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Ganz besonders möchte ich mich bei meinem Bruder, meinen Eltern und meiner
Großmutter für ihre bedingungslose Unterstützung bei jedem und auch diesem Vorhaben
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Introduction

Granular materials show a wonderfully diverse set of behaviors. Make a sand cas-
tle, and the material appears solid. Push on the castle and it can fall down in an
avalanche-like pattern. Sometimes the avalanche moves the bulk of the material,
sometimes it is confined to a thin layer on the surface. Shake up crushed ice in a
martini shaker, and it moves like a gas. Try to pour salt through an orifice, and
it has a characteristic tendency to choke up and clog the orifice. Gas, liquid, solid,
plastic flow, glassy behavior - a granular material can mimic them all. In addition,
the properties of a granular material can depend upon its history. Tamped sand is
different from loose sand. But in many ways, a granular material is like an ordinary
fluid. Both types of material are composed of many small particles, and each has a
bulk behavior that hides the materials graininess. It is thus natural to ask whether
the same equations, concepts, and theories that work for molecular material also
apply to the granular form of matter.

Leo P. Kadanoff, “Built upon sand”1

About this work

The goal of this work is the simulation of granular flow. The definition of “gran-
ular flow” is a nontrivial task in itself, see for example [Dar03]. We say that it is
either the flow of grains in a vacuum or in a fluid. A grain is an observable piece of
a certain material, for example stone when we mean the flow of sand.

Choosing a hydrodynamic view on granular flow, we treat the granular material
as a fluid. A hydrodynamic model has to be developed, that describes the process
of flowing granular material. This is done through systems of partial differential
equations (PDEs) and algebraic relations. Solutions to these systems have to be
obtained to understand the process. The equations are in most cases so difficult to
solve that an analytical solution is out of reach. So approximate solutions must be
obtained.

Hence the next step is the choice or development of a numerical algorithm to
obtain approximate solutions of the model. Common to every problem in numerical
simulation, these two steps do not lead to a result without implementation of the
algorithm. Hence the author attempts to present this work in the following frame, to
participate in and contribute to the three areas Physics, Mathematics and Software
implementation and approach the simulation of granular flow in a combined and
interdisciplinary way.

This work is structured as follows. A continuum model for granular flow which
covers the regime of fast dilute flow as well as slow dense flow up to vanishing veloc-
ity is presented in Chapter 1. This model is strongly nonlinear in the dependence
of viscosity and other coefficients on the hydrodynamic variables and it is singular

1[Kad99]
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because some coefficients diverge towards the maximum packing fraction of grains.
Hence the second difficulty, the challenging task of numerically obtaining approxi-
mate solutions for this model is faced in Chapter 2. In Chapter 3 we attempt to
validate both the model and the numerical algorithm through numerical experiments
and investigations and show their application to industrial problems. We finish with
the implementation of the simulation tools we have developed in Chapter 4.

Throughout the whole work, we focus on one experiment as our guideline. This
is the shear flow experiment from [BLS+01]. It serves well to demonstrate the
algorithm, all boundary conditions involved and provides a setting for analytical
studies in [BLS+01] to compare our results.

Review and state of the art

Modeling of granular flow: We attempt to model the flow of granular material
as a liquid. Due to the lack of a clear time and spatial scale separation and very
efficient mechanisms for energy dissipation in form of inelastic collisions (see [Kad99])
this may seem overly brave. For mainly these reasons, a theory is still missing for
the description of granular flow on a macroscopic scale with the same accuracy
as the Navier-Stokes Equations (NSE) for simple liquids. Still kinetic theory and
hydrodynamic modeling are in many cases a valid approach to the simulation of
granular flow, see [Duf01].

We have to trust the usual assumption that even for granular materials, the
spatial variation of the hydrodynamic variables can be captured by terms linear in
spatial derivatives. Then fortunately, for weakly inelastic granular media, kinetic
theory provides a framework for deriving the correct hydrodynamic equations pre-
sented in [BP03]. The kinetic theory with heuristic modifications is very useful for
many simulations of granular flow in application problems at intermediate volume
fractions as for example in the simulation of fluidized beds in [Gid94].

Kinetic theory assumes that grain collisions are binary which means that colli-
sions always occur only between two particles at the same time and instantaneous
which means that the particles separate immediately after the collision, see [BP03,
Section 1.4, pg. 5]. It seems obvious at first sight that this assumption is invalid
for volume fractions close to the maximum packing. Therefore, the applicability
of kinetic theory becomes questionable in this regime. Nevertheless, the literature
reports differently. In [MPB03], Meerson et al. show strikingly good agreement be-
tween simulations at large volume fractions and hydrodynamic theory. The same
has been done by Boqcuet et al. in [BLS+01, BEL02] relying on experiments. These
experiments were carried out under shearing conditions which will become impor-
tant later in this work. In that case they have shown that kinetic theory is able to
mimic solid like behavior. It does so by exhibiting a solid like Coulomb stress as a
solution of the hydrodynamic equations.
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Numerics: We model granular flow by a time-dependent NSE-type system. To
compute approximate solutions of the system we need to discretize it in space and
time. The former is achieved using a Finite Volume (FV) discretization. The latter
is a novel pressure based nonlinear fractional step method (NFSM). In the linear
case, we call every method which decouples the solution of the NSE-type system into
multiple steps a linear fractional step method (LFSM). This may be misleading from
a steady flow point of view because fractional step methods usually split the time
step. However, we are mainly concerned with the unsteady case where all these
methods can be interpreted as splitting one full solution step into fractional steps.

The FV discretization seems to have been first introduced by Tikhonov and
Samarskii in [TS61]. It partitions the domain into volumes over which the equations
are integrated. The resulting volume integrals are transformed to surface integrals
along the surface of the volume where possible. The approximation of these surface
integrals then yields the FV discretization. A collection of recent FV discretizations
and the state of the art mathematical theory of FV discretization schemes can be
found in [EGH00].

The main concern of this work will be the time discretization of the NSE-type
granular flow model. Considering only implicit or semi-implicit methods which de-
couple the NSE-type system, the first developments that lead to pressure based LFSMs
go back to the works of Chorin in [Cho68] and Patankar and Spalding in [PS72].
Chorin has proposed a projection method for unsteady incompressible flow prob-
lems which is basically a two-stage LFSM. Patankar and Spalding have introduced a
FV implementation of these LFSMs in the SIMPLE method for steady incompressible
flow. The underlying idea of all the methods is the projection of a predicted velocity
and pressure onto the space of divergence free velocity.

We see that pressure based methods were initially developed for incompressible
flow. The first extension of pressure based schemes for weakly compressible flow
dates back to [HA68, HA71]. Much further work has been published on pressure
based LFSMs for the unsteady, compressible, non-isothermal NSE which are the basis
for our equation system. For an overview of methods see the book of Ferziger and
Perić [FP96, Chapter 7] and for examples of recent methods see [vVW03] or [Chu03].

Mathematical frameworks have been used to systematically describe pressure
based methods. The Schur-Complement (SC) notation discussed by Turek in [Tur99]
and operator splitting discussed in [GS98] should be mentioned here. These attempt
to provide a way to compare the many variants of pressure based LFSMs.

Motivation, goals and overview

It becomes clear that the simulation of granular flow inherits two distinct dif-
ficulties - the modeling and the numerical treatment. Regarding the first, there is
still no common agreement on the mathematical description for this type of flow.
Regarding the second, numerical methods that are able to solve the presented model
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in both the dilute and the dense regime are rare.

Modeling of granular flow: We have stated above that in certain situations
current hydrodynamic models from kinetic theory show very good agreement with
experiments. Let us try to explain the reasons to be able to understand where
problems will occur in other situations.

The mentioned experiments and simulations are carried out under shearing con-
ditions. This is a situation of permanent input of energy through the moving
wall that shears the material. Under these conditions, the existence of a dynamic
Coulomb stress might explain why molecular dynamics (MD) simulations and ex-
periments can be reproduced by hydrodynamic theory at all. For flowing granular
media close to maximum packing fraction, collisional contacts of grains are replaced
by frictional contacts. The proper theory of the stress in that case would be some
theory of static friction, for example the Coulomb friction theory. However, when
permanent energy input prevents the granular system from arresting, the dynamic
Coulomb friction of the hydrodynamic theory is able to mimic the true Coulomb
friction.

The nature of these experiments hides a flaw in the kinetic models. This flaw
surfaces only when a force is missing that would prevent the system from arresting.
We will show in Section 1.3.2 that the above arguments will become invalid in that
case. This motivates the extension of the available models.

We will show that kinetic theory alone is not able to reproduce the qualitative
behavior of typical arresting processes as for example the formation of heaps. In
Section 1.3 we develop a model that is able to describe also arresting granular flow.
Motivated by the work of Savage [Sav98], we present a hybrid model of kinetic theory
and a theory derived from soil mechanics. This theory overcomes the difficulties
observed in kinetic theories and extends the applicability of hydrodynamic theory
to arresting granular flow.

Our model is a quite simplified version of the one presented by Savage. There is
a good reason for that. The wealth of constitutive models is astonishing, see [Kol00]
and a correct model has not been identified. It is necessary to obtain a constitutive
model which can be calibrated and has as few parameters as possible. We present
such a model and show that we can produce the same results using our simplified
model. We test the theory that we introduce by simulating heap formation with
predictable angle of repose, comparing simulations of flow down an inclined plane
and reproducing core and mass flow in silos.

Numerics: The presented model is a strongly nonlinear and singular system of
PDEs and constitutive relations. To numerically obtain approximate solutions of
this system we discretize it in space by using the FV method on a cell-centered
grid of cuboids with collocated arrangement of the unknowns. The discretization
is derived from the integrated equations. Convective terms are discretized by a
first order upwind scheme and second order derivatives are discretized using central
differences.

The main focus of this work lies in the discretization of the system in time by a
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pressure based NFSM. We start with a discussion on this numerical approach. We
will especially point out our reasons for an implicit pressure based algorithm and
discuss that the nature of the model strongly suggests the use of a nonlinear method.
We then introduce the general notation and the operators for the space discretization
of certain PDE terms that we will use throughout this work. We proceed with an
introduction to LFSMs and the derivation of a linear pressure correction algorithm
(LPCA) which will form the basis of the derivation of our NFSM.

Based on this derivation we introduce the splitting of the coupled granular flow
system in a few easier to solve problems and derive a nonlinear pressure equation
(NPE) from the split system. The first step will be the prediction of a velocity field
from a linearized, fully implicit momentum equation using an old pressure field.
Then we will present the derivation of a coupled system of a nonlinear pressure
equation and a velocity correction equation as the correction step.

Finally we describe the nonlinear pressure algorithm (NPA) for solving the full
time-dependent system. For the solution of the NPE we use a truncated Newton
method for systems of nonlinear equations. This method requires the evaluation of
the Jacobian of the NPE. We obtain the Jacobian by finding the derivatives of the
NPE and give a detailed discretization of both the NPE and the Jacobian.





Chapter 1

Models

This chapter provides all models and modeling aspects of the thesis. The models are
derived on the basis of a hydrodynamic description of flows and are of Navier-Stokes
Equations (NSE)-type. For granular flow, this assumes that a continuum description
of particles is allowed which is discussed in [BP03, Section 1.3]. They argue that
particles of granular gases are macroscopic bodies which allows for a continuum
description of their interactions through a stress-strain relation.

Our aim is to arrive at a set of equations which models the flow of grains in both
dilute and dense regimes. The former is often called the regime of rapid granular
flow and is extensively discussed in the literature, see [Duf01]. It seems to be agreed
that for this regime hydrodynamic models are able to reproduce many phenomena
of granular flow and the constitutive relations based on kinetic theory are valid.
Outside this regime the topic becomes controversial. Clearly, a hydrodynamic model
will not be able to reproduce mechanical interactions of single grains. However, we
do argue that hydrodynamic equations for granular flow are able to model the flow
of dense bulk material as long as there is at least some movement.

The idea presented to arrive at such a model is a crossover of the constitutive
relations locally depending on the flow regime which depends on the volume fraction.
The differential equations are the same throughout the regimes. Only the relations
for viscosity, pressure, granular temperature etc. are continuously changed for the
dense regime. This introduces a certain arbitrariness because it is not clear where
dilute flow ends and where dense flow begins. It must be asked at what volume
fraction the flow is not dominated anymore by instantaneous collisions of grains but
mainly by the sliding and rolling of grains on each other. We can not answer this
question, we have to treat the crossover volume concentration as a parameter which
must be identified by comparison with experiments.

In Section 1.1 we shortly mention the commonly known system of generalized NSE
for the description of compressible non-isothermal fluid flow with varying viscosity.
Then we proceed to Section 1.2 where we will provide a very brief introduction to
the kinetic theory of granular gases. This is followed by the derivation of a model
for granular flow based on that theory in Section 1.3. Our final model extends
the description of granular gases of [BP03]. In the regime above a certain volume
fraction of grains where the assumptions of kinetic theory are not valid, we use a
modeling approach from soil mechanics similar to the work of [Sav98].

Let 1 ≤ d ≤ 3 be the space dimension. Then as usual x ∈ Rd and t ∈ R denote
the space and time coordinates respectively. Let us denote velocity by u = u(x, t),
pressure by p = p(x, t), density by ρ = ρ(x, t) and volume forces by f = f(x, t).
We work in arbitrary domains Ω ⊂ Rd bounded by solid walls as well as inflow and
outflow boundaries denoted by ∂Ωsw, ∂Ωin and ∂Ωout respectively.
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1.1 The basic hydrodynamic model of fluid flow

In the later sections of this chapter we will present a model for granular flow which
is based on the modeling of fluids. Therefore we give a short overview of the basic
equations of fluid flow, the NSE. For detailed descriptions see [FP96] or [Wes01].

The NSE describe the motion of substances that can flow. This is based on
several assumptions made on the fluid. The first is that the fluid is continuous. It
signifies that it does not contain voids formed, for example, by bubbles of dissolved
gases. Also this means that it does not contain aggregates of any sort of particles.
Another necessary assumption is that all the scalar and vector fields like velocity,
pressure, density and temperature are differentiable. This would not be the case for,
say, phase transitions.

Given that all these assumptions are valid for the fluids we consider, the equations
are derived from the basic principles of conservation of mass, momentum and energy.
Usually this is done by considering a finite arbitrary volume called a control volume
over which these principles can be easily applied. This control volume is fixed in
time and space with flow allowed to occur across the boundaries. The NSE then
follow from the conservation laws and linear constitutive relations. For a detailed
derivation of this form see [Fle91a, Sections 11.2.1-11.2.4].

1.1.1 The generalized Navier-Stokes Equations

Let us start with the model for instationary, compressible, viscous, isothermal flow
described by the system of NSE (1.1) for the unknowns u, p and ρ.

∂t(ρ) + div (ρu) = 0, (1.1a)

∂t(ρu) + div(ρu⊗ u)− div (σ) + grad(p)− f = 0, (1.1b)

where

σij := 2ηκij −
2

3
ηδij div (u) with κ :=

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (1.1c)

Assuming that we can write the momentum as the product of density and velocity,
Equations (1.1a) and (1.1b) are the conservation of mass and momentum respec-
tively. Equation (1.1c) denotes the general stress tensor and the general, sym-
metrized rate of strain tensor. Volume forces are given in the right hand side f
of Equation (1.1b). Furthermore, by δ we denote the Kronecker symbol. Though
unusual for the standard NSE, we allow the viscosity to vary such that η = η(x, t)
is our dynamic viscosity.

Due to the compressibility, the dependence of ρ on p, System (1.1) has to be
extended by a relation between ρ and p which, for an ideal gas, reads

p = ρRT̂ . (1.2)

Here T̂ is a given constant temperature and R a constant dependent on the fluid.
For non-isothermal flow, where T is not constant, a partial differential equation
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(PDE) is necessary to describe the dynamic behavior of the internal energy of the
system. We do not consider this topic further at this point as it is treated extensively
for Newtonian flow, for example in [Fle91a, Section 11.2.4]. It becomes an essential
part of modeling for granular flow which we will discuss in the following section.

We have stated the NSE in their full complexity because we will need them as
the basis of our model for granular flow. However, for validation purposes and for
reference in later parts of this work, let us retreat to a more simple case of fluid flow.
If we assume the flow to be incompressible with constant density ρ̂, stationary and
with constant dynamic viscosity η̂ then System (1.1) is reduced to

div (ρ̂u) = 0, (1.3a)

div(ρ̂u⊗ u)− div (σ̃) + grad(p)− f = 0, (1.3b)

where u and p are sought, ρ and f are given and σ̃ is a much more simplified version
of the stress tensor

σ̃ = η̂κ̃, κ̃ij :=
∂ui

∂xj

. (1.3c)

This models for example the stationary flow of water. Between System (1.1) and
System (1.3) which will both be referred to in this work lie many orders of complexity.
One of them is the model for instationary compressible Newtonian flow where the
density is allowed to vary with pressure and the thermodynamic variables velocity,
density and pressure are allowed to vary in time. We will develop our algorithm to
solve the most complex model based on ideas for that last mentioned model.

1.1.2 Boundary conditions

Let us remark on the complicated issue of boundary conditions on open boundaries
(inflow, outflow) for NSE. Because the NSE are of mixed type they have properties
of the parabolic variant of the Stokes system for creeping incompressible flow, see
[Wes01, p. 32, Equations (1.15),(1.36)] and the Euler equations for compressible
convective flow, see [Wes01, p. 32, Equations (1.76)-(1.78)]. Boundary conditions
for the Stokes system are treated well and most extensively in [EG04, Chapter
4]. Boundary conditions for the hyperbolic Euler equations are analyzed using the
method of characteristics, see [Wes01, Section 10.2, p. 402ff].

The study of well-posed boundary conditions for NSE-type systems relies initially
on the work of Strikwerda in [Str76] on boundary conditions for the class of incom-
pletely parabolic equations which the NSE belong to. This was followed by [GS78].
In both works, the system of NSE is linearized and boundary conditions are chosen
such that the energy of the system which is the square of the solution in character-
istic variables decays exponentially in time on the boundary. Then well-posedness
can be proven, see [OS78]. A different, completely nonlinear approach that does not
rely on the framework of incompletely parabolic problems is followed in [Dut88].
All these works provide theoretical boundary conditions, but implementation is not
straightforward from any of them.
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Two works that give numbers of boundary conditions and forms that are im-
plementable in a direct way are [HG97] and [SK03]. They state that for the 3-
dimensional NSE (including an equation for internal energy) with subsonic inflow
one must provide 5 boundary conditions on the inflow and 4 on the outflow. See
[SK03, Table 1, Table 2]. One possible exact form of boundary conditions, though
in characteristic variables is given in [HG97, Equations (19),(21)]. Based on these
insights, we will provide in Section 1.3.3 the specific boundary conditions for the
granular flow model.

1.2 Kinetic theory of granular gases

Our approach to modeling granular flow in the upcoming Section 1.3 is largely based
on the kinetic theory of granular gases discussed in [BP03]. This introduction will
be based on that book.

Classic kinetic gas theory is derived on the basis of molecule collisions. It looks at
the microscopic properties of molecule interactions and from that derives a macro-
scopic description. One of the main assumptions is that the collisions are elastic
which means that the relative velocities of molecules before and after collision have
the same magnitude.

Because the collisions of particles or grains are inelastic, this basic assumption is
not valid and the concepts of kinetic gas theory have to be generalized to account for
the hence dissipative collisions. With these generalizations, granular gases may also
be described by time-dependent fields of macroscopic variables such as pressure,
density and temperature. For this one has to first investigate pairwise particle
collisions. Then statistical properties of ensembles of such particles have to be
derived in ways very similar to molecular gases.

In [BP03, Chapter 1] the mechanics of particle collisions are investigated. The
starting point is the investigation of the collision of particles on a line where a
coefficient of restitution e smaller than 1 quantifies the change in relative velocities
before and after a collision. If two those particles have a relative velocity u12 before
collision, the relative velocity after collision u′12 is given by

u′12 = eu12, with e < 1. (1.4)

The coefficient of restitution (which in [BP03] is called ε) serves as the central
characteristics of a granular gas.

Through generalizations of the coefficient of restitution for collisions in space
(see Figure 1.1, left) and further through few-particle systems, it is used to describe
the cooling of granular gases due to dissipative collisions in [BP03, Chapter 5]. The
macroscopic granular temperature is introduced as the average kinetic energy of a
resting system of grains

T :=
1

3
< u2 > (1.5)

just as the temperature in the theory of molecular gases. For moving granular
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Figure 1.1: Left: [BP03, Figure 6.2] showing the difference in collision behavior in space and
time for elastic (left) and inelastic (right) collisions. Right: [BP03, Figure 5.1] showing the collision
cylinder. Only particles located within the collisions cylinder collide with the gray particle. From
this the average energy loss through dissipative collisions is derived.

systems the granular temperature is the mean square velocity fluctuation of grains.
From the energy loss of collisions in a collision cylinder as in the right side of Figure
1.1 the evolution of granular temperature is derived. Finally, for the case of constant
coefficient of restitution it is shown in [BP03, Equation (8.12)] that the granular
temperature behaves as

∂T

∂t
∝ −C(ρ)

√
T · T. (1.6)

Above displayed is a simplified version of the relation presented in [BP03]. The
important note is that the cooling of granular temperature depends only on the
temperature and the density of the ensemble of grains. That latter dependency is
collected in C.

Following these derivations, the hydrodynamic equations for granular gases are
derived from the Boltzmann Equation and stated in [BP03, Section 17.3]. Further-
more, in the work of of [BLS+01] a much simpler form of the equations is validated
for a shearing experiment. These two works form the basis for large parts of the
model we will derive in the following Section.

1.3 Modeling the dilute and dense flow of grains

We introduce a unified, hybrid, hydrodynamic model for granular flow. By uni-
fied we mean that the model aims to be valid in regimes of both dilute and dense
granular flow. It will be hybrid because it will in parts interpolate existing model-
ing approaches between regimes. It will be a hydrodynamic approach because our
modeling will results in a system of the type of System (1.1) assuming that we can
describe the ensemble of particles as a continuum. We account for the granular
aspects with a regime dependent constitutive theory for inelastic particles.

A study of available results in the literature shows the manifested separation of
the modeling of granular flow. Dilute granular flow is often modeled using kinetic
theory as in [BP03]. Dense granular flow, if modeled at all on the basis of the NSE,
is usually modeled with quasi-static approaches as in [GD99]. We model granular
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flow in both regimes. We keep the same differential equations through all regimes
and vary the constitutive relations locally and continuously depending on whether
we are in the dilute or dense regime.

Our constitutive model will be non-Newtonian with the following characteristics.
First, the dynamic viscosity η depends on time and space and will increase largely
with increasing volume fraction. Secondly we introduce an equation for granular
temperature T which will model the process of heating and cooling of the granular
material as in Section 1.2. And we introduce a relation between granular pressure
p, granular density ρ and T .

We start with relations from the kinetic theory of granular gases in Section 1.3.1.
We will show that these are not sufficient to describe arresting granular flow correctly
in the high density regime. Based on these insights, we will extend the kinetic model
by special relations for the dense regime in Section 1.3.2.

1.3.1 Kinetic modeling

A granular material differs from a simple fluid in many aspects. The most obvious
is that energy is not conserved on the scale of grains. Contrary to gas dynamics,
collisions between grains are inelastic, see Section 1.2 and (1.4). Parts of the kinetic
energy of the grains before the collision is transferred to the molecules making up
the grain, hence slowing down the colliding grains. To capture this effect, we have
defined a granular temperature T in (1.5) which measures the fluctuating random
motion of the grains in (1.5) as in [BP03, Section 5.1]. We would like to stress
again that the dissipation of granular temperature is a crucial feature to the kinetic
modeling of granular flow. It models the difference between molecular and granular
gases. This is, a closed system containing a molecular gas remains in its initial state
of average motion where a granular gas tends towards the state of resting grains
with zero granular temperature.

The equation for granular temperature

The equation for the granular temperature is derived from the Boltzmann equation
in the ensemble of constant volume in [BP03, p. 52ff]. Using standard techniques
from [LL78], the resulting equation needs to be transformed into the ensemble for
constant pressure, as this is valid in our situation, see [Lat06]. As mentioned be-
fore, the dynamics of the granular temperature can be derived from the Boltzmann
Equations, see [BP03, Chapter 5 and Chapter 17, Equation (17.32)].

ρ∂t(T ) + ρu grad(T ) =
2

3
(σ : κ− div q)− ρεT︸︷︷︸

Tdiss

, (1.7)

with the heat flux q and the energy loss rate ε.
Equation (1.7) has the usual form of a heat transport equation as in [LL78] with

Tdiss added. The term Tdiss describes the dissipation of granular temperature due
to inelastic collisions on the basis of Equation (1.6). The left hand side describes
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the change of granular temperature due to free streaming. The right hand side de-
scribes the effects of diffusive temperature transport, viscous heating and dissipation
respectively.

Constitutive equations from kinetic theory

System (1.1a),(1.1b),(1.7) consists of three equations with the unknowns ρ,u, p, T
and σ,q, ε. We obtain a closed model by providing constitutive relations for these
variables. Small and intermediate densities are well described by the hydrodynamic
equations derived by kinetic theory. Therefore, the derivation of hydrodynamic
equations as well as expressions for the stress tensor σ and all transport coefficients
is possible. In [BP03] and [GD99], the hydrodynamic equations are derived using
Chapman-Enskog theory. Hence, the stress tensor and the heat flux are in lowest
order linear in gradients of the hydrodynamic variables

σ̃ = ηκ̃, q = −(λ grad (T )). (1.8)

Here λ denotes the heat conductivity and κ̃ denotes the non-symmetrized strain rate
tensor from (1.3c) given by

κ̃ij =
∂ui

∂xj

. (1.9)

Let us explain the use of a non-symmetric stress tensor σ̃. A non-symmetric stress
tensor violates the conservation of angular momentum of the macroscopic flow field.
This is very hard to justify for simple liquids as the molecules making up the liquid
do not have additional macroscopic rotational degrees of freedom. For granular
media however the situation is different. Macroscopic sources of rotation are caused
by the microscopic dissipation of energy (1.4). This violation of macroscopic angular
momentum found in [Dah59], [Cam93] is used in the modeling of collisional granular
flow in [MHN02]. The change of tangential velocity by grain collisions is discussed
in [BP03, Section 3.4]. There it is shown that even for ideally smooth but inelastic
spheres the coefficient of tangential restitution is less than 1. This means that in an
irreversible process, the violation of the conservation of energy, caused by inelastic
collisions, energy is dissipated into sources of macroscopic rotation.

