
Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
genehmigte Dissertation

Robustness against Relaxed Memory Models

Autor:
Egor Derevenetc

Datum der Disputation: 24.04.2015

Vorsitzender: Prof. Dr. Klaus Schneider
1. Berichterstatter: Prof. Dr. Roland Meyer
2. Berichterstatter: Prof. Dr. Rupak Majumdar

Dekan des Fachbereichs Informatik:
Prof. Dr. Klaus Schneider

D 386

Abstract

Sequential Consistency (SC) is the memory model traditionally applied by pro-
grammers and verification tools for the analysis of multithreaded programs.
SC guarantees that instructions of each thread are executed atomically and in
program order. Modern CPUs implement memory models that relax the SC
guarantees: threads can execute instructions out of order, stores to the memory
can be observed by different threads in different order. As a result of these re-
laxations, multithreaded programs can show unexpected, potentially undesired
behaviors, when run on real hardware.

The robustness problem asks if a program has the same behaviors under
SC and under a relaxed memory model. Behaviors are formalized in terms of
happens-before relations — dataflow and control-flow relations between executed
instructions. Programs that are robust against a memory model produce the
same results under this memory model and under SC. This means, they only
need to be verified under SC, and the verification results will carry over to the
relaxed setting.

Interestingly, robustness is a suitable correctness criterion not only for mul-
tithreaded programs, but also for parallel programs running on computer clus-
ters. Parallel programs written in Partitioned Global Address Space (PGAS)
programming model, when executed on cluster, consist of multiple processes,
each running on its cluster node. These processes can directly access memories
of each other over the network, without the need of explicit synchronization.
Reorderings and delays introduced on the network level, just as the reorder-
ings done by the CPUs, may result into unexpected behaviors that are hard to
reproduce and fix.

Our first contribution is a generic approach for solving robustness against re-
laxed memory models. The approach involves two steps: combinatorial analysis,
followed by an algorithmic development. The aim of combinatorial analysis is
to show that among program computations violating robustness there is always
a computation in a certain normal form, where reorderings are applied in a re-
stricted way. In the algorithmic development we work out a decision procedure
for checking whether a program has violating normal-form computations.

Our second contribution is an application of the generic approach to widely
implemented memory models, including Total Store Order (TSO) used in Intel
x86 and Sun SPARC architectures, the memory model of Power architecture,
and the PGAS memory model. We reduce robustness against TSO to SC state
reachability for a modified input program. Robustness against Power and PGAS
is reduced to language emptiness for a novel class of automata — multiheaded
automata. The reductions lead to new decidability results. In particular, ro-
bustness is PSpace-complete for all the considered memory models.

ii

Acknowledgements

First and foremost, I thank my scientific advisor Prof. Dr. Roland Meyer for
being a mentor and a friend, setting high research standards, and showing by
personal example how to pursue them. I am immensely grateful for his time,
knowledge, hints, and advices, which run all through the research that led to
this thesis.

I deeply acknowledge the Fraunhofer Institute for Industrial Mathematics
(ITWM) and personally the director of the Competence Center for High Perfor-
mance Computing and Visualization (CC-HPC) Dr. Franz-Josef Pfreundt for
the scholarship and financial support of my trips to conferences and summer
schools.

I thank Dr. Mirko Rahn for organizing my coming to Kaiserslautern, being
constantly positive and helpful, and introducing me to the world of modern
high-performance computing.

I was privileged to collaborate with the experts in program verification,
relaxed memory models, and formal languages: Dr. Mohamed Faouzi Atig, Prof.
Dr. Ahmed Bouajjani, Georgel Calin, Carl Leonardsson, and Prof. Dr. Rupak
Majumdar. This work contains traces of days-long discussions of Power memory
model with Ahmed, Carl, Faouzi, and Roland. Colleagues, thank you for your
time and input!

I express gratitude to Dr. Jade Alglave for her precious clarifications on
Power memory model.

I thank my ITWM colleagues Dr. Daniel Grünewald, Dr. Martin Kühn,
Dr. Rui Machado, and Dr. Mirko Rahn, for sharing their expertise in GPI,
GASPI, and programming for clusters in general.

I am grateful to everybody who read the draft of the thesis and gave feedback.
I thank my family and friends.

iii

Contents

1 Introduction 1

1.1 Relaxed Memory Models . 1

1.2 Verification Problems . 3

1.3 Partitioned Global Address Space 5

1.4 Contributions and Outline . 5

2 Preliminaries 8

2.1 Automata . 8

2.2 Petri Nets . 9

2.3 Programs . 9

2.4 Program Semantics . 9

2.4.1 Sequential Consistency . 10

2.4.2 Total Store Order . 11

2.5 State Reachability . 13

2.6 State-Robustness . 16

2.7 Traces . 17

2.7.1 SC Traces . 18

2.7.2 TSO Traces . 18

2.8 Robustness . 19

3 Generic Approach to Robustness 21

3.1 Normal-Form Computations . 21

3.2 From Robustness to Language Emptiness 23

3.2.1 Multiheaded Automata 23

3.2.2 Checking Cyclicity of the Happens-Before Relation 25

4 Robustness against Power 27

4.1 Power Semantics . 28

4.2 Traces and Robustness . 35

4.3 Normal-Form Computations . 36

4.4 From Robustness to Language Emptiness 40

4.4.1 Generating Normal-Form Computations 41

4.4.2 Checking Cyclicity of the Happens-Before Relation 51

4.4.3 Handling Memory Barriers 53

4.5 Reachability under Power . 55

iv

CONTENTS v

5 Robustness against SPARC Memory Models 57
5.1 Relaxed Memory Order . 57
5.2 Partial Store Order . 59
5.3 Total Store Order . 59

6 Robustness against Total Store Order 60
6.1 Locality and TSO Witnesses . 61
6.2 From Robustness to SC Reachability 65

6.2.1 Instrumentation of an Attacker 66
6.2.2 Instrumentation of a Helper 67
6.2.3 Soundness and Completeness 69

6.3 Parameterized Robustness . 72
6.4 Decidability and Complexity . 72
6.5 Enforcing Robustness . 73

6.5.1 Fence Sets for Attacks . 74
6.5.2 Computing an Optimal Valid Fence Set 75

7 The Trencher Tool 76
7.1 Making It Fast . 76

7.1.1 SC Semantics with Locks 77
7.1.2 Restricted SC Semantics with Locks 77
7.1.3 Live Variable Optimization 80
7.1.4 Atomic Instructions . 81

7.2 Experiments . 81
7.2.1 Examples . 81
7.2.2 Results . 82
7.2.3 Discussion . 83

8 Robustness against PGAS 85
8.1 PGAS Semantics . 87

8.1.1 PGAS APIs . 87
8.1.2 PGAS Model . 88
8.1.3 Simulating PGAS APIs 91

8.2 Traces and Robustness . 91
8.3 Normal-Form Computations . 92
8.4 From Robustness to Language Emptiness 95

8.4.1 Generating Normal-Form Computations 96
8.4.2 Checking Cyclicity of the Happens-Before Relation 100

8.5 Parameterized Reachability and Robustness 105

9 Conclusion 107
9.1 Limitations . 108
9.2 Future Work . 108

Bibliography 109

List of Acronyms 115

Appendix A Benchmarking Memory Fences 117

Appendix B Benchmarking Trencher with SPIN 123

List of Figures

1.1 Store Buffering (SB) program. 2
1.2 Message Passing (MP) program. 3
1.3 Graph of dependencies between the chapters of the thesis. 7

2.1 SB+ program. 16
2.2 Trace of computation 𝜎 from Example 2.3. 18
2.3 Trace of computation 𝜏 from Example 2.4. 19

3.1 Trace of computations 𝜏 ′ and 𝜎 from Example 3.2. 23

4.1 Trace of computation 𝜎MP from Example 4.1. 36
4.2 Trace of computations 𝛼′ and 𝛽 from Example 4.17. 40

6.1 Attacker instrumentation of Thread 1 of the SB program. 67
6.2 Helper instrumentation of Thread 2 of the SB program. 68

7.1 Time spent by Trencher on computing minimal fence sets. 83
7.2 Number of states visited by the reachability checkers while com-

puting minimal fence sets. 84

8.1 PGAS model. 85
8.2 OneToOne program. 86
8.3 Trace of computation of 𝜏1to1 from Example 8.2. 92
8.4 Trace of computation of 𝜏 ′1to1 from Example 8.11. 95

A.1 Results of benchmarking memory fences on Intel Core i5 M650
CPU @ 2.67GHz (1 thread). 118

A.2 Results of benchmarking memory fences on Intel Core i5 M650
CPU @ 2.67GHz (2 threads). 118

A.3 Results of benchmarking memory fences on Intel Core 2 Duo
P8700 CPU @ 2.53GHz (1 thread). 119

A.4 Results of benchmarking memory fences on Intel Core 2 Duo
P8700 CPU @ 2.53GHz (2 threads). 119

A.5 Results of benchmarking memory fences on Mobile AMD Sem-
pron Processor 3400+ (1 thread). 120

A.6 Results of benchmarking memory fences on Intel Xeon X5650
CPU @ 2.67GHz (1 thread). 120

A.7 Results of benchmarking memory fences on Intel Xeon X5650
CPU @ 2.67GHz (2 threads on different CPU sockets). 121

vi

LIST OF FIGURES vii

A.8 Results of benchmarking memory fences on Intel Xeon X5650
CPU @ 2.67GHz (2 threads on the same CPU socket). 121

A.9 Results of benchmarking memory fences on Intel Xeon E5420
CPU @ 2.50GHz (1 thread). 122

A.10 Results of benchmarking memory fences on Intel Xeon E5420
CPU @ 2.50GHz (2 threads). 122

B.1 Time spent by SPIN-based Trencher in different verification
steps. The verifier is compiled without optimizations. 124

B.2 Time spent by SPIN-based Trencher in different verification
steps. The verifier is compiled with optimizations. 124

List of Tables

2.1 SC transition rules. 11
2.2 TSO transition rules. 12

7.1 Transition rules for SC with locks. 78
7.2 Transition rules for restricted SC with locks. 79
7.3 Examples and testing results. 82

8.1 PGAS transition rules. 90
8.2 Transition rules for the multiheaded automaton generating

normal-form PGAS computations. 97

viii

Chapter 1

Introduction

1.1 Relaxed Memory Models

In order to deliver maximum performance, modern CPUs execute instructions
out of order. The reorderings typically respect the data and control dependen-
cies between instructions within one thread of execution.1 Consequently, single-
threaded programs preserve the sequential semantics on these CPUs. Multi-
threaded programs, however, can observe these reorderings and, as a result,
show unexpected behaviors.

The guarantees provided by an architecture with respect to the visible or-
dering of operations are specified in the memory consistency model, or, simply,
the memory model of this architecture. Perhaps the most intuitive memory
model is Sequential Consistency (SC) [56]. It defines that instructions of each
thread are executed in order and stores to the memory become immediately
visible to all the threads. This memory model is assumed by most programmers
and verification tools. Modern processor architectures, on the contrary, adopt
models weaker than SC.

Intel x86 [47] and SPARC [84] processors implement the Total Store Order
(TSO) [72, 84] memory model. The model reflects the use of store buffers. When
a thread executes a store instruction, it adds a store operation comprising the
address and the value to be written to this address to the local store buffer of this
thread. (Actually, the store buffer belongs to the CPU core executing the thread.
However, without loss of generality we can always assume that each thread runs
on its own CPU core.) Later these operations are non-deterministically popped
from the buffer and performed on the memory in FIFO order. Loads read either
from the last buffered store to the same address, or, if no such store exists, from
memory.

The SPARC architecture [84] defines another two memory models: Partial
Store Order (PSO) and Relaxed Memory Order (RMO). PSO extends TSO
by allowing reorderings of stores to different addresses; it can be formalized
similar to TSO in terms of store buffers: each thread has one buffer per address.
RMO relaxes PSO by allowing out-of-order loads. Support for PSO and RMO
is declared optional [84], and recent SPARC CPUs seem to implement solely

1DEC Alpha [80] architecture is a notable exception admitting reorderings of dependent
load instructions [67].

1

2 CHAPTER 1. INTRODUCTION

Thread 1 Thread 2

𝑞0 𝑞0

𝑞1 𝑞1

𝑞2 𝑞2

𝑎 : mem[𝑥]← 1

𝑏 : 𝑟1 ← mem[𝑦]

𝑐 : mem[𝑦]← 1

𝑑 : 𝑟2 ← mem[𝑥]

Figure 1.1: Store Buffering (SB) program. Initially, 𝑥 = 𝑦 = 0.

TSO [67].
Power [32] and ARM [12] architectures have memory models that are even

more relaxed [11, 65, 66, 78]. Unlike the SPARC memory models, Power and
ARM do not feature store atomicity: one store can become visible to different
threads at different times, stores to different memory locations can be seen
in different order by different threads. Nevertheless, Power guarantees that all
threads see stores to the same memory location in the same order. Although the
currently proposed model for ARM includes the same guarantee, it is explicitly
noted that it is violated on existing hardware [11].

In all the mentioned relaxed models different threads at the same moment
of time may observe different memory states. For example, on TSO a thread
observes the memory state being a combination of the global memory state and
the contents of this thread’s store buffer. As a result, programs running on ar-
chitectures with relaxed memory models can show behaviors that are impossible
under SC, where all threads always agree on the memory contents.

Example 1.1. Consider the SB program shown in Figure 1.1. It implements a
simplified version of the Dekker’s mutual exclusion protocol for two threads [35].
The first thread signals that it wants to enter the critical section by storing
value 1 to variable 𝑥. Next, it checks whether the second thread wants to enter
the critical section. For this it loads the value of variable 𝑦 to register 𝑟1. It
is assumed that, if 𝑟1 = 0, then the thread enters the critical section by a
transition from 𝑞2 (omitted). The second thread is symmetric. Under SC it is
guaranteed that at most one thread reads value 0, and mutual exclusion holds.
On a TSO architecture the stores may be buffered and executed on memory
only after loads are completed. Consequently, both threads can load 0, and
mutual exclusion fails.

Example 1.2. Consider the Message Passing (MP) program shown in Fig-
ure 1.2. In this program the first thread sends some useful data to the second
thread. For this, it writes the data to variable 𝑥. Then, it sets the flag variable
𝑦 to 1, to signal that the data is ready. The second thread reads the flag variable
𝑦. It is assumed that, if the second thread has observed the new value of 𝑦, it
will also read the data written by the first thread to variable 𝑥. The program
indeed works as expected under SC and TSO memory models. However, it will
fail on Power machines, because, first, their memory model allows out-of-order
execution of loads from different addresses, second, it allows stores to different

1.2. VERIFICATION PROBLEMS 3

Thread 1 Thread 2

𝑞0 𝑞0

𝑞1 𝑞1

𝑞2 𝑞2

𝑎 : mem[𝑥]← 1

𝑏 : mem[𝑦]← 1

𝑐 : 𝑟1 ← mem[𝑦]

𝑑 : 𝑟2 ← mem[𝑥]

Figure 1.2: Message Passing (MP) program. Initially, 𝑥 = 𝑦 = 0.

addresses to be observed by different threads in different order. Any of these
features is sufficient to make the program misbehave.

From the above examples it becomes clear that verification problems for
concurrent programs must be posed in the context of a certain memory model.
In the next section we give an overview of the major verification problems for
concurrent programs and show interrelations between them.

1.2 Verification Problems

Multiple verification problems were formulated for concurrent programs running
on relaxed memory models. Probably the most basic one is state reachability.
It asks whether a given program reaches a certain (bad) state under a given
memory model. Checking whether an assertion fails is a classic example of a
state reachability problem. State reachability is long-known to be PSpace-
complete for programs with SC semantics [52]. It was recently shown that
under TSO and PSO the problem is non-primitive recursive (lower and upper
bound) [14].

The reachability problem, as a correctness criterion, has two disadvantages.
The first impediment to using it is the necessity to mark the bad program states,
i.e., to write a specification, which implies additional work for software engineers.
The second disadvantage is the high computational complexity of the problem.
As mentioned above, reachability is very difficult already for TSO. Moreover,
in Section 4.5 we will show that state reachability under Power is undecidable.

An alternative problem to reachability is robustness. It asks whether a given
program has the same behaviors under SC and under a relaxed memory model.
The definition depends on the notion of behavior used. A program is called
trace-robust against a relaxed memory model, if all its computations under this
model have the same data and control dependencies as some SC computations.
It is called state-robust, if its threads can reach the same control states under
SC and under a relaxed memory model.

Example 1.3. The program SB (Figure 1.1) is not trace-robust against TSO,
PSO, RMO, Power. Indeed, under TSO the loads in both threads can read the
initial value zero (see Example 1.1), which is impossible under SC. PSO, RMO,
Power memory models are weaker than TSO and allow all the TSO behaviors.

4 CHAPTER 1. INTRODUCTION

Example 1.4. The program MP (Figure 1.2) is trace-robust against TSO, but
not against PSO, RMO, and Power. The latter models allow the second thread
to observe the store to 𝑦 before the store to 𝑥 and reach the state 𝑟1 = 1, 𝑟2 = 0.

Formally, both programs are state-robust, because they do not use the values
that they load, and, therefore, their threads reach the same control states.
However, both programs can be rendered not state-robust by adding additional
checks. For example, in the SB program the threads can check that they did not
both read 0 from 𝑥 and 𝑦 and, if they did, enter a special state. This state will
be reachable under all considered relaxed memory models, but not under SC,
which will make the program not state-robust against these relaxed memory
models. See Example 2.11 for details.

State-robustness can be naively solved by enumerating all the states reach-
able under a relaxed memory model and checking whether each of them can
be reached under SC. Actually, we will show that this is an optimal solution:
Theorem 2.12 shows that state-robustness against a memory model is as hard
as state reachability for this model. Taking into account that state reachabil-
ity is non-primitive-recursive for TSO and PSO [14] and undecidable for Power
(Theorem 4.25), state-robustness becomes quite unattractive as a correctness
criterion.

Trace-robustness is an algorithmically easier problem than its state-based
counterpart. We will show that trace-robustness is PSpace-complete for all the
memory models considered in the thesis. Moreover, trace-robustness implies
state-robustness (Theorem 2.19), i.e., trace-robust programs reach the same
states under SC and a relaxed memory model. In the thesis we focus on trace-
robustness and call it robustness in the following.

Once a program was shown to be non-robust, the next logical step is to make
it robust. Robustness can be enforced by inserting special instructions that for-
bid or constrain certain kinds of reorderings. These instructions are commonly
called memory fences or barriers. The problem of enforcing robustness consists
in determining an in some sense optimal set of fences guaranteeing robustness.
Optimality can be defined either in terms of the number of inserted fences or
in the performance costs introduced by them. Clearly, the problem of enforcing
robustness is no easier that the robustness problem itself, since a program is
robust iff the smallest fence set guaranteeing robustness is empty.

Data-race freedom (DRF) [3] is another useful correctness criterion for con-
current programs. A data race is a pair of concurrent memory accesses to the
same address with one of the accesses being a store. Most memory models pro-
vide the so-called DRF guarantee: data-race-free programs do not show non-SC
behaviors under them (i.e., they are robust). High-level languages with this
guarantee include Java [40, 13], C [48], and C++ [49]. Moreover, C and C++
consider data races (on non-atomic variables) as errors and specify racy pro-
grams to have undefined behavior. Saraswat et al. [77] proposed a framework
for defining memory models of high-level languages and established that all the
models defined in this framework provide the DRF guarantee. Among CPU
models, the DRF guarantee was formally proven for TSO and PSO memory
models [22, 75], although it should hold for all the memory models considered
in the thesis. Unfortunately, implementations of synchronization primitives,
lock-free data structures, and miscellaneous high-performance algorithms are
racy on purpose [27, 34, 35, 38, 42, 51, 57, 58, 74]. Consequently, data-race

1.3. PARTITIONED GLOBAL ADDRESS SPACE 5

freedom is a too strong correctness criterion for such programs.

All the previously mentioned verification problems apply to programs with
a fixed number of threads. However, concurrent algorithms and data structures
are often designed to be used by unboundedly many threads. Verification of
such data structures is addressed by the parameterized versions of the verifi-
cation problems. Instead of analyzing programs running a single instance of
each thread, they consider programs that admit any number of instances of
each thread running concurrently. Parameterized state reachability under SC is
commonly known to be decidable, by a reduction to coverability in Petri nets
(Lemma 2.8), but generally ExpSpace-hard (Lemma 2.9). In Section 6.3 we
show that parameterized robustness against TSO is decidable and as hard as
parameterized state reachability under SC.

1.3 Partitioned Global Address Space

Problems caused by reorderings of memory accesses on the hardware level arise
not only in the world of multithreaded programs, but also in the world of par-
allel applications for clusters. Software for computer clusters was traditionally
developed within the message passing paradigm, typically using a Message Pass-
ing Interface (MPI) [37] library for communication. Partitioned Global Address
Space (PGAS) is an alternative programming model for clusters that gained a
considerable recent attention [19, 29, 30, 39, 43, 63, 68, 70].

A distinctive feature of PGAS is the emphasis on one-sided communication.
Processes running on different nodes of the cluster can directly access memories
of each other. These accesses generally do not require synchronization between
the processes running on communicating nodes. This is contrary to the mes-
sage passing paradigm, where the sender and the receiver are always explicitly
synchronized.

One-sided communication is often implemented on top of a network provid-
ing Remote Direct Memory Access (RDMA). Applications can entirely delegate
data transfers to an RDMA-enabled network interface controller. The controller
will transfer the given block of data between the given nodes on its own, without
putting any load on the CPUs.

As in most packet-switching networks, the packets containing the data being
transferred may arrive to the destination node and be written to its memory out
of order. As in the case of CPU memory models, this may result in programs
having odd behaviors which are hard to reproduce and debug. Interestingly, all
the verification problems described in the previous section can be formulated
and make sense for PGAS applications.

1.4 Contributions and Outline

The first contribution of the thesis is a generic approach for solving robustness.
This approach is described in Chapter 3 and consists of two steps. The first
step is a combinatorial analysis. In this step we show that, if a program has
computations violating robustness, it has a violating computation in a special
normal form, where memory accesses are reordered in a certain restricted way.
Consequently, checking robustness amounts to finding violating normal-form

6 CHAPTER 1. INTRODUCTION

computations. The second step is an algorithmic development, where we reduce
robustness to language emptiness. We do it as follows. First, we show that
normal-form computations can be generated by multiheaded automata — a
novel class of automata developed in the context of robustness. Then, we filter
violating normal-form computations using an intersection with finite automata.
Altogether, the program is robust iff the intersection is empty.

The second contribution of the thesis is the application of the generic ap-
proach to several widely used memory models.

In Chapter 4 we consider the memory model of the IBM Power architecture.
Following our generic approach, we reduce robustness against Power to language
emptiness for multiheaded automata. This reduction leads to a new complexity
result: robustness against Power is PSpace-complete, a result also presented
in [33]. For contrast, in Section 4.5 we additionally prove that state reachability
under Power is undecidable.

In Chapter 5 we show how the results obtained for Power can be applied to
the whole hierarchy of SPARC memory models: RMO, PSO, TSO.

In Chapter 6 we consider the TSO memory model in more detail. By com-
binatorial analysis we show that TSO additionally enjoys a locality property: it
is sufficient to look only for violating normal-form computations where a single
thread does reorderings. We call these computations TSO witnesses. Next, we
show how to modify (instrument) the original program in order to let it de-
tect TSO witnesses. This gives us a PSpace decision procedure for robustness
against TSO, as well as decidability for the parameterized robustness problem.
We explain how to use the decision procedure to efficiently compute a minimal
set of fence instructions that must be inserted to enforce robustness. The results
presented in this chapter are also published in [20].

In Chapter 7 we discuss the implementation of the algorithms from Chapter 6
in our tool Trencher and present the results of testing this tool on well-known
concurrent algorithms and data structures.

In Chapter 8 we consider the robustness problem for programs running on
computer clusters. We propose a unified model for programs using PGAS APIs
for communication and show how to express the semantics of popular PGAS
APIs in terms of this model. Similar to Power, we derive a normal form of violat-
ing computations and reduce robustness against PGAS to language emptiness
for multiheaded automata, a result presented in [28]. Finally, we note that
robustness (as well as reachability) becomes undecidable in the parameterized
PGAS setup.

We begin with the introduction of necessary definitions, Chapter 2. The
graph of dependencies between the chapters is shown in Figure 1.3.

1.4. CONTRIBUTIONS AND OUTLINE 7

1 Introduction

2 Preliminaries

3 Generic Approach

4 Power

5 SPARC

6 TSO

7 Trencher 8 PGAS

9 Conclusion

Figure 1.3: Graph of dependencies between the chapters of the thesis.

Chapter 2

Preliminaries

2.1 Automata

In the thesis we define programs and their semantics in an automata-theoretic
way. A (nondeterministic) automaton is a tuple 𝐴 = (𝑆,Σ,∆, 𝑠0, 𝐹), where 𝑆
is a set of states, Σ is an alphabet (a set of symbols), ∆ ⊆ 𝑆 × (Σ ∪ {𝜀}) × 𝑆
is a set of transitions, 𝑠0 ∈ 𝑆 is an initial state, and 𝐹 ⊆ 𝑆 is a set of final
states. We call the automaton finite if 𝑆 and Σ are finite. We write 𝑠1

𝑎−→ 𝑠2 if
𝑡 = (𝑠1, 𝑎, 𝑠2) ∈ ∆ and denote src(𝑡) := 𝑠1, dst(𝑡) := 𝑠2, lab(𝑡) = 𝑎. We naturally
extend −→ to sequences Σ*. The language of the automaton is ℒ(𝐴) := {𝜎 ∈
Σ* | 𝑠0 𝜎−→ 𝑠 for some 𝑠 ∈ 𝐹}. We say that a state 𝑠1 ∈ 𝑆 is reachable from a

state 𝑠2 ∈ 𝑆 if 𝑠2
𝜎−→ 𝑠1 for some 𝜎 ∈ Σ*. We say that a state 𝑠 ∈ 𝑆 is reachable

in automaton 𝐴 if it is reachable from 𝑠0.

A word 𝜎 in alphabet Σ is a finite sequence 𝜎 := 𝑎1 . . . 𝑎𝑛 ∈ Σ*. We define
its length as |𝜎| := 𝑛, 𝜎[𝑖] := 𝑎𝑖, first(𝜎) := 𝑎1, and last(𝜎) := 𝑎𝑛. The length
of the empty word 𝜀 is zero. We call a word 𝛼 a subsequence of the word 𝜎,
if 𝛼 = 𝑎𝑖1 . . . 𝑎𝑖𝑚 , where 1 ≤ 𝑖1 < 𝑖2 < . . . < 𝑖𝑚 ≤ 𝑛. Given 𝛼 = 𝑎1 . . . 𝑎𝑛
and 𝛽 = 𝑏1 . . . 𝑏𝑚, we denote their concatenation as 𝛼 · 𝛽 := 𝑎1 . . . 𝑎𝑛𝑏1 . . . 𝑏𝑚.
We call 𝛼 a prefix of 𝜎 and write 𝛼 ⊑ 𝜎 if 𝜎 = 𝛼 · 𝛽 for some 𝛽. We call 𝛽 a
suffix of 𝜎 and write 𝛽 ⊒ 𝜎 if 𝜎 = 𝛼 · 𝛽 for some 𝛼. We call 𝛾 a subword of 𝜎
if 𝜎 = 𝛼 · 𝛾 · 𝛽 for some prefix 𝛼 and suffix 𝛽. We say that 𝑎 is before 𝑏 in 𝜎
and write 𝑎 <𝜎 𝑏 if 𝜎 = 𝜎1 · 𝑎 · 𝜎2 · 𝑏 · 𝜎3. We write succ(𝜎) for the successor
relation on 𝜎. Given an alphabet Σ′ ⊆ Σ, the projection 𝜎 ↓Σ′ of 𝜎 onto Σ′ is
the longest subsequence of 𝜎 in alphabet Σ′.

Lemma 2.1. Language emptiness for a finite automaton is NL-complete.

Proof. Language emptiness is equivalent to the 𝑠𝑡-non-connectivity problem
for directed graphs: the language is empty iff no final state of the automa-
ton is reachable from its initial state. The 𝑠𝑡-connectivity problem is well-
known to be NL-complete. Taking into account that NL = co-NL (a corol-
lary of Immerman-Szelepcsényi Theorem [46, 82]), we get the statement of the
lemma.

8

2.2. PETRI NETS 9

2.2 Petri Nets

We reduce parameterized versions of robustness and reachability for some mem-
ory models to the coverability problem for Petri nets. In this section we provide
the necessary definitions.

A Petri net is a triplet 𝑁 = (𝑃, 𝑇,𝑊) where 𝑃 is a finite set of places, 𝑇
is a finite set of transitions with 𝑃 ∩ 𝑇 = ∅, and 𝑊 : (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) → N
is a weight function. A marking is a function that assigns a natural number
to each place: 𝑀 : 𝑃 → N. A marked Petri net is a pair (𝑁,𝑀0) of a Petri
net and an initial marking 𝑀0. A transition t ∈ 𝑇 is enabled in marking 𝑀 if
𝑀(p) ≥ 𝑊 (p, t) for all p ∈ 𝑃 . The firing relation [⟩ ⊆ N𝑃 × 𝑇 × N𝑃 contains
a tuple (𝑀1, t,𝑀2) iff transition t is enabled in 𝑀1 and for all p ∈ 𝑃 we have
𝑀2(p) = 𝑀1(p) − 𝑊 (p, t) + 𝑊 (t, p). We also write 𝑀1[t⟩𝑀2. We naturally
extend the firing relation to sequences of transitions.

We say that a marking 𝑀 is reachable in a marked Petri net (𝑁,𝑀0) if there
is a transition sequence 𝜎 ∈ ∆*, such that 𝑀0[𝜎⟩𝑀 . A marking 𝑀 is coverable
if there is a reachable marking 𝑀 ′ so that 𝑀 ′(p) ≥𝑀(p) for all p ∈ 𝑃 .

The Petri net coverability problem consists in deciding whether a given mark-
ing 𝑀 is coverable in a given Petri net (𝑁,𝑀0). The problem was shown to be
ExpSpace-hard by Lipton [60] and decidable in ExpSpace by Rackoff [76].

Lemma 2.2 ([60, 76]). Petri net coverability is ExpSpace-complete.

2.3 Programs

A program is a finite sequence of threads: 𝒫 = 𝒯1 . . . 𝒯𝑛. A thread is an automa-
ton 𝒯tid := (𝑄tid,CMD, ℐtid, 𝑞tid0, 𝑄tid) with a finite set of control states 𝑄tid, all
of them being final, initial state 𝑞tid0, and a set of transitions ℐtid called instruc-
tions and labeled with commands CMD defined below. Each thread has an id
from TID := [1..|𝒫|].

Let DOM = ADDR be a finite domain of values and addresses containing the
value 0. Let REG be a finite set of registers that take values from DOM. The set
of commands CMD includes loads, stores, local assignments, and conditionals
(assume):

⟨cmd⟩ ::= ⟨reg⟩ ← mem[⟨expr⟩] | mem[⟨expr⟩] ← ⟨expr⟩
| ⟨reg⟩ ← ⟨expr⟩ | assume(⟨expr⟩)

In the further parts of the thesis we will extend CMD with architecture-specific
commands. The set of expressions EXPR is defined over constants from DOM,
registers from REG, and (unspecified) functions FUN over DOM ∪ {⊥}. We
assume that these functions return ⊥ iff any of the arguments is ⊥.

As the size of program 𝒫 we take the length of its binary representation plus
the cardinality of the data domain |DOM|.

2.4 Program Semantics

In the thesis we tend to define semantics of programs in an operational way.
Given a program 𝒫 and a particular memory model mm, we define its semantics
under this model as an automaton 𝑋mm(𝒫) := (𝑆mm,Emm,∆mm, 𝑠mm0, 𝐹mm).

10 CHAPTER 2. PRELIMINARIES

The states of this automaton correspond to the states of the running program.
The transitions match the execution steps of the program. We label transitions
with events Emm. We call a sequence of events 𝜎 ∈ E*mm a computation. The
set of all mm-computations of program 𝒫 is Cmm(𝒫) := ℒ(𝑋mm(𝒫)).

2.4.1 Sequential Consistency

Sequentially consistent (SC) semantics is probably the most intuitive semantics
a program can have. It was introduced by Lamport [56] and defined as follows:

. . . the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program.

Formally, we define a state 𝑠 ∈ 𝑆sc of a program 𝒫 running under SC as a
tuple 𝑠 := (sn, pc,mem), where counter configuration sn : TID → N gives, for
each thread, the id that will be assigned to the next instruction executed in this
thread, pc(tid) ∈ 𝑄tid gives the control state of the thread tid, and mem : TID×
REG∪ADDR→ DOM gives, for each address and each register, the value stored
at this address or in this register. The initial state is 𝑠sc0 := (sn0, pc0,mem0),
where sn0 := 𝜆tid.1, all the control states are initial: pc0(tid) := 𝑞tid0, and the
memory is filled with zeroes: mem0(a) := 0 for all a ∈ TID× REG ∪ ADDR. All
states are final: 𝐹sc := 𝑆.

The SC transition relation ∆sc consists of all the transitions defined by the
rules in Table 2.1. As ̂︀𝑒 we denote the value of an expression 𝑒 in thread tid.
Given a function 𝑓 : 𝑋 → 𝑌 , 𝑥′ ∈ 𝑋, and 𝑦′ ∈ 𝑌 , we define 𝑓 ′ := 𝑓 [𝑥′ := 𝑦′]
by 𝑓 ′(𝑥) := 𝑓(𝑥) for 𝑥 ∈ 𝑋 ∖ {𝑥′} and 𝑓 ′(𝑥′) := 𝑦′. The first rule describes a
load from memory. The second rule describes a store to memory. The third
rule defines the semantics of a local assignment. The fourth rule specifies that a
conditional is executable whenever the value of the argument expression is not
zero. In the chapters devoted to relaxed memory models we will extend CMD
with architecture-specific memory barriers. We assume that their SC semantics
is equivalent to that of the assume(1) instruction.

Example 2.3. The following computation 𝜎 ∈ Csc(𝒫) is an SC computation of
program SB (Figure 1.1):

𝜎 := 𝑎𝑏𝑐𝑑 ∈ Csc(𝒫),

where

∙ 𝑎 := (1, 1, 𝑞1
mem[𝑥]←1−−−−−−→ 𝑞2, 𝑥),

∙ 𝑏 := (1, 2, 𝑞2
𝑟1←mem[𝑦]−−−−−−−→ 𝑞3, 𝑦),

∙ 𝑐 := (2, 1, 𝑞1
mem[𝑦]←1−−−−−−→ 𝑞2, 𝑦),

∙ 𝑑 := (2, 2, 𝑞2
𝑟2←mem[𝑥]−−−−−−−→ 𝑞3, 𝑥).

Note that any prefix 𝜏 ⊑ 𝜎 is also a valid SC computation of this program.

2.4. PROGRAM SEMANTICS 11

cmd = 𝑟 ← mem[𝑒], a := ̂︀𝑒
(sn, pc,mem)

(tid,sn(tid),instr,a)−−−−−−−−−−−→ (sn′, pc′,mem[(tid, 𝑟) := mem(a)])

cmd = mem[𝑒a]← 𝑒v, a := ̂︀𝑒a, v := ̂︀𝑒v
(sn, pc,mem)

(tid,sn(tid),instr,a)−−−−−−−−−−−→ (sn′, pc′,mem[a := v])

cmd = 𝑟 ← 𝑒

(sn, pc,mem)
(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem[(tid, 𝑟) := ̂︀𝑒])

cmd = assume(𝑒), ̂︀𝑒 ̸= 0

(sn, pc,mem)
(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem)

Table 2.1: SC transition rules, assuming pc(tid) = 𝑞, an instruction instr =

𝑞
cmd−−→ 𝑞′, pc′ := pc[tid := 𝑞′], and sn′ := sn[tid := sn(tid) + 1].

Fix a computation 𝜎 ∈ Csc(𝒫) and an event e ∈ 𝜎. As tid(e) we denote
the thread id of the event, i.e., the first component of e. As id(e) we denote
the serial number of the event, i.e., the second component of e. As instr(e) we
denote the instruction that created the event, i.e., the third component of the
event. For load and store events, we use addr(e) to refer to the last component
of the event showing the address being accessed. For instance, in Example 2.3

we have tid(𝑎) = 1, id(𝑎) = 1, instr(𝑎) = 𝑞1
mem[𝑥]←1−−−−−−→ 𝑞2, and addr(𝑎) = 𝑥.

We say that event e belongs to instruction (tid, id) if tid(e) = tid and id(e) =
id.

2.4.2 Total Store Order

Total Store Order (TSO) is a popular and simple relaxed memory model used,
e.g., in Intel x86 and Sun SPARC architectures [72, 84]. In this section we
present a formalization of TSO semantics in terms of store buffers, as described
by Owens et al. [72].

When a thread executes a store, it adds the store operation (the address and
the value being written) to the FIFO buffer of this thread. The operation is
non-deterministically popped from the buffer at some point later and executed
on memory. Load operations first snoop into the buffer of the same thread. If
there are no stores to the same address buffered, a load from memory happens.
Otherwise, the load takes the value from the last buffered store to the same
address (an early read situation). One can force flushing the buffered stores to
the memory by inserting special memory barrier instructions: mfence on x86 or
membar #StoreStore | #StoreLoad on SPARC.

The SPARC and x86 architectures provide special instructions for perform-
ing atomic operations. SPARC provides atomic load-store (ldstub), swap
(swap), and compare and swap (cas) [84]. Atomic instructions on x86 are the
usual instructions extended with the lock prefix. A locked instruction is exe-
cuted as follows: the thread flushes the buffers, acquires exclusive access to the
memory, executes the instruction itself, flushes the buffers again, and releases

12 CHAPTER 2. PRELIMINARIES

cmd=𝑟 ← mem[𝑒], a := ̂︀𝑒, buf(tid)↓(N× {a} × DOM) = 𝛽 · (id, a, v)
(sn, pc,mem, buf)

(tid,sn(tid),instr,a)−−−−−−−−−−−→ (sn′, pc′,mem[(tid, 𝑟) := v], buf)

cmd = 𝑟 ← mem[𝑒], a := ̂︀𝑒, buf(tid)↓(N× {a} × DOM) = 𝜀

(sn, pc,mem, buf)
(tid,sn(tid),instr,a)−−−−−−−−−−−→ (sn′, pc′,mem[(tid, 𝑟) := mem(a)], buf)

cmd = mem[𝑒a]← 𝑒v, a := ̂︀𝑒a, v := ̂︀𝑒v, id := sn(tid), 𝛽 := buf(tid)

(sn, pc,mem, buf)
(tid,id,instr,a)−−−−−−−−→ (sn′, pc′,mem, buf[tid := 𝛽 · (id, a, v)])

buf(tid) = (id, a, v) · 𝛽
(sn, pc,mem, buf)

(tid,id,flush)−−−−−−−→ (sn, pc,mem[a := v], buf[tid := 𝛽])

cmd = mfence, buf(tid) = 𝜀

(sn, pc,mem, buf)
(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem, buf)

cmd = 𝑟 ← 𝑒

(sn, pc,mem, buf)
(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem[(tid, 𝑟) := ̂︀𝑒], buf)

cmd = assume(𝑒), ̂︀𝑒 ̸= 0

(sn, pc,mem, buf)
(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem, buf)

Table 2.2: TSO transition rules, assuming pc(tid) = 𝑞, an instruction instr =

𝑞
cmd−−→ 𝑞′, pc′ := pc[tid := 𝑞′], and sn′ := sn[tid := sn(tid) + 1]. As ̂︀𝑒 we denote

the value of expression 𝑒 in thread tid and memory configuration mem.

the exclusive access to the memory [72].

Consider a multithreaded program 𝒫, as defined in Section 2.3. We add to
the set CMD of the program commands the x86 mfence instruction. The TSO
semantics of program 𝒫 is an automaton 𝑋tso(𝒫) := (𝑆tso,Etso,∆tso, 𝑠tso0, 𝐹tso).
The state 𝑠 ∈ 𝑆tso is a tuple 𝑠 := (sn, pc,mem, buf), where sn : TID → N is a
vector of counters used for identifying events, pc(tid) ∈ 𝑄tid is the control state
of the thread tid, mem : TID × REG ∪ ADDR → DOM is the memory configu-
ration, and buf : TID → (N × ADDR × DOM)* is the configuration of the store
buffers, storing sequence of address-value pairs, together with the identifiers
of the matching store events. The initial state is 𝑠0 := (sn0, pc0,mem0, buf0),
where sn0 := 𝜆tid.1, all threads are in the initial control states pc0(tid) := 𝑞tid0,
the memory is filled with zeroes: mem0(a) := 0 for all a ∈ TID× REG ∪ ADDR,
and the buffers are empty: buf0(tid) := 𝜀.

The transition relation is the smallest relation defined by the rules from
Table 2.2. The rules repeat, up to notation and support for locked instructions,
Figure 1 from [72]. The first two rules implement loads from the buffer and from
the memory respectively. By the third rule, store instructions enqueue write
operations to the buffer. The fourth rule non-deterministically dequeues and
executes them on memory. The fifth rule defines that memory fences can only be
executed when the buffer is empty. The last two rules refer to local assignments

2.5. STATE REACHABILITY 13

and assertions. We omitted locked instructions to keep the constructions and
proofs simple. Their handling is straightforward, similar to mfence, and does not
affect the results. Our robustness checking tool Trencher presented in Chapter 7
supports locked instructions.

The final states are all the states with the buffers empty: 𝐹tso := {(sn,
pc,mem, 𝜆tid.𝜀) ∈ 𝑆tso}. We need the requirement of empty buffers for the
simplicity of future definitions. Note that one can reach a final state from any
state by flushing the buffers.

The set of TSO computations of a program is Ctso(𝒫) := ℒ(𝑋tso(𝒫)).

Example 2.4. The following computation is a TSO computation of the SB
program (Figure 1.1):

𝜏 := 𝑎𝑏𝑐 · flush(𝑐) · 𝑑 · flush(𝑎),

where

∙ 𝑎 := (1, 1, 𝑞1
mem[𝑥]←1−−−−−−→ 𝑞2, 𝑥),

∙ 𝑏 := (1, 2, 𝑞2
𝑟1←mem[𝑦]−−−−−−−→ 𝑞3, 𝑦),

∙ 𝑐 := (2, 1, 𝑞1
mem[𝑦]←1−−−−−−→ 𝑞2, 𝑦),

∙ flush(𝑐) := (2, 1, flush),

∙ 𝑑 := (2, 2, 𝑞2
𝑟2←mem[𝑥]−−−−−−−→ 𝑞3, 𝑥),

∙ flush(𝑎) := (1, 1, flush).

In this computation the first thread delays the flush of the store to variable 𝑥
until the end of the computation. As a result, both threads read the initial
values from variables 𝑥 and 𝑦, which is impossible under SC.

Fix a computation 𝜎 ∈ Ctso(𝒫) and an event e ∈ 𝜎. As tid(e) we denote
the thread id of the event, i.e., the first component of e. As id(e) we denote
the serial number of the event, i.e., the second component of e. As instr(e) we
denote the instruction that created the event. For non-flush events, instr(e) is
the third component of the tuple e. For flush events, instr(e) is equal to that of
the matching store event (the event in 𝜎 having the same id and tid). Moreover,
for load, store, and flush events we use addr(e) to refer to the address being
accessed (the last component of the tuple for load and store events, the address
of the matching store event for flush events). For instance, in Example 2.4 we

have tid(𝑎) = 1, id(𝑎) = 1, instr(𝑎) = 𝑞1
mem[𝑥]←1−−−−−−→ 𝑞2, addr(𝑎) := 𝑥.

2.5 State Reachability

In the thesis we will use state reachability as a target for several reductions.
This section provides the complexity and decidability results we will need.

Problem 2.5 (State reachability under mm). Given a relaxed memory model
mm, a program 𝒫, a thread tid, and a control state 𝑞 ∈ 𝑄tid, to check whether
the program reaches under mm a final state 𝑠 with the control state of tid being
𝑞.

14 CHAPTER 2. PRELIMINARIES

We defer formal definition of what is a control state of a given thread in a
running program to the definition of the corresponding memory model seman-
tics. However, for SC and TSO, the state reachability problem asks whether a
state (sn, pc,mem), respectively (sn, pc,mem, buf), with pc(tid) = 𝑞 is reachable.

The state reachability problem can be formulated for the parameterized set-
ting, when the number of running threads (e.g., library clients) is not fixed a
priori. In this setting, instead of considering a single program 𝒫, we consider a
family of programs {𝒫(𝐼) | 𝐼 ∈ NTID}. A program instance 𝒫(𝐼) of parameter-
ized program 𝒫 consists of 𝐼(tid) copies of thread 𝒯tid, tid ∈ TID. Parameterized
state reachability asks if at least one instance of the parameterized program can
reach a certain state.

Problem 2.6 (Parameterized state reachability under mm). Given a relaxed
memory model mm, a program 𝒫, a thread tid and a control state 𝑞 ∈ 𝑄tid, to
check whether there is 𝐼 ∈ NTID, such that 𝒫(𝐼) reaches under mm a final state
𝑠 with the control state of at least one copy of thread tid being 𝑞.

On the assumption of a finite data domain DOM, the following decidability
and complexity results hold.

Lemma 2.7 ([52]). State reachability under SC is PSpace-complete.

Lemma 2.8. Parameterized state reachability under SC is decidable.

Proof. Let 𝒫 be a parameterized program with finite data domain DOM. We
reduce parameterized SC state reachability to the coverability problem for a
Petri net 𝑁 = (𝑃, 𝑇,𝑊). We construct the Petri net as follows.

For each pair of address and value (a, v) ∈ ADDR× DOM we create a place
pa,v. These places represent the state of the global memory: a marking 𝑀 with
𝑀(pa,v) = 1 corresponds to a state with mem(a) = v. For each thread tid,

control state 𝑞 ∈ 𝑄tid, v ∈ DOMREG, we create a place ptid,𝑞,v. 𝑀(ptid,𝑞,v) gives
the number of instances of thread tid in control state 𝑞 with the valuation of
registers being v.

For each thread tid we create a transition ttid that spawns instances of this
thread in the initial state. We set 𝑊 (ttid, p𝑞tid0,0REG) := 1. Next we create transi-
tions that simulate the instructions in each thread. We explain the construction
for load instructions. The other instructions are handled similarly.

Consider a load instruction instr := 𝑞1
𝑟←mem[𝑒a]−−−−−−−→ 𝑞2. For each v ∈ DOMREG,

v ∈ DOM we add a fresh transition ttid,instr,v,v. Let a be the value of 𝑒a for register
valuation v. We set 𝑊 (ptid,𝑞1,v, ttid,instr,v,v) := 𝑊 (ttid,instr,v,v, ptid,𝑞2,v[𝑟:=v]) := 1.
We set 𝑊 (pa,v, ttid,instr,v,v) := 𝑊 (ttid,instr,v,v, pa,v) := 1. Transition ttid,instr,v,v is
enabled iff there is an instance of the thread tid in control state 𝑞1, register
valuation v, and memory contains value v at address a. Firing the transition
only updates the state of the thread instance: its program counter is set to label
𝑞2, and the value of register 𝑟 is set to v.

