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Chapter 1

General Introduction

In this chapter a general overview of a meshfree coupled model of Compu-
tational Fluid Dynamics (CFD) and Population Balance Equation (PBE) is
provided.

1.1 Overview

This thesis is concerned with the coupling of fluid dynamics equations and
population balance modelling for a liquid-liquid extraction column (see Fig-
ure 1.1) in a mesh free framework. Liquid-liquid Extraction Columns (LLEC)
are one of the major multiphase contacting equipment that received a wide
industrial acceptance in many fields of engineering such as hydrometallur-
gical, nuclear, petrochemical, pharmaceutical, and food industries. These
equipments are characterized by the presence of a continuous phase and
a dispersed phase composed of particles (the particles are supposed to be
drops or bubbles in the liquid-liquid extraction columns) with a distribution
of properties. However, the optimal design of such equipment has not yet
been fulfilled and is still dependent on the time consuming and expensive
scale up methods. This is due to the complex nature of the macroscopic dis-
persed phase interactions as well as the microscopic inter phase mass transfer
occurring in the continuously turbulent flow field. These macroscopic inter-
actions such as droplet breakage and coalescence coupled with the interphase
mass transfer result in a distributed population of droplets. This population
is distributed not only in the spatial domain of the contacting equipment,
but also randomly distributed with respect to the droplet state (properties)
such as size, concentration and age. The hydrodynamic and mass transfer
interactions could be simulated using the population balances as an effective
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2 CHAPTER 1. GENERAL INTRODUCTION

framework taking into account the bivariate nature (with respect to droplet
size and concentration) of the spatially distributed population in the inter-
acting liquid-liquid dispersions. So, in contrast to the previous spatially dis-
tributed population balance equation (SDPBE) describing the performance
of the LLECs [1, 2], this modeling approach allows the dynamic interaction
of the mass transfer and fluid hydrodynamics by leaving it open to introduce
a suitable model for predicting the interfacial tension, which changes with
the mass transfer and markedly affects the breakage and coalescence rates
[3].

Figure 1.1: Rotating disc contactor (RDC).

In the simulation and layout of liquid-liquid extraction columns the dispersed
phase is classically assumed as a pseudo homogeneous phase, where one pa-
rameter accounts for all deviations from the ideal plug flow behaviour. Fur-
thermore, the accurate prediction of the dispersed phase evolution depends
strongly on the proper modelling of the continuous flow fields and hydro-
dynamics in which the droplets are dispersed. Up to now the design of an
extraction column without experimental pilot plant experiments has not been
feasible. In current droplet Population Balance Model (PBM) codes [4], the
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dispersion model is still used for the description of the hydrodynamics and
results from small scale devices (single droplet experiments) are needed to
predict the average diameter, number density and hold-up profiles [5, 45]. On
the other hand, Computational Fluid Dynamics (CFD), based on a mono-
disperse assumption, can predict the flow fields and hydrodynamics in a
stirred liquid-liquid extraction column and deliver all necessary information
for the population balance model [7, 8]. In order to properly model hydrody-
namics and mass transfer interactions in an extraction column without the
need for pilot plant or small scale device experiments, the population bal-
ance must be coupled with turbulent CFD modelling. Only a few researchers
investigated combined CFD-PBM models in the field of liquid-liquid extrac-
tion so far and achieved encouraging results for the combined models [9, 10].
Hence, the work during this thesis focuses on a combined CFD and PBM to
advance in this promising field of research.

In this study we use a meshfree Lagrangian method, called the Finite Pointset
Method (FPM) to solve the model equations. Our main goal is to incorpo-
rate the PBM into the FPM code. We first start filling the fluid domain
with finite number of points (or particles), which are the numerical grids.
These points move with fluid velocities and together with them carry all
fluid quantities, like velocity, density, etc., which are necessary to solve fluid
dynamic equations. One of the most important process of this method is the
maintenance of the good quality of particle distribution. After a movement
of particles, they may scatter from each other and create holes in the com-
putational domain and the method becomes unstable. Therefore, one has to
add new particles if there exists holes. Moreover, particles may come very
close to each other, in this case one can keep one particle and remove the
other closer ones.

In most of the multiphase flows the secondary phase consists normally of
moving bubbles, particles and droplets. Since the FPM is a fully Lagrangian
method, it is a natural choice for the dispersed phase. Moreover, FPM is also
an appropriate numerical method for simulation of, for example, free surface
flows as well as flows with complicated and rapidly changing geometry since
the classical methods like finite difference, finite element and finite volume
methods are quite complicated and time consuming due to reconstruction of
mesh in each time step. A first approach for Lagrangian mesh free method for
solving fluid dynamic equations is the method of Smoothed Particle Hydro-
dynamics (SPH) [11, 12]. SPH was the originally invented to solve problems
in astrophysics without geometry. This method has been further extended
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to solve varieties of problems like compressible flows, incompressible flows,
multiphase flows and others , see papers [13, 14] and references therein. The
main difficulty of SPH is the incorporation of boundary conditions and higher
order spatial derivatives.

Another widely used approach for solving fluid dynamics equations in a mesh-
free framework is the moving least squares (MLS) or weighted least squares
method [15, 16, 17, 18]. With this approach boundary conditions can be
implemented in a natural way just by placing particles on boundaries and
prescribing boundary conditions on them [17].

FPM has already been used in the two-fluid model in a liquid-liquid extrac-
tion column [8]. Furthermore, the mono-variate population balance equation
(MPBE) has been incorporated in the two-fluid model [19, 21], where the
MPBE is solved by the Sectional Quadrature Method of Moments (SQMOM)
[22]. The details of SQMOM is presented in chapter [3].
In this work we have incorporated the mono-variate and the bivariate popu-
lation balance equation (BPBE) in the multi fluid model in one-dimensional
case, where the PBE is solved by the One Primary and One Secondary Par-
ticle Method (OPOSPM) [24] and Multi Primary One Secondary Particle
Method (MPOSPM) [24]. Both of these methods are particular cases of
Sectional Quadrature Method of Moments (SQMOM) [22]. This method
is found to track accurately any set of low-order moments with the ability
to reconstruct the shape of the distribution, so it unites the advantages of
the Method of Classes (MC)[54] and the Quadrature Method of Moments
(QMOM) [32], while it eliminates the drawbacks. The SQMOM is based on
the concept of primary and secondary particles, whereas the primary par-
ticles are responsible for the reconstruction of the distribution (MC), while
the secondary ones are responsible for breakage and coalescence events and
carry information about the distribution (QMOM). As a first attempt in the
coupling procedure, the normal limitation that only one set of Navier-Stokes
equations is solved for all droplets [33] have been retained unchanged.

Some parts of this thesis have been presented in international conferences
and published in proceedings; see [20, 21, 24, 25, 26, 27, 28, 29, 30].
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1.2 Outline of Contents

We start in Chapter [2] with a brief overview of multiphase flow model equa-
tions and numerical approach to solve them. In particular, we focus in section
2.1 on the mathematical model and the existing schemes for solving the Pop-
ulation Balance Equation (PBE). One Primary and One Secondary Particle
Method (OPOSPM) and Multi Primary and One Secondary Particle Method
(MPOSPM) are addressed. At this point it is shown how the mathematical
model can be reduced to a simple form. Next we present the Finite Pointset
Method (FPM) and least square approxmation to evaluate the spatial deriva-
tives of a function. Furthermore, the idea of applying the FPM to the model
equations is also discussed.

In Chapter [3], the formulation of population balance equation is discussed.
We are primarily concerned with the analytical method to solve PBE and
then the overview of numerical methods to solve PBE are discussed followed
by the numerical results. The numerical results of PBE are validated with an-
alytical solution of PBE in some particular cases. The comparison of numeri-
cal methods are discussed on the basis of accuracy, efficiency and complexity.

Chapter [4] presents the numerical results of CFD-PBMmodel. Mono-variate
PBE is considered and the hydrodynamics of the model is provided. FPM-
OPOSPM and FPM-MPOSPM solvers are discussed. In first section the re-
sults are provided for FPM-OPOSPM solver in the case of different breakage
and coalescence kernels then the results are validated with the experimental
data for pilot plants column and for the Kuehni column. In second section,
the results of FPM-MPOSPM solver is shown. In the case of constant and
non-constant breakage and coalescence kernels the results for both solvers
are compared. Finally a three-fluid model is discussed and shown the better
accuracy in the case of more turbulence.

We then proceed to consider the bivariate PBE or mass transfer into ac-
count in Chapter [5]. The effect of mass transfer coefficient on the solute
concentration of both phases is shown followed by the significance of break-
age and coalescence kernels. The results is compared with the experimental
data in the case of RDC (DN-150) and Kuehni column (DN-150).
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Chapter 2

Multiphase Flow Model and
Numerical Approach

2.1 CFD-PBM Coupled Model

In this section, the governing equations are discussed. First, the general
overview of the model is presented and then the brief description of spatially
distributed population balance equation is given followed by the derivation
of reduced model in the case of hydrodynamics and mass transfer between
both phases in one-dimensional space.

2.1.1 General overview of a model

We consider the two-fluid model for multiphase flows, where both phases
are liquids. We call them primary phase (aqueous continuous phase) and
secondary phase (organic dispersed phase). All the quantities with the index
c denotes the continuous phase and the index d is for the dispersed phase.
All equations are written in Lagrangian form. The continuity equations for
the continuous and dispersed phases are

dαc

dt
= −αc(!.uc) (2.1)

dαd

dt
= −αd(!.ud), (2.2)

where αc and αd are the volume fractions, uc and ud are the velocity vectors

and
d

dt
is the material derivative.

7
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In addition to Equations (2.1) and (2.2) the volume fractions must satisfy
the following constraint

αc + αd = 1. (2.3)

The conservation of momentum for the continuous phase is given by

duc

dt
= −!p

ρc
+

1

αcρc
!.τc + g +

1

αcρc
Fdrag (2.4)

and for the secondary phase is given by

dud

dt
= −!p

ρd
+

1

αdρd
!.τd + (1− ρc

ρd
)g +

1

αdρd
Fdrag, (2.5)

where ρc and ρd are the densities, p is the pressure shared by both phases, g
is the gravitational force and Fdrag represents the interfacial forces and τ is
the stress tensor, for example, for the continuous phase it is given by

τc = αcµc[!uc + (!uc)
T − 1

3
(!.uc)I], (2.6)

where µc is the dynamic viscosity of the continuous phase. The inter-phase
interaction term consists of different momentum exchange mechanisms. Only
the drag force was taken into account, while the virtual mass force and the
lift force can be neglected for a liquid-liquid interaction as shown by Wang
and Mao [34] in a stirred tank. The interfacial momentum transfer (drag
force) between two phases is given by

Fdrag =
3

4
αdρc

CD

d30
|ud − uc|(ud − uc) (2.7)

where d30 is the diameter of the droplets of th dispersed liquid phase and the
drag force coefficient CD is given by ([44])

CD =

{ 24

Re
(1 + 0.15Re0.687) if Re ≤ 1000

0.44 if Re > 1000

and Re is the relative Reynolds number defined as

Re =
ρc|ud − uc|d30

µc
(2.8)

If the breakage and aggregation between droplets are not taking place, like in
the mono-dispersed phase, the diameter of the droplet d30 is considered to be
constant. In general, this is not a constant and droplets are assumed to have
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a spectrum of sizes. This spectrum can be computed with the help of Popula-
tion Balance Equation (PBE). One can construct the wide range of classes of
droplets based on their sizes, however, the considerations of individual class
may not be feasible in the computer simulations since momentum equations
have to be solved for each class. Currently CFD-PBM models are based on
the two-fluid Multiple Size Group (MUSIG) Model [33], where all droplets
in the PBM share the same velocity field and only one momentum equation
is solved for all droplet classes based on the area averaged droplet size, also
called mean diameter and denoted by d30. This quantity can be computed
with the help of the solution of the population balance equation, described in
the following subsections. A new strategy, the inhomogeneous MUSIG tries
to divide the dispersed phase into a number N so-called velocity groups,
where each of the velocity groups is characterized by its own velocity field,
to get rid of the common simplification [35]. A drawback of this multi-fluid
approach is that it is based on the CPU-time consuming classes method. In
this connection, the MPOSPM seems to be another interesting alternative,
since each primary particle could move with its own velocity group and hence
having its own momentum equation resulting also in a multi-fluid model de-
pending on the number of primary particles. As a benefit, in comparison to
the inhomogeneous MUSIG model, MPOSPM is less CPU-time consuming,
since it is based on the computational less expensive quadrature method of
moments. PBE is an integro-partial differential equation (described in details
in the next chapter). PBE is not possible to solve analytically as it has some
complicated integro-partial terms. So we require numerical method to solve
PBE. In literature, several numerical methods are available to solve PBE.
We have chosen the method called OPOSPM (One Primary and One Sec-
ondary Particle Method) and MPOSPM (Multi Primary and One Secondary
Particle Method).

2.1.2 Spatially Distributed Population Balance Equa-
tion

The general Spatially Distributed Population Balance Equation (SDPBE)
[36] for describing the coupled hydrodynamics and mass transfer in Liquid-
Liquid Extraction Columns (LLECs) can be written as

∂nd,cd(ψ)

∂t
+∇.(udnd,cd(ψ)) +

2∑

i=1

∂[ζ̇ind,cd(Ψ)]

∂ζi
= ∇.

[
Dd∇nd,cd(ψ)

]
+ Υ{ψ}.

(2.9)
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In this equation the components of the vector ψ = [d cd x t] are those
for the droplet internal coordinates (diameter and solute concentration), the
external coordinate x and the time t, where the velocity vector along the
internal coordinates is given by ζ̇ = [ḋ ċd]. The source term Υ{ψ} represents
the net number of droplets produced by breakage and coalescence per unit
volume and unit time in the coordinates range ζ±∂ζ . The left hand side is the
continuity operator in both the external and internal coordinates, while the
first part of the right hand side is the droplet axial dispersion characterized
by the dispersion coefficient , Dd, which might be dependent on the energy
dissipation and the droplet rising velocity [68]. The second term Υ{ψ} of
right hand side is the source term which could be expanded as :

Υ = Bb(d, cd; t, x)−Db(d, cd; t, x) +Bc(d, cd; t, x)−Dc(d, cd; t, x),

where Bb and Bc are the rate of droplets birth due to droplet breakage and
coalescence respectively, and Db and Dc are the rates of droplet loss (death)
due to droplet breakage and coalescence respectively and are expressed as
follows :

Bb =

dmax∫

d

cd,max∫

0

Γ(d′, αd)β(d|d′)nd,cd(d
′, c′d; t, x)δ(c

′
d − cd)∂d∂c

′
d (2.10)

Db = −Γ(d, αd)nd,cd(d
′, c′d; t, x) (2.11)

Bc =
1

2

d∫

0

cd,max∫

c,d,min

ω(d′, η, αd)(
d

η
)5nd,cd(d

′, c′d; t, x)nd,cd(d
′, c′′d; t, x)∂d

′∂c′d,

η = (d3 − d′3)(1/3), c′′d =
cdv(d)− c′dv(d

′)

v(d)− v(d′)
, (2.12)

c′d,max = min(cd,max, (v(d)/v(d
′))cd),

c′d,min = max(0, cd,max(1− v(d)/v(d′)(1− cd/cd,max))) (2.13)

Dc = nd,cd(d
′, c′d; t, x)

(d3max−d3)(1/3)∫

0

cd,maxω(d,d′;αd)∫

0

nd,cd(d
′, c′d; t, x)∂d

′∂c′d (2.14)

If we consider only one internal coordinate (size of droplets) then we can
write reduced SDPBE in the following form :

∂f(V, x, t)

∂t
+∇.(udf(V, x, t)) = S(f(V, x, t), V, x, t), (2.15)
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where

S = −Γ(V )f(V, x, t) +

Vmax∫

V

Γ(V ′, x, t)β(V |V ′)f(V ′, x, t)

− f(V, x, t)

Vmax∫

Vmin

ω(V, V ′)f(V ′, x, t)dV ′

+
1

2

V∫

Vmin

ω(V − V ′, V ′)f(V − V ′, x, t)f(V ′, x, t)dV ′,

(2.16)

f(V, x, t) is the number density function with particle size V as an inde-
pendent variable. The vector ud is the same particle velocity introduced in
previous section. The source term S consists of loss term (preceded by minus
sign) and gain term (preceded by plus sign) due to breakage and aggrega-
tion collisions of droplets. The breakage and aggregation of the droplets are
governed by breakage ad aggregation frequency, respectively. The breakage
frequency Γ(V ) represents the fraction of droplets breaking per unit time,
while the aggregation frequency ω(V, V ′) accounts for the probability of suc-
cessful collisions between a pair of droplets. The splitting of mother droplet
of size V ′ to daughter droplets having a spectrum of sizes is given by the
daughter particle distribution β(V |V ′).

2.1.3 Fluid Dynamics Equations

The solute concentration in the continuous phase (Cc) is predicted using
a component solute balance on the continuous phase :

∂(αcCc)

∂t
− ∂

∂z
(ucαcCc +Dc

∂(αcCc)

∂z
) =

Qin
c C in

c

Ac
δ(z − zc)

−
∞∫

0

Cd,max∫

0

Ċdv(d)fd,Cd
(Ψ)∂d∂Cd,

(2.17)

here αc is the volume fraction and uc is the velocity. Note that the volume
fraction for the continuous phase (αc) satisfies the physical constraint:

αc + αd = 1, (2.18)
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where v(d) is the droplet volume. The left hand side of Equation (2.17) is the
continuity operator and the first term on the right hand side is a point source
term representing the rate at which the continuous phase entering the column
with volumetric flow rate (Qin

c ) that is the perpendicular to the column cross-
sectional area (Ac) at a location (zc). The last term appearing in Equation
(2.17) is the total rate of solute transferred from the continuous to the dis-
persed phase, where the liquid droplets are treated as moving point sources.
The presence of the diffusion flux in the second term of Equation (2.17) is to
take into account the non ideal behavior of the turbulent continuous flow [38].

In this thesis, the simplified mass transfer model of Handlos and Baron [39]
as well as the correlation of Kumar and Hartland [40] are used. However, the
criterion based on the Reynolds number as suggested by Zhang [41] may be
used as a guide for selecting the proper mass transfer model. The individual
mass transfer coefficient for the continuous phase is essentially subjected to
the aforementioned classification procedure, where two models are used to
predict it. The first simple one is based on the film coefficient equation as
recommended by Weinstein [42] and Wang [43], and the second one is based
on the correlation of Kumar and Hartland [40] for RDC liquid-liquid extrac-
tion columns.

Now, once the individual mass transfer coefficients are estimated, the rate of
change of solute concentration in the liquid droplet (Ċd) is expressed in terms
of the droplet volume average concentration and the overall mass transfer co-
efficient (Kod) :

Ċd =
6Kod

d
(C∗

d(Cc)− Cd(z, t)). (2.19)

Note that (Kod) may be function of the droplet diameter and time depending
on the initial state of the droplet; that is, weather it is circulating or behaving
like a rigid sphere. The overall mass transfer coefficient is usually expressed
using the two-resistance theory in terms of the individual mass transfer co-
efficients for the continuous and the dispersed phases [38] and C∗

d = mCc,
where C∗

d is the maximum attainable thermodynamic equilibrium solute con-
centration and m is the distribution coefficient.

