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Abstract

Distributed systems are omnipresent nowadays and networking them is fundamental for
the continuous dissemination and thus availability of data. Provision of data in real-
time is one of the most important non-functional aspects that safety-critical networks
must guarantee. Formal verification of data communication against worst-case deadline
requirements is key to certification of emerging x-by-wire systems. Verification allows
aircraft to take off, cars to steer by wire, and safety-critical industrial facilities to oper-
ate. Therefore, different methodologies for worst-case modeling and analysis of real-time
systems have been established. Among them is deterministic Network Calculus (NC), a
versatile technique that is applicable across multiple domains such as packet switching,
task scheduling, system on chip, software-defined networking, data center networking
and network virtualization. NC is a methodology to derive deterministic bounds on two
crucial performance metrics of communication systems:

(a) the end-to-end delay data flows experience and
(b) the buffer space required by a server to queue all incoming data.

NC has already seen application in the industry, for instance, basic results have been
used to certify the backbone network of the Airbus A380 aircraft.

The NC methodology for worst-case performance analysis of distributed real-time sys-
tems consists of two branches. Both share the NC network model but diverge regarding
their respective derivation of performance bounds, i.e., their analysis principle. NC was
created as a deterministic system theory for queueing analysis and its operations were
later cast in a (min,+)-algebraic framework. This branch is known as algebraic Network
Calculus (algNC). While algNC can efficiently compute bounds on delay and backlog, the
algebraic manipulations do not allow NC to attain the most accurate bounds achievable
for the given network model. These tight performance bounds can only be attained with
the other, newly established branch of NC, the optimization-based analysis (optNC).
However, the only optNC analysis that can currently derive tight bounds was proven to
be computationally infeasible even for the analysis of moderately sized networks other
than simple sequences of servers.

This thesis makes various contributions in the area of algNC: accuracy within the ex-
isting framework is improved, distributivity of the sensor network calculus analysis is
established, and most significantly the algNC is extended with optimization principles.
They allow algNC to derive performance bounds that are competitive with optNC. More-
over, the computational efficiency of the new NC approach is improved such that this
thesis presents the first NC analysis that is both accurate and computationally feasible
at the same time. It allows NC to scale to larger, more complex systems that require
formal verification of their real-time capabilities.
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1 Introduction

1.1 Worst-Case Performance Analysis

A fundamental problem in the analysis of real-time networks is the derivation of deter-
ministic performance bounds. The most important measures are the delay data flows
experience when they traverse a network from their respective source to their sink and
the backlog they experience at the individual servers they cross. The latter is required to
dimension buffers sufficiently large to avoid overflows and thus the loss of data. Lost or
dropped data needs to be retransmitted and increases the delay between a flow’s initial
creation and its eventual delivery. Depending on the payload, this delay might be decisive
for a safety-critical real-time system. Therefore, worst-case performance bounds play a
crucial role in different areas, ranging from verification of hard real-time communication
capabilities to quality of experience assurance for end users. In case of safety-critical sys-
tems, formally verified delay and backlog bounds are even required for certification. I.e.,
for larger systems such as aircraft that rely on an embedded real-time communication
network, they are crucial for the entrance into service.

Networks that are required to guarantee for real-time communication have been de-
ployed in safety-critical environments for decades. These networks are verified to keep
certain deadlines when transmitting information. However, they are oftentimes specifi-
cally built for a single purpose and to operate under unalterable conditions only – and so
is their evaluation customized to this setting. Nowadays, we observe the trend to employ
commercial off-the-shelf technologies. For instance, cable harnesses with their dedicated
connections have been replaced by shared-access to a vehicle bus systems like CAN (ISO
11898). For multiple reasons such as complexity, development time and costs, the in-
dustry developed communication network standards based on Ethernet (IEEE 802.3), a
widely used standard for local area networks. Airbus, a manufacturer of aircraft, based
its Avionics Full-Duplex Switched Ethernet (AFDX: ARINC 664) on this standard, the
automotive industry developed Audio Video Bridging (AVB: IEEE 802.1BA, 802.1AS,
802.1Qat, 802.1Qav) from the IEEE 802 family and in industrial facilities, usage of Time-
Triggered Ethernet (TTEthernet: SAE AS6802) emerges. CAN has also be amended by
a time-triggered variant to increase its real-time capabilities (TTCAN: ISO 11898-4:2004)
[33, 27, 39, 24, 28, 63].

Embedded into a safety-critical system such as a vehicle, networks based on one of
these standards must warrant hard real-time guarantees. Formal verification is key to
obtain deterministic worst-case bounds on delay and backlog and thus to the certification
of the entire system. Simulation is not sufficient. Changing requirements and emerging
technologies employed in such systems demand extensibility and flexibility from a for-
mal performance evaluation methodology. There are various approaches for specification
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1 Introduction

and verification of real-time systems, yet, only few are powerful w.r.t. their modeling
capabilities such that they can be applied to diverse environments, e.g., switched Ether-
nets [32], wireless sensor networks [71, 43, 8, 65], network on chip [56, 67, 61], Internet
of Things [88, 5, 62], software-defined networking and network virtualization [39, 62],
data centers [89] as well as network simulation [47]. Moreover, the analysis based on the
model must be able to scale to large, complex systems that require formal verification of
their real-time capabilities. One of most versatile techniques that promises both of these
properties is Network Calculus (NC) [25, 26, 23, 50], a methodology for the derivation of
worst-case bounds on flow delay and server backlog.

1.2 Network Calculus

NC provides a mathematical framework to derive deterministic bounds on a flow’s end-
to-end delay when crossing a network and the buffer size requirement at the traversed
servers, i.e., the bound on their maximum backlog at any time. NC has been widely
adopted in research as well as industry – for example, the switched Ethernet backbone
network used in the Airbus A380 has been certified using NC.

The evolution of the NC methodology resulted in two branches that only share the
NC system description: On the one hand, there is the algebraic NC (algNC) branch. Its
analysis of networks free of cyclic dependencies (feed-forward property) is based on the
extension of results for sequences of servers, the so-called tandems. AlgNC established
three distinct analyses to compute performance bounds, TFA, SFA and PMOOA. Each
of these analyses defines, among other aspects, a specific way to decompose the network
into tandems, their order of analysis and the applied operations. Unfortunately, these
compositional algNC analyses are not able to derive tight bounds, i.e., the most accurate
bounds are known to be out of their reach. In terms of bound accuracy, algNC has been
superseded by the optimization-based NC (optNC) branch. While this work started with
a compositional analysis as well, the most recent approach abandoned the decomposition
procedure. It aims at a network-wide, global optimization: The entire network descrip-
tion is transformed into a set of linear programs to solve. This constitutes the only
analysis currently known to achieve tight bounds on end-to-end flow delays and server
backlog in general feed-forward networks. However, the amount of linear programs to
solve grows super-exponentially with the network size. The analysis is shown to be NP-
hard with no algorithm known to solve the underlying problem efficiently (extension of
a partial order to the set of all compatible total orders). Therefore, the optNC branch
is commonly represented by an analysis variant circumventing this problem. Tightness
is traded against computational feasibility by reducing the amount of linear programs
to a single one. Naturally, this optNC analysis does not capture interference patterns of
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1.3 Thesis Contribution

flows as exhaustively as the tight one. It is, however, believed to be both, efficient and
accurate. The former is concluded from decades of research on optimization and its tool
support, the latter from the attained global view of the optimization. Yet, neither of
these assumptions was profoundly evaluated.

Therefore, only algNC has seen application in the industry. It was applied to analyze
networks designed from scratch for delay sensitive employment. Especially the avionics
industry has embraced the algNC methodology. Examples can be found in the analysis
of HCS (Heterogeneous Communication System) [80] and AFDX (Avionics Full-Duplex
Switched Ethernet). The latter has continuously seen attention in order to verify against
timing constraints for these networks [32, 20, 38, 54, 19]. Current Airbus aircraft’s AFDX
backbone was certified using the algebraic techniques provided by NC.

The application of algNC has also resulted in diverse tool support. It ranges from
open-source tools provided by academia [18, 2, 7], to a freely available closed-source tool-
box [86], to a commercial offering [21] and others [57, 17]. Moreover, several companies
are known to employ NC and develop internal tool support – for example Rockwell Collins
(ConfGen [36]), Hirschmann Automation and Control (DelayLyzer [69]) and SIEMENS
(NC Engine [44]) to name a few.

Theoretical and practical enhancements of algNC are in the focus of this thesis.

1.3 Thesis Contribution

This thesis makes several contributions in the area of NC feed-forward analysis, under
the assumption of arbitrary multiplexing: First, the accuracy of current state-of-the-art
algNC analysis is improved with two distinct enhancements. In addition to the impact on
performance bounds, this contribution also highlights that algNC’s potential has not been
fully exploited before. Moreover, the algebraic properties accessible during the algNC
analysis also allow for features not attained by current optNC analyses: assessment of
intermediate results and distributed execution. This thesis contributes an extension to a
procedure for distributed algNC analysis that enables for in-network performance bound-
ing. It can be employed for distributed admission control as well as monitoring tasks
within self-modeling sensor networks. OptNC’s reliance on optimization software intro-
duces a black-box view on the analysis that prohibits such features. Indeed, we also show
that every optNC analysis imposes computational effort on this software that renders its
application nearly impossible – even for moderately sized networks as found embedded
into systems such as aircraft that are currently in operation. These observations re-
veal that existing NC analyses can be distinguished regarding their fundamental tradeoff
between efficiency and accuracy:

1. AlgNC is computationally efficient and possesses the potential to provide useful
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1 Introduction

features like distributed in-network execution. However, accuracy of attained per-
formance bounds is not competitive with optNC.

2. OptNC, on the other hand, theoretically allows for the derivation of tight bounds.
Yet, this thesis shows that in practice neither tight nor accurate bounds are com-
putationally feasible to derive with an optNC analysis.

Therefore, we contribute a novel NC analysis that is based on algNC but incorporates
optimization principles in order to achieve highly accurate bounds. In particular, it ex-
ploits the idea to consider the entire feed-forward network in the search for performance
bounds instead of focussing on individual tandem solutions only. The analysis can make
use of a vast search space but this optimization principle at the core of the new approach
results in computational effort similar to optNC. Yet, in contrast to the back-box view
imposed by optimization software, algNC grants access to the entire inner workings of the
analysis procedure. We show how this knowledge can be used for multiple efficiency im-
provements, both fundamentally and implementation-wise. They allow for a fast search
for performance bounds in the search space defined by our new NC analysis approach.
In an extensive evaluation, we demonstrate that this is the first NC analysis to achieve
the high degree of accuracy previously exclusively attributed to optNC while demand-
ing computation times that are several orders of magnitude below optNC. This thesis
therefore provides the first efficient and accurate NC analysis applicable to large-scale
feed-forward networks.

1.4 Thesis Organization

In Section 2, we provide an in-depth depiction of NC with a focus on the properties
required for the later contributions. We start with the curves bounding worst-case flow
arrivals and worst-case forwarding service that are common to all NC analyses (Sec-
tion 2.1). Then, we present the network model that NC analyses are applied to and
justify the focus on arbitrary multiplexing in server queues, i.e., we assume that flows
can be reordered arbitrarily when they share a queue. The foundations of NC are con-
cluded by the (min,+)-algebra algNC is based on. We cover operations that manipulate
curves such that the worst-case model is retained as well as the derivation of deterministic
bounds on flow delays and server backlog. We then depict the known NC analysis prin-
ciples (Section 2.2) followed by the algNC tandem analyses and the optNC feed-forward
analysis that implement these principles (Sections 2.3 and 2.4).

Section 3 is dedicated to the accuracy of current algNC. After contributing a generic
composition scheme that allows algNC tandem analyses to derive performance bounds in
feed-forward networks, we identify the problems caused by compositionality (Sections 3.1
and 3.2). Then, we focus on improvements to algNC’s accuracy within this approach. In
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1.4 Thesis Organization

Section 3.3, we improve the overall procedure that derives bounds on cross-traffic arrivals
and Section 3.4 is dedicated to the specific aspect of cross-traffic burstiness.

Non-functional properties of the algNC analysis are addressed in Section 4. For sensor
network calculus (SensorNC), a specialized variant of algNC (Sections 4.1 and 4.2), we
augment the sink-tree analysis it applies (Section 4.3) with a tailored sink-tree procedure
to bound cross-traffic arrivals that can also be executed in a distributed fashion (Sec-
tion 4.4). In Section 4.5, we conclude this work on non-functional aspects with a scheme
that allows algNC performance bounds to be computed in the sensor network itself.

After we improved several aspects of algNC, we turn to optNC in Section 5. An
analysis of its limited scalability is provided in Section 5.1 and Section 5.2 presents the
tradeoff between accuracy and computational efficiency suggested in the literature. We
comprehensively benchmark this tradeoff against algNC analyses in Section 5.3 in order
to gain insight on the gap in accuracy that algNC has to close.

In Section 6, we incorporate optimization principles into the algNC analysis. We con-
tribute two approaches to establish a hybrid NC analysis: First, we depict an extension
of the search space for cross-traffic arrival bounding (Section 6.1). Secondly, we identify
previously not applied but potentially beneficial sequences of algebraic operations that
extend the search space of the entire algNC analysis (Section 6.2). Finally, we combine
both search spaces in Section 6.3 to obtain accurate performance bounds.

Section 7 is dedicated to the computational efficiency of algNC. We contribute two
improvements that reduce computational effort and thus allow the analysis – including
our extensively searching new approach – to scale to network sizes previously infeasible
to analyze with NC (Sections 7.1 and 7.2). In Section 7.3, we investigate performance
bound improvements caused by a more accurate network modeling and derive a solution
to the vast increase in effort such an accurate model imposes on the algNC analysis.

Section 8 provides an extensive comparison of the previous state of the art in NC
and the new one established by the contributions of this thesis. Section 9 concludes the
thesis and provides directions for future research on the topic of efficient and accurate
feed-forward network analysis with NC.
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2 State of the Art in Network Calculus

This section provides an introduction to the modeling and analysis capabilities of NC.
Within the comprehensive possibilities NC offers, we are concerned with analyzing sys-
tems that retain the order of data within a flow. This property is known as FIFO per
µFlow [25, 64, 70]. When multiplexing multiple flows, however, we do not assume any
knowledge about the resulting order among the different flows. I.e., in a subsequent
queue their data can be arranged in any order. This behavior is known as arbitrary mul-
tiplexing or blind multiplexing. Other behaviors that are analyzed in the NC literature
are First In, First Out (FIFO) multiplexing, Strict Priority (SP) multiplexing or the lack
of FIFO per µFlow, i.e., even the order of data within an individual flow may change
arbitrarily. FIFO multiplexing is a special case of arbitrary multiplexing and non-FIFO
per µFlow is a generalization of our assumed setting. We will discuss the case of differing
assumptions where it is helpful for further reading.

2.1 Network Description

2.1.1 Data Arrivals, Forwarding Service and Performance Characteristics

Flows are characterized by functions cumulatively counting their data. They belong to
the set F0 of non-negative, wide-sense increasing functions that pass through the origin:

F0 =

�
f : R! R+

1
��

f (0) = 0, 8t  t : f(t)f (t)

 
,

R+
1 :

= [0, +1) [ {+1} .

We are particularly interested in the functions A(t) and A

0
(t) cumulatively counting a

flow’s data put into a server s and put out from s, both from the start of operation up
until time t. We further demand servers and flows to preserve causality by fulfilling the
flow constraint, i.e., 8t 2 R+

: A(t) � A

0
(t). Then, these functions allow performance

characteristics of a queuing system to be defined in a straight-forward manner.

Definition 2.1. (Backlog and Delay) Assume a flow with input function A traverses a
server s and results in the output function A

0.
• The backlog of the flow at time t is defined as

B(t) = A(t)�A

0
(t).

• The (virtual) delay for a data unit arriving at s at time t is defined as

D(t) = inf

�
⌧ � 0

��
A(t)  A

0
(t + ⌧)

 
.
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2 State of the Art in Network Calculus

Note, that the FIFO per µFlow assumption is crucial for the virtual delay definition.
It argues that the expected delay is caused by data that entered s before the data unit
under analysis and is therefore served before it. In the defined setting, this data can only
belong to the analyzed flow. The backlog bound, in contrast, does not relate A and A

0

at different times. Thus, it is not influenced by the server behavior between these time
instances, i.e., the backlog derivation is independent of the FIFO per µFlow assumption.

NC models data arrivals with curves (from F0) that bound behavior in the interval time
domain, i.e., whereas the function value A(t) returns the data cumulated in the interval
[0, t], the NC arrival curve for A(t), ↵(d), returns an upper bound on data arrivals for
any duration of length d, e.g., d = t� 0.

Definition 2.2. (Arrival Curve) Let a flow have input function A 2 F0, then ↵ 2 F0 is
an arrival curve for A iff it bounds A in any time interval of duration d, i.e.,

8t 8d, 0  d  t : A(t)�A(t� d)  ↵(d).

We additionally demand that arrival curves fulfill ↵(0) = 0, i.e., there are no instanta-
neous arrivals.

A useful basic shape for arrival curves is the so-called token bucket. These curves are
from the set FTB ✓ F0,

FTB =

8<:�

r,b

| �

r,b

(d) =

8<:0 if d = 0

b + r · d otherwise
, r, b 2 R+

1

9=; ,

where r denotes the maximum arrival rate and b is the maximum burstiness (bucket
size). A common generalization if FTB is the set of multi-token-bucket curves FmTB

FmTB =

(
n^

i=1

�

r

i

,b

i

| �

r

i

,b

i

2 FTB

)
✓ F0.

They are able to represent different traffic constraints for different time scales [87], each
defined by a token bucket.

Scheduling and buffering at a server result in the output function A

0
(t). NC captures

the minimum forwarding capabilities that lead to A

0 in interval time as well.

Definition 2.3. (Service Curve) If the service provided by a server s for a given input A

results in an output A

0, then s is said to offer a (simple) service curve � 2 F0 iff

8t : A

0
(t) � inf

0dt

{A(t� d) + �(d)}.

8



2.1 Network Description

A number of servers fulfill a stricter definition of service curves by considering their
internal state in addition to their input A.

Definition 2.4. (Backlogged Period) A server s is backlogged at time t if A(t)�A

0
(t) > 0

and it is backlogged during period (t, t) if 8t, t < t < t | A(t)�A

0
(t) > 0 .

Servers offering strict service curve guarantees have a higher output during backlogged
periods.

Definition 2.5. (Strict Service Curve) If, during any backlogged period of duration
d = t� t, a server s with input A guarantees an output of at least �(d), it is said to offer
a strict service curve � 2 F0.

A basic shape for service curves is the rate-latency curve defined by the set FRL ✓ F0,

FRL =

�
�

R,T

��
�

R,T

(d) = max {0, R · (d� T )} , R, T 2 R+
1
 

,

where R denotes the minimum service rate and T is the maximum latency. Multi-rate-
latency curves are defined by the pointwise maximum over a set of rate latencies

FmRL =

8<:
m_
j=1

�

R

j

,T

j

��
�

R

j

,T

j

2 FRL

9=; ✓ F0.

2.1.2 The Network Model

Topology Data communication networks are commonly modeled as graphs where nodes
represent individual devices like a router or a switch. These devices can have multiple
outputs to connect to other devices (Figure 2.1a). This common depiction does, however,
not suit NC’s queueing analysis well. NC therefore transforms such a device graph to
its so-called server graph representation. Assuming that a device’s input buffer is served
at line speed, queueing effects manifest at the output buffers. These are modeled by the
server graph’s nodes [6, 8] (see Figure 2.1b). Figure 2.1 also illustrates that information
about the device’s sub-components is lost during the transformation from a device graph
to a server graph. Especially the highly optimized switching fabric inside network devices
that connects inputs with outputs is, however, crucial for our considerations. Although
the servers most likely work off queued data in a FIFO manner, this fabric interconnecting
input ports with output ports can rearrange flows arbitrarily [29]. In the server graph,
however, device ports (i.e., servers) do not share a common switching fabric component;
they are directly connected to each other. The impact of switching fabrics can thus only
be captured by departing from FIFO multiplexing towards the more general arbitrary
multiplexing assumption. Data units of individual flows do not overtake each other in

9
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�

�

... ...

�

�

... ...

�

�

... ...

(a) Device Graph. (b) Server Graph.

Figure 2.1: A graph of network devices with output buffering (a) and its transformation
to directly connected servers (b).

switching fabrics, i.e., the FIFO per µFlow property is retained. We assume directed
links in both graph representations, i.e., full duplex links need to be split up into two
directed links before the device graph can be transformed [80].

Data Flows and The Feed-forward Property NC also has some restricting assumptions
concerning flows routed through the server graph. Firstly, the end-to-end analyses of NC
assume unicast data flows. Secondly, these advanced NC analyses require the absence of
cyclic dependencies between flows. Work departing from this assumption can be found
in [68, 41] but is not covered by this thesis. Instead, we focus on networks that guarantee
the feed-forward property by design. We use the Turn Prohibition (TP) algorithm [79]
to break potential cycles when transforming the device graph into the server graph [34]1.

In this thesis, we will use the term network to refer to a server graph and the data
flows traversing it.

2.1.3 (min,+)-algebraic Operations and Performance Bounds

Network calculus [25, 26] was cast in a (min, +)-algebraic framework in [50, 23]. The
following operations manipulate arrival and service curves while retaining their worst-case
semantic.

1A “turn” is a device’s input/output connection, i.e., it corresponds to a link in the server graph
representation [34]. Prohibiting turns results in a cycle-free server graph. TP does not consider the
route of flows in the device graph. Therefore, flows must be routed in the turn-prohibited server
graph in order not to break their paths. Note, that shortest paths in the turn-prohibited server
graph might not coincide with the shortest path in the device graph.

10



2.1 Network Description

Definition 2.6. ((min,+)-Operations) The (min,+) aggregation, convolution and de-
convolution of two functions f, g 2 F0 are defined as follows:

Aggregation: (f + g) (t) = f(t) + g(t)

Convolution: (f ⌦ g) (t) = inf

0tt

{f(t� t) + g(t)}

Deconvolution: (f ↵ g) (t) = sup

u�0
{f(t + u)� g(u)}

A flow aggregate is thus a combination of flows that does not preserve information
about the aggregated flow individually. The service curve definition translates to A

0 �
A ⌦ �, the arrival curve definition to A ⌦ ↵ � A, and performance characteristics can
be bounded using the deconvolution ↵↵ �. The algebraic properties of these operations
can be found in [50]. Table 2.1 provides the more comprehensive notation scheme for NC
performance bounding we use in this thesis.

Theorem 2.1. (Performance Bounds) Consider a server s that offers a service curve
�. Assume a flow f with arrival curve ↵

f traverses the server. Then, we obtain the
following performance bounds for f :

(Flow) Delay Bound: 8t 2 R+
: D

f

(t)  sup

u�0

�
inf

�
⌧ � 0 | ↵

f

(u)  �(u + ⌧)

  
= inf

�
⌧ � 0

�� �
↵

f ↵ �

�
(�⌧)  0

 
= h

�
↵

f

, �

�
=

:

D

f

Backlog Bound: 8t 2 R+
: B

f

(t)  sup

r�0

�
↵

f

(r)� �(r)

 
=

�
↵

f ↵ �

�
(0)

= v

�
↵

f

, �

�
=

:

B

f

Output Bound: 8d 2 R+
:

�
↵

f

�0
(d) =

8<:0 if d = 0�
↵

f ↵ �

�
(d) otherwise

h(↵

f

, �) denotes the (maximum) horizontal deviation between ↵ and � and v(↵

f

, �) de-
notes their (maximum) vertical deviation. We abbreviate delay and backlog bounds with
D

f and B

f , respectively, as they are valid independent of parameter t. Note, that ↵

0 is
an arrival curve for A

0 and thus it is required to pass through the origin2.

Consider an aggregate of flows F with arrival curve ↵

F. The aggregate’s delay when
2In a slight abuse of notation, we will use the symbol ↵ for both, deconvolution and output bounding.
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Quantifier Definition
foi Flow of interest, the flow under analysis
F Aggregate of flows

[f

n

, ..., f

m

] Flow aggregate containing flows f

n

, ..., f

m

F (s) Set of flows at server s

Fsrc (s) Set of flows entering the network at server s

x(f), x (F) Cross-traffic of flow f , aggregate F
hs

x

, . . . , s

y

i Tandem of consecutive servers s

x

to s

y

P (f) Path of flow f

↵

f , ↵

F Arrival curve of flow f , set of flows F at their (common) source
↵

f

s

, ↵

F
s

Arrival bound at server s

↵

s

Abbreviation for ↵

F (s)
s

, i.e., arrivals of all flows at s

�

s

Service curve of server s

�

l.o.f , �

l.o.F Left-over service curve

Table 2.1: Network calculus notation for flows, arrivals and service.

crossing a server s with strict service curve � is bounded by:

(Flow Aggregate) Delay Bound:
8t 2 R+

: D

F
(t)  max

�
0, sup

�
t� t

�� 8t 2 (t, t). ↵(t)� �(t) > 0

  
= bp(↵

F
, �) =

:

D

F

where bp

�
↵

F
, �

�
is maximum backlogged period of � w.r.t. ↵

F.

Under arbitrary multiplexing assumptions, the lack of knowledge about ordering of
flows within the aggregate requires a different delay bounding for F. Whereas FIFO
assumptions (per µFlow and when aggregating flows) allow NC to bound the delay with
h

�
↵

F
, �

�
, potential reordering of flows may lead to a worse delay bound. Therefore, we

bound the delay of flow aggregates with bp

�
↵

F
, �

�
. Note, that the maximum backlogged

period derivation requires a strict service curve.

NC also offers operations for compound analysis of servers as well as the separate
analysis of individual flows.

Theorem 2.2. (Concatenation of Servers) Consider a flow (aggregate) F crossing a
tandem of servers T = hs1, . . . , sni and assume that each s

i

, i 2 {1, . . . , n}, offers a

12
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service curve �

s

i

. The overall service curve offered to F is their concatenation

�

s1 ⌦ . . .⌦ �

s

n

=

nO
i=1

�

s

i

= �T .

The service resulting from the concatenation of strict service curves, �T , is not nec-
essarily strict. It cannot be used to derive a backlogged period bound of the compound
system [11, 31]. This imposes challenges if the FIFO per µFlow property cannot be as-
sumed [64, 70]. Also note, that convolution is commutative, i.e., the order of servers in
hs1, . . . , sni cannot be reconstructed from �T .

The worst-case share of data a flow (aggregate) receives from a server is lower bounded
by the left-over service curve:

Theorem 2.3. (Left-Over Service Curve) Consider a server s that offers a strict service
curve �

s

. Let s be crossed by flow (aggregate) F0 and flow (aggregate) F1 with arrival
curves ↵

F0 and ↵

F1 , respectively. Then F1’s worst-case residual service share under ar-
bitrary multiplexing at s, i.e., its left-over (simple) service curve at s, is

�

l.o.F1
s

= �

s

 ↵

F0

where (�  ↵) (d)

:

= sup0ud

{(� � ↵) (u)} denotes the non-decreasing upper closure of
(� � ↵) (d).

For arbitrary multiplexing servers, the result of this subtraction is not necessarily
strict, i.e., consecutive left-over operations are not permitted. However, aggregating ar-
rival curves before subtraction from service is backed by the NC theory. In the analysis
of different multiplexing disciplines, namely SP or FIFO, consecutive application of their
respective left-over service curve operation is permitted. For SP, the left-over service
curve derivation is �

s

 ↵

F0 as well [11]. Theorem 2.3 can also be used for FIFO mul-
tiplexing servers as arbitrary multiplexing is more general. However, there is a left-over
service curve derivation for FIFO servers: �

l.o.F1
s,✓

(d) =

h
�

s

(d)� ↵

x(F1)
s

(d� ✓)

i+ · 1{d>✓},
[·]+ = max {·, 0}, ✓ � 0 [50].

2.2 Analysis Principles

Application of NC evolved from the analysis of single servers crossed by a single flow
to the analysis of feed-forward networks of servers crossed by multiple flows that can
be entangled arbitrarily. During this evolution, two fundamental principles have been
identified. They express behavior observable in a realistic network and thus should be
implemented in the NC analysis in order to improve the quality of bounds, i.e., accuracy
of delay and backlog bounds.

13
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Pay Burst Only Once An analyzed flow of interest (foi) possess a certain worst-
case burstiness. In the NC description, this manifests in its arrival curve’s burst term
lim

d!0+ ↵(d). Due to the FIFO per µFlow property, data units within the foi cannot
overtake each other. I.e., the burst cannot be delayed by other data of the foi and occur
again in an multiplexing-enforced store-and-forward behavior. Burstiness levels off at
the first server and thus the foi’s burst term should only appear once in the end-to-end
performance bound derivation for its entire path. This principle is called Pay Bursts
Only Once (PBOO).

Pay Multiplexing Only Once The service available to the foi depends on its cross-
traffic. Deriving the left-over service thus requires arrival curves for cross-flows, so called
cross-traffic arrival bounds. In case cross-flows share multiple consecutive hops with the
foi, their arrival bound burstiness should not impact the delay bound derivation too
often – the same reasoning as with the PBOO principle applies. I.e., from the foi’s
perspective, multiplexing should only be paid for once and therefore this principle is
called Pay Multiplexing Only Once (PMOO).

2.3 Algebraic Analyses

An algebraic NC (algNC) analysis takes the network and compiles it into an equation
– either for bounding of a specific foi’s performance characteristics or those of a server.
These equations consist of (min,+)-algebraic operations and they must retain the worst
case established by the network description in order to derive valid bounds. In this
section, we provide the foremost NC analyses. They are the result of effort towards
implementing the above principles. Each analysis defines a different order of operations
for its respective equation. The following analyses all assume lossless transmissions and
infinite buffer space.

Figure 2.2 will serve as a running example in this section. We chose a tree network to
circumvent a comprehensive transformation of the device graph to the server graph. In
trees, there is only one potential next hop and thus each network device has only a single
output buffer. Note, that Figure 2.2 in fact depicts a sink-tree network. However s6 is
not the sink of the device graph but corresponds to the device that is directly connected
to it. At the sink-device, there is no output buffer to cross and thus it does not appear
in the network as a sink-server after s6.

2.3.1 Total Flow Analysis

The Total Flow Analysis (TFA) [26] directly applies the basic results from Definition 2.6,
aggregation and deconvolution, as well as Theorem 2.1: It takes the totality of flows
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s6

s0 s1

s3

s5

s2

s4

f0

f2

f1

Figure 2.2: Tree network, i.e., server graph with flows, serving as a running example.

(a flow aggregate) present at a server and the server’s service curve to bound delay and
backlog. I.e., the TFA operates from a server’s point of a view by aggregating all incoming
traffic. The delay bound is thus valid for all flows crossing the server and the backlog
bound denotes the server’s buffer requirement for serving them.

Assume server s

i

is crossed by the flow aggregate F (s

i

) and let ↵

s

i

be the aggregated
arrival curve of all flows. Then, we get the server-local TFA bounds:

D

s

i

=

8<:h (↵

s

i

, �

s

i

) if |F (s

i

)| = 1 (FIFO per µFlow)

bp (↵

s

i

, �

s

i

) otherwise
, B

s

i

= v (↵

s

i

, �

s

i

) .

The delay bounds on the foi’s path P (foi), from its source server to its destination
server, can be used to derive a flow delay bound:

D

TFA
P (foi) =

X
s

i

2P (foi)

D

s

i

For instance, the TFA delay bound derivation for flow f1 in Figure 2.2 proceeds as follows:

D

TFA
P (f1)

= D

s0 + D

s1 + D

s2 + D

s5 + D

s6

= h

⇣
↵

f1
s0

, �

s0

⌘
+ bp

⇣
↵

[f1,f0]
s1

, �

s1

⌘
+ bp

⇣
↵

[f1,f0]
s2

, �

s2

⌘
+ bp

⇣
↵

[f1,f0,f2]
s5

, �

s5

⌘
+ bp

⇣
↵

[f1,f0,f2]
s6

, �

s6

⌘
= . . .

= h

⇣
↵

f1
, �

s0

⌘
+ bp

⇣⇣
↵

f1 ↵ �

s0

⌘
+ ↵

f0
, �

s1

⌘
+ bp

⇣⇣⇣
↵

f1 ↵ �

s0

⌘
+ ↵

f0

⌘
↵ �

s1 , �

s2

⌘
+ bp

⇣⇣⇣⇣⇣
↵

f1 ↵ �

s0

⌘
+ ↵

f0

⌘
↵ �

s1

⌘
↵ �

s2

⌘
+

⇣⇣
↵

f2 ↵ �

s3

⌘
↵ �

s4

⌘
, �

s5

⌘
+ bp

⇣⇣⇣⇣⇣⇣
↵

f1 ↵ �

s0

⌘
+ ↵

f0

⌘
↵ �

s1

⌘
↵ �

s2

⌘
+

⇣⇣
↵

f2 ↵ �

s3

⌘
↵ �

s4

⌘⌘
↵ �

s5 , �

s6

⌘
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Although the TFA is based on per-server bounds, replacing a single server yields large
recomputation effort. The output boundings (deconvolution operations ↵) required to
derive all arrivals at the servers create dependencies between them. For instance, replac-
ing �

s0 results in a complete recomputation of the above D

TFA
P (f1)

. Moreover, accuracy
is compromised by the occurrences of (entire) arrival curves ↵

f0 , ↵

f1 and ↵

f2 at every
server they cross. Each arrival curve contributes a burst term to the server-local delay
derivation – neither the PBOO nor the PMOO principle are implemented in the TFA.

2.3.2 Separate Flow Analysis

The Separate Flow Analysis (SFA) departs from computing per-server bounds that are
valid for the totality of flows. Instead, SFA derives an end-to-end left-over service curve
for the foi and uses it to bound only the foi’s performance characteristics. For NC, this
step from server analysis to end-to-end flow analysis constitutes a big evolutional leap
forward. Building the delay analysis around the foi shifted its view directly to the tandem
of servers on its path P (foi) – the SFA is a tandem analysis. Separating the foi allows NC
to make use of its FIFO per µFlow property, i.e., its end-to-end delay is always bounded
with the horizontal deviation h (↵, �). In [74], it was shown that this method strictly
outperforms TFA with the bp (↵, �). Note, however, that the backlog bound, v (↵, �),
has a different semantic in the SFA. It does not bound the backlog at a server but the
foi’s data in transit.

