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Preface

Abstract. In this thesis we present the implementation of libraries center.lib and
perron.lib for the non-commutative extension SINGULAR:PLURAL of the Computer Al-
gebra System SINGULAR.

The library center. 1ib was designed for the computation of elements of the centralizer of
a set of elements and the center of a non-commutative polynomial algebra. It also provides
solutions to related problems.

The library perron.1ib contains a procedure for the computation of relations between a
set of patrwise commuting polynomials.

The thesis comprises the theory behind the libraries, aspects of the implementation and
some applications of the developed algorithms.

Moreover, we provide extensive benchmarks for the computation of elements of the center.
Some of our examples were never computed before.

Motivation for studying and computing centers

The center is a kind of a heart of the algebra, especially in the case when the center is
nontrivial. In this section we briefly list some applications of the center and centralizers.

Invariant operators in physics

There is a natural connection, first discovered by Eugene Wigner, between the properties
of particles, the representation theory of Lie groups and Lie algebras, and the symmetries
of the universe. This postulate states that each particle “is” an irreducible representation of
the symmetry group of the universe (cf. http://en.wikipedia.org/wiki/Particle_physics_
and_representation_theory).

Many (but not all) symmetries, form Lie groups. Representations of a Lie group is closely
related to representation of its Lie algebra; since the latter is usually simpler to compute,
that is the way it is usually done.
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Lie groups and Lie algebras appear in physics in many different guises. Specific Lie groups
may appear as consequences of specific dynamics. Consider any physical system with
dynamics described by a system of ordinary or partial differential equations. This system
of equations will be invariant under some local Lie group of local point transformations,
taking solutions into solutions. This group is a Lie group and its Lie algebra can be
determined in an algorithmic manner.

An important problem arising in the representation theory of a Lie group or Lie algebra,
and especially in physical applications, is the determination of functions of the generators
commuting with all generators, i.e., the invariant functions. From the mathematical
point of view their importance is due to the following circumstances. They can be used to
label irreducible representations of a given Lie group or Lie algebra and to split reducible
representations into irreducible ones. This topic will be discussed below in more details.
Further, basis functions for irreducible representations of a Lie group can be constructed
so as to correspond to the reduction of the group to a given chain of subgroups. The basis
functions in such a case will be the common eigenfunctions of the invariant operators of
all the groups in the chain. Invariant operators also play a crucial role in special function
theory. Indeed, the entire theory of special functions can be based on group representation
theory and different functions occur as the eigenfunctions of different sets of invariant
operators.

In physics, invariant operators of the symmetry group of a physical system and of its
subgroups provide quantum numbers. Indeed, the eigenvalues of the invariant operators
of the entire symmetry group will be the quantum numbers, characterizing the system as
such (e.g., the particle mass and spin in the case of the Poincaré group). The invariant
operators of subgroups will then characterize states of the system (its energy, linear or
angular momentum, etc). In other applications, invariant operators of dynamical groups
provide mass formulas, energy spectra, and in general characterize specific properties of
physical systems.

Another application is related to possible symmetry breakings in nature. Thus, in an
idealized situation a physical quantity may be characterized by the invariants of some
group. When further interactions, breaking the the idealized symmetry are considered, the
same quantity may also depend on the invariants of a subgroup or subgroups.

Important examples of invariant operators are Casimir operators.

For example, it is well known that in the case of semisimple Lie algebras all invariants
can be written as functions of [ polynomial invariants, where [ is the rank of the algebra.
These [ basic invariants (Casimir operators) form an integrity basis, i.e., any polynomial
invariant can be written as a polynomial in the basic invariants.

In the case of nilpotent algebras all invariants can again be written as functions of r — R
polynomial invariants (r is the dimension of the algebra, R the rank of the matrix of the
commutation table). However, in this case the “basic invariants” do not necessarily form
an integrity basis. Thus, higher-order polynomial invariants may exist which are functions
of the lower ones, but not polynomial in them.
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A Casimir operator is a polynomial in the generators of a Lie group and thus an element
of the enveloping algebra of the corresponding Lie algebra, commuting with all the gen-
erators of the group. These operators are in one—to—one correspondence with polynomial
invariants characterizing orbits of the coadjoint representation of a Lie algebra. In fact,
the Casimir operators of a finite dimensional semisimple complex Lie algebra g are a dis-
tinguished basis of the center Z(U(g)) of the enveloping algebra of g made of homogeneous
polynomials.

In physical applications the Casimir operators are usually associated with quantities (such
as the momentum-square or the Pauli-Lubanski vector) characterizing a certain physical
system, rather than a specific state of this system. Moreover they may represent such
important quantities as angular momentum, elementary particle’s mass and spin, Hamil-
tonians of various physical systems etc.

Let us illustrate the physical use of Casimir operators by the following examples:

Example. Let us consider the group of all rotations about the origin of 3-dimensional
Euclidean space R3. This group is called the rotation group and denoted by SO(3).

One important property of SO(3) is the existence of a Casimir operator J? which corre-
spond, in this case, to the total angular momentum.

The Lie group SO(3) corresponds to the simple complex Lie algebra so3 with the enveloping
algebra U (so3) whose center (the Casimir operator of SO(3)) can be easily computed using
our methods.

Example. The Fairlie-Odesskii algebra U/ (so03) is a non-standard g-deformation of the
enveloping algebra U(so3) of the Lie algebra sos. As a matter of interest, this algebra
arose naturally as the algebra of observables in quantum gravity in (2-+1)-dimensional de
Sitter space with space being torus. The parameter ¢ is related to the Plank constant
and the curvature of the de Sitter space. Thus it is important, from the point of view of
physics, to study the structure (in particular, the center ) of this algebra.

For n > 3, the algebras U (s0,) are no less important. They serve as intermediate algebras
in deriving the algebra of observables in 2-+1 quantum gravity with 2D space of genus g > 1,
so that n = 2g 4+ 2. In order to obtain the algebra of observables, the g-deformed algebra
U, (5024 12) should be factorized by some ideal generated by (combinations of) Casimir ele-
ments of U, (s02412). This fact, along with others, motivates the study of Casimir elements
of U, (s0,).

Example. Representations of U,(sl;) are also used in nuclear physics. For example, the
rotational spectra of deformed nuclei can be described by a g¢-deformed rotator which
corresponds to the Casimir element of U, (sly). This rotator is defined by the Hamiltonian
H = (21)7'C} + Ey, where I is the moment of inertia, Ey is the bandhead energy and Cj
is the suitably chosen quadratic Casimir element.
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Classification of k-algebras
The center is an important invariant of a k-algebra. Of course, centers of isomorphic
k-algebras are isomorphic.

Provided in certain algebras the notion of a minimal set of the generators of the center
makes sense, it might be used for distinguishing non-isomorphic algebras.

Example. Let us consider some 5-dimensional real Lie algebras generated by eq,...e5
subject to the following relations:

o Asi:les,es] = e, [ea, e5] = e,

o Asa:les,es] = e ez, ea] = e,

o Ass:es,es] = ez, [ea, e5] = €1, [es, ea] = €1

The centers of these algebras are known:

o Z(As51) =R (e, e, e2e3 — e1e4),
* Z(As54) = R{e1),
[ ] Z(A575) = R <€1>.

Therefore we can use the center to conclude that A5, 22 A5 4 and A51 2 As 5, but we can
not distinguish As4 and As s by these means.

Construction of algebras, associated to linear operators

Differential, shift, difference operators and their quantum analogues must not commute
with anything different to the operator of scalar multiplication. Therefore, in algebras
arising from classical operators like differential, shift, difference etc. and their quantum
analogues the following important principle is implicitly used: the center of such an algebra
must be trivial, that is, it must contain only the ground field.

Thus, computation of the center is important to recover identities between generators of
an algebra which have to be taken into account, so that the resulting factor algebra has a
trivial center.

Example. Let us consider the first Heisenberg Lie algebra h; generated by operators
P,Q, C subject to [P, Q] = C. The center of its enveloping algebra H; is generated by C.
Therefore in order to obtain the Weyl algebra of differential operators we factorize H; by
two-sided ideal generated by C' — 1:

Wr = H, /(C—1).
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Representation theory

Let g be a Lie algebra over a field k. Representation of g in a vector space V is a
homomorphism p : g — gl(V).

A representation p in V is called finite-dimensional if dim V' < oo, and irreducible if
there are no proper subspaces in V', that are invariant under all operators p(g), g € g.

Due to Weyl’s theorem, for any semisimple Lie algebra any finite dimensional representation
is a direct sum of irreducible ones.

Every representation of g can be uniquely extended to a representation of the enveloping
algebra U(g). So, one can say that representations of g (i.e., g-modules) are the same
things as U(g)-modules.

The importance of the center follows from a simple observation that is often used in linear
algebra: if two operators commute, then an eigenspace for one of them is invariant under
the other. This means that we can reduce representations by taking a joint eigenspace for

Z(U(g))-
Assume now X is an irreducible Harish-Chandra (g, K)-module. Then every element of
Z(U(g)) acts on X by a scalar. This defines a homomorphism

xx : ZU(g)) — C

of algebras, which is called the infinitesimal character of X. Due to a theorem of
Harish-Chandra (cf. [23|), infinitesimal characters are important parameters for classifying
irreducible (g, K')-modules. It turns out that for every fixed infinitesimal character, there
are only finitely many irreducible (g, K)-modules with this infinitesimal character. Thus,
elements of Z(U(g)) can be used to label irreducible representations of the Lie algebra.

Zassenhaus variety

There are some simple facts which distinguish Lie algebras over fields of prime charac-
teristic (we will say Lie algebras of prime characteristic) from Lie algebras over fields of
characteristic 0. These are:

1. The degrees of the absolutely irreducible representations of a Lie algebra of prime
characteristic are bounded whereas, according to a theorem of Weyl, the degrees
of absolutely irreducible representations of a semisimple Lie algebra over a field of
characteristic 0 can be arbitrary high.

2. For each Lie algebra of prime characteristic there are indecomposable representa-
tions which are not irreducible, whereas every indecomposable representation of a
semisimple Lie algebra over a field of characteristic 0 is irreducible.
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3. The quotient ring of the enveloping algebra of a Lie algebra of prime characteristic
is a division algebra of finite dimension over its center, whereas this is not the case
for characteristic 0.

4. There are faithful fully reducible representations of every Lie algebra of prime char-
acteristic, whereas for characteristic 0 only ring sums of semisimple Lie algebras and
abelian abelian Lie algebras admit faithful fully reducible representations.

These facts have been established for special cases for many years, and some of them have
been considered in the general case by N. Jacobson (cf. [20]). They are at the basis of
every investigation aiming at a theory of Lie algebras of prime characteristic embedded
into their enveloping algebras.

In 1954 Zassenhaus (cf. [48]) showed that with each finite dimensional Lie algebra g over an
algebraically closed field k of characteristic p > 0 one can associate an algebraic variety Mg,
which we will call the Zassenhaus variety of g. The center Z(U(g)) of the enveloping
algebra of g is the coordinate ring of My. In [48] it was proved that My is a normal
irreducible affine variety whose dimension coincides with the dimension of g. This variety
can be also defined to be the m-spectrum of Z(U(g)).

The Zassenhaus variety of the algebra g is closely related to the irreducible representations
of g. Namely, if V' is a simple g-module and Z(U(g)) is the center of the enveloping algebra
U(g) of g, then by Shur’s lemma we have zv = xy(2)v,z € Z(U(g)),v € V, where xy is
a homomorphism of Z(U(g)) into k, i.e., a point of the variety M. Thus, the problem
of describing singular points of My and the determination of equations determining M| is
closely connected with the problem of the classification of the irreducible representations
of g. Therefore, to classify the irreducible representations of a Lie algebra it is natural to
study its Zassenhaus variety and the distribution of representations over its points. There
is a surjective mapping which assigns a point on the Zassenhaus variety to each irreducible
representation such that the preimage of any point of My is finite and for the points of an
open dense subset this preimage consists of one element (cf. [48]).

The Zassenhaus variety was studied in some special classes under certain conditions on p. In
the case when g = sly(k) and p > 2 this approach was applied by Rudakov and Shafarevich
who used the early work of Zassenhaus to organize all of the irreducible representations
into a single geometric picture: the Zassenhaus variety, whose simple points correspond to
representations of dimension p (cf. [41]). It was also shown that the Zassenhaus variety in
this case has singularities of type A; for all prime p > 2.

Using center.lib one can explicitly compute generators of the center of any enveloping
algebra and then, using perron.lib, algebraical dependence between them. In [26] our
libraries (center.1ib and perron.1lib) were used to reproduce some of results of Rudakov
and Shafarevich via direct computation and it was shown that the computed dependencies
indeed have singularities of type A;.

It would be very interesting to work out a similar description for higher ranks, but so far
only a bare outline exists (cf. [25]).
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Our methods, in particular, can be used in order to check the following conjecture which
is due to Y. Drozd:

Conjecture. Let g be a classical simple Lie algebra over an algebraically closed field of
characteristic p > 0. Here “classical” means that it corresponds to a simple complex Lie
algebra. Then the singularities of the Zassenhaus variety of g are always simple and their
types are just deformations of the type of g (e.g., A-D-E).

Though this conjecture appeared first, in a different form, nearly 40 years ago it still
remains open.

Importance

One studies algebras via their modules on the one side and via their subalgebras on the
other side. As for centralizers, they are very useful to produce nontrivial subalgebras.

Commutative subalgebras play an important role in representation theory, namely one
builds families of modules from them, parameterizing the action of subalgebra by constants.
In particular, Cartan subalgebras are used to introduce Verma modules; centers are used in
Whittaker modules; Gel’fand-Zetlin subalgebras give rise to Gel’fand-Zetlin modules and
SO on.

The structure of the center is studied theoretically but it is known deeply only for some
special classes of algebras. Recipes for the computations of generators of the center are
rare. That is why it is very important to be able to compute the center of any k-algebra.

Overview

We develop algorithms for computing elements of the center and the centralizer of a finite
set of elements. They can be applied to a wide classes of unital associative non-commutative
algebras.

Our primary goal was to provide users of the Computer Algebra System SINGULAR with
a library for the computation of elements of the center and of the centralizer of a finite set
of elements.

This paper has the following structure:

Firstly, we list some preliminaries in chapter 1. Then in chapter 2 we formally describe our
algorithms and prove their correctness in theorem 2.6. Further in chapter 3 we compute
“by hands” several examples and check them with our library. Moreover, we describe
several optimizations used in our implementation. Afterwards the subalgebra reduction is
considered in chapter 4.

We list known theoretical facts about various k-algebras in chapter 5. Further we consider
some applications of the developed algorithms in chapters 6 and 7.
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Finally, we provide the user’s manual for developed libraries and give some benchmarks in
appendix 8 .

The thesis comes with a CD with SINGULAR (version 3-0-1), the libraries center.lib,
perron.lib and algebras.lib, the modified SymbolicData and the electronic version of
this thesis.
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Chapter 1

Preliminaries

Throughout this paper, k will stand for a commutative field.

1.1 Basic notions

Definition 1.1. An algebra over k (or simply algebra) is a k-vector space A endowed
with a bilinear multiplication A x A — A (denoted (z,y) — x x y).

The algebra A is called associative if the multiplication is associative, that is, zx (yxz) =
(x*y) =z forall z,y,z € A.

The algebra A is called unital if there is a unity element 14 in A that satisfies 14 * z =
xxly=uxforall z € A

In what follows unital associative algebras over k are called k-algebras.

The assumption that multiplication is bilinear is equivalent to the right and left distributive
laws, together with the following condition:

(xxy)xa=zx*(yxa)=(r*xa)xy, forall x,y € Aand a € k. (1.1)

Any k-algebra is a ring with unity. Conversely, if A is a k-vector space and a ring, with
unity, that satisfies (1.1), then A is a k-algebra.

Definition 1.2. An algebra over k is called finitely generated if it is finitely generated
as a ring over k.

Definition 1.3. Let A be an algebra over k. A subalgebra of A is a k-vector subspace
S of A which is closed under the multiplication of A.

In the case of unital associative algebras we require additionally that 14 € S.
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Definition 1.4. Let A be an algebra over k. A k-subspace I C A is called a left
ideal(resp., a right ideal) if for any a € A,z € I one has a*xx € I (resp., zxa € I).

If I is a left ideal and a right ideal, it is called a two-sided ideal.

Definition 1.5. If ¢; is a basis of an algebra A as a k-vector space, then the product “x” is
completely determined by the structure constants f;fk € k defined by e; xep, =), f;kei.

Definition 1.6. An algebra homomorphism from an algebra A to an algebra B is a
linear map ® : A — B such that ®(z xy) = &(x) x P(y) for all z,y € A.

Definition 1.7. A k-algebra A is called filtered if it admits an increasing sequence Ay C
A; C -+ of finite dimensional vector subspaces of A satisfying the following properties:

1. 1€ .Ao,
2. Aix A; C Ay, 4,5 20,
3. A=UA,.

This sequence of vector spaces is called a filtration of A.

Definition 1.8. A linear representation of an associative algebra A in a vector space V'
is an algebra homomorphism from A to the associative algebra End (V') of endomorphisms
of V

py : A— End(V).

The vector space V' caries the representation and is called a representation space of
A or a left A-module.
The representation p is called faithful if p is injective.

An invariant subspace of the representation py is a subspace W of V such that
pv(a)(W) C W for all a € A.

A representation is called irreducible or simple if it has no proper invariant subspaces.

Definition 1.9. Let A be an algebra. A derivation D of A is a linear endomorphism of
A satisfying the Leibniz rule:

D(zx*xy)=(Dx)xy+x=*(Dy). (1.2)
The set of all derivations of A is denoted Der(A) . Clearly, Der(A) is a k-vector subspace
of End(A).

Remark 1.10. Let Dy,Dy € Der(A). Then [Dq,Ds] := DyoDy—DyoD; € Der(A). The
proof is by direct calculation.
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Remark 1.11. As a consequence of (1.2) one has the Leibniz formula:

k

k . .
D* = D’ D" 1.3
o =3 ()00 = @) (1)
where DF = Do...oD (k factors).
Hence if chark = p # 0 then
DP(z*xy) = (DPx) xy + x * (DPy), (1.4)

i.e., D? is a derivation.

Thus Der(.A) is closed under the mapping D — DP as well as the bracket composition (cf.
remark 1.10).

1.2 Tensor algebra

Let V' be a vector space over k. The tensor algebra of V| denoted 7 (V), is the algebra
of tensors on V' (of any rank) with multiplication being the tensor product. The tensor
algebra is, in a sense, the “most general” algebra containing V. This notion of generality
is formally expressed by a certain universal property (see below).

Definition 1.12. The tensor algebra
T(V) =P T.(V)
n=0

is the graded k-algebra with the n-th graded component given by n-th tensor power of V:
n times
—T—
(V) =V =V -0V, n=12,...,
and 7o(V) = k.
The multiplication m : 7(V) x T(V') — T (V) is determined by the canonical isomorphism
T.(V) @ T(V) — T (V) given by the tensor product:
m(a,b) =a®b, acV®* becV®

which is then extended by linearity to all of 7 (V).

Remark 1.13. The construction generalizes in straightforward manner to the tensor algebra
of any module M over a commutative ring R. If R is a non-commutative ring, one can
still perform the construction for any R-R bimodule M. It does not work for ordinary
R-modules because the iterated tensor products cannot be formed.
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The fact that the tensor algebra is the most general algebra containing V' is expressed
by the following universal property: Any linear transformation f : V — A from V to a
k-algebra A can be uniquely extended to an algebra homomorphism from 7 (V) to A as
indicated by the following commutative diagram:

Here i is the canonical inclusion of V' into 7 (V). In fact, one can define the tensor algebra
7 (V') as the unique k-algebra satisfying this universal property (moreover, 7 (V) is unique
up to a unique isomorphism).

The tensor algebra 7 (V) is also called the free associative algebra on the vector space
V.

If V has finite dimension n, its tensor algebra can be regarded as the “algebra of polyno-
mials over k in n non-commuting variables”. If we take basis vectors for V', those become
non-commuting variables in 7 (V'), subject to no constraints (beyond associativity, the
distributive law and k-linearity).

That is, we construct the free associative algebra of V' in the following way: choose a basis
{z1,...;z,}in V,and let T'=T (V) = k(x1,...,2,) be the algebra of non-commutative
polynomials in variables {x1,...,z,} with coefficients in k. As a vector space, it is gen-
erated by monomials in these variables which are finite sequences of x; in arbitrary order
(repetitions are allowed). The product is defined by concatenation of the monomials. The
map ¢ : V — T is the natural embedding (z; — ;).

Remark 1.14. The free associative algebra generated by z1,...,z, over k:
k(zy,...,z,)
is a finitely generated k-algebra.

Finitely generated free associative k-algebra is called general non-commutative poly-
nomial ring over the field k.

Obviously, the commutative polynomial ring k [x1, ..., z,| is a commutative finitely gener-
ated k-algebra. In the case n = 1, k [z] and k (z) coincide with the algebra of polynomials
in one variable.

Remark 1.15. Because of the generality of the tensor algebra, many other algebras of
interest are constructed by starting with the tensor algebra and then imposing certain
relations on the generators, that is, by constructing certain factors of 7 (V). Examples of
this construction are the exterior algebra, the symmetric algebra, Clifford algebras
and universal enveloping algebras.

Obviously, any k-algebra is isomorphic to a factor of a free associative k-algebra by some
two-sided ideal.
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In what follows we identify the tensor algebra 7 (V') with the free associative algebra
constructed above.

1.3 Lie theory

We will not discuss the Lie Theory in much details here, we refer the interested reader to
[16], |6] and [20].

1.3.1 Lie groups and Lie algebras

Definition 1.16. A Lie group G is a group which is also an analytic manifold, such that
the group operations are smooth, that is, the multiplication map from G x G into G and
the inverse map from G into G are required to be analytic maps.

Example 1.17. While the Euclidean space R" is a real Lie group (with ordinary vector
addition as the group operation), more typical examples are given by matrix Lie groups,
i.e. groups of invertible matrices (under the matrix multiplication). For instance, the group
SO(3) of all rotations in 3-dimensional space is a matrix Lie group.

Definition 1.18. A Lie algebra is an algebra g over a field k with the product defined
by:

gxg3(zy)—[ry cg (1.5)
satisfying

L. [z,z] = 0 (antisymmetry),

2. [[z,y], 2] + [[z, =], y] + [[v, 2], 2] = 0 (Jacobi identity),

for all z,y, 2z € g. This operation in a Lie algebra is called a Lie bracket. By custom one
sometimes refers to the Lie bracket as a commutator.

The Lie algebra g is called abelian or commutative if [z, y] = 0 for all z,y € g.

Remark 1.19. To every Lie group, we can associate a Lie algebra which completely captures
the local structure of the group, at least if the Lie group is connected. This is done as
follows.

The Lie algebra g of a Lie group G consists of left invariant vector fields on G. The left
invariance condition means the following: let [, : G — G be the left translation by g € G,
i.e., l;(h) = gh for all h € G. A vector field X on G is left invariant if (dl,), X, = Xgp.

Clearly, g is a vector space. It can be identified with the tangent space to G at the unit
element e. Namely, to any left invariant vector field we can attach its value at e. Conversely,
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a tangent vector at e can be translated to all other points of G to obtain a left invariant
vector field.

Note that we did not require our vector fields to be smooth; it is however a fact that a left
invariant vector field is automatically smooth.

The operation making g into a Lie algebra is the bracket of vector fields:

(X, Y] =X(Y[)=Y(X[),
for X, Y € G and f a smooth function on GG. Here we identify vector fields with derivations
of the algebra C'*°((G), i.e., think of them as first order differential operators.

The Lie algebra g has the same dimension as the manifold G.

G acts on g be conjugation: Ad,X = ¢gXg~'. This is called the adjoint action. The
differential of this map with respect to g is an action of g on itself, adx Y = [X, Y], which
is also called the adjoint action (we will consider later this action in more details).

Example 1.20. Every vector space becomes an abelian Lie algebra trivially if we define
the Lie bracket to be identically zero.

Example 1.21. Euclidean space R? becomes a Lie algebra with the Lie bracket given by
the cross product of vectors.

Example 1.22. Let A be an arbitrary algebra over a field. Then Der(.A) becomes a Lie
algebra when [Dy, D3] := Dy 0 Dy — Dy 0 Dy due to remark 1.10.

Notation. Let g be a Lie algebra and f € g. Let ads : g — g be be a linear mapping given
by g 3  — [f,z] € g. Due to Jacobi identity we have ad([z,y]|) = [ad;z, y] + [z, adsy].
Therefore ady is a derivation of the Lie algebra g. We will call it the inner derivation
determined by f. A derivation which is not inner is called outer derivation.

The mapping ad : g — Der(g) given by g > f +— ad; € Der(g) clearly satisfies ad,, =
ad, oad, —ad, o ad,. Hence ad is a homomorphism of Lie algebras. This homomorphism
is called the adjoint representation of g.

Definition 1.23. The central extension of an arbitrary Lie algebra g by an abelian Lie
algebra ¢ is the Lie algebra that is the direct sum g & ¢ endowed with the Lie algebra
bracket defined by [g, ¢] = 0.

Note that a Lie algebra is in general a non-unital non-associative algebra.

Proposition 1.24. Let g be a Lie algebra. Then the following conditions are equivalent:

e g 15 associative,
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e g is a central extension of an abelian Lie algebra.

Definition 1.25. Let g be a Lie algebra. The derived series is the sequence of ideals of
g defined recursively by g© =g, g = [g©,g?], g@ = [gW), gV], ..., gtV = [g@ ).
Clearly,

g9 ogW o ... DogWD. ...
The Lie algebra g is called solvable if g = 0 for some n € N.

The lower central series is the sequence of ideals of g defined recursively by g, = g,
9a) = [979(0)]7 9@ = [gug(l)]a e B3+ = [979(2)] ClearlYa

g0) 281 2 - 20k =2 ----

The Lie algebra g is called nilpotent if g(,) = 0 for some n € N. The smallest value of n
for which holds g(,) = 0 is called the degree of nilpotency of the nilpotent Lie algebra

g.
Clearly, a nilpotent Lie algebra is also solvable. An abelian Lie algebra is nilpotent of

degree 1.

Let g be an arbitrary Lie algebra, then there exists a unique maximal solvable ideal of g,
called the radical of g and denoted Rad g.

A subalgebra § of g is said to be nilpotent or solvable if b is nilpotent or solvable when
considered as a Lie algebra in its own right. The terms may also be applied to ideals of g,
since every ideal of g is also a subalgebra.