We define the initial marking by 𝑀0(pa,0) := 1 for all a ∈ DOM, 𝑀0(p) := 0
for all other places p ∈ 𝑃 . A state with at least one copy of thread tid being
in state 𝑞 is SC-reachable in the parameterized program iff at least one of the
markings 𝑀 with 𝑀(ptid,𝑞,v) = 1, v ∈ DOMREG, is coverable in the constructed
Petri net.

Altogether, by Lemma 2.2 and the above reduction, the parameterized SC
state reachability problem is decidable.

2.5. STATE REACHABILITY 15

Lemma 2.9. Parameterized state reachability under SC is ExpSpace-hard al-
ready for programs with |DOM| ≥ 3.

Proof. Fix a Petri net 𝑁 := ((𝑃, 𝑇,𝑊),𝑀0) and a marking 𝑀 . We reduce
coverability problem for the Petri net 𝑁 and marking 𝑀 to the SC state reach-
ability problem in a parameterized program 𝒫. The program 𝒫 consists of the
threads {𝒯p | p ∈ 𝑃} and a supervisor thread 𝒯 . Each thread 𝒯p has the initial
control state 𝑞0 and a control state 𝑞1. The number of instances of thread 𝒯p in
control state 𝑞1 will indicate the marking of the place p. The supervisor thread
𝒯 controls transitions of the threads 𝒯p from 𝑞0 to 𝑞1 and back.

Thread 𝒯 will need 2·|𝑃 | different messages to communicate with the threads
𝒯p: messages 𝐴p to signal that thread 𝒯p must enter 𝑞1 and messages 𝐵p to signal
that the state must be left. These messages can be represented as bit vectors
of length ⌈log(2 · |𝑃 |)⌉ and transmitted using the following protocol. In order
to send a bit vector, 𝒯 stores the bits of this vector to address 𝑥, waiting after
each store until the variable 𝑥 again becomes 0, i.e., sending a bit ⊤ looks as
follows:

𝑞𝑥1
mem[𝑥]←⊤−−−−−−−→ 𝑞𝑥2

𝑟←mem[𝑥]−−−−−−→ 𝑞𝑥3
assume(𝑟=0)−−−−−−−−→ 𝑞𝑥4.

In order to receive a bit vector, 𝒯p loads 𝑥, checks that it is not 0, and then
stores 0 to 𝑥, i.e., receiving one bit into register 𝑟 looks as follows:

𝑞𝑥1
𝑟←mem[𝑥]−−−−−−→ 𝑞𝑥2

assume(𝑟)̸=0−−−−−−−−→ 𝑞𝑥3
mem[𝑥]←0−−−−−−→ 𝑞𝑥4.

In order to make sure that only one thread 𝒯p is currently receiving a bit vector,
we need a flag 𝑦. Before starting to receive a bit vector, the thread atomically
changes the value at 𝑦 from 0 to 1 using compare and swap (we can assume that
it is provided). After receiving a message destined to this thread, the thread
writes 0 to 𝑦. If the thread has received a message destined to another thread
(or a message that asks for a transition it cannot perform), it keeps 1 in 𝑦,
thus blocking further communication. Note that if a receiving thread tries to
read a bit before it is actually written or a sending thread tries to check the
acknowledgement before the receiving thread does it, the communication blocks
as well.

The threads 𝒯p have a path from 𝑞0 to 𝑞1 that involves receiving a bit vector
representing 𝐴p and a path from 𝑞1 to 𝑞0 that receives a bit vector representing
𝐵p.

The supervisor thread from the initial state 𝑞0 has a transition to 𝑞1 that
atomically changes the value at address 𝑧 from 0 to 1 using compare-and-swap:
this will limit the number of active supervisor instances to one. From the state
𝑞1 it has a path to 𝑞2 consisting, for each p ∈ 𝑃 , of a send of 𝑀0(p) message
𝐴p (to reach the initial marking). From the control state 𝑞2, for each transition
t ∈ 𝑇 , we add a loop path from 𝑞2 to 𝑞2 that involves sending 𝑊 (p, t) messages
𝐵p for each p ∈ 𝑃 followed by sending 𝑊 (t, p) messages 𝐴p for each p ∈ 𝑃 .
Finally, we add a path from 𝑞2 → 𝑞3 consisting of 𝑀(p) transitions 𝐵p for each
p ∈ 𝑃 and checking that the value of 𝑦 is 0 in the end. The marking is coverable
iff the supervisor thread can reach the control state 𝑞3 under SC.

Note that in the construction we used only three addresses (𝑥, 𝑦, 𝑧), each con-
taining at most three different values. By the above reduction and Lemma 2.2,
parameterized state reachability is ExpSpace-hard already for programs with
|DOM| ≥ 3.

16 CHAPTER 2. PRELIMINARIES

Thread 1 Thread 2

𝑞0 𝑞0

𝑞1 𝑞1

𝑞2 𝑞2

𝑞3 𝑞3

𝑞4 𝑞4

𝑞5

𝑎 : mem[𝑥]← 1

𝑏 : 𝑟1 ← mem[𝑦]

𝑐 : assume(𝑟1 = 0)

𝑑 : mem[𝑧]← 1

𝑒 : mem[𝑦]← 1

𝑓 : 𝑟2 ← mem[𝑥]

𝑔 : assume(𝑟2 = 0)

ℎ : 𝑟3 ← mem[𝑧]

𝑘 : assume(𝑟3 = 1)

Figure 2.1: SB+ program, a non-state-robust version of the SB program from
Figure 1.1. Initially, 𝑥 = 𝑦 = 0.

2.6 State-Robustness

The state-robustness problem consists in checking whether the threads of a
program reach the same control states under SC and under a relaxed memory
model.

Problem 2.10 (State-robustness against mm). Given a relaxed memory model
mm, a program 𝒫, check, for each tid ∈ TID and 𝑞 ∈ 𝑄tid that if the program
can reach under mm a final state 𝑠 with the control state of tid being 𝑞 ∈ 𝑄tid,
then it can reach a final state 𝑠′ under SC with the control state of tid being 𝑞.

Example 2.11. Consider the SB+ program shown in Figure 2.1. It implements
a mutual exclusion protocol, as explained in Example 1.1. We modified thread
1 to signal entering the critical section by setting variable 𝑧 to 1. Thread 2,
once it enters the critical section, checks whether 𝑧 contains 1 and, if it so,
enters state 𝑞5. Since mutual exclusion fails under TSO, the program SB+ is
not state-robust against TSO (and all weaker memory models): thread 2 can
reach state 𝑞5 under TSO, but not under SC.

Theorem 2.12. State-robustness against mm ∈ {power, rmo, pso, tso, pgas} is
as hard as reachability under mm.

Proof. The upper bound follows from a reduction of state-robustness to state
reachability. One can enumerate all threads and all control states in each thread
and check, for each control state, whether it is reachable under SC and under
mm.

The lower bound follows from a reduction in the opposite direction. Consider
a state reachability problem for a relaxed memory model mm, program 𝒫, a
thread tid and a control state 𝑞𝑓 ∈ 𝑄tid. We reduce the problem to state

2.7. TRACES 17

robustness. We give the reduction for CPU memory models, the reduction for
PGAS differs only in syntax.

In each thread of the original program we create a new initial state 𝑞′0 and
create no-op transitions (e.g., labeled with assume(1)) from this state to all the
states of this thread. Additionally, we create transitions

𝑞′0
𝑟←mem[cnt]−−−−−−−→ 𝑞𝑥1

mem[cnt]←𝑟+1−−−−−−−−−→ 𝑞0, (2.1)

where 𝑞0 is the old initial state. We assume that 𝑟 is a fresh register, cnt is a
fresh address, and 𝑞𝑥* are fresh states not used in the original program (thread).

In thread tid we additionally create the following transitions:

𝑞𝑓
𝑟←mem[cnt]−−−−−−−→ 𝑞𝑥2

assume(𝑟=|𝒫|)−−−−−−−−−→ 𝑞𝑥3
mem[go]←1−−−−−−−→ 𝑞𝑥4, (2.2)

𝑞′0
assume(1)−−−−−−→ 𝑞𝑥2, (2.3)

where go is a fresh address not used in the original program.

Finally, we extend the original program with additional threads that check
whether address go contains 1 and, if it does, violate state-robustness, by e.g.,
executing the SB+ program (Figure 2.1).

Note that thread tid of the original program can reach control state 𝑞𝑓 un-
der mm iff thread tid of the modified program can reach control state 𝑞𝑥3 under
this model. Indeed, the modified program can perform transitions (2.1) in each
thread, after which perform the exactly same transitions as the original pro-
gram, reaching 𝑞𝑓 . Due to executed (2.1), address cnt contains |𝒫|, and 𝑞𝑥3 is
reachable. The reverse implication is proven similarly.

Now assume the modified program is state-robust against mm. This means,
the SB+ subprogram never runs, i.e., go is never set to 1, and thread tid in
the modified program never reaches 𝑞𝑥3. Therefore, it does not reach 𝑞𝑓 in the
original program.

Assume the modified program is not state-robust against mm. This means,
thread tid can reach 𝑞𝑥3 under mm, but not under SC (all other states in the
modified threads of the original program are reachable via a single transition
from 𝑞′0). Therefore, 𝑞𝑓 is reachable by thread tid in the original program.

2.7 Traces

Intuitively, a trace 𝑇 (𝜎) abstracts a program computation 𝜎 ∈ Cmm(𝒫) to the
dataflow and control-flow relations between executed instructions. Formally,
the trace of 𝜎 is a directed graph 𝑇 (𝜎) := (𝑉,→𝑝𝑜,→𝑐𝑜,→𝑠𝑟𝑐,→𝑐𝑓) with nodes
𝑉 and four kinds of arcs. The nodes are instructions together with their thread
identifiers and serial numbers (in order to distinguish instructions executed in
different threads and the same instruction executed multiple times in the same
thread), plus special nodes for the initial stores: 𝑉 ⊆ ⋃︀

tid∈TID{tid} ×N× ℐtid ∪
{inita | a ∈ ADDR}. The program order →𝑝𝑜 is the order in which instructions
were executed in each thread. The coherence order →𝑐𝑜 gives the global ordering
of stores to each address. The source order →𝑠𝑟𝑐 connects a store with the load
that read from it. The conflict order →𝑐𝑓 shows, for a load, the store to the
same address following the store from which the load took its value.

18 CHAPTER 2. PRELIMINARIES

init𝑦 init𝑥

Thread 1 Thread 2

(1, 1, 𝑞0
mem[𝑥]←1−−−−−−→ 𝑞1) (2, 1, 𝑞0

mem[𝑦]←1−−−−−−→ 𝑞1)

(1, 2, 𝑞1
𝑟1←mem[𝑦]−−−−−−−→ 𝑞2) (2, 2, 𝑞1

𝑟2←mem[𝑥]−−−−−−−→ 𝑞2)

𝑝𝑜 𝑝𝑜

𝑐𝑓

𝑠𝑟𝑐

𝑐𝑜 𝑐𝑜

𝑠𝑟𝑐

Figure 2.2: Trace of computation 𝜎 from Example 2.3.

2.7.1 SC Traces

For SC computations we formally define traces as follows. Fix a computation
𝜎 ∈ Csc(𝒫). Let e𝑖1 . . . e𝑖𝑚 be the longest subsequence of events in 𝜎 with
tid(e𝑖𝑘) = tid for all 𝑘 ∈ [1..𝑚]. Then e𝑖1 →𝑝𝑜 . . .→𝑝𝑜 e𝑖𝑚 . Here and further, for
convenience, we abbreviate (tid(e1), id(e1), instr(e1))→ (tid(e2), id(e2), instr(e2))
to e1 → e2.

The coherence order →𝑐𝑜 is the minimal relation satisfying the following.
Let e𝑖1 . . . e𝑖𝑚 be the longest subsequence of store events in 𝜎 with addr(e𝑖𝑘) = a
for all 𝑘 ∈ [1..𝑚]. Then inita →𝑐𝑜 e𝑖1 →𝑐𝑜 . . . →𝑐𝑜 e𝑖𝑚 , where inita is a special
node for the initial store to address a.

The source order →𝑠𝑟𝑐 is the minimal relation satisfying the following. Let
𝜎 = 𝜎1 ·e1 ·𝜎2 ·e2 ·𝜎3, e1 is a store, e2 is a load, addr(e1) = addr(e2) = a, and there
is no store event e ∈ 𝜎2 with addr(e) = a. Then e1 →𝑠𝑟𝑐 e2. If 𝜎 = 𝜎1 · e2 · 𝜎2,
e2 is a load, and there is no store e1 ∈ 𝜎1 with addr(e1) = addr(e2), then
initaddr(e2) →𝑠𝑟𝑐 e2.

Finally, the conflict order is the minimal relation satisfying the following. If
e1 →𝑠𝑟𝑐 e2 and e1 →𝑐𝑓 e3, then e1 →𝑐𝑓 e3.

Example 2.13. Figure 2.2 shows the trace of computation 𝜎 from Example 2.3.
The coherence order shows that the stores to 𝑥 and 𝑦 overwrite the values written
by the initial stores. The source relation shows that the load from 𝑦 in the first
thread reads the value written by the initial store, and the load from 𝑥 reads the
value written by the store to 𝑥 in the first thread. The conflict relation shows
that the store of the second thread overwrites the value read by the load in the
first thread.

2.7.2 TSO Traces

Now fix a TSO computation 𝜏 ∈ Ctso(𝒫). We define its trace 𝑇 (𝜏) := (𝑉,→𝑝𝑜,
→𝑐𝑜,→𝑠𝑟𝑐,→𝑐𝑓) as follows.

Let e𝑖1 . . . e𝑖𝑚 be the longest subsequence of non-flush events in 𝜏 with
tid(e𝑖𝑘) = tid for all 𝑘 ∈ [1..𝑚]. Then the program order →𝑝𝑜 is the succes-
sor relation for this subsequence: e𝑖1 →𝑝𝑜 . . .→𝑝𝑜 e𝑖𝑚 .

The coherence order →𝑐𝑜 is the minimal relation satisfying the following.
Let e𝑖1 . . . e𝑖𝑚 be the longest subsequence of flush events in 𝜏 with addr(e𝑖𝑘) = a

2.8. ROBUSTNESS 19

init𝑦 init𝑥

Thread 1 Thread 2

(1, 1, 𝑞0
mem[𝑥]←1−−−−−−→ 𝑞1) (2, 1, 𝑞0

mem[𝑦]←1−−−−−−→ 𝑞1)

(1, 2, 𝑞1
𝑟1←mem[𝑦]−−−−−−−→ 𝑞2) (2, 2, 𝑞1

𝑟2←mem[𝑥]−−−−−−−→ 𝑞2)

𝑝𝑜 𝑝𝑜

𝑐𝑓𝑐𝑓

𝑐𝑜 𝑐𝑜

𝑠𝑟𝑐𝑠𝑟𝑐

Figure 2.3: Trace of computation 𝜏 from Example 2.4.

for all 𝑘 ∈ [1..𝑚]. Then inita →𝑐𝑜 e𝑖1 →𝑐𝑜 . . . →𝑐𝑜 e𝑖𝑚 , where inita is a special
node for the initial store to address a.

The source order →𝑠𝑟𝑐 requires case consideration. Consider a load event
e2 ∈ 𝜏 with tid(e2) = tid, addr(e2) = a. The early read case: if 𝜏 = 𝜏1 · e1 · 𝜏2 ·
e2 · 𝜏3 · e3 · 𝜏4, where tid(e1) = tid, addr(e1) = a, e1 is a matching store event of
flush event e3, there are no store events e ∈ 𝜏2 with tid(e) = tid and addr(e) = a,
then e1 →𝑠𝑟𝑐 e2. Otherwise, the load from memory case: if 𝜏 = 𝜏1 ·e1 · 𝜏2 ·e2 · 𝜏3,
e1 is a flush event with addr(e1) = a, and there are no flush events e ∈ 𝜏2 with
addr(e) = a, then e1 →𝑠𝑟𝑐 e2. Finally, if 𝜏 = 𝜏1 ·e2 ·𝜏2 and there is no flush event
e ∈ 𝜏1 with addr(𝜏1) = a, then inita →𝑠𝑟𝑐 e2.

The conflict order →𝑐𝑓 shows which store overwrites the value read by a
load. If e1 →𝑠𝑟𝑐 e2 and e1 →𝑐𝑜 e3, then e1 →𝑐𝑓 e3.

Example 2.14. Figure 2.3 shows the trace of computation 𝜏 from Example 2.4.
The source order indicates that both loads read the initial values of variables 𝑥
and 𝑦. The stores to 𝑥 and 𝑦 follow the initial stores to these variables in the
coherence order and, consequently, conflict with the loads.

2.8 Robustness

Let 𝑇mm(𝒫) denote the set of traces of all computations of program 𝒫 under
memory model mm: 𝑇mm(𝒫) := {𝑇 (𝜎) | 𝜎 ∈ Cmm(𝒫)}. The robustness problem
consists in checking whether the program has the same set of traces under SC
and under a relaxed memory model.

Problem 2.15 (Robustness against mm). Given a relaxed memory model mm,
and a program 𝒫, to check whether 𝑇sc(𝒫) = 𝑇mm(𝒫).

We call a program robust against a memory model mm if the above equality
holds. For all the memory models considered in the thesis the inclusion 𝑇sc(𝒫) ⊆
𝑇mm(𝒫) trivially holds, so, robustness amounts to checking the reverse inclusion.

The union of the four relations in 𝑇 (𝜎) is commonly called the happens-
before relation [55] of the computation: →ℎ𝑏 (𝜎) :=→𝑝𝑜 ∪ →𝑐𝑜 ∪ →𝑠𝑟𝑐 ∪ →𝑐𝑓 .
Shasha and Snir have shown that a trace belongs to an SC computation iff the
happens-before relation is acyclic.

20 CHAPTER 2. PRELIMINARIES

Lemma 2.16 ([79]). Consider a computation 𝜎 ∈ Cmm(𝒫). Then 𝑇 (𝜎) ∈ 𝑇sc(𝒫)
iff →ℎ𝑏 (𝜎) is acyclic.

Example 2.17. The SC computation 𝜎 from Example 2.3 has a trace with
acyclic happens-before relation (Figure 2.2).

Example 2.18. The computation 𝜏 from Example 2.4 has a trace with the
cyclic happens-before relation (Figure 2.3). Indeed, the program is not robust
against TSO: there is no SC computation where both loads could read the initial
value 0.

Trace-robustness implies state-robustness, which means that one can verify
trace-robust programs under SC and be sure that verification results carry over
to the relaxed setting.

Theorem 2.19. Trace-robustness against mm ∈ {power, rmo, pso, tso, pgas} im-
plies state-robustness against mm.

Proof. If a program has the same set of traces under SC and under a memory
model mm, then, by definition of→𝑝𝑜 component of traces, all its threads reach
the same control states under SC and mm, i.e., the program is state-robust
against mm.

Similar to the parameterized state reachability (Section 2.5), we can define
the robustness problem for parameterized programs. It consists in checking
whether each instance of a parameterized program is robust.

Problem 2.20 (Parameterized robustness against mm). Given a relaxed mem-
ory model mm, and a parameterized program 𝒫, to check whether 𝑇sc(𝒫(𝐼)) =
𝑇mm(𝒫(𝐼)) for all 𝐼 ∈ NTID.

Parameterized robustness is an interesting problem, useful, for example, for
verification of concurrent libraries. These libraries generally cannot assume that
the number of threads calling library functions is bounded. While the robustness
problem asks whether a given library works correctly with the given finite set
of clients, the parameterized robustness problem asks whether a library works
correctly for any number of clients.

Chapter 3

Generic Approach to
Robustness

In this chapter we present a generic approach to solving robustness of finite-state
programs. This approach will be used in the next chapters to solve robustness
against several real-world memory models.

The approach is based on Lemma 2.16: a program is not robust against
a memory model if under this memory model it has computations with cyclic
happens-before relation. This characterization immediately leads to a naive
method for detecting non-robustness. One can enumerate program computa-
tions under a given memory model and, for each computation, check its happens-
before relation for cyclicity. This method is the basis of, e.g., the monitoring
algorithms by Burckhardt and Musuvathi [25] and Burnim et al. [26]. Unfortu-
nately, this approach is generally unsuitable for proving robustness, as it requires
enumerating all program computations, whose number is generally infinite.

The idea of our approach is to shift the problem from finding just any compu-
tation with cyclic happens-before relation to finding such a computation within
a certain, restricted class of computations. Intuitively, the class must have the
following two qualities. On one hand, it must be representative: the class must
contain a computation with cyclic happens-before relation if the program has
one. On the other hand, it should be as small as possible, to reduce the search
space. We discover such a class using combinatorial analysis and then develop
an algorithm for checking its emptiness for a given program.

Altogether, we solve robustness against a given memory model in two steps.
In the first, combinatorial, step we show that, if a program has computations
violating robustness, it has such a computation of a certain normal form. In
the second, algorithmic, step we devise an algorithm for checking whether a
program has violating normal-form computations.

3.1 Normal-Form Computations

We say that a computation 𝜏 ∈ Cmm(𝒫) is in normal form of degree 𝑛 if there
is a partitioning 𝜏 = 𝜏1 · · · 𝜏𝑛, such that each instruction has its first event in 𝜏1

21

22 CHAPTER 3. GENERIC APPROACH TO ROBUSTNESS

(NF-A) and events belonging1 to different instructions occur in different parts
of the computation in the same order (NF-B):

NF-A e1 ∈ 𝜏 implies existence of a matching e2 ∈ 𝜏1 with tid(e1) = tid(e2) and
id(e1) = id(e2).

NF-B For 𝑗 ∈ {1, 2} let e𝑗 , e
′
𝑗 be events belonging to instructions (tid𝑗 , id𝑗). If

e1, e2 ∈ 𝜏𝑠 and e′1, e
′
2 ∈ 𝜏𝑠′ , then e1 <𝜏𝑠 e2 iff e′1 <𝜏𝑠′ e

′
2.

Clearly, a normal-form computation of degree 𝑛 is also a computation of degree
𝑛 + 1 or any other higher degree.

Example 3.1. Computation 𝜏 from Example 2.4 is a normal-form computation
of degree 2. Indeed, it can be partitioned as 𝜏 := 𝜏1·𝜏2, where 𝜏1 := 𝑎𝑏𝑐·flush(𝑐)·𝑑
and 𝜏2 := flush(𝑎). The only event flush(𝑎) in 𝜏2 has a matching event 𝑎 in 𝜏1,
so, NF-A holds. Also, 𝜏2 consists of only one event, therefore, NF-B trivially
holds.

We show that among computations with cyclic happens-before relation there
is a normal-form computation of a certain small degree. For this, we choose a
computation with cyclic happens-before relation and transform it to the normal
form as follows.

Consider a shortest computation 𝜏 ∈ Cmm(𝒫) with cyclic happens-before
relation. One can show that we can undo the last executed instruction in one
of the threads and obtain a feasible computation. Formally, let 𝜏 ∖ (tid, id) be
the computation obtained from 𝜎 by deleting all events belonging to instruction
(tid, id). We show that there is (tid, id), such that 𝜏 ′ := tid ∖ (tid, id) ∈ Cmm(𝒫)
and |𝜏 ′| < |𝜏 |. If 𝜏 = 𝜏1 · e1 · 𝜏2 · e2 · · · 𝜏𝑛, where e1 . . . e𝑛−1 are the events
belonging to instruction (tid, id), then 𝜏 ′ := 𝜏1 · · · 𝜏𝑛.

Since 𝜏 was the shortest computation with cyclic happens-before relation,
happens-before relation of 𝜏 ′ is acyclic. By Lemma 2.16, there is an SC com-
putation 𝜎 ∈ Csc(𝒫) with 𝑇 (𝜎) = 𝑇 (𝜏 ′). We reorder events in each part of the
computation 𝜏 in the way in which they follow in 𝜎:

𝜏 ′′ := 𝜎↓𝜏1 · e1 · 𝜎↓𝜏2 · e2 · · ·𝜎↓𝜏𝑛.

Here we implicitly assume that 𝜎 is extended to include all the events from 𝜏 .
For example, in case of TSO it contains flush events right after the matching
store events.

Finally, we show that 𝜏 ′′ ∈ Cmm(𝒫), it has the same trace as the origi-
nal computation, 𝑇 (𝜏 ′′) = 𝑇 (𝜏), and is a normal-form computation, with the
partitioning

𝜏 ′′ := (𝜎↓𝜏1 · e1) · (𝜎↓𝜏2 · e2) · · · (𝜎↓𝜏𝑛).

The number of parts 𝑛 is bounded by the number of events that an execution
of a single instruction can generate plus one. This number, for all memory
models considered in the thesis, does not exceed the number of threads in the
program plus a constant.

Example 3.2. Computation 𝜏 from Example 2.4 is a shortest TSO computation
of SB program with cyclic happens-before relation. We can delete either event

1See page 11 for the definition of belongs to an instruction.

3.2. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 23

init𝑦 init𝑥

Thread 1 Thread 2

(1, 1, 𝑞0
mem[𝑥]←1−−−−−−→ 𝑞1) (2, 1, 𝑞0

mem[𝑦]←1−−−−−−→ 𝑞1)

(2, 2, 𝑞1
𝑟2←mem[𝑥]−−−−−−−→ 𝑞2)

𝑝𝑜

𝑐𝑓

𝑐𝑜 𝑐𝑜

𝑠𝑟𝑐

Figure 3.1: Trace of computations 𝜏 ′ and 𝜎 from Example 3.2.

𝑏 belonging to the last executed instruction in thread 1 or, symmetrically, event
𝑑 of thread 2. Assume we delete 𝑏. Then 𝜏1 := 𝑎, e1 := 𝑏, 𝜏2 := 𝑐 · flush(𝑐) ·
𝑑 · flush(𝑎). Then 𝜏 ′ := 𝜏1 · 𝜏2 has the same trace as sequentially consistent
𝜎 := 𝑐 · flush(𝑐) · 𝑑𝑎 · flush(𝑎), shown in Figure 3.1. Consequently, 𝜏 ′′ := (𝜎 ↓
𝜏1) · e1 · (𝜎↓𝜏2) = (𝑎) · 𝑏 · (𝑐 · flush(𝑐) · 𝑑 · flush(𝑎)), i.e., coincides with 𝜏 .

3.2 From Robustness to Language Emptiness

According to the previous section, a program is robust iff it does not have
normal-form computations (of some small degree) with cyclic happens-before
relation. In order to check robustness of a program, we construct the language of
all normal-form computations and intersect it with a regular language checking
cyclicity of happens-before relation. The program is robust iff the intersection
is empty.

3.2.1 Multiheaded Automata

Normal-form computations do not bound the distance between events belong-
ing to the same instruction. For example, under TSO a buffered store can
remain in the buffer unboundedly long, and there can be an any number of such
stores. Therefore, normal-form computations cannot be generated by classic
finite automata: finite automata cannot keep information about unboundedly
many concurrently executed instructions. However, we can use the fact that rel-
ative dispositions of events belonging to the same instructions are the same in
each part of the computation (NF-B). The idea is to generate events belonging
to one instruction in one shot, however, in different parts of the computation.
For this, we enhance finite automata with the ability to generate multiple parts
of a computation in parallel. The new class of automata is called multiheaded
automata.

A multiheaded automaton generates a word 𝜎1 · · ·𝜎𝑛 by simultaneously gen-
erating its parts 𝜎𝑖. The automaton has a head for each part, and the transition
relation specifies the head producing an event. Formally, an 𝑛-headed automa-
ton over Σ is an automaton operating on the extended alphabet [1..𝑛] × Σ:
𝐴 := (𝑆, [1..𝑛] × Σ,∆, 𝑠0, 𝐹). For a word 𝜎 := (𝑎1, 𝑏1) . . . (𝑎𝑚, 𝑏𝑚) we de-

24 CHAPTER 3. GENERIC APPROACH TO ROBUSTNESS

fine take1st(𝜎) := 𝑎1 . . . 𝑎𝑚 and take2nd(𝜎) := 𝑏1 . . . 𝑏𝑚. We naturally ex-
tend take1st() and take2nd() to sets of words. For 𝜎 ∈ ([1..𝑛] × Σ)* we de-
fine word(𝜎) := take2nd(𝜎 ↓ ({1} × Σ) · · ·𝜎 ↓ ({𝑛} × Σ)). The language of 𝐴 is

ℒ(𝐴) := {word(𝜎) | 𝑠0 𝜎−→ 𝑠 for some 𝑠 ∈ 𝐹}.
Multiheaded automata are closed under regular intersection, and emptiness

is decidable in non-deterministic logarithmic space.

Lemma 3.3. Consider an 𝑛-headed automaton 𝑈 and a finite automaton 𝑉
over a common alphabet Σ. There is an 𝑛-headed automaton 𝑊 with ℒ(𝑊) =
ℒ(𝑈) ∩ ℒ(𝑉) with the number of states |𝑆𝑊 | ≤ |𝑆𝑈 | · |𝑆𝑉 |2𝑛 + 1.

Proof. Let 𝑈 = (𝑆𝑈 ,Σ,∆𝑈 , 𝑠𝑈 0, 𝐹𝑈) and 𝑉 = (𝑆𝑉 ,Σ,∆𝑉 , 𝑠𝑉 0, 𝐹𝑉). We set

𝑊 := (𝑆𝑊 ,Σ,∆𝑊 , 𝑠𝑊 0, 𝐹𝑊). Let Ω := 𝑆
[1..𝑛]
𝑉 . Then, the set of states is

𝑆𝑊 := {𝑠𝑊 0} ⊎ (𝑆𝑈 × Ω × Ω). The set of final states is 𝐹𝑊 := {(𝑠𝑈 , 𝜔1, 𝜔2) |
𝑠𝑈 ∈ 𝐹𝑈 , 𝜔1(𝑛) ∈ 𝐹𝑉 , and 𝜔1(𝑘) = 𝜔2(𝑘 + 1) for all 𝑘 ∈ [1..𝑛 − 1]}. The
automaton has the following transitions:

∙ 𝑠𝑊 0
𝜀−→ (𝑠𝑈 0, 𝜔, 𝜔) for each 𝜔 ∈ Ω with 𝜔(1) = 𝑠𝑉 0,

∙ (𝑠𝑈 , 𝜔1, 𝜔2)
𝑘,𝑎−−→ (𝑠′𝑈 , 𝜔

′
1, 𝜔2) if 𝑠𝑈

𝑘,𝑎−−→ 𝑠′𝑈 , 𝜔1(𝑘)
𝑎−→ 𝜔′1(𝑘), and 𝜔1(𝑖) =

𝜔′1(𝑖) for 𝑖 ̸= 𝑘,

∙ (𝑠𝑈 , 𝜔1, 𝜔2)
𝜀−→ (𝑠′𝑈 , 𝜔1, 𝜔2) if 𝑠𝑈

𝜀−→ 𝑠′𝑈 ,

∙ (𝑠𝑈 , 𝜔1, 𝜔2)
𝜖−→ (𝑠𝑈 , 𝜔

′
1, 𝜔2) if 𝜔1(𝑘)

𝜀−→ 𝜔′1(𝑘) and 𝜔1(𝑖) = 𝜔′1(𝑖) for 𝑖 ̸= 𝑘.

Consider 𝛼 = 𝛼1 · · ·𝛼𝑛 ∈ ℒ(𝑈)∩ℒ(𝑉), where 𝛼𝑘 is produced by the 𝑘th head
of 𝑈 . By the 𝜀-transition from the initial state, 𝑊 guesses, for each 𝑘, the state
𝜔(𝑘) that the automaton 𝑉 will reach after processing the prefix 𝛼1 · · ·𝛼𝑘−1
of 𝛼. The other transitions effectively execute the automaton 𝑈 synchronously
with 𝑛 copies of the automaton 𝑉 , each matching its own 𝛼𝑘 subword of 𝛼,
starting from the guessed initial state 𝜔(𝑘). The set of final states 𝐹𝑊 makes
sure that the guess was done correctly, which means the 𝑘th copy of 𝑉 has
reached the initial state of the 𝑘+1th copy, and the 𝑛th copy has reached a final
state in 𝐹𝑉 .

Lemma 3.4. Language emptiness for 𝑛-headed automata is NL-complete.

Proof. See the proof of Lemma 2.1.

Multiheaded automata are equal in expressiveness to right-linear scattered
context grammars [41], assuming these grammars allow an initial word con-
sisting of multiple non-terminals. Multiheaded automata are incomparable
with context-free grammars. Indeed, they can be used to represent a language
𝑎𝑛𝑏𝑛𝑐𝑛, which is well-known to be non-context-free. On the other hand, 𝜎 ·𝜎rev

is context-free but not accepted by a multiheaded automaton.

Example 3.5. Normal-form TSO computations of degree 2 can be generated by
a multiheaded automaton of degree 2 defined as follows. The automaton, similar
to 𝑋tso(𝒫) from Section 2.4.2, keeps in the state the current control state of each
thread and the global memory configuration. However, instead of keeping the
buffer contents, it remembers for every thread the last buffered value written
to each address. The automaton handles all non-store instructions as before,

3.2. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 25

they produce events only in part 1, to make the computation satisfy NF-A. Store
instructions produce two events: a store event in part 1 and a flush event in part 1
(store is not buffered) or part 2 (store is buffered) non-deterministically. Of
course, the automaton must comply with the FIFO ordering and never produce
flush events in part 1 if it already generated flush events for the same thread in
part 2. This also guarantees that the computation satisfies NF-B. Computation
𝜏 from Example 2.4 would be generated by this automaton via a sequence of

transitions 𝑠0
1,𝑎−−→ 𝑠1

2,flush(𝑎)−−−−−−→ 𝑠2
1,𝑏−−→ 𝑠3

1,𝑐−−→ 𝑠4
1,flush(𝑐)−−−−−→ 𝑠5

1,𝑑−−→ 𝑠6.

3.2.2 Checking Cyclicity of the Happens-Before Relation

Once we described the language of all normal-form computations of a program
with a multiheaded automaton, we are going to check whether this language
contains a computation with cyclic happens-before relation. This check com-
bines several observations.

The first observation is the fact that, if a computation has a cycle, it has
a beautiful cycle, where each thread contributes only once. Formally, we call a
happens-before cycle beautiful, if it has the following form:

(tid1, 𝑖1, instr1)→*𝑝𝑜 (tid1, 𝑖
′
1, instr

′
1)→ℎ𝑜𝑝 . . .

→ℎ𝑜𝑝 (tid𝑛, 𝑖𝑛, instr𝑛)→*𝑝𝑜 (tid𝑛, 𝑖
′
𝑛, instr

′
𝑛)→ℎ𝑜𝑝 (tid1, 𝑖1, instr1).

Here, →ℎ𝑜𝑝:= (→𝑐𝑜 ∪ →𝑠𝑟𝑐 ∪ →𝑐𝑓) and tid𝑘 ̸= tid𝑙 for 𝑘 ̸= 𝑙. We call 𝜃 :=
tid1 . . . tid𝑛 the profile of the cycle.

Example 3.6. The happens-before cycle shown in Figure 2.3 is beautiful and
has cycle profile 𝜃 := 1, 2 (or 2, 1).

Lemma 3.7. A computation 𝜏 ∈ Cpower(𝒫) has a happens-before cycle iff it has
a beautiful happens-before cycle.

Proof. Consider an arbitrary happens-before cycle. It has the following form:

(tid1, 𝑖1, instr1)→*𝑝𝑜 (tid1, 𝑖
′
1, instr

′
1)→ℎ𝑜𝑝 . . .

→ℎ𝑜𝑝 (tid𝑛, 𝑖𝑛, instr𝑛)→*𝑝𝑜 (tid𝑛, 𝑖
′
𝑛, instr

′
𝑛)→ℎ𝑜𝑝 (tid1, 𝑖1, instr1).

Assume tid𝑙 = tid𝑚 for some 𝑙 < 𝑚. Fix these 𝑙 and 𝑚. Then either
(tid𝑙, 𝑖𝑙, instr𝑙) →*𝑝𝑜 (tid𝑚, 𝑖𝑚, instr𝑚) or (tid𝑚, 𝑖𝑚, instr𝑚) →*𝑝𝑜 (tid𝑙, 𝑖𝑙, instr𝑙). In
the former case, 𝜏 has the following happens-before cycle which is shorter:

(tid1, 𝑖1, instr1)→*𝑝𝑜 (tid1, 𝑖
′
1, instr

′
1)→ℎ𝑜𝑝 . . .

→ℎ𝑜𝑝 (tid𝑙, 𝑖𝑙, instr𝑙)→*𝑝𝑜 (tid𝑚, 𝑖′𝑚, instr′𝑚)→ℎ𝑜𝑝 . . .

→ℎ𝑜𝑝 (tid𝑛, 𝑖𝑛, instr𝑛)→*𝑝𝑜 (tid𝑛, 𝑖
′
𝑛, instr

′
𝑛)→ℎ𝑜𝑝 (tid1, 𝑖1, instr1).

In the latter case, there is the following happens-before cycle which is also
shorter:

(tid𝑚, 𝑖𝑚, instr𝑚) →*𝑝𝑜 (tid𝑙, 𝑖
′
𝑙, instr

′
𝑙) →ℎ𝑜𝑝 . . . →ℎ𝑜𝑝 (tid𝑚, 𝑖𝑚, instr𝑚).

Repeating the shortening procedure for the new cycle until there is no 𝑙 ̸= 𝑚
with tid𝑙 = tid𝑚, we get a beautiful cycle.

26 CHAPTER 3. GENERIC APPROACH TO ROBUSTNESS

The second observation is the fact that the multiheaded automaton has to
generate events of each thread in program order (NF-A). We can modify the
multiheaded automaton to mark two events in each thread, one after another,
and these events are guaranteed to be in the program order.

The third observation is the fact that the existence of a single happens-
before arc between two given events can be checked by a finite automaton. For
example, in case of TSO, to check, whether a load 𝑎 conflicts with a store 𝑏,
it is sufficient to check that both events have the same address, 𝑎 is before the
flush of 𝑏, and there are no flush events with the same address in between.

Altogether, the algorithm for checking robustness enumerates all possible
cycle profiles. For each profile it constructs the augmented multiheaded au-
tomaton picking pairs of events in program order, intersects it with the regular
finite automata (at most |𝒫| of them) checking the existence of arcs between the
marked events in different threads, and checks the emptiness of this intersection.

Example 3.8. The happens-before cycle shown in Figure 2.3 can be detected
as follows. The algorithm chooses a cycle profile 𝜃 := 1, 2. The multiheaded
automaton marks flush(𝑎) and 𝑏 events in thread 1 in program order, flush(𝑐)
and 𝑑 events in thread 2 in program order. Two finite automata detect the
conflicts 𝑑→𝑐𝑓 flush(𝑎) and 𝑏→𝑐𝑓 flush(𝑐).

Chapter 4

Robustness against Power

Power [32] is a RISC architecture developed by IBM and several other com-
panies. Power has a highly relaxed memory model. First, the model permits
threads to execute independent instructions out of order. Second, the threads
can observe stores to different addresses in different order. In this chapter we
study robustness against Power memory model.

There are few works that address robustness against (a fragment of) Power.
Alglave and Maranget [10] presented a tool that overapproximates the set of
happens-before cycles in a given x86 or Power assembler program and inserts
memory barriers to forbid these cycles. Alglave et al. [7] combine this approach
with integer linear programming to compute a minimal set of barriers that must
be inserted into a C program to eliminate all potential happens-before cycles
under a given memory model.

Although the above methods can compute a set of fences that makes the
program robust, they cannot be used to show robustness. In this chapter we
present an algorithm for deciding robustness against Power. The algorithm is
an emptiness check for multiheaded automata. We reduce robustness to the
emptiness check as follows. First, we show that if a program is not robust, it
has a normal-form computation with cyclic happens-before relation. Second, we
show how to describe the set of all normal-form computations using multiheaded
automata. Finally, we use an intersection with finite automata to filter only
those normal-form computations, which have cyclic happens-before relation.
The reduction gives us a PSpace procedure for checking robustness against
Power. The problem is PSpace-complete, by a reduction of SC reachability to
robustness. These results are also published in [33].

In Section 4.5 we digress from the robustness topic and show that state
reachability under Power is generally undecidable. This fact makes robustness,
combined with verification under SC, a preferable alternative to direct verifica-
tion under Power.

Related work. Power memory model is rather complex, and there are mul-
tiple works devoted to formally defining it. Alglave et al. [11] give an extensive
overview of related publications. We would like to highlight two of them: the
operational model by Sarkar et al. [78] and the axiomatic model by Mador-Haim
et al. [65]. The two models were heavily tested against the hardware. Never-
theless, the operational model is known to forbid certain behaviors that are

27

28 CHAPTER 4. ROBUSTNESS AGAINST POWER

possible on real hardware1 and in the axiomatic model2 [11]. This is why in this
chapter we stick to a corrected operational model, obtained from the original one
by replacing from a different write by from a coherence-order-earlier write (two
occurrences) in Section 4.5 of [78]. The corrected operational model includes
all the behaviors of the original model, as well as the behaviors observed on
the hardware and forbidden by the original model. The corrected operational
model is believed to strictly and tightly over-approximate Power [6].

Atig et al. [14] showed that state reachability under memory models al-
lowing write-to-read, read-to-read and read-to-write relaxations is undecidable.
Although Power allows the above reorderings, the proof from [14] does not ap-
ply to Power directly. The reason is that the authors use a programming model
with blocking reads: a read combines a load with a conditional that checks the
loaded value. Power forbids reordering of stores with program-order-earlier con-
ditionals and, consequently, with the loads on which this conditionals depend.
The construction from Section 4.5 avoids these dependencies by implementing
conditionals using local computations on registers, an idea suggested by Dr. Mo-
hamed Faouzi Atig [16].

Existing tools for solving state reachability under (a fragment of) Power use
the bounded model checking approach [8, 9]. Consequently, they can detect
state reachability, but cannot generally prove that a program is safe.

4.1 Power Semantics

In this section we recall the corrected version of the model from [78].
The state of a running program consists of the runtime states of threads

and the state of a storage subsystem. The runtime state of a thread includes
information about the instructions being executed by the thread. In order to
start executing an instruction, the thread must fetch it. The thread can fetch
any instruction whose source control state is equal to the destination state of
the last fetched instruction. Then, the thread must perform any computation
required by the semantics of this instruction. For example, for a load the thread
must compute the address being accessed, then read the value at this address,
and place it into the target register. The last step of executing an instruction
is committing it. Committing an instruction requires committing all its depen-
dencies. For example, before committing a load the thread must commit all
its address dependencies — the instructions which define the values of registers
used in the address expression — and control dependencies — the program-
order-earlier (fetched earlier than the load) conditional instructions. Moreover,
all loads and stores accessing the same address must be committed in the order
in which they were fetched.

The storage subsystem keeps track, for each address, of the global ordering of
stores to this address — the coherence order — and the last store to this address
propagated to each thread. When a thread commits a store, this store is assigned
a position in the coherence order which we identify by a rational number — the
coherence key. We choose rational numbers (rather than naturals) to be able to
insert a store between any two stores in the coherence order. The key must be
greater than the coherence key of the last store to the same address propagated

1http://diy.inria.fr/cats/pldi-power/#lessvs
2http://diy.inria.fr/cats/cav-power/

4.1. POWER SEMANTICS 29

to this thread. The committed store is immediately propagated to its own
thread. At some point later this store can be propagated to any other thread,
as long as it is coherence-order-later (has a greater coherence key) than the last
store to the same address propagated to that thread. When a thread loads a
value from a certain address, it gets the value written by the last store to this
address propagated to the thread. A thread can also forward the value being
written by a not yet committed store to a later load reading the same address.
This situation is called an early read.

An important property of Power is that it maintains the illusion of sequen-
tial consistency for single-threaded programs. This means that reorderings on
the thread level must not lead to situations when, e.g., a program-order-later
load reads a coherence-order-earlier store than the one read by a program-order-
earlier load from the same address. In [78] these restrictions are enforced by the
mechanism of restarting operations. We put these conditions into the require-
ments on final states of the running program instead.

Power provides several barrier instructions used for enforcing ordering of
operations: sync, lwsync, isync. When a sync or lwsync instruction is com-
mitted, the group A set of stores is captured. It consists of all the stores that
were propagated to the thread performing the barrier at the moment of barrier
commit. Once all the group-A stores have been propagated to a thread, the
sync or lwsync can be propagated to this thread. Once a sync is propagated
to all threads, it is considered acknowledged.

Symmetrically, when a thread commits a store, the group-A set of sync and
lwsync barriers is captured. It consists of all the barriers that were propagated
to the thread committing the store at the moment of commit. A store can be
propagated to a thread only after all group-A barriers have been propagated to
this thread.

Committing a sync or lwsync requires all previous loads, stores, sync,
lwsync, and isync instructions to be committed. Committing a load or a
store requires all previous sync, lwsync, isync instructions to be committed
and syncs to be acknowledged. Committing an isync requires all preceding
loads and stores to have their addresses computed.

Finally, loading a value from memory or from an earlier store requires all
previous isyncs to be committed and syncs to be acknowledged.

Altogether, the set of commands for Power is

⟨cmd⟩ ::= ⟨reg⟩ ← mem[⟨expr⟩] | mem[⟨expr⟩] ← ⟨expr⟩
| ⟨reg⟩ ← ⟨expr⟩ | assume(⟨expr⟩)
| sync | lwsync | isync

In this chapter we also assume that DOM is finite.
Formally, we define the semantics of program 𝒫 on Power by a Power au-

tomaton 𝑋power(𝒫) := (𝑆power,E,∆power, 𝑠power0, 𝐹power). We define the transi-
tions labels (events) E together with the transitions.

State space

A state of the Power automaton is a pair 𝑠power = (ts, 𝑠𝑍) ∈ 𝑆power with runtime
thread states ts : TID→ 𝑆𝑌 and storage subsystem state 𝑠𝑍 ∈ 𝑆𝑍 .

A runtime thread state 𝑠𝑌 = (fetched, committed, loaded) ∈ 𝑆𝑌 includes a
finite sequence of fetched instructions fetched ∈ ℐ*, a set of indices of committed

30 CHAPTER 4. ROBUSTNESS AGAINST POWER

instructions committed ⊆ [1..|fetched|], and a function loaded : [1..|fetched|] →
{⊥} ∪ {inita | a ∈ ADDR} ∪ TID × N giving the store read by a load. We use
inita to denote the initial store of value 0 to address a. The initial state of a
running thread is 𝑠𝑌 0 := (𝜀, ∅, 𝜆𝑖.⊥).

A state of the storage subsystem 𝑠𝑍 = (co, prop, propsyncs, groupastores,
groupasyncs) ∈ 𝑆𝑍 includes

∙ co : TID × N ∪ {inita | a ∈ ADDR} → Q — a mapping from a store
instruction (its thread id and index in the list of fetched instructions) to
its position in the coherence order,

∙ prop : TID × ADDR → {inita | a ∈ ADDR} ∪ TID × N — a mapping from
a thread id and an address to the last store to this address propagated to
this thread,

∙ propsyncs : TID → 2TID×N — a mapping from a thread id to the set of
syncs and lwsyncs propagated to this thread,

∙ groupastores : TID×N→ {⊥}∪ (ADDR→ {inita | a ∈ ADDR} ∪TID×N)
— a mapping from a sync or lwsync to its group-A stores,

∙ groupasyncs : TID×N→ 2TID×N — a mapping from a store to its group-A
syncs and lwsyncs.

The initial state of the storage subsystem is 𝑠𝑍0 :=
(𝜆tid.𝜆𝑖.0, 𝜆tid.𝜆a.inita, 𝜆tid.∅, 𝜆tid.𝜆𝑖.∅, 𝜆tid.𝜆𝑖.∅).

