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Abstract

In this paper, a multi-period supply chain network design problem is addressed. Sev-

eral aspects of practical relevance are considered such as those related with the financial

decisions that must be accounted for by a company managing a supply chain. The deci-

sions to be made comprise the location of the facilities, the flow of commodities and the

investments to make in alternative activities to those directly related with the supply chain

design. Uncertainty is assumed for demand and interest rates, which is described by a set

of scenarios. Therefore, for the entire planning horizon, a tree of scenarios is built. A

target is set for the return on investment and the risk of falling below it is measured and

accounted for. The service level is also measured and included in the objective function.

The problem is formulated as a multi-stage stochastic mixed-integer linear programming

problem. The goal is to maximize the total financial benefit. An alternative formulation

which is based upon the paths in the scenario tree is also proposed. A methodology for

measuring the value of the stochastic solution in this problem is discussed. Computational

tests using randomly generated data are presented showing that the stochastic approach is

worth considering in these type of problems.

Keywords: Supply Chain Management, Multi-stage Stochastic Programming, Financial
Decisions, Risk.

1 Introduction

Structuring a global supply chain is a complex decision making process. The complexity arises

from the need to integrate several decisions each of which with a relevant contribution to the

performance of the whole system. In such problems, the typical input includes a set of markets,

a set of products to be manufactured and/or distributed, demand forecasts for the different

markets and some information about future conditions (e.g. production and transportation

costs). Making use of the above information, companies must decide where facilities (e.g.
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plants, distribution centers) should be set operating, how to allocate procurement/production

activities to the different facilities, and how to plan the transportation of products through the

supply chain network in order to satisfy customer demands. Often, the objective considered

is the minimization of the costs for building and operating the network.

Historically, researchers have focused relatively early on the design of production/distri-

bution systems (see Geoffrion and Powers [8]). Typically, discrete facility location models

were proposed which possibly included some additional features but that still had a limited

scope and were not able to deal with many realistic supply chain requirements. However, in

the last decade, much research has been done to progressively develop more comprehensive

(but tractable) models that can better capture the essence of many supply chain network

design (SCND) problems and become a useful tool in the decision making process. This can

be seen in the papers by Melo et al. [24] and Shapiro [32], where it also becomes clear that

many aspects of practical relevance in supply chain management (SCM) are still far from

being fully integrated in the models existing in the literature.

As pointed out by Shapiro [32], in corporate planning, financial decisions may strongly

interact with the supply chain planning. In fact, structuring and managing a supply chain is

often just part of a whole set of activities associated with a company. Accordingly, the invest-

ments in the supply chain must be integrated with other profitable investments. Typically,

several points in time can be considered, in which the investments can be made or in which

their return can occur (which in turn, may allow further investments in the supply chain).

Additionally, due to the large capital often associated with the network design decisions, the

possibility of taking advantage of some investment opportunity is often considered, which

justifies the use of loans.

The evaluation of the investments made in a supply chain is usually based on their return

rate. This fact calls for the inclusion of revenues in SCND models, which also gives the

possibility of setting a target for the return on investment (ROI). The inclusion of the ROI

in SCND models has not received attention in the literature.

In addition to the financial aspects just mentioned the multi-period nature of some de-

cisions has often to be accommodated in SCND models. Usually, a supply chain network

has to be in use for some time during which the underlying conditions may change. In some

situations, a single-period facility location model may be enough to find a “robust” network

design. However, in most cases, it is possible and even desirable to allow a change in the de-

cisions in order to better absorb the changes in the parameters and thus to adjust the system

accordingly. Location decisions are often among such decisions. In such cases, typically, there

is a discrete set of points in time in which changes can be made in the network structure.

These points allow a partition of the planning horizon into several time periods and constitute
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the initial setting for a multi-period network design problem. As pointed out by Melo et al.

[23] the existence of a periodic budget (e.g. annual, quarterly) for investments in the supply

chain is also a situation requiring the use of a multi-period modeling framework.

Another feature that can hardly be avoided in many SCND problems regards the uncer-

tainty associated to the future conditions which may influence the input of the problem, and

the need to include this uncertainty in the models supporting the decision making process.

Different sources of uncertainty exist that can be included in the models (see Snyder [33]) such

as demand, production or distribution costs, supply of raw materials etc. The uncertainty

existing in the data leads to the need to find robust SCND decisions and/or consider ways

for measuring and optimizing the risk associated with those decisions.

A constraint often considered in the literature devoted to SCND problems is that all the

demand must be supplied throughout the planning horizon. However, for several reasons such

constraint may become meaningless. Firstly, because demand is uncertain. Secondly because

due to the existence of other investments in alternative to those that can be made in the supply

chain, the company may find it better not to invest in a supply chain the amount needed to

assure the complete demand satisfaction. Finally, it may simply be a marketing strategy not

to supply all the demand in some time horizon. Taking these arguments into consideration, a

more interesting and from a practical point of view more reasonable alternative is to measure

the service level (e.g. the proportion of satisfied demand) and to reward it in the objective

function.

1.1 Problem Description

This paper is the first one which discusses a SCND problem capturing all the above men-

tioned aspects. We consider a supply chain network design problem with multiple periods,

stochasticity, financial decisions and risk (SCNDMSFR). The planning horizon is divided into

several time periods in each of which several decisions can be made namely, i) the facilities

that should be operating and thus the investments to make in the supply chain structure,

ii) other investments to make in addition to the previous ones, iii) the loans to get and iv)

the flow of commodities through the network. Stochasticity is considered for the demand

and for the interest rates. A set of scenarios is considered for describing the uncertainty.

Revenues are included in the model as well as the ROI. The service level for each customer

is evaluated and weighted in the objective function. Finally, a measure of risk is introduced.

The objective is to minimize the overall cost which is evaluated considering the investments

made, the revenues, and the transportation costs.

We formulate SCNDMSFR as mixed-integer multi-stage stochastic programming problem,
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deriving the the deterministic equivalent program. A more simplified and from a computa-

tional point of view more attractive formulation is presented afterwards, which is a formulation

based on the paths in the scenario tree.

1.2 Current State-of-the-Art

Several papers can be found in the literature addressing multi-period, multi-commodity SCND

problems. Fleischmann et al. [7] consider a problem in which the decisions to be made regard

location, distribution, capacity and production. The objective is to optimize the net present

value. In a problem studied by Hugo and Pistikopoulos [18] the decisions involve location,

distribution and capacity of the facilities. Two objectives are considered: the net present

value (to maximize) and the potential environmental impact (to minimize). Ulstein et al. [35]

consider the location of a single echelon of facilities. The decisions also involve the flow of

commodities through the network and the capacity of the facilities. A profit maximization

objective is considered.

Canel et al. [5] consider a SCND problem and search for the best location for a set of

intermediate facilities in a two-layer network as well as for the best way for shipping the

commodities through the network. Hinojosa et al. [14], Hinojosa et al. [15] and Vila et al. [36]

consider two location layers with location decisions to be made for both layers. In the first

paper, location and shipment decisions are considered. The second paper considers addition-

ally, inventory and procurement decisions. The third paper considers location, production,

shipment, inventory and capacity decisions. Finally, Melo et al. [23] consider a generic num-

ber of echelons with the possibility of making location decisions in all layers. Production,

distribution, procurement and capacity decisions are also considered.

The inclusion of uncertainty in SCND problems in general and in facility location models

in particular is not new and has been addressed by many authors (see Snyder [33]). Neverthe-

less, as pointed out by Melo et al. [24], the scope of the models that have been proposed is still

rather limited due to the natural complexity of many stochastic optimization problems. In

particular, most of the literature considers single-period single-commodity problems. Never-

theless, several papers can be found addressing multi-commodity problems in a single-period

context. This is the case in the problems studied by Guillén et al. [11], Listeş and Dekker

[21], Sabri and Beamon [29] and Santoso et al. [30]. These authors consider two to multiple

echelons. The decisions concern the flow of commodities, capacities, production or procure-

ment and inventory decisions. Stochasticity is assumed for the demand, the production costs

and the delivery costs, respectively and the objectives concern the profit, the net revenue, the

costs, the demand satisfaction or just the flexibility (regarding the volume or delivery).