In this context, we derive the non-symmetrized stress tensor by defining a rota-
tional viscosity ηR equal to the shear viscosity η. The definition of the stress tensor
is then given as

σ =
η

2

(
κ̃ + (κ̃)T

)
+

ηR

2

(
κ̃− (κ̃)T

)
,

which equals σ̃. Finally we want to point out that for the incompressible case, as-
suming constant viscosity, the part (κ̃)T of the strain rate tensor does not contribute
to the accelerating force at all. This is due to

∂η(κ̃)T
ij

∂xj

= η
∂uj

∂xixj

= η
∂ div u

∂xj

= 0. (1.10)
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In the dense regime we only have weakly compressible flow. In that case, Equation
(1.10) suggests that our approximation of the stress tensor does not influence the
results too significantly. This form of the stress tensor can also be justified with
numerical experiments, see Section 3.2.4.

The expressions for the transport coefficients also follow from kinetic theory.
They are derived in [GD99] and their form is quite involved. Fortunately Bocquet
and others show in [BLS+01] and [BEL02] that a much simpler form of the equations
can produce quantitatively correct results for a shearing experiment. The necessary
criteria, to preserve the low and high density limits is fulfilled even for this simple
form. We will furthermore show in Chapter 3 that this more simple form together
with our extensions is applicable to various regimes of granular flow.

Hence we choose a similar form as in [BLS+01] for the transport coefficients and
the constitutive relation for pressure. We denote these expressions by the subscript
K because they are derived from kinetic theory. They read

pK = Tg(ρ)ρ (1.11a)

εK := ε0ρ
2
√

Tg(ρ) (1.11b)

λK := λ0

√
Tg(ρ) (1.11c)

ηK := η0

√
Tg(ρ), (1.11d)

where for the maximum packing density ρc,

g(ρ) :=

(
1− ρ

ρc

)−1

. (1.12)

Here g is the value of the radial distribution function at contact for a given density.
It models the tendency of grains to touch between low and high density and diverges
at ρc. The constants ε0, λ0 and η0 are specified in Section 1.3.3. As we will see later,
the introduced model is able to reproduce effects that make granular materials quite
different from fluids. One this the ability to form piles. This is due to a property of
the model we call dynamic Coulomb friction.

Dynamic friction angle

One very interesting property of the model is that an internal friction angle is
implicitly contained in th solution of the model. It is shown in [BLS+01, Equation
(35)] that for the high density limit, which is the only case where we would expect
the formation of piles

σx1x2 ∝ µ0p

where σx1x2 is the shear stress in x2-direction when shearing in x1-direction and µ0 is
some factor which is given in detailed form in [BLS+01, Equation (35)]. This means
that the shear force is expected to only depend on the pressure and in particular to
be independent of the shear rate κ as is usually found in solid friction.

This model is used successfully for rapid granular flow and also for intermediate
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densities. However, in the high density limit its validity becomes questionable. We
will consider this in the following Section.

1.3.2 An attempt to bridge kinetic and plastic models

By the definition of the granular temperature from kinetic theory in (1.5), a resting
bulk of grains has zero granular temperature. However, a bulk of grains rests because
the gravity force is balanced by the repulsive part of the potential energy of the
molecules constituting the grains. We will show in the next section that this is
missing in the kinetic model. That is the reasons why kinetic theory is not able to
reproduce this static situation in a stable way. Consequently we need to simulate a
potential energy. That will be done by introducing an athermal pressure together
with a constant nonzero granular temperature for bulk material based on critical
state theory from soil mechanics.

Shortcomings of the kinetic model

The kinetic model is usually validated and produces good results in situations like
shear flow and gravity driven flow as in [BLS+01] and [DD99]. In both these situ-
ations it is ensured that energy is continuosly put into the system. This happens
either via the application of a permanent torque in the shearing experiment or the
permanent transformation of potential energy into kinetic energy of the flow in the
gravity driven flow. This guarantees that the granular temperature always stays
non-zero which in turn allows the purely thermal kinetic pressure pK from Equation
(1.11a) to stabilize the system.

However, kinetic theory does not account for the strongly repulsive forces be-
tween the grains, except for the radial distribution function at contact g from (1.12),
which is the Enskog correction to pressure and transport coefficients. It models the
repulsion of grains at a certain density. If for any reason, the temperature reaches
the zero limit faster than the density reaches the maximum packing limit then the
pressure tends to zero and there is no force preventing the system from collapsing.
This phenomenon called inelastic collapse is considered in [BP03, Section 4.1] for
the more simple case of a chain of particles. It is shown there that initial conditions
for a chain of particles exist for which the energy of the relative motion is completely
dissipated. In Appendix A.1 we will investigate this using Haff’s homogeneous cool-
ing.

In addition to this instability, there are also indications in [DMB+03], that for
high densities and small granular temperatures, the viscosity should not decrease
with decreasing temperature as in Equation (1.11). It should rather dramatically
increase. This discrepancy is due to neglecting collective phenomena caused by the
strong repulsion of the grains.
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Hybrid constitutive model

The origin of the problems described in the previous section is the lack of any static
force in the kinetic constitutive theory. Such a force would reflect the hard core
repulsion of the grains and is hence necessary. Macroscopically this force is felt as
the impossibility to compress a resting granular medium beyond a limit of density
or a resistance against external pressure. The dynamics in those situations is mostly
associated with plastic deformations as described by soil mechanics. A first attempt
to a model bridging kinetic and plastic regimes dates back to Savage [Sav98]. We
will adopt a simplified model of [Sav98] which nevertheless captures the essential
features and is capable of reproducing many known experimental results of granular
flow from the dilute to the dense regime.

The main idea is to introduce a contribution pY to the pressure which is inde-
pendent of the granular temperature. This contribution is acquired only above a
certain cross over density ρco. In soil mechanics, one introduces a yield surface above
which quasi-static deformations occur. The pressure pY is related to the pressure
on the yield surface as in [Sav98]. A discussion of the literature on the functional
dependency of the yield pressure on the density can also be found in [Sav98]. The
exact form is not known. Hence, for simplicity, it is acceptable to choose the same
form as for the kinetic pressure. The yield pressure pY is given by

pY = Θ(ρ− ρco) · T0 · (ρ− ρco)g(ρ), (1.13)

where Θ is the Heaviside step function. The constant T0 provides the non-vanishing
athermal pressure which assures stability in the quasi-static regime. Then the total
pressure is the sum of both pressures

p = pK + pY . (1.14)

The transport coefficients η, ε and λ also have to be modified. They need to fulfill
the following requirements:

1. They must not vanish with vanishing temperature.

2. The viscosity η has to diverge with vanishing temperature. This is consistent
with glass transition which dense granular media is observed to resemble at
T = 0, see [BLS+01].

3. The crossover from the kinetic regime to the yield regime must not modify the
internal friction angle. Otherwise stable piles would start to become instable
when regimes are crossed.

We fulfill these requirements with the following relations for viscosity, energy dissi-
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pation rate and heat conductivity

η := ηK(1 +
pY

pK

), (1.15a)

ε := εK(1 +
pY

pK

), (1.15b)

λ := λK(1 +
pY

pK

). (1.15c)

Point 1 is clearly fulfilled because by the definition of pY (1.13) the yield pressure is
independent of the temperature. For the third point, see Appendix A.2 for details
on the dynamic Coulomb friction and the friction angle for our hybrid model.

The analysis of the second point is a much more involved issue. For the case of
homogeneous cooling we show in Appendix A.1 that for the purely kinetic relations
(1.11) the temperature tends towards zero faster then the density reaches the limit
ρc and hence the kinetic pressure pK tends towards zero. In this case requirement 2
above is fulfilled because pY (1.13) is finite.

However, it is not clear if the homogeneous cooling is always the case. As the
decay of temperature and the limit behavior of density is coupled within the full
model and in particular the equation of granular temperature (1.7), the full analysis
of this issue is out of the scope of this work.

This closes the hybrid model for dilute and dense granular flow. The specific
details that remain untouched will be discussed in Section 1.3.3 where we list the
complete closed model together with implementational details.

1.3.3 Implemented model

The temperature Equation (1.7) from [BP03, Equation (17.32)] is derived in non-
conservative form. This is consistent because the granular temperature is not a
conserved quantity. However, for a Finite Volume (FV) discretization we want an
equation for the unknown ρT rather than just T . Hence we use Equation (1.1a) to
change the term involving the time derivative and the convective term such that

ρ∂t(T ) + ρu grad(T )
(1.1a)
= ∂t(ρT ) + div(ρuT ).

We would like to comment on the issue of unphysical granular heating due to the
dissipative term that we have found for our implemented model in numerical exper-
iments. Let us consider the case of very dilute granular flow, for example when a
domain is initially supposed to be empty of granular material which we simulate by
providing a very low initial volume fraction, compare for Section 2.5.2.

Kinetic theory in [BP03] yields that the dissipative term Tdiss in Equation (1.7)
depends on density and the viscous heating term does not. This causes the granular
temperature to increase unphysically in regimes of very low density. The nature of
this problem is not clear at all and it is not mentioned in the literature. The reason
for this unphysical behavior might be the following. A realistic system of grains is
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not closed with respect to the energy of the grains, even if the material is confined
within the domain. The collisions of grains with the wall are inelastic and hence
kinetic energy of the molecules making up the grains is dissipated through the walls
of the confining domain. This effect is not taken into account in our modeling of
the granular temperature boundary conditions.

As far as we this case of very dilute flow is just not considered. We therefore
leave the density out of the term as a regularization being aware how crude this
approach is. In the regime where the kinetic model is validated, for example the
shearflow we will introduce in Section 3.1, it does not make a big difference as 0.64 is
close enough to 1 and the density more or less acts only as a factor in the dissipation
term.

For the implementation all equations are scaled by the specific density of the
grains ρ̂g such that the grain density in all equations is replaced by a dimensionless
volume fraction c. This has an effect on the coefficients and their units. In Equation
(1.1a), the scaling only changes ρ to c. In Equation (1.1b), the scaling divides
the dynamic viscosity η by ρ̂g. In the equation for granular temperature (1.7),
the scaling affects η in the same way as in Equation (1.1b) as well as the heat
conductivity λ. The constants λ0 and η0 given below are therefore divided by ρ̂g. For
the ease of notation we continue to denote volume fraction by ρ in this section. We
should always keep in mind that for the implementation and hence every numerical
experiment the density is actually a volume fraction.

Let us introduce a few specific parameters of the model. First, in most cases of
the application of the model the volume force f on the right hand side of equation
(1.1b) is just the gravity which we will denote by g. This replaces in (1.1b) the term
f by ρg.

Furthermore, the flow of granular media depends on the elasticity of the collisions
of grains. We introduce the coefficient of restitution e which is between 1 and 0
for the elastic collisions with no dissipation of granular temperature and the fully
inelastic collisions respectively. Clearly, the dissipation of granular temperature
through grain collisions depends on e. We therefore introduce a dependency of the
dissipation coefficient ε0 on e based on [GD99]

ε0 =
8√

πDgrain

(
1− e2

)(
1 +

3

32
c∗
)

, c∗ =
32 (1− e) (1− 2e2)

81− 17e + 30e2 (1− e)
,

where Dgrain is the grain diameter. This model assumes the particles to be hard
spheres. The exact form of these very complicated relations is definitely a point of
uncertainty and one has to make a compromise between the exactness of the relation
and the number of parameters that have to be fitted for very complicated relations.

Let us finally provide the values of some of the constants involved. The values
of λ0, η0, ρc, ρco and T0 are

λ0 = 0.00034
m2

s
, η0 = 0.00023

m2

s
, ρc = 0.64, ρco = 0.6, T0 = 0.5. (1.16)
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These values are again approximations, a vast amount of literature exists on formulas
for them. But let us also plainly state that for the modeling of granular flow, the
uncertainties start at much earlier points and it is questionable whether even more
complicated relations for variables like ε0 are reasonable. In our opinion the challenge
lies in keeping the number of parameters that enter the model at a reasonable
amount, see [Kol00]. As we mentioned earlier, the parameter ρco has been introduced
in this work and its specific value is not clear.

Furthermore, for the implementation, the equation of state for the density as a
function of pressure and temperature is needed

ρ(p, T ) =


ρc

p
ρcT + p , p ≤ pco

ρc
p + ρcoT0

ρcT + p + ρcT0
, p > pco

, with pco = ρ0Tg(ρco). (1.17)

To appreciate the complexity of the model and to summarize all the relations pre-
viously derived we will provide the full system of equations used for the simulation
of granular flow.

The full model of granular flow is

∂t(ρ) + div (ρu) = 0, (1.18a)

∂t(ρu) + div(ρu⊗ u)− div (σ̃) = ρg − grad(p), (1.18b)

∂t(ρT ) + div(ρuT ) =
2

3
(σ̃ : κ̃− div q)− ρεT, (1.18c)

σ̃ = ηκ̃, with κ̃ij =
∂ui

∂xj

, (1.18d)

with the relations

g(ρ) =

(
1− ρ

ρc

)−1

, (1.18e)

q = −(λ grad (T )), with

λ = λK(1 +
pY

pK

), λK = λ0

√
Tg(ρ), (1.18f)

p = pK + pY , where

pK = Tg(ρ)ρ, pY = Θ(ρ− ρco) · T0 · (ρ− ρco)g(ρ), (1.18g)

η = ηK(1 +
pY

pK

), with ηK = η0

√
Tg(ρ), (1.18h)

ε = εK(1 +
pY

pK

), with εK = ε0ρ
2
√

Tg(ρ). (1.18i)
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Variable Inflow ∂Ωin Outflow ∂Ωout Solid walls ∂Ωsw

Density ρ ρ = ρin - ∂ρ
∂n

= 0

Velocity u u = uin
∂u
∂n

= 0 u = 0 (no-slip)

Temperature T ∂T
∂n

= 0 ∂T
∂n

= 0 ∂T
∂n

= 0

Table 1.1: Implemented boundary conditions for the granular flow model.

The units of the involved quantities after scaling with ρ̂g are

[ρ] = 1, [u] =
m

s
, [p] =

m2

s2
, [η] =

m2

s
, [ε] =

1

s
, [λ] =

m2

s
.

Looking at System (1.18) in its full complexity, it should be clear that analytical
methods of investigation are extremely challenging to say the least. We will see in
Chapter 3 where we validate the model that we have to consider very simple cases,
for example the flow in a periodic shearing cell to be able to learn at all about the
analytical behavior of this system.

Boundary conditions

In Section 1.1.2 we have given general statements on boundary conditions for NSE-
type systems. All the conditions derived there are given for characteristic variables.
They are derived with well-posedness in mind. We must certainly follow the num-
ber of boundary conditions that should be provided for the 3-dimensional system.
However, the exact form of boundary conditions is also governed by the physical
modeling. We provide 5 boundary conditions on the inflow as well as on solid walls
and 4 conditions on the outflow. Table 1.1 lists the specific conditions used in our
implemented model. We can see in Table 1.1 that two very common types of bound-
ary conditions are used. They are Dirichlet boundary conditions and homogeneous
Neumann boundary conditions. For the former, the value of the unknown is given
on the boundary and for the latter the derivative of the unknown in normal direction
to the boundary is set to 0.

For granular flow, the issue of boundary conditions that mimic the physical
behavior of grains on a boundary is complicated, see for example [MP00]. For each
variable the boundary conditions given in Table 1.1 raise questions. Let us look at
the boundary condition for velocity. Normal fluids remain attached to boundaries
due to two effects, adhesion and internal pressure. This is different for granular
material. Grains clearly do not just stick on the boundary. But they also do not
just slip on the boundary without any friction. They can either stick, slide or roll
on the boundary.

All cases attribute to different boundary conditions which have to be realized
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with a partial slip including friction. This however assumes that we can approximate
the boundary better than just with cuboids. The scope of this is large and we do
not treat the issue in this work.

Regarding the density, we will see in the shear flow experiment 3.2.1 that the it
behaves differently near the boundary. So the assumption of the Neumann boundary
condition is quite brave. Also for granular temperature we are probably getting away
too easily by assuming a Neumann boundary condition. The temperature on walls
is usually lower than in the interior of the domain for granular material.





Chapter 2

Algorithms

The aim of this chapter is to derive, present and investigate a method for computing
approximate solutions of the granular flow model (1.18) from Section 1.3. It is a
priory not clear how to approach the solution of such a system. It inhabits both
compressible and nearly incompressible flow regimes. The constitutive relations are
nonlinear and the density is a variable bounded by the maximum packing fraction of
grains ρc. The flow is non-Newtonian meaning the viscosity depends on the pressure
and the granular temperature.

We have to make a few general choices for the class of algorithms to consider. Our
method will be a nonlinear fractional step method (NFSM) meaning that advancing
the system in time is decoupled into substeps. We have already commented on
the history of these decoupling methods in the introduction Chapter. In Section
2.1 we discuss these choices and argue why we think a nonlinear, implicit, pressure
based fractional step method seems a good choice. A nonlinear method seems to
be necessary because of the strongly nonlinear coupling of the constitutive relations
and the differential equations in (1.18). The method should be implicit to escape
strong time step restrictions posed by the high viscosity.

Before specific discussions on the algorithm we introduce a notation to describe
the algorithms and specifically the discretizations in Section 2.2. We will introduce
the notation for working on a collocated, cell-centered Finite Volume (FV) grid of
cuboids. Also we will describe FV discretizations for the general terms that appear in
any Navier-Stokes Equations (NSE)-type system without giving the full discretization
of any system yet.

The development of our method will be preceded by Section 2.3 where we will
give an introduction to linear fractional step methods (LFSMs) exemplified by a
linear pressure correction algorithm (LPCA). Our nonlinear algorithm will then be
derived in a similar way as the methods in this section.

To our knowledge, a pressure based fractional step method with a nonlinear
pressure equation has not been developed so far. In Section 2.4 we will derive the
nonlinear pressure algorithm (NPA) which takes into account the nonlinear nature
of our granular flow model. The algorithm introduces a novel nonlinear pressure
equation (NPE) which is the nonlinear equivalent of the linear pressure correction
equation (LPCE) from Section 2.3.2.

Let us describe the steps towards a NPE in more detail. We first split up the
continuous system into two steps which we call predictor and corrector. The pre-
dictor is an implicit, linearized solution of intermediate velocity for an old pressure
value. The corrector is a coupled system of two equations. We want to derive the
NPE from the fully discretized system. Therefore we discretize the predictor and
the corrector in space. To derive the NPE from the discretized corrector, we make
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use of ideas from the derivation of LFSMs and [GBHL06, Section 4.1] but keep the
full nonlinearities in the resulting system. Similar to the linear case, we use the
mass conservation equation to arrive at an equation for the update of pressure, the
NPE. It comes out as the nonlinear analog to the elliptic operator in the LPCE and
other terms. Also like in the linear case, this is accompanied by an equation for
the update of velocity. Unlike the linear case, the two equations remain coupled
through a density upwind bias in the mass conservation. Hence, all novel aspects
of our algorithm, a NPE and coupled pressure update and velocity update are both
found in the corrector.

All the above discussions result in the presentation of the NPA for solving the
complete time-dependent system (1.18) in Section 2.4.5. As the NPA involves the
solution of the NPE, we need to solve a system of N nonlinear equations where N is
the number of volumes. We use a variant of the Newton method for that purpose.
Therefore we devote one section to the introduction of Newton methods and the
specific method that we use. Following that, we write the NPE as a nonlinear equa-
tion N (p) = 0 and provide its Jacobian J . Also we give the detailed discretizations
of both the nonlinear equation and the Jacobian.

Let us finally comment on Section 3.4 outside this chapter. For many aspects
of the problem, the combination of a very complex system of equations (1.18) to-
gether with the partly nonlinear algorithm does not allow rigorous analysis. In the
aforementioned Section 3.4 we provide a few numerical experiments which are aimed
to support the derivation of the algorithm and investigate some of its properties in
combination with the granular flow model.

2.1 Discussion on the type of numerical method

We are considering numerical solution methods or algorithms for the time-dependent
NSE and ultimately our model for granular flow introduced in Section 1.3, System
(1.18). Our aim is to solve that model for real processes of granular flow which in
most cases means long intervals of time.

Different ways exist to categorize the existing algorithms for NSE-type systems.
We choose to say that there are methods which treat the system in a coupled way
and those that split up the process of obtaining a solution at a given time into
substeps. The former usually discretize explicitly in time or treat at least most of
the terms in an explicit fashion. This imposes problems as the viscosity (1.18h) in
our granular flow model becomes very large for high volume fractions of grains.

In most cases the latter are implicit or semi-implicit methods that split one time
step using multiple substeps. For the case of so-called projection methods one of the
substeps is the solution of a second order partial differential equation (PDE) for the
pressure or a correction of the pressure. We develop such a pressure based fractional
step method with a nonlinear pressure equation. Let us explain why.
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2.1.1 Arguments for an implicit, pressure based splitting

System (1.18) is of mixed type, as it is usual for NSE-type systems. This means it
is neither always hyperbolic nor parabolic, rather it is of the class of incompletely
parabolic PDE, compare for [Str76] and Section 1.1.2. Therefore it is a difficult task
to solve the fully coupled system numerically where explicit schemes are usually
preferred. For at least two reasons our System (1.18) is not suited for explicit
solvers:

Diffusive time step restriction: Explicit schemes are bounded to a time step
restriction of type τ < h2/η by stability considerations, where h is the scale of
the space discretization. This stability condition can be derived in different ways
but is usually derived by von Neumann stability analysis. For further details see
[Hir88, Section 8.3.1 Equation (8.3.18)] and for stability analysis using the matrix
method see [Hir88, Section 10.3.1]. The condition is derived for the scalar heat
diffusion equation discretized with explicit Euler time discretization and central
finite difference space discretization.

For our much more complex system this consideration still suggests that explicit
schemes can pose problems as the viscosity η in (1.18h) may become arbitrarily large
for ρ → ρc. Therefore we assume that in certain regimes we would be bound by this
stability condition. Numerical experiments with explicit solvers show the relevance
of this problem.

Algebraic restrictions in granular flow: With an explicit scheme, it is diffi-
cult to simultaneously fulfill the mass continuity (1.18a) and the constitutive rela-
tion (1.18g). Especially close to maximum packing of the granular media, the time
step must become arbitrarily small to guarantee that one stays below the limit for
ρ. One way to overcome this, would be to restrict the density. This however causes
undesired loss of mass. Mass conservation however is a crucial property to our al-
gorithm. Certainly the splitting approach we argue for also introduces an error but
we consider the conservation of mass most critical.

Hence, we argue for an implicit scheme, where the common approach is to de-
couple the system. In the case of LPCAs or more generally LFSMs, the system is
decoupled into the solution of the momentum conservation equation (1.1b) for ve-
locity or momentum and an elliptic equation for the pressure, also sometimes called
the pressure Poisson equation.

We follow this approach to derive an implicit pressure equation. Aside from the
benefit of solving equations of which we know the type instead of solving a system
of mixed type, our constitutive relations (1.18g) give another reason for making the
pressure our unknown of choice.

Closely following the second argument above against an explicit scheme, let us
look at the equation of state for the density as a function of pressure and granular
temperature (1.17). We see that p may vary arbitrarily and nonetheless fulfills the
constitutive relation (1.17). The density however is bound to finite limits between
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zero and the maximum packing fraction. This makes the pressure the logical choice
as an unknown for numerical computations and rules out density based fractional
step methods.

2.1.2 The need for a nonlinear method

Many attempts of finding a stable LFSM for granular flow have preceded this work.
Our numerical experiments failed to successfully apply a LFSM to the granular flow
model (1.18) and we are not aware of any work which has solved a similarely complex
model using an implicit LFSM. LPCAs that work in both weakly compressible and
incompressible regimes have been addressed extensively, see for example [Chu03]
and [vVW03]. However, suggested by numerical experiments we found that the
nonlinearity of our equations, especially the dependence of density on pressure does
not allow the straightforward use of any of those schemes.

Let us explain this in more detail. Pressure based algorithms, especially the
LPCAs for compressible flow where density depends on pressure, yield a term

τ−1(ρ(pn+1)− ρn) (2.1)

Usually an equation for a correction to the pressure p′ := pn+1− pn is desired so the
term ρ(pn+1) needs to be approximated in some way, for example by

ρ(pn+1) ≈ ρn +
∂ρ

∂p
p′. (2.2)

In the case of a linear relation between density and pressure or simple nonlinear
relations this may work fine. In our nonlinear case and especially for bounded
density this approximation is wrong and causes problems.

First, it yields a pressure which corresponds to a linearly approximated density.
This is a bad approximation but with a sufficient number of iterations might be
cured. The more serious problem is that the density in (1.18) is bounded by the
maximum packing volume fraction ρc by (1.12). We would have to make sure that
any extrapolation of the density for the new pressure stays within the limiting den-
sity. We cure this problem by solving an equation for pressure, instead of pressure
correction and taking into account the full nonlinearity of the problem. We will
write the pressure equation with the full term (2.1) instead of approximating it. In
this way the pressure equation inherits the density limit implicitly.

Furthermore we will introduce another type of nonlinearity in the NPE through
the upwind discretization in the mass conservation equation. This is discussed
shortly in [GBHL06]. We make use of some of the ideas therein, but modify them
to the case of our NPE.

So we are using the full nonlinear dependence ρ(p) from (1.17). The careful
reader should recognize that by writing this, we have already simplified the relation
and silently removed the dependence on the granular temperature. Let us discuss
this in the next section.
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2.1.3 The treatment of the temperature equation

In the first chapter and especially in Section 1.3 we have stated that the granular
temperature is a key concept to a hydrodynamic model of granular flow. There is no
such thing as isothermal granular flow. Hence in any model for granular flow, and
specifically in System (1.18) we are dealing with a non-isothermal set of equations.