The first property of the Lie bracket saying [x,z] = 0 implies that [z,y] = —[y, 2] for all
x,y € g. Therefore all ideals in a Lie algebra are two-sided.

Definition 1.26. The Lie algebra g is called simple if g is non-abelian and has no proper
ideals.

The Lie algebra g is called semisimple if g is non-abelian and has no proper solvable
ideals.

There is a one-to-one correspondence between simple Lie groups and simple Lie algebras
of dimension greater than 1: the Lie algebra of a simple Lie group is a simple Lie algebra.

Remark 1.27. Let g be a finite dimensional Lie algebra. The following conditions are
equivalent:

e g is semisimple,
e g is a direct sum of simple Lie algebras,

e the Killing form, x(x,y) = tr(ad, ad,), is nondegenerate,
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e g has no non-zero abelian ideals,
e g has no non-zero solvable ideals,
e the radical of g is 0.

Example 1.28. Every k-algebra gives rise to a Lie algebra as follows. Let A be a k-
algebra with the multiplication *. For z,y € A, define the Lie product of = and y by
[z,y] :=x *y — y * . One checks immediately that this product satisfies conditions (1)
and (2) of definition 1.18. This gives A the structure of a Lie algebra. We denote this Lie
algebra by AL,

Moreover, it is easy to check that in this case the bracket also has the following property:
[z,x*xy] = [z, 2] xy + 2 * [2,], (1.6)

for all x,y,z € A.
Because of equation (1.6) the kernel of the inner derivation Kerad; = {z € A: [f, 2] =0}
is a subalgebra of A for any f € A.

Definition 1.29. A restricted Lie algebra g of characteristic p # 0 is a Lie algebra over
a field k of characteristic p endowed with a mapping a — a/”! such that

1. (a+b)P = alPl + blP) + A(a,b),
2. (aa)lPl = aralfl, Vo €k,

3. adb[p] = (adb)p,

where g 3 A(a,b) := Y27~ sp(a,b) and k- s.(a, b) is the coefficient of ¥~ in (adyes)?'a.

Example 1.30. Let A be an associative algebra over a field of characteristic p. Then A%
endowed with the map alP! := a? becomes a restricted Lie algebra.

Example 1.31. Let A be an arbitrary algebra over a field of characteristic p. Then Der(.A)
becomes a restricted Lie algebra when D! := D? due to remark 1.11.

Example 1.32. Let V be a vector space. Then End(V) is a k-algebra with respect to
composition. Moreover, it becomes a Lie algebra if we define the bracket as in exam-
ple 1.28. This Lie algebra is called the general linear algebra and denoted by gl(V').
Any subalgebra of the Lie algebra gl(1) is called a linear Lie algebra.

Suppose that V' is n dimensional. Choosing a basis for V' we can identify gl(V') with the
space of all n x n matrices over k. In this case it is denoted gl,,(k) or simply gl,,.

Note that with respect to the matrix multiplication gl, (k) is a finitely generated k-algebra.
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The standard basis of gl,, consists of matrices e;; having 1 in the (i, j)-th position and 0
elsewhere. Since e;jey = d;rey, it follows that:

[eija ekl] = 5jkeil - 5liekj (1-7)

Notice that in the right side of formula (1.7) all coefficients are £1 or 0.
The Lie algebra gl;,; (I > 1) has the following Lie subalgebra:

st = {a € gl | Tr(a) = 0},
here Tr(a) = 3" a;; is the trace of a. This is a Lie algebra since Tr([a,b]) = Tr(a x b) —
Tr(b*a) = 0. This subalgebra is called special linear algebra.

It is convenient to choose the following basis of sl;;:

{62']‘,1 < ) 7&] < l+ 1, hz = €4 — 61'_,_17@'_,_1,1 < 1 < l} . (18)

In particular, for sly we have the following basis:

Then the bracket in sl is given by the formulas

le, fl="h, [h,e]=2e, [h,f]=-2f

1.3.2 Root systems

In this section we give a short overview of root systems and their use in Lie theory due to
[16] and [15].

Let E be a fixed euclidean space, i.e., a finite dimensional vector space over R endowed
with a positive definite symmetric form (-, -). A subspace of E of codimension one is called
a hyperplane. A reflection in E is an invertible linear transformation leaving some
hyperplane pointwise fixed and sending any vector orthogonal to that hyperplane into its
negative. Clearly, a reflection preserves the inner product on E, i.e., is orthogonal.

Any non-zero vector a determines a reflection o,, with reflecting hyperplane P, =
{€E| (B,a)=0}. Of course, non-zero vectors proportional to « yield the same reflec-

tion. One can easily write down an explicit formula: o,(3) = 8 — 2(8,a)

(ov,a)
2((5;)) is usually denoted by (3, a). Notice that (3, «) is linear only in the first variable.

Definition 1.33. A subset ® of the euclidean space E is called a root system in E if ®
satisfies the following axioms:

«. The number
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R1) @ is finite, spans E and does not contain 0.

R2) If a € ®, the only multiples of o in ® are +a.

R3) If a € ®, the reflection o, leaves ® invariant.

(
(
(
(R4) If o, f € ®, then (G, a) € Z.

)
)
)
)

Let @ be a root system in E. Let us denote the subgroup of GL(E) generated by the
reflections o,,a € ® by W. This subgroup is called the Weyl group of ®. Because of
axioms (R1) and (R3) we can identify W with a subgroup of the symmetric group on ®;
in particular, W is finite.

Definition 1.34. Let ® and ®’ be root systems in respective euclidean spaces E, E'. We
call (®,E) and (®’, E') isomorphic if there exists a vector space isomorphism ¢ : E — E’
sending ® onto ®’ such that (¢(5), ¢(«)) = (3, a) for all 3, € P.

We call [ = dim E the rank of the root system ®.

Example 1.35. We can draw a picture of ® when its rank < 2.
Due to (R2), there exists only one possible root system of rank 1, labeled A;:

—« . Q@
There exists 4 possibilities in rank 2:
o Al X AQZ
Q@
-0 B
-«
® BQI

B B+a [+ 2a
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.Agl
B+«

\/
/\

B-a -
e (5 (cf. |16, Chapter III, Figure 1]).

For the construction of other root systems see [16, Section 12].
Definition 1.36. A subset A of ® is called a base if:
(B1) A is a basis of E,

(B2) each root € ® can be written as § = )
nonnegative or all nonpositive.

aen koo with integral coefficients k, all

The roots in A are called simple. Due to (B1), Card A = [, and the expression for [ in
(B2) is unique. This allows us to define the height of a root (Wrt A)by ht 8:= 3" A ka
The root [ is called positive (resp., negative) if all k, > 0 (resp., all k, < 0) and erte
in this case § > 0 (resp., 8 < 0).

The set of all positive (resp., negative) roots is denoted by ®* (resp., ®7). Clearly,
P=PtUD.

Remark 1.37. If @ and 3 are positive roots and « + [ is a root, then clearly a + (3 is also
positive. In fact, A defines a partial order on E, which extends the notation o > 0:
define 8 < a iff & — (3 is a sum of positive roots (equivalently, of simple roots) or a = (3.

Theorem 1.38 (cf. Section 10.1 in [16]). ® has a base.

Definition 1.39. Let us fix an ordering («y,...,q;) of the simple roots. The matrix
({a;, ;) is called the Cartan matrix of ®. Its entries are called Cartan integers.

Remark 1.40. The Cartan matrix is independent of the choice of A. Since A is a basis of
E it follows that the Cartan matrix is nonsingular. It turns out that the Cartan matrix of
® determines ® up to an isomorphism.

Definition 1.41. ® is called irreducible if it cannot be partitioned into the union of two
proper subsets such that each root in one set is orthogonal to each root in the other.

Theorem 1.42 ([16] and [15]). ® decomposes (uniquely) as the union of irreducible
root systems ®; (in subspace E; of E) such that E = E; & ... E; (orthogonal direct sum).
Moreover, every irreducible root system is isomorphic to precisely one root system from the
following list:
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1. The classical root system Ayl > 1,
The classical root system B, > 2,
The classical root system Cy, 1

2

=3
The classical root system Dy, [ > 4,

The exceptional root system Go, F4, Eg, E7 and Eg.

1.3.3 Classification of semisimple complex Lie algebras
Irreducible root systems classify a number of related objects in Lie theory, notably:

e Simple complex Lie algebras,
e Simple complex Lie groups,

e Simple compact Lie groups.

Let us consider the one-to-one correspondence between root systems and semisimple com-
plex Lie algebras in more details.

Definition 1.43. Let g be a semisimple complex Lie algebra. A Cartan subalgebra of
g is a subspace h of g with the following properties:

1. For all Hy,Hy € b : [Hy, Hy] = 0.

2. Let X €g. Ifforall H e bh:[H,X]| =0, then X €.

3. For all H € b, ady is diagonalizable.

Condition 1 says that b is a commutative subalgebra of g. Condition 2 says that b is a
mazimal commutative subalgebra (i.e., not contained in any larger commutative subalge-
bra).

Proposition 1.44. Every semisimple complex Lie algebra has a Cartan subalgebra.

A Cartan subalgebra of not necessarily semisimple Lie algebra is defined as follows:

Definition 1.45. Let g be a Lie algebra. A Cartan subalgebra of g is a maximal
subalgebra b of g which is self-normalizing, that is, if [g,h] € b for all h € b, then g € b
as well.

Any Cartan subalgebra b is nilpotent, and if g is semisimple, it is abelian.

All Cartan subalgebras of a Lie algebra are conjugate by the adjoint action of any Lie
group with the Lie algebra g.
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Remark 1.46. Let g be a finite dimensional Lie algebra. One can show that all Cartan
subalgebras have the same dimension. This dimension is called the rank of g.

One passes from a Lie algebra to a root system as follows:

Let g be a semisimple complex Lie algebra and let h be a Cartan subalgebra of g. The
subalgebra b is abelian and acts on g, via the adjoint representation, by commuting simul-
taneously diagonalizable linear maps. The simultaneous eigenspaces of this f action are
called root spaces. The decomposition of g into h and the root spaces is called a root
decomposition of g.

For A\ € h* we set
gr:={a € g: [h,al = A(h)a for all h € h}.

We call a non-zero A € h* a root if g, is non-trivial, in which case g, is called a root
space. One can show that that go = § and dim g, = 1 for each root \. Let us denote the
set of all roots by ®. Thus we obtain the following root decomposition of g:

g=haPa

re®

The Cartan subalgebra h has a natural inner product, called the Killing form, which in
turn induces an inner product on h*. One can show that with respect to this inner product
® is a root system.

Conversely, let ® C E be a root system. Let ® = &+ U P~ be a decomposition of ® into
subsets of positive roots and negative roots. Clearly, the negation in E acts as a bijection
between ®* and ®~.

Consider the vector space
g=EaoC[®]

where C[®] denotes the complex finite dimensional vector space generated by the elements
of ®@. Denote the basis elements of C[®] by X, A € ®. For each A € ® we set

A

N e E.

H)\ =2

Next, we define a skew-symmetric bilinear bracket on g by imposing so called Chevalley-
Serre relations:

[Hy,H)) =0, H,, H,cE;
[H,X,)]=(\H)X,, HeE, A€ ®;
X, 0, A+pu#0;
(X, Hy, AM+pu=0 \ecdt.

Xl
Xl
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The resulting bracket satisfies the Jacobi identity, and thus endows g with a structure of

a Lie algebra. This Lie algebra turns out to be semisimple, with a root system isomorphic
to ®.

Let us recall the classical complex Lie algebras (sl,,(C), s0,,(C) and sp,,(C)) and their root
systems:

e The root system A, is the root system of sl,,,1(C), which has the rank n.
e The root system B, is the root system of $05,.1(C), which has the rank n.
e The root system C,, is the root system of sp, (C), which has the rank n.

e The root system D, is the root system of s0s,(C), which has the rank n.

In rank one, there is only one isomorphism class of complex semisimple Lie algebras.
The Lie algebra s0,(C) is not semisimple and the remaining three, sl,(C), s03(C), and
sp,(C), are isomorphic. In rank two the root system Dy is not irreducible, reflecting that
504(C) = sl,(C) @ sly(C). Also, the root systems By and Cy are isomorphic, reflecting that
505(C) = sp,(C). In rank three, the root systems Az and Dj are isomorphic, reflecting
that s04(C) = sl4(C)

The classification of semisimple Lie algebras is equivalent to the classification of root sys-
tems, as the following theorem explains.

Theorem 1.47.

1. If Ry and Ry are the root systems for two different Cartan subalgebras of the same
complex semisimple Lie algebra, then Ry and Ry are isomorphic.

2. A semisimple Lie algebra is simple if and only if its root system is irreducible.

3. If two complex semisimple Lie algebras have isomorphic root systems, then they are
1somorphic.

4. FEvery root system arises as the root system of some complex semisimple Lie algebra.

The theorems 1.42 and 1.47 lead to the following classification of complex simple Lie
algebras:

Theorem 1.48. Every complex simple Lie algebra is isomorphic to precisely one algebra
from the following list:

1. sL,,1(C),n>1
2. 509,41(C),m =2
3. 5p,(C),n >3

4. $09,(C),n >4

5. The exceptional Lie algebras go, f4, ¢g, ¢7 and eg.
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1.3.4 Chevalley basis of a semisimple Lie algebra

In this section we closely follow [16].

Let g be a finite dimensional semisimple Lie algebra over an algebraically closed field F of
characteristic 0, then g has a canonical basis (called Chevalley basis) with to which the
structure constants are integers.

Though the construction of a Chevalley basis depends on the choice of a basis of the root
system @ the Z-span L(Z) of Chevalley basis {za, hi} e ., 15 a lattice in g, independent
of it. It is even a Lie algebra over Z (in the obvious sense) under the bracket operation
inherited from g.

Chevalley basis enables one to replace the scalars from F by members of an arbitrary field.

If F, = Z/pZ is the prime field of characteristic p, then the tensor product L(F,) =
L(Z) @z F, is defined: L(F,) is a vector space over F, with the basis {z, ® 1, h; ® 1}.
Moreover, the bracket operation in L(Z) induces a natural Lie algebra structure on L(F,)
. The multiplication table is essentially the same with integers reduced mod p.

If k is any field extension of F, then L(k) = L(F,) ®r, k = L(Z) ®z k inherits both the
basis and the Lie algebra structure from L(F,). In this way we associate with a pair (g, k)
the Lie algebra L(k) whose structure resembles that of g. L(k) is called the Chevalley
algebra. Even though L(Z) depends on how the root vectors are chosen, it is defined
up to an isomorphism (over Z) by g alone; similarly, the algebra L(k) depends (up to
isomorphism) on the pair (g, k).

To illustrate these remarks, we consider g = sl;1(F). It is clear that L(k) has precisely
the same multiplication table as sl;1(F), relative to the standard basis (1.8). So L(k) =
sl;11(k) . The only real change that takes place in passing from F to k is that L(k) may
fail to be simple.

1.3.5 Enveloping algebras of Lie algebras

Enveloping algebras are important for us since they provide us with a number of interesting
and computable examples.

For any Lie algebra g over k we can construct its enveloping algebra ¢/(g). This construction
passes from the non-associative structure of g to the “most general” k-algebra A such that
the Lie algebra A contains g; this algebra A is U(g).

The important constraint is to preserve the representation theory: the representations
of g correspond in a one-to-one manner to the modules over U(g). In a typical context
where g is acting by infinitesimal transformations, the elements of U(g) act like differential
operators of all orders.
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Definition 1.49. Let g be a Lie algebra over a field k. The Enveloping algebra of g is
a k-algebra U = U(g) endowed with a Lie algebra homomorphism

fﬁg—>ULie

such that U and f satisfy the following universal property: for any k-algebra A and a
Lie algebra homomorphism ¢ : g — A% there exists a unique k-algebra homomorphism
h:U — A inducing a Lie algebra homomorphism & : UL — AL such that the following
diagram commutes: ;

g\\ ’//’}TL

ALie

g ULZ'e

The enveloping algebra U(g) of a Lie algebra g (if it exists) is unique up to a unique
isomorphism (because of its universal property).

Remark 1.50. We can construct the enveloping algebra U of a Lie algebra g in the following
way: Let 7 (g) be the free associative algebra of g with the canonical imbedding ¢ : g —

7(g).

Let I be the (two-sided) ideal generated by the element i([x, y]) —i(x) *i(y) +i(y) xi(x) €
T(g), forall z,y €g. Put U =U(g) =T (g)/I.

Example 1.51. Let g be a commutative Lie algebra. Then U(g) is the factor of 7 (g)
by the ideal generated by elements i(z) * i(y) — i(y) * i(z), for all z,y € g. If we choose

a basis z1,...,x, of g, 7(g) identifies with the algebra of non-commutative polynomi-
als in xy,...,x, while the enveloping algebra is the algebra of commutative polynomials
klzy, ... z,)

Example 1.52. Using our presentation of sl, and the commutator formulas, we see that
U(sly) is isomorphic to the factor of k (e, f, h) by the two sided ideal generated by e * f —
fxe—hhxe—exh—2e,hxf—fxh+2f.

Theorem 1.53 (Poincaré-Birkhoff-Witt). Let g be a Lie algebra over a field k, finitely
generated with basis x1,xs, ..., T,. Furthermore let U = U(g) be the enveloping algebra
of g with the canonical imbedding f : g — U™*. Then linear combinations of elements
Tiy oo T, = foy, @ - @a;,) withm >0 and 1 < iy <iy < ... < iy, along with 1 form a
basis of U.

Notice that if g is a finite dimensional Lie algebra then its enveloping algebra U(g) is a
finitely generated k-algebra.

Remark 1.54. There exists a filtration by degree on U(g) coming from 7 (g).
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1.4 Algebras of Solvable Type

Another fruitful source of our examples is the theory of algebras of solvable type introduced
in [21]. These algebras are also considered in [26] (they are called GR-algebras there) and
in [4] under the name of PBW-algebras. Although the theory of algebras of solvable type
can be generalized further(see |24]), the algebras arising there usually are not k-algebras.

First we give some computer algebra notions following [4], [13] and [26].
Definition 1.55. Let < be a partial ordering, i.e., a reflexive, antisymmetric and transitive
relation, on a non-empty set M.

A partial ordering < on a set M satisfies the descending chain condition if there exists
no infinite strictly descending chain

T 7N U S A S

Proposition 1.56. A partial ordering < on a set M satisfies the descending chain condi-
tion iff every non-empty subset of M has a minimal element.

Recall that a monoid (M, -) with neutral element e € M is a set M endowed with a binary
operation - which is associative and satisfies the following property:

eem=m-e=m Vme& M.

Example 1.57. Let X be a non-empty set, called alphabet. A word or a term over X is an
ordered finite sequence x - - - x5 of elements z; € X. Adding the empty sequence, denoted
by 1, to the set of words over X, we obtain the free monoid on X, denoted by (X). The
multiplication in (X) is just the concatenation of words and 1 acts as neutral element. The
characteristic property of X is that it is a free object, i.e., any mapping X — M, where
M is a monoid, extends uniquely to a homomorphism of monodies (X) — M.

We are especially interested in the case when X is finite, say X = {z1,...,2,}. In this
case we use the notation (X) = (z1,...,z,).

Example 1.58. Let n be a positive integer and let
N"={a=(ar,...,an) 1 1,...,a, € N}.

We will consider the commutative monoid (N”, +) with sum defined componentwise. The
neutral element is then given by 0 = (0, ...,0).

Definition 1.59. Let (M, -) be a monoid. A partial ordering < on M is called monoid
ordering if
VYmqy, mo,a,b € M : my; < my = amib =< amsb. (1.9)
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Remark 1.60. When the monoid M is cancelative i.e., when am = bm or ma = mb implies
a = b, then condition ( 1.9 ) in definition 1.59 can be replaced by

Vmi,ma,a,b € M : my < mo = amib < amsb. (1.10)

The examples 1.57 and 1.58 are clearly cancelative.
Definition 1.61. A non-empty subset F of N" is said to be a monoideal if £ + N" = F.
If B is a subset of N, then we define the monoideal generated by B to be

B+N'=|J(B+N)={8+v8€B,yeN}.
BeB

If E = B+ N", then we call the elements of B generators of E.

Definition 1.62. The partial ordering <" in N” is defined by

a<"fepea+ N

In other words, a <" B if a; < 3; for all 1 < i < n.

Clearly, partial ordering <" satisfies the descending chain condition.

Lemma 1.63 (Dickson). For any non-empty E C N", there exists a finite subset B =
{%, e ,a_m} of £ such that

-

EC| J(oi +N").

=1

Observe that every monoideal has a set of generators (for example the whole monoideal).

Proposition 1.64. Fvery monoideal E of N" possesses a unique finite minimal set of
generators B of E.

Definition 1.65. An admissible ordering on (N", +) is a total monoid ordering < such
that 0 < « for every a € N”. By remark 1.60 the total ordering < is admissible iff it
satisfies the following two conditions:

(1) 0 < a for every 0 # a € N,
(2) a+y=<B+qforalla,B,veNwith a < S.
The total degree of the element o € N” is

lal = a1 + -+ + ay.
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Example 1.66. The total degree ordering <;,, on N" is defined by
B <t & & |B] < |af.
The ordering =<, is only partial ordering, and hence not an admissible ordering.

For any 1 < i < n we denote by ¢ the element (0,...,1,...,0) € N” whose all entries are
0 except for the value 1 in the i-th component.

Example 1.67. The reverse lexicographical ordering =,c,., on N" with ¢; < e <
-+ < €, is defined by

Q <reviee B 37 €{1,2,...,n} such that a; = 3; Vi < j and a; > f3;.

=revier 18 @ total ordering which is compatible with the monoid structure, but is not ad-

missible.

Let us give now some examples of standard admissible orderings.

Example 1.68. The lexicographical ordering =;., on N" with ¢ < e < --- < ¢, is
defined by

a <iee B35 €{1,2,...,n} such that a; = 3; Vi > j and a; < 3.

Example 1.69. The degree lexicographical ordering <. ., on N" with ¢; < e <
-+ < €, is defined by

o Kdeglex g iff ‘Q‘ < |ﬁ‘ or (|Q‘ = ‘é| and Q <lex ﬁ) :

Example 1.70. The degree reverse lexicographical ordering <;.srepiez 0On N with
€ < € < -+ < €, is defined by

o <clegrevleac é = ‘Q‘ < |g| or (|Q| == ‘é‘ and Q <revlex ﬁ) .

Example 1.71. Let w = (wy,...,w,) € N”. The weighted total degree with respect to
w of the element o € N" is

n
|Q|Q = <£7 Q) = Zwiai.
=1

The w-weighted degree lexicographical ordering =<, on N" with ¢; <6 < -+ < ¢,
is defined by

a =<, piff & lal, < ‘@g or (|Q|g = ‘@g and @ <eq ﬁ) :

Proposition 1.72. Any admissible ordering < on N" is a refinement of the partial ordering
=" (defined in 1.62), that is, « =™ 3 implies o = .
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Proposition 1.73. Any admissible ordering on N" is a well-ordering, that is, every non-
empty subset of N™ has a least element.

Let R =k|[xy,...,z,] be the (commutative) polynomial ring generated by variables z; over
k. We let
M = M(xy,. .. {xal wi? gL <y < g < <im<n,0<0zk}

denote the set of monomials in variables 1, . .. z,. For any polynomial f € R, T'(f) denotes
the set of terms occurring in f with non-zero coefficient.

In what follows, for any o € N” and any z1,...,z, € R, we denote by x¢ the standard

«
term z{" ... xo".

Recall, that every element f € R has a unique standard representation

f= Z CoX™.

aecN”

For 0 # f € R we define the Newton diagram of f by
N(f)={aeN":¢, #0}.

For any admissible order on N", let us introduce the following notions, which obviously
depend on the choice of <.

Notation. The exponent of f # 0 is defined by exp(f) = max N (f).
The standard representation of any 0 # f € R thus becomes

f = Cexp(f eXp(f + Z CaX_'

a<exp(f)

We call Im(f) := x®PY) the leading monomial of f and lc(f) := cop(p its leading
coefficient. Finally, the leading term of f is defined by

16(f) = lo(f) In(f) = corpr ™0,

The polynomial rings of solvable type (or solvable polynomial rings for short) R are in-
termediate between the commutative and the most general non-commutative case. These
rings R will be described briefly as follows: the elements of R are commutative polynomials
over field k, but the multiplication * may be non-commutative. The decisive restriction on
x is that the difference between f * g and a suitable scalar multiple of corresponding com-
mutative product f- g is smaller than f- ¢ in the sense of an arbitrary but fixed admissible
term ordering on R. This can be guaranteed by a few, simple axioms on .

An admissible ordering on M = M (xy,...,z,) induces in a natural way an ordering “<”
on R: f < g iff there exists t € T'(g) \ T'(f) such that for all ¥ € M with ¢ > ¢, ¢’ € T(f)
iff # € T'(g). The induced quasi ordering on R admit no infinite strictly decreasing chain.
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The non-commutative polynomial rings of solvable type will be obtained from R
by introducing a new multiplication on R subject to certain conditions: Fix an admissible
ordering < on M, and let * : R Xx R — R be a new binary operation on R. Then we call
(R, *) a polynomial rings of solvable type, if the operation x satisfies the following axioms:

Azioms 1.74.

(1) (R,0,1,+, —,*) is an associative ring with 1.
(2) Foralla,bek 1<h<i<j<k<nteM,...z),

(i) ax0bt = bt *a = abt,
(i) @ * bt = baypt,

(3) For all 1 < i < j < n there exists 0 # ¢;; € k and p;; € R such that z; xz; =
Cij T +p2] and Dij < TiZj.

We denote this solvable polynomial ring by

k(x1,...,00 0 %2 = cjxiw; +pi; V1<i<j<n,<).

The class of polynomial rings of solvable type introduced in this way is quite comprehensive:
It includes commutative polynomial rings; iterated Ore extensions of the ground field k;
factors of a general non-commutative polynomial ring over k by fairly general commutation
relations; and enveloping algebras of finite dimensional Lie algebras over k, in particular
the Weyl algebras arising in quantum physics.

