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Im gleichen Atemzug möchte ich mich bei Prof. Dr. Willi Freeden bedanken. Wann immer ich eine Frage
hatte, stand seine Tür offen und durch viele interessante, inspirierende Diskussionen und Anregungen hat
er erheblichen Anteil an den erreichten Ergebnissen. Desweiteren möchte ich mich bei Prof. Dr. Heinrich
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Chapter 1

Introduction

This dissertation deals with two main subjects. Both are strongly related to boundary problems for
the Poisson equation and the Laplace equation, i.e., the homogeneous Poisson equation. The oblique
boundary problem of potential theory is treated in Chapter 3, while the limit formulae and jump relations
of potential theory are investigated in Chapter 4. Consequently we divide the introduction into two parts.

1.1 The Oblique Boundary Problem for the Poisson Equation

The main subject of Chapter 3 are existence results for solutions to the outer oblique boundary problem
for the Poisson equation. It is based on the article [GR06], in which a theory for deterministic as well
as stochastic inhomogeneities and solutions to the regular inner problem is provided. The problem is
called outer problem because it is defined on an outer domain Σ ⊂ Rn. This is a domain Σ, having the
representation Σ = Rn\D where 0 ∈ D is a bounded domain. Consequently, ∂Σ divides the euclidean
space Rn into a bounded domain D, called inner domain, and an unbounded domain Σ, called outer
domain. A problem defined on D and ∂D is called inner problem. The Poisson equation in the domain
is given by

∆u = f,

and the oblique boundary condition by

〈a,∇u〉+ bu = g.

This condition is called regular if the equation

|〈a, ν〉| > C > 0,

holds on ∂Σ, or ∂D respectively, for a constant 0 < C < ∞. A classical solution corresponding to
continuous a, b, g and f of the outer oblique boundary problem for the Poisson equation is a function
u ∈ C2(Σ) ∩ C1(Σ) which fulfills the first two equations and is regular at infinity, i.e., u(x) → 0 for
|x| → ∞. Existence and uniqueness result for a classical solution to the regular outer oblique boundary
problem for the Poisson equation are already available, see e.g. [Mir70, Section 23]. In order to allow
very weak assumptions on boundary, coefficients and inhomogeneities, we are interested in weak solutions.

9
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Due to our technique, we do not have to consider a regular outer problem. In [GR06] an existence and
uniqueness result for the weak solution to the inner regular oblique boundary problem is presented.
To be more precisely, if ∂Σ is a C1,1-boundary of a bounded domain Σ, |〈a, ν〉| > C > 0 on ∂Σ,

a
〈a,ν〉 − ν ∈ H1,∞(∂Σ; Rn), b

〈a,ν〉 ∈ L
∞(∂Σ) and ess inf∂Σ

(
b

〈a,ν〉 −
1
2div∂Σ( a

〈a,ν〉 − ν)
)
> 0, then for every

g
〈a,ν〉 ∈ H− 1

2 ,2(∂Σ) and f ∈
(
H1,2(Σ)

)′
there exists one and only one u ∈ H1,2(Σ) fulfilling the weak

formulation. Additionally the solution depends continuously on the data. Beside from some results for
Sobolev spaces defined on submanifolds, the crucial point in the proof is to show coercivity of the bilinear
form related to the weak formulation. Therefore we use a Poincaré inequality, namely∫

Σ

〈∇u,∇u〉 dλn +
∫

∂Σ

u2dHn−1 ≥ C

(∫
Σ

u2 dλn +
∫

Σ

〈∇u,∇u〉 dλn

)
,

for all u ∈ H1,2(Σ). For details see the reference given above. Important is, that this Poincaré inequality
is only available for bounded domains, so we can not apply the same techniques to the outer setting.
Before we go to the outer problem we prove a regularization result for the inner problem. This well be
used later on in order to prove the main results of this article. If ∂Σ is a C2,1-boundary of a bounded
domain Σ, a

〈a,ν〉 − ν ∈ H
2,∞(∂Σ; Rn), b

〈a,ν〉 ∈ H
1,∞(∂Σ), g

〈a,ν〉 ∈ H
1
2 ,2(∂Σ) and f ∈ L2(Σ), we are able to

show that the weak solution is even a strong solution, i.e., u ∈ H2,2(Σ). In the proof we show that the
weak solution fulfills the requirements of a regularization result for the weak Neumann problem, taken
from [Dob06].

Then we tackle the outer problem. Our approach in order to provide a weak solution is transforming this
problem to a corresponding inner problem, using the Kelvin transformation. This transformation defines
for each outer domain Σ an inner domain ΣK via

ΣK :=
{

x

|x|2
∣∣∣x ∈ Σ

}
∪ {0}.

In turn, we get for each function u defined on ΣK a function v by

v(x) :=
1

|x|n−2
u(

x

|x|2
),

for all x ∈ Σ. The first transformation leaves the regularity of ∂Σ invariant, while the second has the
important property

∆v(x) =
1

|x|n+2
(∆u) (

x

|x|2
), x ∈ Σ,

for all u ∈ C2(ΣK). Our idea is to use this transformations in order to provide a weak solution. We trans-
form the outer problem into a corresponding inner problem, then solve this problem and finally transform
the weak solution of the inner problem to a function defined in the outer domain. The transformations
T1(f) and T2(g) of the inhomogeneities as well as T3(a) and T4(b) of the coefficients can be identified by
standard calculus. The problem is to find the right function spaces and then to extend the transformations
to these spaces. In order to identify them we have to take care of two main aspects. First, the image spaces
under the transformations have to fulfill the requirements of the existence and uniqueness result for the
regular inner problem. Otherwise we cannot apply the solution operator for the inner problem. Second,
the transformations should be continuous. Otherwise the weak solution of the outer problem will not de-
pend continuously on the inhomogeneities. We are able to show that the spaces H− 1

2 ,2(∂Σ) for the bound-

ary inhomogeneity,
(
H1,2
|x|2,|x|3(Σ)

)′
for the domain inhomogeneity and H1,2

1
|x|2

, 1
|x|

(Σ) for the weak solution,



1.1. THE OBLIQUE BOUNDARY PROBLEM FOR THE POISSON EQUATION 11

are a suitable choice. Here we have Sobolev spaces equipped with weighted Lebesgue measures. Under
this conditions we are able to prove that if Σ is an outer C1,1-domain, a ∈ H1,∞(∂Σ; Rn) and b ∈ L∞(∂Σ),
fulfilling

∣∣〈(T3(a)) (y), νK(y)〉
∣∣ > C > 0 and ess inf∂ΣK

{
T4(b)

〈T3(a),νK〉 −
1
2div∂ΣK

(
T3(a)

〈T3(a),νK〉 − νK
)}

> 0,

for each g ∈ H− 1
2 ,2(∂Σ) and f ∈

(
H1,2
|x|2,|x|3(Σ)

)′
, there exists u := K(Sin

T3(a,T4(b)
(T1(f), T2(g))) with

u ∈ H1,2
1

|x|2
, 1
|x|

(Σ) fulfilling the continuity estimate

‖u‖H1,2
1

|x|2
, 1
|x|

(Σ) ≤ C

(
‖f‖�

H1,2
|x|2,|x|3

(Σ)
�′ + ‖g‖

H− 1
2 ,2(∂Σ)

)
.

This continuity estimate enables us to provide a Ritz-Galerkin method later on. Furthermore we can
show that if Σ is an outer C2,1-domain and a ∈ H2,∞(∂Σ; Rn) and b ∈ H1,∞(∂Σ), f ∈ L2

|x|2(Σ) and

g ∈ H 1
2 ,2(∂Σ) we have u ∈ H2,2

1
|x|2

, 1
|x| ,1

(Σ) for the weak solution to the outer problem. Additionally, it ful-

fills the classical formulation almost everywhere and a corresponding continuity estimate holds. Because
of the Kelvin transformation we get a transformed non admissible direction for the oblique vector field
a. For R2 we can explicitly calculate this direction. It only depends on the geometry of the surface ∂Σ.

In Chapter 2 we define the function spaces we will use in Chapter 3. This are mainly the spaces of smooth
functions and spaces of weakly differentiable functions. We introduce Sobolev spaces on submanifolds
and Sobolev spaces equipped with weighted Lebesgue measures. Furthermore, we present some impor-
tant results about these spaces. Chapter 3 is organized as follows. In Section 3.1 we present the weak
theory for the regular inner problem including an existence and uniqueness result for a broad class of
inhomogeneities. Except of the regularization result at the end of the section, this are mainly the results
contained in my diploma thesis, published in [Ada75]. In Section 3.2 we start with the investigation of
the outer problem. We introduce transformations which will be used in order to transform the outer
problem to a corresponding inner problem. Also some important properties of those transformations are
proved. They will be important in Section 3.3. Here we state the outer problem and in the following
we will be able to prove the existence of a weak solution for a very general class of inhomogeneities.
The modified regularity condition on the oblique vector field, which occurs because of the Kelvin trans-
formation is investigated separately in Subsection 3.3.2. Finally, we state some results about stochastic
inhomogeneities and a Ritz-Galerkin approximation method in Subsection 3.3.3 and Subsection 3.3.4,
respectively. Both are implemented, using the techniques and results from [GR06]. The applicability to
problems from geomathematics is shown in Subsection 3.3.5.

Our analysis of the outer problem is motivated by problems from geomathematics. Here oblique bound-
ary problems arise frequently, because in general the normal of the Earth’s surface does not coincide with
the direction of the gravity vector. Therefore, the oblique boundary condition is more suitable then a
Neumann boundary condition. For details see [Bau04] or [Gut08].

The main progress achieved in Chapter 3 can be summarized by the following core results:

• A regularization result for a strong solution to the regular inner problem, i.e., u ∈ H2,2(Σ), is
proved, see Theorem 3.1.6.

• The transformation of the outer oblique boundary problem for the Poisson equation to a corre-
sponding inner problem is provided. Important properties of this transformation are proved, see
Lemmata 3.2.3, 3.2.7, 3.2.11, 3.2.13 and 3.2.14.
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• The existence of a weak solution to the outer problem under weak assumptions on coefficients and
surface for a large class of inhomogeneities is proved, see Theorem 3.3.2.

• An existence result for a strong solution under additional regularity assumptions is proved and the
connection to the classical problem is established, see Theorem 3.3.4.

• The transformed condition on the oblique vector field is investigated, see Subsection 3.3.2.

• Stochastic inhomogeneities as well as an existence result for the stochastic weak solution are im-
plemented. Additionally a Ritz-Galerkin approximation method for numerical computations is
provided. Moreover, the results are applicable to problems from Geomathematics. These results
are contained in Subsections 3.3.3-3.3.5.

Outlook

In Chapter 3 we prove the existence of a weak solution to the outer oblique boundary problem for the
Poisson equation. Therefore we introduce several transformations. We prove for the transformation of
the space inhomogeneity f

T1 :
(
H1,2
|x|2,|x|3(Σ)

)′
→
(
H1,2(ΣK)

)′
.

This transformation is not bijective, i.e.,

T1

((
H1,2
|x|2,|x|3(Σ)

)′)
6=
(
H1,2(ΣK)

)′
.

Finding a Hilbert space V , such that the transformation

T1 : V →
(
H1,2(ΣK)

)′
,

is bijective would lead to the existence of a weak solution for a even larger class of inhomogeneities.
Moreover we have for the transformation K of the weak solution to the inner problem

K : H1,2(ΣK) → H1,2
1

|x|2
, 1
|x|

(Σ),

where we have again
K
(
H1,2(ΣK)

)
6= H1,2

1
|x|2

, 1
|x|

(Σ).

Finding a Hilbert space W such that
K : H1,2(ΣK) →W,

is bijective, would give us uniqueness of the solution and more detailed information about the behavior
of u and its weak derivatives, when x is tending to infinity. Additionally, we would be able to define a
bijective solution operator for the outer problem. This could be used to find the right Hilbert spaces,
such that a Poincaré inequality is available. Consequently the Lax-Milgram Lemma would be applicable
directly to a weak formulation for the outer setting, which can be derived similar to the inner problem.
Then we might have to consider a regular outer problem, because the tangential direction is forbidden
for the oblique vector field, if we want to derive a weak formulation, see Section 3.1. In turn we get rid
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of the transformed regularity condition on a, investigated in Subsection 3.3.2. The results achieved by
this dissertation are then still an alternative in order to get weak solutions for tangential a. Moreover,
the availability of a Poincaré inequality would lead to existence results for weak solutions to a broader
class of second order elliptic partial differential operators in outer domains. See [Alt02, Chapter 4] for
such second order elliptic partial differential operators for inner domains. Another part that could be a
subject of further investigations are the conditions on the coefficients of the boundary condition, i.e.,

ess inf∂ΣK

{
T4(b)

〈T3(a), νK〉
− 1

2
div∂ΣK

(
T3(a)

〈T3(a), νK〉
− νK

)}
> 0,

as well as the modified regularity condition on a, i.e.,∣∣〈(T3(a)) (y), νK(y)〉
∣∣ > C > 0.

Moreover, a generalization to other boundary conditions, e.g. Dirichlet, Neumann or Robin boundary
conditions, might be implemented if desired. Finally, a generalization to surfaces with more complex
geometry, e.g. non connected domains, non connected boundaries or outer domains Σ containing the
origin, might be possible.

1.2 Limit Formulae and Jump Relations of Potential Theory

In Chapter 4 we prove the convergence of the limit formulae and jump relations of potential theory in
several norms. More precisely, we investigate the potential of the single layer U1 and the potential of the
double layer U2, defined by

U1[F ](x) :=
∫

∂Σ

F (y)
1

|x− y|
dH2(y),

U2[F ](x) :=
∫

∂Σ

F (y)
∂

∂ν(y)
1

|x− y|
dH2(y),

for all x ∈ R3\∂Σ, where Σ is an outer domain in R3 and F is a given function on ∂Σ, called layer
function. An outer domain Σ divides R3 into a bounded connected inner domain D and an unbounded
connected outer domain R3\D = Σ. Furthermore, we investigate the first order normal derivatives of U1

and U2. The limit formulae describe the behavior of these potentials when approaching the surface ∂Σ.
In general the limit formulae are different when approaching either from the inner or the outer space.
These circumstance is called jump relation and can be obtained by the results for the limit formulae.
Therefore we restrict ourselves to the limit formulae, while the jump relations can be computed easily
by taking either the difference or the sum of the corresponding limit formula. Note that U1 and U2 are
analytic, harmonic functions as well in the inner as in the outer space, even for outer C2-domains Σ
and continuous F . Non the less we need additional regularity assumptions in order to prove that the
limits, when approaching to the surface, exist. We need the potentials to be Hölder continuous, then we
know that a unique Hölder continuous continuation onto ∂Σ exists. If we want to prove the convergence
in Cm(∂Σ)-norm, also the derivatives have to be Hölder continuous. These properties can be ensured
for sufficiently smooth surface ∂Σ and F . From literature we know that for outer C2-domains Σ and
continuous F we have

lim
τ→0+

U1[F ](x± τν(x)) = U1[F ](x), ∀x ∈ ∂Σ,
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lim
τ→0+

∂U1

∂ν
[F ](x± τν(x)) =

∂U1

∂ν
[F ](x)∓ 2πF (x), ∀x ∈ ∂Σ,

lim
τ→0+

U2[F ](x± τν(x)) = U2[F ](x)± 2πF (x), ∀x ∈ ∂Σ,

lim
τ→0+

∂U2

∂ν
[F ](x± τν(x)) =

∂U2

∂ν
[F ](x), ∀x ∈ ∂Σ.

uniformly in x ∈ ∂Σ. The first three formulae can be found in [FM04], while we had to prove the last
formula, using results from [CK83] and [Sch31b]. In this case we have to assume F ∈ C1,α(∂Σ). We can
even prove that this convergence holds in C0,β(∂Σ)-norm, provided the additional assumptions

F ∈ C0,α(∂Σ) for formula 1,

F ∈ C0,α(∂Σ) for formulae 2 and 3,

are fulfilled, where 0 ≤ β < α ≤ 1. Moreover, we are able to prove that these formulae stay valid in
Cm(∂Σ)-norm for an outer Cm+1,α-domain Σ and in Cm,β(∂Σ)-norm for an outer Cm+2-domain Σ if

F ∈ Cm−1,α(∂Σ) for formula 1,
F ∈ Cm,α(∂Σ) for formulae 2 and 3,

F ∈ Cm+1,α(∂Σ) for formula 4,

where m ≥ 1 and 0 ≤ β < α ≤ 1. In the proofs we mainly use results, taken from [Gün57]. The
convergence in Cm(∂Σ)-norm is basic for the convergence in the Sobolev spaces Hm,2(∂Σ). Another
result, which is essential in the proof of our main result is the convergence of U1, U2 in L2(∂Σ)-norm
proved in [Ker80], [Geh70] and [Fre80]. We have this convergence for each outer C2-domain Σ and each
F ∈ L2(∂Σ). The main result of the article is the following. We prove the convergence of the formulae
above in Hm,2(∂Σ) under the conditions

F ∈ Hm,2(∂Σ) and Σ an outer Cm+1,α-domain for formula 1,

F ∈ Hm+1,2(∂Σ) and Σ an outer Cm+2-domain for formulae 2 and 3,

F ∈ Hm+2,2(∂Σ) and Σ an outer Cm+3-domain for formula 4.

Therefore we use the BLT Theorem, which provides us an unique extension of the potential operators
from Cm(∂Σ) onto Hm,2(∂Σ), provided we are able to prove that these operators are continuous in
Hm,2(∂Σ)-norm on that dense subset. Therefore we estimate the potential operators on parallel surfaces
∂Σ±τ by a constant independent of τ > 0. The advantage is that we avoid the singular integrals when x
is itself an element of the surface. But the problem is to get a constant independent of τ > 0. Therefore
we use the mappings from the surface to R2, translate differentiation with respect to x to differentiation
with respect to y and apply integration by parts to transfer the differential operators to the layer function
F . Furthermore we have to use a reduction result derived from a transformation formula for the Laplace
operator. This helps us to get rid of higher order derivatives in direction y3 which can not be treated
with help of integration by parts, because we are only integrating over the variable y1 and y2. In the
last section we prove that the results from Chapter 4 are applicable to geomathematics. We prove that
the system of mass point representations as well as the systems of inner and outer harmonics are dense
in Hm,2(∂Σ) for arbitrary m ∈ N. With help of the results proved in Section 4.5 and Section 4.6, we

are able to define U±τ
1 [F ] for each F ∈

(
Hm,2(∂Σ)

)′
and τ ∈ [0, τ0], where Σ is an outer Cm+2-domain.

Moreover we are able to prove that the limit formula for U1 even holds in this abstract setting. This
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enables us to extend the result from [FM03] and [FM04] about the density of the function systems in
L2(∂Σ).

In Chapter 2 we give the definitions of the surfaces and function spaces we will use, as well as some
properties of them. Furthermore, we formulate results which will be important tools in the proofs of the
main results. Chapter 4 is organized as follows. In Section 4.1 we define the layer potentials as well as
their first order normal derivatives. These will be subject of our investigation in the following sections.
Also some basic properties are stated. In Section 4.2 we state the limit formulae of potential theory for
the first time, pointwisely and uniformly, i.e., in C0(∂Σ)-norm. These results will be the basis of our
further considerations. They are mainly taken from literature, except of the limit formula for ∂U2

∂ν . In
Section 4.3 we present the first of our three main results. This is the convergence of the limit formulae
in Cm(∂Σ)-norm. The second one follows in Section 4.4 as the extension to the convergence even in the
Hölder spaces Cm,β(∂Σ). Section 4.5 is essential for the proof of the convergence in Hm,2(∂Σ)-norm,
which is proved in Section 4.6. It contains the convergence in L2(∂Σ), which is published in [Ker80]
as well as in [Fre80] and has its origin in [Geh70]. Moreover, an important result about the continuity
of the potential operators with respect to the L2(Σ)-norm is stated and proved. Finally we prove the
density of several function systems from geomathematics in Hm,2(∂Σ) as well as the limit formula of U1

for F ∈
(
Hm,2(∂Σ)

)′
in Section 4.7.

The main progress achieved in Chapter 4 can be summarized by the following core results:

• The convergence of the limit formula for ∂U2
∂ν , pointwisely, in C0(∂Σ)-norm and in L2(∂Σ)-norm is

proved, see Theorem 4.2.2.

• The convergence of the limit formula for U1, U2, ∂U1
∂ν and ∂U2

∂ν in Cm(∂Σ)-norm, m ≥ 1 is proved,
see Theorem 4.3.3.

• Moreover this convergence is shown to be even a convergence in Cm,β(∂Σ)-norm, m ≥ 0 and
0 < β < 1, see Theorem 4.4.1.

• Finally, the convergence in Hm,2(∂Σ) with F ∈ Hm,2(∂Σ) for U1, F ∈ Hm+1,2(∂Σ) for ∂U1
∂ν and U2

and F ∈ Hm+2,2(∂Σ) for ∂U2
∂ν is proved, see Theorem 4.6.1.

• An application of the limit formulae to geomathematics is given. We prove that the systems of
mass distributions and outer harmonics, which are known to be dense in L2(∂Σ), are even dense
in Hm,2(∂Σ), m ∈ N, for an outer C2m−1,1-domain Σ, see Theorem 4.7.8. We also prove that
the system of inner harmonics is dense in Hm,2(∂Σ). Moreover we extend U1 to an operator on

∈
(
Hm,2(∂Σ)

)′
and we prove that the limit formula for U1 even holds in this setting.

Outlook

In Chapter 4 we use the transformation formula of the Laplace operator for harmonic functions, in
order to reduce second order normal derivatives of a given function F to a sum of first order normal
derivatives of F , tangential derivatives of F as well as F itself. Using this technique, it is possible to
reduce arbitrary normal derivatives of the potentials of the n-th layer on ∂Σ to tangential derivatives
of U1, U2 as well as of their first order normal derivatives, applied to tangential derivatives of F . Then
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all results contained in this dissertation might be translated to the limit formulae, and consequently
the jump relations, for all remaining potentials, using the results and techniques presented. For details
see also [Mül51], where the author uses this technique in order to get the jump relations for arbitrary
derivatives of n-layer potentials. If we want to provide this results we are faced with two main problems.
Of course, we have to identify the tangential differential operators at first. But then we also have to
investigate the coefficient functions, because the operators are defined on the parallel surfaces ∂Σ±τ and
may depend on τ . Then also the convergence of these operators, when τ tends to zero, as well as the
limiting operators, have to be investigated. An elementary approach has been done in the master thesis
by M. Omari, cf. [Oma09], which I co-supervised. Another task might be the regularity assumptions in
Hm,2(∂Σ) norm. When comparing the results to those in Cm(∂Σ) norm, we see that we have at least
one order higher assumptions on F and Σ. It might be possible to achieve our techniques in such a way
that we get assumptions in Hm,2(∂Σ) norm of the same strength as in Cm(∂Σ) norm. One possibility is
to investigate the convergence of the the potentials

U [F ](x) :=
∫

∂Σ

F (y)
∂

∂ti(y)
1

|x− y|
dH2(y),

i = 1, 2 and x ∈ R3\∂Σ. Therefore results form [FM04, Paragraph 3.3.2] might be a starting point.
The next point we want to mention concerns the jump relations. We were mainly interested in the limit
formulae and took the jump relations as corollary. If one is interested only in the jump relations, there
is the possibility to prove results under much weaker assumptions as for the limit formulae. The simple
reason is that the singular integrals for x ∈ ∂Σ do not occur in the jump relations. For such results see
[FM04] where jump relations in C0(∂Σ) norm are proved, [Mül51] where jump relations in Cm(∂Σ) norm
are proved, or [Ker80] where jump relations in L2(∂Σ) norm are proved. In Section 4.7 we prove that
the system of mass point representations and the outer harmonics are dense in Hm,2(∂Σ). Application
of these results to geomathematical problems is left to be implemented. In [FM03] or [FM04], where the
authors prove these function systems to be dense in L2(∂Σ), it is also proved that the normal derivatives
of the function systems are dense in L2(∂Σ). Density of the normal derivatives in Hm,2(∂Σ) seems also
be provable from our point of view. Therefore it might be necessary to have ∂U1

∂ν , U2 : Hm,2(∂Σ) →
Hm,2(∂Σ). Moreover the density of oblique derivatives of the treated function systems in Hm,2(∂Σ) for
F ∈ Hn,2(∂Σ) could be point of further research. It is left to investigate how far the results of this
dissertation can be generalized to this case. Such a result would be an achievement for numerics of the
oblique boundary problem for the Laplace equation, because until now density is only proved in the pre
Hilbert space

(
C0,α(∂Σ), ‖ · ‖L2(∂Σ)

)
, see [FM04, Section 3.3.3]. Also an extension of our results to other

function systems might be possible, c.f. [FM04]. In [FK80] the density of the system of mass point
representations in C0,α(∂Σ) is proved. With help of the results from Chapter 4 it might be possible to
extend this result to Cm,β(∂Σ). Another possible application are boundary problems for the Poisson
equation, see e.g. [CK83] and [Gün57]. Here we would end up with some singular integral operators. At
the end of this outlook we want to mention that a extension to the more general Lyapunov surfaces is
possible, see e.g. [Gün57] or [Mic72]. Moreover a generalization to Rn might be possible, although it is
not required from the view of geomathematical applications and there is only few literature.



Chapter 2

Preliminaries

This chapter contains the definitions and lemmata which will be used in the following chapters to derive
the main results of this dissertation. In Chapter 2 we denote constants by c1, c2, . . ., while we use
C1, C2, . . . in Chapter 3 and Chapter 4. Because the constants in Chapter 4 will not depend on those
from Chapter 3, we start again with C1, C2, . . . in Chapter 4. Vector valued functions, except of the
normal vector field, are denoted by underlined letters and the euclidean scalar product of x, y ∈ Rn is
denoted by 〈x, y〉, while |x| is the euclidean norm. All functions are assumed to be real or real vector
valued. The dual paring of F ∈ H ′

and G ∈ H is denoted by H′ 〈F,G〉H or F (G), respectively.

2.1 Domains and Surfaces

We start with the definition of the surfaces and domains.

Definition 2.1.1. ∂Σ ⊂ Rn is called a Cm,α-surface, m ∈ N and 0 ≤ α ≤ 1 and Σ is called a bounded
Cm,α-domain, if and only if

• Σ is a bounded subset of Rn which is a domain, i.e., open and connected,

• There exists an open cover (Ui)i=1,...,N of ∂Σ and corresponding Cm,α

-diffeomorhisms Ψi : BRn

1 (0) → Ui, i = 1, . . . , N , such that

Ψi : B0
1(0) → Ui ∩ ∂Σ,

Ψi : B+
1 (0) → Ui ∩ Σ,

Ψi : B−
1 (0) → Ui ∩ Rn\Σ,

where BRn

1 (0) denotes the open unit ball in Rn, i.e., all x ∈ Rn with |x| < 1. B0
1(0) denotes the set

of all x ∈ BRn

1 (0) with xn = 0, B+
1 (0) denotes the set of all x ∈ BRn

1 (0) with xn > 0 and B−
1 (0)

denotes the set of all x ∈ BRn

1 (0) with xn < 0.

On the other hand Σ is called an outer Cm,α-domain, if and only if Σ ⊂ Rn is open, connected and
representable as Σ := Rn\D, where D is a bounded Cm,α-domain such that 0 ∈ D. Consequently,
∂Σ = ∂D is also a Cm,α-surface. Ψi is called Cm,α-diffeomorphism if and only if it is bijective, (Ψi)j ∈

17
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Cm,α
(
BRn

1 (0)
)
,
(
Ψ−1

i

)
j
∈ Cm,α

(
Ui

)
, j = 1, 2, 3 and we have for the determinant of the Jacobian Matrix

of Ψi, Det(DΨi) 6= 0 in BRn

1 (0). Furthermore, we find a C∞-partition of (wi)1≤i≤N on ∂Σ corresponding
to the open cover (Ui)1≤i≤N , provided by [Alt02, Lemma 2.19].

For this definition and further details see e.g. [Dob06] or [GT01]. ∂Σ is a compact doublepointfree
(n − 1)-dimensional Cm,α-submanifold with ∂(∂Σ) = ∅, i.e., ∂Σ is a closed manifold. Let ∇∂Σ denote
the gradient on ∂Σ and T (∂Σ) the tangent space of ∂Σ. Because ∂Σ is a submanifold of Rn, we consider
elements of T (∂Σ) as vectors in Rn. Furthermore we can find orthonormal vector fields {t1, . . . , tn−1}
on ∂Σ, generating T (∂Σ). As well ti, 1 ≤ i ≤ n − 1 as the outer unit normal vector ν are Cm−1-vector
fields. Hn−1 denotes the (n− 1)-dimensional Hausdorff measure on ∂Σ, see [Alt04, Section 5.7], and λn

the Lebesgue measure in Rn. Throughout this dissertation we assume at least a Lipschitz boundaries,
i.e., C0,1-boundaries ∂Σ. Then we have ν ∈ L∞(∂Σ; Rn). For each differentiable function F , defined on
∂Σ, we have

∇∂ΣF :=
n−1∑
i=1

ti∂ti
F.

The definition is independent of the basis chosen. For details see e.g. [Alt04]. We have the following for
Cm,α-surfaces.

Lemma 2.1.2. Let ∂Σ be a Cm,α-surface, m ∈ N, m ∈ N, α ∈ [0, 1]. Then ∂Σ is a Cn,β-surface, provided
it holds n ≤ m and n+ β ≤ m+ α.

Proof. For the proof we refer to [CK83] or [GT01, Section 6.2].

In Figure 1, such a Cm,α-surface is illustrated.

Figure 1: Cm,α-surface

Note that some geomathematical relevant examples are even C∞-surfaces, e.g. a sphere or an ellipsoid.
At next, we define integration over ∂Σ.
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Definition 2.1.3. The integral over a C0,1-surface ∂Σ of a function F is defined by:

∫
∂Σ

F (x) dHn−1(x) :=
N∑

j=1

∫
Rn−1

wj(Ψj(x′, 0))F (Ψj(x′, 0))Jj(x′) dλn−1(x′).

The functions Jj are defined by

J2
j (x′) :=

n∑
i=1

(
Jk

j (x′)
)2

for all x′ ∈ BRn−1

1 (0), j = 1, . . . , N , where Jk
j (x′) is the determinant of the matrix DΨj(x′, 0) when

suppressing the last column and the line with index k.

The integral is independent from the choice of (Ui)1≤i≤N , (wi)1≤i≤N and (Ψi)1≤i≤N . Furthermore
we have the following result for the functions Jj .

Lemma 2.1.4. Let ∂Σ be a Cm,α-surface, 0 ≤ α ≤ 1 and m ≥ 1. Then we have
Jj ∈ Cm−1(BRn−1

1 (0)) for all j ∈ {1, . . . , N} with

0 < cj1 ≤ Jj(x′) ≤ cj2 <∞,

for all x′ ∈ BRn−1

1 (0), j = 1, . . . , N .

Proof. This follows by the definition of Jj if we use the fact that Det(DΨj(x)) is bounded on BRn

1 (0)
and that |Det(DΨj(x))| is strictly positive for on BRn

1 (0) by Definition 2.1.1 and the expansion formula
for determinants. For further details see e.g. [DL88, Appendix Chapter IV].

Boundaries of outer Cm,α-domains in R3

In the last part of this subsection we give some further definitions and properties for outer Cm,α-domains
in R3. Therefore, let Σ be at least an outer C2-domain in R3, if not stated otherwise. For such a domain
we have the following.

Lemma 2.1.5. Let Σ be an outer C2-domain. We find a constant 0 < τ0 < ∞ such that the parallel
surfaces ∂Στ :=

{
x+ τν(x)

∣∣∣x ∈ ∂Σ
}

are well defined for all τ ∈ [−τ0, τ0] in the sense that for each
x ∈ ∂Στ there exists exactly one y ∈ ∂Σ such that x = y + τν(y). Additionally we have ν(x) = ν(y) for
x ∈ ∂Σ, where y = x+ τν(x) ∈ ∂Στ and ν denotes the normal vector field of ∂Σ.

Proof. We have to choose τ0 such small that 1 − 2τ0H + τ2
0K remains positive on ∂Σ, where H is he

mean curvature of ∂Σ and K is the Gaussian curvature of ∂Σ. For details we refer to [CK83, Section 2.1]
or [FM04, Section 3.1.1].



20 CHAPTER 2. PRELIMINARIES

For the rest of this paragraph as well as in Chapter 4 we fix for each outer C2-domain in R3, 0 < τ0 <∞
as a constant such that Lemma 2.1.5 holds and x± τν(x) /∈ ∂Σ for all x ∈ ∂Σ and τ ∈ (0, τ0]. We define

Bτ0(∂Σ) :=
⋃

τ∈[−τ0,τ0]

∂Στ .

At next, we define for each Cm,α-surface ∂Σ in R3 two tangential vectors as well as the normal vector
forming an orthonormal basis of R3 at each point x ∈ ∂Σ. Before we close this section with the final
lemma, we illustrate the set Bτ0(∂Σ) in the following figure.

