique minimizer θ̄0. So to ensure
assumption 11.5 of [PP97] it suffices to show that:

E

∣

∣

∣

∣

∂qt

∂θi

(θ̄0)

∣

∣

∣

∣

r

<∞

We are working with the geometrically α mixing version of Xt. So Xt is near
epoch dependent on itself of rate 1 and moreover fulfills the conditions on the
mixing rates.
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Remark 6.8.5. |uf ′
∗ (u) | ≤ const.u2f∗ (u) is satisfied for

f∗ ∝ exp (−xγ) , γ ≤ 2

and for

f∗ ∝
1

xγ

In the latter case to apply Proposition 6.8.3 we cannot choose γ arbitrarily small,
because on the other hand we have to fulfill E|Xt|2r <∞.

Proof. 1.
f∗ (u) ∝ exp (−uγ) ⇒ f ′

∗ (u) ∝ γuγ−1 exp (−uγ)

So asymptotically holds

uf ′
∗ (u)

f∗
∝ uγ ≤ u2

2.

f∗ (u) ∝ 1

uγ
⇒ f ′

∗ (u) ∝ −γ 1

uγ+1
∝ 1

u
f∗ (u)

In the next step we translate the moment condition in assumption 11.2 of [PP97]
in an concept comparable to the one above.

Propositition 6.8.6. Suppose we work in a compact parameter space Θ. If
additionally to the requirements of Proposition 6.8.3

|f∗(u)′′| ≤ const.u2f∗(u)

is satisfied then

E sup
θ

∣

∣

∣

∣

∂qt

∂θi

∣

∣

∣

∣

1+γ

<∞
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Proof. We will look at the most extreme second derivative:

∂2qt

∂2α2
(6.51)

= −1

2

1

σ4
t

X4
t−1

−1

4

(

(1 − pt)f
′
ε

(

Xt

σt

)

XtX
2
t−1

σ3
t

+ ptf
′
D

(

Xt

σt

)

XtX
2
t−1

σ3
t

)2

(

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

))2

+
1

4

[(1 − pt) f
′′
ε

(

Xt

σt

)

+ ptf
′′
D

(

Xt

σt

)

]
X2

t X4
t−1

σ6
t

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

)

−3

4

[(1 − pt) f
′
ε

(

Xt

σt

)

+ ptf
′
D

(

Xt

σt

)

]
XtX

2
t−1

σ5
t

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

)

−

(

∂pt

∂α

(

−fε

(

Xt

σt

)

+ fD

(

Xt

σt

)))2

(

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

))2

−1

2

(

∂pt

∂α

(

−fε

(

Xt

σt

)

+ fD

(

Xt

σt

)))(

(1 − pt)f
′
ε

(

Xt

σt

)

XtX
2
t−1

σ3
t

+ ptf
′
D

(

Xt

σt

)

XtX
2
t−1

σ3
t

)

(

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

))2

+

(

∂2pt

∂α2

(

−fε

(

Xt

σt

)

+ fD

(

Xt

σt

)))

(1 − pt) fε

(

Xt

σt

)

+ ptfD

(

Xt

σt

)

Again we can treat each summand separately. As general moment condition we
fixed E|Xt|4(1+γ) < ∞ for a γ > 0 which is the same as E|Xt|2r < ∞ for ar > 2.
This handles the first term and will also be used implicitely for the following
terms.
The requirement that the 1 + γth moment of the second term exists is just a
redundancy of the requirement above. The third term also leads to similar tail
conditions, namely.

|u2f ′′
∗ (u)| ≤ const.u4f∗(u) (6.52)

Which boils down to
|f ′′

∗ (u)| ≤ const.u2f∗(u) (6.53)

because of the even grade polynomials on the real numbers take only positive
values.
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To deal with the fourth term we can use the arguments for the derivation in ω

direction of the proof of the previous proposition. The fifth and the sixth term
are bounded in expectation under our conditions by the arguments of the proof
of Proposition 6.8.3. The same argument and Hölder’s inequality yield the result
for the seventh term. All second derivatives are continuous and there are only
finitely many. Hence this family is equicontinuous. So all of Assumption 11.2 of
[PP97] is implied.

Corollary 6.8.7. Under the assumptions of Proposition 6.8.6 Assumption 11.2
of [PP97] is fulfilled.

Proof. If we write qt = qt(Xt, Xt−1, θ) then first qt(x, y, θ) is the same function

for all t, so are ∂qt(x,yθ)
∂θi

for each fixed θi. Hence the following formula holds:

1

n

n
∑

t=1

E sup
θ∈Θ

∣

∣

∣

∣

∂qt(Xt, Xt−1, θ)

∂θi

∣

∣

∣

∣

1+γ

= E sup
θ∈Θ

∣

∣

∣

∣

∂qt(Xt, Xt−1, θ)

∂θi

∣

∣

∣

∣

1+γ

Therefore, we just have to check the latter moment condition. In fact we will get
comparable moment and tail conditions ensuring

1

n
∇2qt →p B

for a matrix B.

If we have a unique minimizer in the interior also 11.3 is fulfilled. To get as-
sumption 11.1 we just have to consider besides the assumptions for consistency
that the unique minimizer is in the interior of Θ to imply (d) and continuous
differentiability of f , fε and fD.

6.9 Asymptotic Normality of the Maximum Like-

lihood Estimator in the ACARCH-V model

Now we consider again the model described in the beginning of section 6.3. We
first realize that we can use the main idea of the previous section that is to split
the derivations in terms depending on fD or fε exclusively. Then it suffices to
impose conditions on the asymptotic relation between these functions and their
derivatives. We fix as a general assumption:

Assumption 6.9.1. fε, fD and f are two times continuously differentiable

The trick we used in the CARCH-S model must be modified when we try to apply
it to the ACARCH-V model. The reason is that the terms inside the densities are
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to complex. We use again the notation f∗ if we mean fD and fε simultaneously.
Trying to derive reasonable conditions to impose on the tails of fε and fD we
come up to the following most complicated derivative:

∂

∂α
f∗([Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]v−1

t ht) (6.54)

= f ′
∗([Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]v−1

t ht)
{

c∆f ′(a+ bXt−1 + c(ω + αXt−1))v
−1
t ht

+[Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]

([f ′(a + bXt−1 + c(ω + αXt−1))c∆(σD − σε)v
−1
t ]

+
−1

2
[htv

−3
t ])

}

We will use this in order to get condition 11.5 of [PP97].

Propositition 6.9.2. Let r > 2. If

1. E|Xt|2r <∞

2. |uf ′
ε(u)| ≤ const.u2fε(u) for |u| → ∞

3. |uf ′
D(u)| ≤ const.u2fD(u) for |u| → ∞ Then

E

∣

∣

∣

∣

∂qt

∂θi

∣

∣

∣

∣

r

<∞

Proof. We can use argumentation in analogy to the CARCH-S model to handle
the term:

f ′
∗([Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]v−1

t ht)

[Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]
−1

2
htX

2
t−1v

−3
t

and come up with the condition |uf ′
∗(u)| ≤ const.u2f∗(u). Here u was substituted

for [Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆] which moments exist if the ones of
Xt do.
To handle

f ′
∗([Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]v−1

t ht)

[Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]

([f ′(a+ bXt−1 + c(ω + αXt−1))c∆(σD − σε)]v
−1
t X2

t−1
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we can argue that f ′(a+ bXt−1 + c(ω+ αXt−1))c∆(σD − σε) and ht are bounded
by constants and therefore require |f ′

∗(u)| ≤ const.uf∗(u).
If this holds E|f ′

∗(u)Xt−1|r < ∞ holds if E|uXt−1|r < ∞ which is implied by
E|Xt|2r <∞.
To handle

f ′
∗([Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]v−1

t ht)

c∆X2
t−1f

′(a+ bXt−1 + c(ω + αXt−1))v
−1
t ht

we can argue that f ′(a + bXt−1 + c(ω + αXt−1))htc∆ is bounded by constants
and the expectation of (X2

t−1v
−1
t )r exists if the expectation of |Xt−1|r exists.

Assuming the latter we can again require |f ′
∗(u)| ≤ const.uf∗(u). If this holds

again E|f ′
∗(u)Xt−1|r < ∞| holds under the assumption E|uXt−1|r < ∞ which

is implied by E|Xt|2r < ∞. But |uf∗(u)| ≤ const.u2f∗(u) implies |f∗(u)| ≤
const.uf∗(u) asymptotically. so we don’t get a new condition.

Propositition 6.9.3. Let |uf ′′
∗ (u)| ≤ u2f∗(u) hold asymptotically in addition

to the Assumptions of Proposition 6.9.2. Then Assumption 11.2 of [PP97] is
fulfilled.

Proof. To investigate the second derivatives if suffices to explore the most extreme
term of the most extreme derivative. The most extreme derivative is ∂2

∂α2 . The
summands of the nominator of the most extreme term are:

f ′′
∗ ([Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]v−1

t ht) (6.55)

{c∆X2
t−1f

′(a+ bXt−1 + c(ω + αXt−1))v
−1
t ht

+[Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]

([f ′(a+ bXt−1 + c(ω + αXt−1))c∆(σD − σε)v
−1
t ]

+[
−1

2
htX

2
t−1v

−3
t ])}

+ f ′
∗([Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]v−1

t ht)

∂

∂α

{

c∆X2
t−1f

′(a+ bXt−1 + c(ω + αXt−1))v
−1
t ht

+[Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]
(

[f ′(a+ bXt−1 + c(ω + αXt−1))c∆(σD − σε)X
2
t−1v

−1
t ]

+

[−1

2
htX

2
t−1v

−3
t

])}

The first part of this term can be handled like in the proof of Proposition 6.9.2,
f ′′
∗ taking the role of f ′

∗.
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It remains to handle:

f ′
∗([Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]v−1

t ht) (6.56)

∂

∂α
{c∆X2

t−1f
′(a + bXt−1 + c(ω + αXt−1))v

−1
t ht

+[Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]

([f ′(a+ bXt−1 + c(ω + αXt−1))c∆(σD − σε)X
2
t−1v

−1
t ]

+

[−1

2
htX

2
t−1v

−3
t

])}

Now f and its first and second derivatives are bounded by constants. So this
term can be maximally of order of X3

t−1 because v−1
t cancels modulo constants

with X4
t to X3

t−1. And this extreme case is the fact. Splitting into summands we
get:

∂

∂α
(c∆X2

t−1f
′(a+ bXt−1 + c(ω + αXt−1))v

−1
t ht) (6.57)