The combination of multi-period decisions with a stochastic setting is proposed by Aghez-
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zaf [1] although considering only a single commodity. Two facility layers are considered with

location decisions being made for just one of them. In addition to the location decisions,

distribution, inventory and capacity decisions are also considered. The latter refer to the pos-

sibility of expanding the capacity of the facilities. Stochasticity is assumed for the demands.

A robust optimization approach is proposed for the problem.

As mentioned above, the possibility of not satisfying all the demand makes sense in many

SCND problems. This possibility has been modeled by a few authors. Sabri and Beamon [29]

consider the service level as one objective function to maximize in a bi-objective optimization

problem. Hwang [19] consider a single-commodity SCND problem with two facility layers.

Location as well as routing decisions are considered. Stochasticity is associated with traveling

time (assumed to have a known distribution). A minimum service level is imposed which is

done in terms of the number of facilities to be establish the goal is to assure a minimum

probability for a customer to be covered which is expressed via a function of the distance and

the travel time between the facilities and the customers. The objective is to minimize the

number of facilities established.

The inclusion of risk management in SCND problems has been addressed in the literature

although in rather limited settings. Lowe et al. [22] measure the risk associated with ex-

change rates fluctuation. A single-commodity, single-echelon problem is considered. Despite

the inclusion of several multi-period factors involved in the problem, the location decisions

are static. In addition to these decisions, production, procurement and capacity of the fa-

cilities decisions are also part of the decision making process. A two-phase multi-screening

approach is proposed taking into account several cost factors. Goh et al. [9] consider a single-

commodity, single-period, single-layer facility location problem. Transportation decisions are

also considered. Stochasticity is assumed for the demand and for the exchange rates. Several

risks are considered namely those related with supply, demand, exchange, and disruption.

Two objectives are handled: profit maximization and risk minimization.

The inclusion of uncertainty in supply chain management problems leads often to the need

to consider stochastic programming approaches. Not many papers exist with such approaches

for SCND problems although a few can be referred. In Schütz et al. [31] and Listeş [20] two-

stage stochastic programming formulations are considered. Alonso-Ayuso et al. [4] present

a two-stage stochastic programming model for multi-period single-commodity supply chain

planning problem. Uncertainty is assumed for product net price, demand, raw material

supply and production costs. No location decisions are made but it is possible to make

decisions regarding the capacity of the facilities which can change throughout the planning

horizon. Mitra et al. [25] provide an overview on the literature addressing stochastic supply

chain management problems namely those arising in the context of SCND.
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The use of a multi-period setting can lead to a multi-stage stochastic programming prob-

lem. Several papers can be found in the literature addressing such situation. Tarhan and

Grossmann [34] consider a multi-stage stochastic programming approach for a multi-period

problem in process networks where the decisions regard the expansion of capacity processes,

the operation or not of the processes and the possibility of installing pilot plants for some

processes. Nowak and Römisch [27] consider a multi-stage stochastic programming model

for the weekly generation of electric power under uncertain demand. A multi-period model

is considered. Ahmed et al. [3] present a multi-stage stochastic programming model for a

multi-period capacity expansion problem. Demands are uncertain as well as the investment

costs.

The multi-stage nature of many of the above problems adds complexity to the problems.

Several theoretical developments can be found in the literature for these types of problems.

Recently, Guan et al. [10] presented a general method for multistage stochastic integer pro-

gramming which combines inequalities that are valid for individual scenarios. When a set of

scenarios is assumed for modeling uncertainty in a multi-stage setting, it is possible to build

a scenario tree. In such a case, as shown in Römisch and Schultz [28] an alternative modeling

framework can be proposed which is based in the paths in the tree. Huang and Ahmed [17]

use such modeling framework as a mean to better model the evolution of the uncertainties

in a multi-stage stochastic problem. The authors show that with the use of a multistage

formulation more information about the uncertainties is revealed which can be absorbed by

the decisions.

Finally, an important issue when a set of scenarios is considered for describing the uncer-

tainty, is how to obtain the scenarios. Several methodologies can be used for doing so. The

reader can refer to Heitsch and Römisch [12], Heitsch and Römisch [13], Hoyland and Wallace

[16] and Möller et al. [26].

The remainder of the paper is organized as follows. In the next section the details about the

problem studied in this paper are given. In section 3 the problem is formulated as a multi-stage

stochastic programming problem. In section 4 an alternative formulation is proposed which

is a path-in-the-scenario-tree-based formulation. Section 5 discusses the value of multi-stage

stochastic programming in the context of SCND. In section 6 we present the computational

tests performed. The paper ends with some conclusions driven by the work done.
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2 Problem description

The basic setting for SCNDMSFR is defined by a supply chain with two echelons: facilities

(e.g. warehouses or distribution centers) and customers. A planning horizon divided into

several time periods is considered. In each period, customers have to be supplied with multiple

commodities from the operating facilities according to their demand and to the operating

capacity. It is possible to make direct investments in the supply chain (e.g. set facilities

operating) and to make other investments. Uncertainty is associated with demands and

return rates. In order to capture potentially interesting investments, loans are also possible.

We consider a measure for the service level. A target is set for the ROI and the risk of

falling below it is measured and considered in the decision making process. The goal is to

find optimal decisions in each period concerning the location of the facilities, the investments

to make and the flow of commodities through the network. We detail next all these relevant

aspects concerning SCNDMSFR.

2.1 Dealing with uncertainty

As mentioned above, uncertainty is associated with demand and return rates. These quantities

can, in principle, be represented by random variables but we assume that all random variables

are dependent and completely determined by some state of nature. Accordingly, we assume

that a set of events/scenarios can be considered that fully determines the values of all the

uncertain parameters.

In practice, we would start by considering the set of events determining the demand and

the (possibly different) set of events determining return rates. Nevertheless, by combining

both types of events we would be led to a new set of events determining simultaneously demand

and return rates. This is the situation we consider directly in this paper. We do so for the

sake of simplicity when formulating SCNDMSFR and also because from a computational

point of view it is not relevant how the scenarios are built. For further information about

scenario generation and reduction in optimization problems under uncertainty the reader can

refer to Heitsch and Römisch [13] and Hoyland and Wallace [16].

2.2 Decisions

Four types of decisions are considered in SCNDMSFR: i) Where to set facilities operating, ii)

which investments to make, iii) which loans to consider, and iv) how to ship the commodities

from the operating facilities to the customers. All these decisions have to be made for each

period of the planning horizon.

Due to the uncertainty in the demand and in the interest rates, decisions i), ii) and iii) have
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to be made before knowing which event will occur and thus before knowing the demand and

the interest rates. In each time period, shipment decisions will be made only after demand is

disclosured. Accordingly, such decisions will be a recourse decisions in the sense that the best

decisions will be made taking into account the decisions already implemented before knowing

the even that occurs. The decisions made in the beginning of each time period, apart from the

first one, will have the role of recourse decisions for the decisions made before. This is easily

explained due to the impact that the investment decisions will have in the future availability

of financial resources.

We allow the location decisions to change from one period to the following i.e., we allow

multiple opening and closing of facilities throughout the planning horizon. This makes sense

with facilities such as warehouses or distribution centers. We might think that as a conse-

quence, the location decisions would only have an effect in the time period in which they

are made. However, this is not necessarily true because the fact that some money is devoted

to set facilities operating may prevent us from making other investments that might have a

return in a distant future.

We assume that the revenue for deliveries occur only in the end of the time period. Thus,

we are assuming that the customers only regularize their debts in the end of the time periods.

No generality is lost with this assumption because we can report the revenue values to any

moment in time. However, this assumption helps making the model we propose more easy-

reading.

Figure 1 illustrates the decisions to be made in a generic time period.

time

Time period

Location
Investments
Loans Shipment

Figure 1: Decisions in each time period.

2.3 Investments

Several types of investments can be considered for a company managing a supply chain

namely, direct investments in the supply chain, indirect investments in the supply chain, and

alternative investments to these ones.

