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Abstract

In this paper, we study the inverse maximum flow problem underℓ∞-norm and show that this problem
can be solved by finding a maximum capacity path on a modified graph. Moreover, we consider an
extension of the problem where we minimize the number of perturbations among all the optimal solutions
of Chebyshev norm. This bicriteria version of the inverse maximum flow problem can also be solved in
strongly polynomial time by finding a minimums − t cut on the modified graph with a new capacity
function.
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1 Introduction

In the past few decades, optimization problems with estimated problem parameters have drawn considerable
attention from researchers. For this kind of problems one often knows a priori an optimal solution based
on observations or experiments, but is interested in finding a set of parameters, such that the known solu-
tion is optimum and the deviation from the initial estimates is minimized. The problem of recalculating the
parameters satisfying the given two conditions is known asinverse optimization problem.

Ahuja and Orlin [1] mention, in their paper, that the major application area for inverse optimization is
geophysical sciences and it were, indeed, geophysicists to first studysuch problems. At the beginning of 90’s,
a well-known study by Burton and Toint [4, 5] attracted the interest of mathematicians to this topic. In their
papers, the authors study inverse shortest path problems to predict the movements of earthquakes.

Among several inverse optimization problems inverse combinatorial problems,especially inverse network
optimization problems, have been intensely investigated. We refer to Heuberger [14] for a thorough survey
on this topic. For network optimization problems the most popular problem parameters to perturb are costs
and capacities. Capacity modifications were examined, in particular, for minimumcut and maximum flow
problems. Ahuja and Orlin [2] use combinatorial arguments to prove that the inverse minimum cut problem
underℓ1-norm can be efficiently solved using maximum flow computations in the graph. For Chebyshev
norm, the inverse problem requires solving a polynomial sequence of minimumcut problems. Shigeno [20]
shows the relationship between the inverse minimum cut problems with lower bounds on arcs underℓ∞-norm
and the maximum mean-cut problems. Yanget al. [21] study inverse minimum cut problems with bound
constraints. Moreover, they show that the inverse maximum flow problem is also a maximum flow problem
under rectilinear norm. In a recent paper, Zhang and Liu [22] propose strongly polynomial algorithms for the
inverse maximum flow problem under the weighted Hamming distance. To the bestof our knowledge, there
does not exist any studies on the inverse maximum flow problem underℓ∞-norm in the literature. In this
paper, we close this gap.

Let G = (N, A) be a directed graph with a node setN of n nodes and an arc setA of m arcs. There exist
lower and upper flow bounds on the arcs of the digraph, which are denoted byl : A → Rm andu : A → Rm,
respectively. In themaximum flow problem, the aim is to find a feasible solution that sends the maximum
amount of flow from a specifiedsource nodes to another specifiedsink nodet. It should be noted that the
maximum flow problem can be formulated as a minimum cost flow problem by introducing an additional arc
(t, s) to the graphG with costcts = −1 and flow bounduts = ∞ (see Ahujaet al. [3]). Hence, the results on
inverse minimum cost flows can be carried over to maximum flows. In Güler and Hamacher [11], we showed
that the capacity inverse minimum cost flow problem under Chebyshev normis solvable inO(nm2) time by
a greedy algorithm. Here we prove that the inverse maximum flow problem can, indeed, be solved with an
improved time complexity by converting the problem into a maximum capacity path problem. Moreover, we
consider an extension of the problem where we minimize the number of perturbations among the optimal
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solutions of the Chebyshev norm. A similar bicriteria problem was analyzed in Güler and Hamacher [11] for
the capacity inverse minimum cost flow problem where among all the optimal solutions of the Chebyshev
norm the number of affected arcs was minimized. In Güler and Hamacher [11], we proved that the latter
problem isNP-hard. On the other hand, we show in this paper that the bicriteria version of the inverse
maximum flow problem can be solved in strongly polynomial time by finding a minimums − t cut on the
modified graph with a new capacity function.

2 Inverse Maximum Flow Problem under ℓ∞ Norm

Given a nonoptimal feasible flow̃f : A → Rm to an instance of a maximum flow problem on digraph
G = (N, A, l, u) and a weight functionw : A → Rm

+ , the inverse maximum flow problem underℓ∞-norm
(denoted subsequently byℓ∞-InvMaxFlow) can be formulated as changing the lower and upper bounds such
that f̃ will be the maximum flow for the new boundsl̂ andû, and

max
(i,j)∈A

max{wij |l̂ij − lij |, wij |ûij − uij |}

is minimum.
We first review the well-known characterization of the optimality conditions formaximum flows [3]. An

s − t cut onG = (N, A) is a cutω = (S, S̄) with s ∈ S andt ∈ S̄. Let Ω denote the set of alls − t cuts on
graphG. We also denote the set of forward arcs of ans − t cut asω+, i.e. (i, j) ∈ A with i ∈ S andj ∈ S̄,
and the set of backward arcs asω−, i.e. (i, j) ∈ A with i ∈ S̄ andj ∈ S. Then, the capacity of ans− t cut is

u(ω) =
∑

(i,j)∈ω+

uij −
∑

(i,j)∈ω−

lij .