In the linear case, a temperature dependence would be incorporated into a pres-
sure equation by modifying (2.2) to ρ(pn+1) ≈ ρn+ ∂ρ

∂p
p′+ ∂ρ

∂E
E ′ where E is the energy

of the system and E ′ is some approximate energy difference. In our case we have
discussed in the previous section that we cannot approximate ρ(pn+1) in a linear
way. So for the case of a NPE this would add the complete equation for granular
temperature to our last step in the algorithm, the corrector step in the derivation
of the NPE in Section 2.4.3.

Another approach for the linear case that may be a hint also for granular tem-
perature is that of [vVW03] of using the energy equation to construct a pressure
correction equation. The energy equation for gases is a conservation equation. The
equation for granular temperature however is a dissipative equation and it is not
clear whether the concept of [vVW03] is even applicable in this case.

Finally we decide to derive our NFSM and the NPE in an isothermal fashion.
This means that while solving for the pressure, we consider a constant granular
temperature and only update it depending on density and pressure at the end of
each time step. Certainly one may argue that the nonlinear dependence of pressure
and density on temperature is not negligible. However, for the above reasons, the
incorporation of the temperature equation into the pressure equation is out of reach.

2.2 General space discretization

Before continuing with the derivations of algorithms, we provide notations to de-
scribe the space discretizations used in this work. The notations are generic with
respect to the dimension of the space. We first describe how the space is decom-
posed into a set of finite volumes, and then describe how continuous functions and
operators are discretized on this grid. The grid is cell-centered which means that the
discrete values of the unknowns are located in the center of the volume. The grid is
collocated which means that the discrete values of all unknowns are are located at
the same point for each volume. In our approach of using cuboids (for the 3D case)
the boundary is approximated very roughly by the grid. We will not consider the
issue of geometrically approximating boundaries for FV methods. This is treated in
[Wes01, Chapter 11].

2.2.1 Notation

Let d be the space dimension. The computational domain Ω is decomposed into
finite volumes of interval shape (d = 1), rectangular shape (d = 2), or cuboid shape
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(d = 3). These volumes are indexed in the canonical way by a d-dimensional index

(i1, . . . , id) =: i ∈ Id ⊂ N0 × · · · × N0︸ ︷︷ ︸
d−times

,

such that the index of a volume adjacent to the volume i in positive and negative
Cartesian direction l is (i1, . . . , il + 1, . . . , id) and (i1, . . . , il − 1, . . . , id) respectively.
For the purpose of a discrete formulation independent of the dimension and without
restriction to cuboid domains we prefer the use of a one-dimensional lexicographical
index. We introduce the bijective function

πd : Id 7→ J ⊂ N0 (2.3)

mapping every d-dimensional index in Id to a one-dimensional index in J . Both
ways of indexing will be used wherever they fit. Also, we omit the subscript d where
it does not create confusion. The computational domain is discretized into N := |J |
finite volumes

V := {Vπ(i)|i ∈ I}. (2.4)

We assume that the set of volumes {Vj, j = 1, . . . , N} = V is a nonoverlapping
decomposition of Ω into subsets.

Let us now introduce the coordinates at the centers of the volumes, the centers
of the faces and the centers of the neighbors of our volumes. The description of our
discretization is local. Whenever we omit the lexicographical index as a subscript
we mean the current volume denoted by j. Let

[x1, . . . , xd] =: x = xi = x(i1,...,id) = xπ−1(j) ∈ Rd

be the coordinate of the node at the center of the volume Vj and in analog manner
let

[h1, . . . , hd] =: h = hi = h(i1,...,id) = hπ−1(j) ∈ Rd (2.5)

be the lengths of the volume as in Figure 2.1. We introduce for a lexicographical
index j the shifted indexes

j ± el := π(π−1(j)± el) for π−1(j)± el ∈ π−1(J), (2.6)

where el is the unit vector in the Cartesian direction l. Whenever it is convenient
and does not create confusion we use a short form of the index ±el. By writing
± we always mean both directions of one Cartesian direction l. This allows us to
access neighbors in all Cartesian directions by a one-dimensional subscript. Each
volume has 2d faces in the d Cartesian directions. Using the shifted indizes from
(2.6) we denote a couple of faces in l-direction by F±el

and the set of all faces of a
volume by Fj := {F±el

|l = 1, . . . , d} using the short form of the shifted index. The
normals of the faces are denoted by

n± 1
2
el
.
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Ω partitioned into {Vj}

F ∈ F̄ (boundary face)

Vj ∈ V̊ (interiour volume)

F+e2 ∈ F̊

V ∈ V̄ (boundary volume)

Figure 2.1: Visualization of a volume Vj ∈ V̊, j ∈ J .

We define the set of all faces in Ω as a union

F :=
⋃
j∈J

Fj. (2.7)

To distinguish faces on the boundary and faces in the interior we introduce the
sets

F̄ := {F ∈ F|F ∩ ∂Ω 6= ∅}, (2.8a)

F̊ := F \ F̄ . (2.8b)

Similar to (2.8) we introduce the following sets for volumes that have faces on
the boundary and volumes in the interior.

V̄ := {Vj ∈ V|∃F ∈ Fj : F ∈ F̄}, (2.9a)

V̊ := V \ V̄ . (2.9b)

using the one dimensional index j, the coordinates of the node centers and at
the face centers are denoted by

xj and xj± 1
2
el

:= xj ±
hl

2
el

respectively. We will however use the short form omitting j whenever this is rea-
sonable and it is clear that we are speaking about an arbitrary but fixed volume.
The notation and the decomposition of the domain Ω into the set of volumes V are
visualized in Figure 2.1.

Note, at this point there is virtually no difference between a node at a boundary
face and a node at an interior face, but we will refer to this in more detail later in
this section and further in Section 2.5.1.

For an unknown q, being the pressure, a velocity component, etc. we introduce
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the following notation for values at center nodes, the face centers and the neighbor
centers as

qj := q(xj), qj± 1
2
el

:= q(xj± 1
2
el

) and qj±el
:= q(xj±el

)

respectively. For example, the vector value of velocity at the center of the east
neighbor of the current volume j is denoted by u+e1 .

This should give us enough notation to describe the discretization in an elegant
way. We will describe the discretization in an arbitrary volume j.

2.2.2 Finite Volume space discretization

We use a cell-centered grid with collocated arrangement of the unknowns where all
unknowns have values at the same node in the center of the volume. In this section
we will not give the discretization of the complete equations (1.1) or (1.18). This
will be done in later sections. The aim here is to provide the discretization in form
of operators which are each responsible for the discretization of a certain type of
PDE term.

These operators will then be used in later sections to write the discretization of
various equations and systems in an elegant way. For the FV method all differential
operators are integrated over volumes and most of them are transformed to surface
integrals using the Gauss Theorem. For an introduction see [FP96, Section 4.1]. The
surface of the volumes consists of the faces F from (2.8). So most of the differential
operators in discrete form are written as discretization on faces. Since we store all
unknowns at the volume centers, we introduce the interpolation between values at
volume centers and values on faces for a face Fj±el

∈ F̊ of a volume with index j

qj± 1
2
el
≈ 1

0.5(hj)l + 0.5(hj±el
)l

((hj±el
)lqj + (hj)lqj±el

) . (2.10)

This is certainly a very simple form of interpolation and many different and more
sophisticated ways exist. For details on the approximation of face center values for
FV methods see [FP96, Section 4.4]. The coefficients of System (1.18), for example
the viscosity η, vary strongly between regimes of dilute and dense granular material
but they are continuous. Certainly in the discrete case the jump in values between a
volume with a high density of grains and one with a very low density may look like
a discontinuity. But then Therefore we assume that this linear interpolation (2.10)
should suffice. In

Also this interpolation will always be used when a scalar or vector valued solu-
tion of a certain FV discretized equation or system is needed on the face centers.
Furthermore we will use another interpolation, the so-called upwinding introduced
in [FP96, Section 4.4.1] for the discretization of certain operators.

Before we start with the space discretization let us make a remark on boundary
conditions. We will postpone the implementation of boundary conditions to Section
2.5.1 because we want to give a general treatment for the linear discretization opera-
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tors introduced in this section and the upcoming nonlinear equation discretizations.
For now we just distinguish between faces that intersect with the boundary and
faces on the interior of the domain. In the discretization the we will describe later
we will use values on boundary faces without yet going into detail on how they are
obtained.

Let us now consider the space discretization of PDEs. In the FV method we
distinguish between two types of terms. These are surface integrals and volume
integrals. The basics of FV discretization of these integrals are given in [FP96,
Sections 4.2 and 4.3] respectively.

The models described in Chapter 1 contain terms like the divergence operator
div, the gradient operator grad, concatenations of them as well as algebraic terms
not involving differentials. Let q be a scalar field and let v be a vector field. In
the following we call terms of the form div (vq) convective terms. Those involving
the concatenation of the div and grad operator in the form of div(φ grad(q)) are
called diffusive terms. To both we apply the Gauss Theorem when deriving a FV
discretization. The resulting surface integrals are then approximated.

Convective terms

We start with the convective terms such as the second term in (1.1b) after applying
the Gauss Theorem. ∫

∂V

qv · n dS. (2.11)

Here q is a scalar field, for example density ρ and v is a vector field, for example the
velocity u. In all approaches to approximate the surface integral in (2.11) we start
by summing the values on face centers over all faces of a volume. This is called the
midpoint quadrature rule in the 3D form of∫

∂V

qv · n dS ≈
∑

F±el
∈F

area(F±el
)
(
(vq)± 1

2
el

)
l

(
n± 1

2
el
· el

)
. (2.12)

The difference in the discretization results from the approximation of the midpoint
or center face values. Let us introduce two different discretizations for the resulting
terms. The first possibility is to approximate the face values by linear interpolation
of the volume center values

DIV(q,v) :=
∑

F±el
∈F

area(F±el
)
(
(vq)± 1

2
el

)
l

(
n± 1

2
el
· el

)
, where (2.13a)

(
(vq)± 1

2
el

)
l
=

 (v± 1
2
el

)lq± 1
2
el

using (2.10) , F±el
∈ F̊

(v± 1
2
el

)lq± 1
2
el

, otherwise
. (2.13b)

As previously mentioned, the discussion on how to obtain the face values on the
boundary is postponed to Section 2.5.1.
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Let us additionally introduce a first order upwind discretization. The function q
on the faces is interpolated in direction of the flow depending on some velocity. We
will remark on the reasons for such a discretization in detail later in the derivation
of the algorithm 2.2 in Section 2.4. So let us introduce a function which upwinds a
quantity q depending on a velocity u

UW (q,u, F±el
) =

{
q ,u± 1

2
el
· n± 1

2
el
≥ 0

quw ,u± 1
2
el
· n± 1

2
el

< 0
, with (2.14a)

quw :=

{
q±el

, F±el
∈ F̊

q± 1
2
el

, otherwise
, (2.14b)

where F±el
denotes any face of the couple of faces in l-direction on which the up-

winded quantity should be determined. The function UW maps to an upwind
approximation for face values with respect to the velocity u. This means that the
value interpolated onto the face center depends on the flow direction at the face
center . If the flow is in direction of the face with respect to the volume center,
then the value of the volume center is used. If the flow is in the opposite direction
then the value of the neighboring volume center is used. The first order upwind
discretization for terms of the form (2.11) is then given by

DIVUW (u)(q,v) :=
∑

F±el
∈F

area(F±el
)(v± 1

2
el

)lUW (q,u, F±el
)
(
n± 1

2
el
· el

)
. (2.15)

For the case of discretizing a convective term we will always use u ≡ v. The reason
for a notation that allows the upwinding by a different vector field than the actual
convecting velocity is the discretization of the System (1.18) in time which we will
introduce in the later Section 2.4.1. There we will work with the velocity field at
different values of time and will make full use of the notation introduced here.

Diffusive terms

The second major type of differential terms in any NSE-type system are diffusive
terms such as the third term in (1.1b) which, compared to the transport properties
of convective terms model the viscous aspects of flow. They include some diffusivity
coefficient φ which may be the viscosity η from (1.18h). For such diffusive terms of
the form ∫

∂V

φ grad (q) · n dS

we start with the same basic integration rule as in (2.12) except that our vector field
is now a gradient of a scalar field. We introduce the discretization

D(q, φ) :=
∑

F±el
∈F

area(F±el
)φ(x± 1

2
el

)
(
(grad q)± 1

2
el

)
l

(
n± 1

2
el
· el

)
, with (2.16a)



2.2. GENERAL SPACE DISCRETIZATION 39

(grad q± 1
2
el

)l ≈


1

(x±el
)l−xl

(q±el
− q) , F±el

∈ F̊
1„

x± 1
2 el

«
l

−xl

(q± 1
2
el
− q) , otherwise , (2.16b)

where φ will be the viscosity η as in (1.18h) or the thermal conductivity λ from
(1.18f) which are both continuous functions.

In many applications of flow problems the diffusivity φ is not a function but a
constant and the discretization may look different in many standard FV references.
This is because the flow in these cases is assumed to be Newtonian which is true for
many standard fluids. The granular flow model (1.18) is a non-Newtonian model
and hence we need to be able to discretized diffusive terms with varying viscosity.

Other terms

Aside from those differential operators which can be transformed to surface integrals
there are those which have to be treated as volume integrals. A common example
is the force f in the momentum equation (1.1b).

Another is the pressure gradient found in all NSE-like systems. Here we need to
approximate spatial gradients in a volume. We choose the approximation by differ-
encing interpolated face center values across the volume and denote one component
of the spatial gradient by

∂q

∂xl

≈ GF(q)l :=
1

hl

(q+ 1
2
el
− q− 1

2
el

). (2.17)

The interpolation of the face center values is carried out as in (2.10). Then the gra-
dient GF is the vector made up of the components GF l with l = 1, . . . , d. Generally,
volumetric integrals are approximated by multiplying the volume with the value at
the volume center. With V := volume(V) we have∫

V

q dV ≈ V · q. (2.18)

The pressure gradient then will be approximated using (2.17) for q in (2.18).

Note that in the above discretizations we have omitted mixed derivatives as they
appear in (1.1c). Their treatment in an implicit discretization is quite straightfor-
ward in the interior of the domain as in [Hir88, p191ff] but is challenging on the
boundary.

In general our discretization operators are of low order. The upwind discretiza-
tion (2.15) is crucial to stability, see [EGH00, Section 5.2.3], but restricts us in
the given form to a first order space discretization. Certainly FV discretizations
of higher order exist [Fle91b, Section 9.3.2] but only make sense combined with a
better approximation of the domain.

We have provided all the spatial discretization operators that will be needed for
the discretization of the equations in the following sections. As previously men-



40 CHAPTER 2. ALGORITHMS

tioned, we will first split up the continuous system into substeps in time, discretize
these subequations in space and then proceed with the derivation of a nonlinear
pressure equation (NPE). This discretization in time will be a type of fractional step
methods and hence we proceed with an introduction to these methods.

2.3 Introduction to fractional step methods

Although the focus of this work are NFSMs, the idea of LFSMs provides the basis for
our development. We have mentioned before that we call all methods that split the
advancing of the system in time into multiple steps LFSMs. In the third paragraph
on page 9 we have provided references to origins of these methods.Fractional step
methods for the instationary NSE have first been mentioned by Kim and Moin in
[KM85]. Let us give a short introduction on the terminology and relationship be-
tween the different methods that split up the solution process. Then we will present
a LPCA which falls into the category of LFSMs. This serves as an introduction to
the development of our NPA.

2.3.1 The variants of fractional step methods

The pressure based NFSM NPA we will introduce is based on the very popular ’divide
and conquer’ approach initially introduced for solving the incompressible NSEs. The
basic idea is to split the numerical treatment of the different operators and unknowns
in the equations thus solving the initially difficult problem in relatively easier sub-
steps. This approach has different names under different modifications: operator
splitting, fractional step method or projection method. The terms ’splitting scheme’
and ’projection scheme’ partially overlap. It is generally accepted to use ’projection
scheme’ if the scheme is based on a Helmholtz decomposition of the velocity meaning
it can be generated by a scalar potential and a vector potential. These schemes
usually require that the pressure equation is solved after the convection-diffusion
step. Recently approaches are reported in the literature which bridge the different
algorithm types and provide general formulations into which all the above methods
can be categorized. We specifically mention the very recent publication [NA07].
They present a framework which theoretically allows the incorporation of nonlinear
pressure equations at least for incompressible flow in [NA07, Equations (21)-(24)].

All the above mentioned schemes can also be considered ’splitting schemes’ since
the convection-diffusion part is split from the imposition of the incompressibility
constraint. For a detailed overview of the state of the art of the variants of these
schemes see [GS98, Min01, GMS06]. In the compressible case the idea remains but
the continuity equation adds a compressibility term to the pressure equation.

Another general concept to describe these algorithms is to write them in the
form of fractional step methods from [FP96, Section 7.4.1]. We show how this
might be done by taking the simplest case, the explicit Euler time discretization
and schematically split the System (1.1) into a fractional step method. We consider
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for the one dimensional case the following form.

ρn+1 = ρn + τ(CUW (ρu)) (2.19a)

un+1 = un + τ(CUW (ρuu) + D(u) + P ) (2.19b)

where CUW , D, P represent the convective, diffusive and pressure terms respectively.
We omit the time indizes on these terms on purpose as they depend on the specific
method used. This can now be split in many ways. One approach is the splitting
into

un+ 1
3 = un + τCUW (ρnunun+ 1

3 ) (2.20a)

un+ 2
3 = un+ 1

3 + τD(un+ 2
3 ) (2.20b)

un+1 = un+ 2
3 + τP. (2.20c)

In the third step (2.20c), P is the gradient of a quantity which obeys a Helmholtz
type equation obtained by enforcing Equation (2.19a). Depending on the specifics
of the splitting together with the way the split equations are enforced the method
has different names, but the basic idea of LFSMs stays the same for all methods.

For the convergence analysis of splitting methods we we refer to [GRS07, Theo-
rem 8.21] and the preceding text in [GRS07, Section 8.3.4].

2.3.2 Linear pressure correction algorithm

We will exemplify the concept of LFSMs by this short section on a LPCA for the
System (1.1) on our collocated, cell-centered grid. This concept will later be used
for the derivation of the NPA.

As in the previous section we will split up the solution of a full time step into
substeps. The final step will be formulated as an elliptic equation for an unknown
correction to a pressure computed in the previous time step. Therefore this special
LFSM is called pressure correction or Chorin projection method. The latter name
originates from the incompressible case where the values of old pressure and velocity
are projected onto the divergence free space to satisfy the incompressibility condition
div (u) = 0.

So let us assume that

ρ = ρ(p), with ρn+1 = ρ(pn) +
∂ρ

∂p
(pn) · (pn+1 − pn), (2.21)

is a valid approximation of the compressibility condition and that the pressure pn

is known from the previous iteration, and η is constant. To obtain a first guess of
the velocity in the current time step we solve the discretized integral form of the
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momentum equation (1.1b) in componentwise form

V

τ

[
(ρu)

n+ 1
2

l − (ρu)n
l

]
+DIVUW (un)((ρu)

n+ 1
2

l ,un)−D((ρn)−1(ρu)
n+ 1

2
l , η)

+ V GF l (p
n) = 0 (2.22)

for (ρu)n+ 1
2 and l = 1, . . . , d where the convective term is linearized. Let us moreover

assume that all other changes in velocity are induced by the gradient of the pressure
correction, then we reach the following condition for the corrected velocity and
pressure

V

τ

[
(ρu)n+1

l − (ρu)
n+ 1

2
l

]
= −V GF l (p

n+1 − pn), l = 1, . . . , d ⇔

(ρu)n+1 = (ρu)n+ 1
2 − τ GF (p′) (2.23)

where p′ := pn+1 − pn. We apply the discrete divergence DIV(1, ·) to (2.23). Here
1 is a vector where each entry is 1. Using DIV(1, ρu) = DIV(ρ,u), the discretized
Equation (1.1a)

V

τ

[
ρn+1 − ρn

]
+DIV (ρn+1,un+1) = 0

and (2.21), we transform (2.23) into the LPCE

− V

τ

[
∂ρ

∂p
(pn) · p′

]
= DIV (ρn+ 1

2 ,un+ 1
2 )− τ DIV (1,GF (p′)) (2.24)

for the unknown p′. The relation ρ(p) may be the ideal gas law (1.2).

In the incompressible case of ∂ρ
∂p

(pn) = 0 Equation (2.24) is elliptic, the last term
on the right hand side is a discretization of the Laplace operator. Otherwise it is a
Helmholtz-type equation. The term on the left side is there because we solve a com-
pressible or weakly compressible system. Hence we have transformed the solution of
one time step for System (1.1) into two steps of solving the linearized velocity equa-
tion (2.22) and the solution of a second order PDE (2.24) with a Laplace operator.
We summarize the steps into the LPCA given in a schematic way in Algorithm 2.1.
For the case of incompressible flow as modeled by (1.3) spurious oscillations in the

Algorithm 2.1: Linear pressure correction algorithm (one time step)

Solve linearized momentum prediction (2.22) for (ρu)n+ 1
2 with old pressure1

Solve pressure correction equation (2.24) for p′2

Correct momentum to (ρu)n+1 using (2.23)3

pn+1 = pn + p′4

ρn+1 = ρ(pn+1)5

pressure solution are known to occur for LPCAs on grids with collocated arrange-
ment of the unknowns and our discretization of the pressure equation, see [Wes01,
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Chapter 6.3, p. 235ff.]. There it is shown that the discretization allows an oscillat-
ing pressure solution completely independent of the velocity. Often this problem is
cured by the so called Rhie-Chow approach introduced in [RC83] which introduces
a certain velocity interpolation preventing these oscillations.

We have found these sometimes called checkerboard modes when using Algorithm
2.1 for computing incompressible flow but we have chosen a different approach to
cure the problem. Also for incompressible flow, Vabishchevich in [VPC96] and
Chuiko and Lapanik in [CL05] apply a regularization operator to the right hand
side of the pressure correction equation (2.24) to avoid pressure oscillations. This
regularization operator is (∆ − ∆ext)p

n where the subscript means an extended
stencil. This, plainly speaking connects the discrete pressure and velocity solutions
and hence avoids spurious nodes.

However, because LPCAs are not the focus or this work and our upcoming dis-
cretization of the NPE does not seem to allow these oscillations we will not go into
further details on this issue.

2.4 A nonlinear pressure based algorithm

Based on the considerations in Section 2.1 we will use the space discretization oper-
ators from Section 2.2 and the concept of LFSMs introduced in Section 2.3 to develop
a fractional step method with a NPE in this section. The method will be called NPA
and its development is motivated by the need to solve System (1.18). However, the
algorithm is developed in general for NSE-type systems with nonlinear coefficients
or nonlinear constitutive relations.

We begin with splitting the continuous system in time into substeps which we
will call predictor and corrector. The corrector will then be discretized in space and
from that we derive a NPE coupled to an equation for a corrected velocity. As the
NPE is nonlinear we will shortly mention the variant of the Newton method which
we use to solve the NPE before giving its detailed discretization and that of the
Jacobian.

2.4.1 Time discretization

Before we split up the time step into substeps, let us mention how partial time
derivatives are treated. For discretization of such terms involving a partial time
derivative, let q be any of the hydrodynamic quantities (density, one component of
velocity or momentum or granular temperature) depending on time and space. For
the partial time derivative of q, ∂tq, we use implicit Euler discretization

1

τn+1

(qn+1 − qn), (2.25)

where τn+1 denotes the difference between the (n+1)st and the nth moments in time.
We further split one time step of τ into different fractional steps. The fractional
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time steps will be denoted by superscripts of the form n+α, 0 < α < 1 as in Section
2.3.

We have discussed in Section 2.1.3 that the temperature equation is treated de-
coupled from the system. We will derive the substeps by assuming a known granular
temperature during one time step and solve the temperature equation (1.18c) at the
end as a last substep.

The first fractional step will be the prediction of a velocity which we will denote
by α = 1

2
. This step is very similar to the linear case for System (1.1), compare with

(2.22). There is a difference we would like to mention. We believe that instead of
a prediction of momentum we should predict velocity because of the characteristics
of System (1.18). We want to make the prediction step independent of strong and
nonlinear dependence of density on pressure (1.17). This dependency has already
been discussed in Section 2.1.1.

Prediction of an intermediate velocity

For the prediction of an intermediate velocity un+ 1
2 we solve a linearized version of

the velocity equation (1.18b)

ρnun+ 1
2 − ρnun

τ
+ div (ρnun+ 1

2 ⊗ un)− div (η(pn)κ(un+ 1
2 )) + grad pn − ρngn+1 = 0.

(2.26)
Because the gravity is a constant vector, we always write gn+1 regardless of the
fractional step in which it is used. It is important to note that we use the density
from the old time step tn in the prediction of velocity. The reason for this is that
our final aim is the construction of a pressure equation. The dependence of p(ρ)
in (1.18g) is highly nonlinear, which means for a small error in density prediction
a large error in the initial guess for the pressure is possible, especially in the dense
regime.

Similar to LPCA from Section 2.3.2, the prediction of velocity is necessary be-
cause the convective and diffusive terms are not taken into account in the pressure
equation. Only the change of velocity induced by the change in the pressure gradient
is taken into account in the pressure equation.

There exist schemes that predict a density from the mass conservation equation
to be used in the velocity prediction. Even though this is tempting we refrain from
this practice again using the argument above that the dependence of density on
pressure is very delicate and a small error in density corresponds to huge differences
in the pressure. Furthermore, by the construction of the pressure equation we will
see that the discrete version of (1.18a) will be satisfied exactly without a density
prediction.

A system for an updated pressure

To construct the corrector, a nonlinear operator for the pressure together with an
algebraic correction for velocity will be derived. Ideally, the corrected velocity un+1
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should satisfy, amongst mass continuity the fully nonlinear and implicitly time-
discrete version of the velocity equation (1.18b)

ρn+1un+1 − ρnun

τ
+ div (ρn+1un+1 ⊗ un+1)− div (η(pn+1)κ(un+1))

+ grad pn+1 − ρn+1gn+1 = 0. (2.27)

So far we have obtained velocity and pressure fields which satisfy the prediction
equation (2.26). To obtain the operator for the difference between the two fields
we subtract (2.26) from (2.27). The splitting happens when we drop the differ-
ence in velocity convection and diffusion. With this in mind, the subtraction gives
equation (2.28a).

