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1. Introduction

Multiple spatial scales occur in most real life problems (e.g., groundwater flow, filtration processes).
A direct numerical simulation of these problems is difficult, since one has to deal with huge
problems if one resolves the finest scale. In order to overcome these difficulties the idea is to
approximate the solutions on a coarser grid with the help of homogenization or multiscale methods.
In the homogenization approach effective properties of the media -e.g., the effective permeability
of the medium- which contain small scale features are constructed in each coarse grid block. In a
multiscale method the fine scale features can come into play due to an appropriate choice of the
basis functions. These approaches reduce the computational costs.

Another difficulty arises since these multiscale problems are not purely deterministic. For ex-
ample, the properties of the soil are known on some snapshots only, where samples of the soil
have been pulled by drilling. Due to this incomplete knowledge stochasticity has to be taken
into account which increases the complexity of the considered problems. A standard approach to
deal with uncertainties is the Monte Carlo method [32]. Here one solves the problems for many
realizations of the stochastic quantity -e.g., the permeability. For each realization the stochastic
problem reduces to a deterministic one, where the techniques for deterministic equations can be
applied. Another popular approach is the polynomial chaos method [56]. In this approach one
tries to approximate a random function by orthogonal polynomials in a finite dimensional random
space.

Our objective is to compute the expectation of some functionals of the effective coefficient or
of the macroscopic solution. The goal is to combine approaches to construct effective properties
or multiscale basis functions with stochastic algorithms to increase the accuracy in comparison to
the Monte Carlo method by keeping the numerical costs fixed.

As a first step we focus on numerical homogenization. In this case we consider a stationary
diffusion equation with a stochastic coefficient. Here we deal with the uncertainties with the
Karhunen-Loève expansion in combination with a polynomial chaos expansion or a multi-level
Monte Carlo method. Secondly, we use mixed multiscale finite element methods to cope with the
hierarchy of spatial scales and a multi-level Monte Carlo method to handle the stochasticity. We
apply it for multi-phase flow and transport equations.

The work is organized as follows. After an overview of numerical methods for stochastic com-
putations (cf. Section 2) we state a stationary diffusion problem with a stochastic coefficient (cf.
Section 3) which we consider in Part I and Part II and introduce the homogenization theory (cf.
Section 4).

In Part I we combine numerical homogenization with the Karhunen-Loève expansion in com-
bination with a polynomial chaos expansion. With the help of the Karhunen-Loève expansion
in combination with a polynomial chaos expansion we reduce the stochastic problem to a high
dimensional deterministic one. By choosing the basis of the stochastic space appropriately we are
able to decouple the high dimensional problem to many d-dimensional deterministic problems,
where d denotes the space dimension. This idea was introduced in [33]. We combine this idea
with homogenization and construct an approximation of the expectation of the effective coefficient
with solutions of the decoupled deterministic equations. To construct the Karhunen-Loève expan-
sion of a random field it is essential to compute the eigenpairs of a given covariance operator. In
general this results in a large problem. In Section 5.3 we use hierarchical matrices (cf. [37]) to
approximate the eigenpairs similar to the approach in [44]. So we can reduce the computational
time. To solve the equations we use a cell-centered finite volume method, which we describe in
Section 7. We close the first Part and as well the other parts with numerical results.

In Part II we use a multi-level Monte Carlo approach (cf. [38]) to deal with the randomness of
the problem. We apply it for both to approximate the expectation of the effective coefficient (cf.
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Section 11) and of the homogenized coarse solution (cf. Section 13). To approximate the solution
we introduce a weighted multi-level Monte Carlo method in Section 12. The idea of the multi-level
Monte Carlo approach is to consider the quantity of interest -in our case the effective coefficient
or the coarse solution- on different levels. As levels we consider different coarse mesh and domain
sizes. The largest level (e.g., the finest mesh or the largest computational domain) is the level where
we want to approximate the expectation of the quantity of interest. It is the computationally most
expensive and accurate one. All levels are used to approximate the expectation of the quantity of
interest at the largest level. In multi-level Monte Carlo methods the choice of realizations per level
is essential. One straightforward condition is that the number of realizations must decrease if the
level increases to solve only a few problems if they are computationally expensive and compensate
the high stochastic error with many problem solves in less accurate cases (lower levels).
In Part III we apply the in Part II introduced multi-level Monte Carlo method to multi-phase

flow and transport problems (cf. Section 15.2). In this case we are interested in the expectation
of the water saturation. To solve the system of equations we use a mixed multiscale finite element
method (cf.[29]) for the pressure equation and a standard implicit scheme to solve for the saturation
(cf. Section 15.4). To deal with the uncertainties -here we consider a random permeability- we use
ensemble level mixed multiscale finite element approaches (cf. Section 16). Here a different level
denotes a different velocity approximation space in the mixed multiscale finite element method.
The higher the level the more accurate is the approximation space.

2. Numerical methods for stochastic computations

In the following section we present an overview of numerical methods for stochastic computations
based on the review of D. Xiu (cf. [54]). First we give a short introduction on recently available
techniques. Later on we have a closer look on the generalized polynomial chaos method.

2.1. Overview of the techniques

2.1.1. Monte Carlo method

One very popular method is the Monte Carlo method. Here one generates realizations of random
inputs on their prescribed probability distribution. For each realization the data is fixed and the
problem becomes deterministic. Statistical information, such as the mean of the solution, can be
extracted from a collected ensemble of solutions. The method is straightforward to apply, but
typically a large number of realization is needed.

2.1.2. Perturbation methods

In the most commonly used non-sampling method random fields are expanded via Taylor series
around their mean and truncated at a certain order. The resulting system of equations becomes
extremely complicated. Therefore typically at most a second-order expansion is employed. A
limitation of this method is that the magnitude of uncertainties cannot be large (less than 10%).

2.1.3. Moment equations

Here one attempts to compute the moments of the random solution directly. The moments are
the unknowns of the equations which are derived by averaging the original stochastic equations.
Problems can arise, because the deviation of a moment almost always requires the information of
higher moments.
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2.1.4. Operator based methods

This approach is based on manipulation of the stochastic operators in the considered equations.
However, like the perturbation method this method is restricted to small uncertainties.

2.1.5. Generalized polynomial chaos method

A generalization of the classical polynomial chaos method has become one of the most popular
methods. Here stochastic solutions are expressed as orthogonal polynomials of the random param-
eters. The convergence depends on the choice of type of orthogonal polynomials. In the classical
polynomial chaos Hermite polynomials are used. The coefficients of the generalized polynomial
chaos expansion are the unknown quantities.

2.2. Setting

In this section we present a more general setting in which we give an introduction to the generalized
polynomial chaos method. We consider the following partial differential equations

L(x, u;W ) = 0, in D,

B(x, u;W ) = 0, on ∂D,
(2.1)

where L is a differential operator and B is a boundary operator. On Dirichlet segments B is
the identity operator, for example. W = (W1, . . . ,WN ) is a N-variate random vector with inde-
pendent components in a properly defined probability space (Ω, F, P ). Let ρ̃i : Υi 7→ R+ be the
probability function of the random variable Wi(ω), ω ∈ Ω, whose range is Υi = Wi(Ω) ⊆ R for

i = 1, . . . , N . Then ρ̃(W ) =
∏N

i=1 ρ̃i(Wi) is the joint probability density of the random vector

W = (W1, . . . ,WN ) with the support Υ =
∏N

i=1 Υi ⊆ R. So we can replace the infinite space
Ω and seek a solution u(x,W ) : D̄ × Υ 7→ R. Thus the key issue is to parameterize the input
uncertainty by a set of finite number random variables.

2.3. Generalized polynomial chaos method

With a generalized polynomial chaos (gPC) expansion one tries to approximate a random function
by orthogonal polynomials in the finite dimensional random space Υ.

2.3.1. Univariate generalized polynomial chaos method

First we consider the one-dimensional case. We define the one-dimensional orthogonal polynomial
space w.r.t. the measure ρ̃i(Wi) dW in Υi via

W i,ri = {v : Υi 7→ R : v ∈ span{θm(Wi)}rim=0}, i = 1, . . . , N, (2.2)

where {θm(Wi)} denotes a set of orthogonal polynomials with
∫

Υi

ρ̃i(Wi)θm(Wi)θn(Wi) dWi = H2
mδmn

and

H2
m =

∫

Υi

ρ̃i(Wi)θ
2
m(Wi) dWi.

In the following we assume, that the polynomials are normalized by an appropriate scaling, i.e., we
have H2

m = 1 for all m. The scaling depends on the probability density function ρ̃i. For example

3



Distribution GPC Basis Polynomials Support

Continuous Gaussian Hermite (−∞,∞)
Gamma Laguerre [0,∞)
Beta Jacobi [a, b]
Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1, 2, . . .}
Binomial Krawtchouk {0, 1, . . . , N}
Negative Binomial Meixner {0, 1, 2, . . .}
Hypergeometric Hahn {0, 1, . . . , N}

Table 1: Correspondence between the probability distribution and the type of gPC polynomial
basis.

for Gaussian distributed random variable Wi we have Hermite polynomials as basis which is the
classical polynomial chaos method. In Table 1 we present different probability distributions with
their corresponding gPC basis polynomials.

2.3.2. Multivariate generalized polynomial chaos method

We define the corresponding N-variate orthogonal polynomial space of total degree at most R in
Υ as a tensor product of the one-dimensional spaces (2.2), i.e.,

WR
N =

⊗

|r|≤R

W i,ri ,

where the tensor product is over all possible combinations of the multi index r = (r1, . . . , rN ) ∈
NN

0 . We denote the N-variate orthonormal polynomials from WR
N with {Θm(W )}, they are con-

structed as products of a sequence of one-dimensional orthonormal polynomials in each direction,
i.e.,

Θm(W ) = θm1(W1) · · · θmN
(Wn), m1 + · · ·+mn ≤ R,

where mi denotes the order of the univariate polynomials of θ(Wi) in the Wi direction for 1 ≤ i ≤
N . The number of basis functions is

dim
(
WR

N

)
=

(
N +R

N

)
.

From the ortho-normality conditions of the univariate polynomials we get for the expected value

E[Θm(W )Θn(W )] =

∫
Θm(W )Θn(W )ρ̃(W ) dW = δmn, ∀1 ≤ m,n ≤ dim

(
WR

N

)
.
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2.3.3. Generalized polynomial chaos approximation

The Rth-order gPC approximation of the solution u(x,W ) of (2.1) can be obtained by projection
u onto the space WR

N , i.e., ∀x ∈ D

P
R
Nu := uRN(x,W ) =

M∑

m=1

ûm(x)Θm(W ), M =

(
N +R

N

)
, (2.3)

where PR
nu denotes the orthogonal projection operator from L2

ρ̃(Υ) onto WR
N and {ûm} are the

Fourier coefficients defined as

ûm :=

∫
u(x,W )Θm(W )ρ̃(W ) dW = E[u(x,W )Θm(W )], 1 ≤ m ≤M. (2.4)

From classical approximation arguments follows that PR
Nu is the best-approximation in PR

N , the
linear polynomial space of N-variate polynomials of degree up to R, i.e., for any x ∈ D and
u ∈ L2

ρ̃(Υ)

‖ u− P
R
Nu ‖L2

ρ̃(Υ)= inf
Θ̃∈PR

N

‖ u− Θ̃ ‖L2
ρ̃(Υ) .

The error of this finite-order projection we define as

ǫG(x) :=‖ u− P
R
Nu ‖L2

ρ̃
(Υ)=

(
E[
(
u(x,W )− uRN(x,W )

)2
]
) 1

2 ∀x ∈ D.

It will converge to zero as R → ∞.

2.3.4. Multi-element basis

The basis does not need to be globally smooth. In fact gPC basis of piecewise polynomials should
be used to avoid accuracy loss, if the stochastic solution exhibits discontinuities in random space.

2.3.5. Statistical information

We can obtain statistical information of the solution from the gPC approximation. For example,
the mean solution is

E[u] ≈ E[uRN ]

=

∫ ( M∑

m=1

ûmΘm(W )

)
ρ̃(W ) dW

= û1

∫
Θ1(W )ρ̃(W ) dW

︸ ︷︷ ︸
=1, (Θ1≡1,ρ̃ density)

+

M∑

m=2

ûm

∫
Θm(W )ρ̃(W ) dW

︸ ︷︷ ︸
=0

= û1

and for the covariance function we get

covu(x1, x2) = E[(u(x1,W )− E[u(x1,W )]) (u(x2,W )− E[u(x2,W )])]

≈ E[
(
uRN (x1,W )− E[uRN (x1,W )]

) (
uRN(x2,W )− E[uRN (x2,W )]

)
]

= E[uRN (x1,W )uRN(x2,W )]− E[u(x1,W )]E[u(x2,W )]

5



=

M∑

m,n=1

ûm(x1)ûn(x2)

∫
Θm(W )Θn(W )ρ̃(W ) dW

︸ ︷︷ ︸
=δmn

−û1(x1)û1(x2)

=

M∑

m=2

ûm(x1)ûm(x2).

Therefore the variance can be approximated as

Var(u(x)) = E[(u(x,W )− E[u(x,W )])]2 ≈
M∑

m=2

û2m(x).

2.4. Stochastic Galerkin method

The mean issue in using the gPC approximation (2.3) is to determine the coefficient ûm of the
expansion. Thereby the definition via Fourier coefficients (2.4) is not helpful, since it requires
the exact unknown solution u(x,W ). Consequently, we need an alternative way to estimate the
coefficients. A typical approach is to employ a stochastic Galerkin approach. Here we seek an
approximate gPC solution in the form of (2.3). The coefficients {ûm} are obtained by satisfying
the following weak form, for all v ∈ WR

N ,
∫
L(x, uRN ;W )v(W )ρ̃(W ) dW = 0, in D,

∫
B(x, uRN ;W )v(W )ρ̃(W ) dW = 0, on ∂D.

This is a set of coupled deterministic PDEs for {ûm}, and standard numerical techniques can be
applied. However one should keep in mind that if the equation (2.1) takes a complicated form,
the derivation of Galerkin equations for the coefficients can become highly nontrivial, sometimes
impossible.

2.5. Stochastic collocation methods

In collocation methods one seeks to satisfy the equations (2.1) at a discrete set of points in the
corresponding random space. These points are called “nodes”. The selection of nodes is the key
ingredient to all stochastic collocation methods. If the space is one-dimensional the optimal choice
is usually the Gauss quadrature. The challenge is in multi-dimensional spaces, especially for large
dimensions. A natural generalization is to choose tensor products of the one-dimensional nodes.
However, for larger dimensions this results in a huge number of nodes. Therefore one uses this
approach mostly at lower dimensions, e.g., N ≤ 5.
Another ansatz is based on Smolyaks algorithm. It uses only a subset of the full tensor product
grids -a sparse grid. This sparse grid consists of much smaller number of nodes. The subset is
chosen strategically in such a way that the approximation properties for N = 1 are preserved for
N > 1 as good as possible.
Two of the major approaches of high-order stochastic collocation methods are the Lagrange in-
terpolation approach and the pseudo-spectral gPC approach.

2.5.1. Lagrange interpolation approach

With ΞN = {W (i)}Qi=1 ∈ Υ we denote a set of prescribed nodes in the N dimensional random
space Υ and with Q the number of nodes. Let Li(W

(j)) = δij , 1 ≤ i, j ≤ Q be the Lagrange

6



polynomials and
ũk = u(x,W (k)), 1 ≤ k ≤ Q,

then we can write a Lagrange interpolation of the solution u(x,W ) of (2.1) as

Iu(x,W ) =

Q∑

k=1

ũk(x)Lk(W ), ∀x ∈ D.

By requiring the equation (2.1) to be satisfied at each of the nodes, we obtain: ∀k = 1, . . . , Q

L(x, ũk;W
(k)) =0, in D

B(x, ũk;W
(k)) =0, on ∂D

Thus we have to solve Q deterministic problems with realizations of the random vector. There
one can apply existing deterministic solvers in comparison with the stochastic Galerkin method,
where the resulting equations are generally coupled. Again we obtain statistics of the solution,
e.g.,

E[u(x,W )] ≈ E[Iu(x,W )] =

Q∑

k=1

ũk(x)

∫
Lk(W )ρ̃(W ) dW.

The integrals
∫
Lk(W )ρ̃(W ) dW correspond to weights in the discrete sum. In multi-dimensional

random spaces these weights are not readily available and the formula is of little use.

2.5.2. Pseudo-spectral gPC approach

In this approach we seek an approximate solution of (2.1) in the form of gPC expansion, i.e., for
any x ∈ D

I
R
Nu := vRN =

M∑

m=1

v̂m(x)Θm(W ), M =

(
N +R

N

)
(2.5)

where IRNu is another projector from L2
ρ̃ to WR

N and the expansion coefficients are determined as

v̂m(x) =

Q∑

j=1

u(x,W (j))Θm(W (j))α(j), m = 1, . . . ,M

where {W (j), α(j)}Qj=1 are a set of nodes and weights. These nodes and weights should be chosen
in such a way that

Q∑

j=1

f(W (j))α(j) ≈
∫
f(W )ρ̃(W ) dW = E[f(W )] (2.6)

for sufficiently smooth functions f(W ). Hence it follows

v̂m(x) =

Q∑

j=1

u(x,W (j))Θm(W (j))α(j) ≈ E[u(x,W )Θm(W )] = ûm(x)

and consequently IRNu of (2.5) becomes an approximation of the exact gPC expansion PR
Nu of

(2.3). The arising error

ǫQ := ‖IRNu− P
R
Nu‖L2

ρ̃(Υ) =
(
E[
(
I
R
N − P

R
N

)
u]2
) 1

2
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Galerkin Method Collocation Method

Pros the gPC method offers the most accu-
rate solutions involving least number of
equations in multi-dimensional random
spaces

requires only repetitive executions of ex-
isting deterministic solvers

applicability of stochastic collocation is
not affected by the complexity or nonlin-
earity of the original problem, as long as
one can develop a reliable deterministic
solver

Cons it is relatively more cumbersome to im-
plement

the aliasing error can be significant, es-
pecially for higher dimensional random
spaces

when the original problem takes highly
complex form, the explicit derivation of
the gPC equations may not be possible

all of the existing collocation methods
require solutions of (much) larger num-
bers of equations than that of gPC
Galerkin, especially for higher dimen-
sional random spaces

resulting system of equations is gener-
ally coupled

Table 2: Advantages and drawbacks of the stochastic collocation method and the stochastic
Galerkin method.

we call “aliasing error”. It is caused by the integration error from (2.6). This error can become a
significant source of errors in multi-dimensional random spaces.
The pseudo-spectral gPC method also requires only repetitive deterministic solutions with fixed
realizations of the random inputs. In comparison to the gPC Galerkin method the evaluation of
the approximate gPC expansion coefficients is completely independent. This approach has not got
the drawback of unavailable weights like the Lagrange interpolation approach mentioned before.

2.6. Comparison of Galerkin and collocation methods

The question arises which method one should choose. In Table 2 we list advantages and drawbacks
of the stochastic collocation method and the stochastic Galerkin method. When a single deter-
ministic computation is already time consuming the gPC Galerkin method should be preferred
(because of the smaller number of equations), if either

1. efficient solvers can be developed to decouple the gPC system effectively, or

2. the coupling of gPC Galerkin equations does not incur much additional computational costs.
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2.7. Random domain problem

Up to now we have assumed a deterministic domain D. However, in practice it can be a source
of uncertainty as in many applications the physical domain cannot be determined precisely. Here
we consider an uncertain domain and the problem can be formulated as

L(x, u) = 0, in D(W )

B(x, u) = 0, in ∂D(W ).
(2.7)

For simplicity we assume the only source of uncertainty to be in the definition of the boundary.
The idea is to use an one-to-one mapping to transform the random domain into a deterministic
one. Let

ζ = ζ(x,W ), x = x(ζ,W ), ∀W ∈ Υ,

be this mapping and its inverse, such that the random domain D(W ) is transformed into a
deterministic domain Ddet ⊆ Rd with the coordinates ζ = (ζ1, . . . , ζd). Then (2.7) is tranformed
into the following problem: for all W ∈ Υ, find u = u(ζ,W ); D̄det ×Υ 7→ R such that

L(ζ, u;W ) = 0, in Ddet

B(ζ, u;W ) = 0, in ∂Ddet,
(2.8)

where the operators L and B are transformed to L and B, respectively. The problem (2.8) is a
stochastic PDE in a fixed domain and we can apply all the techniques mentioned before.

3. Stationary diffusion equation with a random coefficient

We will consider a case with random coefficients that become de-correlated in distances much
larger than ǫ and give the estimate for the first order corrector.

Consider the following elliptic problem

−div (Kǫ(x, ω)∇uǫ) = f in D

uǫ = g on ∂D
(3.1)

where Kǫ(x, ω) is a homogeneous random field, f and g are non-random functions and ǫ is a small
parameter. We define, for all ω ∈ Ω,

kmin(ω) = min
x∈D̄

Kǫ(x, ω) and kmax(ω) = max
x∈D̄

Kǫ(x, ω).

Here we denote as in [18] with Ct(D̄) the space of Hölder continuous functions and with H−t(D)
the dual space of the Sobolev space Ht

0(D), for 0 < t ≤ 1. We assume Kǫ(x, ω) ∈ Lp(Ω, Ct(D̄)),
for some 0 < t < 1 and for all p ∈ (0,∞), g ∈ H1(D) and f ∈ Ht−1(D). Furthermore we assume
kmin > 0 almost surely and k−1

min, kmax ∈ Lp(Ω), for all p ∈ (0,∞). Then (3.1) has a unique
solution uǫ, which belongs to Lp(Ω, H1

0 (D)), for all p (cf.[18]). Note that the assumptions on the
coefficient are fulfilled for a log-normal or Gaussian random field.

9



4. Homogenization

4.1. Homogenization for a deterministic diffusion problem

LetD be a bounded domain in Rd with smooth boundary ∂D. Then a stationary diffusion problem
reads

−div
(
K
(x
ǫ

)
∇uǫ

)
= f(x), x ∈ D

uǫ = g(x), x ∈ ∂D
(4.1)

where the coercive and bounded coefficient K is Y-periodic in Rd with periodicity cell

Y = {y = (y1, . . . , yd) : 0 < yi < 1 for i = 1, . . . , d}

and ǫ a scale parameter. If ǫ decreases, the oscillation rate of the coefficient increases. Thus it is
natural to ask about the behavior of the solution uǫ if ǫ→ 0.

4.1.1. Formal asymptotic expansion

To derive the limit problem in a formal way, one starts from the ansatz (cf.[26, 42]) that the
unknown function uǫ has an asymptotic expansion with respect to ǫ of the form

uǫ(x) =

∞∑

i=0

ǫiui(x, y)

where the coefficient functions ui(x, y) are Y-periodic with respect to the variable y = x
ǫ . The

derivative obeys the law

div = divx +
1

ǫ
divy,

where the subscripts denote the partial derivatives with respect to x and y, respectively. If we
plug in the asymptotic expansion in equation (4.1) and use the law above, we get the formula

−ǫ−2 divy (K(y)∇yu0(x, y))

−ǫ−1[divy (K(y)[∇yu1(x, y) +∇xu0(x, y)]) + divx (K(y)∇yu0(x, y))]

−ǫ0 [divy (K(y)[∇yu2(x, y) +∇xu1(x, y)]) + divx (K(y)[∇yu1(x, y) +∇xu0(x, y)])]

−
∞∑

i=1

ǫi[ divy (K(y)[∇yui+2(x, y) +∇xui+1(x, y)])

+divx (K(y)[∇yui+1(x, y) +∇xui(x, y)])]

= f(x)

The next step consists of comparing the coefficients of the different ǫ powers on both sides of this
equation. The term with ǫ−2 gives

divy (K(y)∇yu0(x, y)) = 0 for (x, y) ∈ D × Y.

Because of the Y-periodicity the weak formulation with u0(x, y) as test function reads as follows

∫

Y

K(y)∇yu0(x, y) · ∇yu0(x, y) dy = 0.
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With the coercivity of the coefficient K(y) we get

‖∇yu0(x, y)‖2L2(Y ) ≤ 0

and therefore u0(x, y) = u0(x) is a function of x alone, independent of y. Using this and the term
with ǫ−1, we obtain

divy (K(y)∇yu1(x, y)) = −divy (K(y)∇xu0(x)) for y ∈ Y.

If we use the identity

∇xu0(x) =

d∑

j=1

ej
∂u0
∂xj

(x)

we can write

divy (K(y)∇yu1(x, y)) = −
d∑

j=1

∂K

∂yj
(y)

∂u0
∂xj

(x) for y ∈ Y.

Now, for j = 1, . . . , d, we introduce the cell problem with the Y-periodic solution χj

− divy (K(y)(ej +∇yχj(y))) = 0 in Y. (4.2)

Using these functions χj(y), we find

u1(x, y) =

d∑

j=1

∂u0
∂xj

(x)χj(y) + u1(x),

where u1(x) is some function independent of y, since

∇yu1(x, y) =

d∑

j=1

∂u0
∂xj

(x)∇yχj(y) (4.3)

and

divy (K(y)∇yu1(x, y)) = divy


K(y)

d∑

j=1

∂u0
∂xj

(x)∇yχj(y)




=

d∑

j=1

∂u0
∂xj

(x)divy (K(y)∇yχj(y))

eq.(4.2)
= −

d∑

j=1

∂u0
∂xj

(x)divy (K(y)ej)

= −
d∑

j=1

∂u0
∂xj

(x)
∂K

∂yj
(y).

We proceed with the ǫ0 term in the above equation. We get

−divy (K(y)[∇yu2(x, y) +∇xu1(x, y)]) − divx (K(y)[∇yu1(x, y) +∇xu0(x)]) = f(x)

11



for y ∈ Y , which is an equation for u2. After integration over Y we obtain

−
∫

Y

divy (K(y)[∇yu2(x, y) +∇xu1(x, y)]) dy

−
∫

Y

K(y)divx∇yu1(x, y) dy −
(∫

Y

K(y) dy

)
∆xu0(x) = f(x)

because the volume over Y is 1. The divergence theorem applied to the first integral leads to
∫

Y

div (K(y)[∇yu2(x, y) +∇xu1(x, y)]) dy

=

∫

∂Y

ν · (K(y)∇yu2(x, y) +K(y)∇xu1(x, y)) dΓ(y)

where ν is the normal vector on ∂Y . This boundary integral vanishes because of the Y-periodicity
of the functions K(y), u1(x, y) and u2(x, y). For the second term we use equation (4.3) and get

divx∇yu1(x, y) =

d∑

i,j=1

∂χj

∂yi
(y)

∂2u0(x)

∂xi∂xj
(x).

In this way it follows

−
d∑

i,j=1

∫

Y

K(y)
∂χj

∂yi
(y)

∂2u0
∂xi∂xj

(x) −
(∫

Y

K(y) dy

)
∆xu0(x) = f(x).

With the abbreviation

K∗
ij =

∫

Y

K(y)

(
δij +

∂χj

∂yi
(y)

)
dy

we get the final result

−
d∑

ij

K∗
ij

∂2u0
∂xi∂xj

(x) = f(x).

This elliptic differential equation is the homogenized limit of the equation (4.1). We simplify the
notation to

−
d∑

ij

K∗
ij∂iju

∗(x) = f(x).

4.2. Stochastic homogenization

Here we introduce stochastic homogenization in the classical stationary ergodic setting (cf. [16]
and the references there). First we recall the concept of a homogeneous field. With (Ω, F, P ) we
denote a probability space and let τx : Ω 7→ Ω, x ∈ Rd be a d-dimensional dynamical system,
which satisfies:

1. the group property: τ0 = Id and τxτx′ = τx+x′ , ∀x, x′ ∈ Rd;

2. it preserves the measure µ on Ω, i.e., for every x ∈ Rd, and every µ-measurable set A ∈ Ω,
we have τxA is measurable, µ(τxA) = µ(A);

3. for any measurable function h(ω) on Ω, the function h(τxω) defined on Ω × Rd is also
measurable.
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We assume all functions on Ω to be F measurable. With equality between random functions we
mean equality almost everywhere (a.e.) with respect to the measure P and often we omit the
notation a.e.. A function h(ω) is called invariant if for any fixed x ∈ Rd holds h(τxω) = h(ω). We
assume that τ is ergodic, that is, if for every measurable function f the following holds

[h(τxω) = h(ω) for all x and almost all ω] ⇒ h = constant a.s. (4.4)

A homogeneous or stationary random field is a function h ∈ L1
loc(Rd, L1(Ω)) which satisfies

h(x+ x′, ω) = h(x, τx′ω) ∀x′ ∈ Rd.

We consider the following elliptic problem

−div
(
K(

x

ǫ
, ω)∇uǫ

)
= f in D

uǫ = 0 on D
(4.5)

where K(xǫ , ω) is a homogeneous ergodic random field, f ∈ L2(D) is a non-random function and
ǫ is a small parameter (cf. (3.1)).
The behavior of the random field uǫ(x) as ǫ→ 0 has been investigated under various assumptions

on K(xǫ , ω) ([42, 50, 57]). If K(xǫ , ω) is strictly stationary and ergodic it was found that there
exists K∗ such that if u∗(x) is the solution of the deterministic Dirichlet problem

−div (K∗∇u∗) = f in D

u∗ = g on D
(4.6)

then ∫

D

E|uǫ − u∗|2dx→ 0 as ǫ→ 0 (4.7)

where E denotes the expectation. In this case the effective coefficient is defined as

[K∗]ij = E
[
(ei +∇χi(y, ·))TK(y, ·)ej

]
.

Hereby χi is the (unique up to a random constant) solution of

−div (K(y, ω) (∇χp(y, ω) + p)) = 0 in R
d

∇χp is stationary

E [∇χp] = 0

(4.8)

for p = ei. Furthermore is holds χi ∈ {χ ∈ L2
loc(Rd, L2(Ω)), ∇χ ∈ L2

uinf (Rd, L2(Ω))}. L2
unif

denotes the space of functions for which the L2-norm on a unit ball is bounded above independently
from the center of the ball (cf. [8]).
According to Birkhoff’s theorem the effective coefficient K∗ can be approximated by the spatial

average

[K∗]ij = lim
m→∞

1

(2m)d

∫

|y|≤m

(ei +∇χi(y, ·))TK(y, ·)ej dy.

This remains valid even if the coefficient is not ergodic then the effective coefficient is a random
matrix, in general.
Note that in general in (4.8) the stationarity is fulfilled for the gradient ∇χp of the solution

only, but not for the solution itself.
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RVE

x+

−div(Aǫ∇χi) = 0

η

Figure 1: Illustration of numerical homogenization.

4.3. Numerical homogenization

In this section we describe numerical homogenization procedures. For practical reasons we solve
(4.8) in a bounded domain Y x

ρ instead of the abstract spaceRd. For a.e. ω we consider a numerical
homogenization procedure as follows. Given a representative volume centered at a macroscopic
point x with size ρ, Y x

ρ = (x− ρ/2, x+ ρ/2)d, the local problem

div(K(x, y, ω)∇χi) = 0, in Y x
ρ , i = 1, ..., d, (4.9)

is solved subject to some boundary conditions. The boundary conditions are not very essential if
there is a scale separation. For simplicity we will consider Dirichlet boundary conditions for the
local problem

χi = yi on ∂Y
x
ρ .

Additionally it is possible to use Neumann or periodic boundary conditions (see [16, 43]). Then
the homogenized coefficients are computed as

K∗
ρ(x, ω)ei =

1

ρd

∫

Y x
ρ

K(x, y, ω)∇χi, (4.10)

where ei (i = 1, ..., d) is a unit vector in the direction i. This procedure is repeated at every
macroscopic point (see Figure 1 for illustration). It is known ([53]) that

ej ·K∗
ρ(x, ω)ei =

1

ρd

∫

Y x
ρ

∇χj ·K(x, y, ω)∇χi.

This is a practical way to obtain a converging approximation of the homogenized matrix, in the
sense that

lim
ρ→∞

K∗
ρ(x, ω) = K∗(x), (4.11)

almost surely, and for almost all x (cf. [16]).
Note that it is convenient to rescale (4.9), such that

div(K(x,
y

ǫ
, ω)∇χi) = 0, in Y x

η , i = 1, ..., d, (4.12)

with a rescaled domain Y x
η for η = ρǫ. For a fixed η > 0 the approximated coefficientK∗

η converges
for ǫ → 0 to K∗ a.s. and for η → ∞ analogously. We denote the local homogenization procedure
by Hη, i.e.,

K∗
η(x, ω) = Hη(K(x,

y

ǫ
, ω)),
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i.e., with the solution of (4.12) we have

ej ·K∗
η(x, ω)ei =

1

ηd

∫

Y x
η

∇χj ·K(x,
y

ǫ
, ω)∇χi. (4.13)

To give a precise convergence rate another condition besides the ergodicity is needed. If one
assumes that the matrixKǫ(x, ω) decorrelates at large distances, then one can obtain a convergence
rate. This is briefly mentioned in the next section.

4.4. Estimation of the rate of convergence

We briefly mention some results of the rate of convergence if the coefficient is an ergodic random
field and satisfies a uniform mixing condition. More details can be found in [16, 57].
First we introduce the uniform mixing condition. Be Aj a subset of Rd. With Φ(Aj) we denote
the σ-algebra generated by the random field K(xǫ , ·), x ∈ Aj . The family of σ-algebras (Φ(Aj),
Aj ⊂ Rd)j∈N satisfies the condition of uniformly mixing, if

|Eξϑ− EξEϑ| ≤ b(q)(Eξ2)1/2(Eϑ2)1/2 (4.14)

where the random quantity ξ is Φ(Aj) measurable and ϑ is Φ(Ai) measurable, and q = inf{|x −
y|, x ∈ Aj , y ∈ Ai} for i 6= j. Note we denote the Euclidian norm with | · |, as well as the absolute
value. In the following we assume in addition to ergodicity that this condition is fulfilled for the
coefficient K(x, ω) with

b(q) ≤ C

qk
(4.15)

for some k > 0. That means that the coefficient decorrelates at large distances. We note that
(4.14) and (4.15) imply strong mixing for the coefficients K. It has been shown in [16] that

E(
∣∣∣∣∣∣K∗

η −K∗∣∣∣∣∣∣2) ≤ C

(
ǫ

η

)β

(4.16)

for some β > 0 and C > 0 that depend on the correlation rate, but are independent of η and ǫ,
and where |||·||| denotes any norm of the d× d matrices.
To proof this one introduces a ’penalized’ or ’disturbed’ problem in Rd

− div (K(y, ω)∇χκ) + κχκ = divK(y, ω) (4.17)

with κ > 0. In comparison to (4.8) this problem has a unique solution χκ ∈ (H1
loc(Rd))d which is

stationary not only in its gradient. With χκ,ρ we denote the solution of (4.17) in Yρ = (0, ρ)d and
define

K∗
κ =

1

ρd

∫

Yρ

K(y, ω)(∇χκ + Id)

K∗
ρ,κ =

1

ρd

∫

Yρ

K(y, ω)(∇χκ,ρ + Id).

By choosing κ appropriate and with

E(
∣∣∣∣∣∣K∗

ρ −K∗∣∣∣∣∣∣2) ≤ E(|||K∗
κ −K∗|||2) + E(

∣∣∣∣∣∣K∗
κ −K∗

ρ,κ

∣∣∣∣∣∣2) + E(
∣∣∣∣∣∣K∗

ρ −K∗
ρ,κ

∣∣∣∣∣∣2)
one can show (cf. [16])

E(
∣∣∣∣∣∣K∗

ρ −K∗∣∣∣∣∣∣2) ≤ Cρ−β

and with ρ = η
ǫ we have (4.16).
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Part I.

Using Karhunen-Loève expansion for
numerical homogenization
In this part we consider the Karhunen-Loève expansion (cf. [46]) in a multiscale context. This
expansion is widely used to sample random fields with a given distribution (e.g., [4, 47]). We use it
in Part II and III to generate realizations of the stochastic coefficient. Here we use the Karhunen-
Loève expansion in combination with a polynomial chaos expansion ([55, 54]) as in the work of
Frauenfelder et al. ([33]) to reduce the stochastic problem to many deterministic problems. In
particular we reduce the stochastic cell problems to deterministic ones to approximate the mean
of the effective coefficient. In the next section we introduce two ways to approximate the mean
of the homogenized matrix: The first one is based on a standard Monte Carlo approach. In the
second one we reduce the high dimensional stochastic equations to many deterministic problems.
This reduction is done by a combination of a Karhunen-Loève expansion and a polynomial chaos
expansion. In the numerics we compare these two approaches. To compute the Karhunen-Loève
expansion of a given random field, the eigenpairs of the covariance operator are required. Because
they are in general analytically unknown one has to solve large systems of equations. To overcome
this problem we show how to approximate a general covariance matrix with hierarchical matrices
([37]). A similar approach can be found in ([44]). In Section 6 we introduce the problem types,
which we consider in the numerics (cf. Sec. 9). We solve the problems with a cell-centered finite
volume method introduced in Section 7. We conclude this part with numerical results (cf. Sec.
9).

5. Diffusion with a stochastic coefficient

We consider a microscale problem with a stochastic coefficient K(xǫ , ω):

−div
(
K(

x

ǫ
, ω)∇uǫ(x, ω)

)
= f(x), x ∈ D

uǫ = g, x ∈ ∂D

for P a.e. ω ∈ Ω, with a σ-finite probability space (Ω, F, P ). We assume that the known informa-
tion about the coefficient includes its expected value (y = x

ǫ )

EK(y) := E[K(y, ω)] =

∫

Ω

K(y, ω)dP (ω)

and its covariance function

cov(y, y′) := E[K(y, ω)K(y′, ω)]− E[K(y, ω)]E[K(y′, ω)].

In the deterministic case we achieve a macroscale problem with an effective tensor K∗ via ho-
mogenization. To determine K∗ we have to solve appropriate cell problems. In the following
sections we present two approaches to approximate the expectation of the tensor K∗. In the first
ansatz we compute the upscaled tensor via Monte Carlo simulation. In the second one we use the
Karhunen-Loève expansion of the random field K(y, ω).
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5.1. Monte Carlo simulation

For each sample KMC
n (y) = EK(y) + Xn we determine the upscaled tensor K∗MC

n . Here, Xn

denotes a random variable with the given covariance and with the expected value equal to zero.
As approximation of the homogenized coefficient we use K∗MC

N , the empirical expectation of
K∗MC

n .

5.1.1. Cell problem

In this case we consider a cell problem with KMC
n (y) = EK(y) +Xn as coefficient. It reads in ith

direction (i = 1, · · · , d):

−div
(
KMC

n (y)∇χMC,n
i (y)

)
= 0, y ∈ Y

χMC,n
i = y · ei, y ∈ ∂Y.

(5.1)

As in the deterministic case the upscaled tensor is determined by

(
K∗MC

n

)
ij
=

∫

Y

∇χMC,n
i (y) ·KMC

n (y)∇χMC,n
j (y) dy. (5.2)

As an upscaled tensor of the stochastic problem we use the arithmetic mean

K∗MC
N =

1

N

N∑

n=1

K∗MC
n ,

where N denotes the number of realizations.

5.2. Karhunen-Loève expansion

The second approach is based on the work of Frauenfelder, Schwab and Todor (cf. [33]). Here we
use the Karhunen-Loève expansion of the stochastic coefficient K(y, ω) in the unit cell Y

KKL(y, ω) = EK(y) +

∞∑

m=1

√
λmφm(y)Xm(ω), (5.3)

where the random variables Xm are centered at 0 and pairwise uncorrelated. In addition we
assume independence of the random variables and ‖Xm‖L∞(Ω,dP ) ≤ cx ∈ R, ∀m ∈ N. With
(λm, φm)1≤m≤∞ we denote the sequence of eigenpairs of the covariance operator (Kφ) (y) =∫
Y cov(y, y′)φ(y′) dy′, i.e., they fulfill

∫

Y×Y

cov(y, y′)φm(y′)v(y) dy′dy = λm

∫

Y

φm(y)v(y) dy ∀v ∈ L2(Y ).