The initial state of automaton 𝑋power(𝒫) is 𝑠power0 := (𝜆tid.𝑠𝑌 0, 𝑠𝑍0).

Transition relation

Fix a state 𝑠power = (ts, 𝑠𝑍) with 𝑠𝑍 = (co, prop, propsyncs, groupastores,
groupasyncs) and a thread id tid ∈ TID with runtime state ts(tid) =
(fetched, committed, loaded).

Let eval(tid, 𝑖, 𝑒) return the value in DOM of the expression 𝑒 in the 𝑖’th
fetched instruction of thread tid, or ⊥ when the value is undefined. Formally
eval(tid, 𝑖, 𝑒) := v, where v is computed as follows. If 𝑒 ∈ DOM, then v := 𝑒.
If 𝑒 = f(𝑒1 . . . 𝑒𝑛), then v := f(eval(tid, 𝑖, 𝑒1) . . . eval(tid, 𝑖, 𝑒𝑛)). Otherwise, 𝑒 =
𝑟 ∈ REG. Let 𝑖′ ∈ [1..𝑖 − 1] be the greatest index, such that fetched[𝑖′] is a
local assignment or a load to 𝑟. If there is no such index, we define v := 0.
If lab(fetched[𝑖′]) = 𝑟 ← 𝑒v, then v := eval(tid, 𝑖′, 𝑒v). If lab(fetched[𝑖′]) = 𝑟 ←
mem[𝑒a], then v := ⊥ if loaded[𝑖′] = ⊥, v := 0 if loaded[𝑖′] = init*, and v :=
val(loaded[𝑖′]) otherwise (see the definition of val below).

The expression addr(tid, 𝑖) returns the value of the address argument of the
𝑖’th fetched instruction of thread tid and is defined as follows. We use the special
value⊤ if the instruction has no such argument. If lab(fetched[𝑖]) = 𝑟 ← mem[𝑒a]
or lab(fetched[𝑖]) = mem[𝑒a]← 𝑒v, then addr(tid, 𝑖) := eval(tid, 𝑖, 𝑒a). Otherwise,
addr(tid, 𝑖) := ⊤. We overload addr(inita) := a.

Similarly, the expression val(tid, 𝑖) returns the value of the value argu-
ment of the 𝑖’th fetched instruction of thread tid and is defined as follows.
If lab(fetched[𝑖]) = mem[𝑒a] ← 𝑒v, lab(fetched[𝑖]) = 𝑟 ← 𝑒v, or lab(fetched[𝑖]) =
assume(𝑒v), then val(tid, 𝑖) = eval(tid, 𝑖, 𝑒v). Otherwise, val(tid, 𝑖) := ⊤.

4.1. POWER SEMANTICS 31

The expressions addrdep(tid, 𝑖), datadep(tid, 𝑖), ctrldep(tid, 𝑖) denote the sets
of indices of instructions in thread tid being respectively address, data, and
control dependencies of the 𝑖’th instruction. The first two can be formally
defined in a recursive manner, similar to eval. Also, ctrldep(tid, 𝑖) := {𝑖′ ∈
[1..𝑖− 1] | lab(fetched[𝑖′]) = assume(𝑒v)}.

The expression acked(tid, 𝑖) returns ⊤ if (tid, 𝑖) ∈ propsyncs(tid′) for all tid′ ∈
TID. It returns ⊥ otherwise.

Let 𝒯tid = (𝑄tid,CMD, ℐtid, 𝑞tid0, 𝑄tid) ∈ 𝒫. The transition relation ∆power is
the smallest relation defined by the rules below:

POW-FETCH Consider instr ∈ ℐtid with src(instr) = dst(last(fetched)) or
src(instr) = 𝑞tid0 if fetched = 𝜀, then:

(ts, 𝑠𝑍)
(fetch,tid,instr)−−−−−−−−−→ (ts[tid := (fetched · instr, committed, loaded)], 𝑠𝑍).

POW-LOAD Let fetched[𝑖] be a load, loaded[𝑖] = ⊥, a := addr(tid, 𝑖) ̸= ⊥.
Assume that for all 𝑖′ ∈ [1..𝑖 − 1] holds: if fetched[𝑖′] is a sync or isync,
then 𝑖′ ∈ committed and, if fetched[𝑖′] is a sync, acked(tid, 𝑖′) = ⊤. Assume
that if 𝑖′ ∈ [1..𝑖− 1] is lwsync, then for 𝑖′′ ∈ [1..𝑖′ − 1] holds: if fetched[𝑖′′]
is a load, then 𝑖′′ ∈ committed. Then:

(ts, 𝑠𝑍)
(load,tid,𝑖,a)−−−−−−−→ (ts[tid := (fetched, committed, loaded[𝑖 := prop(tid, a)])], 𝑠𝑍).

POW-EARLY Let fetched[𝑖] be a load, loaded[𝑖] = ⊥, and a := addr(tid, 𝑖) ̸=
⊥. Let 𝑖′ ∈ [1..𝑖 − 1] be the greatest index such that fetched[𝑖′] is a
store with a′ = addr(tid, 𝑖′) ∈ {a,⊥}. Assume a′ ̸= ⊥, val(tid, 𝑖′) ̸= ⊥,
𝑖′ ̸∈ committed. Assume that for all 𝑖′ ∈ [1..𝑖 − 1] holds: if fetched[𝑖′]
is a sync or isync, then 𝑖′ ∈ committed and, if fetched[𝑖′] is a sync,
acked(tid, 𝑖′) = ⊤. Assume that if 𝑖′ ∈ [1..𝑖 − 1] is lwsync, then for
𝑖′′ ∈ [1..𝑖′ − 1] holds: if fetched[𝑖′′] is a load, then 𝑖′′ ∈ committed. Then:

(ts, 𝑠𝑍)
(load,tid,𝑖,a)−−−−−−−→ (ts[tid := (fetched, committed, loaded[𝑖 := (tid, 𝑖′)])], 𝑠𝑍).

POW-COMMIT Consider 𝑖 ∈ [1..|fetched|] ∖ committed, where fetched[𝑖] is
not a store. Assume addrdep(tid, 𝑖) ∪ datadep(tid, 𝑖) ∪ ctrldep(tid, 𝑖) ⊆
committed. Assume a := addr(tid, 𝑖) ̸= ⊥ and v := val(tid, 𝑖) ̸= ⊥. If
a ̸= ⊤, assume {𝑖′ ∈ [1..𝑖−1] | addr(tid, 𝑖′) ∈ {a,⊥}} ⊆ committed. In case
fetched[𝑖] is a load, assume loaded[𝑖] ̸= ⊥. In case fetched[𝑖] is an assume(),
assume v ̸= 0. In case fetched[𝑖] is a load, a store, sync, lwsync, or isync,
assume for each 𝑖′ ∈ [1..𝑖−1] with lab(fetched[𝑖′]) ∈ {sync, lwsync, isync}
holds 𝑖′ ∈ committed and, if fetched[𝑖′] is a sync, acked(tid, 𝑖′) = ⊤. In
case fetched[𝑖] is sync or lwsync, assume for each 𝑖′ ∈ [1..𝑖 − 1] with
addr(tid, 𝑖′) ̸= ⊤ holds 𝑖′ ∈ committed. In case fetched[𝑖] is isync, assume
for each 𝑖′ ∈ [1..𝑖− 1] holds addr(tid, 𝑖′) ̸= ⊥. Then:

(ts, 𝑠𝑍)
(commit,tid,𝑖)−−−−−−−−→ (ts[tid := (fetched, committed ∪ {𝑖}, loaded)], 𝑠′𝑍).

If fetched[𝑖] is not sync or lwsync, then 𝑠′𝑍 := 𝑠𝑍 . Otherwise, 𝑠′𝑍 :=
(co, prop, propsyncs, groupastores′, groupasyncs), where groupastores′ :=

32 CHAPTER 4. ROBUSTNESS AGAINST POWER

groupastores[(tid, 𝑖) := prop(tid)]; moreover, the transition is immedi-
ately followed by POW-PROP-SYNC transition propagating the barrier
to thread tid.

POW-STORE Assume all the preconditions from the previous rule hold, but
fetched[𝑖] is a store. Choose a coherence key k ∈ Q such that there is no
tid′ ∈ TID, 𝑖′ ∈ N for which co(tid′, 𝑖′) = k. Then:

(ts, 𝑠𝑍)
(commit,tid,𝑖,k,a)−−−−−−−−−−→ (ts[tid := (fetched, committed ∪ {𝑖}, loaded)], 𝑠′𝑍),

where 𝑠′𝑍 := (co′, prop, propsyncs, groupastores, groupasyncs′), co′ :=
co[(tid, 𝑖) := k], groupasyncs′ := groupasyncs[(tid, 𝑖) := propsyncs(tid)].

Moreover, this transition is immediately followed by a POW-PROP-
STORE transition propagating the store to the thread where it was com-
mitted.

POW-PROP-STORE Consider tid′ ∈ TID, 𝑖′ ∈ N with co(tid′, 𝑖′) ̸= ⊥. Let
a := addr(tid′, 𝑖′). Assume co(prop(tid, a)) < co(tid′, 𝑖′). Assume 𝑠 ∈
propsyncs(tid) for all 𝑠 ∈ groupasyncs(tid′, 𝑖′). Then:

(ts, 𝑠𝑍)
(prop,tid,tid′,𝑖′,a)−−−−−−−−−−→ (ts, 𝑠′𝑍),

where 𝑠′𝑍 := (co, prop[(tid, a) := (tid′, 𝑖′)], propsyncs, groupastores,
groupasyncs).

POW-PROP-SYNC Consider 𝑖 ∈ committed, where fetched[𝑖] is a sync or
lwsync. Fix tid′ ∈ TID. Assume (tid, 𝑖) ̸∈ propsyncs(tid′). Assume
co(groupastores(tid, 𝑖, a)) ≤ co(prop(tid′, a)) for each a ∈ ADDR. Then:

(ts, 𝑠𝑍)
(prop,tid,𝑖,tid′)−−−−−−−−−→ (ts, (co, prop, propsyncs′, groupastores, groupasyncs),

where propsyncs′ := propsyncs[tid′ := propsyncs(tid′) ∪ {(tid, 𝑖)})].

Final states

The set of final states 𝐹power ⊆ 𝑆power consists of all states 𝑠power =
(ts, (co, prop)) ∈ 𝑆power, such that for each tid ∈ TID, ts[tid] = (fetched,
committed, loaded) the following holds:

POW-FIN-COMM All instructions are committed: committed =
[1..|fetched|].

POW-FIN-LD Loads agree with the coherence order. Let fetched[𝑖] be a load,
and fetched[𝑖′] be an earlier load to the same address: 𝑖′ < 𝑖, addr(tid, 𝑖) =
addr(tid, 𝑖′). Then co(loaded[𝑖′]) ≤ co(loaded[𝑖]).

POW-FIN-LD-ST Loads and stores in the same thread agree with the co-
herence order. Let fetched[𝑖] be a load, let fetched[𝑖′] be an earlier
store to the same address: 𝑖′ < 𝑖, addr(tid, 𝑖) = addr(tid, 𝑖′). Then
co(tid, 𝑖′) ≤ co(loaded[𝑖]).

The set of all Power computations of program 𝒫 is Cpower(𝒫) := ℒ(𝑋power(𝒫)).

4.1. POWER SEMANTICS 33

Example 4.1. 𝜎MP = fetch(𝑎) · commit(𝑎) · prop(𝑎, 1) · fetch(𝑏) · commit(𝑏) ·
prop(𝑏, 1) · prop(𝑏, 2) · fetch(𝑐) · fetch(𝑑) · load(𝑐) · load(𝑑) · commit(𝑑) · commit(𝑐)
is a feasible Power computation of the program MP (Figure 1.2):

∙ fetch(𝑎) := (fetch, 1, 𝑎) — thread 1 fetches store instruction 𝑎.

∙ commit(𝑎) := (commit, 1, 1, 1, 𝑥) — thread 1 commits 𝑎 with k = 1.

∙ prop(𝑎, 1) := (prop, 1, 1, 1, 𝑥) — 𝑎 is propagated to its own thread.

∙ fetch(𝑏) := (fetch, 1, 𝑏) — thread 1 fetches store instruction 𝑏.

∙ commit(𝑏) := (commit, 1, 2, 2, 𝑦) — thread 1 commits 𝑏 with k = 2.

∙ prop(𝑏, 1) := (prop, 1, 1, 2, 𝑥) — the store is propagated to its thread.

∙ prop(𝑏, 2) := (prop, 2, 1, 2, 𝑥) — the store is propagated to thread 2.

∙ fetch(𝑐) := (fetch, 2, 𝑐) — thread 2 fetches load 𝑐.

∙ fetch(𝑑) := (fetch, 2, 𝑐) — thread 2 fetches load 𝑑.

∙ load(𝑐) := (load, 2, 1, 𝑦) — thread 2 reads value 1 written by 𝑏 to 𝑦, because
𝑏 was propagated to thread 2.

∙ load(𝑑) := (load, 2, 2, 𝑥) — thread 2 reads the initial value 0 of 𝑥, because
𝑎 was not propagated to thread 2.

∙ commit(𝑑) := (commit, 2, 2) — thread 2 commits load 𝑑.

∙ commit(𝑐) := (commit, 2, 1) — thread 2 commits load 𝑐.

In the end, POW-FIN-COMM holds as all fetched instructions are indeed
committed, and POW-FIN-LD and POW-FIN-LD-ST trivially hold, as none of
the threads has two instructions accessing the same address.

Lemma 4.2. Assume 𝑠power0
𝜎−→ 𝑠power ∈ 𝐹power. Then 𝑠power is uniquely deter-

mined.

Proof. Given a state and an event e, there is at most one transition from this
state labeled by e that may lead to a final state. This is clear for non-load
events. For load events, this follows from Lemma 4.5 and Lemma 4.6: if a load
event was produced by a load from memory transition, then condition (3) from
Lemma 4.6 holds, then condition (1) from Lemma 4.5 cannot hold for any store,
therefore, the load event cannot be produced by an early read transition.

Lemma 4.3. Let 𝑠power0
𝜎−→ (ts, 𝑠𝑍)

e−→ (ts′, 𝑠′𝑍). Let (fetched, committed,
loaded) = ts(tid), (fetched′, committed′, loaded′) = ts′(tid) for some tid ∈ TID. If
loaded[𝑖] ̸= ⊥, then loaded′[𝑖] = loaded[𝑖].

Proof. Follows from the loaded[𝑖] = ⊥ requirement in POW-LOAD and POW-
EARLY transitions.

Lemma 4.4. Let 𝑠power0
𝜎−→ 𝑠power

e−→ 𝑠power
′. Assume eval(tid, 𝑖, 𝑒) = v ̸= ⊥ in

𝑠power. Then eval(tid, 𝑖, 𝑒) = v in 𝑠power
′.

34 CHAPTER 4. ROBUSTNESS AGAINST POWER

Proof. By definition of eval, Lemma 4.3, and the fact that functions in FUN are
deterministic.

Lemma 4.5. Consider a computation 𝜎 ∈ Cpower(𝒫). Then a load (tid, 𝑖) reads
a value from a store (tid, 𝑖′) via an early read (POW-EARLY) transition iff (1)
𝜎 = 𝜎1 · (load, tid, 𝑖, a) ·𝜎2 · (commit, tid, 𝑖′, *, a) ·𝜎3, 𝑖

′ ∈ [1..𝑖−1] and (2) 𝜎3 does
not contain events matching (commit, tid, [𝑖′ + 1..𝑖− 1], *, a).

Proof. From left to right. Assume the load (tid, 𝑖) reads from the store (tid, 𝑖′)
via an early read transition. Then (tid, 𝑖) must be the latest store to the same
address in thread tid and must not be committed before load (i.e. committed
after it), therefore (1) holds. If (2) does not hold, then (tid, 𝑖′) is not the latest
store to address a in thread tid before the load event, since stores to the same
address are committed in the order of fetching. Contradiction.

From right to left. Let 𝑠power0
𝜎1−→ 𝑠power = (ts, 𝑠𝑍). Consider ts(tid) =

(fetched, committed, loaded). Let 𝑖′′ < 𝑖 be the greatest index, such that
fetched[𝑖′′] is a store, addr(𝑖′′) ∈ {a,⊥}.

Assume 𝑖′ < 𝑖′′. If addr(𝑖′′) = a, we get a contradiction to (2), since stores
to the same address are committed in the order of fetching. If addr(𝑖′′) = ⊥,
then an early read is not possible in state 𝑠power, and the load reads from the
latest propagated store (POW-LOAD), which is coherence-order-before the store
(tid, 𝑖′), which is program-order-before (tid, 𝑖). This situation is forbidden by
POW-FIN-LD-ST.

By Lemma 4.4, addr(tid, 𝑖′) ∈ {a,⊥}, therefore, 𝑖′′ = 𝑖′. Assume
addr(tid, 𝑖′) = ⊥ or val(tid, 𝑖′) = ⊥. Then, again, a load from the latest
propagated store takes place, which is impossible (see above). Therefore,
addr(tid, 𝑖′) = a and val(tid, 𝑖′) ̸= ⊥.

Obviously, 𝑖′ ̸∈ committed holds, as each fetched instruction is committed
only once, and (tid, 𝑖′) is committed after the load takes place, see (1). All in
all, all requirements specific for the early read from (tid, 𝑖′) are met, therefore,
an early read transition from state 𝑠power is possible. As shown above, a load
from memory transition from the same state leads to 𝜎 ̸∈ Cpower(𝒫), therefore,
(tid, 𝑖) reads from the store (tid, 𝑖′) via an early read transition.

Lemma 4.6. Consider a computation 𝜎 ∈ Cpower(𝒫). Then a load (tid, 𝑖) reads
a value from a store (tid′, 𝑖′) via a load from memory (POW-LOAD) transition
iff (1) 𝜎 = 𝜎1 · (prop, tid, tid′, 𝑖′, a) ·𝜎2 · (load, tid, 𝑖, a) ·𝜎3, (2) 𝜎2 does not contain
events matching (prop, tid, *, *, a), and (3) 𝜎3 does not contains events matching
(commit, tid, [1..𝑖− 1], *, a).

Proof. From left to right. Assume the load (tid, 𝑖) reads from the store (tid′, 𝑖′)
via a load from memory transition. Then, the load has read from the latest
store to address a propagated to thread tid, i.e., (1) and (2) hold. Assume (3)
does not hold — 𝜎3 contains a commit (commit, tid, 𝑖′′, *, a) and 𝑖′′ < 𝑖. Then,
(tid, 𝑖) reads from the store (tid′, 𝑖′), which is coherence-order-before the store
(tid, 𝑖′′), which is program-order-before (tid, 𝑖). This situation is forbidden by
POW-FIN-LD-ST.

From right to left. By (1), (3), and Lemma 4.5, the load event was not
generated by an early read transition. Therefore, the event was generated by a
load from memory transition, and the load has taken the value from the latest
propagated store to address a, which is, by (1) and (2), (tid′, 𝑖′).

4.2. TRACES AND ROBUSTNESS 35

4.2 Traces and Robustness

The trace of a computation 𝜎 ∈ Cpower(𝒫) is a directed graph 𝑇 (𝜎) := (𝑉,
→𝑝𝑜,→𝑐𝑜,→𝑠𝑟𝑐,→𝑐𝑓) with nodes 𝑉 and four kinds of arcs. The nodes are
instructions together with their thread identifiers and serial numbers: 𝑉 ⊆
{inita | a ∈ ADDR} ∪ ⋃︀

tid∈TID{tid} × N × ℐtid. The program order →𝑝𝑜 is
the order in which instructions were fetched in each thread. The coherence
order →𝑐𝑜 gives the global ordering of stores to each address. The source order
→𝑠𝑟𝑐 shows the store from which a load took its value. The conflict order
→𝑐𝑓 shows, for a load, the stores following in the coherence order the store
from which the load took its value. We define the happens-before relation as
→ℎ𝑏:=→𝑝𝑜 ∪ →𝑐𝑜 ∪ →𝑠𝑟𝑐 ∪ →𝑐𝑓 .

Formally, consider a computation 𝜎 ∈ Cpower(𝒫). Let 𝑠power0
𝜎−→ 𝑠power with

𝑠power = (ts, (co, prop, propsyncs, groupastores, groupasyncs)). By Lemma 4.2,
𝑠power is uniquely determined. The trace 𝑇 (𝜎) := (𝑉,→𝑝𝑜,→𝑐𝑜,→𝑠𝑟𝑐,→𝑐𝑓) is
defined as follows. Assuming tid ∈ TID, ts(tid) = (fetched, committed, loaded),
𝑖 ∈ [1..|fetched|], and similarly for tid′, we have:

𝑉 :={(tid, 𝑖, fetched[𝑖]) | tid ∈ TID, 𝑖 ∈ N},
→𝑝𝑜:={((tid, 𝑖, fetched[𝑖]), (tid, 𝑖 + 1, fetched[𝑖 + 1])) |

𝑖 ∈ [1..|fetched| − 1]},
→𝑐𝑜:={((tid, 𝑖, fetched[𝑖]), (tid′, 𝑖′, fetched[𝑖′])) |

addr(tid, 𝑖) = addr(tid′, 𝑖′) and co(tid, 𝑖) < co(tid′, 𝑖′)} ∪
{(init𝑎, (tid′, 𝑖′, fetched[𝑖′])) | 𝑎 = addr(tid′, 𝑖′)},

→𝑠𝑟𝑐:={((tid, 𝑖, fetched[𝑖]), (tid′, 𝑖′, fetched′[𝑖′])) |
(tid, 𝑖) = loaded′[𝑖′]} ∪

{(init𝑎, (tid′, 𝑖′, fetched′[𝑖′])) | init𝑎 = loaded′(𝑖′)},
→𝑐𝑓 :={(𝑎, 𝑏) | ∃𝑐 : 𝑐→𝑠𝑟𝑐 𝑎 and 𝑐→𝑐𝑜 𝑏}.

We will also need address →𝑎𝑑𝑑𝑟 and data →𝑑𝑎𝑡𝑎 dependence relations (de-
fined as expected based on addrdep and datadep).

→𝑎𝑑𝑑𝑟:={((tid, 𝑖, fetched[𝑖]), (tid, 𝑖′, fetched′[𝑖])) | 𝑖 ∈ addrdep(tid, 𝑖′)},
→𝑑𝑎𝑡𝑎:={((tid, 𝑖, fetched[𝑖]), (tid, 𝑖′, fetched′[𝑖])) | 𝑖 ∈ datadep(tid, 𝑖′)}.

Since →𝑝𝑜 includes all the information from the fetched component of a thread
state, →𝑎𝑑𝑑𝑟 and →𝑑𝑎𝑡𝑎 can be reconstructed from →𝑝𝑜 by inspecting the in-
structions labeling the nodes. They are therefore not included in the trace
explicitly.

We instantiate the robustness problem (Section 2.8) for Power.

Problem 4.7 (Robustness against Power). Given a program 𝒫, to check
whether 𝑇sc(𝒫) = 𝑇power(𝒫).

According to Lemma 2.16, checking robustness of a program amounts to
checking whether the program has computations with cyclic happens-before
relation.

Example 4.8. The trace of computation 𝜎MP (Figure 4.1) has a cyclic happens-
before relation. By Lemma 2.16, this means that the program is not robust.
Indeed, in no SC computation load 𝑑 can read 0 whereas 𝑐 has read 1.

36 CHAPTER 4. ROBUSTNESS AGAINST POWER

Thread 1 Thread 2

init𝑥 (1, 1, 𝑞0
mem[𝑥]←1−−−−−−→ 𝑞1) (2, 2, 𝑞1

𝑟2←mem[𝑥]−−−−−−−→ 𝑞2)

init𝑦 (1, 2, 𝑞1
mem[𝑦]←1−−−−−−→ 𝑞2) (2, 1, 𝑞0

𝑟1←mem[𝑦]−−−−−−−→ 𝑞1)

𝑝𝑜 𝑝𝑜

𝑠𝑟𝑐

𝑐𝑓

𝑠𝑟𝑐

𝑐𝑜

𝑐𝑜

Figure 4.1: Trace of computation 𝜎MP from Example 4.1.

4.3 Normal-Form Computations

We say that a computation 𝜏 ∈ Cpower(𝒫) is in normal form of degree 𝑛 if there
is a partitioning 𝜏 = 𝜏1 · · · 𝜏𝑛, such that all fetch events are in 𝜏1 (POW-NF-
A) and events belonging to different instructions occur in different parts of the
computation in the same order (POW-NF-B):

POW-NF-A (𝜏2 · · · 𝜏𝑛)↓ fetch = 𝜀.

POW-NF-B Formally, for 𝑗 ∈ {1, 2} let e𝑗 , e
′
𝑗 be events belonging to instruc-

tion (tid𝑗 , 𝑖𝑗). If e1, e2 ∈ 𝜏𝑠 and e′1, e
′
2 ∈ 𝜏𝑠′ , then e1 <𝜏𝑠 e2 iff e′1 <𝜏𝑠′ e

′
2.

In the rest of this section we prove the following theorem.

Theorem 4.9. A program is robust iff it has no normal-form computation of
degree |𝒫|+ 3 with cyclic happens-before relation.

In order to keep the proofs in this and the next section readable and un-
derstandable, we omit the details related to Power barrier instructions in them.
Consequently, the propsyncs, groupastores, and groupasyncs parts of 𝑠𝑍 compo-
nent of the state are ignored. We come back to these instructions and show how
to support them in Section 4.4.3.

Consider a computation 𝜎 ∈ Cpower(𝒫). By 𝜎 ∖ (tid, 𝑖) we denote the com-
putation obtained from 𝜎 by deleting all events belonging to the 𝑖’th fetched
instruction in thread tid.

Lemma 4.10 (Cancellation). Consider a non-empty computation 𝜎 ∈
Cpower(𝒫). Then there is a (tidx, 𝑖x), such that 𝜎′ = 𝜎∖(tidx, 𝑖x) satisfies |𝜎′| < |𝜎|
and 𝜎′ ∈ Cpower(𝒫).

Proof. Consider the last fetched instruction in each thread. If among such
instructions there is a non-store instruction, delete it: its result cannot be used
by any other instruction. If all these instructions are stores, delete the one, on
which (1) no load or store depends via (→𝑠𝑟𝑐 ∪ →𝑑𝑎𝑡𝑎)+· →𝑎𝑑𝑑𝑟, and (2) no
condition depends via (→𝑠𝑟𝑐 ∪ →𝑑𝑎𝑡𝑎)+.

Towards a contradiction, assume there is no such store. Consider the last
fetched (store) instruction in a thread tid1: (tid1, 𝑖1). Case 1: there is a load
or a store (tid2, 𝑖

′
2) whose address depends on (tid1, 𝑖1). Case 2: there is a

condition (tid2, 𝑖
′
2) whose value depends on (tid1, 𝑖1). Consider the last fetched

instruction in thread tid2: (tid2, 𝑖2). It must be a store, and it must have been
committed after (tid1, 𝑖1): a store can only be committed after all loads and

4.3. NORMAL-FORM COMPUTATIONS 37

stores fetched before it have their addresses determined (Case 1) and after all
preceding conditions are committed (Case 2).

Continuing the reasoning, for any last fetched instruction in a thread (tid𝑗 , 𝑖𝑗)
there is a last instruction in a different thread (tid𝑗+1, 𝑖𝑗+1) which must have
been committed later. Taking into account finiteness of the number of threads,
we get a contradiction.

Fix a program 𝒫. Consider a shortest Power computation 𝛼 ∈ Cpower(𝒫)
with cyclic →ℎ𝑏. Let (tidx, 𝑖x) be the instruction determined by Lemma 4.10.
Let 𝛼 := 𝛼1 ·x1 ·𝛼2 ·x2 · · ·𝛼𝑛, where {x1 . . . x𝑛−1} are the events belonging to the
𝑖x’th instruction fetched in thread tidx. Then 𝛼 ∖ (tidx, 𝑖x) := 𝛼′ := 𝛼1 ·𝛼2 · · ·𝛼𝑛.
Since 𝛼′ is shorter than 𝛼, its →ℎ𝑏 is acyclic. Therefore, there is a computation
𝛽 ∈ Csc(𝒫) with 𝑇 (𝛽) = 𝑇 (𝛼′).

Computations 𝛽 and 𝛼′ consist of the same fetch, load, and commit events:
fetch events are determined by →𝑝𝑜; address component a of load and store
commit events is determined by →𝑎𝑑𝑑𝑟, →𝑑𝑎𝑡𝑎 (derivable from →𝑝𝑜), and →𝑠𝑟𝑐;
since→𝑐𝑜 is the same for both computations, we can assume that matching store
commit events have the same value of coherence key k. Notably, 𝛽 can have more
propagate events than 𝛼′ as Power semantics does not guarantee that all stores
are propagated to all threads. Now we reorder events in each part 𝛼𝑗 of 𝛼 in the
way they follow in 𝛽. This gives a computation 𝛾 := 𝛽 ↓𝛼1 ·x1 ·𝛽 ↓𝛼2 ·x2 · · ·𝛽 ↓𝛼𝑛.
In the rest of the section we show that 𝛾 is a valid Power computation of program
𝒫 and has the same trace as 𝛼.

Lemma 4.11. For all tid ∈ TID it holds that 𝛼↓ fetch↓ tid = 𝛾 ↓ fetch↓ tid.

Proof. Since 𝑇 (𝛽) = 𝑇 (𝛼′), by definition of 𝛼 and properties of projection, for
any tid ∈ TID we have

𝛼↓ fetch↓ tid = 𝛼1 ↓ fetch↓ tid · x1 ↓ fetch↓ tid · · ·𝛼𝑛 ↓ fetch↓ tid
= · · · (𝛽 ↓ fetch↓ tid)↓(𝛼𝑖 ↓ fetch↓ tid) · x𝑖 ↓ fetch↓ tid · · ·
= 𝛽 ↓𝛼1 ↓ fetch↓ tid · x1 ↓ fetch↓ tid · · ·𝛽 ↓𝛼𝑛 ↓ fetch↓ tid
= (𝛽 ↓𝛼1 · x1 · · ·𝛽 ↓𝛼𝑛)↓ fetch↓ tid
= 𝛾 ↓ fetch↓ tid.

Lemma 4.12. Consider some (tid, 𝑖) and (tid′, 𝑖′). Let 𝑃 (𝜎) := true if require-
ments (1)–(2) from Lemma 4.5 or (1)–(3) from Lemma 4.6 hold for 𝜎, and
𝑃 (𝜎) := false otherwise. Then, if 𝑃 (𝛼) then 𝑃 (𝛾).

Proof. The proof is a case consideration: which of the two conditions
(Lemma 4.5 requirements or Lemma 4.6 requirements) hold for 𝜎, which of
them hold for 𝛼, and whether the distinguished load and commit events are
located in the same part 𝛼𝑗 . We consider two of the eight cases. The other are
similar.

Assume requirements (1)–(2) from Lemma 4.5 hold for 𝛼 and requirements
(1)–(3) from Lemma 4.6 hold for sequentially consistent computation 𝛽. If load
and commit events are in the same part, then 𝛼 = 𝛼1 ·x1 · · · (𝛼′𝑗 ·𝑏 ·𝛼′′𝑗 ·𝑐 ·𝑑 ·𝛼′′′𝑗) ·
x𝑗 · · ·𝛼𝑛, 𝛽 = 𝛽1 · 𝑐 · 𝑑 · 𝛽2 · 𝑏 · 𝛽3, where 𝑏 = (load, tid, 𝑖, a), 𝑐 = (commit, tid, 𝑖′),
𝑑 = (prop, tid, tid, 𝑖′, a), 𝑖′ < 𝑖. Consequently, 𝛾 = 𝛽 ↓𝛼1 · x1 · · ·𝛽 ↓𝛼𝑗 · x𝑗 · · ·𝛽 ↓

38 CHAPTER 4. ROBUSTNESS AGAINST POWER

𝛼𝑛 = 𝛽 ↓𝛼1 · x1 · · · (𝛽1 ↓𝛼𝑗 · 𝑐 · 𝑑 · 𝛽2 ↓𝛼𝑗 · 𝑏 · 𝛽3 ↓𝛼𝑗) · x𝑗 · · ·𝛽 ↓𝛼𝑛 — looks like a
read from memory situation. We check requirements (1)–(3) of Lemma 4.6 then.
First, 𝛽2 ↓𝛼𝑗 must have no prop events to thread tid with the address a — holds
as 𝛽2 does not have them. Second, 𝛽3 ↓𝛼𝑗 must have no commits of earlier stores
in thread tid — holds as 𝛽3 does not have them. Third, 𝛽 ↓𝛼𝑙 = (𝛽1 ·𝛽2 ·𝛽3)↓𝛼𝑙,
𝑙 ∈ [𝑖 + 1..𝑛] must have no commit events for stores with indices [1..𝑖 − 1], the
same address a and thread id tid. Consider 𝛽1 ↓𝛼𝑙 — if it has such an event 𝑒,
then two stores to the same address, 𝑒 and 𝑐, are committed in different order
in 𝛼′ and 𝛽, which is impossible due to 𝑇 (𝛼′) = 𝑇 (𝛽). Consider 𝛽2 ↓ 𝛼𝑙 — it
does not have such an event, because 𝛽2 does not have prop events to address a,
therefore, it does not have commits of own stores there too. Consider 𝛽3 ↓𝛼𝑙 —
it does not have such an event, because 𝛽3 does not. Finally, none of x𝑙 events,
𝑙 ∈ [𝑖 + 1..𝑛 − 1], must be a commit of earlier writes in thread tid — holds, as
these events belong to the last fetched instruction of a thread.

Consider the case when load and commit events are in different parts, i.e.,
𝛼 = 𝛼1 · x1 · · · (𝛼′𝑗 · 𝑏 · 𝛼′′𝑗) · · · (𝛼′𝑘 · 𝑐 · 𝑑 · 𝛼′′𝑘) · · ·𝛼𝑛, 𝛽 = 𝛽1 · 𝑐 · 𝑑 · 𝛽2 · 𝑏 · 𝛽3,
where 𝑏, 𝑐, 𝑑 are defined as before and 𝑖′ < 𝑖. Then, 𝛾 = 𝛽 ↓ 𝛼1 · x1 · · ·𝛽 ↓
𝛼𝑗 · x𝑗 · · ·𝛽 ↓𝛼𝑘 · · ·𝛽 ↓𝛼𝑛 = 𝛽 ↓𝛼1 · x1 · · ·𝛽1 ↓𝛼𝑗 · 𝛽2 ↓𝛼𝑗 · 𝑏 · 𝛽3 ↓𝛼𝑗 · x𝑗 · · ·𝛽1 ↓
𝛼𝑘 · 𝑐 ·𝑑 ·𝛽2 ↓𝛼𝑘 ·𝛽3 ↓𝛼𝑘 · x𝑘 · · ·𝛽 ↓𝛼𝑛 — looks like an early read case. Therefore,
one must check that 𝛽2 ↓𝛼𝑘 ·𝛽3 ↓𝛼𝑘 ·x𝑘 · · ·𝛽 ↓𝛼𝑛 has no commit events matching
(commit, tid, [𝑖′+1..𝑖−1], *, a). Consider 𝛽2 ↓𝛼𝑘 — it does not have such events,
because they would be immediately followed by a prop event to thread tid and
address a, which contradicts requirement (2) of Lemma 4.6. Consider 𝛽3 ↓ 𝛼𝑘

— it does not have such events, because 𝛽3 does not have them by requirement
(3) of Lemma 4.6. Consider 𝛽 ↓𝛼𝑙, 𝑙 ∈ [𝑗 + 1..𝑛] — it does not have such events,
because 𝛼𝑙 do not have them by requirement (2) of Lemma 4.5. Finally, x𝑙,
𝑙 ∈ [𝑗 + 1..𝑛− 1] belong to the last fetched instruction of a thread, therefore do
not contain the described commit events.

Lemma 4.13 (Reinsertion). 𝛾 ∈ Cpower(𝒫).

Proof. We proceed by induction. Assume (1) 𝛾 = 𝛾1 ·e ·𝛾2, (2) 𝑠power0
𝛾1−→ 𝑠power,

and (3) all loads satisfied in 𝛾1 have read from the same stores as in 𝛼. We show

that 𝑠power0
𝛾1·e−−→ 𝑠power

′ and all loads satisfied in 𝛾1 · e have read from the same
stores as in 𝛼. Let 𝑠power = (ts, 𝑠𝑍) and ts(tid) = (fetched, committed, loaded).
Consider the event e.

(fetch, tid, 𝑖) A transition labeled by e from state 𝑠power is feasible due to
Lemma 4.11 and the fact that feasibility of a fetch transition is condi-
tioned solely on the previous fetch transition with the same thread id.

(load, tid, 𝑖, a) For the transition to be feasible, addr(𝑖) = a must hold. In
order to have addr(tid, 𝑖) ̸= ⊥, all loads in thread tid, on which addr(tid, 𝑖)
depends, must be satisfied. Note that these loads are the same in 𝛼 and
𝛾 due to Lemma 4.11. Since 𝛼 ∈ Cpower(𝒫), these load events occurred
before e in 𝛼. Let e′ be one of these load events. If e′ ∈ 𝛼𝑖 and e ∈ 𝛼𝑗 ,
𝑖 < 𝑗, or e′ ∈ {x𝑖 | 𝑖 ∈ [1..𝑛 − 1]}, or e ∈ {x𝑖 | 𝑖 ∈ [1..𝑛 − 1]}, then
e′ and e are located in 𝛾 in the same order. If e′, e ∈ 𝛼𝑖, then e′, e ∈
𝛽. Since the →𝑝𝑜 components of 𝑇 (𝛼) and 𝑇 (𝛽) match up to a single
deleted arc, e′ and e are located in 𝛽 (therefore, in 𝛽 ↓𝛼𝑖 and 𝛾) in this

4.3. NORMAL-FORM COMPUTATIONS 39

order. By inductive assumption (3) and the fact that functions in FUN
are deterministic, addr(tid, 𝑖) = a holds.

Assume the load (tid, 𝑖) has read from a store (tid′, 𝑖′) in 𝛼. Then, by Lem-
mas 4.5, 4.6, 4.12, either conditions (1)–(3) of Lemma 4.6 hold, or condi-
tions (1)–(2) of Lemma 4.5 hold. In the former case, (prop, tid, tid′, 𝑖′, a) is
the last prop event to tid with address a, therefore, a load from memory
transition reading (tid′, 𝑖′) is feasible from state 𝑠power. In the latter case,
(tid′, 𝑖′) is the latest non-committed store to address a, and an early read
transition reading (tid′, 𝑖′) is possible. The proof that addr(tid′, 𝑖′) ̸= ⊥ is
similar to the proof that addr(tid, 𝑖) ̸= ⊥.

(commit, tid, 𝑖) The proof of addr(tid, 𝑖) ̸= ⊥ and val(tid, 𝑖) ̸= ⊥ is similar to
the proof of addr(tid, 𝑖) ̸= ⊥ in the previous case. If fetched[𝑖] is a load or a
store, there must be no preceding loads and stores to unknown addresses,
which holds and can be proven in a similar way. If fetched[𝑖] is a load,
requirement loaded[𝑖] ̸= ⊥ holds for the same reasons. If fetched[𝑖] is
a conditional, requirement val(tid, 𝑖) ̸= 0 holds by inductive assumption
(3), the fact that functions in FUN are deterministic, and the fact that
𝛼 ∈ Cpower(𝒫).

(commit, tid, 𝑖, k, a) Value k is unique, since it was unique in 𝛼, and 𝛼 and 𝛾
consist of the same commit events. We check co(prop(tid, a)) < k. As-
sume it does not hold. Then, there is e′ = (prop, tid, tid′, 𝑖′, a), where
co(tid′, 𝑖′) > k, and e′, e are located in 𝛾 in this order. If e′ ∈ 𝛼𝑖, e ∈ 𝛼𝑗 ,
𝑖 < 𝑗, or e′ ∈ {x𝑖 | 𝑖 ∈ [1..𝑛 − 1]}, or e ∈ {x𝑖 | 𝑖 ∈ [1..𝑛 − 1]}, these
events are located in 𝛼 in this order, which contradicts 𝛼 ∈ Cpower(𝒫). If
e′, e ∈ 𝛼𝑖, these events are located in 𝛽 in this order, which contradicts
𝛽 ∈ Cpower(𝒫).

This transition is immediately followed by a prop transition in 𝛾, since it
did so in 𝛼 and 𝛽 (unless 𝑒 ∈ {x𝑖 | 𝑖 ∈ [1..𝑛−1]}, which is a simpler case),
and by properties of projection.

(prop, tid, tid′, 𝑖′, a) The requirement co(prop(tid, a)) < co(tid′, 𝑖′) is proven sim-
ilarly to co(prop(tid, a)) < k in the previous case.

As shown above, 𝑠power0
𝛾−→ 𝑠power. What is left to check, is that 𝑠power ∈

𝐹power. The requirement that all fetched instructions are committed trivially
holds: 𝛽 includes the same commit events as 𝛼′, therefore, by definition, 𝛾
contains the same commit events as 𝛼. The other two requirements that loads
and stores agree with the coherence order hold due to Lemma 4.11, the inductive
assumption (3), and the fact that 𝛼 and 𝛾 consist of the same commit events
(i.e., the coherence keys of matching stores are equal in these computations).

Lemma 4.14. 𝑇 (𝛾) = 𝑇 (𝛼)

Proof. Equality of →𝑝𝑜 follows from Lemma 4.11. Equality of source relation
follows from Lemmas 4.5, 4.6, 4.12, 4.13. Store order is determined by a and
k components of store commit events. Since computations 𝛼 and 𝛾 consist of
the same commit events, the →𝑐𝑜 relations in the traces of 𝛼 and 𝛾 are the
same.

Lemma 4.15. 𝛾 ∈ Cpower(𝒫) and 𝑇 (𝛾) = 𝑇 (𝛼).

40 CHAPTER 4. ROBUSTNESS AGAINST POWER

Thread 1 Thread 2

init𝑥 (1, 1, 𝑞0
mem[𝑥]←1−−−−−−→ 𝑞1) (2, 2, 𝑞1

𝑟2←mem[𝑥]−−−−−−−→ 𝑞2)

init𝑦 (2, 1, 𝑞0
𝑟1←mem[𝑦]−−−−−−−→ 𝑞1)

𝑝𝑜
𝑐𝑓

𝑠𝑟𝑐

𝑐𝑜

𝑠𝑟𝑐

Figure 4.2: Trace of computations 𝛼′ and 𝛽 from Example 4.17.

Proof. Corollary of Lemmas 4.13 and 4.14.

Without loss of generality we may assume that all fetch events of 𝛼 are
located within 𝛼1 · x1: every thread can always first fetch all instructions and
in the rest of the computation only execute them; such a reordering does not
change the trace. Also, note that the maximal number of events an instruction
can generate is |𝒫| + 2. This bound is achieved by a store that is fetched,
committed, and propagated to all threads. Then the following lemma holds:

Lemma 4.16. Computation 𝛾 is in normal form of degree |𝒫|+ 3.

Proof. By definition of 𝛾 and properties of projection.

Together with Lemma 2.16 this proves Theorem 4.9.

Example 4.17. Consider 𝛼 := fetch(𝑐) · fetch(𝑑) · fetch(𝑎) ·����fetch(𝑏) · commit(𝑎) ·
prop(𝑎, 1)·�����commit(𝑏)·�����prop(𝑏, 1)·�����prop(𝑏, 2)· load(𝑐)· load(𝑑)·commit(𝑑)·commit(𝑐),
which is essentially 𝜎MP from Example 4.17 with fetch events moved to the front.
We cancel the x𝑖 events (crossed out) belonging to store instruction 𝑏, as 𝑏 is the
last instruction of thread 1 and no address depends on it (we could also cancel
the events of 𝑑 instead). Therefore, 𝛼1 := fetch(𝑐) · fetch(𝑑) · fetch(𝑎), 𝛼2 :=
commit(𝑎)·prop(𝑎, 1), 𝛼3 := 𝛼4 := 𝜀, 𝛼5 := load(𝑐)·load(𝑑)·commit(𝑑)·commit(𝑐),
and 𝛼′ := 𝛼1 · 𝛼2 · 𝛼3 · 𝛼4 · 𝛼5. The trace of 𝛼′ is shown in Figure 4.2. The SC
computation with the same trace is 𝛽 := fetch(𝑐) · load(𝑐) · commit(𝑐) · fetch(𝑑) ·
load(𝑑) · commit(𝑑) · fetch(𝑎) · commit(𝑎) · prop(𝑎, 1) · prop(𝑎, 2). The normal-
form computation is 𝛾 := 𝛽 ↓ 𝛼1 · x1 · · ·𝛽 ↓ 𝛼5 = (fetch(𝑐) · fetch(𝑑) · fetch(𝑎)) ·
fetch(𝑏) · (commit(𝑎) · prop(𝑎, 1)) · commit(𝑏) · prop(𝑏, 1) · prop(𝑏, 2) · (load(𝑐) ·
commit(𝑐) · load(𝑑) · commit(𝑑)). It is feasible and has the same trace as 𝛼 and
𝜎MP (Figure 4.1).

4.4 From Robustness to Language Emptiness

We now reduce robustness to language emptiness. First, we define a multiheaded
automaton capable of generating all normal-form computations of a program.
Next, we intersect it with regular languages that check cyclicity of the happens-
before relation. Altogether, the program is robust iff the intersection is empty.

4.4. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 41

4.4.1 Generating Normal-Form Computations

To generate all normal-form computations, we use multiheaded automata. We
will generate all normal-form computations of program 𝒫 with the 𝑛-headed au-
tomaton 𝑀(𝒫) := (𝑆𝑀 ,E,∆𝑀 , 𝑠𝑀 0, 𝐹𝑀), where 𝑛 := |𝒫|+ 3. The automaton
generates all events related to a single instruction in one shot, but, possibly, in
different parts of the computation. All fetch events are generated in the first
part of the computation. In order to generate them, the automaton keeps track
of the destination state of the last fetched instruction in each thread (component
ctrl-state of the automaton state).

Each instruction can only read the last value written to a register. There-
fore, the automaton only needs to remember |REG| register values per thread
(component reg-value). However, an instruction cannot be executed until the
values of all registers that it reads become known. To obey this restriction, the
automaton memorizes the part of the computation in which the register value
gets computed (reg-comp-head). For example, while handling an assignment
𝑟1 ← 𝑟1 + 𝑟2, the automaton learns that the new value of 𝑟1 is the sum of the
current values of 𝑟1 and 𝑟2. It also remembers that this value is available no ear-
lier than the current values of 𝑟1 and 𝑟2 are computed. Similarly, the automaton
remembers the parts of the computation in which the addresses of load and store
instructions become known (addr-comp-head), and certain kinds of instructions
get committed (reg-comm-head, assume-comm-head, addr-comm-head).

The automaton has to keep a separate memory state for each thread and
for each part of the computation. The memory state of a thread in a part is
updated when a store instruction gets propagated to this thread in this part.
When a load instruction is handled, the automaton chooses a part where the load
event takes place and uses the memory state of that part. Besides the memory
valuation (mem-value), the memory state includes coherence keys (last-key) to
guarantee that the generated computation respects the coherence order.

When starting the computation, the automaton non-deterministically
guesses the memory valuations and coherence keys for all parts of the com-
putation (except the first one). Upon termination, the automaton checks that
the parts of the computation generated by each head fit together at the concate-
nation points. This ensures the overall computation is valid for the program.
The trick is to remember the guess of the initial memory valuations and co-
herence keys in immutable components of the automaton state (mem-value𝑔,
last-key𝑔). The final states require that the current memory state in part h of
the computation coincides with the guessed initial state in part h + 1.

