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An dieser Stelle möchte ich mich auch bei all denen bedanken, welche dafür gesorgt haben, dass ich

das Wesentliche nicht aus den Augen verloren habe: Myriam für ihre Unterstützung und Gedult, meine
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Abstract

Today’s ubiquity of visual content as driven by the availability of broadband Internet, low-priced storage,

and the omnipresence of camera equipped mobile devices conveys much of our thinking and feeling as

individuals and as a society. As a result the growth of video repositories is increasing at enourmous

rates with content now being embedded and shared through social media. To make use of this new form

of social multimedia, concept detection, the automatic mapping of semantic concepts and video content

has to be extended such that concept vocabularies are synchronized with current real-world events,

systems can perform scalable concept learning with thousands of concepts, and high-level information

such as sentiment can be extracted from visual content. To catch up with these demands the following

three contributions are made in this thesis: (i) concept detection is linked to trending topics, (ii) visual

learning from web videos is presented including the proper treatment of tags as concept labels, and (iii)

the extension of concept detection with adjective noun pairs for sentiment analysis is proposed.

In order for concept detection to satisfy users’ current information needs, the notion of fixed concept

vocabularies has to be reconsidered. This thesis presents a novel concept learning approach built upon

dynamic vocabularies, which are automatically augmented with trending topics mined from social media.

Once discovered, trending topics are evaluated by forecasting their future progression to predict high

impact topics, which are then either mapped to an available static concept vocabulary or trained as

individual concept detectors on demand. It is demonstrated in experiments on YouTube video clips that

by a visual learning of trending topics, improvements of over 100% in concept detection accuracy can be

achieved over static vocabularies (n=78,000).

To remove manual efforts related to training data retrieval from YouTube and noise caused by tags

being coarse, subjective and context-depedent, this thesis suggests an automatic concept-to-query map-

ping for the retrieval of relevant training video material, and active relevance filtering to generate reliable

annotations from web video tags. Here, the relevance of web tags is modeled as a latent variable, which is

combined with an active learning label refinement. In experiments on YouTube, active relevance filtering

is found to outperform both automatic filtering and active learning approaches, leading to a reduction

of required label inspections by 75% as compared to an expert annotated training dataset (n=100,000).

Finally, it is demonstrated, that concept detection can serve as a key component to infer the sen-

timent reflected in visual content. To extend concept detection for sentiment analysis, adjective noun

pairs (ANP) as novel entities for concept learning are proposed in this thesis. First a large-scale visual

sentiment ontology consisting of 3,000 ANPs is automatically constructed by mining the web. From this

ontology a mid-level representation of visual content – SentiBank – is trained to encode the visual pres-

ence of 1,200 ANPs. This novel approach of visual learning is validated in three independent experiments

on sentiment prediction (n=2,000), emotion detection (n=807) and pornographic filtering (n=40,000).

SentiBank is shown to outperform known low-level feature representations (sentiment prediction, pornog-

raphy detection) or perform comparable to state-of-the art methods (emotion detection).

Altogether, these contributions extend state-of-the-art concept detection approaches such that con-

cept learning can be done autonomously from web videos on a large-scale, and can cope with novel

semantic structures such as trending topics or adjective noun pairs, adding a new dimension to the

understanding of video content.
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Chapter 1

Introduction

Currently, traditional media is experiencing a major shift towards social media. In the same way interac-

tion in social media is to an increasing degree enriched with images and videos. This combination gives

rise to a new type of content being coined as social multimedia. Examples illustrating this development

are the Arab Spring in the Middle East in 2012, where public protests were organized, communicated, and

propagated by means of social media, or the Boston Marathon Bombings on April 15th2013, where the

majority of media coverage – including official sources such as the police and the FBI – was distributed

by social platforms like Twitter and YouTube instead of through traditional media. One triggering key

element of this trend is the upload and distribution of images and videos over the Internet minutes after

such incidents happen. This is possible because of the availability of broadband Internet, low-priced

storage, and the omnipresence of camera equipped mobile devices allowing people to record, publish,

share, and consume digital images and videos without effort. This ubiquity of visual content conveys

much about our thinking and feeling as it reflects our personal life and ourselves as a society.

As the world is turning towards visual communication [SW09], the sizes of image and video databases

are growing with enormous rates. Nowadays, users are generating large amounts of video material and

are publishing it online via video platforms like “YouTube”, “Vimeo”, or “Dailymotion” 1. YouTube, as

the most prominent provider in this area, stores about 100 hours of new video content every minute on

its database and delivers over six billion hours of videos to its users every month [YOU13]. Additionally,

live-streaming services like “Ustream” or “Justin.tv” 2 form another quickly growing area for digital

video broadcasting. Besides web video sharing platforms and live streaming services a third form of

digital video is moving towards the Internet: streamed video on demand. Platforms such as “Netflix” or

“Amazon Instant Video” 3 are starting to conquer this market and they are followed by traditional TV

broadcasters like News Corp. and Time Warner. In contrast to these commercial consumer efforts digital

video streams are recorded and stored in other contexts including efforts to digitalize a nation’s broadcast

archives [HSdRS12], to preserve cultural heritage [PKA+07], to maintain public safety by surveillance

camera monitoring [BBC06], and to augment reality or record our surroundings4.

Summarizing, there is not only an immense amount of digital video already stored digitally, but

1www.youtube.com, www.vimeo.com, www.dailymotion.com
2 www.ustream.com, www.justin.tv
3www.netflix.com, www.amazon.com/Instant-Video/
4www.google.com/mobile/, www.google.com/glass/
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also a rapidly growing trend to make even larger quantities of video content available online. This is

particularly reflected in a recent report by CISCO [Inc12], according to which global internet video traffic

will account for 55% percent of all consumer Internet traffic (excluding P2P traffic) in 2016.

1.1 Video Retrieval

Unfortunately this content is of no use if not made accessible by system providing means to search

in it. According to Jain and Hampapur [JH94], the purpose of digital video is to entertain (e.g. TV

shows, music videos), to inform (e.g. news broadcasts, documentaries), to communicate (e.g. video

conferencing), and to analyze (medicine, surveillance). Considering each of these areas, different types of

retrieval mechanisms are required. In the literature three major groups of access mechanisms to visual

databases can be found: “query-by-sketch” [SC97, CDBP99, Ege97] or “query-by-example” [FSN+95,

NBE+93, BSUB08, dRSW08], where a sketch or an image is given as an example and similar images

are returned from the database, and “query-by-text” (also referred to as “textual-search”) [NBS+02],

where the user formulates a textual query and the retrieval system returns images or videos stored in

the database that are associated with the given keywords. While the first two query approaches might

favor a browsing kind of exploration of the database, the latter one is considered to be a more natural

querying mechanism to the user [YH07] and is therefore used almost exclusively in the context of search

engines (it is also the preferred query mechanism for video platforms like YouTube). This thesis will

focus on “textual-search” driven video retrieval.

However, to employ “textual-search” an index containing the mapping between keywords and videos

must be built. This requires the labeling of the audio-visual video stream by keywords describing its

content. According to Snoek and Worring [SW09] two types of semantic labeling approaches exist to

build such an index.

Human-driven Indexing: One way to build a textual index is to let experts label the database man-

ually according to predefined concepts describing objects (“airplane flying”), scene types (“cityscape”)

and activities (“person playing soccer”) appearing in the videos. This is done by trained experts pro-

viding professional annotations according to given vocabularies [AQ08]. This approach is common in

large broadcasting archives or media companies. A recently prominent form of volunteer-based labeling

is social tagging, the tagging of content in online user communities. While these approaches aim to

provide searchable annotations (or tags) [GH06], they are prone to spam [KEG+08], include numbers,

misspellings [CBP09], are subjective or non-relevant [UBB10], and often incomplete [BJC+13]. Another

approach for label acquisition is crowdsourcing provided by services like Amazon Mechanical Turk or

CrowdFlower 5. Here, the labeling process is defined as a micro task which is paid and executed by a vast

amount of workers from all over the world. While being considered as a valid alternative to trained ex-

perts the identification of reliable workers is important since high-volume but low-quality workers might

bias overall judgments [SOJN08]. A further example for acquiring annotations are games with a pur-

pose [VA06]. This approach wraps the labeling task into a game which is played for pleasure and creating

labels as a side effect of playing the game. While being very successful [VABHL03] some tasks that

require domain knowledge or prior training are not suitable for this type of labeling approach [VAD08].

5www.mturk.com/mturk/, www.crowdflower.com
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In conclusion, to build an index, human-driven labeling is often impracticable due to the large amount

of video data being created [SW05, Ulg09].

Machine-driven Indexing: Another way to build a textual index is to derive descriptive labels au-

tomatically by analyzing the available meta-data [WCGH99, SW05]. This can be done either by using

filenames or surrounding text close to the image or video [CSBB97]. These approaches are usually used

by traditional search engines. Unfortunately, in today’s mobile device driven world such meta-data is

often not available or not useful. For example there is no surrounded text in a personalized media

archive, and given that filenames are often auto-generated during recording e.g. on a mobile phone, they

lead to non-descriptive alpha-numeric strings such as e.g. IMG 1126.avi. Another approach towards

automatic label acquisition is the expansion of social tags for indexing purpose. This can be achieved

either by the expansion of available tags and the co-occurence of other tags in folksonomies as found

on Flickr [SvZ08, HBU12] or by the utilization of social network structures i.e. to find descriptive tags

based on the ones the uploader’s friends are using [SDLW10]. Unfortunately this approach is only useful

to a particular extent i.e. if tags are already associated with an image or video. They fail if users do

not tag their content. An additional way to index videos is closed captioning. Closed captions are often

provided for professional TV content such as news broadcasts and can be used for a linguistic analysis

of video content [DZS+02]. However, although much of the content broadcast contains closed captions,

personal content is often unscripted, thus not providing any closed captions.

Obviously, much of a video’s information is captured by the video stream itself. Therefore great

research effort is spent on content-based methods analyzing the audio-visual signal of a video. Besides the

analysis of the audio stream [USBS12, CCC+11], automatic speech recognition (ASR) was successfully

used for video database indexing [dJGHN99, HOdJ07] and is considered as a promising approach for

domains such as news broadcast, political speeches or interviews. However, with the progress made in

content-based image retrieval [RHC99, SWSJ00, DJLW08, DKN08], the analysis of the visual signal of a

video stream became one of the very promising general purpose approaches for machine-driven indexing

when no meta-data is available. With this in mind, this thesis focuses on the analysis of visual content.

1.2 Visual Learning of Semantics

A challenge of today’s research endeavors at the intersection of information retrieval, computer vision,

and machine learning is to answer the question if we can build machines capable of learning to perceive

visual content as humans do? Once able to build such machines, we could automatically index large

amounts of video content and finally provide fine grained access to unexploited video repositories.

Unfortunately, as naturally as humans are capable of perceiving their surroundings visually, just as

challenging this undertaking is for machines. In the literature this is known as the semantic gap [SWSJ00],

which describes:

“. . . the lack of coincidence between the information that one can extract from the visual

data and the interpretation that the same data have for a user in a given situation.”

An adaptation of this definition can also be found in [SW09], where the authors speak about the lack of

correspondence between low-level features (i.e. raw pixel values) that machines can extract from videos

3
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Figure 1.1: An overview of several visual recognition tasks. We can see a video sequence of a person riding

a bicycle and performing a bike trick. The different visual recognition tasks are marked as following: Green:

object detection, Blue: semantic concept detection, Red: multimedia event detection, Light Grey: affective

or emotional classification, Dark Grey: visual sentiment analysis.

and the high-level conceptual interpretation a human associates with perceived visual content in a given

situation. In this thesis, whenever a reference to the semantic gap is given, the original definition from

Smeulders et al. [SWSJ00] is meant. This includes the objective appearance of visually present entities

in images or videos such as objects (“car”, “bike”), locations or scene types (“street”, “beach”), as well as

general activities taking place (“interview”, “soccer”) or the performance of complex events (“attempting

a bike trick”). In contrast, whenever in this thesis a remark to a more subjective interpretation of

visual content is given such as being related to affect (“romantic”, “funny”), emotion (“sad”, “happy”), or

sentiment (“positive”, “neutral”, “negative”), a reference to affective gap [MH10] is made, which describes

the mismatch between low-level features and the feelings or opinion being reflected by the image or video.

Over the last years several visual recognition tasks were defined, all aiming to achieve capabilities

comparable to human perception with the goal to auto-extract different semantic and affective aspects

from video content. An overview of the broad spectrum of these different visual recognition tasks can

be found in Figure 1.1. The figure shows a video sequence highlighting a person riding a bicycle during

daytime in an urban environment. In the middle of the video this person attempts to perform a jumping

trick with his bicycle, which at first is successful but later in the video clip fails, causing an accident.Video

sequences like this could be found in millions of videos on platforms such as YouTube. However, even in

such a casual user-generated video clip the visual recognition task such as object detection [EVGW+10]

(green frames), semantic concept detection [SOK06, SOK09] (blue captions), multimedia event detec-

tion [CCC+11, MGvdSS13a] (red frames), affective or emotional categorization [YvGR+08] (light grey

bar), or visual sentiment analysis [BJC+13] (dark grey bar) can be performed. In the first couple of

frames we see the object “car” and “bike” highlighted by a green frame. The second to forth frame –

wrapped by a red frame – show the multimedia event“attempting a bike trick”, whereas the blue captions

at the bottom of the frames describe semantic concepts such as “person riding a bike”, “scenes showing a

street”, or “outdoor scenes”. The top of the figures illustrates in light grey the affective emotional labels

e.g. “amazing” and in dark grey the changing sentiment from “positive” to “negative” towards the end of

the video clip. Both grey bars are obviously related to the successful and failing bike trick.

It can be argued that a particular visual recognition task is a sub-task of another one or can be

used as an intermediate step to solve more complex visual recognition tasks. For example, Li [LSFFX10]

proposed to use a bank of multiple object detectors for scene classification with semantic concepts. In the

same manner, Mazloom suggested the selection of the most informative semantic concepts for subsequent
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multimedia event detection [MGvdSS13a]. This thesis will propose a similar arrangement: while focusing

on concept detection, it will also utilize a detector bank to solve another visual recognition task, the task

of recognizing sentiment in visual content.

Concept Detection

The task to detect generic concepts in visual content is commonly known as concept detection [NS04a,

SWvG+06a, JYCN08]. Given an input image or video clip, concept detection systems use statistical

learning to infer the presence of target concepts by calculating their probabilities for appearance from low-

level features of the given content. Please note that throughout the research community this task has been

also referred to as image and video annotation [FML04, WHS+06], high-level feature extraction [SOK06,

SOK09], semantic indexing [SMH04, OAM+12], or automatic tagging [DJLW07, USKB10].

Although far from the accuracy of human annotations [YH08b, Ulg09], concept detection is of practical

use as it helps to describe and understand visual content. One of the most prominent tasks it is aiming

to solve is image and video search. For this purpose concept detection is applied to map visual content to

a set of set of generic target concepts. These identified concepts are then used as a foundation for textual

search in image and video databases [SOK09, SWdR+08]. Further applications of concept detection

are content-management of TV archives [HSdRS12], content-based recommendation systems [YMH+07,

RMZL12], or the support of content-based or context-sensitive advertising [MHL08, UKB12, BL12].

Finally, concept detection can be utilized for the filtering of offensive content such as pornography or

violence [DPN08, JUB09, USBS12] or the suggestion of keywords for uploaded videos [USKB10, TAP+10,

HBU12]. The practical applications of concept detection are of great value to cope with the massive

amounts of today’s growth rate of image and video content.

Usually, the set of generic concepts – or concept vocabulary – covered by concept detection systems

consists of a broad spectrum of entities including objects (“chair”, “telephone”), locations and scene types

(“desert”, “cityscape”), or activities taking place (“interview”,“people singing”). This requires concept

detection systems to cover hundreds or even thousands of target concepts moving way beyond the narrow

categorization of content [SWSJ00] with its small intra-class and large inter-class variability [SW09]. For

example, even for the limited domain of TV news broadcast Hauptmann et al. [HYL07] argued that:

(i) with a moderate detector performance, (ii) retrieval systems demand concept vocabularies of several

thousands of detectors to reach the retrieval quality of a web search engine. Such a defined level of search

accuracy can be considered sufficient for the general user.

These are two very challenging conditions. Condition (i) requires the construction of robust detec-

tors dealing with well-studied issues known from computer vision such as illumination changes, occlu-

sion, or clutter. Furthermore, it also requires generic systems to deal with different domains, ranging

from TV news broadcast [NKK+05] over consumer video [JYC+11], television [AQ07b, SOU09] to web

video [OAM+11, Ulg09, TAP+10]. More importantly, condition (ii) requires to scale up vocabulary sizes

significantly. This however is considered as a major problem of concept detection [Ulg09] as it demands

labeled training datasets serving as the foundation for supervised machine learning, the underlying tech-

nology of current concept detection systems [SW09]. In practice, this means that for every semantic

concept to be included in the concept vocabulary we require up to hundreds of labeled samples to train a

corresponding detector properly. So far, ground truth training samples have been acquired manually, i.e.

a human operator labels videos or video shots with respect to concept presence. Thereby, concepts are
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well defined according to a given concept vocabulary [NST+06]. This time-consuming and cost-intensive

effort [AQ08, SWvG+06a, YH08a] indeed leads to high quality training material, but suffers significantly

from a scalability problem. A second problem restricting the full potential of concept detection is its

tendency to overfit to small manually required training datasets with the results of poorly generalized

detectors [YH08b]. Moreover, the current setup of concept detection systems makes it infeasible to react

to changing demands of users’ information needs such as the timely visual detection of trending topics of

e.g. sport events such as “Olympics 2012”, incidents such as the “Costa Concordia” accident, or product

releases such as the new “iPhone”. Finally, while approaches exists to infer affect or emotion in visual

content [JDF+11, WJH+12] there is a lack of methods for sentiment prediction from visual content.

This kind of automatic assessment – however – would lead to a more comprehensive description of visual

content in the context of online social interaction, where people express their opinion and emotions on a

regular base. From the above mentioned shortcomings and drawbacks in concept detection I derive the

following goals and contributions of this thesis.

1.3 Goal and Outline of this Thesis

This thesis presents strategies to address the scalability problem and its subsequent negative effects on

concept detection as outlines in the previous section. The work aims to provide scalable concept learning

by the reduction of manual annotation effort in using alternative training sources such as web video.

This allows to synchronize concept detection with real world events matching users’ information need,

and enables systems to go beyond the detection of semantic concept offering sentiment analysis on visual

content for opinion mining. To this end, the focus of this thesis is on the visual learning of semantic

concepts with the attention towards social media driven information sources coining this combination:

visual learning of socio-video semantics.

To achieve the above objectives, the presented strategies cover various aspects of visual concept

detection systems. By aligning concept detection to users’ information needs, the notion of fixed concept

vocabularies has to be re-thought and a closer connection to real-world events must be established. This

is done by mining social media sources for popular topics which are either mapped to an already available

concept vocabulary or as a detector directly trained on demand. Starting from the underlying need for

labeled training data, web video as an alternative training source is utilized. This novel information

source was first exploited for semantic concept detection by Ulges [Ulg09], where user-generated tags

were utilized as concept labels for visual learning. The advantages of such cost free labels acquisition

– however – are limited by cumbersome query construction practice required for training data retrieval

from online platforms such as YouTube and their weakly labeled nature. User-generated tags have to be

considered as pseudo labels for classifier training and therefore need additional treatment or refinement.

Finally, being able to provide detectors covering what people are talking about i.e. trending topics,

concept detection is extended to answer how people feel about particular topics. This is accomplished

by a novel enhancement at the very end of the processing pipeline: the utilization of a large-scale

visual sentiment ontology represented by a detection bank of adjective noun pair concepts for sentiment

analysis. Concluding, the following three contributions are presented for the visual learning of socio-video

semantics:
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1. enabling concept detection to adapt their concept vocabularies dynamically to user interest by

on-the-fly detector training in a scalable on-demand setup.

2. detector training on web video by automatically retrieving training data and effectively handling

web video’s pseudo labels.

3. extending concept detection to adjective-noun-pairs enabling the prediction of sentiment being

reflected in visual content.

Each strategy will be covered in a separate chapter of this thesis and is outlined in one of the following

subsections.

1.3.1 Dynamic Vocabularies by Trending Topics Discovery

The first contribution of this thesis presents a novel approach towards forming dynamic vocabularies for

video concept detection. The key idea is to automatically expand concept vocabularies with trending

topics that are mined automatically on other media like Google, Wikipedia or Twitter. To achieve this,

trends from different media channels are first clustered and then aggregated to form daily trending topics.

An important condition to construct concept vocabularies dynamically is to predict the most popular

trending topics for detector training. This is done by forecasting the life cycle of trending topics at

the very moment they emerge. The presented fully automated approach is based on a nearest neighbor

forecasting technique, exploiting the assumption that semantically similar topics exhibit similar behavior.

Being able to identify such high-impact trending topics, this chapter evaluates several visual learning

strategies for extending concept detection to auto-detect these topics in new videos, either by linking

them to a static concept vocabulary, by a visual learning of trends on-the-fly, or by an expansion of the

vocabulary.

Following, this work presents the first comprehensive study of various trending topics characteristics

across three major online and social media streams, covering thousands of trending topics during an

observation period of an entire year. Results from this study show that a typical trending topic “lives”

up to 14 days with an average of 5 days. Surprisingly, the analysis indicates that Wikipedia as a media

channel is as quick as Twitter when it comes to the first appearance of a trending topic. Furthermore,

in real-world experiments, it is shown that on a large-scale dataset of Wikipedia page view statistics

the presented forecasting method performs about 9 − 48k views closer to the actual viewing statistics

compared to baseline methods, and achieves a mean average percentage error of 45-19% for time periods

of up to 14 days. This demonstrates the capability to forecast the impact of trending topics for evolving

vocabularies in concept detection. Finally, in experiments on 6,800 YouTube clips and the top 23 target

trends from the first half-year it is shown that a direct visual classification of trends (by a “live” learning

on trend videos) outperforms an inference from static vocabularies, and that further improvements can

be achieved by a combination of both approaches.

In addition, this chapter presents a concept detection system named lookapp, which provides real-

time trending topic mining and on-demand state-of-the-art detector training. This system is built upon

third-party cloud computing services (Google AppEngine and PiCloud), which allow to parallelize the

construction (i.e. features extraction and classifiers training) of detectors and extend concept detection

on-the-fly with new semantic concepts.
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1.3.2 Training Data Retrieval and Active Relevance Filtering

A difficult challenge in concept detection based on web-video is to retrieve proper visual training content

from web platforms like YouTube or Vimeo. Prior download of video content for concept learning a

query has to be constructed and send to the platform to retrieve a list of matching video presumably

showing the concept. As such platforms usually offer API access to their databases, the underlying

query construction can be arbitrarily complex demanding a careful query construction. This chapter

presents an approach which offers an automatic concept-to-query mapping for training data acquisition

from YouTube, the largest video platform available. Queries are automatically constructed by a keyword

selection and a category assignment using ImageNet [DDS+09] and Google Sets as external information

sources. Results demonstrate that the proposed method reaches retrieval results comparable to queries

constructed by humans, thus providing 76% more relevant content for detector training than using only

concept names as retrieval queries would do.

Despite these improvements, and because web-video tags are user-generated, they can only serve

as weak indicators of concept presence [Ulg09]. Such pseudo labeled web video contains lots of non-

relevant content. So far, there are two general strategies to overcome this label noise problem: (1) a

manual refinement supported by active learning sample selection [AQ08], (2) an automatic refinement

using relevance filtering [USKB08b]. This thesis also presents a highly efficient approach combining

these two strategies in an interleaved setup: manually refined samples are directly used to improve

relevance filtering, which again provides a good basis for the next active learning sample selection.

Results demonstrate that the proposed combination – called active relevance filtering – outperforms

both a purely automatic filtering and a manual one based on active learning. For example, by using

50 manual labels per concept, an improvement of MAP 5% over an automatic filtering is achieved, and

6% over active learning. By annotating only 25% of pseudo positive samples in the training set, a

performance comparable to training with expert annotated ground truth is reached.

1.3.3 Adjective Noun Pairs for Visual Sentiment Analysis

As the third contribution of this thesis the challenge of sentiment analysis from visual content is tack-

led. In contrast to existing methods which infer sentiment or emotion directly from low-level fea-

tures [LFXH12, JWW+12], this work proposes a novel approach based on understanding the seman-

tics of images. This is rendered possible by introducing a large-scale ontology of 3,000 Adjective Noun

Pairs (ANP). This Visual Sentiment Ontology (VSO) is based on psychological theory [Plu80] and the

proposed construction method is fully data-driven, i.e. it automatically mines online sources such as

Flickr and YouTube for sentiment words, which serve as the building elements for ANPs discovery of

the final VSO. This chapter also presents SentiBank, a novel mid-level representation framework, which

is built upon the VSO and encodes concept presence of 1,200 ANPs from visual content. This bank of

concept detectors allows the differentiation between visual concepts such as “cute dog” and “dangerous

dog” and therefore allow a unique understanding of more complex labels such as sentiment. In addi-

tion, this mid-level representation of visual content can be utilized for the filtering of explicit content

such as pornography or child sexual abuse (CSA) material in a way that it simultaneously provides an

explanation for its detection – a system requirement demanded by law-enforcement units.

In experiments on sentiment analysis with real-world Twitter data covering 2,000 image tweets, the

8
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Figure 1.2: An illustration of the proposed concept detection approach utilizing social input from trending

topic detection and a visual sentiment ontology. To automatically detect a trending topic (pink) in unknown

visual content, the proposed framework is able to take a discovered trending topic dynamically into its concept

vocabulary, retrieve automatically web video and filter non-relevant content for its detector training (blue).

Furthermore, the framework is capable of analyzing visual content for the sentiment it conveys (green, red).

proposed mid-level representation demonstrates an improved prediction accuracy by 13% (absolute gain)

with a joint visual-text approach over state-of-the-art text only methods. In experiments on real-world

pornographic content and CSA content, the proposed approach outperformed all porn detection baselines

and contributed significantly to differentiate pornographic content from CSA content (a very challeng-

ing setup, where traditional porn detection approaches lack in accuracy) Additionally, the compilation

of detected ANPs allows to provide unique insights into pornographic content and CSA content. In

summary, the presented visual sentiment analysis effort - being the first of its kind - creates a large

publicly available resource consisting of a concept ontology, a detector library, and the training/testing

benchmark for visual sentiment analysis.

1.4 Presented Framework

Concluding, the aforementioned contributions present a novel approach for an efficient visual learning

of socio-video semantics from the Web. The outlined framework is illustrated in Figure 1.2: Trending

Topics are mined from several social media streams. A discovered trending topic such as “Olympics

2012” is identified and added dynamically to the concept detection vocabulary. This triggers the concept

detection system to automatically retrieve web video content and to filter non-relevant material for

training. To detect this trending topic, the resulting detector can either be used stand-alone (pink) or

be employed in combination with an already available concept detection vocabulary (blue) by a mapping

9



1.4. PRESENTED FRAMEWORK

of semantic concepts such as “athletics” to the target topic “Olympics”. Moreover, in interplay with a

large-scale visual sentiment ontology of adjective noun pairs such as “excited crowd” or “bad accident”

the proposed framework performs sentiment analysis on the visual content of the video clip (green, red).

Finally, given a video stream to be processed, the system can be used to annotate visual content on

different levels of target labels such as semantic concept, trending topic, and sentiment label.
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Chapter 2

An Overview of Concept Detection

in Video Content

Nowadays, most video search technology, be it for large-scale online video platforms such as YouTube or

video archives of television broadcasters, rely on human-driven indexing i.e. manually generated descrip-

tions, annotations or tags. As seen in Section 1.1 this type of indexing is prone to spam, misspellings,

subjectivity, and is incomplete or non-relevant and therefore not practicable for many applications. Even

if done by professional annotators for archiving purposes, this approach does not scale with the im-

mense amount of audio-visual content currently being produced [WCGH99, Sme07, SW05]. A solution

to this problem is concept detection, a machine indexing mechanism, which provides access to video

content by analyzing the audio-visual video stream for the presence of semantic concepts such as objects

(“chair”, “telephone”), locations and scene types (“desert”, “cityscape”), or activities taking place (“inter-

view”,“people singing”). Throughout recent years of intensive research the academic community referred

to this challenging task also as image and video annotation [FML04, WHS+06], high-level feature extrac-

tion [SOK06, SOK09], semantic indexing [SMH04, OAM+12], or automatic tagging [DJLW07, USKB10].

In this thesis the widely established term “concept detection” [SW09] will be adopted.

This chapter provides an overview of concept detection research with a focus on video content.

Approaches which are specific to the contributions of this thesis (as outlined in Section 1.3) are described

later in their corresponding chapters. This chapter starts with the outline of the problem statement and

the definition of concept detection (Section 2.1). It further lists its most important application areas

(Section 2.2) and provides an introduction to the structure of video material (Section 2.3). Then,

the chapter continues with an overview of concept detection in the context of employed architectural

frameworks (Section 2.4) and frequently used approaches and methods (Section 2.5). To this end, it

introduces common means fÃijr system evaluation (Section 2.6) and closes with an examination of label

acquisition in Section 2.7.
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2.1. PROBLEM STATEMENT

(d)(c)(b)(a)

Figure 2.1: Example keyframes of YouTube videos displaying the presence of different semantic concepts. As

seen, (a) different textual descriptions such as “person riding a bike” or “bike stunts” might match the same visual

content, (b) descriptions are subjective or require prior knowledge to recognize e.g. a “bride”, (c) require exact

specifications in form of restrictions to physical objects only excluding animations of objects, or (d) may display

the semantic concept (e.g. “shots of an airplane flying”) from an unusual point of view.

2.1 Problem Statement

Concept Detection aims to analyze the audio-visual content of video to automatically infer the presence

of semantic concepts. To make this compact description more formal, the notion of a “semantic concept”

and “concept presence” has to be provided in more detail. As outlined in the introduction of this chapter,

a semantic concept can be anything from the broad range of objects, locations, scene types, or activities

taking place. Snoek and Worring define a semantic concept as: “. . . an objective linguistic description of

an observable entity” [SW09]. Although this definition does capture the idea of a concept itself and its

presence in video content, a more specific notation is desirable. Consider the following five examples of

concepts definitions as illustrated in Figure 2.1:

c1 := “a person riding a bike”

c2 := “bike-stunts”

c3 := “attempting a bike trick”

c4 := “bride: a woman on her wedding day”

c5 := “shots of an airplane flying”

It can be seen that the three concept definitions c1, c2, c3 match the visual content in the keyframes

of Figure 2.1 (a). Interestingly, they all come from different backgrounds and serve different purposes:

c1 describes a NIST TRECVID concept of the Semantic Indexing Task (SIN) [OAF+10], c2 is retrieved

from the actual YouTube video, where the uploader of the video decided to assign the tag “bike-stunts”

to his video clip, and c3 can be found as a description of one of the events in the Multimedia Event

Detection task [OAM+13]. Although all three concept descriptions come from different recognition tasks

or are created with different intentions (intrinsic as given by a YouTube user or explicit as defined by the

NIST TRECVID annotation protocol) they might match the same visual content i.e. agree to concept

presence in Figure 2.1 (a). Furthermore, the initial definition of a concept by Snoek and Worring [SW09]

emphasizes the importance of objectiveness in a concept description. However, looking at Figure 2.1

(b) and c4, which displays a keyframe from the wedding of Prince William and Kate Middleton, depicts

a “bride, a woman on her wedding day”, a semantic concept from LSCOM (ID: 132) [NST+06]. This
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might look like an objective match of concept presence for c4 and a person who grew up in a western

culture, but it might lead to disagreement for somebody with a different cultural background, rendering

this concept definition to be subjective rather than objective. As illustrated, even for such apparently

well-defined concepts, concept presence might be judged differently by different people.

Nevertheless, this difficulty in providing a concept definition can be eased by establishing further

rules or protocols guiding the understanding of concept presence. The NIST TRECVID benchmark is

one of the leading instances doing so for video content1. For its SIN task the definitions of concept

presence are further enriched by restrictions such as: “physical objects representing the target, such as

photos, paintings, models, or toy versions of the concept, will not be grounds for judging the concept to

be true”. Such a restriction is illustrated in Figure 2.1 (c). The top keyframes shows an Airbus 380

during its test flight obviously displaying the concept c5, an airplane flying. However, considering the

bottom keyframe of an animated airplane flying – according to the restriction of the NIST TRECVID

SIN task – this keyframe does not contain the semantic concept of an airplane flying. Similarly, for

NIST TRECVID’s MED task, the organizers decided to provide event kits describing the event concept

by additional information such as its event name, definition, explication (textual exposition of the terms

and concepts), evidential descriptions, and illustrative video examples [OAF+10].

Although such additional restrictions can help to convey what is meant by the semantic concept,

they unfortunately can not solve the problem of ambiguity entirely. For example, Figure 2.1 (d) depicts

some keyframes for concept c5 demonstrating ambiguity of a concept description. The keyframes show

the inside of an airplane flying as tagged by some YouTube users. In such a case the description of an

airplane flying is correct. It even confirms the previously mentioned SIN protocol for concept judgments

– however – it displays the concept from a very different point of view, which increases the difficulty to

recognize the concept, even if user assessment of the concept was correct.

Altogether, this has the following consequences; First, we recognize that different concept descriptions

can be correctly depicting the same concept and the same textual concept description can lead to a high

variability of visual content. This is especially true for web video as found on platforms such as YouTube.

Furthermore, it is important to note that even with a clear textual description of a semantic concept

the corresponding visual content representing the concept as seen might not be captured entirely or be

ambiguous. Still – to provide a canonical definition of semantic concepts, this thesis adopts the definitions

from Ulges [Ulg09], which considers relevance as the defining criteria for semantic concepts taking its

high variability of real-word user generated content on YouTube into account [Ulg09, NMP10, TAP+10].

Definition: “Concept Detection” Concept detection is the task of inferring if a semantic concept

c is present in a video X i.e. if a concept c is visible in a video X. A concept detection system is

built upon a set of target concepts V oc := {c1, ...cn} and analyses incoming video clips, which can be

of different structural granularity (please refer to Section 2.3 for more details). The goal of concept

detection is to estimate scores φc1 , ..., φcn indicating whether a concept ci ∈ V oc appears in X. This

output may also be interpreted as a probability of concept presence for ci (often after transformation

by an appropriate monotonic function). But for many retrieval applications it is sufficient to directly

rank videos by sorting them according to their scores. The described multi-class scores estimation is

usually divided into multiple binary classification problems, i.e.the score φci for each concept ci ∈ V oc

1http://trecvid.nist.gov
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is calculated independently and correlations between concepts are considered in subsequent processing

steps.

The most prominent method to model the mapping φc is by using a statistical classification algorithm

(e.g., an Artificial Neural Network or a Support Vector Machine). Such supervised machine learning

approaches require a training step prior to their application, to estimate model parameter for the final

classifier fc := X → φc . For this purpose, concept detection systems are usually separated into an offline

phase for training and an online phase for application. For classifier training, the system requires positive

and negative samples, i.e. training videos with labels denoting the presence or absence of the concept c,

Dc := {(xi, yi) | x1, . . . , xn, yi ∈ {−1, 1}}. These labels have to be acquired up-front classifier training

either by experts providing annotations according to a controlled vocabulary or by YouTube or Flickr

users providing tags. This thesis adopts this differentiation between the notations of labels, annotations,

and tags.

2.2 Applications

Current concept detection systems apply machine learning, allowing to scale up vocabulary of target

concepts if labeled training samples are available. Similarly to information retrieval, which is concerned

with the representation, storage, organization, and access of information items [BYRN+99, SM86], con-

cept detection focuses on the analysis of video material to bridge the semantic gap with the goal to

provide descriptions of video content. And although the performance of such systems with respect to

quantity and quality is far from optimal [HYL07, YH08b], recent improvements in content analysis are

promising [SS10] and the practical benefit of such systems would allow to advance in the following areas:

Video Search As introduced in Chapter 1, one of the major goals of concept detection is to ren-

der textual search on video possible. Such applications are usually based on a fixed vocabulary of a

target concept and a query processing engine utilizing the underlying index of detected semantic con-

cepts [CH05, SWWdR08, SWdR+08]. One of the most prominent research efforts in this area is the

TRECVID Search task [OAR+09], which aims to provide search and browsing tools for human analysts,

who are looking for segments of video clips containing semantic concepts, which might be peripheral or ac-

cidental to the original subject of the video. Such a query processing can be either realized by the use of a

vector space model to match a query against the semantic description of a concept [NZKC06, SWvG+06b],

the restriction to query classes [YYH04, ZSC+06], local context analysis [YH06], or the use of exter-

nal sources [Fel98, KNC05]. For an evaluation of video search using concept detection please refer

to [NHT+07]. Although such a mapping of textual queries to visual content strongly depends on the

quality of concept detection systems, which is far from careful manual annotations [YH08b], it can be

considered as a key building block of modern content-based video retrieval systems [SW09].

Video Tagging With the emergence of online video sharing platforms the amount of video content

being uploaded has increased rapidly. On platform like YouTube, every uploader of a video clip is asked

to tag his content i.e. define annotations for his video. Concept detection can help in recommending

tags, which semi-automatically can be selected by the user [ATY09, TAP+10]. This process of selecting

a subset of possible tags, although not effortless, is more convenient for the user than defining his own
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tags. Contrary to recommending tags during the upload of video content, the concept detection of video

material can be performed retrospectively on the entire video database to auto-tag or predict tags for

video clips providing a basic indexing [WHS+06, CEJ+07, NMP10, YT11].