Theorem 1. (Max-Flow Min-Cut Theorem)The maximum value of the flow from a source nodes to a sink
nodet in a capacitated network equals the minimum capacity among alls − t cuts.

By max-flow min-cut theorem (Theorem 1) if a flowf is maximum, then there exists a saturateds− t cut,
i.e., there exists a cutω with fij = uij for all (i, j) ∈ ω+ andfij = lij for all (i, j) ∈ ω−. Since in our case
f̃ is not a maximum flow, alls − t cuts are unsaturated. That is, for alls − t cutsω ∈ Ω there exists some
(i, j) ∈ ω+ with f̃ij < uij or (i, j) ∈ ω− with f̃ij > lij . Consequently, we can reformulate our problem as
follows:

Lemma 2. The inverse maximum flow problem underℓ∞-norm is equivalent to finding ans − t cut ω in G
such that

cω = max{ max
(i,j)∈ω+

wij(uij − f̃ij), max
(i,j)∈ω−

wij(f̃ij − lij)} (1)

is minimum. In particular, it suffices to change the upper bounds for the outgoing arcs of the cut and the lower
bounds for the incoming arcs.

In order to solve (1), we define the residual graphG(f̃) = (N, A(f̃)) with

A(f̃) = (A\{(i, j) : f̃ij = uij}) ∪ {(j, i) : (i, j) ∈ A andf̃ij > lij}

and assign a capacity functionc : A(f̃) → R|A(f̃)| with

cij =

{

wij(uij − f̃ij) for (i, j) ∈ A

wij(f̃ij − lij) for (i, j) ∈ A(f̃)\A.
(2)

Note that iff̃ is a maximum flow, then there exists ans − t cutω(f̃) in G(f̃) such thatω(f̃)+ = ∅.

Lemma 3. LetΩ(f̃) denote the set of alls− t cuts inG(f̃). The objective function value ofℓ∞-InvMaxFlow
is equal to

c∗ = min
ω̄∈Ω̄

max
(i,j)∈ω̄+

cij . (3)
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Proof: By the construction ofG(f̃), for eachs−t cutω in G there exists ans−t cutω(f̃) in G(f̃). Moreover,

ω(f̃)+ = {(i, j) : (i, j) ∈ ω+ with f̃ij < uij} ∪ {(j, i) : (i, j) ∈ ω− with f̃ij > lij}

Thus, by Lemma 2,c∗ = minω∈Ω cω, which is equal to the objective function ofℓ∞-InvMaxFlow.

�

Next, we will show that the inverse maximum flow problem under Chebyshev norm can be solved by
solving a maximum capacity path problem. The capacity of a directeds − t pathP on a graphG is the
minimum of the capacities of the arcs inP . Then, themaximum capacity path problem(or bottleneck shortest
path problem) is finding a directeds − t path of maximum capacity [19]. In order to solve the inverse
problem as a maximum capacity problem we exploit the bottleneck min-max duality which was first proved
by Fulkerson [9] and extended by Edmonds and Fulkerson [7] for clutters, by Hamacher [13] for matroids.

Let E be a finite set. Afamily F on E is a family of subsets ofE and aclutter R on E is a family onE
such that no member ofR is contained in another member ofR.

Theorem 4. For any clutterR on a finite setE, there exists a unique clutterS = b(R) on E such that, for
any functionf fromE to R,

min
R∈R

max
x∈R

f(x) = max
S∈S

min
x∈S

f(x). (4)

Specifically,S is the clutter consisting of the minimal subsets ofE that have nonempty intersection with every
member ofR.

Any pair of familiesR andS on E is called ablocking systemon E if they satisfy (4) for everyf and
regardless of whether they are clutters. Edmonds and Fulkerson [7] prove that any blocking system fulfils the
following property.

Property 5. For any partition ofE into two setsE0 and E1 (E0 ∩ E1 = ∅ and E0 ∪ E1 = E), either a
member ofR is contained inE0 or a member ofS is contained inE1, but not both.

