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Abstract

In this thesis, we investigate a statistical model for precipitation time series recorded at a

single site. The sequence of observations consists of rainfall amounts aggregated over time

periods of fixed duration. As the properties of this sequence depend strongly on the length of

the observation intervals, we follow the approach of Rodriguez-Iturbe et. al. [37] and use an

underlying model for rainfall intensity in continuous time. In this idealized representation,

rainfall occurs in clusters of rectangular cells, and each observations is treated as the sum of

cell contributions during a given time period. Unlike the previous work, we use a multivariate

lognormal distribution for the temporal structure of the cells and clusters.

After formulating the model, we develop a Markov-Chain Monte-Carlo algorithm for fitting

it to a given data set. A particular problem we have to deal with is the need to estimate the

unobserved intensity process alongside the parameter of interest. The performance of the

algorithm is tested on artificial data sets generated from the model.
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Chapter 1

Introduction

If one asked a meteorologist what he thought of a statistical model for rainfall at a single site,

he would probably answer that he did not need such a thing for two reasons. Firstly, single

site models are not very useful for predicting the weather, even in relatively close proximity

and for short periods. Weather is a highly variable process, and measurements tend to be less

accurate the more extreme the events one tries to observe. Prediction requires a “big picture”

approach, taking into account multiple sites or spatial information like satellite data. And

secondly, there seems to be a bias against purely statistical models in meteorology. Black-box

models that do not rely on physics are not popular.

So why do we deal with this topic? The original motivation was to find a compact description

of rainfall over a small area for use in rainwater runoff studies. In this context, it is useful

if one can generate precipitation time series of arbitrary length that capture key features of

the real process like the distribution of wet and dry periods, or of the rainfall amounts during

a single storm. While we briefly discuss prediction and extensions to multi-site modelling in

the last chapter, the main purpose of our model is the simulation of localized events.

Before we talk about rainfall models, we give a brief review of the statistical concepts used

in this thesis in Chapter 2. The focus is on Markov-Chain Monte-Carlo (MCMC) methods,

in particular the Metropolis-Hastings algorithm. We provide an overview of its theoretical

background and discuss some implementation and diagnostic issues.

Chapter 3 introduces the rainfall model we want to analyze in the remainder of the thesis. It

is based on the work of Rodriguez-Iturbe et. al. [37] The general idea is to describe rainfall

as a sequence of rectangular pulses or cells, which results in a step function for the intensity

over time. The actual observations are treated as the aggregated contributions (integrals) of

these cells for each time interval. As the cell lengths and origins “live” in continuous time,

the resulting model is independent of the time scale of the observations. For a more realistic

description of actual rainfall, cells are only permitted to occur during certain periods called

storms, which leads to clustering. The origins of the storms and of the cells within each storm

form point processes, which are taken to be Poisson in the original work.

The novel part of our approach is that we are interested in adding an explicit correlation

1



2 CHAPTER 1. INTRODUCTION

structure for the durations and lags of the cells and storms. As this is awkward to specify for

the exponential distribution, we use a multivariate lognormal model instead. One downside

of this choice is that the point processes for the origins are no longer Poisson, so we have to

deal with Monte-Carlo estimation of the associated weights.

Fitting the rainfall model to a given sequence of observations is difficult, as a simple para-

metric description is available only for the unobserved storm process. We are dealing with

a hierarchical model where the dependencies between adjacent layers of the process are

straightforward, but the relationship between the top layer (observations) and the bottom

layer (parameter) is not. Before we can estimate the parameter of interest, we need a “dis-

aggregation” step to reconstruct the storm process. We show how this can be accomplished

using the Metropolis-Hastings algorithm in Chapter 4. The central idea is to use reversible

jump MCMC as introduced by Green [22] to transform the unobserved process in accordance

with the parameters and observations.

In Chapter 5, we provide numerical results for artificial data generated from the model. It

turns out that the most general case is effectively overparametrized for a storm process that is

not directly observable. Thus, we investigate several variants of the process with restrictions

on the parameters that make them identifiable. As attempts to fit the model to real precip-

itation data were unsatisfactory, we briefly discussion the problems we encountered. In the

final Chapter 6, we treat possible changes to the model or algorithm, both to enable fitting to

real data and to extend the purpose of the model.



Chapter 2

Basic concepts

This chapter introduces notation and concepts necessary for understanding the rainfall model

and estimation algorithm. In particular, we give a brief review of Markov chain theory on

general state spaces and the Metropolis-Hastings algorithm.

2.1 Notation

Table 2.1 lists common symbols and expressions that are used throughout this thesis.

For the probabilistic notation, we use a tilde ’∼’ to indicate the distribution of a random

variable X, while PX refers to the associated probability measure. The density or weights are

denoted by pX . For example, let X be a standard normal random variable on the measure

space (R,L(R)). We may write

X ∼ N(0, 1) PX((−∞, 0]) = 0.5 pX(x) =
1√
2π

exp

(

−x
2

2

)

(2.1)

In case of a multivariate distribution PX,Y (x, y), we write PX,Y (x, dy) to denote the y-differ-

ential as dPX,Y (x, y) could be confusing. A bullet ’•’ is sometimes used as an abbreviation for

the argument. For example, PX(•) stresses that we are interested in the probability measure

but not a specific value for X.

2.2 Bayesian inference

We use a Bayesian framework for parametric models to fit the rainfall model developed in

Chapter 3. A thorough introduction to Bayesian statistics can be found e.g. in the book by

Bernardo and Smith [6], but the main idea is to treat the parameter of interest as a particular

realization of a random variable:

3



4 CHAPTER 2. BASIC CONCEPTS

Table 2.1: Some common expressions and abbreviations

Term Definition

0 a matrix or vector of zeros1S characteristic function of set S

Corr(X,Y ) correlation of random variables X and Y

Cov(X,Y ) covariance of random variables X and Y

E(X) expectation of random variable X

In identity matrix in Rn×n

L(Rn) Lebesgue-measurable subsets of Rn

MCMC Markov-Chain Monte-Carlo

MH Metropolis-Hastings (algorithm)Sn
+ cone of symmetric, positive definite matrices in Rn×n

Std(X) standard deviation of random variable X

Var(X) variance of random variable X

XN mean of X1, . . . , XN

i.i.d. independent and identically distributed

log(x) for x ∈ Rn
+ is the vector of logarithms of the components of x

tr(A) trace of matrix A (sum of diagonal entries)

|A| determinant of matrix A

|S| cardinality of set S
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Definition 2.1 Let (Ω,A) and (Θ,B) be measure spaces with σ-algebras A and B. We call Ω

the observation space and Θ the parameter space.

An observation X is a random variable with values in Ω and a probability distribution PX(•|θ)
— the model — depending on the unknown parameter θ ∈ Θ.

Given a prior distribution Pθ, the purpose of Bayesian inference is to determine key features

(moments, quantiles, etc.) of the posterior distribution Pθ(•|X).

In this context, Bayes’s theorem implies

pθ(θ|X) =
pX,θ(X, θ)

∫

Θ PX,θ(X, dθ)
∝ pX(X|θ)pθ(θ) (2.2)

This can be read as a statement about how to modify beliefs about the parameter once obser-

vations are taken into account. The usual problem when dealing with expressions of the type

(2.2) is that the numerator can be easily evaluated at each point (X, θ), while the denomi-

nator requires considerable numerical effort. A key advantage of the Metropolis-Hastings al-

gorithm we use for parameter estimation is that the posterior distribution needs to be known

only up to a scaling constant. Thus, it is customary to drop the normalization and specify

distributions only in terms of proportionality to a function of the parameters.

Remark 2.1 Bayesian inference depends on two important choices. Even if the model is correct

in the sense that it can adequately represent the data, the prior can still introduce a major bias.

This is not a problem for the model discussed in this thesis, as choosing priors with a large

variance results in a negligible distortion (see Section 2.3.4).

2.3 Probability distributions

As the way certain distributions are parametrized in the stochastic literature is not unique,

we want to review the ones used in this thesis briefly to avoid confusion. The expressions for

the densities were taken from [6]. In all cases, the underlying measure space is R respectivelyRn with the Lebesgue-measurable sets.

2.3.1 Uniform distribution

If S ⊂ Rn has positive and finite Lebesgue-measure, we say that X ∈ Rn has a uniform

distribution on S, written X ∼ U(S), iff its density is pX(x) = 1S(x)
R

S
dy

.

2.3.2 Normal and lognormal distributions

The random variable X ∈ R has a normal distribution with mean µ ∈ R and precision λ > 0

(inverse variance) iff its density is

pX(x) =

√

λ

2π
exp

(

−λ
2
(x− µ)2

)

(2.3)
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In this case, we write X ∼ N(µ, λ). The density of the standard normal distribution with

mean µ = 0 and precision λ = 1 is denoted by

φ(x) :=
1√
2π

exp

(

−x
2

2

)

(2.4)

Extending this to the multivariate case, X ∈ Rn is normally distributed with mean vector

µ ∈ Rn and precision matrix Λ ∈ Sn
+, or X ∼ Nn(µ,Λ), iff its density at x ∈ Rn is

pX(x) =

( |Λ|
(2π)n

)1
2

exp

(

−1

2
(x− µ)T Λ(x− µ)

)

(2.5)

If we partition

X =

(

X1

X2

)

µ =

(

µ1

µ2

)

Λ =

(

Λ11 Λ12

ΛT
12 Λ22

)

(2.6)

with consistent dimensions, the marginal distribution for X1 is

X1 ∼ N(µ1,Λ11 − Λ12Λ
−1
22 ΛT

12) (2.7)

and the conditional distribution of X2 given X1 is

X2|X1 ∼ N(µ2 − Λ−1
22 ΛT

12(X1 − µ1),Λ22) (2.8)

Note that in terms of precision, the matrix for the marginal distribution changes, while the

precision matrix of the conditional distribution is the associated submatrix. This observation

is reversed if we parametrize the distribution in terms of its covariance matrix.

We call X > 0 lognormally distributed with parameters µ ∈ R, λ > 0 iff log(X) ∼ N(µ, λ).

The transformation formula yields the density

pX(x) =

√

λ

2π

1

x
exp

(

−λ
2
(log(x) − µ)2

)

(2.9)

The expectation and variance of a lognormal random variable are

E(X) = exp

(

µ+
1

2λ

)

Var(X) = exp

(

2µ+
1

λ

)(

exp

(

1

λ

)

− 1

)

(2.10)

Consequently, we call X ∈ Rn
+ a multivariate lognormal random variable with parameters

µ ∈ Rn and Λ ∈ Sn
+ iff log(X) ∼ Nn(µ,Λ). The resulting density at x ∈ Rn is

pX(x) =

( |Λ|
(2π)n

) 1
2 1
∏n

i=1 xi
exp

(

−1

2
(log(x) − µ)T Λ(log(x) − µ)

)

(2.11)
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2.3.3 Gamma and Wishart distributions

We say that X > 0 has a gamma distribution with parameters α, β > 0 iff it has density

pX(x) =
βα

Γ(α)
xα−1 exp(−βx) (2.12)

and write X ∼ Gamma(α, β). Its expectation and variance are

E(X) =
α

β
Var(X) =

α

β2
(2.13)

For our purpose, the correct multivariate extension of the gamma distribution is the Wishart

distribution. We say that X ∈ Sn
+ is a Wishart random variable with parameters α > n−1

2 and

B ∈ Sn
+, or X ∼ Wishartn(α,B), iff the corresponding density at A ∈ Sn

+ is

pX(A) =
|B|α
Γn(α)

|A|α− k+1
2 exp(− tr(BA)) (2.14)

The density is integrated over the
n(n+1)

2 distinct entries of A. To normalize, we need the

generalized gamma function

Γn(α) := π
k(k−1)

4

n
∏

i=1

Γ

(

2α+ 1 − i

2

)

(2.15)

The expectation of Λ is

E(Λ) = αB−1 (2.16)

To sample from a Wishart distribution, we use the following relation found e.g. in [6]:

Proposition 2.1 Let k > n and X1, . . . ,Xk be i.i.d. Nn(µ,Λ). Then, the random variable

X :=
k
∑

i=1

(Xi −Xk)(Xi −Xk)
T (2.17)

is independent of Xk and has the distribution X ∼ Wishartn

(

k−1
2 , Λ

2

)

.

2.3.4 Normal-Wishart conjugate priors

For a multivariate normal model, using a multivariate normal prior for the mean and a

Wishart prior for the precision results in posterior distributions of the same type:

Proposition 2.2 Let X = {X1, . . . ,Xk} where the Xi are i.i.d. Nn(µ,Λ). If we take as prior

distributions for the parameters

µ ∼ Nn(ν, L) Λ ∼ Wishartn(α,B) (2.18)
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their posterior distributions become

µ|X,Λ ∼ Nn

(

(L+ kΛ)−1

(

Lν + Λ

k
∑

i=1

Xi

)

, L+ kΛ

)

(2.19)

Λ|X, µ ∼ Wishartn

(

α+
k

2
, B +

1

2

k
∑

i=1

(Xi − µ)(Xi − µ)T

)

Proof The proof is elementary, but we include it here to demonstrate the usual technique

for deriving posteriors:

pµ(x|X,Λ) ∝ pµ(x)pX(•|µ = x,Λ) (2.20)

∝ exp

(

−1

2

(

(x− ν)TL(x− ν) +

k
∑

i=1

(Xi − x)T Λ(Xi − x)

))

⇒ µ|X,Λ ∼ Nn

(

(L+ kΛ)−1

(

Lν + Λ

k
∑

i=1

Xi

)

, L+ kΛ

)

pΛ(A|X, µ) ∝ pΛ(A)pX(•|µ,Λ = A) (2.21)

∝ |A|α+ k
2
−n+1

2 exp

(

− tr(BA) − 1

2

k
∑

i=1

(Xi − µ)TA(Xi − µ)

)

⇒ Λ|X, µ ∼ Wishartn

(

α+
k

2
, B +

1

2

k
∑

i=1

(Xi − µ)(Xi − µ)T

)

To identify the second density, we use the fact that

k
∑

i=1

(Xi − µ)TA(Xi − µ) = tr

(

k
∑

i=1

(Xi − µ)(Xi − µ)TA

)

(2.22)

�

Remark 2.2 A prior distribution that results in a posterior of the same general shape is called

a conjugate prior. This notion can be formalized to apply to all exponential families for which

sufficient statistics of fixed dimension exist [6]. However, since the normal-Wishart conjugate

prior is the only one we need, we include no general results here.

We want to look at some of the properties of the one-dimensional case, which is known as the

normal-gamma conjugate prior. Let X = {X1, . . . ,Xk} be i.i.d. N(µ, λ) and assume as priors

for the parameters

µ ∼ N(0, r) λ ∼ Gamma(s, s) (2.23)
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The values r, s > 0 are arbitrary choices for the prior precisions. By the above proposition,

the resulting posterior distributions are

µ|X, λ ∼ N

(

λ
∑k

i=1Xi

r + kλ
, r + kλ

)

(2.24)

λ|X, µ ∼ Gamma

(

s+
k

2
, s+

1

2

k
∑

i=1

(Xi − µ)2

)

If r is small relative to k, we have

E(µ|X, λ) ≈ Xk Var(µ|X, λ) ≈ 1

kλ
(2.25)

Thus, µ converges in probability to the maximum likelihood estimator and is asymptotically

unbiased. A similar result holds for λ if s is small:

E(λ|X, µ) ≈ k
∑k

i=1(Xi − µ)2
Var(λ|X, µ) ≈ k

(

∑k
i=1(Xi − µ)2

)2 (2.26)

Here, we get convergence in probability to the inverse of the maximum likelihood estimator

for the variance.

2.4 Markov chains on general state spaces

This section summarizes the key concepts necessary for discussing MCMC methods. Markov

chains on general state spaces have been treated in detail by Revuz [35] and Nummelin [32].

This section is based for the most part on the more recent book by Meyn and Tweedie [30],

as well as an article by Tierney [41] that deals with application to MCMC sampling. A more

in-depth discussion of these methods can be found in [40], also by Tierney. The central limit

theorem is due to Kipnis and Varadhan [26], as suggested by Geyer [17].

2.4.1 Markov chains with invariant distributions

In the following, let {Xn}n∈N be a stochastic process with values in the measure space (Ω,A)

with countably generated σ-algebra A. The whole process is measurable w.r.t. the space

(ΩN,AN), where AN denotes the joint σ-algebra (not just the Cartesian product).

Definition 2.2 We call {Xn} a Markov chain iff for all n ≥ 1

PXn(•|Xn−1, . . . ,X0) = PXn(•|Xn−1) (2.27)

The initial distribution PX0 is arbitrary.
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A function Q on Ω ×A is called a Markov transition kernel iff for all x ∈ Ω and all A ∈ A

Q(x, •) : A → [0, 1] is a probability distribution on A
(2.28)

Q(•, A) : Ω → R+
0 is A-measurable

A Markov chain is fully characterized by its initial distribution and a sequence of transition

kernels {Qn} such that for all A ∈ A holds PXn(A|Xn−1) = Qn(Xn−1, A). We are especially

interested in the case where the transition probabilities do not depend on time:

Definition 2.3 A Markov chain {Xn} is called time-homogeneous iff there exists a Markov

transition kernel Q such that for all n ≥ 1

PXn(A|Xn−1) = Q(Xn−1, A) (2.29)

For a time-homogeneous chain, we define the iterated transition kernel Qn via induction as

Q1(x,A) := Q(x,A) Qn(x,A) :=

∫

y∈Ω
Q(y,A)Qn−1(x, dy) (2.30)

Note that Qn(x,A) = PXn(A|X0 = x) is simply the n-step transition probability.

Our goal is to use Markov chains for Monte Carlo integration, i.e. to estimate functionals

of a distribution of interest by their sample averages. A necessary condition for this to be

meaningful is that all Xn have the same marginal distribution, at least asymptotically:

Definition 2.4 Let Q be a Markov transition kernel and π any probability distribution. We say

that Q has invariant distribution π iff for all A ∈ A holds

π(A) =

∫

Ω
Q(x,A)dπ(x) (2.31)

If {Xn} is a Markov chain with transition kernels {Qn} and π is an invariant distribution for

each Qn, we say that {Xn} has invariant distribution π.

If {Xn} has invariant distribution π and initial distribution PX0 = π, the marginal distribution

is also π. I.e., we can shown by induction over n ∈ N that for all A ∈ A holds

PXn(A) =

∫

Ω
PXn(A|Xn−1 = x)dPXn−1(x) =

∫

Ω
Qn(x,A)dπ(x) = π(A) (2.32)

The Metropolis-Hastings algorithm we use for sampling is based on the following sufficient

condition for the existence of an invariant distribution:

Proposition 2.3 Let {Xn} be a Markov Chain with transition kernels {Qn}, and π a probability

measure on (Ω,A). If the detailed balance equation

Qn(x, dy)dπ(x) = Qn(y, dx)dπ(y) (2.33)

is satisfied for all n ≥ 1 and all x, y ∈ Ω, π is an invariant distribution for {Xn}.
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This is easy to show using (2.33) and the fact that Qn(y, •) is a probability distribution:

∫

x∈Ω
Qn(x,A)dπ(x) =

∫

x∈Ω

∫

y∈A

Qn(x, dy)dπ(x) (2.34)

=

∫

y∈A

∫

x∈Ω
Qn(y, dx)dπ(y) = π(A)

2.4.2 Ergodicity and asymptotic behavior

Results that rely on PX0 = π are inadequate for our purpose, as we turn to MCMC methods

precisely because we are unable to sample from a given distribution π. Fortunately, it can

be shown that the distribution of a Markov chain converges to its invariant distribution (if it

exists) regardless of PX0 under certain regularity conditions.

For the remainder of this section, let {Xn} be a time-homogeneous Markov chain with tran-

sition kernel Q. This is the case for which most convergence results have been established in

the relevant literature. It is also sufficient for our needs — although our algorithm does not

generate a time-homogeneous chain, all estimators are calculated from a sub-chain with this

property.

The usual condition used to establish a central limit theorem for Markov chain is ergodicity,

which means that the chain. . .

• has positive probability to reach all ”sets of interest” (irreducibility).

• does reach any ”set of interest” infinitely often for all starting points (Harris recurrence).

• does not exhibit cyclic behavior (aperiodicity).

These notions can be formalized as follows:

Definition 2.5 1. The first return time of {Xn} on A ∈ A is defined as

τA := min{n ≥ 1 : Xn ∈ A} (2.35)

By convention, we set τA = ∞ if the chain never returns to the set A.

2. Let ϕ be any measure on the space (Ω,A). We say that {Xn} is ϕ-irreducible iff for all

x ∈ Ω and all A ∈ A
ϕ(A) > 0 ⇒ P (τA <∞|X0 = x) > 0 (2.36)

A Markov chain is called irreducible iff it is ϕ-irreducible for some measure ϕ.

3. We call a probability measure ψ a maximal irreducibility distribution for {Xn} iff any

irreducibility measure ϕ is absolutely continuous w.r.t. ψ.

4. The chain {Xn} is called ψ-irreducible iff it is irreducible and ψ is a maximum irreducibil-

ity distribution.



12 CHAPTER 2. BASIC CONCEPTS

Definition 2.6 1. For A ∈ A, the event that the chain visits A infinitely often is

RA :=

∞
⋂

m=1

∞
⋃

n=m

{Xn ∈ A} (2.37)

2. A ψ-irreducible chain {Xn} is called recurrent iff there exists a set H ∈ A with ψ(H) = 1

and for all A ∈ A with ψ(A) > 0 holds

P (RA|X0 = x) > 0, x ∈ Ω P (RA|X0 = x) = 1, x ∈ H (2.38)

3. A recurrent chain is called Harris recurrent iff for all A ∈ A with ψ(A) > 0 and all x ∈ Ω

holds P (RA|X0 = x) = 1.

Definition 2.7 1. A collection of sets A1, . . . , Ad ∈ A is called a cycle of length d iff for all

i ∈ {2, . . . , d} holds

PXn(A1|Xn−1 ∈ Ad) = 1 PXn(Ai|Xn−1 ∈ Ai−1) = 1 (2.39)

2. The period of {Xn} is the length of the largest cycle associated with the chain.

3. We call the chain {Xn} aperiodic iff it has period 1.

Definition 2.8 We call {Xn} ergodic iff it is irreducible, Harris recurrent, and aperiodic.

The usual approach in Markov chain theory is to show that ergodicity implies the existence of

an invariant distribution and a law of large numbers for averages of functionals of the chain.

Our situation is slightly different, as the chain we use for inference is guaranteed to have

an invariant distribution by construction. As a consequence, recurrence becomes redundant.

This can be seen from the following theorem found e.g. in [41]:

Theorem 2.4 Let {Xn} be an irreducible, time-homogeneous Markov chain with invariant dis-

tribution π. Then, π is the unique invariant distribution of the chain, it is a maximal irreducibil-

ity distribution, and {Xn} is recurrent.

While the theorem does not guarantee Harris recurrence, this is a mere technicality, as the

following results show (see e.g. [30]):

Definition 2.9 Let A ∈ A.

1. The number of returns of {Xn} to A is

ηA :=

∞
∑

n=1

1A(Xn) (2.40)
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2. We call A transient iff E(ηA|X0 = x) <∞ holds for all x ∈ Ω.

3. We call A absorbing iff Q(x,A) = 1 for all x ∈ A.

Theorem 2.5 Let {Xn} be recurrent with invariant distribution π. Then, there exist disjoint sets

H,N ∈ A such that Ω = H ∪N and

• N is transient with π(N) = 0.

• H is absorbing and has the Harris property P{Xn}(RH |X0 = x) = 1 for all x ∈ H.

The existence of H already follows from Definition 2.6. The important point is the absorbing

property. Assume that we generate a sample path from a recurrent chain such that PX0 is

absolutely continuous w.r.t. π. Then, Theorem 2.5 guarantees that path remains inside the

Harris set H with probability 1 and all results for ergodic chains apply.

Ergodicity yields a strong law of large numbers and a convergence result for the transition

probabilities:

Theorem 2.6 Let {Xn} be an irreducible, time-homogeneous Markov chain with transition ker-

nel Q and invariant distribution π.

1. Any measurable function f on (Ω,A) with
∫

Ω |f(x)|dπ(x) <∞ satisfies

P

(

1

N

N
∑

n=1

f(Xn) →
∫

Ω
f(y)dπ(y)

∣

∣

∣

∣

∣

X0 = x

)

= 1 (2.41)

for π-almost all x.

2. If {Xn} is aperiodic, the iterated transition kernels converge to π in total variation norm,

i.e.

lim
N→∞

(sup
A∈A

|Qn(x,A) − π(A)|) = 0 (2.42)

for π-almost all x.

A proof from first principles can be found in the paper by Athreya, Doss, and Sethuraman [1].

Note that convergence of the kernel also implies convergence of the chain’s marginal distri-

bution. To see this, let ǫ > 0. By (2.42), there exists an index Nǫ such that for all n ≥ Nǫ

holds supA∈A |Qn(x,A) − π(A)| < ǫ. Thus

sup
A∈A

|PXn(A) − π(A)| = sup
A∈A

∣

∣

∣

∣

∫

Ω
Qn(x,A) − π(A) dPX0(x)

∣

∣

∣

∣

(2.43)

≤
∫

Ω
sup
A∈A

|Qn(x,A) − π(A)| dPX0(x) ≤ ǫ
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2.4.3 The Kipnis-Varadhan Central Limit Theorem

There are several ways to strengthen the conditions further to obtain a central limit theorem.

The version we want to use applies directly only to a chain that has reached a stable state:

Definition 2.10 The process {Xn} is called (strictly) stationary iff the vectors (Xi1 , . . . ,XiJ )

and (Xi1+k, . . . ,XiJ +k) have the same distribution for all finite sets I = {i1, . . . , iJ} ⊂ N and

all time shifts k ∈ N.

A time-homogeneous Markov chain with invariant distribution π and PX0 = π is an example

of a stationary process. This follows from (2.32) and the Markov chain’s conditional indepen-

dence of the past (2.27).

The following CLT is a special case of the results given by Kipnis and Varadhan in [26]:

Theorem 2.7 Let {Xn} be a time-homogeneous, stationary, and ergodic Markov chain with

transition kernel Q and invariant distribution π satisfying the detailed balance equation (2.33).

Let f be any measurable function mapping (Ω,A) into (R,L(R)) such that

µ :=

∫

Ω
f(x) dπ(x) s :=

∫

Ω
f(x)2dπ(x) (2.44)

exist. Then, if

σ2 := lim
N→∞

E





1

N

(

N−1
∑

n=0

(f(Xn) − µ)

)2


 <∞ (2.45)

the estimator

µN :=
1

N

N−1
∑

n=0

f(Xn) (2.46)

converges in distribution as
√
N
µN − µ

σ
→ N(0, 1) (2.47)

Under the conditions of the theorem, we can also write

σ2 = r0 + 2

∞
∑

n=1

rn <∞ (2.48)

where the rn are the autocovariances of the stationary sequence {f(Xn)}, i.e.

rn := Cov(f(X0), f(Xn)) (2.49)

Note that σ2 is the spectral density of the stationary process at zero, which may be estimated

using a window estimator (see e.g. the book by Priestly [34]). However, we can exploit the

special structure of the process as shown by Geyer in [17]:
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Theorem 2.8 Under the conditions of Theorem (2.7) and with rn defined as in (2.49), the

sequence {Sm} given for m ≥ 0 by

Sm := r2m + r2m+1 (2.50)

is positive, strictly decreasing, and strictly convex in m.

This leads to the following scheme for estimating σ2:

Definition 2.11 Let {Xn} and f satisfy the conditions of Theorem (2.7). For N ∈ N and

0 ≤ n ≤ N − 1, we estimate the autocovariances by

r̂N
n :=

1

N

N−n−1
∑

k=0

(f(Xk) − µN )(f(Xk+n) − µN ) (2.51)

and the sequence {Sm} by

ŜN
m := r̂N

2m + r̂N
2m+1 (2.52)

Let MN ∈ {0, . . . ,
[

N−1
2

]

} be the maximal index such that the sequence ŜN
1 to ŜN

MN
is positive

and strictly decreasing. The initial monotone sequence estimator for the variance is

σ̂2
N := r̂0 + 2

2MN +1
∑

n=1

r̂N
n = r̂0 + 2r̂1 +

MN
∑

m=1

ŜN
m (2.53)

As shown in [17], this is a consistent overestimate and thus suitable for calculating confidence

intervals:

Theorem 2.9 For σ̂2
N as in (2.53) and almost all sample paths of the chain holds

lim inf
N→∞

σ̂2
N ≥ σ2 (2.54)

Proof: We repeat the proof from [17] here, as we need a similar argument later:

By Theorem (2.6), we know that for all n and m holds

r̂N
n

a.s.→ rn ŜN
m

a.s.→ Sm (2.55)

As the true Sn are positive and strictly decreasing, this implies

MN
a.s.→ ∞ (2.56)

Let ǫ > 0. By Equation (2.48), there exists an M0 > 0 such that

∣

∣

∣

∣

∣

σ2 − r0 − 2r1 − 2

M0
∑

m=1

Sn

∣

∣

∣

∣

∣

<
ǫ

2
(2.57)
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Furthermore, (2.55) implies that there exists an N0 ≥ 0 such that for all N ≥ N0 holds

∣

∣

∣

∣

∣

r0 + 2r1 + 2

M0
∑

m=1

Sm − r̂N
0 − 2r̂N

1 − 2

M0
∑

m=1

ŜN
m

∣

∣

∣

∣

∣

<
ǫ

2
(2.58)

with probability 1. Thus, we get for sufficiently large N and almost all sample paths of the

chain that

σ̂2
N ≥ r̂N

0 + 2r̂N
1 + 2

M0
∑

m=1

ŜN
m ≥ σ2

N − ǫ (2.59)

which implies (2.54). �

The above result is still true if we exploit the convexity of {Sm} and base estimation on the

largest convex minorant of {ŜN
M}. However, Geyer reports that the extra computational effort

yields little improvement.

For a detailed proof why Theorem 2.7 applies to our situation, we need to relate the conver-

gence of probability measures to the convergence of the associated integrals:

Proposition 2.10 Let P and {Pn}n∈N be probability measures on (Ω,A) such that the Pn are

absolutely continuous w.r.t. P and converge in total variation norm, i.e.

lim
n→∞

(sup
A∈A

|Pn(A) − P (A)|) = 0 (2.60)

Let b > 0 and define

Fb := {f : Ω → R : f is P - and Pn-integrable for all n, and satisfies 0 ≤ f ≤ b P -a.e.}
(2.61)

For all ǫ > 0 exists a Nǫ ≥ 0 such that for all n ≥ Nǫ and all f ∈ Fb holds
∣

∣

∣

∣

∫

Ω
f(x) dPn(x) −

∫

Ω
f(x) dP (x)

∣

∣

∣

∣

< ǫ (2.62)

I.e., the Pn-integrals of non-negative, bounded functions converge to the P -integral uniformly

w.r.t. the bound b.

Proof: Let b > 0, ǫ > 0, and f ∈ Fb. By the construction of the Lebesgue-Stieltjes integral,

we can choose a sequence {sn} of measurable step functions which approximate f from below

in the following sense:

There exist disjoint sets An,1, . . . , An,j(n) ∈ A, and constants cn,1, . . . , cn,j(n) ≥ 0 such that

j(n)
⋃

i=1

An,i = Ω sn(x) =

j(n)
∑

i=1

cn,i1An,i
(x) (2.63)

Furthermore, sn ≤ f a.e. and
∣

∣

∣

∣

∫

Ω
sn(x) dPn(x) −

∫

Ω
f(x) dPn(x)

∣

∣

∣

∣

<
ǫ

3
(2.64)
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W.l.o.g. each sn is also a good approximation of f w.r.t. the P -integral:
∣

∣

∣

∣

∫

Ω
sn(x) dP (x) −

∫

Ω
f(x) dP (x)

∣

∣

∣

∣

<
ǫ

3
(2.65)

(If this is not the case, choose a step function s satisfying 0 ≤ s ≤ f and (2.65). The pointwise

maximum of s and sn is a measurable step function with the desired properties.)