Speaking in the terms of Section 2.3.1 this effectively splits the solution method
into a step for convection and diffusion using an old pressure field and, as we will see
next, an equation for an update of pressure. This assumes that the major changes
in the velocity are caused by the gradient of pressure.

Furthermore, both the corrected velocity and the density should satisfy the time-
discrete version of the mass balance (1.18a), which gives equation (2.28b). These two
requirements yield for the new pressure and velocity a coupled system of equations

ρn+1un+1 − ρnun+ 1
2

τ
+ grad (pn+1 − pn)− (ρn+1 − ρn)gn+1 = 0, (2.28a)

ρn+1 − ρn

τ
+ div (ρn+1un+1) = 0, (2.28b)

ρn+1 = ρ(pn+1). (2.28c)

So we have split up the solution of System (1.18) into a prediction step (2.26)
with the convective and diffusive terms and a step of enforcing the correct pressure
and velocity fields (2.28). This is as far as we will go for the system which is still
continuous in space. Hence the task preceding the derivation of a NPE will be the
space discretization.

But before, let us look at how much explicitness we have introduced through our
splitting. We do this by plugging our solution ρnun+ 1

2 of Equation (2.26) into Equa-
tion (2.28). Hence we see that the combination of all fractional steps is effectively
the solution of the system

ρ(pn+1)un+1 − ρnun

τ
+ div (ρnun+ 1

2 ⊗ un)− div (η(pn)κ(un+ 1
2 )) =

− grad pn+1 + ρ(pn+1)gn+1, (2.29a)

ρ(pn+1)− ρn

τ
+ div (ρ(pn+1)un+1) = 0 (2.29b)

We see that the mass conservation is fulfilled for final fields with superscript n + 1.
However, the discretization of the velocity is only semi-implicit with respect to
convection and diffusion.
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Above we have introduced for the continuous case the basic approach for deriving
a fractional step method for solving System (1.18). But we have not yet reached
a satisfactory result. The System (2.28) is still difficult so solve in the given form
and we have not yet derived a pressure equation. These steps towards the NPA will
be done for the discretized equations only and our NPE will be solely a discrete
concept. Therefore we will discretize the prediction step (2.26) and the coupled
correction system (2.28) in space in the following section and then derive the NPE.

2.4.2 Spatial discretization of the split system

The equations involved in the split solution process are (2.26), (2.28) and an implic-
itly discretized, linearized version of (1.18c). We give a FV discretization of these
equations using the space discretizations provided in Section 2.2. This will then be
used to derive the NPE from the discrete equations.

So we first integrate the equations. For a control volume V fixed in time and
space, the integral of (2.26) is

∫
V

[
ρnu

n+ 1
2

l − ρnun
l

τ
+ div (ρnu

n+ 1
2

l un)− div (η(pn) grad(u
n+ 1

2
l )) +

∂

∂xl

pn

− ρngn
l

]
dV = 0, (2.30)

for l = 1, . . . , d (d being the space dimension). Next we look at the integral form of
the corrector (2.28). First we replace ρn+1 by (2.28c) in (2.28a) and (2.28b). Then
we integrate both equations over the volume V which yields.∫

V

[
ρ(pn+1)un+1 − ρnun+ 1

2

τ
+ grad (pn+1 − pn)− (ρ(pn+1)− ρn)gn+1

]
dV = 0,

(2.31a)∫
V

[
ρ(pn+1)− ρn

τ
+ div (ρ(pn+1)un+1

]
dV = 0.

(2.31b)

We apply the Gauss theorem to the terms involving a divergence operator. This
results in∫

V

[
ρnu

n+ 1
2

l − ρnun
l

τ
+ ∂lp

n − ρngn+1
l

]
dV

+

∫
∂V

[
(ρnu

n+ 1
2

l un − η(pn) grad(u
n+ 1

2
l )) · n

]
dS = 0, (2.32)
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l = 1 . . . , d for the velocity prediction (2.30) and∫
V

ρ(pn+1)− ρn

τ
dV +

∫
∂V

(ρ(pn+1)un+1) · n dS = 0 (2.33)

for (2.31b).

Let us write these integrated equations in FV discretization. We make use of
the discretization operators introduced for the various PDE terms in Section 2.2.
Let ρ(p) be the pressure dependent density as in Equation (1.17). We describe the
discretization locally for any volume Vj and drop the index j in the following. The
discrete version of the predictor Equation (2.32) is

V

τ

[
ρnu

n+ 1
2

l − ρnun
l

]
+DIVUW (un)(ρ

nu
n+ 1

2
l ,un)−D(u

n+ 1
2

l , η(pn))

+ V GF l (p
n)− V ρngn

l = 0 (2.34)

for l = 1, . . . , d. The discrete versions of the equations for the corrector (2.31a)
and (2.33) are

V

τ

[
ρ(pn+1)un+1 − ρnun+ 1

2

]
+ V GF (pn+1 − pn)− V (ρ(pn+1)− ρn)gn+1 = 0

(2.35a)

V
ρ(pn+1)− ρn

τ
+DIVUW (un+1)(ρ(pn+1),un+1) = 0.

(2.35b)

Note that we keep the full nonlinearities in the corrector in order to derive a NPE.
The linearizations in the predictor serve the purpose of a low cost prediction.

Let us remark on the upwind discretization in Equation (2.35b). There are
similar ideas introduced by Bijl, Wesseling and others for the linear case. They do
not leave the pressure equation and velocity correction equation coupled but they
discretize the mass conservation equation using a first order upwind scheme similar
to (2.35b).

There seem to be two good reasons for this. First, Wesseling suggests in [vVW01,
Section 4] that the application of what he calls a first order density upwind bias in
the mass conservation equation is necessary for stability in compressible flow. This
approach is introduced in [BW98, Section 3.2 and Equation (27)]. The second reason
is that pressure oscillations are avoided by this approach as explained in [GBHL06,
Remark, pg. 11].

We will not give special attention to the discretization of the temperature equa-
tion (1.18c) at this point because it is not used in the derivation of the NPE and its
discretization does not yield any further insights. Let us just remark that the con-
vection and diffusion parts are discretized as the convection and diffusion in (2.34).
The dissipation term Tdiss is implicitly treated as a volume term and the derivatives
in the viscous heating term are explicitly discretized using (2.17).
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2.4.3 Derivation of the nonlinear pressure equation

Our goal is to obtain a pressure operator with properties close to the Helmholtz op-
erator for the LPCA from Section 2.3.2. In the linear case, this means applying the
divergence operator to a corrector equation and making use of the continuity equa-
tion. We will follow a similar path by multiplying (2.35a) with [ρ(pn+1)V ]

−1
. This

is permissible because by Equation (1.17) we know that ρ(p) > 0 at all times. The
goal of this division by density is to be able to use the continuity equation (2.35b).
This yields

1

τ

[
un+1 − ρnρ(pn+1)−1un+ 1

2

]
+ ρ(pn+1)−1 GF (pn+1 − pn)

− (1− ρ(pn+1)−1ρn)gn+1 = 0. (2.36)

Now we apply the upwind divergence operator DIVUW (un+1)(ρ(pn+1), ·) to equa-
tion (2.36). In particular this yields a term

DIVUW (un+1)(ρ(pn+1),un+1)

which is replaced with V ρ(pn+1)−ρn

τ
using (2.35b). We then define the operator

Lp := DIVUW (un+1)

(
ρ(p), ρ(p)−1 GF(·)

)
, (2.37)

which should shorten the presentation significantly. We will apply this operator to
both pn+1 and pn. Also note that the unknown velocity un+1 is part of the operator
for the upwinding interpolation. We choose this form for now. When we later give
the full algorithm we will introduce a form using an inner iteration between the
unknown pressure pn+1 and the unknown velocity un+1.

Using this notation, applying the upwind divergence operator to Equation (2.36)
results in the pressure equation

Lpn+1 − V

τ 2
ρ(pn+1) = Lpn − V

τ 2
ρ(pn)

+
1

τ
DIVUW (un+1)

(
ρ(pn+1), ρ(pn+1)−1ρnun+ 1

2

)
(2.38)

+DIVUW (un+1)

(
ρ(pn+1), (1− ρnρ(pn+1)−1)gn+1

)
.

It may seem strange to apply upwind divergence to a pressure gradient field or even
to a gravity field, but looking closely at the definition of operator (2.15) we see
that only the values of ρ are affected by this upwinding. It could be described by
discretizing the divergence of the pressure gradients multiplied with the upwinded
density. Furthermore, this derivation is purely discrete. One should not attempt to
assign a meaning other than purely mathematical transformations to this pressure
equation. Equation (2.38) together with

un+1 =
[
ρ(pn+1)

]−1
(
ρnun+ 1

2 − τGF(pn+1 − pn) + τ
(
ρ(pn+1)− ρn

)
gn+1

)
, (2.39)
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obtained from (2.36) solve the corrector exactly. We have gained two advantages
that Equations (2.38), (2.39) have over the System (2.35). The first is that Equa-
tion (2.38) with the operator L should have nice properties because it is the diver-
gence of a gradient, though nonlinear. And secondly, with Equation (2.39) we have
the basis for an iterative procedure to compute pn+1 and un+1 only using scalar
equations.

Before we come to this iterative procedure, let us note that we have arrived at
a nonlinear equation for pressure, the NPE (2.38). In fact, in this discrete form,
Equation (2.38) is a system of N scalar nonlinear equations where N is the number
of volumes into which the domain is decomposed as in (2.4) and as such may be quite
large. A method is needed to solve this large system. We choose a variant of the
Newton method for this purpose. Therefore, before we proceed with the complete
NPA we will shortly remark on variants of the Newton method for large systems of
nonlinear equations.

2.4.4 The Newton method and its variants

The Newton method is originally a method for finding the roots of a nonlinear scalar
function f : I → I where I is an interval I ⊂ R. Let f ′ be the derivative of f with
respect to x. Then, assuming that f ′(x) 6= 0 in the whole domain and with certain
assumptions on the initial value x0, the sequence

xα+1 = xα − f(xα)

f ′(xα)
(2.40)

converges towards a root of f . This idea can be extended to systems of nonlinear
equations. For a detailed introduction to the Newton method and its variants see
[QSS06, Chapter 6 and Section 7.1]. We give the equivalent of (2.40) for systems.
Let N (q) be a system of N nonlinear functions for the discrete unknown q. Let
further J be the Jacobian of N which contains the derivatives of all components
of N with respect to all components of q and is a N × N matrix valued function.
Then for a given q0 the Newton method can be written as

qα+1 = qα + δqα with δqα from J (qα)δqα = −N (qα). (2.41)

Hence we see that if written in this way, each iteration of the Newton method
involves the solution of a linear system. This is the point where the modern variants
of the Newton method differ. All methods where the linear system involved in every
step is not exactly solved are called quasi-Newton methods. The first type are the
methods where Jacobian or its factorization for the linear solution method are not
updated in every step. The second are the so called inexact or truncated Newton
methods which we will use for our problem.

Truncated Netwon Methods solve the linear system in every step by an iterative
procedure but the maximum number of linear iterations is fixed. The idea is that
far away from the nonlinear solution, there is no point in solving the linear system in
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every step very precisely. The methods are then called according the linear iterative
method. In our case, because the linear system will be solved by Krylov-subspace
methods we are using a Newton-Krylov method as described in [QSS06, Section
7.1.2.2 pg. 290].

A robust implementation framework for using this class of truncated Newton
methods for large nonlinear systems is provided by the PETSc, SNES software package
[BGMS97]. We make use of their solvers and methods for the solution of our NPE.

Furthermore, in modern Newton methods a step control is usually applied. By
step we mean the δqk. This is to ensure that the step does not leave the region
of quadratic convergence around the solution which exists for all these methods.
Two methods are the most popular, the so call line search and the trust region step
controls. Both methods use the direction from the computed Newton step but limit
the length with which to go in that direction. The topic is very advanced and is
out of the scope of this work. The book [QSS06] provides the basics very well. For
a complete coverage of all modern developments on Newton methods including the
step control we cite [Deu04, Chapters 2 and 3].

2.4.5 The nonlinear pressure algorithm

In the previous sections we have transformed System (2.35) into a system of the
Equations (2.38) and (2.39). The two equations are still coupled through the up-
winding velocity u. Therefore we will give in this section an algorithm for solving
the latter two equations in an iterative procedure. First we will iterate in a nonlinear
Gauss-Seidel fashion through the two Equations (2.38) and (2.39). For this proce-
dure we need to introduce an extra iteration index. Let us define another version of
the pressure operator (2.37)

Ln+1,k+1 := DIVUW (un+1,k)

(
ρ(pn+1,k),

[
ρ(pn+1,k+1)

]−1 GF(·)
)

,

where the first superscript denotes the time step and the second denotes the it-
erations between pressure equation and velocity correction equation. With this
definition we introduce Algorithm 2.2 which shows the details of the method. With
Algorithm 2.2 we have arrived at the complete procedure for solving System (1.18).
The description of the time discretization is fully given. We have written the space
discretization in a very compact form which hides the details for the sake of pre-
senting the time discretization, the NFSM NPA in an elegant way. We will follow up
on this and write down the space discretization explicitly in the next Section.

As we have previously mentioned, we solve the NPE (2.38) by a variant of the
Newton method, see Section 2.4.4. This method requires the evaluation of the
Jacobian of the NPE. Therefore, in the next Section we will not only provide the
discretization of the NPE but also find its derivative, the Jacobian and give the
detailed discretization of that.
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Algorithm 2.2: Nonlinear pressure algorithm (one time step)

Initialize: ρn+1,0 = ρn, pn+1,0 = pn
1

Solve momentum prediction (2.34) for un+ 1
2
,0

2

Set un+1,0 = un+ 1
2
,0

3

repeat4

Solve pressure equation for pn+1,k+1 using the truncated Newton method5

Ln+1,k+1pn+1,k+1 =Ln+1,k+1pn +
V

τ 2
ρ(pn+1,k+1)− V

τ 2
ρ(pn)

+
1

τ
DIVUW (un+1,k)

(
ρ(pn+1,k),

[
ρ(pn+1,k+1)

]−1
ρnun

)
+DIVUW (un+1,k)

(
ρ(pn+1,k), (1− ρn

[
ρ(pn+1,k+1)

]−1
)gn+1

)
6

Correct velocity for un+1,k+1 (using (2.39))7

un+1,k+1 =[
ρ(pn+1,k+1)

]−1 (
ρnun − τ GF(pn+1,k+1 − pn) + τ(ρ(pn+1,k+1)− ρn)

)
gn+1

Update old iteration values (p,u)n+1,k = (p,u)n+1,k+1
8

until ||pn+1,k+1 − pn+1,k|| < ε9

Solve temperature equation for T n+1(pn+1,un+1)10
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2.4.6 Detailed discretization

We provide a description of the discretization of the full NPE (2.38) as a nonlinear
function N (pn+1,k+1) of the unknown discrete pressure. As we have discussed in
Section 2.4.4 we use a truncated Newton method with step control to solve the NPE.
The iteration within the Newton method, which we have denoted by α in Section
2.4.4 is the third nested iteration for which, out of notational convenience we do not
give an index within this Section. We keep in mind that in each Newton iteration
for the NPE the unknown is actually pn+1,k+1,α+1 and that the function N as well
as the Jacobian are evaluated at the given pressure field pn+1,k+1,α. Remember that
the first iteration index n + 1 denotes the time step and the second k + 1 denotes
the iteration between (2.38) and (2.39). Because we want to solve a system as in
Equation (2.41) we need to provide also the detailed form of the Jacobian J .

In fact, N is a system of N equations and J is a N ×N matrix valued function
where N is the number of finite volumes. For the ease of notation we replace the
discrete pressure pn+1,k+1,α by p for this section. The gravity term is included in the
NPE and used in the simulations. But to further shorten the presentation we omit it
in the description of the discretization it is just another volume term and does not
yield any further insights.

The discretization will be provided for arbitrary domains independent of the
dimension. Without giving the specific implementation of the boundary conditions
from Section 1.3.3 we will distinguish between faces that intersect with the boundary
and faces in the interior of the domain. This is possible because the discretization
of the function N is actually just a rule for an explicit evaluation of N (p) in every
Newton step, see (2.41). To apply the Newton method, we write the equation from
step 5 of Algorithm 2.2 in the form

N n+1,k+1(p) = 0, N : RN 7→ RN ,

which again is a system of N nonlinear equations where each equation represents
the discretization of one volume Vj ∈ V .

The nonlinear function

The expression of N n+1,k+1 is very lengthy when written out fully. We try to give
a description which does not omit any detail but we refrain from displaying the
expression in a single equation. We split up each equation of N n+1,k+1

j into five
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parts, N 1j to N 5j.

N n+1,k+1
j (p) := +DIVUW (un+1,k)

(
ρ(pn+1,k),

1

ρ(p)
GF(p)

)
︸ ︷︷ ︸

=:N1j

−DIVUW (un+1,k)

(
ρ(pn+1,k),

1

ρ(p)
GF(pn)

)
︸ ︷︷ ︸

=:N2j

+
V

τ 2
ρ(p)︸ ︷︷ ︸

=:N3j

− V

τ 2
ρ(pn)︸ ︷︷ ︸

=:N4j

+
1

τ
DIVUW (un+1,k)

(
ρ(pn+1,k),

1

ρ(p)
ρnun

)
︸ ︷︷ ︸

=:N5j

(2.42)

such that

N n+1,k+1
j (p) = N 1j(p)−N 2j(p) +N 3j(p)−N 4j(p) +N 5j(p). (2.43)

Schematically comparing the NPE to a LPCE ∆p′ = div (ρu)n then the term N 5j

corresponds to the divergence of the old momentum. The term N 1j − N 2j corre-
sponds to the Laplacian of p′ and the terms N 3j and N 4j appear because of the
compressibility and nonlinearity of the problem.

Before we continue with the spatial discretization let us refer to Section 2.2. We
use the discretization operators from there. Actually, the NPE (2.38) is already given
in discretized form using these operators but certainly the schematic form and the
abbreviation through the pressure operator L from (2.37) hide any details. This was
useful to not distract from the derivation of the NPE.

For a detailed presentation of the space discretization, let Vj be any fixed volume
in V , see (2.4). We first use the discretization operator (2.15). At the end of
Section 2.4.2 we have already remarked on the upwind discretization and the reasons
for it. Because of the application of the upwind divergence operator to the full
Equation (2.36) this operator is contained in many terms and therefore we introduce
a factor D±el

D±el
:= area(F±el

)UW (ρ(pn+1,k),un+1,k, F±el
)(n± 1

2
el
· el) (2.44)
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for using it in the sums over faces as in (2.12). We then write

N 1j(p) =
∑
Fj±el

l=1,...,d

Dj±el

(
1

ρ(p)

)
j± 1

2
el

[
GF(p)j± 1

2
el

]
l
, (2.45a)

N 2j(p) =
∑
Fj±el

l=1,...,d

Dj±el

(
1

ρ(p)

)
j± 1

2
el

[
GF(pn)j± 1

2
el

]
l
, (2.45b)

N 3j(p) =
V

τ 2
ρ(pj), (2.45c)

N 4j(p) =
V

τ 2
ρ(pn

j ), (2.45d)

N 5j(p) =
∑
Fj±el

l=1,...,d

Dj±el

(
1

ρ(p)

)
j± 1

2
el

[
(ρnun)j± 1

2
el

]
l
. (2.45e)

where ρ(p) := ρ(p, T n) from (1.17).

Still some details are left for clarification in the above equations. These are the
inverse pressure dependent density and the gradient of the unknown pressure on
faces in N 1,N 2 and N 5. Using the linear interpolation (2.10), the former is given
by

(
1

ρ(p)

)
j± 1

2
el

=


(

1
1
2
hl+

1
2
(hj±el

)l

(
1
2
(hj±el

)lρ(pj) + 1
2
hlρ(pj±el

)
))−1

, Fj±el
∈ F̊

1
ρ(p

j± 1
2 el

)
, otherwise

,

(2.46)
where ρ(pj± 1

2
el

) is the boundary value at the face Fj±el
. The latter, the gradient of

the unknown pressure on faces is a more involved issue. We need to approximate
the term [

GF(p)j± 1
2
el

]
l
. (2.47)

To achieve a discretization which resembles the continuous case of applying diver-
gence to the gradient we would need to use the same approximation for the gradient
in both the momentum equation (2.34) and the pressure equation (2.38). The cor-
rect expression for the gradient would then be the average of gradients of the volume
centers because the gradient in the momentum equation is computed in centers. This
would yield

1
2
hl [GF(p)j±el

]l + 1
2
(hj±el

)l [GF(p)j]l
1
2
hl + 1

2
(hj±el

)l

.

This expression involves values of the pressure not only at neighboring volumes,
but also at neighbors of neighbors. For a less complex discretization, we choose to
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approximate the pressure gradient in the pressure equation as

[
GF(p)j± 1

2
el

]
l
≈


pj±el

−pj

(xj±el
)l−(xj)l

, Fj±el
∈ F̊

p
j± 1

2 el
−pj

(x
j± 1

2 el
)l−(xj)l

, otherwise
. (2.48)

We conclude that the nonlinear function N is given by (2.42) with (2.45) using
(2.46) and (2.48). We have reached a stage where the discretization is given in
enough detail to actually be implemented.

For using the Newton method we also need to provide a detailed discretization
of the Jacobian matrix valued function for N . This is done in the next Section.

The Jacobian

We will derive a Jacobian for the discrete system of equationsN given in the previous
Section. We will take the continuous partial derivatives of N and evaluate the
resulting matrix valued function at the discrete values of pressure. So we define the
Jacobian J as

Jjβ(p) :=
∂N n+1,k+1

j

∂pn+1,k+1
β

(p), (2.49)

Before we proceed with the details of (2.49), let us remark on the general topic of
computing Jacobians for Newton methods for large systems. We choose to find the
analytical derivatives of the discrete equations and compute the exact value of the
Jacobian J (p). For systems where this can be done with reasonable effort and where
analytical derivatives exist for the discrete equations it is by far the most efficient
method with regard to computation time. However, in any other case, there exist
other approaches to assemble a Jacobian for such a complicated discretization. We
want to give two examples without going into too much detail.

Automatic differentiation: This is a very promising and quite recent approach.
In this approach, the system of nonlinear functionsN is provided in a form where the
differentials can be recognized by a certain library. This library then automatically
finds the derivative of the functions and provides the code to evaluate these deriva-
tives. Once the derivatives are found, the approach is equivalent to our approach.
The difference is that we have to program the derivatives after we have calculated
them which is not necessary with automatic differentiation. Recent publications in
this area using the same library that we use for the Newton method are [HNS05]
and [BH97].

Approximation by finite differences: This is the most obvious, straightfor-
ward, easiest but also slowest approach. The idea is to form the Jacobian by

N (p + δp)−N p

δp



56 CHAPTER 2. ALGORITHMS

or any more sophisticated discretization approach.

If implemented successfully, the first approach would be very tempting. There
would be no further need to look at Jacobians, only the nonlinear function needs to
be provided. The second approach is slow but very helpful for testing whether the
Newton method is able to solve the nonlinear equation at all before having to derive
a Jacobian.

Again, we choose to analytically determine J by forming the derivatives of N
with respect to the unknown pressure p. This results in a very fast computation of
the Jacobian.

The Jacobian has a band shape where only a few entries per line are nonzero.
The exact form of a line of J depends on whether the volume associated with that
line is in the interior of the domain or has faces on the boundary. For ease of notation
we omit the superscript of N .

∂N0(p)
∂p0

. . .

...

. . .
∂Nj(p)

∂pj−e2
. . .

∂Nj(p)

∂pj−e1

∂Nj(p)

∂pj

∂Nj(p)

∂pj−e1
. . .

∂Nj(p)

∂pj−e2
. . .

. . .
∂Nj+1(p)

∂pj+1
. . .

...
. . . ∂NN (p)

∂pN



}
V0 ∈ V̄

...}
Vj ∈ V̊}
Vj+1 ∈ V̄

...}
VN ∈ V̄

(2.50)

In (2.50) we see a possible configuration of the Jacobian. Because we are considering
arbitrary domains, it may happen that a line for a volume with faces on the boundary
is inbetween lines representing volumes in the interior. Each line contains an entry
∂Nj

∂pj
for the center node of the respective volume and a certain number of entries for

neighboring nodes, depending on how many of the neighbors lie in the interior of
the domain.

Let us derive N by the unknown pressure to find the specific form of J . Again
we split up N into N 1 to N 5 and take their derivatives separately. The part N 4
does not depend on the unknown pressure and hence does not contribute to the
Jacobian. The simple term N 3 contributes only to the diagonal with the term

∂N 3j

∂pj

(p) =
V

τ 2

∂ρ

∂p
(pj). (2.51)

We have given ρ(p) for the granular flow model in (1.17). The derivative of this
relation is

∂ρ

∂p
(p)∣∣T=T n

=


ρ2

cT
n

(p + ρcT
n)2 , p ≤ pco

ρc(ρcT
n + ρcT0 − ρcoT0)

(p + ρcT
n + ρcT0)

2 , p > pco

. (2.52)
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Now let us look at the more complicated terms N 1,N 2 and N 5. Taking the deriva-
tive of these three terms is very similar between them so we give the derivative of
all three together.

