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Abstract—Software defined radios can be implemented on
general purpose processors (CPUs), e.g. based on a PC. A
processor offers high flexibility: It can not only be used to
process the data samples, but also to control receiver functions,
display a waterfall or run demodulation software. However,
processors can only handle signals of limited bandwidth due
to their comparatively low processing speed. For signals of
high bandwidth the SDR algorithms have to be implemented
as custom designed digital circuits on an FPGA chip. An FPGA
provides a very high processing speed, but also lacks flexibility
and user interfaces. Recently the FPGA manufacturer Xilinx has
introduced a hybrid system on chip called Zynq, that combines
both approaches. It features a dual ARM Cortex-A9 processor
and an FPGA, that offer the flexibility of a processor with the
processing speed of an FPGA on a single chip. The Zynq is
therefore very interesting for use in SDRs. In this paper the
application of the Zynq and its evaluation board (Zedboard) will
be discussed. As an example, a direct sampling receiver has been
implemented on the Zedboard using a high-speed 16 bit ADC
with 250 Msps.

I. HARDWARE PLATFORMS FOR SDR

Software defined radios (SDR) rely on software and digital
signal processing to receive radio signals. SDR algorithms
always run on a hardware platform: on a processor, such as a
PC or microprocessor, or implemented as a digital circuit in
a microchip, like an FPGA. These hardware platforms differ
in processing speed, power consumption, size, flexibility and
ease of design.

A. Commonly used Hardware

Today, very different platforms are available on the market,
of which some examples are shown in Table I. A Raspberry
PI with a Funcube Dongle SDR (FCD) with reduced sampling
rate of 48 kHz is a small embedded portable device, but
with very limited processing speed. An Intel Core i7 laptop
processor has increased speed and can deal with a RTL DVB
stick with 2 MHz bandwidth, but also requires more power
and is large in size. SDRs with larger bandwidths such as the
bladeRF (28 MHz) or even a direct sampling receiver like the
Perseus SDR (40 MHz) require much more processing speed,
that cannot be provided by a processor. In such a case FPGAs
are used for high speed processing of the digitized RF signals.

B. Requirements

The required processing speed of SDR hardware is not
only, but heavily, dependent on the signal bandwidth. The
larger the bandwidth, and therefore the sampling rate is,
the more data has to be processed. High performance direct

TABLE L EXAMPLES OF DIFFERENT SDR PLATFORMS
SDR Bandwidth  Processing Hardware
Speed
Raspberry PI + Funcube Dongle ~ 48kHz low ARM Processor
Laptop + RTL Stick 2MHz medium Intel Processor
BladeRF 28MHz high FPGA + ARM
Perseus SDR 40MHz high FPGA + puC

Fig. 1. A simple SDR receiver: Raspberry Pi with DVB RTL stick for low
bandwidth processing

sampling receivers often sample the analog signal with a speed
of more than 50 Msps. This creates a huge requirement for
processing speed - a fact that will become more apparent as
direct sampling, i.e. sampling analog signals directly after the
antenna, becomes common in SDR.

On the other hand flexibility is an issue in modern SDR
receivers. One example is demodulation. Numerous digital
modes have been developed by radio amateurs and also in
commercial applications switching between modulation type,
error correction and source coding is required.

C. Processor vs FPGA

A processor is an electronic circuit, that executes software.
This execution is done in a serial way, instruction by instruc-
tion, and is therefore inherently slow and not suitable for large
bandwidth processing in high end SDRs. An exception are
multi-core processors, that exhibit parallelism to some extend.
Especially in graphics cards powerful multi-core processors
(GPUs) can be found, that are well-suited for signal processing.
However, many processors have a high power consumption
and in case of a PC (including graphics cards) they require
large space. The advantage of the processor is, that it is very
flexible, because the tasks it fulfils can be changed easily by
executing a different software. Moreover, it is often possible to
run an operating system with the advantage of easy access to
user interfaces like a monitor, keyboard, mouse and providing
access to hard disks for storage or an internet connection. In
SDR applications, processors are very good for:



e demodulation of different modes

e  providing a graphical user interface (GUI)
e  controlling the receiver function

e recording and storing signals

e  providing internet access

FPGAs are fundamentally different from processors. An
FPGA is a microchip, that contains a large number of elements,
that can be used to form a digital circuit, including adders, mul-
tipliers, multiplexers, registers, etc. For every algorithm, that is
to be “executed” on the FPGA, a specialized digital circuit has
to be designed (hardware implementation) and loaded onto the
FPGA (configuration). In principle this configuration consists
of the wiring between the FPGA elements to form the desired
digital circuit. The FPGA can be configured over and over
again, called reconfiguration, such that the circuit can later be
modified to remove bugs or add extensions. This makes the
FPGA a comparably cheap microchip, that can be designed
by everyone having some knowledge in digital design.