In this work we consider all model equations in the Lagrangian form. To
get the velocity of the dispersed phase (ud), we solve the momentum balance
equation as we have discussed in subsection 2.1.1. The momentum balance
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equation in one dimensional space can be written as

dud

dt
= −∂P

∂z
+ (1− ρc

ρd
)g − 1

αdρd
Fdrag, (2.20)

where d
dt is the material derivative and Fdrag represents the interfacial force

which is given in Equation (2.7), ρc and ρd are the densities, g is the grav-
itational force, µc is the dynamic viscosity and P is the pressure which is
assumed the same for both phases and defined as

P = ρcgz. (2.21)

2.1.4 Reduced Model with OPOSPM

The one primary and one secondary particle method is the simplest dis-
crete method that can reduce the continuous population balance equation.
This representation is of moderate accuracy and reflects all the features con-
tained in the continuous population balance equation. For example, the
method conserves both total number and volume (mass) concentrations and
is exact when the breakage and coalescence frequencies are constants. This
corresponds to tracking directly the total number concentration N , volume
fraction αd and the solute concentration Cd by solving their transport equa-
tions. To derive these equations, the bivariate density function is considered
as Dirac delta function with weight N and locations d30 and Cd:

nd,Cd
(d, Cd; t, z) = N(t, z)δ(d − d30(t, z))δ(C − Cd(t, z)). (2.22)

This is equivalent to replacing the bivariate density function by one primary
and one secondary particle (in the special case they are identical) with weight
N and internal states d30 (mean diameter) and Cd (mean solute concentra-
tion). The total number, volume and mean solute concentrations are defined
by :

N =

∞∫

0

C∗
d∫

0

nd,Cd
∂d∂Cd, (2.23)

αd =

∞∫

0

C∗
d∫

0

vnd,Cd
∂d∂Cd, (2.24)
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and

Cd =

∞∫

0

C∗
d∫

0

Cdvnd,Cd
∂d∂Cd

∞∫

0

C∗
d∫

0

vnd,Cd
∂d∂Cd

. (2.25)

To get the transport equation for the total number concentration N , Equa-
tion (2.22) is substituted in Equation (2.9) and both sides are integrated with
respect to d and Cd from 0 to ∞ and from 0 to C∗

d respectively. By doing
this, the following transport equation is arrived at :

dN

dt
+N

∂ud

∂z
= (ν(d30)− 1)Γ(d30, Cd)N − 1

2
ω(d30, d30, Cd)N

2. (2.26)

Note that the first term of Equation (2.26) is the rate of formation of
particles with breakage frequency Γ. The mean number of daughter particles
is given by ν that is determined by integrating the daughter droplet distri-
bution function with respect to d30. This distribution is determined using
single droplet experiment in small devices [45]. The second term in Equation
(2.26) is the net rate of droplet death due to coalescence of two droplets
of the same mean size and concentration with frequency ω. It is clear that
droplet breakage and coalescence follow first and second order mechanism
based on N respectively.

The transport equations for αd and Cd in Lagrangian form for one-dimensional
case are derived by multiplying Equation (2.9) by v(d30) for αd and Cdv(d30)
for Cd, substituting Equation (2.22) in Equation (2.9) and integrating from
0 to ∞ and 0 to C∗

d with respect to d and Cd respectively to get :

dαd

dt
+ αd

∂ud

∂z
= 0 (2.27)

and

dD

dt
+D

∂ud

∂z
− ∂

∂z
(Dd

∂D

∂z
) =

6Kod(d30, Cd)

d30
(m′C −D). (2.28)

The solute balance in the continuous phase is found directly by substituting
(2.22) in the integral of the right hand side of (2.17) :

dC

dt
+ C

∂uc

∂z
− ∂

∂z
(Dc

∂C

∂z
) = −6Kod(d30, Cd)

d30
(m′C −D), (2.29)
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where, m′ = αd
αc
m, D = αdCd and C = αcCc. The Equation (2.29) is written

in Lagrangian form for one-dimensional case.
The mean particle diameter d30 can be found from the mean mass of the
secondary particle :

d30 =

{
3

√
6
π

αd
N if N >

√
ε

dvs otherwise,

where, ε is a small number and dvs is the feed mean droplet diameter. This is
only required to avoid division by zero in the regions where there is no par-
ticle concentration. It is actually the mean diameter of secondary particle
whose mass is given as the ratio between its volume and number concentra-
tions.
To close the model, an expression for the continuous phase velocity uc is de-
rived by adding the continuity equations for the dispersed and the continuous
phases assuming that the density of both phases is constant (See Appendix
A). This assumption is justified when low mass transfer fluxes are encoun-
tered and the two liquids are considered to be incompressible. The resulting
expression [5] is defined as :

uc =
Qin

c

Acαc
&c +

Dc

αc

∂αd

∂z
, (2.30)

where,

&c =

{
1 if z ≤ zc
0 otherwise

.

The discontinuity appearing in the continuous phase velocity uc is due to
the presence of the step function &c.

2.1.5 Model with MPOSPM

To solve PBE if we use SQMOM by choosing one secondary particle then it
becomes MPOSPM (Multi Primary and One Secondary Particle Method).
Note that the primary and secondary particles coincide with each other in
this case. So, the population density in each section is represented by a
single particle whose position (size) is set according to the variation of the
population density in this section and is given by :

d30,i = 3

√
π

6

αdi

Ni
, (2.31)
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where Ni and αdi are the total number and volume concentrations of the
population of real particles (assumed to have spherical shape) in the ith sec-
tion. By assuming two distinct integral properties (Ni, αdi , i = 1, 2, · · ·Npp)
to each particle, the secondary particles are exactly equivalent to a one-point
Gauss-like quadrature according to the QMOM framework [32]. Mathemati-
cally this is equivalent to approximating the number density function f(d, t)
in each section by a Dirac delta function having weight Ni and centred at
d30,i :

f<i>(d, t) = Niδ(d− d30,i) (2.32)

The transport equations for the integral quantities : Ni and αdi are ob-
tained from Equation (2.15) and Equation (2.32) by first multiplying Equa-
tion (2.15) by (vr, r = 0, 1) followed by the integration with respect to (v)
from 0 to ∞ to get

dNi

dt
+Ni(!.ud) = π0,i (2.33)

dαd,i

dt
+ αd,i(!.ud) = π3,i (2.34)

Where the source terms(π0,i and π0,i) represent the net number and volume
concentration due to breakage and coalescence events associated with ith
primary particle are given in next chapter [3].

2.2 Hyperbolicity Analysis of the CFD-PBM
Coupled Model

In this section, a study of the characteristics (hyperbolicity) of the model
equations is discussed.

2.2.1 Formulations

In Eulerian frame of reference, the model after applying OPOSPM in the case
of a one-dimensional incompressible liquid-liquid two-phase flow, in terms of
conservative variables, can be written in vector form as

∂U

∂t
+

∂F (U)

∂z
= S(U), z ∈ R, t ∈ R+ (2.35)
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where

U =





N
αd

αdud

αdCd

αcCc




, F (U) =





Nud

αdud

αdu2
d

αdCdud

−αcCcuc





and S(U) is given in Equations (2.20,2.26,2.27,2.28) and (2.29). In Equation
(2.35) U and F represent the vector of conservative variables and the flux
vector respectively.
To determine the classification of the model equations we choose a standard
formulation and analysis applicable to systems of first-order quasi-linear par-
tial differential equations. The analysis requires that Equation (2.35) be
written in the following quasi-linear form

∂U

∂t
+ A(U)

∂U

∂z
= S(U), (2.36)

which is obtained by carrying out the differentiation of F with respect to z.
The matrix A(U) is the Jacobian matrix defined by

A(U) =
∂F

∂U
. (2.37)

Now if we denote the components of U and F by ui and fi (i=1,. . . , 5),
respectively, then A(U) can be expressed as

A(U) =





∂f1
∂u1

∂f1
∂u2

. . . ∂f1
∂u5

∂f2
∂u1

∂f2
∂u2

. . . ∂f2
∂u5

...
...

...
...

∂f5
∂u1

∂f5
∂u2

. . . ∂f5
∂u5




.

By direct evaluation of all partial derivatives, the following expression is
obtained for A(U)

A(U) =





ud −Nud
αd

N
αd

0 0
0 0 1 0 0
0 −u2

d 2ud 0 0
cd −cdud cd ud 0
0 0 0 0 −uc




.

This matrix contains the number density, the volume concentration of dis-
persed phase , the velocities of both phases and the solute concentration of
the dispersed phase.
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The mathematical analysis of the model can be carried out using variables
other than the conserved variables. Alternative choice of formulation then
is the vector of primitive variables [46]. The primitive variables for a one-
dimensional CFD-PBM coupled model would be

W =





N
αd

ud

Cd

Cc




(2.38)

for which the governing equations take the form

B(W )
∂W

∂t
+ A(W )

∂W

∂z
= Q(W ), (2.39)

where Q(W ) = ∂W
∂U S(U) and the coefficient matrices are arranged as follows

B(W ) =





1 0 0 0 0
0 1 0 0 0
0 ud αd 0 0
0 Cd 0 αd 0
0 0 0 0 αc




,

A(W ) =





uc 0 N 0 0
0 ud αd 0 0
0 u2

d 2αd 0 0
0 udcd αdCd αdud 0
0 0 0 0 −αcuc




.

2.2.2 Mathematical Property of the Model Equations

The one-dimensional Equation (2.35) represent an initial value problem with
initial conditions U(z, 0) = U0(z) in the range of a ≤ z ≤ b and t ≥ 0. This
initial-value problem is well posed if system (2.35) has a unique solution on
the differentiable interval value U0(z). In other words, if the coefficient ma-
trix of the system has real eigenvalues, then the initial-value problem is said
to be a well-posed problem. If all the corresponding eigenvalues are linearly
independent then the system is hyperbolic. More precisely, it is well known
that the eigenvalues do not depend on the source terms and they repre-
sent the wave propagating speeds characterized by fluid properties and their
dynamic interactions. For the characteristics analysis therefore, one would
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work with the homogeneous form of both formulations, conservative (2.36)
and primitive (2.39). Thus, we set S(U) ≡ 0 or Q(W ) = 0 to investigate
the mathematical properties of the eigenvalues and eigenvectors. For both
formulations, conservative and primitive, the eigenvalues associated with the
CFD-PBM coupled model are determined by

det[A− λI] = 0. (2.40)

As a result we derive a fifth-order polynomial equation as

P5(λ) = (ud − λ)4(uc + λ) = 0, (2.41)

which gives the following real eigenvalues

λd = ud λc = −uc. (2.42)

Clearly, the first eigenvalue, a multiple eigenvalue, represent the dispersed
phase velocity while the second eigenvalue is related to the continuous phase
along the column. The two physical velocities appearing here might not be
in agreement with all current proposals on this subject and have no analogy
in one-phase fluid dynamics. However, our present theoretical knowledge in
this area is still insufficiently mature that a definitive judgement is not yet
possible.
The existence of only real eigenvalues is a necessary but not a sufficient condi-
tion for the existence of a well-posed hyperbolic system of partial differential
equations. A further requirement is the existence of a complete set of inde-
pendent eigenvectors. On the other hand, this is a prerequisite for the proper
applications of a number of advanced numerical techniques which make ex-
plicit use of the hyperbolic nature of the governing field equations. The
eigenvectors of matrix A, K(j)(j = 1, . . . , 5), are solutions of the eigenvalue
problem

AK(j) = λjK
(j) (2.43)

If we choose to present the corresponding right eigenvectors for the conserved
formulation (2.36). Then, the eigenvectors are

K(d) =





0
1
ud

0
0




, K(c) =





N
αd

1
−uc

0
0




,

where the first four eigenvectors correspond to the dispersed phase and fifth
eigenvector correspond to the continuous phase.
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We end this section with the nature of the characteristics fields associated
with each pair (λj, K(j)). The characteristic field associated with the contin-
uous phase (λc = −uc) is found to be linearly degenerate

*λc(U).K(c)(U) = 0 ∀U, (2.44)

which is also the case for the dispersed phase (λd = ud) since

*λd(U).K(d)(U) = 0 ∀U. (2.45)

The established eigenstructure shows that the CFD-PBM coupled model is
hyperbolic with eigenvectors being linearly degenerate. They correspond to
contact discontinuities [47], [48]. In applications, it is fairly typical that the
linearly degenerate eigenvectors correspond to a multiple eigenvalues. An
important observation is that only contact discontinuities are present in the
solution of the model equations.

2.3 Finite Pointset Method (FPM)

The basis of the computations in FPM is point cloud, which represents the
flow field. The points of the cloud are referred to as particles or numerical
grids. They are carriers of all relevant physical information. The particles
have to completely cover the whole flow domain, i.e. the point cloud has to
fulfil certain quality criteria (particles are not allowed to form holes which
means particles have to find sufficiently many neighbors; also, particles are
not allowed to cluster; etc.). The point cloud is a geometrical basis, which
allows for a numerical formulation making FPM a general finite difference
idea applied to continuum mechanics. That especially means, if the point
cloud would receive to a classical finite difference method. The idea of general
finite difference also means that FPM is not based on a weak formulation like
the Galerkin’s approach. Rather, FPM is a strong formulation which models
differential equations by direct approximation of the occurring differential
operators. The method used is a moving least square idea which was specially
developed for FPM.

2.3.1 Least Square Approximation

Since the fluid information have to be communicated from one point to an-
other and vice versa, we must interpolate these quantities accurately. There-
fore, it is necessary to use the second order approximation. In this section,



2.3. FINITE POINTSET METHOD (FPM) 21

we present the least square approximation of a function at an arbitrary po-
sition from the surrounding cluster of points.

Consider the computational domain Ω ⊂ Rn, n = 1, 2, 3. Consider a set
of clouds, grids or particles P (x, h) = {xi : xi ∈ Ω, i = 1, . . . , N}. The distri-
bution of particles does not necessarily have to be uniform and can be quite
arbitrary. A typical distribution of particles, for example in 2D, looks like in
Fig. 1.
Let f(x) be a scalar function and fi its values at xi for i = 1, 2, . . . , N .

Figure 2.1: Flow domain with non-structured grid

Consider the problem to approximate f(x) and its spatial derivatives at x
in terms of the values of a set of neighbouring points. In order to limit the
number of points we associate a weight function w = w(xi − x; h) with a
small compact support, where h determines the size of the support, as shown
in Fig. 1. In SPH, h is known as a smoothing length. The smoothing length
defines a set of neighbouring particles around x. The weight function can
be quite arbitrary but in our computations, we consider a Gaussian weight
function in the following form

w(xi − x; h) =





exp(−C

||xi − x||2

h2
), if

||xi − x||
h

≤ 1

0, otherwise

with C a positive constant is considered to be in the range of 2 to 6 and
depends upon the users.

For consistency reasons some obvious restrictions are required, namely for
example, in 2D, if we want the second order approximation there should be
at least 6 neighbour particles including the central particle and they should
neither be on the same line nor on the same circle. Hence we define the size
of h such that the minimum number of neighbours is guaranteed for the ap-
proximation of derivatives. Hence, new particles will have to be introduced
into the simulations as the particle distribution becomes too sparse or, parti-
cles will have to be removed from the computation as they become too dense.
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Let N(x, h) = {xi : i = 1, 2, . . . , m} be the set of m neighbouring points
of x. We approximate the function f(x) by fh(x) as fh(x) =

∑N
i=1 fiφ(xi, x),

where the shape function φ(xi, x) is computed at each point x by the least
square method over its own compact support. We note that φi = 0 for all
i /∈ N(x, h). It is important to stress that this expression is consistent only
if the function φ is 1 at xi, namely φ(xi, xj) = δij for all i, j = 1, 2, . . . , N .

The approximation of the first and second order derivatives can be com-
puted directly from fh(x) or directly by using the least square method. The
first method is known in literature as moving least square method [16], [17].
Usually the function fh(x) and its derivatives fkh(x) are not smooth enough
to be differentiable and therefore the second order derivatives can not be
properly computed. We approximate the derivatives ∂f(x)/∂xk by fkh(x) =∑N

i=1 fiηk(xi, x) for k = 1, 2, 3, where ηk(xi, x) is directly computed by the
least squares interpolation. In a similar manner we define the approximation
for the second order derivatives ∂2f(x)/∂xl∂xk by fklh(x) =

∑N
i=1 fiΨkl(xi, x)

for k, l = 1, 2, 3. The determination of the function f(x), fkh(x) and flkh(x)
for k, l = 1, 2, 3 can be computed easily and accurately by using the Taylor
series expansion and the least square approximation. We write a Taylor’s
expansion around the point x with unknown coefficients by minimizing a
weighted error over the neighbouring points. The optimization is constrained
to satisfy φ(x1, x1) = 1 where x1 is the closest point, namely the approxima-
tion must interpolate the closest point.

In order to approximate the function and its derivatives at x by using a
quadratic approximation through the m neighboring points sorted with re-
spect to its distance from x we let

f(xi) = fh(x) +
3∑

k=1

fkh(x)(xki − xk)

+
1

2

3∑

k,l=1

fklh(x)(xki − xk)(xli − xk) + ei, (2.46)

where ei is the error in the Taylor’s expansion at the point xi. The un-
knowns fh, fkh and fklh for k, l = 1, 2, 3 are computed by minimizing he
error ei for i = 2, 3, . . . , m and setting the constraint e1 = 0. By subtract-
ing the first equation with e1 = 0 to all the other equations the system
can be written as e = Ma − b, where M is the m × 9 geometrical ma-
trix, in 3D, whose components consist of the directional distances from the
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m−neighbours to the central particle x. The other vectors are denoted by a =
[f1h, f2h, f3h, f11h, f12h, f13h, f22h, f23h, f33h]T ,b = [f2−f1, f3−f1, . . . , fm−f1]T ,
e = [e2, e3, . . . , em]T . For m > 9, this system is over-determined for the nine
unknowns fkh and fklh for k, l = 1, 2, 3.

The unknowns a are obtained from a weighted least squares method by min-
imizing the quadratic form

J =
m∑

i=1

wie
2
i . (2.47)

The above equations can be expressed in the form

J = (Ma− b)TW (Ma− b), (2.48)

where W = δijwi. The minimization of J formally yields

a = (MTWM)−1(MTW )b. (2.49)

Now from the equation for the closest point x1 we can compute the value of
Ψ(x) at x as

fh(x) = f(x1)−
3∑

k=1

fkh(x)(xk1−xk)−
1

2

3∑

k,l=1

flkh(x)(xk1−xk
)(xl1−xk) (2.50)

since fkh and fklh for k, l = 1, 2, 3 are now known. The solution of the
constrained least squares problem is straightforward and more sophisticated
techniques can be used. For example minimization or singular decomposition
techniques can be very helpful to determine efficiently the unknowns.

We note that if the approximation is computed at xi we have fh(xi) = fi
which implies φ(xi, xj) = δij can be approximated very closely performing
the unconstrained least squares minimization over all the m equations.

2.4 Numerical Approach

We solve the model equations in one-dimensional frame by using Euler im-
plicit method. The following steps are followed to compute the quantities.
(i) Compute the number concentration Nn+1 implicitly by

Nn+1 =
Nn

1 +&t[∇.un
d − (ν − 1)Γ(dn30) +

1

2
ω(dn30, d

n
30)N

n]
(2.51)
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(ii) Compute the volume fraction αn+1
d implicitly as

αn+1
d =

αn
d

1 +&t(∇.un
d)

(2.52)

and use the constraint (2.3) to compute volume fraction for continuous phase
αn+1
c

αn+1
c = 1− αn+1

d (2.53)

(iii) Compute the droplets velocity un+1
d as

un+1
d =

un
d −&t(∇P + (1− ρc

ρd
)g +

3

4

αn
dρc

αn
dρd

Cdrag

dn30
|un

d − un
c |)

1 +&t
3

4

αn
dρc

αn
dρd

Cdrag

dn30
|un

d − un
c |

(2.54)

(iv) Add the continuity equations of both phases to yield the velocity of
continuous phase un+1

c :

un+1
c =

1

αn
c

Qin
c

Acol
&z, (2.55)

where &z is a step function, defined as

&z =

{
1, if z ≤ zc
0, else

for z ∈ (zd, zc) with zd and zc are the inlets of the dispersed and continuous
phase, respectively.
(v) Compute the solute concentration for dispersed phase implicitly as

Dn+1 =
Dn +∇(Dd∇Dn)&t+

6Kn
od

dn30
m′nCn&t

1 +
6Kn

od

dn30
&t+∇.un

d&t
, (2.56)

where Dn+1 = Cn+1
d αn+1

d and m′n =
αn
d

αn
c

.

(vi) Compute the solute concentration for continuous phase implicitly as

Cn+1 =
Cn +∇(Dc∇Cn)&t+

6Kn
od

dn30
Dn&t

1 +
6Kn

od

dn30m
′n&t+∇.un

c&t
, (2.57)
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where Cn+1 = Cn+1
c αn+1

c .
(vii) Move particles

zn+1 = zn+ " tun+1
d (2.58)



26CHAPTER 2. MULTIPHASE FLOWMODEL AND NUMERICAL APPROACH



Chapter 3

Population Balances

3.1 Population Balance Equation

In this section, the derivation of PBE [36] is discussed for one dimensional
case.

Consider a population of particles distributed according to their size v
which we shall take to be the mass of the particle and allow it to vary be-
tween 0 and ∞. The particles are uniformly distributed in space so that the
number density is independent of external coordinates. Further, we assume
for now that the environment does not play any explicit role in particle be-
haviour.

Such situation can be approximated, for example, in a crystallizer contain-
ing a highly supersaturated solution of the crystallizing solute. The process
involves nucleation resulting in the formation of a rudimentary particle and
its subsequent growth by transferring solute from the solution phase to the
particle surface.
In actuality, in addition to mass transfer, heat transfer also occurs, serving to
remove the heat of crystallization, although the latter is generally considered
negligible. If the nucleation and growth rates may remain relatively unaf-
fected as crystallization progresses. This unnecessarily restrictive assumption
is made only for simplifying the preliminary derivation of the PBE.