= Xt−1t
4v−1

t

[c2∆2(f ′′(a + bXt−1 + c(ω + αXt−1))ht + f ′(a+ bXt−1 + c(ω + αXt−1))(σD − σε))

+
−1

2
c∆f ′(a + bXt−1 + c(ω + αXt−1))htv

−2
t ]

∂

∂α
{[Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆] (6.58)

[f ′(a+ bXt−1 + c(ω + αXt−1))c∆(σD − σε)X
2
t−1v

−1
t ]}

= X4
t−1v

−1
t

{(f ′(a+ bXt−1 + c(ω + αXt−1))
2c2∆2(σD − σε)

+[Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]

[c2∆2(f ′′(a + bXt−1 + c(ω + αXt−1))ht + f ′(a+ bXt−1 + c(ω + αXt−1))(σD − σε))]

+
−1

2
[Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]f ′(a+ bXt−1 + c(ω + αXt−1))c∆v

−2
t }

∂

∂α

([−1

2
htX

2
t−1v

−3
t

]

[Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]

)

(6.59)

=
−1

2
X4

t−1v
−3
t

[c∆f ′(ω + αXt−1)ht

+c∆f ′(ω + αXt−1)(σD − σε)[Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]

+
−3

2
v−2

t ht[Xt − µ+ f(a+ bXt−1 + c(ω + αXt−1))∆]]

108



So in fact we need |u3f ′
∗(u)| ≤ u4f∗(u) because e.g. the first terms of (6.57)

and (6.58) are of the size of X4
t−1v

−1
t . But |u3f ′

∗(u)| ≤ u4f∗(u) follows from
Assumption 2 of Proposition 6.9.2.

Having established these facts we can state:

Theorem 6.9.4. Let Assumptions 6.4.1 number 1 to 3, 5 and the assumptions
of Proposition 6.4.4 hold. if additionally

1. fε, fD and f are two times continuously differentiable,

2. |uf ′
∗(u)| ≤ const.u2f∗(u) for |u| → ∞ for ∗ ∈ {ε,D},

3. |uf ′′
∗ (u)| ≤ const.u2f∗(u) for |u| → ∞ for ∗ ∈ {ε,D}

4. E|Xt|4+4γ <∞ for a γ > 0,

then θ̂n is asymptotically normal that means:

√
n(θ̂n − θ̄0) = C−1

n Dnζn + op(1) (6.60)

with ζn →D N(0, I), where I denotes the identity and

√
nD−1

n Cn(θ̂n − θ̄0) →D N(0, I) (6.61)

Furthermore the norms of Cn,Dn and their inverses are O(1).

So θ̂n is n
1

2 consistent for θ̄n

Proof. Using Propositions 6.9.2 and 6.9.3 we can conclude in analogy to the proof
of Theorem 6.8.2.

6.10 Chiastic complexity

Having investigated as well the pseudo-normal quasi maximum likelihood estima-
tors as well as the mixed distribution ones, it is interesting that the complexity
of proof and in a certain sense also the harshness of conditions we have to impose
have a kind of chiastic manner: When using the mixed distribution maximum
likelihood, the proofs are more straightforward and some conditions weaker if we
look at the CARCH-S model rather than in the case of the ACGARCH-V model.
When using the pseudo-normal quasi maximum likelihood estimators the condi-
tions are easier to verify in the ACARCH-V model. These differences are to be
attributed as well to the difference in modeling σt or vt via the ARCH equation as
well as the differences in modeling the mean. Whereas the impact of the former
is stronger than the latter.
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Chapter 7

Some Approximation Properties

In this short chapter, we give a short discussion on L1-approximability and near
epoch dependence of general GARCH–processes without assuming the innova-
tions to be iid random variables. These approximation concepts are crucial for
applying some asymptotic results of Pötscher and Prucha in [PP97].

7.1 Moment Properties

Propositition 7.1.1. Consider the following model: Xt = vtZt, E(Zt|Ft−1) = 0,
V ar(Zt|Ft−1) = 1, v2

t = ω + αX2
t−1 + βv2

t−1, assume Ev2
0 < ∞ and that Z0 is

given.
If α + β < 1 then:

1.
EXt = 0

2.

EX2
t = Ev2

t =
ω

1 − (α+ β)
+ (α + β)t

[

Ev2
0 −

ω

1 − (α + β)

]

3.
EX2

t →t→∞
ω

1 − (α+ β)

Proof. 1. E(Xt) = E[vtE(Zt|Ft−1)] = 0 as vt is Ft−1 measurable.

2. a) If Y is Ft−1measurable then E(Z2
t Y ) = E[Y E(Z2

t |Ft−1)] = EY .

b)EX2
t = Ev2

tZ
2
t = Ev2

t by a).

c)Ev2
t = ω + αEX2

t−1 + βEv2
t−1 = ω + (α + β)Ev2

t−1 by b).
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Iterating the argument we get

Ev2
t (7.1)

= ω + (α + β)(ω + (α + β)(ω + (α + β)(ω + . . . (α+ β)Ev2
0) . . . )

= ω

t−1
∑

k=0

(α + β)k + (α + β)tEv2
0

= ω
1 − (α + β)t

1 − (α+ β)
+ (α + β)tEv2

0

=
ω

1 − (α+ β)
+ (α + β)t

[

Ev2
0 −

ω

1 − (α+ β)

]

(7.2)

3. Using the form of EX2
t shown in 2. and that (α + β)t →t→∞ 0 yields the

result.

Corollary 7.1.2. Let Xt = µt + vtZt and µt be Ft−1–measurable, further v2
t =

ω + α(Xt−1 − µt−1)
2 + βv2

t−1, E(Zt|Ft−1) = 0, V ar(Zt|Ft−1) = 1,Ev2
0 < ∞. Let

Z0 be given. Then

1.
V ar(Xt) = Ev2

t =
ω

1 − (α + β)
+ (α + β)t(Ev2

0 −
ω

1 − (α + β)
)

2.
V ar(Xt) →t→∞

ω

1 − (α + β)

Proof. We apply Proposition 7.1.1 to X̃t := Xt − µt.

7.2 L1-Approximability

Propositition 7.2.1. Consider the model used in Proposition 7.1.1. Then

1.

v2
t = ω

m
∑

k=0

k
∏

i=1

(αZ2
t−i + β) +

m+1
∏

i=1

(αZ2
t−i + β)v2

t−m−1

where m ≤ t and the empty product is defined as 1.

2. If α + β < 1 and Ev2
0 <∞ we have

lim
n→∞

1

n

n
∑

t=1

E

∣

∣

∣

∣

∣

v2
t −

m
∑

k=0

k
∏

i=0

(αZ2
t−i + β)

∣

∣

∣

∣

∣

→ 0 as m→ ∞ (7.3)
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Proof. 1. Iterating we get

v2
t = ω + αX2

t−1 + βv2
t−1

= ω + (αZ2
t−1 + β)v2

t−1

= ω + (αZ2
t−1 + β)[ω + (αZ2

t−2 + β)v2
t−2]

= . . .

= ω

m
∑

k=0

k
∏

i=1

(αZ2
t−i + β) +

m+1
∏

i=1

(αZ2
t−i + β)v2

t−m−1

2. a) We realize:

E

[

m+1
∏

i=1

(αZ2
t−i + β)v2

t−m−1

]

= E

[

(αZ2
t−1 + β)

m+1
∏

i=2

(αZ2
t−i + β)v2

t−m−1

]

= (α + β)E

[

m+1
∏

i=2

(αZ2
t−i + β)v2

t−m−1

]

The last equation follows by the argument of the proof of 2.a) of Proposition
7.1.1.

Iterating we get

E

[

m+1
∏

i=1

(αZ2
t−i + β)v2

t−m−1

]

= (α + β)m+1Ev2
t−m−1.

By point 1. of this proposition we get:

E

∣

∣

∣

∣

∣

v2
t −

m
∑

k=0

k
∏

i=0

(αZ2
t−i + β)

∣

∣

∣

∣

∣

= (α+ β)m+1Ev2
t−m−1. (7.4)

b) We get

1

n

n
∑

t=1

E

∣

∣

∣

∣

∣

v2
t −

m
∑

k=0

k
∏

i=0

(αZ2
t−i + β)

∣

∣

∣

∣

∣

= (α+ β)m+1 1

n

n
∑

t=1

Ev2
t−m−1.

Now by the proof of Proposition 7.1.1 the following holds:

Ev2
t−m−1 =

ω

1 − (α+ β)
+ (α + β)t−1

[

Ev2
−m − ω

1 − (α + β)

]

⇒ 1

n

n
∑

t=1

Ev2
t−m−1 =

ω

1 − (α + β)
+

1

n

[

Ev2
−m − ω

1 − (α+ β)

]

1 − (α + β)n

1 − (α + β)
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It remains to show that Ev2
−m <∞ for allm ≥ 0. By assumption Ev2

0 <∞.
Then

v2
0 = ω + (αZ2

−1 + β)v2
−1 ⇒ Ev2

0 = ω + (α + β)Ev2
−1.

By part 2a) of the proof of Proposition 7.1.1 which also holds if EY = ∞
we can conclude Ev2

−1 <∞. By iterating this argument we get Ev2
−m <∞

for all m ≥ 0.

Remark 7.2.2. Point 2. of the previous Proposition is the L1–approximability
of v2

t by the basis process {Zt} – compare the general definition in section 5.2.

Remark 7.2.3. The analogue of 7.2.1 holds for

Xt = µt + vtZt, v
2
t = ω + α(Xt−1 − µt−1)

2 + βv2
t−1

Just consider like in the corollary of Proposition 7.1.1 X̃t := Xt − µt.

Remark 7.2.4. Let Xt = vtZt, vt > 0 and v2
t L1–approximable by {Zt}, then

Xt is also L1–approximable by {Zt}.

7.3 Near Epoch Dependence

Definition 7.3.1. Let {Xt} and {Zt} be stochastic processes on (Ω,A, P ) then
Xt is called Lr near epoch dependent on Zt if there exist constants {νm|m ∈ N},
{dt|t ≥ 1} such that supt ||Xt − E(Xt|Zt+m, . . . , Zt−m)||r ≤ dtνm with νm ↓ 0 for
m→ ∞.

The following notation is chosen to coincide with the notation of the previous
section although in point 2. of Theorem 7.3.4 the notation σt instead of vt might
be more consistent.