The big advantage of FPGAs is that they can process data
highly parallel. Therefore they are very fast and can easily
process up to several hundred Msps of data. The achievable
speed-ups over processors is often 100x - 1000x, even though
their clock frequency is often much slower (in the order of
some hundred MHz). Since the circuit in an FPGA is customly
designed, the bit widths of data, memories and arithmetic units
can be chosen application specific, which is very efficient. If,
e.g., a bit width of 6 bits is considered sufficient for a data, the
processing units are laid out to use only these 6 bits, whereas
in a processor the bit width is more or less restricted to a
predefined number (e.g. 24, 32 or 64 bits).

Additionally FPGAs also have a low power consumption
compared to (multi-core) processor systems with similar pro-
cessing speed, such as GPUs graphic cards. The drawback of
FPGA:s is that the hardware implementation, i.e. circuit design,
of algorithms requires good knowledge of hardware description
languages, digital circuit design and experience with the design
tools. Also the implementation of interfaces to the outside
(monitor, keyboard, network connection) is difficult. In SDR
applications FPGAs are very good for high speed, repeatedly
occurring calculations, like

e mixing and down conversion

e filtering

e  high-speed FFT

e  parallel demodulation of a large number of signals

Processors and FPGAs both have advantages and disadvan-
tages. In a SDR a wide range of different tasks have to be
performed with different speed, that is difficult to achieve
with a single processor or a single FPGA. So the ideal
hardware for SDR is a combination of both. And indeed
high end SDRs already follow this conclusion.

II. THE ZYNQ SYSTEM ON CHIP

Recent development in microelectronic has led to a new
kind of microchips, that combine an FPGA and a processor on

a single chip. The FPGA manufacturer Xilinx has presented
the Zynq Device, whereas its competitor Altera introduced
the Altera SoC series. Both chips are very similar in system
structure and performance. We focus on the Xilinx Zynq in
the following, but many details are also applicable to Altera
SoCs.

These new hybrid systems belong to the group of Systems
on Chips (SoCs). A SoC is composed of several very different
components like processors, memories, I/O blocks, acceler-
ators etc. on a single chip. This reduces cost and size and
provides close and fast interaction between the components.
Microcontrollers belong to the group of SoCs, as well as the
widely known Raspberry PIL.

The Zynq is also a SoC, since it contains a dual ARM A9
core, an FPGA and additional blocks for different I/O (e.g.
DDR3 memory interface, USB, SD card controller). There
are several thousand possible internal connections between
the processor and the FPGA, which are programmable and
allow fast transmission of data. This is a big advantage over a
separate combination of FPGA and processor on a PCB, where
the number of possible connections is small and can hardly be
changed after PCB design. The Zynq comes in six different
sizes (Z-7010 to Z-7100). All contain a dual ARM A9, but the
FPGA part has largely different sizes.
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Fig. 2. Overview of the Zynq system on chip

Programming of the Zynq involves two tasks: Programming
the processor and designing the digital circuit for the FPGA.
These two tasks can be done nearly independently by different
tools.

Programming the Processors

The processor can be programmed either bare metal or
using an operating system. Bare metal refers to programming
the ARM processor directly in C without any operating system
using e.g. the Xilinx SDK tool. However it is strongly recom-
mended to use an operating system like Linux, which hides
many details of the processor by using a hardware abstraction
layer (HAL) and provides easy access to interfaces as well as
standard Linux software.

As an operating system a Linux distribution (e.g.
Ubuntu/Linaro) can be installed on a SD card, which also
serves as a file system. Access to the processor can be gained
through the network interface (e.g. via SSH or RDP) or
by directly attaching monitor, keyboard and mouse (use as
a standalone system). Then standard software can be used



(provided from the Linux package manager or compiled by
hand). Software like ScilLab (mathematical toolbox) or the
powerful demodulation software Fldigi can be installed directly
via package manager. Programming can be done using many
languages, like C/C++, Qt, Python, Java etc. As an editor for
programming the QtCreator can be used, which can directly
run on the Zynq without the need for cumbersome cross
compilation.

Fig. 3.