5.2.1. Discrete Karhunen-Loève expansion

Let {Sh}h≥0 ⊆ L2(Y ) denote a family of finite element (FE) spaces with mesh width h. The
discrete eigenproblem reads:

∫

Y×Y

cov(y, y′)φhm(y′)v(y) dy′dy = λhm

∫

Y

φhm(y)v(y) dy ∀v ∈ Sh. (5.4)
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If Ñ is the dimension of the FE space and ϕn ∈ Sh, 1 ≤ n ≤ Ñ , a basis of Sh, (5.4) is equivalent
to ∫

Y×Y

cov(y, y′)φhm(y′)ϕn(y) dy
′dy = λhm

∫

Y

φhm(y)ϕn(y) dy, 1 ≤ n ≤ Ñ .

Additionally we write φhm as a sum of the basis functions

φhm(y) =

Ñ∑

j=1

Φj
mϕj(y).

Then the problem reads as follows:

Ñ∑

j=1

Φj
m

∫

Y×Y

cov(y, y′)ϕj(y
′)ϕn(y) dy

′dy = λhm

Ñ∑

j=1

Φj
m

∫

Y

ϕj(y)ϕn(y) dy 1 ≤ n ≤ Ñ ,

thus we require the solution of the dense matrix eigenproblem

KΦm = λhmMΦm, (5.5)

with

(K)ij =

∫

Y×Y

cov(y, y′)ϕj(y
′)ϕi(y) dy

′dy,

(M)ij =

∫

Y

ϕj(y)ϕi(y) dy.

These matrices are symmetric and positive semi-definite. If we choose an orthogonal basis ϕn ∈ Sh,
M is diagonal. Then we achieve by multiplying with M−1/2

M−1/2KΦm = λhmM1/2Φm,

and finally
K̃Φ̃m = λhmΦ̃m,

with K̃ = M−1/2KM−1/2 and Φ̃m = M1/2Φm.

5.2.2. Cell problem

By

KKL
M (y, ω) = EK(y) +

M∑

m=1

√
λmφm(y)Xm(ω) (5.6)

we denote the truncated Karhunen-Loève expansion of the stochastic coefficient. With K̃KL
M we

associate the (M, 1) polynomial chaos expansion

K̃KL
M (y, z) = K̃KL

M (y, z1, z2, . . . , zM ) = EK(y) +

M∑

m=1

√
λmφm(y)zm. (5.7)

We use this coefficient for the cell problem

−div
(
K̃KL

M (y, z)∇χKL
i (y, z)

)
= 0, y ∈ Y, z ∈ IM =

[
−1

2
,
1

2

]M

χKL
i = y · ei, y ∈ ∂Y.

(5.8)
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In the following we consider the equivalent formulation

−div
(
K̃KL

M (y, z)
(
∇χ̂KL

i (y, z) + ei
))

= 0, y ∈ Y, z ∈ IM =

[
−1

2
,
1

2

]M

χ̂KL
i = 0, y ∈ ∂Y

(5.9)

with χ̂KL
i = χKL

i − y · ei.
This is a high dimensional deterministic problem where we can calculate the upscaled coefficient.
However, instead of finite elements or volumes we approximate the solution w.r.t. z via polyno-
mials. Therefore we define, for r ∈ N0, the space of polynomials of degree at most r,

Pr := span{1, t, t2, . . . , tr} ⊆ L2(I)

and, for r = (r1, r2, . . . , rM ) ∈ NM
0 , a polynomial space by

Pr := Pr1 ⊗ Pr2 ⊗ · · · ⊗ PrM ⊆ L2(IM ).

This semi-discretization can be solved with each polynomial basis of Pr. Because in general it is
a coupled system of deterministic equations the computational costs are high. In order to reduce
these we make the following ansatz to decouple the problem: We denote for 1 ≤ m ≤ M and
rm ∈ N0, by

(
µrm
j , P rm

j

)
0≤j≤rm

the eigenpairs of the symmetric bilinear form

(u, v) →
∫ 1/2

−1/2

u(t)v(t)t dρm(t)

over Prm := span{1, t, t2, . . . , trm}. Let the eigenpairs be orthonormal w.r.t. to the weight ρm.
Thereby we denote by ρm the law of the random variable Xm,

ρm(B) := P (Xm ∈ B) for any Borel set B ⊆ I

and, for all M ≥ 1, we define a probability measure on IM by

ρ := ρ1 × ρ2 × · · · × ρM

The eigenproblem reads
∫

I

P (t)ψj(t)t dρm(t) = µ

∫

I

P (t)ψj(t) dρm(t) ∀0 ≤ j ≤ rm, (5.10)

with the solution (µ, P (t)) ∈ R× Prm where {ψj}0≤j≤rm is a basis of Prm .
If we write P as a sum of the polynomial basis, i.e.,

P (t) =

rm∑

i=0

piψi(t),

we obtain

rm∑

i=0

pi

∫

I

ψi(t)ψj(t)t dρm(t) = µ

rm∑

i=0

pi

∫

I

ψi(t)ψj(t) dρm(t) ∀0 ≤ j ≤ rm.

In matrix form the eigenproblem reads

Ap = µBp,
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with the vector of coefficients p := (p0, p1, . . . , prm)T , and the matrices

(A)ij :=

∫

I

ψi(t)ψj(t)t dρm(t) and (B)ij :=

∫

I

ψi(t)ψj(t) dρm(t).

On NM
0 we define the partial ordering

j ≤ r ⇔ jm ≤ rm, ∀1 ≤ m ≤M, (5.11)

∀ j = (j1, j2, . . . , jM ), r = (r1, r2, . . . , rM ) ∈ NM for notational convenience. We further set

P r
j (z) := P r1

j1
(z1)P

r2
j2
(z2) · · ·P rM

jM
(zM ) for j ≤ r.

P rm
jm

is a polynomial in zm, so P r
j is a polynomial in z = (z1, z2, . . . , zM ) and

Pr = span{P r
j | j ≤ r}.

Then (P r
j )j≤r is the basis of Pr we use to decouple the semi discrete problem.

We find (cf. [33], proposition 4.17 ):

Theorem 5.1
For a given r ∈ NM

0 , let χKL
i be the solution of (5.8) (polynomial approximation w.r.t. second

variable z). For every multi index j ≤ r we denote by χ̃KL
i,j the solution of the deterministic problem

−div
(
KKL,j

M (y)∇χ̃KL
i,j (y)

)
=fKL

i,j (y), y ∈ Y,

χ̃KL
i,j =0, y ∈ ∂Y.

(5.12)

with

KKL,j
M (y) := EK(y) +

M∑

m=1

√
λmφm(y)µrm

jm
(5.13)

K̄KL,j
M (y) := EK(y) +

M∑

m=1

√
λmφm(y)

∫
I P

rm
jm

(zm)zm dρm(zm)∫
I P

rm
jm

(zm) dρm(zm)
(5.14)

P̄ r
j :=

∫

IM

P r
j (z) dρ(z) =

M∏

m=1

∫

I

P rm
jm

(zm) dρm(zm) (5.15)

fKL
i,j (y) := P̄ r

j div
(
ei · K̄KL,j

M (y)
)

(5.16)

Then
χKL
i (y, z) =

∑

j≤r

χ̃KL
i,j (y)P r

j (z) + y · ei. (5.17)

So we have to solve a deterministic cell problem in each direction for a given r ∈ NM
0 for every

multi index j ≤ r.

Next we determine the expected value of the upscaled coefficient

(
K∗KL(z)

)
lk

=

∫

Y

∇χKL
l · K̃KL

M (y, z)∇χKL
k dy :
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E[
(
K∗KL(z)

)
lk
]

≈
∫

IM

elK
∗KL(z)ek dρ(z)

=

∫

IM

∫

Y

∇χKL
l · K̃KL

M (y, z)∇χKL
k dy dρ(z)

eq.(5.17)
=

∫

IM

∫

Y

∇


∑

j≤r

χ̃KL
l,j (y)P r

j (z) + y · el




·K̃KL
M (y, z)∇


∑

j′≤r

χ̃KL
k,j′ (y)P

r
j′ (z) + y · ek


 dy dρ(z)

=

∫

IM

∫

Y


∑

j≤r

∇χ̃KL
l,j (y)P r

j (z) + el




·K̃KL
M (y, z)


∑

j′≤r

∇χ̃KL
k,j′ (y)P

r
j′ (z) + ek


 dy dρ(z)

=

∫

IM

∫

Y




∑

j≤r

∇χ̃KL
l,j (y)P r

j (z)


 · K̃KL

M (y, z)


∑

j′≤r

∇χ̃KL
k,j′ (y)P

r
j′(z)




+el · K̃KL
M (y, z)ek +


∑

j≤r

∇χ̃KL
l,j (y)P r

j (z)


 · K̃KL

M (y, z)ek

+ el · K̃KL
M (y, z)


∑

j≤r

∇χ̃KL
k,j (y)P

r
j (z)




 dy dρ(z)

=: I1 + I2 + I3 + I4.

In the following we consider each integral separately. We start with the second one.

I2 =

∫

IM

∫

Y

el · K̃KL
M (y, z)ek dy dρ(z)

=

∫

Y

el ·
(
EK(y)

∫

IM

1 dρ(z) +

M∑

m=1

√
λmφm(y)

∫

IM

zm dρ(z)

)
ek dy

=

∫

Y

el ·



EK(y)

M∏

m=1

∫

I

1 dρm(zm)

︸ ︷︷ ︸
=1,

ρm density on I

+

M∑

m=1

√
λmφm(y)

∫

I

zm dρm(zm)

︸ ︷︷ ︸
=0,

Xmcentered at 0



ek dy

=

∫

Y

el ·EK(y)ek dy
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= δlk

∫

Y

EK(y) dy.

For the first term I1 we use the ortho-normality of P rm
jm

, i.e.,

∫

I

P rm
jm

(zm)P rm
im

(zm) dρm(zm) = δimjm (5.18)

and the equation of the corresponding eigenproblem with P rm
j′m

as test function, i.e.,

∫

I

P rm
jm

(zm)P rm
j′m

(zm)zm dρm(zm) = µrm
jm

∫

I

P rm
jm

(zm)P rm
j′m

(zm) dρm(zm) = µrm
jm
δjm′ j′

m′
. (5.19)

Furthermore we first consider

I5 :=

∫

IM

P r
j (z)K̃

KL
M (y, z)P r

j′(z) dρ(z)

=

∫

IM

M∏

m′=1

P
rm′

jm′
(zm′)

(
EK(y) +

M∑

m=1

√
λmφm(y)zm

)
M∏

m′=1

P
rm′

j′
m′

(zm′) dρ(z)

= EK(y)

M∏

m′=1

∫

I

P
rm′

jm′
(zm′)P

rm′

j′
m′

(zm′) dρm′(zm′)

︸ ︷︷ ︸
eq.(5.18)

= δjmj′m

+

M∑

m=1

√
λmφm(y)

∫

IM

zm

M∏

m′=1

P
rm′

jm′
(zm′)

rm′

j′
m′
P

rm′

j′
m′

(zm′) dρ(z)

= EK(y)δjj′ +

M∑

m=1

√
λmφm(y)

∫

I

P rm
jm

(zm)P rm
j′m

(zm)zm dρm(zm)

M∏

m′=1
m′ 6=m

∫

I

P
rm′

jm′
(zm′)P

rm′

j′
m′

(zm′) dρm′(zm′)

︸ ︷︷ ︸
eq.(5.18)

= δj
m′ j

′
m′

= EK(y)δjj′ +

M∑

m=1

√
λmφm(y)

∫

I

P rm
jm

(zm)P rm
j′m

(zm)zm dρm(zm)

︸ ︷︷ ︸
eq.(5.19)

= µrm
jm

δjmj′m

M∏

m′=1
m′ 6=m

δjm′ j′
m′

=

(
EK(y) +

M∑

m=1

√
λmφm(y)µrm

jm

)
δjj′

eq.(5.13)
= KKL,j

M (y)δjj′ .

Therefore for I1 we find

I1 =

∫

IM

∫

Y


∑

j≤r

∇χ̃KL
l,j (y)P r

j (z)


 · K̃KL

M (y, z)


∑

j′≤r

∇χ̃KL
k,j′ (y)P

r
j′(z)


 dy dρ(z)
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=

∫

Y


∑

j≤r

∫

IM

∇χ̃KL
l,j (y)P r

j (z) · K̃KL
M (y, z)


∑

j′≤r

∇χ̃KL
k,j′ (y)P

r
j′ (z)


 dρ(z)


 dy

=
∑

j≤r

∫

Y

∇χ̃KL
l,j (y)

∑

j′≤r

∫

IM

P r
j (z) · K̃KL

M (y, z)P r
j′(z) dρ(z)

︸ ︷︷ ︸
=I5

∇χ̃KL
k,j′ (y) dy

=
∑

j≤r

∫

Y

∇χ̃KL
l,j (y) ·KKL,j

M (y)∇χ̃KL
k,j (y) dy.

The last two integrals are nearly the same; only the indices differ. That is why we consider I3
only.

I3 =

∫

IM

∫

Y


∑

j≤r

∇χ̃KL
l,j (y)P r

j (z)


 · K̃KL

M (y, z)ek dy dρ(z)

=
∑

j≤r

∫

Y

∇χ̃KL
l,j (y) ·

∫

IM

P r
j (z)K̃

KL
M (y, z) dρ(z) ek dy

eq.(5.7)
=

∑

j≤r

∫

Y

∇χ̃KL
l,j (y) ·

∫

IM

P r
j (z)

(
EK(y) +

M∑

m=1

√
λmφm(y)zm

)
dρ(z) ek dy

eq.(5.15)
=

∑

j≤r

∫

Y

∇χ̃KL
l,j (y) · P̄ r

j

(
EK(y) +

M∑

m=1

√
λmφm(y)

∫
I
P rm
jm

(zm)zm dρm(zm)∫
I P

rm
jm

(zm) dρm(zm)

)
ek dy

eq.(5.14)
=

∑

j≤r

P̄ r
j

∫

Y

∇χ̃KL
l,j (y) · K̄KL,j

M (y) ek dy.

Therefore for the expected value of the upscaled coefficient we obtain

∫

IM

el ·K∗KL(z)ek dρ(z)

=
∑

j≤r

∫

Y

∇χ̃KL
l,j (y) ·KKL,j

M (y)∇χ̃KL
k,j (y) dy + δlk

∫

Y

EK(y) dy

+
∑

j≤r

P̄ r
j

∫

Y

∇χ̃KL
l,j (y) · K̄KL,j

M (y) ek dy +
∑

j≤r

P̄ r
j

∫

Y

∇χ̃KL
k,j (y) · K̄KL,j

M (y) el dy

=
∑

j≤r

∫

Y

∇χ̃KL
l,j (y) ·KKL,j

M (y)∇χ̃KL
k,j (y) dy + δlk

∫

Y

EK(y) dy

+
∑

j≤r

P̄ r
j

∫

Y

K̄KL,j
M (y)

(
∇χ̃KL

l,j (y) · ek +∇χ̃KL
k,j (y) · el

)
dy.

The first term

K̃KL
det :=

∑

j≤r

∫

Y

∇χ̃KL
l,j (y) ·KKL,j

M (y)∇χ̃KL
k,j (y) dy

is the sum of the upscaled coefficients of the deterministic problems.
With the notation

∫
Y EK(y) dy = ĒK we end with
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∫

IM

elK
∗KL(z)ek dρ(z) (5.20)

= K̃KL
det + δlk ĒK +

∑

j≤r

P̄ r
j

∫

Y

K̄KL,j
M (y)

(
∇χ̃KL

l,j (y) · ek +∇χ̃KL
k,j (y) · el

)
dy.

If we translate the solution χ̃KL
i,j (y) to nonzero boundary condition, i.e., if we consider

χ̂KL
i,j (y) := χ̃KL

i,j (y) + y · ei, (5.21)

we get
∫

IM

el ·K∗KL(z)ek dρ(z)

=

∫

IM

∫

Y

∇χl · K̃KL
M (y, z)∇χk dy dρ(z)

eq.(5.17)+(5.21)
=

∫

IM

∫

Y

∇


∑

j≤r

(
χ̂KL
l,j (y)− y · el

)
P r
j (z) + y · el




·K̃KL
M (y, z)∇


∑

j′≤r

(
χ̂KL
k,j′ (y)− y · ek

)
P r
j′(z) + y · ek


 dy dρ(z)

=

∫

IM

∫

Y


∑

j≤r

∇χ̂KL
l,j (y)P r

j (z)−
∑

j≤r

elP
r
j (z) + el




·K̃KL
M (y, z)


∑

j′≤r

∇χ̂KL
k,j′ (y)P

r
j′(z)−

∑

j′≤r

ekP
r
j′(z) + ek


 dy dρ(z)

=

∫

IM

∫

Y


∑

j≤r

∇χ̂KL
l,j (y)P r

j (z) · K̃KL
M (y, z)

∑

j′≤r

∇χ̂KL
k,j′ (y)P

r
j′(z)

−
∑

j≤r

∇χ̂KL
l,j (y)P r

j (z) · K̃KL
M (y, z)

∑

j′≤r

ekP
r
j′(z)

+
∑

j≤r

∇χ̂KL
l,j (y)P r

j (z) · K̃KL
M (y, z)ek

−
∑

j≤r

elP
r
j (z) · K̃KL

M (y, z)
∑

j′≤r

∇χ̂KL
k,j′ (y)P

r
j′ (z)

+
∑

j≤r

elP
r
j (z) · K̃KL

M (y, z)
∑

j′≤r

ekP
r
j′(z)

−
∑

j≤r

elP
r
j (z) · K̃KL

M (y, z)ek

+el · K̃KL
M (y, z)

∑

j′≤r

∇χ̂KL
k,j′ (y)P

r
j′(z)

−el · K̃KL
M (y, z)

∑

j′≤r

ekP
r
j′(z) + el · K̃KL

M (y, z)ek


 dy dρ(z).
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With our previous notation (Îi means dependency on χ̂l,j instead of χ̃l,j) we get

∫

IM

el ·K∗KL(z)ek dρ(z)

= Î1 −
∫

IM

∫

Y

∑

j≤r

∇χ̂KL
l,j (y)P r

j (z) · K̃KL
M (y, z)

∑

j′≤r

ekP
r
j′(z) dy dρ(z)

+Î3 −
∫

IM

∫

Y

∑

j≤r

elP
r
j (z) · K̃KL

M (y, z)
∑

j′≤r

∇χ̂KL
k,j′ (y)P

r
j′ (z) dy dρ(z)

+

∫

IM

∫

Y

∑

j≤r

elP
r
j (z) · K̃KL

M (y, z)
∑

j′≤r

ekP
r
j′(z) dy dρ(z)

−
∫

IM

∫

Y

∑

j≤r

elP
r
j (z) · K̃KL

M (y, z)ek dy dρ(z) + Î4

−
∫

IM

∫

Y

el · K̃KL
M (y, z)

∑

j′≤r

ekP
r
j′(z) dy dρ(z) + Î2

= Î1 + Î2 + Î3 + Î4

−
∑

j≤r

∑

j′≤r

∫

Y

∇χ̂KL
l,j (y) ·

(∫

IM

P r
j (z)K̃

KL
M (y, z)P r

j′(z) dρ(z)

)

︸ ︷︷ ︸
=I5

ek dy

−
∑

j≤r

∑

j′≤r

∫

Y

el ·
(∫

IM

P r
j (z)K̃

KL
M (y, z)P r

j′(z) dρ(z)

)

︸ ︷︷ ︸
=I5

∇χ̂KL
k,j (y) dy

+
∑

j≤r

∑

j′≤r

∫

Y

el ·
(∫

IM

P r
j (z)K̃

KL
M (y, z)P r

j′(z) dρ(z)

)

︸ ︷︷ ︸
=I5

ek dy

−2
∑

j≤r

∫

Y

el ·
(∫

IM

P r
j (z)K̃

KL
M (y, z)P r

j′(z) dρ(z)

)

︸ ︷︷ ︸
=P̄ r

j
K̄KL,j

M
(y)

ek dy

= Î1 + Î2 + Î3 + Î4

−
∑

j≤r

∫

Y

∇χ̂KL
l,j (y) ·KKL,j

M (y)ek dy −
∑

j≤r

∫

Y

el ·KKL,j
M (y)∇χ̂KL

k,j (y) dy

+
∑

j≤r

∫

Y

el ·KKL,j
M (y)ek dy − 2

∑

j≤r

∫

Y

el · P̄ r
j K̄

KL,j
M (y)ek dy

If we insert the previous calculated integrals and use the notation

K̂KL
det :=

∑

j≤r

∫

Y

∇χ̂KL
l,j (y) ·KKL,j

M (y)∇χ̂KL
k,j (y) dy,

we obtain
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∫

IM

el ·K∗KL(z)ek dρ(z)

= K̂KL
det + δlk ĒK +

∑

j≤r

P̄ r
j

∫

Y

K̄KL,j
M (y)

(
∇χ̂KL

l,j (y) · ek +∇χ̂KL
k,j (y) · el

)
dy

−
∑

j≤r

∫

Y

∇χ̂KL
l,j (y) ·KKL,j

M (y)ek dy −
∑

j≤r

∫

Y

el ·KKL,j
M (y)∇χ̂KL

k,j (y) dy

+
∑

j≤r

∫

Y

el ·KKL,j
M (y)ek dy − 2

∑

j≤r

∫

Y

el · P̄ r
j K̄

KL,j
M (y)ek dy

= K̂KL
det + δlk ĒK

+
∑

j≤r

[ ∫

Y

∇χ̂KL
l,j (y) ·

(
P̄ r
j K̄

KL,j
M (y)−KKL,j

M (y)
)
ek dy

+

∫

Y

el ·
(
P̄ r
j K̄

KL,j
M (y)−KKL,j

M (y)
)
∇χ̂KL

k,j (y) dy

+

∫

Y

el ·
(
KKL,j

M (y)− 2P̄ r
j K̄

KL,j
M (y)

)
ek dy

]
.

Alternatively, a different ansatz is to consider for a given r ∈ NM
0 for every multi index j ≤ r the

deterministic cell problem

−div
(
KKL,j

M (y)
(
∇χ̃′KL

i,j (y) + ei

))
=0, y ∈ Y,

χ̃
′KL
i,j =0, y ∈ ∂Y

(5.22)

For each multi index we calculate the upscaled coefficient

(
K∗j

KL

)
lk

=

∫

Y

∇
(
χ̃

′KL
l,j + y · el

)
KKL,j

M (y)∇
(
χ̃

′KL
k,j + y · ek

)
dy

and for the stochastic equation we use the arithmetic mean

K∗
KL =

∑
j≤rK

∗j
KL

|r| (5.23)

where |r| is the number of multi indices.

5.3. Hierarchical matrix approximation of the covariance matrix

For the discrete Karhunen-Loève expansion we have to solve the eigenproblem (5.5), i.e.,

KΦm = λhmMΦm,

with

(K)ij =

∫

Y×Y

cov(y, y′)ϕj(y
′)ϕi(y) dy

′dy,

(M)ij =

∫

Y

ϕj(y)ϕi(y) dy.
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The covariance matrix K is usually dense and requires O(n2) units of memory for storage. In
this section we show how to approximate a general covariance matrix with hierarchical matrices
([37]) to reduce these costs. A similar approach can be found in ([44]). In this H-matrix technique
we divide the matrix into sub blocks and determine low-rank approximations if an appropriate
admissibility condition is fulfilled. We compute the low-rank approximations in linear complexity
with the ACA algorithm [37].

5.3.1. Cluster theory

For the definition of hierarchical matrices we have to define trees.

Definition 5.2 (Tree[37])
Let N 6= ∅ be a finite set, let b ∈ N and S : N 7→ P (N ) be a mapping from N into subsets of N .
For t ∈ N , a sequence t0, . . . , tm ∈ N with t0 = r, tm = t and ti+1 ∈ S(ti) for all i ∈ {0, . . .m−1}
is called sequence of ancestors of t.
T := (N , r, S) is called a tree if there is exactly one sequence of ancestors for each t ∈ N .
If T is a tree, the elements of N are called nodes, the element r is called the root node or root and
denoted by root(T ), and the set sons(T, t) := S(t) is called set of sons.

A tree has the following properties

Lemma 5.3
Let T = (N , r, S) be a tree.

1. Let t ∈ N , and let t0, . . . tm ∈ N be its sequence of ancestors. For all i, j ∈ {0, . . .m} with
i 6= j, we have ti 6= tj.

2. There is no t ∈ N with r ∈ sons(t).

3. For each t ∈ N \ {r}, there is a unique t+ ∈ N with t ∈ sons(t+). This node is called father
of t and denoted by father(t) := t+.

Proof: [37]
A vertex t ∈ N is a leaf if sons(t) = ∅ holds and we define the set of leaves

L(T ) := {t ∈ N : sons(t) = ∅}. (5.24)

Definition 5.4 (Tree level,[37])
Let T = (N , r, S) be a tree. Let t ∈ N , and let t0, . . . tm ∈ N be its sequence of ancestors. The
number m ∈ N0 is called the level of t and denoted by level(T, t). We define

T (l) := {t ∈ N : level(T, t) = l} for all l ∈ N0.

If and only if t = root(T ), we have level(t) = 0. The maximal level is called the depth of T and
denoted by

depth(T ) := max{level(t) : t ∈ N}.
Definition 5.5 (Labeled tree, [37])
Let N , L 6= ∅ be finite sets, let r ∈ N , let S : N 7→ P (N ) and m : N 7→ L be mappings.
T := (N , r, S,m,L) is a labeled tree if (N , r, S) is a tree. L is called the label set of T and for
each t ∈ N , m(t) ∈ L is called the label of t and denoted by t̂.

The following definition supplies us with candidates that can be checked for admissibility. If they
are not admissible, we split them and repeat the procedure.

28



Definition 5.6 (Cluster tree, [37])
A labeled tree T := (N , r, S,m, I) is a cluster tree for an index set I if the following conditions
hold:

1. ̂root(T ) = I.

2. Let t ∈ N . If sons(T, t) 6= ∅, we have

t̂ =
⋃

s∈sons(t)

ŝ.

3. Let t ∈ N . For all s1, s2 ∈ sons(T, t) with s1 6= s2, we have ŝ1 ∩ ŝ2 = ∅.

The vertices t ∈ N of a cluster tree are called clusters. A cluster tree for I is usually denoted by
TI. We will use the abbreviation t ∈ TI for t ∈ N .

Properties of a cluster tree are stated in the next lemma.

Lemma 5.7
Let TI be a cluster tree.

1. For all t, s ∈ TI with t 6= s and level(t) = level(s), we have t̂ ∩ ŝ = ∅.

2. For all t, s ∈ TI with level(t) ≤ level(s) and t̂ ∩ ŝ 6= ∅, we have s ∈ sons∗(t).

3. For all i ∈ I, there is a leaf t ∈ L(TI) with i ∈ t̂.

4. I =
⋃

t∈L(TI)
t̂.

Thereby sons∗(t) denotes the set of descendants of a node t ∈ N

sons∗(t) :=

{
{t} if sons(t) = ∅,
{t} ∪⋃s∈sons(t) sons

∗(s) otherwise.
(5.25)

Proof: [37].
The next step is to assign suitable methods to construct such a cluster tree. In the following we
describe two different algorithms.

5.3.2. Geometric bisection

For each index i ∈ I we choose, for simplicity, one point xi of the support of the corresponding
basis function. We start with the full index set I, which is the root of the cluster tree by definition.
To split the index set we define

al := min{(xi)l : i ∈ t̂} and bl := max{(xi)l : i ∈ t̂}

for all l ∈ {1, . . . d}. Therefore all points are contained in the axis-parallel box [a1, b1]×· · ·×[ad, bd].
Now we split the box perpendicular to the direction of maximal extent.
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5.3.3. Regular subdivision

As before, we construct the cluster tree by defining how a cluster t is split. We assume that a box
Bt = [a1, b1] × · · · × [ad, bd] with xi ∈ Bt for all i ∈ t̂ and a splitting direction jt ∈ {1, . . . , d} are
given. We construct new boxes Bt0 and Bt1 by setting cj := (aj + bj)/2 and

Bt0 = [a1, b1]× · · · × [aj , cj ]× · · · × [ad, bd] and Bt1 = [a1, b1]× · · · × [cj , bj]× · · · × [ad, bd].

The index sets t̂0 and t̂1 are defined by

t̂0 := {i ∈ t̂ : xi ∈ Bt0} and t̂1 := t̂\t̂0.

We set jt0 = jt1 = (jt mod d) + 1. Since xi ∈ Bt0 for i ∈ t̂0 and xi ∈ Bt1 for i ∈ t̂1 hold by
construction, we can repeat the procedure for t0 and t1.

5.3.4. Block cluster tree

With two cluster trees we can derive a hierarchy of block partitions of I ×J corresponding to the
matrix, the block cluster tree.

Definition 5.8 (Block cluster tree, [37])
Let TI and TJ be cluster trees for index sets I and J . A finite tree T is a block cluster tree for
TI and TJ if the following conditions hold:

1. root(T ) = (root(TI), root(TJ )).

2. Each node b ∈ T has the form b = (t, s) for clusters t ∈ TI and s ∈ TJ .

3. For each node b = (t, s) ∈ T with sons(b) 6= ∅, we have

sons(b) =





{(t, s′) : s′ ∈ sons(s)} if sons(t) = ∅ and

sons(s) 6= ∅,
{(t′, s) : t′ ∈ sons(t)} if sons(t) 6= ∅ and

sons(s) = ∅,
{(t′, s′) : t′ ∈ sons(t), s′ ∈ sons(s)} otherwise.

(5.26)

4. The label of a node b = (t, s) ∈ T is given by b̂ = t̂× ŝ ⊆ I × J .

The vertices of T are called block clusters. A block cluster tree for TI and TJ is usually denoted
by TI×J .

Obviously ̂root(TI×J ) = I × J holds.

Definition 5.9 (Level-consistency, [37])
A block cluster tree TI×J for TI and TJ will be called level-consistent, if

level(b) = level(t) = level(s)

holds for all b = (t, s) ∈ TI×J .

It follows that only the last case in (5.26) can hold, if a block cluster tree is level-consistent.
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5.3.5. Admissibility

We generalize the supports of the basis functions ϕi to clusters t ∈ TI

Qt :=
⋃

i∈t̂

supp(ϕi),

i.e., Qt is the minimal subset of Rd that contains the supports of all basis functions ϕi with i ∈ t̂.
One possible admissibility condition is

min{diam(Qt), diam(Qs)} ≤ η dist(Qt, Qs), (5.27)

where diam(·) is the Euclidian diameter of a set and dist(·) is the Euclidian distance of two sets.

Definition 5.10 (Admissible block cluster tree, [37])
A block cluster tree TI×J for I and J is called admissible with respect to an admissibility condition
if

(t, s) is admissible or sons(t) = ∅ or sons(s) = ∅
holds for all leaves (t, s) ∈ L(TI×J ).

We construct an admissible block cluster tree recursively. For two given clusters t ∈ TI and
s ∈ TJ we check the admissibility. If they are admissible, we are done. Otherwise we repeat the
procedure with all combinations of sons of t and s. However, in general it can be too expensive
to check an admissibility condition like (5.27). A traditional way is to determine the Chebyshev
circles for the domain, but we consider a simpler approach: Axis-parallel boxes.
For each cluster t ∈ TI we define an axis-parallel bounding box Q̃t ⊆ Rdsuch that Qt ⊂ Q̃t holds.
Now we consider the admissibility condition

min{diam(Q̃t), diam(Q̃s)} ≤ η dist(Q̃t, Q̃s).

If this condition is fulfilled, also (5.27) holds.
The above admissibility condition is the standard admissibility condition. Another important
admissibility condition is the so-called weak admissibility condition:

Q̃t 6= Q̃s (5.28)

with t ∈ TI and s ∈ TJ .

5.3.6. Low-rank approximation

The admissibility condition indicates blocks of the matrix K which allow rank k approximation
and blocks where we have to calculate the exact entries of the matrix

K′
ij =

{
R̃ij if i ∈ t̂, j ∈ ŝ and (b, s) ∈ TI×J admissible

Kij otherwise,
(5.29)

with the low-rank approximation R̃ = ABT ∈ Rt̂×ŝ and A ∈ Rt̂×k and B ∈ Rŝ×k, k ∈ N. Note
that any matrix of rank k can be represented in this form. One possibility to compute the low-
rank approximation is the improved adaptive cross approximation algorithm, which one can find
in Algorithm 1.
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Algorithm 1 Improved adaptive cross approximation ACA+

We denote the already used pivot elements by Prows and Pcols. Denote the matrix to be approx-
imated by R ∈ Rt̂×ŝ. A reference column of R is defined by

(aref )i := Ri,jref , i ∈ {1, . . . , t̂}, jref arbitrary.

The reference row is determined by

iref := argmini∈{1,...,t̂}|(aref )i|,
(bref )j := Riref ,j, j ∈ {1, . . . , ŝ}.

1. Determine the index i∗ of the largest entry in modulus in aref ,
i∗ := argmaxi∈{1,...,t̂}\Prows

|arefi |.

2. Determine the index j∗ of the largest entry in modulus in bref ,
j∗ := argmaxj∈{1,...,ŝ}\Pcols

|brefj |.

3. If |arefi∗ | > |brefj∗ |
a) compute the vector bk ∈ Rŝ with entries bkj := Ri∗,j ;

b) redefine the column pivot index j∗ = argmaxj∈{1,...,ŝ}\Pcols
|bkj |;

c) compute the vector ak ∈ Rt̂ with entries aki := Ri,j∗/Ri∗,j∗ ;

4. otherwise

a) compute the vector ak ∈ Rt̂ with entries aki := Ri,j∗ ;

b) redefine the row pivot index i∗ = argmaxi∈{1,...,t̂}\Prows
|aki |;

c) compute the vector bk ∈ Rŝ with entries bkj := Ri∗,j/Ri∗,j∗ .

5. Check the stopping criterion: If ‖ak‖2‖bk‖2/‖a1‖2‖b1‖2 ≤ ǫACA or k = kmax stop.

6. Prows = Prows ∪ {i∗} and Pcols = Pcols ∪ {j∗}.

7. Update reference column

a) if j∗ 6= jref : aref := aref − ak · bkjref
b) otherwise we have to choose a new reference column corresponding to a reference

index jref that has not been a pivot index and that is consistent to iref : jref ={
j ∈ {1, . . . ŝ} \ Pcols, if i∗ = iref

argminj∈{1,...ŝ}\Pcols
|brefj |, else

(aref )i := Ri,jref , i ∈ {1, . . . , t̂}

8. Update reference row

a) if i∗ 6= iref : bref := bref − akiref · bk

b) otherwise we have to choose a new reference row corresponding to a reference in-
dex iref that has not been a pivot index and that is consistent to jref : iref =

argmini∈{1,...t̂}\Prows
|arefi |, (bref )j := Riref ,j , j ∈ {1, . . . , ŝ}

9. Update the matrix: R = R− ak(bk)T .

10. Update the rank: k = k + 1 and go back to 1.
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6. Statement of the problems

In this section we describe the implemented problems: the microscale problem, the cell problem,
the homogenization problem, the reconstruction problem and the problem with a stochastic co-
efficient. For the stochastic problem we consider two different distributions, the first one is a
Gaussian distribution, therefore the covariance looks like

covG(y, y
′) = σ2exp

(−|y − y′|2
τ2

)
.

Here, σ denotes the standard deviation and τ is proportional to the correlation length. The
second one is a lognormal distribution. A lognormal distribution is a distribution of a random
variable whose logarithm is normally or Gaussian distributed. If X is a random variable with a
normal distribution, then Y = exp(X) has a lognormal distribution. If σ, µ and covG(y, y

′) denote
the standard deviation, the expected value and the covariance of a Gaussian distributed random
variable, respectively, then it holds for the lognormal distribution

expected value: µlog = exp(µ+ σ2

2 )
variance: Σ2 = µ2

log

(
exp(σ2)− 1

)

covariance: covlog(y, y
′) = µ2

log (exp(covG(y, y
′))− 1) .

In our example we consider the domain D := (0, 1)
2
with squared obstacles placed at the center

of each unit cell Y as illustrated in Figure 2.

(0,0)

(1,1)

dy

dx

Figure 2: Unit cell Y with an obstacle of volume dx · dy.

Microscale problem If we choose a periodic piecewise constant diffusion coefficient, which fulfills
in the periodicity cell

K =

{
α, inside the obstacle

1, else

and Dirichlet boundary conditions, the microscale problem reads

−div (K∇uǫ) = f, x ∈ D

uǫ = g, x ∈ ∂D.
(6.1)

Additionally we consider a problem with mixed boundary conditions

−div (K∇uǫ) = f, x ∈ D

(K∇uǫ) · n = ϕ, x ∈ ∂DN

uǫ = g, x ∈ ∂DD.

(6.2)

The direct numerical simulation is difficult due to the fine scale heterogeneity. Therefore we
consider the homogenized problem, additionally.
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Cell problem In each direction we solve the cell problem:

−div (K∇χi) = 0, y ∈ Y

χi = yi, y ∈ ∂Y

Homogenization problem With the cell solution χi we determine the upscaled coefficient K∗ =
(K∗

ij)1≤i,j≤2 as follows

K∗
ij =

∫

Y

∇χi ·K∇χj dy.

So we obtain the following problem:

−div (K∗∇u∗) = f, x ∈ D

u∗ = g, x ∈ ∂D.

K∗ is a symmetric and positive definite matrix, which we calculate numerically.

Reconstruction To compare the coarse solution u∗ and the fine scale solution uǫ, we reconstruct
a fine scale approximation as follows (cf. [41])

−div (K∇û) = 0 in V

with the boundary condition
û = uedge on ∂V.

On ∂D ∩ ∂V we use the global boundary conditions. Here V denotes a dual coarse grid block
where the nodes of V are four neighboring cell centers of the original coarse grid and uedge the
solution of the four one-dimensional problems:

∂

∂x1

(
K
∂uedge

∂x1

)
= 0, in Γ2, u

edge(x) = u∗(x) in Γ1 ∩ Γ2

∂

∂x2

(
K
∂uedge

∂x2

)
= 0, in Γ1, u

edge(x) = u∗(x) in Γ1 ∩ Γ2

with Γ1 ∪ Γ2 = ∂V and Γi is the part of the boundary which is orthogonal to the unit vector ei
in the ith direction.
We solve these one-dimensional problems analytically.

Stochastic problem For the stochastic equation

−div
(
K(

x

ǫ
, ω)∇uǫ(x, ω)

)
= f(x) x ∈ D

uǫ = g at ∂D

P -a.e. ω ∈ Ω we assume, in the case of normal distributed random variables, that the expected
value of the stochastic coefficient is equal to the deterministic coefficient, i.e.,

EK =

{
α, inside the obstacle

1, else
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and as mentioned above we consider the Gaussian covariance function

covG(y, y
′) = σ2exp

(−|y − y′|2
τ2

)

and therefore for the lognormal distribution we get (µ = 0)

covlog(y, y
′) = exp(σ2)

(
exp

(
σ2exp

(−|y − y′|2
τ2

))
− 1

)
.

In the example with the lognormal distribution we consider two different cases. In one case we
assume as in the Gaussian distribution, that the expected value is equal to the deterministic

coefficient and in the other we use the exact mean µlog = exp(σ
2

2 ).
Numerically we solve the deterministic equation as follows. First we assemble the matrix and the
right-hand side with the cell-centered finite volume method, which we describe in the following
section and thereafter we solve the resulting system of equations with the cg method. We describe
the generation of the random variables which is needed in the Monte Carlo simulation in Section
8.

