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Chapter 1

Introduction

Small package shipping (SPS) is a fast-growing market with an increase in pack-
age volume of 37% from 2000 to 2010 in Germany (Esser and Kurte 2011). In
general, SPS companies perform last-mile deliveries from a set of local depots
(see, e.g., Zhong et al. 2007, Haase and Hoppe 2008) and the associated pickup
and delivery costs are estimated to amount to 35-60% of the total transportation
cost (Wasner and Zäpfel 2004). The SPS sector is characterized by a highly com-
petitive market situation, especially since the deregulation in the US and Europe
(see, e.g., Figliozzi et al. 2007), which was even intensified by the financial cri-
sis in 2008/2009 (Esser and Kurte 2011). Moreover, rising fuel and labor costs
constantly decrease the profit margins per delivered package.

In recent years, the pressure has further increased as laws and regulations to
reduce greenhouse gas pollution have already been passed or are currently under
debate. For example, to stop the increasing emissions of light commercial vehicles
(<3.5t), EU regulation No 510/2011 imposes a penalty of 95 Euro for each gram
CO2/km above 147 g CO2/km of the manufacturers’ average emissions starting
in 2020 (European Parliament and European Council 2011). The white book
of the European Commission even envisages a mostly emission-free city logistics
until 2030 (European Commission 2011).

Besides optimizing daily delivery schedules concerning routing costs, SPS com-
panies are forced to use every possible advantage to render their local delivery
operations profitable. On the one hand, they pay more and more attention to
customer service and effective workforce management practices to gain advan-
tage over their competitors. On the other hand, battery electric vehicles (BEVs)
are employed for last-mile deliveries to reduce energy costs and to meet future
emission standards.

Enhanced customer service quality and an effective utilization of drivers can be
achieved by having the same driver visit the same set of customers regularly as the
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Chapter 1 Introduction

driver becomes acquainted with the region and the customer locations therein.
Experienced drivers use shortcuts, know about traffic light intervals, anticipate
road or traffic problems, find parking space more easily and know alternative
delivery possibilities in case a customer is absent, which leads to reduced travel
and service times. The regularity of service creates a bond between customer
and driver, which yields improved customer service and a competitive advantage
resulting from higher customer loyalty and improved reputation (Wong 2008,
Smilowitz et al. 2012).

To achieve such consistency benefits, the routing operations of SPS compa-
nies are commonly based on the division of the depot area into fixed service
territories, each visited by a single driver (Malandraki et al. 2001, Wong 2008).
Due to the pre-assignment of customers to drivers, such fixed-area-based routing
approaches (FABRAs) offer the following advantages (Wong and Beasley 1984):
1) they implicitly achieve service consistency as a customer requiring service is
visited by the same driver every time he requires service, 2) they decrease routing
complexity as routes can be planned independently for each driver, and 3) they
reduce administrative costs, e.g., by reducing the effort for sorting and assigning
packages to drivers or for the instruction of drivers. The drawback of FABRAs
is the decline in routing flexibility, which yields route configurations that are
suboptimal concerning route efficiency (for example, measured in total traveled
distance) when faced with varying demand and/or numerous and possibly tight
time window requirements.

For reducing energy costs and complying with emission regulations, the use
of BEVs is a promising alternative as EU regulation No 510/2011 defines BEVs
to have zero emissions. In earlier years, BEVs failed due to exorbitant battery
prices and very short driving ranges. However, as BEVs have become one of
the major research areas in the automotive sector and more and more BEVs are
developed, the magnitude of these problems diminishes. In the SPS industry,
several big companies, like DHL International (DHL)1, United Parcel Service
(UPS)2, and DPD Dynamic Parcel Distribution (DPD)3 already started using

1
http://www.dhl.com/en/press/releases/releases_2011/group/040711.html

2
http://pressroom.ups.com/Press+Releases/Archive/2011/Q3/UPS+Purchasing+100+

All-Electric+Vehicles+for+California+Deployment

3
http://www.dpd.com/de/Home/About-DPD/Press-Centre/Press-Releases/Archive/

Archive-2011/EN-press-releases-2011/DPD-in-Germany-emissions-free-parcel-

deliveries-with-electric-vehicles-in-Hamburg

2
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BEVs for last-mile deliveries from depots to customers, in particular in urban
areas. Governments in all parts of the world promote the electrification trend
and plan to provide the required infrastructure, e.g., “Source London”, a city
wide electric vehicle charging network will go into operation in London in 20134.

Operations research (OR) techniques are generally applied for the effective
management of local delivery tasks (Toth and Vigo 2002). In the scientific
literature, route planning tasks are represented as Vehicle Routing Problems
(VRPs). The basic VRP seeks to minimize the costs for visiting a set of
customers by means of delivery routes starting and ending at a depot. Many
variants of the VRP incorporating real-world constraints and conditions have
been proposed, among them the Capacitated VRP (CVRP), where vehicles have
a limited freight capacity (see, e.g., Toth and Vigo 2002, Cordeau and Laporte
2005) and the VRP with Time Windows (VRPTW), where customers have to be
reached within a specified time interval (see, e.g., Bräysy and Gendreau 2005a,b,
Gendreau and Tarantilis 2010). The VRPTW is an NP-hard problem of which
only small-sized instances can be solved by means of exact solution methods
(Baldacci et al. 2012). Consequently, a huge amount of metaheuristic solution
methods have been proposed (Gendreau et al. 2008).

In order to find a tradeoff between achieving service consistency and maintain-
ing routing flexibility, some recent scientific approaches present VRP models for
SPS routing problems that explicitly integrate consistency requirements and are
solved without fixing service territories (see Groër et al. 2009, Sungur et al. 2010,
Smilowitz et al. 2012). On the other hand, FABRAs are adapted by allowing
to adjust them based on the daily demand, i.e., by excluding a percentage of
customers from being assigned to fixed areas as done at UPS and described in
Zhong et al. (2007). However, to the best of our5 knowledge, all published works
on FABRAs neglect the existence of time windows and of the above mentioned
approaches forgoing service territories only Sungur et al. (2010) consider soft
time windows. This strongly conflicts with recent practical developments. Our
industry contacts state that up to 60% of their orders are time-definite, which is
consistent with the statistics given in Campbell and Thomas (2009).

4
https://www.sourcelondon.net/

5As commonly done in scientific publications to enhance readability, the first person plural is
used to indicate the author of this thesis throughout the work.
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If time windows are considered, routing flexibility is not only needed to
achieve distance-efficient route configurations but also to fulfill customer
delivery time requirements. Thus, the value of routing flexibility should
increase, which is likely to have a negative effect on the solution quality of
FABRAs. However, no study exists on the magnitude of this effect and the
factors that influence it. And nonetheless, several private communications with
employees of German SPS companies and the literature on SPS routing indicate
that, despite the high percentage of time-definite deliveries, FABRAs are utilized.

Concerning the utilization of BEVs, route planning models have to incorporate
the specifics of BEVs in order to be beneficial. For example, the maximum
driving range of BEVs is potentially not sufficient to perform the typical delivery
tour of a small package shipper in one run or to reach customers located far from
the depot. Since reducing the number of deliveries performed by one vehicle
or excluding customers is clearly not a profitable option, visits to recharging
stations along the routes are required. If theses are not properly integrated in
the route planning method, this can lead to long detours, especially if available
recharging stations are scarce.

However, to the best of our knowledge, only one routing model that considers
recharging stations exists. Erdogan and Miller-Hooks (2012) propose the Green
VRP (G-VRP), a routing model for Alternative Fuel Vehicles (AFVs). The
G-VRP considers a limited fuel capacity of the vehicles and the possibility to
refuel at Alternative Fuel Stations (AFSs). For each refueling as well as for each
customer visit, a fixed service time is considered and the maximum duration
of a route is restricted. However, no capacity restrictions and no time window
constraints are considered.

1.1 Contribution

This thesis addresses the above described challenges faced by SPS companies and
investigates the integration of 1) service consistency and driver knowledge aspects
and 2) the utilization of electric vehicles into the route planning of small package
shippers. We use OR models and solution methods to gain insights into the newly
arising problems and thus support managerial decisions concerning these issues.
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The first question studied in this work is: How well do FABRAs perform in
the presence of time window requirements and how strong is the influence of
factors like the size of the service territories or the variance of the daily demand
on this performance? To address this question, we develop a FABRA to solve
a series of VRPTW that are linked by a common customer base set of which
every day a random subset requires service. This corresponds to the practical
problem faced by many SPS companies. The daily problems are solved completely
independent of one another, i.e., we are not optimizing consistency goals like, e.g.,
driver familiarity over the considered time period, but our optimization goal is
to minimize the traveled distance on each day while adhering to the restriction
posed by the service territories.

The developed FABRA is a two-phase method called Semi-Fixed Service Ter-
ritory Routing (SFSTR) that first divides the delivery area into service territories
and second carries out the daily routing based on these territories. It aims at
providing a performance that is good enough to achieve meaningful results in
the studies while maintaining (relative) simplicity. SFSTR is used in numerical
studies to investigate the suitability of such an approach when faced with time
window constraints in the daily routing. More precisely, we study to what extent
the goals of feasible and distance-efficient routes can be achieved with a FABRA
under time window constraints and how well the implicit realization of familiarity
benefits (without directly optimizing consistency in any way but only due to the
restriction to service territories) is achieved.

Second, we investigate a route planning model that integrates driver learning
aspects in order to generate efficient routes based on different extents of driver
knowledge. This is achieved by means of driver-specific travel and service times
reflecting the knowledge of the different drivers. In this way, routing flexibility is
maintained while drivers have an incentive to stay in familiar areas due to shorter
driving and service times. Note that contrary to the SFSTR approach, the goal
is not to promote the learning of the drivers but to design efficient routes based
on already existing different extents of driver knowledge.

We provide a mathematical formulation of the so-called VRP with Time Win-
dows and Driver-Specific Times (VRPTWDST). As VRPTWDST extends the
VRPTW, the high complexity of the problem renders exact solution methods
inadequate for solving realistically sized problem instances. Therefore, we de-
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velop a high-quality Tabu Search (TS) for solving VRPTWDST and study its
performance on benchmark instances of the closely related VRPTW and a com-
prehensive set of newly generated VRPTWDST test instances. Moreover, the
effect of different distributions of the “learned” customers and the level of driver
knowledge is investigated.

Third, we study a route planning model that considers the special character-
istics of BEV. The Electric Vehicle Routing Problem with Time Windows and
Recharging Stations (E-VRPTW) incorporates the possibility of recharging at
any of a set of available stations using an appropriate recharging scheme, i.e.,
recharging times depend on the battery charge of the vehicle on arrival at the
station. Moreover, the most important practical requirements of SPS companies
using BEVs, namely capacity constraints on vehicles and customer time windows
are included.

As E-VRPTW is also an extension of the VRPTW and thus NP-hard, we
develop a hybrid metaheuristic to solve it. The hybrid combines a Variable
Neighborhood Search (VNS) heuristic with a TS method for the intensification
phase of the VNS. In numerical studies, we prove the quality and efficiency of
our VNS/TS on test instances of related problems, namely the G-VRP and the
Multi-Depot VRP with Inter-Depot Routes (MDVRPI). Moreover, we design two
sets of benchmark instances for E-VRPTW: A set of small-sized instances that we
can solve exactly with the optimization software IBM ILOG CPLEX Optimizer
(CPLEX)6 in order to assess the performance of VNS/TS on E-VRPTW and a
set of more realistically sized instances, on which we study the effectiveness of
every component of our hybrid solution method.

Last, we contribute by identifying an error in a recently proposed approach
for efficiently handling time window constraints in local search by Nagata et al.
(2010). We study the cases in which the proposed formula offers incorrect results
and present a sound formula. The corrected approach is adapted for all the
solution methods presented in this work.

One should note that the findings of this thesis are not only relevant for SPS
companies but also for other logistics service providers. The insights about
fixed-area routing in the presence of time windows as well as the decision support
offered by the VRPTWDST routing model and solution method can be of

6
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
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importance to any operations whose routing creates driver learning effects. This
is always the case if repeated delivery to a base set of customers or locations
takes place, like, e.g., in meal delivery, product maintenance, transport of
disabled persons or bus routing. Moreover, the E-VRPTW model and solution
method can be of relevance for any company employing electric vehicles in their
delivery fleet to fulfill time-definite deliveries.

1.2 Organization

This thesis is structured as follows. In Chapter 2, the fundamental concepts and
the relevant literature are introduced. As the VRPTW lies at the core of all
problems considered in this work, we give a thorough description of the problem,
an overview of the most successful solution methods and a precise description
of the most established VRPTW benchmarks. Moreover, the metaheuristic
components used in this work are introduced. Subsequently, techniques for
handling capacity and time window constraints are discussed and a correction
of the time travel approach of Nagata et al. (2010) is presented. Finally, the
relevant literature concerning consistency aspects and the employment of electric
vehicles in vehicle routing is presented.

In Chapter 3, we detail how SFSTR designs service territories and conducts
the daily routing based on the created territories. The TS used to generate the
solutions for the created sample days and for carrying out the daily routing is
introduced. Further, we present computational studies that use several 100-day
series of VRPTW problems with different customer distributions to study the
performance of SFSTR concerning route efficiency and consistency measures in
comparison to an RR strategy. Additionally, we analyze the influence of the size
of the territories, i.e., the number of customers fixedly assigned to a driver, and
different variabilities in the number of customers requiring service on the overall
performance of SFSTR.

Chapter 4 provides a mathematical formulation of the VRPTWDST and de-
scribes an efficient TS method to solve the problem. Moreover, we generate
several sets of benchmark instances for VRPTWDST and perform extensive nu-
merical studies on the created instances and on standard VRPTW instances. The

7
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performance of the developed TS is assessed and the impact of different distribu-
tions of learned customers and different levels of driver knowledge is studied.

In Chapter 5, we present a mixed-integer model for E-VRPTW and describe
the VNS/TS hybrid for solving the problem. Experimental results obtained on
newly designed E-VRPTW instances as well as on benchmark sets of related
problems are presented. Finally, we summarize the findings of this thesis and
give an outlook on future research opportunities in Chapter 6.

8



Chapter 2

Fundamental Concepts and Literature

This section introduces some basic concepts and commonalities that are relevant
for the problems addressed in this work and gives an overview of the related
literature. In Section 2.1, the Vehicle Routing Problem with Time Windows
(VRPTW), which lies at the core of all problems studied in the thesis, is in-
troduced. We provide an exact mathematical formulation of the problem, an
overview of the most successful metaheuristic solution methods, paying special
attention to the approaches applied in the thesis, and a detailed description of
the most relevant benchmark problems, which are later adapted for the problems
addressed in this work.

Section 2.2 investigates the efficient constraint handling in local-search-based
solution methods for the VRPTW. We present techniques to efficiently compute
the change in capacity and time window violation caused by application of a local
search move. Moreover, we propose a correction of a recently presented approach
by Nagata et al. (2010). In Section 2.3, we give an overview of the literature
addressing consistency and driver learning aspects in route planning methods,
setting the background for Chapters 3 and 4. Section 2.4 discusses the literature
relevant for integrating the specifics of electric vehicles into route planning, laying
the foundation for the Electric Vehicle Routing Problem with Time Windows and
Recharging Stations (E-VRPTW) studied in Chapter 5.

2.1 The Vehicle Routing Problem with Time Windows
(VRPTW)

More than fifty years have elapsed since the VRP was first introduced in Dantzig
and Ramser (1959), providing a useful abstraction of important real-world prob-
lems like waste collection or grocery distribution. Since then, the VRP and
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its variants have become some of the most studied combinatorial optimization
problems in OR literature, inspiring with their practical relevance and intrinsic
difficulty (Laporte 2009).

Among the VRP variants, the VRPTW is the most important and widely
studied, with hundreds of published papers (Nagata et al. 2010, Gendreau and
Tarantilis 2010). It considers time slots (so called time windows) in which service
at each customer has to take place and it can thus be used to model many
real-world distribution management problems more accurately, like, e.g., parcel
deliveries in various industries, bank deliveries, school bus routing and transports
for just-in-time manufacturing (Bräysy and Gendreau 2005a). The significant
academic value of the VRPTW also stems from the fact that it is often used
as a benchmark problem when solution approaches for new, real-world inspired
VRPTW variants are suggested (Nagata et al. 2010).

The solution of a VRPTW calls for the determination of a cost-minimal set
of routes carried out by a set of homogeneous vehicles located at a single depot.
Each route starts and ends at the depot within a given scheduling horizon and the
cumulated demand of the customers visited on a route does not exceed vehicle
capacity. Each customer is served by exactly one vehicle. In this work, the focus
lies on hard time windows requiring that in the final solution of a problem each
customer is served within the given time window. By contrast, a small part of
the literature on VRPTW considers soft time windows, i.e., the final solution
is allowed to violate time windows and a cost penalty is generally added to the
objective function (see, e.g., Taillard et al. 1997, Figliozzi 2010). In the following,
VRPTW refers to the problem with hard time windows if not explicitly stated
otherwise.

The VRPTW is a challenging optimization problem generalizing the NP-hard
Capacitated VRP (CVRP). Even finding a feasible solution to the VRPTW given
a fixed vehicle number is an NP-hard problem as it includes the one-dimensional
bin packing problem as a special case (Garey and Johnson 1979, Savelsbergh
1985). Contrary to the Traveling Salesman Problem, for which instances with
several thousand customers are regularly solved (see, e.g., Gutin and Punnen
2002), only small to medium-sized instances of VRPTW can be solved by ex-
act methods even within large amounts of computing time (see, e.g., Baldacci
et al. 2012). Consequently, intensive research effort has been given to meta-
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heuristic optimization approaches for VRPTW, which resulted in a large number
of successful methods that are able to produce high-quality solutions for more
realistically sized instances in reasonable time.

Unfortunately, the objective function of the VRPTW differs between exact
solution approaches and heuristics, which makes a comparison between methods
of the different strands or the utilization of bounds determined by exact methods
to assess the quality of a heuristic method impossible. While in the literature on
exact approaches the minimization of traveled distance is traditionally considered
as objective (see, e.g., Kallehauge 2008, Baldacci et al. 2012), most heuristic
approaches use a hierarchical objective (see, e.g., Bräysy and Gendreau 2005a,
Gendreau and Tarantilis 2010). First, the number of vehicles is minimized and
only in the second step the traveled distance. Consequently, a solution with fewer
vehicles is always superior, independent of the traveled distance. The hierarchical
objective used in heuristic approaches can be traced back to the paper of Solomon
(1987), who presented a set of construction heuristics for VRPTW and compared
their performance on newly generated (and now well-known) VRPTW benchmark
instances. If not explicitly stated otherwise, the hierarchical objective function
is used in the remainder of this work.

Cordeau et al. (2002) provide a comprehensive overview of exact and heuristic
methods for the VRPTW proposed up to the end of the twentieth century. A
detailed and updated description of heuristic solution methods for VRPTW is
given in the two-part review of Bräysy and Gendreau (2005a,b). The first part
deals with constructive heuristics and local search methods while the second part
is devoted to metaheuristics. The review of metaheuristics is again updated in
Gendreau et al. (2008). Gendreau and Tarantilis (2010) provide an overview and
analysis of advanced heuristics for solving large-scale VRPTW. A recent survey
on exact algorithms is given by Baldacci et al. (2012).

2.1.1 Problem Definition

This section provides a formal definition of the VRPTW as mixed-integer pro-
gram. Let V = {1, . . . , N} denote the set of N customers and let 0 and N+1

denote instances of the same depot, where every route starts at 0 and ends at
N +1. Further, let the indices 0 and N +1 indicate that a set contains the
respective instance of the depot, e.g., V0 = V ∪ {0}. Then, VRPTW can be
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defined on a complete directed graph G = (V0,N+1, A), with the set of arcs
A = {(i, j) | i, j ∈ V0,N+1, i �= j}.

With each arc, a distance dij and a travel time tij are associated. At the depot,
a set K of homogeneous vehicles with a maximal capacity of C are available. Each
vertex i ∈ V0,N+1 is assigned a positive demand qi, which is set to 0 for the depot.
Moreover, each vertex i ∈ V0,N+1 has a time window [ei, li] and an associated
service time sj (s0, sN+1 = 0). Service cannot begin before ei, which might cause
waiting time and is not allowed to start after li but might end later.

Instead of a three-index formulation, we use decision variables associated with
vertices to keep track of vehicle states, thus keeping the number of required
variables lower. Variable τj specifies the time of arrival and uj the remaining load
on arrival at vertex j ∈ V0,N+1. The decision variables xij, i ∈ V0, j ∈ VN+1, i �= j

are binary and equal 1 if an arc (i, j) is traveled and 0 otherwise. Using the
introduced notation, the mathematical model of VRPTW is formulated as mixed-
integer program as follows:

min
�

i∈V0,j∈VN+1,i �=j

dijxij (2.1)

�

j∈VN+1,i �=j

xij = 1 ∀i ∈ V (2.2)

�

j∈V0,i �=j

xji = 1 ∀i ∈ V (2.3)

τi + (tij + si)xij − l0(1− xij) ≤ τj ∀i ∈ V0, ∀j ∈ VN+1, i �= j (2.4)

ej ≤ τj ≤ lj ∀j ∈ V0,N+1 (2.5)

0 ≤ uj ≤ ui − qixij + C(1− xij) ∀i ∈ V0, ∀j ∈ VN+1, i �= j (2.6)

0 ≤ u0 ≤ C (2.7)

xij ∈ {0, 1} ∀i ∈ V0, j ∈ VN+1, i �= j (2.8)

The objective function is defined in (2.1). In the mathematical model, the objec-
tive to minimize traveled distance is given. Constraints (2.2) ensure that each cus-
tomer has exactly one successor, thus enforcing connectivity. Flow conservation is
established by Constraints (2.3), guaranteeing that at each vertex the number of
incoming arcs is equal to the number of outgoing arcs. Constraints (2.4) enforce
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time feasibility for arcs leaving customers and the depot. Constraints (2.5) ensure
that each vertex is visited within its time window. The formation of subtours is
prevented by Constraints (2.4) and (2.5). Capacity constraints are given in (2.6)
and (2.7), assuring a nonnegative load upon arrival at any vertex. Finally, binary
variables are defined in (2.8).

As far as we are aware, no precise mathematical notation exists to define the
desired hierarchical objective function. However, we can use a cost-based formu-
lation to realize the hierarchical objective as follows:

min
�

j∈V

x0j ·M +
�

i∈V0,j∈VN+1,i �=j

cijxij.

By setting the cost cij for traveling arc (i, j) to the distance dij and choosing
an appropriately large value for the cost M of an arc leaving the depot, we
obtain a hierarchical objective function. For example, the cost M can be set
to 2 · N · maxi∈V0,j∈VN+1(cij) as this is an upper bound of the travel cost of any
solution.

2.1.2 Metaheuristic Solution Methods for the VRPTW

Metaheuristics are solution methods that use higher-level strategies to guide un-
derlying heuristics in order to achieve a robust search of the solution space (Talbi
2009, Gendreau and Potvin 2010b). Contrary to exact solution methods, meta-
heuristics are approximate in the sense that they do not guarantee to find an
optimal solution to the problem tackled. Their goal is to achieve a good trade-
off between achieved solution quality and the computational effort spent on the
problem solving.

Metaheuristics can be classified into single-solution and population-based
methods (see, e.g. Blum and Roli 2003, Gendreau and Potvin 2005, Talbi 2009).
Single-solution metaheuristics, also called trajectory methods, are algorithms
working on a single solution at any time of the search process (Blum and Roli
2003). They encompass local-search-based methods like Variable Neighborhood
Search (VNS), Iterated Local Search (ILS) or Tabu Search (TS), whose goal is to
guide local search methods to overcome local optima and to efficiently explore the
search space. All solution methods developed in this work, or more precisely all
their components, stem from this class of metaheuristics. Many single-solution
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metaheuristics have been successfully applied to the VRPTW, e.g., TS (Tail-
lard et al. 1997, Cordeau et al. 2001), ILS (Ibaraki et al. 2005, 2008), large
neighborhood search (Bent and Van Hentenryck 2004, Pisinger and Ropke 2007,
Prescott-Gagnon et al. 2009), and multi-start local search (Ibaraki et al. 2005,
Lim and Zhang 2007).

Population-based metaheuristics consider a set of solutions instead of a sin-
gle solution at any iteration of the optimization process (Blum and Roli 2003).
The most studied population-based methods for solving combinatorial optimiza-
tion problems are Evolutionary Computation (EC) and Ant Colony Optimiza-
tion (ACO). As no methods of this class of metaheuristics are used in this work,
they are not described in further detail. However, it should be mentioned that
population-based methods have also been applied to the VRPTW with great suc-
cess, e.g., evolution strategies and memetic algorithms, which both belong to the
class of EC methods (Mester and Bräysy 2005, Homberger and Gehring 2005,
Nagata et al. 2010), and ACO (Gambardella et al. 1999).

In the following paragraphs, we describe the single-solution metaheuristic con-
cepts relevant for this work in more detail and give references to their most
successful applications to the VRPTW. We refer the reader to Gendreau et al.
(2008) for a categorized bibliography of metaheuristic solution methods for the
VRPTW. For a more complete view on metaheuristic solution methods, we refer
to Reeves (1993), Osman and Laporte (1996), Corne et al. (1999), Voss et al.
(1999), Resende and Pardalos (2002), Ribeiro and Hansen (2001), Glover and
Kochenberger (2003), Blum and Roli (2003), Gendreau and Potvin (2005), Talbi
(2009) and Gendreau and Potvin (2010b).

2.1.2.1 Tabu Search

TS is a local-search-based metaheuristic whose principles were first proposed in
Glover (1986). In each iteration, the search considers the neighborhood N (S)

of the current solution S. In general, the neighborhood is defined implicitly by
means of neighborhood operators, which describe modifications to the current
solution. In order to be able to escape low-quality local optima, TS selects the
best neighbor of the current solution at each iteration, even if it is of lower quality.
In addition, recently visited solutions or attributes of the solutions are stored in
a tabu list and are prohibited for some iterations called the tabu tenure. In this
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way, short term cycling of the search process is avoided (Gendreau and Potvin
2005). To illustrate this, imagine a situation where the search process has reached
a local optimum and the least deteriorating move is chosen. Without the tabu
list, the search is trapped as the next move returns to the local optimum because
it is then the best move available.

Several stopping criteria are possible but typically the search stops after a fixed
number of iterations or if the best found solution has not improved for a certain
number of iterations. A pseudocode overview of a TS is given in Figure 2.1 (cf.,
e.g., Blum and Roli 2003).

S ← generateInitialSolution()
tabuList ← ∅

while termination criteria not satisfied do
S ← chooseBestOf(N (S) \ tabuList)
update(tabuList)

end while

Figure 2.1: Tabu search in pseudocode

A drawback of all solution methods that are based on local search is that
they tend to be too local and thus only search relatively small regions of the
solution space. Therefore, diversification techniques are often applied to improve
the efficiency of TS methods, see Soriano and Gendreau (1996) and Gendreau
and Potvin (2010b) for an introduction to the most commonly applied methods.

TS has successfully been applied to various combinatorial optimization prob-
lems providing near-optimal solutions in reasonable computing times (Gendreau
and Potvin 2005). For a detailed description of TS and its extensions, we refer
to Glover (1989, 1990), Glover and Laguna (1997, 2002), Gendreau (2001) and
Gendreau (2003). For the most successful applications of TS to the VRPTW, see
Garcia et al. (1994), Rochat and Taillard (1995), Potvin (1996), Taillard et al.
(1997), Badeau et al. (1997), Cordeau et al. (2001) and Bräysy and Gendreau
(2002).

2.1.2.2 Variable Neighborhood Search

VNS, introduced by Mladenović and Hansen (1997), performs a local search on
systematically changing (often nested) neighborhoods in order to escape from
local optima. The idea is to switch to the next neighborhood as soon as a local
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optimum for the current neighborhood is reached. Starting from the current
solution S, the perturbation phase (also called shaking) randomly generates a new
solution S � in its first neighborhood and from there a local descent is performed.
If the obtained local optimum S �� is of lower quality than the current solution, the
next neighborhood is chosen to repeat the procedure. In this way, VNS explores
solutions increasingly distant from the current (Mladenović and Hansen 1997). If
a better solution is found or all neighborhoods have been searched, the procedure
is restarted with the first neighborhood. VNS terminates if a stopping criterion
like, e.g., reaching a pre-defined number of iterations, is satisfied. Figure 2.2 shows
a pseudocode overview of the VNS method (cf., e.g., Hansen and Mladenović
2001b).

Define a set of neighborhood structures Nκ for κ = 1, ..., κmax

S ← generateInitialSolution()
κ ← 1
while termination criteria not satisfied do

S� ← generateRandomPoint(Nκ(S)) {Shaking}
S�� ← applyLocalDescent(S�) {Local Search}
if f(S��) < f(S) then

S ← S��

κ ← 1
else

κ ← κ+ 1 mod κmax

end if
end while

Figure 2.2: Variable neighborhood search in pseudocode

Surveys and tutorials on VNS are presented in Hansen and Mladenović (1999,
2002, 2001a,b, 2003) and Hansen et al. (2010). VNS yields excellent results
when applied to vehicle routing problems, in particular VRPs with time windows
and/or multiple depots, see Bräysy (2003), Polacek et al. (2004), Tarantilis et al.
(2008) and Stenger et al. (2011).

2.1.2.3 Simulated Annealing

Simulated Annealing (SA) is a randomized local search method introduced by
Kirkpatrick et al. (1983). With some probability, SA also accepts moves to neigh-
boring solutions with a worse objective function value and is thus able to escape
from low-quality local optima. SA is inspired by the physical annealing process of
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glass or metal, which aims at generating solids with low-energy states by carefully
reducing the temperature in a stepwise fashion. In the solution method context,
a solution corresponds to a state and the objective function value to its energy
(Talbi 2009).

In each iteration, the current solution S is modified by randomly selecting a
neighboring solution. Next, the objective function values f(S �) and f(S) of the
new solution S � and the current solution are compared. Better solutions are
always accepted, worse solutions are accepted with the Metropolis probability
(Metropolis et al. 1953). The Metropolis probability depends on a parameter
called the temperature T and the difference between the objective function values
of the current and the newly generated solution as follows:

p = e−
∆f
T = e−

f(S�)−f(S)
T .

Basically, a move is more likely to be accepted if the temperature is high and
the magnitude of the cost increase is low. The SA procedure starts with an
initial temperature T0 that gradually decreases according to some predefined
cooling schedule. At each temperature level, a certain number of iterations are
performed. Thus, the probability of accepting worse solutions “cools” down during
the solution process and the method stops in a local optimum (Gendreau and
Potvin 2005). The SA algorithm is presented in pseudocode in Figure 2.3 (see,
e.g., Blum and Roli 2003).

S ← generateInitialSolution()
T ← T0

while termination criteria not satisfied do
S� ← generateRandomPoint(N (S))
if f(S�) < f(S) then

S ← S�

else
Accept S� as new solution with probability p(∆f, T )

end if
update(T )

end while

Figure 2.3: Simulated annealing in pseudocode

Contrary to most metaheuristics, it can be proven that SA converges to a global
optimum for an infinite number of iterations (see, e.g., Nikolaev and Jacobson
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2010). Unfortunately, this is not true for finite-time implementations, which
significantly lowers the practical impact of this finding. For the most successful
applications of SA to the VRPTW, we refer to Czech and Czarnas (2002), Li
and Lim (2003), Debudaj-Grabysz and Czech (2005) and Woch and Łebkowski
(2009).

2.1.3 Description of Benchmark Instances

As mentioned above, the VRPTW has been studied extensively in the literature
and benchmark instances have been proposed in order to make the performance
of different solution methods comparable. In this section, we describe the most
important benchmark problems proposed for VRPTW as they are used to assess
the performance of solution methods presented in this work and also as a basis
for generating the test instances for the addressed routing problems.

The best-known VRPTW instances stem from Solomon (1987). In the original
work, instances with different customer numbers have been proposed (25, 50,
75, 100 customers), but in recent years only the 56 largest instances with 100
customers have received attention. In the remainder of this work, they are simply
referred to as Solomon instances. They can be downloaded from the website of
the Transportation Optimization Portal of SINTEF Applied Mathematics1.

The proposed test instances were generated to represent different problem char-
acteristics. They are divided into six groups: C1, C2, R1, R2, RC1, RC2, each
of them containing between 8 and 12 test problems. The groups are based on
four different geographical distributions of the customer locations: two clustered
distributions (C1 and C2), one uniform (R) and one combination of clustered
and uniform (RC) as shown in Figure 2.4. Filled squares mark the locations of
depots, blank circles customer locations.

The instance groups differ with regard to the scheduling horizon of the depot
l0 − e0 and the capacities of vehicles. Groups C1, R1 and RC1 have a relatively
short scheduling horizon and low-capacity vehicles, generally resulting in solutions
with a high number of short routes containing only few customers. Groups C2,
R2, RC2 have a considerably longer scheduling horizon and high-capacity vehicles,
resulting in solutions with a comparatively low vehicle number performing longer
routes containing a higher number of customers.

1http://www.sintef.no/Projectweb/TOP/Problems/VRPTW/Solomon-benchmark/
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(a) C1 distribution (b) C2 distribution

(c) R distribution (d) RC distribution

Figure 2.4: The distribution of customers for the different problem groups of the 100-
customer Solomon VRPTW benchmark. Customers are represented as
white circles, depots as black squares.

The instances within a group differ in terms of time window density (TWD),
i.e., the percentage of customers with a time window (25%, 50%, 75%, 100%), and
time window width (TWW). TWW is defined as the average width of (lv − ev)

across all customers in the problem instance. Table 2.1 reports the TWD and
TWW of the Solomon instances, which are uniquely identified with a combination
of their group indicator and their number as shown in the table.

In Table 2.2, we present the best known metaheuristic solutions for the Solomon
instances assuming the hierarchical objective function described above. The list is
compiled from the SINTEF website and reports the number of vehicles (#Rts.)
and traveled distance (TD) for each instance. Moreover, for each solution the
first published article in which the respective solution was reported is given in
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C1 C2 R1 R2 RC1 RC2

# TWD TWW TWD TWW TWD TWW TWD TWW TWD TWW TWD TWW

01 100% 60.76 100% 160.00 100% 10.00 100% 115.96 100% 30.00 100% 120.00
02 75% 61.27 75% 160.00 75% 10.00 75% 115.23 75% 30.00 75% 120.00
03 50% 59.90 50% 160.00 50% 10.00 50% 117.34 50% 30.00 50% 120.00
04 25% 60.64 25% 160.00 25% 10.00 25% 111.80 25% 30.00 25% 120.00
05 100% 121.61 100% 320.00 100% 30.00 100% 240.00 100% 54.33 100% 223.06
06 100% 156.15 100% 486.64 75% 30.00 75% 240.00 100% 60.00 100% 240.00
07 100% 180.00 100% 612.32 50% 30.00 50% 240.00 100% 88.21 100% 349.50
08 100% 243.28 100% 640.00 25% 30.00 25% 240.00 100% 112.33 100% 471.93
09 100% 360.00 100% 58.89 100% 349.50
10 100% 86.50 100% 383.27
11 100% 93.10 100% 471.94
12 100% 117.64

Table 2.1: Time window density (TWD) and average time window width (TWW) of
the Solomon instances

column AUT, using the following abbreviations depending on author names: BB

(Berger and Barkaoui 2004), BGGPT (Badeau et al. 1997), BVH (Bent and
Van Hentenryck 2004), CC (Czech and Czarnas 2002), CLM (Cordeau et al.
2001), DGC (Debudaj-Grabysz and Czech 2005), GH (Gehring and Homberger
1999), GTA (Gambardella et al. 1999), H (Homberger 2000), IKMUY (Ibaraki
et al. 2005), LL (Li and Lim 2003), MBD (Mester et al. 2007), PR (Pisinger and
Ropke 2007), RGP (Rousseau et al. 2002), RT (Rochat and Taillard 1995), S97

(Shaw 1997), S98 (Shaw 1998), SSSD (Schrimpf et al. 2000) and WL (Woch
and Łebkowski 2009). Using the best-known solution for every instance leads to
a cumulated number of vehicles (CNV) of 405 and a cumulated traveled distance
(CTD) of 57180.84.

The second set of well-known benchmark instances was suggested by Gehring
and Homberger (1999), who were the first authors to explicitly consider large-
scale VRPTW instances. They developed a parallel hybrid evolutionary algo-
rithm and generated large-scale instances to test their method. The Gehring and
Homberger benchmarks are an extension to the Solomon instances, consisting of
five sets with customer numbers of 200, 400, 600, 800 and 1000 respectively. Each
set contains 60 instances, resulting in 300 instances in total. The instances are
structured similarly to the Solomon instances, differing in customer distribution
(R, C, RC), scheduling horizon, TWD, and TWW. A description of the instances,
the instances themselves for downloading and a list of the best known solutions
to the instances can be found on the SINTEF website2.

2http://www.sintef.no/Projectweb/TOP/Problems/VRPTW/Homberger-benchmark/
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C R RC

#Rts. TD AUT #Rts. TD AUT #Rts. TD AUT

101 10 828.94 RT 101 19 1645.79 H 101 14 1696.94 BGGPT
102 10 828.94 RT 102 17 1486.12 RT 102 12 1554.75 BGGPT
103 10 828.06 RT 103 13 1292.68 LL 103 11 1261.67 S98
104 10 824.78 RT 104 9 1007.24 MBD 104 10 1135.48 CLM
105 10 828.94 RT 105 14 1377.11 RT 105 13 1629.44 BB
106 10 828.94 RT 106 12 1251.98 MBD 106 11 1424.73 BB
107 10 828.94 RT 107 10 1104.66 S97 107 11 1230.48 S97
108 10 828.94 RT 108 9 960.88 BB 108 10 1139.82 BGGPT
109 10 828.94 RT 109 11 1194.73 GH

110 10 1118.59 MBD 201 4 1406.91 MBD
201 3 591.56 RT 111 10 1096.72 RGP 202 3 1365.65 DGC
202 3 591.56 RT 112 9 982.14 GTA 203 3 1049.62 CC
203 3 591.17 RT 204 3 798.41 MBD
204 3 590.60 RT 201 4 1252.37 GH 205 4 1297.19 MBD
205 3 588.88 RT 202 3 1191.70 RGP 206 3 1146.32 H
206 3 588.49 RT 203 3 939.5 WL 207 3 1061.14 BVH
207 3 588.29 RT 204 2 825.52 BVH 208 3 828.14 IKMUY
208 3 588.32 RT 205 3 994.42 RGP

206 3 906.14 SSSD
207 2 890.61 PR
208 2 726.75 MBD
209 3 909.16 H
210 3 939.34 MBD
211 2 885.71 WL

Table 2.2: Compilation of the best known solutions for the Solomon instances. #Rts.
denotes the number of vehicles in the respective solution, TD the traveled
distance.

2.2 Constraint Handling in Local Search for the VRPTW

Restricting the search to feasible solutions often hinders a sufficient exploration
of the solution space. Therefore, most successful metaheuristics for VRPTW
allow infeasible solutions along the search trajectory, i.e., the inner local search
is allowed to apply moves that lead to solutions violating capacity and/or time
window constraints (Nagata et al. 2010). One way to guide the search towards
feasible solutions is to penalize an infeasible solution according to the magnitude
of the violations it causes (Talbi 2009). In this case, it is vital to calculate the
amount of violations and thus the penalties in an efficient manner. In this section,
we introduce the procedures for determining capacity and time window violations
that are applied throughout this thesis.
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2.2.1 Capacity Handling

We define a vehicle route r as a sequence of customers �v0, v1, . . . , vn, vn+1�,
with v0 and vn+1 representing the depot (cf. Nagata et al. 2010). A solu-
tion S to a VRPTW instance is defined as a set containing m(S) routes, i.e.,
S = {rk, k = 1, . . . ,m(S)}. Vert(r) denotes the set of vertices that are part of
route r, Vert(S) the set of vertices visited in a solution S.