Linux Desktop running on the Zynq

FPGA Design

The more challenging part is the hardware design for the
FPGA. Here, Xilinx provides a design tool called “Vivado”.
The basic functionality of Vivado is free of cost, an additional
license for the debugging functionalities (Vivado Logic Ana-
lyzer) is included with the Zedboard evaluation board. These
tools are sufficient for most of the designs for the Zynq. SDR
design can be done by using the Vivado Block Design, which
is a top level schematic, that connects different blocks. The
blocks contain the main functionality and can be designed in
different ways. One is using a hardware description language
like VHDL or Verilog. The other option is to rely on high level
synthesis, like Vivado HLS or Matlab based tools (System
Generator, HDL Coder), that basically try to convert C or
Matlab code into a digital circuit.

It is worth to mention, that Xilinx offers some predefined
hardware components, that are very useful to build an SDR: A
sine signal generator based on direct digital synthesis (DDS)
is available, that can be parametrized [1]. Frequency range,
resolution, bit widths, clock speed and spurious-free dynamic
range (SFDR) can be chosen. SFDRs of 150 dB can be easily
obtained. Another useful hardware block is the FIR filter
compiler, that allows for easy implementation of FIR filters [2].
Many hardware parameters can be chosen, the filter coefficient
design itself can be done using e.g. Matlab.

Designing the hardware for FPGA requires good knowl-
edge and experience in hardware design and digital circuits.
Furthermore, experience shows that the Vivado tools some-
times seem to be quite immature and unintuitive to use.

How the interconnect works

As mentioned above, the Zynq provides several thousand
interconnections between the processor and the FPGA for the

Fig. 4. The Vivado design tool, here: block desinger

exchange of data. It is worth to mention a few words on how
these interconnect works.

The interconnect is a memory mapped interface. That
means that a slice of 32 bit of the processor’s memory gets
virtually connected to a 32 bit register in the FPGA. The
processor can write data to this special memory slice, that
is then immediately transferred to the FPGA registers. Or it
can read the registers in the FPGA by reading data from the
memory. From an FPGA point of view data transfer is done
by just reading and writing to the 32 bit registers.
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Fig. 5. Memory mapped interconnect between processor and FPGA

Although moving data sounds not too complicated and is
for a programmer, it involves a quite complex process based
on a standard called AXI, which is fortunately mostly hidden
to the user.

If a large amount of data is to be transferred, direct
memory access (DMA) can be used. This allows much faster
transmission of data by using the Zynq’s high performance
(HP) or accelerator coherency (ACP) port.

Reconfiguration

One additional advantage of Zynq comes into play if re-
configuration is used. As already mentioned above, the digital
circuits in an FPGA can be changed. When the digital circuit
is designed with Xilinx Vivado tools, the design is stored in a
file (.bit or sometimes .bin), called the bit stream. After power
on the FPGA is empty and the bit stream for a the designed



circuit can be loaded onto the chip to make the FPGA do
its job. It is possible to design different hardware circuits in
advance and store them in different bit stream files. These
bit streams can be exchanged during runtime. This process is
called reconfiguration. Reconfiguration takes just a few ms to
completely change the circuit in the FPGA.

A standalone FPGA needs quite a large overhead for
reconfiguration. The design files first have to be transferred
somehow to an additional memory on the PCB. And after-
wards, whenever a reconfiguration had been triggered trans-
ferred again to the FPGA, making additional logic (e.g. a
microcontroller) necessary. The Zynq eliminates this overhead
since the bit stream files can be stored in the Linux file system
on the SD Card or on a remote computer and are transferred
to the FPGA by using the processor. In Linux the whole
process of reconfiguration reduces to the execution of a single
command:

cat new_bitstream.bin > /dev/xdevcfg

This opens up new possibilities for SDRs, since the high
speed digital circuits can be changed during operation. They
can be adapted to the required radio operation modes, to the
spectral environment or the used transmission modes, that is
also considered in modern radio technologies like cognitive
and adaptive radio.

III. THE ZEDBOARD

The Zedboard is a low-cost evaluation board for the Xilinx
Zynq device. It contains many peripherals that unleash the
power of the Zynq, such as power supplies, memory and many
interfaces.

In detail the Zedboard features:

e 512 MB DDR3 Memory

e  Gigabit Ethernet

e USB OTG and USB UART

e  HDMI interface

e  VGA connector

e OLED display

e SD card slot

e  GPIO pins, buttons and LEDs
e  FMC connector

e  Audio interface ADAU 1761

e onboard clock generators

These peripherals make the Zedboard a fully standalone
system. Monitor, mouse, keyboard and headphone can be
connected, as well as an internet connection established.