7. Cell-centered finite volume method

In this section we derive the cell-centered finite volume method either with a scalar coefficient K
or if K is a symmetric and positive definite matrix.

7.1. Scalar coefficient

To derive the cell-centered finite volume method, if the coefficient is scalar, we integrate equation
(6.1) over a cell Ci. We allow Dirichlet and Neumann boundary conditions.
Applying the divergence theorem to the left-hand side, we get:

−
∫

Ci

div (K∇u) dx

=

∫

∂Ci

− (K∇u) · ν ds

=
∑

j∈Ni

∫

γij

− (K∇u) · νij ds+
∑

j∈Bi

∫

γij

− (K∇u) · νij ds

≈
∑

j∈Ni

−vijK (x̄ij)
u (x̄j)− u (x̄i)

hj
+
∑

j∈BD
i

−vijK (x̄ij)
g (x̄ij)− u (x̄i)

hij

+
∑

j∈BN
i

−vijϕ (x̄ij)

and to the right-hand side: ∫

Ci

f dx ≈ Vif (x̄i) .

We obtain the system

AU = F
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with Ui = u (x̄i),

Fi = Vif (x̄i) +
∑

j∈BD
i

vij
hij

K (x̄ij) g (x̄ij) +
∑

j∈BN
i

vijϕ (x̄ij) ,

Aii =
∑

j∈Ni

vij
hj
K (x̄ij) +

∑

j∈BD
i

vij
hij

K (x̄ij)

and

Aij =

{
− vij

hj
K (x̄ij) , if j ∈ Ni

0, else
.

If the right-hand side has the following form

f = div(K(x) ek)

we approximate
∫
Ci
f dx as follows

∫

Ci

f dx ≈
∑

j∈Ni

K(x̄ij)
(x̄j)k − (x̄i)k

hj
+
∑

j∈Bi

K(x̄i)
(x̄ij)k − (x̄i)k

hij

The following notations are used:
Ci cell of the grid with number i
γij face common to Ci and Cj

Vi volume of cell i
vij volume γij (or boundary intersection)
x̄i cell center of cell i
x̄ij center of the intersection
ν outer normal
νij normal pointing from Ci to Cj

hj =
∑2

k=1 |(x̄i)k − (x̄j)k|
hij =

∑2
k=1 |(x̄i)k − (x̄ij)k|

Ni set of the global numbers of the neighbors of cell i
BD

i index set of boundary intersections with Dirichlet condition
BN

i index set of boundary intersections with Neumann condition
Bi = BD

i +BN
i

K(x̄ij) = 2
1

K(x̄i)
+ 1

K(x̄j)
, harmonic mean.

7.2. Matrix coefficient

Let

K =

(
K1 K2

K2 K1

)

be constant and positive definite. For the sake of simplicity we consider in this section only
Dirichlet boundary conditions. Then we derive analogously, if Ci has less than two Dirichlet
boundary edges:

Aii =
∑

j∈Ni

vij
hj
K1 +

∑

j∈BD
i

vij
hij

K1.
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If Ci is either the bottom left or the upper right corner cell with two Dirichlet boundary segments,
we get:

Aii =
∑

j∈Ni

vij
hj
K1 +

∑

j∈BD
i

vij
hij

K1 −
K2

2

and if it is either the bottom right or the upper left corner cell with two Dirichlet boundary
segments, we get:

Aii =
∑

j∈Ni

vij
hj
K1 +

∑

j∈BD
i

vij
hij

K1 +
K2

2
.

Let nx be the number of cells in x-direction and xuli , x
ur
i , xbli and xbri the upper left node, the

upper right node, the bottom left node and the bottom right node of cell Ci, respectively, then
we get, if Ci is an interior cell:

Aii+1 = −vii+1

hi+1
K1,

Aii−1 = −vii−1

hi−1
K1,

Aii+nx
= −vii+nx

hi+nx

K1,

Aii−nx
= −vii−nx

hi−nx

K1,

Aii+nx+1 = −K2

2
,

Aii+nx−1 =
K2

2
,

Aii−nx+1 =
K2

2
,

Aii−nx−1 = −K2

2
,

Fi = Vif (x̄i) .

If Ci is located at the left boundary with Dirichlet boundary conditions, we get:

Aii+1 = −vii+1

hi+1
K1,

Aii+nx
= −vii+nx

hi+nx

K1 −
K2

2
,

Aii−nx
= −vii−nx

hi−nx

K1 +
K2

2
,

Aii+nx+1 = −K2

2
,

Aii−nx+1 =
K2

2
,

Fi = Vif (x̄i) +
vii−1

hii−1
K1g(x̄ii−1)− 2K2g(x

ul
i ) + 2K2g(x

bl
i ).
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If Ci is located at the right boundary with Dirichlet boundary conditions, we get:

Aii−1 = −vii−1

hi−1
K1,

Aii+nx
= −vii+nx

hi+nx

K1 +
K2

2
,

Aii−nx
= −vii−nx

hi−nx

K1 −
K2

2
,

Aii+nx−1 =
K2

2
,

Aii−nx−1 = −K2

2
,

Fi = Vif (x̄i) +
vii+1

hii+1
K1g(x̄ii+1) + 2K2g(x

ur
i )− 2K2g(x

br
i ).

If Ci is located at the upper boundary with Dirichlet boundary conditions, we get:

Aii+1 = −vii+1

hi+1
K1 +

K2

2
,

Aii−1 = −vii−1

hi−1
K1 −

K2

2
,

Aii−nx
= −vii−nx

hi−nx

K1,

Aii−nx+1 =
K2

2
,

Aii−nx−1 = −K2

2
,

Fi = Vif (x̄i) +
vii+nx

hii+nx

K1g(x̄ii+nx
) + 2K2g(x

ur
i )− 2K2g(x

ul
i ).

If Ci is located at the lower boundary with Dirichlet boundary conditions, we get:

Aii+1 = −vii+1

hi+1
K1 −

K2

2
,

Aii−1 = −vii−1

hi−1
K1 +

K2

2
,

Aii+nx
= −vii+nx

hi+nx

K1

Aii+nx+1 = −K2

2
,

Aii+nx−1 =
K2

2
,

Fi = Vif (x̄i) +
vii−nx

hii−nx

K1g(x̄ii−nx
)− 2K2g(x

br
i ) + 2K2g(x

bl
i ).

If Ci is the bottom left corner and both edges have Dirichlet boundary conditions, then we get:

Aii+1 = −vii+1

hi+1
K1 −

K2

2
,
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Aii+nx
= −vii+nx

hi+nx

K1 −
K2

2
,

Aii+nx+1 = −K2

2
,

Fi = Vif (x̄i) +
vii−1

hii−1
K1g(x̄ii−1) +

vii−nx

hii−nx

K1g(x̄ii−nx
)

+2K2g(x
bl
i )− 2K2g(x

br
i )− 2K2g(x

ul
i ).

If Ci is the bottom right corner and both edges have Dirichlet boundary conditions, then we
get:

Aii−1 = −vii−1

hi−1
K1 +

K2

2
,

Aii+nx
= −vii+nx

hi+nx

K1 +
K2

2
,

Aii+nx−1 =
K2

2
,

Fi = Vif (x̄i) +
vii+1

hii+1
K1g(x̄ii+1) +

vii−nx

hii−nx

K1g(x̄ii−nx
)

+2K2g(x
ur
i )− 2K2g(x

br
i ) + 2K2g(x

bl
i ).

If Ci is the upper right corner and both edges have Dirichlet boundary conditions, then we get:

Aii−1 = −vii−1

hi−1
K1 −

K2

2
,

Aii−nx
= −vii−nx

hi−nx

K1 −
K2

2
,

Aii−nx−1 = −K2

2
,

Fi = Vif (x̄i) +
vii+1

hii+1
K1g(x̄ii+1) +

vii+nx

hii+nx

K1g(x̄ii+nx
)

+2K2g(x
ur
i )− 2K2g(x

br
i )− 2K2g(x

ul
i ).

If Ci is the upper left corner and both edges have Dirichlet boundary conditions, then we get:

Aii+1 = −vii+1

hi+1
K1 +

K2

2
,

Aii−nx
= −vii−nx

hi−nx

K1 +
K2

2
,

Aii−nx+1 =
K2

2
,

Fi = Vif (x̄i) +
vii−1

hii−1
K1g(x̄ii−1) +

vii+nx

hii+nx

K1g(x̄ii+nx
)

−2K2g(x
ul
i ) + 2K2g(x

bl
i ) + 2K2g(x

ur
i ).

39



8. Generation of random variables

In the following section we describe how we generate the random variables. The main issue is
the generation of the normal distribution. As mentioned before, if X is a random variable with
a Gaussian distribution, then Y = exp(X) has a lognormal distribution. We start with two
in (0, 1] uniformly distributed independent random variables U1 and U2. With the Box-Muller
transformation we determine an independent random variable with standard normal distribution
via

Z1 =
√
−2 log(U1) cos (2πU2) .

Assume we have a vector of standard normal random variables Z = (Z1, Z2, . . . , ZN). Let Q denote
the matrix of eigenvectors of the covariance matrix CK of the given covariance function covG(y, y

′)
and Λ the corresponding diagonal matrix of eigenvalues, then X = AZ with A = Q

√
Λ, is a vector

of Gaussian distributed random variables with expected value 0 and covariance covG(y, y
′).

9. Numerical results

In this section we present numerical results for the methods described in Section 6. We start
with deterministic examples with only one scale where the exact solution is known to verify
the implemented finite volume method (cf. Sec. 9.1). In Section 9.2 we compute the effective
coefficients for deterministic problems and we compare the reconstructed coarse solution with
the fine-scale reference solution. In Section 9.3 we compare the two introduced approaches to
approximate the effective tensor in a stochastic setting. We consider different distributions and in
Section 9.4 we discuss the use of hierarchical matrices to compute the Karhunen-Loève expansion.
All implementations are based on the software package DUNE ([12, 11, 24, 14, 25]), the eigen-

value problem we solve with ARPACK ([1]) and for the hierarchical matrix computation we use
HLib ([15]).

9.1. Finite volume test

To verify the finite volume method we have implemented two test problems, for which the ana-
lytical solutions are known. The first one is symmetric in both directions. We consider

−∆u = 2π2 sin (πx1) sin (πx2) in D = (0, 1)2

u = 0 at ∂D

with the analytical solution

u = sin (πx1) sin (πx2) .

The second problem is asymmetric, it reads

−∆u = 10π2 sin (πx1) sin (3πx2) in D = (0, 1)2

u = 0 at ∂D.

In the case of the asymmetric test the analytical solution is

u = sin (πx1) sin (3πx2) .

In Figure 3 we illustrate the convergence behavior in the L2-norm for both test problems when
we refine the grid. In a logarithmic scale we see linear convergence.
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Figure 3: L2-error between approximation and exact solution (compare Section 9.1).

9.2. Deterministic equations

Here we consider the deterministic microscale problems (6.1) and (6.2). In the case of both,
Neumann and Dirichlet boundary conditions, we use ∂DD = {x = (x1, x2) ∈ ∂D with x1 =
0 or x1 = 1} and ∂DN = ∂D \ ∂DD.
In our simulations we use

f(x) = x1,

g(x) = x1

ϕ(x) = 0

K(y) =

{
α, if y ∈ O = [0.45, 0.55]2

1, if y ∈ [0, 1]2\O,

i.e., the obstacle O in the unit cell is a square of length 0.1. For α we use either α = 0.1 or α = 20.
For both αs we calculated the upscaled coefficient on a grid with 1048576 cells. For α = 0.1 we

have

K∗
0.1 =

(
0.982998 −9.24133e− 10

−9.24133e− 10 0.982998

)

and for α = 20

K∗
20 =

(
1.01996 6.92546e− 10

6.92546e− 10 1.01996

)
.

For these coefficients we calculate the coarse solution with 16 × 16 coarse blocks and after
reconstruction we compute the L2-error and the maximum error of the approximation and the
fine scale solution (262144 cell) as illustrated in Figure 4.

9.3. Stochastic equations

In this section we approximate the expected value of the upscaled coefficient via Monte Carlo
simulation and Karhunen-Loève expansion as described above and compare them with the effective
coefficient of a deterministic problem with EK as microscale coefficient with the same grid size
(1024 cells). In the case of the Monte Carlo simulation we use two different stopping criteria.
The first one calculates the error of the diagonal entries of two sequenced means, e.g., (MC1):
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Figure 4: Error between the reconstructed coarse solution and a fine scale reference solution
(262144 cells, 16× 16 coarse blocks) with the boundary conditions described above.

|kN − kN−1| ≤ ǫtol := 0.001 with kN =
(
(K∗MC

N )11, (K
∗MC
N )22

)T
. The other one is (MC2):

N >
Var(K∗MC

N )

ǫ2
tol

. Thereby, N denotes the number of realizations. However, there is no guaranty

that the first condition (MC1) leads to a reasonable coefficient. Two sequenced values could be only
close to each other, but far away from the mean value. In the other case the number of solved
problems depends on the truncation order of the Karhunen-Loève expansion. The truncation
condition is λ ≤ ǫtol. Here, with KL1 we denote the upscaled coefficient via the arithmetic mean
(cf. (5.23)). KL2 denotes the coefficient from equation (5.20). α is either set to 1 or to 0.1. The
deterministic coefficient and the expected value are equal to 2 in an additional example. In the
following we consider Gaussian distributed random variables and after that random variables with
a lognormal distribution.

9.3.1. Gaussian distributed random variables

In the case of Gaussian distributed random variables we consider the following type of covariance
function

covG(y, y‘) = σ2exp

(−|y − y‘|2
τ2

)
. (9.1)

To achieve the Karhunen-Loève expansion we have to determine the eigenpairs of the covariance
operator first. The 20 largest eigenvalues of the covariance operator are shown in Figure 5. The
eigenvalues decay very fast to zero, in the Gaussian case we have an exponential decay order.
This decay of the eigenvalues is a necessary condition for the convergence of the Karhunen-Loève
expansion.
In our calculations we use different τs (τ = 1 or τ = 0.5) and different standard deviations σs

as well (σ = 0.0001, 0.001, 0.01, 0.1).
In Table 28 we present the calculated upscaled coefficient for the above mentioned stopping

criteria for EK(y) = 1 and τ = 1. In the Tables 29, 30 and 31 we consider the cases EK(y) = 2
and τ = 1, EK(y) = 1 and τ = 0.5 and EK(y) = 2 and τ = 0.5, respectively.
In Table 27 we present the results for α = 0.1 and τ = 1. If α = 0.1 the corresponding effective

coefficient with EK =

{
0.1, inside the obstacle

1, else
and 1024 grid cells is

K∗ =

(
0.973177 1.03076 · 10−16

1.03076 · 10−16 0.973177

)
.
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Figure 5: Decay rate of the 20 largest eigenvalues of Gaussian distributions with σ = 1.

We observe that all stopping criteria give a good approximation of the mean. As expected the
accuracy decreases and the number of local problems to solve in each direction increases while we
increase the standard deviation. The heuristic stopping criterion ends with the smallest number
of such problems but also the error is the largest. The number of cell problems we have to solve
for different standard deviations σ in the Monte Carlo (MC2) ansatz and in the Karhunen-Loève
one, is illustrated in Figure 6(a). In the case of τ = 1 the number of the needed cell problems for
the Karhunen-Loève approach is less than for the Monte Carlo ansatz. So it may be reasonable
to choose the Karhunen-Loève approach, but of course one has to take the costs of generating
random numbers and of solving the large eigenproblem into account in ones decision. For σ = 0.4
the Monte Carlo ansatz is already more appropriate than the Karhunen-Loève ansatz, if τ = 0.5.

In Figure 6(b) we show the behavior of the mean entry of the upscaled coefficient, if we use
Monte Carlo simulation. One can see, that the value is close to the mean value before we have
solved as many cell problems as the stopping criterion (MC2) demands. Therefore it makes sense
to look for another stopping criterion, our suggestion is the criterion (MC1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

σ

N

 

 

KL τ=1
KL τ=0.5
MC

(a) Needed realizations for KL and MC.
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Figure 6: Number of realizations and the diagonal entry in the MC case for EK(y) = 1.
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9.3.2. Lognormal distributed random variables

We consider a lognormal distributed random variable Y . As mentioned before the expected value

is µlog = exp(µ + σ2

2 ). We assume that the normal mean is zero, i.e., µ = 0. We calculate two
different upscaled coefficients. In the first case we use µlog instead of the deterministic coefficient,
i.e.,

K̃KL
M (y, z) = µlog +

M∑

m=1

√
λmφm(y)zm

KMC
n (y) = Yn,

and in the second one

K̃KL
M (y, z) = α+

M∑

m=1

√
λmφm(y)zm

KMC
n (y) = Yn − µlog + α

For the lognormal variance Σ2 we use the same values as for the normal one in the previous ex-
ample. To determine the corresponding normal random variables, we need the standard deviation
of the underlying normal distribution of the lognormal distribution and the expected value for the
above mentioned coefficients. We get

Σ σ µlog

0.0001 0.0001 1
0.001 0.000999999 1
0.01 0.00999925 1.00005
0.1 0.0992635 1.00494.

In Table 32 and 33 we summarized the results of the first case for τ = 1 and τ = 0.5, respectively.
In Tables 34-36 one finds the corresponding results for α = 1 and α = 2 for the different τs. As
in the Gaussian example we observe decreasing accuracy and an increasing number of problems
to solve by increasing the standard deviation. Again we have a good approximation of the mean
and the Karhunen-Loève approaches perform better.

9.4. H-matrix results

In this section we show the gain in time of using a hierarchical matrix to calculate the eigenpairs
of the Karhunen-Loève expansion. The underlying grid has 4096 cells. The results which we show
here are for two different leafsizes. With leafsize we denote the smallest set size of indices which is
allowed to be in a cluster tree, i.e., the nodes which are not further bisect have size leafsize. The
cluster tree in Figure 7 has leafsize one.
The required time to assemble the matrix K′ with leafsize 1 (left) and leafsize 4 (right) for

different ǫACA, which denotes the stopping condition for the ACA+ algorithm is illustrated in
Figure 8. Assembling the full-rank matrix needs 225 seconds, that means assembling the hierar-
chical matrix with the weak admissibility condition is at least 5 times faster and with the standard
condition we still gain a factor of 2.
In the Tables 37, 38, 39 and 40 we show the time to calculate a given number m of eigenpairs for

the different admissibility conditions and leafsizes 1 and 4. For the weak admissibility condition
(Table 37, 38) we can see that every choice of leafsize, ǫACA and the number of calculated eigenpairs
accelerate the computational time. In general, the increase of leafsize results in a decrease of time.
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Figure 7: Cluster tree.
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Figure 8: Required time to assemble the matrix.
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Figure 9: Error of the eigenvalues due to the low-rank approximation.
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The absolute error of the eigenvalues (c.f. Figure 9) does not depend significantly on ǫACA, only
for ǫACA = 10−2 the order is different. Therefore is: leafsize= 4, ǫACA = 10−4 the most reasonable
one. In the case of the standard admissibility condition the error of the eigenvalues is smaller, but
the time to calculate them is larger. For leafsize 1 the required time is even larger than the time of
the full-rank calculation. If one decides to take the standard condition leafsize 1 is not reasonable
at all, for leafsize 4 one can choose a parameter set for which the required time is smaller than the
full-rank calculation, e.g., ǫACA = 10−10. Since the error does not differ very much, if we chance
the admissibility condition, the weak one is more reasonable because of the significant gain in
time.
In Figure 10 we consider errors of the matrix due to the different admissibility conditions. As

expected the error of the standard condition is smaller than the corresponding one with the weak
condition.
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Figure 10: Matrix error due to the low rank approximation with different admissibility conditions.

The resulting block matrix structures for the two admissibility conditions are illustrated in
Figure 11.
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Figure 11: Block matrix structure for two different admissibility conditions with the underly-
ing index set: {0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15} and the stopping criterion:
ǫACA = 10−4.
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Part II.

Using multi-level Monte Carlo for
numerical homogenization

In this part we consider multi-level Monte Carlo (MLMC) methods in the multiscale context ([31]).
Heinrich ([38]) introduced multi-level Monte Carlo in 2001 for finite- and infinite-dimensional
integration. The multi-level Monte Carlo framework is used for stochastic ODEs by Giles ([35, 34]).
Recently it has been applied to PDEs with stochastic coefficients by Schwab et al.([10]) and Cliffe
et al. ([22]).

The main idea of multi-level Monte Carlo is to consider the quantity of interest at different
levels. At each level a different number of samples is used to compute the expected value of this
quantity. In particular, the fewest samples are used at the finest level where the computation for
each realization is expensive, while more samples are used at the coarsest level which is inexpensive
to compute.

By selecting the number of realizations at each level carefully one can decrease the computational
costs. More precisely, to compute effective properties we solve local problems on representative
volumes (RVE) and average some appropriate quantity over these volumes. Because of small scales
these computations can be expensive. That is why we use different representative volume sizes as
levels in multi-level Monte Carlo methods. We take many samples for smaller RVEs where it is
inexpensive to solve.

The convergence of multi-level Monte Carlo depends on the accuracy of the computations at
each level. Here, two different accuracies come into the play. One arises by the approximation
of the effective properties in each representative volume and another is from solving coarse-scale
equations. The accuracy of solving the coarse-scale problems depends on the mesh size H of the
coarse mesh. It is of the order H2. The estimation of the accuracy of the effective properties is
more difficult. Under some assumptions on the coefficients, it is known that the accuracy of the
effective property approximation behaves ([57, 27, 16, 42, 23, 9, 36]) as (ǫ/η)β for some β > 0,
where η is the size of RVE and ǫ is the small scale.

We observe that multi-level Monte Carlo can be applied when the effective properties are
stochastic. This is true for many applications. However, for these cases homogenizations the-
ories are not well studied. Homogenization theories are developed mainly for ergodic coefficients.
We discuss extensions of these results and apply them in our multi-level Monte Carlo. In our
analysis, we discuss various choices of numbers of realizations for the local problems and the
coarse-scale problems. We also discuss fine-scale meshes.

To approximate coarse-grid solutions, one has to compute effective properties at many levels. If
this is carried out carefully there is an overlap between these levels, i.e., if effective properties at
the finest level are computed, then these properties are computed for every coarser level. In our
construction we compute the effective properties at the finest level (denoted by HL) using largest
RVE (denoted by ηL). This is the most expensive computation of the homogenized solution. At
the next level HL−1, some effective properties using ηL-size RVEs are already computed. We
complement these effective property computations by adding new ηL−1-size RVEs (ηL > ηL−1) at
fewer locations. As a result, we obtain coarse-grid solutions computed at the coarse grid Hi with
RVE size ηj . By summing over various levels, we cannot eliminate all the terms as in standard
MLMC and we propose weighted MLMC where appropriately chosen weights are used at different
levels.
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The following part is structured as followed. First we introduce multi-level Monte Carlo in a
general setting and the notations used for the different levels. Next we consider the computation
of effective properties where we use MLMC to compute the expectation or two-point correlation
of homogenized coefficient. In Section 12 we discuss weighted multi-level Monte Carlo, which we
apply in Section 13 to compute the expectation of the coarse-scale solution. We present numerical
results for one- and two-dimensional examples. In the two-dimensional case, we only consider
three different levels. In all computations, we show that one can achieve a speed-up with MLMC
methods.

10. Preliminaries

10.1. Multi-level Monte Carlo method

We give a brief introduction of the multi-level Monte Carlo approach in a general setting. With
G we denote a random function, G = G(x, ω). For example we will consider functions of the
effective coefficient or the coarse-grid solution. We are interested in the efficient computation of
the expectation of this quantity, denoted by E[G].

A standard approach is the Monte Carlo method, where the expected value E[G] is approximated
by the arithmetic mean of a number (M) of realizations of G (denoted by Gi), i.e., EM :=
1
M

∑M
i=1G

i.

The idea of multi-level Monte Carlo (MLMC) is to consider the quantity of interest Gl on
different levels l. In our case levels are various representative volume sizes or mesh sizes. We
assume it is most computationally expensive to compute many realizations at the level of interest
L. With L− 1,..., 1 we introduce smaller levels, and assume that the lower the level, the cheaper
the computation of Gl, and the less accurate Gl is with respect to GL. We assume G0 = 0.

We write the quantity of interest at level L as telescopic sum of the smaller levels

GL =

L∑

l=1

(Gl −Gl−1) .

As mentioned above we vary either the RVE size or the coarse grid resolution. For the standard
MC approach we compute M realizations of the random variable GL at the level of interest L. In
contrast we work with Ml realizations of Gl at each level with M1 ≥ M2 ≥ · · · ≥ ML. For the
expectation we write

E[GL] =

L∑

l=1

E [Gl −Gl−1] .

At each level we approximate the expectation of the differences with the arithmetic mean

E[Gl −Gl−1] ≈ EMl
(Gl −Gl−1) =

1

Ml

Ml∑

i=1

(Gi
l −Gi

l−1)

where Gi
l is the ith realization of G computed at level l (note that we haveMl realizations of Gl−1

since Ml−1 ≥Ml). In the MLMC approach the expected value E[GL] is approximated by

EL(GL) :=

L∑

l=1

EMl
(Gl −Gl−1) . (10.1)
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The realizations of Gl−1 used with Gl to evaluate EMl
(Gl−Gl−1) do not have to be independent of

the realizations Gl−1 used for EMl−1
(Gl−1 −Gl−2) (cf. Section 10.2). In our analysis we consider

root mean square errors

eMLMC(GL) =
√
E [|||E[GL]− EL(GL)|||2] (10.2)

eMC(GL) =
√
E
[
|||E[GL]− EM̂ (GL)|||2

]
(10.3)

with an appropriate norm ||| · ||| depending on the quantity of interest, e.g., the absolute value for
any entry of the homogenized coefficient. For the error estimation we will use ( see [17])

E
[
|||E[G]− EM (G)|||2

]
≤ 1

M
E [|||G− E[G]|||]2 (10.4)

which is valid for any random variable G and norm associated with a scalar product.

10.2. Remark on same or independent samples

For multi-level Monte Carlo we use M1 samples of G1 and Ml of Gl − Gl−1 with Ml < Ml−1,
2 ≤ l ≤ L. The question arises if theMl realizations ofGl−1 in the termsGl−Gl−1 and Gl−1−Gl−2

have to be independent. In the following we answer the question for only two different levels if
the considered norm is the absolute value. Later (cf. paragraph “independent samples” in Section
14.1.2) we underline this result for more than two levels numerically. In the following we assume,
we compute M1 realizations of the quantity G1 at level 1 and M2 of G2. In this way we ensure
to have the same computational cost in both approaches. If we use the same realizations of G1 in
both levels we can write the MLMC approximation as

EL
same(GL) :=

1

M2

M2∑

i=1

(
Gi

2 −Gi
1

)
+

1

M1

M1∑

i=1

Gi
1 (10.5)

=

M2∑

i=1

((
1

M1
− 1

M2

)
Gi

1 +
1

M2
Gi

2

)
+

M1∑

i=M2+1

1

M1
Gi

1

and in the independent case

EL
ind(GL) :=

1

M2

M2∑

i=1

(
Gi

2 −Gi
1

)
+

1

M̃1

M1∑

i=M2+1

Gi
1 (10.6)

with M̃1 =M1−M2 and M̃1 > M̃2 (therefor M1 > M2). Note that for the MLMC approximation

in the case of independent samples we use M̃l =Ml −Ml+1 instead of Ml to approximate E[Gl −
Gl−1]. Such that this approximation of the expectation is less accurate, but the independence
of the sample at the different levels might increase the accuracy of the whole approximation of
E[GL]. If we add and subtract E[G1], we get

EL
same(GL) =

M2∑

i=1

((
1

M1
− 1

M2

)
G

i

1 +
1

M2
Gi

2

)
+

M1∑

i=M2+1

1

M1
G

i

1,

EL
ind(GL) =

1

M2

M2∑

i=1

(
Gi

2 −G
i

1

)
+

1

M̃1

M1∑

i=M2+1

G
i

1

49



with G
i

l = Gi
l − E[Gl]. As mentioned above we are interested in the root mean square error. If

we use the same samples we get

(esame
MLMC(G2))

2

= E
[(
EL

same(G2)− E[G2]
)2]

= E



(

M2∑

i=1

((
1

M1
− 1

M2

)
G

i

1 +
1

M2
Gi

2

)
+

M1∑

i=M2+1

1

M1
G

i

1 − E[G2]

)2



= E



(

M2∑

i=1

((
1

M1
− 1

M2

)
G

i

1 +
1

M2
G

i

2

)
+

M1∑

i=M2+1

1

M1
G

i

1

)2



=

M2∑

i=1

E

[((
1

M1
− 1

M2

)
G

i

1 +
1

M2
Gi

2

)2
]
+

1

M2
1

M1∑

i=M2+1

E

[(
G

i

1

)2]

= M2

[
1

M2
2

Var(G2) +

(
1

M1
− 1

M2

)2

Var(G1) +
2

M2

(
1

M1
− 1

M2

)
Cov(G1, G2)

]
+
M1 −M2

M2
1

Var(G1)

=
1

M2
Var(G2) +M2

(
1

M1
− 1

M2

)2

Var(G1) + 2

(
1

M1
− 1

M2

)
Cov(G1, G2)

=
1

M2
Var(G2) +

M1 −M2

M1M2
Var(G1) + 2

M2 −M1

M1M2
Cov(G1, G2)

and for the independent case

(
eindMLMC(G2)

)2

= E
[(
EL

ind(G2)− E[G2]
)2]

= E



(

1

M2

M2∑

i=1

(
Gi

2 −G
i

1

)
+

1

M̃1

M1∑

i=M2+1

G
i

1 − E[G2]

)2



= E



(

1

M2

M2∑

i=1

(
G

i

2 −G
i

1

)
+

1

M̃1

M1∑

i=M2+1

G
i

1

)2



=
1

M2
2

M2∑

i=1

E

[(
G

i

2 −G
i

1

)2]
+

1

M̃2
1

M1∑

i=M2+1

E

[(
G

i

1

)2]

=
1

M2
2

M2∑

i=1

(
E

[(
G

i

2

)2]
− 2E

[
G

i

2G
i

1

]
+ E

[(
G

i

1

)2])
+

1

M̃1

Var(G1)

=
1

M2
[Var(G1) + Var(G2)− 2Cov(G1, G2)] +

1

M̃1

Var(G1)

=

(
1

M̃1

− 1

M2

)
Var(G1) +

1

M2
Var(G2)−

2

M2
Cov(G1, G2)

=
M1

M̃1M2

Var(G1) +
1

M2
Var(G2)−

2

M2
Cov(G1, G2)

=
M1

(M1 −M2)M2
Var(G1) +

1

M2
Var(G2)−

2

M2
Cov(G1, G2).
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In both cases we used the independence of Gi
l and G

j
l for i 6= j.

Remark 10.1
If we consider the L2-norm instead of the absolute value, we do not have Var(Gl) but ‖Var(Gl)‖L1 .

To check which error is smaller we look at the difference.
(
eindMLMC(G2)

)2 − (esame
MLMC(G2))

2

=
M1

(M1 −M2)M2
Var(G1) +

1

M2
Var(G2)−

2

M2
Cov(G1, G2)

−
(

1

M2
Var(G2) +

M1 −M2

M1M2
Var(G1) + 2

M2 −M1

M1M2
Cov(G1, G2)

)

=

[
M1

(M1 −M2)M2
− M1 −M2

M1M2

]
Var(G1)− 2

[
1

M2
− M2 −M1

M1M2

]
Cov(G1, G2)

=
2M1 −M2

M1(M1 −M2)
Var(G1)−

2

M2
Cov(G1, G2)

≥ 2M1 −M2

M1(M1 −M2)
Var(G1)−

2

M2

√
Var(G1)Var(G2)

≥ 2M1 −M2

M1(M1 −M2)
Var(G1).

≥ 0.

Here we use Var(G1) ≥ Var(G2). The above analysis shows for two different levels that we achieve
a better accuracy with the same amount of computational costs, if we reuse the samples. This
coincides with our numerical results in the paragraph ’independent samples’ in Section 14.1.2.

10.3. Definition of meshes and representative volume sizes

In our application we vary representative volume sizes, the sizes of coarse meshes, and the fine-
scale discretization of these representative volume sizes (see Figure 12 for illustration). In the
MLMC framework choosing a level l means choosing a particular RVE or mesh size. We denote
the hierarchy of the representative volumes by

η1 < η2 < ... < ηL

We assume that the number of realizations used at the level l for the RVE size ηl is ml. We take

m1 > m2 > ... > mL.

As different coarse meshes sizes we take

H1 > H2 > ... > HL

and the corresponding number of realizations

M1 > M2 > ... > ML.

One can also vary the fine-scale meshes for solving local representative volume problems. We
denote these mesh sizes by

h1 > h2 > ... > hL.

The level L always corresponds to the most expensive and accurate choice (e.g., largest RVE
size, finest mesh), and thus to the smallest number of realizations. We note that one does not
have to take the same number of levels L for coarse-grid sizes and RVEs.
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Figure 12: Illustration of a coarse grid block with RVE.

11. Multi-level Monte Carlo for the upscaled coefficients and

their properties

In this section we apply MLMC to compute the expectation of the effective coefficient. Therefore,
we solve local problems on RVEs with various sizes. As a first step, we will fix the fine-scale grid
and later we consider both, various RVE sizes and fine meshes. If the homogenized coefficients
are stochastic the multi-level Monte Carlo method is more efficient than a standard Monte Carlo
approach. Otherwise, both methods are equally accurate. As mentioned earlier the homogenized
coefficient can be stochastic, if no ergodicity is assumed. In this setting we will consider various
cases. The first case we will consider is when the heterogeneous field in (3.1) has the product form

K
(
x,
x

ǫ
, ω, ω′

)
= A(x, ω)B

(x
ǫ
, ω′
)

where A and B are two random scalar valued functions. ω corresponds to the randomness of the
macroscopic scale and ω′ to the one of the microscopic scale. With K∗(x, ω, ω′) we denote the
homogenized coefficient matrix which depends on the macroscopic variables (x, ω) and on ω′ if no
ergodicity on B is assumed. Then we assume

Eω′

[∣∣∣
∣∣∣
∣∣∣K∗(x, ω, ω′)−Hη

(
K
(
x,
x

ǫ
, ω, ω′

))∣∣∣
∣∣∣
∣∣∣
2
]
≤ C

(
ǫ

η

)β

for some deterministic constant C independent of ω, x, ǫ and η and any matrix norm |||·|||. Fur-
thermore, the rate β is assumed to be independent of ω, x, ǫ and η. Another, more general case
we will consider is when one cannot split the randomness of macroscopic and microscopic scale,
explicitely. Then the coefficient writes K

(
x, xǫ , ω

)
. We assume that K is scalar-valued, that we

can do homogenization in every macroscopic point, and that the following assumption holds

E

[∣∣∣
∣∣∣
∣∣∣K∗(x, ω)−Hη

(
K
(
x,
x

ǫ
, ω
))∣∣∣
∣∣∣
∣∣∣
2
]
≤ C

(
ǫ

η

)β

with some constant C and rate β independent of x, ǫ and η. This is similar to the known results
for ergodic homogeneous coefficient recalled in Section 14.1.1.

11.1. Various RVE sizes and fixed fine mesh

We assume a highly resolved discretization of the cell problem, i.e., no fine-scale discretization
error. Later on we introduce how to compute the two-point correlation function. At each level we
set √

E
[
|||K∗ −K∗

l |||
2
]
= δl
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for some matrix norm |||·||| and to simplify the notation we set K∗
l := K∗

ηl
. We assume that

δl ≤ C

(
ǫ

ηl

) β
2

, (11.1)

with β > 0 and C > 0 indendent of l, ǫ and η. For some special cases, one can estimate β rigorously,
but in general we suggest a precomputation strategy to estimate β. This will be discussed later.
Note that Central Limit Type results correspond to β = d (see e.g., [13] for such estimates in
a weakly stochastic case). For clarity we summarize the basic steps of MLMC for the upscaled
coefficients below.

1. Generate m1 random variables ω1 · · ·ωm1 .

2. For each level l, 1 ≤ l ≤ L, and each realization ωj , 1 ≤ j ≤ ml,

• Solve the RVE problems

div(Kǫ(x, ωj)∇χj
i ) = 0, in Yηl

, χj
i (x, ωj) = xi on ∂Yηl

,

for any i = 1, ..., d.

• Compute the homogenized coefficients K∗
l (x, ωj) with

∀1 ≤ i ≤ d, K∗
l (x, ωj)ei =

1

ηld

∫

Yηl

Kǫ(x, ωj)∇χj
i .

3. For each level l, 1 ≤ l ≤ L, compute

Eml
(K∗

l −K∗
l−1) =

1

ml

ml∑

j=1

K∗
l (x, ωj)−K∗

l−1(x, ωj),

where we set K∗
0 = 0. Note that we keep implicit the dependence of Eml

(K∗
l −K∗

l−1) with
respect to x and the randomness.

4. Compute the multi-level approximation EL(K∗
L) of the expected value E[K∗

L] following
(10.1):

EL(K∗
L) =

L∑

l=1

Eml
(K∗

l −K∗
l−1)(x).

We start to estimate the root mean square error of the approximation of E([K∗
L]ij), for any entry

ij (1 ≤ i, j ≤ d) of the matrix K∗
L. To simplify the notation, we write the calculations below as

if K∗
l is a scalar quantity, i.e., the calculations are to be understood as calculations on the entry

[K∗
l ]ij . This estimate can be extended to any smooth, scalar-valued function f of K∗

L, this will be

53



discussed in Remark 11.2 below. For the multi-level Monte Carlo approach, we get

eMLMC(K
∗
L) =

√
E [(E[K∗

L]− EL(K∗
L))

2]

=

√√√√√E



(
E

[
L∑

l=1

(
K∗

l −K∗
l−1

)
]
−

L∑

l=1

Eml

(
K∗

l −K∗
l−1

)
)2



=

√√√√√E



(

L∑

l=1

(E − Eml
)
(
K∗

l −K∗
l−1

)
)2



≤
L∑

l=1

√
E
[(
(E − Eml

)
(
K∗

l −K∗
l−1

))2]

≤
L∑

l=1

1√
ml

√
E
[
(K∗

l −K∗
l−1 − E[K∗

l −K∗
l−1])

2
]

where we have used (10.4). Writing that K∗
l −K∗

l−1 = (K∗
l −K∗) + (K∗ −K∗

l−1) we deduce

eMLMC(K
∗
L) =

√
E [(E[K∗

L]− EL(K∗
L))

2]

≤
L∑

l=1

1√
ml

√
E [(K∗

l −K∗ − E[K∗
l −K∗])2]

+

L∑

l=2

1√
ml

√
E
[
(K∗ −K∗

l−1 − E[K∗ −K∗
l−1])

2
]

+
1√
m1

√
E [(K∗ − E[K∗])2]

≤
L∑

l=1

1√
ml

√
E [(K∗

l −K∗)2]

+

L∑

l=2

1√
ml

√
E
[
(K∗ −K∗

l−1)
2
]

+
1√
m1

√
E [(K∗ − E[K∗])2].

=

L∑

l=1

1√
ml
δl +

L∑

l=2

1√
ml
δl−1 +

1√
m1

√
E [(K∗ − E[K∗])2].

=

L∑

l=2

1√
ml

(δl + δl−1) +
1√
m1

(
δ1 +

√
E [(K∗ − E[K∗])2]

)
.