We let G(v, t) be the growth rate of the particle size v. The particles
may be viewed as distributed along the size coordinate and embedded on
a string deforming with growth rate G(v, t). Take an arbitrary region [a, b]

27
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on the stationary size coordinate with respect to which the string with the
embedded particles is deforming. We are interested in the rate of change of
the number of particles in the size interval. As the string deforms, particles
commute through the interval [a, b] across the end point a and b, changing
the number of particles in the interval.

If we denote the number density by f(v, t), the rate of change in the
number of particles in [a, b] caused by this traffic at a and b is given by

G(a, t)f(a, t)−G(b, t)f(b, t).

The first term of which represents the particle in flux at a and the second
particle out flux at b. Assume for the present that there is no other way in
which the number of particles in the interval [a, b] can change. Then we may
write for the number balance in the interval [a, b]

d

dt

∫ b

a

f(v, t)dv = G(a, t)f(a, t)−G(b, t)f(b, t)

⇒
∫ b

a

[∂f(v, t)
∂t

+
∂

∂v
(G(v, t)f(v, t))

]
= 0 (3.1)

because all functions involved are assumed to be sufficiently smooth. Since
the interval [a, b] in equation (3.1) is arbitrary, the smoothness of the inte-
grand implies that it vanishes altogether. Thus, we have PBE

∂f(v, t)

∂t
+

∂

∂v
(G(v, t)f(v, t)) = 0. (3.2)

The equation (3.2) must be supplemented with initial and boundary con-
ditions. If we have started with no particles, we set f(v, 0) = 0. For the
boundary condition we let the nucleation rate be n0 particles per unit time
and assume that the newly formed particles have mass zero. This rate should
be the same as the particle in flux at v = 0. Thus

G(0, t)f(0, t) = n0, (3.3)

which is the required boundary condition. If equation (3.2) is integrated over
all particle masses one obtains

dN

dt
=

d

dt

∫ ∞

0

f(v, t)dv = G(0, t)f(0, t)−G(∞, t)f(∞, t) = n0. (3.4)
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The equality on the extreme right arises from the fact that particles can
increase in number in this process only by nucleation. From Equations (3.3)
and the (3.4), we conclude that

G(∞, t)f(∞, t) = 0, (3.5)

which is sometimes referred to as a regularity condition. It does not insist
that the number density itself vanish at infinite mass if the growth rate van-
ishes for large particles. If, however, the growth rate does not vanish for
larger particles, Equation (3.5) implies that the number density must vanish
for arbitrarily large sizes.
In the above derivation, we did not envisage the birth and death of particles
in the interval [a, b]. For example, drops in RDC(Rotating Disc Contac-
tor) may undergo breakage and/or aggregation contributing to the birth and
death of particles in the interval of the interest. To assess the rate of this
contribution, detailed modeling of breakage and aggregation processes will
be needed. Suppose the net rate of generation of particles in the size range v
to v+dv is described by h(v, t)dv where the identity of h(v, t) would depend
on the model of breakage and aggregation. In that case equation (3.1) must
be replaced by

∫ b

a

[∂f(v, t)
∂t

+
∂

∂v
(G(v, t)f(v, t))− h(v, t)

]
dv = 0

so that the PBE becomes

∂f(v, t)

∂t
+

∂

∂v
(G(v, t)f(v, t)) = h(v, t). (3.6)

Initial condition will be same. The total number balance will be

dN

dt
= n0 +

∫ ∞

0

h(v, t)dv

and the regularity condition also holds.
Suppose we relax the constraint that the above particle behaviour is inde-
pendent of the environment. Consider the continuous phase to be described
by a scalar quantity c, which is assumed to be uniform in space. In a well
mixed crystallizer, c may represent the supersaturation at the surface of the
drops. We introduce the following additional features,
(1) The nucleation rate depends on c, n0 = n0(c).
(2) The growth rate may also be assumed to depend on c, i.e., G = G(v, c, t).
(3) The growth process depletes the supersaturation at a rate proportional
to the growth rate of the drops, the proportionality being depend out on
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particle size, i.e., at the rate α(v)G(v, c, t).

The net birth rate h may or may not depend on c. In this case, the
process of the derivation of the PBE used earlier is not influenced in any
way, and so the proper substitute for Equation (3.6) is given by

∂f(v, t)

∂t
+

∂

∂v
(G(v, c, t)f(v, t)) = h(v, c, t). (3.7)

The initial conditions remains the same as before while the boundary con-
ditions recognizes the dependence of the nucleation and growth rates on c.
Thus

G(0, c, t)f(0, t) = n0(c). (3.8)

Equation (3.7) must be coupled with a differential equation for c accounting
for its depletion because of the growth of all the particles in the population.
This is easily found to be

dc

dt
= −

∫ ∞

0

α(v)G(v, c, t)f(v, t)dv. (3.9)

An initial condition for c now completes the formulation of the problem.

In general case, the PBE can be written as

∂f

∂t
+∇v.Gf +∇x.uf = h. (3.10)

where u is the velocity of the droplets.

3.1.1 Breakage Process

The net birth rate h(v, t) which appears on the right hand side of the PBE
(3.6) can be expressed as the difference between a ”source” term h+(v, t)
and a ”sink” term h−(v, t), both of which are due to breakage processes. Our
objective is to provide a characterization of the breakage process so as to
calculate the foregoing source and sink terms.

The breakage functions

If breakup of particles occurs independently of each other and let b(v,x,t) i.e.
the specific ”breakage rate” of particles at time t, to represents the fraction
of particles breaking per unit time. Then we have

h−(v, x, t) = b(v, x, t)f(v, x, t), (3.11)
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as the average number of particles of state (v,x) ”lost” by breakage per unit
time. In order to characterize the source term we should be concerned about
the following quantities :

ν(v, x, t): The average number of particles formed from the breakup of a
single particle.
β(v | v′): The probability of the drop of size v′ breaking into the drop of size
v. So we can write the source term for the particles of state (v, x) originating
from break up as

h+(v, x, t) =

∫ ∞

0

ν(v′, x, t)b(v′, x, t)β(v | v′)f(v′, x, t)dv. (3.12)

The spatially homogeneous population balance equation for the breakage
process just discussed becomes

∂f(v, t)

∂t
+

∂

∂v
(G(v, t)f(v, t)) =

∫ ∞

0

ν(v′, t)b(v′, t)β(v | v′)f(v′, t)dv

− b(v, t)f(v, t). (3.13)

3.1.2 Aggregation Process

We are concerned here with particulate events in which two or more parti-
cles may be involved. Aggregation processes occur commonly in nature and
engineering processes. It is conceivable that several adjacent particles could
simultaneously aggregate.

The Aggregation Frequency

We let the probability that a particle of state (v, x) and another particle of
state (v′, x′), both present at time t in a continuous phase will aggregate in
the time interval [t, t + dt) to be given by

a(v, x; v′, x′, t)dt. (3.14)

The source function, which represents the rate of formation of particles of
volume v by aggregation of small particles, is computed as follows. From the
conservation of mass, we have particle of volume v−v′ aggregating with parti-
cles of volume v′ to produce particles of volume v. Clearly as v′ varies between
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0 and v, so also does v− v′ so that each pair in the set [v − v′, v′]; 0 < v′ < v
is considered twice. Thus the source term can be written as

h+(v, x, t) =
1

2

∫ v

0

a(v − v′, v′)f(v − v′, x, t)f(v′, x, t)dv′

and the sink term represents as :

h−(v, x, t) = f(v, x, t)

∫ ∞

0

a(v, v′)f(v′, x, t)dv′.

The number density function f(v, x, t) must then satisfy the population bal-
ance equation

∂f(v, t)

∂t
+

∂

∂v
(G(v, t)f(v, t)) =

1

2

∫ v

0

a(v − v′, v′)f(v − v′, t)f(v′, t)dv′

− f(v, t)

∫ ∞

0

a(v, v′)f(v′, t)dv′. (3.15)

By combining the Equation (3.13) and Equation (3.15), we get the com-
plete spatial homogeneous population balance equation as following

∂f(v, t)

∂t
+

∂

∂v
(G(v, t)f(v, t))

=
1

2

∫ v

0

a(v − v′, v′)f(v − v′, t)f(v′, t)dv′

− f(v, t)

∫ ∞

0

a(v, v′)f(v′, t)dv′

+

∫ ∞

0

ν(v′, t)b(v′, t)β(v | v′)f(v′, t)dv − b(v, t)f(v, t). (3.16)

3.1.3 The Bivariate Population Balance Equation
(BPBE)

In the previous subsection, the derivation of mono-variate PBE was shown
where we considered only one internal coordinate (mass of the particle). In
this subsection, the form of bivariate PBE is discussed where two internal co-
ordinates are considered. In a continuous liquid extraction column, the state
of any given droplet is represented by a bivariate (joint) density function
n(v, cy; z, t) per unit volume of the contractor. This allows the discontinuous
macroscopic (breakage and coalescence) and the continuous microscopic (in-
terphase mass transfer) events to be coupled in a single spatially distributed
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population balance equation (SDPBE). All the quantities with the index c
denotes the continuous phase and index d denotes the dispersed phase. The
general SDPBE for describing the hydrodynamics and mass transfer in one
spatial domain can be written as [5]:

∂n(Ψ)

∂t
+

∂[udn(Ψ)]

∂z
+

2∑

i=1

∂[ζ ·n(Ψ)]

∂ζi
=

∂

∂z

[
Dd

∂n(Ψ)

∂z

]

+
Qin

d

Ac
nin(v, cd; t)δ(z − zd) + Υ{Ψ}.

(3.17)

In this equation the components of the vector Ψ are those for the droplet
internal coordinates (volume and solute concentration), the external coor-
dinate z and the time t. The velocity vector ζ represents particle growth
along size and concentration coordinates. The source term Υ{Ψ} represents
the net number of droplets produced by breakage and coalescence per unit
volume and unit time in the coordinates range ζ ± ∂ζ , where, ud is the ve-
locity and Dd is the axial dispersion coefficient. The first term on the right
hand side is a point source term representing the rate at which the droplets
entering the column with volumetric flow rate (Qin

d ) that is perpendicular to
the column cross-sectional area (Ac) at a location (zd) with an inlet number
density (nin). Note that equation (3.17) is coupled to the solute balance in
the continuous phase through the velocity vector ζ and hence they have to
be solved simultaneously.

3.2 Method of Solving the PBE

This section is devoted to the methods to solve PBE. In some particular cases,
it is possible to solve spatially homogeneous PBE analytically but in general
the numerical solution is required because of the nature of PBE as it is an
integro-partial differential equation. First, the possible analytical solutions
of PBE are shown. Ramkrishna [36] has used the Laplace transform to
solve spatially homogeneous PBE in the case of some particular aggregation
kernels. Later on McCoy and Madras [52] have extended it for the case of a
particular constant aggregation and non-constant breakage kernels both. In
this work, we extend the analytical solution of spatially homogeneous PBE
to the case of non-constant and non-linear breakage and coalescence kernels.
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3.2.1 Analytical Methods

In this subsection, we solve the PBE analytically using the Laplace transform;
first, we consider the PBE with aggregation term only and after that we take
the PBE with both aggregation and breakage terms.

Aggregation

We can write spatially homogeneous PBE without growth process for aggre-
gation as

∂f1(v, t)

∂t
=

1

2

∫ v

0

a(v − v′, v′)f1(v − v′, t)f1(v
′, t)dv′

− f1(v, t)

∫ ∞

0

a(v, v′)f1(v
′, t)dv′ (3.18)

subject to the initial condition

f(v, 0) = N0g(v). (3.19)

Assuming that particle volume v has been nondimensionalized with respect
to the average particle size at t = 0, so that

∫ ∞

0

vg(v)dv = 1. (3.20)

It is convenient to nondimensionalize the PBE using dimensionless variables
by introducing the dimensionless quantities

τ ≡ a0N0t, f(v, τ) ≡ 1

N0
f1(v, t), α(v, v′) ≡ a(v, v′)

a0
,

ν(τ) ≡
∫ ∞

0

f(v, τ)dv =
N(t)

N0

where a0 is some characteristic value of the aggregation frequency. And so
the dimensionless PBE may be written as

∂f(v, τ)

∂τ
=

1

2

∫ v

0

α(v − v′, v′)f(v − v′, t)f(v′, t)dv′

− f(v, t)

∫ ∞

0

α(v, v′)f(v′, τ)dv′ (3.21)

which must subject to the initial condition

f(v, 0) = g(v). (3.22)
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Because of Equation (3.20) and the conservation of mass, it emerges that
∫ ∞

0

vf(v, τ)dv = 1. (3.23)

We shall develop the solution for Equation (3.21) and Equation (3.22) by
defining the Laplace transform with respect to the size variable volume v as

f̄(s, τ) =

∫ ∞

0

f(x, τ)e−svdv. (3.24)

Note in particular that
f̄(0, τ) = v(τ). (3.25)

The constant aggregation kernel

Taking the Laplace transform of equation (3.21) for the case α(v, v′) ≡ 1, we
obtain

∂f̄ (s, τ)

∂τ
=

1

2

∫ ∞

0

dv e−sv

∫ v

0

f(v − v′, t)f(v′, t)dv′

−
∫ ∞

0

dv e−svf(v, t)×
∫ ∞

0

f(v′, τ)dv′.

By modifying the limits of integration in the first term on the right-hand side
of the preceding equation , we get

∂f̄ (s, τ)

∂τ
=

1

2

∫ ∞

0

dv′f(v′, τ)e−sv′
∫ ∞

0

e−suf(u, t)du

−
∫ ∞

0

dv e−svf(v, t)×
∫ ∞

0

f(v′, τ)dv′ (3.26)

where we have set v − v′ = u as a new integration variable. Equation (3.26)
becomes

∂f̄(s, τ)

∂τ
=

1

2
f̄(s, τ)2 − ν(τ)f̄ (s, τ). (3.27)

Taking the Laplace transform of the initial condition (3.22), we have the
initial condition for (3.27) given by

f̄(s, 0) = ḡ(s). (3.28)

By letting s = 0 in Equation (3.27), and noting f̄(s, 0) = ν(τ), we obtain
the following ordinary differential equation in ν(τ) :

dν(τ)

dτ
= −1

2
ν(τ)2, ν(0) = 1
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whose solution is given by

ν(τ) =
2

(2 + τ)
. (3.29)

Dividing Equation (3.29) by f̄ 2, we may rewrite it as the following linear

differential equation in
1

f̄
:

∂

∂τ

[
1

f̄

]
= −1

2
+ ν(τ)

[
1

f̄

]
.

After solving above equation, we get

f̄(s, τ) =

(
2

2 + τ

)2 ḡ(s)

1−
(

τ

2 + τ

)
ḡ(s)

. (3.30)

If the initial size distribution is monodisperse with dimensionless size unity,
then ḡ(s) = es and the transform (3.30) may be inverted by using the ex-
pansion of (1 − w)−1 in powers of w, which converges for w less than unity.
Thus

f̄(s, τ) =

(
2

2 + τ

) ∞∑

n=0

(
τ

2 + τ

)n

e−s(n−1),

After taking inverse Laplace transform of above equation, we get

f(v, τ) =

(
2

2 + τ

) ∞∑

n=0

(
τ

2 + τ

)n

δ(v − n− 1). (3.31)

The sum aggregation kernel

Taking the Laplace transform of Equation (3.21) for the case α(v, v′) ≡ v+v′,
we get

∂f̄(s, τ)

∂τ
=

1

2

∫ ∞

0

dv e−sv

∫ v

0

vf(v − v′, t)f(v′, t)dv′

−
∫ ∞

0

dv e−svf(v, t)×
∫ ∞

0

(v + v′)f(v′, τ)dv′.

By modifying the limits of integration in the first term on the right-hand side
of the preceding equation , we get

∂f̄(s, τ)

∂τ
=

1

2

∫ ∞

0

dv′f(v′, τ)e−sv′
∫ ∞

0

(v′ + u)e−suf(u, t)du

−
∫ ∞

0

dv e−svf(v, t)×
∫ ∞

0

(v + v′)f(v′, τ)dv′. (3.32)
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Considering that
∂f̄ (s, τ)

∂s
= −

∫ ∞

0

vf(v, τ)e−svdv

and using Equation (3.20), we may write

∂f̄ (s, τ)

∂τ
= −∂f̄ (s, τ)

∂s
[f̄(s, τ)− ν(τ)]− f̄(s, τ), (3.33)

which is subject to the initial condition (3.28). By letting s = 0 in Equation
(3.32), we obtain the following ordinary differential equation in ν(τ)

dν(τ)

dτ
= −ν(τ), ν(0) = 1

whose solution is given by ν(τ) = e−τ . Equation (3.33) may be solved by
the method of characteristics. The characteristics in the three dimensional
space (τ, s, f̄) coordinates are given by

ds

dτ
= (f̄ − ν),

f̄

dτ
= −f̄ , s[0] = s0, f̄ [0] = ḡ(s0). (3.34)

After solving above Equations (3.15), we obtain the value for f̄ along the
characteristic starting at s = s0 and τ = 0 as :

f̄ [τ ] = ḡ(s0)e
−τ . (3.35)

Using the solution for ν(τ), we solve the differential equation for s to obtain

ds

dτ
= [ḡ(s0)− 1]e−τ

s− s0 = (1− e−τ )[ḡ(s0)− 1], (3.36)

which is difficult to solve analytically for s0 in terms of s and τ and therefore
thwarts this approach to a solution. Now we define one transformation for f̄
as

f̄(s, τ) = φ̄(s, τ)ψ(τ) (3.37)

where ψ(τ) will be chosen so that the partial differential equation in φ̄(s, τ)
arising from Equation (3.33) displays only derivative of φ̄(s, τ) with respect
to τ and s. Substituting (3.37) in (3.33), one obtains

ψ
∂φ̄(s, τ)

∂τ
= −ψ

∂φ̄(s, τ)

∂s
[φ̄(s, τ)ψ − ν(τ)]− φ̄(s, τ)

[
dψ

dτ
+ ψ

]
.



38 CHAPTER 3. POPULATION BALANCES

In order to eliminate the term φ̄(s, τ), we must set its coefficient in the
preceding equal to zero, which gives ψ(τ) = e−τ intrestingly the same as
ν(τ). If we use this result, the partial differential equation in φ̄(s, τ) becomes

∂φ̄(s, τ)

∂τ
= −ψ

∂φ̄(s, τ)

∂s
[φ̄(s, τ)− 1]. (3.38)

It is now convenient to define an alternative independent variable T by

dT = ψ(τ)dτ, T = 1− e−τ ,

the second of which follows from the first by arbitrarily setting T = 0 at
τ = 0. Then Equation (3.38) may be written as

∂Φ̄(s, T )

∂T
= −∂Φ̄(s, T )

∂s
[Φ̄(s, T )− 1], (3.39)

where we have set Φ̄(s, T ) = φ̄(s, τ). The initial condition for Φ̄(s, T ) is given
by

Φ̄(s, 0) = ḡ(s). (3.40)

The characteristic equations are then given by

ds

dT
= (Φ̄− 1),

Φ̄

dT
= 0, s[0] = s0, Φ̄[0] = ḡ(s0).

The above are readily solved to obtain

s = s0 + [ḡ(s0)− 1]T, Φ̄(s, T ) = ḡ(s0),

Φ̄(s, T ) = ḡ(s+ (1− Φ̄(s, T )T ), (3.41)

The expression (3.41) can also be considered for direct inversion of the
Laplace transform of the function Φ̄(s, T ) by expanding it in Taylor series
about T = 0

Φ̄(s, T ) = ḡ(s) +
∞∑

k=1

T k

k!

∂kΦ̄(s, T )

∂T k

∣∣∣∣
T=0

. (3.42)

From (3.41), we can write

∂kΦ̄(s, T )

∂T k

∣∣∣∣
T=0

=
−1

(k + 1)

dk

dsk
[1− ḡ(s)]k+1,

which may be writeen using the binomial expansion as

∂kΦ̄(s, T )

∂T k

∣∣∣∣
T=0

= − −1

(k + 1)

k+1∑

r=1

(−1)r
(k + 1)!

r!(k + 1− r)!

dkḡ(s)r

dsk
. (3.43)



3.2. METHOD OF SOLVING THE PBE 39

Substituting (3.43) in (3.42), one obtains

Φ̄(s, T ) = ḡ(s)−
∞∑

k=1

k+1∑

r=1

(−1)r
T k

r!(k + 1− r)!

dkḡ(s)r

dsk
. (3.44)

It can be written as

Φ̄(s, T ) =
∞∑

r=1

∞∑

k=r−1

(−1)r−1 T k

r!(k + 1− r)!

dkḡ(s)r

dsk
.