Remark 7.3.2. If we want to get Lr near epoch dependence of (vt, Xt) on Zt

instead of the weaker property of L1–approximability in the setting of the previous
section we can use Theorem 1 of [Han91a], which requires

E[(β + αZ2
t )

r|Ft−1)] ≤ c5 < 1 a.s.

In section 3 of this article it is shown that this condition is implied by
E(Z2r

t |Ft−1) < (1+δ)5 almost surely for a δ > 0 and additionally β+α(1+δ) < 1.
By definition of Zt in this chapter this holds for any δ > 0 for r = 1. For r > 1
we get a stronger condition on α and β which is also dependent on Zt.

Assumption 7.3.3. Let Xt arise from imposing of a GARCH(1,1) dynamic on
a double infinite α–mixing process Zt, i.e.

Xt = vtZt, v
2
t = ω + αX2

t−1 + βv2
t−1.

113



Assume that
E[(β + αZ2

t )
r|Ft−1] ≤ c5 < 1

almost surely for all t.

Namely

Theorem 7.3.4. Let vt <∞ hold almost surely.

1. Suppose 7.3.3 holds for an Zt with conditional mean 0 and and conditional
variance 1, then Xt is Lr–near epoch dependent of size dt = 2ωc

1−c

2. Suppose 7.3.3 holds for Zt without the moment restrictions above, then Xt

is Lr–near epoch dependent of size dt = 2ωc
1−c

Proof. 1. Here we are directly in the situation to apply Theorem 1 of [Han91a].

2. We can also use Theorem 1 of [Han91a], because in the proof the fact that
in the setup there Zt is a martingale difference with unit variance is never
used:

v2
t = ω

∞
∑

k=0

Πk
i=1(β + αZ2

t−i)

also holds in our context. To see this note that the calculation

v2
t = ω + αX2

t−1 + βv2
t−1

= ω + (αZ2
t−1 + β)v2

t−1

= ω

m
∑

k=0

Πk
i=1(β + αZ2

t−i) + v2
t−m−1Π

m+1
i=1 (β + αZ2

t−i)

→m→∞ ω

∞
∑

k=0

Πk
i=1(β + αZ2

t+1−i)

makes no use of the two above mentioned condition. Minkowski’s theorem
and Blackwell’s theorem are also of general nature. The only other theorems
used in this proof, namely Theorem 4.2 and Corollary 4.3 b of [GW88] make
neither use of any of the above mentioned conditions. So we are free to apply
Theorem 1 of [Han91a].

The first part of this theorem can be used as an strengthening of the L1-approxima-
bility result above. The second part allows us also to handle the original model.
If we can assure in the general models that the innovation process ηt is mixing we
also can get NED for them. Trying to prove this property when pt = f(Xt−1, vt)
we can get stuck in a circular argument. The general setup is too dynamic in a
self referential way. One way out is the dependence of pt on external variables
only, another will be introduced in the next chapter.
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Chapter 8

Some results concerning
asymptotics and inference in a
restricted model with real
GARCH dynamic

8.1 A restricted model and its approximability

by mixing processes

We are working with the alternative model, that is the ACGARCH context, using
the notation of sections 7.1 and 7.2. That means we consider:

Xt = vtZt

with Zt = ηt

ht
, ηt = (1−Bt)εt +BtDt, Eεt = EDt = 0, L(Bt|Ft−1) = B(1, pt) and

further h2
t := E(η2

t |Ft−1).

Remark 8.1.1. In the previous models we had pt = f(Xt−1, vt) but in the case
of a true GARCH dynamic, we run even in problems when using pt = f(Xt−1),
because {Xt} is not automatically mixing but only L1–approximable by {Zt}.
But {Zt} is dependent on {Xt} via pt. If we take pt = f(Zt−1) we run also in
problems: Because of

Zt =
ηt

ht

=
ηt

((1 − pt)σ2
ε + ptσ

2
D)

1

2

Zt−1 depends on pt−1 so in fact then pt = f(ηt−1, pt−1). So we have an ARMA
like structure again and the standard theorems are not applicable. So we restrict
ourselves to a simple case:

pt = f(ηt−1) (8.1)
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Then {ηt} is a Markov chain with transition density

p(x|y) = (1 − f(y))fε (x) + f(y)fD (x) (8.2)

Theorem 8.1.2. Let f, fε, fD be continuous. Suppose further one of the following
conditions holds:

1. The support of fε and the support of fD is R.

2. The support of fε is R and ∀t : pt ≤ 1 − δ < 1.

3. supp(fε) ∪ supp(fD) = R and ∀t : 0 < γ ≤ pt ≤ 1 − δ < 1.

Then {ηt} is geometric ergodic.

Proof. Analogous to the Lemma 4.5.5 the continuity of f, fε, fD imply the Feller
property for {ηt}. Like in the discussion of models with pure ARCH dynamic in
chapter 4 either of conditions 1.–3. imply that {ηt} is irreducible and aperiodic.
Further for γ(y) = 1 + y2 the following holds:

E(γ(ηt)|Xt−1 = y) − γ(y)

γ(y)
=

(1 − f(y))σ2
ε + f(y)σ2

D − y2

1 + y2
→y2→∞ −1

as f is bounded. Therefore condition 4.2.8 is satisfied.

Corollary 8.1.3. {pt} and {Zt} are geometric ergodic.

Proof. By 8.1 pt = f(ηt−1) is a function of ηt−1. And

Zt =
ηt

(1 − pt)σε + ptσD

is a function of ηt and pt. But functions of finitely many elements of a time series
preserve the mixing properties of this time series.

Remark 8.1.4. By the previous chapter Xt and vt are L1 approximable by {Zt}
which is α–mixing. So we try to use the methods of [PP97] to gain asymptotics
of the (quasi)log-likelihood–estimator.

Corollary 8.1.5. Under the conditions of Proposition 7.2.1 and pt = f(ηt−1) the
following statements hold:

1.
1

N

N
∑

t=1

v2
t →p

ω

1 − (α + β)

2.
1

N

N
∑

t=1

X2
t →p

ω

1 − (α + β)
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3.
1

N

N
∑

t=1

Xt →p 0

Proof. a) As Zt is geometric ergodic so is Sm
t :=

∑m
k=0 Πk

i=1(αZ
2
t−i + β) for every

fixed m. So Sm
t satisfies a law of large numbers for all m.

b) Now by Proposition 7.2.1 v2
t is L1–approximable by {Zt} and therefore also

Xt = vtZt. Using EX2
t = Ev2

t → ω
1−(α+β)

for t → ∞ as provided by Proposition

7.1.1 and EXt = 0 for all t, then the assertion follows from a) and Theorem 6.2.a)
of [PP97].

The arguments here should be generalizable to pt = f(ηt−1, Bt−1),where the
Markov process would be (ηt, Bt)

T , or to pt = f(ηt−1, . . . , ηt−d) with Markov
process (ηt, . . . , ηt−d+1)

T .

Then following theorem gives some stationarity results. Because we can get re-
sults for the alternative model from section 3.4 immediately by the same technique
we give a short definition to let it fit into the setting here.

Definition 8.1.6. Let the general setting of this section hold we define µt =
µ+ pt∆ for constants µ and ∆ and further

Yt := µt +Xt = µ+ pt∆ + vtZt

Theorem 8.1.7. Let additionally to the assumptions of Theorem 8.1.2

E log(αZ2
t + β) < 0

hold.

1. there exists a strictly stationary and ergodic version of vt

2. there exist strictly stationary and ergodic versions of Xt and Yt.

Proof. 1. Theorem 8.1.2 yields a strongly stationary and ergodic version of
{ηt}. This yields strongly stationary and ergodic versions of Zt. Like in the
proof of Lemma 2 in [LH94] we can use Theorem 3.5.7 of [Sto74] in order
to gain the result of Theorem 2 of [Nel90] in the case of strongly stationary
and ergodic Zt. This yields a strongly stationary and ergodic version of vt.

2. Having established point 1. we use Proposition 4.3 of [Kre85] with f(vt, Zt) =
vtZt which yields strong stationarity and ergodicity ofXt = vtZt. A strongly
stationary and ergodic version of pt yields strong stationarity and ergodicity
of µt. Again by Proposition 4.3 of [Kre85] applied to f(µt, vtZt) = µt +vtZt

shows that Yt = µt + vtZt has a strongly stationary and ergodic version.
.
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8.2 Steps towards asymptotic theory of estima-

tion

Lemma 8.2.1. If v2
t = ω +αX2

t−1 + βv2
t−1, then v2

t is a function of ω,α, β given
the observations {Xt} and the starting value v2

0. Explicitly

v2
t =

t−1
∑

i=0

βi(ω + αX2
t−i−1) + βtv2

0 (8.3)

Proof. Induction:
If we define the empty sum being zero, the lemma holds for t = 0.
t→ t + 1

v2
t+1

= ω + αX2
t + βv2

t

= ω + αX2
t + β

[

t−1
∑

i=0

βi(ω + αX2
t−i−1) + βtv2

0

]

by Induction

= ω + αX2
t +

t
∑

i=1

βi(ω + αX2
t−i−1) + βt+1v2

0

=

t
∑

i=0

βi(ω + αX2
t−i−1) + βt+1v2

0

Lemma 8.2.2. If v2
t = ω + αX2

t−1 + βv2
t−1 and pt = f(ηt−1, γ) where γ are the

parameters of f .Then ηt is a function of ω, α, β and γ given the observations
{Xt} and the starting values v2

0 and η0

Proof. Induction. For η0 the statement holds trivially.
t− 1 → t

Zt =
Xt

vt

⇒ ηt =
Xt

vt

ht =
Xt

vt

√

(1 − pt)σ2
ε + ptσ

2
D

=
Xt

vt

√

σε + f(ηt−1, γ)(σ2
D − σ2

ε ) (8.4)

By Lemma 8.2.1 vt is a function of ω,α, β given the observations {Xt} and the
starting value v2

0, and by induction ηt−1 is a function of ηt is a function of ω, α, β
and γ given the observations {Xt} and the starting values v2

0 and η0 σ
2
ε and σ2

D

are either given constants or we have to treat them as nuisance parameters.
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Having established these features we can write the log-likelihood in terms of the
data and parameters.