With these definitions, the capacity violation Pc of route r can be calculated
as:

Pc(r) = max (
�

v∈Vert(r)

qv − C, 0).

The total capacity violation of a solution S can then be computed from the
individual violations of all contained routes:

Pc(S) =
m(S)�

k=1

Pc(rk).

In order to efficiently compute the change of capacity violation of a route gen-
erated by applying a local search move, we save forward and backward capacity
slacks for all vertices in the affected routes. In this way, it is possible to determine
capacity violations for inter-route moves in constant time O(1) if the conventional
neighborhood operators Relocate, Exchange, Or-Opt or 2-opt* are utilized (see,
e.g., Kindervater and Savelsbergh 1997, Ibaraki et al. 2005). In this work, only
these operators are used so that the presented technique covers all relevant cases.
Obviously, no computations for intra-route moves are necessary as the capacity
of a route does not change by moving vertices inside a route.

For calculating the change of violation caused by inter-route moves, we define
the forward capacity slack of the vertices inside a route r as follows:

CAP→
v0 = 0

CAP→
vi = CAP→

vi−1
+ qvi , i = 1, . . . , n+1.
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The backward penalty slack is computed analogously:

CAP←
vn+1

= 0

CAP←
vi = CAP←

vi+1
+ qvi , i = 0, . . . , n.

Now, let CAP→
v and CAP←

v be known for all vertices v ∈ Vert(S) of a current
solution S. Then, the capacity violation for inter-route moves can be calculated
in constant time using the following two rules:

• If a route rnew = �v0, . . . , x, y, . . . , vn+1� is constructed from two partial
paths �v0, . . . , x� and �y, . . . , vn+1�, the capacity violation of the route can
be determined as follows:

Pc(rnew) = max
�
CAP→

x + CAP←
y − C, 0

�
.

• If a route rnew = �v0, . . . , x, v, y, . . . , vn+1� is constructed by inserting a
vertex v in between two partial paths �v0, . . . , x� and �y, . . . , vn+1�, the
capacity violation of the new route can be calculated as:

Pc(rnew) = max
�
CAP→

x + CAP←
y + qv − C, 0

�
.

2.2.2 Time Window Handling

Handling time window violations is a more complex task as the removal or in-
sertion of a vertex affects the time window violations at all subsequent vertices.
The arrival time at each vertex has to be known to compute the violation. Given
a route r, the earliest departure time at the depot av0 , the earliest start time of
service avi at every vertex vi, i = 1, . . . , n, and the earliest arrival time at the
depot avn+1 are defined as follows (cf. Nagata et al. 2010):

av0 = e0

avi = max
�
avi−1 + svi−1 + tvi−1vi , evi

�
i = 1, . . . , n+1.

A time window violation at a customer vi occurs if the vehicle arrives after the
latest arrival time lvi . Thus, a route is feasible with respect to time window
violations if avi ≤ lvi , i = 0, . . . , n + 1. Traditionally, the difference between
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arrival time and latest feasible arrival time is cumulated along the entire route
in order to compute the time window penalty of a route (see, e.g., Badeau et al.
1997, Berger and Barkaoui 2004, Bouthillier and Crainic 2005, Ibaraki et al. 2005,
2008):

P traditional
tw (r) =

n+1�

i=0

max (avi − lvi , 0).

The time window violation of a solution S can be computed from the violations
in the routes of S:

Ptw(S) =
m(S)�

k=1

Ptw(rk). (2.9)

Although sophisticated methods have been proposed to determine the change of
time window violation caused by applying one of the conventional neighborhood
operators introduced above (see, e.g., Irnich et al. 2006, Irnich 2008), it still takes
O(n) time to compute the change. More precisely, if two routes r1 and r2 are
affected by a move, the computational complexity of calculating the change in
time window violation of the routes is O(|Vert(r1)|+ |Vert(r2)|) (Nagata 2007).
To improve efficiency, all algorithms presented in this work use the time travel
approach proposed by Nagata et al. (2010) for penalizing time window violations,
which is described in the following.

2.2.2.1 The Time Travel Approach

Nagata et al. (2010) introduce a new, highly efficient approach to calculate time
window violations, which is based on the concept of time travel. To put it short,
if a time window violation occurs at a certain customer, a penalty of the actual
arrival time minus the latest feasible arrival time is assigned to the route. How-
ever, the calculation of violations for the following customers is executed as if a
travel back in time to the latest feasible arrival time had taken place. In this
way, none of the subsequent customer visits are affected by the actual delay at
the customer.

This approach has two important advantages compared to the traditional ap-
proach of propagating time window violations along the route. First, it allows to
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evaluate potential time window violations for inter-route moves in constant time
O(1) for the conventional neighborhood operators. This significantly speeds up
the calculation compared to the traditional approach described above. Second,
the approach penalizes time window violations only at customers where they orig-
inate and feasible parts of routes are no longer penalized by earlier time window
violations.

To formally explain the approach of Nagata et al. (2010), we define for a route r

the extended earliest departure time at the depot ãv0 , the extended earliest start
time of service ãvi at every vertex vi, i = 1, . . . , n, and the extended earliest arrival
time at the depot ãvn+1 as follows:

ãv0 = e0, ã
�
v0 = e0

ã�vi = ãvi−1 + svi−1 + tvi−1vi , i = 1, . . . , n+1

ãvi =

�
max

�
ã�vi , evi

�
if ã�vi ≤ lvi ,

lvi if ã�vi > lvi ,
i = 1, . . . , n+1.

The extended earliest start time of service ãvi at vertex vi describes the start of
service after waiting for the time window at vi to open or after traveling back in
time in case of a time window violation. The definition uses the extended earliest
arrival time ã�vi at vertex vi, which describes the arrival time at vertex vi before
waiting for the time window to open or before traveling back in time in case a
time window is violated. In the latter case, a travel back in time to the latest
feasible arrival time lvi is assumed for which a penalty ã�vi − lvi has to be paid.

The time window penalty of a route r can be calculated as follows:

Ptw(r) =
n+1�

i=0

max
�
ã�vi − lvi , 0

�
,

and the total time window penalty of a solution can be determined using
Equation (2.9).

Figure 2.5 demonstrates the difference between the time travel approach and
traditional time window handling as explained above, using an example route
�v0, v1, v2, v3, v4, v5, vn+1� with 5 customers. Lines represent the time flow and
brackets are used to indicate time windows of customers and depot. Travel be-
tween customers is represented by dotted lines, waiting times at customer loca-
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tions as zig-zagged lines and service times as dashed lines. Time window penalties
are marked by arrows. A blank circle describes the arrival time at a customer,
a filled circle the begin of service. Note that for the traditional approach the
latter corresponds to the avi variables and for the time travel approach to the
ãvi variables.

In the traditional approach depicted in Figure 2.5(a), the time window vio-
lation at customer v2 is propagated along the remaining route, leading to time
window violations at customers v3 and v4, although the partial route �v2, v3, v4� is
a feasible sequence. The time travel approach in Figure 2.5(b) is able to identify
the feasible partial path. The time window of customer v2 is still violated, but
after paying the penalty for traveling back in time, the time windows at v3 and
v4 are no longer violated.

As mentioned above, the time travel approach allows for the efficient calculation
of time window penalties. This is achieved by means of slack variables similar to
the capacity slacks defined above. The forward time window penalty slack TW→

vi

of vertex vi is the time window violation that occurs in the partial route from v0

to vi. More precisely, it is the penalty that the vehicle must pay on the way from
v0 to vi in order to be able to start service at customer vi at time ãvi :

TW→
vi =

i�

j=0

max
�
ã�vj − lvj , 0

�
, i = 0, . . . , n+1.

In order to be able to determine the analogical backward penalty slack, the ex-
tended latest arrival time at the depot z̃vn+1 , the extended latest start time of
service at customer vi, z̃vi and the extended latest departure time at the depot
z̃v0 are defined recursively as follows:

z̃vn+1 = l0, z̃
�
vn+1

= l0

z̃�vi = z̃vi+1 − tvivi+1 − svi , i = 0, . . . , n

z̃vi =

�
min

�
z̃�vi , lvi

�
if z̃�vi ≥ evi ,

evi if z̃�vi < evi ,
i = 0, . . . , n.

The backward time window penalty slack represents the time window violation
occurring on the partial route from customer vi to vn+1 even if the vehicle starts
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V0

V1

V2

V3

V4

V5

Vn+1

time

customer

(a) Traditional

V0

V1

V2

V3

V4

V5

Vn+1

time

customer

(b) Time travel

Figure 2.5: Comparison of approaches for handling time windows: (a) traditional vs.
(b) time travel (cp. Nagata et al. 2010). Brackets denote time windows,
dotted lines travel between customers, zig-zagged lines waiting times,
dashed lines service times, blank circles the arrival time at a customer
and filled circle the begin of service. Time window penalties are shown as
arrows.
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the service at customer vi at the earliest possible moment evi :

TW←
vi =

n+1�

j=i

max
�
evj − z̃�vj , 0

�
, i = 0, . . . , n+1.

Figure 2.6 illustrates the definition of the extended earliest start time of service
ãvi and extended latest start time of service z̃vi . The arrows indicate the forward
and backward penalties that are cumulated in the forward and backward time
window penalty slacks.

Let the variables ãvi , z̃vi , TW→
vi and TW←

vi be known for all routes in the current
solution. Nagata et al. (2010) offer the following two rules to efficiently calculate
the change in time window violation caused by an inter-route local search move:

• If a route rnew = �0, . . . , x, y, . . . , n+1� is constructed from two partial paths
�0, . . . , x� and �y, . . . , n+1�, the time window penalty can be determined
by:

Ptw(rnew) = TW→
x + TW←

y +max (ãx + sx + txy − z̃y, 0). (2.10)

• If a route rnew = �v0, . . . , x, v, y, . . . , vn+1� is constructed by inserting a
vertex v in between two partial paths �v0, . . . , x� and �y, . . . , vn+1�, the
time window violation of the newly generated route is:

Ptw(rnew) = TW→
x +TW←

y +max (ãx + sx + txv − (z̃y − tvy − sv), 0). (2.11)

In principle, the changes in time window penalties of inter-route moves generated
with the conventional operators 2-opt*, Relocate, Exchange and Or-Opt can be
calculated in constant time using the presented rules. However, we found that
the second rule presented by Nagata et al. (2010) yields incorrect results under
certain conditions. In the worst case, this leads to a situation where infeasible
solutions are assigned a time window violation of 0. In the following section, we
identify the cases in which the given equation is wrong and present the corrected
formula for each case. Simple examples are used to illustrate the calculations.

Note that for intra-route moves, there are no distinct parts of routes to be
merged and thus the rules are not applicable. However, even then, it is generally
not required to walk through the modified route completely. Instead, it is suffi-

28



Chapter 2 Fundamental Concepts and Literature

V0

V1

V2

V3

V4

V5
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time
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(a) Forward penalties

V0

V1

V2

V3

V4

V5

Vn+1

time

customer

(b) Backward Penalties

Figure 2.6: Illustration of the definition of (a) extended earliest start time of service ãvi
and (b) extended latest start time of service z̃vi depicted as filled circles
(cp. Nagata et al. 2010). The calculation of the associated penalties is
described by the arrows.
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cient to determine the first and last customer that is influenced by a move and
to recalculate the penalty variables for the two customers and those in between.
The calculation for intra-route moves still has a computational complexity of
O(n) (Nagata et al. 2010).

2.2.2.2 Correction of the Time Travel Approach

We show that the rule presented in Equation (2.11) does not cover all cases
concerning the time window characteristic of the customer v to be inserted. To
this end, we distinguish three insertion cases:

1. Customer v is reached within its time window, i.e., we neither have to wait
nor do we have to time travel backward.

2. Customer v is reached before the start of the associated time window, i.e.,
we have to wait before service can be started.

3. Customer v cannot be reached before the end of its time window, i.e., we
have to time travel backward at v.

A simple example with customer set V = {1, 2, 3, 4} and a single depot 0 is used
to show in which cases Equation (2.11) fails. Let us assume the depot to have a
scheduling horizon of [0, 100]. All customers have a service time si = 10, i ∈ V

(s0 = 0) and the distances dij, i, j ∈ V ∪ {0}, j �= i are all 10. Travel times
are assumed to be equivalent to traveled distances. In our example, we use the
initial route �0, 1, 2, 0� as starting point for all insertion cases. The remaining
customers are individually inserted into the route between customers 1 and 2

to illustrate the cases where an error is produced. The time window handling
related values for all customers are given in Table 2.3. In all cases, we compare the
time window penalty given by Equation (2.11) to a primitive calculation that has
to walk through the complete newly created route. Contrary to traditional time
window handling, this primitive calculation uses backward time travel to penalize
violations in order to produce results that are comparable to those obtained by
Equation (2.11). For all insertion cases, we provide the corrected formula valid
for the specific case and integrate these formulas into one equation that covers
all cases afterwards.
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i e l a ã ã� z̃ z̃� TW→
i TW←

i

1 0 10 10 10 10 10 20 0 0
2 35 40 35 35 30 40 80 0 0
3 35 45 – – – – – – –
4 10 15 – – – – – – –

Table 2.3: Time window handling related values for all customers in the example.
Variables before insertion of the customers 3 and 4 into the initial route
�0, 1, 2, 0�.

2.2.2.2.1 Case 1: Reach Customer within Time Window If the customer
v to be inserted is reached within its time window, Equation (2.11) provides the
correct result. The following step by step derivation illustrates this. Given the
time window violation up to customer x (TW→

x ), we start service there at ãx and
arrive at customer v at ãx + sx + txv. We reach v within its time window and
the arrival time at y can be calculated by adding sv + tvy. For the time window
violation TW←

y to be valid for completing the route from y onwards, we have to
arrive at y before z̃y. If the arrival time at y is later, we have to add the difference
as time window violation.

Thus, if arrival at customer v is within the given time window, i.e.,
ev ≤ ãx + sx + txv ≤ lv, the following holds (which is obviously equivalent to
Equation (2.11)):

Ptw(r) = TW→
x + TW←

y +max (ãx + sx + txv + sv + tvy − z̃y, 0).

2.2.2.2.2 Case 2: Wait at Customer If we have to wait to start the service
at the customer v to be inserted, Equation (2.11) does not always provide the
correct result as the example of route r2 = �0, 1, 3, 2, 0� shows. The primitive
calculation is as follows: We arrive at customer 1 at time 10, leave at 20, arrive
at customer 3 at 30, have to wait till 35, leave at 45 and arrive at customer 2 at
55. We have to time travel back 15 units, leave customer 2 at 50 and arrive at
the depot at 60. The route r2 has a time window violation of the amount we had
to time travel, i.e., TW(r2) = 15. According to Equation (2.11), the violation is
TW(r2) = 0 + 0 + max (10 + 10 + 10− (40− 10− 10), 0) = 10, i.e., the amount
of violation at y that is caused by the wait at v is not detected. Note that in the
worst case, this means that the equation returns a time window violation of 0 for
an infeasible route with a time window violation at customer y.
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To correct the formula, we make the following considerations: At customer x

with TW→
x , we start service at ãx and arrive at customer v at ãx + sx + txv. We

reach v before its time window, wait until ev and the arrival time at y can be
calculated by adding sv + tvy to ev. As mentioned above, we have to arrive at
y before z̃y for the time window violation TW←

y for completing the route from
y onwards to be valid. If the arrival time at y is later, we add the difference as
time window violation:

Ptw(r) = TW→
x +TW←

y +max (ev + sv + tvy − z̃y, 0) , if ãx+sx+txv < ev. (2.12)

Note that Equation (2.11) is only incorrect for the considered case, if the wait at
the inserted customer causes an arrival after the extended latest start time of the
service at the following customer. Otherwise, it holds that ev + sv + tvy − z̃y < 0,
and since ãx + sx + txv < ev, it follows that ãx + sx + txv − (z̃y − tvy − sv) < 0.
Consequently, Equations (2.11) and (2.12) can both be simplified to Ptw(r) =

TW→
x + TW←

y in this case.

2.2.2.2.3 Case 3: Arrive Late at Customer The example route r3 =

�0, 1, 4, 2, 0� shows that Equation (2.11) can also yield incorrect results if the
time window at the inserted customer v is violated. The primitive calculation
is: We arrive at customer 1 at time 10, leave at 20, arrive at customer 4 at 30,
have to time travel backwards 15 units, leave at 25 and arrive at customer 2 at
35, leave at 45 and arrive at the depot at 55. Consequently, route r3 has a time
window violation of TW(r3) = 15. Equation (2.11) returns an incorrect amount
of violation of TW(r3) = 0 + 0 + max (10 + 10 + 10− (40− 10− 10), 0) = 10.
Note that again, in the worst case, a solution can be marked feasible according
to Equation (2.11) although the time window at customer v is violated.

The correct equation for this case can be derived as follows: At customer x

with TW→
x , we start service at ãx and arrive at customer v at ãx + sx + txv. We

reach v after its time window, time travel back to lv and add this as time window
violation. The arrival time at y can be calculated by adding sv + tvy to lv. Thus,
the following holds if we arrive late at customer v, i.e., if ãx + sx + txv > lv:

Ptw(r) = TW→
x +TW←

y +(ãx+sx+txv− lv)+max (lv + sv + tvy − z̃y, 0). (2.13)
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Note that Equation (2.11) is only incorrect for the considered case if lv + sv +

tvy − z̃y < 0, i.e., if we arrive before the extended latest start time of service at
customer y. Otherwise, Equation (2.13) is Ptw(r) = TW→

x + TW←
y + ãx + sx +

txv − lv + lv + sv + tvy − z̃y and thus equal to Equation (2.11).

2.2.2.2.4 Corrected Proposition Covering All Cases Summing up, the cor-
rected rule is: If a route r = �v0, . . . , x, v, y, . . . , vn+1� is generated from two
partial paths �v0, . . . , x� and �y, . . . , vn+1� by inserting customer v, the time win-
dow penalty of this route is computed by:

Ptw(r) =






TW→
x + TW←

y +

max (ãx + sx + txv + sv + tvy − z̃y, 0)
if ev ≤ ãx + sx + txv ≤ lv

TW→
x +TW←

y +max (ev + sv + tvy − z̃y, 0) if ãx + sx + txv < ev

TW→
x + TW←

y + (ãx + sx + txv − lv) +

max (lv + sv + tvy − z̃y, 0)
if ãx + sx + txv > lv.

This can be reduced to the following equation that covers all three cases:

Ptw(r) =TW→
x + TW←

y +max (ãx + sx + txv − lv, 0) (2.14)

+max (max (min (ãx + sx + txv, lv) , ev) + sv + tvy − z̃y, 0).

An important thing to note is that the original formula systematically underes-
timates the time window violation of a local search move, i.e., the time window
violation calculated with the original formula is equal or smaller than the viola-
tion computed with the corrected formula for all cases.

We use numerical studies detailed in Appendix A to show that a significant
proportion of the evaluations performed by a TS for VRPTW falls under the
identified two cases yielding incorrect results. Moreover, we demonstrate that the
incorrect time window handling has a significant negative impact on the solution
quality of the TS. The corrections presented above and the numerical experiments
in Appendix A are available in similar form as working paper (Schneider, Sand
and Stenger 2012) and have been submitted to an international journal.
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2.3 Routing with Driver Learning Aspects

In recent years, the research trend goes towards VRPs representing real-world
characteristics. Considering the case of the small package shipping (SPS) indus-
try, companies highly valuate driver familiarity with routes and customers (Groër
et al. 2009), but relatively few VRP approaches exist that account for this kind of
consistency requirements (Wong 2008). We briefly discuss the relevant literature.

Wong and Beasley (1984) divide the complete delivery area into a number of
fixed service territories to be serviced by a single vehicle. The areas are deter-
mined based on historical demand data. The basic idea of their approach is to
aggregate those customers into the same service territory that often appear to-
gether on the same route during an initialization phase of several sample days.
On each of these sample days, a classical VRP is solved independently without
considering any consistency requirements. Their approach is quite simple and
provides strong familiarity benefits as the territories are completely fixed. How-
ever, the inflexibility of the territories leads to significant problems when demand
varies strongly as routes are often infeasible due to capacity constraints. Other
early works addressing consistency requirements by means of fixed routes or areas
are Christofides (1971) and Beasley (1984).

Zhong et al. (2007) present a two-stage method for solving large-scale vehi-
cle dispatching problems with uncertain customer locations and demand. In the
strategic phase, customers are first aggregated in “cells” and a percentage of cells
are assigned to “core areas” that serve as service territories. Core areas are always
visited by the same driver. Cells located between core areas and those included
in the “flex zone” around the depot remain unassigned. In the operational phase,
routes within the core areas are constructed and the unassigned cells are inserted
at the lowest cost in order to generate the daily routes. The insertion cost incor-
porates a driver learning model that explicitly considers the familiarity of a driver
with a certain cell. Numerical studies show that the approach is well suited to
balance the tradeoff between driver familiarity and routing flexibility.

Haughton (2008) studies the effect of exclusive territory assignment on rout-
ing efficiency against the benchmark of daily route reoptimization (RR), where
drivers are flexibly assigned based on the day-to-day demand situation. The pos-
sibility of territory sharing is considered, i.e., a team of drivers visits a territory in
order to reduce the negative impact of exclusive assignment on routing efficiency
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by means of the pooling effect. In a simulation environment, the influence of
the variance of customer demand, vehicle capacity and the size of the team of
drivers assigned to each territory on the routing efficiency is investigated. In an
earlier work, Haughton (2007) considers assignment rules that operations man-
agers follow with the goal of increasing the familiarity of drivers with the visited
customers and analyzes them by means of a statistical model.

Haugland et al. (2007) study the problem of designing fixed service territories
for a stochastic VRP. For this two-stage (partitioning and routing) problem, they
present a TS and a multistart heuristic and perform numerical studies on classical
VRP benchmarks instances that they adapted to their problem. The tests show
the superiority of the TS over the multistart heuristic. Further works addressing
districting problems are Daganzo and Erera (1999), Erera (2000), Ouyang (2007)
and Carlsson (2011).

Groër et al. (2009) introduce the Consistent VRP (ConVRP), a multi-period
routing problem that considers service consistency requirements. The problem
requires that “the same driver visits the same customers at roughly the same time
on each day that these customers need service”, in addition to the traditional
constraints on capacity and route length. They develop a two-phase algorithm
based on record-to-record travel, which first constructs a template route and uses
the latter to generate the daily routes by removing non-occurring customers and
inserting new ones.

The template route is similar to a priori routes (see, e.g., Campbell and Thomas
2008) and is based on a simple precedence principle. The principle states that
if two customers a and b are served by the same vehicle on a specific day, then
the vehicle that serves them and the order in which they are served must be
the same on all days on which they both require service. Numerical studies on
a number of generated and one real-world data set show that their approach is
able to produce routes that fulfill the consistency requirement to a high degree.
However, compared to the results of a standard heuristic VRP solution, travel
distance and the number of vehicles increase slightly.

Sungur et al. (2010) present a model for the courier delivery problem, a multi-
day VRP with soft time windows, using robust optimization and scenario-based
stochastic programming to represent uncertainty in service time and probabilistic
customers. The model generates a master plan and daily routes with the weighted
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objective of maximizing customer coverage and similarity between routes while
minimizing route duration and earliness/lateness penalties. An insertion heuristic
enhanced by a TS improvement method is presented and tested in numerical
studies. The results show that compared to an RR approach, their method
improves route similarity and lateness penalties at the expense of increased total
travel time. Moreover, they are able to outperform current industry practice on
two real-world data sets.

Smilowitz et al. (2012) present a method of quantifying the effect of workforce
management in route construction, i.e., to place a value on the benefit of visit-
ing a customer repeatedly with the same driver. Thus, they are able to balance
the resulting consistency benefits against additional routing costs like, e.g., in-
creased distance. They propose three different periodic vehicle routing problems
(PVRPs) that include consistency metrics as a part of the objective function to
be compared against a base PVRP minimizing traveled distance. Similar metrics
were considered in Francis et al. (2007), however, they were calculated a poste-
riori to evaluate routing solutions and the presented models did not attempt to
optimize these measures.

To solve the PVRPs, an adapted TS is developed and studies are carried out
on the multi-day ConVRP benchmarks proposed by Groër et al. (2009). They
demonstrate that with the right weighting of consistency metrics, solutions can
be obtained that only slightly deteriorate the traveled distance while achieving
the consistency metric used in the model to a significantly higher extent. This
shows that by adding workforce management metrics to the objective function, an
appropriate balance can be obtained between travel cost and consistency metrics.
On the other hand, solving the base PVRP and applying post-processing steps
to increase consistency does not lead to convincing results.

Another recent approach to address consistency requirements in VRPs is pre-
sented by Coelho et al. (2011), who present an inventory routing model that
integrates consistency measures, among them driver consistency, and develop a
matheuristic to solve the model. As mentioned in Chapter 1, apart from Sungur
et al. (2010), none of the above presented works considers the existence of time
windows. Sungur et al. (2010) only account for soft time windows and, to the
best of our knowledge, no method based on service territories deals with time
requirements.
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In Chapter 4, we study the Vehicle Routing Problem with Time Windows and
Driver-Specific Times (VRPTWDST), a vehicle routing problem that models
different levels of driver knowledge using driver-specific travel and service times.
Zhong et al. (2007) were the first to integrate driver learning aspects by means
of driver-specific costs. Their cell routing heuristic estimates the cost of inserting
a cell into a specific driver’s route by means of a learn factor that describes the
driver’s performance level for the considered cell. Schneider, Doppstadt, Sand,
Stenger and Schwind (2010) proposed driver-specific times to consider different
levels of driver knowledge in time-definite route planning time. The goal here was
to design efficient vehicle routes, which have an incentive to visit each driver’s
familiar customers due to the reduced times, but are not restricted by service ter-
ritories. In this way, a better tradeoff between routing flexibility and consistency
is pursued.

Schneider, Doppstadt, Stenger and Schwind (2010) address a VRP with
stochastic and driver-specific travel and service times with deadlines for the ser-
vice at each customer. An ACO algorithm is presented as solution method:
Each ant represents a single driver and creates a route dependent on driver-
specific heuristic information and pheromone values that are traded off against
each other. In Sand et al. (2011), the price of anarchy for several routing problems
is studied, using a TS method as centralized approach and a multi-agent system
as decentralized approach. Both methods are able to handle driver-specific times.

The VRPTWDST is strongly related to the well-known class of VRP with
heterogeneous fleet (Baldacci et al. 2008), and following problems similar to the
VRPTWDST have been studied in this strand. In an early work, Ferland and
Michelon (1988) address a vehicle scheduling problem accounting for vehicles of
different types with varying travel and service times. They show how to extend
some heuristic and exact methods for the standard vehicle scheduling problem
to be able to deal with several vehicle types. No computational experiments are
reported. Dondo and Cerdá (2006) study a dynamic vehicle routing problem with
time windows and later a multi-depot VRPTW with heterogeneous fleet in Dondo
and Cerdá (2007). Both problem formulations account for driver-specific times,
however, all tests were conducted on problem instances with vehicle-independent
times.
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2.4 Routing Electric Vehicles

In this section, we briefly review the literature related to the routing of electric
vehicles addressed in Chapter 5 of this work.

The use of battery electric vehicles (BEVs) requires the integration of distance
constraints depending on battery charge. Distance constraints have commonly
been used in VRPs to include working hour restrictions. Here, the duration is
related to route length by an average speed. Due to the widespread availability of
petrol stations and the large cruising range of gasoline powered vehicles, distance
constraints, however, have scarcely attracted interest as pure range (fuel) con-
straints. Some works on military issues propose concepts to extend the length of
vehicle chains when fuel can be transferred between vehicles (Mehrez and Stern
1985, Melkman et al. 1986).

Our E-VRPTW routing model is closely related to an extension of the Multi-
Depot VRP (MDVRP) described in Crevier et al. (2007). The MDVRP itself
is a well-known VRP variant, where vehicles are located at several locally dis-
perse depots and each route has to end at the depot it originated from. For
a more detailed introduction to the MDVRP the reader is referred to Crainic
et al. (2012), who present a hybrid genetic algorithm that is the most successful
solution method for MDVRP proposed in the literature.

The MDVRP inter-depot routes (MDVRPI), the extension by Crevier et al.
(2007), is motivated by the deliveries of a grocery in Montreal. The model con-
siders intermediate depots at which vehicles can be replenished with goods dur-
ing the course of a route. To solve the MDVRPI, Crevier et al. (2007) present
a heuristic procedure that combines ideas from adaptive memory programming,
described in Rochat and Taillard (1995), TS and integer programming. More
precisely, the problem is split into three subproblems: an MDVRP, a VRP and
an inter-depot subproblem, for which solutions are determined by means of a TS
heuristic and saved in a solution pool. The generated routes are subsequently
merged by means of a set-partitioning algorithm, followed by an improvement
phase. Although the multi-depot case is described, all proposed benchmark in-
stances consider only one depot at which the vehicle fleet is stationed.

Therefore, Tarantilis et al. (2008) rename the problem to VRP with Inter-
mediate Replenishment Facilities (VRPIF). They propose a hybrid guided local
search heuristic that follows a three-step procedure. First, an initial solution
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is constructed by means of a cost-savings heuristics. Second, a VNS algorithm
is applied using a TS in the local search phase, instead of a greedy procedure.
Third, the solution is further improved by means of a guided local search.
In numerical tests performed on available benchmark instances, the heuristic
clearly outperforms the solution procedure proposed by Crevier et al. (2007). In
addition, they present 54 new benchmark instances with up to 175 customers.
Problems similar to VPRIRF arise in the collection of waste, for example,
described by Kim et al. (2006). In this context, however, the objective is not
only to minimize travel distance but also to balance the workload among the
vehicles and to obtain a high route compactness. Solutions with a high route
compactness are defined to have few crossovers among the routes.

Relatively few literature has been published on optimization problems related
to alternative fuels. Most articles deal with the question of how to place
refueling stations in an infrastructure-oriented context, either for refueling
vehicles using compressed natural gas (CNG) (Boostani et al. 2010) or electricity
(Qiu et al. 2011). The development of an infrastructure consisting of refueling
stations, differing in terms of refueling speed and capacity, has been realized
to be crucial for the promotion of alternative fuel vehicles (AFVs). The
models usually use a node or flow-based set covering problem to determine
the optimal number and location of the refueling stations. To model the fuel
demand for short-distance trips in urban areas, customers are usually aggregated
to nodes and a node-based formulation is used. Considering long-distance
trips within the location decision, the flow between origin-destination pairs
is used as a measure for the demand (Wang and Lin 2009, Wang and Wang 2010).

Other work concentrates on finding the energy shortest path from a given
origin to a destination, which can, e.g., be used in navigation systems. Given a
battery capacity, the objective is to maximize the energy level at the destination
while positive arcs represent energy consumption and negative arcs recuperation
(Artmeier et al. 2010). Wang and Shen (2007) propose a scheduling problem for
electric buses, called Vehicle Scheduling Problem with Route and Fueling Time
Constraints. They assign timetabled trips that are known in advance, to buses
with the objective of minimizing total idle time. The travel range is limited by
the vehicle’s charge so that every vehicle has to be recharged after several trips.
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Finally, we are aware of three publications that explicitly consider the specific
characteristics of alternative fuels and adopt them to VRPs. Gonçalves et al.
(2011) consider a VRP with Pickup and Delivery (VRPPD) with a mixed fleet
that consists of BEVs and vehicles using internal-combustion engines. The objec-
tive is to minimize total costs, which consist of vehicle-related fixed and variable
costs. They consider time and capacity constraints and assume a time for recharg-
ing the BEVs, which they calculate from the total distance traveled and the range
using one battery charge. However, they do not incorporate the actual location of
recharging stations into their model. Thus, they basically propose a mixed-fleet
VRPPD with an additional distance-dependent time variable.

To the best of our knowledge, Erdogan and Miller-Hooks (2012) are the first to
combine a VRP with the possibility of refueling a vehicle at a station along the
route. They are mainly motivated by vehicle fleets operating on a wide geograph-
ical region and driving with biodiesel, liquid natural gas or CNG. For these fuels
only a limited refueling infrastructure exists, but refueling times may be assumed
to be fixed. The proposed Green VRP (G-VRP) considers a maximum route
duration and fuel constraint. Fuel is consumed with a given rate per traveled
distance and can be replenished at alternative fuel stations (AFS). In principle,
the G-VRP is modeled as an extension to the MDVRPI, and the authors propose
two heuristics to solve the new problem.

The first heuristic is a Modified Clarke and Wright Savings algorithm (MCWS)
which creates routes by establishing feasibility through the insertion of AFSs,
merging feasible routes according to savings and removing redundant AFSs. The
second heuristics is a Density-Based Clustering Algorithm (DBCA) based on a
cluster-first and route-second approach. The DBCA forms clusters of customers
such that every vertex within a given radius contains at least a predefined number
of neighbors. Subsequently, the MCWS algorithm is applied on the identified
clusters. For the numerical studies, they design two sets of problem instances.
The first consists of 40 small-sized instances with 20 customers and the second
involves 12 instances with up to 500 customers.
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Chapter 3

Fixed-Area-Based Routing under Time Window

Constraints

As described above, small package shipping (SPS) companies are shifting more
and more attention to customer service and efficient workforce management.
Fixed-area-based routing approaches (FABRAs) are used to achieve high ser-
vice consistency, among other benefits. Their drawback, however, is a decline
in routing flexibility. Consequently, a high percentage of time-definite deliveries,
as commonly found in the SPS sector, is expected to have a significant negative
effect on the solution quality of FABRAs. To the best of our knowledge, no study
exists on the magnitude of this effect and the factors that influence it, although
FABRAs are commonly utilized in practice.

In Section 3.1, we introduce Semi-Fixed Service Territory Routing (SFSTR),
a FABRA which is suitable for handling time window requirements. SFSTR
first divides the delivery area into service territories and second carries out the
daily routing based on these territories. The generation of the territories bases
on routing solutions obtained on sample days of Vehicle Routing Problems with
Time Windows (VRPTW) generated from historical demand data as inspired by
Wong and Beasley (1984). We implement a Tabu Search (TS) method to obtain
the solutions for the sample days. Additionally, we incorporate spatial aspects
in order to generate “well-shaped” service territories as well as more sophisti-
cated concepts like excluding a percentage of customers from being assigned to
territories and the utilization of an exclusion zone around the depot (cp. Zhong
et al. 2007). Moreover, we introduce so-called semi-fixed service territories that
allow a certain number of customers to be removed and assigned to a different
driver if the daily demand scenario requires it, thus increasing routing flexibility.
The operational routing based on the generated territories is carried out by an
extension of our TS method.
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Section 3.2 presents the computational experiments carried out on several
100-day series of VRPTW problems with different customer distributions. The
goal is to study the performance of SFSTR concerning route efficiency and
consistency measures in comparison to a route reoptimization (RR) strategy.
Additionally, we analyze the influence of the size of the service territories, i.e.,
the number of customers fixedly assigned to a driver, and different variabilities in
the number of customers requiring service on the overall performance of SFSTR.

3.1 The Semi-Fixed Service Territory Routing Approach

Our SFSTR approach is divided into two phases, a districting and a routing
phase as illustrated in Figure 3.1. The districting phase starts with the definition
of an exclusion zone around the depot. The customers within this zone are
always assigned to drivers on a daily and not on a fixed basis, i.e., they are
never added to one of the territories (see Figure 3.2). Next, the set of territories
is constructed on the basis of historical demand data. This method is inspired
by the real-world situation, where SPS store detailed delivery data such as
customer location, number, size and weight of packages and time of delivery for
long periods in order to identify frequent customers and customer sequences.

• Definition of exclusion zone 
• Generation of service territories 

• determine FTS solutions for sample days 
•  select seed customers 
• assign customers to service territories 

1. Districting 
Phase 

• Generate routes for customers in territories 
• Add unassigned customers based on Solomon 

heuristic 
• Use TTS for improvement 

2. Routing Phase 

•  Semi-fixed territories 
•  Exclusion zone 

Figure 3.1: Overview of the districting and routing phase of SFSTR
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service territory

exclusion zone

seed customer

depot

customer

Figure 3.2: The delivery area: Service territories, exclusion zone and seed customers

The delivery data is used to generate series of one-day VRPTW instances which
we solve by means of a TS heuristic. Note that the routing on each of these
days is conducted as an independent problem without considering consistency
requirements, that is why the TS used here is denoted as Free TS (FTS). Based
on the solutions obtained for the one-day problems and considering additional
spatial aspects, we generate the territories by first selecting a set of seed customers
and then adding a predefined percentage of the overall customers as illustrated
in Figure 3.2. The aim of this step is to create an assignment of customers to
service territories, which is of high quality with respect to both consistency and
flexibility requirements. The districting phase is detailed in Section 3.1.1.

In the routing phase, daily routing is conducted based on the service territories
developed in the districting phase. The territories are normally visited exclusively
by a single driver; exemptions from this rule only happen if required by the daily
demand situation. More precisely, the problem to be solved in this operational
phase is a VRPTW with the additional feature that part of the customers are
preassigned to a specific driver. As solution method, we use an adapted version
of the TS method from the districting phase denoted as Territory Tabu Search
(TTS). This phase is described in Section 3.1.2.

43



Chapter 3 Fixed-Area-Based Routing under Time Window Constraints

3.1.1 The Districting Phase

This section details the districting phase, which consists of the following steps: 1)
definition of the exclusion zone, 2) generation of routing solutions for the sample
days by means of FTS, 3) selection of seed customers for the service territories,
and 4) iterative assignment of customers to the service territories.

3.1.1.1 Definition of Exclusion Zone

As already noted by Beasley (1984), all vehicle routes pass through the area
around the depot so that the customers in there can practically be reached from
every route without making long detours. Thus, such customers can be used to
efficiently balance loads between routes in daily routing. This insight was also
used in the creation of a flex zone in Zhong et al. (2007). We assign all customers
that are located within a radius rEZ around the depot to an exclusion zone EZ

and prohibit the assignment of those customers to a service territory. Based on
the historical demand data, the radius is chosen to include a given percentage ω

of the total number of customers |V |.

3.1.1.2 Generation of Solutions for a Series of Sample One-Day Problems

Prior to the design of the territories, vehicle routes have to be constructed for a
number of sample days. We create a series of τ sample days, where on each sample
day t = 1, . . . , τ , a subset Vt of all customers require service. As mentioned above,
neither consistency requirements nor any other dynamic effects are considered for
generating these initial solutions, i.e., the problem to be solved here is a VRPTW.

We follow the hierarchical objective described in Section 2.1 and minimize the
number of employed vehicles before minimizing the traveled distance. This is
motivated by the fact that later the number of generated territories (the number
of employed vehicles) is set to achieve a certain service level over the sample
days. Therefore, we are interested in the minimal number of vehicles with which
complete service of the customers on each day can be achieved.

FTS is inspired by the TS method proposed in Cordeau et al. (1997). As de-
scribed above, TS is a potent metaheuristic concept to guide local search heuris-
tics in order to overcome local optima. The primary goal of the TS developed in
this section is to achieve VRPTW results of reasonably high quality. This shall
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render SFSTR able to design sound service territories, which produce meaningful
results in the computational studies. Another goal is to keep the search method
as simple as possible. The focus is explicitly not on achieving record-breaking
solution quality in competitive run-time.