If we redefine the summation index within the inner sum on the right hand
side of the equation as j = k + 1− r, the foregoing expression becomes

Φ̄(s, T ) =
∞∑

r=1

(−1)r−1T r−1

r!

∞∑

j=1

T j

j!

dj+r−1ḡ(s)r

dsj+r−1
. (3.45)

It is now convenient to invert the preceding Laplace transform within the in-
ner sum as follows. The inverse Laplace transform of the derivative appearing
in the inner sum of (3.45) is given by

L−1

[
dj+r−1ḡ(s)r

dsj+r−1

]
= (−v)j+r−1L−1(ḡ(s)r).

which, on substitution into the Laplace inverse of (3.45), gives

Φ(v, T ) =
∞∑

r=1

(vT )r−1

r!
L−1(ḡ(s)r)

∞∑

j=0

(−vT )j

j!
.

=⇒ Φ(v, T ) = e−vT
∞∑

r=1

(vT )r−1

r!
L−1(ḡ(s)r). (3.46)

If we now assume that the initial particle size distribution is the Dirac delta
distribution δ(v − 1), then ḡ(s) = e−s and the foregoing expression becomes

Φ(v, T ) = e−vt
∞∑

r=1

(vT )r−1

r!
δ(v − r). (3.47)

Thus the dimensionless number density f(v, t) for the aggregation problem
with the sum frequency is obtained as

f(v, τ) = e−[τ + v(1− eτ )]
∞∑

r=1

[x(1 − eτ )]r−1

r!
δ(v − r).

Solution for other initial conditions can of course be obtained by inverting
afresh the Laplace transform (3.46).
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The product aggregation kernel

Taking the Laplace transform of Equation (3.21) for the case α(v, v′) ≡ v.v′,
we obtain

2
∂f̄(s, τ)

∂τ
− 2

∂f̄(s, τ)

∂s
− (

∂f̄(s, τ)

∂s
)2 = 0 (3.48)

which is subject to the initial condition (3.28). By letting s = 0 in Equation
(3.48), we obtain the following ordinary differential equation in ν(τ)

2
dν(τ)

dτ
+ 1 = 0, ν(0) = 1

whose solution is given by ν(τ) = 1− 1

2
τ . After solving the Equation (3.48),

we get

f̄(s, τ) = −Cτ + s(1 +
√
1− 2C). (3.49)

By using the initial condition f(s, 0) = g(s), we obtain

C =
1

2

g(s)(−g(s) + 2s)

s2
.

If we take initial distribution g(τ) = e−τ then g(s) will be
1

(1 + s)
. Now

replacing g(s) in above equation, we obtain

C =
1

2

2s2 + 2s− 1

s2(1 + s)2
.

So Equation (3.49) becomes

f̄(s, τ) = −1

2

2s2 + 2s− 1

s2(1 + s)2
τ + s(1 +

√
s4 + 2s3 − s2 − 2s+ 1

s(1 + s)
). (3.50)

After taking the inverse Laplace transform of above equation, we get

f(v, τ) = −τ

2
(4− v − 4e−v − ve−v) + 2δ(v − 1)− e−v. (3.51)
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Aggregation and Breakage both

The nondimensionalized PBE for the case of aggregation and breakage both
will be written as

∂f(v, t)

∂t
=

1

2

∫ v

0

α(v − v′, v′)f(v − v′, t)f(v′, t)dv′

− f(v, t)

∫ ∞

0

α(v, v′)f(v′, t)dv′

+

∫ ∞

0

m(v′, t)b(v′)β(v | v′)f(v′, t)dv − b(v)f(v, t). (3.52)

We solve the PBE (3.52) for different combination of breakage and coales-
cence kernels which are shown in following subsections.

The constant aggregation kernel and the non-constant breakage
kernel

By taking the Laplace transform of above Equation (3.52) for the case α(v, v′) =

k1, β(v | v′) =
1

v′
, m(v, t) = 2 and b(v) = k2v ,where k1 and k2 are con-

stants, we get

∂f̄(s, τ)

∂τ
=

1

2
[f̄(s, τ)]2 − f̄(s, τ)ν(τ)

+ [ν(∞)]2
ντ − f̄(s, τ)

s
+

1

2
[ν(∞)]2

∂f̄ (s, τ)

∂s
(3.53)

with initial conditions

f̄(s, 0) =
1

(1 + s)
and f̄(0, τ) = ν(τ), (3.54)

where ν(∞) =
√

2k2N1/k1, N1 is the first moment given byN1(t) =
∫∞
0 f1(v, t)vdv.

Letting s = 0 in Equation (3.53) gives the following ordinary differential
equation in ν(τ)

dν(τ)

dτ
=

[ν(∞)]2 − [ν(τ)]2

2
, ν(0) = 1 (3.55)

which has the solution

ν(τ) =
ν(∞)[1 + ν(∞) tanh(ν(∞)τ/2)]

ν(∞) + tanh(ν(∞)τ/2)
. (3.56)
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After solving the Equation (3.53), we get

f̄(s, τ) =
[ν(τ)]2

s+ ν(τ)
. (3.57)

Taking inverse Laplace transform of Equation (3.57), one obtains

f(v, τ) = [ν(τ)]2e−vν(τ), (3.58)

where ν(τ) is given by Equation (3.56). Thus we get the dimensionless num-
ber density f(v, t) for the constant aggregation and non-constant breakage
kernels.

The non-constant aggregation and breakage kernels

Case1 : By taking the Laplace transform of Equation (3.52) for the case

α(v, v′) = v + v′, β(v | v′) = 1

v′
, m(v, t) = 2 and b(v) = kv ,where k is a

constant, we get

∂f̄ (s, τ)

∂τ
= −∂f̄ (s, τ)

∂s
(f̄(s, τ)− ν(τ))− f̄(s, τ) +

k

a0N0

∂f̄ (s, τ)

∂s

+
2k

a0N0s
(ν(τ)− f(s, τ)).

(3.59)

By letting s = 0 in Equation (3.59), and noting f̄(s, 0) = ν(τ), we obtain
the following ordinary differential equation in ν(τ) :

dν(τ)

dτ
+ ν(τ) =

k

a0N0
, ν(0) = 1. (3.60)

After solving Equation (3.60), we obtain

ν(τ) =
k

a0N0
+ (1− k

a0N0
)e−τ . (3.61)

By putting ν(τ) =
N(t)

N0
and τ = a0N0t, we get the expression for the number

density as

N(t) =
1

a0
[k + (a0N0 − k)e−a0N0t]. (3.62)
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Case2 : By taking the Laplace transform of Equation (3.52) for the case

α(v, v′) = v.v′, β(v | v′) =
1

v′
, m(v, t) = 2 and b(v) = kv, where k is a

constant, we get

∂f̄(s, τ)

∂τ
=

1

2
(
∂f̄ (s, τ)

∂s
)2 + (

a0N0 + k

a0N0
)
∂f̄ (s, τ)

∂s
+

2k

a0N0

1

s
(ν(τ)− f(s, τ)).

(3.63)
By letting s = 0 in Equation (3.63), and noting f̄(s, 0) = ν(τ), we obtain
the following ordinary differential equation in ν(τ) :

dν(τ)

dτ
+

1

2
=

k

a0N0
, ν(0) = 1. (3.64)

The above Equation (3.64) is readily solved to obtain

ν(τ) = 1 + (
k

a0N0
− 1

2
)τ. (3.65)

By putting ν(τ) =
N(t)

N0
and τ = a0N0t, we get the expression for the number

density as

N(t) = N0[1−
1

2
(a0N0 − 2k)t]. (3.66)

Thus we get the number density or zeroth moment for non-constant aggre-
gation and breakage kernels.

3.2.2 Numerical Methods

We have seen in the previous section that the analytical solutions of PBEs
are available for a few cases where the coalescence and breakup kernels have
a simple form and when the particle size distribution (PSD) has a particular
initial shape.

In many cases, even though the analytical solution of the PSD is available,
some properties of PSD (e.g. mean diameter, mean surface area, etc.) need
to be derived by numerical integration of the analytical solution. Computa-
tionally speaking, this procedure is more expensive than solving the PBE by
discretization techniques.

However, the analytical solutions remain a valuable source for testing and
validating numerical techniques. In applications of particular interest, nu-
merical techniques are needed to solve the PBE. The most commonly used
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techniques are Monte Carlo method, the Methods of Classes (MC) and the
method of moments. Hereafter, because of their relevance in CFD applica-
tions, the method of classes, the quadrature method of moments (QMOM),
the parallel parent and daughter classes technique (PPDC), the sectional
quadrature method of moments (SQMOM), one primary and one secondary
particle method of moments (OPOSPM) and the multi primary and one sec-
ondary particle method of moments (MPOSPM) are discussed.

We will validate the numerical methods for following two cases :
case 1 : Splitting in a continuous stirred vessel with simplified splitting func-
tions [22]. The distribution is exponential with respect to the particle volume
at inflow boundary (f in = 3d2e−d3), the splitting frequency is proportional
to the square of the particle volume (Γ = d6), the daughter particle distri-
bution is uniform with respect to the mother particle volume (β = 6d2/d′3),
the initial condition is zero (f(d, 0) = 0), the minimum and maximum parti-
cle sizes are 0.001 and 2 respectively and the vessel residence time τ is 50 sec.

case 2 : Splitting and aggregation in a batch stirred tank with dimension-
less time T = 10, constant aggregation frequency = 1, non-constant splitting
frequency = 0.1v, dmin = 0.001 and dmax = 3. The analytical solution is
given by McCoy and Madras (2003).

Method of classes

Using the method of classes, the internal coordinate size range is subdivided
into M subintervals in a partition PM ≡ {0 = v1, v2, ....., vM , vM+1 = ∞}.
The number of particles between the ith subinterval is

Ni(t) =

∫ vi+1

vi

f(v, t)dv. (3.67)

Approximating f by a finite set of Dirac’s delta functions

f(v; t) ≈
M∑

i=1

Niδ(v − xi) (3.68)

the ith class consists of all particles per unit of volume, Ni, present in the
interval Ii ≡ [vi, vi+1), and is represented by a pivot size of abscissa, xi, with
xi ∈ [vi, vi+1). When Equation (3.68) is substituted into PBE, and the latter
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is integrated in the ith generic subinterval, it yields

dNi

dt
=

1

2

i−1∑

j=1

Nj

∑

(xj+xk)∈Ii

Nka(xj , xk)−Ni

M∑

j=1

Nja(xi, xj)

+
M∑

j=1

γ(xj)Njb(xj)

∫ vi+1

vi

β(v/xj)dv − b(xi)Ni (3.69)

i = 1, .....,M.

Here
∫ vi+1

vi
β(v/xj)dv represents the fraction of daughter particles generated

from the breakup of particles of size xi, present in the size range [vi, vi+1).

When a linear grid partitioning is used, i.e. xi = ih, where h is a con-
stant, the consistency on the total number of particles is ensured as well as
conservation of mass [36]. For a linear grid the discretized form of the PBE
yields

dNi

dt
=

1

2

i−1∑

j=1

NjNi−ja(xj , xi−j)−Ni

M∑

j=1

Nja(xi, xj)

+
M∑

j=1

γ(xj)Njb(xj)

∫ vi+1

vi

β(v/xj)dv − b(xi)Ni (3.70)

i = 1, .....,M.

We solve the spatially homogeneous PBE by method of classes in the case of
particular breakage and aggregation kernels. Then we compare the analytical
results with numerical results for cases 1 and 2.
MC is validated for both cases. We can see good agreement of sauter mean
diameter in Figures 3.2.2,3.2 but unfortunately, to get this agreement, we
have to take 130 classes which is expensive in terms of computation. We
have taken a fixed time step of 0.01 sec in both cases.

Since a uniform grid partitioning may require several hundreds of classes,
with an unfeasible computational workload, several different methods of
classes have been developed in the past in order to solve the PBE with a
lower number of classes.

For the method of classes based on a fixed pivot size discretization with
non-uniform grid there is a problem related to the allocation of the daughter
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Figure 3.1: The sauter mean diameter for the breakage only.
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Figure 3.2: The sauter mean diameter for the breakage and aggregation both.
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particles generated by breakup and coalescence, with different sizes than the
pivot sizes. If these particles are assigned to the class they are falling into
without any adjustment then only the zero order moment or total number
density would be conserved but not the total population mass.

In the work of Batterham [53] the size domain is discretized in a geomet-
rical series such that vi+1/vi = 2 and the daughter particles are allocated
between the nearest neighbor in such a way to preserve the total population
mass. Hounslow [54] used a correction parameter to predict correctly both
mass and total number density of the population. Lister [55] extended the
work of Hounslow [54] to an adjustable discretization of the size domain of
the form vi+1/vi = 21/q, where q is an integer greater than zero. In the ap-
proach of Kumar and Ramkrishna [56], partion functions are determined so
that from 2 to M arbitrary properties can be correctly predicted on an arbi-
trary domain size discretization. This redistribution is however responsible
for numerical diffusion problems.

Method of Moments

Instead of solving the Particle Size Distribution (PSD) directly, as attempted
by method of classes, the method of moments aim is to solve some of the
PSD properties, for instance the lower order moments of the distribution.
The solution of the population balance equation has been first proposed
by Hulburt and Katz [57]. In their work they highlighted the promising
possibilities but also the strong limitations of the method. Thus if f(v;x,t) is
the PSD in terms of the particle volume v, the kth moments of the PSD is
defined as follows :

m(k)(x, t) =

∞∫

0

f(v; x, t)vkdL. (3.71)

The moments give important statistical descriptions on the population. The
zero order moment (k = 0) represents the total number density of the pop-
ulation; the first order moment (k = 1) is the total mass per unit of volume
of the population, and the fractional moments, k = 1/3 and k = 2/3 gives
information on the mean diameter and on the mean surface area respectively.
Considering the volume as the only initial coordinate, the generic kth mo-
ment balance equation can be derived by multiplying PBE Equation (3.16)
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by vk and integrating over the internal coordinate domain

∂

∂t

∫ ∞

0

vkf(v, t)dv =
1

2

∫ ∞

0

vk
∫ v

0

α(v − v′, v′)f(v − v′, t)f(v′, t)dv′dv

−
∫ ∞

0

vkf(v, t)

∫ ∞

0

α(v, v′)f(v′, t)dv′dv

+

∫ ∞

0

vk
∫ ∞

0

m(v′, t)b(v′)β(v | v′)f(v′, t)dv′dv −
∫ ∞

0

vkb(v)f(v, t)dv.(3.72)

Using the definition of moments of the particle size distribution given by
Equation (3.71), Equation (3.72) yields

∂m(k)(v, t)

∂t
=

1

2

∫ ∞

0

vk
∫ v

0

α(v − v′, v′)f(v − v′, t)f(v′, t)dv′dv

−
∫ ∞

0

vkf(v, t)

∫ ∞

0

α(v, v′)f(v′, t)dv′dv

+

∫ ∞

0

vk
∫ ∞

0

m(v′, t)b(v′)β(v | v′)f(v′, t)dv′dv −
∫ ∞

0

vkb(v)f(v, t)dv.(3.73)

As can be noted, Equation (3.73) needs to be written in closed form before
being solved. The terms on the RHS are not in closed form. They must be
expressed as a function of moments or other known quantities in order to
close the equation.

The method of moments are differentiated from each other by the way they
handle the closure problem. Some of the methods assume that the PSD
shape is known a-priori, e.g. Gaussian, lognormal, etc. Then, the equations
of the moments yield equations for the assumed PSD parameters. Another
way to proceed is to reconstruct the PSD from the lower order moments
by interpolation polynomials or exponential function [58]. One of the most
promising is the QMOM that was first proposed by McGraw [32] for studying
aerosol evolution.

Quadrature Method of Moments (QMOM)

QMOM is based on the solution of the integrals involving the PSD f(L; x, t)
in terms of particle diameter L through a quadrature approximation :

f(L; , x, t) ≡
N∑

j=1

wjδ(L− Lj) (3.74)
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which implies

m(k)(x, t) =

∞∫

0

f(L; x, t)LkdL ≡
N∑

j=1

wjL
k
j , (3.75)

where abscissas Lj and weights wj are calculated from the lower-order mo-
ments by Product-Difference (PD) algorithm [59] (see appendix C).
The method has been validated in the case of molecular growth and aggre-
gation through comparison with analytical solutions and Monte Carlo simu-
lations [60] and compared with other available approaches, such as Laguerre
quadrature approximation and the finite element method, for the solution of
the aerosol general dynamic equation [61]. Moreover, lately the QMOM has
been extended to the description of bivariate population balance [62, 63],
where the PSD is written in terms of more than one internal coordinate
(e.g. particle volume and solute concentration). The length based spatially
homogeneous PBE (see appendix B) can be written as

∂f ′(L, t)

∂t
+

∂

∂L
(G(L, t)f ′(L, t)) = Ba(L; t)−Da(L; t) +Bb(L; t)−Db(L; t),

(3.76)
where

Da(L; t) = f(L, t)

∫ ∞

0

a(L, L′)f(L′, t)dL′

Ba(L; t) =
L2

2

∫ L

0

a((L3 − L′3)1/3, L′)

(L3 − L′3)2/3
f((L3 − L′3)2/3; t)f(L′, t)dL′

Bb(L; t) =

∫ ∞

L

b(L)β(L | L′)f(L′, t)dL′

Db(L; t) = b(L)f(L; t).

Multiplying Equation (3.76) by Lk and then integrate from 0 to ∞ , we get

∂mk(t)

∂t
= Ba(L; t)−Da(L; t) +Bb(L; t)−Db(L; t), (3.77)

where

Ba(L; t) =
1

2

∫ ∞

0

f(L′, t)

∫ ∞

0

a(L′, L′′)(L′ + L′′)k/3f(L′′, t)dL′dL′′

Da(L; t) =

∫ ∞

0

Lkf(L, t)

∫ ∞

0

a(L, L′)f(L′, t)dL′dL
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Figure 3.3: The sauter mean diameter for the breakage only.

Bb(L; t) =

∫ ∞

0

Lk

∫ ∞

0

b(L′)β(L | L′)f(L′, t)dL′dL

Db(L; t) =

∫ ∞

0

Lkb(L)f(L, t)dL.

When the QMOM is used, all the integral terms included in the above equa-
tions are calculated through a quadrature approximation leading to

∂mk(t)

∂t
=

1

2

N∑

i=1

wi

N∑

j=1

wj(L
3
i + L3

j )
k/3aij +

N∑

i=1

biβi
(k)
wi

−
N∑

i=1

Lk
iwi

N∑

j=1

wjaij −
N∑

i=1

Lk
i biwi, (3.78)

where aij = a(Li, Lj),bi = b(Li) and βi
(k)

=
∫∞
0 Lkβ(L | Li)dL. The number

of nodes N used in the quadrature approximation determines the number
of moments to be tracked. In fact, in order to calculate a quadrature ap-
proximation of order N , the first 2N moments have to be calculated. The
QMOM is found very efficient from accuracy and computational cost point of
view as we can see very good agreement between the solution by QMOM and
analytical solution in Figures 3.3, 3.4. But QMOM has some drawbacks like
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Figure 3.4: The sauter mean diameter for the breakage and aggregation both.

destroying the shape of the distribution and retaining the information about
it only through that stored in the moments. The other drawback of QMOM
appears in the solution of the abscissas and weights used in this quadrature
which requires the solution of an eigenvalue problem in terms of the pop-
ulation low-order moments as one has to invert the system (3.75) by using
product difference algorithm (see appendix C). These eigenvalues are roots
of a polynomial equation resulting from the approximation of the number
density function by a polynomial of a specified degree that equals the desired
number of low-order moments [64]. Unfortunately as the number of the low-
order moments increases, the solution of the associated eigenvalue problem
become difficult due to ill-conditioning. Or equivalently, if the weights and
abscissas are tracked directly [65] the solution of the resulting linear system
becomes ill-conditioned and hence difficult to solve with sufficient accuracy.

Parallel Parent and Daughter Classes (PPDC)

Bove [66] introduced PPDC after QMOM to solve PBE. According Bove, it
is possible to split the PBE based on the specific process as it is shown below.

