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Abstract

In this paper, we study the inverse maximum flow problem uigenorm and show that this problem
can be solved by finding a maximum capacity path on a modifiegghgr Moreover, we consider an
extension of the problem where we minimize the number ofupkations among all the optimal solutions
of Chebyshev norm. This bicriteria version of the inverseximaim flow problem can also be solved in
strongly polynomial time by finding a minimum — ¢ cut on the modified graph with a new capacity
function.
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1 Introduction

In the past few decades, optimization problems with estimated problem paramaterdrawn considerable
attention from researchers. For this kind of problems one often knowia @n optimal solution based
on observations or experiments, but is interested in finding a set of pam@msuch that the known solu-
tion is optimum and the deviation from the initial estimates is minimized. The problencalctdating the
parameters satisfying the given two conditions is knowimearse optimization problem

Ahuja and Orlin [1] mention, in their paper, that the major application area f@rée optimization is
geophysical sciences and it were, indeed, geophysicists to firstatietiyproblems. At the beginning of 90's,
a well-known study by Burton and Toint [4, 5] attracted the interest of nma#ttieians to this topic. In their
papers, the authors study inverse shortest path problems to predictibeerds of earthquakes.

Among several inverse optimization problems inverse combinatorial probémpescially inverse network
optimization problems, have been intensely investigated. We refer to Heuljg4j for a thorough survey
on this topic. For network optimization problems the most popular problem pseeste perturb are costs
and capacities. Capacity modifications were examined, in particular, for minionti@mnd maximum flow
problems. Ahuja and Orlin [2] use combinatorial arguments to prove that ¥eesie minimum cut problem
under/;-norm can be efficiently solved using maximum flow computations in the graph.CRebyshev
norm, the inverse problem requires solving a polynomial sequence of mingcutproblems. Shigeno [20]
shows the relationship between the inverse minimum cut problems with lowedbounrarcs undet,.-norm
and the maximum mean-cut problems. Yaetcal. [21] study inverse minimum cut problems with bound
constraints. Moreover, they show that the inverse maximum flow probletadsaamaximum flow problem
under rectilinear norm. In a recent paper, Zhang and Liu [22] p@ptengly polynomial algorithms for the
inverse maximum flow problem under the weighted Hamming distance. To theftmst knowledge, there
does not exist any studies on the inverse maximum flow problem ulyglerorm in the literature. In this
paper, we close this gap.

LetG = (N, A) be a directed graph with a node $étof » nodes and an arc sdtof m arcs. There exist
lower and upper flow bounds on the arcs of the digraph, which areeléby! : A — R™ andu : A — R™,
respectively. In thenaximum flow problemthe aim is to find a feasible solution that sends the maximum
amount of flow from a specifiedource nodes to another specifiedink nodet. It should be noted that the
maximum flow problem can be formulated as a minimum cost flow problem by irthoglan additional arc
(t, s) to the graphG with coste;s = —1 and flow bound.;s = oo (see Ahujeet al.[3]). Hence, the results on
inverse minimum cost flows can be carried over to maximum flows.lleGand Hamacher [11], we showed
that the capacity inverse minimum cost flow problem under Chebyshev is@aivable inO(nm?) time by
a greedy algorithm. Here we prove that the inverse maximum flow problemraeed, be solved with an
improved time complexity by converting the problem into a maximum capacity pattgmnoMoreover, we
consider an extension of the problem where we minimize the number of paitm among the optimal



solutions of the Chebyshev norm. A similar bicriteria problem was analyzedilier@nd Hamacher [11] for
the capacity inverse minimum cost flow problem where among all the optimal sutiothe Chebyshev
norm the number of affected arcs was minimized. lilgd and Hamacher [11], we proved that the latter
problem isNP-hard. On the other hand, we show in this paper that the bicriteria ver§itve anverse
maximum flow problem can be solved in strongly polynomial time by finding a minimum¢ cut on the
modified graph with a new capacity function.

2 Inverse Maximum Flow Problem under /., Norm

Given a nonoptimal feasible floyi : 4 — R™ to an instance of a maximum flow problem on digraph
G = (N, A,l,u) and a weight functionv : A — R, the inverse maximum flow problem und&g-norm
(denoted subsequently By, -InvMaxFlow) can be formulated as changing the lower and upper tsosunch
that f will be the maximum flow for the new boundsinda, and

e, max{wij|lij — Lij|, wij|ti; — wiz|}
IS minimum.