Direct investments in the supply chain are those that are made directly in the network
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structure. This may include, for instance, land acquisition for building facilities or renting a

facility.

Indirect investments in the supply chain are those that may have an influence in the

performance of the system but which cannot be directly quantified. These may by investments

made in the productive sector (e.g. machinery) and in Marketing, for example. This is a kind

of investment which return cannot be easily directly asserted. We consider several possible

states for the future each of which determining some return rate.

By considering indirect investments in the supply chain we do not need to explicitly

account for some types of decisions such as production. They are somehow embedded in the

indirect investments. This makes the model we present in the following section more general

than we might think at a first glance.

Finally, we may have other investments in alternative to those in the supply chain. These

may include, for instance, agreed investments in bonds or speculative ones (e.g. in the stock

market).

We assume that in each time period, the company has a limited amount to invest, which

includes an exogenous budget (e.g. money made available by the investors) and also the

returns of previous investments made available in the time period. As the available budget

may not be enough for all the investments the company may wish to make we also introduce

the possibility of asking for loans, while a loan can be seen as a ‘special’ investment, too.

As we are planning for a specific time horizon, we only consider investments and loans

which fall entirely in our planning horizon. Moreover, we assume that the set of available

investments may change other time and thus not all the investments are available in all time

periods.

2.4 Service level

We do not plan in order to assure that all demand in supplied in all time periods i. e., we do

not impose a 100% service level. The reasoning is twofold:

i) Due to the uncertainty in the demand, planning for the maximum demand could lead

to a large surplus in the operating capacity which is far from desirable.

ii) As it was emphasized in the introduction, for several reasons a company may not want

to plan for supplying the entire demand (e.g. the investments necessary to assure a com-

plete demand satisfaction may not be attractive in comparison with other investments

that may be available for the company).

Accordingly, instead of imposing the satisfaction of the demand in all periods we propose

the use of a measure of the service level.
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Many different approaches on how the service level of a company may be measured can

be found in the literature. For instance, there may be a service level for each product or for

each time period. An alternative, which we take as an initial approach to SCNDMSFR is to

consider the accumulated service level for each customer, which is measured at the end of the

time horizon. In particular, we take the service level for each customer as a function of the

ratio between the quantity delivered to the customer throughout the planning horizon and

the total amount requested. A global measure of the service level is obtained by considering

the sum of the individual service levels weighted by the importance of the customers.

As we are considering a global service level for each customer i.e., for all commodities

and for all the time periods, it can only be measured in the last period. The reader can

refer to Tarhan and Grossmann [34] for a similar reasoning. Recall that demand is uncertain.

Therefore, we cannot assert in advance the service level that will be achieved.

2.5 Downside risk for the ROI

Another feature we introduce in SCNDMSFR is a target for the ROI. In particular, we

consider a target for the entire planning horizon and for the exogenous budget made available

(see Tarhan and Grossmann [34]).

Due to the uncertainty in the return rates, we do not know in advance which will be the

ROI. Moreover, it may be the case that in the end, the value achieved is below the target

considered. Therefore, instead of accounting directly for the ROI we measure the risk of

falling bellow the target and consider a downside risk, which will be appropriately included

in the objective function.

We note that there are different ways for measuring risk in optimization problems under

uncertainty. A comprehensive discussion concerning intractable and computational suitable

risk measures in stochastic programming can be found in Ahmed [2]. We hold the view that

the pure deviation between expected and realized gain is not an appropriate risk measure,

since earning more money than expected does not meet the basic idea of risk. For this reason,

we decided to use the absolute semi-deviation from a target profit (e.g. E[(X − E[X ])+]).

We focus this aspect in more detail when we introduce and discuss a model for our problem.

2.6 Objective

Two cost components are taken into account in SCNDMSFR: operation of the facilities and

shipment of commodities. In the latter case, procurement or production costs can be easily

accommodated.

Additionally, we consider the selling prices for the commodities which, combined with the

shipment costs lead to the revenues.
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As it was detailed before, in each time period we have decisions made in the beginning

and decisions made in the end. In each case we have a problem and an objective function.

For the first problem, the objective function gathers the financial aspects associated with all

the investments (direct and indirect in the supply chain as well as alternative investments).

The objective function associated with the problem defined for the end of the time period

contains the revenue corresponding to the commodities shipped.

The service level and the downside risk for the ROI are included in the objective function

associated with the end of the last period because it is only in this moment that the service

level and the ROI can be measured (following the explanation above).

As emphasized before, the decisions taken in some specific moment (apart from the be-

ginning of the planning horizon) are in fact recourse decisions. Accordingly, as we are facing

a multi-stage optimization problem under uncertainty we are naturally led to a multi-stage

stochastic programming problem, which will be detailed in the next section.

2.7 Constraints

The decisions in the beginning of each time period regard the investments that should be

made. Therefore, the only constraint we need to consider is that the amount invested cannot

exceed the total budget available.

The decisions in the end of each time period regard the transportation of commodities

from the operating facilities to the customers.

We consider a capacity consumption factor for each commodity in each facility and we

impose a minimum throughput and a capacity for each facility (see Melo et al. [23]). Accord-

ingly, regarding the decisions to be made in the end of each time period we have to assure that

the flow of commodities through each operating facility is within the limits associated with

the facility and also that the maximum amount delivered to each customer of each commodity

is the corresponding demand.

In the end of the last period we have all the elements to evaluate the service level and the

downside risk for the ROI and thus, we use constraints for defining these quantities.

3 Formulation

In this section we propose a mixed-integer multi-stage linear programming model for SCNDMSFR.

We start by introducing some notation. We assume that all relevant data (e.g. costs, poten-

tial facility locations, investments) are available and that the set of scenarios determining all

the uncertain parameters is fully known.
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3.1 Notation

Hereafter, we use boldface every time we refer to a random variable and we indicate by E[Ω ]

the expectation of a random variable Ω .

3.1.1 Index sets

DC : Set of distribution centers.

C : Set of customers.

T : Set of base periods in the planning horizon, T = {1, 2, .., T}.

P : Set of products.

I : Set of potential investments (indirect in the supply chain and alternative invest-

ments).

B : Set of potential loans.

It : Set of potential investments that can start in period t ∈ T , It ⊆ I.

Bt : Set of potential loans that can start in period t ∈ T , Bt ⊆ B.

Ω t : Random variable representing the events that may occur in period t, t ∈ T .

Ω0 : State of nature in the beginning of the planning horizon.

3.1.2 Parameters

As it was already explained, some parameters are known and fixed in advanced while others

are random and will depend on future events. The former are called deterministic and the

latter stochastic. We introduce them separately.

1. Deterministic parameters:
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F t
f : Fixed cost for operating facility f ∈ DC in period t ∈ T (e.g.

renting and human resources).

V t
f,c,p : Cost for shipping one unit of product p ∈ P from facility f ∈ DC

to customer c ∈ C in period t ∈ T .

Rt
c,p : Unitary revenue of product p ∈ P at facility c ∈ C in period t ∈ T

(e.g. selling price minus purchasing cost).

K
t

f : Maximum allowed capacity at facility f ∈ DC in period t ∈ T .

Kt
f : Minimum required throughput at facility f ∈ DC in period t ∈ T .

µp : Unit capacity consumption factor of product p ∈ P at facility

f ∈ DC.

M t : Exogenous budget available at the beginning of period

t ∈ T .

ηt
i : Interest rate of a loan i ∈ Bτ , τ ≤ t, that has to be paid at the

end of period t ∈ T . This interest rate is always defined for all

periods. If no interest rate arises in a period, it is set to zero.

ηt : (ηt
1, ..., η

t
|B1|+...+|Bt|).

ROI : Target ROI.

βc : Weight (importance) of customer c ∈ C, βc ≥ 0.

γ : Weight of the downside risk in the objective function (γ ≤ 0).

ωt : Event in period t ∈ T .

ω0 : Current state of nature.

P (Ω t = ωt) : Probability of event ωt, t ∈ T . P (Ω0 = ω0) = 1.