Using (11.1), we get

eMLMC(K
∗
L) ≤ C

L∑

l=2

1√
ml

((
ǫ

ηl

)β/2

+

(
ǫ

ηl−1

)β/2
)

+
1√
m1

(
C

(
ǫ

η1

)β/2

+
√
E [(K∗ − E[K∗])2]

)
.
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If the error is fixed, the optimal choice for the number ml of realizations at level l (i.e., with RVE
size ηl) is reached when these error parts are equilibrated. We choose

ml =





(
ηL

ǫ

)β
((

ǫ
η1

) β
2

+

√
E[(K∗−E[K∗])2]

C

)2

α−2
1 , l = 1

(
ηL

ηl

)β (
1 +

(
ηl

ηl−1

) β
2

)2

α−2
l , l ≥ 2

(11.2)

with αl > 0, 1 ≤ l ≤ L. Then we have

eMLMC(K
∗
L) ≤ C

L∑

l=2

1√
ml

((
ǫ

ηl

)β/2

+

(
ǫ

ηl−1

)β/2
)

+
1√
m1

(
C

(
ǫ

η1

)β/2

+
√
E [(K∗ − E[K∗])2]

)

= C
L∑

l=2

αl

(
ǫ
ηl

)β/2
+
(

ǫ
ηl−1

)β/2

(
ηL

ηl

) β
2

(
1 +

(
ηl

ηl−1

)β
2

)

+α1

C
(

ǫ
η1

)β/2
+
√
E [(K∗ − E[K∗])2]

(
ηL

ǫ

) β
2

((
ǫ
η1

) β
2

+

√
E[(K∗−E[K∗])2]

C

)

= C
L∑

l=2

αl

(
ǫ

ηL

) β
2

(
1
ηl

)β/2
+
(

1
ηl−1

)β/2

(
1
ηl

) β
2

(
1 +

(
ηl

ηl−1

)β
2

) + Cα1

(
ǫ

ηL

) β
2

= C

(
ǫ

ηL

) β
2

L∑

l=1

αl

=

(
ǫ

ηL

) β
2

C(α),

where C(α) = C
∑L

l=1 αl.
For comparison we consider the error of standard Monte Carlo, if we calculate the approximated
upscaled coefficient only for the largest RVE (of size ηL). Using (10.4), we have

√
E ((E[K∗

L]− Em̂(K∗
L))

2] ≤ 1√
m̂

√
E [(K∗

L − E[K∗
L])

2].

As mentioned above, we assumeK∗ to be a random quantity, with some positive variance. Therefor
it is natural to assume that the variance is roughly independent of L. Thus the Monte Carlo error
is of the order C̃/

√
m̂. To have a Monte Carlo error of the same order as the MLMC error, we

take m̂ = O
((

ηL

ǫ

)β)
samples.

If we choose these numbers of realizations for MLMC and MC, both methods reach the same
accuracy and we can compare their costs. Let Nl denote the cost to solve the RVE problem (4.9)

on the domain Y x
ηl

of size ηl. The number of degrees of freedom is of the order (ηl/ǫ)
d
. Assuming
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Nl = (ηl/ǫ)
d
, we have the following cost for MLMC

WMLMC
RVE =

L∑

l=1

mlNl

≃
L∑

l=2

(
ηL
ηl

)β
(
1 +

(
ηl
ηl−1

) β
2

)2

α−2
l

(ηl
ǫ

)d

+
(ηL
ǫ

)β
((

ǫ

η1

) β
2

+

√
E [(K∗ − E[K∗])2]

C

)2

α−2
1

(η1
ǫ

)d
.

In the case of MC, the cost reads

WMC
RVE = m̂NL ≃

(ηL
ǫ

)β (ηL
ǫ

)d

=
(ηL
ǫ

)β+d

.

In Figure 13 we illustrate the ratio
WMLMC

RVE

WMC
RVE

for different numbers of levels L and rates β. As we

can see, for a given number L of levels, the cost ratio decreases if the rate β increases, at equal
accuracy. Otherwise stated, the faster the convergence of the homogenized matrix with respect to
the RVE size (cf. (4.16)), the more interesting the MLMC approach is.
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Figure 13: RVE work ratio: WMLMC

WMC for different levels L and βs, d = 2 ηl = 2−L+l and αl =
1
L ,

m1 =
(
ηL

ǫ

)β
((

ǫ
η1

) β
2

+ 1

)2

α−2
1 , ml =

(
ηL

ηl

)β ((
ηl

ηl−1

) β
2

+ 1

)2

α−2
l , l ≥ 2.

Remark 11.1
In the above calculations, we assumed that the work of solving a local problem scales as Nl where Nl

is the number of degrees of freedoms. This is true if one uses iterative solvers and the conditioned
number of the preconditioned system is independent of the small scale ǫ. One can also compare
the work between MLMC and MC approaches when the work of solving a local problems scales as
C(ǫ)N1+γ for some γ > 0.
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Remark 11.2
Note that estimating the difference between the expectation E[K∗

L] and the MLMC approxima-

tion EL(K∗
L) can be replaced by estimating the difference of E[f(K∗

L)] and EL(f(K∗
L)) for any

smooth, scalar-valued function f(K∗
L), so that the estimate of the difference between two consecu-

tive levels can be related to the estimate of K∗
l between two consecutive levels. Then we can write∣∣f(K∗

l )− f(K∗
l−1)

∣∣ ≤ Cf

∑d
i,j=1

∣∣[K∗
l ]ij − [K∗

l−1]ij
∣∣ for some constant Cf and proceed as above.

Remark 11.3
To compute the optimal number of realizations ml the convergence rate β is needed, which is not
known, in general. In Section 14.1.1 we propose some means to estimate β numerically.

Above we have shown how to estimate E[K∗
L]. Another important function is the two-point

correlation function

CorK∗(x, y) = E ([K∗(x, ω)]ij [K
∗(y, ω)]qp)

between the components ij and qp of the homogenized matrix at points x and y (note that we
work with non-centered values ofK∗). To keep it simple we consider only two fixed locations x and

y. Consider ml independent samples of the homogenized coefficient K∗,k
l at level l, (1 ≤ k ≤ ml).

We define

Corml
(K∗

l ) :=
1

ml

ml∑

k=1

[K∗,k
l (x)]ij [K

∗,k
l (y)]qp

as an empirical estimator of E ([K∗(x, ω)]ij [K∗(y, ω)]qp). As MLMC approximation for the two-
point correlation function CorK∗(x, y) we get

CorL(K∗
L) :=

L∑

l=1

(
Corml

(K∗
l )− Corml

(K∗
l−1)

)
.

11.2. Coarse and fine meshes

Above we have assumed that we could solve the RVE problems (4.9) exactly, but in practice,
these problems are solved numerically within some accuracy. In this section we consider the
extension, where we vary the RVE size ηi and the fine mesh hj . We assume that the error in the
approximation of K∗ satisfies

δij ≤ C

√(
ǫ

ηi

)β

+

(
hj
ǫ

)γ

(11.3)

for some constant C independent of ηi, hj and ǫ. We take mij samples at the level (i, j). It is
possible to consider all pairs (i, j); however, the cost of the computations can be large. For each
RVE size ηl we will choose a corresponding fine-grid size hl. We denote this as level l as before
K∗

l,hl
. We get as above

eMLMC(K
∗
L,hL

) =

√
E
[
(E[K∗

L,hL
]− EL(K∗

L,hL
))2
]

≤
L∑

l=2

1√
ml

(δll + δl−1l−1) +
1√
m1

(
δ11 +

√
E [(K∗ − E[K∗])2]

)
.
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Using (11.3), we get

eMLMC(K
∗
L) ≤ C

L∑

l=2

1√
ml



√(

ǫ

ηl

)β

+

(
hl
ǫ

)γ

+

√(
ǫ

ηl−1

)β

+

(
hl−1

ǫ

)γ



+
1√
m1


C

√(
ǫ

η1

)β

+

(
h1
ǫ

)γ

+
√
E [(K∗ − E[K∗])2]


 .

If the error is fixed, the optimal choice for the number ml of realizations at level l (i.e., with RVE
size ηl and mesh size hl) is reached when these error parts are equilibrated. We choose

ml =





(√(
ǫ
η1

)β
+(h1

ǫ )
γ
+ 1

C

√
E[(K∗−E[K∗])2]

)2

(
ǫ

ηL

)β
+
(

hL
ǫ

)γ α−2
1 , l = 1

(√(
ǫ
ηl

)β
+
(

hl
ǫ

)γ
+

√(
ǫ

ηl−1

)β
+
(

hl−1
ǫ

)γ

)2

(
ǫ

ηL

)β
+
(

hL
ǫ

)γ α−2
l , l ≥ 2.

Then we have

eMLMC(K
∗
L) ≤

[(
ǫ

ηL

)β

+

(
hL
ǫ

)γ
]
C(α)

where C(α) = C
∑L

l=1 αl. For comparison we calculate the corresponding error of standard MC
with RVE size ηL and fine grid hL

√
E
[
(E[K∗

L,hL
]− Em̂(K∗

L,hL
))2
]
.

1√
m̂

√
E
[
(K∗

L,hL
− E[K∗

L,hL
])2
]
.

Again we have a Monte Carlo error of the order of C̃/
√
m̂. To equilibrate the error terms in this

case we take m̂ = O

(((
ǫ
ηL

)β
+
(
hL

ǫ

)γ)−1
)

samples.

If we choose these numbers of realizations for MLMC and MC, both methods reach the same
accuracy and we can compare their costs. Let Nl denote the cost to solve the RVE problem (4.9)
on the domain Y x

ηl
of size ηl with mesh size hl. The number of degrees of freedom is of the order

(ηl/hl)
d
. Assuming Nl = (ηl/hl)

d
, we have the following cost for MLMC

WMLMC
RVE =

L∑

l=1

mlNl

≃
L∑

l=2

(√(
ǫ
ηl

)β
+
(
hl

ǫ

)γ
+

√(
ǫ

ηl−1

)β
+
(

hl−1

ǫ

)γ
)2

(
ǫ
ηL

)β
+
(
hL

ǫ

)γ α−2
l

(
ηl
hl

)2

+

(√(
ǫ
η1

)β
+
(
h1

ǫ

)γ
+ 1

C

√
E [(K∗ − E[K∗])2]

)2

(
ǫ
ηL

)β
+
(
hL

ǫ

)γ α−2
1

(
η1
h1

)2

.

58



For MC, the amount of work is

WMC
RVE = m̂NL ≃

((
ǫ

ηL

)β

+

(
hL
ǫ

)γ
)−1 (

ηL
hL

)2

.

12. Weighted multi-level Monte Carlo

Previously, we approximated E[GL] with the multi-level Monte Carlo method, where GL is the
quantity of interest at the highest level of accuracy. To approximate E[GL] we used lower levels
of accuracy, Gl. In (10.1) we introduced the unbiased estimator EL(GL), i.e., when an infinitely
large number of samples is considered, this estimator converges to E[GL].
However, in some cases (cf. Section 13.3), this turns out to be restrictive, and it is easier to

approximate
∑L

l=1 wlE[Gl] (where the weights satisfy
∑L

l=1 wl = 1) than E[GL]. This is the
weighted multi-level Monte Carlo approach. For the special case wL = 1 and wl = 0 for 1 ≤ l < L
we get the previously introduced MLMC method.
Analogous to (4.16) we assume in each level

‖G−Gl‖ ≤ δl

with δ1 > δ2 > · · · > δL and

‖G‖ =
(
E[‖G(ω, ·)‖2V ]

) 1
2 (12.1)

where V is a Hilbert space and G(ω, ·) ∈ V . As before we consider a telescopic sum

L∑

l=1

wlGl =

L∑

l=1

αl(Gl −Gl−1)

and we get

αl =

L∑

i=l

wi.

If we choose w1 ≤ w2 ≤ · · · ≤ wL with
∑L

l=1 wl = 1 we have

1 = α1 ≥ α2 ≥ · · · ≥ αL = wL.

By considering the weighted sum
∑L

l=1 wlGl instead of the quantity at level L, GL, we introduce
a new systematic error, we get

‖G−
L∑

l=1

wlGl‖ = ‖
L∑

l=1

wl(G−Gl)‖ ≤
L∑

l=1

wl‖G−Gl‖ ≤
L∑

l=1

wlδl. (12.2)

Note that in the MLMC approach the systematic error is of the size ‖G − GL‖ ≤ δL. Now we
approximate the expected value of the weighted sum

L∑

l=1

wlE[Gl] =

L∑

l=1

αlE[Gl −Gl−1] ≈
L∑

l=1

αlEMl
(Gl −Gl−1)
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with M1 ≥M2 ≥ · · · ≥ML. We get the following error

‖E
[

L∑

l=1

wlGl

]
−

L∑

l=1

αlEMl
(Gl −Gl−1)‖

= ‖
L∑

l=1

αl(E − EMl
)(Gl −Gl−1)‖

.

L∑

l=1

αl√
Ml

‖G−Gl‖+
L∑

l=2

αl√
Ml

‖G−Gl−1‖+
α1√
M1

‖G− E[G]‖

≤
L∑

l=2

αl√
Ml

(δl + δl−1) +
α1√
M1

(δ1 + ‖G− E[G]‖) .

If the error is fixed, the optimal choice for the numberMl of realizations at level l is reached when
these error parts are equilibrated. We choose

Ml =





(
α1

δL

)2
(δ1 + ‖G− E[G]‖)2 , l = 1

(
αl

δL

)2
(δl + δl−1)

2, 2 ≤ l ≤ L.

Then we get

‖E
(

L∑

l=1

wlGl

)
−

L∑

l=1

αlEMl
(Gl −Gl−1)‖ = O(δL).

This error is of the same order as in the MLMC approach though one needs to exercise caution
regarding the systematic error (see (12.2)).

13. Multi-level Monte Carlo for the homogenized solution

In this section we use multi-level Monte Carlo to estimate the expectation of the homogenized
solution. In particular, we consider V = H1

0 (D) in (12.1). With vl we denote the projection of v
onto a finite dimensional subspace with mesh width Hl, the finite element or finite volume space
for example. Then we assume to control the discretization error

‖v − vl‖ . Hl,

13.1. Standard MLMC

As a first step we assume no error due to upscaling the coefficient, i.e the error in each level for
each realization depends only on the discretization error. In this case we get standard MLMC,
which one can find in [10]. We briefly mention their results here.
They find the error bound, cf.[10], Th.4.5,

‖E[u]− EL(uL)‖ . HL,

with Ml samples on mesh level l given by

Ml = l2+2ι

(
Hl

HL

)2

= l2+2ι22(L−l), l = 1, · · · , L (13.1)
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for an arbitrarily small ι > 0 and

WMLMC
coarse ≤ Cι





H−4
L for d = 1,

H−2
L (logH−2

L )3+ι for d = 2,

H−2
L (logH−2

L )2+ι for d = 3,

where the constant depends on ι but is independent of L.

13.2. Separable case

In the following we take the error in upscaling the coefficient into account. Note that we assume
that the RVE problems are solved exactly as in Section 11. To start with we consider a micro-scale
problem with separated scales

−div
(
A(x, ω)B(

x

ǫ
, ω′)∇uǫ

)
= f in D

with some boundary conditions. The formally derived homogenized problem is

− div (A(x, ω)B∗∇u∗) = f in D. (13.2)

To approximate the expected value of the upscaled solution u∗ we consider the tuples (Hl,Ml, ηl,ml)
for 1 ≤ l ≤ L, with the coarse mesh size Hl, RVE size ηl and Ml coarse-grid and ml local problem
solves.
To calculate the homogenized coefficient

(
B∗i

l

)
n,m

=
1

|Yηl
|

∫

Yηl

∇χi
n · Bi

l∇χi
m dy

we solve in each direction, 1 ≤ j ≤ d, ml corresponding deterministic RVE problems

−div
(
Bi

l (y)∇χi
j

)
=0, y ∈ Yηl

,

χi
j = ej · y on ∂Yηl

.
(13.3)

As before, we denote the arithmetic mean of these coefficients with Eml
(B∗

l ), i.e.,

Eml
(B∗

l ) =
1

ml

ml∑

i=1

B∗i
l .

Then, we compute the solution of the deterministic homogenized problem

− div
(
Ak

l (x)Eml
(B∗

l )∇ukl
)
= f, 1 ≤ k ≤Ml, (13.4)

for each mesh size Hl and realization. Here Ak
l (x) is the kth realization of A(x, ω). Note we use

a simplistic treatment for averaging over ω′, since we assume that most of the randomness is in
A(x, ω). In general one has to solve the homogenized problem for each realization of B∗

l . We

calculate the empirical mean EMl
(ul) =

1
Ml

∑Ml

k=1 u
k
l of the solutions of (13.4). We use this mean

EMl
(ul) to approximate the expected value E[ul] of the solution ul of the stochastic homogenized

problem

− div (A(x, ω)Eml
(B∗

l )∇ul) = f in D (13.5)
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with mesh size Hl and the homogenized coefficients calculated with RVE size ηl. With uk0 := 0,
1 ≤ k ≤M1, we define

EL(uL) =

L∑

l=1

EMl
(ul − ul−1).

We use EL(uL) as approximation of E[u∗]. Then we get

‖E[uL]− EL(uL)‖ = ‖E[
L∑

l=1

ul − ul−1]−
L∑

l=1

EMl
(ul − ul−1)‖

≤
L∑

l=1

‖(E − EMl
)(ul − ul−1)‖

=

L∑

l=1

‖(E − EMl
)(ul − ul−1)‖

≤
L∑

l=1

1√
Ml

‖ul − ul−1 − E[ul − ul−1]‖

≤
L∑

l=1

1√
Ml

‖ul − ul−1‖

=

L∑

l=1

1√
Ml

‖ul − u∗ + u∗ − ul−1‖

≤
L∑

l=2

1√
Ml

(‖u∗ − ul‖+ ‖u∗ − ul−1‖) +
1√
M1

(‖u∗ − u1‖+ ‖u∗‖) .

Here we used (10.4) and

‖G− E[G]‖2 = E[‖G− E[G]‖2V ] = E‖G‖2V − ‖E[G]‖2V ≤ E‖G‖2V = ‖G‖2.

To estimate ‖E[uL] − EL(uL)‖ we need an error bound for ‖u∗ − ul‖, 1 ≤ l ≤ L. Therefore we
denote with u∗Hl

the solution of

− div
(
A(x, ω)B∗∇u∗Hl

)
= f, (13.6)

i.e., u∗Hl
is the solution solved with mesh size Hl but without any upscaling error of the coefficient

B. It follows

‖u∗ − ul‖ ≤ ‖u∗ − u∗Hl
‖+ ‖u∗Hl

− ul‖.

Thereby ‖u∗ − u∗Hl
‖ denotes the discretization error and we have

‖u∗ − u∗Hl
‖ . Hl

For the remaining term it holds

‖u∗Hl
− ul‖ .

√
E [|Eml

(B∗
l )−B∗|2].
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Proof. We write

−div
(
A(x, ω)B∗∇u∗Hl

)
= −div (A(x, ω)Eml

(B∗
l )∇ul) .

Then,

div
(
A(x, ω)B∗∇(u∗Hl

− ul)
)
= div (A(x, ω)(Eml

(B∗
l )−B∗)∇ul) .

Multiplying both sides by (u∗Hl
− ul) and integrating by parts (note that (u∗Hl

− ul) = 0 on the
boundary), we get

∫
|∇(u∗Hl

− ul))|2 .

∫
A(x, ω)B∗|∇(u∗Hl

− ul))|2

=

∫
A(x, ω)(Eml

(B∗
l )−B∗)∇ul · ∇(u∗Hl

− ul)

. |Eml
(B∗

l )−B∗|
∫

∇ul · ∇(u∗Hl
− ul)

C.S.
≤ |Eml

(B∗
l )−B∗|(

∫
|∇ul|2)1/2(

∫
|∇(u∗Hl

− ul)|2)1/2.

From here, we have

‖u∗Hl
− ul‖V . |Eml

(B∗
l )−B∗|‖u∗‖V

and therefore

‖u∗Hl
− ul‖2 = E

[
‖u∗Hl

− ul‖2V
]
. E

[
|Eml

(B∗
l )−B∗|2

]
‖u∗‖2.

�

To get an error estimate for the MLMC approach, we note that

√
E [|Eml

(B∗
l )−B∗|2] ≤

√
E [|Eml

(B∗
l )− E[B∗

l ]|2] +
√
E [|E[B∗

l ]−B∗|2]

.
1√
ml

√
E [|(B∗

l )− E[B∗
l ]|2] + δl.

Using our assumption

δ2l .

(
ǫ

ηl

)β

, β > 0,

we get

‖E[uL]− EL(uL)‖ .

L∑

l=1

1√
Ml

(
Hl +

(
ǫ

ηl

) β
2

+
Cl√
ml

+Hl−1 +

(
ǫ

ηl−1

) β
2

+
Cl−1√
ml−1

)

+
1√
M1

(
‖u∗‖+Hl +

(
ǫ

η1

) β
2

+
C1√
m1

)
.

For a standard MC approach, the error is given by

‖E[uMC ]− EM̂ (uMC)‖ .
1√
M̂
.
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13.3. General case. Application of weighted MLMC

In this section we consider the general coefficient A(x, ω, xǫ ). Here one has to solve RVE problems
in many macro-grid points. At every level we will solve a local problem in each coarse-grid block.
The sizes of the RVE can be different at different locations. At every level l we denote the number
of RVE problems with Pl (∝ H−2

l ). This number coincides with the number of coarse-grid blocks.
We denote the set of coarse-grid points where we solve the local problems at level l with Pl. We
assume these sets are nested, i.e., P1 ⊂ P2 ⊂ · · · ⊂ PL. As before we solve for Ml samples
coarse-grid problems with mesh size Hl. We calculate the coefficient by solving RVE problems
for each realization and averaging the energy over the spatial domain. If we calculate K∗

ηl,Hl
with

RVE size ηl, we get K∗
ηl,Hj

for j < l at the same coarse-grid points, automatically. This is true,
since the sets of coarse-grid points Pl are nested. So we only solve RVE problems for Ml −Ml+1

independent realizations of size ηl with coarse mesh size Hl and get Ml coefficients with different
RVE sizes as shown in Table 3 for illustration. Let uηj ,Hi

be the solution with a coarse grid with

HL HL−1 · · · H1 # coefficients to calculate
with RVE size ηl

η1 K∗
η1,H1

M1 −M2

...
...

...
ηL−1 K∗

ηL−1,HL−1
· · · K∗

ηL−1,H1
ML−1 −ML

ηL K∗
ηL,HL

K∗
ηL,HL−1

· · · K∗
ηL,H1

ML

# coefficients
on mesh size Hl ML ML−1 · · · M1

Table 3: Calculating the (blue) coefficients on the diagonal will automatically give the lower tri-
angular values in the matrix.

mesh size Hi and RVE size ηj . Instead of E[u∗] we interested in the approximation of E[ũ] for
some ũ. To benefit from the different numbers of effective coefficients for the different grid and
RVE size we take

ũ =

L∑

l=1

αl

Ml

L∑

j=l

(Mj −Mj+1)(uηj ,Hl
− uηj ,Hl−1

) (13.7)

for α1 ≥ α2 ≥ · · · ≥ αL > 0, where we assume ML+1 = 0 and uηj ,H0 = 0 for 1 ≤ j ≤ L.

As mentioned in Section 12 we introduce a different systematic error. To compute this we write

ũ =

L−1∑

l=1

L∑

j=l+1

(
αl

Ml
− αl+1

Ml+1

)
(Mj −Mj+1)uηj ,Hl

+

L∑

l=1

αl
Ml −Ml+1

Ml
uηl,Hl

.

This is true since

ũ =

L∑

l=1

αl

Ml

L∑

j=l

(Mj −Mj+1)(uηj ,Hl
− uηj ,Hl−1

)

=
αL

ML
ML(uηL,HL

− uηL,HL−1)

+
αL−1

ML−1

[
(ML−1 −ML)(uηL−1,HL−1 − uηL−1,HL−2)
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+ML(uηL,HL−1 − uηL,HL−2)

]

+
αL−2

ML−2

[
(ML−2 −ML−1)(uηL−2,HL−2 − uηL−2,HL−3)

+(ML−1 −ML)(uηL−1,HL−2 − uηL−1,HL−3)

+ML(uηL,HL−2 − uηL,HL−3)

]

+ · · ·
=

αL

ML
MLuηL,HL

+

(
αL−1

ML−1
− αL

ML

)
MLuηL,HL−1

+
αL−1

ML−1
(ML−1 −ML)uηL−1,HL−1

+

(
αL−2

ML−2
− αL−1

ML−1

)
(ML−1 −ML)uηL,HL−1

+

(
αL−2

ML−2
− αL−1

ML−1

)
MLuηL,HL

+ · · ·

=

L−1∑

l=1

L∑

j=l+1

(
αl

Ml
− αl+1

Ml+1

)
(Mj −Mj+1)uηj ,Hl

+

L∑

l=1

αl
Ml −Ml+1

Ml
uηl,Hl

.

If we use ‖u∗ − uηj ,Hl
‖ ≤ Hl + δj the new systematic error reads

‖Cu∗ − ũ‖

≤
L∑

l=1

αl
Ml −Ml+1

Ml
‖u∗ − uηl,Hl

‖+
L−1∑

l=1

L∑

j=l+1

(
αl

Ml
− αl+1

Ml+1

)
(Mj −Mj+1)‖u∗ − uηj,Hl

‖

≤
L∑

l=1

αl
Ml −Ml+1

Ml
(Hl + δl) +

L−1∑

l=1

L∑

j=l+1

(
αl

Ml
− αl+1

Ml+1

)
(Mj −Mj+1)(Hl + δj)

≤
L∑

l=1

αl
Ml −Ml+1

Ml
(Hl + δl) +

L−1∑

l=1

(
αl

Ml
− αl+1

Ml+1

)
(Hl + δl)

L∑

j=l+1

(Mj −Mj+1)

=

L∑

l=1

αl
Ml −Ml+1

Ml
(Hl + δl) +

L−1∑

l=1

(
αl

Ml
− αl+1

Ml+1

)
(Hl + δl)Ml+1

=

L−1∑

l=1

(Hl + δl)

[
αl − αl

Ml+1

M − l
+ αl

Ml+1

M − l
− αl+1

]
+ (HL + δL)αL

=

L∑

l=1

(Hl + δl)

[
αl − αl+1

]

with

C =

L∑

l=1

αl
Ml −Ml+1

Ml
+

L−1∑

l=1

(
αl

Ml
− αl+1

Ml+1

) L∑

j=l+1

(Mj −Mj+1)
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=

L∑

l=1

αl
Ml −Ml+1

Ml
+

L−1∑

l=1

(
αl

Ml
− αl+1

Ml+1

)
Ml+1

=

L∑

l=1

(
αl − αl

Ml+1

Ml

)
+

L−1∑

l=1

(
−αl+1 + αl

Ml+1

Ml

)

=

L∑

l=1

αl −
L∑

l=1

αl
Ml+1

Ml
−

L−1∑

l=1

αl+1 +

L−1∑

l=1

αl
Ml+1

Ml

= α1.

If we choose

αl =

L∑

j=l

α̃j
HL + δL
Hj + δj

we get

‖Cu∗ − ũ‖ ≤ (HL + δL)

L∑

l=1

α̃l

and

C =

L∑

j=1

α̃j
HL + δL
Hj + δj

.

For a given mesh size Ĥ and RVE size η̂ the systematic error for standard MC is

‖u∗ − uη̂,Ĥ‖ ≤ Ĥ + δ̂.

To have the same systematic error we choose

Ĥ =

L∑

l=1

(αl − αl+1)Hl

δ̂ =

L∑

l=1

(αl − αl+1)δl.

For the expected value of ũ we get

E[ũ] =

L−1∑

l=1

L∑

j=l+1

(
αl

Ml
− αl+1

Ml+1

)
(Mj −Mj+1)E[uηj ,Hl

] +

L∑

l=1

αl
Ml −Ml+1

Ml
E[uηl,Hl

]

=

L∑

l=1

αl

Ml

L∑

j=l

(Mj −Mj+1)E[uηj ,Hl
− uηj ,Hl−1

].

As multi-level approximation we use

EL∗(ũ) =
L∑

l=1

αlE
∗
Ml

(ul − ul−1) (13.8)

instead of the sum of the arithmetic means at different levels as before. Where E∗
Ml

(ul − ul−1) is
defined as

E∗
Ml

(ul − ul−1) :=
1

Ml

L∑

j=l

(Mj −Mj+1)EMj−Mj+1(uηj ,Hl
− uηj ,Hl−1

)
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=
1

Ml

L∑

j=l




Mj−Mj+1∑

i=1

(
uηj ,Hl

− uηj,Hl−1

)
(ωi)


 .

For clarity we summarize the main steps of weighted MLMC for the coarse grid problem:

1. Generate M1 random variables ω1 · · ·ωM1 .

2. For each level l, 1 ≤ l ≤ L, and each realization ωj , Ml+1 < j ≤Ml, (ML+1 = 0)

• Solve in each coarse grid block with mesh size Hl the RVE problems

div(Aǫ(x, ωj)∇χj
i ) = 0, in Yηl

, i = 1, ..., d

χj
i = xi on ∂Yηl

.

• Compute in each coarse grid block with mesh size Hl the homogenized coefficients

K∗
ηl,Hl

(x, ωj)ei =
1

ηld

∫

Yηl

Aǫ(x, ωj)∇χj
i .

• Solve the coarse grid problem with grid size Hk, for 1 ≤ k ≤ l

−div
(
K∗

ηl,Hk
(x, ωj)∇uηl,Hk

(x, ωj)
)
= f(x) in D

3. For each level l, 1 ≤ l ≤ L, compute

E∗
Ml

(ul − ul−1)(x) =
1

Ml

L∑

k=l




Mk−Mk+1∑

j=1

(
uηk,Hl

− uηk,Hl−1

)
(x, ωj)




=
1

Ml

L∑

k=l

(Mk −Mk+1)EMk−Mk+1
(uηk,Hl

− uηk,Hl−1
)(x).

4. Compute the weighted multi-level approximation of the expected value

EL∗(ũ)(x) =
L∑

l=1

αlE
∗
Ml

(ul − ul−1)(x)

with α1 ≥ α2... ≥ αl.

To estimate the weighted MLMC error, we have

‖E[ũ]−
L∑

l=1

αlE
∗
Ml

(ul − ul−1)‖

= ‖
L∑

l=1

αl
1

Ml

L∑

j=l

(Mj −Mj+1)(E − EMj−Mj+1)(uηj ,Hl
− uηj ,Hl−1

)‖

≤
L∑

l=1

αl
1

Ml

L∑

j=l

(Mj −Mj+1)‖(E − EMj−Mj+1)(uηj ,Hl
− uηj,Hl−1

)‖
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.

L∑

l=1

αl
1

Ml

L∑

j=l

(Mj −Mj+1)
1√

Mj −Mj+1

‖uηj,Hl
− uηj ,Hl−1

− E[uηj ,Hl
− uηj ,Hl−1

]‖

.

L∑

l=1

αl

L∑

j=l

√
Mj −Mj+1

Ml
‖uηj,Hl

− u∗ + u∗ − uηj ,Hl−1
‖

.

L∑

l=1

αl

L∑

j=l

√
Mj −Mj+1

Ml
‖uηj,Hl

− u∗‖+ α1

L∑

j=1

√
Mj −Mj+1

M1
‖u∗‖

.

L∑

l=1

αl

L∑

j=l

√
Mj −Mj+1

Ml
(Hl + δj) + α1

L∑

j=1

√
Mj −Mj+1

M1

.

L∑

l=1

αl
1√
Ml

(Hl + δl) + α1
1√
M1

To equate the error terms we choose

Ml = C





(
α1

γ1(Ĥ+δ̂)

)2
l = 1

(
αl(Hl+δl)

γl(Ĥ+δ̂)

)2
l ≥ 2.

Then we have

‖E[ũ]−
L∑

l=1

αlE
∗
Ml

(ul − ul−1)‖ = O(Ĥ + δ̂).

In the MC case we choose M̂ = C(Ĥ + δ̂)−2 to get an error of the same order. As before the cost
of solving the coarse scale problems is

WMLMC
coarse =

L∑

l=1

MlH
−2
l

and for single level MC
WMC

coarse = M̂Ĥ−2.

The dominating part of the computational cost is the solution of RVE problems. We assume we
solve at Pl ≤ H−2

l points RVE problems with the nested sets of points of size P1 < P2 · · · < PL.

For MC we assume we solve at P̂ points. Then, we get

WMC
RVE = M̂P̂

(
η̂

ǫ

)2

= C
P̂ η̂2

ǫ2(Ĥ + δ̂)2
.

Note that for the weighted MLMC approach we solveMl−Ml+1 RVE problems for ηl. For MLMC,
we achieve the following work

WMLMC
RVE =

L∑

l=1

(Ml −Ml+1)
(ηl
ǫ

)2
Pl

=

L∑

l=1

Ml

(ηl
ǫ

)2
Pl −

L∑

l=1

Ml+1

(ηl
ǫ

)2
Pl
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=

L∑

l=1

Ml

(ηl
ǫ

)2
Pl −

L∑

l=2

Ml

(ηl−1

ǫ

)2
Pl−1

= M1

(η1
ǫ

)2
P1 +

L∑

l=2

Ml

((ηl
ǫ

)2
Pl −

(ηl−1

ǫ

)2
Pl−1

)

= C



(

α1

γ1(Ĥ + δ̂)

)2 (η1
ǫ

)2
P1 +

L∑

l=2

(
αl(Hl + δl)

γl(Ĥ + δ̂)

)2((ηl
ǫ

)2
Pl −

(ηl−1

ǫ

)2
Pl−1

)


= C
P̂ η̂2

ǫ2(Ĥ + δ̂)2

((
η1
η̂

)2
α2
1P1

γ21 P̂
+

L∑

l=2

(
αl

γl

)2

(Hl + δl)
2

((
ηl
η̂

)2
Pl

P̂
−
(
ηl−1

η̂

)2
Pl−1

P̂

))

In Figure 14 we illustrate the ratios of the work of weighted MLMC and MC for solving the coarse
problems and the RVE problems. As we can see, the cost ratio decreases if the number of levels
L increases.
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Figure 14: Work ratios
WMLMC

RVE
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RVE

and
WMLMC

coarse

WMC
coarse

for up to 20 levels, β = 2, ηl = 2−L+l, γl =
1
L and

αl =
∑L

i=l
1
L

HL+
(

ǫ
ηL

)β

Hi+
(

ǫ
ηi

)β

(
∑L

i=1
1
L

HL+
(

ǫ
ηL

)β

Hi+
(

ǫ
ηi

)β

)−1

.

14. Numerical results

In this section we present some representative numerical results. We consider the problem (in
dimension d)

−div
[
K(x, ω,

x

ǫ
, ω′)∇u

]
= f in D = (0, 1)d.

The boundary conditions and the function f will be given below. Note that the homogenized coeffi-
cient is independent of these choices. In the following we compare our MLMC results with standard
MC results at the highest level. In contrast to our theoretical analysis where we equate the error
and compare the computational costs, we equate the costs for calculating the coefficient and the
solution separately and compare the errors in the numerics. We will consider one-dimensional and
two-dimensional examples. We have implemented the one-dimensional methods in Matlab ([2])
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and analytical solutions are known in most of the examples. As previously, we use the modular
toolbox DUNE ([12, 11, 24, 14]) for the two-dimensional problems. Here we use the cell-centered
finite volume method as described in Section 7. In Table 4 we show the different mesh and RVE
sizes for three different levels. In the MLMC approach we approximate the homogenized coeffi-

l Hl hl ηl # cells in RVE of size ηl

1 1
16

1
128 0.125 256

2 1
32

1
128 0.25 1024

3 1
64

1
128 0.5 4096

Table 4: Different RVE and mesh sizes for the two-dimensional case.

cient with L = 3 different RVE sizes ηl (cf. Fig. 15) and when we calculate the coarse solution we
use L = 3 different coarse mesh sizes Hl. Note that we used the same fine mesh hl for each level.
In the two-dimensional examples we generate the coefficient with the Karhunen-Loève expansion

η1 η2 η3

Figure 15: Nested domains for the RVE problem, in dimension d = 2.

and the characteristic length scale is related to the correlation length ǫ = τ√
2
= 0.04√

2
.

In Section 14.1 we present numerical results for the homogenized coefficient. First we explain
in Section 14.1.1 how to estimate the convergence rate β (cf. (4.16)) numerically and then we
consider one-dimensional (cf. Section 14.1.2) and two-dimensional (cf. Section 14.1.3) results for
approximating the upscaled coefficient with MLMC. We present numerical results for the coarse
solution using weighted MLMC in Section 14.2.

14.1. Numerical results of the homogenized coefficient

As a first step we estimate the convergence rate β numerically. This is important in order to
choose later in this section the number ml of realizations at each level l in the one-dimensional (cf.
Section 14.1.2) and two-dimensional (cf. Section 14.1.3) examples using MLMC appropriately.

14.1.1. Numerical study of the convergence rate

For our theoretical study we assume (4.16) holds, i.e.,

E
[∣∣∣∣∣∣K∗

ηl
−K∗∣∣∣∣∣∣2

]
≤ C

(
ǫ

ηl

)β
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Figure 16: Computed data points with corresponding regression line with slope β and upper and
lower points of the confidence interval. 4 different levels,ml = (2000, 1000, 300, 140),
β = 1.53 and lnC = 1.059.

for some constant C and rate β independent of ǫ and η. In this section we estimate the convergence
rate β numerically. Therefor we consider as coefficient a scalar random field K(xǫ , ω

′) defined for
x ∈ D ⊂ R2 with expected value E[K] = 10 (independent of x and ǫ) and Gaussian covariance

function cov(x, x′) = σ2 exp(− |x−x′|2
τ2 ) with standard deviation σ =

√
2 and τ =

√
2ǫ = 0.04

(recall that |x− x′| denotes the Euclidian distance in R2). We generate samples of the coefficient
with the Karhunen-Loève expansion. For any 1 ≤ l ≤ L, we calculate the effective coefficients
K∗

l (ω
′
j) for the RVE [0, ηl]

2 (with ηl = 0.5L−l) for various realizations ω′
j , 1 ≤ j ≤ ml. Since

we cannot access the theoretical reference value K∗ = limη→∞ E[K∗
η ] in practice, we define the

reference value as

K∗
ref :=

1

L

L∑

l=1

1

ml

ml∑

j=1

K∗
l (ω

′
j)

where we use all the realizations on the RVEs [0, ηl], 1 ≤ l ≤ L. For this choice of ref-
erence it holds E[K∗

ref ] 6= E[K∗
L]. Since it is expensive to compute the effective coefficient

with RVE [0, ηL] the statistical error would be large and we cannot use the unbiased estima-
tor 1

mL

∑mL

j=1K
∗
L(ω

′
j). In practice, we consider only the first entry [K∗

l ]11 and we use four levels
and ml = (2000, 1000, 300, 140). At each level , 1 ≤ l ≤ L, we expect

1

ml

ml∑

j=1

|K∗
l (ω

′
j)−K∗

ref |2 ≈ E
[
|K∗

l (ω
′
j)−K∗

ref |2
]
≈ C

(
ǫ

ηl

)β

.

By taking the logarithm we get

ln(
1

ml

ml∑

j=1

|K∗
l (ω

′
j)−K∗

ref |2) ≈ β ln

(
ǫ

ηl

)
+ lnC.

Results are shown in Figure 16, where we plot the computed data points with confidence intervals.
It turns out that the data points for the smallest RVE [0, η1]

2 show a different behavior than the
other data sets. Since the results with the smallest RVE are the least accurate ones, we take only
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the three larger RVEs into account to compute the rate β. The linear regression line for these
results is also plotted in Figure 16. We find a line with slope β = 1.53 and intercept lnC = 1.059.
Note that this rate β is smaller, but close to the theoretical value βtheo = 2 which would be
obtained by a Central Limit theorem argument. This rate β is essential to choose the number of
realizations ml at each level according to (11.2) appropriately. In the following two-dimensional
examples we use the RVEs [0, η1]

2, [0, η2]
2 and [0, η3]

2 only. If we take only these RVEs into
account we end with a rate β close to 1. Therefore we choose β = 1 in the two-dimensional
examples instead of βtheo. In the one-dimensional cases we determine β for each coefficient.