State space

A state from 𝑆𝑀 (except the special initial state 𝑠𝑀 0) includes the following
information:

∙ ctrl-state(tid) gives the current control state of thread tid.

∙ reg-comp-head(tid, 𝑟) gives the part in which last value assigned to register
𝑟 in thread tid gets computed.

∙ reg-value(tid, 𝑟) gives this computed value.

42 CHAPTER 4. ROBUSTNESS AGAINST POWER

∙ reg-comm-head(tid, 𝑟) gives the part in which the last instruction assigning
a value to register 𝑟 in thread tid gets committed.

∙ assume-comm-head(tid) gives the part in which the latest fetched condition
in thread tid is committed.

∙ mem-value(tid, a, h) gives the value of the last write to a propagated to
thread tid in the part h or earlier.

∙ last-key(tid, a, h) gives the coherence key of the last write to a propagated
to thread tid in the part h or earlier.

∙ mem-value𝑔, last-key𝑔 are immutable copies of the guessed values of the
previous two components (see MH-GUESS below).

∙ early-mem-value(tid, a, h) gives the value written by the last fetched store
to a which is still in-flight in the part h of computation, ⊥ if there is no
such store, ⊤ if the value of the store is unknown or there is a later in-flight
store in this part with an unknown address.

∙ early-mem-key(tid, a, h) gives the coherence key of the store that produced
early-mem-value(tid, a, h).

∙ addr-comp-head(tid) gives the leftmost part of the computation, in which
the addresses of all already fetched memory accesses are computed.

∙ addr-comm-head(tid, a) gives the rightmost part of the computation having
a commit to address a by thread tid.

∙ last-loaded-key(tid, a) gives the coherence key of the last store to address
a loaded in thread tid.

∙ instr-count(tid) gives the number of instructions fetched in thread tid.

The initial state 𝑠𝑀 0 does not contain any information.

Transition relation

We define transitions by specifying the new (primed) values of the state compo-
nents and the label 𝜆 of the transition. First, we define the transition guessing
the initial memory state in each part of the computation:

MH-GUESS Assume the current state is 𝑠𝑀 0. Then, there are transitions
to the states satisfying the following requirements. First, all threads
are in their initial control states: ctrl-state′ := 𝜆tid.𝑞tid0. All reg-
isters have initial value zero: reg-value′ := 𝜆tid.𝜆𝑟.0. Since no in-
structions modifying registers were executed yet, we assume that the
current values have been computed and committed in the first part
of the computation: reg-comp-head′ := 𝜆tid.𝜆𝑟.1, reg-comm-head′ :=
𝜆tid.𝜆𝑟.1. Similarly, all conditionals are already committed in the first
part: assume-comm-head′ := 𝜆tid.1. Since there were no stores executed,
in no part of the computation a thread can read early: early-mem-value′ :=
𝜆tid.𝜆a.𝜆h.⊥, early-mem-key′ := 𝜆tid.𝜆a.𝜆h.⊥. In the first part, the last

4.4. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 43

propagated stores to each address is the initial store writing zero and hav-
ing zero coherence key: mem-value′(tid, a, 1) := 0, last-key′(tid, a, 1) :=
0 for all tid ∈ TID, a ∈ ADDR. We do not define the memory
state for the other parts of the computation: they are chosen non-
deterministically. However, we remember the non-deterministic guess:
mem-value′ = mem-value′𝑔, last-key′ = last-key′𝑔. All so far fetched mem-
ory accesses (there is none) are already computed and committed in the
first part: addr-comp-head′ := 𝜆tid.1, addr-comm-head′ := 𝜆tid.𝜆a.1. No
loads were done yet: last-loaded-key := 𝜆tid.𝜆a.0. The number of fetched
instructions in each thread is zero: instr-count′ := 𝜆tid.0. Finally, we re-
quire that the guessed values of coherence keys grow monotonically with
the part index: last-key′(tid, a, h) ≤ last-key′(tid, a, h+ 1) for h ∈ [1..𝑛− 1],
tid ∈ TID, a ∈ ADDR (we assume last-key′(tid, a, 𝑛) := ∞). Guesses not
satisfying this monotonicity requirement clearly lead to no valid compu-
tations. All transitions defined by this rule are labeled with 𝜆 := 𝜀.

Fix a state 𝑠𝑀 . We overload eval(tid, 𝑒) to mean the value of expression 𝑒
for the valuation of registers defined by 𝜆𝑟.reg-value(tid, 𝑟).

Let tid ∈ TID, ctrl-state(tid) = 𝑞1, instr = 𝑞1
cmd−−→ 𝑞2 ∈ ℐtid. When the

automaton executes the instruction instr, it chooses three indices from HEAD :=
[1..𝑛]. The first index h1 := 1 denotes the part of the computation where the
fetch event is generated. The second index h2 ∈ HEAD gives the part of the
computation where the result of the instruction is computed. For example,
load events are generated in the part h2. Clearly, the result of the instruction
can be computed only after the instruction is fetched, h2 ≥ h1, and all data
and address dependencies are computed: h2 ≥ reg-comp-head(tid, 𝑟) for each
register 𝑟 read in cmd. The third index, h3 ∈ HEAD, denotes the part in which
the instruction is committed. The instruction must be computed before it is
committed: h3 ≥ h2. Moreover, all the data and control dependencies must
be committed earlier: h3 ≥ reg-comm-head(tid, 𝑟) for each register 𝑟 read in
cmd, h3 ≥ assume-comm-head(tid). When executing an instruction in thread
tid, we increment the counter of fetched instructions in this thread: let 𝑖 :=
instr-count(tid) + 1, then instr-count′ := instr-count[tid := 𝑖].

Depending on the type of cmd, there are the following transitions from 𝑠𝑀
labeled by events 𝜆:

MH-ASSIGN Let cmd be a local assignment: cmd = 𝑟 ← 𝑒v. The assigned
value is v := eval(tid, 𝑒v). We remember that the register 𝑟 now contains
the new value: reg-value′ := reg-value[(tid, 𝑟) := v]. We note that the
value is computed in part h2: reg-comp-head′ := reg-comp-head[(tid, 𝑟) :=
h2] and that the instruction producing this value is committed in part
h3: reg-comm-head′ := reg-comm-head[(tid, 𝑟) := h3]. The transition is
labeled with 𝜆 := (h1, fetch, tid, instr) · (h3, commit, tid, 𝑖). For brevity we
allow a single transition to be labeled with several events. An automaton
with such transitions can be trivially translated to the canonical form by
breaking one such transition into several consecutive ones.

MH-ASSUME Consider a conditional: cmd = assume(𝑒v). Assume the con-
dition holds: eval(tid, 𝑒v) ̸= 0. We remember the part in which the condi-
tion gets committed: assume-comm-head′ := assume-comm-head[tid := h3].
We label the transition with 𝜆 := (h1, fetch, tid, instr) · (h3, commit, tid, 𝑖).

44 CHAPTER 4. ROBUSTNESS AGAINST POWER

MH-LOAD Let cmd be a load: cmd = 𝑟 ← mem[𝑒a]. The address being
accessed is a := eval(tid, 𝑒a). We require h3 ≥ addr-comm-head(tid, a),
because memory accesses to the same address must be committed in order.
If early-mem-value(tid, a) = ⊥, the load reads from the last propagated
store: v := mem-value(tid, a, h2), k := last-key(tid, a, h2). Otherwise, the
load reads early from an earlier store: v := early-mem-value(tid, a, h2),
k := early-mem-key(tid, a, h2). We require v ̸= ⊤: the contrary would mean
that there is an in-flight store to address a whose value is not yet computed.
Also, we require k ≥ last-loaded-key(tid, a), in order to guarantee POW-
FIN-LD to hold in the final state.

If all the requirements hold, we update the register valuation, similar to
MH-ASSIGN rule: reg-value′ := reg-value[(tid, 𝑟) := v], reg-comp-head′ :=
reg-comp-head[(tid, 𝑟) := h2], reg-comm-head′ := reg-comm-head[(tid, 𝑟) :=
h3]. We update the index of the leftmost part of the computation where
all addresses are computed: addr-comp-head′ := addr-comp-head[tid :=
max{addr-comp-head(tid), h2}]. Part h3 is now the rightmost part con-
taining a commit of a memory access to a: addr-comm-head′ :=
addr-comm-head[(tid, a) := h3]. The coherence key of the store
loaded by the program-order-last load is now k: last-loaded-key′ :=
last-loaded-key[(tid, a) := k]. We label the transition with 𝜆 :=
(h1, fetch, tid, instr) · (h2, load, tid, 𝑖, a) · (h3, commit, tid, 𝑖).

MH-STORE Consider a store cmd = mem[𝑒a] ← 𝑒v. The address being
written is a := eval(tid, 𝑒a). The store cannot be committed before the
addresses of all previously fetched instructions become known. There-
fore, we require h3 ≥ addr-comp-head(tid). Similarly, the store can be
committed only after all previously fetched accesses to the same address
are committed: h3 ≥ addr-comm-head(tid, a). The value being stored is
v := eval(tid, 𝑒v). The automaton non-deterministically chooses a unique
coherence key k ∈ Q, k ̸= last-key(tid, a, h) for any tid ∈ TID, a ∈ ADDR,
h ∈ HEAD.

The transition remembers that in the parts [h1..h2 − 1] the
value or the address of the last in-flight store is not known,
and in the parts [h2..h3 − 1] the address is known and the
value being written to this address is v: early-mem-value′ :=
early-mem-value[(tid, a, [h1..h2 − 1]) := ⊤), (tid, a, [h2..h3 − 1]) := v],
early-mem-key′ := early-mem-key[(tid, a, [h2..h3−1]) := k]. Let h′2 ∈ [h1..h2]
be an index satisfying h′2 ≥ reg-comp-head(tid, 𝑟) for each register 𝑟 used
in 𝑒a. In the parts [h1..h

′
2 − 1] the thread has an in-flight store whose ad-

dress is not known, therefore, early reads are not possible in these parts:
we modify early-mem-value′ := early-mem-value′[(tid, a′, h) := ⊤] for all
a′ ∈ ADDR ∖ {a}, h ∈ [h1..h

′
2 − 1] with early-mem-value(tid, a′, h) ∈ DOM.

We update the index of the leftmost part of the computation where
all addresses are computed: addr-comp-head′ := addr-comp-head[tid :=
max{addr-comp-head(tid), h′2}]. Part h3 is now the rightmost part
of the computation containing a commit of a memory access to a:
addr-comm-head′ := addr-comm-head[(tid, a) := h3].

Finally, we choose, to which other threads and in which parts of the
computation the store will be propagated. Let 𝑇 ⊆ TID ∖ {tid} be

4.4. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 45

the set of the threads (except tid) to which the store will be propa-
gated. Let initially mem-value′ := mem-value, last-key′ := last-key, and
𝜆 := (h1, fetch, tid, instr) · (h3, commit, tid, 𝑖, k, a). For tid′ = tid and for
each tid′ ∈ 𝑇 we propagate the store to tid′. For this, we choose a part
for the corresponding propagate event: h ∈ HEAD, h ≥ h3 (h := h3 for
tid′ = tid). We check that the propagation respects the coherence or-
der: last-key(tid′, a, h) < k ≤ last-key𝑔(tid′, a, h + 1). Then, we update

the memory state mem-value′ := mem-value′[(tid′, a, h) := v], last-key′ :=
last-key′[(tid′, a, h) := k], and the label 𝜆 := 𝜆 · (h, prop, tid′, tid, 𝑖, a).

Final states

The set of final states 𝐹𝑀 is a subset of 𝑆𝑀 ∖ {𝑠𝑀 0} consisting of all
states with mem-value(tid, a, h) = mem-value𝑔(tid, a, h + 1), last-key(tid, a, h) =
last-key𝑔(tid, a, h + 1) for all tid ∈ TID, a ∈ ADDR, h ∈ [1..𝑛− 1].

Soundness and completeness

In the following proofs we use a dot notation for referencing elements of tuples
(the same notation is used in many programming languages). For example,
let 𝑠power be a state of the Power automaton 𝑋power(𝒫), then 𝑠power.ts is the ts
component of the state, i.e., the first element of the tuple 𝑠power.

Lemma 4.18. ℒ(𝑀) ⊆ Cpower(𝒫).

Proof. Consider 𝜎 = 𝜆1 · · ·𝜆𝑚, such that 𝑠𝑀 0
𝜆1−→ 𝑠𝑀 1

𝜆2−→ · · · 𝜆𝑚−−→ 𝑠𝑀𝑚 ∈ 𝐹𝑀 .
For h ∈ HEAD, let 𝜏𝑠h := take2nd((𝜆1 · · ·𝜆𝑠)↓({h} ×E)), 𝑠 ∈ [0..𝑚].

Let (𝑠power
0
1 . . . 𝑠power

0
𝑛) ∈ (𝑆power)

𝑛 be the states of 𝑋power(𝒫) defined so that
SND-B holds for 𝑠 = 0 (see below). By induction on 𝑠 ∈ [1..𝑚] we show:

SND-A 𝑠power
0
h

𝜏𝑠
h−→ 𝑠power

𝑠
h.

SND-B For all tid ∈ TID, h ∈ HEAD, 𝑠power
𝑠
h = (ts, (co, prop)), ts(tid) =

(fetched, committed, loaded) holds:

SND-B1 fetched is the list of instructions fetched by (𝜏𝑚1 · · · 𝜏𝑚h−1 · 𝜏𝑠h) ↓
fetch↓ tid.

SND-B2 committed consists of the indices of instructions committed by
(𝜏𝑚1 · · · 𝜏𝑚h−1 · 𝜏𝑠h)↓commit↓ tid.

SND-B3 loaded contains the information about the stores being read
by loads in (𝜏𝑚1 · · · 𝜏𝑚h−1 · 𝜏𝑠h) determined according to Lemmas 4.5
and 4.6.

SND-B4 co(tid, 𝑖) = k if (commit, tid, 𝑖, k, a) ∈ 𝜏𝑚1 · · · 𝜏𝑚h−1 · 𝜏𝑠h for some
a ∈ ADDR, otherwise, co(tid, 𝑖) = ⊥.

SND-B5 prop(tid, a) = (tid′, 𝑖′) if (prop, tid, tid′, 𝑖′, a) = last((𝜏𝑚1 · · · 𝜏𝑚h−1 ·
𝜏𝑠h)↓(prop, tid, *, *, a)), otherwise, prop(tid, a) = inita.

SND-C For each tid ∈ TID: ctrl-state(tid) = dst(last(𝑠power
𝑠
1.ts(tid).fetched))

(or 𝑞tid0 if no instructions were fetched).

46 CHAPTER 4. ROBUSTNESS AGAINST POWER

SND-D For each tid ∈ TID, 𝑟 ∈ REG, for each h ∈ [reg-comp-head(tid, 𝑟)..𝑛]:
reg-value(tid, 𝑟) = eval(tid, instr-count(tid) + 1, 𝑟) computed for the state
𝑠power

𝑠
h.

SND-E For each tid ∈ TID, 𝑟 ∈ REG, h ∈ [reg-comm-head(tid, 𝑟)..𝑛]: let 𝑖 be
the index of the latest instruction in 𝑠power

𝑠
h.ts(tid).fetched writing to 𝑟,

then 𝑖 ∈ 𝑠power
𝑠
h.ts(tid).committed.

SND-F For each tid ∈ TID, h ∈ [assume-comm-head(tid)..𝑛]: 𝑠power
𝑠
h does not

contain uncommitted conditional instructions in thread tid having indices
≤ instr-count(tid).

SND-G For each tid ∈ TID, a ∈ ADDR, h ∈ HEAD: let 𝑤 :=
𝑠power

𝑠
h.prop(tid, a). If 𝑤 = inita, mem-value(tid, a, h) = 0. If 𝑤 = (tid′, 𝑖′),

mem-value(tid, a, h) = val(tid′, 𝑖′) computed in 𝑠power
𝑠
h.

SND-H For each tid ∈ TID, a ∈ ADDR, h ∈ HEAD: last-key𝑔(tid, a, h) ≤
𝑠power

𝑠
h.co(𝑠power

𝑠
h.prop(tid, a)) = last-key(tid, a, h) ≤ last-key𝑔(tid, a, h + 1).

SND-K For each tid ∈ TID, a ∈ ADDR, h ∈ HEAD: let 𝑖 ∈ N be the maxi-
mal index, such that 𝑠power

𝑠
h.ts(tid).fetched[𝑖] is a store, addr(tid, 𝑖) = a in

𝑠power
𝑠
𝑛. Let 𝑖′ be the maximal index, such that 𝑠power

𝑠
h.ts(tid).fetched[𝑖′] is

a store, addr(tid, 𝑖′) ∈ {⊥, a} in 𝑠power
𝑠
h. Then early-mem-value(tid, 𝑖, h) = ⊥

if such 𝑖 does not exist or 𝑖 ∈ 𝑠power
𝑠
h.ts(tid).committed. Otherwise,

early-mem-value(tid, 𝑖, h) = ⊤ if addr(tid, 𝑖′) = ⊥ or val(tid, 𝑖) = ⊥ in
𝑠power

𝑠
h. Otherwise, early-mem-value(tid, 𝑖, h) = val(tid, 𝑖) computed in

𝑠power
𝑠
h and early-mem-key(tid, 𝑖, h) = 𝑠power

𝑠
h.𝑠𝑍 .co(tid, 𝑖).

SND-L For each tid ∈ TID, h ∈ [addr-comp-head(tid)..𝑛], 𝑖 ∈
[1..|𝑠power𝑠h.ts(tid).fetched|]: addr(tid, 𝑖) ̸= ⊥ in 𝑠power

𝑠
h.

SND-M For each tid ∈ TID, a ∈ ADDR, h ∈ [addr-comm-head(tid, a)..𝑛]: if
addr(tid, 𝑖) = a in 𝑠power

𝑠
𝑛 for some 𝑖, then 𝑖 ∈ 𝑠power

𝑠
h.ts(tid).committed.

Finally we will show that 𝑠power
𝑚
h = 𝑠power

0
h+1 for all h ∈ [1..𝑛 − 1] and

𝑠power
𝑚
𝑛 ∈ 𝐹power, thus proving the claim of the lemma.

Base case: 𝑠 = 1, we must show that 𝑠𝑀 1 satisfies the inductive statement.
This is easy to check by definition of the destination state of MH-GUESS tran-
sition.

Step case: assume the inductive statement holds for some 𝑠 ∈ [0..𝑚 − 1].
Consider 𝜆𝑠 (for notational convenience and without loss of generality we assume
below that h𝑗 ̸= h𝑗′ for 𝑗 ̸= 𝑗′):

Assignment 𝜆𝑠 = (h1, fetch, tid, instr) · (h3, commit, tid, 𝑖), instr = 𝑞1
𝑟←𝑒v−−−→ 𝑞2.

Let e1 := (fetch, tid, instr), e3 := (commit, tid, 𝑖).

We need to show that 𝑠power
𝑠−1
h1

e1−→ 𝑠power
𝑠
h1

, i.e., that the assignment
instruction can be fetched. This follows from the choice of h1 := 1 in
MH-ASSIGN and SND-B1, SND-C.

We also need to show that 𝑠power
𝑠−1
h3

e3−→ 𝑠power
𝑠
h3

, i.e., that the assignment
instruction can be committed. First, the e3 transition requires the in-
struction being committed to be fetched, which holds due to SND-B1 and
h3 ≥ h1. Second, this instruction must be not committed yet, which holds

4.4. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 47

by SND-B2 and the fact that 𝑀 commits each instruction once. Third,
all control dependencies must be committed. This is by the choice of h3
in MH-ASSIGN and SND-F. Fourth, all the preceding data dependencies
must be committed. This is by the choice of h3 in MH-ASSIGN and SND-
E. Finally, the argument of the function must be computed. This is by
choice of h3 ≥ h2 in MH-ASSIGN, Lemma 4.4, and SND-D.

In the end, we must show that the invariants hold in the new state. The
only non-trivial thing is SND-D, which holds due to SND-D in the source
state, definition of v in MH-ASSIGN, definitions of eval, and the fact that
functions in FUN are deterministic.

Assume 𝜆𝑠 = (h1, fetch, tid, 𝑞1
instr−−→ 𝑞2)·(h3, commit, tid, 𝑖), instr = assume(𝑒v).

The proof is similar to the previous case. The commit transition addition-
ally requires eval(tid, 𝑖, 𝑒v) ̸= 0, which holds due to the fact that a similar
check in MH-ASSUME holds, SND-D, definitions of eval, the fact that
functions in FUN are deterministic.

Load 𝜆𝑠 = (h1, fetch, tid, instr) · (h2, load, tid, 𝑖, a) · (h3, commit, tid, 𝑖), instr =
𝑟 ← mem[𝑒a]. Let e1 := (fetch, tid, instr), e2 := (load, tid, 𝑖, a), e3 :=
(commit, tid, 𝑖).

𝑠power
𝑠−1
h1

e1−→ 𝑠power
𝑠
h1

holds for the same reasons as before.

Next, we show that 𝑠power
𝑠−1
h2

e2−→ 𝑠power
𝑠
h2

, where this transition is a POW-
EARLY transition in the early read case of MH-LOAD and a POW-
LOAD transition in the load from memory case. First, we must show
that 𝑠power

𝑠
h.ts(tid).loaded[𝑖] = ⊥. This holds by SND-B3 and the fact that

𝑀 generates a load event once for a single fetched load instruction.

Assume the early read case. This means, early-mem-value(tid, a, h2) ∈
DOM. By SND-K, this means, the last fetched store with an unknown
address or address of the load is not yet committed, has the address of
the load and has the value known. By POW-EARLY, the load can take
the value from this store, and SND-B3 holds in the new state.

Consider the load from memory case. This means,
early-mem-value(tid, a, h2) = ⊥. By SND-K, this means, there is no
earlier fetched store with the same address which is not yet committed.
By POW-LOAD, the load can take the value from the last propagated
store, and SND-B3 holds in the new state.

Argumentation for 𝑠power
𝑠−1
h3

e3−→ 𝑠power
𝑠
h3

is similar to the previous cases.
Additionally, first we must show that 𝑠power

𝑠
h.ts(tid).loaded[𝑖] ̸= ⊥. This

is by h3 ≥ h2 (MH-LOAD), SND-B3. Second, we must ensure that all
preceding instructions accessing the same address a are committed, and
there are no previously fetched instructions with unknown address. This
holds by choice of h3 in MH-LOAD, SND-L, and SND-M.

In the new state, SND-D holds by definition of v in POW-LOAD, defi-
nitions of eval, SND-G, and SND-K. Proofs for the other conditions are
simpler.

Store 𝜆𝑠 = (h1, fetch, tid, instr) · (h3, commit, tid, 𝑖, k, a) · (h3, prop, tid, tid, 𝑖, a) ·
(h4, prop, tid1, tid, 𝑖, a) · · · (h𝑢+3, prop, tid𝑢, tid, 𝑖, a). Let e1 := (fetch, tid,

48 CHAPTER 4. ROBUSTNESS AGAINST POWER

instr), e3 := (commit, tid, 𝑖, k, a), e4 := (prop, tid, tid, 𝑖, a), e𝑗+3 := (prop,
tid𝑗 , tid, 𝑖, a) for 𝑗 ∈ [1..𝑢].

𝑠power
𝑠−1
h1

e1−→ 𝑠power
𝑠
h1

holds for the same reasons as before.

𝑠power
𝑠−1
h3

e3−→ 𝑠power
𝑠
h3

holds for the same reasons as in the case of a load.
The requirement that the coherence key is unique in POW-STORE follows
from a similar requirement in MH-STORE and SND-H. By POW-STORE,
the only available transition from 𝑠power

𝑠
h2

is a propagation of the write to
its thread, i.e., e4, which indeed follows e3 in 𝜏 . Next, we show that e4
and further propagate transitions are feasible.

First, POW-PROP-STORE rule requires the write being propagated to
have a coherence key (i.e., to be committed), which holds by choice of h𝑗 ,
𝑗 ∈ [3..𝑢 + 3] in MH-STORE and SND-B2. Second, it requires the coher-
ence key of the latest propagated store to be less than the key of the store
being propagated. This is adhered due to the check last-key(tid′, a, h) < k
and SND-H.

It is easy to see that the inductive invariants hold in the new state as well.

Now we prove 𝑠power
𝑚
h = 𝑠power

0
h+1 for all h ∈ [1..𝑛 − 1]. The equality of ts

components immediately follows from SND-B inductive statement.
Now we prove 𝑠power

𝑚
𝑛 ∈ 𝐹power. POW-FIN-COMM holds, because 𝑋power(𝒫)

always emits a commit event for each fetched instruction. POW-FIN-LD holds
by the requirement on the coherence key of the loaded store in MH-LOAD.
POW-FIN-LD-ST is proven by case consideration: a load reading from an earlier
store early, a load reading from the last store to the loaded address in the same
thread, a load reading from a store propagated after the last store to the same
address in the load’s thread is committed.

Lemma 4.19. {𝜏 ∈ Cpower(𝒫) | 𝜏 is in normal form of degree 𝑛} ⊆ ℒ(𝑀).

Proof. Let 𝜏 = 𝜏1 · · · 𝜏𝑛 ∈ Cmm(𝒫) be a normal-form computation, i.e.,

𝑠power0
𝜏−→ 𝑠power ∈ 𝐹power. We show that there is a sequence of transitions

𝑠𝑀 0
𝜆1−→ 𝑠𝑀 1

𝜆2−→ . . .
𝜆𝑚−−→ 𝑠𝑀𝑚 ∈ 𝐹𝑀 , such that 𝜏h = take2nd((𝜆1 · · ·𝜆𝑛) ↓

({h} ×E)).

Let 𝜏𝑠h := take2nd((𝜆1 · · ·𝜆𝑠) ↓ ({h} × E)), 𝑠power0
𝜏1···𝜏h−1·𝜏𝑠

h−−−−−−−→ 𝑠power
𝑠
h −→*

𝑠power. By induction on 𝑠 starting from 1 we show the following inductive state-
ments:

CMPL-A There is a sequence of 𝑠 transitions: 𝑠𝑀 0
𝜆1−→ 𝑠𝑀 1

𝜆2−→ . . .
𝜆𝑠−→ 𝑠𝑀𝑠.

CMPL-B For all h ∈ HEAD: 𝜏h = 𝜏𝑠h .𝜏
𝑠
h for some 𝜏𝑠h .

CMPL-C If e1, e2 ∈ 𝜏 are two events belonging to instruction (tid, 𝑖), then
e1 ∈ 𝜏𝑠h for some h iff e2 ∈ 𝜏𝑠h′ for some h′.

CMPL-D For each tid ∈ TID: ctrl-state(tid) = dst(last(𝑠power
𝑠
1.ts(tid).fetched))

(or ctrl-state(tid) = 𝑞tid0 if no instructions were fetched).

CMPL-F For each tid ∈ TID, 𝑟 ∈ REG, h ∈ [reg-comp-head(tid, 𝑟)..𝑛]:
reg-value(tid, 𝑟) = eval(tid, instr-count(tid) + 1, 𝑟) computed in the state
𝑠power

𝑠
h.

4.4. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 49

CMPL-F’ For each tid ∈ TID, 𝑟 ∈ REG, h ∈ [1..reg-comp-head(tid, 𝑟) − 1]:
eval(tid, instr-count(tid) + 1, 𝑟) = ⊥.

CMPL-G For each tid ∈ TID, 𝑟 ∈ REG, h ∈ [reg-comm-head(tid)..𝑛]: let 𝑖 be
the index of the last instruction in 𝑠power

𝑠
h.ts(tid).fetched writing to 𝑟, then

𝑖 ∈ 𝑠power
𝑠
h.ts(tid).committed.

CMPL-G’ For each tid ∈ TID, 𝑟 ∈ REG, h ∈ [1..reg-comm-head(tid, 𝑟) − 1]:
let 𝑖 be the index of the last instruction in 𝑠power

𝑠
h.ts(tid).fetched, then

𝑖 ̸∈ 𝑠power
𝑠
h.ts(tid).committed.

CMPL-K For each tid ∈ TID, h ∈ [assume-comm-head(tid)..𝑛]: let 𝑖 be
an index of an assume() instruction in 𝑠power

𝑠
h.ts(tid).fetched, then 𝑖 ∈

𝑠power
𝑠
h.ts(tid).committed.

CMPL-K’ For each tid ∈ TID, h ∈ [1..assume-comm-head(tid) − 1]: let 𝑖 be
an index of the last assume() instruction in 𝑠power

𝑠
h.ts(tid).fetched, then

𝑖 ̸∈ 𝑠power
𝑠
h.ts(tid).committed.

CMPL-L For each tid ∈ TID, a ∈ ADDR, h ∈ HEAD: let 𝑤 :=
𝑠power

𝑠
h.prop(tid, a). If 𝑤 = inita, mem-value(tid, a, h) = 0. If 𝑤 = (tid′, 𝑖′),

mem-value(tid, a, h) = val(tid′, 𝑖′) computed in 𝑠power
𝑠
h.

CMPL-M For each tid ∈ TID, a ∈ ADDR, h ∈ HEAD: last-key𝑔(tid, a, h) <
𝑠power

𝑠
h.co(𝑠power

𝑠
h.prop(tid, a)) = last-key(tid, a, h) ≤ last-key𝑔(tid, a, h + 1).

CMPL-N For each tid ∈ TID, a ∈ ADDR, h ∈ HEAD: let 𝑖 ∈ N be the maxi-
mal index, such that 𝑠power

𝑠
h.ts(tid).fetched[𝑖] is a store, addr(tid, 𝑖) = a in

𝑠power
𝑠
𝑛. Let 𝑖′ be the maximal index, such that 𝑠power

𝑠
h.ts(tid).fetched[𝑖′] is

a store, addr(tid, 𝑖′) ∈ {⊥, a} in 𝑠power
𝑠
h. Then early-mem-value(tid, 𝑖, h) = ⊥

if such 𝑖 does not exist or 𝑖 ∈ 𝑠power
𝑠
h.ts(tid).committed. Otherwise,

early-mem-value(tid, 𝑖, h) = ⊤ if addr(tid, 𝑖′) = ⊥ or val(tid, 𝑖) = ⊥ in
𝑠power

𝑠
h. Otherwise, early-mem-value(tid, 𝑖, h) = val(tid, 𝑖) computed in

𝑠power
𝑠
h.

CMPL-P For each tid ∈ TID, a ∈ ADDR, h ∈ [addr-comm-head(tid, a)..𝑛]: if
addr(tid, 𝑖) = a in 𝑠power

𝑠
𝑛 for some 𝑖, then 𝑖 ∈ 𝑠power

𝑠
h.ts(tid).committed.

CMPL-P’ For each tid ∈ TID, a ∈ ADDR, h ∈ [1..addr-comm-head(tid, a) −
1]: there is 𝑖 with addr(tid, 𝑖) = a in 𝑠power

𝑠
𝑛, such that 𝑖 ∈

𝑠power
𝑠
h.ts(tid).committed.

CMPL-R For each tid ∈ TID: instr-count(tid) = |𝑠power𝑠1.ts(tid).fetched|.

Base case: 𝑠 = 1. We choose the first (MH-GUESS) transition 𝑠𝑀 0
𝜆1−→ 𝑠𝑀 1,

so that the inductive statements hold:

Guess We define mem-value and last-key components of 𝑠𝑀 1 according to
CMPL-L and CMPL-M requirements. The other inductive statements
trivially hold.

Assume the inductive statements hold for 𝑠 and 𝜏𝑠h ̸= 𝜀 for some h ∈ HEAD.
We show they hold for 𝑠′ := 𝑠 + 1. The proof is done by pointing out an

appropriate transition 𝑠𝑀𝑠
𝜆𝑠+1−−−→ 𝑠𝑀𝑠+1. We choose the first possible option

out of the following:

50 CHAPTER 4. ROBUSTNESS AGAINST POWER

Assignment Assume e1 ⊑ 𝜏𝑠h1 , e3 ⊑ 𝜏𝑠h3 , where h1 < h3 (h1 = h3 is possi-
ble, but here and further we write strict inequalities for notational con-

venience), e1 := (fetch, tid, 𝑞1
cmd−−→ 𝑞2), e3 := (commit, tid, 𝑖), h1 = 1,

𝑖 = instr-count(tid), cmd = 𝑟 ← 𝑒v. Then, as we show next, an MH-
ASSIGN transition is feasible.

First, 𝑠power
𝑠
h1

e1−→, therefore, the state of the last fetched instruction in
thread tid in 𝑠power

𝑠
h1

is 𝑞1. By CMPL-D, ctrl-state(tid) = 𝑞1 too.

Second, we choose h2 := max{reg-comm-head(tid, 𝑟) | 𝑟 is read in cmd}.
It satisfies the requirements from MH-ASSIGN. Note that h2 ≤ h3 by
CMPL-F’ and POW-COMMIT: an instruction cannot be committed, until
its arguments are computed.

Third, we must show that for each register 𝑟 read by the instruction holds
h3 ≥ reg-comm-head(tid, 𝑟) and h3 ≥ assume-comm-head(tid). This holds
by CMPL-G’, CMPL-K’, and POW-COMMIT: an instruction cannot be
committed until its data and control dependencies are committed.

In the destination state, CMPL-F holds by CMPL-F in the source state,
definition of reg-value′ in MH-ASSIGN and definitions of eval. The other
inductive statements trivially hold.

Assume Assume e1 ⊑ 𝜏𝑠h1 , e3 ⊑ 𝜏𝑠h3 , where h1 < h3, e1 = (fetch, tid, 𝑞1
cmd−−→

𝑞2), e3 = (commit, tid, 𝑖), where 𝑖 = instr-count(tid), h1 = 1, 𝑖 =
instr-count(tid), cmd = assume(𝑒v). Then, an MH-ASSUME transition
is feasible.

The proof is similar to the proof for the case of assignment. The MH-
ASSUME transition additionally requires eval(tid, 𝑒v) ̸= 0. This holds by
CMPL-F, definition of reg-value′ in MH-ASSIGN and definitions of eval.

The inductive statements trivially hold in the destination state.

Load Assume e1 ⊑ 𝜏𝑠h1 , e2 ⊑ 𝜏𝑠h2 , e3 ⊑ 𝜏𝑠h3 , where h1 < h2 < h3,

e1 = (fetch, tid, 𝑞1
cmd−−→ 𝑞2), e2 = (load, tid, 𝑖, a), e3 = (commit, tid, 𝑖),

𝑖 = instr-count(tid), cmd = 𝑟 ← mem[𝑒v]. We show that an MH-LOAD
transition is feasible. We point out only the differences with respect to
the proof for the assignment case.

Assume e2 was produced by a POW-EARLY transition. This means, the
last store writing to a has its address known and is not committed yet
in 𝑠power

𝑠
h2

. Then, by CMPL-N, early-mem-value(tid, a, h2) ∈ DOM, and
we have v := early-mem-value(tid, a, h2). Assume e2 was produced by a
POW-LOAD transition. Then, POW-EARLY transition was not possible
(Lemma 4.5, Lemma 4.6). This means, there was no in-flight stores to
a in 𝑠power

𝑠
h2

. Then, by CMPL-N, early-mem-value(tid, a, h2) = ⊥, and
we have v := mem-value(tid, a, h2). In both cases, by CMPL-N, CMPL-L
we have reg-value′ and reg-comp-head′ satisfying CMPL-F and CMPL-F’.
Additionally, we must show that h3 ≥ addr-comm-head(tid, a). This holds
by CMPL-P’ and CMPL-N. The requirement on the coherence key holds
due to POW-FIN-LD.

Store Assume 𝑢 ∈ N, e𝑗 ⊑ 𝜏𝑠h𝑗 for 𝑗 ∈ [1..𝑢 + 3], where h2 = h3, e1 =

(fetch, tid, 𝑞1
cmd−−→ 𝑞2), e2 = (commit, tid, 𝑖, k, a), e3 = (prop, tid, tid, 𝑖, a),

4.4. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 51

e𝑗 = (prop, tid𝑗 , tid, 𝑖, a) for 𝑗 ∈ [4..𝑢 + 3], 𝑖 = instr-count(tid), cmd =
mem[𝑒a]← 𝑒v. Assume that there are no other prop events for (tid, 𝑖) in 𝜏 ,
except for e3 . . . e𝑢+3. We show that an MH-STORE transition is feasible.

The requirements to be checked are similar to those in the load case. The
requirement that k is not already used holds by CMPL-M and the fact
that the same requirement in POW-STORE is met.

Consider the requirements in MH-STORE for generating prop events.
The requirement that propagation event to thread tid is generated in the
same part as commit is met by assumption h3 = h2. The requirement
last-key(tid′, a, h) < k ≤ last-key𝑔(tid′, a, h + 1) is met by CMPL-L, choice
of last-key𝑔 in the initial transition, and POW-PROP-STORE.

This means, inductive invariant CMPL-A holds for 𝑠 + 1. Also, CMPL-B
holds by choice of e1 . . . e𝑢+3, CMPL-D holds trivially. CMPL-C holds by
assumption that there are no other prop events in 𝜏 , except for e3 . . . e𝑢+3.
CMPL-F, CMPL-F’, CMPL-G, CMPL-G’ hold, since store instructions
do not affect register values. CMPL-K, CMPL-K’ hold, because a store
instruction is not assume(). CMPL-L holds by definition of mem-value′

in MH-STORE. CMPL-M holds by definition of last-key′ in MH-STORE.
CMPL-N holds by definition of early-mem-value′ in MH-STORE. CMPL-P,
CMPL-P’ hold by definition of addr-comm-head′ in MH-STORE. CMPL-R
hold by definition of instr-count′ in MH-STORE.

Now we must show that one of the cases above always takes place. Consider
the event e = first(𝜏𝑠1). By CMPL-C and the fact that 𝜏 ∈ Cpower(𝒫), it is
a fetch event (fetch, tid, 𝑖, instr). Choose the case based on the kind of instr.
By POW-NF-A and POW-NF-B, all events belonging to the instruction (tid, 𝑖)
constitute prefixes of 𝜏𝑠h , h ∈ HEAD. The requirement 𝑖 = instr-count(tid) holds
by CMPL-R. The requirements like h1 ≤ h2 ≤ h3 in the load case naturally
follow from the fact that 𝜏 ∈ Cpower(𝒫).

Assume 𝜏𝑠h = 𝜏h for all h ∈ HEAD. Then 𝜏𝑠h ∈ 𝐹𝑀 by choice of mem-value𝑔
and last-key𝑔 in 𝑠𝑀 1 and CMPL-L, CMPL-M.

Lemma 4.20. {𝜏 ∈ Cpower(𝒫) | 𝜏 is in normal form of degree 𝑛} ⊆
ℒ(𝑀(𝒫)) ⊆ Cpower(𝒫).

Proof. This is a corollary of Lemmas 4.18 and 4.19.

4.4.2 Checking Cyclicity of the Happens-Before Relation

As shown in Lemma 3.7, if a computation has a happens-before cycle, it has a
beautiful happens-before cycle, in which each thread contributes only once.

Example 4.21. The happens-before cycle shown in Figure 4.1 is beautiful.

In this section we show how to detect beautiful cycles using finite automata.
Given a cycle profile 𝜃, we define the automaton 𝑀 ′(𝒫, 𝜃) as a modification

of 𝑀(𝒫) that marks one event in each thread tid𝑗 ∈ 𝜃 by enter (identifying
(tid𝑗 , 𝑖𝑗 , *)) and a later (or the same) event by leave (identifying (tid𝑗 , 𝑖

′
𝑗 , *),

𝑖𝑗 ≤ 𝑖′𝑗). Note that 𝑀(𝒫) generates the events in program order, which en-
sures (tid𝑗 , 𝑖𝑗 , *)→*𝑝𝑜 (tid𝑗 , 𝑖

′
𝑗 , *). Technically, 𝑀 ′(𝒫, 𝜃) introduces the following

changes:

52 CHAPTER 4. ROBUSTNESS AGAINST POWER

∙ The alphabet is E′ := E×2{enter,leave} with index components left out from
the events.

∙ The automaton generates only load (although, for loads from memory
only) and prop events, as only they are relevant for cycle detection.

∙ The prop events include k component of the corresponding commit event.

To check (tid𝑗 , 𝑖
′
𝑗 , *) →ℎ𝑜𝑝 (tid𝑗+1, 𝑖𝑗+1, *), we use an intersection with a

regular language 𝐻 tid𝑗 ,tid𝑗+1 . The language 𝐻 tid1,tid2 includes a computation 𝜏
iff one or more of the following conditions hold:

H-ST (e1,𝑚1), (e2,𝑚2) ∈ 𝜏 , leave ∈ 𝑚1, enter ∈ 𝑚2, e1 =
(prop, tid1, tid1, k1, a), e2 = (prop, tid2, tid2, k2, a), and k1 < k2.

H-SRC 𝜏 = 𝜏1 · (e1,𝑚1) · 𝜏2 · (e2,𝑚2) · 𝜏3, leave ∈ 𝑚1, enter ∈ 𝑚2,
e1 = (prop, tid2, tid1, a), e2 = (load, tid2, a), 𝜏2 does not contain events
(prop, tid2, *, a).

H-CF1 𝜏 = 𝜏1 ·(e3,𝑚3) ·𝜏2 ·(e2,𝑚2) ·𝜏3, leave ∈ 𝑚2, e3 = (prop, tid1, tid3, k3, a),
e2 = (load, tid1, a), 𝜏2 does not contain events (prop, tid1, *, a), (e3,𝑚3) ∈
𝜏1 · 𝜏2 · 𝜏3, 𝑚3 ∈ enter, e3 = (prop, tid2, tid2, k2), k3 < k2.

H-CF2 (e1,𝑚1), (e2,𝑚2) ∈ 𝜏 , leave ∈ 𝑚1, enter ∈ 𝑚2, e1 = (load, tid1, a),
e2 = (prop, tid2, tid2, k2, a) and there is no (e3,𝑚3) ∈ 𝜏 with e3 =
(prop, tid1, tid3, k3, a) in 𝜏 before (e1,𝑚1).

Since finite automata are closed under intersection, we can define the finite
automaton for cycle profile 𝜃 = tid1 . . . tid𝑘 as

𝐻𝜃 := 𝐻 tid1,tid2 ∩ . . . ∩𝐻 tid𝑘−1,tid𝑘 ∩𝐻 tid𝑘,tid1 .

Lemma 4.22. Program 𝒫 has a beautiful cycle with profile 𝜃 iff

𝑀 ′(𝒫, 𝜃) ∩𝐻𝜃 ̸= ∅.

Note that 𝑀 ′(𝒫, 𝜃) is infinite-state. To ensure 𝑀 ′(𝒫, 𝜃) has finitely many
states, we note that the instruction indices are irrelevant for the detection of
happens-before cycles (instr-count can be dropped), and that the number of
different coherence keys that must be stored in the state at any moment is
polynomial in the size of 𝒫. Indeed, the last-key, last-key𝑔, and early-mem-key
components of the state each store at most |ADDR| · |𝒫| · 𝑛 different coherence
keys. Each modification of the last-key component of the state can be extended
by a normalization step that would turn coherence keys to consecutive natural
numbers starting from zero. The normalization step must preserve the less-than
relation on the keys. In order for the detection of happens-before cycles to work
correctly, the automaton has to remember the coherence keys of marked store
events: they must be preserved during normalization. Altogether, this results
into 𝑂(|ADDR| · |𝒫|2 · 𝑛) different keys, which is polynomial in the size of 𝒫.

Theorem 4.23. Robustness against Power for programs over finite domains is
PSpace-complete.

4.4. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 53

Proof. By Theorem 4.9, Lemma 3.7, and Lemma 4.22, a program is non-robust
iff the equation from Lemma 4.22 holds for some 𝜃. In order to check robustness,
we enumerate all profiles 𝜃 and check the equation from Lemma 4.22. The
enumeration can be done in PSpace. By construction and Lemma 3.3, the size
of the intersection automaton is exponential in the size of the program. By
Lemma 3.4, language emptiness for it can be checked in PSpace in the size of
the program, which gives us the upper bound.

The PSpace lower bound follows from PSpace-hardness of SC state reach-
ability. One can reduce reachability to robustness by inserting an artificial
happens-before cycle in the target state.

4.4.3 Handling Memory Barriers

We now come back to the Power barrier instructions and show how to support
them in the reduction to language emptiness.

Clearly, barrier instructions do not produce inter-thread happens-before
dependencies. Therefore, the 𝐻 tid1,tid2 automaton checking arcs between the
threads remains the same. We describe how to add support for barriers in the
multiheaded automaton generating normal-form computations.

First, we extend the automaton state with the following information (note
that its size is polynomial in the size of the program):

∙ store-comm-head(tid) gives the rightmost part of the computation in which
a store of thread tid was committed.

∙ load-comm-head(tid) gives the rightmost part of the computation in which
a load of thread tid was committed.

∙ sync-comm-head(tid) gives the rightmost part of the computation in which
a sync of thread tid was committed.

∙ lwsync-comm-head(tid) gives the rightmost part of the computation in
which an lwsync of thread tid was committed.

∙ isync-comm-head(tid) gives the rightmost part of the computation in which
an isync of thread tid was committed.

∙ sync-acked-head(tid) gives the rightmost part of the computation in which
a sync of thread tid was acknowledged.

∙ barrier-prop-head(tid, h, tid′) gives the rightmost part of the computation
in which all the sync and lwsync barriers that were propagated to thread
tid in the part h or earlier are propagated to thread tid′.

∙ barrier-prop-head𝑔 is an immutable copy of the previous component of the
state.

∙ load-before-lwsync-head(tid) gives the rightmost part of the computation
in which a load of thread tid followed by lwsync was committed.

Second, we update the MH-LOAD rule to require h2 ≥ isync-comm-head(tid),
and h2 ≥ sync-acked-head(tid), to make sure that a load happens only after all
previous isyncs and lwsyncs are committed and syncs are acknowledged. We

54 CHAPTER 4. ROBUSTNESS AGAINST POWER

require h2 ≥ load-before-lwsync-head(tid) to make sure that the load happens af-
ter all preceding loads followed by an lwsync are committed. Also, committing a
load requires all previous sync, lwsync, isync instructions to be committed and
syncs to be acknowledged: h3 ≥ sync-comm-head(tid), h3 ≥ lwsync-comm-head,
h3 ≥ isync-comm-head(tid), h3 ≥ sync-acked-head(tid). Finally, we up-
date the rightmost part where a load was committed: load-comm-head′ :=
load-comm-head[tid := max{load-comm-head(tid), h3}].

Third, we update the MH-STORE rule. Committing a store requires
all previous sync, lwsync, isync instructions to be committed and syncs
to be acknowledged: h3 ≥ sync-comm-head(tid), h3 ≥ lwsync-comm-head,
h3 ≥ isync-comm-head(tid), h3 ≥ sync-acked-head(tid). Also, a store can be
propagated to a thread tid′ in part h only if the group-A syncs and lwsyncs
are propagated to that thread: h ≥ barrier-prop-head(tid, h3, tid

′). Finally, we
update the rightmost part where a store was committed: store-comm-head′ :=
store-comm-head[tid := max{store-comm-head(tid), h3}].

Fourth, we add a rule for isync. The rule is defined as expected, with
the only special requirement that isync must be committed only after the
addresses of all program-order-earlier loads and stores are computed: h3 ≥
addr-comp-head(tid). The rule updates the information about the rightmost part
where an isync was committed: isync-comm-head′ := isync-comm-head[tid :=
max{isync-comm-head(tid), h3}].