The expanded PSD function can be written as
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fE(v, t) =
M∑

i=1

Ni(t)δ(v − xi)

+
M∑

i=1

M∑

j=1

Aij(t)δ(v − yij)

+
M∑

i=1

NB(i)∑

k=1

B(i)
k (t)δ(v − z(i)k )

= fp(v, t) +
M∑

i=1

M∑

j=1

f ij
a (v, t) +

M∑

i=1

f (i)
b (v, t). (3.79)

Considering the expanded PSD function, PBE can be written as

∂fp(v, t)

∂t
+

M∑

i=1

M∑

j=1

∂f (ij)
a (v, t)

∂t
+

M∑

i=1

∂f (i)
b (v, t)

∂t

= SB,a(f(v, t); v, t) + SD,a(f(v, t); v, t)

+ SB,b(f(v, t); v, t) + SD,b(f(v, t); v, t).
(3.80)

On the LHS, the first term represents the change of the PSD of the parent
classes, the second term represents the change of the PSD of coalescence
daughter classes and the third term represents the change of the PSD of the
breakage daughter classes.

Then, above equation can be split as follows :

∂fp(v, t)

∂t
= SD,a(f(v, t); v, t) + SD,b(f(v, t); v, t) (3.81)

M∑

i=1

M∑

j=1

∂f (ij)
a (v, t)

∂t
= SB,a(f(v, t); v, t) (3.82)

M∑

i=1

∂f (i)
b (v, t)

∂t
= +SB,b(f(v, t); v, t). (3.83)
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Integrating Equations (3.81)-(3.83) over the range [0,∞), which is equivalent
to discretize the equations in the internal coordinate domain, yields

M∑

i=1

∂Ni(t)

∂t
= −

M∑

i=1

Ni(t)
M∑

j=1

a(vi, vj)Nj(t)

−
M∑

i=1

b(vi)Ni(t) (3.84)

M∑

i=1

M∑

j=i

∂Aij(t)

∂t
=

1

2

M∑

i=1

M∑

j=1

a(vi, vj)Ni(t)Nj(t) (3.85)

M∑

i=1

NB(i)∑

k=1

∂B(i)
k (t)

∂t
=

M∑

i=1

M∑

j=1

γ(vj)b(vj)Nj(t)

vi+1∫

vi

β(v|xj)dv. (3.86)

In the particular framework with parallel process based grids and explicit
discretization in time. Equations (3.84)-(3.86) can be split as follows :

∂Ni(t)

∂t
= −Ni(t)

M∑

j=1

a(vi, vj)Nj(t)− b(vi)Ni(t) (3.87)

i = 1, ....,M,

∂Aij(t)

∂t
= (1− 1

2
δij)a(vi, vj)Ni(t)Nj(t) (3.88)

i, j = 1, ...,M, j ≥ i,

∂B(i)
k (t)

∂t
= γ(vi)b(vi)Ni(t)

vk+1∫

vk

β(v|xj)dv (3.89)

i = 1, ....,M k = 1, ...., NB(i).
After solving the system of Equations (3.87)-(3.89), the expanded PSD func-
tion becomes available :
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Figure 3.5: The sauter mean diameter for the breakage only.

fE(v, t) = fp(v, t) +
M∑

i=1

M∑

j=1

f ij
a (v, t) +

M∑

i=1

f (i)
b (v, t) (3.90)

=
M∑

i=1

Ni(t)/delta(v − vi)

+
M∑

i=1

M∑

j=i

Aij(t)δ(v − yij)

+
M∑

i=1

NB(i)∑

k=1

B(i)
k (t)δ(v − z(i)k ).

In order to work with the same number of parent classes for the next time
step, the expanded PSD function should be reduced again to M Dirac’s delta
function

fE(v, t) ≡ fR(v, t) =
M∑

i=1

Ñiδ(v − x̃i) (3.91)

and imposing the equivalence of 2M properties for both the distributions, it
yields a system of 2M non-linear equations in the unknowns Ñi and x̃i.
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Figure 3.6: The sauter mean diameter for the breakage and aggregation both.

If the first 2M lower order moments are the chosen properties, the system of
equations can be written as follows :

M∑

i=1

Ñix̃k
i = mk

E(t) k = 0, ...., 2M − 1. (3.92)

The inversion of the above non-linear system will give the weights and the
abscissas of the reduced PSD which will be used as start up conditions for
the next time step solution.

In Figures 3.5,3.6 show the comparison of the sauter mean diameter which
solved by PPDC and analytically for the aforementioned cases 1 and 2. As
we find that to get more accurate solution, one has to increase the number
of classes which increases the complexity and time of computation.

Sectional Quadrature Method of Moments (SQMOM)

Attarakih [22] introduced the idea of SQMOM. In the finite difference or
sectional methods the particle size (here it is denoted by the particle diam-
eter d) is discretized into finite number of sections Npp. The population in
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each section is considered to behave like a single particle, and hence it is
concentrated at a representative size usually at the middle of the section.
In SQMOM, this single particle is called the primary particle and it is re-
sponsible for the reconstruction of the distribution. Unfortunately, the large
number of primary particles in the classical sectional methods is required,
not only to reconstruct the shape of distribution, but also to estimate the
desired integral quantities associated with the distribution (such as the to-
tal number of particles and the mean particle size). This in turn increase
the computational loads extensively when the population balance equation
is coupled.

The interaction between primary particles in different sections, due to break-
age or/and coalescence events for example, results in a new primary particle
with no representative size due to the discrete approximation of the distri-
bution. Because the newly-birthed particle could not conserve any of its low
order moments but one (if it is located at the middle of the section), the rest
of the low-order moments are predicted with low accuracy and hence the
associated integral quantities. To overcome this fundamental problem of the
sectional methods, Nsp secondary particles are generated in each section with

positions (abscissas) that are given by: d(j)i : j = 1, 2, .....Nsp, i = 1, 2, ....Npp.
The classical quadrature method of moments as introduced by McGraw [32]
treats the population as a whole quantity without paying attention to any lo-
cal variation of the density function between the limits of integration (0,∞).
This is because the first use of the QMOM was done by Gordon [59] who was
interested only in integrating functions over the domain: (0,∞). The only
restriction that Gordon placed on the distribution function is that F (d, t)
(the commulative distribution of f(d, t) is a non decreasing function and the
values of its first 2Nsp) moments exist.

The idea behind the SQMOM is to devide the PDF (praobability density
function) into sections followed by the application of the QMOM to each
section. It is clear to this point that any section of F (d, t) will remain non
decreasing even when f(d, t) vanishes in certain sections. In the special case
where f(d, t) = 0 (especially at the two ends of the distribution due to reg-
ulatory conditions [67]), the PDF is uniformly distributed and hence the
positions of the secondary particles could be set arbitrarily. So, there is no
need to use the QMOM for the special case. It is obvious that by applying
the QMOM to certain sections of the population, the rules of Gordon [59]
were not violated. This in fact allows the application of the classical QMOM
to any arbitrary section of the population resulting in a set of local particle
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positions (abscissas) and weights. To this end it remains how to relate the
positions and weights of the secondary particles in the ith section to the sec-
tional moments of the unknown function f(d, t).

These operations of averaging are carried out for all primary particles as
follows :

w̃i(t) =
1

∆di

Nsp∑

j=1

w(i)
j , i = 1, 2, ....Npp (3.93)

d̃i(t) =

∑Nsp

j=1w
(i)
j d(i)j∑Nsp

j=1w
(i)
j

, i = 1, 2, ....Npp. (3.94)

In pure mathematical sense, the above presentation is equivalent to applying
the QMOM to each section of an arbitrary width : [di−1/2, di+1/2] : i =
1, 2, ....Npp resulting in a set of sectional moments that could be written as :

m(i)
k (t) =

di+1/2∫

di−1/2

dkf(d, t)∂d, k = 0, 2, ..., 2Nsp − 1. (3.95)

Now, let the population density in the ith section ([di−1/2, di+1/2] : i =
1, 2, ...., Npp) be represented in terms of local secondary particles weights and
positions in the following form :

f (i)(d, t) =

Nsp∑

j=1

w(i)
j (t)δ(d− d(i)j ), (3.96)

where δ(d− d(i)j ) is the Dirac Delta function placed at the secondary particle

position: d(i)j with strength w(i)
j . Similarly, the whole population density

could now be reconstructed using the same form of above equation. But
now making use of the mean weights and positions assigned to the primary
particles given by Equations (3.93) and (3.94), we have

f(d, t) =

Nsp∑

i=1

w̃i(t)δ(d− d̃i(t)). (3.97)

By making use of above equation, we get the sectional moments as

m(i)
k (t) =

Nsp∑

i=1

w(i)
j (d(i)j )k, r = 0, 2, ...., 2Nsp − 1. (3.98)
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The discretization of the general PBE is performed by partitioning the parti-
cle size (diameter) into contiguous sections of an arbitrary width [di−1/2, di+1/2] :
i = 1, 2, ....Npp. By multiplying the both sides of PBE (3.76) by dk and in-
tegrating with respect to d over the section width [di−1/2, di+1/2] : i =
1, 2, ....Npp, the transformed equations could be written as:

∂m(i)
k (t)

dt
= −D(i)

k [Γ(i) · w(i)]T +

Npp∑

p=i

C(i,p)
k [Γ(i) · w(i)]T

+

i×Nsp∑

r=1

{ i×Nsp∑

j=r

Ψ(i)
r,j,kaj,rw

′
jw

′
r − ηk

Nsp×Npp∑

n=1

(dr)
kar,nw

′
rw

′
n

}
(3.99)

Where,

ηr =

{
1 if (i− 1)Nsp + 1 ≤ r ≤ iNsp

0 otherwise

Ψ(i)
r,j,k =





(1− 1

2
δr,j) if (di−1/2)3 ≤ [(d′r)

3 + (d′j)
3]

k

3 < (di+1/2)3

0 otherwise

C(i,p) =





π(i,p)
0,1 . . . π(i,p)

0,Nsp

. . . . . . . . .
...

...
...

π(i,p)
2Nsp−1,1 . . . π(i,p)

2Nsp−1,Nsp





π(i,p)
k,j =

min(di+1/2,d
(p)
j )∫

di−1/2

drβ(d|d(p)j )∂d (3.100)

D(i)
k = [(d(i)1 )k (d(i)2 )k . . . (d(i)Nsp

)k]

w(i) = [w(i)
1 w(i)

2 . . . w(i)
Nsp

]

Γ(i) = [Γ(d(i)1 ) γ(d(i)2 ) . . . Γ(d(i)Nsp
)]

d′ = [d(1)1 . . . d(1)Nsp
. . . d(Npp)

1 . . . d(Npp)
Nsp

]

w′ = [w(1)
1 . . . w(1)

Nsp
. . . w(Npp)

1 . . . w(Npp)
Nsp

]

k = 0, 1, . . . , 2Nsp − 1, i = 1, 2, . . . , Npp.
The integral appearing in Equation (3.100) preserves the low-order moments



3.2. METHOD OF SOLVING THE PBE 59

0 5 10 15 20 25 30 35 40 45
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

time

sa
ut

er
 m

ea
n 

di
am

et
er

 

 
SQMOM
Analytical

Figure 3.7: The sauter mean diameter for the breakage only.

of the newly birthed particles in the ith section due to splitting of a mother
particle of size d(p)j . This integral could be easily evaluated if the form of

the daughter particle distribution (β(d|d(p)j )) is known. The function (ηk)
is used to select the secondary particles disappearing due to aggregation in
the ith section, while Ψ(i)

r,j,k is a sparse aggregation matrix whose nonzero
elements represent the successful aggregation events between any pairs of
secondary particle with locations and weights that are given by the aug-
mented vectors : d′ and w′. It is clear that the solution of the discretized
PBE guarantees the exact preservation of 2Nsp first low order moments
(mk : k = 0, 1, . . . 2Nsp − 1).

In Figures 3.7, 3.8, the sauter mean diameter as predicted using the SQMOM
(Npp = 2, Nsp = 2) is compared with the analytical solution for the aforemen-
tioned cases. It is clear that using 2 primary particles is enough to predict
the sauter mean diameter very accurately. Figure 3.9 shows the comparison
of the sauter mean diameter as predicted using the SQMOM with different
combination of number of primary particles and number of secondary parti-
cles for case 2. It is clear that 2 primary particles and 2 secondary particles
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Figure 3.8: The sauter mean diameter for both the breakage and aggregation.
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Figure 3.9: The comparison of the sauter mean diameter for both the break-
age and aggregation for different number of primary and secondary particles.
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Figure 3.10: Average number concentration using different primary particles
as predicted by the SQMOM.

predictions are same as those of 1 primary particle and 3 secondary particles
(which is equivalent to QMOM with 3 quadratures). Figure 3.10 shows the
comparison of average number concentration using different primary parti-
cles as predicted by the SQMOM with the analytical solution for case (2). It
is clear that 16 primary particles are enough to reconstruct the distribution
or predict the average number concentration accurately.

Multi Primary and One secondary Particle Method (MPOSPM)

Note that when we take one secondary particle only then SQMOM becomes
a Multi Primary and One Secondary Particle Method (MPOSPM). In this
case we need to evaluate only 2 moments (zeroth and third) and we evaluate
average diameter by following formula :

d30 =

(
6

π

m0

m3

)1/3

. (3.101)

In Figure 3.1, the average diameter as predicted using MPOSPM is compared
with the analytical solution for case 1. In case 1, the breakage kernel is non-
linear (0.1d6) in the size so to accurately predict the average diameter, we
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Figure 3.11: The sauter mean diameter for the breakage only.

have to increase the number of primary particles and find that 16 primary
particles are enough to predict the average diameter very accurately.

One Primary and One Secondary Particle Method (OPOSPM)

When we restrict the number of primary particles and the number of sec-
ondary particles to one, a one primary and one secondary particle method
(OPOSPM) results, whereby the number density function can be written as

f(d, t) = Nδ(d− d30).

The one primary and one secondary particle method is the simplest discrete
method that can reduce the continuous population balance equation. This
representation is of moderate accuracy and reflects all the features contained
in the continuous population balance equation. For example, the method
conserves both total number and volume (mass) concentrations and is ex-
act when the breakage and coalescence frequencies are constants. This cor-
responds to tracking directly the total number concentration (N), volume
fraction (αd) and the solute concentration (Cd) by solving their transport
equations. To derive these equations, the bivariate density function is con-
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sidered as Dirac delta function with weight (N) and locations (d30 and Cd):

nd,Cd
(d, Cd; t, z) = N(t, z)δ(d − d30(t, z))δ(C − Cd(t, z)). (3.102)

This is equivalent to replacing the bivariate density function by one primary
and one secondary particle (in the special case they are identical) with weight
(N) and internal states (d30: mean diameter and Cd: mean solute concen-
tration).
We have validated the OPOSPM for the aforementioned two cases and for
the following three more cases :
Case 3: Aggregation in a batch vessel with product aggregation frequency.
Case 4: Splitting and aggregation in a batch vessel with linear splitting and
sum aggregation frequencies.
Case 5: Splitting and aggregation in a batch vessel with linear splitting and
product aggregation frequencies.
We have evaluated the analytical solution for cases 3,4 and 5 and are pre-
sented in the previous subsection 3.2.1.

Figures 3.12,3.13 compares the predicted average diameter by using OPOSPM
and analytical solution for cases (1 and 2) which shows good agreement be-
tween both solutions. Figure 3.14 compares the average number density
as predicted by the OPOSPM and the analytical solution which shows that
OPOSPM predicts quite accurately the average number density for case (3).
In Figures 3.15,3.17, the comparison between the analytical solution and
predicted solutions using the OPOSPM are shown for cases (4 and 5) re-
spectively. Figures 3.16,3.18 compares the average diameter as predicted
by OPOSPM and analytical solution for cases (4 and 5). It is clear that
OPOSPM is able to predict quite accurately the average number density and
average diameter for all the cases.

Now, we deal with numerical experiments for the convergence anal-
ysis of the MPOSPM. We consider two cases only breakage in continuous
vessel and aggregation and breakage both in the batch vessel.
Let us begin with the first case of a non-linear breakage kernel (0.1×d6) in a
continuous vessel. The numerical results are presented in Table 3.1. Which
shows the convergence of second order.

Now we consider the second test case of non-linear breakage kernel (0.1×d6)
and non linear aggregation kernel (d6× d′6) in a batch vessel. The numerical
results of the convergence analysis have been summarized in Table 3.2. Once
again, as expected, in both cases, the MPOSPM approximately converges to
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Figure 3.12: The sauter mean diameter for the breakage only.
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Figure 3.13: The sauter mean diameter for both the breakage and aggrega-
tion.
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Figure 3.14: The number density for the product coalescence kernel.
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Figure 3.15: The number density for the additive coalescence kernel and
linear breakage kernel.
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Figure 3.16: The average diameter for the additive coalescence kernel and
linear breakage kernel.
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Figure 3.17: The number density for the productive coalescence kernel and
linear breakage kernel.
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Figure 3.18: The average diameter for the productive coalescence kernel and
linear breakage kernel.

second order.

Table 3.1: Error analysis of MPOSPM for the case of breakage only
Npp L1 Error EOC for L1 L2 Error EOC for L2

2 142.8219 2.3180
4 56.4930 1.3381 0.9009 1.3635
8 18.0500 1.6461 0.2881 1.6445
16 4.8988 1.8815 0.0779 1.8869
32 1.3664 1.8442 0.0235 1.7292

3.2.3 Comparison of Numerical Methods

In this section, we compare the numerical methods in terms of accuracy,
complexity and time of computation.

Tables 3.3,3.4 show the comparison among the methods for aforementioned
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Figure 3.19: The sauter mean diameter for the breakage only.
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Figure 3.20: The sauter mean diameter for the aggregation and breakage
both.
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Table 3.2: Error analysis of MPOSPM for the case of both the breakage and
aggregation

Npp L1 Error EOC for L1 L2 Error EOC for L2

2
4 62.341 2.2931
8 23.9580 1.3800 0.7881 1.5408
16 61.586 1.9598 0.2031 1.9559
32 1.7659 1.8022 0.0575 1.8216
64 0.5423 1.7032 0.0175 1.7178

Table 3.3: Comparison of numerical methods to solve PBE for the case of
breakage only

Methods No. of Equations Error CPU Time (Sec)

MC 100 0.0129 15.5324
PPDC 8 0.0489 0.0765
QMOM 6 0.0086 0.0360
SQMOM 8 0.0009 0.0257

cases 1 and 2. It is clear that QMOM and SQMOM are comparably better
in terms of accuracy and time of computation. As we know that in case
1, the breakage kernel is non-linear (0.1 × d6) in the volume of the droplets
which creates some difficulty in predicting the diameter accurately. But, we
can see in Table 3.3 that SQMOM predicts the sauter mean diameter quite
accurately and takes minimum time to compute as compared to the other
methods.
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Table 3.4: Comparison of numerical methods to solve PBE for the case of
breakage and aggregation both.

Methods No. of Equations Error CPU Time (Sec)

MC 130 4.3425× 10−4 18.0220
PPDC 12 0.0594 0.0755
QMOM 6 7.4551× 10−4 0.0187
SQMOM 8 0.0026 0.0119



Chapter 4

Momentum Transfer Between
Liquid-Liquid Phases

In this chapter, the solution of CFD-Monovariate PBE coupled model is
discussed. We consider two phase (continuous and dispersed) and the mo-
mentum transfer between them. We begin with the two fluid model with
only one primary particle, but later on we consider more primary particles
and then take the average diameter for all primary particles. Finally the
numerical results for the multi fluid model are shown whereby each primary
particle is considered as a separate fluid. To solve the model we have used
two solvers. First solver is OPOSPM and MPOSPM to simplify the PBE
and then FPM solver to solve the model equations numerically.

4.1 FPM-OPOSPM Solver

First we reduce the model equations by using OPOSPM. When we apply
OPOSPM on the PBE then we directly get two equations for the number
concentration (N) and the volume concentration (αd) of the droplets from the
PBE and then we evaluate the average diameter of the droplets. After having
the average diameter of the droplets we plug it in the momentum equation
of droplets to calculate the velocity (ud) of the droplets. To calculate the
velocity of the continuous phase, we use the analytical formulation which we
get after adding the conservation of mass equations of the continuous and
dispersed phases (see appendix A). To evaluate the volume concentration
of the continuous phase, we use the constraint αc + αd = 1. The model is
simulated with the initial and boundary conditions given in Table (4.1) for

71
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the column geometry shown in Table (4.2).

Table 4.1: Initial and inlet boundary conditions for the RDC liquid-liquid
extraction columns.