Remark 8.2.3. We could now proceed to use the methodology of [PP97] to
establish consistency, if we would know that we can establish a nice metric on
the image of (Xi|i ∈ Z<t), where Z<t denotes the whole numbers smaller than t.
Then we could use the methodology for likelihood functions depending on data
of NON–fixed lag-length propose on page 75 of [PP97]. The problem is to find
an appropriate metric with respect to which σt and pt are continuous functions of
the infinite past. If we assumed that the projections of the image of (Xi|i ∈ Z<t)
are bounded we could handle at least σt. But due to the highly nonlinear nature
of pt as a function of the data that wouldn’t help much.
If we would get the continuity of σt and pt then the summands of the log likelihood
function would be continuous. Then we could proceed like in the ARCH case to
establish the rest of the conditions.
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Chapter 9

Estimation and simulation in the
CGARCH-S and the
CGARCH-V model

Now we want to switch to the question, how do the models work in practice.

9.1 The models we used and corresponding no-

tation

We want to specify the models and notation we use in this and the following
chapters. The GARCH dynamic is always GARCH(1,1) except in section 11.2.
Generally we will use the notation from appendix A. In tables we will not state
te prefix CGARCH. So e.g. CGARCH-SP will be denoted just SP. For all models
using

σ2
t = ω + αX2

t−1 + βσ2
t−1

we will speak of models of CGARCH-S type. In fact the models abbreviated with
S, SB, SP, SX are of CGARCH-S type. When using

v2
t = ω + αX2

t−1 + βv2
t−1

we will speak of models of CGARCH-V type. In all models we assumed that
{εt} and {Dt} are both iid and independent from each other. Furthermore we
always use Normal distributed {εt} and Lognormal distributed {Dt}. Unless
otherwise stated the distribution of {εt} is standard normal. For Dt we use the
lognormal(0,1) and the lognormal(1,1) distributions and always state which we
use. Further we always use a standard logistic function to model pt. In the
original model we use

pt =
1

1 + exp(−[a + bXt−1 + cσt])
. (9.1)
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In the original model with signum induced crash probabilities we use

pt =
1

1 + exp(−[a + b sign(Xt−1)])
.

When using additional external variables

pt =
1

1 + exp(−[a + bXt−1 + cσt + dMAt−1 + e
√
WAt−1])

(9.2)

was used, where the exogenous processes {MAt} and {WAt} are defined in the
beginning of Chapter 10. We use

√
WAt−1 because this made the numerical

calculation faster and more stable than using WAt−1. In the model with crash
probability depending just on external variables

pt =
1

1 + exp(−[a + dMAt−1 + e
√
WAt−1])

was modeled. The modeling of the crash probabilities in the volamodel with
and without additional external variables was done by substituting σt by vt in
equations (9.1) and (9.2). When using standard normal εts we use in tables
the abbreviations without the prefix CGARCH followed by the parameters of
the lognormal distribution we use to model the crashes. So SX(0,1) means a
CGARCH-SX model with standard normal εt and lognormal(0,1) distributed Dt.
When using a normal distribution with mean 0.0001 we write e.g. S(0,1)0.0001.
When using an additional constraint we use cS(0,1)0.00001. Talking of the un-
derlying variables of the dynamic of pt we will e.g. write “purely external induced
crashes”. If Dt has the distribution NN we will also use the notation NN based
crashes.
In all cases we use Matlab routines to minimize the conditional log-likelihood
function directly. A trial to develop a kind of EM algorithm yielded the practical
result of not converging.

9.2 Estimation and simulation of models with-

out external variables

We fitted several of the models we introduced to BASF data from 1990 to 1992.
We present here the financial data used in most of the practical part. The raw
material are the DAX values and the BASF prices of the time period 1990–1992.
These were transformed to log returns. Due to the fact that we derive from the
DAX some variables, which we want to interpret as external variables in some
of the models we investigate, we focus on the BASF as the data that we try to
estimate. In the following we fit various models to these data and use the fitted
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models to generate artificial data. The parameters of these fitted models are
given in Table 10.1
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Figure 9.1: The DAX

0 100 200 300 400 500 600 700 800
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Daily logreturns

D
A

X
−

lo
gr

et
ur

ns

02.01.1990−30.12.1992

Figure 9.2: DAX log–returns
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Figure 9.3: BASF Prices
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Figure 9.4: BASF log–returns

9.3 A first study

We want to see, what happens when we estimate the BASF–log returns, then
fit a GARCH model, a CGARCH-S model and a CGARCH-V model and then
simulate. Due to the fact that nothing like a crash probability exists in the pure
GARCH case our benchmark will be GARCH estimates of the volatility of the
original series compared to the volatilities of the simulations of the different crash
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Figure 9.5: The sigma=volatility of the fitted GARCH(1,1) model

models. The question being: Does the simulated volatility expose similar features
in range and shape as the volatility estimate of the input series. Between the two
models with a probability of a crash we also ask the question if the simulation
does show some behavior, that could be interpreted as a crash.
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Figure 9.6: GARCH(1,1) model simula-
tion
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Figure 9.7: The estimated volatility in
the simulated GARCH(1,1) model

Now we look at the simulation of a estimated CGARCH-S model with crashes
which are based on a lognormal(0,1) distribution. Actually the path of the simu-
lation doesn’t seem to expose a more extreme nature than the simulation of the
GARCH model. When looking at the volatilities we see that the peaks of the
volatility in this model are even smaller than the ones in the GARCH models.
The model is far from exposing such extreme volatility peaks like the example
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in Figure 2.4. Like we will see later choosing a more extreme crash distribution,
namely lognormal(1,1), will make simulated models more extreme, but in a way
that isn’t realistic, because it is too extreme.
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Figure 9.8: The CGARCH-S model sim-
ulation
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Figure 9.9: The volatility of this simu-
lated model

When we choose a CGARCH-V model with lognormal(1,1) based crashes, we get
really events which look like crashes, and which are still in an realistic range. So
from the simulation side this model seems to be preferable. Also the volatility
has peaks reaching into the regions of the volatility of the GARCH model of the
original time series. But still, the overall picture of the volatility seems to be more
quiet than the estimate of the original series. As we will see later this model will
not be necessarily better than the CGARCH-S model, when it comes to model
the quantiles.
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Figure 9.10: The CGARCH-V model
simulation
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Figure 9.11: The volatility of the data
in Figure 9.10

9.4 Some models of CGARCH-S type

We now investigate the different outcome of the CGARCH-S model, especially
concerning the question of using constraints or not. Besides that we look what
happens to the crash probabilities when altering the mean of the non-crash prob-
ability.
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Figure 9.12: CGARCH-S models crash
probability with zero mean εt
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Figure 9.13: CGARCH-S models crash
probability with mean 0.0001 for εt

Here we used instead of a N(0, 1) distribution for εt a N(0.0001, 1) distribution.
In Figures 9.12 and 9.13, we see that this leads to a very similar shaped graph
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of the crash probability. But the difference in the range of both is strong enough
that, if simulating, there will be considerably more crashes. In fact we chose
0.0001 as a mean for the non-crash distribution, as a constant, which adding to
the paths of simulations of the N(0,1) non-crash distribution model made most of
them have a slightly positive mean. But using the new distribution in estimating,
led to a negative mean in all simulated model paths. It seems that it might be,
even in the model depending purely on external variables in its crash probability,
hard if not impossible to find distributions for εt andDt such that the model really
describes something that satisfy modeling a crash in the sense of “big losses in
relatively short time” and doesn’t predict certain bankruptcy in the near future.
While in the context of the CGARCH-S model we will stick in this chapter to
the non-crash probability having a N(0.0001, 1) basis. This is due to the fact
that firstly we already discussed aspects of the zero mean model before and that
concerning the question of using a constraint or not is treated here in a setting
with higher crash probabilities. As there is no considerable difference to the zero
mean model when applied to the real world data, the comparability to models
where we used zero mean non-crash distributions is retained.
First we look at the σt and the volatility. Although using the model with higher
crash probabilities, we see that the difference between the two is rather small,
distinguishable by pure eyesight only as a more noisy nature of the volatility.
The overall shape and range is quite similar to the volatility of the pure GARCH
process in 9.5.
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Figure 9.14: CGARCH-S model’s
sigma
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Figure 9.15: CGARCH-S model’s
volatility

If we use now a constrained model in the sense of Proposition 2.2.7, we end up
not only having smaller crash probabilities, but also with an altered shape of the
process pt – compare figure 9.13 with figure 9.16.
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Figure 9.16: The constrained models crash probability

There is now an obvious difference between the σt and the volatility, the latter
being extremely noisy. In comparison to the pure GARCH model the estimated σt

and volatility are rather small. But this is no wonder: The parameters governing
the dynamic of σt is where the constraint is imposed. The strong constraint gives
us a model really underestimating ARCH–effects.

0 100 200 300 400 500 600 700 800
0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

Figure 9.17: The constrained model’s
sigma
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Figure 9.18: The constrained model’s
volatility

The question is: Do we end up in an explosive situation, not using the strong
constraint? This fear is not supported by simulation evidence. In Figure 9.19 we
see one typical path of the simulated non constrained model.
Having the discussion in section 9.3 in mind we see that altering the mean of the
non-crash distribution leads to an situation, where there are more extreme losses
in the simulation, which could be interpreted as crashes.
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Figure 9.19: The simulated CGARCH-S
model
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Figure 9.20: The simulated CGARCH-S
models crash probability

Again the shape of the process {σt} and the volatility have a similar shape.
There is no evidence that we were in danger of ending in an explosive situation.
The peaks of the volatility are still smaller than the peaks of the pure GARCH
estimate of the volatility of the real data.
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Figure 9.21: The simulated model’s
sigma
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Figure 9.22: The simulated model’s
volatility

Now we switch to a model with more extreme crashes: We used the lognormal
distribution with parameters (1,1) as the distribution for Dt. Due to the fact
that the constraint from Proposition 2.2.7 would make vanish the GARCH effect
nearly completely we didn’t use it, trading in the possibility of an explosive model.
Simulation shows, that this seems not to be a problem. As we can see in Figure
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9.23 in comparison to Figure 9.12 assuming more extreme crashes brings a lower
crash probability.
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Figure 9.23: CGARCH-S model’s crash probability with lognormal(1,1) crashes

But Figures 9.14 and 9.24 show that the differences for σt are negligible. This
is something not so surprising, but comparing Figures 9.15 and 9.25 show that
the volatilities of both models are also very close. So the choice of the crash
distribution doesn’t seem to affect the volatility related part of the model too
much while using the real world data.
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Figure 9.24: This model’s sigma
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Figure 9.25: This model’s volatility

Switching to simulation we state again the question, whether we have ended
in an explosive situation. Firstly the simulated time-series doesn’t seem to be
very realistic for financial returns, having exordinary high and low “returns”.
But we are far from being in an explosive situation: The simulated returns are
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not explosive. And the crash probabilities are even in the range of the crash
probabilities in the real data fit, although the simulated “return” time-series is of
a far more extreme nature. The fact that we avoided explosivity can be explained
by the parameters b and c both being negative. So the effect of extremely negative
returns on the crash probability is self neutralizing.
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Figure 9.26: The simulated CGARCH-S
model wit logn(1,1) crashes
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Figure 9.27: The simulated model’s
crash probability

Secondly we have exordinary high volatilities, but they come down rather quickly.
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Figure 9.28: The simulated model’s
sigma

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 9.29: The simulated model’s
volatility

So the simulation evidence is, that we don’t need a constraint stronger than
α + β < 1 to avoid estimating a model which is explosive, when using real
financial data.
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The findings in the models with non zero mean non-crash distributions are similar
to the corresponding results in the zero mean case. Both the crash probabilities
and the σt’s are smaller there. So the evidence of the need to use constraints
is also smaller. Again the crash probabilities in the simulations have a similar
range, shape and mean as the real data fits and more extreme crashes yield a
model with smaller crash probability, as we should demand from a model to make
sense at all.