Let p̂ ∈ {pj}∪{pj±el
, l = 1, . . . , d} be either the unknown pressure in the volume

center or in the center of any of the neighbors. Using the prefactor D±el
introduced

in (2.44) the derivatives of (2.45a), (2.45b) and (2.45e) can be written as

∂N 1j

∂p̂
(p) =

∑
Fj±el

l=1,...,d

Dj±el

(
∂

∂p̂

(
1

ρ(p)

)
j± 1

2
el

[
GF(p)j± 1

2
el

]
l
+

(
1

ρ(p)

)
j± 1

2
el

∂

∂p̂

[
GF(p)j± 1

2
el

]
l

)
, (2.53)

∂N 2j

∂p̂
(p) =

∑
Fj±el

l=1,...,d

Dj±el

[
GF(pn)j± 1

2
el

]
l

∂

∂p̂

(
1

ρ(p)

)
j± 1

2
el

, (2.54)

∂N 5j

∂p̂
(p) =

∑
Fj±el

l=1,...,d

Dj±el

[
(ρnun)j± 1

2
el

]
l

∂

∂p̂

(
1

ρ(p)

)
j± 1

2
el

. (2.55)

The above is still a general form of the derivative. Some of the parts need special
attention if a face intersects with the boundary. Let us start with the derivative of
the inverse pressure dependent wall density (2.46) which is essential to the derivatives
(2.53)-(2.55). For the derivative with respect to the volume center and the neighbors
we have

∂

∂pj

(
1

ρ(p)

)
j± 1

2
el

=
1

1
2
hl + 1

2
(hj±el

)l

(hj±el
)l

∂ρ

∂p
(pj)

(
ρ(p)j± 1

2
el

)2

(2.56a)

∂

∂pj±el

(
1

ρ(p)

)
j± 1

2
el

=
1

1
2
hl + 1

2
(hj±el

)l

(hl
∂ρ

∂p
(pj±el

)
(
ρ(p)j± 1

2
el

)2

(2.56b)

respectively for Fj±el
∈ F̊ . Otherwise the derivatives are zero by (2.46). Using

(2.10) and (2.52) we then have fully derived the inverse pressure dependent wall
density.

The last terms left for clarification are the derivatives of the pressure gradient
faces that appear in (2.53). The derivative with respect to the volume center pressure
pj is given by

∂

∂pj

[
GF(p)j± 1

2
el

]
l
=

−1

(xj±el
)l − (xj)l

.
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The derivatives with respect to the neighboring volume centers are given by

∂

∂pj±el

[
GF(p)j± 1

2
el

]
l
=


−1

(xj±el
)l−(xj)l

, Fj±el
∈ F̊

0, otherwise
. (2.57)

Let us finally conclude how the Jacobian looks. The general shape of the matrix
valued function is given in (2.50). There we see that it has a band shape very
similar to the discretization of a PDE where each line represents the discretization
of one finite volume. The difference for the Jacobian is that the columns contain
derivatives with respect to neighbor volumes instead of the coefficients with respect
to neighbor volumes as in PDE discretization. The number of entries in each line
depends on how many faces of the volume for this line intersect with the boundary.

The major terms on the diagonal of the Jacobian are (2.51) and (2.53). They
are the derivatives of the compressibility term and the pressure operator (2.37)
respectively.

Certainly we have presented here only one possible way to discretizeN and hence
to compute the Jacobian J . But as we are using a truncated Netwon Method where
the linear system involving the Jacobian as in (2.41) is only solved approximately
it is not critical to have an exact Jacobian. The reason why we find the derivative
analytically is computation efficiency.

Furthermore we have not given a detailed treatment of the discretization of
boundary conditions. Even though in Equations (2.46),(2.48),(2.56) and (2.57) we
have distinguished between faces that intersect with the boundary and those in the
interior we have only made use of values on the faces. We postpone the question of
how these values are obtained to Section 2.5.1.

2.5 Initial and boundary conditions

Up to this point we have given an overview of the theory of boundary conditions for
NSE-type systems in Section 1.1.2 and we have mentioned the number and type of
continuous boundary conditions and the problems that exist for the granular flow
model in Section 1.3.3 and especially in Table 1.1.

In the discretization of the NPE and its Jacobian in Section 2.4.6 we have distin-
guished whether a discretization point is on a face that intersects with the boundary
or on an interior face in Equations (2.46),(2.48),(2.56) and (2.57). However, we have
not talked about how the values at boundary faces are approximated. The issue of
initial conditions has been completely left out so far.

In this Section we will focus on how the boundary conditions enter the discretiza-
tion and how initial conditions for the granular flow model (1.18) can be chosen.
We are aware that we treat the issue of boundary and initial conditions in a very
narrow scope as this is not the focus of this work. Especially for granular flow, the
topic is vast and complicated as we have hinted in Section 1.3.3 and well deserves
treatment in a work of its own.



2.5. INITIAL AND BOUNDARY CONDITIONS 59

2.5.1 Approximation of boundary conditions

We have already mentioned in Section 1.3.3 and particularly in Table 1.1 that we
consider two types of boundary conditions. Let us repeat them. The first are
Dirichlet conditions of the form

q = q̄ on ∂Ω (2.58)

where q is any unknown density, pressure, velocity component etc. and q̄ is a given
function on the boundary. The second are homogeneous Neumann boundary condi-
tions where the derivative of an unknown on the boundary and in normal direction
of the boundary is set to 0

∂q

∂n
= 0 on ∂Ω. (2.59)

Here n is the normal on the boundary.

We distinguish between two cases of how these boundary conditions are imple-
mented. The first case is the discretization of the NPE in Section 2.4.6. This is
effectively an explicit discretization because as we have mentioned in the first para-
graph of Section 2.4.6 the function N is just evaluated at the given pressure field
pn+1,k+1,α in every Newton step.

The second case are the linear implicit discretizations as for example the opera-
tors DIV and D from (2.13) and (2.16) respectively. They are used for example in
the discretization (2.34) of the velocity prediction (2.26) but also in the discretization
of the temperature equation.

Let j̄ be the index of a volume in V̄ as in (2.9) and assume without loss of
generality and for ease of explanation within this Section that the face F+e1 ∈ Fj̄ is
in F̄ from (2.7). Let us first consider the case of Dirichlet boundary conditions.

Dirichlet boundary conditions: There is no difference in their implementation
between the NPE and the operators DIV and GF . So for any unknown q, let q̄ be
the Dirichlet condition on the boundary. Then for the linear implicit discretization
operators in (2.13b), (2.14b), (2.16b), (2.17) and for the discretization of the NPE
in (2.44), (2.46), (2.48) we set

qj̄+ 1
2
e1

= q̄(xj̄+ 1
2
e1

). (2.60)

Note that for the NPE the unknown is always called p instead of the general q because
p is in that case the only unknown used in the discretization.

Homogeneous Neumann boundary conditions: They are treated differently
for the implicit linear operators and the NPE. In the discretization operator D for
diffusive terms in Equation (2.16) we set

(grad qj̄+ 1
2
e1

)1 = 0
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in (2.16b). In similar fashion for the pressure operator (2.37) of the NPE (2.38) we
set [

GF(p)j̄+ 1
2
e1

]
1

= 0

in Equation (2.48).
For the discrete divergence operator DIV in (2.13b), (2.14b), the operator GF

in (2.17) and the respective parts of the NPE discretization in (2.44), (2.46) we set

qj̄+ 1
2
e1

= qj̄

to approximate the condition (2.59).
A special case are periodic boundaries. We will show how the periodicity is

approximated in the discretization.

Periodic boundary conditions: Plainly speaking, the periodicity of a domain
is realized by discretizing across the periodic boundary assuming the volume in
the opposite direction of the periodic boundary to be the direct neighbor. This
means that with respect to the discretization, a volume on the periodic boundary is
discretized exactly like one on the interior with a different neighbor.

Let us exemplify this for the 1D case on the domain [0, 1] which we decompose
into 5 volumes V1, . . . ,V5 of length h1 = 1

5
each. If for example we look at the

incompressible case of Equation (2.24) we use the discretization operator D from
Definition (2.16) as D(q,1) on an unknown q on this domain and assume the domain
to be periodic, then the discretization in the volume V1 on the left periodic boundary
looks like

− 1

(x5 − x5+ 1
2
e1

)1 + (x1− 1
2
e1
− x1)1

(q5 − q1) +
1

(x2)1 − (x1)1

(q2 − q1). (2.61)

The notation seems a bit overly complicated for such a simple discretization but we
want to remain as close as possible to our general notation used for the definition of
D in (2.16). The difference between Equation (2.61) and (2.16) is in the denominator
of the first term in (2.61) where we determine the length between the periodically
connected volumes V1 and V5.

This discretization inhabits a problem. The resulting linear system to solve
D(q,1) = 0 with the above periodic discretization is

1

5


−2 1 1
1 −2 1

1 −2 1
1 −2 1

1 1 −2

 ·


q1

q2

q3

q4

q5

 = 0,

which has only rank 4 and is hence not invertible. This can be cured by fixing the
value of the unknown at exactly one point of the periodic boundary. For example
for the left boundary point, this removes the entry 1 at the upper right corner of



2.5. INITIAL AND BOUNDARY CONDITIONS 61

the matrix and hence it has rank 5.
Here the 1D case looses its practicability because by setting one of the two

boundary points we loose periodicity. But in the 2D or 3D case this a successful
approach which we use.

2.5.2 Initial conditions for the granular flow model

We have found during the development of the NPA 2.2 that the choice of initial
conditions is crucial for the convergence and has a strong impact on the maximum
possible time step. As long as we are only dealing with an inflow into an empty
domain the issue is quite clear. We set the density variable to a very low value of
volume fraction, say 1e−3, we provide a low granular temperature of the same order
which corresponds to very little movement of the few grains that are in the domain
and use the relation (1.18g) to compute the corresponding pressure field. The initial
state is then fully determined.

The topic becomes much more complicated if we start with an initial bulk of
granular material which fills the domain. We have such a case for example in the
shearflow experiment in Section 3.1 and in the falling block of grains in Section 3.4.1.

Generally speaking, initial conditions should be chosen with a given pressure
profile and a given volume fraction as this determines the initial grain configura-
tion. From these two fields a granular temperature should be computed again using
(1.18g). In the case of simulations under the force of gravity, the best initial guess
we have for the pressure without solving the system is a hydrostatic pressure profile
where the pressure balances out the gravity in direction of the filling height H as
p = ρgHH. By filling height we mean the distance the grains have from the bottom
in a pile.

But even with this condition remains the problem that we introduce a discrete
discontinuity in the density and hence in the pressure and the temperature between
the region which is filled with grains and the region without grains. The value of ρ
as a volume fraction then changes from below 0.64 to 1e− 3 from one volume to the
next.

We have found that the algorithm NPA 2.2 together with our FV discretization
is able to handle at least the hydrostatic initial conditions or the initially empty
domain. It is however not clear how close to reality the time-dependent process is
when we start, say the emptying of a Silo, with hydrostatic initial conditions. We
observe that the granular material first compacts to a certain resting state before
actual flow occurs. These problems are outside the scope of this thesis and should
be treated in a work of its own.





Chapter 3

Validation and numerical
simulations

In this chapter we present numerical experiments to validate, investigate and apply
both the granular flow model introduced in Section 1.3 and the nonlinear pressure
algorithm (NPA) introduced in Section 2.4. We start by presenting our main vali-
dation experiment, the granular shear flow. This is the best studied granular flow
experiment and is approached analytically in [BLS+01]. It serves as a basis for vali-
dating the model as well as the algorithm. Therefore we introduce the experiment in
Section 3.1 and discuss its numerical setup in general. The results of the experiment
with respect to various validation aspects will be given in the subsequent sections.

In Section 3.2 we will show that the presented hybrid model for granular flow
can be solved with our numerical algorithm and is able to reproduce typical granular
flow patterns. We will concentrate on the dense regime, since our model is equivalent
to the often tested kinetic theory in dilute and intermediately dense flow. In Section
3.3 we will investigate the NPA for both Newtonian and non-Newtonian flow.

Section 3.4 will show investigations of properties of the NPA in combination with
the granular flow model. This aims to support statements during the derivation of
the algorithm and the model and should give some insights into the challenges posed
by this combination and the properties of the NPA. Finally, in Section 3.5 we show
the applicability of our approach to two selected industrial problems.

3.1 The granular shear flow experiment

We simulate the shearing experiment from the experimental and analytical work
of Bocquet et al. in [BLS+01]. In the experimental setup displayed in [BLS+01,
Figure 1, pg. 4] the granular media is sheared in a Couette geometry. The grains
are agitated by the flow of air from the bottom. An inner cylinder rotates inside
a resting outer cylinder. Inbetween the two cylinders the grains are constrained to
a 12mm gap. In [BLS+01, Section 4] it is stated that the behavior of the inner
cylinder is very similar to the dynamics of a rough plate sliding across a granular
layer. Therefore we carry out the simulation with exactly this configuration using
periodic boundaries in the shearing direction.

Our domain is a plate as in Figure 3.1 which is 1.8mm thick, 12mm wide and
36mm long. The boundary conditions in x-direction are periodic to simulate the
cylindrical layout in the experiment. The main difference between the experimental
setup in [BLS+01, Figure 1, pg. 4] and our setup is the flow of air. As the flow of
air in [BLS+01] is perpendicular to the shearing profile, it does not contribute to
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Figure 3.1: Setup of the numerical shearing experiment.

the velocity profile induced by the shearing. However, the flow of air does agitate
the grains throughout the whole domain whereas our only source of agitation is the
shearing velocity, the moving wall. Therfore in z-direction we put Dirichlet boundary
conditions for the granular temperature. This is an attempt to simulate constant
agitation of the grains. We will see that this is successful only on the boundary and
is not able to model the agitation caused by the airflow in the experiment throughout
the whole domain. As no absolute values of temperature are given in [BLS+01] we
set this agitation temperature as the mean value of the temperature between the
moving and the resting wall from the measured results in [BLS+01, Figure 3, pg. 5].
The top wall which corresponds to the outer cylinder in the experiment is a rough
wall with no-slip boundary conditions. We set the velocity to be zero there.

The domain is discretized into 60× 40× 3 volumes. Trying to match the param-
eters from [BLS+01] as closely as possible, the internal friction angle is 30 degrees
and the grains have a diameter of 0.75mm. The bare grain density is 2550 kg

m3 . The
shearing velocity ushear in x-direction is 3.2mm

s
.

3.2 Validation of the granular flow model

In this section we will try to validate the granular flow model with a few experiments.
It is difficult to find real benchmark problems for granular flow because granular
material exists in very diverse flavors. As the modeling is not agreed upon, it is
difficult to define a benchmark. We therefore validate using various experiments.

We begin with the results of the shear flow experiment which has been introduced
in Section 3.1. We continue with the angle of repose which is an indicator for the
internal friction angle, a material property. This property is studied in a Hele-
Shaw-Cell which is a very thin cell between two plates simulating a 2D setup in a
3D material. Then we consider a phenomenon of granular flow which also relates
to the internal friction angle. Granular material resists a force when put on an
inclined plane. When increasing the angle of the plane the material suddenly starts
to move. The dependency of the thickness of the resting layer on the inclination
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Figure 3.2: Top row: Velocity and temperature profiles of the numerical shearing experiment.
The velocity u1 is normalized by the shearing velocity ushear. The temperature is divided by
the maximum temperature and displayed on a logarithmic scale. Both values are displayed as a
function of distance from the shearing wall normalized by the grain diameter Dgrain. Bottom row:
Figures [BLS+01, Figure 2, pg. 5] (left) and [BLS+01, Figure 3, pg. 5] (right).

angle is studied and compared to an experiment. We continue with an experiment
of dense and dilute flow around a cylinder and investigate the behavior of the flow.
The last subsection considers the aspect of mixed derivatives in the granular flow
model.

3.2.1 Shear flow

Let us present the results of the numerical shearing experiment and compare them to
the experimental results from [BLS+01]. The velocity profile in Figure 3.2 matches
with the one given in [BLS+01] which is the bottom left figure. There we match
closest to the curve of solid triangles which is the experiment without airflow as
we a computing it. The temperature profile however does not match so well with
[BLS+01, Figure 3, pg. 5]. We argue that this can be explained by the difference
between the experiment and the numerical simulation and that the right graph in
Figure 3.2 still makes sense for our setup.

We believe that the difference in the profile inbetween is caused solely by the
influence of air blown through the whole domain in the experiment. Even though we
apply an agitation source through Dirichlet boundary conditions for the granular
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temperature on the top and bottom walls, this is not sufficient to simulate the
constant agitation caused by the airflow throughout the whole domain. And as
there is no source of agitation other than the shearing wall, the fluctuation of the
grains should decrease similar to the velocity profile.

This is why our temperature profile seems reasonable for our setup. Close to
the wall, for a few layers of grains the temperature decreases very slowly as is
the case in [BLS+01]. Then it decreases quickly as the influence of the shearing
decreases. When we reach the point where no velocity is induced by the shearing
anymore, then the grains also reach their minimum agitation which is measured by
the granular temperature. However, the amount of decrease in the temperature is
matched perfectly again. At the outer, resting wall the measured temperature is, on
the displayed logarithmic scale about −0.76 which is the same as in our simulation.

Let us further remark on the observation that we can find the same stability of
the velocity profile as in [BLS+01, Figure 2, pg. 5]. There it can be observed that the
velocity profile remains almost unchanged for different shear velocities and different
air flow configurations. We can observe in our simulations that the velocity profile
also remains almost unchanged for temperature or periodic boundary conditions and
for different velocity boundary conditions on the shearing wall.

From an analytical viewpoint, the temperature is discussed in [BLS+01]. There,
as usually for pure Couette flow, a solution with constant pressure is constructed.
At constant pressure in [BLS+01, Equation (20)] an analytical expression for the
granular temperature is derived in [BLS+01, Equation (25)] which agrees with the
experimental results. This constant pressure solution fixes the temperature at the
moving and the resting walls. In our numerical experiment the wall temperature is
prescribed at a value which is not necessarily consistent with the constant pressure
solution because the absolute temperature values are not given in [BLS+01]. In
this regard it is very interesting to observe the velocity profile does not seem to be
influenced by our choice of wall temperature and hence not constant pressure.

The profile of the volume fraction is displayed in Figure 3.3. The authors of
[BLS+01] do not give detailed graphs for volume fraction, but they do remark that
the density close to the moving boundary is measured to be up to 40% below its
limiting value. They further state that the volume fraction increases rapidly with
distance from the sheared surface over several particle diameters. This corresponds
to our observations in Figure 3.3.

3.2.2 The angle of repose

As discussed in Section 1.3.2 one of the most obviously observable properties that
make granular media different from common fluids is the formation of piles. Even
though the resulting angle of repose is not a material property, it is usually very
close to the internal friction angle which quantifies the frictional interactions of the
grains. We show in Appendix A.2 that for our hybrid model analog to [BLS+01]
this internal friction angle is given by tan Φ =

√
ε0η0.

So we may a priori choose a desired internal friction angle which the solution of
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Figure 3.3: Volume fraction profile of the shearing experiment displayed as a function of distance
from the shearing wall normalized by the grain diameter Dgrain.

the granular flow equations (1.18) should obey. Though the internal friction angle
may differ by a few degrees from the measured angle of repose (which differs slightly
through different experiments), the formula should still suggest a range of values to
match the angle of repose found in our numerical experiments. We show that this
is the case.

Setup of the numerical experiment

To measure the angle of repose we simulate a Hele-Shaw-Cell experiment. A Hele-
Shaw-cell is a very thin rectangular domain which is completely closed except for an
inflow at the top. We use a two-dimensional grid with 94 x 82 volumes with volume
width of 1.25e − 2m. The grid is uniform within the domain and is refined at the
boundary to avoid that boundary effects obscure the results.

For initial conditions, we “fill” the domain with a volume fraction of sand of
10−4. At the inflow we prescribe Dirichlet boundary conditions for the volume
fraction (0.4) and the velocity in y direction (−0.5m

s
). We should mention that

the whole process is simulated in one run of solving the time-dependent equations
described above. This includes the free falling of grains out of the inlet as well as
the formation of the pile on the bottom.

Results

We run the simulation for three different internal friction angles of 51, 42 and 25
degrees by adjusting the value of ε0. The measured angles of repose resulting from
the simulations and displayed in Figure 3.4 come out as 48, 40 and 23 degrees. These
values are within the commonly expected proximity to the internal friction angle.
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Figure 3.4: Inverse colour scale visualization of the volume fraction at the final stages of filling
a Hele-Shaw-Cell with granular media at angles, from left to right, of 48, 40 and 23 degrees.

3.2.3 Sliding down a rough inclined plane

Another aspect of granular flow is the transition from rest to flow depending on the
force acting. An extensively studied experiment is the sliding of layers of granular
media on an inclined plane. Depending on inclination angle, the behavior of the
granular media is quite different. Below the angle of internal friction, the grains
either stay at rest or only a thin surface layer begins to slide. If the inclination is
increased through and above the internal friction angle, the thickness of the layer of
resting material decreases. In [BEL02], a kinetic model of granular flow is studied
with regard to this aspect. A qualitative agreement to measurements is found there.
Among many references, it cites [DD99] which gives experimental data which we
want to compare our simulations with.

Setup of the numerical experiment

Similar to the Hele-Shaw-Cell experiment in Section 3.2.2 we study the flow in a
thin cell, whose width is around 3 grain diameters of 1.75e − 4m. The height of
the initial resting bulk of grains is 7e − 3m thick and rests on a 0.2m long plane.
The resolution of the grid is 2e− 3m in x-direction and 5e− 4m in y-direction. The
initial conditions of resting sand are achieved by performing a filling simulation at
zero angle. Then the plane is inclined which initiates the transition from rest to
flow. The thickness of the resting layer is determined by declaring all grain layers
with velocity less than 1e− 3m

s
as resting. The inclination is actually achieved by a

rotated gravity vector. The angle of repose is 25 degrees.

Results

Figure (3.5) collects the results of our simulations as functions of critical thickness
against angle of inclination. The shape of the curve is in very good agreement
with the experimental findings in [DD99, Figure 1] even though we do not have
quantitative agreement. This was expected as the reference does not give enough
details on the granular material used for the experiments and we are not able to
adjust all parameters to mimic the material used. However, it can be seen that in our
numerical experiment the material immediately starts to move when the inclination
angle is above the angle of repose of 25 degrees. There is also a strong point in favor
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Figure 3.5: Plots of the thickness of the resting layer in number of grain layers against the
inclination angle in degrees. Left: Figure 1 from [DD99] with experimental data from a sliding
experiment. Right: Simulations have been run for the angles marked with blue rectangles, the
graph is obtained by Matlab shape preserving interpolation.

of our hybrid model in contrast to the purely kinetic model. In agreement with
experiments the thickness of the resting layer approaches zero for angles significantly
above the internal friction angle, where in [BEL02] the thickness seems to become
small but stays finite, see [BEL02, Figure 1]. The purely kinetic model proposed
therein seems not to be able to mimic the granular material correctly in that regimes
whereas ours does.

3.2.4 The stress tensor for granular flow

We want to follow up on the discussion of the form of the stress tensor σ (1.8) of the
model for granular flow introduced in 1.3. There we have argued that the specifics
of granular media introduce a rotational viscosity and have ended up with a stress
tensor that does not contain mixed derivatives like the general stress tensor (1.1c).

We want to strengthen our point by showing that the inclusion of mixed deriva-
tives with κ as in (1.1c) leads to results which do not match experimental data. As
a general remark, we have found in numerous numerical experiments that mixed
derivatives cause a much too large diffusion of momentum. When piles are formed
it shows that the granular media appears to be much too fluid-like.

We quantify this effect on the example of the shear flow experiment from Section
3.1. In the numerical experiments in Section 3.2.1 we have obtained velocity and
density profiles which match the experimental profiles from [BLS+01]. We have car-
ried out the same computation but including mixed derivatives using κ as in (1.1c).
We compare the velocity and density profiles with and without mixed derivatives in
Figure 3.6.
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Figure 3.6: The plots show velocity (left) and density (right) profiles in the shear flow experiment
from Section 3.2.1. The red line always shows the profile with mixed derivatives as in (1.1c). The
black line shows the profiles with the stress tensor introduced in the granular flow model (1.18d).

In the plots it can be observed that the results are quite different with mixed
derivatives and more importantly, they do not agree with the experiment anymore.
This together with other numerical experiments on the formation of heaps suggests
that (1.18d) is the correct approach to the modeling of the stress tensor for granular
materials.

3.3 Validation of the algorithm

We will investigate the numerical properties of the NPA introduced in Section 2.4.
All the numerical experiments in the previous Section 3.2 are computed using NPA.
This shows that the algorithm is generally able to compute solutions the granular
flow model (1.18) which agree with experimental data. However, it is not clear if
quantitative differences that occur at some points are due to the algorithm or are
differences between the model and the real granular material used in the experiments.

We will first validate the NPA for the case of Newtonian flow in Section 3.3.1. It
is certainly necessary that the nonlinear algorithm includes the case of Newtonian
flow. Then we will look at the algorithm in the case of the full nonlinear granular
flow model (1.18).

Analytical solutions to the model (1.18) exist only for the case of shear flow and
there only in the high density limit. We have found agreement to our numerical
results in that case in Section 3.2.1. Therefore, for validation we will compute the
shear flow example on a very fine mesh in Section 3.3.2 and compare the solutions
on successively coarsened grids to that. These studies also show that the periodic
boundary conditions which are implemented as described in Section 2.5.1 work well
for the NPA.
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Figure 3.7: Geometry from [TS96].