14.1.2. One dimensional examples

First, we present numerical results for one-dimensional problems

d

dx

(
K(

x

ǫ
, ω, ω′)

d

dx
u(x,

x

ǫ
, ω, ω′)

)
= f in D ⊂ R

with some boundary conditions for a coefficient K(xǫ , ω, ω
′) such that the local problems are

analytically solvable. In one dimension the local problem reads

d

dx

(
K(

x

ǫ
, ω, ω′)

d

dx
χ(x, ω, ω′)

)
= 0, x ∈ Y =]a, b[

χ(x, ω, ω′) = x, x ∈ {a, b}.
For fixed ω and ω′ it follows

K(
x

ǫ
, ω, ω′)

d

dx
χ(x, ω, ω′) = C1

and therefore we get

χ(x, ω, ω′) = C1

∫ x

a

1

K(yǫ , ω, ω
′)
dy + C2.

With the help of the boundary conditions we determine the constants

C2 = a,

C1 =
b− a

∫ b

a
1

K(y
ǫ
,ω,ω′) dy

.

As in (4.13) we calculate the homogenized coefficient as

K∗
a,b(ω, ω

′) =
1

b− a

∫ b

a

K(
y

ǫ
, ω, ω′)

d

dy
χ(y, ω, ω′) dy

=
1

b− a

∫ b

a

C1 dy

= C1.

So the homogenized coefficient is the harmonic mean, i.e.,

K∗
a,b(ω, ω

′) =
b − a

∫ b

a
1

K( x
ǫ
,ω,ω′) dx

.

In the MLMC approach we consider different RVEs [al, bl], 1 ≤ l ≤ L, with size ηl = bl − al.
Analogous to our previous notation we denote the homogenized coefficient at level l, i.e., with
RVE size ηl, with

K∗
l (ω, ω

′) := K∗
al,bl

(ω, ω′).
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Figure 17: Computed data points with corresponding regression line with slope β. 15 levels, mean
over 50000 samples, β = 2.0070 and lnC = −13.9254.

Separable coefficient Example 1 As a first step we use the separable coefficient K(xǫ , ω, ω
′)

with the following uniformly bounded away from 0 inverse

K−1(
x

ǫ
, ω, ω′) =

(
C +

N∑

i=1

χi(ω
′) sin2(

2πxϕi

ǫ
)

)
exp(ω),

where ω and χi are i.i.d. uniformly distributed in [0, 1], and ϕi are fixed random numbers in [0.2, 2],
and C > 0 is deterministic. This coefficient is separable in the sense that K−1 is a product of
a function of ω and a function of ω′. As mentioned above, the homogenized coefficient is the
harmonic mean in this case. Therefore the homogenized coefficient on the RVE [a, b] is

K∗
a,b(ω, ω

′)

=

(
1

b− a

∫ b

a

K−1(
x

ǫ
, ω, ω′) dx

)−1

=


exp(ω)

b− a


C(b − a) +

N∑

i=1

χi(ω
′)


b− a

2
−

sin
(

4πbϕi

ǫ

)
− sin

(
4πaϕi

ǫ

)

8πϕi

ǫ








−1

.

In our simulation we use C = 1, N = 20 and ǫ = 0.5L

10 . With this choice of ǫ we ensure that the
smallest RVE (of size 0.5L) considered in the MLMC approach is much larger than the charac-
teristic length scale of the homogenized coefficient. As described in Section 14.1.1 we determine
the convergence rate β for this homogenized coefficient. We consider L = 15 different levels with
RVEs [al, bl] = [0, 0.5L+1−l] and as reference we use

K∗
ref (ω, ω

′) = K∗
0,∞(ω, ω′) =

(
C exp(ω) +

exp(ω)

2

N∑

i=1

χi(ω
′)

)−1

.

We get a convergence rate of approximately 2 (cf. Figure 17). That is why we choose in the
following for the different numbers of realizations ml per level for the MLMC approach the ratio
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ml

ml+1
=
(

ηl+1

ηl

)β
= 2β = 4. One realization is identified with the tuple (ω, χ1(ω

′), · · ·χN (ω′)) and

the expectations are taken with respect to both, ω and ω′. We are interested in the relative mean
square error between the MLMC approximation EL(K∗

L) with L levels and the true expected

value E[K∗
L] at level L, i.e.,

(
erelMLMC

)2
(K∗

L) =
(eMLMC)2(K∗

L)

(E[K∗
L
])2

with eMLMC(K
∗
L) defined as in

(10.2). Therefore we consider the MC approach with 400000 realizations of the coefficient on the
largest RVE [aL, bL] = [0, 0.5] as reference. For MLMC we use RVEs [al, bl] = [0, 0.5L+1−l] and
m = (4L−lmL, · · · , 4mL,mL). For comparison, we calculate the relative error of standard MC(
erelMC

)2
(K∗

L) =
(eMC)2(K∗

L)

(E[K∗
L])

2 (with eMC(K
∗
L) defined in (10.3)) with the largest RVE [aL, bL] =

[0, 0.5] with m̂ =
∑L

l=1 mlbl
bL

samples, so that both approaches have the same costs. Since the errors
depend on the set of chosen random numbers we repeat the computations Nb = 1000 times and
calculate the corresponding confidence intervals

[
mean((erel)2)− 2std((erel)2)√

Nb
,mean((erel)2) +

2std((erel)2)√
Nb

]
.

In Figure 18 we illustrate the relative mean square errors for three different levels for the
expected value and the two-point correlation of the effective coefficient with the corresponding
confidence intervals.

We can observe that the MLMC approach yields smaller errors for the same amount of work.
In both cases, expected value and two-point correlation, the relative mean square error with the
standard MC approach is approximately 2.3 times larger than the one for the MLMC approach,
i.e.,

1
Nb

∑Nb
j=1[e

rel
MC(K

∗
L(ωj , ω

′
j))]

2

1
Nb

∑Nb
j=1[e

rel
MLMC(K

∗
L(ωj , ω′

j))]
2
≈ 2.3.
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(a) Relative mean square errors of the expected
value of the effective coefficients.
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correlation of the effective coefficients.

Figure 18: Relative mean square errors with equated costs and m = (16m3, 4m3,m3). Example 1
separable coefficient.
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Figure 19: Computed data points with corresponding regression line with slope β. 15 levels, ǫ = 1,
mean over 50000 samples, β = 1.0003 and lnC = −5.5997.

Separable stationary coefficient Example 2 Here we consider an example where the effective
coefficient does not depend on ω′, in the limit of infinite large RVEs. We choose

K−1(x, ω, ω′) =

(
C +

∑

i∈Z

χi(ω
′)1[i,i+1)(x) sin

2(2πx)

)
exp(ω),

where ω and χi are i.i.d. uniformly distributed in [0, 1], C = 1 and 1[i,i+1)(x) denotes the indicator
function which is 1 for x ∈ [i, i+ 1) and zero elsewhere. Therefore the homogenized coefficient on
the RVE [a, b] (for simplicity we choose a, b ∈ Z) is

K∗
a,b(ω, ω

′)

=

(
1

b− a

∫ b

a

K−1(x, ω, ω′) dx

)−1

=

(
exp(ω)

b− a

[
C(b − a) + 0.5

b−1∑

i=a

χi(ω
′)

])−1

.

SinceK is stationary in the variables (x, ω′), the standard stochastic homogenization theory holds,
i.e., the exact effective coefficient is independent of ω′. In this case the exact effective coefficient
is

K∗(ω) =

(
Eω′

[∫ 1

0

K−1(x, ω, ω′) dx

])−1

= (exp(ω) (C + 0.5E[χ]))
−1
.

Note that limb−a→∞K∗
a,b(ω, ω

′) = K∗(ω) almost surely in ω′. As previously we estimate the
convergence rate β of the homogenized coefficient to choose the rate ml

ml+1
of the number of

realizations appropriately. Here we use K∗(ω) as reference, 15 different levels and we consider
the RVEs [al, bl] = [0, 100 · 2l−1]. In this case we get a convergence rate of approximately 1 (cf.
Figure 19). According to this β we choose m = (2L−lmL, · · · , 2mL,mL) in the MLMC approach
for the RVEs as mentioned above. We compare these results to a standard MC approach on
the largest RVE [aL, bL] = [0, 100 · 2L−1] with the same costs, i.e., for MC we choose m̂ =
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∑L
l=1 mlbl
bL

. Following Section 11.1 the theoretical reference is E[K∗
L(ω, ω

′)], where K∗
L(ω, ω

′) is
the homogenized coefficient on the largest RVE. We work with a reference value which can be
computed analytically and is very close to E[K∗

L(ω, ω
′)] when the RVE at level L is large. In this

paragraph as reference we use

K∗
ref := E[K∗(ω)] = (exp(0.5) (C + 0.5E[χ]))

−1
=

1− 1
e

C + 0.25
.

By design it holds K∗
ref = limb−a→∞ E[K∗

L(ω, ω
′)].

In this example we consider L = 3, 5 or 7. In Figure 20 we compare the relative mean square

errors
(
erelMLMC

)2
and

(
erelMC

)2
for the expected value and the two-point correlation of the effective

coefficient to the corresponding confidence intervals for Nb = 1000 different sets of random num-
bers. Again we can observe that MLMC is more accurate for the same amount of work and the
gain in accuracy increases if we increase the number of levels. More precisely we have, for both
the expected value and the two-point correlation of the coefficient

1
Nb

∑Nb
j=1[e

rel
MC(K

∗
L(ωj))]

2

1
Nb

∑Nb
j=1[e

rel
MLMC(K

∗
L(ωj))]2

≈





1.4, L = 3

3.2, L = 5

9.0, L = 7

.

Non separable coefficient Example 3 In this paragraph we use the coefficient

K−1(
x

ǫ
, ω, ω′) = C(1 + ω) + exp

(
ωω′ sin(

x

ǫ
)
)
cos(

x

ǫ
)

with ω and ω′ i.i.d. random variables uniformly distributed in [0.5, 1], ǫ = 0.5L

10 (to ensure that the
smallest RVE is large compared to ǫ) and C = 2e (which ensures that the coefficient is uniformly
bounded away from 0). In comparison to the two previous examples ω and ω′ are not separable.
The effective coefficient on [a, b] is

K∗
a,b(ω, ω

′)

=

(
1

b− a

∫ b

a

K−1(
x

ǫ
, ω, ω′) dx

)−1

=

(
1

b− a

[
C(1 + ω)(b − a) +

ǫ

ωω′

(
exp

(
ωω′ sin(

b

ǫ
)

)
− exp

(
ωω′ sin(

a

ǫ
)
))])−1

.

As in the example with the separable coefficient we consider the RVEs [al, bl] = [0, 0.5L+1−l] for
the MLMC approach. To choose the number of realizations ml for each level appropriately we
estimate the convergence rate β numerically. The reference is

K∗(ω) = lim
b−a→∞

K∗
a,b(ω, ω

′) =
1

C(1 + ω)
.

Again we use 15 different levels and the rate β is approximately 2 (cf. Figure 21). Again we
compare the accuracy to MC with equated costs on the RVE [aL, bL] = [0, 0.5]. As in the previous
example we use the practical reference value

K∗
ref = lim

b−a→∞
E[K∗

a,b(ω, ω
′)] =

2 ln 4
3

C
.
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(a) Relative mean square errors of the expected
value of the effective coefficients for 3 levels.
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(b) Relative mean square errors of the two-point
correlation of the effective coefficients for 3 levels.
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(c) Relative mean square errors of the expected
value of the effective coefficients for 5 levels .
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(d) Relative mean square errors of the two-point
correlation of the effective coefficients for 5 levels.
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(e) Relative mean square errors of the expected
value of the effective coefficients for 7 levels .
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(f) Relative mean square errors of the two-point
correlation of the effective coefficients for 7 levels.

Figure 20: Relative mean square errors with equated costs and m = (2L−lmL, · · · , 2mL,mL).
Example 2 separable stationary coefficient.
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Figure 21: Computed data points with corresponding regression line with slope β. 15 levels,

ǫ = 0.5L

10 , mean over 50000 samples, β = 2.3548 and lnC = −8.3103.

In Figure 22 we illustrate the relative mean square errors (
(
erelMLMC

)2
,
(
erelMC

)2
) for three dif-

ferent levels for the expected value and the two-point correlation of the effective coefficient
with the corresponding confidence intervals for Nb = 10000 different sets of random numbers.
We can observe that MLMC yields smaller errors for the same amount of work. If we choose
m = (2L−1mL, · · · , 2mL,mL) for the MLMC approach both the relative mean square error for
the mean and for the two-point correlation is 1.3 times larger for the standard MC approach than
for the MLMC approach (cf. Fig. 22(c), 22(d)). However, if we choose the number of realizations
according to β, i.e m = (4L−1mL, · · · , 4mL,mL) for the MLMC approach, both the relative mean
square error for the mean and for the two-point correlation is two times larger for the standard
MC approach than for the MLMC approach (cf. Fig. 22(a), 22(b)).

Independent samples In Section 10.2 we consider for only two levels the question, whether the
realizations in each term of the MLMC approach should be independent or not. For two levels it is
more accurate with the same amount of costs to choose the same realizations (cf. Section 10.2). In
this paragraph we show numerical results for more than two levels. As previously we compute ml

realizations of the homogenized coefficient at level l with ml ≤ ml−1, i.e., we compute K∗
l (ωj , ω

′
j)

for 1 ≤ j ≤ ml with RVE [al, bl]. Then we define as in Section 10.2 the MLMC approach with
reusing the samples (cf. (10.5))

EL
same(K

∗
L) :=

L∑

l=1

1

ml

ml∑

j=1

K∗
l (ωj , ω

′
j)−K∗

l−1(ωj, ω
′
j)

and with independent samples (cf. (10.6))

EL
ind(K

∗
L) :=

L∑

l=1

1

m̃l

ml∑

j=ml+1+1

K∗
l (ωj , ω

′
j)−K∗

l−1(ωj , ω
′
j)

with m̃l = ml −ml+1 and mL+1 = 0. An important assumption for the MLMC approach is that
the number of realizations decreases as the level l increases. Therefore we assume m̃l ≥ m̃l+1.
These two approximations share the same computational costs. In the following we compare
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(a) Expected value of the effective coefficients,
m = (16m3, 4m3,m3).
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(b) Two-point correlation of the effective coeffi-
cients, m = (16m3, 4m3,m3).
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(c) Expected value of the effective coefficients,
m = (4m3, 2m3,m3).
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(d) Two-point correlation of the effective coeffi-
cients, m = (4m3, 2m3,m3).

Figure 22: Relative mean square errors with equated costs. Example 3 non separable coefficient.
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(a) Separable coefficient
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(b) Stationary coefficient
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(c) Non separable coefficient

Figure 23: Relative mean square errors for MLMC with independent samples, reused samples and
the standard MC approach with L = 3, Nb = 1000 and m = (4L−lmL, · · · , 4mL,mL).

separable stationary non separable

ErMC

Ersame
MLMC

2.3 2.1 2.1

ErMC

Erind
MLMC

1.8 1.7 1.7

Erind
MLMC

Ersame
MLMC

1.3 1.2 1.2

Table 5: Ratios between the relative mean square errors for MLMC with independent sam-
ples, reused samples and the standard MC approach with L = 3, Nb = 1000 and
m = (4L−lmL, · · · , 4mL,mL).

the accuracies of EL
same(K

∗
L), E

L
ind(K

∗
L) and Em̂(K∗

L) by equated costs. We consider the same
coefficients as in the previous paragraphs. If not otherwise stated we use the same parameters
(e.g., al, bl, Nb). To ensure m̃l ≥ m̃l+1 we choose in all examples m = (4L−lmL, · · · , 4mL,mL).
In Figure 23 the considered relative mean square errors for L = 3 for the different examples are
shown. Again we are interested in the quotient of the different errors, for example between the
relative mean square error of the MC approach and the one of the MLMC approach with reusing
the samples

1
Nb

∑Nb
j=1[e

rel
MC(K

∗
L(ωj , ω

′
j))]

2

1
Nb

∑Nb
j=1[e

rel
MLMC(K

∗
L(ωj , ω′

j))]
2
.

We denote these errors with ErMC , Er
same
MLMC and ErindMLMC . So we are interested in the ratios

ErMC

Ersame
MLMC

, ErMC

Erind
MLMC

and
Erind

MLMC

Ersame
MLMC

. These are summarized in Table 5. For all example coefficients

the behavior is about the same, the MLMC approach with reused samples is always better than
the one with independent samples. The error with independent samples is approximately 1.2
times larger. In Table 6 and Figure 24 are shown the results for the example with a stationary
coefficient for different numbers of levels. Compared to the error of the standard MC approach
the difference in the two MLMC ansatzes decreases, but the ratio between the MLMC approach
with independent and reused samples stays fixed, the error for independent samples is about 1.2
times larger than the one with reused samples.
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L = 3 L = 5 L = 7

ErMC

Ersame
MLMC

2.1 7.6 26.1

ErMC

Erind
MLMC

1.7 6.1 21.9

Erind
MLMC

Ersame
MLMC

1.2 1.3 1.2

Table 6: Ratios between the relative mean square errors for MLMC with independent samples,
reused samples and the standard MC approach for the stationary example for different
levels with Nb = 1000 and m = (4L−lmL, · · · , 4mL,mL).
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Figure 24: Relative mean square errors for MLMC with independent samples, reused samples
and the standard MC approach for the stationary example for different levels with
Nb = 1000 and m = (4L−lmL, · · · , 4mL,mL).
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14.1.3. Two dimensional example

In this section we deal with a two-dimensional microscale problem. To calculate the homogenized
coefficient we have to solve two cell problems in each coarse grid block in general, i.e.,

div(Kǫ(x, ω)∇χi) = 0, in Y x
η , i = 1, 2

with a representative volume centered at a macroscopic point x with size η, Y x
η = [x−η/2, x+η/2]2

subject to some boundary conditions. As a first step we consider a coefficient when there is a
separation in the randomness at the macroscopic and the microscopic level and no dependency on
the macroscopic space variable, more particular we study

Kǫ(x, ω) = K(
x

ǫ
, ω, ω′) := A(ω)B(

x

ǫ
, ω′).

In this case we do not have an analytical expression for the homogenized coefficient like the
arithmetic mean in the one-dimensional examples. Therefore we solve the cell problems with the
cell-centered finite volume scheme (cf. Section 7) and the parameters as in Table 4. In the second
two-dimensional problem we consider the more difficult case, when there is no separation between
uncertainties at the macro- and microscopic levels. However, we study a special case where we
can separate the space dimensions, i.e., we have (x = (x1, x2))

K(x,
x

ǫ
, ω, ω′) := K1(x1,

x1
ǫ
, ω, ω′)K2(x2,

x2
ǫ
, ω, ω′).

Here the local problems reduce to one-dimensional problems and we get an analytical expression
for the homogenized coefficient. The presented results below refer to the first entry K∗

11 of the
homogenized coefficient matrix (K∗

ij)1≤i,j≤2.

Separable coefficient For the two-dimensional case, we first study coefficients where there is a
separation in the randomness at the macro-level and micro-level, i.e.,

K(
x

ǫ
, ω, ω′) = A(ω)B(

x

ǫ
, ω′)

where A and B are both scalar valued. B is a random field with expected value E[B] = 10 and
the Gaussian covariance function

cov(x, x′) = Cov

[
B(

x

ǫ
, ·), B(

x′

ǫ
, ·)
]
= σ2 exp

(
−|x− x′|2

ǫ2τ20

)

with standard deviation σ =
√
2 and τ = ǫτ0 = 0.04. We generate samples of B with the

Karhunen-Loève expansion. We take A(ω) = exp(ω), where ω is Gaussian distributed according
to the law N(0, 1). The effective coefficient matrix is K∗(ω) = A(ω)B∗. We define levels l to
approximate the expectation of B, i.e., we solve local problems, 1 ≤ l ≤ L,

div(B(
x

ǫ
, ω′)∇χi) = 0, in [0, ηl]

2, i = 1, 2

to get a homogenized coefficient B∗
l (ω

′) at level l. Thus, at each level, we have K∗
l (ω, ω

′) =
A(ω)B∗

l (ω
′). For ml realizations at level l, 1 ≤ l ≤ L, we define

Eml
(K∗

l )(ω̃) :=
1

ml

ml∑

j=1

K∗
l (ωj , ω

′
j) =

1

ml

ml∑

j=1

A(ωj)B
∗
l (ω

′
j)
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with ω̃ = (ω1, · · · , ωml
). Note that we keep the dependence on the microscopic randomness ω′,

implicitly in this notation. We use the MLMC approach to approximate the expected value, as in
(10.1) we have

EL(K∗
L)(ω̃) =

L∑

l=1

Eml
(K∗

l −K∗
l−1)(ω̃) =

L∑

l=1

1

ml

ml∑

j=1

A(ωj)(B
∗
l (ω

′
j)−B∗

l−1(ω
′
j)).

We are interested in the errors

eMLMC(K
∗
L) =

√
E [(E[K∗

L]− EL(K∗
L))

2]

eMC(K
∗
L) =

√
E [(E[K∗

L]− Em̂(K∗
L))

2].

The theoretical reference value is E[K∗
L], which we cannot access in practice and since it is com-

putationally expensive to solve local problems on RVE [0, ηL]
2 we cannot afford many realizations

of B∗
L(ω

′
j). So the statistical error would be too large, if we approximate E[K∗

L] with the empirical
mean at level L. That is why we introduce a biased estimator K∗

ref (E[K∗
ref ] 6= E[K∗

L]), namely

E[K∗
L] ≈ K∗

ref

:=
1

L

L∑

l=1

En(Emref

l

(K∗
l )(ω̃))

:=
1

L

L∑

l=1

1

n

n∑

i=1

Emref

l

(K∗
l )(ω̃

i)

=
1

L

L∑

l=1

1

n

n∑

i=1

1

mref
l

mref

l∑

j=1

K∗
l (ω

i
j , ω

′
j)

=
1

L

L∑

l=1

1

n

n∑

i=1

1

mref
l

mref

l∑

j=1

A(ωi
j)B

∗
l (ω

′
j)

with ω̃i = (ωi
1, · · · , ωi

mref
1

), mref
l ≤ mref

l−1, where we have taken into account all the realizations on

the RVEs [0, ηl]
2. To approximate the remaining expectation we use the randomness of the coarse

scale, i.e.,

eMLMC(K
∗
L) ≈

√√√√ 1

n

n∑

i=1

[
K∗

ref − EL(K∗
L)(ω̃i)

]2

eMC(K
∗
L) ≈

√√√√ 1

n

n∑

i=1

[
K∗

ref − Em̂(K∗
L)(ω̃i)

]2
.

As mentioned above we equate the computational work of the MLMC and the MC approach and

compare the errors. For the MC approach the work is m̂
(
ηL

ǫ

)2
and for the MLMC approach we

have
∑L

l=1ml

(
ηl

ǫ

)2
. Therefore we get for the MC approach with equated costs

m̂ =

∑L
l=1ml

(
ηl

ǫ

)2
(
ηL

ǫ

)2 .
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We work with three different levels, i.e L = 3 and we denote the vector of the number of realizations
at each level with m, i.e., m = (m1,m2,m3). In our example we have n = 500 and mref =
(2000, 1000, 300). In Figure 25(a) we show the errors e2MC(K

∗
L) and e2MLMC(K

∗
L) on the first

entry of the homogenized coefficient matrix for m = (4m3, 2m3, m3). In this case we have chosen
the number of realizations per level ml according to the numerical estimated convergence rate
β (cf. Section 14.1.1). From these simulations we observe that MLMC provides smaller errors
compared to standard MC for the same amount of work. In the mean the MC square error is
approximately 2.3 times larger than the MLMC square error. In Figure 25(b) we show the errors
e2MC(K

∗
L) and e2MLMC(K

∗
L) where we use the theoretical rate βtheo to choose m. Here the MC

square error is approximately 5.2 times larger than the MLMC square error.
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Figure 25: Errors e2MC(K
∗
L) and e

2
MLMC(K

∗
L). Separable coefficient.

In Figure 26 we compare the MLMC results for the first entry [K∗
l ]11 of the effective coefficient

and the second one [K∗
l ]22. The behavior is the same and only if we consider only a small range

of M3 one can see a slight difference (cf. Fig. 26(b)). That is why we consider the first entry only
in the other examples.
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Figure 26: Errors between the first entry [K∗
l ]11 of the effective coefficient for MLMC and the

second one [K∗
l ]22. Separable coefficient.
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Non separable coefficient Next, we consider the case when there is no separation between macro-
and micro-level uncertainties. In general it is very expensive to have a sufficiently large number
of samples to reduce the statistical noise. Since in the limit of infinitely large RVEs the effective
coefficient does not depend on the choice of the boundary conditions of the local problems (cf.
([16])), we consider a special case where we can solve the local problems and thus the effective
coefficient analytically. Therefore we look at local problems with Dirichlet and no-flow boundary
conditions, i.e.,

−div
(
K(x,

x

ǫ
, ω, ω′)∇χi

)
= 0 in Yηl

χi = xi at ∂Y
D
ηl

n · ∇χi = 0 at ∂Yηl
\ ∂Y D

ηl

with ∂Y D
ηl

= {x ∈ ∂Yηl
|xi = 0 or xi = ηl}. Furthermore we assume separation of the dimensions

for the coefficient, i.e.,

K(x,
x

ǫ
, ω, ω′) = K1(x1,

x1
ǫ
, ω, ω′)K2(x2,

x2
ǫ
, ω, ω′). (14.1)

Then the local problem reduces to a one-dimensional problem in the direction xi for the function
χi that only depends on xi. Analogous to the one-dimensional case the solution reads,

χi(xi, ω, ω
′) =

(
1

ηl

∫ ηl

0

K−1
i (xi,

x̄i
ǫ
, ω, ω′) dx̄i

)−1
1

ηl

∫ xi

0

K−1
i (xi,

x̄i
ǫ
, ω, ω′) dx̄i.

We get for the first entry of the upscaled coefficient

(K∗
ηl
)11(x, ω, ω

′) =

(
1

ηl

∫ ηl

0

K−1
1 (x1,

x̄1
ǫ
, ω, ω′) dx̄1

)−1
1

ηl

∫ ηl

0

K2(x2,
x̄2
ǫ
, ω, ω′) dx̄2.

In our example we choose

K−1
1 (

x1
ǫ
, ω, ω′) = C(1 + ω) + exp

(
ωω′ sin

(x1
ǫ

))
cos
(x1
ǫ

)

K2(x2,
x2
ǫ
, ω, ω′) = C(1 + exp(5ω))x2 + (1 + x2) exp

(
(1 + x2)ωω

′ sin
(x2
ǫ

))
cos
(x2
ǫ

)

where ω and ω′ are i.i.d. random variables distributed in [0.5, 1] and C = 2e.
As in the example with the separable coefficient we consider the RVEs [0, ηl] = [0, 0.5L+1−l]

and ǫ = 0.5L

10 . To choose the number of realizations ml in the MLMC approach for each level
appropriately we estimate the convergence rate β numerically. The reference is

K∗(x, ω) = lim
η→∞

K∗
η(x, ω, ω

′) = (1 + exp(5ω))/(1 + ω)x2.

Again we use 15 different levels and the rate β is approximately 2 (cf. Figure 27). As reference
we use the MC approach with mref = 400000 realizations (ω, ω′) on the largest RVE [0, ηL]

2 =
[0, 0.5]2. Thanks to the special expression (14.1) of the coefficient we can compute a large number
of samples in this two-dimensional example. For the MLMC approach we consider three different
levels (L = 3) and according to β we choose m = (16m3, 4m3,m3) realizations. To determine
a confidence interval we repeat it for Nb = 2000 different sets of realizations. In Figure 28
we compare the accuracies of the MC and MLMC approaches for the mean and the two-point

correlation with equal costs, i.e., m̂ =
∑L

l=1 ml(
ηl
ǫ )

2

( ηL
ǫ )2

. Again, the MLMC approach is more accurate,

we find that the relative mean square error for the MC approach is approximately 5 times larger
than the one for the MLMC approach.
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Figure 27: Computed data points with corresponding regression line with slope β. 15 levels,

ǫ = 0.5L

10 , mean over 50000 samples, β = 2.3600 and lnC = 1.5888.
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(a) Relative mean square errors of the expected
value of the effective coefficients.
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correlation of the effective coefficients.

Figure 28: Relative mean square errors with equated costs and m = (16m3, 4m3,m3) for the two-
dimensional case.
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14.2. Numerical results of the homogenized solution

Next we present results for the coarse solution. This is an application of the weighted MLMC
approach (cf. Section 12). Again we start with an one-dimensional example, after that we consider
two-dimensional problems.

14.2.1. One dimensional example

As before we start with the one dimensional case where we know the reference solution exactly.
We consider the coarse problem

d

dx

(
K∗(x, ω, ω′)

d

dx
u

)
= f(x) in [0, 1]

with zero Neumann boundary conditions, u(0) = 0 and
∫ 1

0
f = 0. For each realization the

analytical solution is

u(x, ω, ω′) =

∫ x

0

(K∗(y, ω, ω′))−1

∫ y

0

f(z) dz dy.

To use an MLMC approach we need an approximation of the coarse solution on different coarse
grids. Therefore we denote the vertices of the grid with xHi , 0 ≤ i ≤ N , i.e., the mesh size is
H = xi − xi−1 = 1

N and gHi = g(xHi ) for any function g. We approximate the solution with

uHi = uHi−1 + (K∗(xHi ))−1

∫ xH
i

xH
i−1

∫ x

0

f(y) dy dx

=

i∑

j=1

(K∗(xHj ))−1

∫ xH
j

xH
j−1

∫ x

0

f(y) dy dx.

Therefor uHl

i is an approximation of u∞,Hl
(xi), i.e., there is no error due to the homogenization

of the coefficient K. If we use K∗
ηk

instead of K∗ in the above formula we have an approximation
of uηk,Hl

(xi). For Hl = cHl+1, c ∈ N, 1 ≤ l ≤ L, it is true

{xHl

i |1 ≤ i ≤ 1

Hl
} ⊂ {xHl+1

i |1 ≤ i ≤ 1

Hl+1
}.

So we are in the setting described in Section 13.3 and we can apply the weighted MLMC approach.
We consider the following example

f(x) = ex − e + 1

(K∗(x, ω, ω′))−1 = C(1 + exp(5ω))x

+
1

b− a

[
ǫ

ωω′

(
exp

(
(1 + x)ωω′ sin

(
b

ǫ

))
− exp

(
(1 + x)ωω′ sin

(a
ǫ

)))]

where ω and ω′ are random variables, uniformly distributed in [0.5, 1] and C = 2e. As before
we use the different RVEs [al, bl] = [0, 0.5L+1−l]. As reference we use the mean of the analytical
solution for b = ∞

E[u] = C(1 + exp(5 · 0.75))(exp(x)x − exp(x) − (e− 1)
x3

3
− 0.5x2 + 1).
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We consider three different levels and choose all weights equal to 1 and ǫ = b1
100 . We equate the costs

of solving the coarse grid problem for a fixed ratio of realizations per level M = (16M3, 4M3,M3)
and the grid sizes H = (14 ,

1
8 ,

1
16 ). As in the example for the coefficient we repeat the calculation

for Nb = 20000 different sets of random numbers and determine the mean and the confidence
intervals. We consider the relative mean square errors for the L2-norm, i.e., ‖E[u]− EL∗(ũ)‖2 =
E
[
‖E[u]− EL∗(ũ)‖2L2

]
. In Figure 29 you find a larger relative weighted MC L2-error compared

to MLMC, namely the MC error is about 1.2 times larger.
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Figure 29: Relative mean square L2-errors of the solution for 10 different realizations, the weight
(1, 1, 1), M = (16M3, 4M3,M3) and H = (14 ,

1
8 ,

1
16 ).

14.2.2. Two dimensional example

We consider
−div

[
K(x, ω,

x

ǫ
, ω′)∇u

]
= f in D = (0, 1)2

with homogeneous Dirichlet boundary conditions and source term

f(x) = f(x1, x2) = 100(x1 + x2).

First we assume separated scales of the coefficient of the microscale problem (cf. Section 13.2).
After that we consider a more general case where we apply weighted MLMC in two dissensions.

Separable case In this section we present numerical results for

K(x,
x

ǫ
, ω, ω′) = A(x, ω)B(

x

ǫ
, ω′)

where B is a log-normal distributed random field B = eK with K having zero mean and covariance

function cov(x, x′) = σ2 exp(− |x−x′|2
τ2 ) with σ =

√
2, τ = 0.04 For A we choose

A(x, ω) = 2 + |ω1 sin(2πx1)|+ |ω2 sin(2πx2)|+ |ω3 sin(πx1)|

with independently normal distributed ωk. Because of separability, it is sufficient to calculate the
homogenized coefficient of B in only one arbitrary macroscopic point. For MLMC for each level
1 ≤ l ≤ L we solve the coarse problem

− div
(
Ak

l (x)Eml
(B∗

l )∇ukl
)
= f in D, 1 ≤ k ≤Ml (14.2)
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with grid size Hl and for MC

−div
(
Ak

L(x)Em̂(B∗
L)∇ukL

)
= f in D, 1 ≤ k ≤ M̂

with grid size HL. As reference we solve (14.2) with ml = mref = 50 and Ml = M ref = 1000 for
all levels and calculate the mean over both the levels and the number of realizations, i.e,

Ei
Mref ,L =

1

L

L∑

l=1

1

M ref

Mref∑

k=1

ukl .

As before we have three different levels and we equate the computational costs for the co-

efficient as well as solving the coarse scale problems, i.e., m̂ =
m1η

2
1+m2η

2
2+m3η

2
3

η2
3

and M̂ =

M3H
2
3+M2H

2
2+M1H

2
1

H2
3

respectively. We denote by M = (M1,M2,M3) and m = (m1,m2,m3). In
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Figure 30: Relative L2-errors eiMC and eiMLMC of the solution for 200 different realizations, M =
(32, 32, 16), m = (50, 40, 20) .

Figure 30, we compare the relative L2-errors for MLMC and MC with M = (32, 32, 16) and
m = (50, 40, 20) for 200 independent sets of realization for the coarse problem, i.e., we consider

eiMLMC(uL) =
‖Ei

Mref ,L(uL)− Ei,L(uL)‖L2(D)

‖EMref ,L(uL)‖L2(D)

eiMC(uL) =
‖Ei

Mref ,L(uL)− Ei
M̂
(uL)‖L2(D)

‖EMref ,L(uL)‖L2(D)

with 1 ≤ i ≤ 200. Note that M is chosen based on the calculations presented in [10] (we have
also verified these calculation for finite volume methods) and we do not change the number of
realizations M and m along the x-axes, here we use different random numbers. Therefore the
error does not decrease like in the other figures. On average we gain almost a factor of 5

E200(eMLMC) = 0.1411

E200(eMC) = 0.6851
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and also the standard deviation for the MLMC approach is much smaller

stdMLMC = 0.0324

stdMC = 0.0565.

Note that the standard deviation of eiMLMC(uL) and e
i
MC(uL) coincides with the root mean square

errors considered in the theoretical part (cf. Section 13.2). The standard variation for the MC
approach is 1.7 times larger than the one for MLMC. If we consider the mean square errors as in
the previous numerical examples, we gain a factor of 3.

Non separable case In this section, we consider a non-separable case when uncertainties at
macro-scale and micro-scale are not separable. As we mentioned in this case we use a weighted
MLMC approach. For comparison we will also use the standard MLMC approach using the
elements in the diagonal of Table 3 where many upscaled computations are not taken into account
(see discussions in Section 13.3). We consider

K(x,
x

ǫ
, ω, ω′) = exp

(
A(x, ω)B(

x

ǫ
, ω′)

)
,

where B is a random field with expected value E[B] = 0 and the Gaussian covariance function

cov(x, x′) = σ2 exp(− |x−x′|2
τ2 ), with σ =

√
2 and τ = 0.04. We assume A(x, ω) is an independent

(in space) discrete random variable that takes the values Ai = 1 + 0.1i for 0 ≤ i ≤ 5 uniformly.
For each Ai we calculate the upscaled coefficient denoted by K∗

i (ω
′). As for the spatial correlation

in macroscale, we choose

K∗(x, ω, ω′) = K∗
i (ω

′) if i < ω
x1 + x2

2
≤ i+ 1

with ω i.i.d. between 0 and 5. Since we do not know the exact solution of the coarse problem we
use

E[u∗] ≈ 1

L

L∑

l=1

EMref
(uηl,Hl

)

as reference with Mref = 1000. We consider the weighted MLMC and the MLMC approach.
In both cases we use M = (200, 100, 50). That guarantees the same costs for solving the coarse
grid problems for the weighted MLMC and the MLMC approach. Note that the total costs for
the MLMC approach are higher than for weighted MLMC, since we compute samples of the
homogenized coefficients for Ml and Ml−Ml−1, respectively. For the MC approach we equate the

costs for solving the coarse grid problems, i.e., M̂ =
∑L

l=1
MlH

−2
l

H−2
L

.

For weighted MLMC we use the weights (1, 67 ,
4
7 ). This choice guarantees the same order of the

systematic error for MC and MLMC and the constant in front of the exact solution is one, i.e.,
we have

MLMC: ‖Cu∗ − ũ‖ = O(HL + δL)

MC: ‖u∗ − uηL,HL
‖ = O(HL + δL)

with C = 1. Our numerical results yield the following relative mean square L2 errors of 200
samples
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MLMC: 0.0050
weighted MLMC: 0.0016
MC: 0.0023

In Figure 31, L2-errors for MLMC, weighted MLMC and MC are plotted. Note we do not
change the number of realizations M along the x-axes, we use here different random numbers.
Therefor the error does not decrease as in the other figures. We see from this figure that weighted
MLMC is more accurate.
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Figure 31: L2-error for weighted MLMC, MLMC and MC with M = (200, 100, 50) and the weights
(1, 67 ,

4
7 ).

The reference solution, the weighted MLMC and the MC solution are plotted in Figure 32.

(a) reference solution (b) weighted MLMC (c) MC

Figure 32: Plots of the reference solution and the solutions calculated with weighted MLMC and
MC.
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Part III.

Using multi-level Monte Carlo with
two-phase flow and transport
In this part we consider two-phase flow and transport in heterogeneous subsurface formations.
In those simulations one has to deal with a rich hierarchy of spatial spaces and uncertainties.
Typically, one approximates the solution on a coarse grid. These approaches include upscaling or
multiscale methods [20, 29]. The previous parts are addressed to homogenization. In this part
we discuss multiscale methods where we construct multiscale basis functions for each coarse-grid
block to solve the problem on a coarse grid inexpensively. Due to the uncertainties this might still
be expensive, though; one has to solve for a large number of samples to make accurate predictions.
Techniques including ensemble level upscaling [19] or multiscale methods [4] are proposed to reduce
the number of simulations in Monte Carlo methods. In this part we combine a multi-level Monte
Carlo method with two different ensemble level multiscale mixed finite element methods (MsFEM)
- no-local-solve-online (NLSO) and local-solve-online (LSO) ensemble level MsFEM - to reduce
the computational costs ([30]). In both methods, the LSO and the NLSO multiscale methods,
one selects a number of samples and generates for each of these the corresponding multiscale basis
functions. With these basis functions a multiscale space is constructed. An advantage of such
an approach (cf. [4]) is that one does not need to generate a coarse space for each new selected
realization. One simply projects the global solution onto the multiscale space. The accuracy of the
coarse-grid simulations depends on the number of multiscale basis functions used to construct the
multiscale space. In particular, the simulation is more accurate if more realizations are selected
to generate multiscale basis functions.
Additionally, the accuracy is influenced by the choice of boundary conditions for the multiscale

basis. We consider local boundary conditions and boundary conditions using limited global infor-
mation. The global boundary conditions are more accurate, but computationally more expensive
(cf. [5])
We apply multi-level Monte Carlo as follows. Each level is represented by a multiscale space

generated with a different number of samples. We run more forward coarse-grid simulations using
the smaller dimensional multiscale spaces and less simulations using the higher dimensional space.
We show that we achieve a higher accuracy by combining these approaches than for standard MC
for the same computational costs. The number of selected realizations per level in MLMC depends
on the convergence with respect to the coarse space dimension. One can estimate this rate based
on a small number of apriori computations.
The part is organized as follows. In Section 15.2 we introduce the considered model problem.