The SFA is a straight-forward, server-by-server application of Theorems 2.1, 2.3 and 2.2 [50]:
it bounds cross-traffic arrivals (cf. TFA, not depicted), subtracts them from the servers’
service curves, concatenates the resulting left-over service curves and finally bounds the
foi’s performance characteristics.

�

l.o.foi
s

i

= �

s

i

 ↵

x(foi)
s

i

, �

l.o.SFAfoi
P (foi) =

O
s

i

2P (foi)

�

l.o.foi
s

i

.

D

foi
= h

⇣
↵

foi
, �

l.o.SFAfoi
P (foi)

⌘
, B

foi
= v

⇣
↵

foi
, �

l.o.SFAfoi
P (foi)

⌘
.

Executing the operations in this order can be directly proven to result in a valid end-
to-end left-over service curve. Bounding the delay with the horizontal deviation instead
of the maximum backlogged period size relaxes the strict service curve requirement.

Using a single, end-to-end left-over service curve, the foi’s arrival curve ↵

foi appears
only once in the equation for delay bound computation. I.e., the SFA implements the
PBOO principle. In case cross-flows are present at multiple consecutive hops, their
arrivals appear multiple times. We illustrate this problem with the �

l.o.SFA
f1

P (f1)
-computation
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for Figure 2.2:

�

l.o.SFA
f1

P (f1)
= �

l.o.f1
s0

⌦ �

l.o.f1
s1

⌦ �

l.o.f1
s2

⌦ �

l.o.f1
s5

⌦ �

l.o.f1
s6

= �

s0 ⌦
⇣
�

s1  ↵

f0

⌘
⌦
⇣
�

s2  ↵

f0
s2

⌘
⌦
⇣
�

s5  ↵

[f0,f2]
s5

⌘
⌦
⇣
�

s6  ↵

[f0,f2]
s6

⌘
= . . .

= �

s0 ⌦
⇣
�

s1  ↵

f0

⌘
⌦
⇣
�

s2  
⇣
↵

f0 ↵ �

s1

⌘⌘
⌦
⇣
�

s5  
⇣⇣⇣

↵

f0 ↵ �

s1

⌘
↵ �

s2

⌘
+

⇣⇣
↵

f2 ↵ �

s3

⌘
↵ �

s4

⌘⌘⌘
⌦
⇣
�

s6  
⇣⇣⇣⇣

↵

f0 ↵ �

s1

⌘
↵ �

s2

⌘
+

⇣⇣
↵

f2 ↵ �

s3

⌘
↵ �

s4

⌘⌘⌘
↵ �

s5

⌘
In this SFA equation, ↵

f1 does not appear, yet, ↵

f0 and ↵

f2 are found multiple times.
Every occurrence adds the respective cross-flow’s burst term; the derivation is not able
to capture how these level off in a realistic system. From f1’s point of view, multiplexing
with cross-traffic is paid for multiple times.

The presented �

l.o.SFA
f1

P (f1)
is also a bound on the left-over service for SP multiplexing

and FIFO multiplexing tandems of servers because the foi is assumed to have lowest
priority among all flows. A more accurate SP left-over service curve can be derived
with a simple adaptation: Flows of lower priority than f1 need not be subtracted from
the service curve. For FIFO multiplexing, the FIFO left-over service curve can be used
instead of the arbitrary multiplexing one. The equation will have multiple parameters
✓

i

, one for each server s

i

, and a subsequent optimization step is required. In contrast
to the arbitrary multiplexing SFA, per-server knowledge is not sufficient to derive the
end-to-end left-over service curve [51]. For non-FIFO per µFlow analysis, implementing
the PBOO principle requires a different notion of service curve that guarantees an upper
bound on the dwell period of a data unit traversing a tandem of servers [70].

2.3.3 Pay Multiplexing Only Once Analysis

The SFA’s �

l.o.SFA
f1

P (f1)
derivation reveals that cross-traffic arrival curves appear at every

server they need to be subtracted. Therefore, implementing the PMOO principle follows
the idea to convolve the analyzed tandem of servers before subtracting the cross-traffic
arrivals3. This order of operations allows the NC analysis to capture the leveling off of
cross-flow bursts on the subpath shared with the analyzed foi [30]. The PMOO analysis
(PMOOA) implements this order of operations. In this thesis, we use two different
variants of the PMOOA, depending on the interference pattern of cross-traffic.

3Application of algebraic operations in this order is not backed by NC theory. Service curve strictness
is required for subtraction but the result of convolution is not provably strict [31]. Yet, [74] provides
a proof that the resulting curve is indeed a valid lower bound for the tight left-over service curve.
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Definition 2.7. (Flow Nesting) Let T be a tandem of servers and f

a

and f

b

two flows
crossing some servers of this tandem. Then, flows are related in one of these ways:

• Flow f

a

is nested into f

b

on T , f

a

�T f

b

, iff all servers f

a

consecutively crosses on
T are also consecutively crossed by f

b

.

• Flow f

b

is nested into f

a

on T , f

b

�T f

a

, iff all servers f

b

consecutively crosses on
T are also consecutively crossed by f

a

.

• Flows f

a

and f

b

are not related on T iff they do not share any servers on this
tandem.

• Flows f

a

and f

b

overlap on T if neither of the above is true.

Note, that servers can only be crossed in one direction due to the directed links in the
server graph and that, by definition, all cross-flows of an analyzed foi are nested into its
path, i.e., T = P (foi).

Definition 2.8. (Interference Pattern [52]) Let foi be the flow of interest and let x(foi)
be the set of its cross-flows. The foi’s cross-traffic interference pattern is called nested
if, on the foi’s path P (foi), there is either a nesting relation between all pairs of flows in
x(foi) or no relation at all. If there are at least two cross-flows that overlap on P (foi),
the entire cross-traffic interference pattern is called non-nested.

The first PMOOA variant is exclusively applicable to tandems with a nested cross-
traffic interference pattern. The second one defines a new operation, a left-over service
curve computation for an entire tandem, that is applicable to tandems with non-nested
interference patterns. However, it requires that arrival curves are from FmTB and service
curves are from FmRL.

The PMOOA for Nested Interference This interference pattern guarantees a hierar-
chical nesting relation between all flows on P (foi). This relation can be expressed with
a nesting tree with the foi at its root [52, 53]. The tree defines the order of algebraic
NC operations to be applied: Starting from the tree’s leaf nodes, i.e., the flows without
others nested into them, flow paths are convolved and the according flow traversing it is
subtracted. These two steps result in (not necessarily end-to-end) left-over service curves
for flows on the next level in the nesting tree. Convolution and subtraction are repeated,
level for level in the nesting tree, until only the foi and its end-to-end left-over service
curve remain.
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The nesting tree for the network of Figure 2.2 is f2 �
P (f1) f0 �

P (f1) f1. It results in
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and f1’s performance bounds are, similar to the SFA,
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⌘
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For the analysis of nested FIFO-multiplexing tandems, this procedure constitutes the
fundamental aspect of the least upper delay bound (LUDB) analysis [3].

The PMOOA Left-over Service Curve for non-Nested Interference The second vari-
ant of the PMOOA addresses the problem of non-nested interference patterns [75]. It pro-
vides a single-step left-over service curve derivation �

l.o.PMOOfoi
P (foi) . This non-nested-PMOO

operation has an additional requirement on the shape of curves: The strict service curves
must belong to the class of multi-rate-latency curves FmRL and arrival curves must be
from the class of multi-token-bucket curves FmTB. Moreover, for the concrete derivation
of �

l.o.PMOO
f1

P (f1)
, we need to maintain distinguishable partial curves after the decomposition

into partial curves from FmRL and FmTB:
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Then we get the following left-over service curve:
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with
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(2.3)

The three parts of the left-over service curve’s latency are distinguishable on the right-
hand side of T

l.o.
h,i,j,k,l,p,q

:

• The original latencies of the crossed servers (Term 2.1),

• the additional latency due to first working off bursts of cross-traffic (Term 2.2), and

• the added latency for working off data that was queued while waiting for the servers’
latency (Term 2.3).

Only the second part holds the cross-flows’ burst terms and by taking the minimum over
the combinations of token buckets and rate latencies, cross-traffic burstiness is paid for
only once in the overall derivation. The analyzed flow’s performance bounds are, again,
derived with this service curve (see nested PMOOA).

For FIFO multiplexing, a single-step derivation akin to the non-nested PMOOA does
not exist. Instead, the analyzed tandem is cut into sub-tandems with nested interference
patterns. Each sub-tandem’s left-over service curve is computed with the nested PMOOA
variant and they are convolved to an end-to-end left-over service curve. In case there are
multiple alternatives to cut the tandem, all are tested and the best result, i.e., the least
delay bound, is returned by the LUDB analysis [3]. This approach does not necessarily
implement the PMOO principle to its fullest extent.

2.4 Optimization-based Analysis

The PMOOA was considered strictly superior to the SFA w.r.t. delay bounding as it
implements the eponymous principle for end-to-end analysis. However, [74] shows that
the SFA can arbitrarily outperform the PMOOA. Due to the convolution’s commutativity,
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2.4 Optimization-based Analysis

PMOOA cannot benefit from large residual service at the end of the analyzed (convolved)
tandem. This is expressed on the right-hand side the above equation, Terms 2.2 and 2.3,
where the minimum end-to-end left-over rate is in the denominator. I.e., the per-server
service rate is not available to the analysis.

Additionally, an optimization-based bounding method that implements the PMOO
principle is provided in [74]. It transforms the NC network description to an optimization
problem; departing from the algebraic methodology to overcome the problematic property
of convolution. This method shares the PMOOA’s requirement on arrival and service
curves to be from FmTB and FmRL, respectively, and derives a superior left-over service
curve from these. Hence, [74] also proves that the PMOOA’s �

l.o.PMOOfoi
P (foi) is valid despite

its order of operations that cannot be directly proven to be resulting in a valid left-over
service curve.

2.4.1 The Linear Programming Analysis

The seminal work on optimization-based NC inherited some crucial aspects from algNC.
Most importantly, it composes tandem-local results when analyzing a feed-forward net-
work. This approach is known to enforce worst-case assumptions in the analysis of
feed-forward networks that may lead to a loss of result accuracy [53]. Optimization does,
however, not require a compositional analysis. Based on these insights, an optimization-
based, tight feed-forward analysis was proposed in [12]: the Linear Programming Analysis
(LPA). Intuitively, LPA delay analysis proceeds as follows:

1. Starting from the foi’s sink server, flows as well as their respective cross-flows are
recursively traced towards their sources. For every link traversed backwards, the
start of backlogged periods at the link’s source and its destination are related.
This step terminates as soon as all flows are traced to their sources. The result
is a partial order where, for example, there is no given order between the starts
of backlogged periods for servers in different branches of a tree (e.g., s2 and s4 in
Figure 2.2).

2. The second step is to extend the partial order to the set of all compatible total
orders. This procedure enumerates all potential entanglements of the start of back-
logged periods at the network’s servers. In the above example, the entanglement
on distinct branches of the tree network are enumerated such that all outcomes are
considered at the later servers s5 and s6. Special care must be taken of relations
caused by rejoining flows [53].

3. This step transforms each total order to one linear program. The order between
the start of backlogged periods as well as the NC network description (strict service
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curves, arrival curves, non-decreasing curves, non-negativity, flow constraint) are
used to derive the constraints of each linear program. Like most analyses, the
LPA requires arrival curves from FmTB and service curves from FmRL. They are
decomposed as shown above; each token bucket and each rate latency is converted
into one constraint.

4. The LPA’s set of linear programs models all potential entanglements of flows as
they gradually progress on their path through the network; not only the worst-
case one(s). Therefore, all linear programs must be solved in the final step. The
maximum among their solutions is a valid worst-case bound for the foi’s delay. I.e.,
the LPA is an all-or-nothing analysis approach.

Step 2 constitutes the main drawback of the LPA: The amount of different linear programs
and thus the computational complexity of the LPA grows possibly (super-)exponentially
with the network size. The authors prove that their approach to obtain tight bounds is
in fact NP-hard.

For other multiplexing disciplines, similar optimization-based NC analyses have been
provided in the literature: SP feed-forward-networks [13], FIFO tandems [14] and FIFO
feed-forward networks [15]. The latter one is most similar to the LPA, yet, it replaces
step 2 with a different technique to encode multiplexing and demultiplexing of flows that
lead to parallel paths. It introduces integer variables, i.e., it transforms the NC network
description into a single mixed-integer linear program instead of a set of ordinary linear
programs. There is no optimization-based analysis for tandems of servers that do not
retain the FIFO per µFlow property.
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This section presents the problem of flow segregation arising in algNC analysis of feed-
forward networks. We provide two countermeasures to it: aggregate arrival bounding and
arrival bound burstiness reduction. AlgNC can derive delay, backlog and output bounds
for tandems of servers in a straight-forward fashion. For the analysis of feed-forward
networks, we present the generic concepts to decompose the network into tandems and
recompose tandem-local analysis results to the flow of interest’s performance bounds.

Section 2.2 presented the state of the art in NC; work that was mainly dedicated to
the step from a single server analysis to a tandem of servers. We have established the
framework that allows a tandem analysis to compute performance bounds in general
feed-forward networks. This framework, called the compositional feed-forward analysis
(compFFA), is presented in Section 3.1. It defines how the tandem-local results are
composed to a network-global analysis – a step not required in the LPA. Investigating the
compFFA procedure allows us to identify the causes for inaccurate results in algNC’s feed-
forward analysis (Section 3.2). Improvements to the algNC are presented in Sections 3.3
and 3.4.

3.1 Compositional Analysis of Feed-forward Networks

The LPA’s approach to the feed-forward analysis imposes considerable effort to attain
a network-global view on flow scheduling and cross-traffic (de-)multiplexing, rendering
it NP-hard (Section 2.4.1). The tandem analyses of algNC cannot follow this approach.
For the analysis of a feed-forward network, they must follow a compositional divide-and-
conquer approach, the compFFA. It consists of two steps [7, 8].

1. Cross-traffic Arrival Bounding:
The first compFFA step abstracts from the feed-forward network to the foi’s path –
a tandem of servers that can be analyzed with one of the existing procedures. After
this step, a bound on the worst-case shape of cross-flows is known at the locations of
interference with the foi. Then, the following step need not consider the part of the
network traversed by these flows nor the potentially complex interference patterns
they are subject to (see Figure 3.1). In detail, this step proceeds as follows:

a) Starting at the locations of interference with the foi, cross-flows are back-
tracked to their sources. This procedure derives the dependencies between
the foi, its cross-flows, their cross-flows, etc., in a recursive fashion. A new
instance of this sub-step is started for any cross-flow of the current cross-flow
under consideration. Due to the network’s feed-forward property, the recur-
sion is guaranteed to terminate.
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3 Accuracy of Algebraic Network Calculus

Figure 3.1: CompFFA: abstraction from a feed-forward network, possibly a tree, to the
servers on the flow of interest’s path.

b) Next, the dependencies are converted into an equation, i.e., a sequence of alge-
braic operations, that capture the transformation of worst-case flow arrivals.

c) Finally, the equations are solved to obtain the bounds on cross-traffic arrivals.

2. Flow of Interest Performance Bounding:
The foi’s end-to-end delay bound in the feed-forward network is derived with a less
complex tandem analysis.

The second step of the compFFA procedure has seen much treatment in the literature
(see Section 2.3 as well as [10, 31] for recent overviews). The first step of the feed-
forward network analysis, bounding the cross-traffic, has so far been largely neglected.
Most work starts directly with the tandem analysis or suggests to use straightforward
techniques from basic NC results (more details are given in Section 3.3). An exception
can be found in [29], where, for a single node under arbitrary multiplexing of several
flows, tight output descriptions are derived for a single flow. However, when targeting
a feed-forward network, we need to bound cross-flows that may have traversed several
servers with potentially many other flows joining and leaving it. The literature neither
provides an in-depth analysis of compFFA’s shortcomings nor work to improve analysis
accuracy through step 1. This thesis will focus on the first step of the compFFA as well
as the interdependencies between both steps in order to improve the accuracy of algNC
performance bounds.
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3.2 Problems

3.2 Problems

3.2.1 Problems Caused by Compositionality

The compFFA’s compositionality causes a fundamental problem: Cross-flows arrivals
at different locations of interference are bounded independently from each other with
separate instances of compFFA step 1. In every instance, the flow under consideration
is bounded with flow-local worst-case assumptions; the compositional analysis suffers
from a cross-flow segregation effect. Each of the segregated flows computes a left-over
service curve by considering any other traffic to interfere with it in the worst case. The
cross-flow segregation negatively impacts compFFA if, during independent backtrackings
of step 1a, servers are traversed multiple times. I.e., they appear in the equation of
step 1b more than once, with different settings of flows to subtract (left-over service
curve operation) and different flows for arrival bounding. Rejoining interference with the
foi is an instance of this problem [53]4 that also motivates the LPA [12]. A similar instance
of the problem is used for evaluating the LPA: the square network (see Figure 3.2a). It
imposes segregation in a transitive fashion when analyzing flow f1: The flows at server s1

(service �

s1) are in two separate backtracking instances, one started for at server s3 and
one started at server s4 that, in turn, requires to bound f2 at server s2. I.e., at s1,
both flows assume worst-case mutual interference by a left-over service curve derivation
with their respective flow-local worst-case assumptions. Service �

s1 is segregated into
�

l.o.f2
s1 = �

s1  ↵

f3 and �

l.o.f3
s1 = �

s1  ↵

f2 (Figure 3.2b) – two left-over service curves
that cannot be attained simultaneously in a realistic network. As a consequence, the
result of compFFA step 1a, i.e., the internal model it creates, does not necessarily equal
the server graph. We formulate this problem in a novel principle to be implemented by
feed-forward NC analyses, similar to PBOO and PMOO (Section 2.2).

The Pay Segregation Only Once (PSOO) principle If the arrivals of two flows have to
be bounded segregately in the compositional feed-forward analysis and these flows both
cross the same server before interfering with the foi, then they should not be segregated
in a way that imposes the worst-case mutual interference assumptions on both. In the
algebraic analysis equation, segregated flows should not have to consider each other
fully in their respective arrival bounding. Although this leads to a valid upper bound,
the according behavior is not attainable by a realistic system and thus the eventual
performance bound cannot be tight. Segregation of cross-flows should only be paid for
once by the ensemble of the two flows.

4In the earlier work of [73] ”eliminate rejoining interfering flows” means that the analysis internally
creates a new flow for every location of interference with the flow of interest. The arrivals of these
flows are bounded with compFFA step 1, i.e., the cross-flow segregation problem persists.
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f1

↵

f2
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f3
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f4

(a) The Square Network. (b) CompFFA-internal model of the network.

Figure 3.2: Cross-flow segregation in the square network.

The LPA is not compositional, it is the only NC analysis implementing the PSOO
principle in addition to PBOO and PMOO.

3.2.2 Problems Caused by Tandem Analyses

We found an interdependency between compFFA step 2 and compFFA step 1 that can
enforce segregation of cross-flows. We derived the minimal network setting that exhibits
the problem (Figure 3.3a). Interestingly, it is the non-nested tandem as already used
in [74] to motivate the use of optimization, yet, flows take different roles. The foi does
not cross the entire tandem, instead, we analyze the flow crossing only the two servers
at the end of the tandem.

Bounding the foi’s end-to-end delay depends on the choice of tandem analysis applied
to it5. I.e., the actual decomposition into left-over service curve and output bound
operations in step 1 depends on the analysis chosen for in step 2.

• The SFA first decomposes the foi’s paths into single servers to apply Theorems 2.3
and 2.2 (Figure 3.3c). Thus, it starts an cross-traffic arrival bounding instance for
every server.

• The PMOOA does not decompose the foi’s path into smaller units of operation than
this tandem itself. I.e., it tries to operate on longest tandems possible (Figure 3.3b).

We have identified crucial problems that arise from either of these two alternatives of
algNC. They enforce a segregation of cross-flows and with their distinct cause, they can
occur in addition to the segregation problem illustrated with the square network.

5We will not consider the TFA for delay analysis as it will result in strictly inferior bounds.
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s0 s1 s2

xf1

xf2

foi

(a) Minimal network suffering from composition penalty.

xf1

xf2

�

l.o.xf1
s0

�

l.o.xf2
s0

�

l.o.foi
�s1,s2�foi

(b) Figure 3.3a’s PMOOA-internal model.

(c) Figure 3.3a’s SFA-internal model.

Figure 3.3: The minimal network imposing a PSOO principle violation due to the tandem
analysis applied in compFFA step 2.
Interpretation: Boxes depict tandems for �

l.o. derivation and arrows depict
flows. Flows pointing at a box are subtracted from � and crossing a box
means using the �

l.o. for output bounding.

Cross-flow Segregation Enforced by Subpath Sharing Considerations The PMOOA
was constructed to consider shared subpaths between the foi and its cross-flows. It de-
mands a distinct arrival curve for each cross-flow (aggregate) sharing a specific subpath.
I.e., if two cross-flows xf1 and xf2 interfere on two different subpaths, they require seg-
regate arrival boundings [9]. This procedure causes problems in case these cross-flows
share hops apart from the foi’s path – similar to the known problem cause by the comp-
FFA procedure. There, they cannot be aggregated; they must be considered mutual
interference. Figure 3.3b illustrates this problem. Cross-flows xf1 and xf2 fulfill the cri-
teria for segregated arrival bounding and their respective left-over service curves at s0

are �

l.o.xf1
s0 = �

s0  ↵

xf2 and �

l.o.xf2
s0 = �

s0  ↵

xf1 . The cross-traffic arrival bound deriva-
tion will have more than one cross-traffic burstiness for each of the interfering flows xf1

and xf2, the PSOO principle is violated. Both of the PMOOA variants presented in
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Section 2.3.3 suffer from this problem.

Cross-flow Segregation Enforced by Tandem Decomposition The SFA can have var-
ious degrees of aggregation and separation within its equation, i.e, its internal model
of the network. The SFA proceeds server-by-server; in terms of the PMOOA’s subpath
sharing point of view, it can aggregate all cross-flows sharing a single hop on the foi’s
path. Consider Figure 3.3a’s network again: On the foi’s first hop, s1, SFA allows to
aggregately bound the arrivals of xf1 and xf2 in a single instance of compFFA step 1.
Then, the left-over service curve of the cross-flow aggregate [xf1, xf1] crossing server s0

is �

l.o.[xf1,xf1]
s0 = �

s0 . In this case, aggregation supersedes segregation and thus no explicit
implementation of the PSOO principle is required. However, the SFA’s decomposition
into individual servers also requires an arrival bounding instance for xf2 at s2. Here,
mutual interference between xf1 and xf2 has to be assumed. At s0, we get the same
�

l.o.xf1
s0 and �

l.o.xf2
s0 as in the PMOOA – the PSOO principle must be violated to retain

the worst case. At s1, we additionally get �

l.o.xf2
s1 = �

s1  ↵

xf1
s1 , i.e., another burst term

appears in the derivation due to violating the PMOO principle.

Decisions on Incomplete Knowledge In [74], the authors show that knowledge of the
crossed servers’ sequence is lost in the PMOOA’s tandem analysis. The SFA, in contrast,
retains this knowledge due to its server-by-server procedure. This allows the SFA to
outperform the PMOOA on tandems where �

l.o. curves get considerably faster towards
the end. In feed-forward networks, either applying the SFA or the PMOOA is the first
decision to take. That means, the decision does not have the �

l.o. curves at its disposal
– they remain unknown until the first step of the compFFA resulted in the cross-traffic
arrival bounds. Thus, eventually concluding the analysis can exploit the sequence of
servers triggers another feed-forward analysis of the network.

We summarize all the above problems in the composition penalty of algNC.

3.3 Derivation of Cross-traffic Arrival Bounds

We identified segregation of flows to cause inaccuracy in the algNC analysis. In this
section, we present a new, recursive algorithm implementing an arrival bounding for
compFFA step 1 that maximizes aggregation of flows. Thus, we reduce the composition
penalty of compFFA’s step 1. Unaware of the drawbacks of segregation, the literature
suggest to execute SFA with a cross-traffic arrival bounding that applies maximum seg-
regation [10]. It operates on longest possible tandems. We prove that our approach
outperforms the one of the literature if (min,+)-deconvolution distributes over addition.
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3.3.1 Segregated Cross-flow Arrival Bounding

NC analyses previously focused on improved end-to-end view on the tandem in the sec-
ond compFFA step in order to tighten the delay bound. The generic way to compute
performance bounds in feed-forward networks [10] is in line with this approach. It de-
rives the SFA-like cross-traffic arrival bound for each flow at each system. Cross-flows
are segregated from each other such that every cross-flow can be analyzed with a SFA on
a maximum length tandem, i.e., source-to-interference location. This cross-flow bound-
ing implements the PBOO principle for the segregated flows. Therefore, we call this
procedure to decompose a feed-forward network into a sequence of tandem analyses the
segregated PBOO arrival bounding, segrPBOOAB.

Figure 3.4 illustrates this method: At both servers crossed by the foi, s1 and s2, a
new instance of compFFA step 1 is started for every cross-flow. The enforced segregation
results in a violation of the PSOO principle:

�

l.o.foi
s1

= �

s1 
⇣
↵

xf1
s1

+ ↵

xf2
s1

⌘
= �

s1 
⇣⇣

↵

xf1 ↵
⇣
�

s0  ↵

xf2

⌘⌘
+

⇣
↵

xf2 ↵
⇣
�

s0  ↵

xf1

⌘⌘⌘
The arrival bounding at s1 is equal to Figure 3.3b’s derivation; the segrPBOOAB

suffers from the same problem as the analysis considering subpath sharing. Moreover, at
s2 it suffers from the decomposition of the analyzed tandem into server-by-server left-over
derivations and another cross-flow segregation at s0 (cf. Figure 3.3c). Next, we present
our alternative cross-traffic arrival bounding for the compFFA.

3.3.2 Aggregate Cross-traffic Arrival Bounding

In our alternative arrival bounding for compFFA step 1, we prioritize maximum aggrega-
tion of cross-flows over the analysis of maximum length tandems. We apply Theorem 2.1,
output bound, to cross-traffic aggregates – moving along the topology, starting from the
location of interference with the foi and terminating at the sources of cross-flows. Thus,
aggregation results in a different decomposition of the network into tandems than the
procedure of Section 3.3.1. It also reduces the PSOO violations by circumventing segre-
gation as much as possible. In order to benchmark this change against the segrPBOOAB,
we implement the PBOO principle on the tandems shared by all flows in a cross-traffic
aggregate. We call this procedure the aggregate PBOO arrival bounding, aggrPBOOAB.

The derivation of the left-over service curve for s1 in Figure 3.3a’s network changes to
(see Figure 3.3c):

�

l.o.foi
s1

= �

s1  ↵

[xf1,xf2]
s1

= �

s1  
⇣⇣

↵

xf1
+ ↵

xf2

⌘
↵ �

s0

⌘
The crucial difference is located at s0. As both of the cross-flows, xf1 and xf2, share this
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s0

�
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Figure 3.4: Figure 3.3a’s SFA-internal model as presented in [10]. In contrast to Fig-
ure 3.3c, it does not aggregate cross-traffic arrivals at server s1.

server, their output can be bounded aggregately. Information of per-cross-flow arrivals,
i.e., a segregated bounding, is not necessary and thus the PSOO principle need not be
implemented.

The aggrPBOOAB is not as straight-forward as the segrPBOOAB. Therefore, we de-
veloped the principle to maximize aggression into an algorithm for compFFA step 1.
It integrates the three distinguishable substeps, backtracking, derivation of the analysis
equation and solving it, into a recursive solution for efficient computation. This algorithm
was implemented in the DiscoDNC tool [7].

Algorithm 3.1. (Recursive aggrPBOOAB) The foi’s cross-traffic arrival bound at server
s is derived as follows. Starting from s, paths of cross-flows are backtracked via links; each
link l connects a source server l

src and a destination l

dest. The function dest(s) returns
the set of links whose destination is s, x (foi, l) = F (l

src
) \ F

�
l

dest� \ x (foi) returns the
cross-flows of foi on l and for a set of links L we define x (foi,L) =

T
l2L x (foi, l). We get,

for instance, x (x (foi, l)) =

�
F (l

src
) \ F

�
l

dest�� \ x (foi, l). Note, that flow sets might be
restricted by location, e.g., ↵

x(foi)
s

x

= ↵

x(foi)\F (s
x

)
s

x

, and that in an expression x (foi, l), the
foi need not cross l.

↵

x(foi)
s

=

X
l12dest(s)

⇣
↵

x(foi,l1)
l

src
1

↵ �

l.o.x(foi,l1)
l

src
1

⌘
+ ↵

Fsrc(s)\x(foi)

=

X
l12dest(s)

⇣
↵

x(foi,l1)
l

src
1

↵
⇣
�

l

src
1
 ↵

x(x(foi,l1))
l

src
1

⌘⌘
+ ↵

Fsrc(s)\x(foi)

=

X
l12dest(s)

(

0B@ X
l22dest(lsrc1 )

⇣
↵

x(foi,{l2,l1})
l

src
2

↵ �

l.o.x(foi,{l2,l1})
l

src
2

⌘
+ ↵

Fsrc(lsrc1 )\x(foi,l1)

1CA
↵
⇣
�

l

src
1
 ↵

x(x(foi,l1))
l

src
1

⌘
)

+ ↵

Fsrc(s)\x(foi)
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=

X
l12dest(s)

(

0B@ X
l22dest(lsrc1 )

⇣
↵

x(foi,{l2,l1})
l

src
2

↵ �

l.o.x(foi,{l2,l1})
l

src
2

⌘
+ ↵

Fsrc(lsrc1 )\x(foi,,l1)

1CA
↵

0B@�

l

src
1
 

X
l22dest(lsrc1 )

⇣
↵

x(x(foi,{l2,l1}))
l

src
2

↵ �

l.o.x(x(foi,{l2,l1}))
l

src
2

⌘1CA)

+ ↵

Fsrc(s)\x(foi)

= . . .

The recursion of Algorithm 3.1 is exemplarily unfolded to illustrate the backtrack-
ing of interference in a feed-forward network. Initially, the foi’s cross-traffic ↵

x(foi)
s

is
split into the sum of flow arrivals from incoming links and those originating at s itself,
↵

Fsrc(s)\x(foi). Next, the left-over service curves at the sources of incoming links are de-
rived in order to separate the foi’s cross-traffic that has to be bounded, x(foi, l1), from the
cross-traffic it experiences, x(x(foi, l1)), i.e., there are two directions to further backtrack
flows by unfolding the term. Both directions require a new instance of compFFA step 1
in the following steps and will thus operate with independent worst-case assumptions.
The PSOO violation depicted in Section 3.2.1 can still occur. Step 3 of Algorithm 3.1
proceeds towards the sources of x(foi, l1) and step 4 proceeds towards x(x(foi, l1)). The
backtracking will eventually terminate at the flows’ sources.

3.3.3 Deconvolution for ↵ 2 FmTB with � 2 FmRL

AggrPBOOAB heavily relies on the output bounding operation of algNC, i.e., the decon-
volution ↵. In [17], an algorithm for the deconvolution of two piecewise linear functions
is provided. It can be applied to curves of a class more general than F0. In this thesis,
we are concerned with analyses that are restricted to multi-token-bucket arrival curves
↵ 2 FmTB and multi-rate-latency service curves � 2 FmRL. We provide an algorithm for
deconvolution that is tailored to these curves.

Recall the definition of deconvolution (Definition 2.6):

(↵↵ �) (d) = sup

u�0
{↵(d + u)� �(u)}

Our explicit solution for the deconvolution of ↵ 2 FmTB with � 2 FmRL relies on two
observations:

1. The inflection points of arrival and service curves are crucial for the result [75].

2. We can split up the supremum into several suprema applied in sequence [17]. We
first derive the set of potential solution curves by computing a result candidate for

31



3 Accuracy of Algebraic Network Calculus

each inflection point ↵ and �. Then, we take the pointwise supremum over the all
result candidates.

Lemma 3.1. (Deconvolution of ↵ 2 FmTB with � 2 FmRL) Let ↵ 2 FmTB and � 2
FmRL. Further, let I

↵

be the set of locations of inflection points of ↵ and I

�

be the set
of locations of inflection points of �. By definition t = 0 is in the set I

�

. Then, the
deconvolution of ↵ with � is

(↵↵ �) (d) = sup

(
sup

i

�

2I
�

{↵(d + i

�

)� �(i

�

)} , sup

i

↵

2I
↵

{↵(i

↵

)� �(i

↵

� d)}
)

.

As mentioned above, the supremum has been split up [17]. Derivations tailored to inflec-
tions points of ↵ and � are inside the outer supremum and each inflection point creates
a result candidate curve. I.e., the amount of candidates the outer supremum is applied
to is equal to the amount of ↵’s inflection points |I

↵

| plus �’s inflection points |I
�

|.

3.3.4 Distributivity of ↵ over +

In the aggrPBOOAB, aggregation of cross-traffic is followed by a deconvolution with
this aggregate’s left-over service curve on the subsequently traversed tandem. See Algo-
rithm 3.1, step 3, where the term inside the outer sum follows the pattern

P
i

(↵

i

) ↵ �.
This pattern will occur with every recursion level required for aggrPBOOAB. Based on
Lemma 3.1, we derive conditions for the distributivity of ↵ over +.

Lemma 3.2. (Deconvolution of ↵ 2 FmTB with � 2 FmRL) Let ↵

f1
, ↵

f2 2 F
mTB

be
arrival curves and let � be a service curve. Then, the deconvolution distributes over the
aggregation, ⇣⇣

↵

f1
+ ↵

f2

⌘
↵ �

⌘
(d) =

⇣⇣
↵

f1 ↵ �

⌘
+

⇣
↵

f2 ↵ �

⌘⌘
(d),

if, for the result candidates of Lemma 3.1, it holds that result candidates for inflection
points i

↵

F 2 I

↵

F , i

↵

F  T and i

�

2 I

�

, i

�

 T are greater equal to the candidates for
i

↵

F 2 I

↵

F , i

↵

F > T and i

�

2 I

�

, i

�

> T , where T denotes the service curve’s latency.
The condition especially holds for � = �

R,T

2 FRL and max {I

↵

F}  T (e.g., ↵ 2 FTB).

