
Nonlinear Flow in Porous Media

Numerical Solution of the Navier-Stokes

System with Two Pressures and

Application to Paper Making

Stefan Rief

Vom Fachbereich Mathematik der Universität

Kaiserslautern zur Verleihung des akademischen

Grades Doktor der Naturwissenschaften (Doctor rerum

naturalium, Dr. rer. nat.) genehmigte Dissertation.

1. Gutachter: Prof. Dr. H. Neunzert

2. Gutachter: Prof. Dr. R. Helmig

Vollzug der Promotion: 15. September 2005

D 386





To me it seems that those Sciences are vain and full of error

which are not born of experience, mother of all certainty, first

hand experience which in its origin, or means, or end has passed

through one of the five senses.

Leonardo da Vinci (1452-1519)

Es ist nicht das Wissen, sondern das Lernen,

nicht das Besitzen, sondern das Erwerben,

nicht das Dasein, sondern das Hinkommen,

was den größten Genuß gewährt. Wenn ich

eine Sache ganz ins Klare gebracht und

erschöpft habe, so wende ich mich davon weg,

um wieder ins Dunkle zu gehen, so sonderbar

ist der nimmersatte Mensch, hat er ein Gebäude

vollendet, so ist es nicht, um ruhig darin zu

wohnen, sondern um ein anderes anzufangen.

Carl Friedrich Gauß (1777-1855)
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CHAPTER 1

Introduction

Flow phenomena in porous media are of great practical interest. This is due to

the fact, that porous media appear quite often in nature and have a brought

range of technical applicability. We find porous media in fields such as ground

water hydrology, civil engineering, petroleum production, ceramic and textile

engineering and in the automotive industry. They appear as sand, soil, ceramic

and metal foams, wipes, diapers, paper machine clothings, activated-carbon

filters, air filters, oil filters and diesel particulate filters.

Porous media are characterized by having at least two distinct length scales,

where the second scale is introduced by a porous micro structure. Typically,

both scales differ by orders of magnitude. For example, in ground water re-

search, flows are modeled and predicted which extend to some square kilo-

meters, whereas pore sizes of soil are less than 1mm. Another example of a

porous medium is shown in Figure 1.

Figure 1. Dewatering felt used in paper machines

We see the micro structure of a dewatering felt, which is a technical textile

used in paper machines. The cross-section of the sample is approximately

1mm2 and the characteristic length of the pores may reach a few microns. In

contrast, the macroscopic dimensions are in the range of some meters.

The fact, that we have to consider two largely varying length scales, renders the
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direct numerical simulation of porous media flows in many cases impossible.

The required resolution to resolve the micro structure leads to huge problems,

which can not be handled by existing computer architectures. Therefore, en-

gineers, physicists and mathematicians try to find macroscopic descriptions of

the phenomena in porous media, which will often be sufficient for the desired

application. One way to derive a macroscopic description is to start from first

principles, i.e. from equations which are valid at the pore scale. Then, one

applies some kind of upscaling method. Once the upscaled model is available,

one would like to have an estimate in which sense the macroscopic description

is related to the micro problem. This is somehow the ideal way, but sometimes

hard to accomplish. The purely experimental approach denotes the other ex-

treme leading to phenomenological laws whose range of applicability is very

often quite uncertain in a strict sense. Nevertheless, the point is, that the

experimental approach sometimes gives answers, where the rigorous mathe-

matical derivation has not been successful up to now.

There exists a vast literature on flow in porous media and upscaling meth-

ods. For reference purposes, we want to mention the classical textbooks on

porous media theory by Allen ([3]), Bear ([6], [7], [8], [9]), Bensoussan, Lions,

Papanicolaou ([10]), Dullien ([22]), Greenkorn ([38]), Hornung ([43]), Jikov,

Kozlov, Oleinik ([45]), Karviany ([46]), Lions ([49]), Sanchez-Palencia ([65])

and Scheidegger ([66], [67]).

1.1. Filtration laws and upscaling

In this thesis, we will mainly be concerned with saturated, stationary, incom-

pressible Newtonian flow in porous media and its upscaling by homogenization.

Therefore, we give a short historical overview on the achieved scientific results.

In 1856, it was Henry Darcy, who published his famous filtration law ([18]).

He investigated saturated water flow through sand columns as illustrated by

Figure 2 on the next page.

He found that the volumetric flow rate Q is proportional to the cross-section

A = πD2

4
of the column, inversely proportional to the length l of the column

and proportional to the hydrodynamic head h1 − h2, i.e.

Q =
KA(h1 − h2)

l
,

where K is the proportionality factor. The hydrodynamic head is measured

by water manometers and corresponds to the pressure drop.
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Figure 2. Darcy’s experiment ([38])

Darcy’s law in differential form and extended to multi-dimensions reads:

v = −K
µ

· ∇p,(1.1)

where v and p denote the effective velocity and pressure, respectively. µ is the

dynamic viscosity of the fluid and K is the permeability tensor.

In 1863, J. Dupuit ([21]) found that the pressure drops predicted by Darcy’s

law are smaller than his measured pressure drops, especially when flow rates

become large. In 1901, Forchheimer ([27]) proposed the following quadratic

extension of Darcy’s law, which accounts for higher pressure drops:

v + b‖v‖v = −K
µ

· ∇p.(1.2)

In (1.2), the constant b > 0 is often referred to as Forchheimer coefficient.

Motivated by the empirical laws (1.1), (1.2), a lot of research has been going on

to theoretically derive macroscopic descriptions of porous media flows. There

exists a variety of different approaches, which are discussed in detail in the

aforementioned textbooks (e.g. [6], pp. 161-184). For instance, capillary

tube models consider Hagen-Poiseuille flow in a certain arrangement of tubes

representing the porous medium. Due to the analytic solution of the Navier-

Stokes equation in this case, a linear relationship between velocity and pressure

drop is obtained. Another possibility is the concept of overlapping continua
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(see [3] and Chapter 5), where fluid and solid phase are considered to be

defined everywhere. From a general momentum balance equation, it is possible

to obtain Darcy’s law under the assumptions that inertia is negligible and that

the interaction of fluid and solid phase obeys Stokes’ law. The third method

we want to mention is the volume averaging approach which integrates the

Navier-Stokes equations over a sufficiently large representative volume element

of the porous medium. With certain assumptions on the averaged flow field,

it is again possible to obtain Darcy’s law. The volume averaging method can

also be employed to derive nonlinear extensions of Darcy’s law. The drawback

of these methods is the lack of an approximation result which relates the

macroscopic equations to the Navier-Stokes equations on the micro scale.

A major breakthrough was achieved in the late seventies of the last century,

when the multi-scale homogenization method evolved ([10], [49], [65]). To

derive Darcy’s law, the Stokes equations in a periodic porous medium are

considered. Using two-scale expansions of the velocity and pressure, i.e.

u(x) = u0(x, y) + εu1(x, y) + · · · ,

p(x) = p0(x, y) + εp1(x, y) + · · · ,

where y = x
ε

and ε is the size of the periodicity cell of the porous medium, yields

a Stokes system with two pressures for u0, p0 and p1. Due to linearity of the

system, it is possible to separate the scales and it becomes obvious, that u0 and

p0 are in some sense related by Darcy’s law. Moreover, the permeability tensor

K is determined by the solution of some Stokes problems on the periodicity

cell. We will come back to this point in Chapter 2. Convergence results as

ε tends to zero are given by Tartar ([68]) and Allaire ([2]) in two and three

dimensions, respectively.

Considering the Navier-Stokes equations in a periodic porous medium, the

structure of the homogenized system depends on the scaling of the Reynolds

number Re. Following [50], we assume Re = Reε = 1
µ
ε−γ. Then, three cases

have to be distinguished:

• γ < 1: The zeroth order equations form a Stokes system with two

pressures.

• γ = 1: A Navier-Stokes system with two pressures is obtained in

zeroth order.

• γ > 1: The homogenization process leads to ill-posed problems.

In [76], [52], [62], nonlinear extensions of Darcy’s law are formally derived for

γ < 1, by taking into account higher order problems. In contrast to (1.2), they

obtain an additional cubic term. Convergence results are presented in [53].



1.2 Thesis outline 5

The rigorous justification of their filtration laws can be found in [13].

Although, the case γ = 1 is formally derived in the early books on homogeniza-

tion by Lions [49] and Sanchez-Palencia [65], it took over fifteen years for the

first theoretical results. In 1995, Mikelić [54] proved unique solvability of the

nonlinear two pressure system for a porous medium with periodic outer bound-

ary with respect to one space direction. The Navier-Stokes system with two

pressures does not allow to separate the scales explicitly due to the persistent

nonlinear convective term. Therefore, in [12] and [14], still for a special, es-

sentially one-dimensional case unique existence of a solution is proved and the

filtration law is made explicit by means of a Taylor expansion of the nonlinear

function relating u0 and p0. In [50], [55], the restrictions on the geometry are

overcome and the existing results are generalized to multi-dimensional porous

media with impervious and periodic outer boundaries. Considering isotropic

porous media and using symmetry of the Navier-Stokes equations on the pe-

riodicity cell, the authors theoretically obtain a cubic extension of Darcy’s

law.

1.2. Thesis outline

The aim of the thesis is the numerical investigation of saturated, stationary,

incompressible Newtonian flow in porous media when inertia is not negligible.

We focus our attention to the Navier-Stokes system with two pressures derived

by two-scale homogenization.

The thesis is subdivided into five Chapters. After the introductory remarks

on porous media, filtration laws and upscaling methods, the first chapter is

closed by stating the basic terminology and mathematical fundamentals.

In Chapter 2, we start by formulating the Navier-Stokes equations on a pe-

riodic porous medium. By two-scale expansions of the velocity and pressure,

we formally derive the Navier-Stokes system with two pressures. For the sake

of completeness, known existence and uniqueness results are repeated and a

convergence proof is given. Finally, we consider Stokes and Navier-Stokes sys-

tems with two pressures with respect to their relation to Darcy’s law.

Chapter 3 and Chapter 4 are devoted to the numerical solution of the nonlinear

two pressure system. Therefore, we follow two approaches. The first approach

which is developed in Chapter 3 is based on a splitting of the Navier-Stokes

system with two pressures into micro and macro problems. The splitting is

achieved by Taylor expanding the permeability function or by discretely com-

puting the permeability function. The problems to be solved are a series of

Stokes and Navier-Stokes problems on the periodicity cell. The Stokes prob-

lems are solved by an Uzawa conjugate gradient method. The Navier-Stokes
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equations are linearized by a least-squares conjugate gradient method, which

leads to the solution of a sequence of Stokes problems. The macro problem

consists of solving a nonlinear uniformly elliptic equation of second order.

The least-squares linearization is applied to the macro problem leading to a

sequence of Poisson problems. All equations will be discretized by finite ele-

ments. Numerical results are presented at the end of Chapter 3.

The second approach presented in Chapter 4 relies on the variational formu-

lation in a certain Hilbert space setting of the Navier-Stokes system with two

pressures. The nonlinear problem is again linearized by the least-squares con-

jugate gradient method. We obtain a sequence of Stokes systems with two

pressures. For the latter systems, we propose a fast solution method which

relies on pre-computing Stokes systems on the periodicity cell for finite ele-

ment basis functions acting as right hand sides. Finally, numerical results are

discussed.

In Chapter 5 we are concerned with modeling and simulation of the pressing

section of a paper machine. We state a two-dimensional model of a press nip

which takes into account elasticity and flow phenomena. Nonlinear filtration

laws are incorporated into the flow model. We present a numerical solution

algorithm and the chapter is closed by a numerical investigation of the model

with special focus on inertia effects.

1.3. Terminology and mathematical fundamentals

In this section, we want to give a short exposition on basic notation and

mathematical concepts, which are needed in the subsequent chapters. They

are taken from the books [1], [24], [29], [30] and [31].

Numbers, vectors and matrices. The sets of natural, integer and real

numbers are denoted by N, Z and R, respectively. N0 is the set of natural

numbers including zero. R
+ is the set of all strictly positive real number. All

positive real numbers including zero are abbreviated by R
+
0 . R

− is defined as

R\(R+ ∪{0}). The absolute value of a number is given by | · |. Open intervals

are denoted ]a, b[, where a, b ∈ R. Half-closed intervals, i.e. [a, b[ and ]a, b],

and the closed interval [a, b] use enclosing brackets indicating that endpoints

are included. Let n ∈ N. Then, Z
n is the set of integer n-tuples. The canonical

basis vectors ei, i ∈ {1, . . . , n} of the real vector space R
n are defined by

(ei)k =

{

1, if i = k,

0, else.
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Let v ∈ R
n be a vector. Identifying R

n by the space of one-column matrices

R
n×1, the transpose of v is denoted by vT ∈ R

1×n. Let A ∈ R
n×m and B ∈

R
m×o, m, o ∈ N , then the usual matrix product is defined by

(A · B)ij :=
m∑

k=1

(A)ik(B)kj.

Let R
n be equipped with the usual topology induced by the scalar product

(x, y) := xT · y =
n∑

i=1

xiyi, x, y ∈ R
n(1.3)

and norm

‖x‖ :=
√

(x, x), x ∈ R
n.

To simplify notation, the transpose symbol in (1.3) is often omitted.

Differential operators. Let f : R
n → R be a real-valued function. The

nabla operator and the Laplacian are defined by

∇f :=
( ∂f

∂x1

, . . . ,
∂f

∂x1

)T
and ∆f :=

n∑

i=1

∂2f

∂x2
i

,

respectively. For vector-valued functions f : R
n → R

n, the divergence operator

and Laplacian read

div f := ∇ · f =
n∑

i=1

∂fi

∂xi

and ∆f := (∆f1, . . . , ∆fn)T ,

respectively. Let f : R
m → R

n be a differentiable function. Then D f(x) ∈
R

n×m is defined by

(D f(x))ij =
∂fi

∂xj

(x), ∀i, j ∈ {1, . . . , n}.

Let f, g : R
n → R

n. Then we set

∇f : ∇g =
n∑

i=1

n∑

j=1

∂fi

∂xj

∂gi

∂xj

and

((f · ∇)g)i =
n∑

j=1

fj
∂gi

∂xj

, ∀i ∈ {1, . . . , n}.
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Multi-indices. A multi-index α = (α1, . . . , αn) of length n is a n-tuple of

numbers in N0, i.e. α ∈ N
n
0 . The order of a multi-index is defined by

|α| := α1 + · · · + αn.

Multi-indices will appear to simplify notation. Let α, β ∈ N
n
0 be multi-indices

with αi ≤ βi, ∀i ∈ {0, . . . .n} and let x ∈ R
n. Then, we define sums, products

and binomial coefficients as

β
∑

α=0

:=

β1∑

α1=0

· · ·
βn∑

αn=0

, xα = xα1
1 . . . xαn

n and

(
β

α

)

=

(
β1

α1

)

. . .

(
βn

αn

)

=
β1!

(β1 − α1)!α1!
· · · βn!

(βn − αn)!αn!
,

respectively. The differential operator Dα is to be understood in the following

way:

Dα :=
( ∂

∂x1

)α1 · · ·
( ∂

∂xn

)αn
.

Topology. For the basic definitions of open, closed, bounded, compact

and connected sets in R
n we refer to the Appendix of [24] for instance. Now,

let Ω be an open subset of R
n. If Ω is additionally connected, it is called a

domain. Ω denotes the closure of Ω and ∂Ω is its boundary.

Lebesgue spaces. Let Ω be a domain in R
n. For q ∈ [1,∞[, let Lq =

Lq(Ω) denote the Banach space of all real Lebesgue-measurable functions u

defined in Ω, such that

‖u‖Lq(Ω) :=
(
∫

Ω

|u|q dx
) 1

q < ∞.

As usual, we identify functions in Lq(Ω), which are equal up to a set of measure

zero on Ω. The characteristic function of Ω is defined by

1Ω(x) :=

{

1, if x ∈ Ω,

0, else.

Then, the volume or measure of Ω is given by

|Ω| =

∫

Ω

1Ω(x) dx.

For q = 2, Lq(Ω) is a Hilbert space under the scalar product

(u, v)L2(Ω) :=

∫

Ω

uv dx, u, v ∈ L2(Ω).
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In view of appropriate function spaces for pressure solutions of Stokes and

Navier-Stokes systems, we set

L2
0(Ω) := {u ∈ L2(Ω) |

∫

Ω

u dx = 0}.

The definition of product spaces of L2 is straight forward:

L2(Ω)n := {u = (u1, · · · , un) |ui ∈ L2(Ω); i = 1, · · · , n}.(1.4)

For u, v ∈ L2(Ω)n, the scalar product and norm are introduced by

(u, v)L2(Ω)n :=
n∑

i=1

(ui, vi)L2(Ω) and ‖u‖L2(Ω)n :=
√

(u, u)L2(Ω)n ,(1.5)

respectively.

Lipschitz continuity of boundaries. Following [24], we recall the defi-

nition of a Lipschitz continuous boundary. First, a function f : R
m ⊃ M → R

n

is Lipschitz continuous, if there exists a constant L such that

|f(x) − f(y)| ≤ L|x − y|, ∀x, y ∈ M.

Let Ω be a bounded domain in R
n. ∂Ω is called Lipschitz continuous, if there

exist 0 < α ∈ R, a number R ∈ N, and a finite number of local Cartesian

coordinate systems xi
1, . . . x

i
n and Lipschitz continuous functions ai : Mi =

{x̂i = (xi
2, . . . , x

i
n) ∈ R

n−1; |x̂i| ≤ α} → R, i = 1, . . . , R, such that

∂Ω =
R⋃

i=1

Λi, with Λi = {(xi
1, x̂

i) |xi
1 = ai(x̂

i), |x̂i| < α}.

If there exists 0 < β ∈ R, such that ∀i ∈ {1, . . . , R}

{(xi
1, x̂

i) | ai(x̂
i) < xi

1 < ai(x̂
i) + β, |x̂i| < α} ⊂ Ω

and {(xi
1, x̂

i) | ai(x̂
i) − β < xi

1 < ai(x̂
i), |x̂i| < α} ⊂ R

n\Ω,

we say that Ω is locally located on one side of its boundary. On Lipschitz

continuous boundaries, there exists a measure and the outer normal ν is defined

up to a set of measure zero.

Sobolev spaces. Let Ω be a domain in R
n. Ck(Ω) is the space of all

real valued functions with continuous derivatives up to order k in Ω. The

set of functions in Ck(Ω), whose derivatives up to order k are continuously

extendable onto Ω is denoted by Ck(Ω). Setting C∞(Ω) :=
⋂∞

k=1 Ck(Ω), we

define the space

D(Ω) = C∞
0 (Ω) := {u ∈ C∞(Ω) | supp(u) ⊂ Ω is compact},
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where the support of a function is given by supp(u) = {x |u(x) 6= 0}. Equipped

with the topology of locally uniform convergence (see [24] for details), the dual

space of D is denoted by D′. The elements of D′ are called distributions. A

distribution fα ∈ D′ is called the α-th order distributional derivative of a

distribution f ∈ D′, if

〈fα, v〉 = (−1)|α|〈f, Dα v〉, ∀v ∈ D,(1.6)

where 〈f, v〉 denotes the value of f applied to v. Green’s theorem implies that

for functions f ∈ Ck(Ω) the definition (1.6) reduces to the classical derivative

of f . Therefore, we use the classical notation Dα f := fα.

Note, that any function u ∈ Lp(Ω) is a distribution by setting

〈u, v〉 =

∫

Ω

uv dx, ∀v ∈ D.(1.7)

The integral in (1.7) is defined, because D ⊂ Lp(Ω)′ for p ∈ [1,∞[.

Now, let k ∈ N0 and p ∈ [1,∞[. We define the function space

W k,p(Ω) := {u, Dα u ∈ Lp(Ω); ∀α ∈ N
n
0 with |α| = 0, . . . , k}

equipped with the norm

‖u‖W k,p(Ω) :=
(

k∑

|α|=0

‖Dα u‖p
Lp(Ω)

) 1
p .

The spaces W k,p are called Sobolev spaces and our main interest is the case

k = 1 and p = 2. We will use the common notation

H1(Ω) := W 1,2(Ω).

H1(Ω) is a Hilbert space when equipped with the scalar product

(u, v)H1(Ω) :=

∫

Ω

uv dx +

∫

Ω

∇u · ∇v dx, ∀u, v ∈ H1(Ω).

The construction of the product space H1(Ω)n is in complete analogy to the

definition of the space L2(Ω)n in (1.4), (1.5).

If Ω is a bounded and Lipschitz continuous domain, there exists a uniquely

determined continuous linear operator θ : W 1,p(Ω) → Lp(∂Ω), such that

θu = u|∂Ω, ∀u ∈ C∞(Ω),

where u|∂Ω denotes the restriction of the function u to the boundary of Ω.

θu ∈ Lp(∂Ω) is called the trace of the function u ∈ W 1,p(Ω) on the boundary

∂Ω. The following inequality is an immediate consequence of the continuity of

the trace operator θ. We have

‖θu‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω), ∀u ∈ W 1,p(Ω),(1.8)
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with some constant C. Hence, it makes sense to speak of boundary values of

functions in W 1,p(Ω). Finally, we define the space

H1
0 (Ω) := {u ∈ W 1,2(Ω)|u = 0 on ∂Ω}.

Due to the Poincaré inequality, H1
0 (Ω) is a Hilbert space when equipped with

the following scalar product

(u, v)H1
0 (Ω) :=

∫

Ω

∇u · ∇v dx, ∀u, v ∈ H1
0 (Ω).

Hölder spaces. Following [31], let x0 ∈ D ⊂ R
n, 0 < γ < 1, D bounded

and f : D → R a function. f is called Hölder continuous with exponent γ at

x0, if

[f ]γ,x0 := sup
x∈D\{x0}

|f(x) − f(x0)|
|x − x0|γ

< ∞.

f is Hölder continuous with exponent γ in D, if

[f ]γ,D := sup
x,y∈D;x6=y

|f(x) − f(y)|
|x − y|γ < ∞.

Let Ω be an open set in R
n and k ∈ N0. The Hölder space Ck,γ(Ω) is defined

as the subspaces of Ck(Ω) consisting of functions whose k-th order partial

derivatives are Hölder continuous in Ω. Ck,γ(Ω) becomes a Banach space by

introducing the following norm:

‖u‖Ck,γ(Ω) :=
k∑

|α|=0

max
x∈Ω

max
|α|

|Dα u(x)|

+
∑

|α|=k

sup
x,y∈Ω;x6=y

|Dα u(x) − Dα u(y)|
|x − y|α .

Note, that Ck,γ(Ω) is also a Banach algebra. Again, product spaces of Hölder

continuous functions are constructed in complete analogy to (1.4), (1.5).

Special Lebesgue and Hölder spaces. Let Ω, Y ⊂ R
n and Y be a

function space over Y equipped with the norm ‖·‖Y. Then the space L2(Ω,Y)

consists of all functions u : Ω × Y → R, such that

u(x, ·) ∈ Y, ∀x ∈ Ω,

u(·, y) is Lebesgue-measurable for all y ∈ Y and
∫

Ω
‖u(x, ·)‖2

Y dx < ∞.

Analogously, we will use the space Ck,γ(Ω, Y ).
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Landau symbols. We specify the order of convergence by using the Lan-

dau symbols o and O . Let (ai) and (bi) be sequences of positive real numbers,

where bi > 0. If there is a constant C, such that ai ≤ Cbi, ∀i ∈ N, one writes

ai = O(bi). If limi→∞
ai

bi
= 0, we say ai = o(bi).

Periodicity. Let Ω ⊂ R
n be a domain which can be periodically repeated

by suitable translations in at least one direction. If Γ ⊂ ∂Ω is periodic with

respect to the same translations, we call Γ Ω-periodic. Let f be a function

defined on Ω. If f has equal values on an Ω-periodic boundary Γ, we say

f is Γ-periodic. If the values of f periodically change in sign, we call f Γ-

antiperiodic.



CHAPTER 2

The Navier-Stokes system with two pressures

The Navier-Stokes system with two pressures is first mentioned in the books by

Sanchez-Palencia [65] and J.L. Lions [49]. They formally derive the system by

a two-scale asymptotic expansion of the solution of the Navier-Stokes system

on a periodic porous medium. Its derivation is formal, done in the same way

as for the Stokes system with two pressures. In contrast to the latter system

whose solvability, convergence and equivalence to Darcy’s law is well under-

stood in that time, no theoretical results were available for the Navier-Stokes

system with two pressures. A. Mikelić gives the first answers concerning exis-

tence, uniqueness and regularity of the solution of a special two–dimensional

case of the Navier-Stokes system with two pressures in [54]. Additionally, he

proves convergence of the homogenization process. In [12], [14], [50] and [55],

the results are generalized and the system is interpreted as a nonlinear exten-

sion of Darcy’s law.

In this chapter, we repeat the results known for the Navier-Stokes system with

two pressures, thereby, adapting the macroscopic boundary conditions to our

needs in the subsequent chapters. Starting with the definition of a periodic

porous medium, we formulate the Navier-Stokes system in dimensional and

non-dimensional form and repeat important properties of its solution. Per-

forming a formal two–scale analysis, we derive the homogenized two pressure

system. After recalling existence, uniqueness and regularity results, we give a

convergence result of the homogenization process. Some remarks on how the

Navier-Stokes system with two pressures extends Darcy’s law are made in the

final section of this chapter.

2.1. The Navier-Stokes problem on periodic porous media

2.1.1. Definition of a porous medium. Following [2] and [55], we de-

fine a periodic structure in R
n starting with the unit cell Y =]0, 1[n. Let Ys

be a closed subset of Y and Yf = Y \Ys. Ys and Yf are called solid part and

fluid part, respectively. We will frequently refer to this basic construction as

periodicity cell. Since we want to consider flow phenomena in porous media,

Ys will sometimes be called obstacle.
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Now, we make the periodic repetition of Ys all over R
n and set Y k

s = Ys + k,

k ∈ Z
n. Obviously, the set Es =

⋃

k∈Zn Y k
s is a closed subset of R

n and

Ef = R
n\Es is an open set in R

n. We need this basic periodic structure to

have certain properties. Therefore, we claim three hypotheses made in [2]:

• Yf and Ys have strictly positive measures in Y ,

• Ef and the interior of Es are open sets with the boundary fulfilling

a Lipschitz condition, and are locally located on one side of their

boundary. Moreover, Ef is connected.

• Yf is an open connected set whose boundary fulfills a local Lipschitz

condition.

Finally, we explicitly assume that ∂Yf is Y -periodic.

Remark 2.1. The above assumptions provide a first regularity setup, which

is needed (and modified, if necessary) for the theoretical considerations in this

thesis. On the other hand, some configurations are excluded. For instance,

due to the connectivity of Ef , impermeable media in certain space directions

are forbidden. This condition will guarantee positive definiteness of Darcy’s

permeability tensor. An example of a two–dimensional periodicity cell fulfilling

all the assumptions is shown in Figure 1. For a more detailed discussion on

these assumptions, we refer to [2].
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Figure 1. Example of a periodicity cell

Using the periodic structure from above, we define the periodic porous medium:

Let Ω ⊂ R
n be a bounded and connected open set with a Lipschitz boundary.

Let 0 < ε ∈ R
+. The set Ω is covered with a regular mesh of size ε, each

cell being a cube Y ε
i with 1 ≤ i ≤ N(ε) = |Ω|ε−n[1 + o(1)]. Each cube Y ε

i

is homeomorphic to Y , by a linear homeomorphism Πε
i , being composed of a

translation and an homothety of ratio 1
ε
:

Πε
i : Y ε

i → Y, x 7→ y =
x

ε
+ translation.
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Now, we define

Y ε
si

:= (Πε
i )

−1 (Ys) , Y ε
fi

:= (Πε
i )

−1 (Yf ) .