Although FTS is able to reduce the number of vehicle routes in a solution
through inter-route moves, it is not designed to minimize the number of vehicles
in a solution. Instead, FTS searches for the best solution with a given vehicle
number m. We determine the minimal vehicle number of a VRPTW instance by
means of a binary search method. We start from the vehicle number given by the
capacity restrictions of the problem and multiply this number by a factor δm until
a vehicle number is reached for which FTS finds a feasible solution. This vehicle
number is used as upper bound of the binary search, the last vehicle number for
which FTS was unsuccessful as lower bound.

In the following, we describe the components of FTS in more detail.

3.1.1.2.1 Generalized Cost Function Considering only solutions during the
search process that are feasible in terms of time window and capacity constraints
is too restrictive and can prevent the search process from entering promising
regions of the solution space. Thus, during the initialization and improvement
process of FTS, both capacity violations and time window violations are per-
mitted as commonly done in the literature (see, e.g., Talbi 2009). In order to
guide the search process towards high-quality and feasible solutions, constraint
violations are penalized using the following generalized cost function:

fgen(S) = f(S) + α · Pc(S) + β · Ptw(S),

where f(S) denotes the traveled distance of solution S, and Pc(S) and Ptw(S)

are the total capacity and time window violations of S, which are weighted by
the penalty factors α and β.

Determining fixed values for α and β that lead to high quality solutions is
a difficult, if not impossible, task as these values determine whether the focus
of the search lies on intensification or diversification. Since different values
are advisable in different stages of the search process, we use dynamic penalty
weights as introduced by Gendreau et al. (1994). Here, the penalty factors
are scaled by a factor δ ≥ 1 depending on the recent search history. If the
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solution of the last iteration was infeasible concerning the capacity, α is set to
min(α · δ, αmax ). By contrast, if the solution was feasible with respect to the
capacity constraint, α is set to max(α/δ, αmin). The technique is used to balance
between intensification and diversification of the search. The procedure for
updating the time window penalty factor β is analogous to the one described for
the capacity penalty factor α.

For calculating the capacity and time window penalties, we use the methods
described in Section 2.2. As explained above, the determination of changes in
capacity and time window violation for inter-route moves with the conventional
neighborhood operators is thus possible in constant time.

3.1.1.2.2 Generation of Initial Solution As initialization, we use a parallel
insertion method that makes use of some of the ideas of the I1 heuristic of
Solomon (1987). The original heuristic is a simple but effective sequential
insertion heuristic that generates good initial VRPTW solutions in very short
computing time. Contrary to the original version, our algorithm creates a
potentially infeasible solution with a given number of vehicles m instead of a
feasible solution with an open number of vehicles.

We start from a set of m seed customers, which are determined sequentially as
the customer that is farthest from the depot and all previously chosen seed cus-
tomers. For each seed customer, an initial route serving only the seed customer is
generated. In the next step, for all unrouted customers v the best route rk∗ of the
available routes rk = �v0, vk1 , v

k
2 , . . . , v

k
nk
, v0�, k = 1, . . . ,m and the best insertion

position p∗ of customer v in this route is determined according to criterion c1,
which we define as follows:

(k∗, p∗) (v) = argmin
k=1,...,m, p=1,...,nk

(c1(rk, v
k
p−1, v, v

k
p))

c1(g, x, y, z) = dxy + dyz − dxz + αinit∆Pc(g) + βinit∆Ptw(g).

In our algorithm, the c1 criterion determines the increase of the generalized cost
function value through the insertion of customer v, where the change in capacity
violation ∆Pc and time window violation ∆Ptw is weighted by factors αinit and
βinit .
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For the determined insertion positions, Solomon’s criterion c2 is evaluated and
the customer v∗ maximizing the criterion is inserted at its best insertion position:

v∗ = argmax
v unrouted

�
c2(rk∗(v), v

k∗

p∗(v)−1, v, v
k∗

p∗(v))
�

c2(g, x, y, z) = ν · d0y − c1(g, x, y, z)

ν ≥ 0

The factor ν is used to prioritize customers that are located far from the depot.
Such customers cannot be assigned to different routes as flexibly as customers
that are close to the depot and should therefore be routed first. The described
steps are repeated until all customers are routed.

3.1.1.2.3 Neighborhood Generation and Tabu List For the simplicity rea-
sons mentioned above, our TS uses only one neighborhood operator String-
Relocate in the improvement phase. The operator moves a sequence of vertices
of a given length from one route to another in case of an inter-route move, or
changes the position of the sequence inside the route in case of an intra-route
move. An exemplary application of String-Relocate as inter-route operator is
depicted in Figure 3.3. Our implementation of the operator limits the length of
the sequence to be exchanged to 2.

String-Relocate can be seen as the node-based version of the edge-exchange op-
erator Or-opt (Or 1976). Or-opt is a variant of the more general 3-opt move that
is often used for intra-route exchange. It replaces three edges without inverting
any of the three segments.

Figure 3.3: String-Relocate as inter-route operator with a sequence length of 2. The
sequence to be relocated is indicated by the fill of the vertices, dashed
lines indicate removed edges.
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As described above, the tabu list is a short-term memory structure that pre-
vents the TS from cycling by storing recently visited solutions and setting them
tabu for a certain tenure. In general, saving complete solutions in the tabu list
to prevent the reversal of moves to these solutions is not very efficient concerning
storage and comparison effort. Rather, certain attributes of a solution are stored
and moves are tabu if they induce these attributes (Gendreau and Potvin 2010a).
We identify a move by attributes (v, k) with customer index v and route index k.
When customer v is removed from route k or moved within it, attribute (v, k) is
set tabu for the next ϑ moves, i.e., its reinsertion into this route is forbidden (cf.
Cordeau et al. 1997).

Besides the described tabu list, we introduce an additional strong tabu list,
which prohibits any move of a customer v for the next ϑstrong iterations instead
of only setting the attribute (v, k) tabu. Its goal is to avoid wasting iterations
on moving around vertices of minor importance, which, e.g., happens if flexible
customers near the depot are moved around several routes before the standard
tabu list becomes effective. We conducted several tests on the performance of
this additional tabu list and found it important to the success of our method. As
aspiration criterion, we allow the execution of a tabu move if it leads to a new
overall best solution.

3.1.1.2.4 Diversification Methods One problem that is inherent in most
heuristics based on local search is the tendency of the search to focus too strongly
on small parts of the solution space. Although the tabu list is sufficient to pre-
vent the TS from getting stuck in local optima, it is not enough to guarantee a
comprehensive searching of the solution space.

To further diversify the search, we use a continuous diversification mechanism
similar to the one presented in Cordeau et al. (2001). Continuous diversifica-
tion constantly tries to guide the search into previously unexplored regions of
the solution space by adding a diversification penalty Pdiv(S) to the cost of
a solution S. The magnitude of the penalty depends on the frequency with
which attributes of the solution have been present in solutions previously vis-
ited during the search. For each solution S, an attribute set B(S) = {(v, k) :

customer v is served on route k} is defined. The frequency with which an at-
tribute (v, k) has been present in solutions during the search is denoted as �vk.
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Now, for every move deteriorating the current solution, i.e., if fgen(S �) ≥ fgen(S),
the following diversification penalty term is added:

Pdiv(S
�) = λdiv ·

f(S �)
�

|Vt|m(S �)

maxv∈Vt,k∈1,...,m(S�)(�vk)
·

�

(v,k)∈B(S�)

�vk, (3.1)

where parameter λdiv is used to control the extent of the diversification and the
scaling factor f(S�)

√
|Vt|m(S�)

maxv∈Vt,k∈1,...,m(�vk)
to adjust the magnitude of the penalty to prob-

lem size, solution cost and the frequency of the most common solution attribute.
m(S �) denotes the number of vehicles in the generated solution. Note that solu-
tions improving the current solution are not penalized.

Moreover, we reset the current solution to the best solution after ηreset iterations
without improvement to guide FTS back to a promising area of the search space.
The FTS procedure stops after ηstop iterations.

After determining VRPTW solutions for the generated sample days, the cre-
ation of the service territories continues with the selection of appropriate seed
customers as described in the following section.

3.1.1.3 Selection of Seed Customers

Now, the task at hand is to partition a set of customer locations into districts
in order to define the service territories. The number of service territories mst

is selected based on the solutions obtained for the τ sample one-day problems.
More precisely, mst corresponds to the number of vehicles required by the FTS
method to find a feasible solution for a given percentage θ of the τ sample days.
This procedure is again inspired by practice as it is not realistic to have a number
of vehicles/drivers that guarantee a 100% percent service level.

For solving such a districting problem, one needs a well-defined notion of ad-
jacency. By only allowing customers to be added to a service territory if they
are adjacent to it, we guarantee the creation of spatially well-defined territories,
i.e., we avoid to generate disconnected territories or enclaves (territories within
territories), which are very unlikely to be optimal. For our districting approach,
we use the concept of adjacency introduced by Haugland et al. (2007).

Here, two customers v and w are called adjacent if the edge between these
customers is not intersected by any shorter edge between two other arbitrary
customers u and y. The adjacency graph A consists of all edges connecting adja-
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cent nodes. It is a planar graph in which all edges form triangles and consequently
a node that has several neighbors in two districts suggests that the node is lo-
cated close to the border of the two districts (Haugland et al. 2007). In order to
reduce computing times, we remove all edges whose length exceeds dmax from the
adjacency graph regardless of whether they are intersected by any shorter edge
or not. Figure 3.4 shows the adjacency graphs for the Solomon problem instance
C104 with clustered customers using dmax = 20.

Figure 3.4: The adjacency graph of Solomon instance C104 using a maximal distance
of dmax = 20

Using this definition of adjacency, each of the mst service territories is built
around a seed customer as depicted in Figure 3.2. The selection of seed customers
bases on the following criteria: 1) a large distance to the depot and all other seed
customers, 2) a large number of neighboring customers, to which they are 3)
spatially close. Customers within the exclusion zone are obviously not eligible as
seed customers. Let I be the set of selected seed customers, vertex 0 the depot,
|A(v)| the number of neighboring customers of customer v in A and d(A(v))

the average distance to those neighboring customers. Starting from I = ∅, we
iteratively select mst seed customers according to the following formula and add
them to set I:

vadd = argmax
v∈V \(I∪EZ )

�
|A(v)| ·min (dvw|w ∈ (I ∪ 0))

d(A(v))

�
. (3.2)

Only the locations of previously chosen seed customers are taken into account for
the selection of a new seed customer. This results in a non-uniform distribution
of seed customers over the delivery area as the distance between adjacent seed

50



Chapter 3 Fixed-Area-Based Routing under Time Window Constraints

customers decreases with every additional seed customer. In order to provide for
a more uniform distribution of seed customers over the delivery area and thus a
starting point for well-shaped service territories, we use the relocation procedure
given in pseudocode in Figure 3.5.

repeat
for each customer v ∈ I do

Determine closest vertex w1 ∈ I ∪ 0 \ {v} with dvw1 = min dvw
Determine second closest vertex w2 ∈ I ∪ 0 \ {v, w1} with dvw2 = min dvw
d(v) = dvw2 − dvw1

end for
Select customer vremove = argmaxv∈I d(v)
Remove vremove from I
Select customer vadd according to Equation (3.2) and add it to I

until vremove = vadd or maximal iteration number reached

Figure 3.5: Pseudocode for the relocation of seed customers

3.1.1.4 Customer Assignment to Territories

After the set of seed customers I has been selected, unassigned customers are
iteratively added to the service territories. We generate a set of mst territories
that approximately include a given percentage ρ of all customers and are roughly
of equal size, measured by the sum of expected demands of the customers assigned
to the territory. Let E(Q) denote the average demand of all customers in the
delivery area during the τ sample days. The capacity constraint of each service
territory is calculated by CST = ρ · 1

mst
· E(Q).

Starting from the territories initialized with the seed customers, we use an
iterative approach to decide which of the unassigned customers to add to which
territory. The resulting territories have to be suitable regarding the historical
demand data and must also be geographically well-shaped. This is achieved by
the procedure given in pseudocode in Figure 3.6, which bases the assignment
decision on:

• The average cost of insertion with the neighbors in the service territory as
introduced by Wong and Beasley (1984). Let avw denote the number of
times customers v and w are served by the same driver and hv the total
number of times customer v is served during the sample days. Then, the
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cost bvw of having customers v and w together in the same service territory
is:

bvw = min (hv, hw)− avw v, w ∈ V

Consequently, an insertion cost of bvw = 0 means that customers v and w

were visited by the same driver whenever both of them required service on
the same day. Note that in this way temporal aspects of a good customer
allocation are integrated since, e.g., customer sequences that are infeasible
due to time window violations are penalized by this measure.

• The number of neighbors |A(v, k)| that each customer v has in service ter-
ritory k.

• The distance d(v, g(v)) to the center of gravity g(v) of the nearest territory
that customer v is not adjacent to or the distance to the depot d(v, 0). The
idea is to prefer customers that are as far away as possible from all other
service territories and the depot. Customers close to the depot can easily
be added to different routes on a flexible basis. A high distance between
service territories enables a more uniform distribution of territories and
enough of a flexible buffer zone between them. We use a distance exponent
ψ as weighting factor to determine the influence of the distance to the other
service territories and the depot.

3.1.2 The Routing Phase

In the second phase of SFSTR, the operational routing of vehicles is carried
out. The number of vehicles corresponds to the number of service territories,
i.e., one vehicle is assigned to each of the territories serving all customers within
this area that require service on that day. The opening of further routes is not
allowed. However, we allow single vehicles to stay at the depot in case none of
the customers of the respective service territory has to be served on that day and
the vehicle is not needed to serve any flexible customers.

For the initialization of routes in TTS, we use the insertion heuristic presented
above. In a first step, the initialization is individually applied to every territory
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{ST k, k = 1, . . . ,mst} ← set of service territories
q(v) ← average demand of customer v over sample days
Candidates ← A(I) \ {EZ ∪ 0 ∪ I}
Initialize each territory ST k with one seed customer v from I
Set territory demand q(ST k) ← q(v)
while (∃ k : q(ST k) < CST ) ∧ (Candidates �= ∅) do

Remove from Candidates all customers adjacent to more than one territory
newCustomers = ∅

for each territory ST k with q(ST k) < CST do

vadd = argmax
v∈Candidates

�
|A(v, k)|2 · min(d(v,g(v)),d(v,0))ψ

max(
�

w∈A(v,k) bvw, 0.5)

�

ST k = STk ∪ vadd
q(ST k) ← q(ST k) + q(vadd )
newCustomers ← newCustomers ∪ vadd
Update center of gravity of ST k

end for
Candidates ← Candidates ∪ A(newCustomers) \ (0 ∪ EZ ∪ (

�
k∈{1,...,mst} ST k))

end while

Figure 3.6: Pseudocode for the assignment of customers to service territories

and all customers assigned to a territory are iteratively inserted into the corre-
sponding vehicle route. Subsequently, the remaining customers are added to the
initialized routes one at a time at the best place of insertion. The initialized
routes are then iteratively improved by the TTS method. Those customers that
are assigned to fixed service territories must stay in the route of the respective
territory and must not be considered for relocation. They are simply neglected
by inter-route moves.

Since the demand situation in the routing phase is not known during the dis-
tricting phase, on some days it might not be possible to generate a valid solution
that satisfies all capacity and time window constraints and respects the pre-
assignment of customers based on service territories. This is especially true if
demand peaks occur, territories are large and time windows are tight. To mit-
igate the problem, we use semi-fixed service territories, i.e., we allow to expel
customers from their fixed territories and assign them to different drivers. The
procedure for expelling a customer is as follows:

1. If the stopping criterion of TTS is met, check if the solution is feasible with
respect to capacity and time window constraints. If it is, stop, otherwise
continue.
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2. Find the preassigned customer whose expulsion from his service territory
leads to the best improvement of the objective function and allow this
customer to be removed from his route.

3. Continue TTS and reset the stopping criterion.

This cycle can be repeated several times. TTS stops either if a feasible solution is
found or if an upper limit of ς customers are expelled from their respective service
territories. Note that it is nevertheless possible to end up with an infeasible
solution. This problem cannot be avoided if the territories are designed in a
manner trading off feasibility and efficiency considerations.

3.2 Computational Studies

The main purpose of our studies is to examine the efficiency of a FABRA when
dealing with time-definite customer requirements. As no adequate test instances
with time window requirements are available, we generate new multi-day bench-
mark problems based on the Gehring and Homberger VRPTW benchmark prob-
lems. We evaluate efficiency measures, like, e.g., traveled distance, as well as
consistency measures quantifying driver familiarity effects for SFSTR and com-
pare the results to an RR strategy.

Since the flexibility of SFSTR mainly depends on the number of fixedly assigned
customers, we study the influence of different territory sizes on the considered
efficiency and consistency measures. Furthermore, we analyze the robustness
of SFSTR concerning a higher variability in the number of customers requiring
service, which is expected to have a negative influence on the performance of a
FABRA.

The next section describes the generation of the test data. Afterwards, we
give some insights into the parameter setting used for the studies in Section
3.2.2. Section 3.2.3 presents the numerical studies performed to analyze the
general performance of SFSTR. Subsequently, we study the influence of parameter
changes, namely the size of the service territories and variability in the number
of occurring customers, on SFSTR in Section 3.2.4.
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3.2.1 Generation of Test Problems

In order to study the performance of FABRAs with time-definite routing prob-
lems, we require multi-day series of VRPTW one-day problems since otherwise
statements about delivery consistency are not possible. Another requirement for
consistency evaluation is that the customers for each day stem from the same
base set. This mimics the practical situation, where each day a (more or less)
random subset of the SPS company’s customer base requires service.

We generate several series of 2 · τ = 100 VRPTW problems, where the cus-
tomer set Vt that requires service on day t = 1, . . . , 2 · τ is a random subset of the
customers of a larger base problem with customer set V . Throughout the experi-
mental analysis, we separate the generated one-day problems in two groups. The
data of the first group consists of the first 50 days and is used as input to the
districting phase and the remaining 50 days are used to evaluate the performance
of the service territories generated in the districting phase.

To allow for a certain degree of demand variation, not only the choice of cus-
tomers is randomized, but the number of selected customers |Vt| for day t is also a
stochastic variable. We assume |Vt| to be normally distributed with an expected
value of µ and a standard deviation of σ. Moreover, we make the assumption
that each customer has the same probability of requiring service on a given day.
This is the worst case scenario for a FABRA and we did not want to have a
distribution that prejudices the generated instances towards problems which are
more easily tractable by FABRAs. Note however that such distributions, with
several core customers that have high order volumes and frequencies, may well
occur in practice.

As base problems, we use a selection of the 1000-customer Gehring and
Homberger VRPTW benchmark problems. As described in Section 2.1.3, the
instances are similar to the Solomon benchmark and six problem classes exist
involving instances with a clustered (C), random (R) and random-clustered (RC)
customer distribution. Furthermore, the instances differ in the vehicle capacity
and the percentage of customers with time windows (25%, 50%, 75% and 100%).
As shown in Table 3.1, we select 12 representative base problems from the different
problem classes with different vehicle capacities and time window characteristics.
In order to generate unfavorable instances for a FABRA approach, we use prob-
lem instances with 50% or 75% time windows. These lie around the upper bound

55



Chapter 3 Fixed-Area-Based Routing under Time Window Constraints

of the time window density characteristics of real-world SPS companies, which
face up to 60% of time-definite deliveries (Campbell and Thomas 2009).

Time Window Density
Capacity 50% 75%

low R1_10_3, C1_10_3, RC1_10_3 R1_10_2, C1_10_2, RC1_10_2
high R2_10_3, C2_10_3, RC2_10_3 R2_10_2, C2_10_2, RC2_10_2

Table 3.1: Base instances for generating multi-day series of VRPTW problems

3.2.2 Parameter Setting

For tuning the parameters of our TS methods, we follow the strategy described in
Ropke and Pisinger (2006). First, we use preliminary tests to find a decent param-
eter setting. Next, this parameter setting is refined by changing the value of one
parameter while the rest of the parameters remain fixed. We use a representative
subset of the Solomon VRPTW benchmark instances with 100 customers. On
those, we conduct 10 runs of FTS with each parameter setting and then choose
the setting that produces the best average results. This process is repeated with
the next parameter until all parameters are tuned once. The parameters found
for FTS are also used for TTS.

For our initialization heuristic, the penalty factors for capacity violation and
lateness are set to αinit = 1, βinit = 20 and the factor ν of the Solomon c2 criterion
is set to 2. During the improvement phase, the penalty factors are updated with
factor δ = 1.5 in the interval [1, 1500]. We use a standard tabu tenure of ϑ = 125,
while the length of the strong tabu list is ϑstrong = 5. The search stops after
ηstop = 150000 iterations. The number of iterations without improvement before
resetting to the best solution is ηreset = 7500. Furthermore, we set the value of
the diversification factor to λdiv = 2.

For the districting phase, we use a base parameter setting which we describe
next. All modifications to this base setting in later studies are described with
the respective study. The number of vehicles mst and thus the number of service
territories to create corresponds to the number of vehicles that FTS requires to
find a feasible solution for θ = 95% of the 50 sample days, i.e., the number of
vehicles is set to achieve the given service level over the sample days when RR is
used.
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The service territories are created with ρ = 0.5, so as to include half of the
customers in set V , which we denote as medium-sized territories. We found that
the percentage ω of the total customers V to be included in the exclusion zone
has to be chosen in dependence of the service territory size in order to guarantee
that enough “free” customers exist in between territories. For medium-sized
territories, we use ω = 0.05. The maximum distance dmax for the adjacency
graph is set to the average distance between customers in the respective base
instance divided by four. A distance exponent of ψ = 2 is used.

SFSTR is implemented as single-thread code in Java. All tests are performed
on a desktop computer equipped with an Intel Core i5 750 processor at 2.67
GHz, 4 GB RAM and running Windows 7 Professional.

3.2.3 Performance of Semi-Fixed Service Territory Routing

In this study, we evaluate the performance of SFSTR on the 12 generated
benchmark instances that are created from the above described base problems
using an expected value of µ = 120 customers and a standard deviation of
σ = 10. The performance is not only assessed concerning standard efficiency
measures, like, e.g., traveled distance, but also in terms of achieving consistent
vehicle routes. To this end, Table 3.2 presents the results for 50 days of routing
with SFSTR compared to a strategy of daily RR (carried out with our FTS
method), where vehicle routes are determined without considering any fixed
assignment of customers to drivers. The results are grouped according to the
structure of the base problem used to create the test series.

For each series, the following efficiency measures are reported for SFSTR and
RR: 1) the average number of routes (#Rts.), 2) the average traveled distance
(TD), 3) the number of days with an invalid solution before outsourcing customers
(Inv), and 4) the average number of customers that have to be outsourced to
achieve a feasible solution (OC). The last measure is inspired by practice, where
unprofitable or difficult to serve customers are subcontracted (Stenger et al. 2011).
We use a straightforward approach to determine the customers to outsource if
a solution is infeasible. In each iteration, we find the customer that causes the
highest time window and capacity violation and remove it until we end up with
a feasible solution.
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In order to quantify route consistency, we use the following consistency mea-
sures, which are similar to the measures introduced in Smilowitz et al. (2012):

• Customer familiarity for a certain customer is defined as the percentage
of deliveries to that customer which are carried out by the one driver who
visits the customer most frequently. By averaging over customers, we get
the customer familiarity values reported in Table 3.2 as CF.

• Driver diversity is the number of different drivers serving a customer during
the sample period. The average over all customers is provided in column
DD in Table 3.2.

It should be noted that these two measures have a different behavior, i.e., a high
customer familiarity value (respectively low driver diversity value) indicates route
consistency. The gaps of SFSTR to the RR solution for the average number
of routes, the average traveled distance and for the two consistency measures
(∆#Rts., ∆TD, ∆CF, ∆DD) are reported in Table 3.2. For all reported values,
we provide averages based on the structure and over all entries.

In order to ensure a fair comparison of the consistency results obtained by
SFSTR and RR, we apply a post-processing step to the RR solution as commonly
done in literature (cp. Zhong et al. 2007, Groër et al. 2009, Sungur et al. 2010,
Smilowitz et al. 2012). The set of routes first determined by FTS is subsequently
assigned to drivers to maximize consistent deliveries. More precisely, we model
the second step as an assignment problem which aims at finding the optimal
driver-route assignment in terms of the considered consistency measure and solve
the assignment problem by means of the optimization software CPLEX 12.1.

The average number of employed vehicles of SFSTR increases by 9.0% com-
pared to RR and the increase in traveled distance is also rather moderate with
8.5%. Between the problem classes, a slight increase from C to R and from R to
RC can be found for ∆#Rts. and ∆TD. Thus, the smallest efficiency forfeits can
be found for cluster-based instances, probably due to the natural districting that
even RR solutions to these problems show.

In addition, as a result of the limited flexibility of FABRAs, the number of days
with invalid solutions more than doubles for SFSTR. However, with only 4 invalid
days in 50 on average, the constraint violations seem rather moderate. Especially,
if we consider the possibility of subcontracting certain critical customers. Only
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1.4 customers need to be outsourced on average to obtain feasible vehicle routes
with SFSTR, compared to RR, where 1.3 outsourced deliveries are required on
average.

Comparing the different problem classes for the number of invalid solutions and
the number of outsourced customers, the value obtained on the R instances is
significantly lower than for C and RC. A possible explanation is that, for routes
serving randomly distributed customers, the exchange of a customer between
routes is easier than for routes serving clustered customers. Here, vehicle routes
of different drivers seldom overlap and are often spatially distant, which renders
an insertion or exchange of a customer quite difficult.

On the other hand, strong improvements in the consistency measures are caused
by SFSTR. Customer familiarity increases from about 60% to 80%, while the
driver diversity falls from 2.7 to 2.1 different drivers per customer. Note that the
familiarity values achieved by RR are already on a relatively high level and can
nevertheless be significantly improved with SFSTR. The percentage improvement
in customer familiarity and driver diversity is highest for the R instances. The
difference to the RC instances seem to be due to the already higher consistency of
the RR solutions in RC. An explanation might be that the RR solutions of more
clustered instances already respect the locality induced by the clusters, which
results in compact routes that are adequate to achieve high consistency. The
difference to the C instances stems from a slightly lower absolute consistency of
SFSTR on these instances.

Taking into account that daily customer selection is based on a uniform dis-
tribution and the instances have very high time window densities, the results
indicate an only moderate deterioration in efficiency measures of the FABRA.
On the other hand, the implicit consideration of driver familiarity enables the
FABRA to improve consistency results significantly. Adding the real-world pos-
sibility of subcontracting, which reduces the risk of having unsatisfied customers,
the advantages of a FABRA seem to outweigh the efficiency forfeits even in the
presence of time window constraints and unfavorable customer occurrence.
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3.2.4 Influence of Territory Size and Variability of the Number of
Customers Requiring Service

This section examines the impact of the size of the generated service territo-
ries and the variability of the number of customers requiring service on routing
efficiency and route consistency. In a first study, we generate small territories in-
cluding ρ = 33% of customers V and large ones with ρ = 66% in addition to the
medium-sized territories. We compare the results of SFSTR obtained with small,
medium-sized and large service territories to an RR strategy on all instances
described in the previous section. Note that the number of customers located
in the exclusion zone is adapted to the territory size, i.e., the test compares
the performance of territories created with the following (ρ, ω) pairs: (0.5, 0.05),
(0.33, 0.1),(0.66, 0.03).

The results are displayed in Figures 3.7 and 3.8, which depict the impact of dif-
ferent territory sizes on the efficiency and consistency measures described above.
We show averages over the problem classes as well as overall averages.

Concerning the total averages, the behavior of all measures is as could be
expected. Increasing the size of the service territories leads to a deterioration of
efficiency measures, i.e., an increase in traveled distance, number of routes and
outsourced deliveries, and an improvement of the familiarity measures, namely an
increase in customer familiarity and a decrease in driver diversity. An important
point can be noted: The changes in the efficiency and consistency measures
behave approximately proportionally to the increase of the customer percentage
fixedly assigned to drivers. This suggests that the size of the service territories
can be utilized to control the achieved tradeoff between service consistency and
route efficiency.

Concerning the averages based on problem classes, only the number of out-
sourced customers for problem class R shows some rather irregular behavior,
indicating that for this type of problems the solutions generated with smaller
territories are not necessarily closer to being feasible than those with larger ter-
ritories. This could probably be due to the strongly unstructured nature of these
instances, which might sometimes be favorable for more clustered solutions that
emerge when using (larger) territories.

To be better able to study the tradeoff between consistency and efficiency,
Figure 3.9 depicts the total averages for all four measures, normalized by using

61



Chapter 3 Fixed-Area-Based Routing under Time Window Constraints

8000 
8200 
8400 
8600 
8800 
9000 
9200 
9400 
9600 
9800 

10000 
10200 

Avg. C Avg. R Avg. RC Total Avg 

Tr
av

el
 D

ist
an

ce
 

RR 

Small 

Medium 

Large 

(a) Distance

0,0 

2,0 

4,0 

6,0 

8,0 

10,0 

12,0 

14,0 

16,0 

18,0 

Avg. C Avg. R Avg. RC Total Avg 

N
um

be
r o

f R
ou

te
s 

RR 

Small 

Medium 

Large 

(b) Number of routes

0,0 
0,2 
0,4 
0,6 
0,8 
1,0 
1,2 
1,4 
1,6 
1,8 
2,0 

Avg. C Avg. R Avg. RC Total Avg 

O
ut

so
ur

ce
d 

C
us

to
m

er
s 

RR 

Small 

Medium 

Large 

(c) Outsourced customers

Figure 3.7: Efficiency measures of SFSTR with different territory sizes and of the
RR approach. Averages are grouped according to structure of the base
problem and also given as total.
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Figure 3.8: Consistency measures of SFSTR with different territory sizes and of the
RR approach. Averages are grouped according to structure of the base
problem and also given as total.
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the value achieved with medium-sized territories as 100% level. We can see that
from a percentage perspective the consistency improvement achieved by SFSTR
seems to outweigh the increase in traveled distance, number of routes and number
of outsourced customers. Clearly, the optimal tradeoff can only be determined if
a cost value can be put on each of the considered measures.
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Figure 3.9: Comparison of SFSTR and RR concerning efficiency and consistency
measures. Total averages normalized by using the value achieved with
medium-sized territories as 100% level are depicted.

Last, we study the influence of the variability of the number of customers
requiring service on each day on the performance of SFSTR in comparison to
an RR approach. To this end, we compare results for one-day problem series
generated with σ = 10, 20, 30. To get an idea of the influence of the standard
deviation on the minimal, maximal and average number occurring in a 100-day
series, we present these values for all 12 base instances in Table 3.3. The impact
of the different standard deviations on the introduced efficiency and consistency
measures is depicted graphically in Figures 3.10 and 3.11. For each standard
deviation value, we show average values for small, medium-sized and large service
territories as well as for the RR approach.

Concerning the traveled distance and number of routes, we can see that a higher
standard deviation leads to an increase in the difference between RR and SFSTR
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σ = 10 σ = 20 σ = 30

Problem Avg. Max. Min. Avg. Max. Min. Avg. Max. Min.

C110_2 121.3 148 102 119.1 164 65 123.4 195 58
C110_3 121.0 143 104 124.3 156 97 118.6 167 41
C210_2 120.3 155 93 120.8 181 80 121.8 188 50
C210_3 122.7 145 100 118.8 159 75 133.1 193 90
R110_2 120.5 139 103 122.4 170 80 117.3 193 49
R110_3 120.1 148 97 122.7 167 69 125.6 175 66
R210_2 120.2 139 97 116.9 156 82 119.8 196 63
R210_3 120.6 146 102 118.8 147 84 115.4 194 57
RC110_2 122.9 144 105 123.2 173 76 115.8 178 38
RC110_3 120.7 146 101 122.2 172 84 117.9 168 45
RC210_2 120.4 142 104 122.5 158 89 119.8 183 52
RC210_3 121.9 139 110 118.1 152 62 125.8 201 66

Total 155 93 181 62 201 38

Table 3.3: Minimal, maximal and average number of customers requiring service in
the 100-day series generated with expected value µ = 120 and standard
deviations σ = 10, 20, 30

for all considered territory sizes. Furthermore, a higher number of customers
has to be outsourced on average, which is probably mainly due to the increased
total customer demand and the higher number of customers requiring service
within a predefined time window. The number of outsourced customers is the
only measure that does not show a consistent behavior for the different territory
sizes, probably due to specifics of the solution approach and the way that the
customers to outsource are determined.

Considering the consistency measures, one can see that the achieved values for
customer familiarity and driver diversity remain stable for different standard de-
viations. On the one hand, this means that although efficiency forfeits increase,
no consistency improvement is achieved for higher standard deviations indicating
that a stronger demand variation renders FABRAs less suitable. On the other
hand, the results show that, even with a high demand variation and the unfa-
vorable uniform distribution of customers, SFSTR achieves significantly higher
routing consistency than RR while only having moderate efficiency forfeits due
to the partial fixing.
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Figure 3.10: Efficiency measures of SFSTR and an RR approach for test instances
generated with expected value µ = 120 and standard deviations σ =
10, 20, 30

66



Chapter 3 Fixed-Area-Based Routing under Time Window Constraints

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

10 20 30 

C
us

to
m

er
 F

am
ili

ar
ity

 

Standard Deviation of the Number of Customers 

RR 

Small 

Medium 

Large 

(a) Customer familiarity

0,00 

0,50 

1,00 

1,50 

2,00 

2,50 

3,00 

10 20 30 

D
ri

ve
r D

iv
er

sit
y 

Standard Deviation of the Number of Customers 

RR 

Small 

Medium 

Large 

(b) Driver diversity

Figure 3.11: Consistency measures of SFSTR and an RR approach for test instances
generated with expected value µ = 120 and standard deviations σ =
10, 20, 30
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3.3 Summary and Conclusion

We develop SFSTR to study the performance of FABRAs in the presence of time
window requirements. The districting phase defines an exclusion zone around the
depot, selects a set of seed customers and adds a predefined percentage of the
overall customers. The customer selection is based on spatial aspects as well as on
routing solutions obtained by our FTS on a set of sample days that are generated
from historical demand data. In the routing phase, daily routing is conducted
based on the service territories developed in the districting phase using TTS.

Our numerical studies on 12 100-day series of VRPTW problems with different
customer distributions and time window densities give the following insights:

• Vehicle routes designed with FABRAs are generally characterized by a dete-
rioration of efficiency measures, i.e., higher traveled distances, higher num-
ber of routes and a higher number of customers to outsource in order to
achieve feasible daily solutions compared to an RR approach. On the other
hand, FABRAs achieve considerably higher consistency, namely an increase
in customer familiarity and a decrease in driver diversity.

• Increasing the size of the territories leads to further deterioration of effi-
ciency measures while improving consistency. The changes in the efficiency
and consistency measures behave approximately proportionally to the in-
crease of the customer percentage fixedly assigned to drivers. This suggests
that the size of the territories can be utilized to control the achieved tradeoff
between service consistency and route efficiency.

• A higher variance of the number of customers requiring service on each day
does not have the detrimental effect that one could expect (independent of
the service territory size). Efficiency measures slightly deteriorate compared
to RR while customer familiarity and driver diversity remain stable on a
high level.

Summing up, even with high variations of the number of customers requiring
service, the unfavorable uniform distribution of customers and high time win-
dow densities, the FABRA studied shows only moderate efficiency forfeits while
achieving significantly higher routing consistency. This is highly valuated by SPS
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companies. Adding the real-world possibility of subcontracting, the problem of
invalid vehicle routes obtained on some days can easily be solved in practice.

The content of this chapter is available in similar form as technical report
(Schneider, Stenger, Lagemann and Vigo 2012) and has been submitted to an
international journal.
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Chapter 4

The Vehicle Routing Problem with Time

Windows and Driver-Specific Times

This chapter studies the Vehicle Routing Problem with Time Windows and
Driver-Specific Times (VRPTWDST), which allows to incorporate driver
knowledge into the route planning decision. Contrary to the Semi-Fixed Service
Territory Routing (SFSTR) approach presented in the previous chapter, the
goal is not to promote driver learning but to design efficient routes based on
already existing different extents of driver knowledge. This is achieved by
incorporating the regional and customer-related knowledge of a driver in the
form of driver-specific travel and service times. The resulting model can provide
decision support for designing high-quality vehicle routes that make use of
available driver knowledge. Moreover, routes are likely to achieve a high degree
of consistency as drivers have an incentive to visit familiar areas.

As described in Section 2.3, the problem has already been mentioned in the
literature as a method to accommodate driver knowledge in a routing model
(see, e.g., Schneider, Doppstadt, Sand, Stenger and Schwind 2010, Sand et al.
2011). However, to the best of our knowledge, no work systematically investi-
gating the problem has been presented yet. This is done in the following sections.

Section 4.1 gives a formal definition of the VRPTWDST. To tackle the NP-
hard problem, we develop a Tabu Search (TS) method, which is detailed in
Section 4.2. Unlike the TS we used for generating routes for the sample days
in SFSTR in Chapter 3, the goal here is to develop an efficient metaheuristic
providing solutions of the highest quality possible in reasonable computing times.
Consequently, the description of the TS is more detailed, putting special emphasis
on design aspects. The performance of the proposed method is investigated in
extensive numerical studies in Section 4.3. To this end, we perform tests on
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a set of newly designed VRPTWDST benchmark instances and on benchmark
instances of the closely related VRPTW.

4.1 Problem Definition

We define the VRPTWDST as an extension of the classical VRPTW. Contrary
to the VRPTW definition given in Section 2.1, we use a three-index formulation
as it provides a more natural representation of a problem with driver or vehicle
specific aspects (see, e.g., Cordeau et al. 2002).

Let V = {1, . . . , N} denote the set of N customers. 0 and N +1 denote
instances of the depot. VRPTWDST is defined on a complete directed graph
G = (V0,N+1, A), with A = {(i, j) | i, j ∈ V0,N+1, i �= j} denoting the arc set.
Homogeneous vehicles with a maximal capacity of C are assumed to be stationed
at the depot. Thus, a set K of driver/vehicle pairs is available that can uniquely
be identified by the driver as is done in the following. With each vertex i ∈ V0,N+1

are associated a nonnegative demand qi (q0 = qN+1 = 0), a time window [ei, li]

(the time window of the depot [e0, l0] = [eN+1, lN+1] corresponds to the scheduling
horizon of the problem) and nonnegative service times sik that depend on the
driver k ∈ K visiting the vertex (s0k = sN+1k = 0, k ∈ K). Associated with
each arc (i, j) is a distance dij and travel times tijk denoting the time it takes
driver k to travel the arc. The binary decision variable xijk equals 1 if driver k

visits vertex j after i, and 0 otherwise. Variable τik specifies the start of service
of vehicle k at vertex i.

Like generally done for heuristic methods for the closely related VRPTW, we
study hierarchical objective functions for the VRPTWDST, first minimizing the
number of vehicles and only considering a secondary objective in case of ties.
Contrary to the vast majority of works on the VRPTW, which only consider
the minimization of traveled distance as secondary objective, we address the
following three secondary objectives:

1. Minimize traveled distance (TD):

min
�

k∈K

�

(i,j)∈A

dijxijk

Note that driver-specific times only indirectly influence TD , as potentially
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different routes with respect to the time window constraints are possible.