Proof. We apply Lemma 3.1 and get⇣⇣
↵

f1
+ ↵

f2

⌘
↵ �

⌘
(d) =

sup

(
sup

i

�

2I
�

n⇣
↵

f1
+ ↵

f2

⌘
(d + i

�

)� �(i

�

)

o
, sup

i

↵

F2I
↵

F

n⇣
↵

f1
+ ↵

f2

⌘
(i

↵

F)� �(i

↵

F � d)

o)
(3.1)
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where F = [f1, f2] and ↵

F
= ↵

f1
+ ↵

f2 such that I

↵

F denotes the set of inflection points
of the curve ↵

f1
+ ↵

f2 , I

↵

F = I

↵

f1 [ I

↵

f2 .

We are interested in the conditions that allow deconvolution ↵ to distribute over the
pointwise addition of curves, i.e.,⇣⇣

↵

f1
+ ↵

f2

⌘
↵ �

⌘
(d)

conditions?
=

⇣⇣
↵

f1 ↵ �

⌘
+

⇣
↵

f2 ↵ �

⌘⌘
(d).

The right side of the equation translates to:⇣⇣
↵

f1 ↵ �

⌘
+

⇣
↵

f2 ↵ �

⌘⌘
(d) =

sup

(
sup

i

�

2I
�

n
↵

f1
(d + i

�

)� �(i

�

)

o
, sup

i

↵

f1
2I

↵

f1

n
↵

f1
(i

↵

f1 )� �(i

↵

f1 � d)

o)

+ sup

(
sup

i

�

2I
�

n
↵

f2
(d + i

�

)� �(i

�

)

o
, sup

i

↵

f2
2I

↵

f2

n
↵

f2
(i

↵

f2 )� �(i

↵

f2 � d)

o)
(3.2)

I) Valid Result Candidates: Comparing the first sub-term of equations 3.1 and 3.2’s
outer suprema (deriving result candidates for �’s inflection points), we see that ��(i

�

)

has to be considered twice in
��

↵

f1 ↵ �

�
+

�
↵

f1 ↵ �

��
(d). Therefore, we need to ensure

that 8i
�

2 I

�

. � (i

�

) = 0 which implies that 80  d  max {I

�

} . �(d) = 0 , i.e.,
� = �

R,T

2 FRL.

Similarly, in the second terms (deriving result candidates for ↵

F’s, ↵

f1 ’s and ↵

f2 ’s in-
flection points), we need to ensure � (i

↵

F � d) = � (i

↵

f1 � d) + � (i

↵

f2 � d). We know
that I

↵

F = I

↵

f1 [ I

↵

f2 . Thus, we get the condition 8i
↵

F 2 I

↵

F . � (i

↵

F � d) = � (i

↵

F � d) +

� (i

↵

F � d) from equations 3.1 and 3.2. This equation is fulfilled iff 8i
↵

F 2 I

↵

F . � (i

↵

F � d) =

0. It translates to the condition i

max
↵

F :

= max {I

↵

F}  T = i

�

, i.e., ↵

F must be a multi-
token-bucket curve whose rightmost inflection point does not exceed �’s latency.

If these conditions are met, we get:⇣⇣
↵

f1 ↵ �

⌘
+

⇣
↵

f2 ↵ �

⌘⌘
(d) =

sup

n
↵

f1
(d + i

�

), ↵

f1
(i

max
↵

F )

o
+ sup

n
↵

f2
(d + i

�

), ↵

f2
(i

max
↵

F )

o
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From i

max
↵

F  i

�

and t � 0 we know that ↵

f

i

(d + i

�

) � ↵

f

i

�
i

max
↵

F
�
, i 2 {1, 2} such that⇣⇣

↵

f1 ↵ �

⌘
+

⇣
↵

f2 ↵ �

⌘⌘
(d) =

sup

(
sup

i

�

2I
�

n
↵

f1
(d + i

�

)� � (i

�

)

o
, sup

i

↵

f1
2I

↵

f1

n
↵

f1
(i

↵

f1 )� � (i

↵

f1 � d)

o)

+ sup

(
sup

i

�

2I
�

n
↵

f2
(d + i

�

)� � (i

�

)

o
, sup

i

↵

f2
2I

↵

f2

n
↵

f2
(i

↵

f2 )� � (i

↵

f2 � d)

o)

(Condition � = �

R,T

2 FRL)

= sup

(
↵

f1
(d + T ) , sup

i

↵

f1
2I

↵

f1

n
↵

f1
(i

↵

f1 )� � (i

↵

f1 � d)

o)

+ sup

(
↵

f2
(d + T ) , sup

i

↵

f2
2I

↵

f2

n
↵
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(i

↵
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↵
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�
Condition i

↵

f

i
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↵

F  T

�
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2I

↵

f1

n
↵

f1
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�o)
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↵
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↵

f2
2I

↵
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n
↵
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�
i
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F
�o)

�
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F  T

�
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f1
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R,T
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= ↵

f1
(d + i

�
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(d + i

�

)

=

⇣
↵
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⌘
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�
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=

⇣
↵
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⌘
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) + 0
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⌘ �
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�
Condition I

↵

F 3 i

↵

F  i

max
↵

F
�

= sup

(
sup

i

�

2I
�

n⇣
↵

f1
+ ↵

f2

⌘
(d + i

�

)� �(i

�

)

o
, sup

i

↵

F2I
↵

F

n⇣
↵

f1
+ ↵

f2

⌘
(i

↵

F)� �(i

↵

F � d)

o)

=

⇣⇣
↵

f1
+ ↵

f2

⌘
↵ �

⌘
(d)

II) Invalid Result Candidates without Impact: The above conditions were de-
rived by matching the outcome of equivalent parts of equation 3.1 and equation 3.2. I.e.,
if the conditions on ↵

f1 , ↵

f2 , ↵

F, and � are met, the candidate curves derived by the
inner terms are equal and so is the result of the outer supremum.

This approach is, however, deriving too strong conditions. The outer supremum’s
impact needs to be considered in more detail. This operation has the ability to “re-
move” invalid result candidates where the distributivity does not apply, i.e., where��

↵

f1
+ ↵

f2
�↵ �

�
(d) 6= ��

↵

f1 ↵ �

�
+

�
↵

f2 ↵ �

��
(d). From the conditions above we

know that invalid candidates are derived for the following inflection points of curves:
• 8i

↵

F 2 I

↵

F . i
↵

F > T

• 8i
�

2 I

�

. i

�

> T , i.e., � 2 FmRL with latency T

If these invalid result candidate curves are smaller than the supremum of valid candi-
dates, the outer supremum in equation 3.2 removes them such that they do not impact
the final result. To check if we can distribute a deconvolution over an addition of two
multi-token-bucket curves, we need to split the derivation into two parts, according to
the location of inflection points:

1. The part deriving valid candidates for inflection points on [0, T ] and

2. the part deriving invalid candidates for inflection points on (T, +1).

Then, we need to check if the supremum of invalid result candidates is smaller than
the supremum of valid result candidates. We either require

��
↵

f1 ↵ �

�
+

�
↵

f2 ↵ �

��
(d)

with⇣⇣
↵

f1 ↵ �

⌘
+

⇣
↵

f2 ↵ �

⌘⌘
(d)

���
iT

:

=

sup

(
sup

I

�

3i
�

T

n
↵
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�

)� �(i
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)

o
, sup
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T

n
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f1 � d)
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+ sup
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and⇣⇣
↵

f1 ↵ �
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���
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8t � 0 :

⇣⇣
↵

f1
+ ↵

f2

⌘
↵ �

⌘
(d)

���
iT

�
⇣⇣

↵

f1
+ ↵

f2

⌘
↵ �

⌘
(d)

���
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.

Lemma 3.2 can be extended to flow aggregates of arbitrary sizes > 2 by iterative
application.
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3.3.5 Ranking of PBOO Arrival Bounding Alternatives

Lemma 3.2 allows us to rank both PBOO cross-traffic arrival bounding methods, segr-
PBOOAB and aggrPBOOAB.

Theorem 3.1. (Accuracy of PBOO Cross-traffic Arrival Bounding) Cross-traffic arrival
bounding with aggrPBOOAB is more accurate than segrPBOOAB if the conditions of
Lemma 3.2 are fulfilled.

Proof. Without loss of generality (detailed explanation follows after the proof), we prove
this statement by showing that there are no beneficial effects of bounding long tandems
(Figure 3.5b) that are more advantageous than bounding both flows aggregately on
shorter tandems (Figure 3.5c).

First, we derive the segregated cross-flow arrival bounds at s1, i.e., ↵

xf

n

s1 , n 2 {1, 2},
and aggregate the results to ↵

[xf1,xf2]
s1 = ↵

xf1
s1 + ↵

xf2
s1 .

↵

xf

n

s1
= ↵

xf

n

s0n
↵ �

l.o.xf
n

hs0n,s0i = ↵
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n

s0n
↵
⇣
�
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⇣
�
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n

s0n
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⇣
�

s0n ⌦
⇣
�

s0  
⇣
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⌘⌘⌘
where n denotes the opposite cross-flow’s index, i.e., 1 = 2 and 2 = 1. Therefore,

↵

[xf1,xf2]
s0

= ↵

xf1
s01
↵
⇣
�

s01 ⌦
⇣
�

s0  
⇣
↵

xf2
s02
↵ �

s02

⌘⌘⌘
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↵
⇣
�

s02 ⌦
⇣
�

s0  
⇣
↵

xf1
s01
↵ �

s01

⌘⌘⌘
(3.3)

Next, we derive the aggregate cross-traffic arrival bound ↵

[xf1,xf2]
s0 according to Algo-

rithm 3.1.

↵

[xf1,xf2]
s0

=

⇣
↵

xf1
s0

+ ↵

xf2
s0

⌘
↵ �

l.o.[xf1,xf2]
s0

=

⇣⇣
↵

xf1
s01
↵ �

s01

⌘
+

⇣
↵

xf2
s02
↵ �

s02

⌘⌘
↵ �

s0 (3.4)

Last, we show that the former arrival bound cannot be smaller than the latter one, i.e.,
(3.4)  (3.3) holds. This step relies on Lemma 3.2 and thus we inherit its conditions in
this theorem. For (3.4), distributivity of ↵ over + results in:⇣⇣

↵

xf1
s01
↵ �

s01

⌘
+

⇣
↵

xf2
s02
↵ �

s02

⌘⌘
↵ �

s0 =

⇣
↵

xf1
s01
↵ �

s01

⌘
↵ �

s0 +

⇣
↵

xf2
s02
↵ �

s02

⌘
↵ �

s0

and (3.4)  (3.3) translates to
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(a) Sample network.
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(b) Segregated cross-flow arrival bounding segrPBOOAB.

(c) Aggregate cross-traffic arrival bounding aggrPBOOAB.

Figure 3.5: Decomposition of a network for PBOO cross-traffic arrival bounding:
(b) depicts the segregation of cross-flows (segrPBOOAB) and (c) illustrates
our aggregation approach (aggrPBOOAB) resulting in shorter tandems.

⇣
↵

xf1
s01
↵ �

s01

⌘
↵ �

s0 +

⇣
↵

xf2
s02
↵ �

s02

⌘
↵ �

s0

 ↵

xf1
s01
↵
⇣
�

s01 ⌦
⇣
�

s0  
⇣
↵

xf2
s02
↵ �

s02

⌘⌘⌘
+ ↵

xf2
s02
↵
⇣
�

s02 ⌦
⇣
�

s0  
⇣
↵

xf1
s01
↵ �

s01

⌘⌘⌘
.

We now compare each segregated cross-flow’s impact on the final arrival bound. This
results in two sub-terms:⇣

↵

xf

n

s0n
↵ �

s0n

⌘
↵ �

s0  ↵

xf

n

s0n
↵
⇣
�

s0n ⌦
⇣
�

s0  
⇣
↵

xf

n

s0n
↵ �

s0n

⌘⌘⌘
Next, we can apply the composition rule for ↵ ([50], Theorem 3.1.12) and use ⌦’s com-
mutativity to reformulate the terms to

↵

xf

n

s0n
↵ �

s0n ↵ �

s0  ↵

xf

n

s0n
↵ �

s0n ↵
⇣
�

s0  
⇣
↵

xf

n

s0n
↵ �

s0n

⌘⌘
.
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3.3 Derivation of Cross-traffic Arrival Bounds

These equations reveal that the crucial difference between both arrival bounding alter-
natives is the respective (left-over) service curve at server s0. It defines the difference
between both arrival bounds; potential end-to-end effects are superseded by the negative
impact of PSOO violation.

Finally, as all curves are from F0, we know that

�

s0 � �

s0  
⇣
↵

xf

n

s0n
↵ �

s0n

⌘
,

i.e., aggrPBOOAB’s service curve is larger, and for 8�
s

x

, �

s

y

2 FmRL and 8↵ 2 FmTB in
particular, we know that

�

s

x

� �

s

y

) (↵↵ �

s

x

)  �
↵↵ �

s

y

�
,

i.e., a larger service curve leads to a smaller output bound.
Therefore, aggrPBOOAB outperforms segrPBOOAB under the conditions of Lemma 3.2.

Note, that equality between both arrival bounding alternatives only holds for the trivial
cases where the service �

s0 is infinitely large, i.e., �+1,0, or ↵

xf

n

s0n (↵xf

n

) is zero.
Last, let us clarify why the seemingly simple scenario of Figure 3.5a allows for our rank-

ing of aggrPBOOAB over segrPBOOAB in general feed-forward (subject to Lemma 3.2’s
preconditions). Any more involved feed-forward network can be decomposed into a com-
bination of variants of the network shown in Figure 3.5a, retaining Theorem 3.1’s validity:

Intermediate tandems instead of single servers s0, s01, or s02 can be assumed to
consist of multiple servers in tandem that were convolved into single servers for analysis
(see Theorem 2.2). Then, the above proof as well as Algorithm 3.1 (aggrPBOOAB)
virtually move across the network tandem-by-tandem instead of server-by-server.

Cross-traffic of cross-traffic AggrPBOOAB compromises on the source-to-interference
view of segregated cross-flow arrival bounding. Tandems are restricted to sequences
of servers shared by all flows in the respective cross-traffic aggregate. If an aggregate
had its own cross-traffic (see x(x(foi, l1)) above), another PBOO left-over service curve
derivation (Theorem 2.3) and thus an arrival bounding (of x(x(foi, l1))) would be needed.
This new instance of compFFA step 1 operates with its own worst-case assumptions for
x(x(foi, l1)). In the best case for segregated arrival bounding, when it is able to derive the
same ↵

x(x(foi,l1)) as aggregate arrival bounding, Theorem 3.1’s proof remains unchanged.
In any other case, segrPBOOAB even operates on worse left-over service curves than
aggrPBOOAB.
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Further cross-traffic with the same interference pattern Assume another cross-flow
(aggregate) xf3 merges with the existing cross-traffic [xf1, xf2] at server s0, entering from
a different server (or convolved tandem of left-over service curves) s03. Then, equa-
tions containing the segregated flows’ impact on arrival bounds are expanded with xf3’s
influence

↵

xf1
s01
↵ �

s01 ↵ �

s0 � ↵

xf1
s01
↵ �

s01 ↵
⇣
�

s0  
⇣
↵

xf2
s02
↵ �

s02 + ↵

xf3
s03
↵ �

s03

⌘⌘
,

↵

xf2
s02
↵ �

s02 ↵ �

s0 � ↵

xf2
s02
↵ �

s02 ↵
⇣
�

s0  
⇣
↵

xf1
s01
↵ �

s01 + ↵

xf3
s03
↵ �

s03

⌘⌘
and a similar equation for xf3’s impact on the aggregate arrival bound is added

↵

xf3
s03
↵ �

s03 ↵ �

s0 � ↵

xf3
s03
↵ �

s03 ↵
⇣
�

s0  
⇣
↵

xf1
s01
↵ �

s01 + ↵

xf2
s02
↵ �

s02

⌘⌘
.

Neither adaptation impacts the proof’s core statement; s0 still constitutes the crucial
bottleneck server where aggregation outperforms segregation.

Further cross-flows with different interference patterns Assume s0, s01, and s02 ac-
tually consisted of tandems of servers and there were further cross-flows of the foi, i.e.,
in x(foi), merging and demultiplexing somewhere on these tandems. In this case, the
above reasoning would have to be repeated recursively for every backtracking required –
similar to cross-traffic of cross-traffic, yet, with a SFA tandem analysis for the derivation
of the left-over service instead of Theorem 2.3. Again, each recursion level constitutes an
independent instance of arrival bounding, with its own bottleneck server where aggrega-
tion outperforms segregation due to the former’s violation of the PSOO principle. The
effect causing aggregation’s superiority is thus amplified in more involved feed-forward
networks.

3.3.6 Accuracy Evaluation

In our numerical experiments, we use the aSHIIP topology generator [84] to randomly
create Erdős-Rényi device graphs following the G (n, p)-model with p = 0.1. We evaluate
the impact of improved arrival bounding in flat and hierarchical network topologies with
32 devices resulting in 114 servers (flat) as well as 73 servers (hierarchical). The amount
of flows is continuously increased in steps of 50 randomly routed unit size flows (↵ = �1,1)
until reaching the network’s capacity limit6. Each resulting network is analyzed with an
SFA with segrPBOOAB as suggested in [10] as well as the aggrPBOOAB we contributed
in this section.

6The flat network could route up to 1200 flows, the hierarchical network could route at most 900 flows.
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3.3 Derivation of Cross-traffic Arrival Bounds

In this accuracy evaluation, we aim to gain insight on the impact of our aggrPBOOAB
on the compFFA, more precisely, Section 3.3.5’s crucial insight: amplification of aggre-
gate bounding’s superiority when the number of bottlenecks as well as their utilization
increases. Our measure is the so-called network delay bound. It is the worst-case end-
to-end delay bound occurring in a network, i.e., it is globally valid for all flows in the
analyzed network. Our results are shown in Figure 3.6. Both figures depict the net-
work delay bounds for network utilizations between 50% and 100%, both relative to the
largest network in terms of flows and bounded delays. We express the improvement from
the new result’s point of view by the measure suggested for the LPA in [12]. This im-
provement factor is defined as D(segrPBOOAB)

D(aggrPBOOAB) . A value of 1.0 denotes parity, a value in
(0, 1) indicates a worsened network delay bound and values > 1.0 measure the improve-
ment. Note, that the actual impact of an improvement depends on the context. Even
large improvement factors might not suffice to reach a required level of delay guarantee
whereas a relatively small one in a different network could be decisive for schedulability
of a critical task. Therefore, we focus our presentation of improvement factors or delay
bound reductions in % instead of the comparison of absolute values such as the derived
delay bounds themselves.

In both networks, our aggrPBOOAB achieves a considerable network delay bound
improvement. All improvement factors are > 1.0 (see Figure 3.6, dashed line with crosses,
right y-axis of each plot). In the flat ER network with the medium utilization of 50%,
we achieve an improvement of factor 1.18, which already reduces the delay bound by
about 15%. With growing utilization and fast growing delay bounds, the factor increases
to 3.15 (reduction of 68%, Figure 3.6a). The hierarchical network possesses a set of
predefined bottleneck links – those links connecting the levels of the hierarchy. The
aSHIIP generator creates a relatively static amount of levels, 5 to 6 in our experiments.
Randomly routed flows are likely to cross levels and we can observe considerable gains.
At 50% network utilization, the factor is at 1.62 (38% reduction) and it grows to a factor
of 12.3 (91% reduction) at 100% due to the asymptotic growth of delay bounds. At the
evaluated hierarchical networks with a utilization of more than 66%, the delay bound
could always be at least halved with aggrPBOOAB (see Figure 3.6b).

Our experiments reveal these general trends:

• The aggrPBOOAB method for compFFA allows algNC to compute more accurate
network delay bounds than segrPBOOAB, independent of the network utilization.
The highest gains are achieved when the network reaches its capacity limit.

• The predefined bottleneck links of the hierarchical ER topology lead to a higher
impact of aggregate arrival bounding than in the flat network topologies.

• The cross-traffic arrival bounding method itself does not affect the network delay
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(b) Hierarchical ER network.

Figure 3.6: Accuracy evaluation of ER networks with 32 devices each: SFA with two
different cross-traffic arrival bounding alternatives, segrPBOOAB and aggr-
PBOOAB.

bound’s asymptotic growth pattern when utilization is increased. However, the
growth rate is slowed down considerably and in cases of a large bottleneck uti-
lization, our aggrPBOOAB achieves network delay bounds that are multiple times
more accurate than the segrPBOOAB ones.

3.4 Cross-traffic Burstiness Reduction

In the following, we prove a counterintuitive property of algNC analysis: By assuming
a worse network setting, better delay bounds can be derived. To be precise, we as-
sume worse interference with the foi by aggregating its cross-traffic with other flows in
the network. The analysis does not only bound the burstiness of actual cross-flows but
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3.4 Cross-traffic Burstiness Reduction

additionally that of flows not directly interfering with the foi. In return, the analysis
can aggregate the totality of flows like the TFA. We prove that this overly pessimistic
aggregation can be beneficial to the analysis nonetheless. The pessimism can become
less impactful than the aggregation’s positive effects and therefore we are able to reduce
the derived cross-traffic burstiness. Worst-case burstiness is the crucial characteristic
of cross-traffic arrivals. In the foi analysis of compFFA step 2, it defines the latency
increase in both left-over service curve derivations of algNC, i.e., SFA and PMOOA.
Whereas the previous section improved the overall cross-traffic arrival bounding method
by circumventing the segregation problem, this section presents an improvement explic-
itly targeting the worst-case cross-traffic burstiness.

3.4.1 An Alternative Output Bound

The output bound operation, i.e., the deconvolution, is applied to derive the burstiness
and the rate of flow arrivals (see Algorithm 3.1). Therefore, we first derive a novel output
bound that is based on the input/output-relation of a server. It does not rely on the
deconvolution.

Let A, A

0 be input and output to/from a server. We assume to have an arrival curve
↵ for the arrivals A and a service curve � offered by the server. Let us further assume
that the arrival curve ↵ is such that for d > 0 it can be written as

↵(d) = ↵̃(d) + ↵(0

+
),

with ↵̃ being a sub-additive curve (defined for d > 0 by the above equation and with
↵̃(0) = 0), and ↵(0

+
) = lim

d!0+ ↵(d). Clearly, this means that ↵ is also a sub-additive
function. Further note that, for instance, any concave piecewise-linear arrival curve meets
this condition, hence it is not restrictive in practice.

Noting that we can bound the backlog for any given arrival process A by

B(t) = A(t)�A

0
(t)  A(t)� (A⌦ �)(t) = sup

0ut

{A(t)�A(u)� �(t� u)},

we provide the alternative output bound in the following theorem.

Theorem 3.2. Under the above assumptions and notations, an output bound on the
departure flow (aggregate) A

0 can be calculated as

↵

0
(d) = ↵(d) + (v(↵, �)� ↵(0

+
)) · 1{d>0}.
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Proof. Let s < t:

A

0
(t)�A

0
(s) = A(t)�A(s) + B(s)�B(t)

 A(t)�A(s) + B(s)

 A(t)�A(s) + sup

0us

{A(s)�A(u)� �(s� u)}

= sup

0us

{A(t)�A(u)� �(s� u)}

 sup

0us

{↵(t� u)� �(s� u)}

= sup

0us

{↵̃(t� u) + ↵(0

+
)� �(s� u)}

 sup

0us

{↵̃(t� s) + ↵̃(s� u) + ↵(0

+
)� �(s� u)}

= ↵̃(t� s) + sup

0us

{↵(s� u)� �(s� u)}

 ↵̃(t� s) + v(↵, �)

= ↵(t� s) + v(↵, �)� ↵(0

+
) = ↵

0
(t� s).

For s = t : A

0
(t)�A

0
(s) = 0 = ↵

0
(t� s).

Note, that this result resembles a known basic result that can be found in Chang’s
textbook in Lemma 1.4.2 [23]. This lemma states that for a server with a bound on the
queue q̄ and a �

r,b

-constrained input, an output bound can be given as �

r,b+q̄

.

Lemma. ([23], Lemma 1.4.2) Let A, A

0 be input and output to/from a server s. If ↵ is
an arrival curve for A and B

s

a bound on the backlog of s, then the output of s, A

0, is
bounded by ↵ + B

s

.

Proof. Let u  t, then we know that A(u) � A

0
(u)  B

s

and that A

0
(t)  A(t) (flow

constraint). This leads to

A

0
(t)�A

0
(u)  A(t)�A(u) + B

s

 ↵(t� u) + B

s

Besides generalizing this lemma, we point out that we actually improve it, as we
basically get rid of the burst term and would obtain �

r,q̄

as an output bound under
Chang’s assumptions.

Next, we show that our alternative output bound can be used to bound the output of
individual flows of an aggregate that crosses a server.
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Corollary 3.1. (Application of Theorem 3.2 to individual flows of an aggregate) Let s

be a server crossed by two flows f1 and f2. Then, the output of each individual flow f

i

,
i 2 {1, 2}, is bounded by ↵̃

f1
+ v

�
↵

[f1,f2]
, �

�
.

Proof. Let the flows f1, f2 have input functions A1, A2 and output functions A

0
1, A

0
2.

Assume that ↵

f

i is an arrival curve for flow f

i

, i 2 {1, 2}, and that ↵

[f1,f2] is an arrival
curve for the flow aggregate [f1, f2], i.e., for A = A1+A2. Further, let ↵

f

i meet the above
condition ↵

f

i

(d) = ↵̃

f

i

(d) + ↵

f

i

(0

+
) with ↵̃

f

i being a sub-additive curve. B

i

: R ! R+

is the backlog function of flow f

i

, i.e., B

i

(t) = A

i

(t)� A

0
i

(t). Then, we get for u  t the
following output of the flow aggregate [f1, f2] from s:�

A

0
1(t)�A

0
1(u)

�
+

�
A

0
2(t)�A

0
2(u)

�
= ((A1(t)�B1(t))� (A1(u)�B1(u))) +

�
A

0
2(t)� (A2(u)�B2(u))

�
= A1(t)�B1(t)�A1(u) + B1(u) + A

0
2(t)�A2(u) + B2(u)

(remove �B1(t))

 A1(t)�A1(u) + A

0
2(t)�A2(u) + (B1(u) + B2(u))

Now, let B1 + B2 be the backlog function of the flow aggregate [f1,f2], i.e.,

(B1 + B2) (u)  sup

0ru

{A(u)�A(r)� �(u� r)} ,

to get

A1(t)�A1(u) + A

0
2(t)�A2(u) + (B1(u) + B2(u))

 A1(t)�A1(u) + A

0
2(t)�A2(u)

+ sup

0ru

{A(u)�A(r)� �(u� r)}

(expand A to A1 + A2 )

 A1(t)�A1(u) + A

0
2(t)�A2(u)

+ sup

0ru

{A1(u) + A2(u)�A1(r)�A2(r)� �(u� r)}

= A1(t) + A

0
2(t) + sup

0ru

{�A1(r)�A2(r)� �(u� r)}

= A

0
2(t) + sup

0ru

{A1(t)�A1(r)�A2(r)� �(u� r)}

= A

0
2(t) + sup

0ru

n
↵

f1
(t� r)�A2(r)� �(u� r)

o
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We now have

A

0
1(t)�A

0
1(u) + A

0
2(t)�A

0
2(u)

 A

0
2(t) + sup

0ru

n
↵

f1
(t� r)�A2(r)� �(u� r)

o
Shifting A

0
2(t)�A

0
2(u) to the right yields

A

0
1(t)�A

0
1(u)  A

0
2(u) + sup

0ru

n
↵

f1
(t� r)�A2(r)� �(u� r)

o
.

From the decomposition of ↵

f

i and sub-additivity of ↵̃

f

i , we get

↵

f1
(t� r) = ↵

f1
(0

+
) + ↵̃

f1
(t� r)

 ↵

f1
(0

+
) + ↵̃

f1
(t� u) + ↵̃

f1
(u� r)

= ↵̃

f1
(t� u) + ↵

f1
(u� r)

and

A

0
1(t)�A

0
1(u)  A

0
2(u) + ↵̃

f1
(t� u) + sup

0ru

n
↵

f1
(u� r)�A2(r)� �(u� r)

o
.

Since ↵

f2 is an arrival curve, we know that �A2(r)  ↵

f2
(u� r)�A2(u) and finally get

A

0
2(u) + ↵̃

f1
(t� u) + sup

0ru

n
↵

f1
(u� r)�A2(r)� �(u� r)

o
 A

0
2(u) + ↵̃

f1
(t� u) + sup

0ru

n
↵

f1
(u� r) + ↵

f2
(u� r)�A2(u)� �(u� r)

o
= A

0
2(u)�A2(u) + ↵̃

f1
(t� u) + sup

0ru

n
↵

f1
(u� r) + ↵

f2
(u� r)� �(u� r)

o
 A

0
2(u)�A2(u) + ↵̃

f1
(t� u) + v

⇣
↵

f1
+ ↵

f2
, �

⌘
 ↵̃

f1
(t� u) + v

⇣
↵

f1
+ ↵

f2
, �

⌘

3.4.2 TFA-assisted aggrPBOOAB

Next, we demonstrate how to exploit the basic insight about the alternative output char-
acterization from the previous section. It gives us the choice between the existing PBOO
arrival bounding (aggrPBOOAB), which applies the conventional output bound, and an
approach where we use a backlog bound for the cross-traffic and apply Theorem 3.2. This
backlog bound is obtained from TFA, i.e., it actually considers flows that demultiplex
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Figure 3.7: Sample network.

from cross-traffic and do not interfere with the foi. In the following we discuss why and
when this can actually lead to an improvement.

Consider the network configuration of Figure 3.7 where f is the analyzed foi, xf is its
cross-flow and xxf is the cross-traffic of xf . Although the network is depicted as a tandem,
we cannot apply a simple tandem analysis because the foi f does not cross all servers,
i.e., cross-traffic arrival bounding is necessary in this network: Deriving f ’s performance
bounds with the SFA requires bounding xf ’s arrival at s2, ↵

xf

s2 , with compFFA step 1,
aggrPBOOAB, first. Its result is used to separate f by computing f ’s left-over service
curve at s2 that is then used to derive f ’s delay bound (compFFA step 2).

AggrPBOOAB retains the worst-case when arbitrarily multiplexing flows, i.e., in con-
trast to FIFO multiplexing, data of xf may always be served after xxf ’s data – indepen-
dent of their relative arrival times. Thus, burstiness of ↵

xf

s2 , denoted by b

xf

s2 :

= ↵

xf

s2 (0
+
),

increases when more data of xxf arrives in shorter intervals, i.e., its arrival curve ↵

xxf in-
creases. In our illustrative numerical evaluation of this section, service curves are chosen
to be rate latency functions �

R,T

= �20,20 and arrival curves are token buckets ↵ = �

r,10

where the rate r is variable. In this parameterized homogeneous setting, ↵

xxf increases
with parameter r that we use to illustrate xf ’s worst-case burstiness increase with a
growing network utilization.

Figure 3.8 shows the utilization’s impact on the aggrPBOOAB burstiness of f ’s cross-
traffic, b

xf

s2 , and on the TFA backlog bound at server s1, B

TFA
s1

. TFA considers all flows
at s1 and derives the backlog bound based on their aggregate arrival curve. Being the
backlog of all incoming traffic at the server, i.e., a superset of f ’s cross-traffic xf , B

TFA
s1

is also a backlog bound for xf . In Figure 3.8, B

TFA
s1

scales linearly whereas b

xf

s2 scales
super-linearly with the utilization. Consequently, both curves intersect and b

xf

s2 exceeds
B

TFA
s1

, such that using the TFA backlog bound and Theorem 3.2 indeed achieves an
improvement over aggrPBOOAB. This can be explained by the derivation of the two
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values, B

TFA
s1

and b

xf

s2 :

b

xf

s2
=

⇣
↵

xf ↵ �

l.o.xf
hs0,s1i

⌘
(0)

=

⇣
↵

xf ↵
⇣
�

l.o.xf
s0

⌦ �

l.o.xf
s1

⌘⌘
(0)

=

⇣
↵

xf ↵
⇣⇣

�

s0  ↵

xxf

s0

⌘
⌦
⇣
�

s1  ↵

xxf

s1

⌘⌘⌘
(0)

=

⇣
↵

xf ↵
⇣⇣

�

s0  ↵

xxf

⌘
⌦
⇣
�

s1  
⇣
↵

xxf

s0
↵ �

l.o.xxf
s0

⌘⌘⌘⌘
(0)

=

⇣
↵

xf ↵
⇣⇣

�

s0  ↵

xxf

⌘
⌦
⇣
�

s1  
⇣
↵

xxf ↵
⇣
�

s0  ↵

xf

s0

⌘⌘⌘⌘⌘
(0)

= (�

r,10 ↵ ((�20,20  �

r,10)⌦ (�20,20  (�

r,10 ↵ (�20,20  �

r,10))))) (0)

=

⇣
�

r,10 ↵
⇣
�20�r,

410
20�r

⌦
⇣
�20,20  

⇣
�

r,10 ↵ �20�r,

410
20�r

⌘⌘⌘⌘
(0) (3.5)

=

⇣
�

r,10 ↵
⇣
�20�r,

410
20�r

⌦
⇣
�20,20  �

r,

410r
20�r

+10

⌘⌘⌘
(0) (3.6)

=

⇣
�

r,10 ↵
⇣
�20�r,

410
20�r

⌦
⇣
�20,20  �

r,

400r+200
20�r

⌘⌘⌘
(0) (3.7)

=

✓
�

r,10 ↵
✓

�20�r,

410
20�r

⌦ �20�r,

8200
(20�r)2

◆◆
(0) (3.8)

=

✓
�

r,10 ↵ �20�r,

410
20�r

+ 8200
(20�r)2

◆
(0)

=

✓
�

r,10 ↵ �20�r,

16400�410r
(20�r)2

◆
(0) (3.9)

=

9200 + 410r

(20� r)

2 r + 10

=

4000 + 16000r � 400r

2

400� 40r + r

2
(3.10)
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We can see that b

xf

s2 monotonically increases because the numerator is larger as well as
faster growing than the denominator and the stability condition for bounded performance
characteristics, r  10, leads to an always positive denominator.