Figure 2: Bτ0(∂Σ) for an outer Cm,α-domain

Lemma 2.1.6. Let ∂Σ be a Cm,α-surface, m ∈ N, m ≥ 1, α ∈ [0, 1]. We define

t1(x) :=
∑N

i=1 wi(x)(∂1Ψi)(Ψ−1
i (x))

|
∑N

i=1 wi(x)(∂1Ψi)(Ψ−1
i (x))|

,

and

t2(x) :=

∑N
i=1 wi(x)(∂2Ψi)(Ψ−1

i (x))− t1(x)
〈
t1(x),

(∑N
i=1 wi(x)(∂2Ψi)(Ψ−1

i (x))
)〉

|
∑N

i=1 wi(x)(∂2Ψi)(Ψ−1
i (x))− t1(x)

〈
t1(x),

(∑N
i=1 wi(x)(∂2Ψi)(Ψ−1

i (x))
)〉

|
,

for all x ∈ ∂Σ. Then we set

ν(x) :=
t1(x)× t2(x)
|t1(x)× t2(x)|

,

for all x ∈ ∂Σ. We have ν, t1, t2 ∈ Cm−1(∂Σ). Finally, we define vector fields ν, t1 and t2 on Bτ0(∂Σ) by

ν(x+ τν(x)) := ν(x),
t1(x+ τν(x)) := t1(x),
t2(x+ τν(x)) := t2(x),

for all x ∈ ∂Σ, τ ∈ [−τ0, τ0].
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Proof. Note that for each y ∈ Bτ0(∂Σ) there exists one and only one x ∈ ∂Σ and τ ∈ [−τ0, τ0] such that
y = x+ τν(x). Consequently the definitions above are well defined. The regularity follows immediately
by the definition of the vector fields together with the regularity of the mappings and Lemma 2.2.9. For
i = 1 . . . , N we can alternatively define ν(Ψi) on Ui by

ν(Ψi(x, 0)) =
∂1Ψi(x, 0)× ∂1Ψi(x, 0)
|∂1Ψi(x, 0)× ∂1Ψi(x, 0)|

,

for all x ∈ BR2

1 (0), because the mappings Ψi( · , 0) are at least C1-diffeomorphisms from BR2

1 (0) to Ui∩∂Σ
and consequently ∂1Ψi and ∂2Ψi are as well elements of T (∂Σ) as linear independent.

2.2 Function Spaces

We go on by introducing the function spaces which will be important in the following. We start with the
classical spaces of smooth functions and compactly supported smooth functions.

Definition 2.2.1. Let Σ be a bounded or an outer C0,1-domain. We define

C∞(Σ) := {F : Σ → R|∂s1
1 . . . ∂sn

n F is continuous on Σ
for all multi indices (s1, . . . , sn) ∈ Nn} ,

C∞(Rn) := {F : Σ → R|∂s1
1 . . . ∂sn

n F is continuous on Rn

for all multi indices (s1, . . . , sn) ∈ Nn} ,
C∞

0 (Rn) := {F ∈ C∞(Rn)|supp(F ) is a compact subset of Rn}} ,

C∞(∂Σ) :=
{
F
∣∣
∂Σ

∣∣∣F ∈ C∞(Rn)
}
.

Here supp(F ) denotes the support of the function F , i.e., all x ∈ Rn for which F (x) 6= 0 and F
∣∣
∂Σ

denotes the restriction of the function F to ∂Σ. Next we introduce Sobolev spaces on bounded and outer
C0,1-domains Σ as well as on Cm,1-surfaces ∂Σ.

Definition 2.2.2. Let Σ be a bounded C0,1-domain and r ∈ N. We define

Hr,2(Σ) :=
{
F : Σ → R|∂α1

1 · · · ∂αn
n F ∈ L2(Σ) for all α1 + . . .+ αn ≤ r

}
,

‖F‖Hr,2(Σ) :=

 r∑
|α|=0

N∑
i=1

‖∂αF‖2
L2(Σ)

 1
2

.

Let Σ be an outer C0,1-domain and %1, %2, %3 be continuous, positive functions defined on Σ. We define

L2
%1

(Σ) :=
{
F : Σ → R|F is measurable with

∫
Σ

F 2(x)%2
1(x)dλ

n(x) <∞
}
,

H1,2
%1,%2

(Σ) :=
{
F ∈ L2

%1
(Σ)|∂iF ∈ L2

%2
(Σ), 1 ≤ i ≤ n

}
,
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H2,2
%1,%2,%3

(Σ) :=
{
F ∈ L2

%1
(Σ)|∂iF ∈ L2

%2
(Σ)

and ∂i∂jF ∈ L2
%3

(Σ), 1 ≤ j, i ≤ n
}
,

‖F‖L2
%1

(Σ) :=
(∫

Σ

F 2(x)%2
1(x)dλ

n(x)
) 1

2

,

‖F‖H1,2
%1,%2 (Σ) :=

(
‖F‖2

L2
%1

(Σ) +
n∑

i=1

‖∂iF‖2
L2

%2
(Σ)

) 1
2

,

‖F‖2
H2,2

%1,%2,%3 (Σ)
:=

‖F‖2
L2

%1
(Σ) +

n∑
i=1

‖∂iF‖2
L2

%2
(Σ) +

n∑
i=1

n∑
j=1

‖∂i∂jF‖2
L2

%3
(Σ)

 1
2

.

Let ∂Σ be a C0,1-surface and (wi)1≤i≤N be the C∞-partition of unity of ∂Σ corresponding to the open
cover from Definition 2.1.1. For a function F defined on ∂Σ we obtain a function θiF defined on Rn−1

by:

θiF (y) :=
{

(wiF )(Ψi(y, 0)) y ∈ BRn−1

1 (0),
0 otherwise.

Let now ∂Σ be a Cm,1-surface, m ∈ N. Furthermore let s ∈ R, r ∈ N, with s < m + 1 and 0 ≤ r ≤ m.
Then we define

Hs,2(∂Σ) :=
{
F : ∂Σ → R|θiF ∈ Hs,2(Rn−1), 1 ≤ i ≤ N

}
,

Hr,∞(∂Σ) :=
{
F : Σ → R|θiF ∈ Hr,∞(Rn−1), 1 ≤ i ≤ N

}
,

‖F‖Hs,2(∂Σ) :=

(
N∑

i=1

‖θiF‖2
Hs,2(Rn−1)

) 1
2

,

‖F‖Hr,∞(∂Σ) := max0≤s1+...+sn−1≤r,1≤i≤N

{
ess sup

BRn−1
1 (0)

(
|∂s1

1 · · · ∂sn−1
n−1 θiF |

)}
,

where H0,p(∂Σ) is identical with Lp(∂Σ), p ∈ {2,∞}. The spaces Hs,2(∂Σ) and Hr,2(Σ) are Hilbert
spaces, while the spaces Hr,∞(∂Σ) are Banach spaces with respect to the norms given above, see e.g.
[Ada75], [DL88] or [Dob06].

The spaces Hs,2(Rn−1) are defined via the Fourier transformation, see e.g. [SR91]. Differentiation
in the definition above has to be understood in sense of weak differentiation. Furthermore we have the
following for the weighted Sobolev and Lebesgue spaces.

Lemma 2.2.3. The spaces H2,2
%1,%2,%3

(Σ), H1,2
%1,%2

(Σ) and L2
%1

(Σ) are Hilbert spaces with respect to the
norms given in Definition 2.2.2.

Proof. Clearly all norms are induced by a scalar product. So the spaces are pre Hilbert spaces and it is
left to show that they are complete. We start with L2

%1
(Σ). Let (fn)n∈N ⊂ L2

%1
(Σ) be a Cauchy sequence

in L2
%1

(Σ). Then (fn%1)n∈N is a Cauchy sequence in L2(Σ). Because L2(Σ) is a Hilbert space, we find
a f ∈ L2(Σ) such that fn%1 → f in L2(Σ) for n tending to infinity. Then we have f

%1
∈ L2

%1
(Σ) with

fn → f
%1

in L2
%1

(Σ) for n tending to infinity. Consequently L2
%1

(Σ) is complete, i.e., a Hilbert spaces.
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Assume now that we have a Cauchy sequence (gn)n∈N in H1,2
%1,%2

(Σ) and a Cauchy sequence (hn)n∈N
in H2,2

%1,%2,%3
(Σ). Then we have Cauchy sequences (gn)n∈N, (hn)n∈N in L2

%1
(Σ), (∂ign)n∈N, (∂ihn)n∈N in

L2
%2

(Σ) for i = 1, . . . , n and (∂j∂ihn)n∈N in L2
%3

(Σ) for i, j = 1, . . . , n. Consequently we find limiting
functions g, h ∈ L2

%1
(Σ), gi, hi ∈ L2

%2
(Σ) and hji ∈ L2

%3
(Σ) for each of this Cauchy sequences. All what

is left to show is that gi = ∂ig, hi = ∂ih and hji = ∂j∂ih in sense of weak differentiation. We treat the

case for H1,2
%1,%2

(Σ), H2,2
%1,%2,%3

(Σ) can be done in the same way. Let Rx := Σ ∩
(
×n

i=1]xi, xi + 1[
)
, where

x ∈ Zn is arbitrary. We have

‖F‖H1,2(Rx) ≤ minRx
{%1, %2}‖F‖H1,2

%1,%2 (Σ),

for all F ∈ H1,2
%1,%2

(Σ). This yields that (gn)n∈N is a Cauchy sequence in H1,2(Rx) and we find a limiting
function g̃ in the Hilbert space H1,2(Rx). On one side we have gn → g̃ and ∂ign → ∂ig̃ in L2(Rx). On
the other side gn → G and ∂ign → gi in L2(Rx), because

‖F‖L2(Rx) ≤ minRx
{%1}‖F‖L2

%1
(Σ),

‖G‖L2(Rx) ≤ minRx
{%1}‖G‖L2

%2
(Σ),

for all F ∈ L2
%1

(Σ) and G ∈ L2
%2

(Σ). This yields gi = ∂ig on Rx outside a set Nx of λn-measure 0. Finally
gi = ∂ig on Σ outside the set N :=

⋃
x∈Zn (Nx ∪ ∂Rx), which has λn-measure 0 and the proof is done.

Additionally, the product and chain rule of differentiation are also available for weakly differentiable
functions.

Lemma 2.2.4. Let U ⊂ Rn be open. Let F ∈ Hm,p(U), G ∈ Hm,q(U), 1
p + 1

q = 1, 1 ≤ p, q ≤ ∞ and
m ∈ N be given. Then F ·G ∈ Hm,1(U) and the weak derivatives can be computed by the product rule.
Furthermore, let Ψ : Ũ → U be a C0,1-diffeomorphism and H ∈ H1,p(U) be given. Then H ◦Ψ ∈ H1,p(Ũ)
and the weak derivatives can be computed using the chain rule. Furthermore the transformation formula
for the integral holds for all H ∈ Lp(U), i.e., H ◦Ψ ∈ Lp(Ũ) and∫

U

H(x)dλn(x) =
∫

Ũ

H(Ψ(y))|Det(DΨ)(y)|dλn(y).

Proof. This result is taken from [Alt02, Lemma 2.24 and Lemma 2.25].

For the definition of the spaces Hm,p(U), m ∈ N, 1 ≤ p ≤ ∞, for arbitrary open sets U ⊂ Rn, we
refer to [Alt02]. Next we give an useful isomorphism between the spaces Hm,∞(U) and Cm−1,1(U)

Lemma 2.2.5. Let U ⊂ Rn be open and bounded. Then the embedding

Id : Ck,1(U) → Hk+1(U),

is an isomorphism for each k ∈ N, in the sense that each F ∈ Hk+1(U) posses an unique representative
in Ck,1(U).

Proof. This result is taken from [Alt02, Lemma 8.5].
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We proceed with a result about several equivalent norms on L2(∂Σ).

Lemma 2.2.6. Let ∂Σ be a C0,1-surface and L2(∂Σ) defined by Definition 2.2.2. Then we have that the
three norms

‖F‖L2(∂Σ) :=

(
N∑

i=1

‖θiF‖2
L2(Rn−1)

) 1
2

,

‖F‖∗L2(∂Σ) :=
(∫

∂Σ

F 2(y) dHn−1(y)
) 1

2

,

‖F‖∗∗L2(∂Σ) :=

(
N∑

i=1

‖F (Ψi)‖2

L2(BRn−1
1 (0))

) 1
2

,

for all F ∈ L2(∂Σ), are equivalent.

Proof. We have

‖F‖L2(∂Σ) =
N∑

i=1

‖w2
i (Ψi)F 2(Ψi)‖2

L2(Rn−1) ≤
N∑

i=1

ci1‖wi(Ψi)F 2(Ψi)Ji‖2
L2(Rn−1)

≤ max{ci1}
∫

∂Σ

F 2(y) dHn−1(y) = ‖F‖∗L2(∂Σ),

and

‖F‖∗L2(∂Σ) =
N∑

i=1

‖wi(Ψi)F 2(Ψi)Ji‖2
L2(Rn−1) ≤

N∑
i=1

ci2‖F 2(Ψi)‖2

L2(BRn−1
1 (0))

≤ max{ci2}‖F‖∗∗L2(∂Σ)

for all F ∈ L2(∂Σ), where we used the constants from Lemma 2.1.4 and the fact that 0 ≤ wi ≤ 1 for
i = 1, . . . , N . It is left to proof that ‖F‖∗∗L2(∂Σ) ≤ c3‖F‖L2(∂Σ), for a constant 0 < c3 < ∞ and all
F ∈ L2(∂Σ). We start to estimate

(
‖F‖∗∗L2(∂Σ)

)2

=

(
N∑

i=1

‖F (Ψi)‖2

L2(BRn−1
1 (0))

) 1
2

=
N∑

i=1

∫
BRn−1

1 (0)

F 2(Ψi(y, 0))dλn−1(y)

=
N∑

i=1

∫
BRn−1

1 (0)

wi(Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y) +
N∑

i=1

∫
BRn−1

1 (0)

(
1− wi(Ψi(y, 0))

)
F 2(Ψi(y, 0))dλn−1(y)

=
N∑

i=1

∫
BRn−1

1 (0)

wi(Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

+
N∑

i=1

N∑
j=1,j 6=1

∫
BRn−1

1 (0)

wj(Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y).

We use the transformation Tij : Ψ−1
i

(
Ui ∩Uj ∩ ∂Σ

)
→ BRn−1

1 (0), defined by Tij(x) := Ψ−1
j

(
Ψi(x)

)
for all

x ∈ Ψ−1
i

(
Ui ∩ Uj ∩ ∂Σ

)
⊂ BRn−1

1 (0). By the chain rule for C1-mappings as well as the product rule for
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the determinant we find

0 < min
Ψ−1

i

(
Ui∩Uj∩∂Σ

)|Det(DTij)| ≤ max
Ψ−1

i

(
Ui∩Uj∩∂Σ

)|Det(DTij)| <∞.

Note that all terms in the integral are positive. We get by using the transformation formula for the
integral(

‖F‖∗∗L2(∂Σ)

)2

=
N∑

i=1

∫
BRn−1

1 (0)

wi(Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

+
N∑

i=1

N∑
j=1,j 6=1

∫
Ψ−1

i

(
Ui∩Uj∩∂Σ

) wj(Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

=
N∑

i=1

∫
BRn−1

1 (0)

wi(Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

+
N∑

i=1

N∑
j=1,j 6=1

∫
Ψ−1

j

(
Ui∩Uj∩∂Σ

) wj(Ψj(y, 0))F 2(Ψj(y, 0))|Det(DTij)|dλn−1(y)

≤
N∑

i=1

∫
BRn−1

1 (0)

wi(Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

+
N∑

i=1

max
Ψ−1

i

(
Ui∩Uj∩∂Σ

)|Det(DTij)|
N∑

j=1,j 6=1

∫
BRn−1

1 (0)

wj(Ψj(y, 0))F 2(Ψj(y, 0))dλn−1(y)

≤
N∑

i=1

(
1 +

N∑
j=1,j 6=1

max
Ψ−1

j

(
Ui∩Uj∩∂Σ

)|Det(DTji)|
)
·

N∑
i=1

∫
BRn−1

1 (0)

wi(Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

Furthermore we divide each set Ui ∩ Uj ∩ ∂Σ into two sets

Vij :=
{
x ∈ Ui ∩ Uj ∩ ∂Σ

∣∣wi(x) ≤ wj(x)
}
,

Wij :=
{
x ∈ Ui ∩ Uj ∩ ∂Σ

∣∣wi(x) ≥ wj(x)
}
.

Starting like above, we have

N∑
i=1

∫
BRn−1

1 (0)

wi(Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

=
N∑

i=1

∫
BRn−1

1 (0)

w2
i (Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

+
N∑

i=1

N∑
j=1,j 6=i

∫
BRn−1

1 (0)

wj(Ψi(y, 0))wi(Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

=
N∑

i=1

∫
BRn−1

1 (0)

w2
i (Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)
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+
N∑

i=1

N∑
j=1,j 6=i

(∫
Ψ−1

i (Vij)

wj(Ψi(y, 0))wi(Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

+
∫

Ψ−1
i (Wij)

wj(Ψi(y, 0))wi(Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)
)

≤
N∑

i=1

∫
BRn−1

1 (0)

w2
i (Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

+
N∑

i=1

N∑
j=1,j 6=i

(∫
Ψ−1

j (Vij)

wj(Ψj(y, 0))wi(Ψj(y, 0))F 2(Ψj(y, 0))|Det(DTij)|dλn−1(y)

+
∫

BRn−1
1 (0)

w2
i (Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

)
≤

N∑
i=1

∫
BRn−1

1 (0)

w2
i (Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

+
N∑

i=1

N∑
j=1,j 6=i

(
max

Ψ−1
j

(
Ui∩Uj∩∂Σ

)|Det(DTji)|
∫

BRn−1
1 (0)

w2
j (Ψj(y, 0))F 2(Ψj(y, 0))dλn−1(y)

+
∫

BRn−1
1 (0)

w2
i (Ψi(y, 0))F 2(Ψi(y, 0))dλn−1(y)

)
.

Finally we find that

c3 =
( N∑

i=1

(
1 +

N∑
j=1,j 6=1

max
Ψ−1

j

(
Ui∩Uj∩∂Σ

)|Det(DTji)|
))

·
( N∑

i=1

(
N +

N∑
j=1,j 6=1

max
Ψ−1

j

(
Ui∩Uj∩∂Σ

)|Det(DTji)|
))
,

is a possible choice.

Whenever we use an equivalent norm, we neglect the equivalence constants to simplify the computa-
tions and avoid confusion. Before we present some important features of Sobolev functions defined on
submanifolds we close this section with the following remark.

Remark 2.2.7. (i) The definition of the spaces on ∂Σ above is independent from the choice of (Ui)1≤i≤N ,
(wi)1≤i≤N and (Ψi)1≤i≤N . Moreover C∞(Σ) is dense in Hr,2(Σ) for all r ∈ N if Σ is assumed to be a

bounded C0,1-domain. If Σ is an outer C0,1-domain we have that C∞
0 (Rn)

∣∣∣
Σ

is dense in Hm,2(Σ).

Moreover, if ∂Σ is a Cm+1-surface, then we have that C∞(∂Σ) is dense in Hs,2(∂Σ) for all s ∈ R,
s < m+ 1, see [Ada75]. e.g. [Fic48]. For more details about Sobolev spaces see e.g. [Ada75], [DL88] or
[Dob06].

(ii) There are many ways to introduce the spaces Hs,2(∂Σ) on a Cm,1-surface ∂Σ, s < m + 1. Some
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examples for equivalent norms on L2(∂Σ) are given in Lemma 2.2.6. More details can be found in e.g.
[DL88]. In this dissertation we will use the following scalar product on L2(∂Σ) given by

〈F,G〉L2(∂Σ) :=
∫

∂Σ

F (y) ·G(y) dHn−1(y),

for F,G ∈ L2(∂Σ). We introduce the spaces H−s,2(∂Σ) on a Cm,1-surface ∂Σ, 0 ≤ s < m+ 1, as follows.
Identify each function F ∈ L2(∂Σ) with a linear continuous functional on Hs,2(∂Σ), defined by

F (G) :=
∫

∂Σ

F (x) ·G(x) dHn−1(x),

for all G ∈ Hs,2(∂Σ). Then
(
Hs,2(∂Σ)

)′
is defined as(

Hs,2(∂Σ)
)′

:= L2(∂Σ)
∣∣∣
‖ · ‖

(Hs,2(∂Σ))
′
,

where

‖F‖
(Hs,2(∂Σ))

′ := supG∈Hs,2(∂Σ)

|F (G)|
‖G‖Hs,2(∂Σ)

.

In this way we end up with the space H−s,2(∂Σ) defined in the previous definition, see [Dob06]. Therefore
we will keep the notation H−s,2(∂Σ). We get the following chain of rigged Hilbert spaces, called Gelfand
triple.

Hs,2(∂Σ) ⊂ L2(∂Σ) ⊂ H−s,2(∂Σ),

densely and continuously. Additionally we have for the duality product

H−s,2(∂Σ)〈F,G〉Hs,2(∂Σ) =
∫

∂Σ

F (x) ·G(x) dHn−1(x),

for all F ∈ L2(∂Σ). Analogously, we introduce (H1,2(Σ))
′

if Σ is a bounded C0,1-domain as well as(
H1,2
|x|2,|x|3(Σ)

)′
if Σ is an outer C0,1-domain. Then we get the Gelfand triples given in the next part of

this remark.

(iii) In Chapter 3 we will use three different Gelfand triples. Namely, this are

H1,2(Σ) ⊂ L2(Σ) ⊂
(
H1,2(Σ)

)′
,

for bounded C0,1-domains,

H1,2
|x|2,|x|3(Σ) ⊂ L2

|x|2(Σ) ⊂
(
H1,2
|x|2,|x|3(Σ)

)′
,

for outer C0,1-domains and
H

1
2 ,2(∂Σ) ⊂ L2(∂Σ) ⊂ H− 1

2 ,2(∂Σ),

for C0,1-surfaces.
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(iv) For a bounded C0,1-domain Σ and F ∈ H1,2(Σ), tr(u) denotes the trace of F on ∂Σ. Here tr :
H1,2(Σ) → L2(∂Σ) is the unique continuous operator having the property

tr(F ) = F |∂Σ for all F ∈ C0(Σ) ∩H1,2(Σ),

see [Alt02, Section A.6.6], where Σ means the closure of Σ. The statement also holds if Σ is an outer
C0,1-domain and if we replace H1,2(Σ) by H1,2

%1,%2
(Σ).

Hölder spaces on subsets of R3

We close this section with the definition of the function spaces of Hölder continuous differentiable functions
defined on open subsets U ⊂ R3 as well as on surfaces ∂Σ ⊂ R3. This spaces will be important in Chapter
4.

Definition 2.2.8. Let U ⊂ R3 open. For n ∈ N and β ∈ [0, 1] we define the spaces

C0(U) :=
{
f : U → R

∣∣∣f is continuous on U
}
,

C0,β(U) :=
{
f ∈ C0(U)

∣∣∣sup
{
|f(x)− f(y)|
|x− y|β

∣∣∣x, y ∈ U, x 6= y

}
<∞

}
,

Cn(U) :=
{
f : U → R

∣∣∣∂γ1
1 ∂γ2

2 ∂γ3
3 f ∈ C0(U) for all γ with γ1 + γ2 + γ3 ≤ n

}
,

Cn,β(U) :=
{
f ∈ Cn(U)

∣∣∣∂γ1
1 ∂γ2

2 ∂γ3
3 f ∈ C0,β(U) for all γ with γ1 + γ2 + γ3 = n

}
,

C0(U) :=
{
f : U → R

∣∣∣f is continuous on U
}
,

C0,β(U) :=
{
f ∈ C0(U)

∣∣∣sup
{
|f(x)− f(y)|
|x− y|β

∣∣∣x, y ∈ U, x 6= y

}
<∞

}
,

Cn(U) :=
{
f : U → R

∣∣∣∂γ1
1 ∂γ2

2 ∂γ3
3 f ∈ C0(U) for all γ with γ1 + γ2 + γ3 ≤ n

}
,

Cn,β(U) :=
{
f ∈ Cn(U)

∣∣∣∂γ1
1 ∂γ2

2 ∂γ3
3 f ∈ C0,β(U) for all γ with γ1 + γ2 + γ3 = n

}
.

The spaces defined on U are normed vector spaces, while the spaces defined on U are Banach spaces, see
[Alt02, Section 1.6], with the norms

‖f‖C0(U) := sup
{
|f(x)|

∣∣∣x ∈ U} ,
‖f‖C0,β(U) := ‖f‖C0(U) + sup

{
|f(x)− f(y)|
|x− y|β

∣∣∣x, y ∈ U, x 6= y

}
,

‖f‖Cn(U) :=
n∑

γ1+γ2+γ3=0

‖∂γ1
1 ∂γ2

2 ∂γ3
3 f‖C0(U),

‖f‖Cn,β(U) := ‖f‖Cn−1(U) +
∑

γ1+γ2+γ3=n

‖∂γ1
1 ∂γ2

2 ∂γ3
3 f‖C0,β(U),

‖f‖C0(U) := sup
{
|f(x)|

∣∣∣x ∈ U} ,
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‖f‖C0,β(U) := ‖f‖C0(U) + sup
{
|f(x)− f(y)|
|x− y|β

∣∣∣x, y ∈ U, x 6= y

}
,

‖f‖Cn(U) :=
n∑

γ1+γ2+γ3=0

‖∂γ1
1 ∂γ2

2 ∂γ3
3 f‖C0(U),

‖f‖Cn,β(U) := ‖f‖Cn−1(U) +
∑

γ1+γ2+γ3=n

‖∂γ1
1 ∂γ2

2 ∂γ3
3 f‖C0,β(U).

Now, let ∂Σ be a Cm,α-surface, m,n ∈ N, n ≤ m, β, α ∈ [0, 1] and n + β ≤ m + α. Then we define the
spaces

Cn,β(∂Σ) :=
{
f : Σ → R

∣∣∣f(Ψi( · , · , 0)) ∈ Cn,β(BR2

1 (0)), i = 1, . . . , N
}
.

The spaces Cm,α(∂Σ) are Banach spaces, see [GT01, Section 6.2], when equipped with the norms

‖f‖Cn,β(∂Σ) :=
N∑

i=1

‖f(Ψi( · , · , 0))‖
Cn,β(BR2

1 (0))
,

These definition is independent of (Ψi)1≤i≤N , (Ui)1≤i≤N and (wi)1≤i≤N . Furthermore C∞(∂Σ) ⊂
Cn,β(∂Σ) for all n+ β ≤ m+ α. Consequently Cn,β(∂Σ) ∩Hs,2(∂Σ) is dense in Hs,2(∂Σ) for s < m.

We have the following result about the spaces Cm,α(∂Σ).

Lemma 2.2.9. Let ∂Σ be a Cm,α-surface, m ∈ N, α ∈ [0, 1]. Assume we have f, g ∈ Cm,α(∂Σ). Then
f + g, f · g ∈ Cm,α(∂Σ) and f ∈ Cn,β(∂Σ) for all n ∈ N, n ≤ m, and β ∈ [0, 1], such that n+ β ≤ n+ α.
Furthermore we have

‖f + g‖Cm,α(∂Σ) ≤ c14
(
‖f‖Cm,α(∂Σ) + ‖g‖Cm,α(∂Σ)

)
,

‖f · g‖Cm,α(∂Σ) ≤ c24‖f‖Cm,α(∂Σ) · ‖g‖Cm,α(∂Σ),

‖f‖Cn,β(∂Σ) ≤ c34‖f‖Cm,α(∂Σ).

for a constant 0 < ci4 <∞, i = 1, 2, 3, depending on f and g.

Proof. For f ∈ Cm,α(∂Σ) we have f ∈ Cn,β(∂Σ) for n < m and β ∈ [0, 1], see [Gün57, Section 2]. Finally,

|f(x)− f(y)|
|x− y|β

= |x− y|α−β · |f(x)− f(y)|
|x− y|β

,

for all x, y ∈ BR2

1 (0), proves the last statement of the lemma. We use the following estimates in order to
estimate the Hölder constants for f + g and f · g

|f(x) + g(x)− f(x)− g(x)|
|x− y|α

≤ |f(x)− f(x)|
|x− y|α

+
|g(x)− g(x)|
|x− y|α

,

|f(x) · g(x)− f(y) · g(y)|
|x− y|α

≤ f(x) · |g(x)− g(y)|
|x− y|α

+ g(y) · |f(x)− f(y)|
|x− y|α

.
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for all x, y ∈ BR2

1 (0). Using the linearity of the differentiation, the product rule as well as the last
statement of this lemma, also this part of the proof is done. So we are able to find an 0 < ci4 < ∞
such that the lemma holds. Details can also be found in [GT01, Section 6.2] and [Gün57, Sections 2 and
18].

We want to mention, that continuous functions on compact sets as well as Hölder continuous functions
on open sets U are equicontinuous, see e.g. [Gün57, Section 2]. For such functions we find unique
continuations onto U . The final lemma of this subsection states this existence of a unique continuation,
which is even a Hölder continuous function up to the boundary.

Lemma 2.2.10. Let ∂Σ be a Cm,α-surface, m ∈ N, m ≥ 2, α ∈ [0, 1]. Furthermore let f ∈ Cn,β(D)
and g ∈ Cn,β(R3\D), n ∈ N, β ∈ [0, 1]. Then there exists a unique continuation of f and g to Σ with
f ∈ Cn,β(D) and g ∈ Cn,β(R3\D).

Proof. These results can be found in [Gün57, Sections 2 and 18] and [GT01, Section 6.2].

2.3 Properties of Sobolev Spaces on Submanifolds

At next we give some useful lemmata about the spaces defined in the previous section.

Lemma 2.3.1. Let ∂Σ be a C0,1-surface. One has that

∇∂Σ : H
1
2 ,2(∂Σ) → H− 1

2 ,2(∂Σ;T (∂Σ)),

is continuous, i.e., there exists 0 < c5 <∞ such that

‖∇∂ΣF‖
H− 1

2 ,2(∂Σ;T (∂Σ))
≤ c5‖F‖

H
1
2 ,2(∂Σ)

for all F ∈ H 1
2 ,2(∂Σ).

Proof. For the proof see [GR06, Lemma 2.2.4].

For inner domains we have a Poincaré inequality, which is missing for outer domains.

Lemma 2.3.2. For all F ∈ H1,2(Σ) the following inequality is valid∫
Σ

〈∇F,∇F 〉 dλn +
∫

∂Σ

F 2 dHn−1 ≥ c6

(∫
Σ

F 2 dλn +
∫

Σ

〈∇F,∇F 〉 dλn

)
,

for a constant 0 < c6 <∞.

Proof. For the proof see [GR06, Lemma 2.7].
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We go on with a lemma about the traces on the boundary of functions from Sobolev spaces defined
in inner or outer domains.

Lemma 2.3.3. Let Σ be a bounded or on outer C0,1-domain. For all F ∈ H1,2(Σ) one has tr(F ) ∈
H

1
2 ,2(∂Σ) with

‖tr(F )‖
H

1
2 ,2(∂Σ)

≤ c7‖F‖H1,2(Σ),

where 0 < c7 < ∞. Conversely, for all F ∈ H
1
2 ,2(∂Σ) there exists a F̃ ∈ H1,2(Σ) such that tr(F̃ ) = F

and
‖F̃‖H1,2(Σ) ≤ c8‖F‖

H
1
2 ,2(∂Σ)

,

where 0 < c8 <∞.

Proof. For the proof see [GR06, Lemma 2.2.5].

We can prove an analogon to Lemma 2.3.3 for weighted Sobolev spaces introduced in Definition 2.2.2.

Lemma 2.3.4. Let Σ be an outer C0,1-domain and %1, %2 > 0 continuous functions on Σ. For all
F ∈ H1,2

%1,%2
(Σ) one has tr(F ) ∈ H 1

2 ,2(∂Σ) with

‖tr(F )‖
H

1
2 ,2(∂Σ)

≤ c10‖F‖H1,2
%1,%2 (Σ),

where 0 < c10 <∞.

Proof. For simplicity we write F instead of tr(F ) in the following. So we have to show that

‖F‖
H

1
2 ,2(∂Σ)

≤ c10‖F‖H1,2
%1,%2 (Σ),

with a constant 0 < c10 <∞. Assume 0 < R <∞ such that ∂Σ ⊂ BR(0) and choose a w ∈ C∞
0 (B2R(0))

with w = 1 on BR(0). Such a w exists, see [Alt02]. We obviously have Fw = F on ∂Σ. Additionally
Fw ∈ H1,2(Σ) and consequently, using Lemma 2.3.3, we can estimate

‖F‖
H

1
2 ,2(∂Σ)

= ‖Fw‖
H

1
2 ,2(∂Σ)

≤ ‖Fw‖H1,2(Σ).