9.5 The CGARCH-V model

Now we switch to the basic CGARCH-V model with crashes based on the log-
normal distribution with parameters (1,1). Looking at the crash probabilities the
most obvious feature in comparison to the original model is that there are periods,
e.g. around time step 250, with very low crash probabilities an no considerable
“noise” for a small time interval.
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Figure 9.30: CGARCH-V model’s crash probability with lognormal(1,1) crashes

We observe that the mechanism which produces σt from the volatilities is such
that that the difference between the two time series is considerable. But the
location and size of peaks of the volatility and the sigma are nearly identical
under this mechanism. The overall shape of the graph of the volatility process is
similar to the one in the pure GARCH case, however the peaks are considerably
smaller. For simulation results concerning the volamodel we refer to section 9.3.
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Figure 9.31: The CGARCH-V model’s
σ
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Figure 9.32: CGARCH-V model’s
volatility
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Chapter 10

Estimation in models with
additional external parameters in
the crash probability

In addition to the data provided above, we used a DAX–log return moving av-
erage and a weighted average of the squared log returns of the DAX as external
parameters to investigate BASF returns. The first time series is a measure of
local market trend, the latter of squared market volatility.
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Figure 10.1: The DAX moving average
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Figure 10.2: The DAX weighted average

10.1 A threshold model

This is a kind of model we didn’t treat before, because we could not find any good
theoretical treatment. But in practice it seems to give at least some qualitative
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insights and we have an easy way to control the meaning of a crash. This model
was inspired by the use of quantitatively not specified crashes in [Kor01] and
[KW02]. As an alternative we model the behavior of the process in quiet times
as an GARCH–process and define the down crossing of a threshold as a crash. If
we take such a threshold e.g. being −0.1 we get:

Xt

{

= σtεt with probability 1 − pt

< −0.1 with probability pt

This model is incomplete. It is sufficient to calculate σt and pt in a backwards
oriented setup. However if we want to simulate in the exact sense or use the
value at risk as a risk measure, we would have to make assumptions on what the
distribution is, when the threshold is exceeded. When coming to estimation a
similar problem is present. As we don’t define any density when a crash occurs,
we can only use the qualitative modeling of the crashes in a function which is a
likelihood only in the non crash case and just an indicator in the crash case. We
will study the outcome of such a model in 10.1.
Now we give a short survey of an estimated threshold model. We use internal and
external variables for the model. The model with additional external variables
was chosen, because it yielded the seemingly best results, while the core problem
of the threshold models are still present. We took any return smaller or equal to
0.09 to be a crash. As an objective function for estimation we used

n
∑

t=1

log

[

(1 − pt)
1

√

2πσ2
t

exp

(

−X2
t

2σ2
t

)

I(x ≥ 0.09) + ptI(x < 0.09)

]

Due to the fact that no crash-distribution is specified the objective function
maximized is not to be called a likelihood function. While we cannot compare this
model with the other models presented here on a Value at Risk based benchmark,
we can still investigate the properties of its modeled volatilities. Whereas the
volatilities are very alike the pure GARCH one (no surprise: When no crash
occurs we basically fit a GARCH(1,1) model and we chose the threshold such
that only two crashes occurred) the crash-probabilities are fairly low except for
jumps up in the two cases where actually the crashes occur.
Because the threshold model is underspecified it is not clear how to simulate
according to this model. One way out is to use the value of the threshold as
“crash value.” It might occur that the GARCH part of the model yields values
smaller than the threshold. But interpreting our model so that we state that when
a crash occurs it doesn’t matter from which distribution it is coming, this does
not have to be interpreted as a mistake of the model. The high peaks near the
occurence of the defined crashes might suggest that this model is able to predict
crashes. But the peaks occur in both cases after the crashes occured. Having in
mind, that due to definition we can see from the data that a crash occurs, just
at the time it does occur, this is not a new information. So this model isn’t good
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Figure 10.3: Volatility in the threshold
model
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Figure 10.4: Crash-probability in the
threshold model

for crash prediction. On the other hand we are not able to define quantitave
risk measures like the Value at Risk in a natural way in this model. So it seems
that the use of crashes without an assumed law is not very helpful for practical
matters in this context.
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Figure 10.5: Simulated threshold model
with estimated coeefficents
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Figure 10.6: The volatility of the simu-
lated threshold model

The crash-probabilities of the “simulation” are much smaller than the one arising
from real world data. While this might indicate a model which isn’t very good,
there still is the relatively big difference between low and high crash probabilities.
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Figure 10.7: The crash probability of the simulated threshold model

In fact I used this model mainly tho check if in the models with specified crash
distributions these distributions did not lead to overly high crash probabilities in
quiet time periods.

10.2 Models with additional external variables

In the following we investigate the outcome of the introduction of additional exter-
nal variables in the CGARCH-S and the CGARCH-V model. For the CGARCH-S
model we switch back to the zero mean non-crash distribution. In the CGARCH-
S model with additional external variables the introduction of the latter leads to a
less blurred distinction between time intervals with relatively high and relatively
low crash probabilities. In addition there appear to be three short periods where
the crash probability reaches a magnitude not present in the model without the
external variables.
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Figure 10.8: CGARCH-SX model’s crash probability with lognormal(0,1) crashes

We see in Figure 9.30 that adding the dependence on external variables in the
crash probability doesn’t lead to a strong smoothing or trend effect in the es-
timated model’s crash probability . It isn’t a big improvement to the model
without the additional external variables. The only obvious effect is the slight
deformation (first going down more quickly and then staying higher for some
time) of the highest peak (indicating the attempted military coup in Russia).
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Figure 10.9: OX model’s sigma
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Figure 10.10: OX model’s volatility

Switching to the CGARCH-V model with additional external variables leads to
a completely different picture. The graph of the crash probabilities looks com-
pletely different from the one without external variables. Beside isolated extreme
peaks the graph exposes an even more rigid distinction between periods with near
zero and higher crash probabilities than the model without external variables. In
Figure 10.11 we see the astonishing effect that the introduction of the external

137



variables leads to periods where the crash probability is almost 0 on the one hand
side, but with extremely high peaks on the other hand. At least we get by the
introduction of external variables something like a trend shape in the crash prob-
abilities. Interesting is that in both models containing self reference and external
dependence in the crash probability we get different signs in the estimate of c
and f the first referring to the processes and the second referring to the markets
volatility. It might be naught to contain both dynamics in one model, because it
seems that the estimation leads to an effect of both at least partially neutralizing
each other.
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Figure 10.11: CGARCH-VX model’s crash probability with lognormal(1,1)
crashes

We see in 10.12 that the extreme differences in pt leads to a strong deformation
of the graph of σt arising from the volatility. Due to the highest peak of the crash
probability, the response of σt to the BASF specific extreme event around time
step 340 is very weak
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Figure 10.12: VolatiltityX model’s
sigma
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Figure 10.13: CGARCH-VX model’s
volatility

10.3 Using just external variables

Here we fitted to the BASF data a model with crash probabilities depending on
the external variables MA and WA exclusively. We modeled: L(εt) =D N(0, 1)
, L(Dt) =D LOGN(1, 1), pt = 1

1+exp(−[a+dMAt+e
√

WAt])
. As can be seen in Figure

10.14 and Table 10.1 we got the result that c is negative. That means, that our
crash probability is bigger, if the volatility of the market, described by WA is
small. On the other hand we get the effect we expect from the estimated value of
d: If the market is on a downwards trend, the probability of big losses is bigger.
It is not clear, if the negativity of e is due to the fact that small values of WA

often occur when σt is small and so the conditional crash distribution is shifted
towards a region where the true density of Xt is bigger or if it is a real economic
effect. By using just the external variables for modeling the crash probabilities,
we get a much smoother path for {pt} than in the models using internal variables.
Using the chosen quite smooth external variables exclusively is the reason for this
effect.
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Figure 10.14: CGARCH-SP model’s crash probability with lognormal(1,1)
crashes

We see the modeled {σt} in Figure 10.15 and the calculated volatility of the
model in Figure 10.16. Surprisingly the graph of σt is more similar to the graph
of the CGARCH-S model with lognormal(0,1) crashes than the lognormal (1,1)
crashes. This model shows the most extreme values of the conditional volatility
of all models investigated here. And this maximum lies in the gulf war period
rather than being induced by the russian event which happened later.
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Figure 10.15: CGARCH-SP model’s
sigma
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Figure 10.16: CGARCH-SP model’s
volatility