Now we will show how enveloping algebras of finite dimensional Lie algebras over k turn
into solvable polynomial rings: Let g be a finite dimensional Lie algebra over a ground
field k and let xy,...,z, be a basis of g over k. It has been above shown that there is a
canonical construction of a finitely generated k-algebra U(g) from g such that g embeds
into U(g), when the Lie product in U(g) is taken as the commutator [a,b] = a*b — b * a.
By the Poincaré-Birkhoff-Witt theorem, the elements of U(g) can be represented uniquely
as commutative polynomials in k[zi,...,z,]. Then for 1 < i < j < n holds p;; =
T ¥ X — T % ;) = x5, 7] € g, and so [z, x;] is a linear form in xy, ..., z, with coefficients
in k. Moreover, * satisfies axioms 1.74 (1) and (2).

Let now < be any degree-compatible admissible ordering on M = M (xy,...,z,) (i.e.,
deg(s) < deg(t) implies s < t for s,¢ € M). Then by the above, z; * x; = z;x; + p;; with
deg(pij) < 1 < deg(z;xj) = 2; consequently, p;; < z;x; for 1 < i < j < n, and so all
the axioms of solvable polynomial rings are satisfied. If g is a solvable Lie algebra then
pij € k[zi1,...,2;_4] for a suitable choice of the basis z1,...,z, of g, and so the axioms
1.74 are also satisfied for the pure lexicographical order.
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We can now define the commutator relations for a solvable polynomial ring as:
Tj* Ty = L5 + Dij,
that is, ¢;; = 1,pi; = > pey Gijur = (2, 2], aijy €k, 1 <i < j<n,1<k<n.

Theorem 1.75. The enveloping algebra U(g) of a finite dimensional Lie algebra g over k
18 a solvable polynomial ring with respect to any degree-compatible admissible ordering <
on M. Moreover, if g is solvable, then we can choose the basis x1,...,x, of g such that <
may also be taken to be the pure lexicographical ordering.

Let R be a solvable polynomial ring over k and I be a two-sided ideal in R, let A = R/I.
Then we call the finitely generated k-algebra A an algebra of solvable type over k .
These include all Clifford algebras and hence all Grassmann algebras.

Notice that in order to guarantee associativity we must require that the multiplication of
variables is associative, that is: z; * (z; * x) = (z; * x;) * xy, for all 1 < 4,7,k < n. This
leads to the non-degeneracy conditions(cf. [26]).

Though the original names for the algebras defined above are “solvable polynomial ring” and
“algebra of solvable type” it appears that these name can lead to some misunderstanding.
Therefore, in what follows, we will call them “G-Algebra” and “GR-Algebra” (cf. [26]).

1.5 Centralizer and the center

Definition 1.76. Let F' and S be two subsets of A, then the centralizer of F' in S is a
subset of S defined by:

Cen(F,S):={se€ S:[f,s]=0 VfeF}.
We write Cen(f,S) instead of Cen({f},S).

Obviously Cen(f, A) = Kerad; and therefore it is a subalgebra of A.

It is clear from the above definition that: Cen(F,S) = Cen(F, A) N S. Since Cen(F,S) =
Nrer Cen(f, S), we obtain:

Cen(F,S) = SN (Nser Cen(f, A)) = SN (Ngep Kerady) .

Therefore, if S is a vector subspace of A then Cen(F,S) is a vector subspace of S and if
moreover S is a subalgebra of A then Cen(F,S) is a subalgebra of S.

Definition 1.77. The center of a k-algebra A is the set

ZA):={ye A:xxy=yx*xx foral ze A}
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The mapping a — 1 4+a imbeds k in A, provided only that A is non-trivial, that is, 14 # 0.
Therefore k can be identified with a subring of the center of A. In particular, 14 = 1, and
kc Z(A).

Remark 1.78. Obviously, Z(.A) is a commutative subalgebra of A, but it is not the biggest
one in general, we are going to explore the topic concerning maximal commutative subal-
gebras in chapter 6.

Clearly Z(A) = Ker ad and
k c Z(A) C Cen(F, A),

for all subsets F' of A.

Obviously, Z(A) = Cen( ,A), but it would be nice if we could find such a finite subset
X C A that Z(A) = Cen(X,.A) and to be able to compute Cen(f, V).
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Chapter 2

Computation of the center and a
centralizer

Throughout this paper, the letter 4 will stand for a finitely generated unital associative
algebra over a field k. We assume, unless explicitly specified, that every k-algebra is of
this type.

2.1 Theoretical background

Proposition 2.1. Let Vi and V5 be vector subspaces of A, F' and G be subsets of A, then
Cen(F,V;) N Cen(G,V,) = Cen(F, Cen(G, Vi NV,)) = Cen(F UG, Vi NV;)

s a vector subspace of Vi NV,
Proof. Because of definition 1.76 we have the following:

Cen(F, Vi) N Cen(G,V3) = (Cen(F, A) N V1) N (Cen(G, A) N'V3)
= Cen(F, A)N(Cen(G, A)N(V1NV3)) = Cen(F, A)NCen(G, ViNVy) = Cen(F, Cen(G, ViNV3))
= (Cen(F, A)NCen(G, A))N(ViNV;) = Cen(FUG, A)N(ViNV3) = Cen(F UG, ViNV3).

This accomplishes the proof. [ |
Corollary 2.2. If F ={f1,..., [x}, then
CGD(F, V) = ﬂlgigk Cen(fi, V) = Cen(fl, Cen(fQ, ceay Cen(fk, V) .. ))

Remark 2.3. If Sy and Sy are subalgebras of A, then Cen(F,S;) N Cen(G, S2) = Cen(F U
G,S1 N Sy) is a subalgebra of S; N S,.

It turns out that in order to compute the center it is enough to compute certain centralizer:

25
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Lemma 2.4. Let A be a k-algebra generated by x1,xs, . .., x, (we will call these generators
variables). Then Z(A) = Cen({z1,...,2,},A).

Proof. Clearly Z(A) C Cen({z1,...,2,},A).

To show the another inclusion we choose any f € Cen({z1,...,z,},.A), that is, f commutes
with all variables.

We can represent any element of A as a linear combination (over k) of products of variables.
It is clear that if f commutes with a € A and b € A then f commutes with ¢; - a + ¢5 - b,
c1, 6 € k.

Hence, it suffices to show that f commutes with any product. The proof is by induction
on the length of product.

By the choice of f we know that f commutes with variables, this gives us the base of
induction.

Now, assuming that f commutes with n and m, we can simply check that f commutes
with n * m:

frxmnsxm) = (fxn)sxm = (nxf)xm = nx(f*m) = (nxm)=x*f
[ |

By theorem 2.4 and corollary 2.2 we can compute the center in an iterative way:

Z(A) = Cen(xy, Cen(xs, ..., Cen(x,, A)...)).

Therefore, in order to compute the center we should be able to compute Cen(f,.S), where
S is a subalgebra of A. If S is an infinite dimensional as a vector space it cannot be done
in general, but as soon as S is finite dimensional we can compute Cen(f,S) by solving
certain linear algebra problem.

That is why we proceed by intersecting the algebra with finite dimensional vector subspaces
and compute therefore only parts of a centralizer.

From now on we assume moreover that A is filtered with a filtration {.A;}.

We denote the corresponding vector space filtration of the center by Z;(A) . That is:
Obviously:

UZZ-(A) = Z(A).

Due to lemma 2.4 and by the properties of centralizers we can compute Z;(.A) as follows:

Zi(A)=Z(A)NA; = Cen({z1, ..., 2.}, A) NA; = Cen({z1,...,2,},A4). (2.1)
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This shows us that in order to compute Z4(.A) we should be able to compute Cen(f, V),
where V' is a finite dimensional vector subspace of \A. This can be done by means of linear
algebra due to the following proposition:

Proposition 2.5. Let V be a finite dimensional vector subspace of A, let us consider
Cen(f, V)=V nNKeradys as a vector subspace of V.. This is exactly the kernel of the linear
map ady |v: V — A. Since V is finite dimensional, the image vector space Imady |y is also
finite dimensional. Therefore, we can compute Cen(f, V') for any finite dimensional vector
space V' as the kernel of the linear map ady |y between finite dimensional vector spaces.
In terms of linear algebra this means: compute matriz of this linear map and compute the
base of its kernel.

In the case when A is itself finite dimensional vector space we can compute
Cen({z1,...,2,},A) = Z(A) directly. But for finite dimensional k-algebras over finite
fields our general approach could be not so efficient as the probabilistic approach discussed
in [9]. In fact, they arrived at a similar system of equations and using the probabilistic
approach they can almost avoid solving it.

2.2 Computation of center and centralizer

In this section we describe our algorithms for computing centralizers of sets of elements.

INPUT: Sets of vectors: Basis = {by,...,by}; Images = {wy,...,w,}, where vectors
from Basis are linearly independent.

OUTPUT: vector space basis of the kernel of a linear map given by b; — w;.
let @) be the matrix of the linear map given by b; — w;;
compute a vector space basis (2 of the kernel of Q;

RETURN: ¢

Algorithm 2.1: LINEARMAPKERNEL(list Basis, list Images)

ASSUME: A is a k-algebra
INPUT: f € A; a vector subspace V of A, given by its basis {vy, ..., vs}.
OUTPUT: vector space basis of Cen(f,V)
let Images = {wy, ..., ws} be the set of vectors: w; = adyv;;
RETURN: LINEARMAPKERNEL({v1,...,vs},{wy,...,ws}); // using algorithm 2.1

Algorithm 2.2: CENTRALIZEPOLY (poly f, list V)

After fixing a filtration A; C A we can give algorithms for the computation of vector space
bases of centralizers Cen(F, Ay) (algorithm 2.4) and the center Z,4(.A) (algorithm 2.5) for
any non negative integer d.
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ASSUME: A is a k-algebra
INPUT: F ={f,...fn} C Aand vector subspace V of A, given by its basis {v1, ..., vs}.
OUTPUT: vector space basis of Cen(F,V)

let W= {vy,...,0s};

fori=1to:=mdo

W = CENTRALIZEPOLY(f;, W); // using algorithm 2.2

end for

RETURN: W

Algorithm 2.3: CENTRALIZESET(set F, list V)

ASSUME: A is a filtered k-algebra with a filtration {.A4;}
INPUT: integer d > 0, non-empty finite set F' C A.
OUTPUT: vector space basis of Cen(F, Ay)

RETURN: CENTRALIZESET(F, A,); // using algorithm 2.3

Algorithm 2.4: CENTRALIZERVS(set [, integer d)

ASSUME: A is a filtered k-algebra generated by variables xy, ..., x,, with a filtration
{A:}

INPUT: integer d > 0

OUTPUT: vector space basis of Z4(A) = Z(A)N Ay

RETURN: CENTRALIZERVS({zy,...,2,},Aq); // using algorithm 2.4

Algorithm 2.5: CENTERV S(integer d)
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Theorem 2.6. Algorithms 2.2, 2.4, 2.3 and 2.5 terminate and are correct.

Proof. Obviously these algorithms terminate. Algorithm 2.2 is correct because of remark
2.5. Other algorithms are correct because of the properties of centralizers and the center
considered in the previous section, namely:

e algorithm 2.3 is correct because of corollary 2.2.
e the correctness of algorithm 2.4 follows from the correctness of algorithm 2.3.

e finally, algorithm 2.5 is correct due to lemma 2.4 as formula (2.1) shows.

ASSUME: A is a filtered k-algebra with a filtration {A4;}
OUTPUT: vector space basis of Z(A)
if 3d: A; = A then
let Z = CENTERVS(d); // using algorithm 2.5
else
for 1=0,1,...,00 do
let Z = CENTERVS(i); // using algorithm 2.5
end for
end if
RETURN: Z;

Algorithm 2.6: CENTER()

Using algorithm 2.5 we can compute the whole center Z(A) as in algorithm 2.6. Algo-
rithm 2.6 is correct and terminates whenever the filtration {4;} of A is finite.

2.3 Implementation for algebras of PBW type

In order to be able to compute efficiently we require A to be of PBW type. This means
that we may use (a subset of) the set of monomials Mon(xq,...,z,) as a vector space basis

of A.
Similar approach was also described in [24].

We fix the standard vector space filtration of A by degree, that is, we define A, to be
a vector space of polynomials of degree less or equal to d with the base M, consisting
of monomials of degree less or equal to d, specifically: A; = {a € A :deg(a) < d} and
My ={m &€ Mon(z1,...,x,): deg(m) < d}.

Let V be a vector subspace of A; with the basis vectors {vy,...,vs}. Let f € A. Let us
compute the basis of the vector subspace Cen(f, V) of V:
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Firstly we consider W :=Imad; |, as a vector subspace of A. Let my,...,m, be the
monomials occurring in the image polynomials {adsv;},_,... Clearly they are linearly
independent and span a vector space containing V.

Next we compute the matrix D of the linear map ady [v: (v1,...,v5)k — (M, ..., M)k by
decomposing {ad;v;},1 < i < s into linear combinations of m;: adyv; = Y78 a;; - my,
where the coefficients a;; € k form the matrix D.

Let {wy,...,wr} C k® be a basis of the solution system of homogeneous equations with the
matrix D. Then the following vectors form a basis of Cen(f,V): {3 7_(w;li] - vi)}<;
where w;[i] denotes the i coordinate of the vector w; € k*.

This is the description of our implementation of LINEARMAPKERNELalgorithm (cf. algo-
rithm 2.7) for algebras of PBW type.

ASSUME: A is a filtered finitely generated k-algebra of PBW type.
INPUT: Sets of vectors: Basis = {by,...,b;}, Images = {ws,...,wy}, where vectors
from Basis are linearly independent.
OUTPUT: vector space basis of the kernel of a linear map given by b; — w;.
find all monomials {my, ..., m,} occurring in the polynomials w;;
let @ be a module generated by Z?Zl Coef f(w;,m;) - e;,1 <1 < k;
compute the syzygy module of ) and let {2 C k™ be its basis;
RETURN: {7 w; b}

wEQ;

Algorithm 2.7: LINEARMAPKERNEL(list Basis, list Images)

In algorithm 2.7 we use the following notation: Coeff(w,m) denotes the coefficient of the
monomial m in the polynomial w and e; denotes the i generators of the free module of
rank p.

2.4 Center of a factor algebra

Let A be a G-Algebra and I be a two-sided ideal in A. In this section we consider a factor
algebra A/I, which is a GR-algebra (see [21] and [26]). The SINGULAR can deal with
factor algebras in the following way: polynomial data are stored internally in the same
manner(as in the case of A), the only difference is that this polynomial representation is
in general not unique, therefore when we need a normal form of a polynomial p in a factor
algebra we compute it by the command NF(p, std(0)).

Therefore we need to modify our algorithms to work with “factors”™ we add normal form
computation after polynomial multiplications and change PBW basis computation (we
throw away from PBW basis all monomials which can be reduced w.r.t the ideal I).

Having implemented all these modifications in our library we are able to compute correct
results within factors.
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In particular, this was done in order to check the following conjecture:
Conjecture 2.7. Let A be a G-Algebra and I C A be a two-sided ideal in A, then:

ZA/I)=Z(A)/(INZ(A)) (2.2)

The motivation for this conjecture is the following proposition (cf. |6, Prop. 4.2.5, p. 134|):

Proposition 2.8. Let g be a semisimple Lie algebra over a field of characteristic 0, I a two-
sided ideal of U(g) and ¢ the canonical mapping of U(g) onto U(g)/I. Then p(Z(U(g)))
is the center of U(g)/1.

Example [26, p. 110] shows that conjecture 2.7 fails to be true for the first Heisenberg
algebra over a field k of characteristic 0 (cf. section 5.5):

Hi =k (z,y,h||x,y] = h,h,z] =[h,y] =0).
It is easy to see that its center is k[h]. Let us consider the two-sided ideal I generated by h,

then I N Z(Hy) = (b)) and Z(H1)/(INZ(H:1)) = k. On the other hand, Hi/I = k[z,y],
hence:

Z(Ho/1) = Ha/ T = K[z, y] Zk =Kk[h]/ (h)yp) = Z(H1) /(I N Z(Hy))

It would be interesting to know, under which conditions on A formula (2.2) holds true.
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Chapter 3

Examples of computation

In this chapter we assume the ground filed k to be of characteristic 0.

In the following examples we consider enveloping algebras of certain Lie algebras. These
non-commutative k-algebras are supported by SINGULAR. All computations were done
with the help of SINGULAR and our library.

3.1 Enveloping algebra of si,

We have already seen that U(sly) is given by

ke, f,h|fxe=ef —h,hxe=eh+2e,hxf=fh—2f).

Let us compute vector space basis of Z5(.A) using the iterative approach, that is, by the
following formula Z5(A) = Cen(h, Cen(f, Cen(e, As))).

We choose the PBW basis M, of Ay, specifically: My = {e* ef,eh, f2 fh,h? e, f,h,1}

To compute Cen(e, . A3) we need images (under ad.) of basis vectors of As, that is, we
compute ad.(v),v € My:

33



34 CHAPTER 3. EXAMPLES OF COMPUTATION

ade(e?) =0,
ade(ef) =eh,
ade(eh) = —2¢?%
ad(f2) = 2fh—2f,
< ado(fh) = —2ef + h%+2h,
ad.(h?) = —4eh — 4e,
ade(e) =0,
ade(f) =h,
ade(h) —2e,
(ade(1) =0

Next we consider the vector space Imad, |4, as a subspace of Ay and compute the ma-
trix (3.1) of the map ad. |4, by decomposing elements ad.(v),v € My into columns of
coefficients in front of the corresponding basis monomials:

20 0 00 0 0 0 -2 0 0
ef1O 0 00 O -2 0 0 0 O
eh|]O 0O 00 -4 0 0 0 1 O
10 0 00 0O 0O O 0O 0 O
fhlO 0O OO O O 2 0 0 O
10 0 00 0 1 0 0 0 0 (3.1)
el0 200 -4 0 0 0 0 O
f10 06 00 0 0 -2 0 0 0
hl10 0 1.0 0 2 0 0 0 0
1/0 0 OO O O O 0 0 O
1 h f e h® fh f* eh ef €2

To find the kernel of the operator ad. we compute the Hermite form of matrix (3.1):
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01000 0 0 0 5 0
00100 0 0 0 0 0
00001 0 0 0 —1 0
00000 0O 0O 0 0 0
00000 1 0 0 0 0
00000 0 1 0 0 0
00000 0O 0O 1 0 0
00000 0O 0O 0 0 0
00000 0 0 0 0 0
1 h f e h?® fh f* eh ef ¢

Therefore the kernel of matrix (3.1) has the following basis:

( \

o

N[

o O O O O O o o o o =
o O O O O o o = o o o

_ O O O O O O o o o o

o = O O O O ke O O

\ J

Thus, {1, e,—ih+ 1h* +ef, 62} is a vector space basis of Cen(e, As).

Next we compute Cen(f, Cen(e, . Ay)). We proceed, as before, by computing images of basis
vectors:
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We choose monomials eh,e, h to be the basis of this image space. Then the operator
ady |cen(e,45): Cen(e, Ay) — (eh, e, h)y has the following matrix:

eh |0 O 0 -2
0 0 0 —2
(3.2)
h |0 —1 0 0
1 e —éh + ih2 +ef e?
The Hermite form of matrix (3.2) is:
0 1 0 0
00 0 1
0 0 0 0
1 e —ith+in2+ef €

Hence, the kernel of matrix (3.2) has the following basis:

( )

S = O O

o o o =

\ V

Thus, {1,—2h + 1h® + ef} is a basis of Cen(f, Cen(e, As)).
Finally:

adh(l) = U,
adp(—3h+ 3h* +ef) =0.

Result.
Z5(U(sly)) = Cen(h, Cen(f, Cen(e, As))) = <1, —%h + i}ﬁ + ef>

k
Remark 3.1. From general theory (cf. chapter 5) it is known that over a field of charac-
teristic 0 the center of U(sly) is generated by a single element of degree 2. Thus we have
computed already essentially the whole center of this algebra. Computing Z,(U(sls)) for
d > 2 over this field we can only find linear combinations of powers of already found central
element of degree 2.



3.1.

ENVELOPING ALGEBRA OF SL, 37

With the use of SINGULAR and our library the center of U(sly) can be computed as follows:

> // definitions of some non-commutative algebra
> LIB "ncalg.lib"; // for makeUsl(l, p)

>

> // our library

> LIB "center.lib";

>

> int d = 2; // Upper degree bound of the center polynomials
> int p = 0; // The characteristic of the ground field
>

> // Let us set U(sl2(Q)) be our current algebra
> def A = makeUsl(2, p); // U(sly) over F, or Q if p==0
>

> setring(A); A;

//  characteristic : 0

//  number of vars : 3

// block 1 : ordering dp

// ! names efh

// block 2 : ordering C

//  noncommutative relations:

// fe=ef-h

// he=eh+2e

// hf=fh-2f

>

> // basically Z(Ay) can be computed as follows:
>

> // Set of all variables of the current algebra
> ideal X = variablesSorted(); X;

X[11=h

X[2]=f

X[3]=e

> // Compute the PBW Basis of Ajy:

> ideal V = PBW_maxDeg(d); V;

V[il=e

v[2]=f

V[3]=h

V[4]=h2

V[5]=fh

Viel=f2

V[7]=eh

V[8]=ef

V[9]=e2

> // Apply the CENTRALIZE_SET algorithm:

> ideal Z1 = centralizeSet(X, V);

> Z1;

Z1[1]=ef+1/4h2-1/2h

\4

// check whether elements of Z1:
inCenter(Z1); // 1 if they are in the center:

// One can also use a shortcut function (it does the same thing):
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> ideal Z2 = centerVS(d); Z2;
Z2[1]=ef+1/4h2-1/2h

> inCenter (Z2);

1

Conclusions 3.2.

0) Since the ground field k belongs to the center of any k-algebra we will omit the unit
generator in PBW bases and results.

1) Since all matrices are sparse, we can trivially optimize some cases:
1.1) We can exclude columns of zeroes, that is, we take the corresponding basis
vector into the output.
1.2) In the case when there is only one non-zero coefficient in a row we throw away

a basis vector corresponding to that coefficient.

2) We can decompose systems (matrices) into the smaller ones, which can be processed
independently.

3.2 Enveloping algebra of si;

Due to sections 1.3.5 and 1.4, the enveloping algebra U(gl,,) is given by:
k <€ij> I<i,j<n ‘ €ij * €] = €€ + 5jkeil - 5liekj> .

A vector space basis of Z5(U(gl;)) can be computed as follows:

Cen(egg, CGI’I(@gQ, Cen(egl, Cen(e23, CGI’I(‘SQQ, Cen(e21, Cen(elg, Cen(612, Cen(eu, Ag)))))))))

In what follows we compute “by hands” only Cen(e;y, As).

As before we need PBW base of Ay, but this time we do not include 1 into
it (see conclusions 3.2). Therefore M, consists of the following monomials:
€33, €32, €31, €23, €22, €21, €13, €12, €11, 6%3, €32€33, €§2> €31€33, €31€32, 631, €23€33, €23€32, €23€31, 6%3,
€22€33, €22€32, €22€31, €22€23, 6327 €21€33, €21€32, €21€31, €21€23, €21€22, 6317 €13€33, €13€32, €13€31,
€13€23, €13€22, €13€21, 6%3, €12€33, €12€32, €12€31, €12€23, €12€22, €12€21, €12€13, 6%2, €11€33, €11€32,
€11€31, €11€23, €11€22, €11€21, €11€13, €11€12, 6%1.

First, we compute the images {ad.,,(v) : v € My} as follows:

ade,, (e33) =0, ade,, (e31) = —ean,
adey, (e32) =0, ade,, (€23) =0,
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) (adeu(egl) = _26317
adeu(622) =0, ad611(613633) = €13€33,
ade,, (€21) = —Ca1, ade,, (e13€32) = eizeso,
ade,, (e13) = €13, ade,, (e13e31) =0,
ade,, (€12) = €12, ade,, (e13€23) = e1zeas,
adm(ell) =0, ad611(613622) = €13€22,
ade,, (€33) =0, ade,, (€13€21) =0,
ad,, (es2e33) =0, ade,, (€2,) = 2¢%,,
ad611(€§2> =0, ade,, (€12€33) = e12€33,
ade,, (ez1€33) = —ezess, ade,, (e12€32) = eqze3,
ade,, (es1€32) = —esies0, ade,, (e12€31) =0,
ade,, (€3;) = —2¢3;, ade,, (e1223) = e12€23,
ade,, (e23€33) =0, ade,, (e12€22) = e1€90,
ade,, (e2sez2) =0, ade,, (e12e21) =0,
ade,, (ezsea1) = —exe, adey, (e12e13) = 2epzens,
ade,, (€3;) =0, ad,, (€2,) = 2¢3,,
ade,, (ex0e33) =0, ade,, (e11e33) =0,
ade,, (ex0€32) =0, ade,, (e11€32) =0,
ade,, (e22€31) = —eases1, ade,, (e11€31) = —erresq,
ade,, (e22€23) =10, ade,, (e11€03) =0,
ade,, (€3,) =0, ade,, (e11€22) =0,
ade,, (e21€33) = —eaess, ade,, (€11€21) = —eq€a1,
ade,, (e21€30) = —eanes, ade,, (e11€13) = eniens,
ade,, (ez1€31) = —2eaie31, ade,, (e11€12) = eqe1o,
ade,, (eg1€93) = —ez1€23, Lad,,, (e},) =0.