Because %1 and %2 are strictly positive on Σ ∩B2R(0) we have that 1
%1

and 1
%2

are bounded on this
compact set. So, we can finish the proof by estimating

‖F‖
H

1
2 ,2(∂Σ)

≤ c10‖F‖H1,2
%1,%2 (Σ),

where c10 is the maximum of the continuous functions %1 and %2 on the compact set Σ ∩B2R(0).

The next lemma states an useful estimate of the dual paring.
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Lemma 2.3.5. Let Σ be a bounded C0,1-domain. We have∣∣∣∣∣H1,2(Σ)〈F,G〉(H1,2(Σ))
′

∣∣∣∣∣ ≤ ‖F‖H1,2(Σ)‖G‖(H1,2(Σ))
′ ,

for all F ∈ H1,2(Σ) and all G ∈
(
H1,2(Σ)

)′
. Let ∂Σ be a C0,1-surface. We have∣∣∣∣∣H

1
2 ,2(Σ)

〈F,G〉
H− 1

2 ,2(Σ)

∣∣∣∣∣ ≤ ‖F‖
H

1
2 ,2(Σ)

‖G‖
H− 1

2 ,2(Σ)
,

for all F ∈ H 1
2 ,2(Σ) and all G ∈ H− 1

2 ,2(Σ). Let Σ be a outer C0,1-domain. We have∣∣∣∣∣H1,2
%1,%2 (Σ)〈F,G〉(H1,2

%1,%2 (Σ))
′

∣∣∣∣∣ ≤ ‖F‖H1,2
%1,%2 (Σ)‖G‖(H1,2

%1,%2 (Σ))
′ ,

for all F ∈ H1,2
%1,%2

(Σ) and all G ∈
(
H1,2

%1,%2
(Σ)
)′

.

Proof. We have the dense embeddings of the function spaces into the respective dual spaces. Consequently
[BK95, Section 1.1] gives the claimed inequalities.

We proceed with a result about multiplier functions in H
1
2 ,2(∂Σ).

Lemma 2.3.6. Let ∂Σ be a C0,1-surface, F ∈ H
1
2 ,2(∂Σ) and G ∈ H1,∞(∂Σ). Then we have for a

constant 0 < c9 <∞
‖GF‖

H
1
2 ,2(∂Σ)

≤ c9‖F‖
H

1
2 ,2(∂Σ)

.

Proof. For the proof see [GR06, Lemma 2.2.6].

Next we prove a result analogous to Lemma 2.3.6 for distributions in H− 1
2 ,2(∂Σ).

Lemma 2.3.7. Let ∂Σ be a C0,1-surface, F ∈ H− 1
2 ,2(∂Σ) and G ∈ H1,∞(∂Σ). Then we have FG ∈

H− 1
2 ,2(∂Σ) with

‖FG‖
H− 1

2 ,2(∂Σ)
≤ c9‖G‖

H− 1
2 ,2(∂Σ)

,

where 0 < c9 <∞ is the constant from Lemma 2.3.6 and FG is defined by

FG(H) := F (GH),

for all H ∈ H 1
2 ,2(∂Σ).

Proof. Since GH ∈ H 1
2 ,2(∂Σ) by Lemma 2.3.6 we have that FG ∈ H− 1

2 ,2(∂Σ), as defined above, is well
defined. The corresponding estimate follows by the definition and the estimate from Lemma 2.3.6.

We close the section with the definition of the divergence on submanifolds as well as some important
properties of it.
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Lemma 2.3.8. Let ∂Σ be a C0,1-surface and
{
t1, . . . , tn−1

}
be an orthonormal basis of T (∂Σ). For all

F,G ∈ H 1
2 ,2(∂Σ) and H ∈ H1,∞(∂Σ;T (∂Σ)) we have that divΣ(H) ∈ L∞(∂Σ) and

n∑
i=1

H
1
2 ,2(∂Σ)

〈FHi, (∇∂ΣG)i〉H− 1
2 ,2(∂Σ)

= −1
2

∫
∂Σ

div∂Σ(H)FGdHn−1,

where the divergence on ∂Σ is defined by

div∂Σ(H) :=
n−1∑
i=1

〈ti, ∂ti
H〉.

This definition is independent of the basis chosen, see [Alt04, Section 8.2]. Furthermore, if ∂Σ is a
C1,1-surface and H ∈ H2,∞(∂Σ) we have divΣ(H) ∈ H1,∞(∂Σ).

Proof. For the proof of the first statement see [GR06, Lemma 2.2.6]. The last statement can be proved
analogously, using the fact that we find ti ∈ H1,∞(∂Σ; Rn) for a C1,1-surface ∂Σ, see e.g. [Alt04].

2.4 Tools from (Functional) Analysis

The tensor product is the essential tool for implementing stochastic inhomogeneities in Chapter 3. Let
H1 and H2 be real Hilbert spaces and define for each φ1 ∈ H1 and φ2 ∈ H2 a bilinear form φ1 ⊗ φ2 on
H1 ×H2 via

φ1 ⊗ φ2(ψ1, ψ2) := 〈φ1, ψ1〉H1 · 〈φ2, ψ2〉H2 ,

for all ψ1 ∈ H1 and ψ2 ∈ H2. Let Φ be the set consisting of all finite linear combinations of such bilinear
forms. We define a scalar product 〈 · , · 〉Φ by

〈φ1 ⊗ φ2, φ3 ⊗ φ4〉Φ := 〈φ1, φ3〉H1 · 〈φ2, φ4〉H2 ,

for all φ1, φ3 ∈ H1, φ2, φ4 ∈ H2 and extend it by linearity to Φ. This bilinear form is well defined and
positive definite, see [RS72, Proposition II.4.1].

Definition 2.4.1. Let H1 and H2 be real Hilbert spaces. We define H1 ⊗ H2 as the completion of Φ
under 〈 · , · 〉Φ. H1 ⊗H2 is called tensor product of H1 and H2.

We have the following lemma.

Lemma 2.4.2. If (φn)n∈N and (ψm)m∈N are orthonormal bases for H1 and H2 respectively, then
(φn ⊗ ψm)n,m∈N is an orthonormal basis of H1 ⊗H2.

Proof. For the proof of this lemma we refer to [RS72, Proposition II.4.2].

Furthermore we have the following useful isomorphisms.
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Lemma 2.4.3. Let (M1, µ1) and (M2, µ2) be measure spaces such that L2(M1, µ1) and L2(M2, µ2) are
separable and H a separable real Hilbert space. Then:

• There is an unique isomorphism from L2(M1, µ1)⊗L2(M2, µ2) to L2(M1 ×M2, µ1 ⊗ µ2) such that
f ⊗ g 7→ f · g, where f · g(x1, x2) = f(x1) · g(x2) for all (x1, x2) ∈M1 ×M2.

• There is an unique isomorphism from L2(M1, µ1) ⊗H to L2(M1, µ1;H) such that f ⊗ φ 7→ f · φ,
where f · φ(x) = f(x) · φ for all x ∈M1.

• There is an unique isomorphism from L2(M1 ×M2, µ1 ⊗ µ2) to L2(M1, µ1;L2(M2, µ2)) such that
(x, y) 7→ f(x, y) is mapped to x 7→ f(x, · ).

Proof. For the proof of this lemma see [RS72, Theorem II.4.10].

We go on with the Lax-Milgram Lemma, which is used to provide the solution operator for the inner
problem in Chapter 3.

Lemma 2.4.4. Let X be a real Hilbert space and mappings

a : X ×X → R,
F : X → R,

are given such that

|a(x, y)| ≤ c11‖x‖X‖y‖X ,

|a(x, x)| ≥ c12‖x‖2
X ,

|F (x)| ≤ c13‖x‖X ,

for 0 < c11, c12, c13 <∞. Then the equation

a(x, y) = F (x), for all x ∈ X,

has one and only one solution y ∈ X. Moreover we have

‖y‖X ≤ c13c12.

Proof. For the proof see [Alt02, Section 4.1].

The following lemma is known as the BLT Theorem and follows from the Hahn-Banach Theorem.

Lemma 2.4.5. Let X,Y be Banach spaces and T : Z → Y a linear bounded mapping defined on a dense
subset Z ⊂ X. Then there exists exactly one linear bounded mapping T : X → Y such that T (z) = T (z)
for all z ∈ Z. Additionally the operator norm remains invariant, i.e., ‖T‖L(X;Y ) = ‖T‖L(Z;Y ), where
L(X;Y ) and L(Z;Y ) are the spaces of linear bounded mappings form X to Y and Z to Y , respectively.

Proof. For the proof of this lemma see [RS72, Theorem I.7].
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We finish this section with two more lemmata which allows us to interchange differentiation with
other limiting processes. The first one is about differentiation of sequences.

Lemma 2.4.6. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be a Banach spaces such that Y ⊂ X and ‖f‖X ≤ c14‖f‖Y

for all f ∈ Y where 0 < c14 <∞. If (fn)n∈N ⊂ Y is a sequence and g ∈ X, h ∈ Y with fn → g in X and
fn → h in Y then h = g ∈ Y and fn → g in Y .

Proof. Assume

lim
n→∞

‖fn − g‖Y = 0,

with g ∈ Y . Because ‖fn − g‖Y ≤ c14‖fn − g‖X we have

lim
n→∞

‖fn − g‖X = 0,

lim
n→∞

‖fn − h‖X = 0,

for g, h ∈ X. Because X is a Banach space, the limit of a convergent sequence is a unique well defined
element of X. Consequently we get g = h in X.

The following lemma drops as a corollary.

Lemma 2.4.7. Let ∂Σ be a Cm,α-surface, m ∈ N, α ∈ [0, 1], and (fn)n∈N ⊂ C0(∂Σ), such that

lim
n→∞

‖fn − f‖C0(∂Σ) = 0,

for f ∈ C0(∂Σ). If (fn)n∈N ⊂ Cn,β(∂Σ), n ∈ N, n ≤ m, β ∈ [0, 1], with n + β ≤ m + α is convergent in
Cn,β(∂Σ), then we have f ∈ Cn,β(∂Σ) and

lim
n→∞

‖fn − f‖Cn,β(∂Σ) = 0.

Proof. This follows as a special case of Lemma 2.4.6 because the spaces are fulfilling the requirements,
see Definition 2.2.8.

The second one deals with differentiation of parameter integrals.

Lemma 2.4.8. Let f, ∂f
∂xi

∈ C0
(
BR4

1 (0)
)

and f , ∂f
∂xi

be equicontinuous, i ∈ {1, 2}. Furthermore let the
parameter integral F be defined by

F (x1, x2) :=
∫

BR2
1 (0)

f(x1, x2, y1, y2)dλ2(y1, y2),

for all x ∈ BR2

1 (0). Then we have F ∈ C1
(
BR2

1 (0)
)

with

∂F

∂xi
(x1, x2) =

∫
BR2

1 (0)

∂f

∂xi
(x1, x2, y1, y2)dλ2(y1, y2).
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Proof. This is a standard result from Analysis for parameter integrals, see e.g. [Heu02].

2.5 Some Notions from Probability Theory

In this section we want to give some definitions which are needed in Chapter 3. Only in this section, in
Subsection 3.3.3 and in Subsection 3.3.5, Σ denotes a sigma algebra instead of a space domain in Rn.

Definition 2.5.1. Let (Ω,Σ, P ) be a probability space and (R,B(R) be the set of real number together
with its Borel σ-algebra. Every measurable function

X : Ω → R,

is called random variable. For random variables X and Y we define

E[X] :=
∫
Ω
X dP, if X ∈ L1(Ω, P ), (expectation value)

cov(X,Y ) := E[(X − E[Y ]) · (Y − E[X])], if X,Y ∈ L2(Ω, P ), (covariance)
var[X] := cov(X,X), if X ∈ L2(Ω, P ), (variance)
σ(X) := +

√
var[X], if X ∈ L2(Ω, P ). (standard deviation)

Furthermore we define Gaussian random variables as follows. For details see [Bau02].

Definition 2.5.2. A random variable X having the following distribution

P (X ∈ A) =
1√

2πσ2

∫
A

e−
(y−µ)2

2σ2 dλ1(y),

is called Gaussian random variable with expectation value µ and variance σ2 > 0. For σ2 = 0 we define
X(ω) := µ for all ω ∈ Ω to be the Gaussian random variable with expectation value µ and variance 0.
We set

γµ,σ2
:=

1√
2πσ2

e−
(y−µ)2

2σ2 dλ1(y).

One has ∫
Ω

H(X) dP =
∫

R
H(y)dγµ,σ2

(y),

for all H ∈ L1(R, γµ,σ2
) and a Gaussian random variable X with expectation value µ and variance σ2.

2.6 Function Systems from Geomathematics

In this section we introduce some function systems from geomathematics which will be used in the
applications of Chapter 4. Namely this are the system of mass point representations, i.e., the fundamental
solutions of the Laplace operator, and the system of inner as well as outer harmonics. We start with a
definition.
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Definition 2.6.1. Let Σ be an outer C0,1-domain. A set of points (xk)k∈N ⊂ Σ such that the properties

• dist((xk)k∈N ,Σ) > 0,

• Let F ∈ C2(Σ) with ∆F = 0 in Σ and F (xk) = 0 for all k ∈ N. Then F = 0 in Σ,

are satisfies, is called fundamental system in Σ. Furthermore, a set of points (xk)k∈N ⊂ D such that the
properties

• dist((xk)k∈N , D) > 0,

• Let F ∈ C2(D) with ∆F = 0 in D and F (xk) = 0 for all k ∈ N. Then F = 0 in D,

are satisfies, is called fundamental system in D. For each fundamental system (xk)k∈N we define a
corresponding system of mass point representations given by(

1
|xk − · |

)
k∈N

.

Let Σ be an outer C2-domain. Then for example (xk)k∈N is a fundamental system if it is a dense
subset of each domain Γ such that Γ is a strict subset of Σ or D, respectively. If (xk)k∈N is a dense subset
of ∂Γ for such a Γ or a dense subset of a parallel surface ∂Σ±τ , τ ∈ (0, τ0], then it is also a fundamental
system. These examples and definitions are taken from [FM04, Section 2.3.2]. At next we define the
systems of inner and outer harmonics.

Definition 2.6.2. The space of spherical harmonics of degree n is defined by

Harmn(∂BR3

1 (0)) :=
{
F
∣∣∣
∂BR3

1 (0)

∣∣∣F : R3 → R is a homogeneous

polynomial of degree n, ∆F = 0 on R3
}
.

Let (Yn,k)n=0,1,...;k=1,...,2n+1 ⊂ L2(∂BR3

1 (0)) such that {Yn,1, . . . , Yn,2n+1} forms an orthonormal basis of

harmm(∂BR3

1 (0)), for all n = 0, 1, . . ., and 0 < α < ∞. Then we define the system of outer harmonics(
Hα
−n−1,k

)
n=0,1,...;k=1,...,2n+1

by

Hα
−n−1,k(x) :=

(
α

|x|

)n+1 1
α
Yn,k(

x

|x|
),

for all x ∈ R3. Furthermore, we define the system of inner harmonics
(
Hα

n,k

)
n=0,1,...;k=1,...,2n+1

by

Hα
n,k(x) :=

(
|x|
α

)n 1
α
Yn,k(

x

|x|
),

for all x ∈ R3.

Furthermore we have the following series expansion which will be important in Section 4.7.
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Lemma 2.6.3. Let 0 < α < ∞. Furthermore let Hγ
n,j and Hγ

−n−1,j be given by Definition 2.6.2. Then
we have the following series expansion

1
|x− y|

=
∞∑

n=0

4πγ
2n+ 1

2n+1∑
k=1

Hγ
n,j(x)H

γ
−n−1,j(y),

for x ∈ BR3

α (0) and y ∈ R3\BR3
α (0).

Proof. This is a standard result about the inner and outer harmonics and is contained in e.g. [FM04].

For more details about this function systems and their properties we refer also to [FM04].



Chapter 3

The Oblique Boundary Problem for
the Poisson Equation

In this chapter we prove existence and uniqueness results for solutions to the outer oblique boundary
problem for the Poisson equation under very weak assumptions on boundary, coefficients and inhomo-
geneities. Main tools are the Kelvin transformation and the solution operator for the regular inner
problem, provided in [GR06]. Moreover we prove regularization results for the weak solutions of both,
the inner and the outer problem. We investigate the non-admissible direction for the oblique vector field,
state results with stochastic inhomogeneities and provide a Ritz-Galerkin approximation. The results are
applicable to problems from Geomathematics, see e.g. [Bau04] and [FM02].

3.1 The Inner Regular Oblique Boundary Problem

In this section we present the theory of weak solutions to the regular oblique boundary problem for
the Poisson equation for inner domains. Although the weak problem can be formulated for bounded
C0,1-domains, in order to prove the existence of an unique weak solution we need at least a bounded
C1,1-domain. Consequently we assume Σ ⊂ Rn throughout this section to be such a domain, if not
stated otherwise. At first we give the definition of the regular oblique boundary problem together with
the definition of the classical solution.

Definition 3.1.1. Let Σ be a bounded C1,1-domain, f ∈ C0(Σ), g, b ∈ C0(∂Σ) and a ∈ C0(Σ; Rn) be
given, such that

|〈a(x), ν(x)〉| > C1 > 0, (3.1)

for all x ∈ ∂Σ, where 0 < C1 <∞. Finding a function u ∈ C2(Σ) ∩ C1(Σ) such that

∆u = f in Σ, (3.2)
〈a,∇u〉+ bu = g on ∂Σ, (3.3)

is called inner regular oblique boundary problem for the Poisson equation and u is called classical solution.

39
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Because of the condition (3.1) the problem is called regular. It just means that the vector field a is
non tangential to ∂Σ for all x ∈ ∂Σ. Now we derive the weak formulation. Due to [Alt02, Lemma 2.21],
one has that

∆u = f in Σ

if and only if ∫
Σ

η∆u dλn =
∫

Σ

ηf dλn for all η ∈ C∞
0 (Σ)

if and only if ∫
Σ

η∆u dλn =
∫

Σ

ηf dλn for all η ∈ C∞(Σ).

Additionally on Σ the following Green formula is valid, see [GT01, Section 2.4]:∫
Σ

ϕ∆ψ dλn +
∫

Σ

〈∇ϕ,∇ψ〉 dλn =
∫

∂Σ

ϕ
∂ψ

∂ν
dHn−1,

for all ψ ∈ C2(Σ) ∩ C1(Σ) and ϕ ∈ C∞(Σ). This yields for a classical solution∫
∂Σ

η
∂u

∂ν
dHn−1 −

∫
Σ

〈∇η,∇u〉 dλn =
∫

Σ

ηf dλn for all η ∈ C∞(Σ).

Now we transform the boundary condition

〈a,∇u〉+ bu = g on ∂Σ,

to the form

〈a, ν〉 ∂
∂ν
u+ 〈a− 〈(a, ν〉ν) · ∇∂Σu〉+ bu = g on ∂Σ.

Using equation (3.1) we divide by 〈a, ν〉 6= 0 to get the equivalent boundary condition

∂

∂ν
u+

〈(
a

〈a, ν〉
− ν

)
,∇∂Σu

〉
+

b

〈a, ν〉
u =

g

〈a, ν〉
on ∂Σ.

Plugging this condition into the equation above, we get the following formulation of the regular oblique
boundary problem for the Poisson equation which is equivalent to the formulation given in Definition
3.1.1, see [GR06]. Let the assumptions from Definition 3.1.1 be fulfilled. We want to find a function
u ∈ C2(Σ) ∩ C1(Σ) such that∫

∂Σ

η(
g

〈a, ν〉
− b

〈a, ν〉
u− 〈 a

〈a, ν〉
− ν,∇∂Σu〉) dHn−1 −∫

Σ

〈∇η,∇u〉 dλn −
∫

Σ

ηf dλn = 0 for all η ∈ C∞(Σ).

The transformation of the boundary term is shown in Figure 3.
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Figure 3: Transformation of the oblique boundary condition

Finally, we are weakening the assumptions on data, coefficients, test function and solution. We give the
weak formulation of the inner regular oblique boundary problem to the Poisson equation, summarized in
the following definition.

Definition 3.1.2. Let Σ be a bounded C1,1-domain, a ∈ H1,∞(∂Σ; Rn) fulfilling condition (3.1), b ∈
L∞(∂Σ), g ∈ H− 1

2 ,2(∂Σ) and f ∈
(
H1,2(Σ)

)′. We want to find a function u ∈ H1,2(Σ) such that

H
1
2 ,2(∂Σ)

〈
η,

g

〈a, ν〉

〉
H− 1

2 ,2(∂Σ)

−
n∑

i=1
H

1
2 ,2(∂Σ)

〈
η

ai

〈a, ν〉
− νi, (∇∂Σu)i

〉
H− 1

2 ,2(∂Σ)

−∫
Σ

(∇η · ∇u) dλn −
∫

∂Σ

η
b

〈a, ν〉
u dHn−1 −H1,2(Σ) 〈η, f〉(H1,2(Σ))′ = 0, (3.4)

for all η ∈ H1,2(Σ). Then u is called a weak solution of the inner regular oblique boundary problem for
the Poisson equation.

All terms in the definition above are well defined, see [GR06]. We have the following existence and
uniqueness result for the weak solution.

Theorem 3.1.3. Let Σ be a bounded C1,1-domain, a ∈ H1,∞(∂Σ; Rn), fulfilling condition (3.1), and
b ∈ L∞(∂Σ) such that:

ess inf∂Σ

(
b

〈a, ν〉
− 1

2
div∂Σ(

a

〈a, ν〉
− ν)

)
> 0. (3.5)

Then for all f ∈
(
H1,2(Σ)

)′ and g ∈ H− 1
2 ,2(∂Σ) there exists one and only one weak solution u ∈ H1,2(Σ)

of the inner regular oblique boundary problem for the Poisson equation. Additionally one has for a
constant 0 < C2 <∞:

‖u‖H1,2(Σ) ≤ C2(‖f‖(H1,2(Σ))′ + ‖g‖
H− 1

2 ,2(∂Σ)
). (3.6)
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Proof. The main tool in this proof is the Lax-Milgram lemma. As mentioned several times before, the
proof of this lemma can be found in [GR06]. More detailed proofs can be found in [Ras05].

We state some properties of the weak solution in the following remark.

Remark 3.1.4. Condition (3.5) can be transformed into the equivalent form

〈a, ν〉b > 1
2
(
〈a, ν〉

)2div∂Σ

(
a

〈a, ν〉
− ν

)
Hn−1-almost everywhere on ∂Σ.

If div∂Σ

(
a

〈a,ν〉 − ν
)

= 0 Hn−1-almost everywhere on ∂Σ, one has for Hn−1-almost all x ∈ ∂Σ the
condition from the classical setting, see for example [GT01] where an existence and uniqueness result for
the classical solution is provided. Furthermore for a = ν, i.e., the Robin problem, the condition reduces
to:

b > 0 Hn−1-almost everywhere on ∂Σ.

Finally we define for each bounded C1,1-domain Σ, a ∈ H1,∞(∂Σ; Rn) and b ∈ L∞(∂Σ), fulfilling condi-
tions (3.1) and (3.5), a continuous invertible linear solution operator Sin

a,b by

Sin
a,b :

(
H1,2(Σ)

)′ ×H− 1
2 ,2(∂Σ) → H1,2(Σ),

Sin
a,b(f, g) := u,

where u is the weak solution provided by Theorem 3.1.3. In addition this means that the inner weak
problem is well posed.

We proceed with the following regularization result for the weak solution to the Neumann problem
for the Poisson equation.

Lemma 3.1.5. Let Σ ⊂ Rn be a bounded C2-domain. Then for all f ∈ L2(Σ) and g ∈ H 1
2 ,2(∂Σ) there

exists one and only one u ∈ H2,2(Σ) fulfilling

H
1
2 ,2(∂Σ)

〈η, g〉
H− 1

2 ,2(∂Σ)
−
∫

Σ

〈∇η,∇u〉 dλn −H1,2(Σ) 〈η, f〉(H1,2(Σ))′ = 0 (3.7)

for all η ∈ H1,2(Σ). Moreover the a priori estimate

‖u‖H2,2(Σ) ≤ C3

(
‖f‖L2(Σ) + ‖g‖

H
1
2 ,2(∂Σ)

)
, (3.8)

holds for a constant 0 < C3 <∞.

Proof. This result is taken from [Dob06, Section 9.4].

Using this result we are able to prove an analogous theorem for the regular oblique boundary problem.
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Theorem 3.1.6. Let Σ ⊂ Rn be a bounded C2,1-domain, a ∈ H2,∞(∂Σ; Rn) and b ∈ H1,∞(∂Σ). Then
for all f ∈ L2(Σ) and g ∈ H 1

2 ,2(∂Σ), the weak solution u ∈ H1,2(Σ) to the inner regular oblique boundary
problem for the Poisson equation, provided in Theorem 3.1.3, is even in H2,2(Σ). Furthermore we have
the a priori estimate

‖u‖H2,2(Σ) ≤ C4

(
‖f‖L2(Σ) + ‖g‖

H
1
2 ,2(∂Σ)

)
. (3.9)

for a constant 0 < C4 <∞.

Proof. Assume f ∈ L2(Σ) and g ∈ H 1
2 ,2(∂Σ). Let u ∈ H1,2(Σ) be the weak solution provided by Theorem

3.1.3. We have

0 =
H

1
2 ,2(∂Σ)

〈
η,

g

〈a, ν〉

〉
H− 1

2 ,2(∂Σ)

−
n∑

i=1
H

1
2 ,2(∂Σ)

〈
η

ai

〈a, ν〉
− νi, (∇∂Σu)i

〉
H− 1

2 ,2(∂Σ)

−
∫

∂Σ

η
b

〈a, ν〉
u dHn−1 −

∫
Σ

〈∇η,∇u〉 dλn −H1,2(Σ) 〈η, f〉(H1,2(Σ))′

=
H

1
2 ,2(∂Σ)

〈
η,

g

〈a, ν〉

〉
H− 1

2 ,2(∂Σ)

−
∫

∂Σ

η
b

〈a, ν〉
u dHn−1

+
∫

∂Σ

η
1
2
div∂Σ(

a

〈a, ν〉
− ν)u dHn−1 −

∫
Σ

〈∇η,∇u〉 dλn −
∫

Σ

fη dλn

=
∫

∂Σ

η
g

〈a, ν〉
+ η

b

〈a, ν〉
u+ η

1
2
div∂Σ(

a

〈a, ν〉
− ν)u dHn−1 −

∫
Σ

〈∇η,∇u〉 dλn

−
∫

Σ

fη dλn = −
∫

Σ

〈∇η,∇u〉 dλn −
∫

Σ

fη dλn

+
∫

∂Σ

η

(
g

〈a, ν〉
+

b

〈a, ν〉
u+

1
2
div∂Σ(

a

〈a, ν〉
− ν)u

)
︸ ︷︷ ︸

=:g∗

dHn−1,

for all η ∈ H1,2(Σ), using Lemma 2.3.8. Furthermore Lemma 2.3.6 yields that∥∥∥∥ g

〈a, ν〉
+
(

b

〈a, ν〉
− 1

2
div∂Σ(

a

〈a, ν〉
− ν)

)
u

∥∥∥∥
H

1
2 ,2(∂Σ)

≤ C5

(
‖u‖

H
1
2 ,2(∂Σ)

+ ‖g‖
H

1
2 ,2(∂Σ)

)
,

for a constant 0 < C5 < ∞. Consequently g∗ ∈ H
1
2 ,2(∂Σ). So u is the weak solution for the Neumann

problem with inhomogeneity f ∈ L2(Σ) and g∗ ∈ H
1
2 ,2(∂Σ). Consequently Lemma 3.1.5 yields u ∈

H2,2(Σ) and the first part of the proof is done. For the estimate we start from inequality (3.8) for the
Neumann case above and estimate like follows

‖u‖H2,2(Σ) ≤ C4

(
‖f‖L2(Σ) + ‖g∗‖

H
1
2 ,2(∂Σ)

)
≤ C4

(
‖f‖L2(Σ) + C5‖g‖

H
1
2 ,2(∂Σ)

+ C5‖u‖
H

1
2 ,2(∂Σ)

)
≤ C3

(
‖f‖L2(Σ) + C5‖g‖

H
1
2 ,2(∂Σ)

+ C5c7‖u‖H1,2(Σ)

)
≤ C4

(
‖f‖L2(Σ) + C5‖g‖

H
1
2 ,2(∂Σ)

+ C5c7C2

(
‖f‖(H1,2(Σ))′ + ‖g‖

H− 1
2 ,2(∂Σ)

))
= C4

(
‖f‖L2(Σ) + ‖g‖

H
1
2 ,2(∂Σ)

)
,

using the trace theorem from Lemma 2.3.3.
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The final lemma of this section verifies that the weak solution is really related to the original problem.

Lemma 3.1.7. Let u ∈ H2,2(Σ) be the weak solution to the inner regular oblique boundary problem for
the Poisson equation, provided by Theorem 3.1.6. Then we have

∆u = f λn − almost everywhere in Σ, (3.10)

〈a,∇u〉+ bu = g Hn−1 − almost everywhere on ∂Σ. (3.11)

Such a solution we call strong solution to the inner regular oblique boundary problem for the Poisson
equation.

Proof. The proof of this lemma can be found in [GR06, Proposition 3.6].

3.2 Transformations

In this section we define the transformations which will be needed in order to transform the outer oblique
boundary problem for the Poisson equation to a corresponding regular inner problem. Then we will
apply the solution operator in order to get a weak solution in the inner domain. This solution will be
transformed with help of the Kelvin transformation to a function defined in the outer domain. In the
next section we will finally prove that this function solves the outer problem for sufficiently smooth data
almost everywhere, which gives the connection to the original problem. The whole procedure is illustrated
in the following figure.

Outer problem : Σ

∣∣∣∣∣ (f, g)
(

Sout
a,b−→
)

u

↓ KΣ T1 ↓ T2 ↑ K

Inner problem: ΣK

∣∣∣∣∣ (T1(f), T2(g))
Sin

T3(a),T4(b)−→ v

We proceed in the following way. First we define the Kelvin transformation KΣ of the outer domain Σ to
a corresponding bounded domain ΣK . At next the Kelvin transformation K of the solution for the inner
problem will be presented. Finally we define the transformations T1 and T2 for the inhomogeneities as
well as T3 and T4 for the coefficients. We will also show that the operators K, T1 and T2 are continuous.
The consequence is that our solution operator

Sout
a,b (f, g) := K

(
Sin

T3(a),T4(b)
(T1(f), T2(f))

)
,

forms a linear and continuous solution operator for the outer problem. Because all main results assume
Σ to be at least an outer C1,1-domain, we fix Σ in this section as such a domain, if not stated otherwise.
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3.2.1 Kelvin Transformation of the Domain

Aim of this subsection is to transform the outer domain Σ to a bounded domain ΣK . The tool we use
is the so called Kelvin transformation KΣ for domains, which can be found in [Wal71, Section 1.2]. We
introduce the Kelvin transformation for outer C1,1-domains in the following definition.

Definition 3.2.1. Let Σ be an outer C1,1-domain and x ∈ Σ be given. Then we define the Kelvin
transformation KΣ(x) of x by

KΣ(x) :=
x

|x|2
. (3.12)

Furthermore, we define ΣK as the Kelvin transformation of Σ via

ΣK := KΣ(Σ) ∪ {0} =
{
KΣ(x)

∣∣∣x ∈ Σ
}
∪ {0} . (3.13)

From this point on, we fix the notation in such a way that ΣK always means the Kelvin transformation
of Σ. The following figure illustrates the Kelvin transformation of Σ.

Figure 4: Kelvin transformation of Σ

We have the following lemma about the Kelvin transformation KΣ.