We construct Ωε by picking out from Ω the solid parts Y ε
si
:

Ωε := Ω\
N(ε)
⋃

i=1

Y ε
si
.

Ωε denotes the part of Ω occupied by the fluid. For simplicity, we suppose that

Ωε is connected possibly suppressing fluid part components near the boundary.

Finally, we set

Sε := ∂

N(ε)
⋃

i=1

Y ε
si

and claim that the boundary of Ωε is partitioned into two parts, i.e.

∂Ωε = ∂Ω ∪ Sε, ∂Ω ∩ Sε = ∅.

We call ∂Ω outer boundary and Sε inner boundary.

An example of a periodic porous medium can be seen in the following figure,

where Ω is simply the unit square and ε = 1
4
:
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Figure 2. Example of a porous medium

Clearly, the parameter ε is intended to create a micro structure in the porous

medium and, therefore, can be thought to be small, i.e. ε ¿ 1.

2.1.2. The Navier-Stokes problem. Stationary incompressible flow of

a Newtonian fluid is described by the following Navier–Stokes system:

−ν∆u + (u · ∇) u +
1

ρ
∇p = f,(2.1)

div u = 0.



16 The Navier-Stokes system with two pressures

For the time being, let the Navier-Stokes system be formulated on an arbitrary

open set S in R
n. The velocity u : S → R

n and the pressure p : S → R

are the unknowns. ν ∈ R
+ is the kinematic viscosity of the fluid (not to

be mixed up with the outer normal) and ρ ∈ R
+ denotes the fluid density.

f : S → R
n represents the given density of external volume forces. The first

line of (2.1) is often referred to as momentum balance equations or Navier-

Stokes equations. The second line of (2.1) shows the mass balance equation

or continuity equation.

In view of the asymptotic analysis in the subsequent paragraph, we derive (2.1)

in dimensionless form. By doing so, some characteristic numbers, namely

the Reynolds number and the Froude number will enter the Navier-Stokes

equations. Thereby, it is possible to see which terms are dominant and which

will survive the homogenization process.

Introducing the characteristic length L0, the characteristic velocity U0 and the

characteristic volume force F0, we define the dimensionless quantities

x′ =
x

L0

, u′ =
u

U0

, p′ =
p

ρU2
0

, f ′ =
f

F0

.(2.2)

The Reynolds number and Froude number are defined by

Re :=
L0U0

ν
=

ρL0U0

µ
and Fr :=

U2
0

F0L0

,(2.3)

respectively. For later use, we introduce the dynamic viscosity µ ∈ R
+ in (2.3).

It is related to the kinematic viscosity by ν = µ
ρ
.

Using (2.2) and (2.3) in (2.1) yields

− 1

Re
∆u′ + (u′ · ∇) u′ + ∇p′ =

1

Fr
f ′,(2.4)

div u′ = 0,

the dimensionless form of the stationary incompressible Navier–Stokes system.

Now, let Ωε be the fluid part of a porous medium being defined as in the

preceding paragraph. After applying transformation (2.2) the macroscopic

length scale of Ωε is 1 and its microscopic length scale is assumed to be ε. We

suppose that the Reynolds number and the Froude number depend on ε in the

following way:

Reε =
1

µ
ε−1 and Frε = ε.(2.5)

We explicitly keep the dynamic viscosity in (2.5). In this way, it enters the

homogenized system derived in section 2.2 and, besides geometry, boundary

conditions and forces, it will be an important parameter influencing the flow

characteristics of the limit equations.
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To be able to prescribe two kinds of boundary conditions, we assume that the

outer boundary ∂Ω is partitioned into two subsets Γ1 and Γ2 = ∂Ω\Γ1 fulfilling

a local Lipschitz condition, respectively. Moreover, Γ1 has to be Ω-periodic.

Note, that we did not exclude the case that Γ1 or Γ2 is empty. Supplemented

by periodic boundary conditions for the velocity and the pressure on Γ1 and

by no-slip boundary conditions for the velocity on Γ2, we can finally formulate

our Navier-Stokes system. It reads:

−(µε)∆uε + (uε · ∇) uε + ∇pε = ε−1f in Ωε,(2.6)

div uε = 0 in Ωε,

{uε, pε} is Γ1 - periodic,

uε = 0 on Sε ∪ Γ2.

To point out the dependence on the small parameter, we use ε as superfix of

the velocity and the pressure in (2.6). The function f is assumed to be defined

on Ω and can be thought of as being restricted to Ωε. Therefore, we skip the

superfix of f .

Remark 2.2. Without further notice, we assume f to be Γ1 - periodic

throughout this thesis.

Now, to fix ideas, Figure 3 illustrates an example of the domain Ω and its

outer boundaries Γ1 = Γ11∪Γ12 and Γ2 = Γ21∪Γ22. Considering the unit force

in x–direction as excitation of the system (2.6), one can interpret the periodic

boundaries Γ11 and Γ12 as inlet and outlet, respectively. The zero velocities on

Γ2 act like an impervious wall.

Γ
22

Γ
21

Γ
11

Ω Γ
12

outletinlet

f=(1,0)

wall

wall

x T1

2x

Figure 3. Example of a force driven flow and interpretation of

the outer boundaries
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2.1.3. Existence, uniqueness and regularity of the solution. Af-

ter having stated the Navier-Stokes problem on a periodic porous medium in

the preceding paragraph, we are interested in theoretical results on existence,

uniqueness and regularity of the solution. There exists a vast literature on

the Navier-Stokes equations and we refer here only to the books by Feistauer

([24]), Galdi ([29], [30]), Ladyženskaja ([48]) and Temam ([71], [72]).

Due to the possible appearance of periodic and homogeneous Dirichlet bound-

ary conditions in (2.6), we have to modify the classical solution spaces for the

velocity and the pressure. We define

V (Ωε) := {v ∈ H1(Ωε)n | div v = 0 in Ωε,

v is Γ1-periodic, v = 0 on Γ2 ∪ Sε}
and

Q(Ωε) := {q ∈ L2
0(Ω

ε) | q is Γ1-periodic)}.
Now, we have the following result:

Theorem 2.3. Let Ωε be the fluid part of a porous medium. If f ∈ L2(Ω)n is

sufficiently small, the Navier-Stokes problem (2.6) has a unique weak solution

(uε, pε) ∈ V (Ωε) × Q(Ωε).

Proof: If Γ1 = ∅, the result is classical and can be found in [24], chapter 8

for example. If Γ1 6= ∅, we have (at least) homogeneous Dirichlet boundary

conditions on Sε. Use the modified solution spaces V (Ωε) and Q(Ωε) in the

proofs of [24], chapter 8, and find that, they do not change any essential

statement there.

2.2. Formal asymptotic analysis

Since ε is assumed to be a small parameter, we are interested to find an asymp-

totic description of the Navier-Stokes system on a periodic porous medium as

ε → 0. The problem (2.6) contains two scales: the macroscopic scale of the

domain Ω and the microscopic scale of the periodicity cell Y . Therefore, it

is somehow natural to make this separation of scales explicit. The two-scale

Ansatz, first introduced in [10], expands the solutions in powers of ε and sep-

arates the scales by means of an additional variable y = x
ε
:

uε = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · ,(2.7)

pε =
1

ε

(
p0(x, y) + εp1(x, y) + ε2p2(x, y) + · · ·

)
,



2.2 Formal asymptotic analysis 19

where ui and pi are defined in Ω× Yf . Additionally, we suppose Y -periodicity

in the second argument and want ui(x, y) = 0 if y ∈ Ys.

In [65] and [49] the structure of the Ansatz (2.7), i.e. the choice of the leading

power of ε and of the sequence of powers, is not motivated. In [50] the leading

power is concluded from a priori estimates of the velocity and the pressure.

The structure of the powers of ε can be found by investigating equations (2.6)

and observing that, for example, functions associated with ε
j
2 , j ∈ N lack

the dependence on the excitation of the system and, therefore, would be zero

anyway.

Now, we proceed with the asymptotic analysis. Recalling the definition of the

variable y, we find the differential operators ∇, div and ∆ expanded by means

of the chain rule. When applied to functions depending on x and y, they read:

∇ = ∇x +
1

ε
∇y,(2.8)

div = divx +
1

ε
divy,

∆ = ∆x +
2

ε
divx ∇y +

1

ε2
∆y,

where the indices indicate differentiation with respect to x or y.

Substituting (2.7) and (2.8) in the Navier-Stokes system (2.6) and collecting

equal powers of ε, we obtain:

ε−2 : ∇yp0(x, y) = 0 in Ω × Yf ,

ε−1 : −µ∆yu0(x, y) + (u0(x, y) · ∇y)u0(x, y) + ∇yp1(x, y)

= f(x) −∇xp0(x, y) in Ω × Yf ,

divy u0(x, y) = 0 in Ω × Yf ,

ε0 : −µ∆yu1(x, y) − 2µ divx ∇yu0(x, y) + (u0(x, y) · ∇x)u0(x, y)

+(u0(x, y) · ∇y)u1(x, y) + (u1(x, y) · ∇y)u0(x, y)

+∇xp1(x, y) + ∇yp2(x, y) = 0 in Ω × Yf ,

divx u0(x, y) + divy u1(x, y) = 0 in Ω × Yf .

Since we are only interested in equations for the leading coefficient functions

in (2.7), we can stop at the order of ε0. Let’s have a closer look at the five

equations. Clearly, from the first equation it follows that

p0(x, y) = p0(x)

does not depend on y. Therefore, the second equation is a Navier-Stokes

equation for u0 and p1 in the variable y with right hand side f(x)−∇xp0(x) only
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depending on the macroscopic variable x. Of course, p0 is still an unknown.

The third equation is a continuity equation for u0 completing the Navier-Stokes

system on the periodicity cell. The fourth equation turns out to be superfluous.

Integrating the last equation over the fluid part of the periodicity cell, yields

divx

∫

Yf

u0(x, y) dy = −
∫

Yf

divy u1(x, y) dy(2.9)

= −
∫

∂Yf

ν(y) · u1(x, y) dΓ(y) = 0.

The boundary integral in (2.9) vanishes due to the homogeneous Dirichlet

conditions of u1 on ∂Ys and due to periodicity and anti-periodicity of u1 and

the outer normal ν, respectively.

The formal considerations and assumptions on the Ansatz functions give a

complete Navier-Stokes system comprising all necessary boundary conditions.

From a macroscopic point of view, we only have a first order partial differential

equation (2.9). As already mentioned in [49], we can not suppose to have no-

slip boundary conditions on Γ2 as stated in (2.6). Nevertheless, there exists

a slightly weaker assumption, which will turn out to be the correct choice.

Summing up the results of this paragraph including the macroscopic boundary

conditions, the Navier-Stokes system with two pressures reads






− µ∆yu0(x, y) + (u0(x, y) · ∇y)u0(x, y)

+ ∇yp1(x, y) = f(x) −∇xp0(x) in Ω × Yf ,

divy u0(x, y) = 0 in Ω × Yf ,

u0(x, y) = 0 on Ω × ∂Ys,

{u0, p1} is Y -periodic,

(2.10)







divx

∫

Yf
u0(x, y) dy = 0 in Ω,

ν(x) ·
∫

Yf
u0(x, y) dy is Γ1-antiperiodic,

p0 is Γ1-periodic,

ν(x) ·
∫

Yf
u0(x, y) dy = 0 on Γ2.

(2.11)

(2.10) will frequently be referred to as microscopic problem. Analogously,

(2.11) is called macroscopic problem. Both problems are coupled by the right

hand side f −∇xp0.

2.3. Existence, uniqueness and regularity of the solution

Before considering existence, uniqueness and regularity of the solution of the

Navier-Stokes system with two pressures (2.10), (2.11), we show corresponding
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properties of the solution of its linear counterpart, the Stokes system with two

pressures. It reads






− µ∆yu0(x, y) + ∇yp1(x, y)

= f(x) −∇xp0(x) in Ω × Yf ,

divy u0(x, y) = 0 in Ω × Yf ,

u0(x, y) = 0 on Ω × ∂Ys,

{u0, p1} is Y -periodic,

(2.12)







divx

∫

Yf
u0(x, y) dy = 0 in Ω,

ν(x) ·
∫

Yf
u0(x, y) dy is Γ1-antiperiodic,

p0 is Γ1-periodic,

ν(x) ·
∫

Yf
u0(x, y) dy = 0 on Γ2.

(2.13)

The system has the same structure as the Navier-Stokes system with two

pressures, i.e. it consists of a micro problem (2.12) and a macro problem (2.13).

The difference lies in the missing convective term in the micro problem, which

is a Stokes problem, hence giving the system its name. Following [49], we

introduce several Hilbert spaces. Let

W := {w ∈ H1(Yf )
n | divy w = 0 in Yf , w = 0 on ∂Ys, w is Y -periodic}.

Then W is a Hilbert space equipped with the scalar product of H1
0 (Yf )

n. Using

W , we define another Hilbert space

V := {v ∈ L2(Ω;W) | divx

∫

Yf

v(x, y) dy = 0 in Ω,

ν(x) ·
∫

Yf

v(x, y) dy is Γ1 -antiperiodic,

ν(x) ·
∫

Yf

v(x, y) dy = 0 on Γ2}

provided with the scalar product

(u, v)V := µ

∫

Ω

∫

Yf

∇yu(x, y) : ∇yv(x, y) dy dx.

Clearly, W and V are function spaces designed for velocities defined on the

periodicity cell and on the product space Ω× Yf , respectively. It will turn out

that the following space Q0 is appropriate for the pressure p0:

Q0 := {q ∈ H1(Ω) | q is Γ1 -periodic,

∫

Ω

q(x) dx = 0}.
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In a similar way as for the velocity, one constructs the pressure space for p1.

We set

R := {r ∈ L2
0(Yf ) | r is Y -periodic}

and

Q1 := {q ∈ L2(Ω;R) | q is Γ1-periodic}.
Let us define a scalar product for the space Q1 by

(q, r)Q1 :=

∫

Ω

∫

Yf

q(x, y)r(x, y) dy dx.

Now, the next theorem states a solvability result of the Stokes system with

two pressures.

Theorem 2.4. If f ∈ L2(Ω)n, the problem

Find u0 ∈ V , such that(2.14)

µ
∫

Ω

∫

Yf
∇yu0(x, y) : ∇yv(x, y) dy dx =

∫

Ω

∫

Yf
f(x) · v(x, y) dy dx, ∀v ∈ V

is uniquely solvable. Moreover, it is equivalent in the weak sense to the Stokes

system with two pressures (2.12), (2.13) implying the unique existence of the

pressures (p0, p1) ∈ Q0 ×Q1.

Proof: We will only present the ideas to prove this theorem. For a detailed

proof, we refer to [49].

The unique solvability of the variational formulation (2.14) is provided by

the Lax-Milgram lemma. Its assumptions are immediately fulfilled since the

bilinear form is the scalar product of the Hilbert space V .

Now, if (u0, p0, p1) is a solution of (2.12), (2.13), one has to show that
∫

Ω

∫

Yf

(∇xp0(x) + ∇yp1(x, y)) · v(x, y) dy dx = 0, ∀v ∈ V .(2.15)

Applying partial integration, taking into account the boundary conditions of

the pressures and test functions and using the divergence property of the test

functions, yields the result. The opposite insertion is proved by constructing

the two pressures. In [49] a penalty method is used. In [55] special test

functions for the variational problem are constructed to get rid of the micro

scale. Then, they apply a result essentially due to DeRahm, i.e. the fact that

any vector function orthogonal to divergence free vector functions is a gradient.

Therefore, they obtain p0. Repeating the argument, the unique existence of

the microscopic pressure p1 is obtained.
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Remark 2.5. In Theorem 2.4 the pressures p0 and p1 are eliminated. An

alternative way of proving unique existence and regularity is shown in the last

section of the chapter (see Theorem 2.14).

In order to proof unique solvability of the nonlinear problem and in view of

the convergence result in the next section, the regularity with respect to x has

to be increased. Following [50], we introduce the following Hölder spaces

Ṽ := {v ∈ C1,γ(Ω;W) | divx

∫

Yf

v(x, y) dy = 0 in Ω,

ν(x) ·
∫

Yf

v(x, y) dy is Γ1 -antiperiodic,

ν(x) ·
∫

Yf

v(x, y) dy = 0 on Γ2},

Q̃0 := {q ∈ C2,γ(Ω) | q is Γ1 -periodic,

∫

Ω

q(x) dx = 0}

and

Q̃1 := {q ∈ C1,γ(Ω;R) | q is Γ1-periodic}.
Additionally, we assume ∂Ω to be of class C2,γ . The definition of the regularity

of the boundaries goes along the same construction as given for Lipschitz

continuous boundaries in Chapter 1 with adapted regularity of the functions

ai. Now, we have

Theorem 2.6. There exists a neighborhood N ⊂ C1,γ(Ω)n of zero, such that

the problem (2.10), (2.11) is uniquely solvable with (u0, p0, p1) ∈ Ṽ × Q̃0 × Q̃1

for all f ∈ N .

Proof: We will only point out the ideas of the proof. In [50] the implicit

function theorem (see [77]) is used to prove the assertion. Therefore, a function

G : Ṽ × Q̃0 × Q̃1 × C1,γ(Ω)n → C1,γ(Ω,W ′) is defined by

G(v, q1, q0, g) := −µ∆yv(x, y) + (v(x, y) · ∇y)v(x, y)

+∇yq1(x, y) + ∇xq0(x) − g(x).

Here, W ′ denotes the dual space of W . Now, they show that G is continuously

differentiable at (0, 0, 0, 0) and that its partial Fréchet derivative with respect

to (v, q1, q0) is invertible. The latter claim leads to the question of unique

solvability of a problem quite similar to the Stokes system with two pressures,

but with higher regularity. It can be answered in complete analogy like in the

proof of Theorem 2.4.
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2.4. Convergence of the homogenization process

In this section we will prove a convergence result which shows how the so-

lution of the homogenized system (2.10), (2.11) approximates the solution of

the Navier-Stokes system (2.6). In [50] the cases of periodic and impervious

boundaries are considered separately. Due to our setup where both types of

boundaries may appear, we have to follow the arguments of the impervious

case. Only minor formal changes are necessary due to the presence of Γ1. The

convergence result is restricted to the case n = 2. Additionally, more regular-

ity is needed. Therefore, we suppose that ∂Ω is of class C4 and ∂Ys is of class

C2. By defining

˜̃V := {v ∈ C2,γ(Ω; C2,γ
per(Yf )

2) | divx

∫

Yf

v(x, y) dy = 0 in Ω,

ν(x) ·
∫

Yf

v(x, y) dy is Γ1 -antiperiodic,

ν(x) ·
∫

Yf

v(x, y) dy = 0 on Γ2},

˜̃Q0 := {q ∈ C3,γ(Ω) | q is Γ1 -periodic,

∫

Ω

q(x) dx = 0}

and

˜̃Q1 := {q ∈ C2,γ(Ω; C1,γ
per(Yf )) | q is Γ1-periodic,

∫

Yf

q(x, y) dy = 0, ∀x ∈ Ω},

we have the following variant of Theorem 2.6:

Theorem 2.7. There exists a neighborhood N ⊂ C2,γ(Ω)2 of zero, such that

the problem (2.10), (2.11) is uniquely solvable with (u0, p0, p1) ∈ ˜̃V × ˜̃Q0 × ˜̃Q1

for all f ∈ N .

Proof: To prove the theorem, one can copy the proof of Theorem 2.6 and

replace the corresponding function spaces.

Remark 2.8. The subscript per in the definition of the function spaces ˜̃V ,
˜̃Q0 and ˜̃Q1 indicates full periodic boundary conditions on ∂Y .
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Setting

uε
0(x) := u0(x,

x

ε
) and pε

1(x) := p1(x,
x

ε
),

we have

Theorem 2.9. Let f ∈ C2,γ(Ω)2. Then there exists a constant d, such that

for ‖f‖C1,γ(Ω)2 < d we have

‖uε − uε
0‖L2(Ω)2 ≤ Cεl, 0 < l <

1

6
.

Furthermore, there exists an extension Π̃ε of Πε := εpε − p0 − εpε
1 and

‖Π̃ε‖Lq
0(Ω) ≤ Cεl, 0 < l <

1

6
, ∀q ∈]1, 2[.

Proof: The proof is very technical and can be found in detail in [50]. Nev-

ertheless, we repeat the essential ideas.

The observation, that uε
0 does not vanish on Γ2 makes the construction of a

suitable boundary layer necessary. According to [51], there exists δ0 > 0 and

a function sδ ∈ C3(Ω)2, 0 < δ ≤ δ0 fulfilling

div sδ = 0 in Ω,

sδ(x) =

∫

Yf

u0(x, y) dy on Γ2,

‖Dm sδ‖Lq(Ω) ≤ Cδ
1
q
−|m|, |m| ≤ 3, q ∈ [1,∞[,

where m is a multi-index.

Let α ∈ R
2 be the right hand side of the micro problem (2.10). The correspond-

ing velocity and pressure solutions are denoted by w(α) and π(α), respectively.

The permeability function F : R
2 → R

2 is defined by

F(α) :=

∫

Yf

w(α) dy.(2.16)

Taking the microscopic mean value of u0 yields the averaged velocity u0, i.e.

u0(x) :=

∫

Yf

u0(x, y) dy.(2.17)

Now, by choosing f small enough, i.e. ‖f‖C1,γ(Ω)2 < d, the following definitions

are well-posed:

vδ(x, y) := w
(
F−1

(
F(f(x) −∇xp0(x)) − sδ(x)

))
(y)(2.18)

= w
(
F−1

(
u0(x) − sδ(x)

))
(y),

qδ(x, y) := π
(
F−1

(
F(f(x) −∇xp0(x)) − sδ(x)

))
(y)

= π
(
F−1

(
u0(x) − sδ(x)

))
(y).
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For details on the constant d, we refer to [50], where d is computed explicitly.

Clearly, the computations involve bounds on ∇p0 in terms of an appropriate

norm of f .

The second observation is the fact, that div vδ(x, x
ε
) = divx vδ(x, x

ε
) 6= 0.

Therefore, a divergence corrector is found by considering the following prob-

lem, which has at least one solution:

Find Qδ ∈ C2(Ω; C2
per(Yf ))

2, such that

divy Qδ = − divx vδ in Ω × Yf ,

Qδ = 0 on Ω × ∂Ys.

Since Qδ does not vanish on ∂Ω, a cut-off function ξδ ∈ C2(Ω) has to be used

with ξδ = 1 on ∂Ω. Its support is restricted to points, whose distance to ∂Ω

is less than ε, and, for 0 ≤ |m| ≤ 2, its mth order derivatives are of order

O(ε−|m|). Now, we set

vδ,ε(x) :=

{

vδ(x, x
ε
), if x ∈ Ωε,

0, if x ∈ Ω\Ωε
(2.19)

and

Qδ,ε(x) :=

{

εQδ(x, x
ε
), if x ∈ Ωε,

0, if x ∈ Ω\Ωε.
(2.20)

Observe, that in view of a convergence results in L2(Ω)2 the definitions (2.19),

(2.20) include an zero extension to Ω. In the same way, uε is extended without

change in notation. The extension of the pressures pε and qδ is more compli-

cated and we refer to [53].

We define the differences

wε(x) := uε(x) −
(
vδ,ε(x) + (1 − ξε(x))Qδ,ε(x)

)
,(2.21)

Π̃ε(x) := εpε(x) −
(
p0(x) + εqδ(x,

x

ε
)
)
,

where the pressures are extended to Ω without change in notation. Then,

plugging (2.21) in (2.6), yields

−µε2∆wε + ∇Π̃ε + ε(uε · ∇)wε + ε(wε · ∇)vδ,ε = Ψδ,ε,(2.22)

where Ψδ,ε collects all terms which are not explicitly written in (2.22). When

wε is taken as a test function in (2.22), various estimates on the appearing

functions and their derivatives, a divergence estimate of the approximating

velocity vδ,ε(x) + (1− ξε(x))Qδ,ε(x) and a bound on the pressure extension Π̃ε

give the assertion of the theorem.
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Remark 2.10. In [50] an alternative convergence result is stated for the

case when Γ2 = ∅. Due to the absence of boundary layers, convergence is

improved to the order of ε.

2.5. Extension of Darcy’s law

We repeat the well-known equivalence of the Stokes system with two pressures

(2.12), (2.13) and Darcy’s law. Based on this result, we explain the nonlinear

extension of Darcy’s law by the Navier-Stokes system with two pressures.

2.5.1. Derivation of Darcy’s law from the Stokes system with

two pressures. The first auxiliary step in the derivation of Darcy’s law is the

formulation of Stokes problems on the periodicity cell. The canonical basis

vectors in R
n are used as right hand sides of the Stokes equations. Hence, the

ith cell problem is defined by

−∆ywi + ∇yπi = ei in Yf ,(2.23)

divy wi = 0 in Yf ,

wi = 0 on ∂Ys,

{wi, πi} is Y -periodic.

The variational formulation of (2.23) reads

Find wi ∈ W , such that
∫

Yf
∇ywi : ∇yv dy =

∫

Yf
ei · v dy, ∀v ∈ W .(2.24)

Clearly, (2.23) (resp. (2.24)) has unique solutions (wi, πi) ∈ W × R. Due to

linearity with respect to the right hand side, the micro problem (2.12) of the

Stokes system with two pressures can be rewritten as

u0(x, y) =
1

µ

n∑

i=1

wi(y)(fi(x) − ∂p0(x)

∂xi

),(2.25)

where the microscopic pressure p1 has been eliminated. Observe, that due to

the definition of wi the continuity equation with respect to y and the micro-

scopic boundary conditions are fulfilled by u0. Taking the mean in (2.25) and

using the notation (2.17), we obtain the well-known linear relationship of the

macroscopic velocity and the difference of outer forces and the pressure:

u0(x) =
K
µ

· (f(x) −∇xp0(x)),(2.26)
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where the permeability tensor K is defined as

(K)ij = kij =

∫

Yf

wji dy,(2.27)

where wji is the i-th component of wj. Equation (2.26) expresses Darcy’s law

in differential form.

Definition 2.11. A matrix A ∈ R
n×n is called positive, if xT · A · x ≥

0, ∀x ∈ R
n. If, additionally, the equivalence xT ·A · x = 0 ⇔ x = 0 holds, A

is called positive definite.

In the subsequent chapters, we will need the following classical property of the

permeability tensor.

Lemma 2.12. K is symmetric and positive definite.

Proof: Following [65], symmetry of K is shown by using the variational

formulation (2.24) of the cell problems:

kij =

∫

Yf

wji dy =

∫

Yf

wj · ei dy =

∫

Yf

∇ywj : ∇ywi dy

=

∫

Yf

∇ywi : ∇ywj dy =

∫

Yf

wi · ej dy =

∫

Yf

wij = kji.

Let α = (α1, . . . , αn)T ∈ R
n. Then, K is positive, since

α · K · αT =
n∑

i,j=1

αiαjkij =
n∑

i,j=1

αiαj

∫

Yf

wj · ei dy

=
n∑

i,j=1

αiαj

∫

Yf

∇ywj : ∇ywi dy = ‖
n∑

i=1

αiwi‖2
Yf

≥ 0.