By (2.60) exists a Nǫ such that for all n ≥ Nǫ and all A ∈ A holds |Pn(A) − P (A)| < ǫ
6b

. We

define

Jn
0 := {i : Pn(An,i) ≥ P (An,i)} Jn

1 := {i : Pn(An,i) < P (An,i)} (2.66)

and observe that for all n ≥ Nǫ
∣

∣

∣

∣

∫

Ω
sn(x) dPn(x) −

∫

Ω
sn(x) dP (x)

∣

∣

∣

∣

(2.67)

≤
∑

i∈Jn
0

cn,i(Pn(An,i) − P (An,i)) +
∑

i∈Jn
1

cn,i(P (An,i) − Pn(An,i))

≤ b

∣

∣

∣

∣

∣

∣

Pn





⋃

i∈Jn
0

An,i



− P





⋃

i∈Jn
0

An,i





∣

∣

∣

∣

∣

∣

+ b

∣

∣

∣

∣

∣

∣

P





⋃

i∈Jn
1

An,i



− Pn





⋃

i∈Jn
1

An,i





∣

∣

∣

∣

∣

∣

≤ ǫ

3

Using (2.64), (2.65), and (2.67), we obtain for all n ≥ Nǫ

∣

∣

∣

∣

∫

Ω
f(x) dPn(x) −

∫

Ω
f(x) dP (x)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Ω
f(x) dPn(x) −

∫

Ω
sn(x) dPn(x)

∣

∣

∣

∣

(2.68)

+

∣

∣

∣

∣

∫

Ω
sn(x) dPn(x) −

∫

Ω
sn(x) dP (x)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω
sn(x) dP (x) −

∫

Ω
f(x) dP (x)

∣

∣

∣

∣

≤ ǫ

�

The previous proposition is sufficient to extend Theorem (2.7) to Markov chains with an

arbitrary starting distribution:

Corollary 2.11 Let {X̃n} be a time-homogeneous, ergodic Markov chain with marginal distri-

butions {Pn} and invariant distribution π satisfying the detailed balance equation (2.33). Let f

be any measurable function mapping (Ω,A) into (R,L(R)) such that

µ :=

∫

Ω
f(x) dπ(x) s :=

∫

Ω
f(x)2 dπ(x) (2.69)

µn :=

∫

Ω
f(x) dPn(x) sn :=

∫

Ω
f(x)2 dPn(x)

exist for all n. Furthermore, let {Xn} be a Markov chain satisfying the conditions of Theorem

2.7 with the same invariant distribution π. If σ2 defined as in (2.45) is finite, the estimator

µ̃N :=
1

N

N−1
∑

n=0

f(X̃n) (2.70)
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converges in distribution as √
N
µ̃N − µ

σ
→ N(0, 1) (2.71)

Proof: We can assume w.l.o.g. that µ = 0. As the variance σ2 is the same as in Theorem

(2.7), we need to show for

γN : ΩN → R (x0, . . . , xN−1) 7→
1√
N

N−1
∑

n=0

f(xn) (2.72)

that
√
Nµ̃N = γN (X̃0, . . . , X̃N−1) has the same asymptotic distribution as γN (X0, . . . ,XN−1).

For this purpose, define truncated averages for M < N as

γM,N : ΩM−N → R, (xM , . . . , xN−1) 7→
1√
N

N−1
∑

n=M

f(xn) (2.73)

Note that for fixed M ≥ 1 holds

lim
N→∞

E((γN (X̃0, . . . , X̃N−1) − γM,N (X̃M , . . . , X̃N−1)
2) (2.74)

= lim
N→∞

1

N
E





(

M−1
∑

n=0

f(X̃n)

)2


 = 0

I.e., the expressions converge in mean square and therefore also in distribution.

Let ǫ > 0. As Pn converges to π, we can apply Proposition (2.10): there exist an Mǫ such that

for all n ≥ Mǫ and all functions f which satisfy 0 ≤ f ≤ 1 and are integrable w.r.t. Pn and π

holds
∣

∣

∣

∣

∫

Ω
f(x) dPn(x) −

∫

Ω
f(x) dπ(x)

∣

∣

∣

∣

< ǫ (2.75)

Let B ∈ L(R). The previous equation implies for all N > Mǫ that

|P (γMǫ,N (XMǫ , . . . ,XN−1) ∈ B) − P (γMǫ,N (X̃Mǫ , . . . , X̃N−1) ∈ B)| (2.76)

=

∣

∣

∣

∣

∫

Ω
P ((XMǫ , . . . ,XN−1) ∈ γ−1

Mǫ,N
(B)|XMǫ = x) dPXMǫ

(x)

−
∫

Ω
P ((X̃Mǫ , . . . , X̃N−1) ∈ γ−1

Mǫ,N
(B)|X̃Mǫ = x) dπ(x)

∣

∣

∣

∣

< ǫ

as the time-homogeneous Markov chain structure of {Xn} and {X̃n} ensures that the condi-

tional probabilities are identical and depend only on the lag N −Mǫ.

As we can write

|P (γN (X0, . . . ,XN−1) ∈ B) − P (γN (X̃0, . . . , X̃N−1) ∈ B)| (2.77)

≤ |P (γN (X0, . . . ,XN−1) ∈ B) − P (γMǫ,N (X0, . . . ,XN−1) ∈ B)|
+ |P (γMǫ,N (X0, . . . ,XN−1) ∈ B) − P (γMǫ,N (X̃0, . . . , X̃N−1) ∈ B)|
+ |P (γMǫ,N (X̃0, . . . , X̃N−1) ∈ B) − P (γN (X̃0, . . . , X̃N−1) ∈ B)|

equations (2.74) and (2.76) are sufficient to establish convergence. �
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Remark 2.3 Note that we can estimate σ2 as in Definition (2.11) if we replace Xn by X̃n. The

proof of Theorem (2.9) relies only on the law of large numbers, Theorem (2.7), which is also

satisfied by {X̃n}.

2.5 The Metropolis-Hastings algorithm

In the previous section, we considered conditions under which a Markov chain can be used for

Monte Carlo estimation. Generating a suitable chain is possible via the Metropolis-Hastings

(MH) algorithm. This sampling scheme was introduced by Metropolis et. al. [29] and later

adapted for a more general context by Hastings [24]. The algorithm relies on the detailed

balance equation (2.33) to ensure that the chain has the desired invariant distribution.

Algorithm 2.1 Let π be the distribution on the probability space (Ω,A) from which we want

to sample, let Q(x,A) be any transition kernel on the same space, and let f be a π-measurable

function such that

µ :=

∫

Ω
f(x)dπ(x) (2.78)

exists. Given a starting value X0 and a desired sample size N , we construct a Markov chain

{Xn} with invariant distribution π as follows:

1. Sample a proposal X̃n+1 from Q(Xn, •).

2. Set Xn+1 = X̃n+1 with probability min(1, α(Xn, X̃n+1)) and Xn+1 = Xn else, where

α(x, y) :=
dπ(y)Q(y, dx)

dπ(x)Q(x, dy)
(2.79)

3. Repeat 1. and 2. N0 +N times, until the last N values of the chain resemble a stationary

process.

Estimate µ as

µ̂ :=
1

N

N0+N
∑

n=N0+1

f(Xn) (2.80)

Remark 2.4 1. The sequence of N0 initial values which are discarded is called the burn-in

period of the sampler.

2. If π and Q(x, •) have density or weights p respectively q(x, •), the quotient α can be ex-

pressed in the more usual form

α(X, X̃) =
p(X̃)q(X̃,X)

p(X)q(X, X̃)
(2.81)
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To employ the algorithm, we need to be able to evaluate the density or weights at each

point. However, as α is a quotient, we do not need to worry about proper scaling. I.e., if

π = Pθ(•|X), equation (2.2) implies that we have to deal only with the prior and model

distributions.

The algorithm generates an ergodic chain with invariant distribution π under minimal condi-

tions. The following are sufficient and easily ensured in practice:

Proposition 2.12 Let {Xn} be a Markov chain generated by the Metropolis-Hastings algorithm

2.1 with starting point X0 drawn from PX0 . If Q(x, •) has a positive density w.r.t. π for all

x ∈ Ω, the chain is π-irreducible and aperiodic with invariant distribution π.

These points are discussed e.g. in [41] or [40]. The proof is included here to illustrate how

the quotient rule enforces detailed balance regardless of the proposal distribution:

Proof: To see that π is the invariant distribution of the chain, we verify that it satisfies the

detailed balance equation (2.33), which is sufficient by Proposition 2.3. The transition kernel

of the chain for any value Xn and set A ∈ A can be written as

PXn+1(A|Xn) =

∫

y∈A

min(1, α(Xn, y))Q(Xn, dy) (2.82)

+ 1{Xn}∩A(Xn+1)

(

1 −
∫

y∈Ω
min(1, α(Xn, y))Q(Xn, dy)

)

The first term is the probability to propose a candidate in A and accept it. The second term is

the probability to reject any proposal and stay at Xn, provided Xn ∈ A. This can be written

in differential form using a δ-distribution for the point-mass:

dPXn+1(y|Xn = x) = min(1, α(x, y))Q(x, dy) (2.83)

+ δx(y)

(

1 −
∫

y∈Ω
min(1, α(x, y))Q(x, dy)

)

Note that the definition of α implies

min(1, α(x, y))Q(x, dy)dπ(x) = min(1, α(y, x))Q(y, dx)dπ(y) (2.84)

as either min(1, α(x, y)) or min(1, α(y, x)) (or both) have value 1. Thus, multiplying (2.83)

by π(x) yields

dPXn+1(y|Xn = x)dπ(x) = min(1, α(x, y))Q(x, dy)dπ(x) (2.85)

+ δx(y)dπ(x)

(

1 −
∫

y∈Ω
min(1, α(x, y))Q(x, dy)

)

= min(1, α(y, x))Q(y, dx)dπ(y)

+ δy(x)dπ(y)

(

1 −
∫

x∈Ω
min(1, α(y, x))Q(y, dx)

)

= dPXn+1(x|Xn = y)dπ(y)
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which is the detailed balance equation (2.33) as required.

Let x ∈ Ω and A ∈ A with π(A) > 0. The chain is π-irreducible as

L(x,A) > P (X1 ∈ A|X0 = x) >

∫

y∈A

min(1, α(x, y))Q(x, dy) > 0 (2.86)

Similarly, we get for all n that PXn+1(A|Xn = x) > 0, which implies aperiodicity. �

Under the above conditions, Theorem 2.4 guarantees that the chain is also recurrent.

2.5.1 Choosing a proposal distribution

The shape of the proposal distribution Q has a major impact on the speed of convergence of

the Markov chain to a stationary state. Two situations in particular are problematic:

• The proposals have a low likelihood w.r.t. π, resulting in a high rejection rate and a

chain that remains at the same value for many iterations.

• The changes to the state of the chain are very small. While this will often result in a

high acceptance rate, the chain still needs a long time to explore the entire parameter

space. This is especially problematic if the starting value is unlikely w.r.t. π.

Unfortunately, there is a trade-off between the two cases, as bigger changes tend to have a

lower acceptance probability and vice versa.

2.5.1.1 Blocking and the Gibbs sampler

Blocking is a basic technique for improving the performance of the MH-algorithm. It is dis-

cussed in detail in the relevant literature, e.g. in [40], in the article by Gilks et. al. [19] in

[18], or in the book by Chen et. al. [7] where it is called grouping. The general idea is to

generate new states of a multivariate distribution by sequential updating of blocks (groups)

of components conditional on all others:

Example 2.1 Assume that we want to sample from π = Pθ(•|Z) in the Bayesian inference

problem (2.2), and that the parameters can be partitioned as θ = (θ1, θ2). We can decompose

the densities or weights at the point x = (x1, x2) as

pθ(x|Z) ∝ pθ1(x1|Z, θ2 = x2)pθ2(x2|Z) (2.87)

If we draw a candidate θ̃1 from some proposal density q1(θ1, •|Z, θ2), the acceptance probability

is governed by

α(θ1, θ̃1) :=
pθ1(θ̃1|Z, θ2)q1(θ̃1, θ1|Z, θ2)
pθ1(θ1|Z, θ2)q1(θ1, θ̃1|Z, θ2)

(2.88)

As terms that do not depend on θ1 cancel, the rate of acceptance will often be higher than for a

simultaneous update of both components.
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Using the MH-acceptance probability for each update results in a chain which preserves de-

tailed balance, although it is no longer necessarily time-homogeneous or aperiodic. However,

the sub-chain we get if we take only the elements of the chain after each complete update

cycle will be. Note that the block updates do not need to follow a fixed schedule; random or

mixed schemes are also admissible.

Choosing how to block components is often suggested by the model. For example, in a mul-

tivariate normal model, the means can be treated as one block and the precision matrix as

another. Ideally, the conditional distribution is of a known form, i.e. one from which we can

sample directly. In this case, we can choose q1(θ1, θ̃1|Z, θ2) = pθ1(θ̃1|Z, θ2) and achieve an

acceptance probability of 1. A scheme of this type is called a Gibbs sampler, a name proposed

by Geman and Geman when they applied it to Gibbs distributions on a lattice [16].

2.5.1.2 Other methods for improving convergence

The algorithm developed in Chapter 4 uses Gibbs sampling for the means of the lognormal

distribution driving our rainfall model. Unfortunately, the model structure does not permit

such a sampler for the precisions except in simplified cases, as the conjugate prior properties

of Section 2.3.4 are destroyed. However, we can choose a factor of the posterior density that

is proportional to a Wishart density and use it to define a proposal distribution. This leads

to an MH-algorithm where the proposal density cancels part of the likelihood in the quotient

α. The approach works as long as the posterior distribution is characterized closely by its

Wishart part, since the acceptance rate will be close to 1. Unfortunately, this is not always

true, and the algorithm can get stuck at the same value for many iterations.

It should be noted that a Gibbs sampler can also converge slowly, although it never gets stuck.

While the blocks are updated using their true posterior distribution, this happens conditional

on the current state of the model. And if part of this is misspecified, the sampler can remain in

an unlikely region (w.r.t. the stationary distribution) of the parameter space for a long time.

A common technique for improving a slow sampler is reparametrization (see e.g. the article

by Gilks and Roberts [20] in [18]). The basic idea is to transform the parameters in order

to minimize their posterior correlation. Orthogonal search directions allow the sampler to

explore the parameter space more quickly. Since de-correlation requires a linear transform,

it is easy to implement for normally distributed components — the posterior stays normal.

It is less clear how to handle distributions which are not invariant under linear transform.

Another drawback is that one has to know the posterior correlation at least approximately, or

reparametrization can worsen the situation by introducing additional dependencies.

We tested reparametrization for the normally distributed components of our model, using a

correlation matrix estimated from previous iterations of the algorithm. This did not yield any

significant improvement, as the algorithm’s main problem seems to be identifying precisions

based on a Wishart prior. And while it would be possible to specify a linear transform for

the log-precisions (to maintain non-negativity), dependencies between mean and precision
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parameters result in complicated posteriors. Thus, we do not include reparametrization in

the algorithm presented in Chapter 4.

Remark 2.5 Blocking and reparametrization are special cases of multi-grid Monte Carlo meth-

ods, which treat the parameter space in a coordinate-free manner. Given a (sufficiently rich) class

of transforms on this space, a new proposal for θ is generated by applying a randomly chosen

transform to the current state. A treatment of multi-grid Monte Carlo can be found in the article

by Liu and Sabatti [28] or in [7].

To prevent the precision sampler from getting stuck, we decided to use alternating proposal

distributions for the diagonal entries of the precision matrix. Our algorithm switches ran-

domly between a sampler based on density approximation and a normal random walk on the

log-precisions. The latter is centered on the current value and has a small variance. Thus,

many proposals stay close to the current value, resulting in a high acceptance rate and keep-

ing the sampler in motion. For details of the implementation, see Section 4.3.8.

2.5.2 Convergence diagnostics

Working with an MCMC sampler, we need a way to determine the length of the burn-in period

and the total length of a run. In particular, we are interested in whether the Markov chain

has reached its stationary state, and how well it is mixing. Some models permit mathematical

analysis to make such assessments in advance, but given the complexity of our model, we

only want to look at techniques that are universally applicable. All of them focus on the

monitoring of output from the sampler, either the parameter θ itself or some other statistic of

the Markov chain.

The first analysis step is to look at plots of the parameter values for each iteration of the sam-

pler and their autocorrelation functions. This will give a first indication of how many values

should be discarded, and whether it is advisable to thin the chain. But there are problem-

atic cases. For example, a process with several spontaneous shifts in the mean and slowly

decaying sample autocorrelations could be non-stationary or just slowly mixing. In fact, if we

monitor multiple parameters, some plots may appear stationary, while others clearly indicate

that the chain has not converged. Gelman and Rubin provide strong arguments that infer-

ence from a single run is not sufficient to establish convergence in practice [15]. They give an

example with multiple parallel chains where each individual process appears stationary but

has a distinct mean from the rest. The lesson is that one should consider multiple summaries

taken from several runs when assessing convergence if possible. Unfortunately, our algorithm

for fitting the rainfall model requires substantial computation time so that we can provide

only few results for parallel runs.

We employ two different methods for analyzing convergence. The first is based on confidence

intervals for θ, which we can construct using Corollary 2.11. If we have 2N parameter samples

available, let I1 be a γ
2 -confidence interval derived from the first N values, and I2 a γ

2 interval
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based on samples N + 1 to 2N . Under the hypothesis that the process is stationary, we know

that

P (I1 ∩ I2 = ∅) ≤ P (θ 6∈ I1 ∨ θ 6∈ I2) ≤ γ (2.89)

I.e., we have a level-γ test for non-stationarity. We can use it to compare parts of a single

sequence or from two independent sequences. Unfortunately, it is based on the variance

estimator σ̂2
N of Definition 2.11. Thus, the level is by no means guaranteed for a slow mixing

sampler.

The second method is developed by Gelman and Rubin for analyzing the output from multiple

runs in [14]. We only employ the simplified version given by Gelman in [13] which does not

correct for the uncertainty introduced by estimating the posterior means and variances:

Definition 2.12 Consider K sequences of estimators for the parameter θ ∈ Rd, each of length

L. Denote them by {θk,l}l, where k ∈ {1, . . . ,K} and l ∈ {1, . . . , L}.

The between-sequence variance for the i-th component of θ is

Bi :=
L

K − 1

K
∑

k=1

((θk,l
i )

L
− (θk,l

i )
K,L

)2 (2.90)

Here, the first average is taken over the L values of each sequence, whereas the second is take

over all values and sequences.

The within-sequence variance is

W i :=
1

K(L− 1)

K
∑

k=1

L
∑

l=1

(θk,l
i − (θk,l

i )
L
)2 (2.91)

Together, these yield the estimated potential scale reduction

PSRi :=

√

(L− 1)W i +Bi

LW i
(2.92)

The values Bi and W i are unbiased estimates for the posterior variance of θi under station-

arity. If we generate starting points from a distribution which is overdispersed compared to

the posterior, Bi is an overestimate. On the other hand, W i is an underestimate, as no single

chain will have explored the entire parameter space after finitely many iterations. Therefore,

the posterior scale reduction is an upper bound on the relative reduction of the standard de-

viation for (θk,l
i )

K,L
that could be attained if the chain was allowed to run longer. Gelman

suggests that a potential scale reduction of 1.2 for all quantities of interest should be taken to

indicate convergence.

The book by Chen et. al. [7] contains an overview of several tools for analyzing the conver-

gence behavior of a chain, including the posterior scale reduction criterion.



Chapter 3

The lognormal rainfall model

The rainfall model introduced in this section is an attempt to capture the behavior of precip-

itation data at a single point (rain-gauge readings or radar-data for a small area) over time.

The observations consist of the amount of rainfall recorded during periods of fixed length.

This results in a distribution with a continuous component on R>0 and a point mass at 0.

Unfortunately, many properties of the data depend strongly on the length of the observation

interval. For example, observations recorded at 10 minute intervals have a high probability

to be 0, while the point mass may be negligible for monthly data. We follow the approach

of Rodriguez-Iturbe et. al. [37] and try to address this problem by disaggregation. The rain-

fall intensity is treated as a continuous function over time, while the observations are the

aggregated amounts per time interval. Thus, the intensity process is formally independent

of the length of the observation periods. Of course, the intensities are estimated from the

observations, so the precision of the estimator depends on the time scale.

It is well known that the duration and intensity of rainstorms are negatively correlated. See

e.g. the article by Bacchi et. al. [2] for a model focusing on this property. We also want to be

able to incorporate short-range dependencies of this kind. On the other hand, there seem to

be no meaningful long-term dependencies except for seasonal effects. These are taken into

account only in so far that model is fitted to data from a single season.

3.1 The rainfall process

The model treats rainfall intensity as a step function. Rain is assumed to occur in cells of

constant intensity. These may overlap to produce heavier precipitation. Cells are grouped

into storms, i.e. periods during which rainfall may occur. The following definition of a rainfall

process is based on the model proposed by Rodriguez-Iturbe et. al. in [37] and [38]:

Definition 3.1 A rainfall process Π is characterized by

• The time scale τ > 0 [min].

25
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• The number T ≥ 1 of observation periods of length τ .

• The number M ≥ 1 of storms.

• The duration Xi
1 > 0 [min] of storm i, i ∈ {1, . . . ,M}.

• The lag Xi
2 > 0 [min] between the origins of storms i and i + 1, i ∈ {1, . . . ,M − 1}.

Storm M also has an associated lag XM
2 , but we require that it places the origin of the

(unobserved) successor after the end of the observation period.

• The number M i ≥ 1 of cells in storm i, i ∈ {1, . . . ,M}.

• The duration X
i,j
1 > 0 [min] of cell j in storm i, j ∈ {1, . . . ,M i}.

• The lag X
i,j
2 > 0 [min] between the origins of cells j and j + 1 in storm i,

j ∈ {1, . . . ,M i − 1}. The last cell of each storm is assigned a lag X
i,M i

2 that would place

its (non-existent) successor after the end of the storm.

• The depth (intensity) Di,j > 0 [mm/min] of cell j in storm i, j ∈ {1, . . . ,M i}.

From this, we derive the storm and cell origins

Oi :=

i−1
∑

l=1

X l
2 Oi,j := Oi +

j−1
∑

l=1

X
i,l
2 (3.1)

and the rainfall aggregates for t ∈ {1, . . . , t}

Yt := ft({Xi}, {Xi,j}, {Di,j}) :=

M
∑

i=1

M i
∑

j=1

|[Oi,j, Oi,j +X
i,j
1 ] ∩ [(t− 1)τ, tτ ]|Di,j (3.2)

We write

Xi :=

(

Xi
1

Xi
2

)

Xi,j :=

(

X
i,j
1

X
i,j
2

)

X := {(Xi, {Xi,j})} (3.3)

M := {M i} D := {Di,j} O := {(Oi, {Oi,j})} Y := {Yt}

and identify the rainfall process by Π = (Y,D,O,X,M,M, T, τ). It is also convenient to denote

the total number of cells by

M :=
M
∑

i=1

M i (3.4)

A rainfall process is said to be consistent iff

OM ≤ Tτ < OM +XM
2 (3.5)

∀i : Oi,M i ≤ Oi +Xi
1 < Oi,M i

+X
i,M i

2
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Figure 3.1: Storm process and aggregation

Remark 3.1 1. The first storm is assumed to start at time t = 0, while the first cell of each

storm starts at the storm’s origin. Thus, the storm origins and the cell origins within each

storm form a non-general point process.

2. The consistency condition ensures thatM andM i actually are the correct number of storms

and cells. Prospective successors are placed beyond the end of the observation period or

storm. In terms of simulating a storm process, the condition actually defines M and M i:

To generate a single storm, we first sample the duration X1
1 and then generate a sequence

of cell lags X
1,1
2 , X

1,2
2 , etc. until we reach an index j0 satisfying

O1,j0 ≤ O1 +X1
1 < O1,j0 +X

1,j0
2 (3.6)

By setting M1 equal to j0, we get a consistent cell process for storm 1.

Figure 3.1 shows a storm process and the resulting aggregates. For a consistent process, the

storms mark periods where cells may start, whereas the cells contribute the actual precipi-

tation. A cell may last longer than the storm it belongs to, and cells and storms may freely

overlap. Nesting cell processes within the storm process leads to a clustering of rain cells,

which appears to describe the behavior of actual rainfall reasonably well [38].

A wide range of precipitation models can be fitted within the framework defined above. In

[37], the components of X and D are treated as independent exponentials. The major ad-

vantage of this model is that the distribution of the storm and cell origins is easily tractable,
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as the number of events in a given period is Poisson distributed. Unfortunately, there exists

no multivariate extension of the exponential distribution that allows for a straightforward

specification of a covariance structure. Some suggestions how to model correlation in this

framework are given in [2], in [38], or in the technical report by Granville and Smith [21].

The latter is of particular interest to us, since they also use MCMC methods for estimation.

We want to use a different approach and specify a multivariate lognormal distribution for the

elements of X. More specifically, we assume for storm i and cell j

log











Xi
1

Xi
2

X
i,j
1

X
i,j
2











∣

∣

∣

∣

∣

∣

∣

∣

∣

µ,Λ ∼ N4(µ,Λ) (3.7)

with mean µ = (µ1, . . . , µ4)
T ∈ R4 and Λ =

(

Λ11 Λ12

ΛT
12 Λ22

)

∈ S4
+, partitioned into submatrices

of size 2 × 2. The storm quantities Xi are treated as i.i.d. with distribution

log

(

Xi
1

Xi
2

)∣

∣

∣

∣

∣

µ,Λ ∼ N2(µ̌, Λ̌11) (3.8)

The parameters describing the marginal distribution of the first two components can be de-

rived from (2.7):

µ̌ =

(

µ1

µ2

)

Λ̌11 = Λ11 − Λ12Λ
−1
22 ΛT

12 (3.9)

The cell quantities are i.i.d. conditional on the duration and lag of their storm:

log

(

X
i,j
1

X
i,j
2

)∣

∣

∣

∣

∣

Xi, µ,Λ ∼ N2(µ̌
i,Λ22) (3.10)

According to (2.8), the conditional mean is

µ̌i =

(

µ3

µ4

)

− Λ−1
22 ΛT

12

(

log(Xi
1) − µ1

log(Xi
2) − µ2

)

(3.11)

Cell depths are not included in the lognormal framework, but sampled from a uniform distri-

bution independent of all other quantities:

Di,j ∼ U(0, 2ι) (3.12)

where ι is some intensity scale [mm/min].

The reason for treating cell depth independently of the temporal structure is identifiability. As

long as a rain cell is contained in a single observation period, its contribution to that period’s

total is equal to its duration times its depth. However, the product of two lognormals is again
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lognormally distributed. I.e., a joint lognormal model could not distinguish between depth

and duration in this case, and would use five parameters (two means, three (co)precisions) to

describe a quantity that can be fully characterized by two. While these considerations suggest

a constant intensity, variable cell depths result in lower rejection rates for storm structure

transforms in the MCMC algorithm and lead to better mixing for the sampler. The uniform

distribution was chosen for ease of use.

Remark 3.2 There is some evidence in real data sets that the rain rate averaged over a suffi-

ciently large area is approximately lognormally distributed conditional on the presence of rain.

A theoretical justification for the lognormality of rain rate can be found in the works of Kedem

and Chiu [25] as well as Pavlopoulos and Kedem [33].

Our model does not reproduce this exactly, as the rainfall amount in a period is equal to the sum

of several lognormals multiplied with uniforms. Nevertheless, we expect to obtain a distribution

with a similar extremal behavior.

We denote the actually observed rainfall amounts by Zt, t ∈ {1, . . . , T}, and treat them as a

distorted version of the aggregates Yt. The error distribution is assumed to be unsystematic,

i.e. E(Zt|Yt) = Yt. It has to account for both the errors of measurement and the errors

introduced by the simplifying assumptions of the model. No attempt is made to distinguish

between the two. The Zt are assumed to be 0 iff Yt = 0 and independent lognormals with

unknown precision scale ζ > 0 else:

log(Zt)|Yt, Yt > 0 ∼ N

(

log(Yt) −
1

2p(ζ, τ)
, p(ζ, τ)

)

(3.13)

The term p(ζ, τ) is defined as

p(ζ, τ) :=

(

log

(

τ

ζ
+ 1

))−1

(3.14)

which yields

E(Zt|Yt) = Yt Var(Zt|Yt) = Y 2
t

τ

ζ
(3.15)

As it is easier to handle, the estimation algorithm consistently parametrizes the model in

terms of p(ζ, τ) and retrieves ζ from the output.

Remark 3.3 For rain gauge readings, the error of measurement is higher during periods of

intense precipitation. The distribution of Zt was chosen to take this into account, i.e. the standard

deviation is proportional to the true rainfall amounts. In other words, the relative standard

deviation is constant for Yt > 0:
Std(Zt|Yt)

Yt
=

√

τ

ζ
(3.16)

Note also that the value of ζ does not depend on the time scale τ . For example, if we transform

the observations to a timescale of 2τ by adding pairs of observations, we get

Var

(

Z2t−1

Y2t−1
+
Z2t

Y2t

∣

∣

∣

∣

Y2t−1, Y2t, Y2t−1 > 0, Y2t > 0

)

=
2τ

ζ
(3.17)
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Table 3.1: Model variants

Model Description dim(θ)

I The full model as per Definition 3.2. 15

(parameters µ ∈ R4, Λ ∈ S4
+, ζ ∈ R)

II Λ is treated as a diagonal matrix. 9

(parameters µ ∈ R4, λ ∈ R4
+, ζ ∈ R)

III Means µ1 and µ4 are matched via typical number of cells K. 11

(parameters µR ∈ R3, ΛR ∈ S3
+, Λ4,4 ∈ R+, ζ ∈ R)

IV As model III, with diagonal Λ. 8

(parameters µR ∈ R3, λ ∈ R4
+, ζ ∈ R)

V Cell durations are uncorrelated with the other quantities. 12

(parameters µ ∈ R4, ΛR ∈ S3
+, Λ3,3 ∈ R+, ζ ∈ R)

VI Only storm duration and cell lags have non-zero correlation. 10

(parameters µ ∈ R4, Λ1,1 to Λ4,4, Λ1,4, ζ ∈ R)

As real world data frequently contain missing observations, we include that possibility in our

model, denoting the set of unknown measurements by U ⊂ {1, . . . , T}. These need to be

estimated alongside the rainfall process and its governing parameters.

We can now formulate the complete model as

Definition 3.2 The lognormal rainfall model comprises

• a consistent rainfall process Π = (Y,O,D,X,M,M, T, τ) with average cell intensity ι.

• observations Z := {Zt}, where {Zt}t∈U are missing values.

• parameters θ := (µ,Λ, p(ζ, τ)).

The interaction of these quantities is determined by Definition 3.1, as well as Equations (3.7),

(3.12), and (3.13).

Fitting this model to a data set requires that we estimate (D,X,M,M) alongside the param-

eters θ. We show how to do this using MCMC methods in Chapter 4.

3.2 Simplifying the model

The relatively high dimension of the parameter makes it difficult to obtain a good fit via the

MH-algorithm in reasonable time. Thus, we want to look at some simplifications that reduce
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the dimension of the parameter while preserving the general framework. These variations

are identified by Roman numerals, with model I being the full model (see Table 3.1):

3.2.1 Model II: Uncorrelated quantities

An obvious way to simplify the model is to assume uncorrelated storm and cell quantities X,

i.e. to treat Λ as a diagonal matrix. In this context, we write Λ = diag(λ1, . . . , λ4). Since

we choose the lognormal model precisely because we want to detect correlations, this reduc-

tion has no practical value. However, it is useful for testing the estimation algorithm, as it

simplifies many calculations.

3.2.2 Models III and IV: Matched means

Numerical trials show that the algorithm is unable to accurately identify the parameters as-

sociated with the cell process if the average duration of the cells is less than τ . Depending on

the starting point, we may get parameter sets favoring a few long or many short cells. This is

especially problematic as the computational effort increases with the number of cells in the

estimated process.

We can address this by introducing additional dependencies among the parameters. If pos-

sible, the number of cells per storm should remain reasonably small. Our approach is to fix

a typical number of cells per storm K and treat the mean parameter for the cell lag as a

function of those for storm duration. Let

σ2
1 := Var(log(Xi

1)|θ) = (Λ−1)1,1 σ2
4 := Var(log(Xi,j

2 )|θ) = (Λ−1)4,4 (3.18)

The number K is considered to be ’typical’ in the sense that we match the means

E(Xi
1|θ) = E





K
∑

j=1

X
i,j
2

∣

∣

∣

∣

∣

∣

θ



 (3.19)

If the duration of a storm and the sum of K cell lags have the same mean, we expect that

’most’ storms have close to K cells. Note that we do not condition X
i,j
2 on Xi, as we use the

additional assumption that the lags are uncorrelated with the other elements of X. In partic-

ular, variations in rainfall intensity between storms are attributed uniquely to cell duration.

Matching the means yields the equation

exp

(

µ1 +
σ2

1

2

)

= K exp

(

µ4 +
σ2

4

2

)

(3.20)

which is solved by

µ4(µ1, σ
2
1 , σ

2
4) := µ1 +

σ2
1 − σ2

4

2
− log(K) (3.21)



32 CHAPTER 3. THE LOGNORMAL RAINFALL MODEL

The model is now parametrized in terms of µR ∈ R3, ΛR ∈ S3
+, and Λ4,4 > 0 which satisfy

µ =

(

µR

µ4(µ1, σ
2
1 , σ

2
4)

)

Λ =

(

ΛR 0

0 Λ4,4

)

(3.22)

This approach reduces the dimension of the parameter vector θR := (µR,ΛR, p(ζ, τ)) from

15 to 11. However, with K, we incur one additional parameter which has to be specified in

advance.

Like model II, model IV is merely a test case where we use mean matching in conjunction

with diagonal Λ.

Remark 3.4 While it is possible to match both the means and variances of Xi
1 and

∑K
j=1X

i,j
2 ,

this approach did not perform well in numerical trials.

As for choosing a typical number of cells, we use K = 10 to generate artificial data with a

reasonably small total number of cells. Deciding on the correct value for real data is part of the

problem of choosing a starting parameter we treat in Chapter 5.