Lemma 3.2.2. We have KΣ ∈ C∞(Rn\{0}; Rn\{0}) with K2
Σ = IdRn\{0}. Furthermore we have

|Det(D(KΣ))(x)| ≤ C6|x|−2n,

|∂i|Det(D(KΣ))(x)|| ≤ C7|x|−2n−1

for all x ∈ Rn\{0}, 1 ≤ i ≤ n, where 0 < C6, C7 <∞.
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Proof. The first two statements about the Kelvin transformations are obvious by the definition. For the
first estimate we compute the Jacobian matrix of KΣ(x) = x

|x|2 . We have

D(KΣ)ii =
1
|x|2

− 2
x2

i

|x|4
, i ∈ {1, . . . , n},

D(KΣ)ij = −2
xixj

|x|4
, i 6= j, i, j ∈ {1, . . . , n},

for all x ∈ Rn\{0}. Now we use the Leibniz formula in order to compute the determinant

|Det(D(KΣ))(x)| = |
∑

σ∈Symn

sign(σ)D(KΣ)1σ(1) · . . . ·D(KΣ)nσ(n)|

≤
∑

σ∈Symn

|D(KΣ)1σ(1)| · . . . · |D(KΣ)nσ(n)|

≤
∑

σ∈Symn

(
3
|x|2

)n

= n!3n|x|−2n,

for all x ∈ Rn\{0}, where Symn denotes the set of all permutation of the set {1, . . . , n}. This proves the
claimed estimate. For the second estimate we obtain that Det(D(KΣ)) is either positive or negative on
whole x ∈ Rn\{0}, because KΣ is an invertible C1-mapping. Consequently |Det(D(KΣ))| is differentiable.
W.l.o.g. we assume Det(D(KΣ)) to be positive. We have

∂iD(KΣ)ii = ∂i

(
1
|x|2

− 2
x2

i

|x|4

)
= −2

xi

|x|4
+ 4

xi

|x|4
+ 8

x3
i

|x|6
,

∂iD(KΣ)jj = ∂i

(
1
|x|2

− 2
x2

j

|x|4

)
= −2

xi

|x|4
+ 8

xix
2
j

|x|6
, j ∈ {1, . . . , n}\{i},

∂iD(KΣ)ij = ∂i

(
−2

xixj

|x|4

)
= −2

xj

|x|4
+ 8

x2
ixj

|x|6
, j ∈ {1, . . . , n}\{i},

∂iD(KΣ)jk = ∂i

(
−2

xjxk

|x|4

)
= 8

xixjxk

|x|6
, j 6= k, j, k ∈ {1, . . . , n}\{i},

for all 1 ≤ i ≤ n. Finally we compute

|∂i|Det(D(KΣ))(x)||
= |∂iDet(D(KΣ))(x)|

=

∣∣∣∣∣∣∂i

∑
σ∈Symn

sign(σ)D(KΣ)1σ(1) · . . . ·D(KΣ)nσ(n)

∣∣∣∣∣∣
≤

∑
σ∈Symn

n∑
j=1

|∂iD(KΣ)jσ(j)|

·|D(KΣ)1σ(1)| · . . . · |D(KΣ)j−1σ(j−1)| · |D(KΣ)j+1σ(j+1)| · . . . · |D(KΣ)nσ(n)|
≤ n · n!3n−1|x|−2n+214|x|−3 ≤ (n+ 1)!3n+2|x|−2n−1,

for all x ∈ Rn\{0}, again with help of the Leibniz formula and the product rule of differentiation.
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Furthermore we have the following lemma.

Lemma 3.2.3. Let Σ an outer C2,1-domain. Then ΣK is a bounded C2,1-domain. Moreover we have that
∂ΣK = KΣ(∂Σ). Furthermore, if Σ is an outer C1,1-domain, we have that ΣK is a bounded C1,1-domain.

Proof. We prove the first statement. Therefore, we have to show that ΣK is a bounded domain and that
there exist an open cover (UK

i )1≤i≤N of ∂ΣK as well as C2,1-mappings (ΨK
i : BRn

1 (0) → UK
i )1≤i≤N and((

ΨK
i

)−1 : UK
i → BRn

1 (0)
)

1≤i≤N
with ΨK

i (BRn−1

1 (0)× {0}) = UK
i ∩ ∂ΣK and(

ΨK
i

)−1 (UK
i ∩ ∂ΣK) = BRn−1

1 (0) × {0}, respectively. It is obvious that ∂ΣK = KΣ(∂Σ). Because the
Kelvin transformation KΣ : Rn\ {0} → Rn\ {0} is continuous and K2

Σ = IdRn\{0} it maps open sets to
open sets. So we can define an open cover of ∂ΣK via

UK
i := KΣ(Ui), 1 ≤ i ≤ N,

where (Ui)1≤i≤N is the open cover of ∂Σ. Furthermore the mappings
ΨK

i (x) := KΣ(Ψi(x)) and
(
ΨK

i

)−1 (x) := Ψ−1
i (KΣ(x)) fulfill ΨK

i ◦
(
ΨK

i

)−1 = IdUi
and

(
ΨK
)−1

i
◦ ΨK

i =
IdBRn

1 (0). We have Ψi(BRn−1

1 (0)×{0}) = UK
i ∩∂ΣK and Ψ−1

i (UK
i ∩∂ΣK) = BRn−1

1 (0)×{0}, respectively.
It is left to verify is that these are C2,1-mappings. We use the isomorphisms

C2,1(BRn

1 (0);Ui) ∼= H3,∞(BRn

1 (0);Ui),
C2,1(Ui;BRn

1 (0)) ∼= H3,∞(Ui;BRn

1 (0)),
C2,1(BRn

1 (0);UK
i ) ∼= H3,∞(BRn

1 (0);UK
i ),

C2,1(UK
i ;BRn

1 (0)) ∼= H3,∞(UK
i ;BRn

1 (0)).

for i ∈ {1, . . . , N}, see Lemma 2.2.5. Additionally we have

dist(∂Σ, 0) > 0,

dist(∂ΣK , 0) > 0.

This yields that KTD : ΣK → Σ is a bounded C∞-diffeomorphism. Now we can apply chain and product
rule for functions from Sobolev spaces, see Lemma 2.2.4, to get

(ΨK
i )1≤i≤N ⊂ H3,∞(BRn

1 (0);UK
i ) ∼= C2,1(BRn

1 (0);UK
i ),((

ΨK
i

)−1
)

1≤i≤N
⊂ H3,∞(UK

i ;BRn

1 (0)) ∼= C2,1(UK
i ;BRn

1 (0)),

for i ∈ {1, . . . , N}. In the same way, the statement for outer C1,1-domains Σ can be proved, and the
proof is done.

Remark 3.2.4. There are geometric situations in which ∂ΣK can be computed easily. For example if
∂Σ is a sphere around the origin with radius R, then ∂ΣK is a sphere around the origin with radius R−1.
Furthermore, if ∂Σ ⊂ R2 is an ellipse with semi axes a and b around the origin, then ∂ΣK is also an
ellipse around the origin with semi axes a−1 and b−1.
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3.2.2 Kelvin Transformation of the Solution

In this subsection we introduce the operator K. This is the so called Kelvin transformation for functions.
It transforms a given function u, defined in ΣK , to a function K(u), defined in Σ. In addition, it preserves
some properties of the original function. We will state some of these properties. So, after this subsection
it will be clear why we choose exactly this transformation. It will also be clear how we have to choose
the transformations T1, . . . , T4 in Subsection 3.2.3. We start with a definition.

Definition 3.2.5. Let Σ be an outer C1,1-domain and u be a function defined on ΣK . Then we define
the Kelvin transformation K(u) of u, which is a function defined on Σ, via

K(u)(x) :=
1

|x|n−2
u(

x

|x|2
), (3.14)

for all x ∈ Σ.

Important is that this transformation acts as a multiplier when applying the Laplace operator. Note
that −(n− 2) is the only exponent for |x| which has this property. We have the following lemma.

Lemma 3.2.6. Let Σ be an outer C1,1-domain and u ∈ C2(ΣK). Then we have K(u) ∈ C2(Σ) with

∆(K(u))(x) =
1

|x|n+2
(∆u)(

x

|x|2
),

for all x ∈ Σ.

Proof. For the proof of this lemma see [Wal71, Paragraph 2].

As already mentioned above we will apply K to functions from H1,2(ΣK). So we want to find a
normed function space (V, ‖ · ‖V ) such that

K : H1,2(ΣK) → V

defines a continuous operator. It turns out that the weighted Sobolev space H1,2
1

|x|2
, 1
|x|

(Σ) is a suitable

choice. We have the following result.

Lemma 3.2.7. Let Σ be an outer C1,1-domain. For u ∈ H1,2(ΣK) let K(u) be defined by equation
(3.14) for all x ∈ Σ. Then we have that

K : H1,2(ΣK) → H1,2
1

|x|2
, 1
|x|

(Σ)

is a continuous Operator, i.e., K is linear with

‖K(u)‖H1,2
1

|x|2
, 1
|x|

(Σ) ≤ C8‖u‖H1,2(ΣK), (3.15)

for all u ∈ H1,2(ΣK), where 0 < C8 <∞. Moreover K is injective.
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Proof. By the definition of K injectivity is obvious. Now let u ∈ H1,2(ΣK) be given. We have to prove

‖K(u)‖H1,2
1

|x|2
, 1
|x|

(Σ) ≤ C8‖u‖H1,2(ΣK),

where the constant 0 < C8 < ∞ is independent of u. With help of the chain and product rule of
differentiation for Sobolev spaces, see Lemma 2.2.4, K(u) is a weakly differentiable function. Due to the
transformation formula for integrals we have

‖K(u)‖2
H1,2

1
|x|2

, 1
|x|

(Σ)

= ‖K(u)‖2
L2

1
|x|2

(Σ) +
n∑

i=1

‖∂i(K(u))‖2
L2

1
|x|

(Σ)

=
∫

Σ

(
1

|x|n−2
u(

x

|x|2
)
)2 1

|x|4
dλn(x) +

n∑
i=1

∫
Σ

(
∂i

(
1

|x|n−2
u(

x

|x|2
)
))2 1

|x|2
dλn(x)

=
∫

Σ

1
|x|2n

u2(
x

|x|2
)dλn(x) +

n∑
i=1

∫
Σ

(
(2− n)2

x2
i

|x|2n
u2(

x

|x|2
) + (∂iu)2(

x

|x|2
)

1
|x|2n

+4
n∑

j=1

(∂ju)2(
x

|x|2
)
x2

ix
2
j

|x|2n+4
+ 2(2− n)

xi

|x|2n
u(

x

|x|2
)(∂iu)(

x

|x|2
)

−4(2− n)
n∑

j=1

(∂ju)(
x

|x|2
)u(

x

|x|2
)
x2

ixj

|x|2n+2
− 4

n∑
j=1

(∂ju)(
x

|x|2
)(∂iu)(

x

|x|2
)
xixj

|x|2n+2

+4
n∑

j=1

n∑
m=1,m6=j

(∂ju)(
x

|x|2
)(∂mu)(

x

|x|2
)
x2

ixjxm

|x|2n+4

)
1
|x|2

dλn(x)

≤
∫

Σ

1
|x|2n

u2(
x

|x|2
)dλn(x)

+
n∑

i=1

∫
Σ

(
(2− n)2

1
|x|2n

u2(
x

|x|2
) + (∂iu)2(

x

|x|2
)

1
|x|2n+2

+4
n∑

j=1

(∂ju)2(
x

|x|2
)

1
|x|2n+2

+ 2(2− n)
1

|x|2n+1
u(

x

|x|2
)(∂iu)(

x

|x|2
)

−4(2− n)
n∑

j=1

(∂ju)(
x

|x|2
)u(

x

|x|2
)

1
|x|2n+1

− 4
n∑

j=1

(∂ju)(
x

|x|2
)(∂iu)(

x

|x|2
)

1
|x|2n+2

+4
n∑

j=1

n∑
m=1,m6=j

(∂ju)(
x

|x|2
)(∂mu)(

x

|x|2
)

1
|x|2n+2

)
dλn(x)

=
∫

ΣK

|y|2nu2(y)|Det(D(KΣ(y)))|dλn(y) +

n∑
i=1

∫
ΣK

(
(2− n)2|y|2nu2(y) + (∂iu)2(y)|y|2n
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+4
n∑

j=1

(∂ju)2(y)|y|2n+2 + 2(2− n)|y|2n+1u(y)(∂iu)(y)

−4(2− n)
n∑

j=1

(∂ju)(y)u(y)|y|2n+1 − 4
n∑

j=1

(∂ju)(y)(∂iu)(y)|y|2n+2

+4
n∑

j=1

n∑
m=1,m 6=j

(∂ju)(y)(∂mu)(y)|y|2n+2

)
Det(D(KΣ(y)))|dλn(y)

≤ ‖u‖2
L2(ΣK) +

n∑
i=1

∫
ΣK

(
(2− n)2u2(y) + (∂iu)2(y)|y|2

+4
n∑

j=1

(∂ju)2(y)|y|2 + 2(2− n)|y||u(y)||(∂iu)(y)|

−4(2− n)
n∑

j=1

|(∂ju)(y)||u(y)||y| − 4
n∑

j=1

|(∂ju)(y)||(∂iu)(y)||y|2

+4
n∑

j=1

n∑
m=1,m6=j

|(∂ju)(y)||(∂mu)(y)||y|2
)
dλn(y)

≤ C8‖u‖2
H1,2(ΣK)

where C8 only depends on n and supy∈ΣK{|y|} <∞.

3.2.3 Transformation of Inhomogeneities and Coefficients

This subsection provides the remaining transformations T1, . . . , T4. In the first part we treat T1, which
transforms the inhomogeneity f of the outer problem in Σ to an inhomogeneity of the corresponding
inner problem in ΣK . Assume f to be a function defined on Σ. We want to define the function T1(f) on
ΣK , such that

∆u(x) = T1(f)(x), x ∈ ΣK , (3.16)

implies that
∆(K(u))(y) = f(y), y ∈ Σ. (3.17)

Using Lemma 3.2.6 we are able to define T1 for functions defined on Σ as follows.

Definition 3.2.8. Let Σ be an outer C1,1-domain and f be a function defined in Σ. Then we define a
function T1(f) on ΣK by

T1(f)(x) :=
1

|x|n+2
f(

x

|x|2
), (3.18)

for all x ∈ ΣK\{0} and T1(f)(0) = 0.
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The next lemma summarizes the most important properties of this transformation.

Lemma 3.2.9. T1 is well defined and fulfills the relation described by equations (3.16) and (3.17).
Furthermore, T1 defines a linear continuous isomorphism

T1 : L2
|x|2(Σ) → L2(ΣK),

with (T1)
−1 = T1.

Proof. The first statement follows immediately by using Lemma 3.2.6. In order to prove that T1 is well
defined we will show

‖T1(f)‖L2(ΣK) ≤ C6‖f‖L2
|x|2

(Σ),

for all f ∈ L2
|x|2(Σ) and

‖T1(f)‖L2
|x|2

(Σ) ≤ C6‖f‖L2(ΣK),

for all f ∈ L2
|x|2(Σ). C6 is the constant from Lemma 3.2.2. We have

‖T1(f)‖2
L2(ΣK) =

∫
ΣK

(
1

|x|n+2
f(

x

|x|2
)
)2

dλn(x) =
∫

ΣK

1
|x|2n+4

f2(
x

|x|2
)dλn(x)

=
∫

Σ

|y|2n+4f2(y)|Det(D(KΣ))(y)|dλn(y) ≤ C6

∫
Σ

|y|2n+4f2(y)|y|−2ndλn(y)

= C6

∫
ΣK

f2(y)|y|4dλn(y) = C6‖f‖2
L2
|x|2

(Σ).

The other direction can be proved in a completely analogous way. Bijectivity is obvious by the definition,
consequently T1 defines a continuous isomorphism and the proof is complete.

We want to generalize our inhomogeneities in a way similar to the inner problem. This means we
have to identify a normed vector space (W, ‖ · ‖W ), such that

T1 : W →
(
H1,2(ΣK)

)′
,

defines a linear continuous operator. Additionally, because of Lemma 3.2.9, we want to end up with a
Gelfand triple

U ⊂ L2
|x|2(Σ) ⊂W.

Consequently L2
|x|2(Σ) should be a dense subspace. Using the following lemma, we will be able to prove

that the space
(
H1,2
|x|2,|x|3(Σ)

)′
is a suitable choice.

Lemma 3.2.10. Let Σ be an outer C1,1-domain. The operator
J : H1,2(ΣK) → H1,2

|x|2,|x|3(Σ) defined by

J(u)(x) := u(
x

|x|2
) · |x|n−2 · |Det(D(KΣ))(x)|, x ∈ Σ,

for u ∈ H1,2(ΣK), is a continuous linear operator.
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Proof. First of all, we want to mention that J is well defined. |Det(D(KΣ))| > 0 in Σ and consequently it
is differentiable, see Lemma 3.2.2. Additionally, the product rule as well as the chain rule of differentiation
is available for weakly differentiable functions, see Lemma 2.2.4. So J(u) defines a weakly differentiable
function in Σ. The operator J is obviously linear. So it is left to prove

‖J(u)‖H1,2
|x|2,|x|3

(Σ) ≤ C9‖u‖H1,2(ΣK),

for a constant 0 < C9 <∞. The estimate

‖J(u)‖2
L2
|x|2

(Σ) ≤ C6‖u‖2
H1,2(ΣK),

can be derived analogous to the estimate in the proof of the Lemma 3.2.9. So, it remains to estimate the
weak derivatives for 1 ≤ i ≤ n. We do this in the following way

‖∂i(J(u))‖2
L2
|x|3

(Σ)

=
∫

Σ

(
∂i

(
u(

x

|x|2
) · |x|n−2 · |Det(D(KΣ))(x)|

))2

|x|6dλn(x)

=
∫

Σ

(
∂i

(
u(

x

|x|2
) · |x|n−2

)
· |Det(D(KΣ))(x)|

+u(
x

|x|2
) · |x|n−2 · ∂i|Det(D(KΣ))(x)|

)2

|x|6dλn(x)

=
∫

Σ

(
(n− 2)|x|n−4xiu(

x

|x|2
) · |Det(D(KΣ))(x)|

+|x|n−4∂iu(
x

|x|2
) · |Det(D(KΣ))(x)|

−2
n∑

j=1

∂ju(
x

|x|2
)xixj |x|n−6 · |Det(D(KΣ))(x)|

+u(
x

|x|2
) · |x|n−2 · ∂i|Det(D(KΣ))(x)|

)2

|x|6dλn(x)

≤ (C6 + C7)2
∫

Σ

(
|n− 2||x|−n−3|u|( x

|x|2
) + |x|−n−4|∂iu|(

x

|x|2
)

+2
n∑

j=1

|x|−n−4|∂ju|(
x

|x|2
) +|x|−n−3|u|( x

|x|2
)
)2

|x|6dλn(x)

≤ (C6 + C7)2
∫

Σ

n|x|−n|u|( x

|x|2
) + 3

n∑
j=1

|x|−n−1|∂ju|(
x

|x|2
)

2

dλn(x)

≤ (C6 + C7)2

∫
Σ

n2|x|−2n|u|2( x

|x|2
)dλn(x) + 3

n∑
j=1

∫
Σ

|x|−2n−2|∂ju|2(
x

|x|2
)dλn(x)

2

= (C6 + C7)2
(∫

ΣK

n2|y|2n|u|2(y)|Det(D(KΣ))(y)|dλn(y)
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+3
n∑

j=1

∫
Σ

|y|2n+2|∂ju|2(y)|Det(D(KΣ))(y)|dλn(y)
)2

≤ (C6 + C7)2(n4 + 9n2sup{|y|2|y ∈ ΣK})‖u‖2
H1,2(ΣK).

Now we are able to extend our definition of T1 to elements of
(
H1,2
|x|2,|x|3(Σ)

)′
. Before we go to the

next lemma, it might be useful to recall the Gelfand triple, given in Remark 2.2.7 (iii) by

H1,2
|x|2,|x|3(Σ) ⊂ L2

|x|2(Σ) ⊂
(
H1,2
|x|2,|x|3(Σ)

)′
.

Lemma 3.2.11. Let Σ be an outer C1,1-domain. We define a continuous linear operator

T1 : L2
|x|2(Σ) →

(
H1,2(ΣK)

)′
,

by

(T1(f)) (h) :=
∫

ΣK

(T1(f)) (y)h(y) dλn(y), h ∈ H1,2(ΣK), (3.19)

for f ∈ L2
|x|2(Σ), where L2

|x|2(Σ) is equipped with the norm ‖ · ‖�
H1,2
|x|2,|x|3

(Σ)
�′ . There exists a linear

bounded continuation
T1 :

(
H1,2
|x|2,|x|3(Σ)

)′
→
(
H1,2(ΣK)

)′
,

i.e., we are able to find 0 < C10 <∞ such that

‖T1(f)‖(H1,2(ΣK))′ ≤ C10‖f‖�H1,2
|x|2,|x|3

(Σ)
�′ , (3.20)

for all f ∈
(
H1,2
|x|2,|x|3(Σ)

)′
.

Proof. Obviously the operator T1, as defined above, is well defined on the set

L2
|x|2(Σ) ⊂

(
H1,2
|x|2,|x|3(Σ)

)′
because T1 : L2

|x|2(Σ) → L2(ΣK), see Lemma 3.2.9, and

‖T1(f)‖
(H1,2(ΣK))

′ ≤ ‖T1(f)‖L2(ΣK),

for f ∈ L2
|x|2(Σ). Moreover it is linear on this dense subset. We will show that

‖T1(f)‖(H1,2(ΣK))′ ≤ C9‖f‖�H1,2
|x|2,|x|3

(Σ)
�′ ,

for all f ∈ L2
|x|2(Σ). Then the BLT theorem, see Lemma 2.4.5, gives us an unique linear continuation to(

H1,2
|x|2,|x|3(Σ)

)′
with same bound. We compute for f ∈ L2

|x|2(Σ) and h ∈ H1,2(ΣK)

|(T1(f))(h)| =
∣∣∣∣∫

ΣK

(T1(f))(x)h(x)dλn(x)
∣∣∣∣ = ∣∣∣∣∫

ΣK

1
|x|n+2

f(
x

|x|2
)h(x)dλn(x)

∣∣∣∣
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=
∣∣∣∣∫

Σ

|y|n+2f(y)h(
y

|y|2
)|Det(D(KΣ))(y)|dλn(y)

∣∣∣∣ = ∣∣∣∣∫
Σ

f(y)(J(h))(y)|x|4dλn(y)
∣∣∣∣

≤‖f‖�
H1,2
|x|2,|x|3

(Σ)
�′‖(J(h))(y)‖H1,2

|x|2,|x|3
(Σ) ≤ C9‖f‖�H1,2

|x|2,|x|3
(Σ)
�′‖h‖H1,2(ΣK),

using Lemma 3.2.10. But this yields

‖T1(f)‖(H1,2(ΣK))′ = sup
h∈H1,2(ΣK),‖h‖H1,2(ΣK )=1

|(T1(f))(h)| ≤ C9‖f‖�H1,2
|x|2,|x|3

(Σ)
�′ .

The second part of this subsection contains the transformations for the boundary inhomogeneity g
and the coefficients a and b. This means we want to find transformations T2, T3 and T4 such that

〈(T3(a)) (x),∇u(x)〉+ (T4(b)) (x)u(x) = (T2(g)) (x), (3.21)

for all x ∈ ∂ΣK , yields that

〈a(y),∇ ((K(u)) (y))〉+ b(y)u(x) = g(y), (3.22)

for all y ∈ ∂ΣK . We start with the transformation T2(g) of g.

Definition 3.2.12. Let Σ be an outer C1,1-domain and g be a function defined on ∂Σ. Then we define
a function T2(g) on ∂ΣK by

(T2(g)) (x) := g(
x

|x|2
), x ∈ ∂ΣK . (3.23)

Again we recall a Gelfand triple from Remark 2.2.7 (iii), namely

H
1
2 ,2(∂Σ) ⊂ L2(∂Σ) ⊂ H− 1

2 ,2(∂Σ).

T2 has the following properties.

Lemma 3.2.13. Let Σ be an outer C1,1-domain. We have that

T2 : L2(∂Σ) → L2(∂ΣK),

T2 : H
1
2 ,2(∂Σ) → H

1
2 ,2(∂ΣK),

define linear, bounded isometries with (T2)−1 = T2. Moreover we define a continuous linear operator

T2 : L2(∂Σ) → H− 1
2 ,2(∂ΣK),

by

(T2(g)) (h) :=
∫

∂ΣK

T2(g)(y)h(y) dHn−1(y), h ∈ H− 1
2 ,2(∂Σ) (3.24)

for g ∈ L2(∂Σ), where L2(∂Σ) is equipped with the norm ‖ · ‖
H− 1

2 ,2(∂Σ)
. Hence there exists a continuous

continuation
T2 : H− 1

2 ,2(∂Σ) → H− 1
2 ,2(∂ΣK),
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i.e., we have for a constant 0 < C11 <∞

‖T2(g)‖
H− 1

2 ,2(∂ΣK)
≤ C11‖g‖

H− 1
2 ,2(∂Σ)

, (3.25)

for all g ∈ H− 1
2 ,2(∂Σ).

Proof. Obviously (T2)−1 = T2 and the operators are linear. At first we consider T2 applied to g ∈
L2(∂Σ). Let (Ψi)1≤i≤N be the mappings from ∂Σ and

(
Ψi

|Ψi|2

)
1≤i≤N

be those from ∂ΣK . Furthermore

let (wi)1≤i≤N be a C∞-partition of unity on ∂Σ corresponding to (Ui)1≤i≤N . Then
(
wK

i

)
1≤i≤N

defined
by

wK
i (x) := wi(

x

|x|2
), x ∈ UK

i ,

for 1 ≤ i ≤ N , is a C∞-partition of unity on ∂ΣK , corresponding to the open cover
(
UK

i

)
1≤i≤N

. Details
can be found in the proof of Lemma 3.2.3. Now we compute

‖T2(g)‖2
L2(∂ΣK) =

N∑
i=1

‖wi(Ψi) · (T2(g))(Ψi)‖2
L2(Rn−1)

=
N∑

i=1

‖wK
i (

Ψi

|Ψi|2
) · g( Ψi

|Ψi|2
)‖2

L2(Rn−1) =
N∑

i=1

‖wK
i (ΨK

i ) · g(ΨK
i )‖2

L2(Rn−1) = ‖g‖2
L2(∂Σ).

For T2 applied to H
1
2 ,2(∂Σ) we compute the norm in the following way, using an equivalent definition of

the H
1
2 ,2(∂ΣK) and H

1
2 ,2(∂Σ) norms. [Dob06, Section 6.10 and Definition 9.39] yields

‖g‖2

H
1
2 ,2(∂ΣK)

= ‖g‖2
L2(∂ΣK)

+
N∑

i=1

∫
BRn−1

1 (0)

∫
BRn−1

1 (0)

|g(ΨK
i (x, 0))− g(ΨK

i (y, 0))|2

|x− y|n
dλn−1(x)dλn−1(y),

‖g‖2

H
1
2 ,2(∂Σ)

= ‖g‖2
L2(∂Σ)

+
N∑

i=1

∫
BRn−1

1 (0)

∫
BRn−1

1 (0)

|g(Ψi(x, 0))− g(Ψi(y, 0))|2

|x− y|n
dλn−1(x)dλn−1(y),

for Lipschitz boundaries, i.e., ∂ΣK and ∂Σ are C0,1-boundaries. Now we can estimate

‖T2(g)‖2

H
1
2 ,2(∂ΣK)

= ‖T2(g)‖2
L2(∂ΣK)

+
N∑

i=1

∫
BRn−1

1 (0)

∫
BRn−1

1 (0)

|T2(g)(
Ψi(x,0)
|Ψi(x,0)|2 )− T2(g)(

Ψi(y,0)
|Ψi(y,0)|2 )|2

|x− y|n
dλn−1(x)dλn−1(y)

= ‖g‖2
L2(∂Σ)

+
N∑

i=1

∫
BRn−1

1 (0)

∫
BRn−1

1 (0)

|g(Ψi(x, 0))− g(Ψi(y, 0))|2

|x− y|n
dλn−1(x)dλn−1(y)

= ‖g‖2

H
1
2 ,2(∂Σ)

,
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for g ∈ H 1
2 ,2(∂Σ). It is left to prove the continuity of

T2 :
(
L2(∂Σ), ‖ · ‖

H− 1
2 ,2(∂Σ)

)
→ H− 1

2 ,2(∂ΣK).

For g ∈ L2(∂Σ) ⊂ H− 1
2 ,2(∂Σ) we use the definition of the integral on ∂Σ and ∂ΣK from Definition 2.1.3.

Furthermore we have
0 < C12 < Ji(y′), JK

i (y′) < C13 <∞,

for y′ ∈ BRn−1

1 (0) and constants 0 < C12, C13 <∞, see Lemma 2.1.4. Now we can start to estimate

|T2(g)(h)| =
∣∣∣∣∫

∂ΣK

T2(g)(x)h(x)dHn−1(x)
∣∣∣∣ = ∣∣∣∣∫

∂ΣK

g(
x

|x|2
)h(x)dHn−1(x)

∣∣∣∣
≤

N∑
i=1

∣∣∣∣∫
Rn−1

wK
i (ΨK

i (x′, 0))g(
ΨK

i (x′, 0)
|ΨK

i (x′, 0)|2
)h(ΨK

i (x′, 0))JK
i (x′)dλn−1(x′)

∣∣∣∣
=

N∑
i=1

∣∣∣∣∣
∫

Rn−1
wi(Ψi(x′, 0))g(Ψi(x′, 0))h(

Ψi(x′, 0)
|Ψi(x′, 0)|2

) · JK
i (x′)
Ji(x′)︸ ︷︷ ︸

=:Qi(Ψ
−1
i (x))

·Ji(x′)dλn−1(x′)

∣∣∣∣∣
=

N∑
i=1

∣∣∣∣∫
∂Σ

wig(x)h(
x

|x|2
)Qi(x)dHn−1(x)

∣∣∣∣ ≤ N∑
i=1

‖g‖
H− 1

2 ,2(∂Σ)
‖wiQiT2(h)‖

H
1
2 ,2(∂Σ)

.

Because ∂Σ and consequently ∂Σ are C2,1-surfaces, we have wiQi ∈ H1,∞(∂Σ). So using Lemma 2.3.6
and the the fact that T2 is isometric between H

1
2 ,2(∂Σ) and H

1
2 ,2(∂ΣK) we get

|T2(g)(h)| ≤ ‖g‖
H− 1

2 ,2(∂Σ)
c9‖h‖

H
1
2 ,2(∂ΣK)

,

for all g ∈ L2(∂Σ) and h ∈ H 1
2 ,2(∂ΣK). Using the BLT Theorem, see Lemma 2.4.5, again this proves the

assertion.

Closing this section, we give the definitions of the transformations T3 and T4 as well as their most
important properties in the final lemma of this subsection.

Lemma 3.2.14. Let Σ be an outer C2,1-domain. We define the operators T3 and T4 via

T3 : H2,∞(∂Σ) → H2,∞(∂ΣK),

(T3(a)))(x) := |x|n ·
(
a(

x

|x|2
)− 2

〈
a(

x

|x|2
), ex

〉
ex

)
, x ∈ ∂ΣK (3.26)

for a ∈ H2,∞(∂Σ) and
T4 : H1,∞(∂Σ) → H1,∞(∂ΣK),

(T4(b)) (x) := |x|n−2 ·
(
b(

x

|x|2
) + (2− n)

〈
a(

x

|x|2
), x
〉)

, x ∈ ∂ΣK (3.27)

for b ∈ H1,∞(∂Σ),
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where ex denotes the unit vector in direction x and a ∈ H2,∞(∂Σ) for T4. Furthermore we have

T3 : H1,∞(∂Σ) → H1,∞(∂ΣK),
T4 : L∞(∂Σ) → L∞(∂ΣK),

if Σ is an outer C1,1-domain and a ∈ H1,∞(∂Σ) for T4. All these operators are well defined and give the
relation formulated by equations (3.21) and (3.22).

Proof. It can be verified easily using the product rule for Sobolev functions that the operators are well
defined. In order to verify the relation given by equations (3.21) and (3.22), we compute the gradient of
K(u) for u ∈ C1(Σ). We have K(u) ∈ C1(ΣK) and we have

∇((K(u))(x))

= ∇(
1

|x|n−2
u(

x

|x|2
))

= ∇(
1

|x|n−2
)u(

x

|x|2
) +

1
|x|n−2

∇(u(
x

|x|2
))

=
2− n

|x|n
u(

x

|x|2
)x+

1
|x|n−2

(∇(u)(
x

|x|2
)) ◦

(
∂1

x

|x|2
, . . . , ∂n

x

|x|2

)
=

2− n

|x|n
u(

x

|x|2
)x− 2

|x|n+2
(∇(u)(

x

|x|2
)) ◦ (xixj)i,j=1,...,n +

1
|x|n

∇u( x

|x|2
)

=
2− n

|x|n
u(

x

|x|2
)x+

1
|x|n

∇u( x

|x|2
)

− 2
|x|n+2

∂1u(
x

|x|2
)x1x− . . .− 2

|x|n+2
∂nu(

x

|x|2
)xnx

=
2− n

|x|n
u(

x

|x|2
)x+

1
|x|n

∇u( x

|x|2
)− 2

|x|n+2

〈
∇u( x

|x|2
), x
〉
x.

for all x ∈ ∂Σ. ◦ denotes the Matrix multiplication. Plugging this into the boundary condition on ∂Σ we
get

〈a(x),∇K(u)(x)〉+ b(x) ·K(u)(x)

= 〈a(x), x〉2− n

|x|n
u(

x

|x|2
) +

1
|x|n

〈
a(x),∇u( x

|x|2
)
〉

− 2
|x|n+2

〈
x,∇u( x

|x|2
)
〉
〈a(x), x〉+

b(x)
|x|n−2

u(
x

|x|2
)

=
〈(

1
|x|n

a(x)− 2
|x|n+2

〈a(x), x〉x
)
· ∇u( x

|x|2
)
〉

+
(

b(x)
|x|n−2

+ 〈a(x), x〉2− n

|x|n

)
u(

x

|x|2
)

= 〈T3(a)(
x

|x|2
),∇u( x

|x|2
)〉+ T4(b)(

x

|x|2
)u(

x

|x|2
)

for all x ∈ ∂Σ. If we now use equation (3.21) together with (3.23) we will get equation (3.22) and the
proof is done.
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3.3 The Outer Oblique Boundary Problem of Potential Theory

This is the main section of Chapter 3. It presents a solution operator for weak solutions to the outer
oblique boundary problem for the Poisson equation. In the first subsection we provide an existence
result. The weak solution to the outer problem will be the Kelvin transformation K(v) of the weak
solution to the corresponding regular inner problem v. Next we state a regularization result for the
weak solution. Thus the connection between the weak solution and the original problem is established.
Then we discuss the transformed regularity condition on the oblique vector field. After we implemented
stochastic inhomogeneities and provided a Ritz-Galerkin approximation, we show the applicability to
problems from Geomathematics with some examples in the last subsection.