Video Recommendation While video search is a very active task for a user, video recommendation

is a passive mechanism of video consumption. Similar to tag recommendation, users find the binary

decision (decide whether to watch a recommended video clip or not) more convenient than the sometimes

exhausting work of formulating the right search query. Hence, video recommendation plays an important

role in the context of content discovery unknown to the user, which play an important role on video-on-

demand platforms and online video sharing platforms [DLL+10]. The visual analysis of video content

by concept detection is considered as one of the alternatives available to cold start (i.e. no user history)

video recommendation. Such systems can therefore be used for either the recommendation of video a

digest [YMH+07] or the personalized delivery of video content [LFKS09].

Content-based Advertising in Video One further application of concept detection is realized in

the context of targeted advertising. As video distribution is a costly venture [Sil] it requires more

sophisticated monetization channels than traditional TV broadcasting. One promising instrument in this

regard is the semantic linkage of advertising with the content of video clips [SSW07, BLS01, MHL09] or

images [WYZ+09, MHL08]. Similar in motivation is the prediction of demographic groups (gender, age)

for advertising by the identification of semantic concepts present in video clips [UBK13]. Here, concept

detection plays a crucial role in situations where a video clip is freshly uploaded (i.e. viewer statistics

are unknown) and only little information is given by the uploader.

Video Archiving The current rapid growth of online multimedia collections is not the only source

of video material to profit from concept detection. As long as TV broadcasting exists, visual content

produced is archived. This material, although digitalized, is unfortunately not made accessible due to

the annotation effort associated with it. Here, concept detection is playing a crucial role in granting

efficient access to such digital archives maintained by TV stations. Especially news broadcasting and

documentaries with contemporary witnesses reporting about historical events are of interest because of

their role to preserve our cultural heritage visually [YOU11]. With respect to this application scenario

concept detection systems can be trained to cover a controlled vocabulary of target concepts, providing

automatically searchable annotations [HSdRS12]. This way such archives can be made accessible for

either educational or journalistic purposes.

Content Filtering The recent advances in network technology allow for seamless distribution and

sharing of all types of visual content. Unfortunately, this circumstance is exploited for the unrestrained

spread of offensive, harmful, and illegal video material over the Internet. The forensic detection of this

material poses a difficult challenge as police forces find themselves confronted with a flood of digital

content e.g. during their fight against child sexual abuse (CSA). A concept detection approach can

be used to either identify specific content and therefore reduce the amount of manual investigation

needed, or to filter specific content for parental control. Such approaches were already proposed to

detect violence [DSDVL02, LW09], nudity [USBS12, JUB09, DPN08] or illegal pornography[US11] in

visual content.
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Video

Scenes

Shots

Frames

Figure 2.2: An illustration of the hierarchical structure of a video clip organized according to units of temporal

granularity. The entire video clip (first level) can be organized in scenes of narrative context (second level), which

itself can be split into shot defined by a single camera recording operation (third level). Each shot is comprised

at the lowest level of a set of adjacent frames (fourth level).

As outlined above, the range of applications, which can be built upon concept detection is broad

and tackles not only commercial interest but can also help in the context of societal hurdles. These

applications render the automatic detection of semantic concepts as a rewarding research area. Having

said that, before we go into detail about how state-of-the-art concept detection system look, we should

look how video as a medium is structured.

2.3 Video Structure

A video clip is organized in temporal units that define a chronological story for the audience [Mar04,

SS02]. Nowadays in the age of mobile phones, user-generated content and platforms like YouTube a

narrative storytelling may not always be recognizable but nevertheless the fundamental hierarchical

structure [NH01] as illustrated in Figure 2.2 is still a valid representation of video clips.

This structural composition usually consists of different levels of temporal granularity. On top of this

hierarchy, the entire video clip can be seen as a global unit of the content enclosed. This first level is

usually further organized in scenes of narrative context such as e.g. dialogue, atmospheric or transition

scenes, just to mention a few prominent scenes or logical story units [HLB99]. These scenes can be split

into shots, the basic unit of motion picture production. A shot is defined as a sequence of continuous

frames that are recorded through a single camera operation. Two shots are concatenated by a transition,

which can be either abrupt (e.g. a hard cut or a black frame) or gradual (like wipes, dissolves, fades).

The last level in this hierarchy is the single frame. Alone in isolation a frame is nothing more than

a spatial plane, rasterized into pixels, equivalent to a digital image or photo. However, exploited as a

consecutive sequence of frames it enables the illusion of motion in video.

With respect to content analysis for concept detection, the lower two levels (the frame level and the

shot level) are of particular interest. While the shot level provides temporal information, which can be

beneficial for detection, the frame level allows for the spatial analysis of content as known from content-
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Figure 2.3: An overview of a current state-of-the-art concept detection system. For each target concept a separate

training phase (top pipeline) is required to construct a statistical model which is specific for this target concept.

This model will be used in the application phase, where an unknown video is tested against the previously trained

classifier. Furthermore, this overview also illustrates common components of a concept detection processing

pipeline.

based image retrieval (CBIR) [SWSJ00] and is therefore considered as the basic unit of analysis in many

state-of-the-art concept detection systems [ABC+03, JYCN08, SW09, USKB10].

This is also driven by to the availability of concept annotations for the visual content of a video

clip. Originally, annotations are given at shot level of a video clip [SOK09], However, because of the

adjacency to image analysis, it is also common to work with annotations on frame level to allow for more

temporal accuracy of content description [USKB08b]. In contrast to this, an exception has appeared

with the rise of user-generated video on the Internet, where videos are tagged by the uploaded. Here,

only global annotations for the entire video clip are provided (which is subject to this thesis and handled

in Chapter 4). Further, the frame and shot level also define prominent fragments for the evaluation of

concept detection system performance as seen in more detail in Section 2.6.

2.4 Concept Detection System Architecture

A major research effort in the context of concept detection is the TRECVID [Sme05] benchmark, which

initially addresses concept detection in its High-Level Feature Extraction task [SOK09] and now in its

Semantic Indexing (SIN) task [SOK09]. This benchmark aims to evaluate the performance of different

concept detection systems on common, standardized datasets, compare results and allow an exchange of

experience within the research community.

One of the most notable observations in this regard is the dominance of systems utilizing supervised

machine learning as an underlying technique for the inference of concept presence in videos [CEJ+06,

NJW+09, ea11]. This agreement of how concept detection systems are built nowadays is also reflected by

the definition of concept detection from Section 2.1. Concluding, supervised machine learning provides a

generic strategy to construct classifiers, each specifically trained to detect one particular target concept.

Therefore an intrinsic property of such systems, is the separation of a preliminary training phase, which

usually takes place offline, and an application or testing phase, which composes the online detection

process [SOK09, SW09]. Such a system architecture can be seen in Figure 2.3 as described in more detail

in the following.
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2.4.1 Training Phase

The goal of the training phase is to create a statistical model specifically trained to detect the presence

of a target concept such as e.g. “soccer scenes” in visual content. Such a training step is mandatory and

must be performed for each of the target concepts ci ∈ V oc, defined by the vocabulary of the concept

detection system. Also, the construction of statistical models – often also called classifiers or detectors

– is often very time consuming but nonrecurring for the lifetime of such a system, this phase is usually

completed offline.

To train a single classifier fci for the target concept ci, one requires a labeled training dataset

Dtrain ∈ Dc. Such a dataset is a labeled set of visual samples (xi, yi) ∈ Dtrain representing the target

concept. Its acquisition is usually done by experts manually annotating video data [AQ08] or recently by

the use of tags from web sharing platforms such as YouTube [Ulg09, USKB10, UKBB09], Flickr [LSWS12]

or both [KLS13]. Both label acquisition sources have their advantages and disadvantages (see Section

1.1). While the manual process provides very accurate labels it is lacking in scalability due to the very

time-consuming effort which is associated with it. Using tags as labels solves the labeling effort because

of their free availability on web platforms but they are facing other challenges as discussed later in this

chapter, in Section. 2.7.

A common procedure in detector training is to first segment all training videos into shots and to

extract representative keyframes. Then for each keyframe, features are extracted describing its content

in the form of numerical values. These features are then used for classifier training, yielding a statistical

model ready for the application phase. It is common in current concept detection systems to train several

feature (and classifier) combinations for the same concept if the features can provide additional clues

about visual content such as with color features and texture features. As illustrated in Figure 2.3 this

would technically imply to train three individual statistical models (indicated by the colors blue, green,

and pink) for the same concept, but each with different features selected as input.

2.4.2 Application Phase

The goal of the application phase is to detect the presence of a target concept in unlabeled videos. To

accomplish this, the output of the training phase – the statistical model, representing a target content

in features space – is used to analyze an input video. Since the application of a classifier is usually less

time consuming, this phase of a concept detection system is often realized online.

Similarly to the training phase the input video is segmented into shot level and keyframes are ex-

tracted. These keyframes are processed to extract the same numeric features describing their visual

content as in the training phase and simultaneously each feature is then fed into its trained statistical

model for the target concept. On concept level this includes all feature classifier combinations avail-

able from training. As an output, these classifiers provide detection scores, which differ from feature

to feature. For example the concept “soccer scenes” will have a different detection score when using

color information than when using texture information rending the detection scores as complementary

information for the visual presence of the target concept. These individual scores are then fused into a

single concept score (intra-concept fusion) for one single target concept. As a last step, a concept relation

modeling (inter-concept fusion) is performed, which takes concept correlations into account to refine the

final detection output accordingly. Such a refinement is feasible due to the correlation of supporting
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concepts like “ocean scenes” and “boat / ship” and the suppressing relation of concept like “airplane

flying” and “person riding a bike”.

As seen in the above description and Figure 2.3 both phases, training and application have a very

similar pre-processing of video material. The conceptual difference is that whereas in the training phase,

feature classifier combinations are constructed (i.e. detectors are built), in the application phase they

are applied on an unknown video clip. Specifically, the post-processing with is intra-concept fusion und

concept relation mapping (inter-concept fusion) is specific for the application phase allowing it to form

a final concept detection score. A detailed review of each component in such a processing pipeline will

be covered in the next section.

2.5 Concept Detection Pipeline

The processing pipeline of most concept detection systems [SOK09] is, as observed, closely aligned

along the hierarchical structure of video as introduced in Section 2.3. Therefore an obvious conclusion

is that additional processing steps for video analysis are necessary to the ones known from content

analysis on images [SWSJ00, DLW05, DJLW08]. Due to the nature of video, its processing pipeline

must additionally be able to handle the temporal dependency and relationship of individual frames,

which creates new semantics that may not be present considering an isolated single image or frame

(e.g. motion information). To this end, a concept detection procession pipeline can be described by six

major components as seen in Figure 2.3 (application phase): shot segmentation, keyframe extraction,

features extraction, statistical classification, intra-class fusion, and concept relation modeling (inter-class

fusion) [SW09]. Next each component of such a pipeline will be described in more detail.

2.5.1 Shot Segmentation

Given the natural structure of video content as seen in Section 2.3, one of the first steps in video analysis

is the temporal segmentation of a video clip into shots [ABC+03, JYCN08, CEJ+06, NJW+09, ea11].

A shot is also one of the basic units of annotations, analysis, and evaluation in benchmarks such as

TRECVID [OAM+12]. This task is usually approached by shot boundary detection, which aims to detect

shot transitions in a video stream according to sudden changes in the visual appearance of successive

frames [TRE07]. An example can be seen in Figure 2.4 [BUSB08]: the figure illustrates pair differences of

visual appearance represented by a feature descriptor over time. Peaks depict candidates for cuts defining

the boundaries of two subsequent shots. Three types of shot boundaries are basically recognized: hard

cuts, dissolves and wipes. Fade-in and fade-out are usually defined as dissolves either starting with a

black screen or ending with a black screen. While hard cut detection can be reliably solved by known

algorithms [Lie99, Han02, YWX+07], dissolves and wipes are more difficult to detect. Approaches

to detect dissolves and wipes are based either on edge change ratio and standard abbreviation of pixel

intensity [Lie01] or luminance pixel values [Pet04]. Although a challenging task in the early years of video

analysis, shot boundary detection is nowadays well understood and considered solved by the research

community [SOD10].
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Figure 2.4: An illustration of a shot boundary detection approach, which is driven by change detection of spatial

features of video frames. The peaks depict local changes on feature level and indicate a possible cut in the video

stream. The example is taken from [BUSB08] and illustrates cuts detected in a TRECVID Sound & Vision

sample video.

2.5.2 Keyframe Extraction

To capture the content of a video it makes no sense to analyze the spatial domain of every single video

frame given that subsequent frames are very similar to each other with little information gain between

them. Additionally the immense amount of frames defining a video makes it time-consuming to process

every frame [ZRHM98]. A general method to handle such a huge amount of content is to extract

representative keyframes conveying most of the content of the video. Such a reduction of a temporal

video stream to a set of characteristic keyframes also has the advantage to enable the usage of known

analysis techniques from image retrieval [Hau05].

Several extraction methods to extract keyframes have been investigated in the literature. One of

the most straightforward ones is the selection of a single frame as the keyframe – this can be either the

first, last or middle frame of a shot [O’C91]. Although very prominently used in TRECVID [SOK09],

this keyframe extraction obviously loses information in longer shots as compared to the extraction of

multiple keyframes per video shot [SWG+05]. Another method going in the opposite direction is regular

sampling along the video stream [USBS12]. However, the advantage of a dense sampling of video content

remains in contrast to the large amount of keyframes being extracted. A group of methods in-between

is adaptive sampling of keyframes. These methods are based on the complexity of video content and

extracts keyframes either by strong content change [ADDK99, UKBB09] or unsupervised learning via

clustering and the designation of cluster centers as keyframes [ZRHM98, HZ99, HM00, MRY06, USKB10].

A visualization of keyframe extraction methods can be seen in Figure 2.5. The previously mentioned

groups: single frame, regular sampling, and adaptive sampling can be either applied on the entire video

(Figure 2.5 (a)) or the segmented shots of a video (Figure 2.5 (b)). As seen, the single frame method is

not recommended to be used on long shots or the entire video, whereas in the case of regular sampling

the temporal segmentation into shots does not have an impact on keyframe extraction. With respect to

adaptive sampling the application on video or shot level may have an impact on the way keyframes are

extracted since such methods find an adequate number of representative keyframes for the given shot

with respect to its visual complexity. Please note, that keyframe extraction – besides its use for content
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(b)

(a)

Adaptive SamplingRegular SamplingSingle Frame

Figure 2.5: A digest of different keyframe extraction methods. In general three different groups of methods exist:

single frame, regular sampling, and adaptive sampling, which can be either applied on the entire video clip (a) or

on shot level (b).

analysis – is also of use for browsing [NH01, BSUB08] or summarization [MRY06] of video content.

2.5.3 Feature Extraction

The aim of feature extraction is to transform shots or keyframes into feature vectors x ∈ Rn, which

can be used as input for the subsequent classification step. This procedure results in a feature space

representation of the video content. With respect to this, feature descriptors should be discriminative, to a

particular point invariant, and computationally inexpensive to be extracted from the content. Two major

classes of features can be distinguished in video analysis: feature descriptors based on the temporal video

stream such as motion or audio, and features descriptors based on the spatial analysis of keyframes. The

latter can further be separated into global or local features. In this context different descriptors have been

proposed, ranging from global color, texture and shape descriptors [DKN08] to local patch-based ones

like the very prominent bag-of-visual word representation [SZ03] with SIFT [Low04] or SURF [BTvG06]

features. Especially patch-based descriptors proved to be robust and give high accuracy in several

computer vision tasks [EVGW+08, JNY07, vdSGS08b].

The following provides an overview of major feature types used in concept detection systems. For

more information on feature extraction please refer to the evaluations in [DKN08, SWSJ00, vdSGS08b].

Color Color perception is an important element of the human visual system. Widely used methods

of color features are their global statistical distribution e.g. RGB color histogram [SC97, WLL+07]

or derived from that, RGB color moments [NH01]. While color histograms have the advantage of be-

ing invariant under rotation, they represent an image globally not considering the spatial structure of

color. To capture the spatial location of color, further descriptors have been presented such as e.g. the

MPEG-7 defined color descriptors: Color Structure Descriptor, Scalable Color Descriptor, Color Lay-

out Descriptor, Dominant Color Descriptor [Mar04, MOVY01]. Other layout preserving approaches,

which bin or partition the frame into a grid also exist, such as the spatial pyramid representation of

color histograms [vdSGS10], or combined global histograms with spatial information as done in the color

correlogram descriptor [HKM+97].
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Texture Another global feature descriptor group is based on properties of image textures [MM96].

Texture information is never isolated to a single pixel but rather exists within a region of pixels defined

by its local neighborhood. One method to extract such neighborhood information from textures is

to use different filters against the image e.g. Gabor filters [ZWIL00, GPK02], Wavelets [MM96], or

spatial-frequency based ones [MOVY01]. Another idea is to define textures according to their coarseness,

contrast, directionality, line-likeness, regularity and roughness [TMY78], which proved to be a robust and

useful descriptor for image retrieval [DKN08]. Textural cues can also be combined with color information

as presented in color invariant texture [vGV+06]

Edges Edges define prominent properties of images and often occur in conjunction with image tex-

ture characteristics [MOVY01]. Such descriptors are often composed as histograms over orientation of

edges [MOVY01, WLL+07], which have been found in the image by edge detectors such as Canny [Can86]

or Harris [HS88]. Similarly to texture, edge based descriptors can also be combined with color to render

them color invariant [vGV+06]. A related descriptor close to this group of edge descriptors is the his-

togram of oriented gradients (HOG) descriptor [DT05], which generates histograms of image gradients

instead of image edges. This method is known to be highly efficient in concept detection when applied

on local patches [TAP+10].

Shape Shape-based feature descriptors are motivated naturally by the idea that man-made objects

have typical geometric structures and shapes. Basically two groups of geometric shape descriptors ex-

ist: contour-based shape descriptors and region based shape descriptors [Bob01]. Properties which

are used as descriptors are perimeter, area, compactness, contour Fourier coefficients or geometric mo-

ments [NBE+93]. As motivated, such features are useful for object category recognition [JS04] but also

can improve image retrieval [NBE+93]. Another representative shape based feature is the GIST [OT01]

descriptor. This global descriptor extracts the spatial envelope of a scene and provides a low-dimensional

set of perceptual dimensions (naturalness, openness, roughness, expansion, ruggedness) that represent

the dominant spatial structure of a scene.

Patches Similar to local edge or shape feature descriptors, a third group of local descriptors is used in

computer vision research. These so-called patch-based feature descriptors are characterized by their high

robustness against clutter, deformation, and partial occlusion and often come with invariance against

scale, orientation, and illumination [Lin98, KB01, MCMP02, MS04]. This is achieved by the detec-

tion of prominent, salient image patches – so called interest points – which serve as local regions for

feature extraction. Most prominent representatives of patch-based descriptors are SIFT [Low04] and

SURF [BTvG06]. These features can be considered as the best-performing descriptors in several vi-

sual recognition systems [SZ03, FML04, HL04, DKN05, FFP05, MLS06] and benchmarks [EVGW+08,

SOK09, DDS+09, CCC+11]. Additional details about patch-based descriptors can be found in the fol-

lowing surveys [SMB00, Mik03, Rot08, vdSGS08b, CLVZ11]

Bag-of-Visual-Words Frequently used with patch-based feature descriptors, bag-of-visual-words rep-

resentation of visual content has gained in popularity over the last decade [SZ03, FFP05, SREZ05,

QMO+07, ZMLS07]. This feature representation is motivated by the bag-of-words model in text analy-

sis [Lew98]. Similar to textual documents which can be represented by counts or word occurrences, an
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image or visual document is represented by counts of visual worlds from a visual codebook. Built upon

patch-based descriptors such as SIFT, the construction of a bag-of-visual-word descriptor is done are fol-

lows: as described above SIFT represents an image as a set of interest point descriptors. This structure –

however – is varied in cardinality and lacks a meaningful order. Since classification models usually require

feature vectors of fixed dimension as input, a vector quantization technique is applied to partition the

SIFT feature space into a large number of clusters. The clustering process generates a codebook of visual

words describing different local patterns in images. The number of clusters determines the size of the

codebook, which can vary from hundreds to thousands [PCI+07]. Consequently, each SIFT descriptor can

be encoded by the index of the cluster to which it belongs, which automatically assigns it to the element

of the codebook. Counting the represented visual word elements for each SIFT descriptor in an image

leads to the final bag representation. Different extensions of these feature descriptors have been presented

in the literature, such as hierarchical setup [LSP06] or soft assignments [PCI+08, vGVSG10, CLVZ11].

Text Text in video can be another valuable source for feature descriptors in concept detection [WCGH99].

Text can appear in videos as scene text (e.g. logos on buildings), overlay text (e.g. name of the displayed

person), or closed captions. The task of transforming such text into machine readable text is usually

split into text detection and optical character recognition (OCR) [LDK00]. While being being more

challenging than traditional OCR [WBB11], research effort in this area is actively pursued on detection

of scene text [SSD11].

Mid-level-Representations In contrast to the previous low-level features, this group of feature de-

scriptors introduces a mid-level attribute representation of visual content [FZ07]. This representation is

motivated by the observation that a classifier output can be used to recognize unseen object categories

from their description in terms of attributes [LNH09, FEHF09, KBBN09].

Following this mid-level feature representations take the output of low-level feature classification as

input for a subsequent learning of target concepts. Examples in this area are the discovery of visual

attributes [FZ07, BBS10, LNH09, FEHF09, YJT+12, RFF12], the construction of signatures from large

concept detection vocabularies [HvdSS13, MHS13, TSF10] or the compilation of classifier banks such as

ObjectBank [LSFFX10], DetectionBank [ASD12], or ConceptBank [MGvdSS13b]. This kind of feature

representation became a promising research direction in recent years. It builds upon the vast amount

of available training data and computational resources to construct large-scale collections of classifiers.

In particular this type of feature proved to be successful in the detection of complex constructs like

multimedia events [SvdSF+13, BCC+13].

Motion The analysis of temporal relations in video enables the acquisition of information, that else-

where would have been lost. Different than the previously described keyframe based features, this type

of feature introduces the concept of motion as extracted from video shots. Motion, i.e. the change

of a location in time, translates in digital video into the spatial location change of pixel blocks over

consecutive frames [ACAB99]. Unfortunately such an observation of motion provides no real differen-

tiation between camera motion and object motion or multiple object motions [BA96]. Motion features

are usually extracted as 2-dimensional motion vectors in the image plane either by the tracking of spare

but salient features [TK91], an optical flow estimation [BB96], spatio-temporal pixel regions [DD03], or
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Figure 2.6: Left: Illustration of a motion histogram descriptor. A motion vector field extracted from consecutive

frames is partitioned into 12 blocks. For each block the dx and dy contribution of all motion vectors is accumulated

into a histogram [USKB10]. Right: MFCC audio descriptor extraction from an audio signal. A sliding window

is moved over the signal and for each overlapping frame its Mel Frequency is computed and concatenated over

time [Bad11].

texture pattern extracted from the motion vector field [MZ03]. Often they can be directly extracted

from the compressed video stream [ACAB99, USKB10]. Once a motion vector field is extracted it can

be used to build motion histograms as shown in Figure 2.6 (left) serving as input for concept classifica-

tion [HN07, USKB10]

Audio An orthogonal modality to the visual content in video is the analysis of the audio stream in video

clips. To this end, methods such as automatic speech recognition (ASR) or background noise analysis

can be employed to provide insights about the content of a given video. In the case of ASR analysis, the

goal is to analyze the spoken word and deliver it as text for search and retrieval. While for some types

of video content e.g. for news broadcasts, spoken words do have a strong alignment with the displayed

content [CMC05], this alignment is not always guaranteed. For example it may be possible that two

people are speaking with each other about “mountains” but no mountain is visually present in the video

at the moment the concept was mentioned. Nevertheless, in the past it was successfully used for retrieval

in audiovisual archives [Sme07, HOdJ07, HSdRS12]. Background noise analysis can also be utilized as

clues for concepts in video clips. For example, the barking of a dog is a strong indicator of the visual

presence of a dog in a video clip. Such analysis often combines the prominent bag-of-word approach with

Mel Frequency Cepstral Coefficients (MFCC) audio features (Figure 2.6 (right)) for either the detection

of multimedia events [CCC+11, RLFF13] or for filtering of specific video content [LW09, USBS12].

2.5.4 Statistical Classification by Supervised Learning

As shown in the previous section different approaches exist to extract global and local features from a

keyframe or a video shot. These feature extraction approaches extract n-dimensional vectors directly from

the raw pixel or audio information and provide as a result an n-dimensional feature space representation

of the corresponding keyframe or shot. Given such a feature space representation for a sample x ∈ Rn,

the goal of statistical classification is to infer concept presence or absence by the estimation of a numerical

score φc of a target concept c. These scores can be either directly taken to rank classification results or
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in a probabilistic setting, can be interpreted as a posterior of concept presence. In concept detection, φc

is usually modeled as a binary classification problem. As common in supervised machine learning, model

learning is performed on a set of training samples with labels Dtrain := {(xi, yi) | xi ∈ Rd∧yi ∈ {−1, 1}},
where the label yi indicates the presence of a target concept c. In the machine learning and pattern

recognition literature [DHS00, Bis07] different models have been introduced and suggested. However,

in the following the most frequent and prominent ones in the context of concept detection are briefly

outlined:

Support Vector Machines (SVMs) A popular choice in supervised learning are Support Vector

Machines [SS01, Vap00], which are used in most concept detection systems nowadays [SW09]. SVMs

are founded on linear maximum-margin classification i.e. they search for an optimal hyperplane, which

serves as a decision boundary between two classes (represented by their labels yi ∈ {−1, 1}). This optimal

hyperplane separates samples xi ∈ Rd from the corresponding classes such that their distance from the

hyperplane is maximized. This distance is called the margin. The second fundamental element of SVMs

is their use of kernels. As in many practical classification settings, a linear separation of the given

samples is not achievable, SVMs map each sample xi into a potentially high-dimensional space H using

a projection function Φ : Rd → H. An additional advantage of SVMs is their ability to abstract from

the space H by the pairwise calculation of the kernel (or similarity) K(xi, x
′) for all training samples.

This property is known as the kernel trick. Typical kernel functions are the linear kernel, RBF kernel

and the χ2 kernel [SS01].

More formally, let the hyperplane be determined by the normal vector w. Then the hyperplane can

be defined as a linear combination of training samples on the margin (called support vectors xi):

w =
∑
i

yiαixi (2.1)

where the coefficients αi are the solution to the following quadratic optimization problem with linear

constraints in its dual form:

max
αi

∑
i

αi −
1

2

∑
i,j

αiαjyiyjK(xi, xj) (2.2)

for any i = 1 . . . n and is subject to the following constraints:

0 ≤ αi ≤ C ∧
∑
i

αiyi = 0 (2.3)

where C determines the cost of misclassifying training samples and is usually assumed to be optimized

as a free parameter. Ideally, in a probabilistic setting, the classification result would be a class posterior

probability. However, in the case of SVMs the output of classification is the (signed) distance of a sample

xi to the hyperplane w, which is seen as a score. To provide posterior probabilities these scores can be

transformed by a sigmoid fitting into a posterior probability [Pla99].

Maximum Entropy Another example of discriminative classification is Maximum Entropy [NLM99].

Similar to SVMs it models a decision boundary between classes. However, while a SVM follows a margin

maximization approach, Maximum Entropy methods learn a boundary such that the class posterior is as

uninformative as possible. The method has been applied to concept detection on video [ABC+03] and

images [JM04, LSW10, LGS+11]
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Nearest Neighbor (NN) One further, quite straightforward approach to classification is nearest

neighbor matching [DHS00]. This method labels an unknown sample by the labels of the most similar

training samples. Similarity is defined as the distance in feature space and matching is often done by

finding K of such nearest neighbors. This approach performs well in combination with large amounts of

labeled training data [TFF08].

Neural Networks In contrast to the above approaches, neural networks [RHW86], as inspired by

the mammal brain, model classification as a network of multiple neurons organized in a layered ar-

chitecture. These neurons serve as firing functions, and learning in these networks is understood as

parameter optimization of edge weights between neurons. A prominent training algorithm is the back-

propagation of errors between the output class labels and the input features of the network. Neural

networks have been applied in visual learning in the context of multi-task learning [Gon08] or parsing

natural scenes [SLNM11]. Recent developments on the structure of such networks appear to be promis-

ing. In particular deep learning of recursive neural networks proved to be successful in large-scale visual

recognition tasks [KSH12].

Decision Trees Finally, the last of the presented classification methods are decision trees [Qui86].

Decision trees utilize a tree-like graph or model of decisions along a feature vector of a sample. Learning

in such context is realized by the construction of a binary tree from class-labeled training tuples. A

prominent extension to decision trees are random forests [BZM07] but also other types such as bagging

and boosted trees exists [Die00]. Decision trees and their random forest extensions have been used in

computer vision [SJC08, CSK11], human pose detection [RRR+08], and medical image analysis [KGZC13]

Alternative approaches for classification in the context of visual learning include discriminative online

learning [PUB09], kernel discriminant analysis [C. 09], generative mixture models [CCMV07], or topic

models [MGP04, FFP05].

2.5.5 Intra-concept Fusion

Commonly, concept detection systems utilize multiple types of features and supervised learners [ABC+03,

GMH+08, SW09], each providing a separate output for the same target concept (see Figure 2.3). To

obtain concept detection results it is required to combine each single detection output into one signal.

Such a fusion can be performed on two different levels: early fusion (or feature fusion) [ABC+03,

GMH+08] , i.e. the concatenation of feature vectors prior to detector learning, or late fusion (or classifier

fusion), where detector results are combined after classification [JNY07, SWS05, WLL+07]. While the

former offers the advantage of utilizing feature dependencies, the latter does not have to deal with an

increased high dimensional feature vector (curse of dimensionality problem [DHS00]). Please note that

the merging of keyframe-based detection scores, shot-based motion detection scores, or timeline-based

audio detection scores is usually referred to as synchronization [SW09].

2.5.6 Concept Relation Modeling / Inter-concept fusion

A final step in a concept detection processing pipeline is the semantic relation modeling between con-

cepts [ABC+03, QHR+07, NJW+09, SvdSF+13]. The idea is to exploit the fact that the presence of
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a concept serves as an additional indicator for a related concept, e.g the presence of a “road” indicates

an increased probability of a “car” being present and but reduces the probability of the concept “boat-

ship”. Such co-occurrences or correlation between concepts can be modeled with different approaches

such as learning spatial models or learning temporal models[SW09]. A similar idea is the addition of

external knowledge such as in the form of taxonomies like WordNet [Fel98], ImageNet [DDS+09], or on-

tologies [HSSV03, NST+06]. Orthogonal input clues have also been utilized in the refinement of concept

detection scores such as the video clip audience’s demographic group information [UKB12, UBK13].

2.5.7 Pipeline Configuration

As seen above, a concept detection pipeline can be very complex, with each component offering a set of

different approaches and methods to choose from [SWWdR08]. Since all described methods have their

inherent strengths and limitations it is suggested to configure a concept detection pipeline according

to given system requirements such as concept vocabulary, data quality, data quantity, and processing

demands. In this case the configuration setup becomes a matter of selection from the pool of pre-

processing methods (shot segmentation, keyframe extraction), feature descriptors, classification models

and post-processing methods (fusion, concept relation modeling). In this context the constructor of a

concept detection pipeline must decide on the number of different feature-classifier combinations to be

used and – to make the configuration setup more multifaceted – consider parameter optimization issues

of supervised machine learning [DHS00, FB04]. In fact the learning taking place to create a statistical

classifier is further challenged by the usually limited amount of training samples and the simultaneous

goal to optimize classification parameters such that the best possible generalized performance can be

achieved, i.e. the classifier’s capability to detect unseen samples of the same concept during application

phase. Reasons for poor generalization can be two-fold, either by the misalignment of feature descriptor

dimensionality and the amount of training data, commonly known as the curse of dimensionality or an

extensive optimization on the training data, known as overfitting [SW09].

To tackle this problem several schemes have been presented in concept detection. A pioneering and

successful scheme is the one introduced by IBM Research [ABC+03, NTYS07, CCC+11, BCC+13]. At

each stage of the analysis it selects the best of multiple alternatives based on system performance on

validation data. Similarly, the MediaMill system follows its “best-of-selection” [SW09] scheme selecting

the best performing of all available paths through the system setup, which is – again – achieved with the

help of proper validation data [SW05, SWvG+06a, ea11, SvdSF+13, MGvdSS13b]. Another proposed

scheme focuses on feature diversity and subsequent parameter optimization such as the systems of Ts-

inghua University [CLL+06, WLL+07]. Despite the used schemes in concept detection an alternative to

such configuration questions can be meta-learning [VD02, RSD12b, RSG+12].

2.6 System Evaluation

This section provides an overview of the most common evaluation methodologies and performance met-

rics in concept detection. Due to the nature of video with its vast amount of data and copyright issues

involved, evaluation of this medium was difficult in the early days of video analysis. Empiric evaluation

– however – is necessary to make concept detection systems comparable and exchange best practices
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within the research community. This situation changes after the introduction of several evaluation and

benchmarking campaigns such as the MediaMill Challenge [SWvG+06a], VideoCLEF [LNJ10], or its ex-

tension benchmark MediaEval [LSE+12] (not to mention established image benchmarks such as PASCAL

Visual Object Classes [EVGW+08], or ImageNet’s Large Scale Visual Recognition Challenge [DDS+09]).

In fact, the most significant benchmark and de facto standard in video evaluation is NIST TRECVID

SIN [SOK04, SOK06, OAM+13]. It provides shared data, common evaluation metrics and a platform

for sharing resources among researchers. The following introduction in evaluation methodology and per-

formance metrics is based on TRECVID standards, as commonly accepted by the research community.

2.6.1 Methodology

Concept detection system performance is driven by experimental evaluation. As previously mentioned,

this is needed for the comparison of system setups but also for the finetuning of system configuration

(Section. 2.5.7). An essential element in every experimental evaluation is a ground truth i.e. the

annotation of video clips with concept labels. A ground truth is usually acquired manually and is

therefore rare and demands a huge effort [AQ08]. Once, a sufficient ground truth is available for a

dataset D, common procedure is to split the dataset into three disjoint sets, Dtrain a training set, Dtest a

test set and Dvalid validation set with D := Dtrain ∩Dtest ∩Dvalid = ∅. The general setup is therefore to

train classifiers on the training set and to optimize system parameter in conjunction with the validation

set without consideration of the test set. This set of sample is saved for the final evaluation of the entire

concept detection system. With this setup overfitting is minimized and the capability for generalization

of the detector is maximized. It is highly recommended to never mix training and test sets or to optimize

system parameter on the test data. This is considered bad practice in the research community and is

sometimes also negatively called “training on the test data”. Since ground truth is rare, it is however

common practice to employ techniques such as cross-validation during parameter optimization. In favor

to increase the amount of representative samples for the given target concept, the training and validation

set is split into n folds and in each optimization iteration n−1 fold are taken for optimization (i.e. training

with different parameters) and the remaining fold is taken for the validation of performance.

2.6.2 Performance Measures

Once ground truth is available a concept detection result can be taken and a performance measure can

be calculated accordingly. Because of the intersection between information retrieval, computer vision,

and machine learning different performance metrics were established for system evaluation. Commonly

used performance metrics in concept detection have therefore been adapted from either a retrieval task,

where the goal is to rank a list of relevant documents according to a query or a classification task, where

the goal is to assign a concept label to an individual document.

Following the information retrieval point of view, let Lc ⊆ Dtest∧Lkc = {x1, x2, . . . xn} be the detection

result of length n and with ranks k for the target concept c, this is e.g. a ranked list of keyframes, shots,

or videos in the test set. Further, let R ⊆ Dtest be the set of all relevant samples in the test set, then

precision, the number of relevant documents in the result, is defined as p = |L ∩ R|/|L| and recall, the

number of relevant documents from all the available relevant documents in the test set is defined as

r = |L ∩ R|/|R|. A perfect retrieval result would be L = R with precision and recall at 1.0. Another
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metric is the combination of both previous measures is called the harmonic mean or F-Score = 2∗p∗r
p+r .

These are three common metrics from the information retrieval area. Since precision and recall influence

each other it is also common to plot precision-recall curves illustrating their relation in the context of

detection results and relevant samples in the test set. However, one of the most widely used metrics

to evaluate relative video retrieval systems – and also the one used in TRECVID – is average precision

(AvgP) [VH+05] or its derivative inferred average precision (Inf-AvgP) [YA06]. Average precision is a

single-valued measure that is proportional to the area under a recall-precision curve. This value is the

average of the precision over all relevance judgments in L. At any given rank k let R∩Lk be the number

of relevant samples in the top k of L. Then AvgP can be defined as:

AvgP =
1

min(|R|, n)

n∑
k=1

R ∩ Lk

k
ψ(xk)

where indicator function ψ(xk) = 1 if xk ∈ R and 0 otherwise. It can be seen that AvgP favors highly

ranked relevant results. When a concept detection system consists of more concepts to evaluate |V oc| > 1,

the mean of all AvgP for each individual concept is taken to indicate the whole system performance.

This measure is called Mean Average Precision (MAP).

For classification evaluation, different metrics are utilized. Usually a result contains samples and their

assigned concept labels. According to the true label of the sample, a differentiation between true positive

(tp), false positive (fp), true negative (tn), and false negatives (fn) can be made. From these values

different error rates such as False Positive Rate (FPR) or True Positive Rate (TPR) can be derived.

Similarly as before these two measurements can be put into relation with a plot called Operator Receiver

Curve (ROC). The single measure of such a curve plot is the Area under Curve (AUC). Another view

on error rates for classification-based evaluation is the Equal Error Rate (EER), which can be used to

find the optimal threshold for a system balancing equally between False Positive Rate (FPR) and False

Negative Rate (FNR).