3.2.3 Model V: Uncorrelated cell durations

The matched means approach is attractive from a computational point of view as it keeps the

number of cells small, but it may not be a good representation of the real process. A more

natural way to model a higher rainfall intensity for short storms would be to increase the

frequency of cells instead of their duration. The difference between the two descriptions is

negligible only if the average cell duration is much shorter than τ . Thus, we also want to

investigate the properties of an alternative model, where the cell durations are independent

of the remaining quantities, while the lags are not. The precision matrix becomes

Λ =











Λ1,1 Λ1,2 0 Λ1,4

Λ1,2 Λ2,2 0 Λ2,4

0 0 Λ3,3 0

Λ1,4 Λ2,4 0 Λ4,4











(3.23)

In the context of model IV, we also write

ΛR =







Λ1,1 Λ1,2 Λ1,4

Λ1,2 Λ2,2 Λ2,4

Λ1,4 Λ2,4 Λ4,4






µR =







µ1

µ2

µ4






(3.24)

No additional dependencies are introduced for the means, which makes this model easier to

implement than mean matching, but it requires 12 parameters instead of 11.
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3.2.4 Model VI: Limited correlation

The last model we consider uses but a single non-zero correlation parameter for storm dura-

tion and cell lags:

Λ =











Λ1,1 0 0 Λ1,4

0 Λ2,2 0 0

0 0 Λ3,3 0

Λ1,4 0 0 Λ4,4











(3.25)

For model V, we write

ΛR =

(

Λ1,1 Λ1,4

Λ1,4 Λ4,4

)

µR =

(

µ1

µ4

)

(3.26)

With 10 parameters, this is the smallest variant of the model which is non-trivial in the sense

that it can reproduce the effect of a higher rainfall intensity for short storms.

3.3 Prior distributions

To carry out estimation within the Bayesian framework of the MH algorithm, we need to

specify suitable prior distributions for the components of θ. Since we are working with the

lognormal distribution, we use the normal-Wishart conjugate prior of Proposition 2.2 for the

mean and precision of the logarithmic quantities.

In the full model I, we choose independent components for µ:

µk ∼ N(0, r) (3.27)

The precision matrix Λ characterizing X is distributed as

Λ ∼ Wishart4(2.5,
√
sI4) (3.28)

The reason for this choice of parameters is that α = 2.5 eliminates the determinant of Λ from

the density (see 2.14), while β =
√
sI4 means that the precision of the diagonal elements is

proportional to s. In the one-dimensional case, the resulting gamma distribution is usually

parametrized via α = β = s, which yields expectation 1 and precision s. Unfortunately, this

choice cannot be extended to our situation, as the four-dimensional Wishart distribution is

only defined for α > 1.5.

Finally, the error precision p(ζ, τ) for the observations is assumed to satisfy

p(ζ, τ) ∼ Gamma(s, s) (3.29)

The prior precisions r and s need to be chosen sufficiently small to allow for a wide range of

likely parameters.
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3.3.1 Priors for the simplified models

The simplified models use the same distribution (3.27) for the means as model I, except that

µ4 in models II and IV is given by the deterministic relationship (3.21) and does not require

a separate prior.

In models II and IV where Λ = diag(λ1, . . . , λ4), the precisions are are taken to be indepen-

dently gamma-distributed as

λk ∼ Gamma(s, s) (3.30)

Models III, V, and VI also use this prior for the precision of those components which are

uncorrelated with the rest, while the reduced precision matrix ΛR is Wishart:

ΛR ∼ Wishartl

(

l + 1

2
,
√
sIl

)

(3.31)

where l = 3 for model III or V, and l = 2 for model VI.

3.4 The full probability model

Taken together, Definition 3.2 and the prior distributions of the previous section define a

probabilistic model suitable for Bayesian inference. It can be decomposed as

pZ,Y,X,M,M,θ(•)
= pZ(•|Y, θ)1f(D,X)(Y)pD(•|M,M)pX(•|M,M, θ)pM(•|M,θ)pM (•|θ)pθ(•) (3.32)

The factors are determined by our previous choice of distributions. For the components with

density, we obtain

pZ({zt}|Y = {yt}, θ) =





∏

t:yt=0

1{0}(zt) ∏

t:yt>0

1

zt

(

p(ζ, τ)

2π

) 1
2



 (3.33)

× exp



−p(ζ, τ)
2

∑

t:yt>0

(

log(zt) − log(yt) +
1

2p(ζ, τ)

)2




pD({di,j}|M,M) =
M
∏

i=1

M i
∏

j=1

1[0,2ι](d
i,j)

2ι
(3.34)
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pX({(xi, {xi,j})}|M,M, θ) =

M
∏

i=1

pXi(xi|θ)
M i
∏

j=1

pXi,j(xi,j |Xi = xi, θ) (3.35)

=

( |Λ̌11|
(2π)2

)

M
2
( |Λ22|

(2π)2

)M
2

(

M
∏

i=1

1

xi
1x

i
2

)





M
∏

i=1

M i
∏

j=1

1

x
i,j
1 x

i,j
2





× exp

(

−1

2

M
∑

i=1

(log(xi) − µ̌)T Λ̌11(log(xi) − µ̌)

)

× exp



−1

2

M
∑

i=1

M i
∑

j=1

(log(xi,j) − µ̌i)T Λ22(log(xi,j) − µ̌i)





pθ(x,A, q) = pµ(x)pΛ(A)pp(ζ,τ)(q) (3.36)

=
r2s5+sqs−1

(2π)2Γ4(2.5)Γ(s)
exp

(

−r
2

4
∑

k=1

x2
i −

√
s tr(A) − sq

)

These expressions correspond to the choice of (log)normal distributions for the Zt in (3.13),

(Xi,Xi,j) in (3.7), and µ in (3.27), the choice of a uniform distribution for the Di,j in (3.12),

and the choice of Wishart resp. Gamma distributions for Λ in (3.28) and p(ζ, τ) in (3.29).

The general forms and relevant properties of the appropriate distributional families are sum-

marized in Section 2.3.

Unfortunately, there is no closed-form solution for the weights of M and M . We show how

they can be estimated by Monte-Carlo simulation in Section 4.4 from relationships based on

the consistency condition (3.5):

pM (m|θ) = P

(

m−1
∑

i=1

Xi
2 ≤ Tτ <

m
∑

i=1

Xi
2

∣

∣

∣

∣

∣

θ

)

(3.37)

pM({mi}|M,θ) =

M
∏

i=1

P





mi−1
∑

j=1

X
i,j
2 ≤ Xi

1 <

mi
∑

i=1

X
i,j
2

∣

∣

∣

∣

∣

∣

θ





Finally, the indicator function 1f(X,D)(Y) enforces the deterministic relation Yt = ft(X,D) in

the sense of (3.2).

For the reduced models, the expressions in (3.35) and (3.36) simplify in a canonical manner,

as one or more entries of Λ are fixed to 0. Likewise, the matched means used in models III and

IV are easily included in the model likelihood: the mean vector reduces to three dimensions

and µ4 is replaced by its representation in (3.21). Note that the latter change means that

the posterior distributions of µ and Λ conditional on X become more complicated, but this is

discussed in Chapter 4.

A representation of the model as a directed acyclic graph (DAG) is shown in Figure 3.2. It

includes the fixed parameters ι, r, and s. The (redundant) origins O and the number of

periods T are missing, as their role is obvious. The graph can be read as follows:
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• squares represent known quantities, including those that have to be chosen in advance.

• the bold square represents the observations.

• circles represent unknown quantities.

• the dashed box contains the parameters of interest.

• shadowed boxes represent multiple, independent copies of the same structure.

• bold lines represent stochastic dependencies.

• thin lines represent deterministic dependencies.

A motivation for expressing stochastic beliefs in directed graphs can be found in the article by

Lauritzen and Spiegelhalter [27], while [18] contains several examples used for developing

MCMC models. A DAG allows us to quickly identify conditional dependencies, e.g. it can be

seen from Figure 3.2 that Z is conditionally independent of X given Y.
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Figure 3.2: The model as a directed acyclic graph
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Chapter 4

Parameter estimation using

Markov-Chain Monte-Carlo

In this chapter, we formulate an MCMC-algorithm for estimating the parameter θ and the

unknown quantities (D,X,M,M) of the lognormal rainfall model introduced in Chapter 3.

This involves choosing a starting point, specifying an update scheme, and deciding on how to

sample from the conditional distributions that arise.

4.1 Starting values

The algorithm needs starting values for θ, M , M, X, and D. At least in theory, θ can be

chosen arbitrarily, although a gross misspecification will result in slow convergence or prevent

convergence due to numerical issues. In Chapter 5, we propose a heuristic for a reasonable

choice based on properties of the data set.

The requirements for the remaining quantities are more strict, as they need to be consistent

with the observations. We use the following scheme to generate a process that “explains” Z:

• Each uninterrupted sequence of non-zero observations forms a single storm. A storm

starts at the beginning of the first time period it covers and stops at the end of the last

period. The lag of a storm to its successor is equal to the difference of origins, or to the

difference to Tτ + 1 for the last storm.

To bring the process in line with the heuristic for choosing the first θ, later versions

of the algorithm allow gaps of zero precipitation within the initial storms. A storm is

terminated only by a dry period exceeding a certain length.

• Unknown observations are assigned a single cell. Without this ’seeding’, the algorithm

can take a long time before it is able to place storms in the unobserved period.

39
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• If time period t has non-zero precipitation, it is assigned ⌈2Zt

ιτ
⌉ cells. This is the average

number of cells of length τ
2 required to generate the observed precipitation. For com-

putational reasons, this number can be capped to avoid excessively many cells in the

initial process.

• Cell depths are drawn from a U(0, 2ι) distribution per (3.12). Cell origins are uniformly

distributed in the first half of the observation period they belong to and end at a time

point uniformly distributed on the second half. This yields an average cell length of τ
2 .

Exception: The first cell of each storm starts at its origin and has a duration drawn from

U(0, τ). This is necessary to satisfy the assumption that Oi = Oi,1 for all storms i.

• All cells belonging to a storm are sorted in ascending order of their origins, which

determines their lags. The last cell of each storm gets a lag that would place the next

cell 1 minute after the storm ends.

Remark 4.1 1. The model assumes that the first observation period has non-zero precipita-

tion, so any initial zero observations need to be dropped.

2. The cell durations are randomized to avoid a degenerate process with sample variance 0.

The same could happen for the storm durations if all wet periods have the same length, but

this is highly unlikely.

The process generated in this manner is consistent but tends to be highly atypical for the

lognormal model. To obtain a more regular state, we fix θ during the first few iterations of

the algorithm and only transform the storm structure. Without this measure, the starting

parameter would have virtually no impact on the process.

4.2 General outline of the estimation algorithm

The storm process and observations are estimated using an MH-type algorithm as introduced

in Section 2.5. During each iteration of the scheme, we perform two major update steps:

1. Sample the parameters θ conditional on the storm process and observations.

2. Transform the storm process (and resample missing observations) conditional on θ and

the observations.

These steps are further divided into subsamplers operating on suitable blocks of unknown

values, several of which admit a Gibbs sampler (see Section 2.5.1.1). The decomposition of

the full model likelihood into conditional distributions (3.32) plays a major role in identifying

such blocks and calculating the acceptance probability for the MH-proposals. Estimators for θ

and Y are obtained by averaging over the values in the chain after a suitable burn-in period.
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4.3 Parameter updates

The update schemes for µ and Λ depend on the variant of the model we want to use. Fix-

ing some or all of the correlations to 0 simplifies the calculations considerably, whereas the

matched means of Section 3.2.2 introduce additional terms. The sampler for ζ stays the same

in all cases, as it depends only on Y and Z.

4.3.1 Model II: Sampling µ and diagonal Λ

We start with Model II, as it is the most simple. For Λ = diag(λ1, . . . , λ4), all parameter

updates can be done via Gibbs sampling, as we are dealing with ordinary normal-gamma

priors (see Section 2.3.4).

The posterior distributions for the parameters describing storm behavior (k ∈ {1, 2}) are

µk|{Xi
k},M, λk ∼ N

(

λk

∑M
i=1 log(Xi

k)

r +Mλk
, r +Mλk

)

(4.1)

λk|{Xi
k},M, µk ∼ Gamma

(

s+
M

2
, s+

1

2

M
∑

i=1

(log(Xi
k) − µk)

2

)

For the cell parameters (k ∈ {3, 4}), we get

µk|{Xi,j
k },M,M, λk ∼ N

(

λk

∑M
i=1

∑M i

j=1 log(Xi,j
k−2)

r +Mλk

, r +Mλk

)

(4.2)

λk|{Xi,j
k },M,M, µk ∼ Gamma



s+
M

2
, s +

1

2

M
∑

i=1

M i
∑

j=1

(log(Xi,j
k−2) − µk)

2





One iteration of the Gibbs sampler for µ and Λ simply consists of drawing a new value for

each component from these distributions.

4.3.2 Model I: Sampling µ and Λ in the full model

For the full model, the posterior distributions become more involved. The mean vector µ

is still normally distributed and permits a Gibbs sampler, but the precision matrix Λ is only

approximately Wishart. This is due to the imbalance in the model, where each vector of storm

quantities Xi affects the distribution of several cell quantities Xi,j .
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To express the distributions that arise, it is convenient to introduce the following expressions:

ξi,j :=

(

log(Xi)

log(Xi,j)

)

ξ̌i :=

(

ξ
i,1
1

ξ
i,1
2

)

ξ̌i,j :=

(

ξ
i,j
3

ξ
i,j
4

)

δi,j := ξi,j − µ δ̌i :=

(

δ
i,1
1

δ
i,1
2

)

δ̌i,j :=

(

δ
i,j
3

δ
i,j
4

)

(4.3)

δ̂i :=











δ
i,1
1

δ
i,1
2

0

0











δ̂i,j :=











0

0

δ
i,j
3

δ
i,j
4











Q1 :=

(

Λ̌11 0

0 0

)

∈ R4×4 Q2 := QT
3 Λ22Q3 =

(

Λ12Λ
−1
22 ΛT

12 Λ12

ΛT
12 Λ22

)

(4.4)

Q3 := (Λ−1
22 ΛT

12, I2)

Note that

Q1 = Λ −Q2 Q3(ξ
i,j − µ) = ξ̌i,j − µ̌i (4.5)

In particular, Q3 multiplied with the difference vector δi,j yields the difference for the cell

quantities w.r.t. the conditional mean µ̌i as per (3.11). This allows us to express the posterior

density for µ as

pµ(x|X,M,M,Λ) (4.6)

∝ pµ(x)p{Xi}(•|M,µ = x,Λ)p{Xi,j}(•|{Xi},M,M, µ = x,Λ)

∝ exp



−1

2



rxTx+

M
∑

i=1

(ξi,1 − x)TQ1(ξ
i,1 − x) +

M
∑

i=1

M i
∑

j=1

(ξi,j − x)TQ2(ξ
i,j − x)









which yields the distribution

µ|X,M,M,Λ ∼ N4



Q−1



Q1

M
∑

i=1

ξi,1 +Q2

M
∑

i=1

M i
∑

j=1

ξi,j



 , Q



 (4.7)

with precision matrix

Q := rI4 +MQ1 +MQ2 (4.8)

As this is a normal distribution, we can use a Gibbs sampler to update µ in a single step.

Unfortunately, the same is no longer true for Λ:

pΛ(A|X,M,M, µ) ∝ pΛ(A)p{Xi}(•|M,µ,Λ = A)p{Xi,j}(•|{Xi},M,M, µ,Λ = A) (4.9)

This is not a Wishart distribution, as A undergoes some non-linear transforms — see the

definitions of Λ̌11 in (3.9) and Q2 in (4.4). Instead of updating the entire matrix at once, it is

more convenient to sample the components Λ11, Λ22, and Λ12 conditional on everything else.
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If we consider Λ̌11 instead of Λ11, we get

pΛ̌11
(A|X,M, µ) = pΛ11(A+ Λ12Λ

−1
22 ΛT

12|X,M, µ) (4.10)

∝ pΛ

((

A+ Λ12Λ
−1
22 ΛT

12 Λ12

ΛT
12 Λ22

)∣

∣

∣

∣

∣

X,M, µ

)

∝ |A|M
2 exp

(

− tr(
√
sA) − 1

2

M
∑

i=1

(δ̌i)TAδ̌i

)

To be precise, we would have to add an indicator function that is 1 iff the full matrix Λ is

positive definite. We leave this out for the sake of simplicity, but have to keep in mind that

we are dealing with a truncated Wishart density. I.e., we get a Gibbs sampler where the new

value is generated by rejection sampling from

Λ̌11|X,M, µ ∼ Wishart2

(

M + 3

2
,
√
sI2 +

1

2

M
∑

i=1

δ̌i(δ̌i)T

)

(4.11)

Proposals are accepted as long as they preserve positive definiteness, and the new Λ11 can be

obtained from Λ̌11 via (3.9).

For Λ22, the posterior density is

pΛ22(A|X,M,M, µ,Λ11,Λ12) (4.12)

∝ pΛ

((

Λ11 Λ12

ΛT
12 A

)∣

∣

∣

∣

∣

X,M,M, µ,Λ11,Λ12

)

∝ |Λ11 − Λ12A
−1ΛT

12|
M
2 |A|M

2 exp

(

− tr(
√
sA) +

1

2

M
∑

i=1

(δ̌i)T Λ12A
−1ΛT

12δ̌
i

)

× exp



−1

2

M
∑

i=1

M i
∑

j=1

(ξ̌i,j − µ̌i)TA(ξ̌i,j − µ̌i)





= |Λ11 − Λ12A
−1ΛT

12|
M
2 |A|M

2 exp

(

− tr(
√
sA) +

1

2

M
∑

i=1

(δ̌i)T Λ12A
−1ΛT

12δ̌
i

)

× exp



−1

2

M
∑

i=1

M i
∑

j=1

(δ̌i,j +A−1ΛT
12δ̌

i)TA(δ̌i,j +A−1ΛT
12δ̌

i)





∝ |Λ11 − Λ12A
−1ΛT

12|
M
2 |A|M

2 exp

(

− tr(
√
sA) − 1

2

M
∑

i=1

(M i − 1)(δ̌i)T Λ12A
−1ΛT

12δ̌
i

)

× exp



−1

2

M
∑

i=1

M i
∑

j=1

(δ̌i,j)TAδ̌i,j





The form of the density suggests drawing a proposal Λ̃22 from

Λ̃22|X,M,M, µ ∼ Wishart2





M + 3

2
,
√
sI2 +

1

2

M
∑

i=1

M i
∑

j=1

δ̌i,j(δ̌i,j)T



 (4.13)



44 CHAPTER 4. PARAMETER ESTIMATION USING MARKOV-CHAIN MONTE-CARLO

For this move, the acceptance probability is governed by

α(Λ22, Λ̃22) :=

(

|Λ11 − Λ12Λ̃
−1
22 ΛT

12|
|Λ̌11|

)
M
2

(4.14)

× exp

(

1

2

M
∑

i=1

(M i − 1)(ΛT
12δ̌

i)T (Λ−1
22 − Λ̃−1

22 )ΛT
12δ̌

i

)

As for Λ̌11, the proposal can be rejected outright if the resulting Λ is no longer positive definite.

The posterior density for Λ12 is

pΛ12(A|X,M,M, µ,Λ11,Λ22) (4.15)

∝ pΛ

((

Λ11 A

AT Λ22

)∣

∣

∣

∣

∣

X,M,M, µ,Λ11,Λ22

)

∝ |Λ11 −AΛ−1
22 A

T |M
2 exp



−1

2

M
∑

i=1

(M i − 1)(δ̌i)TAΛ−1
22 A

T δ̌i −
M
∑

i=1

M i
∑

j=1

(δ̌i)TAδ̌i,j





It is easier to find a suitable proposal distribution if the entries of Λ12 are sampled individually.

If at least one storm has two or more cells, the posterior for Λ1,3 is

pΛ1,3(x|X,M,M, µ,Λ11,Λ22,Λ1,4,Λ2,3,Λ2,4) (4.16)

∝ pΛ12

((

x Λ1,4

Λ2,3 Λ2,4

)∣

∣

∣

∣

∣

X,M,M, µ,Λ11,Λ22,Λ1,4,Λ2,3,Λ2,4

)

∝
∣

∣

∣

∣

∣

Λ11 −
(

x Λ1,4

Λ2,3 Λ2,4

)

Λ−1
22

(

x Λ2,3

Λ1,4 Λ2,4

)∣

∣

∣

∣

∣

M
2

exp
(

−π1,3

2
(x− ν1,3)

2
)

using

π1,3 :=
Λ4,4

|Λ22|

M
∑

i=1

(M i − 1)(δi,1
1 )2 (4.17)

ν1,3 :=
1

π1,3

M
∑

i=1





(M i − 1)

|Λ22|
(Λ1,4Λ3,4(δ

i,1
1 )2 + (Λ2,4Λ3,4 − Λ2,3Λ4,4)δ

i,1
1 δ

i,1
2 ) − δ

i,1
1

M i
∑

j=1

δ
i,j
3





Thus, we can draw a proposal Λ̃1,3 from

Λ̃1,3|X,M,M, µ,Λ22,Λ1,4,Λ2,3,Λ2,4 ∼ N(ν1,3, π1,3) (4.18)

which has an acceptance probability determined by

α(Λ1,3, Λ̃1,3) :=













∣

∣

∣

∣

∣

Λ11 −
(

Λ̃1,3 Λ1,4

Λ2,3 Λ2,4

)

Λ−1
22

(

Λ̃1,3 Λ2,3

Λ1,4 Λ2,4

)∣

∣

∣

∣

∣

|Λ̌11|













M
2

(4.19)
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The remaining parameters are sampled in a similar manner. The means and variances for the

normal proposals belonging to Λ1,4, Λ2,3, and Λ2,4 are

π1,4 :=
Λ3,3

|Λ22|

M
∑

i=1

(M i − 1)(δi,1
1 )2 (4.20)

ν1,4 :=
1

π1,4

M
∑

i=1





(M i − 1)

|Λ22|
(Λ1,3Λ3,4(δ

i,1
1 )2 + (Λ2,3Λ3,4 − Λ2,4Λ3,3)δ

i,1
1 δ

i,1
2 ) − δ

i,1
1

M i
∑

j=1

δ
i,j
4





π2,3 :=
Λ4,4

|Λ22|

M
∑

i=1

(M i − 1)(δi,1
2 )2

ν2,3 :=
1

π2,3

M
∑

i=1





(M i − 1)

|Λ22|
(Λ2,4Λ3,4(δ

i,1
2 )2 + (Λ1,4Λ3,4 − Λ1,3Λ4,4)δ

i,1
1 δ

i,1
2 ) − δ

i,1
2

M i
∑

j=1

δ
i,j
3





π2,4 :=
Λ3,3

|Λ22|

M
∑

i=1

(M i − 1)(δi,1
2 )2

ν2,4 :=
1

π2,4

M
∑

i=1





(M i − 1)

|Λ22|
(Λ2,3Λ3,4(δ

i,1
2 )2 + (Λ1,3Λ3,4 − Λ1,4Λ3,3)δ

i,1
1 δ

i,1
2 ) − δ

i,1
2

M i
∑

j=1

δ
i,j
4





The acceptance probabilities for these samplers look similar to (4.19), except that the appro-

priate entry of the matrix Λ12 has to be replaced by its proposal in the numerator of α. As

before, a proposal is only admissible if Λ stays positive definite.

Remark 4.2 In case all the M i are equal to 1, the posterior does not resemble a normal distri-

bution. We do not examine this special case further, as our implementation of the algorithm does

not allow storms with a single cell (see Section 5.1.2).

One iteration for updating µ and Λ under model I consists of drawing µ and Λ̌11 from their

posterior distributions, as well as generating proposals and checking acceptance for the re-

maining components of Λ.

4.3.3 Model IV: Sampling µ and diagonal Λ for matched means

Again, we look at the simple variant with diagonal Λ before the full version. If µ4 is treated

as a function of the other parameters as per (3.21), the components of the remaining mean

vector µR still have a normal posterior distribution. However, the posterior for two of the

precisions is no longer gamma.
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Consider first

pµ1(x|X,M,M, λ1) (4.21)

∝ pµ1(x)p{Xi
1}

(•|M,µ1 = x, λ1)p{Xi,j
2 }

(•|M,M, µ1 = x, λ1, λ4)

∝ exp

(

−1

2

(

rx2 + λ1

M
∑

i=1

(log(Xi
1) − x)2

))

× exp



−λ4

2

M
∑

i=1

M i
∑

j=1

(

V i,j(σ2
1 , σ

2
4) − x

)2





using

V i,j(σ2
1 , σ

2
4) := log(Xi,j

2 ) +
σ2

4 − σ2
1

2
+ log(K) σ2

1 =
1

λ1
σ2

4 =
1

λ4
(4.22)

This posterior is normal, so we can use a Gibbs sampler that draws from

µ1|X,M,M, λ1 (4.23)

∼ N

(

λ1
∑M

i=1 log(Xi
1) + λ4

∑M
i=1

∑M i

j=1 V
i,j(σ2

1 , σ
2
4)

r +Mλ1 +Mλ4

, r +Mλ1 +Mλ4

)

The means µ2 and µ3 are not affected by the change in the model, they can be generated as

shown for model II in Section 4.3.1.

For λ1, we obtain

pλ1(x|X,M,M, µ1) (4.24)

∝ pλ1(x)p{Xi
1}

(•|M,µ1, λ1 = x)p
{Xi,j

2 }
(•|M,M, µ1, λ1 = x, λ4)

∝ xs+ M
2
−1 exp

(

−sx− x

2

M
∑

i=1

(log(Xi
1) − µ1)

2

)

× exp



−λ4

2

M
∑

i=1

M i
∑

j=1

(V i,j(x−1, σ2
4) − µ1)

2





This is not a gamma distribution, but we can draw a proposal λ̃1 from

λ̃1|X,M, µ1 ∼ Gamma

(

s+
M

2
, s+

1

2

M
∑

i=1

(log(Xi
1) − µ1)

2

)

(4.25)

The acceptance probability depends on

α(λ1, λ̃1) := exp





λ4

2

M
∑

i=1

M i
∑

j=1

((V i,j(λ−1
1 , σ2

4) − µ1)
2 − (V i,j(λ̃−1

1 , σ2
4) − µ1)

2)



 (4.26)
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While λ2 and λ3 can be sampled as for model II, the posterior distribution for λ4 is

pλ4(x|X,M,M, µ1, λ1) (4.27)

∝ pλ4(x)p{Xi,j
2 }

(•|M,M, µ1, λ1, λ4 = x)

∝ xs+ M
2
−1 exp



−sx− x

2

M
∑

i=1

M i
∑

j=1

(

log(Xi,j
2 ) − µ1 −

1

2λ1
+ log(K)

)2

− M

8x





Again, this suggests a gamma proposal drawn from

λ̃4|X,M,M, µ1, λ1 (4.28)

∼ Gamma



s+
M

2
, s+

1

2

M
∑

i=1

M i
∑

j=1

(

log(Xi,j
2 ) − µ1 −

1

2λ1
+ log(K)

)2




with an acceptance probability determined by

α(λ4, λ̃4) := exp

(

M

8λ4
− M

8λ̃4

)

(4.29)

4.3.4 Model III: Sampling µ and arbitrary Λ for matched means

As in the previous section, treating µ4 as a function of the other parameters does not change

the fact that the remaining mean vector µR has a normal posterior. And not surprisingly, the

precisions are no longer exactly Wishart.

First, we define some auxiliary expressions similar to those used for model I:

ΛR =:

(

Λ11 ΛR,12

ΛT
R,12 Λ3,3

)

Λ̌R,11 := Λ11 −
ΛR,12Λ

T
R,12

Λ3,3
(4.30)

ξ
i,j
R := log







Xi
1

Xi
2

X
i,j
1






V̂ i,j(σ2

1 , σ
2
4) :=







V i,j(σ2
1 , σ

2
4)

0

0







Q1,R :=

(

Λ̌R,11 0

0 0

)

∈ R3×3 Q2,R := Λ3,3Q
T
3,RQ3,R =

(

ΛR,12ΛT
R,12

Λ3,3
ΛR,12

ΛT
R,12 Λ3,3

)

(4.31)

Q3,R :=
(

ΛT
R,12

Λ3,3
1
)

Q4,R := diag(Λ4,4, 0, 0)

Note also that we can calculate the covariance σ2
1 from

σ2
1 = (Λ̌−1

R,11)1,1 =
(Λ̌R,11)2,2

(Λ̌R,11)1,1(Λ̌R,11)2,2 − (Λ̌R,11)
2
1,2

(4.32)
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By (2.8), the conditional distribution of log(X1)
i,j given Xi is

log(X1)
i,j|Xi, µ,Λ ∼ N

(

µ3 −
ΛT

R,12

Λ3,3

(

log(Xi
1) − µ1

log(Xi
2) − µ2

)

,Λ3,3

)

(4.33)

This allows us to express the posterior density for µR as

pµR
(x|X,M,M,ΛR) (4.34)

∝ pµR
(x)p{Xi}(•|M,µR = x,ΛR)p{Xi,j}(•|{Xi},M,M, µR = x,ΛR)

∝ exp

(

−1

2

(

rxTx+
M
∑

i=1

(ξi,1
R − x)TQ1,R(ξi,1

R − x)

))

× exp



−1

2

M
∑

i=1

Mi
∑

j=1

(ξi,j
R − x)TQ2,R(ξi,j

R − x)





× exp



−1

2

M
∑

i=1

M i
∑

j=1

(V̂ i,j(σ2
1 , σ

2
4) − x)TQ4,R(V̂ i,j(σ2

1 , σ
2
4) − x)





The resulting posterior distribution is normal with

µR|X,M,M,ΛR (4.35)

∼ N3



Q−1
R





M
∑

i=1

Q1,Rξ
i,1
R +

M
∑

i=1

M i
∑

j=1

(Q2,Rξ
i,j
R +Q4,RV̂

i,j(σ2
1 , σ

2
4))



 , QR





and precision matrix

QR := rI3 +MQ1,R +M(Q2,R +Q4,R) (4.36)

This permits a single-step Gibbs update for µR.

For Λ, we follow decomposition approach similar to the one used in Section 4.3.2:

pΛR
(A|X,M,M, µR) (4.37)

∝ pΛR
(A)p{Xi}(•|M,ΛR = A,µR)

× p
{Xi,j

1 }
(•|{Xi},M,M,ΛR = A,µR)p

{Xi,j
2 }

(•|M,M,ΛR = A,µR)

As before, we update Λ̌R,11 instead of Λ11:

pΛ̌R,11
(A|X,M,M, µ,ΛR,12,Λ3,3,Λ4,4) (4.38)

∝ pΛR

((

A+
ΛR,12ΛT

R,12

Λ3,3
ΛR,12

ΛT
R,12 Λ3,3

)∣

∣

∣

∣

∣

X,M,M, µ,ΛR,12,Λ3,3,Λ4,4

)

∝ |A|M
2 exp

(

− tr(
√
sA) − 1

2

M
∑

i=1

(δ̌i)TAδ̌i

)

× exp



−Λ4,4

2

M
∑

i=1

M i
∑

j=1

(V i,j(σ2
1 , σ

2
4) − µ1)

2




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If we draw a proposal ˜̌ΛR,11 from

˜̌ΛR,11|X,M, µ ∼ Wishart2

(

M + 3

2
,
√
sI2 +

1

2

M
∑

i=1

δ̌i(δ̌i)T

)

(4.39)

the acceptance probability is determined by

α(Λ̌R,11,
˜̌ΛR,11) := exp





Λ4,4

2

M
∑

i=1

M i
∑

j=1

((V i,j(σ2
1 , σ

2
4) − µ1)

2 − (V i,j(σ̃2
1 , σ

2
4) − µ1)

2)



 (4.40)

The posterior density for Λ3,3 is

pΛ3,3(x|X,M,M, µ,Λ11,ΛR,12) (4.41)

∝ pΛR

((

ΛR,11 ΛR,12

ΛT
R,12 x

)∣

∣

∣

∣

∣

X,M,M, µ,Λ11,ΛR,12

)

∝
∣

∣

∣

∣

∣

ΛR,11 −
ΛR,12Λ

T
R,12

x

∣

∣

∣

∣

∣

M
2

|x|M
2 exp

(

−√
sx− 1

2x

M
∑

i=1

(M i − 1)(ΛT
R,12 δ̌

i)2

)

× exp



−x
2

M
∑

i=1

M i
∑

j=1

(δi,j
3 )2





If we draw a proposal Λ̃3,3 from

Λ̃3,3|X,M,M, µ ∼ Gamma





M + 2

2
,
√
s+

1

2

M
∑

i=1

M i
∑

j=1

(δi,j
3 )2



 (4.42)

the acceptance probability depends on

α(Λ3,3, Λ̃3,3) :=









∣

∣

∣

∣

ΛR,11 −
ΛR,12ΛT

R,12

Λ̃3,3

∣

∣

∣

∣

|Λ̌R,11|









M
2

(4.43)

× exp

((

1

2Λ3,3
− 1

2Λ̃3,3

)

M
∑

i=1

(M i − 1)(ΛT
R,12δ̌

i)2

)

The components of ΛR,12 are updated individually. The posterior densities are

pΛ1,3(x|X,M,M, µ,Λ11,Λ2,3,Λ3,3) (4.44)

∝
∣

∣

∣

∣

∣

ΛR,11 −
1

Λ3,3

(

x

Λ2,3

)

(

x Λ2,3

)

∣

∣

∣

∣

∣

M
2

exp
(

−πR,1,3

2
(x− νR,1,3)

2
)

pΛ2,3(x|X,M,M, µ,Λ11,Λ1,3,Λ3,3) (4.45)

∝
∣

∣

∣

∣

∣

ΛR,11 −
1

Λ3,3

(

Λ1,3

x

)

(

Λ1,3 x
)

∣

∣

∣

∣

∣

M
2

exp
(

−πR,2,3

2
(x− νR,2,3)

2
)
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with parameters

πR,1,3 :=
1

Λ3,3

M
∑

i=1

(M i − 1)(δi,1
1 )2 (4.46)

νR,1,3 := − 1

πR,1,3

M
∑

i=1





(M i − 1)Λ2,3δ
i,1
1 δ

i,1
2

Λ3,3
+ δ

i,1
1

M i
∑

j=1

δ
i,j
3





πR,2,3 :=
1

Λ3,3

M
∑

i=1

(M i − 1)(δi,1
2 )2

νR,2,3 := − 1

πR,2,3

M
∑

i=1





(M i − 1)Λ1,3δ
i,1
1 δ

i,1
2

Λ3,3
+ δ

i,1
2

M i
∑

j=1

δ
i,j
3





If we draw a proposal Λ̃k,3 for k ∈ {1, 2} from

Λk,3|X,M,M, µ,Λ3−k,3,Λ3,3 ∼ N(νR,k,3, πR,k,3) (4.47)

the acceptance probability is determined by

α(Λk,3, Λ̃k,3) :=









∣

∣

∣

∣

ΛR,11 −
Λ̃R,12Λ̃T

R,12

Λ3,3

∣

∣

∣

∣

|Λ̌R,11|









M
2

(4.48)

As for model I, the case where all storms have but a single cell does not concern us.