Fifth, we add rules for sync and lwsync. Committing a sync or lwsync

requires all previous loads, stores, sync, lwsync, and isync instructions to be
committed: we require h3 ≥ load-comm-head(tid), h3 ≥ store-comm-head(tid),
h3 ≥ sync-comm-head(tid), h3 ≥ lwsync-comm-head(tid). We update the
rightmost part where a sync (lwsync) was committed: sync-comm-head′ :=
sync-comm-head[tid := max{sync-comm-head(tid), h3}] (lwsync-comm-head′ :=
lwsync-comm-head[tid := max{lwsync-comm-head(tid), h3}]). The rules allow
to propagate a barrier to a thread tid′ in part h if last-key(tid′, a, h) ≥
last-key(tid, a, h3) for all a ∈ ADDR. Once the parts of the computation where
the barrier is propagated to each thread is chosen, we update barrier-prop-head
accordingly. Technically, the memory model does not require propagation of the
barriers to all the threads. We can use a special value ∞ in barrier-prop-head to
encode the fact that a barrier is never propagated to a thread. If the instruc-
tion is a sync, we update sync-acked-head: assume the rightmost propagation
is done in part h4 (h4 :=∞ if the sync was not propagated to all the threads),
then sync-acked-head′ := sync-acked-head[tid := max{sync-acked-head(tid),
h4}]. If the instruction is lwsync, we update the part in which a
load fetched before lwsync was committed: load-before-lwsync-head′ :=
load-before-lwsync-head[tid := load-comm-head(tid)].

Sixth, we update the MH-GUESS rule. Namely, store-comm-head′ :=
𝜆tid.1, load-comm-head′ := 𝜆tid.1, sync-comm-head′ := 𝜆tid.1,
lwsync-comm-head′ := 𝜆tid.1, isync-comm-head′ := 𝜆tid.1, sync-acked-head′ :=
𝜆tid.1, barrier-prop-head(tid, 1, tid′) := 1, barrier-prop-head(tid, h, tid′) ≤
barrier-prop-head(tid, h + 1, tid′) for all tid ∈ TID, h ∈ HEAD, tid′ ∈ TID,
barrier-prop-head𝑔 := barrier-prop-head, load-before-lwsync-head′ := 𝜆tid.1,

load-comm-head′ := 𝜆tid.1.

Finally, we add a new condition on the final states:
barrier-prop-head(tid, h, tid′) = barrier-prop-head𝑔(tid, h + 1, tid′).

4.5. REACHABILITY UNDER POWER 55

4.5 Reachability under Power

In this chapter we study the state reachability problem for Power, as defined
in Section 2.5. Under the current control state of a thread we understand the
destination state of the last instruction fetched in the thread.

Theorem 4.24. State reachability under Power for single-threaded finite-state
programs is PSpace-complete.

Proof. Follows from the fact that state reachability under SC is PSpace-
complete (Lemma 2.7), and the fact that Power creates an illusion of sequential
consistency for single-threaded programs. First, by definition of eval, an instruc-
tion always reads the value of a register that is assigned by the latest preceding
instruction writing to this register. Second, by POW-FIN-LD-ST, a load in-
struction always reads last value written by the latest preceding store to the
same address.

Theorem 4.25 ([16]). State reachability under Power for finite-state programs
consisting of two or more threads is undecidable.

Proof. We show how to implement a perfect channel by exploiting the fact that
the number of instructions that can be concurrently executed in a thread is
unbounded. Since a finite automaton equipped with a perfect FIFO channel
is as powerful as a Turing machine, we immediately get undecidability. The
implementation 𝒫 of a perfect channel machine consists of two threads: 𝒯main

is the thread implementing a FIFO channel machine using send and receive
operations, 𝒯aux is the thread effectively implementing the perfect infinite FIFO
channel.

We implement the channel using two variables 𝑥 and 𝑦 initially having special
value ⊥ which is never transmitted over the channel. Let the value to be sent
through the channel be stored in register 𝑟data. We implement the send operation
in 𝒯main as follows:

𝑞1
𝑟←mem[𝑥]−−−−−−→ 𝑞2

assume(𝑟=⊥)−−−−−−−−→ 𝑞3
mem[𝑥]←𝑟data−−−−−−−−→ 𝑞4.

This implementation blocks if sending fails.
Assume the value to be received from the channel must be written to register

𝑟data. Then we implement the receive operation in 𝒯main as follows:

𝑞1
𝑟data←mem[𝑦]−−−−−−−−→ 𝑞2

assume(𝑟data ̸=⊥)−−−−−−−−−−→ 𝑞3
mem[𝑦]←⊥−−−−−−−→ 𝑞4.

Similarly, the implementation blocks when the operation fails.
Finally, we define the auxiliary thread 𝒯aux := (𝑄aux,CMD, ℐaux, 𝑞aux0, 𝑄aux𝑓)

copying 𝑥 into 𝑦. The set of all control states is 𝑄aux := {𝑞𝑘 | 𝑘 ∈ [0..6]}.
The initial state is 𝑞aux0 := 𝑞0. The set of final states is 𝑄aux𝑓 := 𝑄aux. The
transition relation ℐaux consists of the following instructions:

𝑞0
𝑟mask←⊤−−−−−→ 𝑞1

𝑟←mem[𝑥]−−−−−−→ 𝑞2
𝑟mask←𝑟mask∧(𝑟 ̸=⊥)−−−−−−−−−−−−→ 𝑞3

mem[𝑥]←⊥−−−−−−−→ 𝑞4,

𝑞4
𝑟′←mem[𝑦]−−−−−−−→ 𝑞5

𝑟mask←𝑟mask∧(𝑟′=⊥)−−−−−−−−−−−−→ 𝑞6
mem[𝑦]←𝑟∧𝑟mask−−−−−−−−−−→ 𝑞1.

Here, one assumes 𝑎 ∧ ⊤ ≡ 𝑎, 𝑎 ∧ ⊥ ≡ ⊥, and comparisons returning ⊥ (false)
and ⊤ (true).

56 CHAPTER 4. ROBUSTNESS AGAINST POWER

The idea of the construction is as follows. The send operation checks if 𝒯aux
has already processed the previously sent value (variable 𝑥 contains ⊥). Only in
this case the new value is written into 𝑥. The receive operation does the reverse:
it reads the value from 𝑦, checks that this value is not ⊥ (i.e., was written by
𝒯aux), and writes ⊥ to 𝑦 to signal 𝒯aux that a new value can be put there.

The thread 𝒯aux executes an infinite loop reading values from 𝑥 and writing
them to 𝑦. The thread uses register 𝑟mask for remembering whether reading or
writing a value did previously fail. After reading a value from 𝑥 it checks that
this value is not ⊥, i.e., some value was actually sent. If this is not the case,
𝑟mask becomes ⊥. Next, the thread writes ⊥ to 𝑥, thus signalling that a new
value can be sent. After that, the thread checks that 𝑦 contains ⊥ (i.e., the
previously written value was received). If not, again 𝑟mask is set to ⊥. Finally,
the thread writes either the value that was read (if 𝑟mask = ⊤) or ⊥ (if 𝑟mask = ⊥)
to 𝑦. Accordingly, all subsequent receive operations will fail if 𝒯aux at least once
detected that 𝑥 does not contain a value to be sent or 𝑦 contains the previously
copied value.

Note that the sequence of values loaded from 𝑥 will be the same as the se-
quence of values written to 𝑦, as Power forbids reordering of load operations
from the same address and store operations to the same address. This guar-
antees that the channel is a FIFO channel. Moreover, the loads from 𝑦 and
stores to 𝑦 can be delayed arbitrary long by the thread, which makes the delay
between reading a new value from 𝑥 and writing it back to 𝑦 arbitrary large.
This is the source of infiniteness of the channel. Finally, a value cannot be sent,
until it was read by 𝒯aux; also, a value cannot be written back by 𝒯aux until the
previous value was received by another thread. This makes the channel lossless,
i.e., perfect.

Depending on the scheduling, this channel implementation may spuriously
fail (which is detected, after which the subsequent receive operations on the
channel block). However, there is always a schedule in which no operation
fails (except when one attempts to receive from an empty channel): each send
operation in 𝒯main is immediately followed by 𝑞1 . . . 𝑞4 instructions of 𝒯aux being
executed and each receive operation in 𝒯main is always preceded by 𝑞4 . . . 𝑞1
instructions of 𝒯aux being executed and the store to 𝑦 from 𝒯aux propagated to
all the threads.

Chapter 5

Robustness against SPARC
Memory Models

The SPARC Architecture Manual [84] defines three memory models: Relaxed
Memory Order (RMO), Partial Store Order (PSO), and Total Store Order
(TSO). The first, RMO, is the most relaxed of the three. PSO is defined
as a restriction of RMO, and TSO is defined as a restriction of PSO.

The current memory model used by a processor is determined by the values
of two bits PSTATE.MM in the processor’s state register PSTATE. Clearly, a valid
CPU implementation may implement any memory model, as long as it is no more
relaxed than the requested one, and recent SPARC CPUs seem to implement
solely TSO [67].

In this chapter we give an overview of existing formalizations of the mod-
els from the SPARC hierarchy and discuss the application of our robustness
framework to these models.

5.1 Relaxed Memory Order

The SPARC Architecture Manual [84] provides an axiomatic definition of RMO.
Alglave [5] formalizes this definition in terms of acyclicity of a happens-before
relation.

According to the definitions, RMO is similar, however, incomparable to
Power. First, RMO is store-atomic: a store, once executed on memory, becomes
immediately visible to all the threads. In this part, it is stronger than Power.
Second, RMO allows reordering of loads from the same address: a program-
order-earlier load instruction can read a value that was written after the value
read by a program-order-later load instruction accessing the same address. In
this part, it is weaker than Power.

Ordering of independent memory operations on SPARC can be enforced us-
ing the membar instruction. The instruction takes as an argument a bit mask,
saying which types of operations must be ordered. The available bits include
#LoadLoad, #StoreLoad, #LoadStore, #StoreStore. For example, membar

#LoadStore | #StoreStore makes sure that all the loads and stores issued
before membar are executed on memory before the stores issued after membar.

57

58 CHAPTER 5. ROBUSTNESS AGAINST SPARC MEMORY MODELS

Following the above discussion, one can construct a formal operational se-
mantics for RMO by modifying the Power semantics from Section 4.1. In POW-
STORE rule one must require that a commit of a store is immediately followed
by POW-PROP-STORE transitions propagating the committed store to all the
threads. This ensures store atomicity. Excluding POW-FIN-LD from the set
of requirements on final states allows out-of-order loads from the same address.
Next, one relaxes requirements in POW-COMMIT to allow loads to be commit-
ted even before program-order-earlier loads to the same (or unknown) address
are committed. Finally, POW-COMMIT rule must be extended to check that
the dependencies introduced by membar instructions are honored.

Being quite close to Power, RMO inherits its complexity and (un)decidability
results.

Theorem 5.1. Robustness against RMO for programs with finite data domain
is PSpace-complete.

Proof. The proofs in Section 4.3 do not rely on POW-FIN-LD or the fact that
stores may be propagated not immediately after commit. Therefore, Theo-
rem 4.9 holds for RMO as well. Actually, due to store atomicity, the normal
form for RMO is even more strict: the number of parts 𝜏𝑖 with 𝜏𝑖 ̸= 𝜀 does not
exceed three.

Next, we apply the reduction of robustness to the emptiness problem for
multiheaded automata, similar to Section 4.4. The multiheaded automaton con-
struction requires appropriate relaxations in MH-LOAD rule: the check that the
coherence key of the store loaded by the current load is not less than the coher-
ence key of the store read by the program-order-previous load from the same
address is not needed. Moreover, loads from the same address can be com-
mitted out of program order on RMO, so, instead of tracking addr-comm-head,
the automaton must remember the part in which the last store to the given
address is committed in a given thread and the part in which the last load in
the given thread is committed, and in MH-LOAD check the ordering only with
respect to stores, whereas in MH-STORE check the ordering with respect to
both loads and stores. MH-STORE rule is enhanced to generate all prop events
immediately after commit event.

The dependencies introduced by membar instruction can be handled using
finite amount of information as well. Indeed, one only needs to track, in which
part of the computation the last load (store) in each thread was done (commit-
ted), and in which part of the computation the next load (store) can be done
(committed). Once, e.g., a membar #LoadStore | #StoreStore is handled, the
multiheaded automaton must remember that the next store instruction in the
current thread can be committed no earlier than in the part where the last load
of the same thread was done, and no earlier than the part in which the last
store of the same thread is committed.

Theorem 5.2. State reachability under RMO for single-threaded finite-state
programs is PSpace-complete.

Proof. Similar to the proof of Theorem 4.24.

Theorem 5.3. State reachability under RMO for finite-state programs consist-
ing of two or more threads is undecidable.

5.2. Partial Store Order 59

Proof. By a reduction of state reachability for perfect channel machine to state
reachability under RMO, similar to the proof of Theorem 4.25. The ordering
of load operations from the same address, which is guaranteed under Power,
but not under RMO, has to be enforced, e.g., by introducing artificial address
dependencies through registers between loads.

5.2 Partial Store Order

The SPARC Architecture Manual [84] defines PSO as RMO, where a load is im-
plicitly followed by a membar #LoadLoad | #LoadStore instruction. Axiomatic
definitions [5, 64, 59] of PSO allow reordering of stores to different addresses
and delaying of stores past loads. Operational definitions [14, 26, 15] emulate
these reorderings by means of per-thread and per-address store buffers.

The SPARC definition of PSO allows to reduce robustness against PSO to
robustness against RMO for a program instrumented with membar instructions.
This immediately leads to the following complexity result.

Theorem 5.4. Robustness against PSO for programs with finite data domain
is PSpace-complete.

5.3 Total Store Order

SPARC [84] defines TSO as PSO, where each store is implicitly followed by a
membar #StoreStore instruction. Therefore, one can reduce robustness against
TSO to robustness against PSO, and get the following complexity result.

Theorem 5.5. Robustness against TSO for programs with finite data domain
is PSpace-complete.

In the next chapter we consider TSO in more detail and show that the
normal form for TSO can be restricted even further: it is sufficient to look only
for computations where a single thread does reorderings. This fact will allow
us to obtain practical algorithms for checking and enforcing robustness against
this memory model.

Chapter 6

Robustness against Total
Store Order

In this chapter we study the problem of checking and enforcing robustness
against TSO, a memory model used in Intel x86 and Sun SPARC architec-
tures [72, 84]. Intuitively, the model reflects the use of store buffers: stores
performed by a thread are enqueued into this thread’s store buffer and executed
on memory later in FIFO order. A formal definition of the model is given in
Section 2.4.2.

Robustness against TSO was first addressed by Burckhardt and Musuvathi
in [25]. They proposed a monitoring algorithm that could detect non-robustness
by monitoring SC computations of a program. Burnim et al. [26] pointed out a
mistake in the axiomatic definition of TSO used in [25] and proposed monitoring
algorithms for TSO and PSO memory models. Alglave and Maranget [10] pre-
sented a tool that statically overapproximates the set of happens-before cycles
in programs written in x86 and Power assembly and inserts memory barriers
forbidding these cycles and ensuring robustness (called stability in their work).
Alglave et al. [7] carry over the static overapproximation approach from [10]
to C programs and use integer linear programming to compute a fence set of
optimal cost eliminating all potential cycles.

Although the above procedures can detect non-robustness or modify a pro-
gram to make it robust, they cannot be used to check robustness. The first
decidability result for robustness against TSO was presented by Bouajjani et
al. [21]. They showed that robustness is PSpace-complete for finite-state pro-
grams with unbounded store buffers. Their algorithm for checking robustness
is based on enumeration of SC computations of bounded length and is not very
useful for practical purposes.

In this chapter we present practical algorithms for checking and enforcing ro-
bustness against TSO. The algorithms are based on a generic, source-to-source
reduction of robustness to SC state reachability of an instrumented program.
The instrumentation is linear in the size of the original program, assumes no
bound on the size of the store buffers, and is applicable to programs with arbi-
trary data domain and unlimited number of threads. To obtain the reduction,
we first characterize robustness in terms of the absence of TSO witnesses —
TSO computations of a special form, where only one thread does reorderings.

60

6.1. LOCALITY AND TSO WITNESSES 61

Then, we show how to modify the original program to capture TSO witnesses
by SC computations.

The reduction immediately leads to new decidability and complexity results:
for finite-state programs robustness against TSO is PSpace-complete for finite
number of threads and decidable in the parameterized setting. Additionally,
we describe an algorithm using the reduction and SC reachability queries as
subprocedures to compute an optimal fence set ensuring robustness.

The results presented in this chapter are also published in [20].

Related work. Triangular-race freedom (TRF) is a correctness criterion pro-
posed by Owens [71] which is stronger than robustness and weaker than data-
race freedom. Therefore, TRF may require more fences than actually necessary
for robustness.

State reachability under TSO was shown to be decidable, although non-
primitive recursive-complete, by Atig et al. [14]. Several tools are capable of
solving state reachability under relaxed memory models.

Memorax [2] implements a sound and complete decision procedure for TSO
reachability combining automata-based abstraction of the set of feasible pro-
gram computations with backward reachability analysis. The tool also imple-
ments a counterexample-guided fence insertion algorithm capable of computing
minimal fence sets forcing the program to satisfy a given safety specification. A
later version of the tool [1] introduced predicate abstraction to allow the analysis
of infinite-state programs.

Remmex [59] performs forward reachability analysis using finite automata to
represent the exact contents of store buffers. The algorithm is sound, however,
does not guarantee termination. The tool supports TSO and PSO memory
models.

CBMC [9] uses SMT-based bounded model checking and encodes memory
model constraints into SMT formulae. Because of the underapproximate nature
of bounded analysis, CBMC is sound, but not complete. The tool supports a
wide range of memory models, including TSO and a fragment of Power.

CheckFence [24], similar to CBMC, uses bounded model checking and SAT
queries to construct the set of all program computations under a relaxed memory
model.

Other approaches to solving reachability under TSO include bounding the
number of context switches [17], overapproximating buffer contents [54], bound-
ing the size of the store buffers [8]. Automatic inference of memory fences for
enforcing safety, robustness, and linearizability, using explicit state space ex-
ploration under the unmodified relaxed semantics, followed by a SAT query, is
covered in [53, 62]. Finally, there is work on compiler optimizations that either
add memory fences to ensure sequential consistency [81] or remove redundant
memory fences to improve performance [83].

6.1 Locality and TSO Witnesses

We instantiate the robustness problem (Section 2.8) for TSO.

Problem 6.1 (Robustness against TSO). Given a program 𝒫, to check whether
𝑇sc(𝒫) = 𝑇tso(𝒫).

62 CHAPTER 6. ROBUSTNESS AGAINST TOTAL STORE ORDER

According to Lemma 2.16, checking robustness of a program amounts to
checking whether the program has computations with cyclic happens-before
relation. In this section we show that if a program has TSO computations with
cyclic happens-before relation, among them there is a computation where only
a single thread does reorderings. The result was originally proven by Bouajjani
et al. [21] for programs with blocking load semantics: a load expects to read a
particular value and blocks if the value in the memory is different. We show
that this locality result holds for programs with the traditional semantics, where
loads just copy the value from the memory to a register, without performing
any additional checks.

Consider a computation 𝜏 = 𝛼 · 𝑎 · 𝛽 · 𝑏 · 𝛾 ∈ Ctso(𝒫) with two events 𝑎
and 𝑏 of the same thread tid(𝑎) = tid(𝑏) = tid. We define the distance 𝑑𝜏 (𝑎, 𝑏)
between 𝑎 and 𝑏 in 𝜏 as the number of events in 𝛽 that also belong to this
thread: 𝑑𝜏 (𝑎, 𝑏) := |𝛽 ↓ tid|, where 𝛼↓ tid is the longest subsequence of events e
with tid(e) = tid of 𝛼. The number of delays #(𝜏) in computation 𝜏 is the sum
of distances between matching store and flush events:

#(𝜏) :=
∑︁

matching e1,e2∈𝜏
𝑑𝜏 (e1, e2).

We call a computation 𝜏 with cyclic happens-before relation a minimal vi-
olation if it is has a minimal number of delays among all computations with
cyclic happens-before relation. Clearly, a program 𝒫 has computations with
cyclic happens-before relation iff it has a minimal violation.

The following lemma says that if in a minimal violation a store was delayed,
then it was delayed past a load event of the same thread. Moreover, the load
did not read the value from this store early.

Lemma 6.2. Consider a minimal violation 𝜏 = 𝛼 · e1 ·𝛽 · e2 ·𝛾 ∈ Ctso(𝒫), where
e1 and e2 are the matching store and flush events with tid(e1) = tid(e2) = tid.
Then 𝛽 ↓ tid is either empty, or 𝛽 ↓ tid = 𝛽′ · e3 · 𝛽′′ where e3 is a load from
memory (not an early read) event and 𝛽′′ contains only flush events.

Proof. Suppose 𝛽 contains one or more events of thread tid. If all events of
thread tid in 𝛽 are flush events, then also 𝜏 ′ = 𝛼 · 𝛽 · e1 · e2 · 𝛾 ∈ Ctso(𝒫). It has
the same trace as 𝜏 but #(𝜏 ′) < #(𝜏), which contradicts the minimality of 𝜏 .

Otherwise let e3 be the last non-flush event in 𝛽 ↓ tid, i.e., 𝛽 = 𝛽1 · e3 · 𝛽2

and all events in 𝛽2 are flush events or belong to threads different from tid.
Since flush events cannot be delayed past a memory fence of the same thread,
e3 is a store event, a local assignment, condition, or a load. In the former three
cases, as well as if e3 is an early read, delaying e2 past e3 can be avoided in the
computation 𝜏 ′ = 𝛼 · e1 · 𝛽1 · 𝛽2 · e2 · e3 · 𝛾 ∈ Ctso(𝒫). The computation has the
same trace as 𝜏 and #(𝜏 ′) < #(𝜏), which contradicts the minimality of 𝜏 .

To avoid case distinction, in the remainder of the section we assume that
a store event e1 ∈ 𝜏 and a matching flush event e2 ∈ 𝜏 event are related by
happens-before: e1 →ℎ𝑏 e2.

Consider 𝜏 = 𝛼 · 𝑎 · 𝛽 · 𝑏 · 𝛾 ∈ Ctso(𝒫). We say that 𝑎 is happens-before
𝑏 through 𝛽 if there is a (potentially empty) subsequence e1 . . . e𝑛 of 𝛽, such
that for all 𝑖 ∈ [0..𝑛] holds e𝑖 →ℎ𝑏 e𝑖+1 or e𝑖 →+

𝑝𝑜 e𝑖+1, assuming e0 := 𝑎 and
e𝑛+1 := 𝑏.

6.1. LOCALITY AND TSO WITNESSES 63

The following lemma says that if two events in a minimal violation are not
related via→+

ℎ𝑏, they can be reordered without changing the trace and the order
of events within each thread.

Lemma 6.3 (Duality). Consider a minimal violation 𝜏 = 𝛼 · e1 · 𝛽 · e2 · 𝛾 ∈
Ctso(𝒫). Then (1) e1 →+

ℎ𝑏 e2 through 𝛽 or (2) there is 𝜏 ′ = 𝛼 ·𝛽1 · e2 · e1 ·𝛽2 ·𝛾 ∈
Ctso(𝒫), such that 𝑇 (𝜏) = 𝑇 (𝜏 ′) and 𝜏 ↓ tid = 𝜏 ′ ↓ tid for all tid ∈ TID.

Proof. We establish ¬(1) ⇒ (2). Note that this proves the disjunction since
¬(2) ⇒ (1) is the contrapositive. We proceed by induction on |𝛽| and slightly
strengthen the hypothesis: we also show that 𝛽2 is a subsequence of 𝛽.

Base case: |𝛽| = 0. Then 𝜏 = 𝛼 · e1 · e2 · 𝛾 and e1 ̸→ℎ𝑏 e2. If tid(e1) = tid(e2),
then e2 →+

𝑝𝑜 e1. Therefore, e2 is a flush event which has been delayed past
e1. Swapping e1 and e2 will save the delay without changing the trace, in
contradiction to the minimality of 𝜏 .

If tid(𝑎) ̸= tid(𝑏), then either at least one of the two events is not a memory
access, the events access different addresses, or both are loads. In all the cases
swapping them produces 𝜏 ′ as required in the statement of the lemma.

Step case. Assume the statement of the lemma holds for |𝛽| ≤ 𝑛. Consider
𝜏 ′ = 𝛼 · e1 · 𝛽 · e2 · 𝛾 with |𝛽| = 𝑛 + 1. Let e3 be the last event in 𝛽 = 𝛽′ · e3.
Since e1 ̸→+

ℎ𝑏 e2 through 𝛽, then e1 ̸→+
ℎ𝑏 e3 through 𝛽′ or e3 ̸→ℎ𝑏 e2.

Consider the case when e1 ̸→+
ℎ𝑏 e3 through 𝛽′. We apply the induction

hypothesis to 𝜏 with respect to e1 and e3. This gives 𝜏 ′ = 𝛼 · 𝛽′1 · e3 · e1 · 𝛽′2 ·
e2 · 𝛾 ∈ Ctso(𝒫) with the same trace and thread computations as 𝜏 . Note that
e1 ̸→+

ℎ𝑏 e2 through 𝛽′2 in 𝜏 ′, because 𝑇 (𝜏) = 𝑇 (𝜏 ′) and 𝛽′2 is a subsequence of 𝛽.
Consequently, we can apply the induction hypothesis to 𝜏 ′ with respect to e1
and e2. This yields 𝜏 ′′ = 𝛼 ·𝛽′1 · e3 ·𝛽′21 · e2 · e1 ·𝛽′22 ·𝛾 ∈ Ctso(𝒫) having the same
trace and thread computations as 𝜏 ′ and 𝜏 . Note that 𝛽′22 is a subsequence of
𝛽′2, which in turn is a subsequence of 𝛽′ and hence of 𝛽.

The case when e3 ̸→ℎ𝑏 e2 is symmetric. We apply the induction hypothesis
to 𝜏 with respect to e2 and e3, getting 𝜏 ′ = 𝛼 ·e1 ·𝛽′ ·e2 ·e3 ·𝛾 ∈ Ctso(𝒫) with the
same trace and thread computations as 𝜏 . Applying it again to 𝜏 ′ with respect
to e1 and e2 gives 𝜏 ′′ = 𝛼 · 𝛽′1 · e2 · e1 · 𝛽′2 · e3 · 𝛾. The computation has the same
trace and thread computations as 𝜏 ′ and 𝜏 . Since 𝛽′2 is a subsequence of 𝛽′,
𝛽′2 · e3 is a subsequence of 𝛽.

Lemma 6.4 (Locality). In a minimal violation only a single thread delays
stores.

Proof. Consider a minimal violation 𝜏 ∈ Ctso(𝒫). By definition, 𝜏 has cyclic
happens-before relation, therefore, at least one thread delayed stores. Suppose
that at least two threads delayed stores. By Lemma 6.2, each flush was delayed
past a load of the same thread. Let e′2 of thread tid2 be the overall last delayed
flush event in 𝜏 , and let e2 be the last load of tid2 overstepped by e′2. Similarly,
let e′1 be the overall last delayed flush event in a thread tid1 ̸= tid2. Let e1 be
the last load overstepped by e′1.

The following fundamental mutual dispositions of these four events are pos-
sible:

64 CHAPTER 6. ROBUSTNESS AGAINST TOTAL STORE ORDER

1. 𝜏 = 𝛾1 · e1 · 𝛾2 · e′1 · 𝛾3 · e2 · 𝛾4 · e′2 · 𝛾5,

2. 𝜏 = 𝛾1 · e2 · 𝛾2 · e1 · 𝛾3 · e′1 · 𝛾4 · e′2 · 𝛾5,

3. 𝜏 = 𝛾1 · e1 · 𝛾2 · e2 · 𝛾3 · e′1 · 𝛾4 · e′2 · 𝛾5.

In these three computations each pair (e𝑖, e
′
𝑖) provides a happens-before cycle:

e′𝑖 →+
𝑝𝑜 e𝑖 and, by Lemma 6.3 and minimality, e𝑖 →+

ℎ𝑏 e
′
𝑖 through the appropriate

subword of 𝜏 .
In the first disposition 𝜏 is not minimal, since it can be shortened to the

violating computation 𝜏 ′ := 𝛾1 · e1 · 𝛾2 · e′1 · 𝛽 with #(𝜏 ′) < #(𝜏), where the 𝛽
part contains only flush events that complete the buffered stores.

In the second disposition 𝜏 is not minimal either. Starting from e2 and until
e′2, thread tid2 does not have any events, except delayed stores (Lemma 6.2).
Therefore, e2 and all program-order-later events of tid2 can be safely removed
from 𝜏 without affecting the happens-before cycle produced by tid1. The result-
ing computation has a smaller number of delays (due to the removed e2), but
its trace still includes the cycle by tid1. A contradiction to minimality of 𝜏 .

Lastly, in the third case 𝜏 is also not minimal. First, we delete 𝛾5, as it does
not contain delayed flush events, by choice of e′2. Then, we erase all events from
𝛾4 that do not belong to tid2: 𝛾′4 := 𝛾4 ↓ tid2. By construction, the resulting
computation 𝜏 ′ is a feasible TSO computation:

𝜏 ′ := 𝛾1 · e1 · 𝛾2 · e2 · 𝛾3 · e′1 · 𝛾′4 · e′2 ∈ Ctso(𝒫).

Computation 𝜏 ′ still contains the happens-before cycle e′1 →+
𝑝𝑜 e1 →+

ℎ𝑏 e
′
1 inher-

ited from 𝜏 . Since deleting events cannot increase the number of delays and 𝜏
is a minimal violation, #(𝜏 ′) = #(𝜏). Therefore, 𝜏 ′ is a minimal violation too.

By Lemma 6.3, e2 →+
ℎ𝑏 e′2 through 𝛾3 · e′1 · 𝛾′4. By the choice of e1 and e′1

and in accordance with Lemma 6.2, (𝛾2 · e2 · 𝛾3) ↓ tid1 only contains delayed
stores that were issued before e1. By definition, 𝛾′4 does not contain events of
tid1 at all. Therefore, e1 is the program-order-last (load) event of tid1 in 𝜏 ′. It
can be safely removed from 𝜏 ′ without affecting the cycle of tid2. The resulting
computation is

𝜏 ′′ := 𝛾1 · 𝛾2 · e2 · 𝛾3 · e′1 · 𝛾′4 · e′2 ∈ Ctso(𝒫).

Note that #(𝜏 ′′) < #(𝜏 ′) = #(𝜏), but computation 𝜏 ′′ still contains the cycle
e′2 →+

𝑝𝑜 e2 →+
ℎ𝑏 e
′
2. A contradiction to minimality of 𝜏 .

Clearly, checking robustness amounts to checking whether a program has no
minimal violations. Actually, we can simplify the task and restrict the form of
computations for which we must look even further.

We call a computation 𝜏 ∈ Ctso(𝒫) a TSO witness if 𝜏 = 𝜏1 ·e1 ·𝜏2 ·e2 ·𝜏3 ·e3 ·𝜏4,
where:

WIT-A Only a single thread tidA delays stores. We call this thread an attacker.

WIT-B Event e3 is the flush event of the first delayed store in tidA, e1 is the
matching store event, e2 is the last, load event of tidA before e3. This
means, all events in 𝜏3 belong to threads other than the attacker. We call
these threads helpers.

6.2. FROM ROBUSTNESS TO SC REACHABILITY 65

WIT-C The load e2 is not an early read.

WIT-D e2 →+
ℎ𝑏 e for each e ∈ e2 · 𝜏3 · e3.

WIT-E 𝜏4 consists solely of flush events of tidA.

We call the triplet A := (tidA, instr(e1), instr(e2)) the attack of witness 𝜏 .
The following lemma characterizes robustness in terms of absence of TSO

witnesses.

Theorem 6.5. A program 𝒫 is robust iff it has no TSO witnesses.

Proof. Assume that the program is not robust. Then, it has a minimal violation
𝜏 . For 𝜏 , WIT-A is implied by Lemma 6.4. Let tidA be the single thread that
delayed stores. Let e3 ∈ 𝜏 be the leftmost flush event of a delayed store, e1 ∈ 𝜏
be the matching store event, and e2 is the rightmost event of thread tidA before
e3. By Lemma 6.2, e2 is a load event and is not an early read. Therefore, WIT-B
and WIT-C hold. WIT-D holds by Lemma 6.3. Assume WIT-E does not hold.
Without loss of generality assume that in 𝜏 flush events of helpers immediately
follow matching store events. We can filter 𝜏4 and keep only the flush events
with matching store events in e1 · 𝜏2. Let the resulting subsequence of 𝜏4 be 𝜏 ′4.
Then, the computation 𝜏 ′ := 𝜏1 · e1 · 𝜏2 · e2 · 𝜏3 · e3 · 𝜏 ′4 ∈ Ctso(𝒫) is a minimal
violation, for which WIT-E holds. (Effectively, 𝜏 ′ reproduces the behavior of 𝜏
up to e3, after which the attacker immediately flushes all the buffered stores,
and the other threads simply stop.)

Assume that the program is robust. Then, it has no TSO witnesses, as each
TSO witness has a happens-before cycle e1 →+

𝑝𝑜 e2 →+
ℎ𝑏 e3, where e1 and e3 are

matching store and flush events.

Example 6.6. Computation 𝜏 := 𝑎𝑏𝑐 · flush(𝑐) · 𝑑 · flush(𝑎) from Example 2.4 is
a TSO witness of the SB program (Figure 1.1). Here, 𝜏1 := 𝜀, e1 := 𝑎, 𝜏2 := 𝜀,
e2 := 𝑏, 𝜏3 := 𝑐 · flush(𝑐) · 𝑑, 𝜏4 := flush(𝑎). According to Theorem 6.5, the SB
program must be not robust against TSO, which is indeed the case. Note that
the program has a similar TSO witness with the second store delaying the store.

6.2 From Robustness to SC Reachability

Fix a program 𝒫 and an attack A := (tidA, instrstore, instrload). In this section we
show how to check whether the program 𝒫 has a TSO witness with the attack
A.

A TSO witness with attack A makes very limited use of the store buffers.
This allows us to model it with SC computations of an instrumented program
𝒫A. By instrumentation we mean an extension of each thread of the program
with additional instructions. The attacker thread is instrumented with instruc-
tions that soundly emulate delaying of stores. The helper threads are instru-
mented to check the existence of a happens-before path e2 →+

ℎ𝑏 e3.
The idea of the attacker instrumentation comes from the observation that

the stores delayed by the attacker are never read by any helper thread. The
stores can only be observed by the attacker’s loads which can read early from
them. Fortunately, early reads can access only the last buffered value for each
address. Rather than storing the whole buffer contents, we will store the last

66 CHAPTER 6. ROBUSTNESS AGAINST TOTAL STORE ORDER

written values, one per each address. For this, with each address a we associate
a shadow address (a, d) containing the last buffered value. The delayed stores
will update the value at the shadow address, loads will take the value from
the shadow address, if it was written there, and perform the usual load from
memory otherwise. The helpers will not know anything about these shadow
addresses and, therefore, will not observe the delayed stores.

The helper instrumentation is responsible for checking e2 →+
ℎ𝑏 e3. Assume

that a helper produces a new event e. When does e2 →*ℎ𝑏 e hold? First, it
holds if some previous event e′ of this helper thread has contributed to the
happens-before path: e2 →+

ℎ𝑏 e′ →+
𝑝𝑜 e. We can remember whether a thread

has contributed to the happens-before path in the control state of the thread.
Second, e2 →+

ℎ𝑏 e if there is some previous event e′ (possibly, in a different
thread), e2 →*ℎ𝑏 e′, with addr(e′) = addr(e) and at least one of the two events is
a flush event. For each address we keep track whether there was such an access
to this address that is happens-before dependent on e2. We also remember
whether among these accesses there was a store, or all of them were loads. If
there was a store access, the happens-before path can be extended by a store
or a load event. If there was a load access, the path can be only extended by a
store event. We again use shadow addresses (a, hb) to store this information.

6.2.1 Instrumentation of an Attacker

Consider the attacker thread 𝒯tidA . In the 𝜏1 part of a TSO witness the at-
tacker executes under SC semantics. Just before executing the store instruction

instrstore = 𝑞1
mem[𝑒a]←𝑒v−−−−−−−→ 𝑞2 it can decide to start delaying the stores and thereby

enter the 𝜏2 part of the computation. Therefore, we add the instructions that
remember the address of the first delayed store, store the written value at the
corresponding shadow address, and enter the copy of the attacker’s code that
simulates the 𝜏2 part of the TSO witness:

𝑞1
𝑟a←𝑒a−−−−→ 𝑞𝑥

mem[(𝑟a,d)]←(𝑒v,d)−−−−−−−−−−−−→ ̂︀𝑞2. (6.1)

Here and further, the control states and the registers not mentioned in the
original instruction are assumed not to be used in the original thread. Moreover,
the states 𝑞𝑥 denote fresh states in each rule application.

In the 𝜏2 part, a store instruction 𝑞1
mem[𝑒a]←𝑒v−−−−−−−→ 𝑞2 from ℐtidA translates to a

store instruction performing the write to the shadow address:

̂︀𝑞1
mem[(𝑒a,d)]←(𝑒v,d)−−−−−−−−−−−−→ ̂︀𝑞2. (6.2)

A load instruction 𝑞1
𝑟←mem[𝑒a]−−−−−−−→ 𝑞2 reads the value from memory only if there

was no delayed store to the loaded address; otherwise, it reads from the shadow
address:

̂︀𝑞1
assume(mem[(𝑒a,d)]=0)−−−−−−−−−−−−−−→ ̂︁𝑞𝑥1 𝑟←mem[𝑒a]−−−−−−−→ ̂︀𝑞2, (6.3)

̂︀𝑞1
assume(mem[(𝑒a,d)])−−−−−−−−−−−−→ ̂︁𝑞𝑥2

(𝑟,d)←mem[(𝑒a,d)]−−−−−−−−−−−→ ̂︀𝑞2.
A local assignment or a condition cmd is not changed in the attacker’s copy:

𝑞1
cmd−−→ 𝑞2 simply becomes

̂︀𝑞1 cmd−−→ ̂︀𝑞2. (6.4)

6.2. FROM ROBUSTNESS TO SC REACHABILITY 67

𝑞0

𝑞1

𝑞2

mem[𝑥]← 1

𝑟1 ← mem[𝑦]

̂︀𝑞0𝑞𝑥1

̂︀𝑞1

mem[𝑟a]← 1
mem[(𝑥, d)]←

(1, d)

𝑞𝑥3𝑞𝑥2

̂︀𝑞2

assume(mem[𝑦, d] = 0)

𝑟1 ← mem[𝑦]

assume(mem[𝑦, d])

(𝑟1, d)← mem[(𝑦, d)]

𝑞𝑥4

𝑞𝑤

assume(mem[(𝑦, d) = 0])

mem[(𝑦, hb)]← load

𝑞𝑓

assume(mem[(𝑥, hb)])

mem[(𝑥, d)]← (1, d)

Figure 6.1: Thread 1 of the SB program (Figure 1.1) instrumented as an attacker

for the attack A := (1, 𝑞1
mem[𝑥]←1−−−−−−→ 𝑞2, 𝑞2

𝑟1←mem[𝑦]−−−−−−−→ 𝑞3).

Memory fences are forbidden in the attacker’s copy, as they would prevent de-
laying the stores past it, therefore, we do not add any instructions for mfence

instructions.
Finally, the attacker can quit the 𝜏2 part by executing the load instruction

from the attack. Let instrload = 𝑞1
𝑟←mem[𝑒]−−−−−−→ 𝑞2. The attacker checks that the

load does not read early and signals the helpers that they can start building the
happens-before path:

̂︀𝑞1
assume(mem[(𝑒,d)]=0)−−−−−−−−−−−−−→ 𝑞𝑥

mem[(𝑒,hb)]←load−−−−−−−−−−−→ 𝑞𝑤. (6.5)

Note that the attacker does not actually perform the load, as it is not going to
use the read value anyway.

After simulating instrload the attacker waits until the helpers build the
happens-before path and enters state 𝑞𝑓 :

𝑞𝑤
assume(mem[(𝑟a,hb)])−−−−−−−−−−−−−→ 𝑞𝑓 . (6.6)

For simplicity, in the above rules we allowed memory accesses (mem[]) within
expressions. One can transform instructions using these expressions to the
canonical form by prepending them with appropriate load transitions.

Example 6.7. Figure 6.1 shows the result of the attacker instrumentation of
the first thread of the SB program (Figure 1.1).

6.2.2 Instrumentation of a Helper

An instrumented helper thread has two modes of execution. Initially, it runs
as usual. When it produces the first event that is dependent on the load event

68 CHAPTER 6. ROBUSTNESS AGAINST TOTAL STORE ORDER

𝑞0

𝑞1

𝑞2

mem[𝑦]← 1

𝑟2 ← mem[𝑥]

̂︀𝑞0𝑞𝑥1

𝑞𝑥2

̂︀𝑞1

assume(mem[(𝑦, hb)])

mem[𝑦]← 1

mem[𝑦, hb]← store

𝑞𝑥3

̂︀𝑞2

mem[(𝑒, hb)]← max(mem[(𝑒, hb)], load)

𝑟2 ← mem[𝑥]

𝑞𝑥4

mem[𝑦]← 1

mem[(𝑦, hb)]← store

𝑞𝑥5

assume(mem[(𝑥, hb)] = store)

𝑟2 ← mem[𝑥]

Figure 6.2: Thread 2 of the SB program (Figure 1.1) instrumented as a helper.

e2, it remembers this in the control state (enters the code copy). So, a load

instruction 𝑞1
𝑟←mem[𝑒]−−−−−−→ 𝑞2 produces

𝑞1
assume(mem[(𝑒,hb)]=store)−−−−−−−−−−−−−−−−→ 𝑞𝑥

𝑟←mem[𝑒]−−−−−−→ ̂︀𝑞2. (6.7)

A store instruction 𝑞1
mem[𝑒a]←𝑒v−−−−−−−→ 𝑞2 produces

𝑞1
assume(mem[(𝑒,hb)])−−−−−−−−−−−−→ 𝑞𝑥1

mem[𝑒a]←𝑒v−−−−−−−→ 𝑞𝑥2
mem[(𝑒a,hb)]←store−−−−−−−−−−−→ ̂︀𝑞2. (6.8)

All transitions from the hat states will generate events that are happens-

before dependent on the attacker’s e2. So, for a load 𝑞1
𝑟←mem[𝑒]−−−−−−→ 𝑞2 the instru-

mentation adds

̂︀𝑞1
mem[(𝑒,hb)]←max(mem[(𝑒,hb)],load)−−−−−−−−−−−−−−−−−−−−−−→ 𝑞𝑥

𝑟←mem[𝑒]−−−−−−→ ̂︀𝑞2, (6.9)

where max returns the maximum of its arguments, assuming 0 < load < store.

A store 𝑞1
mem[𝑒a]←𝑒v−−−−−−−→ 𝑞2 gives the instructions

̂︀𝑞1 mem[𝑒a]←𝑒v−−−−−−−→ 𝑞𝑥
mem[𝑒a,hb]←store−−−−−−−−−−→ ̂︀𝑞2. (6.10)

Finally, commands cmd that are local assignments, conditionals, mfence are

copied as is: a transition 𝑞1
cmd−−→ 𝑞2 simply gives

̂︀𝑞1 cmd−−→ ̂︀𝑞2. (6.11)

Example 6.8. Figure 6.2 shows the result of the helper instrumentation of the
second thread of the SB program.

6.2. FROM ROBUSTNESS TO SC REACHABILITY 69

6.2.3 Soundness and Completeness

Given a program 𝒫A instrumented for attack A := (tidA, instrstore, instrload), we
call an SC state (sn, pc,mem) of this program a goal state if pc(tidA) = 𝑞𝑓 . The
following theorem says that a program 𝒫 has a TSO witness with attack A iff
the instrumented program 𝒫A can reach a goal state under SC.

Theorem 6.9 (Soundness and Completeness). A program 𝒫 has a TSO witness
with attack A := (tidA, instrstore, instrload) iff 𝒫A can reach the goal state under
SC.

Proof.

Soundness Suppose that the program 𝒫A can reach the goal state. Then, it
has to reach it via a computation of the following form:

𝜎 := 𝜎1 · estore · 𝜎2 · ehb · 𝜎3 · e𝑓 .

The last event, e𝑓 , is the event produced by the instruction from (6.6). There-
fore, the condition from (6.6) must have been satisfied, i.e., the address (𝑟a, hb)
must contain a non-zero value. Stores to the addresses of the form (a, hb) exist
in the attacker, (6.5), and in the helpers. The value at (𝑟a, hb) could not be set
by the attacker in (6.5), due to the condition just before the store in (6.5), the
definition of 𝑟a and the following store in (6.1). Therefore, the non-zero value
was written to (𝑟a, hb) by a helper in the 𝜎3 part of the computation.

If the helper wrote to (𝑟a, hb), it has entered its code copy. It can only enter
its code copy if it has read a non-zero value from (a, hb), see (6.7), (6.8). This
value must have been stored by another helper or by the attacker. The first
helper that has enter its code copy must have read the value written by the
attacker, by executing the store instruction from (6.5), event ehb. This means,
the attacker has entered its code copy by executing the store from (6.1), event
estore, where it delayed stores, and reached the instrumented instrload. Moreover,
the check in (6.5) succeeded, which means that no store to the address being
loaded was delayed, (6.1), (6.2).

Altogether, in 𝜎1 the attacker and the helper executed the instructions of
the original program. Event estore is produced by the instrumented instrstore. In
𝜎2 the attacker executed the instrumented code copy, the helpers executed the
original instructions. Event ehb is produced by the instrumented instrload. In
𝜎3 the helpers executed original instructions and code copies, the attacker only
executed the instructions added by (6.6).

We now turn 𝜎 into the following computation 𝜏 of program 𝒫:

𝜏 := 𝜏1 · e1 · 𝜏2 · e2 · 𝜏3 · e3 · 𝜏4.

In 𝜏1 the program executes the instructions executed by 𝒫A in 𝜎1, in the
same order, with flush events immediately following the matching stores. After
that, by definition of SC and TSO semantics, the program 𝒫 will reach the TSO
state which has empty buffers and the same control and memory configuration
as the SC state reached by 𝒫A just before estore.

Then, the attacker of 𝒫A can execute instrstore, buffer the store, but not flush
it. The attacker can next execute the instructions, from which the instrumented
instructions executed by the attacker in 𝜏2 were produced. Store instructions

70 CHAPTER 6. ROBUSTNESS AGAINST TOTAL STORE ORDER

are executed in place of corresponding store events, the stores are buffered. An
instrumented load produces two events: the conditional and the load, (6.3), the
program 𝒫 executes the corresponding load instruction only in place of the load
event. One can show that 𝜏2 is executable by induction, with the following
invariants:

INV-1-A The control state of the attacker thread in 𝒫A is the hat-version of
the control state of the attacker thread in 𝒫 after corresponding transition.

INV-1-B The control states of the helper threads are the same in both pro-
grams.

INV-1-C The memory configurations of programs 𝒫 and 𝒫A are the same,
modulo the addresses and registers added by the instrumentation.

INV-1-D Each shadow address (a, d) in 𝒫A contains the value written by the
last delayed attacker’s store to address a of 𝒫, or 0 if there was no such
delayed store.