2. Minimize working time (WT ). WT is defined as the sum of travel and
service times of a solution and thus the driver-specific times influence the
objective function value in a direct fashion.

min
�

k∈K

�

(i,j)∈A

(tijk + sjk)xijk

3. Minimize working duration (WD). WD is defined as the difference between
the start and end time of the routes. It can alternatively be described as the
working time plus waiting times and is obviously also directly influenced
by driver-specific times.

min
�

k∈K

(τN+1k − τ0k)

In order to obtain the hierarchical objective function, the technique described
in Section 2.1.1 is used. The constraints of the VRPTWDST are as follows:

�

k∈K

�

j∈VN+1

xijk = 1 ∀i ∈ V (4.1)

�

j∈VN+1

x0jk = 1 ∀k ∈ K (4.2)

�

i∈V0

xijk −

�

i∈VN+1

xjik = 0 ∀j ∈ V, k ∈ K (4.3)

xijk(τik + sik + tijk − τjk) ≤ 0 ∀(i, j) ∈ A, k ∈ K (4.4)

ei ≤ τik ≤ li ∀i ∈ V0,N+1, k ∈ K (4.5)
�

(i,j)∈A

qixijk ≤ C ∀k ∈ K (4.6)

xijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (4.7)

Constraints (4.1) state that each customer is visited by exactly one vehicle. Con-
straints (4.2) require each vehicle to start from the depot and flow conservation
constraints are given in (4.3). Time window and capacity restrictions are enforced
by Constraints (4.4) – (4.6). Binary variables are defined in Constraints (4.7).
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4.2 Tabu Search for the VRPTWDST

This section introduces the TS we develop to solve the VRPTWDST, called TS-
DST. An overview of the method in pseudocode is given in Figure 4.1. After
eliminating infeasible arcs in a preprocessing step as described in Section 4.2.1,
the initial solution is generated by using an adapted version of the I1 heuristic
presented in Solomon (1987) (Section 4.2.2). The generated solution as well as
the solutions during the TS phase are allowed to be infeasible. They are evaluated
based on a generalized cost function penalizing infeasible solutions as described
in Section 4.2.3. In each iteration of the TS, a set of neighborhood operators are
applied to the current solution S to generate the composite neighborhood N (S)

(Section 4.2.4).
Each possible move is evaluated and the best non-tabu move is performed.

By contrast, if the algorithm is in a probabilistic phase, a random of the best ξ

non-tabu moves is selected. A move is superior if it either reduces the number
of employed vehicles or, in case of ties, has a better objective function value
according to the generalized cost function. If a move is tabu but improves the
best overall solution, an aspiration criterion is applied that lifts the tabu status
of the move. After executing the move, the tabu list, the best overall solution
and the penalties are updated and the algorithm decides whether a probabilistic
phase is started, continued or ended as described in Section 4.2.5.

Besides the probabilistic phase, we apply further search diversification tech-
niques like, e.g., shaking the solution. The respective methods are applied if the
search has not improved the best found solution for a certain number of itera-
tions. The techniques are detailed in Section 4.2.5. The termination criterion of
the search depends on the phase of the TS run, i.e., whether it is searching for
a feasible solution with a given number of vehicles or minimizing the secondary
objective (see Section 4.2.6).

4.2.1 Preprocessing Step

In the preprocessing step, we remove those arcs from the solution graph that
cannot belong to a feasible solution as often done for VRP and VRPTW (see,
e.g., Psaraftis 1983, Savelsbergh 1985, 1990). An arc can either be infeasible
due to time window or due to capacity constraints. To identify these arcs, we
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initialize(tabuList ,penaltyWeights)
S ← generateInitialSolution()
S∗ ← S
probabilisticPhase ← false
repeat

if probabilisticPhase then
S ← selectRandomOfBest( N (S) \ tabuList , ξ)

else
S ← selectBestOf( N (S) \ tabuList)

end if
update(tabuList , S∗, penaltyWeights, probabilisticPhase)
if specific diversification criteria satisfied then

applyFurtherDiversification()
end if

until termination criteria satisfied
return S∗

Figure 4.1: Tabu search for solving VRPTWDST in pseudocode

use the following rules and remove all arcs (v, w) for which one of the following
conditions holds:

v, w ∈ V ∧ qv + qw ≥ C (4.8)

v ∈ V0, w ∈ VN+1 ∧min
k∈K

(ev + svk + tvwk) ≥ lw (4.9)

v ∈ V0, w ∈ V ∧min
k∈K

(ev + svk + tvwk + swk + twN+1k) ≥ l0 (4.10)

Equation (4.8) describes capacity violations that occur if the cumulated demand
of two customers exceeds the vehicle capacity. Obviously, this rule is rather
unlikely to remove any arcs as the demands have to be very high compared to
the capacity of a vehicle. Equations (4.9) and (4.10) are adaptions of well-known
preprocessing steps based on time window violations. Equation (4.9) states that
an arc can be removed if even the driver with the minimal travel and service time
on this arc is not able to reach w within the given time window when starting
service at v at the earliest possible time. Equation (4.10) is similar but considers
the depot deadline. If the driver with the minimal travel and service times is not
able to return to the depot in time after consecutively visiting customers v and
w, the arc (v, w) is infeasible. We conducted numerical studies on the Solomon
benchmark instances using the driver-unspecific versions of the presented rules,
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which show the partially significant effect of the preprocessing step. The results
can be found in Appendix B.1.

4.2.2 Generation of Initial Solution

To generate an initial solution, we again use a slight modification of the insertion
heuristic introduced by Solomon (1987). Like the method described in Chapter
3, the algorithm creates a potentially infeasible solution with a given number of
vehicles m instead of a feasible solution with an open number of vehicles as in
the original version. The procedure in pseudocode is shown in Figure 4.2.

To be able to use the approach in the presence of driver-specific times, we calcu-
late average travel and service times over the different drivers, thus transforming
a VRPTWDST problem instance into a VRPTW instance. After having created
the initial solution, we solve an assignment problem to find the cost-optimal as-
signment of available drivers to the generated routes using IBM ILOG CPLEX
Optimizer (CPLEX) 12.1. As potentially fewer drivers are employed for gener-
ating the initial solution than available in the problem instance, the assignment
problem is rectangular.

S ← ∅

Vunrouted ← V
while m(S) < m and Vunrouted �= ∅ do

vseed ← farthestFromDepot(Vunrouted )
Vunrouted ← Vunrouted \ {vseed}
r ← �v0, vseed , vn+1�

repeat
for all v ∈ Vunrouted do

p∗(v) ← bestPosition(c1, v, r)
end for
v∗ ← bestCustomer(c2, p∗, r)
r ← insertCustomer(r, v∗, p∗)
Vunrouted ← Vunrouted \ {v∗}

until no feasible insertion into r possible
S ← addRoute(S, r)

end while
if Vunrouted �= ∅ then

S ← insertCustomers(S, Vunrouted , fgen)
end if
return S

Figure 4.2: Generation of initial VRPTWDST solution in pseudocode
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The algorithm sequentially opens routes and fills them with customers accord-
ing to specific criteria until no more customers can be feasibly inserted. To open
a new route, the procedure selects the unrouted customer farthest from the de-
pot vseed and generates a new route r = �v0, vseed , vn+1�. In the next step, for
each of the still unrouted customers v ∈ Vunrouted the best insertion position p∗(v)

between two consecutive customers in r is determined according to criterion c1

in Equation (4.11):

p∗(v) = argmin
p=1,...,nk

(c1(vp−1, v, vp)) (4.11)

c1(x, y, z) = �1 · c11(x, y, z) + �2 · c12(x, y, z) (4.12)

c11(x, y, z) = dxy + dyz − ι · dxz (4.13)

c12(x, y, z) = az − aoldz (4.14)

with ι ≥ 0, �1 + �2 = 1, �1 ≥ 0, �2 ≥ 0

Equation (4.12) considers the increase in traveled distance due to the insertion
of the customer (calculated in Equation (4.13)) and the increase of the arrival
time at the successive customer (given in Equation (4.14)). Subsequently, the
customer v∗ that is feasibly insertable and maximizes Solomon’s c2 criterion is
added to the route at its best insertion position:

v∗ = argmax
v∈Vunrouted∧feasibleInsert(v)

�
c2(vp∗(v)−1, v, vp∗(v))

�

c2(x, y, z) = ν · d0y − c1(x, y, z)

ν ≥ 0

These steps are repeated as long as a customer can be inserted into the route
without violating constraints. If this is no longer possible, the route is closed,
added to the solution S and the procedure continues with the next route until
either m routes are created or each customer is routed. After m routes have
been created, any customers that are still unrouted are added to the routes at
the best insertion position according to the generalized cost function described
in the following section.
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4.2.3 Generalized Cost Function and Penalty Determination

We permit capacity and time window violations during the initialization and im-
provement phase using the generalized objective function fgen(S) = f(S) + α ·

Pc(S)+β ·Ptw(S), where f(S) denotes the original objective function value of so-
lution S, e.g., traveled distance or one of the other objective functions introduced
above.

The penalty factors α, β are dynamically updated during the search to allow for
more diversification if the current solution is feasible and, in the contrary case, to
guide the algorithm to a feasible solution. Similar to the TS described in Section
3.1.1, the time window or capacity violation penalty factor is multiplied by δ after
the respective constraint is violated for ηpenalty iterations. If the constraint is met
for ηpenalty iterations, the respective penalty factor is divided by δ. The penalty
factors are restricted to the interval [αmin , αmax ] and [βmin , βmax ] respectively.

As driver-specific times have no influence on capacity restrictions, the capacity
penalty Pc(S) of a solution S can be defined and efficiently computed as described
in Section 2.2. TS-DST uses a subset of the four conventional neighborhood oper-
ators mentioned above, namely the Relocate, Exchange and the 2-opt* operator,
which are detailed in the following section. Consequently, the change in Pc(s)

can be computed in O(1) time.
For determining time window penalties, we adapt the time travel approach in-

troduced in Section 2.2 to the VRPTWDST. A straightforward adaption is to de-
termine all time window handling related variables of a route based on the driver-
specific times of the driver currently assigned to the route. In this way, the time
window handling variables ãv, z̃v,TW→

v and TW←
v are still defined for the vertices

v ∈ Vert(S) of all routes. Using this approach, penalties for the Relocate and Ex-
change operator can be computed in constant time by applying the original rule
for merging partial paths given in Equation (2.10) and the corrected rule for in-
serting a vertex between partial paths presented in Equation (2.14). The reason is
that for Relocate and Exchange both partial paths “belong” to the same driver and
thus all time window handling related variables are available for the partial paths.

However, this is not true if the rule for merging partial paths is applied for
calculating the time window penalty of a 2-opt* move. Here, the first and the
second partial path to be merged belong to different routes which are carried
out by different drivers. Therefore, the time window handling variables for the
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second partial path are not adequate for the driver performing the first partial
path and vice versa.

This situation can be remedied by defining all time window handling related
variables in a driver-specific manner, i.e., for each driver k ∈ K and all vertices
v ∈ Vert(S) variables ãvk, z̃vk,TW→

vk and TW←
vk are kept. After a move is carried

out, the variables of the affected routes have to be recalculated for all drivers.
In this way, we are still able to compute time window penalties for inter-route
moves with conventional operators in constant time. However, we have to accept
an increase in updating and storing effort as the time window handling variables
of all routes have to be kept for all drivers.

4.2.4 Neighborhood Generation and Tabu List

TS-DST combines several neighborhood operators to build a composite neighbor-
hood. To define the neighborhood of a solution, we employ the 2-opt* operator
for inter-route moves only and the Relocate and Exchange operators for both
inter and intra-route moves. The neighborhood in each generation of the TS
is generated by applying the neighborhood operators for each arc of the list of
generator arcs. Using arcs as move generators was originally introduced in Toth
and Vigo (2003). The so-called generator arc (v, w) �∈ S modifies the solution
in a manner that after application of the move, vertex v is followed by vertex
w. In this way, all other arcs to be removed and added are specified for a given
operator. In the following, we detail the utilized neighborhood operators putting
special emphasis on how a given generator arc (v, w) determines the respective
move. We use v− and v+ to denote the predecessor and successor of a vertex v.

4.2.4.1 Relocate Operator

The Relocate operator was introduced in Savelsbergh (1992) and removes one
vertex from a route and inserts it into another route at an arbitrary position
(inter-route) or into the same route at a different position (intra-route). The
generator arc (v, w) defines v as the vertex to be moved as shown in Figure 4.3.
More precisely, the move is defined by the following operations:

• Remove arcs (v−, v), (v, v+), (w−, w)

• Add arcs (w−, v), (v, w), (v−, v+)
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Figure 4.3: Relocate move with generator arc in bold and removed arcs as dashed lines

4.2.4.2 Exchange Operator

The Exchange operator was also introduced in Savelsbergh (1992) and swaps the
position of two vertices. For the generator arc (v, w), vertex v takes the position
of vertex w− and vice versa as shown in Figure 4.4. The arc operations are as
follows:

• Remove arcs (v−, v), (v, v+), (w−−, w−), (w−, w)

• Add arcs (w−−, v), (v, w), (v−, w−), (w−, v+)

w- w

v v+

w- w

v v+

w- w

v v+

w--

v-

w- w

w- w

v

v

Figure 4.4: Exchange move with generator arc in bold and removed arcs as dashed
lines

4.2.4.3 2-opt* Operator

The 2-opt* operator was proposed specifically for the VRPTW by Potvin and
Rousseau (1995) as a modification to the classical 2-opt operator (Lin 1965).
The latter allows the reversal of the direction of partial routes, which is not
desirable for routing problems with time windows as the vertices are often already
sequenced according to their due time. Thus, reverting part of the route is likely
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to violate time windows. The 2-opt* operator overcomes this shortcoming by
removing one arc from each route and reconnecting the first part of the first
route with the second part of the second route and vice versa. Thus, directions
are kept in all involved part routes.

As depicted in Figure 4.5, with arc (v, w) acting as generator arc, arc (w−, v+)

is unambiguously determined as the second arc to add. More precisely, the move
is defined by the following operations:

• Remove arcs (v, v+), (w−, w)

• Add arcs (v, w), (w−, v+)

w
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w

v v
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w
-

w

v v
+

w
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w
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Figure 4.5: 2-opt* move with generator arc in bold and removed arcs as dashed lines

4.2.4.4 Tabu List

As described above, saving complete solutions in the tabu list is inefficient con-
cerning storage and comparison effort. Therefore, attributes of a solution are
stored and moves are tabu if they induce these attributes. This also leads to
a more extensive exploration of the search space as it helps the search to move
away from previously visited parts of the search space. We follow the approach
of Toth and Vigo (2003) and consider a move tabu if it reinserts an arc that was
removed in one of the previous ϑ iterations, where ϑ denotes the tabu tenure. It
is set to a random value in [ϑmin , ϑmax ] as proposed by Gendreau et al. (1994).
As aspiration criterion, we allow the execution of a tabu move if it leads to a new
overall best solution.

4.2.5 Diversification Methods

Local-search-based heuristics tend to be too local in the sense that the search
focuses on small regions of the search space. Therefore, the incorporation of
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diversification mechanisms, which aim at guiding the TS into previously unvisited
regions of the solution space, is crucial in the design of efficient solution methods
for complex combinatorial problems like the VRPTWDST (Gendreau and Potvin
2010a). We apply several such mechanisms in TS-DST, which are described in
the following.

4.2.5.1 Continuous Diversification

As described in Section 3.1.1, continuous diversification adds a diversification
penalty Pdiv(S �) to the objective function value of each generated solution S �

that deteriorates the current solution. The diversification penalty used in TS-
DST is very similar to the one given in Equation (3.1) but uses a different scaling
factor and has to be defined for several different objective functions.

With the attribute set B(S) = {(v, k) : customer v is serviced by driver k},
the occurrence frequency �vk of attribute (v, k), the diversification factor λdiv and
the currently used objective function f , the diversification penalty is computed
as:

Pdiv(S
�) = λdiv · f(S

�) ·
�

|V |m(S �) ·
�

(v,k)∈B(S�)

�vk.

4.2.5.2 Probabilistic Phase

To further diversify the search, we use probabilistic phases, in which not the best
solution is chosen in each iteration but a random one is picked from the list of
the best ξ solutions. Once started, a probabilistic phase runs for at most ηendProb
iterations or is stopped if a new best overall solution is found. The probabilistic
phase is initialized as soon as one of the following two criteria is satisfied:

1. If the search has not improved the best overall solution S∗ for ηstartProb

iterations.

2. If the time window violation Ptw of the current solution has not changed
for ηtw iterations. This criterion helps to diversify if the search gets stuck
with a certain (generally small) time window violation and is neither able
to find a feasible solution nor to move away due to an ever increasing time
window penalty factor that prohibits solutions with a higher time window
violation.
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To further increase the diversification effect of the probabilistic phase, the tabu
length ϑ is randomly chosen from a wider interval [ϑminProb , ϑmaxProb ] during this
phase.

4.2.5.3 Random Moves and Reset

After the TS has not found a solution improving the best overall solution for
ηstartRand iterations, we apply a sequence of ϕ random moves to the current so-
lution (cf. Tan et al. 2001, Nagata and Bräysy 2009). Furthermore, if the TS
has not improved S∗ for ηreset iterations, the search is restarted from S∗. Due to
different tabu list entries and penalties, the search is very likely to take a different
path than before. Note that this technique also has an intensification effect as
the search is guided to further explore a promising area of the solution space.

4.2.6 Minimization of Vehicle Number

Although inter-route Relocate and 2-opt* moves are clearly able to reduce the
number of vehicle routes in a solution, TS-DST is not designed to minimize the
number of vehicles. As the literature on VRPTW shows, very specialized methods
are often necessary to achieve competitive results concerning the reduction of the
number of employed vehicles, (see, e.g., Nagata and Bräysy 2009). An approach
commonly applied for heuristic VRPTW solution methods is to set the number
m of vehicles equal to the number of routes of the best known solution reported
in the literature (see, e.g., Taillard et al. 1997, Schrimpf et al. 2000, Cordeau
et al. 2001, Czech and Czarnas 2002, Ibaraki et al. 2005, 2008).

From a practical viewpoint, starting the search with a given vehicle number
can be justified by the fact that in most real life applications of the VRPTW, the
vehicle number is given as exogenous parameter determined by the available fleet
size and workforce (Lau et al. 2003, Ibaraki et al. 2005). If the vehicle number
is not known, the search has to be applied for various values of m. Here, the
assumption is made that in practical situations the range of the vehicle number
can be appropriately restricted.

For TS-DST, we distinguish the following cases:

1. In case m is fixed, e.g., due to practical considerations, our approach can be
adjusted to determine the best possible solution concerning the secondary
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objectives and employing exactly m vehicles. This is achieved by prohibit-
ing inter-route moves reducing the vehicle number.

2. If the objective is hierarchical and the number of routes of the best known
solution mbest is available, e.g., from the literature, we proceed as follows.
We initially set m = mbest and the search tries to find a feasible solution for
ηfeas iterations. In case a feasible solution is found, the vehicle number is
further reduced until no feasible solution can be found anymore. If it fails,
m is increased by one until a feasible solution is found. Up to this point, the
search evaluates solutions based on the traveled distance independent of the
secondary objective, as extensive tests showed that this metric is best suited
to find a feasible solution with a restricted vehicle number. From there, the
search continues optimizing the secondary objective until no improvement
has been found for ηstop iterations and the search stops.

3. If the objective is hierarchical and m is restricted by an interval
[mmin ,mmax ], for example by some real-life requirement, we use a binary
search approach using the so-called fast mode of TS-DST to minimize the
vehicle number. For the vehicle number given by the search step, the fast
mode tries to find a feasible solution for ηfast iterations, again evaluating
solutions based on the traveled distance. Depending on the success of the
run, the next input value is determined by the binary search until a pre-
liminarily minimal vehicle number is found. This number is reduced by one
and used as input mbest of the procedure described for case 2 to potentially
further reduce the number of employed vehicles.

4. If the objective is hierarchical and no restrictions for m are available like in
the case of the newly designed problem instances described in the following
section, we determine bounds to constrain the search to an interval for which
the binary search described in case 3 can be applied. As lower bound,
the vehicle number defined by capacity restrictions of the VRPTWDST
instance is used. To determine the upper bound, this number is multiplied
by a factor δm until the fast mode of the search finds a feasible solution.
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4.3 Numerical Studies

This section describes the numerical experiments we conducted to assess the per-
formance of the developed TS. First, we detail the parameter setting of TS-DST
and the experimental environment in Section 4.3.1. In Section 4.3.2, we design
a comprehensive set of benchmark instances for VRPTWDST as the problem
has not been thoroughly investigated in the literature yet and thus no bench-
marks are available. Section 4.3.3 reports the results of TS-DST on the newly
generated VRPTWDST instances for the different objective functions described
above. Moreover, we investigate the influence of different learning levels and
different distributions of the learned customers. In order to be able to assess
the performance of TS-DST, we conduct tests on the Solomon benchmark for the
closely related VRPTW and compare the results to the best-performing VRPTW
metaheuristics from the literature in Section 4.3.4.

4.3.1 Parameter Settings and Experimental Environment

To determine the parameter setting of TS-DST, we conducted a series of pretests
on a selection of the VRPTWDST benchmark instances described above. We
start from a reasonable parameter setting found during the development of the
method. Using this setting, we tune one parameter at a time, while keeping all
other parameters fixed as described in Section 3.2.2. This resulted in the setting
reported in the overview in Table 4.1.

Initialization General TS Penalties Prob. Phase Diversification

�1 0.5 ηfeas 25000 α0, β0 1, 200 ηstartProb 200 ηstartRand 1000
�2 0.5 ηstop 2500 αmin , βmin 1 ηendProb 50 ϕ 100
ι 1 ηfast 2500 αmax , βmax 6400 ηtw 100 ηreset 2500
ν 1 ϑmin 10 δ 1.2 ξ 250
αinit 1 ϑmax 25 ηpenalty 10 ϑminProb 100
βinit 5 λdiv 2.0 ϑmaxProb 200

Table 4.1: Overview of the parameter setting of TS-DST chosen for the numerical
studies

The initialization phase described in Section 4.2.2 uses parameters �1 = �2 = 0.5

and ν = ι = 1.0 to evaluate the cost of insertion of a customer. For inserting
the remaining infeasible customers into the open routes, the generalized cost
function with penalty factors αinit = 1 and βinit = 5 is evaluated. The TS is
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run for maximally ηfeas = 25000 iterations to find a feasible solution with a given
number of vehicles and continues to minimize the secondary objective until no
improvement has been found for ηstop = 2500 iterations. If the fast phase of the
TS is used for minimizing the number of vehicles as described in Section 4.2.6, it
is run for ηfast = 2500 iterations. The tabu tenure ϑ is drawn from the interval
[10, 25].

For setting the penalty factors of the generalized cost function, we achieved
the best results by starting with initial values α0 = 1 and β0 = 200, which
are updated by multiplying our dividing by factor δ = 1.2 every ηpenalty = 10

iterations. The values are restricted to the interval [1, 6400]. For calculating the
diversification penalty, we use a factor λdiv = 2.0.

After ηtw = 100 iterations without a change in the time window violation of the
selected solution and after ηstartProb = 200 iterations without improving the overall
best solution, a probabilistic phase is executed for ηendProb = 50 iterations or until
a new best overall solution has been found. The list of solutions considered in
each iteration of the phase contains the ξ = 250 best solutions. During the phase,
the tabu tenure is drawn from the interval [100, 200].

If the best overall solution has not improved for ηstartRand = 1000 iterations,
we perform ϕ = 100 random moves to diversify the search. After ηreset = 2500

iterations without improvement, we reset to the best overall solution.
The TS is coded in Java. Studies on the Solomon VRPTW instances and a

small part of the experiments on the generated VRPTWDST benchmark are per-
formed on a standard desktop computer PC with an Intel Core i7 870 processor
at 2.93 GHz, running Windows 7 Professional. In this way, we are able to assess
computation times of the proposed method. Due to the high number of generated
VRPTWDST instances and the variety of different objective functions considered,
we conducted the remaining tests on the cluster Elwetritsch of the University
of Kaiserslautern. The cluster consists of two hardware complexes, one with 8
servers using 4 AMD Opteron 6140 processors at 2.6 GHz each and the other
with 24 servers using two Intel Xeon E5345 processors at 2.33 GHz each. More
information on the cluster can be found at https://elwe.rhrk.uni-kl.de. For
these tests, run-times are obviously not comparable due to variations in the allo-
cation of resources.
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4.3.2 Generation of VRPTWDST Benchmark Instances

Our VRPTWDST benchmark comprises 6 sets with 56 problem instances in
each set. All problem instances are created based on the Solomon VRPTW test
problems. The driver-specific travel and service times are defined by multiplying
the distance and service time values of the Solomon instances with so-called
learning factors. More precisely, the time tijk of driver k ∈ K for traveling arc
(i, j) ∈ A is defined as tijk = dij · lijk, where lijk is the learning factor of the driver
on this arc. In the same manner, the service time sik for driver k at customer i

is computed as sik = si · lik with lik denoting the learning factor of the driver for
serving this customer. The value of the learning factor equals 1, if the respective
arc or vertex has never before been visited by the given driver and takes a real
value in [0.5, 1.0] if learning has occurred.

A VRPTWDST problem instance is implemented using two files, the standard
VRPTW instance file and a so-called driver file containing for each driver k ∈ K

the customer learning factors lik, i ∈ V and the arc learning factors lijk, i ∈

V0, j ∈ VN+1. The drivers in K are numbered from 1 to |K|, where the number
of maximally available drivers |K| is adopted from the corresponding Solomon
instance. Thus, generating a VRPTWDST benchmark problem corresponds to
generating a driver file that defines a VRPTWDST problem when “applied” to
the original Solomon VRPTW instances.

The generation of a VRPTWDST instance starts from a driver file with all
learning factors of all drivers initialized to 1. The file is then modified by means of
a learning factor distribution mechanism that determines which driver/customer
and driver/arc combinations are assigned a learning factor smaller than one.
These are referred to as learned customers and respectively learned arcs of the
driver.

More precisely, given a Solomon instance x, a learning factor distribution
mechanism divides the customer set V (x) into a number of disjoint subsets
Vk(x), k = 1, . . . ,mbest(x), where mbest(x) is the best-known vehicle number for
Solomon instance x as reported in Section 2.1.3. The resulting subsets are chosen
to be of approximately equal size, containing |V |/mbest customers. If |V | is not
divisible by mbest , some arbitrary subsets are chosen to be larger by one. Now,
subset Vk is used to define the learned customers of drivers k = 1, . . . ,mbest . The
learning factors of all learned customers and all learned arcs of driver k are set
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to a given value Γ, i.e., lik = Γ, i ∈ Vk and lijk = Γ, i ∈ Vk, j ∈ Vk. The remaining
drivers k = mbest +1, . . . , |K| are not affected by the distribution mechanism and
their learning factors remain set to 1.

Using the Solomon instances as a base, we select Γ ∈ {0.5, 0.7, 0.9} to generate
three sets of 56 instances per distribution mechanism. We apply two distribution
mechanisms Random and Cluster, which are described in the following, thus
generating a total of 3× 56× 2 = 324 instances.

The Random mechanism selects the customer subsets in a random fashion,
resulting in a geographically dispersed distribution of learned customers for each
driver. Although it is difficult to imagine a practical application with such a
distribution, we use this mechanism to generate benchmark instances that are
hard to tackle since it is difficult to generate routes that exploit learning bene-
fits. Figure 4.6(a) shows the distribution of learned customers as obtained with
the Random mechanism for Solomon instance C105. The learned customers of
different drivers are indicated by the different symbols.

The Cluster mechanism is inspired by the real-world background where learned
customers are likely to appear in clusters that a driver became familiar with when
serving his territory as described in Chapter 3. Therefore, Cluster selects the
learned customers of a driver to be geographically close to one another. This is
achieved in a fashion similar to the sweep heuristic of Gillett and Miller (1974).
Here, a line centered at the depot is rotated to partition the customers according
to their polar angle into subsets of the desired size.

The goal of the Cluster mechanism is to achieve a partitioning into subsets of
learned customers that matches the geographical distribution of the customers as
close as possible, i.e., we want to avoid situations in which the learned customers
of drivers are distributed over two or more different geographical clusters. Figure
4.6(b) depicts the results of the Cluster mechanism for Solomon instance C105,
which shows a sound matching of the “learning clusters” and the geographical
clusters.

To achieve this, the Cluster mechanism generates |V | different partitionings
by selecting each of the customers in turn to define the zero degree line of the
sweep approach as connection of the customer with the depot. For each obtained
partitioning, we determine for each subset of learned customers the central cus-
tomer defined as the customer with the minimal cumulated distance to all other
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customers of the subset. The cumulated distance of the central customer to
the other customers in the subset is used as an indicator of the quality of the
subset’s compliance with the geographical distribution. Obviously, the measure
increases if the learned customers are distributed over different geographical clus-
ters. Therefore, the partitioning with the minimal cumulated distance over all
subsets is finally selected.

In Appendix B.2, we provide additional visualization examples for the two dis-
tribution mechanisms on Solomon instances representative of the different groups
R1, R2, C1, C2, RC1 and RC2.

4.3.3 Performance on VRPTWDST Instances

To study the performance of TS-DST on benchmarks with driver-specific times,
we conduct 10 runs on each of the generated VRPTWDST instances for each of
the hierarchical objective functions with {TD ,WT ,WD} as secondary objectives.
The tests with secondary objective TD were conducted on our desktop PC so that
run-times can be reported. Due to the large number of problem instances and
test runs, the studies with the secondary objectives WT and WD were carried
out on a computing cluster. No systematic change in the run-time is expected
due to a different objective function as confirmed by several pretests with smaller
problem sets. The complete results on an instance basis for all objective functions
are reported in the appendix in Section B.4. They are provided as comparison
values for potential methods addressing the VRPTWDST in the future.

An aggregate view on the obtained results is given in Table 4.2. The considered
problem sets are identified by the distribution mechanism (Random,Cluster) and
the learning factor (Γ = 0.5, 0.7, 0.9). We always use a hierarchical objective
function first minimizing the number of vehicles as described in Section 4.2.6.
For each problem set, we report the cumulated number of vehicles (CNV) and
the cumulated value of the secondary objective (CTD, CWT, CWD) based on the
best solution found in 10 runs. For the secondary objective TD , we also report
the average run-time.

To be better able to assess the obtained solution values, we report the following
two comparison values for each problem set:

1. For each instance in the problem set, we take the solution that TS-DST
obtained for the associated VRPTW Solomon instance and evaluate this
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(a) Random distribution for instance C105

(b) Cluster distribution for instance C105

Figure 4.6: Distribution of learned customers using the (a) Random and (b)Cluster
mechanism
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solution with the given driver-specific times of the considered instance and
the given secondary objective. To make the comparison value as fair as pos-
sible, we solve an assignment problem to assign the routes of the VRPTW
solution to the drivers of the VRPTWDST instance in the manner opti-
mizing the considered secondary objective. The objective function values
achieved by this method are cumulated and the gap to this value is reported
as ∆VRPTWassign in Table 4.2.

2. For each instance in the problem set, the associated VRPTW Solomon
instance is modified by setting all travel times tij, i ∈ V0, j ∈ Vn+1 to Γ · dij

and all service times si, i ∈ V to Γ · si, where Γ denotes the learning factor
of the considered problem set. The resulting VRPTW is solved by the TS-
DST and the gap of the cumulated objective function values is reported as
∆VRPTWΓ in Table 4.2.

Cluster Random

Γ = 0.9 Γ = 0.7 Γ = 0.5 Γ = 0.9 Γ = 0.7 Γ = 0.5

Minimize Vehicle Number

CNV 396 367 350 402 391 377
∆VRPTWassign (%) -2.22 -9.38 -13.58 -0.74 -3.46 -6.91

∆VRPTWΓ (%) 4.49 7.00 8.36 6.07 13.99 16.72

Minimize Traveled Distance

CTD 57291 56955 55494 57191 57782 58375
∆VRPTWassign (%) -0.41 -0.99 -3.53 -0.58 0.45 1.48

∆VRPTWΓ (%) -0.35 4.08 5.02 -0.53 5.59 10.47
CPU Time (s) 89.2 84.5 76.8 70.5 88.3 86.1

Minimize Working Time

CWT 228387 186133 143008 242768 228775 209913
∆VRPTWassign (%) -0.24 -0.45 -1.30 -0.18 -0.68 -3.44

∆VRPTWΓ (%) 1.71 7.77 16.82 8.12 32.46 71.47

Minimize Working Duration

CWD 240644 217936 201105 250864 240140 228978
∆VRPTWassign (%) -4.14 -9.14 -13.07 -2.83 -4.43 -6.93

∆VRPTWΓ (%) 2.53 12.52 26.82 6.89 23.98 44.40

Table 4.2: Aggregate results of TS-DST on the VRPTWDST benchmark sets gener-
ated with distribution mechanisms Random and Cluster and learn factors
Γ = 0.5, 0.7, 0.9. For each set, we report the CNV and the cumulated value
of the secondary objective function based on the best solution found in 10
runs. Average run-times of TS-DST are reported when traveled distance is
used as secondary objective.
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Concerning the number of employed vehicles, it can be noted that a reduction
of the learning factor leads to a decrease of the number of vehicles. As could
be expected, the reduced travel and service times allow to generate routes with
fewer vehicles that are nevertheless able to fulfill all time window requirements,
and TS-DST is able to find these solutions and exploit the reduced times.

The vehicle numbers also show consistent behavior concerning the influence
of the distribution mechanism: For each learning factor, the number of vehicles
in the Random generated instance is higher than in the Cluster instance. This
could be expected, as it is possible to gather more learning benefits if the reduced
times of a driver occur in a clustered region, but it again shows the ability of our
algorithm to generate solutions making use of the reduced times. This is also
expressed by the gap to the VRPTWΓ solutions, which are higher for the Random
generated test sets as driver-specific times cannot be exploited that strongly.

Consequently, the best solution is obtained with a Cluster distribution and a
learning factor Γ = 0.5, reducing the CNV by 13.58% compared to the solutions
of the associated VRPTW instances. The obtained solutions use only 8.36% more
vehicles than the VRPTWΓ solutions with learning factor 0.5.

To illustrate the combined influence of learning factors and distribution mech-
anisms on the number of employed vehicles, Figure 4.7 depicts the gap of the
CNV values obtained for the different sets to the VRPTWassign solution. The
second comparison value VRPTWΓ and the CNV given by vehicle capacity re-
strictions are also provided. The described trends concerning the two distribution
mechanisms and changes in the learning factor are clearly visible.

Concerning the secondary objective of minimizing traveled distance, no such
clear trend can be found. While the negative gap to VRPTWassign grows for
lower values of the learning factor for the Cluster distribution, it even becomes
positive for the Random distribution. On the other hand, ∆VRPTWΓ is negative
for Cluster -Γ = 0.9 and Random-Γ = 0.9. These results can be explained by
the interdependency of the first and secondary objectives: It is not necessarily
possible to obtain a solution with a reduced secondary objective when employing
fewer vehicles.

Minimizing working time and working duration, the negative gaps to
VRPTWassign increase for lower values of the learning factor for both distribu-
tion mechanisms although the considered solutions employ fewer vehicles than
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Figure 4.7: Influence of different learning factors and distribution mechanisms on
the number of employed vehicles. As reference point, we use the CNV
of the ∆VRPTWassign solution to the respective set. We show the re-
sults obtained for the Random and Cluster distribution and also provide
VRPTWΓ as further reference point. Moreover, the CNV given by the
capacity restrictions is indicated as dashed line.

VRPTWassign . This might be explained by the fact that the reduced times di-
rectly influence the objective function value. For both objective functions a clear
trend can also be found concerning the values of ∆VRPTWΓ . For all considered
values of the learning factor, the value of ∆VRPTWΓ for Cluster is clearly below
that of the Random set. By being better able to exploit reduced times in the
Cluster sets, the solution also gets closer to the VRPTWΓ solution concerning
working time or working duration.

To illustrate the influence of the characteristics of the Solomon instances on
the obtained VRPTWDST solutions, Table 4.3 shows the gaps to VRPTWassign

solutions for the different Solomon groups. For groups C1 and C2, no reduction of
the vehicle number is possible as all instances in these two groups are generated in
a way that the vehicle number is only limited by the capacity constraint. Time
windows in C1 and C2 are positioned around the arrival times at customers
obtained by a solution to the problem without time windows. Therefore, reduced
times do not allow to generate more efficient routes in terms of traveled distance
as time windows are not restrictive for these groups.
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Cluster Random

Γ = 0.9 Γ = 0.7 Γ = 0.5 Γ = 0.9 Γ = 0.7 Γ = 0.5

C1 ∆CNV(%) 0.00 0.00 0.00 0.00 0.00 0.00
∆CTD(%) 0.00 -0.05 -0.07 0.00 -0.03 -0.03

C2 ∆CNV(%) 0.00 0.00 0.00 0.00 0.00 0.00
∆CTD(%) -0.26 -0.26 -0.39 -0.13 -0.26 -0.38

R1 ∆CNV(%) -2.10 -11.19 -18.18 -0.70 -2.80 -7.69
∆CTD(%) -1.95 -5.52 -8.46 -1.27 -1.68 0.10

R2 ∆CNV(%) -3.33 -20.00 -20.00 0.00 -13.33 -16.67
∆CTD(%) -0.23 4.37 -0.48 -1.00 4.78 3.63

RC1 ∆CNV(%) -2.17 -11.96 -17.39 -2.17 -3.26 -7.61
∆CTD(%) -3.44 -6.03 -10.02 0.83 -2.60 -2.14

RC2 ∆CNV(%) -11.54 -19.23 -26.92 0.00 -11.54 -19.23
∆CTD(%) 5.21 5.10 4.38 -1.42 3.32 7.85

Total ∆CNV(%) -2.22 -9.38 -13.58 -0.74 -3.46 -6.91
∆CTD(%) -0.41 -0.99 -3.53 -0.58 0.45 1.48

Table 4.3: Results of TS-DST on VRPTWDST instances for different instance groups,
using traveled distance as secondary objective. For each considered
Solomon group, the gap of the TS-DST solution to the VRPTWassign solu-
tion concerning CNV and cumulated traveled distance (CTD) is given.

A reduction of the vehicle number is only possible for R and RC instances.
Reductions are on average higher for groups R2 and RC2, i.e., the problems
with a longer scheduling horizon. One explanation might be that solutions to
these instances employ a very low vehicle number so that reductions lead to high
percentage improvements. On the other hand, this characteristic seems to lead
to an increase in traveled distance for most cases. Note that all Solomon groups
individually show the above described trend for the influence of learning factors
and distribution mechanism on the CNV.

4.3.4 Performance on Standard VRPTW Instances

To be able to assess the solution quality and run-time of TS-DST, we run tests on
the Solomon VRPTW instances. In this way, we are able to compare our results
to those of the VRPTW methods presented in the literature. TS-DST is run 10
times for each problem instance, starting from the best-known vehicle number
reported in the literature for the respective instance as described above.
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In Table 4.4, we present the results of TS-DST, in comparison to the best-
performing metaheuristics from the literature. For each method, the solution
quality in terms of vehicle number and traveled distance is reported. We follow
the common procedure and give averages over the problem classes C, R and RC
and the CNV and the CTD. For TS-DST, we report the best solution found in
the 10 runs. Detailed results and run-times on an instance basis are reported in
Appendix B.3.

As comparison methods, we include all solution methods from the literature
that are able to find solutions with a CNV of 405. This is only achieved by very
few of the numerous methods proposed, namely HY (Hashimoto et al. 2008),
LCK (Bouthillier and Crainic 2005), BVH (Bent and Van Hentenryck 2004),
PGDR (Prescott-Gagnon et al. 2009), HYI (Hashimoto et al. 2008), LZ (Lim
and Zhang 2007), PR (Pisinger and Ropke 2007), RTI (Repoussis et al. 2009),
NBD (Nagata et al. 2010) and B (Bräysy 2003).