Initial Conditions Inlet boundary conditions

N(z, t0) = 0.0 N(zd, t) = Qin
d

Acvin

αd(z, t0) = 0.0 αd(zd, t) =
Qin

d
AC

ud(z, t0) = 0.0 ud(zd, t) =
ds
4.2

(
g"ρ
ρc

)2/3( ρc
µc

)1/3

Table 4.2: Column Geometry
Column diameter 0.15 m

Stator diameter 0.105 m
Rotor diameter 0.090 m

Compartment height 0.030 m
Column height 2.55 m

Dispersed phase inlet 0.250 m
Continuous phase inlet 2.250 m

4.1.1 The PBE without Source Term

First we solve the model by supposing that average diameter of droplets
is fixed which means that the breakage kernel and aggregation kernels are
zero. Figure 4.1 and 4.2 show the response of the total number concentration
and volume concentration of the droplets at steady state respectively. It is
clear that the number concentration and volume concentration of droplets
decreases from its initial value to a terminal value as the particles accelerate
from their initial velocity to their terminal velocity which is shown in Figure
4.3 because of this we can see a peak in Figures 4.1 and 4.2 at the inlet of
dispersed phase. We can also conclude from Figures 4.1, 4.2 and 4.3 that the
solutions for number density, volume concentration and velocity of droplets
reach a steady state after t = 20 sec with time step 5×10−3 without breakage
and aggregation kernels.
The velocity profile of the continuous phase is shown in Figure 4.4. It is
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Figure 4.1: The number density of the droplets without breakage and coa-
lescence kernels.
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Figure 4.2: The volume concentration of the droplets without breakage and
coalescence kernels.
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Figure 4.3: The average velocity of the droplets without breakage and coa-
lescence kernels.
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Figure 4.4: The velocity of the continuous phase without breakage and coa-
lescence kernels.
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Figure 4.5: The average diameter of the droplets without breakage and coa-
lescence kernels.
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Figure 4.6: The droplets velocity profile on the different time frames.
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Table 4.3: Physical Quantities
ρc 1000.0 kg/m3

ρd 860.0 kg/m3

µc 9.2× 10−4 kg/ms
g 9.81 m/s2

Qin
d 2.77× 10−5 m3/s

Qin
c 1.38× 10−4 m3/s

din 3.0 mm
dmin 0.001 mm
dmax 6.0 mm

clear from Figure 4.4 that the two spatial discontinuities at the inlets of
dispersed phase and continuous phase are also correctly resolved. We can
see the average diameter of droplets in Figure 4.5 which is constant through
the whole column after the inlet of the dispersed phase; which was expected
since the breakage kernel and aggregation kernel are zero.

Figure 4.6 shows the time history for the dispersed phase velocity. This
figure clearly shows that for t = 20 we get a fairly good description of the
two-phase flow inside the column.

4.1.2 The PBE with Source Term

In this section, the effect of non-zero source term is discussed. Initially,
we show the effect of constant breakage and aggregation kernels and then
non-constant kernels followed by real kernels.

Constant kernels

We have taken the constant breakage kernel 0.03 and coalescence kernel 10−6

to solve the model. Figures 4.7 and 4.8 show the number density and volume
concentration of droplets. We can see from Figure 4.7 that the coalescence
kernel is dominating as the number density is decreasing which is clear from
Figure 4.10 too as the average diameter is increasing.

Figure 4.9 gives the velocity profiles of the dispersed phase. It shows that
the velocity increases due to the increase of average diameter (Figure 4.10).
This fact is reflected from the momentum equation, where drag force is the
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Figure 4.7: The number density of the droplets with constant breakage kernel
0.03 and coalescence kernel 10−6.
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Figure 4.8: The volume concentration of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6.
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Figure 4.9: The average velocity of the droplets with constant breakage kernel
0.03 and coalescence kernel 10−6.
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Figure 4.10: The average diameter of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6.
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Figure 4.11: The number density of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−7.
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Figure 4.12: The volume concentration of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−7.
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Figure 4.13: The average velocity of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−7.

function of average diameter. So when the average diameter increases then
drag force decreases and as a result, the droplets velocity increases.
Now if we decrease the coalescence kernel from 10−6 to 10−7 and we find

that the breakage kernel dominates resulting to increment of the number
density , decrease of the droplets velocity as well as decrease of the average
diameter which is clear from Figures 4.11, 4.13 and 4.14. Figure 4.12 depicts
the volume concentrations of dispersed phase which decreases at the inlet of
dispersed phase as particles accelerate from their initial velocity to terminal
velocity (Figure 4.13). But after that the volume concentration of dispersed
phase increases as droplet velocity decreases and spatial derivative of veloc-
ity becomes negative. This fact is reflected from the equation of volume
concentration (i. e. continuity equation).

4.1.3 Non-Constant Breakage and Coalescence Ker-
nels

In this section, the effect of non-constant breakage and coalescence kernels
is discussed. We take the breakage kernel as 0.1× d3 and coalescence kernel
as d3 + d′3 and see the physical quantities of fluid. In this case, we find that
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Figure 4.14: The average diameter of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−7.
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Figure 4.15: The number density of the droplets with non-constant breakage
kernel and coalescence kernel.
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Figure 4.16: The volume concentration of the droplets with non-constant
breakage kernel and coalescence kernel.
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Figure 4.17: The average velocity of the droplets with non-constant breakage
kernel and coalescence kernel.
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Figure 4.18: The average diameter of the droplets with non-constant breakage
kernel and coalescence kernel.

aggregation kernel dominates slightly which clear from Figures 4.15 and 4.18
since the number density of droplets decreases and the average diameter of
droplets increases slightly.

Figures 4.16 and 4.17 show the volume concentration and velocity profiles
of droplets respectively. We can see a little jump in velocity profile in the
top part of the column which appears due to inlet of continuous phase.

4.1.4 Realistic Breakage and Coalescence Kernels

We implement the realistic breakage and coalescence kernels in the model and
validate the results with experimental data. The droplet breakage frequency
has been taken from the correlation based on single droplet experiments [30]
and is given by :

Γ(d, αd) = Pr(d,N)
|ud|
Hc

. (4.1)

The breakage probability Pr is correlated with the system physical properties
and the energy dissipation in the form below after Modes [68] based on a
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correlation after Cauwenberg [69] :

Pr

1− Pr
= 1.2× 10−6 ·

[
ρ0.8c µ0.2

c dDR1.6(2π)1.8(N1.8 −N1.8
crit)

σ

]2.88
, (4.2)

where Hc is the RDC compartment height and Ncrit is the critical rotor speed
below which the breakage probability falls to zero and according to Schmidt
[28] can be expressed as :

Ncrit = 0.016
D−2/3

R µdd−4/3

(ρcρd)1/2
+

[(
0.008

D−2/3
R µdd−4/3

(ρcρd)1/2
)2

+ 0.127
σ

ρcD
4/3
R d5/3

]0.5
.

(4.3)

The daughter droplet distribution is assumed to follow the beta distribution
[33] :

β(d|d′) = 3ν(ν − 1)

[
1−

( d
d′
)3
]ν−2 d2

d′3
, (4.4)

where ν ≥ 2 is the mean number of daughter droplets produced upon break-
age of mother droplet of diameter d′. It is experimentally correlated and
found dependent on the energy dissipation. In this work, we have taken
ν = 2.
According Coulaloglou [70] expressed the coalescence frequency as a product
of collision rate and coalescence efficiency based on the kinetic theory of gases
and obtained the following expression :

ω(d, d′, αd) = c3
φ1/3

1 + αd
(d+d′)2(d2/3+d′2/3)1/2×exp

(
− c4µcρcφ

σ2(1 + αd)3
( dd′

d+ d′
)4
)
,

(4.5)

4.1.5 Pilot Plant RDC (height 2.55m)

To completely specify the column, the following geometry is used for a pilot
plant RDC (see Figure 1.1) : Column diameter = 0.15m, zc = 2.25m,
column diameter = 0.15m, compartment height = 0.030m and zd =
0.25m. The total flow rate of the continuous and dispersed phases are
1.66× 10−5 and 2.22× 10−5m3/s respectively.
Figure (4.19) depicts the hold-up profiles of dispersed phase, where the hold-
up at 200 rpm rotor speed is increased due to the increase of small droplets
residence time. It is clear that the hold-up profiles of droplets decrease from
its initial value to terminal value as the droplets accelerate from its initial
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Figure 4.19: Simulated and experimental [71] hold-up profiles in a pilot plant
RDC column at different rotor speeds using the system water/n-butyl ac-
etate.

velocity to terminal velocity as shown in Figure (4.21). The steady state
hold-up profiles were fairly predicted in the whole column except at the bot-
tom of the column, where the general trend is predicted.

Figure 4.20 shows that droplet coalescence is dominant at the rotor speed
of 150 rpm as indicated by the increase of the average droplet diameter along
the column height. As the rotor speed is increased to 200 rpm, the two
droplets interaction mechanisms (breakage and coalescence) are almost bal-
anced with slight dominance of droplet breakage. This fact was reflected by
the model of Tsouris and Tavlarides [36], where the coalescence efficiency
decreases as the energy input increases.

Figure 4.21 gives the velocity profiles of the dispersed phase. It shows that
the velocity at 150 rpm rotor speed is increased due to the increase of aver-
age diameter. This fact is reflected from the momentum balance equation,
where drag force is a function of average diameter. Moreover, the steady
state discontinuities due to the dispersed phase and continuous phase inlets
are resolved by the mesh free method used in the simulation. The CPU time
requirements on a PC of 3.06 GHz speed for this case is 14 s using a time
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Figure 4.20: Simulated and experimental [71] average diameter in a pilot
plant RDC column at different rotor speeds using the system water/n-butyl
acetate.
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Figure 4.21: Simulated velocity profiles of dispersed phase in a pilot plant
RDC column at different rotor speed using the system water/n-butyl acetate.
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Figure 4.22: Simulated and experimental [71] hold-up profiles in a pilot plant
RDC column at rotor speed 200 rpm at different FPM particles numbers 100
and 200 using the system water/n-butyl acetate.

step of 5× 10−3 where only five equations are solved in this model.

To improve the accuracy of the model in the case of rotor speed 200
rpm (more turbulence), we increase the number of FPM particles (spatial
particles) and simulate the model to see the impact of more FPM particles.
We find that we can improve hold-up profiles which one can see in Figure 4.22
but the average diameter (Figure 4.23) is not improved as the number density
of droplets also changes accordingly (Figure 4.24). This fact is reflected from
the Equation (??). When we increase the number of FPM particles then the
computational time of simulation also increases linearly. So we discuss the
other way of improving the accuracy of model in the case of rotor speed 200
rpm (more turbulence) by increasing the number of primary particles in next
section 4.2.

4.1.6 Pilot Plant RDC (height 4.0m)

The experimental hold-up, Sauter mean diameter and concentration profiles
of the continuous and dispersed phases are taken from the work of Schmidt
[72] and Garthe [73]. The simulation parameters used are from Scmidt [72],
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Figure 4.23: Simulated and experimental [71] average diameters in a pilot
plant RDC column at rotor speed 200 rpm at different FPM particles numbers
100 and 200 using the system water/n-butyl acetate.
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Figure 4.24: Simulated average number densities of droplets in a pilot plant
RDC column at rotor speed 200 rpm at different FPM particles numbers 100
and 200 using the system water/n-butyl acetate.
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Figure 4.25: Comparison of simulated and experimental [73] hold-up profiles
of droplets in a pilot plant RDC at 220 rpm.

and the mass transfer data from Garthe [73]. The total flow rate of the con-
tinuous and dispersed phases are 1.11×10−5 and 1.33×10−5m3/s respectively.

Figure 4.25 shows the simulated hold-up profile of the dispersed phase
along the column height. The discrepancy of the simulated results from
those obtained in the experiment amounts to 12%, 4% and 1% in the lower,
centre and top parts of the column respectively. We can see a peak in the
hold-up profile which reflects the fact that the particles accelerate from its
initial velocity to its terminal velocity over a short distance along the column.
Figure 4.26 shows the simulated and experimental average diameter profiles.
The relative errors are 0.05%, 10%, 5% and 5% in the lower, middle and top
parts of the column respectively.

4.1.7 Simulation of a Kuehni Column (DN-150)

The simulation of a Kuehni column (DN-150) (Figure 4.27) is carried out
using CFD-PBM coupled model with a specified correlations for the break-
age and coalescence frequencies. The experimental data at steady state from
[74] and [71] were used for comparison and the simulation parameters are
summarized in Table 4.4. The simulation were done at a rotational speed
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Figure 4.26: Comparison of simulated and experimental [73] droplet average
diameter (d30) of droplets in a pilot plant RDC DN-150 at 220 rpm.

Table 4.4: Physical Quantities
Volume flow rate of dispersed phase (l/h) 130/160/190

Volume flow rate of water (l/h) 130.00
Stirr speed (rpm) 160

of 160 rpm with water inflow of 130 l/h and solvent flow rate of 130 l/h,
160 l/h and 190 l/h. Both coalescence parameters, according to the model
of (Couglaloglou and Tavlarides), were estimated at rotational speed of 160
rpm. The results of simulations at a rotational speed of 190 rpm show that
the hydrodynamics of the column is inaccurately predicted with this param-
eter set.

Figures 4.28,4.29 and 4.30 show the hold-up profile of dispersed phase at
different volumetric flow rates. The relative error in the simulated hold up
for different dispersed phase flow rates (130 l/h and 160 l/h) is smaller than
5% which is clear from Figures 4.28 and 4.29. In Figure 4.30, we can see
that the relative error in the simulated hold up for a volumetric flow rate
190 l/h is around 8%. We can notice that the change in the dispersed phase
volumetric flow rate significantly affects the steady state hold-up profile.
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Figure 4.27: Kuehni Column.
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Figure 4.28: Comparison of simulated and experimental [74] hold - up pro-
files for Kuehni column DN-150 with inflow rates of continuous phase and
dispersed phase 125 [l/h] and 130 [l/h] respectively at 160 rpm.

4.2 FPM-MPOSPM Solver

As we have mentioned in chapter 3 that sometimes to get better accuracy, we
have to increase the number of primary particles which depends on the nature
of breakage and coalescence kernels. In this section we show the solution of
the model using MPOSPM. We can use this solver in two ways. One as two
fluid model and other one as multi-fluid model.

4.2.1 Two-Fluid Model

In the case of two fluid model, we consider one continuous phase and other
one dispersed phase. We take more classes (primary particles) of droplets
but we assume that all primary particles move with same average velocity.
In this case we have more sections for droplets so we need more equations for
number density and volume fraction. After calculating the number density
and volume fraction, we evaluate the average diameter then we plug this
diameter in momentum equation to evaluate the velocity of the dispersed
phase. We have used same column geometry which was given in Table 4.2.
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Figure 4.29: Comparison of simulated and experimental [74] hold - up pro-
files for Kuehni column DN-150 with inflow rates of continuous phase and
dispersed phase 125 [l/h] and 160 [l/h] respectively at 160 rpm.

Constant kernels

We have taken the constant breakage kernel 0.03 and coalescence kernels
10−6 to solve the model. We have chosen two primary particles and have
displayed the number density (Figure 4.31), volume concentration of droplets
(Figure 4.32) and average diameter of droplets (Figure 4.34) of each primary
particle. As we have noticed in the previous section, that the aggregation
kernel dominates in this case which we can see in Figure 4.31 as the number
density for second primary particles is increasing and the number density
for first primary particle is decreasing. It means that drops aggregate in
first class (first primary particle) and jump to second class (second primary
particle). Figure 4.32 shows the volume concentration profile of each primary
particle. We can see that the volume concentration of second primary particle
is increasing along the column height which is expected as aggregation kernel
is dominating. Figure 4.34 show the average diameter of droplets for each
class. We can see that the average diameter for second primary particle is
increasing continuously along column height after the inlet of dispersed phase
which again reflects the fact of dominance of aggregation kernel. We can see
the velocity profiles of dispersed phase and continuous phase in Figures 4.33
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Figure 4.30: Comparison of simulated and experimental [74] hold - up pro-
files for Kuehni column DN-150 with inflow rates of continuous phase and
dispersed phase 125 [l/h] and 190 [l/h] respectively at 160 rpm.
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Figure 4.31: The number density of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6.
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Figure 4.32: The volume concentration of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6.
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Figure 4.33: The average velocity of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6.
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Figure 4.34: The average diameter of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6.
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Figure 4.35: The average diameter of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6.
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Figure 4.36: The average number density of the droplets with non-constant
breakage kernel 0.1× d3 and coalescence kernel 2(d3 + d′3).

and 4.35.

Non-constant kernels

In this subsection we consider the non-constant breakage and coalescence
kernels and then we compare the results of FPM-OPOSPM solver and FPM-
MPOSPM solver.

Figure 4.36 shows the comparison of the FPM-OPOSPM and FPM-
MPOSPM solvers for the number density profiles of the droplets. It is clear
that the profile of number density (Figure 4.36), volume concentration (Fig-
ure 4.37), velocity of droplets (Figure 4.38) and the average diameter of
droplets (4.39) are quite similar for both solvers (FPM-OPOSPM and FPM-
MPOSPM) in the case of breakage kernel (0.1 × d3) and aggregation kernel
(2(d3 + d′3)). It is clear that FPM-OPOSPM solver is quite a good choice to
solve the coupled CFD-PBM model as in this case the time of computation
is quite small as we have to solve only three equations in the case of only mo-
mentum transfer between phases in one-dimensional space but on the other
hand, in case of FPM-MPOSPM solver, one has to solve 2×npp+1 equations
which is quite expensive in the terms of computation. Note that one has to
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Figure 4.37: The volume concentration density of the droplets with non-
constant breakage kernel 0.1× d3 and coalescence kernel 2(d3 + d′3).
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Figure 4.38: The velocity of the droplets with non-constant breakage kernel
0.1× d3 and coalescence kernel 2(d3 + d′3).
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Figure 4.39: The volume concentration density of the droplets with non-
constant breakage kernel 0.1× d3 and coalescence kernel 2(d3 + d′3).

take more primary particles to predict the physical quantities of both phases
sometimes in the cases of complicated breakage and coalescence kernels.

4.2.2 Multi-Fluid Model

As we have mentioned at the start of the current section that one can use
FPM-MPOSPM solver as a multi-fluid model. In this case we suppose that
each primary particle moves with its own velocity which means that the
momentum equation for each primary particle has to be solved separately.
When the breakage and aggregation kernels are too complicated and the flow
is turbulent then we need to consider the model as a multi-fluid model to
predict the experimental data more accurately. Solving the model equations
in this way is a bit expensive as one has to solve all the model equations for
each phase at each time step.

The comparison of two-fluid model (FPM-OPOSPM solver) with experimen-
tal data, in the case of the Pilot Plant RDC (height 2.55m) has been shown
in subsection 4.1.5. Now we consider a three-fluid model by choosing two
primary particles so that one phase from continuous phase and the other two
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Figure 4.40: Simulated and experimental [71] hold-up profiles in a pilot plant
RDC column at rotor speed 150rpm using the system water/n-butyl acetate.

phase from the dispersed phase.

Figure 4.40 and 4.41 show the comparison of hold-up profile and average
diameter of droplets solved by two-fluid model and multi-fluid model with
experimental data at rotor speed 150 rpm. We find that multi-fluid model
does not make much difference in this case as two-fluid model also predicts
the experimental data quite accurately.

The comparison of hold-up profiles solved by two-fluid model and three-fluid
model with experimental data at rotor speed 200 rpm is shown in Figure 4.42.
The relative error in this case is reduced a little bit but in the case of average
diameter (Figure 4.43), the accuracy has increased and the relative error is
less than 8%, which is around 12% for the two-fluid model. We find that the
three-fluid model reduce the relative error in the case of higher rotor speed
(more turbulence). Figure 4.44 shows the velocity profiles of both primary
particles (both dispersed phases). The velocity of second primary particle
is higher than the velocity of first primary particle along the column height
which is due to the dependency of drag force on average diameter (momen-
tum equation). The velocity of second primary particle decreases near the
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Figure 4.41: Simulated and experimental [71] average diameter of droplets in
a pilot plant RDC column at rotor speed 150 rpm using the system water/n-
butyl acetate.
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Figure 4.42: Simulated and experimental [71] hold-up profiles in a pilot plant
RDC column at rotor speed 200 rpm using the system water/n-butyl acetate.

inlet of dispersed phase but after that it increases as particles accelerate to its
terminal velocity. We can see jumps in velocity profiles at inlet of continuous
phase because the velocity of continuous phase becomes zero after its inlet.
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Figure 4.43: Simulated and experimental [71] average diameter of droplets in
a pilot plant RDC column at rotor speed 200 rpm using the system water/n-
butyl acetate.
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Figure 4.44: Simulated velocity profile of droplets in a pilot plant RDC
column at rotor speed 200 rpm using the system water/n-butyl acetate.