Next, let us see how the polynomial expression’s degree builds up during the above
derivation. Multiplication by the arrival rate is required to compute the burstiness of an
output arrival curve, i.e., every time we deconvolve – see steps from (3.5) to (3.6) and
from (3.9) to (3.10). Subsequent left-over service curve operations, e.g., from (3.7) to
(3.8), retain the rate in the latency term’s denominator, as does the convolution of service
curves in the step from (3.8) to (3.9). Deconvolution is required for output bounding and
thus occurs at every level of the recursive arrival bounding procedure. In this example,
xf is bounded in the first recursion level and it requires bounding xxf in a second level;
hence, we obtain a rational function of degree 2 (with a pole at r = 20).

The TFA backlog bound derivation for server s1 proceeds as follows:

B

TFA
s1

= v

⇣
↵

xf

s1
+ ↵

xxf

s1
, �

s1

⌘
(3.11)

= v

⇣⇣
↵

xf

s0
+ ↵

xxf

s0

⌘
↵ �

l.o.[xf,xxf ]
s0

, �

s1

⌘
= v

⇣
↵

[xf,xxf ]
s0

↵ �

s0 , �

s1

⌘
(3.12)

= v ((�

r,10 + �

r,10)↵ �20,20, �20,20) (3.13)

= v (�2r,20 ↵ �20,20, �20,20) (3.14)

= v (�2r,20+2r·20, �20,20) (3.15)

= 80r + 20

The derivation takes advantage of aggregation in (3.11) and (3.13), which prevents re-
cursive cross-traffic arrival bounding in our example – in fact, the TFA implements the
PSOO principle, yet, by assuming too much cross-traffic of f . However, xxf is not con-
sidered cross-traffic of xf as both belong to the same flow aggregate and therefore no
action has to be taken to derive the left-over service curve at s0 in (3.12). The only rel-
evant deconvolution in B

TFA
s1

’s derivation is found in the computation of the aggregate’s
output bound after crossing s0. The deconvolution in the backlog bounding operation
v

⇣
↵

xf

s1 + ↵

xxf

s1 , �

s1

⌘
executed in the step from (3.14) to (3.15) is, in contrast to the b

xf

s2 -
derivation, not affecting the polynomial expression’s degree because its latency is not
depending on r. Thus, the entire term grows linearly with the flow arrival rate.

Remark 3.1. It is not possible to improve xf ’s output bound by using the backlog bound
for flow xf at server s1, i.e., B

xf

s1 , because B

xf

s1 and b

xf

s2 are equal due to [50], Theorem
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Figure 3.9: Relative difference between the TFA backlog bound at s1, B

TFA
s1

, and xf ’s
worst-case burstiness derived at s2, b

xf

s2 .

3.1.12, Rule 12:

B

xf

s1
=

⇣⇣
↵

xf ↵ �

l.o.xf
s0

⌘
↵ �

l.o.xf
s1

⌘
(0)

=

⇣
↵

xf ↵
⇣
�

l.o.xf
s0

⌦ �

l.o.xf
s1

⌘⌘
(0) = b

xf

s2

From this reformulated derivation of b

xf

s2 we obtain another explanation for its function
being of degree 1 in the above example: there is only one deconvolution.

Remark 3.2. Theorem 1.4.5 in Le Boudec and Thiran’s text book [50] presents conditions
for tight output arrival bounds. These are satisfied in both our derivations above, yet,
we improve xf ’s output bound by incorporating B

TFA
s1

. At first glance, this may seem
like a contradiction, however, we gain tightness from additional considerations of a feed-
forward analysis that are not addressed in [50], Theorem 1.4.5. It remains valid, yet only
with respect to the given service curves that, in turn, might be tightness-compromising
left-overs like in Remark 3.1.

In a more involved feed-forward network, we often have multi-level recursions for cross-
traffic of cross-traffic in the arrival bounding phase of the derivations [9] – also for the
backlog bound at a server – and therefore polynomial expressions of higher degrees occur
in both alternative bounds on the output burstiness. For the ease of presentation, we
continue to illustrate the impact of the differing scaling behaviors as well as the service
curve latency and the initial burstiness of flows in the simple network from Figure 3.7.
In Section 3.4.3, we extend our evaluation to more involved feed-forward networks.

Above, we discussed that left-over service curve computations retain the arrival rate in
their results’ latency term. For instance, the left-over latency at server s0 is T

s0 ·Rs0+b

xxf

R

s0�r

xxf

=
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3.4 Cross-traffic Burstiness Reduction

T

s0 +

r

xxf ·T
s0+b

xxf

R

s0�r

xxf

, i.e, it consists of a fixed and a variable part. The fixed part is defined
by the service curves’ initial latency T

s0 = T

s1 = T

s2 =

:

T (equal for all servers in
our homogeneous sample network) whose influence on the total burstiness we evaluate –
increasing T decreases the impact of the variable part containing the crucial factor r.
We check T = 0, i.e., the natural lower limit of the latency, and T = 10

6, a value several
orders of magnitude larger than the service rate R = 20 and thus safe to be assumed as a
realistic upper bound on T . The resulting range of T ’s impact is depicted by the relative
difference between B

TFA
s1

and b

xf

s2 in Figure 3.9a. Most notably, the network utilization
required for the TFA backlog bound to outperform the separated flow’s output burstiness
is between 59% to 72% – that is, it always exists and resides at utilizations considerably
lower than the network’s capacity limit. Moreover, b

xf

s2 ’s relative benefit of 50% over
B

TFA
s1

for low utilizations is in fact small in absolute values (cf. Figure 3.8) whereas its
disadvantage (right of the intersection) grows fast to become large in absolute numbers.

Last, we evaluate the impact of the remaining variable parameter besides utilization
and the service curve latency: the initial burstiness of flows in the homogeneous network,
b. We reduced the service curve latency’s influence by assigning � = �20,0.1. Arrival
curves are ↵ = �

r,b

where r is defined by the network utilization (i.e., relative to the service
rate R) and b is slowly increased from 0 to the previously used value of 10. Figure 3.9b
depicts the relative difference between B

TFA
s1

and b

xf

s2 for three levels of network utilization:
59% and 72% (the intersections of both values in the latency evaluation of Figure 3.9a)
as well as 100%. We can see that the TFA backlog bound at server s1 is in fact always
within the output burstiness of the same utilizations found for the latency (Figure 3.9a)
– for 59%, B

TFA
s1

is an asymptote when increasing b, and for 72% the b

xf

s2 -value starts
at the server backlog bound. The impact of initial burstiness of flows is similar to the
latency’s impact. For the maximum network utilization, b

xf

s2 always exceeds B

TFA
s1

by at
least 50% in our sample network, i.e., utilization remains most impactful.

Based on these observations, we propose to improve the arrival bound of a flow (ag-
gregate) with the TFA backlog bound and Theorem 3.2 applied at the last hop of this
flow (aggregate) – of course, only if it actually improves the bound. We call this new
method: TFA-assisted aggrPBOOAB.

3.4.3 Accuracy Evaluation

The potential improvement of cross-traffic bounds can be quite considerable in the small
scenario of Section 3.4.2. Now we turn to the investigation of the impact on the end-to-
end delay bound of flows traversing larger feed-forward networks. That is, we evaluate the
improvements gained by reduced cross-traffic interference that ultimately tightens delay
bounds. We use the SFA to benchmark the new TFA-assisted aggrPBOOAB against the
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(a) TFA assistance (Theorem 3.2).

0 100 200 300 400 500 600

0
20

40
60

80

Flow ID, ordered by the delay bound of SFA with aggrPBOOAB

D
el

ay
 b

ou
nd

0
2

4
6

8

Im
pr

ov
ed

 (i
nt

er
m

ed
ia

te
) a

rri
va

l b
ou

nd
s 

[%
]  

   
 

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●● ●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●

0 100 200 300 400 500 600

0
20

40
60

80

D
el

ay
 b

ou
nd

●

SFA with aggrPBOOAB
SFA with Chang's Lemma
Improved (intermediate) arrival bounds

(b) Chang’s Lemma [23] did not yield significant improvements, the lines
for both SFAs are indistinguishable.

Figure 3.10: Delay analysis with aggrPBOOAB and cross-traffic burstiness improve-
ments.

existing aggrPBOOAB without this improvement (plain aggrPBOOAB of Section 3.3).

Dense Network The first exemplary network we generated for evaluation consists of 150

homogeneous servers with service curves �

R,T

= �200,0.1. 600 flows with random paths
and arrival curve ↵ = �2,0.1 were added to the network, i.e., it was chosen to be very dense
in order to provoke the effect and thus illustrate the potential of our improvement. They
are supposed to randomly generate hotspots of considerable, yet, uncontrolled utilization
for the evaluation. These hotspots see the highest numbers of flows such that the impact
of separation vs. aggregation can be observed – similar to heterogeneous networks where
some flows outweigh others. We chose a small initial burstiness to additionally check the
above claim that unavoidable burstiness increases are sufficient to cause impact of the
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3.4 Cross-traffic Burstiness Reduction

TFA’s assistance to aggrPBOOAB.
The TFA-assisted aggrPBOOAB improved 369 out of 600 flow delay bounds over

those derived with plain aggrPBOOAB (see Figure 3.10). In total, 61.5% of flows cross
a hotspot that

1. enables the TFA to aggregate flows such that its backlog bounding requires less
recursion levels, making it grow slower with the utilization, and

2. has a utilization large enough to allow for its backlog bound to fall below the output
bound burstiness.

For the 33% of flows with largest delay bound (using plain aggrPBOOAB), we achieve
an average flow delay bound reduction of 19.1% (improvement factor 1.237), with a
maximum of 44.41% (improvement factor 1.8). The average delay bound reduction across
all flows is 15% (factor 1.177).

The distribution of dots for these rightmost 200 flows in Figure 3.10a shows that
the improvement is achieved without ever capping more than 2% of the arrival bounds
derived during the entire feed-forward analysis (right y-axis). Moreover, it is clearly
visible that an increased share of burstiness improvements causes a larger delay bound
reduction. For the rightmost 200 flows in Figure 3.10a, the dots form a pattern of three
“peaks” whose respective beginning and end both demarcate a step in the improved delay
bounds depicted above them.

Another interesting observation is that these distinguishable peaks cause a non-uniform
decrease of delay bounds. The global network delay bound – the maximum delay bound
of all flows in the network – is not defined by the same flow anymore. Applying our new
analysis, 11 flows that had a smaller delay bound than this flow now have a larger one.
Therefore, the network delay bound decreases by less than the observed maximum for a
single flow of 44.41% stated above; it is reduced by 18.75% (factor 1.231) to be precise.
This reordering indicates that even when delay bounds are just used as a relative figure
of merit, such as in design space explorations [82], an accurate network delay analysis is
important and the first step of the compFFA procedure is crucial.

Figure 3.10b shows the results when applying of Chang’s lemma to reduce cross-traffic
burstiness. As expected, the impact is smaller than with our new theorem, yet, it has
nearly no impact on the flows’ delay bounds. Although 102 out of 600 flow delay bounds
could be improved, the maximum reduction of a delay bound is only 3.25%, the average
reduction of these 102 flows is 0.34% and the network delay bound is reduced by 0.02%.

Erdős-Rényi Network Evaluation We conclude the accuracy improvement investigation
of compFFA step 1 by continuing the evaluation of Section 3.3.6. We use the same
ER networks and benchmark the delay bound accuracy of SFA in compFFA step 2
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with the three cross-traffic arrival boundings presented in this thesis, segrPBOOAB,
aggrPBOOAB and TFA-assisted aggrPBOOAB (Figure 3.10). The factor on the right
y-axis shows the improvement from aggrPBOOAB to TFA-assisted aggrPBOOAB. For
the improvement from segrPBOOAB to aggrPBOOAB, please refer to Figure 3.6. In the
flat ER network, improvements only start at a very high network utilization of > 85%
and reach a relatively small factor of 1.09 – a reduction of 8.25% of the network delay
bound closest to the asymptote. In contrast, the hierarchical ER network experiences
larger improvements, showing the potential of the TFA assistance: At a utilization of 2

3 ,
the improvement is at 1.111 (delay bound reduction of 10%), it grows to factor 1.25

(reduction of 20%) at a utilization of 5
6 and to factor 1.69 (reduction of 40.8%) at the

maximum utilization.
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(b) Hierarchical ER network.

Figure 3.11: Accuracy evaluation of ER networks with 32 devices each: SFA with three
different cross-traffic arrival bounding alternatives, segrPBOOAB, aggr-
PBOOAB and TFA-assisted aggrPBOOAB.
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4 Distributed Sensor Network Calculus Analysis

In this Section, we advance Sensor Network Calculus (SensorNC) by transforming the
recursive arrival bounding of Section 3.3 into a more efficient iterative algorithm. Finally,
we show how the entire SensorNC analysis can now be deployed within a sensor network.
This allows for a distributed in-network performance modeling and admission control
scheme that does not require any additional protocol, only small payload additions.

Sensor Network Calculus (SensorNC) is a framework for worst-case analysis of wire-
less sensor networks and as such allows to derive upper bounds on end-to-end delay
for sensor-to-sink data flows as well as the maximum buffer requirements for sensor
nodes. SensorNC is strongly based on algNC, but partially slims it down (specific arrival
and service curves are used) and partially extends it (compositional sink-tree analy-
sis). Since the initial proposal in [71], it has been extended in several aspects: multiple
sinks [76], in-network processing [77], improved delay analysis [35, 77], and [48]. It
was applied for diverse purposes, e.g., to model and analyze cluster-tree based IEEE
802.15.4 networks [43, 48], to evaluate traffic splitting in meshed Wireless Sensor Net-
works (WSNs) [78], or to plan the trajectories of multiple mobile sinks in a large-scale,
time sensitive WSN [60].

4.1 Arrivals, Service, (min,+)-Operations and Performance Bounds

Definition 4.1. (SensorNC Arrival and Service Curves) Arrival curves in SensorNC are
from the set FTB and SensorNC service curves are from the set FRL.

These restrictions on curves slim down the complexity of SensorNC compared to algNC,
yet, they are still effective for modeling WSNs. E.g., sensors reporting measurement
values may generate packets of size b that are periodically sent with a minimum inter-
arrival time t

�

. Then, the data flow has a maximum data arrival rate of r =

b

t

�

and it
can be modeled with the single token bucket �

r,b

. Service curves of FRL have been used
to model TDMA channel access [35] and duty cycling sensor of nodes [6].

With these simplifications, we can explicitly solve the operations relevant for a SensorNC
analysis:

Corollary 4.1. (Arrival Curve Aggregation in SensorNC) For the aggregation of n ar-
rival curves of FTB it holds that

nX
i=1

�

r

i

,b

i

= �

P
n

i=1 ri,
P

n

i=1 bi
.
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Corollary 4.2. (Concatenation of Servers) Consider a flow (aggregate) F crossing a
tandem of servers T = hs1, . . . , sni and assume that each s

i

, i 2 {1, . . . , n}, offers a ser-
vice curve �

s

i

= �

R

i

,T

i

2 FRL. The overall service curve offered to F is the concatenation
of service curves

�T = �

s1 ⌦ . . .⌦ �

s

n

=

nO
i=1

�

s

i

=

nO
i=1

�

R

i

,T

i

= �min
i

{R
i

},
P

i

T

i

.

Corollary 4.3. (SensorNC Left-Over Service Curve) Consider a server s that offers a
strict service curve � = �

R,T

2 FRL. Let s be crossed by flow (aggregate) F0 and flow
(aggregate) F1 with arrival curves ↵

F0
, ↵

F1 2 FTB. Then F1’s worst-case residual service
share under arbitrary multiplexing at s, i.e., its left-over service curve in SensorNC at s,
is

�

l.o.F1
= �  ↵

F0

= �

R,T

 �

r

F0
,b

F0

= �

R�r

F0
, T+ b

F0+r

F0 ·T
R�r

F0
.

Corollary 4.4. (Performance Bounds in SensorNC) Consider a server s that offers a
service curve � = �

R,T

2 FRL. Assume a flow f with arrival curve ↵

f

= �

r

f

,b

f

2 FTB

traverses the server. Then, we obtain the following performance bounds for f :

(Flow) Delay Bound: 8t 2 R+
: D

f

(t)  T +

b

f

R

= h

�
↵

f

, �

�
=

:

D

f

Backlog Bound: 8t 2 R+
: B

f

(t)  b

f

+ r

f · T

= v

�
↵

f

, �

�
=

:

B

f

Output Bound: 8d 2 R+
:

�
↵

f

�0
(d) =

�
�

r

f

,b

f

˙↵�

R,T

�
(d)

=

8<:0 if d = 0

�

r

f

, b

f + r

f ·T (d) otherwise.

The omitted delay bound for flow aggregates (cf. Theorem 2.1) is not required in
SensorNC. Its delay analysis always proceeds end-to-end, i.e., source-to-sink, of a single
flow. We marked the “deconvolution” with a dot above the operator to indicate that it
is explicitly solving SensorNC output bounding operation, i.e., in contrast to the generic
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↵ of Section 2.1.3, it is closed in F0.

4.2 The Network Model

In addition to a restriction of the arrival and service curves, SensorNC also typically
assumes a restriction on the topology space: Network topologies, i.e., device graphs, are
limited to sink trees with a single sink (see Figure 4.1). While multiple sinks have been
addressed in [76], such topologies can be transformed into a set of sink trees with one
sink each. This transformation follows the justification of Section 3.3.5’s sample net-
work. Apart from this restriction, we aim for the greatest possible amount of generality.
Therefore our considerations neither require sensors to be homogeneous nor impose any
restriction on the outdegree or maximum distance to the sink as found in [71, 65, 72, 35].
We use the term node synonymously with server and sensor because we assume that
every node provides both functionalities, sensing data and relaying incoming flows. This
is in contrast to previous work such as [48] and [43] that assume cluster trees. They
explicitly distinguish between nodes in the role of a sensor and those acting as servers.
Each role has its respective restrictions on aspects like connectivity.

The topology restriction has another simplifying indication: Each node only possesses
a single, well-defined next hop in the device graph. Therefore, the conversion to the
server graph is straight-forward. Each device corresponds to a server, except the sink
device. Flows do not cross an output queue at this device. In the following, we assume
an unrestricted sink, i.e., a sink device that offers infinite service [6, 8]. Thus, it behaves
like a neutral element in the analysis and we can assume that device and server graph
are indeed equal in SensorNC.

In WSNs, nodes usually possess a single transceiver, i.e., received data flows need not
cross a switching fabric to reach the output buffer. This consideration seems to invali-
date our justification for arbitrary multiplexing analysis presented in Section 2.1.2. Yet,
arbitrary multiplexing analysis with SensorNC was validated using real-world experi-
ments with MicaZ sensor nodes [65]. The attained performance bounds are shown to be
accurate such that it is justified to continue relying on this analysis assumption.

4.3 Compositional Sink-tree Analysis

4.3.1 Flow of Interest Analysis

The sink-tree networks of SensorNC guarantee for nested interference in the foi analysis
of compFFA step 2. In this setting, we can apply the according PMOOA which is known
to outperform the SFA. In fact, in [74] it is shown that the PMOOA actually results in
the tight delay bounds if the left-over service rates on the foi’s path are monotonically
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α
iβ

α'si

si

Sensed input

Fsrc(si)

αsi
F(si)\Fsrc(si)

si

Forwarded sensor data

Figure 4.1: Sensor Network Model [71].

Quantifier Definition
up(s) Set of servers 1 hop upstream of s, i.e., further away from the sink

P (f, i) Server at location (index) i on f ’s path
L(f, s) Location (index) of server s on f ’s path P (f)

Table 4.1: Sensor Network Calculus Notation extending Table 2.1.

decreasing and cross-traffic arrival bounds are tight as well. SensorNC provides a special-
ized PMOOA that exploits the sink-tree nesting [35, 77] where multiplexed cross-flows
do not demultiplex from the foi. Table 4.1 summarizes the notation required to precisely
quantify all parameters involved.

Algorithm 4.1. (SensorNC Sink-tree PMOOA Left-over Service Curve) Let a network
with unrestricted sink be crossed by flow foi and let P (foi) = hs0, . . . , s

k

i be its path from
its source s0 to the sink s

k

. Then, the SensorNC sink-tree PMOOA left-over service curve
is derived as follows:

�

l.o.foi
= �

l.o.foi
s0

,

�

l.o.foi
s

i

=

⇣
�

l.o.foi
s

i+1
⌦ �

s

i

⌘
 
0@

↵

Fsrc(s
i

)\foi
s

i

+

X
s

j

2up(s
i

)\s
i�1

↵

0
s

j

1A
where
• i 2 {0, . . . , k � 1},
• �

s

i

denotes the service curve at server s

i

,

• the sink’s service curve �

s

k

is �0(t) =

8<:0 if t = 0

+1 otherwise
,
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Flow of interest

(a) Abstraction by cross-traffic arrival bounding.
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(b) Observed share of total analysis time.

Figure 4.2: Cross-Traffic Arrival Bounding: (a) tandem abstraction by cross-traffic arrival
bounding; (b) observed share this step takes of the total analysis time (mean
of 40 (5, 20)-constrained random sink trees growing in size [72]).

• ↵

Fsrc(s
i

)\foi
s

i

is the arrival of cross-flows originating at s

i

, and
•
P

s

j

2up(s
i

)\s
i�1

↵

0
s

j

is the sum of cross-flow arrivals from servers one hop upstream
of s

i

but not crossed by the foi itself, s�1 :

= s0. Each ↵

0
s

j

is currently computed with
Algorithm 3.1, aggrPBOOAB.

The SensorNC PMOOA �

l.o. thus differs from generic nested-interference PMOOA
for the sink tree of Figure 2.2 (Section 2.3.3). Applying Algorithm 4.1, the derivation
proceeds from the foi’s source server to the sink, server-by-server, (foi :

= f1):

�

l.o.foi
= �

l.o.foi
s0

= �

l.o.foi
s1

⌦ �

s0

=

⇣�
�

l.o.foi
s2

⌦ �

s1

� ↵

f0

⌘
⌦ �

s0

=

⇣��
�

l.o.foi
s5

⌦ �

s2

�⌦ �

s1

� ↵

f0

⌘
⌦ �

s0

=

⇣⇣⇣⇣�
�

l.o.foi
s6

⌦ �

s5

� ↵

f2
s5

⌘
⌦ �

s2

⌘
⌦ �

s1

⌘
 ↵

f0

⌘
⌦ �

s0

=

⇣⇣⇣⇣
((�0 ⌦ �

s6)⌦ �

s5) ↵

f2
s5

⌘
⌦ �

s2

⌘
⌦ �

s1

⌘
 ↵

f0

⌘
⌦ �

s0

=

⇣⇣⇣⇣
(�

s6 ⌦ �

s5) ↵

f2
s5

⌘
⌦ �

s2

⌘
⌦ �

s1

⌘
 ↵

f0

⌘
⌦ �

s0

Using the commutativity of ⌦, we can, however, rearrange the service curves to match
Section 2.3.3’s term

⇣⇣⇣
(�

s5 ⌦ �

s6) ↵

f2
s5

⌘
⌦ (�

s1 ⌦ �

s2)

⌘
 ↵

f0

⌘
⌦ �

s0 .
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4.3.2 Cross-traffic Arrival Bounding

In contrast to the SensorNC sink-tree PMOOA for compFFA step 2, there is no spe-
cialized SensorNC cross-traffic arrival bounding for step 1. As implied by the original
SensorNC paper [71], it is assumed to be performed in a recursive manner, which can
actually yield sub-optimal bounds [73]. Algorithm 4.2 depicts this cross-traffic arrival
bounding. It is a simplified version of Algorithm 3.1 but it is not tailored specifically
to SensorNC. Moreover, cross-traffic arrival bounding in sink trees actually consumes a
high fraction of the computation time when analyzing a network. To illustrate this, we
created 40 different (5, 20)-constrained random sink trees, i.e., sink trees with a maxi-
mum outdegree of 5 and a maximum depth of 20, that we grew from 10 servers to 1000

servers with a stepsize of 10 servers. Figure 4.2b shows the fraction cross-traffic arrival
bounding took on average over the 40 equally sized and constrained networks. It can
be observed that arrival bound computations consume roughly 80% of the overall run-
time of the analysis – independent of the network size. Thus, improvements in the arrival
bound computation are a very promising candidate to tune the performance of SensorNC
computations.

Algorithm 4.2. (Recursive Aggregate Sink-Tree Arrival Bounding) We derive ↵

F
s

, i.e.,
a bound on flow aggregate F at server s. Without loss of generality we assume that
↵

F
s

= ↵

s

and that server s has at least one subtree with at least two levels. Also let
n = max

f2F {L (f, s)}. Then, the recursive aggregate arrival bound is computed as

↵

s

=

X
s12up(s)

�
↵

s1
˙↵�

s1

�
+ ↵

Fsrc(s)

=

X
s12up(s)

0@0@ X
s22up(s1)

�
↵

s2
˙↵�

s2

�
+ ↵

Fsrc(s1)

1A
˙↵�

s1

1A
+ ↵

Fsrc(s)

. . .

=

X
s12up(s)

0@
. . .

0@ X
s

n

2up(s
n�1)

�
↵

s

n

˙↵�

s

n

�
+ ↵

Fsrc(s
n�1)

1A
. . .

˙↵�

s1

1A
+ ↵

Fsrc(s)

When the topology is traversed, intermediate arrival bounds have to be computed at
every server where flows merge. This needs to be done recursively, in a separate compFFA
step 1. Note, that although the PSOO principle cannot be violated in sink trees, the LPA
can derive more accurate delay bounds than the compositional algNC analysis. It relates
the start of backlogged periods on different branches instead of relying on worst-case
assumptions.
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4.4 Improving SensorNC Analysis

In this section, we generalize the classical concatenation theorem (Theorem 2.2) that is
only applicable to a limited set of networks: The tandem of servers that is crossed by
flows entirely from end to end. Otherwise the binary (min,+)-convolution ⌦ cannot be
used within the analysis. Naturally, networks are more complex than such simple 1 : 1

input/output systems and decomposition into tandems is required (Section 3.1).We pro-
vide a generalized version of the concatenation theorem for arbitrary sink-tree networks
in SensorNC – exactly accounting for flow entanglement in these n : 1 input/output
systems while preserving accuracy and achieving a high reduction of complexity and
computational effort.

4.4.1 The Generalized Concatenation for SensorNC

We use the following two corollaries. First, we show that the SensorNC output bound ˙↵
is distributive w.r.t. +.

Corollary 4.5. (Distributivity of ˙↵ with respect to +) For any ↵

f1
, ↵

f2 2 FTB and
� 2 FRL it holds that ⇣

↵

f1
+ ↵

f2

⌘
˙↵� = ↵

f1
˙↵� + ↵

f2
˙↵�.

Proof. This is a direct consequence from the general distributivity of↵ over + (Lemma 3.2).
Nonetheless, we provide a streamlined proof for the restricted set of curves in SensorNC.

Let ↵

f1
= �

r1,b1 , ↵

f2
= �

r2,b2 and � = �

R,T

. From Corollary 4.4 it follows that⇣⇣
↵

f1
+ ↵

f2

⌘
˙↵�

⌘
(d) =

�
(�

r1,b1 + �

r2,b2)
˙↵�

R,T

�
(d)

=

�
�

r1+r2, b1+b2
˙↵�

R,T

�
(d).

If d = 0 we have ↵

f1
˙↵↵

f2
(d) = 0 and for d > 0 we get�

�

r1+r2, b1+b2
˙↵�

R,T

�
(d) =

�
�

r1+r2, (b1+b2)+(r1+r2)·T
�
(d)

= (�

r1+r2, b1+r1·T+b2+r2·T ) (d)

= (�

r1, b1+r1·T + �

r2, b2+r2·T ) (d)

= (�

r1, b1+r1·T ) (d) + (�

r2, b2+r2·T ) (d)

=

�
�

r1,b1
˙↵�

R,T

�
(d) +

�
�

r2,b2
˙↵�

R,T

�
(d)

=

⇣
↵

f1
˙↵�

⌘
(d) +

⇣
↵

f2
˙↵�

⌘
(d).
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The composition rule of ˙↵ follows from f↵g↵h = f↵(g ⌦ h) [50] by an argumentation
akin to Corollary 4.5.

Corollary 4.6. (Composition of ˙↵) For f, g, h 2 F0 it holds that

f

˙↵g

˙↵h = f

˙↵ (g ⌦ h) .

Theorem 4.1. (SensorNC Concatenation Theorem) Consider a set of flows F, |F| =

n, with arrival curves ↵

f1
, . . . , ↵

f

n 2 FTB. For the purpose of aggregate output bound
computation from their sink, the share of service offered to each flow f 2 F within this
aggregate is the concatenation of the service curves on its path. Then, the entire flow
aggregate’s output is bounded by

↵

0
sink =

X
f2F (sink)

0@
↵

f

˙↵
L(f,sink)O

i=0

�

P (f,i)

1A
.

Applying Corollary 4.4, we can rephrase the equation to

↵

0
sink = �

r

0
sink,b

0
sink

with

r

0
sink =

X
f2F (sink)

r

f

b

0
sink =

X
f2F (sink)

0@
b

f

+ r

f ·
L(f,sink)X

i=1

T

P (f,i)

1A
.

Proof. First, we apply Corollary 4.4 to derive the tree’s output bound from the flows at
the sink.

↵

0
sink =

X
f2F (sink)

⇣
↵

f

sink
˙↵�sink

⌘
Next, we virtually separate all flows from each other and establish a tandem topology in
their respective point of view. We recursively apply Corollaries 4.4, 4.5 and 4.6 to the
subtree defining the involved output arrival bounds. Note, that every server sees all flows
crossing the subtree above as there is no demultiplexing in sink trees (see Figure 4.3a).
We start with the separation of a single flow f : Without loss of generality assume
L (f, sink) � 2 and let the path of f be P (f) =

D
s

f

n

, . . . , s

f

0

E
, with s

f

0 = s0 = ssink (For
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the ease of presentation, server numbering is reversed compared to Algorithm 4.1).

↵

0
sink = ↵

0
s0

= ↵

s0
˙↵�

s0

=

0B@↵

Fsrc(s0)
+

X
s12up(sf0 )

�
↵

s1
˙↵�

s1

�1CA ˙↵�

s0

(Separate the path taken by f)

=

0B@↵

Fsrc(s0)
+ ↵

s

f

1

˙↵�

s

f

1
+

X
s12up(sf0 )\s

f

1

�
↵

s1
˙↵�

s1

�1CA ˙↵�

s0

(Distributivity of ˙↵ w.r.t. +: Separate f from the aggregate)

=

⇣
↵

s

f

1

˙↵�

s

f

1

⌘
˙↵�
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0B@↵

Fsrc(s0)
+

X
s12up(sf0 )\s

f

1

�
↵
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˙↵�
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s

f

1

˙↵
⇣
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f

1
⌦ �
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⌘
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+

X
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f

1

�
↵
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˙↵�
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�1CA ˙↵�
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= ↵

s

f

1

˙↵
1O
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�

s

f

i

+

0B@↵
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+

X
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(Backtrack f only)

= ↵
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˙↵
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�

s
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+
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↵

Fsrc(sn)
+

X
s
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n

)

�
↵

s
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˙↵�

s
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�1A
˙↵
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i=0

�

s

f

i

. . .

+

0B@↵

Fsrc(s0)
+

X
s12up(sf0 )\s

f

1

�
↵

s1
˙↵�

s1

�1CA ˙↵�

s0

(Distributivity of ˙↵ w.r.t. +: Aggregate flows other than f)

= ↵

f

˙↵
L(f,sink)O

i=0

�

s

f

i

+ ↵

F (s0)\f
s0

˙↵�

s0

This separation of a single flow leads to an intermediate view on the sink tree as
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(a) (b) (c)

Figure 4.3: Cross-flow separation in a sink-tree network with Theorem 4.1:
(a) starting with a network that aggregates flows towards the sink,
(b) to separating a single flow,
(c) to the separation of all flows from each other.
Separation crucially differs from segregation as it does not require left-over
service derivations.

depicted in Figure 4.3b. An alternative derivation can be found in [8].
Next, we repeat the separation for the remaining flows in F (sink) until we finally reach:

↵

0
sink =

X
f2F (sink)

0@
↵

f

˙↵
L(f,sink)O

i=0

�

P (f,i)

1A
.

This view on the network corresponds to Figure 4.3c.
The SensorNC specific calculation follows from Corollaries 4.1 and 4.4:

↵

0
sink = �

r

0
sink,b

0
sink

=

X
f2F

�

0
r

f

sink,b
f

sink

= �P
f2F

⇣
r

f

sink

⌘0
,

P
f2F

⇣
b

f

sink

⌘0

with

X
f2F (sink)

⇣
b

f

sink

⌘0
=

X
f2F (sink)

0@
b

f

+ r

f ·
L(f,sink)X

i=0

T

P (f,i)

1A
.

The simple tandem topology lacking any nesting of flows is a special sink-tree network
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where the n : 1 input/output relation is instantiated with n = 1. In this case, the
generalized concatenation theorem for SensorNC is specialized to

↵

0
sink = ↵

f

˙↵
L(f,sink)O

i=0

�

P (f,i) ,

i.e., the output bound of Theorem 2.1 with the concatenated service curve for tandems
of servers (Theorem 2.2).

Note, that we virtually separated the flows from each other within the analysis, which
is different to the cross-flow segregation of Section 3.3.1. It does no require to derive
left-over service curves, i.e., the flows do not suffer from mutual interference assumptions
that violate the PSOO principle and thus decrease accuracy. We call this new property
flow-locality. As we show next, it transforms the iterative cross-traffic arrival bounding
of Algorithm 4.2 into a two-tier iteration over the cross-flows and their respective paths.

4.4.2 The New SensorNC Cross-traffic Arrival Bounding

In this section, we exploit the SensorNC concatenation theorem. First, we need to ex-
tend its capabilities to derive bounds for subsets of flows in order to fulfill the PMOOA’s
requirement to only analyze a specific foi – similar to our new output theorem of Sec-
tion 3.4.1 that has been extended by an according corollary.

Corollary 4.7. We can apply Theorem 4.1 to a subset of flows F ✓ F (sink) with

�
↵

F

sink
�0

=

X
f2F

0@
↵

f

˙↵
L(f,sink)O

i=0

�

P (f,i)

1A
if the remaining flows in F (sink)\F have a lower priority than those in F .