The posterior distribution for Λ4,4 is

pΛ4,4(x|X,M,M, µ,ΛR) (4.49)

∝ pΛ4,4(x)p{Xi,j
2 }

(•|M,M, µ,ΛR,Λ4,4 = x)

∝ xs+ M
2
−1 exp



−sx− x

2

M
∑

i=1

M i
∑

j=1

(

log(Xi,j
2 ) − µ1 −

σ2
1

2
+ log(K)

)2

− M

8x





We can generate a proposal Λ̃4,4 from a gamma distribution

Λ̃4,4|X,M,M, µ,ΛR (4.50)

∼ Gamma



s+
M

2
, s+

1

2

M
∑

i=1

M i
∑

j=1

(

log(Xi,j
2 ) − µ1 −

σ2
1

2
+ log(K)

)2




and accept the new value with a probability depending on

α(Λ4,4, Λ̃4,4) := exp

(

M

8Λ4,4
− M

8Λ̃4,4

)

(4.51)

As in Section 4.3.2, we need to test the new Λ for positive definiteness after each component

update, rejecting any proposals that destroy the property.
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4.3.5 Model V: Sampling µ and Λ for uncorrelated cell duration

This variant is a straightforward reduction of model I, where three of the coprecisions are

fixed to 0. As above, we begin by defining some auxiliary expressions:

ΛR =:

(

Λ11 ΛR,12

ΛT
R,12 Λ4,4

)

Λ̌R,11 := Λ11 −
ΛR,12Λ

T
R,12

Λ4,4
ξ
i,j
R := log







Xi
1

Xi
2

X
i,j
2






(4.52)

Q1,R :=

(

Λ̌R,11 0

0 0

)

∈ R3×3 Q2,R =

(

ΛR,12ΛT
R,12

Λ4,4
ΛR,12

ΛT
R,12 Λ4,4

)

(4.53)

The conditional density for µR can be derived as in (4.6):

pµR
(x|X,M,M,ΛR) ∝ exp

(

−1

2

(

rxTx+
M
∑

i=1

(ξi,1
R − x)TQ1,R(ξi,1

R − x)

))

(4.54)

× exp



−1

2

M
∑

i=1

Mi
∑

j=1

(ξi,j
R − x)TQ2,R(ξi,j

R − x)





The resulting posterior distribution is once again normal

µR|X,M,M,ΛR ∼ N



Q−1
R



Q1,R

M
∑

i=1

ξ
i,1
R +Q2,R

M
∑

i=1

M i
∑

j=1

ξ
i,j
R



 , QR



 (4.55)

with

QR := rI3 +MQ1,R +MQ2,R (4.56)

This yields a Gibbs sampler for µR, while the remaining mean parameter µ3 can be sampled

from (4.2) as for model II.

To update ΛR, we use the same decomposition as before. First, we sample Λ̌R,11 from its

Wishart posterior (cp. (4.10)):

pΛ̌R,11
(A|X,M, µ) ∝ |A|M

2 exp

(

− tr(
√
sA) − 1

2

M
∑

i=1

(δ̌i)TAδ̌i

)

(4.57)

Thus, we can draw a new submatrix from

Λ̌R,11|X,M, µ ∼ Wishart2

(

M + 3

2
,
√
sI2 +

1

2

M
∑

i=1

δ̌i(δ̌i)T

)

(4.58)

and accept if the modified ΛR remains positive definite.
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The posterior density for Λ4,4 can be found from (4.12):

pΛ4,4(x|X,M,M, µ,Λ11,Λ12) (4.59)

∝
∣

∣

∣

∣

∣

Λ11 −
ΛR,12Λ

T
R,12

x

∣

∣

∣

∣

∣

M
2

x
M
2 exp

(

−√
sx− 1

2x

M
∑

i=1

(M i − 1)(δ̌i)T ΛR,12Λ
T
R,12δ̌

i

)

× exp



−x
2

M
∑

i=1

M i
∑

j=1

(δi,j
2 )2





If we draw a proposal Λ̃4,4 from

Λ̃4,4|X,M,M, µ ∼ Gamma





M + 2

2
,
√
s+

1

2

M
∑

i=1

M i
∑

j=1

(δi,j
2 )2



 (4.60)

the acceptance probability for the MH-sampler is given by

α(Λ4,4, Λ̃4,4) =









∣

∣

∣

∣

Λ11 −
ΛR,12ΛT

R,12

Λ̃4,4

∣

∣

∣

∣

|Λ̌11|









M
2

exp

(

Λ̃4,4 − Λ4,4

2Λ4,4Λ̃4,4

M
∑

i=1

(M i − 1)(ΛT
R,12δ̌

i)2

)

(4.61)

As usual, the proposal needs be rejected if the resulting matrix Λ is not positive definite. The

parameter Λ3,3 can be sampled from (4.2) as given for model II.

Finally, proposals for the coprecisions can drawn from a normal distribution similar to (4.18):

Λ̃k,4|X,M,M, µ,Λ3−k,4,Λ4,4 ∼ N(νR,k, πR,k) (4.62)

The parameters are defined as

πR,k =
1

Λ4,4

M
∑

i=1

(M i − 1)(δi,1
k )2 (4.63)

νR,k = − 1

πR,k

M
∑

i=1





(M i − 1)Λ(3−k),4

Λ4,4
δ
i,1
1 δ

i,1
2 + δ

i,1
k

M i
∑

j=1

δ
i,j
4





The resulting MH-sampler has an acceptance probability of the same form as (4.19), provided

the matrix remains positive definite.

4.3.6 Model VI: Sampling µ and Λ with a single correlation coefficient

This model is even simpler than number V, as it includes only a single non-zero coprecision

value. Our auxiliary expressions become

Λ̌1,1 := Λ1,1 −
Λ2

1,4

Λ4,4
ξ
i,j
R := log

(

Xi
1

X
i,j
2

)

(4.64)
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Q1,R :=

(

Λ̌1,1 0

0 0

)

Q2,R =

(

Λ2
1,4

Λ4,4
Λ1,4

Λ1,4 Λ4,4

)

(4.65)

The conditional density for µR is

pµR
(x|X,M,M,ΛR) ∝ exp

(

−1

2

(

rxTx+

M
∑

i=1

(ξi,1
R − x)TQ1,R(ξi,1

R − x)

))

(4.66)

× exp



−1

2

M
∑

i=1

Mi
∑

j=1

(ξi,j
R − x)TQ2,R(ξi,j

R − x)





Again, µR is sampled from its normal posterior

µR|X,M,M,ΛR ∼ N



Q−1
R



Q1,R

M
∑

i=1

ξ
i,1
R +Q2,R

M
∑

i=1

M i
∑

j=1

ξ
i,j
R



 , QR



 (4.67)

with

QR := rI2 +MQ1,R +MQ2,R (4.68)

The remaining mean parameters µ2 and µ3 can be sampled from (4.1) respectively (4.2) as

for model II.

The precision sampler uses the same decomposition as before. We sample Λ̌1,1 from its

Wishart posterior:

pΛ̌1,1
(x|X,M, µ) ∝ x

M
2 exp

(

−√
sx− x

2

M
∑

i=1

(δ̌i
1)

2

)

(4.69)

Thus, we can draw a new marginal precision from

Λ̌1,1|X,M, µ ∼ Gamma

(

M + 2

2
,
√
s+

1

2

M
∑

i=1

(δ̌i
1)

2

)

(4.70)

and accept if the modified ΛR remains positive definite.

The posterior density for Λ4,4 is

pΛ4,4(x|X,M,M, µ,Λ1,1,Λ1,4) (4.71)

∝
∣

∣

∣

∣

∣

Λ1,1 −
Λ2

1,4

x

∣

∣

∣

∣

∣

M
2

x
M
2 exp



−√
sx−

Λ2
1,4

2x

M
∑

i=1

(M i − 1)(δ̌i
1)

2 − x

2

M
∑

i=1

M i
∑

j=1

(δi,j
2 )2





If we draw a proposal Λ̃4,4 from

Λ̃4,4|X,M,M, µ,Λ1,1,Λ1,4 ∼ Gamma





M + 2

2
,
√
s+

1

2

M
∑

i=1

M i
∑

j=1

(δi,j
2 )2



 (4.72)
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the acceptance probability for the MH-sampler depends on

α(Λ4,4, Λ̃4,4) =









∣

∣

∣

∣

Λ1,1 −
Λ2

1,4

Λ̃4,4

∣

∣

∣

∣

|Λ̌1,1|









M
2

exp

(

Λ2
1,4(Λ̃4,4 − Λ4,4)

2Λ4,4Λ̃4,4

M
∑

i=1

(M i − 1)(δ̌i
1)

2

)

(4.73)

As usual, the proposal has to be rejected if the resulting ΛR is not positive definite.

The parameters Λ2,2 and Λ3,3 can be sampled from the same distributions as for model II, i.e.

(4.1) and (4.2).

Finally, proposals for the coprecision can drawn from a normal distribution similar to (4.18):

Λ̃1,4|X,M,M, µ,Λ4,4 ∼ N(νR,1, πR,1) (4.74)

The parameters are defined as

πR,1 =
1

Λ4,4

M
∑

i=1

(M i − 1)(δi,1
1 )2 (4.75)

νR,1 = − 1

πR,1

M
∑

i=1

δ
i,1
1

M i
∑

j=1

δ
i,j
4

The resulting MH-sampler has an acceptance probability of the same form as (4.19), provided

the precision matrix remains positive definite.

4.3.7 Sampling ζ

As ζ is the scale parameter defining the precision p(ζ, τ) of the observation errors, it is conve-

nient to perform the update in terms of p(ζ, τ).

If we denote the index set of non-zero observations by

G := {t ∈ {1, . . . , T} : Zt > 0} (4.76)

equations (3.13) and (3.29) almost yield a Gamma posterior distribution for p(ζ, τ):

pp(ζ,τ)(x|Y,Z) ∝ pp(ζ,τ)(x)pZ(•|Y, p(ζ, τ) = x) (4.77)

∝ xs+
|G|
2

−1 exp

(

−sx− x

2

∑

t∈G

(log(Zt) − log(Yt))
2 − |G|

8x

)

We can sample from this distribution using a MH-step with proposals p̃(ζ, τ) drawn from

p̃(ζ, τ)|Z,Y ∼ Gamma

(

s+
|G|
2
, s+

1

2

∑

t∈G

(log(Zt) − log(Yt))
2

)

(4.78)
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and acceptance probability determined by

α(p(ζ, τ), p̃(ζ, τ)) := exp

( |G|
8p(ζ, τ)

− |G|
8p̃(ζ, τ)

)

(4.79)

If the proposal is accepted, solving (3.14) gives us the associated ζ as

ζ =
τ

exp(p(ζ, τ)−1) − 1
(4.80)

4.3.8 Random walk updates for the precisions

Numerical trials show that the precision updates that do not use Gibbs sampling can get stuck

at the same value for many iterations. This happens if the true posterior density deviates too

much from the gamma or Wishart distributions used for generating proposals. To improve

mixing, we alternate between the sampler developed above and random walk updates for the

diagonal entries of Λ. During each iteration, either scheme is chosen with a 50% probability.

To ensure that the precisions remain strictly positive, we sample proposals from a lognormal

distribution that is equivalent to a normal random walk on the log-parameters. The variance

of the Gaussian increments is taken to be equal to the posterior variance, estimated from

the 500 previous iterations of the algorithm (if available). This ensures a reasonably high

acceptance probability. In fact, if the sampler is in a state where most proposals get rejected,

the estimated variance decreases, leading to smaller changes and a lower rejection rate.

4.3.8.1 Model I: Precision updates for arbitrary Λ

The proposal distributions for the diagonal entries of Λ are all of the same form

log(Λ̃k,k)|Λk,k ∼ N(log(Λk,k), Lk) (4.81)

where Lk is a suitable precision parameter (see above). The corresponding α’s can be calcu-

lated using (4.9):

α(Λ1,1, Λ̃1,1) :=













∣

∣

∣

∣

∣

(

Λ̃1,1 Λ1,2

Λ1,2 Λ2,2

)

− Λ12Λ
−1
22 ΛT

12

∣

∣

∣

∣

∣

|Λ̌11|













M
2

Λ̃1,1

Λ1,1
(4.82)

× exp

(

(Λ1,1 − Λ̃1,1)

(

√
s+

1

2

M
∑

i=1

(δi,1
1 )2

))
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α(Λ2,2, Λ̃2,2) :=













∣

∣

∣

∣

∣

(

Λ1,1 Λ1,2

Λ1,2 Λ̃2,2

)

− Λ12Λ
−1
22 ΛT

12

∣

∣

∣

∣

∣

|Λ̌11|













M
2

Λ̃2,2

Λ2,2
(4.83)

× exp

(

(Λ2,2 − Λ̃2,2)

(

√
s+

1

2

M
∑

i=1

(δi,1
2 )2

))

α(Λ3,3, Λ̃3,3) :=

















∣

∣

∣

∣

∣

∣

Λ11 − Λ12

(

Λ̃3,3 Λ3,4

Λ3,4 Λ4,4

)−1

ΛT
12

∣

∣

∣

∣

∣

∣

|Λ̌11|

















M
2












∣

∣

∣

∣

∣

(

Λ̃3,3 Λ3,4

Λ3,4 Λ4,4

)∣

∣

∣

∣

∣

|Λ22|













M
2

Λ̃3,3

Λ3,3
(4.84)

× exp





1

2

M
∑

i=1

(M i − 1)(δ̌i)T Λ12



Λ−1
22 −

(

Λ̃3,3 Λ3,4

Λ3,4 Λ4,4

)−1


ΛT
12δ̌

i





× exp



(Λ3,3 − Λ̃3,3)





√
s+

1

2

M
∑

i=1

M i
∑

j=1

(δi,j
3 )2









α(Λ4,4, Λ̃4,4) :=

















∣

∣

∣

∣

∣

∣

Λ11 − Λ12

(

Λ3,3 Λ3,4

Λ3,4 Λ̃4,4

)−1

ΛT
12

∣

∣

∣

∣

∣

∣

|Λ̌11|

















M
2












∣

∣

∣

∣

∣

(

Λ3,3 Λ3,4

Λ3,4 Λ̃4,4

)∣

∣

∣

∣

∣

|Λ22|













M
2

Λ̃4,4

Λ4,4
(4.85)

× exp





1

2

M
∑

i=1

(M i − 1)(δ̌i)T Λ12



Λ−1
22 −

(

Λ3,3 Λ3,4

Λ3,4 Λ̃4,4

)−1


ΛT
12δ̌

i





× exp



(Λ4,4 − Λ̃4,4)





√
s+

1

2

M
∑

i=1

M i
∑

j=1

(δi,j
4 )2









Note that the alphas do not depend on the value of Lk, as the lognormal proposal densities

cancel out in the quotient, except for the term
Λ̃k,k

Λk,k
. Of course, a large variance leads to a

greater number of unlikely proposals and a higher rejection rate.

As for the samplers based on the Wishart distribution, any proposal needs to be rejected if the

resulting Λ is not positive definite.
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4.3.8.2 Model IV: Precision updates for diagonal Λ with matched means

As λ2 and λ3 permit a Gibbs sampler, only the other two precision parameters use the random-

walk update. Proposals are drawn from

log(λ̃1)|λ1 ∼ N(log(λ1), L1) log(λ̃4)|λ4 ∼ N(log(λ4), L4) (4.86)

with suitable precisions. The acceptance probabilities can be derived from (4.24) and (4.27).

They depend on

α(λ1, λ̃1) :=

(

λ̃1

λ1

)s+ M
2

exp

(

(λ1 − λ̃1)

(

s+
1

2

M
∑

i=1

(log(Xi
1) − µ1)

2

))

(4.87)

× exp





λ4

2





M
∑

i=1

M i
∑

j=1

(V i,j(λ−1
1 , σ2

4) − µ1)
2 −

M
∑

i=1

M i
∑

j=1

(V i,j(λ̃−1
1 , σ2

4) − µ1)
2









α(λ4, λ̃4) :=

(

λ̃4

λ4

)s+ M
2

exp

(

M

8λ4
− M

8λ̃4

)

(4.88)

× exp



(λ4 − λ̃4)



s+
1

2

M
∑

i=1

M i
∑

j=1

(

log(Xi,j
2 ) − µ1 −

1

2λ1
+ log(K)

)2








Since Λ is a diagonal matrix, positive definiteness is assured.

4.3.8.3 Model III: Precision updates for arbitrary Λ with matched means

As for the full model without mean matching, we use (4.81) as our proposal distribution. The

acceptance probabilities can be derived from (4.37) and (4.49). They depend on

α(Λ1,1, Λ̃1,1) :=













∣

∣

∣

∣

∣

(

Λ̃1,1 Λ1,2

Λ1,2 Λ2,2

)

− ΛR,12ΛT
R,12

Λ3,3

∣

∣

∣

∣

∣

|Λ̌R,11|













M
2

Λ̃1,1

Λ1,1
(4.89)

× exp

(

(Λ1,1 − Λ̃1,1)

(

√
s+

1

2

M
∑

i=1

(δi,1
1 )2

))

× exp





Λ4,4

2

M
∑

i=1

M i
∑

j=1

((V i,j(σ2
1 , σ

2
4) − µ1)

2 − (V i,j(σ̃2
1 , σ

2
4) − µ1)

2)




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α(Λ2,2, Λ̃2,2) :=













∣

∣

∣

∣

∣

(

Λ1,1 Λ1,2

Λ1,2 Λ̃2,2

)

− ΛR,12ΛT
R,12

Λ3,3

∣

∣

∣

∣

∣

|Λ̌R,11|













M
2

Λ̃2,2

Λ2,2
(4.90)

× exp

(

(Λ2,2 − Λ̃2,2)

(

√
s+

1

2

M
∑

i=1

(δi,1
2 )2

))

× exp





Λ4,4

2

M
∑

i=1

M i
∑

j=1

((V i,j(σ2
1 , σ

2
4) − µ1)

2 − (V i,j(σ̃2
1 , σ

2
4) − µ1)

2)





α(Λ3,3, Λ̃3,3) :=









∣

∣

∣

∣

Λ11 −
ΛR,12ΛT

R,12

Λ̃3,3

∣

∣

∣

∣

|Λ̌R,11|









M
2
(

Λ̃3,3

Λ3,3

)M
2

+1

(4.91)

× exp

((

1

2Λ3,3
− 1

2Λ̃3,3

)

M
∑

i=1

(M i − 1)(ΛT
R,12δ̌

i)2

)

× exp



(Λ3,3 − Λ̃3,3)





√
s+

1

2

M
∑

i=1

M i
∑

j=1

(δi,j
3 )2









α(Λ4,4, Λ̃4,4) :=

(

Λ̃4,4

Λ4,4

)s+ M
2

exp

(

M

8Λ4,4
− M

8Λ̃4,4

)

(4.92)

× exp



(Λ4,4 − Λ̃4,4)



s+
1

2

M
∑

i=1

M i
∑

j=1

(

log(Xi,j
2 ) − µ1 −

σ2
1

2
+ log(K)

)2








As usual, any proposal has to be rejected if the resulting Λ is no longer positive definite.

4.3.8.4 Model V: Precision updates for uncorrelated cell durations

For model V, we can use the same lognormal proposals as for the full model, except that Λ3,3

can be sampled from its gamma posterior distribution. If we draw proposals from (4.81) for

k ∈ {1, 2, 4}, the acceptance probabilities for the MH-samples can be derived as in (4.82),

(4.83), and (4.85):

α(Λ1,1, Λ̃1,1) :=













∣

∣

∣

∣

∣

(

Λ̃1,1 Λ1,2

Λ1,2 Λ2,2

)

− ΛR,12ΛT
R,12

Λ4,4

∣

∣

∣

∣

∣

|Λ̌11|













M
2

Λ̃1,1

Λ1,1
(4.93)

× exp

(

(Λ1,1 − Λ̃1,1)

(

√
s+

1

2

M
∑

i=1

(δi,1
1 )2

))
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α(Λ2,2, Λ̃2,2) :=













∣

∣

∣

∣

∣

(

Λ1,1 Λ1,2

Λ1,2 Λ̃2,2

)

− ΛR,12ΛT
R,12

Λ4,4

∣

∣

∣

∣

∣

|Λ̌11|













M
2

Λ̃2,2

Λ2,2
(4.94)

× exp

(

(Λ2,2 − Λ̃2,2)

(

√
s+

1

2

M
∑

i=1

(δi,1
2 )2

))

α(Λ4,4, Λ̃4,4) :=









∣

∣

∣

∣

Λ11 −
ΛR,12ΛT

R,12

Λ̃4,4

∣

∣

∣

∣

|Λ̌11|









M
2
(

Λ̃4,4

Λ4,4

)
M
2

+1

(4.95)

× exp

((

1

2Λ4,4
− 1

2Λ̃4,4

)

M
∑

i=1

(M i − 1)(ΛT
R,12δ̌

i)2

)

× exp



(Λ4,4 − Λ̃4,4)





√
s+

1

2

M
∑

i=1

M i
∑

j=1

(δi,j
4 )2









Once again, we need to reject any proposal that leads to Λ not being positive definite.

4.3.8.5 Model VI: Precision updates for limited correlation

Model VI uses the same lognormal proposals as the full model, but only for Λ1,1 and Λ4,4,

as the other two precisions permit a Gibbs sampler. If we draw proposals from (4.81) for

k ∈ {1, 4}, the acceptance probabilities can be derived as in (4.82) and (4.85):

α(Λ1,1, Λ̃1,1) :=





Λ̃1,1 −
Λ2

1,4

Λ4,4

Λ̌1,1





M
2

Λ̃1,1

Λ1,1
(4.96)

× exp

(

(Λ1,1 − Λ̃1,1)

(

√
s+

1

2

M
∑

i=1

(δi,1
1 )2

))

α(Λ4,4, Λ̃4,4) :=







Λ1,1 −
Λ2

1,4

Λ̃4,4

Λ̌11







M
2
(

Λ̃4,4

Λ4,4

)
M
2

+1

(4.97)

× exp

((

1

2Λ4,4
− 1

2Λ̃4,4

)

Λ2
1,4

M
∑

i=1

(M i − 1)(δ̌i
1)

2

)

× exp



(Λ4,4 − Λ̃4,4)





√
s+

1

2

M
∑

i=1

M i
∑

j=1

(δi,j
4 )2









As before, we need to check whether Λ remains positive definite and reject any proposal that

destroys the property.
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4.3.8.6 The random-walk sampler for ζ

As in Section 4.3.7, we update the precision p(ζ, τ) instead of the scale parameter ζ. If we

draw a proposal from

log(p(ζ̃ , τ))|p(ζ, τ) ∼ N(log(p(ζ, τ)), Lζ) (4.98)

with suitable Lζ , the acceptance probability for the move depends on

α(p(ζ, τ), p(ζ̃ , τ)) =:

(

p(ζ̃, τ)

p(ζ, τ)

)s+ |G|
2

exp

( |G|
8p(ζ, τ)

− |G|
8p(ζ̃ , τ)

)

(4.99)

× exp

(

(p(ζ, τ) − p(ζ̃ , τ)

(

s+
1

2

∑

t∈G

(log(Zt) − log(Yt))
2

))

4.4 Weight estimators

One drawback of the lognormal point-process model is the lack of analytic solutions for the

distribution of M and M . Exponentially distributed lags would yield Poisson weights which

have a simple explicit form, but we have to resort to a smoothed Monte-Carlo estimator.

To estimate the distribution of the number of storms M , we draw S independent samples of

lognormals {Xi,(1)
2 }, . . . , {Xi,(S)

2 } from the marginal distribution of the storm lags

log(X
i,(s)
2 )|θ ∼ N

(

µ2, (Λ̌11)1,1 −
(Λ̌11)

2
1,2

(Λ̌11)2,2

)

(4.100)

Then, we count how many times exactly m storms occur during the observation period:

κm :=

∣

∣

∣

∣

∣

{

s ∈ {1, . . . , S} :

m−1
∑

i=1

X
i,(s)
2 ≤ Tτ <

m
∑

i=1

X
i(s)
2

}∣

∣

∣

∣

∣

(4.101)

Due to the consistency condition for the storm lags (3.5), the relative frequencies κm

S
are

estimators for the weights of the distribution of M given in (3.37).

The empirical mode of the weight distribution is denoted by

m+ := arg max
m≥1

κm (4.102)

For some initial bandwidth W ≥ 1 and a scaling constant L ≥ 1, we estimate weights by local

averaging. The bandwidth increases linearly with the distance to the empirical mode:

q̂M (m|θ) :=

∑m+dm

max(1,m−dm) κm

S(1 + 2dm)
(4.103)

dm := W +

⌊ |m−m+|
L

⌋

(4.104)
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We divide all values by the full range (1 + 2dm), even if we are near 1 where fewer counts

are available for averaging. Dividing by the actual number of counts can result in an artificial

mode at 1, which may seriously distort the behavior of the algorithm.

As the weights q̂ do in general not sum up to 1, we rescale to get estimators

p̂M (m|θ) :=
q̂M (m|θ)

∑∞
j=1 q̂M(j|θ) (4.105)

A similar scheme can be used to obtain estimators for the probability weights of cell counts

per storm. The major difference is that the time horizon is drawn from the distribution of the

storm durations, and that the cell lags have to be sampled conditional on this duration.

Remark 4.3 Local averaging with variable bandwidth is necessary for computational reasons,

as the samples are highly dispersed. This is especially problematic in the case of cell counts,

where the length of the observation period is also variable. Thus, a small overall bandwidth

yields an estimated weight of 0 for many values in the tails of the distribution. On the other

hand, a large bandwidth adapted to the tails underestimates the weights near the mode(s) due

to oversmoothing.

4.5 Storm structure transforms

The quantities Ψ := (Y,D,X,M,M) and the unknown observations {Zt}t∈U are updated

using a reversible jump MH-scheme. One iteration of this method works as follows:

1. Choose a transform from a specified list of operations on Ψ.

2. Apply the transform to the current state to generate a proposal process.

3. Accept the change with a probability given by the usual quotient of likelihoods and

proposal distributions.

Reversible-jump MCMC was introduced by Green [22]. Some applications are discussed e.g.

in [7] or in the book by Frühwirth-Schnatter [12], while Granville and Smith apply it to

rainfall disaggregation [21] using an extended version of the model found in [38].

The critical issue is of course the choice of transforms, which must satisfy several conditions:

• Any conceivable state of the model can be reached by a finite sequence of transforms.

• The process needs to remain consistent (as per Definition 3.1) at all times.

• Each transform needs to be reversible (by itself or another transform), so the probabili-

ties to move from one state to its proposed successor and vice versa are non-zero.
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Furthermore, the change per transform should be relatively small, so that the proposed moves

have a reasonably high acceptance probability.

We use six operations to manipulate the storms and cells:

1. Add a cell to an existing storm.

2. Remove a cell from an existing storm.

3. Split one storm into two adjacent ones.

4. Merge two adjacent storms into one.

5. Update the duration of a storm.

6. Update the depth and duration of a cell.

Remark 4.4 Operation 1 is reversible by 2 and vice versa. The same is true for 3 and 4. Opera-

tion 5 and 6 can each reverse themselves. The first four transforms already allow us to generate

any number of storms and cells in arbitrary positions. The last two updates are included for

numerical reasons:

The algorithm is able to identify the position of the storms much more quickly than that of the

cells. Thus, mergers and splits become rare events after a few iterations and another transform

is necessary to allow duration to respond to changes in θ.

On the other hand, cell transforms usually have lower acceptance probabilities than changes to

the storm structure, as they have to “explain” the observations Z via the aggregates. During the

initial iterations of the algorithm, the average intensity of the cell process tends to be less than

its expected value ι. Operation 6 improves the fit of the cell process to the observations and thus

the rate of convergence of the average towards ι.

In our implementation of the algorithm, operations 1 to 5 are performed in a random order

for several thousand iterations:

• Operation 1 and 2 are each chosen with probability p1 > 0.

• Operation 3 and 4 are each chosen with probability p2 > 0.

• Operation 5 is chosen with probability p3 > 0.

Obviously, we need to require 2p1 + 2p2 + p3 = 1. Pairs of reverse transforms get the same pi

so it cancels when calculating the quotient for the acceptance probability. As the cell process

is more difficult to fit, p1 for the cell transforms should be the largest of the three. For the

same reason, operation 6 is not included in the random scheme. Instead, it is applied several

times per cell in a separate update step.



4.5. STORM STRUCTURE TRANSFORMS 63

The remainder of this section is a detailed description of the six transforms. All quantities

associated with a proposed process Ψ̃ are marked with a tilde. To express the acceptance

probabilities for a move from one state to the next, we use the index set

T̃ := {t ∈ {1, . . . , T} : Ỹt 6= Yt} (4.106)

of observation periods where the aggregates change due to the transform.

The acceptance probabilities for the moves are given for the full model. If using one of the

reduced models II–VI, the expressions can often be simplified considerably. But as this is

mainly an issue of how to implement the algorithm efficiently, we do not give model-specific

versions of the α’s here.

4.5.1 Add a cell

This operation adds a new cell to an existing storm without changing the absolute position

of other cells. Select a storm index i0 and an index j0 − 1 for the predecessor of the new cell

from the Laplace distributions on {1, . . . ,M} and {1, . . . ,M i0} respectively. The proposal Ψ̃

is constructed from Ψ in the following manner:

• M̃ := M , M̃ i0 := M i0 + 1, and for i 6= i0: M̃ i := M i.

• For all i: X̃i := Xi.

• For i 6= i0 and all j: X̃i,j := Xi,j, D̃i,j := Di,j.

• For j < j0 − 1: X̃i0,j := Xi0,j, D̃i0,j := Di0,j.

• Sample X̃i0,j0 from (3.10) conditional on Xi0 , and sample D̃i0,j0 from (3.12).

• X̃i0,j0−1 :=

(

X
i0,j0−1
1

X
i0,j0−1
2 − X̃

i0,j0
2

)

, D̃i0,j0−1 := Di0,j0−1.

• For j > j0: X̃i0,j := Xi0,j−1, D̃i0,j := Di0,j−1.

• For all t: Ỹt := Yt + |[Õi0,j0, Õi0,j0 + X̃
i0,j0
1 ] ∩ [(t− 1)τ, tτ ]|D̃i0,j0.

New values Z̃t for t ∈ T̃ ∩ U are sampled from (3.13).

The move can be rejected outright if X̃
i0,j0−1
2 < 0 or if cell j0 starts after the end of storm i0,

as these would be inconsistent with the model. Else, the transition probability is determined
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by (3.32) and the probability of adding/subtracting the chosen cell:

α1(Ψ,Z, Ψ̃, Z̃) =
pZ(Z̃|Ỹ, θ)pD(D̃)pX(X̃|M̃, M̃ , θ)pM(M̃|M̃, θ)

pZ(Z|Y, θ)pD(D)pX(X|M,M, θ)pM(M|M,θ)
(4.107)

×
p1

Q

t∈T̃∩U
pZt

(Zt|Yt,θ)

M̃(M̃ i0−1)

p1p
Xi,j (X̃i0,j0 |Xi0 ,θ)

Q

t∈T̃∩U
pZt

(Z̃t|Ỹt,θ)

2ιMM i0

=





∏

t∈T̃\U

pZt(Zt|Ỹt, θ)

pZt(Zt|Yt, θ)





pXi,j (X̃i0,j0−1|Xi0 , θ)pM i(M̃ i0 |θ)
pXi,j (Xi0,j0−1|Xi0 , θ)pM i(M i0 |θ)

The densities for Zt and Xi,j can be derived explicitly from the distributions in (3.13) and

(3.10), and we have seen how to get weights for M i in Section 4.4.