Section 15.3 is addressed to the mixed multiscale finite element method, Section 16 to the two
different ensemble level multiscale approaches (NLSO and LSO). In Section 17 we combine these
approaches with multi-level Monte Carlo and in Section 18 we present numerical results.

15. Preliminaries

15.1. Physical quantities

In this part we consider two-phase flow and transport in porous media. For further understanding
we introduce some physical quantities (cf. [39]). In an unsaturated media one distinguishes three
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different phases in general, the wetting phase, the non-wetting phase and a gas phase. To build
different phases the fluids may not mix. Fluids with different physical properties (e.g., hydrophilic
and hydrophobical) can build different phases. Since gases are always miscible there exists one
gas phase only. We consider only saturated zones with two different phases, the wetting and
non-wetting phase. In the following referred to as water (w) and oil (o) phase, respectively. With
a porous media we denote a solid body with pores, which are at least partly connected. The rock
properties, determined as volume fractions and distributions of the pores, are parameters of the
multi-phase flow in a reservoir. The void volume fraction of the medium is the rock porosity, i.e.,

φ :=
void volume

medium volume
, 0 ≤ φ ≤ 1.

In a multi-phase setting the porosity φα of phase α (α = w or α = o) denotes the ratio of the
void volume filled with phase α and the total volume. It is assumed that all pores are filled
with the different phases and the volume fraction occupied by each phase is the saturation of the
corresponding phase, i.e.,

Sα :=
φα
φ
, 0 ≤ Sα ≤ 1.

Therefore we have ∑

α

Sα = 1.

The permeability k indicates the ability of the medium to transmit a single fluid. In general the
permeability in the different directions depends on the other directions, i.e., k is a tensor. If there
is more than one phase, the permeability of each phase depends on the presence of the other fluids.
Thus we introduce the so-called relative permeability krα(Sw), 0 ≤ krα ≤ 1, as a dimensionless in
general nonlinear function of the saturation. Due to the tension at the interface of two different
phases the phase pressures pα are different, the capillary pressure is defined as this difference

pc := po − pw.

Usually it is assumed that the capillary pressure depends on the saturation only. With ρα and µα

we denote the density and viscosity of phase α, respectively.

15.2. Two-phase flow and transport model

We consider the flow of two phases (cf. [39]), one phase water and one phase oil, denoted with
the subscripts w and o, respectively. The flow takes place in a reservoir denoted with D. For each
phase α the continuity equation reads

∂ (Sαφρα)

∂t
+ div (ραvα) = ραqα (15.1)

with the phase source qα which models sources for qα > 0 and sinks for qα < 0 and the phase
velocity vα. To model the phase velocity a generalized Darcy law is used, namely

vα = −krα(Sw)

µα
k (∇pα − ραG) , (15.2)

with the gravitational pull-down force G depending on the gravitational constant g. In the follow-
ing we rewrite the two continuity equations into a system consisting of a pressure and a saturation
or fluid-transport equation. First we introduce the phase mobility

λα(Sw) =
krα(Sw)

µα
.
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Pressure equation After expanding the derivatives in space and time and dividing by the phase
densities, we get for (15.1)

∂φ

∂t
Sα + φ

∂Sα

∂t
+ φ

Sα

ρα

∂ρα
∂t

+ div vα +
vα · ∇ρα

ρα
= qα. (15.3)

If we sum the equations (15.3) for each phase with

v = vw + vo

q = qw + qo

we get

q =
∂φ

∂t
(Sw + So) + φ

∂(Sw + So)

∂t
+ φ

Sw

ρw

∂ρw
∂t

+ φ
So

ρo

∂ρo
∂t

+ div v +
vw · ∇ρw

ρw
+
vo · ∇ρo
ρo

=
∂φ

∂t
+ φ

Sw

ρw

∂ρw
∂t

+ φ
So

ρo

∂ρo
∂t

+ div v +
vw · ∇ρw

ρw
+
vo · ∇ρo
ρo

.

Here we used 1 = Sw + So. For simplicity we assume that the rock and the fluid phases are
incompressible, i.e all terms with derivatives (spatial and time) of the porosity φ and the phase
densities ρα vanish. The above equation reduces to

div v = q

with

v = vw + vo

= −
(
krw(Sw)

µw
k (∇pw − ρwG) +

kro(Sw)

µo
k (∇po − ρoG)

)

= − (λw(Sw)k (∇pw − ρwG) + λo(Sw)k (∇po − ρoG)) .

With the capillary pressure we can write pw = po − pc(Sw). It follows

v = − (λw(Sw)k [∇(po − pc(Sw))− ρwG] + λo(Sw)k [∇po − ρoG])

= − [λw(Sw) + λo(Sw)] k∇po + k [λw(Sw)ρw + λo(Sw)ρo]G+ λw(Sw)k∇pc(Sw)

= −λ(Sw)k∇po + k [λw(Sw)ρw + λo(Sw)ρo]G+ λw(Sw)k∇pc(Sw)

with the total mobility λ(Sw) = λw(Sw) + λo(Sw). So we end with the following elliptic equation
for the pressure

− div (λ(Sw)k∇po − k [λw(Sw)ρw + λo(Sw)ρo]G− λw(Sw)k∇pc(Sw)) = q (15.4)

with some boundary conditions. It is common to impose no-flow boundary conditions.

Saturation equation To complete the model we derive equations for the phase saturations Sw

and So with the help of the continuity equation (15.1) of each phase. Since we have 1 = Sw + So

we need only one saturation equation. We pick Sw as second unknown. The continuity equation
for the water phase gives
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0 =
∂ (Swφρw)

∂t
+ div (ρwvw)− ρwqw

=
∂ (Swφρw)

∂t
+ div

(
ρw

λw
λw + λo

(
1 +

λo
λw

)
vw

)
− ρwqw

=
∂ (Swφρw)

∂t
+ div

(
ρw

λw
λw + λo

(
vo + vw − vo +

λo
λw

vw

))
− ρwqw

=
∂ (Swφρw)

∂t
+ div

(
ρw

λw
λw + λo

(
v − v0 +

λo
λw

vw

))
− ρwqw

=
∂ (Swφρw)

∂t
+ div

(
ρw

λw
λw + λo

(
v + λok (∇po − ρoG)−

λo
λw

λwk (∇pw − ρwG)

))
− ρwqw

=
∂ (Swφρw)

∂t
+ div

(
ρw

λw
λw + λo

(v + λok (∇(po − pw)− ρoG+ ρwG))

)
− ρwqw

=
∂ (Swφρw)

∂t
+ div

(
ρw

λw
λw + λo

v

)
+ div

(
ρw

λoλw
λw + λo

k (∇pc − ρwG+ ρoG)

)
− ρwqw

=
∂ (Swφρw)

∂t
+ div (ρwfv) + div (ρwλofk (∇pc − ρwG+ ρoG))− ρwqw

with

f(Sw) =
λw(Sw)

λ(Sw)
.

As before we assume incompressibility, this leads to

φ
∂Sw

∂t
+ div (fv) + div (λofk∇pc) + (ρoG− ρwG) div (λofk) = qw. (15.5)

To have a complete description of the model boundary, e.g., no-flow, and initial conditions have to
be imposed. This saturation equation (15.5) is a parabolic equation in general, but on a reservoir
scale the effects of the capillary pressure are usually dominated by the viscous and gravity forces,
represented by fv and Gv, respectively. Then the saturation equation becomes hyperbolic.

Two-phase flow and transport equation In the following we assume that the displacement is
dominated by viscous effects, i.e., we neglect the effects of gravity, compressibility, and capillary
pressure, and consider the porosity to be constant. Since po−pw = const we neglect the subscript

and with S we denote the water saturation. Then Darcy’s law of each phase reads vα = −krα(S)
µα

k ·
∇p. Thus the above equations (15.5) and (15.4) simplify to

− div(λ(S)k∇p) = q, ∀x ∈ D (15.6)

φ
∂S

∂t
+ div(vf(S)) = qw, ∀x ∈ D, t ∈ [0, T ] (15.7)

with v = −λ(S)k · ∇p, almost everywhere in Ω. In our application we assume the permeability to
be random. To ensure the existence of a unique solution p of (15.6) we assume the permeability k
is uniformly bounded and coercive, in the sense that there exist two positive deterministic numbers
0 < kmin ≤ kmax such that for any ξ ∈ Rd and any 1 ≤ i, j ≤ d

kmin|ξ|2 ≤ ξTk(x, ω)ξ, | [k(x, ω)]ij | ≤ kmax
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almost everywhere in D and almost surely. We use a single set of relative permeability curves.
The above equations (15.6) and (15.7) are non-linearly coupled, mainly through the saturation-
dependent mobilities λα in the pressure equation (15.6) and through the pressure-dependent ve-
locity v in the saturation equation (15.7). For each time step we solve (15.6) for the velocity with
the saturation of the previous time step. With this velocity we solve (15.7) for the saturation. In
the following Sections 15.3, and 16 we show how we solve the pressure equation 15.6 for many dif-
ferent realizations of the permeability and in Section 15.4 we introduce an implicit upwind scheme
in combination with the Newton method to determine the solution of the hyperbolic equation
(15.7). In Section 17 we combine these techniques with a multi-level Monte Carlo approach to
estimate the expectation of the water saturation S. In our numerics (cf. Sec. 18) we will consider
two different cases: single-phase flow (λ(S) = 1 and f(S) nonlinear) and two-phase flow. In both
cases, we will compare the saturation field at a certain time instant. Note that in this context the
considered equation in Parts I and II can be seen as the pressure equation for single-phase flow.

15.3. Mixed multiscale finite element methods

In this section we present a mixed multiscale finite element method (MsFEM) following [3, 29]
which we use to solve the elliptic pressure equation (15.6). First we discuss how to solve a
deterministic pressure equation, which corresponds to a permeability k(x, ω) for a fixed ω. Later
we extend this method to a stochastic version. For a fixed permeability realization we write the
equation in a mixed form

(λk)−1v +∇p = 0 in D

div(v) = q in D

λ(x)k(x)∇p · n = g(x) on ∂D.

(15.8)

For simplicity, we assume Neumann boundary conditions. With Vh ⊂ H(div, D) := {u : u ∈
(L2(D))d, div u ∈ L2(D)} and Qh ⊂ L2(D)/R we denote finite dimensional spaces and let V 0

h =
Vh∩H0(div, D), where H0(div, D) is H(div, D) with Neumann homogeneous boundary conditions.
By multiplying with test functions (uh, bh) ∈ Vh×Qh and integrating by parts we get the numerical
approximation of (15.8) on the fine grid. It reads: Find {vh, ph} ∈ Vh ×Qh such that vh · n = gh
on ∂D and

((λk)−1vh, uh)− (divuh, ph) = 0 ∀uh ∈ V 0
h

(divvh, bh) = (q, bh) ∀bh ∈ Qh,
(15.9)

with the usual L2 inner product, (·, ·). The idea behind the mixed MsFEM is to approximate
the velocity using multiscale basis functions which contain the small-scale features. Therefor
these multiscale basis functions are constructed for each edge of every block. To approximate the
pressure field we use piecewise constant functions. To construct the multiscale basis we define a
partitioning of the domain in polyhedral elements

⋃
Di = D. Let I be the multi index set of

index pairs of two neighboring blocks, i.e if Di ∩Di′ 6= ∅, ι = {ii′} ∈ I. This interface we denote
with Γι := Di ∩ Di′ for ι ∈ I. For Γι we define a multiscale basis function Ψι,k = −k(x)∇wι,k
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no-flow boundary
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gι Ki′
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Figure 33: Local problem to solve for multiscale basis.

where wι,k is the solution of the auxiliary problem

(−div(k(x)∇wι,k)) |Di
=





1
|Di| if

∫
Di
q = 0

q∫
Di

q
else,

(−div(k(x)∇wι,k)) |Di′
=





−1
|Di′ |

if
∫
Di′

q = 0

−q∫
D

i′
q

else,

−k(x)∇wι,k · nii′ =

{
gι on Γι

0 else,

(15.10)

where the choice of gι will be discussed later and nii′ is the normal pointing from Di to Di′ (see
Figure 33).
Then the finite dimensional approximation space of the velocity is defined as

Vh(k) :=
⊕

ι∈I
{Ψι,k},

V 0
h (k) := Vh(k) ∩H0(div, D).

Note that this space Vh(k) corresponds to a fixed realization of the permeability. In the stochastic
framework we determine Vh(kj) for many realizations kj of the permeability and construct the
approximation space Vh in two different ways, which we introduce in Sections 16.1 and 16.2. The
approaches are based on ensemble level methods.
The accuracy of the mixed MsFEM can be affected by the choice of boundary conditions gι in

(15.10). In the following subsections we introduce two different kinds of boundary conditions, local
and global ones. Note that one has to solve a single-phase flow problem for the global boundary
conditions.

15.3.1. Mixed MsFEM using local boundary conditions

Piecewise constant coarse-scale fluxes on the boundary of the coarse elements, i.e., gι =
1

|Γι| are

used in [21]. However, the choice of piecewise constant boundary conditions can lead to large
errors between the solution of the original problem and the mixed MsFEM solution. In general, it
is possible to consider any boundary conditions that involve local information, e.g., permeabilities
in local domains. In this case the boundary condition does not contain any fine-scale features that
are in the velocity of the reference solution.
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15.3.2. Mixed MsFEM using global boundary conditions

For accurate solutions the boundary conditions should contain fine-scale features. In [21, 40] the
authors introduce an oversampling method. Here the main idea is to use larger regions for local
problem computations and then for the computation of the multiscale basis functions they use
only interior information. However, these approaches are not conservative on the fine grid, which
is the reason why we follow [29, 3, 4, 5, 47] where limited global information is used. As in
[4] as boundary condition for a fixed realization of the permeability kj(x) = k(x, ωj) and edge
Γι = Di ∩Di′ we choose

gι(kj) =
vj · nii′∫

Γι
vj · nii′ds

(15.11)

with the “global” velocity solution vj which solves (15.8) with the coefficient kj(x) . We note that
the construction of the coarse space requires a solution of a single-phase flow problem besides the
local solves for basis functions for each coefficient kj(x). That is the reason why global approaches
are computationally more expensive, but more accurate for a given permeability field ([5]). In
Sections 19.1 and 20.1 we discuss the accuracies of the two different types of boundary conditions
within ensemble level mixed MsFEM context.

15.4. Implicit scheme for solving the saturation equation

After we have introduced the mixed MsFEM in the previous section to solve the pressure equation
(15.6) we consider a numerical scheme to solve the time dependent hyperbolic transport equation
(15.7) in this section. We combine an implicit upwind scheme with the Newton method. The
implicit upwind scheme coincides with a first order discontinuous Galerkin scheme (cf. [48]). First
we approximate the time derivative with the difference quotient, i.e.,

∂S(x, t)

∂t
≈ Sk+1(x)− Sk(x)

∆t

with Sk(x) := S(x, tk) and ∆t := tk+1 − tk. Then we use the following approximation instead of
equation (15.7)

φ
Sk+1(x)− Sk(x)

∆t
+ θdiv (f(Sk+1)v) + (1 − θ)div (f(Sk)v) = qw (15.12)

with 0 ≤ θ ≤ 1. Thereby the choice θ = 0 corresponds to a fully explicit scheme and θ = 1 to an
implicit scheme. If we assume that the saturation is piecewise constant we can write

S(x, t) =

N∑

i=1

Si(t)ϕi(x)

with

ϕi(x) =

{
1, if x ∈ Di

0, else.

If we multiply (15.12) with a piecewise constant basis function ϕi and integrate over the domain
D we get by applying the Gauss theorem:

φ
|Di|
∆t

(
Sk+1
i − Sk

i

)
+ θ

∫

∂Di

[f(Sk+1)v] · n+ (1 − θ)

∫

∂Di

[f(Sk)v] · n = Qi
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with Qi =
∫
Di
qw. Since the flux f(S) over the boundary may be discontinuous we replace it with

a numerical consistent and conservative flux

f̂(S)ii′ =

{
f(Si), if v · nii′ ≥ 0

f(Si′), if v · nii′ < 0

for the normal nii′ pointing from Di to the neighbor cell Di′ . The boundary integral reads

∫

∂Di

[f(Sk)v] · n =
∑

Γii′=Di∩Di′

∫

Γii′

[f(Sk)v] · nii′

≈
∑

Γii′=Di∩Di′

f̂(Sk)ii′

∫

Γii′

v · nii′

=
∑

Γii′=Di∩Di′

f̂(Sk)ii′vii′

with vii′ :=
∫
Γii′

v · nii′ . Then our numerical upwind scheme reads

Sk+1
i − Sk

i +
∆t

|Di|φ
∑

Γii′

(
θf̂(Sk+1)ii′vii′ + (1− θ)f̂(Sk)ii′vii′

)
=

∆t

|Di|φ
Qi.

We consider a fully implicit discretization, i.e., θ = 1 to allow arbitrary time steps. In the following
we assume that Sk

i is known for all i, 1 ≤ i ≤ N and we are interested in the unknown saturation
in the whole reservoir for t = tk+1. We define the vector S = (Sk+1

i )1≤i≤N and the function

H(S) =


Sk

i − Si −
∆t

|Di|φ
∑

Γii′

(
f̂(S)ii′vii′

)
+

∆t

|Di|φ
Qi




1≤i≤N

.

The unknown saturation vector is a zero of this function and we use the Newton method to
compute the saturation for each time step. The Newton method reads

Sn+1 = Sn − (DH(Sn))−1H(Sn)

with the Jacobian matrix DH(S) of H(S). Note that Sn denotes the Newton iteration after n
steps and is does not coincide with Sn. However, if we use the start vector S0 = Sk, the Newton
methods converges to the saturation of the next time step. Crucial for this method is to know
the velocity in advance. To solve the system of the pressure and saturation equation (15.6) and
(15.7) we solve (15.6) with mixed MsFEM for the velocity with the total mobility depending on
the saturation of the previous time step λ(Sk) and with this velcotiy we solve (15.7) with the
above scheme to compute Sk+1.

16. Ensemble level methods for mixed multiscale finite element
methods

The ensemble level method was introduced in [19]. Here the authors use it to statistically estimate
upscaled two-phase functions, e.g., the total mobility or the flux functions. The main idea is to
use a few realizations to cluster some coarse block attributes and to compute the cumulative dis-
tribution functions for the corresponding upscaled two-phase functions. They use this information

100



to statistically estimate the upscaled two-phase functions for arbitrary realizations. We apply an
ensemble level approach in combination with the above described mixed multiscale FEM (cf. Sec
15.3).
The main idea of ensemble level multiscale methods is to use precomputed multiscale basis

functions depending on a few ensemble members to solve the problem for any member of the
ensemble.
In this section we introduce two ensemble level methods for mixed MsFEM, the no-local-solve-

online ensemble level method (NLSO) and the local-solve-online ensemble level method (NLSO).
The computations are divided into offline and online computations. In both methods we construct
sets of basis functions based on a few (Nl) realizations of the permeability in the offline stage.
We choose the realizations randomly or we use proper orthogonal decomposition (POD). We use
POD to find best local basis functions with respect to the velocity.
In general we can also choose offline realizations following the techniques used in reduced basis

methods (cf.[51, 52]). For both methods we can use either boundary conditions using global
single-phase flow information or local information.

16.1. No-local-solve-online ensemble level multiscale method (NLSO)

The no-local-solve-online ensemble level multiscale method was introduced in [4] to construct a
multiscale basis for the velocity approximation space Vh. Again the main idea is to use precom-
puted quantities for a few realizations to compute the quantities for arbitrary realizations.
In particular, we solve (15.10) for a few coefficients kj(x) = k(x, ωj), 1 ≤ j ≤ Nl at each interior

edge Γι and compute the multiscale basis functions Ψι,kj
(x) = −kj(x)∇wι,kj

These basis functions
are used to solve the equation on a coarse grid without recomputing the basis functions for an
arbitrary realization of the permeability. Following [4], we employ an approximation space for the
velocity that is defined for multiple k, i.e., we use

V NLSO
h :=

Nl⊕

j=1

Vh(kj).

In the NLSO approach one does not compute a basis for each realization, but the coarse space
of all the precomputed basis functions is used to solve the equation on a coarse grid. Therefore
we solve the equations on a Nl × |I| coarse space (since we have Nl basis functions on each edge
instead of one).
First we solve (15.8) on a coarse grid with the help of the precomputed multiscale basis. Then

we use the velocity solution to solve the transport equation (15.7) with an implicit scheme to
determine the saturation.
Since the basis functions do not change during the online stage, we can precompute the integrals

such as
∫
Ψι,kj

Ψι′,k′
j
.

To identify the best local basis we use proper orthogonal decomposition. Therefore we compute
the NPOD eigenvalues with the largest absolute value and the corresponding eigenvectors Ṽi =
(Ṽ 1

i , · · · , Ṽ Nl

i )T , 1 ≤ i ≤ NPOD, of the matrix BT
ι Bι. The matrix of precomputed multiscale

basis functions for an edge ι we denote with Bι, i.e., of Bι =
(
Ψι,kj

)
1≤j≤Nl

. Let V be the

matrix of the scaled eigenvectors, i.e., for each column of the matrix it holds: Vi = 1∑Nl
j=1 Ṽ j

i

Ṽi.

The POD multiscale basis functions are the columns of B̃ = BV . We have implemented the POD
approaches using the L2 inner product of the velocity. This approach increases the accuracy of the
approximation of the velocity and the saturation (cf. Sections 19.1, 20.1). In the POD approach
the improvement is larger for the velocity since we consider the L2 inner product of the velocity.
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It is not clear if this inner product is optimal for the quantity of interest: the water saturation.
The choice of an optimal inner product for the saturation will be investigated in future work. If
we combine the ensemble level mixed method with multi-level Monte Carlo we have not observed
any gain using the POD approach (cf. Sections 19.3, 20.3).

16.2. Local-solve-online ensemble level multiscale method (LSO)

The local-solve-online ensemble level multiscale method is similar to a reduced basis approach (e.g.,
[28, 51]). We apply the LSO approach in the context of mixed multiscale FEM as follows. The
offline part is to construct sets of basis functions based on a few (Nl) realizations of the coefficient
kj(x) = k(x, ωj), 1 ≤ j ≤ Nl. In comparison to reduced basis methods where the realizations
fulfill special properties (e.g., [51]), we choose these realizations randomly. After we have solved

(15.10) for each realization (cf. Section 15.3) we define the space V ι
h :=

⊕Nl

j=1 Ψι,kj
for every edge

ι = {ii′}. In this space V ι
h we approximate the solution w̃ι,k̃ of the auxiliary problem (15.10) with

the coefficient k̃(x) = k(x, ω̃) for some random ω̃ in the online phase. As approximation space for
the velocity we now define

V LSO
h :=

⊕

ι∈I
{Ψ̃ι,k̃},

for Ψ̃ι,k̃ = −k̃(x)∇w̃ι,k̃.
For each computed multiscale velocity we solve the transport equation (15.7) to compute the

saturation.
In this approach we use a different multiscale basis for each coefficient. That is the reason why

the integrals
∫
Ψ̃ι,k̃Ψ̃ι′,k̃ over a coarse block cannot be precomputed. However, since each basis

function Ψ̃ι,k̃ is a linear combination of the precomputed basis functions Ψι,kj
, 1 ≤ j ≤ Nl, the

calculations can be done inexpensively using precomputed quantities.
As in the previous approach, NLSO, we can use POD to find the best local basis. Again we

observe an improvement in the numerical simulations for approximating the velocity and the
saturation (cf. Sections 19.1, 20.1). We have not observed any gain of the POD approach in
combination with the multi-level Monte Carlo approach.

16.3. Comparison of LSO and NLSO approaches

In contrast to the NLSO method, the online stage of the LSO method is divided into two parts.
The first step is to construct a multiscale basis for a particular realization. Therefore we solve in
each interior edge of the coarse domain a local problem of size N2

l . The second step is to solve
the global problem on a coarse grid by projecting the solution. In the NLSO approach we solve
the equations on a Nl times larger coarse space (since we have Nl basis functions on each edge
instead of one). In Figure 34 we summarized the main steps of the NLSO and LSO approach.
In the NLSO case we approximate the velocity with

v =
∑

ι∈I

Nl∑

j=1

cιjΨι,kj

and in the LSO approach with

v =
∑

ι∈I
cιΨ̃ι,k̃ =

∑

ι∈I
cι

Nl∑

j=1

cjΨι,kj
.
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Solve for velocity in V NSLO
h

Define velocity approximation space:

V NSLO
h =

⊕Nl

j=1 Vh(kj)

Solve for saturation

Solve for velocity in V SLO
h

Define velocity approximation space:

V LSO
h =

⊕
ι Ψ̃ι,kml

For each edge ι solve for

a multiscale basis Ψ̃ι,kml
∈⊕Nl

j=1Ψι,kj

Select NL realizations of the permeability:
kj,1 ≤ j ≤ NL

For each realization kj

solve a single-phase flow problem

to obtain a global velocity solution vj.

Define Vh(kj) =
⊕

ιΨι,kj .

For each realization kj and edge ι

solve for a multiscale basis function Ψι,j

depending on the global velocity vj.

Select an abitrary realization of the permeability kml
:

Online stage

Solve for saturation

NLSO MsFEM LSO MsFEM

Offline stage

Figure 34: Steps of the two multiscale methods, of NLSO and LSO.

This is exactly the same if we have the freedom to choose cj . Note that the coefficients cj in LSO
is determined from the solution of local problems that compute basis functions.
As mentioned above global boundary conditions are more expensive than local ones, but more

accurate. That was demonstrated in [49, 29] theoretically and numerically. This is particularly
true when the problem is solved multiple times. Next we state that we cannot use LSO type
approaches due to the fact that we have use local boundary conditions in the online stage if an
accurate solution is sought.
The costs of the online computations of the NLSO approach do not depend on the choice of the

boundary conditions gι. That is why it is reasonable to choose limited global boundary conditions.
The first part of the online computations of the LSO method is to solve the auxiliary problem

(15.10). Boundary conditions using global information would increase the computational cost of
the method. Therefore we choose local boundary condition for the online part of the LSO method
(global for the offline part). With this choice of boundary conditions the computational costs for
NLSO and LSO are comparable. The NLSO approach is more accurate than the LSO method if
global boundary conditions are used as we will show in Sections 19.1 and 20.1.

17. Multi-level Monte Carlo using ensemble level mixed
multiscale finite element methods

In Section 11.1 we presented the multi-level Monte Carlo method in a general framework. In
this section we apply it to approximate the expected value of the water saturation. Therefor we
combine it with the previously (cf. Sections 16.1, 16.2) introduced numerical methods. We use
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the NLSO and LSO approach to calculate the water saturation Sl where Nl realizations of the
permeability field are chosen to compute the basis for the whole ensemble. In this case different
levels correspond to different accuracies in the velocity approximation space Vh. We are interested
in the expected value of the saturation with a large number of precomputed basis functions NL. We
use levels which are less accurate and less computational expensive to approximate the quantity
of interest. Particularly, we assume ‖Sl − S‖ ∼ 1

Nβ

l

, with N1 ≤ N2 ≤ · · · ≤ NL and β > 0. As

introduced earlier we use a multi-level approximation to approximate the expectation E[SL]

EL(SL) =

L∑

l=1

EMl
(Sl − Sl−1) ,

where EMl
denotes the arithmetic mean with Ml samples. Again, we consider the root mean

square errors

‖E[SL]− EL(SL)‖ :=
(
E[
∣∣∣∣∣∣E[SL]− EL(SL)

∣∣∣∣∣∣2]
) 1

2

with an appropriate norm |||·|||. Analogously to the analysis in Section 11 we get

‖E[SL]− EL(SL)‖ .

L∑

l=2

1√
Ml

1

Nβ
l

+
1√
M1

.

To equate the error terms we choose

Ml = C




N2β

L , l = 1(
NL

Nl

)2β
, 2 ≤ l ≤ L,

(17.1)

then we end with

‖E[SL]− EL(SL)‖ = O

(
1

Nβ
L

)
.

To predict the saturation field we select at each level l a different number of realizations of the
permeability field Nl, N1 ≤ N2 ≤ · · · ≤ NL, to build a low dimensional approximation space Vh for
the velocity that captures both small scale (sub coarse-grid) spatial variability in the permeability
data and stochastic variability due to uncertainties in the data. In particular, we calculate the
velocity at level l for Ml realizations with one of the ensemble level mixed MsFEMs to compute
the saturations Sl,m with 1 ≤ l ≤ L and 1 ≤ m ≤ Ml with the upwind method. With these
saturations we build the MLMC approximation of the expected value of the fine scale saturation.
For clarity we summarize the basic steps below.

Offline computations

1. Generation of coarse grid.

• Partition the domain into a coarse grid. The coarse grid is a partitioning of the
fine grid where each cell in the fine grid belongs to a unique block in the coarse
grid and each coarse grid block is connected. [7].

2. Select NL realizations from the stochastic permeability distribution kj(x), 1 ≤ j ≤ NL.

3. Construction of the multiscale approximation space Vh(kj), 1 ≤ j ≤ NL:

• For each selected realization 1 ≤ j ≤ NL:
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− Solve (15.8) on the fine grid using a suitable mass conservative numerical
method to obtain a “global” velocity solution vj .

− Compute the multiscale basis functions: For each edge Γι, ι = {ii′}, set

gι(kj) =
vj · nii′∫

Γι
vj · nii′ds

,

and solve (15.10) to obtain wι,kj
and subsequently Ψι,kj

.

− Define Vh(kj) =
⊕

ι∈I Ψι,kj
.

4. NLSO: Construction of the multiscale approximation space V NLSO
h at level l, 1 ≤ l ≤

L:

• Define V NLSO
h =

⊕Nl

j=1 Vh(kj).

Online computations

5. Multi-level mixed MsFEM computations for estimating an expectation at level l, 1 ≤
l ≤ L:

• Select Ml realizations of the permeability kml
, 1 ≤ ml ≤Ml.

• LSO: Construction of the approximation space V LSO
h

− Compute basis functions: Ψ̃ι,kml
∈ V ι

h =
⊕Nl

j=1 Ψι,kj
by solving (15.10) with

kml
and local boundary conditions.

− Define V LSO
h =

⊕
ι∈I{Ψ̃ι,kml

}.
• Solve two-phase flow and transport (15.6)-(15.7) for Sl,m. At each time step, the
velocity field is constructed by solving (15.6) on a coarse grid using NLSO or LSO,
respectively.

• Calculate the arithmetic mean

EMl
(Sl − Sl−1) =

1

Ml

Ml∑

m=1

(Sl,m − Sl−1,m) .

6. MLMC approximation of E[SL]

EL(SL) =

L∑

l=1

EMl
(Sl − Sl−1).

17.1. Computational cost

Next, we discuss the computational costs for the MLMC and the standard MC methods. Since
the multiscale basis functions are fixed throughout the simulations, we ignore the cost of pre-
computations in all cases. We assume we solve the pressure equation optimally. Then, for the
NLSO method, the computational costs for solving the pressure equation each time instant with
Nl basis function sets (at level l) for a coarse grid with mesh size Hj are 2

(
H−1

j − 1
)
N2

l H
−1
j .

Note that the number of interior edges is 2
(
H−1

j − 1
)
H−1

j . For the LSO method we solve at

each interior edge an N2
l sized problem and solving the pressure equation for only one set of basis

functions we get 2
(
H−1

j − 1
) (
N2

l + 1
)
H−1

j . Note that we have almost the same numerical costs
for NLSO and LSO and in the following we neglect the costs of solving the pressure equation
for one set of basis functions in the LSO case. So we end with the same numerical costs for the
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NLSO and LSO approach. In the LSO approach the multiscale basis of each edge can be solved
in parallel, such that the computational time for the LSO ansatz is much smaller. As in Part II,
in our simulations, we equate the costs of solving the pressure equation for MC and MLMC and
compare the accuracy of these approximations. Although for single-phase flow this comparison is
accurate (up to the cost of computation of basis functions), one needs to take into account the
cost of solving the saturation equation in two-phase flow and transport simulations. To solve for
the saturation we use a coarse-grid velocity field so the computational costs at each time instant
are the same at any level. However, the cost of solving the pressure equation is larger than that
for the saturation equation on a coarse grid, because there are more degrees of freedom and the
convergence of iterative solvers requires many iterations for multiscale problems. Since in the
NLSO method we use several basis functions per coarse edge and in the LSO multiscale method
we have to calculate the velocity approximation space online, the cost of computing the pressure
solution can be several times larger than that of the saturation equation because the coarse system
is several times larger for the pressure equation. That is why we will ignore the costs of saturation
computation on a coarse grid in two-phase flow examples.
We have the following computational costs for MLMC based on pressure:

WMLMC =

L∑

l=1

(
2
(
H−1

j − 1
)
N2

l H
−1
j

)
Ml

= 2N2β
L H−1

j (H−1
j − 1)

(
L∑

l=2

N2−2β
l +N2

1

)
.

We compare the costs with the computational costs for MC

WMC =
(
2
(
H−1

j − 1
)
N̂2H−1

j

)
M̂.

In our numerical simulations, we will equate the work and compare the accuracy of MLMC and
MC.
If we increase the dimension of the coarse space (corresponds to Nl), we observe that the

accuracy of the multiscale methods increases (see [4] and the discussions below). However, in
general this accuracy cannot be estimated, so we propose an empirical procedure to estimate
the convergence rate β based on simulations with few samples in Sections 19.2 and 20.2. With
this estimated rate β we select the number of realizations, Ml based on (17.1), for the MLMC
approach.

18. Experimental setup

As a numerical example we consider the traditional quarter-of-a-five-spot with no-flow boundary
conditions in a squared domain D ⊂ R2. A water injector is placed at the upper left corner while
a producer produces whatever (oil or water) reaches the lower right corner. We solve the pressure
equation (15.6) with the two different mixed MsFEMs and for the saturation equation (15.7) we
use an implicit scheme. In the numerics we solve on a 100 × 100 fine grid a single-phase flow
problem (cf. Section 19) and a two-phase flow problem on a 5 × 5 coarse grid (cf. Section 20).
For Y (x, ω) = log[k(x, ω)] with E[Y (x, ω)] = 0 and cov(x, y) = E[Y (x, ω)Y (y, ω)] we consider two
types of distributions. The first one is log-Gaussian

cov(x, y) = σ2 exp
(
−|x1 − y1|2

2ǫ21
− |x2 − y2|2

2ǫ22

)
, (18.1)
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and the next one is log-Exponential

cov(x, y) = σ2 exp
(
−|x1 − y1|

ǫ1
− |x2 − y2|

ǫ2

)
. (18.2)

As previously, we denote with ǫ1 and ǫ2 the correlation lengths in each dimension and σ2 = E(Y 2)
is a constant that represents the variance of the permeability field, which we choose σ2 = 2 in all
examples. We use the Karhunen-Loève expansion to parameterize these permeability fields. In the
first case, we expect faster decay of the eigenvalues compared to the second case, log-Exponential,
for a given set of correlation lengths. In both cases the permeability field Y (x) is given on a
100× 100 fine Cartesian grid. In particular we consider:

• Isotropic Gaussian field: correlation length ǫ1 = ǫ2 = 0.2, stochastic dimension 10

• Anisotropic Gaussian field: correlation length ǫ1 = 0.5 and ǫ2 = 0.1, stochastic dimension
12

• Isotropic Exponential field: correlation length ǫ1 = ǫ2 = 0.2, stochastic dimension 300

• Anisotropic Exponential field: correlation length ǫ1 = 0.5 and ǫ2 = 0.1, stochastic dimension
350

We apply the above described MLMC approach. To build the multiscale basis, we generate NL

independent realizations of the permeability and for these realizations we solve (15.10). The
multiscale basis functions are not recomputed during the simulations, i.e., they are computed at
time zero. We choose the realizations for the precomputed multiscale basis functions randomly
and we use POD to find a best local basis.
We compare the MLMC accuracy of the saturation with the accuracy of standard MC at level

L with the same amount of costs; therefore, we choose

M̂ =

∑L
l=1N

2
l Ml

N2
L

.

As reference Sref , we use the arithmetic mean of Mref samples of the saturation solved with
a multiscale velocity. For this velocity the multiscale basis is recomputed for each permeability
realization, such that we use exactly the same realization as in the pressure equation. We consider
the square root of the arithmetic mean square of the relative L2 errors, e.g., for MLMC we consider

MLMC error =

√√√√ 1

Nb

Nb∑

j=1

‖Sref − Sj
MLMC‖2L2

‖Sref‖2L2

, (18.3)

where Sj
MLMC denotes the MLMC approximation of the expectation for a given set of permeability

realization Kj
off = (kj1, · · · , kjNL

) to compute the multiscale basis functions (cf. (15.10)) and

different realizations Kj
on = (kj1, · · · , kjM1

) to solve the flow and transport equations (cf. (15.6)-
(15.7)) to compute the saturation. In the following Section 19 we present our results for the
single-phase flow on the fine grid and in Section 20 we consider two-phase flow on the coarse grid.
This part is done with Matlab ([2]). The implementation is based on the code of Aarnes, where
the solver for the saturation equation (15.7), the mixed MsFEM method and the ensemble level
approach are implemented (cf. [3, 4, 6]). A description of the main part of the code can be found
in [6, 45].
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19. Numerical results for single-phase flow

As mentioned above, we denote the example as single-phase flow, if the total mobility λ(S) = 1.
Since the mobility does not depend on the saturation, the pressure equation (15.6) does not, either.
Therefore we solve (15.6) only once and update the transport equation for each time step. As flux

term we use f(S) = S2

S2+(1−S)2 (see (15.7)). In this example we consider only the 100× 100 fine

grid.