\ade11(€21€22) = —€21€29,

Remark 3.3. Observer that every monomial appears in the previous images at most once.
Namely, ade,, m = a,, - m,Vm € M, for some o, € k. This implies that if m € M,
commutes with eq; (that is, « = 0), then m gives rise to a column of zeroes in the matrix of
the map ad.,, and because of conclusions 3.2 we can take m directly into the resulting vector
space basis, otherwise if the image of m is non-zero (that is, a # 0), it gives rise to a row
with a single non-zero element in the matrix of the map ad,,, and because of conclusions 3.2
we can simply throw it away. This observation gives rise to the definition of Cartan
elements (definition 5.5) and further optimization (cf. procedure VARIABLESSORTED in
center.lib).
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Thus, monomials from M, commuting with e;; constitute a basis of Cen(ey,.As):

_ 2 2 2
Cen(€11> «42) = (6337 €32, €23, €22, €11, €33, €32€33, €39, €23€33, €23€32, €53, €22€33, €22€32,
2 2
€922€23, €59, €13€31, €13€21, €12€31, €12€21, €11€33, €11€32, €11€23, €11€22, 611>]k-
We proceed further with SINGULAR and our library:

> // definitions of some non-commutative algebra

> LIB "ncalg.lib"; // for makeUgl(n, p)

>

> // our library

> LIB "center.lib";

>

> int d = 2; // Upper degree bound of the center polynomials
> int p = 0; // The characteristic of the ground field
>

> // Let us set U(gl,(Q)) to be our current algebra:

> def A = makeUgl(2, p); // U(gly) over F, or Q if p==0
>

> setring(A); A

// characteristic : 0
// number of vars : 9

// block 1 : ordering dp

// ! names el 1le. 1 2e.1.3e.2.1e.2.2
e 2.3 e_3.1e.3.2e.3.3

// block 2 : ordering C

//  noncommutative relations:

// e_1_ 2e_1_1=e_1_1%e_1_2-e_1_2
// e_1_3e_1_1=e_1_1*%e_1_3-e_1_3
// e_2_le_1_1=e_1_1%e_2_1+e_2_1

// e_3_le_1_1=e_1_1%e_3_1+e_3_1

// e_2_le_1_2=e_1_2*e_2_l-e_1_1+e_2_2
// e_2_2e_1_2=e_1_2%e_2_2-e_1_2

// e_2_3e_1_2=e_1_2%e_2_3-e_1_3

// e_3_le_1_2=e_1_2%e_3_1+e_3_2

// e_2_le_1_3=e_1_3%e_2_1+e_2_3

// e_3_le_1_3=e_1_3*e_3_l1l-e_1_1+e_3_3
// e_3_2e_1_3=e_1_3%e_3_2-e_1_2

// e_3_3e_1_3=e_1_3%e_3_3-e_1_3

// e_2_2e_2_1=e_2_1xe_2_2+e_2_1

// e_3_2e_2_1=e_2_1xe_3_2+e_3_1

// e_2_3e_2_2=e_2_2%e_2_3-e_2_3

// e_3_2e_2_2=e_2_2%e_3_2+e_3_2

// e_3_le_2_3=e_2_3xe_3_1-e_2_1

// e_3_2e_2_3=e_2_3%e_3_2-e_2_2+e_3_3
// e_3_3e_2_3=e_2_3%e_3_3-e_2_3

// e_3_3e_3_1=e_3_1*e_3_3+e_3_1

// e_3_3e_3_2=e_3_2%e_3_3+e_3_2

>

> // basically Z(A;) can be computed as follows:
> // Set of all variables of the current algebra
> ideal X = e_1_1; X;
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X[1]l=e_1_1

> // Compute the PBW Basis of Ay
> ideal V = PBW_maxDeg(d); V;
(an ideal of all 54 PBW monomials)
> // Apply the CENTRALIZESET algorithm:
> ideal Y = centralizeSet(X, V); Y; // note that we got the same result

Y[1]=e_1_1
Y[2]=e_2_2
Y[3]=e_2_3
Y[4]=e_3_2
Y[5]=e_3_3
Y[6]=e_3_3"2

Y[7]=e_3_2%e_3_3

Y[8]=e_3_2"2

Y[9]=e_2_3%*e_3_3

Y[10]=e_2_3%e_3_2

Y[11]=e_2_3"2
Y[12]=e_2_2x*e
Y[13]=e_2_2x%e
Y[14]=e_2_2%*e
Y[15]=e_2_2"2
Y[16]=e_1_3x*e
Y[17]=e_1_3x*e
Y[18]=e_1_2x%e
Y[19]=e_1_2%*e
Y[20]=e_1_1x*e
Y[21]=e_1_1x*e
Y[22]=e_1_1xe
Y[23]=e_1_1x*e
Y[24]=e_1_1"2

> // check whether elements of Y are in the centralizer of X
> inCentralizer( Y, X );

1 // Yes! They are! We were right!

>

>

// Let’s compute the basis of Z(U(gly)) N As:
> ideal Z = centerVS(d); Z;
Z[1l=e_1_1+e_2_2+e_3_3
Z[2]=-e_1_2%e_2_1+e_1_1*e_2_2-e_1_3*e_3_1-e_2_3*e_3_2+e_1_1%e_3_3+
e_2_2xe_3_3+2%e_1_1+e_2_2
Z[3]=e_1_1"2+2%e_1_2%e_2_1+e_2_2"2+2xe_1_3%e_3_1+2%e_2_3*e_3_2+e_3_3"2

_3_
_3_
_2_

_3_
_2_
_3_
_2_
_3_
_3_
_2

_2_

-4xe_1_1-2%e_2_2

> inCenter(Z
1

Result. From the previous computations we conclude:

)3

3
2
3

1
1
1
1
3
2
3
2
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Z5(U(gls)) = (1, e11 + e + €33, —€12€91 + €11€20 — €13€31 — €23€32 + €11€33 + €22€33 + 2€11 +

2 2 2
622,611-+'2612621'+'622‘+'2613631~+'2623€32-+-633 —4eq; — 2622>k.
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Chapter 4

Subalgebra reduction

In this chapter we consider a GR-Algebra A and discuss possible approaches to the com-
putation of reduced subalgebra bases of vector space bases of Z4(.A) and Cen(F, Ay).

We fix the standard filtration of A by degree {A4;}.

4.1 Introduction

We already know how to compute a vector space basis of Cen(F,.4,) but the whole cen-
tralizer itself is a subalgebra of A, this means, in particular, that besides computing re-
duced subalgebra generators of it, we also compute linear combinations of their prod-
ucts. For example the vector space basis of Z(U(gl;)) computed in section 3.1 contains
the elements e%l + 2e19€91 + 632 + 2e13e31 + 2e93e30 + e§3 — 4eq1 — 2e99 which is equal to
(e11 + ean + €33)% + 2(e11 + €22 + €33).

In general, it is not so easy to compute a reduced subalgebra base for an algebra generated
by an arbitrary finite set of elements. Computation of a reduced subalgebra basis is a hard
computational problem even in a commutative case. Resulting bases may sometimes fail
to be finite.

For the general method for the computation of canonical subalgebra bases in the non-
commutative case one may see |24, sec. 5.8]. This subject is far aside from our work, and
we are not going to describe it in details here. Instead, we propose two approaches for
the computation of reduced subalgebra bases for the center and centralizers which avoid
canonical subalgebra reduction.

4.2 Iterative approach

Recall that a set of polynomials P is autoreduced if all f € P are subalgebra irreducible
with respect to P\ {f}.

43
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We restrict ourselves to the computation of an autoreduced subalgebra base of Cen(F, Ay).

We can omit the computation of canonical subalgebra bases since instead of performing
general subalgebra reduction of a vector space basis of Z;(.A) or Cen(F, A;) we can pro-
ceed by consequently computing Z;(A) (resp., Cen(F, A4;)), for 1 < i < d simultaneously
removing from the PBW base (for the next step) products of leading monomials of already
computed elements (cf. algorithms 4.1 and 4.2).

ASSUME: A is a GR-Algebra with the filtration {4;} by degree. The ordering on A is
degree-compatible.
INPUT: integer d > 0, non-empty finite set F'.
OUTPUT: autoreduced subalgebra basis of Cen(F,.A4,)
let M = ()
fori=1tor=ddo
let V' be a PBW basis of A; without leading monomials of products of elements from
M;
let S = CENTRALIZESET(F,V); // using algorithm 2.3
let S = INTERRED(S); // using commutative interreduction

let M =MUS;
end for
RETURN: M,

Algorithm 4.1: CENTRALIZERRED(set F', integer d)

Note that since the ordering on A is degree compatible the leading monomials of elements
computed on the step ¢ are always of degree ¢ and these elements are linearly independent.
In the interreduction we cannot obtain polynomials of lower degree (since the ordering is
degree compatible it would mean that we have found an element of lower degree having
unknown previously leading monomial, which is impossible). Thus there will be performed
no polynomial multiplication during the interreduction. Therefore we can use the standard
commutative interreduction.

After the interreduction we get another basis of the same vector space with the property
that every leading monomial occurs in a single element.

Obviously this interreduction terminates. Thus the algorithm 4.1 terminates.

The result of this algorithm is a set of elements from Cen(F,.4,) such that every leading
monomial occurs in a single element and no element contains products of leading monomials
of other elements, that is, this set is autoreduced. Moreover, it generates Cen(F, . 4,) by
construction.

Thus the algorithm 4.1 is correct. Hence, we obtain the following proposition:

Proposition 4.1. Algorithm 4.1 terminates and is correct.

Now it is easy to give an algorithm 4.2 for the computation of subalgebra basis of the
center of an algebra up to a given degree.
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ASSUME: current algebra A is a filteredk-algebra generated by variables: zq,...,x,
with a filtration {A;}

INPUT: integer d > 0

OUTPUT: subalgebra basis of Z4(A) = Z(A) N Ay

RETURN: CENTRALIZERRED({z1,...,2,},A4); // using algorithm 4.1

Algorithm 4.2: CENTERRED (integer d)

Remark 4.2. The only difference between the computation of canonical subalgebra base
of Z;(A) and Cen(F,.A,) is the fact that in the first case we can, a priori, use standard
commutative canonical subalgebra base computation, while it is clearly not always possible
in the second case.

4.3 Alternative approach

Let F':={fi,..., fr} C Abe an autoreduced subalgebra basis of a subalgebra B of A (that
is, F' generates B and is autoreduced). Then a vector space basis of By := BN A, consists
of linear combinations of the products of elements from F'N Ay Let G = {g1,...,gx} be
a vector space basis of B, then we can express all f; € F'N Ay as linear combinations of
g; over k!

Furthermore, after reducing common leading monomials (e.g., using the interreduction
algorithm 4.3) we obtain a basis G’ of B, such that for all different ¢;,¢9;, € G’ holds:
Im(g;) # lm(g;). Clearly, leading monomial of any linear combination of elements from G’
belongs to L(G') := {lm(g) |g € G’}. Thus L(F N A;) C L(G). Clearly, all monomials
L(G)\ L(F N A;) are leading monomials of products of elements from L(F N .A,). This is
exactly the idea behind our “subalgebra reduction” algorithm 4.4.

INPUT: finite set S = {f1,..., fx} of linearly independent polynomials.
OUTPUT: interreduced set of polynomials g1, ..., gr with (fi,..., fi), = (g1, -+, Gr)y
let M =S,
if M #( then
while Jp,q € M :lm(p) = Im(q) do
let M = M\ {p}:
let p=p— (Ic(p)/lc(q)) *q; // reduce common leading monomial
let M = M U {p};
end while
end if
RETURN: M;

Algorithm 4.3: INTERRED(set S)

Based on subalgebra reduction algorithm 4.4 we can also perform the subalgebra reduction
of a polynomial p € A with respect to a subalgebra generated by the vector space B,.
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INPUT: vector space basis G = {g1, ..., gx} of some B,
OUTPUT: F<4
let M = G,
let F' = ();
while M #( do
for allm e M do
reduce from m all monomial which are leading monomials of products of elements
from F' by subtracting a corresponding product;
end for
let M = INTERRED(M); // using algorithm 4.3
choose a minimal element g from M;
let M = M\ {g};
let F'=FUg;
end while
RETURN: F;

Algorithm 4.4: SA_REDUCE(set G)

We reduce those monomials from p which are leading monomials of products of elements
from a reduced subalgebra base of By (e.g., computed by algorithm 4.4) by subtracting
corresponding products. This gives us algorithm 4.5.

INPUT: polynomial p and vector space basis G = {g1, ..., gr} of By
OUTPUT: polynomial ¢ which is subalgebra reduction of p w.r.t. B.
let F'=SA REDUCE(G); // using algorithm 4.4
let ¢ = p;
reduce from ¢ all monomial which are leading monomials of products of elements from
F' by subtracting corresponding products;
RETURN: g¢;

Algorithm 4.5: SA_ POLY REDUCE(poly p, set G)

Clearly, algorithms 4.3, 4.4 and 4.5 terminate and are correct due to the discussion above.

Thus, we can compute reduced subalgebra bases of Z;(A) and Cen(X,.4,) by applying
algorithm 4.4 to a corresponding vector space basis..




Chapter 5

Small Atlas of Important Algebras

Using our methods we can compute central elements only up to a given degree. Thus for
the computation of the whole center we need to know the number of generators of the
center or/and theirs degrees. In this chapter we list some known results which provide us
with this information in many cases. Moreover, we will use this knowledge in section 8.4
for estimating the vector space dimension of the center.

5.1 Enveloping algebras of Lie algebras

In this section we are interested only in the center Z(U) of an enveloping algebra U = U(g)
of a Lie algebra g. By definition, Z consists of all elements z € U which commute with all
elements of U. These elements are called central elements or Casimir operators.

5.1.1 The center of U(gl,)

Due to [49, Chapter IX] all Casimir operators of U(gl,,(C)) can be found as follows:
Recall that gl,, has the standard basis consisting of the unit matrices e;;, 7,7 =1,...,n.

First of all, one can immediately see that ¢; = e;1 +. ..+ €,, is a Casimir operator. In this
case ¢; € gl, and the operator ¢; is easily shown to be the only (up to a multiple factor)
Casimir operator in the algebra gl itself.

Concerning the other Casimir operators, we first assume that U = U(gl,,) contains a system
of elements x;;, 4,7 = 1,...,n, which transform like the elements e;;:

[%’j, ﬂﬁkl] = 0jkL4 — 52‘1ij-

It is then obvious that the sum of the diagonal elements z;; is a Casimir operator in U.
Furthermore, let x;;,v;; 4,7 = 1,...,n be two such systems. Set z;; = >, Tixyg;. It is
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not difficult to see that z;; again form a system of this type, and we can thus construct a
family of such systems, starting from the basis system e;;:

6(m):€ Cicin w2 Cs
ij itg Cigig imJ*

Contracting over the indices ¢, 7, we get a family of Casimir operators

Cn= ) CirigCigig * ** Cipmis - (5.1)

Thus, we obtain the following proposition:

Proposition 5.1. The center Z(U(gl,,(C))) is generated by n elements cy, . .., ¢, of degrees
1,2,...,n.

5.1.2 The center of the enveloping algebra of a semisimple complex
Lie algebra

Let g be a semisimple complex Lie algebra and U = U(g) its universal enveloping algebra.
We will consider a fixed Cartan subalgebra H of g and denote by r its dimension (it is also
the rank of g and it coincides with the number of positive roots in the root system of g).

The center Z = Z(U) of U is identified with the algebra I(g) of all polynomials over the
algebra g which are invariant under the adjoint representation (cf. [6]). By Chevalley’s
theorem (cf. [49, Chapter XVII, §125, Theorem 6|) we may also identify Z with the algebra
[(H) of all polynomials over H invariant under the Weyl group. Both these correspondences
are linear but not multiplicative.

According to another theorem of Chevalley (cf. [49, Chapter XV, §107, Theorem 19]),
the algebra [(H) has exactly r independent generators. All generators may be assumed
homogeneous. Let pq,...,p, be the total degrees of these generators, then according to
Chevalley (cf. [5]) p1---p, = w, where w is the number of elements in the Weyl group.
In other words, the product of degrees of all generators is equal to the order of the Weyl
group. The numbers p; are intimately related to the most important topological properties
of the corresponding Lie groups (Betti numbers, Poincaré polynomial).

The following important theorem may be found in [3, Ch.VIII, §8, no.3, Corollary 1 and
1n0.5, Theorem 2|:

Theorem 5.2 (Chevalley). Let g be a complex simple Lie algebra, r = rank(g), my the
exponents of g. Then one can choose elements I, € Z,, +1(U(g)), 1 <k < r such that
ZU(g)) =C|L,..., 1] is a polynomial algebra in r generators.

In the following table we collect some information about all known (cf. theorem 1.48)
simple complex Lie algebras:
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Root system h Lie algebra | Rank | Dimension DP1;-- 3D
Ar>1 (r+1) sl r r(r+2) 2. (r+1)
B,,r>2 2r §509,41 r r(2r+1) 2:4:...:2r
C.,r>=3 2r sp,. r r(2r+1) 2;4;...;2r
Dyyr>=4 | 2(r—1) 509, r r(2r —1) 2;4;..52(r = 1)

Gy 6 o p 14 2,6

Fy 12 f4 4 52 2:6;8;12

Eg 12 €6 6 78 2:5;6;8;9;12

E; 18 e7 7 133 2;6;8;10;12;14;18
Es 30 eg 8 248 2;6;12; 14; 18;20; 24; 30

Remark 5.3. In the previous table the number i denotes the Coxeter number of the corre-
sponding root system, computed by the formula A = (dim — rank)/ rank.

Recall that the Coxeter number is the order of a Coxeter element (the product of the
simple reflections, taken in any order) in the Weyl group of the corresponding root system.

5.1.3 The center of the enveloping algebra of a Lie algebra over a
field of prime characteristic

Notice that our algorithms do not depend on the base field. We can use our library to
compute the center and centralizers over any field supported by SINGULAR.

In this section we study the dependence of the center on the base field.

Let A be a GR-Algebra generated by x1,xs, ..., 2, over a field k such that all commuta-
tors [x;, x;| are linear combinations of variables. For example, the enveloping algebras of
finite dimensional Lie algebras and their tensor products over a field are of this kind by
construction (see section 1.3). Below we consider only algebras of this kind.

Let us denote V = (x,...,x,), the vector space of linear combinations of variables.

Because of the decomposition of commutators [z;, z;] into linear combinations of variables,
for every variable z; we can compute the matrix A®) € Mat,,, (k) of the linear map
ad,, | V : V — V, as follows:

n

ady, ;= ) (A @,

k=1

1<i,j<n. (5.2)

In fact, this gives us the adjoint representation of A.
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Example 5.4. Let us consider the U(sly) as in 3.1. We fix the basis {e, f,h} of V. Then
we have the following associated matrices:

2 0 0 00 —1 0 0 0
AW =119 20 |,AD=100 0 |[,A49=] 0 0 1
0 0 0 02 0 —2.0 0

Definition 5.5. We call an element f € A a Cartan element if there exist constants
C; € k such that adyz; = C; - x;,1 < j < n.

Remark 5.6. If a variable ; is a Cartan element then its associated matrix A®) is diagonal.

Notice that, the definition of a Cartan element is equivalent to the following one:

Vg € Ada, ek :adfg = a,g.
That is, the linear map between infinite dimensional vector spaces ad; : A — A has a
diagonal matrix.
Example 5.7. Example 5.4 shows that the variable h is a Cartan element in U(sly).
Example 5.8. Due to section 3.2 the variable e;; is a Cartan element in U(gl;).

Lemma 5.9. Let © € A be any variable, let A: =A@ . Then for all m € N and variables

z,, holds: ) )
@ z) =3 (7]’;) : (Z(A’“)w : x> 5 g™k (5.3)

k=1 =1

Proof. Induction on m.
|

Since in a field of characteristic p holds (i) =0, forall 1 < k < p—1 we obtain the
following corollary from lemma 5.9:

Corollary 5.10. Let the ground field be characteristic p, then

n

[, 2] = (AP)iy - s (5.4)

i=1

Moreover, since the associated matrix of the Cartan element A is diagonal, we obtain
(A(h))p = A™_ Hence, [h?,x,] = [h,z,] for all variables z,. In particular [h? — h,x,] = 0.
Thus we obtain the following proposition:

Proposition 5.11. Let A be an algebra as above over a field of characteristic p. Let h be
a Cartan element in A, then h» —h € Z(A).
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Now, we list some classical results about Lie algebras of algebraic groups over algebraically
closed field of characteristic p > 0.

As we have already seen, in characteristic 0 the center Z(g) of U(g) is comparatively
small: it is isomorphic to the Weyl group of invariants on U(H), a polynomial algebra in
r variables. But in characteristic p the center is much larger.

It is easy to see that for each € g, the element 2 — zP) of U(g) lies in Z(g). Methods of
Zassenhaus [48] (in the more general context of arbitrary modular Lie algebras) show that
these elements generate the algebra isomorphic to the polynomial algebra in n indetermi-
nates, where n = dim g. This subalgebra of Z(g) is denoted O and called the p-center.
Moreover, U(g) is the free O-module of rank p".

A precise description of Z(g) relative to O is given by Veldkamp [45]. This description
involves the Weyl group invariants (generators of the center in characteristic 0), but requires
some restrictions on p.

Veldkamp considers the center Z of the universal enveloping algebra U of a Lie algebra
g, which is the Lie algebra of a semisimple algebraic group G over a field of characteristic
p > 0.

Let Hy, ..., Hyand X,,a € ® be a basis of g derived from a Chevalley basis in characteristic

0 (cf. 1.3.4). Let £ be the subspace of U spanned by all p’-th powers (in &) of elements of
g,1=0,1,2,..,and M = LN Z. Let O be the subalgebra of Z generated by 1 and M.

From the binomial formula it follows that ad,» = (ad;)? (cf. [48, formula (1) on p.4]).
Therefore, g has a structure of restricted Lie algebra such that

HP = H, XP =y,

For X € g,adx» = (adx)? = adx». It follows that the elements H’ — H; and X? belong
to M. Moreover, M has a basis over k consisting of all monomials of positive total
degree in HY — H; and XP. From the Poincaré-Birkhoff-Witt theorem one deduces that
O=k[H —H;,X?|1<i<l,a€c ®|since H'— H; and X? are algebraically independent
over k.

The following theorem (cf. |45, theorem (3.1)]) describes the structure of Z over O:

Theorem 5.12. Let G, g and U be as above. Let h be the Cozeter number of G and p =
char(k) > h. Let I,..., 1. denote algebraically independent generators of the invariants
in U under the adjoint action of G (roughly speaking, they are generators of the center in
characteristic 0). Then Z(U(g)) = O[11,...,1,], and the products I* - - - T’ with 0 < j; <
p form a basis of Z(U(g)) as an O-module.

5.2 A class of algebras similar to U(sly)

This example is taken from [43] and [24]. The author studies a class of algebras which are
similar to the enveloping algebra of sl;(C) over the complex numbers C. He considers the
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Lie algebra sly over C to be generated by x,y, h with the Lie product
[z,y] =h, [hz|=z [hy]=—y.

Then the enveloping algebra of sl, is given by

S=C(h,z,y|yxx=ay—h,xxh=hx—z,yxh=hy+y).

As one can see from this representation, we need not take a degree-compatible ordering as
ordering. So an inverse lexicographical ordering is suitable, which suggests, that S could
be considered as some Ore extension. It is indeed shown by Smith, that

S=UD)y,0,0],

where

1. U(b) denotes the enveloping algebra of the 2-dimensional non-abelian Lie algebra b,
generated by h and = with the commutator relation [h,z] = z,

2. o is defined by o(x) =z and o(h) =h — 1
3. ¢ is defined by 6(x) = h and 6(h) =0

Now Smith observes that by this representation of S, the definition of §(x) can be deliber-
ately replaced by any univariate polynomial in i without losing the property of being an
Ore extension: §(z) = f(h).

The resulting algebra, denoted by S = U(sly, f), is given by

C(h,x,y|lyxx=ay— f(h),z*xh=hx—z,yxh=hy+y).

Now Smith observes, that the center of R is generated by a unique polynomial which is
determined by f
C=xxy+yxx+gh) € Z(R)

In the following example we take f = 3h(h + 1) from [43, example 2.4]. We compute
CeZ(S)as C=2xy+h—h:

> ring Usl2f = 0,(x,y,h),1lp;

> matrix D[3][3]=0;

> poly f = 3xhx(h+1)/2; // U(sl_2, f)

// poly f = h; // one can use identity for the standard U(sly)

> D[1,2] = -f;

> D[1,3] = x;

> D[2,3] = -y;

> ncalgebra(1,D);
> Usl2f;
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// characteristic : 0
// number of vars : 3

// block 1 : ordering lp
// ! names xyh
// block 2 : ordering C

//  noncommutative relations:
// yx=xy-3/2h2-3/2h

// hx=xh+x

// hy=yh-y

> LIB "center.lib";

> ideal Z = centerVS(3); Z;
Z[1]1=2xy+h3-h

> inCenter( Z );

1

5.3 Quantum enveloping algebras

The invention of quantum groups is one of the outstanding achievements of the mathe-
matical physics and mathematics in the late twentieth century. Quantum groups arose in
the work of L. D. Faddeev and the Leningrad school on the inverse scattering method in
order to solve integrable models. The algebra U, (sl;) appeared first in 1981 in a paper by
P. P. Kulish and N. Yu. Reshetikhin on the study of integrable XYZ models with highest
spin. Later its Hopf algebra structure was discovered. A major event was the discovery
by V. G. Drinfeld and M. Jimbo of a class of Hopf algebras which can be considered as
one-parameter deformations of enveloping algebras of semisimple complex Lie algebras.
There Hopt algebras are called Drinfeld-Jimbo algebras.

A striking feature of quantum group theory is the surprising connections with many
branches of mathematics and physics. These are links with mathematical fields such as
Lie groups, Lie algebras and their representations, special functions, knot theory, low-
dimensional topology, operator algebras, noncommutative geometry and combinatorics.
On the physical side there are interrelations with the quantum inverse scattering method,
the theory of integrable models, elementary particle physics, conformal and quantum field
theories and others. It is expected that quantum groups will lead to a deeper understanding
of the concept of symmetry in physics.

5.3.1 U(s03)

In this subsection we closely follow [18].

The algebra U; (s0,,) is a non-standard g-deformation of the enveloping algebra U(so,,) of
the Lie algebra so,,.

It is known that the Fairlie-Odesskii algebra U] (so3) appears as algebra of observables
in quantum gravity in (241)-dimensional de Sitter space with space being torus. The
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parameter ¢ is related to the Plank constant and the curvature of the de Sitter space. Thus
it is important, from the point of view of physics, to study the structure ( in particular,
the center) of this algebra.

The algebra L{é(sog) is an associative unital algebra generated by the elements I, I5, I3
which satisfy the following relations:

¢PLI, — ¢ PR =13, LI —q PR =1, ¢PLL—q LI =1,

where g # 0,+£1, is a complex number called deformation parameter. In the limit ¢ — 1,
the algebra U, (so03) reduces to the algebra U(so3). It is easy to check that for any value of
q the algebra U (s03) has the following central element: C' = —¢"/?(q — ¢~ ') 1 LIs + qI} +
q I + qIZ%, which is the deformation of the Casimir element of the algebra U(so03).

Proposition 5.13. The element C' generates the center ofL{é(sog) when q is not a root of
1.

As in the case of quantum algebras (cf. [22, Chapter 6]) this algebra has additional central
elements if ¢ is a root of unity:

Let us fix ¢ to be a primitive root of 1 of order p > 2, that is, ¢? = 1,¢* # 1 for all
1 < p’ <p. Then the following elements are also central in U (s03):

Cp=2T,(I(¢ —q")/2), k=1,2,3,

where T,(z) is the p-th Chebyshev polynomial of the first kind.