3.3.1 Weak Solutions to the Outer Problem

In this subsection we want apply the solution operator of the inner regular problem in order to get a
weak solution of the outer problem. Therefore we will use a combination of all the operators defined in
the previous sections and subsections. In order to avoid confusion we denote the normal vector of ∂Σ by
ν and the normal vector of ∂ΣK by νK . With the same reasoning as for the inner setting, we assume Σ
to be at least an outer C1,1-domain if not stated otherwise. We start with the classical formulation of
the outer oblique boundary problem for the Poisson equation in the following definition.

Definition 3.3.1. Let Σ be an outer C1,1-domain, f ∈ C0(Σ), b, g ∈ C0(∂Σ) and a ∈ C0(∂Σ; Rn) be
given. A function u ∈ C2(Σ) ∩ C1(Σ) such that

∆u(x) = f(x), for all x ∈ Σ, (3.28)
〈a(x) · ∇u(x)〉+ b · u(x) = g(x), for all x ∈ ∂Σ, (3.29)

is called classical solution of the outer oblique boundary problem for the Poisson equation.

Now we state the main result of this chapter.

Theorem 3.3.2. Let Σ be an outer C1,1-domain. Furthermore let a ∈ H1,∞(∂Σ; Rn), b ∈ L∞(∂Σ),

g ∈ H− 1
2 ,2(∂Σ) and f ∈

(
H1,2
|x|2,|x|3(Σ)

)′
, such that∣∣〈(T3(a)) (y), νK(y)〉
∣∣ > C14 > 0, (3.30)

ess inf∂ΣK

{
T4(b)

〈T3(a), νK〉
− 1

2
div∂ΣK

(
T3(a)

〈T3(a), νK〉
− νK

)}
> 0, (3.31)

for all y ∈ ∂ΣK , where 0 < C14 <∞. Then we define

u := Sout
a,b (f, g) := K

(
Sin

T3(a),T4(b)
(T1(f), T2(g))

)
, (3.32)

as the weak solution to the outer oblique boundary problem for the Poisson equation from Definition 3.3.1.
Sout

a,b is injective and we have for a constant 0 < C15 <∞

‖u‖H1,2
1

|x|2
, 1
|x|

(Σ) ≤ C15

(
‖f‖�

H1,2
|x|2,|x|3

(Σ)
�′ + ‖g‖

H− 1
2 ,2(∂Σ)

)
. (3.33)
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Proof. Lemma 3.2.3 yields ΣK to be a bounded C1,1-domain. Furthermore, because of Lemma 3.2.14
and condition (3.30) we have that T3(a) ∈ H1,∞(∂ΣK ; Rn) and condition (3.1) is fulfilled. Additionally
T4(b) ∈ L∞(∂Σ). So Sin

T3(a),T4(b)
is well defined, see Remark 3.1.4. Injectivity follows by the injectivity of

the operatorsK, T1, T2 and Sin
T3(a),T4(b)

. Lemma 3.2.11 and Lemma 3.2.13 yields T1(f) ∈
(
H1,2
|x|2,|x|3(Σ

K)
)′

and T2(g) ∈ H− 1
2 ,2(∂ΣK). Consequently we can apply the solution operator for the regular inner problem

to get a weak solution v ∈ H1,2(ΣK) by

v := Sin
T3(a),T4(b)

(T1(f), T2(g)) ,

see Theorem 3.1.3. Using Lemma 3.2.7, we get u := K(v) ∈ H1,2
1

|x|2
, 1
|x|

(Σ). Finally, we use the continuity

estimates from Lemmata 3.1.3, 3.2.7, 3.2.11 and 3.2.13, to obtain

‖u‖H1,2
1

|x|2
, 1
|x|

(Σ) ≤ C2C8max {C10, C11}
(
‖f‖�

H1,2
|x|2,|x|3

(Σ)
�′ + ‖g‖

H− 1
2 ,2(∂Σ)

)
.

We will need the following lemma in order to prove a regularization result for the outer problem.

Lemma 3.3.3. Let Σ be an outer C1,1-domain and u ∈ H2,2(ΣK) be given. Then we have K(u) ∈
H2,2

1
|x|2

, 1
|x| ,1

(Σ) and

‖K(u)‖H2,2
1

|x|2
, 1
|x| ,1

(Σ) ≤ C16‖u‖H2,2(ΣK),

for a constant 0 < C16 < ∞ independent of u, i.e., K : H2,2(ΣK) → H2,2
1

|x|2
, 1
|x| ,1

(Σ) defines a continuous

operator.

Proof. Due to Lemma 3.2.7 we only have to estimate ‖∂j∂iK(u)‖L2(Σ) for 1 ≤ i, j ≤ n. But this can be
done easily by using the techniques as in the proof of Lemma 3.2.7. We have

‖∂j∂iKTF (u)‖2
L2(Σ)

=
∫

Σ

(
∂j

(
(2− n)

xi

|x|n
u(

x

|x|2
)

+(∂iu)(
x

|x|2
)

1
|x|n

− 2
n∑

k=1

(∂ku)(
x

|x|2
)
xixk

|x|n+2

))2

dλn(x)

=
∫

Σ

(
(2− n)xiu(

x

|x|2
)∂j(

1
|x|n

) +

(2− n)
xi

|x|n
∂j(u(

x

|x|2
)) + ∂j((∂iu)(

x

|x|2
))

1
|x|n

+ (∂iu)(
x

|x|2
)∂j(

1
|x|n

)

−2
n∑

k=1

∂j((∂ku)(
x

|x|2
))
xixk

|x|n+2
− 2

n∑
k=1

(∂ku)(
x

|x|2
)∂j(

xixk

|x|n+2
)

)2

dλn(x)
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=
∫

Σ

(
(n− 2)n

xixj

|x|n+2
u(

x

|x|2
) +

(∂ju)(
x

|x|2
)
xi(2− n)
|x|n+2

+
n∑

l=1

(∂lu)(
x

|x|2
)
(2− n)xixjxl

|x|n+4
+ (∂j∂iu)(

x

|x|2
))

1
|x|n+2

+
n∑

l=1

(∂l∂iu)(
x

|x|2
)
xjxl

|x|n+4
− nxj

|x|n+2
(∂iu)(

x

|x|2
) + δij · (2− n)

1
|x|n

u(
x

|x|2
)

−2δij
n∑

k=1

(∂ku)(
x

|x|2
)

xk

|x|n+2
− 2δjk(∂ku)(

x

|x|2
)

xi

|x|n+2

−2
n∑

k=1

(∂j∂ku)(
x

|x|2
))
xixk

|x|n+4

+2
n∑

k=1

n∑
l=1

(∂l∂ku)(
x

|x|2
))
xlxixk

|x|n+4
− 2

n∑
k=1

(∂ku)(
x

|x|2
)
xjxixk

|x|n+4

)2

dλn(x)

≤ C17

∫
Σ

1
|x|2n

(
u2(

x

|x|2
) +

n∑
i=1

u(
x

|x|2
)(∂iu)(

x

|x|2
) +

n∑
i=1

n∑
j=1

u(
x

|x|2
)(∂i∂ju)(

x

|x|2
)

+
n∑

i=1

n∑
j=1

(∂iu)(
x

|x|2
)(∂ju)(

x

|x|2
)

+
n∑

i=1

n∑
j=1

n∑
k=1

(∂iu)(
x

|x|2
)(∂j∂ku)(

x

|x|2
)

+
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

(∂i∂ju)(
x

|x|2
)(∂k∂lu)(

x

|x|2
)

)
dλn(x)

= C17

∫
ΣK

|y|2n

(
u2(y) +

n∑
i=1

u(y)(∂iu)(y) +
n∑

i=1

n∑
j=1

u(y)(∂i∂ju)(y)

+
n∑

i=1

n∑
j=1

(∂iu)(y)(∂ju)(y)

+
n∑

i=1

n∑
j=1

n∑
k=1

(∂iu)(y)(∂j∂ku)(y)

+
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

(∂i∂ju)(y)(∂k∂lu)(y)

)
|Det(KTD(y))|dλn(y)

≤ C18

∫
ΣK

|y|2n

(
u2(y) +

n∑
i=1

u(y)(∂iu)(y) +
n∑

i=1

n∑
j=1

u(y)(∂i∂ju)(y)

+
n∑

i=1

n∑
j=1

(∂iu)(y)(∂ju)(y)
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+
n∑

i=1

n∑
j=1

n∑
k=1

(∂iu)(y)(∂j∂ku)(y)

+
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

(∂i∂ju)(y)(∂k∂lu)(y)

)
|y|−2ndλn(y)

≤ C16‖u‖2
H2,2(ΣK).

Now the proof is finished.

Now we are able to state the following regularization result, based on the regularization result for
the inner problem, see Theorem 3.1.6. The following Theorem shows, that the weak solution, defined by
Theorem 3.3.2, is really related to the outer problem, given in Definition 3.3.1.

Theorem 3.3.4. Let Σ be an outer C2,1-domain, a ∈ H2,∞(∂Σ; Rn), b ∈ H1,∞(∂Σ) such that (3.30)
and (3.31) holds. If f ∈ L2

|x|2(Σ) and g ∈ H
1
2 ,2(Σ) then we have u ∈ H2,2

1
|x|2

, 1
|x| ,1

(Σ), for u provided by

Theorem 3.3.2, and

∆u = f, (3.34)
〈a,∇u〉+ bu = g, (3.35)

almost everywhere on Σ and ∂Σ, respectively. Furthermore we have an a priori estimate

‖u‖H2,2
1

|x|2
, 1
|x| ,1

(Σ) ≤ C19

(
‖f‖L2

|x|2
(Σ) + ‖g‖

H
1
2 ,2(∂Σ)

)
, (3.36)

with a constant 0 < C19 < ∞. Such a solution we call strong solution to the outer oblique boundary
problem for the Poisson equation.

Proof. Using Lemmata 3.2.3, 3.2.9, 3.2.13 and 3.2.14, we find the requirement of Theorem 3.1.6 to be
fulfilled. Consequently we have v ∈ H2,2(ΣK) and

∆v(x) = T1(f)(x), for almost all x ∈ ΣK ,

〈T3(a)(x),∇v(x)〉+ T4(b)(x) · v(x) = T2(g)(x), for almost all x ∈ ∂ΣK .

Furthermore, this yields u ∈ H2,2
1

|x|2
, 1
|x| ,1

(Σ), by Lemma 3.3.3, and

∆u(y) = f(y), for almost all y ∈ Σ,
〈a(y),∇u(y)〉+ b(y) · u(y) = g(y), for almost all y ∈ ∂Σ,

by the choice of the transformations.

As a consequence we have that if the data in Theorem 3.3.4 fulfills the requirements of a classical
solution, see e.g. [Mir70, Section 23], the solution u provided by Theorem 3.3.2 coincides with this
solution. We close the subsection with a final remark.
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Remark 3.3.5. It would also be possible to derive a weak formulation and to prove that the weak
solution, provided by Theorem 3.3.2, fulfills it. This would require additional regularity assumptions on
a, b and Σ. Additionally, we would have to forbid tangential directions for the oblique vector field a and
we would end up with a regular outer oblique boundary problem. Since we would still have to use the
Kelvin transformation, there is no advantage in such a formulation at this point.

3.3.2 The Condition on the Oblique Vector Field

Analogously to the regular inner problem, we have condition (3.31), which is a transformed version of
(3.5) and gives a relation between a and b, depending on the geometry of the surface ∂Σ. Moreover
condition (3.30) is a transformed version of (3.1) and gives the non admissible direction for the oblique
vector field a. For the regular inner problem, (3.1) states the tangential directions as non admissible
for the oblique vector field. For the outer problem the direction depends as well on the direction of
the normal vector ν(y) at the point y ∈ ∂Σ as on y itself. In this subsection we will investigate this
dependency in detail. Using the definition of T3 we get∣∣∣∣〈|x|n(a( x

|x|2
)− 2

〈
a(

x

|x|2
), ex

〉
ex

)
, νK(x)

〉∣∣∣∣ > C14 > 0,

for almost all x ∈ ∂ΣK . This is equivalent to

min
(
|y|n

∣∣∣y ∈ ∂ΣK
) ∣∣∣∣〈a( x

|x|2
), νK(x)

〉
− 2

〈
a(

x

|x|2
), ex

〉
〈ex, ν

K(x)〉
∣∣∣∣ > C20 > 0,

for all x ∈ ∂Σ and 0 < C20 <∞. We use the formula

〈y, z〉
|y| · |z|

=: cos(∠y,z),

for vectors in Rn, where ∠y,z denotes the angle 0 ≤ ∠y,z ≤ π between y and z. Now, we can rewrite
condition (3.30) in the equivalent form∣∣∣∣|a( x

|x|2
)| · cos(∠a(x),νK )− 2 · |a( x

|x|2
)| · cos(∠a(x),ex

) · cos(∠ex,νK )
∣∣∣∣ > C21 > 0,

and finally ∣∣∣cos(∠a(x),νK(x))− 2 · cos(∠a(x),ex
) · cos(∠ex,νK(x))

∣∣∣ > C22 > 0, (3.37)

for all x ∈ ∂ΣK and constant 0 < C21, C22 <∞ independent of x. This equation only states a condition
on the direction of a, not on its modulus. Going to R2 we can explicitly compute the non admissible
direction resulting from condition (3.30). We can write

cos(∠a(x),νK (x)) = cos(∠a(x),ex
± ∠ex,νK(x))

= cos(∠a(x),ex
) · cos(∠ex,νK(x))∓ sin(∠a(x),ex

) · sin(∠ex,νK(x)),

using an addition theorem for trigonometric functions, where the sign of the angle depends on the
geometric positions of the three vectors νK , ex and a, to each other. Plugging this into equation (3.37),
the non admissible direction is described by

cos(∠a(x),ex
) · cos(∠ex,νK(x))∓ sin(∠a(x),ex

) · sin(∠ex,νK(x)) = 2 · cos(∠a(x),ex
) · cos(∠ex,νK(x)),
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which leads to
∓sin(∠a(x),ex

) · sin(∠ex,νK(x)) = cos(∠a(x),ex
) · cos(∠ex,νK(x)),

Fixing ∠ex,νK(x) as a given geometric constant only depending on x, we define

C23(x) := cos(∠ex,νK(x)),
C24(x) := sin(∠ex,νK(x)).

So we can write the condition on a in the equivalent form

∓C24(x)sin(∠a(x),ex
) = C23(x)cos(∠a(x),ex

).

Finally, the transformed non admissible direction is characterized by

∠a(x),ex
= tan−1

∣∣∣∣C23(x)
C24(x)

∣∣∣∣ ,
if C24(x) 6= 0 and ∠a(x),ex

= π
2 if C24(x) = 0. Generally, transforming the problem to an inner setting

transforms the conditions for the coefficients a and b. There are circumstances in which we have the
same non admissible direction as for the inner problem, i.e., the tangential directions are non admissible.
For example, this is the case if ∂Σ is a sphere around the origin. In Figure 5 the situation for Σ ⊂ R2 is
illustrated, the dashed line indicates the non admissible direction, which occurs because of the transformed
regularity condition 〈T3(a), νK〉 > C14 > 0, see (3.30).

Figure 5: Non-admissible direction for the outer problem

3.3.3 Stochastic Inhomogeneities

In this subsection we implement stochastic inhomogeneities as well as stochastic weak solutions. For the
inner problem stochastic inhomogeneities are already implemented, see [Ras05] or [GR06]. We will now
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provide them for the outer setting. We start by defining the spaces of stochastic functions. As already
mentioned above, we denote in this subsection the sigma algebra by Σ, while space domains in Rn an
their boundaries are denoted by Γ and ∂Γ, respectively. So, let Γ be an outer C1,1-domain and (Ω,Σ, P )
a probability space, arbitrary but fixed, such that L2(Ω, P ) is separable. We define(

H2,2
1

|x|2
, 1
|x| ,1

(Γ)
)

Ω

:=L2(Ω, P )⊗H2,2
1

|x|2
, 1
|x| ,1

(Γ),(
H1,2

1
|x|2

, 1
|x|

(Γ)
)

Ω

:=L2(Ω, P )⊗H1,2
1

|x|2
, 1
|x|

(Γ),(
L2
|x|2(Γ)

)
Ω

:=L2(Ω, P )⊗ L2
|x|2(Γ),(

H1,2
|x|2,|x|3(Γ)

)′
Ω

:=L2(Ω, P )⊗
(
H1,2
|x|2,|x|3(Γ)

)′
,

H
1
2 ,2

Ω (∂Γ) :=L2(Ω, P )⊗H
1
2 ,2(∂Γ),

L2
Ω(∂Γ) :=L2(Ω, P )⊗ L2(∂Γ),

H
− 1

2 ,2

Ω (∂Γ) :=L2(Ω, P )⊗H− 1
2 ,2(∂Γ).

Because all spaces above are separable, see e.g. [Ada75], we can use the isomorphisms to Hilbert space
valued random variables, see Lemma 2.4.3. We have the following main result of this section.

Theorem 3.3.6. Let Γ be an outer C1,1-domain. Furthermore let a ∈ H1,∞(∂Γ; Rn), b ∈ L∞(∂Γ),

g ∈ H− 1
2 ,2

Ω (∂Γ) and f ∈
(
H1,2
|x|2,|x|3(Γ)

)′
Ω
, such that (3.30) and (3.31) holds. Then we define

u( · , ω) := Sout
a,b (f( · , ω), g( · , ω)), (3.38)

for dP -almost all ω ∈ Ω. u is called stochastic weak solution to the outer oblique boundary problem for
the Poisson equation. Furthermore we have for a constant 0 < C25 <∞

‖u‖ 
H1,2

1
|x|2

, 1
|x|

(Γ)

!
Ω

≤ C25

(
‖f‖�

H1,2
|x|2,|x|3

(Γ)
�′

Ω

+ ‖g‖
H
− 1

2 ,2
Ω (∂Γ)

)
. (3.39)

Proof. Using the isomorphisms stated in Lemma 2.4.3 we apply Theorem 3.3.2 and the proof is done.

Finally, we have the following result for a stochastic strong solution.

Theorem 3.3.7. Let Γ be an outer C2,1-domain, a ∈ H2,∞(∂Γ; Rn), b ∈ H1,∞(∂Γ) such that (3.30) and

(3.31) holds. If f ∈
(
L2
|x|2(Γ)

)
Ω

and g ∈ H
1
2 ,2

Ω (Γ) then we have

u ∈
(
H2,2

1
|x|2

, 1
|x| ,1

(Γ)
)

Ω

, for u provided by Theorem 3.3.6, and

∆u(x, ω) = f(x, ω), (3.40)
〈a(y),∇u(y, ω)〉+ b(y)u(y, ω) = g(y, ω), (3.41)
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for λn-almost all x ∈ Γ, for Hn−1-almost all y ∈ ∂Γ and for P -almost all ω ∈ Ω. Furthermore, we have
an a priori estimate

‖u‖ 
H2,2

1
|x|2

, 1
|x| ,1

(Γ)

!
Ω

≤ C26

(
‖f‖�

L2
|x|2

(Γ)
�

Ω

+ ‖g‖
H

1
2 ,2
Ω (∂Γ)

)
, (3.42)

with a constant 0 < C26 < ∞. Such a solution we call stochastic strong solution to the outer oblique
boundary problem for the Poisson equation.

Proof. Using the isomorphisms stated in Lemma 2.4.3 we apply Theorem 3.3.4 and the proof is done.

Remark 3.3.8. Alternatively we can use the stochastic solution operator SΩ,in
a,b (f, g) for the stochastic

inner problem, provided by [GR06, Theorem 4.4.]. Therefore we have to define transformations for
inhomogeneities and solution between the stochastic spaces. Then we define the stochastic weak solution
to the outer problem by

u := KΩ
(
SΩ,in

T3(a),T4(b)
(TΩ

1 (f), TΩ
2 (g))

)
and we end up with the same stochastic weak solution and the same results about its properties.

3.3.4 Ritz-Galerkin Approximation

In this subsection we provide the Ritz-Galerkin method which allows us to approximate the weak solution
of the outer problem with help of a numerical computation. Therefore we use the approximation of the
weak solution to the corresponding inner problem, provided by [GR06, Section 6] and [Alt02, Section
7.23]. Now assume Σ to be an outer C1,1-domain. Furthermore let a ∈ H1,∞(∂Σ; Rn), b ∈ L∞(∂Σ),

g ∈ H− 1
2 ,2(∂Σ) and f ∈

(
H1,2
|x|2,|x|3(Σ)

)′
, such that condition (3.30) and condition (3.31) is fulfilled. We

want to approximate the weak solution u to the outer oblique boundary problem, provided by Theorem
3.3.2. Let a and F be defined by

a(η, v) := −
n∑

i=1
H

1
2 ,2(∂Σ)

〈
η

T3(a)i

〈T3(a), νK〉
− νK

i , (∇∂Σv)i

〉
H− 1

2 ,2(∂Σ)

−∫
Σ

(∇η,∇v) dλn −
∫

∂Σ

η
T4(b)

〈T3(a), νK〉
v dHn−1

F (η) :=
H

1
2 ,2(∂Σ)

〈
η,

T2(g)
〈T3(a), νK〉

〉
H− 1

2 ,2(∂Σ)

−H1,2(Σ) 〈η, T1(f)〉(H1,2(Σ))′

for η, v ∈ H1,2(ΣK).

Lemma 3.3.9. Let (Vn)n∈N be a increasing sequence of finite dimensional subspaces of H1,2(ΣK),
i.e., Vn ⊂ Vn+1 such that

⋃
n∈N Vn = H1,2(ΣK). Then there exists for each n ∈ N an unique vn ∈ Vn

with:
a(η, vn) = F (η) for all η ∈ Vn.
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Proof. For the proof see [GR06, Lemma 6.1].

Lemma 3.3.10. Let d := dim(Vn) and (ϕk)1≤k≤d be a basis of Vn. Then vn ∈ Vn from Lemma 3.3.9
has the following unique representation

vn =
d∑

i=1

hiϕi,

where (hi)1≤i≤d is the solution of the linear system of equations given by

d∑
i=1

ajihi = Fj 1 ≤ j ≤ d.

Here aji := a(ϕj , ϕi) and Fj := F (ϕj).

Proof. For the proof see [GR06, Lemma 6.2].

The following lemma from Céa proves that the sequence (vn)n∈N really approximates the solution v.

Lemma 3.3.11. Let v be the weak solution provided by Theorem 3.1.3 to the corresponding inner
problem in ΣK and (vn)n∈N taken from Lemma 3.3.9. Then:

‖v − vn‖H1,2(Σ) ≤
c11
c12

dist(v, Vn) n→∞−→ 0. (3.43)

Proof. For the proof of this lemma see [GR06, Lemma 6.3].

Consequently we have

Theorem 3.3.12. Let u be the weak solution provided by Theorem 3.3.2 to the outer problem and v,
(vn)n∈N taken from Lemma 3.3.11, both corresponding to a, b, g, f and Σ, given at the beginning of this
subsection. Then:

‖u−K(vn)‖H1,2(Σ) ≤ C8
c11
c12

dist(v, Vn) n→∞−→ 0. (3.44)

Proof. This follows using equation (3.43) from the previous lemma together with the continuity of the
Kelvin transformation, see Lemma 3.2.7. The constants c11 and c12 are the constants from the Lax-
Milgram Lemma, see Lemma 2.4.4, corresponding to a and F from the beginning of this subsection.

Remark 3.3.13. An analogous approximation for the stochastic weak solution is available, using the
results from Subsection 3.3.3, this subsection as well as [GR06, Section 6].
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3.3.5 Geomathematical Applications and Examples

In this subsection we give examples for stochastic data. This may be used in geomathematical applications
in order to model noise on measured values. In the following we give the examples for the outer problem.
They are also suitable for the inner problem, see [GR06]. Again we denote the sigma algebra by Σ as
usual, in order to avoid confusion. For the domains we replace Σ by Γ and ∂Σ by ∂Γ.

Gaussian inhomogeneities

We choose the probability space (Ω,Σ, P ), such that Xi, 1 ≤ i ≤ n1, are P ⊗ λn-measurable and
Yj , 1 ≤ j ≤ n2, are P ⊗Hn−1-measurable with Xi(·, x), x ∈ Γ, and Yj(·, x), x ∈ ∂Γ, Gaussian random
variables with expectation value 0 and variance f2

σi
(x) or variance g2

σj
(x), respectively. Here fσi

∈ L2
|x|2(Γ)

and gσj
∈ L2(∂Γ). We define:

f(ω, x) := fµ(x) +
n1∑
i=1

Xi(ω, x), g(ω, x) := gµ(x) +
n2∑

j=1

Yj(ω, x),

where fµ ∈ L2
|x|2(Γ) and gµ ∈ L2(∂Γ). To use such kind of inhomogeneities we must show

f ∈ L2(Ω× Γ, P ⊗ |x|4 · λn) and g ∈ L2(Ω× ∂Γ, P ⊗Hn−1).

Lemma 3.3.14. For fµ, fσi ∈ L2
|x|2(Γ), 1 ≤ i ≤ n1 one has that f ∈ L2(Ω× Γ, P ⊗ |x|4 · λn).

Proof. For the proof see [GR06, Proposition 5.1].

Lemma 3.3.15. For gµ, gσj
∈ L2(∂Γ), 1 ≤ j ≤ n2 one has that g ∈ L2(Ω× ∂Γ, P ⊗Hn−1).

Proof. For the proof see [GR06, Proposition 5.1].

Gauß-Markov model

Here we refer to [FM02] in which an application of the Example from the previous paragraph can be
found. The authors use a random field

h(ω, x) := H(x) + Z(ω, x)

to model an observation noise, where x ∈ ∂B1(0) ⊂ R3 and ω ∈ Ω with (Ω,Σ, P ) a probability space.
Here one has that Z(·, x), x ∈ ∂B1(0), is a Gaussian random variable with expectation value 0 and
variance σ2 > 0. Additionally H(x) ∈ L2(∂B1(0)) and the covariance is given by:

cov(Z(·, x1), Z(·, x2)) = K(x1, x2),

where K : ∂B1(0)× ∂B1(0) → R is a suitable kernel.
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Figure 6: Data with Gaussian noise

Two geophysically relevant kernels are for example

K1(x1, x2) :=
σ2

(M + 1)2

M∑
n=1

2n+ 1
4π

Pn((x1 · x2)) 0 ≤M <∞,

K2(x1, x2) :=
σ2

exp(−c)
exp(−c(x1 · x2)).

Pn, 1 ≤ n ≤M , are the Legendre polynomials defined on R. The noise model corresponding to the second
kernel is called first degree Gauß–Markov model. If one chooses a P ⊗Hn−1-measurable random field Z,
then h fulfills the requirements of Lemma 3.3.15. Existence of a corresponding probability measure P is
provided in infinite dimensional Gaussian Analysis, see e.g. [For05].

Noise model for satellite data

In this paragraph we give another precise application, which can be found in [Bau04]. Here the authors
are using stochastic inhomogeneities to implement a noise model for satellite data. Therefore random
fields of the form

h(ω, x) :=
m∑

i=1

hi(x)Zi(ω)

are used, where x ∈ ∂Γ ⊂ R3 and ω ∈ Ω with (Ω,Σ, P ) a suitable probability space. Here ∂Γ could be for
example the earth’s surface and we are searching for harmonic functions in the space outside the earth.
Zi are Gaussian random variables with expectation value 0 and variance σ2

i > 0 and hi fulfilling the
assumptions of Lemma 3.3.14, respectively Lemma 3.3.15. If one chooses (Ω,Σ, P ) as (Rm,B(R), γ0,σi

covij
),

where:

γ0,σi
covij

:=
1√

(2π)mdet(A)
e−

1
2 (y,A−1y) dλm,

aij := cov(Zi, Zj) 1 ≤ i, j ≤ m,
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one has a realization of Zi as the projection on the i-th component in the separable space
L2(Rm, γ0,σi

covij
).
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Chapter 4

Limit Formulae and Jump Relations
of Potential Theory

In this chapter we combine the modern theory of Sobolev spaces with the classical theory of limit formulae
and jump relations of potential theory. Also other authors proved the convergence in Lebesgue spaces
on ∂Σ for integrable functions, see for example [Fic48], [Gün57] or [Ker80]. The achievement of this
paper is the L2(∂Σ) convergence for the weak derivatives of higher orders. Also the layer functions F
are elements of Sobolev spaces and ∂Σ is a two dimensional suitable smooth submanifold in R3, called
Cm,α-surface. We are considering the potential of the single layer, the potential of the double layer and
their first order normal derivatives. Main tool is the convergence in Cm(∂Σ) which is proved with help
of some results taken from [CK83], [FM04], [Kel67] and [Sch31b], together with a result from [Gün57].
Additionally, we need a result about the limit formulae in L2(∂Σ), which can be found in [Ker80], and
a reduction result which we found in [Mül51]. Moreover we prove the convergence in the Hölder spaces
Cm,β(∂Σ). Finally we give an application of the limit formulae and jump relations. We generalize a
density results from geomathematics, see [FK80], [FM03] and [FM04], based on the results proved before.

Therefore we also prove the limit formula of U1 for F ∈
(
Hm,2(∂Σ)

)′
. During this chapter we always

consider outer domains in R3, defined in Definition 2.1.1. Moreover, we assume Σ to be at least to be an
outer C2-domain if not stated otherwise.

4.1 Definition and Properties of the Layer Potentials

In this section we define the potential of the single layer, the potential of the double layer as well as their
first order normal derivatives. This four potentials will be subject of this dissertation and their limit
when approaching to the surface ∂Σ will be investigated in several norms during the next sections. In
this section we give the definition as well as some important properties of them.

Definition 4.1.1. Let F ∈ C0(∂Σ), where Σ is an outer C2-domain. The potential of the single layer
on ∂Σ, denoted by U1[F ] is defined by

U1[F ](x) :=
∫

∂Σ

F (y)
1

|x− y|
d∂Σ(y)

71
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for all x ∈ R3\∂Σ. The potential of the double layer on ∂Σ, denoted by U2[F ] is defined by

U2[F ](x) :=
∫

∂Σ

F (y)
∂

∂ν(y)
1

|x− y|
d∂Σ(y)

for all x ∈ R3\∂Σ. F is called layer function.

This two potentials have the following property.

Lemma 4.1.2. Let F ∈ C0(∂Σ) where Σ is an outer C2-domain. We have U1[F ], U2[F ] ∈ C∞(R3\∂Σ)
and

∆U1[F ](x) = 0,
∆U2[F ](x) = 0,

for all x ∈ R3\∂Σ. Furthermore, U1 and U2 are regular at infinity, i.e., U1(x) → 0 and U2(x) → 0 for |x|
tending to infinity.

Proof. Both, the proof of this lemma and the definition above can be found in [FM04].

Now we give the final definition of this section. Recall the definition of the normal vector field on
Bτ0(∂Σ) in Lemma 2.1.6.

Definition 4.1.3. Let F ∈ C0(∂Σ), where Σ is an outer C2-domain. We define the first order normal
derivative of U1[F ], denoted by ∂U1

∂ν [F ], and the first order normal derivative of U2[F ], denoted by ∂U2
∂ν [F ],

via

∂U1

∂ν
[F ](x) := 〈ν(x),∇U1(x)[F ]〉,

∂U2

∂ν
[F ](x) := 〈ν(x),∇U2(x)[F ]〉,

for all x ∈ Bτ0(∂Σ)\∂Σ.

4.2 Pointwise and Uniform Convergence

In this section we state the limit formulae of potential theory, pointwise and uniformly on ∂Σ. The most
results presented in this section are well known from literature. In this cases we give references instead
of proofs.