In arbitrary multiplexing tandem analyses of compFFA step 1, such as the PMOOA,
the foi is always considered to have the lowest priority among all flows. This assumption
preserves the worst-case semantic of (Sensor)NC.

Equipped with the new SensorNC sink-tree concatenation theorem and Corollary 4.7,
we derive a novel iterative algorithm to perform the aggrPBOOAB in SensorNC.

Theorem 4.2. (SensorNC Arrival Bounding) Given the flow of interest foi, we can
derive its cross-traffic arrival bound at any server s on its path P (foi) = hs

n

, . . . , s0i,
s0 = ssink, as follows:

↵

x(foi)
s

=

X
f2x(foi)\Fsrc(s)

0@
↵

f

˙↵
L(f,s)O
i=1

�

P (f,i)

1A
+ ↵

Fsrc(s)\x(foi)
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Applying Theorem 4.4, we can rephrase the equation to

↵

x(foi)
s

= �

r

x(foi)
s

, b

x(foi)
s

with

r

x(foi)
s

=

X
f2x(foi)

r

f

b

x(foi)
s

=

X
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Proof. The cross-traffic aggregate at s, ↵

x(foi)
s

, consists of the sum of all cross-flows ar-
riving from the subtrees upstream from s as well as the cross-flows originating at s:
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Using the new bounding method from Theorem 4.2 instead of the conventional one from
Algorithm 4.2 has several practical advantages. We conclude this section by discussing
the most important advantages before evaluating their impact.

Faster Computation The arrival bounds for cross-traffic, ↵

x(foi)
s

i

, s

i

2 P (foi), naturally
depend on the foi. In a self-modeling WSN, a sensor node needs to compute these bounds
for each flow to keep track of their state. With Theorem 4.2, we reduce the computational
effort of arrival bounding by exploiting flow-locality. Aggregation of individual cross-flow
arrival bounds is virtually shifted from servers in the subtree above s

i

to s

i

itself, where
the bound is required. There, flow-local results are simply aggregated. This allows
SensorNC to reuse these results in the derivation of any other foi’s cross-traffic arrival
bounds at s

i

. In contrast, the recursive Algorithm 4.2 is tightly interwoven with the
topology such that it is generally not possible to share any results between the derivations
for different fois.

Lower Communication Overhead Flow-locality also enables to overcome the need for
an additional data dissemination protocol such as Deluge [40] that distributes the infor-
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mation required to derive ↵

x(foi)
s

i

. If virtually separated, a flow’s arrivals at any server s

i

can be calculated in a server-by-server fashion without compromising accuracy (Corol-
lary 4.6). A flow can carry information about its current arrival bound as payload,
pushing the information to all sensors concerned. Thus, the state is updated on demand,
i.e., independent of a polling interval, resulting in much less communication (more details
will be presented in Section 4.5).

Quick Reaction to Changes The flow-locality also affects the recomputation effort in
case of parameter modifications. Using the conventional method based on Algorithm 4.2,
locality of a modified parameter did not matter much due to the tree structure of flow
aggregation locations; a change to a single parameter always invalidated a large amount
of the derivation’s intermediate results and triggered expensive recomputations, usually
of the entire subtree. Theorem 4.2 prevents such an invalidation from spreading to flows
not directly affected by a change, e.g., flows not crossing a sensor that adapted its rate,
and thus enables a quick reaction to changes.

4.4.3 Accuracy Evaluation

In this section, we benchmark our results against existing SensorNC analysis. The evalua-
tion setting is as follows: As the PMOOA outperforms SFA in sink trees, we compute the
SensorNC sink-tree PMOOA left-over service curve (Algorithm 4.1) to derive the delay
bound (compFFA step 2). In the compFFA’s first step, we execute three different alterna-
tives, the conventional aggrPBOOAB (Algorithm 3.1), our new SensorNC aggrPBOOAB
(Theorem 4.2), and a segregated PMOO cross-traffic arrival bounding, segrPMOOAB.
The latter one was chosen to illustrate the difference between separation and segregation.
Segregation also results in bounds possessing flow-locality, but not a flow-local deriva-
tion. I.e., their derivation violates the PSOO principle and thus illustrates the negative
impact of the mutual interference problem in the composition penalty. Figure 4.4 shows
the resulting delay bounds for a random (5, 20)-constrained, i.e., maximum outdegree
of 5 and maximum depth of 20 [72], homogeneous sink tree with 100 servers, unit size
arrivals ↵ = �1,1 and sufficiently large service � = �75,1.

Figure 4.4 shows the following results: Despite being flow-local, the generalized, con-
catenation-based aggrPBOOAB preserves the tightness of the recursive version whereas
segrPMOOAB results in a significant increase of flow delay bounds. The first observation
is a consequence of Corollary 4.5 and Theorem 4.1. The second one, segrPMOOAB’s
inferiority arises from segregating cross-flows and violating the PSOO principle: There
is no prioritization among flows in a cross-traffic aggregate. Therefore, they need to be
considered to mutually interfere in the worst possible way when applying segrPMOOAB.
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Figure 4.4: Delay bounds using different cross-traffic arrival bounding methods.

That leads to overly pessimistic cross-traffic arrivals and thus compromises accuracy of
delay bounds.

4.4.4 Effort Evaluation

SensorNC analyses have usually been carried out by a central entity due to the knowledge
about and control over the information needed to derive bounds. The most prominent
example is design space exploration that evaluates the effect of different system configu-
rations on the performance, measured by the network delay bound. We investigate the
impact of Theorem 4.2 on the execution time of an end-to-end analysis of all flows in the
network. We have created 40 random (5, 20)-constrained sink trees that we grew from
10 servers to 1000 servers with a stepsize of 10 servers. Each server offers a strict service
curve �1000,1 and generates a flow shaped to the arrival curve ↵0.001,0.1. This setting
guarantees for bounded delays in all our networks. All computations were executed on a
server equipped with an Intel Xeon E5420 CPU and 12 GB of RAM.

Relative Improvements Figure 4.5a shows the improvement factor for computation
times. Starting with small network sizes, the effort needed to bound cross-traffic arrivals
naturally increases with the number of servers and therefore the gain by our new method
is getting larger, too. However, after this initial phase it slowly decreases, reaching a
value of ⇠ 4.84 as the mean over our 40 networks with 1000 servers each. On average
(over all experiments) the new SensorNC analysis was ⇠ 5 times faster.

Figure 4.5b illustrates the according reduction of the arrival bounding’s share of the
overall network analysis time: from 80% to less than 15%. Especially for small sink trees
the reduction highly depends on the actual shape of the tree, which explains the visible
oscillations at the beginning.
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Figure 4.5: Evaluation of the computation time of cross-traffic arrival bounding in ran-
dom (5,20)-constrained sink trees.

Absolute Improvements Figure 4.6 compares the scaling behavior of the PMOOA with
alternative aggrPBOOABs. Both react similar to changes of o (Figure 4.6a) and d (Fig-
ure 4.6b). While our new method’s run-time still scales super-linearly with the increasing
network size, it does so much slower. This generates a noticeable, widening gap between
the conventional and the new analysis. This improvement is probably the best one could
hope for when improving SensorNC analysis without compromising on the tightness of
the results.

Note, that Figure 4.6 shows the computation times for the analysis of a single network
size averaged over 40 randomly created instances. When varying the configuration it
is not only sensible to experiment with different values for o and d or test multiple de-
ployments complying with the resulting (o, d)-constraint, but also to test heterogeneous
network configurations by varying the two defining parameters of flows and sensors in-
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Figure 4.6: Scaling behavior of the improved SensorNC analysis.

dependently. Thus, a design space exploration can easily consist of tens of thousands of
distinct analyses to be executed. The overall execution time clearly has to scale in this
number. Therefore, the small absolute analysis run-times we report here are crucial.

4.5 Distribution of the SensorNC Analysis Procedure

The probably larger impact of our novel SensorNC arrival bounding algorithm is in its
superior structure. From the perspective of a distributed application of the SensorNC, it
can be applied in an in-network (sensing) task admission control system as it would be
desirable for large-scale WSNs. In particular, using the conventional, recursive arrival
bounding method for a distributed SensorNC requires detailed knowledge at each node
about large subtrees of the network, including paths of flows as well as their merging
locations. All this information is required to backtrack flows, bound cross-traffic arrivals
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and eventually carry out the analysis that results in the delay bound deciding upon the
admission of the new (sensing) task. Moreover, even small changes in the network’s defin-
ing parameters would lead to the dissemination of lots of data and the recomputations
of all bounds, even if the change was only server- or flow-local.

In contrast, using the new iterative aggrPBOOAB allows SensorNC to virtually sep-
arate cross-flows from the aggregate they are merged into and separately bound their
impact on it. The separation shifts the aggregation of cross-flows to the server where
they influence a different flow’s performance characteristics. Thus, our analysis estab-
lishes locality such that we do not require access to topological information on a cross-
flow’s path, i.e., every flow can collect all the parameters defining its effect. Moreover,
this flow-locality makes SensorNC much more resilient to recalculations as the impact of
parameter variations does not propagate to flows not directly depending on this param-
eter. For resource constrained wireless sensor networks, these are critical non-functional
aspects of the analysis.

Neither the conventional, recursive aggrPBOOAB nor the segrPMOOAB allow for
distribution of the execution over the sensor network. It would essentially be equal to
the centralized execution and thus imposed the need to gather all the required information
at each sensor; a characteristic we conceptually evaluate in this section.

The SensorNC aggrPBOOAB’s flow-locality can be used for dissemination of the in-
formation for compFFA step 1:

• Flows carry their current arrival bound as payload such that it eventually reaches
all the servers the flow traverses.

• Servers store each incoming flow’s arrival bound and then adapt it according to
their own service curve (Corollary 4.4, output bound).

For the second step of compFFA, i.e., bounding the delay of flow f on the path P from
its source up to server s (and eventually up to the network’s sink), some additional
information in the payload of f suffices:

• f ’s left-over service curve on P , �

l.o.f
P

. Note, that Algorithm 4.1 proceeds in a
forward fashion along f ’s path, i.e., it starts at f ’s source and moves server-by-
server towards the network’s sink. Thus, a valid left-over service curve for f ’s
previous path can be derived at any server, especially �

l.o.f
P

at s.

• f ’s original arrival curve ↵

f that is required to compute its delay bound when
traversing P (Corollary 4.4).

In compFFA step 1, we reverse the aggrPBOOAB’s working direction: It is not back-
tracking in a recursive fashion (compFFA step 1a) anymore. Applying our procedure,
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each server is provided with all information about cross-traffic arrivals and flow delays
after an initial setup phase. Both can then be used for task admission control.

Note, that in SensorNC the derivation as well as the curves involved are lightweight.
The former is depicted in Corollary 4.4, the latter can be explained as follows. Each
curve ↵ = �

r,b

2 FTB and � = �

R,T

2 FRL can be efficiently stored with two values each:
the rate r and the bucket size b or the rate R and the latency T , respectively. In fact,
our procedure for the distributed SensorNC analysis only adds a total of five values to
every flow’s payload. A flow’s arrival curve and arrival bound always possess the same
rate such that three values suffice in addition to the left-over service curve’s two values.

Next, we exemplarily evaluate the impact of the above scheme. We consider a self-
modeling WSN providing a task admission control scheme based on delay bounds. As
soon as a new task is supposed to be added to the network, the WSN checks if it can
schedule the task’s data flow without compromising any other flow’s delay constraint. In
order to do so, it is necessary to derive each flow’s delay bound under the hypothetical
new configuration. For simplicity of the comparison, assume the sink is not unconstrained
and a new task is supposed to be added to it. Moreover, we assume a fully occupied
(o, d)-constrained sink tree, i.e., maximum outdegree of o and maximum depth of d are
both attained by the tree. This setting allows us to compare the conventional, recursive
aggrPBOOAB and the new, SensorNC aggrPBOOAB.

In such a sink tree, there are N

:

=

o

d+1�1
o�1 � 1 nodes above the sink, all of which hold

information necessary to derive delay bounds. Whereas the above scheme distributes
this information during normal operation, the previous, recursive scheme requires two
preceding phases to acquire it. In the request phase, there is communication to N servers
to query their parameter settings (Figure 4.7a) and in the reporting phase N flows answer
the query (Figure 4.7b). These 2·N temporary flows should not interfere with the regular
traffic, i.e., they need to be scheduled at a lower priority so that they do not force existing
flows to violate their deadlines. Thus, termination of the two phases is not guaranteed.
In the new SensorNC scheme, neither of the two phases is required, there is no such
communication overhead, only a small additional payload.

Second, we compare the storage demand at a node. In the conventional aggrPBOOAB,
it was required to store all N service curves of a subtree’s nodes, N arrival curves of the
flows originating in it and the N output arrival curves of flow aggregates at each sensor
node. In order to derive the latter values, it is also necessary to have exhaustive knowledge
about the network: Where do flows originate? Which paths do flows take? Where do
flows aggregate? (see Figure 4.3a) Further, a node needs to store the cross-traffic arrival
bound for each flow f crossing it after deriving it from the topological knowledge. In
contrast, the new analysis only requires the arrival curves of all N flows, their left-over
service curves as well as their arrival bounds at the sensor node. Concerning cross-traffic
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Task

(a)

Task

(b)

Figure 4.7: Task admission control in a (2, 3)-constrained sink tree: (a) request phase
and (b) reporting phase.

arrivals, a node simply derives the required bound by adding up already stored values.
Thus, our new scheme considerably reduces the storage demand to execute SensorNC
inside the network.

Regarding the computational effort, a sensor node previously had to bound cross-traffic
arrivals at all non-leaf nodes above it, i.e., execute N � o ·d operations, and compute the
output arrival curve at all upstream nodes [71, 65], i.e., execute another N operations. In
the new scheme, a node only computes the output arrival curve of flows crossing it, i.e., it
just executes N operations. In the next analysis step, deriving aggregate PBOO arrival
bounds, the computational effort is reduced from a repetitive execution of the operations
for each flow, considering the unique aggregation on its path that defines ↵

x(f), to adding
up the flow-local bounds that were derived only once. This reduction in complexity of
the analysis leads to faster computation times as discussed in Section 4.4.4.

With the SensorNC aggrPBOOAB we can keep the communication overhead low,
decrease storage demands and reduce computational effort. All of this is achieved with
a simple scheme that can be deployed with the network.
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This section provides a comprehensive analysis and evaluation of optNC. In contrast to
algNC, the optNC’s current analyses, LPA and ULPA, directly derive an optimization
formulation from the entire feed-forward network description. I.e., an optimization anal-
ysis has global knowledge about the network. While this guarantees for best attainable
results, the analysis effort becomes prohibitive in reasonably sized networks. We are the
first to show that this is also true for the less accurate, more efficient of both optimization
analyses, the ULPA. In extensive evaluations we also show that the improvement over
the algebraic PMOOA is not necessarily large.

The previous section already addressed that the LPA can derive more accurate delay
bounds than algNC. In addition to the contribution of [74], the LPA exploits its global
view on the network to relate the entanglement of starts of backlogged periods on distinct
paths to implement the PSOO principle. Such paths are, e.g., different branches of a
tree network. It does not need to assume the worst case (see Section 2.4.1, step 2). For
SensorNC, the non-functional aspects of algNC were vital, yet, in general feed-forward
network analysis, delay bound tightness might be more important. Therefore, we analyze
the linear programming analysis in this section.

5.1 Scalability Issues

The initial proposal of an optimization-based NC analysis [74] was evaluated in [45, 46].
It was shown that computational hardness arises from the decomposition of arrival curves
into token buckets and service curves into rate latencies and their subsequent analysis.
For each combination, a new optimization has to be executed, resulting in computational
infeasibility to analyze tandems of servers when curves become more complex than simple
token buckets and rate latencies. The LPA does not decompose curves in order to first
operate on pairs of simpler curves before combining partial results. Its NP-hardness
results from the extension of a partial order to the set of all compatible total orders – a
different source for combinatorial explosion. It does not affect tandem topologies. There,
the order derived by the LPA’s backtracking step is the only total order. This is the
best case for the LPA. In the previous section we saw that the algNC sink-tree analysis
scales very well. We will use these topologies to investigate the scalability issues of the
LPA. In the worst case for the LPA, we have a so-called fat tree with a root node and
n� 1 leaf nodes directly connected to it, resulting in (n� 1)! total orders that each will
become one linear program. In a full binary tree, the number of linear programs is lower
bounded by ⌦

��
n

2

�
!

�
. The latter fact can be derived from a result by Ruskey [66]:

Assume a sink tree with n nodes that are numbered 1 to n, starting from the sink.
Let k

i

denote the number of nodes upstream of node i, including i itself. In a binary
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sink-tree network N2 the amount of total orders is

Tot(N2 ) =

n!

k1 · k2 · · · k
n

=

n!Q
n

i=1 k

i

.

For a fully occupied binary tree of depth d, N 0
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bounded as follows:
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For fully occupied (o, d)-constrained sink trees, i.e., sink trees with maximum outdegree
of o and maximum depth of d, this formula can be generalized to

n!Q
d

i=2

⇣j
o

i�1
o�1

k⌘
o

d�i

.

In general, calculating the number of total orders being compatible with a given partial
order is itself not a simple problem. One solution is the Varol-Rotem algorithm [85]; we
implemented this algorithm to provide some numbers for the case of full d-ary trees in
Table 5.1. It is obvious that the computational effort to solve such large numbers of linear
programs becomes quickly prohibitive even for moderate network sizes. In feed-forward
networks other than trees, this is, however, not the final set of linear programs. The LPA
implements the PSOO principle by adapting the total orders. It requires to iterate over
the set of total orders to apply modifications.

5.2 A Tradeoff between Accuracy and Efficiency

The authors of the LPA were aware that the extension of partial orders is prone to a
combinatorial explosion that prohibits the analysis of feed-forward networks. On the
other hand, they observed that the single total order derived for a tandem network could
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be solved in a small amount of time. Therefore, they provide an analysis that is based on
their derivation of the optimization formulation, yet, results in a single linear program
for any feed-forward network.

5.2.1 The Unique Linear Programming Analysis

In contrast to the algNC, the LPA approaches the tight delay bound from the region
of invalid result candidates. Only a subset of the linear programs derived by the LPA
produces a valid (the tight) bound. As the bound is unknown until the end, the LPA
cannot be terminated before taking the maximum over all its result candidates or even
be restricted to a subset of linear programs from the start. I.e., the LPA constitutes an
all-or-nothing analysis approach. It is, however, possible to reduce the analysis to the
set of constraints that are shared among all linear programs of the LPA. In practice, this
means skipping the extension of the partial order to the set of compatible total orders.
Obviously, this circumvents the combinatorial explosion in the number of linear programs.
Instead, it results in a single, the unique LPA (ULPA). The ULPA neither relates the
backlogged periods of (partially) parallel paths, e.g., between different branches of a tree,
nor does it implement the PSOO principle. However, worst-case modeling of NC ensures
valid upper bounds and in [12] the ULPA was shown to stay very close to the LPA
in an example network. This observation raises hope for computational feasibility and
performance bound accuracy in larger networks.

Improving the ULPA The ULPA constitutes the return to accurate, yet, untight bounds
for general feed-forward networks. We know that the ULPA has less constraints than
any of the LPA’s linear programs. Improving the ULPA’s result can only be achieved
by adding more constraints to it. The addition of constraints found in a total order
can, however, result in a linear program that produces an invalid bound. Identifying
constraints that improve the derived bound while guaranteeing to retain its validity is

Depth d

Outdegree o

0 1 2 3
1 1 1 1 1
2 1 2 80 21,964,800
3 1 6 7,484,400 3.54 · 10

37

4 1 24 3.89 · 10

15
1.12 · 10

110

5 1 120 3.41 · 10

28
5.88 · 10

246

Table 5.1: Number of linear programs to solve for fully occupied (o, d)-constrained sink
trees of moderate size. For instance, for a depth d = 3 and outdegree of o = 4,
the tree has n =

o

d+1�1
o�1 = 85 nodes but already yields 1.12 · 10

110 programs.
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an open research topic of optNC.

5.3 Evaluation of Accuracy and Effort

The literature presents an evaluation of the two networks posing problems for algNC,
but are solved with the LPA [12, 42, 10, 16]. On the one hand, there is the tandem
with non-nested interference of cross-flows as already used in the first paper to motivate
optimization in NC [74]. On the other hand, the authors derive bounds for the square
network in order to evaluate the impact of the PSOO principle (cf. Figure 3.2a), a
key strength of the LPA. In both networks, the compositional analysis procedure of
Section 3.1 enforces cross-flow segregation that leads to mutual interference assumptions.
In this section, we want to address the question of accuracy of the existing NC analyses.
For the ULPA, we strive for insight on the impact of not implementing the PSOO principle
and how the analysis compares to the compositional algNC. As the LPA lacks tool support
for general feed-forward networks due to its limited applicability, we need to restrict our
evaluation to the aforementioned networks. In the tandem network, we use the ULPA
implementation provided by the literature as the LPA and the ULPA coincide. For the
square network, we use the provided set of linear programs [12]. For algNC, we provide
the equations created by different analyses in order to understand where the composition
penalty causes overly pessimistic assumptions. An exception is the Total Flow Analysis
(TFA) that neither implements the PBOO principle nor the PMOO principle. Its delay
bounds are strictly inferior to the SFA bounds and will not be analyzed in detail. We
restrict the presentation to results derived with the DiscoDNC [7] in order to illustrate
the negative impact of this lack of analysis principle implementation.

5.3.1 The Non-Nested Tandem

Analyzing tandem networks with the optNC is made possible with a tool provided with
the (U)LPA [12]. It transforms a text file describing the tandem (servers and service
curves; flows, their paths and arrival curves) into the (U)LPA – given as a LpSolve
lp file. In [12], the tandem with overlapping interference, a non-nested interference
pattern, is analyzed. It consists of a sequence of n servers crossed by the foi (P (foi) =

hs1,s2, . . . , sn�1, sni) and overlapping interference of cross-flows such that there are three
flows at every server (see Figure 5.1). This tandem constitutes a standard example in
NC; it has already been used for introducing the PMOOA [75].

Two investigations are carried out: one that evaluates the impact of increasing tandem
length, and another one varying the utilization for the tandem of length 20.

Arrival curves and service curves are provided by [12]: Both evaluations assign rate-
latency service �

R,T

= �10, 1
10

. The evaluation with varying utilization u 2 {0.1, . . . , 0.9}
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Figure 5.1: Tandem network with overlapping interference.

assigns token-bucket arrival curves of ↵ = �

r,b

= � 10u
3 ,1 where 10u

3 is rounded to two
decimal digits. The derivation of results for increasing tandem length is carried out at
an utilization of 0.2 [12], i.e., all arrivals are shaped to ↵ = �0.67,1.

Separate Flow Analysis First, we derive the foi’s end-to-end left-over service curve
(compFFA step 2):
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In this derivation, we can see that the PMOO principle is not implemented. We need to
pay for xf

m

arrivals, m 2 {2, . . . n} at both servers a cross-flow shares with the foi. For
this reason, the SFA results are expected to be worse than the PMOOA results in the
non-nested tandem.

Before we provide delay bounds for benchmarking against the LPA, we first need
to compute the arrivals of xf

m

at their respective second server of interference with
the foi (compFFA step 1, Equation 5.2: ↵s with server indices). For each server s

i

,
i 2 {2, . . . , n}, cross-traffic arrivals are derived as follows:
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(5.3)

At every server, the cross-traffic arrival bounding demands to recursively backtrack cross-
flows of cross-flows. The recursion terminates when the sources of flows are reached. See
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Equation 5.3 where ↵s do not have server indices as we know ↵

xf1
s1 = ↵

xf1 , ↵

xf

n+1
s

n

= ↵

xf

n+1

and ↵

xf

m

s

m�1 = ↵

xf

m for m 2 {2, . . . n} from the network description.

Pay Multiplexing Only Once Analysis We start with the left-over service curve deriva-
tion of the PMOOA:
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In contrast to the SFA, xf burstiness terms only appear once in the �

l.o.foi
P (foi)-derivation.

I.e., the PMOOA does not demand a cross-flow arrival bounding with compFFA step 1
like the SFA does. From the foi’s point of view, multiplexing with cross-traffic is payed
for only once.

LPA and Comparison The results for the LPA are depicted alongside the PMOOA,
SFA and TFA delay bounds in Figures 5.2a and 5.2b. Most notably, PMOOA and LPA
results are equal. Moreover, the TFA exhibits a super-linear growth of delay bounds –
when increasing the tandem length and when increasing the utilization of the 20-servers
tandem. The SFA, PMOOA and the LPA, in contrast, show a linear growth w.r.t.
the tandem length (Figure 5.2a), the PBOO principle implemented by all of them is
responsible for this improvement. In the utilization-focused analysis (Figure 5.2b), we
see that PMOOA and LPA delay bounds grow super-linearly as well. Yet, the PMOO
principle implemented by both leads to a much smaller growth than in TFA and SFA
(Figure 5.2b). These analyses pay multiplexing twice for every cross-flow xf

m

, m 2
{2, . . . , n}. For both parts of this non-nested tandem evaluation, the PMOOA performs
equal to the LPA.

After manually deriving the SFA (Equations 5.1 to 5.3) and the PMOOA (Equa-
tions 5.4 to 5.6), we can contribute an in-depth explanation of this observation:
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Figure 5.2: Delay bound evaluation results for the non-nested tandem with maximally
overlapping interference of cross-flows.

The PMOO principle was designed to counteract bursts being considered in the foi
analysis multiple times. Therefore, PMOOA performs better on the non-nested tan-
dem than SFA. The utilization increase distributes uniformly over the servers such that
PMOOA and LPA delay bounds increase in equal steps, starting from the same value;
the PMOOA’s weakness is known to only surface in tandems with unbalanced (left-over)
service rates [74].

5.3.2 The Square Network

For the square network in [12] (see Figure 3.2a), the LPA’s linear programs as well as
the ULPA’s one are provided as LpSolve lp files by Bouillard et. al. For this evaluation,
service curves remain �

s

i

= �

R,T

= �10, 1
10

, i 2 {1, 2, 3, 4}, and arrival curves are again
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adapted to the utilization u 2 {0.1, . . . , 0.9}. As there are only two flows per server, this
setting translates to ↵

f

j

= �

r,b

= � 10u
2 ,1, j 2 {1, 2, 3, 4}.

Separate Flow Analysis

We start with the SFA left-over service curve derivation for all utilizations:
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Cross-traffic arrivals are bounded as follows (aggrPBOOAB as well as segrPBOOAB):
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The cross-traffic arrival bounding shows the mutual interference assumption already de-
picted in Figure 3.2b: We have to compute �

s1  ↵

f3 and �

s1  ↵

f2 , both will be in
the SFA left-over service curve derivation of Equation 5.7 – the PSOO principle is not
implemented. This derivation illustrates the different approaches applied by algNC to
model the foi’s worst-case setting in a feed-forward network. On the foi’s path P (foi)
(i.e., the foi tandem analysis of step 2), the left-over service curve derivation assumes
lowest priority for the foi (cf. Theorem 2.3). In the arrival bounding, each flow’s worst
case is modeled individually. Therefore, at server s1, flows f2 and f3 are considered to
be mutual interference: �

l.o.f2
s1 =

�
�

s1  ↵

f3
�

and �

l.o.f3
s1 =

�
�

s1  ↵

f2
�
. For rejoining

interference with the foi (see Diamond network in [12]) this means the foi is assumed to
interfere with its own cross-flows during their arrival bounding, i.e., the PSOO principle
can even impact the analysis on the foi’s path. The lowest priority modeling applied in
compFFA step 2 is not carried over to cross-traffic arrival bounding of step 1, i.e., algNC
analysis does not assign lowest priority to the foi within the entire feed-forward network
but depending on the current compFFA step (see Section 3.1).

Pay Multiplexing Only Once Analysis

The PMOO left-over service curve is derived as follows:
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The mutual interference modeling persists. It can be seen in the cross-flow burst terms
b

f2
s3 and b

f4
s4 in Equation 5.12 that equal the one of the according arrival bounds ↵

f2
s3

and ↵

f4
s4 used in the SFA. Cross-traffic is bounded with Equations 5.8 and 5.9, again,

as it belongs to compFFA step 1. I.e., the PMOOA left-over service curve derivation of
Equation 5.10 will violate the PSOO principle due to Equation 5.12.

LPA, ULPA and Comparison

Based on the derivation of the algNC analysis equations, i.e., the internal model of the
network these analyses operate on, we can already predict the relative performance of
NC analyses in the square network:

The TFA analysis performs far worse than the other analyses. This can be explained
as follows: Not implementing the PBOO principle results in the foi’s burst terms appear-
ing multiple times in the derivation – at every server an independent worst-case delay
bounding is executed (instances of compFFA step 1). This translates to a behavior that
can neither be attained by a realistic system nor is it assumed by any other analysis. The
TFA proceeds as if the foi’s burst does not level off but overtakes itself in a subsequent
queue. With increasing network utilization, the foi’s worst-case burstiness increases and
thus the negative assumption becomes more impactful. The result of this escalation
is partially depicted in Figure 5.3, the TFA computes a delay bound of ⇠ 13.58 at a
utilization of 90%.

The LPA approach enumerates all potential entanglements of flows by extending the
partial order (defined by consecutive hops of flows) to the set of all compatible total
orders. For the square network, this extension already results in 11 linear programs. The
ULPA, in contrast, is solely based on the partial order, the extension step is omitted
due to its potential combinatorial explosion. This results in a single linear program with
a smaller set of constraints as the potential entanglements of f2 and f3 at s1 are not
exhaustively modeled anymore. Instead, they are assumed to constitute the respective
flow’s worst case. Based on this insight, it is not surprising that the ULPA actually does
not beat the PMOOA in the square network (see Figure 5.3). In fact, even the SFA
yields the same results. The reason for SFA’s equal accuracy is the lack of multi-hop
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Figure 5.3: Delay bounds in the square network.

interference. The effect captured with the PMOO principle does not manifest in this
network. Our evaluation shows that the ULPA may model the worst-case interference
between f2 and f3 in the same way as algNC.

Finally, Figure 5.3 also illustrates the impact of implementing the PSOO in the LPA
analysis: The improvement it achieves over the other analyses varies between 1.01% at
a utilization of 10% and 7.79% at a utilization of 80%.

These evaluation results are promising for algNC analyses, however, in Section 3.2 we
derived the composition penalty and in Section 3.1 we showed that it affects algNC. The
square network is not sufficiently complex to evoke it – even the SFA performs equal to
the ULPA in the square network. In the last part of this section, we will provide the first
comprehensive evaluation of the ULPA in feed-forward networks. It finally verifies [12]’s
conclusion: The ULPA considerably outperforms the SFA w.r.t. flow delay bounds.

5.3.3 Feed-forward Networks

For our numerical investigation, we decided to scale to larger networks and depart from
the previous ER topology generation. Instead, we created Internet-like topologies accord-
ing to the general linear preference (GLP) model [22]7. Traffic was created with a fixed
server-to-flow ratio of 1:4 to generate load in all networks. Table 5.2 shows the devices,
servers and flows for all of the GLP networks we evaluate in this thesis. Service curves
resemble transmissions via 10Gbps full duplex links. Flows are routed on the shortest
server graph path between two randomly chosen network devices. Their arrival curves
are uniformly shaped to token buckets with rate 5Mbps and bucket size 5Mb.

7We applied the default GLP parameter setting (m0 = 20, m = 1, p = 0.4695, �GLP = 0.6447) and
used the aSHIIP tool [84] to generate these device graphs.
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Devices Servers Flows
20 38 152
40 118 472
60 164 656
80 282 1128
100 364 1456
120 398 1592
140 512 2048
160 572 2288
180 646 2584

Devices Servers Flows
200 740 2960
220 744 2976
240 882 3528
260 976 3904
280 994 3976
300 1124 4496
400 1478 5912
500 1876 7504
1000 3626 14504

Table 5.2: GLP network sizes (amount of devices) and their respective number of servers
and flows.

We employ the DiscoDNC for the compFFA (SFA with aggrPBOOAB). Moreover, we
also extended the DiscoDNC to derive the ULPA for arbitrary feed-forward networks –
the linear program can be formatted to be either solved with the open-source solver
LpSolve or with IBM CPLEX. We used the DiscoDNC 2.2.3, Java 8, LpSolve 5.5.2.0 and
CPLEX 12.6.2. All computations were executed on identical servers, each equipped with
an Intel Xeon E5420 CPU with four physical cores and 12GB of RAM.

Accuracy Figure 5.4 depicts the reduction of delay bounds the ULPA achieves compared
to the algNC analyses with aggrPBOOAB. Due to the composition penalty’s “decision on
incomplete knowledge” aspect, we ran both, SFA and PMOOA. The statistics comprise
of all flows in GLP networks of sizes 20 to 180, i.e., 12376 analyzed flows in total.

Compared to the SFA, the ULPA could reduce delay bounds by an average of 15.18%
(improvement factor 1.203), however, more than 30% of SFA flow delay bounds could be
reduced by more than 20% with the ULPA and the maximum improvement we observed
is as high as 72.65%, i.e., the ULPA bound is smaller than one third of the SFA’s delay
bound. Clearly, the conclusion of [12], that the ULPA considerably outperforms the SFA
in feed-forward networks, is correct.

Compared to the PMOOA, the ULPA does not perform equally well. It only reduced
delay bounds by 1.23% on average. Figure 5.4 illustrates that most delay bounds are
within close distance of the PMOOA, however, there are some outliers: 32 delay bounds
are reduced by the ULPA by more than 3%, three by more than 5% and two by more
than 7%. The maximum can be found at 7.63%. This seems to suggest to always execute
a PMOOA, i.e., the decision to take on incomplete knowledge seems rather simple. Yet,
for 517 out of the 12376 flows the SFA computed a better delay bound than the PMOOA,
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Figure 5.4: Delay bound reduction distribution: ULPA’s improvement over flow delay
bounds of algNC with aggrPBOOAB in GLP networks of sizes 20 to 180, i.e.,
comparison of 12376 flows analyses.

and for another 453 flows the results were equal8.

Computational Effort Last, let us extend our reflection of NC analyses to computa-
tional effort. It is the very reason for the step away from tight LPA delay bounds, back
to an accurate analysis. Figure 5.5 depicts how, in our sample, the time to analyze an
entire GLP network scales with their size.