Chapter 5

Mass Transfer Between
Liquid-Liquid Phases

In this chapter, the solution of CFD-bivariate PBE coupled model is dis-
cussed. We have considered two phases (continuous and dispersed) and mass
transfer between them. A two fluid model that cosiders only one primary
particle is discussed. To solve the model we have used FPM-OPOSPM solver.
OPOSPM is used to simplify the BPBE and then FPM solver is need to solve
the model equations numerically. The numerical results are validated with
experimental data which is also discussed at the end of this chapter.

5.1 Influence of Breakage and Coalescence Ker-
nels

The impact of the coalescence and breakage kernels on the solute concen-
trations is shown in Figures 5.1,5.2. The dependency of mass transfer from
continuous phase to dispersed phase is not much like the mass transfer coef-
ficient. But we can see that when the aggregation kernel dominates in the
flow i.e. the average diameter of the droplets increases or the number density
of droplets decreases, then the solute concentration of dispersed phase de-
creases (Figure 5.1). And on the other side, the solute concentration of the
continuous phase slightly increases along the column height which is clear
from Figure 5.2.
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Figure 5.1: The comparison of the solute concentrations of the dispersed
phase for different coalescence and breakage kernels.
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Figure 5.2: The comparison of the solute concentrations of the continuous
phase for different coalescence and breakage kernels.
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Figure 5.3: The comparison of the solute concentrations of the dispersed
phase for different mass transfer coefficient.

5.2 Influence of Mass Transfer Coefficient

In this section, the impact of mass transfer coefficient on the solute con-
centration profiles for both phases is discussed. The model is solved by
FPM-OPOSPM solver. When we talk about bivariate PBE then we have to
consider mass transfer coefficient as breakage kernel and coalescence kernels.
Mass transfer coefficient plays an important role in the solution of bivariate
PBE. First, we have considered a constant mass transfer coefficient.

5.2.1 Constant Mass Transfer Coefficient

In the Figures 5.3,5.4, we can see the effect of mass transfer coefficient. Fig-
ure 5.3 shows the profile of solute concentration of the dispersed phase for
different mass transfer coefficients as we can notice that when mass transfer
coefficient is double then the mass transfers a bit faster and solute concen-
tration in the dispersed phase increases. The profile of solute concentration
of the continuous phase is shown in Figure 5.4 which concludes that when
mass transfer coefficient is large then the mass transfers a bit fast in the
lower half part of the column and the solute concentration in the continuous
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Figure 5.4: The comparison of the solute concentrations of the continuous
phase for different mass transfer coefficient.

phase decreases in this part of the column. From Figures 5.3,5.4, one can say
that the mass transfer from continuous phase to dispersed phase is strongly
depends on the mass transfer coefficient.

5.2.2 Realistic Mass Transfer Coefficient

In this section, the model is simulated for realistic mass transfer coefficients
and the results are compared with the experimental data for the columns
RDC (DN-150) and Kuehni column (DN-150).
The mass transfer coefficients for the dispersed phase kd and for the contin-
uous phase kc have been given by Handlos and Baron [75] and Heertjes [76]
respectively as :

kd = 0.00375 · ud

1 + (µd/µc)
(5.1)

and

kc = 0.83 ·
√

Dc|ud − uc|
d

. (5.2)

The axial dispersion coefficients for both phases have been taken approxi-
mately as constants of magnitude 10−5 [77].
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Figure 5.5: Comparison of simulated and experimental [73] concentration
profiles of droplets in a pilot plant RDC at 220 rpm.

Overall mass transfer coefficient (Kod) is expressed as

Kod =
1

m
Kc

+ 1
Kd

, (5.3)

where m is the solute distribution coeffiient.

Pilot Plant RDC (height 4.0m)

The experimental concentration profiles of the continuous and dispersed
phases are taken from the work of Schmidt [72] and Garthe [73]. The sim-
ulation parameters are used from Scmidt [72], and mass transfer data from
Garthe [73]. The total flow rate of the continuous and dispersed phases are
1.11× 10−5 and 1.33× 10−5m3/s respectively.

Figures 5.5 and 5.6 show the simulated and experimental solute concen-
tration profiles in the dispersed and continuous phases along the column
height respectively at 220 rpm. The relative error is less than 12%, with the
exception of the dispersed phase concentration at the column exit.
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Figure 5.6: Comparison of simulated and experimental [73] concentration
profiles of the continuous phase in a pilot plant RDC at 220 rpm.

Kuehni Column (DN-150)

We have simulated the model for Kuehni column (DN-150). We have used
stirrer speed as 160 rpm, flow rate for dispersed phase Qd as 160 l/h and flow
rate for continuous phase Qc as 130 l/h. Figure 5.7 shows the simulated
and experimental solute concentration profiles in the dispersed phase. The
relative error is less than 5% along the column height except the upper part
of column where it is around 7%. The simulated and experimental solute
concentration profiles in the continuous phase is shown in Figure 5.8. It
is clear that the relative error is less than 10%. One can conclude from
Figures 5.5, 5.6, 5.7 and 5.8 that the FPM-OPOSPM solver predict the
solute concentration quite accurately for RDC (DN-150) and Kuehni (DN-
150) columns.
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Figure 5.7: Concentration profile for the dispersed phase in a Kuehni column
(experimental data are from Zamponi [74]).
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Figure 5.8: Concentration profile for the continuous phase in a Kuehni col-
umn (experimental data are from Schmidt [72]).
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Chapter 6

Conclusion

In this thesis a comprehensive mathematical framework and meshfree La-
grangian particle method, called Finite Pointset Method (FPM) are pre-
sented for the coupled model of CFD and Population Balance Equation
(PBE); that can be used for the numerical simulation of one-dimensional
liquid-liquid flow in extraction column. The hyperbolicity nature of the
model is studied. We have shown that the reduced meshfree population
balance model using the OPOSPM and MPOSPM can be viewed as a multi-
fluid model.

The derivation of PBE is discussed. The analytical solution and the numeri-
cal solution of PBE are discussed. We have compared the numerical methods
to solve PBE and have chosen the OPOSPM and MPOSPM in terms of ac-
curacy and the time of computation. The model is solved by using two
solvers i.e. FPM-OPOSPM solver and FPM-MPOSPM solver. The CFD-
PBM model is coupled for both the monovariate PBE and bivariate PBE.
The OPOSPM and MPOSPM are successfully implemented in a mesh free
framework for one-dimensional case. The hydrodynamics and mass transfer
between liquid-liquid phases are shown. The error analysis of MPOSPM is
also shown.

The influence of breakage and aggregation kernels on the momentum trans-
fer and mass transfer between liquid-liquid phases are studied in the case of
constant and non-constant kernels. We have seen the influence of average
diameter of droplets on the physical quantities like number density, volume
concentration, solute concentration and velocity of liquid. The constant and
non-constant mass transfer coefficient and impact of them are shown.
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Correlated aggregation and breakage kernels as well as mass transfer co-
efficients are used to close the reduced model. The simulated results are
successfully compared with the experimental data available from the liter-
ature. The impact of rotor speed (turbulent nature of flow) on the simu-
lation of model is shown. The numerical results are validated for Rotating
Disc Contactor (RDC DN-150) and Kuehni column. We have seen the good
agreement between numerical results and experimental data.



Appendix A

A.1 Analytical formulation of the velocity of
the continuous phase

The analytical formulation of the velocity of the continuous phase is given
by Attarakih [5]. The continuity equations for continuous phase and the
dispersed phase in the case of one-dimension can be written in the following
form :

∂αc

∂t
− ∂(αcuc)

den
=

Qin
c

Ac
δ(z − zc) (A.1)

and
∂αd

∂t
+

∂(αdud)

den
=

Qin
d

Ac
δ(z − zd). (A.2)

The velocity for the continuous phase is considered negative as the flow is
taken from bottom of the column to the top of the column. By adding the
Equations (A.1 and A.2), we get

∂(αc + αd)

∂t
+

∂(αdud − αcuc)

∂z
=

Qin
c

Ac
δ(z − zc) +

Qin
d

Ac
δ(z − zd). (A.3)

The first term of Equation (A.3) becomes zero because of the constraint
αc+αd+1. After integrating Equation (A.3) from 0 to H (height of column),
we get the expression for the velocity of continuous phase as

uc =
1

Ac(1− αd)
(Qin

c ∆c +Qin
d ∆d− αd(H)ud(H) + αdud), (A.4)

Where

∆c =

{
1 if z < zc
0 otherwise
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and

∆d =

{
1 if z > zd
0 otherwise

.

To get the analytical formulation for the velocity of continuous phase at
steady state, we write the continuity equation of continuous phase at steady
state as

− ∂

∂z
(αcuc) =

Qin
c

Ac
δ(z − zc). (A.5)

After integrating the Equation ( A.5) from 0 to H (column height) , we get
the analytical formulation for the velocity of continuous phase at steady state
in the following form :

uc =
1

(1− αd)

Qin
c

Ac
∆c. (A.6)



Appendix B

B.1 Length-based form of PBE (Population
Balance Equation)

The transformation of PBE from volume form to length-based form is pre-
sented by Marchisio [78].
The homogeneous population balance equation in volume form is given by

∂f ′(v, t)

∂t
+

∂

∂v
(G(v, t)f ′(v, t)) =

1

2

∫ v

0

a′(v − v′, v′)f ′(v − v′, t)f ′(v′, t)dv′

− f ′(v, t)

∫ ∞

0

a′(v, v′)f ′(v′, t)dv′

+

∫ ∞

v

b′(v′)β ′(v | v′)f ′(v′, t)dv′ − b′(v)f ′(v, t). (B.1)

The volume-based and length-based kernels are related as follows :

b′(v) = b′(L3) = b(L) (B.2)

a′(v, v′) = a′(L3, L′3) = b(L, L′). (B.3)

Birth rate due to aggregation :

B′
a(v; t) =

1

2

∫ v

0

a′(v − v′, v′)f ′(v − v′, t)f ′(v′, t)dv′

=⇒ B′
a(L

3; t) =
1

2

∫ L

0

a((L3 − L′3)1/3, L′)f ′(L3 − L′3; t)f ′(L3; t)3L′2dL′

=
1

2

∫ L

0

a((L3 − L′3)1/3, L′)
3(L3 − L′3)2/3

3(L3 − L′3)2/3
f ′(L3 − L′3, t)f(L′, t)L′dL′
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=
1

2

∫ L

0

a((L3 − L′3)
1/3

, L′)
f((L3 − L′3)2/3; t)

3(L3 − L′3)2/3
f(L′, t)dL′ (B.4)

and thus usingBa(L; t) = 3L2B′
a(L

3; t) we find that

Ba(L; t) =
L2

2

∫ L

0

a((L3 − L′3)1/3, L′)

(L3 − L′3)2/3
f((L3 − L′3)2/3; t)f(L′, t)dL′. (B.5)

Death rate due to aggregation :

D′
a(v; t) = f ′(v, t)

∫ ∞

0

a′(v, v′)f ′(v′, t)dv′

=⇒ D′
a(L

3; t) = f ′(L3, t)

∫ ∞

0

a′(L3, L′3)f ′(L′3, t)3L′2dL′

= f ′(L3, t)

∫ ∞

0

a′(L3, L′3)f(L′, t)3L′2dv′ (B.6)

and thus usingDa(L; t) = 3L2D′
a(L

3; t) we find that

Da(L; t) = f(L, t)

∫ ∞

0

a(L, L′)f(L′, t)dL′. (B.7)

Birth rate due to breakage :

B′
b(v; t) =

∫ ∞

v

b′(v′)β ′(v | v′)f ′(v′, t)dv′

=⇒ B′
b(L

3; t) =

∫ ∞

L

b′(L′3)β ′(L3 | L′3)f ′(L′3, t)3L′2dL′ (B.8)

and thus usingBb(L; t) = 3L2B′
b(L

3; t) we find that

Bb(L; t) =

∫ ∞

L

b(L)β(L | L′)f(L′, t)dL′ (B.9)

where β(L | L′) = 3L2β ′(L | L′).
Death rate due to breakage :

D′
b(v; t) = b′(v)f ′(v; t) (B.10)

and thus usingDb(L; t) = 3L2D′
b(L

3; t) we find that

Db(L; t) = b(L)f(L; t). (B.11)



Appendix C

C.1 Product Difference Algorithm (P-D Al-
gorithm)

The procedure used to find weights (wi) and abscissas (Li) from the moments
is based on the PD algorithm [59]. The first step is the construction of a
matrix P with components Pi,j starting from the moments. The components
in the first column of P are

Pi,1 = δi,1, i ∈ 1, . . . , 2N + 1, (C.1)

where δi,1 is the Kronecker delta. The components in the second column of
P are

Pi,2 = (−1)i−1mi−1, i ∈ 1, . . . , 2N + 1. (C.2)

Since the final weights can be corrected by multiplying the true m0, the
calculations can be done assuming a normalized distribution (i.e., m0 = 1).
Then the remaining components are found from the PD algorithm :

Pi,j = O1,j−1Pi+1,j−2 − P1,j−2Pi+!,j−1,

j ∈ 3, . . . , 2N + 1 and i ∈ 1, . . . , 2N + 2− j. (C.3)

If, for example, N=2 then P becomes




1 1 m1 m2 −m2
1 m3m1 −m2

2

0 −m1 −m2 −m3 +m2m1 0
0 m2 m3 0 0
0 −m3 0 0 0
0 0 0 0 0




.

The coefficients of the continued fraction (αi) are generated by setting the
first element equal to zero (α1 = 0) and computing the others according to
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the following recursive relationship :

αi =
P1,i+1

P1,iP1,i−1
, i ∈ 2, . . . , 2N. (C.4)

A symmetric tridiagonal matrix is obtained from sums and products of αi,

ai = α2i + α2i−1, i ∈ 1, . . . , 2N − 1, (C.5)

and
bi = −√

α2i+1α2i−1, i ∈ 1, . . . , 2N − 2, (C.6)

where ai and bi are the diagonal and the codiagonal of the Jacobi matrix
respectively. Once the tridiagonal matrix is determined, generation of the
weights and abscissas is done by finding its eigenvalues and eigenvectors. In
fact, the eigenvalues are the abscissas and the weights can be found as

wj = m0v
2
j1 (C.7)

where vj1 is the first component of the jth eigenvector vj .



List of Figures

1.1 Rotating disc contactor (RDC). . . . . . . . . . . . 2

2.1 Flow domain with non-structured grid . . . . . . . 21

3.1 The sauter mean diameter for the breakage only. . . . . . . . . 46

3.2 The sauter mean diameter for the breakage and aggregation
both. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 The sauter mean diameter for the breakage only. . . . . . . . . 50

3.4 The sauter mean diameter for the breakage and aggregation
both. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 The sauter mean diameter for the breakage only. . . . . . . . . 54

3.6 The sauter mean diameter for the breakage and aggregation
both. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 The sauter mean diameter for the breakage only. . . . . . . . . 59

3.8 The sauter mean diameter for both the breakage and aggre-
gation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.9 The comparison of the sauter mean diameter for both the
breakage and aggregation for different number of primary and
secondary particles. . . . . . . . . . . . . . . . . . . . . . . . . 60

3.10 Average number concentration using different primary parti-
cles as predicted by the SQMOM. . . . . . . . . . . . . . . . . 61

3.11 The sauter mean diameter for the breakage only. . . . . . . . . 62

3.12 The sauter mean diameter for the breakage only. . . . . . . . . 64

3.13 The sauter mean diameter for both the breakage and aggre-
gation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.14 The number density for the product coalescence kernel. . . . . 65

121



122 LIST OF FIGURES

3.15 The number density for the additive coalescence kernel and
linear breakage kernel. . . . . . . . . . . . . . . . . . . . . . . 65

3.16 The average diameter for the additive coalescence kernel and
linear breakage kernel. . . . . . . . . . . . . . . . . . . . . . . 66

3.17 The number density for the productive coalescence kernel and
linear breakage kernel. . . . . . . . . . . . . . . . . . . . . . . 66

3.18 The average diameter for the productive coalescence kernel
and linear breakage kernel. . . . . . . . . . . . . . . . . . . . . 67

3.19 The sauter mean diameter for the breakage only. . . . . . . . . 68

3.20 The sauter mean diameter for the aggregation and breakage
both. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 The number density of the droplets without breakage and co-
alescence kernels. . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 The volume concentration of the droplets without breakage
and coalescence kernels. . . . . . . . . . . . . . . . . . . . . . 73

4.3 The average velocity of the droplets without breakage and
coalescence kernels. . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 The velocity of the continuous phase without breakage and
coalescence kernels. . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 The average diameter of the droplets without breakage and
coalescence kernels. . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 The droplets velocity profile on the different time frames. . . . 75

4.7 The number density of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6. . . . . . . . . . . . . . 77

4.8 The volume concentration of the droplets with constant break-
age kernel 0.03 and coalescence kernel 10−6. . . . . . . . . . . 77

4.9 The average velocity of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6. . . . . . . . . . . . . . 78

4.10 The average diameter of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6. . . . . . . . . . . . . . 78

4.11 The number density of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−7. . . . . . . . . . . . . . 79

4.12 The volume concentration of the droplets with constant break-
age kernel 0.03 and coalescence kernel 10−7. . . . . . . . . . . 79



LIST OF FIGURES 123

4.13 The average velocity of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−7. . . . . . . . . . . . . . 80

4.14 The average diameter of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−7. . . . . . . . . . . . . . 81

4.15 The number density of the droplets with non-constant break-
age kernel and coalescence kernel. . . . . . . . . . . . . . . . . 81

4.16 The volume concentration of the droplets with non-constant
breakage kernel and coalescence kernel. . . . . . . . . . . . . . 82

4.17 The average velocity of the droplets with non-constant break-
age kernel and coalescence kernel. . . . . . . . . . . . . . . . . 82

4.18 The average diameter of the droplets with non-constant break-
age kernel and coalescence kernel. . . . . . . . . . . . . . . . . 83

4.19 Simulated and experimental [71] hold-up profiles in a pilot
plant RDC column at different rotor speeds using the system
water/n-butyl acetate. . . . . . . . . . . . . . . . . . . . . . . 85

4.20 Simulated and experimental [71] average diameter in a pilot
plant RDC column at different rotor speeds using the system
water/n-butyl acetate. . . . . . . . . . . . . . . . . . . . . . . 86

4.21 Simulated velocity profiles of dispersed phase in a pilot plant
RDC column at different rotor speed using the system water/n-
butyl acetate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.22 Simulated and experimental [71] hold-up profiles in a pilot
plant RDC column at rotor speed 200 rpm at different FPM
particles numbers 100 and 200 using the system water/n-butyl
acetate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.23 Simulated and experimental [71] average diameters in a pilot
plant RDC column at rotor speed 200 rpm at different FPM
particles numbers 100 and 200 using the system water/n-butyl
acetate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.24 Simulated average number densities of droplets in a pilot plant
RDC column at rotor speed 200 rpm at different FPM particles
numbers 100 and 200 using the system water/n-butyl acetate. 88

4.25 Comparison of simulated and experimental [73] hold-up pro-
files of droplets in a pilot plant RDC at 220 rpm. . . . . . . . 89

4.26 Comparison of simulated and experimental [73] droplet aver-
age diameter (d30) of droplets in a pilot plant RDC DN-150 at
220 rpm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



124 LIST OF FIGURES

4.27 Kuehni Column. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.28 Comparison of simulated and experimental [74] hold - up pro-
files for Kuehni column DN-150 with inflow rates of continuous
phase and dispersed phase 125 [l/h] and 130 [l/h] respectively
at 160 rpm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.29 Comparison of simulated and experimental [74] hold - up pro-
files for Kuehni column DN-150 with inflow rates of continuous
phase and dispersed phase 125 [l/h] and 160 [l/h] respectively
at 160 rpm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.30 Comparison of simulated and experimental [74] hold - up pro-
files for Kuehni column DN-150 with inflow rates of continuous
phase and dispersed phase 125 [l/h] and 190 [l/h] respectively
at 160 rpm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.31 The number density of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6. . . . . . . . . . . . . . 94

4.32 The volume concentration of the droplets with constant break-
age kernel 0.03 and coalescence kernel 10−6. . . . . . . . . . . 95

4.33 The average velocity of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6. . . . . . . . . . . . . . 95

4.34 The average diameter of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6. . . . . . . . . . . . . . 96

4.35 The average diameter of the droplets with constant breakage
kernel 0.03 and coalescence kernel 10−6. . . . . . . . . . . . . . 96

4.36 The average number density of the droplets with non-constant
breakage kernel 0.1× d3 and coalescence kernel 2(d3 + d′3). . . 97

4.37 The volume concentration density of the droplets with non-
constant breakage kernel 0.1×d3 and coalescence kernel 2(d3+
d′3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.38 The velocity of the droplets with non-constant breakage kernel
0.1× d3 and coalescence kernel 2(d3 + d′3). . . . . . . . . . . . 98

4.39 The volume concentration density of the droplets with non-
constant breakage kernel 0.1×d3 and coalescence kernel 2(d3+
d′3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.40 Simulated and experimental [71] hold-up profiles in a pilot
plant RDC column at rotor speed 150rpm using the system
water/n-butyl acetate. . . . . . . . . . . . . . . . . . . . . . . 100



LIST OF FIGURES 125

4.41 Simulated and experimental [71] average diameter of droplets
in a pilot plant RDC column at rotor speed 150 rpm using the
system water/n-butyl acetate. . . . . . . . . . . . . . . . . . . 101

4.42 Simulated and experimental [71] hold-up profiles in a pilot
plant RDC column at rotor speed 200 rpm using the system
water/n-butyl acetate. . . . . . . . . . . . . . . . . . . . . . . 102

4.43 Simulated and experimental [71] average diameter of droplets
in a pilot plant RDC column at rotor speed 200 rpm using the
system water/n-butyl acetate. . . . . . . . . . . . . . . . . . . 103

4.44 Simulated velocity profile of droplets in a pilot plant RDC
column at rotor speed 200 rpm using the system water/n-butyl
acetate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 The comparison of the solute concentrations of the dispersed
phase for different coalescence and breakage kernels. . . . . . . 106

5.2 The comparison of the solute concentrations of the continuous
phase for different coalescence and breakage kernels. . . . . . . 106

5.3 The comparison of the solute concentrations of the dispersed
phase for different mass transfer coefficient. . . . . . . . . . . . 107

5.4 The comparison of the solute concentrations of the continuous
phase for different mass transfer coefficient. . . . . . . . . . . . 108

5.5 Comparison of simulated and experimental [73] concentration
profiles of droplets in a pilot plant RDC at 220 rpm. . . . . . 109

5.6 Comparison of simulated and experimental [73] concentration
profiles of the continuous phase in a pilot plant RDC at 220
rpm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Concentration profile for the dispersed phase in a Kuehni col-
umn (experimental data are from Zamponi [74]). . . . . . . . . 111

5.8 Concentration profile for the continuous phase in a Kuehni
column (experimental data are from Schmidt [72]). . . . . . . 111



126 LIST OF FIGURES



List of Tables

3.1 Error analysis of MPOSPM for the case of breakage only . . . 67

3.2 Error analysis of MPOSPM for the case of both the breakage
and aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Comparison of numerical methods to solve PBE for the case
of breakage only . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Comparison of numerical methods to solve PBE for the case
of breakage and aggregation both. . . . . . . . . . . . . . . . . 70

4.1 Initial and inlet boundary conditions for the RDC liquid-liquid
extraction columns. . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Column Geometry . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Physical Quantities . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Physical Quantities . . . . . . . . . . . . . . . . . . . . . . . . 90

127



128 LIST OF TABLES



Bibliography

[1] S. Mohanty, Modeling of liquid-liquid extraction column : a review, Review
Eng. Sci. 16 (2000) 199-248.