2. Stochastic parameters:

ρ
t
i (Ω

t) : Rate of return of an investment i ∈ Iτ , τ ≤ t, paid at the end of

period t ∈ T .

ρ
t(Ω t) : (ρt

1 (Ω t), ...,ρt
|I1 |+...+|It |(Ω

t)).

ρt
i = ρt

i(ω
t) : One realization of ρ

t
i (Ω

t).

ρt : (ρt
1, ..., ρ

t
|I1|+...+|It|).

D t
c,p(Ω

t) : Demand of product p ∈ P at customer c ∈ C in period t ∈ T .

D t(Ω t) : (D t
1 ,1 (Ω t), ...,D t

|C|,|P|(Ω
t)).

Dt
c,p = Dt

c,p(ω
t) : One realization of D t

c,p(Ω
t).

Dt : (Dt
1,1, ...,D

t
|C|,|P|).

3.1.3 Decision variables

We consider three types of variables in our model.

13



• Investment decisions. As mentioned before, these include direct and indirect investments

in the supply chain as well as alternative investments. The direct investments regard

the location of the facilities.

These decisions are always made in the beginning of the time periods, before the even

determining the values of the uncertain parameters in that period occur.

These decisions can be seen as first-stage decisions in the time period in which they

are made but they are recourse decisions for the decisions made before. In fact, such

decisions not only depend on the realized events, but also on previous decisions.

• Shipment decisions. These decisions are made when the demand in each time period

is disclosure. These decisions depend of the previous decisions namely the location

decisions made in the beginning of the time period.

• Service level and downside risk for the ROI. These are in fact state variables that are

automatically calculated, when all the other variables are selected for all periods.

Formally we have:

ut
f (ω0, ..., ωt−1) =



















1, if facility f ∈ DC is set operating in period t ∈ T given that

events ω0 ∈ Ω0 , ..., ωt−1 ∈ Ω t−1 occur.

0, otherwise

ut(ω0, ..., ωt−1) = (ut
f∈DC(ω

0, ..., ωt−1))

rt
i(ω

0, ..., ωt−1) = Amount of money spent in the available investment i ∈ It in

period t ∈ T given that events ω0 ∈ Ω0 , ..., ωt−1 ∈ Ω t−1 occur.

rt(ω0, ..., ωt−1) =
(

rt
i∈It(ω0, ..., ωt−1)

)

lti(ω
0, ..., ωt−1) = Amount of money obtained from loan i ∈ Bt in period t ∈ T given

that events ω0 ∈ Ω0 , ..., ωt−1 ∈ Ω t−1 occur.

lt(ω0, ..., ωt−1) =
(

lt
i∈Bt(ω0, ..., ωt−1)

)

xt
f,c,p(ω

1, ..., ωt) = Amount of product p ∈ P shipped from facility f ∈ DC to cus-

tomer c ∈ C in period t ∈ T given that events ω1 ∈ Ω1 , ..., ωt ∈ Ω t

occur.

xt(ω1, ..., ωt) =
(

xt
f∈DC,c∈C,p∈P(ω1, ..., ωt)

)

αc(ω
1, ..., ωt) = Service level for customer c ∈ C given that events ω1 ∈ Ω1 , ..., ωt ∈

Ω t occur.

d(ω1, ..., ωt) = Downside risk given that ω1 ∈ Ω1 , ..., ωt ∈ Ω t occur.
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3.2 D(eterministic)E(quivalent)P(rogram)

We can finally introduce a multi-stage stochastic mixed-integer programming formulation for

SCNDMSFR.

We introduce the problem for the different and consecutive stages. In what follows, we

denote the beginning of time period t by t− and the end by t+ (t ∈ T ).

Beginning of period 1

At the beginning of period one, we know nothing apart from the values of the initial (de-

terministic) parameters and the structure of the scenario tree with all the corresponding

probabilities. The structure of such a scenario tree is depicted in Figure 2. For illustrative

purposes we only consider three periods in the planning horizon.

Accordingly, in the beginning of the planning horizon we have to decide which facilities

should be set operating in the first period, and which investments and loans to consider in

order to maximize the expected profit in the end of period one plus the expected profit in

period two. Therefore, the problem we face in the beginning of period one can be stated as

follows:

max
u1,r1,l1

E[Q1+

(u1,D1 (Ω1 ))] + E[Q2−(r1, l1,ρ2 (Ω1 ))]

= max
u1,r1,l1

∑

ω1∈Ω1

P (Ω1 = ω1) · Q1+

(u1,D1) +
∑

ω1∈Ω1

P (Ω1 = ω1) · Q2−(r1, l1, ρ2)

= max
u1,r1,l1

∑

ω1∈Ω1

P (Ω1 = ω1) · [Q1+

(u1,D1) + Q2−(r1, l1, ρ2)]

(1)

s.t. M1 −
∑

f∈DC

F 1
f · u1

f −
∑

i∈I1

r1
i +

∑

i∈B1

l1i ≥ 0 (2)

u1
f ∈ {0; 1} ∀f ∈ DC

r1
i ≥ 0 ∀i ∈ I1

l1i ≥ 0 ∀i ∈ B1 (3)

The objective function (1) emphasizes our goal of maximizing not only the gain in the end of

period 1 but also in the subsequent stages. Equation (2) represents the budget constraint for

the first stage. The exogenous budget added to the loans starting in this moment give the

available budget for period one which should be spent opening the facilities and eventually

making other investments.

15



deterministic

data

ω1 = 1

ω2 = 1

ω2 = 2

ω2 = 3

ω1 = 2

ω2 = 1

ω2 = 2

ω3 = 1

ω3 = 2

ω3 = 3

ω2 = 3

ω1 = 3 ω2 = 1

ω2 = 2

ω2 = 3

t: 1− 1+ 2− 2+ 3− 3+

Figure 2: Scenario tree with three periods and three events for each period.

End of period 1

Considering the location decisions made in the beginning of period one, as soon as demand

is disclosure, we can supply it from the operating facilities. Since we do not know in advance

which event will occur (and thus demand and return rates are uncertain), we make this

decision dependent on the possible events ω1 ∈ Ω1 . Moreover, as it was mentioned in section

2 we assume that all the costs and revenues are computed in the end of the time period. The

problem we have to solve is the following:

Q1+

(u1,D1) = max
x1

f,c,p

∑

f∈DC

∑

c∈C

∑

p∈P

(R1
c,p − V 1

f,c,p) · x
1
f,c,p · (1 + ROI)T−1 (4)
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s.t.
∑

p∈P

µp

∑

c∈C

x1
f,c,p ≤ K

1
f · u1

f ∀f ∈ DC (5)

∑

p∈P

µp

∑

c∈C

x1
f,c,p ≥ K1

f · u1
f ∀f ∈ DC (6)

∑

f∈DC

x1
f,c,p ≤ D1

c,p ∀c ∈ C, ∀p ∈ P (7)

x1
f,c,p ≥ 0 ∀f ∈ DC, ∀c ∈ C, ∀p ∈ P (8)

Constraints (5) and (6) are capacity and minimum throughput constraints. A delivery is

possible, if the related facility is operating, but must fall within specified limits. Inequalities

(7) limits the deliveries to the amounts demanded by the customers.