To allow for a fair comparison of the run-times of the different methods, we fol-
low the approach of Gendreau and Tarantilis (2010) and approximately translate
the different hardware used in the tests into a comparable time measure. They
derive a relative estimated speed compared to a Pentium 4 2,8 GHz processor
for each of the used machines based on the performance indicators of Dongarra
(2011). We use their reported values and estimate our Intel Core i7 processor
at 2.93 GHz with a speed factor of 1.74 in comparison to their Pentium 4 after
running the LINPACK benchmark used in Dongarra (2011) on our machine.
Clearly, this technique for comparing the run-times of the different methods is
not exact, but it provides a good indication about the speed of the heuristics. To
translate into the common time measure, the relative speed factor, the number of
employed processors, the number of executed runs and the run-time in minutes
are multiplied. All necessary values are reported in Table 4.4.

TS-DST achieves a CNV of 405 and a CTD of 57525. Concerning the solution
quality, TS-DST ranks 9th among the 11 best performing VRPTW heuristics with
only minimal differences to the CTD found by the other methods. The gap to the
CTD of the best-known solutions for all instances as reported in Section 2.1.3 is
0.6%. This is a very persuasive result as TS-DST was designed as solution method
for VRPTWDST and the parameter tuning was carried out on VRPTWDST
instances. TS-DST is the only tabu search able to solve the Solomon VRPTW
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benchmark with a CNV of 405 vehicles and thus the best-performing TS for the
VRPTW proposed in the literature. The formerly best-performing TS heuristics
for VRPTW are Taillard et al. (1997) with a CNV of 410 and a CTD of 57523
and Cordeau et al. (2001) with a CNV of 407 and a CTD of 57556.

Concerning run-time, our approach needs on average 65.7 seconds to solve each
instance. This translates to a value of 19.14 for the common time measure and
thus, TS-DST is the third fastest of the methods presented in the table. run-times
to the formerly best tabu searches are not comparable as Taillard et al. (1997)
and Cordeau et al. (2001) do not report the necessary values in their papers.
In comparison to the results of the VRPTWDST test sets, a slight reduction of
the run-times for VRPTW can be noticed. This can be explained by the extra
effort necessary to apply the time travel approach for time window handling in a
driver-specific manner.

4.4 Summary and Conclusion

In this chapter, we investigate VRPTWDST, a route planning problem that inte-
grates different extents of available driver knowledge by means of driver-specific
times. We present a mathematical model of the problem and develop TS-DST
as metaheuristic solution method. After a preprocessing step removing infeasible
arcs, an initial solution is generated by means of a sequential insertion heuristic
inspired by Solomon (1987). TS-DST evaluates solutions based on a generalized
cost function penalizing capacity and time window violations. For calculating the
latter, the time travel approach is adapted by storing and updating driver-specific
time window handling variables. The Relocate and Exchange operator are used
for intra- and inter-route moves and 2-opt* for intra-route moves. TS-DST uses
probabilistic phases, continuous diversification and random shaking to diversify
the search.

We use the mechanisms Random and Cluster to create several sets of
VRPTWDST benchmark instances with different distributions of the learned
customers. Tests on the generated instances show the ability of TS-DST to ex-
ploit the reduced travel and service times in order to produce efficient vehicle
routes. Moreover, we find that, compared to the Random instances, the effi-
ciency gains increase for the Cluster instances as routes can be designed to reap
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learning benefits if the learned customers of a driver are geographically close. As
could be expected, a reduction of the learning factor leads to a decrease in the
number of required vehicles.

Further tests on benchmark instances of the closely related VRPTW see TS-
DST on rank 9 of the best solution methods proposed for VRPTW concerning
solution quality and on rank 3 concerning run-time. Moreover, by accomplishing
a CNV of 405 vehicles, TS-DST is the most successful TS method ever proposed
for the VRPTW.
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Chapter 5

The Electric Vehicle Routing Problem with Time

Windows and Recharging Stations

Driven by new laws and regulations concerning the emission of greenhouse gases,
carriers are starting to use battery electric vehicles (BEVs) for last-mile deliver-
ies in order to meet future emission standards and to reduce energy costs. The
limited battery capacities of BEVs necessitate visits to recharging stations during
delivery tours of industry-typical length, which have to be considered in the route
planning in order to avoid inefficient vehicle routes with long detours. Recharging
operations take a significant amount of time, especially when compared to the rel-
atively short customer service times of small package shipping (SPS) companies,
and thus clearly affect route planning.

Moreover, SPS companies require the incorporation of their most important
practical constraints into routing models for electric vehicles, namely limited ve-
hicle freight capacities and time-definite deliveries. The latter requirement is
especially challenging as recharging times for BEVs cannot be assumed to be
fixed but depend on the current battery charge of the vehicle when arriving at
the recharging station. In this chapter, we study the Electric Vehicle Routing
Problem with Time Windows and Recharging Stations (E-VRPTW), which 1)
incorporates the possibility of recharging at any of the available stations with
recharging times depending on the level of charge when arriving at the station,
and 2) considers capacity constraints on vehicles as well as customer time win-
dows.

A mathematical description of E-VRPTW is provided in Section 5.1. As so-
lution method for the NP-hard problem, we present a hybrid metaheuristic that
combines a Variable Neighborhood Search algorithm (VNS) with a Tabu Search
(TS) in Section 5.2. In Section 5.3, we perform tests on newly designed bench-
mark instances for E-VRPTW in order to assess the performance of the VNS/TS
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and to study the effectiveness of every component of our hybrid solution method.
Moreover, we prove the quality and efficiency of VNS/TS on test instances of
related problems, namely the Green VRP (G-VRP) and the Multi-Depot VRP
with Inter-Depot Routes (MDVRPI).

5.1 Problem Definition

We formulate the E-VRPTW as an extension of the VRPTW model introduced
in Section 2.1.1. The problem description is self-contained, repeating some of the
already presented variable definitions. Let V � be a set of vertices with V � = V ∪F �,
where V = {1, . . . , N} denotes the set of customers and F � a set of dummy
vertices generated to permit several visits to each vertex in the set F of recharging
stations. Vertices 0 and N+1 denote the same depot and every route starts at 0
and ends at N+1. In order to indicate that a set contains the respective instance
of the depot, the set is subscripted with 0 or N+1, e.g., V �

0 = V � ∪ {0}.
Thus, E-VRPTW can be defined on a complete directed graph G = (V �

0,N+1, A),
with the set of arcs A = {(i, j) | i, j ∈ V �

0,N+1, i �= j}. With each arc, we associate
a distance dij and a travel time tij. Each traveled arc consumes the amount h ·dij
of the remaining battery charge of the vehicle traveling the arc, where h denotes
the constant charge consumption rate.

A set of homogeneous vehicles with a maximal capacity of C is positioned
at the depot. Each vertex i ∈ V �

0,N+1 has a positive demand qi, which is 0 if
i �∈ V . Moreover, a time window [ei, li] in which service has to start is associated
with each vertex i ∈ V �

0,N+1 and all vertices i ∈ V0,N+1 have a service time si

(s0, sN+1 = 0). At a recharging station, the difference between the present charge
level and the battery capacity Q is recharged with a recharging rate of g, i.e., the
recharging time incurred depends on the energy level of the vehicle when arriving
at the respective station.

We use decision variables associated with vertices to keep track of vehicle
states. Variable τi specifies the time of arrival, ui the remaining cargo and yi

the remaining charge level on arrival at vertex i ∈ V �
0,N+1. The decision variables

xij, i ∈ V �
0 , j ∈ V �

N+1, i �= j are binary and equal 1 if an arc is traveled and 0
otherwise. The objective function of E-VRPTW is hierarchical. As commonly
done for VRPs with time window constraints (see Section 2.1), our first objective
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is to minimize the number of vehicles and the second objective to minimize the
total traveled distance.

The mathematical model of E-VRPTW is formulated as mixed-integer program
as follows:

min
�

i∈V �
0 ,j∈V �

n+1,i �=j

dijxij (5.1)

�

j∈V �
n+1,i �=j

xij = 1 ∀i ∈ V (5.2)

�

j∈V �
n+1,i �=j

xij ≤ 1 ∀i ∈ F � (5.3)

�

i∈V �
n+1,i �=j

xji −

�

i∈V �
0 ,i �=j

xij = 0 ∀j ∈ V � (5.4)

τi + (tij + si)xij − l0(1− xij) ≤ τj ∀i ∈ V0, ∀j ∈ V �
n+1, i �= j (5.5)

τi + tijxij + g(Q− yi)− (l0 + gQ)(1− xij) ≤ τj

∀i ∈ F �, ∀j ∈ V �
n+1, i �= j (5.6)

ej ≤ τj ≤ lj ∀j ∈ V �
0,n+1 (5.7)

0 ≤ uj ≤ ui − qixij + C(1− xij) ∀i ∈ V �
0 , ∀j ∈ V �

n+1, i �= j (5.8)

0 ≤ u0 ≤ C (5.9)

0 ≤ yj ≤ yi − (h · dij)xij +Q(1− xij) ∀j ∈ V �
n+1, ∀i ∈ V, i �= j (5.10)

0 ≤ yj ≤ Q− (h · dij)xij ∀j ∈ V �
n+1, ∀i ∈ F �

0, i �= j (5.11)

xij ∈ {0, 1} ∀i ∈ V �
0 , j ∈ V �

n+1, i �= j (5.12)

The objective of minimizing the traveled distance is defined in (5.1). In order
to obtain the hierarchical objective function, the technique described in Section
2.1.1 can be used. Constraints (5.2) enforce the connectivity of costumers and
Constraints (5.3) handle the connectivity of visits to recharging stations by re-
stricting the number of outgoing arcs of a customer and a recharging visit vertex.
Constraints (5.4) establish flow conservation by guaranteeing that at each vertex,
the number of incoming arcs is equal to the number of outgoing arcs.

Constraints (5.5) guarantee time feasibility for arcs leaving customers and the
depot. If arc (i, j) is traveled, the arrival time τj at vertex j must be at least the
arrival time at vertex i plus service time at vertex i plus travel time from i to
j. If (i, j) is not part of the solution, the condition is invalidated by subtracting
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the latest feasible arrival time at the depot from the arrival time at vertex i.
Thus, the arrival time at j is only required to be greater than some negative
value. Constraints (5.6) provide time feasibility for arcs leaving recharging visits,
using a similar technique but considering recharging time instead of service time.
Constraints (5.7) enforce that every vertex is visited within its time window and
Constraints (5.5) - (5.7) further prevent the formation of subtours.

Constraints (5.8) and (5.9) guarantee demand fulfillment at all customers by
assuring a nonnegative cargo load upon arrival at any vertex including the depot.
This is achieved by subtracting the demand of a customer i from the remaining
load when leaving vertex i in Constraints (5.8). Finally, Constraints (5.10) and
(5.11) ensure that the battery charge never falls below zero. To this end, we define
the battery to be completely charged at the depot and the recharging stations in
Constraints (5.11) and reducing the charge level by the energy it takes to travel
an arc in Constraints (5.10) and (5.11).

5.2 A Hybrid VNS/TS Solution Method for the E-VRPTW

As solution method for E-VRPTW, we use a combination of VNS and TS, a
hybrid that has already proven its performance on routing and related prob-
lems (see, e.g., Melechovský et al. 2005, Tarantilis et al. 2008). As described in
Section 2.1.2, VNS is an effective metaheuristic performing local search on in-
creasingly larger neighborhoods in order to efficiently explore the solution space
and to avoid getting stuck in local optima. It has successfully been applied to
a variety of combinatorial optimization problems, among them routing problems
like VRPTW with single or multiple depots (Bräysy 2003, Polacek et al. 2004,
Tarantilis et al. 2008).

Figure 5.1 presents our solution method in pseudocode. After a preprocessing
step removing infeasible arcs, we generate an initial solution S with a given
number of vehicles as described in Section 5.2.1. Infeasible solutions are allowed
during the search and evaluated based on a penalizing cost function (see Section
5.2.2). Our VNS/TS is not designed to minimize the number of employed vehicles
and the search is started from a given vehicle number m. To minimize the number
of vehicles, the search is applied for various values of m as described in Section
4.2.6. Starting from the given vehicle number, we first perform a feasibility
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Nκ ← set of VNS neighborhood structures for κ = 1, . . . , κmax

S ← generateInitialSolution()
κ ← 1
i ← 0
feasibilityPhase ← true
while feasibilityPhase ∨ (¬feasibilityPhase ∧ i < ηdist) do

S� ← generateRandomPoint(Nκ(S))
S�� ← applyTabuSearch(S�, ηtabu)
if acceptSA(S��, S) then

S ← S��

κ ← 1
else

κ ← κ+ 1 mod κmax

end if
if feasibilityPhase then

if ¬ feasible(S) then
if i = ηfeas then

addVehicle(S)
i ← −1

end if
else

feasibilityPhase ← false
i ← −1

end if
end if
i ← i+ 1

end while

Figure 5.1: Overview of the VNS/TS algorithm for solving E-VRPTW

phase during which m is increased after no feasible solution has been found for a
given number of ηfeas iterations. After a feasible solution is found, another ηdist

iterations are performed to improve traveled distance.
The search is guided by a VNS component described in Section 5.2.3. It uses

the current VNS neighborhood Nκ to generate a random perturbation which
serves as initial solution for ηtabu iterations of the TS phase (Section 5.2.4). The
acceptance criterion of the VNS is based on Simulated Annealing (SA).
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5.2.1 Preprocessing and Generation of Initial Solution

We apply a series of preprocessing steps to remove infeasible arcs. Arc (v, w) can
be removed from the set of possible arcs if one of the following conditions holds:

v, w ∈ V ∧ qv + qw ≥ C (5.13)

v ∈ V �
0 , w ∈ V �

N+1 ∧ ev + sv + tvw ≥ lw (5.14)

v ∈ V �
0 , w ∈ V �

∧ ev + sv + tvw + sw + twN+1 ≥ l0 (5.15)

v, w ∈ V ∧ ∀j ∈ F �
0, i ∈ F �

N+1 : h(djv + dvw + dwi) ≥ Q (5.16)

Equation (5.13) - (5.15) are well-known preprocessing steps that base on ca-
pacity and time window violations and have already been detailed in the context
of driver-specific times in Section 4.2.1. Equation (5.16) is problem-specific and
refers to violations of the battery capacity. If the charge consumption of traveling
an arc and traveling to and from that arc to any station or the depot is higher
than the battery capacity, this arc can be labeled infeasible. Numerical studies
showed that this preprocessing step is able to perceptibly reduce the number of
feasible arcs on our E-VRPTW test instances.

We construct an initial solution similar to the approach proposed in Cordeau
et al. (2001). First, all customers are sorted in increasing order of the angle
between the depot, a randomly chosen point and the customer. Then, customers
are iteratively inserted into the active route at the position causing minimal
increase in traveled distance until a violation of capacity or battery capacity
occurs. If a violation occurs, we activate a new route until at most the predefined
number of routes are opened, then the remaining customers are inserted into the
last route. The battery capacity violation is determined under the assumption
that no recharging possibility exists. To consider time window requirements,
a customer u is only allowed to be inserted between successive vertices i,j if
ei ≤ eu ≤ ej. This rule helps to fulfill time windows but feasibility is only
guaranteed concerning capacity and battery capacity for all routes but the last.
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5.2.2 Generalized Cost Function

VNS/TS allows infeasible solutions during the search process. We evaluate a
solution by means of the following generalized cost function:

fgen(S) = f(S) + αPc(S) + βPtw(S) + γPbatt(S), (5.17)

where f(S) denotes the total traveled distance, Pc(S) the total capacity violation,
Ptw(S) the time window violation, Pbatt(S) the battery capacity violation. The
penalty factors α, β and γ are dynamically updated between a given lower and
upper bound as described in Section 3.1.1. The update is performed every ηpenalty

consecutive iterations with a feasible/infeasible solution and the update factor is
denoted as δ.

In the following, we describe the efficient calculation of the constraint viola-
tions. Capacity violations are defined and determined as described in Section 2.2.
In this way, we are able to calculate the change in capacity violation in constant
time O(1) for all neighborhood operators of our TS method, which are introduced
in Section 5.2.4.

To calculate battery capacity violations, we define the following two variables
for each vertex of a route r = �v0, v1, . . . , vn, vn+1�: Υ→

vi contains the battery
charge that is needed to travel either from the last recharging station visit or
from the depot to vertex vi and Υ←

vi is the battery charge that is needed to travel
from vi to either the next recharging station or the depot:

Υ→
vi =





h · dvi−1vi if vi−1 ∈ F �

0

Υ→
vi−1

+ h · dvi−1vi otherwise
i = 1, . . . , n+ 1

Υ←
vi =





h · dvivi+1 if vi+1 ∈ F �

n+1

Υ←
vi+1

+ h · dvivi+1 otherwise
i = 0, . . . , n.

Using these variables, the battery capacity violation of a route r can be defined
as the sum of individual violations at every visit to a recharging station and on
return to the depot:

Pbatt(r) =
�

vi∈Vert(r)∩F �
N+1

max{Υ→
vi −Q, 0}.
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Thus, changes in battery capacity violation can be calculated in O(1) for all
neighborhood operators described in Section 5.2.4 by calculating the change in
battery capacity violation of the recharging stations immediately following the
points of vertex insertion, removal or merging of both routes.

To calculate time window violations, we adapt the corrected time travel ap-
proach described in Section 2.2 to the E-VRPTW. For the VRPTW, by storing
forward and backward time window penalty slacks, it is possible to calculate in
constant time the time window penalties of a route r1 = �v0, . . . , u, w, . . . , vn+1�

that is constructed from two partial routes �v0, . . . , u� and �w, . . . , vn+1� or of a
route r2 = �v0, . . . , u, v, w, . . . , vn+1� that is constructed by inserting a vertex v

between two partial routes �v0, . . . , u� and �w, . . . , vn+1�.

This is not always possible if recharging stations are present as the recharging
time at a station depends on the battery charge, which itself depends on the
traveled distance to the recharging station. If the partial route �w, . . . , vn+1�

contains a recharging station x, i.e., �w, . . . , x, x+1, . . . , vn+1�, slack variables
have to be recalculated by traversing the partial route �w, . . . , x+1� for r1 and
the partial route �v, . . . , x+1� for r2. Note that a recharging station in the first
partial route �v0, . . . , u� or the vertex to insert v being a recharging station does
not necessitate a recalculation.

5.2.3 The Variable Neighborhood Search Component

Within our hybrid VNS/TS heuristic, the VNS component is mainly used to
diversify the search in a structured way. Our VNS applies a shaking phase as
described in the standard VNS in Section 2.1.2 but the intensification phase and
the acceptance criterion clearly differ from the standard VNS. In the following,
we detail the shaking phase, the components of the VNS in our hybrid heuristic.

In every iteration, our VNS performs a random perturbation move according to
the predefined neighborhood structure Nκ. The neighborhood structures are all
defined by means of the Cyclic-Exchange operator. In the Cyclic-Exchange, intro-
duced by Thompson and Orlin (1989), customer sequences of arbitrary length are
simultaneously transferred between routes. Figure 5.2 shows a Cyclic-Exchange
involving three routes. Cyclic-Exchange, or a variant that is restricted to two
routes, called Cross-Exchange, are commonly used in the perturbation phase of
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Figure 5.2: Example of a Cyclic-Exchange move involving three routes

VNS-algorithms due to their strong diversification capabilities (see, e.g, Polacek
et al. 2004, Hemmelmayr et al. 2009).

Our κ neighborhood structures, shown in Table 5.1, are defined according to
two parameters. The number of routes that form the cycle is equal to #Rts. In
each route rk, we randomly select the number of successive vertices that form
the translocation chain in the interval [0,min{Λmax , nk}], where nk denotes the
number of customers and stations contained in rk and Λmax the maximum number
of translocated vertices. The initial vertex of the translocation chain is randomly
chosen for each route.

Contrary to the local descent commonly used in VNS approaches, we use a TS
to improve the randomly generated solution S � in the intensification phase. The
TS, which is detailed in Section 5.2.4, is run for ηtabu iterations. Note that the
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κ #Rts Λmax κ #Rts Λmax κ #Rts Λmax

1 2 1 6 3 1 11 4 1
2 2 2 7 3 2 12 4 2
3 2 3 8 3 3 13 4 3
4 2 4 9 3 4 14 4 4
5 2 5 10 3 5 15 4 5

Table 5.1: The κ-neighborhood structures used in the VNS defined by the number
of involved route #Rts and the maximum number of translocated vertices
Λmax

perturbation move is added to the tabu list to prevent its reversal. Subsequently,
we compare the best solution found during the TS S �� to the initial solution S. In-
stead of accepting only improving solutions, we use an acceptance criterion based
on the metaheuristic SA (see Section 2.1.2). This method has been successfully
applied in several VNS approaches, for example, in Hemmelmayr et al. (2009)
and Stenger et al. (2011).

Like in SA, we always accept improving solutions, while deteriorating solutions
are accepted according to the probability e

−(f(S��)−f(S))
T . At the beginning of the

search, we initialize the temperature T to T0 in a way that a solution value f(S ��),
which is ∆SA worse than f(S) is accepted with a probability of 50%. In this way,
deteriorating solutions are often accepted, which helps to diversify the search.
After every VNS iteration, the temperature is linearly decreased with a cooling
factor that is chosen such that the temperature is below 0.0001 during the last
20% of iterations. By continuously decreasing the temperature during the search,
an intensification is achieved and, finally, only improving solutions are accepted.

5.2.4 The Tabu Search Component

The TS phase starts from the solution S � generated by the perturbation move
of the VNS component. In each iteration, the composite neighborhood N (S) of
TS is generated by applying the following neighborhood operators on every arc
in the list of generator arcs (cp. Section 4.2.4): 2-opt*, Relocate, Exchange and
a new, problem-specific operator called stationInRe. Each move is evaluated and
the best non-tabu move is performed. A move is superior if it is able to reduce the
number of employed vehicles or if it has a lower cost function value calculated
with Equation (5.17). The 2-opt*, Relocate and Exchange operator and their
realization by means of generator arcs are described in detail in Section 4.2.4.
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Here, we apply 2-opt* for inter-route moves and define the operator for moving
recharging stations, i.e., we allow the removal and insertion of arcs including
recharging stations. The Relocate operator is also defined for recharging stations
and applied as intra and inter-route operator. The Exchange operator is applied
for inter-route and intra-route moves, but is not defined for recharging stations,
i.e., we exclude the swapping of a recharging station with a customer or another
station.

As the name suggests, the stationInRe operator performs insertions and re-
movals of recharging stations. The operator is defined for all generator arcs
(v, w), where either v or w is a recharging station. Let w− denote the predecessor
of vertex w. If the arc (v, w) is not part of the current solution, stationInRe
performs an insertion as depicted in Figure 5.3(a). If the arc is already present,
a recharging station is removed as shown in Figure 5.3(b).

w- w

v v+

w- w

v v+

w- w

v v+

w--

v-

w- w

w- w

v

v

(a) Insertion

w- w

v v+

w- w

v v+

w- w

v v+

w--

v-

w- w

w- w

v

v

(b) Removal

Figure 5.3: Insertion and removal of a recharging station with the stationInRe op-
erator. Generator arcs are shown in bold and removed arcs as dashed
lines.

We set every arc ξ that is deleted from the solution by the execution of a move
tabu, i.e, we forbid the reinsertion of the arc into specific parts of the solution
for a tabu tenure ϑ randomly drawn from the interval [ϑmin , ϑmax ]. As station
visits have a strong effect on charge levels and also on time windows due to the
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recharging times incurred, we define the tabu attribute (ξ, k,Ω,Φ). It prohibits
the insertion of arc ξ into route rk between Ω and Φ, where Ω,Φ ∈ F0,n+1 denote
either a station or the depot. In this way, we allow the reinsertion of an arc into
a different part of the route. The tabu status of a move is lifted if a feasible new
best solution is generated.

To further diversify the search, we adapt the continuous diversification
mechanism described in Section 3.1.1 to E-VRPTW. To this end, we define
vertex-based attributes (u, k,Ω,Φ) to describe that customer/station u is
positioned between stations/depot Ω and Φ in route rk. In this way, each
solution S can be characterized by the attribute set B(S) = {(u, k,Ω,Φ)}. For
each attribute, the frequency �ukΩΦ of its addition to a solution in previous
moves is memorized and used to penalize solutions according to the frequency of
their attributes. Thus, we guide the search to explore the possibilities of using
different stations and different positions of customers and stations (relative to
other stations or the depot) within a route. A solution S � that deteriorates the
current solution is penalized by:

Pdiv(S
�) = λdiv · f(S

�) ·
�

|V �|m(S �)
�

(u,k,Ω,Φ)∈B(S�)

�ukΩΦ,

where λdiv denotes the diversification factor, |V �| the number of customers and
utilized stations and m(S �) the number of vehicles in solution S �. The TS
procedure stops after ηtabu iterations.

5.3 Numerical Experiments

In this section, we present the extensive numerical testing conducted to evaluate
the performance of our hybrid solution method. The first study evaluates the
performance of VNS/TS on E-VRPTW instances. To be able to asses the
solution quality, we use newly designed small instances which can be solved by
means of the commercial solver IBM ILOG CPLEX Optimizer (CPLEX). In
our second study, we analyze the efficiency of the algorithmic components of
our hybrid heuristic, namely the VNS, TS and SA, on a set of medium-sized
E-VRPTW instances, which we design based on classical Solomon VRPTW
instances. Finally, we demonstrate the strong performance concerning solution
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quality and run-time of our VNS/TS on available benchmark instances of the
related problems MDVRPI and G-VRP.

The section is structured as follows. After a brief discussion of the chosen pa-
rameter setting in Section 5.3.1, we describe the tests performed on E-VRPTW
benchmark instances in Section 5.3.2 and those performed on benchmark
instances of related problems in Section 5.3.3.

5.3.1 Experimental Environment and Parameter Settings

All tests are performed on a desktop computer equipped with an Intel Core
i5 750 processor clocked at 2.67 GHz with 4 GB RAM, running Windows 7
Professional. The VNS/TS is implemented as single-thread code in Java. The
parameters we used to generate the final results are provided in Table 5.2. The
presented values are the result of intensive studies we conducted to fine-tune our
algorithm following the tuning strategy described in Section 3.2.

VNS Penalties TS

ηfeas 500 α0, β0, γ0 10 ϑmin 15
ηdist 200 αmin , βmin , γmin 0.5 ϑmax 30
∆SA 0.08 αmax , βmax , γmax 5000 λdiv 1.0

δ 1.2 ηtabu 100
ηpenalty 2

Table 5.2: Overview of the parameter setting of VNS/TS chosen for the numerical
studies

Concerning the feasibility phase, the tests showed that if the VNS/TS is not
able to find a feasible solution with the given number of vehicles in ηfeas = 500

VNS iterations, it is very unlikely that a feasible solution with this vehicle
number is found in later iterations. The entire algorithm terminates after
ηdist = 200 additional distance minimization iterations as this resulted in a
good tradeoff between computing time and solution quality. At the beginning
of the search, the SA acceptance criterion accepts a solution S �� whose objec-
tive function value f(S ��) is ∆SA = 8% worse than f(S) with a probability of 50%.

The initial penalty factors α0, β0, γ0 are set to 10 as this proved to be a good
compromise between diversification and intensification at the beginning of the
search. Subsequently, the penalty factors are updated by multiplying or dividing
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by factor δ = 1.2 after every ηpenalty = 2 iterations with a feasible/infeasible
solution, while limiting the values to the interval [0.5, 5000].

Furthermore, the length of the tabu list clearly affected the performance of
our algorithm. However, we were not able to find a unique value that performed
well on all instances of the different benchmark sets that we solved. Instead, we
achieved the overall best results by randomly selecting the length from the interval
[15, 30] in each iteration. The TS is performed for ηtabu = 100 iterations using
λdiv = 1.0 as diversification factor of the continuous diversification mechanism.

5.3.2 Experiments on E-VRPTW Instances

As we are the first to study E-VRPTW, no benchmark instances for assessing
solution methods for this problem exist. We design two new sets of benchmark
instances, which we describe in the following section. Subsequently, we present
the results of our testing on the generated instances.

5.3.2.1 Generation of E-VRPTW Benchmark Instances

We create two sets of benchmark instances for the E-VRPTW. A set of 56 large
instances, each with 100 customers and 21 recharging stations, and a set of 36
small instances with 5, 10 and 15 customers per instance1. All instances are
created based on the Solomon VRPTW benchmark described in Section 2.1.3. To
generate E-VRPTW instances based on VRPTW instances, we have to 1) position
the recharging stations, 2) set battery capacities, recharging and consumption
rates and 3) adjust time windows in order to generate feasible instances.

5.3.2.1.1 Location of Recharging Stations We locate one recharging station
at the depot because a recharging possibility at the depot seems to be a reasonable
claim. The location of the remaining 20 stations is determined in a random
manner. However, we limit the possible locations in order to generate feasible and
meaningful instances, i.e., every customer can be reached from the depot using at
most two different recharging stations. To this end, the recharging stations are
placed within an area defined by three circles surrounding the depot. The circles
are divided into equally spaced segments whose size depends on the number of

1The generated instances are available for download at http://evrptw.wiwi.uni-

frankfurt.de
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stations to place, as illustrated in Figure 5.4. Two recharging stations are then
randomly positioned into each segment, one between the inner and middle circle
and the other between the middle and outer circle.

S

C

D

S

S

S

S

S

Figure 5.4: Positioning of recharging stations to generate E-VRPTW instances. C
denotes the most remote customer in an instance, stations are denoted
with S and D denotes the depot.

5.3.2.1.2 Battery Capacity, Recharging and Consumption Rate The bat-
tery capacity is set to the maximum of the following two values: 1) the charge
needed to travel 60% of the average route length of the best known solution to
the corresponding VRPTW instance and 2) twice the amount of battery charge
required to travel the longest arc between a customer and a station. This proce-
dure ensures that instances with geographically disperse and remote customers
stay feasible. Furthermore, we thus guarantee that recharging stations have to
be used. For the sake of simplicity, we set the consumption rate h to 1.0. The
recharging rate g is set so that a complete recharge requires three times the
average customer service time of the respective instance.

5.3.2.1.3 Adjustment of Time Windows The detours for visits to recharging
stations and the recharging times incurred make it impossible to comply with the
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customer time windows given in the original Solomon instances, i.e., some in-
stances become infeasible because no possibility exists to reach certain customers
within their original time window. Consequently, we have to generate new time
windows to obtain feasible instances. The procedure used is very close to the
original one described in Solomon (1987).

First, we determine for each customer the feasible time window range, i.e., the
earliest time at which the customer is reachable from the depot (with potentially
necessary station visits) and the latest time at which the customer must be left
so that the depot can be reached in time. For instance sets R and RC, the
time window center is randomly drawn from the determined interval. Like in
Solomon (1987), the time window centers for set C are set corresponding to real
arrival times, which we obtained by solving the instances without time windows
using our VNS/TS. Next, the time window widths are chosen according to the
respective original instances. If a thus generated customer time window is outside
the feasible range, the violating range is cut and the time window is extended to
the other side of the interval.

5.3.2.1.4 Generation of Small-Sized Instances To generate the set of small
instances, we start with the 56 large instances described above. For each of
the three sizes (5, 10, 15 customers), we randomly draw the respective number of
customers from the large instances, thus generating 168 instances. The created
instances are then solved with our VNS/TS heuristic and the solutions are in-
spected. For each problem group and instance size, we select the two instances
whose solution uses the highest number of recharging stations. In this way, we
create 6 · 3 · 2 = 36 small test instances, which are denoted by the identifier
of the underlying Solomon instance followed by the number of customers in the
instance, e.g, R108-5.

5.3.2.2 Performance of VNS/TS on Small E-VRPTW Instances

We use the generated E-VRPTW test instances to analyze the performance of
our VNS/TS heuristic on small E-VRPTW instances. To this end, we solve the
instances with VNS/TS and compare the obtained results to the optimal (or near
optimal) solution found by the commercial solver CPLEX 12.2 using the model
described in Section 5.1 with the hierarchical objective function.
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Table 5.3 provides an overview of the results. For both, CPLEX and our
heuristic, we provide the computing time in seconds in column t(s). For the so-
lutions obtained with CPLEX, the vehicle number and traveled distance given in
columns m and f correspond to the optimal solution, or the best upper bound
found within 7200 seconds. For VNS/TS, columns m and f provide the best
solution found in 10 runs and column ∆f denotes the gap to the traveled dis-
tance found by CPLEX. No gap for the number of employed vehicles needs to be
reported as the numbers obtained with CPLEX and VNS/TS are identical for all
instances.

The results clearly show the ability of our VNS/TS heuristic to solve small
E-VRPTW instances to optimality in only a few seconds. Independent of the
instance structure or size, we always obtain the optimal solution, if CPLEX finds
an optimum within 7200 seconds. For most of the 15-customer instances and one
10-customer instance, CPLEX is not able to provide the optimal solution. On
those instances, we either find a solution equal to the upper bound provided by
CPLEX or a better solution in one case.

5.3.2.3 Analyzing the Effect of the VNS/TS components

This section aims at demonstrating the positive effect achieved by the hybridiza-
tion of VNS and TS. To this end, we compare the results obtained by our VNS/TS
heuristic on the 100-customer E-VRPTW instances to the solutions found with
1) a VNS/TS heuristic that accepts only improving solutions after the TS phase
instead of using an SA-based criterion (VNS/TS w/o SA) and 2) the pure TS
heuristic.

An overview of the results is given in Table 5.4. For each heuristic, we provide
the best solution found in 10 runs in columns m and f . Furthermore, we deter-
mine gaps to the best-known solution (BKS) found during the overall testing for
both the number of vehicles (∆m) and the traveled distance (∆f). Finally, at
the bottom of the table, the average computing time in minutes is reported in
row t(min).

The results show that the VNS/TS heuristic performs best with a vehicle gap of
0 and an average gap of the traveled distance of 0.35% to the BKS. A comparison
to the results obtained with VNS/TS w/o SA allows to quantify the impact
of the SA-based acceptance criterion. Using SA instead of simply accepting
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CPLEX VNS/TS

Inst. m f t(s) m f ∆f(%) t(s)

C101-5 2 257.75 81 2 257.75 0.00 0.21
C103-5 1 176.05 5 1 176.05 0.00 0.12
C206-5 1 242.55 518 1 242.55 0.00 0.14
C208-5 1 158.48 15 1 158.48 0.00 0.11
R104-5 2 136.69 1 2 136.69 0.00 0.13
R105-5 2 156.08 3 2 156.08 0.00 0.11
R202-5 1 128.78 1 1 128.78 0.00 0.11
R203-5 1 179.06 5 1 179.06 0.00 0.15
RC105-5 2 241.30 764 2 241.3 0.00 0.14
RC108-5 1 253.93 311 1 253.93 0.00 0.17
RC204-5 1 176.39 54 1 176.39 0.00 0.15
RC208-5 1 167.98 21 1 167.98 0.00 0.13

C101-10 3 393.76 171 3 393.76 0.00 0.77
C104-10 2 273.93 360 2 273.93 0.00 0.95
C202-10 1 304.06 300 1 304.06 0.00 0.71
C205-10 2 228.28 4 2 228.28 0.00 0.49
R102-10 3 249.19 389 3 249.19 0.00 0.65
R103-10 2 207.05 119 2 207.05 0.00 0.72
R201-10 1 241.51 177 1 241.51 0.00 0.78
R203-10 1 218.21 573 1 218.21 0.00 0.71
RC102-10 4 423.51 810 4 423.51 0.00 0.69
RC108-10 3 345.93 39 3 345.93 0.00 0.9
RC201-10 1 412.86 7200 1 412.86 0.00 0.9
RC205-10 2 325.98 399 2 325.98 0.00 0.81

C103-15 3 384.29 7200 3 384.29 0.00 15.37
C106-15 3 275.13 17 3 275.13 0.00 14.94
C202-15 2 383.62 7200 2 383.61 0.00 13.41
C208-15 2 300.55 5060 2 300.55 0.00 11.08
R102-15 5 413.93 7200 5 413.93 0.00 19.55
R105-15 4 336.15 7200 4 336.15 0.00 13.35
R202-15 2 358.00 7200 2 358.00 0.00 13.17
R209-15 1 313.24 7200 1 313.24 0.00 13.73
RC103-15 4 397.67 7200 4 397.67 0.00 14.62
RC108-15 3 370.25 7200 3 370.25 0.00 12.92
RC202-15 2 394.39 7200 2 394.39 0.00 12.74
RC204-15 1 407.45 7200 1 384.86 -5.87 15.57

Avg. 2483.25 -0.16 5.03

Table 5.3: Comparison of results obtained with CPLEX and VNS/TS on the small-
sized instances. m denotes the vehicle number and f the traveled distance.
t(s) denotes the total run-time in seconds. The maximum duration for
CPLEX was set to two hours, so optimality is not guaranteed for CPLEX
results which used the full time.
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BKS VNS/TS VNS/TS w/o SA TS

Inst. m f m f ∆m ∆f (%) m f ∆m ∆f (%) m f ∆m ∆f (%)

c101 12 1053.83 12 1053.83 0 0.00 12 1053.83 0 0.00 12 1053.83 0 0.00
c102 11 1056.47 11 1057.16 0 0.07 11 1056.47 0 0.00 11 1069.35 0 1.22
c103 10 1041.55 10 1041.55 0 0.00 11 1002.03 1 -3.79 10 1134.36 0 8.91
c104 10 979.51 10 980.82 0 0.13 10 988.77 0 0.95 10 979.63 0 0.01
c105 11 1075.37 11 1075.37 0 0.00 11 1075.37 0 0.00 11 1079.69 0 0.40
c106 11 1057.87 11 1057.87 0 0.00 11 1057.87 0 0.00 11 1057.87 0 0.00
c107 11 1031.56 11 1031.56 0 0.00 11 1031.56 0 0.00 11 1033.08 0 0.15
c108 10 1100.32 10 1100.32 0 0.00 11 1015.73 1 -7.69 11 1015.73 1 -7.69
c109 10 1036.64 10 1051.84 0 1.47 10 1036.64 0 0.00 10 1051.36 0 1.42
c201 4 645.16 4 645.16 0 0.00 4 645.16 0 0.00 4 645.16 0 0.00
c202 4 645.16 4 645.16 0 0.00 4 645.16 0 0.00 4 645.16 0 0.00
c203 4 644.98 4 644.98 0 0.00 4 644.98 0 0.00 4 644.98 0 0.00
c204 4 636.43 4 636.43 0 0.00 4 636.43 0 0.00 4 636.43 0 0.00
c205 4 641.13 4 641.13 0 0.00 4 641.13 0 0.00 4 641.13 0 0.00
c206 4 638.17 4 638.17 0 0.00 4 638.17 0 0.00 4 638.17 0 0.00
c207 4 638.17 4 638.17 0 0.00 4 638.17 0 0.00 4 638.17 0 0.00
c208 4 638.17 4 638.17 0 0.00 4 638.17 0 0.00 4 638.17 0 0.00

r101 18 1670.8 18 1672.55 0 0.10 18 1673.12 0 0.14 18 1670.8 0 0.00
r102 16 1495.31 16 1535.81 0 2.71 16 1522.84 0 1.84 16 1495.31 0 0.00
r103 13 1299.17 13 1299.64 0 0.04 13 1299.17 0 0.00 13 1348.25 0 3.78
r104 11 1088.43 11 1088.43 0 0.00 11 1143.69 0 5.08 11 1097.09 0 0.80
r105 14 1461.25 14 1473.59 0 0.84 15 1401.24 1 -4.11 14 1514.36 0 3.63
r106 13 1344.66 13 1344.66 0 0.00 13 1395.18 0 3.76 13 1369.55 0 1.85
r107 12 1154.52 12 1154.52 0 0.00 12 1158.13 0 0.31 12 1162.9 0 0.73
r108 11 1050.04 11 1065.89 0 1.51 11 1061.91 0 1.13 11 1056.84 0 0.65
r109 12 1294.05 12 1294.05 0 0.00 12 1341.01 0 3.63 12 1308.62 0 1.13
r110 11 1126.74 11 1143.52 0 1.49 11 1141.9 0 1.35 11 1126.74 0 0.00
r111 12 1106.19 12 1124.06 0 1.62 12 1107.52 0 0.12 12 1123.96 0 1.61
r112 11 1026.52 11 1026.52 0 0.00 11 1033.97 0 0.73 11 1047.92 0 2.08
r201 3 1264.82 3 1264.82 0 0.00 3 1264.82 0 0.00 3 1266.26 0 0.11
r202 3 1052.32 3 1052.32 0 0.00 3 1053.11 0 0.08 3 1052.65 0 0.03
r203 3 895.91 3 912.86 0 1.89 3 914.68 0 2.10 3 914.1 0 2.03
r204 2 790.57 2 790.57 0 0.00 2 801.56 0 1.39 2 790.68 0 0.01
r205 3 988.67 3 988.67 0 0.00 3 1000.96 0 1.24 3 997.15 0 0.86
r206 3 925.2 3 925.2 0 0.00 3 926.94 0 0.19 3 928.26 0 0.33
r207 2 848.53 2 852.73 0 0.49 2 848.53 0 0.00 2 855.99 0 0.88
r208 2 736.6 2 736.6 0 0.00 2 737.05 0 0.06 2 741.44 0 0.66
r209 3 872.36 3 872.36 0 0.00 3 877.4 0 0.58 3 874.74 0 0.27
r210 3 847.06 3 847.06 0 0.00 3 850.41 0 0.39 3 848.44 0 0.16
r211 2 847.45 2 866.21 0 2.21 2 860.32 0 1.52 2 861.17 0 1.62

rc101 16 1731.07 16 1731.07 0 0.00 16 1766.44 0 2.04 16 1753.35 0 1.29
rc102 15 1554.61 15 1554.61 0 0.00 15 1556.08 0 0.09 15 1559.95 0 0.34
rc103 13 1351.15 13 1353.55 0 0.18 13 1351.15 0 0.00 13 1355.36 0 0.31
rc104 11 1238.56 11 1249.23 0 0.86 11 1267.55 0 2.34 11 1280.82 0 3.41
rc105 14 1475.31 14 1483.38 0 0.55 14 1475.31 0 0.00 14 1479.56 0 0.29
rc106 13 1437.96 13 1440.19 0 0.15 13 1469.99 0 2.23 13 1437.96 0 0.00
rc107 12 1279.08 12 1275.89 0 0.00 12 1280.44 0 0.36 12 1284.47 0 0.67
rc108 11 1209.61 11 1238.81 0 2.41 11 1227.88 0 1.51 11 1209.61 0 0.00
rc201 4 1444.94 4 1447.2 0 0.16 4 1444.94 0 0.00 4 1446.03 0 0.08
rc202 3 1418.79 3 1412.91 0 0.00 3 1418.79 0 0.42 3 1425.17 0 0.87
rc203 3 1073.98 3 1078.28 0 0.40 3 1077.16 0 0.30 3 1084.66 0 0.99
rc204 3 885.35 3 889.22 0 0.44 3 886.03 0 0.08 3 889.22 0 0.44
rc205 3 1330.53 3 1321.75 0 0.00 3 1353.54 0 2.41 3 1360.39 0 2.92
rc206 3 1190.75 3 1191.13 0 0.03 3 1204.93 0 1.19 3 1207.77 0 1.43
rc207 3 1004.38 3 995.52 0 0.00 3 1015.6 0 2.02 3 1010.66 0 1.52
rc208 3 837.82 3 838.03 0 0.03 3 838.41 0 0.07 3 838.03 0 0.03

Sum/Avg. 0 0.35 3 0.46 1 0.75

t(min) 15.34 16.22 16.01

Table 5.4: Comparison of the effect of different heuristic components: VNS/TS de-
notes the standard setting of a hybrid VNS with an SA acceptance cri-
terion. VNS/TS w/o SA denotes a combination of TS and a VNS only
accepting improving solutions. TS denotes a pure TS without VNS. Gaps
are calculated to the best known (BKS) solution found during the overall
testing of the considered methods.
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improving solutions reduces the cumulated vehicle number (CNV) by 3 and yields
a reduction of the traveled distance of 0.1% on average. Comparing the results
of VNS/TS to those of the pure TS, we can see that the hybridization of VNS
and TS is able to reduce the CNV by one. Concerning the traveled distance,
VNS/TS reduces the gap to the best known solution by more than half. Overall,
the results show the positive effect of the hybridization of VNS, TS and SA. The
solution quality is improved by every component incorporated into our heuristic,
while computing times can even be slightly reduced.