Figure 3.8: Computations with NPA. Snapshots of velocity (top) and pressure (bottom) after a
quasi-static state has been reached

3.3.1 Newtonian flow

The NPA will be applied to the unsteady 2D benchmark from [TS96]. We run the
unsteady test case “2D-2” from [TS96, Section 2.2 b)]. They consider the flow
around a cylinder with circular cross section. A parabolic inflow profile is applied
with a maximum velocity of 1.5m

s
. The kinematic viscosity is defined as η = 1.0e−

3m2

s
and the fluid density is ρ = 1.0 kg

m3 . This results in a Reynolds number of
100. At Reynolds numbers above 90 we usually expect some kind of unsteady
flow behind the cylinder in the form of a Kármán vortex street. The benchmark
geometry is displayed in Figure 3.7. A snapshot of the flow can be seen in Figure
3.8. When applied to an incompressible, Newtonian flow problem the NPA should
reduce to a linear problem. As expected, the number of Newton iterations to solve
the pressure equation is 1. We want to compare our computation to the ones in
[TS96]. One of their benchmark quantities is the difference in pressure before and
after the cylinder. Because the flow is unsteady we have to take the time average
of the pressure values after the flow has been established. In Table 3.1 we give
the pressure drop averaged over 100 time steps. Our results are a bit outside the
estimated interval for the “exact” pressure drop. This seems very understandable
under the given circumstances. It is stated in [TS96, Section 5] that the most
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Number of volumes Pressure difference
NPA 40600 2.4463
[TS96] ≈ 15000− 300000 Estimated “exact” interval: 2.46− 2.50

Actual results: 2.4587− 2.5035

Table 3.1: Comparison of NPA results for the benchmark taking into account only FV solvers.
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Figure 3.9: Left: We compare the velocity profiles of the shear flow experiment on different grids.
Right: The maximum error of the solutions for the different grids is plotted agains the grid size.
On the x-axis we plot the exponent α of the factor 3α by which the reference grid is coarsened in
each direction.

accurate solvers are using FV with contour adapted grids. We do not have such an
adaption. The cylinder in our case is approximated quite roughly by rectangular
finite volumes. Furthermore, the results for the pressure drop differ very strongly
across the different solution methods. Actually only the solver [TS96, 7a] is within
the bounds for all grid resolutions. In the light of all factors taken into account in
this benchmark our results seem very close.

3.3.2 Solutions for different grid resolutions

We investigate the solution of granular shear flow from Section 3.1 for succes-
sively refined grids using the NPA introduced in Section 2.4. Even for the shear
flow, analytical solutions are only available for limit cases. It is even usual for
Navier-Stokes Equations (NSE)-type systems that no complete analytical solutions
are available for comparison to the numerical solutions. For simple partial differ-
ential equations (PDEs) this problem is resolved by applying the PDE system to
a given solution and computing the right hand side. Then solutions for the sys-
tem with this right hand side are computed and compared to the initially provided
analytical solution.

For our very complicated system 1.18 this approach is not practicable. The
equations are highly nonlinear. We cannot judge how stable the relations behave
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Grid Number of volumes ||u− uref ||inf ||u− uref||2/||u||2
Reference 648× 405=262440 0 0
Finest 216× 135=29160 1.540e− 6 5.578e− 4
Fine 72× 45=3240 1.684e− 5 7.145e− 3
Coarse 24× 15=360 1.553e− 4 8.244e− 2
Coarsest 8× 5=40 2.567e− 4 5.365e− 1

Table 3.2: Errors of the computation on different grids with respect to the reference solution.

outside the physical realm of granular flow. So the task would be to find physically
consistent profiles of density, velocity, pressure and granular temperature which
satisfy their dependencies given in 1.18 and stay within the existing limits, for
example 0.64 for the density and conservation of mass. Even if we would find such
profiles, a right hand side would appear in the momentum equation which acts
essentially as a volume force. Therefore we approach the problem by computing a
solution which we use as our reference on a very fine grid.

The reference solution is computed on a grid with the resolution of 648 × 405
volumes. The coarsest grid has 8× 5 volumes and is successively refined by a factor
of three in each direction which means that a volume of any grid holds 9 volumes
of the next finer grid. We use the factor 3 because of our cell-centered grid. In
this way we are able to compare solutions on different grids directly by restriction
without interpolation because the centers of fine and coarse volumes coincide. In
Figure 3.9 we show on the left how the solution approaches the reference solution
through refinement of the grid.

The error values for infinity-norm and 2-norm together with the data of the
different grids used is given in Table 3.2. Here we only compare the values of
velocity, because we know from the experimental and analytical results in [BLS+01]
that our computed reference velocity profile matches the data provided therein. We
do not have any such data for the pressure.

The right picture in Figure 3.9 shows how the error is reduced by refining the
grid. With each refinement of increasing the number of volumes by a factor of 9
we reduce the maximum error to the reference solution by roughly one order of
magnitude. This is the case for all grids except from the coarsest to the coarse grid.
There the error is reduced, but not by a whole order of magnitude.

3.4 Numerical investigations

In this section we will treat a few aspects of the algorithm development numerically.
Most of the computations for the model (1.18) using the NPA 2.2 are carried out
in Chapter 3. During the development of the NPA in Section 2.4 we have made a
few statements about for example the conservation of mass and the compressibility.
The numerical experiments here are meant to serve as supporting arguments for



74 CHAPTER 3. VALIDATION AND NUMERICAL SIMULATIONS

Figure 3.10: We visualize the process of the block of grains falling under the force of gravity.
The transparent block is held on the top in the left figure, falls down in the two central figures and
rest completely compressed on the bottom of the box in the right figure. The elevated plane shows
the compressibility of the center layer in z-direction and varies between 1e− 6 (blue and flat) and
1e5 (red, elevated) during the stages of the process. The grain density is visualized by the color of
the transparent block where the green color means loosely compressed grains at volume fraction
0.4 and red means highly compressed grains marginally below a volume fraction of 0.64

these statements and show certain properties which cannot be treated analytically
because of the complexity of the model equations (1.18).

3.4.1 Compressibility regimes

At various stages in the development of the algorithm we have mentioned that the
model (1.18) inhabits both compressible and almost incompressible regimes. This
is clear from a physical viewpoint. A very dilute set of grains can be compressed
very easily until it cannot be compressed at all anymore. To treat this analytically
is very difficult because for the compressibility ∂ρ

∂p
there is always the dependency

of temperature, see (1.17). However, the temperature is part of the solution of the
complete system (1.18) and therefore we can give the compressibility only for a
certain solution.

So let us visualize the compressibility for a very simple numerical experiment.
We choose the following setup. We hold a block of grains on the top half of a
3D box. At t = 0 we remove instantaneously the plane holding the grains. The
computation is then started with gravity as the only acting force. Reality tells us
the block of grains should fall to the bottom, compress there and rest at a certain
packing fraction under the force of gravity. The different stages of the process are
plotted in Figure 3.10

This shows that the compressibility varies strongly in both time and space be-
tween values of around 1e5 and 1e − 6. Let us give a very rough sketch on Mach
numbers. Of course, the speed of sound in solids or particle ensembles is a very
difficult issue, but let us for this consideration assume we are dealing with a simple

liquid. The speed of sound in liquids is defined as
√

∂p
∂ρ

. So for our compressibility

which is the inverse derivative ∂ρ
∂p

the speed of sound ranges as low as around 3e−3m
s
.

For sand velocities of 1m
s

which are not uncommon we have Mach numbers of at
least 100 which is highly compressible flow.
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Figure 3.11: Mass integral of the falling grain block over time. The dashed lines plot an area of
1 percent of mass deviation around the actual mass curve. Note that at some point the sand hits
the bottom of the box where it starts to compress.

Our simulations suggests that our NPA 2.2 is able to handle these variations in a
stable way. For linear fractional step methods (LFSMs) and specifically linear pres-
sure correction algorithms (LPCAs) this is approached in various ways, for example
in [BW98, vVW01] for highly compressible flows and [Chu03] for weakly compress-
ible flows. It seems that in our case the use of a nonlinear pressure equation (NPE)
makes these approaches unnecessary as we are not approximating the dependency
of density on pressure.

3.4.2 Mass conservation

We have shown in the previous section that for the example of a falling block of
sand, the compressibility varies strongly and that for granular flow we are in the
regime of highly compressible flow with a large Mach number. With this in mind we
want to investigate another property of the algorithm which we have claimed during
its development. We have stated in Section 2.4.1 that the corrector of the NPA
2.2 ensures the conservation of mass even for highly compressible flow. Therefore
we plot in Figure 3.11 the mass integral over the whole domain during the time-
dependent solution process. The experiment suggests that the mass is conserved
even during the period of high compression of the grains. Also, in the period after
the compression, when the pile of grains rests without further movement is stable
and the amount of grains that initially filled the box remains constant.

3.4.3 Bifurcating solutions

For the granular shear flow experiment from Section 3.2.1 we have found a property
of our granular flow model (1.18) which is very interesting to mention, even though
its thorough or possibly even rigorous investigation is outside the scope of this work.
There seems to exist more than one solution in the granular flow model (1.18) and
hence bifurcations. We are not the first to mention this. In [BEL02] the model from
[BLS+01] which our model is largely based on, is applied to the situation of the flow
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Figure 3.12: Left: Bifurcations in the solution for ρ(p, T ) in the shear flow experiment from
Section 3.1. Right: Zoom in on the bifurcation point of the ρ(p) graph.

on an inclined plane, compare also Section 3.2.3. The third paragraph in [BEL02,
pg. 3] mentions the existence of multiple solutions above a certain volume fraction
for certain parameters where only one is mentioned to be dynamically stable.

The curves in Figure 3.12 show that multiple solutions of density depending on
temperature and pressure exist simultaneously at different points in space. The
time-dependent simulation however starts with a bijective relation between den-
sity, pressure and temperature (1.17). Hence, there must exist a point in time, a
bifurcation point, where a second solution branches off.

In Section 2.1.1 we have provided arguments in favor of an implicit or semi-
implicit algorithm. Bifurcating solutions are an aspect which might be handled
better by an explicit algorithm. For an explicit algorithm it is more likely that the
time marching stays on one of the branches once the bifurcation point is passed by
the way the solution is computed. Basically an explicit algorithm starts with the
solution of the previous time step and advances that solution with a very small time
steps. In an implicit algorithm, the previous solution is only the starting point of an
iterative procedure, in our case a Newton method in line 5 of Algorithm 2.2. Hence
any local solution maybe obtained from this iterative procedure, especially as the
solution branches have so little distance as in Figure 3.12.

3.5 Simulation of industrial processes

As the goal of work is not only the development of an algorithm and an imple-
mentation for validation purposes but also the development of a software, the code
resulting code should be able to simulate granular flow on non-trivial domains. Also
it should be easily extendable to solve new problems as they appear. In the Hele-
Shaw-Cell experiment in Section 3.2.2 we have already shown that we are able to
simulate a process of granular flow by filling the Hele-Shaw-Cell with a pile of grains.

We want to show here two further examples of the applicability of the code
outside pure validation purposes. The first in Section 3.5.1 is the process of emptying
a industry-size (2m high) 3D silo full of granular material. We carry out the complete
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simulation starting from the full silo until all granular material has flown out. In
Section 3.5.2 we extend our granular solver for a very interesting application of
solid mechanics. In some industrial applications it is necessary to compact granular
material after it has been filled into a domain. We simulate this process by adding a
volume force term to the momentum equation (1.18b) for certain volumes and hence
applying a force on the top of the bulk of granular material. We observe an increase
in volume fraction of grains throughout the whole domain and we find that a static
pressure inside the bulk builds up which resists further compactification.

3.5.1 Emptying of silos

Simulation of granular media finds a wide range of applications in the field of han-
dling of bulk goods. The vast majority of simulations in this area is carried out
using DEM methods, treating each grain as a separate particle. The downfall of
this method is the amount of grains that would need to be simulated for a full silo.
For a silo of industrial size, a realistic estimate is 109 to 1012 particles which is
out of the reach of current computation equipment by many orders of magnitude.
Certainly there may be effects that can only be simulated by accounting for single
particle interactions, but those have to be restrained to much smaller scales. With
our method, we can simulate the complete process of emptying an industry-sized
silo in days on standard non-parallel workstation hardware.

A basic qualitative phenomenon of silo flow is the distinction of core and mass
flow depending on the steepness of the silo cone. For flat silos, so called core flow
occurs where the grains flow towards the center of the silo and only in the center
flow towards the outlet occurs. For steep silos, the grains at every point in the silo
flow downwards, no inverse cone in the center is observable and mass flow occurs.
In industrial silos mass flow is desired to avoid resting of goods in certain areas of
the silo. It is known from experiments with the silo geometries that we use, that
for usual internal friction angles around 30 degrees a slope of 20 degrees will lead
to mass flow, and at 60 degrees one should expect core flow. The slope is the angle
between the hopper wall on the bottom of the silo and the y-axis.

We simulate the flow out of two different silos, one at 20 and one at 60 degrees.
The shape of the silos can be seen in Figure 3.13. Both silos are discretized using
88 × 487 volumes. As the flow is mainly in y-direction, downwards out the silos,
the domains are refined in that direction. Both silos have a radius of 0.35m and a
height of 2m.

For numerical reasons, the domain does not end at the outflow as would be
suggested by Figure 3.13. In fact, a channel with the radius of the silo is attached
to the bottom of the silo which at its end contains the actual outflow boundary
conditions. This has proven to be a much more stable outflow configuration. The
top of the silo is also numerically treated as an outflow, it is an open boundary.

Another point which needs discussion are the initial conditions. We fill the whole
silo with a volume fraction of grains of 0.5. This is below the maximum packing
fraction which, because of the gravitational force, causes the material to compress
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Figure 3.13: Plot of an intermediate stage in the process of emptying a silo with a 60 degree
hopper (left) and a 20 degree hopper (right). We plot the magnitude of the mass flux where dark
areas mean a large mass flux. The pictures are rotated for display convenience.

before it actually flows out.

Our results show exactly the expected behavior in Figure 3.13. The difference
between mass flow and core flow can clearly be seen. In addition we observe in the
simulation that in the case of mass flow, the flux vectors are directed parallel to the
direction of gravity at every point in the silo where in the case of core flow the grains
on the top slide into the middle of the silo and only from there slide downward.

3.5.2 Compactification of granular media

One of the industrial applications for the compactification of granular material is
the process of making sand cores for the casting industry, see [GKC96]. A sand
core is created by forming a mold from a sand mixture either by shooting or filling
sand in a form. In both cases the resulting sand might be compressed further by an
externally applied force.

We present an approach to the simulation of compacting granular material using
only hydrodynamic equations. We show that a locally applied force extends into
the whole domain that is being compacted, and that distinct density and pressure
distributions arise. Furthermore, we will show that the compacted state is stable,
i.e. the flow is compacted from one equilibrium reached through pure gravity force
to another equilibrium reached by applying the compactification force.

The flow of granular material is modeled by System (1.18). To apply the force
we simulate a bar moving towards the sand filling which should compress the mate-
rial. The movement of the bar of a certain density ρB is described by an ordinary
differential equation (ODE). By χBg we denote those volumes where the bar touches
grains that are above a certain volume fraction ccrit. The bar moves with an ini-
tial velocity u0 and is slowed down by a viscosity ηB. The equation describing this
motion is:

ρB∂tu = ρBg − ηBuB −
∑

∇pχBg. (3.1)

Equation (3.1) is a simple ODE which is solved by an implicit stepping algorithm.
We write

ρB
un+1

B − un
B

τ
= ρBg − ηBun+1

B −
∑

∇pχBg, (3.2)
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which gives

un+1
B =

(
1 +

τηB

ρB

)−1

(un+1
B + τg − τ

ρB

∑
∇pχBg). (3.3)

As mentioned before, the bar applies a force on the granular material. This is
modeled by a right hand side of equation (1.18b). The force the bar exerts on the
granular material is given by the acceleration of the bar multiplied with its mass.
Hence the term

− ρB

(
un+1

B − un
B

τ
+ g

)
(3.4)

is added to the right hand side of equation (1.18b).
The iteration between solutions for the granular system (1.18) and the bar move-

ment (3.2) is schematically given in Algorithm 3.1. The last step in Algorithm 3.1

Algorithm 3.1: Grain compactification

Solve a complete time step for the system (1.18) with right hand side (3.4)1

Compute the new bar velocity from (3.2) un+1
B2

Move the bar by un+1
B · τ to the new location xn+1

3

If the bar location is below the location of the volume face in moving4

direction, then set the bar onto the next layer of volumes
Set the grain velocity of all volumes that have grain concentration above ccrit5

and coincide with the bar to the bar velocity

is carried out to ensure that all granular material moves at least with the velocity
of the bar as there should be no grains where the bar has passed.

The density ρB of the bar is 6000 kg
m3 , the viscosity ηB restraining the bar ac-

celeration is chosen as 36000 kg
m3s

. To achieve non-accelerated movement of the bar
(in absence of grain contact), we choose the initial velocity as u0 = g ρB

ηB
. Above a

critical volume fraction we apply a force to the bar from the grains. The value of
this critical volume fraction ccrit is 0.6.

The initial filling of the domain is achieved by simulating gravity driven compact-
ification of grains until a steady state is reached. The initial density distribution is
obtained by letting the granular material fall into the domain by the force of gravity.

Algorithm 3.1 is then applied to this initial configuration with the initial position
of the moving bar being significantly above the grains. The bar starts to move,
collides with the grain piles, is slowed down and compacts the grains. The final
stage where the bar has come to a rest is shown in Figure 3.14

The compactification actually occurs, i.e. the grains rest at a higher volume
fraction after compactification. We show this in Figure 3.15.
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Figure 3.14: Pseudocolor plots of distributions of density and pressure after compactification.
On the left figure it can be observed that the top of the bulk has been flattend by the force applied.
On the right one can see the pressure buildup which resists further compactification.

Figure 3.15: Histograms of density distribution before (left) and after (right) compactification.
The horizontal axis holds the volume fraction and the vertical axis the number of volumes at this
range of volume fraction. It can clearly be seen that the compactification process compacts the
granular material in those volumes that had low volume fraction before.



Chapter 4

Software

A goal of this work is that the implementation of the algorithms from Chapter 2
goes in hand with the development of a software. By this we mean a code applicable
beyond the scope of the thesis. There is a wealth of available computer programs
for the simulation of fluid flow. In the following we call them computational fluid
dynamics (CFD) codes. Our need to implement a completely new model and test
different constitutive relations is the first motivation for developing our own code
Complex Rheology Solvers (CoRheoS). The second motivation is the implementation
of the novel nonlinear pressure algorithm (NPA) introduced in Section 2.4.5.

When solving partial differential equations (PDEs) for CFD, most codes start with
implementing a discrete version of the system to be solved. Usually, the discretiza-
tion is done beforehand and implemented in the code. In CoRheoS this is done by
the code itself. We provide the software with the model in an abstract continuous
form together with general rules how to discretize the parts involved. Any system
of PDEs is a collection of possibly coupled equations of which each in turn is a sum
of terms involving differential or algebraic expressions. We call these terms parts.
For each such part a rule of discretization is given such that the program can do the
work of actually creating a discrete system from the model.

We describe an approach to separate the CFD process into modules. We introduce
a structure for programming which resembles the mathematical notation of equation
systems and algorithms closely. We show that parallelization of the linear algebra
and building of a matrix of the discretized problem can be developed independently
of a specific problem. We make use of both the linear and nonlinear iterative solvers
provided by PETSc version 3.0, see [BBG+01, BGMS97]. Regarding the notation, we
depict diagrams in the UML format, see [SK98]. For code objects we use C++ notation.
This includes denoting namespaces and class members by a double colon “::”. For
the complete C++ language definition, see [Str97]. Our approach to describe object
oriented programming concepts using UML is quite common in computer science, see
[Oes01].

The chapter is organized as follows. We first describe the modular approach that
CoRheoS follows in Section 4.1. After at least mentioning all components we will omit
the detailed description of the purely software-related ones such as visualization,
input, output and framework design. We rather focus on modules that have a
connection to the thesis. These are our approach to the discretization process in
Section 4.2 and the parallelization of linear algebra components in Section 4.3. In
the last Section 4.4 we give details on the multiphase aspect of CoRheoS.
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Granular flow solver

Nonlinear equation solver

Parallel linear algebra solvers

Time marcher

Spatial discretizer

Geometry to grid converter

Output for visualization

User interface

.

.

.

Implementation template

Newtonian flow solver

CoRheoS framework

CoRheoS implementations

Implementation interface

Figure 4.1: Components making up CoRheoS. A clear separation is sought between framework
components common to all solvers on the left side and specific implementations on the right. Both
are connected only by an interface.

4.1 Architecture and components

The design of CoRheoS is modular. We aim at developing a basis for rheology solvers
rather than a single solver. Aside from a few specific demands, every flow solver
needs basic components. Linear algebra components are nearly always involved
in the solution process, even when the equations are nonlinear. Furthermore as
soon as one is departing from academic computations the domain is always-non
trivial. Therefore a grid needs to be generated from geometry input of some form.
Undoubtly visualizion of the complete solution or aspects of it is important, therefore
we need some way to output the results. All these components should only be coded
once and then reused for many solvers. This is our aim for CoRheoS. Therefore we
split up the CFD process into modular steps. They are given in schematic view in
Figure 4.1.

The main separation is between what we call framework on the left side in Figure
4.1 and what we call implementation on the right. Following the well-accepted
principle of programming to an interface, not an implementation, this separation
appears both in the design of CoRheoS and in the actual code. The framework
code is not touched by an implementation and all implementation code resides in
a separate directory. Both connect only at compile time when the implementation
code, which is a specialization of the implementation template, is compiled together
with the framework code.

4.1.1 The framework components

We mention shortly the components common to all implementations. By common
we mean that all implementations may use the framework components as they are,
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but also may customize them to specific needs if necessary. This is done through so
called hooks in the implementation template where an implementation may initialize
a framework component with its own parameters.

Spatial discretizer

The spatial discretization component provides two things. First a structure to form
an abstract description of a discrete system, together with discretization basics like
interpolation and discrete spatial derivatives. Secondly it provides a facility to
transform the abstract discrete system into a set of coefficients for each finite volume.
To achieve this, it makes use of either standard builtin discretization routines or
routines given in the specific flow solver implementation. These ideas are discussed
in detail in Section 4.2.

Time Marcher

This component takes care of advancing the whole solution procedure in time, or,
when solving steady problems it handles to pseudo time steps. It provides constant
time stepping and the abstract class corheos::TimeMarcher::TimeStepHandler

from which one may derive classes for different types of time stepping. Also it
manages the storage of old and new values with respect to the current time step.
We will not give further details on this component.

Parallel linear algebra solvers

The linear algebra component provides a basis for all solvers using matrices. It
interacts with the spatial discretization component such that the coefficient sets after
discretization are distributed among the number of parallel processes in a parallel
matrix. Then this linear system is solved using parallel linear algebra solvers from
PETSc. The solution is then collected from the various processes. Some of the ideas
that this component is based on are discussed in detail in Section 4.3.

Nonlinear equation solvers

For solving nonlinear equation systems in CoRheoS we make use of the PETSc SNES

library which provides Newton-like methods. It is not quite as straightforward
to parallelize the solution process of a nonlinear system of equations as it is for
the linear case. As of now CoRheoS provides only sequential solution methods for
nonlinear systems. The idea however for parallelizing nonlinear solvers is clear.
Two aspects have to be considered. The computation of the nonlinear function has
to be split into multiple processes and the solution procedure of the linear system
involving the Jacobian should use the parallelization approach that we will discuss
in Section 4.3. The nonlinear aspect of CoRheoS is discussed in Section 4.3.3.
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Input, output and user interface

These are the components on the bottom left of Figure 4.1. In CoRheoS, the gen-
eration of a Finite Volume (FV) grid from various geometry input formats is out-
sourced into the Geo2Grid library. This library makes of of the geometry data from
CoRheoGrid written by Dr. D. Niedziela at the Fraunhofer ITWM which is able
to transform arbitrary STL geometries to FV meshes. Within CoRheoS all its func-
tionality can be accessed through the namespace geo2grid::. The visualization
component makes use of VTK, an open-source visualization framework, see [SML03].
It provides the abstract classes corheos::VTKReader and corheos::VTKWriter as
well as default implementations providing the reading and writing of CoRheoS results
for VTK unstructured grids. The standard user interface is console-based but is it-
self only one of many possible implementations of the corheos::OutputFacility

abstract base class. These components are of large interest for the software devel-
opment aspect of CoRheoS but go beyond the scope of this thesis. Hence we will not
give further details on them here.

4.1.2 The implementations

As mentioned before, implementations are separated from the framework through
the implementation interface. This interface provides references to all CoRheoS frame-
work components and binds the implementation to certain rules. Each implemen-
tation is a specialization of the implementation template as shown in Figure 4.1.
Assuming some unique string as <implementationName>, an implementation is de-
clared by a configuration file called <implementationName>.config residing in the
config folder of CoRheoS. A basic version of such a file looks like

CONFIG+=<implementationName>
<implementationName> {

NAME=<implementationName>

DEFINES += PHASE COUNT=1
DEFINES += PHASE SINGLE=0

IMPLEMENTATION ROOT = <implementationName>
IMPLEMENTATIONS += <implementationName>/implementation
IMPLEMENTATIONS += <implementationName>/framework

}

Listing 4.1: A very basic configuration file for an implementation.

There are certainly more options for the file but for the scope of this work the above
is sufficient. This assumes a folder structure

CustomImplementations/<implementationName>/
d e c l a r a t i o n s . cdm . xml
framework/
implementation /

Listing 4.2: Directory structure of an implementation

within the CoRheoS folder. An implementation following the structure in Figure 4.1
then consists of

1. The configuration file <implementationName>.config which mainly tells CoRheoS
where to find the code of an implementation.
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2. A set of function and variable declarations specific to that implementation in
the form of a file called declarations.cdm.xml. This is essentially an XML

file, see [xml98]. At compile time, the functions and variables declared here
are converted to C++ code and merged with the framework code. This is done
by the cdm2c++ utility which is part of the CoRheoS framework.

3. A specialization of the implementation template in the framework subfolder.
This is just a wrapper around the actual code mentioned below, but it imple-
ments all the functions declared in the implementation template.

4. The code of the implementation itself which is used by the specialization of
the implementation template in the implementation subfolder.

4.1.3 Discussion of the modular approach

As mentioned above, we separate the different parts of the CFD process. The un-
derlying design principles are not new and are well known in software design. In
computer science, these things we have incorporated into CoRheoS are called design
patterns. For a more detailed treatment of this topic we cite [GHJV95].

The idea in our design is to fulfill two goals simultaneously. The first is the sep-
aration of framework and implementation code. This is fully achieved by the above
design. The second is to end up with a code that sacrifices as little performance
as necessary. That is the more difficult part. One possible approach to separating
framework and implementation would have been through inheritance. The frame-
work would form base classes from which specific solver implementations inherit.
However, the use of inheritance in components with many function calls can lead to
poor performance.