To complete the proof, it remains to show the equivalence

n∑

i=1

αiwi = 0 ⇔ αi = 0 ∀i ∈ {1, . . . , n}.(2.28)

Let’s assume
∑n

i=1 αiwi = 0. Since Yf is Y -periodic and connected, we can

construct test functions vi ∈ W , that fulfill

∫

Yf

vi dy = αiei.
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Using
∑n

i=1 vi as test function in the variational formulation of the cell prob-

lems, yields

0 =

∫

Yf

(∇y

n∑

i=1

αiwi) : (∇y

n∑

i=1

vi) dy =

∫

Yf

n∑

i=1

αiei ·
n∑

i=1

vi dy

=

∫

Yf

(
n∑

i=1

αiei)
2 dy =

n∑

i=1

α2
i .

Therefore, we have αi = 0. The other inclusion of (2.28) is obvious.

Remark 2.13. The construction of the test functions in the proof of Lemma

2.12 can be done by considering solutions of modified cell problems. For in-

stance, let i = 1 and replace the periodic boundary conditions on the upper

and lower boundaries of the periodicity cell by no-slip conditions. The solu-

tion of this problem is denoted by v∗
1. From a physical point of view, it is

clear that the integral over the left boundary of the normal component of v∗
1

is strictly positive, since the obstacle does not block the flow completely. Due

to mass conservation, the integral over every cross section in y direction takes

the same strictly positive value. By using similar arguments, one can conclude

that the integrals over cross sections in x direction are zero. Therefore, we

have
∫

Yf
v∗

1 dy = α∗
1e1. By scaling of v∗

1, we obtain the desired test function.

The properties of the permeability tensor K can be employed to prove a result

similar to Theorem 2.4. Let ∂Ω be Lipschitz continuous, then we have

Theorem 2.14. The Stokes system with two pressures has a unique solution

(u0, p0, p1) ∈ V ×Q0 ×Q1.

Proof: Following [49], the macroscopic continuity equation and boundary

conditions read in terms of the average velocity u0:

divx u0(x) = 0 in Ω,(2.29)

ν(x) · u0(x) Γ1-antiperiodic,

ν(x) · u0(x) = 0 on Γ2.

Substituting (2.26) in (2.29), the averaged velocity is eliminated. Via (2.26),

the impervious boundary conditions on u0 induce Neumann boundary condi-

tions on the pressure p0 on Γ2. Hence, we have the following linear elliptic
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problem with constant coefficients:

− divx

(K
µ

· ∇xp0(x)
)

= − divx

(K
µ

· f(x)
)

in Ω,(2.30)

p0 is Γ1-periodic,

ν(x) ·
(K
µ

· ∇xp0(x)
)

= ν(x) ·
(K
µ

· f(x)
)

on Γ2

Clearly, (2.30) admits a unique solution in Q0. The velocity u0 ∈ V is given by

formula (2.26). For the second pressure p1, there exists an analogous formula:

p1(x, y) =
n∑

i=1

πi(y)(fi(x) − ∂p0(x)

∂xi

),(2.31)

hence giving p1 ∈ Q1. Uniqueness of u0 and p1 is induced by uniqueness of p0

and uniqueness of the solutions of the cell problems.

Remark 2.15. The analytic splitting of the Stokes system with two pres-

sures into (2.23), (2.27) and (2.30) is possible due to linearity of the system.

In the nonlinear case, where the convective term is still present on the micro

scale, the situation is more complicated. In the next chapter, we will make

use of the splitting into micro and macro problem to numerically solve the

Navier-Stokes system with two pressures.

2.5.2. Connection of the Navier-Stokes system with two pressures

and Darcy’s law. In the previous section, it is shown that the Stokes sys-

tem with two pressures is equivalent to Darcy’s law. It is intuitively obvious,

that for large viscosities the Stokes equations on the micro scale approximate

the Navier-Stokes equations, since velocities become small and, therefore, the

convective term becomes negligible. A mathematical proof for the (single pres-

sure) Navier-Stokes problem is given in [30], where the difference of the Stokes

and Navier-Stokes solution is bounded by C/µ for µ → ∞ and some constant

C. This result is often referred to as infinite viscosity limit of the Navier-Stokes

equations. Hence, it is reasonable to expect, that for large µ, the Navier-Stokes

system with two pressures will approximately give Darcian-like flow. On the

other hand, for decreasing µ, we expect deviations due to inertia.

In [50] and [55], these expectations are approved in a more general framework

which starts from the scaling of the Navier-Stokes system on a periodic porous

medium. Within this framework, the asymptotic behavior of the Reynolds

number (2.5) used to derive the Navier-Stokes system with two pressures is
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just a special case (γ = 1) of

Reε =
1

µ
ε−γ,

where 0 ≤ γ ≤ 1. In [65] and [2] the case γ ¿ 1 is investigated. Due to the

asymptotically low Reynolds number, they use the Stokes system instead of

the Navier-Stokes system on the pore scale. Hence, the Stokes system with two

pressures is obtained. Even if we keep the convective term, it is shown in [55],

that the final result is Darcy’s law when solely considering the leading order

terms of the asymptotic expansions. By additionally taking into account the

first lower order term, it is possible to derive a nonlinear extension of Darcy’s

law, whose nonlinearity becomes the more important the closer γ approaches

1. In the case γ = 1, one can derive a structurally similar law, which reads

u0 =
K
µ

(
f −∇p0

)
+

1

µ3

n∑

i,j=1

T ij
(
fi −

∂p0

∂xi

)(
fj −

∂p0

∂xj

)
(2.32)

+O
(
|f −∇p0|3

)
.

We will repeat the derivation of (2.32) in the next chapter. The numerical

results derived in Chapter 3 and 4 will confirm these theoretical results and

will illustrate in detail how the Navier-Stokes system with two pressures extents

Darcy’s law.





CHAPTER 3

Numerical solution of the two pressure system by scale

splitting

The aim of this chapter is to solve the Navier-Stokes system with two pressures

numerically. In contrast to Chapter 4, where the system is solved as a whole,

we want to make use of the splitting of (2.10), (2.11) into micro and macro

problems.

Two ways of solving the micro problem are established. The theoretical back-

ground of the first approach is due to [50]. It is based on a Taylor expansion

of the permeability function, which has already been introduced in Chapter

2. This approach requires the solution of a sequence of Stokes problems on

the periodicity cell and, to the best of the author’s knowledge, is numerically

investigated for the first time. The second approach consists of the discrete

computation of the permeability function by solving the Navier-Stokes system

on the periodicity cell for several right hand sides. The discrete permeability

function is then least-squares fitted in powers of (fi − ∂p0

∂xi
), i = 1, . . . , n, giving

the same structure of the permeability function as in the case of the Taylor

expansion. The type of the macro problem depends on the properties of the

permeability function. It is shown in [50], that for small f the macro problem

is a quasilinear elliptic equation of second order for the pressure p0.

After having formulated the micro and macro problems in the first section of

this chapter, the numerical solution algorithms are presented. We introduce a

general augmented Lagrangian Uzawa conjugate gradient method due to [28],

which can be applied to solve a certain class of saddle-point problems. Fur-

thermore, we present a general least-squares conjugate gradient method due

to [36]. It will serve as nonlinear solver. By means of these two basic solvers,

we will derive discrete variants of our micro and macro problems: After dis-

cretizing the Stokes problems by finite elements, the Uzawa algorithm reduces

the solution of the discrete Stokes systems to the solution of a sequence of lin-

ear elliptic equations of second order. The Navier-Stokes problems appearing

during the discrete computation of the permeability function will first be lin-

earized by the least-squares conjugate gradient method. Thereby, one obtains

a sequence of Stokes problems to which the Uzawa method is again applied.

Linearization of the quasilinear macro equations by the least-squares algorithm
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yields a sequence of linear elliptic problems of second order. All equations are

discretized in two dimensions by finite element methods.

An extensive numerical study of the Navier-Stokes system with two pressures

closes this chapter. The numerical study focuses on geometric variations of the

periodicity cell and the macro domain Ω. Moreover, variations of the viscosity

µ as control parameter of inertia are performed. The study illustrates how

inertia effects act on the micro scale and macro scale and how the filtration

laws gradually deviate from Darcy’s law when inertia becomes more and more

important. Thereby, it can easily observed, that the well-known Forchheimer

law is in general not able to approximate the complex filtration laws obtained

by the Navier-Stokes system with two pressures.

3.1. Micro and macro problems

The Navier-Stokes system with two pressures comprises a set of partial differ-

ential equations and appropriate boundary conditions. The equations related

to the micro scale are grouped in (2.10) and form a Navier-Stokes system on

the periodicity cell with periodic and no-slip boundary conditions on the outer

boundary and on the boundary of the obstacle, respectively. It reads

−µ∆yw(α) + (w(α) · ∇y)w(α) + ∇yπ(α) = α in Yf ,(3.1)

divy w(α) = 0 in Yf ,

w(α) = 0 on ∂Ys,

{w(α), π(α)} is Y -periodic,

where w(α), π(α) and α = (α1, . . . , αn)T ∈ R
n replace u0, p1 and f − ∇p0,

respectively, in (2.10). The variational formulation of (3.1) reads

Find w(α) ∈ W , such that

µ
∫

Yf
∇yw(α) : ∇yv dy +

∫

Yf

(
w(α) · ∇y)w(α)

)
· v dy(3.2)

=
∫

Yf
α · v dy, ∀v ∈ W .

The macroscopic mass balance equation and corresponding boundary condi-

tions are grouped in (2.11). In the Proof of Theorem 2.9, we introduced the

permeability function F : α 7→ F(α) :=
∫

Yf
w(α) dy. Clearly, it is only well-

defined, if the corresponding Navier-Stokes system admits a unique solution,

i.e. when α is small. To fix ideas, let α ∈ N0, where N0 ∈ R
n is a sufficiently

small neighborhood of zero. The existence of N0 is guaranteed by classical

uniqueness results for the Navier-Stokes system, where smallness of the right

hand side assures controllability of the convective term by the viscous term
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(see Chapter 2 and references therein). In [50], N0 is explicitly computed.

Now, by means of the permeability function (2.11) can be rewritten as

divx F(f −∇xp0) = 0 in Ω,(3.3)

p0 is Γ1-periodic,

ν(x) · F(f −∇xp0) = 0 on Γ2.

The type of problem (3.3) depends on the properties of the permeability func-

tion F . In [50], a detailed analysis is developed. We will shortly summarize

the main ideas and results.

By formally taking the derivatives with respect to α in (3.1), the following

system of partial differential equations is obtained:

−µ∆y
∂w(α)

∂αj

+

(
∂w(α)

∂αj

· ∇y

)

w(α)(3.4)

+ (w(α) · ∇y)
∂w(α)

∂αj

+ ∇y
∂π(α)

∂αj

= ej in Yf

divy
∂w(α)

∂αj

= 0 in Yf ,

∂w(α)

∂αj

= 0 on ∂Ys,

{∂w(α)

∂αj

,
∂π(α)

∂αj

} is Y -periodic.

We remark, that letting α = 0 in (3.4) and since w(0) = 0, leads to slightly

modified linear cell problems (2.23) which are known from the homogenization

process in the linear case. The difference comes only from the viscosity µ.

More explicitly, setting wj := ∂w(0)
∂αj

and πj := ∂π(0)
∂αj

, we find

−µ∆ywj + ∇yπj = ej in Yf ,

div wj = 0 in Yf ,

wj = 0 on ∂Ys,

{wj, πj} is Y -periodic.

The positive and symmetric permeability tensor introduced in the previous

chapter in the context of Darcy’s law is then given by

1

µ
(K)ij =

1

µ
kij =

∫

Yf

wji dy =

∫

Yf

∂w(0)

∂αj

dy =
∂Fi(0)

∂αj

.(3.5)

In (3.5), the permeability tensor does not include the viscosity of the fluid,

reflecting the fact, that we think of permeability as being an intrinsic property
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of the porous medium and that permeability does not include fluid properties.

Now, we summarize essential properties of the permeability function.

Lemma 3.1. There exists a neighborhood N1 of zero fulfilling the inclusion

N 1 ⊂ N0 ⊂ Rn and constants C1, C2 > 0, such that

(
F(α) −F(β)

)
·
(
α − β

)
> 0, α 6= β, ∀α, β ∈ N0,(3.6)

F ∈ C1(N0)
n(3.7)

and

C1‖ξ‖2 ≤∑n
i,j=1 ξiξj

∂Fi(α)
∂αj

≤ C2‖ξ‖2, ∀α ∈ N 1, ∀ξ ∈ R
n.(3.8)

Proof: For details, we refer to [50]. The idea to prove monotonicity is as

follows. Considering the variational formulations of (3.1) for α, β ∈ N0 and

using w(α) − w(β) as test function, leads to

(
F(α) −F(β)

)
· (α − β) = µ

∫

Yf

|∇y

(
w(α) − w(β)

)
|2 dy(3.9)

+

∫

Yf

((
w(α) − w(β)

)
· ∇y

)
w(β) ·

(
w(α) − w(β)

)
dy.

Controlling the convective term in (3.9) by the viscous term, requires the same

restrictions to the left hand side as used to get unique solvability. Therefore,

we have (3.6).

Continuous differentiability (3.7) is due to the above considerations in com-

bination with continuity properties of the linear, bilinear and trilinear forms

appearing in the variational formulation of the Navier-Stokes systems (3.1)

and (3.4).

To prove the upper bound in (3.8), ξiξj
∂w(α)
∂αi

is used as test function in the

variational formulation of (3.4). Again, bounding the convective term and us-

ing Sobolev embedding theory, yields the results. To obtain the lower bound,

the permeability tensor K is employed. Due to its positive definiteness and

since ∂Fi(0)
∂αj

= 1
µ
kij, it is possible to extend the positive definiteness of K to a

neighborhood N1 ⊂ N0 of zero.

To be able to apply standard theory for quasilinear partial differential equa-

tions of second order, F has to be extended in an appropriate way, such that

(3.8) holds for all α ∈ R
n.

Lemma 3.2. There exists a neighborhood N2 ⊂ N1 of zero, an extension

F̃ : R
n → R

n of the permeability function F and constants C̃0, C̃1, C̃2 > 0,
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such that

F̃ ∈ C1(Rn)n,(3.10)

‖F̃(α)‖ ≤ C̃0‖α‖, ∀α ∈ R
n,(3.11)

C̃1‖ξ‖2 ≤∑n
i,j=1 ξiξj

∂F̃i(α)
∂αj

≤ C̃2‖ξ‖2, ∀α, ξ ∈ R
n(3.12)

and

F̃(α) = F(α), ∀α ∈ N2.(3.13)

Proof: The main ideas to prove the Lemma go along the following lines. In

[50], the neighborhoods N0 and N1, which insure well-posedness and ellipticity

of F , respectively, are explicitly computed as balls around zero with certain

radii

σ0 = µ
(1 − |Yf |)3

C(n)|Yf |1/2
and σ1 =

λ1(K)σ0

λ1(K) + 2C̃0

,(3.14)

respectively. In (3.14), λ1(K) denotes the smallest eigenvalue of the perme-

ability tensor (3.5). Let ωn be the volume of the unit ball in R
n, then the

constants in (3.14) are defined by

C̃0 :=
|Yf |

(1 − |Yf |)2
nnω2−2/n

n

and

C(n) := n3n/2−2ω3−3/n
n (3n/(4 − n))3/2.

Set

σ2 =
λ1(K)σ0

λ1(K) + 6C̃0

(3.15)

and choose σ ∈ R, such that 0 < σ < σ2(< σ1 < σ0). In [50], the authors

define a positive and monotonely decreasing function Ψ by

Ψ(t) :=







1, t < 1,

1 − 2(t−1)2σ2

(σ0−σ)2
, 1 ≤ t < σ0+σ

2σ
,

1 − 2(t−1)σ(σ0−σt)
(σ0−σ)2

− 2tσ−σ0−σ
σ0−σ

, σ0+σ
2σ

≤ t < σ0

σ
,

0, t ≥ σ0

σ
.

Ψ is continuously differentiable on R
+. Then, the extension of F is defined by

F̃(α) := Ψ
(‖α‖2

σ2

)
F(α) + C̃0

(
1 − Ψ

(‖α‖2

σ2

))
α.

By means of the extension and the above defined constants, the properties

(3.10) - (3.13) follow.
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Now, we are able to state two theorems on unique solvability of the macro

problem.

Theorem 3.3. Let ∂Ω be of class C2,γ. Then, there exists a neighborhood

N ⊂ C1,γ(Ω)n of zero, such that the problem (3.3) is uniquely solvable with

p0 ∈ Q̃0 for all f ∈ N .

Proof: Using Lemma 3.2, the proof follows for the extension F̃ from results

of the book by Ladyženskaja and Ural’ceva ([47]). By choosing f sufficiently

small, ‖f −∇xp0‖C1,γ(Ω)n < σ2 can be achieved, and, therefore, problem (3.3)

is solved due to (3.13).

Remark 3.4. Note, that Theorem 3.3 is the basis of an alternative way to

prove solvability of the Navier-Stokes system with two pressures. Once the

macroscopic pressure p0 is known, the unique existence of (u0, p1) ∈ Ṽ × Q̃1 is

immediate.

In view of the numerical solution of the macro problem, we formulate

Theorem 3.5. Let ∂Ω be Lipschitz continuous and f ∈ H1(Ω)n. Then,

problem (3.3) with F being substituted by F̃ is uniquely solvable with p0 ∈ Q0.

Proof: See [78] for example.

Remark 3.6. Clearly, after having computed solutions of the modified equa-

tion of Theorem 3.5, one will have to check a posteriori, whether the solution

stays in the range of F or not.

Theoretical considerations of properties of the permeability function give solv-

ability of the macro problem. Nevertheless, to solve the macro problem nu-

merically, one has to compute F . In [50], it is shown, that the permeability

function can be expanded in a Taylor series around zero. Therefore, the dif-

ferential calculus from above is extended. Let m be a multi-index. Then,

derivatives of the Navier-Stokes system with respect to the right hand side α
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are defined by

−µ∆y

(
Dm

α w(α)
)

+ ∇y

(
Dm

α π(α)
)

= δ(m)(3.16)

−
m∑

j=0

(
m

j

)
((

Dm
α w(α)

)
· ∇y

)
Dm−j

α w(α) in Yf ,

divy

(
Dm

α w(α)
)

= 0 in Yf ,

Dm
α w(α) = 0 on ∂Ys,

{Dm
α w(α), Dm

α π(α)} is Y -periodic,

where the Kronecker-like symbol δ is given by

δ(m) :=







α, if |m| = 0,

emi
, if |m| = 1 and mi = 1,

0, else.

Setting

Dm
α F(α) =

∫

Yf

Dm
α w(α) dy,(3.17)

we can formulate a theorem on the Taylor expandability of the permeability

function F . It reads

Theorem 3.7. There exists a neighborhood N3 ⊂ N0 of zero, such that

F(α) =
∑

m∈Nn

1

m!

(
Dm

α F
)
(0)αm, ∀α ∈ N2,(3.18)

i.e. F is real analytic and coincides with its Taylor expansion in N2.

Proof: In [50], bounds on ‖Dm
α F(α)‖ are established by an induction proof.

The root test yields the radius of convergence of the Taylor series to be

σ3 = σ0

(
2 · 3n + µ − 4 − 2

√

(3n − 2) · (3n + µ − 2)
)
.

Remark 3.8. The Taylor coefficients Dm
α F(0) can be computed recursively

for |m| = 0, 1, 2, . . . by linear Stokes problems. This is due to α = 0 and

w(0) = 0. In this case, the right hand side of the momentum balance equation

in (3.16) depends only on previously calculated solutions Dj
α w(0), |j| < |m|.

Besides the computation of F in terms of its Taylor expansion, one can directly

solve (3.1) for various right hand sides α. This second approach leads to
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a discrete description of the permeability function. We will make use of this

possibility by discretizing the right hand side in a ball around zero as illustrated

by Figure 1. Knowing the permeability function discretely, a least-squares fit in

powers of (fi− ∂p0

∂xi
) is performed, giving the same structure of F as in the case

of the Taylor expansion. This polynomial structure might be interesting by

itself. This is due to the fact, that many publications on nonlinear extensions

of Darcy’s law try to find the correct power coming next to the linear term.

Nevertheless, in view of an accurate description of F when solving the macro

problem, some kind of interpolation may be better. We will come back to this

point in Section 3.2.4.

α

α1

2

Figure 1. Discretization of the permeability function

3.2. Numerical solution algorithms

3.2.1. An augmented Lagrangian Uzawa conjugate gradient

method. In view of solving the Stokes problems on the periodicity cell, we

present a variant of Uzawa’s algorithm. It is studied in full detail in [28] and,

therefore, we only give the basic ideas. Many of the following statements are

considered in a more general framework in [16].

Let n,m ∈ N and A ∈ R
n×n be a symmetric and positive definite matrix,
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B ∈ R
n×m and b ∈ R

n. Then, we define a quadratic functional J : R
n → R by

J(v) :=
1

2
(Av, v) − (b, v), v ∈ R

n.(3.19)

By means of (3.19), we formulate the following well-posed equality constrained

minimization problem:

Find u ∈ R
n, such that

J(u) ≤ J(v), ∀v ∈ Ker B = {v ∈ R
n|Bv = 0},(3.20)

Bu = 0.

By introducing a Lagrange multiplier p ∈ R
m, the Lagrangian L : R

n×R
m → R

with respect to (3.20) reads

L(v, q) := J(v) + (q, Bv).

(u, p) ∈ R
n × R

m is called a saddle-point of L, if

L(u, q) ≤ L(u, p) ≤ L(v, p), ∀v ∈ R
n, ∀q ∈ R

m,

or, equivalently,

Min
v∈Rn

Max
q∈Rm

L(v, q) = L(u, p) = Max
q∈Rm

Min
v∈Rn

L(v, q).

We summarize basic properties of saddle-points of L and their connection to

the minimization problem (3.20) in the following

Theorem 3.9. L has at least one saddle-point (u, p) ∈ R
n × R

m, where u

is the solution of (3.20) and common to all saddle-points of L. Saddle-points

of L a characterized by the first order optimality conditions

Au + BT p = b,

Bu = 0.

Interpreting B as a linear mapping from R
n into R

m, uniqueness of p is guar-

anteed by B being surjective.

Proof: See [28] and references therein.

First introduced by [41] and [60], the augmented Lagrangian Lr, 0 < r ∈ R is

given by

Lr(v, q) := J(v) + (q, Bv) +
r

2
‖Bv‖2 = L(v, q) +

r

2
‖Bv‖2.(3.21)

Remark 3.10. Clearly, any saddle-point of Lr is a saddle-point of L and

vice-versa. Adding the quadratic term r
2
‖Bv‖2 to the functional L will improve

convergence of the solution algorithm. Letting q = 0 in (3.21), we observe the
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penalized functional with respect to the linear constraint Bu = 0. Neverthe-

less, the presence of the term (q, Bv) avoids making r tend to infinity to obtain

the exact solution of (3.20). Hence, the condition number of the linear systems

will not be deteriorated.

Now, we will consider Uzawa’s algorithm ([5], [37]) to calculate a saddle-point

of Lr. The algorithm has the following iterative structure:

Step 0: Initialization

Let

p0 ∈ R
m(3.22)

be given.

For 0 ≤ j ∈ N0, assuming pj is known, compute uj ∈ R
n, pj+1 by

Step 1:

Solve

Find uj ∈ R
n, such that(3.23)

Lr(u
j, pj) ≤ Lr(v, pj), ∀v ∈ R

n.

Step 2:

Set

pj+1 = pj + ρjBuj, 0 < ρj ∈ R.(3.24)

Set j = j + 1 and go to Step 1.

Remark 3.11. Note, that (3.23) is equivalent to solving

(A + rBT B)uj + BT pj = b.(3.25)

Uzawa’s algorithm converges under the assumptions of the next theorem.

Theorem 3.12. Let 0 < α0 ∈ R and α0 < 2r. Then, for all p0 ∈ R
m

and 0 < α0 ≤ ρj ≤ 2r the sequence uj converges to the solution of (3.20).

Furthermore, pj converges to p̂+PKer BT (p0), where p̂ ∈ Im B = {q ∈ R
m|∃v ∈

R
n, such that Bv = q} is uniquely determined and PKer BT is the projector of

R
m onto Ker BT .

Proof: See [28].

Now, setting Ar := A + rBT B and eliminating uj, Uzawa’s algorithm can be

rewritten as

Let p0 ∈ R
m be given. Compute for 0 ≤ j ∈ N0(3.26)

pj+1 = pj + ρj
(
BA−1

r BT pj − BA−1
r b
)
.
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Introducing the (dual) functional J∗
r : R

m → R by

J∗
r(q) := −Min

v∈Rn
Lr(v, q)

=
1

2
(BA−1

r BT q, q) − (BA−1
r b, q) +

1

2
(A−1

r b, b),

we observe, that (3.26), hence (3.20), are in fact gradient type algorithms

applied to the minimization of J∗
r. In [28] the steepest descent method, the

minimum residual method and the conjugate gradient method are applied to

the minimization process. Theoretical considerations and numerical experi-

ments exhibit the conjugate gradient method to be the most efficient due to

its second order convergence.

Before we formulate the conjugate gradient method, we perform some prelimi-

nary considerations. Using (3.25), the gradient gj of the functional J∗
r is given

by

gj = BA−1
r BT pj − BA−1

r b = BA−1
r (BT pj − b)

= −BA−1
r Aru

j = −Buj, ∀j ∈ N0.

In case of the conjugate gradient method, the descent directions wj are chosen

according to the following rules

w0 = g0,(3.27)

wj = gj + γjwj−1, 0 < γj ∈ R, such that

(BA−1
r BT wj, wj−1) = 0, ∀j ∈ N.

Due to the the orthogonality condition in (3.27), γj is determined by

γj = − (BA−1
r BT gj, wj−1)

(BA−1
r BT wj−1, wj−1)

=
‖gj‖2

‖gj−1‖2
=

‖Buj‖2

‖Buj−1‖2
.(3.28)

In (3.28), the orthogonality relations

(BA−1
r BT wi, wj) = 0, i 6= j,(3.29)

(gi, gj) = 0, i 6= j,

(gi, wj) = 0, i > j,

are used, which are proved by induction in [59] or any other text book on

conjugate gradient methods.

Now that the descent direction is known, ρj has to be computed as minimizer
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of the functional J∗
r. More precisely,

ρj = ArgMin
ρ∈R

+
0

J∗
r(p

j − ρwj)(3.30)

= ArgMin
ρ∈R

+
0

J∗
r(p

j) +
1

2
ρ2(BA−1

r BT wj, wj) − ρ(gj, wj).

Neglecting the constant term in (3.30) and using (3.29), we obtain

ρj =
(gj, wj)

(BA−1
r BT wj, wj)

=
‖gj‖2

(gj, BA−1
r BT wj)

.(3.31)

Introducing zj as solution of the linear system zj = A−1
r BT wj, (3.31) reduces

to

ρj = − ‖gj‖2

(Buj, Bzj)
.

For uj+1 the following equality is immediate

Aru
j+1 = b − BT pj+1 = b − BT pj + ρjBT wj = Aru

j + ρjArz
j

and, therefore

uj+1 = uj + ρjzj.

Summarizing the considerations from above leads to the following conjugate

gradient algorithm, which provides the solution of (3.26) and (3.20):

Step 0: Initialization

Let

p0 ∈ R
m(3.32)

be given. Compute u0 ∈ R
n as the solution of

Aru
0 = b − BT p0(3.33)

and set

g0 = −Bu0 and(3.34)

w0 = g0.(3.35)

For 0 ≤ j ∈ N0, assuming that uj, pj, gj, wj are known, compute uj+1, pj+1,

gj+1, wj+1 by

Step 1: Descent

Compute

Arz
j = BT wj and(3.36)

ρj = − ‖gj‖2

(gj, Bzj)
.(3.37)
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Then, set

pj+1 = pj − ρjwj and(3.38)

uj+1 = uj + ρjzj.(3.39)

Step 2: Construction of the new descent direction

Define gj+1 ∈ R
m as

gj+1 = −Buj+1.(3.40)

Compute γj by

γj =
‖gj+1‖2

‖gj‖2
(3.41)

and set

wj+1 = gj+1 + γjwj.(3.42)

Set j = j + 1 and go to Step 1.