5.3.3 Performance on Benchmark Instances of Related Problems

The E-VRPTW is closely related to the MDVRPI and the G-VRP (see Section
2.4). For both problems, sets of benchmark instances exist. To demonstrate
the performance of our VNS/TS heuristic on large problem sets, we solve all
benchmark instances available for the related problems and compare the results
obtained to those reported for the competing algorithms, which were specifically
designed for MDVRPI and G-VRP.

5.3.3.1 Multi-Depot VRP with Inter-Depot Routes

For the MDVRPI (respectively the VRP with Intermediate Replenishment Facil-
ities (VRPIRF), see Section 2.4), two benchmark sets with a total of 76 instances
are available from the literature. The first set of benchmark instances was pro-
posed by Crevier et al. (2007) and includes 22 instances. The instances consist
of 48-216 customers, 3-6 depots and 4-6 vehicles. Depots are centered and cus-
tomers are located in clusters. The second set was designed by Tarantilis et al.
(2008) and involves 54 instances. The set consists of 18 depot-customer combina-
tions, which were created following the design described in Crevier et al. (2007)
and compromise 50-175 customers and 3-8 depots. From each of these 18 depot-
customer combinations, three instances were created differing in the number of
vehicles available.

In Table 5.5, we compare the results obtained with our VNS/TS on the in-
stance set of Crevier et al. (2007) to the solutions of the heuristics of Tarantilis,
Zachariadis and Kiranoudis (2008) (TZK) and Crevier, Cordeau and Laporte
(2007) (CCL). For CCL and our VNS/TS, we provide the best solution found
in 10 runs (fbest) and the computing time in minutes (t(min)). By contrast, the
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value given in column fbest for TZK corresponds to the best solution ever found
with the final parameter setting. We further provide the gap of the best (∆best)
and average solution (∆avg) to the best known solutions (BKS), which do not
include the new best solutions that we found with our VNS/TS heuristic during
the overall testing. They are shown in the last column (VNS/TS) together with
the percentage improvement compared to the formerly best known solutions.

Considering the complete set, our VNS/TS heuristic clearly outperforms the
CCL approach in terms of solution quality and speed. We obtain an average gap
to the best solution of 0.18% in about 27 minutes on average, while CCL achieves
a 0.66% gap requiring more than double our computing time. In addition, we
found 10 new overall best solutions during the testing. Tarantilis et al. (2008)
solved only the first subset of instances with their TZK approach. Compared to
their results, we are on average 0.48% worse, however, a direct comparison is not
adequate, since the TZK results correspond to the best solution they ever found
during their testing.

Table 5.6 compares the results of our VNS/TS heuristic with those of TZK
on the instance set of Tarantilis et al. (2008). On those instances, our VNS/TS
heuristic shows a really strong performance. Our results are on average 0.05%

better than those of TZK. This is even more impressive when considering the
fact that they provide only the best solution ever found. The gap of the average
solution found by our VNS/TS is 1.44% and is hence also lower than the 1.6% gap
of TZK. During our overall testing activities, we additionally obtained new best
solutions for the majority of instances that improve the former ones by 0.45% on
average.

5.3.3.2 Green VRP

The benchmark instances for the G-VRP were proposed in Erdogan and Miller-
Hooks (2012) and consist of four sets, each involving ten instances with 20 cus-
tomers each. The instances differ in the customer distribution (random or clus-
tered) and the number of available alternative fuel stations (AFS) (2 to 10).
Furthermore, Erdogan and Miller-Hooks (2012) present a case study with 12
instances incorporating up to 500 customers.

Note that some customers contained in the small instances are infeasible, i.e.,
they cannot be served under the given restriction that each customer has to be
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TZK VNS/TS VNS/TS

Instance BKS fbest
∗ ∆best (%)∗ ∆avg (%) t(min) fbest ∆best (%) ∆avg (%) t(min) fbest ∆best (%)

50c3d2v 2209.83 2209.83 0.00 2.27 2.85 2209.83 0.00 0.10 1.82 2209.83 0.00
50c3d4v 2368.33 2368.33 0.00 2.18 2.23 2368.33 0.00 0.89 1.84 2368.33 0.00
50c3d6v 3000.88 3000.88 0.00 2.13 2.74 2999.29 -0.05 0.75 1.88 2999.29 -0.05
50c5d2v 2608.25 2608.25 0.00 2.87 1.54 2608.25 0.00 1.01 2 2608.25 0.00
50c5d4v 3086.58 3086.58 0.00 1.23 2.07 3086.58 0.00 0.00 1.98 3086.58 0.00
50c5d6v 3552 3552 0.00 0.90 3.04 3552 0.00 0.28 2.02 3548.88 -0.09
50c7d2v 3353.08 3353.08 0.00 2.37 3.16 3353.83 0.02 3.10 2.38 3353.08 0.00
50c7d4v 3381.57 3381.57 0.00 2.63 3.36 3380.27 -0.04 0.54 2.1 3380.27 -0.04
50c7d6v 4097.8 4097.8 0.00 0.25 3.42 4074.44 -0.57 0.37 2.07 4074.44 -0.57

75c3d2v 2678.8 2678.8 0.00 0.57 4.5 2692.76 0.52 1.68 4.67 2678.8 0.00
75c3d4v 2746.74 2746.74 0.00 1.95 3.38 2746.74 0.00 0.17 4.33 2746.74 0.00
75c3d6v 3454.71 3454.71 0.00 1.30 4.89 3448.64 -0.18 0.41 4.34 3404.34 -1.46
75c5d2v 3373.69 3373.69 0.00 2.98 3.29 3386.64 0.38 2.34 5.09 3373.69 0.00
75c5d4v 3568.35 3568.35 0.00 2.43 3.54 3569.82 0.04 0.63 4.42 3553.46 -0.42
75c5d6v 4198.61 4198.61 0.00 1.66 4.18 4215.3 0.40 2.04 4.55 4193.86 -0.11
75c7d2v 3569.02 3569.02 0.00 2.41 5.38 3581.32 0.34 1.63 5.06 3569.02 0.00
75c7d4v 3830.43 3830.43 0.00 2.13 5.51 3830.43 0.00 1.70 4.61 3825.37 -0.13
75c7d6v 4239.76 4239.76 0.00 2.02 4.29 4244.35 0.11 0.75 4.8 4242.08 0.05

100c3d3v 3123.51 3123.51 0.00 1.10 7.01 3127.65 0.13 2.33 7.94 3126.55 0.10
100c3d5v 3552.5 3552.5 0.00 2.37 7.31 3548.75 -0.11 0.18 7.62 3548.44 -0.11
100c3d7v 4239.83 4239.83 0.00 0.83 6.62 4268.34 0.67 2.34 7.92 4239.5 -0.01
100c5d3v 4053.95 4053.95 0.00 1.06 7.88 4053.95 0.00 1.58 8.49 4053.95 0.00
100c5d5v 4413.17 4413.17 0.00 2.69 7.2 4424.81 0.26 5.52 7.7 4415.48 0.05
100c5d7v 5148.98 5148.98 0.00 0.56 7.72 5142.52 -0.13 0.15 7.93 5142.52 -0.13
100c7d3v 4216.47 4216.47 0.00 0.61 8.53 4242.38 0.61 1.62 8.87 4216.47 0.00
100c7d5v 4462.51 4462.51 0.00 1.36 8.79 4448.15 -0.32 0.67 8 4439.72 -0.51
100c7d7v 4897.47 4897.47 0.00 1.55 8.35 4916.62 0.39 3.83 8.1 4869.66 -0.57

125c4d3v 3920.05 3920.05 0.00 1.18 8.73 3966.61 1.19 3.62 13.23 3916.02 -0.10
125c4d5v 4315.68 4315.68 0.00 1.30 9 4308.44 -0.17 0.28 12.33 4308.44 -0.17
125c4d7v 4763.49 4763.49 0.00 1.48 8.4 4694.32 -1.45 0.57 12.54 4668.77 -1.99
125c6d3v 4064.2 4064.2 0.00 0.78 9.19 4117.41 1.31 3.40 13.56 4076.04 0.29
125c6d5v 4826.71 4826.71 0.00 2.70 8.33 4786.74 -0.83 0.22 13.09 4765.97 -1.26
125c6d7v 5325.28 5325.28 0.00 2.65 9.18 5221.52 -1.95 -0.55 12.89 5164.18 -3.03
125c8d3v 4553.28 4553.28 0.00 2.73 10.23 4574.82 0.47 1.51 14.98 4545.44 -0.17
125c8d5v 5045.65 5045.65 0.00 1.38 9.64 4958.26 -1.73 1.85 13.38 4958.26 -1.73
125c8d7v 5416.96 5416.96 0.00 0.63 9.34 5397.86 -0.35 1.05 13.38 5347.1 -1.29

150c4d3v 4049.48 4049.48 0.00 0.01 9.71 4072.95 0.58 3.05 21.84 4069.72 0.50
150c4d5v 4638.72 4638.72 0.00 1.44 8.19 4622.77 -0.34 0.61 19.11 4622.77 -0.34
150c4d7v 5176.5 5176.5 0.00 1.30 8 5163.02 -0.26 0.56 19.06 5137.69 -0.75
150c6d3v 4057.09 4057.09 0.00 0.15 9.96 4066.71 0.24 1.45 22.07 4062.53 0.13
150c6d5v 4872.08 4872.08 0.00 0.54 10.23 4931.13 1.21 2.42 21.16 4876.91 0.10
150c6d7v 5768.29 5768.29 0.00 2.58 10.73 5840.52 1.25 2.00 20.4 5712.01 -0.98
150c8d3v 4653.9 4653.9 0.00 1.79 10.18 4689.13 0.76 3.65 22.67 4667.5 0.29
150c8d5v 5113.77 5113.77 0.00 1.10 11.62 5116.55 0.05 1.69 19.6 5073.8 -0.78
150c8d7v 5665.23 5665.23 0.00 0.00 12.01 5648.32 -0.30 0.49 19.67 5612.02 -0.94

175c4d4v 4706.76 4706.76 0.00 1.60 21.74 4720.36 0.29 1.60 28.69 4708.66 0.04
175c4d6v 4835.64 4835.64 0.00 2.58 23.01 4863.88 0.58 2.50 26.71 4841.51 0.12
175c4d8v 5943.28 5943.28 0.00 1.53 18.4 5853.9 -1.50 -0.15 27.35 5832.26 -1.87
175c6d4v 5025.51 5025.51 0.00 1.64 21.51 5011.01 -0.29 1.90 29.28 5020.01 -0.11
175c6d6v 5431.34 5431.34 0.00 0.11 22.54 5382.57 -0.90 0.96 27.43 5360.35 -1.31
175c6d8v 6090.01 6090.01 0.00 1.27 25.81 6066.1 -0.39 1.08 27.97 6043.43 -0.76
175c8d4v 5878.58 5878.58 0.00 2.59 24.9 5840.25 -0.65 1.30 29.83 5822.55 -0.95
175c8d6v 5989.63 5989.63 0.00 2.80 25.21 5968.99 -0.34 2.24 27.78 5953.54 -0.60
175c8d8v 6943.63 6943.63 0.00 1.90 26.7 6840.04 -1.49 1.60 27.98 6775.68 -2.42

Avg. 0.00 1.60 9.54 -0.05 1.44 12.79 -0.45

* Note that this value corresponds to the best solution ever obtained with the final parameter setting

Table 5.6: Comparison of the performance of our VNS/TS heuristic on the MDVRPI
instances proposed by Tarantilis et al. (2008) with the solutions of TZK.
BKS denotes the previously best known solution. Gaps are calculated in
dependence of BKS. Additionally, we provide the best solutions in VNS/TS
that we ever obtained on the instances during our testing activities. t(min)
denotes the average run-time for each run.
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reached in time with at most one halt at an AFS for refueling. Thus, these cus-
tomers have to be identified and removed in a preprocessing step. Erdogan and
Miller-Hooks (2012) report solutions found by their two heuristics, a Modified
Clarke and Wright Savings (MCWS) algorithm and a Density-Based Clustering
Algorithm (DBCA), as well as solutions determined with the commercial solver
CPLEX. The CPLEX solution is, however, not the optimal solution to the in-
stance. In their mathematical formulation, they fixed the number of vehicles
to the value obtained with the best heuristic in order to get solutions that are
comparable, i.e., to determine the best solution with a given number of vehicles.

We compiled an improved version of their G-VRP model (see Appendix C)
and use it to solve the set of small instances with CPLEX 12.2. Instead of the
hierarchical objective considered before, we minimize traveled distance for all
tests on the G-VRP instances. In Table 5.7, we report the best upper bound
for the traveled distance found by CPLEX in at most 3 hours of computing
time in column f . In four cases, CPLEX was not able to determine any feasible
solution. Furthermore, we solved all instances 10 times by means of our VNS/TS
heuristic and report the best traveled distance f and the average computing time
in minutes (t(min)).

We compare our results to those obtained with the MCWS and the DBCA
heuristic, for which the best solution obtained in multiple runs is reported (no
exact number of runs is given in the paper). Unfortunately, no computing times
are available for these heuristics. In the table, we further report the gap of the
best solution found by each of the heuristic methods to the CPLEX solution
(∆f). Column n provides the number of feasible customers and m the number
of vehicles required in the respective solutions.

Our VNS/TS heuristic clearly outperforms both heuristic methods proposed
by Erdogan and Miller-Hooks (2012), which both achieve an average gap to the
CPLEX solution of about 8%. On all instances, VNS/TS obtains the best solution
found by CPLEX or even a solution that improves on the upper bound, resulting
in an average gap of −0.09%. It is also worth mentioning that the VNS/TS
solutions reduce the number of vehicles in almost half of the instances, while
requiring less than 40 seconds of computing time on average.

We additionally solve all large instances of the case study presented by Erdogan
and Miller-Hooks (2012). In Table 5.8, we compare the results obtained with our
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CPLEX MCWS DBCA VNS/TS

m n f m n f ∆f(%) f ∆f(%) m n f t(min) ∆f(%)

20c3sU1 6 20 1797.49 6 20 1818.35 1.16 1797.51 0.00 6 20 1797.49 0.69 0.00
20c3sU2 6 20 1574.77 6 20 1614.15 2.50 1613.53 2.46 6 20 1574.77 0.64 0.00
20c3sU3 6 20 1704.48 7 20 1969.64 15.56 1964.57 15.26 6 20 1704.48 0.64 0.00
20c3sU4 5 20 1482 6 20 1508.41 1.78 1487.15 0.35 5 20 1482 0.65 0.00
20c3sU5 6 20 1689.37 5 20 1752.73 3.75 1752.73 3.75 6 20 1689.37 0.67 0.00
20c3sU6 6 20 1618.65 6 20 1668.16 3.06 1668.16 3.06 6 20 1618.65 0.67 0.00
20c3sU7 6 20 1713.66 6 20 1730.45 0.98 1730.45 0.98 6 20 1713.66 0.64 0.00
20c3sU8 6 20 1706.5 6 20 1718.67 0.71 1718.67 0.71 6 20 1706.5 0.67 0.00
20c3sU9 6 20 1708.81 6 20 1714.43 0.33 1714.43 0.33 6 20 1708.81 0.66 0.00
20c3sU10 4 20 1181.31 5 20 1309.52 10.85 1309.52 10.85 4 20 1181.31 0.64 0.00

20c3sC1 4 20 1173.57 5 20 1300.62 10.83 1300.62 10.83 4 20 1173.57 0.62 0.00
20c3sC2 5 19 1539.97 5 19 1553.53 0.88 1553.53 0.88 5 19 1539.97 0.58 0.00
20c3sC3 3 12 880.2 4 12 1083.12 23.05 1083.12 23.05 3 12 880.2 0.25 0.00
20c3sC4 4 18 1059.35 5 18 1135.9 7.23 1091.78 3.06 4 18 1059.35 0.53 0.00
20c3sC5 7 19 - 7 19 2190.68 2190.68 7 19 2156.01 0.6
20c3sC6 8 17 2758.17 9 17 2883.71 4.55 2883.71 4.55 8 17 2758.17 0.71 0.00
20c3sC7 4 6 1393.99 5 6 1701.4 22.05 1701.4 22.05 4 6 1393.99 0.18 0.00
20c3sC8 9 18 3139.72 10 18 3319.74 5.73 3319.74 5.73 9 18 3139.72 0.62 0.00
20c3sC9 6 19 1799.94 6 19 1811.05 0.62 1811.05 0.62 6 19 1799.94 0.6 0.00
20c3sC10 8 15 - 8 15 2648.84 2644.11 8 15 2583.42 0.45

S1_2i6s 6 20 1578.12 6 20 1614.15 2.28 1614.15 2.28 6 20 1578.12 0.71 0.00
S1_4i6s 5 20 1413.96 5 20 1561.3 10.42 1541.46 9.02 5 20 1397.27 0.75 -1.18
S1_6i6s 5 20 1560.49 6 20 1616.2 3.57 1616.2 3.57 5 20 1560.49 0.73 0.00
S1_8i6s 6 20 1692.32 6 20 1902.51 12.42 1882.54 11.24 6 20 1692.32 0.74 0.00
S1_10i6s 4 20 1173.48 5 20 1309.52 11.59 1309.52 11.59 4 20 1173.48 0.71 0.00
S2_2i6s 6 20 1633.1 6 20 1645.8 0.78 1645.8 0.78 6 20 1633.1 0.75 0.00
S2_4i6s 5 19 1555.2 6 19 1505.06 -3.22 1505.06 -3.22 5 19 1532.96 0.88 -1.43
S2_6i6s 7 20 - 10 20 3115.1 3115.1 7 20 2431.33 0.78
S2_8i6s 7 16 2158.35 9 16 2722.55 26.14 2722.55 26.14 7 16 2158.35 0.57 0.00
S2_10i6s 6 17 - 6 16 1995.62 1995.62 6 17 1958.46 0.61

S1_4i2s 6 20 1582.21 6 20 1582.2 0.00 1582.2 0.00 6 20 1582.21 0.63 0.00
S1_4i4s 5 20 1460.09 6 20 1580.52 8.25 1580.52 8.25 5 20 1460.09 0.68 0.00
S1_4i6s 5 20 1397.27 5 20 1561.29 11.74 1541.46 10.32 5 20 1397.27 0.75 0.00
S1_4i8s 6 20 1403.57 6 20 1561.29 11.24 1561.29 11.24 6 20 1397.27 0.82 -0.45
S1_4i10s 5 20 1397.27 5 20 1536.04 9.93 1529.73 9.48 5 20 1396.02 0.85 -0.09
S2_4i2s 4 18 1059.35 5 18 1135.89 7.23 1117.32 5.47 4 18 1059.35 0.51 0.00
S2_4i4s 5 19 1446.08 6 19 1522.72 5.30 1522.72 5.30 5 19 1446.08 0.6 0.00
S2_4i6s 5 20 1434.14 6 20 1786.21 24.55 1730.47 20.66 5 20 1434.14 0.69 0.00
S2_4i8s 5 20 1434.14 6 20 1786.21 24.55 1786.21 24.55 5 20 1434.14 0.75 0.00
S2_4i10s 5 20 1434.13 6 20 1783.63 24.37 1729.51 20.60 5 20 1434.13 0.78 0.00

Avg. 5.58 18.8 1575.98 6.13 18.78 1781.42 8.52 1774.15 7.94 5.58 18.8 1645.45 0.65 -0.09

Table 5.7: Results of VNS/TS on the small-sized G-VRP instances. Comparison of
the solutions obtained by the MCWS and DBCA heuristics, the solutions
determined by our CPLEX implementation and those of our VNS/TS. f
denotes the traveled distance of the best solution found by the respective
method, and ∆f the gap to the CPLEX solution. t(min) reports the av-
erage computing time in minutes. We terminate CPLEX after 3 hours,
so optimality is not guaranteed for any of the reported CPLEX solutions.
Numbers in bold indicate the best solution found. Note that in one case,
our preprocessing identified a higher number of feasible customers (numbers
in italic) than Erdogan and Miller-Hooks (2012).
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heuristic to those of MCWS and DBCA. As VNS/TS provides the best solution
for all instances, the value given in column ∆f denotes the gap of to best solution
found by VNS/TS in 10 runs. The results obtained by our heuristic on the large
instance set is quite impressive. We reduce the traveled distance of the solutions
of MCWS and DBCA by almost 15%. In addition, we require significantly fewer
vehicles on average.

MCWS DBCA VNS/TS

m n f ∆f(%) f ∆f(%) m n f t(min)

111c_21 20 109 5626.64 17.29 5626.64 17.29 17 109 4797.15 21.76
111c_22 20 109 5610.57 16.83 17 109 4802.16 23.56
111c_24 20 109 5412.48 13.07 17 109 4786.96 21.9
111c_26 20 109 5408.38 13.18 17 109 4778.62 25.12
111c_28 20 109 5331.93 11.10 17 109 4799.15 24.17
200c 35 190 10428.59 16.35 10413.59 16.18 35 192 8963.46 76.65
250c 41 235 11886.61 10.06 11886.61 10.06 39 237 10800.18 120.9
300c 49 281 14242.56 13.08 14229.92 12.98 46 283 12594.77 182.23
350c 57 329 16471.10 15.00 16460.30 14.92 51 329 14323.02 232.03
400c 67 378 19472.10 15.56 19099.04 13.35 61 378 16850.21 305.12
450c 75 424 21854.17 18.00 21854.19 18.00 68 424 18521.23 525.52
500c 84 471 24527.46 15.85 24517.08 15.81 76 471 21170.9 356.01

Average 42.33 237.75 12189.38 14.61 15510.92 14.82 38.42 238.25 10598.98 159.58

Table 5.8: Results on the large-scale G-VRP instances. Comparison of the solutions
obtained by the MCWS and DBCA heuristics and those of our VNS/TS.
For VNS/TS, f denotes the best solution found in 10 runs and t(min)
reports the average computing time in minutes. Numbers in bold indicate
the best solution found. As these are all provided by VNS/TS, we give the
percentage gap to the VNS/TS solution for MCWS and DBCA in column
∆f . Note that in some cases, our preprocessing identified a higher number
of feasible customers (numbers in italic) than Erdogan and Miller-Hooks
(2012).

To conclude, although our approach is not specifically tailored to the MDVRPI
or G-VRP, we are able to outperform the state-of-the-art heuristics on the G-VRP
and the second MDVRPI benchmark set. On the first MDVRPI set, we obtain
competitive results while requiring moderate computing times.

5.4 Summary and Conclusion

In this chapter, we present a new vehicle routing problem for determining cost-
optimal routes for electric vehicles. The E-VRPTW considers a limited vehicle
and battery capacity and traveling along arcs consumes battery charge accord-
ing to a constant consumption factor. Vehicles have the possibility of visiting
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recharging stations along the route. The recharging time depends on the current
battery charge on arrival at the station. Furthermore, customer time windows
are incorporated into the E-VRPTW model in order to represent real-world re-
quirements.

We develop a hybrid VNS/TS heuristic, which makes use of the strong di-
versification effect of VNS and involves a TS heuristic to efficiently search the
solution space from a randomly generated solution of the VNS component. Fur-
thermore, we increase the diversification abilities of our method by implementing
an acceptance criterion based on the Metropolis probability. In numerical studies
performed on newly designed E-VRPTW benchmark instances, we demonstrate
the strong performance of our metaheuristic and the positive effect of combining
the two metaheuristics VNS and TS. Moreover, we solve benchmark instances of
the related problems MDVRPI and G-VRP. Although our VNS/TS algorithm is
not specifically tailored to solve those problems, it outperforms all competing al-
gorithms on both G-VRP instance sets as well as on the large MDVRPI instance
set. It is also worth mentioning that we found new best solutions for a large
number of benchmark instances available for MDVRPI and G-VRP.

The content of this chapter is available in similar form as technical report
(Schneider, Stenger and Goeke 2012) and has been submitted to an international
journal.
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Chapter 6

Summary, Conclusion and Outlook

This thesis investigates new problems faced by small package shipping (SPS)
companies with time definite service requirements from an operations research
(OR) perspective. We develop OR models and solution methods to study the
performance of a fixed-area-based routing approach (FABRA) under time window
constraints and to provide decision support for route planning operations that
have to consider 1) available driver knowledge and 2) the specifics of last-mile
delivery by means of electric vehicles. This chapter summarizes the contents
of this thesis, lists its major contributions and discusses possibilities for future
research.

6.1 Summary

In Chapter 2, we introduce the Vehicle Routing Problem with Time Windows
(VRPTW), which provides the foundation for all other problems addressed in
this work. We present an overview of the most successful metaheuristics for the
VRPTW and detail Tabu Search (TS), Variable Neighborhood Search (VNS)
and Simulated Annealing (SA) as the main components of our solution methods.
The Solomon VRPTW benchmark is introduced and the characteristics of the
different problem groups are explained.

Subsequently, we discuss how changes in capacity violations can be calculated
in constant time by means of capacity slack variables if the conventional neigh-
borhood operators 2-opt*, Or-Opt, Relocate or Exchange are used. Moreover,
we present a new approach proposed by Nagata et al. (2010), which allows the
calculation of time window violations in constant time for inter-route moves with
the aforementioned operators. Finally, the relevant literature for the integra-
tion of driver learning aspects and the employment of electric vehicles into route
planning operations is presented.
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In Chapter 3, we develop Semi-Fixed Service Territory Routing (SFSTR), a
two-phase FABRA that is able to handle customer time windows. In the district-
ing phase, service territories are constructed based on the TS solutions obtained
for a series of VRPTW sample days that represent historical demand data. The
characteristics of the solutions and spatial aspects are used to select a set of
seed customers and to determine further customers who are iteratively added to
the seed customers until territories of the desired size are created. In the subse-
quent routing phase, the TS conducts the daily routing based on the generated
territories.

We develop a set of benchmark instances that comprise 100 days of VRPTW
problems with customers selected from a common base set, for which we used
a selection of the 1000-customer Gehring and Homberger instances. To assess
the performance of SFSTR, we analyze efficiency measures (number of routes,
traveled distance and number of outsourced customers) and consistency measures
(customer familiarity and driver diversity) compared to a route reoptimization
(RR) strategy. We further investigate the effect of different territory sizes and
different variabilities in the number of customers requiring service on each day.

In Chapter 4, we study the Vehicle Routing Problem with Time Windows and
Driver-Specific Times (VRPTWDST), a routing model to provide decision sup-
port for delivery operations that consider different levels of driver knowledge by
means of driver-specific travel and service times. As solution method, we present
a TS, called TS-DST, which is able to yield high-quality solutions in fast time.
It generates an initial solution with a modified Solomon I1 heuristic and uses
moves generated by the operators 2-opt*, Exchange and Relocate to improve the
solution. Infeasible solutions are allowed during the search and are evaluated
based on a penalizing cost function. The time window handling approach of Na-
gata et al. (2010) is adapted to the problem by defining separate time window
handling related variables for each driver. Finally, we use a continuous diversifica-
tion mechanism, probabilistic phases and sequences of random moves to provide
a thorough exploration of the search space.

We generate a comprehensive set of VRPTWDST benchmark instances by
means of the Random and Cluster distribution mechanisms, which determine
the learned arcs and customers of each driver. These are subsequently assigned
a learning factor representing the knowledge of the driver concerning the
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arc/customer. TS-DST is applied to the generated instances and the influence
of different distributions of learned customers and different magnitudes of the
learning factors is investigated. Finally, TS-DST is run on the Solomon VRPTW
benchmark and its performance in comparison to the best-performing VRPTW
methods is assessed. Among the VRPTW methods achieving a cumulated
number of vehicles (CNV) of 405, TS-DST ranks 9th concerning solution quality
and third concerning run-time. Moreover, it outperforms all previously proposed
TS approaches for the VRPTW.

Chapter 5 introduces the Electric Vehicle Routing Problem with Time
Windows and Recharging Stations (E-VRPTW). It integrates the possibility of
en route recharging at one of the available stations with a recharging time that
depends on the battery level on arrival at the station. To solve the problem,
we develop a hybrid metaheuristic using 1) a VNS based on Cyclic-Exchange
neighborhoods to diversify the search in a structured manner and 2) a TS
method for the descent phase of the VNS. An SA-based acceptance decision is
used to further diversify the search.

We generate a set of small and a set of medium-sized test instances based
on the procedure used for generating the Solomon instances but extended by
E-VRPTW specifics like recharging stations, battery capacities and recharging
and consumption rates. The small instances are used to assess the quality
of our VNS/TS in comparison to CPLEX solutions and the larger instances
to evaluate the contribution of the heuristic components VNS, TS and SA.
Moreover, we test VNS/TS on benchmark instances of the related problems
Multi-Depot Vehicle Routing Problem with Inter-Depot Routes (MDVRPI) and
Green Vehicle Routing Problem (G-VRP). On these instances, we are able to
match or surpass the performance of solution methods specifically developed for
the respective problem, and VNS/TS is able to provide a large number of new
best solutions.

6.2 Conclusion

This work contributes by integrating 1) service consistency and driver knowledge
aspects and 2) the utilization of electric vehicles into route planning models for
small package shippers.
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First, we develop a routing approach based on partially fixed territories that
is capable of handling time-definite delivery requirements. We find that even
with high variations of the number of customers requiring service, an unfavor-
able uniform distribution of customers and high time window densities, SFSTR
shows only moderate efficiency forfeits while achieving significantly higher rout-
ing consistency compared to the RR strategy. Moreover, an increase of the cus-
tomer percentage fixedly assigned to drivers leads to approximately proportional
changes in the efficiency and consistency measures, which suggests that the size
of the service territories can be utilized to control the achieved tradeoff between
driver consistency and route efficiency.

Further results show that increasing the variance of the number of customers
requiring service on each day does not have the detrimental effect that one could
expect. Independent of the territory size, efficiency measures only deteriorate
slightly compared to an RR approach while consistency measures remain stable
on a high level. Such routing consistency is highly valuated by SPS companies. If
the real-world possibility of subcontracting customers is taken into account, the
problem of invalid vehicle routes obtained on some days can be solved without
difficulties in practice.

Second, we are the first to carry out a systematic investigation of the
VRPTWDST based on the generated benchmark instances, which cover differ-
ent learning levels and customer arrangements. We find that consideration of
driver knowledge in the route planning clearly increases the efficiency of vehicle
routes, an effect that intensifies for higher learning levels. Moreover, increased
learning benefits are produced if the customers that drivers are familiar with are
geographically contiguous. The presented TS-DST shows how a simple meta-
heuristic method can be enhanced with diversification methods to accomplish a
top ten rank among metaheuristics for the intensively studied VRPTW, com-
peting with sophisticated approaches of which some might even be considered
as “over-engineered” (Laporte 2009). TS-DST can consequently provide well-
founded decision support for any logistics company whose routing operations
have to take driver learning effects into account.

Third, we present the first routing model that integrates the specifics of elec-
tric vehicles and propose VNS/TS as solution method. In numerical tests, we
show that each of the heuristic components VNS, TS and SA contributes to the
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success of the metaheuristic hybrid. The comparison with CPLEX on small-sized
E-VRPTW instances shows that our VNS/TS is capable of determining highly ef-
ficient vehicle routes making use of the available recharging stations. The quality
of our method is further substantiated by the fact that we are able to compete
or outperform specialized solution methods on benchmark instances of related
problems. Thus, our method seems able to successfully assist routing decisions
for electric vehicles employed in last-mile delivery operations.

Last, we contribute by identifying and correcting an error in the time travel
approach for handling time window violations presented by Nagata et al. (2010).
The error leads to a systematic undervaluation of time window violations and can
thus even lead to situations where infeasible solutions are not identified as such.
More than 50% of move evaluations in our TS test method cover cases for which
the uncorrected formula yields wrong results. This has a significant negative
impact on the solution quality of the TS method. We provide the corrected rule
and show how the time travel approach can be successfully adapted to VRPTW
variants like the VRPTWDST and the E-VRPTW.

6.3 Outlook

Several interesting topics for future research come into mind with regard to
SFSTR. First, a more extensive evaluation of the impact of different time window
characteristics like time window width and the geographic distribution of the cus-
tomers with time-definite deliveries could provide further insights. Second, we
assume that each customer has the same probability of requiring service on a
given day in order to generate the worst case scenario for a FABRA. However,
the performance of SFSTR shall also be investigated on benchmark instances with
more realistic customer distributions, where a set of core customers have higher
order volumes and occurrence frequencies than standard customers. Third, the
application of SFSTR on real-life data of an SPS company and comparison to
their route planning method would allow valuable conclusions.

TS-DST is a simple but high-quality method for generating feasible solutions
with a given vehicle number. From an algorithmic viewpoint, it would be interest-
ing to study if significant improvements of the solution quality can be achieved by
integrating a VNS component as done for the E-VRPTW. Furthermore, we shall
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investigate the suitability of using a series of VRPTWDST problems to promote
driver learning and thus provide an alternative to FABRAs. This is achieved
by linking day problems by means of a learning function that determines the
driver-specific times for day τ + 1 based on the times on day τ and the route
performed on day τ (which is determined by TS-DST). First tests indicate that
this approach could be successfully applied to obtain consistency benefits while
maintaining routing flexibility in the presence of time windows.

In the E-VRPTW, lifting the constraint that batteries have to be completely
recharged on visit of a recharging stations increases the route planning flexibility.
Even a higher number of shorter recharging visits might sometimes be profitable
in order to fulfill time window requirements. Therefore, this relaxation shall be
integrated into the E-VRPTW model and our VNS/TS solution method. More-
over, we shall integrate the VRPTWDST and the E-VRPTW and adapt the
VNS/TS to solve the resulting problem. Finally, future research should also con-
sider decision support for planning the locations of recharging stations, e.g., by
means of adapted location routing models and associated solution methods.

130



Bibliography

Artmeier, A., Haselmayr, J., Leucker, M. and Sachenbacher, M. (2010). The shortest
path problem revisited: Optimal routing for electric vehicles, in R. Dillmann,
J. Beyerer, U. Hanebeck and T. Schultz (eds), KI 2010: Advances in Artificial
Intelligence, Vol. 6359 of Lecture Notes in Computer Science, Springer, pp. 309–
316.

Badeau, P., Guertin, F., Gendreau, M., Potvin, J.-Y. and Taillard, E. (1997). A parallel
tabu search heuristic for the vehicle routing problem with time windows, Trans-
portation Research Part C: Emerging Technologies 5(2): 109–122.

Baldacci, R., Battarra, M. and Vigo, D. (2008). Routing a heterogeneous fleet of
vehicles, in E. Wasil, S. Raghavan and B. L. Golden (eds), The Vehicle Rout-
ing Problem: Latest Advances and New Challenges, Vol. 43 of Operations Re-
search/Computer Science Interfaces, Springer, pp. 3–27.

Baldacci, R., Mingozzi, A. and Roberti, R. (2012). Recent exact algorithms for solving
the vehicle routing problem under capacity and time window constraints, European
Journal of Operational Research 218(1): 1–6.

Beasley, J. E. (1984). Fixed routes, Journal of the Operational Research Society
35(1): 49–55.

Bent, R. and Van Hentenryck, P. (2004). A two-stage hybrid local search for the vehicle
routing problem with time windows, Transportation Science 38(4): 515–530.

Berger, J. and Barkaoui, M. (2004). A parallel hybrid genetic algorithm for the
vehicle routing problem with time windows, Computers & Operations Research
31(12): 2037–2053.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview
and conceptual comparison, ACM Computing Surveys 35(3): 268–308.