These results defeat the hope that the ULPA is an efficient optimization-based anal-
ysis for feed-forward networks. Employing LpSolve, that was found to perform well on
tandems, already yielded problems in the smallest network of this numerical evaluation.
There, LpSolve fails to solve one of the linear programs, reporting it to be unbounded
after an extensive period of computations. In the GLP network with 40 devices, LpSolve
fails with a larger number of linear programs, reporting “unbounded” or “failed”. The
entire analysis of this small network devices took more than 129 hours. IBM CPLEX
performs considerably better, however, at 180 devices it suffers from a network analysis
time of ⇠ 13 days. Thus, the ULPA becomes computationally infeasible to apply, even
though it is by far more efficient than the LPA it was derived from.

The network analysis time for algNC also grows with the network size, yet, where the
ULPA requires ⇠13 days, SFA finishes in less than 30 minutes and PMOOA takes ⇠22.5

8Not accounting for potential double rounding errors that may increase this number.
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Figure 5.5: Benchmarking NC feed-forward analyses w.r.t. the network analysis time:
OptNC’s ULPA computation time strongly depends on the employed opti-
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with algNC’s SFA or PMOOA.

minutes.

The observations of this section reveal that NC analyses can be distinguished regarding
their fundamental tradeoff between efficiency and accuracy:

1. AlgNC is computationally efficient, however, accuracy of attained delay bounds is
not consistently competitive with current optNC analyses. We could ultimately
provide evidence that this conclusion is especially correct for the SFA. However,
the PMOOA does perform quite well on average. This might be due to the worst-
case assumptions of the ULPA. They seem to constrain its search space to a region
similar to the algNC. Nonetheless, in some cases the PMOOA performs noticeably
worse than optNC’s ULPA. Particularly in the context of schedulability decisions,
these outliers can be decisive and should be reduced as much as possible.

2. OptNC theoretically allows for the derivation of tight bounds. Yet, in practice
neither tight nor accurate bounds are computationally feasible to derive with the
current analyses LPA and ULPA. Moreover, the ULPA’s accuracy cannot be im-
proved easily and its computational performance strongly depends on the employed
optimization software.
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We know from the previous section that compositional algNC analysis can be competitive,
especially if the PMOOA is applied in compFFA step 2, the foi’s tandem analysis. Now
we extend the current algNC analyses with optimization principles. Our new analyses
consider a larger search space for the algNC solution and thus become competitive with
optNC in more general feed-forward networks as well.

6.1 Exhaustive Aggregate Cross-traffic Arrival Bounding

In our first contribution that incorporates optimization principles into algNC, we derive
an algorithm to exhaustively compute aggregate cross-traffic arrival bounds. It searches
through all possibilities of applying either SFA or PMOOA on the compFFA’s tandems.
This approach maximally counteracts the composition penalty’s segregation problems
with the two current algNC tandem analyses. In evaluations, we show significantly
improved delay bounds over the literature’s cross-flow segregation but also prohibitive
effort in moderately sized feed-forward networks.

The search space algNC traverses to find the best delay bound is not yet maximized,
i.e., it can still be further exhausted within the compFFA framework. We already saw
that the composition penalty’s “decisions on incomplete knowledge” aspect results in an
extended search: In compFFA step 2, SFA and PMOOA are both used to analyze the
foi. We now derive a scheme to extend the search in compFFA step 1, the cross-traffic
arrival bounding, to an equally exhaustive scheme.

In section 3.3.2, we provide Algorithm 3.1 for aggrPBOOAB. It proceeds server-by-
server in order to derive left-over service curves for cross-traffic aggregates. E.g., in
Figure 6.1a the arrival bounding of xf2 at the right-most server requires both its left-over
service curves �

l.o.xf2
s0 and �

l.o.xf2
s1 . While this implements the PBOO principle, multiplex-

ing with xf2’s cross-traffic on these two consecutive servers might have to be payed for
multiple times. The PMOO principle can, however, only be implemented on tandems.
For single servers, the interference pattern will always be nested and left-over service
curve computations of the SFA and the PMOOA coincide. Therefore, Algorithm 3.1
must be extended to backtrack through the network in a tandem-by-tandem fashion.
The step from Figure 6.1a to Figure 6.1b illustrates this conversion with xf2’s arrival
bound derivation at server s2:

↵

xf2
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= ↵

xf2
s0
↵ �

l.o.xf2
s0
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s1
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l.o.xf2
s1

⌘
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xf2
s0
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aggrPBOOl.o.xf2
hs0,s1i
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(a) SFA with aggrPBOOAB (cf. Figure 3.3c).

(b) SFA with aggrPMOOAB.

Figure 6.1: Extending aggrPBOOAB to aggrAB.

where �

aggrPBOOl.o. denotes the aggrPBOOAB left-over service curve as employed by the
SFA. In order to implement the PMOO principle, we replace �

aggrPBOOl.o. with its PMOO
counterpart �

aggrPMOOl.o., the left over service curve of the PMOOA (see Section 2.3).
This results in the following derivations for SFA delay bounding (Figure 6.1a):

• �

l.o.foi
s1

⌦ �

l.o.foi
s2

= �

l.o.foi
hs1,s2i is the SFA foi analysis of compFFA step 2.

• �

l.o.[xf1,xf2]
s0 exploits aggregate cross-traffic bounding at s1, circumventing mutual

interference assumptions between xf1 and xf2 at s0 in compFFA step 1.

• �

l.o.xf2
hs0,s1i is the tandem analysis that bounds ↵

xf2
s2 . It is an independent instance of

compFFA step 1.

Overall, we see that fundamental problems of compFFA persist: In case �

l.o.xf2
hs0,s1i =

�

aggrPBOOl.o.xf2
hs0,s1i , the PSOO principle is violated at s0. Moreover, the left-over derivations

for cross-traffic arrival bounding operate with their independent worst-case assumptions
that are contradicting in the global view: �

l.o.[xf1,xf2]
s0 aggregated both cross-flows whereas

�

l.o.xf2
hs0,s1i always considers xf1 cross-traffic of xf2. Exhausting the cross-traffic arrival bound-

ing thus doubles the alternatives on every tandem to be analyzed in compFFA step 1.
We abbreviate the exhaustive aggregate cross-traffic arrival bounding with aggrAB and
will apply it to both analyses, SFA and PMOOA. But first we demonstrate that it can
yield delay bound improvements in the example given in Figure 6.1.

Example 6.1. (Exhaustive Aggregate Cross-traffic Arrival Bounding) Consider the two
alternative cross-traffic arrival bounding procedures for ↵

xf2
s2 depicted in Figures 6.1a

and 6.1b (network of Figure 3.3). Note, that there are no further alternatives as the
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remaining left-over service curves �

l.o.[xf1,xf2]
s0 , �

l.o.foi
s1

and �

l.o.foi
s2

are all single-server ones.
Therefore, the difference in the foi’s delay bound is solely defined by the �

l.o.foi
s2

’s latency
T

l.o.
s2

that, in turn, is defined by the only cross-flow at s2: xf2. Its arrivals differ in both
alternatives as follows:
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⇣
(�

s0 ⌦ �

s1) ↵

xf1

⌘
,

i.e., they can both outperform each other, depending on the left-over rate at s1 due
to ⌦’s commutativity. Therefore, the composition penalty’s “decisions on incomplete
knowledge” also applies to cross-traffic arrival bounding. Note, that s1 is the first server
on the foi’s path, yet, the last server crossed by xf2. As a result, the observation made in
[74] that SFA can outperform PMOOA if the latter servers are faster must be generalized
in feed-forward networks. Here, even fast servers at the front impose problems for the
PMOOA due to cross-traffic arrival bounding.

Figure 6.2 illustrates the impact of this observation. As depicted, different alternatives
of foi analysis (compFFA step 1, including PMOOA) and cross-traffic arrival bounding
(compFFA step 2) can yield the best delay bound.

• In example 1 (Figure 6.2a), we chose the following parameter setting: ↵

xf1
= ↵

xf2
=

↵

foi
= �1,0, �

s0 = �5,1, �

s1 = �

R

s1 ,0
, and �

s2 = �5,0, i.e., R

s1 is varied.

• In example 2 (Figure 6.2b), we set �

s0 = �25,5, �

s1 = �25,0, �

s2 = �3,5, ↵

foi
= �0.5,5,

↵

xf1
= �2.5,bxf1 , ↵

xf2
= �2.5,5 and increase b

xf1 .

Summing up, we showed that neither of the two algebraic alternatives to derive the left-
over service curve strictly outperforms the other one in general feed-forward networks.
Moreover, their results depend on actual parameters of strict service curves and cross-
traffic arrival bounds. Whereas the service curves are known, the arrival bounds need to
be computed first. When decomposing the server graph into left-over service derivations,
the superior �

l.o. is thus still unknown. For this reason, we propose to apply all alternative
derivations from the start and on each level of the cross-traffic arrival bounding recursion.
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Figure 6.2: Delay bound comparison for different parameter settings (see Example 6.1).

Finally, we check every combination for its result in order to find the best delay bound.
We call this method the exhaustive aggregate arrival bounding aggrAB. It is implemented
in Algorithm 6.1 where lowercase letters denote variables and blackboard bold letters
denote sets of variables. The algorithm proceeds as follows:

The objective is similar to Algorithm 3.1 and so is the entry point – a set of flows F
to bound and a server s to bound their arrivals at. Like the non-exhaustive algorithm,
we first iterate over the inlinks of s (lines 2 to 6) and then add the arrivals of flows
originating at s (lines 8 to 10). A difference to the previous recursive approach resides
in line 7: AggrAB returns two bounds per inlink, one for aggrPBOOAB and one for
aggrPMOOAB. The exact amount of returned bounds depends on the tandems that are
analyzed deeper in the recursion, i.e., in the following instances of compFFA step 1.

Inlinks define the locations where recursive cross-traffic bounding may be required for
(subsets of) the currently analyzed flows or their respective cross-traffic must be bounded.
In both cases, new instances of compFFA step 1 are required to derive aggrPBOOAB
and aggrPMOOAB results – these may violate the PSOO principle. For every inlink,
the arrival bound is computed by first searching for the longest tandem flows traverse
aggregately (Tshared, line 13), then recursively deriving the cross-traffic arrivals for this
tandem (lines 14 to 17), applying the SFA and PMOOA left-over service curve derivation
(line 18, see Section 2.3) and computing the flow aggregate’s output from Tshared (lines
19 to 23). Moreover, the TFA assistance to cap cross-traffic burst at the output of Tshared

is implemented in aggrAB as well (lines 21 and 24).
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Algorithm 6.1: AggrAB Computation.
Input : Set of flows F to bound at server s

Output: Set of arrival bounds AF
s

1ArrivalBoundsAtServer(Server s, Flow set F)
2foreach Link l 2 s.getInLinks() do
3F

l

= F \ F (l);
4AF

l

= ArrivalBoundsOnLink(l, F
l

);
5AF

inlinks.put(l, AF
l

);
6end
7AF

s

= getABCombinations(AF
inlinks);

8foreach ↵ 2 AF
s

do
9↵ += Fsrc(s) \ F;

10end
11return AF

s

;

12ArrivalBoundsOnLink(Link l, Flow set F)
13Tshared = getSharedPathTo(F, l.getSource());

14foreach Server s 2 Tshared do
15Fx(F)

s

= F (s) \ F;
16Ax(F)

Tshared
.put(s, ArrivalBoundsAtServer(Fx(F)

s

));
17end

18Bl.o.F
Tshared

= LeftOverBetas(Tshared, Ax(F)
Tshared

);
19source = Tshared.getSource();
20AF

source

= ArrivalBoundsAtServer(source, F);

21B

TFA = TFAbacklogBound(l.getSource())

22foreach � 2 Bl.o.F
Tshared

do

23AF
l

.addAll(AF
source

↵ �);

24AF
l

.capAll(BTFA);
25end
26return AF

l

;

6.1.1 Accuracy Evaluation

We continue to incrementally evaluate the impact of improvements with a numerical
evaluation. In addition, we provide a case study that depicts our overall progress.

Note, that in an exhaustive accuracy evaluation of network delay bounds, we do not
simply compute min

�
D

SFA
, D

PMOOA� where D

SFA denotes the network delay bound of
an SFA with aggrAB and D

PMOOA the respective PMOOA one – a straight-forward
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extension of previous analysis proceedings. Both of these network delay bounds are
valid so their minimum is a valid network delay bound as well. However, this coun-
termeasure to the composition penalty only finds the best solution if we have a single
cross-traffic arrival bounding alternative. Therefore, we do not consider this limited
search an implementation of optimization principles. It lacks exhaustiveness. Instead,
we compare both alternative delay bounds for every individual flow in order to derive
D

exh. Let us illustrate the difference in a small example with three flows, f1, f2 and
f3. Assume that their delay bounds derived by SFA are D

f1
SFA = 5, D

f2
SFA = 4 and

D

f3
SFA = 4. For PMOOA let them be D

f1
PMOOA = 4, D

f1
PMOOA = 4 and D

f1
PMOOA =

6. Then we get min

�
D

SFA
, D

PMOOA�
= min (min (5, 4, 4) , min (4, 4, 6)) = 5 whereas

D

exh
= min (min (5, 4) , min (4, 4) , min (4, 6)) = 4, i.e., D

exh
< min

�
D

SFA
, D

PMOOA�.
We observed this benefit of our more exhaustive procedure in the following evaluations,
especially in networks approaching their utilization limits.

Numerical Experiments In this accuracy evaluation, we use the same networks as in
Section 3.3.6, i.e., we benchmark the scaling behavior w.r.t. an increasing utilization
in two randomly created Erdős-Rényi networks – a flat one and an hierarchical one.
Figure 6.3 shows the results. We compare the latest algNC analysis without optimization
principles, the SFA with TFA-assisted aggrPBOOAB, with the results of the exhaustive
bounding procedure (SFA and PMOOA in compFFA step 2, each with TFA-assisted
aggrAB in step 1).

In both networks, the maximum delay bounds for the respective network utilization are
improved. In contrast to the previous evaluation, the reduction of bounds decreases when
the utilization becomes large and the delay bounds approach their asymptote. At 100%,
the improvement factor of both networks is at ⇠1, i.e., the network delay bounds are
(almost) identical. For the range of network utilizations where algNC derives small delay
bounds, the exhaustive bounding procedure even improves the results. Its improvement
factor is almost always above 1.25, in the hierarchical ER network where results are
usually more pronounced, it even reaches values above 2.

Moreover, we could observed that D

exh
< min

�
D

SFA
, D

PMOOA�. In the flat ER net-
work it only occurred in the highest utilization setting, but in the hierarchical network
this was the case for every network delay bound we computed for utilizations above 7

9 .

AFDX Case Study Next, we evaluate the algNC improvements contributed in this
thesis in an industrial avionics case study. The network we exemplarily analyze is di-
mensioned similarly to the AFDX (Avionics Full-Duplex Switched Ethernet) backbone
network in the Airbus A380. It has a dense core of 16 switches that connect a total of
125 end-systems in the network periphery. Each server has a service curve resembling a
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(a) Flat ER network with 32 devices.
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(b) Hierarchical ER network with 32 devices.

Figure 6.3: Network delay bounds for flat and hierarchical Erdős-Rényi networks with
n 2 {32, 64} devices.

100Mbps Ethernet link. We created a representative AFDX topology according to the
algorithm presented in [20]. This topology generation scheme has some random factors
in it, i.e., from an industrial point of view, the network we analyze here corresponds to
a single alternative in a pre-deployment design space exploration.

According to the current AFDX specification, flows are routed within so-called virtual
links (VLs). Each VL connects a single source end-system to multiple sink end-systems
(in the device graph) with fixed resource reservation on the path between these systems.
In the view of current NC analyses, VLs correspond to multicast flows that reserve large
resource shares. An examination of the problems due to VLs’ coarse granularity can
be found in [55]. Moreover, NC does not provide a specialized analysis for multicast
communication that implements the PBOO or even the PMOO principle. Implementing
them to some degree requires another network transformation before the actual analysis:
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Figure 6.4: Network delay bounds in the AFDX topology, minimum of SFA and PMOOA
with segrPBOOAB or aggrAB.

Each multicast flow is converted into a set of independent unicast flows; one for every
source-sink pair of connected devices in order to model the network. This step, however,
constitutes a flow segregation similar to the ones mentioned earlier. For this reasons, we
restrict our evaluation to the immutable part of AFDX: The already deployed networks’
common topology design.

The evaluation proceeds like the ER one (cf. Section 3.3.6): We continuously add unit
size flows, routed in the server graph between two randomly chosen network devices from
the device graph. Figure 6.4 shows the impact of improved arrival bounding as derived
in this thesis.

The AFDX topology can benefit much from our method. Starting at an improvement
factor of 1.1, the gap between old and new network delay bound grows fast until it reaches
the bottleneck capacity and factor 3.36. Each of the 250 links to and from an end-system
gets congested easily, similar to the few bottlenecks connecting different levels in the
hierarchical Erdős-Rényi network. Moreover, AFDX’s flat core is very small and thus
prone to the dynamic bottleneck emergence already observed in the flat Erdős-Rényi
network. Therefore, the results are particularly pronounced in the AFDX topology.
The network delay bound as well as the improvement both grow super-linearly with
the bottleneck utilization but aggrAB reduces the network delay bound compared to
segrPBOOAB by 70%.

Further, we observed D

exh
< min

�
D

SFA
, D

PMOOA� in the AFDX topology for all
network utilizations of 87.5% or larger, i.e., different flows define the respective network
delay bound.
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Figure 6.5: Amount of each flow’s of left-over service curves derived with aggrAB. Grow-
ing a network in size by adding flows reveals the combinatorial explosion this
approach already suffers from in the small sample networks.

6.1.2 Effort Considerations

We already pointed out that this optimization principle is prone to a combinatorial
explosion. Next, we evaluate the extent by counting the left-over service curves derived
for the foi. The amount of these curves is a good indicator for the analysis effort. It
doubles with every new instance of compFFA step 2 and the involved operations to derive
a curve can be implemented efficiently (O(1), see [17]).

Figure 6.5 depicts the total number of curves for each analyzed flow in one hierarchical
as well as one flat ER network of our set of networks for evaluation. We show three
different network sizes in terms of number of flows to indicate scalability of the exhaustive
approach. Neither of the networks exhibits the efficiency of algNC anymore, applying the
exhaustive search for best cross-traffic arrival bounds renders this approach infeasible,
even in small networks. I.e., the composition penalty continues to demand to decide
upon a small subset of alternative analyses for cross-traffic arrival boundings to retain
computational feasibility.

6.2 The Tandem Matching Analysis

The section contributes the tandem matching analysis (TMA). It is more flexible w.r.t.
the conceptual compFFA procedure for feed-forward networks (Section 3.1); demarca-
tion between flow of interest analysis and cross-traffic arrival bounding as well as the
restriction to either applying SFA or PMOOA are relaxed. Our evaluations show that
TMA delay bounds become very competitive with the optimization-based ULPA, deviat-
ing only by an average of 1.16% in our comprehensive tests with Internet-like topologies.
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Moreover, we show that the TMA generalizes Section 6.1’s aggrAB that was developed
to adhere to compFFA’s restrictions. Last, we demonstrate that this generalization re-
tains the problem of combinatorial explosion and thus prohibitive effort before Section 7
contributes countermeasures.

We propose a feed-forward network analysis that achieves more accurate delay bounds
by compiling the system description into a model best suited for compFFA. I.e., we
consider algNC analysis’ strengths and weaknesses presented in Section 3.1 in order to
minimize the composition penalty. We call this optimization principle Tandem Matching
(TM). The according foi analysis implementing TM in compFFA step 2 is the Tandem
Matching Analysis (TMA). The TMA does not create a new analysis in the sense of an
alternative solution for the left-over service curve derivation or the direct computation of
bounds. We rather provide an entirely new analysis procedure consisting of (a preceding)
step that incorporates optimization principles into the algNC analysis.

6.2.1 Matching Tandems

Currently, there is no generic tandem decomposition scheme for algebraic tandem anal-
yses. The procedure mainly depends on the choice of analysis (recall Section 3.1 as well
as Figures 3.3c and 3.3b). The SFA first matches shortest possible sub-tandems in a
preceding step, whereas the PMOO starts with the foi’s entire path. The decision for
either must be taken without knowing which alternative is superior. Moreover, neither
of both actually guarantees for the best alternative as this example illustrates:

Example 6.2. (Tandem Matching Analysis) Consider the network in Figure 6.6a that
depicts the same sample network as in Section 3.4 but with a different foi to analyze.
The foi crosses all three servers of the tandem. Figure 6.6b shows the SFA’s server-
by-server decomposition for analysis and Figure 6.6c shows the PMOOA analyzing the
entire tandem at once. As before, we assume that the arrival curves are from FTB and
the service curves are from FRL. We get the following left-over service curve derivations:

�

SFAl.o.foi
= �

l.o.foi
s0

⌦ �

l.o.foi
s1

⌦ �

l.o.foi
s2

=

⇣
�

s0  ↵

xf1

⌘
⌦
⇣
�

s1  
⇣
↵

xf1 ↵ �

s1

⌘⌘
⌦
⇣
�

s2  ↵

xf2

⌘
�

PMOOAl.o.foi
= �

R

l.o.
,T

l.o. with

R

l.o.
=

⇣
R

s0 � r

xf1

⌘
^
⇣
R

s1 � r

xf1

⌘
^
⇣
R

s2 � r

xf2

⌘
T

l.o.
= T

s0 + T

s1 + T

s2 +

b

xf1
+ b

xf2
+ r

xf1 · (T

s0 + T

s1) + r

xf2 · T

s2

R

l.o.

In the derivation of �

SFAl.o.foi, multiplexing with cross-flow xf1 is payed for twice and in

98



6.2 The Tandem Matching Analysis

(a) Sample Network.

(b) Figure 6.6a’s SFA-internal model.

(c) Figure 6.6a’s PMOOA-internal model.

(d) An additional TM alternative.

Figure 6.6: Sample network and tandem decompositions of different analysis approaches.

�

PMOOAl.o.foi we cannot benefit from fast residual service rates on the foi’s path P (foi) as
both cross-traffic bursts (and their respective increase) are served with R

l.o., the minimum
over all three servers on the tandem.

We see, both current alternatives to match tandems onto P (foi) in order to define the
left-over service curve have their respective composition penalty. However, these alterna-
tives only demarcate the search space of the tandem matching onto P (foi). Figure 6.6d
shows an additional alternative that we analyze in an exhaustive TMA9. It matches a
tandem to the first two servers in order to benefit from implementing the PMOO principle

9We omit the fourth alternative to match on s0 and hs1, s2i for brevity. It is valid but does not
contribute to this example: �

PMOOAl.o.foi
hs1,s2i 

�
�

s1  ↵

xf1
s1

�
⌦

�
�

s2  ↵

xf2
s2

�
= �

SFAl.o.foi
hs1,s2i . The inequality

holds due to PMOOA’s left-over rate problem mentioned above.
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Figure 6.7: Delay bound comparison for different parameter settings (see Example 6.2).

and separates the last server to potentially benefit from its residual service rate:

�

l.o.foi
= �

PMOOAl.o.foi
hs0,s1i ⌦ �

PMOOAl.o.foi
s2

= �

R
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,T
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⇣
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⌘
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= T
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xf1 · (T

s0 + T

s1)
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s0 � r

xf1
) ^ (R
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xf1
)

+

b

xf2
+ r

xf2 · T

s2

R

s2 � r

xf2

Figure 6.7 illustrates the impact of this TM alternative on the delay bound.

• In example 1 (Figure 6.7a), we chose the following parameter setting: ↵

xf1
=

↵

foi
= �1,1, ↵

xf2
= �

r

xf2
,1 �

s0 = �

s1 = �

s1 = �5,1, i.e., the cross-traffic arrival
rate r

xf2 at the last server is increased to reduce the residual rate �

PMOOAl.o.foi

assumes for all servers on the tandem. After if falls below the residual rate on the
first servers, PMOOA derives larger delay bounds than our new TM alternative.
The SFA additionally violates the PMOO principle and thus cannot outperform it.
However, it can outperform PMOOA as soon as the impact of the PMOO principle
is outweighed by the impact of the server at the end.

• In example 2 (Figure 6.7b), we set ↵

xf1
= ↵

xf2
= ↵

foi
= �1,1, �

s0 = �

s1 = �5,1, �

s1 =

�

R

s1 ,1
, and increase R

s1 . Among our three alternatives, only the SFA separates the
middle server from the others and can thus benefit from a fast rate there.

Based on the basic insight provided by Example 6.2, we propose to search for the best
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delay bound considering all combinations a tandem can be decomposed into, i.e., among
all tandem matchings onto it. As every link can be the start and the end of two adjacent
tandems of a TM alternative, this will result in a total of 2

|L| alternatives where |L|
denotes the amount of links. Again, the delay bound derived with one of the the alterna-
tives depends on the actual parameters. Therefore, the best tandem matching alternative
cannot be derived from the given network description in a static fashion. Cross-traffic
arrival bounds, in turn, depend on an accurate, recursively derivation themselves. In or-
der to maximize the search space, TMA should be accompanied by a Tandem Matching
Arrival Bounding (TMAB) that also exhaustively matches to the tandems that are de-
rived during aggrAB. Exhaustive tandem matching, i.e., TMA for compFFA step 2 and
TMAB for compFFA step 1, generates the entire set of TM alternatives for a feed-forward
network. On the individual tandems, we apply the PMOOA left-over service curve – the
server-by-server matching of SFA is now explicitly executed by the exhaustive tandem
matching. I.e., TMA generalizes all existing algebraic tandem analyses by making the
step from the network description to the analysis’ internal model explicit. In our search
space for algNC, we then try to find the alternative with the minimal composition penalty
– similar to optimization searching for the best result in the constrained region of results.
This approach is inspired by the LPA but in contrast to it, the TMA with TMAB does
not generate invalid delay bounds. It does not constitute an all-or-nothing approach.
Our new method is applicable to any feed-forward network. If not explicitly mentioned,
we use the term TMA to refer to the entire TM-based analysis that consists of TMA for
compFFA step 2 with TFA-assisted TMAB for compFFA step 1.

6.2.2 Related Work

In this section, we rely on the PMOOA left-over service curve for arbitrary multiplexing
of flows, i.e., the worst-case remaining service capturing any possible scheduling order of
flows at a server. NC also offers a left-over service curve for FIFO-multiplexing servers:
�

l.o.
✓

[50]. Like the arbitrary multiplexing one given in Theorem 2.3, it is only applicable
to a server. Thus, it allows for an analysis akin to the SFA presented in Section 2.3.
Again, this raises the problem of paying multiplexing more than once if cross-flows share
multiple consecutive servers with the analyzed foi. Effort focussed on improved analysis
for sub-path sharing, however, an algebraic end-to-end FIFO analysis that reduces paying
for cross-traffic multiplexing to a single location on the tandem does not exist. The most
advanced algebraic tandem FIFO analysis is the so-called Least Upper Delay Bound
(LUDB) [53]. In case of nested cross-traffic interference patterns, the LUDB suggests to
convolve servers before removing cross-flows, subject to the nesting relation of flows. The
latter is done by computing the FIFO left-over service curve. In Figure 6.6a, servers s0

and s1 are convolved before xf1’s arrivals are removed, resulting in �

l.o.
✓1,hs0,s1i. Next, the
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left-over service curve at s2, �

l.o.
✓2,s2

, is derived and both are convolved to the foi’s end-to-
end service curve. Finally, the delay bound can be derived which, in turn, requires to find
the optimal solution for ✓1 and ✓2. Note, that this approach enforces segregated cross-flow
arrival boundings according to the nesting, i.e., the composition penalty presented for the
PMOOA in Section 3.2 also applies to the LUDB. If paths are not nested, this approach
cannot be executed, e.g., if xf2 additionally crossed s1. In this case, [53] suggests to cut
the tandem into several sub-tandems such that each sub-tandem sees nested interference
only. Then, the foi’s delay is derived for every sub-tandem; they are added up to the
end-to-end delay bound. If there are multiple alternatives to cut a tandem (in case of
prolonging xf2 both links), all alternatives, i.e., all tandem matchings, are tested in an
exhaustive fashion and the least among all resulting delay bounds is the final result.
Unfortunately, the approach adding up partial delay bounds does not implement the
PBOO principle. Therefore, the authors of the LUDB adapted their analysis in a follow-
up article [3]. There, the foi is not cut anymore. Only cross-flows are cut such that the
interference pattern is converted into a nested one. Then, an end-to-end left-over service
curve can be derived for the foi. While this implements the PBOO principle, PMOO is
not implemented as cutting cross-traffic requires deriving its arrival bound to be used at
the cut.

The sub-tandem cutting of these approaches and the tandem matching of our new
analysis are similar, yet, they also differ in some key aspects. First, our TMA does not
require to result in tandems with nested interference because the PMOOA can handle
overlapping sub-paths of cross-flows10. Our exhaustive approach thus results in more
sub-tandem matching alternatives than the LUDB’s cutting. Secondly, [53] and [3] are
concerned with a tandem analysis only. They do not address the composition penalty
of the compFFA we presented in Section 3.2, yet, both LUDB approaches are based on
the idea of sub-path sharing and thus suffer from it, too. Moreover, they do not provide
a technical solution for the potential problem of combinatorial explosion problem; [3]
rather presents a heuristic to trade accuracy against computational effort. Applying the
LUDB in the exhaustive tandem matching of this work, is, however, possible.

An optimization-based NC approach for tight FIFO-multiplexing feed-forward network
analysis exists as well [15]. It transforms the NC description of the network into a
Mixed Integer Linear Program (MILP) where the integer constraints encode branching
of flows. This circumvents the step of explicitly extending a partial order to the set
of all compatible total orders. However, the computational effort to solve the MILP
for large networks does not seem computationally feasible either. Instead, the authors
10Here, we exclusively refer to the non-nested PMOOA left-over service curve of [75] on every tandem,

independent of the actual cross-traffic interference pattern. Note, that the nested variant would have
derived delay bounds equal to the TM alternative in Example 6.2, however, it is not applicable in
slightly more involved networks. The TMA thus additionally solves searching for nesting patterns.
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(a) Flat ER network with 32 devices.
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(b) Hierarchical ER network with 32 devices.

Figure 6.8: TMA accuracy improvements in the ER sample networks.

advise to remove all constraints with integer variables in order to obtain an ordinary
LP formulation that derives an upper bound. I.e., tightness is traded for computational
effort; similar to the ULP.

6.2.3 Accuracy Evaluation

Numerical Experiments 1: Network Delay Bounds in ER Networks As with the
evaluation of aggrAB in Section 6.1.1, we first benchmark TMA, our second proposal
for optimization principles in algNC, against the latest results we reported for algNC,
the SFA with TFA-assisted PBOOAB. Note, that TMA uses the TFA-assisted TMAB
for compFFA step 1 and the TMA for step 2. For comparability, we use the same ER
networks, a flat and an hierarchical one.

Figure 6.8 shows the results: Maximum delay bounds for the respective network uti-
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Figure 6.9: Flow delay bounds in the GLP network with 180 devices.

lization are improved. Similar to the previous evaluation, this reduction decreases with
increasing utilization and thus increasing delay bounds. At 100%, the delay bounds be-
come nearly identical and the improvement factor of both networks is at ⇠ 1. For smaller
utilizations, the TMA achieves an improvement factor between ⇠ 1.25 and 1.75 in the
flat network and between 1.5 and 2.75 in the hierarchical network. Both factors lead to
considerable delay bound reductions.

Numerical Experiments 2: Flow Delay Bounds in GLP Networks Next, we extend
the evaluation of Section 5.3.3 with our new TMA. I.e., we depart from the network delay
bounds and investigate the impact on individual flow delay bounds.

Figure 6.9 shows analysis results for an Internet-like network with 180 devices. All the
2584 flows’ end-to-end delay bounds are depicted. Sorting the bounds ascending by their
TMA delays reveals two important observations:

• The ULP and the TMA delay bounds increase pretty much in lockstep and stay
close to each other. I.e., the TMA does not have to compromise much on the delay
bound accuracy. This holds true for all smaller network sizes as well.

• The SFA results oscillate wildly with a large amplitude. This behavior can be
observed across all network sizes. In contrast to the TMA, the lack of consistency
in the SFA’s gap to the ULP bounds even prohibits using it as a proxy metric for
accurate flow delay bounds.

Both observations are confirmed by the overall results of our experimental investigation.
Figure 6.10 shows all evaluation results for GLP networks of sizes up to 180 devices, i.e.,
the delay bounds of 12376 flows across all network sizes shown in Table 5.2, left. The
TMA accuracy is stable across the network size and stays within a small deviation from
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Figure 6.10: Flow delay bounds relative to the ULPA across nine network sizes compu-
tationally feasible to analyze with the ULPA (Table 5.2, left).

the ULP. Compared to the evaluation of the PMOOA in Section 5.3.3, Figure 5.4, we see
that the accuracy has improved: The three leftmost TMA bars have increased while the
following bars that depict larger deviations all decreased. Consequently, the amount of
outliers has been reduced as well. Except for a single outlier, all derived bounds are at
most 5% larger, mean and median are both at only 1.16%. The outlier deviates 8.23%
from the ULP and thus is still more accurate than most of the SFA delay bounds.