The Zedboard is ideal for experimenters, because it pro-
vides a lot of possibilities. It is an ideal platform for many
different applications like image processing, control systems,
acceleration of algorithms - and SDRs. Moreover, there is
a large online community at www.zedboard.org. Tutorials,
example projects and a forum are available to support the

Fig. 6. The Zedboard

Zedboard beginner. Also the schematics of the board have been
published and can be downloaded at no cost.

Since the Zedboard itself does not contain any ADC or
DAC suitable for SDR, a radio module needs to be connected.
The FMC connector is ideal for that. Many companies like
Analog Devices, Texas Instruments or Linear Technology
offer daughter board with an FMC interface. These boards
can be easily connected to the Zedboard. An advantage of
the Zedboard over many other SDR platform is, that the
radio module is not fixed. It can be chosen according to the
user’s requirements and available budget. It is easy to change
the FMC board and create a radio with a completely new
ADC/DAC system.

Besides the “classical” Zedboard more Zynq boards ap-
peared on the market. The MicroZed and the Zybo should
be mentioned, since they are much cheaper and offer similar
functionality. But it needs to be pointed out that these boards
do not have a full FMC connector. This makes it harder to
attach ADCs and DACs to create a full SDR platform.

IV. EXAMPLES OF MODERN SDRS USING ZYNQ

As mentioned before, the Zynq fits very well to the
requirements of SDR applications. And that is the reason, why
it is already used in modern SDRs, of which some will be
presented in the following.

Red Pitaya

The Red Pitaya has been developed as a measurement
device (oscilloscope, spectrum analyzer, signal generator) [3].
It features a dual channel input with a 14 bit ADC and a dual
channel output with a 14 bit DAC. It is a direct sampling
receiver with 125 Msps and captures signals with up to 50
MHz. For signal processing it relies on the Zynq 7010, which
is the smallest device of the Zynq series. Linux is running on
the chip, which allows to connect a PC or tablet via LAN and
provides interfaces to C++, Matlab or Labview. It is claimed
to be open source, but this is so far only true for the software
part. Although designed for measurement applications, the Red
Pitaya has been converted into a full SDR system [4].



Fig. 7. Red Pitaya: Zynq based ADC/DAC board

Zepto SDR

The Zepto SDR has been developed by Nutaq and consists
of a Zedboard combined with a FMC extension (Radio420S
FMC) [5]. It operates in the frequency band from 0.3 to 3
GHz using 12 bit ADC and DAC converters. The maximum
processing bandwidth is 28 MHz. It is proposed to run GNU
radio on the Zyngq.

USRP E310

The USRP E310 is a device of the Embedded Series of the
well-known USRPs from Ettus [6]. Thanks to the Zynq 7020
(same size as in the Zedboard) it is a standalone device. The
dual channel analog frontend supports 70 Mhz to 6 GHz with
a maximum bandwidth of 56 MHz.

R2T2

The R2T2 is a direct sampling transceiver with two chan-
nels for receiving and two for transmitting [7]. It features two
14 bit ADCs with 125 Msps and 14 bit DACs with 250 Msps. It
provides similar processing features as the Zedboard: A Zynq
7020 with DDR3 memory, Gigabit Ethernet, HDMI, USB, SD
Card and the Audio Codec ADAU1791. Via web interface up
to 8 users can use the SDR remotely [7].

V. THE PANORADIO SDR: A TECH DEMO FOR A
HIGH-SPEED DIRECT SAMPLING RECEIVER

A. Overview

To show today’s possibilities for an experimenter, a tech
demo, the Panoradio SDR has been developed. It features a
Zedboard with an attached FMC card with the high-speed
AD9467 ADC, that samples analog signals with 16 bit res-
olution and 250 Msps [8]. Because of its accuracy and high
sample rate, it can pick up signals directly after the antenna
without any analog down conversion, working as a direct sam-
pling receiver. Due to the high sampling rate, a bandwidth of
up to 125 MHz can be picked up and displayed instantaneously
(If an anti-aliasing filter is required, this bandwidth reduces to
approximately 100 MHz).