Let us recall that the p-th Chebyshev polynomial of the first kind 7,(z) is uniquely
defined by T,(costl) = cos(pf). Its explicit form is given by:

Ty(x) =

N |3

1p/2]
(“D*p—k=1! o
kz:; 2R

where |p/2] is the integral part of p/2.

The elements C, C'y, C5 and Cj5 are algebraically dependent. Let us use the following element
0= (q+q 11— (q—q1)*C instead of C in the following proposition which is due to [18,
Prop. 2|

Proposition 5.14. Let q be a primitive root of unity of order p > 2. Then the algebraic
dependence between the central elements 0, Cy, Cy, C3 has the following form.:

o —qP2C1CyCs+ C3 + C24+ C24+2T,(0/2) —2=0, if p=2k + 1;

o —C 1003+ Ci4+C3+C3+2T,(9/2)+16T,2(9/2)+4(Tp/2(0/2)+1)(C1+Co+C5)+10 =
0, if p=4k;
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o —C\CyCs+C2+C24C2+2T,(0/2)—16T, 15(0/2)—4(T, j5(9/2) —1)(Cy +Co+C5)+10 =
0, if p = 4k + 2.

Conjecture 5.15. Let ¢ be a root of unity. Then the elements C, 4, Cy, C3 generate the
center of the algebra U (s03). All algebraic dependences among them follow from the
dependences described in proposition 5.14.

5.3.2 U, (sl)

The Hopf algebra U, (sl;) can be considered as a one-parameter deformation of the en-

veloping algebra U (sly). This algebra is the simplest example of the quantized enveloping

algebras U,(g). Following common terminology in physics, we call U,(sl2) a quantum
algebra.

Let ¢ be a fixed complex number such that ¢ # 0 and ¢* # 1. We denote by U,(sly) the

C-algebra generated by E, F, K, K~! subject to the following relations:

-1 -1 1 _ 2 1 9 K—-K!

KK =K K=1,KEK  =q¢EKFK  =q F[EF=——7F.

qa—q

Proposition 5.16. The quantum Casimir element

Kg'+ K™ Kq+ K¢t
q—_u)q = FE + q—_1q2
(¢—q™) (¢—q7)
lies in the center of the algebra Uy(sly). If q is not a root of unity, then the center of Uy, (slz)
is generated by C,,.

C,=FEF +

Proposition 5.17. Let g be a primitive p-th root of unity, with p > 3. Let p' = p if p is
odd and p' = p/2 if p is even. Then:

(i) The elements EV', F* | KP' | K™ belong to the center of Uy(sly).

(ii) The center of U,(sly) is generated by the elements B, FP' . K?' | K~ and the Casimir
element C,.

Note that in the case when ¢ is a root of unity, the algebraic dependence of central elements

of the algebra U(sly) is expressed (an in the case of U (s03)) in terms of Chebyshev
polynomials (cf. [1]).

5.4 Weyl algebras

In this section we closely follow [39] and [46].
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Abstract definition

Definition 5.18. Let F' be a field and let V' be an F-vector space with a basis {F;},., U
{Qi},c;, where I is some non-empty index set. Let 7" = T (V') be the tensor algebra(cf.
1.12) of V and let J be the two-sided ideal in T generated by elements P, ® Q; — Q; ® P, —
d;.j,4,j € I. Then the factor algebra T'/.J is the |I|-th Weyl algebra.

A more concrete definition

If the field F' has characteristic zero we have the following more concrete definition. Let
R := F[{Xi}ic1] be the polynomial ring over F in indeterminates X; labeled by i € I.
For any ¢ € I, let 0; denote the partial differential operator with respect to X;. Then the
|I|-th Weyl algebra is the set W of all differential operators of the form D = 3_, ., fa0"
where the summation variable « is a multi-index with |I| entries, n is the degree of D, and
fo € R. The algebra structure is defined by the usual operator multiplication, where the
coefficients f, € R are identified with the operators of left multiplication with them for
conciseness of notation. Since the derivative of a polynomial is again a polynomial, it is
clear that W is closed under the multiplication.

The equivalence of these definitions can be seen by replacing the generators (; with the
left multiplication by the indeterminates X;, the generators P; with the partial differen-
tial operators J;, and the tensor product with operator multiplication, and observing that
0,X; — X;0; = 0;;. If, however, the characteristic p of I is positive, the resulting homo-
morphism to W is not injective, since for example the expressions 97 and X" commute,
while P” and Q%" do not.

Remark 5.19. The first Weyl algebra is an example of a simple ring that is not a matrix ring
over a division ring. It is also a non-commutative example of a domain, and an example
of an Ore extension.

The n-th Weyl algebra W, is given by

Wn:]l{<x1,...,xn,D1,...,Dn|Dixi:xiDi+1,i:1,...,n>.

It is know (cf. [26, Example 1.3]) that if chark = 0 then its center is trivial: Z(W,) =Kk,
and if chark = p then we only get p-center: Z(W,) =k|[«,..., 22, DY ... DF].

) n’

5.5 Heisenberg algebras

This section is mainly due to [47, The Heisenberg Algebra| and [39].

In classical mechanics the state of a particle at a given time ¢ is determined by its position
vector q € R? and its momentum vector p € R3. Heisenberg’s crucial idea that lead to
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quantum mechanics was to take the components of these vectors to be operators on a
Hilbert space H, satisfying the commutation relations

[Qi7 Q]] = 07 [Pw P]] - 07 [PZ? Q]] - _Zhéi,j
fori,j =1,2,3.
One can think of the Heisenberg commutation relations as the defining relations for a

(2n + 1)-dimensional Lie algebra, so one can use the following definition:

Definition 5.20. The Heisenberg Lie algebra b, is the 2n + 1 dimensional real Lie
algebra with the basis elements

{P1>"'7Pn>Ql>"'aQnaC}
and the Lie bracket defined by

[Qian] = [Pi’Pj] = [QZ’C] = [ch] = [07 O] =0, [PZ,Q]] = (Si,jc

One can also use more abstract definition:

Definition 5.21. Let R be a commutative ring. Let M be a module over R freely generated
by sets {P},.;, {Qi},c; and an element C', where I is an index set.

Let us define [QZ,Q]] = [R, PJ] = [QZ,C] = [C, QZ] = [PZ,C] = [C, PZ] = [C, C] =
0,[P,Q,] = —[Qj, P = 6;;C for all i,j € I. This operation [-,-| extends by bilinear-
ity to the map M x M — M.

The module M together with this product is called a Heisenberg algebra. The element
C' is called the central element.

It is easy to see that the product [, -] also fulfills the Jacobi identity, so a Heisenberg
algebra is actually a Lie algebra of rank |I| + 1 (opposed to the rank of M as free module,
which is 2|7| 4 1) with one-dimensional center generated by C.

Heisenberg algebras arise in quantum mechanics with R = R, C and typically I = {1, 2, 3},
but also in the theory of vertex algebras with [ = Z.

In the case where R is a field, the Heisenberg algebra is related to a Weyl algebra: let U
be the enveloping algebra of M, then the factor algebra U/ (C' — 1) is isomorphic to the
|I|-th Weyl algebra over R.

Clearly, the enveloping algebra H,, of the Heisenberg Lie algebra with I = 1,...,n over a
field k is given by

Hy =k {(z1,.. ., xn,y1, - Yns b | i = zys +hyoi=1,... n) .

It is know (cf. [26]) that if chark = 0 then its center is almost trivial: Z(H,) = k[h], and
if chark = p then we additionally get p-center: Z(W,)) =k [h,af,... 28 y7 ... yF].
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Chapter 6

Commutative subalgebras

In this chapter we consider commutative subalgebras of a GR-Algebra A over an alge-
braically closed field k of characteristic 0. The treatment of this subject was inspired by
V.Levandovskyy.

Whenever we need a filtration we choose the standard filtration by degree.
Obviously, the center Z(.A) is a commutative subalgebra of A.

From the representation theory of enveloping algebras we recall some more commutative
subalgebras (cf. [6]):

e Cartan subalgebra H(A) = U(h) (if exists).
e if there exists Cartan subalgebra, we can construct a bigger subalgebra
CZ(A) = H(A) & Z(A),
which is also commutative.

e Gel’fand-Zetlin subalgebra I'(A) (cf. [8]).

If all these subalgebras exist then Z(A) C CZ(A) C T'(A). Moreover, in several cases, if
I'(A) exists, it is the maximal one (cf. [34]).

Unfortunately, the construction of Gel’fand-Zetlin subalgebra does not have yet a complete
algorithmic solution and is known only for a few cases.

In this chapter we show how to use SINGULAR to compute Gel'fand-Zetlin subalgebras and
check the following conjecture for some algebras with known Gel’fand-Zetlin subalgebras.

Conjecture 6.1. Let S = {g1,...,gr} be an autoreduced subalgebra base of I'(A). Let
us choose the greatest element g € S with respect to a degree-compatible ordering on A.
Then

['(A) = Cen(g, A).

We prove that conjecture 6.1 holds true for A = U(gl,).

59
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6.1 Gel’fand-Zetlin modules

Explicit formulas which effectively define all simple finite dimensional modules over the
groups of unimodular and orthogonal matrices were obtained by Gel'fand and Zetlin in
[11]. Using these formulas one can define and investigate big families of modules over the
corresponding Lie algebras. For example, using these formulas for the unimodular group,
Drozd, Futorny and Ovsienko constructed a large family of simple modules over g = gl,,(C)
in |8, 7]. Roughly speaking this is an n(n + 1)/2-parameter family of simple g-modules and
each module is presented in a convenient basis for computations.

Gel’fand-Zetlin modules are defined as U(g)-modules which can be decomposed into

a direct sum of finite-dimensional modules with respect to the so-called Gel’fand-Zetlin
subalgebra, which is a big commutative subalgebra in U(g).

It was shown in [34] that Gel’fand-Zetlin subalgebra is a maximal commutative subalgebra
in U(gl,). This is also the case for a quantum situation U,(gl,) (cf. [31]).

Roughly speaking, Gel’fand and Zetlin show that Gel'fand-Zetlin subalgebra has a simple
spectrum on all finite dimensional modules. Simple modules constructed in [8, 7| inherit
this property.

Further properties of Gel'fand-Zetlin modules were obtained in [28, 29, 32, 30, 34|. For
example, a huge family of Verma and generalized Verma modules were realized as Gel’fand-
Zetlin modules, which allows one to describe the structure of these modules.

There are many Gel’fand-Zetlin subalgebras, but all of them are built with the same recipe:
for an algebra A, find a sequence of inclusions

A(l) = A(2) — ...— A(n) = A

such that A(i + 1) has exactly one central generator more than A(:). Then take Cartan
elements for A(1) (one can define A(0) to be the Cartan subalgebra of A(1)) and add on
each step generators of the center of A(i), embedded under inclusions above.

Each sequence of inclusions gives rise to a different subalgebra; however the number of its
reduced generators is invariant.

In the following sections we will construct Gel'fand-Zetlin subalgebras for U(gl,,) and
U(sly,).

6.2 Gel’fand-Zetlin subalgebra of the enveloping algebra
of gl,
Let us denote by {e;;},1 < i,j < n the standard basis of U,, := U(gl,,), and Z, := Z(U,).

For m < n we consider U,, as a subalgebra in U,, by an inclusion U, < U, : €;; = ¢€;;,1 <
1,7 < m. Hence we obtain the following sequence of inclusions:

Up—=U;—...—=U,=gl,.
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Then the Gel’fand-Zetlin subalgebra I' in gl,, is a commutative algebra, generated by
the centers Zy,..., 72, C gl,.

Due to [49] or chapter 5 we know that Z,, is the polynomial algebra in m variables
{c"|i=1,...,m} given by:

¢ = E ClikoChoks " Ch;_1k;Ckiky -
1<k, ki <m

Hence the algebra I' is also the polynomial algebra in n(n + 1)/2 variables
{c"|1<i<m<n}.

Theorem 6.2 (Ovsienko). I' is a mazimal commutative subalgebra in U(gl,,).

Clearly H(U(gl,)) =kl[es | i=1,...,n], and CZ(U(gl,)) =k[ey, " | i=1,...,n].

Let us use SINGULAR to compute generators of I'(U(gl,,)) for some small n:

> LIB "center.lib";

> LIB "ncalg.lib";

> // trivial case:

> def GL1 = makeUgl(l, p); setring GL1; GL1; // U(gly) = Kle_1_1]
// characteristic : 0

//  number of vars : 1

// block 1 : ordering dp
// : names e_1_1
// block 2 : ordering C

// noncommutative relations:
> ideal Z = centerRed(1, 1); Z;

Z[1]=e_1_1

> ideal GZ = sa_reduce(Z); GZ;
GZ[1]=e_1_1

> centralizerRed(GZ[size(GZ)], 5);
_[1]l=e_1_1

>

> def GL2 = makeUgl(2, p); setring GL2; GL2; // U(gly)
// characteristic : 0
//  number of vars : 4

// block 1 : ordering dp
// ! names e_l_1e. 1. 2e.2.1e.2.2
// block 2 : ordering C

//  noncommutative relations:

// e_1 2e_1_1=e_1_1%e_1_2-e_1_2

// e_2_le_1_1=e_1_1%e_2_1+e_2_1

// e_2_le_1_2=e_1_2%e_2_1-e_1_1+e_2_2
// e_2 2e_1_2=e_1_2%e_2_2-e_1_2

// e_2 2e_2_1=e_2_1%e_2_2+e_2_1

> ideal Z = centerRed(2, 2); Z;
Z[1]l=e_1_1+e_2_2
Z[2]=e_1_2%e_2_1-e_1_1xe_2_2+e_2_2
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> ideal GZ = sa_reduce(imap(GL1, Z) + Z); GZ;
GZ[1]=e_2_2

GzZ[2]=e_1_1

GZ[3]=e_1_2%*e_2_1

> centralizerRed(GZ[size(GZ)], 5); // Cen(e_1_2*%e_2_1, U(gl_2)_5) == GZ!
_[1]=e_2_2

_[2]=e_1_1

_[3]=e_1_2%e_2_1

>

> def GL3 = makeUgl(3, p); setring GL3; GL3; // U(gls)
// characteristic : 0

//  number of vars : 9

// block 1 : ordering dp

// : names el le. 1 2e.13e. 2 1e.22e.23e.3_1
e_3_2e_3_3

// block 2 : ordering C

//  noncommutative relations:

// e_1 2e_1_1=e_1_1%e_1_2-e_1_2

// e_1_3e_1_1=e_1_1*e_1_3-e_1_3

// e_2_le_1_1=e_1_1%e_2_1+e_2_1

// e_3_le_1_1=e_1_1%e_3_1+e_3_1

// e_2_le_1_2=e_1_2%e_2_1-e_1_1+e_2_2
// e_2 2e_1_2=e_1_2%e_2_2-e_1_2

// e_2_3e_1_2=e_1_2*%e_2_3-e_1_3

// e_3_le_1_2=e_1_2%e_3_1+e_3_2

// e_2_le_1_3=e_1_3%e_2_1+e_2_3

// e_3_le_1_3=e_1_3%e_3_1-e_1_1+e_3_3
// e_3_2e_1_3=e_1_3*e_3_2-e_1_2

// e_3_3e_1_3=e_1_3%e_3_3-e_1_3

// e_2 2e_2_1=e_2_1%e_2_2+e_2_1

// e_3_2e_2_1=e_2_1%e_3_2+e_3_1

// e_2_3e_2_2=e_2_2%e_2_3-e_2_3

// e_3_2e_2_2=e_2_2%e_3_2+e_3_2

// e_3_le_2_3=e_2_3*%e_3_1-e_2_1

// e_3_2e_2_3=e_2_3%e_3_2-e_2_2+e_3_3
// e_3_3e_2_3=e_2_3%e_3_3-e_2_3

// e_3_3e_3_1=e_3_1%e_3_3+e_3_1

// e_3_3e_3_2=e_3_2*e_3_3+e_3_2

> ideal Z = centerRed(3, 3); Z;

Z[1]=e_1_1+e_2_2+e_3_3
Z[2]=e_1_2%e_2_1-e_1_1xe_2_2+e_1_3*e_3_1+e_2_3*e_3_2-e_1_1*e_3_3-e_2_2%e_3_3
+e_2_2+2%e_3_3
Z[3]=e_1_3*e_2_2%e_3_l1l-e_1_2*e_2_3*e_3_l-e_1_3*e_2_1%e_3_2+e_1_1*e_2_3*e_3_2
+e_1_2%e_2_1xe_3_3-e_1_1%e_2_2xe_3_3-e_1_3*e_3_1-2%e_2_3*e_3_2+e_1_1%e_3_3
+2%e_2_2%e_3_3-2%e_3_3

> ideal GZ = sa_reduce(imap(GL2, Z) + imap(GL1, Z) + Z); GZ;

GZ[1]=e_3_3

GZ[2]=e_2_2

GZ[3]=e_1_1

GZ[4]=e_1_3*e_3_1+e_2_3*e_3_2

GZ[b]l=e_1_2%e_2_1
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GZ[6]=e_1_2%e_2_3*e_3_1+e_1_3*e_2_1xe_3_2-e_1_1%e_2_3%e_3_2+e_2_2%e_2_3*e_3_2
+e_2_3%e_3_2

> centralizerRed(GZ[size(GZ)], 5); // Cen(GZ[6], U(gl_3)_5) == GZ!

_[1]=e_3_3

_[2]=e_2_2

_[3]=e_1_1

_[4]=e_1_3%e_3_1+e_2_3*e_3_2

_[bl=e_1_2xe_2_1
_[6]l=e_1_2%e_2_3xe_3_1+e_1_3%e_2_1xe_3_2-e_1_1%e_2_3%xe_3_2+e_2_2%e_2_3*e_3_2
+e_2_3%e_3_2

Result 6.3. Our computations show that:
L. U(gly):

(a) Z(U(gly)) =k{en),
(b) T@(gh)) = k(en).
2. U(gly):
(a) Z(U(gly)) =k (e11 + €22, €12 * €21 — €11 * €22 + €92).
(b) T'(U(gly)) =k (€22, €11, €12 * €21).
3. U(gls):

(a) Z(U(gly)) is generated by the following 3 elements:

® ¢y + €99 + €33,
® Cigk €] — €11 * €2 + €13 * €31 + €3 * €39 — €11 * €33 — €22 * €33 + €29 + 2 * €33,

® €13 % €99 % €31 — €19 % €23 * €31 — €13 * €21 * €39 + €11 * €93 * €39 + €12 * €31 * €33 —
611*622*633—613*631—2*623*632+611*633+2*€22*€33—2*633.

(b) T'(U(gls)) is generated by the following elements:

e Cartan elements: ess, €99, €11,
® c19 % €21, €13 * €31 1 €23 * €39,

® €19k €93 *k €31 + €13 * €91 * €39 — €11 * €23 * €32 + €99 * €93 * €39 + €23 * €39.

Moreover, let g — €12 * €93 * €31 + €13 * €91 * €39 — €11 * €93 * €39 + €99 * €93 * €39 + €93 * €39.
Our computations show that Cen(g,U(gl,)s) has the same generators as I'(U(gl,)), for
n=1,2,3.

Proposition 6.4. Cen(es x eg,U(gly)) = T'(U(gly)).

Proof. Clearly I'(U(gl,)) C Cen(eis * ea1,U(gly)).

In order to show the other inclusion we choose any non-zero p € Cen(eqg * €91, U(gly)).
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Let us observe that e;; and ey are Cartan elements of U(gl,). Therefore, there exist
constants (depending on p) a, 3 € k such that [p,e11] = a-p and [p, ess] = 3+ p. Moreover,
[p, e11 % €22] = €11 % [p, €22] + [P, e11] ¥ €22 = Beri ¥ p+a-pregy = B-eyyxp+a(fB-p+exn*p) =
(B-en +aB+a-exp)*p.

We recall that Z(U(gl,)) = k(€11 + €20, €12 * €31 — €17 * €93 + €22). Thus: 0 = [p,e +
2] = [p,enn] + [p,exn] = (a4 F) - pand 0 = [p,e1n * €21 — €11 * €xz + €22 = [p, €12 * €1] —
[p, €11 % ex] + [P, ean] = —(aB + F-en +a-epn)*xp+-p.

Hence, we obtain the system of equations on o and f3:

(a+p)-p=0,
(B—aB—a-emy—F-en)*p=0.

Since U(gl,) is an integral domain and p # 0, we deduce that « = —3 and S+ 3* + 3 -
egs — - e1p = 0. The last equation is equivalent to the following system:

B+ 5 =0,

B (622 - 611) = 0.
Thus: = 0and o = —f = 0. This shows that p commutes with all generators of Gel’fand-

Zetlin subalgebra. But we know that I'(U(gl,)) is a maximal commutative subalgebra.
Therefore p € I'(U(gl,)). |

6.3 Gel’fand-Zetlin subalgebra of the enveloping algebra
of si,

The enveloping algebra U(sly) is generated by X (1),Y (1), H(1) subject to the following
relations:

Y(1)X(1) = X(1)*Y(1) — H(1),
HO)X (1) = X(1) % H(1) + 2 X(1),
HO)Y (1) =Y (1)« H(1) — 2 Y(1).

The Cartan subalgebra H(U(sly)) is generated by Cartan element H(1). The center
Z(U(sly)) is generated by Casimir element 4 % X (1) x Y (1) + H(1)? — 2% H(1).

Both Gel’fand-Zetlin subalgebra I'(U (sl2)) and CZ (U (sly)) are generated by Cartan element
and Casimir element of this algebra:

D(U(sl)) =CZU(sly)) =k [H(1), 4% X(1) =Y (1) + H(1)* =2« H(1)] .

Clearly T(U(sly)) = CZ(U(sly)) = k [H(1), X (1) * Y (1)].
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Proposition 6.5. Let us assume that T'(U(sly)) is a mazimal commutative subalgebra.
Then Cen(X (1) « Y (1),U(sly)) = T'(U(sly)).

Proof. Similarly to proposition 6.4. |
Let us consider the enveloping algebra U(sls). It is generated by
X(1),X(2),X(3),Y(1),Y(2),Y(3), H(1), H(2) subject to the following relations:
(X(2)X(1)=X(1)*X(2)+X3),Y(1)X(1)=X(1)*Y(1)— H(1),
Y(3)X(1)=X(1)«Y(3) =Y (2),H(1)X(1) = X(1)« H(1) + 2 * X(1),
H2)X(1)=X(1)«H((2)—X(1),Y(2)X(2) = X(2)*xY(2) — H(2),
Y(3)X(2)=X(2)*xY(3)+Y(1),H(1)X(2) = X(2)« H(1) — X(2),
H(2)X(2) = X(2) % H(2) + 2% X(2), V()X (3) = X(3) * V(1) — X(2),
Y(2)X(3)=X3)«Y(2)+ X(1),Y(3)X(3)=X3)*«Y(3)— H(1) — H(2),
H(1)X(3) = X(3) + H(1) + X(3), H(2)X(3) = X(3) « H(2) + X(3),
Y2)Y(1)=Y(1)*«xY(2)—Y(3),HL)Y (1) =Y (1)« H(1) — 2% Y (1),
H2QY()=Y(1)«xH(2)+Y(1),H(1)Y(2) =Y (2)« H(1) + Y(2),
HR)Y(©2)=Y(2)+ H2) -2+ Y(2), HO)Y(3) = Y(3) « H(1) — Y(3),
(H(2)Y(3) =Y (3)« H(2) —Y(3).

The Cartan subalgebra H(U(sl3)) is generated by Cartan elements H (1) and H(2). The
center Z(U(sl3)) is generated by Casimir elements:

e 3xX(1)*xY(1)+3xX(2)*xY(2)+3xX3)xY(3)+ H(1)*+ H(1)« H(2)+ H(2)* —
3x H(1)—3%H(2),

¢ 27x X(3)xY (1)« Y (2)+27+« X (1)*« X(2)*Y(3) =9+ X (1)« Y (1)« H(1) + 18 X (2) %
Y(2) % H(1)— 9% X (3) # Y (3)* H(1) — 2% H(1)? — 18 X (1) % V(1) * H(2) + 9% X (2) *
Y(2) % H(2) + 9% X (3) Y (3) % H(2) — 3% H(1)% H(2) + 3% H(1) % H(2)2 + 2% H(2)? -
54x X (2)*xY (2) =27+ X (3)*Y (3)— 9% H(1)* H(2) — 18 H(2)*+ 18 H (1) +36* H(2).

TN

Clearly, CZ(U(sl3)) is generated by the following elements:

+X(2)*Y(2) + X(3) *xY(3),

DxY(2)+ X(1)«X(2)xY(3)+ X (2)«Y(2)«H(1)+ X(2)«Y(2)x H(2) +
Y(3)x H(2) — 2% X(2) Y (2) — X(3) x Y(3).

A Gel'fand-Zetlin subalgebra I'(U(sl3)) is generated by Cartan elements H(1), H(2),
Casimir elements of U(sl3) and the image of Casimir element C' = 4 % X(1) x Y(1) +
H(1)>—2x% H(1) of U(sly) under an imbedding 7 : U(sly) — U(sl3) from the following list:
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1. 4y : U(sly) — U(sl3) given by:

X(1)— X(1), Y(1)—Y(1), H()— H(1).

2. iy : U(sly) — U(sl3) given by:

X(1)— X(2), Y(1)—Y(2), H(l)— H(2).
3. i3 : U(sly) — U(sl3) given by:
X(1)— X(3), Y(1)—Y(3), H(l)— H(1)+ H(2).
Let us use SINGULAR to compute corresponding Gel’fand-Zetlin subalgebras:

> LIB "center.lib";

> LIB "algebras.lib";

> def Al = makeUsl2(0); setring Al; Al; // U(sle):
// characteristic : 0

//  number of vars : 3

// block 1 : ordering dp
// : names X(1) Y(1) H(1)
// block 2 : ordering C

//  noncommutative relations:

// Y(1)X(1)=X(1)*Y(1)-H(1)

// H(1)X(1)=X(1)*H(1)+2*X (1)

// H() Y1) =Y (1) *H(1)-2%Y (1)

> ideal Z1 = centerRed(2, 1); Z1;
Z1[11=4*X(1)*Y(1)+H(1)~2-2*%H(1) // =: C
> ideal HH = H(1);

> ideal GZ1= HH + Z1;

> ideal GZ = sa_reduce(GZ1); GZ;
GZ[1]=H(1)

GZ[2]=X(1)*Y (1)

> centralizerRed(GZ[size(GZ)], 6); // Check conjecture:
_[11=H(1)

_[21=x(1)*Y(1) // Ok!