Moreover, Edmonds and Fulkerson [7] show that theS = b(R) specified in Theorem 4 is the one and only
clutter onE having the Property 5. Hence, by using Theorem 4 and Property 5 together with the uniqueness
of S we can derive the following conclusion, which was mentioned by Hamacher [12], as well.

Corollary 6. LetG = (N, A) be a digraph withs, t ∈ N , and letc : A → R|A| be a capacity function. Then,

max
P∈P

min
(i,j)∈P

cij = min
ω∈Ω

max
(i,j)∈ω+

cij (5)

whereP is the set of all elementarydirecteds− t paths,Ω is the set of alls− t cuts inG, andω+ denote the
forward arcs of the cutω ∈ Ω.

Proof: Let us defineR to be the set of all elementary directeds − t paths andS to be the sets of the forward
arcs of alls − t cuts inG. By definition of elementary paths,s − t cuts and clutters, it is obvious thatR and
S are clutters. Hence, all we need to show is the validity of Property 5 forR andS.

Consider the capacity functionc : A → {0, 1}. We defineE0 = {(i, j) ∈ A : cij = 0} andE1 =
{(i, j) ∈ A : cij = 1}. If the maximum flow froms to t is equal to1, then there exists an elementary directed
pathP with P ⊆ E1. By max-flow min-cut theorem (Theorem 1) the minimum capacitys − t cut has a
directed arc of capacity1, which means that there does not existω+ ∈ S such thatω+ ⊆ E0. Similarly if the
maximum flow froms to t equals0, then there existsω+ ∈ S with ω+ ⊆ E0 but ∄P with P ⊆ E1. Hence,
the Property 5 holds forR andS, and the results follows from Theorem 4.

�

The main conclusion for the inverse maximum flow problems underℓ∞-norm can be derived from Lemma
3 and Corollary 6.

Theorem 7. The optimum objective function value ofℓ∞-InvMaxFlow with respect to the nonoptimal flow̃f
on digraphG = (N, A, l, u) can be calculated by solving a maximum capacity (elementary) path problemon
the residual graphG(f̃) with respect to the capacities defined by (2).
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The maximum capacity path problem is a well-known combinatorial problem, whichhas several real-life
applications [8, 16]. The problem can be solved inO(m + n log n) time by modifying Dijkstra’s algorithm
and using Fibonacci heaps [19]. Gabow [10] employs binary search tosolve the problem inO(m logn C)
time whereC = ‖c‖∞ with c being a nonnegative integer capacity vector on arc set. Punnen [17] showed that
if a bottleneck combinatorial optimization problem of sizem with ordered weights can be solved inO(ξ(m))
time, then the problem with arbitrary weights can be solved inO(ξ(m) log∗(m)) time, wherelog∗ m is the
iterated logarithm ofm. Thus, the maximum capacity path problem can be solved inO(m log∗ m) time. More
recently, Kaibel and Peinhardt [15] proposed an algorithm ofO(m log log m) running time for the directed
graphs with integer arc capacities. For a brief survey of bottleneck network flow problems, one can refer to
Punnen and Zhang [18], where a generalized algorithm for the bottleneck network flow problems is provided,
as well.

Here we present the Labeling Algorithm, which is a modification of Dijkstra’s algorithm. The validity
proof of the algorithm follows analogous to the proof of the classical Dijkstra’s algorithm.

Algorithm 1. (Labeling Algorithm - Modified Dijkstra’s)

1. Set Label(s) := ∞ and all other nodes inN to 0. Also assign the set of to be processed and processed
nodes withN∗ := {s} andN ′ = ∅.

2. If N∗ = ∅, STOP.
Else, choose a nodei ∈ N∗ and for all outgoing arcs(i, j) assign

Label(j) := max{min{Label(i), cij}, Label(j)}. (6)

If Label(j) = min{Label(i), cij}, then set Predecessor(j) := i.

3. SetN∗ := (N∗\{i}) ∪ {j} if j /∈ N ′, andN ′ := N ′ ∪ {i}.

Theorem 7 yields, of course, only the optimal objective function value ofℓ∞-InvMaxFlow. However,
once we have the optimum objective function value, we can easily identify an optimum solution. Suppose
thatc∗ is the optimum objective function value, then we set for each arc(i, j) ∈ A,

• u∗
ij = f̃ij if wij(uij − f̃ij) ≤ c∗ andu∗

ij = uij otherwise,

• l∗ij = f̃ij if wij(f̃ij − lij) ≤ c∗ andl∗ij = lij otherwise.