Boostani, A., Ghodsi, R. and Miab, A. K. (2010). Optimal location of compressed nat-
ural gas (CNG) refueling station using the arc demand coverage model, Proceed-
ings of the 2010 Fourth Asia International Conference on Mathematical/Analytical
Modelling and Computer Simulation, IEEE Computer Society, pp. 193–198.

Bouthillier, A. and Crainic, T. (2005). A cooperative parallel meta-heuristic for the

131



Bibliography

vehicle routing problem with time windows, Computers & Operations Research
32(7): 1685–1708.

Bräysy, O. (2003). A reactive variable neighborhood search for the vehicle routing
problem with time windows, INFORMS Journal on Computing 15(4): 347–368.

Bräysy, O. and Gendreau, M. (2002). Tabu search heuristics for the vehicle routing
problem with time windows, TOP: An Official Journal of the Spanish Society of
Statistics and Operations Research 10(2): 211–237.

Bräysy, O. and Gendreau, M. (2005a). Vehicle routing problem with time windows,
Part I: Route construction and local search algorithms, Transportation Science
39(1): 104–118.

Bräysy, O. and Gendreau, M. (2005b). Vehicle routing problem with time windows,
Part II: Metaheuristics, Transportation Science 39(1): 119–139.

Campbell, A. M. and Thomas, B. W. (2008). Challenges and advances in a priori rout-
ing, in B. Golden, S. Raghavan and E. Wasil (eds), The Vehicle Routing Problem:
Latest Advances and New Challenges, Vol. 43 of Operations Research/Computer
Science Interfaces Series, Springer, pp. 123–142.

Campbell, A. M. and Thomas, B. W. (2009). Runtime reduction techniques for the
probabilistic traveling salesman problem with deadlines, Computers & Operations
Research 36(4): 1231–1248.

Carlsson, J. G. (2011). Dividing a territory among several vehicles. Forthcoming in
INFORMS Journal on Computing. doi:10.1287/ijoc.1110.0479.

Christofides, N. (1971). Fixed routes and areas for delivery operations, International
Journal of Physical Distribution & Logistics Management 1(2): 87–92.

Coelho, L. C., Cordeau, J.-F. and Laporte, G. (2011). Consistency in multi-vehicle
inventory-routing, Technical Report 2011-66, CIRRELT, Canada.

Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M. and Soumis, F. (2002).
VRP with time windows, in P. Toth and D. Vigo (eds), The Vehicle Routing
Problem, Monographs on Discrete Mathematics and Applications, SIAM, pp. 157–
193.

Cordeau, J.-F., Gendreau, M. and Laporte, G. (1997). A tabu search heuristic for
periodic and multi-depot vehicle routing problems, Networks 30(2): 105–119.

Cordeau, J.-F. and Laporte, G. (2005). Tabu search heuristics for the vehicle routing
problem, in R. Sharda, S. Voß, C. Rego and B. Alidaee (eds), Metaheuristic Op-
timization via Memory and Evolution, Vol. 30 of Operations Research/Computer
Science Interfaces Series, Springer, pp. 145–163.

132



Bibliography

Cordeau, J.-F., Laporte, G. and Mercier, A. (2001). A unified tabu search heuristic
for vehicle routing problems with time windows, The Journal of the Operational
Research Society 52(8): 928–936.

Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R. and Price, K. V.
(eds) (1999). New Ideas in Optimization, McGraw-Hill.

Crainic, T. G., Vidal, T., Gendreau, M., Lahrichi, N. and Rei, W. (2012). A hybrid
genetic algorithm for multi-depot and periodic vehicle routing problems. Forth-
coming in Operations Research.

Crevier, B., Cordeau, J.-F. and Laporte, G. (2007). The multi-depot vehicle rout-
ing problem with inter-depot routes, European Journal of Operational Research
176(2): 756–773.

Czech, Z. J. and Czarnas, P. (2002). Parallel simulated annealing for the vehicle routing
problem with time windows, 10th Euromicro Workshop on Parallel, Distributed and
Network-Based Processing, pp. 376–383.

Daganzo, C. and Erera, A. (1999). On planning and design of logistics systems for un-
certain environments, in M. Speranza and P. Stahly (eds), New Trends in Distribu-
tion Logistics, Vol. 480 of Lecture Notes in Economics and Mathematical Systems,
Springer, pp. 3–21.

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem, Management
Science 6(1): 80–91.

Debudaj-Grabysz, A. and Czech, Z. (2005). A concurrent implementation of simulated
annealing and its application to the VRPTW optimization problem, in Z. Juhász,
P. Kacsuk and D. Kranzlmüller (eds), Distributed and Parallel Systems, Vol. 777 of
The Kluwer International Series in Engineering and Computer Science, Springer,
pp. 201–209.

Dondo, R. and Cerdá, J. (2006). An MILP framework for dynamic vehicle routing
problems with time windows, Latin American Applied Research 36: 255 – 261.

Dondo, R. and Cerdá, J. (2007). A cluster-based optimization approach for the multi-
depot heterogeneous fleet vehicle routing problem with time windows, European
Journal of Operational Research 176(3): 1478 – 1507.

Dongarra, J. J. (2011). Performance of various computers using standard linear equa-
tions software, Technical Report CS-89-85, Electrical Engineering and Computer
Science Department, University of Tennessee.

Erdogan, S. and Miller-Hooks, E. (2012). A green vehicle routing problem, Transporta-
tion Research Part E: Logistics and Transportation Review 48(1): 100–114.

133



Bibliography

Erera, A. (2000). Design of large-scale logistics systems for uncertain environments,
PhD thesis, University of California, Berkeley, USA.

Esser, K. and Kurte, J. (2011). Bundesverband Internationaler Express- und
Kurierdienste e.V., KEP-STUDIE 2011 - Wirtschaftliche Bedeutung der Kurier-,
Express- und Paketbranche.
URL: http: // www. biek. de/ download/ gutachten/ kep_ studie_ 2011. pdf

European Commission (2011). White Paper - Roadmap to a Single European Transport
Area – Towards a competitive and resource efficient transport system.
URL: http: // eur-lex. europa. eu/ LexUriServ/ LexUriServ. do? uri=

CELEX: 52011DC0144: EN: NOT

European Parliament and European Council (2011). Regulation (EU) No 510/2011 -
setting emission performance standards for new light commercial vehicles as part of
the Union’s integrated approach to reduce CO2 emissions from light-duty vehicles,
Official Journal of the European Union 544(145): 1–18.

Ferland, J. A. and Michelon, P. (1988). The vehicle scheduling problem with multiple
vehicle types, The Journal of the Operational Research Society 39(6): 577–583.

Figliozzi, M. A. (2010). An iterative route construction and improvement algorithm for
the vehicle routing problem with soft time windows, Transportation Research Part
C: Emerging Technologies 18(5): 668 – 679.

Figliozzi, M. A., Mahmassani, H. S. and Jaillet, P. (2007). Pricing in dynamic vehicle
routing problems, Transportation Science 41(3): 302–318.

Francis, P., Smilowitz, K. and Tzur, M. (2007). Flexibility and complexity in periodic
distribution problems, Naval Research Logistics (NRL) 54(2): 136–150.

Gambardella, L. M., Taillard, E. D. and Agazzi, G. (1999). MACS-VRPTW: A multiple
ant colony system for vehicle routing problems with time windows, in D. Corne,
M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli and K. V. Price (eds),
New Ideas in Optimization, McGraw-Hill, pp. 63–76.

Garcia, B.-L., Potvin, J.-Y. and Rousseau, J.-M. (1994). A parallel implementation
of the tabu search heuristic for vehicle routing problems with time window con-
straints, Computers & Operations Research 21(9): 1025–1033.

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman and Co.

Gehring, H. and Homberger, J. (1999). A parallel hybrid evolutionary metaheuristic
for the vehicle routing problem with time windows, Proceedings of EUROGEN99,
pp. 57–64.

134



Bibliography

Gendreau, M. (2001). Recent advances in tabu search, in C. C. Ribeiro and
P. Hansen (eds), Essays and Surveys in Metaheuristics, Vol. 15 of Operations Re-
search/Computer Science Interfaces Series, Kluwer Academic Publishers, pp. 369–
377.

Gendreau, M. (2003). An introduction to tabu search, in F. Glover and G. Kochenberger
(eds), Handbook of Metaheuristics, Vol. 57 of International Series in Operations
Research & Management Science, Springer, pp. 37–54.

Gendreau, M., Hertz, A. and Laporte, G. (1994). A tabu search heuristic for the vehicle
routing problem, Management Science 40(10): 1276–1290.

Gendreau, M. and Potvin, J.-Y. (2005). Metaheuristics in combinatorial optimization,
Annals of Operations Research 140(1): 189–213.

Gendreau, M. and Potvin, J.-Y. (2010a). Tabu search, in M. Gendreau and J.-Y. Potvin
(eds), Handbook of Metaheuristics, Vol. 146 of International Series in Operations
Research & Management Science, Springer, pp. 41–59.

Gendreau, M., Potvin, J.-Y., Bräysy, O., Hasle, G. and Løkketangen, A. (2008). Meta-
heuristics for the vehicle routing problem and its extensions: A categorized bibliog-
raphy, in B. Golden, S. Raghavan and E. Wasil (eds), The Vehicle Routing Problem:
Latest Advances and New Challenges, Vol. 43 of Operations Research/Computer
Science Interfaces Series, Springer, pp. 143–169.

Gendreau, M. and Potvin, J.-Y. (eds) (2010b). Handbook of Metaheuristics, Vol. 146 of
International Series in Operations Research & Management Science, Springer.

Gendreau, M. and Tarantilis, C. D. (2010). Solving large-scale vehicle routing problems
with time windows: The state-of-the-art, Technical Report 2010-04, CIRRELT,
Canada.

Gillett, B. E. and Miller, L. R. (1974). A heuristic algorithm for the vehicle-dispatch
problem, Operations Research 22: 340–349.

Glover, F. (1986). Future paths for integer programming and links to artificial intelli-
gence, Computers & Operations Research 13(5): 533–549.

Glover, F. (1989). Tabu search - Part I, Informs Journal on Computing 1(3): 190–206.

Glover, F. (1990). Tabu search - Part II, Informs Journal on Computing 2(1): 4–32.

Glover, F. and Kochenberger, G. A. (eds) (2003). Handbook of Metaheuristics, Vol. 57
of International Series in Operations Research & Management Science, Springer.

Glover, F. and Laguna, M. (1997). Tabu Search, Springer.

Glover, F. and Laguna, M. (2002). Tabu search, in P. M. Pardalos and M. G. C. Resende
(eds), Handbook of Applied Optimization, Oxford University Press, pp. 194–208.

135



Bibliography

Gonçalves, F., Cardoso, S. R., Relvas, S. and Barbosa-Póvoa, A. P. F. D. (2011).
Optimization of a distribution network using electric vehicles: A VRP problem,
IO2011 - 15 ◦ Congresso da associação Portuguesa de Investigação Operacional.

Groër, C., Golden, B. and Wasil, E. (2009). The consistent vehicle routing problem,
Manufacturing & Service Operations Management 11(4): 630–643.

Gutin, G. and Punnen, A. (2002). The Traveling Salesman Problem and Its Variations,
Kluwer Academic Publishers.

Haase, K. and Hoppe, M. (2008). Transportnetzgestaltung für Paketdienstleister,
Zeitschrift für Betriebswirtschaft 78: 857–874.

Hansen, P. and Mladenović, N. (1999). An introduction to variable neighborhood search,
in S. Voss, I. H. Osman and C. Roucairol (eds), Meta-Heuristics: Advances and
Trends in Local Search Paradigms for Optimization, Kluwer Academic Publishers,
pp. 433–458.

Hansen, P. and Mladenović, N. (2001a). Developments of variable neighborhood search,
in C. C. Ribeiro and P. Hansen (eds), Essays and Surveys in Metaheuristics,
Vol. 15 of Operations Research/Computer Science Interfaces Series, Kluwer Aca-
demic Publishers, pp. 415–439.

Hansen, P. and Mladenović, N. (2001b). Variable neighborhood search: Principles and
applications, European Journal of Operational Research 130(3): 449–467.

Hansen, P. and Mladenović, N. (2002). Variable neighborhood search, in M. G. C.
Resende and P. M. Pardalos (eds), Handbook of Applied Optimization, Oxford
University Press, pp. 221–234.

Hansen, P. and Mladenović, N. (2003). Variable neighborhood search, in F. Glover and
G. A. Kochenberger (eds), Handbook of Metaheuristics, Vol. 57 of International
Series in Operations Research & Management Science, Springer, pp. 145–184.

Hansen, P., Mladenović, N., Brimberg, J. and Moreno Pérez, J. A. (2010). Variable
neighborhood search, in M. Gendreau and J.-Y. Potvin (eds), Handbook of Meta-
heuristics, Vol. 146 of International Series in Operations Research & Management
Science, Springer.

Hashimoto, H., Yagiura, M. and Ibaraki, T. (2008). An iterated local search algorithm
for the time-dependent vehicle routing problem with time windows, Discrete Op-
timization 5(2): 434–456.

Haughton, M. A. (2007). Assigning delivery routes to drivers under variable customer
demands, Transportation Research Part E: Logistics and Transportation Review
43(2): 157–172.

136



Bibliography

Haughton, M. A. (2008). The efficacy of exclusive territory assignments to delivery
vehicle drivers, European Journal of Operational Research 184(1): 24–38.

Haugland, D., Ho, S. C. and Laporte, G. (2007). Designing delivery districts for the
vehicle routing problem with stochastic demands, European Journal of Operational
Research 180(3): 997–1010.

Hemmelmayr, V. C., Doerner, K. F. and Hartl, R. F. (2009). A variable neighborhood
search heuristic for periodic routing problems, European Journal of Operational
Research 195(2): 791–802.

Homberger, J. (2000). Verteilt-parallele Metaheuristiken zur Tourenplanung: Lö-
sungsverfahren für das Standardproblem mit Zeitfensterrestriktionen, Deutscher
Universitäts-Verlag.

Homberger, J. and Gehring, H. (2005). A two-phase hybrid metaheuristic for the vehicle
routing problem with time windows, European Journal of Operational Research
162(1): 220–238.

Ibaraki, T., Imahori, S., Kubo, M., Masuda, T., Uno, T. and Yagiura, M. (2005).
Effective local search algorithms for routing and scheduling problems with general
time-window constraints, Transportation Science 39(2): 206–232.

Ibaraki, T., Imahori, S., Nonobe, K., Sobue, K., Uno, T. and Yagiura, M. (2008). An
iterated local search algorithm for the vehicle routing problem with convex time
penalty functions, Discrete Applied Mathematics 156(11): 2050–2069.

Irnich, S. (2008). A unified modeling and solution framework for vehicle routing and
local search-based metaheuristics, Informs Journal on Computing 20(2): 270–287.

Irnich, S., Funke, B. and Grünert, T. (2006). Sequential search and its application to
vehicle-routing problems, Computers & Operations Research 33(8): 2405–2429.

Kallehauge, B. (2008). Formulations and exact algorithms for the vehicle routing prob-
lem with time windows, Computers & Operations Research 35(7): 2307–2330.

Kim, B.-I., Kim, S. and Sahoo, S. (2006). Waste collection vehicle routing problem with
time windows, Computers & Operations Research 33(12): 3624–3642.

Kindervater, G. and Savelsbergh, M. (1997). Vehicle routing: Handling edge exchanges,
in E. Aarts and J. Lenstra (eds), Local Search in Combinatorial Optimization, John
Wiley & Sons, pp. 337–360.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by simulated
annealing, Science 220(4598): 671–680.

Laporte, G. (2009). Fifty years of vehicle routing, Transportation Science 43(4): 408–
416.

137



Bibliography

Lau, H., Sim, M. and Teo, K. (2003). Vehicle routing problem with time windows and a
limited number of vehicles, European Journal of Operational Research 148(3): 559–
569.

Li, H. and Lim, A. (2003). Local search with annealing-like restarts to solve the
VRPTW, European Journal of Operational Research 150(1): 115–127.

Lim, A. and Zhang, X. (2007). A two-stage heuristic with ejection pools and generalized
ejection chains for the vehicle routing problem with time windows, INFORMS
Journal on Computing 19(3): 443–457.

Lin, S. (1965). Computer solutions of the traveling salesman problem, Bell System
Technical Journal 44(10): 2245–2269.

Malandraki, C., Zaret, D., Perez, J. R. and Holland, C. (2001). Industrial engineering
applications in transportation, Handbook of Industrial Engineering: Technology
and Operations Management, Third Edition, John Wiley & Sons, pp. 787–824.

Mehrez, A. and Stern, H. I. (1985). Optimal refueling strategies for a mixed-vehicle
fleet, Naval Research Logistics Quarterly 32(2): 315–328.

Melechovský, J., Prins, C. and Calvo, R. (2005). A metaheuristic to solve a location-
routing problem with non-linear costs, Journal of Heuristics 11(5-6): 375–391.

Melkman, A. A., Stern, H. I. and Mehrez, A. (1986). Optimal refueling sequence for a
mixed fleet with limited refuelings, Naval Research Logistics Quarterly 33(4): 759–
762.

Mester, D. and Bräysy, O. (2005). Active guided evolution strategies for large-scale
vehicle routing problems with time windows, Computers & Operations Research
32(6): 1593–1614.

Mester, D., Bräysy, O. and Dullaert, W. (2007). A multi-parametric evolution strate-
gies algorithm for vehicle routing problems, Expert Systems with Applications
32(2): 508–517.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E.
(1953). Equation of state calculations by fast computing machines, The Journal
of Chemical Physics 21(6): 1087–1092.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search, Computers &
Operations Research 24(11): 1097–1100.

Nagata, Y. (2007). Efficient evolutionary algorithm for the vehicle routing problem
with time windows: Edge assembly crossover for the VRPTW, IEEE Congress on
Evolutionary Computation, pp. 1175–1182.

138



Bibliography

Nagata, Y. and Bräysy, O. (2009). A powerful route minimization heuristic for the ve-
hicle routing problem with time windows, Operations Research Letters 37(5): 333–
338.

Nagata, Y., Bräysy, O. and Dullaert, W. (2010). A penalty-based edge assembly
memetic algorithm for the vehicle routing problem with time windows, Computers
& Operations Research 37(4): 724–737.

Nikolaev, A. G. and Jacobson, S. H. (2010). Simulated annealing, in M. Gendreau and
J.-Y. Potvin (eds), Handbook of Metaheuristics, Vol. 146 of International Series in
Operations Research & Management Science, Springer, pp. 1–39.

Or, I. (1976). Traveling salesman-type problems and their relation to the logistics of re-
gional blood banking, PhD thesis, Department of Industrial Engineering and Man-
agement Sciences, Northwestern University, Evanston, USA.

Osman, I. H. and Laporte, G. (1996). Metaheuristics: A bibliography, Annals of Oper-
ations Research 63: 511–623.

Ouyang, Y. (2007). Design of vehicle routing zones for large-scale distribution systems,
Transportation Research Part B 41(10): 1079–1093.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems,
Computers & Operations Research 34(8): 2403–2435.

Polacek, M., Hartl, R. F., Doerner, K. and Reimann, M. (2004). A variable neigh-
borhood search for the multi depot vehicle routing problem with time windows,
Journal of Heuristics 10(6): 613–627.

Potvin, J.-Y. (1996). Genetic algorithms for the traveling salesman problem, Annals of
Operations Research 63: 339–370.

Potvin, J.-Y. and Rousseau, J.-M. (1995). An exchange heuristic for routeing problems
with time windows, Journal of the Operational Research Society 46(12): 1433–1446.

Prescott-Gagnon, E., Desaulniers, G. and Rousseau, L.-M. (2009). A branch-and-price-
based large neighborhood search algorithm for the vehicle routing problem with
time windows, Networks 54(4): 190–204.

Psaraftis, H. N. (1983). k-interchange procedures for local search in a prece-
dence-constrained routing problem, European Journal of Operational Research
13(4): 391–402.

Qiu, Y., Liu, H., Wang, D. and Liu, X. (2011). Intelligent strategy on coordinated
charging of PHEV with TOU price, Asia-Pacific Power and Energy Engineering
Conference (APPEEC), pp. 1–5.

139



Bibliography

Reeves, C. R. (ed.) (1993). Modern heuristic techniques for combinatorial problems,
John Wiley & Sons.

Repoussis, P., Tarantilis, C. and Ioannou, G. (2009). Arc-guided evolutionary algo-
rithm for the vehicle routing problem with time windows, IEEE Transactions on
Evolutionary Computation 13(3): 624–647.

Resende, M. G. C. and Pardalos, P. M. (eds) (2002). Handbook of Applied Optimization,
Oxford University Press.

Ribeiro, C. C. and Hansen, P. (eds) (2001). Essays and Surveys in Metaheuristics,
Vol. 15 of Operations Research/Computer Science Interfaces Series, Kluwer Aca-
demic Publishers.

Rochat, Y. and Taillard, E. D. (1995). Probabilistic diversification and intensification
in local search for vehicle routing, Journal of Heuristics 1(1): 147–167.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows, Transportation Science
40(4): 455–472.

Rousseau, L.-M., Gendreau, M. and Pesant, G. (2002). Using constraint-based operators
to solve the vehicle routing problem with time windows, Journal of Heuristics
8(1): 43–58.

Sand, B., Schneider, M., Wendt, O. and Schwind, M. (2011). Dezentrale Allokation
von Transportaufträgen: Reduktion des „Price of Anarchy“ durch lernende Agen-
ten, in H. Corsten and R. Gössinger (eds), Dezentrale Koordination ökonomischer
Aktivitäten, Erich Schmidt Verlag, pp. 153–180.

Savelsbergh, M. (1985). Local search in routing problems with time windows, Annals
of Operations Research 4(1): 285–305.

Savelsbergh, M. (1990). An efficient implementation of local search algorithms for con-
strained routing problems, European Journal of Operational Research 47(1): 75–85.

Savelsbergh, M. (1992). The vehicle routing problem with time windows: Minimizing
route duration, ORSA Journal on Computing 4(2): 146–154.

Schneider, M., Doppstadt, C., Sand, B., Stenger, A. and Schwind, M. (2010). A vehi-
cle routing problem with time windows and driver familiarity, Proceedings of the
Seventh Triennial Symposium on Transportation Analysis, pp. 677–680.

Schneider, M., Doppstadt, C., Stenger, A. and Schwind, M. (2010). Ant colony op-
timization for a stochastic vehicle routing problem with driver learning, IEEE
Congress on Evolutionary Computation, pp. 1–8.

Schneider, M., Sand, B. and Stenger, A. (2012). A note on the time travel approach

140



Bibliography

for handling time windows in vehicle routing problems. Working Paper, BISOR,
University of Kaiserslautern, Germany.

Schneider, M., Stenger, A. and Goeke, D. (2012). The electric vehicle routing problem
with time windows and recharging stations, Technical Report 2/2012, BISOR,
University of Kaiserlautern, Germany.

Schneider, M., Stenger, A., Lagemann, H. and Vigo, D. (2012). On fixed-area-based ve-
hicle routing in the presence of time window constraints, Technical Report 1/2012,
BISOR, University of Kaiserlautern, Germany.

Schneider, M., Stenger, A., Schwahn, F. and Vigo, D. (2012). Sparsification methods
for the vehicle routing problem with time windows. Working paper, University of
Kaiserslautern, Germany.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H. and Dueck, G. (2000). Record break-
ing optimization results using the ruin and recreate principle, Journal of Compu-
tational Physics 159(2): 139–171.

Shaw, P. (1997). A new local search algorithm providing high quality solutions to
vehicle routing problems. Working Paper, University of Strathclyde, Glasgow,
Scotland.
URL: http: // citeseerx. ist. psu. edu/ viewdoc/ download? doi= 10. 1. 1.

51. 1273\ &rep= rep1\ &type= pdf

Shaw, P. (1998). Using constraint programming and local search methods to solve
vehicle routing problems, in M. Maher and J.-F. Puget (eds), Principles and Prac-
tice of Constraint Programming - CP98, Vol. 1520 of Lecture Notes in Computer
Science, Springer, pp. 417–431.

Smilowitz, K., Nowak, M. and Jiang, T. (2012). Workforce management
in periodic delivery operations. Forthcoming in Transportation Science.
doi:10.1287/trsc.1120.0407.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems
with time window constraints, Operations Research 35(2): 254–265.

Soriano, P. and Gendreau, M. (1996). Diversification strategies in tabu search algo-
rithms for the maximum clique problem, Annals of Operations Research 63: 189–
207.

Stenger, A., Vigo, D., Enz, S. and Schwind, M. (2011). An adaptive variable neigh-
borhood search algorithm for a vehicle routing problem arising in small package
shipping. Forthcoming in Transportation Science. doi:10.1287/trsc.1110.0396.

Sungur, I., Ren, Y., Ordóñez, F., Dessouky, M. and Zhong, H. (2010). A model and

141



Bibliography

algorithm for the courier delivery problem with uncertainty, Transportation Science
44(2): 193–205.

Taillard, É., Badeau, P., Gendreau, M., Guertin, F. and Potvin, J.-Y. (1997). A tabu
search heuristic for the vehicle routing problem with soft time windows, Trans-
portation Science 31(2): 170–186.

Talbi, E.-G. (2009). Metaheuristics: From design to implementation, John Wiley &
Sons.

Tan, K., Lee, L., Zhu, Q. and Ou, K. (2001). Heuristic methods for vehicle routing
problem with time windows, Artificial Intelligence in Engineering 15(3): 281 –
295.

Tarantilis, C. D., Zachariadis, E. E. and Kiranoudis, C. T. (2008). A hybrid guided local
search for the vehicle-routing problem with intermediate replenishment facilities,
INFORMS Journal on Computing 20(1): 154–168.

Thompson, P. M. and Orlin, J. B. (1989). Theory of cyclic transfers, Working Paper,
Operations Research Center, MIT, USA.

Toth, P. and Vigo, D. (2003). The granular tabu search and its application to the
vehicle-routing problem, INFORMS Journal on Computing 15(4): 333–346.

Toth, P. and Vigo, D. (eds) (2002). The Vehicle Routing Problem, Monographs on
Discrete Mathematics and Applications, SIAM.

Voss, S., Osman, I. H. and Roucairol, C. (eds) (1999). Meta-Heuristics: Advances and
Trends in Local Search Paradigms for Optimization, Kluwer Academic Publishers.

Wang, H. and Shen, J. (2007). Heuristic approaches for solving transit vehicle schedul-
ing problem with route and fueling time constraints, Applied Mathematics and
Computation 190(2): 1237–1249.

Wang, Y.-W. and Lin, C.-C. (2009). Locating road-vehicle refueling stations, Trans-
portation Research Part E: Logistics and Transportation Review 45(5): 821–829.

Wang, Y.-W. and Wang, C.-R. (2010). Locating passenger vehicle refueling stations,
Transportation Research Part E: Logistics and Transportation Review 46(5): 791–
801.

Wasner, M. and Zäpfel, G. (2004). An integrated multi-depot hub-location vehicle
routing model for network planning of parcel service, International Journal of
Production Economics 90(3): 403–419.

Woch, M. and Łebkowski, P. (2009). Sequential simulated annealing for the vehicle rout-
ing problem with time windows, Decision Making in Manufacturing and Services
3(1–2): 87–100.

142



Bibliography

Wong, K. F. and Beasley, J. E. (1984). Vehicle routing using fixed delivery areas, Omega
12(6): 591–600.

Wong, R. T. (2008). Vehicle routing for small package delivery and pickup services, in
B. Golden, S. Raghavan and E. Wasil (eds), The Vehicle Routing Problem: Latest
Advances and New Challenges, Vol. 43 of Operations Research/Computer Science
Interfaces Series, Springer, pp. 475–485.

Zhong, H., Hall, R. W. and Dessouky, M. (2007). Territory planning and vehicle dis-
patching with driver learning, Transportation Science 41(1): 74–89.

143



Appendix A

Influence of the Incorrect Equation in the Time

Travel Approach

We have identified two cases in which the formula proposed by Nagata et al.
(2010) yields incorrect results in Section 2.2.2. However, it is not clear how often
these cases occur and how strong the incorrect calculation affects a local-search-
based heuristic designed for the Vehicle Routing Problem with Time Windows
(VRPTW). To answer these questions, we perform numerical experiments with
a Tabu Search (TS) heuristic on the Solomon VRPTW benchmark instances and
thus study the impact of the incorrect time window handling on the solution
process of a classical metaheuristic. Section A.1 gives a short description of the
TS. In Section A.2, we present the results of our studies.

A.1 Tabu Search Heuristic

The TS heuristic used in the numerical studies is detailed in Schneider, Stenger,
Schwahn and Vigo (2012) and is very similar to the one described in Section
4.2. The parameter settings reported here were again found by pretests using
the procedure described in Ropke and Pisinger (2006) (see Section 3.2.2). To
generate an initial solution, we use the earliest ready time heuristic put forward
in Lau et al. (2003). Relocate, Exchange and 2-opt* are used as neighborhood
operators and are implemented using the generator arc technique introduced in
Toth and Vigo (2003) (see Section 4.2.4). Infeasible solutions during the search
are handled as described in Section 3.1.1. The penalty factors α and β are
initialized to α0 = β0 = 1 and are scaled with δ = 1.2 restricted to the interval
[1, 6400].

In each iteration, the best non-tabu move is performed. The tabu status is
defined by forbidding to reinsert recently removed edges into the solution for ϑ
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iterations. The tabu tenure ϑ is randomly drawn from the interval [20, 40]. Find-
ing a new best overall solution is used as aspiration criterion. As diversification
techniques, we use the continuous diversification mechanism described in Section
4.2.5 using λdiv = 1 as diversification factor. To further diversify the search, we
perform 100 random moves after every 1000 iterations without improving the
best solution. If the best solution has not improved for 2500 iterations, we reset
the search to the best solution found. Last, we select not the best move in each
iteration but a random one among the 250 best moves if the amount of time
window violation of the best solution identified in the last 100 iterations has not
changed.

For the studies, we implemented the following three variants of the TS:

Variant 1 The original variant as described above, using the corrected time win-
dow handling to determine time window penalties. This variant obtains
quite competitive results on the Solomon benchmark instances. As com-
monly done in the VRPTW literature, the search is started with the best-
known vehicle number for each instance (see Section 4.2.6). The search
runs for a maximum of 50000 iterations in order to find a feasible solution
with the given vehicle number. If a feasible solution is found, an additional
5000 iterations are spent on minimizing the distance.

Conducting 10 runs on each instance and using the best solution found in
the runs, we achieved a cumulated number of vehicles (CNV) of 405 and a
cumulated traveled distance (CTD) of 57702.62. This corresponds to a gap
of 0% to the best-known CNV and a 0.91% gap to the best known CTD as
reported in Section 2.1.3. The run-times on a desktop computer with an
Intel Core 2 Quad Processor at 2.83 GHz using a 4 GB memory were 140

seconds on average.

Variant 2 In Variant 2, time window penalties are determined based on the
incorrect rule for determining time window penalties. This inaccurate so-
lution assessment is used to rank the moves in each iteration and thus to
select the best move. Furthermore, the overall best solution of the search
is updated based on the incorrect evaluation. Only afterwards, a correct
computation of the time window violation and the objective function value
takes place.
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Variant 3 Variant 3 differs from Variant 2 in that the update of the overall best
solution is already based on a correct evaluation of time window violations
and objective function value. This is inspired by the fact that after carrying
out a move, the newly generated routes have to be traversed to update the
helper variables of the time travel approach and thus the update of the
overall best solution is based on correct values if it is performed afterwards.

A.2 Impact of the Incorrect Time Window Handling

Tests are performed on the 56 Solomon VRPTW instances. For all three TS
variants, every instance is solved 10 times. The objective function commonly
used for the VRPTW is hierarchical and the first goal is minimizing the number
of vehicles. Therefore, to assess the impact of the incorrect time window handling
on the solution quality, we compare the three TS variants concerning their ability
to find a feasible solution with the number of vehicles that corresponds to the
best-known solution of the respective instance. To this end, Variants 2 and 3
are started on each instance with the best-known vehicle number and are run for
50000 iterations with the goal of finding a feasible solution. As mentioned above,
considering the best of 10 runs, Variant 1 is able to find a feasible solution for all
Solomon instances and can therefore be used as 100% level.

Our first test assesses how often the two cases for which the original formula
provides incorrect results occur when using a standard metaheuristic procedure
like our TS. To this end, we measure the percentage of move evaluations for
which the original formula provides incorrect results during all runs of Variant 2
on all Solomon instances. We provide overall averages and separate results for
the relocate and the exchange operator. Moreover, we differentiate between two
types of errors: Any deviation between the time window violation found by the
original and the corrected formula results in a general error. A feasibility error
denotes the situation where a solution is deemed feasible by the original formula
although time windows are violated. Note that feasibility errors are included in
the standard errors.

Table A.1 reports the results as averages over the 6 groups of Solomon
instances. The percentage of moves in which the original formula produces a
general error is given in column Errgen and the percentage of moves in which a
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Total Relocate Exchange

Inst. Errgen (%) Errfeas(%) ∆avg ∆max ∆min Errgen (%) Errfeas(%) Errgen (%) Errfeas(%)

C1 71.9 18.6 253.96 2099.84 0 55.7 15.2 73.7 19.1
C2 64.6 12.0 851.07 6222.14 0 59.0 11.7 75.6 13.8
R1 46.6 5.1 27.90 365.14 0 38.5 5.3 60.5 7.0
R2 48.6 11.2 131.88 1657.56 0 38.4 10.9 58.5 11.3
RC1 46.3 4.2 22.70 372.62 0 33.6 3.5 54.8 3.9
RC2 50.7 10.5 135.42 1712.00 0 41.7 10.6 61.7 10.7

Avg. 54.8 10.3 237.15 44.5 9.5 64.1 11.0

Table A.1: Evaluation of the frequency and magnitude of the errors produced by the
incorrect time window handling. The table reports the percentage of gen-
eral errors, of feasibility errors and the average, maximal and minimal
deviation between the original and the corrected formula in 10 runs of
the TS. Results are given as averages over the instance groups, as total
averages and separately for the relocate and exchange operator.

feasibility error occurs in Errfeas . Additionally, we provide the minimal (∆min),
maximal (∆max ) and average (∆avg) deviation of the time window violations,
measured as the correct value minus the result of the original formula.

The results confirm a high number of erroneous evaluations due to the
incorrect formula. In total, the time window violations of almost 55% of all move
evaluations are calculated incorrectly by the original formula. In more than 10%

of evaluations, the formula even rates a move feasible although time windows
are violated. Moreover, one can see that the deviation between corrected and
original formula is not negligible. Note that the minimal deviation does not
fall below 0 as the original formula consistently underestimates the real time
window violation. As could be expected, the percentage of erroneous evaluations
is higher for the exchange move as the incorrect rule is applied twice.

The second study investigates the effect of the incorrect time window handling
on the search process and the obtained solution quality. To this end, we evaluate
for Variants 2 and 3 the percentage of iterations in which the algorithm selects
an incorrect move due to the wrong formula, i.e., not the best move as would
have been selected with a correct time window handling. The values are reported
in Table A.2 in column Errmove . Moreover, we give the percentage of instances
in which the TS ends up with a feasible VRPTW solution in at least one of the
10 test runs (Feas.). For Variant 2, we additionally report the percentage of runs
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Variant 2 Variant 3

Cons. Feas.(%) Feas.(%) Errmove(%) Feas.(%) Errmove(%)

C1 100.0 22.2 88.5 44.4 86.4
C2 100.0 100.0 78.8 100.0 78.0
R1 41.7 8.3 86.1 8.3 82.3
R2 100.0 0.0 77.6 72.7 77.2
RC1 50.0 0.0 83.6 25.0 78.6
RC2 100.0 12.5 81.6 37.5 80.7

Avg. 81.9 23.8 82.7 48.0 80.7

Table A.2: Impact of incorrect time window handling on search process of the TS
method. We report the percentage of iterations selecting the wrong move
(Errmove) and the percentage of instances with a feasible solution in 10
runs (Feas.). Additionally, for Variant 2, the percentage of runs in which
the solution found is considered feasible using the original, incorrect time
window handling is given (Cons. Feas.).

in which the solution found is considered feasible using the original, incorrect
time window handling (Cons. Feas.).

The results show that the algorithm performs another than the best local
search move in the majority of iterations (≈ 80%) due to the underestimated
time window violation. This is true for all groups of instances and shows the
significant impact of the wrong time window handling on the search procedure.
Note that the values for Variants 2 and 3 are approximately equal since the two
methods do not differ regarding the move selection.

When basing the feasibility of the obtained solution on the original time
window handling, Variant 2 finds a seemingly feasible solution with the given
vehicle number for 81.9% of the Solomon instances. Evaluating the obtained
solutions with the corrected formula reveals that the solution found is actually
only feasible for 23.8% of the instances. This value significantly differs among the
groups of instances. Only for the C2 instances, Variant 2 is able to obtain valid
results for all instances in at least one of the 10 runs per instance, which can be
explained by the fact that time windows for this group are not very restrictive.
For all other groups, the number of instances solved to feasibility is clearly below
25% and even zero or close to zero for R1, R2 and RC1. The deviation between
the percentage of solutions considered feasible and the percentage actually
being feasible is highest for the set R2. Here, a feasible solution is found for all
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instances according to the original time window handling, although none of the
solutions obtained in 10 runs for any of the instances is actually feasible.

Basing the update of the overall best solution on the corrected formula as done
in Variant 3 significantly increases the percentage of feasible solutions. However,
with only 48% of feasible solutions compared to a 100% feasibility obtained with
Variant 1, this result further substantiates the strong negative influence of the
incorrect time windows handling on the solution process and the results of a
metaheuristic method like TS. Apart from the fact that wrong penalties are
added to solutions and thus the selection of the best move in each iteration
is erroneous, the incorrect time window handling influences the penalty factor
update mechanism. It may occur that penalty factors are reduced although time
windows are violated and thus the search is further misguided.

Summing up, we have presented a correct formula to implement the time travel
approach of Nagata et al. (2010) in Section 2.2.2. We have shown that the cases
for which the originally proposed formula produces wrong results cover more than
50% of move evaluations in our TS metaheuristic. Moreover, our experiments
demonstrate that the incorrect time window handling has a significant negative
influence on the solution procedure and quality of a metaheuristic method like
TS.
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Additional Computational Results for the

VRPTWDST

B.1 Effect of Preprocessing on Solomon Instances

We show the results of applying the preprocessing steps introduced in Section
4.2.1 on the Solomon VRPTW set. For each instance, Table B.1 provides the
percentage of arcs that could be removed due to the rules, which lies between
0.09% (9 arcs in absolute numbers) for instance RC208 and 67.99% (6867 arcs)
for instance R101. If considered in combination with the characteristics of the
Solomon instances as shown in Table 2.1, the results show the strong influence
of the time window violation related preprocessing rules. The percentage of
infeasible arcs increases significantly for instances with a higher time window
density (TWD), namely it is on average 33.55% for instances with 100% TWD
compared to 30.21% for 75% TWD, 15.08% for 50% TWD and 4.84% for 25%

TWD. Moreover, it can be noted that the percentage of infeasible arcs decreases
with a higher time window width.