2.7 Label Acquisition Characteristics

As already outlined, one particular problem of concept detection is its demand for labeled training sets,

which serve as a foundation for supervised machine learning, the underlying technology of current con-

cept detection systems. So far, training samples were acquired manually, i.e. a human operator labels

videos or video shots with respect to concept presence. Thereby, concepts are well defined according to a

concept vocabulary [NST+06]. This distinct difficulty is visible in TRECVID’s 2011 collaborative anno-

tation effort [OAM+11], a joint attempt by the research community to acquire labels for the TRECVID

campaign. In 2011 the TRECVID benchmark aimed to increase the vocabulary size from 130 to 500

semantic concepts for its Semantic Indexing Task (SIN) and video material had to be annotated with

the new concepts by voluntarily participating groups. During a 6 week period and an involvement of

34 groups worldwide, each providing 30k− 45k annotations, the collaborative annotation effort collected

around 4.2 million labels from the given 400h of video material (consisting of 266k individual shots to be

inspected). Estimating a time demand of 2sec. per annotation, the complete annotation workload adds

up to 2, 333h, which can be translated into 1.3 work years2. Unfortunately, even with this vast amount

2commonly known estimation parameter of 8 hours being 1 day and 220 days being 1 year

29



2.7. LABEL ACQUISITION CHARACTERISTICS

of work put into the annotation effort, the goal to increase the concept vocabulary size of 500 concepts

could not be achieved. The final concept vocabulary for TRECVID 2011 SIN task was comprised of 346

concepts, many with a minimum of 4 positive annotations per concept. Please note that the annotation

effort was employing active learning methods to boost the discovery of positive annotations [AQ08].

This rather disappointing result illustrated that this time-consuming and cost-intensive effort – al-

though leading to high quality training material – suffers from a scalability problem [SWvG+06a, YH08a,

USKB10] and points to the demand for alternative sources and label acquisition schemes for concept de-

tector training. In recent years the use of socially tagged web images and video as alternative sources of

training data for semantic concept detection has gained traction [USKB08a, UKSB08, BKUB09, SS09,

UKBB09]. Utilizing such data gives the following advantages over training from a small set of expert

labels. First, it allows to learn large concept vocabularies which are required to cover users’ information

needs and thus lead to a more efficient search [HYL07]. Second, it enables concept detection systems

to be more flexible in learning new emerging concepts like “Sochi Olympics 2014”, “Royal Wedding” or

“Edward Snowden”. Third, it prevents overfitting as learning from only a small set of sample videos

tends to deliver detectors that generalize poorly [YH08b].

Web video is publicly available on a large scale from online portals like YouTube, Vimeo or Blinkx

and is associated with a noisy but rich corpus of tags, comments and ratings that are provided by

large communities. Utilizing this information might replace expert labeled datasets by automatically

harvesting training material from the web. For example, to learn a concept like “person playing soccer”

a search query has to be formulated and sent to one of the previously mentioned web video portals.

The resulting list of relevant videos can now be downloaded and used as training material. For this

purpose tags are used as positive labels for concept learning. Web video has already been proven to

train more general detectors performing better on unseen datasets as compared to detectors trained on

specific expert labeled data [USKB10] and demonstrated its potential as a comprehensive training source

for visual concept learning [UKBB09].

On the other hand, does it suggest to entirely focus on user-generated tags and neglect effort done in

the direction of visual learning of semantic concepts? Unlikely, as the following study which was done in

the context of this thesis reveals. During a time span of 6 months (September 2011 – March 2012) blank

videos were crawled every day from YouTube. The crawling process was explicitly searching for all videos

only uploaded on that particular day and with the following queries: ‘*.mpg”, “*.mov”,“*.avi”, “img*”.

After the retrieval of the result list, each video was double-checked tht it had been not assigned with any

meaningful title, description, or tags. A typical video retrieved by this setup can be seen in Figure 2.7

(left). In total about 108k videos were retrieved and their meta-data was stored for later investigation.

After a further period of 3 months (June 2012), the meta-data of each video in the entire list of videos

was re-checked and compared to the initial upload status. The intention of the study was to estimate

how many people on YouTube tagged their videos after the initial upload. Please note that during the

6 month retrieval phase only videos with no tags, no description and no meaningful title were kept in

the list. A comparison between the initially uploaded meta-data and the re-checked meta-data could

be done for 86k videos out of the 108k. The reason for not being able to access the remaining videos

on YouTube were meta-data errors (∼ 8k), removed video (∼ 10k), and changed privacy permissions

(∼ 4k). Interestingly, only 18% of video owners changed titles, 9% changed a video’s description and

only 11% added tags after uploading videos to YouTube. A distribution of how many videos have how
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Figure 2.7: Left: Although popular videos are tagged well on YouTube, there exist a long tail with many sparsely

tagged videos or videos with no tags, description nor meaningful title (red box) at all. Right: An evaluation

about the tagging behavior of YouTube users for freshly uploaded videos. The graph plots the number of videos

with no tags (left end) to the number of videos with up to 50 tags (right end). As can be seen, the majority of

videos do no have any tags assigned or are sparsely annotated.

many tags (with 0 tags starting from the left and up to 50 tags at the right end of the spectrum) is

shown in Figure 2.7 (right). As seen, the majority of videos is tagged sparsely or not tagged at all.

Summarizing, this study demonstrated that there is a high demand for the visual learning of semantic

concepts, which was also highlighted by Google itself [ATY09]. Nevertheless, YouTube can serve as a

reliable source for well-tagged training videos for concept detection (a simple search for the initial example

concept “person playing soccer” returns over 645,000 videos on YouTube).

Web Video Characteristics Web video, when used as a training source for concept detection has

its own characteristics. In particular, the usage of tags as concept levels in the context of machine

learning has to be rethought. A major focus of this thesis is to adapt the different levels of labels as

introduced in Chapter 1 in the context of distinct visual recognition tasks. First, web video is known

to be of a very dynamic nature with over 100 hours of new video content being uploaded to YouTube

every minute [YOU13]. Are these video clips reflecting real word events or are they focusing entirely

on non-relevant user-generated content? To be more specific, is web video on YouTube correlated with

current trending topics and correspondingly can such tagged video clips be used as labels for trending

topic specific detector training (Chapter 3)?.

Second, user tagged web video has – when compared to expert labeled material – a differently mo-

tivated labeling. Experts annotate videos according to well defined concept definitions and independent

of their personal interest, whereas web users strongly follow the focus of interest [UKBB09] i.e. such

labels may be of a subjective nature showing non-relevant content. This behavior is often also referred

to as framing of user intent [KL09, HKL12]. Additionally, the retrieval of training data is usually done

through a search engine query consisting of a set of keywords delivering a list of relevant videos and

secondly the download of those videos. How to formulate a query to receive the labeled video clips for
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training and how are tags aligned within video stream (Chapter 4)?

Finally, can user-generated tags be utilized to learn more complex concept structures such as Ad-

jective Noun Pairs? Such combinations of adjectives and nouns do not only identify concept presence

of nouns but also encode the subjective understanding of adjectives. This subjectivity may differ from

person to person. For example, one person may upload an image of a dog and tag it: “dangerous dog”,

whereas another person may not perceive the depicted dog as dangerous. To this end, it is crucial to

show if the majority of such adjective noun pairs convey the perception of a large enough group to rep-

resent “dangerous dogs” comprehensively enough. Moreover, since this mid-level representation of visual

content is utilized to learn more abstract labels, such as positive or negative sentiment it is necessary to

demonstrate its capability to grasp sentiment in general (Chapter 5).
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Chapter 3

Dynamic Vocabularies by Trending

Topics Discovery

Today’s concept detection systems are centered around the notion of fixed concept vocabularies not

being aligned with users’ information demands. To overcome this problem, this chapter presents the

idea of dynamic vocabularies to synchronize concept detection with ongoing real world events. This is

accomplished by mining social media for trending topics, which are either mapped to a fixed concept

vocabulary or trained as individual concept detectors on demand. The key contributions of this chapter

are1:

1. A system is presented that mines three major social media channels for trending topics. During

an observation period of an entire year, this system performed autonomously a clustering and

re-ranking of 40,000 potentially overlapping candidates to identify 2986 individual trending topic

providing insights about their life-cycle and multi-channel behavior.

2. A novel fully automated trending topic forecasting approach is introduced. The approach is based

on a nearest neighbor forecasting technique exploiting the assumption that semantically similar

topics exhibit similar behavior.

3. In experiments on a large-scale dataset of Wikipedia page view statistics this forecasting is shown

to be superior to other methods achieving a mean average percentage error starting with 45% for

one day forecasts to 19% for 14 days forecasts (n=22,400).

4. A novel approach for concept vocabulary expansion is presented, which allows to dynamically add

trending topics to the concept vocabulary by either linking them to a static concept vocabulary,

by a direct visual learning of trends, or by augmenting the vocabulary with trending topics.

5. It is demonstrated in experiments on 6,800 YouTube clips and the top 23 target trends that by a

visual learning of trending topics, improvements of over 100% in concept detection accuracy can

be achieved over static vocabularies (n=78,000).

These results allow us to conclude that concept detection can be extended to dynamic vocabularies

providing systems which are synchronized to current real-world events.

1This chapter is based on the authors’ work in [BHK+09, BKUB09, UKBB09, BUB11b, BUB12, BL12, ABHD13]
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3.1 Introduction

With the the growing proliferation of images and videos over the last years, the demand for multimedia

retrieval tools has increased. Here, concept detection [SW09] – the automatic recognition of objects,

locations or actions – offers the possibility of a content-based semantic search, which is of particular

interest for web-based services like YouTube hosting huge amounts of weakly labeled content [YOU13].

An open issue with concept detection is the selection of suitable vocabularies of target concepts. These

are usually picked manually by experts [NST+06], according to a given application domain (e.g. news

broadcasts) or academic purpose (e.g. for performance benchmarking). One problem with this approach

is that concept vocabularies are difficult to scale and adapt, which limits the applicability and suitability

of concept detection (or systems built on top) to deal with the enormous diversity of web-based video.

Instead, concept vocabularies should evolve when new topics of interest arise in the user community.

Simultaneously, as the consumption of multimedia content is rapidly increasing, social media streams

or channels capture with remarkable accuracy what people currently pay attention to and how they

feel about certain topics. Such topics are usually associated with a subject (i.e. a textual label) and

often experience a sudden spike in popularity (“trending”), which often relates to real world events such

as sports highlights (Olympics 2012), product releases (iPhone), celebrity news (Steve Jobs’ death),

disasters (Sinking of the Costa Concordia), political movements (Occupy), or entertainment (Academy

Awards). By detecting these trending topics for detector training, concept detection can be tailored

to the latest user interests. As proposed information source for trend detection, this work suggests to

utilize the large variety of social multimedia services available to users on the Web (e.g Twitter, YouTube,

Facebook, Flickr, Google, and Wikipedia). These sources reflect different user needs such as information

demand, social communication, as well as sharing and consumption of multimedia content creating a

heterogeneous multi-channel environment within the social media landscape.

As illustrated in Figure 5.3, the presented approach in this chapter aims to automatically detect

trending topics, prioritize them by forecasting their impact, and add the most promising ones dynamically

to the vocabulary of a concept detection system by using them as input for visual detector training. Minor

and ephemeral trends – where detector training would be less rewarding due to the forecasted short life

time – are neglected. This way, concept detection is able to provide dynamic concept vocabularies with

on-the-fly trained detectors being aligned with latest user interest. During the investigation of the trend-

based evolution of concept detection vocabularies using YouTube as application domain, the following

three key questions are addressed:

1. Is it possible to extract the “right” trends from social media? The system mines Twitter

posts, Google searches, and Wikipedia access statistics for trending topics and shows that the

resulting trends are strongly correlated with YouTube uploads. This indicates that other social

media channels do form a reliable indicator of user interest in the web video domain i.e. if a

trend emerges on other media, video uploads on YouTube spike correspondingly. Furthermore, an

analysis about trending topic life-cycles and cross-media relationships is performed investigating

their behavior and coverage among various topic categories.

2. As a trend emerges, can we predict its significance? To adapt concept detection to trends,

it is essential to identify high-impact topics and train visual detectors “on the fly”. To do so,

the challenge of forecasting the life cycle of a trending topic is addressed, i.e. predicting the
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Figure 3.1: Concept vocabularies that automatically evolve with user interest: Trending topics are discovered by

social media mining (left), prioritized by forecasting their impact (center), and visual detectors are trained for

the most prominent trends (right).

amount of user engagement towards it at the very moment it emerges. For this purpose a novel

forecasting approach is presented, which exploits the assumption that semantically similar topics

exhibit similar behavior in a nearest neighbor framework. Such topics are uncovered by mining

topics of similar type and category on DBPedia [ABK+07], a structured representation of the

information on Wikipedia. The proposed fully automatic approach is evaluated with hundreds of

trending topics on a large-scale dataset of about 317 billion views of the roughly 5 million articles

on Wikipedia.

3. Are “trend detectors” more accurate than static concept vocabularies? The last question

is about the utility of adding trending topics to concept vocabularies and whether adding these

pays off in terms of detection accuracy. To answer this question, two general detection strategies

are investigated, namely (i) linking a targeted trending topic like “Olympics 2012” with pre-trained

concepts like “Athletics” or “Stadium”, or (ii) training a new “Olympics 2012” detector as the trend

emerges and videos tagged with it are uploaded. Both strategies are compared and a combination

of both – (i) and (ii) – is presented that merges trends into the concept vocabulary.

Results on 6800 YouTube clips (541 hours of video) show that the 23 most prominent trends from

Winter 2011/12 could be detected with much higher accuracy using trend detectors instead of a static

concept vocabulary of 233 concepts. Summarizing, the contribution in this chapter is three-fold. It

presents (1) a trending topic detection, which automatically mines trends from major social and online

media channels, (2) an automatic forecasting technique for these trending topics based on a nearest

neighbor approach exploiting semantic relationships between topics evaluated on a large-scale Wikipedia

user behavior dataset, and (3) a novel approach for dynamic vocabulary expansion for visual concept

detection, which allows either to map emerging concepts to an already available concept vocabulary,

train directly on demand, or combine both strategies together for best detector performance.

This chapter is organized as following: First an overview of work related to trending topic detection,

forecasting, and the use of vocabularies in concept detection is outlined (Section 3.2). Second, the

discovery and multi-channel analysis of trending topics is presented (Section 3.3). In addition, the

trending topic forecasting approach is described in Section 3.4 and a dynamic construction of concept

detection vocabularies is introduced in Section 3.5. A discussion concludes this chapter (Section 3.6)
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Figure 3.2: A visualization of the trending topic clustering for Wednesday, 12th Oct 2011. It can be seen that

the number of cluster members is driven by the retrieved raw data. Further as depicted, the selection of cluster

labels is able to find meaningful descriptions for each cluster.

3.2 Related Work

The review of related work is divided into four parts. First, work in the area of large-scale topic and event

discovery is outlined. After that, research about the combination and analysis of signals from multiple

media channel is reported. Then, efforts in context of forecasting behavioral dynamics are presented and

finally research in the area of vocabularies in concept detection is outlined. Related work about concept

learning in general is skipped since it is covered in Chapter 2 in full detail.

3.2.1 Topic and Event Detection

Detecting and tracking topics in news media has been a field of study for years [All02]. Its initial goal

was the understanding of broadcasted news in multiple languages and across multiple media channels

(including television and radio sources). Therefore first challenges included the segmentation of audio-

visual news streams into individual story units, the identification of emerging topics in these streams,

the tracking of stories that discuss a particular topic, and the determination of the original story that

mentions a new topic for the first time [CSG+02]. Recently, topic and event detection has regained trac-

tion because of the availability of large datasets from social media. While prior work on trend discovery

focuses on blogs and Twitter content [GHT04, KLPM10], current research focuses on Twitter, which has

gained much attention recently in the area of online event detection. Due to the characteristics of Twitter

and its vast amount of tweets every minute this is non-trivial rending it a very challenging task [WL11].

Weng and Lee tackled this challenge by performing a wavelet analysis on the frequency-based word

signals to detect new events and further cluster terms via a graph partitioning technique [WL11]. In

contrast to Weng and because it is also known that Twitter can be noisy and only a partial view on the

entire database can be given as reported in [KLPM10, BNG11] approaches exists that employ aggregated

trends provided by platforms like Twitter itself [KLPM10, CL09] or extract trending topics only from a

subset of tweets [BNG11].

Similar to the former, this chapter utilizes lists of trending topics provided by platforms and further

process and aggregate those trending topics to groups of real-world events. Additionally and different

from related efforts, this chapter employs a diverse set of (textual) news streams to identify trending

topics across channels and over time. This allows the presentation of a multi-channel analysis of trending

topics over an observation period of one year.
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Figure 3.3: (a): For each day, top trends are discovered by aggregating feeds from Google, Wikipedia, and

Twitter, and trend scores are computed. (b): The trending topic “Olympics 2012” during summer 2012. The

colored curves represent the contribution of the different online and social media channels. (c): The trend scores

for the 23 most prominent trends, from September 2011 until March 2012.

3.2.2 Multi-Channel Analyses

Motivated by the initial idea of topic tracking between multiple channels such as news broadcast and

radio, the analysis of trending topic behavior over multiple media channels is of interest for this work.

Ratkiewicz et al. [RFM10] argue that although the dynamics of short-lived events such as news are

relatively well understood, online popularity of specific topics (e.g. “Barack Obama”) in general cannot

be characterized by the behavior of individual news-driven events (e.g. “Barack Obama inaugurated

as U.S. President”) since the former might subsume many different news stories making it difficult to

differentiate between them. They further find bursts in Wikipedia traffic to be correlated with bursts of

Google search volume indicating a sudden increase of attention on the Web at large. Wikipedia article

views have also been correlated with behavior on Twitter in order to analyze the potential of creating new

content for breaking news (e.g. Japan earthquake) or vice versa updating pages at the moment of news

(e.g. Oscar winners) [WA12]. Such correlations can also be utilized to filter spurious events on Twitter.

This however indirectly resulted in the finding that Wikipedia lags behind Twitter by about two hours

as measured by the textual similarity between tweets and “bursting” Wikipedia articles [OPM+12]. Adar

et al. correlate several behavioral datasets such as general queries from an observation period of one

month from MSN and AOL search logs with the general idea of understanding past behavior to predict
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future behavior [AWBG07]. Although not focusing on trending topics, this multi channel investigation

provided an analysis of the temporal correlation within topic clusters as well as differences in popularity

and time delays between sources. A similar behavior was observed in [YL11], where six distinct temporal

patterns with regard to certain phrases or memes have been identified to describing the rise and fall

of user attention in weblogs trailing mainstream media by one or two hours for most of the considered

phrases.

In contrast to the above, this work explicitly focuses on trending topics in online and social media

channels over a long observation period. Similar to [DCCC11] using trending topics such as “oil spill” and

“iPhone” to evaluate tweet selection, this work utilizes trending topics for semantic concept selection. It

additionally investigates multi-channel behavior, analyzes the correlation between topic categories and

media channels and proposes a fully automatic approach of forecasting trending topics in terms of future

impact in the context of attention as opposed to visualization tools [AWBG07] or predicting cluster

assignment [YL11].

3.2.3 Forecasting Behavioral Dynamics

Much research has been devoted to predicting economic variables such as auto sales or unemployment

claims [CV12] by “nowcasting” them from online observations, or opening weekend box-office revenue

for movies [GHL+10]. In the same way, popularity of online content has often been treated as a single

variable (e.g. total number of views) instead of a time series [SH10]. Either early popularity [SH10], or

content-based features such as publisher, subjectivity, or occurrence of named entities [BAH12] are used

to forecast eventual popularity. A different approach is taken by Radinsky et al. who predict the top

terms that will prominently appear in future news (such as prediction “oil” after observing “dollar drop”)

[RDM08]. More recent work treats the popularity of queries and clicked URLs of search engines as time

series and uses state space models adapted from physics for forecasting [RSD+12a]. With respect to

forecasting Wikipedia article popularity, the study of Thij [TVLK12] has to be mentioned. This analysis

– however – restricts itself to featured articles on the main page only and accounts for daily cycles in

viewing behavior.

Please note that trending topics lead to time series characteristics with unexpected shifts. These shifts

are known as structural breaks in the field of econometrics and can lead to large forecasting errors and

unreliable forecasting models [CH09]. A good example for such a structural break is Whitney Houston’s

death in February 2011 that caused 2000 times (!) more people to access her Wikipedia article than usual.

Such structural breaks also described as parameter non-constancy are the main cause of large, unexpected

forecast errors in practice [CH09]. Autoregressive models (AR) and extensions incorporating moving

averages, seasonality and exogenous inputs [HK08] as usually utilized for forecasting, lack the necessary

robustness to deal with structural breaks as introduced by trending topics. Pooling or combining forecasts

from different models has often been found to outperform individual forecasts and to increase forecast

robustness.

In the presence of nonlinearities, Nearest Neighbor techniques for forecasting have been found to

improve out-of-sample forecasts [FRSRAF99]. Forecasting the progression of trending topics in the very

moment they emerge is different in the sense that it requires a fully automatic system and that often there

is little historical information available (unlike for many economic variables of interest). For example,

few people were aware of “Costa Concordia” before the ship sunk in January, 2012. Similarly, to make
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predictions about the“54th Grammy Awards” one needs to understand the relationship of this event with

previous ones such as previous instances of the Grammy Awards. This work assumes that semantically

similar topics share characteristics and behavior and therefore could improve forecasting accuracy. This

assumption has not yet been explored in previous work (e.g. [RSD+12a]). In addition, the proposed

approach can forecast popularity of arbitrary topics (represented by Wikipedia articles) that exhibit very

diverse viewing dynamics.

3.2.4 Social Multimedia Applications

The analysis and forecasting of trends also has intersections within the multimedia domain. One applica-

tion employing social media in conjunction with multimedia systems has been explored in [JGC+10]. This

work uses the Flickr photo upload volume of specific topics to inform autoregressive nowcasting models

for monthly political election results and product sales (i.e. the model requires the Flickr upload volume

at time t to produce a forecast for time t). Also, the Flickr queries relevant to the forecast subject of

interest are chosen manually (e.g. using “Hillary” instead of “Clinton” to avoid images by Bill Clinton for

the 2008 Democratic Party presidential primaries). SocialTransfer is another system that uses trending

topics obtained from a stream of Twitter posts for social trend aware video recommendation [RMZL12].

Learning new associations between videos based on current trends is found to be important for improving

the performance of multimedia applications, such as video recommendation in terms of topical relevance

and popularity. The popularity of videos is also used in [WSC+12] to drive the allocation of replica-

tion capacity to serve social video contents. This work analyzes real-world video propagation patterns

and finds that newly generated and shared videos are the ones that tend to attract the most attention

(called temporal locality). They further formulate the challenge to estimate the videos’ popularity for

video service allocation for which they use the number of microblog posts that share or re-share the

video. These insights are incorporated into the design of a propagation-based social-aware replication

framework. Two other research prototypes that seek to enhance the multimedia consumption experience

by extracting trending topics and events from user behavior on the Web are SocialSensor [DPK+12]

and TrendMiner [SPPC+12]. The first one emphasizes the real-time aspects of multimedia indexing and

search over multiple social networks for the purpose of social recommendations and retrieval. The other

– TrendMiner – focuses on real-time methods for cross-lingual mining and summarization of large-scale

stream media and use cases in financial decision support and political analysis.

3.2.5 Vocabularies for Concept Detection

Typically, vocabularies of concept-based video retrieval systems [SW09] contain a wide range of semantic

concepts such as objects, location and activities to be detected in video streams. These vocabularies

are expert-defined, where visual discriminability, utility for retrieval and availability of training data

have been identified as important characteristics of “suitable” concepts [NST+06]. The Large-Scale Con-

cept Ontology for Multimedia (LSCOM) [KHN+06] is such an concept vocabulary balanced according

to these criteria. It consists of 1, 000 concepts carefully selected with respect to their usefulness for

news video retrieval. Although restricted to one particular domain, LSCOM served over the last year

as foundation for many concept detector systems like University of Columbia DVMM’s and University

of HongKong VIREO’s ones, consisting of a subset of 374 trained detectors from LSCOM [YCKH07,
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Table 3.1: Top 30 international trending topics during September 2011 – September 2012. There is a wide variety

of trending topics including sport events, product releases, celebrity news, incidents, political movements, and

entertainment. Please note that the US presidential election was in November 2012 and is therefore not listed

here.

Topic Topic Topic

1 olympics 2012 11 christmas 21 iphone

2 champions league 12 steve jobs 22 happy new year

3 iphone 5 13 manhattan 23 kindle

4 whitney houston 14 academy awards 24 ncaa brackets

5 mega millions numbers 15 formula 1 25 em 2012

6 closer kate middleton 16 justin bieber 26 amanda knox

7 facebook 17 joe paterno died 27 earthquake

8 costa concordia 18 battlefield 3 28 mayweather vs ortiz

9 black friday deals 19 muammar gaddafi dead 29 santa tracker

10 superbowl 20 ufc 30 thanksgiving

JYCN08, NJW+09]. Another set of large vocabularies is defined by TRECVID [OAM+12]: starting

with single digit vocabulary sizes in the beginning of the campaign to today’s 346 concepts in its Se-

mantic Indexing task (SIN). The origin of the SIN vocabulary is a subset of 500 concepts merged from

LSCOM [NST+06] and CU/VIDEO vocabularies [JYCN08]. Roughly at the same time the MediaMill

group defined their concept vocabulary of 101 concepts based on manual inspection of the TRECVID

2005 corpus [SWvG+06a]. This effort was further extended by MediaMill to a vocabulary of 500 semantic

concepts [SWH+06]. In the context of video collections for concept detection, the Heterogeneous Audio

Visual Internet Collection (HAVIC) [SMF+12] has to be mentioned. The collection is primarily focusing

on multimedia events (up to 75 multimedia events have been defined) which can be found in thousands

of hours of video material. The distinctiveness as compared to the above vocabularies is the construc-

tion of event kits, a complex definition of events with textual description, explication, and evidential

description. One significant result of all these efforts was the experience how time-consuming annotation

according to defined concept from the vocabulary of such datasets is. Nevertheless, although the costly

acquisition of training data [AQ08] poses a limiting factor to vocabulary size, large-scale concept sets

such as ImageNet [LLZ+11] or Google’s Video2Text system [ATY09] exist.

The work presented in this chapter bears similarities to the above mentioned work in a sense that web

video is used as a domain and that user-generated tags together with their video content are exploited

as a source for training and the testing of concept detectors “on the fly”. The key difference, however, is

that this work combines web-based concept detection with trending topic discovery to develop dynamic

vocabularies that adapt to evolving user interests. Evolving tag vocabularies have also been studied

in [DJLW07], where an inductive transfer was applied upon a fixed black-box vocabulary to adapt to a

users’ personalized tagging behavior over time. The presented approach differs from previous ones as it

trains new concept detectors based on a discovery of trending topics over large user communities, which

– to the best of my knowledge – has not been investigated before.
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Table 3.2: Trending Topics Dataset Overview. Statistics of analyzed trending topics and sequences for Google

(G), Twitter (T), and Wikipedia (W) and combinations thereof.

# Topics # Sequences

Total 200 516

Google (G) 191 445

Twitter (T) 118 232

Wikipedia (W) 69 108

G & T 115 174

G & W 66 86

T & W 43 57

G & T & W 42 48

3.3 Trending Topics Detection & Analysis

This section introduces the dataset used for the analysis of trending topics across media channels and

presents an analysis of their temporal characteristics as well as insights into the relationship between

channels and topic categories.

3.3.1 Trending Topic Discovery

The discovery of trending topics i.e terms that experience a spike in user popularity is done on three

major online media channels namely by analyzing posts on Twitter, statistics of Google searches, and

Wikipedia site accesses. These are clustered to account for different spellings and paraphrases, and

finally aggregated across time and channels to obtain trend scores describing their overall popularity.

The entire process is performed automatically by the Lookapp for Ads system [BL12].

Raw Trending Topic Sources

As outlined above, Google, Twitter and Wikipedia are used as a starting point by retrieving a ranked

list of popular terms from 10 different sources on a daily basis: five Google channels (Search and News

for USA and Germany as well as the Trends feed), three Twitter channels (daily trends for USA and

Germany as well as the Daily Trends stream), and two Wikipedia channels (popular articles in the

English or German language). For each of these feeds a ranked list of 10-20 topics (in total 110 topics

per day) is retrieved. Such lists of raw trending topic strings might contain multiple variations of the

same entity (“occupy wall street” and “occupy”) or different spellings (“Yulia Tymoshenko“ and “Julia

Tymoschenko”). Also, different styles of naming entities per channel exist. While Wikipedia is a very

clean channel immediately providing a URI identifying the named entity, Twitter, in contrast, is a very

uncontrolled channel riven by its hashtag system of tagging tweets. In total this type of raw topic

crawling results in 40,000 potentially overlapping topics for the observation period of September 2011 -

September 2012, which are covered in this dataset.
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Unification and Clustering of Trends

To make use of the raw data multiple instances of the same trending topics must be connected across

time and media channels. This is accomplished by a unification of terms i.e. the linkage of terms to

named entities and a subsequent clustering of the individual entities on top of this. First, a mapping

of individual topic strings to a corresponding Wikipedia URI is performed by selecting the top-most

Wikipedia result of Google search for that topic (this approach was found to be more robust than more

direct methods on Wikipedia). As a result, for each topic in the lists a topic string / URI pair is made

available for the next step, the clustering of individual items from the initially retrieved lists. During

the clustering two items are clustered together bottom up, if their their Levenshtein distance of their

topic string or Wikipeida URI is below a certain threshold (set to 0.35 × word length) . The method

allow to unify topics such as “super bowl time”, “super bowl 2012”, and “superbowl” into a single cluster.

Cluster label assignment is done according to the topic string of the highest ranked cluster member item.

Figure 3.2 illustrates such a clustering for Wednesday, 12th October 2011. It can be seen that the number

of cluster members is driven by the input of raw trending topic lists. Further, as visualized in the figure,

the selection of cluster labels is able to find meaningful descriptions for each cluster as compared to other

potential cluster members. Overall this procedure leads to 2986 clusters or individual trends. This is

only a fraction of 13% from the overall set of candidates, which have been identified as distinct trending

topics over channel and time. A cluster is now represented by its most prominent member and will be

referred to as a trending topic for the rest of this work.

Ranking Trending Topics

To reason about the popularity of trending topics for each trend a score is assigned. This assignment

is based on the following method: For each day and for each of the 10 feeds, the rank at which a topic

appears in its list is recorded. These ranks are combined using Borda count, obtaining a score for each

day that is assigned to the topic’s cluster (Figure 3.3 (a)). This Borda count ranking given clusters a

high rank if its cluster members are also ranked at the top of their retrieved trend lists. Obviously, one

single trending topic may emerge in multiple media channels (Figure 3.3 (b)). This fact will be of use

during the lifecycle analysis across multiple channels. As seen for the trending topic “Olympics 2012”,

all media channels are involved with different contributions to the overall trending topic progression. To

measure the impact of a trending topic over its overall lifetime, its global trend score has to be defined.

This is realized by taking the sum of its daily scores over the observation period (Figure 3.3 (c) for the

first half of the measured timespan). The top trends with respect to this global trend score are shown

in Table 3.1. This ranking serves as a foundation for the selection of trending topics as discussed in the

next section.

Some trending topics such as “Champions League” appear multiple times within the one year ob-

servation period. To allow for a life-cycle analysis of particular topics, trending topics are divided into

multiple sequences being non-zero for at least two out of three adjacent dates, i.e. compensation for

“score gaps” of at most one day is employed. Using this process the top 200 trends (based on their global

trend score) are split into 516 (trending topic) sequences. These sequences will be used to evaluate the

forecasting procedure described below.

42



CHAPTER 3. DYNAMIC VOCABULARIES BY TRENDING TOPICS DISCOVERY

Twitter Wikipedia

start / peak / end start / peak / end

Google -0.20 / 2.23 / 3.64 -0.41 / 2.35 / 4.16

Twitter – 0.07 / 0.36 / 0.21

Google Trends 0.09 / 0.04 / 0.41 -0.42 / -0.32 / 1.25

Figure 3.4: Top: An illustration of delay calculation among media channels. Bottom: Mean delay in days between

pairs of media channels (start/peak/end). Positive delay means that the “row channel” is slower than the “column

channel”.

3.3.2 Lifetime Analysis of Trending Topics

Trending topics experience different amounts of attention during their lifetime. Some trending topics

appear and disappear after one or two days such as “Valentines Day”, some last for up to 30 days such

as the “Olympics 2012”, while other like “Champions League” appear multiple times within the given

one year observation period. To allow for a life-cycle analysis of individual topics, they are divided into

multiple sequences such that non-zero values are observable for at least two out of three adjacent dates,

i.e. non-observable scores for at most one day are compensated. Please note that some trending topics

might fall below the threshold of the raw trend list provided by the platform but might re-appear in that

list the next day. The analysis is performed in all channels of the dataset for the top 200 trending topics

(based on their global trend score). Following the previously described procedure those trending topics

have been split into 516 sequences. Table 3.2 summarizes the resulting number of topics and sequences

for the different channels and their combinations. Note that mapping of the ten individual monitored

channels is done according to their respective sources i.e. Google, Twitter, and Wikipedia. The Google

channel has the largest coverage of the trending topic sequences in the dataset (86.2 %). About 9.3 % of

trending topic sequences occur in all three source channels and between 11.0 % and 33.7 % occur in two

of the three source channels

First the question of a trending topic’s average time of survival is answered and whether there are

differences for its lifetime in the different media channels. For this analysis, lifetime is defined as the

number of consecutive days with non-zero trend scores. Histograms of the lifetime of trending topics are

shown in Figure 3.6. It can be observed that the trending topics in the given dataset rarely survive longer

than fourteen days (with some exceptions such as “Olympics 2012”) with most trending topics having a

lifetime of less than nine days. Since Google covers a large share of top trends, the distribution for the

channel looks very similar to the overall distribution. The lifetime of topics on Twitter is much shorter
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(a) Histogram of start delays in days. Note that Twitter is not

significantly faster than other channels.

(b) Histogram of peak delays in days. Note that Google peaks

after Twitter and Wikipedia in most cases. However, Google

Trends USA behaves similarly to Twitter and Wikipedia.

(c) Histogram of end delays in days. Note that trends in Google

survive much longer than in Twitter and Wikipedia but that

this behavior is weaker within Google Trends USA.

Figure 3.5: Histogram of delays in days in the different media channels. The colored vertical bars represent the

mean of the distributions.
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(d) Lifetime for Wikipedia

Figure 3.6: Histogram of the top 200 trending topics and their lifetime of the appearance in respective social

media channels in days. Due to the large contribution of Google to the overall amount of trending topic sequences

its distribution looks similar to the distribution for all source channels. Interestingly, a similar distribution for

the Twitter and Wikipedia source channels can be observed

in accordance with the expectations of the ephemerality of trends in this channel, about two thirds of

the top trends only survive for one or two days. Interestingly, the Twitter distribution looks similar for

Wikipedia providing a first indication of similar behavior of trending topics in these two channels.

For trending topics that occur in at least two of the three channels an analysis of their behavior in

these channels can be performed. To this end, three points in time are of particular interest to capture

their characteristics: the day on which the trend starts, the days on which the trend peaks (defined by the

trend score defined earlier), and the day on which the trend ends again. Comparing two channels with

each other, the delay between those channels can be defined as the difference between the start/peak/end

dates in channel X and the start/peak/end dates in channel Y. Note that a positive delay means that the

first channel X is slower, i.e. trends tend to start later in channel X than in channel Y. The mean delays

for start, peak, and end are summarized in Table 3.4. Interestingly, there are only marginal differences in

starting delays (first of the three numbers) between the three channels with Twitter and Wikipedia being

slightly faster than Google. These results are not very surprising considering that Osborne et al. found

Twitter to be around two hours faster than Wikipedia [OPM+12] – a difference almost impossible to

observe in data of daily granularity. A much stronger effect is observed for peak and end delays (second

and third number). Both Twitter and Wikipedia tend to peak more than two days before Google. The

picture is even clearer when looking at the end delays where Twitter and Wikipedia lead Google by three

and four days respectively. Overall, these results add to the ephemerality of the Twitter and Wikipedia

yielding the second indication of similar characteristics of these two source channels.

However, this analysis indicates that some of the Google channels seem to be intentionally delayed

or averaged, i.e. showing the top stories over an average of several days. As a control for this Google

Trends can be used since it is known to not be artificially delayed. As seen in the delay analysis it peaks

around the same time as Twitter and Wikipedia, and its trending topics tend to end around half a day

after Twitter and more than one day after Wikipedia.

3.3.3 Cross-Media Topic Category Analysis

To provide insights about what kind of topics are the most popular in the individual channels all 200

top trends have been manually annotated with categories. The categories were chosen by examining the
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Table 3.3: List of categories and their associated trending topics. Note that a trending topic might be assigned

to multiple categories.

Category Description #Seq Examples

sports sports events, clubs, athletes 52 olympics 2012, champions league, bayern muenchen,

superbowl, eli manning

celebrity person with prominent profile 49 steve jobs, kim kardashian, michael jackson, neil

armstrong, justin bieber, whitney houston

entertainment entertainers, movies, TV shows 39 grammys, emmys, heidi klum

politics politicans, parties, political

events, movements

32 paul ryan, occupy, christian wulff, paul ryan, gauck,

kim jong il, occupy, acta, muammar gaddafi dead

incident an individual occurrence or

event

27 costa concordia, hurricane isaac, virginia tech

shooting, aurora shooting, reno air crash

death death of a celebrity 22 whitney houston, joe paterno died, neil armstrong

technology product or event related to

technology

20 iphone 5, ces, nasa curiosity, ipad, space shuttle,

google+, battlefield 3, apple, higgs boson

actor actor in TV show or movie 18 lindsay lohan, michael clarke duncan, bill cosby

product product or product release 15 ipad, windows 8, diablo 3, iphone 5, kindle

artist music artist 15 justin bieber, miley cyrus, beyonce baby

holidays day(s) of special significance 11 halloween, thanksgiving, valentines day

company commercial business 10 apple, facebook, megaupload, instagram

show TV show 7 x factor, wetten dass, the voice

movie a motion picture 6 dark knight rises, hunger games, the avengers

main themes found in the dataset. Please refer to Table 3.3 for more information about the individual

categories, their descriptions, and examples. Since a trending topics such as the death of “Whitney

Houston” might match multiple categories such as “celebrity”, “entertainment”, “death”, and “artist”, an

individual trending topic might be assigned to multiple categories. The engagement with respect to the

different categories in a media channel is measured as follows: For each trending topic within the channel

its score is assigned to all of its categories. Finally, the scores for each channel are normalized, e.g. to

account for the dominance of Google for the scores overall. The resulting distribution over categories is

displayed in Figure 3.7.