> def A2 = makeUsl3(p); setring A2; A2; // U(sl3):
// characteristic : 0
//  number of vars : 8

// block 1 : ordering dp
// : names X(1) X(2) X(3) Y(1) Y(2) Y(3) H(1) H(2)
// block 2 : ordering C

//  noncommutative relations:
// X(2)X(1)=X(1)*X(2)+X(3)
// Y()X(1)=X(1)*Y(1)-H(1)
// Y(3)X(1)=X(1)*Y(3)-Y(2)
// H(1)X(1)=X (1) *H(1)+2*X (1)
// H(2)X(1)=X(1)*H(2)-X(1)
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// Y(2)X(2)=X(2)*Y(2)-H(2)

// Y(3)X(2)=X(2)*Y(3)+Y(1)

// H(1)X(2)=X(2)*H(1)-X(2)

// H(2)X(2)=X(2)*H(2)+2*X(2)

// Y(1)X(3)=X(3)*Y(1)-X(2)

// Y(2)X(3)=X(3)*Y(2)+X (1)

// Y(3)X(3)=X(3)*Y(3)-H(1)-H(2)

// H(1)X(3)=X(3)*H(1)+X(3)

// H(2)X(3)=X(3)*H(2)+X(3)

// Y(2)Y(1)=Y(1)*Y(2)-Y(3)

// H(1)Y(1)=Y(1)*H(1)-2%Y(1)

// H(2)Y(1)=Y(1)*H(2)+Y(1)

// H(DY(2)=Y(2)*H(1)+Y(2)

// H(2)Y(2)=Y(2)*H(2)-2%Y(2)

// H(1)Y(3)=Y(3)*H(1)-Y(3)

// H(2)Y(3)=Y(3)*H(2)-Y(3)

> ideal Z2 = centerRed(3, 2); Z2;

Z2[1]=3*X (1) *Y (1) +3*X(2) *Y (2) +3*X(3) *Y (3) +H(1) ~2+H (1) *H(2) +H(2) ~2-3*H (1) -3*H(2)
Z2[2]=27*X(3)*Y (1) *xY(2)+27*X (1) *X(2) *Y (3) -9*xX (1) *Y (1) *H(1)+18*X (2) *Y(2)*H (1)
-9xX (3)*Y(3)*H(1)-2*H(1) ~3-18*X (1) *Y (1) *H(2)+9*X (2) *Y (2) *H(2) +9*X (3) *Y (3) *H(2)
-3%H(1)~2+¥H(2)+3*xH(1) *H(2) ~2+2+H(2) ~3-54*X (2) *Y (2) -27*X (3) *Y (3) -9*xH (1) *H(2) -
18%H(2) ~2+18%H(1)+36*H (2)

> ideal HH = H(1), H(2);

// i_1:

> map IdMapl = A1, X(1), Y(1), H(1);

> ideal Z1 = IdMapl(Z1); Z1;

Z1[1]=4*X (1) *Y(1)+H(1)~2-2*H(1) // == i_1(C)

> ideal GZ2 = HH + Z1 + Z2;

> ideal GZ = sa_reduce(GZ2); GZ; // Gel’fand-Zetlin 1:
GZ[11=H(2)

GZ[2]=H(1)

GZ[3]1=X(2)*Y (2)+X(3)*Y(3)

GZ[4]=X(1)*Y (1)

GZ[5]=X(3)*Y (1) *Y(2)+X (1) *X(2)*Y(3)-X(3) *Y(3) *H(1)+X(3)*Y(3)
> centralizerRed(GZ[size(GZ)], 5); // Check conjecture:
_[11=H(2)

_[2]=H(1)

_[3]1=X(2)*Y(2)+X(3) *Y(3)

_[41=X(1)*Y (1)
_[B1=K(3)*Y(1)*Y(2)+X (1) *X(2)*Y (3) -X(3) *Y (3) *H(1)+X(3)*Y(3) // Ok!

// i_2:

> map IdMap2 = A1, X(2), Y(2), H(2);

> Z1 = IdMap2(Z1); Z1;

Z1[11=4%X(2)*Y(2)+H(2) ~2-2*H(2) // == i_2(C)

> GZ2 = HH + Z1 + Z2;

> GZ = sa_reduce(GZ2); GZ; // Gel’fand-Zetlin 2:
GZ[1]=H(2)

GZ[2]=H(1)

GZ[31=X(2)*Y(2)
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GZ[4]=X(1)*Y(1)+X(3)*Y(3)
GZ[5]=X(3)*Y(1)*Y(2)+X(1)*X(2)*Y(3)+X(3)*Y(3)*H(2)-X(3)*Y(3)

> centralizerRed(GZ[size(GZ)], 5); // Check conjecture:

_[11=H(2)

_[21=H(1)

_[31=X(2)*Y(2)

_[41=X(1)*Y(1)+X(3)*Y(3)

_[61=X(3)*Y (1) *Y(2)+X (1) *X(2) *Y (3) +X (3) *Y (3) *H(2)-X(3)*Y(3) // 0Ok!

// i_3:

> map IdMap3 = A1, X(3), Y(3), H(1) + H(2);

> Z1 = IdMap3(Z1); Z1;

Z1[1]=4%X(3)*Y (3)+H(1) ~2+2*H (1) *H(2) +H(2) ~2-2xH(1) -2%H(2) // == i_3(C)

> GZ2 = HH + Z1 + Z2;

> GZ = sa_reduce(GZ2); GZ; // Gel’fand-Zetlin 3:

GZ[1]1=H(2)

GZ[2]=H(1)

GZ[3]=X(3)*Y(3)

GZ[4]=X(1)*Y(1)+X(2)*Y(2)

GZ[5]1=X(3)*Y (1) *Y(2)+X (1) *X (2)*Y(3)+X(2) *Y (2) *H(1) +X (2) *Y (2) *H(2) -2*X (2) *Y (2)
> centralizerRed(GZ[size(GZ)], 5); // Check conjecture:

_[11=H(2)

_[2]=H(1)

_[31=X(3)*Y(3)

_[41=X(1)*Y(1)+X(2)*Y(2)
_[B1=X(3)*Y(1)*Y(2)+X (1) *X(2) *Y (3)+X (2) *Y (2) *H(1) +X(2) *Y (2) *H(2) -2*X (2) *Y(2) // Ok!

Result 6.6. Our computations show that I'(U(sl3)) is generated:

1. in the case of imbedding 7; by

3. in the case of imbedding i3 by

o H(1),H(2),
o X(3)*Y(3),
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o X(1)+Y(1)+X(2)*Y(2),
o X(3)#Y(1)+Y(2)+ X(1) % X(2) *Y(3) + X(2) # Y(2) « H(1) + X(2)  Y(2) *
H(2) — 2% X(2) + Y(2).

Moreover, let g be a computed generator of I'(U(sl,,)) of degree 3. Our computations show
that Cen(g,U(sl,)s) has the same generators as I'(U(sl,,)), for n = 2, 3 for every imbedding.
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Chapter 7

Algebraic dependence of polynomials

In this chapter our aim is to compute the algebraic dependence between the subalgebra
reduced generators of the center. Since they pairwise commute, we are almost in commu-
tative case.

The algebraic relation between the generators of the center of U(sly) over a field of char-
acteristic p > 2 is known due to [41]:

Example 7.1. Let us consider the algebra U(sly) as in section 3.1, then the algebra
7 = Z(U(sly)) is generated by the elements z = eP,y = fP,z = h?P—h,t = (h+1)2+4f *e,
which satisfy the following relation:

p—1

H(t — k%) = 2% + day,

k=0

which defines the algebra Z.

7.1 General setting
In the case of polynomial ring we can compute the algebraic relations by means of

elimination: let fi,...,f,n € klzy,...,2,), and let I = (Y1 — f1,..., Y — fm) C
klzy, ...,z Y1,..., Y. Then I Nk[Yy,...,Y,,] are the algebraic relations between

fiyooy fm (cf. [42])

7.2 Perron’s Theorem

This section is due to [40]. Throughout this section, k will stand either for a field of
characteristic 0 or for an infinite field of prime characteristic.

71
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Another way to compute the algebraic dependence provides the following theorem (due to
Oskar Perron, see [37, Satz 57| or [36] ):

Theorem 7.2. Let Fy,..., F,1 € k|[X] be a sequence of n+ 1 non-constant polynomials
in n variables X = (X1,...,X,) and let deg(F;) = d; fori = 1,...,n+ 1. Then there
ezxists a non-zero polynomial P = P(Y) € kK[Y] in n + 1 variables Y = (Y1,...,Yn41) such
that

(Cl) P(Fl,...,Fn+1) :O,
(b) if weight(Y;) = d; fori=1,...,n+ 1 then weight(P) < dy---dp1.

A polynomial P satisfying the conditions (a) and (b) will be called a Perron’s relation
between Fi,..., F, 1.

Note that

n+1
o ds +1
Al g

deg(P) <
es(P) min; " d; i=1

In general the Perron’s relation is not uniquely determined by the given sequence of polyno-
mials. But if the sequence F7i, ..., F,., contains n algebraically independent polynomials
then there exists a unique irreducible polynomial (up to a constant factor ink* ) Py = Fy(Y)
such that Py(Fi,..., F,y1) = 0. The polynomial P is called the minimal polynomial of
Fl, ey Fn+1.

Proposition 7.3. Suppose that the sequence Fi, ..., F,.1 contains n algebraically inde-
pendent polynomials. Then the minimal polynomial of F, ..., F,11 s a Perron’s relation
between Fy, ..., F,1.

7.3 Our approach

Let us consider the following ring homomorphism:
Ukl ... th1] 2t — F, € A (7.1)

Clearly Ker ¥ is the set of relations between Fj;.

Therefore, in order to find relations between F; we intersect Ker U with the vector space
H?:Jql d;
min?ld;

of polynomials in T = (¢1,...,t,11) of degree less or equal to D :=

This gives us an algorithm 7.1 for the computation of relations between a set of pairwise
commuting polynomials.
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ASSUME: A is a k-algebra
INPUT: A set of polynomials F' = {Fy,..., F,,;1} C A, and optional bound D
OUTPUT: relations between Fy, ..., F,14

if no bound D was specified then
_ 1M deg(F) |
let D = min;.é'lldeg(Fi)’
end if

let W be the map given by equation (7.1);
let Basis = {vy,...,vx} be a set of monomials in T" = (¢1,...,t,41) of degree less or
equal to D;
let I'mages = {wy, ..., wy}, where w; = Wu;;
RETURN: LINEARMAPKERNEL({v1,..., 0}, {wi,...,wg}); // using algorithm 2.1

Algorithm 7.1: PERRON(set F'[, int D])

7.4 Examples

Now we will use perron.1lib in order to check the result of [41]:

> LIB "perron.lib";

> proc Test( int p )

>

LI117777777777777777777777777777777777777777777777777777777777
// char = p

def g = makeUsl2(p); setring g; // only ’p’ will be shown

ideal L = e”p, £°p, h~p-h, 4xexf+h~2-2+h; // the Center

def R = perron( L, p); // !
setring R;

Relations; // This will be shown
poly P = Relations[1];

poly Q = P+4xF(1)*F(2)+F(3)"2;

Q; // Q will be shown
factorize( Q ); // This will be also shown

o

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

intvec Prims = 3, 5, 7, 11, 13;

> // Our computations:
> for( int i = 1; i <= size(Prims); i++ )
> Test( Prims[i] );

[11177777777777777777777777777777777777777777777777777/77/77777
// char = 3:

// Relations:
Relations[1]=F(4)~3-F(1)*F(2)-F(3)"2+F(4) "2
/7 Q:
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F(4)~3+F(4)~2
// factorize(QR):
[1]:
_[1]1=1
_[2]=F(4)+1
_[31=F(4)
[2]:
1,1,2
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[IT17777777777777777777777777777777777777777777777777777777777

// char = 5:

// Relations:

Relations[1]=F(4)~5-2*F(4) ~3+F(1)*F(2)-F(3)~2-F(4)"2

// Q:

F(4)~5-2+F(4)~3-F(4)~2

// factorize(QR):
[1]:
_[11=1
_[2]=F(4)+1
_[31=F(4)
_[4]=F(4)+2
[2]:
1,1,2,2

[IT77777777777777777777777777777777777777777777777777777777777

// char = T:

// Relations:

Relations[1]=F(4) ~7-2%F(4) ~4-F (4) ~3+3*F (1) *F(2) -F(3) ~2+2*F (4) ~2

// Q:

F(4)~7-2*F (4) ~4-F (4) ~3+2xF (4) "2

// factorize(QR):
[1]:
_[11=1
_[2]=F(4)+1
_[31=F(4)
_[4]1=F(4)-3
_[5]1=F(4)-1
[2]:
1,1,2,2,2

[IT77777777777777777777777777777777777777777777777777777777777

// char = 11:

// Relations:

Relations[1]1=F(4)~11-2*F(4)~6-F(4)"5+3*F(4)~4+4xF(4)"3
-4xF (1)*F (2)-F(3) ~2+3*F(4) "2

// Q:

F(4)~11-2%F(4) ~6-F(4) "5+3*F (4) ~4+4*F (4) ~3+3*F (4) "2

// factorize(R):
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[1]:
_[11=1
_[2]=F(4)+1
_[3]=F(4)-2
_[41=F(4)
_[5]1=F(4)+3
_[6]1=F(4)-4
_[71=F(4)-3

[2]:
1,1,2,2,2,2,2

[1117777777777777777777777777777777777777777777777/777777/77777
// char = 13:

// Relations:
Relations[1]=F(4)~13-2*F(4)"~7-F(4)~6-3*F(4)~5-5%F(4)~4-5%xF(4)"3
-4xF (1) *F (2) -F(3) ~2-3*F(4) "2
/7 Q:
F(4)~13-2*F(4)"7-F(4)~6-3*F (4)~5-5%F (4) ~4-5%F (4) ~3-3*F (4) "2
// factorize(QR):
[1]:

_[11=1

_[2]=F(4)+1

_[3]1=F(4)+4

_[4]=F(4)-2

_[51=F(4)

_[6]=F(4)+2

_[7]1=F(4)-3

_[8]=F(4)+5
[2]:

1,1,2,2,2,2,2,2

The only difference to [41] is caused by the minus in their U(sly) relations and by our
choice of t equals 4ef + h? — 2h instead of ¢ equals 4ef + h2 —2h + 1. Now one can observe
that our computations produce the same relations.

Obviously, this method can be used in commutative case, as the following example shows:

LIB "perron.lib";
ring r=0, (x,y,2),dp;

ideal J = xy+z2, z2+y2, x2y2-2xy3+y4;
def P2 = perron(J);

V V. V V V V V

algebraicDep(J,0);
_[11=Y(1)~2-2%xY(1)*Y(2)+Y(2) ~2-Y(3)

>

> setring P2; Relations;
Relations[1]=F (1) ~2-2%F (1) *F(2)+F (2) ~2-F(3)

// algebraicDep was taken from "http://www.singular.uni-kl.de/Manual/3-0-0/sing_484.htm"
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Chapter 8
Appendix

In this chapter we provide User’s manual for the described libraries center.lib and
perron.lib.

Additionally, we provide benchmarks for the computation of central elements of various
k-algebras with the procedure CENTERV Sfrom center.1lib.
8.1 Debugging center.lib

The library center.1lib has the following imbedded debugging mechanism:

e if printlevel > 2 then some progress information will be produced.

e if printlevel > 3 and there was defined a variable @QQ@DEBUG then almost every inter-
nal procedure (except trivial ones) will print its calling parameters and the computed
result.
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8.2 center.lib
Library:

center.lib

Purpose:

computation of central elements of GR-algebras

Author:

Oleksandr Motsak, motsak@mathematik.uni-kl.de.

Overview:

A library for computing elements of the center and centralizers of elements in various non-
commutative algebras.

Support:

Forschungsschwerpunkt 'Mathematik und Praxis’, University of Kaiserslautern

8.2.1 centralizeSet

Procedure from library center.lib (section 8.2 [center_ lib| on this page).

Input:

a finite set of elements F, vector space basis V

Return:

ideal, generated by base elements

Purpose:

computes the vector space basis of the centralizer of F in the vector space spanned by V,
that is, Cen(F|[N],Cen(F|N-1],...,Cen(F[1],V)...))

Example:
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LIB "center.lib";

ring A_4_1 = 0,(e(1..4)),dp;

matrix D[4][4]=0;

D[2,4] -e(1);

D[3,4] -e(2);

// This is $A_{41}$ - the first real Lie algebra of dimension $4$.
ncalgebra(1,D);

ideal F = variablesSorted(); F;

==> F[1]=e(1)

==> F[2]=e(4)

==> F[3]=e(3)

==> F[4]=e(2)

// the center of $A_{41}$ is generated by

// 8e(1)$ and $-1/2xe(2)"2+e(1)*e(3)$

// therefore one may consider computing it in the following way:
// 1. Compute PBW basis consisting of

// monomials of exponent <= (1,2,1,0)

ideal V = PBW_maxMonom( e(1) * e(2)~ 2 * e(3) );

// 2. Compute the centralizer of F within vector space
// spanned by these monomials:

ideal C = centralizeSet( F, V ); C;

==> C[1]=e(1)

==> C[2]=e(2)"2-2%e(1)*e(3)

inCenter (C);

8.2.2 centralizerVS

Procedure from library center.lib (section 8.2 [center_lib| on the preceding page).

Usage:

centralizerVS( F, D ); ideal F, int D

Return:

ideal, generated by elements of degree <= D

Purpose:

computes a vector space basis of the centralizer of F up to degree D.

Note:

D must be non-negative
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Example:

LIB "center.lib";

ring A = 0,(x,y,2) ,dp;

matrix D[3][3]=0;

D[1,2]=-z; DI[1,3]=2*x; D[2,3]=-2%y;
ncalgebra(1,D); // this algebra is U(sl_2)
ideal F = x, y;

// find all elements commuting with x and y of degree <= 4:
ideal C = centralizerVS(F, 4);

C;

==> C[1]=4xy+z2-2z

==> C[2]=16x2y2+8xyz2+z4-32xyz-423-4z2+16z
inCentralizer(C, F);

==> 1

8.2.3 centralizerRed

Procedure from library center.lib (section 8.2 [center_lib| on page 78).
Usage:
centralizerRed( F, D[, N] ); ideal F, int D[, int N]

Return:

ideal, generated by computed generators

Purpose:

if N is absent and D >= 0 computes a subalgebra generators of the centralizer of F up to
degree D, otherwise if N is present computes N(at least) first generators of the centralizer,
if moreover D > 0 it will be used as the first maximal degree estimation.

Note:

Current ordering must be a degree compatible well-ordering.

Example:

LIB "center.lib";
ring A = 0,(x,y,z),dp;
matrix D[3][3]=0;
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D[1,2]=-z; DI[1,3]=2*x; D[2,3]=-2xy;

ncalgebra(1,D); // this algebra is U(sl_2)

ideal F = x, y;

// find subalgebra generators degree <= 4 of an algebra of
// all elements commuting with x and y:

ideal C = centralizerRed(F, 4);

C;

==> C[1]=4xy+z2-2z

inCentralizer(C, F);

==> 1

8.2.4 centerVS

Procedure from library center.lib (section 8.2 [center lib| on page 78).

Usage:

centerVS( D ); int D

Return:

ideal, generated by elements of degree <= D

Purpose:

computes a vector space basis of the center of the current algebra up to degree D.

Note:

D must be non-negative

Example:

LIB "center.lib";

ring A = 0,(x,y,2) ,dp;

matrix D[3][3]=0;

D[1,2]=-z; DI[1,3]=2*x; DI[2,3]=-2%y;
ncalgebra(1,D); // this algebra is U(sl_2)
// find all central elements of degree <= 4
ideal Z = centerVS(4);

Z;

==> Z[1]=4xy+z2-2z

==> Z[2]=16x2y2+8xyz2+z4-32xyz-423-4z2+16z
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// note that the second element is the square of the first
// plus the multiple of the first:
Z[2] - Z[1]1~2 + 8xZ[1];

inCenter(Z);
==> 1

8.2.5 centerRed

Procedure from library center.lib (section 8.2 [center_lib| on page 78).

Usage:

centerRed( D[, k| ); int DJ, int k|

Return:

ideal, generated by computed generators

Purpose:

if N is absent and D >= 0 computes a subalgebra generators of the center up to degree D,
otherwise if N is present computes N(at least) first generators of the center, if moreover D
> (it will be used as the first maximal degree estimation.

Note:

Current ordering must be a degree compatible well-ordering.

Example:

LIB "center.lib";

ring A = 0,(x,y,2) ,dp;

matrix D[3][3]=0;

D[1,2]=z;

ncalgebra(1,D); // it is a Heisenberg algebra
// find vector space basis of center of degree <= 3
ideal VSZ = centerVS(3);

// There should be 3 degrees of z.

VSZ;

==> VSZ[1]=z

==> VSZ[2]=z2

==> VSZ[3]=23
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inCenter(VSZ) ;

==> 1

// find "minimal" central elements of degree <= 3
ideal SAZ = centerRed(3);

// Only ’z’ must be computed

SAZ;

==> SAZ[1]=z

inCenter (SAZ) ;

8.2.6 center

Procedure from library center.lib (section 8.2 [center lib| on page 78).

Return:

ideal, generated by elements of degree at most D

Purpose:

computes a minimal set of central elements up to degree D.

Note:

In general, one cannot predict the number or the highest degree of central elements. Hence,
one has to specify a termination condition via arguments D and/or N.

If D is positive, the computation stops after all central elements of degree at most D has
been found.

If D is negative, the termination is determined by N only.

If N is given, the computation stops if at least N central elements has been found.
Warning: if N is given and bigger than the actual number of generators, the procedure may
not terminate.

Example:

LIB "center.lib";

ring A = 0,(x,y,2,t) ,dp;

matrix D[4][4]=0;

D[1,2]=-z; DI[1,3]=2%x; DI[2,3]=-2%y;

ncalgebra(1,D); // this algebra is U(sl_2) tensored with K[t]
ideal Z = center(3); // find all central elements of degree <= 3
Z;

==> Z[1]=t
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==> Z[2]=4xy+z2-2z
inCenter(Z);

ideal ZZ = center(-1, 1); // find one central element of the lowest degree
ZZ;

==> ZZ[1]=t

inCenter(ZZ) ;

==> 1

8.2.7 centralizer

Procedure from library center.lib (section 8.2 [center_lib| on page 78).

Return:

ideal, generated by elements of degree <= MaxDeg

Purpose:

computes a minimal set of elements centralizer(S) up to degree MaxDeg.

Note:

In general, one cannot predict the number or the highest degree of centralizing elements.
Hence, one has to specify a termination condition via arguments MaxDeg and/or N.

If MaxDeg is positive, the computation stops after all centralizing elements of degree at most
MaxDeg has been found.

If MaxDeg is negative, the termination is determined by N only.

If N is given, the computation stops if at least N centralizing elements has been found.
Warning: if N is given and bigger than the actual number of generators, the procedure may
not terminate.

Example:

LIB "center.lib";

ring A = 0,(x,y,2),dp;

matrix D[3][3]=0;

D[1,2]=-z; D[1,3]=2*x; D[2,3]=-2%y;

ncalgebra(1,D); // this algebra is U(sl_2)

poly f = 4*xxy+z~2-2%z; // a central polynomial

f;

==> 4xy+z2-2z

ideal ¢ = centralizer(f, 2); // find all elements of the centralizer of f
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// of degree <= 2

c; // since f is central, the answer consists of generators of A
==> c[1]=z

==> c[2]=y

==> c[3]=x

inCentralizer(c, f);

ideal cc = centralizer(f,-1,2); // find at least two elements of the centralizer of f

==> cc[1]=z
==> cc[2]=y
==> cc[3]=x
inCentralizer(cc, f);

poly g = z°2-2*z; // some non-central polynomial
c = centralizer(g, 2); // find all elements of the centralizer of g
// of degree <= 2

C;

==> c[1]=z

==> c[2]=xy

inCentralizer(c, g);

==> 1

centralizer(g,-1,1); // find the element of the lowest degree in the centralizer

==> _[1]=z

cc = centralizer(g,-1,2); // find at least two elements of the centralizer of g
cc;

==> ccl[1]=z

==> cc[2]=xy

inCentralizer(cc, g);

8.2.8 sa_reduce

Procedure from library center.lib (section 8.2 [center lib| on page 78).

Return:

ideal, generated by found elements

Purpose:

compute a subalgebra basis of an algebra generated by polynomial from V

Note:
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May produce wrong result in quotient algebras.

Example:

LIB "center.lib";

ring A = 0,(x,y,2),dp;

matrix D[3][3]=0;

D[1,2]=-z; D[1,3]=2*x; D[2,3]=-2*y;

ncalgebra(1,D); // this algebra is U(sl_2)

poly f = 4%x*xy+z~2-2%z; // a central polynomial

ideal I = f, fxf, f*fxf _ 10%fxf, f+3%z°3; I;

==> I[1]=4xy+z2-2z

==> I[2]=16x2y2+8xyz2+z4-32xyz-4z3+32xy+4z2

==> I[3]=64x3y3+48x2y2z2+12xyz4+z6-288x2y2z-96xyz3-625+352x2y2+224xyz2+2z4-12\
8xyz+32z3-64xy-40z2

==> I[4]=3z3+4xy+z2-2z

sa_reduce(I); // should be just f and z"3

==> _[1]=4xy+z2-2z

==> _[2]=z3

8.2.9 sa_ poly reduce
Procedure from library center.lib (section 8.2 [center lib| on page 78).
Return:

polynomial, a reduction of p wrt V

Purpose:

computes a reduction of a given polynomial p wrt a set of polynomials V

Note:

May produce wrong result in quotient algebras.

Example:

LIB "center.lib";

ring A = 0,(x,y,2),dp;

matrix D[3][3]=0;

D[1,2]=-z; D[1,3]=2*x; D[2,3]=-2*y;
ncalgebra(1,D); // this algebra is U(sl_2)
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poly f = 4*xxy+z~2-2%z; // a central polynomial
sa_poly_reduce(f + 3*fxf + x, ideal(f) ); // should be just ’x’
==> x

8.2.10 inCenter

Procedure from library center.lib (section 8.2 [center lib| on page 78).