Remark 4.5 Note that a cell may never be added before the first cell of a storm. This is consistent

with the next operation, as the first cell of a storm can never be removed.

4.5.2 Remove a cell

This transform removes an existing cell without changing the absolute position of other cells.

Select a storm index i0 and an index j0 − 1 for the predecessor of the cell to be removed from

the Laplace distributions on {1, . . . ,M} and {1, . . . ,M i0 − 1} respectively. The move can be

rejected outright if M i0 = 1, as no cell can have fewer than 1 cell. Construct Ψ̃ from Ψ as

follows:

• M̃ := M , M̃ i0 := M i0 − 1, and for i 6= i0: M̃ i := M i.

• For all i: X̃i := Xi.

• For i 6= i0 and all j: X̃i,j := Xi,j, D̃i,j := Di,j.

• For j < j0 − 1: X̃i0,j := Xi0,j, D̃i0,j := Di0,j.

• X̃i0,j0−1 :=

(

X
i0,j0−1
1

X
i0,j0−1
2 +X

i0,j0
2

)

, D̃i0,j0−1 := Di0,j0−1.

• For j ≥ j0: X̃i0,j := Xi0,j+1, D̃i0,j := Di0,j+1.

• For all t: Ỹt := Yt − |[Oi0,j0, Oi0,j0 +X
i0,j0
1 ] ∩ [(t− 1)τ, tτ ]|Di0,j0.

Additionally, new values Z̃t have to be sampled from (3.13) for t ∈ T̃ ∩ U .

The transition probability is determined by

α2(Π,Z, Π̃, Z̃) = α1(Π̃, Z̃,Π,Z)−1 (4.108)

Remark 4.6 The first cell of a storm can never be removed, as we require each storm to start

with a cell (see Remark 3.1).
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4.5.3 Split one storm into two adjacent ones

This operation splits one storm into two adjacent ones without affecting the position of

other storms or of any of the cells. Select a storm index i0 from the Laplace distribution

on {1, . . . ,M}. The cells of this storm will be split among the new storms i0 and i0 + 1. First,

define

k1 :=

{

max{j : j ∈ {2, . . . ,M i0} ∧Oi0,j < Oi0+1} if i0 < M

M i0 if i0 = M
(4.109)

If no such k1 exists, reject the move as no split into adjacent storms is possible. Else, sample

U ∼ U(0, Oi0,k1 −Oi0) and take as first cell for the new storm i0 + 1 the one with index

j1 := arg min
j

{Oi0,j : Oi0,j −Oi0 > U} ∈ {2, . . . , k1} (4.110)

The probability of choosing j1 is

p(j1 = j) =
X

i0,j−1
2

Oi0,k1 −Oi0
(4.111)

I.e., it is more likely that the storm is split at a position where the cells are far apart.

The last cell m0 for the new storm i0 is selected from {j1 − 1, j1 + 1, . . . ,M i0} with geometri-

cally decreasing probability. Thus, if

g : {0, . . . ,M i0 − j1} → {j1 − 1, j1 + 1, . . . ,M i0} (4.112)

j 7→
{

j1 − 1 if j = 0

j1 + j if j > 0

the weights for choosing m0 are

P (m0 = g(j)) =

(

1
2

)j+1

1 −
(

1
2

)M i0−j1+1
(4.113)

This way, splits that result in little overlap between the new storms are proposed more often.

As we expect clustering of wet periods to be a evident in the data, these should yield a higher

acceptance rate.

If m0 > j1 +1, we need to distribute the cells with intermediate indices between the two new

storms. Sample � ∈ {0, 1}m0−j1−1 with independent Bernoulli components βj ∼ B
(

1, 1
2

)

.

Partition the cells of storm i0 into two new storms as follows:

S0 := {1, . . . , j1 − 1} ∪ {j1 + l : βl = 0} ∪ {m0} (4.114)

S1 := {j1} ∪ {j1 + l : βl = 1} ∪ {m0 + 1, . . . ,M i0}

and define counts

hl : {1, . . . , |Sl|} → Sl, l ∈ {0, 1} (4.115)

such that Oi0,hl(1) < Oi0,hl(2) < · · · < Oi0,hl(|Sl|). The last cell of the new storm i0 + 1 has the

index m1 := max(S1). We can now define the proposal process Ψ̃ via
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• M̃ := M + 1 and

M̃ i :=



















M i if 1 ≤ i < i0

|S0| if i = i0

|S1| if i = i0 + 1

M i−1 if i0 + 1 < i ≤ M̃

(4.116)

• For i < i0 and all j: X̃i := Xi, X̃i,j := Xi,j , D̃i,j = Di,j.

• For i > i0 + 1 and all j: X̃i := Xi−1, X̃i,j := Xi−1,j , D̃i,j = Di−1,j.

• If m0 < m1, sample X
i0,M̃ i0

2 from its marginal distribution

log(Xi0,M̃ i0

2 )|θ ∼ N(µ4, (Λ
−1)−1

4,4) (4.117)

and draw V ∼ U(0,Xi0,M̃ i0

2 ). Now define

X̃i0
1 := Oi0,m0 + V −Oi0 X̃i0+1

1 := Oi0 +Xi0
1 −Oi0,j1 (4.118)

X̃
i0,M̃ i0

1 := X
i0,m0
1 X̃i0+1,M̃ i0+1

:= Xi0+1,m1

D̃i0,M̃ i0
:= Di0,m0 D̃i0+1,M̃ i0+1

:= Di0,m1

• If m0 > m1, sample X
i0+1,M̃ i0+1

2 from its marginal distribution (same as (4.117)), draw

V ∼ U(0,Xi0+1,M̃ i0+1

2 ), and set

X̃i0
1 := Xi0

1 X̃i0+1
1 := Oi0,m1 + V −Oi0,j1 (4.119)

X̃i0,M̃ i0
:= Xi0,m0 X̃

i0+1,M̃ i0+1

1 := X
i0+1,m1
1

D̃i0,M̃ i0
:= Di0,m0 D̃i0+1,M̃ i0+1

:= Di0,m1

• Set X̃i0
2 := Oi0,j1 −Oi0 and X̃i0+1

2 := Oi0 +Xi0
1 −Oi0,j1.

• For j < M̃ i0:

X̃i0,j :=

(

X
i0,h0(j)
1

Oi0,h0(j+1) −Oi0,h0(j)

)

D̃i0,j := Di0,h0(j) (4.120)

• For j < M̃ i0+1:

X̃i0+1,j :=

(

X
i0,h1(j)
1

Oi0,h1(j+1) −Oi0,h1(j)

)

D̃i0+1,j := Di0,h1(j) (4.121)

It is convenient to define

L :=

{

X
i0,M̃ i0

2 if m0 < m1

X
i0+1, ˜M i0+1

2 if m0 > m1

(4.122)
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The acceptance probability is given by

α3(Π, Π̃) =
pX(X̃|M̃, M̃ , θ)pM(M̃|M̃, θ)pM (M̃ |θ)
pX(X|M,M, θ)pM(M|M,θ)pM (M |θ) (4.123)

× p3

(M̃ − 1)

M(Oi0,k1 −Oi0)
(

1 −
(

1
2

)M i0−j1+1
)

L

p3X
i0,j1−1
2

(

1
2

)g−1(m0)+1+max(0,m0−j1−1)
p(L|θ)

=

(

∏M̃ i0

j=1 pXi,j (X̃i0,j|X̃i0 , θ)
)(

∏M̃ i0+1

j=1 pXi,j (X̃i0+1,j|X̃i0+1, θ)
)

∏M i0

j=1 pXi,j(Xi0,j|Xi0 , θ)

× pXi(X̃i0 |θ)pXi(X̃i0+1|θ)
pXi(Xi0 |θ)

pM i(M̃ i0 |θ)pM i(M̃ i0+1|θ)
pM i(M i0 |θ)

× pM (M̃ |θ)
pM (M |θ)

(Oi0,k1 −Oi0)
(

1 −
(

1
2

)M i0−j1+1
)

L

X
i0,j1−1
2

(

1
2

)g−1(m0)+1+max(0,m0−j1−1)
p(L|θ)

Remark 4.7 1. The construction in (4.118) and (4.119) ensures the consistency condition

(3.5). Note that each storm ends before the time where the lag of its last cell would place

its successor.

2. It is possible to drop storm M i0+1 from the fitted process in case it starts after time T .

4.5.4 Merge two adjacent storms into one

This transform merges two adjacent storms into a single one without affecting the position of

other storms or of any of the cells. Select a storm index i0 from the Laplace distribution on

{1, . . . ,M −1}. This storm will be merged with its successor. If we define a counting function

for the cell indices

p : {1, . . . ,M i0 +M i0+1} → {(i0, 1), . . . (i0,M i0), (i0 + 1, 1), . . . , (i0 + 1,M i0+1)} (4.124)

satisfying Op(1) < Op(2) < · · · < Op(M i0+M i0+1), we can construct Π̃ from Π as follows:

• M̃ := M − 1 and

M̃ i :=











M i if 1 ≤ i < i0

M i0 +M i0+1 if i = i0

M i+1 if i0 + 1 ≤ i ≤ M̃

(4.125)

• For i < i0 and all j: X̃i := Xi, X̃i,j := Xi,j , D̃i,j = Di,j.

• For i > i0 and all j: X̃i := Xi+1, X̃i,j := Xi+1,j , D̃i,j = Di+1,j.

• X̃i0 :=

(

max(Xi0
1 , O

i0+1 +Xi0+1
1 −Oi0)

Xi0
2 +Xi0+1

2

)
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• For j < M̃ i0 define

X̃i0,j :=

(

X
p(j)
1

Op(j+1) −Op(j)

)

D̃i0,j := Dp(j) (4.126)

as well as X̃i0,M̃ i0 := Xp(M̃ i0 ) and D̃i0,M̃ i0 := Dp(M̃ i0).

The move can only be rejected outright if there is but a single storm left. Otherwise, the

acceptance probability is given by

α4(Π, Π̃) = α3(Π̃,Π)−1 (4.127)

4.5.5 Update the duration of a storm

This operation changes the duration of as storm without affecting any of the other storms or

cells. Select a storm index i0 from the Laplace distribution on {1, . . . ,M} and sample X̃i0
1

from the marginal distribution of the storm’s duration conditional on its lag:

log(X̃i0
1 )|Xi0

2 , θ ∼ N

(

µ1 −
[Λ̌11]1,2

[Λ̌11]1,1

(log(Xi0
2 ) − µ2), [Λ̌11]1,1

)

(4.128)

If X̃i0
1 < Oi0,M i0 −Oi0 , the move is infeasible as the storm can no longer contain all its cells..

Else, construct Ψ̃ from Ψ by replacing Xi0
1 with X̃i0

1 . Also, sample L from

log(L)|θ ∼ N(µ4, (Λ
−1)−1

4,4) (4.129)

and set the lag of the last cell to

X̃
i0,M i0

2 := Oi0 + X̃i0
1 + L−Oi0,M i0

(4.130)

The acceptance probability is

α5(Π, Π̃) =
pL(Oi0,M i0 +Xi0,M i0 −Oi0 −Xi0

1 |θ)
pL(Õi0,M i0 + X̃

i0,M i0

2 − Õi0 − X̃i0
1 |θ)

M i0
∏

j=1

pXi,j (X̃i0,j|X̃i0 , θ)

pXi,j (Xi0,j|Xi0 , θ)
(4.131)

Remark 4.8 1. To satisfy the consistency condition (3.5), the lag of the last cell in storm

i0 needs to extend beyond the end of the storm. But the exact distribution of the cell lag

conditional on survival for at least Oi0 + X̃i0
1 − Oi0,M i0 minutes can only be evaluated

numerically. Thus, (4.130) uses an approximation assuming ’lack of memory’ in the dis-

tribution. Of course, this would only be correct for exponentially distributed cell lags, but

the MH-algorithm permits any proposal.

2. Note that the terms of the product over j in (4.131) cancel for j < M i0 if the Xi and Xi,j

are independent.
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4.5.6 Updating cell depth and duration

This transform changes the depth and duration of a cell without affecting other cells or storms.

The conditional distribution of the duration for cell j in storm i can be derived from (3.10):

log(Xi,j
1 )|Xi,j

2 ,Xi, θ ∼ N

(

µ̌i
1 −

Λ3,4

Λ3,3
(log(Xi,j

2 ) − µ̌i
2),Λ3,3

)

(4.132)

To update cell j in storm i, we draw a new duration X̃
i,j
1 from the above, as well as a depth

proposal from the prior distribution D̃i,j ∼ U(0, 2ι). We also need to generate new values Z̃T

for the unknown observations in T̃ ∩ U . The new aggregates Ỹt become

Ỹt := Yt − |[Oi,j , Oi,j +X
i,j
1 ] ∩ [(t− 1)τ, tτ ]|Di,j (4.133)

+ |[Oi,j , Oi,j + X̃
i,j
1 ] ∩ [(t− 1)τ, tτ ]|D̃i,j

The acceptance probability for the new process Ψ̃ arising from a single cell update is

α6(Ψ,Z, Ψ̃, Z̃) =
pZ(Z̃|Ỹ, θ)pD(D̃)p

X
i,j
1

(X̃i,j
1 |Xi,j

2 ,Xi, θ)

pZ(Z|Y, θ)pD(D)p
X

i,j
1

(Xi,j
1 |Xi,j

2 ,Xi, θ)
(4.134)

×
2ιp

X
i,j
1

(Xi,j
1 |Xi,j

2 ,Xi, θ)
∏

t∈T̃∩U pZt(Zt|Yt, θ)

2ιp
X

i,j
1

(X̃i,j
1 |Xi,j

2 ,Xi, θ)
∏

t∈T̃∩U pZt(Z̃t|Ỹt, θ)

=
∏

t∈T̃\U

pZt(Z̃t|Ỹt, θ)

pZt(Zt|Yt, θ)
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Chapter 5

Implementation and results

We tested the algorithm on artificial instances generated from the lognormal model of Chap-

ter 3. While we did perform some trials with real precipitation records, the results were

unsatisfactory, so this section focuses mainly on the artificial data. In particular, we try to

assess the speed of convergence and compare the fitted model with the input data.

Most of the figures and tables belonging to this chapter can be found in Appendices A and B.

5.1 Implementation issues

Before analyzing the results, we want to discuss some of the problems and questions that

arose during implementation.

The main algorithm was programmed in C++, using the NEWRAN02B library written by

Robert Davies [9] to generate normal, uniform, and gamma distributed random numbers.

The figures and summary statistics were generated with MATLAB.

5.1.1 Choice of the starting parameter θ

We have seen in Chapter 2 that the asymptotic behavior of the MH-algorithm does not de-

pend on the starting point. However, a bad choice of the parameter increases the time until

the Markov chain reaches a stationary state. In worst case, it can actually prevent conver-

gence due to numerical issues. E.g., a badly conditioned precision matrix can be numerically

singular. Also, preliminary tests showed that the algorithm has problems dealing with a low

starting precision for the storm durations and cell lags. In this situation, it tends to fit a few

very long storms to the data instead of assigning a storm to each cell cluster.

Our heuristic for generating the starting parameters is given below. Any mention of λk refers

to the marginal precisions for the storm and cell quantities, which are not identical to Λk,k in

case of non-zero correlation (see (2.7)).
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Observation error: For the artificial data sets, we use the true precision scale ζ. The trials

with real data use ζ = 6000, which is equivalent to a 10% relative standard deviation

for hourly observations according to (3.16).

Storm parameters: The storm parameters can be estimated from the observations by a sim-

ple clustering heuristic. The idea is to select a gap length l ∈ N and treat two wet

periods as belonging to the same storm if they are separated by at most l dry periods.

Specifically, we define an index set

Sl := {t : Yt > 0 ∧ ∀s ∈ {1, . . . , l + 1} : Yt+s = 0} =: {sl
1, . . . , s

l
M0

} (5.1)

of precipitation events that precede a gap of length (l + 1)τ or larger. For this purpose,

assume that observations beyond time Tτ have a value of 0. The sl
m identify the times

when storms end. In particular, M0 is the initial number of storms.

We can assume w.l.o.g. that the sl
i are sorted in ascending order and define a second

sequence of time points as

tl1 := 1 tli := min{t > si−1 : Yt > 0} tlM0+1 := T + 1 (5.2)

for i ∈ {2, . . . ,M0}. These identify the periods when storms start. The durations and

lags are now fitted as

(X̂i
1)

l := (sl
i + 1 − tli)τ (X̂i

2)
l := (tli+1 − tli)τ (5.3)

This allows us to estimate µ̂l
k and λ̂l

k as the sample mean and inverse sample variance

of {log((X̂i
k)l)} for k ∈ {1, 2}. Note: we actually subtract τ

2 from the durations and lags

before calculating the estimators to avoid overestimating the means.

To find a suitable gap length, we can either plot the resulting storms or the estimators

λ̂l
k for different values of l. The chosen value l0 should yield relatively high precisions

that remain constant close to l0. Use µ̂l0
k and λ̂l0

k as starting values for µk and λk.

Cell parameters: For the artificial data, we use λ3 = λ4 = 1, calculate µ4 from the mean

matching equation (3.21) using the true value of K, and set µ3 = µ4. This is a very

rough estimate, but it appears to be sufficiently close for using the algorithm.

For the real data, we use λ3 = λ1 and λ4 = λ2, as we are unsure of the correct shape

parameter. This choice assumes self-similarity for the storm and cell processes, i.e. the

durations or lags for both would have the same relative deviation at different scales. We

calculate µ4 based on (3.21) with K = 100 cells and choose µ3 such that the average

cells duration is 10 minutes. This choice means that the average cell is longer than the

average cell lag in all cases.

Correlation: For models I to IV, the starting parameter treats all quantities as uncorrelated,

i.e. the initial Λ is a diagonal matrix. As the algorithm has problems identifying a

correlation between storm duration and cell lag, we introduced a correlation of 0.5 for

models V and VI, as well as for the fit of model VI to the real data.



5.1. IMPLEMENTATION ISSUES 73

Figure 5.1: Gap length and starting precisions
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Remark 5.1 The gap heuristic attempts to identify storms by forming clusters of wet periods. The

assumption is that short sequences of dry periods (Yt = 0) occur within storms, while sequences

of at least l dry periods lie between storms. This gives rise to the definition of the sl
i and tli. We

can also use them to estimate the position of the storm origins as

(Ôi)l := (tli − 1)τ (5.4)

If we assume that clustering of wet periods is evident in the data, there should be a range of

choices of l where the ’short’ dry spells are all shorter than l periods and all ’long’ ones are

longer. In particular, the sl
i and tli, as well as µ̂l

k and λ̂l
k remain constant for all values of l in

a certain range. By choosing l0 from this interval, the heuristic should be able to identify the

storms reasonably well.

Figure 5.1 shows the precision estimates derived from the heuristic for one of the artificial data

sets. The gap length is increased between 0 and 24 hours in 1 hour steps, although τ was actually

equal to 10 minutes. In the example, we chose a gap of 4 hours — the middle point of the 2–6

hour interval where both estimators are constant. In Figure 5.2, we see clusters resulting from

this choice for part of the data set.
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Figure 5.2: Initial storms with 4 hour gaps
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5.1.2 Other considerations

To start the algorithm, we actually need to specify more parameters than just the initial value

for θ. Here is a list of the most important ones:

Cell intensity: While we know the true ι for the artificial data, we need to choose a rea-

sonable value for the real precipitation records. This is critical, as our first test runs

did show that the behavior of the algorithm is very sensitive to misspecification. We

estimated ι using trial and error, with the following heuristic as a guideline:

If {Yt} is an aggregate process with average cell intensity ι and {Ŷt} is a process with

the same θ and ι = 1, the fact that the uniform distribution on the interval [0, ι] is scale

invariant implies

E(Yt|θ) = ιE(Ŷt|θ) Var(Yt|θ) = ι2 Var(Ŷt|θ) (5.5)

These equations allows us to obtain a rough a-priori estimate for the mean intensity

by comparing a process generated from the starting parameter θ and ι = 1 with the

observations. We actually used the sample mean and variance for the observations

Z conditional on rain, but they satisfy (5.5) asymptotically for large sample sizes. If

the quotient of the two expectations is not close to the square-root of the quotient of

variances, the starting parameter is clearly far from the true θ and should be modified.
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Prior precisions: The precision parameters r and s for the prior distribution of µ and Λ (see

Section 3.3) need to be specified. We used r = s = 0.01 for the trials with artificial data

and I to IV. To ensure that the problems the algorithm has with identifying correlation

do not stem from an overly restrictive prior, we lowered the values to 0.001 for models

V and VI, including the runs with real data.

Transition probabilities: As we have discussed in Section 4.5, we want the algorithm to

attempt more structural transforms on the cells than on the storms. We used the prob-

abilities p1 = p2 = 35% (add or subtract a cell) and p3 = p4 = p5 = 10% (split or merge

a storm, update its duration).

Number of iterations: A necessary condition for fast convergence of the main algorithm is

that each subsampler converges quickly to its stationary limit conditional on the current

state of the process. This can be improved by an intelligent choice of the proposal

distribution, but ultimately, it means that the samplers need to perform sufficiently

many iterations to be able to explore the parameter space. On the other hand, we

do not want too spend too much computation time on sampling values conditional on

parameters that are ’far from the truth’.

Keeping the above in mind, we have found that the following iteration counts for the

subsamplers are sufficient for one iteration of the main algorithm:

• The parameter θ is updated 5,000 times.

• The weights pM and pM i are estimated from 100,000 samples each. Additional

smoothing is required (see Section 4.4).

• The storm and cell transforms 1–5 are repeated 200,000 times with a random

transform chosen at each instant.

• Each cell has its duration and length resampled 100 times using transform 6. We

increased this to 1000 samples for models V and VI, including the real data, as

this improves the ability of the algorithm to identify the correlation between storm

duration and cell lags.

Burn-in period: The test runs show that the burn-in period should be at least 200K iterations.

We could not reach this in all cases, as the algorithm exceeded its allocated processing

time on some combinations of processes and starting parameters.

Another important question is whether to impose bounds on the parameters to avoid numer-

ically instable states. We found this necessary for the precision matrix Λ when dealing with

model V or VI. More precisely, we chose to limit the marginal variances and not the diagonal

entries of Λ, as a bound on these would still permit arbitrarily large variances if the matrix was

close to singular. All marginal variances were bounded below by 0.1 to prevent a degenerate

process with quantities which are practically constant. The upper bounds for the artificial

data were set to 2.0 in all cases (the true value is 1
3 , see below). In case of the real data, we

tested several sets of bounds but none of them yielded a stable starting configuration.
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The bounds do not affect the theoretical validity of the algorithm, as they are equivalent to

truncating the range of the priors. We want to fit a model where cells are clustered into

distinct storms, so we can exclude any parameters that describe a different behavior.

Another limitation we impose in the final version of the program is a lower bound of 2 for the

storm and cell counts M and M i. Any proposed transform that would result in such a process

is rejected. This guarantees that the normal proposal distribution we use for the sub-diagonal

entries of Λ is always correct (see Section 4.3) and allows us to calculate sample variances

for diagnostic output. The effect on the estimates is negligible as long as the data set exhibits

clustering of wet periods, i.e. many storms with several cells each are necessary to explain

the observations.

5.2 Generating artificial data

We generated several artificial data sets by simulating processes according to the lognormal

rainfall model. This way, we may assess how well the algorithm performs if the model as-

sumptions are true. Our test instances were constructed as follows:

• The observation period for each set is taken to be T = 150, 000 minutes or approximately

104 days. This is slightly more than a season’s worth of data.

• To test how sensitive the algorithm is with regards to changes in the length of the

observation period, we generated two processes for each combination of parameters in

the test. One data set has 15,000 observations in 10 minute intervals, the other has

2,500 hourly observations.

• We chose an error scale ζ = 1, 000, which yields a relative standard deviation of 10%

for observation intervals of length τ = 10 minutes by (3.16). As initial attempts showed

that the parameter is hard to estimate correctly, all tests were repeated with ζ fixed

to its true value. This assumption can be justified in practice if the reliability of the

measurements is known.

• As we had no prior knowledge of likely values for Λ, we chose a multiple of identity

for testing the simplified model with diagonal Λ. Setting λk = 3 seems to produce a

reasonable range of values. The 99% quantiles of the resulting lognormal distributions

are larger by a factor of 14.7 than their 1% quantiles.

• For the full model, we introduce a correlation of −0.5 between storm duration and cell

durations, as we expect an effect of this kind in real data. The marginal variances are

still equal to 1
3 as above:

Λ =











4 0 2 0

0 3 0 0

2 0 4 0

0 0 0 3











Λ−1 =
1

3











1 0 −1
2 0

0 1 0 0

−1
2 0 1 0

0 0 0 1











(5.6)
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Table 5.1: Parameters used to generate artifical data

Quantiles

Quantity Log-mean∗ Value Expectation 1% 5% 95% 99%

Storm duration µ1 log(180) − 1

6
180 min 39.8 58.9 393.8 583.7

Storm lag µ2 log(2880)− 1

6
48 h 10.6 15.7 105.0 155.7

Cell duration, short µ3 log(10) − 1

6
10 min 2.2 3.3 21.9 32.4

”, long log(30) − 1

6
30 min 6.6 9.8 65.6 97.3

Cell lag µ4 log(18) − 1

6
18 min 4.0 5.9 39.4 58.4

∗ The marginal log-variance is 1

3
in each case.

The same data sets used for fitting model I were also used for model III, to allow for

a direct comparison of the performance. Models V and VI were instead tested with a

precision matrix introducing positive correlation between storm duration and cell lag:

Λ =











4 0 0 −2

0 3 0 0

0 0 3 0

−2 0 0 4











Λ−1 =
1

3











1 0 0 1
2

0 1 0 0

0 0 1 0
1
2 0 0 1











(5.7)

• The means for the logarithmic storm duration and lag were chosen to give somewhat

plausible numbers (3 hours and 48 hours respectively). As we want cell clustering to be

evident in the data sets, the storm durations are significantly shorter than the lags.

• We use two different choices for µ3, resulting in average cell lengths of 10 or 30 minutes.

This allows us to study how accurate the parameter estimates is if the unobservable

quantities in X are of similar size or markedly smaller than the observation period.

• The parameter µ4 is chosen such that it satisfies the assumption of matched means with

an average number of K = 10 cells per storm (see (3.21)). Thus, we can test the models

with and without matching on the same data sets.

Some properties of the chosen parameters µ and Λ are summarized in Table 5.1. We use the

following scheme to classify the data sets and possible model fits:

1. The parameters used to generate the process are denoted by

(A) no correlation (models II and IV), short cells.

(B) no correlation (models II and IV), long cells.

(C) correlation between storm and cell quantities (models I and III), short cells.

(D) correlation between storm and cell quantities (models I and III), long cells.
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(E) correlation between storm quantities and cell lag (models V and VI), short cells.

(F) correlation between storm quantities and cell lag (models V and VI), long cells.

2. For the length of the observation period, we use

(1) 10 minute intervals.

(2) 1 hour intervals.

3. The constraints on the fitted model are given as

(a) no mean matching (models I, II, and V), variable ζ.

(b) no mean matching (models I, II, and V), fixed ζ.

(c) mean matching (models III and IV), variable ζ.

(d) mean matching (models III and IV), fixed ζ.

(e) no mean matching, limited correlation (model VI), fixed ζ.

For example, ’A1a’ refers to the test run using the data set with uncorrelated quantities, short

cells, and 10 minute intervals. The fitted model uses diagonal Λ, no mean matching, and

treats ζ as an unknown parameter. Also, recall that the models with mean matching fix

Λ1,4 = Λ2,4 = 0, i.e. the correlation structure for classes C and D depends on the model.

Table B.1 shows the 30 combinations that were actually tested. If an entry is marked ’alt’,

we initiated a second run with a different starting parameter. The θ for the first run was

generated by the heuristic in Section 5.1.1. For the second trial, we multiplied these values

by 0.9, which already constitutes a drastic misspecification of the storm durations and lags.

We want to use the repeat runs to assess the impact of the starting parameter on the behavior

of the algorithm. Also, the posterior scale reduction criterion for convergence requires output

from multiple parallel runs (see Section 2.5.2).

5.3 Numerical results

In this section, we discuss the results of our numerical trials. As multivariate precision ma-

trices are difficult interpret, we invert the estimated Λ and present the results in terms of the

marginal variances σ2
k and correlations ρk,l. For the latter, indices are assigned in a manner

consistent with previous notation, e.g. Corr(Xi
1,X

i
2) = ρ1,2 and Corr(Xi

1,X
i,j
1 ) = ρ1,3.

When dealing with the question of convergence for an MCMC algorithm, a common recom-

mendation is to consider other summary statistics of the chain than just the parameter of

interest. We include the total number of cells M in our analysis, as well as the normalized

intensity average for the cells:

D̂ :=
1

ιM

M
∑

i=1

M i
∑

j=2

Di,j (5.8)
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The expectation of this quantity is close to 1 under the model. If D̂ for the fitted process

deviates considerably from 1, we know that distribution of the cell lags and/or durations has

not been correctly identified yet. In this case, the transforms for adding or removing cells will

result in a large proportion of cells whose mean intensity deviates considerably from their

supposed average of ι.

5.3.1 Results for artificial data

Most of the test runs were made on computers with Athlon 2.2 GHz processors. Computation

was limited to 300 hours of CPU time or 500,000 iterations of the main sampler, including

burn-in. As shown in Table B.1, most of the A–D runs reached more than 450,000 itera-

tions. Note that simplifying the model and fixing ζ both speed up computation considerably,

while the additional cell depth updates for models V and VI (case E–F) take more time.

Where possible, we use 300,000 burn-in iterations for the final estimator. To assess whether

this is sufficient, we compare estimates based on iterations 150,001–300,000 with those for

300,001–450,000. These are denoted by ’150K’ and ’300K’ respectively. If a data set has fewer

samples available, the number of burn-in iterations is reduced as indicated in the table.

As the values of the Markov Chain are highly correlated, we calculate estimators from a

thinned chain using 1 out of every 100 iterations. This is not necessary if we consider the

central limit theorem (2.11), which compensates for high correlation, but the resulting em-

pirical distribution is a better approximation of the posterior density.

The first step in evaluating the performance of the algorithm is the graphical analysis of

the output from the sampler. We consider trace plots for the parameters, the corresponding

autocorrelation functions (ACF), and kernel density estimates for the posterior density. These

figures take up a lot of space, so we limit the analysis to a few representative instances:

(A1a) Model II, short cells, variable ζ, diagonal Λ, 10 min intervals.

(Figures A.1–A.4)

(C1d) Model III, short cells, fixed ζ, mean matching, restricted Λ, 10 min intervals.

(Figures A.5–A.10)

(C2d) Model III, short cells, fixed ζ, mean matching, restricted Λ, 1 h intervals.

(Figures A.11–A.14)

(D1d) Model III, long cells, fixed ζ, mean matching, restricted Λ, 10 min intervals.

(Figures A.15–A.18)

(F2b) Model V, long cells, fixed ζ, restricted Λ, 1 h intervals

(Figures A.19–A.24)

Figures for the full model I are not included, as the test runs show that it is clearly over-

parametrized (see the discussion of the tabulated results below). We focus on models III and

V, as these appear to be the most useful for practical purposes.
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A first observation that applies to all instances and parameters is that the samplers do not as

a rule converge to the ’true values’ indicated in the trace plots. However, these are merely the

values used for generating the sample processes. As we are dealing with normal-Wishart pri-

ors, even knowledge of the underlying process X would only yield convergence to a (slightly

biased) maximum likelihood estimator. And for short samples, this can deviate markedly

from the true parameter. Given that we do not observe X itself, the best result we can expect

is that the sampler frequently assumes values in the neighborhood of the ’true value’, which

is indeed the case for most instances.

As for the different parameters controlling the model, we can draw the following conclusions

from the graphical analysis:

• The sampler for the precision scale ζ has a high variance even for the simple case A1a,

and its is unclear whether it has reached a stationary state after 150K iterations (Figure

A.1). As the other parameters for this instance appear to converge much faster, it seems

that the exact value of ζ does have a negligible effect on the behavior of the algorithm.

The slow convergence would thus be due to a relatively flat likelihood in terms of the

variance scale. For this reason, the other instances we consider for the graphical analysis

use a fixed value for ζ.

• The trace plots, ACFs, and kernel density estimates for the posterior distribution of the

µk show that the sampler converges very fast for the simple model II with no correlation

(Figure A.2), and reasonably quickly for all instances of model III (Figures A.5, A.11,

and A.15). For the latter, 150K burn-in iterations appear to be insufficient, in particular

for the C2d case where we can clearly see that the sampler is stuck in a local maximum

for some time. Model V shows an upward trend for µ3 and µ4 towards the end of the

run (Figure A.19), indicating that even 300K burn-in iterations may not be enough at

the coarse 1 h time scale.