Period t ∈ {2, ...,T − 1}

The reasoning presented above proceeds throughout the planning horizon. At the beginning of

the t-th period, the rate of return of the investments of the previous period become known and

new operating and investment decision are to be made. Therefor, the following subproblem

has to be considered in the beginning of time period t ∈ {2, ..., T − 1}:

Qt−(r1, ..., rt−1, l1, ..., lt−1, ρt−1)

= max
ut,rt,lt

E[Qt+(ut,D t(Ω t))] + E[Q(t+1)−(rt, lt,ρt(Ω t))]

= max
ut,rt,lt

∑

ωt∈Ωt

P (Ω t = ωt) · [Qt+(ut,Dt) + Q(t+1)−(rt, lt, ρt)]

(9)

s.t. M t −
∑

f∈DC

F t
f · ut

f −
∑

i∈It

rt
i +

∑

i∈Bt

lti +
t−1
∑

τ=1

(

∑

i∈Iτ

ρt−1
i · rτ

i −
∑

i∈Bτ

ηt−1
i · lτi

)

≥ 0 (10)

ut
f ∈ {0; 1} ∀f ∈ DC

rt
i ≥ 0 ∀i ∈ It

lti ≥ 0 ∀i ∈ Bt (11)

Taking the decisions made in the beginning of the t-th period (and, consequently, the decisions

prior to those), the demand of customers at the end of this period can be satisfied from the

operating facilities. So, the subproblem to be solved in the end of period t ∈ {2, ..., T − 1}
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can be generically stated as:

Qt+(ut,Dt(ωt)) = max
xt

f,c,p

∑

f∈DC

∑

c∈C

∑

p∈P

(Rt
c,p − V t

f,c,p) · x
t
f,c,p · (1 + ROI)T−t (12)

s.t.
∑

p∈P

µp

∑

c∈C

xt
f,c,p ≤ K

t

f · ut
f ∀f ∈ DC (13)

∑

p∈P

µp

∑

c∈C

xt
f,c,p ≥ Kt

f · ut
f ∀f ∈ DC (14)

∑

f∈DC

xt
f,c,p ≤ Dt

c,p ∀c ∈ C, ∀p ∈ P (15)

xt
f,c,p ≥ 0 ∀f ∈ DC, ∀c ∈ C, ∀p ∈ P (16)

Remark 1 Note that subproblem Qt−(r1, ..., rt−1, l1, ..., lt−1, ρt−1) has to be solved for every

combination of events ω1 ∈ Ω1 , ..., ωt−1 ∈ Ω t−1 , while a subproblem Qt+(ut,Dt(ωt)) occurs

for every combination of ω1 ∈ Ω1 , ..., ωt ∈ Ω t .

Period T

At the beginning of the last period, the structure of the subproblems is still the same:

QT−

(r1, ..., rT−1, l1, ..., lT−1, ρT−1)

= max
uT ,rT ,lT

E[QT+

(uT ,DT (ΩT))]

= max
uT ,rT ,lT

∑

ωT ∈ΩT

P (ΩT = ωT ) · QT+

(uT ,DT )

(17)

s.t. MT −
∑

f∈DC

F T
f · uT

f −
∑

i∈IT

rT
i +

∑

i∈BT

lTi

+

T−1
∑

τ=1

(

∑

i∈Iτ

ρT−1
i · rτ

i −
∑

i∈Bτ

ηT−1
i · lτi

)

≥ 0 (18)

uT
f ∈ {0; 1} ∀f ∈ DC

rT
i ≥ 0 ∀i ∈ IT

lTi ≥ 0 ∀i ∈ BT (19)
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The subproblems that refer to the end of the planning horizon become enlarged according to:

QT+

(uT ,DT ) = max
xT

f,c,p
,αc,d

∑

f∈DC

∑

c∈C

∑

p∈P

(RT
c,p − V T

f,c,p) · x
T
f,c,p +

∑

c∈C

βc · αc + γ · d

+

T
∑

τ=1

(

∑

i∈Iτ

ρT
i · rτ

i −
∑

i∈Bτ

ηT
i · lτi

)
(20)

s.t. d ≥ 1 −

∑

t∈T

(
∑

i∈It

ρT
i · rt

i −
∑

i∈Bt

ηT
i · lti +

∑

f∈DC

∑

c∈C

∑

p∈P

(Rt
c,p − V t

f,c,p) · x
t
f,c,p · (1 + ROI)T−t

)

∑

t∈T

M t
· (1 + ROI)T−t+1

(21)

∑

p∈P

µp

∑

c∈C

xT
f,c,p ≤ K

T

f · uT
f ∀f ∈ DC (22)

∑

p∈P

µp

∑

c∈C

xT
f,c,p ≥ KT

f · uT
f ∀f ∈ DC (23)

∑

f∈DC

xT
f,c,p ≤ DT

c,p ∀c ∈ C, ∀p ∈ P (24)

∑

t∈T

∑

f∈DC

∑

p∈P

xT
f,c,p ≥ αc

∑

t∈T

∑

p∈P

Dt
c,p ∀c ∈ C (25)

xT
f,c,p ≥ 0 ∀f ∈ DC, ∀c ∈ C, ∀p ∈ P

αc ∈ [0; 1] ∀c ∈ C

d ≥ 0 (26)

The objective function (20) contains additional terms concerning the final interest rates, the

service level and the downside risk. Beside the capacity constraints (22) and (23), and the

restriction on demand (24), we have to consider inequality (21), that restricts the downside

risk to the rate we missed the target return on investment for the money we got from our

investors. Constraints (25) determine the service level for each customer on the whole time

horizon.

Remark 2 Subproblems QT−

(r1, ..., rT−1, l1, ..., lT−1, ρT−1), at the beginning of period T , has

to be solved for every combination of events ω1 ∈ Ω1 , ..., ωT−1 ∈ ΩT−1 , while QT+

(uT ,DT (ωT ))

occurs for every combination of ω1 ∈ Ω1 , ..., ωT ∈ ΩT .

In comparison to most of the multi-stage stochastic models which have been considered in

the literature so far, all variables in all periods somehow interact and it is not possible to

reformulate this problem and to solve it recursively (e.g. using dynamic programming). In
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Figure 3: Interactions between variables and stages.

order to get a deeper understanding of the relationships between the different stages and

variables, they are depicted in Figure 3.

The location decisions immediately determine the delivery decisions in the next stage.

Furthermore, they will, together with the investment decisions, limit the available money for

all the subsequent location and investment decisions. The service level, at the end of the time

horizon is based upon the delivery decisions throughout the planning horizon. The downside

risk depends on all decisions made from beginning to end but excluding the service level.

Our model does not consider explicitly any non-anticipativity constraints. However, since

any decision made in some stage will be fixed for every event (and decisions related with

these events), the variables implicitly comprise the non-anticipativity principle. This inhibits

an immediate decomposition of SCNDMSFR into deterministic subproblems, one for each

scenario.

Since location variables (and therefore integer variables) appear in stages beyond the first,

the objective function becomes a weighted average of non-convex, non-differentiable functions.

This will prevent any straightforward adaptation of existing solution algorithms for two-stage

stochastic linear programming. For instance, a nested Benders decomposition is not achievable

(see Carøe and Schultz [6] and Mitra et al. [25] for further details).
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Note that we are dealing with a problem which does not have fixed recourse. In fact, for

instance in the budget constraints we find random coefficients associated with the decision

variables associated with the investments.

Regrettably, most of our decision variables appear in constraints associated to multiple

stages and interact with the decisions therein. As we saw, the constraints defining the down-

side risk and the service-level comprise decisions for all stages and make it impossible to

pull some of the variables together into an aggregated first stage, while some detailed level

decisions may be put into a second stage.

Although not having fixed recourse, SCNDMSFR has complete recourse because every

feasible solution for a subproblem has a feasible completion in the following stages. This is a

feature that may be advantageous from a computational point of view.

The extensive form of this problem formulation may be helpful to make SCNDMSFR more

manageable and to gather more information about it. The interested reader can find this

formulation in appendix A.

4 Path-based formulation

The formulation presented so far to SCNDMSFR has the great advantage of clearly highlight-

ing the structure of the problem and the relations between the different decisions involved.

In this section we propose a more compact formulation to the problem which makes it more

suited for being implemented and being handled by a general solver. Furthermore, this formu-

lation will be more appropriate to develop special algorithms which take the special structure

of the problem into account. The new formulation we propose is based upon the paths in the

scenario tree.

Before introducing the new formulation we consider the following additional notation:
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St = Ω1 ×Ω2 × ... ×Ω t : Set of potential sequences of events until period

t ∈ T . (=̂ Set of paths in the scenario tree from

the root node to a node in period t.)

st ∈ St = (ω1, ..., ωt) : Path of events from the root node to one particular

node in period t.

s0 : Root node (e.g. initial situation).

sT : Path of events from the root node to a leaf node,

e.g. a scenario.

pathst = {s0, s1, . . . st} : Set of all (sub)paths sτ (τ ≤ t) which are part of

the path st.