Return:

integer, 1 if a in the center, 0 otherwise

Purpose:

check whether a given element is central

Example:

LIB "center.lib";
ring r=0, (x,y,z),dp;
matrix D[3][3]=0;

D[1,2]=-z;
D[1,3]=2x*x;
D[2,3]=-2%y;

ncalgebra(1,D); // this is U(sl_2)
poly p=4*x*y+z~2-2%z;
inCenter(p);

poly f=dx*xx*y;

inCenter (f);

==> 0

list 1= list( 1, p, p~2, p~3);
inCenter (1) ;

ideal I= p, f;

inCenter(I);

8.2.11 inCentralizer

Procedure from library center.lib (section 8.2 [center_lib| on page 78).
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Return:

integer, 1 if a in the centralizer(S), 0 otherwise

Purpose:

check whether a given element is centralizing with respect to elements of S

Example:

LIB "center.lib";

ring r=0, (x,y,2),dp;

matrix D[3][3]=0;

D[1,2]=-z;

ncalgebra(1,D); // the Heisenberg algebra
poly f = x72;

poly a = z; // we know this element if central

poly b = y~2;
inCentralizer(a, f);
==> 1
inCentralizer(b, f);
==> 0

list 1 = list(l, a);
inCentralizer(1l, f);

ideal I = a, b;
inCentralizer(I, £);

printlevel = 2;
inCentralizer(a, f); // yes

=> 1

inCentralizer(b, f); // no

==> [1]:

== POLY: y2 is NOT in the centralizer of poly {x2}
==> O

8.2.12 isCartan

Procedure from library center.lib (section 8.2 [center lib| on page 78).

Purpose:

check whether f is a Cartan element.
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Return:

1 if f is a Cartan element and 0 otherwise.
Note:

fis a Cartan element iff for all g in A there exists C in K such that [f, g] = C * g iff for all
variables v_1i of A there exist C in K such that [f, v_i] = C * v_1i.

Example:

LIB "center.lib";
ring r=0, (x,y,z),dp;
matrix D[3][3]=0;

D[1,2]=-z;
D[1,3]=2%x;
D[2,3]=-2xy;

ncalgebra(1,D); // this is U(sl_2) with cartan - z
isCartan(z); // yes!

poly p=4x*xx*y+z~2-2%z;

isCartan(p); // central elements are Cartan elements!
==> 1

poly f=dx*xx*y;

isCartan(f); // no way!

==> 0

isCartan( 10 + p + z ); // scalar + central + cartan

8.2.13 applyAdF

Procedure from library center.lib (section 8.2 [center lib| on page 78).

Usage:

applyAdF( Basis, f); ideal Basis, poly f

Purpose:

Apply Ad_{f} to every element of Basis

Return:

ideal, Ad_{f}(Basis)
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Example:

LIB "center.lib";

ring A = 0,(e,f,h),dp;

matrix D[3][3]=0;

D[1,2]=-h; D[1,3]=2%e; D[2,3]=-2%f;
ncalgebra(1,D); // this algebra is U(sl_2)
// Let us consider the linear map Ad_{e} from A_2 into A.
// Compute the PBW basis of A_2:

ideal Basis = PBW_maxDeg( 2 ); Basis;

==> Basis[1]=e

==> Basis[2]=f

==> Basis[3]=h

==> Basis[4]=h2

==> Basis[5]=fh

==> Basis[6]=f2

==> Basis[7]=eh

==> Basis[8]=ef

==> Basis[9]=e2

// Compute images of basis elements under the linear map Ad_e:
ideal Image = applyAdF( Basis, e ); Image;
==> Image[1]=0

==> Image[2]=h

==> Image[3]=-2e

==> Image[4]=-4eh-4e

==> Image[5]=-2ef+h2+2h

==> Image[6]=2fh-2f

==> Image[7]=-2e2

==> Image[8]=eh

==> Image[9]=0

// Now we have a linear map given by: Basis_i --> Image_i
// Let’s compute its kernel:

module C = linearMapKernel( Image ); C;
==> C[1]=gen(1)

==> C[2]=gen(8)+1/4*gen(4)-1/2*gen(3)

==> C[3]=gen(9)

// Now we can compute the kernel of Ad_e by means of basis vectors:
ideal K = linearCombinations(Basis, C); K;
==> K[1]=e

==> K[2]=ef+1/4h2-1/2h

==> K[3]=e2

// Let’s check that Ad_e(K) is zero:
applyAdF( K, e );

==> _[1]=0

==> _[2]=0

==> _[3]=0
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8.2.14 linearMapKernel

Procedure from library center.lib (section 8.2 [center_lib| on page 78).

Usage:

linearMapKernel( Images ); ideal Images

Purpose:

Computes the kernel of a linear map given by its images on certain basis vectors

Return:

syzygy module, or 0 if all images are zeroes

Example:

LIB "center.lib";

ring A = 0,(e,f,h),dp;

matrix D[3][3]=0;

D[1,2]=-h; D[1,3]=2%e; D[2,3]=-2%f;
ncalgebra(1,D); // this algebra is U(sl_2)
// Let us consider the linear map Ad_{e} from A_2 into A.
// Compute the PBW basis of A_2:

ideal Basis = PBW_maxDeg( 2 ); Basis;

==> Basis[1]=e

==> Basis[2]=f

==> Basis[3]=h

==> Basis[4]=h2

==> Basis[5]=fh

==> Basis[6]=f2

==> Basis[7]=eh

==> Basis[8]=ef

==> Basis[9]=e2

// Compute images of basis elements under the linear map Ad_e:
ideal Image = applyAdF( Basis, e ); Image;
==> Image[1]=0

==> Image[2]=h

==> Image[3]=-2e

==> Image[4]=-4eh-4e

==> Image[5]=-2ef+h2+2h
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==> Image[6]=2fh-2f

==> Image[7]=-2e2

==> Image[8]=eh

==> Image[9]=0

// Now we have a linear map given by: Basis_i --> Image_i
// Let’s compute its kernel:

module C = linearMapKernel( Image ); C;

==> C[1]=gen(1)

==> C[2]=gen(8)+1/4*gen(4)-1/2*gen(3)

==> C[3]=gen(9)

// Now we can compute the kernel of Ad_e by means of basis vectors:
ideal K = linearCombinations(Basis, C); K;

==> K[1]=e

==> K[2]=ef+1/4h2-1/2h

==> K[3]=e2

// Let’s check that Ad_e(K) is zero:

ideal Z = applyAdF( K, e ); Z;

==> Z[1]=0

==> Z[2]=0

==> Z[3]=0

// Now linearMapKernel will return a single integer O:
def CC = linearMapKernel(Z); typeof(CC); CC;

==> int

8.2.15 linearCombinations

Procedure from library center.lib (section 8.2 [center_lib| on page 78).

Usage:

linearCombinations( Basis, C ); ideal Basis, module C

Purpose:

computes linear combinations of Basis vectors with the coefficients from C.

Return:

ideal of linear combinations of Basis vectors with the coefficients from C.

Example:
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LIB "center.lib";

ring A = 0,(e,f,h),dp;

matrix D[3][3]=0;

D[1,2]=-h; D[1,3]=2%e; D[2,3]=-2%f;
ncalgebra(1,D); // this algebra is U(sl_2)
// Let us consider the linear map Ad_{e} from A_2 into A.
// Compute the PBW basis of A_2:

ideal Basis = PBW_maxDeg( 2 ); Basis;

==> Basis[1]=e

==> Basis[2]=f

==> Basis[3]=h

==> Basis[4]=h2

==> Basis[5]=fh

==> Basis[6]=f2

==> Basis[7]=eh

==> Basis[8]=ef

==> Basis[9]=e2

// Compute images of basis elements under the linear map Ad_e:
ideal Image = applyAdF( Basis, e ); Image;
==> Image[1]=0

==> Image[2]=h

==> Image[3]=-2e

==> Image[4]=-4eh-4e

==> Image[5]=-2ef+h2+2h

==> Image[6]=2fh-2f

==> Image[7]=-2e2

==> Image[8]=eh

==> Image[9]=0

// Now we have a linear map given by: Basis_i --> Image_i
// Let’s compute its kernel:

module C = linearMapKernel( Image ); C;
==> C[1]=gen(1)

==> C[2]=gen(8)+1/4*gen(4)-1/2*gen(3)

==> C[3]=gen(9)

// Now we can compute the kernel of Ad_e by means of basis vectors:
ideal K = linearCombinations(Basis, C); K;
==> K[1]=e

==> K[2]=ef+1/4h2-1/2h

==> K[3]=e2

// Let’s check that Ad_e(K) is zero:
applyAdF( K, e );

==> _[1]=0

==> _[2]=0

==> _[3]=0
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8.2.16 variablesStandard

Procedure from library center.lib (section 8.2 [center_lib| on page 78).

Return:

ideal, generated by algebra variables

Purpose:

computes the ideal generated by algebra variables taken in their natural order

Example:

LIB "center.lib";

ring A = 0,(x,y,2) ,dp;

matrix D[3][3]=0;

D[1,2]=-z; DI[1,3]=2%x; D[2,3]=-2xy;
ncalgebra(1,D); // this algebra is U(sl_2)
// Variables in their natural order:

variablesStandard() ;
==> [1]=x
==> _[2]=y
==> _[3]=z

8.2.17 wvariablesSorted

Procedure from library center.lib (section 8.2 [center lib| on page 78).

Return:

ideal, generated by sorted algebra variables

Purpose:

computes the ideal generated by algebra variables sorted so that Cartan variables are first
and all other variables are behind.

Note:

This is a heuristics for the computation of center: it is better to compute centralizers of
Cartan variables first since we can omit solving the system of equations.

Example:
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LIB "center.lib";

ring A = 0,(x,y,2) ,dp;

matrix D[3][3]=0;

D[1,2]=-z; DI[1,3]=2*x; D[2,3]=-2%y;
ncalgebra(1,D); // this algebra is U(sl_2)

// There is only one Cartan variable - z in U(sl_2),
// it must go 1st:

variablesSorted();
==> [1]=z
==> _[2]=y
==> _[3]=x

8.2.18 PBW _eqDeg

Procedure from library center.lib (section 8.2 [center_lib| on page 78).

Usage:

PBW _eqDeg(Deg); int Deg

Purpose:

Compute the PBW basis (of a given degree) of a current algebra.

Return:

ideal consisting of PBW elements.

Note:

Unit is omitted. Weights are ignored!

Example:

LIB "center.lib";

ring A = 0,(e,f,h),dp;

matrix D[3][3]=0;

D[1,2]=-h; D[1,3]=2%e; D[2,3]=-2%f;
ncalgebra(1,D); // this algebra is U(sl_2)

// PBW Basis of A_2 \ A_1l - monomials of degree ==
PBW_eqDeg( 2 );

==> _[1]=h2

==> _[2]=fh
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==> _[3]=f2
==> _[4]=eh
==> _[b]=ef
==> _[6]=e2

8.2.19 PBW _ maxDeg
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Procedure from library center.lib (section 8.2 |center_lib| on page 78).

Usage:

PBW maxDeg(MaxDeg); int MaxDeg

Purpose:

Compute the PBW basis (up to a given maximal degree) of a current algebra.

Return:

ideal consisting of PBW elements.

Note:

unit is omitted. Weights are ignored!

Example:

LIB "center.lib";

ring A = 0,(e,f,h),dp;

matrix D[3][3]=0;

D[1,2]=-h; D[1,3]=2%e; D[2,3]=-2%f;
ncalgebra(1,D); // this algebra is U(sl_2)

// PBW Basis of A_2 - monomials of degree <= 2, without unit:

PBW_maxDeg( 2 );

==> _[1]=e
==> _[2]=f
==> _[3]=h
==> _[4]=h2
==> _[5]=fh
==> _[6]=f2
==> _[7]=eh
==> _[8]=ef

==> _[9]=e2
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8.2.20 PBW_maxMonom

Procedure from library center.lib (section 8.2 [center_lib| on page 78).

Usage:

PBW _maxMonom(m); poly m

Purpose:

Compute the PBW basis, up to a given maximal exponent, of a current algebra.

Input:

Maximal exponent is given by the corresponding monomial.

Return:

ideal consisting of PBW elements.

Note:

Unit is omitted. Weights are ignored!

Example:

LIB "center.lib";

ring A = 0,(e,f,h),dp;

matrix D[3][3]=0;

D[1,2]=-h; D[1,3]=2%e; D[2,3]=-2%f;

ncalgebra(1,D); // this algebra is U(sl_2)

// At most 1st degree in e, h and at most 2nd degree in f, unit is omitted:
PBW_maxMonom( e*(£f~2)* h );

==> _[1]=e
==> _[2]=f
==> _[3]=ef
==> _[4]=f2
==> _[5]=ef2
==> _[6]=h
==> _[7]=eh
==> _[8]=fh
==> _[9]=efh
==> _[10]=f2h

==> _[11]=ef2h
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8.3 perron.lib
Library:

perron.lib

Purpose:

computation of algebraic dependences

Authors:

Oleksandr Motsak, motsak@mathematik.uni-kl.de.

8.3.1 perron
Procedure from library perron.lib (section 8.3 [perron_lib| on this page).
Usage:

perron( L [, D] )

Return:

a commutative ring, containing an exported ideal ‘Relations‘ with found polynomial relations.

Purpose:

computes relations between pairwise commuting polynomials of L[, up to a given degree
bound D]

Note:

the implementation was partially inspired by the Perron’s theorem.

Example:

LIB "perron.lib";

int p = 3;

ring A = p,(x,y,2),dp;

matrix D[3][3]=0;

D[1,2]=-z; D[1,3]=2*x; D[2,3]=-2%y;
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ncalgebra(1,D); // this algebra is U(sl_2)

ideal L = x"p, y°p, z"p-z, 4*x¥y+z~2-2%z; // the center
def R = perron( L, p );

setring R;

==> // characteristic : 3
==> // number of vars : 4

==> // block 1 : ordering dp
=> // : names F(1) F(2) F(3) F(4)
==> // block 2 : ordering C

Relations; // it was exported from perron to be in the returned ring.
==> Relations[1]=F(4)"3-F(1)*F(2)-F(3)"2+F(4)"2

kill R;

// perron can be also used in a commutative case, for example:

ring r=0, (x,y,2),dp;

ideal J = xy+z2, z2+y2, x2y2-2xy3+y4;

def R = perron(J);

setring R;

Relations;

==> Relations[1]=F(1)"2-2%F(1)*F(2)+F(2)~2-F(3)
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8.4 Benchmarks

To be able to compute in enveloping algebras over “computational” fields (say Q, F,) we
have taken Chevalley bases (cf. 1.3.4) of some simple Lie algebras from [10] and put them
into the additional SINGULAR library algebras.1lib.

For automated benchmarks computation we use the system SymbolicData (cf. [44]). In
order to make this system work for us we have added definitions of many GR-Algebras to
it, taught it how to generate GR-algebra definitions for SINGULAR:PLURAL and how to
ask SINGULAR to compute the center etc.

We have generated the SymbolicData definition for the following k-algebras: U(sl,) (n =
2,...,9), U(s0,) (n=05,...,12), U(sp,,) (n =1,...,5), U(g2), U(fs), U(e,) (n = 6,7,8),
U(gl,) (n = 2,...,6), Heisenberg algebras: H,, (n = 1,...,5) and Weyl algebras: W,
(n =1,...,5) over several “computational” fields: Q, F, (p = 3,5,7,11,13), and U,(sl,)
(n = 2,3), Uy(so3) over Q(q) with g being free parameter (this case is analogous to the case
of characteristics 0) and ¢ being p-th prime complex root of unity (this case is analogous
to the case of characteristics p).

We provide benchmarks, computed in SINGULAR 3-0-0 under GNU/Linux, running on
AMD Athlon(TM) MP 2000+ (1666MHz) with 3Gb RAM, for the computation of vector
space basis of Z; with the procedure CENTERV Sfrom the library center.lib.

In the following table the column “Time” contains the time (in seconds, up to 1/100 sec.)
for the computation of a vector space basis of Z;(.A). Moreover for every degree d the
column “PBW” contains the size of the first PBW base (it equals to dim .4, —1); the column
entitled “DIM” contains before slash “/” the dimensions of the actually computed center
and after the slash the expected dimension because of remark 8.1. The computations are
grouped by a k-algebra: Algebra (A). The ground field is specified by the parameter p
(see above).

Note that, in degree 1 the first PBW basis consists of all variables and therefore we do not
include the number of algebra generators into this table.

Remark 8.1. Let A be a k-algebra filtered by degree and let the center Z of A be generated
by r elements z1, ..., z. of degrees py,...,p,. Then the dimension of Z;(.A) is the number
of non-negative integer solutions of the inequality ¢; - p1 + ... + ¢, - p. < d.

Although our estimations on the dimension of computed vector space basis are almost
always true, there are several cases when they are false. For example in the case of
Z4(U(§4(F3))) we have computed one unexpected polynomial.

Unfortunately, in several cases we run out of memory. These cases denoted by “-4-” in Time
column and by “?” in DIM column.

It appears that 3Gb of memory is not enough to compute a vector space basis of the center
in the case when the first PBW base has dimension more than 1000000. Therefore we did
not try to compute a vector space basis of the center in these cases, these examples are
denoted by “-".



A o Degree: 1 Degree: 2 Degree: 3 Degree: 4 Degree: 5 Degree: 6
DIM PBW Time DIM PBW Time DIM PBW Time DIM PBW Time DIM PBW Time DIM PBW Time
0 1/1 0.04 2/2 0.04 3/3 0.05 4/4 0.07 5/5 0.09 6/6 0.13
3 1/1 0.04 2/2 0.04 5/6 0.05 8/10 0.08 11/14 0.10 17/24 0.15
Hy 5 1/1 3 0.03 22 0.04 3/3 1o 0.05 4/4 2 0.06 7/8 55 0.09 10/12 c3 0.14
7 1/1 0.04 2/2 0.04 3/3 0.05 4/4 0.06 5/5 0.09 6/6 0.13
11 1/1 0.04 2/2 0.04 3/3 0.05 4/4 0.06 5/5 0.09 6/6 0.14
13| 111 0.04 2/2 0.04 3/3 0.05 4/4 0.07 5/5 0.09 6/6 0.13
0 1/1 0.05 2/2 0.06 3/3 0.13 4/4 0.31 5/5 0.91 6/6 2.56
3 1/1 0.04 2/2 0.07 7/8 0.13 12/14 0.36 17/20 1.08 32/41 3.05
Ha 5 1/1 5 0.05 22 0.07 3/3 55 0.13 4/4 125 0.32 9/10 951 0.92 14/16 161 2.64
7 1/1 0.05 2/2 0.07 3/3 0.13 4/4 0.31 5/5 0.90 6/6 2.52
11| 151 0.04 2/2 0.06 3/3 0.13 4/4 0.33 5/5 0.90 6/6 2.54
13 | 11 0.04 2/2 0.06 3/3 0.12 4/4 0.32 5/5 0.90 6/6 2.54
0 1/1 0.05 2/2 0.11 3/3 0.40 4/4 2.05 5/5 9.63 6/6 40.25
3 1/1 0.06 2/2 0.12 9/10 0.44 16/18 2.20 23/26 10.71 51/62 45.52
H 5 1/1 7 0.06 2/2 35 0.11 3/3 119 0.41 4/4 329 2.03 11/12 701 9.51 18/20 1715 40.08
7 1/1 0.06 2/2 0.12 3/3 0.40 4/4 2.03 5/5 9.46 6/6 39.64
1| 151 0.06 2/2 0.11 3/3 0.41 4/4 2.02 5/5 8.81 6/6 39.64
13 1/1 0.05 2/2 0.11 3/3 0.41 4/4 2.04 5/5 9.49 6/6 39.61
0 1/1 0.07 2/2 0.21 3/3 1.42 4/4 10.84 5/5 71.09 6/6 403.31
3 1/1 0.06 2/2 0.19 11/12 1.42 20/22 11.38 29/32 76.23 74/87 437.12
Hy 5 1/1 9 0.07 2/2 54 0.21 3/3 219 1.40 4/4 714 10.68 13/14 2001 70.02 22/24 5004 397.63
7 1/1 0.07 2/2 0.21 3/3 1.39 4/4 10.64 5/5 69.82 6/6 397.84
1| 1 0.07 2/2 0.20 3/3 1.37 4/4 10.53 5/5 69.78 6/6 397.78
13 1/1 0.07 2/2 0.20 3/3 1.39 4/4 10.64 5/5 69.86 6/6 397.28
0 1/1 0.08 2/2 0.39 3/3 4.21 4/4 44.80 5/5 392.46 6/6 2957.73
3 1/1 0.08 2/2 0.37 13/14 4.24 24/26 46.39 35/38 411.09 101/116 3125.58
Hs 5 1/1 11 0.09 2/2 7 0.38 3/3 363 4.13 4/4 1364 44.14 15/16 4367 386.47 26/28 12375 2923.49
7 1/1 0.09 2/2 0.38 3/3 4.15 4/4 44.12 5/5 385.86 6/6 2911.19
11 1/1 0.08 2/2 0.38 3/3 4.13 4/4 43.81 5/5 385.41 6/6 2912.30
13 1/1 0.08 2/2 0.38 3/3 4.13 4/4 44.13 5/5 384.93 6/6 2913.72
0 0/0 0.04 1/1 0.05 1/1 0.07 2/2 0.12 2/2 0.18 3/3 0.39
3 0/0 0.04 1/1 0.05 5/5 0.07 6/6 0.11 10/10 0.20 19/21 0.34
Uy (s12) 5 o/0 0.04 1/1 14 0.05 1/1 24 0.07 2/2 60 0.12 6/6 125 0.20 7/7 200 0.39
7 0/0 0.04 1/1 0.06 1/1 0.09 2/2 0.15 2/2 0.27 3/3 0.54
11 | o/0 0.04 1/1 0.07 1/1 0.11 2/2 0.22 2/2 0.45 3/3 1.39
13 | o0/0 0.05 1/1 0.07 1/1 0.13 2/2 0.26 2/2 0.59 3/3 6.52
0 0/- 0.05 0/- 0.14 0/- 1.48 0/- 17.43 0/- 230.05 0/- 7093.53
3 0/- 0.05 2/- 0.15 16/- 1.36 18/- 15.14 34/- 181.80 119/- 4386.93
Uy(sls) 5 0/- 10 0.05 0/- 65 0.17 0/- 985 1.58 0/- 1000 17.90 10/- 2002 221.24 12/- 8007 6021.15
7 0/- 0.06 0/- 0.21 0/- 1.89 0/- 19.53 0/- 238.75 0/- 6704.85
11 0/- 0.06 0/- 0.30 0/- 2.79 0/- 26.17 0/- 287.79 0/- 6740.51
13 0/- 0.07 0/- 0.36 0/- 5.50 0/- 67.77 0/- 639.91 0/- 9766.86
0 0/0 0.04 0/0 0.04 1/1 0.06 1/1 0.10 1/1 1.96 2/2 21.28
3 0/0 0.04 0/0 0.04 4/4 0.06 4/4 0.10 4/4 0.18 14/14 0.37
Uy (s03) 3 9 19 34 55 83



5 0/0 0.04 0/0 0.04 1/1 0.06 1/1 0.11 4/4 0.33 5/5 0.95
7 0/0 0.04 0/0 0.04 1/1 0.07 1/1 0.12 1/1 0.89 2/2 3.08
11 | 0/0 0.04 0/0 0.04 1/1 0.07 1/1 0.39 1/1 75.58 2/2 342.62
13 | 0/0 0.04 0/0 0.04 1/1 0.08 1/1 3.86 1/1 1371.11 2/2 5990.08
0 0/0 0.30 1/1 2.30 1/1 1029.31 7/2 4 - -/3 - -/5 -
3 1/0 0.37 2/1 2.13 80/79 1027.67 -/80 - -/159 - -/3242 -
Uleg) 5 0/0 o 0.29 UL g 2.25 1/1 gsalo  1019.33 ) 1740050 -/81 i - -/83 ] -
7 0/0 0.29 1/1 2.27 1/1 1021.28 ) - -/3 - -/5 -
11 | 0/0 0.29 1/1 2.27 1/1 1021.84 /2 - -/3 - -/5 -
13 | 0/0 0.29 1/1 2.26 1/1 1031.42 ) - -/3 - -/5 -
0 0/0 0.69 1/1 18.53 1/1 26735.82 /2 - /2 - -/4 -
3 0/0 0.69 1/1 18.32 | 134/134 26749.10 | -/135 - -/268 - -/9181 -
U(e7) 5 00 .. 0.70 7 18.36 1/1 a10039 2673078 ) 14043869 /135 i - /137 ] -
7 0/0 0.70 1/1 18.36 1/1 26696.97 /2 - /2 - -/4 -
11 | 0/0 0.66 1/1 18.39 1/1 26720.99 /2 - /2 - -/4 -
13 | 0/0 0.70 1/1 18.39 1/1 26728.28 ) - ) - -/4 -
0 0/0 2.43 1/1 306.23 ?/1 -4 - /2 - -/2 - -/4 -
3 0/0 2.34 1/1 305.19 ?7/249 4 - -/250 - -/498 - -/31376 -
U(eg) 5 0/0 2.35 UL g, 30618 ?/1 ss0d12a L /2 164059874 -/250 i - -/252 ) -
7 0/0 2.33 1/1 307.72 ?/1 4 - /2 - -/2 - -/4 -
11 | 0/0 2.41 1/1 305.60 ?/1 4 - ) - ) - -/4 -
13 | 0/0 2.42 1/1 306.29 ?/1 4 - /2 - -/2 - -/4 -
0 0/0 0.15 1/1 0.58 1/1 86.62 2/2 15734.95 /2 - -/4 -
3 0/0 0.15 1/1 0.60 53/53 90.98 55/54 17871.89 -/106 - -/1486 -
U(f4) 5 o0, 0.15 U1 o 0.57 1/1 96934 86.54 2/2 367989 19722:89 -/54 1187105 -/56 10475357
7 0/0 0.14 1/1 0.59 1/1 86.61 2/2 15602.10 ) - -/4 -
11| 0/0 0.15 1/1 0.59 1/1 87.32 2/2 15766.81 ) - -/4 -
13 | 0/0 0.14 1/1 0.58 1/1 87.83 2/2 15697.26 /2 - -/4 -
0 0/0 0.05 1/1 0.08 1/1 0.21 2/2 1.09 2/2 16.96 4/4 875.20
3 0/0 0.05 1/1 0.09 15/15 0.41 16/16 3.36 30/30 51.07 136/137 923.34
U(ga) 5 o0, 0.05 UL 0.08 1/1 70 0.20 2/2 2050 1.12 16/16 L1627 14.67 18/18 8750 199.88
7 0/0 0.05 1/1 0.09 1/1 0.21 2/2 1.01 2/2 11.92 4/4 158.41
11 | 0/0 0.05 1/1 0.09 1/1 0.20 2/2 1.01 2/2 11.73 4/4 155.40
13 | 0/0 0.05 1/1 0.09 1/1 0.22 2/2 1.00 2/2 11.77 4/4 155.37
0 1/1 0.04 3/3 0.04 5/5 0.05 8/8 0.08 11/11 0.11 15/15 0.18
3 1/1 0.03 3/3 0.04 8/9 0.06 14/16 0.08 23/27 0.13 38/49 0.24
U(gly) 5 o, 0.04 33, 0.04 5/5 a4 0.05 8/8 Go 0.07 14/15 195 0.10 21/23 200 0.17
7 1/1 0.04 3/3 0.04 5/5 0.06 8/8 0.07 11/11 0.11 15/15 0.16
1| 1 0.04 3/3 0.04 5/5 0.05 8/8 0.07 11/11 0.11 15/15 0.15
13| 11 0.04 3/3 0.04 5/5 0.05 8/8 0.07 11/11 0.11 15/15 0.17
0 1/1 0.05 3/3 0.07 6/6 0.14 10/10 0.40 15/15 1.29 22/22 4.55
3 1/1 0.05 3/3 0.07 14/15 0.16 26/28 0.55 47/51 2.44 113/130 11.64
U(gly) 5 o 0.05 33, 0.07 6/6 10 0.13 /10, 0.39 23/24 2001 1.22 38/40 5004 4.28
7 1/1 0.05 3/3 0.07 6/6 0.14 10/10 0.39 15/15 1.19 22/22 3.88
1| 11 0.05 3/3 0.07 6/6 0.13 10/10 0.28 15/15 1.20 22/22 3.93
13 | 11 0.05 3/3 0.07 6/6 0.14 10/10 0.38 15/15 1.21 22/22 3.97