19.1. Comparison of the NLSO and the LSO approach for single-phase flow

In this section we study the differences of the two ensemble level mixed MsFEMs, the influence
of the boundary conditions using local or limited global information and the influence of using
proper orthogonal decomposition to determine a best basis with respect to the velocity.
We show that methods using local boundary conditions have a residual error no matter how

many basis functions we pick.
The global boundary conditions are

gι(kj) =
vj · nii′∫

Γι
vj · nii′ds

as defined in (15.11). In our case the local boundary conditions depend on the permeability
realization in the considered cells, i.e.,

gι(kj) =
Gj

ι∫
Γj
ι
Gιds

with

Gj
ι (x) =

2
(

1
kj(x−nii′h)

+ 1
kj(x+nii′h)

)−1

with the fine mesh size h.
The quantity of interest is the water saturation. Therefore we consider the mean L2-error for 100

selected realizations kj of the water saturation computed with one of the ensemble level methods
with either local or global boundary conditions and a reference saturation. As reference we use
either the fine-scale water saturation Sj

ref or the multiscale saturation Sj
refloc, where the basis is

calculated for the realization kj with local boundary conditions.
Since the multiscale basis in the POD case is chosen with respect to the velocity we consider

the errors for the velocities, also.
We compute the mean L2-errors for 6 and 12 multiscale basis functions. For the POD we

precompute 100 multiscale functions and use the first 6, 12 functions as basis.
We have summarized the results in Tables 7-14. Again, note that we solve the online problems

for LSO approach with local boundary conditions.
From the tables we see that in the LSO method we introduce an additional error by solving

the online problem with local boundary conditions. The NLSO method seems to be a good
approximation of the fine-scale solution, while the solution of the LSO approach is closer to the
local reference. For instance, we have for the saturation an error of 2% for randomly chosen
realizations and of 1.3% if POD is used for the NLSO approach with global boundary conditions
and 6 basis functions for the isotropic Gaussian distribution. For the LSO approach with local
boundary conditions we have errors of 2.7% and 1.5% with the local reference without and with
POD for the isotropic Gaussian distribution, respectively. The errors of the LSO approach to the
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Isotropic Gaussian

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖Sref − S‖L2
2.0154 1.3175 16.2749 16.2132 6.3233 6.3794 16.1875 16.1169
0.3265 0.2431 16.0556 16.0887 1.9055 1.7348 16.1615 16.1972

‖Srefloc − S‖L2
16.2392 16.1794 6.6100 3.1272 15.0033 15.3998 2.6582 1.4822
16.2149 16.2162 1.8751 1.4486 16.0174 16.0938 0.7492 0.3746

‖Sref − Srefloc‖L2 16.2200

Table 7: Mean saturation errors (percent) of 100 realizations of the isotropic Gaussian distribution
for the different methods and boundary conditions for the single-phase flow example, 6, 12
basis functions.

Isotropic Gaussian

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖vref − v‖L2
0.1440 0.0944 1.2821 1.3367 0.6470 0.5881 1.3707 1.3628
0.0195 0.0176 1.3528 1.3603 0.1918 0.1707 1.3661 1.3669

‖vrefloc − v‖L2
1.3792 1.3719 0.6375 0.3101 1.3806 1.3745 0.2070 0.1041
1.3671 1.3670 0.2041 0.1406 1.3686 1.3743 0.0610 0.0290

‖vref − vrefloc‖L2 1.3669

Table 8: Mean velocity errors (percent) of 100 realizations of the isotropic Gaussian distribution
for the different methods and boundary conditions for the single-phase flow example,
6, 12 basis functions.

Isotropic Exponential

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖Sref − S‖L2
19.7784 17.7025 32.1457 31.8803 24.2868 22.6637 31.7842 31.3074
15.5608 12.9127 31.3271 30.8887 20.0685 17.7077 31.1171 31.0616

‖Srefloc − S‖L2
25.9793 27.3023 22.5036 18.6939 23.8879 23.7598 22.5670 16.0498
26.8417 27.7851 18.5179 15.6346 24.5747 25.5206 16.1490 12.9676

‖Sref − Srefloc‖L2 30.3272

Table 9: Mean saturation errors (percent) of 100 realizations of the isotropic Exponential distribu-
tion for the different methods and boundary conditions for the single-phase flow example,
6, 12 basis functions.

Isotropic Exponential

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖vref − v‖L2
2.8652 2.2179 3.2436 3.1131 3.6413 3.6586 3.5080 3.5085
2.1377 1.5891 3.1698 3.0914 3.2082 2.8214 3.4817 3.4847

‖vrefloc − v‖L2
3.8502 3.6259 2.9904 2.6848 4.1118 4.1260 2.6649 2.0330
3.6400 3.5168 2.5808 2.2091 3.9426 3.8258 2.0581 1.5502

‖vref − vrefloc‖L2 3.4769

Table 10: Mean velocity errors (percent) of 100 realizations of the isotropic Exponential distribu-
tion for the different methods and boundary conditions for the single-phase flow example,
6, 12 basis functions.
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Anisotropic Gaussian

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖Sref − S‖L2
4.4798 3.7621 28.0264 27.3662 10.6921 9.9636 27.5760 27.6249
1.4889 1.0872 27.3692 27.3779 5.9529 5.4429 27.6672 27.6798

‖Srefloc − S‖L2
27.4733 27.5175 12.3253 6.2222 25.1565 25.3781 5.0260 2.9356
27.6664 27.6771 4.2140 3.7559 26.6987 26.8279 2.0322 1.1568

‖Sref − Srefloc‖L2 27.7428

Table 11: Mean saturation errors (percent) of 100 realizations of the anisotropic Gaussian dis-
tribution for the different methods and boundary conditions for the single-phase flow
example, 6, 12 basis functions.

Anisotropic Gaussian

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖vref − v‖L2
0.4539 0.3828 1.9906 2.2211 1.3898 1.2797 2.3359 2.3476
0.1232 0.0931 2.2799 2.2914 0.7342 0.5897 2.3553 2.3527

‖vrefloc − v‖L2
2.3963 2.3707 1.3507 0.8364 1.3898 1.2797 2.3359 2.3476
2.3536 2.3529 0.6093 0.5135 0.7342 0.5897 2.3553 2.3527

‖vref − vrefloc‖L2 2.3518

Table 12: Mean velocity errors (percent) of 100 realizations of the anisotropic Gaussian distribu-
tion for the different methods and boundary conditions for the single-phase flow example,
6, 12 basis functions.

Anisotropic Exponential

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖Sref − S‖L2
20.7988 19.7001 35.6866 34.7461 26.3559 25.0294 35.6875 33.4379
16.1815 14.0968 33.6023 33.1095 21.4738 20.5792 33.9996 33.2703

‖Srefloc − S‖L2
29.3508 30.0347 25.1490 21.6110 25.0723 25.5648 25.2204 16.2809
30.1783 31.0464 19.8822 16.7638 27.1934 27.4769 17.5943 13.0112

‖Sref − Srefloc‖L2 33.8186

Table 13: Mean saturation errors (percent) of 100 realizations of the anisotropic Exponential dis-
tribution for the different methods and boundary conditions for the single-phase flow
example, 6, 12 basis functions.

Anisotropic Exponential

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖vref − v‖L2
3.5702 2.8821 3.7861 3.6260 4.5283 4.5108 4.0864 4.0154
2.8207 2.2679 3.6015 3.5865 3.9577 3.8736 3.9667 3.9984

‖vrefloc − v‖L2
4.3484 3.9808 3.1189 2.7728 4.5251 4.5562 2.9389 2.1638
4.1108 4.0028 2.6538 2.3411 4.3364 4.3447 2.2073 1.6922

‖vref − vrefloc‖L2 4.0063

Table 14: Mean velocity errors (percent) of 100 realizations of the anisotropic Exponential dis-
tribution for the different methods and boundary conditions for the single-phase flow
example, 6, 12 basis functions.
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global reference is of the same size as the error between the global reference and the local one,
independent of the underlying distribution. In both approaches global boundary conditions give a
better approximation of the fine-scale solution (at least if we choose the number of precomputed
basis functions large enough). For the velocities the behavior of the mean errors is comparable,
but the approximations are much more accurate. Furthermore, the approximation of the fine-
scale velocity is more accurate with global boundary conditions independent of the number of
basis functions even for the LSO approach. For this reason we will only consider global boundary
conditions in the following. In Figure 35 we show the water saturations with global boundary
conditions for one sample of the permeability for the considered distributions for all methods.

19.2. Numerical study of the convergence rate for single-phase flow

In this section we investigate if the assumption ‖Sl − S‖ = C 1

Nβ

l

=: δl, with δ1 > δ2 > · · · δL (cf.

Section 17) is fulfilled for the NLSO and the LSO approach. Here S denotes the saturation with
the basis calculated for the permeability realization which is used in the pressure equation and Sl

the saturation with a precomputed basis with Nl permeability realizations. With these δls, it is
possible to find appropriate choices of realizations Ml at each level, namely

Ml = C





(
1
δL

)2
(std(S) + δ21), l = 1

(
δl
δL

)2
, 2 ≤ l ≤ L.

To determine the convergence rate, we choose N = (3, 6, 12) and calculate the mean overM = 100
permeability realizations as follows. For 10 sets of permeability realizations we compute the
multiscale basis and each of these sets we use to compute the error for 10 different permeability
realizations. We compute the arithmetic mean of the 10× 10 numbers. In Table 15 we summarize

the error ratios δl
δL

=
‖Sl−S‖L2

‖SL−S‖L2
.

For the NLSO approach the resulting δs depend on the underlying distribution. If we pre-
compute the multiscale basis functions with randomly chosen realizations we get for the isotropic
Gaussian distribution for the different levels the δ ratios (13.5, 5.1, 1) and for the anisotropic Gaus-
sian (5.2, 2.6, 1). For the two Exponential distributions the ratios are almost the same, namely
(1.6, 1.3, 1). For POD the resulting ratios are comparable. Since the δs do not decrease fast
we choose larger Nls in Section 19.3 where we combine the ensemble level mixed MsFEMs with
MLMC.
For the LSO approach all ratios are close to one, i.e., the errors are almost independent of

the number of used precomputed basis functions. However, since we observed in the previous
section that the LSO approach does not converge to the fine scale saturation we could not expect
anything. However, we choose the same numbers of precomputed basis functions Nl, 1 ≤ l ≤ L,
as in the NLSO approach in Section 19.3.

19.3. Ensemble level mixed MsFEM for single-phase flow

In this section we combine the introduced ensemble level mixed MsFEMs to solve the pressure
equation (15.6), the NLSO and LSO approach, with multi-level Monte Carlo. We consider both,
randomly chosen realizations for the precomputations of the multiscale basis functions and the
POD approach.
In Table 16 we summarize the parameters used and the resulting relative errors of our simulations

for the different distributions and methods. We start with Nb = 100 in (18.3) for NLSO with
randomly chosen realization. However, for computational reasons we decrease this number for
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Figure 35: On realization of the water saturation for global boundary conditions for the different
methods with 12 precomputed basis functions.
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isotropic Gaussian anisotropic Gaussian isotropic Exponential anisotropic Exponential
NLSO
‖S1−S‖L2

‖S3−S‖L2
13.5458 5.2335 1.6024 1.6183

‖S2−S‖L2

‖S3−S‖L2
5.0930 2.6086 1.2746 1.3254

LSO
‖S1−S‖L2

‖S3−S‖L2
1.0773 1.0378 1.0991 1.1817

‖S2−S‖L2

‖S3−S‖L2
1.0018 1.0081 1.0087 1.0608

NLSO with POD
‖S1−S‖L2

‖S3−S‖L2
12.7403 5.0250 1.9021 2.0390

‖S2−S‖L2

‖S3−S‖L2
4.7024 2.2227 1.4007 1.4202

LSO with POD
‖S1−S‖L2

‖S3−S‖L2
1.0072 1.1122 1.2138 1.2974

‖S2−S‖L2

‖S3−S‖L2
1.0037 1.0046 1.0395 1.0510

Table 15: Convergence of the single-phase flow example for the different methods and distributions
with N = (3, 6, 12).

the other methods, in particular, we use Nb = 20. If not otherwise stated we use Nb = 20. For
the online computations we choose the number of samples of the permeability independent of the
underlying distribution at each level as M = (70, 20, 10). The dimension of the approximations
(defined as the number of independent samples selected to construct the multiscale space, Nl at
level l) for the Exponential distributions is eight times larger than for the Gaussian tests. For
the proper orthogonal decomposition examples we precompute multiscale basis functions for a
large number NPOD compared to NL and determine the used Nl basis functions with POD. More
precisely we use NPOD = 100 for underlying Gaussian distributions and NPOD = 500 for the
Exponential cases. As mentioned before we equate the computational costs and compare the
resulting relative errors for the MLMC and MC approaches. With this choice of realizations for
the MLMC method, we get for MC with equated costs M̂ = 20, where M̂ is the number of
permeability realizations needed for forward simulations.

isotropic Gaussian anisotropic Gaussian isotropic Exponential anisotropic Exponential
(N1, N2, N3) (3, 6, 12) (3, 6, 12) (24, 48, 96) (24, 48, 96)
(M1,M2,M3) (70, 20, 10) (70, 20, 10) (70, 20, 10) (70, 20, 10)

N̂ 12 12 96 96

M̂ 20 20 20 20
MMCref 500 500 500 500
NPOD 100 100 500 500
MLMC error NLSO Nb = 100 0.0769 0.0853 0.0952 0.0879
MC error NLSO Nb = 100 0.1386 0.1282 0.1418 0.1321

MC error
MLMC error NLSO Nb = 100 1.80 1.50 1.49 1.50
MLMC error NLSO 0.0758 0.0847 0.0934 0.0889
MC error NLSO 0.1439 0.1222 0.1389 0.1343

MC error
MLMC error NLSO 1.90 1.44 1.49 1.51
MLMC error LSO 0.1101 0.1189 0.1781 0.1711
MC error LSO 0.3027 0.4244 0.2112 0.1839

MC error
MLMC error LSO 2.75 3.57 1.19 1.07
MLMC error POD NLSO 0.0789 0.0824 0.0947 0.0864
MC error POD NLSO 0.1332 0.1343 0.1532 0.1348

MC error
MLMC error LSO 1.67 1.63 1.62 1.56
MLMC error POD LSO 0.1020 0.1228 0.1819 0.1757
MC error POD LSO 0.1462 0.1447 0.2024 0.2029

MC error
MLMC error LSO 1.4 1.18 1.11 1.15

Table 16: Parameters and errors for the single-phase flow example.

In the NLSO case withNb = 100 we get for MLMC relative errors of approximately 9 percent and
for MC approximately 13 percent. This result is almost independent of the underlying distribution,
but note that for the Exponential test cases the computational work is eight times larger than
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for the Gaussian ones. For Nb = 20 the errors do not change significantly. So it makes sense to
reduce the computational time and use Nb = 20 for the other cases.
For all considered combinations -NLSO, LSO with POD or without POD for the different

distributions- we increase the accuracy with the help of MLMC in comparison to MC at the
largest level with equated costs. As expected the errors for the NLSO method are smaller than
the errors for the LSO approach independent of the underlying distributions. For instance, we
have for the isotropic Exponential distribution for MLMC an error of 9% for the NLSO case and
18% otherwise (cf. Table 16). This coincides with our results in 19.1. However, note that LSO
approach provides good results although the δ ratios are close to one (cf. Section 19.2).
There is no significant influence of using POD. It seems to decrease the influence of the underly-

ing distribution. Particularly, without POD the ratio of the MC and the MLMC error is between
1.44% and 1.90% for NLSO. For LSO it lies in the interval [1.07, 3.57]. If we use POD we get
[1.56, 1.67] for NLSO and [1.11, 1.40] for LSO.
The resulting mean water saturations for the different covariance functions (isotropic and

anisotropic Gaussian, isotropic and anisotropic Exponential) and the different methods (MLMC,
MC, reference) for the considered ensemble level mixed MsFEMs we illustrate in Figures 36-39. In
contrast to the LSO method one observes no differences for MLMC, MC and the reference in the
NLSO approach (cf. Fig.36, 38). In the figures corresponding to the LSO approach (Fig. 37, 39)
one can see the coarse grid due to the local boundary conditions in the online stage. Furthermore
one can observe differences for the MLMC and the MC approach, e.g., 37(a). The error of the
MC approach for the Gaussian distributions is significantly smaller if one uses POD in the case
of LSO (cf. Table 16). This can be seen in the corresponding Figure 39 as well.
If one is interested in the expected value of the water saturation at the producer only, the

MLMC approach increases the accuracy in comparison to the MC approach with equated costs.
The improvement of MLMC is approximately the same, but the errors are much smaller. For
instance, we get an error of 0.6% with the MLMC approach and on of 1.3% for MC in the case of
the NLSO method with POD for an isotropic Gaussian distribution. For the LSO approach the
corresponding errors are 0.7% and 1.2% for MLMC and MC, respectively.
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Figure 36: Water saturation for NLSO for MLMC and MC for the different distributions for single-
phase flow, Nb = 100.
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Figure 37: Water saturation for LSO for MLMC and MC for the different methods and distribu-
tions for single-phase flow.
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Figure 38: Water saturation for NLSO with POD for MLMC and MC for the different methods
and distributions for single-phase flow.
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Figure 39: Water saturation for LSO with POD for MLMC and MC for the different methods and
distributions for single-phase flow.
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20. Numerical results for two-phase flow

In the two-phase flow example we consider a 5× 5 coarse grid, such that every grid block contains
a 20× 20 cell partition from the fine grid. In equation (15.6) and (15.7) we choose the following
quantities µw = 1, µ0 = 1, krw(S) = S2 and kro(S) = (1 − S)2. In this case the total mobility

λ(S) = krw(S)
µw

+ kro(S)
µo

= S2+(1−S)2 depends on the water saturation and we solve the pressure
equation on the 5× 5 coarse grid with mixed MsFEM for each time step.

20.1. Comparison of the NLSO and the LSO approach for two-phase flow

Analogously to the single-phase flow case we study the differences of the two ensemble level mixed
MsFEMs, the influence of boundary conditions using local or limited global information and the
influence of using proper orthogonal decomposition to determine a best basis with respect to the
velocity.
Again we observe that methods using local boundary conditions have a residual error no matter

how many basis functions we pick.
In this case we consider the multiscale saturations Sj

ref and Sj
refloc as references where the

basis is calculated for the realization kj with global boundary conditions or with local boundary
conditions, respectively, as well as the corresponding velocities.
As before, we compute the mean L2-errors for 6 and 12 multiscale basis functions. For the POD

we precompute 100 multiscale functions and use the first 6, 12 functions as basis.

Isotropic Gaussian

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖Sref − S‖L2
1.3792 1.2134 7.6178 7.8785 4.4814 3.4160 7.9852 8.1864
0.8252 0.8815 7.9849 8.0405 1.3310 1.1110 8.1728 8.1900

‖Srefloc − S‖L2
8.3251 8.3319 1.8642 1.0486 8.4147 8.6531 0.6369 0.2410
8.2087 8.2358 0.5198 0.3121 8.2615 8.1302 0.1040 0.0436

‖Sref − Srefloc‖L2 8.1947

Table 17: Mean saturation errors (percent) of 100 realizations of the isotropic Gaussian distribu-
tion for the different methods and boundary conditions for the two-phase flow example,
6, 12 basis functions.

Isotropic Gaussian

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖vref − v‖L2
0.1132 0.1036 0.3684 0.3843 0.2614 0.2222 0.3964 0.4006
0.0542 0.0552 0.3874 0.3935 0.0776 0.0647 0.4028 0.4034

‖vrefloc − v‖L2
0.4081 0.4005 0.1000 0.0499 0.4655 0.4573 0.0337 0.0156
0.4059 0.4027 0.0308 0.0178 0.4014 0.3987 0.0071 0.0034

V ertvref − vrefloc‖L2 0.4040

Table 18: Mean velocity errors (percent) of 100 realizations of the isotropic Gaussian distribution
for the different methods and boundary conditions for the two-phase flow example, 6, 12
basis functions.

We have summarized the results in Tables 17-24. Again, note that we solve the online problems
of the LSO method with local boundary conditions.
Similar to the single-flow case we observe an additional error due to the online problem in the

LSO method. Again the NLSO approach seems to be a good approximation of the solution with
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Isotropic Exponential

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖Sref − S‖L2
10.2557 8.2078 19.7424 19.4531 13.3052 12.5890 19.6968 19.7828
7.0350 5.2391 19.7486 19.7901 10.1616 8.8308 19.9663 20.2782

‖Srefloc − S‖L2
18.7326 19.5738 11.8344 10.3493 17.2977 17.2377 10.4369 8.0460
19.5572 20.1890 10.0678 8.4615 18.4222 18.8266 7.9656 5.6863

V ertSref − Srefloc‖L2 20.7051

Table 19: Mean saturation errors (percent) of 100 realizations of the isotropic Exponential dis-
tribution for the different methods and boundary conditions for the two-phase flow
example, 6, 12 basis functions.

Isotropic Exponential

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖vref − v‖L2
0.7057 0.5706 1.3037 1.1934 0.8832 0.8323 1.2297 1.1719
0.4180 0.3244 1.2228 1.1397 0.6529 0.5720 1.1815 1.1889

‖vrefloc − v‖L2
1.2120 1.1911 0.8416 0.6359 1.1373 1.1307 0.6899 0.5008
1.1680 1.1784 0.6700 0.4968 1.1306 1.1950 0.4901 0.3718

‖vref − vrefloc‖L2 1.2040

Table 20: Mean velocity errors (percent) of 100 realizations of the isotropic Exponential distribu-
tion for the different methods and boundary conditions for the two-phase flow example,
6, 12 basis functions.

Anisotropic Gaussian

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖Sref − S‖L2
2.6836 2.6356 16.5501 17.1777 5.3143 5.2178 17.6067 17.8641
1.5851 1.4145 17.6444 17.6032 3.4046 2.9868 17.9567 17.9591

‖Srefloc − S‖L2
18.2849 18.3574 4.8377 2.6597 17.9094 17.3160 1.3827 0.5543
18.1816 18.2574 1.2725 1.0496 17.9992 17.9370 0.3430 0.1005

‖Sref − Srefloc‖L2 17.9892

Table 21: Mean saturation errors (percent) of 100 realizations of the anisotropic Gaussian distribu-
tion for the different methods and boundary conditions for the two-phase flow example,
6, 12 basis functions.

Anisotropic Gaussian

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖vref − v‖L2
0.1339 0.1353 0.7849 0.8243 0.2944 0.2868 0.8141 0.8259
0.0739 0.0713 0.8187 0.8108 0.1823 0.1491 0.8302 0.8303

‖vrefloc − v‖L2
0.8518 0.8531 0.2384 0.1328 0.8307 0.8175 0.0582 0.0269
0.8428 0.8388 0.0636 0.0483 0.8438 0.8418 0.0161 0.0048

‖vref − vrefloc‖L2 0.8317

Table 22: Mean velocity errors (percent) of 100 realizations of the anisotropic Gaussian distribu-
tion for the different methods and boundary conditions for the two-phase flow example,
6, 12 basis functions.

120



Anisotropic Exponential

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖Sref − S‖L2
10.9965 11.0470 22.1169 21.5021 15.4963 14.4225 21.6356 21.7126
7.4683 6.4064 21.2290 21.2887 11.1717 10.9566 22.1763 22.1820

‖Srefloc − S‖L2
21.2597 21.1819 13.3213 11.5873 17.9521 18.1224 12.3714 8.3137
22.1649 22.3475 11.0198 9.4439 20.0669 19.9342 8.4631 5.8418

‖Sref − Srefloc‖L2 23.7082

Table 23: Mean saturation errors (percent) of 100 realizations of the anisotropic Exponential dis-
tribution for the different methods and boundary conditions for the two-phase flow
example, 6, 12 basis functions.

Anisotropic Exponential

gNLSO gLSO lNLSO lLSO
no POD POD no POD POD no POD POD no POD POD

‖vref − v‖L2
0.7689 0.7371 1.4086 1.3380 1.1682 0.9662 1.4078 1.3604
0.5040 0.4776 1.2925 1.2982 0.6848 0.6967 1.3351 1.3844

‖vrefloc − v‖L2
1.3688 1.2647 0.8417 0.6131 1.2812 1.1923 0.8408 0.4765
1.4036 1.4278 0.6704 0.5211 1.2220 1.2361 0.5335 0.3568

‖vref − vrefloc‖L2 1.4636

Table 24: Mean velocity errors (percent) of 100 realizations of the anisotropic Exponential dis-
tribution for the different methods and boundary conditions for the two-phase flow
example, 6, 12 basis functions.

global boundary conditions, while the solution of LSO method is closer to the local reference.
The errors in the LSO method are of the same size as the error between the reference solutions
using local or global boundary conditions, i.e., the LSO approach does not remove the residual
error. We will consider global boundary conditions only, since in both approaches global boundary
conditions give a better approximation of the solution using global information if the number of
precomputed basis functions is large enough.
For the velocities the behavior of the mean errors is comparable, but the approximations are

much more accurate.
In Figure 40 we show the water saturations with global boundary conditions for one sample of

the permeability for the considered distributions for all methods.

20.2. Numerical study of the convergence rate for two-phase flow

As in Section 19.2 we investigate if the assumption ‖Sl − S‖ = C 1

Nβ

l

=: δl, with δ1 > δ2 > · · · δL
(cf. Section 17) is fulfilled for the NLSO and the LSO approach.
We choose the same parameters as in the single-phase case, namely N = (3, 6, 12) and M =

100 = 10× 10.
In the two-phase flow case δ ratios are almost independent of the underlying distribution. For the

NLSO approach the ratios for the Gaussian distributions are slightly larger than the Exponential
ones, if we do not apply POD. With POD the ratios of the isotropic Gaussian distributions decrease
in comparison to the corresponding ratio without POD. This is reasonable because the errors for
the smallest level, N1 = 3, are significantly smaller due to POD.
Again the LSO method does not give appropriate δs. In many cases the ratios are even smaller

than one. That means, the assumption for our error estimate in Section 17 are not valid. Since
the LSO saturation does not converge to coarse reference saturation (cf. Section 20.1), we choose
the number of precomputed basis functions as for the NLSO approach.
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Figure 40: One realization of the water saturation for global boundary conditions for the different
methods for two-phase flow with 12 basis functions.
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isotropic Gaussian anisotropic Gaussian isotropic Exponential anisotropic Exponential
NLSO
‖S1−S‖L2

‖S3−S‖L2
2.8265 2.5523 2.0302 1.9180

‖S2−S‖L2

‖S3−S‖L2
1.6382 1.6738 1.5291 1.4913

LSO
‖S1−S‖L2

‖S3−S‖L2
0.9970 0.9244 1.0891 0.9357

‖S2−S‖L2

‖S3−S‖L2
0.9491 0.9492 1.0010 0.9559

NLSO with POD
‖S1−S‖L2

‖S3−S‖L2
1.8794 3.4429 3.0525 3.5156

‖S2−S‖L2

‖S3−S‖L2
1.3096 1.7965 1.6624 1.9182

LSO with POD
‖S1−S‖L2

‖S3−S‖L2
0.8749 0.8903 1.1059 1.0248

‖S2−S‖L2

‖S3−S‖L2
0.9806 0.9951 1.0024 1.0251

Table 25: Convergence of the two-phase flow example for the different methods and distributions
with N = (3, 6, 12).

20.3. Ensemble level mixed MsFEM for two-phase flow

In this section we combine the introduced ensemble level mixed MsFEMs to solve the pressure
equation (15.6), the NLSO and LSO approach, with multi-level Monte Carlo. As in the single-
phase flow example we consider both, randomly chosen realizations for the precomputation of the
multiscale basis functions and the POD approach.

The parameters we use for our simulations and the resulting relative errors are summarized in
Table 26. We choose all parameters as in the single-phase flow case. Note that for the Exponential
test cases the computational work is eight times larger than for the Gaussian ones.

Again we observe no significant difference in the errors with Nb = 100 or Nb = 20 for the NLSO
method with randomly chosen realizations for the precomputation of multiscale basis function.
For this reason we consider Nb = 20 for the other examples.

As in the single-phase flow example we increase the accuracy by using MLMC in comparison to
MC with equated costs independent of the underlying distribution or method, NLSO or LSO. Here
the difference of the NLSO and the LSO method seems to depend on the underlying distribution. If
it is anisotropic the gain of using the NLSO approach is larger, e.g., we have a relative MLMC error
of 5.43% for NLSO and 11.61% for LSO without POD for the anisotropic Exponential distribution.
This is consistent with the errors with POD (cf. Table 26). For the isotropic distributions some
errors of the LSO approach are even smaller than for the NLSO method. If one is interested in
coarse quantities only, both methods -NLSO and LSO- give comparable results.

However, note that the LSO approach provides results as good as the NLSO, although the
assumption for our error estimate is not valid.

In Figures 41-44 one can find the mean water saturations for the different covariance func-
tions (isotropic and anisotropic Gaussian, isotropic and anisotropic Exponential) and the different
methods (MLMC, MC, reference) for the considered ensemble level mixed MsFEMs. For some
distributions there is a slight difference between the reference and MLMC or the reference and
MC. However, it is difficult to see any difference between the MLMC and MC figures. For instance
in Figure 42(d) the figures for MLMC and MC are slightly different. However, these differences
are decreased by the use of POD.

As in the single-phase example we observe a similar behavior if we consider the water saturation
in the outlet instead of the saturation in the whole reservoir. The improvement of MLMC is
approximately the same, but the errors are much smaller. For instance, we observe an error of
0.6% with the MLMC approach and on of 1.3% for MC in the case of the NLSO method with
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Figure 41: Water saturation for NLSO for MLMC and MC for the different methods and distri-
butions for two-phase flow, Nb = 100.
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Figure 42: Water saturation for LSO for MLMC and MC for the different methods and distribu-
tions for two-phase flow.
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(d) Anisotropic Exponential

Figure 43: Water saturation for NLSO with POD for MLMC and MC for the different methods
and distributions for two-phase flow.
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(d) Anisotropic Exponential

Figure 44: Water saturation for LSO with POD for MLMC and MC for the different methods and
distributions for two-phase flow.
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isotropic Gaussian anisotropic Gaussian isotropic Exponential anisotropic Exponential
(N1, N2, N3) (3, 6, 12) (3, 6, 12) (24, 48, 96) (24, 48, 96)
(M1,M2,M3) (70, 20, 10) (70, 20, 10) (70, 20, 10) (70, 20, 10)

N̂ 12 12 96 96

M̂ 20 20 20 20
MMCref 500 500 500 500
NPOD 100 100 500 500
MLMC error NLSO Nb = 100 0.0566 0.0557 0.0537 0.0529
MC error NLSO Nb = 100 0.0970 0.0889 0.0943 0.0840

MC error
MLMC error NLSO Nb = 100 1.71 1.60 1.76 1.59
MLMC error NLSO 0.0522 0.0497 0.0529 0.0543
MC error NLSO 0.0989 0.0849 0.0947 0.0898

MC error
MLMC error NLSO 1.90 1.71 1.79 1.65
MLMC error LSO 0.0448 0.0854 0.0581 0.1161
MC error LSO 0.0839 0.1056 0.1039 0.1274

MC error
MLMC error LSO 1.72 1.24 1.79 1.10
MLMC error POD NLSO 0.0479 0.0563 0.0568 0.0583
MC error POD NLSO 0.0884 0.0937 0.0972 0.0911

MC error
MLMC error LSO 1.85 1.67 1.71 1.56
MLMC error POD LSO 0.0565 0.0843 0.0652 0.1299
MC error POD LSO 0.0992 0.1083 0.0952 0.1524

MC error
MLMC error LSO 1.76 1.29 1.46 1.17

Table 26: Parameters and errors for the two-phase flow example.

POD for an isotropic Exponential distribution. For the LSO approach the corresponding errors
are 0.8% and 1.0% for MLMC and MC, respectively.
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21. Conclusions

In this work we consider multiscale problems with stochastic coefficients. We combine multiscale
methods for deterministic problems, such as mixed multiscale finite elements and homogenization
with stochastic methods, such as multi-level Monte Carlo methods and Karhunen-Loève expan-
sions to increase the accuracy in comparison to a standard approach -the Monte Carlo method. Our
objective is to rapidly compute the expectation of the macroscale quantities, such as macroscale
solutions, homogenized coefficients, or functionals of these quantities.

Part I and Part II are devoted to the study of numerical homogenization with different stochastic
methods. We consider elliptic stationary diffusion equations with stochastic coefficients which vary
on the macroscale and the microscale.

In Part I we decouple the high-dimensional local problems with the help of the Karhunen-Loève
expansion and a polynomial chaos approach. The gain in the computational work depends on the
underlying distribution of the coefficient. In general, we cannot state our developed approach is
more appropriate than Monte Carlo. Additionally, we introduce a method to speed-up the approx-
imation of the eigenpairs of the covariance operator needed for the Karhunen-Loève expansion.
This method is based on low-rank approximations of the matrix. Since the Karhunen-Loève expan-
sion is widely used to approximate random fields the applicability of the low-rank approximation
approach is not restricted to this part of the work.

In Part II we combine numerical homogenization with multi-level Monte Carlo methods. We
consider different levels of coarse-grid meshes and representative volumes. We combine the results
from a few expensive computations that involve smallest coarse meshes and largest representative
volumes with many less expensive computations with larger coarse mesh and smaller representative
volume sizes. The larger the coarse mesh or the smaller the representative volume size the more
computations are used. We show that by selecting the number of realizations at each level carefully
we can achieve a speed-up in the computations. For the computations of homogenized solutions,
we propose weighted multi-level Monte Carlo where weights are chosen at each level such that it
optimizes the accuracy at a given cost.

In Part III we consider multi-phase flow and transport equations. Here we combine multi-
scale finite element methods and multi-level Monte Carlo techniques to speed-up Monte Carlo
simulations. In particular, we consider no-local-solve-online (NLSO) and local-solve-online (LSO)
ensemble level mixed multiscale finite element approaches. We precompute for a few realizations
of the random field multiscale basis functions. An ensemble of these basis functions is used to
solve the multi-phase flow equation for an arbitrary realization. We show that NLSO provides
better accuracy, since it is reasonable to choose local boundary conditions for the computation of
the online multiscale basis in LSO.

Different sizes of the ensemble are related to different levels in the multi-level Monte Carlo
approach. The use of larger ensembles yields more accurate solutions. We run more accurate (and
expensive) forward simulations with fewer samples while less accurate (and inexpensive) forward
simulations are run with a larger number of samples. Selecting the number of expensive and
inexpensive simulations carefully, one can show that multi-level Monte Carlo can provide better
accuracy at the same costs than Monte Carlo.

In this work we presented different methods to deal with the stochastic nature of the problems
in combination with different approaches to handle the many scales. However, this gives only a
small view insight the topic. A natural next step would be to consider a random mobility in the
two-phase flow problem, for example. In Part III we have chosen the permeability realizations
of the offline stage randomly or with proper orthogonal decomposition. Since we do POD with
respect to the velocity, the influence on the saturation is of interest. Techniques as in reduced
basis methods to select the samples and other POD approaches need to be studied. Of course, we
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have not considered any possible combination of multiscale approaches and stochastic methods.
Another interesting case is to combine the multiscale methods with collocation methods.
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A. Notation

Domains:
D bounded domain, D ⊆ Rd

∂D smooth boundary of D
∂DD boundary part with Dirichlet boundary conditions, ∂DD ⊆ ∂D
∂DN boundary part with Neumann boundary conditions, ∂DN ⊆ ∂D
Y periodicity cell,

Y = {y = (y1, . . . , yd) : 0 < yi < 1 for i = 1, . . . , d}
Yη RVE, Yη = (0, η)d

Y x
η RVE, Y x

η = (x− η
2 , x+

η
2 )

d

Spaces:
Lp(D) Lp space
Lp(Ω, B) Bochner space with a Banach space B
Lp
loc(Rd, Lp(Ω)) u ∈ Lp(K, Lp(Ω)), ∀K ⊂ Rd,K compact

Lp
unif (Rd, Lp(Ω)) ‖u‖Lp(Bx,Lp(Ω)) ≤ C, ∀x ∈ Rd, with C independent of x and

the unit ball Bx with center x
C0(D̄) space of continuous functions
C1(D̄) space of continuously differentiable functions
Ct(D̄) Hölder space, 0 < t < 1
Hk(D) Sobolev space, k ∈ N
Hr(D) r /∈ N, u ∈ Hk(D), such that |u|2Hr(D) < ∞, r = k + t, k ∈ N,

0 < t < 1
Hp

0 (D) Hp
0 (D) ⊂ Hp(D)

H−p(D) dual space of the Sobolev space Hp
0 (D)

H(div, D) H(div, D) = {u : u ∈ (L2(D))d, div u ∈ L2(D)}
H0(div, D) H(div, D) with zero Neumann boundary

Norms:

‖u‖Lp(D) ‖u‖Lp(D) =





(∫
D

|u(x)|p dx
)1/p

, p <∞

esssupx∈D|u(x)|, p = ∞

‖u‖Lp(Ω,B) ‖u‖Lp(Ω,B) =





(∫
Ω

‖u‖pB dP (ω)

)1/p

, p <∞

esssupω∈Ω‖u‖, p = ∞
‖u‖C0(D̄) ‖u‖C0(D̄) = sup

x∈D̄

|u(x)|

‖u‖C1(D̄) ‖u‖C1(D̄) =
∑

|α|≤1

‖Dαu‖C0(D̄)

|u|Ct(D̄) |u|Ct(D̄) = sup
x,y∈D̄:x 6=y

|u(x)−u(y)|
|x−y|t , 0 < t < 1, semi-norm

131



‖u‖Ct(D̄) ‖u‖Ct(D̄) = sup
x∈D̄

|u(x)|+ |u|Ct(D̄)

|u|Hk(D) |u|Hk(D) =

(
∫
D

∑
|α|=k

|Dαu|2 dx
)1/2

, semi-norm

‖u‖Hk(D) ‖u‖Hk(D) =

(
∫
D

∑
|α|≤k

|Dαu|2 dx
)1/2

|u|Hr(D) |u|Hr(D) =

(
∫∫

D×D

∑
|α|=k

[Dαu(x)−Dαu(y)]2

|x−y|d+2t dx dy

)1/2

, semi-norm

‖u‖Hr(D) ‖u‖Hr(D) =
(
‖u‖2Hk(D) + |u|2Hr(D)

)1/2

‖u‖ ‖u‖ = ‖u‖L2(Ω,H), with an appropriate Hilbert space H
|||u||| |||u||| = ‖u‖H, with an appropriate Hilbert space H

|x| |x| =
√

n∑
i=1

x2i , x ∈ Rn for some n ∈ N, e.g., n = 1 or n = d

Stochastics:
(Ω, F, P ) probability space
E[G] expected value of a random variable G,

E[G] =
∫
Ω
G(ω) dP (ω)

EK expected value of the coefficient K, EK(y) = E[K(y)]
µ expected value of a Gaussian distributed random variable
µlog expected value of a lognormal distribution,

µlog = exp(µ+ σ2

2 )
Cov(G1, G2) covariance of two random variables G1 and G2,

Cov(G1, G2) = E[(G1 − E[G1])(G2 − E[G2])]
Var(G) variance of a random variable G, Var(G) =Cov(G,G)

std(G) standard deviation of a random variable G, std(G) =
√
Var(G)

σ standard deviation of the normal distribution
Σ standard distribution of the lognormal distribution,

Σ2 = µ2
log

(
exp(σ2)− 1

)

cov(y, y′) covariance function of the coefficient K,
cov(y, y′) =

∫
ΩK(y, ω)K(y′, ω) dP (ω) − EK(y)EK(y′) =

Cov(K(y, ω),K(y′, ω))

covG Gaussian covariance, covG(y, y
′) = σ2exp

(
−|y−y′|2

2ǫ2

)

covlog covariance of lognormal distribution,
covlog(y, y

′) = µ2
log (exp(covG(y, y

′))− 1)

ǫ correlation length

τ τ =
√
2ǫ
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Homogenization:
K microscale coefficient
K∗ exact effective coefficient

[K∗]ij = lim
m→∞

1
(2m)d

∫
|y|≤m(ei +∇χi(y, ·))TK(y, ω)ej dy

K∗
η effective coefficient calculated in the RVE Y x

η , (4.13),
ej ·K∗

η (x, ω)ei =
1
ηd

∫
Y x
η
∇χj ·K(x, yǫ , ω)∇χi

χi solution of the corresponding cell problem (cf. (4.8), (4.12)) in
ith direction

uǫ solution of the microscale problem
u∗ solution of the homogenized equation
û reconstructed fine scale solution
uedge solution of a PDE on ∂V , needed as boundary condition for

reconstruction

A.1. Notation Part I

MC:
N number of realizations used for MC, 1 ≤ n ≤ N
Xn random variable with E[Xn] = 0 and given covariance
KMC

n microscale coefficient in Monte Carlo simulation,
KMC

n (y) = EK(y) +Xn

K∗MC
n effective tensor Monte Carlo simulation,(

K∗MC
n

)
ij
=
∫
Y ∇χMC,n

i ·KMC
n (y)∇χMC,n

j dy

K∗MC
N Monte Carlo approximation of the effective coefficient, (5.2),

K∗MC
N = 1

N

∑N
n=1K

∗MC
n

kN kN =
(
(K∗MC

N )11, (K
∗MC
N )22

)T
χMC,n
i solution of the Monte Carlo cell problem (5.1) in ith direction

KL:
KKL Karhunen-Loève expansion of K(y, ω), (5.3),

KKL(y, ω) = EK(y) +
∑∞

m=1

√
λmφm(y)Xm(ω)