6.2.4 Effort Considerations

The computational effort of exhaustive tandem matching becomes apparent when con-
structing the set of all TM alternatives, i.e., the entire TMA-internal model of the net-
work that is used to derive the delay bound. We exemplify the construction on a tandem
network with n servers and m flows; Figure 6.11 illustrates the steps we take and the
amount of tandem matching alternatives in several, repeating steps of this procedure.
Assume the worst case where each server is crossed by every flow, yet, equal to the SFA,
cross flows are not aggregately bounded. Let us start on the foi’s path P (foi) – we call
this tandem Torig = hs1, . . . , sni. The number of different matching alternatives for Torig

is already 2

n�1. As such an alternative derives the foi’s end-to-end delay bound, each
has between 1 and n distinct sub-tandems in order to cover all servers on Torig. In our
example, we always proceed with tandem matching alternatives that separate the last
hop and we bound a single segregated cross-flow’s arrivals at this server. In the following
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Figure 6.11: Search tree [1] for the n servers, m flows sample tandem representing all
required arrival boundings.

step (level 2), TMAB is executed. The foi has m�1 cross-flows, defining the search space
in the first TMAB step. To bound a single cross flow’s arrival at level 2, a TMAB is
applied to its path of length n�1, resulting in 2

n�2 TM alternatives (level 3). Again, it is
necessary to bound this flow’s cross-traffic arrivals recursively (level 4). As the cross-flow
under consideration does not interfere with itself and as we are on the foi’s path, there are
m� 2 cross-flows to bound. In contrast to the shortening path lengths, this number will
not decline until the arrival bounding terminates. We skip the remaining steps as they
are repetitions of level 3 (with increasing x  n in 2

n�x) and level 4. Continuing on this
trajectory through the search tree, bounding a single cross-flow of a single sub-tandem of
a single TMA alternative of Torig already triggers (m� 1)+ (n� 1) · (m� 2) TMABs on
the evenly numbered levels. Levels with odd numbers (� 3) scale this number by 2

(n�2)!

TM alternatives until we eventually reach the end of the tandem.
Obviously, TMA is prone to a combinatorial explosion similar to the extension of

partial orders to compatible total orders as required for the LPA. However, in contrast
to LPA, each trajectory starting from Torig enables to derive a valid arrival bound. In
principle, this would allow for a simple, yet flexible tradeoff between computational effort
and delay bound accuracy. However, we opted for the exhaustive tandem matching and
designed an efficient algorithm which keeps the computational effort still tolerable by
exploiting the compositionality of the TMA (Section 7).

6.3 Combining Search Spaces of Optimization Principles

Last, we compare both optimization principles. Figures 6.3 and 6.8 showing the respective
approach’s improvement factor over the same algNC analysis reveal quite similar impact
of the approaches; the pattern followed by the improvement factor is quite similar in
both network types. Only the delay bounds in the hierarchical ER network show a visible
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(a) Flat ER network with 32 devices.
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(b) Hierarchical ER network with 32 devices.

Figure 6.12: Delay bound accuracy comparison for the algNC with different optimization
principles.

difference. In Figure 6.12, we depict the relative performance of TMA and the exhaustive
analysis. The improvement factor was chosen from the TMA’s point of view. It does not
fall below 1, i.e., TMA performs at least as good as the exhaustive analysis with aggrAB.
This can be explained with a comparison of the search spaces covered by each principle.
To be precise, we can deduce that the search space of exhaustive aggrAB is a subset of the
TMA’s one. The TMA exhaustively tests every TM alternative. Matching to the longest
possible tandem coincides with the PMOOA; matching to the smallest possible tandems,
i.e., single servers, coincides with the SFA. Transferring this approach to the TMAB
means embedding it into the recursive aggregate cross-traffic arrival bounding scheme.
There, the two special cases of TMAB coincide with aggrPMOOAB and aggrPBOOAB,
the two alternatives defining aggrAB. Therefore, the TMA’s search space completely
covers the aggrAB’s one. Not only does this explain the superiority of TMA delay
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bounds but also indicates larger effort for finding them.

In this section, we contributed insight on where to search for tightness improvements in
algNC by identifying parts of its search space that have been neglected previously. As a
result, delay bounds improve but the effort for algNC increases to the level of optNC – the
analysis approaches become computationally infeasible. In fact, the accuracy evaluations
shown in this section cannot be obtained with pure computational performance. In the
next section, we provide efficiency improvements allowing us to derive delay bounds with
algNC that incorporates optimization principles.
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This chapter is dedicated to the efficient computation of algebraic network calculus anal-
yses. First, we present two general enhancements for the feed-forward analysis: 1) Re-
duction of intermediate results by convolution of arrival bounds and 2) caching of inter-
mediate arrival bounds. Both allow for a more efficient computation without sacrificing
accuracy of results. Then, in Section 7.2, we implement these improvements in an al-
gorithm for the TMA. In fact, without these improvements, the delay bounds presented
in the previous section could not have been computed. We benchmark our new algo-
rithm against ULPA, SFA and PMOOA. We show run times several orders of magnitude
smaller than the ULPA.

The accuracy improvements for algNC presented in this thesis all require additional
effort. AlgNC does, in contrast to the LPA, provide valid bounds in case the effort to be
put into an analysis must be reduced. I.e., trading accuracy against effort is achievable in
a straight-forward fashion; exhaustive approaches can be scaled back easily. However, we
aim for the theoretically achievable bounds where exhaustive algNC procedures belong
to the category of computationally infeasible analyses. This section provides work on
efficiency of the algNC analysis such that effort vastly shrinks and accurate NC analysis
finally becomes scalable.

7.1 Analysis Execution Efficiency

We reinforce the integration of the three substeps of compFFA step 1: backtracking
dependencies, deriving the analysis equation and executing the computation. This in-
tegration still allows us to access all the useful intermediate results – a key difference
to optimization-based analysis of optNC. The ULPA must execute separate steps for
backtracking and computation in order to interface NC with the external linear program
solver. We already showed in Section 5.3.3 that the choice of optimization software is
crucial for the analysis performance and will also continue to investigate improvability
of it.

7.1.1 Convolution of Intermediate Arrival Bounds

The first efficiency improvement to counteract combinatorial explosion in our algNC
analyses strives for a reduction of intermediate results. As depicted in Figure 6.11, each
TMAB matches tandems (oddly numbered levels), i.e., it derives alternative cross-traffic
arrival bounds, one for every TM alternative. These arrival bounds are used to derive
alternative left-over service curves that, in turn, are used to derive the arrival bounds
required on the previous recursion level. In the integrated scheme we propose, the arrival
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bounds at every level of the recursion of compFFA step 1 are known. Moreover, it holds
that for two alternative arrival curves ↵1 and ↵2 for a flow f , ↵1⌦↵2 is also an arrival curve
for f . Exploiting this insight, we need not traverse all trajectories through the search
tree as we do not rank alternatives by the delay bound they eventually compute. This
is in contrast to the LUDB and the straight-forward implementation of our optimization
principles for algNC that compare alternative delay bounds at the end of the search.
In fact, we do not rank alternative intermediate results at all, we combine them by
convolution. This feature is unique to algNC as it retains the semantics of the NC model
whereas the (U)LPA does not. Reduction to a single arrival bound per recursion level
inhibits a combination any two adjacent levels’ results. Thus, we strongly counteract the
combinatorial explosion; potential search trajectories are narrowed down, search trees
are thinned out.

7.1.2 Caching of Intermediate Arrival Bounds

The second improvement we propose is of technical nature. We extended the DiscoDNC
with a caching mechanism for intermediate arrival bounds. Prerequisite for the retrieval
of cached arrival bounds is their unique identification. The following parameters are
required to identify an intermediate cross-traffic arrival bound:

Bounded Flows The set of flows whose arrivals are bounded by the curve.

Server The server at which flows are bounded with the cached curve. Remember that we
need to segregate cross-flows according to the inlink they arrival on. Therefore, we
may cache multiple arrival bounds per set of flows and per server. Separate entries
according to the inlink help to maximize reuse and thus minimize derivation effort –
similar to the considerations for an in-network SensorNC procedure (Section 4.5).

Flow of Interest The foi must be known in case the arrival bounding is started on its
path and immediately proceeds with servers on it. This special case applies to the
SFA and the TMA, e.g., see ↵

f0
s2 in Section 2.3.2. This property must be indicated

as these arrival bounds cannot be safely reused in any other case. There, the foi
will be considered interference with the flows to bound, i.e., the arrival bound will
be larger due to a violation of the PSOO principle.

We do not require the tandem analysis applied in compFFA step 2 to identify an arrival
bound. In fact, the cache thus even allows algNC to share results between SFA and
PMOOA with aggrAB (Section 6.1).

The cache fosters termination of recursive cross-traffic arrival bounding before reaching
the source servers of flows – the previous termination condition segrPBOOAB as well
as Algorithms 3.1, 4.2 and 6.1 (implementations of compFFA step 1). The search trees
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presented in the previous section thus become shorter as the length of search trajectories
is reduced.

Convolution and caching of arrival bounds supplement each other well: The former
ensures that a single arrival bound is derived on every recursion level of the compositional
procedure of algNC. Therefore, it reduces the amount of intermediate bounds the cache
has to store. Moreover, it allows the TMA algorithm to operate on a single, large
search plane instead of the separate search tree branches shown in Figure 6.11. This
“search plane” represents the same search space as before – the network remains the
same – but it inhibits redundancies when searching it. Remember, that the TMA defines
the most comprehensive search space of our algNC analyses incorporating optimization
principles. In the remainder of this section, we will investigate the impact of our efficiency
improvements on this analysis.

7.2 The Efficient TMA Algorithm

In this section, we provide a fast algorithm that integrates the transformation of the
system description to all TM alternatives into the analysis itself. That is, TM is not
executed statically in a step preceding the analysis. Intermediate results can then be used
to dynamically reduce the amount of matching combinations as shown above. Although
this reduces computational effort, our efficient TMA depicted in Algorithm 7.1 does not
pay for this efficiency gain with less accurate delay bounds. It guarantees for the most
accurate algNC bounds in feed-forward networks.

Algorithm 7.1 derives a foi’s alternative end-to-end service curves for the TMA. Nomen-
clature follows Algorithm 6.1, i.e., lowercase letters denote variables and blackboard bold
letters denote sets of variables. First, getBl.o.F

T
orig

is invoked with the foi’s path P (foi),
i.e., Torig :

= P (foi), and the foi itself – the algorithm needs to reverse the conceptual two
steps of an analysis presented in Section 3.1. P (foi) constitutes the first tandem to match
with 2

n�1 disjoint sub-tandems, where n denotes the number of server on P (foi). For
every sub-tandem we then derive the cross-traffic arrivals with TMAB (lines 32 – 37).
Thus, we derive all TM alternatives within this recursive arrival bounding method. After
the arrival bounding recursion has terminated (guaranteed by the cycle-free feed-forward
network and flows of finite length), its result is used to derive the foi’s left-over service
curves by convolving the matched sub-tandems’ �

l.o. curves – similar to SFA but �

l.o. are
not necessary single server left-over service curves. In a subsequent step (not depicted in
Algorithm 7.1), we derive delay bounds for all alternative end-to-end service curves for
the foi on P (foi). In contrast to the individual linear programs of the LPA, all are valid.
I.e., we chose the smallest result as final delay bound.
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Algorithm 7.1: Efficient TMA Algorithm.
1getBl.o.F

T
orig

(Tandem T
orig

, Flow set F)

2{T1, . . . , T2n�1} = getSubtandems(T
orig

); /* Disjoint divisions of Torig */

3foreach Subtandem sequence T 2 {T1, . . . , T2n�1} do
4foreach Subtandem T 2 T do
5AF

T

= TMArrivalBounding(T,F);
6�

l.o.F
T

= PMOO�l.o.

(T, AF
T

);
7�

l.o.F
T ⌦= �

l.o.F
T

;
8end
9Bl.o.F

Torig
.put(�l.o.F

T );
10end
11return Bl.o.F

Torig

12TMArrivalBounding(Tandem T , Flow set F)

13try{ return getCacheEntry(T, F) } /* Check for cached AF
T

*/

14G = xtxSegregation(T,F); /* Cross-traffic segregation */

15foreach xtxGroup G 2 G do
16AG

src = getSourceFlow↵s(G); /* Arrival curve for G’s source flows */
17AF

T

.put(AG

src);

18/* Flow aggregation requires equal inlinks */
19foreach Link l 2 T .getInLinks() do
20s = l.getSource();
21↵

G

T

=
�
↵

G

s

�0 = OutputBound(s, G);
22AF

T

.put(↵G

T

);
23end
24end

25addCacheEntry
�AF

T

�
/* Cache AF

T

*/
26return AF

T

27OutputBound(Server s, Flow set F)

28Tshared = getSharedServers(s,F); /* Aggregate flows on shared servers */

29Bl.o.F
Tshared

= getBl.o.F
T
orig

(Tshared,F);

30↵Tshared = ↵

G

Tshared.getSource()
; /* Arrival bound of flows in G at Tshared’s start */

31B

TFA = TFAbacklogBound(s)

32foreach �

l.o.F
Tshared

2 Bl.o.F
Tshared

do
33

�
↵

F
s

�0 ⌦= ↵Tshared ↵ �

l.o.F
Tshared

; /* Complexity reduction: Convolve all ↵

0 */

34↵Tshared .cap(BTFA); /* TFA assistance */
35end
36return

�
↵

F
s

�0
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Figure 7.1: Computational Effort Evaluation: Graphical comparison of network analysis
times of optNC (ULPA), and algNC without (SFA, PMOOA) and without
our improvements (TMA).

Computational Effort Reduction Access to intermediate results, i.e., the output of
the three individual functions in Algorithm 7.1, allows the TMA to implement several
efficiency improvements:

1. The aggregate cross-traffic arrival bounding on tandems shared by multiple flows
(lines 32 – 43, Tshared) naturally counteracts cross-traffic segregation. Aggregately
bounding cross-flows prevents the PSOO effect to arise and the principle to be vi-
olated by the TMA. From the computational efficiency point of view, less mutual
interference assumption means less cross-traffic arrival bounding instances. I.e., it
prevents recursively bounding cross-flows of cross-flows; all with exhaustive TMAB.
This vastly reduces the effort as our considerations concerning combinatorial ex-
plosion show (Section 6.2.4).

2. Every recursion level has its Tshared that TMAB matches tandems to. Each of the
resulting left-over service curves yields a cross-traffic arrival bound to be used in
the previous recursion level. The second efficiency improvement is to convolve all
of the alternative arrival bounds when Tshared is analyzed (lines 39 – 42).

3. The third improvement is arrival bound caching that allows for storage and retrieval
of intermediate results (lines 15 and 30) which are plentiful in the compositional
analysis. It impacts the TMA when alternative matchings share sub-tandems that
require equal cross-traffic arrival boundings.
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Devices ULP, CPLEX SFA, PMOOA, TMA
(4 threads) aggrPBOOAB (1 thread) (1 thread)

20 00:00:13 00:00:07 00:00:02 00:00:11
40 00:06:04 00:00:30 00:00:22 00:00:13
60 00:40:41 00:01:49 00:01:18 00:00:38
80 05:03:00 00:03:01 00:02:21 00:01:14
100 05:33:44 00:03:39 00:02:48 00:01:54
120 22:15:22 00:10:19 00:08:22 00:11:44
140 33:14:00 00:11:18 00:09:05 00:04:48
160 58:20:54 00:10:55 00:08:16 00:05:35
180 ⇠13 days 00:29:52 00:22:28 00:08:19
200 – 00:12:15 00:09:18 00:07:23
220 – 00:51:16 00:40:04 00:13:43
240 – 02:02:55 01:38:44 00:18:18
260 – 00:27:49 00:23:34 00:14:26
280 – 29:58:21 24:41:47 00:35:53
300 – 01:50:44 01:27:45 00:25:50
400 – 128:27:16 100:18:33 01:30:25
500 – – – 01:50:51
1000 – – – 11:15:34

Table 7.1: Computational effort evaluation: network analysis times.

Summing up, we designed an algebraic, compositional NC analysis that is strictly supe-
rior to the existing SFA as well as the PMOOA. The more comprehensive procedure of
transforming a network description to analysis-internal models allows optimal applica-
tion of algNC operations and therefore increases the accuracy of delay bounds. Moreover,
with Algorithm 7.1 we provide an efficient solution to mitigate our analysis’ potentially
high computational effort.

7.2.1 Effort Evaluation

Numerical Experiments With TMA deriving accurate delay bounds, we now evaluate
the effort involved in our new analysis in order to show that the computational efficiency
improvements incorporated into Algorithm 7.1 indeed have a crucial impact. Figure 7.1
and Table 7.1 depict the time to complete a network analysis for our set of Internet-like
topologies. Although the experimental results are subject to fluctuations due to the high
degree of randomness in network and flow creation, we can draw very clear conclusions.
Computational effort and thus the time to analyze grows (fast) with the network size.
The ULPA’s effort is vastly reduced in contrast to the LPA, yet, our evaluation reveals
that it still becomes computationally infeasible quickly. With 180 network devices, the
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Figure 7.2: Share of the DiscoDNC linear program creation on the ULPAs.

analysis execution already took ⇠ 13 days. The larger the network, the more effort is
required to trace the influence of flows on each other. Yet, among the two steps of the
ULPA, deriving the constraints for the linear program with the DiscoDNC and optimizing
it with CPLEX, the latter takes on average 81.53% of the time (cf. Figure 7.2). Faster
ULPA optimization could not be achieved with CPLEX; increasing the parallelism from
1 to 4 threads11 even yielded slightly slower overall network analysis times due to the
overhead for thread synchronization. Figure 7.1 depicts the single-threaded CPLEX
version (dotted line). As mentioned, it is slightly below the ULPA line (blank diamond)
that shows the results when running CPLEX with up to 4 threads. The ULPAs seem
to become very complex. The ULPA file sizes may hint at its complexity; we observed
CPLEX lp files of several gigabytes in size.

Analyzing large feed-forward networks in practice remains solely possible with alge-
braic, compositional NC analyses. However, Figure 7.1 and Table 7.1 also show that
the SFA with aggrPBOOAB becomes computationally infeasible at 400 network devices
(994 servers, 3976 flows; 13 days for analysis) – although the aggregate arrival bounding
reduces the effort compared to the segrPBOOAB. Our TMA scales best with the network
size thanks to the improvements of Algorithm 7.1: Aggregate bounding of cross-traffic
as well as the convolution and caching its intermediate arrival bounds. The TMA not
only outperforms the other analyses, it also seems more resilient to the random factors
of our network creation. Most notable are the changes in network analysis times when
increasing the amount of devices from 260 to 300 in a stepsize of 20 devices. The first

11Note, that among the tools employed in this evaluation, only CPLEX offers an option for parallel
execution. We chose four threads to match the number of CPU cores.
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increase only adds 18 servers and 72 flows to the network but the entanglement of flows is
considerably more complex such that the SFA run-time grows by an order of magnitude,
from ⇠ 30 minutes to ⇠ 30 hours. The next step increases the amount of servers by
130 and the flows by 520, however, this seven times larger growth of the network size
results in a large decrease of the SFA run-time, down to ⇠2 hours. The PMOOA reveals
a nearly equal behavior but the TMA, on the other hand, has only a small oscillation,
jumping from 15 minutes to 36 minutes and back to 26 minutes. The TMA scales much
better with the network size and outperforms the other analyses by several orders of
magnitude. It is now possible to analyze a GLP network with 1000 devices. The sample
network of this size had 3626 servers and 14504 flows, i.e., more flows than analyzed with
the ULPA in total in ⇠18 days, yet, all in a single network with more comprehensive de-
pendencies to backtrack and convert into an analysis equation. This makes the TMA by
far the fastest accurate algNC analysis and enables algNC to analyze large feed-forward
networks.

7.3 Network Calculus on Compact Domains

As a last efficiency improvement, we propose a solution to the problem of exploding
curve complexity in an algNC. If a (min,+)-operation is applied to pseudo-periodic input
curves f and g, then the resulting output curve h’s period grows to the least common
multiple (hyperperiod) of f and g’s periods. Hence, subsequent operations on h become
more complex. In a network analysis, this growth of complexity results in prohibitive
effort fast. Our solution to this problem is based on the following insight from the
literature [37]: The eventual performance bound derivation only requires a finite, initial
part of the curve. We propose a solution to derive more accurate upper bounds on exactly
this part of curves. Moreover, our solution achieving this is more general, allowing for
the application to SFA and PMOOA with nested interference. We evaluate our findings
with the case study of an avionics in-cabin network.

One of the main assumptions of this thesis so far was that arrivals are shaped to multi-
token-buckets, ↵ 2 FmTB, and service curves belong to the set of multi-rate-latency
curves, � 2 FmRL. These curves are widely used in practice, yet, they may already
be the first accuracy tradeoff. For instance, a different approach to characterize the
arrivals of task activations is the (p, j, t

�

)-model where p denotes the period, j the jitter
and t

�

the minimum inter-arrival time. The parameters are used to create a staircase
arrival curve ↵

p,j,t

�

(d) = min

⇣l
d+j

p

m
,

l
d

t

�

m⌘
2 F0 [81, 59]. For (strict) service curves,

the TDMA can be best described with the (k, c, b)-model where k is the slot length
available for submission, c is the TDMA cycle length this slot is embedded into, and b

is the total bandwidth [58]. This resource model results in a service curve �

k,c,b

(d) =
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⇣j
[d�c+k]+

c

k
· k + min

�
[d� c + k]

+
mod c, k

�⌘ · b. Bounding these curves with a multi-
token bucket or a multi-rate latency, respectively, constitutes an overapproximation. The
inaccurate model thus forces the NC analysis to account for data arrivals that are actually
known not to occur but are within the region bounded by ↵. Moreover, the approximated
service prevents NC from exploiting capabilities not captured in �. Therefore, accuracy
of NC bounds also depends on the accuracy of the model, i.e., even the LPA only derives
tight bounds within the given network description. The optNC analyses strictly rely
on ↵ 2 FmTB and � 2 FmRL, so does the non-nested PMOOA. The left-over service
curve of Theorem 2.3, in contrast, does not. It allows the SFA as well as the nested and
the sink-tree PMOOA to analyze networks with arrival and service curves are from F0.
However, for practical reasons this potential has not yet been exploited.

The Hyperperiod Problem The above curves, ↵

p,j,t

�

and �

k,c,b

, are piece-wise linear
(PWL) and pseudo-periodic. Due to the former, we have ↵

p,j,t

�

/2 FmTB and �

k,c,b

/2
FmRL and the latter causes the hyperperiod problem [17]. Let ↵

p,j,t

�

and �

k,c,b

be the
input curves to a (min,+)-algebraic operation, then the resulting curve is PWL and
pseudo-periodic, yet, its period is the least common multiple of the input curves’ periods.
I.e., with the provided curve models we get an output curve period of lcm(p, c). In the
algNC cross-traffic equation derived in compFFA step 1b and solved in step 1c as well
as the foi equation of step 2 (Section 3.1), the hyperperiod problem renders the analysis
computationally intractable. It can be alleviated with overapproximated curves. E.g.,
multi-token buckets and multi-rate latencies circumvent it and aligning the periodicity of
curves such that they result in a small lcm inhibits uncontrolled growth. However, these
countermeasures compromise on model accuracy and thus eventually on performance
bound accuracy as well.

The Compact Domains Solution Closure of this class of curves is shown in [17], where
the authors also show that NC operators suffer from the hyperperiod problem. Yet,
in our work, we observe that this complete characterization is rarely required when
bounding delay or backlog. The bounds are commonly found on the initial parts of curves.
Therefore, we propose to alleviate the hyperperiod problem by using NC on compact
domains, i.e., restricting curves to a bounded domain [0, K] instead of [0, +1). The sizes
of a curve’s compact domain is crucial for both of the aspects in the focus of in this thesis:
delay bound accuracy and computational effort. On the one hand, compact domains need
to be sufficiently large such that performance bounds are not negatively affected. On the
other hand, we want to decrease computational effort and thus strive for small compact
domains. We achieve a balance between these aspects by analyzing the algNC analysis
equation and then deriving a bound on the domain length ensuring that delay and backlog
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(a) Sample Sink-Tree Network.
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(b) TFA Delay. (c) Nested PMOOA Delay.

Figure 7.3: Sample network and its analysis equations for TFA and nested PMOOA.

bounds are enclosed. This initial domain bound is then used to derive the required domain
lengths of curves occurring in the entire equation. Maintaining a domain of sufficient
length for each of these curves is crucial, as they all influence the final performance
bound calculation. Any loss in precision, therefore, affects the accuracy of the derived
performance bounds. Here, we make use of the backtracking scheme of compFFA step 1a
to propagate the restrictions through the analysis equation. In the remainder of this
section, we derive the compact domain required for each operation’s input curves in
order to guarantee for the known domain requirement at its output. This makes our
approach applicable to any algNC analysis using the operations of Section 2.1.3. It is
key for significant improvements in the computational efficiency of these analyses without
sacrificing the accuracy of the NC network model.

7.3.1 Related Work

Reducing precision of curves to finite intervals has been introduced and empirically eval-
uated in the work of [80, 81]. It is, however, preliminary, as it lacks proofs for the preser-
vation of accuracy of performance bounds. [37] derived conditions for the lengths of finite
intervals and proved that they preserve accuracy of the performance bounds. However,
these proofs only hold for the input A / output A

0 relations of the greedy-processing
component (GPC) commonly used in Real-Time Calculus (RTC) [83]. Although algNC
and RTC are based on the same dioid algebra, the component-level of abstraction in the
proofs imposes crucial limitations for application in algNC. The nested PMOOA that im-
plements the PBOO and the PMOO principle does not preserve the component-structure
of the network (Figure 7.3c). The only analysis preserving it is the TFA (Figure 7.3b).
It can directly exploit the work of [37], however, TFA is known to derive inferior delay
bounds (see Sections 5.3.1 and 5.3.2).
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(a) Arrival curves ↵ and PMOOA �

l.o.f3 : steps
functions (blue, green); linear (red, black).

Steps Linear
TFA 38 42.5

PMOO 25 28
ULP – 28

(b) Delay Bounds of the Example.

Figure 7.4: Input curves and computed delay bounds.

Example 7.1. We derive the delay bounds for the small sink tree example of Figure 7.3.
All arrival curves were set to ↵

p,j,t

�

= ↵7,12,0(d) as this parameter setting results in the
curves’ first step to be as long as the following ones. Therefore, the token bucket arrival
curve �

r,b

= � 1
7 ,7

is a tight overapproximation. It passes though all starting points of each
step of ↵

p,j,t

�

. See Figure 7.4a where ↵7,12,0 and � 1
7 ,7

are depicted. Strict service curves
were set to �1,0, i.e., only the overapproximation of arrivals causes the difference in results.
Table 7.4b shows the delay bounds derived by different NC analyses for the respective
curve settings12. Even in this simple example, there is a ⇠ 10% difference between the
end-to-end delay bounds of the accurate model and the linear overapproximation. As
expected, the TFA performs worse than the PMOOA that, in turn outperforms the ULP
if executed with the more precise step functions.

7.3.2 Deriving Compact Curve Domains

In this section, we introduce the idea of compact domains for algNC by departing from
the component-wise view. Instead, we derive domains on the actual operations applied
in algNC equations.

Preliminaries First, we need to transform the left-over service curve derivation of The-
orem 2.3 to apply the (max,+)-convolution instead of the non-decreasing upper closure.
The (max,+)-convolution, denoted as ⌦, is defined as

(f⌦g) (d) = sup

0⌧d

{f(d� ⌧) + g(⌧)}

12The DiscoDNC does not support PWL, pseudo-periodic step functions. Therefore, we used the MPA
toolbox [58] in this section.
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and with it, we can compute the left-over service curve as

�

l.o.F1
s

= �

s

 ↵

F0
=

⇣
�

s

� ↵

F0

⌘
⌦�0

with �0(t) = 0:⇣⇣
�

s

� ↵

F0

⌘
⌦�0

⌘
(d) = sup

0sd

n⇣
�

s

� ↵

F0

⌘
(d� s) + �0(s)

o
= sup

0sd

n⇣
�

s

� ↵

F0

⌘
(d� s) + 0

o
= sup

0sd

n⇣
�

s

� ↵

F0

⌘
(d� s)

o
(s

:

= d� u)

= sup

0(d�u)d

n⇣
�

s

� ↵

F0

⌘
(d� (d� u))

o
= sup

0(d�u)d

n⇣
�

s

� ↵

F0

⌘
(u)

o
(reverse the supremum’s search direction)

= sup

0ud

n⇣
�

s

� ↵

F0

⌘
(u)

o
=

⇣
�

s

 ↵

F0

⌘
(d) .

Next, we define the compact domain as well as arrival and service curves compacted
to this closed interval.

Definition 7.1. Let D = [0, K] be a closed and bounded interval. If a curve  provides
a mapping  : [0, K] ! R+

1, we denote D as its compact domain.

In this setting we define the following notation:

• Arrival curves ↵ and strict service curves � of F0 operate on an unrestricted domain,
they provide a mapping R! R+

1 (Section 2.1.1).

• The corresponding curves ↵

K and �

K are restricted to the compact domains [0, K

↵

]

and [0, K

�

].

For unrestricted curves ↵ and �, we define the following approximations:

• An arrival curve ↵ is an overapproximation of an unrestricted arrival curve ↵ if
8d 2 R : ↵(d) � ↵(d).

• A service curve � is an overapproximation of an unrestricted service curve � if
8d 2 R+

1 : �(d)  �(d).
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The intuition for these overapproximations is as follows: Arrival curve ↵ allows more data
arrivals than originally specified with ↵ and in case of a service curve �, the assumed
service applied to a flow is decreased when compared to the original service curve �. Vice
versa, underapproximations ↵ and � are more optimistic than original curves and thus
can only lower bound these. They are defined analogously.

In the following, the concrete form of approximations is irrelevant as long as the above
conditions are met, e.g., one could use specific traffic patterns as proposed in [59, 8],
approximations based on single linear segments [81], or minimum-composed sets of linear
segments [49]. The only assumption we have is that, in the long term, there is enough
service available to process all inputs.

Enclosure of Backlog and Delay Bounds Deriving a performance bound, backlog or
delay, constitutes the eventual step of any NC analysis; see 7.3b and 7.3c. Working
on compact domains, we need to guarantee that these are large enough to enclose the
bounds. Otherwise, the bounds derived on the compact domain are not valid. The
following corollary is a direct consequence of Theorem 2.1. It ensures enclosure of delay
and backlog bounds.

Corollary 7.1. (Backlog and Delay Bound Enclosure) Assume the delay and backlog
bound for an unrestricted arrival curve ↵ and an unrestricted service curve � to be known.
That means we also know the values of the parameters u, s and r for which the suprema
in Theorem 2.1 are assumed. Then, we can derive the domains of the restricted curves
↵

K and �

K by

K

↵

= max (u, r) , K

�

= max (u + ⌧, r) .

Corollary 7.1’s prerequisite to know the performance bounds for ↵ and � a priori is
crucial. Clearly, both are only known a posteriori, i.e., after we carried out the analysis
with unrestricted curves. Yet, the analysis with unrestricted arrival and service curves
imposes a high analysis effort, when being performed with accurate network models. This
requirement is thus contradicting our aim to execute the analysis with less computational
effort, it constitutes a seemingly vicious circle.

We break this circle by evaluating delay and backlog bounds both with linearly under-
approximated and overapproximated arrival and service curves. Figure 7.4a provides
an example for such an arrival curve overapproximation (for the underapproximation, it
is simply shifted to the opposite side of the step function). This step can be executed
very efficiently if the chosen approximations are token buckets for arrival curves and rate
latencies for service curves. We execute an entire analysis with approximated curves in
order to obtain ↵, ↵ as well as � and � that are required to bound delay and backlog.
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More precisely, we can compute approximations for delay and backlog and use these to
bound the domains of ↵ and �:

1. With the pair ↵ and �, we compute the estimates D and B for bounding the
delay and backlog. As the involved curves ↵ and � are underapproximations of the
unrestricted curves ↵ and �, these estimates are lower bounds.

2. For the bounds D and B, we compute the largest value of d, such that for the
function values beyond d only smaller delay and backlog bounds can be derived.
This is the domain bound required to enclose D and B computed from the original
curves.

3. With the pair ↵ and �, we similarly compute the estimates D and B that denote
upper bounds on the delay and backlog that would have been derived with ↵ and
�.

We formalize the domain bound finding as follows:

Theorem 7.1. We define the following variables:

U

:

= sup

�
d � 0 : ↵(d) � �(d + D)

 
and

R

:

= sup

�
d � 0 : ↵(d)� �(d) � B

 
.

For K

↵

� max(U, R) and K

�

� max(U +D, R) the domain bounds K

↵

and K

�

are
sufficiently large such that accurate delay and backlog bounds can be computed with ↵

K

and �

K .

Proof. We defined the largest pseudo-inverse of the lower delay and backlog bound as
follows:

u

⇤
:

= sup

⇢
u � 0 : D  sup

u�u

�
inf

�
⌧ � 0 : ↵

0
(u)  �

0
(u + ⌧)

  �
,

r

⇤
:

= sup

⇢
r � 0 : B  sup

r�r

�
↵

0
(r)� �

0
(r)

 �
.

Sub- and superadditivity of curves ↵ and �, together with D  D implies that u

⇤  U .
Thus, U is a safe upper bound for guaranteeing delay bound enclosure in curve ↵.

Exploiting u

⇤  U together with the inequality D  D yields u

⇤
+D  U +D  U +D.

Note that D is a bound on ⌧ in Theorem 2.1. This implies that U +D is an upper bound
for guaranteeing delay bound enclosure in curve �.

With r

⇤ being bounded by R, we get that K

↵

= max(U, R) and K

�

= max(U+D, R)

also guarantee backlog bound enclosure. It can be found if ↵ and � are restricted to
[0, K

↵

], resp. [0, K

�

], i.e., with the curves ↵

K and �

K .
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An alternative bound on the domain size that could also be used here is given in [37].
The authors propose to use the maximum backlogged period bound bp(↵, �). However,
this leads to significantly larger domain sizes K

↵

and K

�

, especially when the utilization
is high.

Propagating Compact Domains to the Network Description’s Curves We now know
how to efficiently derive a bound on the compact domains for arrival and service involved
in bounding delay and backlog. Next, we want to use this insight to increase the com-
putational efficiency of the entire analysis. We aim to derive the compact domain for
each arrival and service curve of the network description. The smaller these domains,
the faster the analysis can be executed in comparison to the unrestricted curves because
domain restrictions prevent ever growing hyperperiods. The part growing over the com-
pact domain is simply cut off. This requires to backtrack through the analysis equation,
i.e., in our integrated scheme for cross-traffic arrival bounding (compFFA step 1) an-
other backtracking through the network. Either way, we traverse the servers and thus
the algNC operations in the opposite direction of the analysis. We can take the domain
bound required at the output of an operation, i.e., for its output curve, and derive the
domain bounds for this operation’s input curves. We start this scheme with the above
bounds guaranteeing the enclosure of delay and backlog bound.