Remark 3.13. The matrix BA−1
r BT is not necessarily positive definite, but

at least positive semi-definite. However, as mentioned in [28], the conjugate

gradient algorithm converges in the quotient space R
m\Ker BT .

3.2.2. A least-squares conjugate gradient method. The method is

due to R. Glowinski. It was first introduced in the literature in the late sev-

enties of the twentieth century as a method to solve a class of nonlinear prob-

lems. For the early publications we refer to [36] and the references therein.

The method became very popular as a solver for the Navier-Stokes equations,

because of its robustness and efficiency at least up to Re ≈ 1000 (see [40]).

Following [35] and [63], we introduce in this section the solution of a non-

linear problem, given in a quite general form, by least-squares and conjugate

gradient methods. Therefore, we present the nonlinear problem, formulate a

corresponding least-squares formulation and apply the Polak-Ribière conjugate

gradient algorithm. The section is completed by a convergence analysis of the

method based on [34].

3.2.2.1. Formulation of the abstract problem. Let V be a real Hilbert space

equipped with the scalar product (·, ·)V and induced norm ‖ · ‖V . We denote

by V ′ the dual space of V , by 〈·, ·〉 the duality pairing between V ′ and V , and

by ‖ · ‖V ′ the corresponding dual norm, i.e.

‖f‖V ′ = sup
v∈V \{0}

|〈f, v〉|
‖v‖V

, ∀f ∈ V ′.
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We want to consider the following problem:

Find u ∈ V , such that(3.43)

S(u) = 0,

where S is a nonlinear operator from V to V ′. We suppose that (3.43) has at

least one solution to keep the discussion reasonable. Any further assumptions

on problem (3.43) are postponed to the place where they are needed.

3.2.2.2. Least-squares formulation. A least-squares formulation of (3.43) is

obtained by observing that any solution of (3.43) is also a minimizer over V

of the functional J : V → R defined by

J(v) =
1

2
‖ S(v)‖2

V ′ .(3.44)

Clearly, J should vanish for the minimizing solution. Hence, a least-squares

formulation of (3.43) is:

Find u ∈ V , such that(3.45)

J(u) ≤ J(v), ∀v ∈ V.

Now, let A be the duality isomorphism corresponding to (·, ·)V and 〈·, ·〉, i.e.

obeying

〈A v, w〉 = (v, w)V , ∀v, w ∈ V,(3.46)

‖v‖V = ‖A v‖V ′ , ∀v ∈ V.

Let us remark that A is uniquely defined be the Riesz Representation theorem.

Using (3.46) in (3.44), we get

J(v) =
1

2
〈A ξ(v), ξ(v)〉 =

1

2
‖ξ(v)‖2

V ,(3.47)

where ξ is a nonlinear function of v obtained via the solution of the well-posed

linear problem

A ξ(v) = S(v).(3.48)

3.2.2.3. Solution of the least-squares problem. We suppose from now on,

that S is differentiable over V implying in turn the differentiability of J (see

(3.58), (3.59)). We denote by S′ and J′ the Fréchet-derivatives of S and J,

respectively.

From the differentiability of J it is quite natural to solve the minimization

problem (3.45) by a conjugate gradient algorithm. Among the possible conju-

gate gradient algorithms we have selected the Polak-Ribière variant (cf. [58],

[59]), whose very good performance (in general) has been discussed in [61].
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The Polak-Ribière method applied to the solution of (3.45) provides the fol-

lowing algorithm:

Step 0: Initialization

Let

u0 ∈ V(3.49)

be given. Compute g0 ∈ V as the solution of

A g0 = J′(u0)(3.50)

and set

w0 = g0.(3.51)

For 0 ≤ j ∈ N0, assuming that uj, gj, wj are known, compute uj+1, gj+1, wj+1

by

Step 1: Descent

Compute

ρj = Arg Min
ρ∈R

+
0

J(uj − ρwj).(3.52)

Then, set

uj+1 = uj − ρjwj.(3.53)

Step 2: Construction of the new descent direction

Define gj+1 ∈ V as the solution of

A gj+1 = J′(uj+1).(3.54)

Compute γj by

γj =
〈A(gj+1 − gj), gj+1〉

〈A gj, gj〉 =
(gj+1 − gj, gj+1)V

‖gj‖2
V

(3.55)

and set

wj+1 = gj+1 + γjwj.(3.56)

Set j = j + 1 and go to Step 1.

Remark 3.14. The two non–trivial steps of algorithm (3.49)–(3.56) are:

(i) The solution of the one–dimensional minimization problem (3.52) to

obtain ρj; in practice, one will have further information on the struc-

ture of problem (3.43), which is then used for the implementation of

(3.52). We will return to this point when considering the problems to

which the least-squares conjugate gradient algorithm will be applied

to. The problems which we consider always require the solution of

some linear problem associated to A.
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(ii) The calculation of gj+1 from uj+1 which requires the solution of two

linear problems associated to A (namely (3.48) with v = uj+1 and

(3.54)).

Owing to the importance of Step 2, let us detail the calculation of J′(uj) and

gj. Let v ∈ V , then J′(v) may be defined by

〈J′(v), w〉 = lim
t→0

J(v + tw) − J(v)

t
, ∀w ∈ V.(3.57)

We obtain from (3.47), (3.48), (3.57) by applying the product rule of differen-

tiation in Banach spaces (see [77]):

〈J′(v), w〉 = 〈A ξ(v), η(v, w)〉,(3.58)

where ξ and η are the solutions of (3.48) and

A η(v, w) = S′(v) · w,(3.59)

respectively. Since A is self-adjoint (from (3.46)), we also have from (3.58),

(3.59) that

〈J′(v), w〉 = 〈A ξ(v), η(v, w)〉(3.60)

= 〈A η(v, w), ξ(v)〉 = 〈S′(v) · w, ξ(v)〉.

Therefore, J′(v) ∈ V ′ may be identified with the linear functional

w 7→ 〈S′(v) · w, ξ(v)〉.(3.61)

It follows then from (3.54), (3.60) and (3.61), that gj is the solution of the

following linear variational problem:

Find gj ∈ V , such that

〈A gj, w〉 = 〈S′(uj) · w, ξj(uj)〉, ∀w ∈ V,

where ξj is the solution of (3.48) corresponding to v = uj.

Remark 3.15. It is clear from the above observations, that an efficient solver

for linear problems associated to operator A (in fact to a finite dimensional

approximation of A) will be a fundamental tool for the solution of problem

(3.43) by the conjugate gradient algorithm.

3.2.2.4. Convergence of algorithm (3.49) – (3.56). A convergence analysis

restricted to the finite dimensional case of our problem can be found in [63],

which seems to be the oldest source where convergence is discussed. To estab-

lish a more general convergence result, we follow the lines of [34].

We introduce the concept of regular solutions of problem (3.43) by
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Definition 3.16. A solution u of (3.43) is said to be regular, if the operator

S′(u) is an isomorphism from V onto V ′.

Now we can formulate the following

Lemma 3.17. Let u be a regular solution of (3.43). If the functional J is

twice continuously differentiable, then there exists a neighborhood D ⊂ V of u,

where J is strictly convex, i.e. there exist two constants m,M ∈ R
+ such that

m‖w‖2
V ≤ J′′(v) · (w,w) ≤ M‖w‖2

V ∀w ∈ V,∀v ∈ D.

Proof: See Chapter IV, Theorem 6.3 in [34].

Remark 3.18. The second Fréchet-derivative of J can be defined by

J′′(u) · (v, w)

= lim
t→0

〈J′(u + tw), v〉 − 〈J′(u), v〉
t

, ∀u, v, w ∈ V.

Theorem 3.19. Let u be a regular solution of (3.43) and the functional J

twice continuously differentiable. Then, the Polak–Ribière conjugate gradient

algorithm (3.49)–(3.56) converges to u, if u0, the initial choice in (3.49) is well

chosen, i.e. u0 ∈ D.

Proof: Combining Lemma 3.17 from above and Theorem 6.1, 6.2 from Chap-

ter IV in [34], yields the result.

Remark 3.20. In [34] the convergence result is established for a general

method of descent of which the Polak–Ribière variant of the conjugate gradient

algorithm is just a special case.

3.2.3. Numerical solution algorithms for the micro problems.

3.2.3.1. The stationary Stokes system on the periodicity cell. In this sec-

tion we are concerned with the numerical solution of Stokes systems on the

periodicity cell Y . We start by restating the continuous problem. For the

velocity u and the pressure p it reads

−µ∆yu + ∇yp = f in Yf ,(3.62)

divy u = 0 in Yf ,

u = 0 on ∂Ys,

{u, p} is Y -periodic,



50 Numerical solution of the two pressure system by scale splitting

where µ ∈ R
+ and f ∈ L2(Yf )

n.

Skipping the divergence condition imposed on functions in W , we define

W∗ := {w ∈ H1(Yf )
n |w = 0 on ∂Ys, w is Y -periodic}.

Moreover, a modified pressure space is used:

R∗ := {r ∈ L2(Yf ) | r is Y -periodic}.

We derive a variational formulation of (3.62) by multiplying the first equation

of (3.62) by test functions of W∗. The second equation is multiplied by test

functions of R∗. Integrating over Yf , applying Green’s theorem and using the

boundary conditions for u and p, we obtain the following problem

Find (u, p) ∈ W∗ ×R∗, such that

µ
∫

Yf
∇yu : ∇yv dy −

∫

Yf
p divy v dy =

∫

Yf
f · v dy, ∀v ∈ W∗,(3.63)

−
∫

Yf
q divy u dy = 0, ∀q ∈ R∗.

Let W∗
h ⊂ W∗ and R∗

h ⊂ R∗ be finite-dimensional subspaces of W∗ and

R∗, respectively. The index h refers to the mesh width of a finite element

discretization from which the subspaces will be derived. Hence, a discrete

analogon of (3.63) can be formulated:

Find (uh, ph) ∈ W∗
h ×R∗

h, such that

µ
∫

Yf
∇yuh : ∇yvh dy −

∫

Yf
ph divy vh dy =

∫

Yf
f · vh dy, ∀vh ∈ W∗

h,(3.64)

−
∫

Yf
qh divy uh dy = 0, ∀qh ∈ R∗

h.

As mentioned above, the spaces W∗
h and R∗

h are derived by finite element dis-

cretization. There exists a huge amount of literature on finite element meth-

ods and, for reference purposes, we list some classical textbooks by Braess

[15], Ciarlet [17], Brezzi, Fortin [16], Girault, Raviart [34], Gunzburger [39],

Roberts, Thomas [64] and Thomasset [74].

We intend to apply a conforming mixed approximation of the velocity and

pressure by Taylor-Hood elements ([69], [70]) in two dimensions. The method

is called conforming, since the resulting discrete functions are elements of the

continuous spaces W∗ and R∗. The approach is called mixed, since the ve-

locity and pressure are discretized simultaneously. The periodicity cell Y is

subdivided by a square mesh of width h as illustrated by Figure 2.
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YsYf

(1,1)

u=0

(0,1)

h

y

(1,0)

1

y2
(0,0)

Figure 2. Discretization of the periodicity cell

The squares are called elements. We consider a reference element T ref :=

[−1, 1]2 equipped with a local coordinate system ŷ = (ŷ1, ŷ2). We define bilin-

ear and biquadratic functions recursively by linear and quadratic functions

λlin
1 (t) := −1

2
t +

1

2
, λlin

2 (t) :=
1

2
t +

1

2
,

and

λqua
1 (t) := −1

2
t(1 − t), λqua

2 (t) :=
1

2
t(1 + t), λqua

3 (t) := (1 − t)(1 + t),

respectively.

Four bilinear functions for the approximation of the pressure are given by

Φ̂bilin
1 (ŷ) := λlin

1 (ŷ1) · λlin
1 (ŷ2) =

1

4
(+ŷ1ŷ2 − ŷ1 − ŷ2 + 1),

Φ̂bilin
2 (ŷ) := λlin

2 (ŷ1) · λlin
1 (ŷ2) =

1

4
(−ŷ1ŷ2 + ŷ1 − ŷ2 + 1),

Φ̂bilin
3 (ŷ) := λlin

2 (ŷ1) · λlin
2 (ŷ2) =

1

4
(+ŷ1ŷ2 + ŷ1 + ŷ2 + 1),

Φ̂bilin
4 (ŷ) := λlin

1 (ŷ1) · λlin
2 (ŷ2) =

1

4
(−ŷ1ŷ2 − ŷ1 + ŷ2 + 1).
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The nine biquadratic functions for the approximation of the velocity compo-

nents read

Φ̂biqua
1 (ŷ) = λqua

1 (ŷ1) · λqua
1 (ŷ2) =

1

4
(+ŷ2

1 ŷ
2
2 − ŷ2

1 ŷ2 − ŷ1ŷ
2
2 + ŷ1ŷ2),

Φ̂biqua
2 (ŷ) = λqua

2 (ŷ1) · λqua
1 (ŷ2) =

1

4
(+ŷ2

1 ŷ
2
2 − ŷ2

1 ŷ2 + ŷ1ŷ
2
2 − ŷ1ŷ2),

Φ̂biqua
3 (ŷ) = λqua

2 (ŷ1) · λqua
2 (ŷ2) =

1

4
(+ŷ2

1 ŷ
2
2 + ŷ2

1 ŷ2 + ŷ1ŷ
2
2 + ŷ1ŷ2),

Φ̂biqua
4 (ŷ) = λqua

1 (ŷ1) · λqua
2 (ŷ2) =

1

4
(+ŷ2

1 ŷ
2
2 + ŷ2

1 ŷ2 − ŷ1ŷ
2
2 − ŷ1ŷ2),

Φ̂biqua
5 (ŷ) = λqua

3 (ŷ1) · λqua
1 (ŷ2) =

1

2
(−ŷ2

1 ŷ
2
2 − ŷ2

1 ŷ2 + ŷ2
2 − ŷ2),

Φ̂biqua
6 (ŷ) = λqua

2 (ŷ1) · λqua
3 (ŷ2) =

1

2
(−ŷ2

1 ŷ
2
2 + ŷ2

1 − ŷ1ŷ
2
2 + ŷ1),

Φ̂biqua
7 (ŷ) = λqua

3 (ŷ1) · λqua
2 (ŷ2) =

1

2
(−ŷ2

1 ŷ
2
2 − ŷ2

1 ŷ2 + ŷ2
2 + ŷ2),

Φ̂biqua
8 (ŷ) = λqua

1 (ŷ1) · λqua
3 (ŷ2) =

1

2
(−ŷ2

1 ŷ
2
2 + ŷ2

1 + ŷ1ŷ
2
2 − ŷ1),

Φ̂biqua
9 (ŷ) = λqua

3 (ŷ1) · λqua
3 (ŷ2) = ŷ2

1 ŷ
2
2 − ŷ2

1 − ŷ2
2 + 1.

These functions have the property to take on the value 1 at exactly one node

of the reference element and 0 at all others (see Figure 3, 4). The indices of

the functions refer to the node indices where their value is equal to 1.

(−1,−1)

(−1,1)

(1,−1)

(1,1)

(1,−1)(−1,−1)

(1,1)(0,1)

(0,−1)

(−1,0) (1,0)

34

1 2

68

7

9

5 1 2

34

(−1,1)

(0,0)

Figure 3. Reference element T ref : Nodes in the biquadratic

(left) and bilinear case (right)
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1
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1−1

0

1
−1 0 1

−1
0

1
−1 0 1

−0.5
0

1

0

0.5

1−1

0

1
−1 0 1

−1
0

1
−1 0 1

−0.5
0

1

0

0.5

1−1

0

1
−1 0 1

−1
0

1
−1 0 1

−0.5
0

1

0

0.5

1−1

0

1
−1 0 1

Figure 4. Examples of bilinear and biquadratic functions -

Φ̂bilin
4 , Φ̂biqua

4 , Φ̂biqua
7 , Φ̂biqua

9 (from top to bottom)
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By means of the bilinear and biquadratic functions given on the reference el-

ement T ref , one defines discrete subspaces W∗
h and R∗

h by constructing nodal

basis functions. More precisely, by applying suitable coordinate transforma-

tions (composed of a translation and an homothety in case of square meshes)

to the functions on the reference element, we obtain biquadratic and bilinear

functions on each element of the mesh. Clearly, the elements also inherit the

nodal structure of the reference element. Now, given one node of the square

mesh, a bilinear basis function Φ̃bilin
ih is constructed by collecting all bilinear

functions on adjacent elements having value 1 on that node. In complete anal-

ogy biquadratic basis functions Φ̃biqua
ih are derived. An example of a bilinear

basis function is shown in Figure 5.

Due to the periodicity of the spaces W∗
h and R∗

h, we identify nodes on the outer

boundary of the periodicity cell. As shown in Figure 2, all corner nodes are

identified with the lower left corner node. Analogously, corresponding nodes

on the left and on the right boundary, as well as on the lower and upper bound-

ary are identified. Transferring the periodic identification to the nodal basis

functions Φ̃bilin
ih and Φ̃biqua

ih , we obtain a basis of R∗
h and W∗

h to be

{Φbilin
ih | 1 ≤ i ≤ m := dimR∗

h},(3.65)

and

{Φbiqua
ih := (Φbiqua

ih , 0)T , Φ
biqua
n
2
+ih := (0, Φbiqua

ih )T | 1 ≤ i ≤ n
2
, n := dimW∗

h},

respectively.

0
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0

0.5

1

1.5

2

−0.5
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0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
0 0.5 1 1.5 2

Figure 5. Bilinear nodal basis function
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Then, the discrete velocity uh and the discrete pressure ph can be written in

terms of the basis functions:

uh =
n∑

i=1

αiΦ
biqua
ih ,

ph =
m∑

i=1

βiΦ
bilin
ih ,

where αi, βi ∈ R are unknown.

Defining Ah ∈ R
n×m, Bh ∈ R

m×n and bh ∈ R
n by

(Ah)ij := µ

∫

Yf

∇yΦ
biqua
ih : ∇yΦ

biqua
jh dy, 1 ≤ i, j ≤ n,(3.66)

(Bh)ij := −
∫

Yf

Φbilin
ih divy Φ

biqua
jh dy, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

bhi :=

∫

Yf

f · Φbiqua
ih dy

and letting

uh := (α1, . . . , αn)T and ph := (β1, . . . , βm)T ,

the following linear system for uh and ph is obtained

Ahuh + BT
h ph = bh,(3.67)

Bhuh = 0.

Note, that Ah is symmetric and positive definite. The latter property is

induced by coercivity of the bilinear form a(v, v) := µ
∫

Yf
∇yv : ∇yv dy ≥

α‖v‖2
W∗ , ∀v ∈ W∗.

With only minor changes in notation in (3.67), we observe the optimality con-

ditions mentioned in Theorem 3.9. Therefore, a saddle-point formulation of

(3.67) can be derived. We apply the augmented Lagrangian Uzawa conjugate

gradient method presented in Section 3.2.1. Convergence of the Uzawa method

in case of the pressure is up to an additive constant.

Remark 3.21. Integrals of (3.66) are computed by Gaussian integration

formulas of third order (see [23]), which are exact for the appearing polyno-

mials. The calculations are done on the reference element and transfered to

the actual element by integral transformation.

The linear systems are solved by SuperLU 3.0 ([19]), a software package being

very-well suited to solve large sparse linear systems by a direct LU decomposi-

tion. Since the matrix, which has to be inverted during the Uzawa iterations,



56 Numerical solution of the two pressure system by scale splitting

does not change, we have to invert it only once at the beginning. Thus making

the algorithm quite efficient with respect to computation time.

Up to now, the finite element method has been introduced formally. We close

this section by a convergence result relating (3.63) and (3.64).

Theorem 3.22. Let (u, p) ∈ W∗ × R∗ and (uh, ph) ∈ W∗
h × R∗

h be unique

solutions of (3.63) and (3.64), respectively, where the pressures are unique up

to a constant. Let the discrete formulation be derived by Taylor-Hood elements

on square meshes. Then, the inf- sup condition, which is frequently referred to

as Ladyženskaja- Babuška-Brezzi condition reads

inf
qh∈R

∗

h

sup
vh∈W

∗

h

−
∫

Yf
qh divy vh dy

‖vh‖W∗‖qh‖R∗/R

≥ k0 > 0(3.68)

and is fulfilled, where ko ∈ R
+ is independent of h. Assuming that u ∈

W 2,2(Yf ) ∩W∗ and p ∈ H1(Yf ) ∩R∗, the following approximations are valid

‖u − uh‖L2(Yf )2 ≤ ch2 and ‖p − ph‖R∗/R ≤ ch.(3.69)

Proof: In [11], the inf-sup condition is proved for general regular triangula-

tions including the case of square meshes. Moreover, they prove convergence

in the sense of (3.69).

3.2.3.2. The stationary Navier-Stokes system on the periodicity cell. In this

section we consider the stationary incompressible Navier-Stokes system on the

periodicity cell. In view of its numerical solution, the least-squares conjugate

gradient algorithm introduced in Section 3.2.2 is applied. The method re-

duces the solution of the Navier-Stokes system to the solution of a sequence

of Stokes problems, which in turn are solved by the Uzawa algorithm and the

discretization presented in Sections 3.2.1 and 3.2.3.1, respectively.

Formulation of the problem. Let Y =]0, 1[n be the periodicity cell and Ys,

Yf be the solid and fluid part, respectively, as defined in Chapter 2. The

stationary incompressible Navier-Stokes system is given by

−µ∆yu + (u · ∇y)u + ∇yp = f in Yf ,(3.70)

divy u = 0 in Yf ,

u = 0 on ∂Ys,

{u, p} is Y -periodic,

where u and p are the unknown velocity and pressure, respectively, and µ ∈ R
+

and f ∈ L2(Yf )
2 are the given viscosity and force density, respectively.
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We restate the definition of the Hilbert space W introduced in Chapter 2:

W := {w ∈ H1(Yf )
n | divy w = 0 in Yf , w = 0 on ∂Ys, w is Y -periodic}.

W is equipped with a scalar product

(v, w)W := µ

∫

Yf

∇yv : ∇yw dy, v, w ∈ W

and induced norm

‖v‖W := (v, v)
1
2
W , v ∈ W .

Hence, a weak formulation of (3.70) is given by:

Find u ∈ W , such that(3.71)

µ
∫

Yf
∇yu : ∇yv dy +

∫

Yf
(u · ∇y)u · v dy −

∫

Yf
f · v dy = 0, ∀v ∈ W .

In (3.71) p is eliminated due to the solenoidal functions in W . As mentioned

before, unique existence of a solution of (3.71) is guaranteed, if f is sufficiently

small or µ is sufficiently large.

Now, defining

〈S(v), w〉 :=

µ
∫

Yf
∇yv : ∇yw dy +

∫

Yf
(v · ∇y)v · w dy −

∫

Yf
f · w dy, v, w ∈ W ,

where 〈·, ·〉 is the duality pairing of W ′ and W , problem (3.71) is equivalent

to:

Find u ∈ W , such that(3.72)

S(u) = 0,

where S(u) is to be understood as element of W ′. The linearity of S(u) is

obvious and the continuity follows by applying the continuity properties of

the classical bilinear, trilinear and linear forms a, b, l, respectively, which are

introduced later during the proof of Lemma 3.24.

Least-squares formulation. Proceeding as in the general case of Section

3.2.2, we derive a functional J : W → R. It reads

J(v) =
1

2
‖ S(v)‖2

W ′ =
1

2
µ

∫

Yf

|∇yξ(v)|2 dy, v ∈ W .(3.73)

ξ is a nonlinear function of v determined by (3.48), which is an equation in

W ′. The corresponding variational problem defined in W reads:

Given v ∈ W . Find ξ(v) ∈ W , such that(3.74)

(ξ(v), w)W = 〈S(v), w〉, ∀w ∈ W .
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Remark 3.23. Rewriting variational problem (3.74) as partial differential

equations, we recover the following Stokes problem:

−µ∆yξ(v) + ∇yp̃ = −µ∆yv + (v · ∇y)v − f in Yf ,

divy ξ(v) = 0 in Yf ,

ξ(v) = 0 on ∂Ys,

{ξ(v), p̃} is Y -periodic.

Setting v = u, we observe p = −p̃.

Hence, we arrive at the following minimization problem, which characterizes

the solution of (3.72):

Find u ∈ W , such that(3.75)

J(u) ≤ J(v), ∀v ∈ W .

Solution of the least-squares problem. In order to find the minimum of the

functional J, we want to apply the Polak-Ribière conjugate gradient method.

We will repeat the essential steps and point out how the structural information

of the Navier-Stokes system is taken into account. We have to consider the

nontrivial problems of the minimization process, i.e.the computation of the

gradient gj in (3.50), (3.54) and the one-dimensional minimization problem

(3.52).

In complete analogy to Remark 3.23, we observe that finding gj requires the

solution of a Stokes problem. Its variational formulation is given by

Find gj ∈ W , such that(3.76)

µ
∫

Yf
∇yg

j : ∇yv dy = 〈J′(uj), v〉, ∀v ∈ W .

The only open question is the right hand side, which we calculate in the fol-

lowing

Lemma 3.24. The Fréchet-derivative of the functional J at v ∈ W is given

by

〈J′(v), w〉 = µ

∫

Yf

∇yw : ∇yξ(v) dy +

∫

Yf

(v · ∇y)w · ξ(v) dy

+

∫

Yf

(w · ∇y)v · ξ(v) dy, w ∈ W .
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Proof: We define the following classical linear, bilinear and trilinear forms

to simplify notation. Let

l(v) :=

∫

Yf

f · v dy, v ∈ W ,

a(v, w) := µ

∫

Yf

∇yv : ∇yw dy, v, w ∈ W ,

b(v, w, z) :=

∫

Yf

(v · ∇y)w · z dy, v, w, z ∈ W .

The following continuity properties hold. Let v, w, z ∈ W , then we have

| l (v) | ≤ c1‖v‖W , | a (v, w) | ≤ c2‖v‖W‖w‖W ,

| b (v, w, z) | ≤ c3‖v‖W‖w‖W‖z‖W ,

where c1, c2, c3 ∈ R
+ refer to certain constants. A proof of the continuity

properties can be found in [24]. Now, we calculate for v, w ∈ W

〈J′(v), w〉 = lim
t→0

1

t
{J(v + tw) − J(v)}.(3.77)

Therefore, we consider first

2 (J(v + tw) − J(v)) = a (ξ(v + tw), ξ(v + tw)) − a (ξ(v), ξ(v))(3.78)

= a (v + tw, ξ(v + tw)) + b (v + tw, v + tw, ξ(v + tw)) − l (ξ(v + tw))

− a (v, ξ(v)) − b (v, v, ξ(v)) + l (ξ(v))

= a (v, ξ(v + tw)) + t a (w, ξ(v + tw)) + b (v, v, ξ(v + tw))

+t b (v, w, ξ(v + tw)) + t b (w, v, ξ(v + tw))

+t2 b (w,w, ξ(v + tw)) − l (ξ(v + tw)) − a (v, ξ(v))

− b (v, v, ξ(v)) + l (ξ(v))

= a (v, ξ(v + tw) − ξ(v)) + b (v, v, ξ(v + tw) − ξ(v))

− l (ξ(v + tw) − ξ(v)) + t a (w, ξ(v + tw)) + t b (w, v, ξ(v + tw))

+t b (v, w, ξ(v + tw)) + t2 b (w,w, ξ(v + tw)) .