B. Features

The Panoradio provides three zoomable panorama or water-
fall displays showing up to 100 MHz of bandwidth, including
proper anti aliasing filtering. The panorama displays can be
independently zoomed down to a bandwidth of 6 kHz and
thus deliver a minimum resolution down to 7 Hz. The three

Fig. 8. The basic Panoradio hardware: Zedboard + AD9467 FMC board
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Fig. 9. Panoradio block diagram

panorama displays allow the observation of different bands in
a very large frequency range simultaneously. For example it is
easy to watch signals in the 80m, 10m and 4m band at the same
time. With the operating system running on the Zedboard, the
software for controlling the radio directly runs on the receiver
and thus makes it a standalone embedded system, where also
mouse, monitor and keyboard can be attached directly. In
addition to that demodulation software, such as the popular
Fldigi [9], can also run directly on the radio.

The Panoradio can also be used as FFT spectrum analyzer.
Its frequency range easily allows the examination of short wave
signals. Since the ADC’s SFDR is up to 100 dBFS [8] spurs
are expected to be very low.

In addition to the panorama display two independent audio
receivers are available. Each audio receiver covers a bandwidth
of 22 kHz (optional 6 or 3 kHz), whose signal spectrum is
displayed in additional waterfall plots. The audio outputs can
directly be multiplexed or mixed to the headphone output of
the Zedboard’s audio codec and the processor’s audio interface
(and shows up as a sound card device in Linux). Also the audio
receivers can be tuned to any frequency between 0 and 100
MHz independently and instantaneously.

C. Description

The structure of the Panoradio is shown in Fig. 9. The
design is separated into high-speed processing, which is done
on the FPGA and software processing which is done on the
processor part of the Zynq.
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FPGA Processing: Data samples from the ADC are put
into the FPGA via the ADC interface module. It performs
some ADC tests, takes care of line delays and converts the
differential double data rate signals to single-ended data with
single data rate, that can be processed in the FPGA. The
samples are then fed into three digital down conversion (DDC)
blocks, one of the waterfall displays and two for the audio
receivers. Each DDC consists of a complex multiplier as
IQ mixer, DDS local oscillator plus a pair of CIC and FIR
filters for decimation and bandwidth reduction. The waterfall
DDC provides the zoomable panorama function. The zoom
function is realized by rate programmable CIC filters. For all

VHF broadcasting signals.

three waterfall displays only a single receiver is used, that
is multiplexed between the displays. Its receiving frequency is
then switched several times per second to each of the waterfall
displays’ center frequency. The audio DDCs are implemented
with a output IQ bandwidth of 22 kHz. Afterwards, the
audio data is further processed in the audio post processing
block, which consists of filters for further bandwidth reduction
(from 22 to 6 or 3 kHz) and a Weaver demodulator for SSB
reception. Finally, an audio interface sends audio IQ data to
the headphone out and to the processor.

Software Processing: The processor runs a Linaro/Ubuntu
Linux operating system on a SD card. Application program-
ming has been done in C++. Some additional libraries have
been used: Qt plus Qwt [10] for the graphical user interface and
FFTW [11] for fast FFT processing. The tasks of the software
and the processor are mainly to control the functionality of
the FPGA design and to provide an interface to the user.
FPGA interfacing includes: reading IQ data from the DDCs
for the FFT, initializing the ADC and audio interface, setting
the DDC frequencies and filter properties, loading the FPGA
design at system start-up, determining amplifications in ADC



x2

x4

T T T T
5.000 10,000 15,000 20,000 25,000

xe192 (¢

x16384

T T T T T T
1070 14071 18072 15073 15,074 18075
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and audio interface. Furthermore, the FFT calculations (includ-
ing windowing, averaging, decimation etc.) for the waterfall
displays are done in software with the processor. Additionally,
the processor provides a Ethernet and UART as interface to
the user, shows the GUI and handles user inputs.

D. Future Possibilities

Since the analog interface of the AD9467 can operate at
frequencies beyond 1 GHz, undersampling can be used to
receive frequencies far above the Nyquist frequency of 125
MHez, if proper analog filtering is applied. This provides new
opportunities for direct sampling of much higher frequencies
as considered today in amateur radio. However phase noise
degradation has to be taken into account.

The Panoradio is still work in progress and is continuously
developed further. More information can be found on the
project website www.panoradio-sdr.de.

VI. CONCLUSION

High-performance SDRs have challenging demands on
their underlying hardware platform. The hardware is required
to provide a high processing speed in combination with flex-
ibility and user interfaces. Modern SoCs, such as the Xilinx
Zynq and the Altera SoC series offer both features on a single
chip. In fact, the Zynq is already used in several SDR projects
and with the availability of the affordable Zedboard it is also
interesting for experimenters. As a tech demo the Panoradio
SDR has been presented. It is a 250 Msps direct sampling
receiver based on the Zedboard and shows the capability of
these new devices.
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