It can observe that channels have a tendency to specialize in certain topic categories. For example,

the most popular category in Google is sports. A large share of the scores is also assigned to celebrity

and entertainment categories. Google also has the highest relative share (15 %) for politics. Twitter

also features many trends in the celebrity and entertainment categories. Interestingly, it has the highest

relative shares of trends related to products, companies and technology. One reason might be that a

large fraction of Twitter are technology affine early adopters that like to share their thoughts on new

products. Another interesting finding is that over 20 % of the scores on Twitter are assigned to the

holidays category. A hypothesis is that holiday related trends are big on Twitter as many people tag

their posts and pictures with the same hashtags such as #christmas or #thanksgiving. Wikipedia clearly

shows a specialization for categories that involve people and incidents such as disasters or the death of

celebrities. Contrary to the intuition that Wikipedia is a slowly evolving channel which people use to

read up on complicated topics, especially when also considering the temporal properties of the Wikipedia

channel from the analysis above, it can be said that many users use Wikipedia for additional information
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Figure 3.7: Normalized distribution of trending topic scores over trend categories in the individual channels. Note

that channels tend to specialize in certain categories, e.g. Twitter for product related topics and Wikipedia for

incident ones.

about these trends and events to learn about or remind themselves about related topics.

3.3.4 Classes of Pattern Recurrence

During the analysis of different trending topics, three major classes of signals were identified. Examples

for all three classes are given in Figure 3.8.

• Class 1 - Self-recurrent The first class of signals exhibits recurring patterns within the same

signal. These self-recurrent signals can be seen in Figure 3.8 (a). The self-recurring behavior of the

trending topic “Champions League” is given due to the yearly scheduled soccer competition with

breaks during the winter and summer and the finals in May.

• Class 2 - Recurrent The second class of signals does not exhibit recurring patterns themselves

but recurrence can be found within other related signals and are therefore referred to as recurrent

signals. For example, Figure 3.8 (b) shows the trending topic “2012 Summer Olympics”, being a

Summer Olympics (blue). Since this signal does not have much of a history before 2012 its signal

pattern does not feature any attention before 2012. However, previous Olympics such as the “2010

Winter Olympics” and the 2008 Summer Olympics, reveal similar behavior of having two peaks,

one at the start and one at the end of the event indicating the opening and closing ceremony. Note

that this is not a simple yearly seasonality as the Summer Olympics happen every four years or

is time shifted as in case of Winter Olympics. In such cases, where instances of the same real-

word event are available recurrence is given. Unfortunately, the rules to find such instance naming

rules (naming, numbering) may become arbitrarily complex as for e.g. the “Super Bowl” using the

Roman counting system (e.g., Super Bowl XLVI).

• Class 3 - Non-recurrent The third class captures non-recurrent signals which do not exhibit

recurring behavior and for which there is no obvious related or preceding instance. An example

is given in Figure 3.8 (c) which shows different trending topics about celebrity deaths. Obviously,

such events only occur once so any form of self-recurrence is impossible.
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Figure 3.8: There are three different classes of behavioral signals with large implications for forecasting: (a)

Self-recurrent, (b) recurrent, and (c) non-recurrent signals.

After having a first understanding of trending topic life-cycles, multi-channel behavior and signal

pattern, the challenging task of forecasting trending topics can be addressed as presented in the next

section.

3.4 Forecasting of Trending Topics

As motivated in Section 3.1, anticipating high-impact trending topics is useful for the deployment of

evolving vocabularies satisfying users’ information needs. However, forecasting trending topics is a

very challenging problem since the corresponding time series usually exhibit highly irregular behavior

(structural breaks) when the topic becomes “trending”. Pooling or combining forecasts from different

models has been found to increase forecast robustness in econometrics literature [CH09].

In this section, a forecasting approach is proposed that combines time series from multiple seman-

tically similar topics. In particular because of the seen class differences of signal recurrence and their

characteristics this idea is of importance since it has a large impact on forecasting. For example, the

first class of self-recurrent signals could be forecast with straight-forward Autoregression methods as

mentioned in Section 3.2. The second (recurrent) and third (non-recurrent) class of signals is much more

challenging to cope with since semantic similar topics have to be found to build a model for forecasting

future progression of the signal. However, finding a particular pattern in a corpus of the size of e.g. the

entire Wikipedia corpus (which serves as the time-series dataset for the evaluation) is clearly non-trivial

as there are about nine billion patterns to choose from (assuming five years of daily page views on five

million articles). Therefore, the goal is to identify semantically similar topics exhibiting similar behavior

to inform forecasting.

A conceptual overview of the proposed approach is presented in Figure 3.9. On the very left the

trending topic for the“Olympics 2012” (Summer Olympics) can be seen along with its Wikipedia page

view statistics during 2012. The task to be solved is to forecast the number of page views for a period of

14 days (yellow area) from the day indicated by the red line. This point in time for forecasting is triggered

by the emergence of a corresponding trending topic in the observed channels (see Section 3.3). Note that

the time series exhibits complex behavior such as the smaller peak at the end of the forecasting period

which most likely corresponds to the closing ceremony event on that day. Based on the assumption that

semantically similar events can exhibit very similar behavior, the first step is to automatically discover

related topics such as previous Summer and Winter Olympics or FIFA/UEFA soccer championships (as

illustrated by the second box). The second step in Figure 3.9 shows patterns of user engagement for
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Figure 3.9: System overview of the proposed forecasting approach. For a given trending topic first semantically

similar topics are discovered, then those are searched for patterns of similar behavior which are then taken to

produce a forecast.

Summer Olympics 2008, the Winter Olympics 2010, and the UEFA Euro championship 2012 that were

found to match the current behavior of the 2012 Olympics best (green history window). These patterns

show certain similarities such as a second peak for closing ceremonies or final matches. The identified

sequences from the previous step are then combined to a forecast shown at the very right. In the next

section, these individual steps are explained in more detail.

Please note that this work is neither able to, nor can attempt to predict incidents such as natural

disasters or sudden deaths of celebrities in advance. However, even for unpredictable events like these,

the patterns of user attention once this event has happened can be forecast e.g. by taking previous

instances of natural disasters or celebrity deaths into account.

3.4.1 Discovering Semantically Similar Topics

For a given trending topic, semantically related topics are discovered with the help of DBPedia [ABK+07],

a database containing structured information about several million named entities extracted from the

Wikipedia project. Since during the detection of trending topics each individual topic has been mapped to

a named entity represented by a Wikipeida URIs (Section 3.3), it is reasonable to use DBPedia as a data

repository providing rich semantic annotation such as category and type information. Given category

(via dcterms:subject) and type (via rdf:type) information from DBPedia, a set of semantically similar

topics was compiled that share most categories or types with a given trending topic. Essentially topics

and properties form a large bipartite graph with other topics being linked to these properties. Following

a set of connected topics can be found by traversing the graph and by ranking of the number of shared

properties. For example, as seen in Figure 3.10, the Wikipedia URI for “2012 Summer Olympics”2 is

assigned to the categories Sports_festivals_in_London, Scheduled_sports_events, 2012_Summer_-

Olympics, and 2012_in_London. Its types include Event, SportsEvent, Olympics, and OlympicGames.

For examples, the 2012 Summer Paralympics share most of the properties with the Olympics 2012.

Formally, at this stage the aim is to compile a topic set Tsim which includes all the discovered similar

topics. For later comparisons, an additional topic set Tself is also assembled which only includes the

trending topic itself (to simulate self-recurrent signals) and Tgen which contains a wide variety of general

trending topics (in this case the top 200 trending topics to simulate forecasting on non-similar but popular

trending topics). In the following, these sets will be referred to by the placeholder T and an individual

2http://en.wikipedia.org/wiki/2012_Summer_Olympics
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Figure 3.10: At DBPedia, the entity ‘2012 Summer Olympics” (red right) is linked certain semantic properties,

which are also shared with other semantically similar topics (red left).

similar topic will be referred to as simj ∈ T . An overview of the formal notation is given in Table 3.4

for reference.

3.4.2 Nearest Neighbor Sequence Matching

Obviously not all time series corresponding to the discovered similar topics look the same. Therefore, it

is necessary to search within these time series for sequences that match historical behavior of the current

trending topic. For example, historical topics such as the “1896 Summer Olympics” have gained very

limited attention over the last years and are therefore unlikely to be representative for the large amount

of engagement the “2012 Summer Olympics” experienced. To pick the right instances simj ∈ T from the

set of similar topics, a short history window of the trending topic to be forecast is compared to each of

the time series of candidates, i.e. the viewing statistics for the last two months, to all partial sequences

of the same length of similar topics in the topic set T .

To capture this step in formal terms, let Stopic[t] be the time series for the given topic at time t.

Further let define

St0topic[t] := Stopic[t0 + t] (3.1)

as the shifted version of the time series (used for aligning multiple series below). In the following, the

forecast of Stopic[t] is assumed to be done with a horizon of h days starting at time t0. Given a topic set

T from the previous step, the sequence candidate set is defined as C(t0) that includes all possible shifted

time series Stsimj
:

C(t0) = {Stsimj
| ∀simj ∈ T , ∀t : t ≤ t0 − h} (3.2)

The condition t ≤ t0 − h ensures that information more recent than t0 − h is never used in the

forecasting of h days, i.e. no use of future information is allowed. Given this candidate set, the next

step is to search for the k members Stisimi
(i = 1, . . . , k) that are the best matches for the time series

of interest (St0topic). Note that these nearest neighbors are already correctly aligned through shifting the

time series Ssimi
by a corresponding ti. Also, note that the same similar topic simi can occur multiple

times (e.g. for repetitive signals). Formally, the nearest neighbor set becomes

Nk(St0topic) = {St1sim1
, . . . , Stksimk

} (3.3)
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Table 3.4: Summary of the formal notation used in this chapter to describe the presented forecasting approach.

Notation Explanation

Tsim Topic set containing all discovered similar topics

Tself Topic set only including the topic itselg

Tgen Topic set of general topics not based on semantic similarity

T Generic placeholder for a topic set

simj ∈ T Similar topic

t0 Time of forecast

Stopic[t] Time series for topic at time t

St0
topic[t] Shifted version of the time series that starts at t0

C(t0) Sequence candidate set including all shifted time series

St
simj
∈ C(t0) Candidate sequence

St0
topic Time series of interest at point of time of forecast t0

Nk(St0
topic) Nearest neighbor set for time series of interest

Sti
simi
∈ Nk(St0

topic) Nearest neighbor sequence (time series)

d(·, ·) Distance metric for time series

F(St0
topic)[τ ] Forecast for time series of interest τ days after t0

α(·, ·) Scaling function ensuring a smooth forecast continuation

where Stisimi
are the k distinct elements that are smallest wrt. d(St0topic, S

ti
simi

) for all Stisimi
∈ C(t0).

Here, d(·, ·) is a distance metric between both time series which, in this case, only depends on a short

history window of the time series. An interesting question is whether the metric should be scale invariant

and in which form and to what degree. The following distance metrics are proposed:

1. euclidean: a squared euclidean distance: (d(x, y) =
∑n
i=1(xi − yi)2)

2. musigma: euclidean distance on normalized sequences x′i = (xi − µ)/σ (where µ, σ are mean and

standard deviation estimated from the respective time series)

3. y_invariant: a fully scale invariant metric as proposed in [YL11] (minγ d(x, γ · y)).

Section 3.4.4 compares these different distance metrics in more detail.

3.4.3 Forecasting

Even the best matching sequences identified in the previous step might not be a perfect fit for the time

series to be forecast. Therefore, it is necessary to rescale the matching sequences such that each aligns

with the last observed value of St0topic. This ensures that the forecast will be a continuous extension of

past behavior. Now, the forecast F becomes the median over scaled versions of the sequences from the

previous step (Nk(St0topic)). Subsequently, the range of forecasting days is represented by τ ∈ [0, . . . , h−1]

where again h is the forecasting horizon (usually h = 14). Finally, the forecast can then be formally

described as

51



3.4. FORECASTING OF TRENDING TOPICS

F(St0topic)[τ ] = median
St
′

topic′∈N
k(Sttopic)

(α(St0topic, S
t′

topic′) · St
′

topic′ [τ ]) (3.4)

where α(St0topic, S
t′

topic′) = St0topic[−1](St
′

topic′ [−1])−1 adjusts the scale of nearest neighbor time series

based on the last observed score. In practice, α is limited to an interval (e.g. [0.33, 3.0]) for robustness.

Also, the method is evaluated using the average instead of the median for forecasts.

Opportunities & Limitations

While trying to predict the future is a very hard and sometimes even impossible challenge, in many

cases user behavior follows certain patterns that allow for a certain amount of predictive accuracy. For

example, knowing that the “Summer Olympics 2008” attracted up to 350k daily viewers on Wikipedia

a reasonable guess would be that the maximum number lies at least this high for the 2012 Summer

Olympics. Furthermore, discovering certain patterns such as increased attention during the closing

ceremony can improve forecasts (as illustrated in Figure 3.9). The proposed approach relies on the

availability of histories of viewing statistics (or other forms of attention such as click data). In addition,

it is assumed that semantically similar topics for a given trend are available. Using DBPedia for this

purpose worked for most trending topics in the given dataset. Problems included trends such as “Italy

Germany”(referring to the soccer match during the EURO 2012) for which the assigned Wikipedia article

(named entity) was incorrectly assigned to “Italy”. Suboptimal assignments like this come with a loss of

prediction quality.

3.4.4 Evaluation

In this section, first the Wikipedia page views dataset is described and then quantitative results are

presented for the forecasting approach proposed in the previous section.

Dataset Description

The evaluation of forecasting is done on a large-scale dataset of page views on Wikipedia, an online col-

laborative encyclopedia that has become a mainstream information resource worldwide and is frequently

used in academia [RFM10, OPM+12]. Reasons for this particular choice of social media channel were

(a) the public availability of historical views data necessary to build forecasting models (hourly view

statistics for the last five years), (b) the size of the dataset allowing a comprehensive analysis of the pro-

posed method across a wide range of topics (over 5 million articles), and (c) previous results show that

user behavior on Wikipedia (bursts in popularity of Wikipedia pages) is well correlated with real-world

events [RFM10]. Although results are presented on Wikipedia the approach can be applied to any online

and social media channel for which historic data is available.

The raw Wikipedia viewing statistics3 are published by the Wikimedia foundation and obtained

as hourly view statistics starting from January 1, 2008 (2.8 TB compressed in total). These logs are

aggregated to daily viewing statistics (URIs that have been viewed less then 25 times on that day

are dropped). It can be assumed that this does not introduce any bias since trending topics tend to

accumulate view counts several orders of magnitude higher. For each day this results in approx. 2.5

3http://dumps.wikimedia.org/other/pagecounts-raw/
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Table 3.5: Selected trending topics along with their nearest neighbor topics using category and type information

on DBPedia (step 1). The ones chosen by nearest neighbor sequence matching (step 2) are in bold print. In some

cases the topic itself can be used for forecasting, e.g. if the time series contains repetitive patterns.

Trending Topic Nearest Neighbor Topics

2012 Summer Olympics 2008 Summer Olympics, UEFA Euro 2012, 2010 Winter Olympics :: 2016

Summer Olympics, 2014 FIFA World Cup, 2006 Winter Olympics

Whitney Houston Ciara, Shakira, Celine Dion, Brittany Murphy, Ozzy Osbourne :: Alicia Keys,

Paul McCartney, Janet Jackson

Steve Jobs Mark Zuckerberg, Rupert Murdoch, Steve Jobs :: Steve Wozniak, Bill Gates,

Oprah Winfrey

Super Bowl XLVI Super Bowl, Super Bowl XLV, Super Bowl XLIV :: Super Bowl XLIII, 2012 Pro

Bowl, UFC 119

Justin Bieber Selena Gomez, Kanye West, Justin Bieber :: Katy Perry, Avril Lavigne, Justin

Timberlake

84th Academy Awards 83rd Academy Awards, 82nd Academy Awards :: List of Academy Awards

ceremonies, 81st Academy Awards

UFC 141 UFC 126, UFC 129, UFC 124, UFC 132, UFC 127, UFC 117 :: UFC 138, UFC

139, UFC 137

Battlefield 3 Mortal Kombat, FIFA 10, Call of Duty: Modern Warfare 2, Portal, Duke

Nukem Forever :: Call of Duty: Modern Warfare 3, Call of Duty 4: Modern Warfare,

Pro Evolution Soccer 2011

Joe Paterno Terry Bradshaw, Joe Paterno, Jack Ruby, Paul Newman, Jerry Sandusky ::

Lane Kiffin, Donna Summer, Joe DiMaggio

Tim Tebow Reggie Bush, Michael Oher, Peyton Manning, Tim Tebow :: Colt McCoy, Cam

Newton

Diablo III Call of Duty: Modern Warfare 2, Call of Duty 4: Modern Warfare, Portal 2,

Portal, StarCraft II: Wings of Liberty :: World of Warcraft, Deus Ex, Rage

Grammy Award Grammy Award, Emmy Award, Nobel Peace Prize :: Nobel Prize in Literature,

BET Awards, Pulitzer Prize

54th Grammy Awards 53rd Grammy Awards, 52nd Grammy Awards, 54th Grammy Awards :: 51st

Grammy Awards, 2012 Billboard Music Awards, 2012 MTV Europe Music Awards

million URIs attracting 870 million daily views. In total, the English and German Wikipedia features

more than five million articles that can be used for forecasting. Note that while this dataset is used

for the forecasting of historical time series data (actual Wikipedia viewing statistics), the multi-channel

pipeline described in Section 3.3 serves as a robust trigger for trending topics detection, which initializes

a forecasting.

Experiments

Experiments are structured along the three main building blocks of the proposed approach to compare

design choices for the individual methods independently as presented in Figure 3.9.

Discovering Semantically Similar Topics: To begin with, the influence of discovering semantically

similar topics is evaluated in two ways. First, qualitative results are presented by showing retrieved

similar topics for a few trending topics. Second, an indirect evaluation is provided by comparing forecast

performance (i.e. through the third step) of using semantically similar topics from DBPedia to using a

general set of topics (the top 200 trending topics themselves).

A representative subset of semantically similar topics for the top trends are shown in Table 3.5. Note

that the method is able to successfully identify similar events or previous instances for events like the
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Table 3.6: RMSE forecasting error for the baselines, selected autoregressive models, as well as methods using

only the trending topics themselves (Self ), a general set of topics (Gen), or similar topics (Sim). The number

of forecasting days of the remaining 14 day period is represented by τ , e.g. τ = 5 means that five days after the

topic becomes trending the method forecasts the remaining nine days.

Method
RMSEs in 1000

τ = 0 τ = 3 τ = 5 τ = 7 τ = 9

Baselines

naive 63.2 33.1 20.2 17.4 11.4

linear trend 86.9 48.5 28.3 23.1 14.5

average trend 49.3 25.9 22.0 19.9 18.3

median trend 48.1 24.9 20.6 18.1 16.1

ARIMA

AR(1) 50.1 27.8 20.1 15.9 12.7

AR(2) 75.1 31.7 22.6 16.0 13.4

ARMA(1,1) 53.0 28.7 20.5 15.8 13.2

AutoARIMA 58.9 30.7 26.9 19.5 16.7

Self

average 46.0 23.7 19.7 18.0 16.6

average scaled 44.6 21.9 17.6 15.5 13.8

median 46.1 23.8 19.7 17.7 16.0

median scaled 44.9 22.3 18.1 15.5 14.4

Gen

average 45.7 22.9 19.2 16.1 14.1

average scaled 45.7 22.5 16.0 14.1 11.4

median 41.4 21.2 17.6 15.4 12.9

median scaled 40.1 19.5 15.2 12.8 10.2

Sim

average 41.4 18.8 16.0 14.0 12.3

average scaled 39.6 17.1 13.7 11.6 10.0

median 42.1 19.9 16.5 14.0 12.5

median scaled 41.0 17.9 14.2 11.5 9.8

“Olympics”, the “Super Bowl”, “UFC events”, or the “Grammy Awards”. Furthermore, the method is

also able to discover similar people like similar music artists, entrepreneurs, athletes, and even people

that died from the same cause (such as lung cancer for Joe Paterno, Jack Ruby, and Paul Newman). On

average, a set of 95 semantically similar topics is retrieved per trending topic.

Nearest Neighbor Sequence Matching: The main design choice when matching sequences from

similar topics to a short history window of the time series is the choice of the distance metric. As

introduced in Section 3.4.2 three different distances are compared namely euclidean, musigma, and

y_invariant. The experimental setup for this part as well as the forecasting is given as follows. Eval-

uation is done with the trending topics acquired in Section 3.3. They serve as an external trigger for

forecasting, i.e. for each of the 516 sequences of the top 200 trending topics, a prediction for a horizon of

14 days is made, starting on the first day they emerged. The reasons to choose this window of 14 days

is given by the maximum lifetime for most trending topics (see Fig. 3.6 (a)). To compare the distance

metrics, the quality of the (first) nearest neighbor returned by this metric is measured by its similarity

to the actual viewing statistics over the next 14 days (similar to the forecast setting but directly using
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the nearest neighbor as the forecast). The quality of this match is captured by an error metric. In this

work, the root mean squared error is used as defined by RMSE =
√

1
n

∑n
t=1(At − Ft)2 where At is the

actual value and Ft is the forecast value. As a relative error metric the mean absolute percentage error

(MAPE) was chosen being defined as MAPE = 100 %
n

∑n
t=1 |

At−Ft
At
|. Note that unlike [RSD+12a] the

error is measured on the actual view counts instead of normalizing by the total views for each day and

presumably smoothing over large relative errors (i.e. even larger trends might only account for 10−5

of the daily views yielding very small error rates for virtually any forecast). This relative error metric

has the advantage of being easy to interpret and to compare across different time series in contrast to

absolute metrics such as RMSE. However, it can become unstable if the actual value is very small.

The results measured in MAPE indicate that although y_invariant can retrieve poor quality matches

successfully, the invariance of musigma and y_invariant does not help in this task and the simple

euclidean distance performs equally or better than the other two metrics. Therefore, the euclidean

metric is employed for all the following experiments. Further, note that the best matches have between

82 and 319 % error range illustrating the high complexity of the task. More details about NN sequence

matching can be found in [ABHD13].

Trending Topics Forecasting: Forecasting performance is measured by forecasting the next 14 days

for each of the 516 sequences of the top 200 trending topics at the point in time when they first emerge.

The approach is compared to several baselines that use a short history window of the time series itself

(similar to [RSD+12a]): a naive forecast (tomorrow’s behavior is the same as today’s) and a linear trend

based on the last 14 days. In addition the forecasts are compared to the average trend and median trend

in the trending topics dataset as a baseline that includes multiple time series. Note that this average and

median trend are computed from µ/σ-normalized time series since the average/median of actual view

counts are actually very far from most trending topics. To still be able to compute the error for actual

view count prediction the values have to be de-normalize the average trend and median trend baselines

with the parameters of the time series to be predicted. Further, the performance is compared against

selected autoregressive models that represent a state-of-the art technique for time series forecasting,

namely AR(1), AR(2), ARMA(1,1), and AutoARIMA (please refer to [HK08] for a formal specification

of these models). Note that while the following experiments are performed for different numbers of

neighbors, the nearest-neighbor-based results are only reported for k = 3, which performed best by a

small margin as compared to other values of k.

The RMSE forecasting errors are summarized in Table 3.6 which reports the results for a number

of instances of the proposed forecasting approach. Self, Gen, and Sim refer to the different topic sets

Tself , Tgen, and Tsim from which the nearest neighbor sequences are chosen (as described in the last

section). On average, the RMSE of the best method is about 9-48k views closer to the actual viewing

statistics than the different baseline methods. It can also be observed that the proposed nearest neighbor

approach outperforms autoregressive models in all cases which perform roughly on the same level as the

baselines. Also, notice that the fairly sophisticated AutoARIMA model performs worse than its much

simpler AR(1) counterpart even though it aims to choose the best ARIMA model for the underlying

data and was shown to perform well in several other forecasting competitions. This observation adds to

the impression that autoregressive models (which assume stationarity; see [HK08]) are not well suited

to model trending topic time series with structural breaks. Further, as illustrated it can be seen that
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Figure 3.11: MAPE forecast error moving through a 14 day window, e.g. the error at 4 depicts the forecasting

error of the following 10 days.

taking the median tends to perform about as good or better than taking the average, using scaled nearest

neighbor is better than unscaled neighbors, and that using semantically similar topics (Sim) is better

than using a general set of topics (Gen) which in turn is better than restricting oneself to a single time

series (Self ).

However, RMSE error has the disadvantage that it is dominated by the most popular trending topics

with the largest view counts. Therefore, the MAPE measure is chosen for the remaining analysis as

this relative error metric is comparable across trending topics. Additionally, because MAPE errors can

become disproportionally large (e.g. forecasting 1000 views when it is actually only 100 results in a 900 %

relative error), obvious outliers are dropped (5 %) and the average error is reported for the remaining

sequences. The error plots only display the results for the baselines and the best performing methods

from Table 3.6 to be able to visually distinguish them. The methods are evaluated by beginning with a

forecast of 14 days, then a 13 day forecast after one day etc. as illustrated by the X axis in Fig. 3.11. From

the plot one can observe that the proposed approach including median and scaling clearly outperforms

all baselines as well as other instances of the framework. The proposed method achieves a mean average

percentage error (MAPE) of 45 % for a forecast of 14 days, monotonically decreasing to 19 % for a forecast

of 1 day, a relative improvement over the baselines of 90 % (14 days) to 20 % (1 day).

Example forecasts for two trending topics, “Battlefield 3”(a computer game) and“The Hunger Games”

(a novel and movie), are given in Figure 3.12. Each column depicts multiple forecasts at different

points in time as indicated by the vertical red line. The proposed method median_scaled_sim (Sim) is

compared to its variants only using the trending topic itself (Self ) or using a set of general topics (Gen).

Summarizing, as already recognized by the observation of different classes of signal recurrences, utilizing

only the information from the same time series (Self ) does not provide sufficient forecasts for trending

topics. In contrast, using semantically similar topics (Sim) leads to more accurate forecasts that e.g. are

able to capture multiple peaks (such as in the Hunger Games example).
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Figure 3.12: Visualization of trending topic forecasts for “Battlefield 3”, “The Hunger Games”, “Champions

League”, and “UFC”. Each column depicts multiple forecasts at different points in time (as indicated by the

vertical red line) for 1, 3, 5, 7, and 9 days after the trending topic emerges.
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3.5 Evolving Vocabularies for Concept Detection

Based on the previously outlined approach to discover and forecast high-impact trending topics in social

media channels, this section introduces the visual learning of such trends. To this end, the input stream of

these trending topics serves as a set of new semantic concepts to continuously extend concept vocabularies

to provide the proposed evolving nature necessary to satisfy users’ information needs. In particular, this

section compares visual learning of trending topics on the fly to concept detection based on static concept

vocabularies.

To demonstrate the benefit of trending topics detector learning, two components are needed (i) a

set of trending topics t1, .., tm given by an external system and (ii) a concept detection system with

its static vocabulary C1, .., Cn providing detection scores P (C1 = 1|x), .., P (Cn = 1|x) for a new video

or keyframe (described by content-based features x). Having both components available, the goal is to

estimate P (T = tj |x). Prerequisite (i) is given by the initially described trending topic mining and

detection system lookapp for ads [BL12]. The second prerequisite – (ii) – will be outlined next.

3.5.1 Concept Detection System with a Static Vocabulary

As mentioned above one major component in the context of this chapter is the availability of a fully

functional concept detection system. This system should be designed according to the state-of-the-art

visual learning approach as outlined in Chapter 2 and serve a large and comprehensive set of concepts

from its vocabulary V oc. Such a concept detection system is introduced in this section.

One key feature of the introduced concept detection system is its ability to train concept detectors

with web video from platforms like YouTube. Detector training from web video is nowadays considered

as a valid source for visual learning as it demonstrated to augment or replace traditional approaches of

training data acquisition [UKSB08, BKUB09, BHK+09, USKB10]. For example, to learn the appearance

of the concept Ci = “soccer” (Ci ∈ V oc), corresponding YouTube material is downloaded and used to

train the corresponding visual concept detector. Once this detector is available, scores P (C = Ci|x) can

be computed indicating concept presence in previously unseen video content x . This way a visual learning

without the tedious manual annotation of training samples is realized (please note, that Chapter 4 will

go into more detail about the challenge of training from web video.

The presented concept detection system bears similarity to the TubeTagger [UKBB09] concept detec-

tion system with the exception that the system presented in this chapter puts an emphasis on third-party

cloud computing infrastructure allowing to train multiple detectors simultaneously on-the-fly.

Concept Vocabulary The set of concepts defining the static vocabulary of the presented concept

detection system are selected manually with similar intention and selection criteria in mind as done

for LSCOM [NST+06]. The LSCOM was carefully constructed by manually selecting those semantic

concepts which comply with the following principles: utility i.e. the concept should support video

retrieval, coverage i.e. the set of concepts should cover a pre-defined domain, feasibility i.e. an automatic

detection of concepts from the video stream should be feasible, and observability i.e. concepts should have

been visually distinct and therefore appear frequently in the underlying video repository. These principles

can be understood as commonly accepted guidelines when compiling concept detection vocabularies.

Since the presented concept detection system is built upon web video as a domain, YouTube was taken
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as the underlying video repository. This has the consequence, that beside known LSCOM concepts

such as “airplane flying” or “boat-ship” the presented system vocabulary also contains concepts with

high popularity on YouTube such as “wedding”, “eifeltower”, “simpsons”, or “wrestling”. A list of all 233

concepts belonging to the static vocabulary can be found in Appendix A.

Training Data Acquisition Prior to detector training, a set of training videos have to be acquired for

each concept of the vocabulary. To retrieve such video material, a textual query is formulated and sent to

the YouTube API returning a list of videos matching the query being sent. Although the returned list of

matching videos is limited artificially by the YouTube API to a maximum of 1,000 videos, a single query

should be sufficient to retrieve enough videos for detector training. From this list a certain number of

videos is downloaded and serve as positive samples for supervised learning. Negative samples are drawn

from other videos not being tagged with the concept. It is known that such query-based retrieval of videos

does not always provide the right subset of suitable material for training [USKB08b, UBB10, BUB10].

In such cases to further improve the quality of downloaded material, text queries to the YouTube API

were refined manually by inspecting the first YouTube result page and interactively adding additional

terms and category information to the query. For example, to download training content for the concept

“mountain”, the query “mountain panorama” is constructed and only videos from the YouTube category

“travel & places” are downloaded. An overview of refined query and category combinations can be found

in Appendix A) (for more details about how to automatically retrieve suitable training material please

refer to Chapter 4). In total over 50, 000 videos have been downloaded from YouTube for the entire

concept vocabulary training (with at most 250 per concept). The split between training and test sets

was done 50% by randomly sampling videos such that no video from the same YouTube user belongs to

the training and test set.

Concept Detection System: Construction and Evaluation Considering the outlined setup as

discussed in Chapter 2, the concept detection pipeline for each target concept look as follows: visual

learning is performed on the basis of keyframes. Those are extracted using change detection methods

directly on the video stream (in total the entire concept detection system is trained on approximately

850,000 keyframes). For each concept, a binary classification problem is formulated i.e. all keyframes

sampled from videos tagged with the target concept are used as positive training samples, keyframes from

other clips as negative ones. From these keyframes the well-known bag-of-visual-words representation is

computed [SZ03]. This is done by sampling patches regularly at several scales (3,600 patched per frame)

from each keyframe. These patches are characterized by a 128-dimensional SIFT descriptor [Low99]

and matched to a 3,000-dimensional codebook of prototypical patches (the codebook was constructed by

K-Means clustering). As a result for each keyframe an aggregated histogram feature is made available,

which will serve as an input for classifier training. For this, a two-class SVM, which can be considered as

the state-of-the-art approach in concept detection [SOK09, SW09], is trained using the LIBSVM [CL01]

implementation. Parameter optimization (C and γ) is done by a grid search over a three-fold cross-

validation and as a kernel function for the SVM, the χ2 kernel is chosen:

K(x, y) = e
−
d
χ2 (x,y)

γ2 (3.5)

where dχ2(., .) is the χ2 distance between the bag-of-visual-word histograms x and y:
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Figure 3.13: Histogram of time consumption for SVM concept detector training. It can be seen that two groups

of training exist, the ones needing 2-3 hours of training and the ones needing around 8 hours of training.

dχ2(x, y) =

m∑
i=1

(xi − yi)2

xi + yi
(3.6)

Training data was sub-sampled to include not more that 1,000 positive samples and at most 4,000

negative ones, resulting in a slightly imbalanced dataset towards the negative class. This is aiming to

represent the variability of the large concept vocabulary. Overall, the entire concept detection system

with its fixed vocabulary of 233 concepts achieved a promising performance of MAP 56.7 %, which is

significantly better than a detection by using random guessing (20 %).

Role of Cloud Computing Infrastructure Since video content analysis is a computational intensive

task, distributed systems for high-performance computation are considered as an infrastructural key

component in detector training [SGK+07]. However, employing parallel programming paradigms on

huge computer clusters, which have to be built up and continuously maintained, is a costly undertaking.

In contrast to such a setup, today’s cloud computing services provide an alternative solution. They offer

on-demand computational resources which can serve as an underlying computational platform realizing

building blocks along the concept detection pipeline such as storage, parallel feature extraction and

distributed classifier training.

To enable such parallel feature extraction and detector training this work uses the third-party cloud

computing platform PiCloud4 to run concept detection. Technically PiCloud provides an intermediate

layer between the Amazon Web Services 5 and the Python programming language. Users of the platform

can chose between multiple, so called core type representing different levels of computational power as

being represented by the available memory and number of Amazon’s “compute units” (an equivalent to

a CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor). The first question in setting up

such an environment for concept detection is about which core type to chose for each of the two tasks

(feature extraction and classifier training). Since feature extraction is performed on keyframe level the

most extreme setup would mean using one machine per keyframe. This – however – would lead to a

4PiCloud (www.picloud.com) sponsored this work with its academic research grand
5http://aws.amazon.com
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waste of resources because of the overhead costs caused by setting up one machine for each of the 850k

keyframes. A more reasonable setup is to split keyframes into batches of 1000 keyframes leading to a

setup utilizing 850 machines. Because of its low memory consumption, feature extraction can be done on

a c2 core type (2.5 compute units, 800MB and 30GB disk space) machine smoothly. In contrast, classifier

training is a more computationally expensive task demanding more memory on a single machine. Here,

the m1 core type (3.25 compute units and 8GB memory and 140GB disk space) was considered to be

sufficient. Since it can be expected that each SVM training will demand its time, each SVM training

representing a semantic concept from the vocabulary will be executed on a separate machine in parallel

leading to a setup of 233 m1 instances on PiCloud.

Summarizing the construction of the entire concept detection system, its feature extraction and classi-

fier training required less than 48 hours on PiClouds cloud-computing infrastructure. When accumulated

the computational time needed for feature extraction of the entire set of keyframes can be summed up

to 23 hours of time costing in total the equivalent of US$ 7.0− 10.0 including data transfer and storage.

The computational time needed for classifier training varies from detector to detector depending on the

complexity of the learning task. An overview of time consumption for SVM training can be seen in

Figure 3.13. The figure displays a histogram of hours for model training of individual concepts. It can

be seen, that there are two groups of model training in context of time consumption. There are models

which require 2− 3 hours of training and there are models which need around 8 hours of training. The

quickest training – “badlands” and “autumn” – took 2.1 hours, the longest – “piano” – 9.71 hours on

average demand 4.57 hours of computation time. Please note that this observation does correlate with

the complexity of SVM training in terms of number of support vectors kept for the concept models.

Altogether classifier training took 1063.22 hours or 44.30 full days of accumulated time, costing the

equivalent of about US$ 320.0.

In the following a concept detection system is made available and its large vocabulary of 233 concepts

can be used for a concept-to-trend mapping allowing concept detection systems to recognize trending

topics visually

3.5.2 Concept-to-Trend Mapping

The baseline method to be presented is the one dealing with a static vocabulary of an available concept

detection system. The idea is to take the given set of the detected concept scores and map them

to estimate the presence of target trending topics tj . For example it is reasonable to assume that

pre-trained concepts from a static vocabulary like “Athletics” or “Stadium” would be able to provide

meaningful clues for the trending topics “Olympics 2012”. To allow for such a mapping, concept-trend

similarities are estimated using the normalized Flickr distance as proposed in [JNC09]. This measure

calculates a distance between two semantic concepts considering tag behavior on Flickr as a reliable

indicator for concept correlations i.e. two concepts are considered closer if they co-occur as tags in the

same images. Normalization of this measure is done by the individual counts of concept tags. Formally,

D(Ci, tj) :=
max{log count(Ci), log count(tj)} − log count(Ci, tj)

log M −min{log count(Ci), log count(tj)}
(3.7)

where M is the total number of Flickr images and count(.) is the number of images with a particular
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tag. In this case, D(Ci, tj) provides a distance for a concept Ci ∈ V oc and a trending topic tj , which

further has to be transformed to a similarity by calculating:

sim(Ci, tj) := e−D(Ci,tj)/γ (3.8)

Finally, these similarities are normalized to probabilities P (Ci = 1|T = tj) (more information on the

estimation of γ will follow later).