Let � be a binary algNC-operator, i.e., � 2 {⌦,⌦,↵, min, +,�}, and let  be the
output curve of the operation. When backtracking, we know the bound for the compact
domain of output curve , K



. Moreover, from the backtracking itself equation we know
(↵� �) (d) = (d), i.e., the actual operation � and both its input curves ↵ and �

13. In
the following, we derive the conditions for (↵

K � �

K

)(d) = (d), i.e., the domain length
K

↵

and K

�

such that  remains defined on its domain K



. This directly implies that
8d 2 [0, K



] : 

K

(d) = (↵

K � �

K

)(d) = (↵ � �)(d) = (d) and that the eventually
derived performance bounds are safely enclosed.

Compact Domains for � 2 {⌦,⌦, min, +,�} Given the operation (↵��)(d) = 

K

(d)

and � 2 {⌦,⌦, min, +,�}, we can compact the domains of ↵ and � to K

↵

= K

�

= K



.
This is a direct consequence from the operator definitions; computing (d) = (↵� �)(d)

only requires to evaluate ↵ and � on [0, d] and from 

K we know that d  K



.

Compact Domains for ↵ Deriving the compact domains of the (min,+)-deconvolution
is more involved.

13For, e.g., aggregation both curves might be arrival curves. This does not impact the derivations given
in this section. Therefore, we refrain from a detailed distinction of cases for the ease of presentation.
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Theorem 7.2. (Domain bounds for min-plus deconvolution) As before, let K



be the
domain size of the output curve. We define U to be the largest input value for which
↵(U + K



) � �(U), i.e.,

U

:

= min

�
0, sup{d � 0 : ↵(d + K



)� �(d) � 0}� .

This yields that for K

↵

= U + K



, K

�

= U and 8d 2 [0, K



], we have
�
↵

K ↵ �

K

�
(d) =

(↵↵ �) (d).

Proof. For the output curve , we are only interested in function values for the compact
domain [0, K



]. By exploiting U as defined above, we obtain that

8d  K



: sup

u>U

{↵(d + u)� �(u)} < 0.

This shows that function values from ↵ and � that are beyond U + K



, resp. U , turn
irrelevant as ↵(d+u)��(u) becomes negative for these input values. Hence, the positive
supremum of ↵

K

(t + u) � �

K

(u) can only be found for input values to ↵ and � from
the compact domain [0, K

↵

:

= U + K



], resp. [0, K

�

:

= U ]. As ↵

K coincides with ↵ for
d 2 [0, K

↵

] and �

K coincides with � for d 2 [0, K

�

], the above construction yields that
for d  K



: (↵

K ↵ �

K

)(d) = (↵↵ �)(d).

As an example, we show how the domain bounding parameter U can be found when
using overapproximations from FTB for arrival curves and FRL for service curves. Ac-
cordingly, we define an overapproximation ↵(t) to an input curve ↵ as:

↵(d)  ↵(d) =

8<:max (0, N

↵

+ ⇢ · d) if ↵ > 0

0 otherwise

and let �(t) be defined analogously with an rate-latency curve such that �(t) � �(t)

holds. The slope of �(t) is denoted � and the intersection with the y-axis is N

�

. In this
setting, we bound U for a constant K



as follows:

↵(u + d)� �(u) � 0

with ↵(d)  ↵(d) and �(d) � �(d) we have
↵(u + d)� �(d) � ↵(u + d)� �(u) � 0 .

With 0  d  K



we get
↵(u + K



)� �(u) � ↵(u + d)� �(d) .

The definitions of the linear bounding functions yield:

N

↵

+ ⇢(u + K



)� (N

�

+ �u) � 0
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thus u  N

�

�N

↵

+K



·⇢
⇢��

and for N

�

< N

↵

and ⇢ < � this is equal tou  N

↵

�N

�

+K



·⇢
��⇢

such that for U =

N

↵

�N

�

+K



·⇢
��⇢

we get u  U .

For d  K


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Figure 7.5: Topology of the studied distributed heterogeneous communication system.

7.3.3 Accuracy and Effort Evaluation

We illustrate the impact of NC on compact domains with an avionics case study. We
analyze a so-called distributed heterogeneous communication system (HCS) by EADS
Innovation Works14, an in-cabin network architecture alternative to AFDX. A detailed
description of this network as well as a RTC model that we use for algNC analysis can
be found in [81]. Figure 7.5 depicts its topology and Figure 7.6 provides the details

14Now Airbus Group Innovations.
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7 Efficiency of Algebraic Network Calculus Analysis

(a) Backbone model shown for topline 3.
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(b) Model of an end device daisy-chain of topline 1.

Figure 7.6: Case study network model

of its NC model: two abstraction levels, the topline and the device daisy-chain. The
network consists of one central server, 16 network access controllers (NAC), 232 end-
devices (DEV) such as speakers, buttons, etc. as well as 6 video cameras for either high
quality (HQ) or low quality (LQ) video streaming. Among the network traffic, time
synchronization messages of the IEEE Precision Time Protocol (PTP) has the highest
real-time demands as it, e.g., synchronizes local times at speakers which is crucial to
prevent distorted playback of audio messages. In our case study, we will focus on the
PTP traffic from the end-devices to the server. The network for this analysis is a sink
tree, i.e., we can apply the sink-tree PMOOA of Section 4.3 and thus we can compact
the curve domains.

For the experiments, we used the MPA-toolbox [58], adapted to work on compact
domains according to the results from Section 7.3.2. The experiments were carried out
with Matlab R2013a running on a 2.2GHz Intel Core i7 with 8GB DRAM and MacOS
10.7.5. Table 7.2 presents the run-times when using the MPA standard implementation of
piece-wise linear (PWL), pseudo-periodic curves, overapproximated curves (FTB, FRL)
and when using the compact domains for the analysis. The second column presents
the rounded computation time for one analysis run. Column three reports the worst-
case delay of a PTP message sent from an end-device of NAC 4 in topline 1 to the
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7.3 Network Calculus on Compact Domains

Curve Model Analysis Time PTP Delay Bound
PWL, pseudo-periodic curves 282.33s 6.1250ms

Approximated curves 0.36s 17.2979ms
Compact domains 1.13s 6.1250ms

Table 7.2: PMOOA run-time and delay bounds for PTP messages sent to the server.

server. Table 7.2 illustrates that the use of compact domains drastically decreases the
computation run-time, getting very close to the linear overapproximation, while retaining
the delay bound accuracy of the precise modeling approach using PWL, pseudo-periodic
curves.
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8 The New State of the Art in Network Calculus

We conclude the presentation of contributions made in this thesis with a comparison
of the previous state of the art in Network Calculus (NC) and our new algebraic NC
(algNC) with optimization principles. The former is demarcated by the optimization-
based NC analysis (optNC) applicable to feed-forward networks, i.e., the Unique Linear
Programming Analysis (ULPA), and the algNC analysis from the same literature, the
Separate Flow Analysis (SFA) that applies a segregate PBOO cross-traffic arrival bound-
ing (segrPBOOAB) [10].

The eventual new state of the art contributed by this thesis is the Tandem Matching
Analysis (TMA) for the derivation of the analyzed foi’s delay bound, accompanied by
the Tandem Matching Arrival Bounding (TMAB) with TFA-assistance. It belongs to the
newly established category of compositional, algebraic analyses that implement optimiza-
tion principles. With the burstiness reduction aspect added to the TMAB, we conclude
the integration of optimization principles, i.e., extension of the search space for of algNC.
It can improve intermediate arrival bounds derived by the TMAB as the matching of mul-
tiple sub-tandems onto another tandem introduces the explicit derivation of burstiness –
similar to the aggrPBOOAB. Executing this TFA assistance with the TMAB itself ex-
tends the search space of our analysis into the direction of larger cross-traffic aggregates.
This method counteracts the problem all compositional algNC analyses and the ULPA
share: Violation of the newly established PSOO principle. Therefore, the presented delay
bound benchmarks evaluate the accuracy gap between global optimization applied upon
the NC network description and the composition of tandem-local, algNC analyses – the
so-called composition penalty (Section 3.2). We express this gap by the improvement
factor [12]: a value of 1.0 denotes parity, a value in (0, 1) indicates a worsened network
delay bound and values > 1.0 measure the improvement.

In this thesis, we also shifted the attention to the computational effort of NC, to be
precise, to the user-facing metric of experienced analysis computation time. We saw that
this is the very reason to depart from the only analysis that can theoretically derive
tight bounds for the NC network of a feed-forward network15. In order to provide a
self-contained comparison, let us briefly repeat the common analysis setting assumed
to obtain the following results. They are especially crucial for the presented analysis
run-times.

For topology generation, we employed existing tool support. The result is a device
graph that we load into the Disco Deterministic Network Calculator (DiscoDNC, [7]) for
further processing: First, the device graph is transformed into a server graph. Next, we

15If strict service curves are decomposable into the maximum of a set of rate latencies and arrival curves
can be decomposed into the minimum of token buckets
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8 The New State of the Art in Network Calculus

applied turn prohibition [34, 79] to enforce the feed-forward property by removing links
from the server graph. The device graph and its corresponding turn-prohibited server
graph are used to route flows: We randomly choose source and sink devices in the device
graph and then route the flow defined by it via the shortest path in the server graph.
Note, that the server graph’s feed-forward property prevents cyclic dependencies between
flows and that none of the sink device’s servers is crossed. These steps to create a network
for analysis, i.e., a server graph with flows, are common to all analyses. Therefore, we do
not measure the time they take in our reported computation times. These times comprise
the following parts that the respective analyses take to calculate results:

• For algNC analyses, we measure the entire time to execute all steps of the composi-
tional feed-forward analysis with the DiscoDNC – our integrated cross-traffic arrival
bounding that backtracks dependencies through the network, transforms them into
an algebraic equation and solves it. Then, the cross-traffic arrival bounds are used
to derive the foi’s delay bound.

• For the optimization-based ULPA, we use the DiscoDNC for the backtracking of
dependencies and the conversion into a linear program, formatted to be either
solved with the open-source LpSolve or IBM CPLEX.

Our experiments were carried out on identical servers, each equipped with an Intel Xeon
E5420 CPU with four physical cores and 12GB of RAM, running Ubuntu 14.04 LTS.
The DiscoDNC is a Java-based library that requires a Java Runtime Environment. We
employed the DiscoDNC version 2.2.3 and Oracle Java SE Runtime Environment 8. Fur-
ther, we used LpSolve version 5.5.2.0 and IBM CPLEX version 12.6.2. Note, that the
DiscoDNC was programmed to run single-threaded only. LpSolve exhibits the same be-
havior whereas CPLEX can be configured to run with up to a specified number of threads.
This does, however, introduce thread synchronization overhead. In multi-threaded mode,
CPLEX offers two different types of thread synchronization. As we are concerned with
the deterministic analysis of potentially safety-critical real-time systems, we chose the
deterministic parallel search mode over the opportunistic one.

In this setting, we obtained the following benchmark results between the previous state
of the art in NC and the new state of the art contributed by this thesis.

8.1 Numerical Experiments I: Erdős-Rényi Networks

In our first numerical experiments, we randomly create Erdős-Rényi device graphs fol-
lowing the G (n, p)-model with p = 0.1. We evaluate the impact of improved arrival
bounding in flat and hierarchical16 network topologies with n = 32 devices, resulting in
16Hierarchy retrofitted by the aSHIIP tool.
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8.1 Numerical Experiments I: Erdős-Rényi Networks
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(b) Hierarchical network.

Figure 8.1: Delay bounds and improvement factors in Erdős-Rényi networks of size 32.

114 servers (flat) as well as 73 servers (hierarchical). The amount of flows is continuously
increased in steps of 50. With this approach, bottlenecks build up randomly in the flat
network whereas the hierarchical network possesses a set of predefined bottleneck links –
those links connecting the levels of the hierarchy. Each flow has an unit sized arrival curve
↵ = �1,1. The network capacity in our experiments were 1200 flows (flat) and 900 flows
(hierarchical). A further increase of 50 flows resulted in flows whose delay could not be
bounded. We evaluate the network delay bound, i.e., the maximum delay bound among
all analyzed flows. Each flow’s delay is bounded with the three analyses mentioned above:
SFA with segrPBOOAB, TMA with TFA-assisted TMAB and ULPA. Delay bounds are
decreasing in this order. Therefore, we defined two improvement factors. The first one
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8 The New State of the Art in Network Calculus

illustrates the contribution made in this thesis, relative to the previous algebraic anal-
ysis. It is defined by D(SFA with segrPBOOAB)

D(TMA with TFA-assisted TMAB) . The second improvement factor is
defined from the ULPA’s point of view and compares its delay bounds with the TMA
delay bounds, i.e., we derive D(TMA with TFA-assistance)

D(ULPA) .
Figure 8.1 depicts the results of numerical experiments with Erdős-Rényi networks.

All delay bounds show an asymptotic growth when the network’s capacity is approached.
However, the SFA with segrPBOOAB is considerably outperformed by the TMA and the
ULPA. In the flat ER network of Figure 8.1a, we improved algNC delay bounds with
the TMA by a factor of at least 1.3 and at most 3.6. In contrast, the improvement
from TMA to ULPA always resided between 1.026 and 1.435, i.e., the TMA brought
algNC delay bounds close to those of optNC. In the hierarchical ER network, results
are similar, yet, more pronounced due to the set of predefined bottleneck links. In this
network (Figure 8.1b), the improvement factor that TMA achieves over SFA is always
above 2.0, it even exceeds 5.0 for many utilizations and eventually reaches a factor of
23. Departing from algNC and applying the ULPA of optNC results in a nearly inverted
situation. Compared to the TMA, improvements of a factor larger than 2.0 can only be
observed once (factor 2.084). For most of the utilizations we evaluated, the improvement
factor even stays below 1.5. These observations reveal that the TMA we contribute in
this thesis can derive delay bounds within a small deviation from the ULPA bounds. We
will further investigate this aspect in the following.

8.2 Numerical Experiments II: General Linear Preference Networks

For our second set of numerical experiments, we decided to investigate large networks
and depart from the previous ER topology generation. Instead, we created Internet-like
topologies the with the aSHIIP tool, according to the general linear preference (GLP)
model [22]. We used the default GLP parameter setting m0 = 20, m = 1, p = 0.4695,
�GLP = 0.6447 to generate these device graphs, independently for each network size.
Traffic was created with a fixed server-to-flow ratio of 1:4 to generate load in all networks.
As before, flows are routed between randomly selected devices and their arrival curves
are uniformly shaped to token buckets with rate 5Mbps and bucket size 5Mb. Table 8.2c
shows the amount of devices, servers and flows for all of the GLP networks we evaluate in
this thesis. Service curves resemble full-duplex links with a transmission rate of 10Gbps.

Delay Bound Accuracy Assessment of delay bound accuracy is performed with respect
to the most accurate results that are computationally feasible to derive with NC. We
analyze networks of sizes 20 to 180 with the ULPA, i.e., our evaluation is based on
the analysis of 12376 flows across 9 independently created GLP networks of different
sizes. For these flows, Figure 8.2a illustrates the reduction of delay bounds achieved by
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Figure 8.2: Delay Bounds in Internet-like GLP networks.
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8 The New State of the Art in Network Calculus

the ULPA over the two algebraic analyses, SFA with segrPBOOAB and the TMA with
TFA-assistance. This measure is similar to the improvement factor, yet, it is depicted
on a percentage scale instead of (0,1). We show the density of reduction to provide an
unified depiction of the relative delay bound performance across different networks.

The SFA variant of [10] can be considerably improved by the optimization-based ULPA.
We observe, that only 17.32% of delay bounds are close to the ULPA ones, that is able
to reduce them by at most 5%. The mean reduction is at 15.63% but more than 8.68%
of delay bounds can even be improved by at least 30%. The maximum is as large as 73%.
This high variation is caused by the different network sizes as well as the randomness in
their creation. Flow entanglements and therefore the backtracking of dependencies can
become a significant factor for the SFA, especially in this variant that was proposed in
the literature as it enforces cross-flow segregation during arrival bounding. These insights
also explain the inferior performance of the SFA with respect to the network delay bound.
The most important observations in Figure 8.2b are:

• The absolute network delay bounds are smaller than in Figure 8.1, i.e., the network
is operating at a low network utilizations, especially at large sizes.

• Between 20 and 100 devices, the network delay pattern of the SFA and the ULPA
crucially differ. Whereas the ULPA shows a nearly linear growth with the network
size, the SFA oscillates. It would rank these five networks differently than the
ULPA. The cause for this behavior is the higher network utilization in the small
networks.

• With smaller utilizations (networks � 120 devices), the SFA can rank networks
equal to the ULPA but its delay bounds remain worse. It may be required to
analyze the networks ranked best by SFA with a more accurate analysis in order
to validate against strict deadlines.

The TMA we contribute in this thesis performs well compared to the ULPA. It is depicted
mostly on the left side of Figure 8.2a where we adapted the step size accordingly. Except
for a single outlier at 7.57%, none of the delay bounds could have been improved by more
than 4.2% by the ULPA. In fact, the mean is at 1.142%, the median is at 1.146% and
the 99th quantile at 2.48%. Overall, the TMA shows that, in contrast to previous belief,
the algNC branch is able to derive competitively accurate delay bounds. This conclusion
is confirmed by the evaluation of network delay bounds depicted in Figure 8.2b. The
TMA results are a close match to the ULPA ones. Neither the second nor the third
observations we made concerning the SFA is valid for the TMA. It is not significantly
impacted by network size or utilization and thus ranks the different GLP networks equal
to the ULPA – a result that agrees with the flow delay evaluation in ER networks of
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8.2 Numerical Experiments II: General Linear Preference Networks

Section 6.2.3. They show that, for individual flows, the TMA derives delay bounds that
are within a bounded deviation from the ULPA.

In our numerical accuracy evaluations for different network types, sizes and utilizations,
we demonstrated that our new algNC analysis, the TMA with TFA-assisted TMAB, de-
rives delay bounds that are highly competitive with those of the ULPA, the representative
of NC’s optimization branch. Next, we turn to the computational effort required to ex-
ecute these alternatives.

Computational Effort The computational effort required to execute the NC analyses
that define the state of the art in the literature and the newly proposed analysis are
depicted in Figure 8.3. Ranking the three major alternatives with respect to this metric
yields a very different result than the accuracy evaluation. The ULPA represents the
optimization branch of NC as it is the most efficient analysis of it. However, relative to
the algNC analyses, it does not perform competitively. At a network size of 180 devices,
the ULPA already took ⇠ 13 days. The larger the network, the more effort is required
to trace the influence of flows on each other, yet, remember that the fixed server to flow
ratio of 1:4 seemingly resulted in small utilizations in larger networks (the SFA’s network
delay bound did not oscillate compared to the other analyses). With higher utilizations
and thus a more flows in networks exceeding 100 devices, tracking their entanglement
and optimizing the assumed impact on each other becomes more complex, rendering the
ULPA computationally infeasible earlier. Therefore, we rely on this small server to flow
ratio in order to provide computation run-times for our investigation.

The SFA with segrPBOOAB performs better, yet, it also reaches its limit soon after
the ULPA. Figure 8.3 shows that the SFA becomes computationally infeasible at 280

network devices. Analyzing the 3976 flows in this network with 994 servers takes more
than 14 days17. The major reason for this behavior is its worst-case segregation of
cross-flows. Massive computational effort is required to bound all cross-flows’ mutual
interference. Moreover, the SFA network analysis times oscillate heavily, again. The two
independently created networks with 200 and 220 devices do not differ much in terms
of their respective server graphs’ size; the latter is just 4 servers and 16 flows larger.
Analyzing it with the SFA takes ⇠10.5 hours, i.e., 4

2
3 as much time. Significantly faster

analysis of larger networks is also possible: See the 260 devices network that is analyzed
in ⇠4.5 hours albeit consisting of 30% more flows.

Our TMA does not suffer from these problems thanks to the conceptual improvement
17Note, that we did not facilitate the early termination of backtracking of cross-flows by employing

arrival bound caching. In [4], results of the cached version of this SFA variant can be found. They
are nearly identical to the shown results. Segregate arrival bounding does not seem to benefit from
caching. With it, the analysis of the 280 devices network still takes ⇠13 days instead of ⇠14 days.
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Devices ULPA, CPLEX SFA, segrPBOOAB TMA, TFA-ass.
(max 4 threads) (1 thread) (1 thread)

20 00:00:13 00:01:16 00:00:13
40 00:06:04 00:03:39 00:00:16
60 00:40:41 00:25:01 00:00:48
80 05:03:00 00:30:42 00:01:34
100 05:33:44 00:44:36 00:02:31
120 22:15:22 01:53:31 00:03:41
140 33:14:00 02:22:59 00:05:58
160 58:20:54 01:48:05 00:07:05
180 ⇠13 days 05:11:18 00:10:27
200 – 02:16:38 00:10:13
220 – 11:04:04 00:18:23
240 – 19:41:46 00:23:59
260 – 04:28:52 00:19:22
280 – ⇠14 days 00:45:32
300 – – 00:34:10
400 – – 01:47:39
500 – – 02:14:31
1000 – – 13:45:52

(b)

Figure 8.3: Computational Effort in Internet-like GLP networks.
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8.3 Case Study: Avionics Full-Duplex Ethernet

of this thesis: aggregate bounding of cross-traffic as well as the convolution and caching
of its intermediate arrival bounds. Implementing them, we achieve more resilience to
changing factors of the analysis, e.g., where the SFA effort increased by a factor 4

2
3 , the

TMA only takes 1.8 times as long. The analysis scales much better than the others, such
that it is possible to accurately analyze networks that could not be analyzed with NC
before. For example, the largest network of our evaluation has 1000 devices. Bounding
the delay of all its 14504 flows with the TMA was faster than the ULPA analysis of the
network with 120 devices or the SFA in 240 or 280 devices networks.

Last, we also provide the impact of the efficiency improvements on other algNC analy-
ses. Namely, the SFA and the PMOOA with aggrAB. Their arrival bounding implements
a different optimization principle that results in a smaller search space than the TMA,
i.e., they potentially derive less accurate delay bounds. However, the smaller search space
also allows them to derive delay bounds faster than the TMA. Growing the network size
even larger, a tradeoff might be necessary to obtain delay bounds at all; the TMA effort
grows to 13

3
4 hours in the 1000 devices network and sacrificing the TFA-assistance only

decreases this time to 11

1
4 hours (see Table 7.1). The results shown on the far right of

Figure 8.3a suggest that compromising accuracy for less computational effort should be
done incrementally:

1. From TMA to SFA and PMOOA (they have nearly identical analysis times),

2. from SFA and PMOOA to only executing the PMOOA with aggrAB that is usually
more accurate than SFA and then

3. finally to a less sophisticated cross-traffic arrival bounding like aggrPBOOAB, but
not to segrPBOOAB.

The exact run-time of a NC analysis depends on many factors and predicting it is still an
open research topic. However, relative comparisons reveal significant differences; between
optNC and algNC and among the algNC analyses. Analyzing large feed-forward networks
in practice remains solely possible with algebraic, compositional NC.

8.3 Case Study: Avionics Full-Duplex Ethernet

We conclude with a final evaluation of an AFDX topology. It is dimensioned similar
to backbone network in the Airbus A380 aircraft. Device graph creation followed the
algorithm presented in [20] in order to result in a representative AFDX topology. It has
a dense core of 16 switches that connect 125 end-systems. All links resemble full-duplex
Ethernet connections with a speed of 100Mbps. For the transmission of data, the current
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Figure 8.4: Case Study Results for an AFDX Topology.

AFDX specification defines so-called virtual links (VLs) that connect a single source end-
system to multiple sink end-systems (in the device graph). They reserve a fixed amount
of resources on the path between these systems that is, in turn, used to serve flows. For
NC, VLs correspond to multicast flows that reserve large resource shares. This coarse
granularity introduces problems to the network [55]. Moreover, NC does not provide a
specialized analysis for multicast flows that implements the PBOO principle or even the
PMOO principle – both are essential for accurate performance bounds. Therefore, we skip
the VL abstraction layer in our evaluation. Consistently with our previous evaluations,
we focus on flow delays in order to evaluate the impact of our findings on the immutable
AFDX topology. We added 500 flows with arrival curve ↵ = �1,1 to this topology for a
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flow delay evaluation.
Figure 8.4a depicts the individual flow delays. Our observations from the ER and

GLP networks also apply to the AFDX topology. Delay bounds of the TMA with TFA-
assistance are in very close range of the optimization-based results of the ULPA. The
SFA with segrPBOOAB, on the other hand, performs worse. Its delay bounds show a
gap to the other analyses that tends to grow on average. Additionally, the SFA delay
bounds oscillate compared to the ULPA and TMA bounds, such that this analysis is
not suitable to confidently rank AFDX design alternatives regarding their network delay
bounds. The SFA would also rank flows vastly different regarding their individual delay
bound, i.e., could result in a falsely assumed delay bound violation for some flows.

From the perspective of the computed delay bounds, TMA and ULPA both seem
suited for a design space exploration. We next turn to the effort aspect of analysis effort.
Figure 8.4b shows the time it takes to analyze each flow in the network. This per-flow
effort can differ more than four orders of magnitude within the SFA and within the
ULPA. For the same set of analyses, the TMA per-flow computation times only differ
two orders of magnitude. This fact may seem surprising at first as the AFDX topology
has such a small network diameter. However, the reason can be found in our efficiency
improvements: The backtrackings of SFA and ULPA terminate at the sources of flows
whereas the TMA benefits from caching. Therefore, the TMA’s effort stays within a
much smaller range. In absolute terms, the TMA outperforms ULPA and SFA run times
by multiple orders of magnitude – an advantage that can become decisive in large design
space explorations.
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9 Conclusion

In Section 8, we benchmarked to the previous state of the art in NC and the new one
defined by the contributions of this thesis to provide a conclusive evaluation. In this
section, we provide some concluding remarks on the contributions and an outlook to
future research directions.

9.1 Concluding Remarks

This thesis contributes a fast and accurate NC solution for the derivation of end-to-end
delay bounds in general feed-forward networks. Moreover, it can be easily employed to
derive the backlog bound of servers. We followed a compositional approach which turned
out key for the computational efficiency and, in contrast to previous belief, did not lead
to noncompetitive results.

OptNC’s source for tightness that has not been exploited by algNC before seems to be
its attempt to attain a global view on the network. The optNC analysis that makes use of
the maximum amount of global knowledge to derive its constraints, the LPA, was already
shown to be NP-hard with no algorithm known to solve the underlying problem efficiently.
Reducing the amount of constraints leads to the more feasible, yet not tight, approach
of the ULPA. We showed that the ULPA relies on worst-case assumptions that are
similar in impact to those of algNC. Moreover, we showed that the ULPA is nonetheless
still more computationally demanding than the analyses of algNC. Therefore, this thesis
takes one step back in order to take two steps forward. AlgNC follows a divide-and-
conquer scheme that computes global performance bounds in a feed-forward network by
composing tandem-local results. Whereas the “conquer”-part has been investigated in the
literature, leading to different tandem analysis principles as well as analyses implementing
them, the “divide”-aspect has not seen much treatment. By shifting our focus to this
part of a compositional feed-forward analysis, we could show that considerable accuracy
improvements are indeed possible. The Tandem Matching Analysis (TMA) contributed
in this thesis is greatly influenced by the insights gained from optNC. With a more
comprehensive decomposition of the feed-forward network into individual tandems to
analyze, we attain a vast increase of the search space for the analysis – resulting in a
significant gain in delay bound accuracy. The delay bounds we derive are very competitive
to those obtained with ULPA.

The second step forward we take is w.r.t. computational efficiency of NC. We provide
evidence that optNC’s ULPA is computationally infeasible even for moderate network
sizes. In contrast, the TMA can be improved such that it scales to network sizes previ-
ously out of reach for a NC analysis – a contribution we demonstrate with the open-source
tool that was developed during work on this thesis, the DiscoDNC [7]. Building on the
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fact that all tandem matchings of the TMA deliver valid bounds, we can actually scale
algNC to much larger networks than presented here by trading off the TMA’s accuracy.

Although we restricted our presentation to arbitrary multiplexing analysis, the frame-
work defined by the TMA can be combined with other NC tandem analyses. For instance,
the algebraic FIFO tandem analyses of [53, 3] and the optimization-based ones of [74]
seem suitable. Integrated into the TMA procedure, they can benefit from improved
accuracy and the computational effort reduction that we contribute in this thesis.

9.2 Future Research Directions

One direction of future work is the investigation of real hybrid analyses. Whereas the
TMA incorporates optimization principles, both branches of NC can be interfaced as well.
For instance, algebraic cross-traffic arrival bounding such as TMAB can virtually shrink
the network to be analyzed by the (U)LPA. The opposite direction is not yet possible as
neither the LPA nor the ULPA derives an output bound. This prevents the integration of
these analyses into the TMA framework. In contrast, the seminal optimization analysis
of [74] derives a left-over service curve and thus can bound all three performance char-
acteristics: Delay, backlog and output. It can be embedded into the TMA framework
to replace the PBOO and the PMOO procedures on each tandem. I.e., we can replace
the two competing analyses that constitute the potential combinatorial explosion with a
single one. While this enables for better evaluation of the composition penalty in theory,
the optimization allowing for it was shown to suffer from computational infeasibility as
well [45, 46]. Nonetheless, in practice it could be started alongside the algebraic tandem
analyses, yet, equipped with a time-out mechanism that enforces termination soon after
the algNC analyses computed their results on the respective tandem. This scheme re-
quires the employed tool to spread the computation for a specific tandem over multiple
threads; tool support is another direction of future research.

Besides the multi-threaded compositional analysis, a promising research direction for
tool support is the applied caching strategy. In this thesis, we only cache arrival bounds.
For the computation of a left-over service curve, all the required arrival bounds need
to be identified, requested from the cache, aggregated and subtracted from the original
service curve. Extending the cache to also hold left-over service curves circumvents this
effort, yet, it also increases the memory demand – a potential bottleneck not affecting
the TMA paired with the current caching scheme.

Last, let us depict a potential research direction for optNC. The LPA is computation-
ally infeasible and thus it cannot be used to exactly evaluate how close the accurate
analyses, either algNC or optNC, are to the tight delay bound that can be computed
from a given NC network model. What can be done instead, is deriving a lower bound on
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the delay in order to demarcate the region where the tight bound must reside – similar to
the lower bounds used for compact domain computation. A narrow region simply means
that the derived upper delay bound can be assumed close to the tight one, i.e., accurate
in absolute terms. Remember, that the LPA approaches the tight delay bound from the
region of invalid results – each of the individual LPs it derives computes a lower bound
on the delay. Extension of the partial order of backlogged periods to a single compatible
total order should thus, in principle, allow for the derivation of an optimization-based
lower bound on the delay. However, a total order consists of more relations than the par-
tial order, i.e., the derived linear program will possess more constraints and will therefore
most probably require more computational effort to solve. A combination of simulation,
best-case or average-case assumptions and optimization might, nonetheless, lead to a
feasible approach to lower bounds on the delay. Although this thesis provides an algNC
analysis that is fast and accurate, optNC can still play a role in the future of Network
Calculus.
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Nomenclature

↵ Arrival curve
↵

0 Output arrival curve
↵

f , ↵

F Arrival curve of flow f , flow aggregate F
↵

f

s

, ↵

F
s

Arrival bound of flow f , flow aggregate F at server s

↵

s

Abbreviation for ↵

F (s)
s

� Service curve
�

l.o.f
s

, �

l.o.F
s

Left-over service curves for flow f , flow aggregate F at server s

�

R,T

Rate-latency curve with rate R and latency T

�

s

, �T Service curve of server s, tandem T
�

r,b

Token-bucket curve with rate r and bucket size b

hs
x

, . . . , s

y

i Tandem of consecutive servers s

x

to s

y

F, G Flow aggregates, denoted by blackboard bold letters
F0 Set of non-negative, wide-sense increasing functions that pass through

the origin
FmRL Set of multi-rate-latency curves, a subset of F0

FmTB Set of multi-token-bucket curves, a subset of F0

FRL Set of rate-latency curves, a subset of FmRL

FTB Set of token-bucket curves, a subset of FmTB

T Tandem of servers
 Non-decreasing upper closure, a binary operator
↵ (min,+)-deconvolution, a binary operator, also used for output bounding
⌦ (min,+)-convolution, a binary operator
↵ Upper bound on arrival curve ↵

� Upper bound on service curve �

⌦ (max,+)-convolution, a binary operator
B Upper bound on the backlog bound
D Upper bound on the delay bound
↵ Lower bound on arrival curve ↵

� Lower bound on service curve �

B Lower bound on the backlog bound
D Lower bound on the delay bound
B Backlog bound
D Delay bound
F (s) Set of flows at server s

Fsrc(s) Set of flows entering the network at server s

L(f, s) Location (index) of server s on f ’s path P (f)
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P (f, i) Server at location (index) i on f ’s path P (f)

up(s) Set of servers 1 hop upstream of s

x(f), x(F) Cross-traffic of flow f , flow aggregate F
AFDX Avionics Full-Duplex Switched Ethernet
aggrAB Aggregate arrival bounding
aggrPBOOAB Aggregate PBOO arrival bounding
aggrPMOOAB Aggregate PMOO arrival bounding
algNC Algebraic Network Calculus
CLPEX A commercial linear program solver developed by IBM
compFFA Compositional Feed-Forward Analysis
DiscoDNC Disco Deterministic Network Calculator
EADS European Aeronautic Defence and Space company, now Airbus Group
ER Erdős-Rényi graph
FIFO First In, First Out multiplexing
foi The flow of interest analyzed by the analysis
GLP General Linear Preference topology generation
HCS Heterogeneous Communication System
LP Linear Program
LPA Linear Programming Analysis
LpSolve An open-source linear program solver
LUDB Least Upper Delay Bound
NC Network Calculus
Network A graph connecting servers and routing flows
optNC Optimization-based Network Calculus
PBOO Pay Bursts Only Once principle
PMOO Pay Multiplexing Only Once principle
PMOOA Pay Multiplexing Only Once Analysis
PSOO Pay Segregation Only Once principle
PWL Piecewise linear
segrPBOOAB Segregated PBOO arrival bounding
SFA Separate Flow Analysis
SP Strict priority multiplexing
TDMA Time Division Multiple Access
TFA Total Flow Analysis
TM Tandem Matching
TMA Tandem Matching Analysis
TMAB Tandem Matching Arrival Bounding
ULPA Unique Linear Programming Analysis
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