KKL
M truncated Karhunen-Loève expansion, (5.6),

KKL
M (y, ω) = EK(y) +

∑M
m=1

√
λmφm(y)Xm(ω)

K̃KL
M polynomial chaos expansion, (5.7)

K̃KL
M (y, z) = EK(y) +

∑M
m=1

√
λmφm(y)zm, coefficient of the

cell problems (5.8) and (5.9)

KKL,j
M KKL,j

M (y) = EK(y)+
∑M

m=1

√
λmφm(y)µrm

jm
, (5.13) coefficient in

the decoupled Karhunen-Loève cell problem (5.12)

K̄KL,j
M K̄KL,j

M = EK(y)+
∑M

m=1

√
λmφm(y)

∫
I
P rm

jm
(zm)zm dρm(zm)∫

I
P rm

jm
(zm) dρm(zm)

, (5.14)

K̃KL
det K̃KL

det =
∑

j≤r

∫
Y
∇χ̃KL

l,j (y) ·KKL,j
M (y)∇χ̃KL

k,j (y) dy
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K̂KL
det K̂KL

det =
∑

j≤r

∫
Y
∇χ̂KL

l,j (y) ·KKL,j
M (y)∇χ̂KL

k,j (y) dy

K∗KL effective coefficient of (5.8),

elK
∗KL(z)ek =

∫
Y ∇χKL

l K̃KL
M (y, z)∇χKL

k dy

K∗j
KL effective coefficient of (5.22),(

K∗j
KL

)
lk

=
∫
Y
∇χ̃′KL

l,j K̃KL,j
M (y, z)∇χ̃′KL

k,j dy

K∗
KL K∗

KL =
∑

j≤r
K∗j

KL

|r| , (5.23)

χKL
i (y, z) solution of the Karhunen-Loève cell problem (5.8)
χ̂KL
i (y, z) solution of the Karhunen-Loève cell problem (5.9),

χ̂KL
i = χKL

i − yi
χ̃KL
i,j solution of the decoupled Karhunen-Loève cell problem (5.12)

χ̂KL
i,j χ̂KL

i,j (y) = χ̃KL
i,j (y) + y · ei, (5.21)

χ̃
′KL
i,j solution of modified decoupled Karhunen-Loève cell problem

(5.22)
Eigenproblem:
Xm(ω) centered at 0, pairwise uncorrelated random variables in (5.3)
(λm, φm)1≤m≤∞ sequence of eigenpairs of the covariance operator

(Kφ) (y) =
∫
Y cov(y, y′)φ(y′) dy′ in (5.3)

(λhm, φ
h
m)1≤m≤Ñ sequence of eigenpairs of the discrete eigenproblem, (5.4)

ϕn ∈ Sh 1 ≤ n ≤ Ñ basis of finite dimensional space Sh

Φm coefficient vector of φhm(y) =
∑Ñ

j=1 Φ
j
mϕj(y)

Φ̃m Φ̃m = M1/2Φm

K (K)ij =
∫
Y ×Y

cov(y, y′)ϕj(y
′)ϕi(y) dy

′dy

K̃ K̃ = M−1/2KM−1/2

M (M)ij =
∫
Y ϕj(y)ϕi(y) dy

Decoupling:
Pr space of polynomials of degree at most r,

Pr = span{1, t, t2, . . . , tr} ⊆ L2(I)
r r = (r1, r2, . . . , rM ) ∈ NM

0(
µrm
j , P rm

j

)
0≤j≤rm

eigenpairs of the symmetric bilinear form

(u, v) →
∫ 1/2

−1/2
u(t)v(t)t dρm(t) over Prm

ρ ρ := ρ1 × ρ2 × · · · ρM , ρm(B) := P (Xm ∈ B) for any Borel set
B ⊆ I

{ψj}0≤j≤rm basis of Prm

A (A)ij =
∫
I ψi(t)ψj(t)t dρm(t)

B (B)ij =
∫
I
ψi(t)ψj(t) dρm(t)

P r
j P r

j (z) = P r1
j1
(z1)P

r2
j2
(z2) · · ·P rM

jM
(zM ) for j ≤ r

Pr Pr = Pr1 ⊗ Pr2 ⊗ · · · PrM , Pr = span{P r
j |j ≤ r} ⊆ L2(IM )

P̄ r
j P̄ r

j =
∫
IM P r

j (z) dρ(z) =
∏M

m=1

∫
I P

rm
jm

(zm) dρm(zm), (5.15)

fKL
i,j fKL

i,j (y) = P̄ r
j div

(
ei · K̄KL,j

M (y)
)
, (5.16), right-hand side of the

decoupled Karhunen-Loève cell problem (5.12)
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ĒK ĒK =
∫
Y EK(y) dy

H-matrices:
T T := (N , r, S) tree with nodes N and root(T ) = r, S mapping

from N into subsets of N
TL T := (N , r, S,m,L) labeled tree, L label set of T , m : N 7→ L
TI×J block cluster tree
t̂ t̂ = m(t) ∈ I label of t ∈ N
L(T ) L(T ) := {t ∈ N : sons(t) = ∅} set of leaves
sons∗(t) set of descendants of a node t ∈ N , eq. (5.25)
K′ low-rank approximation of K, eq. (5.29)

R̃ R̃ = ABT ∈ Rt̂×ŝ and A ∈ Rt̂×k and B ∈ Rŝ×k, k ∈ N

Finite Volume:
Ci cell of the grid with number i
∂Ci boundary of cell Ci

γij face common to Ci and Cj

ν outer normal
νij normal pointing from Ci to Cj

A matrix of the finite volume scheme
F right-hand side of the finite volume scheme
U Ui = u(x̄i) solution vector of the finite volume scheme
Vi volume of cell i
vij volume of γij (or boundary face)
x̄i cell center of cell i
x̄ij center of the intersection
xuli upper left node of cell Ci

xuri upper right node of cell Ci

xbli bottom left node of cell Ci

xbri bottom right node of cell Ci

hj hj =
∑2

k=1 |(x̄i)k − (x̄j)k|
hij hij =

∑2
k=1 |(x̄i)k − (x̄ij)k|

Ni set of the global numbers of the neighbors of cell i
BD

i index set of Dirichlet boundary condition intersections
BN

i index set of Neumann boundary condition intersections
Bi Bi = BD

i +BN
i

K(x̄ij) K(x̄ij) =
2

1
K(x̄i)

+ 1
K(x̄j)

nx number of cells in x-direction

A.2. Notation Part II

MLMC:
L level of interest
l level, 1 ≤ l ≤ L
ηl RVE size at level l, η1 < η2 < · · · < ηL
η̂ RVE size used for MC, normally η̂ = ηL
Hl coarse mesh size at level l, H1 > H2 > · · · > HL

135



Ĥ coarse mesh used for MC, normally Ĥ = HL

hl fine mesh size at level l, h1 > h2 > · · · > hL
ml number of realizations used at level l with RVE size ηl,

m1 > m2 > · · · > mL

mlj number of realizations used with RVE size ηl and fine mesh size
hj

m̂ number of realizations used for MC with RVE size ηL
Ml number of realizations used at level l with mesh size Hl,

M1 > M2 > · · · > ML > ML+1 = 0

M̃l M̃l =Ml −Ml+1

M̂ number of realizations used for MC with mesh size HL

Mref number of realizations used to calculate the reference
m m = (m1,m2, · · · ,mL)
M M = (M1,M2, · · · ,ML)
H H = (H1, H2, · · · , HL)
Pl set of coarse grid points where we solve the RVE problems,

P1 ⊂ P2 ⊂ · · · ⊂ PL

Pl number of RVE problem in each direction, Pl = |Pl|
Gl quantity of interest at level l, e.g., effective coefficient, upscaled

solution
Gi

l realization of Gl, G
i
l = Gl(ωi)

EL(GL) MLMC approximation of E[GL],

EL(GL) =
∑L

l=1 EMl
(Gl −Gl−1) (10.1)

EL
same(GL) EL

same(GL) =
∑L

l=1
1
Ml

∑Ml

j=1(Gl −Gl−1) = EL(GL)

EL
ind(GL) EL

ind(GL) =
∑L

l=1
1

M̃l

∑Ml

j=Ml+1+1(Gl −Gl−1)

EMl
(Gl) arithmetic mean, EMl

(Gl) =
1
Ml

∑Ml

i=1G
i
l

eMLMC(GL) eMLMC(GL) =
√
E [|||E[GL]− EL(GL)|||2], (10.2)

erefMLMC(GL) erefMLMC(GL) =
eMLMC(GL)

|||E[GL]|||
esame
MLMC(GL) esame

MLMC(GL) = eMLMC(GL)

eindMLMC(GL) eindMLMC(GL) =
√
E
[
|||E[GL]− EL

ind(GL)|||2
]

eMC(GL) eMC(GL) =
√
E
[
|||E[GL]− EM̂ (GL)|||2

]
, (10.3)

erefMC(GL) erefMC(GL) =
eMC(GL)
|||E[GL]|||

ErMLMC ErMLMC = 1
Nb

∑Nb
j=1[e

rel
MLMC(K

∗
L(ωj))]

2

ErMC ErMC = 1
Nb

∑Nb
j=1[e

rel
MC(K

∗
L(ωj))]

2

K∗
l effective coefficient with RVE size ηl, Kl := Kηl

(cf. (4.13))
K∗

l,hj
effective coefficient with RVE size ηl and fine mesh size hj

K∗
ηl,Hj

effective coefficient with RVE Y x
ηl

with x ∈ Pj

K∗
ref reference effective coefficient

δl δl =

√
E
[
|||K∗ −K∗

l |||
2
]
≤ C

(
ǫ
ηl

)β
2
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δl,j δl,j =

√
E

[∣∣∣
∣∣∣
∣∣∣K∗ −K∗

l,hj

∣∣∣
∣∣∣
∣∣∣
2
]
≤ C

√(
ǫ
ηl

)β
+
(

hj

ǫ

)γ

β convergence rate of the effective coefficient w.r.t the RVE size
γ convergence rate of the effective coefficient w.r.t the fine mesh

size
Nl costs to solve the RVE problem (4.12) in all directions
WMLMC

RVE costs for MLMC concerning the RVE problems
WMC

RVE costs for MC concerning the RVE problems
WMLMC

coarse costs for MLMC concerning the coarse grid problems
WMC

coarse costs for MC concerning the coarse grid problems
CorK∗ two-point correlation function of the homogenized matrix,

CorK∗(x, y) = E ([K∗(x, ω)]ij [K∗(y, ω)]qp)
Corml

(K∗
l ) empirical estimator of the two-point correlation,

Corml
(K∗

l ) =
1
ml

∑ml

k=1[K
∗,k
l (x)]ij [K

∗,k
l (y)]qp

CorL(K∗
L) MLMC approximation of the two-point correlation function,

CorL(K∗
L) =

∑L
l=1

(
Corml

(K∗
l )− Corml

(K∗
l−1)

)

wl weight at level l,
∑L

l=1 = 1

αl αl =
∑L

i=l wl

u∗ exact homogenized solution (no error), cf. (13.2)
u∗Hl

homogenized solution with mesh size Hl (discretization error),
(13.6)

ul homogenized solution with mesh size Hl and the coefficient cal-
culated with RVE size ηl (discretization and homogenization
error), (13.5)

uηj ,Hi
homogenized solution with mesh size Hi and the coefficient cal-
culated with RVE size ηj

ũ ũ =
∑L

l=1
αl

Ml

∑L
j=l(Mj −Mj+1)(uηj ,Hl

− uηj ,Hl−1
), (13.7)

EL∗(ũ) weighted MLMC approximation,

EL∗(ũ) =
∑L

l=1 αlE
∗
Ml

(ul − ul−1), (13.8)

E∗
Ml

(ul − ul−1) = 1
Ml

∑L
j=l(Mj −Mj+1)EMj−Mj+1(uηj ,Hl

− uηj ,Hl−1
)

Ei
Mref ,L Ei

Mref ,L = 1
L

∑L
l=1

1
Mref

∑Mref

k=1 ukl

eiMLMC(uL) eiMLMC(uL) =
‖Ei

Mref ,L
(uL)−Ei,L(uL)‖L2(D)

‖E
Mref ,L

(uL)‖L2(D)

eiMC(uL) eiMC(uL) =
‖Ei

Mref ,L
(uL)−Ei

M̂
(uL)‖L2(D)

‖E
Mref ,L

(uL)‖L2(D)

A.3. Notation Part III

Two-phase flow:
index w, o quantity of water or oil phase
index α phase index, α ∈ {w, o}
φ rock porosity, φ := void volume

medium volume ,

φα porosity of phase α, φα := void volume filled with phase α
medium volume

Sα saturation of phase α, Sα := φα

φ

S water saturation, solution of eq. (15.7)
k permeability
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kmin coercivity constant
kmax bounded constant
krα relative permeability of phase α
pα pressure of phase α
pc capillary pressure, pc = po − pw
p pressure, solution of eq. (15.6)
ρα density of phase α
µα viscosity of phase α
qα source (qα > 0) or sink (qα < 0) of phase α
q total source, q = qw + qo
G gravitational pull-down force
g gravitational constant

vα phase velocity, vα = −krα

µα
k (∇pα − ραG), eq. (15.2)

v total velocity, v = vw + vo
t time, t ∈ [0, T ]

λα phase mobility, λα = krα

µα

λ total mobility, λ = λw + λo
f flux term, f = λw

λ

Mixed MsFEM:
Vh finite dimensional velocity approximation space,

Vh ⊂ H(div, D)
V 0
h V 0

h = Vh ∩H0(div, D)
Vh(kj) Vh(kj) =

⊕
ι∈I{Ψι,kj

}
V 0
h (kj) V 0

h (kj) = Vh(kj) ∩H0(div, D)
V NLSO
h velocity approximation space no-local-solve-online (NLSO)

method, V NLSO
h =

⊕Nl

j=1 Vh(kj)

V ι
h V ι

h =
⊕Nl

j=1 Ψι,kj

V LSO
h velocity approximation space local-solve-online (LSO) method,

V LSO
h =

⊕
ι∈I{Ψι,k̃}

Qh finite dimensional pressure approximation space,
Qh ⊂ L2(D)/R

function index h projection onto the corresponding finite dimensional subspace

Di partition of D in polyhedral elements,
⋃N

i=1Di = D
Γι interface between two neighboring blocks, Γι = Di ∩Di′ ,

ι = {ii′} ∈ I
N number of blocks Di, 1 ≤ i ≤ N
Nl number of permeability realizations kj(x), 1 ≤ j ≤ Nl, per level

used to build the velocity approximation space
I multi index set of index pairs of two neighboring blocks, i.e if

Di ∩Di′ 6= ∅, ι = {ii′} ∈ I
|I| cardinality of I
n outer normal
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nii′ normal pointing from Di to Di′

g Neumann boundary function in (15.8)
gι boundary function of the auxiliary problem (15.10), e.g., global

boundary condition: gι(kj) =
vj ·nii′∫

Γι
vj ·nii′ds

((15.11))

vj global velocity solution which solves (15.8) with the coefficient
kj(x)

kj realization of the random permeability for some random ωj ,
kj(x) = k(x, ωj)

Kj
off given set of permeability realizations to compute the multiscale

basis functions (cf. (15.10)) Kj
off = (kj1, · · · , kjNL

), 1 ≤ j ≤ Nb

Kj
on set of permeability realizations to solve online the flow and

transport equations (cf. (15.6)-(15.7)) to compute the satu-
ration, Kj

on = (kj1, · · · , kjM1
), 1 ≤ j ≤ Nb

k̃ realization of the random permeability for some random ω̃,
k̃(x) = k(x, ω̃)

wι,k solution of the auxiliary problem (15.10) with the coefficient
k(x)

w̃ι,k̃ approximation of the solution of (15.10) with local boundary
conditions with the coefficient k̃(x) in V ι

h

Ψι,k multiscale basis function Ψι,k = −k(x)∇wι,k

Ψ̃ι,k̃ LSO basis multiscale basis function

Ψ̃ι,k̃ = −k̃(x)∇w̃ι,k̃

Saturation scheme:
tk discrete time value
∆t time step, ∆t := tk+1 − tk

Sk(x) water saturation at tk, Sk(x) = S(x, tk)

Si(t) time dependent coefficient in S(x, t) =
∑N

i=1 Si(t)ϕi(x)
Sk
i Si(t

k)

S S = (Sk+1
i )1≤i≤N

Sn Newton iteration
ϕi piecewise constant basis function in space,

ϕi(x) =

{
1, if x ∈ Di

0, else.
, 1 ≤ i ≤ N

θ parameter in θ-scheme (15.12), 0 ≤ θ ≤ 1,
θ = 0: explicit scheme,
θ = 1: implicit scheme

Qi source in one cell Di, Qi =
∫
Di
qw

f̂(S)ii′ numerical flux,

f̂(S)ii′ =

{
f(Si), if v · nii′ ≥ 0

f(Si′), if v · nii′ < 0
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vii′ velocity flux across an intersection, vii′ =
∫
Γii′

v · nii′

H(S) H(S) =
(
Sk
i − Si − ∆t

|Di|φ
∑

Γii′

(
f̂(S)ii′vii′

)
+ ∆t

|Di|φQi

)
1≤i≤N

DH(S) Jacobian matrix of H(S)

MLMC:
L level of interest
l level, 1 ≤ l ≤ L
Ml number of realizations used at level l with Nl permeability re-

alizations to compute the velocity approximation space,
M1 > M2 > · · · > ML

M̂ number of realizations used for MC with NL permeability real-
izations

Mref number of realizations used to calculate a reference saturation
M M = (M1,M2, · · · ,ML)
Sl water saturation at level l, i.e., Nl permeability realizations are

used to compute the velocity approximation space
Sl,m realization of the water saturation at level l, Sl,m = Sl(x, t, ωm),

1 ≤ m ≤Ml

Sref reference saturation, arithmetic mean for Mref realizations
EL(SL) MLMC approximation of E[SL],

EL(SL) =
∑L

l=1EMl
(Sl − Sl−1)

Sj
MLMC MLMC approximation of the expectation for given sets of per-

meability realization Kj
off and Kj

on, E
L(SL;K

j
off ,K

j
on)

β convergence rate, ‖Sl − S‖ ∼ 1

Nβ

l

WMLMC computational costs for MLMC based on pressure
WMC computational costs for MC based on pressure

MLMC error MLMC error =

√
1
Nb

∑Nb

j=1

‖Sref−Sj

MLMC
‖2
L2

‖Sref‖2
L2

Y (x, ω) Y (x, ω) = log[k(x, ω)]
Hj coarse mesh size
ǫi correlation length in direction i
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B. Tables

σ Ansatz coefficient # cell problems in each direction

KL K∗ =

(
0.973177 −3.89458 · 10−9

−3.89458 · 10−9 0.973177

)
2

0.0001

MC K∗ =

(
0.973179 1.00662 · 10−8

3.18901 · 10−8 0.973179

)
100

MC K∗ =

(
0.973202 −8.79283 · 10−7

−3.95239 · 10−9 0.973201

)
1

KL K∗ =

(
0.973177 ·1.0132610−8

1.01326 · 10−8 0.973177

)
2

0.001

MC K∗ =

(
0.9732 9.64221 · 10−8

4.06617 · 10−7 0.9732

)
100

MC K∗ =

(
0.97343 −9.80544 · 10−6

5.78373 · 10−7 0.973411

)
1

KL K∗ =

(
0.973176 −2.35257 · 10−9

−2.35257 · 10−9 0.973176

)
2

0.01

MC K∗ =

(
0.973389 1.47233 · 10−6

4.66184 · 10−6 0.973392

)
100

MC K∗ =

(
0.972753 −2.59393 · 10−5

4.45803 · 10−5 0.972688

)
11

KL K∗ =

(
0.973057 −1.21852 · 10−9

−1.21852 · 10−9 0.973057

)
54

0.1

MC K∗ =

(
0.974138 −3.80639 · 10−5

9.22774 · 10−6 0.973826

)
100

MC K∗ =

(
0.973099 −3.08822 · 10−5

2.5945 · 10−5 0.972769

)
99

Table 27: Upscaled coefficient with α = 0.1 and τ = 1.
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σ Ansatz coefficient N in each direction

0.0001 KL1 K∗ =

(
0.999997 −3 · 10−14

−3 · 10−14 0.999997

)
2

KL2 K∗ =

(
1 1 · 10−14

1 · 10−14 1

)
2

MC1 K∗ =

(
1.00003 −4.17333 · 10−7

1.21728 · 10−7 1.00003

)
2

MC2 K∗ =

(
1.00002 −1.15326 · 10−6

−1.72008 · 10−7 1.00002

)
1

0.001 KL1 K∗ =

(
1 1.3 · 10−12

1.3 · 10−12 1

)
2

KL2 K∗ =

(
1 −3.43732 · 10−8

−3.43732 · 10−8 1

)
2

MC1 K∗ =

(
1.00031 −3.77327 · 10−6

−3.77327 · 10−6 1.00031

)
2

MC2 K∗ =

(
1.00023 −1.12308 · 10−5

−2.84615 · 10−7 1.00022

)
1

0.01 KL1 K∗ =

(
1 3.015 · 10−12

3.015 · 10−12 1

)
2

KL2 K∗ =

(
1 −2.81223 · 10−8

−2.81223 · 10−8 1

)
2

MC1 K∗ =

(
1.00112 −3.40494 · 10−6

6.51628 · 10−5 1.00105

)
4

MC2 K∗ =

(
1.00021 3.94357 · 10−6

7.34104 · 10−6 1.00021

)
100

0.1 KL1 K∗ =

(
0.999948 6.05926 · 10−10

6.05926 · 10−10 0.999948

)
54

KL2 K∗ =

(
0.999938 1.13249 · 10−6

1.13249 · 10−6 0.999938

)
54

MC1 K∗ =

(
0.976056 −9.30823 · 10−5

0.00054973 0.975952

)
18

MC2 K∗ =

(
0.999219 9.45786 · 10−6

1.56579 · 10−6 0.999235

)
10000

Table 28: Upscaled coefficient with α = 1 and τ = 1.
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σ Ansatz coefficient N in each direction

0.0001 KL1 K∗ =

(
2 −2.58898 · 10−15

−2.58898 · 10−15 2

)
2

KL2 K∗ =

(
2 0
0 2

)
2

MC1 K∗ =

(
2.00003 −9.53789 · 10−8

3.81182 · 10−7 2.00003

)
2

MC2 K∗ =

(
2.00002 −8.00069 · 10−7

−3.13272 · 10−8 2.00002

)
1

0.001 KL1 K∗ =

(
2 −1.7 · 10−12

−1.7 · 10−12 2

)
2

KL2 K∗ =

(
2 −4.37498 · 10−8

−4.37498 · 10−8 2

)
2

MC1 K∗ =

(
2.00031 −3.97768 · 10−6

3.58652 · 10−6 2.00031

)
2

MC2 K∗ =

(
2.00023 −1.10975 · 10−5

−4.07172 · 10−7 2.00022

)
1

0.01 KL1 K∗ =

(
2 3.11344 · 10−9

3.11344 · 10−9 2

)
2

KL2 K∗ =

(
2 6.25077 · 10−8

6.25077 · 10−8 2

)
2

MC1 K∗ =

(
2.00112 −2.63017 · 10−6

6.59184 · 10−5 2.00106

)
4

MC2 K∗ =

(
2.00022 3.66665 · 10−6

7.03134 · 10−6 2.00022

)
100

0.1 KL1 K∗ =

(
1.99998 6.87222 · 10−10

6.87222 · 10−10 1.99998

)
54

KL2 K∗ =

(
1.99997 −3.72147 · 10−7

−3.72147 · 10−7 1.99997

)
54

MC1 K∗ =

(
1.97657 −8.74909 · 10−5

5.55191 · 10−4 1.97623

)
18

MC2 K∗ =

(
1.99954 9.51709 · 10−6

1.76096 · 10−6 1.99954

)
10000

Table 29: Upscaled coefficient with coefficient= 2 and τ = 1.
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σ Ansatz coefficient N in each direction

0.0001 KL1 K∗ =

(
1 −3 · 10−14

−3 · 10−14 1

)
2

KL2 K∗ =

(
1 −6.24999 · 10−9

−6.24999 · 10−9 1

)
2

MC1 K∗ =

(
1.00002 3.20372 · 10−7

1.0951 · 10−7 1.00002

)
2

MC2 K∗ =

(
1.00001 1.20297 · 10−6

−4.37568 · 10−7 1.00001

)
1

0.001 KL1 K∗ =

(
0.999999 1 · 10−13

1 · 10−13 0.999999

)
2

KL2 K∗ =

(
1 1.47002 · 10−12

1.47002 · 10−12 1

)
2

MC1 K∗ =

(
1.00021 3.20309 · 10−6

1.60917 · 10−6 1.00022

)
2

MC2 K∗ =

(
1.00012 1.15273 · 10−5

−3.55854 · 10−6 1.00013

)
1

0.01 KL1 K∗ =

(
0.999998 7.80573 · 10−10

7.80573 · 10−10 0.999998

)
2

KL2 K∗ =

(
1 7.81533 · 10−9

7.81533 · 10−9 1

)
2

MC1 K∗ =

(
1.00055 −5.19363 · 10−6

6.7596 · 10−5 1.0005

)
4

MC2 K∗ =

(
1.00014 −5.80497 · 10−6

5.25817 · 10−6 1.00011

)
100

0.1 KL1 K∗ =

(
0.999948 6.05926 · 10−10

6.05926 · 10−10 0.999948

)
54

KL2 K∗ =

(
0.999872 3.0674 · 10−8

3.0674 · 10−8 0.999872

)
54

MC1 K∗ =

(
0.980719 1.1145 · 10−4

8.61976 · 10−4 0.980919

)
18

MC2 K∗ =

(
0.998296 −1.59201 · 10−5

8.65048 · 10−7 0.998297

)
10000

Table 30: Upscaled coefficient with α = 1 and τ = 0.5.
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σ Ansatz coefficient N in each direction

0.0001 KL1 K∗ =

(
2 0
0 2

)
2

KL2 K∗ =

(
2 2 · 10−14

2 · 10−14 2

)
2

MC1 K∗ =

(
2.00002 4.09402 · 10−7

2.60996 · 10−7 2.00002

)
4

MC2 K∗ =

(
2.00001 1.39367 · 10−6

−1.12553 · 10−7 2.00001

)
1

0.001 KL1 K∗ =

(
2 1.1 · 10−12

1.1 · 10−12 2

)
2

KL2 K∗ =

(
2 −6.24975 · 10−8

−6.24975 · 10−8 2

)
2

MC1 K∗ =

(
2.00021 3.21561 · 10−6

1.60966 · 10−6 2.00022

)
4

MC2 K∗ =

(
2.00012 1.16113 · 10−5

−3.52223 · 10−6 2.00013

)
1

0.01 KL1 K∗ =

(
2 7.00001 · 10−13

7.00001 · 10−13 2

)
2

KL2 K∗ =

(
2 6.25494 · 10−9

6.25494 · 10−9 2

)
2

MC1 K∗ =

(
2.00056 −6.36304 · 10−6

6.65335 · 10−5 2.00051

)
18

MC2 K∗ =

(
2.00015 −5.37206 · 10−6

5.69184 · 10−6 2.00015

)
100

0.1 KL1 K∗ =

(
1.99995 −7.2887 · 10−10

−7.2887 · 10−10 1.99995

)
54

KL2 K∗ =

(
1.99994 9.27524 · 10−7

9.27524 · 10−7 1.99994

)
54

MC1 K∗ =

(
1.9819 9.23236 · 10−5

8.42196 · 10−4 1.98166

)
18

MC2 K∗ =

(
1.99909 −1.40936 · 10−5

2.59981 · 10−6 1.99908

)
10000

Table 31: Upscaled coefficient with α = 2 and τ = 0.5.
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Σ|M Ansatz coefficient N in each direction

Σ = 0.0001 KL1 K∗ =

(
0.999997 −3 · 10−14

−3 · 10−14 0.999997

)
2

µlog = 1 KL2 K∗ =

(
1 1.44426 · 10−12

1.44426 · 10−12 1

)
2

MC1 K∗ =

(
1.00003 −4.17333 · 10−7

1.21728 · 10−7 1.00003

)
2

MC2 K∗ =

(
1.00002 −1.15326 · 10−6

−1.72008 · 10−7 1.00002

)
1

Σ = 0.001 KL1 K∗ =

(
1 −1.3 · 10−12

−1.3 · 10−12

)
2

µlog = 1 KL2 K∗ =

(
1 2.92263 · 10−12

2.92263 · 10−12 1

)
2

MC1 K∗ =

(
1.00031 −3.77329 · 10−6

3.58006 · 10−6 1.00031

)
2

MC2 K∗ =

(
1.00023 −1.12308 · 10−5

−2.8462 · 10−7 1.00022

)
1

Σ = 0.01 KL1 K∗ =

(
1.00005 3.015 · 10−12

3.015 · 10−12 1.00005

)
2

µlog = 1.00005 KL2 K∗ =

(
1.00005 1.77067 · 10−11

1.77067 · 10−11 1.00005

)
2

MC1 K∗ =

(
1.00113 −3.48853 · 10−6

6.51272 · 10−5 1.00107

)
4

MC2 K∗ =

(
1.00027 3.95062 · 10−6

7.40914 · 10−6 1.00027

)
100

Σ = 0.1 KL1 K∗ =

(
1.00489 −6.10741 · 10−10

−6.10741 · 10−10 1.00489

)
54

µlog = 1.00494 KL2 K∗ =

(
1.0049 5.3252 · 10−11

5.3252 · 10−11 1.0049

)
54

MC1 K∗ =

(
1.00316 −2.79847 · 10−4

4.48964 · 10−4 1.00273

)
14

MC2 K∗ =

(
1.00417 9.27642 · 10−6

5.49208 · 10−7 1.00419

)
10000

Table 32: Upscaled lognormal coefficient with expected value µlog = exp(σ
2

2 ) and τ = 1.
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Σ|M Ansatz coefficient N in each direction

Σ = 0.0001 KL1 K∗ =

(
1 −3 · 10−14

−3 · 10−14 1

)
2

µlog = 1 KL2 K∗ =

(
1 1.59191 · 10−12

1.59191 · 10−12 1

)
2

MC1 K∗ =

(
1.00002 3.20373 · 10−7

1.0951 · 10−7 1.00002

)
2

MC2 K∗ =

(
1.00001 1.20297 · 10−6

−4.37568 · 10−7 1.00001

)
1

Σ = 0.001 KL1 K∗ =

(
0.999999 1 · 10−13

1 · 10−13 0.999999

)
2

µlog = 1 KL2 K∗ =

(
1 4.3991 · 10−12

4.3991 · 10−12 1

)
2

MC1 K∗ =

(
1.00021 3.20465 · 10−6

1.62479 · 10−6 1.00022

)
2

MC2 K∗ =

(
1.00012 1.15304 · 10−5

−3.52732 · 10−6 1.00013

)
1

Σ = 0.01 KL1 K∗ =

(
1.00005 7.80613 · 10−10

7.80613 · 10−10 1.00005

)
2

µlog = 1.00005 KL2 K∗ =

(
1.00005 3.2471 · 10−11

3.2471 · 10−11 1.00005

)
2

MC1 K∗ =

(
1.00058 −5.33551 · 10−6

6.75597 · 10−5 1.00053

)
4

MC2 K∗ =

(
1.00019 −5.74519 · 10−6

5.32602 · 10−6 1.0002

)
100

Σ = 0.1 KL1 K∗ =

(
1.00484 −1.29519 · 10−9

−1.29519 · 10−9 1.00484

)
54

µlog = 1.00494 KL2 K∗ =

(
1.00485 7.4433 · 10−11

7.4433 · 10−11 1.00485

)
54

Table 33: Upscaled lognormal coefficient with expected value µlog = exp(σ
2

2 ) and τ = 0.5.
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Σ Ansatz coefficient N in each direction

0.0001 KL1 K∗ =

(
0.999997 3 · 10−14

3 · 10−14 0.999997

)
2

KL2 K∗ =

(
1 1.44426 · 10−12

1.44426 · 10−12 1

)
2

MC1 K∗ =

(
1.00003 −4.17333 · 10−7

1.21728 · 10−7 1.00003

)
2

MC2 K∗ =

(
1.00002 −1.15326 · 10−6

−1.72008 · 10−7 1.00002

)
1

0.001 KL1 K∗ =

(
1 −1.3 · 10−12

−1.3 · 10−12 1

)
2

KL2 K∗ =

(
1 2.92263 · 10−12

2.92263 · 10−12 1

)
2

MC1 K∗ =

(
1.00031 −3.77329 · 10−6

3.58006 · 10−6 1.00031

)
2

MC2 K∗ =

(
1.00023 −1.12308 · 10−5

−2.8462 · 10−7 1.00022

)
1

0.01 KL1 K∗ =

(
1 3.075 · 10−12

3.075 · 10−12 1

)
2

KL2 K∗ =

(
1 1.77066 · 10−11

1.77066 · 10−11 1

)
2

MC1 K∗ =

(
1.00108 −3.49242 · 10−6

6.51238 · 10−5 1.00102

)
4

MC2 K∗ =

(
1.00022 3.94998 · 10−6

7.40804 · 10−6 1.00022

)
100

0.1 KL1 K∗ =

(
0.999948 2.65352 · 10−9

2.65352 · 10−9 0.999948

)
54

KL2 K∗ =

(
0.999956 4.8025 · 10−11

4.8025 · 10−11 0.999956

)
54

Table 34: Upscaled coefficient with α = 1 and τ = 1 (lognormal).
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Σ Ansatz coefficient N in each direction

0.0001 KL1 K∗ =

(
1 −3 · 10−14

−3 · 10−14 1

)
2

KL2 K∗ =

(
1 1.59191 · 10−12

1.59191 · 10−12 1

)
2

MC1 K∗ =

(
1.00002 3.20373 · 10−7

1.0951 · 10−7 1.00002

)
2

MC2 K∗ =

(
1.00001 1.20297 · 10−6

−4.37568 · 10−6 1.00001

)
1

0.001 KL1 K∗ =

(
0.999999 1 · 10−13

1 · 10−13 0.999999

)
2

KL2 K∗ =

(
1 4.3991 · 10−12

4.3991 · 10−12 1

)
2

MC1 K∗ =

(
1.00021 3.20465 · 10−6

1.62479 · 10−6 1.00022

)
2

MC2 K∗ =

(
1.00012 1.15304 · 10−5

−3.52732 · 10−6 1.00013

)
1

0.01 KL1 K∗ =

(
0.999998 7.80573 · 10−10

7.80573 · 10−10 0.999998

)
2

KL2 K∗ =

(
1 3.2471 · 10−11

3.2471 · 10−11 1

)
2

MC1 K∗ =

(
1.00053 −5.33934 · 10−6

6.75526 · 10−5 1.00048

)
4

MC2 K∗ =

(
1.00014 −5.74432 · 10−6

5.32569 · 10−6 1.00015

)
100

0.1 KL1 K∗ =

(
0.999898 −1.27463 · 10−9

−1.27463 · 10−9 0.999898

)
54

KL2 K∗ =

(
0.999914 8.3377 · 10−11

8.3377 · 10−11 0.999914

)
54

Table 35: Upscaled coefficient with α = 1 and τ = 0.5 (lognormal).
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Σ Ansatz coefficient N in each direction

0.0001 KL1 K∗ =

(
2 0
0 2

)
2

KL2 K∗ =

(
2 2.87191 · 10−12

2.87191 · 10−12 2

)
2

MC1 K∗ =

(
2.00002 4.09402 · 10−7

2.60996 · 10−7 2.00002

)
2

MC2 K∗ =

(
2.00001 1.39367 · 10−6

−1.12553 · 10−7 2.00001

)
1

0.001 KL1 K∗ =

(
2 1.1 · 10−12

1.1 · 10−12 2

)
2

KL2 K∗ =

(
2 5.6791 · 10−12

5.6791 · 10−12 2

)
2

MC1 K∗ =

(
2.00021 3.21561 · 10−6

1.60966 · 10−6 2.00022

)
2

MC2 K∗ =

(
2.00012 1.16113 · 10−5

−3.52224 · 10−6 2.00013

)
1

0.01 KL1 K∗ =

(
2 7.00005 · 10−13

7.00005 · 10−13 2

)
2

KL2 K∗ =

(
2 3.3751 · 10−11

3.3751 · 10−11 2

)
2

MC1 K∗ =

(
2.00054 −6.53769 · 10−6

6.64053 · 10−5 2.00049

)
4

MC2 K∗ =

(
2.00015 −5.32668 · 10−6

5.77404 · 10−6 2.00016

)
100

0.1 KL1 K∗ =

(
1.99995 −1.58594 · 10−9

−1.58594 · 10−9 1.99995

)
54

KL2 K∗ =

(
1.99996 1.09234 · 10−10

1.09234 · 10−10 1.99996

)
54

Table 36: Upscaled coefficient with α = 2 and τ = 0.5 (lognormal).
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P
P
P
P
P
P
PP

ǫACA

m
5 10 20 40 80

10−2 0.18 0.56 0.57 1.18 3.01

10−4 0.36 0.36 1.07 2.23 2.64

10−6 0.23 0.35 0.69 1.45 2.74

10−8 0.36 0.65 1.15 2.22 3.91

10−10 0.35 0.59 1.03 3.10 3.65

0 1.65 1.98 3.01 5.91 12.58

Table 37: Required time in seconds to calculate m eigenpairs for the weak admissibility condition
and leaf size 1.

P
P
P
P
P
P
PP

ǫACA

m
5 10 20 40 80

10−2 0.05 0.20 0.28 0.48 1.66

10−4 0.13 0.19 0.65 1.26 1.66

10−6 0.13 0.20 0.57 0.67 1.70

10−8 0.16 0.24 0.70 0.80 1.96

10−10 0.31 0.30 0.61 0.99 2.27

0 1.65 1.98 3.01 5.91 12.58

Table 38: Required time in seconds to calculate m eigenpairs for the weak admissibility condition
and leaf size 4.
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P
P
P
P
P
P
PP

ǫACA

m
5 10 20 40 80

10−2 1.86 10.93 7.57 12.4 17.84

10−4 2.01 2.65 6.18 31.42 24.78

10−6 2.11 4.58 8.71 17.04 27.07

10−8 2.1 2.99 5.77 11.48 18.23

10−10 2.01 2.82 5.48 10.76 17.18

0 1.65 1.98 3.01 5.91 12.58

Table 39: Required time in seconds to calculate m eigenpairs for the standard admissibility con-
dition and leaf size 1.

P
P
P
P
P
P
PP

ǫACA

m
5 10 20 40 80

10−2 0.73 3.27 3.20 6.40 9.21

10−4 0.89 1.27 3.59 14.49 21.24

10−6 0.75 1.08 2.08 3.32 8.33

10−8 0.97 1.16 2.24 3.55 7.40

10−10 1.00 1.30 2.49 3.99 8.16

0 1.65 1.98 3.01 5.91 12.58

Table 40: Required time in seconds to calculate m eigenpairs for the standard admissibility con-
dition and leaf size 4.
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