Let us now focus on the first three terms of the last expression in (3.78):

a (v, ξ(v + tw) − ξ(v)) + b (v, v, ξ(v + tw) − ξ(v)) − l (ξ(v + tw) − ξ(v))(3.79)

= a (ξ(v), ξ(v + tw) − ξ(v)) = a (ξ(v + tw), ξ(v)) − a (ξ(v), ξ(v))

= a (v + tw, ξ(v)) + b (v + tw, v + tw, ξ(v)) − l (ξ(v))

− a (v, ξ(v)) − b (v, v, ξ(v)) + l (ξ(v))

= a (v, ξ(v)) + t a (w, ξ(v)) + b (v, v, ξ(v)) + t b (w, v, ξ(v)) + t b (v, w, ξ(v))

+t2 b (w,w, ξ(v)) − a (v, ξ(v)) − b (v, v, ξ(v)) .
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In the calculations above, we used linearity with respect to each argument of

the forms a, b, l, their continuity and the variational equation (3.74).

Since

(ξ(v + tw) − ξ(v), z)W = a (ξ(v + tw) − ξ(v), z)

= t a (w, z) + t b (w, v, z) + t b (v, w, z)

+t2 b (w,w, z) , v, w, z ∈ V,

choosing z = ξ(v+tw)−ξ(v), applying the continuity inequalities and dividing

by ‖ξ(v + tw) − ξ(v)‖W , we compute

lim
t→0

‖ξ(v + tw) − ξ(v)‖W = 0, v, w ∈ V.(3.80)

Combining (3.78), (3.79) and using (3.80), we can go to the limit in (3.77) and

obtain

lim
t→0

1

t
{J(v + tw) − J(v)} = a (w, ξ(v)) + b (v, w, ξ(v)) + b (w, v, ξ(v)) ,

which is the desired result.

Remark 3.25. To know the right hand sides of (3.50) and (3.54) in the

form given by Lemma 3.24 is not at all a drawback if one intends to use finite

elements for the numerical solution of the problem.

Now, we turn to the one–dimensional minimization problem (3.52). Letting

v = uj − ρwj in (3.74), we have ∀z ∈ W

µ

∫

Yf

∇yξ
j(uj − ρwj) : ∇yz dy

= µ

∫

Yf

∇y(u
j − ρwj) : ∇yz dy

+

∫

Yf

(
(uj − ρwj) · ∇y

)
(uj − ρwj) · z dy −

∫

Yf

f · z dy

= µ

∫

Yf

∇yu
j : ∇yz dy +

∫

Yf

(uj · ∇y)u
j · z dy −

∫

Yf

f · z dy

−ρ{µ
∫

Yf

∇yw
j : ∇yz dy +

∫

Yf

(uj · ∇y)w
j · z dy +

∫

Yf

(wj · ∇y)u
j · z dy}

+ρ2

∫

Yf

(wj · ∇y)w
j · z dy.
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Due to linearity of the variational problem for ξj, we can expand ξj as poly-

nomial in ρ, i.e.

ξj = ξj
0 + ρξj

1 + ρ2ξj
2,(3.81)

where ξj
i ∈ W , i = 0, 1, 2 are determined by the following variational problems:

µ

∫

Yf

∇yξ
j
0 : ∇yz dy = µ

∫

Yf

∇yu
j · ∇yz dy(3.82)

+

∫

Yf

(uj · ∇y)u
j · z dy −

∫

Yf

f · z dy, ∀z ∈ W ,

µ

∫

Yf

∇yξ
j
1 : ∇yz dy = −µ

∫

Yf

∇yw
j : ∇yz dy(3.83)

−
∫

Yf

(uj · ∇y)w
j · z dy −

∫

Yf

(wj · ∇y)u
j · z dy, ∀z ∈ W ,

µ

∫

Yf

∇yξ
j
2 : ∇yz dy =

∫

Yf

(wj · ∇y)w
j · z dy, ∀z ∈ W .(3.84)

Due to (3.81), the minimization problem (3.52) can be formulated as

ρj = ArgMin
ρ∈R

+
0

J(uj − ρwj)(3.85)

=
µ

2

(
n0 + ρn1 + ρ2n2 + ρ3n3 + ρ4n4

)
,

where

n0 =

∫

Yf

∇yξ
j
0 : ∇yξ

j
0 dy,

n1 = 2 ·
∫

Yf

∇yξ
j
0 : ∇yξ

j
1 dy,

n2 =

∫

Yf

∇yξ
j
1 : ∇yξ

j
1 dy + 2 ·

∫

Yf

∇yξ
j
0 : ∇yξ

j
2 dy,

n3 = 2 ·
∫

Yf

∇yξ
j
1 : ∇yξ

j
2 dy,

n4 =

∫

Yf

∇yξ
j
2 : ∇yξ

j
2 dy.

We have reduced the solution of the continuous Navier-Stokes system to the

solution of four Stokes problems at each iteration step, namely for the gradient

gj and ξj
0, ξ

j
1, ξ

j
2 given in variational form in (3.76), (3.82)-(3.84), respectively.

The minimization problem (3.85) can be solved by a classical Newton method.

The overall convergence of the least-squares conjugate gradient algorithm is
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shown for regular solutions u of the Navier-Stokes system (see Section 3.2.2)

in [63] and [33].

Discretization. Clearly, the above derivation can immediately be trans-

ferred to the discrete case in two dimensions, where discretization is done by

using the finite element method from Section 3.2.3.1. According to [11], the

quadratic convergence for the velocity and the linear convergence for the pres-

sure takes over to the nonlinear Navier-Stokes case, if the force becomes not

too large or the viscosity becomes not too small.

3.2.4. Numerical solution algorithm for the macro problem. In

this section, we present an algorithm, which solves the two-dimensional non-

linear macro problem (2.11) of the Navier-Stokes system with two pressures

by the least-squares conjugate gradient method introduced in Section 3.2.2.

Before we can solve the macro problem, we require to know the permeability

function F as input from the micro scale. In Section 3.1, we proposed two

methods to calculate nonlinear filtration laws from the micro problem (2.10)

of the Navier-Stokes system with two pressures. The first method uses the

Taylor expansion of the permeability function F and computes the expansion

coefficients. The second way is based on computing the permeability function

discretely and applying a least-squares fit in powers of (fi − ∂p0

∂xi
), i = 1, . . . , n.

Hence, both methods yield the same polynomial structure of F . We will make

use of this structure, when deriving the subproblems of the least-squares con-

jugate gradient method.

Simplifying notation, we set u := u0(x) =
∫

Yf
u0(x, y) dy, p := p0(x), pxi

:=
∂p0(x)

∂xi
, i = 1, 2, ∇ := ∇x and div := divx. The permeability function F is

assumed to have the following structure

u = F(f −∇p) =

(

F1(f −∇p)

F2(f −∇p)

)

(3.86)

=

( ∑

i,j aij(f1 − px1)
i(f2 − px2)

j

∑

i,j bij(f1 − px1)
i(f2 − px2)

j

)

,

where i, j ∈ N, and aij, bij ∈ R. In practice, the sums in (3.86) will be truncated

finite sums.

We have seen in Section 2.5, that the permeability tensor K appearing in

Darcy’s law is symmetric and positive definite. K is also recovered up to the

viscosity as first order terms of the Taylor expansion. Moreover, symmetry

and positive definiteness will not be destroyed by the least-squares fit applied

to the discrete values of the permeability functions in the cases, which will be
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studied in the subsequent section. Therefore, we define K by

K :=

(

a10 a01

b10 b01

)

,

and assume it to be symmetric and positive definite.

Formulation of the problem. We recall the macro problem for the pressure

p. It reads

divF(f −∇p) = 0 in Ω,(3.87)

p is Γ1-periodic,

ν(x) · F(f −∇p) = 0 on Γ2,

where f ∈ L2(Ω)2.

We consider now the Hilbert space already introduced in Section 2.3. Let

Q := {q ∈ H1(Ω) | q is Γ1 -periodic,

∫

Ω

q(x) dx = 0},

where the superfix is omitted to simplify notation. We define the following

scalar product

(q, r)Q :=

∫

Ω

(K · ∇q) · ∇r dx, q, r ∈ Q

and the induced norm

‖q‖Q := (q, q)
1
2
Q, q ∈ Q.

A weak formulation of (3.87) is then given by:

Find p ∈ Q, such that(3.88)
∫

Ω
F(f −∇p) · ∇q dx = 0, ∀q ∈ Q.

Unique solvability of (3.88) is given by Theorem 3.5. Now we define

〈S(q), r〉 :=
∫

Ω
F(f −∇q) · ∇r dx, q, r ∈ Q.

Then (3.88) is equivalent to:

Find p ∈ Q, such that(3.89)

S(p) = 0.

S(p) is an element of Q′. Its linearity is obvious and continuity follows from

the Cauchy-Schwarz inequality.
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Least-squares formulation. We proceed as in the general case of Section

3.2.2 by defining a functional J : Q → R. It reads

J(q) =
1

2
‖ S(q)‖2

Q′ =
1

2

∫

Ω

(K · ∇ξ(q)) · ∇ξ(q) dx, q ∈ Q,(3.90)

where ξ is determined by the variational problem:

Given q ∈ Q. Find ξ(q) ∈ Q, such that(3.91)

(ξ(q), r)Q = 〈S(q), r〉, ∀r ∈ Q.

Remark 3.26. The partial differential equation for ξ(q) corresponding to

(3.91) reads

− div (K · ∇ξ(q)) = − divF(f −∇q) in Ω,

ξ(q) is Γ1-periodic,

ν(x) · F(f −∇ξ(q)) = ν(x) · F(f −∇q) on Γ2.

Note, that by construction F(f −∇q) is Γ1 - periodic, inducing the boundary

condition on ξ(q).

The minimization problem, which characterizes the solution of (3.89), will be

solved by a conjugate gradient algorithm and reads:

Find p ∈ Q, such that

J(p) ≤ J(q), ∀q ∈ Q.

Solution of the least-squares problem. The minimization of (3.90) by the

Polak-Ribière conjugate gradient method involves two nontrivial problems: the

computation of the gradient gn (we use n instead of j for the iteration index

in this section) and the one–dimensional minimization problem. Using the

structural information of our problem (3.88), we will show how they can be

solved.

Finding gn, i.e. (3.50), (3.54) requires the solution of a linear elliptic partial

differential equation of second order (compare Remark 3.26). The correspond-

ing right hand side needs some further investigation. The Jacobian of F at a

point α ∈ R
2 is given by

DF(α) :=

(
∂F1(α)

∂α1

∂F1(α)
∂α2

∂F2(α)
∂α1

∂F2(α)
∂α2

)

.

The Jacobian is well–defined, since F is a polynomial and it can be explicitly

computed being important for the implementation of the algorithm. We have

the following
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Lemma 3.27.

〈J′(q), r〉 =

∫

Ω

(DF (f −∇q) · ∇r) · ∇ξ(q) dx, q, r ∈ Q.

Proof: We calculate

〈J′(q), r〉 = lim
t→0

1

t
{J(q + tr) − J(q)}, q, r ∈ Q.(3.92)

Using the Taylor expansion of F , we observe:

2 (J(q + tr) − J(q))(3.93)

=

∫

Ω

(K · ∇ξ(q + tr)) · ∇ξ(q + tr) − (K · ∇ξ(q)) · ∇ξ(q) dx

=

∫

Ω

F(f −∇(q + tr)) · ∇ξ(q + tr) −F(f −∇q) · ∇ξ(q) dx

=

∫

Ω

(F(f −∇q) − t DF(f −∇q) · ∇r + o(t)) · ∇ξ(q + tr)

−F(f −∇q) · ∇ξ(q) dx

=

∫

Ω

F(f −∇q) · (∇ξ(q + tr) −∇ξ(q)) dx

−
∫

Ω

(t DF(f −∇q) · ∇r + o(t)) · ∇ξ(q + tr) dx.

Using the variational formulation (3.91) and again the Taylor series of F , we

calculate
∫

Ω

F(f −∇q) · (∇ξ(q + tr) −∇ξ(q)) dx(3.94)

=

∫

Ω

(K · ∇ξ(q + tr)) · ∇ξ(q) − (K · ∇ξ(q)) · ∇ξ(q) dx

=

∫

Ω

F(f −∇(q + tr)) · ∇ξ(q) −F(f −∇q) · ∇ξ(q) dx

=

∫

Ω

(F(f −∇q) − t DF(f −∇q) · ∇r + o(t)) · ∇ξ(q)

−F(f −∇q) · ∇ξ(q) dx

= −
∫

Ω

(t DF(f −∇q) · ∇r + o(t)) · ∇ξ(q) dx.

Combining (3.92), (3.93), (3.94) and going to the limit, one obtains the desired

result.
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Remark 3.28. A comment analogue to Remark 3.25 can be made about

the structure of 〈J′(q), r〉. The required continuity arguments in the limiting

process of Lemma 3.27 are trivial.

The one–dimensional minimization problem (3.52) can be handled in a way

very similar to the Navier-Stokes case considered above. Letting q = pn − ρwn

in (3.91), we obtain
∫

Ω

(K · ∇ξ(pn − ρwn)) · ∇r dx =

∫

Ω

F(f −∇(pn − ρwn)) · ∇r dx

=

∫

Ω

(
∑

ij

(f1 − pn
x1

+ ρwn
x1

)i(f2 − pn
x2

+ ρwn
x2

)j

(

aij

bij

))

· ∇r dx

=

∫

Ω

(
∑

ij

Pij

(

aij

bij

))

· ∇r dx, ∀r ∈ Q,

where

Pij =
i∑

k=0

j
∑

l=0

(
i

k

)(
j

l

)

ρk+l
(
wn

x1

)k (
wn

x2

)l (
f1 − pn

x1

)i−k (
f2 − pn

x2

)j−l
.

As mentioned in the beginning of this section, the sums will be finite, i.e.

0 ≤ i ≤ imax and 0 ≤ j ≤ jmax and therefore the right hand side of the

variational problem is a polynomial in ρ having degree N = imax · jmax. Due

to linearity, ξn can also be written as a polynomial in ρ, i.e.

ξn =
N∑

m=0

ρmξn
m.(3.95)

The ξn
m, m = 0, . . . , N are determined by the variational problems
∫

Ω

(K · ∇ξn
m) · ∇r dx =

∫

Ω

(
∑

ij

Pm
ij

(

aij

bij

))

· ∇r dx, ∀r ∈ Q

with

Pm
ij

=
i∑

k=0

j
∑

l=0

{(
i
k

)(
j
l

) (
wn

x1

)k (
wn

x2

)l (
f1 − pn

x1

)i−k (
f2 − pn

x2

)j−l
, if k + l = m,

0, else.

Due to (3.95) the minimization problem (3.52) reads

ρn = ArgMin
ρ∈R

+
0

J(pn − ρwn)(3.96)

=
N∑

m1=0

N∑

m2=0

ρm1+m2nm1m2 ,
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where

nm1m2 =

∫

Ω

(
K · ∇ξn

m1

)
· ∇ξn

m2
dx.

By the considerations from above, the solution of the macro problem is reduced

to the solutions of a sequence of linear elliptic equations for the gradient gn

and ξn
m. Again, the minimization problem (3.96) will be solved by a simple

Newton method. If one wants to avoid the use of high order quadrature for-

mulas to evaluate F in its polynomial form, it is also reasonable to use the

discrete values of the permeability function and apply some kind of interpo-

lation. Therefore, one has to use a line search algorithm, like golden section

search (see [59]), for the minimization problem (3.96). Consequently, we need

to solve some linear problems to calculate ξ at certain points.

In case of a regular solution p, the convergence of the least-squares conju-

gate gradient method is due to the existence of the second derivative of the

functional J.

Discretization. For the numerical study in the next section, we will re-

strict our considerations to Ω =]0, 1[2. Therefore, (3.87) will be approximated

by biquadratic finite elements on square grids as introduced in 3.2.3.1. The ap-

proximation is of order O(h2), if the continuous solution is sufficiently regular

(see [20] and references therein). In practice,
∫

Ω
q dy = 0 will be circumvented

by setting the solutions of the linear problems equal to zero at exactly one

node of the mesh and by projecting them a posteriori in order to have zero av-

erage. The last important point is, that during the iterative computations, one

has to make sure, that the arguments of F stay in the valid range. (compare

Theorem 3.5 and Remark 3.6).

3.3. Numerical results

3.3.1. Convergence of the algorithms. First, we study the conver-

gence properties of the Uzawa algorithm used to solve Stokes problems on the

periodicity cell ]0, 1[2. The periodicity cell is discretized by a 80×80 square fi-

nite element mesh. The cell is equipped with a square obstacle Ys = [0.3, 0.7]2.

In Figure 6 the typical convergence behavior of the norm of the residual is

illustrated. The norm of the residual is defined by
√

‖Ahu
j
h + BT

h pj
h − bh‖2 + ‖Bhu

j
h‖2/‖bh‖.(3.97)

The dependence of the convergence rate on r is in complete accordance to the

results given in [28].
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Figure 6. Convergence of the Stokes solver

Using the same periodicity cell as above, Figure 7 shows the convergence be-

havior of the least-squares conjugate gradient method, which we employ to

solve the Navier-Stokes equations on the periodicity cell. Clearly, one observes

the dependence of the convergence speed on the local viscosity µ, which again

is a well-known fact (see [40]).
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Figure 7. Navier-Stokes solver: Convergence of the least-

squares conjugate gradient method

Now, we want to investigate the convergence of the Taylor-Hood finite ele-

ment discretization used for the Navier-Stokes equations on the periodicity
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cell. Therefore, we compute for a constant right hand side f = (1, 0)T at dif-

ferent mesh widths h and local viscosities µ the velocity and pressure solutions

of the Navier-Stokes equations. To determine the convergence rate, we addi-

tionally compute reference solutions uref and pref on a 200 × 200 mesh and

calculate for the velocity the relative L2 and H1
0 norms, i.e.

‖uref−uh‖L2(Yf )2

‖uref‖
L2(Yf )2

and
‖uref−uh‖H1

0(Yf )2

‖uref‖
H1

0(Yf )2
, respectively. For the pressure, we consider the relative L2

norm
‖pref−ph‖L2(Yf )2

‖pref‖
L2(Yf )2

. In each problem the Stokes residual is decreased to less

than 10−12. The nonlinear iteration is stopped, when J(u) < 10−10. The data

is listed in Table 1-3 and confirms the theoretical quadratic convergence of the

velocity and linear convergence of the pressure. Note, that the finite element

discretization error is independent of the local viscosity.

µ = 1.00 µ = 0.02 µ = 0.01 µ = 0.005
1
h

= 10 1.48 ∗ 10−1 1.24 ∗ 10−1 1.09 ∗ 10−1 7.56 ∗ 10−2

1
h

= 20 1.06 ∗ 10−2 8.75 ∗ 10−3 7.01 ∗ 10−3 6.40 ∗ 10−3

1
h

= 40 4.23 ∗ 10−3 3.42 ∗ 10−3 2.59 ∗ 10−3 2.16 ∗ 10−3

1
h

= 80 1.48 ∗ 10−3 1.20 ∗ 10−3 8.89 ∗ 10−4 7.03 ∗ 10−4

1
h

= 160 2.42 ∗ 10−4 1.97 ∗ 10−4 1.48 ∗ 10−4 1.32 ∗ 10−4

Table 1. Navier-Stokes solver: L2-convergence of the velocity

µ = 1.00 µ = 0.02 µ = 0.01 µ = 0.005
1
h

= 10 5.29 ∗ 10−1 5.33 ∗ 10−1 5.35 ∗ 10−1 5.39 ∗ 10−1

1
h

= 20 1.16 ∗ 10−1 1.17 ∗ 10−1 1.14 ∗ 10−1 1.17 ∗ 10−1

1
h

= 40 7.59 ∗ 10−2 7.43 ∗ 10−2 6.90 ∗ 10−2 6.98 ∗ 10−2

1
h

= 80 4.50 ∗ 10−2 4.35 ∗ 10−2 3.91 ∗ 10−2 3.75 ∗ 10−2

1
h

= 160 1.48 ∗ 10−2 1.43 ∗ 10−2 1.27 ∗ 10−2 1.18 ∗ 10−2

Table 2. Navier-Stokes solver: H1
0 -convergence of the velocity

Analogous results for the macro solver are derived using the following setup.

We consider Ω =]0, 1[2\[0.3, 0.7]2 and put periodic boundary conditions for
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µ = 1.00 µ = 0.02 µ = 0.01 µ = 0.005
1
h

= 10 9.06 ∗ 10−1 7.69 ∗ 10−1 8.96 ∗ 10−1 1.32 ∗ 100

1
h

= 20 4.00 ∗ 10−1 3.25 ∗ 10−1 3.29 ∗ 10−1 4.30 ∗ 10−1

1
h

= 40 2.66 ∗ 10−1 2.10 ∗ 10−1 2.04 ∗ 10−1 2.20 ∗ 10−1

1
h

= 80 1.51 ∗ 10−1 1.17 ∗ 10−1 1.11 ∗ 10−1 1.17 ∗ 10−1

1
h

= 160 4.07 ∗ 10−2 3.06 ∗ 10−2 2.84 ∗ 10−2 2.95 ∗ 10−2

Table 3. Navier-Stokes solver: L2-convergence of the pressure

the pressure at x1 = 0 and x1 = 1. On the upper and lower outer boundary

and on the boundary of the macro obstacle, the normal component of the

velocity is equal to zero. The nonlinear filtration law which is used in the

macro computations is presented in the next section. It is based on a square

micro obstacle Ys = [0.27, 0.73]2. The right hand sides of the the Navier-

Stokes solutions are discretized for i = 1, . . . , 20 and j = 0, . . . , 69 at αij =

(ri ∗ cos φj, ri ∗ sin φj)
T , ri = i

20
, φj = 2π∗i

70
(compare Figure 1 of Chapter 3).

The discrete data is bilinearly interpolated in polar coordinates. The mesh

size of the micro problem is h = 0.01. Figure 8 shows the convergence of the

least-squares conjugate gradient algorithm on a 80×80 mesh for f = (0.25, 0)T .

The convergence depends on the viscosity µ used in the computations of the

filtration law.

5 10 15 20 25

10
−10

10
−5

10
0

Number of iterations

J(
p 0)

Q46 µ=1  
Q46 µ=50 
Q46 µ=100
Q46 µ=250

Figure 8. Macro solver: Convergence of the least-squares con-

jugate gradient method
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‖pref−ph‖L2(Ω)2

‖pref‖
L2(Ω)2

‖pref−ph‖H1
0(Ω)2

‖pref‖
H1

0(Ω)2

1
h

= 10 2.03 ∗ 10−1 1.34 ∗ 10−1

1
h

= 20 8.23 ∗ 10−2 9.93 ∗ 10−2

1
h

= 40 3.92 ∗ 10−2 4.26 ∗ 10−2

1
h

= 80 1.42 ∗ 10−2 2.11 ∗ 10−2

1
h

= 160 5.28 ∗ 10−3 8.24 ∗ 10−3

Table 4. Macro solver: Convergence of the pressure

In order to show the finite element convergence, we use the above filtration

law with µ = 0.01. The reference solution for the pressure is obtained on a

200 × 200 mesh. The data is presented in Table 4. The convergence rate is

better than first order.

3.3.2. Model problems. We start our numerical investigation by com-

puting nonlinear filtration laws for various micro obstacles. The basic setup

has already been described in the previous section: We use a 100 × 100 mesh

and compute Navier-Stokes solutions for αij. By averaging the velocities, we

discretely obtain values of the permeability function (see Section 3.1). The

Navier-Stokes solutions are computed to a precision of J(u) < 10−10 in all

subsequent cases.

First, we consider a square obstacle S. It is defined by two corner points

P1 = (0.27, 0.27) and P2 = (0.73, 0.73). We use four different values for the

viscosity, i.e. µ = 1, 0.02, 0.01 and 0.004. Note, that in all subsequent cases,

the solution for µ = 1 can always be associated with the linear Stokes so-

lution. In Figure 9 and 10, the norm of the permeability function is plotted

against the discretized force plane using different viscosities. For µ = 1, we find

an isotropic law. With decreasing viscosity, the dependence on the direction

of the force becomes more and more obvious. The reason for the appearing

anisotropic behavior lies in the differently developing recirculation zones as

the viscosity becomes smaller. Stream function plots and vector plots of the

velocity at different viscosities and forces are shown in Figure 11 and 12. The

recirculation zones reduce the effective free flow domain and, hence, decrease

the permeability significantly.
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Figure 9. Obstacle S: ‖F(α)‖ for µ = 1 and µ = 0.02
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Figure 11. Obstacle S: Velocity for different viscosities and

α = (1, 0)T



74 Numerical solution of the two pressure system by scale splitting

0 0.2 0.4 0.6 0.8 1

0

0.5

1

µ=1.0

0 0.2 0.4 0.6 0.8 1

0

0.5

1

µ=1.0

0 0.2 0.4 0.6 0.8 1

0

0.5

1

µ=0.01

0 0.2 0.4 0.6 0.8 1

0

0.5

1

µ=0.01

0 0.2 0.4 0.6 0.8 1

0

0.5

1

µ=0.004

0 0.2 0.4 0.6 0.8 1

0

0.5

1

µ=0.004

Figure 12. Obstacle S: Velocity for different viscosities and

α = (
√

2
−1

,
√

2
−1

)T



3.3 Numerical results 75

The second obstacle in consideration is defined by its corner points P1 =

(0.03, 0.47), P2 = (0.91, 0.47), P3 = (0.91, 0.27), P4 = (0.97, 0.27), P5 =

(0.97, 0.73), P6 = (0.91, 0.73), P7 = (0.91, 0.53) and P8 = (0.03, 0.53). It is

denoted by T . The associated permeability function is strongly anisotropic

even in the linear case. As illustrated in Figure 13, its anisotropic character is

hardly changed when the viscosity decreases. Nevertheless, recirculation zones

are created (see Figure 14 and 15), which lower the permeability relative to

the linear case when using the same viscosity.
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Figure 13. Obstacle T : ‖F(α)‖ for µ = 1 and µ = 0.01
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Figure 14. Obstacle T : Velocity for different viscosities and

α = (1, 0)T
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Figure 15. Obstacle T : Velocity for different viscosities and

α = (0, 1)T
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The third obstacle is a triangle denoted by D and defined by its corner points

P1 = (0.5, 0.5), P2 = (0.95, 0.12) and P3 = (0.95, 0.88). As for obstacle T , we

obtain an anisotropic law. However, by decreasing the viscosity, its character

changes as shown in Figure 16 and 17.
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Figure 16. Obstacle D: ‖F(α)‖ for µ = 1 and µ = 0.04
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Figure 17. Obstacle D: ‖F(α)‖ for µ = 0.02 and µ = 0.01
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In Figure 18 and 19, velocities related to obstacle D are plotted.
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Figure 18. Obstacle D: Velocity for different viscosities and

α = (1, 0)T
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In Figure 20, we show filtration laws which are produced by equally distribut-

ing 25 square obstacles of edge length 0.14 over the periodicity cell. This

configuration creates a strong and selective anisotropy along the main axis.
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Figure 20. 25 square obstacles: ‖F‖ for µ = 1 and µ = 0.0002

The purpose of Figure 21 is to show how flow rates may deviate when passing

from the linear to the nonlinear equations. A circle of radius 0.4 in the center

of the periodicity cell is used. The force is aligned to the x-axis. The viscosity

is set to µ = 0.0002.
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Figure 21. Obstacle circle: Comparison of linear and nonlinear

filtration law
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In Figure 21, the permeability function stays almost constant when α1 is in-

creased. Since the Navier-Stokes equations are not monotone, it is most prob-

able that there exist setups of obstacles and viscosities, which lead to an de-

creasing permeability function if the force increases.