The same model with lognormal(0,1) based crashes shows a graph of the crash
probability, which is almost a linear transformation than the graph shown above.
It’ maximum is 0.199. The graph of its volatility and σt gives no new insights.
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Where the graph of σt is very similar to the one of the model above the volatility
is comparable to Figure 9.15. So we don’t present these graphs here.
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Table 10.1: Estimates of parameters of the BASF returns 1990–1992 in several models
Model ω α β a b c d e
S(0,1)0.0001 9.4934 × 10−6 0.1521 0.77183 0.91445 −49.925 −229.75 – –
S(0,1) 9.4770 × 10−6 0.1527 0.77237 0.08385 −50.61 −231.00 – –
cS(0,1)0.0001 4.145 × 10−5 0.048777 0.63958 0.46912 −26.486 −246.14 – –
cS(0,1) 4.1689 × 10−5 0.048764 0.63968 1.3303 −33.134 −323.57 – –
S(1,1)0.0001 8.6489 × 10−6 0.14612 0.78328 −1.3147 −51.96 −199.22 – –
S(1,1) 4.635 × 10−6 0.099959 0.88079 −1.4284 −8.7013 −243.44 – –
cS(1,1)0.0001 2.2918 × 10−4 0.018316 0 −90 −49.431 −231.18 – –
cS(1,1) 1.797 × 10−4 0.011351 0.38028 −74.984 −45.378 −241.00 – –
SB(0,1) 1.0786 × 10−5 0.14460 0.76838 −2.5805 −0.53182 – – –
SB(1,1) 1.0088 × 10−5 0.14494 0.77338 −3.6126 −0.52116 – – –
SX(0,1) 8.3613 × 10−6 0.14205 0.7746 0.25089 −49.881 −379.11 −281.5 118.16
SP(0,1) 1.0218 × 10−5 0.14602 0.75875 −2.0484 – – −191.50 −43.243
SP(1,1) 9.3191 × 10−6 0.14488 0.76644 −2.7543 – – −242.52 −73.047
V(1,1) 3.1136 × 10−5 0.077453 0.81351 11.592 −66.653 −1080.8 – –
V(0,1) 1.0153 × 10−5 0.14772 0.75786 −1.9225 −34.682 −75.514 – –
VX(1,1) 5.5966 × 10−5 0.18384 0.65736 −2.2625 −11.319 104.11 91.435 −360.69

Table 10.2: Estimates of parameters of the BASF returns 1990–1992 in genuine GARCH models

Model ω α β mean
GARCH 4.0590 × 10−5 0.17703 0.66828 −0.0010531
GARCHt4 3.7457 × 10−5 0.16713 0.69666 −0.0010175
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10.4 Estimation of simulated models

Due to the fact that the conditions for consistency of the CMLE–estimators for
the models with genuine GARCH dynamic are unknown we made a numeri-
cal experiment, estimating the known parameters of a simulation of this model.
Therefore we created 500 paths of length 717 following such a model, all with the
same parameters. The parameters were chosen to be the ones we estimated from
the BASF–returns. Then we imposed our estimation procedure on these series.
First we look at the outcome for a model depending only on external variables.
The estimates for the GARCH parameters ω,α and β showed a little leptokurtic
distribution. Their sample mean was near the real parameters. The parameters
belonging to pt showed a different behavior. Firstly the majority of the estimates
showed nearly no spread, such that the median of the estimates were nearly the
true parameters. Secondly there were also estimate clusters at two points bigger
and smaller than the real parameters. And thirdly there were extreme outliers.
So if these effects are not due to a bad numerical implementation, or to short
time-series there is some doubt, that consistency properties for the particular
model are met. Secondly the limiting distribution, provided it exists, seems to
be not normal. But that could be due to short time-series.
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We took the same approach also for the CGARCH-S model with and without the
strong constraint 2.2.7 on the parameter space and for the CGARCH-V model,all
three without external variables. For the CGARCH-V model the outcome was
quite similar to the outcome in the CGARCH-SP model. In both cases of the
genuine CGARCH-S model the GARCH parameters were also biased. In the
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strongly constrained model there were estimates at the border of the parameter
space.
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Figure 10.19: Scattering c versus d esti-
mates of the CGARCH-SP model
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Chapter 11

Practical results concerning the
Value at Risk of real world data

For the notation used in this chapter we refer to section 9.1.

11.1 Comparison of the different models via Value

at Risk

The standard risk measure used in the GARCH context is the conditional “Value
at Risk” for the level γ.

V aRt(γ) := inf{x|Ft(x) ≥ γ}

Here, Ft is the conditional distribution function of Xt given the past up to time
t − 1. In the standard GARCH model you get V aRt(γ) by multiplying the
γ–quantile of the standard normal distribution with σt. In the models with
crashes drawn from specified distributions we have to calculate the quantiles
of the calculated “mixed distribution” at every time step . In the threshold
model a VaR is not calculable. Because we did not find any natural extension
of this concept to the threshold model, it is skipped in the following survey. We
calculated the 1% and 5% conditional value at risk of some models in the classes
we defined fitted to the BASF returns from 1990-1992. We chose the non–crash
distribution to be N(0, 1) except in one case where we chose it to be N(0.0001, 1).
The crash distribution was chosen to be lognormal, either with parameters (0,1)
or (1,1). In order to get the γ%–VaR accurately we have to consider that inverting
the mixed cumulative density function is a nonlinear problem. The linear attempt
using

(1 − pt)σtq
γ
ε + ptσtq

γ
D (11.1)

with qγ
ε and q

γ
D denoting the (1 − γ)-quantiles of εt, Dt respectively, will lead to

systematic inaccuracies when pt is not near 0 or 1. We used the theoretically
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more accurate way of minimizing

((

(1 − pt)

∫ x

−∞

1

σt

fε

(

y

σt

)

dy + pt

∫ x

−∞

1

σt

fD

(

y

σt

))

− γ

)2

(11.2)

With the distributions we chose we get:

((

(1 − pt)

∫ x
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1

σt
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σt

)

dy (11.3)
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√

2π
exp

(

1

2s2
(log(−y) −m− log(σt))

2

)

dy

)

− γ

)2

.

In comparison to the linear attempt this led to no big improvements on the 5%
level in all cases and the 1% level when using a not too extreme crash distribution.
But at the 1% level in models with extreme crash distributions the nonlinear
effects really seemed to be of importance, which we were able to capture. We
show the number of exeedances in table 11.1 and the corresponding ratios in 11.2.
The constrained cases showed an almost constant VaR. Besides these models, all
crash models seem to be more accurate than the pure GARCH model. The
question is if these ”good” results are due to good modeling. As we have seen in
the theoretical part of this investigations the theoretical properties of all these
models are not clear. Moreover the practical investigations of the paths of the
simulated models suggests that at least for the models with lognormal(1,1) based
crashes the sizes of crashes are overestimated. So the good VaR performance is
due to integration effects like in the models where stable distributions are directly
fitted to time series [RSK01].
The models with lognormal(0,1) induced crashes may mirror the real tail behavior
better, having more mass in the upper tails, but it doesn’t match the goal to model
something we would interpret as crashes. In all cases, even if we take models with
positive mean for the non-crash part, seem to predict certain bankruptcy meaning
the models seeming to have negative mean. In the case with purely negative
crashes and zero mean non-crashes this is clear, In the case with positive mean
crashes we can theoretically check this fact only in the model with the crash
probability just depending on some transform of the signum function. But the
evidence in simulation suggests this fact for all models.
Here we give the 1% and 5% Value at risk of a GARCH(1,1) model with normal
innovations as a benchmark for the Value at Risk for the different new models
we investigated.
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Model 5% VaR ex 1 % VaR ex
GARCH 28 16
GARCHt4 31 9
S(0,1) 32 11
cS(0,1) 40 8
S(1,1) 29 12
cS(1,1) 27 8
S(0,1)0.0001 33 10
SB(0,1) 31 11
SB(1,1) 31 7
SX(0,1) 32 10
SP(0,1) 32 11
SP(1,1) 32 7
V(1,1) 38 14
V(0,1) 34 12
VX(1,1) 31 11

Table 11.1: VaR exceedances of BASF 1990–1992

Model 5% 1%
GARCH 0.0391 0.0223
GARCHt4 0.0432 0.0126
S(0,1) 0.0446 0.0153
cS(0,1) 0.0558 0.0112
S(1,1) 0.0404 0.0167
cS(1,1) 0.0377 0.0112
S(0,1)0.0001 0.0460 0.0134
SB(0,1) 0.0418 0.0153
SB(1,1) 0.0418 0.0098
SX(0,1) 0.0446 0.0134
SP(0,1) 0.0446 0.0153
SP(1,1) 0.0446 0.0084
V(1,1) 0.0509 0.0187
V(0,1) 0.0475 0.0167
VX(1,1) 0.0432 0.0153

Table 11.2: exceedance ratios of BASF 1990–1992
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Figure 11.1: 1 % Value at Risk and ex-
ceedances of a pure GARCH model
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Figure 11.2: 5 % Value at Risk and ex-
ceedances of a pure GARCH model

We now investigate the results concerning the Value at Risk of the CGARCH-SP
model where the crash probabilities depend just on external variables. First of all
we see that the crash coming from the coup d’etat in Russia is an exceedance in
all models. This fact holds as we will see for all investigated models. In the pure
optical impression the VaR’s for different levels in the model with crashes which
are based on the negative of a lognormal distribution with parameters zero and
one don’t seem to differ very much from the GARCH VaRs. But the GARCH
effect of this model is slightly smaller than the one of the pure GARCH model, so
on the 5% level, where the non-crash distribution already has a dominant role, we
get more exceedances like in the pure GARCH case. The fact that the opposite
is true in the case of the 1% level is that in comparison the quantiles of the crash
distribution are so big that they lever the quantiles of the overall distribution.
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Figure 11.3: 1 % Value at Risk and ex-
ceedances of a CGARCH-SP model with
lognormal(0,1) based crashes
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Figure 11.4: 5 % Value at Risk and ex-
ceedances of a CGARCH-SP model with
lognormal(0,1) based crashes

The following pictures show the result if we base the crashes of a CGARCH-SP
model on a lognormal variable with parameters (1, 1). The most obvious feature
of this model is that the 1% VaR of this model becomes very negative in the time
period between 100 and 200 being the period of the first gulf war and being a
time period of a very volatile market. My explanation for this is, the external
variables being derived from the DAX capture the market insecurities and the
model was able to mirror this via a high crash probability in this period. So using
a crash distribution with very extreme quantiles mirrors this fact in the overall
model, such that we get only one exceedance in this period. Besides that this
model seems to be the best performing on the 1% level, the differences to the
preceeding model on the 5% level aren’t very big.
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Figure 11.5: 1 % Value at Risk and ex-
ceedances of a CGARCH-SP model with
lognormal(1,1) based crashes
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Figure 11.6: 5 % Value at Risk and ex-
ceedances of a CGARCH-SP model with
lognormal(1,1) based crashes