It is easy to verify that the pair of lower and upper bound vectors(l∗, u∗) generated in this way is an optimal
solution to the inverse maximum flow problem underℓ∞-norm.

Note that if we determine an optimum solution in this way, we might have to modify both lower and upper
bounds for some arcs. However, by Lemma 2 we know that there exists an optimum solution to the inverse
problem where for each arc either the upper bound or the lower bound has to be perturbed. In order to find
this solution, we need to find ans − t cut onḠ satisfying Lemma 3. This can be achieved by applying the
Minimum Capacity Cut Algorithm (Algorithm 2) of Christofides [6]. This algorithm determines ans − t cut
that minimizes the capacity of its maximum capacity arc.

Algorithm 2. (Minimum Capacity Cut Algorithm)

Input: GraphḠ = (N, Ā) with capacityc : Ā → R|Ā| defined in Lemma 2

Output: An s − t cutω = (S, S̄) on graphḠ = (N, Ā) satifying Lemma 3

1. Start withs− t cutK̄({s}, N\{s}) on Ḡ and find the maximum capacitȳc of the forward arcs of
K̄.

2. Construct the spanning subgraphG∗ = (N, A∗) of Ḡ with A∗ = {(i, j) ∈ Ā : cij ≥ c̄}.

3. Find the set of reachable nodesR∗(s) from s on the subgraphG∗.

4. If t ∈ R∗(s), thenc∗ = c̄ and anys − t cut in the spanning subgraphG∗ has the maximum
capacityc∗. If t /∈ R∗(s), go to Step 5.
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5. DefineK̄ as the cut(R∗(s), N\R∗(s)) and find the maximum capacity of the arcs in the new cut.
Go to Step 2.

In the worst case, the running time of Minimum Capacity Cut Algorithm isO(mn + m log m), which is
slower than the Labeling Algorithm (Algorithm 1) with Fibonacci heaps. Hence, if it is not compulsory to
find an optimums− t cut, it would be more appropriate to use the Labeling Algorithm for solving the inverse
problem.

3 Bicriteria Inverse Maximum Flow Problem

An extension ofℓ∞-InvMaxFlow is a lexicographic bicriteria problem where we minimize the numberof
perturbations among all the optimum solutions. In this case, the second objective is a unit weight sum-type
Hamming distance, i.e.

min
∑

(i,j)∈A

(H(uij , ûij) + H(lij , l̂ij)) (7)

whereH(a, â) = 0 if â = a andH(a, â) = 1 otherwise.
A similar bicriteria problem was analyzed in Güler and Hamacher [11] for the capacity inverse minimum

cost flow problem where among all the optimal solutions under Chebyshev norm the number of affected arcs
was minimized. There we showed that the bicriteria inverse problem for the minimum cost flows isNP-hard
since the capacity inverse minimum cost flow problem under rectilinear (ℓ1) norm with unit arc capacities is
NP-hard. In contrast, Zhang and Liu [22] proved that the inverse maximum flow problem under weighted
sum-type Hamming distance is equivalent to solving a minimums − t cut problem. We propose a similar
approach (Algorithm 3) in order to solve the bicriteria inverse maximum flow problem in strongly polynomial
time.

Algorithm 3. (Bicriteria Inverse Max Flow Algorithm)

Input: GraphḠ = (N, Ā) with capacityc : Ā → R|Ā| defined in Lemma 2
Output: An s − t cut ω = (S, S̄) on graphḠ = (N, Ā) having the minimum number of forward arcs
and satifying Lemma 3

1. Find the optimum objective function valuec∗ of inverse maximum flow problem underℓ∞-norm
by solving a maximum path problem on graphḠ.

2. Assign a new capacity functionc′ : Ā → R|Ā| for all (i, j) ∈ Ā such that

c′ij =

{

1 if cij ≤ c∗
(

n2

4 + 1
)

if cij > c∗
(8)

3. Find the minimums − t cutω on Ḡ with the capacity functionc′.

Because this algorithm is a slightly modified version of the algorithm in Zhang andLiu [22], we refer to
their paper for a correctness proof. The worst case running time of thealgorithm isO(n3) since the most
costly operation is identifying the minimums − t cut in the last step [3].

Once we identify the minimums − t cut ω on Ḡ, we can generate an optimum solution(l∗, u∗) to the
bicriteria inverse maximum flow problem on graphG by assigning

l∗ij =

{

f̃ij if (j, i) ∈ ω+

lij otherwise
u∗

ij =

{

f̃ij if (i, j) ∈ ω+

uij otherwise
(9)
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