0 1/1 0.08 3/3 0.12 6/6 0.47 11/11 2.69 17/17 44.50 26/26 561.89
3 1/1 0.07 3/3 0.12 21/22 0.53 41/43 3.70 77/81 61.36 250,274 841.57
U(gly) 5 VAR 0.07 33 ., 0.13 6/6 068 0.46 RVAE B 2.60 32/33 90348 43.77 56/58 14619 558.14
7 1/1 0.07 3/3 0.13 6/6 0.45 11/11 2.63 17/17 43.65 26/26 552.77
1| 1 0.08 3/3 0.13 6/6 0.45 11/11 2.61 17/17 43.91 26/26 553.45
13 | 11 0.07 3/3 0.13 6/6 0.45 11/11 2.62 17/17 43.67 26/26 552.26
0 1/1 0.11 3/3 0.24 6/6 1.50 11/11 65.29 18/18 2095.78 28/28 54615.34
3 1/1 0.11 3/3 0.24 30/31 1.72 59/61 69.20 114/118 2253.54 495/528 105871.91
U(gly) 5 1, 0.11 33 .0 0.24 6/6 4975 1.51 /1 64.35 42/43 Lags0s 208164 76,78 736280 5156768
7 1/1 0.11 3/3 0.23 6/6 1.49 11/11 64.50 18/18 2077.50 28/28 54306.00
1| 1 0.10 3/3 0.23 6/6 1.05 11/11 64.47 18/18 2093.32 28/28 54352.19
13| 11 0.11 3/3 0.23 6/6 1.54 11/11 64.37 18/18 2084.34 28/28 54430.49
0 1/1 0.15 3/3 0.44 6/6 11.79 11/11 938.52 18/18 60927.11 -/29 -
3 1/1 0.16 3/3 0.44 41/42 12.21 81/83 965.84 158/162 63255.49 -/947 -
U(glg) 5 1 0.16 3/3 s 0.44 6/6 o138 11.53 /11 e 940.75 53/54 740307 60474.62 -/101 245785
7 1/1 0.17 3/3 0.44 6/6 11.51 11/11 953.49 18/18 61467.05 -/29 -
1| 11 0.16 3/3 0.43 6/6 11.67 11/11 939.31 18/18 60465.92 -/29 -
13| 11 0.17 3/3 0.43 6/6 11.55 11/11 963.30 18/18 60565.07 -/29 -
0 0/0 0.03 1/1 0.03 1/1 0.04 2/2 0.05 2/2 0.05 3/3 0.06
3 0/0 0.03 1/1 0.04 4/4 0.04 5/5 0.04 8/8 0.06 14/15 0.08
U(sly) 5 o0, 0.04 oy 0.04 1/1 1o 0.04 2/2 24 0.05 5/5 55 0.06 6/6 g3 0.06
7 0/0 0.03 1/1 0.04 1/1 0.04 2/2 0.04 2/2 0.05 3/3 0.05
11 | 0/0 0.04 1/1 0.04 1/1 0.04 2/2 0.05 2/2 0.05 3/3 0.06
13 | 0/0 0.03 1/1 0.04 1/1 0.04 2/2 0.04 2/2 0.05 3/3 0.05
0 0/0 0.04 1/1 0.06 2/2 0.10 3/3 0.21 4/4 0.56 6/6 1.94
3 1/0 0.05 2/1 0.07 10/10 0.18 19/11 0.77 28/20 4.42 65/66 24.30
U(slz) 5 00 0.04 v, 0.06 2/2 64 0.10 3/3 104 0.20 12/12 1986 0.52 14/14 3002 1.57
7 0/0 0.04 1/1 0.06 2/2 0.09 3/3 0.20 4/4 0.49 6/6 1.34
11 | 0/0 0.04 1/1 0.06 2/2 0.10 3/3 0.20 4/4 0.49 6/6 1.37
13 | 0/0 0.04 1/1 0.06 2/2 0.09 3/3 0.20 4/4 0.48 6/6 1.35
0 0/0 0.06 1/1 0.11 2/2 0.32 4/4 1.80 5/5 27.42 8/8 614.68
3 0/0 0.05 1/1 0.10 17/17 0.40 19/19 2.31 35/35 33.05 172/173 434.93
U(sly) 5 00 . 0.05 V2 0.10 2/2 a1s 0.31 4/4 75 1.59 20/20 15503 22.50 23/23 1963 280.75
7 0/0 0.06 1/1 0.10 2/2 0.30 4/4 1.60 5/5 22.64 8/8 278.79
11 | 0/0 0.05 1/1 0.10 2/2 0.30 4/4 1.60 5/5 22.60 8/8 281.57
13 | 0/0 0.06 1/1 0.10 2/2 0.30 4/4 1.60 5/5 22.68 8/8 282.53
0 0/0 0.08 1/1 0.20 2/2 1.16 4/4 50.59 6/6 1680.47 9/9 67748.35
3 0/0 0.07 1/1 0.18 26/26 1.34 28/28 52.71 54/54 1699.55 380,381 73005.67
U(slz) 5 o, 0.10 21 0.18 3/2 9094 1.02 5/4 b0474 49.04 30/30 P 57/33 sogr7q 1392435
7 0/0 0.08 1/1 0.18 2/2 1.07 4/4 49.01 6/6 1572.18 9/9 40979.38
11 | 0/0 0.08 1/1 0.18 2/2 1.09 4/4 49.29 6/6 1576.02 9/9 41309.04
13 | 0/0 0.08 1/1 0.19 2/2 1.11 4/4 49.24 6/6 1576.86 9/9 41408.18
0 0/0 0.11 1/1 0.35 2/2 9.18 4/4 739.67 6/6 45745.37 -/10 -
3 1/0 0.14 2/1 0.33 37/37 9.53 74/39 764.26 111/76 70284.51 -/745 -
U(slg) 5 0/0 . 0.11 U1 s 0.33 2/2 w435 9.03 4/4 9950 735.36 41/41 gss00y 1489148 -/45 1496387



7 0/0 0.11 1/1 0.35 2/2 9.15 4/4 734.99 6/6 44891.90 -/10 -
11 | o0/0 0.10 1/1 0.33 2/2 8.96 a/a 744.94 6/6 45059.84 -/10 -
13 | 0/0 0.11 1/1 0.34 2/2 9.01 a/a 738.05 6/6 45031.22 -/10 -
0 0/0 0.16 1/1 0.66 2/2 56.20 a/a 8477.50 -/6 - -/10 -
3 0/0 0.14 1/1 0.60 50/50 57.16 52/52 8578.75 -/102 - -/1330 -
U(sly) 5 0/0 g 0.15 1/1 994 0.62 2/2 20894 55.65 4/4 gro7aq  BATA07 -/54 9869684 -/58 95897164
7 1/0 0.22 2/1 0.61 3/2 56.82 5/4 8507.52 -/6 - -/10 -
11 | 0/0 0.15 1/1 0.61 2/2 55.74 a/a 8536.04 -/6 - -/10 -
13 | o0/0 0.16 1/1 0.62 2/2 55.80 4/4 8542.72 -/6 - -/10 -
0 0/0 0.24 1/1 1.18 2/2 286.67 a/a 72665.91 -/6 - -/10 -
3 0/0 0.23 1/1 1.14 65/65 288.14 67/67 73109.57 -/132 - -/2215 -
U(slg) 5 0/0 . 0.24 VL i 1.16 2/2 15759 285.25 4/4 66479 7265191 -/69 0424127 -/73 10877471
7 0/0 0.24 1/1 1.15 2/2 285.34 a/a 72771.39 -/6 - -/10 -
11 | 0/0 0.24 1/1 1.20 2/2 285.97 4/4 74284.07 -/6 - -/10 -
13 | o0/0 0.23 1/1 1.14 2/2 298.15 4/4 74327.57 -/6 - -/10 -
0 0/0 0.34 1/1 2.90 2/2 1217.13 -/4 - -/6 - -/10 -
3 1/0 0.43 2/1 2.68 82/82 1195.52 -/84 - -/166 - -/3490 -
U(sly) 3 0/0 80 0.36 11 3320 2.80 2/2 o1sg  1216:21 /4 1929500 B -/86 32801516 -/90 470155076
7 0/0 0.34 1/1 2.82 2/2 1218.43 -/4 - -/6 - -/10 -
11 | o/0 0.32 1/1 2.81 2/2 1226.30 -/4 - -/6 - -/10 -
13 | 0/0 0.33 1/1 2.84 2/2 1198.08 -/4 - -/6 - -/10 -
0 0/0 0.15 1/1 0.52 1/1 38.16 3/3 5100.56 -/4 - -7 -
3 0/0 0.14 1/1 0.49 46/46 39.12 48/48 5123.78 -/94 - /1132 -
U(so10) 5 o/0 . 0.14 1/1 1080 0.52 1/1 17905 37.98 3/3 11875 OL3879 -/49 9118750 -/52 18009450
7 0/0 0.14 1/1 0.53 1/1 38.00 3/3 5157.70 -/4 - -7 -
11 | 0/0 0.15 1/1 0.49 1/1 38.05 3/3 5109.31 -/4 - /7 -
13 | 0/0 0.15 1/1 0.49 1/1 38.07 3/3 5100.74 -/4 - /7 -
0 0/0 0.18 1/1 0.76 1/1 138.70 3/3 26144.39 -/3 - -/6 -
3 0/0 0.18 1/1 0.72 56/56 133.79 58/58 26148.06 -/113 - -/1656 -
U(soy1) 5 00 o 0.18 1/1 1505 0.73 1/1 30855 131.29 3/3 iss12s 2629781 -/58 5461511 -/61 55595371
7 0/0 0.18 1/1 0.72 1/1 131.14 3/3 25903.82 -/3 - -/6 -
11 | 0/0 0.18 1/1 0.72 1/1 131.27 3/3 26018.36 -/3 - -/6 -
13 | o0/0 0.18 1/1 0.73 1/1 143.23 3/3 25823.24 -/3 - -/6 -
0 0/0 0.25 1/1 1.17 1/1 366.69 3/3 103977.92 -/3 - /7 -
3 0/0 0.24 1/1 1.14 67/67 368.25 69/69 104449.41 -/135 - -/2350 -
U(s012) 5 00 0.24 L7 R 1.14 1/1 59303 365.53 3/3 or6g0q 103648.79 -/69 13019908 /73 156238907
7 0/0 0.23 1/1 1.13 1/1 363.64 3/3 104006.62 -/3 - /7 -
11 | 0/0 0.24 1/1 1.14 1/1 365.29 3/3 104341.95 -/3 - -7 -
13 | 0/0 0.24 1/1 1.14 1/1 372.05 3/3 103943.08 -/3 - /7 -
0 0/0 0.05 1/1 0.07 1/1 0.12 3/3 0.36 3/3 1.13 5/5 6.44
3 0/0 0.04 1/1 0.06 11/11 0.16 13/13 0.61 23/23 3.36 79/80 22.00
U(sos) 5 0/0 o 0.05 yr 0.07 1/1 985 0.11 3/3 1000 0.34 13/13 3002 1.17 15/15 2007 5.59
7 0/0 0.04 1/1 0.07 1/1 0.11 3/3 0.34 3/3 1.06 5/5 4.70
11 | o/0 0.05 1/1 0.07 1/1 0.11 3/3 0.33 3/3 1.02 5/5 4.66
13 | 0/0 0.05 1/1 0.06 1/1 0.11 3/3 0.33 3/3 1.05 5/5 4.36
0 0/0 0.06 1/1 0.07 2/2 0.31 4/4 1.80 5/5 26.60 8/8 545.53
U(sog) 15 135 815 3875 15503 54263



3 0/0 0.05 1/1 0.10 17/17 0.39 19/19 2.32 35/35 33.22 172/173 435.91
5 0/0 0.06 1/1 0.11 2/2 0.30 4/4 1.62 20/20 22.80 23/23 281.89
7 0/0 0.06 1/1 0.10 2/2 0.31 4/4 1.62 5/5 22.62 8/8 279.29
11 | 0/0 0.05 1/1 0.10 2/2 0.30 4/4 1.58 5/5 22.60 8/8 281.42
13 | 0/0 0.06 1/1 0.11 2/2 0.30 4/4 1.59 5/5 22.66 8/8 282.02
0 0/0 0.06 1/1 0.14 1/1 0.64 3/3 17.20 3/3 617.03 6/6 216276.33
3 0/0 0.07 1/1 0.15 22/22 0.86 24/24 21.38 45/45 628.52 278/279 81944.37
U(so7) 5 o0, 0.06 v 0.15 1/1 9093 0.59 3/3 19640 16.58 24/24 65770 435.32 27/27 soso0  OTALTS
7 0/0 0.07 1/1 0.15 1/1 0.62 3/3 16.61 3/3 433.63 6/6 9610.87
11 | 0/0 0.06 1/1 0.15 1/1 0.62 3/3 16.50 3/3 435.20 6/6 9811.77
13 | 0/0 0.06 1/1 0.15 1/1 0.61 3/3 16.58 3/3 435.75 6/6 9851.68
0 0/0 0.10 1/1 0.22 1/1 1.92 4/4 150.37 4/4 6996.81 -/8 -
3 0/0 0.09 1/1 0.22 29/29 2.11 32/32 153.88 60/60 6860.80 - /470 -
U(sog) 5 0/0 o 0.08 U, 0.22 1/1 1404 1.91 4/4 35050 147.21 32/32 9373z 6344:62 -/36 1344903
7 0/0 0.09 1/1 0.22 1/1 1.89 4/4 147.63 4/4 6379.73 -/8 -
11 | 0/0 0.09 1/1 0.22 1/1 1.80 4/4 147.04 4/4 6378.76 -/8 -
13 | 0/0 0.09 1/1 0.21 1/1 2.09 4/4 147.06 4/4 6405.32 -/8 -
0 0/0 0.11 1/1 0.33 1/1 10.28 3/3 963.00 3/3 67426.05 -/6 -
3 0/0 0.11 1/1 0.33 37/37 11.21 39/39 1012.48 75/75 121960.85 -/744 -
U(sog) 5 0/0 0.11 VAR 0.32 1/1 o138 10.23 3/3 1389 962.83 39/39 74939y 0344866 -/42 245785
7 0/0 0.11 1/1 0.33 1/1 10.08 3/3 943.95 3/3 61728.95 -/6 -
11 | 0/0 0.11 1/1 0.32 1/1 10.19 3/3 960.06 3/3 63802.26 -/6 -
13 | 0/0 0.11 1/1 0.32 1/1 10.20 3/3 958.23 3/3 63816.45 -/6 -
0 0/0 0.04 1/1 0.03 1/1 0.04 2/2 0.04 2/2 0.05 3/3 0.06
3 0/0 0.04 1/1 0.04 4/4 0.05 5/5 0.04 8/8 0.06 14/15 0.07
U(sp,) 5 o0, 0.04 L 0.04 1/1 1o 0.04 2/2 a4 0.04 5/5 a5 0.05 6/6 a3 0.06
7 0/0 0.04 1/1 0.04 1/1 0.04 2/2 0.04 2/2 0.04 3/3 0.05
11 | 0/0 0.03 1/1 0.04 1/1 0.04 2/2 0.04 2/2 0.05 3/3 0.05
13 | 0/0 0.03 1/1 0.04 1/1 0.04 2/2 0.04 2/2 0.06 3/3 0.06
0 0/- 0.04 1/- 0.07 1/- 0.12 3/- 0.35 3/- 1.19 5/- 6.25
3 0/- 0.04 1/- 0.06 11/- 0.15 13/- 0.59 23/- 3.37 79/- 22.36
U(spy) 5 0/- 0 0.04 V- s 0.06 1/- - 0.12 3/- 1000 0.34 13/- 3002 1.16 15/- 007 5.53
7 0/- 0.04 1/- 0.07 1/- 0.11 3/- 0.34 3/- 1.06 5/- 4.32
11| o/- 0.04 1/- 0.06 1/- 0.12 3/- 0.34 3/- 1.07 5/- 4.30
13 | 0/- 0.04 1/- 0.07 1/- 0.11 3/- 0.35 3/- 1.07 5/- 4.40
0 0/0 0.07 1/1 0.14 1/1 0.60 3/3 16.66 3/3 452.07 6/6 14355.36
3 0/0 0.07 1/1 0.14 22/22 0.85 24/24 20.93 45/45 594.05 278/279 60858.94
U(sps) 5 00, 0.07 VA R 0.14 1/1 2093 0.60 3/3 12649 16.19 24/24 65779 426.08 27/27 sogoge 573926
7 0/0 0.07 1/1 0.13 1/1 0.59 3/3 16.09 3/3 422.58 6/6 8641.62
11| 0/0 0.07 1/1 0.14 1/1 0.57 3/3 16.03 3/3 423.00 6/6 8725.50
13 | 0/0 0.07 1/1 0.14 1/1 0.58 3/3 16.32 3/3 424.28 6/6 8746.83
0 0/0 0.11 1/1 0.33 1/1 10.16 3/3 957.52 3/3 64053.85 -/6 -
3 0/0 0.11 1/1 0.32 37/37 10.68 39/39 1000.26 75/75 101861.28 -/744 -
U(spy) 5 0/0 0.11 VAR 0.31 1/1 o138 10.11 3/3 01389 954.54 39/39 749397 62646:95 -/42 5245785
7 0/0 0.11 1/1 0.32 1/1 9.99 3/3 933.00 3/3 60743.22 -/6 -
11 | 0/0 0.11 1/1 0.33 1/1 10.09 3/3 961.40 3/3 62659.04 -/6 -




13 | 0/0 0.11 1/1 0.32 1/1 10.15 3/3 955.22 3/3 62779.30 -/6 -
0 0/0 0.19 1/1 0.73 1/1 131.42 3/3 26300.92 -/3 - -/6 -
3 0/0 0.20 1/1 0.71 56/56 136.42 58/58 26643.81 -/113 - -/1656 -
U(spg) 5 00 . 0.19 17 S 0.70 1/1 30855 146.29 3/3 uss1as  26190.44 -/58 S461511 -/61 5525371
7 0/0 0.18 1/1 0.70 1/1 132.35 3/3 26398.86 -/3 - -/6 -
11 | 0/0 0.19 1/1 0.71 1/1 146.12 3/3 26050.13 -/3 - -/6 -
13 | 0/0 0.18 1/1 0.72 1/1 131.06 3/3 26291.42 -/3 - -/6 -
0 0/0 0.04 0/0 0.03 0/0 0.04 0/0 0.04 0/0 0.04 0/0 0.05
3 0/0 0.04 0/0 0.03 2/2 0.04 2/2 0.04 2/2 0.05 5/5 0.06
Wi 5 o0, 0.04 o0 0.04 0/0 0 0.04 0/0 14 0.04 2/2 20 0.05 2/2 - 0.06
7 0/0 0.04 0/0 0.03 0/0 0.04 0/0 0.04 0/0 0.04 0/0 0.05
11 | 0/0 0.04 0/0 0.04 0/0 0.04 0/0 0.04 0/0 0.05 0/0 0.05
13 | 0/0 0.04 0/0 0.04 0/0 0.04 0/0 0.04 0/0 0.04 0/0 0.05
0 0/0 0.04 0/0 0.05 0/0 0.07 0/0 0.13 0/0 0.26 0/0 0.57
3 0/0 0.04 0/0 0.05 4/4 0.07 4/4 0.15 4/4 0.31 14/14 0.71
Wa 5 o0, 0.04 00, 0.05 0/0 a4 0.07 0/0 6o 0.12 4/4 195 0.27 4/4 200 0.58
7 0/0 0.04 0/0 0.05 0/0 0.07 0/0 0.12 0/0 0.27 0/0 0.58
11| 0/0 0.05 0/0 0.05 0/0 0.07 0/0 0.13 0/0 0.26 0/0 0.56
13 | 0/0 0.04 0/0 0.05 0/0 0.07 0/0 0.13 0/0 0.27 0/0 0.56
0 0/0 0.05 0/0 0.08 0/0 0.22 0/0 0.81 0/0 3.10 0/0 10.87
3 0/0 0.05 0/0 0.09 6/6 0.23 6/6 0.90 6/6 3.51 27/27 12.63
W 5 o0 0.05 o0 . 0.08 0/0 43 0.22 0/0 200 0.80 6/6 161 3.11 6/6 993 10.96
7 0/0 0.05 0/0 0.08 0/0 0.22 0/0 0.80 0/0 3.06 0/0 10.73
11 | 0/0 0.05 0/0 0.07 0/0 0.21 0/0 0.80 0/0 3.08 0/0 10.70
13 | 0/0 0.05 0/0 0.08 0/0 0.22 0/0 0.80 0/0 3.07 0/0 10.72
0 0/0 0.06 0/0 0.15 0/0 0.77 0/0 4.89 0/0 27.45 0/0 134.97
3 0/0 0.06 0/0 0.14 8/8 0.81 8/8 5.18 8/8 29.95 44/44 148.27
Wi 5 00 0.06 0/ ., 0.15 0/0 164 0.77 0/0 104 4.82 8/8 1986 27.10 8/8 2002 133.63
7 0/0 0.06 0/0 0.13 0/0 0.76 0/0 4.81 0/0 27.09 0/0 132.87
11 | 0/0 0.06 0/0 0.14 0/0 0.76 0/0 4.81 0/0 27.04 0/0 132.71
13 | 0/0 0.07 0/0 0.15 0/0 0.76 0/0 4.80 0/0 26.56 0/0 133.14
0 0/0 0.08 0/0 0.28 0/0 2.46 0/0 22.79 0/0 173.80 0/0 1135.61
3 0/0 0.07 0/0 0.28 10/10 2.51 10/10 23.51 10/10 183.72 65/65 1218.36
e 5 00 0.07 0/0 .. 0.27 0/0 - 2.43 0/0 1000 22.43 10/10 3002 171.21 10/10 007 1124.26
7 0/0 0.07 0/0 0.27 0/0 2.44 0/0 22.34 0/0 170.74 0/0 1119.23
11 | 0/0 0.07 0/0 0.29 0/0 2.38 0/0 22.32 0/0 169.51 0/0 1118.92
13 | 0/0 0.08 0/0 0.27 0/0 2.44 0/0 22.41 0/0 170.44 0/0 1116.61
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abelian, 5
commutative, 5
Heisenberg, 57
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rank, 13
semisimple, 7
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linear
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quantum, 55
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Weyl, 56
algebra homomorphism, 2
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antisymmetry, 5
autoreduced, 43

Cartan
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matrix, 11

subalgebra, 12, 59
Casimir operator, vii
Cen(F,S), 22
Cen(f,9), 22
center, 22
central extension, 6
centralizer, 22
Chebyshev polynomial, 54
Chevalley

algebra, 15

basis, 15
Chevalley-Serre relations, 13
Coxeter number, 49
CZ(A), 59

degree of nilpotency, 7
Der(.A), 2
derivation, 2
inner, 6
outer, 6
descending chain condition, 17

Enveloping algebra, 16
exponent, 20

filtration, 2
free monoid, 17

I'(A), 59

Gel’fand-Zetlin
modules, 60
subalgebra, 59, 61

general non-commutative polynomial

ring, 4
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invariant subspace, 2
isomorphic root systems, 10
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leading coefficient, 20
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leading term, 20

left ideal, 2

Leibniz formula, 3
Lie group, 5

M(xq,...x,), 20
My, 29

monoid ordering, 17
monoideal, 18

Newton diagram, 20

non-commutative polynomial

solvable type, 21

order

partial, 11
ordering

admissible, 18, 20

degree lexicographical, 19
degree reverse lexicographical, 19

degree-compatible, 21
lexicographical, 19

reverse lexicographical, 19

total degree, 19

weighted degree lexicographical, 19

p-center, 51

quantum algebra, 55

quantum Casimir element, 55

Radg, 7

radical, 7
rank, 10
rank of a Lie algebra, 48
reflecting hyperplane, 9
reflection, 9
representation, 2
adjoint, 6
faithful, 2
irreducible, 2
simple, 2
restricted Lie algebra, 8
right ideal, 2
root, 13
height, 11
negative, 11
positive, 11
simple, 11
root decomposition, 13
root space, 13
root system, 9
base, 11
irreducible, 11
rotation group, vii

series

derived, 7

lower central, 7
standard representation, 20
structure constants, 2
subalgebra, 1

self-normalizing, 12

7(f), 20
TV),3

tensor algebra, 3
total degree, 18
Ty(x), 54
two-sided ideal, 2

U, (s0,), 53
U(g), 16
Z/{q(ﬁ[g), 555)

weighted total degree, 19
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