P (S t = st) : Probability that the sequence of events will lead us

through the path st.

I ′ = I ∪ B : This will be the set of investments available which

now also comprise loans.

I ′t = It ∪ Bt : Set of investments available in period t ∈ T .

r′ti (st−1) : Amount of money spent or obtained (depending on

the case) in investment i ∈ I ′t given that the set

of events occurring until the beginning of period

t ∈ T is defined by path st−1.

r′t(st−1) =
(

r′t
i∈I′t(st−1)

)

r′ = (r′1(s0), ..., r′T (sT−1))

ιti : Interest rate of an investment i ∈ I ′τ , τ ≤ t, that

has to be paid in the end of period t ∈ T .

u = (u1(s0), ..., uT (sT−1))

x = (x1(s1), ..., xT (sT ))

Gt
f,c,p : Unitary profit for shipping one unit of product p ∈

P from facility f ∈ DC to customer c ∈ C in period

t ∈ T . This value is considered reported to the end

of the planning horizon.

A : Total exogenous budget reported to the end of the

planning horizon.

According to the definitions we have:

P (S t = st) =

t
∏

τ=1

P (Ωτ = ωτ ), t ∈ T (27)
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Gt
f,c,p = (Rt

c,p − V t
f,c,p) · (1 + ROI)T−t, p ∈ P, f ∈ DC, c ∈ C, t ∈ T (28)

A =
T

∑

t=1

M t · (1 + ROI)T−t+1 (29)

Considering the new notation as well as much information presented in the previous

section, we can now formulate the problem as follows:

max
u,r′,x,α,d

∑

t∈T

∑

st∈S t

P (S t = st) ·

[

∑

f∈DC

∑

c∈C

∑

p∈P

Gt
f,c,p · x

t
f,c,p(s

t)

]

+
∑

sT∈ST

P (ST = sT ) ·

[

∑

c∈C

(

βc · αc(s
T )

)

+ γ · d(sT )

+
∑

t∈T

∑

st−1∈path
sT

(

∑

i∈I′t

ιT+1
i (sT ) · r′ti (st−1)

)]

(30)

s.t.

M1 −
∑

f∈DC

F 1
f · u1

f (s0) −
∑

i∈I′1

r′1i (s0) ≥ 0

M t −
∑

f∈DC

F t
f · ut

f (st−1) −
∑

i∈I′t

r′ti (st−1) +
t−1
∑

τ=1

∑

i∈I′τ

ιti(s
t−1) · r′τi (sτ−1) ≥ 0

∀t ∈ T \ {1}, ∀st−1 ∈ S t−1 , sτ ∈ pathst−1

A · d(sT ) ≥ A −
∑

t∈T

(

∑

i∈I′t

ιT+1
i (sT ) · r′ti (st−1) +

∑

f∈DC

∑

c∈C

∑

p∈P

Gt
f,c,p · x

t
f,c,p(s

t)

)

∀sT ∈ ST , st ∈ pathsT

∑

t∈T

∑

f∈DC

∑

p∈P

xt
f,c,p(s

t) ≥ αc(s
T )

∑

t∈T

∑

p∈P

Dt
c,p(s

t) ∀sT ∈ ST , ∀c ∈ C, st ∈ pathsT

∑

p∈P

µp

∑

c∈C

xt
f,c,p(s

t) ≤ K
t

f · ut
f (st−1) ∀t ∈ T , ∀st ∈ S t , ∀f ∈ DC, st−1 ∈ pathst

∑

p∈P

µp

∑

c∈C

xt
f,c,p(s

t) ≥ Kt
f · ut

f (st−1) ∀t ∈ T , ∀st ∈ S t , ∀f ∈ DC, st−1 ∈ pathst

∑

f∈DC

xt
f,c,p(s

t) ≤ Dt
c,p(s

t) ∀t ∈ T , ∀st ∈ S t , ∀c ∈ C, ∀p ∈ P

ut
f (st−1) ∈ {0; 1} ∀t ∈ T , ∀st−1 ∈ S t−1 , ∀f ∈ DC
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r′ti (st−1) ≥ 0 ∀t ∈ T , ∀st−1 ∈ S t−1 , ∀i ∈ I ′t

xt
f,c,p(s

t) ≥ 0 ∀t ∈ T , ∀st ∈ S t , ∀f ∈ DC, ∀c ∈ C, ∀p ∈ P

αc(s
T ) ∈ [0; 1] ∀c ∈ C, ∀sT ∈ ST

d(sT ) ≥ 0 ∀sT ∈ ST

Not only is this formulation more compact than the one presented in the previous section

but also it is more attractive for developing specially tailored procedures for SCNDMSFR.

For instance, by relaxing the appropriate sets of constraints we may easily split the problem

into different scenarios or into different time periods.

5 The relevance of using a stochastic approach

One important issue arising when a stochastic programming approach is considered for an

optimization problem under uncertainty regards the evaluation of the advantages of consid-

ering such approach in comparison with more ‘simplified’ methodologies. With this purpose,

we propose that the optimal value of a deterministic problem derived from the stochastic one

is considered as explained below.

Assume, that all the data are given, as described in the sections above. If the problem

should be model as a deterministic problem, one would have to compute the expected inter-

est rates E[ιti (S
t)] and expected demands E[D t

c,p(S
t)], first. Afterwards, the deterministic

problem can be formulated according to:

max
u,r,x,α,d

∑

t∈T

∑

f∈DC

∑

c∈C

∑

p∈P

Gt
f,c,p · x

t
f,c,p +

∑

c∈C

βc · αc + γ · d +
∑

t∈T

∑

i∈I′t

E[ιti (S
t)] · r′ti (31)

s.t.

M1 −
∑

f∈DC

F 1
f · u1

f −
∑

i∈I′1

r′1i ≥ 0

M t −
∑

f∈DC

F t
f · ut

f −
∑

i∈I′t

r′ti +
t−1
∑

τ=1

∑

i∈I′τ

E[ιti (S
t)] · r′τi ≥ 0 ∀t ∈ T \ {1}

A · d ≥ A −
∑

t∈T

(

∑

i∈I′t

E[ιti (S
t)] · r′ti +

∑

f∈DC

∑

c∈C

∑

p∈P

Gt
f,c,p · x

t
f,c,p

)
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∑

t∈T

∑

f∈DC

∑

p∈P

xt
f,c,p ≥ αc

∑

t∈T

∑

p∈P

E[D t
c,p(S

t)] ∀c ∈ C

∑

p∈P

µp

∑

c∈C

xt
f,c,p ≤ K

t

f · ut
f ∀t ∈ T , ∀f ∈ DC

∑

p∈P

µp

∑

c∈C

xt
f,c,p ≥ Kt

f · ut
f ∀t ∈ T , ∀f ∈ DC

∑

f∈DC

xt
f,c,p ≤ E[D t

c,p(S
t)] ∀t ∈ T , ∀c ∈ C, ∀p ∈ P

ut
f ∈ {0; 1} ∀t ∈ T , ∀f ∈ DC

r′ti ≥ 0 ∀t ∈ T , ∀i ∈ I ′t

xt
f,c,p ≥ 0 ∀t ∈ T , ∀f ∈ DC, ∀c ∈ C, ∀p ∈ P

αc ∈ [0; 1] ∀c ∈ C

d ≥ 0

Naturally, the result of this problem can not immediately be compared with the stochastic so-

lution. In fact the delivery-decisions may provide more than the costumers’ demands and the

investment decisions may budget too much or not enough money, so that not all constraints

will be satisfied in every scenario. Additionally, the deterministic model may underestimate

the downside-risk.

For these reasons, one can use the model above to set the location and investment decisions

and adapt the transportation decisions and additional investment decisions, as soon as the

real demands and interest rates become known.