Definition 4.2.1. Let Σ be an outer C2-domain, F ∈ C0(∂Σ) and F ∈ C1,α(∂Σ), 0 < α ≤ 1, for ∂U2
∂ν [F ],

respectively. For x ∈ ∂Σ we define:

U1[F ](x) :=
∫

∂Σ

F (y)
1

|x− y|
d∂Σ(y),
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∂U1

∂ν
[F ](x) :=

∂

∂ν(x)

∫
∂Σ

F (y)
1

|x− y|
d∂Σ(y) =

∫
∂Σ

F (y)
∂

∂ν(x)
1

|x− y|
d∂Σ(y),

U2[F ](x) :=
∫

∂Σ

F (y)
∂

∂ν(y)
1

|x− y|
d∂Σ(y),

∂U2

∂ν
[F ](x) =

∂

∂ν(x)

∫
∂Σ

F (y)
∂

∂ν(y)
1

|x− y|
d∂Σ(y)

=−
∫

∂Σ

〈
ν(x),

[
∇x

1
|x− y|

,∇∂ΣF (y)× ν(y)
]〉

d∂Σ(y)

=
∫

∂Σ

F (y)− F (x)
|x− y|3

· (〈ν(y), ν(x)〉 − 3 〈y − x, ν(y)〉 〈y − x, ν(x)〉) d∂Σ(y).

· × · denotes the vector product in R3. All integrals are well defined, at least as Cauchy principal
value, see for example [FM04] or [Kel67]. The existence of U1, U2 and the normal derivative of U1 on
∂Σ can be found in [FM04] and [Gün57, Paragraph 5]. The existence of the normal derivative of U2 on
∂Σ and its given representations are proved in [CK83] and [Sch31b]. Now we state the limit formulae of
potential theory.

Theorem 4.2.2. Let Σ be an outer C2-domain, F ∈ C0(∂Σ) and F ∈ C1,α(∂Σ), 0 < α ≤ 1, for ∂U2
∂ν [F ],

respectively. The limit formulae of potential theory are given by

lim
τ→0+

U1[F ](x± τν(x)) = U1[F ](x), ∀x ∈ ∂Σ,

lim
τ→0+

∂U1

∂ν
[F ](x± τν(x)) =

∂U1

∂ν
[F ](x)∓ 2πF (x), ∀x ∈ ∂Σ,

lim
τ→0+

U2[F ](x± τν(x)) = U2[F ](x)± 2πF (x), ∀x ∈ ∂Σ,

lim
τ→0+

∂U2

∂ν
[F ](x± τν(x)) =

∂U2

∂ν
[F ](x), ∀x ∈ ∂Σ.

The convergence is even uniformly in x ∈ ∂Σ.

Proof. For all formulae except of the last one, we refer to e.g. [CK83]. We only have to prove the lemma
for the last formula. Due to results from [CK83, Theorem 2.23] we obtain all terms to be continuous on
∂Σ for all τ ∈ (0, τ0]. Additionally the authors prove:

lim
τ→0+

∇U2[F ](x± τν(x)) = −
∫

∂Σ

[
∇x

1
|x− y|

, [∇∂ΣF (y), ν(y)]
]
dH2(y)± 2π∇∂ΣF (x),

uniformly in x ∈ ∂Σ. In turn, results from [Sch31b] yield

lim
τ→0+

∂U2

∂ν
[F ](x+ τν(x)) =

∂U2

∂ν
[F ](x), ∀x ∈ ∂Σ,

on ∂Σ. This gives

−
〈
ν(x),

∫
∂Σ

[
∇x

1
|x− y|

, [∇∂ΣF (y), ν(y)]
]
dH2(y)

〉
=
∂U2

∂ν
[F ](x),



74 CHAPTER 4. LIMIT FORMULAE AND JUMP RELATIONS OF POTENTIAL THEORY

for all x ∈ ∂Σ, and we have proved

lim
τ→0+

∂U2

∂ν
[F ](x± τν(x)) =

∂U2

∂ν
[F ](x),

uniformly for all x ∈ ∂Σ. Thus we are done.

Because we want to prove these limit formulae for several norms, we define for each of them a family
of operators in the following lemma.

Lemma 4.2.3. Let Σ be an outer C2-domain. Furthermore, let F ∈ C0(∂Σ) and F ∈ C1,α(∂Σ), α ∈
(0, 1], for ∂U2

∂ν [F ], respectively. We define the following families of operators
(
L±τ

i [F ]
)
τ∈(0,τ0]

, i = 1, 2, 3, 4,
by

L±τ
1 [F ] := U1[F ](x± τν(x))− U1(x),

L±τ
2 [F ] :=

∂U1

∂ν
[F ](x± τν(x))− ∂U1

∂ν
[F ](x)± 2πF (x),

L±τ
3 [F ] := U2[F ](x± τν(x))− U2[F ](x)∓ 2πF (x),

L±τ
4 [F ] :=

∂U2

∂ν
[F ](x± τν(x))− ∂U2

∂ν
[F ](x),

for all x ∈ ∂Σ and τ ∈ (0, τ0]. We have

lim
τ→0+

L±τ
i [F ](x) = 0, (4.1)

for all x ∈ ∂Σ and i = 1, 2, 3, 4. Furthermore, we have L±τ
i [F ] ∈ C0(∂Σ) for i = 1, 2, 3, 4 and all τ ∈ (0, τ0]

with

lim
τ→0+

‖L±τ
i [F ]‖C0(∂Σ) = 0, (4.2)

for i = 1, 2, 3, 4.

Proof. This follows by Theorem 4.2.2.

We close the section with a remark.

Remark 4.2.4. It is easy to see, that the potentials perform certain jumps when either approaching
from the inner space or from the outer space. We can easily conclude the so called jump relations from
the corresponding limit formulae

lim
τ→0+

U1[F ](x+ τν(x))− U1[F ](x− τν(x)) = 0,

lim
τ→0+

∂U1

∂ν
[F ](x+ τν(x))− ∂U1

∂ν
[F ](x− τν(x)) = −4πF (x),

lim
τ→0+

U2[F ](x+ τν(x))− U2[F ](x− τν(x)) = 4πF (x),
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lim
τ→0+

∂U2

∂ν
[F ](x+ τν(x))− ∂U2

∂ν
[F ](x− τν(x)) = 0,

for all x ∈ ∂Σ. In Figure 7 the jump relation for U2[F ] is illustrated. ∂U1
∂ν [F ] shows a similar behavior.

Since we are interested in the limit formulae, we will omit the jump relations to simplify the exposition
appreciably. They can be obtained directly without any additional considerations or conditions with help
of the triangle inequality. Further results about the jump relations can be found in e.g. [FM04], [Ker80]
and [Mül69].

Figure 7: Boundary behavior of U2[F ]

4.3 Limit Formulae in Cm(∂Σ)

In this section we prove the convergence of the limit formulae in Cm(∂Σ)-norm. In particular, this will be
important in the last section for the proof of the main results of this dissertation. We need the following
result, taken from [Gün57].

Lemma 4.3.1. Let Σ be an outer Cm+1,α-domain and F ∈ Cn,α(∂Σ), 0 ≤ n ≤ m, m ≥ 0, 0 < β < α ≤ 1.
Then we have

U1[F ] ∈ Cn+1,β(D), (4.3)
U1[F ] ∈ Cn+1,β(R3\D). (4.4)

Let Σ be an outer Cm+1,α-domain and F ∈ Cn,α(∂Σ), 0 ≤ n ≤ m+ 1, m ≥ 0, 0 < β < α ≤ 1. Then we
have

U2[F ] ∈ Cn,β(D), (4.5)
U2[F ] ∈ Cn,β(R3\D). (4.6)
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Proof. This can be found in [Gün57, Paragraph II.19].

Remark 4.3.2. Note that even for integrable F we have that U1 as well as U2 are analytic outside of
∂Σ. But we need the Hölder continuity to assure the existence of an unique continuous continuation onto
the boundary for U1, U2 and their derivatives.

Now we are able to prove the main result of this section.

Theorem 4.3.3. Let m ∈ N, m ≥ 1, 0 < α ≤ 1 and Σ be an outer Cm+1,α-domain. Furthermore let
F ∈ Cm−1,α(∂Σ) for i = 1, F ∈ Cm,α(∂Σ) for i = 2, 3 and F ∈ Cm+1,α(∂Σ) for i = 4. Then we have
L±τ

i [F ] ∈ Cm(∂Σ) for i = 1, 2, 3, 4 and all τ ∈ (0, τ0]. Furthermore

lim
τ→0+

‖L±τ
i [F ]‖Cm(∂Σ) = 0. (4.7)

Proof. Let 1 ≤ m ∈ N be arbitrary and the assumptions of the theorem be fulfilled. We define for x ∈ ∂Σ
and τ ∈ (0, τ0]

V 1
±τ [F ](x) := U1[F ](x)− U1[F ](x± τν(x)),

V 2
±τ [F ](x) :=

∂

∂ν(x)
U1[F ](x)− ∂U1

∂ν(x)
[F ](x± τν(x))

= 〈ν(x),∇U1[F ](x)〉 − 〈ν(x± τν(x)),∇U1[F ](x± τν(x))〉

= 〈ν(x),∇U1[F ](x)〉 − 〈ν(x),∇U1[F ](x± τν(x))〉

= 〈ν(x),∇U1[F ](x)−∇U1[F ](x± τν(x))〉,

V 3
±τ [F ](x) := U2[F ](x)− U2[F ](x± τν(x)),

V 4
±τ [F ](x) :=

∂

∂ν(x)
U2[F ](x)− ∂U2

∂ν(x)
[F ](x± τν(x))

= 〈ν(x),∇U2[F ](x)〉 − 〈ν(x± τν(x)),∇U2[F ](x± τν(x))〉

= 〈ν(x),∇U2[F ](x)〉 − 〈ν(x),∇U2[F ](x± τν(x))〉

= 〈ν(x),∇U2[F ](x)−∇U2[F ](x± τν(x))〉,

where U denotes the continuation of the function U , which is defined on Σ or D, onto ∂Σ. This exists
and is uniquely determined by Lemma 2.2.10 and Lemma 4.3.1. By the assumptions on F and Σ
as well as Lemma 4.3.1, we have that V i

±τ [F ] ∈ Cm(∂Σ) for all τ ∈ (0, τ0], i = 1, 2, 3, 4, because
V i
±τ [F ](Ψj) ∈ Cm(BR2

1 (0)) for j = 1, . . . , N , as a composition of Cm-mappings. We will show that

lim
τ→0+

‖V i
±τ [F ]‖Cm(∂Σ) = 0,

for i = 1, 2, 3, 4. For i = 1, 3 it suffices to prove

lim
τ→0+

‖W i,j,s
±τ [F ]‖

C0(BR2
1 (0))

= 0,
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for i = 1, 3, j = 1, . . . , N and 1 ≤ |s| ≤ m, where

W 1,j,s
±τ [F ](x) :=∂s1

1 ∂
s2
2

(
U1[F ](Ψj(x))− U1[F ](Ψj(x)± τν(Ψj(x)))

)
,

W 3,j,s
±τ [F ](x) :=∂s1

1 ∂
s2
2

(
U2[F ](Ψj(x))− U2[F ](Ψj(x)± τν(Ψj(x)))

)
,

for all x ∈ BR2

1 (0), τ ∈ (0, τ0], 1 ≤ s1 + s2 ≤ m and j = 1, . . . , N . For simplicity we denoted Ψj(x, 0) by
Ψj(x). For i = 2, 4 we have

‖V 2
±τ [F ]‖Cm(∂Σ) =‖〈ν( · ),∇U1[F ]( · )−∇U1[F ]( · ± τν( · ))〉‖Cm(∂Σ)

≤‖ν‖Cm(∂Σ) ·
3∑

k=1

‖∂kU1[F ]( · )− ∂kU1[F ]( · ± τν( · ))‖Cm(∂Σ),

‖V 4
±τ [F ]‖Cm(∂Σ) =‖〈ν( · ),∇U2[F ]( · )−∇U2[F ]( · ± τν( · ))〉‖Cm(∂Σ)

≤‖ν‖Cm(∂Σ) ·
3∑

k=1

‖∂kU2[F ]( · )− ∂kU2[F ]( · ± τν( · ))‖Cm(∂Σ),

Therefore it suffices in these two cases to prove that

lim
τ→0+

‖W i,j,s
±τ [F ]‖

C0(BR2
1 (0))

= 0,

for i = 2, 4, j = 1, . . . , N and 1 ≤ |s| ≤ m, where

W 2,j,s
±τ [F ](x) :=∂s1

1 ∂
s2
2

(
∂kU1[F ](Ψj(x))− ∂kU1[F ](Ψj(x)± τν(Ψj(x)))

)
,

W 4,j,s
±τ [F ](x) :=∂s1

1 ∂
s2
2

(
∂kU2[F ](Ψj(x))− ∂kU2[F ](Ψj(x)± τν(Ψj(x)))

)
,

for all x ∈ BR2

1 (0), τ ∈ (0, τ0], 1 ≤ s1 + s2 ≤ m, j = 1, . . . , N and k = 1, 2, 3. We can treat all cases,
independent of i, k and s, at the same time if we set

W j,s
±τ [F ] := ∂s1

1 ∂
s2
2

(
Ui[F ](Ψj)− Ui[F ](Ψj ± τν(Ψj))

)
,

for all τ ∈ (0, τ0], where Ui can be obtained from the definitions of W i,j,s
±τ above. In any case Ui ∈ Cm(Σ)

and Ui ∈ Cm(D), by the assumptions on F and Σ due to Lemma 4.3.1 in combination with Lemma
2.2.10. We have

‖W j,s
±τ [F ]‖

C0(BR2
1 (0))

=‖∂s1
1 ∂

s2
2

(
Ui[F ](Ψj)− Ui[F ](Ψj ± τν(Ψj))

)
‖

C0(BR2
1 (0))

≤C1

( ∑
0≤|r|≤|s|,|t1|+...+|t|r||=|s|

‖
(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj) · ∂

t11
1 ∂

t12
2 Ψi · . . . · ∂

t
|r|
1

1 ∂
t
|r|
2

2 Ψj

−
(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj)) · ∂

t11
1 ∂

t12
2 (Ψj ± τν(Ψj)) · . . . · ∂

t
|r|
1

1 ∂
t
|r|
2

2 (Ψj ± τν(Ψj))‖C0(BR2
1 (0))

≤C1

( ∑
0≤|r|≤|s|,|t1|+...+|t|r||=|s|

‖
(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj) · ∂

t11
1 ∂

t12
2 Ψi · . . . · ∂

tl
1

1 ∂
tl
2

2 Ψj
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−
(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj)) · ∂

t11
1 ∂

t12
2 Ψj · . . . · ∂

tl
1

1 ∂
tl
2

2 Ψj‖C0(BR2
1 (0))

+
∑

0≤|r|≤|s|,|t1|+...+|t|r||=|s|

∑
1≤p≤|r|

τp‖
(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj))·

∂
t11
1 ∂

t12
2

(
ν(Ψj)

)
· . . . · ∂tp

1
1 ∂

tp
2

2

(
ν(Ψj)

)
· ∂tp+1

1
1 ∂

tp+1
2

2 Ψj · . . . · ∂
t
|r|
1

1 ∂
t
|r|
2

2 Ψj‖C0(BR2
1 (0))

)

≤C1

((
|s|
|r|

) ∑
0≤|r|≤|s|

supx∈∂Σ

(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ](x)−

(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(x± τν(x))

)
·
(
‖Ψj‖Cm(BR2

1 (0))
+ 1
)m

+
∑

0≤|r|≤|s|,|t1|+...+|t|r||=|s|

∑
1≤p≤|r|

τp‖
(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj))·

∂
t11
1 ∂

t12
2

(
ν(Ψj)

)
· . . . · ∂tp

1
1 ∂

tp
2

2

(
ν(Ψj)

)
· ∂tp+1

1
1 ∂

tp+1
2

2 Ψj · . . . · ∂
t
|r|
1

1 ∂
t
|r|
2

2 Ψj‖C0(BR2
1 (0))

)
,

where we used the triangle inequality and broke down ∂s1
1 ∂

s2
2

(
Ui[F ](Ψj)−Ui[F ](Ψj ± τν(Ψj))

)
to a sum

of terms of the form(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj) · ∂

t11
1 ∂

t12
2 Ψi · . . . · ∂

t
|r|
1

1 ∂
t
|r|
2

2 Ψj , (4.8)(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj)) · ∂

t11
1 ∂

t12
2 Ψj · . . . · ∂

tl
1

1 ∂
tl
2

2 Ψj , (4.9)(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj)) · ∂

t11
1 ∂

t12
2

(
ν(Ψj)

)
· . . . · ∂tp

1
1 ∂

tp
2

2

(
ν(Ψj)

)
· ∂tp+1

1
1 ∂

tp+1
2

2 Ψj · . . . · ∂
t
|r|
1

1 ∂
t
|r|
2

2 Ψj , (4.10)

using the chain and product rule of differentiation. C1 is the maximal multiplicity which a single term
of (4.8), (4.9) or (4.10) can posses. Furthermore we added 1 for the case that ‖Ψj‖Cm(BR2

1 (0))
< 1.

Note that we have ‖Ψj‖Cm(BR2
1 (0))

< ∞ in any case, because Ψj ∈ Cm
(
BR2

1 (0)
)

for all j ∈ {1, . . . , N}.
Now all terms in the first sum converge to zero if τ does, because ∂r1

1 ∂
r2
2 ∂

r3
3 Ui[F ] is, as a continuous

function, uniformly continuous on the compact sets D and Σ ∩BR3

R (0), where R > 0 is such large that
Bτ0(∂Σ) ⊂ BR3

R (0). Each single norm in the second sum can be estimated by

‖Ui[F ]‖Cm(D) ·
(
‖ν‖Cm(∂Σ) + 1

)m ·
(
‖Ψj‖Cm(BR2

1 (0))
+ 1
)m
, for − τ,

‖Ui[F ]‖
Cm

�
Σ∩BR3

R (0)

� · (‖ν‖Cm(∂Σ) + 1
)m ·

(
‖Ψj‖Cm(BR2

1 (0))
+ 1
)m
, for + τ.

Thus the second sum also converges to zero as τ does. Consequently we proved

lim
τ→0+

‖W s,j
±τ [F ]‖

C0(BR2
1 (0))

= 0,

for all 1 ≤ |s| ≤ m j = 1, . . . , N and k = 1, 2, 3. Using Lemma 4.2.2 for m = 0 we have proved

lim
τ→0+

‖V i
±τ [F ]‖Cm(∂Σ) = 0.
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Finally Lemma 2.4.6, or Lemma 2.4.7 respectively, gives

U1[F ](x) = U1[F ](x),
∂

∂ν
U1[F ](x) =

∂U1

∂ν
[F ](x)∓ 2πF (x),

U2[F ](x) = U2[F ](x)± 2πF (x),
∂

∂ν
U2[F ](x) =

∂U2

∂ν
[F ](x),

for all x ∈ ∂Σ, which yields

lim
τ→0+

‖L±τ
i [F ]‖Cm(∂Σ) = 0.

So we assume the theorem to be proved.

4.4 Limit Formulae in Hölder Norms

In this section we prove that, under slightly stronger assumption on Σ, the convergence of the limit
formulae in Cm(∂Σ) even holds in Cm,β(∂Σ)-norm. In order to prove it, we again use Lemma 4.3.1. We
come directly to the main result of this section.

Theorem 4.4.1. Let m ∈ N, m ≥ 0, 0 < β < α ≤ 1, Σ be an outer Cm+2-domain. Furthermore, let
F ∈ Cm−1,α(∂Σ) for i = 1, m ≥ 1, F ∈ C0,α(∂Σ) for i = 1, m = 0, F ∈ Cm,α(∂Σ) for i = 2, 3 and
F ∈ Cm+1,α(∂Σ) for i = 4. Then we have L±τ

i [F ] ∈ Cm,β(∂Σ) for i = 1, 2, 3, 4 and all τ ∈ (0, τ0].
Furthermore

lim
τ→0+

‖L±τ
i [F ]‖Cm,β(∂Σ) = 0. (4.11)

Proof. At first we introduce the following equivalent definition of the Hölder constant by

höl∗β(f) := sup
{
|f(y1)− f(y2)|
|y1 − y2|β

∣∣∣y1, y2 ∈ ∂Σ, y1 6= y2

}
for all f ∈ C0,β(∂Σ). In order to show the equivalence, we have to find constants 0 < C1

2 , C
2
2 < ∞ such

that hölβ(f) ≤ C1
2höl∗β(f) and höl∗β(f) ≤ C2

2hölβ(f) for all f ∈ C0,β(∂Σ), where hölβ(f) is the Hölder
constant of C0,β(∂Σ), introduced by Definition 2.2.8. Because ∂Σ is an outer C2-domain, we have that
Ψi and Ψ−1

i are C0,1-functions, for i = 1, . . . , N , and consequently we find constants 0 < Ci
3, C

i
4 < ∞

with

|Ψi(x1, 0)−Ψi(x2, 0)| ≤ Ci
3|(x1, 0)− (x2, 0)|,

|Ψ−1
i (y1)−Ψ−1

i (y2)| ≤ Ci
4|y1 − y2|,

for all x1, x2 ∈ BR2

1 (0) and y1, y2 ∈ Ui. Now we estimate

hölβ(f) =sup
{
|f(Ψi(x1, 0))− f(Ψi(x2, 0))|

|(x1, 0)− (x2, 0)|β
∣∣∣x1, x2 ∈ BR2

1 (0), x1 6= x2

}
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≤sup

 |f(Ψi(x1, 0))− f(Ψi(x2, 0))|(
1

Ci
3

)β

|Ψi(x1, 0)−Ψi(x2, 0)|β

∣∣∣x1, x2 ∈ BR2

1 (0), x1 6= x2


=
(
Ci

3

)β
sup

{
|f(y1)− f(y2)|
|y1 − y2|β

∣∣∣y1, y2 ∈ ∂Σ, y1 6= y2

}
= höl∗β(f),

and consequently for C1
2 := 1 +

∑N
i=1

(
Ci

3

)β the desired condition is fulfilled. In turn we have

höl∗β(f) =sup
{
|f(y1)− f(y2)|
|y1 − y2|β

∣∣∣y1, y2 ∈ ∂Σ, y1 6= y2

}
≤

N∑
i=1

sup
{
|f(Ψi(x1, 0))− f(Ψi(x2, 0))|
|Ψi(x1, 0)−Ψi(x2, 0)|β

∣∣∣x1, x2 ∈ BR2

1 (0), x1 6= x2

}

≤sup

 |f(Ψi(x1, 0))− f(Ψi(x2, 0))|(
1

Ci
4

)β

|x1 − x2|β

∣∣∣x1, x2 ∈ BR2

1 (0), x1 6= x2

 = hölβ(f),

and C2
2 := 1 +

∑N
i=1

(
Ci

4

)β is a possible choice. In this proof we will work with this equivalent defi-
nition of the Hölder constant, neglecting the equivalent constants to simplify the exposition. Now we
come to the proof of the theorem. Due to Lemma 4.3.1 together with the assumptions on F and Σ, we
have U1[F ], U2[F ] ∈ Cm,β(D), U1[F ], U2[F ] ∈ Cm,β(Σ), for i = 1, 3, and ∇U1[F ],∇U2[F ] ∈ Cm,β(D),
∇U1[F ],∇U2[F ] ∈ Cm,β(Σ), for i = 2, 4. Furthermore, Lemma 2.2.10 yields even U1[F ], U2[F ] ∈
Cm,β(D), U1[F ], U2[F ] ∈ Cm,β(Σ), for i = 1, 3, and ∇U1[F ],∇U2[F ] ∈ Cm,β(D), ∇U1[F ],∇U2[F ] ∈
Cm,β(Σ), for i = 2, 4. Moreover, we have

hölβ(Ui[F ](ψj ± τν(Ψj)))

≤c14C1

( ∑
0≤|r|≤|s|,|t1|+...+|t|r||=|s|

hölβ

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj)) · ∂

t11
1 ∂

t12
2 Ψj · . . . · ∂

t
|r|
1

1 ∂
t
|r|
2

2 Ψj

)

+
∑

0≤|r|≤|s|,|t1|+...+|t|r||=|s|

∑
1≤p≤|r|

τp · hölβ

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj))·

∂
t11
1 ∂

t12
2

(
ν(Ψj)

)
· . . . · ∂tp

1
1 ∂

tp
2

2

(
ν(Ψj)

)
· ∂tp+1

1
1 ∂

tp+1
2

2 Ψj · . . . · ∂
t
|r|
1

1 ∂
t
|r|
2

2 Ψj

))

≤c14c24C1

((
‖Ψj‖Cm,β(BR2

1 (0))
+ 1
)m ·

∑
0≤|r|≤|s|

(
m

|r|

)
· hölβ

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj))

)
+
(
‖Ψj‖Cm,β(BR2

1 (0))
+ 1
)m ·

(
‖ν‖Cm,β(∂Σ) + 1

)m
∑

0≤|r|≤|s|

(
m

|r|

) ∑
1≤p≤|r|

τp · hölβ

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj))

))
≤c14c24C1

(
‖Ψj‖Cm,β(BR2

1 (0))
+ 1
)m ·

(
‖ν‖Cm,β(∂Σ) + 1

)m
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·

( ∑
0≤|r|≤|s|

(
m

|r|

)
· hölβ

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj))

)

+
∑

0≤|r|≤|s|

(
m

|r|

) ∑
1≤p≤|r|

τp · hölβ

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj))

))
=c14c

2
4C1

(
‖Ψj‖Cm,β(BR2

1 (0))
+ 1
)m ·

(
‖ν‖Cm,β(∂Σ) + 1

)m
·

( ∑
0≤|r|≤|s|

(
m

|r|

)
· höl∗β

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
( · ± τν( · ))

)

+
∑

0≤|r|≤|s|

(
m

|r|

) ∑
1≤p≤|r|

τp · höl∗β

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
( · ± τν( · ))

))
,

where ci4 are the constants from Lemma 2.2.9 and C1, Ui are taken from the proof of Theorem 4.3.3. This
estimate holds also for τ = 0, if we replace Ui by Ui. In any case, the Hölder constants can be estimated
by c34‖Ui‖Cm,β(Σ∩Bτ0 (∂Σ))

, or c34‖Ui‖Cm,β(D) respectively. Thus we find U1[F ]( · ± τν( · )), U2[F ]( · ±
τν( · )) ∈ Cm,β(∂Σ) for all τ ∈ [0, τ0]. Additionally we obtain that ∂kU1[F ]( · ± τν( · )), ∂kU2[F ]( · ±
τν( · )) ∈ Cm,β(∂Σ), k = 1, 2, 3, τ ∈ [0, τ0] and thus we have that the functions 〈ν( · ),∇U1[F ]( · ±τν( · ))〉,
〈ν( · ),∇U2[F ]( · ± τν( · ))〉 are elements of Cm,β(∂Σ) for all τ ∈ [0, τ0], because of Lemma 2.2.9 and the
fact that ν ∈ Cm,β(∂Σ) for an outer Cm+2-domain, see Lemma 2.1.6 and Lemma 2.2.9. For i = 2, 4 we
have

‖〈ν( · ),∇U1[F ]( · )−∇U1[F ]( · ± τν( · ))〉‖Cm,β(∂Σ)

≤c14 · c24 · ‖ν‖Cm,β(∂Σ) ·
3∑

j=1

‖∂jU1[F ]( · )− ∂jU1[F ]( · ± τν( · ))‖Cm,β(∂Σ)

‖〈ν( · ),∇U2[F ]( · )−∇U2[F ]( · ± τν( · ))〉‖Cm,β(∂Σ)

≤c14 · c24 · ‖ν‖Cm,β(∂Σ) ·
3∑

j=1

‖∂jU2[F ]( · )− ∂jU2[F ]( · ± τν( · ))‖Cm,β(∂Σ),

with the constants from Lemma 2.2.9. So taking into account the results from Theorem 4.3.3, it is left
prove that

lim
τ→0

hölβ(W i,j,s
±τ [F ]) = 0.

for all |s| = m, i = 1, 2, 3, 4 and j = 1, . . . , N , where W i,j,s
±τ [F ] is taken from the proof of Theorem 4.3.3.

Then

lim
τ→0+

‖V i
±τ [F ]‖Cm,β(∂Σ) = 0,

and with the same reasoning as in the previous proof we get

lim
τ→0+

‖L±τ
i [F ]‖Cm,β(∂Σ) = 0.
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Using the definition of W j,s
±τ [F ], we estimate similar as above to get

hölβ(W j,s
±τ [F ])

≤c14C1

( ∑
0≤|r|≤|s|,|t1|+...+|t|r||=|s|

hölβ

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj) · ∂

t11
1 ∂

t12
2 Ψi · . . . · ∂

t
|r|
1

1 ∂
t
|r|
2

2 Ψj

−
(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj)) · ∂

t11
1 ∂

t12
2 Ψj · . . . · ∂

t
|r|
1

1 ∂
t
|r|
2

2 Ψj

)

+
∑

0≤|r|≤|s|,|t1|+...+|t|r||=|s|

∑
1≤p≤|r|

τp · hölβ

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj))·

∂
t11
1 ∂

t12
2

(
ν(Ψj)

)
· . . . · ∂tp

1
1 ∂

tp
2

2

(
ν(Ψj)

)
· ∂tp+1

1
1 ∂

tp+1
2

2 Ψj · . . . · ∂
t
|r|
1

1 ∂
t
|r|
2

2 Ψj

))

≤c14c24C1

((
‖Ψj‖Cm,β(BR2

1 (0))
+ 1
)m

∑
0≤|r|≤|s|

(
m

|r|

)
· hölβ

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj)−

(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj))

)
+
(
‖Ψj‖Cm,β(BR2

1 (0))
+ 1
)m ·

(
‖ν‖Cm,β(∂Σ) + 1

)m
∑

0≤|r|≤|s|

(
m

|r|

) ∑
1≤p≤|r|

τp · hölβ

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj))

))
≤c14c24C1

(
‖Ψj‖Cm,β(BR2

1 (0))
+ 1
)m ·

(
‖ν‖Cm,β(∂Σ) + 1

)m
·

( ∑
0≤|r|≤|s|

(
m

|r|

)
· hölβ

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj)−

(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj))

)

+
∑

0≤|r|≤|s|

(
m

|r|

) ∑
1≤p≤|r|

τp · hölβ

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
(Ψj ± τν(Ψj))

))
=c14c

2
4C1

(
‖Ψj‖Cm,β(BR2

1 (0))
+ 1
)m ·

(
‖ν‖Cm,β(∂Σ) + 1

)m
·

( ∑
0≤|r|≤|s|

(
m

|r|

)
· höl∗β

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
( · )−

(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
( · ± τν( · ))

)

+
∑

0≤|r|≤|s|

(
m

|r|

) ∑
1≤p≤|r|

τp · höl∗β

((
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]

)
( · ± τν( · ))

))
,

where ci4 are again the constants from Lemma 2.2.9 and as well C1 as W j,s
±τ are taken from the proof of

Theorem 4.3.3. The Hölder constants in the second sum can be estimated by c34‖Ui‖Cm,β(Σ∩Bτ0 (∂Σ))
, or

c34‖Ui‖Cm,β(D) respectively, and consequently the sum converges to zero as τ does. So it is left to show

lim
τ→0

höl∗β
(
∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ]( · )− ∂r1

1 ∂
r2
2 ∂

r3
3 Ui[F ]( · ± τν( · ))

)
= 0.
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for all 0 ≤ |r| ≤ m. In each case we have that ∂r1
1 ∂

r2
2 ∂

r3
3 Ui[F ] ∈ C0,β(D) and ∂r1

1 ∂
r2
2 ∂

r3
3 Ui[F ] ∈

C0,β(Σ ∩Bτ0(∂Σ)), for all 0 < β < α. So it suffices to show that for each Ũ±τ := Ũ(x)− Ũ(x± τν(x)),
x ∈ ∂Σ, with Ũ ∈ C0,β(D) and Ũ ∈ C0,β(Σ ∩Bτ0(∂Σ)) for all 0 < β < α, we find

lim
τ→0

höl∗β(Ũ±τ ) = lim
τ→0

(
sup

{
|Ũ±τ (x)− Ũ±τ (y)|

|x− y|β
∣∣∣x, y ∈ ∂Σ, x 6= y

})
= 0,

and we are done with this proof. We have that

höl∗β(Ũ±τ ) ≤ 2 ·max
{

hölβ
D

(Ũ),hölβ
Σ
(Ũ)
}
<∞,

for all τ ∈ [0, τ0], so we have at least the existence of the lim sup. Now assume

lim supτ→0höl∗β(Ũ±τ ) = C5 > 0.

We can choose a sequence (τn)n∈N with τn → 0 for n→∞ and

lim
n→∞

höl∗β(Ũ±τn) = lim supτ→0höl∗β(Ũ±τ ) = C5.

W.l.o.g. we can assume that höl∗β(Ũ±τn
) > C5

3 for all n ∈ N. Then we find for every n ∈ N a (xτn
, yτn

) ∈
∂Σ× ∂Σ such that

|Ũ±τn
(xτn

)− Ũ±τn
(yτn

)|
|xτn

− yτn
|β

>
C5

2
.