[2] H. -J. Bart, Reactive extraction in stirred columns : a review, Chem. Eng. and
Tech. 26 (2003) 723-731.

[3] C. Gourdon, G. Casamatta & G. Muratet, Population based modeling of sol-
vent extraction columns, Godfrey, J. C. Slater, M. J. (Eds.), Liquid-liquid
extraction equipment, John Wiley & Sons, New York (1994) 137-226.

[4] M. M. Attarakih, H. -J. Bart, L. G. Lager & N. M. Faqir, LLECMOD : A
Windows-based program for hydrodynamics and simulation of liquid-liquid
extraction columns, Chem. Eng. Proc. 45(2) (2006) 113-123.

[5] M. M. Attarakih, H. -J. Bart & N. M. Faqir, Numerical solution of the bivari-
ate population balance equation for the interacting hydrodynamics and mass
transfer in liquid-liquid extraction column, Chem. Eng. Proc. 61(1) (2006)
113-123.

[6] S. A. Schmidt, M. Simon, M. M. Attarakih, L. Lager & H. -J. Bart, Droplet
population balance modeling - hydrodynamics and mass transfer, Chem. Eng.
Sci. 61(1) (2006) 246-256.

[7] C. Drumm & H. -J. Bart, Hydrodynamics in a RDC extractor : single and
two phase PIV measurments and CFD simulations, Chem. Eng. Tech. 29(11)
(2006) 1-8.

[8] C. Drumm, S. Tiwari, J. Kuhnert & H. -J. Bart, Finite pointset method for
simulation of the liquid-liquid flow field in an extractor Comp. Chem. Eng. 32
(2008) 2946-2957.

[9] C. Drumm, M. M. Attarakih, & H. -J. Bart, Coupling of CFD with DPBM for
a RDC extractor, Chem. Eng. Sci. 64 (2009) 721-732.

[10] A. Vikhansky, M. Kraft, M. Simon, S. Schmidt & H. -J. Bart, Droplets pop-
ulation balance in a rotating disc contactor : an inverse problem approach,
AICHE Journal 52(4) (2006) 1441-1450.

[11] L. B. Lucy, A numerical approach to the testing of the fission hypothesis,
Astron. J. 82 (1977) 1013-1024.

129



130 BIBLIOGRAPHY

[12] R. A. Gingold & J. J. Monaghan, MNRAS 181 (1977) 375.

[13] J. J. Maonaghan, Smooth particle hydrodynamics, Annu. Rev. Astron. 30
(1992) 543-574.

[14] J. P. Morris, Simulating surface tension with smoother particle hydrodynam-
ics, Int. J. Num. Meth. Fluids 33 (2000) 333-353 J. P. Morris, J. Comput.
Appl. Math. (2000) 155(2)-263.

[15] T. Belytschko, Y. Krongauz, D. Organ, M. Flemming & P. Krysl, Mehless
methods : An overview and recent developments, Comput. Methods Appl.
Mech. Eng. (1996).

[16] G. A. Dilts, Moving least squares particle hydrodynamics I, consistency and
stability, Hydrodynamics methods group report, Los Alamos National Labora-
tory (1996).

[17] J. Kuhnert, General smoothed particle hydrodynamics, PhD Thesis, Univer-
sity of Kiaserslautern, Germany (1999).

[18] S. Tiwari & S. Manservisi, Modeling incompressible Navier-Stokes flows by
LSQ-SPH, The Nepali Math. Sci. report 20 (2002).

[19] S. Tiwari & J. Kuhnert, Modeling of two-phase flows with surface tension by
Finite Pointset Method (FPM), J. Comp. Appl. Math. (2007) 203-376.

[20] S. Tiwari, C. Drumm, V. K. Sharma, J. Kuhnert, M. M. Attrakih, A. Klar
& H.-J. Bart, A meshfree CFD-Poulation balance equation coupled model,
6th International Conference on CFD in Oil & Gas, Metallurgical and Process
Industries SINTEF/NTNU, Trondheim, Norway (2008).

[21] V. K. Sharma, S. Tiwari, M. M. Attarakih, M. Jaradat, A. Klar, J. Kuhnert &
H.-J. Bart, Simulation of two phase flow with incorporated population balance
equation using a meshfree method, ESCAPE19 (2009).

[22] M. M. Attarakih, C. Drumm & H.-J. Bart, Solution of the population balance
equation using the sectional quadrature method of moments, Chem. Eng. Sci.
64 (2009) 742-752.

[23] C. Drumm, M. M. Attarakih, S. Tiwari, J. Kuhnert & H.-J. Bart, Implemen-
tation of the section quadrature method of moments in a CFD code, 6th Int.
Conf. on CFD in Oil and Gas, Metallurgical and Process Industries, CFD08
(2008) 80-90.

[24] M. M. Attarakih, M. Jaradat, C. Drumm, H.-J. Bart, S. Tiwari, V. K. Sharma,
J. Kuhnert & A. Klar, Solution of the Population Balance Equation using the
One Primary and One Secondary Particle Method (OPOSPM), ESCAPE19
(2009).

[25] M. M. Attarakih, M. Jaradat, C. Drumm, H.-J. Bart, S. Tiwari, V. K. Sharma,
J. Kuhnert & A. Klar, A Multivariate Population Balance Model for Liquid
Extraction Columns, ESCAPE19 (2009).



BIBLIOGRAPHY 131

[26] M. M. Attarakih, V.K. Sharma, M. Jaradat, C. Drumm, H.-J. Bart, S. Tiwari,
J. Kuhnert & A. Klar, A multivariate sectional quadrature method of moments
for the solution of the population balance equation, Escape20 (2010).

[27] V. K. Sharma, S. Tiwari, M. M. Attarakih, M. Jaradat, A. Klar, J. Kuhnert
& H.- J. Bart, A spatially meshfree population balance model for the simula-
tion of liquid extraction columns, 4th International Conference on Population
Balance Modelling hosted by the Max Plank Institute for Dynamics of Complex
Technical Systems, Berlin, Germnay (2010).

[28] M. M. Attarakih, V. K. Sharma, M. Jaradat, H.-J. Bart & J. Kuhnert, So-
lution of the population balance equation using the Cumulative Quadrature
Method of Moments (CQMOM), 4th International Conference on Population
Balance Modelling hosted by the Max Plank Institute for Dynamics of Complex
Technical Systems, Berlin, Germnay (2010).

[29] M. Jaradat, V. K. Sharma, M. Attarakih, M. Hlawitschka & H.-J. Bart, A
multivariate population balance model for liquid extraction columns, 4th In-
ternational Conference on Population Balance Modelling hosted by the Max
Plank Institute for Dynamics of Complex Technical Systems, Berlin, Germnay
(2010).

[30] D. Zeidan, M.M. Attarakih, J. Kuhnert, S. Tiwari, V. K. Sharma, C. Drumm
& H.-J. Bart, On a high-resolution Godunov Method of two-phase flow in
liquid-liquid extraction column, accepted in International Journal of Compu-
tational Methods (2010).

[31] M. J. Hounslow, R. L. Ryall & V. R. Marshall, A discretized population
balance for nucleation, growth and aggregation, AICHE J. 34(11) (1988)
1821-1832.

[32] R. McGraw, Description of aerosol dynamics by the quadrature method of
moments, Aerosol Sci. & Tech. 27(2) (1997) 255-265.

[33] S. Lo., Application of population balance to CFD modelling of gas-liquid re-
actors, Proc. ”Trends in numerical and physical modelling for industrial mul-
tiphase flows”, Corsica France (2002)

[34] F. Wang & Z. -S. Mao, Numerical and experimental investigation of liquid-
liquid two-phase flow in stirred tanks, Ind. Eng. Chem. Res. 44 (2005) 5776.

[35] E. Krepper, T. Frank, D. Lucas, H. -M. Prasser & P. J. Zwart, Inhomogeneous
MUSIG model - a population balance approach for polydispersed bubbly flows,
Proc. of the ICMF-2007, M. Sommerfeld (Ed.), 6th International conference
on Multiphase Flow, Leipzig (2007).

[36] D. Ramkrishna, Population Balances, Academic Press, San Diego (2000).

[37] G. Modes, Grundsatzliche Studie zur Populationsdynamik einer Extraktion-
skolone auf Basis von Einzeltropfenuntersuchungen, Aachen : Shaker Verlag
(2000).



132 BIBLIOGRAPHY

[38] T. C. Lo, M.H.I. Baird & C. Hanson, Handbook of solvent extraction, New
York: John Wiley and Sons (1983).

[39] A. E. Handlos & T. Baron, Mass transfer from drops in liquid extraction,
AICHE J. 3 (1957) 127-136.

[40] A. Kumar & S. Hartland, Correlations for prediction of mass transfer coeffi-
cients in single drop systems and liquid-liquid extraction columns, Trans. Inst.
Chem. Eng. 77A (1999) 372-384.

[41] S. H. Zhang, S. C. Yu, Y. C. Zhou,& Y. F. Su, A model for liquid-liquid
extraction column performance- the influence of drop size distribution on ex-
traction efficiency, Can. J. Chem. Eng. 63 (1985) 212-226.

[42] O. Weinstein, R. Semiat, & D. R. Lewin, Modeling, simulation and control of
liqui-liquid extraction columns, Chem. Eng. Sci. 53 (1998) 325-339.

[43] T. Wang & J. Wang, Numerical simulation of gas-liquid mass transfer in
bubble columns with a CFD-PBM coupled model, Chem. Eng. Sci. 62 7107-
7118.

[44] L. Schiller & Z. Naumann, A drag coefficient correlation, Z. Ver. Deutsch.
Ing. 77 (1935) 318.

[45] S. A. Schmidt, M. Simon, M. M. Attarakih, L. Lagar & H. -J. Bart, Droplet
population balance modelling - hydrodynamics and mass transfer, Chem. Eng.
Sci. 61 (2006) 246-256.

[46] C. B. Laney, Computational gasdynamics, Cambridge University Press.

[47] P. Chadwick, Continuum mechanics : concise theory and problems, Wiley.

[48] V. V. Sychev, Asymptotic theory of seprated flows, Cambridge University
Press.

[49] T. Liszka & J. Orkisz, The finite difference method on arbitrary irregular grid
and its application in applied mechanics, Comp. and Struc. 11 (1980) 83.

[50] S. Tiwari & J. Kuhnert, Finite pointset method based on the projection
method for simulations of the incompressible Navier-Stokes equations, (M.
Griebel and M. A. Schweitzer, eds.), Lec. Notes in Comp. Sci. and Eng. 26,
Springer (2002) 373-387.

[51] O. Iliev & S. Tiwari, A generalized (meshfree) finite difference discretization
for elliptic interface problems, (I. Dimov, I. Lirkov, S. Margenov and Z. Zlatev,
eds.), Num. Methods and App., Lecture notes in Comp. Sci., Springer (2002)
480.

[52] B. J. McCoy & G. Madras, Analytical solution for a population balance equa-
tion with aggregation and fragmentation, Chem. Eng. Sci. 58(13) (2003) 3049-
3051.



BIBLIOGRAPHY 133

[53] R. J. Batterham, J. S. Hall & G. Barton, Pelletizing kinetics and simulation
of full-scale balling circuits, 3rd Int. Symp. on Agglo., Nuernberg Germany
A136 (1981).

[54] M. J. Hounslow, R. L. Ryall & V. R. Marshall, A discritized population
balance for nucleation, growth and aggregation, AICHE J. 34(11) (1988) 1821-
1832.

[55] J. D. Lister, D. J. Smith & M. J. Hounslow, Adjustable discretized population
balance for growth and aggregation, AICHE J. 41(3) (1995) 591-603.

[56] S. Kumar & D. Ramkrishna, On the solution of population balance equations
by discretization - i. a fixed pivot technique, Chem. Eng. Sci. 51(8) (1996a)
1311-1332.

[57] H. M. Hulbert & S. Katz, Some problems in particle technology, Chem. Eng.
Sci. 19 (1964) 555-574.

[58] R. B. Diemer & J. H. Olson, A moment methodology for coagulation and
breakage problems : part ii - moment models and distribution reconstruction,
Chem. Eng. Sci. 57 (2002) 2211-2228.

[59] R. G. Gordon, Error bounds in equilibrium statistical mechanics, J. of Math.
Phy. 9 (1968) 655-663.

[60] D. L. Marchisio, J. T. Pikturna, R. O. Fox & R. D. Vigil, Quadrature method
of moments for population balance equations, AICHE J. 49(5) (2003a) 1266-
1276.

[61] J. C. Barrett & N. A. Webb, A comparison of some approximate methods
for solving the aerosol general dynamic equation, J. of Aerosol Sci. 29 (1998)
31-39.

[62] D. L. Wright, R. McGraw & D. E. Rosner, Bivariate extension of the quadra-
ture method of moments for modeling simultaneous coagulation and sintering
of particle populations, J. of Coll. and Int. Sci. 236 (2001) 242-251.

[63] D.E. Rosner & J.J. Pyykonen, Bi-variate Moment Simulation of Coagulating
and Sintering Nano-particles in Flames, AICHE J. 48(3) (2002) 476-491.

[64] V. N. Piskunov, A. I. Golubev, J. C. Barrett & N. A. Ismallova, The gener-
alized approximation method for modeling coagulation kinetics?Part 2: com-
parison with other methods, J. of Aerosol Sci. 33 (2002) 65-75.

[65] D. L. Marchisio, R. O. Fox, Solution of population balance equations using
the direct quadrature method of moments,J. of Aerosol Sci. 36 (2005) 43-73.

[66] S. Bove, Computational fluid dynamics of gas-liquid flows including bub-
ble population balances, Ph. D. Thesis, Aalborg University Esbjerg, Denmark
(2005).



134 BIBLIOGRAPHY

[67] S. Motz, A. Mitrovic & E. -D. Gilles, Comparison of numerical methods for
the simulation of dispersed phase systems, Chem. Eng. Sci. 57 (2002) 4329-
4344.

[68] G. Modes, Grundsatzliche studie zur populationsdynamik einer extraktion-
skolone auf basis von einzeltropfenuntersuchungen, Aachen : Shaker Verlag.

[69] V. Cauwenberg, J. Degreve & M. J. Slater, The interaction of solute transfer
contaminants and drop break-up in rotating disc contactors : part II, The cou-
pling of mass transfer and breakage process via interfacial tension, Canadian
J. of Chem. Eng. 75 (1997) 1056-1066.

[70] C. Couglaloglou & L. L. Tavlarides, Description of interaction processes in
agitated liquid-liquid dispersions, Chem. Eng. Sci. 32 (1977) 1289-1297.

[71] M. M. Attarakih, H. -J. Bart, T. Steinmetz, M. Dietzen & N. M. Faqir,
LLECMOD : A bivariate population balance simulation tool for liquid-liquid
extraction columns, The Open Chem. Eng. J. 2 (2008) 10-34.

[72] S. A. Schmidt, Populationdynamische simulation geruehrter extraktionskolon-
nen auf basis von einzeltropfen- und tropfenschwarmuntersuchungen, Diss.,
TU Kaiserslautern, Germany (2005).

[73] G. Garthe, Fluid dynamics and mass transfer and swarm of particles in ex-
traction column, Diss., TU Muenchen, Germany (2006).

[74] G. Zamponi, J. Stichlmair, A. Gerstlauer & E. -E. Gilles, Simulation of the
transient behaviour of a stirred liquid/liquid extraction column, Comp. Chem.
Eng. 20 (1996) 963-968.

[75] A. E. Handlos & T. Baron, Mass and heat transfer from drops in liquid-liquid
extraction, AICHE J. 3(1) (1957) 127-135.

[76] P. M. Heertjes, W. A. Holve & H. Talsma, Mass transfer between isobutanol
and water in a spray column, Chem. Eng. Sci. 3 (1954) 122-142.

[77] S. A. Schmidt, M. Simon, M. M. Attarakih, L. Lager & H. -J. Bart, Droplet
population balance modeling - hydrodynamics and mass transfer, Chem. Eng.
Sci. 61 (2006) 246-256.

[78] D. L. Marchisio, R. D. Vigil & R. O. Fox, Quadrature method of moments for
aggregation-breakage processes, Journal of Colloid and Interface Science 258
(2003) 322-334.



                                                   CURRICULUM VITAE 

 

 
Personal Information 

 

Name                                 Vikash Kumar Sharma 

Date of Birth                    04 Apr 1982 

Place of Birth                   Bulandshahr, India 

 

 

Education 

 

Oct 2007 – till date                      :                     Doctorate studies at Department of  Mathematics, 

                                                                          Technische Universität Kaiserslautern, Germany 

 

2004 – 2006                                 :                     Master of Technology in Industrial Mathematics 

                                                                           and Scientific Computing (9.37 GPA), 

                                                                           Indian Institute of Technology Madras, India 

 

2001 – 2003                                 :                     Master of Science in Mathematics 

                                                                           (75%), Aligarh Muslim University, India 

 

1998 – 2001                                 :                      Bachelor of Science in Physics, Chemistry and 

                                                                            Mathematics (72.2%), 

                                                                                      C. C. S. University Meerut, India 

 

1987-1998                                       :                        Primary and Secondary school : Bulandshahr,                        

                                                                                      India         

 

 

Academic Honors 

 

•   Deutscher Akademischer Austausch Dienst (DAAD)  scholarship 

 

•   Institute medal and Prof. Helmut Neunzert award for securing first rank in M.Tech.  
 

•  Ramanujam award for securing highest CGPA in first three semester of   M.Tech.  

 

• Secured a percentile of 98.49 in Graduate Aptitude Test in Engineering in India with an all 

India rank of 23 in 2004 

 

• Half-time Teaching Assistantship for two years during M.Tech. programme 

 

• Scholarship award during M.Sc. for securing 3rd rank in scholarship test in AMU 

 