All parameter values are reasonably close to the ’true value’, except in the case of C2d.

For the latter, the local maximum found early in the run is close, but the algorithm

eventually settles into a quite distinct state. Again, this seems to be a problem with the

1 h time scale: a less structured process appears more likely as fewer details are visible

at this resolution.

The density estimates support the conclusions from the trace plots in all cases. From the

ACF plots, we see that thinning with a step size of 100 yields effectively independent

means for the storm durations and lags in the simple case of model II, but the means

for the cell quantities still exhibit a moderately high correlation. The same can be

observed for the other instances, except that for model III, the coupling of µ1 and µ4

introduces non-zero correlation for µ1 as well. Note that the extremely high correlation

for C2d is due to the process getting stuck in a local maximum for a while, which is an

instationarity (at least numerically).

• The results for the variances σ2
k are very similar to those for the means (Figures A.3,

A.6, A.12, A.16, A.20). In particular, 150K burn-in iterations do not appear sufficient
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for the instances with correlated quantities.

• For models III and V, where correlation between some storm and cell quantities is per-

mitted, the samplers give good qualitative results. Even for the 1 h time scale, the

samplers are near zero where no correlation exists and have the right sign otherwise.

Only the absolute magnitude of the correlation is usually underestimated. For D1d, the

sampler for ρ1,3 appears to converge to the true values of -0.5, but the remaining two

correlation parameters are farther from 0 than for the other instances. Of course, this

may be due to the fact that input data has sample correlations that are further from

zero than for the other instances.

• No trace plots or ACFs are included for the processes C1d and F2b using alternate

starting parameters, but we compare the kernel density estimates after 300K burn-in

iterations for the two sets of starting parameters. In case of C1d, a marked difference

exists between the original and alternative starting parameters for µ1 and all cell pa-

rameters (Figure A.8). We shall see later that this is likely due to the fact that the

alternative starting parameter fixes the precision scale to ζ = 900, whereas the original

run has ζ = 1000. However, we cannot rule out at this point that the sampler has not

convergence after 300K burn-in iterations. At least in case of F2b, there are hardly and

differences between the original and alternative sampler (Figure A.22).

• The remaining plots do not deal with the parameters themselves, but with their impact

on the model (Figures A.4, A.9, A.10, A.14, A.18, A.23, and A.24). If we consider the

normalized intensity average D̂, we see that the fitted density estimate has a peak close

to 1 for A1a, C2d, and D1d, while C1c and F2b have peaks slightly to the left, meaning

that the algorithm prefers cells with below average contribution for the model. This is

another indicator of possible lack of convergence for these instances.

We also compare the average number of cells for the process reconstructed by the algo-

rithm with the number for the original process on which the estimation is based. This

is done both in terms of a kernel density estimate for output from the sampler, as well

as for 3 independent resamples using the fitted parameter. In all cases, the mode of

the fitted distribution is far from the true value, although the latter is not completely

unlikely. As the resampled values themselves show a high variability, we cannot draw a

definite conclusion here.

Finally, we look at the behavior of the observations for the original and fitted parame-

ters. To do this, the duration of wet and dry periods in the original data is compared to

that of three resamples using the estimated θ. The same is done for the rainfall intensity

conditional on rain. Comparisons are made using kernel density estimates and boxplots

for the log-quantities.

For the simple model II, the distributions of the average duration of wet periods are very

similar for the original process and the resamples, and completely indistinguishable for

the amounts. The durations of the dry periods are quite distinct at first glance, as

the resamples have a bimodal density, whereas the original is unimodal. However, the



82 CHAPTER 5. IMPLEMENTATION AND RESULTS

left mode is located exactly at the log of the observation scale of 10 minutes, i.e. the

apparently major difference is (mostly) a problem of limited resolution:

There are two kinds of dry periods in the model — short gaps between cells in an

ongoing storm, and longer gaps between storms. This should result in a bimodal density,

provided enough of the shorter gaps are large enough to contain an entire observation

interval. However, the original parameter for A1a results in a probability for this event

that is too small to yield a distinct second peak, whereas the estimated parameter does.

For the two C1d processes, the originals and resamples cannot be distinguished at all,

which may mean that we do not have lack of convergence after all. The remaining

processes result in fits that are almost as good, although the distribution for the duration

of dry periods varies the most (due to the ’instability’ of the left peak).

From the graphical analysis alone, we can conclude the following:

• The true value of ζ is difficult to estimate, but its impact on the behavior of the other

parameters appears to be relatively small.

• 150K burn-in iterations appear insufficient for instances with correlated quantities,

300K iterations should be used.

• For the 1 h observation periods, the true parameters cannot be reconstructed exactly, as

we lose some information in the aggregation process.

• The algorithm provides an estimator that describes the observable quantities like the

length of wet and dry periods or the aggregated rainfall amounts very well. This is true

even for hourly observations, where the estimators do not resemble the ’true values’.

Results for all test runs are available in tabulated form in Tables B.2–B.47. Each table shows

the true values of the parameters that were used to generate a sample, as well as the starting

parameters assigned by the heuristic of Section 5.1.1. The resulting estimators are presented

both in the form of a median and credible interval (10% and 90% quantile of the posterior

distribution), and as a mean and 95% confidence interval based on the central limit theo-

rem (2.11). For those instances where a second run was made using an alternative starting

parameter, we also determine the potential scale reduction (2.92) to assess convergence.

As the data for the remaining runs mostly supports the findings from the graphical analysis,

we keep the discussion brief and merely highlight some particular points of interest:

• Even though the estimated values for ζ differ drastically from the true precision scale,

the difference in the results for the instances with variable and fixed ζ is comparatively

small. Considering this, as well as the decrease in computation time that results from a

fixed value (Table B.1), it seems reasonable to exclude ζ from estimation.
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• As stated above, the full model I is effectively overparametrized. This can be seen from

Tables B.2 and B.3 showing the results for the C1a and C1b runs. Both samplers choose

a correlation structure that is completely different from the one used to generate the

artificial observations. On the other hand, the estimators for models III and V with

restricted precision matrix Λ are all able to determine the sign of the single non-zero

correlation correctly. Those with long (30 min average) cells on a 10 min time scale

even yield the correct absolute value (Tables B.16 and B.17), while the others tend to

underestimate it.

There appears to be a tendency in the D1 and all E models to assign a positive correla-

tion ρ1,2 between storm duration and lag. But as noted above, this may actually be true

for the sample correlation of the artificial data sets being used.

• By far the best reconstruction of the true parameter is found for the data sets with long

cells and 10 min observation intervals (Tables B.16, B.17, B.38, B.39, and B.46). In all

other cases, the resolution seems to be too limited to reconstruct the cell parameters

exactly. The coarse grid means that certain processes appear more likely, even though

they do not replicate the fine structure belonging to the original parameters. But as

we have seen in the graphical analysis, they can still yield a good description of the

observations at that time scale.

• A direct comparison of parallel runs using alternative starting parameters shows no

appreciable difference for the A1c, C1c, E2b, and F1b instances (Tables B.22, B.10,

B.37, and B.40), neither in terms of credible (confidence) intervals, nor in terms of

potential scale reduction. However, differences are evident for A1d, C1d, E1b, and F2b

(Tables B.25, B.13, B.34, and B.43). For the first two, the distinguishing factor is that

the ’c’ runs use a variable value for ζ, whereas it is fixed to 1,000 resp. 900 in the

’d’ runs. This supports our claim that we do not have lack of convergence after 300K

iterations, but that the process merely prefers slightly different parameters conditional

on specific values of ζ. For E1b, the effect may be the same, but made worse by the

short length of the available run. For the F2b data, the only apparent cause is the 1 h

time scale, although the E2b run was not affected in the same manner.

5.3.2 Real precipitation data

After ensuring that the algorithm can identify parameters for a process conforming to the

model, the next step was to test it on real precipitation data. For this purpose, we used

precipitation data recorded hourly at two meteorological stations in Rheinland-Pfalz during

the years 2003 and 2004. As the model does not include seasonal variations, the first step in

preparing the data was to visually identify periods where the rainfall distribution appears to

be homogeneous. For each individual station, this is the case for May to July and for October

to December, although there is a marked difference between stations.

The next issue was finding a suitable starting parameter, as well as an average cell intensity

ι and – for models III and IV – a typical number of cells K. Unfortunately, we did not find a
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satisfactory solution to this problem. Experimenting with several choices for θ, ι, and possibly

K showed that the process fitted by the algorithm depends strongly on the choice of ι. For

small values, the number of storms becomes very large as almost each interval of non-zero

precipitation is assigned its own storm. Conversely, a larger ι results in very few storms of

extreme length. Either way, no meaningful clustering occurs. Also, there appears to be no

middle ground — the algorithm falls from one extreme into the other as the average cell

intensity rises above a certain threshold.

All trials using real data resulted in a degenerate state of the model or lack of convergence of

the sampler. We do not want to present any of the results here, but merely point out some of

the difficulties and likely causes:

• The time scale of the available data is too coarse. Hourly observations do not permit

identification of a correlation structure that enables clustering. E.g., we are unable to

distinguish between an intense 5 minute shower and a moderate 45 minute rainstorm.

Recall that we already saw that the algorithm underestimates the correlation between

storm duration and cell lag for the artificial data if the cells are not longer than the

observation interval.

• The storm durations and lags have a very high variance, which means that clusters

are difficult to identify. This is amplified by the previous problem, as the algorithm is

unable to introduce sufficient variation in the frequency with which cells occur in storms

of widely different length.

• The lognormal distribution may not be a good approximation for the true distribution

of the storm and cell lags. At the very least, it yields an extremely flat likelihood as the

variance increases, which means that the algorithm may converge slowly or even fail to

converge for numerical reasons.

• As ι is so critical, it should be estimated along with µ and Λ.

Unfortunately, we are as yet unable to provide satisfactory solutions to these problems, al-

though some suggestions regarding the last two issues are made in Chapter 6.

In principle, the model is comprehensive enough to reproduce the features of precipitation

we are interested in. Figure A.25 shows the distribution of wet and dry periods, distribution

of rainfall amounts, and sample observations for real data and some artificial processes. As

the latter have not been fitted to the former, the quantities are not closely matched, but the

processes do appear to be of the same kind. Note that the observations have been rescaled

for better comparison (the maxima are equal to 1).

5.4 Summary

We have seen that the full model specified in Chapter 3 is effectively overparametrized, at

least for the resolution and amount of data we have available. This suggests simplifying
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the model in various ways as discussed in Section 3.2, as well as treating the non-critical

parameter ζ as a constant.

With the above restrictions, the algorithm appears to reach stationary state on artificial data

generated from the correct model in at most 300K iterations. The estimated parameters are

sensitive to the time scale and cannot reproduce fine structures on a scale smaller than the

observation interval. Actually recovering the input parameters requires that the cells are on

average longer (e.g. 3 times) than this period. However, the parameters always describe the

process well in terms of the observations Z.

Unfortunately, the algorithm does not work on real precipitation records. In its present form,

it is not suitable for the statistical analysis of hourly rainfall data.
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Chapter 6

Further considerations

In the last chapter, we look at how the ideas presented in this thesis could be developed

further. We suggest changes to the model and briefly address the question of prediction.

6.1 Changes to the model

The modifications discussed below fall into two categories. The first are changes to the distri-

butions that might enable fitting parameters to real precipitation data, while the second are

suggestions for extending the scope of the model.

6.1.1 Variant distributions for X

The framework for precipitation time series presented in Chapter 3 can support a variety

of probabilistic models. We settled on the lognormal distribution to describe the process X

due to its flexibility and explicit correlation structure. One downside of this choice is the

resulting point processes do not possess an analytic solution for the distribution of events per

time interval. While we have shown how to approximate these weights in Section 4.4, the

Monte-Carlo scheme requires substantial computation time.

A second problem is that the distribution of extreme lags is likely wrong. The lognormal

density can be fitted closely to most unimodal, non-negative distributions near the mode, but

its asymptotic behavior is different from e.g. the exponential or gamma case. This might even

be a contributing factor to our inability to properly fit the lognormal model to real data. If

the exponential distribution is a better model for the lags, its heavier tails would lead us to

overestimate the variance of log-lags in the lognormal approximation.

While there is no multivariate extension of the exponential distribution that treats correlation

explicitly, one could try to combine the advantages of the Gaussian and the exponential model

87
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using a copula approach. We decompose the joint distribution for the components of X as

Plog(Xi),log(Xi,j)(x1, x2, x3, x4|θ,R) (6.1)

= C
(

Plog(Xi
1)(x1|θ), Plog(Xi

2)(x2|θ), Plog(Xi,j
1 )

(x3|θ), Plog(Xi,j
2 )

(x4|θ)
∣

∣

∣R
)

Here, C is the 4-variate Gaussian copula with correlation matrix R, and the marginals are

arbitrary distributions characterized by some parameter vector θ. For exponential lags, the

log-quantities need to follow a distribution of the Gumbel type. The cell and storm durations

can still be treated as lognormal if desired. An introduction to copulas can be found e.g. in

the book by Nelsen [31], while the Gumbel distribution plays a role in extreme value statistics

and life testing (see e.g. Barlow and Proschan [3]). A more recent treatment of both topics

in the context of financial statistics can be found in the book by Franke et. al. [11]

With exponential lags, the storm origins are distributed according to a Poisson process, which

is much easier to handle than the lognormal point process. The conditional distribution of

the cell origins will of course not follow any classical model.

6.1.2 Other models for cell depth

Cell depth is another area where a different distribution could lead to improvements. We

argued in Chapter 3 that the depths should be left out of the lognormal framework to avoid

overparametrization. Treating them as constant is not feasible numerically, as it enforces an

almost deterministic relationship between cell lengths and observations. Instead, we chose

the uniform distribution on [0, 2ι] for ease of use. Two points in its favor are that it depends

on a single parameter and that it is invariant under multiplication. The latter motivates the

heuristic (5.5) for estimating ι. An alternative with the same two properties is the exponential

distribution with parameter 1
ι
. Also, since it is not bounded above, it could make it easier for

the algorithm to fit cells to events with high precipitation.

More importantly, as mentioned in Chapter 5, the behavior of the algorithm depends critically

on the right choice of ι. This suggests that ι should be treated as part of the estimation

problem, replacing the less critical ζ as part of θ.

6.1.3 Inclusion of covariates

So far, we have fitted the rainfall model to observed precipitation without taking into account

other meteorological data. But ambient temperature, atmospheric pressure, humidity, wind

speed, etc. are often recorded alongside rainfall and will be dependent to some degree. Other

interesting candidates for covariates are periodic functions of the time or date to capture daily

or seasonal variations in the climate.

Assume that we are given d exogenous variables recorded as a vector Vt ∈ Rd for each time

period t. A straightforward way to include them in the lognormal model is to express the

mean µ in terms of the covariates via linear regression. One question that arises immediately
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is how to link the rainfall process to the discrete records V := {Vt}. Fitting an unobserved

temperature process, a wind process, etc. similarly to the rainfall process X seems impractical.

A simpler approach would be to base the mean for each storm and cell on the value of Vt at

its origin. Let

t(i) :=

⌈

Oi

τ

⌉

t(i, j) :=

⌈

Oi,j

τ

⌉

(6.2)

This allows us to define local means as

µ̌i
B := B1Vt(i) µ̌

i,j
B := B2Vt(i,j) − Λ−1

22 ΛT
12(log(Xi) − µ̌i

B) (6.3)

where B1, B2 ∈ R2×d are matrices of (unknown) regression coefficients. The distribution of

Xi is now taken to be

log(Xi)|V, θ ∼ N2(µ̌
i
B , Λ̌11) (6.4)

instead of (3.8). The distribution of Xi,j conditional on Xi, which was previously given by

(3.10), is replaced by

log(Xi,j)|Xi,V, θ ∼ N2(µ̌
i,j
B ,Λ22) (6.5)

Note that we can assume w.l.o.g. that the first entry of each Vt equals 1 to include a constant

term in the regression model. If we use normal priors for the entries of B1 and B2, the

posterior distribution for µ (4.6) factorizes into normal posteriors for the coefficients. As this

approach requires four parameters for each covariate, we need to limit ourselves to the most

essential ones. A technique like principal components analysis should be applied to reduce

the dimension of the exogenous component to a manageable level. Methods of this type are

discussed e.g. in the book by Draper and Smith [10].

Given the difficulties we had with estimating Λ in the model without covariates, it does not

seem practical to give them a direct influence on the distribution of the precision matrix. As

for the different distributions discussed in the previous section, the regression approach can

still be used w.r.t. an appropriate parameter.

6.1.4 Extension to multiple sites

Our original motivation for looking at the time-series approach to precipitation was to create

a tool for simulating rainwater runoff in urban planning. For meteorological analysis on a

larger scale, single site models are not adequate, although they can be used as building blocks

for a spatial model. In this section, we only consider locales which are both small enough to

be treated as planar and uniform enough to have no systematic variations in precipitation

(there are no mountains, etc.).

Given observations {Z l
t}t at multiple locations al ∈ R2, l ∈ {1, . . . , S}, we want to predict the

rainfall intensity at an unobserved site or estimate the total amount over a larger area. To

do this, we need a model for spatial dependence. Usually, this is done by requiring spatial

stationarity or homogeneity of the process. This is essentially the same as stationarity (cp.



90 CHAPTER 6. FURTHER CONSIDERATIONS

Definition 2.10), except that the joint distribution of the observations at different sites remains

the same under spatial shifts. In practice, we require only weak homogeneity, i.e. the means,

variances, and correlations for any set of points in the plane are invariant under a shift in

location. A special class of homogeneous spatial processes are isotropic processes, where the

joint distribution for observations at two sites depends only on their distance. An introduction

to spatial statistics can be found in in the book by Ripley [36].

While isotropy is a very restrictive assumption, it can be used for modeling together with

a coordinate transform. The isotropic model is than fitted on the basis of the transformed

locations. An example of this approach can be found in the thesis by Gründer [23], where

a model for pollution measurements is developed that decomposes the observations into a

long-term average and fluctuations that are isotropic under an elliptical transform. The long-

term effects are estimated using a regression surface approach, a technique known as kriging

in geostatistics. For rainfall modeling on a small scale, the situation is different in so far that

we can assume a constant baseline of 0 (no precipitation) and are only interested in finding a

homogeneous model for the short-term changes. This, too, can be fitted with kriging methods

if additional constraints on the regression functionals are observed. A spatio-temporal model

of this type is developed and applied to rainfall estimation by Stroud et. al. in [39]. It uses

kernel-based regression in a state-space framework.

A simple way to combine the approach of [39] with the local rainfall models we have studied

in this thesis is the following: LetKR be the two-dimensional Gaussian kernel with correlation

matrix R, and let {Y l} be independent aggregate processes in the sense of definition (3.2),

which we associate with the al. The rainfall intensity at any other point a0 ∈ R2 and time t is

taken to be

Ŷt(a0) :=

L
∑

l=1

Y l
t KR(a0 − al) (6.6)

This expression converges to a homogeneous spatial process in a0 as the number of kernels

in a bounded neighborhood of a0 goes to infinity. It is only isotropic if the kernel is spherical,

i.e if R is a multiple of identity. Note that in general Ŷt(al) 6= Y l
t , as the rainfall observed at

al is actually the aggregated contribution from all l processes. Accordingly, the observations

{Z l
t} made at the sites al are not distorted versions of the {Y l

t } but of the {Ŷt(al)}. We

also need to relax the assumption that Zt = 0 ⇐⇒ Yt = 0 we made in Section 3.1 to
∑L

l=1 Z
l
t = 0 ⇐⇒ ∑L

l=1 Y
l
t = 0. This accounts for the situation where only some stations

register rainfall. In this case, any recorded zeros need to be treated as very small observations.

To fit the joint model, we need to consider all sites simultaneously, and estimate R alongside

the other unknown parameters. More involved models are possible, e.g. we could associate a

kernel with each individual cell and allow its scale to change depending on cell depth.

The kernel interpolation is somewhat unsatisfactory, as it arbitrarily allocates precipitation to

the observation sites. In doing so, they gain a special status that is not justifiable outside the

model. In fact, the average cell frequency may depend greatly on the number and proximity

of the sites. Rainfall in an area with many gauges will be distributed evenly among them,

while an isolated station is “responsible” for most of the precipitation recorded there.
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Similar to how the disaggregation approach uses a representation independent of the time

scale, we can attempt to “dislocate” rainfall in space. The cells are no longer tied to a specific

location but allowed to occur anywhere, or even to move. Of course, this increases the

complexity of the model considerably, as we have to specify the location and behavior of the

cells. A discussion of spatio-temporal models and their relation to single-site point-process

models can be found in an article by Cox and Isham [8].

6.2 Prediction

Once the model is fitted to a data set, we can use it to predict future precipitation. Besides

being an important question in meteorology, this can be used to validate the model — or to

show its limitations. We did not study the accuracy of such forecasts, but we want to give at

least an idea of how they can be obtained. As the algorithm can handle unknown observa-

tions, we can use it to estimate future rainfall simply by increasing T . But this approach is

computationally expensive and only advisable for short time periods. The long term behavior

of the model can be determined much more efficiently by numerical integration.

Once we have identified the model parameters, it is not necessary to restrict ourselves to

discrete observations recorded at a certain time scale τ . Instead, we consider prediction in

terms of the expected rainfall intensity over time. This can easily be converted to observation

forecasts at any desirable scale by integration.

Definition 6.1 For the rainfall model of Definition 3.1, the intensity function is defined as

I(x) :=

M
∑

i=1

M i
∑

j=1

Di,j1
[Oi,j ,Oi,j+X

i,j
1 ]

(x) (6.7)

where x ∈ [0, T τ ].

The function I(x) is the total depth of all cells which are ’active’ at time x. Note that for

t ∈ {1, . . . , T} holds

Yt =

∫ tτ

(t−1)τ
I(x) dx (6.8)

As the individual storms in the model are independent, forecasting can be split into two

distinct problems. The first is to estimate the future impact of storms originating during the

observation period. We refer to this as the short term forecast. By contrast, the long term

forecast tries to assess the effect of storms that start after the last recorded observation.

The two problems can be solved almost separately. The only connection is that the long term

forecast depends on the distribution of the origin of the first storm starting after time Tτ

conditional on the observations. I.e., the long term forecast depends on the storm lags during

the observation period, but not on the storm durations or cell quantities.
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6.2.1 Short term forecasts

With the short term forecast, we want to determine

• the effect of known storms on the expected intensity beyond the time Tτ .

• the distribution of the origin of the first storm to start after time Tτ .

Our estimation algorithm can be modified to handle both tasks. To assess the effect of known

storms, we need to run it with fixed parameter θ and record the contribution of storms beyond

time Tτ . This should not be done in terms of aggregates, but as an average intensity function

on a sufficiently fine grid to mesh with the long term forecast. We also need to decide on a

time horizon for the records after which the impact of existing storms is negligible. But this is

not difficult, as we can derive an upper bound for the storm duration from our estimate for θ.

To obtain the distribution of the origin for the first storm outside the observation period, we

need to track its value as an additional variable. The algorithm we have developed so far

does not support this, as it keeps the origin fixed at time Tτ + 1. But a separate update step

for the lag of storm M , similar to the transforms of Section 4.5, is easily included:

6.2.1.1 Update the lag of the last storm

This operation changes the lag of the last storm, without affecting anything else. Sample X̃M
2

from its distribution conditional on the duration of the storm:

log(X̃M
2 )|XM

1 , θ ∼ N

(

µ2 −
[Λ̌11]1,2

[Λ̌11]2,2

(log(XM
1 ) − µ1), [Λ̌11]2,2

)

(6.9)

The move can be rejected outright if OM +XM
2 ≤ Tτ , as this would contradict the fact that

storm M is the last. Else, the acceptance probability for the move is given by

α7(Π, Π̃) =
MM
∏

j=1

pXi,j(X̃M,j |X̃M , θ)

pXi,j(XM,j |XM , θ)
(6.10)

This expression reduces to 1 (a Gibbs sampler) in the simplified model with diagonal Λ.

6.2.2 Long term forecast

To analyze the long term behavior of the model, we need to modify its representation. So

far, we have worked with a finite number M of storms occurring in the time interval [0, T τ ].

Now, we are interested in the behavior of storms beyond that period. Thus, we assume in the

following that the set {Xi} is an infinite family of i.i.d. random variables.

The cell quantities {Xi,j} for each storm i are treated in the same manner. I.e., each storm

has an infinite number of cells, but only those whose origins lie in [Oi, Oi + Xi
1] contribute
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to precipitation. This modification is not strictly necessary, but it simplifies calculations as we

do not have to condition the distribution of the cell lags on the number of cells.

Using the new representation, the intensity function becomes

I(x) =

∞
∑

i=1

∞
∑

j=1

Di,j1
[Oi,j ,Oi,j+X

i,j
1 ]

(x)1[Oi,Oi+Xi
1](O

i,j) (6.11)

=
∞
∑

i=1

∞
∑

j=1

Di,j1
[max(0,x−Oi−X

i,j
1 ),min(Xi

1,x−Oi)]

(

j−1
∑

l=1

X
i,l
2

)

The reformulation uses equation (3.1), which relates lags and origins. As the storm origins

converge to infinity with probability 1, the sum has only finitely many non-zero terms. To

show that its expectation exists, we use the relation

0 ≤ I(x) ≤ 2ι

∞
∑

i=1

1[Oi,∞)(x)





∞
∑

j=1

1[0,Oi+Xi
1]
(Oi,j)



 (6.12)

TheDi,j are bounded above by 2ι as they are uniformly distributed on [0, 2ι], and the indicator

functions are replaced by indicators for supersets. Note that

E(1[Oi,∞)(x)|θ) = P

(

i−1
∑

l=1

X l
2 ≤ x

∣

∣

∣

∣

∣

θ

)

(6.13)

≤ P (∀l ∈ {1, . . . , i− 1} : X l
2 ≤ x|θ)

= P (X1
2 < x|θ)i−1 =: pi−1

0

E(1[0,Oi+Xi
1](O

i,j)|θ) = P

(

Oi +

j−1
∑

l=1

X
i,j
2 ≤ Oi +Xi

1

∣

∣

∣

∣

∣

θ

)

(6.14)

= P

(

j−1
∑

l=1

X
1,j
2 ≤ X1

1

∣

∣

∣

∣

∣

θ

)

≤ P (X1,1
2 ≤ X1

1 |θ)j−1 =: pj−1
1

Thus, the expectation of the infinite sums in (6.12) can be bounded above by geometric series

and we get

0 ≤ E(I(x)|θ) ≤ 2ι

∞
∑

i=1

E(1[Oi,∞)(x)|θ)





∞
∑

j=1

E(1[0,Oi+Xi
1](O

i,j)|θ)



 (6.15)

≤ 2ι

(1 − p0)(1 − p1)
<∞

To calculate the expectation numerically, we use the alternate formulation given in (6.11). If

we define

f(a, b, c, d) := 1[max(0,a−b),min(c,a)](d) (6.16)
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the expectation can be written as

E(I(x)|θ) = ι

∞
∑

i=1

∫ ∞

0

∞
∑

j=1

E

(

f

(

x−Oi,X
1,j
1 ,X1

1 ,

j−1
∑

l=1

X
1,j
2

)∣

∣

∣

∣

∣

Oi, θ

)

dP (Oi|θ) (6.17)

The quantities for storm i can be replaced with those for storm 1 as they are independent of

Oi. This allows us to estimate f without referring to the distribution of Oi. Given a grid

Γ := {nh : n ∈ {0, . . . ,N}} (6.18)

with grid size h > 0 and N + 1 points, we calculate the expected intensity in three steps:

1. Estimate the function

g(y) :=

∞
∑

j=1

E

(

f

(

y,X
1,j
1 ,X1

1 ,

j−1
∑

l=1

X
1,j
2

)∣

∣

∣

∣

∣

θ

)

(6.19)

for each y ∈ Γ by Monte Carlo integration. I.e., we draw samples (X1
1 )k, {(X1,j

1 )k}j ,

and {(X1,j
2 )k}j with k ∈ {1, . . . ,K} for sufficiently large K and j ∈ {1, . . . , jk} where

jk satisfies
jk−1
∑

l=1

(X1,l
2 )k ≤ (X1

1 )k <

jk
∑

l=1

(X1,l
2 )k (6.20)

Using the index sets

Mk
y :=

{

j ∈ {1, . . . , jk} : f

(

y, (X1,j
1 )k, (X1

1 )k,

j−1
∑

l=1

(X1,l
2 )k

)

= 1

}

(6.21)

we can estimate g(y) on Γ as

ĝ(y) :=
1

K

K
∑

k=1

|Mk
y | (6.22)

2. Calculate the distribution of each Oi on Γ as the i− 1-fold convolution of the lognormal

lag density with itself. Do this until a cutoff point i0 where the total mass remaining on

Γ is negligible.

3. Estimate the expected intensity for each x ∈ Γ by

E(I(x)|θ) ≈ ι

i0
∑

i=1

∫ Nh

0
ĝ(x−Oi) dP (Oi|θ) (6.23)

where the integrals are again solved numerically on the grid. As P (O1|θ) puts all mass

on the origin, the first integral is equal to ĝ(x).

This procedure yields the expected intensity given that the first storm starts at t = 0. If we

replace the distribution of O1 by the conditional distribution for OM+1 derived from the short

term forecast, we can use the scheme for a general long term forecasts.
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Figure 6.1: Long term prediction for artificial data
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Figure 6.2: Artificial data — Effects of storm lag precision
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6.2.3 Some numerical results

The scheme for the long term forecast was implemented in MATLAB. The results in this section

were calculated on a grid with h = 1 minute and using K = 10, 000 iterations to estimate g.

Computation only takes a few minutes on a regular PC.

First, we want to look at the function g itself. This has a nice interpretation — it is the

expected number of cells that contribute to precipitation at time y for a storm that starts at

time 0. If we multiply it with the intensity scale ι, we get an average precipitation curve

for storms under the model. The left plot in Figure 6.1 shows ĝ for the parameters used

to generate the artificial data sets A and C of Section 5.2. As set C assumes a negative

correlation between the duration of storms and cells, we expect fewer active cells on average

as the distance from the origin increases. This is evident in the picture.