Finally, the attacker executes instrload (e2).
In 𝜏3 all events belong to helpers. Similarly, they execute the instructions,

from which the instrumented instructions executed by the helpers in 𝜎3 were
produced, in the place of the events e with lab(instr(e)) being the command of
the original instruction. One can show that 𝜏3 is executable by induction, with
the following invariants:

INV-2-A If in the instrumented program, after a prefix of 𝜏3 is executed, the
address (a, hb) contains store (load), then in the corresponding prefix of
𝜎3 there is a store (load) event with address a which is happens-before
dependent on e2.

INV-2-B The memory configurations of programs 𝒫 and 𝒫A are the same,
modulo the addresses and registers added by the instrumentation.

INV-2-C The control state of a helper in 𝒫A is the same as in 𝒫 if it did not
contribute to the executed part of 𝜏3. Otherwise, it is the hat-version of
this state.

The e3 · 𝜏4 part of the computation consists of flush events for the delayed
stores.

Now we show that the computation 𝜏 is almost a TSO witness. Indeed,
WIT-A, WIT-B, WIT-E hold by construction. WIT-C holds due to INV-1-D
and the check in (6.5). WIT-D does not immediately hold: although, by INV-
2-A, there is a happens-before cycle e2 →+

ℎ𝑏 e3 →ℎ𝑏 e2, not all events in 𝜏3 are
happens-before dependent on e2. One can transform 𝜏 to a TSO witness 𝜏 ′ by
moving the events in 𝜏3 that are not happens-before dependent on e2 into 𝜏2,
similar to how it was done in the proof of Lemma 6.3.

Completeness Suppose there is a TSO witness 𝜏 for attack A, as defined in
Section 6.1:

𝜏 = 𝜏1 · e1 · 𝜏2 · e2 · 𝜏3 · e3 · 𝜏4.
We show that the instrumented program 𝒫A has an SC computation that leads
to a goal state. Without loss of generality we assume that flush events in 𝜏

6.2. FROM ROBUSTNESS TO SC REACHABILITY 71

immediately follow the matching store events (except for those delayed by the
attacker).

In the beginning, the instrumented attacker and helper threads can execute
the same instructions that were executed by the original program 𝒫 in the 𝜏1
part of the TSO witness. After that, by definition of SC and TSO semantics,
the program 𝒫A will reach the SC state which has the same control and memory
configuration as the TSO state reached by 𝒫 just before e1. The TSO state of
𝒫 has empty buffer configuration.

Then, the attacker of 𝒫A can execute the instruction instrstore = instr(e1)
instrumented by (6.1) and enter the code copy. In the code copy it executes
the instrumented versions (6.2), (6.3), (6.4) of the instructions executed by the
attacker thread of 𝒫 in 𝜏2. In the part 𝜏2 the helpers of 𝒫A still execute the
instructions of the original program. The invariants INV-1-A to INV-1-D are
maintained. Note that 𝜏2 does not contain memory fences, otherwise the store
e3 could not have been delayed past the load e2. Therefore, the absence of copies
of the mfence instructions cannot provoke a block of the attacker.

Finally, the attacker executes instrload = instr(e2) instrumented according to
(6.5) and reaches control state 𝑞𝑤. The instrumentation has a condition that
the load e2 was not an early read, which is guaranteed by WIT-C.

All events in 𝜏3 belong to helpers. By WIT-D, they are in happens-before
relation with e2. The transitions of helpers of 𝒫 in 𝜏3 can be simulated by the
helper thread of 𝒫A so that invariants INV-2-A to INV-2-C hold. For example,
consider a store transition e performed by the helper thread. If this is the first
transition of the thread in 𝜏3, by WIT-D, it is happens-before dependent on an
earlier event e′ ∈ 𝜏3 of some other thread, addr(e) = addr(e′) = a. Consequently,
(a, hb) contains either load or store, and the helper thread in 𝒫A can execute
the instructions defined by (6.8) and enter the code copy. If this is not the first
transition of the thread, the thread is already in the code copy, and can execute
the instructions defined by (6.10). It is easy to see that the invariants continue
to hold. Handling of the other kinds of instructions is similar.

At least one of the helper’s events e in 𝜏3 is a load or a store to the address
addr(e) = addr(e1) = a. Otherwise, WIT-D would not hold. When executing
the instrumented version of instr(e) in the 𝒫A, the helper will set (a, hb) to a
non-zero value, see (6.9) and (6.10). Therefore, at the next step the attacker
(situated in the control state 𝑞𝑤) will be able to reach 𝑞𝑓 in accordance with
(6.6) and make the instrumented program reach the goal state.

The following statement is a corollary of Theorem 6.5 and Theorem 6.9.

Theorem 6.10. A program 𝒫 is robust against TSO if there is no attack A
such that 𝒫A reaches a goal state under SC.

The theorem gives us a procedure for checking robustness against TSO for a
program 𝒫. One can enumerate all attacks (their number is only quadratic in the
size of the program) and for each attack check, whether 𝒫A reaches a goal state.
Altogether, robustness reduces to a quadratic number of reachability queries.
Notably, these reachability queries are independent and can be performed in
parallel.

Actually, one can reduce robustness checking to a single reachability query.
For this, each thread must be instrumented both as an attacker and as a helper.

72 CHAPTER 6. ROBUSTNESS AGAINST TOTAL STORE ORDER

Further, the instrumentations (6.1), (6.5) must be applied to each store, respec-
tively, load instruction. In order to forbid multiple threads to become attackers,
one has to introduce a global flag. When a thread is going to enter the code
copy, (6.1), it tries to raise (modify) this flag using atomic compare-and-swap.
On success, i.e., if the flag contained the initial value, it enters the code copy
and starts delaying stores. On failure, it continues to run the original code.
The correctness of the just described instrumentation is proven similar to The-
orem 6.9.

6.3 Parameterized Robustness

In this section we consider the problem of checking robustness against TSO for
parameterized programs, as defined in Section 2.8.

Problem 6.11 (Parameterized robustness against TSO). Given a parameter-
ized program 𝒫, to check whether 𝑇sc(𝒫(𝐼)) = 𝑇tso(𝒫(𝐼)) for all 𝐼 ∈ NTID.

By Theorem 6.10, a parameterized program is robust iff for all 𝐼 ∈ NTID

and for any attack the program 𝒫(𝐼)A does not reach the goal state. How-
ever, we cannot instrument unboundedly many program instances. Instead, we
instrument the parameterized program itself and reduce parameterized robust-
ness against TSO to parameterized SC reachability. The idea here is to swap
instantiation and instrumentation, i.e., instrument the parameterized program
itself.

Actually, we can apply the instrumentation from Section 6.2 to a parame-
terized program almost without changes. Only the attacker instrumentation,
namely (6.1), requires extra care. In an instance program, only one copy of the
thread should act as attacker, the remaining copies must behave like helpers.
Therefore, the thread must be instrumented not only as an attacker, but also
as a helper. To ensure that only one copy of the attacker delays stores, we
introduce a global flag. When a thread is going to enter the code copy, (6.1),
it tries to raise (modify) this flag using atomic compare-and-swap. On success,
i.e., if the flag contained the initial value, it enters the code copy and starts
delaying stores. On failure, it continues to run the original code.

Theorem 6.12. A parameterized program 𝒫 is robust against TSO if there is
no attack A, such that parameterized program 𝒫A reaches a goal state under SC.

6.4 Decidability and Complexity

Until now, we did not impose any restrictions on the programs for which we
check robustness. The reductions presented in Sections 6.2 and 6.3 are indepen-
dent of the data domain, size of the address space, thread creation time (static
number of threads vs. dynamic thread creation). Although the programming
model used in the thesis omits recursion, the reductions are applicable to recur-
sive programs as well. It is the back-end model checker that has to deal with
the complexity of a particular programming model. In this section we limit
ourselves to programs with finite data domain (and address space) and derive
decidability and complexity results for this class of programs.

6.5. ENFORCING ROBUSTNESS 73

The reduction of robustness to SC reachability presented in Section 6.2 gives
an alternative proof of the complexity result shown earlier in Theorem 5.5.

Theorem 6.13. Robustness against TSO for programs over finite domains is
PSpace-complete.

Proof. By Theorem 6.10, in order to check robustness of a program 𝒫, one can
enumerate all the attacks of this program and for each attack check whether
𝒫A reaches a goal state under SC. Since the number of attacks is quadratic
in the size of the program, the enumeration can be done in PSpace. The size
of the instrumented program 𝒫A is linear in the size of the original program.
By Lemma 2.7, the reachability of a goal state can be decided in PSpace.
Altogether, this gives us the PSpace upper bound.

For the lower bound we reduce SC state reachability to robustness. The for-
mer problem is PSpace-hard already for single-threaded programs (Lemma 2.7),
which are trivially robust (under TSO a load always reads the value written by
the last store to the address). In order to check whether a single-threaded pro-
gram reaches a state with address a containing a value different from zero, we
extend it with two threads that, first, check whether mem[a] ̸= 0 and, if yes,
violate robustness, e.g., by executing the SB program, Figure 1.1. The extended
program is robust iff the state with address a containing non-zero is reachable
in the original program.

The reduction of parameterized robustness to parameterized SC reachability
presented in Section 6.3 gives us the following complexity result.

Theorem 6.14. Parameterized robustness against TSO for programs over finite
domains is decidable and ExpSpace-hard — already for programs with |DOM| ≥
3.

Proof. By Theorem 6.12, in order to check robustness, we can enumerate all the
attacks and for each attack check if the parameterized instrumented program
reaches a goal state. The enumeration of quadratic number of attacks and
their instrumentation can be done in PSpace. State reachability of a goal
state is decidable, Lemma 2.8. Altogether, this means that parameterized TSO-
Robustness is decidable.

The ExpSpace-hardness follows from the reduction of parameterized SC
reachability to parameterized robustness (similar to the one from the proof of the
previous theorem) and ExpSpace-hardness of parameterized state reachability
for programs with |DOM| ≥ 3, Lemma 2.9.

6.5 Enforcing Robustness

In this section, our goal is to insert memory fences into a program to make it
robust. By inserting a fence into state 𝑞 of thread tid of program 𝒫 we mean
the following modification of the program. First, we add a fresh state 𝑞𝑥 to

𝑄tid. Then, we replace each instruction 𝑞
cmd−−→ 𝑞′ ∈ ℐtid with the instruction

𝑞𝑥
cmd−−→ 𝑞′. Finally, we add a memory fence 𝑞

mfence−−−−→ 𝑞′.
Let FENCES :=

⋃︀
tid{tid} × 𝑄tid be the set of all possible fence locations.

We call a set ℱ ⊆ FENCES a valid fence set for program 𝒫 if inserting memory
fences into the given states yields a robust program. We say that ℱ is irreducible

74 CHAPTER 6. ROBUSTNESS AGAINST TOTAL STORE ORDER

if it does not have any strict subset which is a valid fence set. Clearly, a fence
set that includes all the destination control states of store instructions of the
program is a valid fence set. In general, however, we would like to compute a
valid fence set which is optimal in some sense. Therefore, we pose the optimal
TSO-fencing problem:

Problem 6.15 (Optimal TSO-fencing). Given a program 𝒫 and a cost function
𝒞 : FENCES→ R, compute a valid fence set with

∑︀
𝑓∈ℱ 𝒞(𝑓) minimal.

The parameterized version of this problem is defined as expected.
We consider two criteria of optimality: minimization of program size and

maximization of program performance. By solving the problem for 𝒞 ≡ 1 we
compute a fence set of minimal size, thus minimizing the code size of the fenced
program. Maximization of program performance requires minimizing the num-
ber of times memory fence instructions are executed: practical measurements,
Appendix A, show that it is impossible to save CPU cycles by executing more
fences, but with less stores in the TSO buffer. For this, 𝒞(𝑓) is defined as the
frequency of reaching the fence location 𝑓 in program executions. Concrete
values of 𝒞 can be either estimated by profiling or computed by mathematical
reasoning about the program.

From the complexity point of view, fence computation is at least as hard as
robustness. Indeed, robustness holds if and only if the optimal valid fence set
is ℱ = ∅. Actually, since fence sets can be enumerated, computing an optimal
valid fence set does not require more space than checking robustness. This gives
us the following theorem.

Theorem 6.16. For programs over finite domains, optimal TSO-fencing is
PSpace-complete. In the parameterized case, it is decidable and ExpSpace-
hard for programs with |DOM| ≥ 3.

In the remainder of the section we give a practical algorithm for optimal
TSO-fencing.

6.5.1 Fence Sets for Attacks

Given an attack A := (tid, instrstore, instrload), we define the set 𝐷A of locations in-
volved into the attack as 𝐷A := {(tid, 𝑞) | dst(instrstore) −→* 𝑞 −→* src(instrload)}.
We call a set of locations ℱA an eliminating fence set for attack A if inserting
fences at all locations in ℱA eliminates the attack (i.e., forbids all the TSO
witnesses for this attack). We call the set ℱA irreducible if it does not have
any strict subset which is an eliminating fence set for attack A. Note that any
irreducible eliminating set ℱA satisfies ℱA ⊆ 𝐷A.

Example 6.17. The SB program (Figure 1.1) has two irreducible eliminating
fence sets: ℱA = {(1, 𝑞1)} eliminates the only attack by the first thread and
ℱA′ = {(2, 𝑞1)} eliminates the only attack by the second thread.

Lemma 6.18. Every irreducible valid fence set ℱ can be represented as a union
of irreducible eliminating fence sets for all attacks having TSO witnesses.

Proof. By Theorem 6.5, fence set ℱ must forbid all the TSO witnesses. There-
fore, it includes some irreducible eliminating fence set ℱA for every feasible
attack A. By irreducibility, ℱ cannot contain locations outside the union of
these ℱA sets.

6.5. ENFORCING ROBUSTNESS 75

Example 6.19. In compliance with the above Lemma 6.18, in the SB program
(Figure 1.1) the only irreducible valid fence set is ℱ := ℱA ∪ ℱA′ = {(1, 𝑞1), (2,
𝑞2)}.

Lemma 6.18 is useful for fence computation since optimal fence sets are
always irreducible. All irreducible eliminating fence sets for attacks can be
constructed by an exhaustive search through all selections of locations involved
in the attack. For each candidate fence set, to judge whether it eliminates the
attack, we check SC reachability in the instrumented program as described in
Sections 6.2 and 6.3.

Note that this search may raise an exponential number of reachability
queries. In practice this rarely constitutes a problem. First, attacks seldom
have large sets of involved locations, so the number of candidates is small. Sec-
ond, the reachability checks can be avoided if a candidate fence set covers all
the paths from dst(instrstore) to src(instrload).

6.5.2 Computing an Optimal Valid Fence Set

In order to decide which sets ℱA must be included into the optimal valid fence
set, we set up and solve a 0/1-integer linear programming (ILP) problem (6.12)–
(6.14). Here, 0/1 means the variables are restricted to have only values 0 or 1.
The optimal solutions correspond to optimal valid fence sets.

Consider an attack A. Let ℱ1 . . .ℱ𝑛 be the irreducible eliminating fence sets
for this attack. For each fence set we introduce a variable 𝑥ℱ𝑖

; if the value of
this variable is 1 in the solution, then ℱ𝑖 must be included into the optimal
valid fence set. For each attack we include an inequality requiring that at least
one eliminating fence set for this attack is chosen:

∑︁

1≤𝑖≤𝑛
𝑥ℱ𝑖 ≥ 1 (6.12)

Moreover, for each fence location 𝑓 ∈ FENCES we create a variable 𝑥𝑓 ; if the
value of this variable is 1 in the solution, then 𝑓 belongs to the optimal valid
fence set. The following equation requires that if a fence set is included into a
solution, all its member fence locations are included as well.

∑︁

𝑓∈ℱ𝑖

𝑥𝑓 ≥ |ℱ𝑖|𝑥ℱ𝑖
(6.13)

Finally, the minimized function is the total cost function:

∑︁

𝑓∈FENCES
𝒞(𝑓)𝑥𝑓 → min (6.14)

An optimal solution 𝑥* of the resulting 0/1-ILP denotes the fence set
ℱ(𝑥*) := {𝑓 ∈ FENCES | 𝑥*𝑓 = 1}. By construction of the ILP, the follow-
ing theorem holds.

Theorem 6.20. ℱ(𝑥*) is an optimal valid fence set.

Chapter 7

The Trencher Tool

We have implemented the algorithms from Chapter 6 in a tool called Trencher.
Trencher is able to analyze multithreaded programs written in a simple, however,
Turing-complete assembler-like programming language. The tool implements
the reduction of robustness to SC reachability described in Section 6.2 and
the fence insertion algorithm from Section 6.5. Trencher’s source code and user
documentation are available online at https://github.com/yegord/trencher.

In Section 7.1 we discuss certain design decisions and optimizations that
made the tool fast. In Section 7.2 we presents the results of experiments that
we conducted using Trencher.

7.1 Making It Fast

The fundamental subtask in checking and enforcing robustness is to decide
whether a given attack has a TSO witness. Trencher solves this subtask by
instrumenting the input program as described in Section 6.2 and performing an
SC reachability query in the instrumented program. The instrumentation step
takes linear time in the size of the input program. Consequently, the dominant
in the running time is the PSpace-hard SC reachability analysis, which makes
it the primary target for performance optimizations.

The first version of Trencher [20] used SPIN [44] as a back-end SC reachabil-
ity checker. Trencher translated a reachability query into a program in Promela
language. SPIN took this program as an input and produced a C source code of
the verifier (pan). Next, this source code was compiled by a C compiler. Finally,
running the model checker produced the answer to the reachability query.

Using an off-the-shelf model checker allowed Trencher to benefit from the
state space reductions and further optimizations already implemented in SPIN.
However, this design decision came with a disadvantage: experiments [20]
showed that most of the time spent on checking robustness was consumed by
the C compiler. The costs of parsing system headers, verifier’s source code,
compilation, optimization, code generation, linking outweighed the time spent
by the verifier in order to answer the reachability query.

As an attempt to reduce the running times, we implemented a custom SC
reachability checker as a part of Trencher. The reachability checker is simply a
depth-first search algorithm, however, applied to a reduced state space. Before

76

7.1. MAKING IT FAST 77

going into details on how state space reduction works, we need to define more
exactly, what kind of a reachability query the checker must answer.

7.1.1 SC Semantics with Locks

While describing TSO semantics in Section 2.4.2 we intentionally omitted
locked instructions to keep the constructions simple. The instructions can
be treated similar to mfence, with all the results continuing to hold. The SC
model checker bears all the burden of dealing with these instructions. In this
subsection we complete the definition of SC, in the presence of locked instruc-
tions.

Following [72], we extend the TSO set of commands with lock and unlock

instructions:

⟨cmd⟩ ::= ⟨reg⟩ ← mem[⟨expr⟩] | mem[⟨expr⟩] ← ⟨expr⟩
| ⟨reg⟩ ← ⟨expr⟩ | assume(⟨expr⟩)
| mfence | lock | unlock

The lock instruction acquires an exclusive lock on memory, unlock releases
it. If a thread owns a lock on memory, the other threads cannot access memory,
i.e., their loads and stores block. Consequently, an atomic increment of the
value at address 𝑟a can be implemented with the help of lock and unlock as
follows:

𝑞1
lock−−−→ 𝑞2

𝑟←mem[𝑟a]−−−−−−−→ 𝑞3
mem[𝑟a]←𝑟+1−−−−−−−−→ 𝑞4

unlock−−−−→ 𝑞5.

Formally, we define the semantics of a program 𝒫 under SC with locks
as 𝑋scl(𝒫) := (𝑆scl,Escl,∆scl, 𝑠scl0, 𝐹scl). A state 𝑠 ∈ 𝑆scl is a tuple 𝑠 :=
(sn, pc,mem, lock), where counter configuration sn : TID → N gives, for each
thread, the id that will be assigned to the next instruction executed in this
thread, pc(tid) ∈ 𝑄tid gives the control state of the thread tid, mem : TID×REG∪
ADDR→ DOM gives, for each address and each register, the value stored at this
address or in this register, and lock ∈ TID∪{⊥} gives the thread currently own-
ing the memory lock. The initial state is 𝑠scl0 := (sn0, pc0,mem0, lock0), where
sn0 := 𝜆tid.1, all the control states are initial: pc0(tid) := 𝑞tid0, the memory is
filled with zeroes: mem0(a) := 0 for all a ∈ TID × REG ∪ ADDR, and nobody
owns the memory lock: lock0 := ⊥. All states are final: 𝐹scl := 𝑆.

The SC transition relation ∆scl consists of all the transitions defined by the
rules in Table 7.1. The first two rules describes loads and stores which can be
executed only if the memory lock is held by the current thread or not held at
all. The third and the forth rules describe the local assignment and conditional,
they are similar to those from Table 2.1. A memory fence, the fifth rule, is a
no-op under SC. The sixth rule says that a lock can be taken only if nobody
holds it already. The seventh rule defines that a lock can be released by the
thread that holds it.

7.1.2 Restricted SC Semantics with Locks

The idea of the state space reduction implemented in Trencher is as follows.
Assume the running thread has executed a local assignment, a condition, or
a memory fence. The other threads cannot observe the effects of this transi-
tion, because the memory state was not changed. Therefore, it makes sense to

78 CHAPTER 7. THE TRENCHER TOOL

cmd = 𝑟 ← mem[𝑒], a := ̂︀𝑒, lock ∈ {tid,⊥}
𝑠

(tid,sn(tid),instr,a)−−−−−−−−−−−→ (sn′, pc′,mem[𝑟 := mem(a)], lock)

cmd = mem[𝑒a]← 𝑒v, a := ̂︀𝑒a, v := ̂︀𝑒v, lock ∈ {tid,⊥}
𝑠

(tid,sn(tid),instr,a)−−−−−−−−−−−→ (sn′, pc′,mem[a := v], lock)

cmd = 𝑟 ← 𝑒

𝑠
(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem[(tid, 𝑟) := ̂︀𝑒], lock)

cmd = assume(𝑒), ̂︀𝑒 ̸= 0

𝑠
(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem, lock)

cmd = mfence

𝑠
(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem, lock)

cmd = lock, lock = ⊥
𝑠

(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem, tid)

cmd = unlock, lock = tid

𝑠
(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem,⊥)

Table 7.1: Transition rules for SC with locks, assuming 𝑠 := (sn, pc,mem, lock),

pc(tid) = 𝑞, an instruction instr = 𝑞
cmd−−→ 𝑞′, pc′ := pc[tid := 𝑞′], and sn′ :=

sn[tid := sn(tid) + 1].

7.1. MAKING IT FAST 79

cmd = 𝑟 ← mem[𝑒], a := ̂︀𝑒, lock ∈ {tid,⊥}, fav ∈ {tid,⊥}
𝑠

(tid,sn(tid),instr,a)−−−−−−−−−−−→ (sn′, pc′,mem[𝑟 := mem(a)], lock,⊥)

cmd = mem[𝑒a]← 𝑒v, a := ̂︀𝑒a, v := ̂︀𝑒v, lock ∈ {tid,⊥}, fav ∈ {tid,⊥}
𝑠

(tid,sn(tid),instr,a)−−−−−−−−−−−→ (sn′, pc′,mem[a := v], lock,⊥)

cmd = 𝑟 ← 𝑒, lock ∈ {tid,⊥}, fav ∈ {tid,⊥}
𝑠

(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem[(tid, 𝑟) := ̂︀𝑒], lock, tid)

cmd = assume(𝑒), ̂︀𝑒 ̸= 0, lock ∈ {tid,⊥}, fav ∈ {tid,⊥}
𝑠

(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem, lock, tid)

cmd = mfence, lock ∈ {tid,⊥}, fav ∈ {tid,⊥}
𝑠

(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem, lock, tid)

cmd = lock, lock = ⊥, fav ∈ {tid,⊥}
𝑠

(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem, tid, tid)

cmd = unlock, lock = tid, fav ∈ {tid,⊥}
𝑠

(tid,sn(tid),instr)−−−−−−−−−−→ (sn′, pc′,mem,⊥,⊥)

Table 7.2: Transition rules for restricted SC with locks, assuming 𝑠 :=

(sn, pc,mem, lock, fav), pc(tid) = 𝑞, an instruction instr = 𝑞
cmd−−→ 𝑞′, pc′ :=

pc[tid := 𝑞′], and sn′ := sn[tid := sn(tid) + 1].

continue executing the current thread, until it performs a memory access. Sim-
ilarly, if a thread has acquired a memory lock, the other threads cannot access
memory at all. Therefore, it does not make sense to do a context switch, until
the thread releases the memory lock. These observations lead to the restricted
SC semantics with locks.

Formally, the semantics is 𝑋sclr(𝒫) := (𝑆sclr,Esclr,∆sclr, 𝑠sclr0, 𝐹sclr). A state
𝑠 ∈ 𝑆sclr is a tuple 𝑠 := (sn, pc,mem, lock, fav), where fav ∈ TID ∪ {⊥}
determines which thread can execute the next instruction, ⊥ standing for
any. We call the thread fav the favourite thread. In the initial state
𝑠sclr0 := (sn0, pc0,mem0, lock0, fav0) any thread can execute the next instruc-
tion: fav0 := ⊥. The other components of the tuples 𝑠 and 𝑠sclr0 are defined as
in the previous subsection.

The SC transition relation ∆sclr consists of all the transitions defined by the
rules in Table 7.2. The rules extend those from Table 7.1 by the additional
requirement: in order for a thread to be able to execute an instruction, no other
thread must be a favourite thread or hold the lock. Loads, stores, and unlock

reset the favourite thread to ⊥ and make a context switch possible. All other
instructions make the current thread the favourite, i.e., forbid context switches.

The following theorem states that state reachability under SC with locks is
equivalent to state reachability under restricted SC with locks.

80 CHAPTER 7. THE TRENCHER TOOL

Theorem 7.1. Fix a program 𝒫, a thread tid, and a control state 𝑞. The thread
can reach the control state under SC with locks iff it can reach the control state
under restricted SC with locks.

Proof. The implication from right to left is trivial. Consider the implication
from left to right. Assume thread tid can reach control state 𝑞 via computation
𝜎:

𝑠scl0
𝜎−→ (sn, pc,mem, lock) with pc(tid) = 𝑞.

Without loss of generality we can assume that there is no shorter computation,
via which thread tid can reach control state 𝑞.

In the proof we call an event e local if instr(e) is a local assignment, condition,
memory fence, or lock. We call the event e non-local if instr(e) is a load, a store,
or unlock. It is easy to check by case consideration that if 𝜎 = 𝜎1 · e1 · e2 · 𝜎2 ∈
Cscl(𝒫), e1 is a local event, and tid(e1) ̸= tid(e2), we can move e1 to the right of
e2 without changing the trace: 𝜎′ := 𝜎1 · e2 · e1 · 𝜎2 ∈ Cscl(𝒫) and 𝑇 (𝜎) = 𝑇 (𝜎′).
In other words, local events are right movers in the sense of [61].

Since 𝜎 is the shortest computation, if we consider the last event in 𝜎 be-
longing to a particular thread, this event is a non-local event (except when the
thread is thread tid). Indeed, if the event would be a local event, it would repre-
sent a computation whose result is never used in other threads. Consequently,
we could remove this event and obtain a shorter computation, via which thread
tid could reach control state 𝑞. Similarly, one can show that no thread (except
for possibly tid) executes lock without executing unlock later, i.e., lock ∈ {tid,
⊥} when 𝑞 is reached by thread tid.

If we move all local events to the right as much as possible (i.e., to the next
non-local event of the same thread or to the end of the computation), we obtain
a computation 𝜎′′ := 𝜎1 ·e1 ·𝜎2 ·e2 · · ·𝜎𝑛. Events e1 . . . e𝑛−1 are non-local events.
Events in 𝜎𝑗 , 𝑗 ∈ [1..𝑛 − 1] are local events. Events in 𝜎𝑗 · e𝑗 , 𝑗 ∈ [1..𝑛 − 1]
belong to the same thread. Events in 𝜎𝑛 also belong to the same thread, namely,
thread tid. As noted earlier, each reordering preserves the trace. Consequently,
𝑇 (𝜎′′) = 𝑇 (𝜎) and thread tid reaches control state 𝑞 via 𝜎′′.

It is easy to see that 𝜎′′ ∈ Csclr(𝒫). Indeed, context switches happen only
after non-local events. Moreover, context switches happen only at states with
lock = ⊥, otherwise, the thread to which the switch happens would not be able
to produce the non-local event e𝑗 .

7.1.3 Live Variable Optimization

A variable is commonly called live at a control state 𝑞 if its value at this control
state can be read on paths starting in 𝑞. For example, in

𝑞1
𝑟←mem[𝑥]−−−−−−→ 𝑞2

assume(𝑟 ̸=0)−−−−−−−−→ 𝑞1

the register 𝑟 is live at control state 𝑞2, but not at 𝑞1. Clearly, one does not
need to keep the exact value of a register if it is not live at the current control
state. This is exactly the idea of the live variable optimization.

Trencher implements classic live variable analysis, as described, e.g., in [50].
While exploring the state space and computing the destination state of a tran-
sition, Trencher resets values of dead (not live) registers in the destination state
to zero.

7.2. EXPERIMENTS 81

Similar optimizations are implemented in multiple model checkers, including
SPIN [45], XMC [36], Bandera [31], IF [23], Bebop [18].

7.1.4 Atomic Instructions

Last but not least, Trencher’s model checker supports atomic instructions, i.e.,
instructions labeled by multiple commands that must be executed in one step.
For example, an atomic instruction

𝑞1
𝑟1←mem[𝑥]·assume(𝑟1=𝑟2)·mem[𝑥]←𝑟3−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑞2

implements compare-and-set which either succeeds or blocks.
Trencher translates sequences of instructions generated during instrumenta-

tion of a single instruction to atomic instructions, thus even more reducing the
number of possible interleavings.

The Promela language used by SPIN [44] provides a similar construct —
atomic sequence of statements. Such a sequence is guaranteed to be executed
atomically, however, only if no statement in the sequence blocks. If it does, a
context switch happens. Trencher’s atomic statements, on the contrary, guar-
antee atomicity in all cases: an instruction is either executed fully in one step,
or it is not executed at all.

7.2 Experiments

We evaluated Trencher on a set of examples modelling various concurrent algo-
rithms and data structures. In this section we present results of the evaluation
and discuss the results. We start with the description of examples.

7.2.1 Examples

The first class of examples on which we tested Trencher consists of mutual
exclusion algorithms using shared variables. Naive implementations of the al-
gorithms turn out to be non-robust against TSO and do not guarantee mutual
exclusion under this memory model. Correct versions of the algorithms require
memory fences and are robust against TSO. We study robust and non-robust
versions of classic Dekker’s [35], Peterson’s [74], Burns’ [27] protocols for two
threads entering and leaving a critical section in a cycle, and the Lamport’s fast
mutex [57] for three threads. We also checked CLH and MCS list-based queue
locks [42] which rely on atomic compare-and-set and are robust.

The second class of examples constitute concurrent data structures. The
first data structure is the work stealing queue (WSQ) from an implementation
of Cilk 5 programming language [38]. A WSQ provides three operations: push,
pop, and steal. Push and pop operations have the usual meaning for queues,
however, can only be performed by one thread. The steal operation has the
semantics of a pop, but can be performed by any number of threads concurrently.
We consider two programs using the work stealing queue: one that does push and
pop in different threads, and one that uses the queue properly. The second data
structure that we consider is a concurrent lock-free stack implementation [42].

Examples from the third class model algorithms found in real sys-
tems code. We consider the buggy C++ Parker class implementing

82 CHAPTER 7. THE TRENCHER TOOL

N Example Thr St Tr RQ1 RQ2 RQ3 F CPU Real

1 Dekker (not fenced) 2 24 30 24 38 43 4 109 43
2 Dekker (fenced) 2 28 34 30 0 0 0 0 0
3 Peterson (not fenced) 2 14 18 1 12 8 2 19 8
4 Peterson (fenced) 2 16 20 12 0 0 0 0 0
5 Burns (not fenced) 2 11 14 1 4 12 3 7 3
6 Burns (fenced) 2 17 19 8 0 0 0 0 0
7 Lamport (not fenced) 3 33 36 9 15 12 6 1009 280
8 Lamport (fenced) 3 39 42 27 0 0 0 0 0
9 CLH Lock 3 42 41 60 10 0 0 28 9

10 MCS Lock 2 54 58 64 8 0 0 18 5
11 Cilk WSQ (incorrect use) 5 80 79 137 12 3 3 12399 3229
12 Cilk WSQ (correct use) 3 73 72 133 16 0 0 18 4
13 Lock-free stack 4 46 50 14 0 0 0 0 0
14 Parker (not fenced) 2 9 8 0 1 1 1 0 0
15 Parker (fenced) 2 10 9 2 0 0 0 0 0
16 NBW+Spinlock 4 45 45 26 4 0 0 18 7

Table 7.3: Examples and testing results.

java.util.concurrent.LockSupport in Sun JVM [34] and the non-blocking
write protocol + spinlock example studied in Section 8 of [71].

Table 7.3, the left half, provides qualitative characteristics of the examples.
Columns Thr, St, and Tr give respectively the number of threads, states, and
transitions in the examples.

7.2.2 Results

We ran the fence insertion algorithm implemented in Trencher on examples from
Table 7.3 using a 4-core machine equipped with Intel(R) Core(TM) i5 CPU M
560 @ 2.67GHz. The results of the testing are presented in Table 7.3, the
right part. The RQ1 column gives the number of reachability queries that were
solved without actually performing a full-fledged reachability check. Trencher
is capable to infer that an attack does not have a TSO witness if the attack’s
store and the attack’s load are separated by memory fences, and avoids a real
reachability query in this case. The RQ2 column gives the number of full-
fledged reachability checks that returned a negative answer. The RQ3 column
gives the number of checks that showed that the goal state is reachable. So, the
total number of queries is RQ1+RQ2+RQ3. The F column shows the number
of fences inserted by Trencher. The CPU and Real columns show the CPU
and wall-clock time, in milliseconds, spent by Trencher on each example (the
minimum values out of four runs).

To estimate the effects of the optimizations described in Section 7.1, we ran
Trencher on the same set of examples with some of the optimizations disabled.
We performed the same tests using SPIN as a model checker. The results of
these runs are shown in Figure 7.1 (CPU times) and Figure 7.2 (number of states
visited during reachability checks). In Figure 7.1 we excluded the time taken
by SPIN to generate the verifier’s source code, as well as the time taken by the
C compiler to build the verifier. The time taken by the C compiler constitutes

7.2. EXPERIMENTS 83

22

24

26

28

210

212

214

216

218

220

1 3 7 9 10 11 12 16

C
P
U

 t
im

e
,

m
se

c

Index of an example

No Reduced SC, No Live
Reduced SC, No Live
No Reduced SC, Live

Reduced SC, Live
SPIN

Figure 7.1: Time spent by Trencher on computing minimal fence set for the
examples from Table 7.3 with various combinations of optimizations described
in Section 7.1. Reduced SC stands for reduced SC semantics with locks. Live
stands for live variable optimization. SPIN bars show the time spent by Trencher
using SPIN as a model checker (only time spent by Trencher and the verifier
is taken into account; time used for generation and compilation of the verifier
is left out for fairness; the verifier was compiled by Clang 3.5 with -O2). Only
examples whose analysis with all optimizations on took more that 10ms are
shown.

the major part of the total time, see Appendix B for details.

7.2.3 Discussion

Trencher could show robustness of the program that used Cilk WSQ correctly
(performed push and pop in the same thread). Notably, Trencher detected non-
robustness of the example that performed push and pop in different threads.
The tool could detect non-robustness in the Parker class that leads to wrong
behaviors and verify the spinlock example.

Interestingly, Dekker’s and Burns’ protocols required respectively 2 and 1
more fences for robustness than it is actually necessary for ensuring mutual
exclusion. We explain the reasons on the example of Dekker’s algorithm, Burn’s
algorithm has a similar issue. The SB program (Figure 1.1) emulates the first
stage of the Dekker’s protocol: a thread signals that is wants to enter a critical
section; if the other thread did not signal that it wants to enter the critical
section too, the first thread is going to enter it. Fences at states 𝑞1 are required
under TSO to prevent both threads from reading zero. In a real implementation,
if a thread has read 1, it signals that it does not want to enter the critical section
(writes 0 to its variable) and starts polling on the other thread’s variable, waiting
until it becomes zero. In other words, it essentially executes the SB code, with

84 CHAPTER 7. THE TRENCHER TOOL

210

215

220

225

1 3 5 7 9 10 11 12 16

N
u
m

b
e
r

o
f

v
is

it
e
d

 s
ta

te
s

Index of an example

No Reduced SC, No Live
Reduced SC, No Live
No Reduced SC, Live

Reduced SC, Live
SPIN

Figure 7.2: Total number of states visited by the reachability checkers while
computing minimal fence sets for the examples from Table 7.3. For the descrip-
tion of the legend, refer to Figure 7.1. Only examples where the number of
visited states is greater than 1024 are shown.

the only difference that it stores 0 instead of 1. As in SB, this leads to happens-
before cycles, which are eliminated by two additional fences, one per each thread.
These fences are not needed for mutual exclusion: without them the other thread
may just wait a bit longer until it learns that the first thread no longer wants
to enter the critical section.

We would like to note that the analysis of robust examples is particularly
fast. Most of the reachability queries are answered without performing a full
reachability check. All considered mutual exclusion algorithms, except for CLH
and MCS locks that use atomic compare and swap, did not require such checks
at all. In CLH and MCS locks their number is less than 20% of the total. Also,
Trencher is capable of executing independent reachability queries in parallel.
This ability shows its effect on relatively complex examples, where the real
(wall-clock) time constitutes 1/4 to 1/3 of the CPU time (on a 4-core machine).

Comparison of reachability checkers in Figure 7.1 and Figure 7.2 shows that
the optimizations described in Section 7.1 do matter. Use of reduced SC se-
mantics with locks and live variable optimization can decrease the state space
by a factor of up to four (see examples 3, 7, 11), saving CPU time accordingly.
Interestingly, the number of states visited by the SPIN verifier is slightly larger
than the number of states visited by Trencher’s reachability checker without
any optimizations. This might be caused by the fact that atomic sequences
of instructions in SPIN are actually not atomic, i.e., they are atomic only if
no statement in the sequence blocks, which is often not the case in the instru-
mented programs. The necessity of running an external program might be the
cause of the additional overhead seen in the CPU times chart (Figure 7.1) for
Trencher using SPIN.

Chapter 8

Robustness against
Partitioned Global Address
Space

Partitioned Global Address Space (PGAS) is a parallel programming model
for the development of high-performance software for clusters. It provides a
global address space partitioned among the cluster nodes (Figure 8.1). Programs
written in languages like C, C++, and Fortran can access the global memory
by means of PGAS APIs, such as SHMEM [29], ARMCI [68], GASNet [19],
GPI [63], and GASPI [39]. HPC languages like UPC [30], Titanium [43], and
Co-Array Fortran [70] support the PGAS programming model directly.

PGAS programs are typically written in the single instruction, multiple data
(SPMD) paradigm. At run time, an SPMD program consists of multiple pro-
cesses executing the same code on different nodes. Each process is identified by
its rank, which is essentially the index of the node it runs on. PGAS APIs and
languages typically provide functions that allow a process to learn its rank and
the total number of processes (nodes).

A key feature of PGAS is the emphasis on one-sided communication: a pro-
cess running on one node may directly read and write the memory of the process
running on a remote node, without any synchronization with the remote pro-
cess. This is contrary to the message passing paradigm, which requires explicit
synchronization of the sender and the receiver. One-sided communication can

Node 1

Shared Memory

Process 1 NIC

Node 2

Shared Memory

Process 2 NIC

Node N

Shared Memory

Process N NIC

...

RDMA Interconnect

Figure 8.1: PGAS model.

85

86 CHAPTER 8. ROBUSTNESS AGAINST PGAS

1 int x = 1 , y = 0 ;
2 int main () {
3 int myRank = getMyRank () ;
4 int nodeCount = getNodeCount () ;
5 int rightNeighborRank = myRank() % nodeCount + 1 ;
6
7 wr i t e (&x , rightNeighborRank , &y , s izeof (x) , Queue0) ;
8 b a r r i e r () ;
9 a s s e r t (y == 1) ;

10 }

Figure 8.2: OneToOne program.

be efficiently implemented on top of interconnect hardware featuring remote
direct memory access (RDMA). A process can request an RDMA-enabled net-
work interface controller to copy a block of memory from/to a given node, and
the controller will perform the transfer on its own, without involving the CPU
or the operating system on neither of the nodes.

Absence of mandatory (and often unnecessary) synchronization leads to
higher performance of PGAS applications. However, this high performance
comes at the cost of putting the burden of correct synchronization onto the pro-
grammer, which must account for the possible reorderings and delays of memory
accesses introduced by the hardware. Insufficient synchronization leads to subtle
bugs that are hard to reproduce, debug, and fix.

Example 8.1. Consider the OneToOne program shown in Figure 8.2. The
program transfers the value 1 contained in variable 𝑥 on the local node to the
variable 𝑦 on a remote node. It works as follows. When started, each process
of this program learns about its rank and the total number of nodes (lines
3–4). Next, it computes the rank of the remote node where the value must
be transferred, line 5. Finally, it requests the PGAS API to copy a block of
memory occupied by variable 𝑥 to the memory block occupied by variable 𝑦 on
the remote node, line 7. The API implementation, in turn, asks the hardware
to perform an RDMA transfer between the nodes. After calling write(), the
processes synchronize: the barrier() function returns only after all processes
have entered it. This means, if a process has reached the line 9, all other
processes have called barrier(), and therefore executed write(). Nonetheless,
the assertion at line 9 can fail, because the process did not synchronize with
the hardware: the remote write, although issued, might have been not yet
completed.

What is a correctly synchronized PGAS program? In this chapter we choose
and study robustness (Section 2.8), previously considered for CPU memory
models, as a notion of correct synchronization for programs using PGAS APIs.
First, we define a formal model for describing the semantics of PGAS programs,
presented in Section 8.1. The model reflects the main features of popular real-
world APIs such as SHMEM, ARMCI, GASNet, GPI, and GASPI. In Sec-
tion 8.2 we define robustness for programs in this model.

Second, we devise an algorithm for checking robustness of PGAS programs.

8.1. PGAS SEMANTICS 87

Similar to the previous chapters, we use the following two ideas. First, in
Section 8.3 we show that if a program is not robust, there is a normal-form
computation that demonstrates non-robustness. Next, in Section 8.4 we show
how to detect these computations by a multiheaded automaton. Essentially, we
reduce robustness against PGAS to an emptiness for a multiheaded automa-
ton. This leads to the main result of this chapter: robustness against PGAS is
PSpace-complete.

Related work An alternative notion of synchronization correctness is data
race freedom [4]. Park et al. [73] proposed a testing framework for data race
detection and implemented it for the UPC language. However, the analysis of
the NAS Parallel Benchmarks [69] carried out by these authors showed that a
significant portion of the detected data races are actually not harmful. Several
examples from [73] show that harmful data races (like in the knapsack example)
lead to non-robustness, while benign data races (like in the examples NPB 3.3

BT and SP) do not.

8.1 PGAS Semantics

In this section we consider the most popular PGAS APIs, highlight their differ-
ences and similarities, and devise a unified programming model that allows to
model the reorderings of remote memory accesses allowed by these APIs.

8.1.1 PGAS APIs

All popular PGAS APIs favour the SPMD programming model: the running
program consists of multiple processes executing the same code on different
nodes. All APIs provide functions allowing a process to know its rank and
the total number of processes. The processes can access the global partitioned
address space. Local partition of the global space can be accessed directly. The
remote partitions, located on the remote nodes, can be accessed using API calls.
The APIs differ in the guarantees about the ordering and synchroneity of the
remote memory accesses.

In SHMEM [29] data transfers are performed via shmem get and shmem put

families of routines. The get routines copy the data from a remote node to the
local one and are blocking, i.e., return only when the data is actually copied
and is locally available. The put routines copy the data from a local node to
the remote one. They are non-blocking, but return only after the data is copied
from the local buffer and the buffer can be reused. Ordering of put operations
to the same node can be enforced using shmem fence routine, ordering of puts
across all the nodes — by shmem quiet. However, there is no simple way to
ensure that the data of a given put operation is fully written to the remote node.

ARMCI [68] features blocking (ARMCI Get, ARMCI Put) as well non-
blocking (ARMCI NbGet, ARMCI NbPut) read and write operations. The non-
blocking variants return a handle (an opaque value used to identify the issued
operation). This handle can be passed to the ARMCI Wait routine that will block
until the respective operation is completed. A get operation is considered com-
pleted when the requested data is locally available. A put operation is considered
completed when the data was sent (but not necessarily arrived). To ensure that

88 CHAPTER 8. ROBUSTNESS AGAINST PGAS

the data has arrived, one has to call ARMCI Fence or ARMCI FenceAll. Oper-
ations to the same remote node are executed in the ordered in which they were
issued. Operations to different nodes can complete in any order.

GASNet [19] is the library used for implementing PGAS Languages:
UPC [30], Titanium [43], Co-Array Fortran [70]. Like ARMCI, it pro-
vides blocking (gasnet get, gasnet put) and non-blocking (gasnet get nb,
gasnet put nb) versions of read and write operations. The non-blocking op-
erations return a handle that can be passed, e.g., to gasnet wait syncnb to
wait until the operation with the given handle is completed. The order in which
non-blocking operations complete is intentionally left unspecified.

GPI [63] and GASPI [39] provide functions only for non-blocking data trans-
fers: readDmaGPI, writeDmaGPI and gaspi read, gaspi write. These rou-
tines copy the data between the specified local and remote memory blocks.
Together with the addresses and sizes of the memory blocks, the user also speci-
fies a queue id. GPI and GASPI provide several queues, and the copy operation
is added to the queue with a given id to be executed in background. In GPI
it is guaranteed that the operations from the same queue to the same remote
node are executed in the order in which they were added, there are no order-
ing constrains for operations from different queues or to different nodes. GASPI
does not give any guarantees about the ordering of operations. In order to block
until all the operations in a certain queue are (locally and remotely) completed,
waitDmaGPI and gaspi wait functions are used.

Summing up, in a uniform PGAS programming model it should be possible
to

∙ perform blocking and non-blocking data transfers,

∙ assign a non-blocking operation a handle or a queue id,

∙ wait for completion of an individual operation or of all operations in a
given queue,

∙ enforce ordering between operations.

We define a core model for PGAS that supports all these features. Our model
provides only non-blocking remote reads and writes with explicit queues, but is
flexible enough to accommodate all the above idioms.

8.1.2 PGAS Model

We again define PGAS programs and their semantics in terms of automata,
similar to Section 2.3. A program is an automaton 𝒫 := (𝑄,CMD, ℐ, 𝑞0, 𝑄) with
a finite set of control states 𝑄, all of them being final, initial state 𝑞0, and a set
of transitions ℐ called instructions and labeled with commands CMD defined
below.

We extend the set of commands CMD with the remote read and write API
calls read and write, and the barrier command barrier. Altogether,

⟨cmd⟩ ::= ⟨reg⟩ ← mem[⟨expr⟩] | mem[⟨expr⟩] ← ⟨expr⟩
| ⟨reg⟩ ← ⟨expr⟩ | assume(⟨expr⟩)
| read(⟨local-addr⟩,⟨rank⟩,⟨remote-addr⟩,⟨queue-id⟩)
| write(⟨local-addr⟩,⟨rank⟩,⟨remote-addr⟩,⟨queue-id⟩)
| barrier

8.1. PGAS SEMANTICS 89

where all the undefined non-terminals are expressions ⟨expr⟩.
We assume that a program comes with the address domain ADDR, data

domain DOM, and queue domain QUE. To avoid special cases, we assume that
ADDR = DOM = QUE. In this chapter we mainly analyze programs which run
on a fixed number of nodes 𝑁 . We denote a program together with the number
of nodes it runs on as (𝒫, 𝑁). As the size of program (𝒫, 𝑁) we take the sum
of 𝑁 and the size of 𝒫 (as defined in Section 2.3).