The concept detection results P (Ci = 1|x) and concept-trend-similarities P (Ci = 1|T = tj) are now

combined by marginalizing over all possible concept appearances as proposed in [UKB12, UBK13]:

P (T = tj |x)

=
∑

c1,c2,..,cn∈{0,1}

P (T = tj , C1 = c1, .., Cn = cn|x)

≈
∑

c1,c2,..,cn∈{0,1}

[
P (C1 = c1, .., Cn = cn|x) ·

P (T = tj |C1 = c1, .., Cn = cn)
]
.

Assuming independence of the individual concepts and applying Bayes’ rule, the above formula can be

rewritten as:

≈
∑

c1,c2,..,cn∈{0,1}

[
n∏
i=1

P (Ci = ci|x) · (3.9)

P (T = tj)
∏n
i=1 P (Ci = ci|T = tj)∏n

i=1 P (Ci = ci)

]
= P (T = tj) ·

n∏
i=1

[
P (Ci = 0|x) · P (Ci = 0|T = tj)

P (Ci = 0)

+
P (Ci = 1|x) · P (Ci = 1|T = tj)

P (Ci = 1)

]
,

whereas the priors P (C) and P (T ) are set to uniform distributions. This way, trending topics can be

estimated via concept detection and fixed vocabularies.

3.5.3 Training of Visual Trend Detectors

It can be expected that videos for particular trending topics bear similarities with certain concepts from

the vocabulary. Yet, the majority of video material can be assumed to be quite specific. For example while

the accident of the “Costa Concordia” matches the concepts “boat-ship” or “ocean” its visual appearance

is very specific and unique for this incident.

Therefore the second strategy proposed in this chapter is the construction of trend-specific detectors

from the web as described in Section 3.5.1. As a trending topics emerges, videos tagged with it are

uploaded (Section 3.5.5 will discuss this condition). This circumstance is exploited and such videos are

used as positive training samples (by using the presented retrieval approach in Chapter 4) to train a

“trending topic detector” on the fly. Although this training set might seem as to be smaller compared

to a “regular” concept detection training set, it is more focused on the target trending topics. Once
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the resulting detector is available, the detector can be used to detect trending topics in other videos,

estimating P (T |x).

To unfold the full potential of such trend detectors two conditions are crucial. First of all, it is

important to focus on trending topics, which have a particular impact i.e. the potential to accumulate

attention from the general public in the near future. Obviously it does not make sense to train detectors

for trending topics which are declining or are already at the end of their lifetime. Therefore it would

be helpful to pay less attention to ephemeral trends since they usually disappear in 1− 3 days. Second,

and closely related to this, the training of a visual detector should not take longer than the lifetime of a

trending topic. Since the presented approach is already factoring out the problem of a time-consuming

label acquisition the challenge, is to provide training of potential multiple trend detectors on-the-fly.

Hence, the lookapp [BUB11b] system is proposed to deal with this issue by utilizing an on-demand cloud

computing infrastructure which is able to scale virtually without limitation. Such a setup allows to train

multiple trend detectors in parallel instead of delaying detector training by processing them one by one.

3.5.4 Expanding the Concept Vocabulary

Finally, a combination of the former two strategies is tested. The idea is to expand the available static

concept vocabulary dynamically by adding the previously trained concept detector to it as a new concept

Cn+1. Such an expansion can be of value to prevent a too strong emphasis on the trend detector. Since

the training data set might be too specific additional clues in form of detection scores from a large concept

vocabulary can improve the performance of trending topics recognition itself.

To make the marginalization method sensitive to the trend detector, its normalized Flickr distance

is set to D(Ci, tj) := 0 emphasizing that the newly added concept represents the trending topic itself

and has a stronger influence on the result than other concept detection scores. The Concept-to-trend

Mapping Baseline is then applied to the dynamically extended vocabulary.

3.5.5 Experimental Evaluation

The presented concept detection experiments cover the first half of the given observation period where

20k topics have been analyzed using the procedure outlined in Section 3.3. All trending topics have

been ranked from this timespan according to their trend score and the top 23 ones have been picked

for evaluation (see Figure 3.3 (c) for their distribution over time). Some of them are obviously very

challenging to detect like “happy new year”, whereas others seem to be feasible like “battlefield 3”, a

video game that was released at that time.

Correlation of Trends and YouTube Uploads

For each trend, 150 YouTube videos were downloaded (i.e. videos being tagged with the trend name).

Attention was paid to carefully filter video clips outside the given 6 month test period for trending topics

data acquisition. This procedure yielded a dataset with 2,500 clips (31-147 per trend). The initial idea

of trend detector construction assumes the availability of video material being tagged with the emerging

trending topics. Therefore first the hypothesis has to be confirmed that uploads on YouTube correlate

with emerging trends. YouTube video upload for the top 10 trending topics can be seen in Figure 3.14.

It can be seen in these upload histograms that upload peaks appear in conjunction with external events
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Figure 3.14: Correlation between the top 10 trending topics (first half year of observation period, Winter

2011/2012) and video upload on YouTube. It can be seen that video uploads follow external events with clear

indications for peaks.

indicating a correlation with them. Speaking in terms of a quantitative evaluation, averaged over all

trending topics, 57.3 % of their videos were uploaded on a “trend” day or the day after (a uniform

distribution over time would correspond to 8.8 %). Thereby, event-based trends like “Whitney Houston”

(referring to the death of the famous singer) display the strongest alignment between YouTube and

the presented trending topics detection, while long-lasting/periodic trends like “facebook” or “champions

league” the lowest. Overall, this result indicates that YouTube video uploads are closely aligned with

trending topics allowing the retrieval of enough training material for “trend detector” training.

Visual Trend Detection

Next, the ability to detect trending topics in visual content will be evaluated. To do so, YouTube

is queried for additional background material distributed randomly over the observation period. This

material is acquired by downloading the daily most recent video clips with no tags. From the resulting

4,300 “background clips” and from the 2,500 “trend clips”, 78,000 keyframes were extracted using the

previously described change detection method. To learn the direct visual trend detectors (Strategy

1), a 60 %-40 % split of all clips into a training and test set was conducted. Results are reported in

terms of mean average precision (MAP) on the test set (2,720 videos). As a static concept vocabulary
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Figure 3.15: Quantitative results of trending topic recognition. A specialized trend detector (yellow) outperforms

a static concept vocabulary (orange). Expanding the vocabulary with the new detector gives further improvements

(green).

(Baseline), the concept system as described in Section 3.5.1 is employed, covering 233 concepts that

range from “concert” over “demonstration” to “phone”. Please note that these detectors were pre-trained

on a held-out dataset of YouTube clips from before the observation period.

Both – concept detection and visual trend detection – are conducted on keyframe level, using visual

words features (obtained by a regular multi-scale sampling of about 3,600 SIFT features [Low04], vector-

quantized to 3,000 clusters using K-Means) in combination with Support Vector Machines (SVMs) using

a χ2 kernel and fitted by a grid-search cross-validation.

Quantitative results of the experiment are illustrated in Figure 3.15. A direct training of “trend

detectors” (TD: yellow) performs with a MAP of 10.39 % better than the concept-to-trend-mapping

(CTM: orange) with a of MAP 4.86 % and 4.09 % giving the lowest accuracy. Moreover, the vocabulary

expansion strategy (VE: green bars) performs best, with an mean average precision (MAP) of 11.2 % (γs

optimized by grid search) and MAP 10.01 % (estimated γ based the average of pairwise Flickr distances).

This indicates that training new detectors seems a promising approach for adapting concept detection

to new emerging trends, while a static concept vocabulary can help to improve accuracy further when

being combined with a trend detector. If not combined with a trend detector, the stand-alone static

vocabulary approach does not provide sufficient detection performance.

A closer inspection of system performance is given in Figure 3.7 for the following trends “ios5” (re-

ferring to the release of Apple’s operating system), “Mayweather-vs-Ortiz” (a boxing fight), “Whitney

Houston” (the death of the singer), “Battlefield 3” (a video game release), “Costa Concordia” (cruise line

disaster), “Occupy” (the political movement), and “Champions League” (European soccer tournament).

For each trend, the top-ranked videos for (TD) and (CTM) are displayed. Furthermore the correspond-

ing concepts and their similarities can be seen: Some can be considered outliers (e.g. “cathedral” for
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Table 3.7: The 4 top-ranked videos by the direct trend detector (TD) and concept-to-query mapping (CTM)

for 3 sample trends. The last column lists the best detectors by their accuracy, including trend detectors (TD),

the concept-to-trend-mapping (CTM), vocabulary expansion (VE) (γ optimized by grid search), and the best

individual concept detectors.

trend top results top results (concept- most similar best performing

(trend detector) to-trend mapping) concepts rankers (AvgP)

ios5 (1) safari

(2) phone

(3) cathedral

(1) TD: 43.3%

(2) VE: 41.3%

(3) phone: 37.1%

(4) iphone: 27.3%

(5) win-desktop: 25.8%

Mayweather

vs. Ortiz

(1) press-conf.

(2) boxing

(3) rugby

(1) VE: 26.5%

(2) boxing: 23.8%

(3) TD: 21.7%

(4) interview: 7.8%

(5) wrestling: 6.9%

Whitney

Houston

(1) bill clinton

(2) singing

(3) videoblog

(1) VE: 11.4%

(2) TD: 6.9%

(3) CTM: 6.2%

(4) interview: 5.2%

(5) obama: 5.2%

Battlefield

3

(1) tank

(2) helicopter

(3) soldiers

(1) TD: 28.8%

(2) VE: 16.3%

(3) counterstrike: 4.3%

(4) fencing: 4.3%

(5) car racing: 3.1%

Costa

Concordia

(1) shipwreck

(2) boat-ship

(3) shoppingmall

(1) VE: 7.4%

(2) TD: 6.3%

(3) boat-ship: 4.1%

(4) sailing: 3.0%

(5) map: 2.7%

Occupy (1) demonstr.

(2) street

(3) tent

(1) TD: 9.8%

(2) VE: 7.8%

(3) mccain: 7.3%

(4) tony-blair: 6.9%

(5) CTM: 6.3%

Champions

League

(1) soccer

(2) football

(3) press-conf.

(1) VE: 14.5%

(2) rugby: 14.4%

(3) soccer: 14.4%

(4) TD: 10.0%

(5) CTM: 6.1%
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the trend “ios5”), while others are reasonable (like “singing” for “Whitney Houston”). The last column

displays the best systems for detecting the different events. Here, also the individual concept detectors

are ranked, which indicates that some matched concepts are suitable for recognition (like “boxing” for

“Mayweather-vs-Ortiz”). In general, for most trends either the (TD) or (VE) strategy ranks at the top

for all evaluated concept detectors (with some exceptions for poorly recognized trends).

3.6 Discussion

This chapter presents a novel approach towards evolving vocabularies for video concept detection, which

allows to provide a system being synchronized to current real-world events and therefore adapt to users’

information needs. To accomplish such a synchronization multiple media channels are automatically

mined to discover trending topics - subjects, which currently experience a high interest in social media.

In order to understand the dynamics in these channels, a comprehensive study was conducted on a

large set of identified topics (n=2,986) covering the time period of an entire year. The analysis revealed

that trending topics on Twitter and Wikipedia are more ephemeral than on Google, both rising and

declining rapidly for newly emerging topics and that the observed media channels tend to specialize in

specific topic categories.

Furthermore, to extend concept detection to evolving vocabularies it is critical for such systems to

identify high-impact topics not only by today’s momentum but more importantly by forecasting their life

cycle as they emerge. Therefore, a fully automatic forecasting method for trending topics was proposed

exploiting semantic similarity between topics. This approach – as evaluated on a large-scale dataset of

Wikipedia viewing statistics – demonstrated superior forecasting performance (n=7,224) with a Mean

Average Percentage Error of 45 % for a forecast of 14 days decreasing to 19 % for a 1-day forecast.

Finally, to demonstrate the capability of dynamic vocabularies for concept detection, different strate-

gies for visual detection of trending topics in videos were presented. These strategies include a mapping

of trending topics to large but static vocabulary of a concept detection system being trained on web

video, a direct visual training of trending topics, and a combination of both, a dynamic extension of

the static vocabulary with the trend detector. It could be seen in experiments on YouTube, that visual

learning of these trending topics improves concept detection accuracy (n=65,000) by over 100% over

static vocabularies and an additional marginal improvement could be achieved by the extension of static

vocabularies (combination of both strategies). Interestingly, for some individual trending topics the

support of a static vocabulary in combination with a trend detector made a big difference in detection

accuracy (up to 5% in absolute AvgP). In addition, it was demonstrated that concept detection systems

can be trained on demand utilizing a third party cloud computing infrastructure.

As future work, an interesting question is how concept vocabulary size might influence the detection

accuracy of trending topics. It can be expected that an increased vocabulary size might have a positive

influence of the proposed trend-to-vocabulary mapping. Also, a recent direction in concept detection

is to understand which concepts from a large-scale vocabulary contribute the most information for the

detection of more complex structures such as events [MGvdSS13a]. Following this idea, an investigation

whether subsets of a fixed vocabulary would be of any help for a successful concept-to-trend mapping.

Also, since the proposed marginalization method is utilizing trend to concept similarities, it might be of

benefit to evaluate concept similarities according to knowledge bases such as WordNet based similarity
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measures [Fel98] or DBPedia [ABK+07]. The potential of topic based search is also considered by Google,

as they have extended their YouTube’s API access mechanism towards topic6.

6https://developers.google.com/youtube/v3/
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Chapter 4

Training Data Retrieval and Active

Relevance Filtering

To align concept detection with the latest user interest an efficient concept learning from the web is

crucial. Unfortunately, current systems are troubled with the retrieval of relevant training material from

platforms like YouTube and handicapped by the subjective and coarse nature of user-generated tags (or

pseudo labels), which are only weak indicators of true concept presence. To remove these constraints,

this chapter suggests an automatic concept-to-query mapping for high quality training data retrieval and

active relevance filtering to generate high-quality annotations from web video tags. The key contributions

of this chapter are1

1. An investigation of data retrieval from YouTube is presented, which quantifies the fraction of

relevant content in web video as retrieved by LSCOM names (29%) and human refined queries

(51%) (n=18,000).

2. A novel concept-to-query mapping method is introduced allowing to automatically retrieve relevant

video material for concept training without the need of human query refinement.

3. It is shown that a direct use of web video tags degrades the performance of concept detection by

a relative loss of up to 22% (n=100,000).

4. A novel approach called active relevance filtering is suggested, which combines automatic relevance

filtering [Ulg09] with active learning methods to tackle the challenging task of eliminating correlated

but non-relevant training content with a minimum of user interaction.

5. In experiments on YouTube data active relevance filtering was found to outperform both, purely au-

tomatic filtering and active learning approaches leading to a reduction of required label inspections

by 75% as compared to an entirely expert annotated training dataset (n=100,000)

1This chapter is based on the authors’ work in [UBB10, BUB10, BUB11a, BUB11b]

69



4.1. INTRODUCTION

4.1 Introduction

As digital video has become an important source of information and entertainment to millions of users,

databases grow larger [YOU13] and retrieval becomes a difficult challenge. This is particularly due to the

semantic gap [SWSJ00], the discrepancy between low-level features of a video signal on the one hand and

the viewer’s high-level interpretation of the video on the other. To bridge this gap, concept detection has

been proposed, which aims at automatically mining video collections for semantic concepts such as objects

(“airplane”), scene types (“cityscape”), and activities taking place (“interview”). Concept detection has

been studied intensively over the last years (for an overview, see Chapter 2) and is considered to be

the key building block of various video search prototypes [CHL+07, NJW+09, SS10]. However, the

effort associated with the manual acquisition of training samples for many concepts leads to a scalability

problem. This has the consequence that the size of concept vocabularies remains limited and dynamic

changes of users’ information needs have to be neglected (as already outlined in Chapter 3.

This circumstance raises the question whether a manual acquisition of training material can be

substituted with other information sources. One such source is web video, which is available at a large

scale from portals like YouTube2. Web video content is usually enriched with user-generated tags,

which indicate the presence of concepts in a clip. Utilizing this tag information as class labels, concept

detection systems could automatically harvest training material from the web and thus perform a scalable

and dynamic concept learning [KCK06, SS09, UKSB08, USKB10].

However, prior to detector training, systems utilizing web video must first retrieve relevant video clips

by sending a query to the desired platform. Often, these queries are carefully constructed by a human

operator [UBB10] to disambiguate content which is downloaded. An example can be seen in Figure 4.1

(middle): a straightforward mapping of the target concept “car racing” to the trivial query “car racing”

may yield a training set containing non-relevant videos about car driver interviews or clips about remote

controlled cars. Knowing this, a manual query refinement to “car racing tournament -rc -interview” and

a restriction to the category “Autos & Vehicle” or “Sports” would reduces ambiguity and increase the

amount of relevant content for detector training. Unfortunately, due to the time consuming process of

such a manual query construction the idea of dynamic systems as presented in Chapter 3 is practically

not feasible.

Furthermore, YouTube tags are coarse and therefore an unreliable indicator of concept presence.

Following, it is challenging to utilize such tags as label information for supervised machine learning.

An example is given in Figure 4.1 (right), which illustrates that not all YouTube videos tagged with

“car racing” does in fact show the concept. This is due to several reasons: first, annotation behavior

is subjective, and – though a concept may seem present to a specific user with certain knowledge and

expectations – it may not be in general. Second, web video tags – which are usually given on a global scope

– do not tell us when in a video the concept appears. Consequently, training sets acquired from web video

portals are noisy and contain only a certain amount of truly relevant material. Concept detectors trained

on such weakly labeled data must be expected to come with significant performance loss [KCK06, SS09].

This problem is also known in the literature as label noise [WN07, DUBW09, UBB10, TYH+09], weak

labels [GY08, ATY09, LH10], or pseudo labels [WN08, HKC06, WJN09].

One straightforward strategy to overcome this problem would be to manually refine both, the query

2www.youtube.com
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Figure 4.1: Left: To learn the concept “car racing” a query is formulated to retrieve training material from online

portals like YouTube. Middle: Unfortunately, a simple query mapping of the concept name will deliver a wide

range of related video clips which are not all suitable for visual learning of the concept. Right: Sample frames

from YouTube clips tagged with “car racing”. While some frames do show the concept (center), other content is

non-relevant. This poses a challenge for concept detector training.

and the raw web-based training set to reduce or discard non-relevant content. While this has been

demonstrated to improve the performance of the resulting concept detectors [SS09], it is very time-

consuming and does not scale. To reduce manual annotation effort to some extent, active learning

strategies have been proposed [AQ07a, AQ08]: instead of annotating the whole dataset, manual labels

are only given for a subset of “most informative” samples. This has been demonstrated to achieve

remarkable time savings when learning concepts from TV-based datasets [AQ07b]. In the context of web

data filtering, however, active learning does not make optimal use of the given labels: these are employed

to update the classifier, but remain neglected as a valuable clue for filtering noise in the training set.

This raises the question if active learning can be extended for a better filtering of web-based training

sets.

A second, alternative solution is to filter noisy material automatically [GY08, LSW08, USKB08b,

WS08]. This approach has been referred to as relevance learning [LSW08] or relevance filtering [USKB08b].

Its core idea is to identify non-relevant content automatically based on its distribution in feature space

and discard it during system training. However, such automatic relevance filtering systems do not reach

the accuracy of a careful manual labeling. Therefore, it seems reasonable to assume that relevance fil-

tering could benefit from a few manually provided labels i.e. how further improvements can be achieved

with minimal human intervention.

The key contribution of this chapter is two-fold: First, this work presents an concept-to-query mapping

for the automatic construction of YouTube queries such that a proper context for visual learning can be

established for video download. Employing the presented query construction approach, it is demonstrated

that the fraction of retrieved relevant content from YouTube is comparable to carefully human constructed

queries. Second, a novel combination of the previous outlined approaches – active learning and relevance

filtering – is suggested, which will be referred to as active relevance filtering in the following. This work

proposes an interleaved setup of active learning label refinement and automatic relevance filtering. This

way, the web-based training set is refined both manually and automatically during concept detector

training. Using the proposed approach, it is demonstrated that concept detectors trained on weakly

labeled web material can be improved significantly with a minimum of human supervision. Also, results

show that the proposed active relevance filtering outperforms both a purely automatic noise removal and

a standard manual refinement by active learning.
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This chapter is organized as follows: first related work is discussed in the context of visual learning

from web data (Section 4.2). Next, the concept-to-query mechanism is outlined in Section 4.3. After this,

the proposed active relevance filtering framework is introduced (Section 4.4) and evaluated in quantitative

experiments on web video data from YouTube (Section 4.5). A discussion concludes the chapter (Section

4.6).

4.2 Related Work

This section provides an overview of work related to training material acquisition for visual learning. As

already outlined in Chapter 2, concept detection build upon supervised machine learning and requires

a labeled dataset for classifier training. Such a dataset of positive and negative concept labels has

to be either acquired from the ground or retrieved from the web. Unfortunately, user-generated tags

from the web are only weak indicators of concept presence and therefore require additional treatment

during detector training. The section starts with conventional label acquisition approaches such as active

learning allowing to label a given dataset such that only a fraction of the data is inspected by a human

operator. The section moves on with the usage of web video for concept detection. Here the focus is put

on proper query construction for retrieval of training data and finally outlines approaches, which have

been made in the context of dealing with pseudo labels associated with web video as a weak labeled data

source with significant amount of label noise.

4.2.1 Label Acquisition with Active Learning

In supervised learning, classifier training is performed on a labeled dataset. Prior to training such a

labeled dataset must manually acquired by annotating unlabeled samples. This is an expensive and

cost-intensive effort. The main goal of active learning is to select only the “most informative” samples for

manual annotation and therefore to minimize the effort of labeling new datasets [Set09]. In particular,

active learning works in iterative cycles, where each cycle consist of three steps: first, a model training.

Second, a “query sample” selection based on this model, and third, the manual annotation of the selected

sample. This user feedback is then included in the next cycle of active learning leading to a successively

improved classifier.

One particular family of active learning algorithms which is specifically suitable for retrieval is pool-

based active learning. In pool-based active learning the learner has access to a pool of unlabeled data

and can request the user to label a certain amount of instances in the pool to improve retrieval results.

A straightforward method of selecting samples is most relevant sampling [SB90] as it is motivated by

the idea of relevance feedback. In the context of text retrieval, Lewis and Gale [LG94] introduced

uncertainty sampling, which is also known as the close-to-boundary criterion [SC00, TK02]. Another

approach coming from the text-retrieval domain is based on the estimated error reduction strategy by

Roy and McCallum [RM01] rather than utilizing heuristic approaches like aforementioned.

In the context of image retrieval, Tong and Chang [CTGC05, TC01] proposed a version space reduc-

tion approach for sample selection. Clustering-based approaches were presented in [NS04b, QSH+06],

where the structure of the underlying data distribution is utilized. This provides a good foundation for

the cold start of active learning and improves performance by not labeling redundant samples belonging
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to the same cluster. Active learning also finds application in video retrieval [SHDW05]. A large-scale

evaluation of standard active learning sample selection methods can be found in [AQ07a], where close

to ground truth detector performance could be achieved by labeling only 15% of the original TRECVID

2006 dataset. Particularly interesting is the performance improvement when taking temporal infor-

mation into account for sample selection, i.e actively selecting neighborhood shots of already positive

annotated shots. Ayache and Quenot also embedded active learning methods within the TRECVID

collaborative annotation effort [AQ08]. A more general view of active learning for multimedia can be

found in [CCHW05, HLY+06], where active learning is the method behind the feedback mechanism of

the proposed retrieval system.

Summarizing, active learning can be employed in the practical situations, where only few annotations

are given, active learning can help to efficiently identify and annotate the most “informative samples” to

increase training data size such as done in TRECVID. This setup (which usually starts from very few

reliable initial labels [AQ07a, AQ08, CCHW05]) differs from the one studied in this chapter, as this work

focuses on a refinement of large but partially relevant training sets. Despite this difference, however, an

application of active learning in the context of visual learning from the web seems promising as it can

be used to verify relevant content and eliminate non-relevant ones. Beyond this, this work proposes a

novel combination of active learning sample selection with an automatic relevance filtering, which will be

demonstrated to lead to even more robust concept detectors at less manual annotation cost. In contrast

to conventional active learning, the given setup starts from a noisy training set and uses active learning

for a refinement.

4.2.2 Visual Learning from Web Labels

Though visual learning from web content is a challenging problem, this information source has been

acknowledged as an attractive basis for training flexible and scalable visual recognition systems. Its ex-

ploitation is now an active area of research [YB05, SSTK08, SS09, USKB10, ATY09, RMJ+09, TAP+10,

YT11, KLS13].

Unfortunately, such data as acquired via text-based image search engines or from portals like Flickr

or YouTube contains a significant amount of non-relevant content for concept training. In case of Google

Image Search, Fergus et al. [FFFPZ05] and Schroff et al. [SCZ07] reported a label precision between 18%

and 77% for 7 object categories, and 39% over 18 categories respectively. Similarly, Li [LSW09] evaluated

user tagging precision on a large-scale dataset of 20k manually inspected Filckr images of 20 different

categories. The observation was, that although the precision varies among categories on average only

52% of the image tags were providing suitable material for detector training. Another analysis on Flickr

image tags was performed by Setz [SS09] for 20 concept definition of the TRECVID 2008 benchmark,

which concluded that 56% of Flickr images can be used for video concept learning. For web video as

retrieved from YouTube, Ulges [Ulg09] reported tag labeling previsions around 38.6% averaged over 10

concepts. In case of YouTube video – however – one additional challenge related to tag precision is the

label resolution problem [GY08] i.e. label information in videos may be coarse as YouTube users tag their

video globally and without any further localization along the video stream.

Obviously the amount of non-relevant content depends on the proper formulation of the query to

retrieve the required training material from the web. As seen in Ulges [USKB10] it is necessary to refine

already constructed queries manually such that a proper context for visual learning can be established
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(e.g. exclude music video from the “Beach Boy”, when aiming to retrieve scenes of a beach). This

circumstance was evaluated to improve label precision by up to 17.5% [Ulg09]. Therefore an alternative

direction of getting more relevant training material is the seamlessly improvement of the initial retrieval by

directly manipulating the query, an area related to concept-based query expansion or mapping [NHT+07,

WLLZ07, YH07]. This mechanism reformulates a “seed” query with the intention to improve retrieval

performance to provide the most relevant results given a user information demand. Traditional query-

to-keywords reformulation as found in [YH07], can be split into “term reweighing” or “query expansion”

methods. The first group re-weights individual terms of a query for use in the underlying vector space

model, whereas the second group of methods adds additional terms to the query. This expansion can be

either done by manual adjustment or relevance feedback given by users [Roc71, WJR06], pseudo-relevance

feedback [CNL+04, XC96], or statistics about the entire collection [DDF+90, Fel98, KNC05].

Another type of approaches are the so called query-to-concept approaches [SW09]. This methods

deal with the situation, where a concept vocabulary is given and must be matched against a user’s

search query. One straightforward way to perform this matching is to let the user select concepts by

himself. However, choosing from a large concept vocabulary users have difficulties to select a proper set

of concepts so that automatic concept selection mechanism (i.e. query prediction) come into account.

Given an information need expressed in natural language, a first approach besides simple word spotting

methods is the use of the vector space model to match a query against the semantic description of

a concept [NZKC06, SWvG+06b]. Additionally, traditional query expansion approaches can be used

to introduce additional query terms for concept selection. A comprehensive evaluation about different

query expansion methods can be found in [NHT+07]. Here, the differentiation is made according to

lexical approaches (synonyms, hypernyms from dictionaries like WordNet) and statistical approaches

(local or global term frequencies and co-occurrences).

In this chapter, however, the main goal is not to satisfy a human users information need during

retrieval but to retrieve automatically video material which is suitable for visual learning of concept

detectors. Therefore – from this chapters point of view – the aim not to find the most relevant combination

of concept detectors for a given query but to find a proper query formulation for a given concept definition.

One part of query construction for e.g. YouTube is the assignment of a category. Research in the area

of web video categorization was performed based on visual and tag information [BHK+09], text and social

information [XW09] and large-scale web crawling and search engine log data [TAP+10]. The proposed

category assignment proposed in this chapter is similar to [TAP+10], where first tags are recommended

and according to this information categories are assigned. However, the setting is different compared

to the presented approach since the method selects tags and assign categories purely based on concept

information and not the visual content of an uploaded video. Rather, this work employs external data

sources for category assignment as done in [CCS+10].

4.2.3 Dealing with Label Noise

As seen in the previous section, web data can be considered as an attractive source for detector training

but comes at a cost of a significant amount of non-relevant content. Even with retrieval done by carefully

refining queries on YouTube [USKB10] or by randomly constructed images IDs on Flickr [LSW09] the

problem of tags being ambiguous, subjective, or coarse leads to a label precision at most between 38.6%

and 52%.
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Figure 4.2: Concept learning from weakly labeled web video: material is downloaded from online platforms like

YouTube, non-relevant content is filtered using relevance filtering, and a concept detector is trained, which can

later be used to detect the learned concept in previously unseen videos.

Several approaches have been proposed to overcome this problem: one group of methods is targeted

at a content-based refinement of raw web image sets [YB05, BF06, SCZ07, SSTK08]. This group of

approaches start with a acquired image set from the web, identify a subset of “good” candidate images

for concept presence either by manual inspection [BF06] or the analysis of surrounded image text [SCZ07,

YB05]. These candidates are then taken to train a statistical model of the target concept and used to

re-rank all remaining web images. Other methods closer to this work combine dataset refinement with

model learning using topic models [FFFPZ05] or follow a semi-supervised learning approach like the

OPTIMOL system [LWFF07] performing an iterative expansion of the training data. A third group of

approaches perform relevance learning either by a nearest neighbor analysis of the data [LSW08, WS08,

LSW10], where content is re-ranked by graph based random walks [HKC07, LHY+09], or identified to

be filtered [WS08]. In context of weakly labeled video content, Gargi and Yagnik [GY08] emphasized

the additional problem that label information in videos may be coarse, which they refer to as the label

resolution problem. A bridge between image and video data was presented by [BBDB+10], where videos

were enriched by image tag localized by visually similar Flickr images. Ulges et al. [USKB08b] presented a

kernel-based approach for relevance filtering, such that the system automatically learns relevance weights

during detector training.

The presented approach follows the relevance filtering line of research. Building upon the probabilistic

setting presented in [USKB08b, WHS+06] it is extended by active learning to cope with the challenging

setup where non-relevant content is correlated with the target concept in web videos. Overall, the usage of

web images or video was demonstrated to be a valid alternative to expert annotated material for detector

training. However, such content with its pseudo labels comes with a high amount of noise or non-relevant

content. This affects concept learning by a significantly gradated detection performance [USKB08b,

LSW09, SS09] and therefore is subject to current research efforts.

4.3 Concept-to-Query Mapping

In the following, a framework for query construction in the context of visual learning from the web is

described. The system is outlined in Figure 4.2 (left box): to learn a concept like “basketball” video

clips are retrieved from YouTube. This is realized by the construction of a query, which is send to
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Table 4.1: Automatic Keyword Selection: Starting from a concept name, a set of keyword terms is selected

based on synonyms retrieved from ImageNet, tag statistics and Google Sets items.

1. q0 = concept name

2. retrieve synonyms sq0 from ImageNet

3. retrieve tag statistic from YouTube

• use q0 to retrieve video data dq0 from YouTube

• calculate tag frequencies tq0 from dq0

4. build q1 = {s0, ..., sns} ∪ {t0, ..., tnt} ⊆ sq0 ∪ tq0

5. retrieve ranked list lq1 from GoogleSets using q1

6. build qi = {t0, ..., tn} ⊆ lq1

the YouTube API. The core of the proposed approach is an automatic keyword selection and category

assignment to a given concept. Taking the original LSCOM [KHN+06] concept name as initial query

q0, an automatic selection of keyword terms leads to an expanded query qi = {baketball match nba}.
This query is then used to infer a proper category ci = {Autos & V ehicles} for the concept. Finally, the

query q is constructed from qi and ci and used to retrieve training data for concept learning.

In the following, a query q represents the set of parameters which is used to retrieve videos from the

YouTube API. This set of parameters may including text, tags, category restrictions and limitations to a

particular time span or specific country. In this work however, the focus is given on the most distinctive

parameter: keywords and categories, which lead to the query representation q = {t0, ..., tn} ∗ {c0, ..., cm}
with n keywords ti and m category assignments cj . It should be kept in mind that the presented approach

is general in the sense that it could be applied to all web video portals that allow access to their database

through a similar API like YouTube.

4.3.1 Automatic Keyword Selection

The first step for the concept-to-query mapping is to transfer a concept name into a set of keywords. This

procedure is illustrated in Table 4.1. The entry point is given by the concept name forming the initial

query q0. It is important to note that this initial query is expected to retrieve a significant amount of

non-relevant videos. Based on q0 a set of synonyms sq0 is retrieved from ImageNet. Here, ImageNet is

preferred over WordNet because it covers concepts suitable for visual learning. Additionally, tag statistics

are calculated from the set of videos retrieved by q0. For each tag appearing in this initial dataset, tag

frequencies are calculated, which lead to a ranked list tq0 of top tags for q0. Although the process makes

use of stop word removal and neglect digits and dates, this tag list can be considered noisy and less

reliable than sq0 for the purpose of disambiguation of concepts. However, tq0 is intended to capture

the specific wording of the YouTube community. By fusing sq0 and tq0 the new query q1 is created:

q1 = {s0, ..., sns} ∪ {t0, ..., tnt} ⊆ sq0 ∪ tq0 with ns + nt = n keywords. This query is now send to Google
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Table 4.2: Automatic Category Assignment: Taking a query as imput, this procedure assigns a set of

categories to the query using tag statistics and the hierarchical structure of the ImageNet Ontology.

1. use qi to retrieve video data dqi from YouTube

2. calculate category distribution p(c|dqi)

3. infer categories cimagenet from ImageNet

• for each t ∈ qi get synset st from ImageNet

• for each st get path pt to ImageNet root

• for each pt get category ct by map(pt)

4. rank cimagenet according to p(c|dqi).

5. build ci = {c0, ..., cm} ⊆ cimagenet

Sets providing additional semantic relations in the context of q1. Google Sets is a experimental prototype

to generate lists of similar items. Its underlying probability model ranks these items according to their

appearance in specific HTML structures as found in the world wide web. As a result a ranked list lq1 of

keywords is received, which after limiting it to n keywords results in the final query qi = {t0, ..., tn} ⊆ lq1 .

4.3.2 Automatic Category Assignment

As a second step the automatically assignment of categories for the previously constructed query qi is

presented. The procedure is outlined in Table 4.2. Given qi, a second set of videos is retrieved from

YouTube and its category distribution p(c|videos) is calculated. Additionally, for each keyword t ∈ qi its

corresponding ImageNet synset is found. If no synset is found for t ∈ qi, this term will not contribute to

the category assignment. For each synset found, the path from the synset node to the ImageNet root is

build and mapped to a YouTube category according to a manual constructed mapping function map(p).

This mapping function maps ImageNet’s first (and partially second) level synsets to YouTube categories

allowing to transfer all 17k synsets to the given 15 YouTube categories by only providing roughly 60

manual mappings. A mapping in this context may just be as straightforward as Animal→ Animals or

as complex as University → Education. The final step in the category assignment is a ranking of the

mapped YouTube categories according to their query dependent distribution p(c|videos) providing the

set ci = {c0, ..., cm}.

The final query qn can now be constructed by qn = {t0, ..., tn} ∗ {c0, ..., cm}. This procedure provides

an automatic query construction for training data retrieval from YouTube, which can be used for on-

demand concept detector training as illustrated in Chaper 3.
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4.4 Active Relevance Filtering

Although a carefully constructed query can help to disambiguate video retrieval for detector training, the

coarseness of web video tags provides only a weak indicator of concept presence within video stream. In

the following, a framework for visual concept learning from weakly labeled web video is described. The

system is illustrated in Figure 4.2 (right box): to learn a concept like “basketball”, training material is

downloaded from online platforms. The core of the system – and the focus of this chapter – is a filtering of

this weakly labeled web content, which identifies non-relevant material and performs a concept detector

training in parallel. This process is referred to as relevance filtering, and is highlighted in a box in

Figure 4.2. The procedure yields a statistical model (concept detector) which can then be applied to find

the concept of interest in previously unseen video material.

Relevance filtering can be performed by one of the following three strategies (as seen in Figure 4.3):

1. an automatic relevance filtering, where non-relevant content is identified based on its distribution

in feature space.

2. a manual refinement with the support of active learning, which selects the “most informative”

samples for the user to label.

3. an active relevance filtering, which is the key contribution of this chapter and combines the two

previous strategies by alternatingly performing automatic relevance filtering and a manual label

refinement

In this section, first some basic notation are introduced (Section 4.4.1). After this, the two standard

strategies will be addressed in detail, namely active learning (Section 4.4.2) and automatic relevance

filtering (Section 4.4.3). Finally, the novel active relevance filtering approach is presented (Section 4.4.4).

4.4.1 Basic Concepts

In the following, video content is represented by keyframes, each associated with a feature vector x ∈ Rd.
For each concept of interest, a binary classification problem is formulated: the presence of the target

concept is denoted with a label y, such that y = 1 indicates concept presence and y = −1 concept

absence. The goal of concept detection is – given a keyframe x – to estimate the associated concept label

y (or its probability P (y = 1|x), respectively).