Now we switch to different incarnations of the CGARCH-S model. First the
question whether to introduce the easy to implement but in fact very strong
constraints from 2.2.7 is settled from a point of view concerning a meaningful
VaR in the way that this constraint should be dropped. The reason mentioned
at the beginning of this chapter is illustrated below. Actually the dynamic in the
model with lognormal (1,1) based crashes is very poor and irrelevant concerning
the exceedances. The dynamic in the model with lognormal (0,1) is stronger, but
still very small setting the GARCH(1,1) model as a benchmark. We see in Figure
11.8 that even on the 5% level the dynamic is nearly irrelevant.
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Figure 11.7: 1 % Value at Risk and ex-
ceedances of a constrained CGARCH-
S model with lognormal(1,1) based
crashes
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Figure 11.8: 5 % Value at Risk and ex-
ceedances of a constrained CGARCH-
S model with lognormal(0,1) based
crashes

Paying the prize of using a model, which might be explosive we get a more
dynamic model without the constraint, and it is doing quite well. The model
with a non-crash distribution (for which we give no picture here) with a positive
mean looks similar and has a better performance on both levels.
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Figure 11.9: 1 % Value at Risk
and exceedances of an unconstrained
CGARCH-S model with lognormal(0,1)
based crashes model
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Figure 11.10: 5 % Value at Risk
and exceedances of an unconstrained
CGARCH-S model with lognormal(0,1)
based crashes model

Considering more extreme crashes (lognormal(1,1) based) doesn’t improve the
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model in terms of exceedances on the 1% level. This is due to the fact that the
more extreme crashes lead to a smaller crash probability. On the 5% level we
have fewer exceedances, but that is bad, because we had already an conservative
model in the case with the lognormal(0,1) based crashes.
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Figure 11.11: 1 % Value at Risk
and exceedances of an unconstrained
CGARCH-S model with lognormal(1,1)
based crashes model

0 100 200 300 400 500 600 700 800
−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

model1 logn(1,1) based crashes 5% VaR and exeedances

Figure 11.12: 5 % Value at Risk
and exceedances of an unconstrained
CGARCH-S model with lognormal(1,1)
based crashes model

With added external variables modeling {pt} in the model with lognormal(0,1)
based crashes, we get barely an improvement in terms of VaR exceedances.
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Figure 11.13: 1 % Value at Risk and ex-
ceedances of a CGARCH-SX model with
lognormal(0,1) based crashes model
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Figure 11.14: 5 % Value at Risk and ex-
ceedances of a CGARCH-SX model with
lognormal(0,1) based crashes model
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Now we investigate the model with the signum function applied to Xt−1 trans-
formed being the crash probability. That means where we used

pt =
1

1 + exp(−(a + b sign(Xt−1)))
.

Beside having the theory of this model more developed than the other models
with an self reference in the crash probability, it works in comparison very well
as a model for the Value at Risk.
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Figure 11.15: 1 % Value at Risk and ex-
ceedances of a CGARCH-SB model with
lognormal(0,1) based crashes
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Figure 11.16: 5 % Value at Risk and ex-
ceedances of a CGARCH-SB with model
lognormal(0,1) based crashes

If we take the negative of the lognormal distribution with parameter (1,1) as the
basis for the crashes, we get the only model beside the model with crash proba-
bilities depending purely on external variables being conservative with respect to
the 1% VaR exceedances. And this fact holds instead of the considerable noisi-
ness of the 1% VaR, which arises from the jump nature of pt in cooperation with
the extremely different tail behavior of the crash and the non-crash distribution.
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Figure 11.17: 1 % Value at Risk and ex-
ceedances of a CGARCH-SB model with
lognormal(1,1) based crashes
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Figure 11.18: 5 % Value at Risk and ex-
ceedances of a CGARCH-SB model with
lognormal(1,1) based crashes

We now switch to the CGARCH-V model. Just having simulation results in mind
this occurred to be a model more realistic than the models above. However, on
the VaR side, the exceedances show that to this purpose this model seems not to
be better than the CGARCH-S model. In fact from some point of view it seems
to perform quite poorly. The reason is that the same mechanism which prevented
the crashes in simulations to become too extreme, namely getting σt by dividing
the conditional variance by an term which gets big if pt does, certainly also
makes the quantiles in time points with high crash probability smaller. So we get
a relatively high number of exceedances of the VaR on extreme levels. Also less
extreme levels are affected. Using lognonormal(0,1) based crashes (no picture)
leads to lower numbers of exceedances on both levels, mocking the reasons why
we introduced this model.
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Figure 11.19: 1 % Value at Risk and ex-
ceedances of a CGARCH-V model with
lognormal(1,1) based crashes
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Figure 11.20: 5 % Value at Risk and ex-
ceedances of a CGARCH-V model with
logn(1,1) based crashes

If we take additional external variables into account, that means working in a
CGARCH-VX model, the situation gets better. But far from showing the best
performance the awkward theory of this model class and the strange estimation
outcome of this model’s crash probabilities should be reason enough to treat this
model with caution.
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Figure 11.21: 1 % Value at Risk and
exceedances of a CGARCH-VX model
with lognormal(1,1) based crashes
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Figure 11.22: 5 % Value at Risk and
exceedances of a CGARCH-VX model
with logn(1,1) based crashes

The pure GARCH model with t4 innovations seems to work quite well here. It
is better on the 1% level than all other models save the X(1, 1) and the S(1, 1)
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Model 5% ex 1% ex
GARCH 29 13
GARCHt4 45 8
S(0,1) 31 10
S(1,1) 27 10
S(0,1)0.0001 32 10
SB(0,1) 36 11
SB(1,1) 34 10
SX(0,1) 32 12
SP(0,1) 31 12
SP(1,1) 30 8
V(1,1) 31 11
V(0,1) 35 12
VX(1,1) 37 10

Table 11.3: Value at Risk exceedances of Deutsche Bank

model, and it is not bad at the 5% level. But as we will see, when we investigate
other time series of stock returns this result seems to be only representative for
the 1% level. In the case of the other estimated time series the 5% Value at Risk
is underestimated.

In order to check that the previous findings don’t depend on the particular stock
we fitted the models discussed above to the log-return time series of the Deutsche
Bank in the same time period. A bank was chosen, because banking being a non-
industrial business seemed a market segment as far from chemistry as possible.
Besides that judging by pure eyesight the BASF log-returns seem to be among
the “wildest” data available for the observed period and the Deutsche Bank seems
to be much smoother. We omit the constrained models, because the problems
with them are due to the strong constraint rather than due to the time series
they are used to model.
Talking about models of CGARCH-S type our intuition of the Deutsche Bank
to be smoother than the BASF data seems to be confirmed: Choosing a more
extreme crash distribution gives us a 5% VaR exceedance ratio which is far below
the desired result. On the 1% level the different genuine CGARCH-S models seem
to be equally good. The positive mean non crash distribution yields a better result
at the 5% level than the zero mean. Using additional external variables doesn’t
seem to make the model better: The improvement on the 5% level trades in a
worse 1% level behavior.
Using just a signum induced crash probability is not worse than using the infor-
mation of the volatility and the value. When applying the not so extreme crash
distribution the 1% level is a little worse, but the 5% level is nearly nominal
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Model 5% 1%
GARCH 0.0404 0.0181
GARCHt4 0.0628 0.0112
S(0,1) 0.0432 0.0139
S(1,1) 0.0377 0.0139
S(0,1)0.0001 0.0446 0.0139
SB(0,1) 0.0502 0.0153
SB(1,1) 0.0474 0.0139
SX(0,1) 0.0446 0.0167
SP(0,1) 0.0432 0.0167
SP(1,1) 0.0418 0.0112
V(1,1) 0.0432 0.0153
V(0,1) 0.0488 0.0167
VX(1,1) 0.0511 0.0139

Table 11.4: exceedance ratios

(though not conservative). The model with more extreme crash distribution gets
the same 1% level performance than the variations of the original model and a
slightly better 5% performance.
When we stick to purely externally induced crashes, we can see that choosing
a lognormal(0,1) based crashes model is performing worse than the original or
the signum model. Using lognormal(1,1) based crashes gives us a model, which
seems to be the best for establishing extreme quantiles. But on the 5% level the
performance is not good compared to the other new models.
The CGARCH-V model with extreme crashes is as good as the original model on
the 5% level but worse on 1%. Using less extreme crashes improves 5% perfor-
mance on the cost of the 1% level performance. Adding external variables yields
the same 1% performance as in the CGARCH-SX model. Looking at the 5% level
we are not conservative anymore, though nominally closer to the desired result
than most other models.
The only obvious case where one of the new models is worse than the pure
GARCH model is the 5% case of the CGARCH-S model with extreme crashes.
The signum01 and the volatility model with external variables might be judged
as worse than the GARCH if we just accept conservative modeled VaR estimates.
The pure GARCH model with t4 innovations, which seemed to be a very good
model for the BASF data is good again on the 1% level, but it is the worst on
the 5% level. It isn’t just far from nominal, it obviously underestimates the risk
here.

We also tried to show that the findings still hold, when looking to a differ-
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Modell 5% VaR ex 1 % VaR ex
GARCH 189 74
GARCHt4 241 51
S(0,1) 194 69
S(1,1) 196 61
S(0,1)0.0001 198 69
SB(0,1) 193 67
SB(1,1) 194 63
SX(0,1) 195 59
SP(0,1) 196 63
SP(1,1) 191 50
V(1,1) 205 73
V(0,1) 200 71
VX(1,1) 184 56

Table 11.5: VaR exceedances in the models of the long BASF data

ent time period. We used daily BASF stock returns again. The time period
of data is from May 1987 to October 2004. The BASF data and the DAX
data used to calculate the external variables are from two different sources.
( http://corporate.basf.com/de/investor/aktie/kurs.htm for the BASF
stocks and http://www.markt-daten.de/daten/DAX.txt for the DAX) The given
BASF prices of the time period observed above differ from the closing price used
in the previous survey. The source gives no explanation what prices they used.
We actually used 4349 observations. As to be expected the fitted models differ
from the ones we got for the relatively short time series. But at least in tendency
we get similar results concerning the ratio of the number of VaR exceedances to
the length of the time series.
All models aren’t conservative on the 1% level but the crash models all are nearer
to the nominal level than the pure GARCH model with normal innovations. On
the 5 % level on the other hand all models are conservative. The only exception
is the pure GARCH model with t4 innovations. Like in the case of the Deutsche
Bank time series it fails on this level. This might suggest, that its good perfor-
mance in the short BASF time series was just coincidental. The crash models
except the CGARCH-VX model are again nearer to the nominal 5% than the
pure GARCH model with normal innovations. Taking both levels into account
the model with the signum induced crash probabilities is at least as good as the
original model, although it is using less “information”. In the CGARCH-S model
the use of non-crash distribution with positive mean increased the the perfor-
mance on the 5% level slightly. The use of the more extreme crash distribution
increased the performance on both levels. This difference to the short time sur-
vey might be explained by the fact, that all models (including the pure GARCH)
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Model 5% 1%
GARCH 0.0434 0.0170
GARCHt4 0.0536 0.0117
S(0,1)1 0.0446 0.0159
S(1,1) 0.0451 0.0140
S(0,1)0.0001 0.455 0.0159
SB(0,1) 0.0444 0.0154
SB(1,1) 0.0446 0.0145
SX(0,1) 0.0448 0.0136
SB(0,1) 0.0451 0.0145
SB(1,1) 0.0439 0.0115
V(1,1) 0.0471 0.0168
V(0,1) 0.460 0.0163
VX(1,1) 0.0423 0.0129