We first review the well-known characterization of the optimality conditionsriaximum flows [3]. An
s—tcutonG = (N, A)isacutw = (S,5) with s € S andt € S. Let() denote the set of all — ¢ cuts on
graphG. We also denote the set of forward arcs ofsan ¢ cut asw™, i.e. (i,j) € Awithi € Sandj € S,
and the set of backward arcsas, i.e. (i,7) € Awithi € S andj € S. Then, the capacity of an— ¢ cut is

u(w): Z Us5 — Z lij.

(i,)€Ew™t (4,5)Ew™

Theorem 1. (Max-Flow Min-Cut Theorem)The maximum value of the flow from a source nede a sink
nodet in a capacitated network equals the minimum capacity among-alt cuts.

By max-flow min-cut theorem (Theorem 1) if a flofMs maximum, then there exists a saturateedt cut,
i.e., there exists a cut with f;; = w;; for all (¢, ) € wt andf;; = [;; for all (i, j) € w™. Since in our case
f is not a maximum flow, alk — ¢ cuts are unsaturated. That is, for all- ¢ cutsw € () there exists some
(i,7) € wt with ﬁj < u;; 0or (4,7) € w™ with ﬁ-j > l;;. Consequently, we can reformulate our problem as
follows:

Lemma 2. The inverse maximum flow problem undgs-norm is equivalent to finding an— ¢t cutw in G
such that

¢ = max{ max wi;(uy — fij), max wy(fiy —ly)} 1)
(i,j)€wT (i,5)€w

is minimum. In particular, it suffices to change the upper bounds for thgping arcs of the cut and the lower
bounds for the incoming arcs.

In order to solve (1), we define the residual graply) = (N, A(f)) with
A(f) = (A, 9) = fij = uyg}) U{(,9) = (i.5) € Aand fi; > L}
and assign a capacity functien A(f) — RAGI with

o — {wij(uij — .]EZ]) for (Z,j) c A (2)
Z'j - .. ~., .. ) y 3
wz](fz] - lzg) for (27]) € A(f)\A

Note that if f is a maximum flow, then there exists an- ¢ cutw(f) in G(f) such thato(f)* = 0.

Lemma 3. LetQ)(f) denote the set of all — ¢ cuts inG(f). The objective function value é£,-InvMaxFlow
is equal to

" =min max c¢;;. 3)
we (i,j)ewt



Proof: By the construction of7( f), for eachs—t cutw in G there exists an—t cutw(f) in G(f). Moreover,
w(f)T ={(0.5) : (i.4) € W with fij <y} U{(,0) : (i.5) € w™ with fij > 1i;}

Thus, by Lemma 2;* = min,cq ¢, Which is equal to the objective function &f,-InvMaxFlow.

Next, we will show that the inverse maximum flow problem under Chebysbew an be solved by
solving a maximum capacity path problem. The capacity of a directedt path P on a graphG is the
minimum of the capacities of the arcsih Then, thanaximum capacity path problefar bottleneck shortest
path problen is finding a directeds — ¢ path of maximum capacity [19]. In order to solve the inverse
problem as a maximum capacity problem we exploit the bottleneck min-max dualiti wias first proved
by Fulkerson [9] and extended by Edmonds and Fulkerson [7] for ciytby Hamacher [13] for matroids.

Let E be a finite set. Aamily § on E is a family of subsets of’ and aclutter & on E is a family onF
such that no member 6f is contained in another member ¥t

Theorem 4. For any clutter? on a finite setF, there exists a unique clutt&s = b(R) on E such that, for
any functionf from £ to R,

- — i . 4
min max f(x) = maxmin f(z) ()

SpecificallyS is the clutter consisting of the minimal subsetdidhat have nonempty intersection with every
member ofR.

Any pair of familiestR and& on FE is called ablocking systenon E if they satisfy (4) for everyf and
regardless of whether they are clutters. Edmonds and Fulkersoroj tivat any blocking system fulfils the
following property.

Property 5. For any partition of £ into two setsEy and E; (Ey N E; = () and Eg U E; = E), either a
member ofR is contained inky or a member o is contained inky, but not both.