Since ∂Σ×∂Σ is closed and bounded we can drop to a subsequence (xτnk
, yτnk

)k∈N converging to (x, y) ∈
∂Σ × ∂Σ and a corresponding subsequence (τnk

)k∈N still converging to zero. We have to distinguish
two different cases. In the first case we have x 6= y. Then we are able to find K ∈ N such that
|xτnk

− yτnk
| > |x−y|

2 =: C6 for all k > K. Now we can estimate

|Ũ±τnk
(xτnk

)− Ũ±τnk
(yτnk

)|
|xτnk

− yτnk
|β

=
|(Ũ(xτnk

)− Ũ(xτnk
± τnk

ν(xτnk
)))− (Ũ(yτnk

) + Ũ(yτnk
± τnk

ν(yτnk
)))|

|xτnk
− yτnk

|β

≤
|(Ũ(xτnk

)− Ũ(xτnk
± τnk

ν(xτnk
)))|+ |(Ũ(yτnk

)− Ũ(yτnk
± τnk

ν(yτnk
)))|

Cβ
6

≤
2C7τ

γ
nk

Cβ
6

,

where C7 is the Hölder constant for Ũ ∈ C0,β(D) or Ũ ∈ C0,β(Σ), respectively. But now we have that

|Ũ±τnk
(xτnk

)− Ũ±τnk
(yτnk

)|
|xτnk

− yτnk
|β

≤
2C7τ

γ
nk

Cβ
6

→ 0,

for k tending to infinity. This contradicts to

|Ũ±τn(xτn)− Ũ±τn(yτn)|
|xτn

− yτn
|β

>
C5

2
,
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for all n ∈ N, and so this case can not occur. So it is left to investigate the second case where x = y.
Here we estimate in the following way

|Ũ±τnk
(xτnk

)− Ũ±τnk
(yτnk

)|
|xτnk

− yτnk
|β

=|xτnk
− yτnk

|γ−β
|Ũ±τnk

(xτnk
)− Ũ±τnk

(yτnk
)|

|xτnk
− yτnk

|γ−β |xτnk
− yτnk

|β

=|xτnk
− yτnk

|γ−β
|Ũ±τnk

(xτnk
)− Ũ±τnk

(yτnk
)|

|xτnk
− yτnk

|γ
≤ |xτnk

− yτnk
|γ−β2C8,

where C8 is the Hölder constant for Ũ ∈ C0,γ(D) or Ũ ∈ C0,γ(Σ), with β < γ < α. We have

lim
k→∞

|xτnk
− yτnk

| = 0.

Since γ − β > 0 this yields

|Ũ±τnk
(xτnk

)− Ũ±τnk
(yτnk

)|
|xτnk

− yτnk
|β

≤ |xτnk
− yτnk

|γ−β2C7 → 0,

for k tending to infinity. Like above this is a contradiction and since one of this two cases has to occur
our assumption must be wrong and the proof is done.

4.5 Limit Formulae in L2(∂Σ)

In this section we present an important result published in [Ker80] and [Fre80] as well as some conse-
quences. The convergence prove in L2(∂Σ) norm has its origin in [Geh70]. Lemma 4.5.1 contains the
convergence of the limit formulae for U1[F ], U2[F ] and ∂U1

∂ν [F ] in L2(∂Σ) norm and is, together with the
results of convergence in Cm(∂Σ) norm, the basis for the results in the Sobolev spaces Hm,2(∂Σ). The
result about the adjoint operators are essential tools for the applications in Section 4.7. We state the
result about the convergence in L2(∂Σ) which is taken from e.g. [Ker80].

Lemma 4.5.1. Let Σ be an outer C2-domain and F ∈ L2(∂Σ). We have L±τ
i [F ] ∈ L2(∂Σ) for all

τ ∈ (0, τ0], i = 1, 2, 3, with

lim
τ→0+

‖L±τ
i [F ]‖L2(∂Σ) = 0. (4.12)

Proof. This statement is proved in e.g. [Ker80].

Now we present a direct consequence of this lemma which will be one of the main tools in the proof
of our main theorem in Section 4.6.

Lemma 4.5.2. Let Σ ⊂ R3 be an outer C2-domain and F ∈ L2(∂Σ). Then we have

‖U1[F ]( · ± τν( · ))‖L2(∂Σ) ≤ C9‖F‖L2(∂Σ),

‖U2[F ]( · ± τν( · ))‖L2(∂Σ) ≤ C10‖F‖L2(∂Σ),
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where 0 < C9, C10 <∞ are constants independent of τ ∈ [0, τ0]. Furthermore, let (U±τ
1 )∗ and

(
∂U1
∂ν

±τ
)∗

be defined by ∫
∂Σ

(U±τ
1 )∗[F ](y) ·G(y) dH2(y) =

∫
∂Σ

F (y) · U1[G](y ± τν(y)) dH2(y),∫
∂Σ

(∂U1

∂ν

±τ)∗
[F ](y) ·G(y ± τν(y)) dH2(y) =

∫
∂Σ

F (y) · ∂U1

∂ν
[G](y) dH2(y),

for all τ ∈ [0, τ0], F,G ∈ L2(∂Σ), i.e. the Hilbert space adjoint operators in L2(∂Σ). We have

(U±τ
1 )∗[F ](y) =

∫
∂Σ

F (x)
1

|x± τν(x)− y|
dH2(x),(∂U1

∂ν

±τ)∗
[F ](y) =

∫
∂Σ

F (x)
∂

∂ν(z)
1

|z − y|

∣∣∣∣
z=x±τν(x)

dH2(x),

for all y ∈ ∂Σ, τ ∈ [0, τ0], F ∈ L2(∂Σ), and

‖(U±τ
1 )∗[F ]‖L2(∂Σ) ≤ C11‖F‖L2(∂Σ),

‖
(∂U1

∂ν

±τ)∗
[F ]‖L2(∂Σ) ≤ C12‖F‖L2(∂Σ),

for all F ∈ L2(∂Σ) and constants 0 < C11, C12 <∞ independent of τ ∈ [0, τ0].

Proof. A byproduct of the proof of Lemma 4.5.1 is

‖L±τ
i [F ]‖L2(∂Σ) ≤ C13‖F‖L2(∂Σ),

for all F ∈ L2(∂Σ), i = 1, 2, 3, with a constant 0 < C13 < ∞ independent of τ ∈ (0, τ0], see e.g.
[FK80] or [18, Theorem 3.1], as a result of the uniform boundedness principle. We easily find ‖U1[F ]( · ±
τ0ν( · )‖L2(∂Σ) ≤ C14‖F‖L2(∂Σ) for F ∈ L2(∂Σ) and so

‖U1[F ]‖L2(∂Σ) = ‖U1[F ] + U1[F ]( · ± τ0ν( · )− U1[F ]( · ± τ0ν( · )‖L2(∂Σ)

≤ ‖L±τ0
1 [F ]‖L2(∂Σ) + ‖U1[F ]( · ± τ0ν( · )‖L2(∂Σ) ≤ (C13 + C14)‖F‖L2(∂Σ)

for all F ∈ L2(∂Σ). Applying the triangle inequality one more time, we gain

‖U1[F ]( · ± τν( · )‖L2(∂Σ) = ‖U1[F ]( · ± τν( · )− U1[F ] + U1[F ]‖L2(∂Σ)

≤ ‖L±τ
1 [F ]‖L2(∂Σ) + ‖U1[F ]‖L2(∂Σ) ≤ (2C13 + C14)‖F‖L2(∂Σ) = C9‖F‖L2(∂Σ),

for all F ∈ L2(∂Σ) with 0 < C9 <∞ independent of τ ∈ (0, τ0]. Similar one can derive the estimate for
U2[F ]. The formulae of the adjoint operators follow by elementary calculations c.f. [FM04]. Moreover,
in [Ker80] Lemma 4.5.1 is also proved for the adjoint operators

(
L±τ

i

)∗, i = 1, 2, 3, τ ∈ (0, τ0], with an
analogous estimate for ‖

(
L±τ

i

)∗[F ]‖L2(∂Σ). So the remaining part of the proof can also be done by using
the arguments from above and we are done.

Although we will not use it, we want to mention that such an estimate also exists for ∂U1
∂ν and (U2)∗.

It can be proved analogous to Lemma 4.5.2, using the results from [Ker80].
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4.6 Limit Formulae in Sobolev Spaces

This section contains the main result of this chapter. We prove the convergence of the limit formulae and
jump relations in the Hilbert spaces Hm,2(∂Σ), m ∈ N. Therefore we have to investigate the operators
L±τ

i , defined in Lemma 4.2.3. In order to do this we will need the results from the previous sections. The
following theorem is the main theorem of this section.

Theorem 4.6.1. Let m ∈ N, m ≥ 1, α ∈ (0, 1] and

Σ be an outer Cm+1,α-domain and F ∈ Hm,2(∂Σ) for i = 1,

Σ be an outer Cm+2-domain and F ∈ Hm+1,2(∂Σ) for i = 2, 3,

Σ be an outer Cm+3-domain and F ∈ Hm+2,2(∂Σ) for i = 4.

Then the operators L±τ
i map to Hm,2(∂Σ) for i = 1, 2, 3, 4 and all τ ∈ (0, τ0]. Furthermore

lim
τ→0+

‖L±τ
i [F ]‖Hm,2(∂Σ) = 0. (4.13)

Moreover, let Σ be an outer C2-domain and F ∈ H2,2(∂Σ) for i = 4 and m = 0. Then the operators L±τ
4

map to L2(∂Σ) for all τ ∈ (0, τ0] and

lim
τ→0+

‖L±τ
i [F ]‖L2(∂Σ) = 0. (4.14)

Proof. At first we prove the theorem for L±τ
3 . Let F ∈ Cm+1(∂Σ) be given. We will show that

‖U2[F ]( · ± τν( · ))‖Hm,2(∂Σ) ≤ C15‖F‖Hm+1,2(∂Σ),

where 0 < C15 <∞ is a constant independent of τ ∈ (0, τ0]. Then we have

‖U2[F ]( · )‖Hm,2(∂Σ)

=‖U2[F ]( · )± 2πF − U2[F ]( · ± τν( · ))∓ 2πF + U2[F ]( · ± τν( · ))‖Hm,2(∂Σ)

≤‖L±τ
3 [F ]‖Hm,2(∂Σ) + 2π‖F‖Hm,2(∂Σ) + ‖U2[F ]( · ± τν( · ))‖Hm,2(∂Σ)

≤H2(∂Σ)‖L±τ
3 [F ]‖Cm(∂Σ) + (C15 + 2π)‖F‖Hm+1,2(∂Σ),

for all F ∈ Cm+1(∂Σ). Since this has to hold for all τ ∈ (0, τ0], Cm+1(∂Σ) ⊂ Cm,α(∂Σ) and each outer
Cm+2-domain is also an outer Cm+1,β-domain, β ∈ [0, 1], Theorem 4.3.3 yields

‖U2[F ]( · )‖Hm,2(∂Σ) ≤ (C15 + 2π)‖F‖Hm+1,2(∂Σ)

and consequently
‖L±τ

3 [F ]‖Hm,2(∂Σ) ≤ (2C15 + 2π + 1)‖F‖Hm+1,2(∂Σ),

for all F ∈ Cm+1(∂Σ). Thus, the BLT Theorem, see Lemma 2.4.5, gives the unique linear continuation

L±τ
3 : Hm+1,2(∂Σ) → Hm,2(∂Σ),

with same bound. Finally, we have for arbitrary F ∈ Hm+1,2(∂Σ) and a sequence (Fn)n∈N ⊂ Cm+1(∂Σ)
such that Fn → F in Hm+1,2(∂Σ)

lim
τ→0+

‖L±τ
3 [F ]‖Hm,2(∂Σ) = lim

τ→0+
‖L±τ

3 [F ]− L±τ
3 [Fn] + L±τ

3 [Fn]‖Hm,2(∂Σ)
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≤ lim
τ→0+

‖L±τ
3 [F − Fn]‖Hm,2(∂Σ) + ‖L±τ

3 [Fn]‖Hm,2(∂Σ)

≤ lim
τ→0+

2(C15 + 2π)‖F − Fn‖Hm+1,2(∂Σ) +H2(∂Σ)‖L±τ
3 [Fn]‖Cm(∂Σ)

=2(C15 + 2π)‖F − Fn‖Hm+1,2(∂Σ).

Because this holds for all n ∈ N, the theorem for L±τ
3 [F ] is proved. So it is left to show that

‖U2[F ]( · ± τν( · ))‖Hm,2(∂Σ) ≤ C15‖F‖Hm+1,2(∂Σ),

for all F ∈ Cm+1(∂Σ), where 0 < C13 <∞ is a constant independent of τ ∈ (0, τ0]. We have

‖U2[F ]( · ± τν( · ))‖2
Hm,2(∂Σ)

=
N∑

i=1

‖U2[F ](Ψi( · )± τν(Ψi( · ))‖2
Hm,2(BR2

1 (0))

=
N∑

i=1

m∑
s1+s2=0

‖∂s1
1 ∂

s2
2 U2[F ](Ψi( · )± τν(Ψi( · ))‖2

L2(BR2
1 (0))

=
N∑

i=1

m∑
s1+s2=0

‖∂s1
1 ∂

s2
2

∫
∂Σ

F (z)
∂

∂ν(z)
1

|Ψi( · )± τν(Ψi( · ))− z|
dH2(z)‖2

L2(BR2
1 (0))

=
N∑

i=1

m∑
s1+s2=0

‖∂s1
1 ∂

s2
2

N∑
j=1

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y)) (4.15)

∂

∂ν(z)
1

|Ψi( · )± τν(Ψi( · ))− z|

∣∣∣∣∣
z=Ψj(y)

Jj(y)dλ2(y)‖2
L2(BR2

1 (0))

=
N∑

i=1

m∑
s1+s2=0

‖∂s1
1 ∂

s2
2

N∑
j=1

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y)) (4.16)

∂

∂ν̃(z)
1

|Ψi( · )± τν(Ψi( · ))−Ψj(y)|
Jj(y)dλ2(y)‖2

L2(BR2
1 (0))

≤
N∑

i,j=1

m∑
s1+s2=0

‖∂s1
1 ∂

s2
2

(
wi(Ψi( · ))

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y)) (4.17)

∂

∂ν̃(y)
1

|Ψi( · )± τν(Ψi( · ))−Ψj(y)|
Jj(y)dλ2(y)

)
‖2

L2(BR2
1 (0))

≤
N∑

i,j=1

m∑
s1+s2=0

s1∑
k1=0

s2∑
k2=0

(
s1
k1

)(
s2
k2

)
‖∂s1−k1

1 ∂s2−k2
2

(
wi(Ψi( · ))

)
(4.18)

∂k1
1 ∂k2

2

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))
∂

∂ν̃(y)
1

|Ψi( · )± τν(Ψi( · ))−Ψj(y)|
Jj(y)dλ2(y)‖2

L2(BR2
1 (0))

≤
N∑

i,j=1

m∑
s1+s2=0

s1∑
k1=0

s2∑
k2=0

(
s1
k1

)(
s2
k2

)
‖wi‖Cm(∂Σ)︸ ︷︷ ︸

<∞
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· ‖∂k1
1 ∂k2

2

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))
∂

∂ν̃(y)
1

|Ψi( · )± τν(Ψi( · ))−Ψj(y)|
Jj(y)dλ2(y)‖2

L2(BR2
1 (0))

(4.19)

by the binomial theorem, where Ψj(y) denotes Ψj(y1, y2, 0). We used that Ψj , j = 1, . . . , N are C1-
diffeomorphisms and(

∂

∂ν(Ψj(y))
G

)
(Ψj(y)) = DG(Ψj(y))ν(Ψj(y)) = D(G(Ψj(y))) (DΨj(y))

−1
ν(Ψj(y))︸ ︷︷ ︸

=:ν̃(y)

for each function G, which is totally differentiable at the point Ψj(y). DG means the total differential of
G. Of course 1

|x±τν(x)−y| is totally differentiable for each y ∈ ∂Σ as long as τ 6= 0. Because for a Cm+2-

surface ∂Σ, ν ∈ Cm+1(∂Σ), see Lemma 2.1.6, and by definition Ψj ∈ Cm+2(BR3

1 (0)), we consequently
have ν̃ ∈ Cm+1(BR2

1 (0)). It is left to estimate the single summands from the sum above. Before we start
the estimation, we modify the terms as follows and start with the case of |s| = 1, i.e., with terms of the
form

∂k

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))
∂

∂ν̃(y)
1

|Ψi( · )± τν(Ψi( · ))−Ψj(y)|
Jj(y)dλ2(y), (4.20)

for k ∈ {1, 2}, i, j ∈ {1, . . . , N}, F ∈ Cm+1(∂Σ) and τ ∈ (0, τ0] arbitrary but fixed. Using Lemma 2.4.8
we can interchange differentiation and integration as well as the order of differentiation to get

∂

∂xk

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))
∂

∂ν̃(y)
1

|Ψi(x)± τν(Ψi(x))−Ψj(y)|
Jj(y)dλ2(y)

=
∫

BR2
1 (0)

wj(Ψj(y))F (Ψj(y))
∂

∂ν̃(y)
∂

∂xk

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

Jj(y)dλ2(y).

We will now translate the differentiation with respect to x into a differentiation with respect to y. We
have

∂

∂xk

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

= −〈Ψi(x)± τν(Ψi(x))−Ψj(y), ∂k (Ψi(x)± τν(Ψi(x)))〉
|Ψi(x)± τν(Ψi(x))−Ψj(y)|3

∂

∂yl

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

=
〈Ψi(x)± τν(Ψi(x))−Ψj(y), ∂lΨj(y)〉

|Ψi(x)± τν(Ψi(x))−Ψj(y)|3

for k, l = 1, 2, 3. Because Det(DΨj(y)) 6= 0 for all y ∈ BR2

1 (0) we have that a basis of R3 given by
{∂1Ψj(y), ∂2Ψj(y), ∂3Ψj(y)} for each y ∈ BR2

1 (0). Consequently we find uniquely determined functions
ak
1(x, y), ak

2(x, y) and ak
3(x, y) such that

∂

∂xk

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

= −ak
1(x, y)

∂

∂y1

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

− ak
2(x, y)

∂

∂y2

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

− ak
3(x, y)

∂

∂y3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

,

where ak(x, y) = (ak
1(x, y), ak

2(x, y), ak
3(x, y))T can be computed by

ak(x, y) = −
(
DΨj(y)

)−1
∂k

(
Ψi(x)± τν(Ψi(x))

)
.
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Moreover, by the inversion formula for 3 × 3 matrices and the fact that Ψj is a Cm+2-diffeomorphism,
we find the components of the matrix

(
DΨj(y)

)−1 in Cm+1(BR2

1 (0)). This yields

ak
l (x, y) =bkl (y) · ck,±τ

l (x)

with bkl , c
k,±τ
l ∈ Cm+1(BR2

1 (0)) for l = 1, 2, 3. Additionally we have

‖ck,±τ
l ‖

Cm+1(BR2
1 (0))

≤
3∑

p,q=1

‖
(
DΨj

)−1

pq
‖

Cm+1(BR2
1 (0))

·
(
‖∂kΨi(x)‖

Cm+1(BR2
1 (0))

+ τ0‖∂kν(Ψi(x))‖
Cm+1(BR2

1 (0))

)
.

So although ck,±τ
l depends on τ , its norm is bounded by a constant independent of τ ∈ (0, τ0]. Applying

the whole considerations to the term form (4.20), we get

∂

∂xk

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))
∂

∂ν̃(y)
1

|Ψi(x)± τν(Ψi(x))−Ψj(y)|
Jj(y)dλ2(y)

=−
3∑

n=1

3∑
l=1

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)

ν̃n(y)
∂

∂yn

(
bkl (y)ck,±τ

l (x)
∂

∂yl

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

)
dλ2(y)

=−
3∑

n=1

3∑
l=1

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)ν̃n(y)bkl (y)ck,±τ
l (x)

∂

∂yn

∂

∂yl

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y)

−
3∑

n=1

3∑
l=1

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)
(

∂

∂yn
bkl (y)

)
ck,±τ
l (x)ν̃n(y)

∂

∂yl

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y).

For n, l ∈ {1, 2} we apply integration by parts. Note that because of the C∞-partition of the unity wj

the boundary integrals disappear. Consequently we get

∂

∂xk

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))
∂

∂ν̃(y)
1

|Ψi(x)± τν(Ψi(x))−Ψj(y)|
Jj(y)dλ2(y)

=−
∫

BR2
1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)ν̃n(y)b33(x)c
3,±τ
3 (y)

∂2

∂y2
3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y) (4.21)

+
2∑

n=1

∫
BR2

1 (0)

∂

∂yn

(
wj(Ψj(y))F (Ψj(y))Jj(y)ν̃n(y)bk3(x)ck,±τ

3 (y)
)
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∂

∂y3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y) (4.22)

+
2∑

l=1

∫
BR2

1 (0)

∂

∂yl

(
wj(Ψj(y))F (Ψj(y))Jj(y)ν̃3(y)bkl (x)ck,±τ

l (y)
)

∂

∂y3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y) (4.23)

−
2∑

n=1

2∑
l=1

∫
BR2

1 (0)

∂

∂yn

∂

∂yl

(
wj(Ψj(y))F (Ψj(y))Jj(y)ν̃n(y)bkl (x)ck,±τ

l (y)
)

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y) (4.24)

+
3∑

n=1

2∑
l=1

∫
BR2

1 (0)

∂

∂yl

(
wj(Ψj(y))F (Ψj(y))Jj(y)bkl (x)

(
∂

∂yn
ck,±τ
l (y)

)
ν̃n(y)

)
1

|Ψi(x)± τν(Ψi(x))−Ψj(y)|
dλ2(y) (4.25)

−
3∑

n=1

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)
(

∂

∂yn
bk3(x)ck,±τ

3 (y)
)
ν̃n(y)

∂

∂y3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y). (4.26)

Before we go on, we modify (4.21) as follows. Consider the term∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)ν̃n(y)b33(x)c
3,±τ
3 (y)

∂2

∂y2
3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y).

We use the following transformation formula for the Laplace operator for twice continuously differentiable
functions H and C2-diffeomorphisms Ψ, see e.g. [For07],

(∆H)(Ψ(x)) =

 1
√
g

3∑
i,j=1

∂

∂yj

(
gij√g ∂

∂yi

) (H(Ψ(x)).

This yields for harmonic functions

0 =

 1
√
g

3∑
k,j=1

∂

∂yj

(
gkj√g ∂

∂yk

) (H(Ψ(x)),

where g and gkj are the well known differential geometric functions independent of τ ∈ (0, τ0]. They are
defined by (

gkj

)
k,j=1,2,3

(x) := 〈∂kΨ(x), ∂jΨ(x)〉,
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g(x) := Det
(
(
(
gkj

)
k,j=1,2,3

(x)
)
,(

gkj
)
k,j=1,2,3

(x) :=
(
gkj(x)

)−1

k,j=1,2,3
,

for all x ∈ BR3

1 (0). For details see [22, pp. 28]. All we need to know in the following is that g, gkj ∈
Cm+1(BR3

1 (0)), k, j = 1, 2, 3, if we choose Ψ = Ψi, i ∈ {1, . . . , N}, for a Cm+2-surface ∂Σ, because they
are defined with help of the first order derivatives of the mapping Ψ. Additionally we have g33 6= 0 on
BR2

1 (0)× {0}, because by the inversion formula for invertible 3× 3 matrices we have

g33(x) =
Det

(
(
(
gkj

)
k,j=1,2

(x)
)

Det
(
(
(
gkj

)
k,j=1,2,3

(x)
) ,

for all x ∈ BR2

1 (0), and g(x) = Det(DΨi(x)) > 0 on BR2

1 (0). Furthermore, [7, Section 2.1] gives
Det

(
(
(
gkj

)
k,j=1,2

(x)
)

on BR2

1 (0). So rearranging the equation above with respect to ∂2

∂y2
3

we get

− ∂2

∂y2
3

(H((Ψ)))

=

 1
g33√g

 2∑
k,j=1

∂

∂yj

(
gkj√g

) ∂

∂yk
+

2∑
k=1

∂

∂y3

(
gk3√g

) ∂

∂yk

 (H(Ψ(x))

+

 1
g33√g

2∑
k,j=1

gkj√g ∂

∂yj

∂

∂yk

 (H(Ψ(x))

+

 1
g33√g

 2∑
k=1

gk3√g ∂

∂yk
+

2∑
j=1

∂

∂yj

(
g3j√g

) ∂

∂y3
(H(Ψ(x))

+

 1
g33√g

 ∂

∂y3

(
g33√g

)
+

2∑
j=1

g3j√g ∂

∂yj

 ∂

∂y3
(H(Ψ(x)).

Applying this formula to the term given by (4.21) and using integration by parts for k, l = 1, 2, we end
up with the following terms

−
∫

BR2
1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)ν̃n(y)b33(x)c
3,±τ
3 (y)

∂2

∂y2
3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y)

=
2∑

k,l=1

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)ν̃n(y)b33(x)c
3,±τ
3 (y)

1
g33(y)

√
g(y)

∂

∂yl

(
gkl(y)

√
g(y)

) ∂

∂yk

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y) (4.27)

+
2∑

k=1

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)ν̃n(y)b33(x)c
3,±τ
3 (y)
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1
g33(y)

√
g(y)

∂

∂y3

(
gk3(y)

√
g(y)

) ∂

∂yk

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y) (4.28)

+
2∑

k,l=1

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)ν̃n(y)b33(x)c
3,±τ
3 (y)

1
g33(y)

√
g(y)

(
gkl(y)

√
g(y)

) ∂

∂yk

∂

∂yl

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y) (4.29)

+
2∑

k=1

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)ν̃n(y)b33(x)c
3,±τ
3 (y)

1
g33(y)

√
g(y)

(
gk3(y)

√
g(y)

) ∂

∂yk

∂

∂y3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y) (4.30)

+
2∑

k=1

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)ν̃n(y)b33(x)c
3,±τ
3 (y)

1
g33(y)

√
g(y)

∂

∂yk

(
g3k(y)

√
g(y)

) ∂

∂y3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y) (4.31)

+
2∑

k=1

∫
BR2

1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)ν̃n(y)b33(x)c
3,±τ
3 (y)

1
g33(y)

√
g(y)

(
g3k(y)

√
g(y)

) ∂

∂yk

∂

∂y3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y) (4.32)

+
∫

BR2
1 (0)

wj(Ψj(y))F (Ψj(y))Jj(y)ν̃n(y)b33(x)c
3,±τ
3 (y)

1
g33(y)

√
g(y)

∂

∂y3

(
g33(y)

√
g(y)

) ∂

∂y3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y) (4.33)

Taking a closer look on (4.22)-(4.26) as well as (4.27)-(4.33), we find that all terms are covered by one of
the following two cases∫

BR2
1 (0)

∂r1
1 ∂

r2
2 (F (Ψj(y)))G1(y)H1(x)

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y), (4.34)∫
BR2

1 (0)

∂t1
1 ∂

t2
2 (F (Ψj(y)))G2(y)H2(x)

∂

∂y3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y), (4.35)

with 0 ≤ r1 + r2 ≤ 2, 0 ≤ t1 + t2 ≤ 1, G1 ∈ Cm−1
(
BR2

1 (0)
)
, G2 ∈ Cm

(
BR2

1 (0)
)

and H1,H2 ∈

Cm+1
(
BR2

1 (0)
)
. For arbitrary 1 ≤ |s| ≤ m we now iterate the techniques presented above and end up

with the following types of terms∫
BR2

1 (0)

∂r1
1 ∂

r2
2 (F (Ψj(y)))G1(y)H1(x)

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y), (4.36)∫
BR2

1 (0)

∂t1
1 ∂

t2
2 (F (Ψj(y)))G2(y)H2(x)

∂

∂y3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y), (4.37)
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with 0 ≤ r1 + r2 ≤ m + 1, 0 ≤ t1 + t2 ≤ m, G1 ∈ C0(BR2

1 (0)), G2 ∈ C1
(
BR2

1 (0)
)

and H1,H2 ∈

C2
(
BR2

1 (0)
)
. In order to reduce term (4.37) to the case of a double layer potential we use

∂

∂ν̃(y)
=

3∑
q=1

ν̃q(y)
∂

∂yq

and consequently

∂

∂y3
=

1
ν̃3(y)

∂

∂ν̃(y)
−

2∑
i=q

ν̃q(y)
ν̃3(y)

∂

∂yq

for each function which is totally differentiable in (y, 0) ∈ BR3

1 (0). Recall that the total differentiability
is given for all τ ∈ (0, τ0] as well as the definition of ν̃. Since ∂1Ψj and ∂2Ψj span the tangential space
T∂Σ(y) and ν is, as the normal vector, not an element of that space we have that ν̃3(y) 6= 0 for all
y ∈ BR2

1 (0), because ν(Ψj(y)) = DΨj(y)ν̃(y) on BR2

1 (0). This now yields∫
BR2

1 (0)

∂t1
1 ∂

t2
2 (F (Ψj(y)))G2(y)H2(x)

∂

∂y3

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y)

=
∫

BR2
1 (0)

∂t1
1 ∂

t2
2 (F (Ψj(y)))G2(y)H2(x)

1
ν̃3(y)

∂

∂ν̃(y)
1

|Ψi(x)± τν(Ψi(x))−Ψj(y)|
dλ2(y)

−
2∑

q=1

∫
BR2

1 (0)

∂t1
1 ∂

t2
2 (F (Ψj(y)))G2(y)H2(x)

ν̃q(y)
ν̃3(y)

∂

∂yq

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y).

So using again integration by parts for q = 1, 2, we finally have to estimate the L2(BR2

1 (0))-norm of the
following two types of terms

H(x)
∫

BR2
1 (0)

∂r1
1 ∂

r2
2 (F (Ψj(y)))G(y)

1
|Ψi(x)± τν(Ψi(x))−Ψj(y)|

dλ2(y), (4.38)

H(x)
∫

BR2
1 (0)

∂r1
1 ∂

r2
2 (F (Ψj(y)))G(y)

∂

∂ν̃(y)
1

|Ψi(x)± τν(Ψi(x))−Ψj(y)|
dλ2(y), (4.39)

with 0 ≤ |r| ≤ m + 1, G ∈ C0
(
BR2

1 (0)
)

and H ∈ C2
(
BR2

1 (0)
)
. So in order to estimate the terms in

(4.19) we finally have to estimate the L2(BR2

1 (0))-norm of the terms (4.38) and (4.39). We have

‖H( · )
∫

BR2
1 (0)

∂r1
1 ∂

r2
2 (F (Ψj(y)))G(y)

1
|Ψi( · )± τν(Ψi( · ))−Ψj(y)|

dλ2(y)‖
L2(BR2

1 (0))

≤‖H( · )‖
C0(BR2

1 (0))
‖
∫

BR2
1 (0)

∂r1
1 ∂

r2
2 (F (Ψj(y)))G(y)

1
|Ψi( · )± τν(Ψi( · ))−Ψj(y)|

dλ2(y)‖
L2(BR2

1 (0))

=‖H‖
C0(BR2

1 (0))
‖U1[χUj

∂r1
1 ∂

r2
2 (F (Ψj)))G

Jj
◦Ψ−1

j ](Ψi( · )± τν(Ψi( · )))‖L2(BR2
1 (0))

≤‖U1[χUj

∂r1
1 ∂

r2
2 (F (Ψj)))G

Jj
◦Ψ−1

j ]( · ± τν( · ))‖L2(∂Σ)
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≤C9‖χUj

∂r1
1 ∂

r2
2 (F (Ψj)))G

Jj
◦Ψ−1

j ‖L2(∂Σ) ≤ C9

‖G‖
C0(BR2

1 (0))

cj1
‖F‖Hm+1,2(∂Σ),

where we used the equivalent norm on L2(∂Σ) introduced in Lemma 2.2.6 and the constants from Lemma
4.5.2 and Lemma 2.1.4. Similar we estimate

‖H( · )
∫

BR2
1 (0)

∂r1
1 ∂

r2
2 (F (Ψj(y)))G(y)

∂

∂ν̃(y)
1

|Ψi( · )± τν(Ψi( · ))−Ψj(y)|
dλ2(y)‖

L2(BR2
1 (0))

≤‖H( · )‖
C0(BR2

1 (0))

· ‖
∫

BR2
1 (0)

∂r1
1 ∂

r2
2 (F (Ψj(y)))G(y)

∂

∂ν̃(y)
1

|Ψi( · )± τν(Ψi( · ))−Ψj(y)|
dλ2(y)‖

L2(BR2
1 (0))

=‖H‖
C0(BR2

1 (0))
‖∂U1

∂ν
[χUj

∂r1
1 ∂

r2
2 (F (Ψj)))G

Jj
◦Ψ−1

j ](Ψi( · )± τν(Ψi( · )))‖L2(BR2
1 (0))

≤‖∂U1

∂ν
[χUj

∂r1
1 ∂

r2
2 (F (Ψj)))G

Jj
◦Ψ−1

j ]( · ± τν( · ))‖L2(∂Σ)

≤C10‖χUj

∂r1
1 ∂

r2
2 (F (Ψj)))G

Jj
◦Ψ−1

j ‖L2(∂Σ) ≤ C10

‖G‖
C0(BR2

1 (0))

cj1
‖F‖Hm+1,2(∂Σ).