Now, we turn to the computation of the Taylor coefficients of the permeability

function and the least-squares fits of the discrete data from above. Com-

puting the constant σ0 introduced in Section 3.1 for the obstacle S yields

σ0 = 1.84 ∗ 10−4. The constant σ3 will become even smaller depending on the

viscosity µ. Hence, the theoretically proved validity of the Taylor expansion is

quite limited to small forces. In contrast, the discrete data is computed using

a discretization of the unit circle in R
2. Therefore, it is not surprising, that

the Taylor coefficients and the fitted coefficients may deviate.

In Table 5-7, we list the non-zero coefficients up to order seven which are re-

lated to the obstacle S. For µ = 1, both approaches essentially yield a linear

law. For µ = 0.02, also higher order terms appear. Note, that only coefficients

related to odd powers show up. The odd filtration law is due to the antisym-

metry of the solutions of the Navier-Stokes equations, i.e. w(α) = −w(−α),

in case of the symmetric obstacle S. The antisymmetric response is also given

in case of general isotropic periodicity cells. Then, without any numerical

computation, one concludes by inverting the velocity-pressure relation, i.e. F ,

that the first nonlinear term with respect to the velocity in the Forchheimer

law must be cubic (see [51]).

In Table 8-10, the coefficients related to obstacle T are presented. Again, for

µ = 1.0, a linear filtration law is obtained. Since T is not symmetric, also

even order contributions are observed. Analogously, in Table 11-13, we give

the results for obstacle D.

Remark 3.29. Finally, we want to remark, that the question for the first

nonlinear term extending Darcy’s law is of course interesting. It is addressed

in many papers and books. However, the presented data shows, that, in gen-

eral, nonlinear extensions of Darcy’s law can not be accurately obtained by

considering only one extra term.
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F1 F2

α1 1.68 ∗ 10−2 0.0

α2 0.0 1.68 ∗ 10−2

Table 5. Obstacle S: Taylor (=fitted) coefficients for µ = 1.0

F1 F2

α1 4.19 ∗ 10−1 0.0

α2 0.0 4.19 ∗ 10−1

α3
1 −7.02 ∗ 10−3 0.0

α2
1α2 0.0 −1.27 ∗ 10−1

α1α
2
2 −1.27 ∗ 10−1 0.0

α3
2 0.0 −7.02 ∗ 10−3

α5
1 2.52 ∗ 10−3 0.0

α4
1α2 0.0 1.79 ∗ 10−1

α3
1α

2
2 7.61 ∗ 10−4 0.0

α12α3
2 0.0 7.61 ∗ 10−4

α1α
4
2 1.79 ∗ 10−1 0.0

α5
2 0.0 2.52 ∗ 10−3

α7
1 −1.19 ∗ 10−3 0.0

α6
1α2 0.0 −2.95 ∗ 10−1

α5
1α

2
2 −3.62 ∗ 10−3 0.0

α4
1α

3
2 0.0 −4.84 ∗ 10−2

α3
1α

4
2 −4.84 ∗ 10−2 0.0

α2
1α

5
2 0.0 −3.62 ∗ 10−3

α1α
6
2 −2.95 ∗ 10−1 0.0

α7
2 0.0 −1.19 ∗ 10−3

Table 6. Obstacle S:

Taylor coefficients for

µ = 0.02

F1 F2

α1 8.14 ∗ 10−1 0.0

α2 0.0 8.14 ∗ 10−1

α3
1 −1.47 ∗ 10−1 0.0

α2
1α2 0.0 −1.45 ∗ 100

α1α
2
2 −1.45 ∗ 100 0.0

α3
2 0.0 −1.47 ∗ 10−1

α5
1 2.39 ∗ 10−1 0.0

α4
1α2 0.0 2.72 ∗ 100

α3
1α

2
2 1.00 ∗ 10−1 0.0

α12α3
2 0.0 1.00 ∗ 10−1

α1α
4
2 2.72 ∗ 100 0.0

α5
2 0.0 2.39 ∗ 10−1

α7
1 −1.02 ∗ 10−1 0.0

α6
1α2 0.0 −1.86 ∗ 10−1

α5
1α

2
2 −3.22 ∗ 10−1 0.0

α4
1α

3
2 0.0 3.57 ∗ 10−1

α3
1α

4
2 3.57 ∗ 10−1 0.0

α2
1α

5
2 0.0 −3.22 ∗ 10−1

α1α
6
2 −1.86 ∗ 10−1 0.0

α7
2 0.0 −1.02 ∗ 10−1

Table 7. Obstacle S:

Fitted coefficients for

µ = 0.02
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F1 F2

α1 2.78 ∗ 10−2 0.0

α2 0.0 1.34 ∗ 10−4

Table 8. Obstacle T : Taylor (=fitted) coefficients for µ = 1.0

F1 F2

α1 1.39 ∗ 100 0.0

α2 0.0 6.69 ∗ 10−3

α2
1 7.64 ∗ 10−11 0.0

α1α2 0.0 −2.60 ∗ 10−4

α2
2 2.60 ∗ 10−4 0.0

α3
1 −3.76 ∗ 100 0.0

α2
1α2 0.0 −6.36 ∗ 10−4

α1α
2
2 −6.92 ∗ 10−4 0.0

α3
2 0.0 −5.94 ∗ 10−7

α4
1 −1.07 ∗ 10−5 0.0

α3
1α2 0.0 2.38 ∗ 10−3

α2
1α

2
2 −3.13 ∗ 10−3 0.0

α1α
3
2 0.0 1.83 ∗ 10−7

α4
2 −1.46 ∗ 10−7 0.0

α5
1 7.72 ∗ 101 0.0

α4
1α2 0.0 2.21 ∗ 10−2

α3
1α

2
2 2.74 ∗ 10−5 0.0

α12α3
2 0.0 1.50 ∗ 10−6

α1α
4
2 3.39 ∗ 10−7 0.0

α5
2 0.0 1.56 ∗ 10−10

Table 9. Obstacle T :

Taylor coefficients for

µ = 0.02

F1 F2

α1 2.30 ∗ 100 5.74 ∗ 10−3

α2 0.0 1.27 ∗ 10−2

α2
1 −1.69 ∗ 10−5 2.28 ∗ 10−2

α1α2 0.0 −8.26 ∗ 10−3

α2
2 1.75 ∗ 10−3 −7.42 ∗ 10−3

α3
1 −1.86 ∗ 100 1.34 ∗ 10−2

α2
1α2 0.0 −1.25 ∗ 10−2

α1α
2
2 −1.72 ∗ 10−1 −5.20 ∗ 10−2

α3
2 0.0 4.88 ∗ 10−3

α4
1 1.94 ∗ 10−5 −1.12 ∗ 10−2

α3
1α2 0.0 −2.50 ∗ 10−2

α2
1α

2
2 5.89 ∗ 10−3 −1.56 ∗ 10−1

α1α
3
2 0.0 4.08 ∗ 10−2

α4
2 1.88 ∗ 10−4 3.32 ∗ 10−2

α5
1 2.86 ∗ 100 −3.77 ∗ 10−3

α4
1α2 0.0 −4.16 ∗ 10−3

α3
1α

2
2 6.83 ∗ 10−1 −3.46 ∗ 10−2

α12α3
2 0.0 3.56 ∗ 10−2

α1α
4
2 2.08 ∗ 10−1 7.09 ∗ 10−2

α5
2 0.0 −6.66 ∗ 10−3

Table 10. Obstacle T :

Fitted coefficients for

µ = 0.02
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F1 F2

α1 5.34 ∗ 10−3 0.0

α2 0.0 2.31 ∗ 10−2

Table 11. Obstacle D: Taylor (=fitted) coefficients for µ = 1.0

F1 F2

α1 2.67 ∗ 10−1 0.0

α2 0.0 1.15 ∗ 100

α2
1 −2.67 ∗ 10−7 0.0

α1α2 0.0 −3.16 ∗ 10−1

α2
2 3.16 ∗ 10−1 0.0

α3
1 −6.17 ∗ 10−2 0.0

α2
1α2 0.0 −4.73 ∗ 10−1

α1α
2
2 −7.67 ∗ 10−1 0.0

α3
2 0.0 −3.78 ∗ 100

α4
1 −1.51 ∗ 10−2 0.0

α3
1α2 0.0 8.08 ∗ 10−1

α2
1α

2
2 −5.61 ∗ 10−1 0.0

α1α
3
2 0.0 1.44 ∗ 101

α4
2 −1.33 ∗ 101 0.0

α5
1 4.76 ∗ 10−2 0.0

α4
1α2 0.0 1.88 ∗ 100

α3
1α

2
2 5.86 ∗ 10−1 0.0

α12α3
2 0.0 −1.70 ∗ 101

α1α
4
2 4.80 ∗ 101 0.0

α5
2 0.0 1.45 ∗ 102

Table 12. Obstacle D:

Taylor coefficients for

µ = 0.02

F1 F2

α1 2.64 ∗ 10−1 0.0

α2 0.0 1.10 ∗ 100

α2
1 1.21 ∗ 10−2 0.0

α1α2 0.0 −1.33 ∗ 10−1

α2
2 7.38 ∗ 10−2 0.0

α3
1 −5.83 ∗ 10−2 0.0

α2
1α2 0.0 −5.41 ∗ 10−1

α1α
2
2 −1.66 ∗ 10−1 0.0

α3
2 0.0 −5.63 ∗ 10−1

α4
1 −3.56 ∗ 10−2 0.0

α3
1α2 0.0 1.44 ∗ 10−1

α2
1α

2
2 6.29 ∗ 10−3 0.0

α1α
3
2 0.0 1.22 ∗ 10−1

α4
2 −1.74 ∗ 10−1 0.0

α5
1 2.33 ∗ 10−2 0.0

α4
1α2 0.0 7.48 ∗ 10−1

α3
1α

2
2 1.84 ∗ 10−1 0.0

α12α3
2 0.0 −1.26 ∗ 10−1

α1α
4
2 1.82 ∗ 10−1 0.0

α5
2 0.0 8.26 ∗ 10−1

Table 13. Obstacle D:

Fitted coefficients for

µ = 0.02



84 Numerical solution of the two pressure system by scale splitting

We close this section by presenting numerical results concerning the macro

problem. As in the previous section, we consider Ω =]0, 1[2\[0.3, 0.7]2 and put

periodic boundary conditions for the pressure at x1 = 0 and x1 = 1. On the

upper and lower outer boundary and on the boundary of the macro obstacle,

the normal component of the velocity is equal to zero. The filtration laws are

related to obstacle S at various viscosities µ. The macro problems are solved

to a precision of J(p) < 10−13 on a mesh of size 80 × 80. The force is chosen

to be f = (0.25, 0)T insuring, that the solution stays in the valid range of

the applied filtration laws. In Figure 22, 23, vector plots of the velocities for

µ = 1.0, 0.02, 0.01 and 0.004 are shown.
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Figure 22. Macro problem: Velocity for µ = 1.0, 0.02
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Figure 23. Macro problem: Velocity for µ = 0.01, 0.004

Since the underlying filtration becomes more and more anisotropic as µ de-

creases, the velocities do not only decrease relative to the linear case (see Table

14), but also the flow pattern is changed significantly.

∫

Ω
u1 dx Darcy Nonlinear Law

µ = 1.0 0.0035 0.0035

µ = 0.02 0.1761 0.1717

µ = 0.01 0.3523 0.3103

µ = 0.004 0.8807 0.6619

Table 14. Comparison of flow rates at f = (0.25, 0)T
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The next picture illustrates the macroscopic pressure for µ = 1.0 and µ =

0.004.
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Figure 24. Macro problem: Pressure for µ = 1.0, 0.004



CHAPTER 4

Numerical solution of the full two pressure system

In this chapter we are concerned with the numerical solution of the Navier-

Stokes system with two pressures. The algorithm, that we propose, does not

explicitly split the problem into micro and macro problems, but solves the

full system. Starting from a two-dimensional setting of the porous medium, a

four-dimensional problem in the domain Ω × Yf is obtained.

We will proceed as follows. First, a variational formulation of the Navier-Stokes

system with two pressures is derived. The Hilbert space setting corresponds to

the usual setting, in which the Stokes system with two pressures is formulated.

Then, in view of the least-squares conjugate gradient algorithm introduced in

Section 3.2.2, we define a functional J. Its minimization leads to a sequence

of Stokes systems with two pressures. The crucial point here is, that the right

hand sides depend on the variable y associated with the micro scale. Hence,

computing two cell problems to obtain the permeability tensor K and then

solving the macro problem for the pressure p0 is not possible. Nevertheless,

we extend the idea to compute cell problems in the following way: Instead of

solving two Stokes systems on the periodicity cell with constant forces aligned

to the coordinate axis, we select a nodal finite element basis on Y and solve

a Stokes problem for each basis function. Hence, the solution of the partial

differential equation with respect to the micro scale is reduced to a simple

assignment operation. To calculate the macroscopic pressure p0, we have to

solve the usual two-dimensional linear elliptic problem.

The final section of this chapter contains a presentation of numerical results.
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4.1. Numerical solution algorithm

Formulation of the problem. Let Ω = Y =]0, 1[2 be the macro domain and

the periodicity cell, respectively. By Ys and Yf , we denote the solid part and

fluid part of the periodicity cell Y , respectively. For the reader’s convenience,

we restate the Navier-Stokes system with two pressures. It reads







− µ∆yu0(x, y) + (u0(x, y) · ∇y)u0(x, y)

+ ∇yp1(x, y) = f(x) −∇xp0(x) in Ω × Yf ,

divy u0(x, y) = 0 in Ω × Yf ,

u0(x, y) = 0 on Ω × ∂Ys,

{u0, p1} is Y -periodic,

(4.1)







divx

∫

Yf
u0(x, y) dy = 0 in Ω,

ν(x) ·
∫

Yf
u0(x, y) dy is Γ1-antiperiodic,

p0 is Γ1-periodic,

ν(x) ·
∫

Yf
u0(x, y) dy = 0 on Γ2,

(4.2)

where the solution (u0, p0, p1) is assumed to be an element of V × Q0 × Q1.

The spaces V , Q0, Q1 are introduced in Section 2.3. µ ∈ R
+ and f ∈ L2(Yf )

2

are the given viscosity and force density, respectively.

Skipping the explicit dependence on the variable x and y, a weak formulation

of (4.1), (4.2) is given by:

Find u0 ∈ V , such that

µ
∫

Ω

∫

Yf
∇yu0 : ∇yv dy dx +

∫

Ω

∫

Yf
(u0 · ∇y)u0 · v dy dx(4.3)

−
∫

Ω

∫

Yf
f · v dy dx = 0, ∀v ∈ V .

In (4.3) the pressures p0 and p1 are eliminated due to the divergence free

functions in V .

Remark 4.1. The spaces might seem quite natural for a variational formu-

lation indicated by the linear case, i.e. the Stokes system with two pressures.

However, unique existence of solutions of (4.1), (4.2) in this Hilbert space set-

ting has not been proved up to now. According to [56], a proof would be hard

to accomplish, since the system lacks higher derivatives with respect to the

macro variable x, and is therefore not easy to control.
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Now, we define

〈S(v), w〉 := µ
∫

Ω

∫

Yf
∇yv : ∇yw dy dx

+
∫

Ω

∫

Yf
(v · ∇y)v · w dy dx −

∫

Ω

∫

Yf
f · w dy dx, v, w ∈ V ,

where 〈·, ·〉 is the duality pairing of V ′ and V . Problem (4.3) is equivalent to:

Find u0 ∈ V , such that(4.4)

S(u0) = 0,

where S(u0) has to be understood as element of V ′. The linearity of S(u0)

is obvious. Continuity for the bilinear and linear forms follows by applying

the continuity properties of the classical bilinear and linear forms a and l (see

Proof of Lemma 3.24 for the definition) and the Cauchy-Schwarz inequality in

the space L2(Ω)2. Showing continuity for the trilinear form is more difficult.

In fact, it can not be concluded without higher regularity assumptions on

the functions in V . Assuming H1 regularity with respect to the variable x,

one could deduce continuity in the following way: First, one has to apply

continuity of the classical trilinear form b (see again Proof of Lemma 3.24 for

the definition). Then, the generalized Hölder inequality (see [29], p.22) and

suitable Sobolev embedding theorems can be used to obtain the result. The

latter reasoning is quite analogous to the proof of continuity of the classical

trilinear form b (see [30], p. 6ff).

Least-squares formulation. Proceeding as in the general case of Section

3.2.2, we derive a functional J : V → R. It reads

J(v) =
1

2
‖ S(v)‖2

V ′ =
1

2
µ

∫

Ω

∫

Yf

|∇yξ(v)|2 dy dx, v ∈ V .(4.5)

ξ is a nonlinear function of v determined by (3.48), which is an equation in V ′.

The corresponding variational problem defined in V reads:

Given v ∈ V . Find ξ(v) ∈ V , such that(4.6)

(ξ(v), w)V = 〈S(v), w〉, ∀w ∈ V .

Remark 4.2. Rewriting variational problem (4.6) as partial differential

equations, we recover the following Stokes system with two pressures:






− µ∆yξ(v) + ∇yp̃1 + ∇xp̃0 = −µ∆yv

+ (v · ∇y)v − f in Ω × Yf ,

divy ξ(v) = 0 in Ω × Yf ,

ξ(v) = 0 on Ω × ∂Ys,

{ξ(v), p̃1} is Y -periodic,
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





divx

∫

Yf
ξ(v) dy = 0 in Ω,

ν ·
∫

Yf
ξ(v) dy is Γ1-antiperiodic,

p̃0 is Γ1-periodic,

ν ·
∫

Yf
ξ(v) dy = 0 on Γ2.

Note, that setting v = u0, the following relations hold: p0 = −p̃0 and p1 = −p̃1.

Finally, an equivalent minimization problem to (4.4) reads:

Find u0 ∈ V , such that(4.7)

J(u0) ≤ J(v), ∀v ∈ V .

Solution of the least-squares problem. Due to the structural similarity of

the Navier-Stokes system with two pressures and the ordinary Navier-Stokes

system, it is not surprising, that during the minimization quite similar prob-

lems have to be solved. Once we have assumed continuity of the trilinear

form, the derivations can just be copied with minor changes in notation. The

nontrivial problems of the minimization process are the computation of the

gradient gj in (3.50), (3.54) and the one-dimensional minimization problem

(3.52).

In complete analogy to Remark 4.2, we observe that finding gj requires the

solution of a Stokes problem with two pressures. Its variational formulation is

given by

Find gj ∈ V , such that(4.8)

µ
∫

Ω

∫

Yf
∇yg

j : ∇yv dy dx = 〈J′(uj
0), v〉, ∀v ∈ V .

The right hand side is given due to the following

Lemma 4.3. The Fréchet-derivative of the functional J at v ∈ V is given

by

〈J′(v), w〉 = µ

∫

Ω

∫

Yf

∇yw : ∇yξ(v) dy dx +

∫

Ω

∫

Yf

(v · ∇y)w · ξ(v) dy dx

+

∫

Ω

∫

Yf

(w · ∇y)v · ξ(v) dy dx, w ∈ V .

Proof: See Proof of Lemma 3.24.

The one–dimensional minimization problem (3.52) is derived as in Section
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3.2.3.2 by letting v = uj
0 − ρwj in (4.6). Then, ∀z ∈ V we obtain

µ

∫

Ω

∫

Yf

∇yξ
j(uj

0 − ρwj) : ∇yz dy dx

= µ

∫

Ω

∫

Yf

∇y(u
j
0 − ρwj) : ∇yz dy dx

+

∫

Ω

∫

Yf

(
(uj

0 − ρwj) · ∇y

)
(uj

0 − ρwj) · z dy dx −
∫

Ω

∫

Yf

f · z dy dx

= µ

∫

Ω

∫

Yf

∇yu
j
0 : ∇yz dy dx +

∫

Ω

∫

Yf

(uj
0 · ∇y)u

j
0 · z dy dx

−
∫

Ω

∫

Yf

f · z dy dx

−ρ{µ
∫

Ω

∫

Yf

∇yw
j : ∇yz dy dx +

∫

Ω

∫

Yf

(uj
0 · ∇y)w

j · z dy dx

+

∫

Ω

∫

Yf

(wj · ∇y)u
j
0 · z dy dx}

+ρ2

∫

Ω

∫

Yf

(wj · ∇y)w
j · z dy dx.

Due to linearity of the variational problem for ξj, we can expand ξj as poly-

nomial in ρ, i.e.

ξj = ξj
0 + ρξj

1 + ρ2ξj
2,(4.9)

where ξj
i ∈ V , i = 0, 1, 2 are determined by the following variational problems:

µ

∫

Ω

∫

Yf

∇yξ
j
0 : ∇yz dy dx = µ

∫

Ω

∫

Yf

∇yu
j
0 · ∇yz dy dx(4.10)

+

∫

Ω

∫

Yf

(uj
0 · ∇y)u

j
0 · z dy dx −

∫

Ω

∫

Yf

f · z dy dx, ∀z ∈ V ,

µ

∫

Ω

∫

Yf

∇yξ
j
1 : ∇yz dy dx = −µ

∫

Ω

∫

Yf

∇yw
j : ∇yz dy dx(4.11)

−
∫

Ω

∫

Yf

(uj
0 · ∇y)w

j · z dy dx −
∫

Ω

∫

Yf

(wj · ∇y)u
j
0 · z dy dx, ∀z ∈ V ,

µ

∫

Ω

∫

Yf

∇yξ
j
2 : ∇yz dy dx =

∫

Ω

∫

Yf

(wj · ∇y)w
j · z dy dx, ∀z ∈ V .(4.12)



92 Numerical solution of the full two pressure system

Due to (4.9), the minimization problem (3.52) can be formulated as

ρj = ArgMin
ρ∈R

+
0

J(uj
0 − ρwj)(4.13)

=
µ

2

(
n0 + ρn1 + ρ2n2 + ρ3n3 + ρ4n4

)
,

where

n0 =

∫

Ω

∫

Yf

∇yξ
j
0 : ∇yξ

j
0 dy dx,

n1 = 2 ·
∫

Ω

∫

Yf

∇yξ
j
0 : ∇yξ

j
1 dy dx,

n2 =

∫

Ω

∫

Yf

∇yξ
j
1 : ∇yξ

j
1 dy dx + 2 ·

∫

Ω

∫

Yf

∇yξ
j
0 : ∇yξ

j
2 dy dx,

n3 = 2 ·
∫

Ω

∫

Yf

∇yξ
j
1 : ∇yξ

j
2 dy dx,

n4 =

∫

Ω

∫

Yf

∇yξ
j
2 : ∇yξ

j
2 dy dx.

Summarizing the above considerations, the solution of the continuous Navier-

Stokes system with two pressures is reduced to the solution of four Stokes

systems with two pressures at each iteration step. The problems are related to

the gradient gj and ξj
0, ξ

j
1, ξ

j
2 given in variational form in (4.8), (4.10)-(4.12),

respectively. The minimization problem (4.13) can be solved by a classical

Newton method. The overall convergence of the least-squares conjugate gra-

dient algorithm can be shown by explicitly computing the second derivative of

J. This will again require continuity of the trilinear form.

Discretization of Stokes systems with two pressures. As mentioned in the

introduction of this chapter, the right hand sides of the Stokes systems with

two pressures appearing during the least-squares conjugate gradient method

depend on the micro variable y. Hence, we can not simply solve two cell

problems, compute the permeability tensor K and solve the macro problem for

the pressure p0. Therefore, we have to extend the idea of a priori solving micro

problems: We consider cell problems, where the right hand sides are nodal

basis functions of a finite element discretization. The solutions of these cell

problems can then be used to eliminate the velocity and the second pressure,

respectively. As in Section (2.5), we finally arrive at a linear elliptic equation

for the macro pressure. Before we detail the derivation of the macro problem,

we need to modify the variational formulation (4.8) slightly.
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Lemma 4.4. Supposing, that v, w ∈ V and the solution ξ of (4.10) are

sufficiently regular, respectively, the Fréchet-differential of J can be written as

〈J′(v), w〉 =

∫

Ω

∫

Yf

F(ξ, v) · w dy dx,

where

F(ξ, v) =

(

−µ∆yξ1 − ξ1
∂v2

∂y2
+ ξ2

∂v2

∂y1
− ∂ξ1

∂y1
v1 − ∂ξ1

∂y2
v2

−µ∆yξ2 + ξ1
∂v1

∂y2
− ξ2

∂v1

∂y1
− ∂ξ2

∂y1
v1 − ∂ξ2

∂y2
v2

)

.

Proof: From Lemma 4.3, we know, that for v, w ∈ V

〈J′(v), w〉 = µ

∫

Ω

∫

Yf

∇yw : ∇yξ(v) dy dx

︸ ︷︷ ︸

+

∫

Ω

∫

Yf

(v · ∇y)w · ξ(v) dy dx

︸ ︷︷ ︸

=: INT1 =: INT2

+

∫

Ω

∫

Yf

(w · ∇y)v · ξ(v) dy dx

︸ ︷︷ ︸

.

=: INT3

We have to separate w as test function. This can be achieved by applying

Green’s theorem and using the boundary conditions with respect to the peri-

odicity cell. We calculate with simplified notation:

INT1 = µ

∫

Ω

∫

Yf

∇yξ1 · ∇yw1 + ∇yξ2 · ∇yw2 dy dx

= −µ

∫

Ω

∫

Yf

∆yξ1w1 + ∆yξ2w2 dy dx

+µ

∫

Ω

∫

∂Yf

ν · ∇yξ1w1 + ν · ∇yξ2w2 ds(y) dx

= µ

∫

Ω

∫

Yf

(

−µ∆yξ1

−µ∆yξ2

)

· w dy dx,

INT2 =

∫

Ω

∫

Yf

ξ1

(

v1
∂w1

∂y1

+ v2
∂w1

∂y2

)

+ ξ2

(

v1
∂w2

∂y1

+ v2
∂w2

∂y2

)

dy dx

=

∫

Ω

∫

Yf

(
∂w1

∂y1
∂w1

∂y2

)

· (ξ1v) +

(
∂w2

∂y1
∂w2

∂y2

)

· (ξ2v) dy dx
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= −
∫

Ω

∫

Yf

w1 divy (ξ1v) + w2 divy (ξ2v) dy dx

+

∫

Ω

∫

∂Yf

ν · (ξ1v) w1 + ν · (ξ2v) w2 ds(y) dx

= −
∫

Ω

∫

Yf

(

ξ1
∂v1

∂y1
+ ∂ξ1

∂y1
v1 + ξ1

∂v2

∂y2
+ ∂ξ1

∂y2
v2

ξ2
∂v1

∂y1
+ ∂ξ2

∂y1
v1 + ξ2

∂v2

∂y2
+ ∂ξ2

∂y2
v2

)

· w dy dx,

INT3 =

∫

Ω

∫

Yf

ξ1

(

w1
∂v1

∂y1

+ w2
∂v1

∂y2

)

+ ξ2

(

w1
∂v2

∂y1

+ w2
∂v2

∂y2

)

dy dx

=

∫

Ω

∫

Yf

(

ξ1
∂v1

∂y1
+ ξ2

∂v2

∂y1

ξ1
∂v1

∂y2
+ ξ2

∂v2

∂y2

)

· w dy dx.

Adding the three integrals completes the proof.

In complete analogy, the right hand sides of the Stokes systems with two

pressures (4.10) - (4.12) can be reformulated in order to have the test function

separated. In fact, only the viscous term has to be transformed.