For training, a set of keyframes x1, ..., xn is assumed to be given. Each of these is associated with a

label yi ∈ {−1, 1} that indicates concept presence. In the setup of weakly labeled web videos, however,

this true label is latent (i.e., not known), and only a weak indicator of concept presence is given (in

practice, this is a tag given to the corresponding web video clip). This information is denoted by a

pseudo label ỹi ∈ {−1, 1}, and forms the input to the presented concept learning procedure.

It should be kept in mind that the approaches discussed in the following – particularly, the proposed

active relevance filtering – could be applied as a wrapper around a variety of statistical models. In this

chapter, this filtering approach is demonstrated for kernel densities as a well-known standard approach

that has successfully been used for concept detection before [WHS+06, YSR05]
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Figure 4.3: Relevance filtering, as illustrated here for the concept “basketball”, can be performed using three

strategies: (1) an automatic relevance filtering [USKB08b], (2) a manual refinement with the help of active

learning [AQ07a], or (3) a novel interleaved combination of automatic and manual filtering called active relevance

filtering, which is the key contribution of this chapter.

Kernel Density Estimation Baseline

First a simple supervised standard model is introduced that does not take label noise into account and

will serve as a baseline in later experiments. This model uses two class-conditional distributions: p1,

which models positive keyframes (showing the target concept), and p0 for negative frames (not showing

the concept):

p1(x) =
1

Z1
·
∑
i:ỹi=1

Kh(x;xi),

p0(x) =
1

Z0
·
∑

i:ỹi=−1

Kh(x;xi). (4.1)

Z1 and Z0 are normalization factors. As a kernel function Kh, the well-known Epanechnikov kernel

with Euclidean distance function and bandwidth h is used [DHS00, Ch. 4]:

Kh(x;x′) =
3

4
·
(

1− ||x− x
′||2

h2

)
· 1(||x−x′||≤h) (4.2)

By evaluating p1 and p0, the frame x is scored using Bayes’ rule (the class prior is assumed to be

uniform):

P (y = 1|x) =
p1(x)

p1(x) + p0(x)
(4.3)

It is important to note that the approach – as introduced so far – does not take the unreliability of

web-based training labels ỹi into account. Instead, these labels are treated just like in a fully supervised
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setup. Particularly, each positive sample (ỹi = 1) though it does not necessarily show the concept (as

illustrated in Figure 4.1) contributes to the density of positive samples p1.

The key concern of this work, however, is to adapt concept training to the fact that user-generated

labels on the web are inherently unreliable. In the following sections, several approaches for dealing with

label weakness will be discussed. The basic assumption is that the given labels ỹi are only unreliable

indicators of the true (but unknown) labels yi such that:

• If the weak label is negative (ỹi = −1), the true label is negative as well (yi = −1).

• If the weak label is positive (ỹi = 1), the sample may belong to the positive class, but does not

necessarily do so, i.e. the true label yi is unknown,

Briefly speaking, it is assumed that negative labels are reliable, but positive ones are not. This setup

does not take false negatives (ỹi = −1 and yi = 1) into account, which is not strictly true (for example,

a user could simply forget to tag a clip). According to observations on real-world web video, however,

the fraction of these false negatives compared to truly negative content is negligible, and false positives

pose a much more urgent problem.

4.4.2 Active Learning

One strategy to overcome label noise is to manually refine the raw web-based training set. In this context,

active learning is a well-known effective approach. In this section, different active learning strategies for

detector training are outlined that are targeted at achieving a label inspection at minimal additional

annotation cost. The goal is to select only the most important samples for inspection and therefore

to improve concept detector performance up to the level of ground truth expert labels with only a few

manual labels.

Relevance Feedback as a Wrapper

In the following setup, a manual label refinement of selected samples is placed as a wrapper around a

regular supervised learning method (the proposed kernel density learning from Equation (4.1)).

The procedure is illustrated in detail in Table 4.3: iteratively, concept detection is applied, obtaining

class posterior probabilities pj = (pj1, ..., p
j
n) for all training samples, where pji ≈ P (yi = 1|xi) (see

Equation (4.3)). Based on these values, a keyframe s∗ ∈ {i : ỹi = 1} is selected for manual annotation

(here, the focus is given on positive weakly labeled keyframes because their labels are the unreliable

ones). After a manual labeling of the selected sample s∗, its label is fixed to either −1 or 1 depending

on the received annotation result. Note, that in case of a positive feedback (i.e., ỹs∗ = 1), no change

of the model will occur, whereas in case of negative feedback, the associated label turns to be −1 and

the model will change in the next iteration, resulting in an improved concept detector. This retrained

concept detector will then provide new posterior probabilities for the next iteration of active learning

sample selection. When continuing further, this procedure acquires more and more expert labels, until

finally the weakly labeled dataset turns into a strongly annotated one.
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Table 4.3: Active Learning: Wrapped around concept detector training, active learning selects informative

samples for refinement by a user. Once the sample is labeled, its label is fixed to either -1 or 1 and the system is

re-trained.

1. for j = 1, .,m do:

• obtain class posteriors pj = (pj1, ..., p
j
n)

from p1 and p0

• select sample s∗ according to an active

learning criterion Q:

s∗ := arg max
i:ỹi=1

Q(pji )

• get the true label ys∗ from a human expert

• fix the sample label:

ỹj+1,...,m
s∗ =

{
1, ys∗ = 1

−1, ys∗ = −1

Once the true label is retrieved, the sample s∗ is excluded from sample selection.

Active Learning Methods

Obviously, the quality of active learning heavily depends on the sample selection strategy Q (see Table

4.3). In the literature, many criteria Q have been proposed [Set09]. Here, the most popular ones are

compared:

1. random sampling: samples are selected randomly (serves as a baseline).

2. most relevant: samples are selected which are most likely to be relevant and are therefore asso-

ciated with the highest posterior [SB90]:

QREL(pji ) := pji

3. uncertainty: samples are selected for which the relevance filtering method is least confident, i.e.

pji ≈ 0.5 [LG94]:

QUNC(pji ) := 1− |pji − 0.5|

4. density-weighted repulsion (DWR): This approach enhances “most relevant” sampling with

an exploratory component. This is motivated by the assumption that the labels associated with

clusters in feature space are homogeneous, and therefore the refinement of one sample within a

cluster is sufficient of infer the remaining ones. This is realized by adding a repulsion term that

enforces the query sample xi to be distant from previously labeled samples (which form a kernel

density p+):

QDWR(pji ) := QREL(pji ) · (p
+(xi) + ε)−γ ,

where the parameter γ determines the strength of repulsion.
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4.4.3 Automatic Relevance Filtering

While the active learning approaches introduced in the last section perform a refinement based on manual

labels of selected samples, other systems have been introduced that replace this refinement with a fully

automatic one. The basic idea of these automatic relevance filtering methods [USKB08b, WS08] is that

relevant content appears frequently and forms clusters in feature space, while non-relevant material comes

as outliers that can be identified and relabeled.

This section introduces an automatic relevance filtering approach based on a weighted kernel density

model [USKB08b, WHS+06]. The class-conditional densities from Equation (4.1) are replaced with

weighted kernel densities:

p1
β(x) =

1

Z ′1
·
n∑
i=1

βi ·Kh(x;xi),

p0
β(x) =

1

Z ′0
·
n∑
i=1

(1− βi) ·Kh(x;xi),

(4.4)

where Z ′1 =
∑
i βi and Z ′0 = n − Z ′1 are normalization constants. Compared to the fully supervised

setup from Equation (4.1), the key difference is that p1 and p0 are now parameterized by a vector

β = (β1, ..., βn). This vector consists of relevance scores βi := P (yi = 1|ỹi, xi), meaning that each

training sample is weighted according to its probability of being relevant: if a sample is likely to be

relevant, it has a strong influence on the distribution of positive samples p1
β but low influence on p0

β .

This way, the uncertainty of label information is taken into account.

To compute the class-conditional densities p1
β and p0

β , the vector of relevance scores β must be inferred

in system training, i.e. potentially relevant frames must be divided into actually relevant ones and non-

relevant ones.

The relevance scores β are estimated in a training procedure that – starting from a vector β0 –

iteratively updates the parameter vector βk to a new version βk+1 by plugging it into the class-conditional

densities p1
βk and p0

βk (Equation (4.4)). From these densities, new estimates of relevance scores can be

obtained using Bayes’ rule:

βk+1
i := P (yi = 1|xi, ỹi = 1)

≈ P (yi = 1|ỹi = 1) · p(xi|yi = 1)∑
y∈{−1,1} P (yi = y|ỹi = 1) · p(xi|yi = y)

(4.5)

≈
α · p1

βk(xi)

α · p1
βk

(xi) + (1− α) · p0
βk

(xi)

(4.6)

This is repeated until convergence. Training is regulated by the relevance fraction α := P (yi = 1|ỹi =

1), which determines how many of the positively labeled samples do in fact show the target concept (if

α = 1 is chosen, the model degenerates to the supervised case as in Equation (4.1)). In the following, it

is assumed that a sufficiently good estimate of this parameter is be given.

Intuitively, this training procedure identifies regions in feature space where positively labeled frames

concentrate and assigns high relevance scores to them, while outliers similar to negative content are
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Table 4.4: Active Relevance Filtering: Wrapped around relevance filtering, active learning selects informative

samples for refinement by a user. Once the sample is annotated, the system is re-trained and the remaining

relevance scores are adapted.

1. for j = 1, ...,m do:

• apply automatic relevance filtering,

obtaining relevance scores βj = (βj1, ..., β
j
n)

• update the class-conditional

densities p0
β and p1

β (Equation (4.4))

• obtain class posteriors pj = (pj1, ..., p
j
n)

from p1
β and p0

β

• select sample s∗ according to an active

learning criterion Q:

s∗ := arg max
i:ỹi=1

Q(pji )

• get the true label ys∗

• fix the sample label:

ỹj+1,...,m
s∗ =

{
1, ys∗ = 1

−1, ys∗ = −1

Once the label is fixed, its relevance score is set to the true value, and the sample

is excluded from further automatic relevance filtering.

given low relevance scores. The approach resembles the well-known Expectation Maximization (EM)

algorithm [DLR77], which maximizes the data likelihood in the presence of latent variables (here, the

true concept labels y1, ..., yn). Also, a similar training procedure has been used by Wang et al. [WHS+06],

but the system is constrained in a different way. While Wang et al. addressed a strictly semi-supervised

setup – where initial reliable training samples for all classes are available — this work cannot rely on

such information in the given weakly supervised setup. Instead, this method constraints the system with

a certain prior of expected relevant material α. For more information on the approach, please refer to a

previous publication [USKB08b].

4.4.4 Active Relevance Filtering

The relevance scores β1, ..., βn in Section 4.4.3 captured the uncertainty of the given web-based label

information. They have been fitted using an automatic training procedure, which has previously been

shown to improve concept detection to some extent [USKB08b]. Yet, significant label uncertainty re-

mains, which is why a combination of relevance filtering with active learning is proposed to enhance

the system with a limited amount of manual feedback. This active relevance filtering is outlined in the

following.
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Enhancing the Relevance Feedback Wrapper

Next an iterative manual labeling of selected frames is suggested, which is alternated with a retraining

of relevance scores β. This way, the previously introduced active learning mechanism is enhanced by an

automatic relevance filtering step after concept detector training. Again, to reduce annotation effort,

active learning strategies are used to select only the most informative samples for annotation.

The procedure is illustrated in Table 4.4 (modifications compared to the active learning procedure in

Table 4.3 are highlighted in bold): in each iteration, an automatic relevance filtering is performed, from

which the class-conditional densities are updated, obtaining class posteriors pj1, ..., p
j
n for all training

samples. Based on these posteriors, the most informative weakly labeled keyframes are selected for

manual annotation (the same selection strategies as for active learning can be used, see Section 4.4.2).

The received label information will now again serve as additional ground truth for the next iteration

of automatic relevance filtering, providing improved relevance scores for the next iteration of sample

selection. With more iterations of such combined relevance filtering and active learning, the procedure

separates relevant content from non-relevant one more reliably.

Note that this approach alternates automatic and manual filtering: in contrast to a purely automatic

filtering, the method uses an additional wrapper in which a human operator contributes more accurate

labels than the purely automatic approach can estimate by itself. The key difference to active learning

is that the labels are not only used to update the classifier, but also for further relevance filtering: each

time a new label is given, it influences relevance scores on the training set and helps to filter non-relevant

content more precisely. This provides an improved basis for the next active learning sample selection –

alternatingly, automatic and manual refinement boost each other.

4.5 Experimental Evaluation

Experiments are performed on two separate datasets of web video content downloaded from YouTube.

The first dataset serves as foundation for the evaluation of the proposed concept-to-query mapping.

The second dataset is already known in the literature from previous evaluations of relevance filter-

ing [USKB08b, Ulg09] and is therefore used to test the suggested active relevance filtering approach.

Four experiments were conducted to quantify the effects of different refinement strategies: First, the

automatic query construction approach is evaluated against a careful query construction by a human op-

erator (Section 4.5.1). Second, the impact of an automatic relevance filtering is validated to demonstrate

that this approach gives some improvements but does not reach the performance of a complete man-

ual annotation (Section 4.5.2). After this, a manual refinement using plain active learning is evaluated

(Section 4.5.3) and compared with the novel active relevance filtering approach (Section 4.5.4).

4.5.1 Comcept-to-query Mapping

To evaluate the proposed automatic mechanism of query construction 30 concepts from the TRECVID

2011 benchmark, which have been selected by NIST for evaluation have been taken. They include

concepts related to objects (“flowers”, “boat-ship”), locations (“cityscape”, “mountain), or sports (“swim-

ming”, car racing”). For each concept three experiments have been performed:
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Table 4.5: Results of the concept-to-query mapping evaluation. Fractions of relevant material i.e fraction of

videos containing the concept are displayed for each concept and each of the three experiments. The last line

displays the relevance as average over all 30 concepts.

Concept Name [exp-1] [exp-2] [exp-3] [exp-3] Queries (keywords; category)

airplane flying 0.30 0.47 0.56 airplane flying aircraft; Autos/Vehicles

animal 0.40 0.89 0.93 animal nature; Pets/Animals

Asian people 0.36 0.52 0.40 asian people asians; People/Blog

bicycling 0.29 0.63 0.62 bicycling city; Sport

boat ship 0.30 0.57 0.68 boat ship water; Autos/Vehicles

bus 0.15 0.57 0.72 bus buses; Autos/Vehicle

car racing 0.48 0.50 0.64 car racing cars; Autos/Vehicles

cheering 0.48 0.27 0.54 cheering cheer; Sports

cityscape 0.13 0.12 0.14 cityscape architecture; Travel/Events

classroom 0.13 0.39 0.36 classroom students; Education

dancing 0.53 0.56 0.61 dancing live; None

dark-skinned people 0.62 0.65 0.79 dark skinned people; People/Blogs

demonstration or protest 0.76 0.72 0.41 demonstration protest funny; News/Politics

doorway 0.07 0.20 0.15 doorway vent; Howto/Style

explosion fire 0.33 0.35 0.61 explosion fire gasoline; How/Style

female human face closeup 0.04 0.64 0.36 female human face closeup; None

flowers 0.11 0.53 0.42 flowers green; Howto/Style

ground vehicle 0.31 0.47 0.70 ground vehicle military; Autos/Vehicles

hand 0.19 0.51 0.59 hand; Science/Technology

mountain 0.11 0.61 0.70 mountain peak; Travel/Events

nighttime 0.05 0.28 0.53 nighttime building; Travel/Events

old people 0.23 0.23 0.36 old people; Comedy

running 0.28 0.35 0.63 running basketball; Sports

singing 0.78 0.88 0.63 singing fun; None

sitting down 0.02 0.10 0.06 sitting down the; Travel/Events

swimming 0.48 0.78 0.70 swimming water; Sport

telephones 0.04 0.67 0.46 telephone call; Science/Technology

throwing 0.13 0.65 0.16 throwing to;None

vehicle 0.31 0.64 0.64 vehicle car; Autos/Vehicles

walking 0.20 0.44 0.09 walking alternative; None

average 0.29 0.51 0.51

• [exp-1] query construction by a simple one-to-one mapping of concept name to a YouTube query.

Here, concept names from LSCOM are taken.

• [exp-2] query construction by manual refinement from a human according to a visual inspection

on YouTube.

• [exp-3] query construction performed by the proposed automatic concept-to-query mapping from

Section 4.3. Queries were limited to n = 3 keywords and m = 1 category assignments.

While standard training sets for supervised learning do provide accurate label information, positive

training samples in web video datasets contain only a particular fraction of relevant samples. This

relevance fraction is denoted with α in the following. In case of web video α can be considered as

measure of label noise. Consequently, for expert labeled datasets it can be expected to observe an α

close to 1.0 whereas for web video an α significantly lower that 1.0 is presumed. Obviously, the value of α

may differ among concepts. To provide an first insights of α for web video downloads, for each query and

experimental setup, 100 videos are downloaded from YouTube and manually reviewed according their
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Figure 4.4: Results of the baseline experiment, showing potential performance ranges for further refinement

strategies. Though automatic relevance filtering provides some performance gain, its performance is far from the

ground truth optimum. Note that ground truth label information is not given and should here only demonstrate

the potential performance gain of a perfect relevance filtering.

relevance (i.e.,α) to the LSCOM concept definition. This manual inspection which is based on three

keyframes per video clip evaluates how many of the retrieved video clips truly contain the concept.

Table 4.5 illustrates the results of the evaluation. For each concept the fraction α ≤ 1.0 of relevant

content is shown and additionally for [exp-3] the automatically constructed queries are printed. When

comparing these three experiments, it can be seen that [exp-1] queries perform weak i.e. they contain

the most non-relevant content when retrieving videos from YouTube. Further, manual refined queries

[exp-2] and automatically constructed queries [exp-3] perform comparable to each other improving the

fraction of relevant content by 76%.

For some concepts like “airplane flying” or “boat ship” the approach particularly benefits from Ima-

geNet synonyms whereas for concepts, where no synonyms could be found the focus on frequent YouTube

tags may lead query construction into the wrong direction like observed for the concept “throwing” or

“singing”. Also, for concept with a uncommon concept name like“female human face closeup”the method

was not able to retrieve any content from YouTube. However, for the majority of concepts the selected

keyword terms were semantically meaningful and related to the concept. Also, for most category assign-

ments the method selected the same category a human operator would do.

4.5.2 Weak Label Impact & Automatic Relevance Filtering

To evaluate active relevance filtering, ten test concepts from the YouTube-22concepts [Ulg09] dataset are

selected, including objects (“cats”, “eiffeltower”), locations (“beach”, “desert”), or sports (“basketball”,

“golf”). For each concept, 100 video clips were downloaded by querying the YouTube API with an

appropriate combination of keywords. Keyframes were extracted and manually assessed according to

canonical concept definitions. For each concept, a training set of 1, 000 negative sample frames and 500

noisy positive frames is sampled. The label precision of these positive samples was set to 20% (which was

validated to be a typical value for web video in previous annotation experiments). This means that the

500 positive samples contained only 100 true positives and 400 false positives (which were also sampled
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Table 4.6: Detailed results of the baseline experiments. Average precision is displayed for each concept and each

of the three runs.

concept no relevance filtering auto. relevance filtering ground truth

basketball 0.570 0.606 0.651

beach 0.398 0.449 0.504

cats 0.320 0.333 0.388

desert 0.587 0.636 0.655

eiffeltower 0.425 0.421 0.526

helicopter 0.362 0.392 0.418

sailing 0.440 0.466 0.493

soccer 0.562 0.575 0.740

swimming 0.448 0.491 0.647

tank 0.441 0.457 0.543

MAP 0.455 0.482 0.557

from YouTube clips tagged with the target concept, but were manually assessed to be non-relevant). To

evaluate the concept detectors trained on this weakly labeled content, a test set of 500 positive and 1, 500

negative frames was sampled (it was made sure that training and test content was drawn from different

clips).

As a feature representation of keyframes, this work refer to the well-known bag-of-visual-words ap-

proach [SZ06, vdSGS08a]: a regular patch sampling was conducted at several scales, patches were de-

scribed by SIFT [Low99], and finally clustered to a 2, 000-dimensional vocabulary using K-Means. After

this, a PLSA dimensionality reduction [QMO+07] to 64 dimensions was applied for efficiency purposes.

The relevance filtering system was tested with a kernel bandwidth of h = 0.275 (which was previously

optimized using cross-validation). The parameter α of automatic relevance filtering (Equation (4.5)) was

set to 20%. For DWR sampling a value of γ = 0.1 proved to work best. As a performance measure,

mean average precision (MAP) is used. All results are averaged over all 10 test concepts and over 5 trials

using different randomly sampled datasets.

This experiment, evaluates several concept learning approaches when trained on weakly labeled web

video material. In total three systems are compared: first, one that does not perform relevance filtering

at all, which corresponds to a standard supervised system using plain kernel densities (this baseline

is denoted with no relevance filtering and has been outlined in Section 4.4.1). Second, an automatic

relevance filtering as outlined in Section 4.4.3, and third a control run using ground truth labels (note

that such label information is not available in practice).

When comparing these three runs (Figure 4.4 and Table 4.6 for detailed concept-dependent results),

it can be seen that the system without relevance filtering performs worst, with a mean average precision

(MAP) of 0.455. The automatic relevance filtering achieves a slight improvement (MAP: 0.482). However,

a strong gap of 7% remains compared to the ground truth run (MAP: 0.557) – this indicates that concept

learning from the web could be improved significantly if a more accurate filtering of non-relevant content

can be performed. This motivates semi-automatic refinement strategies as evaluated in the next sections.
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Figure 4.5: Left: Results of active learning. The accuracy of the resulting concept detectors is plotted against

the number of manually annotated training samples. Right: Results of active relevance filtering. Performance

is plotted against the number of manually annotated training samples. It can be seen that – if using a proper

sample selection – it is sufficient to annotate only 30−40 weakly positive training samples to achieve a significant

performance improvement.

4.5.3 Active Learning

The third experiment quantifies the performance of a manual refinement of web-based training sets using

active learning. The results of this experiment are illustrated in Figure 4.5 (left), where the performance of

the trained concept detectors on the test set is plotted against the number of training samples annotated

with active learning (different curves correspond to different sample selection strategies). To establish

a relation to the last experiment, the three automatic runs (no relevance filtering, automatic relevance

filtering, and ground truth labels) are plotted as dotted lines in Figure 4.5 (left). It can be seen that

all sample selection methods start at an MAP of 0.45 (which equals the previously shown “no relevance

filtering” system, as no automatic relevance filtering is done. However, as more training labels are

collected manually, the quality of the training set (and with it the accuracy of the resulting detectors)

improves. Sample selection stops when all weakly labeled samples are manually refinement i.e. after 500

annotations. Here, the MAP is the same for all selection methods and equals the “ground truth” run in

Section 4.5.2 (which is not surprising, as the whole training set is now manually annotated).

When comparing the different sample selection methods, it can be seen that different sampling strate-

gies lead to a very different performance. Surprisingly, well-known samplings methods like uncertainty

sampling are performing worse than a simple random sampling baseline. The best overall result is

achieved by DWR sampling, which gives strong improvements over all other strategies. Yet, the im-

provements by active learning remain limited: even the best method requires a substantial amount of

manual samples to give significant improvements over the automatic relevance filtering. To reach a per-

formance close to a ground truth labeling, all methods require a manual annotation of wide parts of the

training set.
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Figure 4.6: Comparing active learning and active relevance filtering, using random sample selection and DWR.

The proposed active relevance filtering leads to better concept detectors at lower annotation cost.

4.5.4 Active Relevance Filtering

In this experiment, the performance of the proposed active relevance filtering approach (a novel combina-

tion of a manual and automatic label refinement) is evaluated. Results of this experiment are illustrated

in Figure 4.5 (right). Just like in Figure 4.5 (left), concept detector performance is plotted against the

number of manual annotations used in training.

First the different active learning strategies are compared in Figure 4.5 (right). It can be seen that

all used sample selection methods outperform the random sampling baseline significantly. Systems based

on most relevant sampling perform best, which can be explained by the fact that this approach helps to

identify false positives that are “surprising” to the system and thus lead to strong model changes. For

low numbers of annotations, the exploratory component of DWR leads to further improvements.

Overall, it can be seen that active relevance filtering — if combined with the right sample selection

strategy — is highly efficient, giving strong improvements of concept learning even for very low numbers

of manual annotations. For example, with as few as 50 annotations, a performance increase of MAP

5% is achieved compared to automatic relevance filtering. When continuing with annotation, it can be

observed that concept detection performance converges to the ground truth case at 125− 150 iterations

(which corresponds to only 25 − 30% of the positive weakly labeled training set and 10% of the whole

training set).

Figure 4.7 provides a visual impression of active relevance filtering performance. Here, the top 20

test set classification results are shown for the three concepts “basketball”, “tank” and “eiffeltower”. For

each concept a separate result list is displayed for a) non relevance filtering, b) automatic relevance

filtering and c) active relevance filtering (50th iteration of DWR). The border of each keyframe is colored

according to its true label (green=concept present; red=concept absent). Comparing the different lists,

a significantly better results can be achieved for c) compared to b), which itself shows improvements

over a). Note that particularly for such challenging concepts as “eiffeltower”, where automatic relevance
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Figure 4.7: Results for the concepts“basketball” (top), “tank” (center), and“eiffeltower” (bottom). Top detections

are displayed for a) no relevance filtering, b) automatic relevance filtering and c) active relevance filtering (DWR).

Keyframes with green borders indicate a correct detection of the concept and red border a incorrect ones.
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filtering struggles with, active relevance filtering improves classification results significantly.

Finally, Figure 4.6 compares the proposed active relevance filtering with pure active learning as

discussed in Section 4.5.3. Again, detection performance is plotted against the number of manual an-

notations. The figure plots the best systems for each, active relevance filtering and active learning

(Section 4.5.3 vs. Section 4.5.4), namely the DWR-based runs, and as a baseline random sampling. The

results clearly indicate that active relevance filtering significantly outperforms a pure active learning.

As seen, for both sample selection strategies that active relevance filtering starts with a higher MAP as

it utilizes automatic relevance filtering. Also, system performance of active relevance filtering improves

quicker than for pure active learning, which can be explained by the fact that active relevance filtering

makes better use of user feedback: if a manual sample is provided, the additional relevance filtering

mechanism propagates this label over neighbor samples. For example, after refining only 50 samples

manually, active relevance filtering with DWR sampling (MAP: 0.54%) clearly outperforms pure active

learning, with DWR (MAP: 0.47), resulting in an absolute improvement of 7%.

Concluding, active relevance filtering, particularly if combined with appropriate sample selection

strategies, can improve concept learning on the difficult domain of web video content better than both

an automatic relevance filtering and a manual label refinement using standard active learning techniques.

4.6 Discussion

In this chapter, the challenge of learning visual concepts from web video was addressed, which offers a

scalable alternative to the conventional manual acquisition of concept detection training data. On the

downside, the tags coming with web video are only weak indicators of concept presence, and web-based

training sets come with significant amounts of non-relevant content. To achieve robustness with respect

to such label noise, this work presents two contributions: First, it presents an automatically mapping

of concepts to queries for training data retrieval is suggested. Second, it combines relevance filtering,

which discards non-relevant content automatically and active learning, which is targeted at an efficient

manual refinement. The resulting approach – called active relevance filtering – performs a highly efficient

learning using a few manually labeled samples.

In quantitative experiments with real-world web content downloaded from YouTube, it has been

demonstrated that (i) an automatic construction of queries for training data retrieval is achieved yielding

the same high quality as done by humans and (ii) the proposed active relevance filtering approach

improves concept learning significantly. Particularly, the proposed approach outperforms both a purely

automatic refinement and standard active learning, reaching a performance comparable to ground truth

training by refining only 25− 30% of weak positive labels in the training set.

Regarding future directions along this line of research, the next step is to integrate active relevance

filtering with other statistical learning methods. In this chapter, a less complex generative standard

approach was used (namely, kernel densities). It remains to be investigated whether active relevance

filtering could be used as a wrapper around other machine learning methods in a similar fashion, in-

cluding generative ones (e.g., Gaussian mixture models, histograms) as well as discriminative ones (e.g.,

SVMs [SS01]).
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Chapter 5

Adjective Noun Pairs for Visual

Sentiment Analysis

In this chapter, the challenge of sentiment analysis (i.e. the analysis of predictive judgments in the

context of their polarity) from visual content is addressed. To achieve this goal, concept detection is

extended by Adjective Noun Pair combinations, which serve as a novel mid-level presentation of images

and videos. It is shown that the presented approach not only allows to capture the sentiment conveyed

by images but also is able to detect emotion being reflected in images, and provide support the analysis

of child sexual abuse (CSA) material. The key contributions of this chapter are1:

1. The first concept detection approach providing sentiment prediction from visual content.

2. The Visual Sentiment Ontology (VSO), a large-scale ontology of 3,000 Adjective Noun Pairs (ANP),

which is founded on psychology theory and is constructed by a fully automatic data-driven method-

ology mining the web.

3. SentiBank, a novel mid-level representation framework, which builds upon the VSO and encodes

concept presence of 1,200 ANPs. This detection bank reached an F-Score performance for ANP

detections of 0.6 (n=500,000) and was made publicly available to foster research in this area.

4. The first public visual sentiment benchmark dataset consisting of 2,000 photo tweets and 19k

crowd-sourced ground truth annotations

5. In three independent experiments on sentiment prediction (n=2,000), emotion detection (n=807)

and pornographic filtering (n=40,000) the performance of ANPs represented by SentiBank was

demonstrated to either outperform other low-level feature representations (sentiment prediction,

pornography detection) or perform comparable to state-of-the art methods (emotion detection).

As an addition, SentiBank allows for the explanation of system results by listing detected ANPs

as visual ingredients of its detection.

Concluding, this effort – as being the first of its kind – created a large publicly available resource for for

further investigation of Adjective Nouns Pairs as a novel extension for concept detection.

1This chapter is based on the authors’ work in [BJC+13, BJCC13, SHBD14]

93



5.1. INTRODUCTION

Figure 5.1: Tweets from the “2012 Year on Twitter” collection: Barack Obamas famous reelection tweet (left) and

a tweet capturing the destruction caused by Hurricane Sandy (right). Both tweets display a generic text (”four

more years” and ”rollercoaster at sea” respectively) and convey the main information, including its sentiment,

visually.

5.1 Introduction

Nowadays the Internet – as a major platform for communication and information exchange – provides

a rich repository of people’s opinion and sentiment states2 on a vast spectrum of various topics. This

knowledge is embedded in multiple facets, such as comments, tags, browsing actions, as well as image and

video content. The analysis of such information either in the area of opinion mining, affective computing

or sentiment analysis plays an important role in behavior sciences aiming to understand and predict

human decision making [PL08] and enables applications such as brand monitoring [JZSC09], stock market

prediction [BMZ11], political voting forecasts [OBRS10, TSSW10] or intelligence gathering [YN07].

So far, the computational analysis of sentiment concentrates on textual content [PL08]. Limited

efforts are devoted to analyzing sentiments from visual content such as images and videos, which is

becoming a pervasive media type on the web. For example, two of the most popular tweets in the year

2012 (see Figure 5.1) convey sentiment information primarily by visual means. Thus, an open issue with

state-of-the-art sentiment analysis is the need of visual content analysis.

This problem poses a set of unique challenges as it addresses abstract human concepts in the sense

of emotion and affect. Typically, semantic concept detection builds on the physical presence of objects

or scenes like “car” or “building” being visible in an image. Sentiment could differ among persons as the

stimuli evoked human responses are naturally subjective. An analogy is given by Machajdik [MH10] by

formulating the affective gap3 as counterpart to the semantic gap in CBIR. To fill the semantic gap,

mid-level representations based on visual concepts have been proposed. In this work a similar proposal

is made by the discovery and detection of a set of visual concepts that can be used to fill the affective

gap and automatically infer the sentiment reflected in visual content. Please note that the presented

mid-level representation is more expressive than the ones stated in [WH08] as it has capability to explain

sentiment prediction results beyond color schemes.

In this chapter a novel approach towards sentiment analysis is presented, which is founded on the

semantic understanding of visual content. For this purpose based on Plutchik’s Wheel of Emotions [Plu80]

2Please note that, throughout this chapter sentiment will be defined similarly to [PL08], as the polarity of an opinion

item which either can be positive, neutral or negative
3gap between low-level features and the emotional content of an image reflecting a particular sentiment
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(a) Beautiful Clouds (b) Dark Clouds

(c) Cute Dogs (d) Dangerous Dogs

Figure 5.2: Four Adjective Noun Pair samples illustrating the capabilities of adjectives to change the sentiment

an image conveys and the potential to separate the visual space representing a noun such as “dog”.

a large-scale Visual Sentiment Ontology (VSO) of 3,000 semantic concepts is automatically constructed,

with each concept being selected according to the following criteria: (1) reflect a strong sentiment, (2)

has a link to an emotion, (3) be frequently used and (4) has reasonable detection accuracy.

To satisfy the above conditions, the idea of a semantic concept is extended to Adjective Noun Pairs

(ANP) such as “beautiful flower” or “disgusting food”. As seen in Figure 5.2 the advantage of ANPs, is

their capability to turn a neutral noun like “clouds” or “dog” into an ANP with strong sentiment, like

“beautiful clouds” or “cute dog” by adding an adjective with a strong positive sentiment and vice versa

by adding a negative adjective an ANP can be turned into a strong sentiment one like “dark clouds” or

“dangerous dogs”. Such combined phrases also make the concepts more detectable, compared to adjectives

only, e.g. an adjective concept like “beautiful” is abstract and hard to detect. Please note that by adding

adjectives to nouns the visual context of such combined pair concepts changes significantly allowing to

partition the corresponding visual space of nouns along the set of different adjective combinations. This

brings unique opportunities to the construction of underlining ontologies for visual learning.

Building upon the VSO this work introduces SentiBank, a library of trained concept detectors pro-

viding a mid-level visual representation with respect to VSO criteria. It is shown - through extensive

experiments - that reasonably reliable detector performance can be achieved for more than 1,200 ANP

concepts, which form SentiBank. Further, experiments within different application domains demonstrate

the usability of the proposed approach towards sentiment prediction: On image tweets, it improves state-

of-the-art text-based prediction accuracy by an absolute gain of 13%, emotion detection with comparable

results to state-of-the art methods, and CSA filtering with a reduction of EER from 14.0% to 8.3%. In

summary, this work presents the first visual analysis approach for sentiment prediction known to the lit-
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erature including - (i) - a systematic, data-driven methodology to construct an ontology from established

folksonomies, - (ii) - the large-scale Visual Sentiment Ontology founded on a well-known psychological

model, - (iii) - a mid-level representation built over this ontology helping to bridge the affective gap and

- (iv) - the public release of the VSO and its large-scale dataset, the SentiBank detector library, and the

benchmark for visual sentiment analysis.

In this chapter, first related work (Section 5.2) is discussed and the framework overview is given

(Section 5.3). After this, the design and construction methodology of the VSO (Section 5.4) and its

analysis (Section 5.5) are outlined. Further, SentiBank, the proposed mid-level attribute representation

will be described (Section 5.6). Finally, several application of SentiBank will be shown and evaluated

(Section 5.7) and the chapter closes with a discussion (Section 5.8).

5.2 Related Work

In this section an overview of research related to sentiment analysis is given. A review of conventional

concept detection approaches is omitted here as is it already given in Chapter 2. Instead, the related work

with respect to visual learning, which have a direct link to the presented work is covered. Starting with

an outline of textual sentiment analysis dealing with the extraction of personal opinion from natural

language, the section continues with the review of visual sentiment or related areas such as affect or

emotion detection from visual content. In addition, work in the context to ontology construction and

visual learning of mid-level feature or attribute representations will conclude the overview of related

work.

5.2.1 Textual Sentiment Analysis

Research in the area of automatic text analysis of opinion and sentiment dates back at the beginning

of the rise of the Internet [WWB01, DC01]. Originating from the field of subjectivity analysis [WR88]

the terms “sentiment analysis” and “opinion mining” were first introduced in the beginning of the 21st

century [NY03, DLP03]. According to the terminology proposed by [WWC05], the field focuses on the

automatic identification of personal states (i.e. opinions, sentiments) in natural language.

The prediction of sentiment has a rich background in creating dictionaries of positive or negative

words [ES06, WWH05] and the explicit investigation of polarities between words [ES06, TBP+10].

Here, different approaches have been presented, ranging from rule-based systems such as in Opinion-

Finder [WR05], semi-supervised learning [ES06], or unsupervised bootstrapping approaches [Tur02],

where initialized by two words such as “excellent” and “poor” a larger vocabulary is built by measuring

semantic closeness of other words and phrases to these points at the positive-negative scale. A compari-

son between systems employing Naive Bayes, Maximum Entropy Classification, and SVMs for sentiment

analysis can be found in [PLV02]. For further details please refer to the survey providing an overview in

this area [PL08].

The work in this chapter is similar to the above as it also builds a lexicon of words with a strong

sentiment. However, this lexicon is constructed particularly to serve for the visual learning of semantic

concepts. For this purpose a careful selection of concepts has to be undertaken with respect to ontology

construction in concept detection since not every word is visually learnable or detectable. For example,
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the word “love” has a very strong positive sentiment but is not visually graspable. Nevertheless, the

presented approach shares some similarity with the retrieval methods in [Tur02], who began to create a

larger lexicon from only two strong opposite sentiment. The ontology construction process follows this

idea and constructs the entire ontology automatically from 24 emotions serving as a seed vocabulary for

the presented data-driven sentiment word discovery.

5.2.2 Visual Sentiment Analysis

As previously outlined, with respect to sentiment analysis much progress has been made on text analy-

sis [ES06, TBP+10] and textual dictionary creation [ES06, WWH05]. However, efforts for visual anal-

ysis fall far behind. The closest that comes to sentiment analysis for visual content is the analysis

of aesthetics [DJLW06, MPLC11], interestingness [IXTO11], and affect or emotions [JWW+12, MH10,

YvGR+08, YUB+12] of images or web pages [WCLH11]. To this end, either low-level features are di-

rectly taken to predict emotion [LFXH12, JWW+12], or indirectly by facial expression detection [VW12],

or user intent [HKL12]. Similarly Wang [WJH+12], who introduced a so called high-level representation

of emotions, is limited indeed grouping low-level color scheme features. For more details please refer

to [JDF+11, WH08] for a comprehensive study of aesthetics and emotions in images.