So recalling formula (4.19) we find C15 of the form

C15 :=
N∑

i,j=1

m∑
s1+s2=0

s1∑
k1=0

s2∑
k2=0

(
s1
k1

)(
s2
k2

)
‖wi‖Cm(∂Σ)(C9 + C10)‖

Gj

Jj
‖

C0

�
BR2

1 (0)

�‖Hi‖
C0

�
BR2

1 (0)

�

where Gj is a sum of products from the partial derivatives of Ψj , ν̃ and Jj up to order m+ 1 which can
be obtained from the considerations above. Similar Hi consist of partial derivatives of Ψi and ν up to
order m− 1. For |s| = 0 we can use Lemma 4.5.1 and so the proof for L±τ

3 is done. The argumentation
above translates to the case of L±τ

1 . It even simplifies because we do not have to get rid of the normal
derivative at the beginning of the proof. More precisely we get the terms as in (4.19) without ∂

∂ν̃(y) and
thus we gain one iteration and consequently one order of differentiation, i.e. we can proof the convergence
for F ∈ Hm,2(∂Σ) and an outer Cm+1,α-domain Σ. We need at least an outer Cm+1,α-domain instead of
an outer Cm+1-domain in order to ensure the convergence in Cm(∂Σ)-norm, which is used in the proof.
It is left to investigate L±τ

2 and L±τ
4 . In order to apply the argumentation from L±τ

1 to L±τ
2 and from

L±τ
3 to L±τ

4 we have to make the following consideration to get rid of the normal derivative before we
can apply the techniques used in the previous part of the proof. We will illustrate this procedure at

lim
τ→0+

‖L±τ
4 [F ]‖L2(∂Σ) = 0,

for F ∈ Hm+2,2(∂Σ) and ∂Σ a Cm+3-surface. We have to prove

‖∂U2

∂ν
( · ± τν( · ))‖L2(∂Σ) ≤ C16‖F‖Hm+2,2(∂Σ),

for all τ ∈ (0, τ0] with 0 < C16 < ∞ independent of τ . Then the argumentation from the beginning of
this proof applies and we are done. We have for x ∈ ∂Σ, τ ∈ (0, τ0] and F ∈ Cm+2(∂Σ)

∂U2

∂ν
(x± τν(x)) = 〈ν(x), (∇U2)(x± τν(x))〉 = 〈ν(x± τν(x)), (∇U2)(x± τν(x))〉
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=〈ν(z),∇U2(z)〉
∣∣∣
z=x±τν(x)

= 〈ν(z),∇
∫

∂Σ

F (y)
∂

∂ν(y)
1

|z − y|
dH2(y)〉

∣∣∣
z=x±τν(x)

.

Because τ 6= 0 we can interchange integration and differentiation, see Lemma 2.4.8, and we get

∂U2

∂ν
(x± τν(x)) =

∫
∂Σ

F (y)
∂

∂ν(y)
∂

∂ν(z)
1

|z − y|
dH2(y)

∣∣∣
z=x±τν(x)

=−
∫

∂Σ

F (y)
∂

∂ν(y)
〈z − y, ν(z)〉
|z − y|3

dH2(y)
∣∣∣
z=x±τν(x)

=−
N∑

i=1

∫
BR2

1 (0)

wi(Ψi(y′))F (Ψi(y′))

∂

∂ν̃(y′)
〈x± τν(x)−Ψi(y′), ν(x± τν(x))〉

|x± τν(x)−Ψi(y′)|3
dλ2(y′)

=−
N∑

i=1

∫
BR2

1 (0)

wi(Ψi(y′))F (Ψi(y′))
∂

∂ν̃(y′)
〈x± τν(x)−Ψi(y′), ν(x)〉
|x± τν(x)−Ψi(y′)|3

dλ2(y′)

=−
N∑

i=1

3∑
j=1

∫
BR2

1 (0)

wi(Ψi(y′))F (Ψi(y′))
∂

∂ν̃(y′)

(
bj(y′)cj(x)

∂

∂y′j

1
|x± τν(x)−Ψi(y′)|

)
dλ2(y′)

where bj and cj for j = 1, 2, 3 and i ∈ {1, . . . , N}, are defined by(
bc
)
(x, y′) =

(
DΨi(y′)

)−1
ν(x),

where
(
bc
)
(x, y′) := (b1(x)c1(y′), b2(x)c2(y′), b3(x)c3(y′))T . Here the cj are even independent from τ ∈

(0, τ0]. Now we use integration by parts and the argumentation for L±τ
3 applies with one additional order

of differentiability for F and Σ. In the same way L±τ
2 can be reduced to L±τ

1 , also with one additional
order of differentiability for F and Σ. Now the proof is complete.

Before we come to the applications in the next section, we want to state the following remark.

Remark 4.6.2. Due to the techniques used in the previous proof, we can see why a higher regularity of
F and Σ leads to a higher regularity of the corresponding potentials and their convergence. The reason
is that the integral kernel 1

|x−y| allows us to translate differentiation with respect to x into differentiation
with respect to y. Then we can put the differential operators to F and Ψi with help of integration by
parts.

4.7 Application of the Limit Formulae to Geomathematics

In this section we present an application of the limit formulae and jump relations to geomathematics.
The double and single layer potential as well as their limit formulae are important in geomathematics,
because they are used in order to generate wavelets. In [FM03], such a wavelet approach to C2 surfaces is
presented, using the convergence in L2(∂Σ). Our goal is to prove density of certain function systems from



96 CHAPTER 4. LIMIT FORMULAE AND JUMP RELATIONS OF POTENTIAL THEORY

geomathematics in the spaces Hm,2(∂Σ). The main result is a direct consequence of the results proved
in this chapter and a generalization of the results contained in [FK80], [FM03] and [FM04]. Here the
authors prove that the function system of mass point representations and the function system of outer
harmonics are dense in L2(∂Σ). The result is used in order to approximate solutions to the Dirichlet
problem for the Laplace equation, i.e., the homogeneous Poisson equation, in Σ or D, respectively. We
prove that the function system of mass point representations as well as the function systems of inner and
outer harmonics are a dense subspace of Hm,2(∂Σ) for arbitrary m ∈ N. For example, the results proved
in this section could lead to a faster convergence of those approximations. At first we state the result
from [FM03] and [FM04], which we will extend in this section.

Lemma 4.7.1. Let Σ be an outer C2-domain and (xk)k∈N a fundamental system in Σ or D. Then the
system of mass point representations (

1
|xk − · |

∣∣∣∣∣
∂Σ

)
k∈N

,

defined by Definition 2.6.1, is dense in L2(∂Σ). Furthermore the system of outer harmonics(
Hα
−n−1,k

∣∣∣
∂Σ

)
n=0,1,...;k=1,...,2n+1

,

defined in Definition 2.6.2, is dense in L2(∂Σ).

Proof. For this result see e.g. [FM04].

In this section we want to extend this result to the case of Hm,2(∂Σ), m ∈ N, m ≥ 1. Moreover, we
prove the result also for the inner harmonics for Hm,2(∂Σ), m ∈ N. Before we can do this, we need to
prove several lemmata. At first we prove a result for the Hilbert space adjoints

(
U±τ

1

)∗
of U1 with respect

to the L2(∂Σ) scalar product, defined in Lemma 4.5.2. It states that the Hm,2(∂Σ)-norm of
(
U±τ

1

)∗
[F ]

can be estimated by the Hm,2(∂Σ)-norm of F with a constant independent of τ ∈ [0, τ0].

Lemma 4.7.2. Let Σ be an outer Cm+2 domain, m ∈ N, m ≥ 1. Then for each τ ∈ [0, τ0] we have(
U±τ

1

)∗
: Hm,2(∂Σ) → Hm,2(∂Σ) with

‖
(
U±τ

1

)∗
[F ]‖Hm,2(∂Σ) ≤ C17‖F‖Hm,2(∂Σ),

for all F ∈ Hm,2(∂Σ) and τ ∈ [0, τ0], where 0 < C17 <∞ is a constant independent of τ ∈ [0, τ0].

Proof. It is clear that the operators are linear. The desired estimate can be proved analogous to those
from Theorem 4.6.1. Therefore, we just want to mention the crucial points. Recall the proof of Theorem
4.6.1. Corresponding to (4.19), we now have to estimate the L2(∂Σ)-norm of terms of the form

∂s1
1 ∂

s2
2

∫
BR2

1 (0)

wi(Ψi(y))F (Ψi(y))
1

|Ψi(y)± τν(Ψi(y))−Ψj(x)|
Ji(y)dλ2(y),

for F ∈ Cm(∂Σ), 0 ≤ s1 + s2 ≤ m, by the Hm,2(∂Σ)-norm of F times a constant 0 < C17 < ∞
independent of τ ∈ (0, τ0]. Recall that we have

ν(Ψi) =
∂1Ψi × ∂2Ψi∣∣∂1Ψi × ∂2Ψi

∣∣ ,
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for all i = 1, . . . , N , see also Lemma 2.1.6, and we obtain the transformed terms

∂s1
1 ∂

s2
2

∫
BR2

1 (0)

wi(Ψi(y))F (Ψi(y))
1

|Ψ±τ (y)−Ψj(x)|
Ji(y)dλ2(y),

for F ∈ Cm(∂Σ), 0 ≤ s1 + s2 ≤ m and τ ∈ (0, τ0], if we set

Ψ±τ (y) := Ψi(y)± τ
∂1Ψi(y)× ∂2Ψi(y)∣∣∂1Ψi(y × ∂2Ψi(y)

∣∣ .
for all y ∈ BR3

1 (0). We have Ψ±τ ∈ Cm+1
(
BR3

1 (0)
)

with Det
(
DΨ

)
> 0 on BR3

1 (0) for τ ∈ [0, τ
′

0] if

0 < τ
′

0 < τ0 is small enough. Consequently{
∂1Ψ±τ (y), ∂2Ψ±τ (y), ∂3Ψ±τ (y)

}
forms a basis of R3 for each y ∈ BR2

1 (0) and τ ∈ (0, τ
′

0], which is Cm(BR2

1 (0)) for the outer Cm+2-domain
Σ and bounded in Cm(BR2

1 (0)) norm independent of τ . So we can translate differentiation with respect
to x to differentiation with respect to y by solving the linear system of equations

ak(x, y)DΨ±τ (y) = ∂kΨi(x)

and get a solution with coefficient functions in Cm
(
BR2

1 (0)
)
. For details see the proof of Theorem 4.6.1.

Now we apply integration by parts and apply the reduction method for the higher order derivatives
in direction y3. Note that we can do this because Ψ±τ ∈ C2(BR3

1 (0)) and the differential geometric
functions g, gpq and gpq are elements of Cm(BR3

1 (0)), 1 ≤ p, q ≤ 3, and also bounded in Cm(BR2

1 (0))
norm independent of τ by their definition. Furthermore, g33 6= 0 on BR2

1 (0) for 0 < τ
′

0 < τ0 small enough.
So all techniques can be applied and we end up with terms of the form

H(x)
∫

BR2
1 (0)

∂r1
1 ∂

r2
2 (F (Ψj(y)))G(y)

1
|Ψi(y)± τν(Ψi(y))−Ψj(x)|

dλ2(y), (4.40)

H(x)
∫

BR2
1 (0)

∂r1
1 ∂

r2
2 (F (Ψj(y)))G(y)

∂

∂ν̃(y)
1

|Ψi(y)± τν(Ψi(y))−Ψj(x)|
dλ2(y), (4.41)

where 0 ≤ |r| ≤ m, G ∈ C0
(
BR2

1 (0)
)

and H ∈ C1
(
BR2

1 (0)
)
. The vectorfield ν̃ is defined analogous as

in Theorem 4.6.1 by
ν̃ :=

(
DΨ±τ

)−1
ν(Ψi),

on BR2

1 (0). So we have ν̃ ∈ Cm
(
BR2

1 (0)
)
, with bounded norm independent of τ . With the reasoning

from the proof of Theorem 4.6.1, we can transform ∂
∂y3

to ∂
∂ν̃(y) , because DΨ±τ has full range. The terms

(4.40) and (4.41) correspond to (4.38) and (4.39) in the proof of Theorem 4.6.1 and can be estimated

similar with help of the results about
(
U±τ

1

)∗ and
(

∂U1
∂ν

±τ
)∗

from Lemma 4.5.2. For |s| = 0 we refer

directly to Lemma 4.5.2 and we are done. Recall that
(
U0

1

)∗ = U1 is already treated in Theorem 4.6.1.

Note that U1[F ] is self adjoint. Now we extend U1 to an operator onto
(
Hm,2(∂Σ)

)′
. This operator

is then defined as the Banach space adjoint of
(
U±τ

1

)∗
in the Banach space

(
Hm,2(∂Σ)

)′
.
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Lemma 4.7.3. Let Σ be an outer Cm+2 domain, m ∈ N, m ≥ 1. Then we define for each τ ∈ [0, τ0] a
linear and bounded operator

U±τ
1 :

(
Hm,2(∂Σ)

)′
→
(
Hm,2(∂Σ)

)′
,

by
U±τ

1 [F ](G) := F
((
U±τ

1

)∗
[G]
)
, (4.42)

for all G ∈ Hm,2(∂Σ). We have that

‖U±τ
1 [F ]‖

(Hm,2(∂Σ))
′ ≤ C18‖F‖(Hm,2(∂Σ))

′ ,

for all F ∈
(
Hm,2(∂Σ)

)′
and τ ∈ [0, τ0], where C18 and

(
U±τ

1

)∗
are taken from Lemma 4.7.2.

Proof. Due to Lemma 4.7.2 we have that U±τ
1 is well defined and we can estimate

|U±τ
1 [F ](G)| =

∣∣∣F ((U±τ
1

)∗
[G]
)∣∣∣ ≤ ‖F‖

(Hm,2(∂Σ))
′‖
(
U±τ

1

)∗
[G]‖Hm,2(∂Σ)

≤ C19‖F‖(Hm,2(∂Σ))
′‖G‖Hm,2(∂Σ),

for all F ∈
(
Hm,2(∂Σ)

)′
and G ∈ Hm,2(∂Σ). Thus the norm estimate holds.

Using the results from Section 4.6, we are able to prove that the limit formula of U1 even holds for
F ∈

(
Hm,2(∂Σ)

)′
.

Theorem 4.7.4. Let Σ be an outer Cm+2 domain, m ∈ N, m ≥ 1, and F ∈
(
Hm,2(∂Σ)

)′
. Then we have

lim
τ→0+

‖U±τ
1 [F ]− U0

1 [F ]‖
(Hm,2(∂Σ))

′ = 0. (4.43)

Proof. Let F ∈
(
Hm,2(∂Σ)

)′
. Because L2(∂Σ) is dense in

(
Hm,2(∂Σ)

)′
, we can choose a sequence

(Fn)n∈N ⊂ L2(∂Σ) with Fn → F in
(
Hm,2(∂Σ)

)′
. We now estimate with help of Lemma 4.7.2

‖U±τ
1 [F ]− U0

1 [F ]‖
(Hm,2(∂Σ))

′

≤‖U±τ
1 [F ]− U±τ

1 [Fn]‖
(Hm,2(∂Σ))

′ + ‖U±τ
1 [Fn]− U0

1 [Fn]‖
(Hm,2(∂Σ))

′

+ ‖U0
1 [Fn]− U0

1 [F ]‖
(Hm,2(∂Σ))

′

≤2C18‖Fn − F‖
(Hm,2(∂Σ))

′ + ‖U±τ
1 [Fn]− U0

1 [Fn]‖
(Hm,2(∂Σ))

′ .

The first term converges to zero as n tends to infinity. For the second we have

‖U±τ
1 [Fn]− U0

1 [Fn]‖
(Hm,2(∂Σ))

′

=supG∈Hm,2(∂Σ)

|U±τ
1 [Fn](G)− U0

1 [Fn](G)|
‖G‖Hm,2(∂Σ)

=supG∈Hm,2(∂Σ)

|Fn(
(
U±τ

1

)∗
[G])− Fn(

(
U0

1

)∗ [G])|
‖G‖Hm,2(∂Σ)
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=supG∈Hm,2(∂Σ)

|
∫

∂Σ
Fn(x) ·

(
U±τ

1

)∗
[G](x) dH2(x)−

∫
∂Σ
Fn(x) ·

(
U0

1

)∗ [G](x) dH2(x)|
‖G‖Hm,2(∂Σ)

=supG∈Hm,2(∂Σ)

|
∫

∂Σ
U1[Fn](x± ν(x)) ·G(x) dH2(x)−

∫
∂Σ
U1[Fn](x) ·G(x) dH2(x)|

‖G‖Hm,2(∂Σ)

≤supG∈Hm,2(∂Σ)

‖U1[Fn]( · ± ν( · ))− U1[Fn]( · )‖L2(∂Σ)‖G‖L2(∂Σ)

‖G‖Hm,2(∂Σ)

≤‖U1[Fn]( · ± ν( · ))− U1[Fn]( · )‖L2(∂Σ)

which converges to zero if τ does, by Lemma 4.5.1. Here we used that we can replace the dual paring by
the L2(∂Σ) scalar product, i.e., the integral over ∂Σ, for Fn ∈ L2(∂Σ). Now the proof is done.

We now define for m ∈ N, m ≥ 1, a differential operator D2m : Hm,2(∂Σ) →
(
Hm,2(∂Σ)

)′
.

Lemma 4.7.5. Let m ∈ N, m ≥ 1, and Σ be a Cm,1-surface. Then we define the linear and bounded
operator D2m : Hm,2(∂Σ) →

(
Hm,2(∂Σ)

)′
by

D2m[F ](G) := 〈F,G〉Hm,2(∂Σ),

for all G ∈ Hm,2(∂Σ).

Proof. Obviously we have

|D2m[F ](G)| =
∣∣〈F,G〉Hm,2(∂Σ)

∣∣ ≤ ‖F‖Hm,2(∂Σ)‖G‖Hm,2(∂Σ), (4.44)

for all F,G ∈ Hm,2(∂Σ) and the proof is done.

Note that D2m is the embedding of the canonical dual space of Hm,2(∂Σ) into the dual space(
Hm,2(∂Σ)

)′
of Hm,2(∂Σ) with respect to the L2(∂Σ) scalar product. Moreover, we have the follow-

ing.

Lemma 4.7.6. Let m ∈ N, m ≥ 1, and Σ be a C2m−1,1-surface. Then for each F ∈ C∞(∂Σ) there exists
a function D2mF ∈ L2(∂Σ) such that

D2m[F ](G) = 〈D2mF,G〉L2(∂Σ),

for all G ∈ Hm,2(∂Σ), where D2m is the operator, defined in Lemma 4.7.5.

Proof. We have by the definition of D2m, see Lemma 4.7.5, that

D2m[F ](G) = 〈F,G〉Hm,2(∂Σ) =
N∑

i=1

〈(wiF )(Ψi(y, 0)), (wiG)(Ψi(y, 0))〉
Hm,2(BR2

1 (0))

=
N∑

i=1

m∑
|s|=0

∫
BR2

1 (0)

∂s
(
(wiF )(Ψi(y, 0))

)
· ∂s
(
(wiG)(Ψi(y, 0))

)
dλ2(y)
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=−
N∑

i=1

m∑
|s|=0

∫
BR2

1 (0)

∂2s
(
(wiF )(Ψi(y, 0))

)
· (wiG)(Ψi(y, 0)) dλ2(y)

=−
N∑

i=1

m∑
|s|=0

∫
BR2

1 (0)

∂2s
(
(wiF )(Ψi(y, 0))

)
· wi(Ψi(y, 0))

Ji(y)
·G(Ψi(y, 0))Ji(y) dλ2(y)

=−
N∑

i=1

m∑
|s|=0

∫
∂Σ

(
∂2s((wiF ) ◦Ψi)

)
(Ψ−1

i (x)) · wi(x)
Ji(Ψ−1

i (x))
·G(x) dH2(x)

=
∫

∂Σ

(
−

N∑
i=1

χUi∩∂Σ ·
m∑

|s|=0

(
∂2s((wiF ) ◦Ψi)

)
(Ψ−1

i (x)) · wi(x)
Ji(Ψ−1

i (x))

)
︸ ︷︷ ︸

=:D2mF

·G(x) dH2(x),

which is a function in L2(∂Σ), because F ∈ C∞(∂Σ), Ψi ∈ H2m,∞(BR2

1 (0)) see Lemma 2.2.5, wi ∈ C∞(Ui)
and 0 < ci1 < Ji < ci2 <∞, see Lemma 2.1.4.

Consequently, D2m is the extension of the differential operator defined above to a space of generalized
functions. We need one final lemma about the potential of the single layer.

Lemma 4.7.7. Let ∂Σ be a Cm+1,α-surface, m ∈ N, m ≥ 1, 0 < γ < β ≤ α ≤ 1. Then for each
F ∈ Cm,β(∂Σ) there exists a G ∈ Cm−1,γ(∂Σ) such that

F = U1[G],

on ∂Σ.

Proof. Let F ∈ Cm,β(∂Σ) be given. Then the unique solution U of the Dirichlet problem in D and Σ
with boundary value F has continuous normal derivatives on ∂Σ, see [CK83, Theorem 3.29], because
F ∈ Cm,α(∂Σ) ⊂ C1,α(∂Σ). We define

G(x) :=
∂U

∂ν

+

− ∂U

∂ν

−
,

for all x ∈ ∂Σ, where ∂U±

∂ν denotes the normal derivatives on ∂Σ of the solution in Σ, denoted by U+,
or of the solution in D, denoted by U−. We know that U is given by the single layer potential U1[G]
on R3, see [CK83, Theorem 3.30]. So U1[G] = F on ∂Σ and it is left to show that G ∈ Cm−1,γ(∂Σ)
for some 0 < γ < β. Therefore we need to prove that ∂U

∂ν

± ∈ Cm−1,γ(∂Σ). We know that U2[F ] is a
harmonic function in C∞(R3\∂Σ) and so it solves the Neumann problem in D and Σ with boundary
value ∂U2

∂ν [F ] ∈ Cm−1,δ(∂Σ) for all 0 < δ < β, see Theorem 4.4.1. As shown in [CK83, Theorem 3.16 and
Theorem 3.25] this solution can be represented as a single layer potential U1[H1] in D and U1[H2] in Σ.
Moreover, [Gün57, p. 170] gives H1,H2 ∈ Cm−1,γ(∂Σ) for all 0 < γ < δ < β. We define two functions V
and W on R3\∂Σ by

V (x) :=
{
U1[H1](x)− U2[F ](x) + 4πU(x), x ∈ Σ,

U1[H1](x)− U2[F ](x), x ∈ D,
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and

W (x) :=
{

U1[H2](x)− U2[F ](x), x ∈ Σ,
U1[H2](x)− U2[F ](x) + 4πU(x), x ∈ D.

We have

lim
τ→0+

V (x+ τν(x))− V (x− τν(x)) = 0,

lim
τ→0+

W (x+ τν(x))−W (x− τν(x)) = 0,

for all x ∈ ∂Σ, see Theorem 4.2.2. Furthermore we have V = 0 on D and W = 0 on Σ. Together this
yields V as the unique solution of the homogeneous Dirichlet problem in Σ and W as the unique solution
of the homogeneous Dirichlet problem in D. Consequently V and W are zero on all of R3. Using the
limit formulae we get

0 = lim
τ→0+

∂V

∂ν
(x+ τν(x))− ∂U1

∂ν
[H1](x) +

∂U2

∂ν
[F ](x)− 4π

∂U

∂ν

+

(x)

= lim
τ→0+

∂U1

∂ν
[H1](x)−

∂U2

∂ν
[F ](x) + 4π

∂U

∂ν

+

(x)

=
∂U1

∂ν
[H1](x)−

∂U2

∂ν
[F ](x) + 4π

∂U

∂ν

+

(x),

for all x ∈ ∂Σ and analogously

∂U1

∂ν
[H2](x)−

∂U2

∂ν
[F ](x) + 4π

∂U

∂ν

−
= 0,

for all x ∈ ∂Σ. Finally we have proved that ∂U
∂ν

±
equals an Cm−1,γ(∂Σ) function, because ∂U1

∂ν [H1],
∂U1
∂ν [H2] and ∂U2

∂ν [F ] are elements of Cm−1,γ(∂Σ), see Theorem 4.4.1, and the proof is done.

Moreover, the function G from the previous lemma is uniquely determined, see [CK83, Theorem 3.30].
We finally extend Lemma 4.7.1 in the main result of this section.

Theorem 4.7.8. Let Σ be an outer C2-domain for m = 0, an outer C3-domain for m = 1, an outer
C4-domain for m = 2 and an outer C2m−1,1-domain for m ∈ N, m ≥ 3. Furthermore let (xk)k∈N be a
fundamental system in Σ or D. Then the system of mass point representations(

1
|xk − · |

∣∣∣∣∣
∂Σ

)
k∈N

,

defined by Definition 2.6.1, is dense in Hm,2(∂Σ). Furthermore the system of outer harmonics(
Hγ
−n−1,k

∣∣∣
∂Σ

)
n=0,1,...;k=1,...,2n+1

,

defined in Definition 2.6.2, is dense in Hm,2(∂Σ) if 0 < γ < ∞ is such small that BR3

γ (0) ⊂ D. Finally
the system of inner harmonics (

Hγ
n,k

∣∣∣
∂Σ

)
n=0,1,...;k=1,...,2n+1

,
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defined in Definition 2.6.2, is dense in Hm,2(∂Σ) if 0 < γ <∞ is such large that D ⊂ BR3

γ (0).

Proof. We want to use the fact that a subset S of a Hilbert space H is dense if and only if 〈F,G〉H = 0
for all G ∈ S yields F = 0 in H. Therefore let F̃ ∈ Hm,2(∂Σ) be given. We have to show that〈

F̃ ( · ), 1
|xk − · |

∣∣∣∣∣
∂Σ

〉
Hm,2(∂Σ)

= 0,

for all k ∈ N, where (xk)k∈N is a fundamental system in D or Σ,〈
F̃ ( · ),Hγ

−n−1,k

∣∣∣
∂Σ

〉
Hm,2(∂Σ)

= 0,

or 〈
F̃ ( · ),Hγ

n,k

∣∣∣
∂Σ

〉
Hm,2(∂Σ)

= 0,

for all n = 0, 1, . . . and k = 1, . . . , 2n+ 1, yields F̃ = 0 in Hm,2(∂Σ). We define the operator I : Hm,2 →
C∞(R3\∂Σ) via

I[F ](x) :=

〈
F ( · ), 1

|x− · |

∣∣∣∣∣
∂Σ

〉
Hm,2(∂Σ)

,

for all F ∈ Hm,2(∂Σ). We want to prove that I[F̃ ](x) = 0 for all x ∈ D. First consider the function system
of mass point representations for a fundamental system (xk)k∈N in D. Obviously we have I[F̃ ](xk) = 0
for all k ∈ N, I[F̃ ] is an analytic function on R3\∂Σ and ∆I[F̃ ](x) = 0 for all x ∈ R3\∂Σ. Remember
that ∆ 1

|x−y| = 0, for all x 6= y, and we are allowed to interchange the order of differentiation. Thus

the fact that (xk)k∈N is a fundamental system in D yields I[F̃ ](x) = 0 for all x ∈ D. Now consider the
function system of outer harmonics. Recall the series expansion from Lemma 2.6.3, given by

1
|x− y|

=
∞∑

n=0

4πγ
2n+ 1

2n+1∑
k=1

Hγ
n,j(x)H

γ
−n−1,j(y),

for y ∈ ∂Σ and x ∈ BR3

γ (0) ⊂ D. For fixed x the series converges uniformly on ∂Σ in y, see [FM04, p.90].
Moreover, [Mar68, Satz 3.19] gives the convergence even in Cn(∂Σ) for arbitrary n ∈ N. Thus

I[F̃ ](x) =

〈
F̃ ( · ), 1

|x− · |

∣∣∣∣∣
∂Σ

〉
Hm,2(∂Σ)

=

〈
F̃ ( · ),

∞∑
n=0

4πγ
2n+ 1

2n+1∑
j=1

Hγ
n,j(x)H

γ
−n−1,j(y)

〉
Hm,2(∂Σ)

=
∞∑

n=0

4πγ
2n+ 1

2n+1∑
j=1

Hγ
n,j(x)

〈
F̃ ( · ),Hγ

−n−1,j(y)
〉

Hm,2(∂Σ)
= 0,

for all x ∈ BR3

γ (0) ⊂ D, by the continuity of the scalar product. By analytic continuation we find
I[F̃ ](x) = 0 on D, see again [FM04, p.91]. Analogously, we find I[F̃ ](x) = 0 on Σ for the inner harmonics
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or
(

1
|xk−y|

)
k∈N

corresponding to a fundamental system in Σ. From now on the proof will not depend on

the function system any more. We define I±τ : Hm,2(∂Σ) → L2(∂Σ) for all τ ∈ (0, τ0] by

I±τ [F ](x) := U [F ](x− τν(x)),

for all F ∈ Hm,2(∂Σ). We have that I±τ is linear and bounded for each τ ∈ (0, τ0]

‖I±τ [F ]‖L2(∂Σ) =‖〈F (x),
1

|x± τν(x)− y|
〉Hm,2(∂Σ)‖L2(∂Σ)

≤‖F‖Hm,2(∂Σ)

∥∥∥‖ 1
|x± τν(x)− y|

‖Hm,2(∂Σ)

∥∥∥
L2(∂Σ)

≤‖F‖Hm,2(∂Σ)H
2(∂Σ)supx∈∂Σ‖

1
|x± τν(x)− · |

‖Cm(∂Σ),

because the supreme can be estimated by

supx∈∂Σ‖
1

|x± τν(x)− · |
‖Cm(∂Σ) ≤ ‖ 1

|x± τν(x)− y|
‖

Cm(Bτ0 (∂Σ)\B τ
2

(∂Σ)×∂Σ)
<∞.

Now we can identify I±τ with a linear continuous mapping from Hm,2(∂Σ) to
(
Hm,2(∂Σ)

)′
with help of

the embedding L2(∂Σ) →
(
Hm,2(∂Σ)

)′
in form of regular distributions. Furthermore we have for each

τ ∈ (0, τ0] and all F ∈ C∞(∂Σ), that I±τ [F ] = U±τ
1 [D2m[F ]] in sense of

(
Hm,2(∂Σ)

)′
because

I±τ [F ](G) =〈〈F (y),
1

|x± τν(x)− y|
〉Hm,2(∂Σ), G(x)〉L2(∂Σ)

=〈〈D2mF (y),
1

|x± τν(x)− y|
〉L2(∂Σ), G(x)〉L2(∂Σ)

=〈U1[D2mF ](x± τν(x)), G(x)〉L2(∂Σ)

=〈U±τ
1 [D2mF ](x), G(x)〉L2(∂Σ)

=〈D2mF (x),
(
U±τ

1

)∗
[G](x)〉L2(∂Σ)

=D2mF (
(
U±τ

1

)∗
[G]) = U±τ

1 [D2mF ](G),

see Lemma 4.7.6. As well I±τ as U±τ
1 ◦D2m are continuous operators from Hm,2(∂Σ) to

(
Hm,2(∂Σ)

)′
and both coincide on the dense subset C∞(∂Σ) ⊂ Hm,2(∂Σ). So we have that they are identical on all
of Hm,2(∂Σ) and we find

U±τ
1 [D2m[F̃ ]] = I±τ [F̃ ] = 0,

in sense of
(
Hm,2(∂Σ)

)′
for all τ ∈ (0, τ0]. Using the limit formulae in

(
Hm,2(∂Σ)

)′
-norm, see Theorem

4.7.4, we get

lim
τ→0+

‖U±τ
1 [D2m[F̃ ]]− U0

1 [D2m[F̃ ]]‖
(Hm,2(∂Σ))

′ = lim
τ→0+

‖U0
1 [D2m[F̃ ]]‖

(Hm,2(∂Σ))
′ = 0.

This gives
D2m[F̃ ](

(
U0

1

)∗
[G]) = D2m[F̃ ](U1[G]) = 0,
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for all G ∈ Hm,2(∂Σ), by the definition of
(
U0

1

)∗ and consequently

〈F̃ , U1[G]〉Hm,2(∂Σ) = 0,

for all G ∈ Hm,2(∂Σ), by definition of the operator D2m. Due to Lemma 4.7.7 we have that the range
of U1 : Hm,2(∂Σ) → Hm,2(∂Σ) contains a dense subset of Hm,2(∂Σ), namely Cm+2(∂Σ). Thus F̃ = 0 in
Hm,2(∂Σ). Consequently the proof is done.
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