This issue comes down to the ongoing discussion on performance in inclusion
polymorphism versus parametric polymorphism. An example of the former is the
use of inheritance, an example for the second is the use of templated classes or our
own approach of inserting specialization functions directly into components. The
performance loss that can be caused by realizing the design patterns in [GHJV95] by
inclusion polymorphism is discussed in [DLGD01]. They favor generic programming
which for us means parametric polymorphism or the use of templates or parameter-
ized components as in our design of implementations above.

Even though from a software design point of view the discussion is quite straight-
forward, our highly object oriented approach is not without controversy in the math-
ematical community. We want to discuss the advantages and possible drawbacks of
this approach. We start with what we think are strong points in favor of our ap-
proach.

• The reuse of code is maximized. If, for example the linear solver routines are
general enough, they can be used by many kinds of solvers whether they are
meant to solve different kinds of PDE systems or other types of problems.
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• The cross dependencies of components on each other are minimized. To give a
few examples, changing the discretization does not touch the linear algebra if
that is not specifically desired. Adding or removing a term from the continuous
system does not touch the discretization process. The parallelization does not
touch anything but the linear algebra. Changing the constitutive relations
does not touch the discretization.

• Development can be concentrated on the solver rather than wasting time on
rewriting over and over again things like visualization, grid generation etc.

• All implementations benefit from improvements of framework components. At
the same time, as the interface is assumed to be stable, none or little changes
have to be done on the implementation to achieve this.

• Implementations have to follow certain rules because they specialize the im-
plementation template. Therefore they share a common look. A developer
who has written one solver is very likely to quickly be able to read the code
for another solver, written by someone else.

• Development can be specialized and easily distributed across many developers.
An expert in linear solvers can improve that part of the framework without
having to know about PDEs. The developer of a PDE solver however will benefit
from that expert work.

However there are drawbacks or things that might at first seem to be drawbacks
especially when writing code for mathematical or physical applications. They shall
not be omitted but discussed here.

• Layers of abstraction are necessary to realize the modularity of the software.
These may have the effect of hiding connections in the code to inexperienced
viewers. The code can not be read in a sequential manner. The code is
distributed across many files and a deep hierarchy of directories. Functionality
of a class is distributed within a hierarchy of inheritances. Object instances
are managed by a central facility which requires advanced debugging methods
in following the path of execution of the code.

• Programming errors introduced in the framework effect all implementations
using it. Therefore it has to be carefully balanced that implementations always
use the newest version of the framework but do not sacrifice functionality by
that. The interface has to be kept stable and changes in the interface have to
be communicated.

It is our strong opinion that the advantages outweigh the drawbacks by far and with
careful software development they may not even be relevant. A highly efficient code
which is only comprehendable by a few, or worse, only the author is useless. Also
a code which is not extendable is useless. A compromise between efficiency and
reusability must be established.
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Let us stress one more point. Certainly, our arguments do not hold when solvers
need to be developed for very special purposes. It is clear that one can easily write
a solver for specific cases, for example an elliptic problem with constant coefficients,
which is both faster and more memory efficient than any possible CoRheoS solver.
But in that case the specific code can hardly be extended, let alone reused for
a more complex purpose. In that way, CoRheoS can be seen as a framework to
easily implement various solvers. Should a certain algorithm prove to be useful then
writing a special purpose solver outside of CoRheoS may well result in a faster and
more memory efficient program.

4.2 A generalized approach to discretization

It is our strong opinion that Finite Volume (FV) discretization of linear or linearized
Navier-Stokes Equations (NSE)-type systems can be generalized on a code level. Our
aim is to provide a structure in which one can code equations as they appear on
paper in continuous form and hide the tedious coding of the actual discretization
on a lower level. In CoRheoS we realize this goal in the following way. First we
assume that the grid on which discretization is performed is made up of volumes
of which each volume knows how to discretize different terms for itself. We explain
this in detail in Section 4.2.1. In Section 4.2.2 we introduce a hierarchy of classes
that resemble the structure of a continuous PDE system as closely as possible. By
creating instances of the therein provided classes one can assemble a system of PDEs
which already includes rules for discretizing each term. We then describe the process
which creates a set of coefficients from those discretization rules. All the coefficients
of all volumes then make up the final matrix.

As a guideline through explaining the process, let us introduce an example. We
want to sketch the steps from a continuous system of PDEs to the coefficient matrix.
Assume we want to solve the following system of coupled PDEs. Using it purely for
illustration purposes, let us assume a one-dimensional problem with a density ρ, a
momentum m and α ∈ R.

∂t(ρ) + div (m) = 0, (4.1a)

∂t(m) + div(αm) = rhs. (4.1b)

We do not worry about boundary conditions or constitutive relations.

4.2.1 Grid and volume data structure

In our code we try to resemble the grid structure introduced in Section 2.2. The grid
in CoRheoS is made up of volumes which in the code we call Control Volume (CV).
Each volume has a certain number of faces (called walls in the code) depending
on the dimension. The class representing a grid corheos::Grid holds a pointer
to the list of volumes corheos::Grid::computationCVs * as displayed in Figure
4.2. Each volume holds geometric and numerical information. The geometric part
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Volume V1

Volume VN

Grid V Coefficients
Values
Discretization functions

Numerical propertiesGeometrical properties

Coordinates

Neighbour pointers
Wall pointers

Lengths

Figure 4.2: The datastructure of the CoRheoS grid. The grid holds a pointer to a list of volumes
(CVs). These volumes hold properties like coordinates, but also values of unknowns on the grid
and discretization functions.

Figure 4.3: Simplified class diagram of a CoRheoS volume. In the actual code, there exist a few
levels of inheritance. The most basic is the CV class declared in the geometry library from which
finally the class corheos::DomainCV2 and corheos::BoundaryCV2 inherit. Displayed here is a
stripped version of corheos::BaseCV which is common to both domain and boundary volumes.
A sample discretization function is given in the CV class.

consists of a pointer to a list of faces and a list of pointers to neighboring volumes as
well as coordinates and lengths. The numerical information consists of an array of
coefficients and discretization functions. The involved classes and their relationships
are displayed in Figure 4.3. Let us explain in detail what we mean by numerical
information.

In general, the grid relies on the functionality of the individual volumes. The
idea is that when an operator is discretized on the grid, then the grid iterates over
all its volumes and passes the work of discretization to each volume. This volume
then knows how to discretize itself depending on whether it is in the interior, on the
boundary or possesses some other property. Hence, discretization rules are stored in
the volumes, as they may be volume dependent. When we say coefficients we mean
the factors that appear in discretization in front of the central node of a volume
and in front of the neighboring nodes. The discretization functions then fill the
coefficients of every volume.

Coming back to our example, a discretization function for the term ∂t(ρ) is
given in Listing 4.3. It handles the implicit Euler time discretization of the ∂t(ρ)
term in our example system (4.1). It discretizes the integrated equations which
is why the coefficients are multiplied by the volume. In a spatial discretization
involving neighbors one has to then put the respective coefficients to the variables
coeffs[EAST], coeffs[WEST] and so on.

Every discretization function follows the general form of the above. Furthermore,
this is all the work necessary to program a discretization. Everything else, from
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Equation part

Unknown to be discretized

Discretization functionEquation for unknown q2

Parts discretizing q1

Parts discretizing q1 Parts discretizing q2

Parts discretizing q2

+

+ +

Part P 1
q2,q2

Part P 2
q2,q2

System for unknowns vector (q1, q2)

Equation for unknown q1

{empty list}

Part P 1
q1,q1

Part P 1
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Figure 4.4: Scheme of discrete system in CoRheoS exemplified for our system (4.1). In general any
system is a set of equations. Each equation is made up of sets of equation parts, one set for every
unknown of the system. Each equation part provides a rule (function pointer) for discretizing that
part.

applying these rules to all the volumes of a grid to actually assembling a matrix
from the values stored in the coeffs variable is done by the framework and will be
described in the following section.

1 void
2 DomainCV2 : : d i s c r e t i z eT imeDer i va t i v e ( const Var iab le & var iab l e ,
3 int component ,
4 D i s c r e t i za t i onParamete r s ∗ parameters ) {
5 c o e f f s [OWN]+=volume/ timeStep [PHASE SINGLE ] ;
6 f r e eCo e f f+=−oldValues−>
7 r e t r i e v e ( var i ab l e , component )∗ volume/ timeStep [PHASE SINGLE ] ;
8 }

Listing 4.3: A sample discretization function for implicit Euler time discretization.

4.2.2 The discretization process

We aim to automate the process to compute solutions of a continuous system of PDEs
as much as possible. For this we split up the process into steps. Also we introduce a
standard structure to describe systems. In CoRheoS, every model is considered as a
system of equations. Each equation is made up of parts which in turn are made up
of a variable and a rule of discretization of this part. Schematically, this is displayed
in Figure 4.4. The figure shows the correspondence of the discrete system in CoRheoS
to the continuous system, for example (4.1). In that case q1 is ρ, q2 is m and the
parts in Figure 4.4 refer to the terms in (4.1). In addition to the schematic view
we provide the actual class diagram for the classes making up the discrete system
structure in CoRheoS in Figure 4.5. We start with a system of PDEs in continuous
form. The following steps then make up the discretization process.

• We describe the system in the form of Figure 4.4 which for example can have
two equations and two unknowns q1 and q2.
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Figure 4.5: Class diagram of a discrete system. In CoRheoS all equations or systems of equa-
tions must be put in the form of corheos::DiscreteSystem. Each such instance must hold
at least one corheos::DiscreteEquation. Each equation instance holds a list of instances of
corheos::DiscreteEquationPart for each unknown. The discretization rules of all these parts
then form the discretization and finally a coefficient matrix.

• We apply Algorithm 4.1 which results in a matrix of the form
∑

Pq1,q1

∑
Pq1,q2∑

Pq2,q1

∑
Pq2,q2

 (4.2)

where the summation of parts means that in every row, the coefficients result-
ing from every discretization function call are added.

Algorithm 4.1: Algorithm for discretizing a CoRheoS system: DISCRETIZER

Number of equations: Neq1

Number of unknowns: Nun2

Number of volumes: N3

Prepare matrix ∈ RNNeq×NNeq4

for i = 1, . . . Neq do5

for j = 1, . . . Nun do6

Number of parts discretizing unknown qj in equation i: Nparts7

for k = 1, . . . N do8

for p = 1, . . . , Nparts do9

Call discretization function of part P p
qi,qj

in volume Vk10

Write coefficients from every volume to the respective matrix block11 ∑
Pqi,qj

in (4.2)

We want to illustrate the process in actual CoRheoS code showing it for our example
(4.1). To start, we need to formulate it in the discrete system classes. We assume
that we have declared the variables varDensity and varMomentum, have available a
set of default discretization parameters and provided the general rules to discretize
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time derivatives, a divergence and volume terms. Then the definition of our system
in CoRheoS looks like the following.

/∗Bui ld ing equat ion f o r dens i ty ∗/
DiscreteEquat ion eqnDensity ( varDensity , 2 ) ;
eqnDensity . addPart (new DiscreteEquat ionPart ( d i s c r e t i z eT imeDer iva t i ve , parameters , varDensity ) , 0 ) ;
eqnDensity . addPart (new DiscreteEquat ionPart ( d i s c r e t i z eD iv e r g enc e , parameters , varMomentum ) , 1 ) ;

/∗Bui ld ing equat ion f o r momentum∗/
DiscreteEquat ion eqnMomentum(varMomentum , 2 ) ;
eqnMomentum . addPart (new DiscreteEquat ionPart ( d i s c r e t i z eT imeDer iva t i ve , parameters , varMomentum ) , 1 ) ;
parameters . p r e f a c t o r=alpha ;
eqnMomentum . addPart (new DiscreteEquat ionPart ( d i s c r e t i z eD iv e r g enc e , parameters , varMomentum ) , 1 ) ;
eqnMomentum . addPart (new DiscreteEquat ionPart ( d i s c r e t i z eRhs , parameters ,NULL) , 0 ) ;

/∗Combining the equat ions in to a system∗/
DiscreteSystem system (2 , ”example” ) ;
system . setEquat ion (0 , eqnDensity ) ;
system . setEquat ion (1 , eqnMomentum ) ;

/∗Adding the newly created system to the CoRheoS systems ∗/
d i s c r e t eSys t ems [ system . name]=system ;

Listing 4.4: Sample code for describing a system.

On a sidenote, the issues of boundary conditions and such are not relevant at this
point. When the discretization functions of a volume are called, they know whether
the calling volume is in the interior or on the boundary and then call the respective
routines. In a next step, both the corheos::Discretizer and corheos::Solver

need to be called on the system. The initialization of the linear system in the
following line 1 is actually done in the corheos::Initializer component where
the lines following that are put into the corheos::TimeMarcher component.

1 globalVars−>r eg i s t e rL inea rSys t em (2 /∗number o f equat ions ∗/ , ” coupled ” ) ;
2 DiscreteSystem system = algorithm−>getDiscreteSystem ( ”example” ) ;
3 d i s c r e t i z e r−>d i s c r e t i z eSy s t em ( system , globalVars−>getLinearSystem ( ” coupled ” ) ) ;
4 so lve r−>so lveDi sc re teSystem ( system , globalVars−>getLinearSystem ( ” coupled ” ) ) ;

Listing 4.5: Code for solving a discrete system.

Using Algorithm 4.1, the corheos::Discretizer creates the coefficients for each
volume and then stores the coefficients in the respective matrix blocks of (4.2). This
matrix is solved using PETSc.

4.3 Parallel linear algebra

The discretization process described in Section 4.2.2 is executed on the first of many
possible parallel processes. In line 3 of Listing 4.5, the function internally uses
an instance of corheos:ParLinSysHandler to distribute the coefficients of each
block onto the process in which the respective part of the parallel matrix resides.
The parallelization makes use of PETSc which uses for internal operations MPI, see
[MF97]. We use MPI within our C++ context for an efficient algorithm which reduces
communication cost across processes.

4.3.1 MPI data structures

MPI is a standard describing a set of subroutines that can be used to exchange data
between processes. A process is a running instance of a computer program. Plainly
speaking, every process runs the same program with a unique process number (called
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rank) in its own area of memory. The MPI routines are then used to communicate
data between the multiple processes. The standard is designed to be independent
of programming languages and is therefore very basic in the datatypes it supports.
However, it provides routines to mimic the high-level datatypes that we use in
CoRheoS.

For the parallel linear algebra component we want to distribute blocks of sparse
matrices to various processes. As there is always an overhead involved in commu-
nication between parallel processes we want to reduce the cost by sending a whole
block at once. To achieve this, we have to define such a datatype that represents
a matrix block in the code, retrieve its layout in the memory and then create the
respective MPI datatype for communication.

We first define a class which holds one row of a sparse linear system, including
the right hand side in Listing 4.6.

class LinSysRow {
public :
int i n d i z e s [ Globa lVar iab le s : : nrMaxCoeffs ] ;
double va lues [ Globa lVar iab le s : : nrMaxCoeffs ] ;
double f r e eCo e f f ;
LinSysRow ( ) {

for ( int i =0; i<Globa lVar iab le s : : nrMaxCoeffs ; i++) {
i n d i z e s [ i ]=−1;
va lues [ i ]=0;

}
}

} ;

Listing 4.6: A sparse linear system row. The right hand side is stored in the variable freeCoeff.

In Listing 4.7 we show how to “trick” MPI into communicating instances of classes.
The functionality of handling high level data structures such as classes is not built
into MPI. Therefore we have to teach MPI how the class is laid out in the memory.
Line 1 of Listing 4.7 announces that the memory of the new type will be divided
into a field of integers, followed by a field of doubles and another field of doubles.
In lines 6 to 11 we retrieve the memory locations of the integer and double arrays
relative to the starting address of linSysRows from line 4. Line 15 then defines a
new MPI datatype which corresponds to our class LinSysRow from Listing 4.6.

1 MPI Datatype o ldtypes [3]={MPI INT ,MPI DOUBLE,MPI DOUBLE} ;
2 MPI Aint o f f s e t s [ 3 ] ;
3 /∗Temporarely c r ea t e a dummy array o f LinSysRows to compute the memory o f f s e t s ∗/
4 LinSysRow ∗ l inSysRows = new LinSysRow [ 2 ] ;
5 /∗compute d i sp lacements ∗/
6 MPI Address ( linSysRows ,& o f f s e t s [ 0 ] ) ;
7 MPI Address ( l inSysRows [ 0 ] . values ,& o f f s e t s [ 1 ] ) ;
8 MPI Address (&( linSysRows [ 0 ] . f r e eCo e f f ) ,& o f f s e t s [ 2 ] ) ;
9 o f f s e t s [1]−= o f f s e t s [ 0 ] ;

10 o f f s e t s [2]−= o f f s e t s [ 0 ] ;
11 o f f s e t s [ 0 ]=0 ;
12 /∗ bu i ld the datatype ∗/
13 int blockcounts [3]={ nrNonzeroCoeffs , nrNonzeroCoeffs , 1 } ;
14 MPI Type struct (3 , blockcounts , o f f s e t s , o ldtypes ,&MPI linSysRow ) ;
15 MPI Type commit(&MPI linSysRow ) ;
16 /∗We have the o f f s e t s , so we don ’ t need the array anymore∗/
17 delete [ ] l inSysRows ;

Listing 4.7: Creating an MPI datatype for sparse matrix blocks.

Because we may send arrays of any MPI datatype, we are now able to communicate
matrix blocks across processes. As we will show in Section 4.3.4 this results in so
little overhead that for our problems we can call the method efficient and the overall
memory and computation time consumption of this approach can be neglected.
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4.3.2 Assembly of the matrix

The discretization process from Section 4.2.2 would result, in the serial case in a
matrix containing as many blocks as there are equations times unknowns. It remains
to be explained how line 11 of Algorithm 4.1 is actually done in the parallel case.
There we have to distinguish two different block structures of the matrix. The first
is given by the structure of the PDE system to be discretized. For our example
above, System (4.1) we have a 2× 2 block structure of the matrix because we have
two unknowns and two equations which looks like (4.2).

But our matrix is also distributed among different processes and the number
of processes not necessarily coincides with the number of equations. Therefore we
need to distribute the coefficients into the parallel matrix by using our MPI datatype
introduced in the previous section. Let us assume we have Neq equations, Nun

unknowns and we have Nproc number of processes. Then the left side of equation
(4.3) shows the structure given by the discretization process and the right side shows
how the matrix is distributed across the processes.


∑

Pq1,q1 . . .
∑

Pq1,qNun

...
. . .

...∑
PqNeq ,q1 . . .

∑
PqNeq ,qNun





Rows on process 1

...

...

Rows on process Nproc


(4.3)

Certainly in most cases the number of unknowns does not match with the number of
processes or at least that cannot be assumed. Therefore only parts of the coefficients
of the blocks for the first unknowns may go to the first process or, if we are using a
coupled system with many unknowns on few processes the overlap may be the other
way around.

Using the MPI datatype defined in Listing 4.7 we proceed as follows. Assume the
discretization is done for one block

∑
Pqi,qj

reaching line 11 of Algorithm 4.1. This
block is stored in the memory in the form of an array of the type linSysRow from
Listing 4.6. We then need to determine what parts of that block goes to what part
of the parallel matrix.

The code to do this is given in the following Listing 4.8. It is pseudocode short-
ened to the relevant parts for the sake of a clear presentation. In the code A is
the matrix and f is the right hand side vector. In MPI terminology, each process
is called rank and there is one master process which has the so called initialization
rank. The discretization process described in the previous Section 4.2.2 is done on
the initialization rank. Therefore the coefficients reside in the memory in this rank.
A parallel matrix will be assembled from these coefficients.

The function in Listing 4.8 has four parts. The first part is the initialization of
the matrix part on the current rank. Then it sends out the relevant rows to the
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other ranks in the second block. The third block of code receives these rows on
the other ranks and fills the relevant parts of the matrix. The last block is there
because parts of the matrix reside on the initialization rank. Even though it could
be included in the first two, it would be inefficient to send memory from a process
to itself. Therefore no MPI is involved in the last block.

1 void ParLinSysHandler : : d i s t r i b u t eC o e f f i c i e n t s ( int blockIdxEquation , int blockIdxUnknown ) {
2 /∗Part 1 : Determine f i r s t and l a s t row o f matrix on t h i s rank . ∗/
3 of f setRows = nrCVs∗blockIdxEquation ;
4 of f setColumns = nrCVs∗blockIdxUnknown ;
5 GetMatrixPartOnRank (A, s ta r t , end ) ;
6 matrixBoundsStart [ rank ]=max( of fsetRows , s t a r t ) ;
7 matrixBoundsEnd [ rank ]=min ( end , o f f setRows+nrCVs ) ;
8 /∗Part 2 : Send out the c o e f f i c i e n t s to the other p r o c e s s e s ∗/
9 i f ( rank i s i n i t i a l i z a t i o n rank ) ) {

10 for ( a l l other rankIdx in ( ranks without i n i t i a l i z a t i o n rank ) do) {
11 nrRows = matrixBoundsEnd [ rankIdx ]−matrixBoundsStart [ rankIdx ] ;
12 LinSysRow ∗ l inSysRows = new LinSysRow [ nrRows ] ;
13 rowStart = matrixBoundsStart [ rankIdx ] ;
14 rowEnd = matrixBoundsEnd [ rankIdx ] ;
15
16 for ( int i=rowStart ; i<rowEnd ; i++) {
17 cvIdx = i−of f setRows ;
18 domainCV=innerCVs [ cvIdx ] ;
19 linSysRows [ i−rowStart ] . f r e eCo e f f=domainCV−>f r e eCo e f f ;
20 domainCV−>ge tCoe f f s ( l inSysRows [ i−rowStart ] ) ;
21 }
22 MPI Send ( linSysRows , nrRows , MPI linSysRow , rankIdx , . . . ) ;
23 }
24 }
25 /∗Part 3 : Recieve the c o e f f i c i e n t s and f i l l the r e l evan t matrix par t s with them ∗/
26 i f ( rank i s not i n i t i a l i z a t i o n rank ) {
27 nrRows = matrixBoundsEnd [ rank]−matrixBoundsStart [ rank ] ;
28 rowStart = matrixBoundsStart [ rank ] ;
29 rowEnd = matrixBoundsEnd [ rank ] ;
30 LinSysRow ∗ l inSysRows = new LinSysRow [ nrRows ] ;
31
32 MPI Recv ( linSysRows , nrRows , MPI linSysRow , globalVars−>r ank in i t , rank , . . . ) ;
33 for ( int i=rowStart ; i<rowEnd ; i++) {
34 rowIdx = i−rowStart ;
35 A−>se tVa lues ( i , l inSysRows [ rowIdx ] )
36 f−>addValue ( i , l inSysRows [ rowIdx ] . f r e eCo e f f ) ;
37
38 }
39 }
40 /∗Part 4 : F i l l the matrix with c o e f f i c i e n t s that go on the i n i t i a l i z a t i o n rank∗/
41 i f ( rank i s i n i t i a l i z a t i o n rank ) {
42 rowStart = matrixBoundsStart [ rank ] ;
43 rowEnd = matrixBoundsEnd [ rank ] ;
44
45 for ( int i=rowStart ; i<rowEnd ; i++) {
46 cvIdx = i−of f setRows ;
47 domainCV=innerCVs [ cvIdx ] ;
48 LinSysRow linSysRow ;
49 linSysRow . f r e eCo e f f=domainCV−>f r e eCo e f f ;
50 domainCV−>ge tCoe f f s ( linSysRow ) ;
51 A−>se tVa lues ( i , linSysRow
52 f−>addValue ( i , l inSysRows . f r e eCo e f f ) ;
53 }
54 }
55 }

Listing 4.8: Pseudocode for distributing coefficients onto the parallel matrix.

This function is called in line 11 of Algorithm 4.1 for every list of parts belonging
to one unknown in one equation. This function also serves well to illustrate how
programming in MPI is done. Remember that the same code runs on all processes
with the only difference being that the values of rank are different and the memory
is separated between the processes. Therefore we check for the values of rank in the
code above and know that different processes execute different parts of the above
code.
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4.3.3 The nonlinear case

The nonlinear case is treated separately, because we do not make use of a coefficient
matrix in that case. We rather need to build a Jacobian and a function N . The
parallelization of nonlinear equation solvers is a bit more tricky than in the linear
case. Firstly, the PETSc nonlinear library is much less matured than the linear
components. Therefore, there is no such thing as a standard parallel nonlinear solver.
The parallelization has to be done manually, is in many aspects mere programming
work and hence goes beyond the scope of the thesis.

The ideas however are clear. As we have seen in Section 2.4.5, the basic New-
ton method relies on three mechanisms. These are the evaluation of the nonlin-
ear function N at a know vector qn, the computation of a Jacobian matrix J
at the know vector qn and the efficient solution of a linear system of the form
J (qn)(qn+1 − qn) = N (qn). The latter looks analog the linear case for each Newton
iteration. However, the Jacobian may have to be computed at many points during
the Newton method and therefore distribution of coefficients onto the processes may
become an issue.

Therefore in the nonlinear case one has to develop a more sophisticated method
of parallelization where the nonlinear function should be decomposed onto multi-
ple processes and the overlapping components must be communicated. This is a
challenging topic in itself and will be postponed to future work.

4.3.4 Discussion on the efficiency of the parallelization

As mentioned before, our parallelization is only concerned with the linear algebra
component. This, in a way is a very basic and naive parallelization. In any computer
program one has to deal with two bottlenecks, the memory and the computation
time. Both can be eliminated with parallelization. Our approach does not eliminate
the memory bottleneck, we can only hope to reduce the overall computation time. If
a problem is too large for the memory of one CPU then more sophisticated methods
have to be used, for example decomposition of the domain across processes.

The advantage of parallelizing only the linear algebra components is that there
is no difference between programming a serial or a parallel solver. Discretization is
carried out on the first process and the other processes are then only used for solving
the resulting linear system in parallel. We have described in Section 4.3.2 how this
is done.