Considering available datasets for evaluation, only a few small datasets exist today for affect / emotion

analysis on visual content. A prominent one is the International Affective Picture System (IAPS) [LBC99]

providing normative ratings of emotion (pleasure, arousal, dominance) for a set of color photographs. The

dataset consists of 369 photos covering various scenes showing insects, puppies, children, poverty, diseases

and portraits, which are rated by 60 participants using affective words. Similarly, the Geneva Affective

Picture Database (GAPED) [DGS11] dataset provides 730 pictures including negative ones (spiders,

snakes, scenes containing human rights violation), positive (human and animal babies, nature sceneries)

and neutral pictures. All pictures were rated according to valence, arousal, and the congruence of the

represented scenes. In Machajdik’s work [MH10], the Affective Image Classification Dataset includes

two separate datasets in the area of abstract painting (228 paintings) and artistic photos (807 photos)

labeled by 8 basic emotions through a crowd-sourcing procedure.

Compared to the above works, the proposed approach in this chapter is novel and ambitious in two

directions. First, it builds a large-scale ontology of semantic concepts reflecting a strong sentiment like

“beautiful landscape”or“dark clouds”as a complement to a textual sentiment dictionary [ES06, WWH05].

Such an ontology is the first of its kind and opens new research opportunities for the multimedia and

computer vision community. Additionally, in contrast to the above mentioned datasets the presented

work provides a significantly larger dataset (about 500,000) of images crawled from social media and

tagged with thousands of the ANP concepts. Furthermore, a separate image benchmark dataset from

Twitter has been created in the context of this work, which aims exclusively for a sentiment prediction.

5.2.3 Visual Learning with Ontologies and Concept Combinations

As outlined in more detail in Chapter 2, the challenge of automatically detecting semantic concepts

such as objects, locations, and activities in video streams - referred to as video annotation [ATY09],

concept detection [SW09], semantic indexing [OAM+12] or multimedia event detection [CCC+11] - has

been studied extensively over the last decade. In benchmarks like TRECVID [SOK06] or the PASCAL
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Figure 5.3: Overview of the proposed framework. As input a seed vocabulary in form of an emotional model from

psychology is given. Once such a initial vocabulary is defined the construction of the Visual Sentiment Ontology

(VSO) can be triggered. Founded on the final VSO a subset of concepts is trained and serves as detectors for

SentiBank. Once such a mid-level representation is available, different application domains can be realized, which

as input get an image or keyframe and compute a application scenario specific label as output.

visual object challenge [EVGW+10], the research community has investigated a variety of features and

statistical models.

There has also been much work in creating large vocabularies and datasets such as ImageNet [DDS+09],

consumer video [JYC+11], web video [TAP+10], or multimedia events [SMF+12]. Typically, such vocab-

ularies are defined according to their utility for retrieval, coverage and diversity, availability of training

material, and detectability by concept detection systems [NST+06, OAM+12]. Besides introducing large

concept ontologies recent approaches have also turned towards new types of semantic concepts struc-

tures such as bi-concepts [LSWS12] or TRECVID’s concept pairs [OAM+12]. These combined concept

structures extend the idea of single-noun-concept to noun-pair-concept learning to enable search for

two concepts co-occurring in visual content. For example, instead of constructing two single concept

detectors such as a “horse” and “girl” detector to spot a “girl riding a horse”, the idea is to train one

“girl riding a horse” detector by harvesting social images being retrieved with “girl + horse” for detector

training [LSWS12].

Also, over the last years a variety of practices have been proposed to bridge the semantic gap by the in-

troduction of mid-level feature or attribute representations [FZ07, LNH09, FEHF09, KBBN09]. Such rep-

resentations typically take the output of low-level features classifications as input for an additional learn-

ing of more specific target concepts. Examples include the learning of visual attributes [FZ07, BBS10,

LNH09, FEHF09, YJT+12, RFF12], the construction of signatures from large concept detection vocabu-

laries [HvdSS13, MHS13, TSF10] or the compilation of classifier banks such as ObjectBank [LSFFX10],

DetectionBank [ASD12], or ConceptBank [MGvdSS13b].

The presented approach aligns with this thesis in the sense that a mid-level representation of visual

content is introduced. The focus of this work, however, is less on supervised machine learning but

rather on the construction of an ontology of visually detectable ANPs serving as mid-level representation

of sentiment attributes in visual content. Compared to the above mentioned dataset collections or

combined concept structures, which focus on generic concepts including objects, scenes, location (nouns

only), the presented approach proposes novel adjective noun combinations allowing to capture sentiment

visually. Although single concepts such as“magnetic drive”as found in the dataset definition of [SMF+12]

could be considered as an adjective noun pair, the presented concept combinations in this chapter are

motivated entirely differently by creating strong sentimental concepts and therefore adding notable value
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Figure 5.4: The psychological model used for ontology construction. Plutchnik’s Wheel of Emotion [Plu80] with

its 24 emotions organized by 8 basic emotions placed in a circle with each having 3 valences. These emotions

serve as a seed vocabulary for the data-driven discovery of sentiment words.

as compared to “magnetic drive”. Further it focuses on web-based tags for visual learning as employed

in [KCK06, USKB10]. With respect to mid-level representations, this approach is to some extent related

to the construction of detection banks, which are utilized for the detection of more complex concepts such

as multimedia events. Also, to a certain degree, it shares similarity to ImageNet [RFF10] that is able to

demonstrates the ability to learn attributes like “round”, “furry” from its object ontology. Nevertheless

the introduction of adjective noun combinations in this chapter is unique in terms of known mid-level

representations.

5.3 Framework Overview

An overview of the proposed framework is shown in Figure 5.3. As input a seed vocabulary in form of an

emotional model from psychological is given. Once such a initial vocabulary is defined the construction of

the Visual Sentiment Ontology (VSO) can be triggered. Founded on the final VSO a subset of concepts is

trained and serve as detectors for SentiBank. Once such a mid-level representation is available, different

applications domains can be realized, which as input get an image or keyframe and calculate as output

an application specific label.

5.3.1 Psychological Foundation

To establish a solid foundation for the construction of the VSO it is desirable to utilize a well-known

emotional model derived from rigorous psychological studies. Besides early works such as Darwin’s

evolutionary motivation of emotions [Dar98], Ekman’s facial expression system [E+93] and Osgood’s

[OST57] appraisal and valence model, this work focuses on Plutchnik’s cone like circumplex Wheel of

Emotions model [Plu80]. As seen in Figure 5.4, the model is organized in 8 basic emotions, each having

3 valences being organized in a wheel like structure.
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Argumentation for Plutchnik’s Emotion Model

Plutchnik’s model is inspired by chromatics and aligns emotions along a wheel placing bi-polar emotions

opposite to each other. Since sentiment is characterized as bi-polar this property was found to be useful

for the construction of a sentiment ontology.

Further, the model maps well to psychological theories such as Ekman, with 5 basic emotions are the

same (anger, disgust, fear, sadness, surprise) and the last one, Ekman’s “happiness” does not significantly

differ from Plutchnik’s “joy”. Compared to the emotional model utilized in [MH10], Plutchnik basic

emotions correspond to all 4 negative emotions and have slightly different positive emotions, which

according to [MH10] does map well to Ekman’s original work on facial expression. In contrast, Plutchnik

introduced two additional basic emotions (interest, trust) and organizes each of them into 3 intensities

providing a richer set of different emotional valences. Data statistics confirm the contributions of each

emotion group in Plutchik to our final VSO as seen in Section 5.4.3.

5.3.2 Ontology Construction

As previously mentioned the ontology construction process is founded on psychological research such as

Plutchik’s Wheel of Emotions [Plu80]. During the first step - the data-driven discovery - for each of

the 24 emotions defined in Plutchik’s theory images and videos are retrieved from Flickr and YouTube

respectively to extract concurrent tags (e.g., “joy” leads to “happy”, “beautiful”, and “flower”). These

tags are then analyzed to assign sentiment values and to identify adjectives, verbs, and nouns. The set of

all adjectives and all nouns is used to form adjective noun combinations or Adjective Noun Pairs (ANP)

such as “beautiful flowers” or “sad eyes”. Those ANPs are then ranked by their frequency on Flickr and

sampled to form a broad and comprehensive ontology containing more than 3,000 ANP concepts. These

ANP concepts serve as a foundation for detector training.

Adjective Noun Pairs

ANPs play a crucial role in the entire framework. Therefore some characteristics of adjectives, combina-

tions of adjectives and adjective noun pairs are outlined next. The most essential purpose of their use in

natural language is their particular capability to modify nouns. A noun changes its context entirely when

combined with an adjective. Such modifying statements can be grouped into the following categories:

opinion (beautiful, ugly, funny), size (large, small, tiny), age (young, old, ancient), shape (round, long,

flat), color (yellow, blue, reddish), origin (German, western), material (wooden, metal), and purpose

(barking dog). These groups also play an important role for the proper order of adjectives when – as

common in the English language – used in combination with more than one adjective. For example one

can say: “This is a beautiful sunny day”. Such reinforced modifications of nouns, however, are not in the

scope of the presented work.

Adjective Noun Pairs or Paired Adjectives as basic language elements have been known from lin-

guistics since the learning about their association in the sixties [Pai63]. Recent work from Herman

investigated semantic relationship between a noun and its adjectival modifiers in the context of its cat-

egorization, lexical context, and the efficacy of the latent semantic representation for disambiguation of

word meaning [HBDP12]. Adjective noun pairs have also been used in the context of opinion analysis

from textual online reviews as done by the Review Spotlight system [YNTT11].
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5.3.3 Detector Bank Training

Based on the VSO and its representative dataset of Flickr images tagged with ANPs, a set of detectors

is trained. For each of the 3,000 ANP, one single detector is trained and validated with respect to its

performance. After selecting with reasonable performance a detector bank of as many as 1,200 ANP

concept detectors is fixed. This SentiBank called library of detectors provides a 1,200 dimensional ANP

detector response for a given image.

As illustrated in Chapter 2, a concept detection system consists of several feature classifier combina-

tions. From this perspective SentiBank can be considered a concept detection system with 1,200 concept

detectors, each comprised of a multi-feature classifier combination. The output of this detector bank can

be interpreted as a multi-dimensional (i.e. 1,200 dimensional) encoding of ANP concepts presence for

one image or keyframe. Following the detection output of one image or keyframe can be considered a

vector describing concept probabilities for e.g. “crying baby”, “beautiful sky”, or “angry face”.

5.3.4 Application Domains

The above described SentiBank output vector can be utilized in two ways: first the vector can be used

as a visual explanation of content translating an image into a set of strongly responded ANPs. Second,

it can be used as an input feature for an additional supervised classification based on a new dataset and

different type of labels for training. For example to train a new detector for sentiment prediction one

needs a dataset with sentiment labels to learn a mapping of the SentiBank output to in form of e.g.

“crying baby”→ “negative” and “beautiful sky”→ “positive”. This is also the motivation behind the

understanding of SentiBank as a mid-level representation of visual content.

Given this fact, the application domains of SentiBank’s ANP detectors are as broad as an appropriate

labeled dataset is given. To demonstrate SentiBank’s capability to generalize, the following application

domains will be investigated in this chapter:

• Sentiment Prediction: SentiBank is used to predict sentiment values of image tweets to augment

conventional sentiment prediction using text only

• Emotion Detection: SentiBank is used in the context of affective computing to detect different

emotions in images.

• Pornographic Filtering: SentiBank is used to filter explicit adult content and illegal CSA ma-

terial for law-enforcement support.

5.4 Visual Sentiment Ontology

In this section the design and systematic construction of the proposed Visual Sentiment Ontology (VSO)

and its underlying image collection is outlined. In general, the sentiment being reflected by visual content

is studied, i.e the perception by a human observer with respect to sentiment while looking at an image or

a video. The construction process is founded on visual content shared on social media such as Twitter,

Facebook, Flickr, or YouTube. The goal is to construct a large-scale ontology of semantic concepts,

which (1) reflect a strong sentiment, (2) have a link to an emotion, (3) are frequently used and (4) have
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Figure 5.5: Examples for top tags for the emotions “joy”, “terror”, “amazement”, and “disgust”, “admiration”,

“fear”, “trust”, and “distraction”. A green box indicates a positive sentiment, a grey box neutral sentiment and a

red box a negative one. As seen some emotions lead to a retrieval of tags being exclusively positive or negative

while some emotions lead to more neutral tags as output such as seen for “distraction”.

reasonable detection accuracy. Moreover the VSO has the aim to be comprehensive and diverse enough

to cover a broad range of different concept classes such as people, animals, objects, natural or man-made

places, and so on. In the following each construction step will be explained in detail as illustrated in

Figure 5.3.

5.4.1 Data-driven Sentiment Word Discovery

This section describes the extraction of sentiment words by automatically crawling Flickr and YouTube

with the previously mentioned set of 24 emotions from Plutchnik’s Wheel of Emotion as seed vocabulary.

The goal of this procedure is to retrieve a large set of images and videos from these platforms for tag

co-occurrence analysis derived from the given emotion queries.

Initial Image & Video Retrieval

For each of the 24 emotions a query is sent to Flickr and YouTube separately to retrieve images and

videos. To retrieve images from Flickr their API is used with multiple search settings including title,

description, and tags in combination with different time spans. In the case of video retrieval YouTube’s

API was used with separate category settings in combination with different time spans. An overview

of the outcome from this retrieval procedure can be seen in Table 5.1 (a). The entire procedure was

performed by the Lookapp tool [BUB11b] and led to a set of 310k retrieved media objects (150,034

images, 166,342 videos) in total. These images and videos were associated with 6.2M tags drawn from

a set of 55k distinct tags. Although each tag might be associated with potentially multiple images or

videos it can be seen that the set of distinct tags on Flickr is smaller than the one on YouTube (17,298

vs. 38,935) identifying the Flickr community as more consistent in the use of tags (not taking into

consideration that video content might be more diverse and therefore requires a larger tag vocabulary).

This way the initial seed vocabulary of 24 emotions can be seamlessly expanded by the tagging behavior

of users on Flickr and YouTube, covering two major platforms for visual content sharing on the Internet.

102



CHAPTER 5. ADJECTIVE NOUN PAIRS FOR VISUAL SENTIMENT ANALYSIS

Table 5.1: Statistics of the Visual Sentiment Ontology construction process. In (a) retrieval statistics from Flickr

and YouTube are shown. In (b) sentiment word analysis statistics are listed, and in (c) statistics about the VSO

and sample ANPs are given.

(a) Flickr YouTube (b) Sentiment Words

# of emotion queries 24 24 pos+neg adjectives 269

retrieved images or videos 150,034 166,342 neutral adjectives 0

tags 3,138,795 3,079,526 total adjectives 268*

distinct tags 17,298 38,935 pos+neg nouns 576

avg. tags per image or video 20.92 18.51 neutral nouns 611

distinct top 100 tags 1,146 1,047 total nouns 1,187*

distinct tags (both) 1,771 total verbs 138*

*adjectives, nouns, verbs do not sum up to total distinct tags due to unknown word such as “xbox”, “minecraft”, or “vlog”

(c) VSO Statistics

ANP concept candidates 320k

ANPs (non-empty image sets) 47k

ANPs included in VSO 3k

Strong positive sample ANPs beautiful sky, little baby, happy family, sweet chocolate, nice beach

Strong negative sample ANP dead animals, abandoned asylum, heavy storm, bad accident, scary bug

top positive adjectives beautiful, amazing, cute

top negative adjectives sad, angry, dark

top nouns face, eyes, sky

Top Tags Analysis

Once the set of images and videos is retrieved for each emotion, an analysis of tag co-occurrences can

be performed to automatically discover associations between emotions and user-generated tags. Prior to

analysis stop-words are removed and stemming is performed on the raw tag meta-data. Next, for each

set retrieved by an emotion query, an analysis is done and the top 100 tags for the set are ranked by their

tag frequencies. Additionally, the sentiment value of each tag is computed using two popular linguistics

based sentiment models, SentiWordNet [ES06] and SentiStrength [TBP+10]. In this chapter sentiment

is computed as

s(w) ∈ {−1, . . . , 0, . . . ,+1} (5.1)

with s(tag), the sentiment value of the word w having a continuous value from negative (−1) over

neutral (0) to positive (+1). Examples of such labeled top tags can be seen in Figure 5.5 for a subset

of the 24 emotions. Interestingly, positive emotions tend to lead to positive sentiment words and vice

versa. Nevertheless, there are also exceptions of emotions being associated with neutral tags as seen for

the emotion “distraction” leading to neutral tags such as “car”, “phone”, and “dog” among others.

As a result, for all 24 emotions in total a set of 2,400 top tags was collected from both, Flickr and

YouTube. It can obviously be the case that some tags might be retrieved by multiple emotion queries

(e.g. “beautiful” might occur in the meta-data of images and videos retrieved by the query “joy” and
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Figure 5.6: Co-occurrence matrix of tags being retrieved by multiple emotional queries based on the top 100

tags per emotion. There is a significant intersection of tags being used for emotion along the valence line of

the emotional model use. Further some emotions tend to share tags as assigned by the users of the Flickr and

YouTube platforms.

“serenity”) the total number of distinct tags is much lower. The co-occurrence of the top 100 tags over all

emotion is shown in Figure 5.6 color-coding the high overlap of shared tags between different emotions. It

can be seen that while people do select different tags for the 8 basic emotions they prefer to choose similar

tags for emotions along the valence lines (e.g “annoyance” and “anger” or “grief” and “sadness”). Also,

some emotions such as “surprise” and “joy” or “fear” and “sadness” are linked through their intersection

of underlying tags retrieved. As a final step each tag is categorized using Wordnet sysets, being either

an adjective, verb or noun allowing to separate the set of tags into grammatical building blocks for the

next step of the ontology construction. Overall, as shown in Table 5.1 (b), this procedure retrieved 1,146

distinct tags from Flickr and 1,047 distinct tags from YouTube forming the resulting set of 1,771 distinct

tags for both with 1,187 nouns (576 positive and negative ones and 611 neutral ones) and 268 positive

or negative adjectives. In general it can be said that during the retrieval and analysis more positive tags

were found than negative ones.

5.4.2 Adjective Noun Pair (ANP) Construction

Looking at the results of the previous step it can be seen that the 576 nouns discovered with positive

or negative sentiment would satisfy our initial condition (1) i.e. providing an ontology construction

with strong sentiment but the remaining 611 neutral nouns would not, forcing them to be dismissed.

Considering the adjectives, all 268 have either a positive or negative sentiment value (satisfying condition

(1)) but probably they would not satisfy condition (4): leading to a reasonable detection accuracy since

visual learning of adjectives is difficult due to their abstract nature and high intra-class variability. To

solve this dilemma, adjective noun combinations or Adjective Noun Pairs (ANP) are proposed to be the

explicit semantic concept structure of the VSO. The advantage of ANPs, when compared to nouns or

adjectives only, is the capability to turn a neutral noun into a strong sentiment ANP. Such combined

phrases also make the concepts more detectable, as compared to adjectives only.

104



CHAPTER 5. ADJECTIVE NOUN PAIRS FOR VISUAL SENTIMENT ANALYSIS

Table 5.2: Top ANPs for individual emotions from Plutchik’s model given the described mapping procedure.

Emotion Top ANPs

ecstasy illegal drugs, hardcore techno, sexy legs

joy happy smile, innocent smile, happy christmas

serenity calm serenity, peaceful serenity, serene lake

admiration fascinating places, charming places, excellent museum

trust christian faith, rich history, nutritious food

acceptance smooth curves, fat body, fat belly

terror undead zombie, bloody zombie, creepy horror

fear dangerous road, scary spider, scary ghost

apprehension derelict farm, candid teen, scenic reserve

amazement amazing talent, amazing scenery, amazing race

surprise pleasant surprise, nice surprise, precious gift

distraction drunk driver, noisy bird, excited child

grief grieving mothers, funerary monument, funerary statue

sadness sad goodbye, sad scene, sad eyes

pensiveness lovely garden, misty road, young adult

loathing illegal drugs

disgust nasty bugs, dirty feet, ugly bug

boredom tired feet, stupid sign, weird plant

rage damaged road, noisy bird, drunk driver

anger angry bull, angry chicken, angry eyes

annoyance loud noise, sour apple, freezing morning

vigilance -

anticipation magical garden, tame bird, curious bird

interest favorite architecture, great hall, fantastic architecture

Candidate Construction

The set of all positive and negative adjectives and the set of all nouns are now used to form ANPs

such as “beautiful flower” or “disgusting food”. After ANP concepts are formed, an extra text analysis

on DBPedia [ABK+07] is employed to avoid ANPs, being named entities with changed semantics (e.g.,

“hot” + “dog” leads to a named entity instead of a generic concept or “dark” + “funeral” leading to a

reasonable ANP but being associated with a dark metal band).

Obviously, during the construction of ANPs also the sentiment values of the adjective and the noun

have to be fused. This is done by the idea of sentiment value reinforcement. Namely, to combine the

corresponding sentiment values as following:

s(ANP ) = s(adj) + s(noun), s(ANP ) ∈ {−2, . . . ,+2} (5.2)

where s(x) denotes the sentiment value of x. With this model, neutral nouns are colored by the

sentiment values of the adjectives and strong sentiment values of adjectives and nouns are boosted such

as in “cute” and “baby” both being positive to a very positive ANP (s(cute baby) = +2) or “bloody” and
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“zombie” both being negative to a very negative ANP (s(bloody zombie) = −2).

However, in cases where adjective sentiment differs from noun sentiment the fusion of the combined

ANP sentiment must be done carefully. For example, in cases like “abused” being negative and “child”

being positive a straightforward fusion of sentiment values would obviously be wrong since both form the

ANP “abused child” reflecting definitely a strong negative sentiment and not a neutral one. To address

this issue, the presented system identifies cases whenever the sentiment of an adjective and a noun are of

opposite value. The ANP then inherits the sentiment value of the adjective. As observed, in such cases

the adjective usually has a stronger impact on the overall ANP sentiment than the noun.

Candidate Ranking

The outcome of the previous step leads to a set of 320k ANP candidates. These have to be filtered to

remove meaningless or extremely rare constructions like e.g. “frightened hat” or “happy happiness”. One

of the goals of the VSO is to represent popular ANPs in social media. To reach this goal the filtering

is done by frequency of ANP images found on Flickr and a subsequent ranking of all ANP candidates.

Having this ranked list of ANP frequencies, which is characterized by a long tail as seen in Figure 5.7

(left)), all ANPs with no images found on Flickr are dismissed. The remaining 47k ANP candidates are

taken as input for the final step, the sampling of the VSO. During this step cases are also eliminated

where a singular and plural ANP both appear to become part of the VSO. In such a case the the more

frequent ANP is taken and the other one is dismissed. For example, both nouns “dog” and “dogs” are

retrieved and may form the ANPs “cute dog” or “cute dogs”. However, because the ANP “cute dog” is

more frequently used on Flickr the plural version of the ANP is dismissed and therefore will not become

part of the VSO.

Ontology Sampling

The final sampling of ANPs is done under the condition to select only the most frequent and high

sentiment value ANPs from the list of ANP candidates to form a broad and comprehensive ontology. For

this, the frequency and sentiment values are fused together according to

score(ANP ) = freq(ANP ) ∗ |s(ANP )| (5.3)

where freq(ANP ) denotes the number of images found on Flickr. As a result the most frequent

and strong sentiment ANPs are sampled from the overall set of 47k candidates. Focusing on adjectives,

all candidate concepts are partitioned into adjective sets and from each adjective set its top n noun

combinations of ANPs are taken. Further only ANPs with sufficient (currently set to > 125) images

found on Flickr are considered. This guarantees the final VSO to be well balanced and diverse with

respect to adjectives and only contain ANPs with at least a minimum popularity on Flickr.

The final VSO contains more than 3,000 ANP concepts being organized in 268 adjectives and their

corresponding ANPs. Some of their strong positive APNs are: “beautiful sky”, “little baby”, and “happy

family”. The ANPs “dead animals”, “abandoned asylum”, and “heavy storm” are the negative counter-

parts. Adjectives with the highest number of noun combinations are “beautiful”, “amazing” and “cute”

representing positive adjectives and “sad”, “angry”, and “dark” representing the negative adjectives. In

the same sense, nouns which are combined with the most adjectives are “face”, “eyes”, and “sky”.
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Figure 5.7: Left: Count of images on Flickr per ANP. Right: count of CC images downloaded per ANP. Please

note that downloads were limited to max 1000 images per ANP.

5.4.3 Link back to Emotions

An interesting information is how the discovered ANPs are related to the emotions used in the very first

retrieval step. To construct such a mapping first counts of images that have both, the emotion term

and the ANPs string in their meta-data are retrieved. Theses values are then normalized to form the

resulting 24 dimension histogram to sum one. This way a two-directional connection between an emotion

and an ANP can be established. For example, the most dominant emotion for “happy smile” is “joy” and

vice versa for the emotion “disgust” the ANP “nasty bugs”. More examples can be seen in Table 5.2.

5.4.4 Flickr CC Dataset & Visualization Tool

An essential part of the VSO is the retrieved dataset of Flickr images representing each ANP. The images

are used as a dataset for SentiBank detector training (Section 5.6). Again the Flickr API was used to

retrieve and download Creative Common (CC)4 images for each ANP (limited to 1000 images) and ensure

that only images are included that contain the ANP string either in the title, tag or description of the

image. Following this condition sufficient amount of CC images were downloaded for 1,553 of the 3,000

ANPs (in total about 500k images). The distribution of the number of images can be seen in Figure 5.7

(right). Selected images of four sample ANPs are show in Figure 5.11 (left).

To help visualize the VSO and the associated large dataset, two novel visualization techniques were

used, one based on the Wheel of Emotion (shown in Figure 5.8, left) and the other implementing the

well-known TreeMap hierarchical visualization method (Figure 5.8, right). The Emotion Wheel interface

allows users to view and interact with the Plutchik 24 emotions directly and then zoom in to explore

specific ANP concepts and associated images. The TreeMap interface offers a complementary way of

navigating through different levels of the VSO - emotion, adjective, noun, and ANPs. At each level, the

map shows an intuitive visual summary of the number of images and the average sentiment value under

each node. Interactive demos of these visualization tools of the proposed VSO are available online5.

5.5 VSO Structure Construction and Analysis

So far the VSO consists of a list of ANP concepts derived by automatically mining Flickr and YouTube for

tags being associated with one of the 24 emotions of Plutchnik’s emotion model. However, an ontology

4http://creativecommons.org
5http://visual-sentiment-ontology.appspot.com/
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(a) (b)

Figure 5.8: VSO visualization interface providing an emotion-to-ANP mapping (a) and a Treemap browser (b)

which visualizes the entire ontology by navigating through different levels of the VSO including emotion, adjective,

noun, and finally the ANP level.

does not only consist of concepts but also relations among them that can be used for browsing and

reasoning about concepts within the ontology. To construct such ontological structures, an interactive

process has been conducted in which multiple subjects were asked to combine concepts into distinct

groups sharing coherent semantics among group members. The grouping process described is found on

a separate consideration of adjective and nouns extracted from the list of ANPs. Separating adjectives

and nouns allows the exploitation of relations unique for one of them which elsewhere would not have

been observable. As a result of this construction process, a hierarchical structure of nouns (total of 520)

was found to include 15 nodes at the top level with up to six levels depth. The adjectives (total of

260) were grouped to 6 nodes at the top level and two levels of depth. In these structures the standard

hyponym-hypernym (“is-a”) relations could be established in the noun hierarchy, while special relations

like exclusive (“sad”vs. “happy”) and strength order (“nice”vs. “great”vs. “awesome”) were found among

adjectives. Further a comparison of the constructed noun taxonomy and ImageNet [DDS+09] shows an

overlap of VSO nouns and ImageNet synsets but also a significant amount of nouns being unique for the

VSO, which are mainly related to strong emotions or sentiment as reported in more detail later in this

section.

5.5.1 Methodology

To construct such ontological structures, an interactive process was conducted in which multiple subjects

were asked to combine concepts into distinct groups. Each of such group should have a common semantic

coherence and allow for a meaningful arrangement of an group members. Consensus among subjects was

reached through result comparison and discussion. An overview of the construction process can be seen

in Figure 5.9. First, the list of ANPs was split into independent sets of adjectives and nouns. From these

two sets the resulting ontology was constructed, which consists of (i) an adjective grouping and (ii) a

hierarchical taxonomy of nouns. The performed grouping for adjectives and nouns was done with the

intention to allow exploitation of relations unique for adjectives or nouns.
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Figure 5.9: An overview of the ontology structure construction. First, the list of all ANPs is split into independent

adjective and nouns sets. Second, starting from these sets for all adjectives a meaningful grouping is established

and for all nouns a hierarchical taxonomy is created.

5.5.2 VSO Structure

The VSO ontology structure consists of two components, the adjective grouping and the hierarchical

taxonomy of nouns. While a structure such as “dog” is a “pet” is an “animal” consists entirely of nouns

from the VSO, a grouping for the following nouns “spring”, “summer”, “autumn”, and “winter” would

require the introduction of a structure element called SEASONS, which is not part of the VSO. Such

exceptions, where new structure elements have to be introduced are indicated by all uppercase characters.

In the following the two components will be described in more detail. A full overview of the distribution

of adjectives and nouns and the number group members for the top level can be seen in Figure 5.10.

Adjectives

A total of 260 adjectives could be extracted from the list of ANPs. The subset of SentiBank adjectives

was grouped to a two level structure with the following six nodes at the top-level: WEATHER RELATED,

OBJECT RELATED, LOCATION RELATED, PERSON RELATED, FOOD RELATED, and ANIMAL RELATED adjective

groups. Please note that although an adjective might belong to more than one group the best match for a

grouping was chosen. For example, the adjective “lonely” might be used in combination with “lonely girl”

or “lonely beach” either belonging to the group of PERSON RELATED or LANDSCAPE RELATED adjectives.

However for this task “lonely” was chosen to belong to the group of PERSON RELATED adjectives. A

complete overview of the groups can be found in the appendix in Figure B.1.

As seen in Figure 5.10 (left), the largest group of the VSO are PERSON RELATED adjectives, indicating

a strong link to human related ANPs describing either the appearance (beautiful, ugly), characteristics

(sick, drunk) or behavior (energetic, calm) of people. The second largest group of adjectives are LOCATION

RELATED adjectives implying a place’s emotional perception (safe, dangerous), characteristics (ancient,

dry), or a individual impression (amazing, inspirational). It can be seen from this, that the VSO covers
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Figure 5.10: The distribution of sub-nodes for each of the top level nodes for left: adjectives and right: nouns

of the VSO.

a broad range of different adjective groups on the one hand and is diverse enough within each adjective

group to focus on different aspects of nouns. A detailed overview of the antonyms (e.g. “beautiful” =
“ugly”) found can be found in Section 5.5.3.

Nouns

The full hierarchical structure for nouns can be found in the appendix in Figure B.2. A total of about

520 nouns were found to construct a broader and deeper structure as compared to the adjective grouping.

The hyponym-hypernym (“is-a”) relations, which were discovered in the noun hierarchy have up to six

levels of depth and 15 nodes at the top level. These top level nodes are either structural elements such

as PERSON, FICTIONAL CREATURES, MAN MADE PLACES, NATURAL PLACES, ACTIVITY, EVENTS, OBJECTS,

WEATHER CONDITIONS, TIME, ART PHOTOGRAPHY, and ABSTRACT CONCEPTS or nouns from the ANP list

such as vehicle, food, flora, and animal.

As seen in Figure 5.10 (right), the derived hierarchy focuses on PERSON related nouns with sub-nodes

such as specific groups (police, army, band, family), gender differentiation (girl, princess, widow, boy,

king, actor), and body parts (belly, head, face) and face related actions (kiss, smile, tears) with groups,

gender specific, body parts. However, the second largest top level node is ABSTRACT CONCEPTS being

either related to an individual human (feelings, friendship, addiction) or to society (religion, security,

freedom, art). This is followed by the third largest top level node: MAN MADE PLACES, with a broad

range of outdoor (city, street, graveyard, chateau, house) and indoor (bathroom, hall, desk, bed) related

nouns. From this observation it can be concluded that the VSO consists of both, nouns describing

specific objects and nouns capturing comprehensive sceneries. A comparison to known ontologies such

as ImageNet [DDS+09] and WordNet [Mil95] can be found in the next section.
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Table 5.3: Adjective antonyms relations as found in the VSO. Such elements are of particular interest since they

allow to form relationship of exclusion, which can be utilized for detector refinement.

Antonyms Relation

{sexy, attractive, beautiful, pretty, cute, adorable, handsome} = {ugly, fat, chubby}
{evil, violent, angry, grumpy, rough, harsh} = {innocent, friendly, helping}
{healthy, nutritious, fresh} = {smelly, fat, greasy, rotten}
{laughing, smiling} = {screaming, crying, grieving}
{sunny, clear} = {cloudy, misty, rainy, stormy}
{colorful, bright, shiny, sparkling} = {dark}
{delicious, yummy, tasty} = {disgusting}
{peaceful, quite} = {loud, noisy, barking}
{dry, dusty} = {wet, slippery, muddy}
{energetic, excited} = {tiered, sleepy}
{hot, warm} = {cold, freezing, icy}
{healthy} = {hurt, ill, sick, sore}
{terrible} = {fantastic, excellent}
{sweet} = {salty, bitter, sour}
{sad, lonely} = {happy}
{scared} = {calm, brave}
{empty} = {crowded}
{safe} = {dangerous}
{candid} = {lying}
{curious} = {shy}
{clean} = {dirty}
{rich} = {poor}
{young} = {old}
{wild} = {tame}

5.5.3 VSO Analysis

This section describes the characteristics of the previously introduced ontology structure with respect to

adjectives and nouns. Once a structure is available its characteristics can offer valuable clues about the

interplay and relations between ANPs.

Use of Structural Elements

As mentioned in the previous section, STRUCTURAL ELEMENTS have been introduced for the meaningful

grouping of adjectives or nouns. This elements are not part of the ANP list of VSO but aim to organize

the ontology. According to Figure B.1 and Figure B.2 from the appendix, there are 37 such elements as

compared to a total of several hundred regular nodes in the ontology structure of the VSO. As already

discussed, the hierarchical taxonomy of nouns is larger and more complex than the adjective grouping

counterpart. Therefore, from those 37 elements, 6 belong to the top level nodes of the adjective groups

and 11 to the top level nodes of the hierarchical taxonomy leaving the remaining 20 to be inner nodes of

the noun hierarchy.
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Table 5.4: Adjective Supportive Relation as found in the VSO. Such relations might be useful to reinforce detector

scores from the SentiBank output.

Supportive Relation

delicious > yummy > tasty > healthy > nutritious > fresh > smelly > greasy > rotten

outstanding > incredible > amazing > stunning > awesome > great > nice

sexy > attractive > beautiful > pretty > cute > adorable > handsome

sunny > clear > cloudy > misty > wet > rainy > stormy

evil > violent > angry > grumpy > rough > harsh

hot > warm > cold > freezing > icy

dry > dusty > wet > slippery > muddy

friendly > pleasant > gentle > calm

creepy > haunted > scary > strange

hurt > bloody > ill > sick > sore

loud > noisy > peaceful > quiet

ancient > traditional > classic

gorgeous > charming > lovely

crazy > insane > mad

ugly > chubby > fat

fantastic > excellent

derelict > abandoned

laughing > smiling

damaged > broken

tired > sleepy

crowded > busy

stupid > dumb

little > tiny

Adjective Relations

As shown the set of adjectives from the VSO provides particular relations such as antonyms e.g. “cloudy”

= “sunny” and supportive properties such as “hot”> “warm”. An overview of such relations can be seen

in Table 5.3 for antonyms and Table 5.4 for supportive relations. It can be seen that the antonym

relations can be organized in sets of up to 7 elements, each adjective of the set being fully able to serve

as an antonym for its adjective counterpart. Also, the number of positive and negative adjectives is

imbalanced towards the positive ones. This observation goes hand in hand with the previously observed

imbalance between positive and negative ANPs of the VSO. Regarding supporting relations or reinforcing

relations, two conclusion can be drawn: First a link exists with the above mentioned antonym relations

and second, they should be considered as a continuous strength signal useful for weighting rather than

a binary exclusion one as implied for antonym relations. These relations play an important role in

the assessment of ANPs and could be incorporated into the detection process to refine ANP detector

responses. For example, the simultaneous detection of a “sunny sky” and a “cloudy sky” indicated the

need for refinement in the final detection. Such a refinement can be understood as concept relation

modeling as seen in Chapter 2.
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Comparison to ImageNet and WordNet

Although the VSO has a specific purpose and utility, it is of interest to compare the VSO structure

to known ontologies such as ImageNet and WordNet. WordNet [Mil95] is known as a large lexical

database of the English language representing all adjectives, verbs, and nouns of the language as sets

of cognitive synonyms (synsets). The purpose of WordNet is to support computational linguistics and

natural language processing research. In contrast to this, ImageNet [DDS+09] aims to provide a large

dataset of image samples for the subset of WordNet nouns.

Because the VSO puts an emphasis on visual content, the focus of the comparison is put on ImageNet

treating WordNet as the superset of all elements of natural language. Please note that, while the VSO

does consist of adjective and noun combinations, the comparison with ImageNet is based on the set of

all nouns extracted from ANPs. The comparison of the constructed noun taxonomy and ImageNet with

its 21,841 synsets shows that 59% of the VSO nouns can be mapped to ImageNet synsets by comparing

synset names with noun nodes of the VSO structure. This leads to 41% of VSO nouns not being covered

by ImageNet, although being found in WordNet. These concepts unique to VSO, are mostly related

to abstract concepts such as “violence” or “religion”, which reflect strong emotions or sentiments. This

confirms the unique focus on emotions and sentiments in the concept discovery process of VSO, as

described earlier in this chapter.