At run time, there is a process on each node that executes the code of
program 𝒫. We will identify each process with its rank from RANK := [1..𝑁].
For modeling purposes, one may assume there are special expressions that let a
process learn its rank and the total number of processes 𝑁 .

The semantics of a PGAS program (𝒫, 𝑁) is an automaton 𝑋pgas(𝒫, 𝑁) :=
(𝑆pgas,∆pgas,E, 𝑠pgas0, 𝐹pgas). A state 𝑠 ∈ 𝑆pgas is a tuple 𝑠 = (sn, pc,mem, fa, fb),
where counter configuration sn : RANK → N gives, for each thread, the id
that will be assigned to the next instruction executed in it, control configu-
ration pc : RANK → 𝑄 maps each process to its current control state, mem-
ory configuration mem : RANK × (REG ∪ ADDR) → DOM maps each pro-
cess to the values stored in each register and at each address, queue config-
uration fa : RANK × QUE → (N × RANK × ADDR × RANK × ADDR)* maps
each process to the remote read and write requests that were issued, and
fb : RANK × QUE → (N × RANK × ADDR × DOM)* contains the values to be
transferred.

The initial state is 𝑠pgas0 := (sn0, pc0,mem0, fa0, fb0), where for all ranks
r ∈ RANK, registers and addresses a ∈ REG ∪ ADDR, and queue identifiers
q ∈ QUE we have pc0(r) := 𝑞0, mem0(r, a) := 0, and fa0(r, q) := 𝜀 =: fb0(r, q).
The set of final states is 𝐹pgas := {(sn, pc,mem, fa, fb) ∈ 𝑆pgas | fa(r, q) = 𝜀 =
fb(r, q) for all r ∈ RANK, q ∈ QUE}. The semantics of commands ensures that
queues can always be emptied, so acceptance with empty queues is not really a
restriction.

The transitions from ∆pgas are labeled with events E that we define together
with the transitions. The transition relation ∆pgas is the minimal relation de-
fined by the rules from Table 8.1. When a process executes a remote write
command, rule (write), a new item is added to a queue in fa. This item contains
the source rank and source address from which the data will be copied, together
with the destination rank and destination address to which the data will be
copied. Eventually, the item is popped from the queue in fa, rule (popa), the
value is read from the source address, and a new item is pushed into the corre-
sponding queue in fb. The new item contains the destination rank and destina-
tion address, and the value that was read from the source address. Eventually,
this item is popped from the queue, rule (popb), and the value is written to the
destination address in the destination rank. Modeling two queue configurations
yields a symmetry between remote writes and reads: a read can be interpreted
as a write that comes upon request. Moreover, two queue configurations capture
well the delays between request creation, reading of the data, and writing of the
data.

The set of all computations of a PGAS program is Cpgas(𝒫, 𝑁) :=
ℒ(𝑋pgas(𝒫, 𝑁)) ⊆ E*.

Example 8.2. Consider the PGAS program (1to1, 2) with the program code

90 CHAPTER 8. ROBUSTNESS AGAINST PGAS

cmd = 𝑟 ← 𝑒

𝑠
(r,sn(r),instr)−−−−−−−−→ (sn′, pc′,mem[(r, 𝑟) := ̂︀𝑒], fa, fb)

(assign)

cmd = 𝑟 ← mem[𝑒a]

𝑠
(r,sn(r),instr,(r,̂︀𝑒a))−−−−−−−−−−−→ (sn′, pc′,mem[(r, 𝑟) := mem(r, ̂︀𝑒a)], fa, fb)

(load)

cmd = mem[𝑒a]← 𝑒v

𝑠
(r,sn(r),instr,(r,̂︀𝑒a))−−−−−−−−−−−→ (sn′, pc′,mem[(r, ̂︀𝑒a) := ̂︀𝑒v], fa, fb)

(store)

cmd = assume(𝑒), ̂︀𝑒 ̸= 0

𝑠
(r,sn(r),instr)−−−−−−−−→ (sn′, pc′,mem, fa, fb)

(assume)

cmd = read(𝑒loca , 𝑒remr , 𝑒rema , 𝑒q)

𝑠
(r,sn(r),instr,̂︀𝑒q)−−−−−−−−−→ (sn′, pc′,mem, fa[(r, ̂︀𝑒q) := 𝛼′], fb),

𝛼′ := fa(r, ̂︀𝑒q) · (sn(r), ̂︂𝑒remr , ̂︂𝑒rema , r, ̂︁𝑒loca)

(read)

cmd = write(𝑒loca , 𝑒remr , 𝑒rema , 𝑒q)

𝑠
(r,sn(r),instr,̂︀𝑒q)−−−−−−−−−→ (sn′, pc′,mem, fa[(r, ̂︀𝑒q) := 𝛼′], fb),

𝛼′ := fa(r, ̂︀𝑒q) · (sn(r), r, ̂︁𝑒loca , ̂︂𝑒remr , ̂︂𝑒rema)

(write)

fa(r, q) = (id, rs, as, rd, ad) · 𝛼
𝑠

(r,id,popa,(rs,as))−−−−−−−−−−→ (sn, pc,mem, fa[(r, q) := 𝛼], fb[(r, q) := 𝛽′]),
𝛽′ := fb(r, q) · (id, rd, ad,mem(rs, as))

(popa)

fb(r, q) = (id, rd, ad, v) · 𝛽
𝑠

(r,id,popb,(rd,ad))−−−−−−−−−−→ (sn, pc,mem[(rd, ad) := v], fa, fb[(r, q) := 𝛽])
(popb)

instrr = pc(r)
barrier−−−−−→ pc′(r) for each r ∈ RANK

𝑠
(1,sn(1),instr1)···(𝑁,sn(𝑁),instr𝑁)−−−−−−−−−−−−−−−−−−−−→ (sn′, pc′,mem, fa, fb),
sn′ := sn[1 := sn(1) + 1] . . . [𝑁 := sn(𝑁) + 1]

(bar)

Table 8.1: Transition rules for 𝑋pgas(𝒫, 𝑁), given instruction instr := 𝑞1
cmd−−→ 𝑞2

and current state 𝑠 = (sn, pc,mem, fa, fb) with pc(r) = 𝑞1. We define (unless
stated otherwise in the rule) pc′ := pc[r := 𝑞2] and sn′ := sn[r := sn(r) + 1]. As
̂︀𝑒 we denote the value of expression 𝑒 in process r and memory configuration
mem.

8.2. TRACES AND ROBUSTNESS 91

from Figure 8.2 being run on two nodes. It has the following computation:

𝜏1to1 = write ·write · popa · popa · bar · bar · load · popb · popb.

Bold events belong to the process with rank 2, the other events to the process
with rank 1. We have addr(popa) = (1, 𝑥), addr(popb) = (2, 𝑦). Symmetri-
cally, addr(popa) = (2, 𝑥) and addr(popb) = (1, 𝑦). The assert in Figure 8.2
is a shortcut for a combination of load and assume, and in this computation
addr(load) = (1, 𝑦).

Given an event e, we write rank(e) for its first component, id(e) for its second
component. As instr(e) we denote the instruction that created the event. For
non-popa and non-popb events, instr(e) is the third component of the tuple e. For
popa and popb events, instr(e) is equal to those of the leftmost matching event
(the event with the same rank and id). For convenience we define event kinds
K := {load, store, assign, assume, read,write, popa, popb, bar}. We use kind(e) for
the third component of the event if it is popa or popb. For the other events we
define kind(e) as expected, depending on instr(e). If kind(e) ∈ {load, store, popa,
popb}, we define addr(e) to be the last component of the event tuple. Otherwise,
we define addr(e) := ⊥. We say that e is a read of addr(e) if kind(e) ∈ {load,
popa}; we say that it is a write of addr(e) if kind(e) ∈ {store, popb}. Finally,
we define que(e) to be the last component of the event e if kind(e) ∈ {read,
write}. If kind(e) ∈ {popa, popb}, then que(e) is equal to that of the matching
read or write event. Otherwise, que(e) := ⊥.

8.1.3 Simulating PGAS APIs

Our formalism natively supports asynchronous data transfers and queues. Op-
erations in the same queue are completed in the order in which they were issued.
Using this, we can model the ordering guarantees given by ARMCI and GPI —
by putting ordered operations into the same queue.

To model waiting on individual operations (waiting on a handle), we asso-
ciate a shadow memory address with each operation. Before issuing the opera-
tion, the value at this address is set to 0. When the operation has been issued,
the process sends to the same queue a read request which overwrites the shadow
memory to 1. Now waiting on the individual operation can be implemented by
polling on the shadow address associated with the operation. Waiting on all
operations in a given queue is done similarly. Synchronous data transfers are
modeled by asynchronous transfers, immediately followed by a wait.

8.2 Traces and Robustness

A trace of a PGAS program’s computation 𝜎 ∈ Cpgas(𝒫, 𝑁) is a graph 𝑇 (𝜎) :=
(𝑉,→𝑝𝑜,→𝑐𝑓 ,↔𝑏𝑎𝑟) with the set of nodes 𝑉 := 𝑉 ⊆ ⋃︀

r∈RANK{r} × N × ℐr and
three kinds of (directed and undirected) edges. For notational convenience we
will sometimes write e actually meaning (rank(e), id(e), instr(e)).

The program order relation →𝑝𝑜 gives the ordering in which instructions
were executed by the program. Let e𝑖1 . . . e𝑖𝑚 be the longest subsequence of
non-popa and non-popb events in 𝜎 with tid(e𝑖𝑘) = tid for all 𝑘 ∈ [1..𝑚] and
kind(e𝑖𝑘) ̸∈ {popa, popb}. Then e𝑖1 →𝑝𝑜 . . .→𝑝𝑜 e𝑖𝑚 .

92 CHAPTER 8. ROBUSTNESS AGAINST PGAS

Process 1 Process 2

(1, 1, 𝑞0
write(𝑥,rNR,𝑦,𝑄0)−−−−−−−−−−−→ 𝑞1) (2, 1, 𝑞0

write(𝑥,rNR,𝑦,𝑄0)−−−−−−−−−−−→ 𝑞1)

(1, 2, 𝑞1
barrier−−−−−→ 𝑞2) (2, 2, 𝑞1

barrier−−−−−→ 𝑞2)

(1, 3, 𝑞2
𝑟←mem[𝑦]−−−−−−→ 𝑞3)

𝑝𝑜

𝑝𝑜

𝑝𝑜
𝑏𝑎𝑟

𝑐𝑓

Figure 8.3: Trace of computation of 𝜏1to1 from Example 8.2.

The conflict order →𝑐𝑓 is intuitively a union of →𝑠𝑟𝑐, →𝑐𝑜, →𝑐𝑓 relations
as they were defined for Power (Section 4.2) and TSO (Section 2.7.2). Let
𝜏 = 𝛼 · e1 · 𝛽 · e2 · 𝛾, where e1 and e2 access the same address, and at least
one of them is a write: addr(e1) = addr(e2) = (r, a), kind(e1) ∈ {store, popb}
or kind(e2) ∈ {store, popb}. If there is no e ∈ 𝛽 such that addr(e) = (r, a) and
kind(e) ∈ {store, popb}, then e1 →𝑐𝑓 e2.

The barrier relation ↔𝑏𝑎𝑟 is a symmetric relation that connects matching
barrier calls: if 𝜏 = 𝛼 · e1 · · · e𝑁 · 𝛽, where kind(e𝑖) = bar and rank(e𝑖) = 𝑖,
𝑖 ∈ RANK, then e𝑖 ↔𝑏𝑎𝑟 e𝑗 for 𝑖 ̸= 𝑗.

Example 8.3. The trace of computation 𝜏1to1 from Example 8.2 is shown in
Figure 8.3. We omitted the instructions (local assignments) computing the
rightNeighborRank (rNR in the figure) for simplicity.

We instantiate the robustness problem (Section 2.8) for PGAS.

Problem 8.4 (Robustness against PGAS). Given a program (𝒫, 𝑁), to check
whether 𝑇sc(𝒫, 𝑁) = 𝑇pgas(𝒫, 𝑁).

In the above problem definition we assume that the set of SC computa-
tions Csc(𝒫, 𝑁) consists of all computations from Cpgas(𝒫, 𝑁), where matching
events are located next to each other, i.e., remote reads and writes are executed
immediately.

By Lemma 2.16, robustness amounts to the absence of (non-trivial) cycles
in the happens-before relation →ℎ𝑏:=→𝑝𝑜 ∪ →𝑐𝑓 ∪ ↔𝑏𝑎𝑟.

Example 8.5. The happens-before relation of computation 𝜏1to1 is cyclic (Fig-
ure 8.3). Therefore, the program (𝒫, 𝑁) is not robust. Indeed, if remote memory
accesses are performed immediately, as they do in sequentially consistent com-
putation, the load done in the assert() is guaranteed to read the value of 𝑦
written by the left neighbor process.

8.3 Normal-Form Computations

We say that computation 𝜏 ∈ Cpgas(𝒫) is in normal form of degree 𝑛 if there is
a partitioning 𝜏 = 𝜏1 · · · 𝜏𝑛, such that the following holds:

8.3. NORMAL-FORM COMPUTATIONS 93

PGAS-NF-A The parts 𝜏2 . . . 𝜏𝑛 consist solely of popa and popb events.

PGAS-NF-B Let 𝑖 ∈ {1, 2} let e𝑖, e
′
𝑖 be events with rank(e𝑖) = rank(e′𝑖) and

id(e𝑖) = id(e′𝑖). If e1, e2 ∈ 𝜏𝑗 and e′1, e
′
2 ∈ 𝜏𝑗′ , then e1 <𝜏𝑗 e2 iff e′1 <𝜏𝑗′ e

′
2.

We elaborate on the second requirement PGAS-NF-B. Consider two accesses
𝑎 and 𝑏 to remote processes that can be found in the first part of the computation
𝜏1. Assume corresponding pop events 𝑎′ and 𝑏′ are delayed and can both be
found in a later part of the computation, say 𝜏2. Then the ordering of 𝑎′ and 𝑏′

in 𝜏2 coincides with the order of 𝑎 and 𝑏 in 𝜏1.

Example 8.6. Computation 𝜏1to1 from Example 8.2 is not in normal-form of
degree 𝑛, for any 𝑛 ∈ N. Indeed, the definition of normal form (PGAS-NF-
A) requires the second and further part to consist solely of popa and popb
events. Therefore, the 𝜏1 part must include at least the following prefix of 𝜏1to1:
write ·write · popa · popa · bar · bar · load. However, any partitioning of 𝜏1to1 with
such 𝜏1 would violate PGAS-NF-B: the write event of the first process comes
before the write event of the second process, but the matching popa comes after
popb.

In the rest of the section we prove the following theorem:

Theorem 8.7. A PGAS program (𝒫, 𝑁) is robust iff it has no normal-form
computation of degree 4 with cyclic happens-before relation.

Example 8.8. The computation 𝜏 ′′1to1 is a normal-form computation of degree
2 (and, consequently, any other higher degree):

𝜏 ′′1to1 := (write · popa ·write · popa · bar · bar · load) · (popb · popb).

Notably, it has the same trace as 𝜏1to1 (Figure 8.3) with cyclic happens-before
relation.

Consider a computation 𝜎 ∈ Cmm(𝒫, 𝑁). By 𝜎 ∖ (r, id) we denote the compu-
tation obtained from 𝜎 by deleting all events e with rank(e) = r and id(e) = id.
We shorten 𝜎 ∖ (rank(e), id(e)) to 𝜎 ∖ e in the future.

Lemma 8.9 (Cancellation). Consider a computation 𝜀 ̸= 𝜏 ∈ Cpgas(𝒫, 𝑁) and
let e be the last event in 𝜏 with kind(e) ̸∈ {popa, popb}. Then 𝜏 ∖e ∈ Cpgas(𝒫, 𝑁).

Proof. All transitions that produced events to the right of e are unconditionally
executable. Moreover, 𝜏 does not have →𝑝𝑜-successors following e. Therefore,
the resulting computation 𝜏 ∖ e is in Cpgas(𝒫, 𝑁).

Assume that a PGAS program (𝒫, 𝑁) is not robust, i.e., by Lemma 2.16, has
computations with cyclic happens-before relation. Let 𝜏 be the shortest among
these computations. Let e ∈ 𝜏 be the event determined by Lemma 8.9. If
kind(e) ̸∈ {read,write}, then 𝜏 = 𝜏1 · e · 𝜏2. Otherwise, 𝜏 = 𝜏1 · e · 𝜏2 · e′ · 𝜏3 · e′′ · 𝜏4
with rank(e) = rank(e′) = rank(e′′) = r and id(e) = id(e′) = rank(e′′) = id.
Consider the latter case (the former is simpler). Then, 𝜏 ′ := 𝜏 ∖ (r, id) = 𝜏1 · 𝜏2 ·
𝜏3 ·𝜏4. Since |𝜏 ′| < |𝜏 |, the new computation has acyclic happens-before relation.
Therefore, by Lemma 2.16, there is a sequentially consistent computation 𝜎 ∈
Csc(𝒫) (where popa and popb events immediately follow matching read and write
events) with the same trace 𝑇 (𝜎) = 𝑇 (𝜏 ′).

94 CHAPTER 8. ROBUSTNESS AGAINST PGAS

We now use 𝜎 to rearrange the events in 𝜏 ∖ e and transform the original
computation 𝜏 into a normal-form 𝜏 ′′. The idea is to project 𝜎 to the events in
𝜏1 to 𝜏4. Reinserting e yields a normal-form computation:

𝜏 ′′ := (𝜎↓𝜏1) · e · (𝜎↓𝜏2) · e′ · (𝜎↓𝜏3) · e′′ · (𝜎↓𝜏4).

The following lemma concludes the proof of Theorem 8.7.

Lemma 8.10 (Reinsertion). 𝜏 ′′ ∈ Cpgas(𝒫, 𝑁), 𝑇 (𝜏 ′′) = 𝑇 (𝜏), and 𝜏 ′′ is in
normal form of degree 4.

Proof. To relieve the reader from the burden of syntax, we consider the case
when 𝜏 ′ := 𝜏 ∖ e = 𝜏1 · 𝜏2. We start with the program order. Let e1, e2 ∈ 𝜏1 with
e1 →𝑝𝑜 e2 in 𝜏 and, consequently, in 𝜏 ′. By definition of 𝜎, we have e1 →𝑝𝑜 e2
in 𝜎. Since 𝜎 ↓ 𝜏1 contains e1 and e2 and does not add events between them,
e1 →𝑝𝑜 e2 holds for 𝜎 ↓ 𝜏1 and, consequently, 𝜏 ′′. Assume e1 ∈ 𝜏1 and e2 ∈ 𝜏2
with e1 →𝑝𝑜 e2 in 𝜏 and in 𝜏 ′. Then e1 is the rightmost element in 𝜏1 with
its rank that is different from a pop. Similarly, e2 is the leftmost element in 𝜏2
with its rank and different from a pop. The same is valid for their positions in
𝜎 ↓ 𝜏1 and 𝜎 ↓ 𝜏2, which leads to e1 →𝑝𝑜 e2 in 𝜏 ′′. The case when e1 ∈ 𝜏1 and
e2 = e is similar. Since 𝜏 and 𝜏 ′′ consist of the same events, the cardinalities of
the respective →𝑝𝑜 relations are equal, and the above inclusion already means
the program orders in both computations are equal.

Now we consider the conflict relation. Let e1, e2 ∈ 𝜏1 with e1 →𝑐𝑓 e2 in 𝜏
and hence in 𝜏 ′. By definition of 𝜎, we have e1 →𝑐𝑓 e2 in 𝜎. Since 𝜎↓𝜏1 contains
e1 and e2 and does not add new actions between them, e1 →𝑐𝑓 e2 holds for 𝜎↓𝜏1
and, consequently, for 𝜏 ′′.

Assume e1, e2 ∈ 𝜏1 and e1 ̸→𝑐𝑓 e2 in 𝜏 . One option is that e1 and e2 do not
access the same address or both are reads. Then they still will not conflict in 𝜏 ′′.
The other option is that e1 →𝑐𝑓 e3 in 𝜏 , where e3 is a write to addr(e1) = addr(e2)
that is located between e1 and e2 in 𝜏1. Then, as already proven, e1 →𝑐𝑓 e3
will hold in 𝜏 ′′. Consequently, e1 →𝑐𝑓 e2 will not hold in 𝜏 ′′. The case when
e1, e2 ∈ 𝜏2 is similar.

Assume e1 ∈ 𝜏1, e2 ∈ 𝜏2, and e1 →𝑐𝑓 e2 in 𝜏 . Then, e is not a write to
addr(e1) = addr(e2), and e1 →𝑐𝑓 e2 in 𝜏 ′. Note that 𝜎 ↓ 𝜏1 does not contain
a write to addr(e1) to the right of e1. Otherwise, 𝜏1 would contain a write e3
to addr(e1), and e1 →+

𝑐𝑓 e3, which contradicts e1 →𝑐𝑓 e2 in 𝜏 . With a similar
argument, 𝜎↓𝜏2 does not contain a write to addr(e1) to the left of e2. Therefore,
e1 →𝑐𝑓 e2 in 𝜎↓𝜏1 · e · 𝜎↓𝜏2.

Assume e1 ∈ 𝜏1, e2 ∈ 𝜏2, and e1 ̸→𝑐𝑓 e2 in 𝜏 . The proof of e1 ̸→𝑐𝑓 e2 in 𝜏 ′′

is as in the case when e1, e2 ∈ 𝜏1.
The case when e1 = e or e2 = e is no harder.
Equality of ↔𝑏𝑎𝑟 in 𝜏 and 𝜏 ′′ follows from the fact that consecutive bar-

rier events in 𝜏 remain consecutive in 𝜎. By choice of the deleted events in
Lemma 8.9, these events belong to part 𝜏1 and will remain consecutive in 𝜎↓𝜏1.

To prove that 𝜏 ′′ ∈ Cpgas(𝒫, 𝑁), we proceed by contradiction. Let 𝛼 ̸= 𝜏 ′′ be

the longest prefix of 𝜏 ′′ so that 𝑠pgas0
𝛼−→ 𝑠 for some state 𝑠. Then 𝜏 ′′ = 𝛼 · ẽ · 𝛽

with 𝑠pgas0
𝛼−→ 𝑠 and 𝑠 ̸ ẽ−→. Let 𝑠 = (pc,mem, fa, fb). If kind(ẽ) ∈ {popa, popb},

then 𝑠 ̸ ẽ−→ means that the respective queue fa or fb contains an incorrect topmost
element or is empty in 𝑠. This is impossible, since 𝜏 and 𝜏 ′′ have the same

8.4. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 95

Process 1 Process 2

(1, 1, 𝑞0
write(𝑥,rNR,𝑦,𝑄0)−−−−−−−−−−−→ 𝑞1) (2, 1, 𝑞0

write(𝑥,rNR,𝑦,𝑄0)−−−−−−−−−−−→ 𝑞1)

(1, 2, 𝑞1
barrier−−−−−→ 𝑞2) (2, 2, 𝑞1

barrier−−−−−→ 𝑞2)

𝑝𝑜 𝑝𝑜
𝑏𝑎𝑟

Figure 8.4: Trace of computation of 𝜏 ′1to1 from Example 8.11.

ordering of read and write events with the same rank and queue id (due to
the equalities of →𝑝𝑜 and →𝑐𝑓 in both computations) and the same ordering
of popa (popb) events with the same rank and queue id (proven similar to the

equality of →𝑝𝑜 in these computations). If kind(ẽ) ̸∈ {popa, popb}, then 𝑠 ̸ ẽ−→
may hold because the transition 𝑞1

cmd−−→ 𝑞2 of ẽ requires a different source state,
𝑞1 ̸= pc(rank(ẽ)). But since pc(rank(ẽ)) is unambiguously determined by the
instruction of the→𝑝𝑜-predecessor of ẽ, which is the same in 𝜏 ′′ and in 𝜏 due to
the matching program-order relations, this is not the case. The last opportunity

why 𝑠 ̸ ẽ−→ may hold is because the transition producing ẽ reads different values
from registers or memory, e.g., ẽ is a conditional assume(𝑒) and ̂︀𝑒 = 0 in 𝑠. But
since 𝜏 ′′ consists of the same events as 𝜏 , has the same program and conflict
relations (i.e., reads receive values from the same writes in both computations),
and 𝜏 ∈ Cpgas(𝒫, 𝑁), this cannot be the case.

Finally, 𝜏 ′′ is in normal-form of degree 4: 𝜏 ′′1 := 𝜎 ↓ 𝜏1 · e, 𝜏 ′′2 := 𝜎 ↓ 𝜏2 · e′,
𝜏 ′′3 := 𝜎 ↓ 𝜏3 · e′′, 𝜏 ′′4 := 𝜎 ↓ 𝜏4. PGAS-NF-A holds by the choice of the deleted
event, PGAS-NF-B holds by definitions of 𝜏 ′′ and 𝜎.

Example 8.11. Computation 𝜏1to1 from Example 8.2 is a shortest computation
with cyclic happens-before relation of program (1to1, 2). The event deleted
according to Lemma 8.9 is e = load. Therefore, 𝜏 ′1to1 := 𝜏1 · 𝜏2, where

𝜏1 := write ·write · popa · popa · bar · bar and 𝜏2 := popb · popb.

The computation 𝜏 ′1to1 has the trace shown in Figure 8.4. It has acyclic
happens-before relation (modulo the trivial cycle due to↔𝑏𝑎𝑟). The same trace
has the sequentially consistent computation 𝜎1to1:

𝜎1to1 := write · popa · popb ·write · popa · popb · bar · bar.

The resulting normal-form computation is 𝜏 ′′1to1:

𝜏 ′′1to1 := (write · popa ·write · popa · bar · bar · load) · (popb · popb).

As already noted in Example 8.8, it has the same trace as 𝜏1to1 (Figure 8.3).

8.4 From Robustness to Language Emptiness

In this section we reduce the problem of checking the absence of normal-form
computations with cyclic happens-before relation to the language emptiness

96 CHAPTER 8. ROBUSTNESS AGAINST PGAS

problem for multiheaded automata. First, we construct, for each program
(𝒫, 𝑁), a multiheaded automaton generating all normal-form computations of
this program. Next, we intersect the language of this automaton with regu-
lar languages checking cyclicity of the happens-before relation. Altogether, the
program is robust iff the intersection is empty.

8.4.1 Generating Normal-Form Computations

In this section we show how to describe the language of all normal-form com-
putations of a given program using multiheaded automata. We could not
employ pushdown automata (or finite-state automata) for this purpose, be-
cause the language consisting of all normal-form computations is generally
not context-free (and, consequently, not regular), even if we exclude the (un-
bounded) serial numbers from the event tuples. Indeed, consider a program

𝒫 := ({𝑞0},CMD, {instr}, {𝑞0}) with instr := 𝑞0
read(𝑥,1,𝑥,0)−−−−−−−−→ 𝑞0 running on

a single node. The language ℒ of all normal-form computations of degree 4
of (𝒫, 1) is not context-free. Indeed, if it would be context-free, its intersec-
tion with a regular language would give a context-free language. However,
assuming 𝑎 := (1, instr, 0), 𝑏 := (1, popa, (1, 𝑥)), 𝑐 := (1, popb, (1, 𝑥)), we have
ℒ ∩ 𝑎*𝑏*𝑐* = {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ∈ N}, which is well-known to be non-context-free.

We define a 4-headed automaton 𝑀(𝒫, 𝑁) := (𝑆𝑀 ,E,∆𝑀 , 𝑠𝑀 0, 𝑆𝑀) that
generates all normal-form computations 𝜏 = 𝜏1 ·𝜏2 ·𝜏3 ·𝜏4 ∈ Cpgas(𝒫, 𝑁). In order
to generate 𝜏1, the new automaton tracks the control and memory configurations
in the way 𝑋pgas(𝒫, 𝑁) does. For the remainder of the computation, these
configurations are not needed. Indeed, 𝜏2 to 𝜏4 only consist of popa and popb
events that are executable regardless of the control and memory configurations.
However, 𝑀(𝒫, 𝑁) has to take care of the ordering of popa and popb events
from the same queue. In particular, if e1 handles a request issued before the
request of e2 with kind(e1) = kind(e2), then it cannot be the case that e1 ∈ 𝜏𝑗
and e2 ∈ 𝜏𝑖 with 𝑖 < 𝑗.

Guided by this discussion, we define a state 𝑠 ∈ 𝑆𝑀 as a tuple 𝑠 := (sn, pc,
mem, pa, pb). The counter configuration sn, the state and memory configurations
pc and mem, and their initial values are defined as in Section 8.1. They reflect
the state of the program after it has generated a prefix of 𝜏1. Let HEAD := [1..4].
The functions pa, pb : RANK × QUE → HEAD give, for each process and each
queue, the part 𝜏1 to 𝜏4 of the computation where the next popa resp. popb
event will be generated. The initial state is 𝑠𝑀 0 := (pc0,mem0, pa0, pb0) with
pa0(r, q) := 1 =: pb0(r, q) for all r ∈ RANK and q ∈ QUE.

The transition relation ∆𝑀 is the smallest relation defined by the rules in
Table 8.2. We elaborate on the rules that are new or substantially different
from those in Table 8.1. Rule (gha′) lets the automaton choose the part of the
computation to which the next popa event will be appended. The first restriction
is that the index of the part can only increase, as events from the same queue
are processed in order. The second restriction is that popa events cannot be
generated to the right of popb events from the same queue. Rule (ghb′) is the
similar rule for popb events.

By the rules (read′) and (write′), the automaton appends a read or write
event to 𝜏1 and the corresponding popa and popb events in one shot to the
parts determined by pa and pb. Since a single transition of a multiheaded

8.4. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 97

pa(r, q) < pb(r, q)

𝑠
𝜀−→ 𝑠′, pa′ := pa[(r, q) := pa(r, q) + 1]

(gha′)

pb(r, q) < 4

𝑠
𝜀−→ 𝑠′, pb′ := pb[(r, q) := pb(r, q) + 1]

(ghb′)

cmd = read(𝑒loca , 𝑒remr , 𝑒rema , 𝑒q), pa(r, ̂︀𝑒q) = 𝑚, pb(r, ̂︀𝑒q) = 𝑛

𝑠
(1,(r,id,instr,̂︀𝑒q))·(𝑚,(r,id,popa,(̂︂𝑒remr ,̂︂𝑒rema)))·(𝑛,(r,id,popb,(r,̂︁𝑒loca)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑠′,

pc′ := pc[r := 𝑞2],

if 𝑛 = 1 then mem′ := mem[(r, ̂︁𝑒loca) := mem(̂︂𝑒remr , 𝑒rema)]

(read′)

cmd = write(𝑒loca , 𝑒remr , 𝑒rema , 𝑒q), pa(r, ̂︀𝑒q) = 𝑚, pb(r, ̂︀𝑒q) = 𝑛

𝑠
(1,(r,id,instr,̂︀𝑒q))·(𝑚,(r,id,popa,(r,̂︁𝑒loca)))·(𝑛,(r,id,popb,(̂︂𝑒remr ,̂︂𝑒rema)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑠′,

pc′ := pc[r := 𝑞2],

if 𝑛 = 1 then mem′ := mem[(̂︂𝑒remr , ̂︂𝑒rema) := mem(r, ̂︂𝑒loca)]

(write′)

cmd = 𝑟 ← mem[𝑒]

𝑠
1,(r,id,instr,(r,̂︀𝑒))−−−−−−−−−−→ 𝑠′, mem′ := mem[(r, 𝑟) := mem(r, ̂︀𝑒)]

(load′)

cmd = mem[𝑒a]← 𝑒v

𝑠
1,(r,id,instr,(r,̂︀𝑒a))−−−−−−−−−−−→ 𝑠′, mem′ := mem[(r, ̂︀𝑒a) := ̂︀𝑒v]

(store′)

cmd = 𝑟 ← 𝑒

𝑠
1,(r,id,instr)−−−−−−−→ 𝑠′, mem′ := mem[(r, 𝑟) := ̂︀𝑒]

(assign′)

cmd = assume(𝑒), ̂︀𝑒 ̸= 0

𝑠
1,(r,id,instr)−−−−−−−→ 𝑠′

(assume′)

instrr := pc(r)
barrier−−−−−→ pc′(r) for each r ∈ RANK

𝑠
(1,(1,sn(1),instr1))···(1,(𝑁,sn(𝑁),instr𝑁))−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑠′

sn′ := sn[1 := sn(1) + 1] . . . [𝑁 := sn(𝑁) + 1]

(bar′)

Table 8.2: Transition rules for 𝑀(𝒫, 𝑁), given instruction instr := 𝑞1
cmd−−→ 𝑞2

and current state 𝑠 = (sn, pc,mem, pa, pb) with pc(r) = 𝑞1. The destination
state is 𝑠′ = (sn′, pc′,mem′, pa′, pb′). Unless stated otherwise in the rule, sn′ :=
sn[tid := sn(tid) + 1], pc′ := pc, mem′ := mem, pa′ := pa, pb′ := pb, id := sn(r).

98 CHAPTER 8. ROBUSTNESS AGAINST PGAS

automaton can generate at most one letter, the rule actually defines multiple
consecutive transitions that use fresh intermediary states. If popb is added to
𝜏1, the memory configuration is updated accordingly. Note that the generation
in one shot causes pop events within the same part 𝜏𝑖 to follow in the order of
the corresponding read/write events in 𝜏1. Fortunately, this is always the case
in normal-form computations by PGAS-NF-B. Computations that are not in
normal form, e.g., 𝜏1to1 from Example 8.2, cannot be generated by 𝑀(𝒫, 𝑁).

The set of final states of 𝑀(𝒫, 𝑁) is 𝑆𝑀 .

Lemma 8.12. 𝑀(𝒫, 𝑁) only generates computations of (𝒫, 𝑁):
ℒ(𝑀(𝒫, 𝑁)) ⊆ Cpgas(𝒫, 𝑁).

Proof. Consider 𝑠𝑀 0
𝜎−→ 𝑠𝑀 with 𝑠𝑀 = (sn, pc,mem, pa, pb) ∈ 𝑆𝑀 . Let 𝜏 =

word(𝜎) = 𝜏1 · 𝜏2 · 𝜏3 · 𝜏4 with 𝜏𝑖 = take2nd(𝜎↓({𝑖}×E)). We prove the following
by induction on the length of the computation.

IS1 𝑠pgas0
𝜏−→ 𝑠pgas for some 𝑠pgas ∈ 𝐹pgas. Membership in 𝐹pgas means the

queues of 𝑠pgas are empty.

IS2 𝑠pgas0
𝜏1−→ (sn, pc,mem, fa, fb) for some fa, fb, but with the same sn, pc, mem

as in 𝑠𝑀 above.

IS3 Let pa(r, q) = 𝑘. Then no 𝜏𝑖 with 𝑖 > 𝑘 contains an event e with kind(e) =
popa, rank(e) = r, and que(e) = q. A similar statement holds for fb.

IS4 For all e ∈ 𝜏2 · 𝜏3 · 𝜏4 we have kind(e) ∈ {popa, popb}.

In the base case with 𝜎 = 𝜀 the inductive invariant trivially holds.

Assume the statement holds for 𝜎. Consider 𝑠𝑀 0
𝜎′
−→ 𝑠′𝑀 =

(sn′, pc′,mem′, pa′, pb′) which extends 𝜎 with Rule (read′): 𝜎′ = 𝜎 · (1, e1) ·
(2, e2) · (3, e3), where kind(e1) = read, kind(e2) = popa, kind(e3) = popb. Then
mem′ = mem, pa′ = pa, pb′ = pb, and 𝜏 ′ = word(𝜎′) = 𝜏 ′1 · 𝜏 ′2 · 𝜏 ′3 · 𝜏 ′4, where
𝜏 ′𝑖 = take2nd(𝜎′ ↓ ({𝑖} × E)) are 𝜏 ′1 = 𝜏1 · e1, 𝜏 ′2 = 𝜏2 · e2, 𝜏 ′3 = 𝜏3 · e3, and
𝜏 ′4 = 𝜏4. Since IS4 and IS3 hold for 𝜎, they also hold for 𝜎′ by definition of 𝜎′

and Rule (read′).
It remains to check the behavior of automaton 𝑋pgas(𝒫, 𝑁). By IS2

from the induction hypothesis and the Rules (read) and (read’), we have

𝑠pgas0
𝜏1·e1−−−→ (sn′, pc′,mem, fa′, fb). So IS2 holds for 𝜎′ as well. To check

IS1 for 𝜎′, we consider the content of fa′. According to Rule (read), we have
fa′ := fa[(rank(e1), que(e1)) := fa(rank(e1), que(e1)) · (id, rrem, arem, rloc, aloc)]. By
the induction hypothesis, we can generate 𝜏2 from (sn, pc,mem, fa, fb). The
state (sn′, pc′,mem, fa′, fb), in comparison to the predecessor, appends a single
element to fa. Since 𝜏2 only consists of popa and popb events, we can still gen-
erate the computation from (sn′, pc′,mem, fa′, fb). This yields 𝑠pgas0

𝜏1·e1·𝜏2−−−−−→ 𝑠1
for some 𝑠1.

We now show that 𝑠1
e2−→ 𝑠2 for some 𝑠2. Let 𝑠1 = (sn′′, pc′′,mem′′, fa′′, fb′′).

When checking IS3 for 𝜎′, we noted that 𝜏3 · 𝜏4 does not contain popa events ẽ
with rank rank(ẽ) = rank(e1) and queue id que(ẽ) = que(e1). Therefore, by IS1
from the induction hypothesis, all elements in fa(rank(e1), que(e1)) are popped
by popa transitions in 𝜏2. As a result, fa′′(rank(e1), que(e1)) contains only the
single element added by e1. Comparing Rules (read), (popa), and (read’), shows

8.4. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 99

𝑠1
e2−→ 𝑠2. Note that we need to take the read-rules into account to make sure

the contents of the tuple e2 coincide for 𝑀(𝒫, 𝑁) and 𝑋pgas(𝒫, 𝑁).

The fact that 𝑋pgas(𝒫, 𝑁) can accept the rest of computation 𝜏 ′ (𝑠2
𝜏3·e3·𝜏4−−−−−→

𝑠3 for some 𝑠3) is proven similarly. Emptiness of the queues in 𝑠3 follows from
Rule (read’) and IS1 for 𝜏 .

The argumentation for write events, kind(e1) = write, is the same. For the
remaining kinds of events e1, the proofs are simpler. There we only need to
make use of state and memory configurations, which coincide in 𝑀(𝒫, 𝑁) and
𝑋pgas(𝒫, 𝑁).

Lemma 8.13. Automaton 𝑀(𝒫, 𝑁) generates all normal-form computations
of the program: {𝜏 ∈ Cpgas(𝒫, 𝑁) | 𝜏 is in normal form of degree 4} ⊆
ℒ(𝑀(𝒫, 𝑁)).

Proof. Consider a normal-form computation 𝜏 = 𝜏1 ·𝜏2 ·𝜏3 ·𝜏4 ∈ Cpgas(𝒫, 𝑁) with

𝑠pgas0
𝜏1−→ 𝑠pgas for some 𝑠pgas = (sn, pc,mem, fa, fb). To prove that 𝑀(𝒫, 𝑁) can

generate 𝜏 , we show the following by induction on the length of the compu-
tation. (Note that by PGAS-NF-B we can extend normal-form computations
inductively.)

IS1 𝑠𝑀 0
𝜎−→ 𝑠𝑀 = (sn, pc,mem, pa, pb) with sn, pc and mem from 𝑠pgas above.

IS2 We have take2nd(𝜎↓({𝑖} ×E)) = 𝜏𝑖 for all 𝑖 ∈ HEAD.

IS3 Let the last e with kind(e) = popa, rank(e) = r, que(e) = q be in 𝜏𝑘. Then
pa(r, q) = 𝑘. If there is no such event, pa(r, q) = 1. There is a similar
requirement for popb events.

Note that computation 𝜀 satisfies all the constraints. Assume the constraints
hold for computation 𝜏 . We extend 𝜏 to a computation 𝜏 ′ = 𝜏 ′1 · 𝜏 ′2 · 𝜏 ′3 · 𝜏 ′4, and
show that it also satisfies IS1 to IS3. Extending 𝜏 adds an event to the first
part of the computation, 𝑠pgas

e1−→ 𝑠′pgas. We do a case distinction based on
kind(e1).

Consider the case when kind(e1) = read. Let e2 and e3 be the matching popa
and popb events and 𝜏 ′2 = 𝜏2 · e2 and 𝜏 ′3 = 𝜏3 · e3. Assume e1 was generated

by the transition 𝑞1
cmd−−→ 𝑞2. This means pc(rank(e1)) = 𝑞1. By IS1 in the

induction hypothesis, 𝑠pgas and 𝑠𝑀 share the same sn, pc and mem. Therefore,
by Rules (read) and (read’), 𝑀(𝒫, 𝑁) can mimic the read in 𝑋pgas(𝒫, 𝑁). To
make sure we append e2 to 𝜏2, we have to check the requirements on pa. If
pa(rank(e2), que(e2)) < 2, we can use Rule (gha’) to adapt the counter. If we
assume that pa(rank(e2), que(e2)) = 𝑘 > 2, we derive a contradiction as follows.
By the induction hypothesis, there is an event e′ in 𝜏𝑘 with rank(e′) = rank(e2),
que(e′) = que(e2), and kind(e′) = kind(e2) = popa. This event has a matching
event e in 𝜏1. Summing up, e, e1, e2, e′ are contained in 𝜏 in this order.
Moreover, the latter two events are added to the same queue in reverse order: e′

before e2. A contradiction to the definition of FIFO. The event e3 is considered
similarly. We conclude

𝑠𝑀
(1,e1)·(2,e2)·(3,e3)−−−−−−−−−−−→ 𝑠′𝑀 .

The requirements IS1 to IS3 are readily checked. The argumentation for write
events is the same. For the remaining kinds of events, the induction step is
simpler since sn, pc, and mem coincide in 𝑠pgas and 𝑠𝑀 .

100 CHAPTER 8. ROBUSTNESS AGAINST PGAS

Lemma 8.14. {𝜏 ∈ Cpgas(𝒫, 𝑁) | 𝜏 is in normal form of degree 4} =
ℒ(𝑀(𝒫, 𝑁)).

Proof. The inclusion from left to right is Lemma 8.13. The inclusion from right
to left holds by Lemma 8.12 and the observation that 𝑀(𝒫, 𝑁) only generates
normal-form computations.

The following lemma states that 𝑀(𝒫, 𝑁) generates events in program order.

Lemma 8.15. Consider computation 𝑠𝑀 0
𝜎−→ 𝑠𝑀 with events (1, e1) <𝜎 (1, e2)

so that kind(e1), kind(e2) /∈ {popa, popb} and rank(e1) = rank(e2). Then e1 →+
𝑝𝑜

e2 in 𝜏 = word(𝜎).

Proof. By definition of the transition relation ∆𝑀 and →𝑝𝑜.

The following lemma states that 𝑀(𝒫, 𝑁) generates the events popa and
popb immediately after the corresponding read or write event.

Lemma 8.16. Let 𝑠𝑀 0
𝜎−→ 𝑠𝑀 , 𝜏 = word(𝜎), and e1, e2, e3 ∈ 𝜏 with kind(e1) ∈

{read,write}, kind(e2) = popa, and kind(e3) = popb. Then e1, e2, and e3 are
matching events in 𝜏 iff 𝜎 = 𝜎1 · (1, e1) · (𝑚, e2) · (𝑛, e3) · 𝜎2 for some 𝜎1, 𝜎2 and
𝑚,𝑛 ∈ HEAD with 𝑚 ≤ 𝑛.

Proof. By Rules (read) and (write), the preconditions on (gha) and (ghb), and
the definition of matching events.

8.4.2 Checking Cyclicity of the Happens-Before Relation

In this subsection we show that if a computation has a happens-before cycle,
it has a happens-before cycle, in which each process contributes only once. We
call such a cycle beautiful. Next, we show how to detect beautiful cycles using
finite automata.

We call a happens-before cycle beautiful, if it has the following form:

(r1, 𝑖1, instr1)→*𝑝𝑜 (r1, 𝑖
′
1, instr

′
1)→ℎ𝑜𝑝 . . .

→ℎ𝑜𝑝 (r𝑛, 𝑖𝑛, instr𝑛)→*𝑝𝑜 (r𝑛, 𝑖
′
𝑛, instr

′
𝑛)→ℎ𝑜𝑝 (r1, 𝑖1, instr1).

Here, →ℎ𝑜𝑝:= (→𝑐𝑓 ∪ ↔𝑏𝑎𝑟) and r𝑘 ̸= r𝑙 for 𝑘 ̸= 𝑙. We call 𝜃 := r1 . . . r𝑛 the
profile of the cycle.

Example 8.17. Computations 𝜏1to1 (Example 8.2) and 𝜏 ′′1to1 (Example 8.8)
have a single happens-before cycle (Figure 8.3). This cycle is beautiful.

Lemma 8.18. Computation 𝜏 ∈ Cpgas(𝒫) has a happens-before cycle iff it has
a beautiful happens-before cycle.

Proof. Similar to the proof of Lemma 3.7.

In spite of the additional restrictions, beautiful cycles are not trivial to rec-
ognize. The reason is that the events yielding the trace nodes belonging to the
cycle are not necessarily contained in the computation in the order in which
they appear in the cycle. The idea of our cycle detection is to guess a cycle pro-
file 𝜃, then guess two events in program order in each process belonging to the

8.4. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 101

profile, and finally check that these events are →ℎ𝑜𝑝-related, as needed accord-
ing to 𝜃. We accomplish the former by an augmented multiheaded automaton
𝑀 ′(𝒫, 𝑁, 𝜃). The latter check is performed by a finite automaton.

The automaton 𝑀 ′(𝒫, 𝑁, 𝜃) generates computations over the alphabet E×M
with M := 2{enter,leave}. The automaton non-deterministically guesses and marks
the first and the last event in each process that contribute to a cycle. The
events marked by enter yield the nodes (tid𝑗 , 𝑖𝑗 , instr𝑗) of the beautiful cycle.
The events marked by leave yield the nodes (tid𝑗 , 𝑖

′
𝑗 , instr

′
𝑗) of the beautiful cycle.

Note that automaton 𝑀(𝒫, 𝑁) executes instructions of each process in program
order (Lemma 8.15) and generates matching events in one shot (Lemma 8.16).
Therefore, if 𝑀 ′(𝒫, 𝑁) produces an event e1 marked with enter and later (or
while handling the same instruction) produces an event e2 of the same process
marked with leave, then it is guaranteed that e1 →*𝑝𝑜 e2.

We set 𝑀 ′(𝒫, 𝑁, 𝜃) := (𝑆′𝑀 ,E ×M,∆𝑀 ′ , 𝑠𝑀 ′0, 𝐹𝑀 ′), where events are op-
tionally marked by enter and/or leave from M := 2{enter,leave}. The set of states
𝑆′𝑀 consists of the states 𝑆𝑀 extended by information about which marked
events have been issued for each process: 𝑆′𝑀 := 𝑆𝑀 × {⊥, enter, leave}RANK.
The initial state is 𝑠𝑀 ′0 := (𝑠𝑀 0, 𝜇0) with 𝜇0 := 𝜆r.⊥. The transition relation
∆𝑀 ′ is defined as follows:

M1 (𝑠, 𝜇)
𝜀−→ (𝑠′, 𝜇) if 𝑠

𝜀−→ 𝑠′.