In the right plot of Figure 6.1, we see the mean intensity E(I(x)) for the same two choices

of the parameter θ. As we assume O1 = 0, the curve initially resembles g(x), but as time

progresses, the contribution of other storms becomes dominant. Judging from (6.23), we

would expect to see a series of decreasing peaks at regular intervals. This is due to the fact

that the iterated convolution density of the storm lags has an ever increasing variance and

’smears’ copies of g across the positive real line. However, the variance in the example is so

large that E(I(x)) resembles a constant very quickly. For comparison, Figure 6.2 shows the

expected intensity for lag precision Λ2,2 ∈ {3, 30, 300, 3000}.
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Numerical results — Figures

Figure A.1: Error precision scale ζ for trial A1a (Model II)
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Figure A.2: Mean parameters µk for trial A1a (Model II)

Short cells, variable ζ, diagonal Λ, 10 min intervals
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Figure A.3: Variances σ2
k for trial A1a (Model II)

Short cells, variable ζ, diagonal Λ, 10 min intervals
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Figure A.4: Rainfall characteristics for trial A1a (Model II)

Short cells, variable ζ, diagonal Λ, 10 min intervals
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Figure A.5: Mean parameters µk for trial C1d (Model III)

Short cells, fixed ζ, mean matching, restricted Λ, 10 min intervals
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Figure A.6: Variances σ2
k for trial C1d (Model III)

Short cells, fixed ζ, mean matching, restricted Λ, 10 min intervals
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Figure A.7: Correlations ρk,l for trial C1d (Model III)

Short cells, fixed ζ, mean matching, restricted Λ, 10 min intervals
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Figure A.8: Comparing the estimators for trials C1d and C1d alt (Model III)

Short cells, fixed ζ, mean matching, restricted Λ, 10 min intervals
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Figure A.9: Rainfall characteristics for trials C1d and C1d alt (Model III) — Part 1

Short cells, fixed ζ, mean matching, restricted Λ, 10 min intervals
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Figure A.10: Rainfall characteristics for trials C1d and C1d alt (Model III) — Part 2

Short cells, fixed ζ, mean matching, restricted Λ, 10 min intervals
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Figure A.11: Mean parameters µk for trial C2d (Model III)

Short cells, fixed ζ, mean matching, restricted Λ, 1 h intervals
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Figure A.12: Variances σ2
k for trial C2d (Model III)

Short cells, fixed ζ, mean matching, restricted Λ, 1 h intervals
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Figure A.13: Correlations ρk,l for trial C2d (Model III)

Short cells, fixed ζ, mean matching, restricted Λ, 1 h intervals
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Figure A.14: Rainfall characteristics for trial C2d (Model III)

Short cells, fixed ζ, mean matching, restricted Λ, 1 h intervals
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Figure A.15: Mean parameters µk for trial D1d (Model III)

Long cells, fixed ζ, mean matching, restricted Λ, 10 min intervals

500 1000 1500 2000 2500 3000

4.8

4.85

4.9

4.95

5

5.05

5.1

5.15

5.2

Iterations after 150K burn−in, step size 100

M
e

a
n

 s
to

rm
 l
o

g
−

d
u

ra
ti
o

n
 m

u
(1

)

Trace plot
True value

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag, step size 100

A
C

F
 f

o
r 

m
e

a
n

 s
to

rm
 l
o

g
−

d
u

ra
ti
o

n
 m

u
(1

)

4.75 4.8 4.85 4.9 4.95 5 5.05 5.1 5.15 5.2
0

1

2

3

4

5

6

7

8

Mean storm log−duration mu(1)

K
e

rn
e

l 
d

e
n

s
it
y
 e

s
ti
m

a
te

Posterior density, 150K burn−in
Posterior denity 300K burn−in
True value

500 1000 1500 2000 2500 3000

7.6

7.65

7.7

7.75

7.8

7.85

7.9

7.95

8

8.05

Iterations after 150K burn−in, step size 100

M
e

a
n

 s
to

rm
 l
o

g
−

la
g

 m
u

(2
)

Trace plot
True value

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag, step size 100

A
C

F
 f

o
r 

m
e

a
n

 s
to

rm
 l
o

g
−

la
g

 m
u

(2
)

7.6 7.7 7.8 7.9 8 8.1
0

1

2

3

4

5

6

Mean storm log−lag mu(2)

K
e

rn
e

l 
d

e
n

s
it
y
 e

s
ti
m

a
te

Posterior density, 150K burn−in
Posterior denity 300K burn−in
True value

500 1000 1500 2000 2500 3000
3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

Iterations after 150K burn−in, step size 100

M
e

a
n

 c
e

ll 
lo

g
−

d
u

ra
ti
o

n
 m

u
(3

)

Trace plot
True value

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag, step size 100

A
C

F
 f

o
r 

m
e

a
n

 c
e

ll 
lo

g
−

d
u

ra
ti
o

n
 m

u
(3

)

3.05 3.1 3.15 3.2 3.25 3.3 3.35 3.4
0

1

2

3

4

5

6

7

8

9

Mean cell log−duration mu(3)

K
e

rn
e

l 
d

e
n

s
it
y
 e

s
ti
m

a
te

Posterior density, 150K burn−in
Posterior denity 300K burn−in
True value

500 1000 1500 2000 2500 3000

2.5

2.55

2.6

2.65

2.7

2.75

2.8

Iterations after 150K burn−in, step size 100

M
e

a
n

 c
e

ll 
lo

g
−

la
g

 m
u

(4
)

Trace plot
True value

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag, step size 100

A
C

F
 f

o
r 

m
e

a
n

 c
e

ll 
lo

g
−

la
g

 m
u

(4
)

2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85
0

1

2

3

4

5

6

7

8

9

10

Mean cell log−lag mu(4)

K
e

rn
e

l 
d

e
n

s
it
y
 e

s
ti
m

a
te

Posterior density, 150K burn−in
Posterior denity 300K burn−in
True value



112 APPENDIX A. NUMERICAL RESULTS — FIGURES

Figure A.16: Variances σ2
k for trial D1d (Model III)

Long cells, fixed ζ, mean matching, restricted Λ, 10 min intervals
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Figure A.17: Correlations ρk,l for trial D1d (Model III)

Long cells, fixed ζ, mean matching, restricted Λ, 10 min intervals
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Figure A.18: Rainfall characteristics for trial D1d (Model III)

Long cells, fixed ζ, mean matching, restricted Λ, 10 min intervals
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Figure A.19: Mean parameters µk for trial F2b (Model V)

Long cells, fixed ζ, restricted Λ, 1 h intervals
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Figure A.20: Variances σ2
k for trial F2b (Model V)

Long cells, fixed ζ, restricted Λ, 1 h intervals
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Figure A.21: Correlations ρk,l for trial F2b (Model V)

Long cells, fixed ζ, restricted Λ, 1 h intervals
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Figure A.22: Comparing the estimators for trials F2b and F2b alt (Model V)

Long cells, fixed ζ, restricted Λ, 1 h intervals
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Figure A.23: Rainfall characteristics for trials F2b and F2b alt (Model V) — Part 1
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Figure A.24: Rainfall characteristics for trials F2b and F2b alt (Model V) — Part 2

Long cells, fixed ζ, restricted Λ, 1 h intervals
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Figure A.25: Rainfall characteristics for real data and model output
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Appendix B

Numerical results — Tables

Table B.1: Artificial data — Instances and run lengths

Model Inst. Iterations Model Inst. Iterations Model Inst. Iterations

I C1a 370,700 IV A1c 500,000 V E1b 248,700

C1b 284,100 alt 500,000 alt 199,700

II A1a 498,400 A1d 500,000 E2b 313,200

A1b 496,900 alt 500,000 alt 313,100

A2a 432,000 A2c 500,000 F1b 207,300

A2b 388,100 A2d 500,000 alt 195,300

III C1c 500,000 B1c 456,900 F2b 356,100

alt 500,000 B1d 465,700 alt 375,600

C1d 500,000 B2c 282,800 VI E1e 269,100

alt 500,000 B2d 500,000 E2e 307,000

C2c 423,800 F1e 201,400

C2d 500,000 F2e 321,100

D1c 484,200

D1d 489,400

D2c 500,000

D2d 500,000

The number of burn-in iterations depends on the total run length:

400K–500K iterations: 300K burn-in

300K–400K iterations: 250K burn-in

250K–300K iterations: 200K burn-in

<250K iterations: 150K burn-in

123
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Table B.2: Data set C1a (Model I)

Short cells, variable ζ, full Λ, 10 min intervals

Thinning with step-size 100, 250K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000 142 228 388 232 251 270

µ1 5.04 5.03 4.99 5.11 5.25 5.11 5.12 5.13

µ2 7.78 7.80 7.60 7.74 7.89 7.73 7.74 7.75

µ3 2.40 2.14 1.33 1.72 2.01 1.58 1.69 1.80

µ4 2.40 2.72 1.84 2.29 2.60 2.13 2.25 2.37

σ2
1 0.33 0.33 0.37 0.47 0.61 0.47 0.48 0.49

σ2
2 0.46 0.33 0.45 0.57 0.75 0.58 0.59 0.60

σ2
3 1.00 0.33 0.28 0.40 0.59 0.38 0.42 0.46

σ2
4 1.00 0.33 0.42 0.62 1.04 0.59 0.68 0.78

ρ1,2 0.00 0.00 -0.05 0.14 0.33 0.13 0.14 0.15

ρ1,3 0.00 -0.50 -0.17 0.11 0.30 0.02 0.08 0.15

ρ1,4 0.00 0.00 0.17 0.38 0.50 0.31 0.35 0.40

ρ2,3 0.00 0.00 -0.11 0.02 0.15 0.01 0.02 0.04

ρ2,4 0.00 0.00 -0.16 -0.03 0.10 -0.05 -0.03 -0.01

ρ3,4 0.00 0.00 0.31 0.46 0.59 0.42 0.45 0.48

M 999 524 544 663 893 656 695 734

D̂ 0.81 1.00 0.96 0.99 1.02 0.99 0.99 0.99

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.3: Data set C1b (Model I)

Short cells, fixed ζ, full Λ, 10 min intervals

Thinning with step-size 100, 200K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.04 5.03 5.02 5.16 5.29 5.13 5.15 5.17

µ2 7.78 7.80 7.53 7.75 7.91 7.62 7.71 7.79

µ3 2.40 2.14 -0.19 0.65 1.17 0.20 0.56 0.91

µ4 2.40 2.72 -0.04 1.05 1.67 0.51 0.92 1.32

σ2
1 0.33 0.33 0.28 0.39 0.56 0.39 0.42 0.44

σ2
2 0.46 0.33 0.43 0.59 0.94 0.50 0.77 1.04

σ2
3 1.00 0.33 0.65 0.93 1.45 0.84 1.02 1.20

σ2
4 1.00 0.33 1.12 1.72 2.94 1.48 1.92 2.35

ρ1,2 0.00 0.00 -0.12 0.10 0.32 0.07 0.11 0.14

ρ1,3 0.00 -0.50 0.15 0.24 0.34 0.23 0.24 0.25

ρ1,4 0.00 0.00 0.30 0.40 0.49 0.38 0.39 0.41

ρ2,3 0.00 0.00 -0.06 0.05 0.16 0.04 0.05 0.07

ρ2,4 0.00 0.00 -0.07 0.05 0.16 0.03 0.05 0.06

ρ3,4 0.00 0.00 0.27 0.42 0.57 0.37 0.42 0.48

M 991 524 1031 1483 2736 1426 1725 2025

D̂ 0.81 1.00 0.98 1.00 1.01 1.00 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.4: Data set A1a (Model II)

Short cells, variable ζ, diagonal Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000 155 280 662 259 381 502

µ1 5.08 5.03 5.03 5.15 5.28 5.15 5.16 5.16

µ2 7.92 7.80 7.81 7.93 8.06 7.92 7.93 7.93

µ3 2.43 2.14 1.82 1.95 2.07 1.93 1.95 1.96

µ4 2.43 2.72 2.47 2.60 2.71 2.58 2.59 2.61

σ2
1 0.31 0.33 0.30 0.39 0.52 0.40 0.40 0.41

σ2
2 0.43 0.33 0.32 0.42 0.55 0.42 0.43 0.43

σ2
3 1.00 0.33 0.28 0.36 0.45 0.35 0.36 0.37

σ2
4 1.00 0.33 0.31 0.37 0.45 0.37 0.37 0.38

M 978 507 528 570 630 572 577 583

D̂ 0.84 1.00 0.98 1.01 1.03 1.00 1.01 1.01

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.5: Data set A1b (Model II)

Short cells, fixed ζ, diagonal Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.08 5.03 5.03 5.16 5.28 5.16 5.16 5.17

µ2 7.92 7.80 7.80 7.93 8.06 7.92 7.93 7.94

µ3 2.43 2.14 1.71 1.82 1.93 1.79 1.82 1.84

µ4 2.43 2.72 2.36 2.47 2.56 2.44 2.46 2.48

σ2
1 0.31 0.33 0.30 0.41 0.55 0.41 0.42 0.43

σ2
2 0.43 0.33 0.32 0.42 0.56 0.42 0.43 0.44

σ2
3 1.00 0.33 0.31 0.40 0.52 0.39 0.41 0.43

σ2
4 1.00 0.33 0.35 0.42 0.49 0.41 0.42 0.43

M 978 507 592 634 682 630 636 642

D̂ 0.84 1.00 0.98 1.00 1.03 1.00 1.01 1.01

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.6: Data set A2a (Model II)

Short cells, variable ζ, diagonal Λ, 1 h intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000 605 1635 5556 2223 2569 2914

µ1 5.35 5.03 5.11 5.20 5.30 5.20 5.20 5.21

µ2 7.81 7.80 7.57 7.70 7.83 7.69 7.70 7.71

µ3 2.74 2.14 2.83 2.94 3.12 2.94 2.96 2.98

µ4 2.74 2.72 3.68 3.71 3.83 3.71 3.74 3.76

σ2
1 0.40 0.33 0.20 0.27 0.35 0.27 0.27 0.28

σ2
2 0.36 0.33 0.39 0.50 0.66 0.51 0.51 0.52

σ2
3 1.00 0.33 0.16 0.28 0.41 0.26 0.28 0.30

σ2
4 1.00 0.33 0.01 0.02 0.05 0.02 0.03 0.04

M 478 621 257 291 300 278 284 289

D̂ 0.91 1.00 0.96 1.00 1.05 1.00 1.00 1.01

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.7: Data set A2b (Model II)

Short cells, fixed ζ, diagonal Λ, 1 h intervals

Thinning with step-size 100, 250K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.35 5.03 5.16 5.27 5.37 5.26 5.27 5.27

µ2 7.81 7.80 7.58 7.70 7.82 7.69 7.70 7.71

µ3 2.74 2.14 2.91 3.00 3.12 2.99 3.01 3.02

µ4 2.74 2.72 3.63 3.72 3.79 3.71 3.72 3.73

σ2
1 0.40 0.33 0.21 0.28 0.37 0.28 0.29 0.29

σ2
2 0.36 0.33 0.38 0.49 0.65 0.50 0.51 0.52

σ2
3 1.00 0.33 0.08 0.17 0.26 0.16 0.17 0.19

σ2
4 1.00 0.33 0.02 0.04 0.10 0.04 0.05 0.06

M 429 621 266 287 306 284 287 289

D̂ 0.91 1.00 0.95 0.99 1.03 0.99 0.99 0.99

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.8: Data set C1c (Model III)

Short cells, variable ζ, mean matching, restricted Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000 184 416 2370 480 874 1267

µ1 5.04 5.03 4.92 5.00 5.07 4.99 5.00 5.01

µ2 7.78 7.80 7.55 7.70 7.85 7.69 7.70 7.71

µ3 2.40 2.14 2.13 2.22 2.30 2.20 2.22 2.23

µ4 2.40 2.72 2.67 2.74 2.80 2.73 2.74 2.74

σ2
1 0.33 0.33 0.31 0.39 0.51 0.39 0.40 0.40

σ2
2 0.46 0.33 0.49 0.63 0.83 0.64 0.65 0.66

σ2
3 1.00 0.33 0.18 0.24 0.30 0.23 0.24 0.25

σ2
4 1.00 0.33 0.27 0.32 0.37 0.31 0.32 0.32

ρ1,2 0.00 0.00 -0.13 0.06 0.25 0.05 0.06 0.07

ρ1,3 0.00 -0.50 -0.50 -0.39 -0.27 -0.40 -0.39 -0.37

ρ2,3 0.00 0.00 -0.13 -0.01 0.12 -0.02 -0.01 0.00

M 979 524 514 541 568 538 541 544

D̂ 0.83 1.00 0.94 0.96 0.99 0.96 0.96 0.96

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.9: Data set C1c alt (Model III)

Short cells, variable ζ, mean matching, restricted Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 900 1,000 149 254 501 243 314 385

µ1 4.53 5.03 4.97 5.04 5.11 5.03 5.04 5.04

µ2 6.70 7.80 7.53 7.69 7.84 7.68 7.69 7.70

µ3 2.16 2.14 2.15 2.24 2.32 2.23 2.24 2.25

µ4 2.16 2.72 2.70 2.76 2.82 2.75 2.76 2.77

σ2
1 0.37 0.33 0.28 0.35 0.45 0.35 0.36 0.36

σ2
2 0.51 0.33 0.51 0.64 0.85 0.66 0.66 0.67

σ2
3 1.11 0.33 0.17 0.23 0.30 0.22 0.23 0.24

σ2
4 1.11 0.33 0.27 0.31 0.36 0.31 0.32 0.32

ρ1,2 0.00 0.00 -0.09 0.10 0.28 0.09 0.10 0.11

ρ1,3 0.00 -0.50 -0.52 -0.40 -0.27 -0.41 -0.40 -0.39

ρ2,3 0.00 0.00 -0.15 -0.02 0.11 -0.03 -0.02 -0.01

M 1,072 524 505 528 553 526 529 531

D̂ 0.86 1.00 0.94 0.96 0.99 0.96 0.96 0.97

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.10: Comparison of C1c and C1c alt (Model III)

Short cells, variable ζ, mean matching, restricted Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

C1c C1c alt

True Posterior quantiles Posterior quantiles Scale reduction*

Parameter Value 10% 50% 90% 10% 50% 90% 150K 300K 450K

ζ 1,000 184 416 2370 149 254 501 1.22 1.10 1.08

µ1 5.03 4.92 5.00 5.07 4.97 5.04 5.11 1.03 1.03 1.05

µ2 7.80 7.55 7.70 7.85 7.53 7.69 7.84 1.00 1.01 1.00

µ3 2.14 2.13 2.22 2.30 2.15 2.24 2.32 1.05 1.05 1.04

µ4 2.72 2.67 2.74 2.80 2.70 2.76 2.82 1.02 1.02 1.02

σ2
1 0.33 0.31 0.39 0.51 0.28 0.35 0.45 1.00 1.01 1.02

σ2
2 0.33 0.49 0.63 0.83 0.51 0.64 0.85 1.00 1.00 1.00

σ2
3 0.33 0.18 0.24 0.30 0.17 0.23 0.30 1.03 1.00 1.00

σ2
4 0.33 0.27 0.32 0.37 0.27 0.31 0.36 1.00 1.00 1.00

ρ1,2 0.00 -0.13 0.06 0.25 -0.09 0.10 0.28 1.01 1.03 1.03

ρ1,3 -0.50 -0.50 -0.39 -0.27 -0.52 -0.40 -0.27 1.00 1.01 1.00

ρ2,3 0.00 -0.13 -0.01 0.12 -0.15 -0.02 0.11 1.00 1.00 1.00

M 524 514 541 568 505 528 553 1.17 1.12 1.11

D̂ 1.00 0.94 0.96 0.99 0.94 0.96 0.99 1.00 1.00 1.00

* Values less than 1.2 can be taken as an indicator of convergence.
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Table B.11: Data set C1d (Model III)

Short cells, fixed ζ, mean matching, restricted Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.04 5.03 4.84 4.93 5.00 4.92 4.92 4.93

µ2 7.78 7.80 7.51 7.68 7.83 7.67 7.68 7.68

µ3 2.40 2.14 1.96 2.07 2.16 2.05 2.06 2.08

µ4 2.40 2.72 2.55 2.62 2.69 2.61 2.62 2.64

σ2
1 0.33 0.33 0.30 0.38 0.49 0.39 0.39 0.40

σ2
2 0.46 0.33 0.49 0.64 0.85 0.65 0.66 0.67

σ2
3 1.00 0.33 0.28 0.35 0.42 0.34 0.35 0.36

σ2
4 1.00 0.33 0.33 0.39 0.45 0.38 0.39 0.40

ρ1,2 0.00 0.00 -0.08 0.09 0.27 0.09 0.09 0.10

ρ1,3 0.00 -0.50 -0.40 -0.28 -0.17 -0.30 -0.28 -0.27

ρ2,3 0.00 0.00 -0.09 0.02 0.14 0.01 0.02 0.04

M 980 524 560 590 624 587 591 596

D̂ 0.79 1.00 0.95 0.98 1.01 0.98 0.98 0.98

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.12: Data set C1d alt (Model III)

Short cells, fixed ζ, mean matching, restricted Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 900 1,000

µ1 4.53 5.03 4.89 4.97 5.04 4.96 4.97 4.98

µ2 6.70 7.80 7.52 7.68 7.84 7.67 7.68 7.69

µ3 2.16 2.14 2.05 2.14 2.23 2.13 2.14 2.16

µ4 2.16 2.72 2.62 2.68 2.74 2.67 2.68 2.69

σ2
1 0.37 0.33 0.29 0.37 0.47 0.37 0.38 0.38

σ2
2 0.51 0.33 0.51 0.64 0.84 0.65 0.66 0.67

σ2
3 1.11 0.33 0.24 0.30 0.40 0.29 0.31 0.33

σ2
4 1.11 0.33 0.30 0.35 0.40 0.35 0.35 0.36

ρ1,2 0.00 0.00 -0.09 0.09 0.26 0.08 0.09 0.10

ρ1,3 0.00 -0.50 -0.44 -0.33 -0.23 -0.34 -0.33 -0.32

ρ2,3 0.00 0.00 -0.12 -0.01 0.11 -0.02 -0.01 0.00

M 1,033 524 531 556 582 553 557 561

D̂ 0.87 1.00 0.94 0.97 1.00 0.97 0.97 0.97

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.13: Comparison of C1d and C1d alt (Model III)

Short cells, fixed ζ, mean matching, restricted Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

C1d C1d alt

True Posterior quantiles Posterior quantiles Scale reduction*

Parameter Value 10% 50% 90% 10% 50% 90% 150K 300K 450K

µ1 5.03 4.84 4.93 5.00 4.89 4.97 5.04 1.02 1.05 1.06

µ2 7.80 7.51 7.68 7.83 7.52 7.68 7.84 1.00 1.00 1.00

µ3 2.14 1.96 2.07 2.16 2.05 2.14 2.23 1.18 1.24 1.25

µ4 2.72 2.55 2.62 2.69 2.62 2.68 2.74 1.10 1.17 1.19

σ2
1 0.33 0.30 0.38 0.49 0.29 0.37 0.47 1.06 1.04 1.01

σ2
2 0.33 0.49 0.64 0.85 0.51 0.64 0.84 1.00 1.00 1.00

σ2
3 0.33 0.28 0.35 0.42 0.24 0.30 0.40 1.01 1.03 1.05

σ2
4 0.33 0.33 0.39 0.45 0.30 0.35 0.40 1.04 1.07 1.10

ρ1,2 0.00 -0.08 0.09 0.27 -0.09 0.09 0.26 1.00 1.01 1.00

ρ1,3 -0.50 -0.40 -0.28 -0.17 -0.44 -0.33 -0.23 1.28 1.20 1.15

ρ2,3 0.00 -0.09 0.02 0.14 -0.12 -0.01 0.11 1.07 1.03 1.00

M 524 560 590 624 531 556 582 1.20 1.28 1.35

D̂ 1.00 0.95 0.98 1.01 0.94 0.97 1.00 1.00 1.05 1.05

* Values less than 1.2 can be taken as an indicator of convergence.
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Table B.14: Data set C2c (Model III)

Short cells, variable ζ, mean matching, restricted Λ, 1 h intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000 346 1057 4601 1459 1893 2328

µ1 5.19 5.03 5.06 5.09 5.12 5.09 5.09 5.09

µ2 7.89 7.80 7.72 7.84 7.96 7.83 7.84 7.85

µ3 2.53 2.14 1.55 1.69 1.82 1.67 1.68 1.70

µ4 2.53 2.72 2.88 2.89 2.90 2.89 2.89 2.89

σ2
1 0.28 0.33 0.16 0.21 0.28 0.21 0.22 0.22

σ2
2 0.32 0.33 0.30 0.39 0.53 0.39 0.41 0.43

σ2
3 1.00 0.33 0.94 1.18 1.46 1.16 1.19 1.21

σ2
4 1.00 0.33 0.01 0.01 0.01 0.01 0.01 0.01

ρ1,2 0.00 0.00 -0.14 0.05 0.24 0.04 0.05 0.07

ρ1,3 0.00 -0.50 -0.24 -0.16 -0.07 -0.17 -0.16 -0.15

ρ2,3 0.00 0.00 -0.13 -0.04 0.06 -0.05 -0.04 -0.03

M 375 505 517 522 540 516 526 536

D̂ 0.92 1.00 0.97 1.00 1.03 1.00 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.15: Data set C2d (Model III)

Short cells, fixed ζ, mean matching, restricted Λ, 1 h intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.19 5.03 5.08 5.12 5.15 5.12 5.12 5.12

µ2 7.89 7.80 7.74 7.85 7.96 7.85 7.85 7.86

µ3 2.53 2.14 1.74 1.85 1.96 1.84 1.85 1.85

µ4 2.53 2.72 2.93 2.94 2.95 2.94 2.94 2.94

σ2
1 0.28 0.33 0.20 0.25 0.33 0.26 0.26 0.26

σ2
2 0.32 0.33 0.29 0.38 0.49 0.38 0.39 0.39

σ2
3 1.00 0.33 0.65 0.82 1.03 0.82 0.83 0.84

σ2
4 1.00 0.33 0.01 0.01 0.01 0.01 0.01 0.01

ρ1,2 0.00 0.00 -0.08 0.11 0.29 0.10 0.11 0.12

ρ1,3 0.00 -0.50 -0.33 -0.24 -0.15 -0.24 -0.24 -0.23

ρ2,3 0.00 0.00 -0.19 -0.09 0.01 -0.09 -0.09 -0.08

M 364 505 504 508 511 506 508 509

D̂ 0.93 1.00 0.97 1.00 1.03 1.00 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.16: Data set D1c (Model III)

Long cells, variable ζ, mean matching, restricted Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000 522 693 903 663 705 747

µ1 5.24 5.03 4.97 5.04 5.11 5.04 5.04 5.05

µ2 7.83 7.80 7.72 7.81 7.90 7.81 7.81 7.82

µ3 2.57 3.23 3.20 3.26 3.31 3.25 3.26 3.26

µ4 2.57 2.72 2.66 2.72 2.78 2.72 2.72 2.73

σ2
1 0.27 0.33 0.29 0.38 0.49 0.38 0.39 0.39

σ2
2 0.28 0.33 0.21 0.27 0.35 0.27 0.28 0.28

σ2
3 1.00 0.33 0.26 0.30 0.35 0.30 0.30 0.31

σ2
4 1.00 0.33 0.36 0.41 0.47 0.41 0.41 0.42

ρ1,2 0.00 0.00 0.17 0.34 0.48 0.32 0.33 0.34

ρ1,3 0.00 -0.50 -0.61 -0.53 -0.46 -0.54 -0.53 -0.53

ρ2,3 0.00 0.00 -0.25 -0.14 -0.01 -0.14 -0.14 -0.13

M 1,673 583 547 572 598 570 573 575

D̂ 0.90 1.00 0.98 1.00 1.02 1.00 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.17: Data set D1d (Model III)

Long cells, fixed ζ, mean matching, restricted Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.24 5.03 4.94 5.01 5.08 5.00 5.01 5.02

µ2 7.83 7.80 7.71 7.80 7.89 7.79 7.80 7.80

µ3 2.57 3.23 3.18 3.23 3.28 3.22 3.23 3.23

µ4 2.57 2.72 2.62 2.68 2.74 2.67 2.68 2.68

σ2
1 0.27 0.33 0.28 0.35 0.45 0.35 0.36 0.36

σ2
2 0.28 0.33 0.21 0.27 0.35 0.27 0.28 0.28

σ2
3 1.00 0.33 0.24 0.29 0.34 0.28 0.29 0.30

σ2
4 1.00 0.33 0.36 0.42 0.49 0.42 0.42 0.43

ρ1,2 0.00 0.00 0.15 0.32 0.47 0.31 0.31 0.32

ρ1,3 0.00 -0.50 -0.61 -0.53 -0.46 -0.54 -0.53 -0.53

ρ2,3 0.00 0.00 -0.24 -0.13 -0.01 -0.13 -0.13 -0.12

M 1,673 583 583 608 633 605 608 610

D̂ 0.90 1.00 0.97 1.00 1.02 0.99 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.18: Data set D2c (Model III)

Long cells, variable ζ, mean matching, restricted Λ, 1 h intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000 250 377 664 409 436 463

µ1 5.37 5.03 5.08 5.18 5.28 5.16 5.18 5.20

µ2 7.68 7.80 7.54 7.64 7.73 7.63 7.64 7.64

µ3 2.69 3.23 2.93 3.10 3.37 3.09 3.13 3.17

µ4 2.69 2.72 2.89 2.97 3.07 2.96 2.97 2.99

σ2
1 0.24 0.33 0.19 0.24 0.33 0.24 0.25 0.26

σ2
2 0.27 0.33 0.26 0.32 0.41 0.32 0.33 0.33

σ2
3 1.00 0.33 0.30 0.62 0.84 0.56 0.60 0.64

σ2
4 1.00 0.33 0.01 0.02 0.26 0.04 0.06 0.08

ρ1,2 0.00 0.00 -0.05 0.12 0.28 0.11 0.12 0.13

ρ1,3 0.00 -0.50 -0.32 -0.20 -0.12 -0.23 -0.22 -0.20

ρ2,3 0.00 0.00 -0.13 -0.03 0.07 -0.03 -0.03 -0.02

M 766 663 556 622 698 619 627 636

D̂ 1.04 1.00 0.97 1.00 1.03 1.00 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.19: Data set D2d (Model III)

Long cells, fixed ζ, mean matching, restricted Λ, 1 h intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.37 5.03 5.19 5.28 5.36 5.27 5.28 5.28

µ2 7.68 7.80 7.54 7.63 7.73 7.63 7.63 7.64

µ3 2.69 3.23 3.34 3.44 3.54 3.43 3.44 3.45

µ4 2.69 2.72 2.86 2.97 3.08 2.96 2.97 2.98

σ2
1 0.24 0.33 0.26 0.35 0.48 0.36 0.36 0.37

σ2
2 0.27 0.33 0.26 0.32 0.41 0.33 0.33 0.33

σ2
3 1.00 0.33 0.10 0.19 0.30 0.18 0.20 0.21

σ2
4 1.00 0.33 0.26 0.36 0.49 0.36 0.37 0.38

ρ1,2 0.00 0.00 -0.22 -0.05 0.14 -0.05 -0.04 -0.03

ρ1,3 0.00 -0.50 -0.56 -0.41 -0.26 -0.42 -0.41 -0.40

ρ2,3 0.00 0.00 -0.07 0.09 0.26 0.08 0.09 0.10

M 724 663 508 555 603 553 555 557

D̂ 1.02 1.00 0.96 0.99 1.02 0.99 0.99 0.99

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.20: Data set A1c (Model IV)

Short cells, variable ζ, mean matching, diagonal Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000 125 196 358 191 230 269

µ1 5.08 5.03 4.97 5.04 5.11 5.04 5.04 5.05

µ2 7.92 7.80 7.81 7.92 8.05 7.92 7.93 7.93

µ3 2.43 2.14 1.99 2.08 2.16 2.07 2.08 2.09

µ4 2.43 2.72 2.71 2.78 2.85 2.77 2.78 2.78

σ2
1 0.31 0.33 0.26 0.34 0.44 0.35 0.35 0.35

σ2
2 0.43 0.33 0.32 0.42 0.55 0.42 0.43 0.43

σ2
3 1.00 0.33 0.26 0.34 0.45 0.34 0.35 0.36

σ2
4 1.00 0.33 0.23 0.27 0.32 0.27 0.27 0.28

M 993 507 479 504 533 504 505 507

D̂ 0.84 1.00 0.98 1.01 1.04 1.01 1.01 1.01

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.21: Data set A1c alt (Model IV)

Short cells, variable ζ, mean matching, diagonal Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 900 1,000 135 229 399 227 253 278

µ1 4.53 5.03 4.96 5.04 5.11 5.03 5.04 5.05

µ2 6.70 7.80 7.80 7.93 8.05 7.92 7.93 7.93

µ3 2.16 2.14 2.03 2.12 2.21 2.11 2.12 2.13

µ4 2.16 2.72 2.69 2.76 2.84 2.75 2.76 2.77

σ2
1 0.35 0.33 0.28 0.36 0.46 0.36 0.37 0.37

σ2
2 0.47 0.33 0.32 0.42 0.56 0.42 0.43 0.44

σ2
3 1.11 0.33 0.25 0.32 0.41 0.32 0.33 0.34

σ2
4 1.11 0.33 0.27 0.31 0.37 0.31 0.31 0.32

M 1,079 507 473 500 530 499 501 504

D̂ 0.85 1.00 0.97 1.00 1.02 1.00 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.22: Comparison of A1c and A1c alt (Model IV)

Short cells, variable ζ, mean matching, diagonal Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

A1c A1c alt

True Posterior quantiles Posterior quantiles Scale reduction*

Parameter Value 10% 50% 90% 10% 50% 90% 150K 300K 450K

ζ 1,000 125 196 358 135 229 399 1.00 1.02 1.01

µ1 5.03 4.97 5.04 5.11 4.96 5.04 5.11 1.03 1.01 1.01

µ2 7.80 7.81 7.92 8.05 7.80 7.93 8.05 1.00 1.00 1.00

µ3 2.14 1.99 2.08 2.16 2.03 2.12 2.21 1.04 1.04 1.05

µ4 2.72 2.71 2.78 2.85 2.69 2.76 2.84 1.05 1.03 1.02

σ2
1 0.33 0.26 0.34 0.44 0.28 0.36 0.46 1.00 1.01 1.01

σ2
2 0.33 0.32 0.42 0.55 0.32 0.42 0.56 1.00 1.00 1.00

σ2
3 0.33 0.26 0.34 0.45 0.25 0.32 0.41 1.01 1.01 1.00

σ2
4 0.33 0.23 0.27 0.32 0.27 0.31 0.37 1.07 1.08 1.11

M 507 479 504 533 473 500 530 1.00 1.00 1.00

D̂ 1.00 0.98 1.01 1.04 0.97 1.00 1.02 1.10 1.07 1.07

* Values less than 1.2 can be taken as an indicator of convergence.
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Table B.23: Data set A1d (Model IV)

Short cells, fixed ζ, mean matching, diagonal Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.08 5.03 4.91 4.99 5.06 4.98 4.99 4.99

µ2 7.92 7.80 7.80 7.93 8.05 7.92 7.93 7.93

µ3 2.43 2.14 1.95 2.02 2.10 2.01 2.02 2.04

µ4 2.43 2.72 2.65 2.71 2.77 2.71 2.71 2.72

σ2
1 0.31 0.33 0.28 0.36 0.48 0.37 0.38 0.38

σ2
2 0.43 0.33 0.32 0.42 0.56 0.42 0.43 0.44

σ2
3 1.00 0.33 0.32 0.38 0.46 0.37 0.38 0.40

σ2
4 1.00 0.33 0.27 0.31 0.36 0.31 0.31 0.32

M 993 507 506 529 553 526 529 532

D̂ 0.84 1.00 0.98 1.01 1.03 1.01 1.01 1.01

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.24: Data set A1d alt (Model IV)

Short cells, fixed ζ, mean matching, diagonal Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 900 1,000