5.6 SentiBank

Derived from the Visual Sentiment Ontology constructed above, SentiBank, a novel sentiment classifi-

cation framework, is proposed. It encodes the output of ANP detectors into a mid-level concept repre-

sentation. SentiBank’s objective is to detect ANP concept presence and to characterize the sentiment

reflected in visual content (although in the next section it will be shown that SentiBank’s capabilities are

not limited to sentiment prediction only). In this section several key issues regarding the construction

of SentiBank are addressed. First, ANP label reliability will be discussed, then the design of individual

ANP detectors and their detection performance are reported. Finally the usage of special features within

SentiBank will be outlined.

5.6.1 Reliability of ANP labels

It is well known that web labels (image or video) may not be a reliable indicator or concept pres-

ence [UBB10, DDS+09, USKB10] (Chapter 4 covers this issue). Since the underlying dataset for Sen-

tiBank’s detector training is acquired from Flickr and ANP labels are given by Flickr users, a setup is

given, where such pseudo labels might be either “false positives”, i.e. an image is labeled by an ANP but

actually does not have the ANP in the image content or “false negatives”, i.e. if an image is not labeled

by an ANP it does not automatically imply the ANP is not present in the image. For instance, an image

labeled with “cloudy sky” may not show a cloudy sky and vice versa, an image labeled with “beautiful

girl” may also show a “happy face”, even though the label has not been given to the image.
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Figure 5.11: Left: Selected images for four samples ANPs, (a),(c) reflecting a positive sentiment and (b), (d),

a negative one. Right: top detected images by SentiBank ANPs with high detection accuracy (top) and low

accuracy (bottom). Correct detections are surrounded by green frames and incorrect ones are surrounded by red

frames.

Dealing with Pseudo Web Labels

Considering pseudo positive labels and the potential of false positives, the reliability of ANP labels is

evaluated by an Amazon Mechanical Turk (AMT) experiment6. Sample images are randomly sampled

from 200 ANP concepts to manually validate their image labels, namely using AMT Turker judgment

to check whether an image indeed contains the corresponding ANP. Each image label is validated by 3

Turkers and is treated as “correct” only if 2 Turkers agree that the image is showing the given ANP label.

Results of this experiment show that a very high percentage (>90%) of AMP image labels are actually

“correct”, which indicates that the careful selection of images which indeed contain the ANP name in

their title, description, or tags lead to a low fraction of false positive ANP labels.

Unfortunately, on the false negative case, such a label validation is too exhausting to be feasible

since it would require to fully label all images for all ANPs asking to perform roughly 1.5 Billion label

judgments7 in total. This is also an open issue for existing crowdsourced visual recognition benchmarks

such as ImageNet ILSVRC2010-20128, ObjectBank [LSFFX10] and Classemes [TSF10]. Recently, in

ILSVRC2013, researchers have also started to fully label the presence / absence of all synsets in every

test image. To deal with this issue, the negative class is randomly sampled from positives of other ANPs

except the ones that are highly related, such as ANPs with the same adjective or noun. This way the

probability to include a false negative can be minimized, while avoiding the prohibitive task of labeling

the entire dataset for every ANP concept.

Training and Testing Partition

The training set for each ANP is sampled with 80% of positive pseudo labeled images (on average 256

pseudo positive images per ANP) of the ANP class and twice as many negative ANP samples using the

subsampling scheme described above. For testing, two different test sets are prepared, denoted as the full

6https://www.mturk.com/mturk/
7need to verify 3,000 ANPs pseudo labels in each of the 500,000 images
8http://www.image-net.org/challenges/LSVRC/2013/index
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(a) individual detectors (b) fusion schemes

Figure 5.12: Left: Comparison of ANP detectors using different features. Performance computed by averag-

ing over 5 runs of the reduced testsets. Right: AP@20 of ANP detectors using different fusion approaches.

Performance computed by averaging over 5 runs of the reduced testsets.

and reduced test sets (on average 64 pseudo positive images per ANP). Both use the remaining 20% of

pseudo positive samples of a given ANP as positive test samples. But the amount of negative samples are

different - the full testset includes 20% pseudo positive samples from each of the “other” ANPs (except

those with the same adjective or noun). This leads to a balanced training set and a large and diverse test

set for individual detector performance evaluation. However, the prior of the positives in each test set is

very low, only about 1/1,553. The reduced testset, intended for fast implementations and balanced test

sample distributions, includes much less negative samples - the number of negative test samples for each

ANP is just twice as many as the positive samples. To avoid test set bias, also 5 runs are performed of

the reduced test set, each of which includes different negative samples while keeping the positive samples

fixed. This arrangement will be used for later experiments and performance will be averaged over these

5 runs (Figure 5.12 and Figure 5.13) in this chapter.

5.6.2 ANP Detector Training

Once the partition of the dataset into training and test sets is done, detector training can start. For each

ANP from the VSO a detector is trained according to the following concept detection pipeline setup.

Visual Feature Design

Following the feature design for state-of-the-art visual classification systems such as ObjectBank [LSFFX10]

and Classemes [TSF10], the following generic visual features for ANP detector training are employed: a

3 × 256 dimensional Color Histogram extracted from the RGB color channels, a 512 dimensional GIST

descriptor [OT01] since a significant proportion of ANPs relate to scenes like “beautiful landscape”, a

53 dimensional Local Binary Pattern (LBP) descriptor suitable for detecting textures and faces, a Bag-

of-Words quantized descriptor using a 1, 000 visual word dictionary with a 2-layer spatial pyramid and

max pooling, and finally a 2, 659 dimensional Classemes descriptor [TSF10] to characterize abstract

ANPs. Additional features specialized in detecting objects, faces, or aesthetics will be presented later in

Section 5.6.4.
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Figure 5.13: AP@20 (average over 5 runs of the reduced testsets) vs. frequency of 1,553 ANP detectors ranked by

detector performance. It can be seen that the performance of the detector is not tightly bound to the frequency

of available training samples. Note only a subset of ANP names are shown due to limited space.

ANP Detector Training and Evaluation

Due to the large amount of ANPs in the ontology, Linear SVMs are utilized to train ANP detectors

and to ensure high efficiency. Parameter tuning of the SVM was performed by a 5-fold cross-validation

optimizing Average Precision at rank 20 (AP@20), a performance measure focusing on the accuracy of

the top ranked samples. Detector performance was measured also by the Area Under Curve (AUC),

describing the probability to rank a random positive sample higher than a random negative one. Finally,

the third measure is the F-Score, describing the harmonic mean between precision and recall. All three

measures are considered standard measures for detector evaluation as seen in Chapter 2.

Results of detector performance using various features can be seen in Figure 5.12 (left). Here a clear

dominance by the attribute features followed by Bag-of-Words (BOW) can be observed. Considering

feature fusion, both early and late fusion schemes are evaluated. The former refers to merging and

normalizing different feature vectors into a single vector. The latter refers to the fusion of detector scores

after classification. Figure 5.12 (right) illustrates the results of different fusion methods including Early

Fusion, Weighted Early Fusion, Late Fusion, and Weighted Late Fusion9. It can be seen that Weighted

Late Fusion out-performs other fusion schemes by a small margin, while the performance of early and

late fusion is quite close. For implementation simplicity, an early fusion approach will be used in the

released SentiBank detectors.

5.6.3 SentiBank Construction

The described training step is performed for each individual ANP. After training each detector is tested

against the given testset and its performance is evaluated. Based on this evaluation SentiBank is con-

structed.

ANP Detectability Overview:

An important step in building SentiBank is to select only ANPs with reasonable detection accuracy.

First, the ANP detectors are ranked based on the previously described performance measures such as

F-Score, AUC, or AP@20. It is worth to note that selections based on F-Score, AUC, or AP@20 only

9weights are also tuned by cross-validation
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slightly affect the relative orders of ANPs. Then the top 1, 200 ANP detectors are selected, all of which

have non-zero AP@20 and most have an F-score greater than 0.6, when evaluated over the reduced

testset.

It is interesting to see (as shown in Figure 5.13) that there is no correlation between the detectability

of an ANP and its occurrence frequency. Instead, the difficulty in detecting an ANP depends on the

content diversity and the abstract level of the concept. Figure 5.11 shows some examples of the best and

worst performing ANPs based on AP@20.

5.6.4 Special Visual Features

As reported in [BJC+13] also several special features have been tested for training the SentiBank de-

tectors. First, since many of the ANP concepts are associated with objects, object detection techniques

are utilized to localize the concept within an image. For the entire set of SentiBank detectors 210 ANPs

are chosen that are associated with detectable objects such as people, dogs, or cars. Having these ANPs

identified, the object detection tools from [LSFFX10] are applied and combined with multi-scale detec-

tion results to form a spatial map constraining the image region from which the visual features described

in Section 5.6.2 are extracted. Another option is to take the object detection response scores directly

as features. Doing so, facial features on 99 ANPs with nouns like face, smile, tears, etc. are evaluated.

These include the detected face count, relative face size, relative facial marker position and Haar features

at the markers. Thirdly, aesthetics related features on the entire list of ANPs are tested. These features

from [BSS11] include dark channel and luminosity features, sharpness, symmetry, low depth of field,

white balance, etc. The above three groups of features increase the mean AP@20 score of selected ANP

sets by 10.5%, 13.5% and 9.0% (relative gains) respectively on the reduced testset and the mean AP@100

by 39.1%, 15.8% and 30.7% on the full testset. Based on the above comparisons, the conclusion can be

drawn that generic features offer a competitive solution for detecting ANP visual sentiment concepts,

while special features offer great potential for further improvements.

5.7 SentiBank Applications

In this section several applications of SentiBank are presented. Since the initial motivation to construct

the VSO and create SentiBank is to capture the sentiment reflected in visual content, the first evaluation

of SentiBank focuses on sentiment prediction in image tweets as an application domain.

Nevertheless, since the potential of SentiBank as a mid-level representation of visual content reaches

beyond sentiment prediction two additional application domains are presented. They include emotion

classification against a well-known emotion dataset of art photos [MH10] and the detection of pornography

in general and filtering of CSA material in particular.

5.7.1 Sentiment Prediction

With respect to sentiment prediction, state-of-the-art approaches typically rely on text-based tools such

as SentiWordNet [ES06] or SentiStrength [TBP+10]. However, due to the length restriction of 140

characters in tweets, such approaches are challenged by the short amount of text. Even humans are

often unable to correctly discern the sentiment of the text content as seen in the beginning of this
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(a) True stuff. I have mad re-

spect for all the ladies that DO

NOT give in to abortion.

(b) #groundzero #hurricane-

sandy #newjersey

(c) ouch mr police man

Figure 5.14: Three random sample tweets from the photo tweet dataset with their photos and textual content.

chapter by the challenging tweet examples from Figure 5.1. To overcome this issue, SentiBank is used

to complement and augment the text features with visual analysis for sentiment prediction.

Photo Tweet Sentiment Benchmark Dataset

Unfortunately, no dataset exists in the literature which puts a particular emphasis on sentiment prediction

from photo tweets i.e. textual tweets containing a shortened URL pointing to a photo. Examples of such

tweets can be seen in the initial example of this chapter (Figure 5.1). In the context of sentiment

prediction such a dataset should provide not only photo tweets but also annotations with labels such as

“positive”, “neutral”, or “negative” or related sentiment valence scores. Because of the non-existence of

such a benchmark dataset, the first step in the evaluation of SentiBank is the creation of a photo tweet

dataset including data acquisition and ground truth labeling. Please note that although sentiment is

often specific to a particular domain such as movies, food, or politics, for this study a generic approach

covering the broad spectrum of tweet topics is adopted.

Hashtag Selection The benchmark dataset created for the experiments in this section is retrieved

using the PeopleBrowser API10 by collecting tweets containing photos according to the following popular

hashtags:

• Human: #abortion, #religion, #cancer, #aids, #memoriesiwontforget

• Social: #police, #nuclearpower, #globalwarming, #gaymarriage,

• Event: #election, #hurricanesandy, #occupywallstreet, #agt (america got talent), #nfl, #black-

friday, #championsleague, #decemberwish

• Person: #obama, #zimmerman

• Location: #cairo, #newyork,

• Technology: #android, #iphonefan, #kodak, #androidgame, #applefan.

10https://www.peoplebrowsr.com

118

https://www.peoplebrowsr.com


CHAPTER 5. ADJECTIVE NOUN PAIRS FOR VISUAL SENTIMENT ANALYSIS

Figure 5.15: The volumes and label disagreements for different hashtags. For each hashtag, the total number

of images is shown, in addition to the number of images receiving complete disagreement among turkers (i.e., 3

different sentiment labels: positive, negative and neutral), while labeling is done using text only, image only, and

joint image-text combined.

The spectrum of hashtags for retrieval of photo tweets covers a broad range of topics starting from

human, social, event, person, location, to technology related areas. As seen, the set of hashtags selected

for retrieval aims at controversy topics which have a higher probability of providing polarizing opinions.

The resulting dataset consists of 20 to 150 images per hashtag (in total 2,115 images were collected),

which were crawled during August 2012. Some random example photo tweets can be seen in Figure 5.14.

As illustrated these photo tweets are characterized by significantly less text than the regular 140 character

restriction given by Twitter. They also only list different hashtags or do not provide textual descriptions

at all.

Ground Truth Labeling: Up to now an open question is if, considering ground truth labeling, photos

have the potential to support sentiment prediction if textual data is already available i.e. does the

inclusion of photos provide additional help for humans in judging the sentiment of a photo tweet. To

obtain sentiment ground truth for the collected image tweets, three labeling runs have been conducted

using AMT, namely image-based, text-based, and joint text-image based runs. They correspond to image-

only inspection, text-only inspection, and full inspection of both image and text contained in the tweet.

For each labeling run, 3 randomly assigned Turkers are asked to label text, an image or the entire image

tweet independently i.e. no Turkers are asked to annotate the same tweet under different modality

settings. Figure 5.15 shows the labeling statistics, where an image is defined as “agreed”, if more than

2 Turkers assign the same label (either positive, negative or neutral). From the result it can be clearly

seen that, joint text-image based labels are the most consistent ones, followed by image-based labels and

then the text-based labels. This indicates the limitation of text-based sentiment analysis for Twitter if

photos are involved and highlights the potential for a holistic sentiment analysis using both the image

and text analysis. However, in the end, only the photo tweets are included in the benchmark that receive

unanimously agreed labels from three Turkers of the joint image-text annotation as the final benchmark

set. It includes 470 positive tweets and 133 negative tweets over 21 hashtags, among which 19 hashtags

each with more than 10 samples are shown in Figure 5.16.

119



5.7. SENTIBANK APPLICATIONS

Table 5.5: Comparison of Tweet Sentiment Prediction Accuracy. Results are illustrated in a matrix for comparison

of textual, visual, and combined sentiment prediction accuracy. Evaluated systems are shown at the left ranging

from (1) to (8) with SentiBank outperforming all evaluated baselines.

text only visual only SentiStrength + SentiBank

(1) Naive Bayesian 0.57 - -

(2) SentiStrength 0.61 - -

(3) Low-level features + Linear SVM - 0.55 -

(4) Low-level features + Logistic Regr. - 0.57 -

(5) SentiBank + Linear SVM - 0.67 -

(6) SentiBank + Logistic Regr. - 0.70 -

(7) SentiBank + Linear SVM - - 0.68

(8) SentiBank + Logistic Regr. - - 0.74

Text Based Classification Baselines:

First, text only sentiment prediction baselines are established. These are used as comparison to evaluate

image sentiment prediction performance and joint text and visual sentiment prediction performance. Two

text-based sentiment predictor baselines are adopted: (1) Naive Bayesian text-based Sentiment

Classifier:

Score =
1

M

M∑
m=1

Frequencym × Scorem (5.4)

in which Score is the sentiment prediction score normalized to [-1,1], M the number of unique words after

stemming and stop word are removed, Frequencym the frequency of word m, and Scorem is the individual

sentiment score of word m obtained from SentiStrength. (2) SentiStrengh API: To directly leverage

state-of-the-art sentiment prediction the publicly available SentiStrength API11 is used as baseline. Here,

for the entire tweet text a sentiment score is retrieved.

Baseline results can be seen in Table 5.5 (lines 1-2). It can be seen that SentiStrenght API perdition

accuracy based on the entire tweet text is higher than the one combining scores of individual words using

the Naive Bayesian method.

Visual-based Classification Performance:

As mentioned before, SentiBank serves as an expressive mid-level representation of visual concepts. For

each image SentiBank provides a 1,200 dimensional ANP response, which is used as an input feature for

the sentiment classification. Here, classifiers such as Linear SVM and Logistic Regression are employed.

To this end, the aim is not only to predict the sentiment being reflected in images but also to provide an

explanation of the given prediction. This is achieved by providing a list of top responding ANP detectors

in addition to the sentiment prediction label.

First, the proposed SentiBank mid-level representation is compared with low-level features (the same,

which were used for ANP detector training) using two different classification models, LinearSVM and

Logistic Regression. For low-level features, the same setup is used as those described in Section 5.6.2

11http://sentistrength.wlv.ac.uk/
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Figure 5.16: Photo tweet sentiment prediction accuracy over different hashtags by using text only (SentiStrength),

visual only (SentiBank), and a combination of both. Accuracy is averaged over 5 runs.

(color histogram, GIST, LBP, BoW, and attributes). Prediction accuracy is shown in Table 5.5 (lines

3-6) and confirms the significant performance improvement (more than 20% relatively) achieved by the

SentiBank features. The logistic regression model is also found to be better than Linear SVM.

Joint text-image Classification Performance:

Finally, a combined sentiment prediction accuracy is presented and compared to the previous setups.

Here, SentiStrength is used in a late fusion setup with SentiBank to predict sentiment labels. As pre-

viously seen visual based methods using SentiBank concepts are significantly better than the text only

ones (70% from line 6 vs. 61% from line 2 in Table 5.5). By further analyzing the results, one can rec-

ognize that most of the text contents in the tweets are short and neutral, explaining the low accuracy of

text-based methods in predicting the sentiment. In such cases, the sentiment values of the visual content

predicted by the SentiBank-based classifiers play a much more important role in predicting the overall

sentiment of the tweet. However, when further combining both systems to a joint image-text based

sentiment prediction a significantly better performance can be achieved than visual-only or text-only, by

4% and 13% absolute gains respectively (Table 5.5, lines 7-8).

Figure 5.16 shows a comparison of sentiment prediction accuracy for each individual hashtag. Here,

its can be seen that the visual-based approach using SentiBank concepts consistently outperforms the

text-based method using SentiStrength API, except for one hashtag (“hurricanesandy”). It is also very

encouraging to see combining text and SentiBank features further improves accuracy for several hashtags,

despite the low accuracy of the text-based method.

Results of a few sample images can be seen in Figure 5.17. Here, SentiBank’s capability in explaining

predictions is illustrated by showing a list of top ANPs detected in each test image.
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Figure 5.17: Sentiment prediction results for sample image tweets using SentiBank as features (top icon: ground

truth sentiment, bottom icon: predicted sentiment). On the right the top responding ANPs found in the sentiment

prediction model.

5.7.2 Emotion Classification

Although the initial motivation for SentiBank was to predict sentiment reflected in images, a comparison

of the proposed method performing emotion classification might be of interest. Here, SentiBank is

evaluated for emotion classification and compared to the performance of [MH10]. The dataset in [MH10]

is based on ArtPhotos retrieved from DeviantArt.com and contains 807 images covering 8 emotion

categories. This kind of evaluation poses a set of challenges such as the domain change i.e. SentiBank

is trained on a different set of images than the test set. Moreover, the emotion categories are slightly

different, not mentioning the emphasis of SentiBank as a framework with generic visual features rather

than the specialized affective features used in [MH10]. During the evaluation a similar process to select

features is followed for each emotion category by using the weights of individual features, combined with

the Naive Bayesian classifier. Results are reported in Figure 5.18. Even in such a challenging setting,

SentiBank compares relatively well to [MH10] when using the same classification model (Naive Bayesian)

and even slightly outperforms the best results in [MH10] when using the presented Logistic Regression

model. This illustrates the applicability and potential of SentiBank for applications in different domains.
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Figure 5.18: Emotion classification performance compared with [MH10] using the ArtPhoto dataset.

5.7.3 Digital Forensics

Another application scenario for SentiBank is the filtering of illegal pornographic content to support

law enforcement during investigations. In particular, this includes the content-based detection of regular

pornography [JUB09, USBS12] and the detection of child sexual abuse (CSA) material [US11]. In this

context SentiBank is tested to detect Adult vs World, CSA vs World, and CSA vs Adult content. In

collaboration with police partners and European cyber-crime units, experiments on three datasets were

conducted. Each datasets consists of 20,000 images with “World” images being randomly downloaded

from Flickr; “Adult” images being acquired from explicit pornographic websites including different cat-

egories such as amateur, mature, teen, and others; and finally “CSA” images being provided by law

enforcement as real world illegal child pornographic classified content12.

SentiBank was evaluated against several low-level features such as color-correlograms [HKM+97],

visual words [SZ03], visual pyramids [LSP06] and a skin detection [DPN08], commonly used in pornog-

raphy detection. For classification SVM with RBF and χ2 kernel were used (parameters were optimized

by 5-fold cross-validation).

Detection results can be seen in Table 5.6. The evaluation reveals the potential of SentiBank for this

application scenario. As seen, the utilization of SentiBank features shows the best performance for the

Adult vs World and CSA vs World test runs. For the very challenging CSA vs Adult setup, SentiBank

perform similar to the best performing system using colorcorrelogram features. In all three test runs

a late fusion of features could further improve detection with SentiBank, always providing the largest

contrition in terms of fusion weights. However, when compared to low-level features SentiBank has the

advantage of explainability, a property often requested by low-enforcement. Due to the ANPs assigned

to each SentiBank score, the results of single image classifications lead to the following insights about

the characteristics of pornography and CSA material as seen in Figure 5.19. The results show that for

12Given the illegal nature of CSA data only numeric feature information was provided by law enforcement.
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5.8. DISCUSSION

Table 5.6: SentiBank feature performance and fusion results adding important low-level features. The learned

weights indicate that SentiBank provides the most valuable information, except for CSA vs. Adult where it

contributes equally with color-corellograms.

Adult vs World CSA vs World CSA vs Adult

Feature AVP EER AVP EER AVP EER

SentiBank 0.9715 0.0904 0.9712 0.0832 0.8996 0.1746

colorcorrelogram 0.9531 0.1075 0.9293 0.1403 0.9107 0.1683

vispyramids 0.9510 0.1145 0.9136 0.1608 0.8741 0.2058

viswords (dense) 0.9453 0.1208 0.9138 0.1613 0.8758 0.2028

skin segment 0.9242 0.1365 0.8132 0.2643 0.7424 0.3360

fused 0.9797 0.0726 0.9781 0.0622 0.9470 0.1080
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Figure 5.19: Top 50 responding SentiBank detectors, averaged over 20, 000 pornographic (l) and child porno-

graphic (r) images. The ANPs for both classes reveal a prominent relation to body parts (eyes, chest, teeth, legs,

feet). Additionally, top ANPs for adult class images often contain the term girl, while for CSA class images baby

appears more frequent indicating a child’s presence.

adult material the adjectives “hot” and “sexy” are often present, while “cute” and “tiny” appear frequently

for CSA content. The ANPs for both classes reveal also prominent relation to body parts (eyes, chest,

teeth, legs, feet). Additionally, top ANPs for adult class images often contain the term girl, while for

CSA class images baby appears more frequently indicating a child’s presence.

5.8 Discussion

In this chapter an approach towards the prediction of sentiment reflected in visual content has been

presented. To reach this goal a systematic, data-driven methodology was proposed to construct a large-

scale Visual Sentiment Ontology (VSO) based on psychology and folksonomies. Further, SentiBank was

introduced, a concept detector library of 1,200 ANPs, which is derived from the constructed ontology

providing a novel mid-level representation helping to bridge the affective gap.

The presented SentiBank features were demonstrated to outperform other low-level feature represen-
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CHAPTER 5. ADJECTIVE NOUN PAIRS FOR VISUAL SENTIMENT ANALYSIS

tations for the task of sentiment prediction and pornography detection. For the task of detecting emotions

reflected in images, SentiBank performed comparable to state-of-the art methods. Finally, all material

was released publicly, including the concept ontology, its representing dataset, the detector library, and

the benchmark for visual sentiment analysis to the public to stimulate research in this direction.

Considering future work, several exciting questions are open for investigation. First, the cultural

influence on perceiving sentiment and emotion is of interest. In particular it would be interesting to

investigate if there is a unified understanding of sentiment around the world as done by Darwin [Dar98]

for facial expressions in the context of basic emotions. Furthermore, the application of special features

such as aesthetic related features used in [MH10] and face expression features offers interesting potential

for study. Also, a focus on a refined ontology structure might be beneficial. Additionally, further

applications of the proposed work such as advertising, games, augmented vision are imaginable when the

cross-domain performance of the detectors is studied in more depth.
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Chapter 6

Discussion

People have an inherent need to express themselves. The availability of broadband Internet, low-priced

storage, and the omnipresence of camera equipped mobile devices allows us to record, publish, share,

and consume digital images and videos without effort. As a consequence multimedia retrieval systems

call for new strategies to cope with the increasing scale of current visual databases.

In particular, with respect to social media and multimedia content becoming the dominant content

type on the web, social multimedia as the fusion of both requires concept detection to move beyond small

scale concept vocabularies to be better align with users’ information needs. To this end, visual learning

of thousands of target concepts must be accomplished to synchronize concept detection with real world

events. Furthermore, to provide a comprehensive view of social multimedia, concept detection has to be

extended to novel forms of analysis such as the extraction of sentiment reflected in visual content.

Therefore, the core endeavor of this thesis has been to answer the following questions: Can we

link concept detection vocabularies to current trends by mining social media? Can we extend concept

detection such that a visual learning of thousands of concepts is possible? And, can the notion of semantic

concepts be re-thought such that the sentiment reflected in visual content might be extracted?

Starting with the first question, in Chapter 3 dynamic vocabularies for concept detection have been

introduced, as being automatically augmented with trending topics mined from Google, Wikipedia and

Twitter. The selection process was further enhanced by forecasting the progression of trending topics

at the very moment they emerge. The presented nearest neighbor sequence matching, which was based

on the assumption that semantically similar topics show similar popularity over time, was demonstrated

to reliably identify promising trending topics for detector learning. This way trending topics could be

added into the detection system either by mapping the trend to a fixed amount of semantic concepts

or by a specific training of a trend detector from web video. As a result concept detection was aligned

to current real-word events by detecting such trending topics more robustly than with a fixed concept

detection vocabulary. Finally, a combination of the proposed marginalization approach with specifically

trained trend detectors was shown to further boost recognition performance.

A second key component of the presented concept detection system in this thesis was scalability.

This was achieved by utilizing web videos as an alternative source for detector training. This includes

the automatic retrieval of training data from platforms like YouTube and the proper handling of user-
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generated tags serving as pseudo labels for supervised machine learning. Chapter 4 has investigated

the impact of these issues on concept detection, and presented two solutions to deal with them: First,

an automatic query construction performing a concept-to-query mapping for web video retrieval was

presented. This method achieved a retrieval of training data quality comparable with human refined

queries. Moreover, to eliminate the remaining effects of pseudo labels, active relevance filtering was

proposed. It combines automatic relevance filtering with active learning to adopt the statistical models

underlying concept detection such that non-relevant content is identified and filtered during detector

training. This method was demonstrated to train non-degrading concept detectors with a minimum of

user interaction.

Lastly in Chapter 5, concept detection was extended by the notion of Adjective Noun Pairs (ANP) as

novel entities for concept learning. Such ANPs allow the addition of new levels of differentiation. Instead

of detecting of a “dog” concept, the proposed ANPs differentiate between concepts such as “cute dog” or

“dangerous dog” and therefore allow to put semantic concepts into context. Founded on psychological

theory and driven by an analysis of over 6 Million tags mined from popular image and video sharing

platforms, a large scale Visual Sentiment Ontology (VSO) of 3,000 ANPs was constructed. Each ANP

from the introduced ontology aims to reflect a strong sentiment, have a link to an emotion, be frequently

used, and have a reasonable detection accuracy. Based on this ontology – SentiBank – a detector bank

of 1,200 ANP concepts was trained to serve as a mid-level attribute representation of visual content.

This effort, as being the first of its kind, was able to provide more robust sentiment predictions from

visual content than low-level features and boosted the performance of a combined text-image based

sentiment analysis. Additionally, although initially proposed to capture the sentiment being reflected in

visual content, this mid-level attribute representation demonstrated its generalization potential to other

domains such as emotion detection and digital forensics.

Altogether, the contributions of this thesis can be aligned along the concept detection pipeline as

outlined in the framework overview in Figure 1.2. Combining social media analysis and efficient visual

learning, the notion of static concept vocabularies has been altered and evolving vocabularies, which

are dynamically extended by trending topics, has presented. In parallel the automatic retrieval of web

video training data and the refinement of user-generated tags can be considered as a key element of

scalable detector training. Finally, SentiBank and its foundation, the VSO, have been suggested to

extract another new form of information namely positive, neutral, and negative sentiment. This form of

visual recognition itself was made possible by Adjective Noun Pairs, which although treated as semantic

concepts have added a new dimension to visual learning.
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Appendix A

Fixed Vocabulary Concepts

This section provides an overview of all concepts in the static vocabulary used Chapter 3. These query

definition were also used in the following previous publications [UKBB09, Koc11].

Table A.1: A list of all semantic concepts used and the corresponding YouTube queries used to train a static

vocabulary concept detection system.

Concept Query Category

airplane-flying airplane & flying -indoor -

americas-got-talent americas got talent -

anime anime mix -

aquariums aquarium fish tank Animals

arcade arcade Travel

asians asians -hot -sexy -bikini People

autumn autumn colors Travel

baby baby first People

badlands badlands Travel

balloons balloons Entertainm.

baseball baseball -golf Sports

basketball basketball Sports

beach beach Travel

beehive beehive Animals

bicycle bicycle Vehicles

bikini bikini

bill-clinton bill clinton News

birds birds Animals

blacksmithing blacksmith Howto

boat boat small -rc Vehicles

boat-ship ship &(queen|freedom|royal) Vehicles

boobs boobs tits

boxing boxing Sports

breakdancing break dancing

bridge bridge -crossing -ship Travel

brown-bear brown bear Animals

bus bus -van -suv -vw -ride Vehicles

cake cake Howto

camels camel|dromedar -spider Animals

Continued on next page

129



Table A.1: (Continued) A list of all semantic concepts used and the corresponding YouTube queries used to train

the TubeTagger system.

Concept Query Category

campus university campus tour -

car car Vehicles

car-crash car crash Vehicles

car-racing car racing -rc Sports

cartoon cartoon Film

castle castle &(afar|outside) -inside Travel

cathedral cathedral Travel

cats cats Animals

celebration celebration Travel

cheerleading cheerleading -

choir choir -

christmas-tree christmas tree -fire -

circus circus show -

city-skyline skyline Travel

cityscape cityscape -slideshow -emakina Travel

classroom classroom & school -secret -

clock-tower clock tower Travel-

clouds clouds & beautiful Travel

cockpit cockpit -railway -line Vehicles

commercial commercial -barack -

concert concert Music

cooking cooking Howto

counterstrike-game counterstrike movie -lego -real

court court judge News

cows cow Animals

crane crane Vehicles

crash crash Vehicles

dam dam Travel

dancing dancing People

dark-skinned-people black people -

darth-vader darth vader -

demonstration protesting -

desert desert Travel

dog dog Animals

dogs dogs Animals

drawing drawing Film

drinking drinking competition -

driver car & vehicle & driver -simulator -

drummer drummer Howto

eiffeltower eiffeltower Travel

emergency-vehicle emergency & vehicle -driver -ride Vehicles

excavation excavation Travel

explosion explosion Howto

fence fence Travel

fencing fencing Sports

ferarri ferarri Vehicles

firefighter firefighter training -

fireworks fireworks (nice or beautiful) -

Continued on next page
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APPENDIX A. FIXED VOCABULARY CONCEPTS

Table A.1: (Continued) A list of all semantic concepts used and the corresponding YouTube queries used to train

the TubeTagger system.

Concept Query Category

fish fish Animals

fishing fishing Sports

flood flood water News

flower flower & (bouquet|bloom) -

food food delicious -

football american football -soccer Sports

forest forest Travel

fountain fountain Travel

freeclimbing freeclimbing Sports

furniture furniture -

garden garden beautiful -royal -coral Travel

gardening gardening Howto

gas-station gas station Travel

georgewbush george w bush News

geyser geyser Travel

glacier glacier Travel

glasses glasses wearing -not -are -

golf golf Sports

golf-course golf course flyover Sports

graffiti graffiti -

grand-canyon grand canyon Travel

gym gym Sports

gymnastics gymnastics Sports

hand hand & daft -

harbor harbor & dock Travel

helicopter helicopter Vehicles

highway highway us route -

hiking hiking Travel

horse horse Animals

horse-racing horse racing Sports

hospital hospital & emergency -

hotel-room ”hotel room” Travel

house house sightseeing Travel

ice-skating ice skating Sports

interview interview News

iphone iphone -

jewellery jewellery -

jungle jungle tropical Travel

kiss kissing two -

kitchen kitchen -knife -remodel Howto

laboratory laboratory tour -

laundry laundry Howto

lava lava flow Travel

library library tour -

lighthouse lighthouse Travel

lightning lighting strike Travel

map map geographic -

marionette marionette show -

Continued on next page
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Table A.1: (Continued) A list of all semantic concepts used and the corresponding YouTube queries used to train

the TubeTagger system.

Concept Query Category

market market Travel

mccain john mc cain News

memorial memorial -day Travel

military-parade military parade -

monitor screen monitor -

moon moon footage -

mosque mosque Travel

motorcycle (motorcycle or motorbike) -crash Vehicles

mountain mountain & panorama Travel

muppets muppet show -

music-video music video -

native-american native american dance -

neon-sign neon sign Travel

nighttime ”by night” Travel

obama barrack obama News

office office working -

old-people ”old people” -

operating-room operating room -

orchestra orchestra symphony -

origami origami Howto

outer-space universe galaxy -super -song -

pagoda pagoda Travel

parachute parachute -no Sports

penguin penguin Animals

phone phone & device -

piano piano playing -

pier pier Travel

playground playground Travel

poker poker Entertainm.

polar-bear polar bear Animals

pope pope benedict -

pottery pottery -

press-conference press conference News

procession procession Travel

pyramids pyramid Travel

race race Vehicles

railroad railroad train -model Vehicles

rainbow rainbow beautiful Travel

rainforest rain forest Travel

ranch ranch Travel

rc-car rc car Vehicles

restaurant restaurant Travel

rice-terrace rice terrace Travel

riding horse riding -

riot riot News

river river Travel

robot robot -dance -dancers -

rocket-launching rocket launch -model -mini -toy -

Continued on next page
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APPENDIX A. FIXED VOCABULARY CONCEPTS

Table A.1: (Continued) A list of all semantic concepts used and the corresponding YouTube queries used to train

the TubeTagger system.

Concept Query Category

rodeo rodeo bull riding Sports

rooftop rooftop Travel

rugby rugby Sports

ruins ruins -underwater Travel

runway runway airport -

safari safari Travel

sailing sailing Travel

santa santa (costume or outfit) -

secondlife secondlife Games

shipwreck ship wreck Travel

shooting shooting gun -

shopping-mall shopping (mall or center) Travel

simpsons the simpsons homer -

singing singing & (gospel|choire) -

skateboarding skateboarding -

skiing skiing -water Sports

sky beautiful sky Travel

snake snake Animals

snooker snooker Sports

soccer soccer Sports

soldiers soldiers -child News

stairs stairs Travel

steppe steppe Travel

street street & paved -

submarine submarine Vehicles

subway subway station Travel

sunrise sunrise Travel

surfing surfing wave -

swimming swimming Sports

swimming-pools swimming pool Travel

sword-fight sword fight Sports

talkshow talkshow People

tank tank Vehicles

tennis tennis -table Sports

tent tent Travel

themepark park &(amusement|theme) Travel

toilet toilet -

tony-blair tony blair News

tornado tornado -

tractor-combine (harvester or tractor) Vehicles

traffic traffic Travel

traffic-lights traffic lights Travel

tunnel tunnel+ &(through|inside) -approach Travel

turban turban -

two-people two & people -sleepy -questions -

underwater underwater Travel

us-flag US flag raised -

vending-machine vending machine Travel

Continued on next page
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Table A.1: (Continued) A list of all semantic concepts used and the corresponding YouTube queries used to train

the TubeTagger system.

Concept Query Category

videoblog videoblog People

waterfall waterfall Travel

weather weather forecast -

wedding wedding footage -

wheel wheel Vehicles

windmill wind mill Travel

windows-desktop windows desktop -

worldofwarcraft world of warcraft Entertainm.

wrestling wrestling Sports

134



Appendix B

Visual Sentiment Ontology Structure

This section gives a description of the visual sentiment ontology structure as outlined in Chapter 5. Figure B.1 privides

an overview of adjective groups and Figure B.2 provides an overview of the hierarchical noun taxonomy derived from the

VSO.

Figure B.1: Groups VSO adjectives. Light pink color indicates the 6 top level nodes and a solid pink node

indicates a leaf in the tree structure.
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Figure B.2: Hierarchical taxonomy of VSO nouns. Orange color indicates the 15 top level nodes. Light blue color

indicates a node with children and a solid blue node indicates a leaf in the tree structure.
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