Moreover, Edmonds and Fulkerson [7] show that@&e- b(R) specified in Theorem 4 is the one and only
clutter onE having the Property 5. Hence, by using Theorem 4 and Property 5 &vgeith the uniqueness
of & we can derive the following conclusion, which was mentioned by Hamaé&@grds well.

Corollary 6. LetG = (IV, A) be a digraph withs, ¢ € N, and letc: A — R4l be a capacity function. Then,

max min ¢;; = min max ¢;; 5

PcP (i,j)eP “J wef (i,5)Ewt K ( )
whereP is the set of all elementajirecteds — ¢t paths () is the set of alk — ¢ cuts inG, andw™ denote the
forward arcs of the cub € Q.

Proof: Let us definer to be the set of all elementary directed- ¢ paths andS to be the sets of the forward
arcs of alls — ¢ cuts inG. By definition of elementary paths,— ¢ cuts and clutters, it is obvious th2it and
G are clutters. Hence, all we need to show is the validity of Property Sfand&.

Consider the capacity function: A — {0,1}. We defineEy = {(i,j) € A : ¢;; = 0} andE; =
{(i,j) € A:¢;; = 1}. If the maximum flow froms to ¢ is equal tol, then there exists an elementary directed
path P with P C FE,. By max-flow min-cut theorem (Theorem 1) the minimum capagity ¢ cut has a
directed arc of capacity, which means that there does not exist € & such thatot C E,. Similarly if the
maximum flow froms to ¢ equalsD, then there exists™ € & with w™ C E, but AP with P C E;. Hence,
the Property 5 holds fdR and&, and the results follows from Theorem 4.

The main conclusion for the inverse maximum flow problems uAdenorm can be derived from Lemma
3 and Corollary 6.

Theorem 7. The optimum objective function valuelgf-InvMaxFlow with respect to the nonoptimal flgfw
on digraphG = (N, A, [, u) can be calculated by solving a maximum capacity (elementary) path praislem

the residual graphz( f) with respect to the capacities defined by (2).
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The maximum capacity path problem is a well-known combinatorial problem, wizistseveral real-life
applications [8, 16]. The problem can be solveditm + nlogn) time by modifying Dijkstra’s algorithm
and using Fibonacci heaps [19]. Gabow [10] employs binary searsblve the problem irO(m log,, C)
time whereC' = ||c||- With ¢ being a nonnegative integer capacity vector on arc set. Punnen fWwgdthat
if a bottleneck combinatorial optimization problem of sizewith ordered weights can be solved@{¢(m))
time, then the problem with arbitrary weights can be solve@{f(m) log*(m)) time, wherelog™ m is the
iterated logarithm ofn. Thus, the maximum capacity path problem can be solvél|in log* m) time. More
recently, Kaibel and Peinhardt [15] proposed an algorithr® @t log log m) running time for the directed
graphs with integer arc capacities. For a brief survey of bottleneck nlefilaov problems, one can refer to
Punnen and Zhang [18], where a generalized algorithm for the botkemdwork flow problems is provided,
as well.

Here we present the Labeling Algorithm, which is a modification of Dijkstra'®rtigm. The validity
proof of the algorithm follows analogous to the proof of the classical Dgkstgorithm.

Algorithm 1. (Labeling Algorithm - Modified Dijkstra’s)

1. Set Labels) := oo and all other nodes itV to 0. Also assign the set of to be processed and processed
nodes withV* := {s} and N’ = 0.

2. If N* =), STOP.
Else, choose a nodec N* and for all outgoing arc§i, j) assign

Labelj) := max{min{Label), ¢;; }, Labelj)}. (6)
If Label(j) = min{Label), ¢;;}, then set Predecesggy := i.
3. SetN* := (N*\{i}) U{j}if j ¢ N',andN’ := N' U {i}.

Theorem 7 yields, of course, only the optimal objective function valué,sfnvMaxFlow. However,
once we have the optimum objective function value, we can easily identifypemum solution. Suppose
thatc* is the optimum objective function value, then we set for eachiang € A,

° ufj = fij if wij(uij — fm) <c* andu;‘j = Ujj otherwise,
° l:} = ]Eij if wij(fij — l”) <c* andl;kj = lij otherwise.