This clearly limits the cases where we can actually expect a speedup of our
solvers when using multiple processes. These are the cases where the solution of
a linear system takes up most of the computation time. In that case, however,
we are measuring in large parts the scaling ability of PETSc. Figure 4.6 shows the
computation times for the pressure correction equation summed over 10 time steps
on 1 to 4 processes. Also in the graph are the times used for the discretization
process. Taking into account that the cumulative time for the whole NSE time step
(the dashed line in Figure 4.6) is only a few percent above the time needed for
the solution of the pressure correction equation, we can see that the discretization
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Figure 4.6: Left: The graph shows the CPU times (averaged over 5 identical runs) for 10 time
steps of the benchmark problem from Section 3.3.1. The times are for solving the pressure cor-
rection equation (red markers) and for discretization (blue markers) The dashed line shows the
overall computation time. The solution times include collection the results from all processes and
the discretization times are for a complete run of Algorithm 4.1. Right: The graph shows the
increase in memory caused by the parallelization. We see that the memory overhead is marginal.

process can be neglected with respect to computation time. Hence we do not create
computational overhead by the distribution of coefficients onto parallel processes.

4.4 Multiphase

One of the advanced features and a major advantage of the CoRheoS framework is the
possibility to combine existing singlephase solvers into a multiphase solver without
changing any of the existing singlephase code and by adding only very little extra
code. When we talk about multiphase, we mean the interacting or non-interacting
flow of more than one materials in the same domain. This can be grains emerged in
a fluid phase where for each material a different fluid model is used and the coupling
happens through a term in the momentum equation. Or the flow of particles modeled
as solid bodies that flow within a fluid phase and interact by volume forces on the
particle side and an averaged force term on the fluid side. Solvers for flow of different
materials can be made to interact very easily.

From now on when we use the term phase we mean an implementation of a flow
solver as in Figure 4.1. This feature does not have a restriction on the number of
phases but for the ease of presentation let us stick to two. As described in Section
4.1.2 an implementation consists of a few declarations, source code in specified
folders and a configuration file.

Combining single phase solvers into a multiphase solver may best be explained
using an example. Let us assume we have implemented an existing solver for a
fluid phase called phase1 and another for a fluid phase called phase2. So for both
phases we have a configuration file very similar to the one in Listing 4.1. The
steps to make a twophase solver from these not connected solvers, we create a
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directory twophase/framework and put in the necessary files. The configuration file
twophase.config is given in Listing 4.9.

1 CONFIG+=twophase
2
3 twophase {
4 NAME=twophase
5 DEFINES += PHASE COUNT=2
6
7 IMPLEMENTATION ROOT = twophase
8 IMPLEMENTATIONS += twophase/ framework
9 IMPLEMENTATIONS += twophase/ implementation

10
11 DEFINES += PHASE PHASE1=0
12 IMPLEMENTATIONS += phase1/ implementation
13
14 DEFINES += PHASE PHASE2=1
15 IMPLEMENTATIONS += phase2/ implementation
16 }}

Listing 4.9: A very basic configuration file for combining single phases into a twophase code.

The work that remains towards a complete twophase code is the specialization
of the implementation template. The easiest way to do this is to create a copy of the
CustomImplementations/implementationTemplate into the twophase/framework
folder. Then the function timeStep() of the TimeMarcher component has to call
both the time step functions of the single phases and both phases are solved simul-
taneously. This is the most basic way to solve two phases but it is also a very trivial
case. The phases are not yet coupled. Let us explain how this can be achieved.

4.4.1 Multiphase through coupling terms

The first very basic way to couple the two phases is to add terms to the systems
of both phases and solve the systems one after another. This might be sufficient in
the case of weak coupling of the phases. Explicit or implicit coupling terms are very
easy to add to existing equations. We have seen in Listing 4.5 that a pointer to a
system that we define in CoRheoS can be retrieved at any point through the class
corheos::Algorithm. Listing 4.10 shows the necessary code to add an equation
part to an already existing system. Assume that for both phases we have created
discrete system as as in Listing 4.4 but have named them according to the phases
systemPhase1 and systemPhase2.

1 DiscreteSystem ∗ systemPhase1=algorithm−>d i s c r e t eSys t ems [ ” system phase1 ” ] ;
2 DiscreteEquat ion ∗ d i s c r e t eEquat i on=systemPhase1−>equat ions [ 1 ] ;
3
4 D i s c r e t i za t i onParamete r s parameters = de f au l tD i s c r e t i z a t i onPa rame t e r s ;
5 DiscreteEquat ionPart partCoupl ing ( phase1Discret i zeCoupl ing , parameters , varMomentum ) ;
6 d i sc re teEquat ion−>addPart ( partCoupl ing ) ;

Listing 4.10: Adding coupling terms to existing systems. The code shows adding a part to the
system of phase1. The procedure is analog for the second phase.

The function given in the newly created part can be any discretization function
as exemplified in Listing 4.3. Again no extra steps are necessary. After the terms
have been added to the system, the code for each phase does not have to be changed,
the discretization process will take into account the extra part automatically.
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4.4.2 Multiphase through a coupled system

In case of a stronger coupling of the two phases, it might be necessary to not just
solve the single phase systems with coupling terms one after another but to either
rearrange the equations or couple both systems completely. As mentioned before,
each system consists of one or more equations. For each phase these systems are
already provided and we have access to the pointers to all parts of the structure.
We want to build a new system which consists of the equations of both phases and
can be solved in a coupled way. This can be done very conveniently by the code
given in listing 4.11.

1
2 DiscreteSystem ∗ systemPhase1=algorithm−>d i s c r e t eSys t ems [ ” system phase1 ” ] ;
3 DiscreteSystem ∗ systemPhase2=algorithm−>d i s c r e t eSys t ems [ ” system phase2 ” ] ;
4 int nrEquations1 = systemPhase1−>nrEquations ;
5 int nrEquations2 = systemPhase2−>nrEquations ;
6 DiscreteSystem ∗ twophaseSystem = new DiscreteSystem ( nrEquations1+nrEquations2 , ” system twophase ” ) ;
7
8 globalVars−>r eg i s t e rL inea rSys t em ( nrEquations1+nrEquations2 , ” twophase” ) ;
9

10
11 for ( int eqnIdx=0; eqnIdx<nrEquations1 ; eqnIdx++) {
12 DiscreteEquat ion ∗ equat ion = systemPhase1−>equat ions [ eqnIdx ] ;
13 twophaseSystem−>setEquat ion ( equation , eqnIdx ) ;
14 }
15
16 for ( int eqnIdx=0; eqnIdx<nrEquations2 ; eqnIdx++) {
17 DiscreteEquat ion ∗ equat ion = systemPhase2−>equat ions [ eqnIdx ] ;
18 twophaseSystem−>setEquat ion ( equation , nrEquations1+eqnIdx ) ;
19 }
20 d i s c r e t eSys t ems [ twophaseSystem . name]=twophaseSystem ;

Listing 4.11: Code to couple the systems of two phases.

In the previous case in Section 4.4.1 we were finished after modifying the system. In
this case however there is some extra work to be done because none the singlephase
codes knows of the newly created system. One has to add the lines to solve the newly
created system to the time step function like in Listing 4.5 passing as parameters
the created linear system and the discrete system.

The above examples should show that we have reduced to effort of creating
multiphase code to a minimum. Most of the code written for each phase can be
reused. If desired, changes in any of the singlephase codes can automatically be
incorporated into the multiphase solver.
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Concluding remarks and outlook

The field of simulation of granular flow is large. We have seen that it touches a
multitude of advanced topics. In modeling, these are for example the kinetic theory
of granular gases and non-Newtonian fluid flow. Regarding the numerics we deal
with complex Navier-Stokes Equations (NSE)-type systems and nonlinear discretiza-
tion approaches. Therefore an in-depth and complete coverage of the simulation of
granular flow within such a work is not possible.

We have presented a specific approach to the simulation of granular flow. We
choose to model granular flow as a fluid in as many regimes as possible. We have in-
troduced a hybrid model for dilute and dense granular flow which has a significantly
simpler form than similar models introduced in the literature. Still, this modeling
approach results in a very complex NSE-type system with all imaginable complica-
tions, varying viscosity, different regimes of very high and very low compressibility
and nonlinearities in the algebraic relations.

For the solution of this System of partial differential equations (PDEs) and al-
gebraic relations (1.18) we have developed a novel pressure based fractional step
algorithm with a nonlinear pressure equation. The fact that we have not reduced
the system and considered simplified versions but kept the full complexity of the
system throughout this work is a contribution in itself.

To actually obtain approximate solutions of this model we have implemented
the model as well as the nonlinear pressure algorithm (NPA) into a software frame-
work which we developed in this work. This framework provides a generalized and
automatic approach to discretization and automatic parallelization of the linear al-
gebra components. Using this implementation we are able to compute solutions on
arbitrary domains and visualize the results. The software however goes beyond the
purpose of showing the applicability of the model and the algorithm. It is a gen-
eral software framework for implementing solution methods for the flow of complex
fluids. Our granular flow is just an example and a proof of concept for the software.

Using the implementation we have provided numerical experiments towards the
validation of both the model and the algorithm. For the study of properties of
the model and the algorithm we have carried out further numerical investigations.
Finally we have applied the implementation to two industrial problems to further
showcase the capabilities of the developed approach to the simulation of granular
flow.

In the first chapter and in the introductions to the other chapters we have already
given thorough overviews in the respective aspects of the simulation of granular flow.
In the following we shall rather focus on insights and problems we found on the way.

Regarding the hydrodynamic modeling of granular flow, we can say that it is in
some aspects a quite heuristic task. As of now there is no single correct constitutive
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Figure 5.1: Instability in pile formation between β = 1.75 (first and second plot) compared to
β = 1 (third and fourth plot). The first and third plots display the volume fraction from low (dark)
to high (light). The contour plots (second and fourth) display the boundary between volumes where
the yield relations for the dense regime (1.15) are active and those in the kinetic regime (1.11).

model. That is not surprising because when we consider grains as hard spheres
many obvious observations that we make when we look at, say, grains of sand, are
left out. But not even all effects of few-particle systems with hard spheres can be
incorporated without the equations becoming hopelessly complicated, see [BP03,
pg. 34f]. Furthermore, minor specifics of the constitutive relations can have a major
impact on the resulting solution. This is an important point in the modeling of
granular flow and we want to emphasize it with an example.

During the development of the hybrid model we found a very interesting insta-
bility shown in Figure 5.1. In [BLS+01, Equation (15)] the viscosity (1.18h) is given
with an exponent β on g(ρ). The authors claim that a value β > 1 is necessary to
obtain shear bands. When using our hybrid model this exponent is not necessary
and it even causes the displayed instability. It is rather symptomatic for this field of
modeling that one can get lost in the misery of constitutive relations, to cite [Kol00].
However, we believe that our model is as simple as possible with as few parameters
as possible and, as we have shown, is still able to reproduce many effects of granular
flow.

The modeling is followed by the task of computing solutions to the model. We
have presented a pressure based fractional step method with a nonlinear pressure
equation (NPE). We have explained why a linear method does not suffice in our
case. After the decision for a NPE we followed the path laid out by linear fractional
step methods (LFSMs). We ended up with two coupled equations for computing a
new pressure and a new velocity in each time step. For reasons of stability we have
used an upwind biased density in the mass conservation equation. The NPE was
solved by a variant of the Newton method for systems of nonlinear equations. This
resulted in a method which is able to solve the System (1.18). The method seems
to be mass conserving and generally seems to be able to handle the huge range of
compressibility quite well without any of the modifications which are necessary in
the linear case, see Section 3.4.1. The rigorous analysis of these properties for the
full system is not part of this work but we support the statements made in Section
3.4 at least numerically.

By using a NPE instead of a linear pressure correction equation (LPCE) we are
able to obtain solutions of the very complicated granular flow model (1.18) but we
introduce new problems. One is the question of when the Newton method converges
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for the NPE. It is well known that Newton methods only converge for starting values
within a certain interval around the solution and have quadratic convergence only
if all intermediate iterations stay within this interval. Modern Newton methods as
introduced in Section 2.4.4 try to circumvent this restriction by very careful step
size control but the issue of the initial value is still difficult.

This is especially the case for our way of solving the time-dependent problem.
We use the value of the old pressure as an initial guess for the Newton method for
the NPE. It seems that in most cases we are close enough to the solution for this
approach to work. However, for a surely robust method we would need to investigate
a sophisticated time adaption where we restart the computation for the current time
step with a smaller τ if the iteration for the NPE has not converged.

This already brings us to the outlook of things that can and possibly should
follow this work. The whole issue around the Newton method certainly gives rise to
many possible directions of further research. We will not indulge into this further,
as for this work we have been using a library for the actual solution of the NPE.
For further research, it might well be necessary to investigate the optimal variant of
the Newton method for our NPE from current publications and implement this from
scratch. But there are some other points which can be of further interest. They are
listed in the order of this work, first regarding the modeling, then the numerics and
finally the implementation.

Static Coulomb friction: We have mentioned in the last subsection of Section
1.3.1 that the kinetic model has a property called dynamic Coulomb friction, inves-
tigated in [BLS+01]. This allows the formation of heaps close to an internal friction
angle as we have shown for example in Section 3.2.2. We have extended the model
for quasi-static situations and have kept the internal friction angle consistent as
shown in Appendix A.2. Currently the angle of friction arises from the solution of
the equations. In fully static situations, which are not part of this work, we have
found problems in our numerical experiments. We suppose that for a situation of
complete rest of the granular material, it is necessary to explicitely include a model
of real friction of grains.

Partial slip boundary conditions: As we have mentioned in Section 1.3.3 the
currently used boundary conditions are not completely realistic. It is necessary to
model the interaction of the grains with the boundary in a better way than just
assuming them to stick or slide freely on the boundary. We need to prescribe a
friction for grain movement tangential to the boundary. This however makes it
necessary to know exactly what direction is tangential to the boundary. Currently
we approximate the boundary quite roughly by the cuboids.

Approximation of the boundary: There are different ways to find a better
approximation of the boundary. Either at the point of grid generation for a certain
domain one can form volumes at the boundary which represent the shape of the
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boundary. Another method is to use the same volume mesh but take into account
the shape of the boundary during discretization.

Investigation of the NPE: With the NPE we have introduced a novel equation
for computing an updated pressure value. In the linear case the elliptic equation,
usually for a pressure correction is well studied. For the nonlinear case there exists
the property of so called monotone operators which is a generalization of ellipticity.

Parallelization: In Section 4.3 we have described a parallelization approach for
our generalized approach to discretization. This parallelizes only the linear algebra
components. With this approach we do not remove the bottleneck of memory, we
can only hope to speed up the computations. Some kind of domain decomposition
should be considered. However, this may introduce new complications for the NPE.
We would need to find a way to parallelize the solution of this nonlinear equation.

All the above topics should provide good starting points for further research.
Aside from these points we have presented in this work an interdisciplinary and
in itself closed approach to the numerical simulation of granular flow. It is closed
in that it provides all the steps necessary to simulate granular flow. Aside from
the aforementioned contributions in the separate parts of the thesis, this is the
point where we see the major contribution of this work. The topic of simulation
of granular flow has been treated in an interdisciplinary way. The three pillars of
numerical simulation, namely the modeling, the numerical algorithms for obtaining
approximate solutions of the model as well as the software implementation have
been treated not separately but with respect to each other such that the final result
is a way to simulate the behavior of dense and dilute granular flow in arbitrary
domains.

”Who could ever calculate the path of a molecule? How do we know that the
creations of worlds are not determined by falling grains of sand?”

Victor Hugo from Les Miserables
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Appendix

A.1 Collaps in kinetic models

In Section 1.3.2 we described the shortcoming of the kinetic model in static situations
without continuing energy input. To understand how the state of zero temperature
and maximum packing fraction is reached we investigate Haff’s homogeneous cooling
for the temperature of the granular system described by Equations (1.7) and (1.11).
Neglecting the gradients in the temperature and the velocities we obtain from (1.7)

∂T

∂t
= −εT. (A.1)

For the final approach to a maximally packed state we can replace ε(ρ, T ) by εc in
leading order with

εc := ε0ρ
2
c

√
Tg(ρ) (A.2)

to obtain the equation
∂T

∂t
= −ε0ρ

2
cgT 3/2. (A.3)

Equation (A.3) is solved by Haff’s law (see [BP03, p. 53, Equation (5.5)])

T (ρ, t) =
T0(1− (ρ/ρc))

2

(1− (ρ/ρc) + A
√

T0(t− t0))2
, (A.4)

with A = ε0ρ
2
c . Using this expression for T in the kinetic pressure pK , compare

Equation (1.11a), we see that the pressure vanishes with the density approaching the
maximum packing state ρ = ρc. In addition the system becomes thermodynamically
unstable. This can be seen by calculating dpK/dρ, which is for large times given by

dpK

dρ
=

1

A2(t− t0)2
(1− 2

ρ

ρc

). (A.5)

In the asymptotic long time limit for ρ > ρc/2, the compressibility would become
negative for the pure homogeneous cooling case. Similar regions of negative com-
pressibility have been found in other kinetic models of granular gases, see [KM02].

A.2 Dynamic Coulomb friction

That grains form piles is easy to observe and makes granular media different from
common fluids. The angle at which the pile is formed, the angle of repose is not
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a material property, but it is usually very close to the internal friction angle. This
internal angle quantifies the frictional interaction of the grains.

Bocquet et al. have shown in [BLS+01], that solid like behavior is a solution of
the purely kinetic model which is System (1.18) with ρco = ρc from (1.13) and (1.11)
respectively. They derive that by solving with the kinetic expression for pressure
and transport coefficients (1.11) for a shearing experiment at constant pressure, the
shear stress σxy will be proportional to the normal stress component given by the
pressure p independent of the shear rate

σxy = p tan Φ, (A.6)

where the tangent of the internal friction coefficient is approximately given by

tan Φ =
√

ε0η0. (A.7)

We will now show, that we obtain the same relation with the choice of the hybrid
model (1.14) and (1.15).

For an ideal shearing experiment the coordinate system can be chosen such that
the changes of the velocity are perpendicular to the direction of the velocity. If we
chose the velocity u = (ux(y), 0, 0) the only non vanishing shear stress component is
σxy = η ∂ux

∂y
. Neglecting gradients in the granular temperature, Equation (1.7) gives

the balance of viscous heating and dissipation as

2η

3

(
∂ux

∂y

)2

− ερT = 0. (A.8)

Equations (1.8) and (1.9) give the ratio of shear stress and pressure

σxy

p
=

η

p

∂ux

∂y
.

With Equation (A.8) this can be written as

σxy

p
=

√
3
2
ηερT

p
.

Using Equations (1.14) and (1.15) we obtain

σxy

p
=

√
3
2
ηKεKρT

pK

. (A.9)

The angle of repose is relevant only for the high density limit, hence we replace ρ
by ρc in Equation (A.9). Using the expressions from (1.11) we get

σxy

p
=

√
3

2
ρcη0ε0.
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This shows that the yield pressure contribution does not affect the internal friction
angle. Arguing that we are only interested in a rough approximation of the angle, we
say that 3

2
ρc is close enough to 1 to be neglected. Hence we arrive at the expressions

(A.6) and (A.7).
The internal friction angle may differ by a few degrees from the measured angle

of repose, which differs slightly through different experiments. Nevertheless, the
formula should still suggest a range of values to match the angle of repose found in
our numerical experiments.





Notation

Acronyms

CFD computational fluid dynamics

CoRheoS Complex Rheology Solvers A software framework for implementing flow
solvers.

FV Finite Volume

LFSM linear fractional step method

LPCA linear pressure correction algorithm

LPCE linear pressure correction equation

MD molecular dynamics

NFSM nonlinear fractional step method

NPA nonlinear pressure algorithm An novel algorithm for pressure which involves a
nonlinear pressure equation.

NPE nonlinear pressure equation

NSE Navier-Stokes Equations

ODE ordinary differential equation

PDE partial differential equation

SC Schur-Complement

Mathematical notation

Vectors and vector valued functions are typeset in bold font, regardless of whether
they are continuous or discrete. Components of vectors are scalar, hence they are
not bold as in

x and xi.

We use the following differential operators in this work. The divergence and gradient
are denoted by the differential operators div and grad. The indices i and j will
denote rows and columns respectively. The divergence of a vector field F : Rd → Rd

is defined as

div (F ) := ∇ · F =
∂

∂xj

(Fj).
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For a tensor valued function T : Rd → R(d×d), T = Tij, the divergence operator is
defined as

div (T ) := ∇ · T =
∂

∂xj

(Tij).

For a scalar valued function S : R → Rd, the gradient is defined as

grad (S) := ∇S =
∂

∂xj

(S).

Symbols:

ρ - Density, introduced in System (1.1)

u,v - Velocities introduced in System (1.1)

p - Pressure introduced in System (1.1)

T - (Granular) temperature from Equation (1.7)

pK , pY - Kinetic and yield pressure of the granular flow model System (1.18)

σ - Stress tensor introduced in System (1.1)

σ̃ - Stress tensor in the granular flow model System (1.18)

κ - Strain rate tensor introduced in System (1.1)

κ̃ - Strain rate tensor in the granular flow model System (1.18)

q - Granular heat flux from Equations (1.7) and (1.8)

λ, λK - Granular heat conductivity from Equation (1.15c)

η, ηK - Granular viscosity from Equation (1.15a)

ε, εK - Granular energy loss rate from Equation (1.15b)

ρc - Limit density for random close packing of homogeneous spheres (1.12)

ρco - Crossover density between kinetic and yield regime, see Equation (1.13)

τ - Time step for time discretization (2.25)

π - Mapping between indizes of volumes, see Equation (2.3)

V , V̊ , V̄ - Volumes of the grid, interior and boundary, see Equation (2.4)

F , F̊ , F̄ - Faces of a volume, interior and boundary, see Equation (2.7)

h - Vector of lengths of finite volumes for space discretization, see Equation (2.5)

DIV - Discrete divergence, see Equation (2.13)

GF - Discrete gradient by faces, see Equation (2.17)

∝ - Denotes two proportional expressions

< · > - Averaging operator as in the definition of granular temperature (1.5)

v ⊗ u - Outer vector product uvT

σ : κ - Tensor contraction σijκij in Einstein notation
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[GD99] V. Garzó and J. W. Dufty, Dense fluid transport for inelastic hard spheres,
Physical Review E 59 (1999), no. 5, 5895–5911.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns - elements
of reusable object-oriented software, Addison-Wesley Publishing Co., Reading,
Massachusetts, 1995.

[Gid94] D. Gidaspow, Multiphase flow and fluidization, contimnuum and kinetic theory
description, Boston, Academic Press, 1934, 1994.

[GKC96] A. Gardziella, A. Kwasniok, and L. Cobos, Recent studies comparing
coremaking processes, Modern Casting 86 (1996), no. 3, 39–42.



BIBLIOGRAPHY 111

[GMS06] J. L. Guermond, P. D. Minev, and Jie Shen, An overview of projection methods
for incompressible flows, Computer Methods in Applied Mechanics and Engi-
neering 195 (2006), no. 44-47, 6011–6045.

[GRS07] C. Grossmann, H.-J. Roos, and M. Stynes, Numerical treatment of partial
differential equations, Universitext, Springer, Berlin, Heidelberg, 2007.

[GS78] B. Gustafsson and A. Sundström, Incompletely parabolic problems in fluid
dynamics, SIAM Journal of Applied Mathematics 35 (1978), no. 2.

[GS98] P. M. Gresho and R. L. Sani, Incompressible flow and the finite element
method. volume 1: Advection-diffusion and isothermal laminar flow, vol. 1,
John Wiley and Sons, Inc, New York, NY (United States), December 1998.

[HA68] F. H. Harlow and A. A. Amsden, Numerical calculation of almost
incompressible flow, Journal of Computational Physics 3 (1968), no. 1, 80–
93.

[HA71] , A numerical fluid dynamics calculation method for all flow speeds,
Journal of Computational Physics 8 (1971), no. 2, 197–213.

[HG97] J. S. Hesthaven and D. Gottlieb, A stable penalty method for the compressible
navier-stokes equations. 1. open boundary conditions, SIAM Journal on Sci-
entific Computing 18 (1997), no. 3, 658–685.

[Hir88] C. Hirsch, Numerical computation of internal and external flows, Wiley Series
in Numerical Methods in Engineering, vol. 1, John Wiley & Sons, Chichester,
New York, Brisbane, Toronto, Singapore, 1988.

[HNS05] P. Hovland, B. Norris, and B. Smith, Making automatic differentiation truly
automatic: coupling petsc with adic, Future Generation Computer Systems
21 (2005), no. 8, 1426–1438.

[Kad99] P. Kadanoff, Built upon sand: Theoretical ideas inspired by granular flows,
Review of Modern Physics 71 (1999), no. 1, 435–444.

[KM85] J. Kim and P. Moin, Application of a fractional-step method to incompressible
navier-stokes equations, Journal of Computational Physics 59 (1985), no. 2,
308–323.

[KM02] E. Khain and B. Meerson, Symmetry-breaking instability in a prototypical
driven granular gas, Physical Review E 66 (2002), no. 2, 021306.

[Kol00] D. Kolymbas, The misery of constitutive modelling, Constitutive Modelling of
Granular Materials, pp. 11–24, Springer, 2000.

[Lat06] A. Latz, Enthalpy equation: Temperature changes at constant pressure,
ITWM Report, August 2006.

[LL78] L. D. Landau and E. M. Lifschitz, Hydrodynamic, Lehrbuch der theoretischen
Physik, vol. VI, Akademie-Verlag, Berlin, 1978 (ngerman).



112 BIBLIOGRAPHY

[MF97] MPI-Forum, Mpi-2: Extensions to the message-passing interface, Tech. report,
University of Tennessee, Knoxville, Tennessee, 1997.

[MHN02] N. Mitarai, H. Hayakawa, and H. Nakanishi, Collisional granular flow as a
micropolar fluid, Physical Review Letters 88 (2002), no. 17, 174301.

[Min01] P. D. Minev, A stabilized incremental projection scheme for the incompressible
navier-stokes equations, International Journal for Numerical Methods in Fluids
36 (2001), 441–464.

[MP00] M.M. Massoudi and T. X. Phuoc, The effect of slip boundary condition on
the flow of granular materials: a continuum approach, International Journal
of Non-Linear Mechanics 35 (2000), 745–761.
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