In doing so, we solve SCNDMSFR with fixed location and investment decisions again, but al-

low investing additional money in the worst investment and adapt the optimal transportation

decisions for all scenarios. In our opinion, the objective value of this approach is a realistic

deterministic equivalent to the stochastic solution.

Once we have solved the deterministic problem, we consider the relative value of the multi-

stage stochastic solution (RV MS) with respect to the deterministic solution as a measure of

the relevance of using a stochastic approach:

RV MS =
QMSS − QDET

QDET
. (32)

QDET denotes the optimal objective value of the deterministic problem (more precisely of

the stochastic problem with fixed location and investment decisions) and QMSS the optimal

value of the multi-stage stochastic program.
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In order to receive an impression about how different the solutions provided by the multi-

stage stochastic programming approach and by the deterministic one may be, we present the

results for one instance of a small problem with 3 periods, 5 potential locations, 20 customers,

8 investments and three stochastically independent events for each period. In total we have

27 different scenarios. All data are generated as it is described in appendix B. First, we do

not allow loans and interpret the results. This allow us to focus our attention on the location

decisions. The results of this case are depicted in Figures 4, 5 and 6. Afterwards, we will add

the possibility of loans to this instance and solve it again in order to highlight the importance

of softening the common usage of fixed budget constraints.

Deterministic program

Multi-stage stochastic program

Figure 4: Example, period 1, no loans

In this example, the stochastic solution tends to open more facilities and to satisfy more de-

mand in the first period (Figure 4). This is because forecast uncertainty for demand increases

,and so the variation in the optimal location decisions for individual scenarios decreases, in

time. It is obvious that investment decisions also change based on this observation.

In the deterministic problem, most of the demand will be satisfied in the second stage,

since the expected demand, that can be reached in this period is (by choice) higher than in

the other periods. It must be pointed out that the higher variability in this period has no

impact on the deterministic decision, but on the stochastic one, were less facilities are located

in this uncertain environment (Figure 5).

In both approaches only one DC is opened in the third period, but there is also a difference

remarkable (Figure 6). The deterministic approach will always open the same facility, since

this one guarantees the highest expected profit. In contrast, the stochastic approach will open

one of two different facilities, depending on the scenario, and so depending on the demand
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Deterministic program

Multi-stage stochastic program

Figure 5: Example, period 2, no loans

which we have already satisfied and the profit which we have already made.

The objective value of the multi-stage stochastic model is QMSS = 184658, while the objective

value of the deterministic problem is QDET = 182561. Thus,

RV MS =
184658 − 182561

182561
= 1.149%.

Note that the objective value of the deterministic model before adapting the transportation

and investment decisions to the scenarios is 184537. It overestimates the real objective value,

that can be reached by its location decisions, by 1.08%.

Assume now that we have also loans available. In particular we consider 3 loans. The

deterministic solution does not change, because the expected rates of the investments are

below the rates of the loans (otherwise, the problem will lead to a trivial solution) and it

is (by choice) not profitable to open an additional facility with this additional money. The

stochastic model takes advantage of some loans and combines them with some investments

with different durations. In doing so, the available budget increases and the location decisions

change (two and in some scenarios even three facilities will be opened in period two and three).

Therefore a much higher objective value can be reached (QMSS = 203747) and the relative

value of the multi-stage stochastic solution increases significantly: RV MS = 11.605%.
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Deterministic program

Multi-stage stochastic program

Figure 6: Example, period 3, no loans

6 Computational Results

In order to evaluate the possibility of solving SCNDMSFR, we run a series of computational

tests.
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We considered the more compact formulation presented for the problem i.e., the path-

based formulation proposed in the previous section. The model was implemented using the

C++ optimization modeling library and interface ILOG Concert Technology. A variety of

test problems was solved with ILOG CPLEX 11.2, on a Intel Core 2 PC with two 1.86 GHz

processors and 2GB RAM. Single-core computing was used.

We consider problem instances with T = 3 periods, 5 potential locations, 20 customers,

8 different investments (that vary in their duration), returns and variability. Furthermore,

we consider 3 different loans, each of them starting at the beginning of a different period.

We considered three and nine stochastically independent events for each period, respectively

which led to | ST |= 27 and | ST |= 729 scenarios, respectively. In the first case, instances

with 3623 constraints and 9265 variables (56000 non-zeros on average and 65 binary variables)

were obtained. In the second situation we got instances with 56441 constraints and 172574

variables (more than 1.3 million non-zeros and 455 binary variables).

We generated n = 300 instances for the 27 scenario-case and n = 30 for the 729 scenario

case. Details concerning the generation of the data can be found in B.

For all instances, not only SCNDMSFR was considered but also the deterministic problem

associated as described in the previous section. The computation time consist not only of the

time to solve the problem, but also of the time to create the model. In all tests, a time limit

of three hours was considered.

The computational results of all instances are summarized in Table 1 for the 27 scenario-

case and Table 2 for the 729 scenario-case, respectively. As described below, we were not able

to solve every instance of the multi-stage stochastic program within the time limit. Therefore,

we report the GAP after three hours. RV MS denotes the relative value of the stochastic

solution, as it is discussed in section 5. If we were not able to compute the optimal solution

within the time limit, the best solution we found so far is used to compute this value.

Deterministic program Multi-stage stochastic program

Time GAP Time RV MS

Average 0.5s 0.0000 195.3s 0.32%

Max. 2.3s 0.0000 8571.6s 2.71%

Table 1: Results, | ST |= 27

As expected, the computation times for the multi-stage stochastic program are much

higher than in the deterministic case. Anyhow, we were able to solve all instances with 27

scenarios in less than three hours. In the considerably larger case of 729 scenarios, 22 of

30 instances were solved within the time limit. The GAP is smaller than 0.05% in 5 of the
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Deterministic program Multi-stage stochastic program

Time GAP Time RV MS

Average 1.2s 0.0003 4207.3s 0.92%

Max. 29.9s 0.0019 10800s 2.67%

Table 2: Results, | ST |= 729

remaining 8 instances and less than 0.2% in the worst 3 cases.

The solution, found within the time limit, was better than the optimal solution of the deter-

ministic model in 245 of 300 and all cases, respectively. The improvement was higher than

1% in 17 cases and almost higher than 2% in 4 cases of the 27 scenario instances. 15 of 30

instances with 729 scenarios improved the deterministic solution more than 1% and in 2 cases

even more than 2%. As a result, we can summarize, that a remarkable improvement can be

achieved, if multi-stage stochastic aspects are considered in SCND. If real-world instances

are too large to ensure finding the optimal solution with standard solvers like CPLEX, in

reasonable time, it is possible to find good feasible solutions, which adapt much better to the

future than deterministic models do.

7 Conclusion

In this paper, a supply chain network design problem was studied. In addition to common

decisions in these type of problems we included financial decisions with relevance for a com-

pany managing a supply chain. The goal is to maximize the net financial benefit. Revenues

were taken into account as well as a target for the return on investment and a risk measure

associated with the possibility of falling below that target. Due to the uncertainty in the

demand the service level is measured and included in the objective function. A mixed-integer

multi-stage stochastic programming formulation was proposed. The deterministic equivalent

was presented as well as an alternative formulation based upon the paths in the scenario

tree. The relevance of considering stochasticity was discussed and illustrated with a small

example. The computational results obtained using a set of randomly generated instances

show that the modeling framework proposed in this paper is promising for dealing with multi-

period supply chain network design problems. Moreover, the computational results also open

good perspectives in terms of the development of more comprehensive models. Regarding the

methodologies for solving these type of problems new directions are also opened with this

work.

30



A Extensive Form

max
u1,...,uT ,r1,...,rT ,l1,...,lT ,x1

f,c,p
,...,xT

f,c,p
,αc,d

∑

ω1∈Ω1

P (Ω1 = ω1) ·

[

∑

f∈DC

∑

c∈C

∑

p∈P

(R1
c,p − V 1

f,c,p) · x
1
f,c,p · (1 + ROI)T−1

+
∑

ω2∈Ω2

P (Ω2 = ω2) ·

[

∑

f∈DC

∑

c∈C

∑

p∈P

(R2
c,p − V 2

f,c,p) · x
2
f,c,p · (1 + ROI)T−2 + . . .