µ1 4.53 5.03 4.94 5.01 5.09 5.01 5.01 5.02

µ2 6.70 7.80 7.80 7.93 8.05 7.92 7.93 7.93

µ3 2.16 2.14 1.99 2.06 2.13 2.05 2.06 2.07

µ4 2.16 2.72 2.66 2.72 2.78 2.71 2.72 2.73

σ2
1 0.35 0.33 0.29 0.37 0.48 0.37 0.37 0.38

σ2
2 0.47 0.33 0.32 0.42 0.55 0.42 0.43 0.44

σ2
3 1.11 0.33 0.26 0.32 0.39 0.32 0.33 0.34

σ2
4 1.11 0.33 0.30 0.35 0.40 0.35 0.35 0.36

M 980 507 503 524 547 522 525 527

D̂ 0.79 1.00 0.97 1.00 1.02 1.00 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.25: Comparison of A1d and A1d alt (Model IV)

Short cells, fixed ζ, mean matching, diagonal Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

A1d A1d alt

True Posterior quantiles Posterior quantiles Scale reduction*

Parameter Value 10% 50% 90% 10% 50% 90% 150K 300K 450K

µ1 5.03 4.91 4.99 5.06 4.94 5.01 5.09 1.05 1.03 1.00

µ2 7.80 7.80 7.93 8.05 7.80 7.93 8.05 1.00 1.00 1.00

µ3 2.14 1.95 2.02 2.10 1.99 2.06 2.13 1.03 1.00 1.01

µ4 2.72 2.65 2.71 2.77 2.66 2.72 2.78 1.20 1.16 1.07

σ2
1 0.33 0.28 0.36 0.48 0.29 0.37 0.48 1.00 1.00 1.00

σ2
2 0.33 0.32 0.42 0.56 0.32 0.42 0.55 1.00 1.00 1.00

σ2
3 0.33 0.32 0.38 0.46 0.26 0.32 0.39 1.23 1.14 1.14

σ2
4 0.33 0.27 0.31 0.36 0.30 0.35 0.40 1.21 1.29 1.24

M 507 506 529 553 503 524 547 1.12 1.09 1.03

D̂ 1.00 0.98 1.01 1.03 0.97 1.00 1.02 1.16 1.07 1.07

* Values less than 1.2 can be taken as an indicator of convergence.
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Table B.26: Data set A2c (Model IV)

Short cells, variable ζ, mean matching, diagonal Λ, 1 h intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000 449 1198 4242 1723 1975 2226

µ1 5.35 5.03 5.31 5.41 5.51 5.40 5.41 5.42

µ2 7.81 7.80 7.57 7.70 7.83 7.69 7.70 7.71

µ3 2.74 2.14 2.36 2.52 2.67 2.50 2.52 2.53

µ4 2.74 2.72 3.00 3.14 3.28 3.13 3.14 3.16

σ2
1 0.40 0.33 0.28 0.37 0.49 0.38 0.38 0.39

σ2
2 0.36 0.33 0.39 0.49 0.64 0.50 0.51 0.51

σ2
3 1.00 0.33 0.06 0.24 0.43 0.22 0.24 0.27

σ2
4 1.00 0.33 0.20 0.30 0.44 0.30 0.31 0.32

M 466 621 405 449 495 447 449 452

D̂ 0.90 1.00 0.96 1.00 1.03 1.00 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.27: Data set A2d (Model IV)

Short cells, fixed ζ, mean matching, diagonal Λ, 1 h intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.35 5.03 5.28 5.36 5.44 5.36 5.36 5.37

µ2 7.81 7.80 7.58 7.71 7.83 7.70 7.71 7.71

µ3 2.74 2.14 2.32 2.45 2.58 2.44 2.45 2.46

µ4 2.74 2.72 2.96 3.08 3.20 3.07 3.08 3.09

σ2
1 0.40 0.33 0.25 0.32 0.42 0.32 0.33 0.33

σ2
2 0.36 0.33 0.38 0.49 0.64 0.50 0.50 0.51

σ2
3 1.00 0.33 0.17 0.29 0.44 0.29 0.30 0.31

σ2
4 1.00 0.33 0.18 0.28 0.40 0.28 0.29 0.30

M 466 621 430 472 513 470 472 474

D̂ 0.90 1.00 0.96 0.99 1.03 0.99 0.99 0.99

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.28: Data set B1c (Model IV)

Long cells, variable ζ, mean matching, diagonal Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000 581 707 871 693 717 741

µ1 5.20 5.03 4.96 5.04 5.12 5.04 5.04 5.05

µ2 7.89 7.80 7.76 7.89 8.02 7.88 7.89 7.90

µ3 2.53 3.23 3.22 3.28 3.35 3.28 3.28 3.29

µ4 2.53 2.72 2.71 2.77 2.83 2.76 2.77 2.77

σ2
1 0.27 0.33 0.30 0.39 0.51 0.39 0.40 0.40

σ2
2 0.42 0.33 0.32 0.41 0.55 0.42 0.43 0.43

σ2
3 1.00 0.33 0.27 0.32 0.38 0.32 0.33 0.34

σ2
4 1.00 0.33 0.29 0.34 0.40 0.34 0.34 0.35

M 1,503 455 444 465 488 464 465 467

D̂ 0.88 1.00 0.91 0.94 0.96 0.94 0.94 0.94

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.29: Data set B1d (Model IV)

Long cells, fixed ζ, mean matching, diagonal Λ, 10 min intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.20 5.03 4.94 5.02 5.09 5.01 5.02 5.02

µ2 7.89 7.80 7.77 7.89 8.01 7.88 7.89 7.90

µ3 2.53 3.23 3.16 3.22 3.28 3.21 3.22 3.23

µ4 2.53 2.72 2.69 2.75 2.80 2.74 2.75 2.75

σ2
1 0.27 0.33 0.30 0.38 0.51 0.39 0.39 0.40

σ2
2 0.42 0.33 0.32 0.41 0.56 0.42 0.43 0.44

σ2
3 1.00 0.33 0.32 0.39 0.47 0.38 0.39 0.41

σ2
4 1.00 0.33 0.28 0.33 0.39 0.32 0.33 0.34

M 1,503 455 459 478 497 477 478 480

D̂ 0.88 1.00 0.91 0.94 0.96 0.94 0.94 0.94

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.30: Data set B2c (Model IV)

Long cells, variable ζ, mean matching, diagonal Λ, 1h intervals

Thinning with step-size 100, 200K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000 186 265 379 268 276 284

µ1 5.35 5.03 4.97 5.06 5.14 5.05 5.06 5.07

µ2 7.80 7.80 7.73 7.80 7.88 7.80 7.80 7.81

µ3 2.65 3.23 2.44 2.70 2.94 2.67 2.70 2.72

µ4 2.65 2.72 2.44 2.57 2.71 2.56 2.57 2.59

σ2
1 0.20 0.33 0.09 0.14 0.20 0.13 0.14 0.15

σ2
2 0.20 0.33 0.18 0.23 0.30 0.23 0.24 0.24

σ2
3 1.00 0.33 1.06 1.48 1.99 1.45 1.50 1.56

σ2
4 1.00 0.33 0.34 0.49 0.70 0.50 0.51 0.53

M 678 564 521 559 597 556 559 561

D̂ 1.02 1.00 0.98 1.01 1.04 1.00 1.01 1.01

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.31: Data set B2d (Model IV)

Long cells, fixed ζ, mean matching, diagonal Λ, 1h intervals

Thinning with step-size 100, 300K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.35 5.03 5.17 5.26 5.35 5.25 5.26 5.27

µ2 7.80 7.80 7.72 7.81 7.89 7.80 7.81 7.81

µ3 2.65 3.23 3.35 3.56 3.74 3.53 3.55 3.57

µ4 2.65 2.72 2.82 2.98 3.13 2.97 2.98 2.99

σ2
1 0.20 0.33 0.32 0.45 0.63 0.46 0.47 0.47

σ2
2 0.20 0.33 0.17 0.22 0.29 0.23 0.23 0.23

σ2
3 1.00 0.33 0.06 0.19 0.42 0.20 0.22 0.25

σ2
4 1.00 0.33 0.29 0.41 0.57 0.41 0.42 0.43

M 650 564 409 463 520 462 465 467

D̂ 1.06 1.00 0.94 0.98 1.01 0.98 0.98 0.98

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.32: Data set E1b (Model V)

Short cells, fixed ζ, restricted Λ, 10 min intervals

Thinning with step-size 100, 150K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.08 5.03 5.11 5.25 5.41 5.24 5.26 5.27

µ2 7.75 7.80 7.67 7.77 7.87 7.76 7.77 7.78

µ3 2.43 2.14 1.09 1.38 1.57 1.26 1.35 1.44

µ4 2.43 2.72 1.46 1.82 2.06 1.70 1.78 1.87

σ2
1 0.31 0.33 0.35 0.48 0.68 0.48 0.50 0.53

σ2
2 0.33 0.33 0.23 0.31 0.40 0.31 0.31 0.32

σ2
3 1.00 0.33 0.43 0.54 0.69 0.51 0.55 0.59

σ2
4 1.00 0.33 1.04 1.33 1.76 1.24 1.37 1.50

ρ1,2 0.00 0.00 -0.15 0.06 0.29 0.04 0.06 0.09

ρ1,4 0.75 0.50 0.19 0.27 0.35 0.26 0.27 0.28

ρ2,4 0.00 0.00 -0.09 -0.01 0.08 -0.01 -0.01 0.00

M 1,155 553 919 1064 1317 1044 1100 1155

D̂ 0.79 1.00 0.98 1.00 1.02 1.00 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.33: Data set E1b alt (Model V)

Short cells, fixed ζ, restricted Λ, 10 min intervals

Thinning with step-size 100, 150K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 900 1,000

µ1 4.57 5.03 5.30 5.40 5.50 5.38 5.40 5.41

µ2 6.97 7.80 7.67 7.77 7.87 7.76 7.77 7.79

µ3 2.19 2.14 0.53 0.77 0.99 0.69 0.76 0.83

µ4 2.19 2.72 0.87 1.10 1.33 1.04 1.11 1.17

σ2
1 0.34 0.33 0.19 0.25 0.33 0.24 0.25 0.26

σ2
2 0.37 0.33 0.23 0.30 0.39 0.29 0.30 0.31

σ2
3 1.11 0.33 0.68 0.82 1.00 0.80 0.83 0.87

σ2
4 1.11 0.33 1.77 1.98 2.00 1.91 1.93 1.95

ρ1,2 0.00 0.00 0.03 0.23 0.40 0.19 0.22 0.24

ρ1,4 0.75 0.50 0.09 0.16 0.23 0.15 0.16 0.17

ρ2,4 0.00 0.00 -0.06 -0.01 0.06 -0.01 -0.00 0.00

M 1,157 553 1444 1680 1970 1641 1696 1752

D̂ 0.85 1.00 0.98 1.00 1.02 1.00 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.34: Comparison of E1b and E1b alt (Model V)

Short cells, fixed ζ, restricted Λ, 10 min intervals

Thinning with step-size 100, 150K burn-in iterations

E1b E1b alt

True Posterior quantiles Posterior quantiles PSR*

Parameter Value 10% 50% 90% 10% 50% 90% 150K

µ1 5.03 5.11 5.25 5.41 5.30 5.40 5.50 1.89

µ2 7.80 7.67 7.77 7.87 7.67 7.77 7.87 1.00

µ3 2.14 1.09 1.38 1.57 0.53 0.77 0.99 2.76

µ4 2.72 1.46 1.82 2.06 0.87 1.10 1.33 3.10

σ2
1 0.33 0.35 0.48 0.68 0.19 0.25 0.33 2.00

σ2
2 0.33 0.23 0.31 0.40 0.23 0.30 0.39 1.01

σ2
3 0.33 0.43 0.54 0.69 0.68 0.82 1.00 2.06

σ2
4 0.33 1.04 1.33 1.76 1.77 1.98 2.00 3.35

ρ1,2 0.00 -0.15 0.06 0.29 0.03 0.23 0.40 1.37

ρ1,4 0.50 0.19 0.27 0.35 0.09 0.16 0.23 1.80

ρ2,4 0.00 -0.09 -0.01 0.08 -0.06 -0.01 0.06 1.00

M 553 919 1064 1317 1444 1680 1970 2.81

D̂ 1.00 0.98 1.00 1.02 0.98 1.00 1.02 1.01

* Values less than 1.2 can be taken as an indicator of convergence.
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Table B.35: Data set E2b (Model V)

Short cells, fixed ζ, restricted Λ, 1 h intervals

Thinning with step-size 100, 250K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.27 5.03 5.33 5.47 5.61 5.46 5.47 5.49

µ2 7.88 7.80 7.81 7.92 8.03 7.91 7.92 7.93

µ3 2.63 2.14 1.71 1.97 2.19 1.92 1.96 2.00

µ4 2.63 2.72 1.88 2.25 2.58 2.18 2.24 2.30

σ2
1 0.32 0.33 0.30 0.41 0.57 0.41 0.42 0.44

σ2
2 0.34 0.33 0.24 0.30 0.41 0.31 0.32 0.32

σ2
3 1.00 0.33 0.11 0.13 0.22 0.15 0.15 0.16

σ2
4 1.00 0.33 1.53 1.86 1.99 1.78 1.80 1.83

ρ1,2 0.00 0.00 0.15 0.34 0.51 0.32 0.34 0.36

ρ1,4 0.75 0.50 0.12 0.22 0.31 0.21 0.22 0.23

ρ2,4 0.00 0.00 -0.03 0.05 0.14 0.05 0.06 0.06

M 430 487 489 610 764 602 620 638

D̂ 0.88 1.00 0.97 1.00 1.04 1.00 1.01 1.01

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.36: Data set E2b alt (Model V)

Short cells, fixed ζ, restricted Λ, 1 h intervals

Thinning with step-size 100, 250K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 900 1,000

µ1 4.75 5.03 5.32 5.45 5.59 5.44 5.45 5.46

µ2 7.09 7.80 7.81 7.91 8.02 7.91 7.91 7.92

µ3 2.37 2.14 1.75 2.03 2.25 1.97 2.01 2.06

µ4 2.37 2.72 1.92 2.31 2.68 2.25 2.31 2.38

σ2
1 0.35 0.33 0.28 0.39 0.54 0.39 0.40 0.41

σ2
2 0.37 0.33 0.24 0.31 0.42 0.31 0.32 0.33

σ2
3 1.11 0.33 0.11 0.13 0.22 0.14 0.15 0.16

σ2
4 1.11 0.33 1.44 1.83 1.99 1.72 1.76 1.80

ρ1,2 0.00 0.00 0.03 0.25 0.44 0.22 0.24 0.27

ρ1,4 0.75 0.50 0.14 0.21 0.31 0.21 0.22 0.23

ρ2,4 0.00 0.00 -0.05 0.03 0.12 0.03 0.04 0.04

M 467 487 457 577 744 570 590 610

D̂ 0.93 1.00 0.97 1.01 1.04 1.00 1.01 1.01

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.37: Comparison of E2b and E2b alt (Model V)

Short cells, fixed ζ, restricted Λ, 1 h intervals

Thinning with step-size 100, 250K burn-in iterations

E2b E2b alt

True Posterior quantiles Posterior quantiles PSR*

Parameter Value 10% 50% 90% 10% 50% 90% 150K 300K

µ1 5.03 5.33 5.47 5.61 5.32 5.45 5.59 1.02 1.00

µ2 7.80 7.81 7.92 8.03 7.81 7.91 8.02 1.00 1.00

µ3 2.14 1.71 1.97 2.19 1.75 2.03 2.25 1.01 1.00

µ4 2.72 1.88 2.25 2.58 1.92 2.31 2.68 1.02 1.01

σ2
1 0.33 0.30 0.41 0.57 0.28 0.39 0.54 1.03 1.00

σ2
2 0.33 0.24 0.30 0.41 0.24 0.31 0.42 1.00 1.00

σ2
3 0.33 0.11 0.13 0.22 0.11 0.13 0.22 1.00 1.00

σ2
4 0.33 1.53 1.86 1.99 1.44 1.83 1.99 1.03 1.01

ρ1,2 0.00 0.15 0.34 0.51 0.03 0.25 0.44 1.03 1.00

ρ1,4 0.50 0.12 0.22 0.31 0.14 0.21 0.31 1.00 1.00

ρ2,4 0.00 -0.03 0.05 0.14 -0.05 0.03 0.12 1.00 1.00

M 487 489 610 764 457 577 744 1.02 1.00

D̂ 1.00 0.97 1.00 1.04 0.97 1.01 1.04 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.38: Data set F1b (Model V)

Long cells, fixed ζ, restricted Λ, 10 min intervals

Thinning with step-size 100, 150K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.18 5.03 5.02 5.13 5.25 5.12 5.13 5.14

µ2 7.72 7.80 7.58 7.69 7.80 7.68 7.69 7.70

µ3 2.50 3.23 3.06 3.13 3.19 3.12 3.13 3.14

µ4 2.50 2.72 2.48 2.57 2.66 2.56 2.57 2.58

σ2
1 0.25 0.33 0.33 0.42 0.55 0.43 0.44 0.45

σ2
2 0.35 0.33 0.33 0.41 0.52 0.41 0.42 0.43

σ2
3 1.00 0.33 0.33 0.38 0.45 0.38 0.39 0.40

σ2
4 1.00 0.33 0.61 0.75 0.93 0.73 0.76 0.80

ρ1,2 0.00 0.00 -0.02 0.15 0.31 0.13 0.15 0.16

ρ1,4 0.75 0.50 0.18 0.26 0.34 0.25 0.26 0.27

ρ2,4 0.00 0.00 0.03 0.11 0.18 0.10 0.10 0.11

M 1,790 553 583 609 640 607 610 614

D̂ 0.85 1.00 0.91 0.93 0.95 0.93 0.93 0.93

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.39: Data set F1b alt (Model V)

Long cells, fixed ζ, restricted Λ, 10 min intervals

Thinning with step-size 100, 150K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 900 1,000

µ1 4.66 5.03 5.03 5.14 5.26 5.13 5.14 5.15

µ2 6.94 7.80 7.56 7.67 7.80 7.66 7.67 7.68

µ3 2.25 3.23 3.06 3.14 3.20 3.12 3.13 3.15

µ4 2.25 2.72 2.48 2.57 2.65 2.56 2.57 2.58

σ2
1 0.28 0.33 0.30 0.38 0.50 0.38 0.39 0.41

σ2
2 0.39 0.33 0.34 0.42 0.55 0.42 0.43 0.45

σ2
3 1.11 0.33 0.30 0.37 0.44 0.35 0.37 0.39

σ2
4 1.11 0.33 0.58 0.71 0.88 0.68 0.72 0.75

ρ1,2 0.00 0.00 -0.06 0.13 0.29 0.11 0.13 0.15

ρ1,4 0.75 0.50 0.14 0.22 0.29 0.20 0.22 0.23

ρ2,4 0.75 0.00 0.01 0.09 0.17 0.08 0.09 0.10

M 1,879 553 587 614 644 611 616 620

D̂ 0.92 1.00 0.90 0.93 0.95 0.93 0.93 0.93

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.40: Comparison of F1b and F1b alt (Model V)

Long cells, fixed ζ, restricted Λ, 10 min intervals

Thinning with step-size 100, 150K burn-in iterations

F1b F1b alt

True Posterior quantiles Posterior quantiles PSR*

Parameter Value 10% 50% 90% 10% 50% 90% 150K

µ1 5.03 5.02 5.13 5.25 5.03 5.14 5.26 1.00

µ2 7.80 7.58 7.69 7.80 7.56 7.67 7.80 1.00

µ3 3.23 3.06 3.13 3.19 3.06 3.14 3.20 1.03

µ4 2.72 2.48 2.57 2.66 2.48 2.57 2.65 1.02

σ2
1 0.33 0.33 0.42 0.55 0.30 0.38 0.50 1.05

σ2
2 0.33 0.33 0.41 0.52 0.34 0.42 0.55 1.00

σ2
3 0.33 0.33 0.38 0.45 0.30 0.37 0.44 1.06

σ2
4 0.33 0.61 0.75 0.93 0.58 0.71 0.88 1.02

ρ1,2 0.00 -0.02 0.15 0.31 -0.06 0.13 0.29 1.01

ρ1,4 0.50 0.18 0.26 0.34 0.14 0.22 0.29 1.06

ρ2,4 0.00 0.03 0.11 0.18 0.01 0.09 0.17 1.04

M 553 583 609 640 587 614 644 1.02

D̂ 1.00 0.91 0.93 0.95 0.90 0.93 0.95 1.00

* Values less than 1.2 can be taken as an indicator of convergence.
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Table B.41: Data set F2b (Model V)

Long cells, fixed ζ, restricted Λ, 1 h intervals

Thinning with step-size 100, 250K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.38 5.03 5.11 5.24 5.37 5.23 5.24 5.25

µ2 7.83 7.80 7.74 7.83 7.91 7.83 7.83 7.84

µ3 2.65 3.23 3.29 3.71 4.10 3.63 3.70 3.77

µ4 2.65 2.72 2.70 3.14 3.53 3.05 3.13 3.21

σ2
1 0.14 0.33 0.20 0.28 0.38 0.28 0.29 0.30

σ2
2 0.21 0.33 0.19 0.23 0.30 0.24 0.24 0.24

σ2
3 1.00 0.33 0.13 0.26 0.49 0.26 0.29 0.31

σ2
4 1.00 0.33 0.92 1.33 1.82 1.31 1.34 1.38

ρ1,2 0.00 0.00 -0.26 -0.04 0.17 -0.06 -0.04 -0.02

ρ1,4 0.75 0.50 0.10 0.21 0.31 0.20 0.21 0.22

ρ2,4 0.00 0.00 -0.11 -0.00 0.11 -0.01 -0.00 0.01

M 676 513 245 332 469 332 347 362

D̂ 1.02 1.00 0.93 0.97 1.02 0.97 0.97 0.98

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.42: Data set F2b alt (Model V)

Long cells, fixed ζ, restricted Λ, 1h intervals

Thinning with step-size 100, 250K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 900 1,000

µ1 4.84 5.03 5.13 5.27 5.40 5.25 5.26 5.28

µ2 7.05 7.80 7.74 7.83 7.92 7.83 7.83 7.84

µ3 2.38 3.23 3.03 3.70 4.08 3.46 3.62 3.77

µ4 2.38 2.72 2.36 3.08 3.50 2.84 2.99 3.14

σ2
1 0.16 0.33 0.24 0.33 0.45 0.33 0.34 0.35

σ2
2 0.24 0.33 0.19 0.23 0.31 0.24 0.24 0.25

σ2
3 1.11 0.33 0.12 0.20 0.47 0.23 0.25 0.28

σ2
4 1.11 0.33 1.00 1.41 1.88 1.39 1.42 1.46

ρ1,2 0.00 0.00 -0.24 -0.04 0.16 -0.05 -0.04 -0.02

ρ1,4 0.75 0.50 0.13 0.23 0.33 0.22 0.23 0.24

ρ2,4 0.00 0.00 -0.10 0.01 0.12 0.00 0.01 0.02

M 671 513 248 342 605 359 396 434

D̂ 1.06 1.00 0.94 0.98 1.02 0.98 0.98 0.98

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.43: Comparison of F2b and F2b alt (Model V)

Long cells, fixed ζ, restricted Λ, 1 h intervals

Thinning with step-size 100, 250K burn-in iterations

F2b F2b alt

True Posterior quantiles Posterior quantiles PSR*

Parameter Value 10% 50% 90% 10% 50% 90% 150K 300K

µ1 5.03 5.11 5.24 5.37 5.13 5.27 5.40 1.30 1.12

µ2 7.80 7.74 7.83 7.91 7.74 7.83 7.92 1.01 1.00

µ3 3.23 3.29 3.71 4.10 3.03 3.70 4.08 1.76 1.27

µ4 2.72 2.70 3.14 3.53 2.36 3.08 3.50 1.85 1.32

σ2
1 0.33 0.20 0.28 0.38 0.24 0.33 0.45 1.24 1.01

σ2
2 0.33 0.19 0.23 0.30 0.19 0.23 0.31 1.01 1.01

σ2
3 0.33 0.13 0.26 0.49 0.12 0.20 0.47 1.26 1.09

σ2
4 0.33 0.92 1.33 1.82 1.00 1.41 1.88 1.47 1.27

ρ1,2 0.00 -0.26 -0.04 0.17 -0.24 -0.04 0.16 1.05 1.01

ρ1,4 0.50 0.10 0.21 0.31 0.12 0.20 0.47 1.00 1.02

ρ2,4 0.00 -0.11 -0.00 0.11 -0.10 0.01 0.12 1.00 1.00

M 513 245 332 469 248 342 605 1.30 1.16

D̂ 1.00 0.93 0.97 1.02 0.94 0.98 1.02 1.22 1.06

* Values less than 1.2 can be taken as an indicator of convergence.
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Table B.44: Data set E1e (Model VI)

Short cells, fixed ζ, ρ1,4 6= 0, 10 min intervals

Thinning with step-size 100, 200K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.08 5.03 5.06 5.17 5.28 5.16 5.17 5.18

µ2 7.75 7.80 7.66 7.75 7.84 7.74 7.75 7.76

µ3 2.43 3.23 1.47 1.59 1.72 1.56 1.59 1.63

µ4 2.43 2.72 2.01 2.17 2.32 2.13 2.16 2.19

σ2
1 0.31 0.33 0.31 0.40 0.52 0.40 0.41 0.42

σ2
2 0.33 0.33 0.26 0.32 0.42 0.33 0.33 0.34

σ2
3 1.00 0.33 0.40 0.48 0.58 0.47 0.49 0.51

σ2
4 1.00 0.33 0.71 0.86 1.02 0.84 0.86 0.88

ρ1,4 0.75 0.50 0.29 0.36 0.43 0.35 0.36 0.37

M 1,136 553 785 863 949 852 866 880

D̂ 0.81 1.00 0.98 1.00 1.03 1.00 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.45: Data set E2e (Model VI)

Short cells, fixed ζ, ρ1,4 6= 0, 1h intervals

Thinning with step-size 100, 250K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.27 5.03 5.28 5.40 5.53 5.40 5.40 5.41

µ2 7.88 7.80 7.80 7.91 8.01 7.90 7.91 7.92

µ3 2.63 2.14 1.39 1.76 2.06 1.67 1.74 1.80

µ4 2.63 2.72 1.72 2.19 2.62 2.09 2.18 2.26

σ2
1 0.32 0.33 0.28 0.38 0.53 0.38 0.40 0.41

σ2
2 0.34 0.33 0.25 0.33 0.44 0.33 0.34 0.35

σ2
3 1.00 0.33 0.13 0.23 0.44 0.24 0.26 0.28

σ2
4 1.00 0.33 0.89 1.23 1.63 1.19 1.24 1.29

ρ1,4 0.75 0.50 0.20 0.28 0.38 0.27 0.28 0.29

M 390 487 534 708 977 704 736 767

D̂ 0.94 1.00 0.97 1.00 1.03 1.00 1.00 1.00

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.46: Data set F1e (Model VI)

Long cells, fixed ζ, ρ1,4 6= 0, 10 min intervals

Thinning with step-size 100, 150K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.18 5.03 5.03 5.15 5.27 5.14 5.15 5.16

µ2 7.72 7.80 7.57 7.68 7.80 7.67 7.68 7.69

µ3 2.50 3.23 3.01 3.09 3.15 3.07 3.09 3.11

µ4 2.50 2.72 2.48 2.57 2.65 2.55 2.56 2.57

σ2
1 0.25 0.33 0.37 0.46 0.60 0.46 0.48 0.49

σ2
2 0.35 0.33 0.34 0.43 0.56 0.44 0.45 0.46

σ2
3 1.00 0.33 0.33 0.40 0.48 0.38 0.40 0.42

σ2
4 1.00 0.33 0.45 0.52 0.60 0.51 0.52 0.53

ρ1,4 0.75 0.50 0.25 0.32 0.40 0.31 0.32 0.33

M 1,779 553 604 631 667 629 634 638

D̂ 0.87 1.00 0.91 0.93 0.95 0.93 0.93 0.93

* The bounds for the components of θ form a joint 95% confidence interval.
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Table B.47: Data set F2e (Model VI)

Long cells, fixed ζ, ρ1,4 6= 0, 1 h intervals

Thinning with step-size 100, 250K burn-in iterations

Value Posterior quantiles Confidence interval*

Parameter Start True 10% 50% 90% 2.5% Mean 97.5%

ζ 1,000 1,000

µ1 5.38 5.03 5.18 5.27 5.36 5.27 5.27 5.28

µ2 7.83 7.80 7.75 7.84 7.92 7.83 7.84 7.84

µ3 2.65 3.23 2.50 3.06 3.62 2.98 3.05 3.12

µ4 2.65 2.72 2.24 2.75 3.31 2.69 2.76 2.83

σ2
1 0.14 0.33 0.12 0.16 0.23 0.17 0.17 0.17

σ2
2 0.21 0.33 0.19 0.24 0.31 0.24 0.25 0.25

σ2
3 1.00 0.33 0.26 0.58 1.05 0.57 0.63 0.69

σ2
4 1.00 0.33 0.34 0.67 1.04 0.64 0.69 0.73

ρ1,4 0.75 0.50 0.14 0.24 0.34 0.23 0.24 0.24

M 626 513 344 531 770 530 550 571

D̂ 1.06 1.00 0.95 0.99 1.02 0.98 0.99 0.99

* The bounds for the components of θ form a joint 95% confidence interval.
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[11] Jürgen Franke, Wolfgang Härdle, and Christian Hafner. Statistics of Financial Markets.

Springer, 2004.

[12] Sylvia Frühwirth-Schnatter. Finite Mixture and Markov Switching Models. Springer, 2006.

[13] Andrew Gelman. Inference and monitoring convergence. In Gilks et al. [18], chapter 8,

pages 131–143.

171



172 BIBLIOGRAPHY

[14] Andrew Gelman and Donald B. Rubin. Inference from iterative simulation using multi-

ple sequences. Statistical Science, 7:457–511, 1992.

[15] Andrew Gelman and Donald B. Rubin. A single series from a Gibbs sampler provides a

false sense of security. In Bernardo et al. [5], pages 625–631.

[16] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

6:721–741, 1984.

[17] Charles J. Geyer. Practical Markov chain Monte Carlo. Statistical Science, 7(4):473–511,

1992.

[18] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo

in Practice. Chapman & Hall, 1996.

[19] Walter R. Gilks, Sylvia Richardson, and David J. Spiegelhalter. Introducing Markov

chain Monte Carlo. In Gilks et al. [18], chapter 1, pages 1–19.

[20] Walter R. Gilks and Gareth O. Roberts. Strategies for improving MCMC. In Gilks et al.

[18], chapter 6, pages 89–114.

[21] V. Granville and R. L. Smith. Disaggregation of rainfall time series via Gibbs sampling.

citeseer.ifi.unizh.ch/110226.html.

[22] Peter J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika, 82(4):711–732, 1995.

[23] Bernhard Gründer. Stochastische Modelle für die Lutschadstoffverteilung in Waldgebieten.

PhD thesis, Mathematics Department of the University of Kaiserslautern, 1993.

[24] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applica-

tions. Biometrika, 57(1):97–109, 1970.

[25] Benjami Kedem and Long. S. Chiu. On the lognormality of rain rate. Proc. Natl. Acad.

Sci. USA, 84:901–905, 1987.

[26] C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of re-

versible Markov processes and applications to simple exclusions. Commun. Math. Phys.,

104:1–19, 1986.

[27] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graph-

ical structures and their application to expert systems. J. R. Statist. Soc. B, 50(2):157–

224, 1988.

[28] Jun S. Liu and Chiara Sabatti. Generalised Gibbs sampler and multigrid Monte Carlo

for Bayesian computation. Biometrika, 87(2):353–369, 2000.



BIBLIOGRAPHY 173

[29] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation

of state calculations by fast computing machines. J. Chem. Phys., 21:1087–1092, 1953.

[30] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer Verlag,

1993. available online at probability.ca/MT.

[31] Roger B. Nelsen. An Introduction to Copulas. Lecture Notes in Statistics. Springer Verlag,

1999.

[32] E. Nummelin. General irreducible Markov chains and non-negative operators. Cambridge

University Press, 1984.

[33] Harry Pavlopoulos and Benjamin Kedem. Stochastic modeling of rain rate processes: a

diffusion model. Commun. Statist.–Stochastic Models, 8(3):397–420, 1992.

[34] M. B. Priestley. Spectral analysis and time series, volume 1. Academic Press, 1981.

[35] D. Revuz. Markov Chains. North-Holland, 1975.

[36] Brian D. Ripley. Spatial Statistics. Wiley Series in Probability and Mathematical Statis-

tics. John Wiley & Sons, 1981.

[37] I. Rodriguez-Iturbe, D. R. Cox, and Valerie Isham. Some models for rainfall based on

stochastic point processes. Proc. R. Soc. Lond. A, 410:269–288, 1987.

[38] I. Rodriguez-Iturbe, D. R. Cox, and Valerie Isham. A point process model for rainfall:

further developments. Proc. R. Soc. Lond. A, 417:283–298, 1988.

[39] Jonathan R. Stroud, Peter Müller, and Bruno Sansó. Dynamic models for spatiotemporal
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