We consider the following Stokes system with two pressures







− µ∆yw(x, y) + ∇yπ̃1(x, y)

= F̃(x, y) −∇xπ̃0(x) in Ω × Yf ,

divy w(x, y) = 0 in Ω × Yf ,

w(x, y) = 0 on Ω × ∂Ys,

{w, π̃1} is Y -periodic,

(4.14)







divx

∫

Yf
w(x, y) dy = 0 in Ω,

ν(x) ·
∫

Yf
w(x, y) dy is Γ1-antiperiodic,

π̃0 is Γ1-periodic,

ν(x) ·
∫

Yf
w(x, y) dy = 0 on Γ2,

(4.15)

where the unknowns are w, π̃0 and π̃1. F̃ denotes the general part of the right

hand side covering problems (4.8), (4.10) - (4.12).

Let the periodicity cell be discretized by biquadratic finite elements on square

meshes as in Section 3.2.3.1. Using the biquadratic nodal basis functions Φ
biqua
ih

defined in (3.65) as right hand sides, we solve Stokes problems for the velocity



4.1 Numerical solution algorithm 95

wih and the pressure πih:

−∆ywih + ∇yπih = Φ
biqua
ih in Yf ,(4.16)

divy wih = 0 in Yf ,

wih = 0 on ∂Ys,

{wih, πih} is Y -periodic.

Due to linearity of (4.14), the following relations hold:

w(x, y) =
1

µ

n/2
∑

i=1

(

F̃1(x, yi)wih(y) + F̃2(x, yi)w(i+n/2)h(y)
)

(4.17)

− 1

µ

2∑

i=1

wi(y)
∂π̃0(x)

∂xi

,

π̃1(x, y) =

n/2
∑

i=1

(

F̃1(x, yi)πih(y) + F̃2(x, yi)π(i+n/2)h(y)
)

(4.18)

−
2∑

i=1

πi(y)
∂π̃0(x)

∂xi

,

where n = dimW∗
h, yi, i = 1, . . . , n

2
is the coordinate of the ith node on the

discretized periodicity cell and wi = wi(y), πi = πi(y), i = 1, 2 are the solutions

of the standard cell problems defined by (2.23).

Integrating (4.17) over Yf , applying the divergence operator with respect to

x and using the macro boundary conditions in (4.15), yields a linear elliptic

problem for π̃0:

− divx

(K
µ

· ∇xπ̃0(x)
)

= − divx

( 1

µ

n/2
∑

i=1

(
F̃1(x, yi)

∫

Yf

wih(y) dy

+F̃2(x, yi)

∫

Yf

w(i+n/2)h(y) dy
))

in Ω,

π̃0 is Γ1-periodic,(4.19)

ν(x) ·
(K
µ

· ∇xπ̃0(x)
)

= ν(x) ·
( 1

µ

n/2
∑

i=1

(
F̃1(x, yi)

∫

Yf

wih(y) dy

+F̃2(x, yi)

∫

Yf

w(i+n/2)h(y) dy
))

on Γ2.

Note, that by construction F̃ is Γ1 - periodic, inducing the boundary condition

on π̃0.

For the discretization of the macro problem (4.19) biquadratic finite elements

on square meshes are used leading to second order convergence, if the solution
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π̃0 is sufficiently regular.

We will draw a final remark on F̃ which is needed to solve the macro problem.

The computation of F̃ involves calculating derivatives with respect to y of

some function in V . We will assume sufficient regularity of the particular

function and use finite differences. Due to the biquadratic nodal structure on

the periodicity cell, we use element-wise three-point approximations of the first

and second derivatives. In general, a node belongs to more than one element.

Therefore, the obtained derivatives are averaged. For the sake of completeness,

we list the formulas for the one dimensional case (see also [4]):

f(P1)′ =
−3f(P1) + 4f(P2) − f(P3)

2h
+ O(h2),

f(P2)′ =
f(P3) − f(P1)

2h
+ O(h2),

f(P3)′ =
3f(P3) − 4f(P2) + f(P1)

2h
+ O(h2),

f(P1)′′ =
f(P1) − 2f(P2) + f(P3)

h2
+ O(h),

f(P2)′′ =
f(P3) − 2f(P2) + f(P1)

h2
+ O(h2),

f(P3)′′ =
f(P3) − 2f(P2) + f(P1)

h2
+ O(h),

where f , f ′ and f ′′ denotes some function and its first and second derivative,

respectively. P1, P2 and P3 are equally spaced points with distance h.

4.2. Numerical results

4.2.1. Validation of the algorithm. To illustrate the typical conver-

gence properties of the least-squares conjugate gradient method applied to the

solution of the Navier-Stokes system with two pressures, we use the following

setup: On the micro scale, a square obstacle Ys = [0.15, 0.85]2 is considered.

The finite element mesh consists of 50 × 50 square elements. Hence, we have

to compute 20402 Stokes problems for the velocity wih and pressure πih. The

Uzawa algorithm is stopped when the residual is less than 10−12. On the macro

scale, we set Ω =]0, 1[2\[0.25, 0.75]2 and discretize it by a 16 × 16 mesh. At

x1 = 0 and x1 = 1 periodic boundary conditions on the pressure are imposed.

On the remaining outer boundary and on the boundary of the macro obsta-

cle, we impose zero normal components on the velocity. The number of grid

points which have to be handled reaches 6855072. The convergence behavior

for µ = 1.0, 0.02, 0.01 and 0.005 is illustrated in Figure 1.
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Figure 1. Convergence of the least-squares conjugate gradient method

Due to the computational complexity, it is not possible to perform a conver-

gence analysis of the proposed method as for the discretizations in Chapter

3. However, we validate the method by comparing its results to semi-analytic

solutions, which exit using the following macro setup. We consider Ω =]0, 1[2

(without any obstacle) and impose periodic boundary conditions on the pres-

sure on the boundary of Ω. Using f = (1, 0)T , leads to a vanishing macroscopic

pressure p0 and a constant macroscopic velocity u0(·) =
∫

Yf
u0(·, y) dy. Since

we have α = f −∇p0 = f , it is possible to compare u0(·) with the value of the

nonlinear filtration law at α. The results are shown in Table 1.

u0 F((1, 0)T )

µ = 1.0 2.540 ∗ 10−3 2.563 ∗ 10−3

µ = 0.02 1.256 ∗ 10−1 1.278 ∗ 10−1

µ = 0.01 2.475 ∗ 10−1 2.513 ∗ 10−1

µ = 0.005 4.863 ∗ 10−1 4.910 ∗ 10−1

Table 1. Comparison of results validating the four-dimensional method

4.2.2. Model problems. In this section we are concerned with the pre-

sentation of some numerical results. In Figure 2, Stokes solutions with finite

element basis functions at y = (0, 0) and y = (0.125, 0.5) as right hand sides are

shown. The mesh is of size 50×50 and the obstacle is given by Ys = [0.21, 0.79]2.
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Figure 2. Stokes velocities using finite element basis functions

at y = (0, 0) (top) and y = (0.125, 0.5) (bottom) as right hand

side

Now, we consider Ω =]0, 1[2\[0.25, 0.75]2. Ω is discretized by a 16 × 16 mesh.

As before, we use periodic boundary conditions at x1 = 0 and x1 = 1 for the

pressure and impose zero normal components of the velocity on the remaining
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boundaries. The force is set to f = (1, 0)T . We are interested to investigate the

behavior of the term
∫

Ω
u0(x) dx, which is some measure for the macroscopic

flow rate. Clearly, in the above setting, its second component vanishes. In

Table 2, the results are presented for Ys = [0.15, 0.85]2 resolved by a 50 × 50

grid. The second column shows the linear results in case of the Stokes system

with two pressures (S2P). The third column shows slightly decreased flow rates

in the case of the Navier-Stokes system with two pressures (NS2P).

S2P NS2P

µ = 1.0 0.0015 0.0015

µ = 0.02 0.0773 0.0767

µ = 0.01 0.1546 0.1482

µ = 0.005 0.3092 0.2762

Table 2. Ys = [0.15, 0.85]2: Comparison of flow rates at f = (1.0, 0)T

Using a smaller micro obstacle Ys = [0.21, 0.79]2 leads to higher micro velocities

and inertia effects become more important. In Table 3, we give the results,

where the effect of decreasing flow rates is stronger.

S2P NS2P

µ = 1.0 0.0045 0.0045

µ = 0.02 0.2243 0.2154

µ = 0.01 0.4486 0.3976

µ = 0.005 0.8972 0.6659

Table 3. Ys = [0.21, 0.79]2: Comparison of flow rates at f = (1.0, 0)T

In Figure 3, we show u0(·) for µ = 1.0 and µ = 0.005. Thereby, in analogy to

the numerical results presented in Chapter 3, we observe how the flow pattern

is changed due to microscopic inertia effects.

The advantage of the method proposed in this chapter is, that the information

on the microscopic velocities is not lost by integration as in the methods pre-

sented in Chapter 3. In Figure 4, we show the associated microscopic velocities

at x = (0.125, 0.5) and x = (0.25, 0.25). We choose these positions in order

to demonstrate how significantly the velocities may change depending on the



100 Numerical solution of the full two pressure system

location in the macro domain. At x = (0.125, 0), we are obviously still in the

linear regime, whereas at x = (0.25, 0.25), the velocities are highly influenced

by inertia effects.
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Figure 3. Ys = [0.21, 0.79]2: Change of flow patterns when µ increases
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Figure 4. Microscopic velocities at different macro locations





CHAPTER 5

Modeling and simulation of the pressing section of a

paper machine

The paper machine is a huge piece of equipment reaching width and height of

12 meters and length of up to 250 meters, respectively. Typically, it consists of

four main parts: the headbox, the sheet forming section, the pressing section

and the drying section (see Figure 1).

Headbox

Forming Section Pressing Section Drying Section

Figure 1. Paper machine

The headbox provides the fiber suspension having approximately 99 percent

fluid content. From the headbox the suspension enters the sheet forming sec-

tion at high speeds of up to 2000 m
min

. On a woven structure called forming

fabric dewatering starts by natural filtration. Additional suction boxes may

support the dewatering process, such that the fluid content is decreased to

about 80 percent at the entrance of the pressing section. By means of dewa-

tering felts the paper layer is transported through several press nips. A press

nip in its simplest form consists of two rolls which compress the paper-felt

sandwich (see Figure 2).

Since the felt is a porous structure providing void space, the fluid is squeezed

out from the paper and enters the felt. Thereby, the fluid content is decreased

to approximately 50 percent when the paper reaches the drying section. Here,
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further dewatering is accomplished by evaporation. Steam-heated cylinders

over which the paper layer is transported reduce the fluid content to 5 per-

cent. In the end, the paper is stored on huge rolls ready for further processing

like coating or cutting.

Paper

Felt

Figure 2. Roll press nip

In the abstract of [42], a summary of the current state of research in the paper

making industry is given. It is stated, that in the paper making industry pro-

cess optimization has almost always taken place by tests and measurements.

Nevertheless, this trial and error approach has led to the situation that no

drastic improvements can be expected in the future. But, due to the huge

amount of paper being typically produced in a paper mill, even small improve-

ments can save a lot of money and energy. To achieve progress nowadays, more

detailed understanding of the dewatering processes is needed. Besides further

development of experimental methods and running expensive measurement se-

ries on test paper machines, mathematical modeling and computer simulation

can be the tools to support R & D in the paper making industry. One intrinsic

property of modeling and simulation is that these methods are not limited to

existing paper machines and clothings, but they can also be used as tools to

predict the behavior of completely new designs. On the other hand, modeling

and simulation will not replace measurements. They are still needed as a link

to reality to provide ways for validation of the models and to give hints to

empirical laws where modeling from first principles is too complicated.

We completely agree with this assessment except for the statement that no

drastic improvements could be achieved. Looking at dewatering felts, we ob-

serve that the manufacturing process does not operate at the length scale of
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micrometers, but merely at millimeters. Typically, a felt consists of a woven

structure called base weave. It is made of yarns which may reach diameters of

0.2mm to 2mm. A needling process attaches several layers of fine fibers to the

base weave. The diameters of the fine fibers are between 10µm and 80µm. The

needling process creates a very irregular structure which is by no means fluid

dynamically or elastically optimized. Being able to manufacture at the micro

scale yields great potential for future improvements and, as already mentioned

above, computer simulation can play a keyrole in predicting the optimal ma-

terial properties.

In this chapter we will focus on the simulation of press nips in the pressing

section. Since mechanical drying is considered to be ten times cheaper than

thermal drying, a lot of energy and money can be saved by improved dewater-

ing felts and optimal press profiles. Moreover, better drying rates insure higher

quality of the final product, since its elastic strength is increased. Another ad-

vantage is the fact that the paper machine may operate at higher speeds still

delivering the needed heating capacity in the drying section. Hence, there is

an increase in productivity of the paper machine.

In the first section of this chapter we consider the pressing section of a paper

machine and establish a mathematical model describing the elastic and fluid

dynamical behavior of the paper-felt sandwich when passing a press nib. In

contrast to [42] and [75], the model is two-dimensional as it neglects only the

cross direction of the paper machine. The paper and felt layers are considered

to be porous media. Due to high pressure gradients in the nip the fluid veloci-

ties reach high levels where Darcy’s law is not applicable anymore. Therefore,

the model allows for the use of nonlinear filtration laws extending existing

models like in [25]. In the second part of this chapter, we describe the solution

algorithms of the model equations and the discretization. The third section

of this chapter is devoted to model parameters, since they turn out to be a

crucial part of the simulations. For example, we use the methods developed

in the previous chapter and compute nonlinear macroscopic filtration laws.

Therefore, we extend the methods to a three-dimensional felt structure which

is generated by GeoDict, a virtual structure generator developed at Fraunhofer

ITWM, Kaiserslautern. The three-dimensional flow field is then computed by

ParPac which is a parallel lattice Boltzmann solver also developed at Fraun-

hofer ITWM. We close the chapter by a presentation of numerical results.

5.1. Model of a press nip

As mentioned in the introduction to this chapter, the pressing section of a pa-

per machine consists of several press nips. Nowadays, there exist two different
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types of press nips. In Figure 2 a sketch of a roll press nip is drawn. Figure 3

shows a modern shoe press nip. Its advantage is the enhanced press zone due

to a concave-convex combination of the opposing press profiles.

roll

shoe

paper

felt

Figure 3. Shoe press

Typically, the press zone of a roll press nip reaches lengths between 40mm

and 70mm, whereas a shoe press may reach up to 300mm. In contrast, the

felt thickness is usually less then 4mm and the paper thickness may go down

to 100 micrometers. The paper-felt sandwich is squeezed between the press

profiles. Thereby, the fluid from the fibrous paper layer enters the porous felt

structure, hence dewatering takes place. Two essential phenomena character-

izing the dewatering process are elasticity and fluid dynamics.

Our model of a press nip is quiet similar to the model developed in [75]. Nev-

ertheless, it is extended to two dimensions and nonlinear filtration laws are

incorporated. The derivation of the model is not entirely based on first princi-

ples and mathematically rigorous considerations. In contrast to the derivations

in the previous chapters, i.e. the flow equations in a periodic porous medium

in case of high velocities and full saturation, phenomenological and empirical

laws are used. The reason is twofold. To the best of the author’s knowledge,

there does not exist a rigorous mathematical derivation of effective two-phase

flow equations in porous media. In case of elasticity, a computer model on the

fiber level is very complicated since contact problems including friction have

to be considered. Even if a computer model were available, determining its

input parameters is not easy.

As indicated in Figure 2 and Figure 3, let’s assume that the felt passes the

press nip from the left to the right. This direction is called machine direction
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(MD) and will be referred to as x direction in this chapter. The y direction

is aligned to the axes of the rolls and is called cross direction (CD). The z

direction is called transversal direction (TD). Since the length of the cylindric

roll is up to 12m and, therefore, much larger than the press zone in MD and

the paper-felt sandwich in ZD, the cross direction is neglected.

5.1.1. Elasticity model. To describe the elastic behavior of the felt, we

follow a phenomenological approach. Due to the highly demanding process

conditions, the felt is by construction very stiff in machine direction. There-

fore, we consider deformation only in transversal direction. Guided by mea-

surements, we assume that the felt behaves viscoelastically which is, indeed,

a widely accepted assumption (see [75] and references therein). Motivated by

[44], the paper layer is modeled quite similar to the felt layers. In contrast

to the felt, the paper layer does not recover completely after the press nip.

This is due to plastic deformation. It keeps a permanent compression which

adds a new parameter to the model. The ordinary differential equations which

describe the deformation in transversal direction when passing through the nip

read:

τ(t) = E1(ε1(t)) + Λ1
d

dt
E1(ε1(t)) − K · τmax(t),(5.1)

τ(t) = Ei(εi(t)) + Λi
d

dt
Ei(εi(t)), i = 2 . . . n.

The preceding equations are a system of Kelvin-Voigt laws for n layers. The

strain is denoted by εi(t) =
li(t)−l0,i

l0,i
, where l0,i is the undeformed thickness of

layer i and li(t) is the deformed thickness at time t. The stress measured in

[Pa] is denoted by τ . Note, that τ is independent of the layers and just a

function of t. Moreover, the functions Ei relating the elastic part of the stress

and the strains εi might be nonlinear. Λi (in [s]) are viscoelastic time constants

which determine the speed of relaxation. In (5.1), the first equation describes

the paper layer. Therefore, we observe the additional term, which introduces a

permanent deformation. This term depends linearly by the constant K on the

maximum stress to which the paper has been exposed. The maximum stress

is given by

τmax(t0) := maxt≤t0 τ(t).

By using the relation x = c ∗ t, where c = ‖vs‖, and assuming negligible rigid

body motion of the layers in transversal direction, we can eliminate the time
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variable and get

τ(x) = E1(ε1(x)) + Λ1c
d

dx
E1(ε1(x)) − K · τmax(x),(5.2)

τ(x) = Ei(εi(x)) + Λic
d

dx
Ei(εi(x)), i = 2 . . . n.

Clearly, we have

τmax(x0) := maxx≤x0 τ(x).(5.3)

As indicated by Figure 4, the two press profiles are positioned by using dmin

which is the minimum distance between the profiles. dmin is an input param-

eter of the problem. Due to the viscoelastic behavior of the porous layers,

the overall thickness of the paper-felt sandwich will never exceed its initial

undeformed thickness l0. Therefore, the function

f(x) := min(l0, distance of press profiles at position x)(5.4)

is well-defined and, in addition to (5.2), (5.3), the following relation holds true
n∑

i=1

εi(x)l0,i = l0 − f(x).(5.5)

The deformation process can be subdivided into three phases (see Figure 4):

• Phase 0 (xi ≤ x ≤ xr): no deformation; vertical position is specified

by input parameter zi;

• Phase 1 (xr ≤ x ≤ xl): viscoelastic deformation ruled by (5.2),. . . ,

(5.5), xl is computed by the condition τ(xl) = 0;

• Phase 2 (xl ≤ x ≤ xo): as Phase 1, but τ is equal to zero; vertical

position given by zo (z coordinate of lower press profile at xl).
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Figure 4. Terminology
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We want to point out that there is no coupling of elasticity and fluid dynamics.

For instance, we neglect the influence of the fluid pressure on the felt defor-

mation. Furthermore, we assume that the deformation results in a temporary

rearrangement of fibers rather than in a compression of fibers. Therefore, the

solid phase is assumed to be incompressible. Incompressibility allows for a

simple computation of the porosity, once the strain is known. Let Φ0,i and Φi

be the initial and deformed porosity of layer i, respectively. Incompressibility

of the solid phase means

(1 − Φ0,i)l0,i = (1 − Φi(x))li(x).

Using the definition of strain yields

(1 − Φ0,i) = (1 − Φi(x))(1 + εi(x)),

and, finally,

Φi(x) =
εi(x) + Φ0,i

1 + εi(x)
.(5.6)

5.1.2. Flow model. The fibrous paper layer and the different layers of

the felt, i.e. base weave and batt fiber layers consisting of fine fibers, are

modeled as porous media. In the previous chapters, fluid part and solid part

are used to denote the constituents of a porous medium. In the following,

they will be referred to as fluid phase and solid phase indexed by ’f ’ and ’s’,

respectively. Since the pore space of a felt is not entirely filled by fluid, there

is an additional gaseous phase indexed by ’g’. The three phases are treated

as a mixture of overlapping continua (see [3]). This approach considers the

variables of each phase to be defined everywhere in the physical domain which

is from a macroscopic point of view a reasonable assumption.

In the framework of overlapping continua, the momentum balance equation

for the fluid phase reads

Φfρf
Df vf

D t
−∇ · tf − Φfρfbf = mf ,(5.7)

where

Df

D t
=

∂

∂t
+ vf · ∇

denotes the material derivative. In (5.7), the volume fraction of the fluid phase

is denoted by Φf . ρf is the intrinsic fluid density in [ kg
m3 ]. The fluid velocity

measured in [m
s
] is abbreviated by vf . t is the stress tensor in [Pa]. The

unit of the specific body force bf is [ N
kg

] and the term describing the rate of

momentum exchange into the fluid phase is denoted by mf and is measured

in [ N
m3 ].
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We assume negligible gravity, a Newtonian fluid, slow flow (for the moment)

and Stokes drag as model of interaction of solid and fluid phase. Then, the

stationary form of equation (5.7) reads

Φf (vf − vs) = −Kf

µf

· ∇pf .(5.8)

µf is the dynamic viscosity in [Pa s]. Kf denotes the permeability tensor in

[m2]. The hydrodynamic pressure pf is measured in [Pa]. vs is the velocity of

the solid phase.

Equation (5.8) is a two-phase version of Darcy’s law in the case of a moving

porous medium. It is supplemented by the stationary mass balance equation

∇(Φfvf ) = 0.(5.9)

Although not made explicit, all model parameters may depend on the space

variables x and z, since the layer properties which they describe may differ.

For the gaseous phase, we apply Richards’ assumption, which states that the

air has a negligible influence on the fluid and solid phases. Mathematically,

this assumption is expressed by setting pg equal to zero, i.e. pg is set to at-

mospheric pressure. Richards’ assumption is justified by the fact, that air has

a much smaller viscosity than the fluid and is very mobile. In fact, to achieve

even larger air mobilities in paper manufacturing, surface chemicals are added.

Clearly, some phenomena like fluid enclosed air bubbles are neglected by this

approach.

To close our flow model (5.8), (5.9), we introduce the notion of capillary pres-

sure, porosity and saturation. The capillary pressure is defined by

pc := pg − pf .

Since, pg = 0, we simply have

pc = −pf .

The ratio between void and total volume of a porous medium is called porosity

Φ. The saturation S indicates how much of the void volume is occupied by

the fluid phase. It is defined by

S =
Φf

Φ
.

Experimental observations show, that there exists a relation between capillary

pressure and saturation. In porous media theory (see [6], [9]), it is therefore

quite common to use this relation as additional constitutive model equation.

Influenced by steady state measurements using real dewatering felts, we choose



5.1 Model of a press nip 111

the following relation:

S(pf ) =







(

1
1−s∞

+

(

pf

a

)2)−1

+ s∞, if pf ≤ 0,

1, if pf > 0,

(5.10)

where pc is already substituted by −pf . s∞ is the residual saturation as pf

tends to −∞. a ∈ R
− is an additional shape parameter which will be used

to adjust different saturations in the felt layers at a given pressure level (see

Figure 5).
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Figure 5. Retention curve: Variation of the parameter a (s∞ = 0.1)

In (5.8), Kf can not be assumed constant, since porosity and saturation will

vary significantly during compression and relaxation. Therefore, we assume

Kf (Φ, S) = K0
f

Φ3

1 − Φ2
Sb.(5.11)

The factor Φ3/(1−Φ2) originates from the Kozeny-Karman relation (see [8]).

1 ≤ b ∈ R is a shape parameter. In (5.11) the term Sb decreases permeability

as the saturation is less than 1. This is a reasonable assumption, since Kf is

then a relative permeability. The permeability tensor K0
f can be interpreted

as the medium’s permeability when the porosity is approximately 0.775 and

when the medium is fully saturated.

Let us assume that the porosity is given by the deformation model. The flow

model (5.8), . . . ,(5.11) is then closed. Indeed, applying the divergence operator
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to (5.8), using the mass balance equation (5.9) and by simple substitutions,

we obtain one nonlinear partial differential equation for the fluid pressure pf :

− div

(

S(pf )Φvs

)

= − div

(
K0

f

µf

Φ3

1 − Φ2
S(pf )

b · ∇pf

)

.(5.12)

After computing pf , (5.8) can be employed to calculate the fluid velocities.

Now, we want to include nonlinear filtration laws in our model. The filtration

laws which are derived in the previous chapters are only valid in the case of

full saturation. Hence, we define

Fnl
0 (∇pf , Φ) :=

{

Fnl(∇pf , Φ), if S = 1,

0, if S < 1.
(5.13)

The modified equation (5.8) reads

Φf (vf − vs) = −Kf

µf

· ∇pf + Fnl
0 (∇pf , Φ).(5.14)

Using (5.14) instead of (5.8) in the above consideration, we obtain the following

partial differential equation for pf :

− div

(

S(pf )Φvs

)

(5.15)

= − div

(
K

0
f

µf

Φ3

1−Φ2 S(pf )
b · ∇pf −Fnl

0 (∇pf , Φ)

)

.

It is a nonlinear elliptic partial differential equation if vs is sufficiently small.

It has to be supplemented by suitable Dirichlet and Neumann boundary condi-

tions. The different parts of the boundary are shown in Figure 4 in the case of

a roll press nip. Nevertheless, the terminology directly applies to shoe presses.

It is assumed, that Ω1 is the paper layer. Provided that Γi is sufficiently far

away from the center of the nip, it is reasonable to prescribe the saturation S0,i

of each porous layer there. Using (5.10), one gets Dirichlet conditions for the

pressure which are uniquely defined if the prescribed saturations are less than

1. This is always the case in real life. Moreover, we assume the system of layers

to be in equilibrium, i.e. there is no fluid exchange between layers. Therefore,

the Dirichlet conditions are even constant. Again, if Γo is sufficiently far away

from the center of the nip, it is natural to assume the normal component of

the relative velocity vf − vs to be zero. By the aid of (5.14) one obtains a

homogeneous Neumann boundary condition for pf . Vanishing normal com-

ponents of the fluid velocity are applied to all of the remaining parts of the

boundary. Since the normal component of the solid velocity is zero on these

parts, we have again a homogeneous Neumann boundary condition. On the

parts of the boundary where the paper-felt sandwich is in contact to the press
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profiles, i.e. Γi,c, Γb,c, this condition is correct since roll and shoe profiles are

impervious. On Γt,i, Γb,i, Γt,o and Γb,o the situation may be different depending

on process conditions. Observations show that fluid may escape through the

top and bottom surface of the felt. In the simulations presented below, there is

a very low pressure near these boundaries and, therefore, it is save to to apply

homogeneous Neumann conditions. As shown in Figure 3, the paper and the

felt are separated before and after the nip. We account for this fact by the

introduction of Γsep,i, Γsep,o.

5.1.3. Remark on roll surfaces and belts. Besides paper and felt lay-

ers, there appear other types of layers in the press nip. We additionally find

grooved roll surfaces, roll surfaces with wholes and grooved shoe press belts.

These layers provide void space for the fluid, thereby decreasing the hydrody-

namic pressure. The length scale of the void space structure is much coarser

than the micro structure of the felt and paper fibers. Nevertheless, we model

them as porous media. Their porosity is given by the ratio of void and solid

space. Their permeability is set orders of magnitude higher than the respec-

tive permeabilities of felt and paper layers. The reason behind is the fact,

that very small flow resistivity is to be expected due to the coarse structure.