+
∑

ωt∈Ω t

P (Ω t = ωt) ·

[

∑

f∈DC

∑

c∈C

∑

p∈P

(Rt
c,p − V t

f,c,p) · x
t
f,c,p · (1 + ROI)T−t + . . .

+
∑

ωT ∈ΩT

P (ΩT = ωT ) ·

[

∑

f∈DC

∑

c∈C

∑

p∈P

(RT
c,p − V T

f,c,p) · x
T
f,c,p

+
∑

c∈C

βc · αc + γ · d +
T

∑

τ=1

(

∑

i∈Iτ

ρT
i · rτ

i −
∑

i∈Bτ

ηT
i · lτi

)]

. . .

]

(33)

s.t.

M1 −
∑

f∈DC

F 1
f · u1

f −
∑

i∈I1

r1
i +

∑

i∈B1

l1i ≥ 0

M2 −
∑

f∈DC

F 2
f · u2

f −
∑

i∈I2

r2
i +

∑

i∈B2

l2i +
∑

i∈I1

ρ1
i · r

1
i −

∑

i∈B1

η1
i · l1i ≥ 0 ∀ω1 ∈ Ω1

...

MT −
∑

f∈DC

F T
f · uT

f −
∑

i∈IT

rT
i +

∑

i∈BT

lTi +
T−1
∑

τ=1

(

∑

i∈Iτ

ρT−1
i · rτ

i −
∑

i∈Bτ

ηT−1
i · lτi

)

≥ 0

∀ω1 ∈ Ω1 , . . . , ∀ωT−1 ∈ ΩT−1

d ≥ 1 −

∑

t∈T

(

∑

i∈It

ρT
i · rt

i −
∑

i∈Bt

ηT
i · lti +

∑

f∈DC

∑

c∈C

∑

p∈P

(Rt
c,p − V t

f,c,p) · x
t
f,c,p · (1 + ROI)T−t

)

∑

t∈T

M t
· (1 + ROI)T−t+1

∀ω1 ∈ Ω1 , . . . , ∀ωT ∈ ΩT

∑

t∈T

∑

f∈DC

∑

p∈P

xt
f,c,p ≥ αc

∑

t∈T

∑

p∈P

Dt
c,p ∀c ∈ C, ∀ω1 ∈ Ω1 , . . . , ∀ωT ∈ ΩT
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∑

p∈P

µp

∑

c∈C

x1
f,c,p ≤ K

1
f · u1

f ∀f ∈ DC, ∀ω1 ∈ Ω1

∑

p∈P

µp

∑

c∈C

x1
f,c,p ≥ K1

f · u1
f ∀f ∈ DC, ∀ω1 ∈ Ω1

∑

p∈P

µp

∑

c∈C

x2
f,c,p ≤ K

2
f · u2

f ∀f ∈ DC, ∀ω1 ∈ Ω1 , ∀ω2 ∈ Ω2

∑

p∈P

µp

∑

c∈C

x2
f,c,p ≥ K2

f · u2
f ∀f ∈ DC, ∀ω1 ∈ Ω1 , ∀ω2 ∈ Ω2

...
∑

p∈P

µp

∑

c∈C

xT
f,c,p ≤ K

T

f · uT
f ∀f ∈ DC, ∀ω1 ∈ Ω1 , . . . , ∀ωT ∈ ΩT

∑

p∈P

µp

∑

c∈C

xT
f,c,p ≥ KT

f · uT
f ∀f ∈ DC, ∀ω1 ∈ Ω1 , . . . , ∀ωT ∈ ΩT

∑

f∈DC

x1
f,c,p ≤ D1

c,p ∀c ∈ C, ∀p ∈ P, ∀ω1 ∈ Ω1

∑

f∈DC

x2
f,c,p ≤ D2

c,p ∀c ∈ C, ∀p ∈ P, ∀ω1 ∈ Ω1 , ∀ω2 ∈ Ω2

...
∑

f∈DC

xT
f,c,p ≤ DT

c,p ∀c ∈ C, ∀p ∈ P, ∀ω1 ∈ Ω1 , . . . , ∀ωT ∈ ΩT

αc ∈ [0; 1] ∀c ∈ C, ∀ω1 ∈ Ω1 , . . . , ∀ωT ∈ ΩT

d ≥ 0 ∀ω1 ∈ Ω1 , . . . , ∀ωT ∈ ΩT

u1
f ∈ {0; 1} ∀f ∈ DC

r1
i ≥ 0 ∀i ∈ I1

l1i ≥ 0 ∀i ∈ B1

x1
f,c,p ≥ 0 ∀f ∈ DC, ∀c ∈ C, ∀p ∈ P, ∀ω1 ∈ Ω1

u2
f ∈ {0; 1} ∀f ∈ DC, ∀ω1 ∈ Ω1

r2
i ≥ 0 ∀i ∈ I2, ∀ω1 ∈ Ω1

l2i ≥ 0 ∀i ∈ B2, ∀ω1 ∈ Ω1
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x2
f,c,p ≥ 0 ∀f ∈ DC, ∀c ∈ C, ∀p ∈ P, ∀ω1 ∈ Ω1 , ∀ω2 ∈ Ω2

...

uT
f ∈ {0; 1} ∀f ∈ DC, ∀ω1 ∈ Ω1 , . . . , ∀ωT−1 ∈ ΩT−1

rT
i ≥ 0 ∀i ∈ I3, ∀ω1 ∈ Ω1 , . . . , ∀ωT−1 ∈ ΩT−1

lTi ≥ 0 ∀i ∈ B3, ∀ω1 ∈ Ω1 , . . . , ∀ωT−1 ∈ ΩT−1

xT
f,c,p ≥ 0 ∀f ∈ DC ∀c ∈ C, ∀p ∈ P, ∀ω1 ∈ Ω1 , . . . , ∀ωT ∈ ΩT

B Data

The data for the test instances were generated as follows:

• 3 periods.

• 5 potential locations.

• 20 customers.

• 8 investments.

• 0 and 3 loans, respectively.

• 3 and 9 stochastically independent events for each period, respectively.

• The fixed cost for operating a facility are all set to 21000 monetary units per period.

• The transportation costs for product 1 (2) are set to 0.025 (0.05) monetary units per

unit and distance unit.

• The customers and the potential facilities are randomly located on a square of (100×100)

distance units according to a uniform distribution.

• The unitary revenue of product 1 (2) is set to 2.5 (2.75) monetary units. This revenue

is assumed to be equal for every customer and every period.

• Every operating facility has a minuimum throughput of 500 and the maximum capacity

is 15000 per period.

• The unit capacity consumption factor of product 1 (2) is 1 (1.5).

• The exogenous budget at the beginning of period 1 is set to 10000, of period 2 to 60000

and of period 3 to 30000.
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• The interest rates depend on the duration of the loans and vary between 7.5% and 8.5%.

• In every period, there is always one agreed investment which pays a fixed rate on return.

This rate depends on the duration again and varies between 4.5% and 6%. All other

investments have uncertain rates on return, which are generated by normal distributions.

Depending on their risk, the distributions rage from N (0.04, 0.01) to N (0.065, 0.02).

• The target ROI is fixed to 20%.

• The weights are all set to the same value for all customers (unweighted case) and are

used just to scale the service level. Therefore, they are set to the sum of exogenous

budget divided through the number of customers.

• The weight for the downside risk is set to the sum of exogenous budget.

• Demands are generated according to an auto-regressive processes:

D t
c,p(S

t) := D t−1
c,p (S t−1 ) + ε ∀t ∈ T \ {1},

with D1
c,p(S

1 ) ∼ LN (7, 0.5) and ε ∼ LN (7, 0.5) − 0.9 · E[D1
c,p(S

1 )].

If any realization becomes negative, it is set to zero.

• The probabilities for the events depend on the number of scenarios. They vary between

25% and 50% in the cases of 27 scenarios and between 4% and 22% in the 729 scenario-

cases.
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