M2 (𝑠, 𝜇)
𝑖,(e,∅)−−−−→ (𝑠′, 𝜇) if 𝑠

𝑖,e−→ 𝑠′.

M3 (𝑠, 𝜇)
𝑖,(e,{enter})−−−−−−−→ (𝑠′, 𝜇[rank(e) := enter]) if 𝑠

𝑖,e−→ 𝑠′, addr(e) ̸= ⊥ or
kind(e) = bar, 𝜇(rank(e)) = ⊥, and rank(e) ∈ 𝜃.

M4 (𝑠, 𝜇)
𝑖,(e,{enter,leave})−−−−−−−−−−→ (𝑠′, 𝜇[rank(e) := leave]) if 𝑠

𝑖,e−→ 𝑠′, addr(e) ̸= ⊥ or
kind(e) = bar, 𝜇(rank(e)) = ⊥, and rank(e) ∈ 𝜃.

M5 (𝑠, 𝜇)
𝑖,(e,{leave})−−−−−−−→ (𝑠, 𝜇[rank(e) := leave]) if 𝑠

𝑖,e−→ 𝑠′, addr(e) ̸= ⊥ or
kind(e) = bar, 𝜇(rank(e)) = enter, and rank(e) ∈ 𝜃.

M6 (𝑠, 𝜇)
(𝑖,(e1,{leave}))·(𝑗,(e2,{enter}))−−−−−−−−−−−−−−−−−−−→ (𝑠′, 𝜇[rank(e1) := leave]) if 𝑠

(𝑖,e1)·(𝑗,e2)−−−−−−−→ 𝑠′,
kind(e1) = popa, kind(e2) = popb, 𝜇(rank(e1)) = ⊥, and rank(e) ∈ 𝜃.

The set of final states is 𝐹𝑀 ′ := {(𝑠, 𝜇) | 𝑠 ∈ 𝐹𝑀 and 𝜇(r) = leave for all r ∈
𝜃}.

Lemma 8.19. The languages of 𝑀(𝒫, 𝑁) and 𝑀 ′(𝒫, 𝑁, 𝜃) match up to the
markings: ℒ(𝑀(𝒫, 𝑁)) = take1st(ℒ(𝑀 ′(𝒫, 𝑁, 𝜃))).

Proof. The inclusion ℒ(𝑀(𝒫, 𝑁)) ⊆ take1st(ℒ(𝑀 ′(𝒫, 𝑁))) holds due to
the Rules M1 and M2 in the definition of ∆𝑀 ′ . The reverse inclusion

ℒ(𝑀(𝒫, 𝑁)) ⊇ take1st(ℒ(𝑀 ′(𝒫, 𝑁))) follows from the fact that (𝑠, 𝜇)
𝑖,(e,𝑚)−−−−→

(𝑠′, 𝜇′) requires 𝑠
𝑖,e−→ 𝑠′ (M2-M6).

Lemma 8.20. Consider a marked computation 𝜏 ∈ ℒ(𝑀 ′(𝒫, 𝑁, 𝜃)) and events
(e1,𝑚1) and (e2,𝑚2) in 𝜏 with rank(e1) = rank(e2) and enter ∈ 𝑚1, leave ∈ 𝑚2.
Then e1 →*𝑝𝑜 e2.

102 CHAPTER 8. ROBUSTNESS AGAINST PGAS

Proof. Consider 𝑠𝑀 ′0
𝜎−→ 𝑠𝑀 ′ and let 𝜏 = word(𝜎). Let (e1,𝑚1) and (e2,𝑚2) be

two events in 𝜏 with rank(e1) = rank(e2) and enter ∈ 𝑚1, leave ∈ 𝑚2. Then, 𝜎
contains (𝑖, e1,𝑚1) and (𝑗, e2,𝑚2) for some 𝑖, 𝑗 ∈ HEAD.

∙ If (𝑖, e1,𝑚1) >𝜎 (𝑗, e2,𝑚2), then e1 and e2 were generated by the two
transitions defined by Rule M6. By construction of 𝑀(𝒫, 𝑁), rank(e1) =
rank(e2) and id(e1) = id(e2), and e1 →*𝑝𝑜 e2 trivially holds.

∙ If (𝑖, e1,𝑚1) = (𝑗, e2,𝑚2), then 𝑚1 = 𝑚2 = {enter, leave} and e1 = e2 is
the event generated by M4. Clearly, e1 →*𝑝𝑜 e2.

∙ If (𝑖, e1,𝑚1) <𝜎 (𝑗, e2,𝑚2), then e1 was generated by M3, and e2 was
generated by Rule M5. By Lemma 8.16 and Lemma 8.15, e1 →*𝑝𝑜 e2.

For the next lemma, consider a normal-form computation 𝜏 ∈ Cpgas(𝒫, 𝑁)
and a cycle profile 𝜃 = r1 . . . r𝑛. Moreover, assume that for each rank r𝑖 there
are e𝑖, e

′
𝑖 ∈ 𝜏 with rank(e𝑖) = rank(e′𝑖) = r𝑖 that satisfy e𝑖 →𝑝𝑜 e′𝑖 and

(addr(e𝑖) ̸= ⊥ or kind(e𝑖) = bar) and (addr(e′𝑖) ̸= ⊥ or kind(e′𝑖) = bar).

Lemma 8.21. Under the above assumptions, there is a marked computation
𝜏 ′ ∈ ℒ(𝑀 ′(𝒫, 𝑁, 𝜃)) with take1st(𝜏 ′) = 𝜏 that contains, for each 𝑖 ∈ [1..𝑛], a
marked event (e𝑖,𝑚𝑖) with enter ∈ 𝑚𝑖 and (e′𝑖,𝑚

′
𝑖) with leave ∈ 𝑚′𝑖. All other

marked events (e,𝑚) ∈ 𝜏 have 𝑚 = ∅.
Proof. We prove the statement of the lemma by induction on the size 𝑛 of the
cycle profile. The base case 𝑛 = 0 is due to Lemma 8.13 and the Rules M1
and M2: 𝑀 ′(𝒫, 𝑁) can generate a marked computation 𝜏0 with take1st(𝜏0) = 𝜏

and all markings being ∅. Formally, there is 𝑠𝑀 ′0
𝜎0−→ 𝑠𝑀 ′ for some 𝑠𝑀 ′ ∈ 𝐹𝑀 ′

with 𝜏0 = word(𝜎0).
In the induction step, assume the claim holds for sets of ranks of size 𝑛− 1

and consider {r1, . . . , r𝑛} ⊆ RANK. By the hypothesis, there is 𝑠𝑀 ′0
𝜎𝑛−1−−−→ 𝑠𝑀 ′

for some 𝑠𝑀 ′ ∈ 𝐹𝑀 ′ . Moreover, for each 𝑖 ∈ [1..𝑛 − 1] it holds that 𝜏𝑛−1 =
word(𝜎𝑛−1) contains a marked event (e𝑖,𝑚𝑖) with enter ∈ 𝑚𝑖 and a marked event
(e′𝑖,𝑚

′
𝑖) with leave ∈ 𝑚′𝑖. All other events in 𝜏𝑛−1 have empty markings. To

prove the statement for 𝑛, consider the possible mutual dispositions of (𝑖, e𝑛, ∅)
and (𝑗, e′𝑛, ∅) in 𝜎𝑛−1.

∙ If (𝑖, e𝑛, ∅) and (𝑗, e′𝑛, ∅) are the same event, we have 𝜎𝑛−1 = 𝜎′·(𝑖, e𝑛, ∅)·𝜎′′
and (𝑖, e𝑛, ∅) was generated by Rule M2. This transition can be replaced
by M4, which yields 𝜎𝑛 = 𝜎′ · (𝑖, e𝑛, {enter, leave}) · 𝜎′′.

∙ If (𝑖, e𝑛, ∅) <𝜎𝑛−1 (𝑗, e′𝑛, ∅), then 𝜎𝑛−1 = 𝜎′·(𝑖, e𝑛, ∅)·𝜎′′·(𝑗, e′𝑛, ∅)·𝜎′′′, where
(𝑖, e𝑛, ∅) and (𝑗, e′𝑛, ∅) were generated by M2. These transitions can be
replaced by M3 and M5 transitions, resulting in 𝜎𝑛 = 𝜎′ · (𝑖, e𝑛, {enter}) ·
𝜎′′ · (𝑗, e′𝑛, {leave}) · 𝜎′′′.

∙ Consider (𝑖, e𝑛, ∅) >𝜎𝑛−1 (𝑗, e′𝑛, ∅). By Lemma 8.15 and Lemma 8.16,
we know that e′𝑛 and e𝑛 are matching events. We derive addr(e′𝑛) ̸=
⊥ ̸= addr(e𝑛). This gives kind(e𝑛) = popb and kind(e′𝑛) = popa. With
Lemma 8.16, 𝜎𝑛−1 = 𝜎′ ·(𝑗, e′𝑛, ∅) ·(𝑖, e𝑛, ∅) ·𝜎′′. The events were generated
by two consecutive M2 transitions. These transitions can be replaced
by M6, which yields 𝜎𝑛 = 𝜎′ · (𝑗, e′𝑛, {leave}) · (𝑖, e𝑛, {enter}) · 𝜎′′.

8.4. FROM ROBUSTNESS TO LANGUAGE EMPTINESS 103

Since 𝜎𝑛 is obtained from 𝜎𝑛−1 by replacing one or two marked events of rank
r𝑛, and generation of the other events does not rely on 𝜇(r𝑛) (all other events

of rank r𝑛 are not marked), we have 𝑠𝑀 ′0
𝜎𝑛−−→ 𝑠𝑀 ′ for some 𝑠𝑀 ′ ∈ 𝐹𝑀 ′ .

Example 8.22. The normal-form computation 𝜏 ′′1to1 from Example 8.8 has the
cycle shown in Figure 8.3. This cycle has profile 𝜃 := 1, 2 (or its cyclic rotation
𝜃′ := 2, 1). The marked computation that marks the first and the last event in
each process that belong to the cycle is

(write, ∅) · (popa, ∅) · (write, ∅) · (popa, ∅) · (bar, {enter})
· (bar, {leave}) · (load, {leave}) · (popb, ∅) · (popb, {enter}).

Lemma 8.20 and Lemma 8.21 essentially say that the augmented multi-
headed automaton 𝑀 ′(𝒫, 𝑁, 𝜃), for any beautiful cycle with profile 𝜃, can guess
the first and the last event that belong to the cycle in each process. What is
left is to check that the last event of process 𝜃[𝑘] belonging to the cycle happens
before the first event of process 𝜃[𝑘 + 1] belonging to the cycle. We check this
with a finite automaton 𝐻 r𝑘,r𝑘+1 .

The finite automaton 𝐻 r𝑖,r𝑖+1 accepts a marked computation if there is a
conflict or barrier edge from the leave-marked event of process r𝑖 to the enter-
marked event of process r𝑖+1. Consider the case of conflicts. The automaton
looks for a marked event (e𝑖,𝑚𝑖) with rank(e𝑖) = r𝑖 marked by leave ∈ 𝑚𝑖. It
remembers the kind and the address of this event. Then, it seeks a marked
event (e𝑖+1,𝑚𝑖+1) with rank(e𝑖+1) = r𝑖+1 marked by enter ∈ 𝑚𝑖+1. If both
events are found, they touch the same address, and one of them is a write, the
automaton reaches the accepting state. Formally, we define 𝐻 r1,r2 := (𝑆𝐻 ,E×
M,∆𝐻 , 𝑠𝐻0, 𝐹𝐻). The set of states 𝑆𝐻 := {init, accept} ∪ (K×RANK×ADDR).
The initial state is 𝑠𝐻0 := init. The set of final states is 𝐹𝐻 := {accept}. The
transition relation ∆𝐻 is defined as follows:

HB1 init
e,𝑚−−→ init with rank(e) ̸= r1 or enter ̸∈ 𝑚.

HB2 init
e,𝑚−−→ (kind(e), addr(e)) for kind(e) ̸= bar if rank(e) = r and leave ∈ 𝑚.

HB3 (k, r, a)
e,𝑚−−→ (k, r, a) for k ̸= bar if addr(e) ̸= (r, a) or kind(e) ̸∈ {store,

popb}.

HB4 (k, r, a)
e,𝑚−−→ (accept) for k ̸= bar if addr(e) = (r, a), rank(e) = r2, enter ∈

𝑚, and {k, kind(e)} ∩ {store, popb} ≠ ∅.

HB5 accept
e,𝑚−−→ accept for all (e,𝑚) ∈ E×M.

HB6 init
e,𝑚−−→ barrier if kind(e) = bar, (rank(e) = r1 and leave ∈ 𝑚) or (rank(e) =

r2 and enter ∈ 𝑚).

HB7 barrier
e,𝑚−−→ barrier if kind(e) = bar, rank(e) ̸∈ {r1, r2}.

HB8 barrier
e,𝑚−−→ accept if kind(e) = bar, (rank(e) = r1 and leave ∈ 𝑚) or

(rank(e) = r2 and enter ∈ 𝑚).

Lemma 8.23. Consider r1, r2 ∈ RANK and 𝜏 ∈ ℒ(𝑀 ′(𝒫, 𝑁)) that has a single
marked event (e𝑖,𝑚𝑖) with leave ∈ 𝑚𝑖 and rank(e𝑖) = r1 and a single (e𝑗 ,𝑚𝑗)
with enter ∈ 𝑚𝑗 and rank(e𝑗) = r2. Then 𝜏 ∈ ℒ(𝐻 r1,r2) iff e𝑖 →ℎ𝑜𝑝 e𝑗.

104 CHAPTER 8. ROBUSTNESS AGAINST PGAS

Proof. We give the proof for memory accesses, the argumentation in the case of
barriers is similar. We start with the implication from left to right. In order to
reach the accepting state accept the first time, the automaton must have reached
a state (k, r, a) and performed a transition defined by HB4. This transition
had to consume the symbol (e𝑗 ,𝑚𝑗) which is, according to the statement of
the lemma, the only marked event in 𝜏 with rank(e𝑗) = r2 and enter ∈ 𝑚𝑗 .
The state (k, r, a) was reached the first time via a transition defined by HB2.
This transition had to consume the symbol (e𝑖,𝑚𝑖) which is, according to the
statement of the lemma, the only marked event in 𝜏 with rank(e𝑖) = r1 and
leave ∈ 𝑚𝑖. According to HB2, k = kind(e) and (r, a) = addr(e). Therefore,
HB4 requires that e𝑖 and e𝑗 access the same address and at least one of them is
a write. Moreover, according to Rule HB3, the automaton could not consume a
marked event which is a write to (r, a) after reading (e𝑖,𝑚𝑖) and before reading
(e𝑗 ,𝑚𝑗). Altogether, by definition of the conflict relation, e𝑖 →𝑐𝑓 e𝑗 .

For the proof from right to left, let 𝜏 = 𝜏1 · (e𝑖,𝑚𝑖) ·𝜏2 · (e𝑗 ,𝑚𝑗) ·𝜏3. The first
part, 𝜏1, is read by the transitions defined by HB1. Indeed, (e𝑖,𝑚𝑖) is the only
marked event in 𝜏 that does not satisfy the requirements of this rule. Then the
automaton performs the transition defined by HB2, reads (e𝑖,𝑚𝑖), and reaches
the state (k, r, a) with k = kind(e) and (r, a) = addr(e). Since e𝑖 →𝑐𝑓 e𝑗 , part 𝜏2
does not contain writes to addr(e𝑖). It is consumed by the transitions defined
by HB3. Finally, the automaton performs the transition defined by HB4 and
reaches the accepting state. There it loops on the symbols from 𝜏3.

Since finite automata are closed under intersection, we can define the finite
automaton for cycle profile 𝜃 = r1 . . . r𝑘 as

𝐻𝜃 := 𝐻 r1,r2 ∩ . . . ∩𝐻 r𝑘−1,r𝑘 ∩𝐻 r𝑘,r1 .

Lemma 8.24. Consider a cycle type 𝜃 and let 𝜏 ∈ take1st(
(︀
ℒ(𝑀 ′(𝒫, 𝑁, 𝜃)) ∩

ℒ(𝐻𝜃)
)︀
). Then 𝜏 is a computation of (𝒫, 𝑁) and has a beautiful cycle with

profile 𝜃.

Proof. By Lemma 8.12 and Lemma 8.19, 𝜏 is a computation of program (𝒫, 𝑁).
By Lemma 8.20 and Lemma 8.23, 𝜏 has a beautiful cycle with profile 𝜃.

Lemma 8.25. Consider a cycle profile 𝜃 and let 𝜏 be a normal-form
computation of (𝒫, 𝑁) that has a cycle with this profile. Then 𝜏 ∈
take1st(

(︀
ℒ(𝑀 ′(𝒫, 𝑁, 𝜃)) ∩ ℒ(𝐻𝜃)

)︀
).

Proof. By Lemma 8.21, 𝑀 ′(𝒫, 𝑁) can generate 𝜏 ′ with take1st(𝜏 ′) = 𝜏 , the
events e𝑖, e

′
𝑖 from the definition of a beautiful cycle marked with enter and leave

respectively, and the other events marked with ∅. By Lemma 8.23, the automata
𝐻 r𝑖,r𝑖+1 will accept 𝜏 ′, due to e′𝑖 →ℎ𝑜𝑝 e𝑖+1.

Theorem 8.26. A program (𝒫, 𝑁) is robust iff ℒ(𝑀 ′(𝒫, 𝑁)) ∩ ℒ(𝐻𝜃) = ∅ for
all cycle types 𝜃.

Proof. The statement follows from Theorem 8.7, Lemma 8.24, Lemma 8.18, and
Lemma 8.25.

We can now prove our main result in this chapter.

Theorem 8.27. Robustness against PGAS is PSpace-complete.

8.5. PARAMETERIZED REACHABILITY AND ROBUSTNESS 105

Proof. The PSpace lower bound follows from PSpace-hardness of SC state
reachability (Lemma 2.7). To reduce reachability to robustness, we introduce
an artificial happens-before cycle in the target state, by e.g., executing the
OneToOne program when the state is reached.

We can enumerate all cycle profiles in space polynomial in the size of (𝒫, 𝑁).
For each profile, we can check emptiness of the intersection ℒ(𝑀 ′(𝒫, 𝑁)) ∩
ℒ(𝐻𝜃). By Theorem 8.26, the program is robust if all intersections are empty.
By Lemma 3.3, the size of the intersection is polynomial in the size of the
automata, i.e., exponential in the size of the program (𝒫, 𝑁). By Lemma 3.4,
its emptiness can be decided in NL, i.e., in space polynomial in the size of the
program. Altogether, robustness is decidable in PSpace.

8.5 Parameterized Reachability and Robustness

Defining a parameterized version of the robustness and reachability problems
for PGAS, along with Sections 2.5 and 2.7, comes across the following difficulty.
When we had a finite number of processes, each process or node could have
been identified by a rank from a finite set of ranks RANK. For identifying an
infinite number of nodes we need an infinite set of ranks and, consequently, an
infinite data domain DOM, since RANK ⊆ DOM. However, then the computa-
tional model becomes immediately Turing-complete, and state reachability and
robustness become undecidable.

Alternatively, we can specify that a process can only communicate with a
finite number of its neighbors. In particular, we can assume that processes are
totally ordered, and each process can communicate only with the previous (left
neighbor) and the next (right neighbor) process in this order (if these processes
exist). This is an example of a communication pattern typical for stencil code —
a class of algorithms that iteratively recompute values of an array based on the
values in the arrays on neighbor nodes. Because of the bounded DOM we can
no longer provide expressions that would return the rank of the current process
and the total number of processes. To keep the model useful, we assume there is
a special expression that returns a non-zero value for a single dedicated process.
This dedicated process may then distribute unbounded amount of work among
the other unboundedly many processes.

Having said the above, we define the parameterized reachability and robust-
ness problem for PGAS.

Problem 8.28 (Parameterized state reachability under PGAS). Given a pro-
gram 𝒫 and a control state 𝑞 ∈ 𝑄, to check whether (𝒫, 𝑁) reaches a state
(sn, pc,mem, fa, fb) ∈ 𝐹pgas with pc(tid) = 𝑞 for any 𝑁 ∈ N.

Problem 8.29 (Parameterized robustness against PGAS). Given a program
𝒫, to check whether 𝑇sc(𝒫(𝐼,𝑁)) = 𝑇tso(𝒫(𝐼,𝑁)) for all 𝑁 ∈ N.

Despite the very restricted allowed communication pattern, the parameter-
ized reachability and robustness are undecidable.

Theorem 8.30. Parameterized state reachability under PGAS is undecidable.

Proof. Consider a Turing machine operating on a tape with alphabet DOM,
|DOM| ≥ 2. Execution of the machine using at most 𝑁 cells of a tape can be

106 CHAPTER 8. ROBUSTNESS AGAINST PGAS

simulated by a program (𝒫, 𝑁), where 𝒫 implements the Turing machine as
follows.

Each process of program (𝒫, 𝑁) corresponds to a single cell of the tape.
Each process uses the following local addresses: 𝑞, 𝑥 and 𝑦. Address 𝑞 is used
for sending and receiving the current control state of the Turing machine. The
value at address 𝑥 is the value stored in the tape cell corresponding to the
process. The value at address 𝑦 is non-zero iff the Turing machine is currently
at the cell corresponding to the process.

Program 𝒫 consists of two parts: initialization and a loop. During the
initialization each process checks if it is a distinguished process. If yes, it sets
𝑞 to the initial control state of the Turing machine, 𝑦 to 1, and proceeds to the
loop. Otherwise, 𝑦 remains 0, and the process proceeds to the loop anyway. In
the loop the process waits until the value at 𝑦 becomes non-zero. Once it has
become non-zero, the process reads the control state from 𝑞, value from 𝑥, writes
new values into 𝑞 and 𝑥 in accordance with the transition function of the Turing
machine, and performs a shift to the left or right. The shift is implemented as
follows. The process sets local 𝑦 to 0, copies the value at 𝑞 to 𝑞 on the remote
node, writes 1 to 𝑦 on that node (using the same queue), and returns to waiting
until the value at address 𝑦 becomes non-zero.

By construction, the Turing machine reaches an accepting state 𝑞𝑓 iff the
program (𝒫, 𝑁) reaches a state with mem(r, 𝑞) = 𝑞𝑓 for some r and 𝑁 .

Theorem 8.31. Parameterized robustness against PGAS is undecidable.

Proof. Note that the program 𝒫 constructed in the proof of Theorem 8.30 is
robust. Similar to the proof of Theorem 8.27, we can reduce parameterized state
reachability for program 𝒫 to parameterized robustness for a slightly extended
program. This renders parameterized robustness against PGAS undecidable.

Chapter 9

Conclusion

In the thesis we thoroughly studied robustness, a natural correctness criterion
for concurrent programs running on architectures with relaxed memory models.
A program is robust against a memory model if each its computation under this
model has the same dataflow and control-flow dependencies as some sequentially
consistent (SC) computation. Robust programs produce the same results under
a relaxed memory model and under SC (Theorem 2.19), a property normally
expected by a programmer.

Prior studies of robustness concentrated mainly either on detecting non-
robustness [25, 26] or ensuring that a program is robust [10, 7, 71]. They did
not provide means for deciding whether a given program is robust. The first
decidability result for robustness was presented by Bouajjani et al. [21], for TSO
memory model only.

The thesis complements the existing knowledge with novel decidability and
complexity results for robustness. Our first contribution is a generic approach
to solving robustness against a given relaxed memory model. According to this
approach, robustness is reduced to checking whether a given program has com-
putations in a particular normal form. The latter is accomplished by checking
language emptiness for multiheaded automata. The second contribution is an
application of this approach to well-known memory models, including Power,
SPARC memory models, and PGAS. For all the above models we derived
PSpace algorithms for checking robustness, which makes robustness PSpace-
complete for these models, i.e., as hard as SC state reachability.

The relatively low complexity of the robustness problem contrasts with the
high complexity of checking state reachability under relaxed memory models.
So, state reachability is already non-primitive-recursive for TSO and PSO [14]
and undecidable for Power and RMO (Theorems 4.25 and 5.3). As we have
shown, checking state-robustness (whether the program has the same set of
reachable states under SC and under a relaxed memory model) is just as hard
as checking state reachability (Theorem 2.12). All this makes verification under
SC, followed by a robustness check, a potentially better alternative to verifying
program correctness under a relaxed memory model directly. We support this
claim not only by theoretical reasoning about complexity classes, but also by
an experimental evidence. Our tool Trencher implements the algorithms for
checking and enforcing robustness against TSO and is capable of analyzing a
collection of classical concurrent algorithms and data structures in a matter of

107

108 CHAPTER 9. CONCLUSION

several seconds.

9.1 Limitations

We would like to highlight few features of our generic approach to robustness
that might limit its applicability.

First, we note that the approach is based on the notion of computations and,
therefore, needs an operational specification of the memory model’s semantics.
This is not a severe limitation, as most memory models have both operational
and axiomatic definitions. Moreover, an axiomatic definition usually can be
translated to an operational one, similar to how it is done in, e.g., [11] for
Power.

Second, the multiheaded automata generating normal-form computations
are generally highly non-deterministic: the automata have to guess the memory
state at the beginning of each (but the first one) part of the computation (PGAS
is a lucky exception from this rule). For a similar reason the non-determinism
substantially increases when the multiheaded automaton is intersected with fi-
nite automata checking cyclicity of the happens-before relation. This limits the
practicality of the algorithms developed within this approach. Furthermore,
guessing becomes impossible in the case of infinite data domain or unbounded
number of threads, which makes the approach not directly applicable to solving
parameterized robustness.

9.2 Future Work

The first direction of possible future work is a corollary of the limitations de-
scribed above. It would be interesting to check whether memory models other
than TSO have the locality property (if a program is not robust, there is a
computation with cyclic happens-before relation where at most one thread does
reorderings). Locality of PSO would immediately lead to a reduction from ro-
bustness against PSO to state reachability in an instrumented program, similar
to the reduction for TSO, and would allow to solve parameterized robustness
for PSO. Locality of Power could significantly reduce non-determinism in the
multiheaded automata generating normal-form computations and make the ro-
bustness checking algorithm more practical.

Robustness against ARM memory model is another unexplored area. ARM
has a memory model similar to Power [11, 66]. However, some existing ARM
processors are known to violate the Power coherence guarantee [11]. In the
absence of a well-tested and generally accepted model for ARM we did not
consider it in the thesis. Nonetheless, it might be worth doing this in the
future, when such a model appears.

Finally, we would like to establish more fine-grained requirements that a
memory model must satisfy in order for our generic approach to apply to this
memory model. Currently, some requirements are formulated as theorems (Can-
cellation, Reinsertion), some are used implicitly, in the constructions of the mul-
tiheaded automata and in the correctness proofs for these constructions. Crys-
tallizing and assembling these requirements in one place could help us avoid
repeating the development done for Power for other memory models.

Bibliography

[1] P. A. Abdulla, M. F. Atig, Y.-F. Chen, C. Leonardsson, and A. Rezine.
Automatic fence insertion in integer programs via predicate abstraction.
In Static Analysis, pages 164–180. Springer, 2012.

[2] P. A. Abdulla, M. F. Atig, Y.-F. Chen, C. Leonardsson, and A. Rezine.
Counter-example guided fence insertion under TSO. In TACAS, LNCS
7214, pages 204–219. Springer, 2012.

[3] S. V. Adve and M. D. Hill. Weak ordering — a new definition. ACM
SIGARCH Computer Architecture News, 18(2SI):2–14, 1990.

[4] S. V. Adve and M. D. Hill. A unified formalization of four shared-memory
models. IEEE Transactions on Parallel and Distributed Systems, 4(6):613–
624, 1993.

[5] J. Alglave. A Shared Memory Poetics. PhD thesis, University Paris 7, 2010.

[6] J. Alglave, October 2013. Personal communication.

[7] J. Alglave, D. Kroening, V. Nimal, and D. Poetzl. Don’t sit on the fence.
A static analysis approach to automatic fence insertion. In CAV, 2014.

[8] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software verification
for weak memory via program transformation. In Programming Languages
and Systems, pages 512–532. Springer, 2013.

[9] J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient
bounded model checking of concurrent software. In CAV, pages 141–157.
Springer, 2013.

[10] J. Alglave and L. Maranget. Stability in weak memory models. In CAV,
volume 6806 of LNCS, pages 50–66. Springer, 2011.

[11] J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling,
simulation, testing, and data mining for weak memory. ACM TOPLAS,
36(2):7, 2014.

[12] ARM. ARM architecture reference manual. ARMv7-A and ARMv7-R edi-
tion, 2012.

[13] D. Aspinall and J. Ševč́ık. Formalising Java’s data race free guarantee. In
Theorem Proving in Higher Order Logics, pages 22–37. Springer, 2007.

109

110 BIBLIOGRAPHY

[14] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the
verification problem for weak memory models. In POPL, pages 7–18. ACM,
2010.

[15] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. What’s de-
cidable about weak memory models. In ESOP, LNCS. Springer, 2012.

[16] M. F. Atig, A. Bouajjani, C. Leonardsson, and R. Meyer, May 2013. Per-
sonal communication.

[17] M. F. Atig, A. Bouajjani, and G. Parlato. Getting rid of store-buffers in
TSO analysis. In CAV, pages 99–115. Springer, 2011.

[18] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean
programs. In SPIN Model Checking and Software Verification, pages 113–
130. Springer, 2000.

[19] D. Bonachea. GASNet specification, v1.1. Technical Report UCB/CSD-
02-1207, University of California, Berkeley, 2002.

[20] A. Bouajjani, E. Derevenetc, and R. Meyer. Checking and enforcing ro-
bustness against TSO. In ESOP, volume 7792 of LNCS, pages 533–553.
Springer, 2013.

[21] A. Bouajjani, R. Meyer, and E. Möhlmann. Deciding robustness against
Total Store Ordering. In ICALP, volume 6756 of LNCS, pages 428–440.
Springer, 2011.

[22] G. Boudol and G. Petri. Relaxed memory models: an operational approach.
In POPL, pages 392–403. ACM, 2009.

[23] M. Bozga, J.-C. Fernandez, and L. Ghirvu. State space reduction based on
live variables analysis. In Static Analysis, pages 164–178. Springer, 1999.

[24] S. Burckhardt, R. Alur, and M. Martin. CheckFence: checking consistency
of concurrent data types on relaxed memory models. In PLDI, pages 12–21.
ACM, 2007.

[25] S. Burckhardt and M. Musuvathi. Effective program verification for relaxed
memory models. In CAV, volume 5123 of LNCS, pages 107–120. Springer,
2008.

[26] J. Burnim, K. Sen, and C. Stergiou. Sound and complete monitoring of
sequential consistency for relaxed memory models. In TACAS, volume 6605
of LNCS, pages 11–25. Springer, 2011.

[27] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual ex-
clusion. Information and Computation, 107(2):171–184, 1993.

[28] G. Calin, E. Derevenetc, R. Majumdar, and R. Meyer. A theory of par-
titioned global address spaces. In FSTTCS, volume 24 of LIPIcs, pages
127–139, 2013.

[29] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and
L. Smith. Introducing OpenSHMEM: SHMEM for the PGAS community.
In PGAS, page 2. ACM, 2010.

BIBLIOGRAPHY 111

[30] UPC Consortium. UPC language specification v1.2. Technical report,
Lawrence Berkeley National Laboratory, 2005.

[31] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu,
Robby, and H. Zheng. Bandera: Extracting finite-state models from Java
source code. In Software Engineering, pages 439–448. IEEE, 2000.

[32] International Business Machines Corporation. Power ISATM version 2.07,
May 2013.

[33] E. Derevenetc and R. Meyer. Robustness against Power is PSPACE-
complete. In ICALP, volume 8573 of LNCS, pages 158–170. Springer, 2014.

[34] D. Dice. A race in locksupport park() arising from weak memory mod-
els. https://blogs.oracle.com/dave/entry/a_race_in_locksupport_

park, Nov 2009.

[35] E. W. Dijkstra. Cooperating sequential processes. Springer, 2002.

[36] Y. Dong and C. R. Ramakrishnan. An optimizing compiler for efficient
model checking. In Formal Methods for Protocol Engineering and Dis-
tributed Systems, pages 241–256. Springer, 1999.

[37] MPI Forum. MPI: A message-passing interface standard version 3.0. Tech-
nical report, University of Tennessee, Knoxville, 2012.

[38] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the
Cilk-5 multithreaded language. SIGPLAN Not., 33(5):212–223, 1998.

[39] Global address space programming interface. http://www.gaspi.de/.

[40] J. Gosling, B. Joy, G. Steele, G. Brancha, and A. Buckley. Java language
specification, 2014.

[41] S. Greibach and J. Hopcroft. Scattered context grammars. Journal of
Computer and System Sciences, 3(3):233–247, 1969.

[42] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. MKP,
2008.

[43] P. N. Hilfinger, D. O. Bonachea, K. Datta, D. Gay, S. L. Graham, B. R.
Liblit, G. Pike, J. Zh. Su, and K. A. Yelick. Titanium language reference
manual, version 2.19. Technical Report UCB/EECS-2005-15, UC Berkeley,
2005.

[44] G. J. Holzmann. The model checker SPIN. IEEE Tr. Soft. Eng., 23:279–
295, 1997.

[45] G. J. Holzmann. The engineering of a model checker: the Gnu i-protocol
case study revisited. In Theoretical and Practical Aspects of SPIN Model
Checking, pages 232–244. Springer, 1999.

[46] N. Immerman. Nondeterministic space is closed under complementation.
SIAM Journal on computing, 17(5):935–938, 1988.

112 BIBLIOGRAPHY

[47] Intel Corporation. Intel R○ 64 and IA-32 Architectures Software Developer’s
Manual, February 2014.

[48] JTC1/SC22/WG14. ISO/IEC 9899:2011 Information technology — Pro-
gramming languages — C. Technical report, JTC/ISO, 2011.

[49] JTC1/SC22/WG21. ISO/IEC 14882:2011, Information technology — Pro-
gramming languages — C++. Technical report, JTC/ISO, 2011.

[50] U. Khedker, A. Sanyal, and B. Karkare. Data Flow Analysis: Theory and
Practice. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2009.

[51] H. Kopetz and J. Reisinger. The non-blocking write protocol NBW: A so-
lution to a real-time synchronisation problem. In IEEE Real-Time Systems
Symposium, pages 131–137. IEEE, 1993.

[52] D. Kozen. Lower bounds for natural proof systems. In FOCS, pages 254–
266. IEEE, 1977.

[53] M. Kuperstein, M. Vechev, and E. Yahav. Automatic inference of memory
fences. In FMCAD, pages 111–119. IEEE, 2010.

[54] M. Kuperstein, M. Vechev, and E. Yahav. Partial-coherence abstractions
for relaxed memory models. In PLDI, pages 187–198. ACM, 2011.

[55] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. CACM, 21(7):558–565, 1978.

[56] L. Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers, 28(9):690–
691, 1979.

[57] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on
Computer Systems, 5(1), 1987.

[58] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel
library. In OOPSLA, pages 227–242. ACM, 2009.

[59] A. Linden and P. Wolper. A verification-based approach to memory fence
insertion in pso memory systems. In Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 339–353. Springer, 2013.

[60] R. Lipton. The reachability problem requires exponential space. Technical
Report 62, Yale University, 1976.

[61] Richard J Lipton. Reduction: A method of proving properties of parallel
programs. CACM, 18(12):717–721, 1975.

[62] F. Liu, N. Nedev, N. Prisadnikov, M. Vechev, and E. Yahav. Dynamic
synthesis for relaxed memory models. In PLDI, pages 429–440. ACM,
2012.

[63] R. Machado and C. Lojewski. The Fraunhofer virtual machine: a commu-
nication library and runtime system based on the RDMA model. Computer
Science — Research and Development, 23(3-4):125–132, 2009.

BIBLIOGRAPHY 113

[64] S. Mador-Haim, R. Alur, and M. M. K Martin. Generating litmus tests for
contrasting memory consistency models. In CAV, pages 273–287. Springer,
2010.

[65] S. Mador-Haim, L. Maranget, S. Sarkar, K. Memarian, J. Alglave,
S. Owens, R. Alur, M. M. K. Martin, P. Sewell, and D. Williams. An
axiomatic memory model for POWER multiprocessors. In CAV, pages
495–512. Springer, 2012.

[66] L. Maranget, S. Sarkar, and P. Sewell. A tutorial introduction to the
ARM and POWER relaxed memory models. https://www.cl.cam.ac.

uk/~pes20/ppc-supplemental/test7.pdf. Draft.

[67] P. E. McKenney. Memory ordering in modern microprocessors, part II.
Linux Journal, 137, September 2005.

[68] J. Nieplocha and B. Carpenter. ARMCI: A portable remote memory copy
library for distributed array libraries and compiler run-time systems. In
Parallel and Distributed Processing, volume 1586 of LNCS, pages 533–546.
Springer, 1999.

[69] The UPC NAS parallel benchmarks. http://upc.gwu.edu/download.

html.

[70] R. W. Numrich and J. Reid. Co-array Fortran for parallel programming.
In ACM Sigplan Fortran Forum, volume 17, pages 1–31. ACM, 1998.

[71] S. Owens. Reasoning about the implementation of concurrency abstractions
on x86-TSO. In ECOOP, volume 6183 of LNCS, pages 478–503. Springer,
2010.

[72] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO
(extended version). Technical Report CL-TR-745, University of Cambridge,
2009.

[73] C.-S. Park, K. Sen, P. Hargrove, and C. Iancu. Efficient data race detection
for distributed memory parallel programs. In SC’11, page 51. ACM, 2011.

[74] G. L. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12(3):115–116, 1981.

[75] G. Petri. Operational semantics of relaxed memory models. PhD thesis,
Nice, 2010.

[76] C. Rackoff. The covering and boundedness problems for vector addition
systems. Theor. Comp. Sci., 6:223–231, 1978.

[77] V. A. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A theory
of memory models. In PPoPP, pages 161–172. ACM, 2007.

[78] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Under-
standing POWER multiprocessors. In PLDI, pages 175–186. ACM, 2011.

[79] D. Shasha and M. Snir. Efficient and correct execution of parallel programs
that share memory. ACM TOPLAS, 10(2):282–312, 1988.

114 BIBLIOGRAPHY

[80] R. L. Sites and R. T. Witek. Alpha AXP architecture reference manual.
Digital Press, second edition, 1995.

[81] Z. Sura, X. Fang, C.-L. Wong, S. P. Midkiff, J. Lee, and D. Padua. Compiler
techniques for high performance sequentially consistent Java programs. In
PPoPP, pages 2–13. ACM, 2005.

[82] R. Szelepcstnyi. The method of forcing for nondeterministic automata.
Bulletin of the EATCS, 33:96–100, 1987.

[83] V. Vafeiadis and F. Zappa Nardelli. Verifying fence elimination optimisa-
tions. In SAS, volume 6887 of LNCS, pages 146–162. Springer, 2011.

[84] D. Weaver and T. Germond, editors. The SPARC Architecture Manual
Version 9. PTR Prentice Hall, 1994.

List of Acronyms

API Application Programming Interface

ARM Advanced RISC Machine

ARMCI Aggregate Remote Memory Copy Interface

CPU Central Processing Unit

DEC Digital Equipment Corporation

DRF Data-Race Freedom

FIFO First In — First Out

GASNet Global-Address Space Networking

GASPI Global Address Space Programming Interface

GPI Global address space Programming Interface

HPC High-Performance Computing

MP Message Passing

MPI Message Passing Interface

NIC Network Interface Controller

PGAS Partitioned Global Address Space

POWER Performance Optimization With Enhanced RISC

PSO Partial Store Order

RAM Random Access Memory

RDMA Remote Direct Memory Access

RISC Restricted (Reduced) Instruction Set Computer

RMO Relaxed Memory Order

SAT SATisfiability problem

SB Store Buffering

SC Sequential Consistency

115

116 LIST OF ACRONYMS

SHMEM Symmetric Hierarchical MEMory access

SMT Satisfiability Modulo Theory

SPARC Scalable Processor ARChitecture

SPMD Single Program, Multiple Data

TSO Total Store Order

UPC Unified Parallel C

Appendix A

Benchmarking Memory
Fences

In order to estimate the overhead introduced by the insertion of memory fences
on x86 processors, we developed a tool called rdtsc-mfence. The tool executes
a pattern consisting of several stores, optionally followed by a memory fence, a
great number of times and measures the average number of cycles required for
one execution of the pattern.

Benchmarking We ran the tool on several x86-64 CPUs running in 64-bit
mode and used the following patterns.

∙ movl; ... movl; mfence;

∙ movl; ... movl; lock addl $0,(%rsp);

∙ movl; ... movl;

Here, movl are stores of a 32-bit constant to a global variable, addressed relative
to rip. The instruction lock addl $0,(%rsp) is an atomic increment of the
value at the stack top by 0. It has no side-effects on memory other than flushing
the store buffer. Surprisingly, it turns out to be faster than the specially designed
mfence on some processors. We ran the above code in a single thread and in
two threads, running on the same physical CPU and on different CPUs (where
applicable). See the charts Fig. A.1–A.10 with the benchmarking results below.

Discussion From the charts we can draw the following empirical conclusions.

∙ Inserting a memory fence never improves the running time in the absence
of the memory contention (when there is a single thread running).

∙ Inserting a memory fence almost never improves the running time when
two threads are running.

∙ Executing a memory fence instruction takes some significant time even
when the TSO store buffer is empty.

∙ Performance of a single thread cannot be improved by executing more
fences, even with smaller number of buffered stores.

117

118 APPENDIX A. BENCHMARKING MEMORY FENCES

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

cy
cl

e
s

p
e
r

it
e
ra

ti
o
n

N — number of writes

N writes + mfence
N writes + lock add

N writes

Figure A.1: Results of benchmarking memory fences on Intel Core i5 M650 CPU
@ 2.67GHz (1 thread).

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

cy
cl

e
s

p
e
r

it
e
ra

ti
o
n

N — number of writes

N writes + mfence
N writes + lock add

N writes

Figure A.2: Results of benchmarking memory fences on Intel Core i5 M650 CPU
@ 2.67GHz (2 threads).

119

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

cy
cl

e
s

p
e
r

it
e
ra

ti
o
n

N — number of writes

N writes + mfence
N writes + lock add

N writes

Figure A.3: Results of benchmarking memory fences on Intel Core 2 Duo P8700
CPU @ 2.53GHz (1 thread).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

cy
cl

e
s

p
e
r

it
e
ra

ti
o
n

N — number of writes

N writes + mfence
N writes + lock add

N writes

Figure A.4: Results of benchmarking memory fences on Intel Core 2 Duo P8700
CPU @ 2.53GHz (2 threads).

120 APPENDIX A. BENCHMARKING MEMORY FENCES

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

cy
cl

e
s

p
e
r

it
e
ra

ti
o
n

N — number of writes

N writes + mfence
N writes + lock add

N writes

Figure A.5: Results of benchmarking memory fences on Mobile AMD Sempron
Processor 3400+ (1 thread).

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

cy
cl

e
s

p
e
r

it
e
ra

ti
o
n

N — number of writes

N writes + mfence
N writes + lock add

N writes

Figure A.6: Results of benchmarking memory fences on Intel Xeon X5650 CPU
@ 2.67GHz (1 thread).

121

 0

 200

 400

 600

 800

 1000

 0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

cy
cl

e
s

p
e
r

it
e
ra

ti
o
n

N — number of writes

N writes + mfence
N writes + lock add

N writes

Figure A.7: Results of benchmarking memory fences on Intel Xeon X5650 CPU
@ 2.67GHz (2 threads on different CPU sockets).

 0

 200

 400

 600

 800

 1000

 0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

cy
cl

e
s

p
e
r

it
e
ra

ti
o
n

N — number of writes

N writes + mfence
N writes + lock add

N writes

Figure A.8: Results of benchmarking memory fences on Intel Xeon X5650 CPU
@ 2.67GHz (2 threads on the same CPU socket).

122 APPENDIX A. BENCHMARKING MEMORY FENCES

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

cy
cl

e
s

p
e
r

it
e
ra

ti
o
n

N — number of writes

N writes + mfence
N writes + lock add

N writes

Figure A.9: Results of benchmarking memory fences on Intel Xeon E5420 CPU
@ 2.50GHz (1 thread).

 0

 200

 400

 600

 800

 1000

 0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

cy
cl

e
s

p
e
r

it
e
ra

ti
o
n

N — number of writes

N writes + mfence
N writes + lock add

N writes

Figure A.10: Results of benchmarking memory fences on Intel Xeon E5420 CPU
@ 2.50GHz (2 threads).

Appendix B

Benchmarking Trencher
with SPIN

Resolving a reachability query using the SPIN [44] model checker involves several
steps. First, the query must be translated to a Promela program. The Promela
program is given to SPIN, which generates a C program called verifier. Next, the
verifier is translated to an executable file using a C compiler. Finally, running
the verifier answers the query.

The Trencher tool, described in Chapter 7, initially used SPIN as a back-
end model checker. We ran that version of Trencher on the examples from
Section 7.2 and measured the time taken by Trencher, SPIN, C compiler, and
the verifier. The execution was performed on a 4-core machine equipped with
Intel(R) Core(TM) i5 CPU M 560 @ 2.67GHz. The results are shown in Fig-
ure B.1 and Figure B.2. Clearly, the compilation time dominates the time spent
in all other phases on virtually all tests.

123

124 APPENDIX B. BENCHMARKING TRENCHER WITH SPIN

25

210

215

220

1 3 5 7 9 10 11 12 14 16

C
P
U

 t
im

e
,

m
se

c

Index of an example

Trencher
pan

SPIN
Clang

Figure B.1: Time spent by Trencher (using SPIN as a back-end model checker),
verifier (pan), SPIN, and the C compiler (Clang 3.5) while computing minimal
fence sets for the examples from Table 7.3. The verifier was compiled without
optimizations. Only examples with the total running time over 10ms are shown.

25

210

215

220

225

1 3 5 7 9 10 11 12 14 16

C
P
U

 t
im

e
,

m
se

c

Index of an example

Trencher
pan

SPIN
Clang

Figure B.2: Time spent by Trencher (using SPIN as a back-end model checker),
verifier (pan), SPIN, and the C compiler (Clang 3.5) on computing minimal
fence sets for the examples from Table 7.3. The verifier was compiled with -O2.
Only examples with the total running time over 10ms are shown.

Egor Derevenetc B yegor.derevenets@gmail.com

Education
Mar 2011–Apr 2015 Ph.D. Student, University of Kaiserslautern, Computer Science Department,

Concurrency Theory Group.
Topic: Robustness against relaxed memory models.
Supervisor: Prof. Dr. Roland Meyer.

Sep 2005–Jun 2010 Specialist, Lomonosov Moscow State University, Computational Mathematics
and Cybernetics Department.
Graduated with honours (diploma GPA is 4.96 of 5.0).
Speciality: Applied Mathematics and Computer Science.
Qualifications: Mathematician, System Programmer.
Diploma thesis topic: Reconstruction of C++ control flow structures from a low-level
program.
Supervisor: Alexander Chernov.

Sep 1995–May 2005 School Education.