Additionally, similar to the paper layer, we introduce separating boundaries,

which are determined automatically by the computed values for xr and xl.

5.2. Numerical solution algorithms

In this section, we present the algorithmic structure and numerical methods to

solve the model equations which are derived above. The flow chart in Figure

6 shows the sequence of basic solution steps.

5.2.1. Elasticity solver. First, the press geometry is created. For that

purpose, the profiles are fixed in machine direction by suitable input param-

eters. The lower press profile is additionally fixed in transversal direction.

Then, by using dmin, the position of the upper press can be computed.

Now, we enter Phase 0 of the deformation simulation. zi fixes the vertical po-

sition of the layers (see Figure 4). Starting at xi, the x position is incremented,

thereby monitoring the function f defined in (5.4). The first x position where

f is smaller than l0 determines xr and Phase 0 is finished. During the com-

putation of xr, there may be a collision of the porous layers and the press

profiles. In that case, the horizontal fixation is done by aligning the layers to

the collision press profile.

In Phase 1, the deformation is computed according to the model equations
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(5.2), . . . , (5.5). To simplify the exposition, a linear elasticity law is chosen,

i.e. Ei(εi) = Ai · ε. The method can be extended with minor changes to laws

of type Ei(εi) = Ai · εr
i , r ≥ 1. Equation (5.5) allows to express ε1 in terms of

εi, i = 2 . . . n:

ε1(x) =
1

l0,1

(l0 − f(x) −
n∑

i=2

εi(x)l0,i).(5.16)

Plugging (5.16) in the first equation of (5.2), yields a system in εi, i = 2 . . . n

and τ . τ is eliminated by subtracting the second equation in (5.2) from all

others. Hence we have the following system of ordinary differential equations

in εi, i = 2 . . . n:

A · ε′ = B · ε + c(x),(5.17)

where A and B are n− 1-quadratic matrices with constant entries and c(x) is

a n − 1-vector depending on x. ε = (ε2, . . . , εn)T . More precisely, we have:

A =











Λ2cA2 + Λ1cA1
l0,2

l0,1
Λ1cA1

l0,3

l0,1
Λ1cA1

l0,4

l0,1
. . . Λ1cA1

l0,n

l0,1

−Λ2cA2 Λ3cA3 0 . . . 0

−Λ2cA2 0 Λ4cA4 . . . 0
... · · · ...

−Λ2cA2 0 0 . . . ΛncAn











,

B =











−A2 − A1
l0,2

l0,1
−A1

l0,3

l0,1
−A1

l0,4

l0,1
. . . −A1

l0,n

l0,1

A2 −A3 0 . . . 0

A2 0 −A4 . . . 0
... · · · ...

A2 0 0 . . . −An











and

c(x) =









A1

l0,1
(l0 − f(x)) − Λ1cA1

l0,1
f ′(x) − Kτmax(x)

0
...

0









.

The matrix A is invertible, due to the fact that all parameters Ai, Λi, l0,i and

c are strictly positive. Therefore, we can write (5.17) in canonical form

ε′ = A−1B · ε + A−1c(x).(5.18)

This system is solved by the classical fourth-order Runge-Kutta method.
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Figure 6. Flow chart of simulation steps
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Initial conditions are given by

ε(xl) = 0.

ε1 and τ are computed using (5.16) and (5.2). By identifying the first zero of

the function τ , we get the point xr.

Remark 5.1. To solve the equations of Phase 1, f has to be differentiable.

This is no further restriction of our model. Smoothness is a technical require-

ment to reduce wear and guarantee paper quality and can be supposed to be

given.

The system of equations describing the second phase reads:

E1(ε1) + Λ1c
d

dx
E1(ε1) − Kτmax = 0,(5.19)

Ei(εi) + Λic
d

dx
Ei(εi) = 0 i = 2 . . . n.

The values of εi(xr) are used as initial conditions. Equations (5.19) are similar

to previous set of equations of Phase 1 besides the fact that τ is zero. The

solution of this system is given analytically by

E1(ε1(x)) = C1 · e−
x−xr
Λ1c + C2,

Ei(εi(x)) = Ei(εi(xr)) · e−
x−xr
Λic , i = 2 . . . n,

where C1 = E1(ε1(xr)) − Kτmax(xr) and C2 = Kτmax(xr). Now, we can

calculate the input data needed by the flow solver. The porosity of each layer

is computed by formula (5.6). The deformed grid which the flow solver needs

is constructed from a regular mesh whose nodes are displaced (see Figure 7).

More precisely, we store the z coordinates of points on Γb,i∪Γb,c∪Γb,o during the

elasticity computation. Since the step size of the Runge-Kutta method is much

finer than the required mesh for the flow solver, we have precise information

on the z coordinates of the flow mesh points on this boundary. Using the

computed strains which are constant on each layer, the displacement of the

flow mesh is immediately obtained. To obtain the solid velocities, we consider

three points P1, P2 and P3 as shown in Figure 7. Since the deformed mesh is

still equidistant in machine direction, the x component of the solid velocity is

set to machine speed. Hence, the time and the vertical distance to move from

point P1 to P3 is known. We use this information to compute the solid velocity

at P2.
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Figure 7. Regular and deformed mesh

5.2.2. Flow solver. The design of the algorithm to solve the flow problem

(5.15) is guided by several observations. Since the flow problem is nonlinear,

a suitable linearization has to be developed. The linearization induces some

kind of iteration, whose convergence is strongly dependent on the initial choice

of the solution. Remembering the boundary conditions for the pressure pf , we

immediately see, that pf is equal to the constant Dirichlet boundary value

on Γi, if the solid velocity is equal to zero. On the other hand, if the solid

velocity increases, the pressure will rise, too. Therefore, as shown in Figure 6,

a outer loop is implemented which increases the solid velocity. More precisely,

starting from the known constant pressure solution, the solid velocity is scaled

by a factor less than one and sufficiently small such that the nonlinear flow

iteration steps (inner loop) converge. The scaling factor of the solid velocity

is then increased and the inner loop is processed again. The iteration stops,

when the desired final solid velocity is reached or other stopping criteria apply.
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Let’s have a closer look at the inner loop. We define

S ′ :=
∂S(pf )

∂pf

.

Then, the truncated Taylor series of the retention function reads

S(pj+1
f ) ≈ S(pj

f ) + S ′(pj
f )(p

j+1
f − pj

f ),(5.20)

where j ∈ N is used as iteration index and pj+1
f and pj

f can be thought of two

consecutive solutions of an iteration process. Plugging (5.20) into (5.15) and

by further iterative linearization, we obtain

− div

((

S(pj
f ) + S ′(pj

f )(p
j+1
f − pj

f )

)

Φvs

)

− divFnl
0 (∇pj

f , Φ)(5.21)

= − div

(
K

0
f

µf

Φ3

1−Φ2 S(pj
f )

b · ∇pj+1
f

)

.

Reordering in terms of pj
f and pj+1

f yields

− div

((

S(pj
f ) − S ′(pj

f )p
j
f

)

Φvs

)

− divFnl
0 (∇pj

f , Φ)(5.22)

= − div

(
K

0
f

µf

Φ3

1−Φ2 S(pj
f )

b · ∇pj+1
f − S ′(pj

f )p
j+1
f Φvs

)

.

Remark 5.2. The linearization of (5.15) is motivated by Newton-type meth-

ods. Numerical experiments show that the expansion (5.20) is quite important

to guaranty fast convergence.

In view of a finite element discretization of (5.22), a variational formulation is

derived. Due to the Dirichlet boundary conditions on Γi, we define a subspace

of H1(Ω) by

V := {v ∈ H1(Ω) | v = 0 on Γi},

where the domain Ω is the union of all deformed layers Ω1, . . . , Ωn (see Figure

4). The pressure can be decomposed into

pj
f = p̂j

f + p0, p̂j
f ∈ V and p0 ∈ H1(Ω),(5.23)

where the function p0 (as extension of a constant function on Γi into H1(Ω))

represents the Dirichlet conditions on Γi.

Now, let w ∈ V be a test function. Multiplying (5.22) by w, using (5.23),
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integrating over Ω and applying Green’s formula , yields
∫

Ω

((

S(pj
f ) − S ′(pj

f )p
j
f

)

Φvs + Fnl
0 (∇pj

f , Φ)

)

· ∇w dx(5.24)

−
∫

∂Ω

ν(x) ·
((

S(pj
f ) − S ′(pj

f )p
j
f

)

Φvs + Fnl
0 (∇pj

f , Φ)

)

w dΓ(x)

−
∫

Ω

(
K0

f

µf

Φ3

1 − Φ2
S(pj

f )
b · ∇p0 − S ′(pj

f )p0Φvs

)

· ∇w dx

+

∫

∂Ω

ν(x) ·
(

K0
f

µf

Φ3

1 − Φ2
S(pj

f )
b · ∇p0 − S ′(pj

f )p0Φvs

)

w dΓ(x)

=

∫

Ω

(
K0

f

µf

Φ3

1 − Φ2
S(pj

f )
b · ∇p̂j+1

f − S ′(pj
f )p̂

j+1
f Φvs

)

· ∇w dx

−
∫

∂Ω

ν(x) ·
(

K0
f

µf

Φ3

1 − Φ2
S(pj

f )
b · ∇p̂j+1

f − S ′(pj
f )p̂

j+1
f Φvs

)

w dΓ(x).

In (5.24), all boundary integrals vanish due to the specified boundary con-

ditions and due to the properties of the test function. Hence, we have the

following variational formulation:

Find p̂j+1
f ∈ V, such that(5.25)

∫

Ω

((

S(pj
f ) − S ′(pj

f )p
j
f

)

Φvs + Fnl
0 (∇pj

f , Φ)

)

· ∇w dx

−
∫

Ω

(
K

0
f

µf

Φ3

1−Φ2 S(pj
f )

b · ∇p0 − S ′(pj
f )p0Φvs

)

· ∇w dx

=
∫

Ω

(
K

0
f

µf

Φ3

1−Φ2 S(pj
f )

b · ∇p̂j+1
f − S ′(pj

f )p̂
j+1
f Φvs

)

· ∇w dx, ∀w ∈ V.

As already mentioned above, at least for moderate solid velocities, (5.25) is

an elliptic problem. It is solved by a finite element discretization quite similar

to the methods discussed in Section 3.2.3.1. The pressure is discretized by

bilinear Ansatz functions on quadrilateral grids. Matrix assembly is done on a

reference element using the nine-point Gaussian integration rule. Due to the

deformation, we have to handle general quadrilaterals. Therefore, the simple

coordinate transformation of the square case has to be extended. We used a

standard method for which we refer to [57], p. 188ff. The system of linear

equations is directly solved by SuperLU 3.0 (see [19]).

5.3. General model parameters

The aim of this section is to provide model parameters for the numerical studies

at the end of this chapter. To determine the permeability tensor K0
f , we create
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a virtual felt made of three layers. Inspired by images like the one shown in

Figure 8 and data from [73], the virtual felt has a fine fiber batt layer on top,

a base weave in the middle and, finally, another batt layer.

Figure 8. Cross section of a dewatering felt

The upper batt layer has a length of 1mm in the transversal direction and

its porosity is 60%. It consists of 50% 10dtex and 50% 20dtex fibers made

from polyamid 6. The unit dtex is equivalent to 1g
10000m

and, hence, the actual

diameter depends on the material’s density. In case of polyamid 6 and round

fibers, 10dtex and 20dtex correspond to 33.4µm and 47.3µm, respectively. The

other batt layer has a thickness of 0.5mm, 20dtex fibers only, and its porosity

is 65%. The base weave has a certain arrangement of yarns. Each yarn is

350µm thick. We added a mixture of 50% 10dtex and 50% 20dtex fibers,

which then results in an overall porosity of 45%. The thickness is 1.5mm.

Since the fibers are usually attached to the base weave by a needling process,

the fiber orientation is chosen to be transversally dominated. Figures 9, 10, 11

illustrate the generated geometries. All layers are created by GeoDict, which is

a virtual structure generator developed at Fraunhofer ITWM. The resolution

is chosen to be 5µm. The lateral cross section of each layer is 1.8 × 1.8mm2.
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Figure 9. Model of the upper batt fiber layer

Figure 10. Model of the base weave layer
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Figure 11. Model of the lower batt fiber layer

By the use of ParPac, which is a Lattice-Boltzmann solver by Fraunhofer

ITWM, we can compute the permeability tensor K0
f of the individual layers in

three dimensions. More precisely, Stokes problems are calculated quite similar

to the cell problems introduced in Chapter 2. The only difference is, that we

don’t homogenize the Stokes system, but calculate the effective permeability,

i.e. essentially a velocity-pressure-drop relation on a sufficiently large volume

element of the porous medium, i.e. of the felt. The calculated permeabilities

restricted to the x- and z-direction are shown in Table 1. Due to the compu-

tational complexity, we can not compute nonlinear filtration laws as we did

in Chapter 3. However, simulations indicate that nonlinear effects are impor-

tant. At pressure drops of 10000Pa/mm applied to the layers, one observes

flow rates being significantly smaller than in the linear case. Motivated by

these observations , we construct nonlinear filtration laws, which give at least

qualitatively the correct behavior and allow to study the influence of inertia

on paper dewatering. Based on a linear interpolation of the computed data

given in Table 2, we determine Fnl
0 . For simplicity, we drop the dependence

on the porosity.

Additional parameters of the elasticity and fluid dynamical model are based

on data given in [75]: For each layer, we set the residual saturation to be

s∞ = 0.1. The shape factor b in (5.11) is chosen to be 3.4 and the fluid pres-

sure at the inlet is pf |Γi
= −5000Pa. For the dynamic viscosity we assume

µf = 6.53 ∗ 10−4Pas. This value corresponds to water viscosity at ≈ 40
�

.

The initial saturations are 0.55, 0.45 and 0.50 for upper batt, base weave and

lower batt, respectively. In [75] measurements to determine the viscoelastic

parameters of an entire felt are presented. The stress-strain relation is as-

sumed nonlinear, i.e. E(ε) = A · εr and we obtain r ≈ 2 and A ≈ 40MPa.

The viscoelastic time constant λ is of size 0.4ms. It can be expected, that the
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Upper Batt Base Weave Lower Batt

l0 [mm] 1.00 1.50 0.50

A [MPa] 30 70 40

r [1] 2 2 2

λ [ms] 0.4 0.4 0.4 0.4

Φ0 [1] 0.60 0.45 0.65

S0 [1] 0.55 0.45 0.50

K0
f xx

[m2] 8.77 ∗ 10−11 4.97 ∗ 10−10 1.73 ∗ 10−10

K0
f zz

[m2] 1.54 ∗ 10−10 1.12 ∗ 10−9 2.50 ∗ 10−10

K0
f xz

= K0
f zx

[m2] 1.44 ∗ 10−12 8.57 ∗ 10−12 −5.34 ∗ 10−12

Table 1. Felt parameters

Upper Batt Base Weave Lower Batt

MD-Ratio at 1Pa/mm [%] 100.0 100.0 100.0

MD-Ratio at 2000Pa/mm [%] 95.0 68.0 81.0

MD-Ratio at 10000Pa/mm [%] 72.0 40.0 51.0

CD-Ratio at 1Pa/mm [%] 100.0 100.0 100.0

CD-Ratio at 2000Pa/mm [%] 93.0 70.0 78.0

CD-Ratio at 10000Pa/mm [%] 70.0 40.0 48.0

Table 2. Computed ratios of nonlinear and linear flow rates in

MD and CD

individual layers deform differently due to their different constituents. There-

fore, we preserve the structure of the nonlinear law in each layer, but vary

the constant A as listed in Table 1. Note, that the overall elastic response

is not preserved by this heuristic choice. However, we are only interested to

have qualitatively reasonable parameters, which are in the range of existing

felt designs.

Now, we discuss the parameters of the paper layer, roll surface and belt. Due

to the lack of measurements, the elastic parameters of the paper layer are

chosen to give reasonable deformation during pressing. We want to observe a

gradual deformation of the paper and its thickness should be decreased by not

more than 50%. Due to fine cellulose fibers, which are in the range of 10µm,
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Paper Roll surface Belt

l0 [mm] 0.3 3 3

A [MPa] 40 10000 10000

r [1] 1.6 1 1

λ [ms] 0.4 0.4 0.4

K [1] 0.7 – –

Φ0 [1] 0.7 0.25 0.25

S0 [1] 0.99 0.4 | 0.6 0.4 | 0.6

K0
f xx

[m2] 1.0 ∗ 10−11 1.0 ∗ 10−8 1.0 ∗ 10−8

K0
f zz

[m2] 6.0 ∗ 10−12 1.0 ∗ 10−8 1.0 ∗ 10−8

K0
f xz

= K0
f zx

[m2] 0.0 0.0 0.0

Table 3. Parameters of paper, roll surface and belt

the paper permeability is set lower than the felt permeability. Test simulations

in a micro structure made of 10µm fibers give permeabilities, which are one up

to two orders smaller than the felt permeabilities. Moreover, it is well-known

that the orientation of paper fibers is aligned to the machine direction due to

process conditions in the forming section. We account for it by introducing an

anisotropy of the permeability values in x- and z-direction. Again, the ratio

is determined by simulations using the micro structure made of 10µm fibers.

To account for inertia, the nonlinear filtration law of the paper layer is chosen

similarly as in the case of the upper batt fiber layer. The dry solids content of

paper is typically defined by the ratio of fiber mass to total mass. The initial

saturation and initial porosity are chosen such that the dry solids content is

≈ 27.8% assuming a paper weight of 80g/m2 . In our numerical studies, the

roll surfaces and belts possess wholes and a grooved structure, respectively.

The dimension of the wholes and grooves are in the range of millimeters.

Therefore, we chose a rather large permeability. Moreover, these layers will

never be fully saturated in our simulation, which makes the use of nonlinear

filtration laws obsolete. The elastic stiffness is relatively large compared to

the fibrous structures. Hence, small deformations can be expected and it is

reasonable to assume linear behavior. Typical values of A are in the range of

10000MPa. The initial saturation is set to either 40% or 60%. All parameters

are listed in Table 3.

Two types of press configurations are considered in the following section. The

first type is a roll press nip. The rolls are 1200mm in diameter and positioned
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at x = 0mm. The second type is a shoe press nip. The shoe is modeled as

part of a circle with radius 1000mm being positioned at x = 0mm. The length

of the shoe is chosen to be 250mm. The opposing roll has a radius of 900mm

and its center is positioned at x = 3mm. The arrangement of the layers is

as follows: On top, there is the paper layer. Then, the three felt layers, i.e.

upper batt, base weave and lower batt, follow. In case of the roll press nip, we

find the roll surface as the lowest layer. In case of the shoe press nip, the final

layer is formed by the belt.

As indicated by Figure 3, the paper layer is separated from the felt right

after the press nip. Therefore, we introduce one paper separation point at

x = 40mm and x = 140mm in case of the roll press nip and the shoe press

nip, respectively. At the specific point, a boundary is introduced between the

paper layer and the upper batt layer, which reaches to the right boundary of

the computational domain and suppresses any fluid flow. Analogously, sepa-

rating boundaries for the roll surface and the belt are introduced. They are

determined by xr and xl (see Figure 4).

5.4. Numerical results and discussion

We use the parameters of the previous section unless otherwise stated. All

numerical examples are discretized by a 1500 × 500 mesh. In case of the roll

press, we simulate the nip for x ∈ [−100, 400]. The shoe press simulations

are done in the range of x ∈ [−300, 400]. We start the computations at vs =

250m/min and increase the solid velocity in steps of 250m/min. At each

velocity level, we solve the nonlinear problem until the relative accuracy of the

pressure update is less than 10−4. To reach this precision, typically five up to

ten iterations are needed.

5.4.1. Roll press nip. In this section, we present numerical results of a

roll press nip. The minimum distance dmin of the press profiles is automatically

adjusted to match a press force of 200kN/m. In Figure 12, 13, the porosity is

shown at vs = 750m/min and vs = 1250m/min, respectively. Higher machine

speeds increase viscoelastic stresses, hence the permanent deformation of the

paper layer becomes larger. Note, that the roll surface is hardly compressed

in this setting.

Now, we consider results related to the flow model without nonlinear filtration

laws. The degree of saturation is presented in Figure 14, 15 and 16. Figure 14

corresponds to vs = 750m/min and an initial saturation of the roll surface of

40%. In Figure 15, the machine speed is increased to vs = 1250m/min. Ad-

ditionally, in Figure 16, the initial saturation of the roll surface is set to 60%,
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which shows a strong effect building up a fully saturated zone in transversal di-

rection. All pictures show how the fluid is transported from the paper through

the felt entering the roll surface.

For the same three setting, the hydrodynamic pressure is shown in Figure 17,

18 and 19. Due to the stronger compression especially of the paper layer, a

larger amount of fluid has to be transported in shorter time and, therefore,

the pressure increases as the machine speed goes up. In Figure 19, this effect

becomes even stronger which is due to the increased fluid content of the roll

surface.

In Figure 20, the fluid velocity is illustrated. The dewatering zone right be-

fore the center of the nip can clearly be observed. The dewatering turns into

rewetting, which is less obvious, but very important in practice. Looking at

Figure 21, a typical profile of the dry solids content of paper is plotted. Here,

the dewatering and rewetting zones are clearly observable. The final dry solids

contents of the paper layer are 41.80%, 43.11% and 41.47% for the three set-

tings, respectively. This result is consistent with the aforementioned remarks

on compression and fluid content of the overall nip.

Finally, we investigate the effect of inertia. Figure 22 corresponds to Figure

14. The saturations hardly differ. However, the underlying model included

nonlinear filtration laws. The situation changes when looking at the pressures.

Corresponding to Figure 17, 18 and 19, we see in Figure 23, 24 and 25 signifi-

cantly increased hydrodynamic pressures.

From this observations, we draw the following conclusions: Since the satura-

tions hardly change when incorporating nonlinear filtration laws in the flow

model, the dewatering performance of the nip is hardly effected. Nevertheless,

looking at Figure 26 and thinking of higher machine speeds, it might be reason-

able to consider hydrodynamic pressures as additional stress in the elasticity

model. This will increase dmin and influence the flow problem via changes in

porosity.
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Figure 12. Porosity: vs = 750m/min

Figure 13. Porosity: vs = 1250m/min
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Figure 14. Saturation: vs = 750m/min and initial roll surface

saturation S0 = 40%

Figure 15. Saturation: vs = 1250m/min and initial roll sur-

face saturation S0 = 40%
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Figure 16. Saturation: vs = 1250m/min and initial roll sur-

face saturation S0 = 60%

Figure 17. Pressure: vs = 750m/min and initial roll surface

saturation S0 = 40%
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Figure 18. Pressure: vs = 1250m/min and initial roll surface

saturation S0 = 40%

Figure 19. Pressure: vs = 1250m/min and initial roll surface

saturation S0 = 60%
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Figure 20. Velocity: vs = 750m/min and initial roll surface

saturation S0 = 40%

Figure 21. Typical profile of the dry solids content of paper
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Figure 22. Saturation: vs = 750m/min, initial roll surface

saturation S0 = 40% and with inertia

Figure 23. Pressure: vs = 750m/min, initial roll surface sat-

uration S0 = 40% and with inertia
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Figure 24. Pressure: vs = 1250m/min, initial roll surface sat-

uration S0 = 40% and with inertia

Figure 25. Pressure: vs = 1250m/min, initial roll surface sat-

uration S0 = 60% and with inertia
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Figure 26. Structural stress: vs = 750m/min

5.4.2. Shoe press nip. For the sake of completeness, we present simu-

lation results of a shoe press nip. The behavior of the model is quite simi-

lar to the simulation results of the previous section. The minimum distance

dmin of the press profiles is automatically adjusted to match a press force of

1200kN/m. We consider three variations of the machine velocity and initial

saturation of the belt, which replaced the roll surface of the roll press nip. The

following sequence of figures is ordered as in the case of the roll press nip and

similar comments hold. The final dry solids content at vs = 750m/min and

initial belt saturation of 40% reads 39.95%. Increasing the machine speed to

vs = 1200m/min yields 41.46% dry solids content. Additionally setting the

initial belt saturation to 60% gives a dry solids content of 39.62%.
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Figure 27. Porosity: vs = 750m/min

Figure 28. Porosity: vs = 1250m/min
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Figure 29. Saturation: vs = 750m/min and initial belt satu-

ration S0 = 40%

Figure 30. Saturation: vs = 1250m/min and initial belt sat-

uration S0 = 40%
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Figure 31. Saturation: vs = 1250m/min and initial belt sat-

uration S0 = 60%

Figure 32. Pressure: vs = 750m/min and initial belt satura-

tion S0 = 40%
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Figure 33. Pressure: vs = 1250m/min and initial belt satu-

ration S0 = 40%

Figure 34. Pressure: vs = 1250m/min and initial belt satu-

ration S0 = 60%
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Figure 35. Velocity: vs = 750m/min and initial belt satura-

tion S0 = 40%

Figure 36. Typical profile of the dry solids content of paper
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Figure 37. Saturation: vs = 750m/min, initial belt saturation

S0 = 40% and with inertia

Figure 38. Pressure: vs = 750m/min, initial belt saturation

S0 = 40% and with inertia



5.4 Numerical results and discussion 141

Figure 39. Pressure: vs = 1250m/min, initial belt saturation

S0 = 40% and with inertia

Figure 40. Pressure: vs = 1250m/min, initial belt saturation

S0 = 60% and with inertia
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Figure 41. Structural stress: vs = 750m/min



Conclusion

We have presented two approaches to the numerical solution of the Navier-

Stokes system with two pressures. The first solution method splits the sys-

tem into a micro and a macro problem. From the micro problem, one ob-

tains nonlinear filtration laws, which are then used as parametrization of the

macro problem. The second approach considers the full system and yields a

four-dimensional problem when starting from a two-dimensional setting of the

porous medium.

From numerical studies we draw the following conclusions: The nonlinear fil-

tration laws extend Darcy’s law to cases when inertial effects are important.

The recirculation zones can be identified as reason for the observed deviations

from Darcy’s law. Recirculation zones reduce the effective flow domain on the

micro scale. Hence, larger macroscopic pressure gradients are needed to trans-

port the fluid through the porous medium. This is in complete consistency to

experimental observations and existing literature. Moreover, the complexity

of these laws shows that extensions by only one additional nonlinear term,

as done in the Forchheimer law, are in general not sufficient to accurately

describe the flow behavior in porous media. We showed by numerical exam-

ples that seemingly isotropic media in the Darcy regime may become strongly

anisotropic when inertial effects appear. This might be an interesting point

for measurements. Technical porous media are often tested in the slow flow

regime, thereby neglecting the fact, that they are intended to operate in the

fast flow regime. The interpretation of these measurements might be question-

able. The inertial effects created on the micro scale enter the macro problem

via the filtration law and, as shown by numerical simulation, may strongly

influence the macroscopic velocity.

In addition, we developed a two dimensional model of the pressing section of a

paper machine. The model accounts for the viscoelastic deformation of paper

and felt layers and contains a macroscopic flow description including nonlinear

filtration laws. Major effort went into the development of a suitable numerical

solution algorithm which is based on a finite element discretization. Numerical

results exhibit reasonable elastic and fluid dynamical behavior of the model in

various setups. The choice of the flow parameters of the model was strongly



144 Conclusion

influenced by computations using a three-dimensional virtual felt. We de-

termined permeabilities and the nonlinear flow regime. The application of

nonlinear filtration laws shows a major impact on the hydrodynamic pressure,

which increases significantly. Hence, the hydrodynamic stress contribution be-

ing small in the Darcy regime should not be neglected in the elastic model,

when considering high machine speeds.
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