C1 C2 R1 R2 RC1 RC2

1 55.33 48.32 67.99 41.42 63.99 41.45
2 33.84 27.11 42.56 23.58 40.64 23.22
3 15.62 11.95 23.77 10.40 22.62 10.31
4 5.07 2.92 9.08 2.52 8.23 2.44
5 50.00 43.58 57.89 27.47 48.15 28.99
6 46.35 38.50 35.11 15.64 46.76 27.08
7 44.39 34.87 18.80 7.16 25.40 14.67
8 37.22 34.02 6.87 1.62 7.87 0.09

9 26.20 40.36 15.68
10 21.19 15.20
11 21.25 1.03
12 0.88

Table B.1: Percentage of arcs removed by the preprocessing step described in Section
4.2.1 on the Solomon VRPTW instances
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B.2 Visualization of the Distribution Mechanisms Cluster
and Random

We present the results of applying the two distribution mechanisms Cluster and
Random described in Section 2.1.3 on three Solomon instances selected to cover
the geographical distributions C2, R and RC in Figures B.1 - B.2 (C1 is covered
in Section 4.3.2). To depict the influence of different scheduling horizons, we
choose instances R202 and RC101.

(a) Random distribution

(b) Cluster distribution

Figure B.1: Distribution of learned customers for Solomon instance C203 using the
Random and Cluster mechanism
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(a) Random distribution for R201

(b) Cluster distribution for R201

Figure B.2: Distribution of learned customers for Solomon instance R201 using the
Random and Cluster mechanism
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(a) Random distribution

(b) Cluster distribution

Figure B.3: Distribution of learned customers for Solomon instance RC101 using the
Random and Cluster mechanism
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B.3 Detailed Results of TS-DST on Solomon Instances

In Table B.2, we present the results and run-times of TS-DST applied to the
Solomon VRPTW benchmark on an instance basis. TS-DST is run 10 times for
each problem instance, starting from the best-known vehicle number reported in
the literature for the respective instance as described in Section 4.2.6. We report
the best solution found in the 10 runs, the average solution and the average
run-time. The solution quality is given in terms of vehicle number (#Rts.) and
traveled distance (TD). Moreover, we follow the common procedure and give
averages over the problem classes C, R and RC and the CNV and CTD. For
comparison reasons, the best-known solution (BKS) for each instance is reported.
If the BKS is reached by TS-DST, the respective solutions are also printed in bold.

B.4 Detailed Results of TS-DST on VRPTWDST Instances

We present detailed results of the testing of TS-DST on the newly generated
VRPTWDST benchmark instances described in Section 4.3.2. TS-DST is run 10
times for each problem instance and we report the number of vehicles (#Rts.)
and the value of the secondary objective function (traveled distance TD, working
time WT and working duration WD) of the best solution found. Furthermore,
averages over the problem classes C, R and RC and the CNV and the cumulated
secondary objective function values (CTD, CWT and CWD) are given.

For the secondary objective of minimizing the traveled distance, the results
can be found in Table B.3 for the instance sets generated with the Random
mechanism and in Table B.4 for the sets generated with the Cluster mechanism.
Here, we also report CPU times as the tests were conducted on our desktop PC.
For the secondary objectives of minimizing working time and working duration,
the results are given in Tables B.5 – B.8. No run-times are reported as the tests
were conducted on the computing cluster Elwetritsch.
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BKS TS-DST(Best) TS-DST(Avg.)

#Rts TD #Rts. TD #Rts. TD CPU (s)

c101 10 828.94 10 828.94 10.00 828.94 0.06
c102 10 828.94 10 828.94 10.00 828.94 0.11
c103 10 828.06 10 828.06 10.00 828.06 13.60
c104 10 824.78 10 824.78 10.00 825.19 31.78
c105 10 828.94 10 828.94 10.00 828.94 0.04
c106 10 828.94 10 828.94 10.00 828.94 0.06
c107 10 828.94 10 828.94 10.00 828.94 0.07
c108 10 828.94 10 828.94 10.00 828.94 0.23
c109 10 828.94 10 828.94 10.00 828.94 0.24

Avg. C1 10.00 828.38 10.00 828.38 10.00 828.43 5.13

c201 3 591.56 3 591.56 3.00 591.56 0.05
c202 3 591.56 3 591.56 3.00 591.56 0.19
c203 3 591.17 3 591.17 3.00 591.17 16.11
c204 3 590.60 3 590.60 3.00 593.01 45.48
c205 3 588.88 3 588.88 3.00 588.88 0.24
c206 3 588.49 3 588.49 3.00 588.49 1.49
c207 3 588.29 3 588.29 3.00 588.29 2.87
c208 3 588.32 3 588.32 3.00 588.32 6.45

Avg. C2 3.00 589.86 3.00 589.86 3.00 590.16 9.11

r101 19 1.645.79 19 1.650.80 19.00 1.654.08 27.12
r102 17 1.486.12 17 1.486.12 17.20 1.488.30 100.71
r103 13 1.292.68 13 1.292.68 13.40 1.265.06 250.28
r104 9 1.007.24 9 1.018.07 9.90 999.90 281.63
r105 14 1.377.11 14 1.377.11 14.00 1.394.79 25.99
r106 12 1.251.98 12 1.257.96 12.00 1.267.18 34.23
r107 10 1.104.66 10 1.115.14 10.00 1.129.10 100.38
r108 9 960.88 9 967.35 9.00 981.13 81.85
r109 11 1.194.73 11 1.203.74 11.00 1.243.31 43.95
r110 10 1.118.59 10 1.118.84 10.00 1.152.42 152.41
r111 10 1.096.72 10 1.106.25 10.10 1.140.64 68.85
r112 9 982.14 9 1.024.82 9.80 983.47 294.33

Avg. R1 11.92 1.209.89 11.92 1.218.24 12.12 1.224.95 121.81

r201 4 1.252.37 4 1.254.57 4.00 1.261.33 29.11
r202 3 1.191.70 3 1.198.45 3.00 1.210.73 68.86
r203 3 939.50 3 945.35 3.00 952.16 72.77
r204 2 825.52 2 833.65 2.00 842.06 84.71
r205 3 994.42 3 1.005.94 3.00 1.023.24 43.60
r206 3 906.14 3 915.06 3.00 929.79 72.12
r207 2 890.61 2 900.00 2.00 914.97 73.10
r208 2 726.75 2 731.06 2.00 742.73 95.60
r209 3 909.16 3 915.58 3.00 931.17 52.16
r210 3 939.34 3 952.88 3.00 963.75 58.35
r211 2 885.71 2 934.47 2.00 955.83 99.17

Avg. R2 2.73 951.02 2.73 962.46 2.73 975.25 68.14

rc101 14 1.696.94 14 1.696.95 14.80 1.656.61 105.29
rc102 12 1.554.75 12 1.562.96 12.70 1.533.36 200.56
rc103 11 1.261.67 11 1.263.38 11.00 1.269.48 51.30
rc104 10 1.135.48 10 1.143.74 10.00 1.156.83 47.44
rc105 13 1.629.44 13 1.637.71 13.70 1.587.82 200.91
rc106 11 1.424.73 11 1.427.13 11.80 1.408.32 179.47
rc107 11 1.230.48 11 1.232.26 11.00 1.239.36 30.57
rc108 10 1.139.82 10 1.156.99 10.00 1.188.09 78.99

Avg. RC1 11.50 1.384.16 11.50 1.390.14 11.88 1.379.98 111.82

rc201 4 1.406.91 4 1.418.49 4.00 1.432.03 37.73
rc202 3 1.365.65 3 1.369.18 3.00 1.414.93 49.30
rc203 3 1.049.62 3 1.079.53 3.00 1.092.97 59.99
rc204 3 798.41 3 800.24 3.00 819.03 78.86
rc205 4 1.297.19 4 1.300.25 4.00 1.309.65 40.85
rc206 3 1.146.32 3 1.156.45 3.00 1.181.49 42.92
rc207 3 1.061.14 3 1.070.02 3.00 1.100.67 67.95
rc208 3 828.14 3 829.69 3.00 851.95 75.23

RC2 3.25 1.119.17 3.25 1.127.98 3.25 1.150.34 56.60

CNV/CTD 405 57180.84 405 57525.15 410.40 57846.82 65.67

Table B.2: Detailed results of TS-DST on Solomon VRPTW instances. Best and
average results of 10 TS-DST runs are reported compared to the best-
known solution (BKS). CPU time is given as average over the runs.
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Γ = 0.9 Γ = 0.7 Γ = 0.5

#Rts. TD CPU (s) #Rts. TD CPU (s) #Rts. TD CPU (s)

c101 10 828.94 17.03 10 828.94 17.03 10 828.94 17.64
c102 10 828.94 23.44 10 828.94 23.61 10 828.94 23.83
c103 10 828.06 36.86 10 828.06 40.09 10 828.06 37.63
c104 10 824.78 32.22 10 822.79 31.95 10 822.79 41.40
c105 10 828.94 18.37 10 828.94 18.70 10 828.94 19.36
c106 10 828.94 19.29 10 828.94 19.65 10 828.94 20.52
c107 10 828.94 20.10 10 828.94 20.79 10 828.94 21.05
c108 10 828.94 22.09 10 828.94 22.75 10 828.94 23.11
c109 10 828.94 25.16 10 828.94 25.80 10 828.94 26.07

Avg. C1 10.00 828.38 23.84 10.00 828.16 24.49 10.00 828.16 25.62

c201 3 591.56 27.12 3 591.56 27.10 3 588.88 27.03
c202 3 591.56 38.04 3 591.56 37.67 3 588.88 40.07
c203 3 588.49 51.24 3 585.46 78.12 3 585.27 70.94
c204 3 587.71 48.89 3 584.68 58.39 3 584.49 62.07
c205 3 588.49 28.35 3 588.49 27.91 3 588.49 28.83
c206 3 588.49 31.92 3 588.49 32.50 3 588.49 34.47
c207 3 588.29 46.82 3 588.29 37.76 3 588.29 32.13
c208 3 588.32 36.85 3 588.29 36.27 3 588.29 34.49

Avg. C2 3.00 589.11 38.65 3.00 588.35 41.97 3.00 587.64 41.25

r101 18 1619.42 39.30 18 1604.37 32.16 17 1624.28 64.01
r102 17 1450.43 57.34 16 1445.26 113.00 15 1422.61 122.80
r103 13 1246.99 124.57 13 1230.25 162.23 12 1189.59 78.82
r104 9 1014.08 233.32 9 994.30 93.75 9 977.04 97.07
r105 14 1369.26 26.69 13 1458.44 177.86 13 1383.54 46.80
r106 12 1245.86 28.27 11 1285.52 213.03 11 1245.63 66.20
r107 10 1082.08 52.63 10 1074.40 52.94 9 1127.94 40.43
r108 9 965.17 44.27 9 947.11 41.94 8 976.76 157.68
r109 11 1203.75 31.12 11 1181.80 32.35 10 1338.81 189.80
r110 10 1138.26 44.42 10 1109.75 36.65 9 1359.07 336.90
r111 10 1095.53 35.51 10 1079.36 32.39 10 1041.87 50.00
r112 9 1001.84 131.92 9 963.34 51.00 9 946.82 49.09

Avg. R1 11.83 1202.72 70.78 11.58 1197.83 86.61 11.00 1219.50 108.30

r201 4 1253.26 36.85 3 1529.65 233.29 3 1435.85 33.35
r202 3 1186.99 68.19 3 1151.97 87.03 3 1132.16 63.37
r203 3 939.10 84.32 2 1098.85 597.72 2 1064.10 103.04
r204 2 824.15 77.52 2 813.90 100.48 2 781.89 100.85
r205 3 994.43 46.16 3 1006.34 66.61 3 999.15 51.25
r206 3 912.85 52.90 2 1032.28 119.35 2 1011.96 63.53
r207 2 891.57 111.44 2 871.59 77.17 2 846.39 63.65
r208 2 727.34 107.15 2 728.14 78.84 2 724.68 84.47
r209 3 908.38 66.45 3 904.92 90.68 2 1091.77 68.07
r210 3 945.52 78.31 2 1102.86 439.54 2 1065.04 107.82
r211 2 897.11 73.14 2 852.50 100.32 2 817.82 89.61

Avg. R2 2.73 952.79 72.95 2.36 1008.45 181.00 2.27 997.35 75.36

rc101 14 1689.43 91.27 14 1623.48 48.58 13 1712.81 109.01
rc102 12 1494.52 178.77 12 1465.11 37.19 11 1506.54 256.07
rc103 10 1336.10 211.83 10 1282.68 35.33 10 1231.24 29.99
rc104 10 1139.89 44.07 9 1223.58 224.23 9 1160.92 36.11
rc105 13 1632.79 214.06 13 1496.91 37.49 12 1504.09 221.32
rc106 11 1449.21 203.22 11 1365.96 61.57 11 1320.88 32.71
rc107 10 1325.93 300.59 10 1262.03 173.69 10 1249.10 32.66
rc108 10 1145.49 45.12 10 1112.53 45.52 9 1197.78 45.91

Avg. RC1 11.25 1401.67 161.12 11.13 1354.04 82.95 10.63 1360.42 95.47

rc201 4 1410.27 42.77 4 1383.47 36.23 3 1633.01 332.30
rc202 3 1307.04 58.69 3 1287.43 82.26 3 1252.71 60.00
rc203 3 1051.71 61.38 3 1030.78 59.96 2 1303.04 601.65
rc204 3 796.71 75.54 2 959.58 176.73 2 896.05 103.11
rc205 4 1297.65 40.41 3 1499.25 48.59 3 1502.57 73.92
rc206 3 1137.48 56.61 3 1123.17 46.12 3 1122.25 58.44
rc207 3 1062.00 81.43 3 1037.97 63.91 3 1030.06 66.39
rc208 3 833.29 64.79 2 1001.39 178.59 2 992.17 72.79

Avg. RC2 3.25 1112.02 60.20 2.88 1165.38 86.55 2.63 1216.48 171.08

CNV/CTD 402 57191.21 70.47 391.00 57782.47 88.26 377 58374.50 86.10

Table B.3: Results of TS-DST for the secondary objective of minimizing traveled dis-
tance on the VRPTWDST benchmark sets generated with the Random
mechanism. The best solution found in 10 runs is reported in columns
#Rts. and TD and the average run-time in column CPU.
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Γ = 0.9 Γ = 0.7 Γ = 0.5

#Rts. TD CPU (s) #Rts. TD CPU (s) #Rts. TD CPU (s)

c101 10 828.94 16.62 10 828.94 17.57 10 828.94 18.13
c102 10 828.94 23.56 10 828.94 23.77 10 828.94 25.14
c103 10 828.06 41.72 10 828.06 31.58 10 828.06 36.85
c104 10 824.78 47.28 10 822.79 49.98 10 822.79 45.82
c105 10 828.94 18.45 10 828.94 18.97 10 828.94 20.01
c106 10 828.94 19.58 10 828.94 20.60 10 828.94 20.96
c107 10 828.94 20.26 10 828.94 20.90 10 828.94 21.64
c108 10 828.94 22.12 10 828.94 22.84 10 828.94 23.34
c109 10 828.94 25.00 10 827.38 27.48 10 825.65 27.97

Avg. C1 10.00 828.38 26.06 10.00 827.99 25.97 10.00 827.79 26.65

c201 3 591.56 26.86 3 591.56 26.98 3 588.88 26.97
c202 3 591.56 36.63 3 591.56 39.30 3 588.88 38.77
c203 3 585.27 52.20 3 585.27 70.43 3 585.27 47.16
c204 3 584.49 61.99 3 584.49 61.96 3 584.49 58.38
c205 3 588.49 28.14 3 588.49 27.70 3 588.49 30.75
c206 3 588.49 31.67 3 588.49 30.89 3 588.49 33.00
c207 3 588.29 34.67 3 588.29 33.17 3 587.89 33.97
c208 3 588.32 40.71 3 588.29 44.14 3 588.29 50.50

Avg. C2 3.00 588.31 39.11 3.00 588.31 41.82 3.00 587.59 39.94

r101 18 1610.94 26.27 17 1562.26 23.97 15 1552.30 165.48
r102 17 1440.65 49.46 15 1369.68 67.12 14 1367.88 217.82
r103 13 1259.19 190.35 13 1157.22 95.48 11 1104.37 170.63
r104 9 975.57 52.40 8 975.30 359.97 8 949.61 222.41
r105 13 1426.94 162.04 12 1356.64 36.59 11 1306.69 54.55
r106 11 1325.28 263.76 10 1222.31 155.93 9 1156.73 172.68
r107 10 1070.79 59.88 9 1014.54 45.53 8 1066.29 109.63
r108 9 936.98 76.61 8 917.59 40.41 8 875.50 65.09
r109 11 1168.25 33.80 9 1241.32 254.46 9 1063.02 45.25
r110 10 1088.36 43.15 9 1056.70 48.12 8 1064.62 63.12
r111 10 1063.91 51.94 9 1005.63 52.88 8 1000.50 52.76
r112 9 966.34 45.48 8 932.54 38.93 8 874.12 48.03

Avg. R1 11.67 1194.43 87.93 10.58 1150.98 101.62 9.75 1115.14 115.62

r201 4 1245.96 35.70 3 1391.61 32.83 3 1292.95 39.04
r202 3 1151.15 56.06 3 1107.64 72.72 3 1078.52 59.14
r203 3 936.52 84.44 2 1122.75 99.14 2 1057.62 129.93
r204 2 816.19 81.86 2 794.07 94.70 2 766.30 109.29
r205 3 1001.71 63.54 2 1157.96 468.98 2 1095.10 65.93
r206 2 1074.00 514.09 2 977.66 69.74 2 955.16 94.46
r207 2 881.21 66.40 2 855.19 88.69 2 832.98 86.43
r208 2 727.07 111.79 2 716.94 94.13 2 721.27 113.69
r209 3 909.75 70.25 2 1064.81 85.48 2 944.84 90.24
r210 3 946.89 72.64 2 1056.77 138.89 2 1019.48 78.22
r211 2 872.72 76.98 2 804.31 77.98 2 771.77 76.35

Avg. R2 2.64 960.29 112.16 2.18 1004.52 120.30 2.18 957.82 85.70

rc101 14 1624.72 25.06 13 1507.44 19.22 11 1517.08 125.44
rc102 12 1476.36 35.83 11 1380.37 50.59 10 1342.22 69.70
rc103 10 1273.25 138.61 9 1279.57 302.23 9 1184.77 50.04
rc104 10 1124.86 44.59 9 1094.47 43.81 9 1067.40 47.73
rc105 13 1491.69 91.02 11 1454.70 37.27 10 1380.15 215.27
rc106 11 1353.91 76.29 10 1313.35 47.70 9 1287.52 219.38
rc107 10 1281.59 118.80 9 1314.24 298.10 9 1169.18 36.44
rc108 10 1112.36 55.11 9 1106.37 48.51 9 1058.32 34.85

Avg. RC1 11.25 1342.34 73.16 10.13 1306.31 105.93 9.50 1250.83 99.85

rc201 4 1376.69 53.88 3 1574.45 227.99 3 1500.80 52.63
rc202 3 1314.05 71.39 3 1274.34 75.32 3 1237.71 57.53
rc203 3 1049.19 76.44 2 1225.63 104.75 2 1184.25 116.57
rc204 2 961.14 197.80 2 901.82 88.90 2 821.96 73.34
rc205 3 1606.68 350.12 3 1461.57 56.08 3 1364.09 46.30
rc206 3 1124.93 49.98 3 1112.98 46.94 2 1279.81 110.25
rc207 3 1065.59 68.64 3 1013.99 77.89 2 1178.83 71.63
rc208 2 995.77 703.09 2 919.70 96.08 2 851.47 85.23

Avg. RC2 2.88 1186.76 196.42 2.63 1185.56 96.74 2.38 1177.37 76.68

CNV/CTD 396 57291.04 89.16 367.00 56954.74 84.51 350 55494.00 76.82

Table B.4: Results of TS-DST for the secondary objective of minimizing traveled dis-
tance on the VRPTWDST benchmark sets generated with the Cluster
mechanism. The best solution found in 10 runs is reported in columns
#Rts. and TD and the average run-time in column CPU.
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Γ = 0.9 Γ = 0.7 Γ = 0.5

#Rts. WT #Rts. WT #Rts. WT

c101 10 9601.59 10 9060.92 10 8236.12
c102 10 9598.74 10 9058.99 10 8138.03
c103 10 9598.74 10 9038.91 10 8214.57
c104 10 9590.14 10 8950.39 10 8176.59
c105 10 9601.59 10 9065.68 10 7756.24
c106 10 9601.59 10 8969.81 10 8084.53
c107 10 9590.59 10 8958.20 10 7666.05
c108 10 9590.59 10 8902.20 10 8022.50
c109 10 9589.58 10 9037.92 10 8352.61

Avg. C1 10.00 9595.91 10.00 9004.78 10.00 8071.92

c201 3 9276.15 3 8636.69 3 7561.71
c202 3 9276.15 3 8596.14 3 7922.81
c203 3 9273.39 3 8642.27 3 8080.94
c204 3 9271.96 3 8607.33 3 7803.34
c205 3 9273.39 3 8631.19 3 7949.20
c206 3 9273.39 3 8643.18 3 7949.20
c207 3 9272.20 3 8640.02 3 7976.25
c208 3 9273.22 3 8640.02 3 7959.85

Avg. C2 3.00 9273.73 3.00 8629.61 3.00 7900.41

r101 18 2568.15 18 2441.12 17 2305.48
r102 17 2402.74 16 2283.75 15 2163.07
r103 13 2210.44 13 2092.74 12 1955.88
r104 9 1998.05 9 1892.25 9 1794.57
r105 14 2324.84 13 2289.76 13 2088.02
r106 12 2210.46 11 2159.62 11 2029.29
r107 10 2051.81 10 1970.96 9 1888.46
r108 9 1931.38 9 1825.53 8 1709.74
r109 11 2163.20 11 2072.37 10 2033.48
r110 10 2104.74 10 1994.76 9 2004.34
r111 10 2057.23 10 1952.69 10 1858.33
r112 9 1961.24 9 1844.41 9 1747.88

Avg. R1 11.83 2165.36 11.58 2068.33 11.00 1964.88

r201 4 2209.33 3 2332.45 3 2153.04
r202 3 2136.04 3 1999.81 3 1838.19
r203 3 1893.06 2 1889.65 2 1728.45
r204 2 1761.94 2 1626.54 2 1451.76
r205 3 1944.37 3 1860.83 3 1727.22
r206 3 1859.76 2 1887.47 2 1755.93
r207 2 1827.68 2 1669.02 2 1499.55
r208 2 1671.25 2 1552.69 2 1427.23
r209 3 1864.71 3 1758.33 2 1743.37
r210 3 1903.16 2 1949.65 2 1750.80
r211 2 1834.42 2 1675.48 2 1488.69

Avg. R2 2.73 1900.52 2.36 1836.54 2.27 1687.66

rc101 14 2626.78 14 2454.57 13 2395.99
rc102 12 2438.45 12 2297.30 11 2199.59
rc103 10 2286.91 10 2148.68 10 2031.80
rc104 10 2097.76 9 2052.89 9 1925.60
rc105 13 2573.91 13 2331.55 12 2210.13
rc106 11 2404.84 11 2228.17 11 2054.26
rc107 10 2289.35 10 2123.89 10 1990.41
rc108 10 2098.65 10 1971.69 9 1922.01

Avg. RC1 11.25 2352.08 11.13 2201.09 10.63 2091.22

rc201 4 2366.18 4 2257.28 3 2309.29
rc202 3 2255.63 3 2100.00 3 1911.47
rc203 3 1998.35 3 1880.04 2 1854.65
rc204 3 1754.03 2 1780.47 2 1580.25
rc205 4 2242.27 3 2347.04 3 2210.01
rc206 3 2083.03 3 1976.68 3 1859.66
rc207 3 2018.35 3 1897.50 3 1769.38
rc208 3 1790.19 2 1825.26 2 1695.08

Avg. RC2 3.25 2063.50 2.88 2008.03 2.63 1898.72

CNV/CWT 402 242767.68 391 228774.75 377 209912.89

Table B.5: Results of TS-DST for the secondary objective of minimizing working time
on the VRPTWDST benchmark sets generated with the Random mech-
anism. The best solution found in 10 runs is reported in columns #Rts.
and WT.
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Γ = 0.9 Γ = 0.7 Γ = 0.5

#Rts. WT #Rts. WT #Rts. WT

c101 10 8907.58 10 7058.25 10 5197.93
c102 10 8907.58 10 7058.25 10 5208.91
c103 10 8903.72 10 7055.02 10 5206.32
c104 10 8891.10 10 7057.94 10 5156.38
c105 10 8907.58 10 7058.25 10 5197.87
c106 10 8907.58 10 7063.85 10 5178.84
c107 10 8907.58 10 7058.25 10 5160.64
c108 10 8907.58 10 7050.99 10 5167.89
c109 10 8904.90 10 7073.37 10 5195.93

Avg. C1 10.00 8905.02 10.00 7059.35 10.00 5185.63

c201 3 8642.80 3 6745.29 3 4840.41
c202 3 8642.80 3 6745.29 3 4846.43
c203 3 8648.75 3 6775.73 3 4902.70
c204 3 8639.34 3 6775.18 3 4846.29
c205 3 8640.04 3 6743.14 3 4846.24
c206 3 8640.04 3 6743.14 3 4846.24
c207 3 8639.86 3 6743.00 3 4845.94
c208 3 8639.89 3 6743.00 3 4846.14

Avg. C2 3.00 8641.69 3.00 6751.72 3.00 4852.55

r101 18 2507.18 17 2173.09 15 1872.55
r102 17 2328.55 15 1946.99 14 1691.21
r103 13 2170.86 13 1820.94 11 1518.61
r104 9 1860.58 8 1580.66 8 1336.94
r105 13 2313.84 12 1963.47 11 1618.78
r106 11 2226.27 10 1832.76 9 1618.11
r107 10 1946.09 9 1580.40 8 1457.94
r108 9 1790.99 8 1545.22 8 1301.87
r109 11 2024.13 9 1927.77 9 1459.54
r110 10 1963.10 9 1702.05 8 1481.74
r111 10 1905.66 9 1635.45 8 1415.83
r112 9 1839.47 8 1554.15 8 1251.82

Avg. R1 11.67 2073.06 10.58 1771.91 9.75 1502.08

r201 4 2081.98 3 2044.80 3 1679.00
r202 3 1999.38 3 1630.12 3 1227.19
r203 3 1793.00 2 1754.65 2 1509.86
r204 2 1666.34 2 1311.66 2 988.01
r205 3 1876.23 2 1783.94 2 1528.07
r206 2 1952.42 2 1642.90 2 1357.53
r207 2 1744.13 2 1448.83 2 1091.50
r208 2 1584.59 2 1285.16 2 1010.63
r209 3 1756.90 2 1697.24 2 1415.82
r210 3 1811.65 2 1704.30 2 1486.92
r211 2 1722.63 2 1341.89 2 973.97

Avg. R2 2.64 1817.20 2.18 1604.14 2.18 1297.14

rc101 14 2483.87 13 2058.38 11 1842.51
rc102 12 2343.06 11 1946.23 10 1621.36
rc103 10 2144.40 9 1933.09 9 1621.45
rc104 10 2000.70 9 1699.34 9 1340.66
rc105 13 2377.01 11 2108.21 10 1749.20
rc106 11 2222.87 10 1932.33 9 1690.98
rc107 10 2157.11 9 1928.62 9 1596.79
rc108 10 1961.10 9 1734.48 9 1429.49

Avg. RC1 11.25 2211.27 10.13 1917.59 9.50 1611.56

rc201 4 2259.05 3 2164.68 3 1754.83
rc202 3 2201.77 3 1804.64 3 1365.07
rc203 3 1916.23 2 1814.77 2 1576.25
rc204 2 1845.46 2 1582.20 2 1233.26
rc205 3 2506.93 3 2114.84 3 1789.13
rc206 3 2024.26 3 1709.44 2 1633.32
rc207 3 1910.54 3 1551.02 2 1579.12
rc208 2 1888.23 2 1593.99 2 1399.95

Avg. RC2 2.88 2069.06 2.63 1791.95 2.38 1541.37

CNV/CWT 396 228387.28 367 186132.64 350 143007.91

Table B.6: Results of TS-DST for the secondary objective of minimizing working time
on the VRPTWDST benchmark sets generated with the Cluster mecha-
nism. The best solution found in 10 runs is reported in columns #Rts.
and WT.
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Γ = 0.9 Γ = 0.7 Γ = 0.5

#Rts. WD #Rts. WD #Rts. WD

c101 10 9614.15 10 9374.99 10 8978.95
c102 10 9614.15 10 9336.51 10 8954.71
c103 10 9611.7 10 9217.54 10 8773.68
c104 10 9616.51 10 9227.40 10 8797.07
c105 10 9614.15 10 9221.15 10 8889.87
c106 10 9615.54 10 9254.54 10 8941.25
c107 10 9614.15 10 9185.80 10 8778.76
c108 10 9614.15 10 9156.79 10 8762.97
c109 10 9614.15 10 9185.80 10 8637.81

Avg. C1 10.00 9614.29 10.00 9240.06 10.00 8835.01

c201 3 9338.4 3 9275.77 3 9225.83
c202 3 9322.12 3 9068.98 3 8890.88
c203 3 9303.17 3 8996.78 3 8429.89
c204 3 9281.43 3 8806.86 3 8601.70
c205 3 9274.47 3 9076.04 3 8733.90
c206 3 9274.39 3 8969.61 3 8548.08
c207 3 9282.03 3 8818.74 3 8560.58
c208 3 9286.28 3 8707.02 3 8292.71

Avg. C2 3.00 9295.29 3.00 8964.98 3.00 8660.45

r101 18 3251.62 18 3175.15 17 3044.99
r102 17 2969.87 16 2776.43 15 2624.51
r103 13 2439.99 13 2372.05 12 2169.72
r104 9 2012.18 9 1931.37 9 1811.98
r105 14 2562.78 13 2455.10 13 2347.70
r106 12 2289.86 11 2224.32 11 2128.80
r107 10 2120.35 10 2029.46 9 1900.83
r108 9 1950.96 9 1850.05 8 1728.47
r109 11 2230.38 11 2162.44 10 2093.26
r110 10 2146.86 10 2077.43 9 2049.90
r111 10 2122.77 10 2059.46 10 1957.97
r112 9 1969.64 9 1877.13 9 1821.01

Avg. R1 11.83 2338.94 11.58 2249.20 11.00 2139.93

r201 4 2931.9 3 2562.27 3 2503.81
r202 3 2367.19 3 2290.68 3 2360.87
r203 3 2213.56 2 1916.98 2 1801.99
r204 2 1788.27 2 1716.57 2 1428.68
r205 3 2180.56 3 2141.78 3 2141.90
r206 3 2018.88 2 1875.89 2 1704.44
r207 2 1840.04 2 1696.58 2 1586.07
r208 2 1692.13 2 1575.73 2 1462.10
r209 3 2142.93 3 2082.39 2 1720.08
r210 3 2183.69 2 1952.20 2 1799.19
r211 2 1832.79 2 1684.43 2 1429.79

Avg. R2 2.73 2108.36 2.36 1954.14 2.27 1812.63

rc101 14 2829.41 14 2724.68 13 2622.91
rc102 12 2588.11 12 2491.46 11 2314.92
rc103 10 2298.97 10 2190.76 10 2087.58
rc104 10 2166.25 9 2036.69 9 1951.27
rc105 13 2761.81 13 2579.38 12 2480.55
rc106 11 2463.01 11 2326.02 11 2260.69
rc107 10 2321.2 10 2188.72 10 2048.04
rc108 10 2186.46 10 2056.96 9 1961.14

Avg. RC1 11.25 2451.90 11.13 2324.33 10.63 2215.89

rc201 4 3002.08 4 2986.84 3 2524.47
rc202 3 2525.12 3 2478.75 3 2446.29
rc203 3 2190.09 3 2158.33 2 1840.86
rc204 3 1960.57 2 1780.69 2 1681.47
rc205 4 2868.13 3 2549.83 3 2429.20
rc206 3 2379.7 3 2284.33 3 2241.47
rc207 3 2185.02 3 2126.88 3 2016.39
rc208 3 1988.18 2 1813.93 2 1653.68

Avg. RC2 3.25 2387.36 2.88 2272.45 2.63 2104.23

CNV/CWD 402 250864.25 391 240140.46 377 228977.63

Table B.7: Results of TS-DST for the secondary objective of minimizing working du-
ration on the VRPTWDST benchmark sets generated with the Random
mechanism. The best solution found in 10 runs is reported in columns
#Rts. and WD.
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Γ = 0.9 Γ = 0.7 Γ = 0.5

#Rts. WD #Rts. WD #Rts. WD

c101 10 9383.61 10 9090.23 10 8805.46
c102 10 9307.61 10 8320.03 10 7516.19
c103 10 9256.93 10 7910.39 10 7136.65
c104 10 9083.67 10 7446.69 10 6072.88
c105 10 9111.40 10 8597.01 10 8054.07
c106 10 9117.84 10 8431.47 10 7857.17
c107 10 8936.28 10 8281.23 10 7584.93
c108 10 8935.04 10 8009.95 10 7365.69
c109 10 8917.09 10 7647.07 10 6967.86

Avg. C1 10.00 9116.61 10.00 8192.67 10.00 7484.54

c201 3 9307.61 3 9174.63 3 8982.65
c202 3 9120.73 3 8924.81 3 8785.26
c203 3 9034.21 3 7659.56 3 7140.65
c204 3 8756.34 3 7543.72 3 6607.21
c205 3 9058.30 3 8935.06 3 8667.69
c206 3 8905.27 3 8450.89 3 8153.35
c207 3 8682.28 3 8215.25 3 7978.90
c208 3 8642.98 3 8387.71 3 8234.10

Avg. C2 3.00 8938.47 3.00 8411.45 3.00 8068.73

r101 18 3245.84 17 3059.23 15 2662.06
r102 17 2959.66 15 2609.74 14 2484.91
r103 13 2396.29 13 2261.80 11 2012.63
r104 9 1917.87 8 1653.72 8 1507.46
r105 13 2479.85 12 2209.93 11 2009.74
r106 11 2296.11 10 1913.32 9 1785.38
r107 10 2016.21 9 1738.48 8 1545.63
r108 9 1808.44 8 1571.81 8 1313.39
r109 11 2127.14 9 1960.86 9 1637.07
r110 10 2061.07 9 1774.02 8 1564.77
r111 10 2011.88 9 1749.85 8 1569.98
r112 9 1863.12 8 1586.90 8 1261.48

Avg. R1 11.67 2265.29 10.58 2007.47 9.75 1779.54

r201 4 2913.27 3 2513.66 3 2379.94
r202 3 2340.39 3 2289.59 3 2194.64
r203 3 2184.29 2 1787.18 2 1775.96
r204 2 1740.01 2 1508.59 2 1390.29
r205 3 2130.86 2 1780.65 2 1625.54
r206 2 1950.31 2 1714.42 2 1612.96
r207 2 1757.99 2 1531.44 2 1526.41
r208 2 1613.31 2 1353.69 2 1167.44
r209 3 2115.39 2 1738.28 2 1583.08
r210 3 2109.73 2 1775.35 2 1756.09
r211 2 1741.35 2 1403.69 2 1177.58

Avg. R2 2.64 2054.26 2.18 1763.32 2.18 1653.63

rc101 14 2770.49 13 2525.79 11 2202.74
rc102 12 2503.39 11 2236.56 10 1930.73
rc103 10 2219.61 9 2021.24 9 1819.21
rc104 10 2077.14 9 1764.47 9 1490.23
rc105 13 2643.50 11 2348.47 10 2115.62
rc106 11 2347.05 10 2064.39 9 1825.01
rc107 10 2223.00 9 2024.54 9 1761.23
rc108 10 2029.24 9 1774.82 9 1491.64

Avg. RC1 11.25 2351.68 10.13 2095.04 9.50 1829.55

rc201 4 2979.55 3 2526.42 3 2422.15
rc202 3 2491.51 3 2245.40 3 2131.40
rc203 3 2180.34 2 1824.37 2 1728.76
rc204 2 1854.06 2 1703.58 2 1535.52
rc205 3 2612.62 3 2464.71 3 2427.34
rc206 3 2323.68 3 2236.96 2 1688.14
rc207 3 2147.50 3 2025.24 2 1640.43
rc208 2 1903.33 2 1637.01 2 1439.47

Avg. RC2 2.88 2311.57 2.63 2082.96 2.38 1876.65

CNV/CWD 396 240643.58 367 217935.87 350 201104.76

Table B.8: Results of TS-DST for the secondary objective of minimizing working du-
ration on the VRPTWDST benchmark sets generated with the Cluster
mechanism. The best solution found in 10 runs is reported in columns
#Rts. and WD.
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Appendix C

Improved Problem Formulation for the Green

VRP

The mathematical model provided in Erdogan and Miller-Hooks (2012) contains
several errors:

1. In their Constraints (3), the depot is included to have less than or equal
one outgoing arc, although it is clearly allowed to have several.

2. In Constraints (7), they subtract service time instead of adding it.

3. Constraints (12) state that enough fuel is available at each customer to
reach a refueling station and then the depot. It should be enough fuel to
reach a recharging station or the depot.

4. They do not consider that the refueling visit identified by Constraint (12) is
not required to be part of the solution by Constraints (10) and (12). Thus,
with their model a customer is only required to have sufficient fuel to reach
a service station but is not forced to travel to this station.

We compile a corrected version of their Green VRP (G-VRP) model that we
use in Section 5.3.3 to solve the set of small G-VRP benchmark instances with
CPLEX. We use the original notation from Erdogan and Miller-Hooks (2012) to
formulate the corrected model:

v0 depot
I set of customers
I0 set of customers and the depot, I0 = I ∪ {v0}

F set of alternative fuel station (AFS) vertices
F � set of visits to AFS, which are dummy vertices created from F

F0 set of visits and the depot, F0 = F � ∪ {v0}
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V set of real vertices, V = {v0} ∪ I ∪ F

V � set of vertices, including dummy vertices, V � = {v0} ∪ I ∪ F �

Q vehicle fuel capacity
r vehicle fuel consumption rate
yj remaining fuel level when reaching vertex j

Tmax maximal duration of each route
tij travel time between vertices i and j

pi service time at vertex i

τj time of arrival at vertex j

xij binary decision variable to indicate if vehicle travels from vertex i to j

Using this notation, the G-VRP can be defined as follows:

min
�

i,j∈V �,i �=j

dijxij (C.1)

�

j∈V �,i �=j

xij = 1 ∀i ∈ I (C.2)

�

j∈V �,i �=j

xij ≤ 1 ∀i ∈ F � (C.3)

�

i∈V �,i �=j

xji −

�

i∈V �,i �=j

xij = 0 ∀j ∈ V � (C.4)

�

j∈V �\{v0}

x0j ≤ m (C.5)

�

j∈V �\{v0}

xj0 ≤ m (C.6)

0 ≤ τi + (tij + pi)xij − Tmax(1− xij) ≤ τj

∀i ∈ V �, ∀j ∈ V �
\ {v0} and i �= j (C.7)

τj + tj0 + pj ≤ Tmax ∀j ∈ V �
\{v0} (C.8)

0 ≤ τ0 ≤ Tmax (C.9)

0 ≤ yj ≤ yi − (r · dij)xij +Q(1− xij) ∀j ∈ I, ∀i ∈ V �, i �= j (C.10)

0 ≤ yi − (r · dij)xij ∀j ∈ F0, ∀i ∈ V �, i �= j (C.11)

yj = Q ∀j ∈ F0 (C.12)

xij ∈ {0, 1} ∀i, j ∈ V � (C.13)
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Appendix C Improved Problem Formulation for the Green VRP

Also note that the G-VRP benchmark instance files proposed in Erdogan and
Miller-Hooks (2012) contain coordinates for each vertex v given in longitude and
latitude. They have to be converted to distances between vertices v and w by
applying the haversine formula. The problem instances whose solutions are pre-
sented in their paper are obtained assuming an erroneous earth radius of 4182.449
miles, instead of the actual earth radius of 3963.191 miles.
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