It is easy to verify that the pair of lower and upper bound vectbra.*) generated in this way is an optimal
solution to the inverse maximum flow problem undgs-norm.

Note that if we determine an optimum solution in this way, we might have to modify ba#rland upper
bounds for some arcs. However, by Lemma 2 we know that there existstiamuon solution to the inverse
problem where for each arc either the upper bound or the lower boastbtbe perturbed. In order to find
this solution, we need to find an— ¢ cut onG satisfying Lemma 3. This can be achieved by applying the
Minimum Capacity Cut Algorithm (Algorithm 2) of Christofides [6]. This algorittdetermines arm — ¢ cut
that minimizes the capacity of its maximum capacity arc.

Algorithm 2. (Minimum Capacity Cut Algorithm)

Input: GraphG = (N, A) with capacityc : A — R4l defined in Lemma 2
Output: An s — ¢t cutw = (S, 5) on graphG = (NN, A) satifying Lemma 3
1. Start withs — ¢ cut K ({s}, N\{s}) onG and find the maximum capacityof the forward arcs of
K.
2. Construct the spanning subgrafh = (N, A*) of G with A* = {(i,j) € A : ¢;; > ¢}.
3. Find the set of reachable nod®$(s) from s on the subgraply™.

4. If t € R*(s), thenc® = ¢ and anys — t cut in the spanning subgragh* has the maximum
capacityc*. If t ¢ R*(s), go to Step 5.



5. DefineK as the cutR*(s), N\ R*(s)) and find the maximum capacity of the arcs in the new cut.
Go to Step 2.

In the worst case, the running time of Minimum Capacity Cut Algorithr@{s.n + mlogm), which is
slower than the Labeling Algorithm (Algorithm 1) with Fibonacci heaps. Heiifcit is not compulsory to
find an optimums — ¢ cut, it would be more appropriate to use the Labeling Algorithm for solving tyer&e
problem.

3 Bicriteria Inverse Maximum Flow Problem

An extension of/.-InvMaxFlow is a lexicographic bicriteria problem where we minimize the nunaber
perturbations among all the optimum solutions. In this case, the second wbjisci unit weight sum-type
Hamming distance, i.e.

min Z (H (wij, i) + H(lij, Lif)) (7)

whereH (a,a) = 0if a = a andH (a, a) = 1 otherwise.

A similar bicriteria problem was analyzed inif&r and Hamacher [11] for the capacity inverse minimum
cost flow problem where among all the optimal solutions under Chebysiravime number of affected arcs
was minimized. There we showed that the bicriteria inverse problem for the mimizost flows is\P-hard
since the capacity inverse minimum cost flow problem under rectiliflgan6érm with unit arc capacities is
NP-hard. In contrast, Zhang and Liu [22] proved that the inverse maximow groblem under weighted
sum-type Hamming distance is equivalent to solving a minimum¢ cut problem. We propose a similar
approach (Algorithm 3) in order to solve the bicriteria inverse maximum flablem in strongly polynomial
time.

Algorithm 3. (Bicriteria Inverse Max Flow Algorithm)

Input: GraphG = (N, A) with capacityc : A — R4l defined in Lemma 2
Output: An s —t cutw = (S, S) on graphG = (N, A) having the minimum number of forward arcs
and satifying Lemma 3

1. Find the optimum objective function valaé of inverse maximum flow problem undég,-norm
by solving a maximum path problem on gra@h

2. Assign a new capacity functiah: A — R4 for all (i, j) € A such that

, 1 if Cij < c* (8)
“ij = <%2 + 1) if Cij > c*

3. Find the minimums — ¢ cutw on G with the capacity functiow’.

Because this algorithm is a slightly modified version of the algorithm in Zhand.anf22], we refer to
their paper for a correctness proof. The worst case running time afgiegithm isO(n?) since the most
costly operation is identifying the minimum— ¢ cut in the last step [3].

Once we identify the minimuna — ¢ cutw on G, we can generate an optimum soluti@h, v*) to the
bicriteria inverse maximum flow problem on gra@hby assigning

. fiy it (j,i) €wt o fiy if (i,)) € wt
" lij otherwise “ u;; otherwise

(9)
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