Table 11.6: exceedance ratios

yielded in the long case a very small α and so are not very dynamic. So my
guess is that a more extreme crash distribution grabbed the remaining dynamic
better than the less extreme one. The use of external parameters increased the
performance.
Coming to the models using external variables exclusively for modeling the crash
probabilities we see that the grading of the use of a more or less extreme crash
distribution is not clear in this long term series. The less extreme yields a better
5% performance the more extreme a better 1% performance. Seeing that the lat-
ter is the best of all models used here and that firstly the pure GARCH is beaten
on the 5% level and secondly the 5% performance can be increased by altering the
crash probability function by using an estimate of the DAX conditional variance
instead of the volatility as external variables without changing the 1% level, I
still would prefer the more extreme crash distribution in this context.
The CGARCH-V model with lognormal(1,1) based crashes performed on the 5%
level better than all other models, but is the worst of the new models on the 1%
level, beating pure GARCH just by one exceedance. Adding external variable’s
dynamic to the crash probability trades in a quite good 1% exceedance for the
worst 5% performance of all models we checked here save the GARCH model
with t4 innovations. Using the less extreme crash distribution lowers the number
of exceedances on both levels, not changing the relation to the CGARCH-S type
models.

So taking all three numerical surveys into account we can say that CGARCH-V
model in all its incarnations seems to be not very suitable for questions concerning
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extreme quantiles. It exposes weaknesses at least on the one percent level in
all three studies. On the 5% level it seemed quite suitable. But here the less
extreme crash distribution seems to be better in the overall view, contradicting
the reasons we had for introducing this model. Adding external variables gives
more reasonable 1% exceedance ratios, but the picture on the 5% level is not so
clear. Taking into account that this model is the one which takes most time to
estimate and that we have no clear idea about its theoretical properties I think
models of GARCH-S type should be preferred.
In the CGARCH-S model the use of a non-crash distribution with positive mean
had a positive effect on the performance on at least one level, leaving the other
level unaffected. Using a more extreme crash distribution only had a positive
effect in the long time survey. Its use yielded poorer results in both short series.
The use of additional external variables yielded an overall improvement of the
VaR performance only in the long time case. In the short BASF case the situation
is less clear: There is only one exceedance less in the 1% level and the picture in
the Deutsche Bank case the picture gets more positive on the 5% level whereas the
performance on the 1% level is worse. In the framework of models of CGARCH-S
type there seems to be evidence that the signum models are at least as good as
the models using the past values and current volatility for modeling the crash
probabilities. The choice of a good crash distribution in the signum case might
depend on the particular time series.
The exclusive use of external variables with an extreme crash distribution seems
to be the model of choice if we are interested in extreme quantiles. On the 5%
level this model isn’t so good but still better than the classic GARCH. If fitting
short series we can get quite poor results when using a crash distribution which
is not extreme.

11.2 The ACGARCH-V models

We wanted to investigate also the alternative models from section 3.4. Working
in a more general context, like we did in the case of the CGARCH-S model and
CGARCH-V models proved to be numerically instable. To make a statement we
chose a situation, where the theory from section 6.4 works. So we investigated a
pure ARCH(1) dynamic on distributions defined on the whole real line. Namely
we chose both to be normally distributed with different means and variances.
This yielded stable numerical results, but these were not very satisfactory. As we
will see in the following table there isn’t any difference in the outcome of Value
at Risk if we compare a pure ARCH model with an ACARCH-V model with very
small variance in the distribution of Dt. This is due to the fact that this model is
showing only a little dynamic in the crash probability which is jittering around
10−12 as seen in figure 11.23.
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Model 5 %Var ex 5 % ratio 1 % Var ex 1% ratio
ARCH(1) 18 0.0241 7 0.0094

ACARCH(1)-V N(10−5, 1), N(−0.1, 2) 14 0.0187 5 0.0067
ACARCH(1)-V N(10−5, 1), N(−0.1, 0.2) 18 0.0241 7 0.0094

Table 11.7: ARCH Model and ACARCH-V models Value at Risk performance
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Figure 11.23: The crash probabilities when using small crash variance are too
small to show effects

Choosing a fairly large variance of the Crash process leads to a real dynamic
but the outcome is even worse than the pure ARCH–model, being by far too
pessimistic.
Besides that the very goal we wanted to achieve by introducing the alternative
model, namely the managing of positive means fails. Taking the long BASF
data and estimating we get an conditional mean process with a negative sample
mean. This is preserved when simulating. The effect is seen nicely in figure 11.24
plotting the real stock prices versus simulated ones.
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Figure 11.24: Effect of the failure to model a positive mean in the ACARCH-V
model with big variance in the Crash–distribution, upper curve: BASF data,
lower curve: Simulation

So it seems that even in the pure ARCH case, where we can handle the ACARCH-
V model theoretically we are let down by it for practical purposes. The reason
for that might be that it is very hard to pick a decent crash mean and crash
distribution in this context.
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Appendix A

List of the models we introduced

Here we want to resume the notation for all the models we introduced. Some
of them were not really investigated here, but are introduced implicitly. Due to
the fact we intend to model crashes we call the models we introduced. Crash
GARCH models, or in short form CGARCH.
But we have to distinguish between the two kinds of modeling the mean we used,
so we split notationally:

• In models with
Xt = σt[(1 − Bt)εt +BtDt]

with no further constraint on the moments of εt and Dt we just use the
notation CGARCH.

• In models defined via

Xt = (1 − pt)µ+ ptδ + σt[(1 − Bt)εt +BtDt]

where E(Dt) = E(εt) = 0 and δ and µ are constants. we add the adjective
“alternative” before the model name and abbreviate it with A. So we speak
of Alternative Crash GARCH or ACGARCH models.

Now we also have do distinguish between the different modeling approaches:

1. whether we use a genuine GARCH dynamic or just an ARCH dynamic

2. whether we model σ2
t or v2

t via a GARCH equation

3. the way we model pt

We deal with point 1 using the notation CGARCH for genuine GARCH dynamic
and CARCH for pure ARCH dynamic. If we model σ2

t via a GARCH equa-
tion we speak of CGARCH-S, if we model v2

t via a GARCH equation we speak
of CGARCH-V. If we deviate from modeling pt as a function of Xt−1 and σt,
respectively vt we express this by an extra character:
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• X if we use additional external variables.

• P if we we use just external variables, where we use P, because pt is a
stochastic process in its own right in this context

• B if the function defining pt is just a transform of sign(Xt−1), where B stands
for binary, because pt only takes two values with positive probability.

So we have introduced following models with genuine GARCH dynamic in the
CGARCH context:

• CGARCH-S with GARCH dynamic in σ2
t

• CGARCH-SX like CGARCH-S with additional dependence of pt on external
variables

• CGARCH-SB like CGARCH-S, pt being a transform of the signum function

• CGARCH-SP like CGARCH-S, pt depending exclusively on external vari-
ables

• CGARCH-V GARCH dynamic in v2
t

• CGARCH-VX like CGARCH-V with additional dependence of pt on exter-
nal variables

• CGARCH-VB like CGARCH-V, pt being a transform of the signum function

• CGARCH-VP like CGARCH-S, pt depending exclusively on external vari-
ables

and corresponding the models using just an ARCH dynamic:

• CARCH-S with ARCH dynamic in σ2
t

• CARCH-SX like CARCH-S with additional dependence of pt on external
variables

• CARCH-SB like CARCH-S, pt being a transform of the signum function

• CARCH-SP like CARCH-S, pt depending exclusively on external variables

• CARCH-V ARCH dynamic in v2
t

• CARCH-VX like CARCH-V with additional dependence of pt on external
variables

• CARCH-VB like CARCH-V, pt being a transform of the signum function
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• CARCH-VP like CARCH-S, pt depending exclusively on external variables

Now all this notation can be done for the ACGARCH case too:

• ACGARCH-S with GARCH dynamic in σ2
t

• ACGARCH-SX like CGARCH-S with additional dependence of pt on ex-
ternal variables

• ACGARCH-SB like CGARCH-S, pt being a transform of the signum func-
tion

• ACGARCH-SP like CGARCH-S, pt depending exclusively on external vari-
ables

• ACGARCH-V GARCH dynamic in v2
t

• ACGARCH-VX like CGARCH-V with additional dependence of pt on ex-
ternal variables

• ACGARCH-VB like CGARCH-V, pt being a transform of the signum func-
tion

• ACGARCH-VP like CGARCH-S, pt depending exclusively on external vari-
ables

and corresponding the models using just an ARCH dynamic:

• ACARCH-S with ARCH dynamic in σ2
t

• ACARCH-SX like CARCH-S with additional dependence of pt on external
variables

• ACARCH-SB like CARCH-S, pt being a transform of the signum function

• ACARCH-SP like CARCH-S, pt depending exclusively on external variables

• ACARCH-V ARCH dynamic in v2
t

• ACARCH-VX like CARCH-V with additional dependence of pt on external
variables

• ACARCH-VB like CARCH-V, pt being a transform of the signum function

• ACARCH-VP like CARCH-S, pt depending exclusively on external vari-
ables
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We mainly made only use of the ACARCH-V model in ACGARCH context.

For smaller variations in the models, like using in the the GARCH regression
Xt−1 or Xt−1 − E(Xt−1|Ft−2), we didn’t introduce an extra notation. We just
state in loco which model we used. We also did not introduce an extra notation
for the restricted models with GARCH dynamic from section 8.1. Diciples of
short forms might like ACGARCH-RV here where R stands for restricted.
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